
4.

l
6

—
NORD
COMPUTER SYSTEMS

THE NORD—5 INSTRUCTION SET

September 19 7 1

THE NORD- 5 INSTRU CTION SE T

September 1971

HHHHHHHHHl—Ll—L

[.5

.

.

.

.

.

.

.

-

n

.

.

N

e
we?

w
”PP“ PPWNH

w
see

WNH

(DMD-5

HHmQCflrP-OONH Ho

11

TABLE OF CONTENTS

+i+

INTRODUCTION

GENERAL DEFINITIONS

Word
Instruction
Integer
Bits and Bit fields
Floating Word
Floating Point Number
Integer Arithmetic
Floating Point Arithmetic
Register Structure of NORD—5
Syntax of Instruction Descriptions
Execution Times

ME MORY RE FERENC E INSTRUCTIONS

Introduction
Instruction Word
Memory Addressing .
Instruction List

INTER REGISTER INSTRUCTIONS

Introduction
Instruction Layout
Inter register Instruction Descriptions

ARGUMENT INSTRUCTIONS

Introduction
Argument Instruction Layout
Instruction De scription

SUMMARY OF INSTRUCTIONS

Page

iii

H l H-

l

I

l

l

I

|

l

I

mmwwwNNHHF-‘H

iii

INTRODUC TION

The NORD-S is designed to be an auxiliary computer in a general com—
puter system called the NORDIC system or the NORD Integrated
Computer System

In NORDIC, NORD- 5 works as a slave computer being monitored by
two or more NORD— 1 computers.

One of the main design criteria for NORD-5 was high performance on
number crunching, but in addition NORD-5 is an effective general
purpose computer. The intention of this manual is to describe the
NORD—5 instruction set only, not the connection of NORD-5 to the
general system.

The wordlength of NORD-5 is 32 bits for instructions and integers.
A floating point number is represented in a 64 bit floating word (two
consecutive 32 bit words). Cfr. Section 1. 5, Floating Word.

The central processing unit (CPU) contains 64 general registers, each
32 bits long. 16 of the registers may be used as base or index registers,
and to each of them is associated one modification register which may
contain increments used in certain jump instructions.

64 bit registers for holding floating point numbers are formed by con-
necting the general registers two by two to obtain floating registers.
Cfr. Section 1. 9. 4, Floating Register.

The instructions are classified in three groups: The memory reference
instructions, the inter register instructions, and the argument instructions.
The memory reference instructions normally affect one register and one
memory word. The memory addressing may be direct or indirect.
Up to 16 levels of indirect addressing may be used.

The inter register operations normally use two operand registers called
source register A and source register B. The result is stored in
a third register, the destination register. These three registers may be
any of the general registers. The inter register floating point instructions
affect pairs of registers.

The argument instructions are generally two-operand instructions with one
of the operands contained in the instruction itself.

The memory cycle time is approximately 1 us. An inter register multiply
of floating point numbers takes about 1 MS; a floating divide takes about 8 MS.

1.1

1.2

1.3

1.4

1r—1

GENERA L DE FINITIONS

Word

The word is the basic storage unit, both in memory and in the central
processing unit, CPU. The wordlength of NORD-5 is 32 bits.

Each word in NORD-5 has a unique name which is the name of a
I

register or an address to a word in memory. The content- of a word is
denoted: (name of word).

Instruction

Contents of a word interpreted as an instruction to the central pro-
cessor, CPU.

The instructions in NORD-5 are always one word long. The instructions
are divided into three groups as follows:

a) memory reference instructions, Section 2

b) inter-register instructions, Section 3

c) argument instructions, Section 4.

In t e g e r

Contents of a word interpreted as a binary number.

Negative integers are represented in two's complement. Arithmetic is
performed in two's complement.

One's complement is obtained by setting each bit in the word to its
opposite value. Two's complement is obtained by adding one to the
one's complement of the word.

Bits and Bit fields

Each bit in a word or floating word has an unique index as follows.

The least significant bit is bit 0. The most significant bit is bit 31. In
floating words bit 63 is bit 31 in the first of the two words making the
floating words. Bit 0 in the floating word is bit 0 in the second of the
two words.

The content of bit 1 in a word is denoted: (name of word'i). A number of
contiguous bits in a word is called a bit field. The bit field ranging from
bit i to bit j is denoted: name of

wordi_j.
The content of a bit field is

denoted: (name of
wordi_j).

1.5

1.6

1-2

Floating Word

A floating word consists of two cbntiguOus 32 bit words in memory,
logically connected to give one 64 bit word. The first word of the
floating word is called the left portion word, the second word is called
the right portion word. Thus, bit field 0-31 is in the right portion
word and bit field 32-63 is in the left portion word of 'the floating word.
The address of a floating word is the address of its left portion word.
Cfr. Section 1. 9.4, Floating Register.

Relation between words and floating words in memory:

bit WOI‘d1+1 bit
31

wordi bit0 bit31

bit63 floating wordi bit0

In the description of the instructions, floating point word. will be
denoted: wordi, wordi+1. 1

Floating Point Number

A floating point number is given by its mantissa, m, and exponent, n,
as follows:

' nnumber = m - 2

A floating point number is stored in a floating word, cfr. Section 1. 5,
Floating Word.

The representation of m and n in the floating word is as follows:

bit 0-51 mantissa ,m
bit 52—62 exponent , n
hit 63 ' sign of mantissa, m is negative if bit 63 = 1

The range of the exponent is from ~2000 to +17778 making the range of
the floating point number approximately §rom —10308 to 10308. The
exponent is represented in a 11 bit field but is biased by 20008; i. e. , 20008
is added to the exponent tomake it a positive number.

1.

1.

1.

7

8

9

sci .3

The length of the mantissa is 52 bits, which corresponds to about 15. 5
decimal digits.

The floating point numbers have to be normalized before CPU can
operate properly on them. A floating point number is said to be on
normalized form when m and n have values so that 1 > m 2 0.12.

Integer Arithmetic

Integer operands are always one word. Negative numbers are
represented in two's complement.

In inter register arithmetic the add and subtract functions may affect
or be affected by a carry bit, CB, if the proper subcode is specified.

A multiply instruction will affect an overflow register, OR, which
will contain the 32 most significant bits of the product. A divide
instruction will affect a remainder register, RR, which will contain
a 32 bits remainder after the division.

Arithmetical overflow or a positive product where OR is non-zero
(OR is all ones for negative products) may, if specified, cause a
monitor call.

Floating Point Arithmetic

The results of the floating add and subtract functions are rounded.
As rounding indicator is used the most significant of the bits which are
shifted out to keep a 52 bit mantissa.

In floating multiply, bit 0 in the final result is normally set to one.
Bit 0 is not set to one if the eight most significant shifted—out bits are
all zero.

In floating divide, bit 0 in the final result is normally set to one. Bit 0
is not set to one if the remainder is zero.

Register Structure of NORD-5

Registers are storage cells in the central processing unit, CPU. The
register used by the programmers in NORD—S is one word long (32 bits)
or one floating word long (64 bits).

1.9.1

1.9.2

1.9.3

1.9.4

1-4

P—Register

The program counter, P, contains the address of the instruction being
read from meory for execution by the CPU. P is one word long. All
instructions affect P. The instructions increment P by one, except the
stop, jump_and skip instructions.

Instruction Register

The instruction register, IR, contains the instruction being executed
by the CPU. IR is one word long.

General Registers

The NORD—5 CPU has 64 general single word registers. These 64 word
registers may also be used as 32 general floating registers.

The general registers are normally used by the programs as storage
cells for Operands and results.

Some of the registers may be used as base registers, index registers
and modification registers. Cfr. Section 1. 9. 4 - Floating Register,
Section 1. 9. 5 - Base Register, Section 1. 9. 6 - Index Register, and
Section 1.9.7 - Modification Register.

The 64 general registers are denoted GRO, GR1 , . . . ’GR63 in the
descriptions.

Note: GR0 always contains zero. This implies that (FR0)=0,_~ 7 _
(BR0)=0, (XR0)=O and that MR0 cannot be used as modification
register to GRO.

Floating Register

A floating register has the storage capacity of one floating word. It
is ,used to store floating point number operands and results.

There are 32 floating registers FRO — FR . The floating registers are
organized from the general registers as fallows:

FR.11ef when0s1<16, 32éi<48t = GRi’ FRi right : GRi+i6

We shortly write this as:

FRi =GRi’ GRi+16 when Os i < 16, 32 é i < 48

1. 9.5

1.9.6

1.9.7

1. 9.8

Base Register 8

The 16 first general registers may be used as base register, BR.

BRi =GRi 0si<16

Cfr. Section 2. 3 - Memory Addressing - for further description.

Index Registers

The 16 first general registers may be used as index registers, XR.

XRi = GRi 0 s i < 16

Cfr. Section 2. 3 — Memory Addressing - for further description.

If the register has been used as a destination register of a floating
point arithmetic operation or double shift, the result cannot be used
as a base or index address modification.

Modification Registers

Associated with each of the first 16 general registers there is one
modification register, MR. The modification registers are organized
from the general registers as follows:

MRi :GRi+16 0Sl<16

The modification registers are used to hold an increment to base or
index registers in certain jump instructions. Cfr. Section 2 — Memory
Reference Instruction.

Auxiliary Register

The overflow register, OR, is used to hold the upper 32 bit part of
the product of a multiplication.

The remainder register, RR, is used to hold the remainder after a
division. OR and RR can be read by an RIO—instruction.

1.10

1.10.1

1.10.2

1.10.3

1.10.4

51-16

Syntax of Instruction Descriptions

:= A ssig'nment Operator

Set data element to the left of 2: equal to the data element at the right
side of :=.

+, -. *L/ Arithmetical Operators

The mode of arithmetic operation is showed by using integer word
indicators for integer arithmetic and floating word indicators for
floating point arithmetic.

>2 = 3": < < Relation Operators

The relation operators are used to show arithmetical relations.
A relation has the value true or false.

Logical Operators

The logical operations are done by using two operands, each one word
long, giving a one word result. However, the logical operations are by
its nature single bit operations. They are done on pairs of operand bits,
which are made by taking the bits with same bit address from the two
operand words. The result is stored in the same bit position in the
result word.

Following is a description of the logical operations as single bit operations.

Logical OR , \/

A 0 0 1 1
B 0 1 0 1

AVE 0 1 1 1

Logical exclusive OR , \7’

A 0 0 1 1
B 0 1 0 1

AVE 0 1 1 0

Logical AND , /\

A 0 0 1 1
B 0 1 0 1

A AB 0 0 0 1

1.10.6

1.10.7

1:7

Logical Complement ,
‘— (one's complement)

A0011
K1100

The logical complement is a one operand operation. Each bit is set to
its opposite value. The one's complement of a word is not its corresponding
negative value. Negative integer numbers are represented
in two ' complement.

Non-conditional Instructions

A non-conditional instruction is described by one or more assignment
statements. If there are more than one assignment statement, they will
be connected by the word AND. The assignment statement is executed
in the sequence they are shown.

Note: In all instructions P is incremented by one unless otherwise
specified.

Conditional Instructions

The conditional instructions are described as follows:

IF relation is true

THEN non-conditional instructions
Instruction finished

ELSE non-conditional instructions
Instruction finished

If there are statements before the conditional phase, the word AND is
used to connect the "IF. . . . " to the rest of the description.

.11

.11.

.11.

.11.

.11.

.11.

.11.

.11.

148

Execution Times

Timing for each instruction is found in the instruction descriptions.

Time Definitions

Memory Cycle Time, TMC

Time necessary to read or write one word in memory, TMC = 1. 0 us.

Read Instruction Time, TRI

Time necessary to read one instruction from memory to control pro—
cessor, TRI = TMC

Read Single Word Operand Time, TSW

Time necessary to load or store one single word operand in memory,
TSW = TMC

Read Floating Word Operand Time, TFW

Time necessary to load or store one floating word operand in memory,
TFW é 2*TMC.

Central Processor Time, TCP'

Time used by central processor to perform a specified
operation when all operands are available in processor registers (Time
used to store the result not included). TCP depends on the specified
instruction.

Execution Time (T)

Total time used to execute one instruction; i. e. , time used from the
read instruction cycle starts until the result is in the specified register
or memory word.

’241

MEMORY REFERENCE INS’ ‘RUCTION

Introduction

The memory reference instructions have in common that the execution
of an instruction involves calculation of a memory address. In some
of the memory reference instructions the memory address is used
as operand, i. e. , jumps and remote execution.

Instruction Word

Instruction Word, IW

1 X B FC R/ F D

31 27 23 18 12

Indirect Address Word of level j,
IAW].

1. X. B.
'

0 D.
l l l]

31 27 23 20

1W : Instruction Word

: Indirect addressing flag|-l

X : Index register designator
B : Base register designator

FC : Function Code

R/F : General register or floating register designator

D : Displacement 0 4 D 44096

IAWJ.
: Indirect Address Word at level j

Ij
' Indirect addressing flag in

IAW].
Io = I

Xj
: Index register designator in

IAWj

Bj
: Base register designator in

IAW].

Dj
: Displacement in

IAWj,
0 é

Dj
4 1 048 576

2.3 Memory Addressing

All memory reference instructions calculate a memory address. The
result of this calculation is called the effective address, Ea.

The memory addressing may be direct or indirect. When the addressing
is direct, Ea is calculated without memory reference (except for the
read of the instruction). When indirect addressing, the CPU has to
reference the memory for operands to the calculation of Ea. We
say that each memory reference, which is done to calculate Ea in one
instruction, requires one level of indirect addressing. The maximum
number of levels possible in the NORD—5 is 16 in addition to the read
of the instruction.

The algorithm for calculating Ea is as follows: (symbols defined in 2. 2)

ll13% (RB) + (Rx) + D

if I = 0, then Ea = a

Ea1 =
(RB1)+(RX8-+D1,IAW1=(Ea&

E%
= (RB) +(RX)-+Dj,IA“G=(E%_B

Ea=E%,L=o,oéjém,n=1,oéi<j

Note:
Each level of indirect addressing adds one "read instruction time"
to the execution time.

A store operation to the location immediately following the storing
instruction will have a special effect. The storing will be executed
correct, but the next instruction will be the old_ content of the location.
Example: STR REG, * +1.

'

Indirect addressing is not allowed for the instruction EXC.

2.4 Instruction List

FC

0 Refer to inter register and argument instructions.

1 RTJ

2 EXC

3 MIN

4 CRG

6 CRE

7 CRD

: Return Jump

(R): = (P) + 1 AND

(P):=Ea T=2us

: Remote Execute (Two instructions)

R = 0, (IR): = (Ea) T = Bus

R=1, (IR):=Ea T=2us

: Memory Increment

(Ea): = (Ea) + (R) + 1 AND

IF (Ea): = 0 THEN (P): = (P) + 2

ELSE (P):=(P)+1 T=3us

: Skip if register is greater or equal
memory word
IE (R) ; (Ea) THEN (P): = (P) + 2

ELSE (P): = (P) + 1 T
T

Zus
3#3

: Skip if register is less than memory word

IF (R) 4 (Ea) THEN (P): = (P) + 2

iELSE(P):=(P)+1 T=2us
T=3us

: Skip if register and memory
word is equal

IF (R) = (Ea) THEN (P): = (P) + 2
ELSE (P): =(P) + 1

HQ H
II

can "2‘:

m
U)

: Skip if register not equal
memory word

IF (R) #= (Ea) THEN (P) :=(P) + 2

ELSE (P): = (P) + 1
era n

n
com :2 mm

No skip
Skip

N0 skip
Skip

7 N0 skip
Skip

No skip
Skip

.4.9

.4.10

.4.11

.4.12

.4.13

.4.14

.4.15

FC

10

11

12

13

14

JRP

JRZ

JPM

JNM

JZM

12-4

: Jump if register is positive

IF (R); 0 THEN (P): = Ea
ELSE (P): = (P) + 1

: Jump if register is negative

IF (R) 4 0 THEN (P): = Ea
ELSE (P): = (P) + 1

: Jump if register is zero

IF (R) = 0 THEN (P): = Ea
ELSE (P): = (P) + 1

: Jump if register is non—zero

IF (R) 4: 0 THEN (P): = Ea
ELSE (P): = (P) + 1

: Modify register by its modification
register. If register is positive,
then jump.

(R): = (R) +(MR) AND
IF (R) a 0 THEN (P): = Ea
ELSE (P): = (P) + 1

: Modify register by its modification
register. If register is negative,
then jump.
(R): (R) + (MR) AND
IF (R) ,4 0 THEN (P): = Ea
ELSE (P): = (P) + 17

: -Modify register by its modification
register. If register is zero,
then jump.

(R): = (R) + (MR) AND
IF (R) = 0 THEN (P) = Ea
ELSE (P) = (P) + 1

T=1us
T=2Ms

T=1ps
T=2us

T=1us
T=2us

T=1us
T=2us

T=1us
T=2us

T=1ys
T=2us

T=1us
T=2us

No jump
Jump

No jump
Jump

No jump
Jump

No jump
Jump

No jump
Jump

No jump
Jump

No jump
Jump

.4.16

.4.17

.4.18

.4.19

.4.20

.4.21

.4.22

.4. 23

FC

15

16

17

18

19

20

21

22

JFM

ADD

SUB

AND

LDR

ADM

XMR

2-5

: Modify register by its modification
register, If contents of register
is non—zero, then jump.

(R): = (R) +<MR)
IF (R) i 0 THEN (P): = Ea
ELSE (P): = (P) + 1

: Add content of memory word to
register

(R): = (R) + (E3)
7

: Subtract content of memory
word from register

(R): = (R) ' (Ea)

: Make "logical AND" between
- memory word and register.
Result in register.

(R): = (RM (Ea)
1

Load content of memory word
to register.

(R): = (Ea)

: Add contents of register: to
memory word

. (Ea); = (Ea) + (R)

Instruction set aside for future
extensions.

-

: Exchange contents of registers
and memory word

(R): = (Ea) AND
(Ea)! = (R)

T: ins No jump
T=2us Jump

T=2us

T=2us

T=2us

T=2us

T=3us

T=3us

2.4.24

2.4. 25

2,4. 26

2.4. 27

2. 4, 28

2. 4. 29

2. 4.30 '

FC

23 STR

24 MPY

25 DIV

26 LDF

27 STF

28 FAD

29 FSB

,2-76

: Store register in memory word

(Ea):=(R) T=2us

: Multiply contents of register
and memory word and set result
in register

(R): = (R) * (Ea)

Note: Upper 32 bit part of
64 bit product is in
OR T = 2 us

: Divide content. of register
with content of word.
Quotient is in register.
Remainder is in the remainder
register.

(R): = (R)/(Ea)

Note: Remainder is in RR T = 10 [45

Load floating register with con-
tent of floating word
(F):=(Ea, Ea+1) T=3us

: Store content of floating
register in floating word
(Ea, Ea+1):=(F) T=3us

: Add content of floating word to
content of floating register

(F):=(F)+(Ea, Ea+1) T=3us

: Subtract content of floating word
from floating register

(F):=(F)-(Ea, Ea+1) T= 3M3

FC
2.4. 31 30

2. 4. 32 31

FMU

FDV

2-7

: Multiply content of floating word
by floating register. Result in
floating register.
(F):=(F)*(Ea, Ea+1) U T=3Ms

: Divide content of floating
register by content of floating
word. Result in floating
register.

(F): = (F)/(Ea, Ea +1) T = 10 us

3.1

3.2

r3—-1

INTER-REGISTER INSTRUCTIONS

Introduction

The inter-register instructions normally affect the general registers,
or floating registers organized from the general registers. In their
general form, the instructions specify two operand registers, called
source register A and source B, and one result register1 called the
destination register.

The usage of source registers and destination registers is completely
general. It is possible to specify any registers as source registers and
destination registers.

Some of the inter-register instructions have special forms which will be
described under the specific instruction.

Instruction Layout

Instruction Word, IW

0 RFC RSC o DR/FDR SRA/FSRA SRB/FSRB
31 27 23 18 12 6 0

1W : Instruction Word
RFC : Inter—Register Function Code

RSC : Inter-Register Sub-function Code

SRA : Source Register A designator
FSRA : Floating Source Register A designator

SRB : Source Register B designator

FSRB : Floating Source Register B designator

DR : Destination Register designator
FDR : Destination Floating Register designator

The following abbreviations will also be used:

BN : Bit Number

SC : Shift Count

'32

3.3 Inter-register Instruction Descriptions

3. 3.1 STOP

Stop NORD-5 CPU and call monitor program in NORD-i.

1W

0 CODE

31 18 0

(1W)18—31 = 0
(1W) 0_17

= code used to specify monitor function

(P):=(P) T=1us

3. 3. 2 RIO: Register Input/Output

Transfer content of a specified external register to a specified register.

" 0 1 0 0 DR SRA EXT. REG.

31 27 23 1 8 1 2 _ 6 0

EXT. REG: External register

1 : Overflow, OR—register

3 : Remainder , RR—register

3.3.3

3.3.4

3—3

’SHHR: Shift Regi_steg_

Copy content of SR to DR and shift DR.

0 2 L R SM 0 DR SRA SC

31 27 26 25 23 18 12 6

R80 : divided in three fields, L, R, and SM

L = 1 : Shift left

B. = 1 : Shift right
SM : Shift mode

SM = 0 : Rotate register

SM = 1 : Rotate register

SM = 2 : Arithmetical shift. For left shift same as logical.
For right shift bit 31 is copied to each bit shifted in
(sign extension)

SM = 3 : Logical shift. The bits which are shifted out of the
word are lost and zeroes are put in the other end.

0680531

(DR): = (SR) AND
(DR): = (DR) * 2SC

If both L = 1 and R = 1, then the right shift will be performed first
and then the left shift.

T = 1 us

SHF: Shift Floating Register

Copy FSRA to FDR and shift FDR.

0 3 L R SM 0 FDR FSRA SC

31 27 26 25 23 18 12 6 0

Description as for SHR, Section 3. 3. 3, except 0 é SC 6 63.

T=1pls

3.3.5

3.3.6

3.3.7

--3"“§

BST: Bit Set

Copy SRA to DR and set Specified bit in DR to one.

04600 DB SRA'BN
31 27 24 23 18 12 6

(DR): = (SBA) AND

IF C = 0 THEN

(DRBN): : 1 ELSE ,
,(BEEN): : oRBN) T = I ,us

BCL: Bit Clear

Copy SRA to DB and set specified bit in DR to zero.

0 5 6 C 0 DR SRA BN

31 27 23 18 12 6

(DR): = (SRA) AND
IF C = 0 THEN
(DRBN): = 0 ELSE
(DRBN): = (DRBN) T = 1 us

BSZ: Bit Skip on Zero

Copy SRA to DB and skip if specified bit in DR is zero.

0 6 1 4 0 DR SRA BN

31 27 23 18 12 6

(DR): = (SRA) AND
IF (DRBN) = 0 THEN (P): = (P) + 2
ELSE (P):=(P) +1 T=1.5p.s

3.3.8

3.3.9

3.3.10

BSO: Bit Skip on One

Copy SRA to DR and skip if specified bit in DR is one. _

o 7 14 0 DR SRA . BN
31 27 23 18 12 6 . 0

(DR): = (SBA) AND
IF (DRBN) = 1 THEN (P): =' (p) + 2
ELSE (P):=(P) +1 T=1.5us

FIX: Convert Floating to Integer

Convert floating point number in FSRA to integer and place result in DR.

0 8 R 0 DR FSRA 0

31 27 2 3 1 8 1 2 6 0

(DR) : = integer (RSRA)

The converted number is truncated if R = 0; if R = 10,
it is rounded. T = 1 MS

FLO: Convert Integer to Floating

Convert the integer number in SRA to a floating point number in FDR

0 9 2 O FDR SEA 0

31 27 23 18 12 6 0

(FDR): = float (SRA)
T = 1 us

\

C»: l 0‘)

3. 3. 11 LED: Logical Register Operation

0 10 CA CB LO 0 DR SRA SRB !

31 27 26 25 23 18 12 . 6 0

The RSC is divided in 3 fields, CA, CB and LO. If CA is set, the
Operand in SRA is complemented before the logical operation is per-
formed. CB has the same effect on SRB.

The complementation of the operands does not affect the original contents
of SBA and SEE.

Rsc = CA CB LO
0 o 0 (DR): .= o
0 0 1 (DR) : = (SRAM (SRB)
0 o 2 (DR) : = (SRA) v (SRB)
o o 3 (DR): = (SRA) v(SRB)
o 1 0 (DR): = 0
o 1 1 (DR): = (SRAM (S—Rfi)
0 1 2 (DR) : = (SRA) wsR—B‘)
o 1 3 (DR): = (SRA) v(§_1§)
1 o 0 (DR): = o
1 o 1 (DR): = (M) A(SRB)
1 o 2 (DR): = (sir) (/(SRB)
1 o 3 (DR): = (m V(SRB)
1 1 0 (DR): = o
1 1 1 (DR): = (STAwWB)
1 1 2 (DR): = (mp/613$)
1 1 3 (DR): = (SR—A) WEE)

3 T=1us

3.3.12

The inter-register instruction with RFC = 11 is saved for future usage.

3.3.13

3.3.14

~71

IRO: Inter~Register Arithmetic

W 12 so Ac AF 0 DR SRA SRB
'31 27 26 25 23 18 12 6 0

AF : Arithmetical function

AF = (DR): = (SRA) + (SRB) T = 1 11s
1 (DR): = (SRA) — (SRB) T = 1 us.
2 (DR): = (SRA) ac (SRB) T = 1 MS
3 (DR): = (SRA)/ (SRB) T = 8 us

The inter—register add and subtract may affect or be affected by a one bit
register called the Carry Bit, CB.

If SC = 1, the content of CB will be set to its proper value after the
arithmetical operation. If A C = 1, the content of CB will be added to the
result of the arithmetical function.

The carry bit may be used to simulate multiple precision arithemtic.
Using SC=1 will have the same effect as extending the operands with one
bit containing zero. The result register will be extended by one bit
containing one or zero, according to the arithmetical condition.

Integer multiply and divide will affect the auxiliary registers.
OR will contain the upper 32 bit part of the 64 bit product. RR will contain
a 32 bit remainder after an integer divide.

In all integer arithmetic, overflow conditions may occur. If so
specified, an overflow condition may cause a monitor call. Overflow
occurs

vyhen
the result of an arithmetical operation is in size greater

than i(2 3 - 1).

FRO: Floating Point Arithmetic

o 13 0 AF 0 FDR FSRA FSRB
31 27 25 23 18 12 6 0

AF : Arithmetical funCtion

AF = o (FDR): = (FSRA) + (FSRB) T = 1)us
AF 1 (FDR): = (FSRA) — (FSRB) T =1us

2 (FDR): = (FSRA) * (FSRB) T = 1 us
3 (FDR): = (FSRA) / (FSRB) T = 8 us

Cfr. Section 1,8, Floating Point Arithmetic.

33.15

3.3. 16

13-98

IRS: Integer Register Sk_ip

0 14 RL AF 0 DR SRA SRB
31 27 25 23 18 12 ' 6 o

The inter-register skip is a general arithmetical instruction followed by
a relation between the result and zero.

AF : Arithmetical function

AF = 0 Add

1 Subtract

RL : Relation between result and zero

llRL 0 result a 0

1 result 4 0

2 result = 0

3 result at 0

(DR): = (SRA) arithmetical operation (SEE) AND

IF relation THEN (P): = (P) + 2

ELSE (P): = (P) + 1

Normally, DR will be affected, but if general register 0 is specified as
DR, no destination register is affected. However, the relation on the
result will still be effective. 5’

When DR = 0 and AF = 1, the IRS operation is a traditional skip.

Skip 2 us
No skip 1 us

FRS: Floating Register Skip

0 15 RL AF 0 FDR FSRA FSRB

31 27 25 23 18 12 6 0

The description of FRS is the same as for IRS, Section 3. 3. 15, except
that the arithmetic is performed on floating registers in floating point
mode.

dri

4 ARGUMENT INSTRUCTION

4.1 Introduction

Typical for the argument instruction is that one of the operands is
contained in the instruction itself; it is called the argument, A.
The other Operand is contained in one of the general registers.

The argument is a 16 bit positive number. Before the specified operation
takes place, the argument is extended to a 32 bit number with the
16 upper bits all equal to zero.

4.2 Argument Instruction Layout

1 AFC DR 0 ASF

31 29 23 18 16 0

A : Argument, 16 bits
AFC : Argument instruction function code

DR : Destination register

ASF Argument instruction sub-function code

4.3 Instruction Description

4. 3. 1 DLR: Direct Logical Operation

1 0 DR 0 LF A

31 29 23' 18 16

LF : Logical Function

LF = 0 (DR): = 0

1 (DR):= (DR) v’ A

2 (DR):= (DR) A A

3 (DR):= (DR) v A

T=1us

4. 3. 2 DAR: Direct Arithmetic Fume-1,101;

1 1 DR AF A
31 29 23 18 16 0

AF : Arithmetical Function

AF = 0 (DR): = A
1 (DR): = —A (2's complement)

2 (DR): = (DR) + A
3 (DR): = (DR) ~ A

T = 1 us

4. 3, 3 DSK: Direct Skip

1 1 CM DR RL A

31 3O 29 23 18 16 0

CM : Complement flag (2's complement)

RL : Relation designator

RL=0 CM= 0 IF(DR)2ATHEN(P):=(P)+2 DD
ELSE (P): = (P) + 1

1 0 IF (R)< A THEN (P): = (P) +2 DDN
ELSE (P): = (P) + 1

2 '
_ 0 IF (DR) :A THEN (P): = (P) + 2 DD2

ELSE (P): = (P) +1
3 0 IF (DR) 4: A THEN (P): = (P) + 2 DDF

ELSE (P): = (P) +1

0 1 IF (DR); -AR THEN (P): = (P) + 2 DSP
ELSE (P): = (P) + 1

1 1 IF (DR) < -AR THEN (P): = (P) + 2 DSN
ELSE (P): = (P) +1

2 1 IF (DR) = -AR THEN (P): = (P) + 2 D82
ELSE (P): = (P) +1

3 1 IF (DR) 4: -AR THEN (P): = (P) + 2 DSF
ELSE (P): = (P) + 1

T = 1 us No skip
T = 2 us Skip

"S1

l-1éESfUé M'rM AER Y 0:317 . I N ST R U C T I O N S<31

MEMORY REFERENCE INSTRUCTIONS

+i+

MNEMONIC ACTION SECTION

RTJ Return jump 2. 4. 2

EXC Remote execute 2. 4. 3

MIN Mmeory increment 2. 4. 4

CRG Skip if (R) z(Ea) 2. 4. 5
CRL Skip if (R) 4(Ea) 2. 4. 6

CRE Skip if (R) —;(Ea) 2. 4. 7
CRD Skip if (R) +(Ea) 2. 4. 8
JRP Jump if (R)zO 2. 4. 9

JRN Jump if (R) <0 2. 4. 10
JRZ Jump if (R): 2. 4.11

JRF Jump if (R) 4:0 2. 4. 12

JPM ‘ Modify (R) and jump if (R)?__0 2. 4. 13

JNM Modify (R) and jump if (R)/ 0 2. 4. 14

J ZM _ Modify (R) and jump if (R)—=0 2.4.15

JFM Modify (R) and jump if (3)140 2. 4. 16

ADD Add (Ea) to (R) 2. 4. 17

SUB Subtract (Ea) from (R) 2. 4. 18

AND Logical AND between (Ea)and (R) 2. 4. 19

LDR Load (R) with (Ea) 2.4. 20
ADM Add (R) to (Ea) 2. 4. 21
XMR Exchange (Ea) and (R) 2. 4. 23

STR Store (R) in (Ea) 2. 4. 24

MPY Multiply (R) by (Ea) 2. 4. 25

DIV Divide (R) by (Ea) 2. 4. 26
LDF Load (F) with (Ea, Ea + 1) 2. 4. 27
STF Store (F) inCEa, Ea + 1) 2. 4. 28

FAD Add (Ea, Ea + 1) to (F) 2. 4. 29
FSB ' Subtract (Ea, Ea + 1) from (F)' 2. 4. 30

FMU Multiply (F) by (Ea, Ea + 1) 2. 4. 31

FDV Divide (F) by (Ea, Ea + 1) 2. 4. 32

:3

INTER REGISTER OPERATIONS

1 SHIFT INSTRUCTIONS

MNEMONIC ACTION SECTION

SLR Left rotational shift ' 3. 3. 3

SRR Right rotational shift " "

SLA Left arithmetical shift ”

SRA Right arithmetical shift
‘ "

SLL Left logical shift "

SRL Right logical shift . "
SLRD Left rotational floating register shift 3. 3. 4

SRRD Right rotational floating register shift "

SLAD Left arithmetical floating register shift "

SRAD Right arithmetical floating register shift "

SLLD Left logical floating register shift "

SRLD Right logical floating register shift "

2 MISCELLANEOUS OPERATIONS

BST Bit Set 3. 3. 5
BCL Bit clear 3. 3. 6

BSZ Bit skip on zero 3. 3. 7

B80 Bit ship on one 3. 3. 8
-

FIX , Convert floating to integer 3. 3. 9

FLO Convert integer to floating 3. 3. 10

3 ARITHMETIC OPERATIONS

RAD Register add 3. 3. 13

RSB Register subtract "

RMU Register multiply "

RDV Register divide "

RAF Floating register add 3. 3. 14
RSF Floating register subtract "

RMF Floating register multiply "

RDF . Floating register divide "

C71 |0.7

4 TEST AND SKIP

MNEMONIC ACTION SECTION

SGR Subtract registers and skip if result >, 0 3. 3. 15
ASG Add .11 n H H H '3 0 H

SLE
Subtract II II H H H <

0
'l

ASL Add II II 1| H H < 0
H

SEQ
Subtract II H H II II _-_- 0

H

ASE Add II H H H I! = 0
ll

SUE Subtract n H II II II :t 0 H

ASU Add II I! II I! H 4:
0

ll

SGF Subtract floating registers and skip if
result 2 0 3.3.16

ASGF Add I! ll H H
a 0

ll

SLF Subtract " " " " < 0 "

ASLF Add I! H H H < 0
ll

SEF Subtract " " " " - 0 "

ASEF Add H II If H = 0 VI

SUF Subtract " " " " * O "

ASUF Add H H ll 11 * 0
H

. '. 4
”fl-“it.

5 LOGICAL OPERATIONS

MNEMONIC

RND

RNDA

ENDB

RXO

RXOA

RXOB

ROR

RORA

RORB

SZR

ACTION

Register AND

Register AND, use complement of (SRA)

Register AND, use complement of (SRB)

Register exclusive OR

Register exclusive OR, use complement
of (SRA)

Register exclusive OR, use complement
of (SRB)

Register OR

Register OR, use complement of (SRA)

Register OR, use complement of (SRB)

Set all zeroes

—-ooOoo--

SECTION

3. 3. 11

XORA

ANDA

ORA

SE TA

SECA

ADDA

ADCA

DDP

DDN

DDZ

DDF

DSP

DSN

DSZ

DSF

C" l C?!

ARGUME NT INSTRUC TIONS

Exclusive or

And

01‘

Set register

Set register to complement

Add

Add complement

Skip if (DR) ; ARG
H H H < H

n n H : n

H H I! #: H

Skip if (DR) 2 -ARG
n 1| n 4 n

H n n = H

n u n 4: n

Sfii‘fizfiLQEZSSESSSEEESSSH°‘°°“‘°”‘“"N"°

0 0 0 0 0 0 0 0 0 o 0 0 0 0 MESSAGE

0 0 0 0 1 0 o 0 o 0 0 DR SR EXT.REG;NO

0 o 0 1 o L R SM 0 0 0 0 0 DR SR SHIFT COUNT

“P 0 0.1 1 L R SM 0 0 0 0 0 DR SR SHIFT COUNT

0 o 1 0 0 1 1 o C 0 0 0 o 0 DR SR BITNO

o 0 1 o 1 1 1 o C 0 o o o 0 DR SR BITNO

0 o 1 1 0 1 1 0 o 0 o 0 0 0 DR SR BITNO

o 0 1 1 1 1 1 0 0 0 0 o o 0 DR SR BITNO

o 1 0 0 o R 0 0 o 0 o 0 0 0 DR FSR 0 0 0 0 o 0

o 1 0 0 1 o o 1 o 0 0 0 0 0 FDR SR 0 o 0 o o 0

o 1 o 1 OCACB LO 0 o 0 o 0 DR SRA SRB

o 1 0 1 1 0 o 0 0 0

o 1 1 o OSCAC AF 0 o 0 o 0 DR SRA SRB

0 1 1 0 1 0 0 AF 0 o 0 o 0 FDR FSRA FSRB

o 1 1 1 0 RL AF 0 0 0 0 0 DR SRA SRB

o 1 1 1 1 RL AF 0 0 o o 0 FDR FSRA FSRB

1 x 0 0 0 0 1 R

I x 0 o 0 1 0 R

1 x 0 o 0 1 1 R

1 x o 0 1 0 o R

1 x o o 1 0 1 R D

1 x 0 o 1 1 o R D

I x 0 o 1 1 1 R D

I x 0 1 0 0”0 R' D

I X 0 1 o o 1 R D

I x 0 1 o 1 0 R D

I X o 1 o 1 1 R D

STOP

RIO

SHR

SHF

BST

BCL

B82

B80

FIX

FLO

LRO

Not

IRO

FRO

IRS

FRS

RTJ

EXC

MIN

CRG

CRL

CRE

CRD

JRP

JRN

JRZ

JRF

31: 30' 291 28: 271 25- 221 1

I

W: y‘v"?‘1_4

HOmOONKOLOGMNI—(O3 31211222 :Sfli‘fl‘lHH
I X B ‘g_1 1 0 0 R D JPM

I X B o 1 1 o 1 R D JNM

I X B 0_1 1 1 0 R D JZM

I X B o 1 1 1 1 R D JFM

I X B 1 0 o o 0 R D ADD

I X B 1 0 o o 1 R D SUB

I X B 1 o 0 1 0 R D AND

I X B 1 o o 1 1 R D LDR

I X B 1 0 1 0 0 R D ADM

I X B 1 O l O 1 R D Not used

I x B 1 0 1 1 0 R D XMR

I x B 1 o 1 1 1 R D STR

I X B 1 1 0 0 0 R D MPY

I X B 1 1 0 0 1 R D DIV

I x B 1 1 o 1 0 FR D LDF

I x B 1 1 0 1 1 FR
\

D STF

I X B 1 1 1 0 0 FR D FAD

I x B 1 1.1 o 1 FR D FSB

I X B 1 1 1 1 0 FR D FMU

I X B 1 1 1 1 1 FR D FDV

y Xj Bj 0 0 0 Di éggéaddr

1 0 0 DR 0 o 0 o 0 LF A DIR

1 o 1 DR 0 0 o 0 0 AF A DAR

1 lCM DR 0 0 o o 0 RL A DSK

