
NORD-IZ
REFERENCE MANUAL

A/S NORSK DATA-ELEKTRONIKK

1w ;0.. 0.. .00...
g‘Es i _

NORD-IZ
REFERENCE MANUAL

iii

TABLE OF CONTENTS

+i+

Chapters :

INTRODUCTION

G ene ral Characteristic s
Pe riphe ral Equipment

. 3 Softwarev—IHH

r—J

[\jb—I

SYSTEM ARCIIITECTURE

Introduction
Central Processor

. 1 Indicators
Instruction and Data Formats

Instruction Formats
Data Formats
Single Bit
8—bit Byte
16—bit Word
32-bit Double Word
48-bit Floating Point Word
Interrupt System

NNNNNNH

NNMMNNNNNNNNN

UIrF‘CONH

pmdocococccow

wmmH

INSTRUCTION REPERTOIRE

Memory Reference Instructions
Addressing Structure
Store Instructions
Load Instructions
Arithmetical and Logical Instructions
Sequencing Instructions
Byte Instructions
Register Block Instructions
Operate Instructions

\‘IC‘JUIQCJNH

Floating Point Conversion Instructions
Shift Instructions
Register Operations
ROP Register Operation Instructions
EXTended Register Operation Instructions

. 3 Inter Level Register Instructions
Skip Instructions
Argument Instructions
Bit Operation Instructions

[\jt—I

l—* Bit Skip Instructions
Bit Setting Instructions

. 3 One Bit Accumulator Instructions
Accumulator Transfer Instruction

.1 Transfer to A register

. 2 Transfer from A registerCOOS/0.7930003

wwwwwwwww

wwwoocowccoamw

[\D

«queues:

moiphwwwwmh‘

Page:

r—H—w—l

r—l

Il mun—I

r—A

NNNNNNKPN

NNNNN

LDCOQK'IGDCDCEOE

U'lxfioal—‘H

iv

Chapte rs: Page

3. 3 Input/Output Control Instructions 3-52
3. 3. 1 Recommended Device Addresses 3—52
3. 3. 2 Format of Status and Control Word 3—56
3. 4 System Control Instructions 3—57

3. 4, 1 Interrupt Control Instructions 3—57
3. 4. 2 Monitor Call Instruction 3-60
3. 4. 3 Wait or give up Priority 3—61
3. 5 Customer Specified Instructions 3—62

THE INPUT/OUTPUT SYSTEM

Input/Output Hardware
P—l General Description

. 2 Vectored Interrupt Identification
Input/Output Programming

terse

are

e
e

NNN

Nl—‘H

l—‘

enum-

>J|>>4>H>H>H>~

U‘IU'IHA

rP-NH

F—‘H

. 1 Programming Examples -

. 2 Input/Output Interrupt Programming —

. 3 Design of an Input/Output Handler Routine -

5 THE INTERRUPT SYSTEM 5-1

5.1 Control of Program Levels 5—2

5.1.1 Program Level Activation 5-4
5. 2 Initialization of Interrupt System 5-4
5. 3 Interrupt Program Organization 5—5
5. 4 Internal Interrupts 5-6

5. 4. 1 Monitor Call Interrupt 5—6
5. 5 Vectored Interrupts 5-7

6 CONTROL PANEL 6—1

6.1 NORD—12 Control Panel 6—1

6.1. 1 Power On/Off 6—1
6.1.2 Master Clear 6—1
6.1. 3 Restart 6—2
6. 1 . 4 -Load 6—2
6. 1 . 5 Continue 6-2
6. 1. 6 St0p 6-2

7 NORD—lO OPERATOR'S PANEL 7—1

7. 1 Panel Elements 7-1
7. 2 18-bit Switch Register 7—1
7. 3 18-bit Light emitting Diode Register 7-1
7. 4 16 Selector Pushbuttons and 16 associated Light

emitting Diodes 7—1
7. 5 Display Level Select 7—3

Chap ters:

C)

qqqqq-qqq-q-q-q

4

H10®.<l®tflr¥>~wbol—l
QQCDOJCBCDCECECDCD

03403019m

oomoooooo

oooooooooooooooooooooo

mmmmm

NHHI—Ir—tl—Ar—H—Ii—a

L—l

CHhPDJNH

APPENDIX
APPENDIX
APPENDIX

Control Buttons

Maste r Clear
Restart
Load
Decode Address

, Set Address
Deposit
Enter Register
Single Instruction
Continue
Stop
Mode Indicators

OPERATOR'S COMMUNICATION

Functions

Start a Program
Memory Examine
Memory Deposit
Register Examine
Internal Register Examine
Current Location Counter
Break Function
Bank Number
Bootstrap Loaders

Octal Format Load
Binary Format Load
Mass Storage Load
Automatic Load Descriptor
Examples

A
B
C

Page

axiqqqqqqq-qqq

ll

moamlpppr>rbu>wwww

10440301

O‘lUesrPWWC/OMNN

H

ooocoooooo

oooooooooooooooooooooo

|

|

I

I

OLTJ> Hb—‘b—l

1.

1—1

INTRODUCTION

General Characteristics

The NORD-lZ computer system is a compact mini-computer system
with an unusually large instruction set.

The NORD—12 belongs to the NORD—IO family of 16—bit computers where
program compatibility with the NORD-lO is assured by the fact that both
the instruction set and the Read Only Memory which controls the instruc-
tion execution is common to both the NORD—lO and the NORD-12'. For
readers familiar with the NORD-IO, we recommend you read Appendix C
which lists all differences between NORD-12 and NORD-lO.

A basic instruction set is common to all NORD—12 machines, and
this set is highly optimized to produce effective code; hardware
floating point arithmetic is standard as are the instructions to mani—
pulate individual bits at high speed.

The register structure and addressing scheme facilitate the proces-
sing of structured data with high efficiency.

The NORD-12 is micro-programmed, and all NORD-lZ instructions
are executed by means of a micro-program located in a very fast (65 ns)
read only memory. Micro—programming gives the NORD-lZ computer
flexibility and a very large growth potential. New instructions may be
added to the NORD-lz, and instructions for special applications may be
optimized for a particular use.

NORD-12 provides up to 1024 customer-specified instructions. These
instructions are micro—programmed in a programmable read—only
memory, which is added onto the standard read—only memory.

Micro—programming in NORD-12 is also used to control the operator's
panel and to perform operator communication between the operator and
the console Teletype or display.

Bootstrap loaders both for character—oriented devices and mass
storage devices are also controlled by a micro-program.

The NORD—lZ uses MOS type memories with memory size from 4K to 64K
words; memory increment size is 4K. Memory parity is an option in
which case the word—length is 18 bits with one parity bit for each 8-bit
byte.

Another option is a power fail/auto restart system which also provides
30 minutes of memory stand—by power.

The NORD—12 standard processor executes at a speed of 490 ns
for each micro-instruction. This manual gives complete timing
figures for all instructions.

1 .

1 .

1—2

The input/output and interrupt systems of NORD-i 2 are designed for
case of use and very high speed. NORD—IZ has 16 program levels
each with its own set of registers, making possible a complete con~
text switching from one program level to another in only 2. 0 as.
In addition 2048 vectored priority input/output interrupts are standard.

Peripheral Equipment

A complete range of peripheral equipment is available for the NORD—12.
The 1/0 system is common for both the NORD—12 and the NORD—lO,
and all interfaces for the NORD-lO are immediately available also for
the NORD—12. When upgrading from a NORD—lZ to a NORD-lO all
peripherals and interfaces may be moved from the NORD—12 to the
NORD—lO.

Most peripherals to the NORD—12 are offered with a range of different
performances. The range of peripherals include several types of
console typewriters, teletypes or display terminals, paper tape equip-
ment, line printers, card equipment, high speed electrostatic printer/
plotters, magnetic cassette tape, 9-track magnetic: tape also including
high performance 90 ips 1600 bpi tape, fixed head drums, moving
head cartridge disc, A/D - D/A equipment, transmission line inter-
faces and a CAMAC interface.

S o f t w a r e

Based on 7 years of experience with NORD-l and NORD—lO a wide range
of system software is available including a SINTRAN III/12 operating
system. -

For further information, please contact A/S Norsk Data—Elektronikk's
Sales Offices.

2. 1

2-1

SYSTEM ARCHITECTURE

Introduction

The NORD—I 2 in its minimum size has 4K MOS memory, a Teletype
interface and a small control panel. From this initial configuration
it is possible to expand to a very large computer system.

1 11 12 13 32
KNORD—12 CPU Ilwos

l—Teletype Interface

Optional Paper Tape Reader
Interface

The NORD—12 initial configuration provides 20 unused slots, :1 slot may
either be used for a 4K memory module (max 64K) or for an I/O inter—
face (max 12 interfaces in the CPU crate).

If more 1/0 slots are required an External Bus Driver which takes 3 slots in the
CPU crate, provides a full NORD-lO/NORD—lZ bus on differential line
driver/line receiver signal levels.

This I/O bus may then be connected to one or more of the following units:

1. Bus Controller, which provides core address registers for
DMA type interfaces, and another 8 or 16 1/0 slots.

2. Bus Switch, making it possible to switch peripherals
between different NORD—lO/NORD—IZ computers.

3. CAMAC crate controller, providing access to the wide
range of CAMAC equipment available.

Figure 2. 1: Example of a larger system.

1 _ 11 21 32
NORD-12 CPU 4K MOS Memory

—+l

H0013

emu

[Bea

Janna

sng

eoegaeml

.Iepeeg

p.193

eoegaeiul

edmeIel

eoegaemI

Jeiumd

sun

eoegaelm

Jepeeg

edel,

eoegaeiul

qound

edel

l 8 9 16 32
Bus 5 unused DMA
Controller I/O slots Interface

j—l’rint Plot DMA
Interface

Magnetic Tape
Interface

In this example a 48K with (i interfaces for programmed I/O and
3 DMA interfaces for a 10 Mbyte Cartridge disc (expandable to 40
Mbytes), a 90 ips 1600 bpi Magnetic tape and a 1000 lines/min
clextrostatic printer/plotter will fit into two 7" high standard 19"
crates.

2. Central Processor

2—3

The connection of main modules in the CPU is through the common
data bus. BD. and common address bus.
For simplicity control lines and inter—register buses are omitted in
this figure.

Me mo ry
modules

Input/Output
interface 5

BA. as shown in Figure 2.2.

Into 1‘ rupt
syslc m

Bl)

BA

Figure 2.2: NORD-12 CPU Bus Structure

Ope rntor‘ 5
panel

Control
section

Registers,
Arithmetic,

A more detailed diagram of the control section and register block
is given in Figure 2.3.

2—4

Sum

l

A ' I ' .
16x10 7 lb or 32 b1t

= ’ Registers B Arithmetic

l
Micro Inst. Register

1 W
Main Inst. Format I Timing
ciste r Convert Control

A
A ddre s s
Decoder

l
Micro Prog. 1K - 32 bit

Counter R. O. M

Figure 2. 3 CPU Block Diagram

The register block contains 8 general registers for each program
level and two scratch registers for each level to be used by the
micro—processor.

The arithmetic unit is normally operated in a 16-bit format. The
32—bit format is used for floating point and double precision Operations.
The arithmetic unit contains the necessary buffer registers to do the
complete inner loop in the floating point micro—programs using only
490 ns. 32-bit format is achieved by two 16 bit operations in sequence.

Some instructions in the NORD-12 instruction set are general two—
address inter—register instructions. Due to the generality of these
instructions, 2048 inter-register instructions (see Section 3. 2. 3)
are converted directly to the three—address format of the micro—
instruction and fed directly into the micro-instruction register. The
remaining bits. i.e. cycle control etc. are read from the read-only memory.

2.2.1

2.3

Indicators

Six indicators are accessible by program. These six indicators are:

C Carry indicator. The carry indicator is dynamic.

Q Dynamic overflow indicator.

0 Static overflow indicator. This indicator remains set
after an overflow condition until it is reset by program.

Z Error indicator. This indicator is static and remains
set until it is reset by program.

K One bit accumulator. This indicator is used by the BOP
bit operations, instructions operating on one—bit data.

M Multi- shift link indicator. This indicator is used as
temporary storage for discarded bits in shift instructions
in order to ease the shifting of multiple precision words.

These six indicators are fully program controlled either by means of
the BOP instructions or by the TRA or TRR instructions where all
indicators may be transferred to and from the A register.

Instruction and Data Formats

The NORD-12 has a 16-bit word format. The bits are conventionally
numbered 0 to 15 with the most significant bit numbered 15 and the
least significant bit numbered 0.

15 f)

16 —bit NORD—l 2 word

Figure 2. 4: NORD—12 Bit Numbering Convention

The content of a NORD—12 word is conventionally represented by a
6—digit octal number. Thus, the content of a word with all 16 bits set
to zero is represented as 000000 while the content of a word with all
bits set to one is represented as 177777.

2.3.1

2.3.2

2.3.2.1

2.3.2.2

2-6

Instruction Formats

All NORD~12 instructions are contained in one single 16 bit word.

The instruction set is divided into the following five subclasses:

Memory Reference Instructions

Operate Instructions

Input/Output Control Instructions

System Control Instructions

Customer Specified Instructions.

In Chapter 3 each instruction is given a short description. This
includes a diagram showing the instruction format.

Data Formats

The standard NORD-12 instruction set provides instructions for the
following five different data formats:

a) Single bit

b) 8—bit byte

0) 16-bit word

(1) 32—bit double word

e) 48-bit floating point word

Single Bit

A single bit data word is typically used for a logical variable; the bit
instructions (see Section 3. 2. 6) are for manipulation of single bit
variables. The bit instructions specify operations on any bit in any
of the general registers, as well as the accumulator indicator K.

8-bit Byte

Two instructions are available in the standard NORD—IZ instruction
set for byte manipulations, i.e. load byte and store byte, see
Section 3.1.6.

A byte consists of 8 bits giving a range of 0 s X E 255.

2.3.2.3

2.3.2.4

2—7

The byte addressing, see Section 3.1.6. is such that when two bytes
are packed into a word the even byte address points to the left half of
the word

15 87 0

Even address Odd address

n n+1

Byte Format.

1 6-bit Word

The most common data word format is the 16-bit word contained in
one memory location or one register.

Representation of negative numbers is in 2's complement. The skip
instruction, see Section 3. 2. 4, also contains instructions to treat
numbers as unsigned (magnitude) numbers.

Range 432768 4X £32767
or O éX é65535

32-bit Double Word

Two instructions are available to handle double word formats, load
double and store double, see Sections 3. 1. 2 and 3.1.3.

A double word is a 32—bit number which occupies two consecutive
locations (n. n+1) in memory, and where negative numbers are in
2's complement.

31 A 16 15 D 0

Most significant least significant J

n n+1

Double Word Format.

A double word is always referred to by the address of its most
significant part. Normally a double word is transferred to the re—
gisters so that the most significant part is contained in the A register
and the least significant in the D register. Range as integers:

—2 147 483 648 éX éZ 147 483 647

2.3.2.5

2-8

48—bit Floating Point Word

The standard NORD~12 instruction set provides full floating point
hardware arithmetic instructions, load floating, store floating, add
subtract, multiply and divide floating, convert floating to integer and
convert integer to floating.

The data format of floating point words is 32 bits mantissa magnitude,
one bit for sign and 15 bits for a biased exponent.

The mantissa is always normalized, 0. 5 émantissa 41. The
exponent base is 2. the exponent is biased with 214. A standardized
floating zero contains zero in all 48 bi ts

In main memory one floating point data word occupies three 16—bit
core locations, which are addressed by the address of the exponent part.

11 exponent and Sign

n+1 most significant part of mantissa

n+2 least significant part of mantissa

In CPU registers bits 0-15 of the mantissa are in the D register, bits
16-31 in the A register and bits 32-47, exponent and sign, in the T
register. These three registers together are defined as the floating
accumulator.

47 T 32 31 A 16 15 D O

i- Exponent Man— ~tissa

n n+1 n+2

Floating Word Format

The accuracy is 32 bits or approximately 10 decimal digits; any
integer up to 232 has an exact floating point repre sentat1on

The range is

2’16384- 0.5 ex 4216383- 1 or X: 0

_ ((or 10 4J20 <x 4104320

Examples (octal format):
T A D

0 0 0 0
+1: 040001 100000 0
-1: 140001 100000 0

2-9

Interrupt System

The NORD—IZ Interrupt System allows priority interrupt handling at
extremely high speed. The interrupt system consists of 16 program
levels in hardware, each program level with its own complete set of
general registers and status indicators. The program levels are
numbered from 0—15 with increasing priority; program level 15
has the highest priority, program level 0 the lowest. The context
switching from one program level to another is completely automatic
and requires only 2- 0 MS-

All program levels can be activated by program. In addition program
levels 10—13 and 15 can be activated by external devices. Level 14
is used for monitor calls.

As many as 2048 vectored interrupts may be connected.

By using these program levels large programming systems may
be greatly simplified. Independent tasks may be organized at
different program levels with all priority decisions determined by
hardware and with almost no overhead because of the rapid context
switching. -

The program level to run is controlled from the two 16-bit registers:

PIE — Priority Interrupt Enable

PID - Priority Interrupt Detect

Each program level is controlled by the corresponding bits in these
registers. The PIE register is program controlled, and the PID
register is controlled by both program and vectored interrupts.

At any time. the highest program level which has its corresponding
bits set in both PIE and PID is running. This level is called PL.

l’rog ram

Level Select

BD lHPIE

/ 16

EN , _ H 1_
I

I
I

16 C0 4 4
/16

der

DD
<———>— PID

INT .\/\ Change
COMPARATl)ll Program

Level

Figure 2.10: Program Level Control

2-10

A change from a lower to a higher program level is caused
by an interrupt request. A change from a higher program level
to a lower takes plaee‘when the program on the higher program level
gives up its priority.

3—1

INSTRUCTION REPERTOIRE

In NORD-IZ all instructions occupy a single word, 16—bits, yielding
a very efficient use of memory, and also producing code with unusual
efficiency with regard to speed. 48 bits floating point arithmetic
operations and floating integer conversions are standard.

Note that in this chapter one is always referring to the register set on
current program level, for example "the A register” means “ the A
register on current program level".

In this manual the instruction set of NORD—lZ is divided into the
following five subclasses:

3. 1 Memory Reference Instructions

3. 2 Operate Instructions.

3. 3 Input/Output Control Instructions

3. 4 System Control Instructions

3. 5 Customer Specified Instructions

Each instruction is given a short description. This includes its
mnemonic as used in the assembly language, octal code, a diagram
showing its format, timing information and special comments. For
each instruction the systems and indicators that can be affected by the
instruction are listed.

The definitions used in the descriptions are as follows:

General Registers Status Word

Bit
A A register 2 K One bit accumulator
D D register 3 Z Error indicator
T T register 4 Q Dynamic overflow
L L register indicator
X X register 5 0 Static overflow indicator
B B register 6 C Carry indicator
P Program counter 7 M Multishift link indicator
STS Status register 8-11 PL Program level indicator

containing K, 15 IONI Interrupt System On
Z,Q,O, C, M indicator

3—2

Special Registers

OPR

LMP
PVL
P ID
PIE
A LD
IR

Operator's panel
switch register
Lamp register
Previous level register
Priority interrupt detect
Priority interrupt enable
Automatic load descriptor
Instruction register

Abbreviations

EL
EW
AD
FA
DW
FW
sr
dr
A
V
V

0
us
ns

Effective location
Effective word
Double accumulator
Floating accumulator
Double word
Floating word
Source register
Destination register
Logical AND
Logical inclusive OR
Logical exclusive OR
The contents of
Microseeond
Nanosecond

The NORD—12 is offered with dynamic MOS memories, these memory
chips have the following specifications (as measured on the chip—level)
access—time 300 ns.
cycle—time 490 ns

The instruction times specified in this manual are as measured from
a program running in a standard NORD-12, with standard MOS memory.

3.

3.

1

1. 1

3-3

Memory Reference Instructions

Memory reference instructions specify operations on words in memory.
For all the memory reference instructions in NORD-12 the addressing
mode is the same, with the exception of the conditional jump, the byte
and the register block instructions. The addressing structure for
these memory reference instructions is given under the specific instruc-
tion specification.

The NORD-12 has the following groups of memory reference instructions:

3. 1. 2 Store Instructions
3. 1. 3 Load Instructions
3. 1 . 4 Arithmetic and logical Instructions
3. 1. 5 Sequencing Instructions
3. 1. 6 Byte Instructions
3. 1 . 7 Register Block Instruction

Addressing Structure

In memory reference instruction words, 11 bits are used to specify
the address of. the desired word(s) in memory, 3 address mode bits
and 8-bit signed displacement using 2's complement for negative
numbers and sign extension.*

15 1110987 0

op. code ,X I .B displacement

NORD—12 uses a relative addressing system, which means that the
address is specified relative to the contents of the program counter,
or relative to the contents of the B and/or X registers.

The three addressing mode bits called ",X” "I" ",B" provide eight
different addressing modes.

The addressing mode bits have the following meaning:

— The I bit Specifies indirect addressing
- The ,B bit specifies address relative to the contents of

the B register, pre—indexing. The indexing by ,B takes
place before a possible indirect addressing.

— ‘
The ,X bit specifies address relative to the contents of the
X register, post—indexing. The indexing by ,X takes place
after a possible indirect addressing.

* Excepted from this is the conditional jump, the byte, and the
register block instructions.

3-4

If all the ,X. I and ,B bits are zero, the normal relative addressing
mode is specified. The effective address is equal to the contents of
the program counter plus the displacement, (P) + disp.

The diSplacement may consist of a number ranging from —128 to +127.
Therefore this addressing mode gives a dynamic range for directly
addressing 128 locations backwards and 127 locations forwards.

Generally, a memory reference instruction will have the form:

<0peration code> <addressing mode> <displacement>

Note that there is no addition in execution time for relative addressing,
pre—indcxing, post—indexing or both. Indirect addressing, however,
adds 0. 9 us to the listed execution time.

The address computation is summarized in Table 3.1. The symbols
used are defined as follows:

,X Bit 10 of the instruction

I Bit E) of the instruction

,B Bit 8 of the instruction

disp Contents of bits 0-7 of the instruction ,
(displacement)

(X) Contents of the X register

(B) Contents of the B register

(P) Contents of the P register

() Means contents of the register or word.

The effective address is the address of that memory location which is
finally accessed after all address modifications (pre— and post-indexing)
have taken place in the memory address computation.

.X I B Mnemonic Effective Address

0 0 0 (P) + disp.
0 1 0 I ((P) + disp.)

I

0 0 1 ,B (B) + disp.

0 1 1 ,B I ((B) + disp.)

1 0 0 ,X (X) + disp.

1 0 1 B .X (B) + disp. + (X)

1 1 0 I .X ((P) + disp.) + (X)

1 1 1 .B 1 ,x ((13) + disp.)+ (X)

Table 3.1 Addressing Modes

3-5

Wise and competent use of the NORD—12 addressing modes will result
in efficient programs. Advanced readers may wish to skip the rest
of this section after perusing Table 3.1, which summarizes the
addressing structure.

P—relative Addressing LX = 0 1:0 ,B=0

The P—relative addressing mode is specifed by setting the ,X I and
,B bits all to zero. In this mode the displacement bits (bits 0-7)
specify a positive or negative 7—bit address relative to the current
value of the program counter (P register). .

Example:

Suppose memory location 403 contains the instruction
0040028, which in this chapter we shall represent by
STA* 2, and this instruction is executed. The ,X I
and ,B bits are all set to zero indicating P—relative
addressing, and apositive displacement of 2 is given;
the contents of the A register will therefore be stored
in memory location 405. If, instead location 403 contains
the instruction JMP* —2 and it is executed, the next
instruction to be executed will be taken from location
401. While there is an obvious limitiation to this mode
of addressing (locations more than 1288 words away
from the instruction being executed cannot be accessed).
this mode of addressing is still quite useful for doing
local jumps and accessing nearby constants and vari-
ables.

Memory

—128
Range with
P—rclativc
addressing

I) register

Displacement
127

F llcctive address

Figure 3. 1: Schematic Illustration of P-relative Addressing

3-6

Indirect P-rclative Addressing_,X=0 I=1 ,B=0

Since one must be able to access memory locations more than 128 0
words away from the instruction being executed, the simplest
method of doing this is to use the indirect P-relativc addressing
mode, specified by setting the I bit to one and the ,X bit and ,B bit
to zero in memory address instructions. In this mode an address
relative to program counter is computed, exactly as for Pl—relative
addressing, by adding the displacement to the value of the program
counter; but, rather than the addressed location actually being accessed
the contents of the addressed location are used as a 16—bit address of
a memory location which is accessed instead.

Example:

Suppose location 405 contains the instruction LDA 1*2
(0450028), and this instruction is executed. Further-
more, suppose memory location 16003 contains the
value 17, and the memory location 407 contains 016003.
The net result of executing the instruction in location
405 is to load the value 17 into the A register. First
the displacement, 2, of the LDA instruction is added
to the value of the location counter, 405, giving the
result 407; then the contents of location 407, 16003.
are used as an address and the contents of this address
17, are finally loaded into the A register.

Memory

r-mi’ register

1 Displacement

Pointer to any location
F—L— ‘wiunn 64K

Fl'lfl'cetive address to any
location within [MK

Figure :3. 2: Schematic illustration of indirect l’—relati\'e addressing

B—relative Addressing ,X=0 I=0 LB=1

The above two addressing modes are quite sufficient; in fact
theoretically, either one alone is sufficient. However, if the
NORD—12 provided only one or both of the two addressing modes
already described, it would not be particularly convenient for
program efficiency. For instance, suppose that two subprograms
each a couple of hundred words long, need to comm unicate, Within
each subprogram memory accesses are commonly made using
P—realtive addressing, or occasionally, indirect P-relative addressing.
But between the subprograms indirect P-relative addressing would
have‘to be used almost exclusively since, in general, locations in one
subprogram, which instructions in the other subprogram must access,
will not be less than 128 words apart. But this is very inefficient
since both subprograms must contain indirect pointers to data and
instructions leeal to the other subprogram.

To overcome this difficulty another addressing mode is available
B—relative addressing, which permits both subprograms to directly
address a common data area. B—register relative addressing is
specified by setting the ,X and I bits to zero and the ,B bit to one in
memory address instructions. This addressing mode is quite closely
related to P-relative addressing, but instead the displacement is added
to the current value of the B register, the resultant sum is used to
specify the memory location accessed.

I Memory

B register

Displacement

-- --~Effective address

Figure 3. 3: Schematic illustration of B-relative addressing

3-8

Example:

Let location 405 contain the instruction LDA —4 ,B
(0447748) and the B register contains the value 10035.
Execute the instruction in location 405. This causes
the contents of location 10031 to be loaded into the
A register. The minus 4 in the displacement field
of the LDA instruction in location 405 is added to
the contents of the B register, 10035, giving a sum
of 10031, and the contents of location 10031 are loaded
into‘ the A register.

Indirect B-rclative Addressing: ,X=0 I=1 ,B=1

Naturally, there is also an indirect B—relative addressing mode which
is specified by setting the , B and 1 bits to one and the ,X bit to zero
in memory reference instructions. This mode has the same relation-
ship to B—relative addressing that indirect P—relative addressing
has to P—relative addressing. This permits a subprogram to access
data or locations in other subprograms indirectly via pointers in an
area common to several subprograms. This address mode is used
extensively for calling library routines.

Example:

Let location 10031 contain the instruction JPLI 3 ,B
(1354038) and the B register contains 400, a pointer to
an area common to several subprograms. Further-
more, let location 403 contain the value 2000. If the
instruction in location 10031 is executed, the sub-
routine beginning at location 2000 will be called.
The displacement, 3, in the JPL instruction is
added to the contents of the B register, 400, giving
a result of 403. The contents of locations 403, 2000,
are then used as a pointer to the subroutine.

Mc m ory

‘ --__ B register
Displacement

_ Pointer to any location" within 64 K

- Effective address

Figure 3. 4: Schematic illustration of indirect B-relative addressing

X~relntive (or Indexed) Addressing ,X:1 1:0 ,l3=0

The other four addressing modes all involve use of the X register.
The simplest of these is X-relative addressing which works like P—
and B—relative addressing, but the displacement is added to the
X register's contents during the address calculation instead of
to the contents of the P or B register. This addressing mode is
often used for randomly accessing the elements of a block of data.

Example:

Leta recursive subroutine when being called save
the contents of the L, A and B registers in a three
word block on a pushdown stack, and the X register
point to the first free register in the stack. The
following code might then be found at the beginning
of the recursive subroutine:

SUB, STA 1, x
COPY SL DA
STA 2, x
COPY SB DA
STA 0, X
AAX 3

M e m o ry

X register upon entry
to the subroutine

Stack B register saved here
A register saved here

- L register saved here
X register after execution
of AAX instruction

Figure 3. 5: The effect of this code is illustrated in the figure

3—10

For another example reread B-relative addressing
mentally substituting "X register'for "B register'h

M e m 0 ry

+—~"—~ X register

Displacement

+- .-__ Effective address

Figure 3. 6: Schematic illustration of X—rclative addressing

B—relative Indexed Addressing , X=1 I=0 ,B=l

When the ,X and ,B bits are set to one and the 1 bit to zero in memory
reference instructions, the mode is called B—relative indexed
addressing. In this mode the contents of the X and 13 registers and
the displacement are all added together to form the effective address.

B—relative indexed addressing is often very useful; for instance, when
accessing row by row elements of a two-dimensional array stored column
by column.

Melnorr

B register

Displacement

Content of X register

Effective addr es s

Figure 3. 7; Schematic illustration of li—relutive indexed addressing

3-11

Indirect P—rclative Indexed AddressinLX=1 1=1 ,B=0

The last two addressing modes are rather difficult to describe, but
very useful. Indirect P—relative indexed addressing is selected by
setting the ,X and I bits to one and the , B bit to zero in the memory
address instruction. This mode allows successive elements of an
array arbitrarily placed in memory to be accessed in a convenient i
manner.

The address calculation in the mode takes place as follows:
The contents of the P register, say 4002, are added to the displacement
say —1, and produce a sum, 4001. The contents of the location 4001,
say 10100, are added to the contents of the X register, say -100,
to produce a new sum, 10000, the effective address, By incrementing
the X register, successive locations may be accessed, For instance:
using the above example, locations 10000 through 10100 can be succes—
sively accessed by stepping the contents of the X register from —100 to
zero.

Readers are advised to go over this example carefully: Stepping
through an array in this fashion is done very often.

Memory

1) register

Displacement

———. Pointer to any location
within 64K

Content of X register

Effective address

Figure 3. 8: Schematic illustration of indirect P—relative indexed
addressing

3—12

Indirect B—relative Indexed Addressing ,X=1 1:1 ,B-tl

The final addressing mode, indirect B—relative indexed addressing,
is identical to indirect P—relative indexed addressing except that the
contents of the B register are used in place of the contents of the
P register in the effective address computation. This mode can
therefore by used to step through arrays pointed to from a data area
common to several subprograms.

Memory

B register

Displacement

Content of X register

Effective address

Figure 3. SJ: Schematic illustration of indirect lE—rolativo indexed
*

addressing

As an example of efficient use of different addressing techniques, we
will write a general program which moves an array starting in location
ABEG and has a length which is stored in location LONG, to a location
starting in BBEG.

iNrL LDA (ABEG
ADDLONG
COPYSAIM3 %(B)=ABEG+(LONG)
LDA (BBEG
ADD LONG
STA TEMP %(TEMP)=BBEG+(LONQ
LDX LONG
COPY<MM28X DX %(X)=—%LONG)

LOOP, LDA ,x ,B
STA I'TEMP ,x
JNC LOOP %1NCREMENT,

%TESTANDJUMP
%)FHHSHED

3-13

DONE,

TEMP, 0

As is shown, the innerloop consists only of 3 instructions (or 64 bits
when the indirect address is also counted).

The X register is used to step through both arrays, and it is initialized
to contain the two's complement of the length of the arrays. This
makes it possible to combine the incrementing of X, the test for com—
pletion and the jump into one instruction JNC (see Section 3.1. 5).
Because the X register is now reserved, we use the B—register to
compensate for the correct start address in the LDA instruction, and
because both the X and B register are now reserved, we have to use
an indirect address for the STA instruction. . (Note that this example
gives the shortest program, not the fastest!)

3—14

.1 . 2 Store Instructions

STZ Store zero Code 000 000

Format: STZ <adr.mode><disp.>

The effective location is cleared.

Affected: (EL) Time: 2.2 as

STA Store A register Code: 004 000

Format: STA <adr.mode><disp.>

The contents of the A register are
stored in the effective location.

Affected: (EL) Time: 2.2;is

STT Store T register Code: 010 000

Format: STT <adr. mode) <disp.>

The contents of the T register are stored
in the effective location.

Affected: (EL) Time: 2.2us

STX Store X register Code: 014 000

Format: STX <adr.mode> <disp.>
The contents of the X register are stored
in the effective location. The address
of this instruction may be modified by
the contents of the X register.

Affected: (EL) Time: 2.2us

STD Store Double word Code: 020 000

Format: STD 4 adr. mode» <disp.>

The contents of the A register are
stored in the effective location, and
the contents of the D register are stored
in the effective location plus one.

Affected: (EL) , (EL+1) Time: 3.5us

STF Store floating accumulator Code: 030 000

Format: STF <adr.mode><disp.>

The contents of the floating accumulator
are stored in three memory locations,
starting with exponent part in effective
location.

Affected: (EL), (EL+1), (EL+2) Time: 4.3us

.1.

MIN

LDA

LDT

LDX

LDD

3—15

Increment memory and skip if zero

Format: MIN (adr. mode><disp.>

Effective word is read and incremented
by one and then restored in the effective
location. If the result becomes zero, the
next instruction is skipped.

Affected (EL), (P)

Load Instructions

Load A register

Format: LDA (adr. mode > <disp.>

The effective word is loaded into the
A register.

Affected: (A)

Load T register

Format: LDT <adr. mode ><disp.>

The effective word is loaded into the
T register.

Affective: (T)

Load X register

Form at: LDX 4 adr. mode> <disp.>

The effective word is loaded into the
X register. The address of this
instruction may be modified by the pre—
vious contents of the X register.

Affected: (X)

Load double word

Format: LDD <adr. mode><disp>

The contents of the effective location
(are loaded into the A register, and the
contents of the effective location plus
one are loaded into the D register.

Affected: (A), (D)

Code:

Time:

Code:

Time:

Code:

Time:

Code:

Time:

Code:

Time:

040 000

044 000

2.3145

050 000

2.3ps

054 000

2.3us

024 000

3.6us

3-16

LDF Load floating accumulator Code: 034 000

Format: LDF <adr.mode ><disp.>

The contents of the effective location
and the two following locations are
loaded into the floating accumulator, i. e.
T, A and D registers.

Affected: (T), (A), (D) Time: 4. 5 MS

. 1.4 Arithmetical and LogEal Instructions

ADD Add to A register Code: 060 000

Format: ADD <adr. mode><disp.>

The effective word is added to the A
register with the result in the A register.
The carry indicator is set to 1 if a carry
occurs from the Sign bit position of the
adder, otherwise the carry indicator is
reset to 0. If the signs of the two operands
are equal but the sign of the result is diffe»
rent, overflow has occurred, and both the
dynamic and static overflow indicators are
set to one. If the condition for overflow
does not exist, the dynamic overflow indi—
cator is reset to 0, while the static over-
flow indicator is left unchanged.

Affected: (A), C, O, Q Time: 2.3115

SUB Subtract from A register Code: 064 000

Format: SUB 4 adr. mode> <disp.>

. The 2's complement of the effective word
is formed and added to the contents of the
A register with the result in the A register.
The same rules as for ADD apply for the
setting of the overflow and carry indicators.

Affected (A), C, O, Q Time: 2.3us

AND

ORA

MPY

3-17

Logical and Code: 070 000

Format: AND <adr.mode><disp.>

The logical product of the effective word
and the contents of the A register are
formed, with the result in the A register.
The logical product contains a one in each
bit position for which there is a corres—
ponding one in both the A register and
the effective word, otherwise the bit
position contains a zero.

Affected: (A) Time: 2.3us

Logical inclusive or Code: 074 000

Format: ORA <adr. mode) <disp.>

Logical inclusive or is formed between
the effective word and the contents of
the A register, with the result in the
A register. Logical inclusive or contains
a zero in each bit position for which
there is a corresponding zero in both the
A register and the effective word, other—
wise the bit position contains a one.

Affected: (A) Time: 2.3us

Multiply integer Code: 120 000

Format: MPY <adr. n10de><disp.>

The effective word and the A register
are multiplied and the result is placed in
the A register. Both numbers are regarded
as signed integers and the result as a
16—bit signed integer. If the result in
absolute value is greater than 32767,
overflow has occurred and the static and
dynamic overflow indicators are set to one.

Affected: (A), O, Q Time: 16.7us

FAD

FSB

FMU

FDV

3—18

Add to floating accumulator Code: loo 000
Format: FAD <adr. mode) <diSp>

The contents of the effective location
and the two following locations are added
to the floating accumulator with the result
in the floating accumulator. The previous
setting of the carry and overflow indicators
is lost.

Affected: (T , (A), (D), C, O, Q Time: 7.5-32.8p.s

Subtract from floating accumulator Code: 104 000

Format: FSB <adr.mode><disp>

The contents of the effective location and
the two following locations are subtracted
from the floating accumulator with the
result in the floating accumulator. The
previous setting of the carry and overflow

_ indicators is lost.

Affected: (T), (A), (D), C, O, Q Time: 8.0—33.3as

Multiply floating accumulator Code: 110 000

Format: FMU <adr.mode><disp.>

The contents of the floating accumulator
are multiplied with the number of the
effective floating word locations with the
result in the floating accumulator. The
previous setting of the carry and over—
flow indicators is lost.
Affected: (T), (A), (D), O, Q Time: 27.8—29.3us

Divide floating accumulator Code: 114 000

Format: FDV 4 adr. mode) <disp>-

The contents of the floating accumulator
are divided by the number in the effective
floating word locations. Result in floating
accumulator. If division by zero is tried,
the error indicator Z is set to one. The
error indicator Z may be sensed by a BSKP
instruction (see BOP). The previous setting
of the carry and overflow indicators is lost.

Affected: (T), (A), (D), z, c, 0, Q Time: 11.2—81.7cs

3-19

3. 1 . 5 Seguencing Instructions

JMP

JPL

CJP

JAP

JAN

Jump Code:

Format: JMP <adr. mode><disp>

The effective address is loaded into the
program counter, and the next instruction
is-taken from the effective address of the
JMP instruction.

Affected: (P) Time:

Transfer P to L and jump Code:

Format: JPL <adr.mode><d_isp.>

The contents of the program counter are
transferred to the L register, the
effective address is loaded into the
program counter, and the next instruction
is taken from the effective address of
the JPL instruction. Note that the program
counter points to the instruction after the
jump (it has been incremented before transfer
to the L register).

Affected: (P), (L) Time

Conditionaljump

Instruction bits 8-10 are used to specify
one of 8 jump conditions. If the specified
condition becomes true, the displacement
is added to the program counter and a jump
relative to current location takes place. The
range is 128 locations backwards and 127
locations forwards. If the specified condition
is false, n0 jump takes place.
Execution time depends on condition, but is
the same for all instructions.

A conditional jump instruction must be speci—
fied by means of the eight mnemonics listed
below. It is illegal to spedify CJP followed
by any combination of ,B I and ,X.

The eight jump conditions are:

Jump if A register is positive or zero, Code:
A bit 15:0

Format: JAP <disp.>

Jump if A register is negative, Code:
A bit 15:1

Format: JAN <disp.>

124 000

2.3us

134 000

2.3115

130 000

130 400

JAZ

JAF

JXN

JXZ

JPC

JNC

3-20

Jump if A register is zero Code:

Format: JA Z <disp>

Jump if A register is filled (not zero) Code:

Format: JAF <disp.)

Jump if X register is negative, i. e. , Code:
X bit 15:1.

Format: JXN ((1131))

Jump if X register is zero Code:

Format: JXZ <disp.>

Count and jump if register is Code:
positive or zero.

Format: JPC 4disp>

X is incremented by one, and if the X bit 15
equals zero after the incrementation, the
jump takes place.

Count and jump if X register is Code:
negative.

Format: JNC <disp.>

X is incremented by one; if then the
X bit 15 equals one, the jump takes place.

Affected: (P) and (X) for JPC and JNC. Time:

131 000

131 400

133 400

133 000

132 000

132 400

Condition false: 1. 8 us
Condition true: 2.3;,Ls

3. 1.

3-21

Byte Instructions

To facilitate the handling of character strings, the NORD—12 provides
two instructions for byte handling, load byte, LBYT, and store byte,
SBYT.

Because of the requirement of full 64K addressing, the LBYT and
SBYT use an addressing scheme different from the normal NORD—12
addressing.

For byte addressing, two of the NORD—12 registers, the T and X
registers are used for addressing the byte.

The contents of the T register point to the beginning of the character
string, and the contents of the X register point to a byte within this
string, Thus the address of the word which contains the byte equals

('13 +1504)
If the X register is even (,X0 = 0,) the byte is in the left part of the
word, if X0 = l, the byte is in the right part of the word.

A byte consists of eight bits.

’1‘ register
V

l X i‘episte 1‘
2

n 1H 1
:1 +2 n+3

3-22

The specifications for the two byte instructions are then as follows:

LBYT Load byte Code: 142 200

Format: LBYT

The 8—bit byte specified by the contents of
the T and X registers is loaded into the
A register bits 0—7, with the A register
bits 8-15 cleared.

Affected: (A) . Time:
Left byte: 11.4us
Right byte: 6. 8 ,us

SBYT Store byte

Format: SBYT Code: 142 600

The byte contained in the A register
bits 0—7 is stored in one half of the
effective location pointed by the T
and X registers, the second half of
this effective location being unchanged.
The contents of the A register are
unchanged.

Affected: (EL) Time:
Left byte: 16. 5 as
Right byte: 12.0 as

3. 1. 7 RegLster Block Instructions

To facilitate the programming of registers on different program levels,
two instructions, SRB and LRB, are available for storing and loading of
a complete register block to and from memory.

A register block always consists of the following registers in this
sequence:

P Program counter

X X register

'1‘ T register

A A register

D D register

L L register

STS Status register bits 2-7, bit 0-1 and bits 8—15 are zero

B B register

The addressing for these two instructions is as follows:

The contents of the X register specify the effective memory address
from where the register block is read or written into.

3—23

The specifications for the two instructions are as follows:

15 7 6 3 2 0
LRB 000
SRB level 010

SRB Store Register Block Code: 152 402

Format: SRB élevels * 108>

The instruction SRB<leve18 * 10 >stores the
contents of the register block on the program
level specified in the level field of the instruction.
The specified register block is stored in succeeding
memory locations starting at the location specified
by the contents of the X register.

If the current program level is specified, the
stored P register points to the instruction
following SRB.

Affected: (EL), (EL+1) (EL+7) Time: 16.5115

Example:

Let the contents of the X register be 042562,
then the instruction

SRB 1408

stores the contents of the register block on
program level 12 into the memory addresses
042562, 042563, , 042571.

LRB Load Register Block Code: 152 600

Format: LRB<leve18-"‘ 108>

The instruction 4 LRB level * 108> loads the
contents of the register bloc (on program
level specified in the level field of the instruc—
tion. The specified register block is loaded
by the contents of succeeding memory locations
starting at the location specified by the contents
of the X register. If the current program level
is specified, the P register is not affected.

Affected: All the registers on specified program
level are affected. Note: If the current level
is specified, the P register is _r_1_gt_affected.

Time: 15. 8 us

3. 2

[0

3-24

Operate Instructions

Floating Point Conversion Instructions

NLZ
DNZ

Scaling

Two instructions are available. A single precision fixed point number
may be converted to a standard form floating point number. A floating
point number may be converted to a fixed point single precision number
For both- instructions the scaling factor is specified in the displacement
part of the instruction. The range of the scaling factor is from —128
to +127, which gives a conversion range from approximately 10‘39 to
1039. The execution time depends on the scaling factor and the argument
to convert.

The two sub—instructions are:

NLZ Normalize Code: 151 400

Format: NLZ <scaling>

Converts the number in the A register to a
standard form floating number in the floating
accumulator, using the scaling of the NLZ
instruction as a scaling factor. For integers
the scaling factor should be +16, a larger
scaling factor will result in a higher floating
point number. Because of the single precision
fixed point number, the D register will be
cleared.

Affected: (T), (A), (D), Time: 4. 5—14. 5 us

DNZ Denormalize Code: 152 000

Format: DNZ <scaling>

Converts the floating number in the floating
accumulator to a single precision fixed
point number in the A register, using the
scaling of the DNZ instruction as a scaling
factor. When converting to integers, the
scaling factor should be —16, a greater
scaling factor will cause the fixed point
number to be greater. After this instruction
the contents of the T and D registers will all
be zeroes.

If the conversion causes underflow, the T, A and
D registers will all be set to zero.

3. 2. 2

If the conversion causes overflow, * the error indicator
Overflow occurs if the resulting

integer in absolute value is greater than 32767.
Z is set to one.

The conversion will truncate, and negative numbers
are converted to positive numbers before conversion.
The result will again be converted to a negative number.

Some examples:

T-A—D before conversion
(in decimal)

' A—after conversion

0.9 DNZ -208 0

3.141592 DNZ ~208 3

3.141592 DNZ -178 6

3.141592 DNZ —168 12

3.7 DNZ —208 3

3.7 DNZ —178 7

3.7 DNZ —218
1

-3.141592 DNZ —208 —3

-3.7 DNZ —208 -3

32768.0 DNZ -208 Overflow

-32768.0 DNZ -208 Overflow

Affected! (A), (T), (D), Z Time: 5.5—15.5ps

Shift Instructions

15 11 10 9 8 7 5 0

shift type reg. number

Shift instructions operate on registers.
of three parts: the register to be shifted,

number field. A shift instruction will have to form:

A shift instruction consists
specified by the shift

reg. fields, type of shift to be performed, Specified by the type
field; and the number of shifts to be performed, specified by the

< shift register) <type> (number >

* The overflow test is fail—proof for a scaling constant of —208 only.

3-26

Every shift instruction causes the last bit which is discarded to be
contained in the M; the multi shift link indicator. This may then
be used as end input for the next shift instruction.

Note that bit 6 in the instruction is ignored.

The time of a shift instruction is independent of the type of shift.

The following four specifications of the <shift register> are available:

Sl-IT Shift the T register reg.fie1d 00 Code: 154 000

Format: SHT<type><number>

The T register is shifted as specified by
the 4 type> and <number>.

Affected: (T), M Time: 2. 9+0. 5»N0

SHD Shift the D register reg.field 01 Code: 154 200

Format: SIID <type><number>

The D register is shifted as specified by
the <type> and < number> .

Affected: (D), M Time:2.9+0.5-N0

SIIA Shift the A register reg.fie1d 10 Code: 154 400

Format: SHA 4ty13e> <number >

The A register is shifted as specified by
the Atype > and (number>

Affected: (A), M Time: 2.9+0. 5-NO

SAD Shift the A and D reg.fie1d 11 Code: 154 600
registers connected

Format: SADétype) <number>

Bit 0 of the A register is connected
to bit 15 of the D register.

Affected: (A), (D), M Time: 4.4+0.5-NO

3—27

type field

For each shift instruction the following four types of shift can be
specified, one at a time:

Mnemonic type field

nil Arithmetical shift. 0 0 Code: 000 000
During right shifts the
sign bit (bit 15) is ex-
tended during the shifting,
in left shift zeroes are fed
into vacated bit positions.

ROT Rotational shift. 0 1 Code: 001 000
In single register shift
bit 0 is connected to bit 15,
in double shifts bit 0 of the
D register is connected to
bit 15 of the A register.

ZIN Zero end input. 1 0 Code: 002 000

LIN Link end input. 1 1 Code: 003 000
The contents of the M
indicator will be shifted into
the vacated bit(s).

numbe r field

The <number> of the instruction in the number field is a signed
number, 5 bits plus sign, which specifies the shift direction (positive
or negative shift) and the number of shifts.

N a 0, i.e. , -if bit 5 1 0 then shift left

N 4 0, i.e. , if bit 5 = 1 then shift right

The maximum number of shifts is 31 left shifts and 32 right shifts.

Only the A, T and D registers may be shifted, If any other register
is to be shifted, its contents must first be placed in the A, ’1‘ or D
register.

If no shift direction is specified, left shift is assumed.

The number of shifts is interpreted by the assembler as an octal number.

3-28

A right shift may be specified either by the correct 6 bit negative
shift count or by writing the mnemonic code Sl-IR followed by the
positive number of right shifts. A shift instruction to shift the
accumulator 3 positions to the right may be

specified
by one of

the following identical instructions:

SHA 758
SHA 100-38
SIIA SHR 38

In a right shift, nothing should be written between the SHR mnemonic
and the number of right shifts * (a space to distinguish between SIIR
and the number is necessary). SHR must be the last mnemonic used
in the instruction.

Some examples of correctly specified shift instructions:

Example 1

Shift the A and D registers connected 8 positions
(octal 10) left.

SAD 108

Example 2

Rotate the T register 6 places to the left.

SI-lT ROT 6

Example 3

Shift the connected A and D registers 16 positions
to the left. Rotate shift is specified, which in
this case will cause the contents of the A and D
registers to be exchanged. The same effect may
be obtained by means of a SWAP SA DD instruction.

SAD ROT 20

Example 4:

Shift the D register two places to the right. Feed
zeroes into the left end during the shifting. Bits l5
and 14 in the D register will become zero.

SIID ZIN SIIR 2

* This is an assembler peculiarity.

3. 2.3

3—29

Re gi ste r O pe ration s

The register operation instructions specify operations between any
two general registers; a source register, sr, and a destination
register, dr. Any instruction may consist of the parts:

A register operation>(subinstruetion7 <sr><dr>

There are ten basic register operations belonging to the two groups:

ROP register operations Section 3. 2.3.1

EXTended register operation instructions Section 3. 2. 3. 2

In addition there are two instructions for accessing single registers
outside current program level, see Section 3. 2. 3. 3, and two
instructions for accessing a whole register block outside current
program level, see Section 3. 1. 7.

Only the BOP instructions have subfields.

The ROP register instructions are:

RADD Register addition, dr «dr + sr Code: 146 000

RSUB Register subtractions, dr4—dr - 51‘ Code: 146 600

RAND Register logical AND, dr ~—d~r A sr Code: 144 400

RORA Register logical OR, dr «dr \/ sr Code: 145 500

REXO Register logical exclusive OR Code: 145 000
dr<~dr\/sr

SWAP Register exchange, Code: 144 000
sre dr and dr <—sr

COPY Register transfer, dr <— sr Code: 146 100

The EXTendcd register instructions are:

RMPY Integer inter-register multiply, Code: 141 200
AD <— dr * sr

RDIV Integer inter—register divide Code: 141 600
AD/ < sr> => Aq—Quotient

D +~Re mainder

EXR Execute register, Code: 140 600
Instruction register 4—sr

MIXS Multiply index by 3, (X)«((A)—1) * 3 Code: 143 200

3. 2. 3.1

3-30

The source registers <sr> are specified as follows:

SD D register as source Code: 10

SP Program counter as source Code: 20

SB B register as source Code: 30

SL L register as source Code: 40

SA A register as source Code: 50

ST T register as source Code: 60

SX X register as source Code: 70

If no source register is specified, zero will be taken as the source
register.

The destination registers <dr> are specified as follows:

DD D register as destination Code 2‘ 1

DP Program counter as destination Code: 2

DB B register as destination Code: 3

DL L register as destination Code: 4

DA A register as destination Code: 5

DT T register as destination Code: 6

DX X register as destination Code: 7

BOP Register Operation Instructions

15 11 10 9 8 7 6 5 3 2 0

ROP RAD C I ’11 CID sr+ dr

The instruction decodes bits 0-10 as follows:

Bits 0—2 specify one out of seven registers to be the destination
register.

dr=0

The destination register will be loaded with the result
of the BOP instructions.

Normally a no — operation instructions, except that the
carry indicator will be reset if RAD = 1:

3-31

Bits 3—5 specify the one out of eight registers which contains the
value to be used as the source register operand.

sr = 0 Produces a source value equal to zero

CLD = 1 Clear destination register before operation. If the
source and the destination register are the same,
the register as source is not cleared.

CMl = 1 Use complement (one's complement) of source register
as operand. The source register remains unchanged.

Bits 8 and 9 are decoded in two different ways, depending on whether
the RAD bit is zero or one.

RAD = 1 Add source to destination.

When RAD = 1, bits C and I are decoded as follows:

C = 1,
I = 0 Also add old carry to destination, ADC.

C: a
I ‘-‘- 1 Also add 1 to destination, ADl.

It is not possible both to add previous carry and to add 1 in the same
ROP instruction. (If it is tried, 1 will be added regardless of
the status of the carry indicator.)

RAD = 0 Binary register operations.

The C and I bits are decoded as follows:

C, 1:0, 0 Register swap, destination and source exchanged, SWAP
0,1 Logical and , BAND
1, 0 Logical exclusive or, REXO
1.1 Logical inclusive or, RORA

If RAD = 1, the overflow and carry indicators are set according to the
same rules as apply for ADD: if RAD = 0, the overflow and carry
indicators re m ain unchanged.

The following groups of ROP mnemonics are mutually exclusive, i. e.
only one may be used in a ROP instruction.

(SD, SP, SB, SL, SA, ST, SX)

Only one source register must be specified.

(DD,DP,DB,DL,DA,DT,DX)

Only oneldestination register must be specified.

3-32

(ADC, ADI)

Both 1 and old carry cannot be added in the same instruction

(RADD, RSUB, SWAP, RAND, REXO, RORA, COPY)

Only one type of operation must be specified.

(ADC, AD1, SWAP, RAND, REXO, RORA)

Add 1 or add carry may not be used together with the binary
register operations.

(RSUB, CMl, ADC, ADl)

RSUB uses CMl and ADl.

The recommended way to specify ROP instructions is to use the
following mnemonics which will be correctly translated by the
assembly language.

RADD, dr 4— dr + sr Register addition

RSUB, dr 4- dr — sr Register subtraction

RAND, dr 4—dr /1 sr Register logical AND

RORA, dr «- dr V sr Register logical OR

REXO, dr <-dr V sr Register logical exclusive OR

SWAP, dr «sr Register exchange

COPY, dr <— sr Register transfer

Note that the ROP instruction is included in the above mentioned
mnemonic s.

Time: RADD, RSUB, RAND, REXO, RORA : 1.4us

Time: SWAP : 2.9us

If the P register is used as destination (DP), an additional micro
cycle, 490 us, will be required.

3-33

Decoding of

C I: D Instructions
Result

(if
4 a. 1.1 Instructions
duwuo

(1 (1 (1 (1 (1 SWAP <sr><dr> sr 4—» dr
(1 (1 (1 (1 1 SWAP CLD <sr><dr> dr + sr, sr ‘— (1
(1 (1 (1 1 (1 SWAP CMi <.sr><dr> dr 4— sf", sr <—dr
(1 (1 (1 1 1 SWAP CM1 CLD <sr:—<dr> dr .. 5?, sr <— 0.
(1 (1 1 (1 (1 HAND <sr><dr> dr kce 51'
(1 (1 1 (1 1 RAND CLD <Sr><dr> dr «- 0
(1 (1 1 1 (1 RAND CM1 <sr> <dr> dr 4— dr A fr
(1 (1 1 1 1 RAND CM1 CLD <sr><dr> dr «0
(1 1 0 (1 (1 Ill-3X0 (-5122) <dr> dr 4— dr V St
(1 1 (1 (1 1 REXO CLD <SI‘> <dr> dr 4— SI‘
(1 1 (1 1 (1 REXO CM1 <sr> <dr> dr 4- dr V 57‘
(1 1 1) 1 1 REXO CMI CLD <8r><dr> dr *E‘T"
(1 1 1 (1 (1 RORA <sr> <dr> dr ¢- (11‘ V 51'
(1 1 1 (1 1 NORA CLD lzsr> <dr:- dr «SI?
(1 1 1 1 (1 NORA CM1 «’sr><dr> (11‘ 4- dr V ”5‘?
(1 1 1 1 1 RORA CMI CLD <sr> <dr> (11' «E?
1 (1 (1 (1 (1 RADD1 <Sr> <dr> dr 4- (11‘ + 51‘
1 (1 (1 (1 1 RADD) CLD csr><dr> (1r ‘— sr
1 (1 (1 1 (1

RADDI)
CM1 <sr> <dr>~ dr 4- dr + 971'“

1 (1 (1 1 1 [{ADD CMI CLD <sr><dr> dr 4- si‘
1 (1 1 (1 (1 RAM)” ADI <sr> <dr> dr + dr + sr + 1
1 (1 1 (1 1 RAUL» AD1 CLD r.:sr.> <dr> dr 4- sr + 1
1 (1 1 1 (1 RADI)I_. '\1)1 CM1 gsr><dr> dr +dr — SI‘
1 (1 1 1 1 RADI) 231.01 CMl CLD <SI‘> <dr> dr e- - SI‘
1 1 (1 (1 (1

RADD1 ADC <sr> c1112» dr + dr + sr + c
1 1 (1 (1 1 RADD) ADC CLD <sr> <dr> dr + sr 1 c
1 1 (1 1 (1

RADDD
ADC CMi <sr> <dr> dr 4— (_l_r + 5—1" + e

1 1 (1 1 1 ~RADD ADC CM1 CLD (81> <dr> (1r 4- sr + c

1 1 1 (1 (1 ‘

i i 1 (1) (1} Not applicable

1 1 1 1 1

Table 3.2 The ROP Instruction

This 1111110 shows all possible combinations of the ROP instructions
and their results.

(11' : destination register
51' ; source register
a : one's complement of sr
C : Old curry

1)
.2)

RA DD CLD is equal to COPY

RADD AD1 CM1 is equal to RSUB

3-34

The assembly language will also permit use of the following
combined mnemonics:

CM2 CM1 ADl Two's complement

EXIT COPY SL DP Return from subroutine

RCLR COPY 0 Register clear

RINC RADD AD1 Register increment

RDCR RADD CMl Register decrement

The mnemonics RCLR, RINC and RDCR should be followed only by
the destination register specification.

Some examples of use of the BOP instruction:

Example 1:

Add the contents of the A and X register with the
result in the X register:

'

RADD SA DX

Example 2:

Complement (two's complement) the A register:

COPY CM2 SA DA

Example 3:

Subtract the contents of the T register from the
contents of the B register, with the result in the
B register:

RSUB ST DB

Example 4:

Increment the X register by one:

RINC DX

Example 5:

Decrement'the L register by one. (One's complement
of zero equals —1 in two's complement.)

RDCR DL

3-35

Example 6:

Clear the T register:

RCLR DT

Example 7:

Set the X register equal to one:

RCLR ADl DX

Example 8:

Set the B register equal to minus one:

RCLR CMl DB

Example 9:

COpy the contents of the X register into the T
register:

COPY SX DT

Example 10:

Exchange the contents of the A and D registers:

SWAP SA DD

Example 11:

Form logical AND between the contents of the L and
X registers with the result in the X register:

RAND SL DX

Example 12:

Copy the contents of the A register into the X
register, and clear the A register (the CLD code
causes a destination register of zero to be swapped).

SWAP CLD SA DX

3-36

Some short programs using ROP instructions:

Example 13:

Form the two's complement of the 32 bit double word
in A and D:

COPY CM2 SD DD
COPY CMl ADC SA DA

Example 14:

Add together the two double wordlength numbers
N1 and N2 with the result in the A and D registers:

LDD N1
SWAP SA DD
ADD N2+1
SWAP SA DD
RADD ADC DA
ADD N2

Example 15:

Subroutine jump, and return from subroutine to main program:

JPL SUBR % ERROR STOP
ERR. WAIT
NORM,

'

SUBR, LDA OLA
SUB PER
SKP IF DA EQL 0

EXIT % ERROR EXIT
EXIT ADl

The JPL instruction will place the address of the WAIT instruction
into the L register. (When JPL is executed, the program counter
points to the address after this instruction.)

The subroutine SUBR has two exits, one to the location immediately
following the jump‘(EXIT), which in this case is an error exit, and
one to the location two addresses after the jump.

Note: If the P register is used as source (SP), the P register has
already been incremented and points to the next instruction.

3.2.3.2

3-37

EXTended Register Operation Instructions

RMPY

RDIV

Integer inter-register multiply Code: 141 200

Format: RMPY <sr><dr>

The sr and dr fields are used to specify the
two operands to be multiplied (represented
as two's complement integers), the codes
are the same as for ROP, see Section 3. 2. 3.

The result is a 32—bit signed integer which will
be placed in the A and D registers with the 16
most significant bits in the A register and the
16 least significant bits in the D register.

Affected: (A), (D) Time: 15.9ns

Integer inter-register divide Code: 141 600

Format: RDIV <sr>

The 32—bit signed integer contained in the
double accumulator AD is divided by the
contents of the register in the sr field, with
the quotient in the A register and the
remainder in the D register, i.e. ,
AD/sr => A e quotient, D <— remainder.

The sign of the remainder is always equal
to the dividend (AD), The destination field of
the instruction is not used. If the division causes
overflow, the error indicator Z is set to one.

The numbers are considered as fixed point
integers with the fixed point after the right—
most position.

SI‘

Affected: (A), (D), Z, C, O, Q Time: 6.0 — 24.0ps

3-38

Example:

Before division After division:

Double accumulator Divisor A D Z

22 4 5 2 0
—22 4 —5 -2 0

378452 —16 —23653 —4 0
327 67 1 32767 0 0
32768 1 1
65535 2 32762 1 0

EXR Execute register Code: 140 600

Format: EXR <sr>

The contents of the register specified in the
4 sr> field of the instruction are transferred

to the instruction register, and the contents are
then executed as an instruction.

Note: If the instruction specified by the
contents of asr>in a memory reference
instruction with relative addressing, the
address will be relative to the EXR <sr>
instruction. If the instruction specified
by the contents of <sr> is a JPL in—
struction, the L register will point to the
instruction after the EXR zsr>.
Note also that it is illegal to have an
EXR <sr >, where the contents of <sr>
are a new EXR 4sr >, if it is tried, the
error indicator Z is set to one.

Affected: (IR), affections of the Time: 3. 8 us
‘ specified instructions.

MIX3 Multiply index by 3. Code: 143 200

Format: MIX3

The X register is set equal to the con—
tents of the A register minus one multi—
plied by three, i. e. ,

<X)~[(A>—1] *3
Affected: (X) Time: 2-. Ops

3.2.3.3

3-39

Inter Level Register Instructions

In the NORD-12 there are 16 complete sets of registers and status
indicators, one set for each level,

The access to and from registers outside the current program level
is by two instructions:

IRR Inter Register Read

IRW Inter Register Write

The format of this instruction is as follows:

15 6 32 0
IRR
IRW

level dr

Bits 0—2 Specify the register to be read, using the same codes and
mnemonics as are used for specifying destination registers for the
register operations, see Section 3. 2. 3.

Bits 3—6 specify the program level number. It is possible to read
the current program level as well as all outside program levels.

IRR Inter register read Code: 153 600

Format: IRR Alevels * 108> <dr>

This instruction is used to read into the
A register on current program level one
of the general registers inside/outside
current program level. If bits 0—2 are
zero, the status register on specified
program level will be read into the
A register bits 1—7, with bits 8—15 and
bit 0 cleared. Time: 2, 9 US

Example:

The instruction IRR 160 DP will copy the contents
of the program counter on program level 14 into
the A. register on current program level.

3. 2.4

IRW

Example:

3-49

Inter register write Code: 153 400

Format: IRW <level8 * 108><dr>

This instruction is used to write the A
Register on current program level into
one of the general registers. It is also
possible to write into the registers on
current level. Then, if the P register
is specified, the IRW instruction will be
a dummy instruction. If bits 0-2 are
zero, the A register bits 1-7 are written
into the status register on specified level. Time: 2. 9 [J.S

The instruction IRW 110 will copy the bits 0—7 of the
A register on current program level into the status
register on program level 9.

Skip Instructions

1110 87 65 32 0

SKP cond. 00 sr dr

SKP Skip next instruction if specified Code: 140 000
condition is true.

Format: SKP 4dr><cond><sr>

The cond. field specifies one of eight
conditions between the registers dr and
sr. If the specified condition is true,
the next instruction is skipped. If not,
the next instruction is not skipped. The
registers dr, destination register, and
sr, source register, are specified as
for register operation registers, see
Section 3. 2. 3.

Note that bits 6 and 7 are both zero.
Otherwise, the instruction would belong
to the EXTended instruction, see
Section 3. 2. 3. 2.

3-41

The SKP conditions test upon the result
of the arithmetic expressions (dr) — (sr)
which set the four indicators:

5 — sign
2 - result zero
0 — carry
0 - overflow Time:

No skip: 1. 8 us
Skip: 2. 3 us

The eight SKP conditions are a 5 follows:

Mnemonic
Cond.
field

Condition
true if:

EQL 000 2:1 Equal. The condition tests for
equality between the source and
destination registers (dr)=(sr)=0.

GEQ 0 0 1 s=0 Greater or equal to. (dr)-(sr) >r/O.
The contents of the source and
destination registers are treated
as signed numbers. Overflow is
not taken care of.

GRE 0 l 0 sVo=0 Greater or equal to. (dr)-(sr) 20.
The contents of the source and
destination registers are treated
as signed numbers. Overflow is
taken care of.

MGRE 0 1 1 0:1 Magnitude greater or equal to.
(dr)—(sr) a O. The contents of
the source and destination
registers are treated as unsigned
magnitudes, where 000 000 is
the lowest and 177 777 the
highest number. Overflow is
taken care of.

UEQ 1 0 0 z=0 Unequal to. The condition tests
for equality between the source
and destination registers (dr) 7‘ (er)
#0
Less than (dr)-(sr)4 0. The con—
tents of the source and destination
registers are treated as signed num-
bers. Overflow is not taken care 01

L88 1 0 1 5:1

3—42

Gond. Condition
Mnemonic field true if:

LST l 1 0 sVo=1 Less than (dr)-(sr) < 0. The contents
of the destination and source
registers are treated as signed
numbers. Overflow is taken
care of.

MLST 1 1 1 c=0 Magnitude less than (dr)—(sr)4 0.
The contents of the source and
destination registers are treated
as unsigned magnitudes, where
000 000 is the lowest number
and 177 777 is the highest number.
Overflow is taken care of.

By swapping the register code in the sr and dr fields and inverting the
relationship code, it is also possible to test these relationships.

>«Greater than

é Less than or equal

The programmer is advised to use the same format as in these examples
when specifying a skip instruction. V
0, which both have the value zero, are used for easy readability).

Comparing a register with zero:

SKP IF

SKP IF

SKP IF

SKP IF

SKP IF

DL UEQ

DX GRE

DB LSS

0 LSS

0 GRE

(The mnemonic IF and the number

0 Skip if L register 7% 0

0 Skip if X register 2 0

0 Skip if B register < 0

ST Skip if T register > 0

SD Skip if D register < 0

Comparing the arithmetic value of the contents of two registers:

SKP IF

SKP IF

SKP IF

DD EQL

DT UEQ

DB LSS

SKP IF DX GRE

SL Skip if D register = L register

SX Skip if T register 75 X register

SA Skip if B register 5 A register
(or A‘register > B register)

SB Skip if X register a B register

(or B register g X register)

3. 2. CT!

3-43

Comparing two magnitude numbers:

SKP IF DL MGRE ST Skip if L register 9 T register
(or '1‘ register 5 L register)

SKP IF DB MLST SX Skip if B register < X register
(or X register > B register)

The magnitude tests are especially useful when comparing the relation—
ship between memory addresses which are represented as magnitude
numbers in a computer with more than 32K memory.

ArgLument Instructions

15 11 10 9 8 7 0

A BC func num ber j

Argument instructions operate on registers, The function field is
used to specify one out of eight argument instructions. The number
field is used to specify the argument, a signed number ranging from
-128 to 127.

Bits 8 and 9 in the function field specify one out of four registers, B, A,
T or X, and bit 10 one of the operations: set argument to or add argument
to.

The eight argument instructions are:

SAA Set argument to A register Code: 170 400

Format: SAA <number>

AAA Add argument to A. register Code: 172 400

Format: AAA <number>

SAX Set argument to X register Code: 171 400

Format: SAX < number>

AAX Add argument to X register Code: 173 400

Format: AAX 4number>

SAT Set argument to T register Code: 171 000

Format: SAT é number >

AAT Add argument to T register Code: 173 000

Format: AAT (number)

3-44

SAB Set argument to B register Code: 170 000

Format: SAB <number >

AAB Add argument to B register Code: 172 000

Format: AAB <number> Time: 1. 4 as

An argument instruction should be specified by means of one of the
eight mnemonics listed above.

Examples of argument instructions:

Example 1:

Set the contents of the T register equal to 138. Bits
8—15 will become zero:

SAT 138

Example 2:

Set the contents of the B register equal to —288. Bits
8—15 will become one. sign extension:

Example 3:

Add 3 to thercontents of the X register. The addition
is modulo 210.

'

AAX 3

Example 4:

Subtract (irfrom
the contents of the A register

(modulo 0).

A AA -6

Example 5:

The contents of the A register will be 177 6408 after
the execution of this instruction (sign extension).

SAA 4408
In an add argument instruction the carry and overflow indicators are
set according to the same rules as apply for the ADD instruction.
see Section 3.1. 4.

3. 2. 6 Bitgwration Instructions

15 11 10 7 6 3 2 0

BOP subinstructions bn dr

BOP Bit Operation

The BOP instruction specifies operations on single bits in
one of the seven general registers, or the status register.

The specific bit to be manipulated is specified by the 4dr>
and <bn> fields in the instruction. The <dr> field specifies
the particular register and the <bn> field the particular bit in
that register.

The register dr is specified by means of the same mnemonics
as used for destination registers in the BOP and SKP instructions,
see Section 3. 2. 3, except if dr = O the status is specified.

The BOP instruction may use a one bit accumulator register,
K, to hold temporary results.

16 different subinstructions are available in the BOP instruction.

In the following description "bit" means the bit specified
by destination register dr and bit number bn. Note that
bn is specified by octal numbers and the "bits" are numbered
0, 10, 20, 30, 170.

The six control indicators of the status register which may
be operated upon by means of the BOP instruction should
be specified with the following mnemonics:

(Subscript 0 signifies the complement of the specified bit.)

SSK One bit accumulator indicator.

SSZ Error indicator

SSQ Dynamic overflow indicator.

SSO Static overflow indicator.

SSC Carry indicator.

SSM Multi shift link indicator.

3.2.6.1

3.2.6.2

3-46

Bit Skip Instructions

Four subinstructions are available to test the setting of the specified
bit.

BSKP ZRO <bn><dr> Skip next instruction if bit = 0 Time: 2

BSKP ONE <bn><dr> Skip next instruction if bit = 1

Time: 2.

BSKP BCM <bn> <dr> Skip next instruction if bito= K
Time: 3.

BSKP BAC 4bn><dr> Skip next instruction if bit = K
Time: 3

Bit Setting Instructions

Four subinstructions are available to set the specified bit.

BSET ZRO <bn> <dr> bit 6‘ 0 .Time: 1.

BSET ONE <bn><dr> bite-1 Time: 1

BSE'l BCM <bn><dr>
Jblt

<-—b1t0, complement b1t Time: 1.

BSET BAC 4bn><dr> biteK Time: 3.

. 3-2.8 MS

3-2.8us

3—3.8us

.3-3.8us

41.18

.4us

Ous

3.2.6.3

3-47

One Bit Accumulator Instructions

Eight subinstructions are available to specify operations between the
specified bit and the one bit accumulator,

BSTA

BSTC

BLDA

BLDC

BANC

BORC

BAND

BORA

4i > <dr>

(bn><dr>

<bn><dr>

Abn> <dr>

<bn><dr>

<bn><dr>

<bn> <dr>

4bn> <dr>

bite-K, K (—0

bit (— K0, K e1

K<~bit

K <—bit0

K (—bito A K

K (—bito V K

K $bit /\ K

K i—bit V K

Store and clear

Time: 3. 3 as

Store complement
and set

Time: 3. 3 1.1.5

Load

Time: 2. 9 as

Load complement

Time: 2. 9 us

Logical AND complement

Time: 2. 9 us

Logical OR complement

Time: 2. 9 us

Logical AND

Time: 2. 9 us

Logical OR

Time: 2. 9 us

Some examples of correctly specified bit operation instructions.

Example 1:

Skip next instruction if the carry indicator is set.

BSKP ONE SSC

Example 2:

Reset the static overflow indicator.

BSET ZRO SSO

3.2.7

3-48

Example 3:

Complement the sign bit in the T register (complement
a floating point number).

BSET BCM1708 DT

Example 4:

Set bit 6 in the X register to one.

BSET ONE 608 DX

Example 5:

Copy A register bit 14 into X register bit 13.

BLDA 1608 DA - %K é-A bit 14

BSET BAC 1508 DX %Xbit 134K, K<—0

Accumulator Transfer Instructions

The internal registers in NORD-12 which cannot be reached by the
register instructions are controlled by the following four instructions:

TRA Transfer to A register, Section 3. 2.7.1

TRR Transfer from A register, Section 3. 2. 7. 2

MCL Masked clear, Section 3. 2. 7. 2.

MST Masked set, Section 3.2.7. 2.

3.2.7.1

3-49

The registers which are read and /or controlled by these instructions
are:

Name Code8 Description

STS 1 Status register. Bits 2—7 may be read or set,
while bits 8—11 (PL) bit 14 (PONI) and bit 15
(IONI) may only be read.

OPR 2 Operator's panel switch register, see Section 7. 2

LMP 2 Operator's panel lamp register, see Section 7. 3.

PVL 4 Previous level. The contents of the register are:
IRR < previous level * 108 > DP, see Section 5. 4

PID 6 Priority interrupt detect, see Section 5.1.

PIE 7 Priority interrupt enable, see Section 5.1

ALD 12 Automatic load descriptor, see Section 8. 2. 4.

Table 3. 3: Survey of Registers controlled by accumulator
Transfer Instructions. Codes not shown should
not be used. See also Table 3. 4.

There are also two instructions for accessing single registers outside
current program level, see Section 3. 2. 3. 3.

Transfer to A register

TRA Transferto A register Code: 150 000

Format: TRA (register name>

The register which may be transferred to the A
register with the TRA instruction is shown in
Table 3. 4. The contents of the register speci—
fied by the register name are COpied into the
A register. The operator's panel and the
paging systems are optional, and without these
options a TRA instruction, which tries to read
a non—implemented register, will cause the
A register to be cleared.

Time: 4.3us

3.2.7.2

3—50

Transfer from A Register

The transfer from the A register may be either an ordinary transfer
of all 16 bits or a selective setting of zeroes and ones.

The three subinstructions are:

TRR Transfer to register Code: 150 100

Format: TRR (register name>

The contents of the A register are copied
into the register specified by 4register
name >. The registers which TRR may
operate on are shown in Table 3. 4. Time- 4 8 #5

MCL Masked clear Code: 150 200

Format: MCL Aregister name>

For each bit which is a one in the
A register the corresponding bit
specified by <register name> will
be set to zero. The register which
MCL may operate on is shown in
Table 3. 4. Time: 5. 8 us

MST Masked set Code: 150 300

Format: MST <register name>

For each bit which is a one in the
A register the corresponding bit in
the register specified by 4register
name> will be set to one. The
registers which MST may operate on
are shown in Table 3. 4.

Time: 5.8 H5

3-51

Register
Name Code8 TRA TRR MCL MST

STS

OPR

LMP

PVL

PID

PIE

ALD 1 m40>H>MNH

><

N><><><

>4 ><

Table 3. 4. Accumulator Transfer Instructions

3.

3.

3

3. 1

Input/Output Control Instructions

IOX Input/Output execute Code: 164 000

Format: IOX device register address
Time: 2. 7 [.LS

15 11 10 '0

IOX device register address :I

All program controlled transfers between the CPU A register and
the external devices are controlled by using the 10X instruction.
The IOX instruction is loaded into the instruction register, IR, of
the CPU. The CPU in its turn generates the Input/Output timing and
enables the selection of the appropriate device, which is specified
by its device register address, <device register address> , bits
0—10. These 11 bits define an upper limit of 2048 device register
addresses to the number of regiSters that may be addressed. Some
registers may require two device register addresses, one for reading
and one for writing. Different devices will, however, require diffe-
rent number of device register addresses, Thus, the maximum number
of physical devices that may be connected will depend on the specific
configuration of devices.

Simple devices will usually require at least three different instructions
(addresses), write control register, read status register, and read
or write data buffer register. More complex devices like magnetic
tape units may need up to eight instructions. Instructions for the same
device are assigned successive device register addresses.

Recommended Device Addresses

Device addresses used fer A/S Norsk Data—Elektronikk produced
equipment on a standard Input/Output bus follow a preset assignment.
The standard address formats for the different groups of devices are
shown in Figure 3. 5.

3-53

Standard
Device Group Group Address Bits

Address 10 9 8 7 6 5 4: 3 2 1 0

Directly controlled 9000 0 e 0 0 0 register no.
registers

fl ""‘“"——""'" _ _— —
mod m T) F‘ E

Syncronous, e100 0 e 0 0 1 e s: 8 33
Modems

no. a E gs s p4.)

E H 23
Asyncronous H . $3 8 ‘H
Modems e200 0 e 0 1 0 display 5 E g

no. .c: o go o 4.»
_. fl :3
0-) O (4-:

Teletypesv e300 0 e 0 1 1 Tele— E: m
type no. 2 5 a

O O a.)

I—‘ H 5-4
G) O 8

Paper tape devices e400 0 e 1 0 0 device E}: In
line printers,etc. type 2: 8 E

o o H
;_.

Mass storage e500 0 e 1 0 1 mass re. CD

device storage nog ”53
no. ' g

$4
4.)

8
Plotters, intercore - 3 “(72'
other DMAdevices e600 0 e 1 1 0 demo? type+3§register no. 5 p

Q +3

:3
Miscellaneous 9700 0 e 1 1 1 “g

S‘;
4.)

O OOOOO‘OIOIVflINH
O O O O O ‘1‘ N v—1
0 O VF (N H
N v—l

Table 3.5 Standard Device Addresses for ND
produced Equipment.

The 9 bit is used for extension of the groups, extension: e=1
The e is normally equal zero.

channel {

control {

transfer {

0 input channel, 1. e.
1 output channel, i.e. output devices

0 data register
1 status or control register

0 input transfer
1 output transfer

input devices

Bit 10 is used to distinguish between ND produced and customer
produced equipment, bit 10 equals zero: ND produced equipment.

In the following some examples are given of device addresses.
For further programming specifications at NORD-lO Inptutput
manual should be consulted.

Example 1:

Teletype Addresses:

The codes below are relevant for the first Teletype,
Teletype number 0‘. The codes for the first eight
Teletypes are found by adding 108 * N for the codes
given, where N is the specific Teletype number.

Input Channel,

IOX 300 Read Data Register
10X 302 Read Status Register
IOX 303 Write Control Register

Output Channel,

IOX 305 Write Data Register
IOX 306 Read Status Register
IOX307 Write Control Register

Example 2:

Paper Tape Reader Addresses

IOX400 Read Data Register
IOX 402 Read Status Register
IOX403 Write Control Register

Example 3:

Paper Tape Punch Addresses

IOX 411 Write Data Register
IOX 412 Read Status Register
IOX413 Write Control Register

Example 4:

Line Printer Addresses

10X431 Write Data Register
IOX 432 Read Status Register
IOX 433 Write Control Register.

Example 5:

The standard device addresses for the mass storage
devices are as follows:

500
510
520
530
540
550
560
570

Disk I with four units
Disk 11 with four units
Magnetic tape I with four units
Magnetic tape II with four units
Drum I
Drum 11
Drum 111
Drum IV

and the standard register addresses within each device.

GrPNO

Example 6:

Drum Addresses

Core Address Register
Sector Block Address Register
Status Control Register
Word Count Register

The codes below are relevant for drum 1

IOX 540
IOX 541
IOX 542
IOX 543
IOX 544
IOX 545
IOX 547

Example 7:

Read Core Address
Load Core Address
Read Sector Counter
Load Block Address
Read Status Register
Load Control Register
Load Word Count Register

Real Time Clock Addresses

IOX 10
IOX 11
IOX 12
IOX 13

Read Data
Write Data
Read Status
Write Control

3. 3. 2 Format of Status and Control Word

The format of status and control word may be assigned by the designer
of each device controller. The following standard is used by ND for
its own device control cards (when applicable) and is recommended
for customer use.

Bit

{Om-QGBUWhBOONJF—‘O

11
12
13
14
15

Bit

CDmK‘IGEUTrPOJNHO

Status Word

Ready for transfer, interrupt enabled
Error interrupt enabled
Device active:
Device ready for transfer
Inclusive OR ’of errors
Error indicator
Error indicator
Error indicator
Error indicator
Selected unit
Selected unit
Operational mode of device
Operational mode of device
Operational mode of device
Operational mode of device
Operational mode of device

Control Word

Enable interrupt on device ready for transfer
Enable interrupt on errors
Activate device
Test mode
Device clear
Address bit 16
Address bit 17
Not assigned
Not assigned
Unit
Unit
Device operation
Device Operation
Device Operation
Device operation
Device operation

3.4

3.4;‘1

System Control Instructions

The following five instructions are denoted as the system control
instructions:

ION Interrupt system on

IOF Interrupt system off

IDENT Identify Input/Output interrupt
MON Monitor call

WAIT Wait or give up priority

Interrupt Control Instructions*

The NORD—12 computer has a priority interrupt system with 16 program
levels. Each program level has its own set of registers and status
indicators. The priority is increasing: program level 15 has the
highest priority, program level 0 the lowest.

The arrangement of the 16 program levels are as follows:

15 Reserved extremely fast user interrupts.

14 Reserved monitor calls

13-10 Vectored interrupts, maximum 2048
vectored interrupts.

9-8 System programming.

7—0 User programming levels.

All 16 program levels can be activated by program control. In
addition, program level 15, 13, 12, 11 and 10 may also be activated
from external devices.

The program level to run is controlled from the two 16—bit registers:

PIE Priority interrupt enable

PID Priority interrupt detect

Each bit in- the two registers is associated With the corresponding
program level. The PIE register is controlled by program only.

* A complete description of the NOBD—12 Interrupt System is found
in Chapter 5.

The PID register is controlled both by program and hardware interrupts.
At any time, the highest program level which has its corresponding bits
set in both PIE and PID is running, i. e. the contents of the PL register.

The PIE and PID are controlled by the TRA, TRR, MST and MCL
instructions, see Section 3. 2. 7.

When power is turned on, ‘the power—up sequence will reset PIE.
and the register set on program level zero will be used.

Two instructions are used to control the on-off function of the inter—
rupt system.

ION

IOF

Interrupt system on Code: 150 402

Format: ION

The ION instruction turns on the interrupt
system. At the time the ION is executed, the
computer will resume Operation at the program level
with highest priority. If a condition for change of
program levels exists, the ION instruction will
be the last instruction executed at the old program
level, and the P register at the old program
level will point to the instruction after ION.
The interrupt indicator on the operator's
panel is lighted by the ION. Time: 2. 3 #5

Interrupt system off Code: 150 401

Format: 10F

The IOF instruction turns off the interrupt
system, i. e. the machanisms for changing
of program levels are disabled.
The computer will continue operation at the
program level at which the IOF instruction
was executed, i.e. the PL register will
remain unchanged. The interrupt indicator
on the operator's panel is reset by the IOF
instructions. Time: 2. 3 as

Initialization of the interrupt system is treated in
Section 5. 2.

In addition the following register is available to ease the interrupt
programming:

PVL Previous level causing internal hardware
status interrupt.

Its use is described in Section 5. 4. In NORD-12 there are possibilities
for 2048 vectored Input/Output interrupts where each physical Input/
Output unit will have its own unique identification code and priority.
The IDENT instruction is used to distinguish between vectored inter—
rupts.

IDENT Identify vectored interrupt Code: 143 600
Format: IDENT (program level number>

When a vectored interrupt occurs, the IDENT
instruction is used to identify and serviced the
actual Input/Output device causing the‘inter—
rupt. Actually, there are four IDENT instruc-
tions, one to identify and service Input/Output
interrupts on each of the four levels 10, 11, 12
and 13. The particular level to serve is speci—
fied by the program level number.

The four instructions are:

IDENT PLlO Identify Input/Output interrupt Code: 143 604
on level 10

IDENT PLll Identify Input/Output interrupt Code: 143 611
on level 11

IDENT PL12 Identify Input/Output interrupt Code: 143 622
on level 12

IDENT PL13 Identify Input/Output interrupt Code: 143 643
on level 13.

The identification code of the Input/Output
device is returned to bits 0—8 on the A
register with bits 9-15 all zeroes.

1f the lDENT instruction is executed, but
there is no device to serve, the A register
is unchanged.

3. 4. 2

3-60

If several devices on the same program
level have simultaneous interrupts, the
priority is determined by which Input/
Output Slot the device is plugged into, and the
interrupt line to the corresponding PID bit
will remain active until all devices have
been serviced. When a device responds to
an IDENT, it turns off its interrupt signal Time: 3. 3 [is

For NORD—lZ the identification codes are standardized for Input/
Output devices delivered from ND.

Table 3.6 on Page 3—63 shows the 10X addresses and IDENT codes
used in standard software“.

Monitor C all Instruction

MON Monitor Call Code: 153 000

Format: MON <number>

The instruction is used for monitor calls, and
causes an internal interrupt to program level
14. The parameter,<number> , following
MON, must be specified between -2008 and 1778.
This provides for 256 different monitor calls.
This parameter, sign extended, is also loaded
into the T register on program level 14.

Time: 3. 3 us

3.4.3

3-61

Wait or give mPriority

WAIT Wait Code: 151 000

Format: WAIT (numbers?

The WAIT instruction will cause the com-
puter to stop if the interrupt system is not
on. The program counter will point to the
instructions after the WAIT.

In this programmed wait the STOP button on
the operator's panel is lighted. To start the
program in the instruction after the WAIT,
push the button CONTINUE or type! on the
console TTY.

If the interrupt system is on, WAIT will
cause an exit from the program level now
Operating (the corresponding bit in PID
is reset), and the program level with the
highest priority will be entered, which normally
will then have a lower priority than the program
level which executes the WAIT instruction.
Therefore, the WAIT instruction means
"Give up priority".

If there are no interrupt requests on any
program level when the WAIT instruction is
executed, program level zero is entered.
A WAIT instruction on program level zero is
ignored.

Note that it is legal to specify WAIT followed
by a number less than 3778' This may be useful
to detect in which location the program stopped.
The WAIT instruction is displayed at the operator's
panel, IR register.

Time: 5. 0 us

3.5

3-62

Customer Specified Instructions

The remaining free codes on the skip instruction may be used to
augment the NORD-12 instruction set. The codes to be used for
customer specified instructions are as follows:

1401XX 1403XX 1405XX 1407XX
1411XX 1413)Q{ 1415XX 1417XX
1421XX 1423XX 1425XX 1427XX
1431XX 1433XX 1435XX 1437XX

These 16 instructions have provisions for 16 new entry points in a
Read-only—memory outside the address space in the 1K standard
Read-only-memory. ‘

If these instructions are not implemented, they will cause the CPU to
enter STOP mode.

All the 16 customer specified instruction have the source (sr) and
destination (dr) fields available for further specifications.

These fields may either be used to let the customer specified instruc-
tion operate on the general registers, or used to augment the number
of customer specified instructions.

If the sr and dr fields are used to increase the number of customer
specified instructions, up to 1024 instructions may be added.

A/S Norsk Data—Elektronikk should be contacted for further information
on specifications and programming rules for the NORD-12 micro—
processor.

3—63

$80

Hzma
Ea

$328M

x9

3888

6:0;

2a

3-3

N

3.3

3

3

$20

$8:

Rom

83+

3

Sum-8m

,m-omm

Rm

3

88

.82

Em-S-m.$m-oom

3.3

”mm-0mm

.fim-owm

ad

3

8:5

83+

£3

SAM-3m

.Bm-oom

m;

3

$5

83+

3

poo-o8

w

3

$8:H

08$$>

83+

5-0?

-

$3258wsmnd>§m5

oooH+

hmpnomv

-

33-8280Eamfifiwsmi

83+

5-3

EN-oom

8-8

33

8288

.0933.

83+

3-8

Em-oom

57$,»d

33

-

8528-

83+

8

STE

S

3
.3

ESE-"W2

Emma

83+-05.8383

S
”S

3

33

aflommao

-

-

-

3

3

$530

oh

Tz

F383

.5383

$8

23-33

“53-83

3.3+

3,3

8288

68$

83+

8

Rw-wmw

.8378;-

mm
“m

3

$88

33

83+

8

83+-«2-

.mmw-omw

mm
.m

3

385$

85

83+

mm

pow-+3

dew-8+

mad

3

$28

239

83+

mm

3373-:-

5373+

mm
"N

3

85a

@93-

K:

ESE

N03

923:

$53

zofizmexm

mmgzgm

mogmm

4.1

4.1. 1

4-1

THE INPUT/OUTPUT SYSTEM

Input/Output Hardware

General De scription

In NORD—12 all Input/Output device interface cards are made to a
common standard. The CPU module contains a pre—wired bus with
a number of identical interface slots permitting any mixture of devices
without changing the backwiring and plug panel. Device plugs are also
made to a common standard.

‘

This system permits the use of printed backplane wiring for all wiring
within one module. Cable connectors are plugged directly into the
backplane.

The direct memory access channel, DMA, has a transfer capacity of
1.2M word/second. There may be a single very high—speed device
requiring this speed, or several different slower devices sharing the
channel. in the latter case, there will be no channel time overhead
in switching between devices. Thus, several devices using the channel
simultaneously, will be given a total throughput equivalent to the
maximum speed of the channel.

An optional controller which permits control of the devices from two
different CPU's, multi-machine environment, is also available.

Both modules in Figure 4.1 are standard 19" modules, each with 32
card positions.

The CPU module contains:

— The CPU, consisting of Registers, Arithmetic, Micropro-
grammed Control Section, Interrupt System, and Operator's
Panel Driver. (11 card positions.)

— 13 card positions for Input/Output device buffers. Each pro—
gram controlled device, such as Teletypes, Paper Tape Reader,
Paper Tape Punch, Card Reader, Line Printer, etc. requires
one card position in this bus. The bus loading may not exceed
that of 12 normal Input/Output device buffers. When more
buffers are needed (or the space is used formemory extension
as described below). External Bus Driver is used. This
Bus Driver occupies 3 of the 13 card positions, but it only
represents a load of one device buffer.

4.1. 3

4-2

- 8 card positions for 4K by 16 bits semiconductor memory
cards, giving a standard capacity of 32K words (64K bytes).
Memory may be expanded to maximum 64K words by a
small amount of optional wiring in 8 of the 13 card positions
for Input /Output device buffers.

The External Bus Driver is used to drive a differential Main l/O Bus
with a maximum cable length of 50 meters. Several Bus Controller
Modules may be connected to this bus, to drive Local Inptt /Output buses
where Input/Output device buffers may be plugged in.

The Bus Controller Modules drives 8 or 16 card positions on a Local l/O
Bus, and contains 8 or 16 card positions for one or two complex device
controllers (drum, di50,'magnetic tape, etc.).

The position of the device interface in the modules determines the
interrupt priority of the device. If several devices within one modules
are connected to the same program level, the dei/ice closes to the con—
troller has the highest priority within that level. Also if two devices in
the same module compete for a direct memory access, the device closest
to the controller has the highest priority and will win the first access.

Vectorcd Interrupt Identification

The NORD-IZ has a multiprogram system with 16 program levels. Each
program level has a complete set of registers. Out of these 16 program
levels five different program levels may be triggered by hardware inter—
rupts. These levels are: 15, 13, 12, 11, and 10.

Several different interrupt sources may be connected to the program
levels 10, 11, 12, and 13, while program level 15 is reserved for
extremely fast user Input/Output.

To identify which device is interrupting a "who are you" type of instruction
is used. This returns a 9—bit identification from the interrupting device
to theA register. The instruction has the format:

IDENT program level number

and is described in Section 3.4.1.

For program level 15, which is exclusively reserved user Input/Output,
there is no identification system, and identification is obtained by reading
a status word.

C P U modu 10

4—3

I

I V

Microm‘ogrammed Control

Main [/0 Bus

Operator's Periphera Memory
Panel Equipment

Modulesinterfaces

L

V

CPU 1/ 0 Bus
1 II

I

1
' m

{Gilliam Interrupt Bus

Aricthmetic Expander
1 (Optional)

1— ________________________ ‘l

Figure 4. 1:

I
I
|
l
l
l
|
l
|
I
I_ _

Q

BUS

Brancher
Local 1/0 Bus

V

\//

Periphe -

ral Equip
ment In-
terface 3

l

NORD-12 Bus System.

|
I
I
I
I
l
I
I
II

_______________________ _J

4.2

4.2.1

4-4

Input/Output Programming

The recommended way to perform Input/Output in a software system
is to use standard input/output subroutines. Input/Output subroutines
and drivers for all standard devices are available from A/S Norsk
Data Elektronikk.

Data transfer between the A register and an external device will be
controlled by IOX instructions containing an 11—bit "Device register
address" — DRA.

For direct memory access devices like disks, drums, magnetic tape,
etc. , the 10X instruction is used to write or read control information
to or from the controller‘of the specific device. Complex devices like
those mentioned may need several DRA's. A device like a punch,
reader, Teletype input, Teletype output will require at least three
DRA instructions.

The three instructions are:

IOX load device control register

IOX read device status register

IOX read device data buffer register or
write device data buffer register

ND's standard for use of the bits in device status and device control
register is shown in Section 3.3.1.

The Input/Output system makes it possible for the programmer to
control external devices in a tight and flexible manner.

Detained information about DRA, status, control, etc. , for different
devices are found in the "Programming Specification” for each device
type.

Programming Example 5

The following example shows a simple subroutine which reads a byte
from the tape reader:

INPUT, SAA 4
IOX DEVC + RDR %SET CONTROL (ACTIVATE DEVICE)
o DEVS + RDR %READ DEVICE STATUS
BSKP ONE 30 DA %DEVICE READY?
JMP* - 2 %NO
o RDEVB + RDR %READ DEVICE BUFFER
EXIT

RDR = 400 % 1. DRA FOR TAPE READER
DEVC = 3 '
DEVS = 2
RDEVB = 0

Programming examples for complex devices may be found in the
appropriate programming manuals.

4. 2. 2

4.2.3

Input/Output Interrupt Programag

Input/ Output via waiting loops as shown in the previous section is very
ineffective due to the fact that most of the computer time will be spent
in the Input/Output loops. This may be avoided by utilizing the interrupt
system. An interrupt will occur every time the device is ready for
transfer.

The necessary sOftware will normally be:
— Input/Output subroutines which will put a byte into a device

buffer. (Software buffers.)
— Interrupt identification sequences on the program levels

which the deviCes are connected to. (Using IDENT instruc—
tions.)

- Interrupt drivers fro each device type. The identification
sequence will branch to the driver of the interrupting device.
The driver will fetch a byte from the device buffer and output
it to the device (output device) or read a byte from the device
and put it into the device buffer (input device). The user of
such a system, however, will only "see" the Input/Output
subroutines and does not have to bother about details,

Design of {In Input/Output Handler Routine

This is an example of a simple Input/Output driver system:

%PROGRAM ON LEVEL 12
RET, SAA 0
INT12, WAIT

IDENT PL12
RADD SA DP
JMP ERROR
JMP DRIVERI
JMP DRIVERZ

JMP DRIVERN
JMP RET

%DRIVER FOR AN INPUT DEVICE

DRIVERl, IOX STATUS
BSKP ZRO 40 DA
JMP ERRORD
IOX RBUF

%GET INTERRUPT IDENTIFICATION
%ADD NUMBER TO
%p REGISTER
%IDENT 0 MEANS I/O
%SYSTEM ERROR
%GO TO 1. DRIVER

%READ DEVICE STATUS

%DEVICE ERROR
%READ DEVICE BUFFER

PUT BYTE INTO BUFFER ETC.
ENABLE AND ACTIVATE DEVICE FOR NEXT
TRANSFER

JMP RET

tn

CI‘I I p.—

THE INTERRUPT SYSTEM

The NORD-12 interrupt system is designed to simplify programming,
and to allow multiprogramming at extremely high efficiency.

This is achieved by use of a complete set of registers and status
indicators for each program level.

There are 16 program levels in NORD-12 and therefore 16 sets of
registers and status indicators. Each set consists of: A, D, T, L,
X and B registers, program counter, and each of the status indicators
0, Q, Z, C, M, and K.

The context switching from one program level to another is completely
automatic, and requires only 2. 0 as; the saving and unsaving of all
registers and status indicators are included.

In addition to the 16 program levels, there is a maximum of 512 vectored
interrupts connected to each of the program levels 13, 12, 11 and 10.

For the vectored interrupts there is an automatic priority identification
mechanism, thus no polling of interrupts is necessary.

The arrangement of the 16 program levels are as follows:

15 Reserved extremely fast user interrupts.

14 Monitor call

13-10 Vectored interrupts, up to 2048 vectored
interrupts.

9—8 System programming

7—0 Programming levels.

The priority is increasing, program level 15 has the highest priority,
program level 0 the lowest. -

The structure of a large programming system may be greatly simplified
by the use of these program levels where independent tasks may be
organized at different program levels with all priority decisions deter—
mined by hardware, and with almost no overhead because of the rapid
context switching.

All 16 program levels can be activated by program control. In addition
program levels 15, 13, 12, 11 and 10 may also be activated from
external devices.

CT!

01 l N

Control of Program Levels

The program level to run is controlled from the two 16-bit registers:

PIE
7

Priority interrupt enable

PID Priority interrupt detect

Each bit in the two registers is associated with the corresponding
program level. The PIE register is controlled by program only.
The PID register is controlled both by program and hardware inter—
rupts. At any time, the highest program level which has its corres-
ponding bits set in both PIE and PID is running.

The actual hardware mechanisms for this are as follows:

The number of the current program level is called PL (0 5 PL 5 15) ,
and this 4—bit PL register controls which register set (context block)
to use.

All the time the PL number is compared to a 4-bit register PIK.
At any time, PIK contains the number of the highest program level
which has its corresponding bits set in both PIE and PID. Whenever
PIK becomes different from PL, an automatic change of context block
will take place through a short micro-program sequence. This
sequence will do the following:

1) Read PL and store it in the PVL register,
previous program level.

2) Read PIK and store it into PL.

3) Resume operation with a new register set
determined by PL.

This complete sequence requires only 2.0 as, from the completion of
the instruction currently working when the interrupt took place, and
until the first instruction is started on the new level with its new set
of register and status.

The programming control of the interrupt system is as follows:

MD and PIE may be read to the A register with the instructions

TRA PID and TRA PIE

Three instructions are available for the setting of these registers

TRR PID and TRR PIE

The TRR instruction will copy the A register into the specified
register.

01 l w

MST PID and MST PIE

The MST, masked set, instruction will set the bits in the specified
register to one where the corresponding bits in the A register are
ones. (The A register is used as a mask for selection of which bit
to set.)

MCL PID and MCL PIE

The MCL, masked clear, instruction will re set to zero the bits in the
specified register where the corresponding bits in the A register are
ones.

In addition to TRA, Tan, MCL and MST the PID register is also
controlled in the following ways:

External interrupts may set PID bits 15, 13, 12, 11, 10.

The resetting of PID bits is also controlled by the WAIT instruction,
which will reset PID on current program level. (The WAIT instruction
is also called "Give up Priority”.)

For example a program on program level 14, which issues a WAIT
instruction, will cause P ID bit 14 to be zero, which again will cause
a new program level to be entered because PIK became different from
PL (= 14).

The interrupt system is also controlled by the two instructions,

ION Turn on interrupt system

IOF Turn off interrupt system.

When power is turned on, the power —up sequence will reset PIE and PL
and the register— set on program level zero will be used.

The ION instruction will resume operation at the highest program level
at the time ION is executed, if a condition for change of program levels
exists the ION instruction will be the last instruction executed at the
old program level, and the P register at the old program level will
point to the instruction after ION.

The IOF instruction will turn off the mechanisms for changing of
program level, and PL will remain unchanged.

IOF and ION may also be used to disable the interrupt system for
short periods, for example in order to prevent software timing hazards.

5.

(fl

1. 1

an I 4:.

Prgzram Level A ctivation

All program levels may be activated by program, by setting the
appropriate bits in PIE and PID.

Example:

If program level 9 is already enabled, bit 9 in' PIE is
set, then the program level is activated from a lower
program level by setting bit 9 in PID.

SAA 0 .
BSET ONE 110 DA %SET BIT 5) TO ONE
MST PID ‘ %SET PID BIT 9

NEXT,

The MST PID will be the last instruction executed, and the P register
at the lower program level will point to the NEXT instruction.

Note that it is not possible to program-activate a program level which
already is activated (i.e. , has its PID bit set to one), if it is tried,
the program level will only be entered once.

Initialization of Interrupt System

The initialization of the NORD-12 interrupt system is simple. After
power—up, PIE and PL will be zero and register block zero is in
use. The initialization sequence must include the following:

1) Enabling of the desired program levels by setting PIE.

2) The program counter on all program levels used have to
be initialized. The program counter must point to the
entry point of that particular program level.

The remaining initialization of registers may be performed
either at program level itself at the time of the first entry,
or together with the initialization of the program counter.

3) The last instruction in the initialization sequence is ION.

5. 3 Interrupt Program Organization

A program at a program level will typically be organized as a loop,
which is executed once each time the program level is activated:

%FIRST ENTRY POINTENTRX,

WAIT %GIVE UP pmomry
JMP ENTRX .

If response time is important the following organization is better:

WAIT %G1VE UP PRIORITY
ENTRX, - %FIRST ENTRY POINT

JMP ENTRX - 1

Note that a WAIT instruction on program level zero will reset PID
bit zero, but since there are no program levels with lower priority,
the program on program level zero will be re-entered at the
instruction following the WAIT.

U1

CH .4.1

5-6

Internal Interrupts

Program level 14 is reserved for internal interrupts. On NORD—lz
these internal interrupts are caused by the MON, Monitor .Call instruc—
tion, see also Section 3. 4. 2.

To speed internal interrupt processing an instruction for reading the
previous level is provided. This is done with the instruction

TRA PVL

which reads the PVL register, previous program level (level causing
internal interrupt) into bits 3—6 in the A register, with remaining bits
in the A register being equal to the code for inter—register read the
P register, 1. e. , the contents of the A register:

IRR <previous level8 * 103> DP

This technique gives a very fast access to the P register of the
program level causing the internal interrupt.

Example:

TRA PVL %A: = IRR Alevel> DP
EXR SA %A: = P register on interrupting

level
COPY SA DX
LDA -1 ,X % A: = Interrupting instruction

Note: PVL is only set when enterin level 14 from a level with lower
priority. Care should be taken so that programs on level 14 and
level 15 do not cause internal interrupts.

Monitor Call Interrupt

A monitor call has been executed. The level may be found as pre—
viously explained. The number of the call is automatically set to the
T register on level 14.

Note that this number is 8—bit with sign—extension, (i. e. in the range
—2008 to 1778). See Section 3. 4. 2.

CJ‘I

(n I <1

Vectored Interrupts

In NORD—12 there may be up to 2048 vectored interrupts: typically
each physical input/output unit will have its own unique interrupt
response code and priority.

These vectored interrupts must be connected to the four program
levels 13, 12, 11 and 10.

The standard way of connecting is as follows:

Level 13 Real time cloCk

Level 12 Input devices"

Level 11 Mass storage devices

Level 10 Output devices

The vectored interrupts are connected to the corresponding. bits in the
PID register.

When a vectored interrupt occurs, the IDENT instruction is used to
find out which device gave interrupt on this program level, if several
devices have simultaneous interrupt. The priority is determined by
which Input/Output slot the device is plugged into. For further
information, see Section 4.1. 3, or the Input/Output Manual.

The IDENT instruction provides a very fast response time, and no
polling of devices is required.

Pregramming example:

RETURN, SAA 0
WAIT % GIVE UP PRIORITY

LEV13, IDENT PL13 % IDENTIFY DEVICE ON
% LEVEL 13

RADD SA DP 0/0 COMPUTED GO TO
JMP ERR13 % CODE 0, ERROR
JMP DRIVI % CODE 1,
JMP DRIVZ % CODE 2

JMP DRIVN % CODE N

Note that only three instructions are required from time of the inter—
rupt until the specific Input/Output driver is entered.

The IDENT instruction will turn off the interrupt signal of the device which
gave interrupt. If several devices have their interrupt signals on,
the interrupt line to the corresponding PID bit will remain active, and
as soon as the WAIT instruction has reset one bit in PID, this bit will
be set again, and the WAIT instruction will have no effect.

6.1

6.1.1

6.1.2

CONTROL PANEL

The NORD—12 is controlled from the same micro-program which con—
trols the NORD—lO. Therefore the same control panel as developed
for the NORD—lO may also be used for the NORD—12. This panel is
described in Chapter 7. In addition the complete micro-programmed
operator communication as developed for the NORD—lO is also available
for the NORD—12. This communication which requires a Teletype or
visual display unit is described in Chapter 8.

NORD-12 Control Panel

To reduce costs a special panel for the NORD—12 has been developed.
This panel consists of six pushbuttons. The function of each of the
buttons is given below. The panel buttons may be locked by means of
a key.

Power On/Off

The power button may only be operated if the panel is unlocked. With
the panel locked, none of the control buttons may be operated.

MASTER C LEAR

Pushing this button will generate a hardware master clear signal. This
signal sets the control logic in the CPU and the Input/Output system to
a defined state and the micro-programmed operator's communication
(MOPC) is started. If the CPU is running when ”MASTE R CLEARH is
pushed, the program cannot be restarted by pushing the CONTINUE
button, because the contents of the P and A registers are lost. The
PIE register is reset by the master clear signal.

Light in the MASTER CLEAR button indicates an error input to the CPU
from the operator's communication program or one 01' the load programs.
The light is reset when the MASTER CLEAR button is pushed.

6.1.

6.1.

6.1.

6.1.

5

6

6—2

RESTART

This button generates a restart signal. When this signal is detected _
by the micro-program in stop mode, the CPU will start in address 20.
The RESTART button has no effect when the CPU is running. IF the
CPU is running, the STOP button must be pushed before the RESTART.
To be sure that the program has been started on level zero, the
MASTER CLEAR button should also be pushed.

LOAD

The LOAD button starts automatic program load from a device. The
device may be an Input/output device or a mass storage device, de-
pending on the setting of a switch register (ALD) on the Panel Driver
Card. The use of this register is explained in Section 8.2.4.

When a load program is active, the LOAD button lights.

CONTINUE

When this button is pressed, the machine starts running from the
address specified by the P register. The level is given by the contents
of the PIE and PID registers. If the MASTER CLEAR is first pressed,
PIE is cleared and the program is started on level zero.

STOP

Pushing this button stops the machine i. e. , the micro—program
running in stop mode is started. The st0p mode is indicated by light
in the STOP button.

7.

~]

K]

1

7-1

NORD-lO OPE RATOR'S PANEL

Panel Elements

The operator's panel for the NORD-10 computer has the following
elements:

1. An 18—bit switch register

2. An 18_—bit light diode register

3. 16 selector pushbuttons and 16 associated light emitting
diodes.

4. 8 mode indicators

A two—digit'display and two pushbuttonsC71

6. 10 control buttons

Power on/off button‘1

18—bit Switch Register

This register is used to present 18-bit data to the CPU. Normally
only 16 of these are used, the switches may be read from program
with the "TRA OPR" instruction. In installations with big memory,
more than 64K. 18 switches and lamps may be needed to represent
the possible 18-bit addresses.

18—bit Light emitting Diode Register

This is used to display 16—bit data or 18—bit addresses from the CPU.
Register contents, addresses and contents of memory locations may
be displayed in this register. The register 16—bits can be set with
the "TRR LMP" instruction (the user register (see below) must be
selected).

16 Selector Pushbuttons and 16 associated Light
emitting Diodes.

These pushbuttons are used to select one of 16 possible registers to
be displayed in the data display register. When one button is pushed ,
(a register selected) this is indicated with light in the associated diode
above the button.

The possible register selections are:

ACTIVE
LEVELS : When this button is pushed, the data display (described

above) will show the active program levels. 16 diodes
(0—15) are used, one for each of the 16 levels. In this
mode the lamps are provided with after—glow so that it
is possible to observe a single instruction on a program
level.

ND-06.001.01

DMA
ADR

ADR

p
ADR

DA TA

EXM

IR

If this button is pushed, the data display will show
the active DMA (direct memory access) address.
(See also Section 7.6.4.)

This register shows the actual memory address
being referenced, excluding DMA references and
instruction (program) addresses.

This is the memory address each time an instruction
is read (fetch cycle). Effectively the data display will
show the program address.

This is the user register set by the "TRR LMP"
instruction.

Note: If the U register is set from program by
"TRR LMP" and the U is NOT selected, the setting of
U will disturb the displaying of the selected register.
The degree of disturbance will depend on the frequency
of the U updating related to the panel interrupt frequency.

Displays data going to and from memory and on the l/O-bus.

This selection has two uses:

C PU in STOP

The data display will show the contents of the memory
location whose address is set in the switch register
when the SET ADDRESS button was last pushed (see
below). When the CPU stops, this address is preset
to zero. (The selected address is always zero alter
pushing the SINGLE INSTR button).
Use of the '/‘ (see Section 8.1.2) in MOPC will also set
the memory address displayed.

CPU runs

The data display will show the contents of the memory
location whose address is set in the switch register.
The memory location is sampled after each panel inter—
rupt, (about every 20 ms).

This selection will display the CPU instruction register.

STS. l). L. B. X, 'l‘, A, I).

If one of these is selected, the data display will show the
contents of that register. The register is sampled at each
panel interrupt. There is a complete set of these registers
on each of the 16 interrupt levels, so one has to select the
appropriate level when one of these registers is examined,
see Section 7.5.

ND-OG.001.01

7..

7 .

(J1

6. 1

Display Level select

This consists of two pushbuttons, "+" and "—", and a two—digit
display. By means of the two buttons, the level may be stepped
up or down. The contents of the display show the selected level.
If the display is stepped outside the limits 0—15, the 2 digit diSplay
will show the active program level and the selected register (STS,
P, L, B, X, T, A or D) is taken from the active level.

Control Buttons

These 10 pushbuttons are used to control the CPU and to modify
registers and memory. The function of each of the buttons is
given below. '

MASTER CLEAR

Pushing this button will generate a hardware master clear signal.
This signal sets the control logic in the CPU and the Input/Output
system to a defined state and the micro-programmed operator's
communication (MOPC) is started. If the CPU is running when
"MASTER CLEAR" is pushed, the program cannot be restarted by
pushing the CONTINUE button, because the contents of the P and
A registers are lost. The PIE register is reset by the master clear
signal.

Light in the MASTER CLEAR button indicates an error input to the
C PU from the operator's communication program or one of the load
programs The light is reset when the MASTER CLEAR button is
pushed.

RESTART

This button generates a restart signal. When this signal is detected
by the micro—program in stop mode, the CPU will start in address 20.
The RESTART button has no effect when the CPU is running. If the
CPU is running, the STOP button must be pushed before the RESTART.
To be sure that the program has been started on level zero, the MASTER
CLEAR button should also be pushed.

LOAD

The LOAD button starts automatic program load from a device. The
device may be an Input/Output device or a mass storage device, de—
pending on the setting of a switch register (ALD) on the Panel Driver
Card. The use of this register is explained in Section 8.2.4.

When a load program is active, the LOAD button lights.

ND-06.001.01

7. (3.4 DlCCODE ADDRESS

This button is used in connection with the displaying of addresses
(DMA ADR, ADR or P ADR selected). When this button is
pushed, the address is not displayed directly. The address space
is divided into 4K segments and each bit in the display register
represents one segment. Bit 0 is lighted if addresses 0 — 77778
are used, etc. Light in the buttonindicates the state of the address
display register.

7. 6.5 Sl'I'I' ADDRESS

When the machine is‘in stop mode and a memory examine is wanted.
the address must be set up in the panel switch register and the SET
ADDRESS button pushed. The address is now saved and is not changed
before the SET ADDRESS button is pushed again with a new content in
the switch register. This address is also changed when a memory
examine is executed from the console device (character"/" used).

Note that this button is used in stop mode only. When the machine
is running, the address in the switch register is used directly.

When the machine enters stop mode. the register used by the set
address function is set to zero. This means that after a single
instruction the examined address is zero.

7.6.6 DEPOSIT

When an address is selected with the SET ADDRESS button, the
contents of this cell may be changed with the DEPOSIT button. The
new contents are set up in the switch register and the DEPOSIT
button pushed. The display selection must be EXM.

7. (i. 7 ENTER REGISTER

This button is used to load a register. One of the registers STS, P,
L, B, X, T, A or D is selected with the register selection switches.
Level is selected with the level selector. The contents of the switch
register are now stored in the selected register when the ENTER
REGISTER button is pushed.

7.6. 8 SINGLE INST.

Pushing the SINGLE INSTRUCTION button causes a program to ad—
vance one instruction. The address is taken from the P register
and the CPU goes back to stop mode after execution of one instruc-
tion. The instruction is executed on the level given by the PIE and
PID registers.

ND-06.001.01

7 .

7.6.10

-]

6. 9 CONTINUE

When this button is pressed, the machine starts running from the
address specified by the P register. The level is given by the
contents of the PIE and PID registers. If the MASTER CLEAR is
first pressed. PIE is cleared and the program is started on level
zero.

Light in the CONTINUE button indicates that the CPU is running.

STOP

Pushing this button stops the machine i. e. , the micro—program
running in stop mode is started. The stop mode is indicated by
light in the STOP button.

Mode Indicators

USER Indicates that the program is running
on ring 0 (see Section 6.5).

PROTECTED
USER Indicates that the program is running

on ring 1 (see Section 6. 5).

SYSTEM Indicates that the program is running
on ring 2 (see Section 6. 5).

PROTECTED
SYSTEM Indicates that the program is running

on ring 3 (see Section 6. 5).

INTERRUPT Indicates that the interrupt system is
turned on i. e. , an ION instruction has
been executed.

PAGING Indicates that the paging system is‘
turned on, i. e. , PON instruction has
been executed.

IDLE Indicates interrupt system on, and that
the CPU is running on level zero.

TEST Not used.

ND-OG. 001. 01

7—6

A

qmz‘mm

WEOBAQIEWQO

OHIQmOZ

M

J

02

F}DJ

5.2:

nu?

at:

J

42t

r

H

NM}OL.

E

u

dwJWMK
7

a

Eh,

w.

IXw

4P3

)

000

000

000

GOO

000

O

El

man:
a

L

4.50
_

+3.1

99

253

a“?

C
C
O

C.
.
.
C
.
O
C
0

.
C
C

C
C
C

55»

S:

o
F
u

n
r
a
o
n
u

r
2
__

.2
n.
I

m.
2
t

atpupof

rut“;

.1530:

«um:

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

"‘

ND-OG. 001. 01

8-1

OPERA TOR 'S C OMMUNICATION

The NORD-lO/NORD—IZ has a micro program in the read only memory for
communication between the operator and the machine. This program
is called MOPC (Micro programmed Operator's Communication).

MOPC is always running when the machine is in stop mode, or the
state of the machine, when MOPC is running, is defined as the stop
mode.

To control a NORD-lO or a NORD-12 two different operator's panels
are available. The panel‘specifically developed for the NORD—lO is
described in Chapter 7. ,The smaller panel developed for the NORD—12
is described in Chapter 6, in the NORD—12 Reference Manual. Both
panels are available for NORD-lO and NORD—12, and one of these panels
must be selected.

When in STOP mode the NORD—lO/NORD—IZ micro—program is designed in
such a way that either the large operator's panel g1; the console device
(Teletype or Visual display unit) may completely control the NORD-lO
or NORD—lZ. (For special applications the console device may be
omitted).

The NORD-l 0/NORD-12 operator's communication includes bootstraping
programs and automatic hardware load from both character oriented
devices and mass storage devices.

When communicating with the MOPC program, the following characters
are legal input chatacters:

Characters: Use:

0,1,2, 3, 4, 5, 6, 7 Octal digits use to specify addresses and data

(0 Restart MOPC, clear PIE
3 Octal load

81 Binary load

1 Start program in main memory

/ Specifies register or memory cell examine

CR (carriage return) Terminator of line
LF (line feed) Echoes, no other effect

u (space) Octal number before the space is ignored

B Used to specify bank number

I Internal register examine

*) Does not apply for NORD-12.

8.

'8.

8.

l .

1.

1.

1.

Characters: Use:

R Specifies operation on one of the eight registers
STS, D, P, B, L, A, T, X on a specified level

* Current location counter

All other characters are ignored and followed by "?".

F u n c t i 0 n 3

Start a Program

Format:

4 octal number > I

The machine is started in the address given by the octal number.
If the octal number is omitted, the P register is used as start address,
i. e. , this is a "continue function". The program level will be the same
as when the computer was stopped (if Master Clear has not been pushed
or /) typed).

Memory Examine

Format:

4 octal number> /

The octal number before the chatacter "/" specifies the physical
memory address.

When the "/" is typed, the contents of the specified memory cell are
printed out as an octal number.

If a CR (carriage return) is given, the contents of the next memory
cell.are printed out.

Example:

717/003456 % EXAMINE ADDRESS 717

717/003456 (CR) % EXAMINE ADDRESS 717
003450 (CR) % EXAMINE ADDRESSES 720
000013 % AND 721

8. 1.

l. 4

8-3

Memory Deposit

Format:

Octal number (CR)

After a memory examine the contents of the memory cell mat be
changed by typing an octal digit terminated by CR.

Example:

717/003456 3475 (CR) % THE CONTENTS OF
003450 1700 (QR) % ADDRESS 717 IS CHANGED
000123 (CR) " % FROM 3456 TO 3475 AND 720
123456 % IS CHANGED FROM 3450 TO

% 1700. 721 CONTAINS 123 AND
% REMAINS UNCHANGED

Register Examine

Format:
< octal number> R < octal number> /

The first octal number specifies the program level (0—17), if this number
is omitted, program level zero is assumed.

The second Octal number specifies which register on that level to examine,
the following codes apply:

Status register, bits 1—7

D register

P register

B register

vwP-‘O L register

A register

’1‘ register

4|

0)

0'1

X register

After the "/" is typed, the contents of the register are printed out.

Examples:

R5/ A register level 0
7R2/ P register level 7

8. 1.

.1.

.1.

5 Internal Register Examine

Format:

I octal number /

The octal number specifies which internal register is examined, the
following codes apply:

0 Maintenance only

H STS Status register, program level is contained in
bits 8—11, bit 14 = PONI and bit 15 = IONI

[0 OPR Operator's panel switch register
* 3 PCS Paging status register

4 PVL Previous program level
* 5 110 Internal interrupt code

6 PID Priority interrupt detect

7 PIE Priority interrupt enable

10 Maintenance only

11 Maintenance only

12 ALD Automatic load descriptor
* 13 P138 Memory error status

14 Maintenance only
* 15 PEA Memory error address

16 Maintenance only

17 Maintenance only

Current Location Counter

When * is typed, an octal number is printed indicating the current
address on which a memory examine or memory deposit will take
place. The current location counter is set by the memory examine
command /, and it is also incremented for each time carriage
return is typed.

Break Function

When 51 is typed, the MOPC is restarted. This function is also
used to terminate an octal load. PIE is set to zero.

8.

'8.

8.

l

2.

.8

1

Bank Number

Format: *

octal number B

This command is used when the computer has more than 64K memory.
The memory is divided into 64K banks (0-3).

This command has to be used to specify the bank number when a memory
examine/deposit has to be. done.

Bootstrap Loaders.

The NORD—lO/NORD—IZ has bootstrap loaders for both mass storage
and character oriented devices. Three different load formats are
standard:

Octal format load

Binary format load

Mass storage load

Octal Format Load

Octal load is (normally) started by typing:

physical device address 3

The operator's communication will start taking its input from the
device with the specified'device address. The actual device must
conform with the programming specification of either Teletype or
tape reader. The device address is the lowest address associated
with the device.

During octal load there is no echon of characters. All legal operators
commands are accepted. Illegal commands terminate the loading and
"‘2" is typed“ on the console. Normally a or I is used to termi—
nate an octal load.

If. no device address precedes the 3 command, then S is nearly
equivalent to pushing the LOAD button on the operator‘s panel.
(See Section .8. 2. 4).

* Does not apply for NORD—12
** In installations without console an attention lamp is turned on.

8. 2. 2

8-6

Binary Format Load

Binary load is (normally) started by typing:

physical device address 8:

Loading will take place from the specified device. This device
must conform with the programming specification of either Teletype
or tape reader. The device address is the lowest address associated
with the device.

The binary information must obey the following format:

Figure 8.1:
I

Binary load format

A Any bytes ot including 1 (ASCII 418)

B (Optional) octal number (any number of digits)
terminated with a non-octal character*:

C . (Optional) octal number terminated with the
character .' (see below).

.' Signals start of binary information. (ASCII 418).

E Block start address. Presented as two bytes
(16 bits), most significant byte first.

F Word count. Presented as two bytes (16 bits),
most significant byte first. (E, F and H is not
included in F) .,

G Binary information. Each word (16 bits) presented
as two bytes, most significant byte first.

H Checksum. Presented as two bytes (16 bits), most
significant byte first. The checksum is the 16—bit
arithmetic sum of all words in G.

I Action code. If I is a blank (zero), then the program
is started in the address previously found in the
octal number B (see above). If B is not specified,
B=0 is assumed. IfI is not a blank, then control
is returned to the operator's communication,
which decodes I. (The number B will be found
in the P register on level 0.)

* Line feed (ASCII 128) is ignored within octal numbers.

8.

.2.3

2.4

If no device address precedes the & command, then the 8: is nearly
equivalent to pushing the LOAD button on the operator's panel.
(See Section 8. 2. 4.)

If a checksuni error is detected, ”?" is typed * on the console and
control is returned to the operator's communication.

Note that the binary loader does not require any of the main memory.

The binary load will change the registers on level 0.

The binary load format is compatible with the format dumped by the
)BPUN command in the MAC assembler.

Mass Storage Load

When loading from mass storage, 1K words will be read from mass
storage address 0 into main memory starting in address 0. After a
successful load, the CPU is started in main memory address 0.

If an error occurs, a new load is tried, If it is never possible to
load, Master Clear must be pushed to get the micro-program out of
the load sequence.

The actual mass storage must conform with either drum or disc
programming specification.

Mass storage load must be started by typing S or 8:, or pushing the
LOAD button on the operator's panel. If ALD is not set for mass
storage load the appropriate code for mass storage load must precede 8:.

A utom atic Load De so riptor

The NORD—lO/NORD—IZ has a 16—bit switch register called Automatic
Load Descriptor (A LD)**. This register specifies the load prodedure
to use when the LOAD button is pushed or when a single S or 8; is
typed.
T
The ALD format is as follows

15 14 13 12 11

E R M 0 Address L__.o

Automatic Load Descriptor (A LD) Format

* In installations without console an attention lamp is turned on.

** Situated on the Panel Driver Card.

8-8

E Extensions

If this bit (bit 15) is 1, then the load function is extended.
Effectively the micro program jumps to the micro address
found in ALD, bits 0—11.

Note: This bit is active even if the E4 and 8: commands
are preceded by a device address.

(The E bit is used when starting micro-programmed
diagnostic programs. The start address is put in ALD
bits 0-11. -

R Re start*

If this bit (bit 14) is 1, the load junction degenerates to a
jump to main memory address:

Address = 4 * (ALD bits 0-13)

This bit is used when the bootstrap program is held in
read only main memory. Note: E=0).

M Mass storage load

If this bit (bit 13) is 1, mass storage load is taken from
the device whose (lowest) address is found in ALD bits
0—10 (unit 0).
Note: E=R=0.)

O Octal format load

If this bit (bit 12) is set, octal format load will take place
from the device whose (lowest) address is found in ALD
bits 0~10.

Note: & will override this bit, a single & will start a
binary format load from the device whose (lowest) address
is found in ALD bits 0—10.

If bit 12 is not set, binary format load will take place
from the device whose (lowest) address is found in ALD
bits 0-10.

Note: 3 will override this bit, a single S will start an
octal format load from the device whose (lowest) address is
found in ALD bits 0—10. (Note: E=R=M=0.)

* Not to be confused with the RESTART button on the operator's panel.

8-9

E xam)1e 52.58.

Following is a table showing possible use of the ALD setting

ooom

ooom

ooom

ooom

ooom

$2v
1

mmwhvwm
1

mmwpwww
1

mmopwwmi

mmwpuwm
1

ooomofi

8‘

985%

3

985%

o»

985%

8‘

Q83"

3

Q83v
M_

cots

cot:

Anv.

80.5

oops:

A8V

80.3

mmmnuwm

mmmpvwm

mmobvww

3:5

8

”23m

8

953m

wag

muwfim

8

83m

wag

#300
m

35

89d

cmofi

bwm

80.5

Umofi

ASV

80$

36

80$

wag

AmV

80$

owoomo

mmmygm

mmmz

owmgopm

mmmz

ENS

mumfim

31¢m

33%

32

8300

00¢

80.5

cow

809m

AnV

80H.”—

oow

89d

AmV

89C

,

oowo
.8

Umofl

H.300
.

32

Nnumfimm

Uwofl

>88m

wag

H300

wag

H300

oom

89G

oom

89d

AQV

89d

oom

80.3

AQV

89G

oomooo

Umofl

2.38m

8&2

858m

ENS

2.58m

wmofi

8300

flag

H300

@A
V

no

Q<OA.$238

a

a.

Aqv

m

m

CV

85838800

Table 8.1

A1?PEHJDIXZA

NORD-12 MNEMONICS AND THEIR OCTAL VALUES

AAAA

AAB

AAT

AAX

ACT

ADC

ADD

AD1

ALD

AND

,B

BAC

BANG

BANG

BCM

BLDA

BLDC

BORA

BORC

BSET

BSKP

BSTA

BSTC

CLD

CM1

CM2

COPY

DA

DB

DD

DL

DNZ

' 172400

: 172000

: 173000

: 173400

000400

: 001000

006000

000400

000012

070000

000400

000600

177000

: 177200

000400
' 176600

: 176400
' 177600

: 177400

: 174000
' 175000

: 176200

176000
' 000100

000200

000600

: 146100

000005

000003

000001

000004

: 152000

DP

DT

ADX

EQIJ

E)fl17

EDGR

FAD

FDV

FNHJ

FSB

GRE

IDENT

IF

IOF

ION

UDX

IRR

IRWI

JAF

JAN

JAP

JAZ

JMP

JNC

JPC

JPL

JXN

JXZ

LBYT

LDA

LDD

000002

000006

000007

000000

: 146142

: 140600
' 100000

114000

: 110000

: 104000

001000

001000

: 143600

000000

: 150401
' 150402

164000

: 153600
' 153400

: 131400

: 130400
' 130000

: 131000

: 124000

132400

: 132000

: 134000
' 133400

: 133000

: 142200

044000

024000

LDF

IJDT

LIDC

LIN

LhflP

IJIB

LST

NUZL

REGIIE

BAHQ

hTD<3

hdLST

RKODJ

DEFY

IMST

IJLZ

ONE

OPII

ORA

PID

PIE

PIN

PL10

PL11

PL12

PL13

PVIJ

RADD

RAND

RCLR

RDCR

RDIV

RE}GD

RINC

034000

050000

054000

003000

000002
' 152600

003000

: 150200
' 001400

040000
' 143200

003400

: 153000

: 120000

: 150300

: 151400

000200
‘ 000002

074000

000006

000007
' 002000

000004

000011

000022

000043

000004

: 146000

144400

: 146100

: 146200

141600

: 145000

: 146400

RDEPY

RORA

RCYF

RSUB

SA

SAA

SAIS

SAI)

SAG?

SA)(

SB

SBYT

SD

SHA

SHD

SHIi

SIFT

SFLA

SKP

SL

SP

SIIB

SSC

SSK

SShd

SSO

SSQ
SSZ

ST

STA

ST?)

STE‘

STS

STT‘

: 141200

: 145400
° 001000

: 146600

:-000050

: 170400

: 170000

: 154600

: 171000

: 171400

000030

142600

000010

: 154400
' 154200

000200

: 154000

001000

: 140000

000040

000020

: 152402

000060

000020

: 000070

000050

000040

000030

000060

004000

020000

030000

000001

010000

STX
STZ
SUB
SWAP
SX
'TRA:

014000

000000

064000

144000

000070

: 150000

TTXR

UEXQ

VVAIT

ZIN

ZRL)

150100

002000

151000

002000

002000

000000

APPENDIX B

NORD-l 0/NORD-12 INSTRUCTION CODE

273533: 3am“ wmwmmfio

000.000 STZ 0 0 0 0 0

'0 004.000 STA 0 0 0 0 1
010.000 STT .0 0 0 1 0
014.000 STX 0 0 0 1 1
020.000 STD 0 0 1 0 0

M00.._ L111) .0 0 .1. 9.1.
1 030.000 STE 0 0 1 1 0

034.000 LDF 0 0 1 1 1
040.000 MIN 0 1 0 0 0

2 044'000 LDA 0 1 0 0 1
XIB Displacement

050.000 LDT 0 1 0 1 0
054.000 LDX 0 1 0 1 1

4

060.000 ADD 0 1 1 0 0
064.000 $1111 0 1 _1_ 0 1

3
070.000 '_ AND. -_ _01 1 1 0
074.090 ORA 0 1 1 1 1-

-1 0.9..-.QQD..-.- -..__FAD__. -1. .9- .Q- .0. 0..

4 £110.09--. - F§B_ .1 0. 9.-.9.l_
110. 000 1_-EMU_ .1. .0...0_ .1. L
114.000 FDV 1 0 0 1 1
120.000 MPY 1 0 1 0 0

r 124.000 111/13 1 0 1 0 1
0 130.000 CJP 1 0 1 1 0 Subin.

134.000 JPL 1 0 1 1 1
140.000 SKP+EXT 1 1 0 0 0

6 git-.990 - 11.0.13 1 1.0__0.1.- _ - --_S_ _-D_
150.000 M18 1 1 0 1 0 Subin.

154-000 S.H.T _1 1 0 1.1- _ _ -- -1 ---1N9-_9.f_§hi_ft_S_
160.000 IOT 1 1 1 0 0" __ ‘flDglipg‘nw

7 164.000 IOX 1 1;“ 0 1 @3993n

MOM- --..__,A.R,G 1 .1. .1. 1- 1-0_ -F.n<_=n-l ,flgusllegkmw
174.000 BOP 1 1 1 1 1 Function Bitno. , D

§§§§§§§§§§3331NH
8 3 8 S ‘” N”
r-l

APPENDIX C

DIFFERENCES BETWEEN NORD-lO AND NORD-lZ

This appendix is provided for those comparing NORD—lO with NORD—lZ.

1. Maximum memory size of the NORD—12 is 64K words.
The Memory Management System option is not available
for the NORD-12. With this option the maximum memory
size for NORD-lO is 256K words.

2. The speed ofrhthe NORD—lO is 300 ns per micro—instruction
for NORD-12 it is 500 ns per micro—instruction. This
gives a 5/3 ratio for floating point, for all other instruc—
tions consult the NORD-IO and NORD—12 Reference Manuals.

3. Internal hardware error interrupts are not connected to
level 14 on the NORD—12, and there is no IIE (Internal
Interrupt Enable) register and no IIC (Internal Interrupt Code)
However, on the NORD-12 it is possible to hardwire interrupts
to level 14.

4. NORD-12 is only available with dynamic MOS memories
(4096 bit/chip), while the NORD—lO is offered with a range
of different memories.

CT] The rounding algorithm for floating point differs between ‘
NORD-lO and NORD—12. On NORD—12 there is no TG
(Rounding) flip—flop in the Status Register (bit 1 in Status
on NORD-lO) , and for NORD-12 all floating point results
are truncated. On the NORD—lO the least significant bit
in the result is forced to one if the result could not be
exactly represented. For both the NORD—10 and NORD—12
all integers up to 232—1 will be exactly represented in
floating point format, and all results to this limit will also
be exact.

6. Only NORD—lO may have a NORD—l Input/Output Channel as
option.

’7. The Memory Parity system differs between NORD—IO and
NORD—IZ. On NORD-lO TRA instructions are used for
reading memory parity error information, on NORD-12 the
parity mechanism is an Input/Output device which plugs
into an I/O Slot. For both NORD—lO and NORD—IZ Memory
Parity is an Option.

8. On NORD-lO the Bus Transceiver or Bus Extender is
standard, this is an option on NORD-12.

- we want Hits of the future

-' 1

AIS NORSK DATA-ELEKTRONIKK GKERNVEIEN 145 OSLO 5 NORWAY PHONE: {21 7371 TELEX:18284

I

12;!

‘1?»

13.24%

- .Tfia

