ND-5000 SERIES

HIGH-END COMPUTER SYSTEMS FROM NORSK DATA

TABLE OF CONTENTS

Section Page

1. INTRODUCTION 1
1.1 Overview 1
1.2 Features and benefits 1
2. SYSTEM DESCRIPTION 3
2.1 System Configuration 3
2.2 Models/Upgrading paths 4
2.3 Structure list 4
2.3.1 ND-5700 4
2.3.2 ND-5800 5
2.3.3 ND-5900 Model 2 6
2.3.4 ND-5900 Model 3 7
2.3.5 ND-5900 Model 4 7
2.3.6 Extra I/O DMA channels 8
2.4 Physical layout cabinet/card-crate 9
3. PERFORMANCE FIGURES 11
3.1 Typical ADP/OA job-mix 11
3.2 Relative ADP 12
3.3 Whetstone ratings 12
3.4 Numbers of users supported 13
4. SYSTEM ARCHITECTURE 14
4.1 CPU card layout 14
4.2 Multi Function Bus System 15
4.3 I/O processor 15
5. COMPEIEIIVE POSITIONING 16
6. MARKET POSSIBILITIES 17
6.1 Features and benefits 17
6.2 Main areas of use 18
6.2.1 Industrial Market 18
6.2.2 Public Sector 18
6.2.3 Service industry 19
6.2.4 Bank/Finance/Insurance 19
6.2.5 Research Market 19
6.2.6 Defence Market 19
6.2.7 Surveilance/process control 19
7. GENERAL INFORMATION 20
7.1 Release/Delivery times 20
7.2 Maintenance 20
7.3 Material available 20

1. INIRODUCTION

With the introduction of the ND-5000 series Norsk Data is adding a new and more powerful performance dimension to our 32-bit computer family. This wide range of computers gives us the oppurtunity to offer our custamers unbeatable solutions in combination with our NOTIS, DIALOCUE and COSMOS products. The introduction of ND-5700, ND-5800 and ND-5900 will reinforce Norsk Datas established position as the price/performance winner !

1.1 Overview

The ND-5000 series are major and important products for $N D$ and for our markets. The ND-5000 series strengthen the ND-SAFE concept, by offering compatibility and extension to our 32-bit range of computers. The new technology employed in ND-5000 provides a more compact design and higher speed which in turn gives us the advantage of extending the current 32-bit range in the high end. This allows us to be more price/performance competitive and cover most basic market needs.

The $N D-5000$ series represent a range of 32 -bit systems offered in a standard system packaging. These systems will be general purpose 32-bit systems, attractive for all our present markets and they will also open up new business opportunities in areas that demand more performance. We believe that the ND-5000 series system range will increase the sales of 32-bit systems and accelerate orders for other systems in the ND family.

1.2 Featumes and benefits

When presenting a product feature it is important to relate it to the actual sales situation. So whenever you present ND-5000 features you should tie it up to customer benefits.

The following features/benefits could be important to your customers and prospects, whether they are extending their use of present NDinstallations or considering ND -systems for new applications :
1)

The ND-5000 systems consist of the ND-5000 CPU, ND-110/CX I/O processor, the memory system and the mass-storage units. The physical implementation of the CPU is completly different from earlier systems, while the logical architecture of the ND-5000 series is the same as the ND-500 series. The instruction set of the ND-5000 CPU is the same as for the $N D-500$ CPU. This means that the system is compatible with the ND-500 range and runs the same software.

Benefits for the user :
-protects invested time
-one operating system
-SW compatibility
-HW compatibility
-low risk with proven I/O system
-wide communication possibilities
-easy to operate

ND-5700 has approximately the same CPU performance as the ND-570/CX and the ND-5800 has approximately twice the ${ }^{-P \text { P }}$ performance of the ND-570/CX. Hence the ND-570/CX will be replaced by the ND-5700. ND-5900 Model 2, 3 and 4 have respectively two, three and four times the performance of the $N D-5800$. This is due to the multi CPU configuration where two, three and four ND-5000 CPUs are connected to the shared memory system.

Benefits for the user :
-faster job turnaround
-capacity for running new applications
-support for more users
-good price/performance
-room for growth
3) The ND-5000 CPU employes the CMOS gate array technology. This technology provides higher CPU speed and more compact packaging of the system. Compact packaging and buildt in HW diagnostic makes service easier and faster.

Benefits for the user :

> -high mips $/ \mathrm{m}^{2}$ (eight times the $\mathrm{ND}-570 / \mathrm{CX}$ in one cabinett!)
> -lower maintenance costs
> -high reliability
> -high quality
> -low life time costs

2. SYSTEM DESCRIPTION

2.1 System Configuration

```
ND-5700 : - ND-5700 CPU
    - 110/CX
    - Floppy drive 1.2 MB
    - Controller for external disks
    - Console
    - 8 MByte shared memory
    - 2 MByte Local Memory
    - Sintran and utilities
ND-5800 : - ND-5800 CPU
    - 110/CX
    - Floppy drive 1.2 MB
    - Controller for external disks
    - Console
    - 16 MByte shared memory
    -4 MByte Local Memory
    - Sintran and utilities
ND-5900 : - 2 x ND-5800 CPU
Model 2 - 110/CX
    - Floppy drive 1.2 MB
    - Controller for external disks
    - Console
    - 16 MByte shared memory
    -4 MByte Local Memory
    - Sintran and utilities
ND-5900 : - 3 x ND-5800 CPU
Model 3 - 110/CX
    - Floppy drive 1.2 MB
    - Controller for external disks
    - Console
    - 16 MByte shared memory
    - 4 MByte Local Memory
    - Sintran and utilities
ND-5900 : - 4 x ND-5800 CPU
Model 4 - 110/CX
    - Floppy drive 1.2 MB
    - Controller for external disks
    - Console
    - 16 MByte shared memory
    -4 MByte Local Memory
    - Sintran and utilities
```


2.2 Models/Upgrading paths

System type	ND-5700	$N D-5800$	$\begin{aligned} & \text { ND-5900 } \\ & \text { Model } 2 \end{aligned}$	$\begin{aligned} & \text { ND-5900 } \\ & \text { Model } 3 \end{aligned}$	ND-5900 $\text { Model } 4$
Relative CPU perform.	1	2	4	6	8
Performance (WMLPS)	-	-	-	-	-
Max. \# W.S.	256	256	256	256	256
Memory size shared/local	8/2	16/4	16/4	16/4	16/4
Max. memory (MByte)	512	512	512	512	512
Cache size Data (KB) Instr. (KB) Total size	$\begin{array}{r} 64 \\ 320 \\ 384 \end{array}$	$\begin{array}{r} 64 \\ 320 \\ 384 \end{array}$	$\begin{array}{lll} 2 \times x & 64 \\ 2 \times 320 \\ 768 \end{array}$	$\begin{aligned} & 3 \times 64 \\ & 3 \times 320 \\ & 1152 \end{aligned}$	$\begin{gathered} 4 \times 64 \\ 4 \times 320 \\ 1536 \end{gathered}$
Max. disk size (Myte)	29	29	29	29	29
Disk types	external	external	external	external	external

2.3 Structure list

2.3.1 ND-5700

System	ND-no.	Description	Qty.
5700		ND-5700 System, 10 MByte memory, 384 kByte Cache	
	110172	ND-5000 brown/beige cabinet with Power, Operator panel, 1.2 MB Floppy drive, ND-100 and MF Bus crate	1
	11 nnnn	ND-5700 Basic CPU, containing Floating point HW $64+320$ KByte Cache	1
	103870	4 MB MOS memory for MF Bus system	2
	110169	MF Bus controller/octobus	1
	103830	32 bit port for MF Bus	1
	110100	ND-110/CX CPU and MMS	1

103170	32 bit floating	
	Controller for 5 1/4" Streamer and Floppy Disk drive	1
106320	Disk controller EOC 15 MHz , ND-100	1
106400	MF Bus driver and octobus interface for $\mathrm{ND}-100$	1
103890	2 MB MOS memory for $\mathrm{ND}-100$	1
103380IN	Console terminal with printerinterface and buffer.	1
103290	Console stand for $\mathrm{ND}-103380$	1
110090	Matrix printer EPSON LX-80	1
	SOFTWARE: Qt	Qty.
210576	SINIRAN III/VSX Operating syst. for $N D-500 / 5000$	1
210049	ND spooling system	1
210335	Symbolic debugger for ND-500/5000	
210333	ND-500/5000 Monitor	1
210319	Linkage Loader for ND-500/5000	1
210315	Accounting system for SINIRAN-III E version or later	
210337	Back-up system for SINTRAN-III	1
210375	TELEFIX files for user sites	1
211123	ND-5000 u-program	1
210697	ND-500/5000 Swapper	1
211124	ND-5000 micro test program	1
210628	SINTRAN III VSE/VSX utility programs	1
210005	Subsystem package - 32 bit format	t 1
210400	Subsystem package II, includes MAC, QED, NPL	1
210511	Exception handling system	1
210534	Job Execution Control	1
210634	Memory-to-floppy dump (MEMTOF-100))
210518	User-environment for $\mathrm{ND}-100$	1
210130	X-MESSAGE (Single system)	1
210721	BRF-LINKER for ND-100	1
211067	Mass Storage Utilities	1

2.3.2 ND-5800

5800 ND-5800 System, 20 MByte memory, 384 KByte Cache

110172 ND-5000 brown/beige cabinet with 1
Power, Operator panel, 1.2 MB Floppy drive, ND-100 and MF Bus crate
$110170 \mathrm{ND}-5800$ Basic CPU, containing 1 Floating point HW $64+320$ KByte Cache

1038704 MB MOS memory for MF Bus system 4 110169 MF Bus controller/octobus

103830	32 bit port for MF Bus	1
110100	ND-110/CX CPU and MMS	1
	32 bit floating	
103170	Controller for 5 1/4" Streamer and Floppy Disk drive	1
106320	Disk controller ECC $15 \mathrm{MHz}, \mathrm{ND}-100$	1
106400	MF Bus driver and octobus interface for $\mathrm{ND}-100$	1
103890	2 MB MOS memory for ND-100	2
103380IN	Console terminal with printerinterface and buffer.	1
103290	Console stand for $\mathrm{ND}-103380$	1
110090	Matrix printer EPSON LX-80	1
	SOFTWARE:	
	See the ND-5700 structure.	

2.3.3 ND-5900 Model 2

System	ND-no.	Description	Qty.
5902		ND-5900 Mod. 2 System, 20 MByte m 768 KByte Cache	nemory
	110172	ND-5000 brown/beige cabinet with Power, Operator panel, 1.2 MB Floppy drive, ND-100 and MF Bus crate	
	110170	ND-5800 Basic CPU, containing Floating point HW $64+320$ KByte Cache	2
	103870	4 MB MOS memory for MF Bus system	4
	110169	MF Bus controller/octobus	1
	103830	32 bit port for MF Bus	1
	110100	ND-110/CX CPU and MMS 32 bit floating	1
	103170	Controller for 5 1/4" Streamer and Floppy Disk drive	1
	106320	Disk contnoller ECC $15 \mathrm{MHz}, \mathrm{ND}-100$	1
	106400	MF Bus driver and octobus interface for $\mathrm{ND}-100$	1
	103890	2 MB MOS memory for $\mathrm{ND}-100$	2
	103380IN	Console terminal with printerinterface and buffer.	1
	103290	Console stand for ND-103380	1
	110090	Matrix printer EPSON LX-80	1
SOFTWARE:			

2.3.4 ND-5900 Model 3

System	ND-no.	Description	Qty.
5903		ND-5900 Mod. 3 System, 20 mByte me 1152 KByte Cache	nemory,
	110172	ND-5000 brown/beige cabinet with Power, Operator panel, 1.2 MB Floppy drive, $\mathrm{ND}-100$ and MF Bus crate	1
	110170	ND-5800 Basic CPU, containing Floating point HW $64+320$ KByte Cache	3
	103870	4 MB MOS memory for MF Bus system	
	110169	MF Bus controller/octobus	1
	103830	32 bit port for MF Bus	1
	110100	ND-110/CX CPU and MMS 32 bit floating	1
	103170	Controller for 5 1/4" Streamer and Floppy Disk drive	1
	106320	Disk controller ECC 15MHz,ND-100	1
	106400	MF Bus driver and octobus interface for $\mathrm{ND}-100$	1
	103890	2 MB MOS memory for $\mathrm{ND}-100$	2
	103380In	Console terminal with printerinterface and buffer.	1
	103290	Console stand for ND-103380	1
	110090	Matrix printer EPSON LX-80	1
SOFTWARE:			
		See the ND-5700 structure.	

2.3.5 ND-5900 Model 4

System	ND-no.	Description	Qty.

110100	ND-110/CX CPU and MMS 32 bit floating
103170	Controller for 5 1/4" Streamer and Floppy Disk drive
106320	Disk controller ECC $15 \mathrm{MHz}, \mathrm{ND}-100$
106400	MF Bus driver and octobus interface for $\mathrm{ND}-100$
103890	2 MB MOS memory for $\mathrm{ND}-100$
103380IN	Console teminal with printerinterface and buffer.
103290	Console stand for $\mathrm{ND}-103380$
110090	Matrix printer EPSON LX-80

SOFTWARE:
See the ND-5700 structure.

System	ND-no.	Description Q	Qty.
5085		Extra I/O DMA channel (the first unit) Consist of :	
	10 nnnn	$\mathrm{ND}-100 / \mathrm{ND}-500$ cabinet $\mathrm{w} /$ power, brown/beige 11 mod.	1
	103880	Multiport memory system V driver from $\mathrm{N}-100$	1
	103830	Multiport Menory system V , 32 bit port	1
	103900	Multiport memory system IV, bus controller	1
	103920	Multiport memory system IV, rack with 2 banks (2×10 positions)) 1
	103950	Multiport IV driver (Bus master)	1

System	ND-no.	Description	Qty.
5086		Extra I/O DMA channel (second unit)	
	103880	Consist of Multiport Memory system V driver fram ND-100	1
103830	Multiport Memory system V, 32 bit port	1	
103900	Multiport memory system IV, bus controller	1	

2.4 Physical layout cabinet/cand-crate

The ND-5000 system cabinet is identical to an ND-500 cabinet, except for the card racks. This cabinet has an ND-100 card rack and a Multi Function Bus (MFB) card rack. The ND-5000 CPU is placed in the MFB card rack together with the MFB system cards. In general the cabinet includes :

> - One CPU and memory card rack (24 positions, 4 for $N D-5000$)
> -One ND-100 card rack (20 positions)
> -One floppy disk drive
> -Operater panel (the same as in the $N D-500$ series)

The standard ND-5000 system will only be delivered in a single-cabinet version. An I/O and memory expansion cabinet can be added if more interfaces are required.

ND-5000 CABINET

The CPU and I/O racks have the following layout:

3. PERFORMANCE FIGURES

3.1 Typical ADP/OA job-mix

Given here is a mix of Sibas (1/3), Notis-WP (1/3) and Cobol/Fortran program development (1/3).

This picture gives an idea of how the three most important HWresources are loaded:

This clearly shows that for the low-end 500-systems, the 500 -CPU is the bottleneck.

If a lot of cammications is run, the $110 / \mathrm{CX}$ part of the system will be more heavily loaded, and may become the bottleneck.

A 570-system today is in pretty good balance, as we can see. To improve the throughput (transactions/second) of a 570-system significantly, it is not sufficient merely to increase the speed of the 500-CPU (ND-5000).

The effect of the ND-5800 CPU in this example is that the 500 CPU-load would drop from 40% to about 20% (assuming a factor 2 faster), and the $110 / \mathrm{CX}$ CPU would be the new system bottleneck at 33% utilization.

The system capacity increase would then be $40 \% / 33 \%=1.21$ (21\%). A slightly different way of calculating gives a $26-27 \%$ capacity increase. The conclusion is:

With current SW versions will ND-5800 give our ADP/OA users in the order of 25% more performance than a 570/CX.

However future SW versions will reduce the CPU-load on the ND-100 part of the system, and those who use large databases will strongly benefit from the new version of SIBAS planned to be released in 3.Q. 1987.

3.2 Relative ADP

In the following diagram the expected relative performance of the various models of the $N D-5000$ series when running a mix of typical ADP jobs is given. The ND-100/CX processor is used as reference.

Rel ADP
performance ($100 / \mathrm{CX}=1$)

3.3 Whetstane ratings

These are the expected Whetstone ratings without optimized Fortran.

ND-5900 should be used in connection with CPU-heavy environment such as: compilation, text formatting, calculations. SIBAS may run in all CPU's and SINTRAN will have a CPU scheduler so that the users don't
have to choose the CPU.

3.4 Numbers of users supported

The following table shows the number of users supported on each machine when running typical ADP/OA applications. The figures are not the maximum number of physically connected terminals, but rather the number of users running simultaneously on each system with acceptable response time.

System	ADP/OA	WMIPS	No. of users
510/CX	1.0	0.4	12-14
530/CX	1.6	0.6	19-22
550/CX	2.1	1.2	28-32
560/CX	3.8	2.1	46-53
570/CX	5.9	3.2	71-83
5700	5.8		75-82
5800	7.4		$\begin{aligned} & 89-104(25 \% \text { more than } \\ & 570 / \mathrm{CX}) \end{aligned}$

4. SYSTEM ARCHITECIURE

ND-5000 series run the ND-500 instruction set and have the same logical architecture as $\mathrm{ND}-500$ systems. The physical implementation of the ND-5000 CPU is completly different from earlier systems.

The memory system is now based on the 'Multi Function Bus System' (MF Bus system). It is basically the same as the MPM-5 system, but with some extra features to support the Octobus, the bus system for high speed system cammand transfer.

New technology is used in several areas. The ND-5000 has 11 gatearrays (semi custom VLSI) and the RAM capacity is expanded 16 times on the same space. The power consumption is reduced by a factor of 5, due to extensive use of CMOS technology.

4.1 CPU cand layout

The gate array technology used in the ND-5000 CPU allows for more compact packaging of the system. The ND-5000 CPU consists of only one board ($\mathrm{ND}-500$ size), called mother board and a series of small modules, called baby modules, that are placed on top of the mother board. The gate array chips are then placed on top of the baby modules. This new packaging allows for more compact systems and reduces the number of cabinets in a high-end system to one cabinet.

The $N D-5000$ CPU size is $1 / 6$ of the $\mathrm{ND}-500 \mathrm{CPU}$ and occupies four positions on a CPU rack.

ND-5000 logical CPU card layout:

The microprogram is new compared to $N D-500 / 1$ and $N D-500 / 2$. There is langer RAM for microprogram expansion, can be extended to 64 Kwords. (standard is 16 Kwords)

4.2 Multi Function Bus System

The Multi Function Bus System is the follow-up to the MPM-5 system. MFB is basically the same as the MPM-5 system, but has some additional features for supporting the Octobus. Octobus is a new high-speed serial command bus used for efficient internal system signal/command transfer. The Octobus is physically implemented in the backwiring. Present MPM-5 memory modules can be used with the ND-5000 systems.
©CTOBUS

4.3 I/O processor

The ND-5000 series uses the well proven ND-110/CX CPU as I/O processor, providing our customens with a low risk I/O system. This means that present peripheral equipment can be connected to $N D-5000$ systems.

The ND-110/CX CPU also employs the same OMOS gate array technology which is implemented in the ND-5000 CPU.

5. COMPEIETIVE POSITIONING

Here we have listed some of our major competitors.

	3000 70	$\begin{array}{r} \mathrm{HP}-\mathrm{**} \\ 3000930 \end{array}$	$\begin{array}{r} \mathrm{HP}-{ }^{* *} \\ 30005^{*} \end{array}$	$\begin{aligned} & \text { VAX } \\ & 8200 \end{aligned}$	VAX - 8300	$\begin{aligned} & \text { VAX- } \\ & 8500 \end{aligned}$	VAX $8550 \text { @ }$
Whetstone MIPS	1.8	4.5	6.7	1.1	1.9	3	6.8
Standard memory config.	8 MByte	16 mbyte		8 MByte	12 MByte	20 Mbyte	20 mbyte
Memory range		$\begin{aligned} & 16-24 \\ & \text { MByte } \end{aligned}$		$\begin{aligned} & 8-24 \\ & \text { MByte } \\ & \hline \end{aligned}$	$\begin{aligned} & 12-24 \\ & \text { MByte } \end{aligned}$	$\begin{aligned} & 20-80 \\ & \text { MByte } \end{aligned}$	$\begin{aligned} & 20-80 \\ & \text { MByte } \end{aligned}$
Maximum disk storage		9.7		$\begin{aligned} & 3.6 \\ & \text { GByte } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { GByte } \\ & \hline \end{aligned}$	$\begin{array}{r} 5 \cdot 4 \\ \text { GByte } \\ \hline \end{array}$	${ }_{\text {GByyte }}^{2}$
Maximum numb.of W.S.		400		64	64	200	320

	PRIME 9750	PRIME 9950	PRIME 9955	VAX- 8600	VAX- 8650	VAX- 8700	VAX- 8800
Whetstone MIPS	1.7	2.5	4	4.4	6.8	6.8	11
Standard memory config.	2 MByte	4 MByte	16 MByte	32 mbyte	16 MByte	32 mbyte	32 MByte
Memory range	$\begin{gathered} 2-8 \\ \text { MByte } \end{gathered}$	$\begin{aligned} & 4-12 \\ & \text { MByte } \end{aligned}$	$\begin{aligned} & 4-16 \\ & \text { MByte } \end{aligned}$	$\begin{aligned} & 8-68 \\ & \text { MByte } \end{aligned}$	$\begin{aligned} & 16-68 \\ & \text { MByte } \end{aligned}$	$\begin{aligned} & 32-128 \\ & \text { MByte } \end{aligned}$	$\begin{aligned} & 32-128 \\ & \text { MByte } \end{aligned}$
Maximum disk storage	Gbyte	$\begin{aligned} & 10 \\ & \text { GByte } \end{aligned}$	$\begin{aligned} & 10 \\ & \text { GByte } \end{aligned}$	$\begin{gathered} 5.4 \\ \text { GByte } \\ \hline \end{gathered}$	$\begin{gathered} 5.4 \\ \text { GByte } \\ \hline \end{gathered}$	$\begin{gathered} 5 \cdot 4 \\ \text { GByte } \\ \hline \end{gathered}$	$\begin{gathered} 7.2 \\ \text { GByte } \end{gathered}$
Maximum numb.of W.S.	254	254	254	256	256	320	256

	${ }_{4381-12}^{\text {IBM- }}$	$4 \frac{18}{\frac{18}{381-13}}$	$\begin{gathered} \text { IBM- } \\ 4381-14 \end{gathered}$	$\begin{gathered} \text { IBM**** } \\ 9373-20 \end{gathered}$	$\begin{aligned} & \text { IBM**** } \\ & 9373-40 \end{aligned}$	$9373-60{ }^{\text {IBM }}$	$\begin{gathered} \text { IBM }{ }^{\prime * * * *} \\ 9373-90 \end{gathered}$
Whetstone MIPS	2.7	3.5	6	0.5	0.5	1.3	2.6
Standard memory config.	8 MByte	8 MByte	16 MByte	4 MByte	8 Mbyte	8 MByte	8 MByte
$\begin{gathered} \text { Memory } \\ \text { range } \\ \hline \end{gathered}$	$\begin{aligned} & 8-32 \\ & \text { MByte } \end{aligned}$	$8-32$ MByte	$\begin{aligned} & 16-32 \\ & \text { MByte } \\ & \hline \end{aligned}$	$\begin{aligned} & 4-16 \\ & \text { MByte } \\ & \hline \end{aligned}$	$\begin{aligned} & 8-16 \\ & \text { MByte } \\ & \hline \end{aligned}$	$\begin{aligned} & 8-16 \\ & \text { MByte } \\ & \hline \end{aligned}$	$\begin{aligned} & 8-16 \\ & \text { MByte } \\ & \hline \end{aligned}$
Maximum disk storage	$\begin{aligned} & 1935 \\ & \text { GByte } \\ & \hline \end{aligned}$	$\begin{aligned} & 2903 \\ & \text { GByte } \end{aligned}$	$\begin{aligned} & 5160 \\ & \text { GByte } \end{aligned}$	$\stackrel{6}{\text { GByte }}$	$\begin{aligned} & 13.2 \\ & \text { GByte } \\ & \hline \end{aligned}$	$\begin{aligned} & 13.2 \\ & \text { GBYte } \end{aligned}$	$\begin{aligned} & 39.6 \\ & \text { GByte } \end{aligned}$
$\begin{aligned} & \text { Maximum } \\ & \text { numb. } \\ & \text { W.S. } \end{aligned}$	1024	1024	1024	64	192	192	384

	$\begin{aligned} & \text { WANG } \\ & \text { VS } 100 \end{aligned}$	$\begin{gathered} \text { WANG } \\ \text { VS } 200 \end{gathered}$	ND-5700	ND-5800	ND-5900 Mod. 2	ND-5900 Mod.	$\begin{aligned} & \text { ND-5900 } \\ & \text { Mod. } 4 \end{aligned}$
Whetstone MIPS	1.3	3.3	3-3.5	6-7	12-14	18-21	24-28
Standard memory config.	2 MByte	8 MByte	10 MByte	20 MByte	20 MByte	20 mbyte	20 MByte
Memory range	$\begin{gathered} 2-8 \\ \text { MByte } \end{gathered}$	$\begin{aligned} & 4-16 \\ & \text { MByte } \end{aligned}$	$\begin{gathered} 20-512^{\star} \\ \text { MByte } \end{gathered}$	$\begin{gathered} 20-512^{*} \\ \text { MByte } \end{gathered}$	$\begin{gathered} 20-512 * \\ \text { MByte } \end{gathered}$	$\begin{gathered} 20-512^{*} \\ \text { MByyte } \end{gathered}$	$\begin{gathered} 20-512^{*} \\ \text { MByte } \end{gathered}$
Maximum disk storage	$\begin{gathered} 10 \\ \text { Gbyte } \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ \text { GByte } \end{gathered}$	28		$2 ?$	$\frac{79}{\text { GBte }}$	
Maximum numb.of W.S.	128	192	256	256	256	256	256

* With I/O Expansion Cabinet
** The HP SPECTRUM series, 930 and 950, are delayed and will not be available before 2 H .1987.
*** The IBM 9370 series will not be availale before 2-4 Q. 1987.
@ Not upgradeable.

6. MARKET POSSIBILITIIES

The ND-5000 series provide sales opportunities for both existing customers and potential custamers.

With regards to the existing customer-base there are in excess of 10000 ND systems installed and considerably more users. For these customers, the $N D-5000$ series represent an upward growth- path for their existing applications. For $N D$ the $N D-5000$ series represent a means of protecting our customer base from the competitors at the high end.

The ND-5000 systems give us the opportunity to approach our prospects with the price/performance winner in its class and they offer evidence of ND^{\prime} s commitment to the SAFE consept.

6.1 Features and benefits

The following points are meant as suggestions and ideas that should be considered and prepared in more detail related to the specific customer situation. Features marked with $*$ denote new selling points, or selling points with increased strength.

If our assumptions are correct, the target group is clearly identifiable, hence a directly addressed canpaign could be considered. We feel that by arranging a press-conference we can reach both the decision makers and those influencing the decision. The decisionmakers could probably be reached by business magazines and newspapers, and the decision influencers by computer magazines and newspapers.

Feature	Management Decision makers.	Data-proffessionals Influencing the decision.
* Price/Performance Winner.	Effective investment.	More performance on the same budget.
SW campatibility.	Investment protection.	Use present applications and third-party SW.
* Enhanced performance.	Better value for money and more productivity.	Faster job turnaround and/or more users.
Low power requirements.	Environmentally efficient.	Avoid major electrical and cooling requirements.
* ND-500 footprint.	Cost avoidance.	No new computer room.
* Availability	Painless.	Easy service and higher uptime.
Network system	Effective investement.	Easy growth and flexibility.

4. generation pro- Open new areas. Independent and effective gramming language.

It is from Reputable vendor.
Norsk Data.
Member of the ND-SAFE concept.

Investment protection.
system-development.

Full service and support.

Flexible growth.

6.2 Main areas of use

The following target-groups/markets are identified by their use of applications with a high need for CPU-power. Those targetgroups/markets that use lange databases will strongly benefit from the new version of SIBAS planned to be released in mid. 1987, still they will be able to run more users at present on the same database.

We also know that future SW will increase the "main" (5000) CPU-load due to the demand for increased functionality. Future SW will also reduce the CPU-load on the $\mathrm{ND}-100$ part of the system, still it is important to notice that the ND-100 CPU must not be a bottleneck for the below mentioned target groups.

6.2.1 Industrial Market

Industry serial/mass production.
Typical number of connected users will be more than 100.
Typical appl. area : - MPS
(Material planning system, production planning)

- customer database
- orders, invoice, account ledgers
- pay-roll and accounts
- CAP(computer aided publishing)
- 4. generation tools

Industry / mechanical production.
Typical appl. area : - CAD/CAM

- Finite Element Method
- MPS
- Project management
- 4. generation tools

6.2.2 Public Sector

Needs reliable systems with high up-time.
Typical users: - travel agencies

- hospitals
- MPS
- Iibraries
- other public service institutions

Typical appl. area : - information/service databases

- dial-up databases

6.2.3 Service industry

- "mail order companies"
- MPS
- order/invoice
- customer database
- budget-planning
- CAP

6.2.4 Bank/Finance/Insurance

- Information databases
- Decision support systems
- Economical models
- Technical acount

6.2.5 Research Market

- simulation
- mathematical and economical models
- program-development
- infomation databases
- artificial inteligence/expert systems

6.2.6 Defence Market

- simulation
- MPS
- information databases
- artificial inteligence/pattem recognition

6.2.7 Surveilance/process control

- road traffic
- railroad traffic
- air traffic
- power plants
- process control
- decision support

7. GENERAL INFORMATION

7.1 Release/Delivery times

Corporate External release is set for the 27. January 1987.
First delivery is expected in 2. quarter of 1987 , and then the ND570/cx will be phased out.

7.2 Maintenance

The maintenance policy follows our "general" policy but it is important to impress the following :
"Telefix including the modem must be delivered and installed as part of the standard delivery, otherwise the customer cannot expect to receive the promised level of service and maintenance."

Better availability is obtained due to higher MTBF which in turn is a consequence of very low component count and compact packaging. Also we can expect less downtime due to:

- Accomodation of the CPU on one large module that can be quickiy exchanged in the field.
- All modules are plugable including power supplies.
- Extremely good "on-board" trace facilities ensure availability of detailed information if an error situation should occur. This can easily be monitored/analized via Telefix to swiftly pinpoint the problem.

7.3 Material available

-Brochure
ND-5000 series
-Datasheet
ND-5000 Computer Systems
-Foils
Set of foils for ND-5000 series.
-Manuals
ND-500 Reference Manual
ND-5000 Hardware Description
ND-5000 Microprogram Guide
ND-5000 Microtest Program Description
ND-5000 Macrotest Program Description
ND-5000 Hardware Maintenance
ND-5000 Operator Guide
-Press Release
New High-End Series from Norsk Data

Corporate Marketing December 1986

