ND-5000

Microprogram Guide
ND-05.022.1 EN

POOOO000OO
T
xR PBB0000
FERRBBO000

The information in this manual is subject to change without notice. Norsk Data A.S assumes no responsibility for
any errors that may appear in this manual. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S. Copyright © 1987 by Norsk Data A.S.

UPDATING PRINTING RECORD
Manuals can be updated in two ways, new versions and PRINTING NOTES
revisions. New versions consist of a completely new
manual which replaces the old one, and incorporate all
revisions since the previous version. Revisions consist of
one or more single pages to be merged into the manual
by the user, each revised page being listed on the new
printing record sent out with the revision. The old printing
record should be replaced by the new one.

06/87 Version 1

New versions and revisions are announced in the ND
Customer Support Information and can be ordered from
the address below.

The reader’'s comments form at the back of this manual
can be used both to report errors in the manual and give
an evaluation of the manual. Both detailed and general
comments are welcome.

ND-05.022.1
ND-5000 Microprogram Guide

RING BINDER OR PLASTIC COVER

The manual can be placed in a ring binder for greater I would like to order

protection and convenience of use. Ring binders may

be ordered at a price of NKr. 45.- per binder. ... Ring Binders, B5, at NOK 35,- per binder

The manual may also be placed in a plastic cover. ... Ring Binders, A4, at NOK 45.- per binder

This cover is more suitable for manuais of less than

100 pages than for larger manuals. .. Plastic Covers, A4, at NOK 10.- per cover

Please send your order, as well as all types of ' NAMIE: oot

inquiries and requests for documentation to the local

ND office, or (in Norway) to: COMPANY: .ottt neens
Graphic Center AdArESS: .o
Norsk Data A.S

P.O.Box 25 BOGERUD
N-0621 OSLO 6 - Norway

(i1)

Preface

The manual

The reader

Prerequisite
knowledge

Related
manuals

This manual gives an introduction to the ND-5000 microprogramming
and states rules for use of some of the commands available in the
ND-5000 mnemonic symbols.

The manual describes how the different ND-5000 CPU hardware units
should be controlled when they are involved in execution of the
ND-5000 microprogram. Rules for controlling these hardware units
are stated when possible.

For a detailed register hardware description, see the manual ND-
5000 Hardware Description (ND-05.020).

The manual is made for people writing microprogram routines for
the ND-5000, and for people working with the ND-5000 hardware.

Some knowledge about the ND-500 architecture and detailed
knowlegde about the ND-5000 hardware is required to use the
manual.

e SAMSON Design Information ND-05.021
e ND-5000 Hardware Description ND-05.020
e ND-500 Reference manual ND-05.009

Norsk Data ND-05.022.1

{ iv)

Norsk Data ND-05.022.1

. Table of contents
1 INTRODUCT ION 1
2 FORMAT OF THE MICROWORD 3
3 Tue ND-5000 ReGISTERS 5
3.1 Context Registers 5
3.2 Scratch Registers .o 6
3.3 Special allocated registers 7

1 OperaND CONTROL 9
4.1 Fetch control e e e e e 9
4. OR-logic Control P O §
5 ARITHMETIC FUNCTIONS 15
5.1 ALU Functions . P &
5.2 The Additional Arlthmetlc oncessor (AAP) .
5.3 Input/Output to/from the AAPI P
5.4 Status setting 4 0
5.5 Limitations 4 O
b Source AND DesTinaTION CONTROL 21
6.1 The Q-register .o S |
6.2 The Working Register Flle 4
6.3 The Scratch Register File A |
6.4 Memory O
/ MICROPROGRAM SEQUENCE 5
7.1 Stack commands O~
7.2 Sequence commands] o
7.3 Restrictions in Sequencing 4 <
7.3.1 Sequence Instructions Rules 4 o |
7.3.2 Stack Instructions Rules .o S <
7.3.3 Accessing the MIC as A- operand/Destlnatlon 28
7.3.4 Extra (Sneak) Instructions and the EXUC e .29
7.3.5 Conditional Sequence and the EXUC 4

Norsk Data ND-05.022.1

oo

o0 00 00 00
W N

10

11.
11.
11.
11.
11.
11.

12.
12.
12.
12.

B W N e

A& WN =

Conp1TIONAL OPERATIONS

ND-5000 Test Conditions
Conditional sequence
Conditional ALU Operation
Condition Save (CSAVE])

ConTROL OF StATUS BITS

ADDRESS ARITHMETIC

THe ND-5000 M1CROASSEMBLER

Microinstruction
Mnemonic Symbols
Constants .
Defined Symbols
The Assembler e e
Error messages from the microassembler

User INSTRUCTIONS FOR M1CROPROGRAM EXTENSIONS

Classification

Instruction group 1
Instruction group 2
Instruction group 3

Norsk Data ND-05.022.1

3]

32
33
34
34

39

4]

41
41
41
42
42
44

47

47
48
49
51

(vii)

ApPENDIX A: ALPHABETIC LisT oF MNEmONIC SyMBOLS

ApPENDIX B: THE MICROINSTRUCTION FORMAT

INDEX

Table of appendices

55

65

Norsk Data ND-05.022.1

69

(viii)

Norsk Data ND-05.022.1

CHAPTER 1

INTRODUCTION

1
————
—————

In the ND-5000, the microprogram controls the communication
between different parts of the central processing unit (CPU).
These parts are:

e Microinstruction controller (MIC)

e Instruction cache {ICA)

e Instruction address controller (IAC)

e Instruction decode unit (IDU)

e Instruction memory management (IMM)

e Data cache (DC)

e Data address controller (DAC)

e Data memory management (DMM)

e Input and output system

e Trap system (TRP)

e Arithmetic logic unit (ALU)

e Additional arithmetic processor (AAP)
The ND-5000 microprogram consists of microinstructions. The
microinstruction width is 128 bits, and the bits are explained on
page 3. The complete microinstruction format is shown in Appendix
B, page 65.
An ND-500 macroinstruction needs a number of microinstructions,
depending on the complexity of the macroinstruction. The CPU
microprogram controls the fetch of operands connected to a macro-
instruction.
The microprogram uses data, which is fetched by the CPU
microprogram, from registers or from the cache and memory system.
This data is used in ALU operations or operations carried out on
the AAP. This ijnvolves synchronization with the AAP.

Synchronization with the cache and the memory system is done
automatically.

Norsk Data ND-05.022.1

Chapter 1 Introduction

The microprogram is divided into three parts.
1. Instructions

2. Communication between the 1/0 processor (ND-110) and the ND-
5000

3. Trap handling
Microinstructions in the ND-5000 CPU are pipelined. This means
that the CPU is placing microinstructions to be executed in a
pipeline. The pipeline consists of four levels of micro-
instructions to be executed one after the other. The levels are:

e I-level {instruction level)

e M-level (data level)

e A-level (ALU level)

e F-level (result level)
When the CPU microprogram asks for a new instruction and a new
operand, the necessary action is taken on the I-level of the
pipeline. Instruction fetch, operand fetch and instruction
decoding are controlled by the IDU and IAC.
On the M-level of the pipeline, the MIC is active. It is dealing
with sequencing of the microprogram and generating addresses to
the scratch register file. The DAC is completing the operand
address, and the data cache or the register file is accessed.

On the A-level of the pipeline, the ALU is active, performing
operations on data selected from one of these sources:

e an operand decoded from a macroinstruction
e the working register file (WRF)
e the scratch register file (SR?)
e registers elsewhere in the CPU.
On the F-Tlevel, the result from operations done on the A-level is

routed to the selected destination (if any). This destination can
be memory, or registers in the CPU.

Norsk Data ND-05.022.1

CHAPTER 2 FORMAT oF THE MICROWORD

The ND-5000 microword is 128 bits wide. It is divided into
several groups, each group controlling special parts or functions
in the ND-5000 CPU. The value of each function is given a
mnemonic symbol. The mnemonic symbols can be combined to
represent more complex functions. Symbols using the same field
should not be used together. This is allowed by the ND-5000
microassembler, as long as the mnemomic symbol do not try to set
the same bits in the field. See also Appendix B, page 65.

Microword bits Control function
127 - 122 ALU function and carry select {(true)
121 - 116 ALU function and carry select {(false)
115 Execute unconditional
114 Enable conditional ALU operation
113 - 111 Q-register control
110 - 103 Additional arithmetic processor control
102 - 101 Timing control
100 - 98 Data-type control
97 Or control (ORCON) enable
96 - 89 A-operand select
88 - 84 B-operand select
83 - 76 Destination select
75 - 72 Status bits control
71 Index counter increment
70 Loop counter decrement
69 Enable conditional sequence
68 - 65 Sequence and stack control (true)
64 - 61 Sequence and stack control (false)
60 Invert sequence condition
59 Save test condition
58 - 53 Select test object
52 - 51 Alternative branch control
50 - 48 Instruction cache write control
47 - 44 Fetch control
43 Stop
42 AAP synchronization
40 Address arithmetic control, 0CA/Micro
39 - 38 Effective address save control
37 Memory request controlled by address code
35 Address arithmetic activate (ADACT)
41, 34 - 32 Data memory control
31 - 16 Absolute microprogram address
15 - 13 Address A-operand select
12 - 9 Address B-operand select
31 - 0 Long argument
15 - 0 Short argument with sign extension
7 - 0 Mini argument with sign extension
5- 0 Or logic control {ORCON)

Norsk Data ND-05.022.1

Norsk Data ND-05.022.1

ChapTER 3 THE ND-5000 REGISTERS

Macroinstructions requiring more than one microinstruction
usually require scratch registers for temporary storing of
operands or results. The registers available in the ND-5000 CPU
may be divided into several groups. From the microprogrammer's

point of view, the registers present in the CPU, may be divided
into three groups:

1. Context registers, connected to the running process
2. Scratch registers

3. Registers allocated for special use

However, this may be different from the hardware point of view.
Registers within one of the groups defined in table 1, may reside
in different hardware modules. A detailed description of the
registers with respect to hardware modules is found in the manual
ND-5000 Hardware Description (ND-05.020.1).

3.1 CoNTEXT REGISTERS

Context registers should only be changed by microcode when
control is decoded from an assembly instruction. An exception is
the context scratch registers.

Norsk Data ND-05.022.1

6 Chapter 3 The ND-5000 Registers

Register Abbreviation Resides in

Program counter P IAC gate array

Link registerer L IAC gate array

Base register B DAC gate array

Record register R DAC gate array

Index registers I1 to I4 WRF gate array
Floating most registers Al to A4 WRF gata array
Floating least registers El to E4 WRF gate array

Status register S1 + S2 Different gate arrays
Process register PS DMM + IMM gate arrays
Current executing domain reg. CED DMM + IMM gate arrays
Current alternative domain reg. CAD DMM + IMM gate arrays
Microprogram scratch register SC1 + SC2 WRF gate array
Registers for each domain:

Top of stack register T0S

Lower limit register LL

Upper limit register HL

Trap handler address register THA Domain info. table
Own trap enable register OTE1 + OTE2 Different gate array
Mother trap enable register MTE1 + MTE2 Different gate array
Child trap enable register CTE1 + CTE2 Domain info. table
Trap modification mask TEMM1 + TEMM2 Domain info. table

Table 1. Context Registers for a Process in the ND-5000

As table 1 shows, the context registers are found in different
gate arrays. The base (B) and the record (R) registers reside in
the DAC gate array. The floating registers (D1 to D4}, index
registers (I1 to I4) and context scratch registers (SC1 and SC2)
reside in the WRF gate array. The program counter (P) and the
1ink register (L) reside in the IAC gate array.

The trap enable register will have parts residing in different
gate arrays according to traps detected by the different gate
arrays. Hardware trap enable register is either MTE when inside
trap handler or MTE OR'ed with OTE when outside trap handler. The
process (PS), current executing (CED) and alternative (CAD)
registers will reside in both the DMM and IMM gate array. The
trap handler (THA), the child trap enable (CTEl and CTE2) and the
trap enable modification mask (TEMM1 and TEMM2) registers will
reside only in the Domain Information Table.

3.2 ScrRATCH REGISTERS

A large number of scratch registers are present in the ND-5000
CPU. The most important scratch register is the Q-register
located at the ALU output. Special hardware is dedicated to
control multiply and divide operations on Q-register in parallel
with ALU operations.

Norsk Data ND-05.022.1

Chapter 3 The ND-5000 Registers

The WRF has three-address structure, which means that it is
accessed easily through two read ports (A and B) and one write
port. A1l ‘'read before write' problems are solved in hardware.

The SRF is accessed through a single port {bus), and the
microprogram must know of the pipeline peculiarities.

Some scratch registers are located in the working register file
(WRF) close to the ALU. It may be used from the microprogram for
saving of temporary results. As an extension of these scratch
register, the scratch register file (SRF) is implemented, not
located as near to the ALU as the WRF.

The scratch registers are called SC1 to SC13.
The scratch register file (SRF) may also be used as scratch

registers, when reguired. The scratch register file consists of
4K of 32-bit wide registers.

3.3 SPECIAL ALLOCATED REGISTERS

In the SRF, from address 0 to 15, SRFO to SRF15, and from SRF
address 2000B to 7777B, registers are allocated for special use
and should be used as read only.

Constants used in the mathematical functions are allocated from
address 4000B.

Some of these registers allocated for special use contain
information without any copy elsewhere in the CPU. These
registers are dynamically updated according to requirements of
the running process and should only be changed by the system
related microprogram routines.

Norsk Data ND-05.022.1

Norsk Data ND-05.022.1

CHAPTER U

OperaND CONTROL

9
)
E————

Control of operands, read and write, together with operand
select, data type control and updating the cache system, is done
by the ND-5000 CPU microprogram. The operand control may be
divided into fetch control and OR-logic control and involves
communication with several units in the ND-5000 CPU.

4.1 FETCH CONTROL

The different commands for control of fetch operations must be
used according to the operand definitions for an assembly
instruction. For multi-operand instructions, with the second or
later operand defined as a direct operand, fetch of the direct
operand must indicate the size of the operand. Special fetch
commands are not required for the first operand in case of direct
operands.

Fetch commands:

G,00PS Fetch next instruction and first operand specifier.
G,O0PS Fetch next operand specifier.

G,0PSTRD Fetch second operand specifier for string operations.

G,DIR1 Fetch a one-byte direct operand.

G,DIR2 Fetch a two-byte direct operand.

G,DIR4 Fetch a four-byte direct operand.

G,COOPS Fetch enter instruction and operand specifier after a

CALL or CALLG instruction.

G,00PS,T Fetch next instruction and operand specifier for
preferred branch route and break if test condition is
true.

G,00PS,F Fetch next instruction and operand specifier for
preferred branch route and break if test condition is
false.

G, TOOPS Fetch next instruction to check for Call, Entm, Entt
and Jumpg.

The fetch commands fetching the next assembly instruction, will
cause the microprogram to start execution in the map address of
the fetched instruction.

Norsk Data ND-05.022.1

10

Chapter 4 Operand Control

After fetch of general operands, a command for updating the
operand cache must be used. The IAC has to be told how to process
operands requested by a fetch command. These commands are the
TBC,<xx>, ABR,<«yy>, OR,<select> commands. TBC means 'to be cached
as next address'. ABR means 'alternative branch or return
address'. OR means 'OR-logic control', i.e. process information
from assembly instruction to produce microcode operand addresses.

These commands are required in the microinstruction following a
fetch cycle. TBC and ABR will control sequencing of instructions
on assembly level.

Note!

If for some reason the read is missing after a fetch, the read
may be activated in a Tater cycle.

The OR-logic to be used is specified one cycle before the read.
G,00PS,T and true test condition : ABR
G,00PS,T and false test condition : TBC
G,00PS,F and true test condition : TBC
G,00PS,F and false test condition : ABR

G,00PS,T and G,00PS,F are used in the control instruction on
assembly level such as IF = GO «displacement> etc.

The TBC field is only active when the operand cache has to be
filled. The ABR field is used to calculate the next instruction
address when the next field of the instruction cache should not
be used.

TBC commands:

TBC,PREL Cache write P relative jump address. Branch target
address relative to P (P+displacement). Used for
branch instructions with displacement specified as
second or later operand.

TBC,SUBR Cache write subroutine address. Next address to be
used is subroutine address of CALL or CALLG instruc-
tion.

TBC,NPCREL Cache write NPC relative jump address. Branch target
address relative to NPC (NPC + displacement). Used
for branch instructions with displacement specified
as first operand.

TBC,NEXT Cache write next address. Next address is current
address + length of current instruction part.

Norsk Data ND-05.022.1

Chapter 4

L

Operand Control 11

ABR commands:

ABR,NEXT Alternative branch address is current address (in
NPC) + length of current instruction part. The result
is put into the IAC scratch register (A,IAC,S).

ABR,NEXTL Alternative branch address is current address (in
NPC) + length of current instruction part. The result
is put into the L register.

ABR,NPCREL Alternative address is branch target address relative
to NPC (NPC + displacement -> IAC scratch register).
NPC must be valid. NPC points to beginning of an
instruction until and including a fetch operation
(G, <fetch>).

PR

4.2 OR-Locic CoNTROL

Data is enabled into the ALU on either the A or B operands. On
the A operand, data is enabled to the ALU by the mnemonic symbols
ORA together with source select for the operand in the ORCON
field (MIR bits 5 to 0).

On the B operand to the ALU, only operands decoded from the
instruction may be selected.

On the A operand to the ALU, operands may be decoded either from
the instruction code or from a general operand specifier. For the
A operand, the ORCON field then has to select the source for an
operand according to operand definitions for the assembly
instruction being executed.

The mnemonic symbol ORA,IN, will supply the OR-logic with infor-
mation that the A operand is to be decoded from the instruction
code. The mnemonic symbol ORA,0P will cause the A operand to be
decoded from the current operand specifier.

After fetch (G,00PS or G,0PS, etc.), the ORCON field is not used,

else the ORCON field is used in order to select integer register,
most significant part of floating register, or least significant
part of floating register.

For destination select, the mnemonic symbol ORD is used in the
microinstruction, routing data back to a destination. In
addition, the ORCON field is to be used in the same manner as for
controlling the A operand.

In addition, the ORCON field may select OR-control for next
microinstruction. The mnemonic symbol OR,N tells that the OR-
logic is to be used in the following microinstruction. The
mnemonic symbol OR,NE tells that the OR-logic should be used in
the following microinstruction, and that the extension part of a

Norsk Data ND-05.022.1

12

Chapter 4 Operand Control

double floating operand is selected.

If the OR-logic is controlled by the Operand Cache {0OCA), we have
that after fetch, OR-logic is done in the same cycle as
reading/writing the operand.

When OR-Togic is used for accessing an already decoded operand,
the OR-Togic is done in the microinstruction executed prior to
the cycle using the OR-logic. If the sequence is different from
JMP, the microinstruction pointed to by the jump field will give
OR-logic control for the microinstruction to use the OR-logic.

The OR-Togic for data type control may also be used to select
operations on either byte (8 bits), half-word (16 bits), word and
single floating point (32 bits) etc. This is done by using the
TYP,O0R in the data type control field.

When accessing operands with data type different from the data
type for the assembly instruction, the data type must be
explicitly controlled. When fetching such operands, selection of
index register is done according to the data type control field.
Data-type control must then correspond to the data type of the
operand in order to have correct scaling in case of post indexing
(address code = 3408B).

An example is the instruction BYn SFILL <=dest/w/by/I2=>,<m/r/W>.
The last operand has a data type different from the data type of
the instruction.

In addition to fetch and operand select, the microcode also has
to activate the DAC module to generate addresses for operands
requested. This is done by the mnemonic symbol ADACT. This is to
be used after fetch of a general operand is started and must be
done before the read cycle for the operand is completed. For
direct operands this is not required.

Example: Instruction: Byl + B.24B

G,00PS <end of previous instruction»
<ADD> ALU,A+B ORA ORB TYP,OR % use ORed data type
ST,SAVA 0ORA,OQP % A ored from operand
% B ored from instr.
ADACT READ % Activate read A
ORD, IN ORD % Dest. from instruct.
% write in ored dest.
G,00PS HOLD; % end of Byl + B.24B

Norsk Data ND-05.022.1

Chapter 4 Operand Control

Example: Instruction: H ADD2 B.24,R.0

G,00PS <end of previous instruction>
<ADD2> ALU,A ORA TYP,0R D,SC5 % use ored data type
ORA,QP % A ored 1. operand
ADACT READ % activate read B.24B
EA1SAVE % save address B.24B
G,0PS % Fetch next operand
NEXT*;
ALU,A+B ORA B,SC5 TYP,0R D,SC5 ST,SAVA
ORA,OP % A ored 2. operand
ADACT READ % activate read R.O
ORD,0P1 % Dest. is 1. operand
AB,EA1DIR % give address latch
OR,N % and OR-Togic in next
NEXT*;
ALU,A A,SC5 TYP,OR
WRITE % write to 1. operand
ORD % in case of register

G,0GPS;

Norsk Data ND-05.022.1

13

14

Norsk Data ND-05.022.1

15

CHAPTER 5 ARITHMETIC FUNCTIONS

The arithmetic logic unit (ALU) and the additional arithmetic
processor (AAP) are used for arithmetic operations.

The ALU is a gate array especially designed for the ND-5000 CPU.

In the first version of the ND-5000 CPU the AAP consists of the
ND-570 floating point unit cards.

In connection with an arithmetic operation, A-operand, B-operand,
data type control and destination may be selected from separate
fields in the microprogram word.

True and false ALU operations and the AAP are controlled from
Q separate fields, giving the opportunity to run both ALU-
operations and AAP operations in the same microinstruction.

5.1 ALU FuncTtiONS

The ALU may perform integer arithmetic and logic operations as
described on the next page.

The ALU operations are specified by the symbols ALU, <func> for
true ALU-operation seiect. The ALU operations may also be
specified as a false ALU operation by the symbols ALUF,<func>.
The false ALU-operation commands enable the conditional ALU
operation automatically.

Norsk Data ND-05.022.1

16

Chapter 5

Arithmetic ALU functions without Q-register control:

ALU,A A-operand + 0

ALU,A+1 A-operand + 1

ALU,A-1 A-operand - 1

ALU,A+B A-operand plus B-operand

ALU,A+B+1 A-operand plus B-operand + 1

ALU,A-B A-operand minus B-operand

ALU,A-B-1 A-operand minus B-operand - 1

ALU,A-B-1+4C A-operand minus B-operand - 1 + status carry
ALU,B-A B-operand minus A-operand

ALU,B-A-1 B-operand minus A-operand - 1

Arithmetic ALU functions with Q-register control:

Arithmetic Functions

ALU,A,/2 A-operand + 0

FBUS = ALU.output/2. FBUS.bit.31 = carry
ALU,A+B,/2 A-operand plus B-operand

FBUS = ALU.output/2. FBUS.bit.31 = carry
ALU,A+B,*2 A-operand plus B-operand

FBUS = ALU.output*2. FBUS.bit.0 =0
ALU,A-B,*2 A-operand minus B-operand

FBUS = ALU.output*2. FBUS.bit.0 =0
ALU,A-B-1,*2 A-operand minus B-operand - 1

FBUS = ALU.output*2. FBUS.bit.0 =0

Logic ALU functions:

ALU,FZRO Force zero from ALU output

ALU,ADIRC A-operand complemented

ALU,AND A-operand AND B-operand

ALU,ANDCA A-operand complemented AND B-operand
ALU,ANDCB A-operand AND B-operand complemented
ALU,OR A-operand OR B-operand

ALU,XOR A-operand XOR B-operand

Norsk Data

ND-05.022.1

Chapter 5 Arithmetic Functions 17

R

5.2 THE ApDITIONAL ARITHMETIC PrOCESsor (AAP)

The additional arithmetic processor (AAP) is given a separate
field (AAPC) in the microword for control:

7 54 0

AAP type AAP function

The AAP type used in the first version of the ND-5000 is called

the AAP1. The AAP1 consists of the ND-570 floating point unit

cards. These are interfaced to the ND-5000 by the 5456 (or 5466)

AAP interface card. It is controlled by the AAP control field

AAPC(0-7) with AAPC(5-7)=001, and by the type field in the ND-
’ 5000 microword.

The AAP function bits, AAPC(0-4), give space for 32 different
operations. The AAP1 can perform shift operations, floating point
and integer conversion, floating point arithmetic and integer
multiply. The following functions are available:

Norsk Data ND-05.022.1

Chapter 5 Arithmetic Functions

AAPC Function Allowed Function
765 43210 mnemonic TYP, <type> definition
001 00000 reserved
001 00001 AAP1,CTF BY HW W Convert to floating
001 00010 CTDF BY HW W Convert to double floating
001 00011 UCTF W Unsigned convert to floating
001 00100 UCTDF W Unsigned convert to double floating
001 00101 CTBYR F DF Convert to byte rounded
001 00110 CTHWR F DF Convert to halfword rounded
001 00111 CTWR F DF Convert to word rounded
001 01000 CTBY F DF Convert to byte
001 01001 CTHW F DF Convert to halfword
001 01010 CTW F DF Convert to word
001 01011 INTR F DF Integer part rounded
001 01100 INT F DF Integer part
001 01101 SHA BY HW W Shift arithmetic
001 01110 SHL BY HW W Shift logical
001 01111 SHR BY HW W Shift rotational .
001 10000 DTOFR DF Convert double to single rounded
001 10001 A+ B F DF Add
001 10010 B - A F DF Subtract
001 10011 B/ A F DF Divide
001 10100 Unused
001 10101 COMP F DF Compare (B - A)
001 10110 Unused
001 10111 DIVP F DF Partial divide (B / A)
001 11000 A*B BYHWWF DF Multiply
001 11001 UMUL W Unsigned multiply with overflow
001 11010 MUL4 W Multiply with overflow
001 11011 RRF Read AAP register file (32 bits)
001 11100 WRF Write AAP register file (32 bits)
001 11101 Unused
001 11110 CLEAR Reset AAP (interface)
001 11111 Unused
Table 2. AAP1 Functions ‘

Norsk Data ND-05.022.1

Chapter 5 Arithmetic Functions 19

5.3 InpuT/OuTPUT TO/FROM THE AAP1

Input operands are specified in the A- and B-operand fields of
the microinstruction.

For the two-operand instructions, the function mnemonic usually
shows which operand is which.

Example: AAP1,B/A and AAP1,B-A.

The shift instructions require the shift count on B-operand, and
the operand to be shifted on A-operand.

Shift count > O implies shift left. Shift count < 0 implies shift
right. Shift right is not implemented in rotational shift.

’ In the one-operand instructions, the operand is given as A-
operand, except for DTOFR which needs the operand as B-operand,
and zero on A-operand.

64-bit operands {double floating) must be given in two following
cycles. In the first cycle, the function code and type
specification are given together with the most significant part
of the operand{(s) in the A {and B) fields. In the next cycle, the
least significant part of the operand(s) is specified in the A
{and B) fields. Function code must not be given again in this
second cycle. Type is not necessary.

In fhe convert instructions, the type field specifies the type of
the source operand, while the result type is implicit in the
function code.

To get the result back from the AAP1l, the AAPSYNC must be set
from the microcode. This cannot be done in the instruction that
starts the AAP1, nor in the second instruction where eventual
9 least parts are given (double floating). In the following
instructions, AAPSYNC may be given anywhere. If the AAP1 has then
completed its operation, the result is immediately handed over.
If not, the ND-5000 will wait for the completion. The result is
sent to the operand specified in the D (destination) field of the
microword, in the same instruction as the AAPSYNC is given.

If this instruction also contains an ALU operation, the presence
of the AAPSYNC will ensure that it is the AAPl result, and not
the ALU result, which goes to the specified destination.

However, the ALU may generate a result for status testing. Also
the ALU result might be sent to the Q register by the 0Q.,F
specification, since this is not possiblie for the AAP1l result,
which must use the proper destination field.

Similar to input operands, a 64-bit result is sent back in two
cycles, first the most significant part, then the least. In MUL4
and UMUL the overflow part is sent first, and then the- result.

Norsk Data ND-05.022.1

20 Chapter 5 Arithmetic Functions

The AAPSYNC must be specified in both cycles.

5.4 STATUS SETTING

Status save is done in the instruction with the AAPSYNC, where
the result is read back. For F or DF, type ST,SAVF is suitable.

There is no status code for integer types that takes sign and
zero from the AAPl, and also sends the AAP1 overflow to the
integer overflow status bit. Therefore Such results are therefore
sent through the ALU afterwards, with the ST,SAVM {save mixed
status) code.

5.5 LIMITATIONS

In byte and halfword instructions, the type specification in the
calling instruction effects the input operand(s), by using only 8
(BY) or 16 (HW) bits of it. This type specification also controls
the result status, e.g. if type = BY and bit 7 of the result = 1,
S is set. It does not control the actual result itself, this
contains the full word-length result from the AAP1l. Nor does the
type specification in the instruction where the result is read
back have any effect on truncating the result down to type.

Accordingly, when a BY/HW result is sent back to an operand of
the macroinstruction, it must first pass through the ALU, with a
proper type specification, to cut it down. Internally in the
microcode, in a sequence of AAP1 calls, this is not necessary,
since the input values are truncated.

The instructions CTBY/R and CTHW/R do not set the IOVFL according
to type, only word integer overflow is detected. Since they also
do not cut the result, as mentioned above, they are of no use, so
the CTW is used instead, with special tests for overflow.

The divide function does not set the status bit DZ (divide with

zero). Thus both the cases 0/X and X/0 should be tested and
treated separately when using the divide function.

Norsk Data ND-05.022.1

21

CHAPTER 6 SouRCE AND DEsTINATION CONTROL

This chapter describes how to select source and destinations from
the ND-5000 microprogram. This is divided into four different
sections, because of the hardware architecture of the registers
connected to the CPU:

1. The Q-register

2. The working register file

3. The scratch register file

4. Memory

6.1 THE Q-REGISTER

The bottom level of the registers connected to the CPU is the (-
register. The Q-register is closely connected to the ALU wich
have special hardware to control the register. The control of the
Q-register is done from a separate field, not affecting the
operand select for the ALU or the AAP. This is done in order to
implement microcoded divide and multiply operations with
reasonable speed without any AAP.

e The 0Q-register may be loaded independantly of other F-bus
operations.

e The Q-register may be shifted left or right independantiy of
other destinations.

e During left shift the serial input is specically controlled
to allow divide function to be carried out easily.

e When both the 0Q-register and the F-BUS are shifted in the

same direction, they are controlled so that a 64-bit shift
is performed.

Norsk Data ND-05.022.1

22

Chapter 6 Source and Destination Control

Control functions of the Q-register

Q.F Q-register loaded from ALU output.

Q,0*DIV Q-register = (Q-register*2. 0.bit.0 = DIVR.

Q,0*L0G OQ-register = Q-register*2. Q0.bit.0 = 0.

Q,0*ROT O0-register = Q-register*2. 0.bit.0 = Q.sign.bit.
Q,0/ARI Q-register = Q-register/2. Q.sign.bit = Q.sign.bit.
0,0/L0G Q-register = Q-register/2. Q.sign.bit = 0.

0,0/ROT Q-register = Q-register/2. Q.sign.bit = Q0.bit.0.

6.2 THE WORKING REGISTER FILE

The

next level of the register consists of the working register

file. This working register file consists of 24 32-bit registers.
This working register file contains:

Two
the
may

registers connected to the running process

four index registers

four floating registers, most and least significant part
some scratch registers

of the scratch registers (SC1 and SC2) will be included in

context block, where key values to survive a process change
be held. This is useful in the string instruction and

instructions of type array processing functions.

A-operand and B-operand may be selected independently from
the WRF as input to the ALU or the AAP.

The F-bus may be written into the working register file
independantly of selection of A-operand and B-operand select
for the ALU or the AAP.

Only one register block destination may be selected in the
same microinstruction. Two working register file sources may
be selected in the same microinstruction, independant of
destination select.

The working register file is addressed either directly by
addresses present in the A-operand or B-operand select field
or by the OR-logic with addresses derived from the assembly
instruction being executed.

A working register file register may be both read and written
in the same microinstruction.

Norsk Data ND-05.022.1

Chapter 6 Source and Destination Control 23

Registers in the working register file
e Index registers (X1 to X4)
e Floating most registers (Al to A4)
e Floating least registers (E1 to E4)
e Context scratch registers (SC1 to SC2)
e Scratch registers (SC1 to SC14)
— —

6.3 THE ScrATCH REGISTER FILE

The next level of registers connected to the CPU is the scratch
register file (SRF). It contains 4k of 32-bit registers. The
scratch register file is farther from the ALU and thus not as
flexible as the working register file. There are some
restrictions when using the scratch register file:

e Registers in the scratch register file may only be addressed
directly by microprogram. The scratch register file is
either addressed from the A-operand field with register
addresses in the range 0 to 15, or by using the RFAl and
.RFA2 register as addresses pointing to a register within the
scratch register file. (When using the address registers as
address in the scratch register file, the register pointed
to by the address register is accessed.) In parallel, the
address register may either be held at the same value or
decremented when accessing a register.

When reading from the SRF through an address register, this
must be set two cycles before.

The selected register from the scratch register file is
enabled on the A-operand to the ALU.

Example:

ALU,A A,BMOS D,RFA1 NEXT*; % 40 to address reg 1

ALU,A A ,MIC,RFAl D,NONE NEXT*; % prev. address reg 1
D,NONE NEXT; % 'MIC' acc. impossible

ALU,A A,RF1D D,SC3 NEXT*; % Read from SRF.40

When writing to the SRF through an address register, the
address may be set in the previous cycle.

Norsk Data ND-05.022.1

24

Chapter 6 Source and Destination Control

Example:
ALU,A A,BMOS D,RFAL NEXT*; % 40 to address reg 1
ALU,A A,BMO6 D,RFAL NEXT*; % 100 to address reg 1
ALU,A A,SC5 D,RF1D NEXT*; % Write in SRF.100
ALU,A A,SC6 D,RF1 NEXT*; % Write in SRF. 77

e Only one scratch register file register may be read in one
microinstruction.

e When the scratch register file is selected as destination,
the working register file cannot be destination in the same
microinstruction. A scratch register file register written
in one microinstruction, cannot be read in the two following
microinstructions.

6.4 Memory Memory may also be selected as source or destination with address

generation controlled either by the assembly instruction
executed, or by microcoded control of the address arithmetic with
microcoded memory request. Accessing memory requires address
latch of an operand in the microcycle executed prior to read or
write. Synchronization with the memory system is automatically
done at both read and write.

Example of microprogrammed read/write:
D,NONE
AA,EA1 10 AB ,MARG % Address of source
NEXT*;
ALU,A A,DATA TYP.BY D,SC3 READ
AA EA2 374 AB ,MARG % Address of destination
NEXT*;

ALU,A A,SC3 TYP,B4 D,NONE WRITE
NEXT*;

Norsk Data ND-05.022.1

25

CHAPTER 7 MICROPROGRAM SEQUENCE

The ND-5000 microinstructions may use different commands for
sequence control of the microprogram. The microprogram sequence
control consists of a stack command and a sequence command. This
implies that both sequence commands and stack commands are
required in a microinstruction.

7.1 STACK COMMANDS

addresses. The top word of this stack may be selected as input to
the microprogram address counter (m.p.c) by the sequence command
RETURN.

’ The microprogram stack may hold a maximum of four different

An important restriction in the microprogram sequencer is that
the sequencer stack is not stable before the microinstruction
following a load of sequencer stack is executed. This implies
that the sequencer stack cannot be used as address input
immediately after being loaded. Hence, a one cycle micro-
instruction subroutine is not possible. A one cycle subroutine
will also lose time in execution speed.

Stack commands and functions are:

HOLD Leave stack unchanged.

LOAD Word 1 is changed to current microaddress + 1.
The rest of the stack is unchanged.

@ PUSH Word 4 is lost.
Word 3 -> word 4.
Word 2 -> word 3.
Word 1 -> word 2.
Current address + 1 -> word 1.

POP Word 1 may be used as return address. Word 1 <- word 2.
Word 2 <- word 3.
Word 3 <- word 4.
Word 4 <- word 4.

The stack commands are also available as false stack commands,
written as F,<stack> for operation on the sequencer stack.

Norsk Data ND-05.022.1

26 Chapter 7 Microprogram Sequence

7.2 SEQUENCE COMMANDS

The sequence commands will either cause the next microinstruction
in a sequence to be executed, or will cause some kind of a jump.

The microprogram sequencer works on a three level pipeline and

generates addresses to the control store, telling where to find
the next microinstruction. Addresses are generated at the first
tevel of the pipeline, the I-level. The seguencer picks the jump
address from the I-level and guesses that a jump is in progress.

If any sequence command different from jump is used, the
microprogram sequencer has to run one extra sequencer cycle to
generate the correct microprogram address. If the guess was true,
the address is present and the jump is carried out in one cycle.

In connection with conditional sequence, the true path is
selected as a preliminary route by the microprogram sequence.
Hence the true sequence command should be a jump instruction. To
make it always possible to place a jump in the true sequence
field, a control store bit may be used to invert test condition.
This is done by the INVSEQ command.

In connection with the mapping to the start of the next assembly
instruction, both the true and false sequence field must contain
a jump command. The true sequence field must follow the mapping
while the false sequence field may be used to stop execution e.g.
in connection with reporting an error detected at the end of an
instruction.

When accessing operands, these may be prefixed by an address code
causing mapping to special microprogram routines to handle the
address code prefix. Because of the microcode pipeline, the
microprogram sequencer is using the jump address to find the way
back to the trapped microinstruction. This means that a
read/write/laddr cycle of a general operand always has to use JMP
*+1 as sequencer command.

An easy way to generate jump addresses and jump as sequencer
command, is to leave a special mnemonic symbol for the
microprogrammer, understood by the microcode assembler. Whenever
the jump field in a microprogram address is free, i.e. no long
argument used, a '*' may be added to the NEXT command. This will
cause current microprogram address + 1 to be inserted in the jump
address of current microprogram address and the NEXT command is
substituted with JMP.

Norsk Data ND-05.022.1

Chapter 7 Microprogram Sequence

27

Example of microprogram sequence control:

a) NEXT* PUSH; %o
b) NEXT* HOLD; %o

¢) ALU, <func> NEXT* HOLD;
d) COND, <cond>

C,SEQ F,NEXT F,LOAD %o
IFT NEXT* HOLD; b

e) ALU,<func> NEXT* HOLD;
f) COND,<cond>

C.SEQ F,RETURN F,HOLD %..
IFT NEXT* POP; %

Push b} as stack address
Stack unchanged

Change return address
Hold stack unchanged

Return to stack address b) or e)
leave the sequence,remove b) or e)

The sequence control functions are:

e NEXT Take next microinstruction.

e JMP Jump to microprogram address <addr.field>.

e JVMPREL Jump relative to <addr.field>»

e RETURN Return (from subroutine) to stack address

The sequence commands are also available as false sequence
commands, written as F,<seq> for sequencing the microprogram.
Enable of conditional sequencing is done by the false sequence

and false stack commands.

Norsk Data ND-05.022.1

28

Chapter 7 Microprogram Sequence

SN

7.3 RESTRICTIONS IN SEQUENCING

7.3.1 SEQUENCE

——

INsTRUCTIONS RULES

. The instruction in the TRUE field is the main instruction,

while the instruction in the FALSE field is the alternative
instruction. According to this, the TRUE sequence is used in
unconditional sequence and also as a preliminary route,
during conditional sequence.

. JUMP dinstructions use one clock cycle, while other

instructions use two clock cycles. According to this, you
should use JUMP instead of NEXT instructions. During
conditional sequence it is an advantage to put a JUMP in the
TRUE field if possible.

. When doing conditional sequence, it is possible to force a

specific preliminary route by matching the TRUE and FALSE
field with the inverted-sequence bit.

. A test at the end of a microroutine executing a macro-

instruction must follow these rules:

i. The error action must be held in the FALSE field. This
can be arranged by means of the inverted-sequence bit.

ij. The TRUE field must contain a JUMP.

. Since the sequence control and the stack control are

separated, the RETURN instruction does not POP the stack. It
only uses the top of stack as next the address to the control
store.

Instructions generating a hardware branch shall have a jump
address pointing to the immediate following instruction.

7.3.2 Stack INSTRUCTIONS RULES

The stack control is separated from the sequence control. During
conditional segquence the stack control is pipelined. Therefore
you must be very careful when doing stack operations in
connection with a conditional sequence and EXUC (execute

Norsk Data ND-05.022.1

Chapter 7

Microprogram Sequence 29

unconditional).

1. Unconditional stack control is done directly from the M-
lTevel, while conditional control is pipelined one stage down.
This will cause collision on the stack if a conditional
instruction is immediately followed by an unconditional
instruction containing a stack instruction. In this case, the
stack control from the last instruction will be lost.

2. The first instruction of a subroutine must not be a
conditional stack operation different from HOLD. This also
applies to one-instruction subroutines.

3. A one-instruction subroutine should not be called
conditionally (JUMP & PUSH).

7.3.3 AccessiNG THE MIC As A-oPERAND/DESTINATION

Read from MIC/SRF is done directly, while writing is pipelined
two levels. After a write, there must be two dummy cycles before
the same data can be read back. Reading in the first cycle gives
old data. Reading in the second cycle results in a collision on
the X-bus.

IR R

7.3.4 EXTRA (SNEAK) INSTRucTIONS AND THE EXUC

Bit number 115 in the microword is called EXUC {(execute
unconditional). When the sequence instructions NEXT, RETURN or
JMPREL are executed, an extra {sneak) cycle is entered into the
pipeline on the I-level prior to the 'real’ instruction. This
extra cycle is stopped on the I-level unless the EXUC facility is
used. If the extra cycle is going to be executed, the EXUC bit in
the previous microinstruction must be set TRUE. Both stack and
sequence instructions in the extra cycle are then ignored.

7.3.5 ConpiTIONAL SEQUENCE AND THE EXUC

The construction of the pipeline system makes it necessary to run
two microinstructions after a conditional sequence has entered
the pipeline, until the condition is valid. These two
instructions are called EXCYC1 and EXCYC2. They enter the I-
level, and are normally stopped there, but by using EXUC, they
can be carried out as ordinary instructions. The rules for using
EXUC in this case are:

Norsk Data ND-05.022.1

30

1.

Chapter 7 Microprogram Sequence

If EXUC is TRUE in the conditional sequence instruction, the
EXCYC1 is executed at all pipeline levels.

If EXUC is TRUE in the conditional sequence instruction and
EXUC is TRUE in the EXCYC1l, the EXCYC2 is executed at all

pipeline levels.

Stack control is influenced by the EXUC. This means that if
conditional break does not occur, the stack is controlled as
specified. If a conditional break occurs, the stack is not
changed.

EXUC works with the microinstruction controller through the clock
enable signals.

- Note!

stack

If possible, avoid a combination of conditional sequence,

combine them:

control and EXUC. This is an example on how you should not

C,SEQ EXUC PUSH
(POP)
(LOAD)

Norsk Data ND-05.022.1

31

CHAPTER 8 ConDiTIONAL OPERATIONS

The test conditions 1isted below may be used for three different
purposes in the ND-5000 microprogram. The test conditions
selected may have either true or false as state. Some conditions
may select test results from either the main status or from the
micro-status.

These test conditions are written in the form (M)ZRO. This means
that the condition COND,ZRO will take test result from the Z-bit
in main status. The condition COND,MZRO takes test result from
the micro-status. The selected test condition is automatically
activated. The test condition must be selected whenever
conditional sequence, conditional ALU operation or conditional
save is used.

Norsk Data ND-05.022.1

32 Chapter 8 Conditional Operations

8.1 ND-5000 Test CoNDITIONS

COND, <condition>
ARITHMETIC OPERATIONS

Equal to (M)ZRO
Unequal to (M)ZRO
Signed:
Greater than {M)SORZ
Greater than or equal to {M)SGN
Less than (M) SGN
Less than or equal to (M)SORZ
True less than or greater than or equal to:
Less than MSEXO
Greater than or equal to MSEXO
Magnitude:
Greater than {M)CNZ
Greater than or equal to (M) CRY
Less than {M)CRY
Less than or equal to (M)CNZ
Overflow {M)OVFL
Parity (from ALU-output):
0dd parity PARITY
Even parity PARITY

ADDITIONAL ARITHMETIC OPERATIONS

Check for x/0 MDZ
Floating sign MFS
Floating overflow MFO
Floating underflow MFU
BCD overflow MBO
Invalid operation MIVO

PROCESS STATUS

Loop counter = 0 LCZ
Bit 0 of the Q-register Q0
Flag K
Enter instruction ENTF e.t.c ENTER
Enter module instruction ENTM
Enter trap instruction ENTT
Test on jump general JUMPG
Data source / destination DATOP
Constant source / destination CONOP
Part done j.e. restart PDONE
Trap TRAP
ALU.cond Q0, seq.cond. LCZ AQSLZ
Saved condition 1 SAVC1
Saved condition 2 SAVC2

Norsk Data ND-05.022.1

STATE <true/false>

true
false

false
false
true
true

true
false

true
true
false
false
true

true
false

true
true
true
true
true
true

true
true
true
true
true
true
true
true
true
true
true
true
true
true

. false

. error
: false
: false
: false
. false
: false

: false
: false
: false
: false
: false
: false
: false
. false
. false
. false
: false
. false
. false
: false

Chapter 8 Conditional Operations 33

8.2 CONDITIONAL SEQUENCE

Conditional sequence is used to select true or false sequence and
stack operations in a microinstruction.

Result of a test condition selected in current microinstruction
with result from previous microinstruction affecting selected
condition, determines true or false sequence and stack control in
the microinstruction using the C,SEQ command (C,SEQ implicit in
F,<seq> and F,<stack>).

Because of the pipelining of the ND-5000 microprogram, prefetch
of microinstructions is active also during conditional
operations. The true path is always selected for fetching new
microprogram addresses. Thus the true path should contain a jump
command causing the microprogram to run the normal path of

@ execution to obtain optimum speed. If this is not possible, the
INVSEQ command is used to invert test condition for sequence
control. This command has no effect on conditional ALU
operations.

The microinstructions in the pipeline will not be executed when
the microcode pipeline is broken. However, a microprogrammer
seeking optimum efficiency, may wish to execute these
microinstructions anyway. In order to prevent duplication of the
code, the microcode may be executed unconditionally. This is done
by the EXUC command. With exception of the sequence commands, the
microinstruction pointed to by the jump field will be executed if
EXUC is present.

Example:

a) ALU,A-B A,<ao> B,<bo> TYP,<tt> NEXT* HOLD;
b) C,SEQ F,HOLD F,NEXT INVSEQ COND,MZRO

JMP HOLD m;
c) ALU,A+B A,<al> B,<bl> TYP,<t3> D,<dl> NEXT* HOLD;
d) ALU,XOR A,<a2> B,<b2> TYP,<t3> D,<d2> NEXT* HOLD;
e) ALU,< nothing special> HOLD JMP o;
m) ALU,A+B A,<al> B,<bl> TYP,<t3> D,<dl> NEXT* HOLD;
n) ALU,XOR A,<a2> B,<b2> TYP,<t3> D,<d2> NEXT* HOLD:
o) NEXT* LOAD;

The result from the ALU operation in microinstruction a) gives
eijther true or false micro zero.

Result = 0 gives true inverted = false sequence i.e. next -> ¢)
from microcycle b). The microcode pipeline is broken, and this
costs time.
Result >¢ 0 gives false inverted sequence i.e. jump to
microaddress m) from microinstruction b). The microcode pipeline
is not broken.

@ If microinstruction c) is identical to m) and d) is identical to

Norsk Data ND-05.022.1

34 Chapter 8 Conditional Operations

n), the microcode could be executed unconditional. EXUC should
then be inserted in b) and m} and the c¢) and d) microinstructions
should be removed.

L A]

8.3 ConpiTiONAL ALU OPERATION

Conditional ALU operation is used to select either true or false
ALU operation in a microinstruction.

The result of a test condition selected in current
microinstruction with the result from the previous micro-
instruction affecting the selected condition, determines true or
false ALU operation.

Example:
a) ALU,A-B A,<ao> B,<bo> TYP,<tt> NEXT* HOLD;
b) ALU, <func> ALUF,<func> COND,MSGN
A,<ao> B,<bo> TYP,<tt> D,<dest> NEXT* HOLD;

The result from the ALU operation in microinstruction a) gives
either true or false micro sign.

Micro sign i.e. <ao» < <bo> gives true ALU-function in micro-
instruction b).

Not micro sign i.e. <ao> »>= <bo> gives false ALU-function in
microinstruction b).

8.4 ConpiTioN Save (CSAVE)

By using the CSAVE command, any test condition may be saved for
later use. Any of the two last saved conditions, true or false,
may be selected for test in a later microinstruction by selecting
saved condition 1 or 2.

The saved test conditions function as a one bit wide stack, where
a new test object may be continuously pushed, loosing the bottom
of the stack.

CSAVE saves the result of the condition set in the current micro-

instruction with the result from the previous microinstruction
affecting the selected condition.

Norsk Data ND-05.022.1

Chapter 8 Conditional Operations 35

‘ Example:

a) ALU,<func> A,<ao> B,<bo> TYP,<tt> SET COND,<cond> NEXT HOLD:
b} CSAVE COND, <cond> NEXT* HOLD;
¢) == == == == == == NEXT HOLD;

n) NEXT HOLD;

m) C,SEQ JMP HOLD F,<seqg> F,<stack> COND,SAVC1
C,MEM MEM, <read/write> AA+AB AA,<ao> AB,<bo>
C,ALU ALU, <func> ALUF . <func»>;

The result from the operation in microinstruction a) and selected
test object in microinstruction b) is saved in microinstruction
b).

Saved condition 1 {COND,SAVC1) is selected in microinstruction m)
and is used for test in this microinstruction.

Norsk Data ND-05.022.1

36

Norsk Data ND-05.022.1

37

N __
CHAPTER 9 ConTROL OF StATUS BITs
_
The status register may be controlled by writing the result of an
ALU operation into the status register, or by one of the commands
saving the status information from an operation, either from the
ALU or from the AAP.
For operations affecting data status bits, commands are used for
control of data status bits according to the result of the
operation.
Status bits control:
ST,SAVA Save status from ALU operation
ST,SAVC Save status from ALU operation in compare
@ ST,SAVF Save status from floating operation
ST,SAVB Save status from BCD operation
ST,SAVM Save mixed status from integer multiply
ST,ACCM Save and accumulate mixed status
ST,ACCA Save and accumulate status from ALU operation
ST,ACCF Save and accumulate status from AAP operation
ST,LOAD Load F~bus to the status register

Save of mixed status, ST,SAVM and ST,ACCM, results in overflow
taken from the AAP, and zero and sign taken from the ALU.

Flag (K) and descriptor range (DR) control:

K,ZRO : K <~ 0.
K,ONE Ko<= 1.
K,1I1FZ : K <- 1 if MZRO is true. DR <- O.

The status register S1, is an OR'ed status read from the MIC, the
IDU and the ALU gate arrays.

e Bits in S1 residing in the MIC: 37 to 32, 24, 20, 4 to O.
e Bits in S1 residing in the IDU: 30 to 25, 23 to 21.
e Bits in S1 residing in the ALU: 31, 17 to 5.

A detailed description of the status bits is given in the manual
ND-5000 Hardware Description (ND-05.020).

Norsk Data ND-05.022.1

38

Norsk Data ND-05.022.1

39

CHapPTER 10

ADDRESS ARITHMETIC

The only operation possible in the address arithmetic is an add
operation on the address A-operand and the B-operand. Both A and
B operands may be zero, thus allowing only one source of address.
In addition addresses saved in the EA0 and EAl registers may be
enabled from the output of the address arithmetic.

The address arithmetic may either be controlled by the operand
cache (OCA) or from the microcode. When controlled by the OCA,
the address arithmetic is activated by the microprogram when a
general operand is requested. This is usualy done together with
read of a general operand, but may in some cases be done before
the read cycle for the operand is entered.

Since the ND-5000 is byte addressed, the microprogram must handle
the address arithmetic according to the data type in question
when using the address arithmetic.

INPUT TO THE ADDRESS ARITHMETIC:

Address A-operand:

AA,0 Zero selected as input

AA,DATA Data in register as input

AA,DISP Displacement register as input

AA,EAO EAC register as input

AA,EAL EA1 register as input

AA,EA2 EA2 register as input

AA,EA3 EA3 register as input

AA,MARG 8 bits argument, sign extended to 32 bits

Address B-operand:

AB,O Zero as input

AB,B Base register as input

AB, IX1 Index register 1

AB,IX2 Index register 2

AB,IX3 Index register 3

AB,IX4 Index register 4

AB,MARG 8 bits argument with sign extension
AB.R Record register as input

Direct output address possibility:

AB,ADR Previous address
AB,ADR+4 Previous address + 4
AB,EAIDIR Use EAl

In order to make access easier when indexing data elements with
type different from byte, index registers used on the B-operand
of the address arithmetic input may be scaled according to data
type of the instruction. The index registers may also be scaled

Norsk Data ND-05.022.1

40

Chapter 10 Address Arithmetic

independant of data type.

Address B-operand input with scaling from instruction data type:

AB,X10RS Desc(address)(I1), Index register 1 scaled according to
data type of instruction.

AB,X20RS Descladdress)(I2), Index register 2 scaled according to
data type of instruction.

AB,X30RS Desc(address)(13), Index register 3 scaled according to
data type of instruction.

AB,X40RS Desc({address)(I4), Index register 4 scaled according to
data type of instruction.

Address B-operand index scaling for data type. Data type:

IX*1 Index register scaled by 1 Byte

IX*2 Index register scaled by 2 Half word

I[X*4 Index register scaled by 4 Word,sing.float
I[X*8 Index register scaled by 8 Doubl.float
IX/8 Index register scaled by 1/8 Bit

IX/16 Index register scaled by 16 80-bit floating

Output of the address arithmetic is always latched in the EAO
register. In addition, the microprogram may control address
arithmetic output to be saved in either EAl, EA2 or EA3. This is
done by the EA<«nr>SAVE commands to save result from the address
arithmetic to the specified effective address register. Address
arithmetic activate will cause address latch to be sent to the
cache and the memory system when it is required for read or write
operations.

The microprogrammer may hold base addresses in either EAl, EA2 or
EA3 registers to generate addresses relative to these. When a
fetch operation is started. only the EAD register is changed,
unless an EA<nr>SAVE command is used in the same microinstruc-
tion.

When the DAC is busy with the calculation of an 0OCA controlled
memory request, and the microprogram wants to perform a new
memory request in the next microinstruction, new address may be
generated from microcode, but only OCA controlied, while 0CA
controls the DAC. Only a limited number of address arithmetic
activate commands may then be used. Only AB,ADR, AB,ADR+4 and the
AB,EAIDIR may be used and will cause the address to be presented
by the DAC in the next cycle.

Norsk Data ND-05.022.1

41

CHAPTER 11 THeE ND-5000 MiCROASSEMBLER

11.1 MICROINSTRUCTION

The ND-5000 microinstruction is a combination of the ND-5000
mnemonic symbols, constants or defined symbols separated with
space. The microinstruction is terminated by ';' and may occupy
several lines of symbols. Characters of a line after '%' are
taken as comments to the microinstruction.

11.2 Mnemonic SyMBOLS

The mnemonic symbols are direct functions or operator selectors.
One special case, related to the sequencing of the microprogram,
is treated within the microcode assembler. In the case that the
microprogram jump address is free, the source code may use the
mnemonic symbol NEXT immediately followed by '*' (NEXT*). This
will cause the microcode assembler to generate a JMP *+1 inserted
as sequence control in the microinstruction. If the large
argument field is used for values different from O this will
cause the error message:

ORING REJECTED DUE TO OVERLAPPING MNEMONICS

11.3 CoNSTANTS

Constants used in the microprogram must be octal integers (or
optional: hexadecimal digits). The constants are either used in
the mini argument field, the short argument field, the long
argument field, the microprogram address field, or as
microprogram address modifier

Mini argument is specified by one 8-bit integer. The value of the
constant js placed in the mini argument field during assembly
(control store bits 8-0). During execution in the ND-5000 the
mini argument is sign extended to 32 bits by A,MARG, AA,MARG and
AB ,MARG.

Short argument is specified by one 16-bit integer. The value of
Q the constant is placed in the short argument field during

Norsk Data ND-05.022.1

42

Chapter 11 The ND-5000 Microassembler

assembly (control store bits 15-0). During execution in the ND-
5000 the short argument is sign extended to 32 bits by A,SARG.

Long argument is specified by two 16-bit integers separated by
"," or by one 32-bit integer. The value of the constant is placed
in the long argument field during assembly {control store bits

31-0).

'Microprogram address may be selected either by referencing a

label or by specifying a long argument where the most significant
part is taken as microprogram address (control store bits 31-16).
Referencing a label will cause the value of the label to be
placed in the microprogram address field.

The microprogram address may be modified by a 16-bit integer
terminated by '/' located as the first element of a micro-
instruction. Current microprogram address is set equal to integer
specified.

11.4 DerFINep SymBoLS

Labels are defined by up to 16 alphanumeric characters terminated
by ‘:'. The label must be located as the first symbol of a micro-
instruction. Value of the label is current control store address.
The 16 first characters are significant. Reference to a label
will cause the value of the label to be placed in the
microprogram address field {(control store bits 31-16).

11.5 THE ASSEMBLER

The assembler works on mass storage files and may handle 40 input
files and may give 5 output files. Output files required by the
assembler are marked by '*'. In addition the user running the
assembler also requires the mnemonic symbol file {SAM-MNE-
SYMBOLS:SYMB) and the mnemonic value file (SAM-MNE-VALUES:DATA).
The input and output files are of type :SYMB except the object
file which is of type :DATA.

The output files with content are:

e * Required: Undefined symbols list-file contains all
undefined symbols.

e * Required: Error list-file contains errors detected during
assembly.

e * Required: Object file contains input to control store.

Norsk Data ND-05.022.1

Chapter 11 The ND-5000 Microassembler 43

. e List-file contains symbolic 1ist of the microprogram with
control store address.

e Unsorted label 1ist-file contains all labels defined with
corresponding microprogram address.

The assembler may also be used for converting the object file to
an octal list file of the microprogram.

The assembler also has a built in mnemonic editor in order to
edit mnemonic symbols, values and comments as well as 1isting the
mnemonic symbol table. File name of the mnemonic comments is
assumed to be: SAM-MNE-COMMENT:SYMB.

The assembler has a "help” command which provides information
about possible commands.

Norsk Data ND-05.022.1

44)) . Chapter 11 The ND-5000 Microassembler

Example of running the ND-5000 microassembler: ‘

@SAM-MICRO-ASSEM
The ND-5000 micro-code assembler 2.0 September 1983

Microassembler * ASSEMBLE-MICRO-PROGRAM

Give filename of entry no. 1 : SAM-MICR0-01-00:SYMB
Give filename of entry no. 2 : SAM-MICR0O-02-00:SYMB
Give filename of entry no. 3

Undefined symbols list-file : SAM-MICRO-UDEFV:SYMB

Error list-file : SAM-MICRO-ERROR:SYMB
Object file : SAM-MICRO-O0BJEC:DATA
List-file : SAM-MICRO-SLIST:SYMB
Unsorted label list-file : SAM-MICRO-USORT:SYMB

Length of microprogram in kilowords (each 128 bits): 8

100 Words assembled
200 Words assembled .

100 Items in udfv table recognized
0 Diagnostics have been detected

A11 program functions terminated
microassembler * EXIT

e

11.5.1 ERROR MESSAGES FROM THE MICROASSEMBLER

The error messages from the ND-5000 microassembler give the

microprogram address where an error is detected,

ERROR AT CLC <octal number>, followed by additional error ‘
information. The different error messages are listed below

together with a short explanation. At the end of the assembly,

the number of errors detected is written on both the error file

and the terminal.

ERROR AT CLC XXXXXXB

CURRENT LOCATION COUNTER IS AT UPPER LIMIT

Moving outside address space. This means that upper control store
address 1is reached for this size of control store.

ERROR AT CLC XXXXXXB

BLOCK NUMBER TOO LARGE:

Modified microprogram address is outside address space for this
size of control store.

Norsk Data ND-05.022.1

Chapter 11

The ND-5000 Microassembler 45

ERROR AT CLC XXXXXXB
ILLEGAL CHARACTER IN ROUTINE "TRANSFORM"
Octal number is not at source file.

ERROR AT CLC XXXXXXB

TRANSFORM OVERFLOW

Overflow in convert to octal. Octal number at source file is too
large.

ERROR AT CLC XXXXXXB
ILLEGAL FORMAT ON CLC MODIFIER
111egal format when modifying the microprogram address.

ERROR AT CLC XXXXXXB
CLC MODIFIER ERROR
Error in modifying the microprogram address.

ERROR AT CLC XXXXXXB
TOO MANY MNEMONICS BETWEEN SEMICOLONS
Input buffer containing source code for assembling is full.

ERROR AT CLC XXXXXXB
TOO LONG MNEMONIC
More than 20 characters in a mnemonic symbol.

ERROR AT CLC XXXXXXB
ATTEMPT TO WRITE ON FORMER ENTRY
Try to write into a previously used microprogram address.

ERROR AT CLC XXXXXXB

OR-ING REJECTED DUE TO OVERLAPPING OF MNE-VALUES

Error occured because same bits should be set for combination of
mnemonic symbols or arguments. Rest of the microinstruction is
not assembled.

FATAL ERROR!!!! OVERFLOW IN DFV ARRAY (DFVPACK)
No more space for defined symbols.

ERROR AT CLC XXXXXXB

ILLEGAL FORMAT ON DFV

Error in area containing defined symbols. May be caused by
defined symbols with more than 16 characters.

ERROR AT CLC XXXXXXB
MNEMONIC USED AS LABEL:
Labels equal to mnemonic symbols not allowed.

Norsk Data ND-05.022.1

46

Chapter 11

ERROR AT CLC XXXXXXB
ALREADY DEFINED:
Label already defined.

Norsk Data ND-05.022.1

The ND-5000 Microassembler

47

CHAPTER 12 User INSTRUCTIONS FOR MiICROPROGRAM EXTENSIONS

Some instruction codes in the ND-5000 are available for user
written microprogram. This means that an instruction code has an
entry in the ND-5000 microprogram, but is not used. 'Not used'
means that the instructions generate an illegal instruction code.
These instruction codes may be used for special microprogramming
to implement new functions.

Three instruction codes are used for controlling the built in
timer, and four instruction codes are used to control the built
in hardware trace module. These are marked as used in the table
below.

The instructions available may be divided into three different

, groups, depending on prefetch and operand decoding. These groups
are divided into subgroups, one group for each data type. A
general description of the different types of instructions is
also given. The instructions are listed with instruction code,
default data type for the operand and the entry point in the
microprogram.

The space available for user written microprogram, depends on the
microprogram version. New contents may be placed in the upper
part of the writable control store. A general rule is that the
area free for user written microprogram is empty or contains only
a jump to microprogram address 200. Space available for user
written microcode will be defined on the program description
sheet for the different microprogram versions.

For a detailed description of the space available for user
written microprogram, the program description sheet for the
product should be considered.

12.1 CLASSIFICATION

Classification of the ND-5000 user instructions is done depending
on operand decoding.

Instruction group 1 : No operand is fetched

Instruction group 2 : A memory operand is fetched
Instruction group 3 : A general operand is fetched

Norsk Data ND-05.022.1

48

Chapter 12 User Instructions for Microprogram Extensions

12.2 INSTRUCTION GROUP 1

The following user instructions are available in group 1.

Instruction code

Instruction type Microprogram entry

236

237
177004
177005
177006
177007
177036
177037
177436
177437

EXT
EXT
EXT
EXT
EXT
EXT
eXT
EXT
EXT
EXT

TEXEEZEZTETEZEEZEZEX

1637
1640
1641
1642
1643
1644
1645
1646
1647
1650

Read Mic.Adr. trace
Read D/I.Adr. trace
Read status of tracer
Load control tracer

Timer interrupt.
Timer clear.
Timer read.

Norsk Data ND-05.022.1

Chapter 12

12.3 INSTRUCTION GROUP 2

User Instructions for Microprogram Extensions

The prefetch processor is for group 2, fetching one memory

operand. This is for data type byte, halfword, word, and single

49

floating point. For the data type double floating point, address
generation of the extension part of the double floating point

operand is required in order to read the least significant part

of the operand.

The following user instructions are available in group 2.

Instruction code

Instruction type

Microprogram entry

177460
177461
177462
177463
177464
177465
177466
177467

By EXT
By EXT
By EXT
By EXT
By EXT
By EXT
By EXT
By EXT

<operand/r/BY>
<operand/r/BY>
<operand/r/BY>»
<operand/r/BY>
<operand/r/BY>
<operand/r/BY>
<operand/r/BY>
<operand/r/BY>

1721
1723
1725
1727
1731
1733
1735
1737

Instruction code

Instruction type

Microprogram entry

177470
177471
177472
177473
177474
177475
177476
1774717

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

I Tr XTI xXTTXT

<operand/r/H>
<operand/r/H>
<operand/r/H>
<operand/r/H>
<operand/r/H>
<operand/r/H>
<operand/r/H>
<operand/r/H>

1741
1743
1745
1747
1751
1753
1755
1757

Instruction code

Instruction type

Microprogram entry

177500
177501
177502
177503
177504
177505
177506
177507

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

EEXEEZEZEZZEXE

<operand/r/W>
<operand/r/wW»
<operand/r/W>
<operand/r/w»
<operand/r/wW»
<operand/r/wW»
<operand/r/wW»
<operand/r/w»

1761 Rphs
1763 Wphs
1765 CAD :=
1767

1771

1773 wused in AX
1775 wused in AX
1777 used in AX

Norsk Data ND-05.022.1

50

Chapter 12

User Instructions for Microprogram Extensions

Instruction code

Instruction type

Microprogram entry

177510
177511
177512
177513
177514
177515
177516
177517

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

MM M M M T M ™M

<operand/r/F»>
<operand/r/F»>
<operand/r/F»
<operand/r/F>
<operand/r/F>
<operand/r/F>
<operand/r/F»>
<operand/r/F»>

2001
2003
2005
2007
2011
2013 wused in AX
2015 wused in AX
2017 wused in AX

Instruction code

Instruction type

Microprogram entry

177520
177521
177522
177523
177524
177525
177526
177527

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

OO0 00O

<operand/r/D»
<operand/r/D»>
<operand/r/D>
<operand/r/D>
<operand/r/D>
<operand/r/D»>
<operand/r/D>
<operand/r/D>

2021
2023
2025
2027
2031
2033
2035
2037

Norsk Data ND-05.022.1

Chapter 12 User Instructions for Microprogram Extensions

12.4 INSTRUCTION GROUP 3

51

For instructions in group 3, a general operand, either a constant
from program area, a register or a memory operand is fetched. In
addition, OR-logic selection of register is possible.

The following user instructions are available in group 3.

Instruction code

Instruction type

Microprogram entry

177300 - 177303

177304 - 177307

177310 - 177313

a 177314 - 177317

Byn
Byn
Byn
Byn

EXT
EXT
EXT
EXT

<operand/r/BY>
<operand/r/BY>
<operand/r/BY>
<operand/r/BY>

1651
1653
1655
1657

Instruction code

Instruction type

Microprogram entry

177320 - 177323
177324 - 177327
177330 - 177333
177334 - 177337

Hn
Hn
Hn
Hn

EXT
EXT
EXT
EXT

<operand/r/H>
<operand/r/H»>
<operand/r/H>
<operand/r/H»>

1661
1663
1665
1667

Instruction code

Instruction type

Microprogram entry

B 177340

- 177343
177344 - 177347
177350 - 177353
177354 - 177357

Wn
Wn
Wn
Wn

EXT
EXT
EXT
EXT

<operand/r/W»>
<operand/r/W»>
<operand/r/wW»
<operand/r/w»

1671
1673
1675
1677

Norsk Data ND-05.022.1

52

Chapter 12

User Instructions for Microprogram Extensions

Instruction code

Instruction type

Microprogram entry

177360 -~ 177363
177364 - 177367
177370 - 177373
177374 - 177377

Fn
Fn
Fn
Fn

EXT
EXT
EXT
EXT

<operand/r/F»>
<operand/r/F>
<operand/r/F»>
<operand/r/F»>

1701
1703
1705
1707

Instruction code

Instruction type

Microprogram entry

177440 - 177443
177444 - 177447
177450 - 177453
177454 - 177457

Dn
Dn
Dn
Dn

EXT
EXT
EXT
EXT

<operand/r/D»>
<operand/r/D»>
<operand/r/D>
<operand/r/D>

1711
1713
1715
1717

Norsk Data ND-05.022.1

ApPENDIX A

WO O D WN -

ALPHABETIC LiST OF MNEMONIC SYMBOLS

ALU,FZRO
ALU,ADIRC
ALU,AND
ALU,ANDCB
ALU,A
ALU,A+1
ALU,X0OR
ALU,ANDCA
ALU,OR
ALU,A-1
ALU,A,/2
ALU,A-B
ALU,A-B-1
ALU,A-B-1+C
ALU,A-B,*2
ALU,A-B-1,%*2
ALU,A+B,/2
ALU,A+B
ALU,A+B+1
ALU,B-A
ALU,B-A-1
ALU,A+B,*2
CRY,ONE
CRY,C

CRY ,MC

ALUF ,FZRO
ALUF ,ADIRC
ALUF ,AND
ALUF ,ANDCB
ALUF A
ALUF [A+1
ALUF ,XOR
ALUF ,ANDCA
ALUF,OR

ALUF ,A-1
ALUF ,A,/2
ALUF ,A-B
ALUF ,A-B-1
ALUF ,A-B-1+C
ALUF ,A-B,*2
ALUF ,A-B-1,*2
ALUF ,A+B,/2
ALUF ,A+B
ALUF ,A+B+1
ALUF ,B-A
ALUF ,B-A-1
ALUF ,B-A-1+C
ALUF ,A+B,*2
CRYF ,ONE
CRYF,C

CRYF ,MC

FORCE ZERO ALU OUTPUT
ALU OUTPUT COMPLEMENTED
LOGICAL AND OF A AND B

LOGICAL AND OF A AND B COMPLEMENTED
A OPERAND DIRECT THROUGH THE ALU

ADD 1 TO A OPERAND
LOGICAL EXCLUSIVE OR OF A AND B

LOGICAL AND OF A COMPLEMENTED AND B

LOGICAL OR OF A AND B
DECREMENT A OPERAND

FBUS = ALU.OUTPUT/2; FBUS(31) =
A MINUS B OPERAND

A MINUS B OPERAND MINUS 1

A MINUS B OPERAND MINUS 1 ADDED
FBUS = ALU.OUTPUT*2; FBUS(00) =
FBUS = ALU.OUTPUT*2; FBUS(0O0)
FBUS = ALU.OUTPUT/2; FBUS(31)
A OPERAND ADDED B OPERAND

A OPERAND ADDED B OPERAND ADDED
B OPERAND MINUS A OPERAND

B OPERAND MINUS A OPERAND MINUS
FBUS = ALU.OUTPUT*2; FBUS(00) =
ONE AS CARRY

C FROM STATUS AS CARRY

MICRO CARRY AS CARRY

FORCE ZERO ALU OUTPUT

ALU OUTPUT COMPLEMENTED

LOGICAL AND OF A AND B

n o
Hn

CARRY

CARRY
0
0
CARRY

1

1
0

LOGICAL AND OF A AND B COMPLEMENTED

A OPERAND DIRECT THROUGH THE ALU

ADD 1 TO A OPERAND
LOGICAL EXCLUSIVE OR OF A AND B

LOGICAL AND OF A COMPLEMENTED AND B

LOGICAL OR OF A AND B
DECREMENT A OPERAND

FBUS = ALU.OUTPUT/2; FBUS({31)
A MINUS B OPERAND

A MINUS B OPERAND MINUS 1

A MINUS B OPERAND MINUS 1 ADDED

FBUS = ALU.OUTPUT*2; FBUS(00) =
FBUS = ALU.QUTPUT*2; FBUS(00) =
FBUS = ALU.OUTPUT/2; FBUS(31) =

A OPERAND ADDED B OPERAND

A OPERAND ADDED B OPERAND ADDED
B OPERAND MINUS A OPERAND

B OPERAND MINUS A OPERAND MINUS
B OPERAND MINUS A OPERAND MINUS
FBUS = ALU.OUTPUT*2; FBUS(00) =
ONE AS CARRY

C FROM STATUS AS CARRY

MICRO CARRY AS CARRY

Norsk Data ND-05.022.1

CARRY

CARRY
0
0
CARRY

1
1

1 ADDED CARRY
0

53

54 Appendix A Alphabetic List of Mnemonic Symbols

52 EXUC EXECUTE UNCONDITIONAL

53 O,F Q <~ ALU OUTPUT.

54 Q,0*DIV 0 <- 0*2; Q(00) «- DIVR

55 Q,0*LOG Q0 <- Q*2; Q{00) «<- 0

56 0Q,Q/ARI Q0 <- Q/2; Q(SIGN.BIT) «- Q(SIGN.BIT)
57 0,0Q/L0G Q0 <- 0/2; Q(SIGN.BIT) «<- 0

58 Q,0/R0T 0 <- Q/2; Q(SIGN.BIT) «- Q(00)

59 Q,Q*ROT 0 <- 0*2; Q(00) <- Q(SIGN.BIT)
60 EXPISO ISOLATE FLOATING EXPONENT; FBUS(8-0) <- F(30-22)
61 IXADJ INDEX COUNTER INCREMENT

62 TYP,W DATA TYPE IS WORD

63 TYP,F DATA TYPE IS SINGLE FLOATING

64 TYP,HW DATA TYPE IS HALF WORD

65 TYP,BY DATA TYPE IS BYTE

66 TYP,BI DATA TYPE IS BIT

67 TYP,DF DATA TYPE IS DOUBLE FLOATING (64-BITS REAL)
68 TYP,DD DATA TYPE IS 128 BITS FLOATING POINT
69 TYP,OR DATA TYPE CONTROLED BY THE ICA

70 A,BMOO A-BUS IS BIT MASK O

71 A,BMO1 A-BUS IS BIT MASK 1

72 A,BMOZ A-BUS IS BIT MASK 2

73 A,BMO3 A-BUS IS BIT MASK 3

74 A,BMO4 A-BUS IS BIT MASK 4

75 A,BMO5 A-BUS IS BIT MASK 5

76 A,BMO6 A-BUS IS BIT MASK 6

77 A,BMO7 A-BUS IS BIT MASK 7

78 A,BM10 A-BUS IS BIT MASK 10

79 A,BM11 A-BUS IS BIT MASK 11

80 A,BM12 A-BUS IS BIT MASK 12

81 A,BM13 A-BUS IS BIT MASK 13

82 A,BM14 A-BUS IS BIT MASK 14

83 A,BM15 A-BUS IS BIT MASK 15

84 A,BM16 A-BUS IS BIT MASK 16

85 A,BM17 A-BUS IS BIT MASK 17

86 A,BM20 A-BUS IS BIT MASK 20

87 A,BM21 A-BUS IS BIT MASK 21

88 A,BM22 A-BUS IS BIT MASK 22

89 A,BM23 A-BUS IS BIT MASK 23

90 A,BM24 A-BUS IS BIT MASK 24

91 A,BM25 A-BUS IS BIT MASK 25

92 A,BM26 A-BUS IS BIT MASK 26

93 A,BM27 A-BUS IS BIT MASK 27

94 A,BM30 A-BUS IS BIT MASK 30

95 A,BM31 A-BUS IS BIT MASK 31

96 A,BM32 A-BUS IS BIT MASK 32

97 A,BM33 A-BUS IS BIT MASK 33

98 A,BM34 A-BUS IS BIT MASK 34

99 A,BM35 A-BUS IS BIT MASK 35

100 A,BM36 A-BUS IS BIT MASK 36

101 A,BM37 A-BUS IS BIT MASK 37

102 AX1 A-BUS IS INDEX REGISTER X1

103 A.X2 A-BUS IS INDEX REGISTER X2

104 A,X3 A-BUS IS INDEX REGISTER X3

105 A.X4 A-BUS IS INDEX REGISTER X4

106 A,Al A-BUS IS FLOATING MOST REGISTER Al
107 A,A2 A-BUS IS FLOATING MOST REGISTER A2
108 A,A3 A-BUS IS FLOATING MOST REGISTER A3

Norsk Data ND-05.022.1

Appendix A Alphabetic List of Mnemonic Symbols 55

109 A,A4 A-BUS IS FLOATING MOST REGISTER A4
110 A,SC1 A-BUS IS SCRATCH REGISTER 1

111 A,SC2 A-BUS IS SCRATCH REGISTER 2

112 A,SC3 A-BUS IS SCRATCH REGISTER 3

113 A,SC4 A-BUS IS SCRATCH REGISTER 4

114 A,E1 A-BUS IS FLOATING LEAST REGISTER E1
115 A,E2 A-BUS IS FLOATING LEAST REGISTER E2
116 A,E3 A-BUS IS FLOATING LEAST REGISTER E3
117 A,t4 A-BUS IS FLOATING LEAST REGISTER E4
118 A,SC5 A-BUS IS SCRATCH REGISTER 5

119 A,SC6 A-BUS IS SCRATCH REGISTER 6

120 A,SC7 A-BUS IS SCRATCH REGISTER 7

121 A,SC10 A-BUS IS SCRATCH REGISTER 10

122 A,SC11 A-BUS IS SCRATCH REGISTER 11

123 A,SC12 A-BUS IS SCRATCH REGISTER 12

124 A,SC13 A-BUS IS SCRATCH REGISTER 13

125 A,SC14 A-BUS IS SCRATCH REGISTER 14

126 A,DATA A-BUS IS DATA INPUT REGISTER

127 A,BMLC A-BUS IS BIT MASK FROM LOOP COUNTER
128 A,AAPRES A-BUS IS AAP RESULT

129 A.Q A-BUS IS Q-REGISTER

130 A,ALU,STS A-BUS IS ALU STATUS BITS

131 A,ALU,TE A-BUS IS ALU TRAP ENABLE BITS

132 A,PXBM A-BUS IS POST-INDEX BIT-MASK

133 A, IMM,PSTP A-BUS IS IMM PSTP REGISTER

134 A,DMM,PSTP A-BUS IS DMM PSTP REGISTER

135 A, IMM,PUWP A-BUS IS IMM PUWP REGISTER

136 A,DMM,PUWP A-BUS 1S DMM PUWP REGISTER

137 A,IMM,LA A-BUS IS IMM LA REGISTER

138 A,DMM,LA A-BUS IS DMM LA REGISTER

139 A, IMM,WR . A-BUS IS IMM WR REGISTER

140 A,DMM,WR A-BUS IS DMM WR REGISTER

141 A,IMM,CAP A-BUS IS IMM CAPABILITY

142 A,DMM,CAP A-BUS IS DMM CAPABILITY

143 A,IMM,PS A-BUS IS IMM PS REGISTER

144 A,DMM,PS A-BUS IS DMM PS REGISTER

145 A, IMM,PHS A-BUS IS IMM PHS REGISTER

146 A,DMM,PHS A-BUS IS DMM PHS REGISTER

147 A,IMM,DOM A-BUS IS IMM DOM REGISTER

148 A,DMM,DOM A-BUS IS DMM DOM REGISTER

149 A, IMM,MEM A-BUS IS INSTRUCTION MEMORY

150 A,DMM,MEM A-BUS IS DATA MEMORY

151 A, IMM,PHYS A-BUS IS INSTRUCTION PHYSICAL ADDR.
152 A,DMM, PHYS A-BUS IS DATA PHYSICAL ADDRESS

153 A,IMM,STS A-BUS IS IMM STS REGISTER

154 A,DMM,STS A-BUS IS DMM STS REGISTER

155 A, IMM,ADOM A-BUS IS IMM ADOM REGISTER

156 A,DMM,ADOM A-BUS IS DMM ADOM REGISTER

157 A,SPEC,MOD A-BUS IS MODUS-REGISTER

158 A,SPEC,AO0B A-BUS IS AOB-REGISTER

159 A,SPEC,IAR A-BUS IS TAR-REGISTER

160 A,SPEC,0C,DP A-BUS IS DPA-PART OF 0OC

161 A,SPEC,0C,AD A-BUS IS NADDR-PART OF OC
162 A,SPEC,0C,CO A-BUS IS CONTROL-PART OF 0C
163 A,SPEC,AC A-BUS IS address-CACHE

164 A,SPEC,IC A-BUS IS INSTRUCTION-CACHE
165 A,SPEC,OLAH2 A-BUS IS OLAH2-REGISTER

Norsk Data ND-05.022.1

56 Appendix A Alphabetic List of Mnemonic Symbols

166 A,SPEC,AFLAG A-BUS IS ACCP-FLAG-REGISTER
167 A,SPEC,AOBASR A-BUS IS COMM.-REGISTER

168 A,SPEC,IRL A-BUS IS INSTR-READ-LATCH

169 A,SPEC,DACR A-BUS IS DAC-REGISTER

170 A,SPEC,ACH A-BUS IS AC-HOLD-REGISTER

171 A,SPEC,DLAH A-BUS IS DLA-HOLD-REGISTER
172 A,SPEC,LA A-BUS IS LA-LATCH

173 A,SPEC,FLA A-BUS IS FORWARD-LA-LATCH

174 A,SPEC,DPSDOM A-BUS IS DATA PS/DOM

175 A,SPEC,IPSDOM A-BUS IS INSTRUCTION PS/DOM
176 A,SPEC,IDIR A-BUS IS INSTR-CACHE-DIR
177 A,SPEC,DCALA A-BUS 1S DATA-CACHE LA
178 A,SPEC,CSTRC A-BUS IS

179 A,SPEC,DCADAT A-BUS IS DATA-CACHE DATA
180 A,SPEC,STRACE A-BUS IS STRACE

181 A,SPEC,ITRACE A-BUS IS ITRACE

182 A,SPEC,ATRACE A-BUS IS ATRACE

183 A,SPEC,DTRACE A-BUS IS DTRACE

184 A,SPEC,CTRACE A-BUS IS CTRACE

185 A,MIC,MISTS A-BUS IS MIC STATUS REGISTER

186 A,MIC,VECT A-BUS IS MIC VECTOR REGISTER

187 A,MIC,RFA1 A-BUS IS RF-ADDRESS REGISTER 1

188 A ,MIC,RFA2 A-BUS IS RF-ADDRESS REGISTER 2

189 A,MIC,STS A-BUS IS MIC STATUS BITS

190 A,MIC,TE A-BUS IS MIC TRAP ENABLE BITS

191 A,MIC,CURR A-BUS IS MIC CURR REGISTER

192 A,MIC,CNT32 A-BUS IS MIC 32-BIT COUNTER

193 A,RF1 A-BUS IS REG.FILE POINTED TO BY RF1 REGISTER
194 A,RF2 A-BUS IS REG.FILE POINTED TO BY RF2 REGISTER
195 A,RF1D A-BUS IS REG.FILE POINTED TO BY RF1,RF1 DECREMENT
196 A,RF2D A-BUS IS REG.FILE POINTED TO BY RF2,RF2 DECREMENT
197 A,SRFO A-BUS IS SRF-WORD O

198 A,SRF1 A-BUS IS SRF-WORD 1

199 A,SRF2 A-BUS IS SRF-WORD 2

200 A,SRF3 A-BUS IS SRF-WORD 3

201 A,SRF4 A-BUS IS SRF-WORD 4

202 A,SRF5 A-BUS IS SRF-WORD 5

203 A,SRF6 A-BUS IS SRF-WORD 6

204 A,SRF7 A-BUS IS SRF-WORD 7

205 A,SRFOO A-BUS IS SRF-WORD O

206 A,SRFO1 A-BUS IS SRF-WORD 1

207 A,SRF02 A-BUS IS SRF-WORD 2

208 A,SRFO3 A-BUS IS SRF-WORD 3

209 A,SRF04 A-BUS IS SRF-WORD 4

210 A,SRFO05 A-BUS IS SRF-WORD 5

211 A,SRF06 A-BUS IS SRF-WORD 6

212 A,SRFO7 A-BUS IS SRF-WORD 7

213 A,SRF10 A-BUS IS SRF-WORD 10

214 A,SRF11 A-BUS IS SRF-WORD 11

215 A,SRF12 A-BUS IS SRF-WORD 12

216 A,SRF13 A-BUS IS SRF-WORD 13

217 A,SRF14 A-BUS IS SRF-WORD 14

218 A,SRF15 A-BUS IS SRF-WORD 15

219 A,SRF16 A-BUS IS SRF-WORD 16

220 A,SRF17 A-BUS IS SRF-WORD 17

221 A,IDU,TE A-BUS IS MIC TRAP ENABLE REGISTER

222 A,IDU,HL A-BUS IS IDU HL REGISTER

Norsk Data ND-05.022.1

Appendix A

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

A,IDU,LL
A,IDU,LIMC
A,IDU,B2
A,IDU,STS
A,IDU,DPA
A,IAC,ILAR
A,IAC,S
A,IAC.Y
A,IAC,SP
A,IAC,L
A,IAC,P
A,IAC,NPC
A,DAC,DLAR
A,DAC,EAQ
A,DAC,EA1
A,DAC,EA2
A,DAC,EA3
A,MARG
A,DAC,B
A,DAC,R
A,SARG
A,LARG
B.X1

B.X2

B,X3

B,X4

B,Al

B,A2

B,A3

B,A4
B,SC1
B,SC2
B,SC3
B.SC4
B.E1

B,E2

B,E3

B,E4
B,SC5
B,SC6
B,SC7
B,SC10
B,SC11
B,SC12
B,SC13
B,SC14
B,LC

B.0
B,BCD
B,IXC
D,X1

D,X2

D,X3

D.X4

D,Al

D,A2

D,A3

A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS
A-BUS

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

IDU

IDU LIMIT CONTROL REGISTER

IDU

LL REGISTER

BUFFER-2

Alphabetic List of Mnemonic Symbols

IDU STATUS REGISTER
DPA-BUS-REGISTER

IAC
IAC
IAC
IAC
IAC
IAC
IAC
DAC
DAC
DAC
DAC
DAC

LA-REGISTER

SCRATCH REGISTER

Y REGISTER
SP REGISTER

L (LINK) REGISTER

P REGISTER

NPC REGISTER
LA-REGISTER
EAO REGISTER
EA1 REGISTER
EA2 REGISTER
EA3 REGISTER

A-BUS IS MINI ARGUMENT

A-BUS IS DAC B REGISTER

A-BUS IS DAC R REGISTER

A-BUS IS SHORT ARGUMENT

A-BUS IS LONG ARGUMENT

B-BUS IS INDEX REGISTER X1

B-BUS IS INDEX REGISTER X2

B-BUS IS INDEX REGISTER X3

B-BUS IS INDEX REGISTER X4

B-BUS IS FLOATING MOST REGISTER Al
B-BUS IS FLOATING MOST REGISTER A2
B-BUS IS FLOATING MOST REGISTER A3
B-BUS IS FLOATING MOST REGISTER A4
B-BUS IS FLOATING SCRATCH REGISTER SC1
B-BUS IS FLOATING SCRATCH REGISTER SC2
B-BUS IS FLOATING SCRATCH REGISTER SC3
B-BUS IS FLOATING SCRATCH REGISTER SC4
B-BUS IS FLOATING LEAST REGISTER E1
B-BUS IS FLOATING LEAST REGISTER E2
B-BUS IS FLOATING LEAST REGISTER E3
B-BUS IS FLOATING LEAST REGISTER E4
B-BUS IS SCRATCH REGISTER SC5

B-BUS IS SCRATCH REGISTER SC6

B-BUS IS SCRATCH REGISTER SC7

B-BUS IS SCRATCH REGISTER SC10

B-BUS IS SCRATCH REGISTER SC11

B-BUS IS SCRATCH REGISTER SC12

B-BUS IS SCRATCH REGISTER SC13

B-BUS IS SCRATCH REGISTER SC14

B-BUS IS LOOP COUNTER (LC)

B-BUS IS Q-REGISTER

B-BUS IS BCD CORRECTION (Q/4 OR Q/8)
B-BUS IS INDEX-COUNTERS

DESTINATION
DESTINATION
DESTINATION
DESTINATION
DESTINATION
DESTINATION
DESTINATION

IS
IS
IS
IS
IS
IS
IS

INDEX REGISTER X1
INDEX REGISTER X2
INDEX REGISTER X3
INDEX REGISTER X4
FLOATING MOST REGISTER Al
FLOATING MOST REGISTER A2
FLOATING MOST REGISTER A3

Norsk Data ND-05.022.1

58 Appendix A Alphabetic List of Mnemonic Symbols

280 D,A4 DESTINATION IS FLOATING MOST REGISTER A4
281 D,SC1 DESTINATION IS SCRATCH REGISTER SC1

282 D,ScC2 DESTINATION IS SCRATCH REGISTER SC2

283 D,SC3 DESTINATION IS SCRATCH REGISTER SC3

284 D,SC4 DESTINATION IS SCRATCH REGISTER SC4

285 D,E1 DESTINATION IS FLOATING LEAST REGISTER E1
286 D,E2 DESTINATION IS FLOATING LEAST REGISTER E2
287 D,E3 DESTINATION IS FLOATING LEAST REGISTER E3
288 D,E4 DESTINATION IS FLOATING LEAST REGISTER E4
289 D,SC5 DESTINATION IS SCRATCH REGISTER SC5

290 D,SC6 DESTINATION IS SCRATCH REGISTER SC6

291 D,SC7 DESTINATION IS SCRATCH REGISTER SC7

292 D,SC10 DESTINATION IS SCRATCH REGISTER SC10

293 D,SC11 DESTINATION IS SCRATCH REGISTER SC11

294 D,SC12 DESTINATION IS SCRATCH REGISTER SC12

295 D,SC13 DESTINATION IS SCRATCH REGISTER SC13

296 D,SCl4 DESTINATION IS SCRATCH REGISTER SC14

297 D,NONE NO DESTINATION

298 D,IXC DESTINATION IS INDEX-COUNTERS CLEAR

299 D,LC DESTINATION IS LOOP COUNTER (LC)

300 D,SPEC,MOD WRITE MODUS REGISTER

301 D,SPEC,AIB WRITE ACCP-INPUT-BUFFER

302 D,SPEC,DCADAT WRITE DATA-CACHE DATA

303 D,SPEC,0C,DP WRITE DPA-PART OF OC

304 D,SPEC,O0C,AD WRITE NADDR-PART OF OC

305 D,SPEC,0C,CO WRITE CONTROL-PART OF OC

306 D,SPEC,AC WRITE ADDRESS-CACHE

307 D,SPEC,IC WRITE INSTRUCTION-CACHE

308 D,SPEC,MIB WRITE MIB-REGISTER

309 D,SPEC,TRPARM TRAP-ARM

310 D,SPEC,TRPCLR TRAP-CLEAR

311 D,SPEC,CC WRITE CONTROL-WORD-CACHE

312 D,SPEC,LA WRITE LA-REGISTER

313 D,SPEC,FLA WRITE FORWARD-LA-REGISTER

314 D,SPEC,CLDCA CLEAR DATA-CACHE

315 D,SPEC,CLICA CLEAR INSTRUCTION-CACHE

316 D,SPEC,CTRACE WRITE CTRACE

317 D,DMM,PSTP DESTINATION IS IMM PSTP REGISTER

318 D,IMM,PSTP DESTINATION IS DMM PSTP REGISTER

319 D,MM,PSTP DESTINATION IS IMM AND DMM PSTP REGISTER
320 D,DMM,PUWP DESTINATION IS IMM PUWP REGISTER

321 D, IMM,PUWP DESTINATION IS DMM PUWP REGISTER

322 D,MM,PUWP DESTINATION IS IMM AND DMM PUWP REGISTER
323 D,DMM,LA DESTINATION IS IMM LA REGISTER

324 D,IMM,LA DESTINATION IS DMM LA REGISTER

325 D,MM,LA DESTINATION IS IMM AND DMM LA REGISTER
326 D,DMM,WR DESTINATION IS IMM WR REGISTER

327 D,IMM,WR DESTINATION IS DMM WR REGISTER

328 D,MM,WR DESTINATION IS IMM AND DMM WR REGISTER
329 D,DMM,CAP DESTINATION IS IMM CAPABILITY REGISTER
330 D,IMM,CAP DESTINATION IS DMM CAPABILITY REGISTER
331 D,MM,CAP DESTINATION IS IMM AND DMM CAP REGISTERS
332 D,DMM,PS DESTINATION IS IMM PS REGISTER

333 D,IMM,PS DESTINATION IS DMM PS REGISTER

334 D,MM,PS DESTINATION IS IMM AND DMM PS REGISTER
335 D,DMM,PHS DESTINATION IS IMM PHS REGISTER

336 D, IMM,PHS DESTINATION IS DMM PHS REGISTER

Norsk Data ND-05.022.1

Appendix A

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

Alphabetic List of Mnemonic Symbols 59
D,MM, PHS DESTINATION IS IMM AND DMM PHS REGISTER
D,DMM,DOM DESTINATION IS IMM DOM REGISTER
D, IMM,DOM DESTINATION IS DMM DOM REGISTER
D,MM,DOM DESTINATION IS IMM AND DMM DOM REGISTER
D,DMM,MEM WRITE MEMORY DMM
D, IMM,MEM WRITE MEMORY IMM
D,DMM,WTSB DESTINATION IS IMM TSB
D,IMM,WTSB DESTINATION IS DMM TSB
D,MM,WTSB DESTINATION IS IMM AND DMM TSB
D,DMM,CTSB IMM TSB CLEAR
D,IMM,CTSB DMM TSB CLEAR
D,MM,CTSB IMM AND DMM TSB CLEAR
D,DMM,CTRP TRAP CLEAR AND UNLOCK THE IMM
D,IMM,CTRP TRAP CLEAR AND UNLOCK THE DMM
D,MM,CTRP TRAP CLEAR AND UNLOCK THE IMM AND DMM
D,DMM,DIRTY DESTINATION IS DMM DIRTY-DOM-PS REGISTER
D,IMM,DIRTY DESTINATION IS IMM DIRTY-DOM-PS REGISTER
D,MM,DIRTY DESTINATION IS MM DIRTY-DOM-PS REGISTER
D,DMM,ADOM DESTINATION IS IMM ADOM REGISTER
D, IMM,ADOM DESTINATION IS DMM ADOM REGISTER
D,MM,ADOM DESTINATION IS IMM AND DMM ADOM REGISTER
D,MIC,MISTS DESTINATION IS MIC STATUS REGISTER
D,MIC,VECT DESTINATION IS MIC VECTOR REGISTER
D,RFA1 DEST. IS RF1 ADDR. REG.
D,RFA2 DEST. IS RF2 ADDR. REG.
D,MIC,STS DESTINATION IS MIC STS-BITS
D,MIC,TE DESTINATION IS MIC TRAP ENABLE BITS
D,MIC,BRK DESTINATION IS MIC BREAKPOINT-REGISTER
D,MIC,CNT32 DESTINATION IS MIC 32-BIT COUNTER
D,MIC,RESTY CLEAR STACK UNDERFLOW
D,RF1 DESTINATION IS REG.FILE POINTED TO BY RF1 REGISTER
D,RF2 DESTINATION IS REG.FILE POINTED TO BY RF2 REGISTER
D,RF1D DESTINATION IS REG.FILE POINTED TO BY RF1,RF1 DECR.
D,RF2D DESTINATION IS REG.FILE POINTED TO BY RF2,RF2 DECR.
D,SRFO DESTINATION IS SRF-WORD O
D,SRF1 DESTINATION IS SRF-WORD 1
D,SRF2 DESTINATION IS SRF-WORD 2
D,SRF3 DESTINATION IS SRF-WORD 3
D,SRF4 DESTINATION IS SRF-WORD 4
D,SRFS DESTINATION IS SRF-WORD 5
D,SRF6 DESTINATION IS SRF-WORD 6
D,SRF7 DESTINATION IS SRF-WORD 7
D,SRF0OO DESTINATION IS SRF-WORD O
D,SRFO1 DESTINATION IS SRF-WORD 1
D,SRF0O2 DESTINATION IS SRF-WORD 2
D,SRFO3 DESTINATION IS SRF-WORD 3
D,SRFO4 DESTINATION IS SRF-WORD 4
D,SRFO5 DESTINATION IS SRF-WORD 5
D,SRF06 DESTINATION IS SRF-WORD 6
D,SRFO7 DESTINATION IS SRF-WORD 7
D,SRF10 DESTINATION IS SRF-WORD 10
D,SRF11 DESTINATION IS SRF-WORD 11
D,SRF12 DESTINATION IS SRF-WORD 12
D,SRF13 DESTINATION IS SRF-WORD 13
D,SRF14 DESTINATION IS SRF-WORD 14
D,SRF15 DESTINATION IS SRF-WORD 15
D,SRF16 DESTINATION IS SRF-WORD 16

Norsk Data ND-05.022.1

60

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

D,SRF17
D,IDU,TE
D,IDU,HL
D,IDU,LL
D,IDU,LIMC
D,IDU,CSIT
D,IDU,STS
D,IDU,AREG
D,IDU, IBUF
D,IAC,NPC
D,IAC,P
D,IAC,L

D, IAC,SUML
D,IAC,DPA
D, IAC,CLKNPC
D,IAC,CLKP
D,IAC,CLKSP
D,DAC,R
D,DAC,B
D,DAC,SUMB
D,DAC,DPA
K, ONE
K,ZRO
K,1IFZ
ST,SAVA
ST,SAVC
ST,SAVF
ST,SAVB
ST,LOAD
ST,SAWM
ST,ACCA
ST,ACCM
ST,ACCF
TE,ALU,LOAD
LCDECR
ADACT
EA1SAVE
EA2SAVE
EA3SAVE
C.MEMOT
CSAVE
C,SEQ
COND,MSEXO
COND ,MSORZ
COND, SORZ
COND ,MCNZ
COND,CNZ
COND ,MZRO
COND ,MCRY
COND ,MSGN
COND ,MOVFL
COND, ZRO
COND, CRY
COND, SGN
COND, K
COND,OVFL
COND, PARITY

Appendix A Alphabetic List of Mnemonic

DESTINATION IS SRF-WORD 17

DESTINATION IS MIC TRAP ENABLE REGISTER
DESTINATION IS IDU HL REGISTER
DESTINATION IS IDU LL REGISTER
DESTINATION IS IDU LINIT CONTROL REGISTER
CONDITIONA SETTTING OF SINGLE INSTRUCTION-TRAP
DESTINATION IS IDU STATUS REGISTER
DESTINATION IS IDU ADDRESS REGISTER
DESTINATION IS IDU IBUF-REGISTER
DESTINATION IS IAC NPC REGISTER
DESTINATION IS IAC P REGISTER

DESTINATION IS IAC L (LINK) REGISTER

SUM IS TRANSFERRED TO IAC Y REGISTER
DESTINATION IS IAC-DPA-REGISTER

LA -> NPC
NPC -> P
P -> SP

DESTINATION IS DAC R (RECORD) REGISTER
DESTINATION IS DAC B (BASE) REGISTER
SUM IS TRANSFERRED TO DAC B REGISTER
DESTINATION IS DAC DPA-REGISTER

SET K (FLAG) 1 TO K

CLEAR K (FLAG) 0 TO K

SET K TO 1 IF ALU OPERATION IS O

SAVE STATUS FROM ALU OPERATION

SAVE STATUS FROM ALU IN COMPARE

SAVE STATUS FROM FLOATING OPERATION
SAVE STATUS FROM BCD OPERATION

LOAD ALU STATUS.

SAVE MIXED STATUS FOR INTEGER MULTIPLY
SAVE AND ACCUMULATE ALY STATUS

SAVE AND ACCUMULATE MIXED STATUS

SAVE AND ACCUMULATE AAP STATUS

LOAD ALU TRAP ENABLE BITS

DECREMENT THE LOOP COUNTER

ADDRESS ARITHMETIC ACTIVATE

SAVE ADDRESS IN EAl AND EAO

SAVE ADDRESS IN EA2 AND EAO

SAVE ADDRESS IN EA3 AND EAO

MEMORY REQUEST IF DATA-OPERAND

PUSH TEST CONDITION TO STACK({2)
ENABLE CONDITIONAL SEQUENCE

EXOR OF S AND O FROM ALU RESULT

OR OF S AND Z FROM ALU OPERATION

OR OF S AND Z FROM STATUS (S1)

AND OF C AND NOT Z FROM ALU OPERATION
AND OF C AND NOT Z FROM STATUS (S1)

Z FROM ALU OPERATION

C FROM ALU OPERATION

S FROM ALU OPERATION

0 FROM ALU OPERATION

Z FROM S1

C FROM S1

S FROM S1

K FROM S1

0 FROM S1

PARITY OF LEAST SIGNIFICANT BYTE OF F-BUS

Norsk Data ND-05.022.1

Symbols

Appendix A

Alphabetic List of Mnemonic Symbols

451 COND,QO Q-REGISTER BIT O.

452 COND,SAVC1 TOP BIT OF SAVED CONDITION STACK

453 COND,SAVC2 BOTTOM BIT OF SAVED CONDITION STACK
454 COND,LCZ LOOP COUNTER ZERO RESULT

455 COND,ENTER CHECK FOR ENT- INSTRUCTIONS

456 COND,DATOP CHECK FOR DATA AS OPERAND

457 COND,CONOP CHECK FOR CONSTANT AS OPERAND

458 COND,PDONE PART DONE FROM STATUS (S1)

459 COND,MFS S FROM FLOATING AAP

460 COND,MFO 0 FROM FLOATING AAP

461 COND,MFU U FROM FLOATING AAP

462 COND,MDZ DIVIDE BY O FROM FLOATING AAP

463 COND,MIVO INVALID OPERATION FROM BCD AAP

464 COND,MBO 0 FROM BCD AAP

465 COND,RF10CT ZERO IN RF-ADDRESS 1 BITS 0-2

466 COND,RF20CT ZERO IN RF-ADDRESS 2 BITS 0-2

467 COND,GOOPS GET-TYPE IS G,00PS

468 COND,AQSLZ 00 FOR ALU, LCZ FOR SEQ.

469 COND, IRALT FIRST-OPERAND IS ALT-ADDRESSED

470 COND,CALL MACROINSTR. IS CALL

471 COND,ENTM MACROINSTR. IS ENTM

472 COND,ENTT MACROINSTR. IS ENTT

473 COND, JUMPG MACROINSTR. IS JUMPG

474 JMP JUMP TO ADDRESS

475 JMPREL JUMP TO VECTOR ADDRESS

476 RETURN RETURN TO SEQUENCER ADDRESS

477 NEXT NEXT MICRO INSTRUCTION

478 HOLD HOLD SEQUENCER STACK

479 POP POP SEQUENCER STACK

480 LOAD LOAD SEQUENCER STACK

481 PUSH PUSH SEQUENCER STACK

482 F,JIMP FALSE JUMP TO ADDRESS

483 F,JMPREL FALSE VECTOR JUMP TO ADDRESS

484 F,RETURN FALSE RETURN TO TOP OF STACK

485 F,NEXT FALSE NEXT MICRO INSTRUCTION

486 F,HOLD FALSE HOLD SEQUENCER STACK

487 F,POP FALSE POP SEQUENCER STACK

488 F,LOAD FALSE LOAD SEQUENCER STACK

489 F,PUSH FALSE PUSH SEQUENCER STACK

490 INVSEQ INVERT TEST CONDITION FOR SEQUENCE

491 AA.0 ADDRESS A OPERAND IS ZERO

492 AA,MARG ADDRESS A OPERAND IS MINIARGUMENT

493 AA,DISP ADDRESS A OPERAND IS DISPLACEMENT

494 AA,DATA ADDRESS A OPERAND IS DATA REGISTER

495 AA,EAO ADDRESS A OPERAND IS EAO REGISTER

496 AA,EAl ADDRESS A OPERAND IS EA1l REGISTER

487 AA,EA2 ADDRESS A OPERAND IS EA2 REGISTER

498 AA,EA3 ADDRESS A OPERAND IS EA3 REGISTER

439 AB,0 ADDRESS B OPERAND IS ZERO

500 AB,MARG ADDRESS B OPERAND IS MINIARGUMENT

501 AB,B ADDRESS B OPERAND IS BASE (B) REGISTER
502 AB,R ADDRESS B OPERAND IS RECORD (R) REGISTER
503 AB,IX1 ADDRESS B OPERAND IS INDEX REGISTER X1
504 AB,IX2 ADDRESS B OPERAND IS INDEX REGISTER X2
505 AB,IX3 ADDRESS B OPERAND IS INDEX REGISTER X3
506 AB,IX4 ADDRESS B OPERAND IS INDEX REGISTER X4

507 AB,CMBRET RETURN FROM CMISS U-CODE

Norsk Data ND-05.022.1

61

62

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

AB,ADR
AB,EA1DIR
AB,ADR+4
AB,X10RS
AB,X20RS
AB,X30RS
AB,X40RS
LADDR
WR, POF
CCDD

WR, PHYS
WR,DOM
WR,ADOM
WRITE
QVACC
RD, POF
RD,PX
RD,PHYS
RD,DOM
RD,ADOM
READ
CLEAR
[SAMP
G,00PS
G,00PS,T
G,00PS,F
G,COOPS
G,DIR1
G,DIR2
G,0PS
G,DIR4
G,O0PSTRD
G, TOOPS
LOADLA
TBC,NEXT
TBC,SUBR
TBC,L
TBC,NPCREL
TBC,PREL

TBC, INCRILAR

TBC,NOOP
ABR,NEXT
ABR,NPCREL
ABR,NEXTL
ORA

ORA, IN
ORA,QP
ORA,ALTEN
ORB

ORD

ORD, IN
ORD, 0P
ORD,0P1
ORD,ALTEN
OR,N
OR,NE

IFT

Appendix A

EAO IF RECYCLE NOT NECESSARY

EA1 IF RECYCLE NOT NECESSARY

PREVIOUS ADDRESS +4 IF RECYCLE NOT NECESSARY
DESC(X)(I1),I1 SCALED ACCORDING TO INSTRUCTION
DESC(X)(I2),I12 SCALED ACCORDING TO INSTRUCTION
DESC(X)(I3),I3 SCALED ACCORDING TO INSTRUCTION
DESC{X)(I4),14 SCALED ACCORDING TO INSTRUCTION
PERFORM A LADDR REQUEST

PERFORM A PHYSICAL WRITE WITH MMS

CLEAR CACHE AND DUMP DIRTY

WRITE PHYSICAL SEGMENT

WRITE DATA MEMORY IN NORMAL DOMAIN

WRITE DATA MEMORY IN ALTERNATIVE DOMAIN

WRITE DATA MEMORY

FORCE QVACC (USE WITH A,IAC, AND LOADLA)

PERFORM A PHYSICAL READ WITH MMS

READ DATA MEMORY, WRITE PERMIT REQUIRED

READ PHYSICAL SEGMENT

READ DATA MEMORY IN NORMAL DOMAIN

READ DATA MEMORY IN ALTERNATIVE DOMAIN

READ DATA MEMORY

CLEAR TAC

INTERRUPT SAMPLE

GET NEXT INSTRUCTION AND OPERAND SPECIFIER

GET NEXT INSTRUCTION AND OPERAND SPECIFIER IF TRUE
GET NEXT INSTRUCTION AND OPERAND SPECIFIER IF FALSE
GET NEXT INSTRUCTION AND OPERAND AFTER CALL

GET IMMEDIATE OPERAND 1 BYTE LONG

GET IMMEDIATE OPERAND 2 BYTES LONG

GET SECOND OR LATER OPERAND SPECIFIER

GET IMMEDIATE OPERAND 4 BYTES LONG

GET SECOND OPERAND SPECIFIER FOR STRING INSTR

GET NEXT INSTRUCTION CODE, FOR TESTING ONLY (NO MAPPIN
SET START ADDRESS FROM IB TO LA

CACHE WRITE NEXT INSTRUCTION STREAM ADDRESS

CACHE WRITE SUBROUTINE ADDRESS

CACHE WRITE LINK REGISTER

CACHE WRITE NPC RELATIVE JUMP ADDRESS

CACHE WRITE P RELATIVE JUMP ADDRESS

ILAR + 4 -> ILAR

NO TBC-OPERATION

CALCULATE NEXT INSTRUCTION STREAM ADDRESS
CALCULATE JUMP TARGET ADDRESS

CALCULATE NEXT ADDRESS TO LINK REGISTER

USE OR LOGIC-CONTROLLED A-OPERAND

OR A OPERAND IN CURRENT FROM INSTRUCTION

OR A OPERAND IN CURRENT FROM CURRENT OPERAND SPECIFIER
OR A OPERAND (IN NEXT) FROM STRING SOURCE OPERAND
USE OR LOGIC-CONTROLLED B-OPERAND

USE OR LOGIC-CONTROLLED DESTINATION

OR DESTINATION IN CURRENT FROM INSTRUCTION

OR DESTINATION IN CURRENT FROM OPERAND SPECIFIER
OR DESTINATION (IN NEXT) FROM FIRST OPERAND SPECIFIER
OR DESTINATION (IN NEXT) FROM STRING DEST. OPERAND
OR-CONTROL IS FOR NEXT CYCLE

ENABLE EXTENSION REGISTER IN NEXT MICRO CYCLE

IF TRUE THEN ...

Norsk Data ND-05.022.1

Alphabetic List of Mnemonic Symbols

Appendix A Alphabetic List of Mnemonic Symbols

‘ 565 SLOW1 CYCLE TIME = 110 N.SEC.
566 SLOW2 CYCLE TIME = 160 N.SEC.
567 FSLOW1 FORCE SLOW1 ON A,SPEC,<-->
568 AAPSYNC WAIT FOR AAP READY
569 AAPSYNCL WAIT FOR AAP READY (USED FOR LEAST PART)
570 IX*1 SCALING = *1
571 IX*2 SCALING = *2
572 IX*4 SCALING = *4
573 IX*8 SCALING = *8
574 IX/8 SCALING = /8
575 IX*16 SCALING = *16
576 AAP1,CTF AAP1: CONVERT TO FLOATING
577 AAP1,CTDF AAP1: CONVERT TO FLOATING
578 AAP1,UCTF AAP1: UNSIGN CONVERT TO FLOATING
579 AAP1,UCTDF AAP1: UNSIGN CONVERT TO FLOATING
580 AAP1,CTBYR AAP1: CONVERT TO INT. ROUNDED
581 AAP1,CTHWR AAP1: CONVERT TO INT. ROUNDED
582 AAP1,CTWR AAP1: CONVERT TO INT. ROUNDED
583 AAP1,CTBY AAP1: CONVERT TO INT. ROUNDED
584 AAP1,CTHW AAP1: CONVERT TO INT. ROUNDED
585 AAP1,CTW AAP1: CONVERT TO INT. ROUNDED
586 AAP1,INTR AAP1: INTEGER-PART ROUNDED
587 AAP1,INT AAP1: INTEGER-PART TRUNCATED
588 AAP1,SHA AAP1l: SHIFT ARITHMETICAL
589 AAP1,SHL AAP1: SHIFT LOGICAL
590 AAP1,SHR AAP1: SHIFT ROTATIONAL
591 AAP1,DTOFR AAP1: CONVERT DOUBLE TO FLOATING ROUNDED
592 AAP1,A+B AAP1: A+B
593 AAP1,B-A AAP1: B-A
594 AAP1,B/A AAP1: B/A
595 AAP1,A-B . AAP1: A-B
596 AAP1,COMP AAP1: COMPARE (A-B)
597 AAP1.,A/B AAP1: A/B
588 AAP1,DIVP AAP1: PARTIAL DIVIDE A/B
599 AAP1,A*B AAP1: AxB
600 AAP1,UMUL AAP1: UNSIGNED MULTIPLY.
601 AAP1,MUL4 AAP1: MULTIPLY WITH OVERFLOW
602 AAP1,RRF AAP1: READ AAP REGISTERFILE
603 AAP1,WRF AAP1: WRITE AAP REGISTERFILE
604 AAP1,CLEAR AAP1: COPY A TO F
605 AAPZ,SUBAB AAPZ: SUBTRACT A-B
606 AAP2,A-B AAPZ2: SUBTRACT A-B
607 AAP2,ABSSUB AAPZ: MAGNITUDE OF DIFFERENCE
608 AAP2,MUL AAP2: MULTIPLY
609 AAPZ2,A*B AAPZ2: MULTIPLY
610 AAP2,MULABSA AAP2: B TIMES MAGNITUDE OF A
611 AAPZ,NEG AAP2: NEGATE

612 AAP2,MULABSB AAP2: A TIMES MAGNITUDE OF B

613 AAP2,MULNEG AAP2: MULTIPLY AND NEGATE

614 AAPZ2,MULNEGA AAPZ2: B TIMES NEGATIVE VALUE OF A
615 AAP2,ADD AAPZ2: ADD

616 AAPZ2,A+B AAPZ: ADD

617 AAPZ2,ABSADD AAP2: MAGNITUDE OF SUM

618 AAP2,ADDABS AAP2: SUM OF MAGNITUDES

619 AAP2 ,MULNEGB AAPZ: A TIMES NEGATIVE VALUE OF B
620 AAP2,PASS AAPZ: IDENTITY

621 AAP2 ,MULNEGAB AAP2: NEGATIVE VALUE OF A TIMES B

Norsk Data ND-05.022.1

64

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

AAP2,PASSABS
AAP2,SUBBA
AAP2,B-A
AAP2 ,SUBABABS
AAPZ ,SUBBAABS
AAPZ, IMUL
AAPI ,A*B
AAP2, IMULD
AAPI ,A*B,D
AAP2, IMULU
AAPI ,UMUL
AAPT,UMUL,D
AAPZ ,CLEAR
AAP2,CTI
AAP2,CTIR
AAP2,CTF
AAPZ,CBF
AAP2 ,EXPISO
#A,0P

#A,0PM
#A,0PL

#A ,WOP

#A ,WOPM

#A ,WOPL

STOP

AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:
AAP2:

READ

Appendix A Alphabetic List of Mnemonic Symbols

ABSOLUTE VALUE
SUBTRACT
SUBTRACT
DIFFERENCE OF MAGNITUDES
DIFFERENCE OF MAGNITUDES
INTEGER MUL, ONE RESULT
INTEGER MUL, ONE RESULT
INTEGER MUL, TWO RESULTS
INTEGER MUL, TWO RESULTS
INTEGER UMUL, ONE RESULT
INTEGER UMUL, ONE RESULT
INTEGER UMUL, TWO RESULTS
CLEAR ONGOING AAP2-SEQUENCE
CONVERT TO INTEGER
CONVERT TO INTEGER ROUNDED
CONVERT TO FLOATING
CONVERT TO OTHER FLOATING FORMAT
EXPONENT ISOLATE

+ ORA + ADACT + TYP,OR + ORA.OP

#A,0P + OR,NE + AB,ADR+4

READ
READ

+ ORA + C,MEMOT + TYP,OR
+ ORA + ADACT + TYP,OR + ORA,OP + EA1SAVE + ORD,0

#A,WOP + OR,NE + AB,ADR+4 + ORD,0P

READ

+ ORA + C,MEMOT + TYP,OR

STOP-MICROPROGRAM

Norsk Data ND-05.022.1

65

APPENDIX B

THE MICROINSTRUCTION FORMAT

Norsk Data ND-05.022.1

66

Appendix B

Norsk Data ND-05.022.1

The Microinstruction Format

Appendix B The Microinstruction Format 67

SAMSON MICROCODE DEFINTI I N
Date : 15 .05 1987
. . - Seq. Control D-mem Control
=l] cf oo " o S| @ -
0|2 (=2 — Gl |2 Yo A3 | G|+ 3 == A~ o LM ey
3<. = el [810 f,,’> %53.& S|olc[u = [Short Argument (Sext)
Alu Control |xv = & o\ o) >0 p.uvjsémgo.g = [Minhirarg
True [False |Jul§ Aap Control |, ~ il =l ol8 G tac Control lu|<|dl = b _— Data oddr con. | Orcon
Alu JC T ALy JC “| @ [Type [Operation Tupe 2 A-Opr. [B-Opr. | Destcen [Sts | |79 True [Faise Testobject [ABR] TBC | Get I e o s U Jump Address Aa | Ab [Scal JN[E[A JD
Flov s a-bo ol obkvaFoo ook v aF ook ok v oo ol v v~ opm - ol v v - 0Dk B NN -~ O BFLD NN ~B OO ED TN N DO OB HN P NFO D Ok © bR 0 NF O Ok - 0N B NF 00BN - O
(NNNNNNNNT s~ e=<s ~0000000OOOONNNPMOONNNVREODMOOOROFFFFEFFFFO0OOOROOONLLELWLLLL T TN T EEEEEFNNMNNMNNNNPOMNNNNNNNNNNNT s~ e~~~ =~
s e e v e e e e e
=1 SO =288 = el =] == =S =22l =2 1720 197 178 17 1S TS5 18] TST 7= 1T 11 18 = = 7] =R =1 =a =] = T 5]
C O OO0|FZRO Of Normatl No OR Logic [O[XXXZZZZZ[060 001 018 011 06 161 {10 144 {O] hold i | i O O | O OCA | { i i coo|o 1
OO O 1| ADIRC 1] EXecute UnCond. | OR Logtc 1 BHG ALU MMS SPEC MIC IDU IAC DAC {4] iXADJ O 1| NEXT 1] MiCRO OO 1| MunLARG
OO 10| AND Ol Use True ALU | {©OO| NORM O hold | i i 1 0] NPCREL i [s)e] | i i O 10[DiISPimt |
OO 1 1| ANDCB 1| Use Faise/Truse O 4| SLOWY XXX OOOOO[BNE X1 DPSTP HOD MISTS TE 1| LCDECR 1 4] NEXTL O 1| EAISAVE O 1 1] DATA
O 41 00| At0 O OO Hold | |1 0| SLOW2 (XXX OOOO 1(BM X2 DPUWP AOB VECT HL Ol Lrue seq i i | [COCO| NeXT 10| EA2SAVE i i i 1 O O|EAD i
O 410 1| XO0R OO 1| Load(F to @) 1 1] SLOW3 IXXXOOO 10(BM ¥3 DA AR RFAI LL 1] € ;SE OO 4| SUBR 1 4] EA3SAVE 10 4 EM
(O 1 41 Of ANDCA O 10|Duv. Sheft | | [W [OOO] [XXXOOO 1 41(8W3 X4 DR OC,DP RFA2 LIMC ILAR DLAR. O O| JMP i i 1 |10 | Ol req i i i | 1 4 O EA2 i
O 1.1 4| 0R O 1 4| LOG Left F OO 1] [XXXOO 100]BM4 A DCAP OC,AD STS B2 S EAO O 1] JMPREL C 1 4] NPCREL | 4] MENOT 41 1] EA3
1000} A1 A1CO| ARl rught | | |HW |[O 10| [XXXOO 10 1|8M5 A2 DOPS 0OC,CO TE SIS Y EM 41 O] RETURN i i | |1 O0|PREL I Ol | i i i ooCco|o
400 4/ A+0,F,C/2 to F 410 4 LOG reght BY |[O 4 4] IXXXOO 1 108K A3 DPHS AC CURR DPA SP EA2 4 A NEXT 4.€). 1 OO0 1t MunLARG
10 10| A 4 10| ROT right | § |BI [100| | XXXOO 4 1 1|BHT A4 DDOM iC CNT32 EA3 | {O0| HOLD i | 1 |1 4 Ol[ILARt4 - iLAR | O] hold i I i i o0 10j8
101 1]A-B, Fx2 to F 1 1 4/ ROT Left OF |10 4] XX XO 1000C|8emo st OLAH2 O 1| POP 41 41 41| NOOP. 1] ADACT OO0 1 1|R
4 100|A+B,F,C/2 Lo F g | 1 |DD |1 10 [XXXO 10O 4{BHi1 SC2 AFLAB MARG . | |10| LOAD i 1800000} MSEX0 0000 | i | i | i O 100 X1
1 10 4| A+B iCAJ4 4 4] |[XXXO 10 10|8M12 5C3 DPHYS ADBASR L 8 1 1| PUSH O COO0U 1| MSORZ C OO 4|CLEAR O 10 4| x2
44 10]B-A i i i | XXX O 401 4[BH13SC4 DTS 1AL PR [AS TRUE XX XX| | |000OC 10| soRz Co 10 | i i i i i O 1 10| X3
14 4 4)A+B, Fx2 to F XX XO 1 100]8K4 EY DACR RFi NPC normal (O} [OOOCO 4 4| HMCNZ GO 1 1] ISAMP O 1 1 1| X4
O O| zero i i i 1 i XXXO 410 4{BMS E2 ACH RF2 INV.SEQ.cond. [4| |0OCO 100| msexo O 10O 6,00PS | i | | i i 1 OO0 CMBRET.
O 41| ONE XXXO 1110|616 E3 OLAH RFiD SARG. |hc|-d O|0CO 10 1| msorz O 10O 4{6,00PS,T 100 1| ADR
10| Cry | i | i i XXXO 4 44 4|BMT E4 DADOM LA RF20 LARG. i i LCSAVE [1|OCO 1 1 Ofsorz O 1 1046,00PS,F i i | i i i 10 10| EAIDIR
4 1| MCry X XX 100 0OC|BN20 SC5 iPSTP FLA SRFO O C OO HOLD - 000 1 4 4jmenz O 4 4 4}6,C00PS 10 1 1) ADR+4
AS TRUE [XXXXXX] 1 [1 | XXX 1000 4|BH21 SC6 |PUYP DPSDOM SRF 1 OO0 1| ONE -» K i | OO0 1000j|CNZ 41 000j6,0IRY i | i i i i 1 1 00| X{0RSTYP
EXP1S0 1 40 > x> x x| XXX 400 1410|8422 SCT ILA iPSDOM SRF2 GO 10| ZERD-> K OO0 100 4| MZRO 400 46,0iR2 1 40 1| X20RSTYP
AAP 4 OO 1 x> x x x| | XXX 100 1 1|8M23 SC16 (¥R IDIR SRF3 OO0 111 > K IFZ]) } |OO0 10 1 O)MCRY 10 10]6,0P8 i i i i i i 4 1 10} X30RSTYP
AAP2 O 10 x x x> x| XXX 10 100|8M24 SCH1 ICAP DCALA SRF4 O 1 00| SAVA OO 10 1 4| MSGN 10 1 4/6,DiR4 4 141 1] X40RSTYP
i XXX 40 10 4|BM25 SC12 IPS CSTRC SRFS O 10 1| SAVC i j |©O41100jcnz 1100 i i | i i | i OCOo| 1X
SUBAB (A-B) = oocoo XXX 410 1 1 0|8M26 SC13 IPHS DCADAT SRF6 O 1 10 SAVF CC 1 10 4|mzro 4 10 4/6,0PSTRD OO 1] 2X
CTE ABSSUB o [sls)je)eii i XXX 410 4 1 1)BM27 SCH4 IDOM STRACE SRFT O 1 4 1] SAVB i i [CC 11 10|mcry 11 10}6,700PS | i i i i i | O 10 4X
CTDF MUL (A) 5 oo 10 XXX 1 1000 BH30 DATA INEM iTRACE SRF10 4 QOO LOAD alu-stat OC 111 4megn 4 1 4 4} LOADLA a1 1] 8X
UCTF MULABSA - oo 11 i XXX 4 100 1)BM3{ BALC ATRACE SRF 14 400 1| SAVM i | |[©10000| MOVFL i O] i i i i i i 100 1/8X
UCTDF NEG 3 ac 100 XXX 4 1010|8432 iPHYS DTRACE SRF 42 1019 O 4000 4|ZRO 1| STOP Execution 10 1] i6X
CTBYR MULABSB " coc101 i XXX 4 40 1 1(BM33Q iSTS CTRACE SRF43 1011 i | {O 100 10|CRY i 1 |0l normat 1 i | i i i 110
CTHWR MULNEG 5 go 110 XXX 41 100|BM34 ALU-STS SRF 14 1 1 00| ACCA O 400 1 1) S6N 1] AAPSYNC 141
CTWR MULNEGA . goi41 | XXX 14 40 4|BN3S ALU-TE SRF4S 4 10 1| ACCM i i [©10100[K i i [@] OO0O| No data request i [Mintarg XX XXX XX X]
CTBY ADD {A+B) 5 1000 XXX 4 1 4 40| BKI6 PXBH SRF16 11 10| ACCF C 10 410 1| OVFL o CO 4 LADDR request Current Cycle O
CTHW ABSADD , 2 1001 | XXX 1 4 44 4[BH3T ORA,IN/OP i-ADOM SRF{1 1141 4 lood ALU-TE | | O410 1 10|k i i e} O 10| WR,POF i Next cucie |1
CTw ADDABS ¢ - 01010 X OO0O0COXXXZZZZ2Z[000 001 01X22222 100 10t 11D H# O 40 11 1) ovfl (@] . 014 Dump Dirty If RegOp: X or A
INTR MULNEGB . 1011 i i X2 slejelely MU SPEC WNS WIC IV iAC DAC O 4 1O OO|PARITY | i o 100| WR,PHYSLcal segment If RegOp & Next: E 1
INT PASS . 1100 X3 0Cco010 O 1100 1/Q0 a] 10 1| WR,DOM ORA,IN [CC
SHA MULNEGAB 5 01401 i | X4 OO0 1 1XXXOOOOO|[X HD PSTP HiSTS TE O 1 10 10| SAVE(| i o] 1 10| WR,ADOM 1 i ORA,OP |O 1
SHL PASSABS S gi440 At OO0 100XXX00OU 1|X2 AlB PuvP VECT H. NPC O 4 10 1 1| SAVE2 g 114 4| WRITE 10
SHR - 1111 i | A2 OO0 10 1XXXO0OO 10|X3 DCADAT LA RFML LL P R O 44 100|LC2 i i 1 OO0l QvACC | i ORA,ALTEN {1 1
DTOFR SUBBA (B-A) @ 10000 A3 OO0 1 10IXXXO0OO0O 1 1)x4 0C,0p R RFAZ LINC 411101 1 OO 1| RD,POF ORD,iIN |CO
A+B SUBABABS - 1000 1 | i A4 CO 44 AXXXOO 1O0|M 0C,AD AP S18 CSiTL B O 4111 40|Llez i i 1 010 | i | | ORD,CP O 1
B-A SUBBAABS . 10010 SCt O 1000XXX0OO0 10 4] 00,00 PS TE S1S s-L 5B |[O 41411 1 O 1 1| RD,PX ORD,0P! [1 (4
B/A . 100114 | i sC2 O 100 1IIXXXO0O 1 10|A8 A PHS BRK ARES tOOCOOO0|ENTER | 4 i 1 100| RD,PHYSLcol segment i i | [ORD,ALTEN |1 4
(A-B) IMUL (1 ,Ad o 104100 SC3 O 1010 XXX0OO 11 1M iC Dou CNT32 IBUF {00001 4 10 1 RD,DOM
COMP IMULD (1,A,D) “ 10101 | t SC4 O 10 1 1(XXXO 1000|SsCt MiB MEM(i-) RESTY DPA OPA (10O QO 10| DATOP | i 4 1 10| RD,ADOM 1 i i |
(A/B) IMULU (1 ,UMULY |. 104110 Ed O 41 100XXX0O 100 1[5C2 TRPARM ¥TSB 1000 41 t| CONOP 4 11 1] READ
DIVP IMULUDC(I,UMUL,D} |. 101411 1 i E2 O 41 40 1(XXX0O 10 10|53 TRPCLR CTSB 100100 I i i | | | i | i | | i
A CLEAR a 11000 E3 O41 1 10XXXO 10 1 4[SC4CC CTRP 100101
UMUL 5 1 100G | { E4 O 4111 4XXX0O 1 100(Et LA RF{ 100 4 10| PDONE i i i i i i i i i | i i
MUL 4 = 11010 SCS 10000IXXXO 140 1{E2 FLA RF2 CLKNPC 400 4 1 1| MFS
RRF CTI . 11011 | | SC6 100C 1XXXO 14 10[E3 CLOCA DIRTY &FID CLKP TO 1000| HFO i | | i | | | i i | | i
WRF CTIR = 11100 SC1 100 10X XX0O 4 44 41€4 CLICA ADOM RF2D CLKSP 10100 1| HFU
= CTE " 114401 | | R li] 100 1 41X XX 1 0000|855 CTRACE SRFO 10 10 10| MD2Z i i i | i |] | i | i i
CLEAR CBF “ 11110 SCHt 10100XXX 1000 1|56 FOR MMS '04XI' SRF! 10101 1|HIvVD
. 144414 | | SC12 |10 410 4XXX 100 10[SCT SIENIFIES SRF2 10 1 100| HBO | i | | i i i i | | i i
SCi3 101 10XXX 100 1 4{sci0 SRF3 101101
| | | i (| | | SCI4 (104 1 4[XXX 10 100|SCit 0100 NOOP SR 101410 i | i | i | | i | I i i
Le 1 1000OIXXX 10 40 1(5C12 0101 DmM SRFS 101411
| 1) i | | { i Q 1 400 XXX 101 10|SCt3 0110 (MM SRF6 1T 1OO0C0O0|RFIOCT | i | | | | | i { | i |
BCD 1 10 10IXXX 10 1 4 A[SC14 0141 iMM & DM SRFT 4 1000 1| RF20CT
| | | i | | i i 1XC 410 14 XXX 1 100 O|NONE SRF10 110010 | | i | | | | | i |] |
11 100XXX 1100 1]ix SRF41 1100 1 ¢
1 | | | | | i | 41 110 4IXXX 110 10}LC SRF12 110100 | | i | | } i t i | i |
144 10IXXX 110141 SRF 13 110101
I | I I I I I ! LORB,IN |11 1 1 4]XXX 41100 SRE14 1104140 | i i i t i i i i I i |
XXX 411014 SRF IS 440441
| 1 | I | l | i | I XXX 444140 SRFAE 111000]600PS | | | 1 i | I 1 i | I i
XXX 114 4 1)0R0,IN/OP SRF {7 11100 4| AQSLZ
| ! 1 | | f ! 1 | ! | 1 1 | | | 1 144101410 1 | | | | | 1 i | | i |
114401 4| IRALT
| [| | | | 1 ! | | | ! i | I I 1 144 4400)CALL | | | | ! 1 [| i | I i
44110 4] ENTH
| 1 | I | | i 1 | | | ! | | I | | : 11 : 19 ?:jTHTPG 1 | { 1 | | i I | | | |
o 11 1
Flow b ~boo-eukva~boolkowkvakool~obk o ook ol v v - oo v -oborborp-ohoron TN~ B0 OFLH TN N~ O OF 0DR VN[0 00k 0Lk M NF 00w~ Ok 0N 0 Ok - O v NN ~ 0
NNNNNNNN >~ ~-~00000000000000NNNNNNDNNNNONQOQFFFFFFFFEF000000EEODLVNNINNDND TN ¥ FNNMNNNNNONNNNNNNNNNT - =~~~
S T[S0 =28 =8l el 2ol =2l el s=2l =1 =0 1S 18] 77 1T TS T3 T3] T2 1T~ 17T 1307 =1 = 7] =3 =1l - = | = | 1] 2

Norsk Data ND-05.022.1 EN

69

. Index

Norsk Data ND-05.022.1

70 Index

AAP (additional arithmetic processor)15, 17
AAP dinput/output19
ABR (alternative branch)10
ABR commands . . . B I |
additional ar1thmet1c processor (AAP) T 4
address arithmetic .39
address, microprogram .42
A-level . . . e e e
ALU (ar1thmet1c 1og1c un1t) S 1.1
ALU-operation, conditional34
A-registers23
argument, long 42
argument, mini 4
argument, short4
arithmetic functions .15
arithmetic logic unit (ALU)15
assembler, micro 4

bits of microword3

commands, fetch9

commands, sequence o26
commands, stack . . 4
condition save (CSAVE) S Y
conditional ALU operation N 1
conditional operations3
conditional sequence . . . O X
constants used in m1croprogram - 5 |
context registers . . . e o

context scratch reg1sters O~ |
control of fetch9

control of operands9

control of status bits N ¥
CSAVE (condition save) .24

data sources2
defined symbols4
definition of labels42
destination21

E-registers23
error messages, microassembler 44
extensions of microprogram47

Norsk Data ND-05.022.1

Index

. fetch commands
fetch control
F-level .
floating reg1sters .
format of microword
functions of AAP ...
functions of ALU .. .15

WM WO

groups of registers5

I-lTevel . . . 4

index reg1sters .o e e e e L 22
input to address ar1thmet1c O £
input/output of AAP .19
integer arithmetic .. .15

labels definition .. .42
levels of pipeline2

logic operations15
long argument b2

microassembler . . . - 5 |
microassembler error messages -
microinstruction width1
microprogram address . . . Y - V4
microprogram address mod1f1er Y- ¥4
microprogram constants48
microprogram extensions .47
microprogram sequence25
microprogram stack25
microword format3
mini argument 0
M-level . . . e s 2
mnemonic symbo]s ... Y 5 O X
modifier, microprogram address Y- 34

ND-5000 microassembler/,
ND-5000 registers ..58
NEXT* command4

operand control9
operations of AAP01
operations of ALU .. .15
operations, conditional .31

OR (OR-logic control)10
ORCON field1
OR-logic control09 11

pipeline levels
Q problems with read- before-write .

~N N

Norsk Data ND-05.022.1

72

Q-register

read-before-write prob]ems
register Q .
registers for spec1a1 use .
registers in the ND-5000
registers, context
registers, floating .
registers, index

registers, scratch

scratch register file .
scratch registers .
SC-registers

sequence commands . .
sequence control funct1ons
sequence of microprogram
sequence, conditional
sequencer stack .

setting of status .

short argument

source .

sources of data

special allocated reg1sters .

SRF {scratch register file)
stack commands

status bits control

status setting

symbois defined .

symbols, mnemonic .

TBC (to be cached)
TBC commands
test conditions .

user instructions for extensions

width of microinstruction .
WRF (working register file)

X-registers .

Norsk Data ND-05.022.1

10
10

31

. 47

. 23

Index

Manual Name:

SEND US YOUR COMMENTS!

Are you frustrated because of unclear information in our
manuals? Do you have trouble finding things?

Please let us know if you:

— find errors

- cannot understand information
- cannot find information

- find needless information.

Do you think we could improve our manuals by rearranging
the contents? You could also tell us if you like the manual.

Send to:
Norsk Data A.S
Documentation Department
P.0O. Box 25 BOGERUD
N - 0621 OSLO 6 - Norway

NOTE!

This form is primarily for documentation errors. Software
and system errors should be reported on Customer System
Reports.

Manual number:

Which version of the product are you using?

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:
Company: Position:
Address:

What are you using this manual for?

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
0621 Oslo6, Norway

	ND-05.022.1-0000-0001.jpeg
	ND-05.022.1-0000-0001.tiff
	ND-05.022.1-0000-0002.tiff
	ND-05.022.1-0001.tiff
	ND-05.022.1-0002.tiff
	ND-05.022.1-0003.tiff
	ND-05.022.1-0004.tiff
	ND-05.022.1-0005.tiff
	ND-05.022.1-0006.tiff
	ND-05.022.1-0007.tiff
	ND-05.022.1-0008.tiff
	ND-05.022.1-0009.tiff
	ND-05.022.1-0010.tiff
	ND-05.022.1-0011.tiff
	ND-05.022.1-0012.tiff
	ND-05.022.1-0013.tiff
	ND-05.022.1-0014.tiff
	ND-05.022.1-0015.tiff
	ND-05.022.1-0016.tiff
	ND-05.022.1-0017.tiff
	ND-05.022.1-0018.tiff
	ND-05.022.1-0019.tiff
	ND-05.022.1-0020.tiff
	ND-05.022.1-0021.tiff
	ND-05.022.1-0022.tiff
	ND-05.022.1-0023.tiff
	ND-05.022.1-0024.tiff
	ND-05.022.1-0025.tiff
	ND-05.022.1-0026.tiff
	ND-05.022.1-0027.tiff
	ND-05.022.1-0028.tiff
	ND-05.022.1-0029.tiff
	ND-05.022.1-0030.tiff
	ND-05.022.1-0031.tiff
	ND-05.022.1-0032.tiff
	ND-05.022.1-0033.tiff
	ND-05.022.1-0034.tiff
	ND-05.022.1-0035.tiff
	ND-05.022.1-0036.tiff
	ND-05.022.1-0037.tiff
	ND-05.022.1-0038.tiff
	ND-05.022.1-0039.tiff
	ND-05.022.1-0040.tiff
	ND-05.022.1-0041.tiff
	ND-05.022.1-0042.tiff
	ND-05.022.1-0043.tiff
	ND-05.022.1-0044.tiff
	ND-05.022.1-0045.tiff
	ND-05.022.1-0046.tiff
	ND-05.022.1-0047.tiff
	ND-05.022.1-0048.tiff
	ND-05.022.1-0049.tiff
	ND-05.022.1-0050.tiff
	ND-05.022.1-0051.tiff
	ND-05.022.1-0052.tiff
	ND-05.022.1-0053.tiff
	ND-05.022.1-0054.tiff
	ND-05.022.1-0055.tiff
	ND-05.022.1-0056.tiff
	ND-05.022.1-0057.tiff
	ND-05.022.1-0058.tiff
	ND-05.022.1-0059.tiff
	ND-05.022.1-0060.tiff
	ND-05.022.1-0061.tiff
	ND-05.022.1-0062.tiff
	ND-05.022.1-0063.tiff
	ND-05.022.1-0064.tiff
	ND-05.022.1-0065.tiff
	ND-05.022.1-0066.tiff
	ND-05.022.1-0067.tiff
	ND-05.022.1-0069.tiff
	ND-05.022.1-0070.tiff
	ND-05.022.1-0071.tiff
	ND-05.022.1-0072.tiff
	ND-05.022.1-0073.tiff
	ND-05.022.1-0074.tiff
	ND-05.022.1-0075.tiff
	ND-05.022.1-0076.tiff
	ND-05.022.1-0077.tiff
	ND-05.022.1-0078.tiff
	ND-05.022.1-0079.tiff
	ND-05.022.1-0080.tiff
	ND-05.022.1-9999.jpeg

