
w.
_.
.

.Uwrr.

v

il.‘

t

“I!

.

a
H.....

Es!
t:

00...

vlkh‘l’ml

NORD - 10
Verification Programs

Revision

REVISION RECORD
Notes

8 74 Ori inal Printing

Publ.N0.
ND-62. 006. 01
August 1974

.0. .0. .OOIOOO

.00. .0. 00.9....

.60.. 0.0 .iODOOIIO

..00.9990 630 OD.
000900060 000 90.
0.0 0.0.6 OOGODIIOO
0.. 0.9. OOGOBIOO
.00 .00 00000.0

NORSK DATA A.S.

Lorcnveicn 57, Poslbcks 163 Okcrn, Oslo ‘5. Norway

TABLE OF CONTENTS

+++{.

Chapters:

p

03

N

N

NNNNNN

MN

N

00

w

NNNNNN

NF‘

0303030903

hump»

Cfi

01010101

010101

F‘-

ND-h

[‘5

‘mwNmH

catnip-um»-

lip-CON»

INTRODUCTION
Use of the Verification Programs
Error Messages

ONE -CHECK
Introduction
Usage

Load the Program
Stop 1
Stop 2
Stop 3
Continous Operation
Procedure to follow when the Program stops

Error Stops

Error List

TWO-CHECK

Introduction
Usage

Load the Program

Error Loops

Error List

THREE-CHECK

huroducfion
Usage

Load the Program

Error Stops

Error List

FOUR—CHECK

Introduction
Usage

Load the Program
Interrupts to test
Printout Mode
Program Control

Error Printouts

ND-GZ. 006. 01

I

N

N

NNNNNN

MN

N

I

N

NMND—‘b—‘D—h

H»

p.

l

IGO

uwwww

I

w

llll

NHh-HHH

pump-m- HA»...

Chapters:

CEGO>O>O50>

qqqqqqsisiQ-aqq mmmfifiwmmmmm

MN»-

03MB

ii

10-FLOA TING

Introduction
Usage

Load the Program

Error Printout
Error Loop

NORD-lO MICRO-PROGRAMMICI) MEMORY TEST

Introduction
Usage

Setting of ALI)
Setting of Memory Bounds
Starting the Memory Test

Error Indication
Method

Test Patterns used

Further Test

Loop Description
Starting the Loop

Appendices: (To be obtained from ND on request)

Appendix A ONE -C1[ECK Program Listing

Appendix B TWO-CHECK Program Listing

Appendix C THREE —CIIECK Program Listing

Appendix D FOUR—CHECK Program Listing

Appendix E 10-FLOATING Program Listing

Appendix F ALD Bit Map

ND—62. 006. 01

1. 1

1-1

IN TRODUC TION

This manual describes available verification programs. Reliable
computer self—diagnosis is usually very difficult to obtain. The purpose
of these programs is twofold. First, they can be used to explore many
CPU functions in a relatively short period of time. Second, they may,
in many cases, be used to narrow down the area of search when the CPU
is actually found to be failing.

The diagnosis suggested in the following will only apply if the CPU fails
the way the program -designer was able to forecast. However, the
program—listings are included for reference so that possible secondary
error symptoms may be more easily analyzed.

Use of the Verification Programs

The programs will normally be made available as standard binary format
tapes. How to read in a binary tape is explained in the NORD—iO
Reference Manual. However, a short recollection is made here:

Make sure that bit 15 of the ALI) register is not set. ALD is the
Automatic Load Descriptor switch register found on the CPU Panel
Driver Card (card position 17)“: [f a console Teletype is available,
then the setting of ALD may be checked by inspecting the internal
register 128.

Put the binary tape in the appropriate device. Push Master Clear.

Type:

<dcvi ce addresss‘z 8.

0n the console Teletype and the tape is read in. The program will be
started automatically if successfully loaded. If a load—error occurs,
then either the light in the Master Clear button will turn on, or '?'
will be typed on the console.

The device address is the lowest address associated with the load device:

Tape reader : Device address 4008
Console Teletype: Device address 3008

On CPU's without console Teletype, the procedure is as follows:

Make sure that bits 12—15 of ALI) are 0. Put the device address in
ALD bits 0 — 10. Push Master Clear and LOAD.

If one experiences trouble in loading the programs, then there might be
errors that effect either the load device or the CPU so that the operators
communication does not work properly. in this case it could be worth-
while to interchange the two arithmetic cards Oiardwarc personell onlyt).

Refer to Appendix A for arrangement drawing.

ND-GZ. 006. 01

,n—l—an..-...m...-— — .._. - . ”u I‘d—n Hu-

1’. 2 Error Messages

Some of the verification programs rely on error stops to announce

errors, while others give error printouts on the console Teletype.

If the C PU stops (STOP button is lighted , one should examine
the IR register bits 0 - 7 to see the number of the actual error.

One may then always press the CONTINUE button to resume program

operation. or the RESTART button to restart the program.

ND-62. 006. 01

2.1

2.2

2.2.

2.2.2

2.2.3

1

Introduction

This program checks all the NORD—i instructions in NORD-10 except
the IOT, M18 and floating FAD. FSB, FMU, FDV instructions. The
instructions are tested in sequence such that an instruction is tested
by means of the instructions already tested. To initiate this process
the instructions "WAIT", "LDA" and "STZ" are tested separately at
the beginning of the program. The program uses the content of two
cells NKi - 12525-2 and NKZ = 052525. These cells are referred to in
the error list.

Usage

Load the Program

Read in the program as already described. The program will
automatically start and then stop immediately in a WAIT 0 instruction.
Check that:

IR register —- 151000
P register '— 001701 @Q/

If 0k, continue as described in Section 2.2.2.

If not ok, start the program in address 1700 . The WAIT instruction
does not work it the IR and P registers still are wrong.

Stop 1

The content of IR register should be 151001.
The content of A register should be 125252 = NKi. AOJ/
1) If Ill 7% 151001, then the WAIT instruction does not work.

2) If A ,.l 125252, the LDA does not work.

Now press CONTINUE.

Stop 2

The content 01" IR register should be 151002. /
The content ot‘ A register should be 052525. 195/

1) It IR 2’: 151002, then the WAIT instruction does not work.

2) If A / 052525, then LDA or STA does not work.

Now press CONTINUE.

ND-62. 006. 01

2.2.4

2.2.5

2.2.6

2.3

2-2

Stop 3

The content of IR register should be 151003.
The content of A register should be ‘ 0. mg/

i) If [R ,é 151003, then the WAIT instruction does not work.

2) If A ;5 0, then STZ or LDA does not work.

Now press CON TING.

Continous Operation

The program will now run until the operator presses STOP or until an
error is detected.

Note: If the program is restarted by means of the RESTART button,
it will start at this point.

Procedure to follow when the Program stops

The octal value of the contents of bits 0 - 7 of the IR register gives
the entrance to the error list. The error list contains some
abbreviations which will be explained beneath.

i) All the instructions are represented by their MAC
mnemonic.

2) UN means destination register A, T, D, X or B.

3) EN written in a BOP instruction means bit no. BN where
BN is an octal number between 0 and i7. .

4) Further information about the error can be gained by
examination of the symbolic version of the program.
By means of this procedure it is possible to find for
instance which bit or which register that failed in Z)
and 3).

Error Stops

As mentioned this program tests one instruction at a time and uses
only tested instructions in the tests. However, one instruction is
tested in only a few addresses. operating on only a few different
data patterns. When one instruction is tested, it is still possible
that this instruction may fail for a certain combination of address
and data patterns. Consequently the error list will tell the user
only the most probable cause of failure.

'ND—62. 006. 01
_......__...-.»__

____.___,.._.,‘_,_

.._._

.

1. 3. 1 Error List

Value of bits 0—7
of IR register

CDU‘VP

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37
40

41

42

43

44

Probable cause of the stop

JAZ does not jump on A=0

JAF jumped on A20

JAZ jumped on A710
MIN skipped on NIB/,0, A":NK3
MIN does not skip on NK3=0

SUB does not work
COPY CM1 SA DA failed
COPY CM2 SA DA failed

ADD failed
STT or LDT failed on NKi

STT or LDT failed on NK2

LDX or STX failed on NO

LDX or STX failed on NKZ
AND failed on NKZ- NKZ'NKZ

AND failed on OrrNKI ' NK2

ORA failed on ORA(NI<2, NKZ)—-NK2

ORA failed on ORA(NK1, NKZ) + 1 = 0

JAP does not jump on A positive
JAF does not jump on A positive and yé 0

JAZ jumped on A/O
JAN jumped on A positive

JXN jumped on X positive

JXZ jumped on X positive and X#0

JPC does not jump on X positive

JNC jumped on X positive

Jl’C or JNC are not counting correctly

JAP jumped on A negative

JAZ jumped on /\ negative

JAN does not jump on A negative

JAF does not jump on A negative

JXZ jumped on X negative

JXN does not jump on X negative

JIZ does not jump on X: 0

ND-62. 006. 01

2-4

LDD. A is not loaded correctly

:2 ST!) , A is not stored correctly

47
5’“), LDD. D-reg. is either stored or
loaded incorrectly during STD or LDD

50
LDF, A—reg. is not loaded correctly

51
LDF, STF, T—reg. is either stored or
loaded Incorrectly

53
811?, A—reg. is stored incorrectly
durmg STF

53
.LI)F, S'I‘F, I) is either stored or loaded
incorrectly during LDF or STF

54 _ 57
Not used

60
COPY DN or SKI’ IF DN EQL 0 failed

61
COPY SA ON or SKI) 11" DN GRE SA failed

62
SKP 1F DN EQL SA failed

63 SKI’ IF DN LS'i‘ SA failed

64 SKI) 1F 1)N UEQ SA failed

65 RADD SA DN, RSUB SA DN or SWAP SA DN
failed

66 RINC DN or RDCR DN failed

67 ‘ RI NC DN, RDCR DN or SWAP SA DN failed

70 COPY CMI SX DN or RAND SX DN failed

71 COPY ST DN or RAND ST DN failed

72 SWAP SA DN failed

73 Rl'IXO SA DN failed

74 RICX’O DN failed

75 RORA DN failed on (N) =0

76 RORA DN failed on (NM)

77 Not used

100 J l’L, P was not transferred to L

101 J PL does not jump

102 JPL, P was not correctly transferred to L

103 SAA—1 does not work

1(14 SAX—1 " " "

105 SAT-1 " " "

106 SAB-i " " "

107 SAA 1 " " "

ND—GZ. 006. 01

. . .._ _ _ . ._ _l . --~|u—v—- . ..-.._ __,_._._.w'.“.‘vd‘_u_‘_fi .m—a-n :m-u _ “'1'." “NH-v“. ”._‘

110
111

112
113
114
115
116
117

Testing of bit operations:

120

121

122

123

124

125

126

127

130

131

132

133

134

135

136

137

140

141
142
143
144

SAX 1 II II n

SA'I‘ 1 II n n

SAB 1 " " "
AAI\

ll ll H

AAX
n n n

AAT
H H H

AI\13
II II "

Not used

BSET ZRO SSK or BSKP ZRO SSK failed
BSET ONE SSK or 1351(1) ONE SSK failed
BSET BCM SSK failed

BSET BAC SSK failed

BSKP BCM SSK failed

BSKP BAC SSK failed

Not used

Not used

BSET ONE SSK 01‘ TBA STS failed

BSET ONE SS7. or TRA STS failed

BSET ONE SSQ 0r TRA STS failed

BSET ONE $80 or TRA STS failed

BSET ONE SSC 01‘ TBA STS failed

BSET ONE SSM 0r TRA STS failed

BSET ZRO SSK, SSZ, SSQ, SSO, SSC or
SSM failed. The content of A shows which
of them that failed, (indicated with a "one"
in the corresponding bit in A).

BSET BCM SSK, SS’Z, SSQ, SSO, SSC OI‘
SSM failed. Add 3748 to A, and zeroes in
bits 2—7 indicate which of the instructions
that failed.

BSET BAC SSK, SSZ, SSQ, SSO, SSC 01‘
SSM failed. The "ones" in A—rcg. bits 2—7,
indicate which of the instructions that failed.

BSET ZRO DD BN failed

BSKP ZRO DD BN failed

BSKP ONE DI) BN failed

BSET Z110 DD BN failed

ND-62. 006. 01

145

146

147

150

151

152

153

154

155

156

157

160

161

162

163

164

165

166

167

170

171

172

173

174

175

200

201

202

203

204

205

206

207

- 177

2-6

IISET ONE DL BN failed

BSKP ()NE I)L BN failed

Not used

BSET ONE 110 DB or BSKP ONE 110 DB
failed.

BSKP ZRO 110 DB failed

BSI‘IT BCM 110 DB failed on actual bit=0

BSI'IT BCM 110 DB failed on actual bit=1

BSET BAC 1230 UT or BSKP ZIlO 130 DT

failed.

BSKP BAC 130 DT failed

BSKP BCM 130 DT failed

BSET BAC 170 DL or BSKP ONE 170 DL

failed.

BSKP BAC 170 DL failed

BSTA 60 DT or BSKP ONE 60 DT failed

BS'l‘A 60])'I‘ does not store zero in SSK

BS'I‘C 70 DX or BSKP ONE 70 DX failed

BS'I‘C 70 DX does not store "one" in SSK

BLDC 70 DX failed

BLDA 60 01‘ failed

BAND 60 DT failed

BANC 60 DT failed

BORA 50 DB 01‘ BSET ZRO 50 DB failed

BORA 60 D'I‘ failed

BAND 50 DB failed

BORC 50 DB failed

Not used

,X does not work

,B does not work

,X ,B does not work

I does not work (indirect addreSsing)

I .X does not work

I ,B does not work

I .B ,X does not work

Wrong result of MPY
multiplicand in D—rcg.
multiplicator (memory) in A-reg.
wrong result in B—rcg.
correct result in L—reg.

ND-62. 006. 01

V4 VH6},

.
_mv--¢fll‘n—--..

finafi—w

210

211 - 220

Test of Shift Instruction:

220

221

222

223

224

225

226

227

230

231

232

233

234

235

236

237

240

241

242

243

244

245

246

" ~-_~—_--u.-- ..._. ..._—.. -.

2-7

Overflow for MPY does not work.
The correct value of the O flip-flop
stands in the 0 bit in the T register

Not used

SIIA failed

SAD failed
SAD SHR failed

SllT ROT failed

SHD ZlN failed
SIIA 17 failed

SAD SI—IR 40 failed. Content of D—reg.
is wrong.

SAD SIIR 40 failed. Content of A-reg.
is wrong.

SAD ROT failed

SAD RO'I‘ failed

The M [lip-flop was not set to "one"
during left shift.

SAD LIN SIIR 1 does not work

The M [lip-flop was not cleared during
left shift.

The M [lip—[lop was not set to "one"
during left shift

The M flip—flop was not cleared during
right shift.

SAD ROT SIIR does not work

C flip—[lop was incorrectly set to "one"
during ADD.

() [lip—flop was incorrectly set to "one"
during ADD.

Q flip—flop was incorrectly set to "one"
during ADD.

C flip—flop was not set during SUB

O flip—flol) was incorrectly set to "one"
during SUB.

Q flip—flop was ineOrreetly set to "one"
during SUB.

C flip—flop was incorrectly set to "one"
during ADD.

ND‘GZ. 006. 01

, ,A.‘.,‘.‘, “..,,‘h_.._..,,. .__...._..‘.....n_...-..... ." .7.... “flung - -. ,,_.-\,-,,._..u.....‘.. -..,. .11.-..m..-.,.-_._.

2-8

247 0 [lip—f10p was incorrectly cleared
during ADD.

250 Q flip-flop was incorrectly cleared
during ADD.

251 C flip-flop was incorrectly cleared
during AAA.

252 Q flip—flop was incorrectly set to "one"
' during AAA.

253 () [lip—[lop was incorrectly cleared
during AAA.

254 (‘ [lip-flop was incorrectly cleared
during SUB.

255 O [lip-[lop was incorrectly cleared
during SUB.

Q flip-[lop was incorrectly cleared
during SUB

ND-62. 006. 01

no-

.71.!

___ ,.._....,.,..‘...,.. , __--..w.._.‘.,.-... -

3;1

3.2

3.2.1

3.3

Introduction

TWO-CHECK verifies extended NORD—io instructions (as related to
NORD—i). The following is checked:

SKP - all 8 skip conditions

MIX3 . - multiply index by 3

RMPY - register multiply

RDIV - register divide

EXR - execute register

IRR/IRW - interregister read and write
LRB/SRB - load and store register block
LBYT/SBYT - load and store byte

Errors are reported through error stops (WAIT instructions).
Refer to Section 3. 3.

Usage

Load the Program
V

Read in the program as explained in the introduction to this manual.
The program should start automatically. If not, start in address 20.

Normal stop is WAIT 377. If this instruction is removed, the program
will loop until stopped by an error or the operator,

E r r o r L o o p s

As already noted, the indicated cause of error is only the most
probable one.

ND-62. 006. 01

3 -2

3.3.1 Error List

Value of IR
Bits 0-7 Probable Cause of Strap

0 SKP IF DA EQL SD soes not skip.

_ ¥
1 SAP IF DA GFQ SD does not skip.

2 SKP IF DA GRF SD does not skip.

3 SKP IF DA MGRE SD does not skip.

4 SKP IF DA UEQ SD does not skip.

5 SKP IF DA LSS'l SD does not skip.

6 SKP IF DA LST SD does not skip.

7 SKP IF DA MLST SD does not skip.

10 SKP IF DA EQL SD skips.
:

11 SKP IF DA GEQ SD skips.

12 SKP IF DA GRE SD skips.

13 SKP IF DA MGR'E SD skips.

14 SKP IF DA UFQ SD skips.
l

15 SKP IF DA LSS SD skips.

16 SKP IF DA LST SD skips.

17 SKP IF DA MLST SD skips.

21 MIX3, wrong result.
T register shows correct result.

22 RMPY SD DA fails
- AD actual result
- BL correct result
- T 1. factor (A register)
- X 2. factor (D register)

at GEQ NORD-l equivalent GRE (wrong operation if
expression overflows)

LSS NORD-i equivalent LST (wrong Operation if
expression overflows)

N-D—62. 006. 01

23

24

25

26

27

30

31

32

33

34

3 -3

RDIV ST, wrong result
- AD actual result
- BL correct result
- T divisor
- X memory address of dividend

(double word)

RDIV ST, wrong error indicator setting

- registers as [or WAIT 23
- SSZ actual ('I‘I‘OI‘ indicator setting
- SSK correct error indicator setting

EXR SX fails
- X contains JMP * + 2
- EXR does not jump

EXR ST fails
- T contains LDA ,X
- A actual result
- X correct result

EXR SA fails
A contained a STZ ,X
- A actual, should be 0

EXR, incorrect error indicator setting.
One or more of the above has probably
set the error indicator.

EXR SA, incorrect error indicator setting.

- A contains EXR SX
- X contains EXR ST
- T contains COPY 00 DD

The Z—indicator is not set when trying to
execute an EXR.

EXR SA, refer to error stop 31.
The execute of an execute is performed.

TWO-CHECK is not running on level 0.
Push Master Clear and restart the program.

IRR or IRW failed
- A wrong result
- failing register in D0 -2 (register number)
—’"fai'ling level in D3’—'6’(program level)

The register code
(Register number + 10 1» level + bit 7)
is written into all registers except on level 0.
The same registers are then read back and
checked.

ND—62. 006. 01

35

36

37

40

377

3 -4

LliB does not work.

- A wrong result
- failing register in D0-2 (register number)
- failing level in D3 -6 (program level)

The register blocks on all levels (except 0)
is loaded with the register code
(register number + 10 * level)
The registers are ther? checked with the
IRR instruction. -

. Note: The actual instruction is EXR SA
with A 2: LRB <program level I 10>

SRB does not work.
Error indication as for error stop 35.

Note: The actual instruction is EXR SA
with A = SRB <program level x 10>

LBYT fails

- correct byte in B0—7
- wrong byte in A
- address in X and T

SBYT fails
Error information as for error stop 37

- ' Correct stop.
Press CONTINUE to repeat test.
This instruction can be removed if
continuous testing is wanted.

ND-62. 006. 01

4.1

4.2

4.2.1

Introduction

THREE-CHECK verifies programmed interrupts. The PIE and PID
registers are set bit by bit. This moves the CPU from program level
to program level with increasing priority. When level 15 is reached,
the programs start executing WAIT's. This will move the program
towards level 0.

On each level it is checked that present and previous level is as
expected together with the settings of PIE and PID registers.

The program runs about .5 second on each level.

Errors are reported through error stops. Refer to Section 4. 3.

Usage

Load the Program

Read in the program as explained in the introduction to this manual.
Normally one. will display active levels on the operators panel. This
will show how the program moves from level to level.

ND-GZ. 006. 01

4.3

4.3. 1

Error Stops

When an error occurs, the interrupt system is turned off and the CPU
halts. Normally the failing level can- be seen on the operators panel
or in location XREG. The address of XBEG is found on the tape.

Error stops 0-5 occur with the interrupt system turned off.

Note that register names always refer to the failing level.

Error List

Value of
IRO—7

0

20

21

22

23

24

Probable cause

The test program is not started on level 0.
Push Master Clear before starting the
program.

TRR IIE changes the A register.
A should equal 0.

TRR PIE changes the A register.
A should equal 0.

TRR PID changes the A register.
A should equal 0.

PIE is not set to 0.

PID is not set to 0, possibly an external
condition (jammed interrupt line).

Wrong level read from STS when moving up.

- A offending level number.
- X correct level.

Wrong previous level code moving up.

- A offending code.
- T correct code.

Wrong PIE when moving up.

- A offending PIE.
- D correct PIE.

Wrong PID when moving up.
- A offending PID.
- D correct PID.

Wrong level read from STS when moving
down.
- A offending lr‘vel number.
- X correct level

ND-(iZ. 006. 01

’ “Mwam-gvr

__........_.__._

__.._._.___

._..

vym

4w"—

:r'Lgy-m

.

a.
._
.L:
.«

,,.

25

26

27

30

31

32

33

40

41

42

377

Wrong previous level code when moving down.
— A offending code.
- '1‘ correct code.

Wrong PIE when moving down.
- A offending PIE.
— L correct PIE.

WAIT is ignored on a level different from
level 0.
- A offending level.

Correct stop. The test may be run again
by pushing CONTINUE. If this WAIT
instruction is removed, then the test is
repeated continuously.

Wrong level on way up.
Wrong level no. in X, correct in
A on current level.
Wrong level on way down.
Wrong level no. in X, correct in
A on current level

Wrong PIM (internal register
9 or 011B). Read PIM in A,
expected in B.

PID set. Expected to be zero
MON do not set PID14

Difficult to reset PID14 after
MON-instruction

This is the level-changing WAIT and it
should never stop the CPU.

ND-62. 006. 01

.......

a...

.4.--......._

-—......._—-q.._,_

.

a."

p...“

l—II'QO‘O-

-

U!

5.1

5.2

5.2.1

5.2.2

CI! .1.

Introduction

FOUR-CHECK is an internal interrupt verification program. All
possible internal interrupts in the CPU are triggered from program
level 0 and it is checked that they report to level 14 in the Specified
way. -

All internal interrupts will normally be enabled. The following
instructions are used to trigger the interrupts.

IIC
Code

1 MON 123 % MONITOR CALL

4 143700 % UNIMPLEMENTED INSTRUCTION

5 BSET ONE SSZ % ERROR INDICATOR
5 DNZ —20 ‘7p DNZ OVERFLOW (ERROR INDICATOR)

5 FDV NULL-A,B ‘% FDV BY 0. 0 (ERROR INDICATOR)

5 EXR SX % EXECUTE EXECUTE (ERROR INDICATOR)

7 IDX 3777 % IDX ERROR
9' LDA I (177377 % MEMORY-OUT-OF-RANGE

If memory parity is detected, this will be reported together with the
contents of registers PES and PEA.

All other interrupts will be reported as errors.

Usage

Load the Program

Read in the program as explained in the introduction to this manual.
Note that this program uses the console Teletype for printouts.

Interrupts to test

Only the enabled interrupts will be tested. IIFM is an internal interrupt
mask that is transferred to the [IE register during program initialization.

The address of IIEM is noted on the tape and may be changed according
to need.

ND-62. 006. 01

5.2.3

5.2.4

5.3

Printout Mode

If OPR bit 15 is 1, only a minimum of text is printed.

If OPR bit 15 is 0, a full report will be printed.

Program Control

The program may be controlled by typing commands on the console
Teletype. The following commands are available:

S - stop the program
— continue the program (after S)

I - initialize the program (after S)

Error Printouts

Errors will only be reported when there is a change in error status.
That is, if a working interrupt starts failing or a failing interrupt
starts working. All interrupts are initially believed to be working.

All printouts are self-explanatory

If OPR bit 14 is 1, the program will automatically simulate an ‘8'—
eommand after each error printout.

ND-62. 006. 01

6.1

6.2

6.2.1

6.3

6.4

-~1-K(wn—~’_.\- .m,... r...

(3-1

Introduction

10-FLOATING verifies these instructions:

DNZ, NLZ, FMU, FDV. FAD, FSB

The program contains a table of test data, and compares the results
of instruction execution with the correct answers.

If an error is detected, an error message is printed.

Usage

Load the Program

Read in the program as explained in the introduction to this manual.
The program should start automatically. If not, start it in address 20.

If no error occurs, the program loops indefinitely.

Error Printout

< N > < n >

A: <floating accumulator>
H: <floating memory data>
C: <correct rcsult>
R: < actual result)

N indicates the failing instruction. It may be DZ, NZ, MU, DV, AD, and SB.
n is data set number.

Pointers to the different data sets may be found in addr 0470 < 0475.
Each data set occupies 9 locations.

E r r o r L o o p

After an error message, the program stops with WAIT 246.

a) Press CONTINUE. The program continues with new data.

b) Enter 0246 into the P register and press CONTINUE.
The program loops and repeats the failing data set without
error printouts. The result is copied to L, X, and B.

ND-GZ. 006. ()1

w,.4-_....-._...,r .4“ __mlz..m «Ha... . r _.. _. ._., .. r... .._. __... _ - ,. .. m4 -uviflq an‘K-mr‘ “mum-.7... ,;~,4.nn,.w,x,.,....rm.,“(fluuyuxwfl-m ow"

”bang... .

7.1

7.2

7.2.1

7.2.2

7-1

Introduction

The NORD-10 micro-program contains a special program that tests
the main memory. This is a very.useful feature as it may quickly
be decided wether a given error is to be blamed on the CPU or the
memory.

Usage

The use of this program is dependant on the ALD register. This is a
16—bit switch register located on the Panel Driver (or its alternative)
in CPU card position 17. The setting of this register may be determined
by inspecting internal register 128. (Type 112/ on the console Teletype.)

Setting of ALD

Note the initial setting of ALD (for later resetting).
Set up

101662 (version 1. 0)
101657 (version 2. 0)

in ALD (refer to Appendix F for arrangement drawing).
WARNING: This number‘refers to version 1. 0 and 2. 0 of the micro-
program. M ake sure what is the actual version on your machine.

This setting has the following significance:

Bit 15 = 1 Take bit 0 - 11 as micro—program address.
Bit 0 - 11 Start address of test program in the ROM memory.

Setting of ALD is only necessary for version 1. 0.

Setting of l‘viemory Bounds

The area of memory that is to be tested must be set up in the following
registers (on level 0):

B - lower memory bound

X — upper memory bound

The tests include the specified bounds.

. ND-62. 006. 01

7.2.3

7.3

7.4

7.4.1

Starting the Memory Test

Push Master Clear and Load. The light in the Load-button will be
on during the test.

Note: The normal operators communication will not be available when
the test runs. This means that the display of register or memory
contents is impossible (on the operators panel).

Position DATA or ADR, however, still shows the actual memory
accesses.

For version 2.0 of the micro—program, writing 1016573 on the TTY
is sufficient to start the test.

Error Indication

If the memory test fails, a '?' will be typed on the console TTY and/or
the light in Master Clear will turn on. The following registers (on
level 0) describe the error:

- lower memory
- upper memory bound

failing bits (=1) T D 'xor' L)
- error pattern
— test pattern
— failing address’UF‘UH‘XUU

I

Method

The test writes the actual test pattern into all specified memory
locations. The pattern is then read back. If. no error occurred, the
test goes on to the next test pattern.

Test Patterns used

The following test patterns are used:

000001
000002
000004

100000
177776
177775
177773

077777

Address stored in address (run 16 times)
Complement of address stored in address (run 16 times)

N'D-62. 006. 01

7.5

7.5.1

7.5.2

Further Test

Also located in the micro-program is a single location write/read
loop. This is useful when tracing the data paths with an oscilloscope.

Loop Description

This program performs the following loop:

- Store L register in address pointed to by B register.
- Load D register with content of address pointed to

by B register.
- Form 'exclusive or' of D and L registers and put

result in T register.
- Loop back.

Starting the Loon

Load L and B registers with desired test pattern and address

Push Master Clear
Set ALD to 101771 and push Load (version 1‘. 0)
Write 101767 3 on TTY (version 2. 0).

The loop can only be broken by pushing Master Clear.

Note that it is not possible to examine the central register
when this loop runs.

ND-62. 006. 01

