
n

u
.__

‘

m”

To...
#00000
$000000

TEST PROGRAM

DESCRIPTIONS

NORSK DATA A.S

TEST PROGRAM

DESCRIPTIONS

ii

REVISION RECORD
evision Notes

08/76 nal Printi
eco E tion

02 77 Third Edition - supersedes previous editions
05 77 Revision A. Revised e iii and added C ter 14.

s on B. Re s page Chapter 15.

Test Program Descriptions
Publication No. ND-62. 009.03

NORSK DATA A/S

Lgprenveien 57, Postboks 163 (Dkern,
Oslo 5, Norway

iii

TA B LE OF C ONTENTS

+++

Section:

1

2

10

11

12

13

14

15

Test Reader and Punch TREPU

How to Use PFAIL

Test Paging

Real Time Clock Stability Test

Real Time Clock

8K MOS Memory Test Program

MOVER Memory Test Program

TECOD Test Program

DflVIS User's Guide

BIMS Users Guide

MCOPY User Description

DRUMS User Description

TCODR User Description

CACHE Test User Description

ERRCOR Test Program for Error
Correction Logic and 21 Bits Memory
Modules

ND-62. 009. 03
Revision B

HAR

HAR

HAR

HAR

HAR

HAR

HAR

HAR

HUT

HUT

HUT

HUT

HAR

HAR

HAR

1269

1355

1358

1397

1399

1821

1863

1451

1453

1872

1649

1297

1299

2063

2111

- 1651

1—1

TEST READER AND PUNCH TREPU — HAR 1269

Patch if no punch test:

addr. old new

24/ 135057 0

Read in the program. It starts automatically by printing:

TEST READER AND PUNCH.

Start tape reader interface test.

After this, the reader interface is tested without the reader.
All the 256 possible characters are generated in the interface,
read by the program, and checked. After the test, the pro—
gram prints:

END TAPE READER INTERFACE TEST

START TAPE PUNCH INTERFACE TEST.

Then, the punch interface is tested without the punch. All
the 256 possible characters are put into the buffer register
and then read back again and checked. After the test, the
program prints:

END TAPE PUNCH INTERFACE TEST

Type P (Punch), R (Read), S (Stop),
or anything else (octal delay).

The usual way of using the program is then to type P. The
program will then punch a test tape. When the test tape is
sufficiently long, type S and the program will stop. Put the
test tape into the reader, type R and the program will read the
test tape and check it. If anything else than P, R or S is
typed, the program will print:

OCTAL DELAY.

The user must then type an octal number, followed by a non-
octal character (CR or space). This number will be used in
a MIN—LOOP between each character read from the tape or
between each group of seven characters punched. An octal
delay of 177777 will give the least possible delay, 0 (zero) will
give the greatest delay. It is strongly advised to test both the
reader and the punch with octal delays like the following:

100000, 140000, 160000, 170000, 174000, 176000, 177000, 177400,

and so on. This will put the greatest possible strain on these
devices.

ND-62. 009. 03

The test tape is punched in this way:

First all the characters from 0 to 0377 are punched. Then
this sequence is repeated, but the characters are now shifted
(rotated) 1 left. The characters punched will be 0, 2, 4,
0376, 1, 3, . . 0377. After this, the shift (rotate) is re—
peated, and so on.

The.following error messages may be printed:

READ: XXXXXX SHOULD HAVE BEEN: YYYYYY
STOP . TO RESTART, TYPE ANY CHAR:

This means that XXXXXX was read when YYYYYY was ex—
pected. XXXXXX and YYYYYY are octal numbers. By in-
specting the tape in the reader, the user may find out if the
tape is punched incorrectly, or if the reader reads correctly.
Remember that the character on the tape directly under the
lamp is not yet read, if the reader works correctly. A com—
mon reader error may be that the reader reads the same char—
acter twice, or that it skips one or more characters. A com-
mon punch error is to punch two characters on top of each
other or that one or more of the bits (channels) on the tape are
failing.

After this error message, put the tape into the reader from the
beginning and type any character.

TAPE PUNCH NOT READY

The punch is off, out of tape, etc.

TAPE READER NOT READY

Switch on the reader.

Tape reader status error: X)Q{XXX

This means that some of the unused bits of the status word
(bit 1, bits 4—15) have become 1, or that bits 2 and 3 are
equal.

Bit 0 is Interrupt enabled
Bit 2 is Reader active
Bit 3 is Ready for transfer

XXXXXX is the failing status word.

TAPE PUNCH STATUS ERROR:)QQQCXX

This message is quite similar to that above.

READY -FOR—TRANSFER IS DEAD

ND-62. 009. 03

This message may occur in both the reader and the punch
interface test and means that READY-FOR-TRANSFER never
comes on.

ERROR. FAILING AND EXPECTED CHARACTERS ARE:
XXXXIOI YYYYYY

This message may occur in both the reader and the punch
interface test. XXXXXX is the failing character and YYYYYY
is the expected character.

ND-62. 009. 03

2-1

HOW TO USE PFAIL (Power Fail Test Program) - HAR 1355

1. Read in the program. It starts in 020.

2. Lock the machine.

3. The program prints:

POWER FAIL TEST PROGRAM

version, date

WHAT IS THE TERMINAL SPEED? etc. , etc,

This is answered by typing one of the digits 0-7.

The program prints:

INITIATE (1) OR RESTART (R)

4. Answer by typing I.

5. The program will now find the memory size, and
store address in addresses (STX, X)
If the machine has mini-paging and 64K memory, the
program will print 3 error messages that should be
ignored, and print a memory address (maximal) that
will be 177377.

6. The register save area will be filled with 070707.

7. The registers will be filled with a predetermined
content.

8. When the machine executes a JMP * in level 0, it
is ready for power fail. (The interrupt light on the
panel is on).

9. SIMULATE POWER-FAIL BY REMOVING AND REINSERTING
THE MAIN-PLUG.

10. After power fail (power off, power on), the program starts
in 020 automatically.

11. Answer R.

12. The program will now check the memory. If a word
does not contain its own address, an error message is
printed. Otherwise: MEMORY OK.

ND-62. 009.03

13.

14.

The register save area will now be checked. If
an error occurs, an error message will be printed.
Otherwise: REGISTERS OK.

If there is an error, the register save area might
contain 070707. This means that the corresponding
register is not saved.

If the register save area contained 111111, it means
that after the registers were saved, [CF and WAIT
did not stop the program.

After the registers are checked, the program jumps
to point 5.

ND-62. 009.03

TEST PAGING - EAR 1358

Test 1

Memory test of addresses 177400 — 177777, i.e., the page
tables. First, in every word of the page table is stored its
own address. The address is then read back and checked.
After that, the page tables are filled with six different pat-
terns, which are read back and checked. The six patterns
are:

000000, 177777, 052525, 125252, 000377, 177400.

In all the following error messages, the expected result is
printed first, and then the failing result.

Test 2

Page-not—in—core test. (WPM = RPM = FPM = 0).

The user's page table (page table 0) is filled with zeros, and
then the program starts the user (all addresses from 0 to
177777 are checked). This should give "page-not—in-core".

Test 3

Instruction—fetch-not—permitted test. 'The user's page table
(page table 0) is filled with 100004 (WPM = 1, page number 4).

After that, the user program SAA 123: MON 3; JMP *—1, is
executed in all virtual addresses, with 125252 in the user's
A register. This should give memory protect violation.

Test 4

Instruction-fetch—not-permitted test. The user's page table
(page table 0) is filled with 040004 (RPM = 1, page number
4). After that, the user program SAA 0123: MON 4;
JMP * - 1, is executed in all virtual addresses, with 125252
in the user's A register. This should give memory protect
violation.

Test 5

Instruction-page-in-core test. The user's page table (page
table 0) is filled with 020004 (FPM = 1, page number 4).
After that, the user program SAA 0123: MON 5; JMP *-1
is executed in all virtual addresses, with 125252 in the user's
A register.

SAA 0123 should be executed

ND-62. 009 . 03

Test 6

Data—read—not-permitted test. The user's page table is filled
with 020004 (FPM : 1, page number 4). After that, the user
program LDA *; MON 6-, JMP *-1 is executed in all virtual
addresses, with 125252 in the user's A register. This should
give memory protect violation.

Test 7

Instruction—page—and—read-data—page—in—core test. The user's
page table (page table 0) is filled with 060004 (WPM = 0, RPM
2 FPM = 1, page number 4). After that, the user program
LDA'*; MON 7; JMP *-1 is executed in all virtual addresses
with 125252 in the user's A register. LDA * should be executed.

Test 8

Data—write-not-permitted test. The user's page is filled with
020004 (FPM = 1, pm number 4). After that, the user pro-
gram STA‘ *; MON‘ 010‘; JMP *—1 is executed in all virtual
addresses, with 125252 in the user's A register. This should
give memory protect violation.

Test 9

Instruction—page—and—write—data—page—in—core test. The user's
page table is filled with 12004 (FPM = WPM = 1, page number
4). After that, the user program STA '*; MON 011; JMP *41
is executed in all virtual addresses, with 125252 in the user's
A register. STA * should be executed.

Test 10

Data—read-and—write-not—permitted test. The user's page table
is filled with 020004 (FPM = 1, page number 4). After that,
the user program MIN *: MON 012; JMP *—1 is executed in
all virtual addresses. This should give memory protect
Violation.

Test 11

Data-write—not—permitted test. The user's page table is filled
with 060004 (RPM = FPM = 1, page number 4). After that,
the user program MIN *: MON 013; JMP *—1 is executed in
all virtual addresses. This should give memory protect viola—
tion.

ND-62. 009. 03

Test 12

Instruction—page—and—read-data-page-and-writedata-page-in—core
test. The user's page table is filled with 160004 (WPM = RPM
= FPM = 1, page number 4). After that.., tbe near 2mm;
MIN *: MON 014; JMP *-1 is execufied in all virtual addresses.
MIN* should be executed.

ND462. 009. 03

4—1

REAL TIME CLOCK STABILITY TEXT — HAR 1397

Read in the program, it starts automatically and prints:

REAL TIME CLOCK STABILITY TEST
CLOCK DEVICE NO. (010, 014, ETC.):
Type the real time clock device number (usually 010) on
the teletype, followed by space or carriage return.

The program uses all available memory for a table. The
table is built in this way:

First zero is stored in a cell in memory. After that, the
program checks if ready—for—transfer is one, and if not,
it increases the memory cell with 1. This is done until
ready-for—transfer comes on and then the program repeats
itself, with the next memory cell,- until the memory is full.

After the device number has been specified, the program
starts to build the table. For a 16K machine, this will
take approximately 100 seconds the first time, when the
clock frequency is 100 microseconds, The second time,
the frequency is 10 microseconds and the third it is 1 micro—
second.

When available memory is full, the table is printed. It consists
of two columns and a sum. The first column is the number of
times a cell in memory has been MIN'ed between clock
ready-for—transfer. This column should consist of consequtive
numbers. The second column is the number of cells with
this MIN count. The greatest numbers should be in the middle
of the column. The sum is the sum of the second column
and should be constant. If it varies, it may mean that
ready—for-transfer is not turned off properly.

The building of the table may be interrupted by typing any
Character on the teletype (a feature for impatient users!).

There are two error messages from TSTAB:

CLOCK IS DEAD!

which means that READY—FOR—TRANSFER has not occurred
in that amount of time in which a memory cell has been MIN'ed
from zero to zero.

CLOCK STATUS ERROR: XXEQQCX

which means that some of the unused bits in the status word
(bit 1, bits 4—15) have become 1.

ND-62. 009. 03

XXXXXX is the failing status word where

Bit 0 is interrupt enabled
Bit 2 is external hold pulse has occurred
Bit 3 is Ready for transfer

ND-62. 009. 03

REAL TIME CLOCK - HAR 1399

Read in the program. It starts automatically and prints

TEST REAL TIME CLOCK
CLOCK DEVICE NO. (010, 014, ETC.).

Type the real time clock device number (usually 010) onthe
teletype followed by space or carriage return.

After this, the count test is started. This test sets the num-
ber of clock pulses between each interrupt to N, N=2, 4, 010,
020,, 100000, and checks that the clock counts down to
zero (or N) properly. The clock frequency in this test is
100 microseconds.

Afterthis test, TREAL prints:

END COUNT TEST

After a little delay, the frequency test starts, TREAL prints:

ABCABCABC

60 characters are printed, one per second. Between each
character, ready-for-tranofer has occurred 100 times.

After A, the frequency is 100 microsec.
H B

H H H 10
V!

H
C

H H H 1
H

When 60 characters have been printed, the count test is re.—
started.

ND-62. 009. 03

The following error messages may be printed by the program:

CLOCK .HANGUP

which means that ready—for—transfer never occurred in the
frequency test.

CLOCK NEVER STARTED

which means that the clock never counted down to 1 before
the count test.

READY FOR TRANSFER, BUT CLOCK WAS NEVER ZERO

which means that ready-for-transfer occurred before the clock
had count ed down to zero.

CLOCK COUNTED WRONG. XXXXXX INSTEAD OF YYYYYY

which means that the clock was expected to contain YYYYYY
or YYYYYY-l, but contained XXXXXX.

READY-FOR-TRANSFER IS DEAD '.

which means that in the middle of the count test, ready-for-
transfer never occurred.

CLOCK STOPPED COUNTING

which means that the clock register did not change for a
period of approximately 150 microseconds.

CLOCK STATUS ERROR: XXXXXX

which means that some of the unused bits in the status word
(bit 1, bits 4-15) have become 1. m is the failing
status word, where

Bit O is interrupt enabled
Bit 2 is external hold pulse has occurred
Bit 3 is ready for transfer

ND-62. 009. 03

8K MOS MEMORY TEST PROGRAM - HAR 1821

Load with MASTER—CLEAR, 4008;
Restart with MASTER-CLEAR,RESTART

Tests in the program:

Test No.1 9.) stores ZEROS in all memory cells, read and check.
b) stores ONES in all memory cells, read and check.

Stores 34 different patterns in the whole test area, read and check

Address in address test.

Stores the following pattern:

52525
125252

52525
125252

II

II

M

3.) Stores ZEROS in all locations
b) Reads ZEROS in first location and replace it

it with ONES.
c) Reads ZEROS in the next locatbn and replace it

with ONES.

At the end all locations are read and checked for
all ONES.

a) Write a pattern in the test area. ‘
b) Replace the pattern in the first location with

the pattern inverted.
o) Read the inverted pattern
d) Read the previous location
e) Reset the inverted pattern

Repeat b — e both moves the inverted pattern one location for
each time.

The test is done with 34 different patterns.

ND-62. 009. 03

7 Address in address test followed by inverted
address test.

10 Test refresh.
The test area is filled with ZEROS and ONES
and read after approximately 5 seconds.

11 Identical with Section 4 in memory check program—W

12 Identical with Section 5 in memory check program

13 Identical with Section 6 in memory check program

> HAR 1198
14 Identical with Section 7 in memory check program

15 Identical with Section 11 in memory check program

16 Identical with Section 12 in memory check
programj

17 & 20 Walking Tests
a) Writes a pattern in the test area
b) Writes the pattern inverted in the first location
c) Chocks that no other location. are changed
d) Reset inverted pattern

Repeats b-d, both moves inverted pattern one location for each
time.

The test is run with 4 patterns.

0
—1

52525
125252

The test is run 20 times in the test area while test 17 is run
in one module at the time.

ND-62. 009. 03

6-3

Exampl_e of Printout Running 8K MOS MEMORY - TEST:

MEMORY MAP

MODULE 8K 16K 24K 32K 40K 48K 56K 64K

BANK 0 X X X X

BANK 1

BANK 2

BANK 3

PAGING 8K MOS MEMORY EXERCISER FOR NORD—10

DID YOU KNOW THIS PROGRAM ?:N
FIRST THE PROGRAM RUNS TEST 1 & 2 IN THE PROGRAM
SCRATCH AREA. IF ERRORS ARE DETECTED, A MESSAGE
WILL BE PRINTED AND THE MACHINE STOPS.
THEN LOWER BANK AND LOWER TEST ADDRESS HAS TO
BE SPECIFIED (OCTAL NUMBER) SIMILAR FOR UPPER BANK
AND UPPER TEST ADDRESS.
LOWER AND UPPER BANK MAY BE EQUAL.
TEST TO BE RUN MUST BE GIVEN As A SEQUENCE OF
OCTAL NUMBERS. (1 -20) EACH NUMBER TERMINATED BY
CR.
THE SEQUENCE IS TERMINATED WHEN 0 Is GIVEN AS TEST
NUMBER. THE FOLLOWING NUMBERS HAVE A SPECIAL
MEANING WHEN SPECIFYING THE TESTS.
77 (CR) MEANS ALL TESTS
66 (CR) MEANS ALL TESTS EXCEPT TEST 20
55 (CR) MEANS ALL TESTS EXCEPT TEST 17 a. 20
TEST 17 & 20 ARE LONG TESTS.
A DESCRIPTION OF ALL TESTS SHOULD BE ATTACHED TO
THE PD-SHEET.
TO THE OTHER QUESTIONS YOU MAY ANSWER Y, WHICH
MEANS YES, OR ANY OTHER CHARACTER WHICH MEANS
NO. WHEN ANSWERING NO TO "CONTINUOUS ERROR OUTPUT ?",
ERRORS WILL BE SAVED IN A BUFFER AND DUMPED WHEN
THE TEST IS TERMINATED. THE DUMP WILL CONTAIN THE
NUMBER OF ERRORS IN EACH BIT IN EACH 8K MODULE. (EVEN
AND ODD ADDRESSES).
TO STOP THE TESTS MANUALLY, ANY CHARACTER MAY BE
TYPED ON TTY. (TYPE ONLY ONCE). USUALLY THERE
WILL BE A DELAY BEFORE THE TESTS ARE STOPPED:
TEST RUNNING. 000001

TEST RUNNING. 000002

ND-62. 009. 03

6—4

SELECT BANK (LOWER): 0
LOWER TEST ADDRESS (>14ooo IF BANK 0): 14001
SELECT BANK (UPPER): 0
UPPER TEST ADDRESS: 77777
SPECIFY TESTS TO BE RUN:
55
CONTINUOUS ERROR OUTPUT?: Y
DO YOU WANT TESTS TO LOOP?:N
ENABLE PARITY ERROR DETECTION?:Y
TESTS RUNNING

ND-62. 009. 03

MOVER MEMORY TEST PROGRAM - HAR 1863

The program will print a heading and a maximal address
(the memory is supposed to be contiguous from 0 to the
maximal address). Then the program will print: DO YOU
KNOW THIS PROGRAM? If you answer N, you will get an
explanation of the program on the teletype.

Then, the program will ask for 5 parameters: FLYTT,
ADDRN, ADDRX, PROGN and a device number.

ADDRN and ADDRX are the lower and upper addresses of
the memory area to be tested (for 32K they might be 0
and 077777). FLYTT is the number of words that the pro—

gram moves in memory after each test. If FLYTT is positive,
the program moves upwards; if negative, it moves downwards.
If FLYTT is 0, the program will not move.

PROGN is the first location of the program (i.e. , it defines
where the program will be placed in the memory). PROGN
must be in the memory area to be tested.

The device number defines error output. TTY: 0304, L—P:0430,
F-P:0410, and so on.

If the program shall run in another memory bank, load it with

3/)[ASTER
CLEAR, NB400& where N is the bank number (1, 2,

START ADDRESS = 400

For S-III put the tape into the reader.

Type PLACE T—R

For version HAR 1863B:

@LOOK-AT MEMORY
READY
0631/171001 171000
0.1

@MEMORY 0 2777
@DUMP "MOVER" 400 400
@MOVER

and continue as above.

ND-62. 009. 03

8—1

TECOD TEST PROGRAM — HAR 1451

TECOD is a test program intended to test memory and disk.

It does this by performing six different tests:

Extra Blocks Test
Address Test
Disk Arm Test
Sector Counter Test
Disk Write Protect Test
Repeated Pattern Testmourn-mm»

Extra Blocks Test

TECOD writes on the disk one sector, two sectors, three
sectors, . . ., up to 24 sectors. After each write, the
sector(s) is (are) read back and checked in memory. If
an error occurs, an error message is printed.

NB: Version 1451B will produce some false address mis—
matches (status 040430). They may be removed with 120/135053 0.

Address Test

TECOD writes the disk full of addresses. Each sector is
filled with its own address + word number. When the whole
disk is written, the sectors are read back, one by one, and
checked in memory. If an error occurs, an error message
is printed.

Disk Arm Test

Every sector is read and checked in memory. If N is the
maximal disk address of a cartridge (fixed or removable),
the sectors are read in this sequence: 0,N,1, N-1, and so
on. This will test that the disk arm moves properly. If
an error occurs, an error message will be printed.

Sector Counter Test

This test checks that the sector counter counts properly, i.e. ,
0, 1, 2, . . ., 026, 027, 0, 1, and so on. At the end of
the test, a table is printed out, demonstrating the stability of the
frequency with which the counter counts. If an error occurs,
an error message is printed.

ND-62. 009. 03

Disk Write Protect Test

Seven of the eight disk protect switches are tested, one by
one. For every switch tested, one disk write and one disk
read transfer is performed per track. The user is guided
through the test by messages on the teletype.

NB: The protect test will not work for Hawk disks. The
test will be bypassed if nothing is answered after 90 seconds.

Repeated Pattern Test

A disk area, no greater than one cartridge (the size of this
area is also dependent on the size of the memory area that
is checked), is filled with a bit pattern, and then this bit
pattern is read back to a specified memory area.

The writing is done by tracks, the reading by sectors.

Every time a disk sector is read, the memory address is
incremented by one. Thus, the different sectors are read
to different memory addresses.

After a sector has been read, the contents of the corresponding
memory block is checked for correctness, and an error mes—
sage is printed if necessary.

Also, after each read, a parity check and compare is performed.

Six different bits patterns are used. They are:

000000, 177777, 052525, 125252, 000377 and 177400.

When all bit patterns have been used, the program repeats
the pattern test.

How to Use TECOD

Read in TECOD. If correctly read, TECOD prints:

TECOD - TEST CORE AND DISK.

PLEASE TURN DOWN THE DISK PROTECT SWITCHES BEFORE
THE TEST STARTS.

LOWER CORE ADDRESS (NOT LESS THAN XMXX):

Answer by typing the start address of the area that you want
to check, followed by space.

TECOD then prints:

UPPER CORE ADDRESS (NOT LESS THAN YYYYYY AND
NOT GREATER THAN MAX. CORE ADDR):

ND-62 . 009 . 03

Answer by typing the last address of the area that you want
to check, followed by space. (One whole cartridge: Upper:
=lower + 046076, if memory size permits it'.)

TECOD then prints:

DISK SYSTEM I (1) or II (2):

Answer by typing 1 or 2.

TECOD then prints:

UNIT NO. (0 TO 3):

Answer by typing the unit number.

TECOD then prints:

REMOVABLE (R) OR FIXED (F) DISK ?

Answer by typing R or F.

TECOD will now do the EXTRA BLOCKS TEST, with the
different patterns. Before each pattern, this message will
occur:

EXTRA BLOCKS TESTED. PATTERN IS PPPPPP

If an error occurs, this error message will be printed:

XXXXXX NNNNNN WWWWWW

Where XXXXXX is the number of extra blocks (0 — 027),
NNNNNN is the word number (0 — 06777) and W
is the failing word. It should have been equal to the
pattern.

If WWWWWW is equal to NNNNNN it means that no word
from the disk has been read into that memory word before
the disk is read, the core block is filled with 0, 1, 2,
06777.

Then the address test is performed. Before the test, this
message is printed:

DISK ADDRESS TEST IS STARTED

If an error occurs, this error message is printed:

DISKAD WORDNO WORD EXP.
DDDDDD NNNNNN WWWWWW CC C C C C

where DDDDDD is the disk address, NNNNNN is the word
number (0 — 0177) and WW is the failing word. It
should have been CCCCCC (=DDDDDD+NNNNNN).

ND-62. 009. 03

8—4

If WWWWWW is equal to 077700 it means that no word has
been read into that core word. Before the disk read, the block is
filled with 077700, 077700, . . ., 077700.

Then the disk arm test is done. Before the test, TECOD prints:

DISK ARM TEST IS STARTED

After this, all sectors are read from the disk in such a way
that the disk arm has to move violently. If an error occurs,
this message is printed:

DISKA D WORDNO WORD EXP .
DDDDDD NNNNNN WWWWWW C C CC C C

This is the same error message as that one described under
the address test.

After this, the sector counter test is done. Before the test,
TECOD prints:

START SECTOR COUNTER TEST.

At the end of the test, a table is printed out. The left
column contains the number of mins in a loop between
sector counts and should consist of consequtive numbers.
The right column contains the number of loops with the same
min, count. The greatest numbers snould be in the middle
of the column. A Sum of all the numbers in the right column
is printed. It should be:

Upper core address — Lower core address + 1

If the sector counter never changes, TECOD prints:

SECTOR COUNTER NEVER STARTED.

If the sector counter counts for a while and then stops,
TECOD prints:

SECTOR COUNTER DIED.

After this error message, an incomplete table is printed.

If the sector counter counted incorrectly, TECOD prints:

SECTOR COUNTER COUNTED WRONG.
LAST VALUE (CORRECT) AND FAILING VALUE: CCCCCC FFFFFF

CCCCCC is the last correct value of the sector counter.
FFFFFF is the incorrect (new) value. It should have
been CCCCCC or CCCCCC + 1 (MODULU 030).

ND-62. 009. 03

Then TECOD will print:

START DISK WRITE PROTECT TEST

If the fixed disk is tested, it will also print:

PROTECT SWITCH/MUST BE UP DURING THE REST OF
THE TEST!

After this, the disk protect switches will be tested. TECOD
will ask for special settings of the protect switches by printing:

PLEASE PUT PROTECT SWITCH N UP (ALL OTHERS DOWN!)
TYPE ANY CHARACTER AFTERWARDS.

This message must be answered within 90 seconds (approximately),
or the rest of the protect test will be skipped. N is in the
range 0 to 6. Put up the requested switch and type a character
on the teletype. TECOD will then write and read all tracks
and check that the protect switches work properly.

The following error messages may occur:

MISSING DISK WRITE PROTECT ERROR!
DISK ADDRESS AND STATUS: AAAAAA 888888

This means that a protect error was expected but it did not
occur. Maybe the user forgot to put up the protect switch?

THIS DISK WRITE PROTECT ERROR SHOULD NOT HAVE OCCURRED!
DISK ADDRESS AND STATUS: AAAAAA SSSSSS

This means that an unexpected write protect error has occurred.
Maybe the user put up a switch that was not requested?

WHAT ? DISK WRITE PROTECT ERROR ON READ ? NONSENSE!!
DISK ADDRESS AND STATUS: AAAAAA SSSSSS

This error message should not occur at all:

STATUS ERROR ON READ. TEST IS TERMINATED.
DISK ADDRESS AND STATUS: AAAAAA SSSSSS

This means that TECOD has tried to read several times with
no luck. The test cannot continue.

PROTECTED TRACK WRITTEN UPON!
DISK ADDRESS: AAAAAA

This means that a disk area that TECOD expected to be protected
is written upon. Maybe the user has not put up the requested
switch?

ND-62. 009. 03

8-6

When this test is finished, TECOD prints:

END DISK WRITE PROTECT TEST

PUT DOWN ALL PROTECT SWITCHES!
TYPE ANY CHARACTER AFTERWARDS!

After this, TECOD will put a pattern on the disk, When
this is done, it prints:

PATTERN ZZZZZZ NOW ON DISK

Then, TECOD starts reading back the bit pattern. Every
word is checked in memory after it has been read from
the disk. If an error occurs, this error message is printed:

DISMD WORDNO COREAD WORD
DDDDDD WWWWWW CCCCCC WWWWWW

DDDDDD is the disk address of the failing word, NNNNNN
is the word number within the disk error (0 - 0177).
CCCCCC is the memory address of the failing word.
WWWWWW is the failing word. It should have been equal
to the bit pattern.

If WWWWWW is equal to NNNNNN, it means that no word
from the disk has been read into that core word. Before
the disk read, the core block is filled with 0, 1, 2, . . .,0177.

After each block has been read, the block is also parity
cheeked and compare tested, by performing a disk parity
check and a disk compare.

If an error occurs, a disk error message will be printed.
For a parity check error, the disk status should be 041030;
and for a compare error, the disk status should be 042030.

Error Messages from the Disk Routine

ERROR IN EXTRA BLOCKS: EEEEEE

EEEEEE is the number of extra blocks specified to the disk
routine. It should be in the range 0 — 027. If this error
message occurs, the program is probably destroyed, or the
machine is very, very worn.

The main error message from the disk routine is this one:

DISK Xm YYYYYY ERROR.
STATUS WORD: SSSSSS
DISK ADDR: DDDDDD
UNIT NO.: UUUUUU
MODUS WORD: MMMMMM
CAR, EXP, CAR, AND DIFF: UUUUUU EEEEEE DDDDDD

ND-62. 009. 03

This message occurs whenever a disk transfer fails or if
the disk routine is called with incorrect parameters.

XXXXEC can be READ, WRITE, PARITY, COMPARE and
indicates which operation failed.

YYYYYY can be UNIT NOT READY, HANGUP, INCORRECT
DISK ADDRESS STATUS, MODUS, CORE ADDRESS REGISTER.

UNIT NOT READY:

HANGUP:

INCORRECT DISK ADDR:

STA TUS ERROR:

MODUS :

C ORE ADDR . REGISTER:

When activated, the disk did not
become active, or not on cylinder.

When activated, the disk stayed
alive.

Program probably destroyed.

Transfer failed. Look at status
word description.

Program probably destroyed.

Contents of core address register
wrong after transfer. The incorrect
and expected core address register
is printed out, and their difference.

ND-62. 009. 03

9-1

DIMS USER'S GUIDE - HUT 1453

Contents:

Introduction

Simplified Parameters

COPy
Compare

Verify

Dump

Change

Parity Check

Set

Translate

Error Messages

ND—62. 009. 03

9-2

Introduction

Read in "Disk Maintenance System" (hereafter called DIMS).
if it is read correctly, the program will start automatically
by printing:

DISK MAINTENANCE SYSTEM

version and date

If you don't know the answer to questions that DIMS may ask,
Type X:

FUNCTION:

There are eight answers to this.

Type CH DIMS answers by printing ANGE
C OM PARE
C OP Y
D UMP
P ARITY C HEC K
S ET
T RANSLATE
V ERIFY

The eight functions CHANGE, COMPARE, COPY, DUMP,
PARITY CHECK, SET, TRANSLATE, and VERIFY are
described on the following pages.

CDC HAWK Disk Address Format:

15 14 6 5 4 0.
D Cylinder S Sector —|

D - disk D = 0 i.e. , removable cartridge
D =1 i.e., fixed disk

S = surface S — 0 i.e. , upper surface
S 1 i.e. , lower surface

ND-62. 009. 03

9—3

Simplified Parameters

If one of the four functions COMPARE, COPY, PARITY
CHECK, VERIFY is selected, DIMS will print:

A WHOLE CARTR., S—III AND MACM-AREA, OR OTHER (W/S/O):

If the user types W as an answer, a whole cartridge will be
compared/copied/parity-checked/verified. This is useful for
backup purposes.

If the answer is S, only the disk area where S—III and
MACM-AREA resides (starting at page 1, 0177 pages) is
handled. This might be useful if SINTRAN is destroyed and
if the user wants to reset SINTRAN without destroying files.

If 0 is answered, refer to descriptions of the four different
functions.

If the answer was W or S, DIMS will ask for disk system,
unit number and removable/fixed. The answer to disk system
is 1 or 2. usually 1, 'The answer to unit is 0, 1, 2, or 3.
The answer to removable/fixed is R or F.
REMEMBER: The answer is one single character. No car-
riage return must be given afterwards! If an incorrect chara—
cter is given, DIMS will ask the question again.

Copy

Copy copies one disk area to another disk area.

DIMS will print

FROM:

As an answer to this, type,

81/82, or
U0/U1/U2/U3, or
An octal number in the range 0 to 162367, followed by space;
or
CR (CARRIAGE RETURN)

S means disk system. If no diskfisystem is specified, Si _is
assumed. U means unit. If no unit is specified, U0 is asSumed.
Remember that the disk address must not have 1 both in bit 3
and bit 4, and bits 14 - 6 must not be greater than 623. This
is the disk address of the first sector to be copied.

DIMS will then print

TO:

ND-62. 009. 03

9-4

The answer to this is the same as the answer to from.
This will be the disk address of the first sector of the
new disk area.

DIMS will then print

AMOUNT:

As an answer, type

CR, or
an octal number in the range 1 to 045700, followed by
space. This is the number of disk sectors to be copied.

DIMS will then print

BLOCK SIZE:

As an answer, type

CR, or
an octal number in the range 1 to 030.

CR means 030, which is a whole track. The disktransfers
are done in blocks. A block may contain from 1.to 030 sectors.

DIMS will then check if the specified areas overlap. If they
do, DIMS will print

DISK AREAS OVERLAP EACH OTHER.

If okay, print Y:

If you print Y, the copy will be executed. The execution starts
by DIMS printing CR LF.

The overlap feature may be used to fill a whole disk with zeros
(for instance). If "SET" is used to fill the first sector with
zeros, then the disk area starting at disk address 0 may be copied
to the disk area starting at disk address 1. The block size must
be 1 (IMPORTANT!) and the amount must be 045677. ”SET" can
also fill a whole track with zeros. Copy is then executed with
amount 045650. The block size is 030 and the disk addresses
should be 0 and 030.

If a disk error should occur during the execution, an error mes—
sage will be printed and the execution proceeds. Error messages
from the disk routines are listed on page 9-9

When execution finishes, DIMS prints

END COPY

FUNCTION:

And you are back to the beginning again.

ND-62. 009. 03

C 0 mp a r e

Compare compares the contents of two disk areas by reading
the first area (disk read) and comparing it with the second
area (disk compare).

Compare is used exactly like copy.

When execution is completed, DIMS prints:

END COMPARE

FUNCTION:

Verify

Verify compares the contents of two disk areas by reading
them both from the disk and then comparing them word for
word in core.

Verify is used exactly like copy.

If an error occurs, a heading will be printed and then one
line per error. This line looks like this:

D1D1D1 U1U1U1 D2D2D2 U2U2U2 WWWWWW FFFFFF SSSSSS

where D1D1D1 and U1U1U1 are the disk address and unit number
belonging to FFFFFF. D2D2D2 and U2U2U2 is the disk address
and unit number belonging to 888888. WWWWWW is the word
number of FFFFFF and SSSSSS. It is in the range 0 to 05777,
and indicates which word of the disk area that failed. FFFFFF
and SSSSSS are the two words that should be equal. FFFFF is
from the first disk area and SSSSSS from the second.

After the error message, verify proceeds.

When the execution finishes, DIMS prints:

END VERIFY

FUNCTION:

Dump

Dump dumps the contents of a disk area on the line printer
or the teletype.

DIMS will print:

FROM:

The answer is the same as the answer described under copy.

ND-62 . 009 . 03

000000
000010
SAME
000170

946
”

DIMS will then print:

AMOUNT:

The answer is the same as the answer described under copy.

DIMS will then print:

DUMP 0N TT ('1‘) OR LPR (L):

The answer is T for teletype and L for line printer. The
dump will loop like this:

CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC
CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC

CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC

where CCCCCC is any octal number and the first number on each
line is the word number of the second word on the line. Identical
lines will not be printed.

When the execution finishes, DIMS will print:

FUNCTION:

Change

Change inspects and changes single words on the disk.

DIMS will print:

DISK ADDBESS:

The answer is the same as the answer described for From under
COPY- This is the disk address of, the sector you want to inspect/

change.

DIMS reads the sector from the disk and prints:

SECTOR IS READ
LEGAL CHARACTERS ARE CR / o 1 2 3 4 5 6 7
LEGAL ADDRESSES ARE ooo - 0177

After this, you may inspect and change the contents of the
disk “sector by using the teletype as you do under "(WEE—10)
operator's communications. The only—difference is that you
don't have to type all Six‘ digits of an octal number.

V ”W

If an illegal character is typed (a character not from the set
mentioned above), the character is ignored, and _ is printed.

ND-62. 009. 03

Remember to use addresses in the range 0 to 0177!

When all changes are done, type @, and DIMS writes to the
disk.

After that, DIMS prints:

SECTOR IS WRITTEN BACK

FUNCTION:

Parity Check

Parity check will read the contents of a disk area, without
storing it in core, and check for parity.

DIMS will print:
FROM:
The answer to this is the Same as the answer described
in Copy.

DIMS will than print:

AMOUNT:

The answer is the same as the answer described in Copy.

DIMS will then print:

BLOCK SIZE:

The answer is the same as the answer described in Copy.

When the execution finishes, DIMS prints:

END PARITY CHECK

FUNCTION:

ND-62. 009. 03

9-8

Set

Set will write 1—030 sector(s) on the disk. The contents
of the sector(s) is specified by the user.

DIMS will print:

HOW MANY SECTORS (1-030):

Answer by typing an octal number in the range 1-030,
followed by space.

DIMS will print:

SPECIFY THE FIRST WORD:

The answer to this is any octal number, followed by space.
This will be the contents of the first word of the disk area.

DIMS will then print:

MODIFIER:

The answer is any octal number, followed by space. The
modifier will be added to all subsequent words of the disk
sector(s), in this way:

0/FIRST WORD
1/FIRST WORD + MODIFIER
2/SECOND WORD + MODIFIER (=FIRST WORD + 2*MODIFIER)
and so on.

DIMS will then print:

DISK ADDRESS:

The answer is the same as the answer to from described in
Copy.

After the sector(s) has been written on the disk, DIMS prints:

FUNCTION:

T r an s lat e

Translate translates an octal number to a CDC disk address.

DIMS will print:

LOGICAL DISK ADDRESS:

The answer is any octal number in the range 0 to 045677,
followed by space.

ND-62 . 009 . 03

9—9

DIMS will then print:

LOGICAL DISK ADDRESS LLLLLL IS CDC DISK ADDRESS DDDDDD

Where LLLLLL is the word specified by the user, and DDDDDD
is the disk address.

After this, DIMS prints:

FUNCTION.

Disk Error Messages

If a disk error occurs, this message will be printed:

DISK XXXXXX YYYYYY ERROR.
STATUS WORD: ssssss
Disk ADDR: DDDDDD
UNIT NO.: UUUUUU
MODUS WORD: MMMMMM

Where XXXXXX will be READ, COMPARE, WRITE OR PARITY
CHECK; YYYYYY will be. UNIT NOT READY. HANGUR. INCORRECT
DISK ADDRESS, STATUS, MODUS or CORE ADDRESS REGISTER.

XXXXXX indicates which operation was performed. YYYYYY
reflects the bits in the status word. 888888 is the status
Word and DDDDDD is the disk address of the sector that
failed. UUUUUU is the disk unit number and MMMMMM contains
parameters to the disk routine.

If the core address register fails, the error message will also
contain this extra line:

CAR, EXP, CAR, AND DIFF: UUUUUU EEEEEE DDDDDD

Where UUUUUU is the incorrect core address register, EEEEEE
is the expected core address register and DDDDDD is the octal
difference between the core address register and its expected
value after the disk transfer.

ND-62 . 009 . 03

10

101

BIMS USER'S GUIDE — HUT 1871

Contents:

Introduction

COPY

Compare

Verify

Dunn)

Change

Parity Check

Set

Transhue

Format

Refresh

C lear -Device

Disk Error Messages

ND-62. 009. 03

Page:

10—2

10-2

10-4

10-5

10-5

10-6

10-7

10-7

10—8

10-8

10—9

10-10

10—10

10-2

Introduction

Read in "Big Disk Maintenance System" (hereafter called
BIMS) in the usual way (master clear, 400&). If it is read
correctly, the program will start automatically by printing:

BIG DISK MAINTENANCE SYSTEM (BIMS)

version and date

IF YOU DON'T KNOW THE ANSWER TO QUESTIONS THAT
BIMS MAY ASK, TYPE X.

IS THIS A 33 MBYTE DISK OR A 66 MBYTE DISK (3 OR 6)?

Answer this by typing 3 or 6.

BIMS then prints:

FUNCTION:

There are eleven answers to this:

Type CH BIMS answers by typing ANGE
CL EAR-DEVICE
COM PARE
COP Y
D UMP
F FORMAT
P ARITY -CHECK
R EFRESH (REFORMAT)
S ET
T RANSLATE
V ERIFY

The eleven functions CHANGE, CLEAR-DEVICE, COMPARE,
COPY, DUMP, FORMAT. PARITY CHECK, REFRESH, SET,
TRANSLATE and VERIFY are described on the following pages.

Copy
Copy copies the contents of one disk area to another disk area.

BIMS will print:

FROM:

It asks for the disk address of the first sector to be copied.

ND-62. 009. 03

10—3

As an answer to this, type:

31/32 (Si OR s2), AND/0R
U0/U1/U2/U3/U4/U5/U6/U7, AND/OR
E0/E1/(E1 only for the 66 mbyte disk),
and/or an octal number in the r e 0—146517 for the 33 mbyte
disk, any legal octal number for t e 66 mbyte disk if E0, an7
octal number in the range 0—115517 if E1, followed by any
non-digit.

S means system. If no system is specified, Si is assumed.
U means unit. If not unit is specified, U0 is assumed.
E means extended cylinder address. If no such is specified,
E0 is assumed. If only carriage return is typed, 0 is assumed.
If the disk address has 1 in bit 6, bits 5-4 must both be zero
(101, 110, 111 in bits 6—4 are illegal).

BIMS will then print:

TO:

The answer to this is the same as the answer to From.
This will be the disk address of the first sector of the new
disk area. ‘

SMD Address Format:

15 7 6 .4 3 -O

cylinders surface sectors

0-410 0-5 0-16

BIMS will then print:

AMOUNT:

As an answer, type:

CR, OR
An octal number in the range 1—100160 for the 33 mbyte disk.
An octal number in the range 1-200460 for the 66 mbyte disk,
followed by an non-digit. This is the number of disk sectors
to be copied.

ND—62. 009. 03

10-4

BIMS will then print:

BLOCK SIZE:

As an answer, type:

CR, OR
An octal number in the range 1 to 020.

CR means 020, which is a whole track. The disk transfers
are done in blocks. A block may contain from 1 to 020
sectors.

BIMS will then check if the specified areas overlap. If
they do, BIMS will print:

DISK AREAS OVERLAP EACH OTHER. IF OK, PRINT Y:

If you print Y, the copy will be executed. The execution
starts by BIMS printing CR LF.

The overlap feature may be used to fill a whole disk with
zeros (for instance). If "SET" is used to fill the first
sector with zeros, then the disk area starting at disk address
0 may be copied to the disk area starting at disk address 1.
The block size must be 1 (important!!), and the amount must
be 100157 or 200457.

If a disk error should occur during the execution, an error
message will be printed and the execution will proceed.
Error messages from the disk routines are listed on page 10—10.

When execution finishes, BIMS prints:

END COPY

FUNCTION:

And you are back to the beginning again.

Compare

Compare compares the contents of two disk areas by reading
the first area (disk read), and comparing it with the second
area '(disk compare).

Compare is used exactly like Copy.

When execution finishes, BIMS prints:

END COMPARE

FUNCTION:

ND-62. 009 . 03

10-5

Verify

Verify compares the contents of two disk areas by reading
them both from the disk, and then comparing them word
by word in memory.

Verify is used exactly like Copy.

If an error occurs, a heading will be printed, and then one
line per error. The heading looks like this:

DSKADi EXTCYi UNIT1 DSKAD2 EXTCYZ UNIT2
D1D1D1 E1E1E1 U1U1U1D2D2D2 HEZEZ U2U2U2

WORDNO WORD1 WORD2

Where DiDiDi, EiEiEi and U1U1U1 belong to FFFFFF,
and D2D2D2, E2E2E2 and U2U2U2 belong to SSSSSS. The
error lines contain three words:

WWWWWW FFFFFF SSSSSS

WWWWWW is the word number of FFFFFF and 888888. It
is in the range 0 to 017777, and indicates which word of the
disk area failed. FFFFFF and 838888 are the two words
that should have been equal. FFFFFF and SSSSSS are the two
words that should have been second.

After the error message, Verify proceeds.

When the execution finishes, BIMS prints:

END VERIFY

FUNCTION:

Dump

Dump dumps the contents of a disk area on the line printer
or the teletype.

BIMS will print:

FROM:

The answer is the same as the answer described under Copy.

BIMS will then print:

AMOUNT:

The answer is the same as the answer described under COpy.

ND-62. 009. 03

10—6

BIMS will then print:

DUMP ON TT (T) OR LPR (L):
The answer is T for teletype and L for line printer. The
DUMP will look like this:

000000 CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC 000000 000000
000010 CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC

same
000770 CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC

Where CCCCCC is any octal number, and the first number on
each line is the word number of the second word on the line.
Identical lines will .not be printed.

When the execution finishes, BIMS will print:

FUNCTION:

Change

Change inspects and changes single words on the disk.

BIMS will print:

DISK ADDRESS:

The answer is the same as the answer described for FROM
under Copy. This is the disk address of the sector you want
to inspect/change.

BIMS reads the sector from the disk and prints:

SECTOR IS READ
LEGAL CHARACTERS ARE CR / 0 1 2 3 4 5 6 7 G
LEGAL ADDRESSES ARE 000-777

After this, you may inspect and change the contents of the
disk sector by using the teletype as you do when N-10 is
in stop mode (MOPC).

If an illegal character is typed (a character not from the set
mentioned above), the character is ignored, and - is printed.

Remember to use addresses in the range 0 to 0777'.

When all changes are done, type @, and BIMS writes the
disk sector back on the disk.

After that, BIMS prints:

SECTOR IS WRITTEN BACK

FUNCTION:

ND-62. 009. 03

10-7

Parity Check

Parity check will read the contents of a disk area, without
storing it in core and check for parity.

BIMS will print:

FROM:

The answer to this is the same as the answer described

under Copy.

BIMS will then print:

AMOUNT:

The answer is the same as the answer described under

Copy.

BIMS will then print:

BLOCK SIZE:

The answer is the same as the answer described under
Copy.

When the execution finishes, Elm prints:

END PARITY CHECK

FUNCTION:

Set

Set will write one or more sectors on the disk. The
contents are specified by the user.

BIMS will print:

HOW MANY DISK SECTORS (1-020):

The user must type an octal number in the range 1—020,
followed by space.

BIMS will print:

SPECIFY THE FIRST WORD:

The answer to this is any octal number, followed by space.
This will be the contents of the first word of the disk sector.

ND-62. 009. 03

10—8

BIMS will then print:

MODIFIER:

The answer is any octal number, followed by space. The
modifier will be added to all subsequent words of the disk
sector, in this way:

O/FIRST WORD
1/FIRST WORD + MODIFIER
2/SECOND WORD + MODIFIER (-—‘first word + 2 * modifier),
and so on.

BIMS will then print:

DISK ADDRESS:

The answer is the same as the answer to FROM described
under Copy.

After the sector has been written on the disk, BIMS prints:

FUNCTION:

T r an slat e

Translate translates an octal number to a big disk address.

BIMS will then print:

THIS CORRESPONDS TO BIG DISK ADDRESS EN DDDDDD

Where EN is the extended cylinder address (E6 or ~Effieihd“.
DDDDDD is the block address.

After this, BIMS prints:

FUNCTION:

Format

Format will write the address parts of the tracks. Usually,
this is not done, as it destroys the contents of the disk
pack.

BIMS will first ask for the interface switch to be switched
on. This is a red switch on one of the interface cards.
When switched on, a small red lamp will light up. After
this is done, type a character on the teletype.

ND-62 . 009 . 03

10-9

BIMS will print:

DISK ADDRESS:

The answer is the same as the answer to "FROM" in Copy,
but it must be the address of the beginning of a track (the
octal address must end with 00/20/40/60).

BIMS will print:

NO. OF TRACKS:

Answer by typing an octal number in the range 1/04007, or
in the range 1-010023 if 66 mbyte disk, or CR. CR (car:
riage return) means 04007/010023 tracks (a whole disk pack).
After this, the specified track(s) will be formatted.

BIMS will then print:

END FORMATTING

REMEMBER THE FORMAT SWITCH'.

FUNCTION:

The format switch should then be turned off again.

Refresh

This is a reformatting function. Tracks will be reformatted
and information restored, if possible.

There are two modes of this function, refreshing of all
Specified tracks, or only those of the specified tracks that
are had. A bad track is a track with parity error or address
mismatch. Address mismatch is an error in the address part
of the track. Parity error may be an error in the address
par, but it may also be a data error. In that case, the in-
formation on that track is impossible to correct (but the parity
error will be removed).

'BIMS will print:

REFRESH ALL TRACKS (A), OR ONLY BAD TRACKS (B):

Answer by typing A or B. If A, the user must turn on the
interface format switch (see Format), and type A character
on the teletype. If B, it is not necessary to do this before
a bad track is found.

BIMS will print:

DISK ADDRESS:

ND-62 . 009 . 03

10-10

The answer is the same as under Format.

If the mode is B (bad tracks only), BIMS will ask for the
Format switch when (and only it) the first had track is found.

Clear-Device

This function clears the device by doing a return-to-zero
seek, followed by a device-clear.

BIMS will print:

DISK SYSTEM (1 or 2):

Answer by typing 1 or 2.

BIMS will print:

UNIT NO. (0—7):

Answer by typing one octal digit in the range 0-7.

The return-to-zero seek and the device-clear are then executed
and BIMS will print:

FUNCTION:

Disk Error Messages

If a disk error occurs, this message may be printed:

STATUS ERROR.
BLOCK ADDRESS: BBBBBB
EXT. CYL. EEEEEE
UNIT NO.: UUUUUU
STATUS: SSSSSS
OPERATION WAS WRITE

If the core address register fails, the error message will
contain some extra lines:

CORE ADDR REG ERROR.
EXP. CORE ADDR REG: EEEEEE
FAIL. CORE ADDR REG: FFFFFF
DIFFERENCE: DDDDDD

ND-62 . 009 . 03

11-1

HUT 1649 : TANDBERG, NORD—10
11 MCOPY USER DESCRIPTION HUT 1650 : HP, NORD-10

HUT 1651 : NORD-1

MCOPY is a program to copy the entire contents of a disk or drum
to or from magnetic tape . The program can be used with the follow—
ing configurations:

Machine Disk Drum Magnetic Tape

NORD—l C DC 5Mb All Hewlett Pack.
sizes Kennedy

NORD—10 CDC 5Mb All Hewlet Pack
CDC 33Mb sizes Tandberg
CDC 66Mb

This version of MCOPY cannot be used with NOR disks.

The program writes mag. tape blocks of either 3073 words for 5Mb
disks, 8193 words for 33Mb and 66Mb disks, and 2049 words for
drums (1 track of data + 1 word containing the disk/drum address),
or blocks of 1024 words for all disk/drum types if the SINTRAN
black size is desired. When the copying is done, the tape reverses
to the beginning of the file and the program compares the contents
of the tape with the disk. Any errors result in an error message
(after several retries) and the number of errors and retries are
listed at the end.

The program communicates extensively with the operator. Most of
the messages and questions are self—explanatory, but a short des—
cription will be given here.

1. MAG. TAPE - DISK DRUM COPY
VERSION X

2. STANDARD DEVICE NUMBERS?

The following device numbers are standard:

NORD—i Disk = 144
Drum : 116
Mag. Tape = 134

NORD—10 Big disk 21540
Small disk = 500
Drum = 540
Mag. Tape : 520

ND-62. 009. 03

10.

11.

12.

11 -2

The answer is Y (yes) if all devices to be used have
the standard device numbers; Otherwise, the answer
N (no) must be given.

BIG DISK COPY?

Y if 33Mb or 66Mb disk copy

SYSTEM BACKUP (SMALL DISKS)?

(If not big disk copy.) If Y, the program will copy several
5Mb disks as follows: UNIT 0 - removable, UNIT 0 - fixed,
WIT 11.-”v removable, UNIT .1 -.,fixed, UNIT 2 - removable, etc.
The total number copied is given by the next question.

NUMBER OF DISK CARTRIDGES:

(Only if system backup.) A maximum of 8 cartridges can
be copied.

SMALL DISK COPY?

(If not big disk or system backup.) Y or N.

DRUM COPY?

(If none of the above.) Y. An N answer will go back to
question 3.

HIGHEST DRUM ADDRESS:

(If drum.)

64K = 1777 512K = 17777
128K = 3777 . 1024K = 37777
256K = 7777 2048K = 77777

DRUM DEVICE NUMBER:

(If drum and not standard device numbers.)

DISK DEVICE NUMBER:

(If disk and not standard device numbers)

FIXED CARTRIDGE?

(If 5Mb disk and not system backup.)

REMOVABLE CARTRIDGE?

(If not fixed.)

ND-62. 009. 03

13.

14.

15.

16.

17'.

18.

19.

20.

21.

22.

23.

11-3

DISK UNIT:

(If disk and not system backup.)

MAG. TAPE DEVICE NUMBER:

(If not standard.)

MAG. TAPE UNIT:

MAG. TAPE FILE NUMBER:

(If not big disk or system backup.) The first file is
number 1 f(not 0). If this is not the first copy in this
run, a warning message will be given if the file number
is not greater than the previous file number. A big
disk copy and system backup always start with file 1. The
tape is positioned at this point.

SINTRAN BLOCK SIZE (1K)?
Answer Y if a copy is desired that can be read on—line
with the SINTRAN command COPY-DEVICE, or if a
tape written with COPY—DEVICE is now to be read. A
block size of 1024 will then be used. Note that this block
size will cause the copying to go more slowlv. use more
tape and that a check for correct disk address on the mag. tape
record will not be made.

COPY TO MAG. TAPE?

Y or N.

COPY FROM MAG. TAPE?

(If previous answer was N.)

OK?

Y if everything all ready. This starts the copying process.

If the end of the tape is encountered during copying,
appropriate messages are given to instruct the operator
in changing tapes. The copy operatim is completed entirely
before the compare operation is started (all tapes must be
mounted twice). If two tape units are available, they may
be used interchangably, saving mounting time.

MORE TO BE COPIED?

(When copy and compare are done.) Y or N. If Y, the
program starts up again from the beginning.

FINISHED

ND-62 . 009 . 03

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

11-4

If errors are encountered during the copying or comparing,
the following messages can be sent:

WRITE RING NOT PRESENT
MAG. TAPE ERROR MS MF ADR BLK
DISK/DRUM ERROR DS DF ADR BLK

COMPARE ERROR DS DF ADR BLK
The contents of the Mag. Tape block is not the same as
the disk.

WRONG DISK/DRUM ADDRESS MS MF ADR BLK

The disk/drum address in the mag. tape block is wrong
(out of step).

These messages contain the following fields:

MS = Mag. tape status
DS = Disk status
MF = Mag. tape function
DF = Disk function
ADR = Logical disk address (0 — 176 177)
BLK = Disk address field of mag. tape block

When the copying is done, the following messages will be
sent:

NNN DISK/DRUM ERRORS

NNN MAG. TAPE ERRORS (includes wrong disk/drum
address errors)

NNN COMPARE ERRORS

NNN MAG. TAPE READ RETRIES

NNN MAG. TAPE WRITE RETRIES

These last messages can be used to control the quality of
the magnetic tapes used. More than 10 — 12 retries altogether
indicate poor tape quality. An operation is attempted 12
times before an error message is given.

ND-62. 009. 03

11—5

Function Codes

II

MAG. TAPE

0 read one record
1 Write one record

10 advance to end of file
11 reverse to end of file
12 write end of file
13 rewind
14 write sldp
15 backspace one record
16 forwardspace one record
17 unload (Tandberg only)
20 read status

DISK/DRUM

0 read
1 write
3 compare

ND-62. 009. 03

11-6

Status Bits

Dev. NORD 10 NORD 1

. TB HP Big Small . Ken. HP
Blt Mag. Mag. Disk Disk Drum DISk MaLm. Drum

ta e not com .
0 or:line ready int. enabled ready [word count 0 error

write . time DMA
1 enable error mt. enabled out EOF error

load . . DMA Parity2
point

dev1ce active error
EOT error

3 E:0C1, device finished glaze? write protect :2or

LRC . . address data parity time
4 error mclusrve OR or errors mismatch error error out

control write illegil write protect comp. parity Write oper.
5 word enable load Violate error ermf my dist.

error

bad LCR . parity overflow protect
6 data error time out error in read violate

7 EOF hardware error DMA error —

load address bit od8 - point mismatch error m us load point —

9
bits

EOT parity error unit —

word parity
10 count error compare error — select -

not 0

200
11 DMA channel error unit — bpi —

556
12 Overflow in read 22:31:11 transfer complete select — bpi -

tape density not 1600 8001 3 busy select ready transfer on bpi bpi
_

form tape
14 busy ready on cylinder ready —

external word
1 5 _ _ cylinder _ _ count transfer _

address 0

ND-62. 009 . 03

12

12-1

DRUMS USER'S GUIDE - HUT 1297

Contents:

Introduction

Copy

C ompare

Verify

Dump

Change

Parity Check

Set

DRUM Error Messages

ND-62. 009. 03

Page:

12—2

12—2

12-4

12—4

12—5

12-6

12-7

12-7

12-8

12—2

Introduction

Read in DRUMS. The program will start automatically by
printing DRUM MAINTENANCE SYSTEM.

IF YOU DO NOT KNOW THE ANSWER TO THE QUESTIONS
THAT DRUMS MAY ASK, TYPE X!

MAX DRUM ADDR (07777 FOR 256K):

Answer 07777 for 256K
03777 128K
01777 64K

0777 32K

and so on. Remember to terminate with a non-octal character!

Drums then prints:

FUNCTION:

There are seven answers to this:

Type CH drums answer by printing ANGE
C OM PARE
C OP Y
D UMP
P ARITY CHEC K
S ET
V ERIFY

The seven functions CHANGE, COMRA RE, COPY, DUMP, PARITY
CHECK, SET and VERIFY are described in the following pages.

The meaning of the words sector and block will be as follows:

SECTOR The smallest unit on the drum. It contains
64 (0100) words.

BLOCK A collection of sectors, from 1 to 32 (1 —040).

Copy

Copy copies one drum area to another drum area.

DRUMS will print:

FROM:

ND-62. 009. 03

12—3

an an answer to this, type

U0, or
U1, or
U2, or
U3, or
an octal number in the range 0 to MMMMMM, followed by
space, or
CR (Carriage Return).

MMMMMM is the highest legal drum address.

U means unit, if no unit is specified, U0 is assumed. If
only carriage return is typed, U0 and 0 are assumed. This
is the drum address of the first sector to be copied.

DRUMS will then print:

TO:

The answer to this is the same as the answer to from. This
will be the drum address of the first sector of the new drum area.

DRUMS will then print:

AMOUNT:

as an answer, type:

CR, or
an octal number in the range 1 to AAAAAA followed by space
(AAAAAA is the total number of sectors on the drum). This
is the number of drum sectors to be copied.

DRUMS will then print:

BLOCK SIZE:

as an answer, type:

CR, or
an octal number in the range 1 to 040.

CR means 040, which is a whole track. The DRUM. transfers
are done in blocks. A block may contain from 1 to 040 sectors.

DRUMS will then check if the Specified areas overlap. If they
do, DRUMS will print:

DRUM AREAS OVERLAP EACH OTHER. IF OK, PRINT Y:

If you print Y, the copy will be executed. The execution starts
by DRUMS printing:

CR LF.

ND-62. 009. 03

12-4

The overlap feature may be used to fill a whole drum with
zeros (for instance).

If "Set" is used to fill the first sector with zeros, then the
drums area starting at drum address 0 may be copied to the
drum area starting at drum address 1. The block size must
be 1 (importantli), and the amount must be one less than the
whole drum.

"Set" may also fill a whole track. The copying may then be
done by tracks, which will be faster. The block size should
then be' 040, and the amount should be 040 (32) less than the
whole DRUM.

If a DRUM error should occur during the execution, an error
message will be printed and the execution will proceed.

Error messages from the: DRUM routines are listed on page 12-8.

When execution finishes, DRUM prints:

END COPY

FUNCTION:

and you are back to the beginning again.

C 0 mp ar e

Compare compares the contents of two DRUM areas by reading
the first area (DRUM read) and comparing it with the second
area (DRUM compare).

Compare is used exactly like Copy.

When execution finishes, DRUMS prints:

END COMPARE

FUNCTION:

Verify

Verify compares the contents of two DRUM areas by reading
them both from the DRUM, and then comparing them word by
word in core.

Verify is used exactly like copy.

ND-62. 009. 03

12-5

If an error occurs, a heading will be printed and then one
line per error. This line looks like this:

D1D1D1 U1U1U1 D2D2D2 U2U2U2 WWWWWW FFFFFF SSSSSS

Where D1D1D1 and U1U1U1 are the DRUM address and unit
numbers belonging to FFFFFF.

D2D2D2 and U2U2U2 are the DRUM address and unit number
belonging to SSSSSS.

W is the word number of FFFFFF and SSSSSS. It
is in the range 0 to 03777 and indicates which word of the
DRUM block that failed. FFFFFF and SSSSSS are the two
words that should be equal. FFFFFF is from the first DRUM
area and SSSSSS from the second.

After the error message, verify proceeds.

When the execution finishes, DRUM prints:-

END VERIFY

FUNCTION:

Dump

Dump dumps the contents of a. DRUM area on the line printer
or the teletype.

DRUM will print:

FROM:

The answer is the same as the answer described under Copy.

DRUMS will then print:

AMOUNT:

The answer is the same as the answer described under Copy.

DRUM will then print:

DUMP ON TT (T) OR LPR (L):

The answer is T for teletype and L for line printer.

ND-62. 009. 03

000000
000010

000170

12-6

The dump will look like this:

CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC 000000 000000
CCCCCC CCCCCC CCCCCC CCCCCC 000000 000000 000000 000000
same
CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC 000000 000000

where CCCCCC is any octal number and the first number on
each line is the word number of the second word on the line.
Identical lines will not be printed.

When the executim finishes, DRUMS will print:

FUNCTION:

Change

Change inspects and changes single words on thegDRUM.

DRUMS will print:

DRUM ADDRESS:

The answer is the same as the answer described under Copy.
This is the DRUM address of the sector you want to inspect/
change.

DRUMS read the sector from the DRUM and prints:

SECTOR IS READ
LEGAL CHARACTER ARF CR / 0 1 2 3 4 5 6 7 @
LEGAL ADDRESSES ARE 000-077

After this, you may inspect and change the contents of the
DRUM sector by using the teletype as you do under operators
communication. The only difference is that you don't have to
type all six digits of an octal number.

If an illegal character is typed (a character not from the set
mentioned above) the character is ignored, and —» is printed.

Remember to use addresses in the range 0 to 077'.

When all changes are done, type @, and DRUM writes the
drum sector back on the DRUM. After that, DRUM prints:

SECTOR IS WRITTEN BACK

FUNCTION:

ND-62. 009. 03

12-7

Parity Check

Parity check will read the contents of a DRUM area without
storing it in core and check for parity.

DRUMS will print:

FROM:

The answer to this is the same as the answer described under
Copy.

DRUMS will then print:

AMOUNT:

The answer is the same as the answer described under Copy.

DRUMS will then print:

BLOCK SIZE:

The answer is the same as the answer described under Copy.
When the execution finishes, DRUM prints:

END PARITY C HECK

FUNCTION:

Set

Set will write 1—040 sector(s) on the DRUM. The contents
of this block are specified by the user.

DRUMS will print:

HOW MANY DRUM SECTORS (1 -040):

Answer by typing an octal number in the range 1—040, followed
by space.

DRUMS will print:

SPECIFY THE FIRST WORD:

The answer to this is any octal number, followed by space.
This will be the contents of the first word of the first DRUM
sector of the block.

Drums will then print:

MODIFIER:

ND—62. 009. 03

12-8

The answer is any octal number, followed by space. The
modifier will be added to all subsequent words of the drum
sector(s), in this way:

O/FIRST WORD
1/FIRST WORD + MODIFIER
2/SECOND WORD + MODIFIER (=FIRST WORD + 2 * MODIFIER)
and so on.

DRUMS will then print:

DRUM ADDRESS:

The answer is the same as the answer to from described
under Copy.

After the sector has been written on the DRUM. DRUMS
print:

FUNCTION:

DRUM Error Messages

If a DRUM error occurs, this message will be printed:

DRUM XXXXXX YYYYYY ERROR,
STATUS WORD: SSSSSS
DRUM ADDR: DDDDDD
UNIT NO.: UUUUUU
MODUS WORD: MMMMMM

Where XXXXXX will be READ, COMPARE, WRITE or PARITY,
and YYYYYY will be UNIT NOT READY. fiANQUP. INQQBRECI
DRUM ADDRESS, STATUS, MODUS or COBB ADDR“ REGISTER.
XXXXXX indicates which operation was pom. YYYYYY
reflects the bits in the status word. m is the status word
andiDDDD is the DRUM address of the first sector Act-Mtge __
block that failed. UUUUUU is the DRUM UNIT unit number and
MMMMMM is the modus word; it contains:

Bits 1 5 —1 3 0
12-11 OPERATION
10 -9 0

8 -7 UNIT NUMBER
6 -5 EXTRA C ORE ADDRESS BITS
4 -0 NUMBER OF EXTRA BLOC KS

If the core address register fails, the error message will
also contain this extra line:

CAR - EXP. CORE ADDR = AAAAAA

where AAAAAA is the octal difference 33:? -cu the core address
register and its expected value after the DRUM transfer.

ND-62 . 009 . 03

13

13—1

TCODR USER DESCRIPTION - HAR 1299

TCODR is a test program intended to test core and drum.

It does this by performing five different tests:

Extra Blocks Test
Address Test
Drum Write Protect Test
Sector Counter Test
Repeated Pattern TestUMPQJNH

Extra Blocks Test

TCODR writes on the drum one block, two blocks, three
blocks, . . ., up to 32 blocks, after each write, the
block(s) is (are) read back and checked in core. If an
error occurs, an error message is printed.

Address Test

TCODR writes the drum full of addresses, each block is
filled with its own address + word number, when the whole
drum is written upon, the blocks are read back, one by one,
and checked in core. If an error occurs, an error message
is printed.

Drum Write Protect Test

TCODR writes and reads all tracks on the drum and checks
that the drum write protect feature works properly. TCODR
also checks that the protected drum area is not written upon.
By suitable messages on the teletype, the user is asked to
participate in the test. If an error occurs, an error message
is printed.

Sector Counter Test

TCODR reads the sector counter and checks that it counts
properly (0, 1, 2, ..., 036, 037, 0, 1, and so on). At
the end of the test a table is printed, demonstrating the
stability of the counter. If an error occurs, an error mes—
sage is printed.

ND-62. 009. 03

13—2

Repeated Pattern Test

A drum area, not greater than one drum (the size of this
area is also dependent on the size of the core area that is
checked) is filled with a bit pattern, and then this bit pattern
is read back to a specified core area. The writing is done
by tracks, the reading by blocks.

Every time a drum block is read, the core address is incremented
by one, thus, the different blocks are read to diflerent core
addresses.

After a block has been read, the contents of the corresponding
core block is checked for correctness and an error message
is printed if necessary.

Also, after the block has been read, it is parity checked and
compared. If an error occurs, a drum error message is
printed.

Six different bit patterns are used, they are:

000000, 177777‘, 052525, 125252, 000377 and 177400.

When all bit patterns have been used, the program repeats the
pattern test.

How to Use TCODR

Read in TCODR, if correctly read, TCODR prints:

TCORD — — TEST CORE AND DRUM,

PLEASE SET DOWN ALL THE DRUM PROTECT SWITCHES!

MAX DRUM ADDR (07777 FOR 256K, ETC.):

Answer by typing the correct maximal drum address, followed _
by space, or CR (07777 FOR 256K, 03777 FOR 128K, ETC.):

TCODR then prints:

LOWER CORE ADDRESS (NOT LESS THAN XXXXXX):

Answer by typing the start address of the area that you want
to check, followed by space.

TCODR then prints:

UPPER CORE ADDRESS (NOT LESS THAN YYYYYY, AND
NOT GREATER THAN MAX. CORE ADDR.,
ON WHOLE DRUM IS ZZZZZZ):

ND-62.009. 03

13—3

Answer by typing the last address of the area that you want
to check, followed by space (one whole drum): UPPER:=
LOWER+N+076, where N is the number of blocks on the drum).

TCODR then prints:

UNIT NO. (0 TO 3):

Answer by typing the unit number.

TCODR will now do the extra blocks test, with the different
patterns, before each pattern, this message will occur:

EXTRA BLOCKS TESTED, PATTERN IS PPPPPP

If an error occurs, this error message will be printed:

XTRABL WORDNO WORD
XXXECX NNNNNN WWWWWW

Where XXXXXX is the number of extra blocks (0—037), NNNNNN
is the word number (0—04777), and W is the failing
word. It should have been equal to the pattern.

If WWWWWW is equal to NNNNNN it means that no word from
the drum has been read into that core word. Before the drum
read, the core block is filled with 0, 1, 2, ..., 04777.

Then the address test is performed. Before the test, this
message is printed:

START DRUM ADDRESS TEST

If an error occurs, this error message is printed:

DRUMAD WORDNO WORD
DDDDDD NNNNNN WWWWWW

where DDDDDD is the drum address, NNNNNN is the word number
(0-077) and W is the failing word. It should have been
DDDDDDI-I-‘NNNNNN.

If WWWWWW is equal to 100000, it means that no word from the
drum has been read into that core word. Before the drum read,
the core block is filled with 100000, 100000, . . ., 100000.

After this, TCODR will start the drum write protect test. Before
the test, this message is printed:

START DRUM WRITE PROTECT TEST

ND-62. 009. 03

13-4

For eVery drum write protect switch tested, TCODR will
also print:

PLEASE PUT PROTECT SWITCH N UP (AND ALL OTHERS DOWN!),
TYPE ANY CHARACTER AFTERWARDS!

The answer to this is to flip up the requested switch, flip down
any other (N is 0 to 7), and then type a character on the teletype.

TCODR will then write and read all tracks on the drum and
check that the protect error occurs only at write transfers and
only in the protected area, else an error message will be printed.
TCODR also checks that the protected drum area is not written
upon.

Protect switch 0 protects the first 16K with drum addresses 0
to 0377, switch 1 the next 16K with addresses 0400 to 0777, and
so on. 128K is the maximal size of the protected area.

At the end of this test, TCODR prints:

END DRUM WRITE PROTECT TEST
PUT DOWN ALL PROTECT SWITCHES!
TYPE ANY CHARACTER AFTERWARDS.

The user must type a character on the teletype.

After this, the sector counter test is performed. TCODR
prints:

START SECTOR COUNTER TEST

at the end of the test, a table is printed ,out, the left column
contains the number of MIN's in a loop between sector counts
and should consist of consequtlve numbers. The right column
contains the number of loops with the same MIN count. The
greatest numbers should be in the middle of the column. A
sum of all the numbers in the right column is printed, it
should be:

UPPER CORE ADDR — LOWER CORE ADDR + 1

If the sector counter never changes, TCODR prints:

SECTOR COUNTER NEVER STARTED

If the sector counter counts for a while and then stops, TCODR
prints:

SECTOR COUNTER DIED

ND-6'2. 069.53

13-5

After this error message, an incomplete table is printed.

If the sector counter counted wrong, TCODR prints:

SECTOR COUNTER COUNTED WRONG.
LAST VALUE (CORRECT) AND FAILING VALUE: CCCCCC FFFFFF

CCCCCC is the last correct value of the sector counter.
FFFFFF is the incorrect (new) value. It should have been
CCCCCC 0R CCCCCC+1 (MODULO 0401).

After this, TCODR will put a pattern on the drum. When this
is done, it prints:

PATTERN ZZZZZZ NOW ON DRUM

Then TCODR starts reading back the bit pattern. Every word
is checked in core after it has been read from the drum. If
an error occurs, this error message is printed:

DRUMAD WORDNO COREAD WORD
DDDDDD NNNNNN CCCCCC WWWWWW

DDDDDD is the drum address of the failing word. NNNNNN is
the word number within the drum block (0-077). CCCCCC is
the core address of the failing word. W is the failing
word. It should have been equal to the bit pattern.

If W is equal to NNNNNN, it means that no word from
the drum has been read into that core word, before the drum
read, the core block is filled with 0, 1, 2, ..., 077.

After a block has been read from the drum it is parity checked
and compare tested. This is done by performing a drum parity
check and a drum compare. If an error occurs, a drum error
message is printed.

ND-62 . 009. 03

14

14-1

CACHE TEST USER DESCRIPTION — BAR 2063

General

The program is divided into two parts:

- preliminary functional test
- a thorough test of functions in cache system, test 2 to 6

(see below)

If the functional test fails the user gets a question on the terminal
to restart or continue. The user can specify if part 2 of the
program (test 2 to 5) should run continuously or if it should stop
after test 5.

During test 2 to 5 it is possible to limit error printout for each
test to a number typed on the terminal and terminated with CR.
If no limit is wanted the user types N.

After each test, the total number of errors detected for that test
is printed.

The general principle for testing is to write different patterns to
CACHE and memory for the same address locations. This is done
by first writing to CACHE and memory, then inhibit CACHE and
write to memory.

The program then reads and tests if output is from CACHE or
memory. If output is different from what it is expected to be,
there are several possible error reasons:

1. CACHE output but wrong content

— one or more data bits are wrong
- address to one or more data bits are wrong

2. Memory output instead of CACHE output, i.e. , NIC -
not in cache fails

- page number bits fails
- cache limits
- used bits fails

3. CACHE output instead of memory output as 2 above.

The most common pattern to CACHE is address in address and in
memory address inverted in address. This (address is displacement
withinione page) makes it relatively easy to see if output is from
CACHE or memory. ‘

Example:

Output 9B7 is stuck to one (CACHE data bit 4). An error printout
can be: TEXT <addr.) {Read cont) (exp. cont.)

ND—62. 009. 03
Revision A

14-2

CACHE OUTPUT ERROR 040000 000020 000000
CACHE OUTPUT ERROR 040001 000021 000001
CACHE OUTPUT ERROR 040002 000022 000002

One possible error reason: CACHE data bit 4 stuck to one.

Cache Test Program

Initialization

1. Paging control system, interrupt system
2. Searching for memory limits

TEST 1

Functional test of cache

CACHE area page 10—12 (LIM 1) 20000 - 24000. Locations
used WSPAC - 21300, TRARi - 21700.

- verification if CACHON is working
- test of CUP BIT using location 21700
- verification that data is coming from cache, using

location 21300
- verification that data is coming from memory (used bit = 0)

If functional test fails type R to restart.

TEST 2

Test Source for Data Output, Cache or Memory, and Data Bits in
Cache

Source for output:

This test tests if used bit is stuck to one or zero and if page
number bits are stuck to one. CACHE area page 20 address
40000. Stores displacement into cache and complement to memory.

Error sources:

1. Used bit - stuck to one gives cache output, stuck to zero
gives memory output

2. Page number bits — gives memory output
3. Data bits

Error printout:

text address, expected content, failing content.

Data bits in CACHE:

Test if stuck to one or zero.
Semi-random pattern. Error printout as above.

ND-62 . 009. 03
Revision A

14—3

w
Test of Cache Inhibit Limits

Sets upper limit to last page installed in memory, moves
lower limit from page 0 to upper limit and tests that cache
inhibit limits are working for each value.

Sets lower limit to page 0 and moves upper limit from last
page installed to pag 0 and tests that cache inhibit limit is
working for each value.

The test is done by reading CUP bit to A register; TRA 12
inside or outside cache limits.

Testing of each page is performed without using the same
displacement within cache, test to page 0 is using location
0—1, page 1 location 2—3 and so on.

Error printout: TRAC PNRB PNRC ADRC ULPNR

TRAC Content of TRA instruction — CACHE status
PNRB Dynamic limit
PNRC Page of failing address
ADRC Failing address
ULPNR Upper limit page nunb er

Error sources:

1. Used bit
2. Page number bits
3 Data bits, if data bits fail this test will cause the program

to behave uncontrolled
4. Cache inhibit limits

TEST 4

Test of Page Number Bits in CACHE

Test if bits stuck to one.

CACHE area page 0 address 0-1777.
Pattern in cache displacement (address in address).
Pattern in memory complement of pattern in cache.
If page number bits fail NIC (not in cache) will be true
and data is read from memory.

Test if bits stuck to zero.

CACHE area page 377, bank 3 address 176000 - 177777.
Pattern in cache displacement of pattern in cache.
If installed memory is less than 377 pages, only cache
will be working for these addresses. When page number
bits fails response will be 0. Memory out of range interrupt
is disabled.

ND-62. 009. 03
Revision A

14-4

Checkerboard pattern.

CACHE area page 125, bank 1 address 52000 — 53777.
CACHE area page 252, bank 2 address 124000 — 125777.
Pattern in cache even address 52525.
Pattern in cache odd address 125252.
Pattern in memory displacement (10 bits address in
address)

Test of address to page number bits.

CACHE area page 0 and 377.
Page 0 pattern in CACHE address in address.
Page 377 address 1, 2, 4, 10, 20, 40, 100, 200, 400,
1000, 16 bits address in address.
Memory: complement of address in address.

Error printout:

PAGE NO. BITS ERROR BANK NO. address failing content

Error reasons:

1. Used bit, will cause memory output
2. Page number bits, will cause memory output
3. Data bits, failing content.

TEST 5

Test of Used Bit

Test stuck to one or stuck to zero (see Test 3).

Checkerboard pattern

CACHE area page 2, Le. , address 4000 — 5777
CACHE BACKGROUND PATTERN P1 = 125252
CACHE PATTERN P2 = 52525
MEMORY PATTERN P3 = 70707

Tests first used bit in odd addresses and then in even
addresses.

Error reasons:

1.

2.
3.

Used bit failing one gives memory output P3 and failing
zero gives cache output P1.
Page number bits will cause memory output
Data bits failing content.

Error printout:

ERROR: USED BIT
ERROR: USED BIT

0 address content
1 address content

BIT ERROR: IN CACHE address content

ND-62. 009.03
Revision A

14-5

Test of Address to Used Bits

Sequence:

1.

LOOP:

Initialization CACHE and MEMORY

- 70000 to CACHE and MEMORY, enable CACHE
- 7 to MEMORY, inhibit CACHE

Writes 07770 to address 1, 2, 4, 10, 20, 40, 100,
200 in each of the four chips and checks that no other
locations are disturbed.

Clear CACHE

Enable CACHE
7770 to CACHE and MEMORY
Inhibit CACHE
7 to MEMORY
Read and test data content (whole CACHE)

Enable CACHE
7000 to CACHE
Inhibit CACHE
7 to MEMORY
Clear CACHE
Next address for write

Error Sources:

1. Used bit error

~ — extra ones: output from cache instead of memory,
i.e., output 70000 instead of 7.

- missing ones: output from memory instead of cache.

Data bits error:

— in CACHE output 07770 is modified
- in CACHE output 70000 is modified
- in Memory output 00007 is modified

Address error to used bit

— responses as in 1 above.

Error Printout:

(Text) (address) (read content) (expected content)

Example:

ADDRESS BITS ERROR 000000 177777 000000
000401 177376 000401
000402 177375 000402

ND—62._009. 03
Revision A

14-6

Error reason: 19D12 - floating, i.e. , address pin (bit 8)
to page nunber bit MR17 not connected. Address printout
gives an indication that address bit 8 is failing but there is
no information on which page—number —chip that is failing.

ND-62. 009. 03
Revision A

14-7

boooocurve

“Ewan—an

mpoEwE

"chofimm

mm0<o

82:.

53:3

2589.3;

853

wovenmNmNm

"£90359

BESS:

"5.39.8

855

SS2

“E038

358303

E53

$223
5

mmoncca
mo

“aofiwafioo

Cum

0mg

93
o

away

3235
E

mmopvvw

33
3

$0963.
5

$333

min.
3

Amommougm

gov

mmmmmfi

.Amommopuca

:33

mmmmm

3325
E

magnum
mo

30839980

30933
E

mmonuvm

ES
3

"Eon—awn

muofiog

58:3

mmo<o

"anon—«am

#8802

“£033

mmo<o

Egon—Ha

maofioE

"€0.38

$65

$38:
=«

.8“

3.520
3
39

Em:

5:3
a

E

a:

mama

$5

$335

o

o3uH

acaaamcom

Sovnam

mmohfitd
E

3338

33
o“

EELS;

.Ho
0

$333
5

$363“

min.
3

mowaofimafioo

$3c
5

Ausmfioofimmfiuv

mmonwum.

BE
3

"gofida

~308o

Bhutan

mmo<o

”Pagoda

98502

"Egan

$65

"Fawn—awn

3053:

”E333

mmo<o

mhxafism

god—”Em

and

$08

BE

.83.
8

$963

35

6mm:
3

533m

undonpoxooao

in

wow:
mo

name

33

.on

mQ
3

$835
mo

game

533%

Ewen—“£830

“mam.

xosuw

33

.3385

0&3

8mm.

35

goo—8::

039
no

308

5:83

“BEE

mmo<o":93”.q

835.2:

min

3.3

mmo<o

ummm.

€s

35

3%

$65

“$9

N30623:

no

23.8

35350

momsom

NmBmBfimHmBmHmwflwfiNvBmBHwEmE“FHmBmBmENNHmE«NBmBNHmB

ND-62. 009. 03
Revision A

AEmusoo

dxmv

Ammohuvm

amouvfinouzoo

wnzwwmv

Ammohucd

wfizwmv

«33:00

@533
v

«mmwhuvw
v

9528

.ov

A3358

@533

Ammouvwdv

14-8

.5856

owwg

$5:

“man:
I

mzmAD

mmonvwd

MESS
I

OmQ<

fidfifl

3885mm
I

mmznm

353m

mmO<D
I

O<mB

A953

Aomzmv

@5v

SEE

Aacounoo3:350“.3:028Aucounoo

:

:

mommm

QHmD

wmmO’wO

ZH

mommm

Hum

H
H

.HHm

DmmD

umommm

o
u

Hum

QMWD

nmommm

mommm

mHHm

mwmmflnzq

:

:

:

I

:

I

A2028

923%

98:63

H.oz

M25

mommm

35

.oz

moi

.

98v

.

93v

.

98v

.

98v

main:

3:9:
I

.393

£55

.HQED

$333

@533
mo

mwmnm
I

Omzm

mzfl

fin

com:

mtg:

$3950
I

#950

:85

.395

9:8:

@3350
I

gonnw

:5:

.HQQQD

9:5:

2:9:
I

.893

$8:

.332

99513?

mfifl

in

cam:

BE:

@3350
I

gouge

:8:

umBoq

mics:

03350
I

“0.30

:8:

.HmBoq

«$3200

wits:

Ammonwvdv

AER—coo

Maggy

ammonvvmv

Suwanee

wfififiv

Ammoawvdv

32.0200

@533.

$8.5c

mpdfifidm

«acacia

ponnm

Tm;

Elma:

.

o;

D

Ebola:

to;

HDOIMAD

Tm;

zHImqq

.

o;

D

HDOImAq

To;

HDOImAq

mommm

EDQBDO

mmO<U

mommm

HDQBDO

mm0<0

mommm

EDABDO

VmOEmQ/H

mommm

HDQBDO

mmD<O

Nm

«mom.

3

$8;

3

“$9

av

38.

3.

“$9

w

38.

m

50H.

mm

”508

E

“woe

m

Zoe

ND-62. 009. 03
Revision A

15

15—1

ERRCOR - HAR 2111

Test program for error correction logic, module 1125 and
error correction bits on 21 bits memory module.

The program consists of 5 tests with subtests. Test 1 and
2 are used under program initialization and tests 3 to 5 are
for testing error correction logic and memory modules,

TEST 1

Test 1 finds memory limits and test 2 finds which memory
module has error correction bits. A memory map is printed.
P means memory module with parity error detection. E
means memory module with error correction bits and space
means no memory module installed.

TEST 2

This test is performed by forcing an error to bit 15 and the
interrupt system, level 14 parity error, should detect this
error. PES (parity error status) bit 8 is set if the memory
module tested has error correction bits. If this test fails
(for example, no interrupt) the program has a scope modus.
Test 2 is then repeated continuously without error messages
and it is possible to scope the control logic for error detection
and correction on module 1125 - Transceiver Data.

After these tests the program has an operator communication
part where the operator can specify the following:

— stop after test 5 or repeated running of tests 3 - 5

— number of error printouts for each test or no limitation
of error messages

— output device for error messages

During repeated running the message "start repeated running
test 3 — 5" is printed after run number 1 — 10 - 100 — 1000
and then for each 1000 runs.

TEST 3

Test 3 is for testing error correction logic, This test is
performed in 4 test modes. 20 locations are tested in each
mode, and it is the first locations in the first available module
with error correction bits which are used:

ND—62. 009.03
Revision B

15-2

Mode 00: no error expected

Mode 11: forcing an error to bit 0 during write and expects
parity error and bit 0 corrected during read

Mode 12: forcing an error to bit 15 during write and expects
parity error and bit 15 corrected during read

Mode 13: forcing an error to bit 0 and bit 15 during write
and expects parity error and none of bits 0 and
15 corrected during read because of multiple error.

Error printout, test 3:

PARITY ERROR: <PES) (PEA) (Test mode)
DATA MISMATCH: (ADDR) (Read Cont.) (Exp. Cont.)

Parity error is used when PES differs from expected value.
Data mismatch is used when read content differs from
expected content. Both printouts may be used for the same
error.

If error correction network fails, test 3 may be used for
scoping the error. The test routine is called for each test
mode with the following parameters:

- test mode to be loaded to error correction control
register

- write content, i,e. , pattern written

- read content, i.e. , expected pattern read

- PES, i.e. , expected content of PES during interrupt

Patch for scoping error correction logic:

Address: Statement:

3772 CALL FTST 3 (0, 70707, 70707, 0)

3777 CALL FTST 3 (11, 70706, 70707, 3500)

4004 CALL FTST 3 (12, 2707, 102707, 34500)

4011 CALL FTST 3 (13, 2706, 2706, 37500)

Mode 00: 3777/135054 -> 124373
i.e., JPL I FTST3 -» JMP * — 5

Mode 11: 4004/135050 —> 124373

Mode 12: 4011/135044 4 124373

Mode 13: 4016/045040 —» 124373

ND-62. 009. 03
Revision B

15-3

To avoid a call to error printout routine:

4165/135020 -» 124002, i.e., JPL I ERR3 -» JMP * + 2

TEST 4

Test 4 is for testing error correction bits in memory and
has three subtests with different patterns to error correction
bits. '

Test 41 tests if bits struck to one or zero.

Test 42 uses a checkerboard pattern.

Test 43 uses a modified walking one and zero pattern.

TEST 5

This test, with subtests 50 and 51, is for testing whole memory,
both modules with parity error detection and with error correction
bits. Pattern used is a pseudo-random pattern. Test 50 is a
direct read after write for each memory location. Test 51 is
reading after writing to whole memory. I.e. , if test 51 fails
and not test 50, refresh errors or write disturbances are pos-
sible error reasons.

Error printout for test 4 and 5 is:

PARITY ERROR: (Test no.) (PES) LPEA) (Read Cont.)
(Exp. Cont.) (MULTIPLE ERROR or
failing bit no.)

or

DATA ERROR: (Test no) (ADDR) (Read Cont) (Exp. Cont)

Error detection is performed both with interrupt system, parity
error on level 14, and with data comparing, read content versus
expected content.

The different bits in PES have the following meaning:

15 1.14 13 12] 11 10 918 7 6 5 4 312 1 0
gm)

45V JLVJ RF)
m __‘ ‘0 O2 *6 i; E.055 a g a: 23:0 :4 a o.125 8 S g 3’ c5

3% $4 3? H .3: .c: a”=33 81s 8 8 g 3 ii«300 he“ s-c —' 0 a!flaw-1 HEN m m Q [3-1 m

ND-62. 009. 03
Revision B

15—4

If parity errors occur in bank 0 locations 1000 to 7000, the
program prints out:

PROGRAM MEMORY ERROR: <PES> (PEA) (Read Cont.)
(MULTIPLE ERROR or failing
bit no.)

If program memory error PME occurs during printout of other
messages the program will stop after PME printout. The
restart function will work if the program is stored in a
module with error correction bits.

When searching for transient errors (repeated running) the
program prints out run number when a failure occurs. An
example of printout is shown below.

PARITY ERROR 51 034500 100363 034351 034351 LE. BIT NO. 15
PARITY ERROR 51 074500 101363 024753 024753 LE. BIT No.15
PARITY ERROR 51 074500 102363 015355 015355 I.E. BIT No.15

00025 ERRORS
REPE = 03395
Number of errors for the test and run numbers are printed out
in decimal, the rest is octal.

ND-62. 009. 03
Revision B

no. 000 0.000 :no on o u NORSK DATA A. SE33§§JSS §§§“§3§3 L¢renveien 57 - Postboks 163, (pkern
i3: o§3§3 3:33: *3: OSLO 1
o: o o 0 §on no. on... 0

COMMENT AND EVALUATION SHEET
Test Program Descriptions Publication No. ND—62.009.03
February 1977

In order for this manual to develop to the point where it best suits
your needs, we must have your comments. corrections, suggestions
for additions, etc. Please write down your comments on this pre-
addressed form and post it. Please be specific wherever possible.

FROM:

