Specification of the Nord Query Lanzuage

NORSK DATA AS

Specification of the Nord Query Lanzuage

23.1.1980

Ole Jorgen Hansen, Research & Development

This paper describes what Nord Query Language will look like from the user's

point of view.
}

'
!
v

This paper is preliminary, and Norsk Data may change the langzuage specifications
without notice.

“

i l Contents

. Summary

. An introduction to the Relational Model.

. An introduction to Nord Query Language.

3.1. Queries.

3.2. Reports.

. Input and output.

4.1. The tabular format.

. The Query Language.

5.1. ic consepts.
1. Example elements.
2. Constant elements.
2.1, String manipulation.
1.3. Table operators.
1.4, Command elements.
4.1, Sorting of records.
4. 2. Selection of unique records.

Ba
5.
5.
5.
ok

5.2. Examples of use.
5.3. Update of records in the data base.
5.3.1. Insertion of records.

5.3.2. Update of records.

5.3.3. Deletion of records.

. The different user interfaces.

6.1. Picture oriented interface.

6.2. Linear interface.

. Definition of forms.

20
20
21
22

a3

24

21

28

<

8. The Data Base Administrator module.

8.1. The model definition.
8.1.1. Attribute name.
8.1.2. Attribute types.
8.1.3. Definition of integrity constraints.

3.1. Insertions.
3.2. Deletion.
3.3. Update.

8.2. The submodel definition.

8.3. Example of use.

9. The report gensrator.

9.1. Directives to define ths layout.
1.1. Level Down
1.2. level Up
1.3. Heading Lines
1.4, Detail Lines
1.5, Footing Lines
1.6. Page Heading
1.7. Page Footing
1.8. Comments to the directives.

NelNoRVoRVoRNoAVo RNo AN o N w)

9.2. The change operator.

9.3. Underlining of attribute values.
9.3.1. Single underline.
9.3.2. Double underline.

9.4, Examples of use

9.4.1. Report for a sales company.
9.4.2. Report for a plane company.

10. Definition of reserved NQL words.

11. References.

Example of use.

29

31
31
31
32
32
33
33

34
35

54

55

57

o

The Nord Query Language 1
Version 0.0

1. Summary

Query 1languages came into peoples minds after the relational data model was
introduced in 1970. Before that people were working with report generators. The
guery language was therefore meant as a replacement for these. After 1970 the
development has moved towards interactive computer systems. The query language
was therefore given a new requirement. It should also be used interactively and
had to be easy to learn.

Nord Query Language (NCL) is a high-level data base management language that
provides a convenient and unified style to define, query and update a relational
data base. The philosophy of Nord Query Language is to require the user to know
very little in order to get started, and to make it easy to use the language
without knowing the whole language syntax. The language syntax is simple, yet it
covers both simple and complex queries.

Nord Query Language offers a report generator for the generation of reports.
Once defined, queries and reports can be started and re-run.

Nord CQuery Language makes it possible to use a data base via a non-procedural
language. The user doesn't need to know how the data is stored in the data base,
he only needs to know what data the data base contains.

Thz2 user thinks of the data base as a set of tables. Each table has a set of
attributes. He may operate on the data base by specifying table and attribute
operations.

Experiments with languages of the same type have showed that they are easy to
learn. It requires less than three hours of instruction for non-programmers to
acquire enough skill to make fairly complex queries.

2 ' The Nord Query Language
: Version 0.0

2. An introduction to the Relational Model.

In the relational model, a data base consists of a set of tables. Each table has
a set of attributes.

A table can be understood as a file and the attributes as data items within the
file. For those familiar with the SIBAS terminology, a table with attributes can
be understood as a realm with items.

A table may look like this:

Attribute
name
Table ---> 1 PORT ! COUNTRY ! TOWN ! AIRPORT !
head ing B L S L L L L L o o L o L o o O R R o L R o T o T e e o e o s e
! NORWAY ! OSLO ! FORNEBU !
! FRANCE ! PARIS ! ORLY !
A record -->! NORWAY ! BERGEN ! FLESLAND !
! SWEDEN ! STOCKHOLM ! ARLANDA !
! ENGLAND ! LCNDON ! HEATHRCW !
1 1 1 1
Attribute
value

A row in the table is called a record, and the table may then be seen as a
collection of records.

To be able to uniquely identify each record of a table, every table must possess
a PRIMARY KEY. The primary key may consist of more than one attribute. For
instance, in order to identify persons without using a person-number, both name
and address together may be used. In the extreme, the primary key may contain
all attributes of tha table.

For all tables we have the following rules:

No two records are equal.
The ordering of the records within a table is immaterial.

All attributes are atomic. That is, they represent single
values, such as numbers and character strings.

The Nord Query Language 3
Version 0.0

In the examplés in the rest of this paper the following tables will be used. The
primary keys are underlined.

CUSTOMER (CUSTNO, NAME , ADDRESS, TELEPHONE)

ORLER (CUSTNO, ORDERNO, DATE)

ORDERLINE (CUSTNO, ORDERNOQ, ARTNAME, QTY)

ARTICLE (ARTNAME, PRICE, STOCKQTY)

PARTS (ARTSUP, ARTSUB, MADEQTY)

EMPLOYEE (NAME, SALARY ,MANAGER, DEPT)

DEPARTMENT (DEPT, LOCATION)

FLIGHT (FLIGHTNO, DEPARTURE , DESTINATION, DEPTTIME, ARRITIME)

ATRPORT (CITY, AIRPORT)

4 The Nord Query Language
: Version 0.0

3. An intrecduction to MNord Query Language.

A query language 1is a high level computer language which is oriented towards
retrieval and maintenance of data from computer files or data bases.
Characteristically, the users of a query language are non programmers rather
than programmers. The usage of a query language is on-line, but it should be
possible to wuse it from batch too. A query language will be used for retrieval
and wupdate of data. The conditions for use are not predefined, but are created
by the user in an ad-hoc manner. Nord Query Lenguage can be viewed as a language
for both information analysis and query handling. The language features are as
follow:

Can be easily learned in a few hours.
Require little or no data processing background.

Mlows the end user to express queries in familiar
terminology and logic.

Minimizes the number of concepts to be learned.
Provides a powerful facility for answering complex gqueries.

Provides a report generator facility, which is a
generalisation of the query facility.

Allows the user to define queries and reports that can be
saved and executed at any later time,
The language covers a wide range of possibilities, and the highlights are:

Is nonprocedural and uses a two-dimensional visual format
for formulating queries.

Enables the user to visualize the data base as user defined
tables with attributes.

Provides a wunified, consistent syntax with a few powerful
operators.
Nord Query Language depends on and uses other program packages delivered by
Norsk Data A.S. The specifications of the total system is:

Provides access to existing SIBAS data bases.

Provides access to SIBAS data bases defined and initiated
from NQL. '

Provides access to ASTRA data bases.
It will be possible to define data bases without using the
ASTRAL language at all.

Provides for converting SIBAS data bases to ASTRAL data
bases.

Provides queries and reports independent of the underlying

The MNord Query Language 5
Version 0.0

DBMS. This will at first be SIBAS, then ASTRA or SIBAS.

It will be catered for access via ISAM files. The query
language will then be a single user version, because ISAM
files do not allow concurrent access.

Provides for bulk loading of data bases from existing
sequential files, and for load and unload of the data base.

Provides backup and recovery capabilities.

We have two kind of language concepts in Nord Cuery Language. These are gusries
and reports.

3.1. Queries,

A query 1is a sequence of commands defining an operation on the data base. In
addition we can specify the format of input and output. This is optional, and
the system will choose defaults.

<command-1>
{command-2>
<command-3>

ooooo

{command-n>
<Specification of formats>

Some questions may be asked frequently. For such questions, it is possible to
use variables in the query and give them a value at run time.
This will be described later.

3.2. Reports.

Reports can be defined with Nord Query Language too. We follow the method used -
for queries. In addition we have to describe the report layout. A report is
written in the follcwing way:

<command-1>
{command-2>
<command-3>
<command-n>
REPORTFORM
<{description of report layout>
ENDFORM

6 The Nord Query Lanzuage
. Version 0.0

4, Input and output.

The CQuery Language will have an input and an output part. The first is used to
specify a query, and the second is used for printing of the result.

The input must allow the user to specify a query in an understandable manner,
and the output has to be easy to read. There are a number of alternative
formats, but =hey all have essentially a table structure. We will use the
tabular format, because it is easier to use this on a relational data base.

4.1. The tabular format.

The tabular format contains a heading consisting of table name and attribute
names, and values for each record in rows. The following example shows a
tabular skeleton with data.

! CUSTCMER ! CUSTNO ! NAME ! ADDRESS ! TELEPHONE !

! ! JOE HOOLEY ! LIVERPOOL ! !
P 201 ! MIKE WCODS ! LONDON ! 320945 !
1 1 1 1]
1 { 1 ! 1

! ADAM GREEN ! MANCHESTER
! CATY JONES ! HULL

When the user defines a query he writes operations in empty tabular skeletons.
The empty skeleton for the EMPLOYEE table looks like the following

The user fills in operations where he wants. If he wants to skip an attribute
he writes <cr>. He can enter the navigate mode (as in TED) with <ctrl-S>, and
can change the navigate mode with <cursor up> and <cursor down>.

When he is in the ATTRIBUTE navigation mode, <cursor left> and <cursor right>
will move to the previous or next attribute in the skeleton. When he is in the
CHAR navigation mode, the cursor will move within the field. When he is in the
LINE navigation mode, <cursor 1left> and <cursor right> will move to the
previous or next line in the skeleton.

We get out of the skeleton with the <home> character. The navigate mode is
turned off with a <ctrl-S>.

When the wuser has filled in one line or moves one line down, the system will
expand the skeleton with one empty 1line at the bottom. In this way it is
possible to have many skeletons on the screen at the same time,

Later the wuser has the possibility to delete skeletons and lines, and to
insert skeletons and lines in existing skeletons.

The Nord Query Language 7
Version 0.0

When the table table is larger than the width of the screen, some difficulties
will occur.

There is one solution to this problem. We can split the table into many sub
pictures on the screen. For instance, 1if we have a table containing 6
attributes with 20 characters each, we can write the table as three pictures.
This operation is called horizontal scrolling.

Example:

The table

— it ot 2 1 . e s e

! TEST ! ATTR1 ! ATTR2 ! ATTR3 ! ATTRY4 ! ATTRS ! ATTR6 !

will be printed as

e

! TEST ' ATTR1 ! ATTR2 ! ATTR3 !

We scroll the picture to the left and get

! TEST ! ATTR3 ! ATTRY ! ATTRS !

! TEST ! ATTR4 } ATTRS ! ATTR6 !

The user can control the horizontal scrolling with the function keys <cursor
left> and <cursor right>.

8 The Nord Query Language
X Version 0.0

5. The Query lanzuage,

A1l programming is done within two-dimensional skeleton forms. This is
accomplished by (filling in the appropriate tables with an example of the
solution.

5.1. Basic consepts.

We have four different types of variables in a qusry. The distintion is made

between a constant element, an example element, a table operator and a command
element.

5.1.1. Exemple elements.

Example elements are names we give any variable from the data base. They are
identifiers prefixed with the underscore character.

Example:

_EXAMPLE
_SALES

They are used for linking the subquestions in a query together and for
expressions in constant elements.

An example element can be used when we want to perform complex queries on
the data base. It is possible to assign values to an example element and use
it as a selection criteria.

Example:

_NAME = 'JEAN WEBSTER' OR 'JIM SMITH'
_SALARY = >B80000 AND <100000

In this case we use the example element as a condition box.

We have another use of a condition box too. Often we want to calculate
something using the result from many attributes. This can be done using
example elements. In addition it is possible to use the functions MINIMUM,
MAXIMUM, AVERAGE, SUM and STDEV.

If we write the following condition box

_TOTAL = SUM(_QTY)

the example element _TOTAL will be updated according to the expression each
time _QTY gets a value from a new record.

It is also possible to use expressions within the functions.
Example:

_SUM = SUM(_NO ¥ PRICE)
MINCOST = MINIMUM(COST)

The liord Query Languag

Version 0.0

5.1.2. Constant elements.

Constant elements are numbers and character strings. They are used for
selection of records from the tables.

Example:

125000

'JEAN PAUL GEGEFFRY'

'PAUL JONES'

If we have a string

containing letters only we can write it without the

string quotes. The string must not be equal with the names of the functions

described below.

We may then write

'JCHES' or JONES
'RESEARCH' or RESEARCH

As selection criteria one may use example elements and constant elements or
a combination of these.

We may prefix these with the following operators:

= equal

>< not equal

> greater than

>= greater or equal
< less than

<= less or equal

If nothing is mentioned there is an implied equality.

We may also use the following functions to specify complex operations.

operate on the attribute where they are mentioned.

MINIMUM.

MAXIMUM.

SUM.

COUNT.

AVERAGE.

STDEV,

BETWEEN.

Finds smallest attribute value

Finds largest attribute value

Computes the sum of all the attributes
Counts the number of occurences

Computes the average of all the attributes

Computes the standard deviation of all the
attributes

Finds all records with attribute values
in a certain range

They

10

The Nord Query Language
Version 0.0

If we want the minimum s2lary for the EMPLOYEE table, we can speacify it in
the following way. We use the constant element MINIMUM in order to find the
record with the minimum salary.

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !

PRINT. ! ! MINIMUM, ! ' !
! ' ! ! !

If we wants the mnminimum salary for the SUPPORT department, we have to
specify an additional selection.

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !

PRINT. ! ! MINIMUM. ! ! SUPPCRT !
! ! ! ! !
In addition it 1is possible to use the arithmetic operators +, -, ¥ and /.

These can be used to calculate the wanted selection expression. We may also
use paranthesis.

Example:

_SALARY+10000
_OLDSALARY#1.15
(_OLDSALARY+_LOMAX)#1.07+5000

It 1is possible teo use variables for selection of records. Thess variables
are identifiers prefixed with a gquestion mark, and can be given a valus at
run time. Thus it is possible to make very flexible queries. They are called
question elements.

Example:

?DEPT
?SALARY

In this way it 1is possible to define queries and give values to the
guestion elements at run time.

The Nord Query Language 1
Version 0.0

5.1.2.1. String maniopulation.

Often the wuser 1s interested in finding attributes starting, ending or
containing a special letter combination. This can be described in an easy
manner with a constant element.

When we have a string enclosed by underscores, we will search for a
textual equlity. Vhen we use a question mark we skip a letter.

Example:
HA will find all strings starting with HA
HA XXX will do the same., The 3 X's tell us that
_ someting may follow. These may be omitted

_HA_XX_SEN__ will find 2ll string starting with HA and
ending with SEN. F.ex HANSEN and HANSSEN.
The 2 X's tell us that something may come in
between.

_H 7PN will find all strings with first character H
and third character N. IF.ex HAKSEN and HENSON

5.1.3. Table opzsrators.

A table operator tells which operation we want to do on a record. We have
the following operators

INPUT. We want to insert a new record

UPDATE. We want to update records

DELETE. We want to delete records

PRINT. We want to print all attribute vaiues in a record

The commands can be abbriviated. Thus it is possible to write I., P. and so
on.

Sometimes the user wants to reduce the output from a given query. It is
possible to specify the number of records wanted in the output. This is done
specifying the wanted number of records in the table operator. The number of
records wanted must occur after the PRINT. operator.

Example:

PRINT. 10
P.6

12

The Nord Query Language
Version 0.0

Example:
Find any 8 employees with manager JONES.

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !

PRINT.8 ! ! ! JONES ! !
! ! ! ! !

We can also use a guestion element, and give the number of records we want
to retrieve at run time.

5.1.4, Command elements.,

A command element tells what to do with an attribute. The following commands
are used
PRINT. Print the attribute value

UNICUE. Find all wunique records, i.e the attribute
valus can not occur more than once

ASCENDING. Sort the records on ascending attribute value

DESCENDING. Sort the records on descending attribute value

5.1.4.1. Sorting of records.

In the relational model the records in a tuple is not sorted in any order.
If the user wants this to be done, he has to specify it in a query. It is
possible to sort the result in ascending or descending order. As it is
possible to sort on many criteria at the same time, the priority of the
sort key has to be given.

The priority is a number enclosed by parenthesis. If the priority is
omitted, (1) is assumed.

If we write ASCENDING(1), it is the first key. ASCENDING(2) is the second
key and so on.

5.1.4.2. Selection of unique records.

When we operate on parts of a table w2 will often get duplicates. Because
it 1is very expensive to remove duplicates, the user has the option of
specifying whether a unique result is wanted or not. This is done with the
UNIQUE. operator.

The Nord Query Languzage 13
Version 0.0

With these basic concepts, the user can express a wide variety of qusries.
To psrform operations on the data base, the user fills in an example of a
solution to that operation in blank skeleton forms. These are associated
with the actual tables.

The column operator is a combination of a command element, constant element
and an example element. They must follow in the given sequence, and all of
them may be omitted.

A query is given by filling in table and column operators.

The skeleton will look like the following:

Attribute name

Table name-->! Table ! Attrl ! Attr2 ! Attr3 ! Attrl !

ooooo

!

Table ———=> ..., !

operator ..., |
!

..........

................

Column opsrator

14

The Nord Qusry Language
Version 0.0

5.2, Examples of use.

We show some examples to clarify how queries are written. The empty skeleton
table will be written by the system on request, and the user fills in the
wanted operation. How the user specifies which table skeleton he wants to be
written on the screen, is described later.

Find name and salary for all employees working in the SALES d=partment.

We achieve this selecting all records in the EMPLOYEE table with department
equal SALES.

When all records are found, we print the name and salary attributes

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !

! PRINT. ! PRINT. ! ! SALES !
! ! ! ! !

The result is:

! EMPLOYEE ! NAME ! SALARY !

! JONES ! !
! MILLS ! 84,600 !
! JOHNSEN ! 102.000 !

The Nord Query Language 15
Version 0.0

" Find name and salary for all employees working in departments located in
STRASBOURG.

First we have to find all dzpartments located in STRASBOURG. These are stored
in the example element _SALES.

Then we select all employee records with department name equal to the valuss
assigned to the example element _SALES. When all records are found, the name
and salary will be printed.

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !

! PRINT. ! PRINT ! ! _SALES !
1 ! ! 1 !
! DEPARTMENT ! DEPT ! LOCATION !

! _SALES ! STRASBOURG !

The result is:

! EMPLOYEE ! NAME ! SALARY !
! JOHNSEN ! 100.000 !
! HANSEN ! g0.000 !
! BEAM ! 180.000 !
! WILEY ! 85.000 !
! JONES ! 96.000 !
! OLSEN ! 54.000 !

Sometimes we have to use computed values to find a result. This can be done ™
using expressions, and example elements can be used as ordinary variables.

Find the name of all employees earning more than 10000 more than WILEY.

First we find WILEY's salary and assign this to the example element _SAL.

Then we find &all employee records with salary greater than the valus of the
example element _SAL plus 10000.

In this case we se how an example element can be used in an expression.

! EMPLOYEE ! NAME ! SALARY - ! MANAGER ! DEPT i

! PRINT. ! >(_SAL+10000) ! ! !
! WILEY ! _SAL ! ! !
! ! ! ! !

16

The Nord Query Language
Version 0.0

The result is:

! EMPLOYEE ! NAME !

! JOHNSEN !
! BEAM !
! JONES !
! WILSCN !

Sometimes it 1is desireable to write a long string of operations for a column
operator. We may then write the commands on several lines. The string starts
and ends with the underscore character ~

Find all departments sorted ascending and remove all duplicates.

In this case we want to select all unique department names. If we had used the
PRINT operator alone, we had got all values in the DEPT column of the table.
Thus we have to specify the UNIQUE operator in order to remove all duplicates.
The ASCENDING operator will sort the selected department names.

! DEPARTMENT ! DEPT ! LOCATION !

1 "PRINT. ! !
! UNIQUE. ! !
! ASCENDING. ! !
! ! !

The result is:

! DEVELOPMENT !
! ECONOMY !
! SALES !
! SUPPORT !

The Nord Query Language 17
Version 0.0

It 1is possible to 1link many constant elements together in a condition box.
-Here we may describe complex selection expressions by the use of AND and CR.

Find the name of all employees working in the SALES department having GIBES or
JONES as manager.

le assign the values GIBBS and JONES to the example element _MAN, and use it
in a selection expression.

In order to get the skeleton for the condition box printed on the screen, we
use the <new skeleton> command with the system table CONDITION as parameter.

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !

! PRINT. ! ! _MAN ! SALES i
! ! ! ! !

! CONDITION ! !

! MAN = 'GIBBS' OR 'JONES' !

We show an example to clarify the use of question elements. We want a query
finding all employees with salary in a certain range. We use the BETWEEN
operator, and use question elements as parameters to this.

! EMPLOYEE ! NAM I SALARY ! MANAGER ! DEPT !
PRINT ! " I"BETWEEN ! ! !

! '(7LOWSAL, ! ! !

: ! ?UPPSAL)."! ! |

! ! 1

1 |
- -

khen the query 1s executed the system will ask for a value to LOWSAL and
UPPSAL. The user will at the same time see how the varizbles are usad.

The user enters these and the query will continue.

18 The Nord Qusry Language
) Version 0.0

We want a query finding the cost of the orders belonging to JONES in LONDON.

This 1s a very complex query, and needs some explaination. First of all we
have to find the wanted customer. This is done with a selection on nhame and
address. The customer number of the found customer is stored in the example
element _NO.

_NO is thzn wused for selecting all ORDERLINE records belonging to the
customer. For each found record we find the ordered article and the number of
articles ordered. These values are stored in the example elements _ART and
ANT.

Then we find the price of the article _ART and store it in the example element
PR.

We have now all information we need about the orderline and the cost is
calculated. The total is summed up in the example element _TOTAL.

! CUSTOMER ! CUSTNO ! NAME ! ADDRESS ! TELEPHONE !

! NO ! JONES ! LONDON ! !
1 ! ! ! !
! ORDERLINE ! CUSTNO ! ORDERNO ! ARTNAME ! QTY !
! NO 1 t ART 1 ANT !
! ! t ! 1
! ARTICLE ! ARTNAME ! PRICE ! STOCKQTY !
! _ART 1 pR ! !
! ! ! !
! CONDITION ! !
PRINT. !_TOTAL = SUM(_ANT ¥ _PR) !

The query may then give the following result

! CONDITION ! !

! 13.654,15 '

The Nord Query Language 19
Version 0.0

We want a query listing all employees sorted on ascending department, manager
and salary.

We use the sort operator in order to achieve this.

——

— B e T T ————

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! BEFT !

PRINT. ! ! ASCENDING(3). ! ASCENDING(2). ! ASCENDING(1). !
! ! !

20 The Nord Query lLanguage
Version 0.0

5.3. Update of records in the data base.

Many of the proposed query languages cater only with retrieval of data from
the data base.

We want the wuser of the query language to be able to do everything it is
possible to do with application programs.

Thus it must be pessible to insert, update and delete records in the data
base.

5.3.1. Insertion of records.

When we want to insert a record into the data base, we have to specify
INSERT. as table operation. We have to give values to all attributes. The
values may be taken from records in the same table or from records in other
tables.

Insert a new employee JONES in the RESEARCH departmsnt. His salary is 120000
and the manager is CARTER.

We use table operator INSERT., and specify the attribute values in constant

elements.
! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !
INSERT. ! JONES ! 120000 ! CARTER ! RESEARCH !

Insert a new employee OLSEN and give him the same salary, manager and
department as WILEY. The same goes for the new employee WILSON, but his
salary shall be equal to the average salary.

First we find the salary, manager and department of WILEY and assign these
valuzs to the example elements _SAL, _MGR and _DEP.
These example elements are then used as constant elements in ths isertion.

———— o —— - - ———

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !
INSERT. ! OLSEN SAL MGR DEP

! | 1o 1]

! WILEY ! “SAL ! "MGR ! _DEP
INSERT. ! WILSON ! AVERAGE. ! !

1 1] !

The Nord Query Language 21
Version 0.0

5.3.2. Update of records.

When we want to update records, we have to specify UPDATE as table operator.
We have to find the records to be updated before the update can take place.
This is done by an example element.

Give all employees in the SALES department a 10% pay rise.

B Ly ——

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !

UPDATE. ! _WHO ! 1.1% OLD ! ! !
-1 TWHO ! _OLD ! ! SALES !
]

! 1 !
: : H

This way of writing the query is all right. It is, however, possible to
write that query in an easier way. When we are going to update an attribute
relative to its old value, we may drop the example element. We then have the
following way of writing:

- — — —— ————

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !

UPDATE. ! 'R ! ! SALES !
! ! ! ! !

A1l employees with manager SMITH will get a new manager WEBBS.

We find all employees with manager SMITH and store them in the example
element _PERSON. Then we give these employees a new manager.

! EMPLOYEE ! NAME I SALARY ! MANAGER ! DEPT !

UPDATE. ! _PERSON ! ! WEBES ! !
! PERSON ! ! SMITH ! !

! ! ! ! !

The Nord Query Lanzuage
Version 0.0

5.3.3. Deletion of records.

¥han we want to delete records, we have to specify DELETE as table operator.
We have to find the records to be deleted before the delete can take place.
This can be done with constant elements or example elements.

Delete all employees working in the REPAIR department and all working in
departments located in LONDON.

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !
DELETE., ! - ! ! ! REPAIR !
DELETE. ! ! ! ! _WHERE !
! ! ! ! !

! DEPARTHMENT ! DEPT ! LOCATION !

! _WHERE ' LONDON !
! ! !

Delete all orders ordered before 110979 belonging to customers in PARIS.

! CUSTOMER ! CUSTNO ! NAME ! ADDRESS ! PHONE !
- rx v weams L o
1 ! 1 ! 1
! ORDER ! CUSTNO ! ORDERNO ! DATE !
D, ot N0t 1<110979 !

! 1 1 !
: : : :

In this case the ORDERLINE records belonging to the deleted ORDER records
will be deleted.

The Nord Query Language 23
Version 0.0

6. The different user interfaces.

Up to now we have only mentioned the user interface using screen pictures. We
have a linear interface to the Query Language too. This permits input of qusries
in a one-dimensional string format. The way of expressing a query is the same,
the difference is the way of writing it. The user has to write table and
attributenames.

Instead of filling in a skeleton form, the user writes a string containing the
same information.

We have to write a colon behind the table name if there is a table opzrator, and
a colon behind each attribute name.

Example:
The query
! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !
! PRINT. ! > 81 ! _BOSS ! !
! _BOSS P81 ! ! !

! ! ! ! !
is equivalent to the linear form

EMPLOYEE (NAME: PRINT. , SALARY:>_S1,MANAGER:_BOSS)
EMPLOYEE (NAME:_BOSS, SALARY:_S1)

Each interface has some keywords for defining the start and end of a quary, and
some facilities for editing, storing, deleting and execution of the guery.

Note that reports are created using the linear interface. The same applies for
the definition of input and output forms.

When we write a condition box in the linear interface, we have to end it with a™
semicolon.

Example:

_TOTAL
_PRICE

SUM(_StM);
_ANT ¥ _COST;

24

6.1. Picture oriented interface.

A query 1is written

following commands.

The Nord CQuery Lancuage
Version 0.0

as pictures on the screen. The user is able to define,
edit, execute, store and delete queries. We enter the different modes with the

Command

Hor ? -

TmZHDWEO

<{cursor-down>
{cursor-up>
L

X

<home>

S o e S s e e g fem S b Sem A S fem S e fme S S g

e

Nord Query Lanzuage help commands

Function

Help mode

Query definition

Execute query
tore query
Delete query
Insert in table
Modify query
First page
Next page
Previous page
Last page

eXit from NQL
Enter command mode

P

Command mode

In the examples
correspond to the

after the commands in the examples. For instance

in

S e e S Bew s TN s Sem e G Sew e fem Fem fem S e S e dew S e g

the paper the below decscribed commands are given. They
commands menticned above. They are only written in words.
For some of the commands the system will as for parameters. We write these

<new skeleton> EMPLOYEE

will print a skeleton of the EMPLOYEE table on the screen.

The Nord Query Language

Version 0.0

We have the following commands:

<define query>
The definition of a query starts here.

<exit query>
The definition of a query ends here. Everything from
the last <define query> is included.

<new skeleton>
We want to get a skeleton table of a certain table.
The system will ask for the name. The skeleton will
be used until a new skeleton is wanted.

<new virtual tabled
We want to get an empty skeleton on the screen. We
can then define the wanted table and attribute names
and can operate on the virtual table.

<{execute query>
We want to execute a query or a report. The system
will ask for the name. If we want the last quary, we
enter a blank name. The system will ask for input
file and output file, and Default is TERMINAL.

<modify query>
We want to edit a query or a report. The system will
ask for the name. If we want the last defined query
we, enter a blank name. The edit medus will use a
system a la TED/PED. It will not be described further
here.

<{store query>
We want to store the last defined query or report.
The system will ask for the name to be given to this
query.

{delete query>
We want to delete a stored query or report. The
system will ask for the query name.

<help mode>
The user wants to retrieve information about the data
base and the legal commands.

25

26

Example:

The Nord Query Lanzuage
Version 0.0

We want to define a query, LIST_EMPLOYEES, finding all

employees working in a certain department.

{define query>
<new skeleton> EMPLOYEE

<exit query>

<{store qusry> LIST_EMPLOYEES
{run query>

Name:

Input-file: TERMINAL
Output-File: TERMINAL

———— e —— -

! SALARY ! MANAGER

PRINT. ! ! !

! DEPT -
! ?DEPART !
! !
! DEPT !

The Nord Query Language 27
Version 0.0

6.2. Lin=zar interface.

A query or report is written as a string containing all information about the
data base operations. It is possible to defins, edit, store, deleste and run
queries and reports wusing commands. We enter the different mcdes using the
same commands mentioned for the screen oriented interface. We can not use the
<new skeleton> command in this case.

In order to control the definition of queries, reports and input and output
forms, we use some commands. These are written in the string defining the
query.

BEGIN

The definition of a query starts.
END =

The definition of a query ends here. Everything from

the last BEGIN is included.
VIRTUALTABLE

We can define virtual tables.
ENDVIRTUAL

We end the definition of virtual tables.
INPUTFORM

Starts an input form definition.
OUTPUTFORM

Starts an output form definition.
REPORTFORM

Starts the definition of a report format.
ENDFORM

Ends a form definition.

Example:

We want to define the query mentionsd above in the
linear format.

<define query>

BEGIN

EMPLOYEE: PRINT. (DEPT: ?DEPART)
END

{exit query>

<{store query> LIST_EMPLOYEES
{run query>

Name:

Input-file: TERMINAL
Qutput-file: TERMINAL
DEPART: seawmaaewsssien 55 B aiRNe

28 The Nord Qusry Language
Version 0.0

7. Definition of forms.

For queries often used 1t 1is suitable to have specially designed input and
oucput formats. This can be done by defining forms. The definition of forms will
be done in the same way as in Nord Screen Handling System today. Instead of the
definition of the fields, the user enters question elements used in the query.
The system will then know the type of each field.

Example:

We want to define a query inserting ORDER-tuples into the data
base. We want the input form to be specially designed.

{defines query>

BEGIN
ORDER: INPUT. (CUSTNO:_CNO, ORDERNO: ?0NO, DATE : ?DATE)
CUSTOMER (CUSTNO : _CNO, NAME: ?CNAME, ADDRESS: ?CADDR)
INPUTFORM

Transaction for insertion of
order records

Today's date: 7?DATE

Customer's name: ?CNAME
Customer's address: ?CADDR

Order number: ?0NO

ENDFORM
END
{exit query>
<store query> NEW_ORDER

Everything written in the form definition will be placed absolutely on the
screen, i.e. as it is written.

When the query is executed the following picture will be written on the screen.
The user enters the values, and the query will be executed.

Transaction for insertion of
order records

Today's date:

Customer's name: c.oveenensns SR SRR S Ve
Customer's address: S R mrere RE e

Order number:

The Nord Query Language.
Version 0.0

8. The Data Pase Administrator medule.

Nord Query language will be wused by all users including the

Data Ease

Administrator (DBA). DBA's responsibility is to create and maintain data basas.
Nord Query Language has a module specially designed for these purposes. It has

the following features:

Definition of a relational data base.

A1l information about the tables will be described.
legal use of the tables are defined as integrity
constraints. The legal values of the attributes are

defined too.

Defihition.of user submodels.

Each wuser can use a subsst of the tables in the data
base and may have his own legal usage of them. It is
These are
tables with informaticn from many tables. The virtual
tables can only be used for retrieval of information.

also possible to create virtual tables.

Definition of SIBAS data base.

All information about the underlying SIBAS data base is
given. This information is the realms, items, index and

calc keys and sets used in the data base.

If this information is cmitted the system will generate
a schema for the SIBAS data base from the relational

data base.

The DBA module will be used as the ordinary NQL language. The user enters the
different modes, and describe the data base by filling in empty skeleton tables.

We enter the different modes by some commands. These are:

<define mecdel> - the relational data model is defined

<define submodel>
<end of (sub)model>
<list model>

<list submcdel>

<{export tables>
<import tables>
{define types>
<list types>
{define table>
<list tables>
<define table link>
<list table link>
<new skeleton>

<define constraint>

<list constraint>

a relational submodel is defined

end of the model or submodel definition
list the model description

list the submodel description

export tables from a model or submodel
to another submedel

import tables from the above model or
submodel

define an attribute type
list the defined attribute types

define a new table

list the existing tables

define a table link for a virtual table
list a table link

print a table skeleton to ths screen

define a new constraint for operations
on the data base

list the defined constraints for a
specific or all tables

30

<access (sub)model>

{define data base>
<end data base>
<list data base>

{define realm>
<list realm>

{define calc>
<list calce>

<define index>
<list index>

{define set>
{list set>

<define SIBAS 1link>

<list SIEAS link>

Th= Nord Query Language
Version 0.0

define wnich model or submodel the
users are allowed to access

describe a SIBAS data base to ths system
end the data base description

list the data base description for a
specific data base

describe the realms used
list all the realms

describe the calc keys
list the calc keys

describe all indexes ussd
list all indexes used in a2 data base

describe all sets used
list all sets

describe the mapping betwsen the rela-
tional data base and thz SIBAS data base
list the mapping description for a
virtual table

The
Vers

8.

Nord Query Language 31
ion 0.0

1. Thz model definition.

NQL deals with the following objects:

TABLE - a relational table

ATTRIBUTE - an attribute of the table

TYPE ~ the type of an attribute

DOMAIN -~ the value range of a type
A data base may be definad by ASTRAL as well as NQL. Because of that we have
to ensure that an ASTRAL ¢type can be translated into a NQL type, and vice
versa.,

8.1.1. Attribute name.

The attribute name is a string of up to 16 character including the
underscore character. We have chosen 16 characters beczuse ASTRAL at current
time uses only 12 characters.

Example:
DATE_ORJERED
CUSTOMER_NO

ORDERNO
NAME

§.1.2. Attribute types.

The attribute type 1is a string describing the format of the attribute and
the 1legal attribute decmain. The attribute type is used for syntax checks of
the queries. When we have attributes connected together via example
elements, the attribute types must be the same. Thus it possible and ™
meaningfull to connect an order with its order detail via an order number.
It is not meaningfull to connect a number with salary as these are
attributes with different types.

The description of the attribute format follows a syntax simular to COBOL.
In addition we may use INTEGER and REAL.

Example:
9(3) - An integer with 3 digits.
A(15) - An alphanumeric string of length 15.
X(15) - A character string of length 15.
INTEGER - A standard integer.
REAL - A standard real.
999,999 - An integer with 6 digits. The threes last digits

are seperated with a comma. F.ex. 123,000

The DBA may specify legal values for the attributes. For strings it is
possible to specify the 1legal characters. For integers and reals it is
possible to specify a legal range.

32

The Nord Query Language
Version 0.0
Example:
0 : 230000

TAY o1zt
123.00 : 134.00

8.1.3. Definition of integrity constraints.

If a wuser uses a data base incorrectly, he may get peculiar results. The
purpose of integrity constraints is to describe how the data base should be
used, so that misuse 1s detectable. The integrity constraints will be
specified for insertion, deletion and update. At the same time we may give

the error message we want to be written when an integrity constraint is
broken.

8.1.3.1. Insertions.

Before a record can be inserted zll key attributes must have a value
assigned, and the values must satisfy the legal attribute valus. It is
possible to give non-key attributes a null-value. For strings the null
value 1is blanks, for integers and reals the null value is zero. These are
defaults, and the user can define tham for each type. Often there is a
logical connection betwean tables. A record in one table has to exist
before a record in another table can be inserted. This constraint is given
by specifying that the common attribute in the two tables has to exist.
For instance, an EMPLOYEE record can not be inserted if the DEPARTMENT
record with the same DEPT as the EMPLOYEE record doesn't exist. The new
employee is not allowed to earn more than his manager. We specify this
demand with the following NQL-statement.

! EMPLOYEE ! NAME !' SALARY ! MANAGER ! DEPT !

I. ! 1 ¢ SAL ! BOSS | _DEPT !
! _BOSS ! SAL ! ! !
! DEPARTMENT ! DEPT ! LOCATION !

The Nord Query Language 33
Version 0.0

8.1.3.2, Deletion.

When we delete a record from the data base, we may get some undesireable
effects If we have two tables that are logically connected, the dzletion
of a record in one of them may result in an inconsistent data base.

We must therefore have the possibility to specify the demands which have
to be satisfied before a deletion can be made. For instance, a DEPARTMENT
record can not be deleted if there are EMPLOYEE records with the same
DEPT. We specify this with the following NQL statement.

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !

Ty T T T T T T T S e
1 i ! r !
! DEPARTMENT ! DEPT ! LOCATION !
D ! _DEPT ! !

8.1.3.2. Update.

Before we can update a record the same demands that go for deletion and
insertion have to be satisfied. In addition we may specify other demands
for the new record. For instance, we may specify that the new salary has
to be greater than the old salary. If we want the new salary to be at
least 15% greater than the old, we may write the following NQL statement.

! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !

U, ! PERSON ! >1.15% SAL ! ! !
! _PERSON ! _SAL ! ! !

The Nord Query Language
Version 0.0

8.2. The submodel definition.

Usually a wuser is allowed to use some parts of the data base. The DBA must
therefore have the possibility to give each user a submodel. The users ma

also have different usage modes. For instance, not everybody are allowed to go
and update the information in the EMPLOYEE table.

Sometimes a user wants to get information from many tables. This can be done
in an easy manner by defining virtual tables in a sub-model. The system will
then retrieve the informetion for the user. Note that a virtual table never
can be used for other tasks than retrieval. This is because a view may be
taken from more than one table, and update, deletion and insertion will be
impossible to execute.

The definition of submodel can be done in many steps. It is possible to have
submodels of a submodel and so on.

We show the following example with a model and two submodels.

G ——

! Model !

SUBMODEL1 . . SUBMODEL2

{ submodel ! ! submodel !

! PAYROLL ! ! HIREDEPT !
! ' !

A model with submodels.

The Nord Query Language 35
Version 0.0

8.3. Example of use.

We want to define a data base containing the EMPFLOYEE and DEPARTMENT tables.
We give some 1legal attribute values, and specify demands for insertion,
deletion and update.

{defiine model> COMPANY
{define type>

! TYPELIST ! TYPE ! FORMAT ! DOMATN !
T uvwmwss v a@o) U IR !
! DEPARTMENT 1 A(15) toAtZ !
! SALARIES ' 9(6 I 50000: 230000 !
| TOWNS ! A(25) RTOTI !
| 1 1 1

! ATTRIBUTES ! NAME ! TYPE | KEY !
T 1 NAME) NAMES | YES !

| SALARY ! SALARIES ' N0

! MANAGER ! NAMES | NO !

! DEPT ! DEPARTMENT ' NO !

1 1 ! 1

<define table> DEPARTMENT

! DEPT ! DEPARTMENT ! YES !
! LOCATION ! TOWNS ! NO !

36

<export tables> SUBMODEL1

The Nord Query Language
Version 0.0

! EXPORTLIST ! TABLE !

OPERATION

! EMPLOYEE ' P,
! !

<{export table> SUBMODELZ2

! EXPORTLIST ! TABLE ! OPERATION !

! EMPLOYEE ! p,,1.,0.,D !

! DEPARTMENT t P.,I.,U0.,D. !

! ! !
{define constraint>
<{new skeleton> EMPLOYEE
! EMPLOYEE ! NAME I SALARY ! MANAGER ! DEPT !
""" . 1y Ty T T T T Y et

<new skeleton> DEPARTMENT

! DEPARTMENT ! DEPT ! LOCATION

<end constraint>
Give errormessage:
{define constraint>
<new skeleton> EMPLOYEE

>>> The department

! EMPLOYEE ! NAME ! SALARY
I. ! ! < SAL !
! _MAN 1 _SAL !

<end constraint>

Give errormessage: >>> It is illegal to earn more than your manager <<<

The Nord Qusery Language
Version 0.0

<dz=fine constraint>
<new skeleton> EMPLOYEE

I. ! > EMP ! ! _EMP | !
! ! ! I !

{end ccnstraint>

Give errormessage: >>> You can not be your own manager <<<
{define ccnstrzint>

<new skeleton> EMPLOYEE

! EMPLOYEE ¥ NAME = ! SALARY ! MANAGER ! DEPT !
-__—_"____zf:zﬁnnﬁh__—_T______—_—_""I'""ﬁ“""”h"-“T":ﬁéﬁE"h“-_f

<new skeleton> DEPARTMENT

! DEPARTMENT ! DEPT ! LOCATION !
D. ! _DEPT ! !

<end constraint>

Give errormessage: >>> There are employees working in the department <<<
{define constraint>

<new skeleton> EMPLOYEE

! EMPLOYEE ! NAME ! SALARY | MANAGER ! DEPT !
U. | _PERSON ! >1.15% SAL ¢ ! !
! "PERSON ! _SAL ! z !

<end constraint
Give errormessage: >>> New salary must be 15% larger than the o0ld one <<<

The Nord Query Lanzuage

Version 0.0

{define data base>
<define realm>
I REAILM ! NAME 1 ITEM ! LENGTH !
! DEPARTM ! DEPT 115 !
! DEPARTM ! LOCATION ! 25 !
! EMPLOYEE ! NAME 120 !
! EMPLOYEE ! SALARY () !
! EMPLOYEE ! MANAGER ! 20 !
! EMPLOYEE ! DEPT 115 !
! ! ! !
{define index>
! INDEX ' REALM ! ITEM ! AUTCMATIC !
! EMPLOYEE ! NAME I YES !
! EMPLOYEE ! MANAGER ! YES !
! DEPART ! DEPT ! YES !
! ! ! !
{definzs set>
I SET ! NAME ! CWNERREALM ! OWNERITEM ! MEMBERREAILM ! MEMBERITEM !
! DEPTEMPL ! DEPART ! DEPT ! EMPLOYEE ! DEPT
! ! !
<define SIBAS link>
! LINK ! TABLE ! ATTRIBUTE ! REAIM ' ITEM
! EMPLOYEE ! NAME ! EMPLOYEE ! NAME
! EMPLOYEE I SALARY ! EMPLOYEE ! SALARY
! EMPLOYEE ! MANAGER ! EMPLOYEE ! MANAGER
! EMPLOYEE ! DEPT ' EMPLOYEE | DEPT
! DEPARTMENT ! DEPT ! DEPART ! DEPT
! DEPARTMENT ! LOCATION ! DEPART ! LOCATION
! ! ! !

<end data base>
<end of (sub)model>

The Nord Query Language 39
Version 0.0

" We define two submodels PAYROLL and HIREDEPT. Users using the PAYROLL submodel
are allowed only to retrieve information from the data base. Users using the
HIREDEPT have no restrictions of usage.

{define submodel> PAYRCLL

Refers to (sub)model: CCMPANY
Model-password : SUBMODEL1

<import tables>

! IMPORTTABLE ! TABLE ! OPERATION !

- ! EMPLOYEE 1E. !
H - ! !

<end of (sub)model>
<define submodel> HIREDEPT

Refers to (sub)model: COMPANY
Model-~password ¢ SUBMCDELZ2

{import tables>

! IMPORTTABLE ! TABLE ! OPERATION !
! EMPLOYEE t P.,I.,U.,D !
! DEPARTMENT ! P.,I.,U.,D !

. .
! [} 1
H H .

<{define table> EXPANDEMP

! ATTRIBUTES ! NAME ! TYPE ! KEY !

! NAME ! NAMES ! !
! SALARY ! SALARIES ! !
! DEPT ! DEPARTMENT ! YES !
! LOCATICN ! TOWNS : !
1 ! ! !

The Nord Qusry Lanzuage
Version 0.0

{define table link>
<new skeleton> EXPANDEMP

! EXPANDEMP ! NAME ! SALARY ! DEPT ! LOCATION !
T
! ! ! | 1
<new skeleton> EMPLOYEE
! EMPLOYEE ! NAME ! SALARY ! MANAGER ! DEPT !
S
1 1 1 1 1
<new skeleton> DEPARTMENT
! DEPARTMENT ! DEPT ! LOCATION !
1 1 1
{end table definition>
<access (sub)model>
! ACCESS ! USER ! MODEL !
! JONES ! PAYROLL !
! GEOFFRY ! HIREDEPT !
! CARTER ! PAYROLL !
1 1 1

The Nord Query Language 41
Version 0.0

8. The report generator,

NQL 1is a powerful tool for report generation. The report gerierator enables the
user to spesify the layout of his report, or let the system do the formatting.
When a report is defined the user describes how the report should look and which
data is going to be fetched. The description of the layout is written in a
language very like the Text Formatter, and the data retrieval is described in
linear NQL.

Usually report generators deal with data. We think the future user will demand
more than that. We therefore want to integrate the Text Formatter of NOTIS and
the report generator. We will then have a report generator doing more than ths
simple treatment of raw data.

This 1is done by writing the output from the report generator to a file. The
output will -—contain directives to the Text Formatter. This file can then be
merged into a text file using the INCLUDE command.

A report may also be written directly from the report generator to any other’
device.

A report may consist of one or more levels. Each level can have the following
three building blocks:

heading line
A heading at the beginning of a level. We may use
information from the data base here. The heading can
contain formatting directives, f.ex conditional
pageshift ete.

detail line
A detail line with information from the Data base. The
detail line can continue over several lines.

footing line
A footing at the end of a level. We can use information
from the data base and format it the way we want.

The levels have to be nested. The heading lines will be written at the beginning ™~
of a new level and the footing at the end of it. The heading of the current
level will be written when there is a pageshift.

9.1. Directives to define the lavout.

We have some commands describing the report layout. We use the commands to
describe how data is to be written.

There are two data types in the report. These are text strings and variables
from the data base. A text string is a string enclosed by the aprostrophes. A
data base variable is an example element. In addition we may specify the
colunn number where the output is going to start. It is a number enclosed by
paranthesis. This is optional. If the column number is omitted, the system
will do the formatting.

Example:

(1) 'This text starts at column one.'
(10) _VARIABLE
'The system will decide where to write this!'

42 The Nord Quary Language
. Version 0.0

It 1is possible to uss the following system variables in the report. They are
used like other varizbles.

_SYSPAGE - Current page number.

_SYSDATE1 - Today's date with the format DD. <month> YYYY.
F.ex. 12.june 1979

_SYSDATE2 -~ Today's date with the format DD/MM/YY.
F.ex 12/06/79

_SYSDATE3 - Today's date with the format MM/DD/YY.
F.ex 06/12/79

_SYSPATEY - Today's date with the format YY/MM/DD.

F.ex 79/06/12

_SYSTIME =~ The time when the report was started with
the format HH:MM:SS.

Attribute values wanted in the report can be taken from the query description
using exzmple elements. If we use the example element _EX in the report layout
it has to be connected to an attribute or an expression in a condition box.

We describe each of the directives we may use in the definition of the report
form,

For all directives except level-up and level-dowm it is possible to use Text
Formatter directives, such as page shift and conditional paging.

9.1.1. Level Down
“LD;

Specifies the beginning of a new level in the report. All variables used for
counting on this level will be set to zero.

9.1.2. Level Up

~

LU;

Ends the current level.

9.1.3. Heading Lines

“HL, string;

Defines the heading lines of the current level. String contains the commands
defining the heading lines. We may let the system write the heading. If we
omit the <,string> the system will write the names of the attributes
mentioned in the detail line as a heading.

The Nord Query Language 43
Version 0.0

9.1.4, Detail Lines

“DL,string;

Defines the detail lines of the current level. String contains the commands
defining the detail lines.

8.1.5. Footing Lines
“FL,string;
Defines the footing lines of the current level. String contains the commands

defining the footing lines.

9.1.6. Page Heading

"PH, string;

Defines the heading of a new page. String contains the commands defining the
heading.

9.1,7. Page Footing

“PF,string;

Defines the footing of a new page. String contains the commands defining the
footing.

9.1.8. Comments to the directives.

In some cases it may be necessary to use imbedded commands in a command ™
string. In this case the string should be included in 'quotes'. The start
quote is "< and the end quote is ">.

Kote that the page heading and page footing are omitted if we write th=
report to a text file. The Text Formatter must have directives defining
these from the text file 'calling' the report text. Whan we write the report
to any other device, the pageheading and pagefooting will be written.

Ly The Nord Quary Language
Version 0.0
Example:

"PH="< (1) 'This is a report' (60) 'Page'
(66) _SYSPAGE "BL; (1) 'written by me ">;

"PF="< (1) 'This is the end' “BL;
(1) 'of a page' ™;

will give the output:

This is a report Page 1
written by me

This is the end
of a page

The Nord Query Language us
Version 0.0

9.2. Th2 change operator.

¥hen we want three attribute valuss to be printed from records in the data
basz we can do it in the following way

"DL= _NAME _ARTICLE _NUMBER ;

The result is

CLSEN CAR 3
OLSEN CAR 4
OLSEN CAR 12
OLSEN BICYCLE 15
OLSEN BICYCLE 6
WEBSTER NUT 2
WEBSTER WASHER 10
WEBSTER SCREW 5
JONES CAR 1
JONES CAR 3

Sometimes we don't want to print the same attribute valus many times below
each other.
We want the following way of writing it

OLSEN CAR 3
i

12

BICYCLE 12

JEBSTER NUT 2
WASHER 10

SCREW 5

JONES CAR 1
3

This can be achieved with the change opsrator. If we specify CEANGE. before
the example element containing the attribute value, the value will be written
only if the new value is different from the old one.

When we want to use the operator on two or more attribute values, we have to
use a priority key. The priority is a number enclosed by parenthesis.

For the above example we have to write the following detail line

"DL= CHANGE(1)._NAME CHANGE(2)._ARTICLE _NUMBER ;

When we have a page shift, the first line on the new page will be written with
all attribute values visible.

L6 The Nord Cuery Lanzuzze
Version 0.0

9.3. Underlining of attribute yalues.

Often it 1is wanted to wunderline attribute values with a single or double
underlining.
This can be specified with commands.

9.2.1. Single underline,

If we write the command SINGLELINE. in front of an example element the
attribute value will be underlined with a single lins.

The detail line

"DL= 'This is a value with a single underline' SINGLELINE. PRICE
will give the following print
This is a value with a single underline 1234,45

9.3.2. Double underline.

If we write the command DOUBLELINE. in front of an example element the
attribute value will be underlined with a double line.

The detail line

"DL= 'This is a value with a double underline' DOUBLELINE. PRICE
will give the following print

This is a value with a double underline 1234,45

" The Nord Query Language 47
Version 0.0

9.4. Examples of use

It 1is difficult to understand how the report generator works without any
examples of 1its use. Two examples are shown to clarify the definition of the
reports,

9.4.1. Report for a sales company.

We write a report for a company producing different articles. They want a

report of- what each of their customers have ordered and a total sum of all
the orders.

{define-query>

BEGIN
CUSTOMER (CUSTNO: ASC._XNO, NAME: NAME, ADDRESS: ADLR)
ORDER(CUSTNO:_XNO, ORDERNO: _ORD, DATE: DATE)
ORDERLINE (CUSTNO:_XNO,ORDERNO:_ORD, ARTNAME: ART,QTY: QTY)
ARTICLE (ARTNAME: ART,PRICE: PRICE)

_XPRICE = _QTY ¥ _PRICE;
_SUMXPRICE = SUM(_XPRICE):

© _SUMCUST = SUM(_SUMXPRICE);
_GRANDSUM = SUM(_SUMXCUST);
REPORTFORM

"PH="< (1) 'Sales report for the XXX company' (60) 'Page’
(66) _SYSPAGE ~>;
“PF= (1) 'Printed on date' (27) _SYSDATET
“LD;
“FL= (1) 'Total sum for company' (60) DOUBLELINE. GRANDSUM ;
“LD; .
"HL="< (1) 'Cust.no' (10) 'Name' (45) 'Address' “BL; >;
“DL= (1) _XNO (10) _NAME (45) ADDR ;
"FL="< (1) 'Sum for customer' (60) DOUBLELINE._ SUMXCUST “BL; ~>;
“LD;
"HL="< (10) 'Orderno' (20) 'Date'! “BL; ">;
“DL= (10) _ORD (20) _DATE ;
“"FL="< "BL; (10) 'Sum for order' (60) DOUBLELINE. SUMXPRICE
“BL; ™
“LD;
“DL= (20) _ART (55) _QTY (60) _XPRICE ;

"LU;
ENDFORM
END

<{end-query>

<{store-query> SALES_REPORT
<{execute-query> SALES_REPORT
Output-file: SALES~REPORT:TEXT

43

The Nord Query language
Version 0.0

We have a text file with some information about the company's budget. The
sales report 1is wanted in there, and it is 'called' in the text. Since we
write the report output to a text file, the page heading and thes page
footing defined in the report will be omitted. The main text file will then
have the definition of these.

This text file may look like this:

“H1=Budget report for the XXX company;
“TL=#¥%%¥ For internal use only ¥¥¥;
"BL;The budget for next year is

.......

.

“BL=3;
“IN=SALES~REPORT:TEXT;
"EL=3;As we see the sales have been

If we wanted the sales report to be written to the LINE-PRINTER with the
original layout, we could have done it in the following way:

{execute-query> SALES_REPORT
Output file: LINE-PRINTER

The report produced by the Text Formatter will look like this:

The Nord Query Language
Version 0.0
Budget report for the XXX company

The budget for next year is

Cust.no Name Address
101 HANK JOHNSEN LONDON
Orderno Date
-115 230879
BICYCLE
BICYCLE INNER TUPE
BICYCLE TYRE VALVE
BICYCLE SEAT

Sum for order

Orderno Date

135 211079
RENAULT-12 ENGINE
WINTER TYRE
FORD ESCORT ENGINE VALVE
FORD ESCORT BUMPER

Sum for order

Sum for customer

Cust .no Name Address
102 DAVE LURIFAX OXFORD
Orderno Date
223 231179
SAFETY BELT
SPARK PLUG
RADIATOR
THERMOSTAT

Sum for order

¥X%¥ For internal use only ¥#%

30
100
10

10
500
10
20

1.937,00
367,75
75,85
357,00

998, 35
1.978,00
10. 123,00
456,75

15.737,60

49

50

Budget report for ths XXX company
Orderno Date
345 011079
SAFETY BELT
RENAULT~16 BUMPER
RENAULT-16 SHORT ENGINE
Sum for order

Sum for customer

Total sum for firm

As we see the sales have been R

¥*¥¥% For internal use only ¥¥#

The Nord Query Language
Version 0.0

34

—
—
No)
o
-3
o
o

The Kord Query Language 51
Version 0.0

9.4.2. Report for a plans company.

We define a report for a plane company. They want a report of all the plane
routes and their departure and arrival towns. We want the system to format
the report. The report is defined in the following way.

{define-query>

BEGIN
FLIGHT (FLIGHTNO:_FLIGHT,DEPARTURE: AIRP1,
DESTINATION: AIRP2)
AIRPORT(CITY: DEPT,AIRPORT: AIRP1)
ATRPORT(CITY:_ ARRI,AIRPORT: AIRP2)
REPORTFORM
“PH= 'Report for the plane company' _SYSPAGE
"PF= 'Printed on date' _SYSDATEZ ;
“LD;
“HL;
"DL= _FLIGHT _DEPT _ARRT ;
“LU;
ENDFORM
END

{end-query>
{execute-query>

Name:

Qutput file: LINE-PRINTER

The report will then look like this:

52

Report for the plane company

Flightno

BU367
BU268
SA369
PA101
PA102
PA103

SK356

Departure

OSLO
TRONDHEIM
OSLO

OSLO

CSLO
KOBENHAGEN

KIRKENES

Printed on date 09/10/79

The Nord Query Language
Version 0.0

Destination

TRONDHEIM
TROMSO
KRISTIANSAND
WASHINGTON
BUENCS AIRES
RIO DE JANEIRO

HAMMERFEST

The Nord Query Language

Version 0.0

Report for the plane company

Flightno Departure

BK123
BK324
SA369
SK909
LF324

SW656

Printed on date

STAVANGER
TRONDHEIM
OSLO
OSLO
STOCKHOLM

.

KRISTIANSUND

09/10/79

Destination

KRISTIANSAND
LAS PALMAS
KRISTIANSAND
STRASBOURG
STRASBOURG

MOLDE

53

54 The Nord Cuery Language
Version 0.0

10. Definition of res=rved NQL words.

We have some reserved words in NOL. These are used when a2 query is describad. In
this report they are written in English.
Users who don't use English, want to use their own language. The system will
allow these reserved words to be changed.

We show how the commands can be written in Norwegian.

The

Enzlish Norwsgian
INSERT INNSETT
DELETE - SLETT

UPDATE OPPDATER
PRINT SKRIV

MINIMUM MINTMUM
MAXIMUM MAKSTMUM

SUM SUMMER

CCOUNT TELL

AVERAGE SNITT

STDEV STANDARDAVVIK
BETWEEN MELLOM

UNIQUE ENTYDIG
ASCENDING STIGENDE
DESCENDING SYNKENDE
CONDITION BETINGELSE
BEGIN BEGYNN

END SLUTT
VIRTUALTABLE VIRTUELLTABELL
ENDVIRTUAL SLUTTVIRTUELL
INPUTEFORM INNLESEFORMAT
OUTPUTFORM UTSKRIFTFORMAT
ENDFORM SLUTTFORMAT
CHANGE ENDRING
SINGLELIHE ENKELLINJE
DOUBLELINE DOBBELTLINJE

commands used when

we enter a mode may also be specified, and ths same

applies for the help commands.

The Nord Query Language
Version 0.0

11. References.

(1) 0.Moldekleiv, A.Stormo

Query Languages for Relational Data Base Systems.
(Written in Norwegian)

(2) 0.Moldekleiv

Compiler for Query By Example.
(Written in Norwegian)

(3) 0.J.Hansen
Compiler for the relational DBMS ASTRA with access via the
hierarchical DBMS RAZ2.

(Written in Norwegian)

(4) Reports from "Summer School on Data Base Design'.
Urbino, Italy, 1979

(5) Internal ND-papers.

(6) Various ASTRA(L)-papers.

(7) ADMINS/11 referance manual.

(8) M.M.Zloof
The Syntax of Query By Example.
IBM Thomas J.Watson Research Center,
Yorktown Heights'

(9) M.M.Zloof

Query By Example: A Query Language
IBY Systems Journal, no.ld, 1977

(10) J.C.Thomas, J.D.Gould
A Psychological Study of Query By Example.
National Computer Conference, Proc. AFIPS,
vol 44, pp. 431-438

(11) E.F.Codd

A Relational Model of Data for Large Shared Data Eanks.
CACM vol 13, no. 6, june 1970, pp. 377~387

(12) British Computer Society Query Language Group.
BCS QLG-PUB VERSN. Y

A Uniform Approach to Query Languages.

56

The Nord Query Lanzuaze
Version 0.0
(13) CODASYL Report

A status report on the activities of the CCODASYL End User
Facilities Committee (EUFC)

The Nord Query Language 57
Version 0.0

Example of use.

The following example 1is taken from the author's imagination. It is only a
proposal for use of the language. As the reader will see, the main layout is
taken from the TED/PED editors.

When we enter the Query Language the following page will be written on the
screen.

In all the example pictures, the outer frame is understood as the sceen.

KERS ER¥ KRERKEREX RN EH *% %
FAERERR FER RUEARKIRFEAIRXRXES b2
KEE %% ¥¥E K¥¥ FE¥ b3 33
AR HXH #ER ORRX ¥ ¥ Exk
L3 ¥ FEE XX¥ X%% ¥
REX ¥ FEE Kx¥ FRE #EF
*iEH #E® FEE FEX HEFE wEF FEE
R REX BEE EEx FHEXKEHE FRE
EX ¥EE OFEE O EEE AEEE¥ FEF
*ER EREXRE FERNEFRAANEXXINRREXX FEXFRAARUARKEHLER
¥¥% KRER EREEXRRNNFEEULE EEEF XEDLFRXLEAAEENEES

Nord Query Language 1.0

Data Base name:

When the system is entered it will ask which data base you want to use.

58 The Nord Query Langzuage
Version 0.0

It 1is possible to get information about the legal commands. This is achieved by
typing H or ? for help.

The help command can be us2d when the user wants information about the data base
he is working with.

Nord Query Language help commands

Command Function

Hor ? Help mode

D Query definition
E Execute query

S _ Store query

R Delete query

I Insert in table
M Modify quzary

F First page
{cursor down> Next page
{cursor up> Previous page

L Last page

X eXit from NQL
<home> Enter command mode

S G G v g G G G e S S G S ey G e cem tem e Ve e |

Command mode !

A A A e i G i W T e i i e i

These commands can be used whenever the user wants to. The last sequence will
continue when the user enters <ecrd.

(%7

The Nord Qusry Language 59
Version 0.0

We want to write a query finding the name and address of all customers ordering
articles with price larger than 10000.

It 1is done in the following exemple. We enter the mode for defining a quary by
typing D. We will get the following picture on the screen.

Query Definition
Screen or Linear:

B S g g G e G Pmm fu S S e fmm b A b S fem S Smm G S S

The system asks if we want to enter the screen definition moede or the linear
definition mode.

We enter S to get into the Screen Query Definition mode.

€0 The Nord Query Language
Version 0.0

We want to see the commands availzble in the Screen Definition mode and enter H.

- — - o . o S . s s T i T S o o o . o . . .

Character HOME-mode EDIT-mode

N New skeleton

Vv New virtual skeleton

F First page

L Last page

E Exit

Hor ? Help

{ctrl-S> In/Qut of navigate In/Out of navigate
{cursor up> . Previous page Change navigate mode
{cursor down> Next page Change navigate mcde
{cursor right> Navigate right
<home> Move to last table

I
|

1
!
1
!
!
!
1
1
!
!
1
!
{cursor left> Navigate left !
!
1
1
!
I
[
!
!
1
1
!

S b G e Gmm G G S b S e S S S few G S e G e S e e s

Query Screen Definition Page 1 of 1

- —— T — - - —_

The Nord Query Language 61
Version 0.0 :

We want to enter the query commands for the first table. We want an empty
skeleton of ths CUSTOMER table on the screen. We enter N to get a new skeleton.
The system will ask for the table name.

= _— o B e A o e e o e e e 9 e et e e e em 1

Screen Query Definition Page 1 of 1 !

S e et G S G e G G fmm few S b Gem Sem sem dem Tem pew S

- ———— — - - B —— B e e T —

The cursor 1is positioned in the square and the system is waiting for a table
name. We type CUSTOMER and the skeleton will be written on the screen. After
that we can enter the query commands.

62

The Nord Query Language
Version 0.0

Screen Query Definition

! T - - -1
! 1 CUSTOMER ! CUSTNO ! NAME ! ADDRESS ! TELEPHONE !!
! ""———"._-::=:‘.:‘.'..-_-:-_-:::::::::::::::::::::‘::‘_'.:=:..‘-::::.‘-:::::::::::::::::::::::::::!!
! ! UN._NO ! PRINT. ! PRINT. ! 1
! ! ! ! ! 1
! !
! !
! !
! !
! !
! !
! !
! ¥ !
! !
! !
! !
! !
1 !
! !
! !
! - - m————————— !
!

!

I

A

' The Nord Query Language 63

Version 0.0

The same is done for the ORDERLINE and ARTICLE tables. We type N followed by
ORDERLINE. We get the skeleton printed on the screen and enter the commands.

| st A - e i B e R !
! 1 CUSTOMER ! CUSTNO ! NAME ! ADDRESS ! TELEPHONE !!
! e s = S o e e e e e e e e e S P e S E e)
! ! UN._NO ! PRINT. ! PRINT. ! "
! ! ! ! ! ¥
! !
! !
! e !
! { ORDERLINE ! CUSTNO ! ORDERNO ! ARTNAME ! QTY ! !
! e Tttt i it et !
! 1 _NO ! ! _ART ! ! !
1 1 o ' 1 1 1
! L
! !
! !
! !
! !
! !
! !
! !
T T e e e e e !
! Sereen Query Definition Page 1 of 1 !
] !

We type N followed by ARTICLE. We get the ARTICLE skeleton printed on the screen
and enter the commands.

| e e
! ! CUSTOMER ! CUSTNO ! NAME ! ADDRESS ! TELEPHONE !!
! 3:::::::::::::.._..:::::3::::'_"‘_"‘:'_':::’::::‘::‘_'::::‘_':'_':‘:::::::::::::::::::::::::::::! !
! ! UN._NO ! PRINT. ! PRINT ! 1
! ! ! ! ! ‘!
! !
1 1
P !
! | ORDERLINE ! CUSTNO ! ORDERNO ! ARTNAME ! QTY ! !
I e Tt bbb e il eied !
! ! _NO ! ! _ART ! ! !
1 ! ! 1]] !
] 1
1 1
SO —— !
! ' ARTICLE ! ARTNAME ! PRICE ! STOCKQTY ! !
I e i A A e P e el 1
! ! _ART ! >10000 ! ! !
!] ! 1 1 1
! !
st R S T - = 1
! Screen Query Definition Page 1 of 1 !
! !

e e e e e —— — —— ——— —— v

64 The Nord Query Language
; Version 0.0

The query is now finished. We type E, and the system will generate code for the
query. bWe are now in command mode. To execute the query we write E and the
System will ask for the name of the query to be executed and the wanted output
device. If we have a query with question elements, ths system will ask for input
device too.

Ve Gam em e e fmm G e em S bem b S b S rem e G e

______ - i et e e s B e - .

! Query Execution !
! Name: Output device: !

We type <er> two times and get the default values, the current query and
TERMINAL.
The system will write the answer on the screen.

€

1]

The Nord Query Language 65
Version 0.0

!
! 1 CUSTOMER ! NAME ! ADDRESS ! !
! e e e S by e e e !
! ! HANK WILSOMN ! LONDON ! !
! ! CATY MILLS ! LIVERPOOL ! !
! . ! ! !
! ! ! !
! ! ! ! !
! ! . ! . ! !
! ! ! % ! !
! . | B ! !
! ! L ! !
! ! M A !
! ! | . ! !
! ! | ! !
! ! . ! ! !
! ' ' ! v
! LI I’ s ! !
! ' . LI ! !
! ! | ! !
- - — - !
! Query Cutput Page 1 of 6 !
1 1

We type <cursor down> to get the next page.

1 -
t ! CUSTOMER ! NAME ! ADDRESS !

GEORGE WILSON ! MANCHESTER

S e tmm B b G e e B fem e fmm S e S S e

G m b S g S s S G fem G fem fem Sem b S

Query Output

Page 2 of 6

e b S e G bem dem S g G b s (e B bemm Gme G G G S G S G

We type <cursor down> in order to see the next page, <cursor up> to see the
previous page. F will give us the first page and L the last one.

If we have tables larger than the screen width, we have to use the horizontal
scrolling commands <cursor 1left> and <cursor right>. In order to see all

66 The Nord Query Language
: Version 0.0

attribute information in a table we had to sercll a page to get the wanted view.

We show an example using the linear user interface and demonstrate how user
defined forms can be used.

We want a query inserting customers into the data base. We enter the mode for
defining a query by typing D. The following will be written on the screen.

- - . e i o . e . e e e e S o e

S e G e G e G B G S b S =S e SeE Sew bem Sem B g

! Query Definition !
!' Screen or Linear: !

et e s e i S S e i e o

We type L in order to get into the Linear Query Definition mode .

¢
L}

[s

(\

The Nord CQuery Language
Versien 0.0

We can now enter the query. We return to the command mode entering <home)>.

CUSTNO: ?NO,
NAME: ?NAME,
ADDRESS: ?ADDR,
TELEPHONE: ?PHONE)
INPUTFORM
Insertion of customer

Name: NAME
Address: ?ADDR
ENDFORM

1
1
1
1
1
1
1
1
I
!
!
! Customer number: 7NO Telephone: ?PHONE
!
!
1
1
1
1
!
!
!
1
1

67

68 The Nord Query Language
. Version 0.0

The query is now finished. We type E in order to get back to command mode.

We enter E and the query will be executed. The system asks for qQu=ry name and
input and output file. We enter the defaults and get the following picture on
the screen.

Insertion of customer

Customer number: Telephone:
Name: SR TS e SR T e e b
- Address: SRR TR R R SasRRea

B G b G e Gm b Amm G Smw e SE S bmm e P fem sem e g

Query Execution !

B R s e G G . G fem few G G S S e e S S G G G S G

We enter the values and the query will continus.

)

& The MNord Query Language 69

[Version 0.0

;
We define a report writing information about all orders a customer has. We type
D and L in order to enter the Linear Query Definition mode. Then the report can
be written.
The system will scroll the picture when the page is full, i.e just like the TED
editor does it.

! BEGIN !
! CUSTOMER(CUSTNO: _NO, !
! NAME: ?NAME, !
! ADDRESS: 7?ADDR) !
! ORDERLINE (CUSTNO: _NO, !
! ARTNAME: _ART, !
! QTY: _ANT) !
! ARTICLE (ARTNAME: _ART, !
! PRICE: _PRICE) !
! _COST = _ANT #®# PRICE; !
! _TOTAL = SUM(_COST); 1
! REPORTFORM !
! "LD; !
! "FL= 'Total sum for all orders' DOUBLELINE. TOTAL ; !
! “LD; 1
1 “HL;]
! "DL= _ART _ANT _PRICE _COST ; !
! “LU; !
! “LU; '
! ENDFORM !
T !
! Linear Query Definition 1 -20 !
! 1

—- e e !

INPUTFORM

Report for finding all
orders belonging to a customer

Customer name: ?NAME
Customer address: ?ADDR

I
!

1

1

1

1

!

!

!

! ENDFORM
! END
!

!

1

I

1

1

!

1

I

!

70

We execute the report and get.

The Nord Query Language
Version 0.0

Sem M s e e GmE G S S fems Sem b bew G m G bem S b S

We enter name and address, and the query will

Report for finding all

orders belonging to a customer

Customer name: ... iiiiiieie i e
Customer address: v eennnnnnnns

Query Execution

be executed. The result will be

like this.

! ST . T
! Artname Qty Price Cost !
o — ———— —— !
! !
! BICYCLE 3 769,00 2.202,00 !
! FORD ESCORT 1 45,500, 00 136.500,00 !
! !
! . . !
! . ; !
! . : !
! 5 !
! . § . !
! P !
! : . !
! . . !
! i . !
! !
! !
! Total sum for all orders 546.567, 35 !
! !

o
o8]
09
®
——
o]
]

— we make bits for the future

NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE: 39 16 01 TELEX: 18661

