

ND-110 Functional Description
ND-06.026.1 EN

i1

Norsk Data ND-06.026.1 EN

o)

Preface

The product

The Reader

The manual

Related manuals

The ND-110 Functional Description manual
describes the architecture of the ND-110
computer series. The main building blocks and
their functions are described.

This manual is intended for all technical and
maintenance personnel who wish to gain
detailed information about the ND-110
computer.

The reader is assumed to have a general
knowledge of digital techniques and
computers. Some knowledge of ND-100
instruction set and assembly programming will
also be helpful for parts of the manual.

This manual is intended to be read from
beginning to end, since some sections of the
manual assume knowledge of previous sections.
The appendices are included chiefly for
reference.

ND-06.029 ND-110 Instruction Set
Describes the ND-110 from the
programmer's point of view.

ND-06.017 ND-100 Bus Description
Describes the bus signals used by
ND-100 and ND-110 computers.

ND-60.096 MAC User Guide
The assembly Tanguage manual for
ND-100 and ND-110 computers.

Norsk Data ND-06.026.1 EN

iv

Norsk Data ND-06.026.1 EN

102
anl)

oot dh AT VI B A - 1V TR W S VLV I}

) I

fuy
(8]

N

[N ol = W
ErbDDDBBDDONE

H O

NN

NN
www

[ASEEAS RS I V]

n NN
o Oy N

N S S
w N

[ASTEAS I 2N

—

Table of contents

ND-110 ARCHITECTURE

(-

Instruction set
Addressing modes

Bus structure ..
The ND110 Computer
ND-110 configuration
Central Processing Unit
Memory System
Input/Output System

The ND cabinets

CenTrAL PrROCESSOR UNIT

—
WO OOl W

—
o

Fundamental building blocks
Instruction set .
Instruction execution overview
Instruction fetch and execution
Instruction fetch
Instruction decoding
Instruction Execution

The register file
The 8 Working Registers
Status Flags .

Microprogram sequencer RMIC

Sequencer operation

Sequencing .

Functional Flow
Example of 1nstruct1on fetch and execut1on
Interruption of execution

Pipeline

The arithmetic 1og1c un1t

ALU operation .
Examples of ALU operat1on

The interrupt system
Program levels
The External Interrupt System
External Interrupt Identification
Internal Interrupt System
Internal Hardware Status Interrupts
Internal Interrupt Identification
Example of internal interrupt routine
Program Control of the Interrupt System
Programming the Interrupt Registers
Examples of Programmed Interrupts
Leaving the interrupting level

Norsk Data ND-06.026.1 EN

15
19
19
20
20
21
22

24
25
26

28
28
31
32
32
34

35
37
37
40

40
41
44
46
48
50
52
53
53
54
55
55

N
o

w

LWwWwwwoww
LWwwwoww
OHwN -

N

Vi

Use of the PVL Register .
Initializing the Interrupt System

Memory addressing
Address structure

Execution times

Paging .
Addressing Modes .
relative addressing
relative addressing
indirect addressing
indirect addressing
relative addressing
indexed addressing . .
indirect indexed address1ng
indirect indexed addressing
Principles of Address Arithmetic

RMAC operation

W OV ®XTOV®E®O

How the eight address1ng modes are hand]ed .

MEMORY MANAGEMENT SYSTEM

Virtual address space
Dynamic allocation
Memory protection .
Paging and Protection System
Connection to CPU .
Memory Management Arch1tecture
Virtual to Physical Address Mapping
Page Table Selection CoL
Page Table Assignment
Memory protection system
Layout of Page Tables

Page Protection System
Ring Protection System
Privileged Instructions

Page Used and Written in Page

Memory management control and status
The SEX and REX Instructions

Paging Control Register

Paging Status Register

Control of page tables
Shadow Memory .
Reading and Wr1t1ng in Page Tab]es

Timing .
Example of page tab]e use

Norsk Data ND-06.026.1 EN

56
57

58
59
60
60
62
62
63
64
65
66
67
68
69
71
71
73

77
78
78
79
80
80
81
83
84
85
86

=

Ui

[e)lNe)}

R S S
LW

oo
H W

o1 oo
~N N O

oY O

OO
NN
Hwrn

(o)))]
w w

[SY

w

N

—

[u=y

vii

ND-100 BuS SYSTEM

Bus control .
Physical arrangement of the ND 100 bus
Organization of ND-110 card crate

Bus timing considerations

THE ND-110 STORAGE SYSTEM

The memory hierarchy

ND-110 memory system organ1zat1on

Cache .

Cache arch1tecture
Cache data entries .
Cache memory organization

Cache memory access
Cache read access
Cache write access

Cache control and status

Local Memory

Memory spec1f1cat1ons
Switch settings . .
Memory Access Ind1cators
ECC Disable Switch

Addressing .
Memory Access .
Memory access timing L

Error check and correction (ECC) ..
Error Correction Control Register (ECCR)
Parity error status registers PEA, PES
Parity Error Status (PES) Register
Parity Error Address (PEA) register

THE INPUT/OUTPUT SYSTEM

ND-100 bus in the I/0 system .
Organization of an I/0 Device Contro11er Card
Allocation of the ND-100 Bus

Programmed Input/Output .
The Input/Output Instruct1ons IOX and IOXT
10X transfer direction .
Calculation of the Device Reg1ster Address
Specification of an I/0 Device Register Address
The Device Registers on 1/0 Interfaces
Example of a programmed I/0 routine

ND-100 bus signals during I0X instructions
10X Input
10X OQutput

I0X Error

I0XT 1nstruct1ons

Norsk Data ND-06.026.1 EN

103

. 105
. 105
. 106
. 107

. 113
. 114
. 115
. 116
. 116
. 118
. 119
. 120
. 121
. 121
. 123
. 123
. 123
. 125
. 125
. 125
. 125
. 126
. 128
. 128
. 129
. 129
. 131

. 136
. 136
. 137

. 139
. 139
. 140
. 141
. 143
. 144
. 145

. 146
. 146
. 147
. 148
. 148

(o))]
(G2 N8

(o)l e)Moy
B g Y

OO

~N~

w N

~N ~

(6208
H 0N

viii

The 1/0 system and interrupt
Interrupt levels .
Device Interrupt Ident1f1cat1on
The Ident Instruction
Bus signals during an IDENT 1nstruct1on
Program example of interrupt driven 1/0

Direct Memory Access (DMA)
DMA transfer A

Initialisation

Transfer

Termination . .
ND-100 Bus signals dur1ng a DMA transfer
Programming a DMA controller .
1/0 devices on the CPU board

Console terminal interface

The Real-Time Clock
Panel processor programming spec1f1cat1on

Panel status register (PANS)

Panel control register (PANC)

Panel processor commands ..

Placing a message on the display

Updating the calendar clock

OPERATOR INTERACTION

Control panel
Indicator 1lights
Display panel
Understanding the d1sp1ay

Operator communication from the conso]e (OPCOM)

Load commands ($ and &) . .
Load from an operator specified address
Start Program {!) .

Internal Memory Test (#)

Program debugging commands
Single step execution
Set breakpoint (.) . .
Execute entered 1nstruct1on (")
Read/write I1/0 device (10/)

Print current location (%)

Examine mode (E)

Examine memory (/)

Memory dump {<)

Examine registers (R/)

Display pseudo-registers

Register dump (xx<yyRD)

Interral Register Dump (IRD)

Scratch Register Dump (xx<yyRDE)
Display Format (uuzzyxF))
BPUN 1oad format

Norsk Data ND-06.026.1 EN

148
149
149

. 150

151

. 152

154

. 156

156
157

. 157

157
159

160

160

. 163
. 163

164

. 165

166
167
167

169

171
173
173
173

174

176

. 177
. 178

178

178
179

179

. 179
. 179
. 180

180
180
181
182

. 183

184
184

184

184
186

iX

8 New Features IN ND-110

8.1 What is Different from the ND-1007?
Physical Size .
New Technology e
New Cache-memory Strategy
Address Arithmetic
The Interrupt System
The Control Store .
Control Logic and timing
New Instructions

8.2 Microprogram Changes

Norsk Data ND-06.026.1 EN

Norsk Data ND-06.026.1 EN

X

Table of appendices

AppeNDIX A: ND-110 MNemonics 203
A.l ND-110 Mnemonics in alphabetic order . 205
A.2 ND-110 Mnemonics in numerical order . 207
ApPenDIX B: ND-Bus SIGNALS 209
B.1 ND-110 CPU C-connector . 211
B.2 ND-110 CPU B-connector . 212
B.3 ND-110 CPU A-connector . 213
ApPENDIX C: SwITCHES AND INDICATORS ON THE ND-110 CPU 215
Cc.1 Switch settings on the old CPU card (3090) . 217
Cc.2 Switch settings on the new CPU card (3095) . 218
C.3 Switch settings on the terminal interface (3013) . 219
C.4 Switch settings on the terminal interface (3107) . 220
ApPenDIX D: PRIVILEGED INSTRUCTIONS 223
ApPENDIX E: PRINT VERSION 27
E.1 Print number e e e . 229
E.2 Engineering Change Order (ECO) . 229
E.3 Speed version (CX) . 230
E.4 Print release version . 231
ApPENDIX F: MICROCODE FORMAT 253
ApPENDIX G: GLOSSARY 237

INDEX 243

Norsk Data ND-06.026.1 EN

Norsk Data ND-06.026.1 EN

Xiii

OCONOOTL D W

List of figures

ND-100 bus Connection

ND-110, ND-110 Compact and ND 110 Sate111te cab1nets :

ND-110 CPU functional blocks .
Instruction pipeline .

instruction format .

Instruction decoding .

Register file structure .
Status register (STS) bit ass1gnment .
STS, program dependent . ..

. STS, machine dependent .

. Status register

. RMIC microprogram sequencer
. RMIC stack . ..

. RMIC source address

. Loading control store

Decoding of the LDA ,B ,X 1nstruct1on

. Execution pipeline .
. Arithmetic logic unit
. External Interrupt System

IIE register .
Internal interrupt system

. TRA PVL Instruction

. Memory reference 1nstruct1on format
. RMAC address-arithmetic gate array .
. Memory Management Building Blocks

. A page table entry .

. Virtual to physical address mapp1ng .
. Layout of an entry in the page table (16 PT mode)
. Page table entry . o,

. Memory protection

. Ring Assignment e e e e
. TRR PCR instruction, A register format .
. TRA PGC instruction, A register format .
. PGS Format . e e e e

Page table entry .

. CPU SEMREQ cycle timing d1agram

. Bus SEMREQ cycle timing diagram.

. A cache entry e e

. Cache organization .

. Memory switch settings . .

. CPU read/write cycle timing d1agram
. DMA read/write cycle timing diagram.
. Error correction control register format .
. PES register format .

. ND-100 standard I/0 card .

. Bus request sources

. ND-100 Bus Cycle .

I0X Instruction Format .

IOXT Instruction Format . .
10X Instruction decoding deta11s .
10X and IOXT Address Range .

. Control signals during an IOX 1nput 1nstruct1on

Norsk Data ND-06.026.1 EN

11

17

20

21

21
24

26
26

27
28

29
30
30

31

34
36
37
45
48
49
56
59

71
81
82
82
86
87
89
91
95
96

. 96
100
108

. 109
. 116
. 118
. 124
. 127
. 127
. 128
. 129
. 136
. 138
. 138
. 140
. 140
. 141
. 142
. 146

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66 .
67.
68.
69.
70.
71.
72.
73.

Xiv

Control signals during an I0X output instruction .

The IDENT instruction

Control signals during an IOX output 1nstruct1on .

DMA data transfer
ND-100 Bus signals dur1ng a DMA transfer)
Panel status register (PANS)

Panel control register (PANC)

The Operator's panel

The display panel .

Control Store Bit Group Se]ectwon

Cache Inhibit Page Instruction .
A-register after VERSN .

T-register after VERSN .

D-register after VERSN .

ND-100 bus signals .

ND-110 Tracer signals .

ND-110 I/0 connector signals . . .

Switch settings ND-110, early vers1on (3090)
Switch settings ND-110, new version (3095)
The 8-Terminal Interface (3013)

The 8-Terminal Interface (3107)

Norsk Data ND-06.026.1 EN

. 147
. 150
. 151
. 155
. 158
. 165
. 166
. 171
. 173
. 192
. 193
. 193
. 193
. 193
. 211
. 212
. 213
. 217
. 218
. 219
. 220

XV

. List of tables

1. Level Assignments 42
2. Internal interrupt codes 49
3. Addressing modes b0
4. RMAC address operations . . . o ¢
5. Page table use and addressing mode O - 1
6. Page Table Assignments e - 1<)
7. Page table address in shadow memory . I |
8. Available memory cards A 7€
9. Address Space for 64 K memory card o 4
10. Truth table for XOR ot 74 <1
11. Coding of single-bit memory errors 130
12. Terms included in ECC Coding11
13. Console interface registers .. 160
14. Terminal interface word length . 162
‘ 15. Panel processor commandS« .« .« .« 166
16. OPCOM commands . . . O 4}
17. Commands in STOP mode S 4)
18. ALD switch settings . . . O o A |
19. Print number Jjumper sett1ngs 4 |
20. ECO jumper settings . . . S ~4C | O
21. Speed version jumper sett1ngs e -4¢ [0
22. Print release jumper settings .23

Norsk Data ND-06.026.1 EN

XVi

Norsk Data ND-06.026.1 EN

CHAPTER 1

ND-110 ARCHITECTURE

Norsk Data ND-06.026.1 EN

Norsk Data ND-06.026.31 KN

CHAPTER 1 ND-110 ARCHITECTURE

1.1 INSTRUCTION SET

ND-110 is a 16-bit general-purpose mini
computer system in the ND-100 family of 16-
bit computers from Norsk Data. It is general-
purpose in the sense that it has both
software and hardware available for most
computer applications. The maximum address
space is 16 Mwords (32 Mbytes). It is upwards
compatible with NORD-10/S and ND-100
computers and runs the same operating system,
SINTRAN III.

The ND-110 CPU is supplied in two versions
that differ only in their performance.

e ND-110 Standard
e ND-110/CX

The ND-110 Standard has the same performance
as the ND-100/CX. Dependent on application,
the ND-110/CX CPU is from 1.5 to 3.5 times
faster than ND-100/CX.

Both versions of the ND-110 have memory
management, a new type of cache memory and
the commercial extended instruction set as
standard.

Although the basic ND-110 word is 16 bits,
the computer has a comprehensive instruction
set which includes operations on:

e bits

e bytes

e single words (16 bits)

e double words (32 bits)

e triple words (48 bits)

e register blocks

e fixed or floating point numbers

Norsk Data ND-06.026.1 EN

Floating point instructions

Commercial instructions

New instructions for ND-110

Writeable control store

Chapter 1 ND-110 Architecture

The floating point instructions include add,
subtract, multiply and divide. The standard
32-bit format has an accuracy of 23-bit
(approximately 7 decimal digits). As an
option, the ND-110 Standard and ND-110/CX may
be equipped with a 48-bit floating point
format which has 32-bit accuracy
(approximately 10 decimal digits).

For efficient system control, specially
tailored privileged instructions are
included, such as loading and storage of the
register blocks and inter-program level
read/write operations. Other instructions
perform binary-coded decimal (BCD)
arithmetic. Together, these instructions
comprise what is known as the commercial
extended instruction set which is standard on
all ND-110 CPUs (optional on ND-100).

In addition to all ND-100/CX instructions,
ND-110 CPUs contain the following new
instructions.

e TRA CS, TRR CS new instructions for
reading and loading the control store.
The old LWCS (load writeable control
store) is still legal but performs no
operation.

e TRR CILP Cache page inhibit of individual
pages in cache.

e VERSN returns print version, microcode
version, and installation number.

To allow dynamic microprogramming, the
microprogram control store is writeable
(optional on ND-100). This allows programmers
to load the control store with new
microinstructions in order to extend the
instruction set for special applications.

The ND-110 instruction set is described in
the manual ND-110 Instruction Set, ND-06.029.
Instructions that are new for the ND-110 CPU
are also described in Chapter 8 (page 192).

Norsk Data ND-06.026.1 EN

Chapter 1 ND-110 Architecture

1.2 ADDRESSING MODES

1.3 Bus STRUCTURE

A variety of addressing modes may be used:

e program-counter-relative addressing

e indirect addressing

e pre-indexed addressing

e post-indexed addressing

e combinations of the above mentioned modes
The address arithmetic is implemented in
hardware in the ND-110 whereas the ND-100
used microprogram. This gives the ND-110 an

important speed advantage compared to its
predecessor.

1.4 Tue ND110 CbMPUTER

The main highway for addresses and data in
the system is the ND-100 bus, a multiplexed
address and data bus. A1l communication
between ND-110 CPU card and the other cards
in the system is provided by this bus.

Since both memory and device interfaces are
connected to the ND-100 bus, the CPU has the
same easy access to peripherals as it has to
memory .

The ND-110 computer is delivered in a number
of different configurations and performance.
A1l versions are based on the ND-110 CPU,
which is an improved version of the ND-
100/CX. They execute the instruction set of
the ND-100/CX with some extensions. Programs
written for the ND-100 (all versions) and the
NORD-10/S will run on the ND-110 without
modifications.

Memory management, cache memory and the
commercial extended instruction set are now
standard on the ND-110.

Norsk Data ND-06.026.1 EN

6 Chapter 1 ND-110 Architecture

1.4.1 ND-110 CONFIGURATION

Communication between ND-110 cards is
achieved through an advanced high-speed bus
called the ND-100 bus. The ND-100 bus is
implemented as a printed backplane. The bus
can be extended to any number of other ND-100
buses by a driver and a receiver card.

| | |

ND-110
CPU

Device
interface

Memory

‘ External devices
term 1. panel (terminals, printers
etc.)

Figure 1. ND-100 bus Connection

1.4.2 CeNTRAL PROCESSING UNIT

The Central Processing Unit (CPU) card
contains:

e CPU
e real time clock

e terminal interface with switch selectable
speeds, 50 - 9600 baud (bits per second)

e power fail and automatic restart
e memory management system
e cache memory

e panel interface

Norsk Data ND-06.026.1 EN

Chapter 1 ND-110 Architecture

The central processor unit (CPU)

Two performance versions

New cache technique

Program levels

Memory Management

ND-110 CPU is a 16-bit parallel processor
controlled by a microprogram. The following
functions are implemented in microprogram:

e all instructions

e operator communication
e built in test routines
e bootstrap loaders

e program level change

The ND-110 CPU is delivered in two versions;
the ND-110 Standard which executes 0.32
Whetstone MIPS (the same as the ND-100/CX)
and the faster ND-110/CX which executes 0.55
Whetstone MIPS.

Both versions of the ND-110 share the same
(commercial extended) instruction set.

A1l versions of the ND-110 CPU include cache
memory. A new cache technique is used, which
integrates instruction decoding into the
cache in a novel manner.

The ND-110 has the same 16-level priority
system as the ND-100. The 16 levels are
usually referred to as program levels in this
manual. Each level is assigned a complete set
of working registers, and these registers are
stored in the register file. A copy of the
register set for the current level is located
in a high-speed register set.

Memory management is now standard on all
versions of the ND-110 CPU. Memory management
provides:

e 64 Kword virtual address range for each
user independent of physical memory
capacity

e dynamic allocation/relocation of programs
in memory

e memory protection

Norsk Data ND-06.026.1 EN

8 Chapter 1 ND-110 Architecture

The implementation of memory management is
based on two major subsystems:

e paging system

e memory protection system

The paging system The paging system can work in two modes:
"Pages” consist of “Normal" This mode is compatible with the
blocks of 1 Kword NORD-10/S paging system. This
(2048 bytes). maps a 16-bit virtual address

(describing a 64 Kword virtual

memory) into a 19-bit physical
address. In this mode the
physical address space can be
extended up to 512 Kword (1
Mbyte) .

"Extended" This is now used by most programs
written for ND-100 and ND-110
CPUs, The 16-bit virtual address
is mapped into a 24-bit physical
address. The CPU can then address
16 Mwords (32 Mbyte).

Sixteen page tables hold the physical page
numbers assigned to active programs. These
tables are located in high speed memory,
reducing paging overhead to practically zero.
The ND-110 can also be used with four page
tables (normal mode only) for compatibility
with NORD-10/S.

The memory protection system The memory protection system may be further
divided into two subsystems:

e The page protection system
e The ring protection system

The page protection system allows a page to
be protected from read, write or instruction
fetch accesses or any combination of these.

The ring protection system places each page
and each program on one of four priority
rings.

A page on one specific ring may not be
accessed by a program that is assigned a
lower priority ring number. The ring
protection system is used to protect system
programs from user programs, the operating
system from its subprograms and the system
kernel from the rest of the operating system.

Norsk Data ND-06.026.1 EN

Chapter 1 ND-110 Architecture

1.4.35 MeMORY SYSTEM

Cache memory

Local memory

Multiport memory

The memory system has a flexible and
hierarchical architecture. The memory system
includes:

e cache memory
e up to 16 Mwords local memory

e Memory channel to the multiport memory
system

Cache memory is used to hold the most recent
data and instructions to be processed. The
presence of cache memory reduces average
memory access time significantly.

Cache is implemented with high speed CMOS
memory devices having an access time of less
than 40 ns. The ND-110 CPUs feature a new
extended caching system that integrates a
microinstruction cache with the macro-
instruction cache, effectively eliminating
the need to decode instructions fetched from
cache.

The two versions of the ND-110 differ in the
size of their cache memory. The ND-110/CX has
4 Kword of cache whereas the ND-110 Standard
has 1 Kword.

Both versions of the ND-110 can address up to
16 Mword of local memory. Each word in main
memory is stored with a 6-bit error
correction code which makes it possible to:

e Correct and log single-bit errors

e Detect and report all double errors and
most multiple errors.

Each memory card includes all necessary
circuitry for error checking and correction
on the card.

In order for the ND-110 to access the
multiport memory, a multiport memory
transceiver is available.

If devices with high transfer rate are to be
used, the multiport memory system should be
employed to avoid cycle stealing from the
CPU. ND-110 CPUs used as co-processors in
ND-500 machines use multiport memory to
communicate with the ND-500 CPU.

Norsk Data ND-06.026.1 EN

10

1.4.4 INpuT/OuTPUT SYSTEM

Chapter 1 ND-110 Architecture

Programmed Input/Output

Direct Memory Access

1.5 THE ND CABINETS

The ND-100 input/output system is designed to
be a flexible system providing communication
between slow, character oriented devices as
well as high speed, block oriented devices.

Depending on the speed, a device could be
connected to the ND-110 with:

e CPU controlled, programmed input/output
(PIO)

e direct memory access (DMA)

Program controlled input/output always
operates via the A register. Each word or
byte of input/output has to be done under
program control.

Direct memory access (DMA) is used to obtain
high transfer rates to and from local memory.
CPU activity and DMA transfers can occur
simultaneously.

DMA shares the ND-100 bus with the CPU and
has priority over the ND-110 CPU for bus
access.

More than one DMA device may be active at the
same time, sharing the total band width of
the DMA channel. Total band width is 1.8
Mwords per second.

To avoid cycle stealing the DMA device can be
connected to a separate port on the multiport
memory system.

The ND-110 computer is delivered in variety
of cabinets. The smallest versions (ND-110
Satellite) house a 7-position card crate, the
ND-110 Compact models house a 12-position
card crate, while the large cabinet versions
can hold up to 21 cards.

Norsk Data ND-06.026.1 EN

Chapter 1 ND-110 Architecture

ND Norsk Data ND-110]

o7 :
E1l

| Wl

Figure 2. ND-110, ND-110 Compact and ND-110 Satellite cabinets

Norsk Data ND-06.026.1 EN

11

12

Norsk Data ND-06.026.1 EN

CHAPTER 2 CeENTRAL PROCESsOR UNIT

Norsk Data ND-06.026.1 EN

14

Norsk Data ND-06.026.1 EN

15

CHAPTER 2 CENTRAL PROCESSOR UNIT

ND-110 is based upon a microprogrammed CPU
architecture. A microprogrammed architecture
means that:

e a large portion of system control is
performed by the microprogram contained
in the control store memory.

e each microinstruction contains bits to
control each of the main elements in the

system
. e changes in the machine's instruction set
are simple to make by rewriting the
microprogram

e The microprogram resides in writeable
memory (RAM) which can be modified by
programs, allowing new versions to be
installed without changing hardware.

e The hardware package-count is reduced,
resulting in smaller computers.

The CPU fetches instructions from memory,
then decodes and executes them. Each
instruction consists of one or more
microinstructions. These sequences perform
the arithmetic, logic and control operations
of the ND-110 CPU.

2.1 FUNDAMENTAL BUILDING BLOCKS

The ND-110 CPU card contains the following
functional building blocks:

e RMAC address-arithmetic gate array

BUFALU 16-bit ALU gate array

e RMIC microinstruction sequencer gate
array

Memory Management System

[]

Cache memory

Norsk Data ND-06.026.1 EN

16

RMAC

BUFALU

RMIC

Memory Management System

Chapter 2 Central Processor Unit

e Control store

e Interrupt handler

e Trap handler

e Timing and real-time clock

e Operator control-panel interface
e Terminal no. 1 serial interface
e Register File

e CPU cycle controller

e ND-100 bus controller/interface

The 16-bit virtual addresses are calculated
here. They are sent to the memory management
system (MMS) which converts the virtual
addresses into physical addresses. If MMS is
turned off, the logical addresses will be
sent directly out to the memory system via
the ND-100 bus.

This is where the arithmetic and the logic
functions are performed, i.e. the part in the
processor that computes. It also contains the
current register set.

This is the control part of the CPU or
microinstruction sequencer. Its job is to
ensure that the CPU receives the
microinstructions in the correct sequence.

The memory management system converts the 16-
bit virtual addresses from RMAC to physical
memory addresses that are used on the ND-100
bus.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

ARB

BUFALU :

CA
CD
clk
CS
‘ CYCL
EPROM
IDB
INT
MMS
PAN
RF
RMAC
RMIC
RTC
S
SER
TRP

1

BUFALU

cache) RMAC — RMIC

B
[Control
N
D
- P S
b | MMS A E
u N R
s
L Data/
|]
Address
panel term #1

: ND-100 bus arbitration controller
16-bit ALU gate array
: cache address bus
. cache data bus
internal clock signals
: control store (for microprogram)
: CPU cycle control
: control store firmware
internal data bus
: interrupt handler
: memory management system
: operator control-panel interface
: register file
: address-arithmetic gate array
: microinstructions sequencer array
: timing and real-time clock
: upper/lower cache bank select
: terminal no. 1 (console) serial interface
: trap handler

Figure 3. ND-110 CPU functional blocks

Norsk Data ND-06.026.1 EN

17

18

Cache

Interrupt handler

Trap handler

Timing and real-time clock

Operator’'s Panel

Terminal no. 1

Register File

CPU cycle control

Chapter 2 Central Processor Unit

On the ND-110/CX, cache is divided into four
banks, each 1K (1024) words. Two banks are
used for data words (16-bit), and the other
two for instructions (16-bit + 64-bit micro-
instruction). The ND-110 CPU uses only one
cache bank for instructions and none for
data.

Caching microinstructions in parallel with
(macro)instructions is new for the ND-110
CPUs and is an important contribution to the
speed advantage of the ND-110 family.

The interrupt system handles external
interrupts by continually comparing the
current priority level of the processor with
the level of any interrupting devices. It
identifies the device with the highest level
above the processor's priority level, and
generates a trap.

The trap handler is responsible for breaking
into the execution sequence to react to any
special condition requiring immediate
treatment. Depending on the type of
condition, the trap may interrupt the
microprogram sequence or break in at the
point when the CPU is about to fetch a new
macroinstruction.

The ND-110 CPU derives all its timing signals
from a central clock which is controlled by a
quartz crystal.

A microprocessor controls the operator's
panel and optional display.

The terminal interface no. 1 communicates
directly with IDB bus.

The working register sets for levels not
currently running are stored here. The
register file has two-way communication with
the IDB, for saving and restoring the current
register set.

The register file is also used as a scratch
file by the microprogram. This part of the

(extended) register file is only accessible
from the microprogram.

The basic time unit of the ND-110 CPU is the
nanocycle (26 ns). Microcycles, which contain
of four or more nanocycles, are generated by
a nano-controller. This is a finite-state
machine which controls the sequence of events
during the execution of a microinstruction.

Norsk Data ND-06.026.1 EN

Chapter 2

ND-100 bus controller/interface

Central Processor Unit 19

2.2 INSTRUCTION SET

The ND-100 bus is controlled by an
arbitration controller on the CPU card. Al1l
requests for the ND-100 bus and allocation of
this bus are handled here.

The ND-110 CPU uses a microprogrammed CPU
architecture. The microprogram is executed
from a 6K by 64-bit writeable control

store. It is Toaded from an EPROM at power on
or when the MCL button is pressed, but not
when MACL command is used from OPCOM.

The chief function of the microprogram is to
perform the instruction set. Other functions
implemented in microprogram include:

e operator's communication (OPCOM)

e built in test routines

bootstrap loaders

e interrupt response

saving/loading register set

New instructions have been included in the
ND-110 instruction set, which allow the user
to change the instruction set dynamically.
These are described in more detail in chapter
8.

2.2.1 INSTRUCTION EXECUTION OVERVIEW

map address

To find the microprogram entry point of an
instruction, RMIC takes the upper 10 bits

0

1

1

T T T 1.7 71
instruction

(bits 6-15) of the instruction itself shifts
them 3 places to the right and combines them
with the base address of an area in the

12

0 control store called the map area. The data
word at that address is the first
microinstruction of the microprogram for this
macroinstruction.

Several microinstructions may be needed to
execute one machine instruction. RMIC
controls the sequence of these
microinstructions. Each microinstruction
contains bits to control the various elements
in the CPU. In addition it may contain a jump

Norsk Data ND-06.026.1 EN

20
latch CONTROL STORE
clk
/ 64

/13 l

clk 1

—_— PIPELINE
RMIC

stable microcode

Figure 4. Instruction pipeline

Chapter 2 Central Processor Unit

address to a new microprogram sequence. RMIC
contains a microprogram stack onto which the
microprogram can "push” a return address.

The pipeline allows the next
microinstruction fetch to occur in
parallel with the execution of the
current microinstruction. Parts of the
current microinstruction are fed back
into RMIC and are used to determine the
next microprogram address. This address
is clocked out of the microprogram
sequencer at the same time as the
current microprogram word is clocked
into the pipeline register. The next
microinstruction is being fetched while
the current one is being executed.

2.2.2 INSTRUCTION FETCH AND EXECUTION

INSTRUCTION FETCH

The sequence of events during instruction
fetch and execution is somewhat different for
ND-110 compared to the ND-100.

Whereas the ND-100 pre-fetched the next
instruction during the execution of the
current one, the ND-110 fetches the new
instruction on the last microcycle of each
instruction. The ND-110 loses no speed
advantage because of this, however. This is
because instructions are normally fetched
from cache memory, where they are stored
partly decoded (See page 115 for details of
the microcache).

The machine instructions to be executed
reside in memory. The CPU starts fetching the
next macroinstruction during the last
microinstruction sequence of the previous
instruction.

The program-counter contents are sent out
onto the CA and LA internal bus from RMAC,
the address-arithmetic gate array. The memory
management system translates the 16-bit
virtual address to a 24-bit physical address,
and the 16-bit instruction word is fetched.

Norsk Data ND-06.026.1 EN

I

Chapter 2 Central Processor Unit 21

INSTRUCTION DECODING

Each instruction has a corresponding
15 65 0 microprogram sequence in the microprogram
T T TTTT control store. Execution of an instruction
OP code |X|I|B|] e— disp —— corresponds to running a microprogram
1 sequence. Instructions must therefore be

Figure 5. instruction format decoded to determine which microprogram
sequence to run. This decoding is controlled
by RMIC.

Bits 6 to 15 of the instruction specify which
operation is to be carried out. Bits 8, 9 and
10 specify the addressing mode, when
applicable. Bits 0 to 7 are normally used as
a displacement to the operand address.

RMIC extracts the 10 most

memory 640 significant bits of the
instruction (bits 6 to 15)
microprogram shifts them six places to the
instruction control store right. This 10-bit address is

the offset into the map area of

the microprogram control store.

The 3 most significant bits are

set to point to the base address
of the map area making a 13-bit

control store address word.

The 64-bit microinstruction at
this address is the first
microinstruction of the
macroinstruction. This
microinstruction word may

13-bit contain a jump to a new control
store address if the
address microprogram sequence consists
1 of more than one micro-
64-bit micro- instruction.
instruction

Instructions which use bits

Figure 6. Instruction decoding 0 — 7 as a displacement need
four consecutive entries in the
map area as bits 6 and 7 can
take any value.

The output of the microprogram control store,
together with the timing circuitry, controls
the operation of the CPU. The microprogram
sequencer manages the microprogram control
store addresses and their sequence.

Norsk Data ND-06.026.1 EN

22

Instruction timing

Next microinstruction

INSTRUCTION EXECUTION

Chapter 2 Central Processor Unit

The time an ND-110 CPU takes to complete the
operations specified by one microinstruction
is referred to as a microcycle, or the
internal CPU cycle time. The ND-110 completes
a microcycle in six or more nanocycles {one
nanocycle = 26 ns). The faster ND-110/CX uses
four nanocycles for its shortest microcycles.

The shortest (macro)instructions, when
executed from cache, use one microcycle
(compared to four on the ND-100 CPU).

When a microcycle is completed, the next
microinstruction has already been read out
from the microprogram control store. When the
sequence of microinstructions is finished, a
new fetch will be issued, and the CPU is
ready for execution of a new macroinstruction
(= machine instruction).

If the current macroinstruction was fetched
from memory, RMIC uses bits 6 to 15 of the
instruction word to generate an address
within the map area of the control store. The
data word at that address is the first micro-
instruction of the macroinstruction.

Instructions fetched from cache "short
circuit" this step. The first microinstr-
uction is fetched from the microinstruction
cache at the same time as the instruction is
fetched from the instruction cache.

Fetch from cache

Fetch from memory

An instruction to be executed will be fetched
either from cache or memory. The sequence of
operations following an instruction fetch
depend on whether or not cache was used.

If the instruction is fetched from cache, the
first microinstruction of that instruction
will be fetched from microinstruction cache
at the same time.

If the instruction was not available in
cache, it will be fetched from memory. Bits
6-15 of the instruction (the op. code) will
be shifted three places to the right in RMIC
and added to the base address of the map area
of the control store. The microinstruction at
that address is the first of a sequence of
microinstructions which must be executed to
perform the function of the (macro)
instruction.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

Microinstruction execution

Interruption of execution

ALU operands

23

Bits 0-10 of the instruction will be loaded
into the instruction register (IR).

The microprogram control store words are
divided into fields, and each field controls
parts of the processor, such as ALU, register
file, I/0 control, priority interrupt etc.
Within each word, a field controls the
sequencer, telling it how to generate the
next microprogram address. The function
performed by one word in the microprogram
control store is called a microinstruction
and the time required to execute a
microinstruction is called a microcycle.

The microinstructions may be executed to
fetch data from memory (for example, under an
LDA instruction), perform ALU operations,
shift registers, and so forth. Together with
the timing, they will control the operation
of the CPU. During these operations, the
contents of the IR may be needed to determine
source/destination registers in register
operations, the address mode in memory
reference instructions, the kind of shift
mode in shift instruction, etc. This
information may affect the microprogram
sequencer, the A and B select, the shift-
linkage circuitry and the loop counter.

The last microinstruction of each
macroinstruction will test for an external
interrupt before fetching the next
macroinstruction. If an interrupt is active,
a trap routine is entered. This trap routine
will determine the source of the interrupt
and take the appropriate action.

When changing from one program level to
another as a result of an interrupt, the
register set in BUFALU is saved in the
register file. The working register set of
the new level is then copied into BUFALU.

The ALU is controlled by the 64-bit
microinstruction word which contains bit
fields to select the A and B inputs to the
ALU and the operation to be performed on
them.

Norsk Data ND-06.026.1 EN

24

2.5 THE REGISTER FILE

Chapter 2 Central Processor Unit

There are 16 register sets available in the
ND-110, one for each of the 16 program
levels. Each of the register sets consists of
8 general programmable registers and 8
scratch registers which are accessible only
from microprogram. Together these 256
registers are referred to as the register
file.

In addition there are three sets of 256
registers which are referred to collectively
as the extended register file (XRF). These
registers are available only from the
microprogram. The microprogram uses the
extended register file as a scratch file.

15 0
[PLT5
[PLT4
[PL13
[PL12
[PLII
[PL10
[PL9
[PL8
[PL7
[PL6
[PL5 -
[PLa I
[PL3 |
[PL2]
access [PL1 .
. PLO
only via { Scratch regs)
microcode X e
. T] -
A
s I
B
: i
5 i
STS)
15 0

Figure 7. Register file structure

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 25

2.3.1 THE 8 WORKING REGISTERS

STS (status) register

D register

P register

B register

L register

A register

T register

X register

This register holds the 8 status flags
described on page 26.

This register is an extension of the A
register in double precision or floating
point operations. It may be connected to the
A register during double-length shifts.

Program counter, address of current
instruction. This register is controlled
automatically in the normal sequencing or
branching mode. But it is also fully program
controlled, and its contents may be
transferred to or from other registers.

Base register or second index register. When
used in connection with indirect addressing,
it results in pre-indexing.

Link register. The return address after a
subroutine jump is contained in this
register.

This is the main register for arithmetic and
logic operations directly with operands in
memory. This register is also used for
input/output communication.

Temporary register. In floating point
instructions it is used to hold the exponent
part. It is also used with the IOXT
instruction to hold the device address.

Index register. In connection with indirect
addressing, it causes post-indexing.

The current register set is held in BUFALU,
and during level change this register set is
stored in the register file. The register set
for the new level is loaded to the BUFALU.
A1l registers and levels can be read or
written by specifying register and level
information.

Norsk Data ND-06.026.1 EN

26 Chapter 2 Central Processor Unit

2.5.2 Status FLAGS

Common status rég
|
I |

& f ﬂ MICIO|Q|Z|K|G|P

program 1
IONI ————————J Tevel [— paging table mode

FP rounding mode

PONI 1-bit accumulator
error flag
SEXI , dynamic overflow flag
b static overflow flag
N100 carry flag

multishift flag

Figure 8. Status register (STS) bit assignment

Eight flags are accessible by programs. These
15 76543210 are:

common part |[M|CIO[Q|ZIK|G|P] M Multishift 1ink flag. This is used in
shift instructions as a one-bit extension
Figure 9. STS, program dependent of the register (A, D or T) to allow
multiple word shifts.

C The carry flag is set or reset according
to the result of arithmetic operations.

0 Static overflow flag. The overflow flag
remains set after an overflow condition,
until it is reset by a program.

Q Dynamic overflow flag.

Z Error flag. This flag is static, and
remains set until it is reset by a
program. The Z flag may be internally
connected to an interrupt level in such a
way that an error message routine may be
triggered.

K One-bit accumulator. This flag is used by
the bit operations, instructions
operating on one-bit data.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

27

Rounding flag for floating point
operations.

Page table mode. Enables use of the
alternate page table.

These 8 flags are fully program controlled,
either by means of the bit instructions or by
the TRA or TRR instructions. Note, however,
that TRR STS only writes to bits 0-7 of the
status register, and not the whole register.

15 87 0 The upper part (8 bits) is common for all
T program levels. This part gives the following
PIL information:
[—— N100 IONI Interrupt system ON flag.
SEXI
PONI PONI Memory management ON flag.
IONI
SEXI Extended flag to show that the memory
Figure 10. STS, machine dependent management system is in 24-bit extended
addressing mode instead of the 19-bit
addressing mode.
N100 N100 flag to show that this is an ND-
100 family CPU (ie not a NORD-10).
PIL Current program level.

Norsk Data ND-06.026.1 EN

28 Chapter 2 Central Processor Unit

Machine dependent STS Program dependent
1

15 8 7

0
[PLT5 ~ J

[PL13
[PL13
[PL12

[PLIT JJJ

[PLI0
[PL9

[PL8 JJJ

[PL7 ,
[PL6 ,
[PL5 J
[PL2 J

[PL3 JJ

[PL2

[PLT JJ

PLO

Figure 11. Status register

The figure above shows that each program
level has its own version of STS bits 0-7
level, while STS bits 8-15 are common for all
levels.

2.4 MicrROPROGRAM SEQUENCER RMIC

The use of an advanced microprogram sequencer
with a built in stack has made it possible to
take advantage of the latest microprogramming
techniques: microbranching, microsubroutines
and repetitive microinstruction execution.

2.4.1 SEQUENCER OPERATION

The purpose of the microprogram sequencer is
to generate the address to the microprogram
control store, making it possible to fetch
and execute a microinstruction. The
microprogram sequencer contains a
microprogram address register (ADR) with
multiplexed input, a push/pop stack and an
incrementer. Control lines provide the
information needed to select the source of
the next microinstruction address.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

29

micro control store

control signals
TEST — S
o
CD -
IR 4V JUMP— S A
E WCA -~ E D
AA 4 C RETURN— S L R
A
[————-——————— NEXT— S
[
STACK +1
J REPEAT
LCS —{ CNTR
AA : A operand address
ADR : microprogram address register
cD : cache data bus
CNTR : divide by two counter
IR : instruction register
LCS : load control store
SAS : sequencer address multiplexer
SC : sequence controller
SEL : microprogram address multiplexer

STACK : microprogram stack
TEST : test object (signal to used for a test condition)
VEC : vector address multiplexer

WCA : writeable control store address

: next address incrementer

Sequencer control

Figure 12. RMIC microprogram sequencer

It is possible to make branches in the
microprogram, execute subroutines in the
microprogram and carry out repetitive micro-
instruction execution.

RMIC determines the address of the next
microinstruction with the help of two
multiplexers (SAS and SEL in figure 12 on the
previous page).

SAS selects from the address of current
microinstruction (REPEAT), The address stored
on the top of the microinstruction stack
(RETURN), the output of the incrementer
(NEXT) or to a direct address (JUMP).

Norsk Data ND-06.026.1 EN

30 Chapter 2 Central Processor Unit

12 0 The push/pop stack (LIFO) is used to store a
return address when executing

Latest return @ Top microsubroutines. It can be used for up to
address : four return addresses. A set of control Tlines
from the sequencer control, controls the
Latest but 1 4 push/pop stack and determines whether the
return addressfl levels function being performed is a jump to a

of subroutine (PUSH), or a return from a

Latest but 2 nesting subroutine (POP). It is also possible to hold
return address the stack information (HOLD) or to load the
top word (LOAD) with the current microprogram
Latest but 3 address + 1 without affecting the rest of the
return address stack.

Bottom

After a subroutine has been completed, a

Figure 13. RMIC stack return to the address immediately following
the jump to the subroutine instruction may be
accomplished by selecting the stack as the ‘
source address (RETURN) and simultaneously
executing a POP.

The sequencer controller (SC) directs two
multiplexers, SAS and SEL. In addition it
controls the sequencer stack if a conditional
sequence is not specified.

The first multiplexer, SAS, selects the
source of the next microprogram address:

1. A direct branch address (JUMP)
2. The stack (RETURN)
3. From the incrementer (NEXT)

4. The current one (REPEAT) .

A direct branch address comes from the branch
CD - address field in the microprogram.

JUMP ———
WCA - If the incrementer is selected as the source
address (NEXT), the sequencer will step to

S
A the next instruction of the microprogram.
S

—mwv

RETURN —

NEXT The second address multiplexer, SEL, chooses
between the output of SAS and an address
which comes from the CD bus. The address from

the CD bus is used for:
+1 REPEAT
e trap vectors

e mapping (finding the first microprogram
Figure 14. RMIC source address address of an instruction)

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

word group NEXT
T ——t
/

2 carry
LCS —= CNTR +1 I

Figure 15. Loading control store

2.4.2 SEQUENCING

31

e directly addressing the writeable control
store. In this case the address from CD
is latched in WCA.

Control store words are 64 bits wide but must
be written as four 16-bit words, which are
stored temporarily in the register file. WCA
holds the control store address, while the
output of CNTR selects which 16-bit group is
to be used.

CNTR functions as a latch for TRR CS and TRA
CS instructions. In this case CNTR contains
the 2-bit select field for the 16-bit group
specified in the instruction. When the
control store is being loaded, CNTR steps
through the 16-bit groups in sequence,
propagating a carry to the microprogram
address incrementer ([+I]).

A microinstruction may specify two different
sets of next-address select-control bits.
Which set to use depends on the ALU
(arithmetic logic unit) result of the
microinstruction last executed, or on a
number of other test objects originating in
the CPU. This makes conditional branching
possible. There is a special condition-enable
bit in each microinstruction that makes this
two-way branch occur.

Prior to the testing the microinstruction,
one of the test objects must be selected by
the microprogram. If the test object is true,
one set of select control bits is used. If it
is false, the other set is used.

The microinstruction format is given in
appendix F. The Microprogramming Description
manual for ND-100 (ND-06.018.1) may be
referred to for general information. A new
microprogramming manual for ND-110 is
planned. Refer to your local sales office for
availability.

Norsk Data ND-06.026.1 EN

32

2.4.3 FuncTioNAL FLow

Chapter 2 Central Processor Unit

The execution of a macroinstruction will
always start with the microinstruction found
in the map area or a copy of this word
fetched from cache. This microinstruction
will normally contain a jump to the
continuation of the microprogram sequence.

The microinstruction word supplies the 9 most
significant bits (4 - 12) of a branch
address, while the 4 Teast significant bits
(0 - 3) are taken from the vector selector.
Together they give a 13-bit address into the
control store.

The input to the vector select is one of the

following:

e The microinstruction word bits 0 - 3 In
this case the full 13 bits come from the
microinstruction word.

e IR (Instruction register) bits 0 - 3.

e AA (A address)

The source of the A address is determined by
bits 50-52 (A OPER) of the microinstruction:

The microinstruction word bits 12-15

PIL register
e IR bits 3-5 or bits 3-6.

The loop counter (LC)

EXAMPLE OF INSTRUCTION FETCH AND EXECUTION

The LDA ,B,X instruction is to be executed.
Assuming that the instruction is fetched from
memory and not from cache, the sequence of
operations will be:

1. RMIC combines bits 6 to 15 of the
instruction word (0464003) with the base
address (060003) of the map area of the
control store.

Norsk Data ND-06.026.1 EN

Chapter 2

Central Processor Unit

33

. The resulting 13-bit word (064648) is

used as the control store address. The
64-bit word at that address is the first
microinstruction of the LDA ,B,X
instruction.

. The first microinstruction adds the

contents of the X and B registers and
passes the result to RMAC on the RB bus.
It also contains a jump to a new address
(001703) in the microprogram where the
LDA ,B.X operation is completed.

. The microinstruction at 001708 performs a

read from the 16-bit address pointed to

by (X + B). RMAC adds this to the
displacement (bits 0 to 7 of the
instruction) and the resulting 16-bit
logical address is converted to physical
address by memory management (MMS). If
the data is not present in cache,
execution will wait for an ND-100 bus
transaction.

. When the data word is available, the

microprogram jumps to the last
microinstruction word of the LDA,B,X
instruction.

. The A register is loaded with the 16-bit

data word now present on the DBR
(internal register) and a new instruction
fetch is started.

34

,B
X +

LDA ,B.X =

Instruction word ———

Supplied ——————
by RMIC

Chapter 2 Central Processor Unit

0 4 4 0 0 0
0 o 0 4 0 0
0 o 2 0 0 0
0 4 6 4 0 0 (octal)
TT | T T T
01 00|t 10j100|j000J000O
]
lbits
1

T
011 1+

T
100110100

13 bits
address

640

microprogram
control store

}

64-bit micro-
instruction

Figure 16. Decoding of the LDA ,B ,X instruction

INTERRUPTION OF EXECUTION

If the instruction had been fetched from
cache, the first microinstruction would have
been fetched in parallel from the microcache.
Points 1 and 2 above would be "short
circuited" and execution would begin directly
at point 3.

Traps can break into the execution sequence
in order to allow the CPU to attend to
something more important than the current
activity. The priority of the trap determines
when it is allowed to interrupt execution. In
decreasing order of priority they are:

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 35

2.5 PIPELINE

e Internal interrupts (highest priority)

e External interrupts (including panel
interrupts)

e Internal interrupts (remaining)

Internal interrupts of highest priority are
conditions that are so important that they
must break into the execution of the
microprogram. They are listed in decreasing
order of priority.

e Master clear/Power clear

Page fault

e Protect violation

Ring down

Page used

Written in page

External interrupts and the remaining
internal traps are handled only when an
instruction is to be fetched.

Panel interrupts have priority over other
external interrupts.

The remaining internal interrupts are:

e Power fail

Memory out of range

Memory parity error
e I0X error

Z error

e Monitor call

The pipeline is not localized in one place,
but is distributed within the CPU. It is
neverthless convenient to regard it as a
single register. Data is clocked into the
pipeline register from the control store at
the beginning of a microcycle. At the same

Norsk Data ND-06.026.1 EN

36 Chapter 2 Central Processor Unit

time the control store address for the next
microinstruction is valid on the control
store address bus. The ALU operation starts

immediately. "
1 nanocycle
(= 26 ns)
] 40 ns access address
calculation ALU operation
control store RMIC/RMAC

address valid

microinstruction

control store

data valid clk'd in pipeline

Current microinstruction
Next microinstruction .
40 ns access address
calculation
RMIC/RMAC

control store microinstruction

data valid

clk'd in pipeline

Figure 17. Execution pipeline

Forty nanoseconds after the start of the
microcycle, the 64-bit data word is stable
from the control store output. Parts of this
microinstruction word are used by RMIC or
RMAC in address calculations ready for the
ALU operation in the coming microcycle.

At the end of the microcycle the new
microinstruction is ready for execution and
the control store has the next
microinstruction valid at its output.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

2.6 THE ARITHMETIC LOGIC UNIT

37

pipeline

1
shift 1ink STS

A B IDB (bus)
operands
Figure 18. Arithmetic logic unit

2.6.1 ALU OPERATION

The arithmetic logic unit (ALU) is the
computing part of the processor. Under
control of the microprogram, the ALU performs
a number of different arithmetic, logic and
manipulative operations on data in the
working registers or from the internal data
bus (IDB).

The figure to the left shows the ALU and its
connection to the system. The control lines
from the pipeline register go in as
instructions controlling the ALU operation,
and as shift linkage control of the ALU shift
operations with the right in/left out and
right out/left in lines.

The function of A operand select and B
operand select is to select two operands to
be operated on in the working register block
inside the ALU. An operand can also be taken
from the IDB.

The result of the arithmetic logic operation
may be stored in one of the working registers
inside the ALU or enabled onto the IDB. Any
flags, such as overflow, carry, etc., are
reported to the status register, together
with flags from the shift linkage circuitry
during shift operations.

Microprogramming

Readers who are not interested
in microprogramming may prefer
to skip this section and

jump to the section on the
interrupt system on page 40

The 16-bit wide ALU is contained within the
BUFALU gate-array. In a microprogrammed
processor system such as the ND-110, the
functional blocks of the ALU are driven by
sets of control lines corresponding to fields
in the microinstruction. See Appendix (F) for
details of the microinstruction format for
the ND-110 CPU.

The ND-110 microinstruction format differs
slightly from the format for the ND-100 CPU.
In particular the IDBS (internal data bus
source) field and the COMM (command code)
fields have new values defined.

Norsk Data ND-06.026.1 EN

38 Chapter 2 Central Processor Unit

ALU primitive operations

The ALU has 8 primitive operatijons defined.

Terminology These are the basic arithmetic and logic
Although the ND-110 does not operations:
use the 2901 ALU bit slice,
used in the older ND-100, the ° R + S
terms R, S, A, B and Q are
used consistently with their ° S - R
use in the 2901.

° R - S

° R OR S

° R AND S

e NOT (R) AND S
° R XOR S
e NOT (R XOR S)
R and S are specified by ALU source field
(bits 55-57) of the microinstruction.
S may come from one of:
e 0 (internal holding register)
e B-source
e A-source
e 0 (forced to zero)
R may come from one of:
e A-source
e D (internal data bus)
e 0 (forced to zero)
The A-source and B-source are specified by
the A-oper (bits 50-52) and B-oper (bits 48-
49) fields of the microinstruction.
A operand select The A source can be specified by:
1. RA (bits 12-15 of the microinstruction)
2. PIL (program level)

3. IR (instruction register) bits 3-5

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

B operand select

39 |

4. IR (instruction register) bits 3-6

5. LC (the loop counter)

The B operand can be specified by:

1. RB (bits 0-3 of the microinstruction)
2. IR (instruction register) bits 0-2

3. IR (instruction register) bits 3-5

4. LC (the loop counter)

The ALU result {(F) may be directed by the
ALU-dest field (bits 61-63) to:

e Q (the holding register)
e B-source
e Y (ALU output = IDB bus)

In addition the ALU output (Y) may receive
the A-operand directly.

The holding register (Q) can be used to keep
results from ALU operations. This register
can be shifted right or left. It may also be
linked to the ALU result (F) for 32-bit
shifts.

When changing from one level to another, the
working registers (X, T, A, L, B, P, D, STS)
in the current register set will be written
into the current level registers in the
register file. The working registers on the
new level will be copied from the register
file into the BUFALU register set.

The eight scratch registers contain temporary
information managed by the microprogram, such
as addresses during memory reference
instructions, temporary results during
floating point operations, etc. These scratch
registers will not be saved under a level
change.

Norsk Data ND-06.026.1 EN

40

ExampLES oF ALU OPERATION

Chapter 2 Central Processor Unit

Example 1

Example 2

2.7 THE INTERRUPT SYSTEM

Two brief examples illustrate the way the ALU
is controlled by the microprogram.

The LDA instruction:

The operand to be loaded into the A register
is read from memory into the DBR (data
register) by the first microinstruction.

The second microinstruction selects the DBR
as the source for the IDB (internal data
bus). The ALU function is PASSD. This
specifies R to be D (i.e. the internal data
bus IDB) and S to be 0 (zero). The operation
performed is R XOR S (which passes R
unchanged when S is zero). ALU destination is
the B-operand, which is selected to come from
the microinstruction itself, and has the
value for the A register (= 5).

The RADD SA DB instruction:

The A-operand is IR (instruction register)
bits 3-5 which contains the value for the A
register (= 5). The B-operand is IR bits 0-2
which contains the value for the B register
(= 3). The ALU function is A + B and the ALU
destination is the B-operand, which is the B
register.

Polling

Interrupts

One CPU can handle many simultaneous
processes, but only one process can be active
at any time.

The simplest approach to such an asynchronous
event handler is the method known as polling.
The processor tests the status of each event,
in sequence and, in effect, 'asks' if service
is required.

Interrupt is an efficient way of servicing
asynchronous requests. When the processor
receives the interrupt request, it suspends
the program it is currently executing,
execute an interrupt service routine and then
resume the execution of the suspended
program.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

Interrupt levels

Daisy-chain

Nested interrupts

Enabling/disabling interrupts

Interrupt vectors

PROGRAM LEVELS

41

The ND-110 uses a multilevel, vectored
interrupt system. Interrupt requests can
occur on different levels. Each level is
assigned a priority; a lower number means
lower priority. These "interrupt levels" are
in fact identical with the ND-110 program
levels.

As more than one device may generate an
interrupt on the same level, there must be
some means of deciding priority within a
level. The method used by the ND-110 is the
"daisy-chain”. This means, in practice, that
the position in the card frame decides
priority. The closer to the CPU the higher
the priority.

An interrupt service routine may be
interrupted by an interrupt request from a
higher level. The service routine for the
higher priority request is executed, after
which execution of the interrupted service
routine is resumed.

Interrupts may be enabled and disabled using
the privileged instructions ION, and IOF.
(The instruction PION and PIOF, which also
affect the paging system, may also be used.)

Each device that can use the interrupt system
has an interrupt code assigned to it. This
code may be used to direct execution to the
appropriate interrupt service routine.

Context switch

There are 16 program levels in the ND-110 and
therefore, 16 sets of registers and status
flags. Each set consists of A, D, T, L, X and
B registers, program counter (P) and a status
register (STS) with the status flags 0, Q, Z,
C, M, K, PTM and TG. There are also 8
registers that are only accessible from the
microprogram.

Changing program level is done by means of an
interrupt. This may be external, internal
(trap), or programmed. A program may
relinquish priority by executing a WAIT
instruction. Context switching from one
program level to another is completely
automatic and requires only 7.2 ps, including
saving and unsaving all registers and flags.

Priority increases with level: program level

Norsk Data ND-06.026.1 EN

42

Program level 15

Program level usage

Program level 14

Program level 13

Chapter 2 Central Processor Unit

15 has the highest priority and program level
0 the Jowest.

Table 1 below shows how the SINTRAN III
operating system uses the 16 program levels.

A11 program levels may be activated by
software. In addition, the levels 10, 11, 12
and 13 may be activated by 512 external 1/0
interrupts. The IDENT instruction is used to
identify the interrupting device. The IDENT
is described in greater detail on page 150.

This level is used for extremely fast
interrupts and may only have one 1/0
interrupt source. It is not used by standard
ND equipment or software, but is available
for users who need an immediate access to the
CPU.

Level Usage (SINTRAN III/VSX vs.K & later)
15 Extremely fast user interrupts
14 Internal interrupts

13 Real-time clock

12 Input devices

11 Mass storage devices

10 OQutput devices

9 not used

8 not used

7 not used

6 not used

5 Xmsg

4 I/0 monitor calls

3! segment administration

2 ' SINTRAN III monitor

1 Real-time and background

0 Idle loop

Note 1: Levels 2 & 3 have changed usage from
previous versions of SINTRAN.

Table 1. Level Assignments

Program level 14 is used by the internal
interrupt system, which monitors error
conditions or traps in the CPU. Level 14 has
10 possible sources. Each source is
represented by a bit in the interrupt control
register (IIC) and interrupt mask register
(TIE).

The 'real-time clock', the multiport memory
error log and HDLC input are connected to
Tevel 13.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

Program level 12

Program level 11

Program level 10

Operation

43

Character input devices such as terminals,
tape readers, etc., are connected to level
12, and so is HDLC output.

Level 11 is used by mass storage devices such
as disk, floppy disk, mag. tape, etc.

Level 10 is assigned to character output
devices such as line printers, paper tape
punches, displays, etc.

When an interrupt request is serviced, the
CPU moves to a higher program level. The
interrupt service routine ends with a WAIT
instruction which relinquishes priority and
the CPU moves to a lower level. If another
interrupt request has occurred, with greater
priority than the original program, then the
new interrupt is serviced first. If no
interrupt has occurred or the level of the
new interrupt is lower, the original routine
resumes.

The interrupt controller takes care of all
interrupts on levels 10-15, including all
internal interrupts. Interrupts on levels 0-9
are implemented by the microprogram.

The interrupt controller sends out a 5-bit
vector specifying the interrupt source. These
bits specify a branch address in the
microprogram.

In the IIC register there are ten bits for
level 14 and one bit each for levels 10-13,
and level 15. Interrupts for levels 0-9 are
accessed via the microprogram.

When an interrupt is received, the IIC
register and the mask register (IIE) are
combined using a logical AND operation. The
priority encoder selects the highest priority
level of the result. This is compared to the
current level. If the interrupt level is
higher and the interrupt system is on, the
interrupt will be accepted.

An interrupt routine may be interrupted by a
higher priority interrupt. Service to the
lower priority routine is resumed
automatically upon completion of the higher
level.

Norsk Data ND-06.026.1 EN

44

Chapter 2 Central Processor Unit

2.7.1 THE EXTERNAL INTERRUPT SYSTEM

BUFALU

WRB

Register
file

External interrupts are controlled by the two
16-bit registers:

PIE Program Interrupt Enable

PID Program Interrupt Detect

The PIE register is controlled by program
only. The PID register may be controlled both
by program and by hardware interrupts. At any
instant, the program level is the highest
program level which has its bits set (= 1) in
both PIE and PID.

The actual mechanism is as follows:

The 4-bit PIL field in the STS register
contains the value of the current program
level.

The PIL is compared with PK (the output of
the priority encoder). PK contains the
highest program level which has its
corresponding bits set in both PIE and PID.
Whenever PK is greater than PIL, an automatic
change of context will take place. This is
done by a microprogram sequence.

The level change can be illustrated as
follows:

1. The interrupt system is temporarily
blocked to prevent false interrupts.

2. The working registers (WRB) on the
current level are saved in the
register file.

3. The PIL (program level) register on
the current level is copied into the
PVL (previous program level)
register.

4. The PK (new level priority code)
register is copied into the PIL
(program level) register. The level
change takes place at this time.

\

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

45

5. The register set for the new level

is moved from the register file to
the working registers. The paging

BUFALU Register control register (PCR) is loaded
file from the extended register file
(XRF) at the same time.
WRB —
6. The first instruction on the new
level is then fetched.
This complete sequence requires 7.2 us.
The PID register is a sixteen bit interrupt
detect register used for both internal and
external interrupts.
External interrupts may set PID bits 15, 13,
12, 11, 10, and internal hardware status may
set PID bits for program level 14, because
all internal interrupts are connected to this
level.
P P
E -_Wlﬁ L
L»|& | 16 |Priority|4 |P P 4 Load
——|encoder |—i{K I Control
— L
Fetch 1
P 16
—_|] |
D — | = | &
e —>
Fetch: Instruction fetch
IDB : Internal Data Bus
ION : Interrupt System Active ION
PID : Priority Interrupt Detect
PIE : Priority Interrupt Enable
PK : Priority Code
PIL : Program Level
PVL : Previous Program Level

Figure 19. External Interrupt System

Norsk Data ND-06.026.1 EN

46 Chapter 2 Central Processor Unit

EXTERNAL INTERRUPT IDENTIFICATION

Since a vectored interrupt system is used,
more than one device may use the same
interrupt 1ine. This means that we need to
know which device generated the interrupt
request. The vector or identification code is
found using an IDENT instruction. The
instruction has the following format:

IDENT <program level code>

In a ND-110 system there is a maximum of 2048
vectored interrupts. Each physical
input/output unit will usually have its own
unique interrupt response code and priority.

These vectored interrupts must be connected
to the four program levels 13, 12, 11 and 10.

The standard way of using these levels is as
follows:

Level 13: Real time clock
Level 12: Input devices
Level 11: Mass storage devices

Level 10: Output devices

When an IDENT instruction is executed, the
bus controller hardware searches for the
interrupting device.

The first device with an active interrupt on
the current level will respond with its 9-bit
identification code and remove its interrupt
request. The CPU uses this code to calculate
a vector to the driver routine for the
interrupting device.

Using 9 bits allows 512 different vectors on
each of the four external interrupt levels
(10-13). This means that a maximum of 2048
vectors are possible.

If more than one device on the same level

generates interrupts, the device interface
located closest to the CPU has the highest
priority. If there is more than one device

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 47

‘ connected to the card, an internal priority
mechanism on the card determines which is
handled first.

Programming Example: : The following example shows how interrupts on
level 13 might be handled. The first 1ine of
the routine uses the IDENT instruction to
read the identification code of the
interrupting device into the A register. The
second instruction adds this value to the
program counter (P register) to compute the
address of the device handler. This causes a
vectored jump to the device handler.

IDENT code zero means error If the IDENT instruction returns a code of
zero, it means that no device has sent an
identification code. Consequently the
instruction immediately following the RADD SA

. DP instruction, is a jump to an error
handler.

The device handlers end with a jump to CONT
which relinquishes priority. The next time
level 13 is entered, execution continues with
the instruction following WAIT, which is a
jump to the start of the interrupt routine
(LEV13).

Example of a level 13 interrupt handler

LEV13 IDENT PL13 % ldentify device on level 13
RADD SA DP % Computed GO TO
% add A reg. to P reg (PC)

£ IMP ERR13 % error handler =
| JMP DRIV1 % Device handler 1 E
‘ = JMP DRIV2 % Device handler 2 =
= aup DRIVN % Device handler N =
S CONT WAIT % relinquish priority =
§ JMP LEV13 % loop to start of interrupt routine §

Norsk Data ND-06.026.1 EN /

48

Chapter 2 Central Processor Unit

2.7.2 INTERNAL INTERRUPT SYSTEM

Internal interrupts are generated by the trap
handler. A1l internal interrupts are on level 14.

It is controlled from the two registers:

IIE: Internal Interrupt Enable

IID: Internal Interrupt Detect

The IID register is not program accesible.

The IIE is controlled by program only, i.e. the
various internal interrupts are enabled/disabled
by a program setting/clearing the corresponding
bits in the IIE register. The internal hardware

status interrupts are assigned to the IIE register
in the following way:

1514131211109 8 7 6 5 4 3 2 1 0

n.a.

POW
MOR
PTY
10X
PI

] H [Lo,

Figure 20. IIF register

An internal hardware signal will set one of the
bits in the IID register. IIE and IID are ANDed
together and go into the priority encoder which
gives a 4-bit code, the internal interrupt code
(IIC). This code has a value between 0-12 , which
will identify the internal interrupt condition
which forced the CPU to level 14. The operating
system will then read the IIC register to find the
reason for the interrupt. Bit no. 14 in the PID
register is also set to one. When the internal
interrupt code is read, the IID register bit is
reset.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 49

16

L& | 16 |Priority]| 4 I read by
——s|encoder |——|1I TRA TIC
. C
I 16 1
—|1 |— bit 14
D P
I
D
Note (*) : The IID register is not program accessible.

Figure 21. Internal interrupt system

The internal conditions which may cause internal
interrupts and their associated vectors, the
internal interrupt codes, are listed below:

Condition Code Cause

NA 0 Not assigned

MC 18 Monitor call

MPV 2 Memory Protect Violation
Page number is found in the
paging status register

PF 38 Page fault
Page not in memory.
II 48 I11egal instruction.
Instruction not implemented.
Z 5 Error flag.

The Z flag is set (= 1).

PI 6 Privileged instruction

10X 78 10X error.

No answer from external device.
PTY 10 Memory parity error

MOR 11 Memory out of range

Addressing nonexistent memory
POW 12 Power fail interrupt

Table 2. Internal interrupt codes

MPV, PF Memory protect violation and page fault
interrupt the microprogram, i.e. within a
machine instruction.

/

PI, II Privileged instruction and illegal
instruction are detected and trapped by the
microprogram.

Norsk Data ND-06.026.1 EN

50

I0X, MOR, MC
Z, PTY and POW

- Note
10X, MOR and Z traps can
occur up to two instructions
after the event that caused
them. This is because the
instruction pipeline must be
emptied first.

Chapter 2 Central Processor Unit

The remaining traps will not give an internal
interrupt until the current machine
instruction has been completed.

If PF or MPV occur during a fetch cycle, the
P-register (program counter) is not
incremented. In all other cases, P-register
points to the next machine instruction.

Power fail (POW) has the highest priority.
There is no priority assigned among the other
internal interrupts, as only one condition
can arise at a time.

The PIE bit 14 must be set to enable internal
interrupts as well as the appropriate bit in
IIE Interrupt Enable.

The interrupt system must be turned on by the
ION instruction in order to receive an
external or internal interrupt.

INTERNAL HARDWARE STATUS INTERRUPTS

Monitor Call Interrupt

Protect Violation Interrupt

One of the internal interrupt sources is the
monitor call instruction MON. The monitor
call instruction differs from the other
internal interrupt sources in that the
monitor call code or number is loaded into
the T register on level 14.

The MON instruction may have up to 255
different codes (the eight least significant
bits of the MON instruction). The T register
will contain this value, sign extended (bit-7
is sign).

Two types of protect violations are possible:
e Memory Protect Violation
This means that an illegal reference
(read, write, fetch or indirect) has been
attempted.
e Ring Violation

This means that a program attempted to
access an area with a higher ring status.

Details about the cause of this interrupt are
found in the paging status register.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

Page Fault Interrupt

Illegal Instruction Interrupt

Error flag interrupt

Privileged Instruction Interrupt

IOX Error Interrupt

Memory Parity Error Interrupt

51

The paging system must be turned on (PON
instruction) to receive this interrupt.

Generated if the program has attempted to
reference a page that is not presently in
memory. The paging status register will
contain details of the page number, etc.

The paging system must be turned on {(PON) to
receive this interrupt.

Caused by an attempt to execute an
instruction that is not implemented.

The Z flag in the STS register has been set.
This may be caused by several conditions:

Floating point divide by zero

Attempt to EXR an EXR instruction

DNZ overflow

RDIV overflow

Program setting of Z (BSET, MST or TRR)

Note: Level 14 interrupt routine must always
reset the Z flag on the interrupting level,
otherwise a new interrupt will occur when
that level is reentered.

An attempt to execute a privileged
instruction from ring 1 or 0 causes this
interrupt. The complete 1list of privileged
instructions are given in appendix D.

The paging system must be turned on (PON
instruction) to receive a privileged
instruction interrupt.

The addressed input/output device does not
return a BDRY (Bus Data Ready) signal. This
may be due to a malfunctioning or missing
device, or to no device answering to an IDENT
instruction.

A memory parity error has occurred. The PES
and PEA registers contain information about
the memory failure. The contents of these two
registers are locked until the PEA register
has been read.

The PES register contains the upper 8 bits of

Norsk Data ND-06.026.1 EN

52

Memory Out of Range Interrupt

Power Fail Interrupt

Reading I1IC

Chapter 2 Central Processor Unit

the address, the error code and status
information. The least significant 16 bits of
the failing address may be read from the PEA
register (TRA PEA). You must read the PES
register first. Reading the PEA register
unlocks both.

See page 129 in this manual and the ND-100
Hardware Maintenance Manual (ND-30.008.2) for
details of how to interpret this information.

This interrupt occurs when the program
attempts to access an address which does not
exist in memory. The PES and PEA registers
contain information about the access failure.
You must read the PES register first. Reading
the PEA register unlocks both.

The PES register contains further information
as for memory parity error (see above). The
least significant 16 bits of the referenced
address can be read from the PEA register.

This interrupt is triggered by the power
sense unit. It is possible for this interrupt
to occur simultaneously with some other
internal interrupt. In this case, the power
fail interrupt has priority.

Executing the instruction TRA IIC will load
the contents of IIC into the A register, bits
0-3. Bits 4-15 will be zero.

The instruction TRA IIC automatically resets
IIC.

INTERNAL INTERRUPT IDENTIFICATION

An internal interrupt will force the CPU to
level 14. The IIC (Internal Interrupt Code)
register contains a vector indicating the
source for the interrupt. The register is
locked to prevent overwriting.

After executing a TRA IIC the IIC register is
cleared and the A register contains the
internal error code. These codes are listed
in table 2. A branch to the internal
interrupt handler can then be made.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 53

EXAMPLE OF INTERNAL INTERRUPT ROUTINE

The following example shows how internal
interrupts may be handled. The TRA IIC
instruction reads the IIC register. The value
is added to the program counter to form a
jump address. The various internal interrupt
routines must end by jumping to EXIT14 where
a WAIT instruction relinquishes priority. The
next time level 14 is entered, execution will
continue to the JMP LEV14 instruction, which
starts the interrupt handler routine again.

LEV14, TRA
RADD
JMP
JMP

JMP
JMP

IMP

EXIT1d WAIT
JMP

0 LR

IIC % Place IIC code in A reg.
% and reset error lock
SA DP % computed GO TO - add A reg.
% to P. reg. (program counter)
ERROR % 0, error not assigned
MONCL % 1, monitor call 7
PROTN % 2, protection violation
PAGEF % 3, page fault

POW % 10, power failure

LEV14

AR

2.7.3 ProGRAM CONTROL OF THE INTERRUPT SYSTEM

ION Interrupt system on

When power is turned on, the power up
sequence will reset PIE and the register
block on program level zero will be used. Two
instructions are used to control the
interrupt system.

The ION instruction turns the interrupt
system on. After the ION is executed, the
computer will resume operation at the program
level with the highest priority. If a
condition for change of program levels
exists, the ION instruction will be the last
instruction executed at the old program
level, and the old program level will point
to the instruction after ION. The interrupt
indicator on the operator's display is 1it by
the ION. The ION instruction is privileged.

Norsk Data ND-06.026.1 EN

54 Chapter 2 Central Processor Unit

IOF Interrupt system off The IOF instruction turns off the interrupt
system, i.e. the mechanisms for a change in
program levels are disabled. The computer
will continue operation at the program level
at which the IOF instruction was executed,
i.e. the PIL register will remain unchanged.
The interrupt indicator on the operator's
display is reset by the IOF instruction. The
I0F dinstruction is privileged.

PROGRAMMING THE INTERRUPT REGISTERS

PID and PIE may be read into the A register
using the instructions

e TRA PID
e TRA PIE.

Three instructions are available to set these
registers:

1. TRR PID (or PIE)
2. MST PID (or PIE)
3. MCL PID (or PIE)

TRR The TRR instruction will copy the A register
into the specified register.

MST The MST, masked set, instruction will set the
bits in the specified register to one where
the corresponding bits in the A register are
ones.

MCL The MCL, masked clear, instruction will reset
to zero the bits in the specified register
where the corresponding bits in the A
register are ones.

A11 program levels may be activated from
program, by setting the appropriate bits in
PIE and PID. These are called programmed
interrupts.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 55

ExAMPLES OF PROGRAMMED INTERRUPTS

Changing to a higher level If interrupts to program level 9 have already
: been enabled (bit 9 in PIE is set), a call to
that program level may be made from a lower
program level by setting bit 9 in the PID
register. This may be done with the MST

instruction.
% SAA 0 % clear A reg. g
s BSET ONE 110 DA % set bit 9 to 1 (118 = 910) §
= MST PID % set PID bit 9 =
§ NEXT, §
Changing to a lower level Assume that the CPU is currently running on

level 10 and one wishes to continue on level

SAA 0 % clear A reg.

BSET ONE 50 DA % set bit 5 to 1

MST PID % set PID bit 5 to one
WAIT % give up priority

NEXT,

TR

Writing to IIE The internal interrupt sources are enabled by
setting the corresponding bits in the IIE
register. This may be done with the TRR IIE
instruction. The MCL and MST instructions are

. not available for the IIE register.

The IID register is not accessible from the
program.

LEAVING THE INTERRUPTING LEVEL

When an interrupt routine has completed its
work, it must relinquish priority using the
WAIT dinstruction.

The WAIT will cause the CPU to exit the

current program level, the corresponding bit

in PID is reset, and the program level with

the highest priority will be entered. This

will then normally have a lower priority than

the program level which executes the wait
. instruction.

Norsk Data ND-06.026.1 EN

56

Use oF THE PVL REGISTER

Chapter 2 Central Processor Unit

I[f there are no interrupt requests on any
program level when the WAIT instruction is
executed, program level zero is entered.
Level zero will normally perform an idle
loop.

- Note
The P register (program counter) of a
level that has given up priority points
to the instruction following the WAIT
instruction. This instruction will often
be a JMP to the start of the interrupt
routine.

3 0
PVL
15 7 6 1 32 0
110101111 010
IRR Tevel DP

Figure 22. TRA PVL Instruction

When an internal interrupt occurs, it is

often necessary to know the value of the P

register (program counter) on the level that

was active at the time of the interrupt.
This may be done with the TRA PVL
instruction. This instruction will read the
contents of the PVL register (4 bits) into
the A register in bits 3-6. Bits 7-15 of
the A register are loaded with the
operation code for the IRR instruction
{inter-register read). Bits 0-2 of the A
register are set to DP (destination P
register).

The A register will now hold the
instruction:

IRR «<previous level * 108> DP

By executing an EXR SA (execute A register)
at this point, the contents of the A register
will be executed as an instruction.

After the instruction has been executed, the
program counter on the level which caused the
interrupt will be found in the A register.

Note that there are some cases where the
program counter has not been incremented, for
example if a memory protect violation
interrupt occurs. If this interrupt occurs
during the fetch of an instruction, the
program counter is not incremented, but if it
occurs during the data cycle of an
instruction, the program counter is
incremented (see also the section on memory
management system, page 87).

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 57

' 2.7.4 INITIALIZING THE INTERRUPT SYSTEM

Before the interrupt system can be used, it
must be initialized. After power up, PIE and
PIL will be zero. The registers on level zero
will be in use. The interrupt initialization
must include the following:

1. Enabling of the desired program levels by
proper mask setting in PIE (Priority
Interrupt Enable).

2. Enabling the desired internal interrupt
sources by proper mask setting in IIE
Interrupt Enable Register.

3. Initialising the P-registers (program
. counters), on the levels to be used. That
is, the P-registers must contain the
starting addresses of the programs to be
executed on the respective levels.

4. If the Z (error) interrupt (IIE bit
number 5) is enabled, the Z flag (bit 3)
in the STS (status) register must be
cleared for all levels being initialized.

5. The IIC (Internal Interrupt Code)
register, the PES (Parity Error Status)
register and the PEA (Parity Error
Address) register should be unlocked
after power up.

Performing a TRA instruction for IIC and
PEA, will unlock all three registers.

® ;

Example: The following example shows how the interrupt
system can be initialised.

. The interrupt system must be turned ON.

Norsk Data ND-06.026.1 EN

58

LDA (76032

=

= TRR PIE

= LoA (3736
= TRR T1E
= LA (P1

= IRW 10 DP
S LDA (P3

= IRW 30 DP
= TRA 11C
S TRA PEA
= 10N

= Jvp START

2.8 MEMORY ADDRESSING

Chapter 2 Central Processor Unit

% 760328 = 0 111 110 000 011 010,

% levels 1, 3, 4, 10, 11, 12, 13 and 14
%

% 37368 = 0 000 011 111 011 110,

% Interrupt sources except Z flag

% Here the P register (program counter) for
% levels 1 and 3 are initialised. The other
% levels would be initialised similarly

% start address for level 1
%

% start address for level 3
%

% Unlock IIC

% Unlock PEA and PES

% Turn on interrupt system
% Go to main program

OO OO0 OO0 O GO 0RO RO A LA

Note that 760328 is 0 111 110 000 011 0102

Bits 1, 3, 4, 10, 11, 12, 13 and 14 are set
high (= 1) in the bit mask.

Similarly 37368 is 0 000 011 111 011 1102

Bits 1, 2, 3, 4, 6, 7, 8, 9 and 10 are set
high (= 1).

The ND-110 accesses memory as 16-bit words.
There are four different types of memory
access.

1. Instruction fetch. The word being fetched
will be interpreted as an instruction.

2. Operand read. The word being fetched will
be used as data.

3. Operand write. The word being written is
data.

4. Indirect address fetch. The word being

fetched will be treated as an address for
the current operation.

Norsk Data ND-06.026.1 EN

TIgl

Chapter 2 Central Processor Unit 59

The ND-110 uses relative addressing. This
means that the address is specified relative
to the contents of the program counter (P
register), or relative to the contents of the
B and/or X registers.

The following pages detail the various
addressing modes available on the ND-110.
These pages are preceded by a general
description of the instruction format and the
terminology used.

2.8.1 ADDRESS STRUCTURE

A large group of memory reference
. instructions share the same format:

15 109 8 0

T T 1 1 T T T T T 1
op code X 1 ,B displacement

Figure 23. Memory reference instruction format
Bits 8 to 10 define the addressing mode and
bits 0 to 7 the displacement. Together these
two fields define the memory address.
The 8-bijt displacement field is a 2's
complement signed number (giving a
displacement range of +127 to -128).

The five most significant bits, the op code,
. define the type of operation executed.

The eight possible combinations of ",X", "I"
and ",B" define the following addressing
modes:

e P relative addressing

e B relative addressing

e P indirect addressing

B indirect addressing

X relative addressing

Norsk Data ND-06.026.1 EN

<7

60 Chapter 2 Central Processor Unit

e B indexed addressing
e P indirect indexed addressing
e B indirect indexed addressing

The effective address for the operation is
the address of that memory location which is
finally accessed after all address
modification (pre- and post-indexing) have
taken place in the memory address

computation.

X I ,B | Mnemonic Effective Address
0 00 (P) + disp

0 0 1 ,B (B) + disp

0 1 0 I ((P) + disp)

0 1 1 ,B I ((B) + disp)

1 00 , X (X) + Disp

1 0 1 ,B X (B) + disp + (X)
1 10 I ,X ((P) + disp) + (X)
1 1 1 ,B 1 ,X ((B) + disp) + (X)

Table 3. Addressing modes

EXECUTION TIMES

Indirect addressing increases the execution
time of memory reference instructions. One
extra microcycle is needed if the indirect
address is found in cache; if it is not in
cache the execution time is increased by one
memory access.

When B relative indexed addressing (,B,X) is
used, the instruction execution time is
increased by one microcycle. This does NOT
apply to B indirect indexed addressing

(,x I,B).

PAGING

In the descriptions that follow the memory
addresses used are 16-bit virtual addresses.
You should remember that these are normally
translated into 24-bit physical address by
the memory management system. This
translation process is described in detail in
Chapter 3.

Norsk Data ND-06.026.1 EN

Chapter 2

Central Processor Unit

61

When memory management is ON, the translation
may be done with the help of the standard
page table (PT) or the alternate page

table (APT). The rule is: P relative
addressing uses the normal page table, B
relative or indexed (,X) addressing modes use
the alternate page table.

Indirect addressing results in two memory
accesses. One for the indirect address and
the second for the instruction operation
itself. The memory management system regards
these two memory accesses as separate
operations and chooses PT or APT, according
to the above rule, for each memory access.

The ND-110/CX normally uses cache for memory
accesses. This has no effect on the way the
memory address is formed. The only difference
is that accesses from cache are faster.
Section 5.4 (page 115) describes the ND-110
cache system in detail.

Norsk Data ND-06.026.1 EN

62 Chapter 2 Central Processor Unit

2.8.2 ADDRESSING MODES

The following symbols are used below in the description
of the addressing modes of the ND-110:

,X address relative to X register (post-indexed)

I indirect address

,B address relative to B register (pre-indexed)

d displacement (bits 0-7 of instruction) as a 2's
complement value.

() contents of a register or memory location
ea effective address

n arbitrary address of a word in memory

K memory block base address pointer

* current value of the program counter

« points to

> loaded into

P RELATIVE ADDRESSING

,X=0
1=0
,B=0 Effective address = (P) + disp.
Description: The effective memory address is calculated by adding

the value of the displacement to the contents of the P
register (program counter). If memory management is ON,
the normal page table (PT) will be used.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 63

memory

location

n + d +«——— effective address
displacement (d)

n +——— (P)

Note: d may have any value in the range -128 to 127.

Example: STA *2 {instruction code 0040023)

Store contents of A register in the memory location two
words ahead of this instruction.

memory
location
6028 (A) “—ea =N+ 2
displacement (d)
d =2
600 004002 = (P) (P) = 600
8 8 8
B RELATIVE ADDRESSING
,X=0
1=0
,B=1
Effective Address = (B) + displacement
Description: The effective address is calculated by adding the value

of the displacement to the contents of the B register.

memory

lTocation

n+d +~——— effective address (ea)
displacement (d)

n «——L——-(B)

Note: d may have any value in the range -128 to 127.

Norsk Data ND-06.026.1 EN

64

Example:

Chapter 2 Central Processor Unit

LDA -4,B (instruction code 0447748)

Load the contents of a memory location into the A
register.The effective address location is the contents
of the B register minus the value of the displacement
(= 4).

memory
location
100358 +—— (B) d=-4
(B) = 010035
. ((P)) = 044774%
. disp. = -4 8
100318 >(A) +~————ea = (B) - disp.
P INDIRECT ADDRESSING
,X=0
I=1
,B=0
Effective Address = ((P) + disp)
Description: The contents of the P register (program counter) are

added to the value of the displacement to find the
indirect address (pointer).

If memory management is ON, the normal page table (PT)
is used to convert the indirect address to a physical
address.

The 16-bit word pointed to by the indirect address is
the effective address for the operation.

If memory management is ON, the alternate page table
(APT) converts the effective address to a physical
address.

memory
location
n+d | pointer———— (pointer) = effective
address
displacement (d)
{
n e [P}

Note: d may have any value in the range -128 to 127.

Norsk Data ND-06.026.1 EN

Chapter 2

Example:

Central Processor Unit 65

LDA I *2 (instruction 0450028)

Load the contents of the effective address into the A
register. The effective address is the contents of the
memory location two words (d = 2) ahead of the current
instruction.

memory
Tocation

160038 >(A) ea = ((P) + disp)

4028 0160038 «— (P)+ disp

displacement (d)

d
4008 0450028 ————J (P)

nou
N

400
8

B INDIRECT ADDRESSING

X
I
B

nonon
- O

Description:

NOTE:

Effective Address = ((B) + disp)

The contents of the B register are added to the value
of the displacement to form the indirect address. The
16-bit word fetched from this location is the effective
address for the operation.

If memory management is ON, the alternate page table
(APT) will be used to convert both the indirect and
effective addresses to physical addresses.

Indirect addressing adds one extra memory access to the
execution time of the instruction.

Norsk Data ND-06.026.1 EN

66

Example:

Chapter 2 Central Processor Unit

memory
location
+———— effective address =
((B) + disp)
n+d +«————— indirect address
displacement (d)
1)
n ¢————~—-(P)

Note: d may have any value in the range -128 to 127.

JPL I 3,B (octal code for instruction 135403)

The contents of the B register plus the value of the
displacement point to the memory location which
contains the effective address.

The instruction saves the contents of the P register
(program counter) in the L register and loads the P
register with the effective address. This results in
the next instruction (marked subr. in the diagram
below) being fetched from the effective address.

memory
location
200008 subr. ea = ((B) + disp)
4038 200008 +«——— (B) + disp
displacement (d)
| d=3
4008 1354038 +— (B) (B) = 4008
((P)) = 1354038

X RELATIVE ADDRESSING

X
I
B

nnn
C O

Description:

Effective address = (X) + disp

The effective address is calculated by adding the value
of the displacement to the contents of the X register.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 67

. If memory management is being used, the alternate page
table (APT) is used to convert the effective address to
a physical address.

memory

location

n+d +«—— effective address
displacement (d)

n «—-i——— (P)

Note: d may have any value in the range -128 to 127.

Example: STA 2,X (instruction code 0060028)
‘ Store contents of X register in the memory location two
words ahead of this instruction.
memory
location
6068 (A) ——ea = (X) + 2
displacement (d)
604 — (X) d =2
8 (X) = 604
((P)) = 0060023
B INDEXED ADDRESSING
®
I=0

,B=1 Effective address = (B) + (X) + disp

Description: The effective address is calculated by adding the
contents of the B register to the contents of the X
register, and then adding the result to the value of
the displacement.
If memory management is being used, the alternate page
table (APT) will be used to convert the effective
address to a physical addresses.

Note: This addressing mode adds one extra microcycle to the

execution time of the instruction.

Norsk Data ND-06.026.1 EN

68

Example:

Chapter 2 Central Processor Unit

memory

location

n+(X) +————ea = (B) + (X) + disp.
+d
‘ displacement (d)

n+(X) —— (B) + (X)

n (B)

Note: d may have any value in the range -128 to 127.
LDA 1,B ,X (instruction code 0464018)

Load the contents of the memory location into the A
register.The effective address is the contents of the B
and X registers added together plus the displacement (=
1).

memory
location
309 - (A) ——ea = (B) + (X) +d
8 td
3088 —— (B) + (X)
d=1
3048 +—— (B) (B) = 304
(X) =4 8
P INDIRECT INDEXED ADDRESSING
,X=1
I=1
,B=0 Effective address = ((P) + disp) + (X)
Description: The displacement value is added to the contents of the
P register to determine an indirect address. The 16-bit
word at this location is added to the contents of X
(index) register to find the effective address.The
indirect address can be used as a base pointer to a
block of memory with (X) the index.
NOTE: Indirect addressing adds one extra memory access to the

execution time of the instruction.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 69

‘ memory

location

K+(X) +«—————— effective address

+(X)

n+d K ———-l (P) + disp.
!

displacement(d)
{

n 4———(p)

Note: d may have any value in the range -128 to 127.
Example: LDA ,X I *1 (instruction code 0470018)

The contents of the P register (program counter) are

added to the value of the displacement (= 2) and the

value fetched is used as the effective address.

The contents of the effective address are 1oaded into

the A register.

memory
location

10002_| = (A) ——ea = ((P) + d) + (X)

100018 ea base |+—— ((P) + d)

’ 5078 —— (P) +d d =1
td (P) = 506
506, | 047001 |—— (P) (x) =1 ®
(507) = 10001
8 8
B INDIRECT INDEXED ADDRESSING
L X=1
I=1
,B=1 Effective address = ((B) + disp) + (X)
Description: The value of the displacement is added to the contents
of the B register to form an indirect address. The 16-
bit word at this location is added to the contents of X
(index) register to find the effective address. The
indirect address can be used as a base pointer to a
‘ block of memory with (X) the index.

Norsk Data ND-06.026.1 EN

70

NOTE:

Example:

Chapter 2 Central Processor Unit

If memory management is being used, the alternate page
table (APT) will be used to convert the effective
address to a physical addresses.

Indirect addressing adds one extra memory access to the
execution time of the instruction.

memory
location

K+(B) «—— effective address

+IB)

n+d K ————————J (B) + disp.
!

displacement (d)

n +——— {B)

Note: d may have any value in the range -128 to 127.
LDA ,X I ,B *1 (instruction code 0474013)

Load the contents of the effective address into the A
register. The the contents of the B register plus the
displacement (= 2) is the indirect address (507). The
indirect address contains the base address (10081) to
which is added the contents of the index registerB(X =
1) to form the effective address.

memory
Tocation

100023 > (A) ——ea = ((B) + disp.) + (X)

10001 | ea base |+— ((B) + disp.)

(B) = 506,
5078 — (B) + disp. (x) =1
(507) = 10001
506, - (8) ((P)) = 047401

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit 71

. 2.8.3 PRINCIPLES OF ADDRESS ARITHMETIC

The ND-110 CPU performs address arithmetic in
the RMAC gate array. This function was
performed by the microprogram in the ND-100.
RMAC contains an adder and selection logic as
well as copies of three important registers;

B, X and P.
cD L, Ccc
| A
H
S D S
E E 16-bit
X ~ L L —
E logical
. ! P p C address
— S C T
RB — L
l +1 I R
|
B : (copy of) B register
CCC : Clear cache count
CcD : CD bus
PC : (copy of) P register (program counter)
R : the previous address
RB : bus from BUFALU
X : (copy of) X register
. Figure 24. RMAC address-arithmetic gate array

RMAC operates one microcycle ahead of BUFALU
in the pipeline. This means that addresses
are ready for BUFALU to use without delay.

RMAC OPERATION

RMAC calculates a memory address by adding a
displacement to the base address. The
displacement comes from the current
instruction (see instruction format on page
59.). The base address comes either from the
registers B, X and P or a memory location.

A multiplexer (RSEL) selects the base address
. from the four possible sources:

Norsk Data ND-06.026.1 EN

72

The

Chapter 2 Central Processor Unit

B (a local copy of the B register in
RMAC)

X (a local copy of the X register in
RMAC)

R, a register in RMAC which contains the
previous value of P (program counter).

The RB bus from BUFALU. This source is
used for B-relative indexed addressing
(,B,X mode). BUFALU adds the X and B
registers and sends then to RMAC via the
RB bus.

address adder (ADD) performs 2's

complement addition on the operands:

The

The register operand from RSEL.

The CD bus. This can contain an 8-bit
displacement from the current instruction
or the result of a memory read cycle
(indirect addressing).

main multiplexer (SELECT) selects the

address to be used from six possible sources.

ADD, the address adder.

PC, the program counter. (local copy of P
register)

R, a register in RMAC which contains the
previous value of P (program counter).

, the incrementer. This contains (the
previous value of P) + 1.

CD, the internal bus. This contains the
result of a memory read operation during
the second RMAC cycle of an indirect
indexed memory operation.

CCC, cache clear count.

Norsk Data ND-06.026.1 EN

Chapter 2 Central Processor Unit

73

How THE EIGHT ADDRESSING MODES ARE HANDLED

The following table shows how the eight
different addressing modes are handled. RMAC
operates one p-cycle ahead of the ALU.

B-relative indexed addressing uses the ALU to
add X + B. This is done in the first ALU p-
cycle, that is, the second RMAC p-cycle. The
result from RMAC is ready in time for the
second ALU p-cycle, which uses the address
for the memory access.

Addressing Mnemonic 1st p-cycle 2nd p-cycle
mode in RMAC in RMAC
P-relative R + CD sign -

Ind P-rel I R + CD sign’ cD?

B-rel ,B B + CD sign' -

Ind B-rel B 1 B + CD sign’ cD?

Indexed X X + CD sign’ -

B-rel Indexed ,B,X (X+8B)> ——+ RB*+ CD sign
Ind P-rel Indexed 1I,X R + CD sign' X + CD?

Ind B-rel Indexed ,B I,X B + CD sign’ X + CD?

Note: 1) The CD bus contains the sign extended displacement

2) The CD bus contains the result of the first memory read

3) X and B are added in BUFALU not in RMAC. This is done in the
same p-cycle as the RMAC operation.

4) RB contains X + B from BUFALU

Table 4. RMAC address operations

Sign extension is performed by setting bits 8
to 15 of the displacement equal to bit 7.

When a new instruction is to be fetched, the
P register (program counter) is incremented
by one before use. When a P relative read or
write is performed, the pre-incremented copy
of P (in R) is used.

Indirect addressing will always use two
memory cycles. The first memory access
fetches the address that is to be used by the
second memory cycle (read or write).

Norsk Data ND-06.026.1 EN

74

Chapter 2 Central Processor Unit

B relative indexed (,B,X) addressing uses the
ALU to add the contents of the B and X
register in the first microcycle.

The actual time used for a memory cycle
depends on whether cache is used. Memory read
may use cache {if the address is in cache),
but memory write operations always result in
a ND-100 bus operation (write through cache).
Cache memory operation is described in
section 5.4 (page 115).

Norsk Data ND-06.026.1 EN

el

75

CHAPTER 3 MEMORY MANAGEMENT SYSTEM

Norsk Data ND-06.026.1 EN

76

Norsk Data ND-06.026.1 EN

()

CHAPTER 3 MEMORY MANAGEMENT SYSTEM

e

Memory management is needed to run the
SINTRAN III/VSX (Virtual Storage) operating
system. This is now standard on all ND-110
computers.

An ND-110 running SINTRAN III/VSX offers the
following features:

e Two segments, each with 64 Kwords (128
Kbyte) virtual address range for each
user, independent of physical memory
capacity

‘ e dynamic allocation/relocation of programs
in memory

e memory protection

e paging mechanism

3.1 VIRTUAL ADDRESS SPACE

For each program, a virtual address area of
64 Kwords is available regardless of the size
of the physical storage. The physical storage
available may be greater or smaller than
this. The programmer does not have to worry
about whether there is enough physical

. address space in storage when the program is
to be run, or whether other programs are
using that part of the storage.

In order to implement virtual storage, an
"intelligent"” addressing translation
mechanism must be employed. This mechanism is
under the control of the operating system.
Programs are written for a virtual machine
with 64 Kword storage. The operating system
(SINTRAN III) uses the memory management to
translate virtual addresses into physical
addresses.

Norsk Data ND-06.026.1 EN

78 Chapter 3 Memory management system

In ND-110 systems up to 16 Mwords of physical

Memory 0a memory may be used; a 16-bit virtual address
—/%5 Management |[—/=— will therefore be translated into a 24-bit
System physical address.

Operating system

DYNAMIC ALLOCATION

Regardless of the virtual address space being
used, the address translation mechanism will
put the program in the most suitable physical
address space at the time. For best storage
utilisation, the program may be scattered in
physical storage.

Dynamic relocation Since the address translation mechanism is

dynamic, the program may be moved to any
location in the physical storage.

MEMORY PROTECTION

Memory protection is not attached to
predefined memory areas, but to the program
and will follow it as it is moved around.

No external fragmentation Due to the paging mechanism, no unused areas
between programs will occur. Programs are
broken up in physical storage, and loaded
where vacant pages are found.

More parallelism Also as a result of the paging system,
current parts of a given program only reside
momentarily in primary storage. This gijves
room for more programs to be executed in
parallel (multi-processing).

System overhead Data transport to and from mass storage
during paging is slow compared to the speed
of the processor. The time used for this task
increases system overheads and thereby
reduces the CPU time available for user
programs. ND-110 contains new instructions,
used by SINTRAN III/VSX version K and later,
which increase system efficiency.

Norsk Data ND-06.026.1 EN

- |

S MU NI 7V

Chapter 3 Memory management system 79

. 3.2 PAGING AND PROTECTION SYSTEM

. Paging system

Memory protection system

Page protection

The implementation of the memory management
system is based on two major subsystems:

e Paging system
e Memory protection system

The implementation of paging is based on
dividing physical memory into 1 Kword pages
which, under operating system control, are
assigned to active programs. Data and
instruction pages may be allocated anywhere
in memory without restriction.

The paging system can work in three different
modes:

e "normal" (four page tables)
e extended (four page tables)
e extended (sixteen page tables)

“Normal" mode, which is compatible with the
NORD-10 paging system, uses four page tables
(PTs) to map the 16-bit virtual address into
a 19-bit physical address, extending the
physical address space from 64 K to 512
Kwords (128 K to 1 Mbyte). Despite its name
“normal” mode is now used only for
compatibility with older programs.

"Extended" mode, which covers an address
range of 16 Mwords, maps the 16-bit virtual
address into a 24-bit physical address.
Extended mode may use either four or sixteen
page tables for the mapping process. All new
programs for the ND-110 are written for 16 PT
extended mode.

The memory protection system may be divided
into two subsystems:

e The page protection system
e The ring protection system
The page protection system allows a page to

be protected from read, write or instruction
fetch accesses or any combination of these.

Norsk Data ND-06.026.1 EN

80

Ring protection

CONNECTION 10 CPU

Chapter 3 Memory management system

The ring protect system places each page and
each user on one of four priority rings.

A page on one specific ring may not be
accessed by a user that is assigned a lower
priority ring number. This system is used to
protect system programs from user programs,
the operating system from its subprograms and
the system kernel from the rest of the
operating system.

The page tables, each consisting of a protect
table and a mapping table, hold the paging
and protect information assigned to an active
program. These tables are located in high
speed registers directly connected to the
internal data bus (IDB) in the CPU, reducing
page overhead to practically zero.

Unlike the memory management system for the
ND-100 CPU the ND-110 memory management
system is entirely on the CPU card and all
connections to the CPU are contained within
the CPU card.

3.3 MEMORY MANAGEMENT ARCHITECTURE

Memory management consists of:

e 16 page tables

16 paging control registers

Paging status register

Page protection system

Ring protection system

e Memory map table

segment map table

Norsk Data ND-06.026.1 EN

Chapter 3 Memory management system 81

16 PCRs 16 Page tables

Paging
Control
Registers

Protect Mapping

Ring Address

protection

translation

}

| Trap system I

Figure 25. Memory Management Building Blocks

3.3.1 VIRTUAL TO PHYSICAL ADDRESS MAPPING

The paging system maps the 16-bit virtual
address from the address arithmetic into a
physical address. The number of bits in the
physical address depends on whether the
"normal” (19-bijt NORD-10/S compatible) or the
"extended" (24-bit) addressing mode is used.
In the following explanations, the extended
mode, which is the mode most used by ND-110
systems, is used.

The paging system divides the memory into
blocks of 1 K (1024) words. These blocks are
referred to as pages. The page tables contain
pointers to these pages.

The CPU sends a 16-bit virtual address to the
memory management system. The memory
management system translates this to a 24-bit
physical memory address (in "normal"” mode,
19-bit physical address).

15 10 9 0 To address any location within a 1 K address
space, 10 address bits are required. These
VPN DIP bits are referred to as the displacement
within a page (DIP), and are transferred
16-bit Virtual address directly to the ND-100 bus.

Norsk Data ND-06.026.1 EN

82 Chapter 3 Memory management system

The most significant part of the virtual
address (bits 10-15) is used as an address
selecting one of 64 Tlocations in the page
table. These six bits are referred to as the
Virtual Page Number (VPN).
15 87 0
T The program level (PIL) from the status
PIL register (STS) determines which of the 16
paging control registers (PCR) to use. Two
status register (STS) fields in the PCR determine which page table
is to be used for P-register relative
addressing and which page table is to be used
for other addressing modes. (See the section
on addressing modes on page 62 and the table
on page 84)

Protect | Mapping The virtual page number (VPN) addresses an
entry in the selected PT. A page table entry
may be thought of as being divided into two

Figure 26. A page table entry parts. The Mapping part contains the physical
page number (PPN), and the protect part
contains information about the access rights
assigned to that page.

Logical address from RMAC

15 10 9 0
VPN | DIP
/6
(in RMAC) |
Page table / o
PCR Protect Mapping (one of 16) !
23 10 9 0
I Trap system I PPN I DIP

23 0

Physical address to bus

Figure 27. Virtual to physical address mapping

The fourteen-bit mapping field (9-bit for
“normal” mode) in this page table entry is
called physical page number (PPN). This is
used as the upper 14 bits (bitsii_23) of the
physical address. The lower ten bits are the
displacement in page (DIP) which pass through
unchanged.

Norsk Data ND-06.026.1 EN

Chapter 3 Memory management system 83

3.3.2 PAGE TABLE SELECTION

The 14-bit PPN can have values in the range
0-16384 (0-511 for the 9 bit PPN in "normal"”
mode). It is thereby possible to access
16384 - 1 K (= 16 M) words physical memory
in extended mode. In "normal" mode the
corresponding addressing area is 512 Kwords.

The seven-bit protect field of the page table
entry is used by the protection system and is
described later (page 85).

Prior to program start, the operating system
(SINTRAN III) must set the values of the
protect and the mapping fields in the page
table.

Programs running on an ND-110 may use up to
two of the sixteen page tables at any time.
If program counter (P) relative addressing is
used, the standard page table (PT) is used.
The alternate page table (APT) field is used
for B relative and X relative memory
references. Note that indirect addressing
involves 2 memory references, where one may
go via the PT and the other via the APT, or
both via the APT.

The paging control register (PCR) contains
fields which specify which page tables are
assigned as PT and APT. The PCR register
contains information for the currently active
program level (specified by the PIL field in
the STS register). PCR's for the other
program levels are stored in the extended
register file (XRF) and loaded automatically
during a level change.

Norsk Data ND-06.026.1 EN

84

Chapter 3

Memory management system

Addressing Mode Address Mapping with PTM = 1

,X 1 ,B |Mnemonic | Via PT Via APT

0 0O (P) + disp | -

01 0 |I (P) + disp |((P) + disp)

0 0 1 ,B - (B) + disp

o 1 1 |,B1I - (B) + disp;((B) + disp)
1 0 0 |[.,X - (X) + disp

1 0 1 |,B,)X - (B) + (X) + disp

1 1 0 |,X (P) + disp [((P) + disp) + (X)

1 11 |,BI X - (B) + disp

Table 5. Page table use and addressing mode

The main principle is that all P relative
memory references are mapped via PT, and all
other references via APT. This feature is
used by processes which require access to two
segments (two bank programs) with different
virtual address spaces, giving the one
process access to 128 Kword of virtual memory
instead of 64 Kword. In one bank programs PT
and APT will both point to the same page
table, so that P relative accesses will use
the same page table as other accesses.

3.3.3 PAGE TABLE ASSIGNMENT

SINTRAN III - VSX version K assigns page
tables according to the following table.

Norsk Data ND-06.026.1 EN

Chapter 3 Memory management system 85
Page table | Mnemonic! | Usage
08 POF SINTRAN start and restart
18 UPITN users normal page table
28 UPITA users alternate page table
38 FUPIT remote file user page table
48 FPIT file system
58 5PIT Monitor call 603’ ND-500 monitor
68 XPIT Xmsg
78 DPIT resident common data, RT descriptions
108 RPIT Monitor calls, resident code
11 SPIT SINTRAN, RT loader, DMAC
128 MPIT Monitor PT, interrupts (level 14)
13
8]XSDPT ND-500 name and standard domain
14
8
15
8
16
8
178 DTPIT user direct tasks
Note 1: Mnemonics refer to Sintran III documentation

Table 6. Page Table Assignments

The reader is referred to Sintran III release
information ND-60.230 for further explanation
of page table usage.

3.3.4 MEMORY PROTECTION SYSTEM

The memory management system employs two
memory protection systems: a page protection
system and a ring protection system. The two
systems complement each other to provide
extensive memory protection.

The memory protection system works on 1 Kword
pages. If a memory access violates any of the
protection systems, a trap to program level

Norsk Data ND-06.026.1 EN

86

3.3.5 LAYouT OF PAGE TABLES

Chapter 3 Memory management system

14 will occur with the internal interrupt
code equal to 2 (= MPV) (memory protect
violation).

The two protection systems are independent,
and that both the individual memory
protection mode and the ring mode must be
satisfied before an operation is allowed to
proceed.

Protection entry

15

98

Map entry
0 15 13 0

PROT

not assigned

Physical page number

l

Protection check

l

Memory address bus
10-23

Figure 28. Layout of an entry in the page table (16 PT mode)

In the following, it is important to separate
the view of the page tables as seen from
program (as shadow memory) from how things
work physically during the paging process. In
this section paging is described from the
hardware viewpoint.

The paging process is the same for normal,
extended (4 PT) and extended (16 PT) modes.
In section describing shadow memory, on page
97, the page tables are described from the
programmer's viewpoint. There the three modes
look quite different.

The paging process begins with Tookup of an
entry selected by the 6 bit VPN (see figure
27.). This entry is 32 bits long for both
modes and consists of two parts, protect and
map as shown in the figure above.

Each page has an associated entry in the page
table which describes precisely what to do
when the program uses that page.

The map part of a page table entry contains
the 14-bit page address in physical memory
where the page is stored. The address within
a page (the 10 least significant bits of the
address) is used unaltered. This is the

Norsk Data ND-06.026.1 EN

Chapter 3

Memory management system

87

displacement in page (DIP) shown in figure
27. Together they make the 24 bits needed to
address 16 Mwords (32 Mbyte).

When "normal” mode is used, the physical page
number is only 9 bits. The 5 most significant
bits of the physical address are set to zero.
This allows access to the first 512 Kwords of
memory (NORD-10/S mode) .

“NORMAL"“ MODE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
T T T T T T T T T
WPM|RPM{FPM|WIP|PGU| RING Physical page number (PPN)
Page table entry
EXTENDED MODE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
T T T T T T T T T
WPM|RPM|FPM|WIP|{PGU| RING n.a.
Page table entry, even address
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T T T T T T 1 T T
n.a. Physical page number (PPN)

Page table entry, odd address

WPM : Write permit
RPM : Read permit
FPM : Fetch permit
WIP : Written in page
PGU : Page used

RING : Ring level

Figure 29. Page table entry

3.4 PAGE PROTECTION SYSTEM

The page protection system is a protection
system for each individual page of memory.
Each individual page may be protected
against:

Norsk Data ND-06.026.1 EN

88

15 14 13 0

W[RIF

Bit 15: W

Bit 14: R

Bit 13: F

NB!
Indirect addressing

Chapter 3 Memory management system

e read access
® write access
e instruction fetch access

and any combination of these. Thus, there are
8 modes of memory protection for each page.

The read, write and fetch protect system is
implemented by defining, in bits 13 - 15 of
the even word of a table entry, how the page
may be used. In hardware, this information is
compared with the instruction being executed,
i.e. if it is a read, write, indirect address
operation or instruction fetch.

The three bits from a table entry have the
following significance:

W=20 It is impossible to write into
locations in the page regardless of
the ring bits.

W=1 Locations in this page may be written
into if the ring bits allow it.

If an attempt is made to write into a write
protected page, an trap to program level 14
will occur, and no data will be written.

R=20 Locations in this page may not be
read (but they may be executed if the
ring bits allow it).

R=1 Locations in this page may be read if
the ring bits allow it.

If an attempt is made to read from a read
protected page, a trap to program level 14
will occur,

F =0 Locations in this page may not be
executed as instructions.

If an attempt is made to execute in fetch
protected memory, a trap to program level 14
will occur and the execution is prevented.

Indirect addresses may be taken both from
pages which have F = 1 and from pages which
have R = 1.

A11 combinations of W, R and F are permitted.

Norsk Data ND-06.026.1 EN

89

Chapter 3 Memory management system
However, the combination where W, R and F are
all zero is interpreted as page not in memory
and will generate an internal interrupt as a
page fault.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
T T T T T T T T T
WPM|RPM|FPMIWIP|PGU] RING n.a.
A |
/
2
Permit — 0K [+ Compare |[— 0K
violation —_
check [‘
/2
Memory page |
access fault R
type
| OR
15 14
R T —//
| PM PGS (part of)
/2 //
'
Privileged
instruction l
check 9 8 7 % 5 4 3 2 1 O
L 1 N
PI PF IMPV
IID (part of interrupt system)
I1ID : internal interrupt detect register
PM : permit violation
PI : privileged instruction violation
PF . page fault
PGS : paging status register
MPV : memory protect violation
R : ring number

Figure 30. Memory protection

Norsk Data ND-06.026.1 EN

90

3.5 RiNc PROTECTION SYSTEM

Chapter 3 Memory management system

PCR bits

PCR bits

PCR bits

PCR bits

00

-

-

Ring O:

Ring 1:

Ring 2:

Ring 3:

The ring protection system is a combined
privileged instruction and memory protection
system, where the 64 K virtual address space
is divided into four different rings. Two
bits (9 and 10) in each protect entry are
used to specify which ring the page belongs
to.

The privileges of the four rings are defined
by the paging control register bits 0-1:

Programs executed from this ring may not
execute privileged instructions. They may
only access locations in ring 0. Locations
outside ring 0 are completely inaccessible.

Programs executed from this ring may not
execute privileged instructions. They may
access locations in ring 1 and ring O.

A1l instructions are permitted on this ring.
Programs executed from this ring may access
locations in program 2, 1 and O.

A1l instructions are permitted and the whole
address space, including the page tables, is
accessible if not otherwise protected by the
RPM, WPM and FPM bits.

The rings 1imit the privileges of a program
and thereby its user.

Ring 3 programs have no limitations imposed
on them by the ring system (but may still be
limited by the paging system). Only trusted
programs can be allowed to operate in ring 3.
Sintran III monitor kernel operates in ring
3.

At the other level, ring 0 programs have
access only to areas in ring 0. User programs
are operated in ring 0. When they need to
access areas outside their ring, they must
use monitor calls to the operating system.
This forces all such accesses through the
operating system which thereby can maintain
system integrity.

An illegal ring access or illegal use of
privileged instructions will cause an
internal interrupt on level 14, and the
forbidden action will be avoided.

Norsk Data ND-06.026.1 EN

Chapter 3 Memory management system 91

Note

This degrading only occurs
when lower ring instruction
codes are executed, but not
when data is accessed.

Ring Assignment

users

editors
etc

timesharing

compilers

Ring 3

kernel

rest of
monitor

If a program in ring 3 executes instructions
assigned to rings 0, 1 or 2, its ring number
is reduced ‘accordingly. Such accesses are
detected by hardware which automatically
changes the ring number in the PCR register
for the current program level.

The recommended way of using the rings is:
Ring 0: Timesharing users

Ring 1: Compilers, assemblers, data bases
Ring 2: File system, I/0 system, monitor

Ring 3: Kernel of operating system

This may be visualised in the following
manner.

RT
COMMON

Figure 31. Ring Assignment

Norsk Data ND-06.026.1 EN

92 Chapter 3 Memory management system

3.5.1 PRIVILEGED INSTRUCTIONS

In a multitask system, a background user is
not permitted to use all the instructions in
the instruction set. Some instructions may
only be used by the operating system, and
these are called privileged instructions.

Privileged Instructions:
e input/output instructions

e all instructions which control the memory
management and interrupt system

e inter-program level communication
instructions

Refer to the ND-110 Instruction Set ND-06.029
for further information.

The only instruction the user has available
for user/system communication is the monitor
call instruction MON. The MON instruction
takes an unsigned eight bit number (0 - 256)
as its parameter.

When the ND-110 executes the MON instruction,
it generates an internal interrupt to

level 14. The eight-bit parameter is sign
extended to 16 bits and loaded into the T
register of program level 14. The level 14
routine may use this value to branch to the
appropriate code.

See the SINTRAN III Monitor Calls manual (ND-
60.228) for details of the monitor calls
defined in SINTRAN. Note that SINTRAN
reserves 8 monitor calls (MON170 to MON177)
for user defined routines.

The privileged instructions may only be
executed on rings 2 and 3, i.e. only by the
operating system. If users on rings 0 and 1
try to execute a privileged instruction, a
privileged instruction interrupt will be
generated and the instruction will not be
executed.

Norsk Data ND-06.026.1 EN

Chapter 3 Memory management system 93

3.6 PAGE USED AND WRITTEN IN PAGE

Bit 12: WIP written in page

"Bit 11: PGU page used

Entries in a page table are under program
control only, except for the two bits PGU and
WIP, which are also controlled automatically
by the trap system.

If this bit is set (= 1), the page has been
written in, and should be written back to
mass storage if the physical page is needed
for another program. If it is zero, the page
has not been modified and need not be written
back. This bit is automatically set to one
the first time a write occurs, and then
remains set. It is cleared by program
(whenever a new page is brought from mass
storage).

If PGU is set (= 1), the page has been used.
The bit is automatically set whenever the
page is accessed, and it remains set. The bit
is cleared by program. This bit may be used
by the operating system to maintain a record
of the access frequency of a page. This may
be used in decisions making the replacement
algorithm, i.e. to determine which page
should be swapped.

3.7 MEMORY MANAGEMENT CONTROL AND STATUS

The memory management system is controlled by
the two privileged instructions PON and POF.

Turn on the management system (paging on).

The instructions that are executed after the
PON instruction will go through the address
mapping (paging) mechanism. The ring
protection system will also be turned on by
this instruction.

Note
Programs executing in ring 3 will access
shadow memory even when paging is on. All
other rings access main memory.

Norsk Data ND-06.026.1 EN

94

Chapter 3 Memory management system

Turn off the management system (paging off).

The instruction will turn off the memory
management system and the following
instructions will be taken from a physical
address in the lowest 64 K.

- Caution

The machine will then be in

memory .

hardware protection feature,
and all memory accessible. When paging is off, the ring protection
system is also off. Shadow memory will be accessed instead of main

an unrestricted mode without any
i.e. all instructions are legal

THe SEX AnD REX INSTRucTIONS

SEX

NB!

The address mode for the page mapping system
is controlled by the two privileged
instructions SEX and REX.

Set extended address mode

The SEX instruction will set the paging
system in a 24-bit address mode instead of a
19-bit address mode. A physical address space
up to 16 Mwords will then be available.

Bit number 13 in the status register is set
to one, indicating the extended address mode.

Reset extended address mode

The REX instruction will reset the extended
address mode (24 bits) to normal address mode
(19 bits). This implies that 512 Kwords of
physical address space is now available. It
also implies four page tables.

Bit number 13 in the status register is
reset, indicating normal address mode.

This mode is compatible with NORD-10/S.

Changing the number of page tables changes
the size of shadow memory. See page 97 for
details of shadow memory addresses. After a
change of mode, the page tables must be

initialized before turning paging on again.

Norsk Data ND-06.026.1 EN

Chapter 3 Memory management system 95

3.7.1 PacING CoNTROL REGISTER

- Note The PCR (paging control register) is a
The PCR registers are not register inside RMAC. There is a copy of PCR
cleared during power on for each program level. These copies are
initialisation. This must be stored in the extended register file (XRF).
done by program before The PCR register is loaded from XRF at the
executing a PON instruction. same time as the register set is loaded from
the register file.

The instructions TRR PCR and TRA PGC allow
the programmer to write to the PCR or read
back jts contents. These instructions can
read and write to the (copy of the) PCR on
any program level.

One PCR may be written into at a time, by the
instruction TRR PCR.

This instruction uses the contents of the A
register which must use one of the following
formats.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

T T T T T T T T T T
n.a. PT APT program level 0 Ring

Four page table mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

T T T T T T T T T T
n/a PT APT program level 1 Ring

Sixteen page table mode
Figure 32. TRR PCR instruction, A register format

It may be desirable to read back the contents
of the 16 PCRs. This is done with the TRA PGC
instruction. The A register must be have the
following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
T T T T T

T T T T T T
not assigned program level | 0 0 O

After execution the contents of the A
register will be:

Norsk Data ND-06.026.1 EN

96

Chapter 3

Memory management system

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
T T T T T T T T T T
n.a. PT A P T | program Tevel 0 | Ring
Four page table mode
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0O
T T T T T T T T T T
n/a PT AP program level 1 Ring

Sixteen page table mode

Figure 33. TRA PGC instruction, A register format

3.7.2 PAacING STATUS REGISTER

Whenever the memory management system reports
errors (page fault, memory protection
violations), the operating system is alerted
through an internal interrupt with the
interrupt code equal to the error source. The
operating system then reads the paging status
register for further information. The paging
status register is used for further
specifications when a page fault or a memory
protection violation occurs.

The instruction TRA PGS is used to read this
register. Errors lock the register, reading
the register with TRA PGS unlocks it again.

The bits in PGS have the following

significance:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T
FF| PM not assigned PT VPN

Four page table mode

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0O

T | T T T T T T T T
not assigned PT

FF| PM

Sixteen page table mode

Figure 34. PGS Format

Norsk Data ND-06.026.1 EN

Chapter 3 Memory management system 97

Bit 15: FF

fetch fault

Bit 14: PM = permit violation

VPN:

5.8 CONTROL OF PAGE TABLES

Memory management interrupt occurred during
an instruction fetch.

1 = permit violation (read, write, fetch
protect system)
0 = ring protection violation interrupt

Permit violation has priority if both
conditions occur.

Page table number. The page table that was in
use when the violation occurred.

Virtual page number. This points to the page
table entry that caused the violation.

In "normal mode" it is the 8 least
significant bits of the shadow address (see
page 97).

In "extended mode" the address (bits 0-7)
must be multiplied by 2 to give the 9 least
significant bits of shadow address.

If bit 15 is a one, the page fault or
protection violation occurred during the
fetch of an instruction. In this case, the P
register has not been incremented and the
instruction causing the violation (and the
restart point) is found from the P register
on the program level which caused the
interrupt.

If bit 15 is zero, the page fault or
protection violation occurred during the data
cycles of an instruction. In this case, the P
register points to the instruction after the
one causing the internal hardware status
interrupt. When the cause of the internal
hardware status interrupt has been removed,
the restart point will be found by
subtracting one from the P register.

The operating system (SINTRAN III) manages
the page tables. Some parts are fixed from
system start time, and others are dynamically
changed and updated. When a new program is
started, the operating system examines an
administration table to see which pages are
free.

The map part of the page table is filled with

Norsk Data ND-06.026.1 EN

98

3.8.1 SHADOW MeEMORY

Chapter 3 Memory management system

the physical page numbers (PPN) of the
allocated pages. Pages are taken from other
processes if necessary. The protect part of
the page table entry will contain the access
rights of the program.

In "normal” mode the contents of each entry
(16 assigned bits) can be transferred as one
word. In extended mode each entry needs 21
bits, and must be transferred in two words.

To ease reading and writing of the page
tables, they are accessed as memory. The
highest memory locations in the 64 K virtual
address space are reserved for page table
access.

Norsk Data ND-06.026.1 EN

Chapter 3 Memory management system 99
. The memory requirements are as follows:
normal mode (4 PTs): 1 x 64 x 4 = 256 words
extended mode (4 PTs): 2 x 64 x 4 = 512 words
extended mode (16 PTs): 2 x 64 x 16 = 2048 words
The addresses are:
Normal Mode: Extended Mode Extended Mode:
4 page tables 4 page tables 16 page tables
0 177400 - 177477 177000 - 177177 174000 - 174177
8 8 8 8 8 8
1 177500 - 177577 177200 - 177377 174200 - 174377
8 8 8 8 8 8
2 177600 - 177677 177400 - 177577 174400 - 174577
8 8 8 8 8 8
3 1777008- 1777778 1776008— 1777778 1746008- 1747778
4 n/a n/a 1750003— 1751778
5 n/a n/a 1752003' 1753778
6 n/a n/a 1754008- 1755778
7 n/a n/a 1756008- 1757778
8 n/a n/a 1760008— 1761778
9 n/a n/a 1762003' 1763778
10 n/a n/a 1764008~ 1765778
11 n/a n/a 1766008— 176777B
12 n/a n/a 1770008— 1771778
13 n/a n/a 1772008— 1773778
14 n/a n/a 1774008— 1775778
15 n/a n/a 1776008— 1777778

Table 7. Page table address in shadow memory

This area is called shadow memory because it lies in the
shadow of main memory and is inaccessible for users on rings
0, 1 and 2. When paging is off, shadow memory is accessible
and the corresponding area of main memory is inaccessible.
Programs running in ring 3, however, always access shadow

memory.

Norsk Data ND-06.026.1 EN

100

Chapter 3 Memory management system

3.8.2 ReaDING AND WRITING IN PAGE TABLES

Normal and extended modes use two different
formats. A page table entry is a 16-bit word
in "normal” mode. Extended mode uses a 32-bit
page table entry. This 32-bit word is written
as two consecutive 16-bit words in shadow
memory .

NORMAL MODE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 1 1 1 1 1 Ul
WPM[RPM|FPM|WIP|PGU| RING Physical page number (PPN)

Page table entry

EXTENDED MODE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

T
WPM [RPM[FPMIWIP [PGU| RING n.a.

Page table entry, even address

15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 O

T T T T B T — T
n.a. Physical page number (PPN)

Page table entry, odd address

WPM : Write permit
RPM : Read permit

FPM : Fetch permit
WIP : Written in page
PGU : Page used

RING : Ring level

Figure 35. Page table entry

The reason for the unused bits in the page
tables is that it shall be possible to read
and write any contents in the tables without
interpreting it as paging information. When
paging is off, the page tables may be used as
2 Kword very fast random access memory. This
memory may be used by test programs as it
allows the CPU card to be tested with no
functional memory available on the ND-100
bus.

Norsk Data ND-06.026.1 EN

Chapter 3 Memory management system 101

5.9 TIMING

Page table accesses are performed in parallel
with cache memory lookup and consequently
there is no timing overhead.

3.10 EXAMPLE OF PAGE TABLE USE

Example: A user has a program occupying the 3K address
area 40000 - 457778: Addresses in this area
will have the form:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

T T T T T T T 1 T 1 T T T
0 1 0 0 P p displacement in page

Virtual page number

pp may have the values 002, 012 or 102.

15 14 13 12 11 10 9 The virtual page number may be 20 , 21 or
I 22 . User programs will be assignéd paﬁe
WPM|[RPM|FPM[WIP|PGU| RING taBle 1 by SINTRAN (see page 85)
Page table entry, even address If we assume 16 page table extended mode,

each page table entry consists of two
consecutive words. The page table entries for
page numbers 208, 218 and 228 are
consequently found at addresses 403’ 428 and
448 relative to the start of page table 1.

Seen as shadow memory this means the page
table entries are:

1742408 : Protect entry for virtual page 208
1742418 : Mapping entry for virtual page 208

1742428 : Protect entry for virtual page 218
1742438 : Mapping entry for virtual page 218

1742448 : Protect entry for virtual page 228
1742458 : Mapping entry for virtual page 228

Norsk Data ND-06.026.1 EN

102 Chapter 3 Memory management system

The three protect entries at addresses 403’
428 and 448 contain the bits WPM, RPM, FPM.
SINTRAN sets these bits with the appropriate
access rights.

FPM (fetch permitted) must be set (= 1) as
this is a program. In fact SINTRAN also sets
WPM and RPM to 1 for user programs. WPM, RPM,
FPM in the three words at 40 , 42 and 44
will therefore be set to 1.° 8 8

The written-in-page bit (WIP) will be set to
0 at the start and will not change unless at
least one word is written to that page.

The PGU (page used) bit will initially be set

to O by SINTRAN. It will be set to 1 as soon
as an access (read write or fetch) is made to ‘
that page.

The RING field will contain the ring level
assigned to the program. User programs are
assigned to the lowest ring priority (= 0).

The odd address entries, 418, 438 and 458
contain the 14-bit physical page numbers.

1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>