
A.S NORSK Sigfivfifii INDUSTRI __.._...._._

SIMULATOR AND DEBUGGER FOR INTEL-8030

January 1977 q
Alf-Martin Jensen

JLI'AULHLUH

VO1.02

Table

_| Introduction . . .

Expressions. . . .
Constants.
String Constants .
Symbols.
Simple Expressions
Instructions . . .

NM“)

l\1l\)

l'\.\
[\1'

O‘U'l

JrlN—I

Commands(A)

1/0 System

L1)R)l'\)l'\)_.\

ASCII Format I/O .
Binary Format I/O.N—I

Shift-E71:

U1

0 o

o I

o

o u

and

Operating Instructions

Breakpoint Expressions

The 1/0 System Commands.
Built—in Driver Routines

Calling Sequence of Driver

0

tun. LabL-UUULI‘. run ililbL-CUCU

9; Contents

Formal Definition of Expressions

Routines.

c t

t

I

o

O

I

o

o

a

I

I

o

u...

C‘

WWI—'NNR)!“

Qil‘aULItlUn H1114 ULDUUULH FUR LL'ILLLJ—UL‘DU Kraut. I

Introduction

The IhTEL—tOEO simulator and debugger for the h0RD-1 and
NOfiD-1C compUters is designed to be used for testing and
debugging programs written for the INTEL-8080 micro-
processor.

The debugger has acilities for examining and changing
the contents of memory, central registers and other variables
that are built into the system. All regiSters have mnemonic
names by which they may be accessed. Memory locations may also
be examined and changed in symbolic format (i.e. as
instructions). Program input to the simulator is in standard
INTEL hexadecimal format. If the symbol table was output to
the object file at assembly time, it is automatically loaded.
This allows the user the convenience of symbolic references to
memory locations, to a large degree eliminating the conStant
need for an up—to—date assembly listing with absolute
addresses. A particularly powerful debugging tool is the
conditional breakpoint facility which allows the user to
specify the exact condition under which he wants program
execution to terminate. Machine code is compiled for the
breakpoint expressions, so that even a complicated condition
will nOt result in an increase in execution time of more'than
5-10“. Another powerful feature is the program counter list.
This is a liSt that always contains the last 6H values of the
program counter, making it possible to trace program execution
backwards in time.

The 8080 memory area is allocated in one of two different
ways: in main memory or on a core image file. When allocated
in main memory the address space is limited to the size of the
memory buffer, but program execution is considerably faster
than if it is allocated on a file. The size of the memory
buffer iS‘determined at system generation time. If memory is
allocated on a core image file, the whole 16 bit address space
is available, but execution speed depends upon the behaviour
of the program and the number of file buffers available. Two
debugger commands makes it possible to change the mode of
operation whenever the user wishes to.

The I/O system makes it possible to simulate both
isolated and memory mapped I/C. Any set of 1/0 addresses may
be attached to any file, and the user can specify the driver
routine (written in NORD-1O code) which is to perform the I/O
operation. The driver routine is identified by its absolute
(KORE-10) address. A standard calling sequence is specified
for driver routines. This means that the user can write his
own driver routines and link them to the simulator. Standard
driver roucines which perform binary and ASCII format I/O are
built-in.

The program occupies about 11 K words of memory plus
memory buffer, file buffers and stack area. It runs under the
operating systems hORD-TSS and SiNTRAN-III without
modification.

l\)f\)

h)

[\‘l (N

SIMULATOR AND DEEUGGER FCR INTEL—€680 PAGE 2
V01.02 v

expressions
Constants

A constant is a string of digits and letters. The first
character must be numeric. if the last character of the string
is B, 0, C, D, H or S it is used as a radix specifier. The
letters have the following meaning: 5, binary; O or Q, octal;
D, decimal; H, hexadecimal; S, split octal. If no radix
specifier is present, the number is assumed to be represented
in the default radix. The default radix is normally lb
(hexadecimal), but may be changed by means of the ;C command
as described below. The number represented by the string is
evaluated and truncated to 16 bits.

String Constants

A string constant is an arbitrary string of ASCII
characters, other than carriage return, enclosed within single
quotes. If a single quote is to be included in the string, it
must be written as two single quotes. The maximum length of a
string constant is to Characters.

5 mbols

A symbol is a string of letters and digits. The first
charaCter must be alphabetic or the special character "?". In
symbols consisting of more than five characters, only the
first five are significant: thus, SYMEUL is equivalent to
SYMEO. Two Kinds 0: symbols are used in the debugger:
predefined symbols (e.g. register names) and variable symbols.
The latter are either loaded from the object input file or
assigned values by means of the assign command. Predefined
symbols are preceeded by a dot (".") and variable symbols by a
dollar sign ("$"). As an example .E refers to the B—register
of the tObO CPU while $5 refers to the variable symbol 5. To
ease the use of symbols the type specifier ("." or "3") may be
omitted as long as the symbol type can be determined from the
symbol name. For example, the symbol E usually refers to the
E-register, but if a variable symbol named B is defined one
must write .5 (and $B). In addition, all the operation codes
are built-in symbols, but they may only be used when typing in
expressions in symbolic form as explained in a later section.
Following is a list of all predefined symbols together with an
explanation of their meaning.

Symbol Description

bits)
bits)
bits)
bits)

E-register
C-register
D—register
b-registe
H-registe bits)
L-register bits)
Accumulator (5 bits)

C Double register LC (lb bits)
DE Double register DE (lb bits)
hL Double register EL (lb bits)
P Program counter (lb bits)
5 Stacx pointer (lb bits)

I"
I"

A/‘f‘A/‘h (rammoco:

fiFIF'UOn?

vo1.o2
' I '

PAGE 3

CC Condition codes (8 bits)
bit 0 : carry
bit 2 : parity
bit u : auxiliary carry
bit 6 : zero
bit 7 : sign

In Instruction register (6 bits)

I instruction counter (15 bits). The instruction counter
is updated only if the maximum instruction counter (MI)
is non—zero.

MI Maximum instruction count (15 bits). When zero the
instruction counter (I) is not to be updated. Otherwise
exeCUtion terminates when I becomes equal to MI.

SBASE The value of this symbol is the smallest address which
the debugger will ever attempt to print in symbolic
form.

MDISP This is the maximum displacement that will be printed
when an address is typed out in symbolic form. If the
displacement is greater than this vaue, the address is
printed in constant form. -

The symbol "." refers to the contents of the last opened
location. The contents of a register or a memory location is
specified by enclosing it in brackets. For exam 1e [129
denotes the contents of memory location 129 while 6% <n~ LP
denotes the contents of the P-register.

l'\)

113/165 9’

Simple Expressions and Breakpoint Ex ressions

Two kinds of expressions are used in the debugger: simple
expressions for use when examining and changing locations etc.
and breakpoint expressions for use when specifying breakpoint
conditions. breakpoint expressions are used only with the ;B
command and are logical expressions which return the value 0
(FALSE) or -1 (TRUE). Expressions are built up from operators
and operands. Operands may themselves be expressions if
enclosed within parentheses. The operators, in order of
decreasing priority, are listed below for both types of
expressions.

Simple Expressions

Priority Operation Description

1 * Multiplication
2 + Addition
2 - Subtraction
3 NOT One's Complement
A AND Arithmetic And
5 OR Arithmetic Or
5 XOR Arithmetic Exclusive Or

Breakpoint Expressions

Priority Operation Description

1 * Multiplication
2 + Addition
2 - Subtraction
3 CT One's Complement
H AND .Arithmetic And
5 OR Arithmetic Or
5 XOR Arithmetic Exclusive Or
o (<: Magnitude less than or equal
6 << Magnitude less than
t : Less than or equal
6 <> ' Not equal
6 < Less than
6 = Equal
6 >>: Magnitude greater than or equal
6 >: Greater than or equal
6 >> Magnitude greater than
t > Greater than
7 .N Logical Not
6 & Logical And
9 ! Logical Or

The operators with priority b are relational operators that
return either 0 (FALSE) or -1 (TRUE). The operators .N, & and
! can only be used with operands of this type. For example,

.Efi : 100 a [AMA <> 3 is a valid breakpoint expression while
[.P] :100 i 3 is nOt. The magnitude tests regard their
operands as 16 bit positive numbers while the other tests
regard them as 16 bit two‘s complement numbers.

‘0

K

/.

IX)

\J".

wadovuaanvn any “Hunt-k...“ hull .LusLuu—uuuu Lindy _.r

v01.02 Dace 5—

Instructions

lnstruCtions can be typed in to the debugger in symbolic
form. All operation codes that represent machine instrtions
(no directives) are recognized. Register operands can only be
simple registers or register pair names, while addresses and
immediate operands can be simple expressions.

Formal Definition pi The Syntax g; Exoressions

The following is a formal definition of the syntax of
expressions. The symbol "/" means 9; and "3" means arbitrary
number 9;. Brackets enclose optional items, parentheses
enclose groups of items and double quotes enclose literals.
Bzexpr means breakpoint expression and szexpr means simple
expression.

s:expr= conj $(("Ofi"/ "XOR") conj);
conj: neg $("AND" neg);
neg: ["NOT") sum;
sum: term $(("+"/ "-") term);
term: prim $("*" prim);
prim: "(IV Szexpr ")II/

"E" regsym/ szexpr "J"/
["+"/ "-"J (const/ symbol)/ ".";

bzexpr: lzalt $("!" lzalt);
lzalt= lzneg $(”&" lzneg);
l:neg= [".N"] rel; .
rel: "(" bzexpr ")"/

azexpr relop azexpr;
Pelop"

H<<._.Il/ "((II/ "(:11/ l0<>ll/ "('I/

ll:ll/ |l>>:ll/ 1|):ll/ H)>ll/
ll)“;

azexpr: a:alt $(("Oh"/ "XCR") a:alt);
azaltz azneg $("AND" azneg);
a:neg: ["NOT"] a:sum
a:sum: a:term $(("+"/ "-") azterm);
a:term: azprim $("*" a:prim);
azprim: “(" azexpr ")"/

"E" regsym/ azexpr "]"/
["+"/ ":"] (const/ symbol);

regsym: (any of the symbols defined in section 2>;
symbol: ("?"/ alpha) $4 (alpna/ num);
const: bzconst/ ozconst/ dzconst/

n:const/ azconst/ s:const;
b:const: 1$ ("OH/ "1") "B";
ozcon3t= 1$ ozdigit ("C"/ "0");
d:const: 1$ num ["D"];
nzconstz 1$ (num/ "A"/ "E"/ / ”F") "H";
a:const: "'" 1$2 (<any cheracter>-"'"/ """) "'";
szconSt: [byte] byte "3";
byte: CC("C"/ "1"/ "2"/ "3")3 ozdigit] ozdigit;
ozdigit: "O"/ "1"/ /"7";
alpha: "A"/ "B"/ /"z";
num= "O"/ "1"/ /"9";

(,0

SIMULAIOR AND DbbUGGhR FOR INTEL-8080 PAGE 6
V01.C2 -

Commands

This section describes all the available debugger
commands. The symbols a, b and c denotes simple expressions,
or means carriage return and If means line feed. Addresses may
be printed in one of two different formats: as a constant
represented in the default radix or as a symbol name (only
labels) plus a displacement. Two parameters control the
symbolic printout format: the predefined symbols SBASE and
MDlsP. SBASE is the smallest address which the debugger will
attempt to convert to symbolic form. MDISP is the maximum
displacement that will be printed. If the displacement is
greater than this value, the address is printed in constant
form. SBASE and MDISP are initialized to zero and 1770
respectively, but may be changed by the user. It is assumed
that addresses are printed in constant form when not otherwise
stated. In the examples the default radix is assumed to be 16
and user input is underlined.

Command Description

expression : Display value of 'expression' in the
default radix. Examples:

2+”; 6
gym*ma:e

expression / Examine item specified by
'expression'. The contents of the
item is displayed as a constant
represented in the default radix; If
expression is null, the last opened
item is reopened. Examples:

"U / 00 A
C C"

(,0
J)!a: \
I\ Ch

expression \ Examine memory location specified by
'expression' in symbolic form. If the
memory location contains a legal
instruction it is disassembled and
typed out. Otherwise it is printed as
a constant represented in the default
radix. Addresses and 16-bit immediate
operands are converted to symbolic
form. If expression is null, the last
opened location is reopened.
examples:

22 LDA EUFF+2
2563 hov a,c

expression " Examine string. The memory location
specified by 'expression' and the
following locations are typed out as
an ASCII string. The string is
terminated by any non-printable
character other than carriage return
or line feed. In order to avoid large

ULlAULaI‘. 8U“

V01.02
nnu UhLJUhUL-H

expression, a "

line feed

x terminator

cult .LIILLLJ-v—‘U au I

FAG: 7

amounts of output if the locations do
not contain a string terminated in
the manner described above, typeout
is terminated when 72 characters
without any intervening carriage
returns have been printed.

This command is similar to the
command described above, except that
the value of a specifies the
terminating character. examples:

STR" THIS STRING IS TYPED OUT
STR,'Y'" THIS STRING 18 T

Examine next sequential item. The
output produced by this command is
carriage return, location or name of
item,/, contents of item. If the
opened item was a memory location,
the address is printed in constant
form if it was opende by / and in
symbolic form if it was opened by\ .
If the last item was printed in
symbblic form, the address is
incremented by the length of the
printed instruction (1, 2 or 3
bytes). Examples: -

£1 05 ii

iii 06 l£
0038/ 03 I;
0030/ 00
3A1 NVI 8,03 _:
co3c\ NOP

Examine previous item. This command
is similar to line feed but is
illegal if the item was opened by \ .
Examples:

3A/ 06 1
39/ 05
Deposit value. After an item has been
opened with /,\ , ", . or line feed,
a new value may be deposited by
typing an expression (x) followed by
a terminator. The item to be
deposited may be a simple expression,
a string constant or an instruction
in symbolic format. The terminator
may be carriage return, line feed or
". Examples:

BL 031? 3:3 an
g; 0008
24/ 08 g l:
35/ 17 1
Eu/ c9

wfiCIVHIDLU|| nu...»

V01.02

reference = expresion or

C-c string cr

:9

;A

interval;A a,

uuuuuuuAn

file or

n «ta-Luna vvvv ...-.—- _

PAse‘Y.

:A/ 06 MVI c,u _§
003c\ N 9
fig; mv1 c,cu

Assignment. The value of the
expression on the right side of the
equal sign is assigned to the
reference on the left. The reference
can be a variable symbol or a
reference to a register or a memory
location. Examples:

ABC:3 (or §ABC:=), assign the value 3
to the symbol ABC. CP]=5 (or £4?]=5),
set the P-register to 5. [IP1+21=L21,
set the memory location addressed by
the P-register plus two to the
contents of memory location 2.

Execute SINTRAN-III command. The
string is sent to the SINTRAN-III
comand processor for execution.

Return to monitor.

Examine all I/O assignments.

I/O assignment. The specified file is
attached to all I/C devices with
addresses in the specified interval.
The 1/0 operation is to be performed
by a driver rOUtine located at the
_absolute (NORDnlc) address a. If a is
less than 6” it specifies one of the
builtuin driver routines. Read the
section describing the I/O system for
further information.

Reset all breakpoints currently
defined. -

Reset breakpoint a (1<:a<=63).

Define breakpoint a (1<=a<=63). The
string must contain a valid
breakpoint expression. The expression
may be followed by a comment string
which consists of a semicolon
followed by an arbitrary string. The
simulator will stop executing
instructions whenever the value of
any breakpoint expression becomes
TRUE. Each breakpoint is tested
before every instruction.

Change default radix to 16.

Change default radix to a (2<:a<:36).

Change default radix to split octal.

V01.02

interval;J

W

s1,sZ,..,sn;K

;L

03L

a,b;N

;0 file name or

PA6£ 6;

Dump register block. The registers in
the register block, the stack
pointer, the condition codes and the
contents of the memory location
currently addressed by HL are printed
on the terminal.

Examine all breakpoints currently
defined.

Examine breakpoint a (1<:a<=63).

Start 6080 CPU at the current value
of the program counter.

Start 8080 CPU at the address
specified by a.

Delete all I/O assignments.

Delete the I/O asignment specified by
'interval'. The exact interval must
be specified. Read the section
describing the I/O system for further
information.

Clear the debugger's variable symbol
table.

Kill symbols. The symbols s1,sZ,..,sn
are removed from the debugger's
variable symbol table.

List the program counter list. The
simulator saves the addresses of
executed instructions in a 6” word
circular list. The ;L command prints
these addresses on the terminal. The
addresses of the most recently
executed instructions are displayed
first. This facility is useful for
tracing a program backwards in time.

List a entries in the program counter
list.

Clear the program counter list.

This command rints the contents of
the memory locations between the
addresses a and b in symbolic format.
The addresses of the locations are
printed in symbolic form.

Open core image file. This command
specifies that 8080 memory resides on
a core image file. The entire address
space (16 bits) is available for
program and data storage. The default
file type of the file is :COHE.

SIMULAICR AND DtGGhR FOR INTLL-ECBC PAGE 10
V01.C2 '

3P _ Proceed with execution (after a
break). This command is similar to ;G
except that the instruction counter
and status information related to
breakpoints are not reset.

;0 This command specifies that 8080
memory resides in a memory buffer.
The available address space is
determined at system generation time.
The currently open core image file is
closed. The debugger is initially in
this mode.

;R Reset simulator and debugger. Default
radix is set to 16, the variable
symbol table is cleared, the program
counter list is cleared, all
breakpoints are reset, the
instruction counter and the maximum
instruction counter are set to zero,
SBASE is set to zero, MDISP is set to
1770, and the program counter
(P-register) is set to zero.

:5 ' Execute one instruction.

a;S Execute a instructions, breakpoints
are ignored.

a,b;S Execute a instructions starting at
the address specified by b. Break
points are ignored.

;T Print all symbols in the variable
symbol table on the terminal.

:U Output generatora When ;U is typed,
. the following parameters are .asked

for:

FORMAT (HEX, BPNF)
INPUT FILE
OUTPUT FILE
LOWER BOUND
UPPER BOUND

and when finished:

MORE (Y OH N)

If an input file is specified, the
contents of this file is read into
memory, otherwise the contents of
memory is not altered. The input file
must contain code in hexadecimal
format and the default file type is
:HEX. The output file will contain
the memory area specified by the
lower and upper bounds, represented
in the desired _format. The default

\J

SIHULATOR AND DhBUGGER FOR INTEL-bOBC PAGE 11
V01.02

file type of the output file is :BPNF
if the output format is BPNF and :HEX
if the output format is hexadecimal.
If the question MORE is answered- by
Y, the lower and upper bounds are
asked for again and more output may
be written onto the same file. If
hexadecimal format is specified the
symbols in the variable symbol table
are also output.

0;U This command is similar to ;U except
that the symbol table is not output
if hexadecimal format is specified.

a,b;h cr This command prints the contents of
the memory locations between the
limits a and b. If an area of length
greater than or equal to four
contains the same value, it is
printed in a compressed format. For
example, if location BCCH and upwards
contais 10H, 20H, 0, C, O, O, 0, 30H,
HOB etc. the command 300H,308H;w will
produce the following output.

OECO 10
0301 20
0302 CC

0

0306 to
0307 30
0306 no

a,b;w c or This command searches memory between
the limits a and b for locations
whose contents is c. The address and
contents of all such locations are
typed out. The format is the.same as
described above.

|-< "") F1 0—4 (D :3 Eu :3 (D O "S Load program. The specified file must
contain code in hexadecimal format.
The contents of this file is loaded
into memory. The symbol table (if
any) is also loaded. Symbols that
already exists in the debugger's
variable symbol table are redefined,
while new entries are created for new
symbols. The default file type is
:HEX.

a,b;z cr This command sets to zero all memory
locations in the interval a through
b.

a,b;z c or This command sets all memory
locations in the interval a through b
to the value of c.

If:

bihULATCH AND DtUUbH b lNlLL-CUCU race I4
VOLCZ Pfiéé’7‘ol

The 1/0 System
H I: (1) 1/0 System Commands

I/O assignments are specified with the ;A command which
has the following format:

address interval;A driver routine, file name

The address interval consists of one expression or two
expressions separated by comma, the former specifying an
interval that consists of only one address. The first
expression must be preceeded by a prefix that specifies the
type of 1/0 address. If the second expression is preceeded by
a prefix it muSt be the same as the first one. The legal
prefixes are:

I Isolated I/O, input (IN instruction)
0 Isolated l/O, output (OUT instruction)

MI lemory mapped l/O, input (load instructions)
MO Memory mapped l/C, output (store instructions)

Intervals with different prefixes can overlap while those with
the same prefix can not. If the specified interval is already
assigned, its driver routine and file assignments are changed
to the new value.

The driver routine is identified by its absolute (NORD-10)
address. If no driver routine, or zero, is specified, the
current value of the address is not changed. If no driver
rOUtine, or zero, is specified and the interval is a new one,
the ASCII format l/O driver routine is assigned by default. If
the address is less than on it specifies one of the built-in
driver routines. The built-in driver routines and the calling
sequence of driver routines are described below.

The file name specifies a file that can be used in 1/0
operations on devices with addresses in the specified
interval.

The 1/0 assignments may be examined by typing ;A without
any arguments. The 1/0 table is printed on the terminal in the
following format:

prefix low address, high address file number driver routine

The 1/0 addresses are printed in the default radix while' the
file number and the address of the driver routine are always
printed in octal.

To cancel an I/O assignment the command interval;J is
used. The exact interval must be specified. ;J without any
arguments cancels all I/O assignments. ‘

The 1/0 table is not initialized when the simulator is
e" This makes it possible to create a system with
n

5 art d.
perms ent assignments by executing the SINTRAN-III command
DUEP. The start and restart addresses are specified on the
system tape.

R)

R)

h) .

SIMULATOR AND DtGGLR FOR INTEL-8060 PAGL 13
V01.02

It an IN or OUT instruction, for which no I/O assignment
exiSts, is executed, the ASCII format driver routine is used.

Built-in Driver Routines

Two built-in driver routines exist. These are specified
by 1 for ASCII format 1/0 and 2 for binary format.

ASCII Format ;1_

When the simulator encounters an input instruction the
aetion taken depends on whether or not the specified file is
the terminal. If the file is the terminal the driver routine
outputs the current value of the program counter and the I/O
address preceeded by a prefix. It then requests input from the
user. For example if the instruction 'IN 23H' is stored in
location 303B, the following output is produced:

P=0303 I 0023:

The user is now expected to type the correct input value,
which may be an expression as defined in section 3. If ctrl-L
is typed, program execution terminates and control returns to
the debugger.

If the file is any file other than the terminal the driver
routine reads the next item from a list of values stored on
this file. These values may be expressions and they may be
separated by space, comma or carriage return. As an example
the following is a valid list of values:

1 5 23C, 13Q+25D cr
1 H 2, 5 cr®~J

If an error occurs or if end-of-file is reached, an error
message is printed and control returns to the debugger.

When an output instruction is encountered the driver
routine outputs the current value of the program counter, the
I/O address preceeded by a prefix and the output value. For
example if the instruction 'OUT MEH' is stored in location
9025 and the A—register contains 22H the following is written
onto the assigned file:

P=O902 O 00u6:22

The default file for ASCII format I/O is the terminal.

Binary Format 1/0

In binary mode bytes are transferred directly from the
A—register to the file or from the file to the A-register.
There is no default file for binary I/O.

U!

étLATOH AND DtGGbH run iNThL-EOEO PAUL I4
VC1.C2

Calling Sequence 9; Driver Routines

At entry:

T : bit 15
bit 1M
bits 7-0

if isolated, 1 if memory
if input, 1 if output
file number
0 if no file assigned

data if output operation
pointer to a location which contains
the address of the memory access routine
the I/C address

II

II

II

II

CO

><

03:) Ilr

Return: (failure)

A = 0 if return to debugger
(>0 if print message addressed by A

and return to debugger

Skip return: (success)

A = data if input operation

The calling sequence of the memory access routine:

At entry:

T = 0 if read, 1 if write
A = data if write
X : memory address

1‘ eturn: (failure)

skip return: (success)

A : data if read

\J‘I

SIMULATOR AND DEEUGGER FOR INTEL-8080 PAGE 15
VO1.02

Operating Instructions

To start the simulator from NOfiD-TSS or SINTRAN—III one
types the following.

éSIM-BOSO g;

INTEL-8080 SIMULATOR vo1.o2

The debugger is now ready to accept commands. To return to
monitor type i9-

(f :3" (D

