NORD COMPUTER SYSTEMS

CIRCUIT DIAGRAM S YMB OLS
$C I R C U I T D I A G R A M$ S Y M B OLS

1. INTRODUCTION

The paragraphs below describe the rules used in obtaining logic expressions and definitions of logic signals and the symbols used to represent logic elements in our circuit diagrams. The system is based on elements of the NAND/NOR family, which is now most common in use. It is also supposed to be NPN elements with positive supply voltage.

2. LOGIC EXPRESSIONS

The two states of the binary variable as represented by a voltage in the circuit system are defined as follows:

$$
\begin{array}{ll}
\text { State } 0: & V<0,4 \text { volt or "low" } \\
\text { State } 1: & V>2,4 \text { volt or "high" } \\
\text { Undefined : } & 0,4 \text { volt }<V<2,4 \text { volt }
\end{array}
$$

The state of a variable under given conditions is indicated by index 0 or 1 respectively. Index 1 may be omitted, so that A and A_{1} are identical.

Example 1

ADD 0_{0} : The signal is low when the instruction ADD is present (decoded from the instruction register).

Example 2

$A D D=I R 15{ }_{0} 14,13,120110$

The signal ADD is decoded from the instruction register, IR, bits 11 through 15 and is "true" when IR15=IR12=IR11=0 and IR14=IR13=1.

The symbols used for the logic operations "AND" and "OR" are the standard arithmetic multiplication and addition symbols, including the rule for omitting the multiplication sign.

Example 3

$$
\begin{aligned}
& A \cdot B_{0} \cdot C \text { or } A_{1} \cdot B_{0} \cdot C_{1} \text { or } A_{1} B_{0} C_{1} \\
& D+E+F_{0} \text { or } D_{1}+E_{1}+F_{0} \\
& \left(A_{0} B_{1}+A_{1} B_{0}\right)\left(C_{0} D_{1}+C_{1} D_{0}\right)
\end{aligned}
$$

The "name" of triggering signals should be chosen to reflect the active state of that signal, which means that a signal which is active when it is high should have index 1 and a signal which is quiescent when it is high should have index 0 .

Example 4

The clock input to a SN7474 flip-flop is requiring a positive pulse and may be called ASI.
The clear input to the same flip-flop requires a negative going pulse and should be labelled AS2 ${ }_{0}$.

3. LOGIC ELEMENTS

The symbols used for logic elements are a resust from several years of experience in design and manufacture og digital systems. The symbol for a "NAND" gate is shown as such, and no attempt is made to reduce the diagram to a system containing the basic family of AND/OR/ INVERT elements. A "NAND" element is a "NAND" element, and one single element is frequently used for both "AND" and "OR" functions simultanously.

3-input NAND

2-input NOR

The selected symbols shown above are used for the basic logic elements, NAND and NOR, which together make a complete logic family. The symbols are chosen for compactness and ease of drawing, and consist of straight lines only. The logic diagrams of course become completely circuit oriented, and corresponds one to one with the actual hardware.
4. CIRCUIT DIAGRAMS

All circuit elements are mounted on printed circuit boards. The position of the circuit on this board is shown by the coordinates of the circuit, column first, identified by a number and then row, identified by one of the letters A, B, C or D. These coordinates together with the pin number of the circuit package are shown in the logic diagrams.

Input terminals are if possible to the left and output to the right.
The distance between input lines should be 5 mm . If an unused input terminal
is connected to a used terminal this should be shown in the diagram. Circled numbers represent card terminals.

Instead of connecting an output signal to another circuit or an output terminal the signal line may be terminated in a diamond head and given a name. This name usually occurs as input signal other places in the diagram.

Example

Pin 11 of the circuit in position $2 B$ is referred to as 2Bll.
5. SYMBOLS FOR TI SERIES 74N CIRCUITS

The integrated circuit family used by NDE is the Texas Instrument Series 74 N , and a complete list of the standard symbol (TI's) and NDE's corresponding symbol is given below.
5.17400

Quadruple 2-input NAND gate

5.27401

Quadruple 2-input NAND gate with open collector output

5.37402

Quadruple 2-input NOR gate

5.47403

Quadruple 2-input NAND gate with open collector output

5.57404

Hex inverter

5.67405

Hex inverter with open collector output

5.77408

Quadruple 2-input AND gate

$5.8 \quad 7410$
Triple 3-input NAND gate

$5.9 \quad 74 \mathrm{HIl}$
Triple 3-input AND gate

5.107413

Dual NAND Schmitt triggers

5.117420

Dual 4-input NAND gate

5.127425

Dual 4-input NOR gate with strobe

5.137427

Triple 3-input NOR gate

5.147430

8-input NAND gate

5.157432

Quadruple 2-input $O R$ gate

5.167437

Quadruple 2-input NAND buffer

5.177438

Quadruple 2-input NAND buffer (Open collector)

5.187440

Dual 4-input NAND buffer

5.197442

4-1ine-to-10-1ine decoders (1-of-10)

$5.207450-7451-7460$
 2×2 NAND-AND

The four-input gates are 7460 circuits
5.217453-7454
4×2 NAND-AND

5.2274 H 54

Expandable 2-2-2-3 - input AND-OR-invert gates

5.2374 S 64

4-2-3-2 - input AND-OR-invert gates

5.247470

J - K flip-flop

The AND gate oposite the 0 output is equal to K-inputs. The preset and clear input is pointing to that side of the flip-flop which becomes "high" for a corresponding "low" pulse. See 5.21
5.257472

J - K master-slave fip-flop

5.267473

Dual J - K master-slave flip-flop

5.277474

Dual D-type edge-triggered flip-flop

5.287475

Quadruple bistable latch

The clock input on pins 4 and 13
5.297483

4-bits binary•full-adder

5.307486

Quadruple 2-input exclusive-OR element

5.317493

4-bit binary counter

5.327494

4-bit shift register
5.337495

4-bit right-shift, left-shift register

Mode Control: $0=$ Shift serial
1 = Shift parallell
5.3474107

Dual J-K Master-Slave flip-flop

5.3574121

Monostable multivibrator

$$
\begin{aligned}
& T \approx 0,7 \cdot R C \\
& \operatorname{Rmin}=1.4 \mathrm{k} \Omega \\
& \operatorname{Rmax}=40 \mathrm{k} \Omega
\end{aligned}
$$

5.3674123

Retriggerable monostable multivibrator with clear

$$
\begin{aligned}
& \mathrm{T} \approx 0,32 \cdot \mathrm{RC} \\
& \mathrm{Rmin}=5 \mathrm{k} \Omega \\
& \operatorname{Rmax}=50 \mathrm{k} \Omega
\end{aligned}
$$

5.3774151

Data selector/'multiplexer

5.3874153

Dual 4-line-to-l-line data selector/multiplexer
(A)

5.3974154

4-1ine-to-16-1ine decoder/ demultiplexer

5.4074155

Dual 2-1ine-to-4-1ine decoder/ demultiplexer
(A)
(B) $\quad 3 \quad 13$

74156 is equal to 74155

5.4174157

Quadruple 2-1ine-to-1-1ine

5.4274161

Synchronous 4-bit counter

5.4374170

4-by-4 register file

5.4474174

Hex D-flip-flop

5.4574181

Arithmetic logic unit/function generator

5.4674182

Look-ahead carry generator

5.4774191

Synchronous up/down counter

5.4874198

8-bit shift register

6. DUAL LINE RECEIVERS AND DRIVERS
6.17507

6.27508 (open collector)

6.3 7509-7510

7. INTEL
7.13101 (equal to Texas no. 7489) 64-bit read/write memory

8. MOTOROLA MRTL INTERGRATED CIRCUITS WITH POSITIV LOGIC USED:

8.1 MC889P

Hex-inverter

8.2 MC834P
 Two-input NOR

