
SINTRAN |II
Utilities Manual

ND-60.151.01

NOTICE

The information in this document is subject to change without notice. NorskData A.S assumes no responsibility for any errors that may appear in this docu-ment. Norsk Data A.S assumes no responsibility for the use or reliability of itssoftware on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may notbe photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright © 1982 by Norsk Data A.S.

This manual is in loose leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose leaf form also allows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre-
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more suitable
for manuals of less than 100 pages than for large manuals. Plastic covers may
also be ordered below.

i‘ “ . :1: 1
I.‘

NGHSKDATAAS mama

'°~ eg" “a ééfisaw a
l‘

O

A Ring Binder B Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg gard
Oslo 10

ORDER FORM

I would like to order

Ring Binders, 30 mm, at nkr 20,- per binder

....... Ring Binders, 40 mm, at nkr 25,- per binder

Plastic Covers at nkr 10,- per cover

Name ..

Company
Address

PRINTING RECORD
Printing Notes

11/81 Version 01
05 Revision A

The fol are revised or new: vi vii viii 1—1 3—21.
Sections 6 and 7 are new.
Revision B

The followi are revised: vii.
Section 5.

SINTRAN Ill Utilities Manual
Pbl. No. ND-60.151.01 Rev. B

E: NORSK DATA A.S
>3 PO. Box 4, Lindeberg gérd

Oslo 10, Nomay

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg 95rd
Oslo 10

SINTRAN III/VS

ND—60.125
INTRODUCTORY Sintr.III

iIntroduct.

USER’S ND—60.13h ND-60.132 ND-60.T33
GUIDES Ccmmunic. Timeshar./ Real Time

Guide Batch Guide Guide

I

ND-60.151 ND-60.128 ND-60.051
REFERENCE Sintr.III Sintr.III Real Time

Utilities Ref. Man. Loader

>

OPERATOR/ ND-30.001 ND-30.003 ND-60.110
SUPERVISOR NORD 10/50 Sintr.III Postmortem

Oper.Guide Sys.Sup.Gu. Investegat.

\I ‘~ 1

ND—60.062 ND-60.122 ND-60.072 ND-60.081 ND-60.112
Sintr.III File Sys. RT-Loader Nordnet Sintr.III
Sys.Dooum. Sys.Docum. Sys.Docum. Sys.Docum. Data Fields

INTERNAL SYSTEM DOCUMENTATION

SINTRAN III/RT

ND-60.082
Sin.III/RT
Ref. Man.

vi

PREFACE

THE PRODUCTS

This manual describes products which run under the SINTRAN ||l operating
systems

SlNTRAN Ill/VS ND—10048
SINTRAN lll/VSE ND—10174
SINTRAN Ill/VS-500 ND—10175

The products described are:
GPM ND—10124
PERFORM ND—10022
BACKUP—SYSTEM ND—10337
LOOK—FILE ND—10005

ND—10044
FILE EXTRACT UTILITY ND—10044

THE READER

This manual is written for users of SlNTRAN III who want to use any of the
subsystems listed above.

PREREOUlS/TES

Familiarity with SINTRAN ”I is an advantage.

THE MANUAL

This manual describes some utility subsystems of SlNTRAN lll.

RELATED MANUALS

Related manuals giving basic information about SINTRAN III are
SINTRAN I“ Introduction ND—60.125
SINTRAN l|| Timesharing Batch Guide ND—60.132

Other SINTRAN lll manuals are shown on the preceding diagram.

ND-60151.01
Rev A

Section:

1

2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.9.1
3.9.2

3.10

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

vii

TABLE OF CONTENTS
+ + +

Page:

INTRODUCTION 1—1

THE PERFORM SYSTEM2—1

Introduction .. 2—1
PERFORM Commands ... 2—3
Example of a PERFORM Macro 2—4
Interactive Prompts During Macro Execution 2—5
Output Listing File Control ... 2—5
Mode File Submission Control .. 2—5
Extended Parameter Submission 2—6
Limitations, Restrictions and Defaults 2—6
Standard PERFORM Macros ... 2—7

GENERAL-PURPOSE MACRO GENERATOR — GPM 3—1

Introduction ... 3—1
GPM Syntax and Evaluation Rules 3—2
System Macros 3—3
Macro Evaluation ... 3—5
Conditional Macros 3—7
Recursive Macros ... 3—8
The GPM Library .. 3—9
GPM Under SINTRAN III 3—16
GPM Applications — Some Ideas 3—17

GPM and Semigraphic Display3—17
System Generation Using GPM

Combined Use of PERFORM AND GPM

THE MAILSYSTEM

.3—18

Introduction 4—1
General Format4—1
Subcommands 4—2

BACK—UP SYSTEM .. 5—1

Introduction ...5—1
Simple Use of the BACKUP—SYSTEM 5—3
Commands ... 5—3
Commands — Detailed Description 5—?
Label Formats on Magnetic Tape VOLUMES5—15

.6—1

Introduction ...6—1
Commands — Summary
Commands — General Rules
Commands — Detailed Description

ND-60.151.01
Rev. B

.6—1

.6—2
..6—3

Section:

7

7.1

7.1.1

7.2

7.2.1

7.2.1.1
7.2.1.2
7.2.1.3
7.2.1.4

7.2.2

7.2.2.1
7.2.2.2
7.2.2.3

7.2.3

7.2.3.1
7.2.3.2
7.2.3.3
7.2.3.4
7.2.3.5
7.2.3.6
7.2.3.7
7.2.3.8
7.2.3.9

7.2.4

7.2.4.1
7.2.4.2
7.2.4.3
7.2.4.4
7.2.4.5
7.2.4.6
7.2.4.7
7.2.4.8
7.2.4.9
7.2.4.10
7.2.4.11
7.2.4.12
7.2.4.13
7.2.4.14

7.3

viii

Run-Time Status Messages

ND—BO 151 OI
Rev A

Page:

NORD FILE EXTRACT UTILITY COMMAND 7—1

Introduction 7—1

Purpose 7—2

Command Structure 7~3

Input File 7——3

Mode File Save Option .. 7—4
Limited Automatic Command Input......................7—4
Fixed Record Length Input File Option7—5
Indexed Access via KEY File 7—5

Output File 7—6

Output File Append Option 7—6
File Split Option ... 7—6
Output File Organization Change (X Option) 7—7

Extract Selection specifications 7—8

Numeric Field Evaluation 7—9
Text Field Evaluation .. 7—10
Text String Search ... 7—11
Limited Text String Search 7—12
Logical Operands ... 7—13
Parentheses Nesting .. 7—14
Input File Record Intervals 7—15
Show First Input File Record Option 7—16
Command Line Continuation Option 7—16

Output Specifications 7—17

Input Record Subsets Specification 7—18
Output Record Constants 7—19
Input Record Number Inclusion 7—19
Output Record Number Inclusion 7—20
Random Key Inclusion Option 7—21
Terminal Output Wait Option 7—22
Line Printer/Terminal Output Heading Option 7—23
Line Printer/Terminal Page Numbering Option7—24
Predefined Heading as Extract Command Line ...7—25
Predefined Heading as Position Mask 7—25
Split File Copy Option ... 7—25
Show First Input File Record Option 7—26
Command Line Continuation Option 7—26
Skip Output Record Trailing Spaces 7—26

1—1

INTRODUCTION

This manual collects together information previously published in the GPM

manual ND-60.109 and SlNTRAN lll Reference Manual ND—60.128 and some new
material.
The subsystems described are not necessary for simple use of SlNTRAN ”I but
may be of considerable use for particular tasks. The manual contains the

information users need to efficiently use the particular subsystem relevant to
their task.

ND-60.151.01
REV A

2.1

THE PERFORM SYSTEM

INTRODUCTION

During the development of any software system, it is often necessary to re—
compile the programs, load and test them. This repetitive work can be done
more easily by using MODE files. However, MODE files have two limitations:

1) each MODE file requires a separate file
2) the parameters are fixed within the MODE file.

This program takes parameters from the command line and inserts them into a
copy of the specified file and then runs it as 8 MODE file. This file contains
"copies" of MODE file ”images” that would have been on individual files.

Thus, the PERFORM program both saves file space and offers the user a great
deal of flexibility as to the type of data that can be modified. It is NOT intended
to replace the functions offered by the standard EDITORS.

PERFORM is called thus:

@PERFORM /macro filel, /macro name/, /optional parasl, P1, Pn

macro file = file :MCRO as described below
default: PERFORM-LlMCRO

macro name = 1-16 character macro identification.
default: FTN

optional paras = < output file.
default: TERMINAL.
a file name may be specified in quotes but the < must precede the first
quote sign. Default type is :SYMB.

= > Mode file submission control para,
> C, create don’t run,
>R, = create run,
> Bn, = create submit to BATCH,
>default = > R

ll

“ MODE file name,

if a M—O-DE file other than the default mode file MACRO'n:MODE is to be used,
this file name may be given as an optional parameter preceded by a ' (asterisk).
The type of this MODE file will be :MODE.

P1,,,, Pn = user macro replacement parameter(s). n = 1-20.

The macro file consists of a number of macro descriptions separated by B, E
delimiters. The PERFORM program scans the macro file for the requested macro
name, and if found creates a MODE file with the replacement or default
parameters.

ND-60.151.01

2—2

If a MODE file other than the default mode file MACRO’nzMODE is to be used,
this file name may be given as an optional parameter preceded by a * (asterisk).
The type of this MODE file will be :MODE.

P1,,,, Pn = user macro replacement parameter(s). n = 1-20.

The macro file consists of a number of macro descriptions separated by B, E
delimiters. The PERFORM program scans the macro file for the requested macro
name, and if found creates 3 MODE file with the replacement or default
parameters.

ND-60.151.01

2.2 PERFORM COMMANDS

Macro is defined by the following simple syntax:
n
B, macro name:

macro prompt and default commands

SINTRAN commands and data lines ---

A

E.

Macro prompt and default commands:

A
B, macro name; to indicate the beginning of a new macro definition.

A
P,n, prompt string; to specify the prompts to be given where the parameter is

not supplied.

A
P,n, prompt string; as for AP, however user response is assumed to be a

SINTRAN mass storage file name and PEFORM will attempt expansion of
abbreviated name.

AD,n,default string; to specify the default value to be used if no value given to a
promt (n).

AL, information string; string is displayed on Terminal.
A

C, comment string; string is ignored.

A; to delimit the declarations from the MODE file data.

AE; to indicate the END of a macro definition.

macro name = a 1 to 16 character identifier.

n = a numeric value 1-20 signifying a positional parameter expected on the
@PERFORM command.

The
A

signAshown above can be any character other than AZ, 0-9 or blank. The
up arrow () is recommended as this follows the NOTIS and GPM syntax. The
character is taken from the first character on the :MCRO file, and must be the
same character throughout the file.

Macro parameter submission placement is indicated by the use of the backlash
(\) followed by n (1-20).

The semicolon (;) is required to terminate macro commands.

ND—60.151.01

2.3

2-4

EXAMPLE OF USING A PERFORM MACRO

For example, to compile, load and dump a FORTRAN program, type the following
command:

®PERFORM FTN FTNDUMP ABC 30000

Where:

FTNDUMP is the macro name that will be searched for on the file FTN:MCRO.
ABC is the FTN source program (ND editor file).
30000 is the desired UPPER LIMIT parameter for the loader.

FTN:MCRO (note the file type) is a file created by an ND editor as follows:

:3, PREVMACRO;
A————— etc. ————— other parameters as required

IE:
AB, FTNDUMP; Begin macro definition

L, Macro to compile and dump a FTN

A program;
AP, 1, source file name?;
AP, 2, Upper limit?;
AD, 2, 177777;

; end parameter specifications
@DELETE-FILE \1:PROG
@FTN
COM \1, ,TEMP
EX
@NRL
UPPER—LIMIT \2
L TEMP
DUMP ' ’ \1’ '
EX
AE; End macro definition
AB, NEXTMACRO;
A ————— etc. ————— other macro definitions (no limit)

AE:

Example of use of default upper limit:

@PERFOHM FTN FTNDUMP ABC, ,

Resulting MACROnzMODE file:

@DELETE-FILE ABC: PROG
@FTN
COM ABC, , TEMP
EX
@NHL
UPPER—LIMIT 177777
L TEMP
DUMP ’ ' ABC' '

EX

ND-60.151.01

2.4

2.5

2.6

INTERACTIVE PROMPTS DURING MACRO EXECUTION

PERFORM may be called by @PERFORM. Often the user wishes to know if the
PERFORM-LlMCRO file being used actually contains the particular macro re-
quested. Therefore, under "AUTO PROMPT" mode the user may respond to the
"macro name:" prompt with a "?’ character. PERFORM will then list all the
macros defined on the currently attached :MCRO file.

Example:

:MCRO file name :FREDS-MACROS
Macro name : ?

Macros available in file FREDS—MACROS

FTN
COBRUN
Macro name :COBRUN

OUTPUT LISTING FILE CONTROL

By default, the output from the execution of the mode file goes to the terminal,
in the same way as in the @MODE command. Optionally, it may be sent to a file
by specifying the file name, preceded by ”less than" (<). This must appear after
the macro name and before any parameters for the procedure.

Example:

C“)PERFORM FTN FTNDUMP <SINK ABC,,

MODE FILE SUBMISSION CONTROL

The @PERFORM user may direct the usage of the created :MODE file by using
the optional "greater than” (>) directive:

>CREATE, = create MODE file but do not execute.
> RUN, = create MODE file and execute.
>BATCHn, = create MODE file and submit to BATCH number n (n = 1-9).

These directives may be abbreviated as only the first character after the > is
checked, also the last in the case of the > BATCHn directive.

Default is > RUN.

PERFORM writes the actual mode file to be executed to a file called
MACROi:MODE, where i is 1 to 9. The file is created if not already in existence. If
the file is in use at another terminal or in a batch job, another file with a greater
value of i is used automatically. It will be created if necessary. Note that if a
>CREATE mode file is built it is the user's responsibility to make sure that later
calls to @PERFORM does not destroy that file.

ND—60.151.01

2.7

2.8

EXTENDED PARAMETER SUBMISSION

Any parameter (Pn) may be replaced by a file name, preceded by a square
bracked([). The file should be a normal GED or PED file and should contain a list
of values for the parameter, one per line. The procedure will then be executed
repeatedly, taking successive values for the parameter from the file, if the file
LIST contains:

ABC
DEF
GHI

and one gives the command

@PERFORM FTN FTNDUMP [LIST,,

the files ABC, DEF and GHI will be compiled in turn.

LIMITATIONS, RESTRICTIONS AND DEFAUL T8

The macro name must be unique, in any case the first occurrence is taken.

The macro name should not be abbreviated, but if abbreviated that abbreviation
will be searched for.

The macro cannot be nested, nor invoke other macros.

The first two parameters must be present either as actual parameters or empty
parameters separated by commas.

The optional parameters (< and >) may also be entered if the macro name is
being prompted for by PERFORM.

Use the F command rather than the P command if SINTRAN files are to be cre—
ated by your Macro. The F command will attempt to find the full S/NTRAN file
name. If successful that name will be submitted to your macro. Default type is
SYMB.

ND-60.151.01

2.9

2—7

STANDARD PERFORM MACRO’S

The following macro’s are supplied as standard with SINTRAN lll operating
system:

Name

Fl‘N
FTNRUN
COBOL
COBRUN
COBDEBUG

PLANC
PLRUN
PASCAL
PASRUN
Fl'NRUN
BASIC
BASRUN
CREDIR

Function

compile a Fortran program.
compile, load and execute a Fortran program.
compile a Cobol program.
compile, load and execute a Cobol program.
compile, load and execute a Cobol program under control
of the Symbolic Debugger.

compile a Planc program.
compile, load and execute a Planc program.
compile a PASCAL program.
compile, load and execute a Pascal program.
compile, load and execute a Fortran program.
compile a Basic program.
compile, load and execute a Basic program.
create a directory and a user on a formatted diskette.

ND—60.151.01

3.1

GENERAL-PURPOSE MACRO GENERATOR — GPM

INTRODUCTION

In the Computer Journal, October 1965, C. Strachey described a macrogenerator
called GPM (General-Purpose Macrogenerator). GPM was originally planned to
help write a compiler for the language CPL. The idea was to write the whole
compiler as a set of macro calls.

In this way, one got a machine-independent compiler. By redefining the macros,
a compiler for another machine could be produced, and by rewriting GPM, one
could generate the compiler on another machine other than the target machine.

GPM is referenced in most of the literature dealing with macro-
processors.

lnput to GPM is a character string, in which macro calls may occur. GPM copies
the input character unmodified to the ouput string, with the exception of the
macro-calls which yield their values instead.

GPM pays no attention to what type of symbolic input it receives, as long as no
confusion arises concerning the GPM control characters. The GPM-version on
the NORD computers expects (and produces) characters with even parity. It may
be called as a SINTRAN ||| subsystem. Program size is 1,5k, while the rest of the
virtual memory is used for run-time stack.

Most persons reading this manual for the first time know macros only from
simple assembler macro-options. They should immediately be aware of the fact
that in GPM macro-calls may not only occur in the source-code string, but also in
a macro—call's name-string, parameter—strings and in the value-strings found in
the macro definition-list. They should also keep in mind that the effect of a
macro call may be of two kinds:

1) Substitution. A character string is substituted for the call.

2) Macro-(re)definition. New macros may be defined and old ones redefined.

ND—60.151.01

GPM SYNTAX AND EVALUATION RULES

A GPM macro call looks like this:

(NAME, PAR1, PAR2, ————— , PAHn;

It consists of a macro name and a list of the actual parameters, each separated
by a comma. The macro-call starts with T and ends with a semicolon. The name—
and parameter— strings may themselves contain macro calls.

Six characters have special meaning in GPM:

1 Precedes macro calls

; Ends macro calls

, Separates parameters in a macro call

\ Denotes formal parameter, and is followed by the parameter number
in the set 0-9, A-Z. Occurs in macro definitions and the resulting
macro bodies

< Start quote. Should always match a >. Evaluation of a character-
string enclosed in < > yields the same string without < >. Thus, by
quoting, strings are prevented from being changed by GPM- evalua-
tion

> End quote. (An unmatched > outside macro calls terminates GPM)

The input string is scanned from left to right and copied to the output string until
a macro call is encountered. The macro call is evaluated as follows:

a) The macro name and its arguments are evaluated from left to right.
They are all evaluated once. This process may involve evaluation of
other macro calls so that the whole process of evaluating is a recursi—
ve one. Macro-definitions made during this process are so-called
temporary definitions.

b) When the argument list is complete (: when the name- and parame—
ter strings have been evaluated) the macro-definition list is searched
for a match with the evaluated name-string. The scanning stops with
the first entry with the correct name, so that the most recent defini-
tion is used.

c) The string corresponding to the macro name (macro's value, "body")
is now scanned in the same way as the original input string, except
that occurrences of \1, \2 --- etc. are replaced by exact copies of the
corresponding actual parameter (the corresponding evaluated
parameter-string). \ 0 means the macro name. If an argument asked
for is not supplied, the string NIL is taken as actual parameter.

d) On reaching the end of the defining string, the argument list (macro
name— and actual arguments) are lost. Any macro—definitions added
to the definition- list in course of macro name- and parameter eva—
luation are lost (temporary definitions).

e) Scanning of the input string is resumed.

ND-60.151.01

3.3 SYSTEM MA CROS

GPM contains a number of system macros. These are, in reality, calls of system
procedures, but the syntax of these calls is the same as that of the macro—calls
and so are the evaluation rules. The system macros are:

DEF

VAL

defines user's macros. It takes two arguments: The name and
the value ("body”) of the new macro. Formal parameters
occurring in the "body” must always be quoted. The latest
definition of a macro is the valid one.
Format:)DEF, macro-name, macro-body;
Example:
)DEF,A, <B\1>; defines macro A

to have B\1 (B and the first parameter) as its value. For
instance,)A,5; yields the value 85.

Consider the definition of A in the following two examples:

1))DEF,B,C;)DEF,A,‘)B;;)DEF,B,D;)A;
2))DEF,B,C,‘)DEF,A,<)B;>;)UEF,B,D;)A,‘

Each example consists of three definitions and a call of macro
A. What is the result in these two cases? The only difference
between 1) and 2) is the quotes in the definition of A.

1) defines A equal to the value of B, which is C.
Hence:)A; yields C.

2) defines A equal to 13;.)A; is therefore equivalent to)B:
which yields D. (Latest definition of B is valid!)
Hence:)A; yields D.

Definitions made during parameter-evaluation are temporary
definitions. These definitions are lost when the macro
possessing the parameters has been evaluated. Earlier
definitions of the same macros will then be reinstated.
Example:
)DEF, A, B;)A,)DEF,A, C; ;)A;

Temporary definition.

This string yields CB. Explanation:
)DEF,A,B; defines A to have value B.
)A,)DEF, A, C;; calls macro A,

defining A temporarily to have value C. The call of A, therefore
yields C, and the temporary definition is lost.
)A,‘ therefore yields B since the old definition has been
reinstated.

gives the value (”body") of the macro given as parameter. By
means of VAL, macro—definitions may be inspected.
Format:)VAL, macro—name;
Example:
Suppose macro A has been defined by)DEF,A, < B\1>;
Then)VAL,A; yields B\1.

ND—60.151.01

UPDATE

BAR

DECBIN

BINDEC

OCTBIN

BINOCT

HD

TL

3—4

updates macro definitions. Works in the same way as DEF. The
new value must not be longer than the old value.
Format: iUPDATE, macro-name, macro-body;
Example:
Suppose A has been defined equal to B\1.
The call 1UPDATE,A,<C\1>;
defines A equal to C\1.

performs binary arithmetic. Takes three arguments. The first
must be +,—,’,/ or R, which means add, subtract, multiply,
divide and remainder, respectively. The second and third
arguments are two binary numbers.
Format: IBAR, operator, binary number, binary number;

performs decimal-to-binary conversion.
Format: IDECBIN, decimal number;

performs binary—to-decimal conversion.
Format: TBINDEC, binary number;
Example:
lflEF, SUM, <TBINDEC, TBAR, +, TDECBIN, \1; , IUECBIN, \2; ; ;>;

defines a macro SUM which yields the decimal sum of its two
parameters. For instance, lSUM,5,3; yields 8.

performs octal-to-binary conversion.
Format: toCTBlN, octal number;
Example:lDEF, CTR,<TBAR, -, \1, IOCTBIN, 100; ;>;
defines a macro that yields control cahracters.
For instance, 1CTR,A; yields AC.

performs binary—to—octal conversion.
Format: lBINOCT, binary number;

gives the first character of its argument ("head").
Format: THD, string;
Example: 1HD,ABC; yields A.

gives all but the first character of its argument ("tail”).
Format: 1 TL, string;
Example: [TL,ABC; yields BC.

In the present GPM version, two additional system—macros have been made:

lCRMOD

CRMOD

which makes GPM ignore the characters "carriage return" and
”line feed" in its input string. They may, however be used
internally and be output.

turns off the mode set by lCRMOD.

ND-60.151.01

3.4 MACRO EVALUATION

According to rules a-e in Section 3.2, GPM works as follows:

Initially GPM is in copying mode.
When a macro—call TN,P1,Pz,-——,PK; is encountered, GPM enters the
parameter—evaluation mode.

The string N is evaluated to po.
The string P1 is evaluated to p1.
The string P2 is evaluated to p2.

The string PKis evaluated to pH.

GPM now searches for the latest definition of po in its macro-definition list.
When found, GPM enters the macro-expansion mode (or the macro-
definition mode, if Do is equal to DEF or UPDATE). GPM now reads and
evaluates the macro body of po. When encountering a formal parameter
marker \m, GPM enters the parameter—substitution mode and replaces \m
by pM. The resulting string (the evaluated body with the actual parameters
substituted for the formal ones) replaces the call TN,P1,P2, -——, P in the
output string,

K:

The macro-evaluation procedure is illustrated by this example:

Suppose the following macros are defined.

TDEF, $,<ENE\1>;
TDEF, ' ’DIRTYUDICK” ,1.-
lDEF, #, <\2<LIC._,>T$, \1; _\0\3>;

We want to find the value of:

f#, MY, <PUB>, T’ ' DIRTY DICK’ ’ ;;

We start to evaluate the name and parameters.
evaluates to # which is the macro-name.
MY evaluates to MY which is the parameter no. 1
<PUB> evaluates to PUB which is the parameter no. 2
f"DlRTY_,D|CK"; evaluates to 1 which is the parameter no. 3

The latest definition of # is \2< LlC.__. > T$,\1;L_,\0\3
\2 evaluates to PUB
< LlC._, > evaluates to LlC._.
f$,\1; is equivalent to 13%, MY; which evaluates to ENEMY
I_.evaluates to._.
\0 evaluates to the evaluated macro-name #
\3 evaluates to 1
So the value of our macro~call is the string

ND-60.151.01

36

PUBLIC ._. ENEMY L.;§é1

A further example:

A well-known GPM example is the successor macro. When called with a number
0-9 it gives the next number. For instance, TSUC,3;+ 4 TSUC,4;—>5 etc. Of course
this can be achieved in arithmetical ways, but the SUC-macro accomplishes it in
a way that makes it theoretically interesting.

SUC is defined as follows:

TDEF, SUC, <11, 2,3,4,5,6, 7,8,9,10,1DEF, 1,<\>\1;;>,-

We see that a call of SUC is equivalent to a call of a macro whose name is 1.
The macro 1 is called with its first parameter=2, the second parameter=3, the
third parameter=4, etc. A temporary definition of 1 defines it to have a value
equal to one of its actual parameters. The parameter—number is equal to the
actual parameter of SUC. Therefore, a call TSUC,3; defines macro 1 to be equal
to its third actual parameter which is 4. Macro 1 is called, and yields 4 which is
also the value of T SUC,3;

ND-60.151.01

CONDITIONAL MA CHOS

This chapter and the next one which deals with recursive macros, will describe
the rather complicated methods used for defining such macros. They may be
bypassed by readers who are not especially interested.

The definition of a conditional macro is given below:

TDEF, COND, <T\1, TDEF, \1, C; TDEF, A, B; ,'>;

The macro COND gives B or C, depending on its argument. The only
argument that gives B, is A, Le.

TCOND, A; yields B
TCOND, anything else; yields C

Explanation:

Suppose COND is called with argument=A. The macro—body with
argument=A inserted, will look like 1A,TDEF,A,C;TDEF,A,B;;
This is a call of macro A which is defined twice in its own argument.
(These are temporary definitions.) Since these definitions are made before
searching the definition-list for the value of macro A, this works perfectly
well. Since the last definition of A defines it equal to B, the call of A yields
B which is also the value of COND. Therefore:

TCOND,A;-»B.

Suppose COND is called with argument=X. The macro-body with
argument X inserted, gives:

TX, TDEF,X, C; TDEF,A,B;;

This shows a call of macro X, which is defined once in its own parameter.
The value is C, which is also the value of COND. Therefore:

TCDND, x,- so.

Note that the temporary definitions cannot be confused with any other
definitions of X or A since the temporary definitions will be lost when
COND has been evaluated.

Proper understanding of this conditional macro is necessary in order to under-
stand how recursive macros with finite call-sequences work.

ND—60.151.01

3.6 RECURSIVE MA 0303

TDEF,A,<BTA;>;
This is the simplest example of a recursive macro. One call of A yields an infinite
stream of B-characters. (The evaluation will of course cease when GPM runs
short of stack-space).

More interesting, however, are the recursive macros that allow a finite number of
recursive calls. Before discussing them, we take a short review of the conditional
macro COND, discussed in Chapter 4.

TDEF, COND < \1. {DEF
\1,1nEF,c-

A, a- >

Covers the Covers the
'general case" "special case"

Tells whether
”general case" or ”special case"

Suppose we want to write a recursive macro with finite call-sequence. There
must obviously be some kind of "condition" involved, in order to stop the
recursive evaluation.

The "general case” results in an operation between a value and a recursive call,
while the "special case" involves no recursive call since we now want to stop.
What tells us the current ”case”? Usually a counter, since we often want to give
the number of recursive calls.

A recursive macro RECUR may, therefore, have a structure like this:

tDEF, HECUR,
<1 counter.

kTDEF.
counter, <value X op

TRECUR,counter—1;>hTDEF,O,
value

I};
>,

v 1
"Current case" ”General case" ”Special case"

Where op denotes any operation wanted.

Suppose we want to construct a recursive macro FAC which computes the n'th
factorial.

TFAC, n; -> The value of 1.2.3... n =n!

Suppose that macros computing products and differences have been defined
earlier and that their names are PROD and DlF. (For instance: T PROD,2,3; +6
and 1D|F,8,3;+5).

We first concentrate on the "general case".
We observe that n! = n.(n-1)!
or, in macro language, where n is the 1st parameter of FAC:

TPROD, \1, TFAC, TDIF, \1, 1; J.‘

This leads us to the temporary definition that covers the "general case”:

TDEF, \1 <TPROD,>\1<,TFAC,1DIF,>\1<,1,;;>,

ND-60.151.01

3.7

Note that the 1st parameter must be "unquoted" since it is a parameter of FAC,
not of the counter.

The "special case” is very simple.

Since TFAC,0; -> 0! = 1 the temporary definition that covers the special case
simply is TDEF,0,1;

Now we may write the complete defintion of FAC:

TDEF,FAC,<T\1,TDEF,\1,<1PBOD,>\1<,TFAC,tDIF,>\1<,1;;;>;1DEF,0,1;;>;
L y t 1! A—V I

n ”General case" "Special case"
expressing that n!=n.(n-1)! expressing that 0! =1

Here is another example which is important, since it allows us to generalize the
"recursive call" property.

We want to make a recursive macro DO so that TDO,A,n; is equivalent to n calls
of the parameterless macro A.

DO may be defined as follows:

tDEF, D0, <T\2, TDEF, \2<1>\ 1<;100,>\1<,IDIF,>\2<,1;;>;T DEF,1,<>;;>;

TDO,A,5; gives the same value as TA;TA;IA;IA;TA;
That a macro is parameterless does not necessarily mean that its value is
constant, since it may call and redefine other macros.

THE GPM LIBRARY

This GPM library consists mainly of definitions of macros performing arithmetical
or logical functions. It also contains generalized, recursive macros and
conditional macros. The arithmetical functions may either be decimal or octal.
When necessary to distinguish between them, the macro-name for the octal
operation begins with &.

Example:

The macro SUM yields the decimal sum of its two parameters, while &SUM
yields the octal sum. The arithmetical macros may further be divided into two
classes, the "verbs" and the ”nouns”. A ”verb" has only side—effects. That
means it affects the macro-definitions, but leaves no value. A "noun” has no
side—effect but yields a value.

Examples:

ADD is a "verb", SUM is a "noun”.
TADD,J,3; adds 3 to the value of "macro J" (which is updated) but the ADD-

macro leaves no value. T SUM,3,5; yields 8 as its value but it has no side-effects.

If you are unfamiliar with macro languages, please keep the following in mind:

The effect of a macro-call may be of two kinds:

ND-60.151.01

1) Substitution.
A character string (which may be empty) is substituted for the macro call.

2) Definition
Macros may be defined or redefined. Nothing is substituted due to
definition alone.

Both kinds of effects may arise from one macro-call.

)VARIABLE, name, initial value (optional);
Six digits are allocated (for the value) and the variable is updated to its
initial value (to 0 if no value specified).
Example:
iVARIABLE,PEH; TPER; 6+0
TVAHIABLE,OLA, 14;)OLA; +14

Since six digits are allocated, octal or decimal integer values may be
assigned to a variable by an UPDATE-call.

TINCREMENT, variable;
Increments the specified variable and is equivalent to TADD, variable, 1;
Example:
TVARIABLE, PER, 5;
TPER; +5
TINCREMENT, PER;
)PER; —>6

1&INCREMENT, variable;
Octal increment of the specified variable and is equivalent to T&ADD,
variable, 1;

)DECREMENT, variable;
Decimal decrement of the variable.
Equivalent to iSUB, variable, 1;

1&DECREMENT, variable;
Octal decrement of the variable.
Equivalent to 1&SUB, variable, 1;

)ADD, variable, number;
Decimal addition. Adds the number to the variable, but yields no value.

1&ADD, variable, number;
Octal addition.

TSUB, variable, number;
Decimal subtraction.

T&SUB, variable, number;
Octal subtraction.

TMPY, variable, number;
Decimal multiplication.

T&MPY, variable, number;
Octal multiplication.

ND—60.151.01

TDIV, variable, number;
Decimal division.

1&DIV, variable, number;
Octal division.

TSUM, number, number;
Yields the decimal sum of the two numbers.

T&SUM, number, number;
Yields the octal sum of the two numbers.

lfDlFFERENCE, number, number;
Yields the decimal difference between the two numbers.

T&DIFFERENCE, number, number;
Yields the octal difference between the two numbers.

TPRODUCT, number, number;
Yields the decimal product of the two numbers.

1&PRODUCT, number, number;
Yields the octal product of the two numbers.

10UOT|ENT, number, number;
Yields the decimal quotient of the two numbers.

1&0UOTIENT, number, number;
Yields the octal quotient of the two numbers.

TREMAINDER, number, number;
Yields the decimal remainder of the two numbers (concerning division).

T&REMAINDER, number, number;
Yields the octal remainder.

TPOWER, number, exponent;
Yields an where a is the first parameter and n the second. n 20.

TSlGN, number;
Yields the sign (+ or —) of the decimal number.

T&S|GN, number;
Yields the sign (+ or —) of the octal number.

TDEC, number;
Converts from octal to decimal number.

TOCT, number;
Converts from decimal to octal number.

TCTR, letter;
Yields the corresponding control-character.
(TCTR,A; -> A“).

ND—60.151.01

TCHARACTER, octal, number;
Yields the corresponding character.
Example:
TCHARACTER, 76; + >

TESC;
Yields an escape—character (333).

TCRLF;
Yields "carriage return”/”line-feed".

TEOUAL, String 1, String 2, String 3, String 4;
If String 1 is equal to String 2, the result is String 3. If unequal, the result is
String 4.

TLESS-THAN, Number 1, Number 2, String 1, String 2;
If Number 1 is less than Number 2, the result is String 1. If not, the result is
String 2.

T&LESS-THAN, Number 1, Number 2, String 1, String 2;
LESS-THAN macro for octal numbers.

TOR, String 1, String 2, String 3, String 4;
If lst or 2nd parameter or both are non-empty, the value will be the 3rd
parameter. Else the 4th parameter.

TAND, String 1, String 2, String 3, String 4;
If both lst and 2nd parameter are non-empty, the value will be the 3rd
parameter. Else the 4th parameter.

TXOR, String 1, String 2, String 3, String 4;
If lst or 2nd parameter, but not both, is non-empty, the value will be the
3rd parameter. Else the 4th parameter.

TNUMCH, String;
Yields the decimal number of characters in the string. The string should
contain no GPM control characters.

TERRAB, cause;
Yields the following:
@CC l_.”' SYSTEMUGENERATIONU ABORTED “"
@CCHCAUSE: |_.Cause
Esc Esc

1%, comment;
Yields nothing. May be used for comments.

TMAKEZ, number; _
Yields the number by giving at least two digits.
Example:
IMAKEZ, 5; yields 05

TBITMASK, number;
Yields the bitmask corresponding to the decimal bitnumber [0—15].
(Example: TBITMASK, 8;»400)

ND—60.151.01

3—13

TMASK, length, bitnumber;
Yields the bitmask. The length is given by the first decimal parameter, and
the rightmost bit is given by the second, decimal parameter [0-15].
(Example: TMASK,2,1;->6)

TLSHIFT, octal number, octal number of shifts;
Yields an octal number which is the first parameter left—shifted the number
of times given by the second parameter. The number of shifts must be in
the interval [0-17a].

TRSHIFT, octal number, octal number of shifts;
Yields the octal number right-shifted with sign extensionr

TRZSHIFT, octal number, octal number of shifts;
Yields the octal number right-shifted with zero end—input.

TSEOUENCE, pretext, posttext, number of e|., block-size, start-no, delim., line-
head;

This macro gives a sequence of the following form:

b

r A

I pretext I n[posttext [d] pretext | n+1| posttext I d[

(DCRLF

I line-head I pretext ln+b+1l posttext Id [pretext ln+b+2 lposttext

P
CRLF

Dine-head I pretext l n+2b+1 l posttext l d l pretextl n+2b+2| posttextJ

where n is start-no., b is block-size and d is delimiter.

ND-60.151.01

Example:

“)9EXTUTSEOUENCE, RT, P, 11, 4, 2, L_., ")9EXT._.,'
yields

')9EXT._.HT2P._.FIT3P._JRT4P._.RT5P
*) 9EXTr_. HT6P .JRT7P._,RT8PL.HT9P
’) 9EXT._.RT10P._.HT11P._,RT12P

Another example:

INTEGER ARRAY: =(13EOUENCE, A, , 7, 3, 0, <<<, >>>, TCTR, 1;;);
yields
INTEGER ARRAY ARR: =(A0, A1,A2,

A3, A4, A5.
A6);

Note that the comma must be triple—quoted in the macro call.

TDO, macro-name, number;
This macro results in a number of calls of the parameter/e55 macro given
by the first parameter.
The number of calls is given by the second, decimal parameter which must
be >0.
(Example: TDO,A,3; is equivalent to TA;TA;TA;)

lDO—LOOP, variable, start-value, step-length, limit, <body>;
This macro temporarily defines a parameterless macro which has body plus
the proper updating of variable as its value. The macro is called the
specified number of times. Default step-length is 1. The call of DO-LOOP
leaves the variable incremented beyond the limit. The DO-LOOPs may be
nested. GPM control-characters within body should be quoted.

Example:

lfVARIABLE, I;
TVARIABLE, RESULT, 0,‘
{DO-LOOP, I, 1,, 1o, <1ADD,RESULT,TI;;>;
Computes the sum of the integers [1, 10].
The call TRESULT; now yields 55.

Example:

TVARIABLE, 1,-
TVARIABLE, J;
TDD—LOOP, I, 1,,3,<
T1,: uTim—Loop,.J,2,3,8,<1.i,->,-TCRLF;
>;
yields the following result:

1. L258
2. L258
3. L4258

ND—60.151.01

3—15

Example:

TVARIABLE, NUMBERUOFU PROGRAMS, 3;
TVARIABLE, SEGNO, 157,-
TVARIABLE, I;
TDD—LOOP, I, 1,, TNUMBERLJOFU PROGRAMS;,<
CL—SEGMUTSEGNO; TCRLF;
YICRLF;
N-SEGMUTSEGNO; , , , , , TCRLF;
SET—L—AHTSEGN0;, 1000001aF;
LOADUMAIN TI; :BRF, , , , TCRLF;
END TCRLF;
T&INCREMENT, seem»;

yields the following result:

CL—SEGMu157
Y
N—SEGMLJ157 ,,,,,
SET—L—A._,157, 100000
LOADLJMAIN1zBRF, , , ,
END
CL—SEGMU160
Y
N—SEGM._.160
SET-L-A._.160, 100000
LOAD._.MAIN2: BRF, . ..
END
CL-SEGMH161
Y
N—SEGML_.161
SET—L-A._,161, 100000
LOADUMAINB: BRF, , , .
END

ND-60.151.01

3.8 GPM UNDER SINTRAN Ill

The GPM subsystem under SINTRAN Ill operating system is called by writing
GPM.

Example:

(Computer output underlined)

EGPM
CR/LF TO BE IGNORE!) 0N INPUT? Y
OUTPUT FILE NAME: OFILE
INPUT FILE NAME: GPM—LIBRARY
INPUT FILE NAME: TERMINAL
>
END OF GPM
@

The mode set by the ”CR/LF TO BE IGNORED ON INPUT?” - question may be
changed by the use of the lCRMOD/CRMOD—Macros.

The GPM library must always be read in "ignore CH/LF” - mode.

The question INPUT FILE NAME: is written whenever the previous input file is
exhausted (or none has been specified) or the EOF-byte (27s =W°) has been
read. An unmatched > outside macro calls terminates GPM.

NOTE: It is strongly recommended that the file "GPM-LIBRARY" should be
limited to "READ-ACCESS" only, by using the SET-FlLE-ACCESS com-
mand. This will protect the file from accidently being specified as
"OUTPUT-FILE” and consequently losing its contents completely.

ND—60.151.01

3.9

3.9.1

GPM APPLICATIONS - SOME IDEAS

GPM may of course be applied in a variety of ways ranging from semigraphic
picture definitions to software system generation. it may also be used as a pre-
processor of symbolic source code, applied prior to compiling/assembling. it is
especially well suited for FORTRAN programs since no confusion arises
concerning the GPM control characters 1, < and >. For many programming
languages, however, confusion may arise, and one way to avoid it is this:
Substitute <T> for all 1 that do not denote macro calls. Substitute
(CHARACTER, 74; for <and (CHARACTER, 76; for > if they are not meant as

”quotes". Now GPM may process this source-code stream if the GPM-LIBRARY
has been read (in order to define the CHARACTER—macro).

GPM and Sam/graphic Display

GPM is an interesting tool for off-line building of static parts of pictures for
semigraphic display (NORDCOM NOT, for instance). Output from GPM may go
directly to the screen or to a file where the picture is saved.

The main advantages of using GPM are:

— Control information (concerning colour, for instance) is referenced by
name.

-— Line segments of variable length may be defined as macros. For instance, a
horizontal line of length 46 starting in position (5,7) may be denoted
(HL,5,7,46;

— Special symbols may be called by name. For instance, (TRAFO,12,9; means
a transformator symbol in position (12,9).

— Some standard figures such as squares, triangles, etc. may be defined as
macros. For instance, TSQUARE,10,2,8,16; may yield a square of height 8,
length 16, with topmost, leftmost corner in (10,2).

— The user may define and name his own picture parts. The screen position
may be parameter in the call.

For further details, see the manual NORD PROCESS l/O, Software Guide,
Section 10.2.3.

ND-60.151.01

3.9.2

3—18

SYSTEM GENERATION USING GPM

GPM is well suited for production of mode or batch jobs for system generation
and installation.

GPM then mainly operates as follows:

First GPM reads the "system definition“ file, which consists mainly of DEFAmacros defining the system parameters. Then GPM reads the “generalized
batch-job" file which contains a mixture of ordinary batch commands and
macros. From these files. GPM produces that particular batch-job thatgeneratesiinstalls the system given by the "system definition" file,

SYSTEM GENERALIZED
DEFlNlTlON BATCH-JOB
FILE

L l

GPM

BATCH-JOB
FILE FOR
SYS. GEN./
INSTALLATION

The most important properties offered by GPM for system generation are listed
below:

1) Constants may be given symbolic names.
Example: Macro calls for segment-numbers in a MODE-file calling the

RT-loader:
CL‘SEGMutsEGNO;
Y
N—SEGM._. tSEGNO; , , ,,
SET—L—AUSEGNO; , TLOAD—ADDR;
LOADHMAINTPROGNO,‘ :BRF, , ,,
END

2) Such constants may be modified during system generation. Suppose, in
the example given above, that SEGNO and PROGNO have been declared
by VARIABLE—macros. The END—command might then be replaced by:

ENDTMNCREMENT, SEGNO; lINCREMENT, PROGNO;

thus performing octal increment of the segment number and modification
of the input file name.

ND-60.151.01

3—19

3) One macro—call may result in a number of calls in different contexts. It is
self-evident that this is possible, since one macro—call may cause
(re)definition of a group of other macros. For instance, a call TBRF-
SYSTEM; may cause assembling in BRF-mode to a BRF—file and a call of
the loader, instead of assembling directly into memory.

4) The system parameters may be checked before system-generation if some
relations must be fulfilled.

Example:

Suppose that a variable A always has to be greater or equal to variable B if
the system is to be consistent.

This macro will check that condition:

TLESS—THAN, TA;, 13;,
@cc A LESS THAN B! tcRLF;
@cc ”"SYSTEM GENERATION ABOHTED'“ TCHLF;
Tesc; TESC;

The error message aborts the MODE-file only if A<B.

5) Do-loops. A group of commands or statements may be repeated with
different parameters. Many examples of this have been given previously in
this manual.

As a conclusion of this manual, an example showing generalized source code is
given.

Suppose you have made a reentrant subroutine SROUT which you want to call
from a variable number of RT-programs. Each RT-program is allotted a data-field
of 103 locations for its local variables In addition subroutine SROUT is called
with the A—register pointing to the data-field and with the T-register holding the
RT—program number.

For two RT-programs, the NFL source code for calling SROUT looks like this:

"’BRF
”)QBEG
“)SEXT SRUUT RT1 RT2

SYMBOL PRI=30
INTEGER ARRAY IA1(10)
INTEGER ARRAY IA2(10)
SUBR RPROG
”)9RT RT1 PRI

"IA1"; T:=‘l; CALL SHOUT; ”MONO;)FILL
*)9RT RT2 PRI

"IA2"; T:=2,' CALL SROUT; “MONO;)FILL
RBUS
*"BRF
’)9END
')9EOF

*)LINE
@EUF

ND—60.151.01

3-20

However, this source code may be generalized by calling some GPM-library
macros.

The generalized source-code file looks like this:

TCRMOD,‘ " ' BRF
“)QBEG
“)9EXT SHOUT TSEOUENCE, RT, , TNUPROG,‘ , 8,1, L4 , ')9EXT;

SYMBOL PRI=30
TVARIABLE, I; TDD—LOOP, I, 1, ,1NUPROG;, <INTEGER ARRAY IATI,‘ (10)
>: SUBR RPHDG
TDD—LOOP, I, 1, , TNUPHOG; , <')9HT RTTI; PHI

" IATI; ' '<;> T:=IOCT, TI,“ :<,'> CALL SROUT<,'> “MON 0<;>)FILL
>; RBUS
" ' BRF
’)9END
”)QEOF

‘)LINE
@EOF
>

Suppose you call this file GENERAL-SOURCE, and that you let a file called
SYSGEN-PARAM hold the definition of the only system parameter, NUPROG, the
number of RT-programs. (The definition of NUPROG may of course instead be
inserted on top of the GENERAL-SOURCE file). Thus GPM may produce a source
code system according to the definition of NUPROG:

@GPM
CR/LF TO BE IGNORED 0N INPUT? Y
OUTPUT FILE NAME: SOURCE—CODE
INPUT FILE NAME: GPM-LIBRARY
INPUT FILE NAME: SYSGEN—PARAM
INPUT FILE NAME: GENERAL—SOURCE
END OF GPM
@

ND—60.151.01

3—21

Suppose SYSGEN—PARAM contains IDEF,NUPROG,5;

The following SOURCE—CODE file will then be produced:

*' 'BRF
‘)QBEG
‘)9EXT SHOUT RT1 RT2 RT3 RT4 RT5

SYMBOL PRI=30
INTEGER ARRAY IA1 (10)
INTEGER ARRAY IA2(10)
INTEGER ARRAY IA3(10)
INTEGER ARRAY 1A4(10)
INTEGER ARRAY IA5(10)
SUBR RPROG
')9RT RT1 PRI

"IA1' ’; T:=1; CALL SROUT; “MON 0;)FILL
“)9RT RT2 PRI

"IA2' '; T: =2; CALL SROUT; 'MON 0;)FILL
')9RT RT3 PRI

’ ’ IA3' ’ ; T:
")9RT RT4 PRI

’ ’ IA4' ' ; T:
')9RT RT5 PRI

' ' IA5' ’ ,' T:

ll3; CALL SROUT; 'MON 0;)FILL

4; CALL SHOUT; ”MON 0;)FILL

5; CALL SHOUT; 'MON 0;)FILL
RBUS
" ' BRF
")9END
')9EOF

‘) LINE
@EOF

This source-file yields a system for five RT—programs calling SROUT.

NDVGU 151 01
Row A

3—22

Suppose you define NUPROG equal to 100 and run the system generation
procedure.TheresuHis:

*“BRF
*)SBEG
*)9EXT SROUT RTI RT2 RT3 RT4 RTE RTS RT? RTB
*JSEXT RT? RTIB RTlI RTIZ RTIE RT14 RTIS RTIS
«)BENT RTl? RTIS RT19 RTBB RTEI RT22 RT23 RT24
*)9EL’<T RTZS RT26 R 27 RTBB RTES RTEL’] RTSI RTEZ
*)9EK RT33 RT34 RTES RTEE RTE? RTSS RTES RT48
*JBEXT RT41 RT42 RT43 RT44 RT45 RT46 RT47 RT48
*)9EXT RT49 RTSZ RTSI RT52 RTSS RT54 RTSS RTSE
HBEXT RTE? RTSB RTSS RTSZ RT61 RT62 RTEZ RT64
*)SEXT RTSS RTSS RTE? RTSB RT69 RTFB RTFI RTFE
*)SEXT RT73 RT74 RT75 RT? RTE? RTFG RTFS RTSB
*IBEKT RT81 RTBE RT83 RTS4 RTBS RTES RTE? RTBB
*JSEXT RTBS RTBB RTSI RT92 RT93 RTBJ RTBS RTEE
*)9EXT RTE? RTQS RTSS RTIBB
*II

SYMBOL PRI=3B
INTEGER QRRRY 191(163
INTEGER RRRRY 192(16)
INTEGER RRRRY IREIIB)
INTEGER HRRRY 194(183
INTEGER RRRHY 195(16)
INTEGER RRRRY IRS(IB)
INTEGER RRRRY IRFEIB)
INTEGER RRRRY 193(16)
INTEGER RRRRY IRS<183
INTEGER RRRRY IRlIB)
INTEGER RRRRY IRIIIIB)
INTEGER RRRRY 1912(163
INTEGER RRRRY IRISLIDJ
INTEGER RRRRY IRI4£163
INTEGER RRRRY IRIS€183
INTEGER RRRRY 1916(16]
INTEGER RRRRY IRI?CIB)
INTEGER RRRRY 1918(13)
INTEGER RRRRY IR19(18)
INTEGER RRRRY 1928(183
INTEGER RRRRY 1921(133
INTEGER RRRRY IR22(18)
INTEGER RRRRY 1923(18)
INTEGER RRRRY IR24(IB)
INTEGER RRRRY IRESEIB)
INTEGER RRRRY IRES£18J
INTEGER QRRRY IR2?(183
INTEGER RRRRY IR2Bt19)
INTEGER RRRRY 1923(19)
INTEGER RRRR? IRSB(IB)
INTEGER RRRRY IRSIfiIBJ
INTEGER RRRHY 1932(193
INTEGER RRRR? I933(16)
INTEGER RRRR? [934(18)
INTEGER QRRRT I935 16)
INTEGER RRRHT IRSEKIB)
INTEGER RRRRT 1357119}

ND—60.151.01

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

RRRRY
RRRRY
RRRRY
RRRRY
QRRRV
RRRRY
RRRRY
RRRGY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRQY
RRRRY
RRRRY
RRRRY
RRRQY
QRRRY
QRRRY
RRRRY
RRRRY
RRRRY
RRRRY
QRRRY
RRRRY
RRRRY
QRRQY
RRRRY
RRRRY
RRRHY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
QRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRR?
RRRRY
RRRRY
RRRRY
QRRRV
QRRRY
RRRRY
QRRRY
QRRRT

IR3BCIB)
IRSB(IBJ
1948(163
IR4IE18)
IRdZfiIB)
I943filfl)
IR44I18)
1945(16)
1946(18)
1947(18)
IRdBIlB)
1949(163
1R58(IBJ
IRSIfiIB)
IRSZIIE)
IRS3EIB)
IRS4(16)
1955(18)
IRSSIIB)
1957(16)
1958(18)
1959(18)
1958(18)
IRSI(16)
IREZClB)
1953(183
IRSA(1@J
IRGSIIB)
1966(18)
IRS?(183
IQEBCIB)
1969(16)
IR?B(IB)
1971(18)
IR?2(IB)
1973(18)
1974(18)
IRVSIIB)
IR7SIIB)
IR??(IB)
IR?BCIB)
1979(13)
IRBBIIU)
IRBIIIB)
1982(163
IQBSCIBJ
{984(18)
IRBSEIB)
1986(16)
IRBFCIB)
IRBBCIB)
IRBSKIB)
IRBBIIB)
IRBIIIB)

3—23

ND—60.151.01

INTEGER RRRRY
INTEGER RRRRY
INTEGER RRRRT
INTEGER RRRRY
INTEGER RRRRY
INTEGER RRRRY
INTEGER RRRRY
INTEGER RRRHY
INTEGER RRRRY
SUBR RPRUG
*)9RT

*DSRT

WJBRT

*JSRT

*JSRT

*)9RT

*JBRT

*JSRT

*JBRT

*JSRT

*JBRT

*)9RT

*JBRT

*JSRT

*JSRT

*JSRT

*JSRT

*JSRT

*)9RT

*)9RT

mJSRT

*)9RT_

RTl PR1
”191”:

RT2 PR1
”192”;

RTE PR1
”193”;

RTd PR1
"194":

RT5 PR1
"195":

RTE PR1
"IRS”:

RT? PR1
"197“:

RTB PR1
"198":

RT9 PR1
”IRS”:

RTlfi PRI
”IHIB”:

RT11 PRI
”1911”:

RT12 PR1
"1912“:

RT13 PR1
“1R13”;

RT14 PR1
"1914".-

1932(183
I993(18)
1994(13)
1995118)
1996(16)
IRSFIIB)
1998(18)
1999(16)
19188110)

:=3: CRLL

:=5: CRLL

:=6: CRLL

:=7: CRLL

1: CRLLT

T

T

T:=d; CRLL

T

T

T

SRUUT:

SRUUT:

SRUUT:

SRUUT:

SROUT:

SRUUT:

SRUUT:

3—24

T:=IB: CQLL SRUUT:

T:=11: CQLL SROUT:

RTIS PRI_
“1915":

RTIS PRI
”1916":

RTI? PRI
“191?”:

RTIB PRI
”IRIS”:

RTlS PRI
”IRIS":

RTZB PR!
”1928”;

RT21 PRI
"I921”:

RTQE PRI
"1922”:

CQLL

CRLL

‘ CALL

‘ CRLL

' CRLL

' CRLL

CRLL

‘ CRLL

' CRLL

CRLL

ERLL

' CQLL

CRLL

SROUT:

SROUTJ

SRUUT:

SROUT:

SROUT:

SRDUT:

SRUUT:

smut,- -

SRDUT; =

SROUT:I

SRDUT:

SRUUT:

SRUUT:

*NUN a;

mMUN B;

*M0N E:

*MUN 8:

*MON 6;

*MUN a:

*MON 8:

)FILL

JFILL

JFILL

)FILL

JFILL

)FILL

)FILL

*HON 6:)FILL

*MON 2})FILL

*MUH

*NUN

*MON

*MUN

*MOH

*MDN

*MON

*MDN

ND—60.151.01

a:)FILL
a:)FILL
a;)FILL
a;)FILL
a:)FILL
a: JFILL
a:)F1LL
B:)FILL

a: I)FILL
a;)FILL
a:)FILL
a:)FILL
B:)FILL

*JQRT

$39RT

mJBRT

#JURT

*JBRT

*JSRT

*399T

*)BRT

*JSRT

*ESRT

*JBRT

WJBPT

*1BRT

“BERT

PTEZ PEI
"1923";

RT24 PEI
"1924";

PTEE PPI
”1925":

maepm
"192s";

RTE? PEI
“IHEF”:

RTEB FRI
“1923";

RTEB PEI
"I923";

RTSB PR1
"1933";

RT31 PEI
"1931";

RTEZ PEI
”IHEE”:

RT33 PEI
"1933";

PT34 PEI
”I934”:

RT35 PRI
"1935";

RTEE PRI
"1935":

RTE? PEI
”193?”:

RTBB PRI
"1933":

RT39 FRI
"1H39”:

RT4B FRI
"194a";

RT41 FRI
"1941";

RT42 PEI
"1942";

RT43 PEI
"1943";

RT44 PRI
"1944“:

RT45 PR1
"1945”;

PTae PEI
”1945":

9T4? PEI
"194?”:

RT4B PEI
”IR4B”;

PTdfl PR1
"1949":

3—25

.; ERLL

CRLL

: CRLL

' CRLL

CHLL

' CRLL

' CRLL

' CQLL

' CRLL

; CHLL

: CQLL

' CRLL

'; CQLL

CRLL

-’£nLL

CRLL

CQLL

: CHLL

CHLL

ND-60.151.01

SEDUT:

SPUUT:

SPUUT;

SRDUT:

SRUUT:

SRUUT:

SRUUT;

SPUUT:

GROUT:

SRUUT;

SRUUT;

SRUUT:

SRUUT:

SRUUT;

SRUUT;

SRDUT:

SPUUT:

SHOUT;

SRDUT:

SRDUT;

SRDUT:

SRUUT;

SRDUT:

SRUUT:

SRDUT:

SPDUT;

SEUUT:

*MUN

*MUH

*NUH

$MBN

*MUH

$MUN

WTHU N

*MUN

*MUH

*MON

*MUN

mMUN

*TMU N

*MDN

*M'“c‘l

*MUN

*MDN

*MUN

*MDH

*MUN

$MUN

*MOH

*HUN

$MDN

*MUN

JFILL

)FTLL

JFILL

)FILL

)FILL

JFILL

)FILL

FFILL

JFILL

)FILL

JFILL

)FILL

)FILL

)FILL

)FILL

JFILL

)FILL

)FILL

)FILL

JFILt

)FILL

3FILL

JFILL

JFILL

)FILL

$39RT

*)9RT

*)BRT

*EBET

*JBRT

*JBPT

WJBRT

mJBRT

*JBRT

*JSPT

*JBRT

*JERT

*JBRT

*JSRT

mJSRT

*JSRT

MJSRT

XJBET

*JSRT

*JSPT

emaPm
"Insa":

PTSI FRI
”1951”:

RTSE P91
"1952";

RTSE PEI
"1953";

RT54 PEI
"1954";‘ RTSS FRI
"1955";

RTSE PR
”1955";

RTE? FRI
”195?”;

RTSB PEI
"1953";

RTSB PRI
"1959";

RTEB PRI
"1968”:

RTEI PR1
"1951";

RTBE PHI
"1952":

RTEB PR1
"1953";

RT64 PEI
”1964”:

RTSS PR1
"x955";

RTSS PHI
II

IRES
II

:

RTE? PR1
"1n57";

RTEB PRI
"Insa";

RTSS PRI
"Ines":

ET?! PEI
"1979";

RT?1 PR!
"1971";— RTTZ PEI
"IHF2“:

RTFB PEI
”1973":

RTF4 PR1
"IRF4“;

RTFE PRI
”IRFS”:

RTFS PEI
”IHFE”;

fl

2'

2*

T‘

3—26

' CRLL

‘ EQLL “

' CHLL

' CRLL

" CRLL

CRLL

' CQLL

' ERLL

CQLL

' CRLL

' CQLL

CQLL

CQLL

ERLL

CQLL

CRLL

CRLL

CHLL

‘ CRLL

CRLL

CQLL

CRLL

' CRLL .u

SHOUT;

SRUUT:

SHOUT:

SRUUT:

SRUUT:

SRDUT:

SHOUT:

SRDUT:

SRUUT:

SRDUT:

SPDUT:

SRDUT;

SRDUT;

SRUUT:

GROUT;

SRDUT:

SRDUT:

SRDUT:

SRDUT:

ND-60.151.01

' mMUN

*MDH

*MUH

*NUN

*MDH

*MUH‘

*MUH

*MUN

*MUN

*MON

*HUN

*MUH

WEN

*MUN

*MUN

24MCIN

*MDN

*MDN

*HDH

*MON

*MUN

$MON

mMUN

WHOM

mMDN

*MDN

*MDN

8:

a:

B a.

)FILL

JFILL

)FILL

)FILL

)FILL

)FILL

FFILL

JFILL

)FILL

)FILL

JFILL

)FILL

)FILL

)FELL

JFILL

)FILL

)FILL

)FILL

)FILL

3—27

*JSRT 9T7? PPI
“197?”: T==115; CHLL SRDUT; KMUH E;)FILL

*UQRT RT?B PEI
”1973”: T:=116: CHLL SEUUT: *MHH B;)FILL

*JQRT RTFB PEI
"I979": T:=11?: CRLL SPUUT: *MUH B: JFILL

*uBRT RTBB PEI
"193B": T:=12@: CQLL SRUUT; *MUN B; JFILL

*JSRT PTBI PEI
”I981"; T:=121: CRLL SRDUT: *MUN B:)FILL

*)9ET RTBZ PEI
”IHBE”: T:=122: CRLL SHOUT: WMUN 6:)FILL

*JFRT PTB3 FRI
"1983”: T:=123} CQLL SPUUT: WHEN 8: JFILL

KBBRT RTB4 PEI
"1984“: T:=124: CRLL SHOUT; *M0N E: JFILL

*lBRT ETBS FRI
”I985“: T==125: CRLL SRUUT: *M0N E:)FILL

*JQRT RTBE PEI
”I985”: T:=126: CHLL SRUUT: *M0N E: FFILL

*JBRT RTE? PR1
”IRBT”;

*DBRT PTBB PR1
”IRES”;

*JBET RTBB PEI

T:=12?: CQLL SPDUT; *MUH a:)FILL

T

"1989”: Tl=131i CRLL SPDUT: *M0N E:)FILL

T

:=13@: CQLL SPUUT; *M0N E: BFILL

myaRT PTSB FRI
”I996”:

#3997 PT91 PR1
“1991": T:=133: CQLL SHOUT: *MON 3: JFILL

*JBRT RTBE PHI
"1992": T

mJBHT RTBE PR1
"1993": T:=135; CRLL SHOUT: *MUN a: JFILL

miBPT BT94 PEI
"1994": T:=136: aL SRUUT: mMUN a;)FILL

*JBRT RTSS PPI
"1995"; T:=13?: aL SHOUT; *HDN a:)FILL

*JBPT RTBE PEI
“1995"; T =14B: CHLL SRUUT; *MGH a;)FILL

*JBRT RTE? PR1
"199?"; T:=141; CQLL SHOUT; *MDH a;)FILL

$39 T RTBB PEI
"I998"; T:=142; aL SRDUT; *M0N E;)FILL

*JBRT RTSB PEI' ”1995"; T:=143: ERLL ERDUT; *HDN a; JFILL
myaRT PTIBB PR1

”19188”: T:=144: CHLL SRDUT: *MDN a:)FILL

:=132: CRLL SROUT: *M0N E:)FILL

:=134: CQLL SRDUT: *MDN B:)FILL

RBUS
*"BRF
W7} QEHD
*JBEUF
:.+:”

WJLIHE

ND-60.151.01

3.10

3—28

COMB/NED USE OF PERFORM AND GPM

While GPM is very flexible, allowing the competent user a great variety of trans—
formations, it has the following restrictions:

— It is not possible to enter parameter values interactively into GPM.

— When editing a GPM macro file, there is some risk of errors such as miss—
pelling macro names or making macro calls with incorrect syntax.

— Such errors can cause a considerable number of error messages making it
difficult to find the real problem.

The PERFORM subsystem on the other hand is a simple facility for substituing
’MODE file’ variables into general purpose MODE files, eg. names of files for
compilation or loading. While PERFORM does not have very extensive macro
facilities, it is very convenient to be able to enter parameter values interactively.

The combined use of PERFORM and GPM takes adventage of the strengths of
both systems, namely interactive input of parameters and accurate substitution
into a GPM macro with its powerful transformation facilities. However, the user
should be careful when mixing the macros of the two systems; in particular it is
advised that a character different from the up arrow character (A) is used for the
PERFORM macro’s in order not to confuse them with GPM macros.

The following is an example of the combined use of PERFORM and GPM.
The steps of this job are:

1. Get parameter values interactively or substitute default values.

2. Use the editor to write some GPM macros to a file.

3. Call GPM to create several Fortran Source files.

4. Call GPM to create MODE files to compile, then load the programs ready
for execution.

5. Execute the MODE files which have just been created.

ND-60.151.01

3 —-29

The PERFORM macro to do this job is:

%B,SERVICE;
%L,Macro to tailor the remote service system, device numbers;
%P,1,Logical device number of the internal device to be used;
%DJ ,2OOB;
%P,2,Logical device number of the async modem;
%D,2,42;
%P,3,RT—program pair number;
%D,3,1;
%P,4,Segment number for input/output programs;
%D,4,167,‘
D/o;
@QED
I
TDEFJNTDEVLO'I;
TDEF,ASYNC,02;
TDEF,PROCNR,03;
TDEF,SEGNR,04;

LC

W SLASK
F

@GPM
YSERVlCE-REMOTEISYMB
SLASK:SYMB
SERVICE-REMOTEZGPM
@GPM
YSERVICE-INPUTZSYMB
SLASKISYMB
SERVICE—INPUTZGPM
@GPM
YSERVICE—OUTPUTISYMB
SLASKZSYMB
SERVICE-OUTPUTIGPM
@GPM
YSERVICE—COMPILEZMODE
SLASKZSYMB
SERVICE—COMPILEZGPM
@GPM
YSERVICE-RTLOADIMODE
SLASKZSYMB
SERVICE-RTLOADZGPM
@MODE SERVICE-COMPILEIMODE,,
@MODE SERVICE-RTLOAD:MODE,,
%E,‘

edit some GPM macros

control L

create first Fortran program

create second Fortran program

create third Fortran program

create a mode file which will
compile all the programs

create a mode file which will
load all the programs ready for
execution

execute the compilations
execute the program loading
end of PERFORM macro !

The percent character (%) has been used to begin macro commands instead of
the usual up arrow character (1), to avoid confusion with the similar function
required in the GPM macros.

ND-60.151.01

3—30

In order to illustrate the use of GPM in this job the input to GPM to produce the
source of the third Fortran program is:

“CRMOD;
C
C PROGRAM TO READ FROM ASYNC MODEM AND WRITE TO TERMINAL
C FOR REIVDTE MAINTENANCE
C

PROGRAM OUTPUTAPROCNR; ,31i
INTEGER IST,RESRV,ICH,ERRCODE,ASYNC,TERPNO,IERR
EXTERNAL INPUTAPROCNR;

O
ASYNC = “ASYNC;
ID1 : ”INTDEVi;
IST : RESRV (ID1, 0, 0)
IF(IST .NE. 0) GO TO 9000
TERMNO : INCH (ID1)

IST = RESRV (TERMNO, 1, 0)
IF(IST .NE. 0) GO TO 9000
IST = RESRV (ASYNC, 0, 0)
IF(IST .NE. 0) GO TO 9000

IST = IOSET (ASYNC, o, o, -1)
IF(IST .NE. 0) 00 TO 9000
CALL ECHOM (ASYNC, -1, O)
CALL BRKM (ASYNC, 0, 0)

CALL RT (INPUT“PROCNH;)
CALL RELES (101, 0)

00 WHILE (.TRUE.)
ICH = INCH (ASYNC)
IF(ERRCODE .NE. 0) GO TO 9000
CNL mHGi(TEmm0,IG1)
IF(ERRCODE .NE. 0) GO TO 9000

END DO

9000 CONTINUE
IF(ERRCODE .NE. 0) THEN

IERR = ERRCODE
NRITE (TERMNO,9100) IERR

9100 FORMAT(’ ERROR IN OUTPUT PROGRAM, ERRCODE:',I6)
ELSE IF (IST .NE. 0) THEN

IERR : IST
WRITE (TERMNO,9200) IERR

9200 FORMAT(' ERROR IN OUTPUT PROGRAM, STATUS:',16)
END IF

C
END

EOF

ND-60.151.01

3—31

If the above macro is used and the following values are input:

IN'I'DEV - 201B
ASYNC — 42 (default)
PROCNR - 2
5m — 201
then ‘the Fortran source output from GPM is :

,FORREIDI'EMAINI’EZ‘IANCE

C
CPROGRAM'IOREADFRCMASYNCNDDEMANDWRITE'IOTEWENAL
C
C

9000

9100

9200

C

EDF

PRJGRAM (IJTPUTZ,34
MEEER IST,RESRV,IGI,ERNODE,ASYNC,’IWO,IERR
MAL INPUI‘Z

ASYNC
ml

42
201B

IST=RERV(ID1,0,0)
IF(ISI‘ .NE. 0) SO '10 9000
TEN/NO = INGI (ml)

131‘ = RESRV (TERGNO, l, 0)
IF(ISI‘ .NE. 0) G0 '10 9000
IST = RESRV (ASYNC, 0, 0)
IF(IST .NE. 0) G0 '10 9000

IST=I$ET (ASYNC,0' 0,-1)
IF(IST .NE. 0) G) '10 9000

mm(Asmc,-1,o)
CAILBRKM (ASYNC, 0,0)

CAILM‘(INPUT2)
CAILRELES(ID1,0)

WWI-HIE (.TRUB.)
ICE = INCH (ASYNC)
IF(ERRCDDE .NE. 0) GO TO 9000
CALL CHIC-1(TERMN01 ICH)
IF (ERRCODE .NE. 0) GO '1!) 9000

ENDED

CCNTINUE
1mm .NE. 0) THEN

IERR = WIDE
WRITE ('I'ERFNO,9100) ERR
FORMAT“ ERKDR IN (JJTPUT MAM, E'RROJDEUJG)

ELSE IF (IST .NE. 0) THEN
IEPR = ISI‘
WRITE (TE'RVNOSZOO) IERR
FORMATU ERROR IN OUTPUT m, S'IALTUS:',I6)

END IF

END

ND—60.151.01

3—32

4.1

4.2

THE MAIL SYSTEM

INTRODUCTION

The MAIL system is a facility for sending messages to any interactive user
working under your operating system. It operates like a mailbox for users not
currently logged on and will attempt to ’deliver' the messages accumulated at
LOGON or LOGOFF. Messages may also be sent directly to a terminal device.
Some MAIL commands are only available to the user SYSTEM for broadcast,
start and stop of the entire MAIL system.

GENERAL FORMAT

@MAIL <output file>

Parameters:

<output file>
destination of the mail from the terminal user's mailbox. Only requested if
the user has mail (DEF = TERMINAL).

Rules:

1. Permitted for all users but some subcommands are restricted as shown
below.

2. Messages can be sent in two ways:
a) to a mailbox — the recipient is notified when logging in or out and

collects mail by entering @MAIL.
b) as direct mail — the message is sent immediately.

3. A broadcast is mail to all users, through the mailbox or as direct mail. It
can only be sent by user SYSTEM.

4. The mail system can only be used by one user at a time.

ND—60.151.01

4.3 SUBCOMMANDS

1. For all users the following subcommands are available:

‘EXlT — exit from the mail system.

”HELP — list all available subcomands.

'SEND-DIRECT-MESSAGE <|ogical device no.> —— type message
terminated by CTRL/L. The message is sent to the terminal with this
<|ogica| device no.>.

“SEND-MESSAGE <user name> — type message terminated by CTRL/L.
The message is sent to the user's mailbox. $ and ' are handled as for
“BROADCAST below.

For user SYSTEM the following additional subcommands are available in
addition to the ones above:

*BROADCAST — type message terminated by CTRL/L. It is put in the
mailbox of all users. $ is translated to CR, LF. Apostrophe (') is permitted.

“DELETE-BROADCAST <broadcast index> — the message is removed
from all mailboxes. <broadcast index> can be found by
*LlST-BROADCASTS.
'DELETE-MESSAGE <message no.> — the message is removed from the
mailbox. The number can be found by ‘LIST-MESSAGES.

“DIRECT-BROADCAST — type message terminated by CTRL/L. The
message is sent immediately to all terminals. $ and ’ are handled as for
”BROADCAST.

‘lNlTlALIZE <max. no. of messages> — this command must be given by
user SYSTEM before the mail system can be used. It can be used to reset
the mail system. The mail is collected in the file (SYSTEM)MA|LBOX:DATA.
The maximum length of a message is 512 characters.

'LlST-BROADCASTS <output file> — all broadcasts are listed with their
broadcast number on the output file (DEF = TERMINAL).

'LIST-MESSAGES <output file> — as above, but messages are listed.
‘RUN-MAlL-SYSTEM — restarts the mail system after SlNTRAN start or
after a ‘STOP—MAIL-SYSTEM command. The contents of the mailbox file
are retained.

'STOP—MAlL-SYSTEM — the mail system is made unavailable; no mail is
lost.

ND—60.151.01

5.1

5—1

BACKU P SYSTEM

INTRODUCTION

The BACKUP-SYSTEM offers a variety of facilities for copying files, using the
COPY-USERS—FILES command, to and from disc and tape media. The files may
be copied for archive, backup or other purposes. To enable communication with
other installations ANSI standard label format is available for magnetic tapes.

The old SINTRAN commands COPY-USERS-FILES, CREATE—VOLUME and
LIST-VOLUME are now available as commands under the BACKUP-SYSTEM,
with some extended and altered facilites. While there are new options available,
every effort has been made to ensure compatibility and the ability to handle files
produced under older versions of the SINTRAN ||l operating system (prior to the
SINTRAN Ill/F version).

The following documentation is intended to give first an overview of the
commands available in the BACKUP-SYSTEM and some of their more important
options. The BACKUP-SYSTEM has also a detailed description of all its
commands and their options, available interactively while using the system. The
'help' and question mark character (.7) functions are available in all levels of
dialogue to give descriptions of parameters for the command being used or
information about the other commands which may be used.

The following is a list of all the commands and their parameters:

DESCRIBE—ALL-COMMANDS
<OUTPUT—FILE>

COPY-USERS-FILES

DESTINATION TYPE:
DIRECTORY

<DEST. DIRECTORY-NAME>
<DEST. USER-NAME>

VOLUME
<DEST. VOLUME-NAME)
<DEST. DEVICE-NAME>
<DEST. UNIT-NUMBER)
<DEST. FILE-GENERATION>

ND-60.151.01
Rev. B

5—2

SOURCE TYPE:
DIRECTORY

<SOURCE DIRECTORY-NAME>
<SOURCE USER-NAME>
<SOURCE FILE-NAME>
<MANUAL CHECK>

VOLUME
<SOURCE VOLUME-NAME>
<SOURCE DEVICE-NAME>
<SOURCE DEVICE—UNIT>
<SOURCE FILE—GENERATION)
<SOURCE FILE—NAME)
<MANUAL CHECK)

PARAMETER-FILE
<PARAMETER—FILE-NAME)
(MANUAL CHECK>

CREATE-VOLUME
<VOLUME-NAME>
<DEVICE—NAME>
<DEVICE-UNIT>

LIST-VOLUME
<DEVICE-NAME>
<DEVICE-UNIT>
<FILE—NAME>
<0UTPUT-FILE>

SERVICE-PROGRAM-CUF

DUMP—BACKUP—SYSTEM
<BPUN-USER-NAME)

MASTER-LOG—MODE
<MASTER-LOG-FILE>
<APPEND—ACCESS>

MODE—STANDARD-VOLUME
MANUAL—STANDARD-VOLUME
MODE-BACKUP-SYSTEM-VOLUME
USER-COPY—LOG-MODE

<LOG-FILE>
<APPEND—ACCESS>

SET-ALLOCATE—CREATE-DEFAULT
<DEFAULT ANSWER>

SET—SINGLE—SEARCH
RESET-SINGLE—SEARCH
EXIT

EXIT

ND-60.151.01
Rev.B

5.2

5.3

5—3

SIMPLE USE OF THE BACKUP-SYSTEM

The BACKUP—SYSTEM may carry out simple tasks by using the
COPY—USERS—FILES command to copy some files. If magnetic tape is to be
used, the CREATE-VOLUME command should be used first and the user
executing this command becomes the owner of the VOLUME. VOLUME's will be
written in the BACKUP—SYSTEM’S default format. VOLUME’s produced by the
old COPY—USERS-FILES command (before SINTRAN Ill/F) can also be read. All
available different magnetic tape formats, produced by the BACKUP-SYSTEM or
SINTRAN COPY—USERS-FILES, are automatically detected.

COMMANDS

The system can be entered by using the command:

@ BACKUP-SYSTEM

Once the BACKUP-SYSTEM has been entered the following commands are
available:

DESCRIBE-ALL-COMMANDS

will give detailed descriptions of each command available and its options and
parameters. Listing this command on a hard—copy device is recommended for an
inexperienced user.

EXIT

leave the BACKUP—SYSTEM and return to the SINTRAN l|l operating system.

CREATE-VOLUME

creates a ’VOLUME’ on magnetic tape. Only one VOLUME may exist on a tape. A
VOLUME may, following the use of the Create command, be written in different
formats, STANDARD-VOLUME and BACKUP-SYSTEM-VOLUME, see options
under SERVICE-PROGRAM-CUF. A VOLUME can contain files from many users,
but it is owned by the user who created the VOLUME, and can only be accessed
by the owner or by the user SYSTEM.

LIST—VOLUME

will list the contents of a VOLUME on magnetic tape.

ND-60.151.01
Rev. B

COPY-USERS-FILES

will copy one or more files from a user on one medium to a user on the same
medium or a different medium. For media selection, there are options available
in the SERVICE-program—CUF to assist with more complex copying requirements.
File accessing is by the normal SINTRAN ||I rules. However, user SYSTEM can
access any user’s files with the same access rights as the file owner, allowing
files to be copied on behalf of a user.

If copying from or to 3 VOLUME, a user can only access his own tapes. User
SYSTEM can, however, have both read and write access to tapes other than his
own.

Note: that while DIRECTORY, VOLUME and PARAMETER—FILE are referred as
sub-commands, they describe the destination and source types respectively.

If copying between directories, the DESTINATION user may be different from
the SOURCE user. If the SOURCE medium is 3 VOLUME, the parameter DEST.
USER-NAME will choose between the original owner of the file or a new
user-name. If a new user-name is specified, you will be asked if you want to
copy to this new user.

If copying between directories, and if DESTINATION-file already exists, the
source and destination date for last opened for write is checked. If the
destination is written to later than source, you will be asked if you copy the right
direction.

The user must ensure enough space is available for all files to be copied. The
BACKUP—SYSTEM will create all the necessary file names.

The BACKUP-SYSTEM will only access the DEFAULT directory of a user when no
explicit name is given for the DIRECTORY-NAME. Any directory may be accessed
by giving its name explicitly.

Use of the COPY-USERS—FILES command will also result in the contents of the
fields FILE-ACCESS, LAST—DATE OPENED FOR READ, LAST—DATE OPENED FOR
WRITE, CREATION—DATE and MAX BYTE POINTER being copied from the source
file to the destination file.

If you are user SYSTEM or have DIRECTORY-ACCESS to the source, the last
date OPENED FOR READ and number of times OPENED will not be updated.

ND—60.151.01
Rev. B

SERVICE—PROGRAM-CUF

can be used to select from the various options relating to the
COPY-USERS—FILES command.

The following commands are available under the SERVICE-PROGRAM-CUF:

EXIT

leaves the SERVICE-PROGRAM—CUF and returns to the BACKUP-SYSTEM.

DUMP-BACKUP-SYSTEM

dumps the BACKUP—SYSTEM on the file 'BACKUP-SYSTEM:BPUN'.

MODE-STANDARD-VOLUME, MANUAL-STANDARD—VOLUME,
MODE-BACKUP-SYSTEM—VOLUME

These options are only significant for output to magnetic tape.
VOLUMES’s exist on magnetic tape only. The information on 8 VOLUME
may be in the following formats:

— STANDARD-VOLUMES - are similar to ANSI defined format, compatible to
SINTRAN III/E and earlier versions of SINTRAN.

— BACKUP-SYSTEM-VOLUME — are similar to ANSI defined format plus
some SINTRAN -|ll file system information

Note that one VOLUME may contain files written in a mixture of these formats.

The device MAG-TAPE-1 unit 0 must have the name MAG-TAPE-l-O, unit 1 must
have the name MAG-TAPE-l-l, etc. This can be set by using the command
SET-PERIPHERAL—FILE.

ND-60.151.01
Rev. B

5—6

SET-ALLO CATE-CR EATE—DEFAU LT

During file copying, the BACKUP—SYSTEM will require operator input if it cannot
Allocate or Create contiguous files, as they are described by the file system
information on the original directory or VOLUME. If this situation arises and the
operator inputs ’yes’, then the following rules apply:

1. Allocated source files will be created as contiguous files if possible or else

they will be Created as Indexed files.

2. Contiguous files will be Created as Indexed files.

If the operator inputs ’no’, then such files will not be copied. This option may be

set to give a default answer to all such questions. This option applies to

BACKUP-SYSTEM files only.

This facility is an aid for copying many files interactively and should be used for

MODE and Batch jobs.

SET-SINGLE-SEARCH, RESET-SINGLE-SEARCH
SINGLE-SEARCH operates in the same way as the normal search until one file or
a group of consecutive files have been copied. The search begins from wherever
the tape is positioned, and no tape rewinds are done while in SINGLE-SEARCH
mode. Copying terminates at the first non-matching file-name. SINGLE-SEARCH
makes it possible to copy a number of files with one pass through a tape. In
order to achieve this, the files must be selected in the same order as they appear
on the tape. Care must be taken when copying files to tape if SINGLE-SEARCH
is to successfully gather all files which a user wishes to retrieve.

MASTER-LOG-MODE, USER-COPY-LOG-MODE
there are two LOG—MODE’s, MASTER-LOG for user SYSTEM only, and USER—

LOG for public users only. These 'modes’ cause copy command information to
be written into a LOG file.

ND—60.151.01
Rev. B

5.4 COMMANDS -— DETAILED DESCRIPTION

The following is the complete output that can be obtained by using the
DESCRIBE-ALL—COMMANDS for all the available commands:

M A I N C O M M A N D S BACKUP-SYSTEM

COMMAND NUMBER: 1 LEAD TEXT: BA-SY

DESCRIBE-ALL—COMMANDS
<LIST FILE>

. DESCRIBES ALL BACKUP—SYSTEM COMMANDS
... WITH THEIR CORRESPONDING PARAMETERS.

——— GENERAL INFORMATION ---

. IF A PARAMETER HAS DEFAULT VALUE, IT WILL BE DISPLAYED BETWEEN SLASHES
... (/ ... /) FOLLOWING THE PARAMETER NAME.
... "EMPTY DEFAULT" MAY OCCUR, INDICATING THAT AN ANSWER IS NOT REQUIRED.

... THREE BUILT-IN FUNCTIONS ARE AVAILABLE IN COMMAND INPUT: HELP,(?),(ESC).

... . HELP : FUNCTION FOR LISTING COMMANDS OR A SUBSET OF COMMANDS.

.. . HELP HAS COMMAND-NAME AS PARAMETER. IF HELP IS TYPED

.u. AsmmmmnmHuBammmwamnmm

... . THEIR CORRESPONDING EXPLANATIONS.

... . ? : A (?) FOLLOWING AN AMBIGUOUS COMMAND ACTS AS HELP WITH

... . THE COMMAND-NAME AS PARAMETER. IF THE COMMAND IS UNIQUE

... . IT GIVES AN EXPLANATION OF THIS CCMMAND. A (7) GIVEN

... . IN PLACE OF A PARAMETER WILL EXPLAIN THIS PARAMETER.

... . (ESC): ESCAPE CAN BE USED TO ABORT PARAMETER COLLECTING IN

... . A COMMAND.

... IF (ESC) IS ANSWERED TO A QUESTION FROM AN EXECUTING COMMAND, THE COMMAND

... IS ABORTED.

... IF (ESC) IS GIVEN BETWEEN COMMUNICATION-STATES, IT CAUSES EXIT

... OR USER-BREAK.

... THE BACKUP-SYSTEM WILL ACCEPT SEVERAL COMMANDS WRITTEN ON THE SAME LINE.

... WHEN THESE CCMMANDS ARE PROCESSED, THE BACKUP-SYSTEM WILL TRACE THEM BY

... OUTPUTTING THE LEAD-TEXT,CGflWAND-NAMES AND PARAMETERS COLLECTED.

PARAMETER NUMBER: 1 LIST FILE
... SPECIFY NAME OF LIST FILE (MAX. 16 CHARACTERS)

(DEFAULT VALUE: OWN TERMINAL)

COMMAND NUMBER: 2 LEAD TEXT: BA-SY

COPY-USERS—FILES

COPIES A FILE OR A SET OF FILES.
SOURCE AND DESTINATION CAN BE ONE OF THE FOLLOWING TYPES:
! DIRECTORY: - ANY FILE-SYSTEM DIRECTORY WHICH HAS USERS.
! VOLUME: - ANSI LABELED MAGNETIC TAPE.
! PARAMETER-FILE: - VALID FOR SOURCE TYPE ONLY.
! IT CONTAINS THE NAMES OF FILES TO BE COPIED.
! THESE FILES MUST RESIDE ON A DIRECTORY.

DIRECTORY,VOLUME,PARAMETER-FILE ARE SUB-COMMANDS AVAILABLE ONLY
UNDER THE COPY-USERS-FILES COMMAND.

.. IF AN ERROR OCCURS IN COPYING A FILE, THE DESTINATION—FILE IS
. NORMALLY DELETED.

ND-60.151.01
Rev. B

DESTINATION TYPE - SUB-COMMANDS:

COMMAND NUMBER: 1 LEAD TEXT: DESTINATION TYPE

DIRECTORY
<DEST. DIRECTORY-NAME>
<DEST. USER-NAME)

... DIRECTORY INDICATES THAT THE DESTINATION DEVICE IS A DIRECTORY.

PARAMETER NUMBER: 1 DEST. DIRECTORY-NAME
... SPECIFY NAME OF DESTINATION DIRECTORY. (MAX. 16 CHARACTERS)
... (DEFAULT VALUE: DEFAULT DIRECTORY)

PARAMETER NUMBER: 2 DEST. USER-NAME
... SPECIFY DESTINATION USER NAME. (MAX. 16 CHARACTERS)
... (DEFAULT VALUE: OWN USER NAME)
... WHEN SOURCE IS VOLUME, YOU CAN CHOOSE BETWEEN THIS USER-NAME AND
... THE USER-NAMES INCLUDED IN THE FILE NAMES ON THE VOLUME, OR
... YOU CAN GIVE A NEW USER-NAME WHEN IT IS CHANGED IN THE VOLUME.

COMMAND NUMBER: 2 LEAD TEXT: DESTINATION TYPE

VOLUME
(DEST. VOLUME-NAME)
<DEST. DEVICE-NAME)
<DEST. UNIT-NUMBER)
<DEST. FILE-GENERATION>

... VOLUME INDICATES THAT DESTINATION DEVICE IS A MAG-TAPE VOLUME.

... IF ONE FILE IS TOO BIG FOR THE VOLUME, YOU MAY CONTINUE ON THE NEXT.

PARAMETER NUMBER: 1 DEST. VOLUME-NAME
... SPECIFY NAME OF DESTINATION VOLUME. (MAX. 6 CHARACTERS)

PARAMETER NUMBER: 2 DEST. DEVICE-NAME
... SPECIFY NAME OF DEVICE (MAG-TAPE-1 OR MAG-TAPE-Z).

PARAMETER NUMBER: 3 DEST. UNIT-NUMBER
... SPECIFY UNIT NUMBER WHERE VOLUME IS MOUNTED.
.. (MAX. UNIT NUMBER: 3)

PARAMETER NUMBER: A DEST. FILE-GENERATION '
... SPECIFY FILE GENERATION WANTED FOR FILES. (MAX. A CHARACTERS)

ND-60.151.01
Rev. B

SOURCE TYPE - SUB-CWANDS:

COMMAND NUMBER: 1 LEAD TEXT: SOURCE TYPE

DIRECTORY
<SOURCE DIRECTORY—NAME)
<SOURCE USER-NAME>
<SOURCE FILE-NAME>
(MANUAL CHECK)

... DIRECTORY INDICATES THAT SOURCE DEVICE IS A DIRECTORY.

PARAMETER NUMBER: 1 SOURCE DIRECTORY—NAME
... SPECIFY NAME OF DIRECTORY CONTAINING SOURCE-FILES.
... (MAX. 16 CHARACTERS) (DEFAULT: DEFAULT DIRECTORY.)

PARAMETER NUMBER: 2 SOURCE USER-NAME
... SPECIFY USER NAME OF OWNER OF SOURCE-FILES.
... (MAX. 16 CHARACTERS) (DEFAULT VALUE: OWN USER)

PARAMETER NUMBER: 3 SOURCE FILE—NAME
... SPECIFY FILE-NAME OF FILES TO BE COPIED.
... (MAX. 21 CHARACTERS) (DEFAULT: ALL USERS FILES)

PARAMETER NUMBER: u MANUAL CHECK
... YES,NO,L : YES, MEANS STOP BEFORE EACH FILE IS COPIED.
... 1 NO, MEANS NO CHECK WITH OPERATOR.
... ! L , MEANS ALL FILES COPIED WILL THEN BE LISTED.

COMMAND NUMBER: 2 LEAD TEXT: SOURCE TYPE

VOLUME
<SOURCE VOLUME-NAME>
<SOURCE DEVICE-NAME>
<SOURCE DEVICE-UNIT>
<SOURCE FILE-GENERATION)
<SOURCE FILE-NAME>
<MANUAL CHECK>

... VOLUME INDICATES THAT SOURCE DEVICE IS A MAG-TAPE VOLUME.

... IF THERE IS AN ERROR IN A SOURCE-FILE, YOU WILL GET DIFFERENT

... QUESTIONS IF YOU WILL TRY TO RECOVER OR SKIP THE FILE.

PARAMETER NUMBER: 1 SOURCE VOLUME-NAME
... SPECIFY NAME OF MAG-TAPE VOLUME. (MAX. 6 CHARACTERS)

PARAMETER NUMBER: 2 SOURCE DEVICE-NAME
... SPECIFY DEVICE-NAME 0F MAG-TAPE. (MAG-TAPE-1 OR MAG-TAPE-Z)

PARAMETER NUMBER: 3 SOURCE DEVICE-UNIT
... SPECIFY UNIT NUMBER OF MAG-TAPE. (MAX. UNIT NUMBER: 3)

PARAMETER NUMBER: A SOURCE FILE-GENERATION
... SPECIFY FILE GENERATION OF MAG-TAPE SOURCE-FILES.
... (MAX. A CHARACTERS) (DEFAULT: ALL GENERATIONS)

PARAMETER NUMBER: 5 SOURCE FILE-NAME
... SPECIFY FILE-NAME 0F SOURCE-FILES. (MAX. 39 CHARACTERS)
... (DEFAULT: ALL FILES OF SPECIFIED FILE GENERATION)

PARAMETER NUMBER: 6 MANUAL CHECK
... YES,NO,L : YES, MEANS STOP BEFORE EACH FILE IS COPIED.
... 1 NO, MEANS NO CHECK WITH OPERATOR.
.ul L, WMSflLHMSWHEWHmBEHMW.

ND-60.151.01
Rev. B

5—10

COMMAND NUMBER: 3 LEAD TEXT: SOURCE TYPE

PARAMETER—FILE
<PARAMETER-FILE—NAME>
<MANUAL CHECK>

... PARAMETER-FILE SPECIFIES THAT SOURCE-FILE SELECTION

... IS CONTROLLED BY COMMANDS FROM A FILE WHICH CONTAINS

... A LIST OF FILE-NAMES.

... USING SUCH A PARAMETER-FILE HAS THE SAME EFFECT AS USING

... A COPY COMMAND FOR EACH FILE-NAME IN THE PARAMETER-FILE.

... ALL FILES WILL BE COPIED TO THE SAME DESTINATION.

... ALL SOURCE FILES MUST RESIDE ON A DIRECTORY.

... A LEFT PARENTHESIS "(" APPEARING ANYWHERE IN A LINE,

... DEFINES THE BEGINNING OF A FILE NAME. THE FIRST FOLLOWING

... SPACE WILL TERMINATE EACH FILE-NAME.

... LINES WITH DIFFERENT LAYOUT WILL BE IGNORED.

... GENERAL LAYOUT: (DIRECTORYzUSER)FILE-NAME

... DIRECTORY NAME MAY BE OMITTED IN THE FILE NAME.

PARAMETER NUMBER: 1 PARAMETER-FILE—NAME
... SPECIFY PARAMETER-FILE NAME. (MAX. 21 CHARACTERS)

PARAMETER NUMBER: 2 MANUAL CHECK
... YES,NO,L : YES, MEANS STOP BEFORE EACH FILE IS COPIED.
... ! NO, MEANS NO CHECK WITH OPERATOR.
.u! L, WMSMLHWSWHWWRLWWBEMMW.

ND-60.151.01
Rev. B

5—11

COMMAND NUMBER: 3 LEAD TEXT: BA-SY

CREATE-VOLUME
<VOLUME-NAME>
<DEVICE—NAME>
<DEVICE-UNIT>

... CREATES A VOLUME ON A MAGNETIC TAPE. AFTER THIS CCMMAND

... THE OLD INFORMATION ON THIS TAPE WILL BE UNAVAILABLE.

PARAMETER NUMBER: 1 VOLUME-NAME
.. SPECIFY VOLUME NAME. (MAX. 6 CHARACTERS)

PARAMETER NUMBER: 2 DEVICE-NAME
... SPECIFY DEVICE NAME WHERE THE TAPE IS MOUNTED.
... (MAG-TAPE-1 OR MAG-TAPE-a)

PARAMETER NUMBER: 3 DEVICE-UNIT
... SPECIFY THE UNIT NUMBER WHERE THE TAPE IS MOUNTED. (0-3)

COMMAND NUMBER: u LEAD TEXT: BA-SY

LISTvVOLUME
<DEVICE-NAME)
<DEVICE—UNIT>
<FILE-NAME>
<OUTPUT-FILE>

... COMMAND TO LIST THE CONTENTS OF A VOLUME.

PARAMETER NUMBER: 1 DEVICE-NAME
... SPECIFY DEVICE NAME ON WHICH THE VOLUME IS TO BE FOUND.
... (MAG-TAPE-1 0R MAG-TAPE-Z)

PARAMETER NUMBER: 2 DEVICE-UNIT
... SPECIFY UNIT NUMBER ON WHICH THE VOLUME IS TO BE FOUND (0-3)

PARAMETER NUMBER: 3 FILE-NAME
... NAME OF FILES TO BE LISTED FROM VOLUME (STATED AS IN

. LIST-FILE IN SINTRAN NOT INCLUDING DIRECTORY AND USER NAME.)

PARAMETER NUMBER: A OUTPUT-FILE
. OUTPUT-FILE NAME FOR LISTING

ND-60.151.01
Rev. B

5—12

COMMAND NUMBER: 5 LEAD TEXT: BA-SY

SERVICE-PROGRAM-CUF

.. ENTERS A SERVICE PROGRAM FOR COPY-USERS-FILES.
... IT CCMPRISES A SET OF C(MMANDS FOR CHANGING DEFAULT VALUES
.. AND MODES FOR COPY-USERS-FILES. SOME COMMANDS ARE RESTRICTED
.. TO USER SYSTEM AND THEY WILL HAVE AN ASTERISK (*) IN THE
.. COMMAND NAME.

.. TO LEAVE THE SERVICE PROGRAM USE COMMAND: EXIT

CUF-SERV - SUB-COMMANDS:

CG’IMAND NUMBER: 1 LEAD TEXT: CUF-SERV

DUMP-BACKUP-SYSTEM
<BPUN—USER-NAME>

... DUMPS THE BACKUP—SYSTEM ON THE FILE:

... ! BACKUP-SYSTEM-CzBPUN

... THIS FILE MUST EXIST BEFORE A DUMP COMMAND CAN BE EXECUTED

... AND IT CAN BELONG TO ANY SPECIFIED USER.

... THE COMMAND IS INTENDED TO BE USED WHEN DEFAULT VALUES AND

... MODES HAVE BEEN CHANGED. THIS CCMMAND IS RESTRICTED TO

... USER SYSTEM.

PARAMETER NUMBER: 1 BPUN—USER-NAME
... SPECIFY USER-NAME 0F USER WHERE YOU KEEP YOUR BPUN-FILES
... DEFAULT USER IN THE BACKUP-SYSTEM IS USER SYSTEM.

COMMAND NUMBER: 2 LEAD TEXT: CUF-SERV

MASTER-LOG-MODE
<MASTER-LOG-FILE>
<APPEND-ACCESS>

'... RESTRICTED TO USER SYSTEM.
... IF LOG-FILE IS DEFINED, THEN DESTINATION, SOURCE, DATE
... OF COPYING AND NAME OF FILES COPIED WILL BE LOGGED.
... IF THE DUMP COMMAND IS USED AFTER THIS COMMAND, THE LOG-
... FILE MUST ALWAYS BE PRESENT WHEN COPYING AS USER SYSTEM.

PARAMETER NUMBER: 1 MASTER-LOG-FILE
. SPECIFY FILE-NAME 0F WANTED LOG-FILE OR (CR) TO RESET

... MASTER—LOG—MODE.

PARAMETER NUMBER: 2 APPEND-ACCESS
. YES-NO : YES, MEANS APPEND TO THE LOG-FILE,

... ! NO, MEANS WRITE FROM START (NO HISTORY)

ND-60.151.01
Rev. B

5—13

COMMAND NUMBER: 3 LEAD TEXT: CUF-SERV

MODE-STANDARD—VOLUME

... WHEN THE BACKUP-SYSTEM IS USED IN THIS MODE, THE VOLUMES

... PRODUCED WILL BE COMPATIBLE WITH S-III COPY-USERS-FILES

... VOLUMES, AND CAN BE USED WITH ALL VERSIONS OF SINTRAN-III

... (THIS COMMAND WILL ONLY AFFECT OUTPUT TO TAPE)

COMMAND NUMBER: A LEAD TEXT: CUF-SERV

MANUAL-STANDARD-VOLUME

... PLACES THE BACKUP-SYSTEM IN THE SAME MODE AS THE

... MODE—STANDARD-VOLUME COMMAND.

... THE EXCEPTION IS FILES WITH "HOLES". THE SYSTEM WILL

... ASK IF SUCH FILES SHOULD BE COPIED 0R SKIPPED.

... (THIS COMMAND WILL ONLY AFFECT OUTPUT TO TAPE)

COMMAND NUMBER: 5 LEAD TEXT: CUF—SERV

MODE-BACKUP-SYSTEM-VOLUME

... THIS MODE CAN ONLY BE USED WHEN THE VOLUME IS TO BE USED SOLELY

... BY THE BACKUP SYSTEM. THE VOLUMES CANNOT BE INTERCHANGED

... WITH SINTRAN-III COPY-USERS-FILES.

... THE DIFFERENCES IN THE VOLUMES CONCERNS FILES WITH "HOLES",

... WHERE IN THIS MODE, HOLES ARE MARKED ON THE TAPE BY A SPECIAL

... LABEL, ENABLING THE BACKUP-SYSTEM TO "REMEMBER" THE LOGICAL

... LAYOUT OF A FILE.

... THE BACKUP-SYSTEM IS IN THIS MODE BY DEFAULT.

... (THIS COMMAND WILL ONLY AFFECT OUTPUT TO TAPE)

COMMAND NUMBER: 6 LEAD TEXT: CUF-SERV

USER-COPY-LOG-MODE
<LOG-FILE>
(APPEND-ACCESS)

... IF LOG-FILE IS DEFINED, THEN DESTINATION, SOURCE, DATE

... OF COPYING AND NAME OF FILES COPIED WILL BE LOGGED.

... THIS COMMAND IS RESTRICTED TO PUBLIC USERS, AND WILL HAVE

... NO EFFECT IF USED UNDER USER SYSTEM. USER SYSTEM qHOULD

... USE THE MASTER-LOG-MODE COMMAND.

PARAMETER NUMBER: 1 LOG-FILE
... SPECIFY FILE NAME OF LOG-FILE OR (CR) T0 RESET USER-LOG-MODE

PARAMETER NUMBER: 2 APPEND-ACCESS
... YES-NO : YES, MEANS APPEND TO FILE
... ! NO, MEANS WRITE FROM START (NO HISTORY)

ND-60.151.01
Rev. B

5—14

COMMAND NUMBER: 7 LEAD TEXT: CUF-SERV

SET-ALLOCATE-CREATE-DEFAULT
<DEFAULT ANSWER>

... THE BACKUP-SYSTEM WILL TRY TO ALLOCATE OR CREATE

... A DESTINATION—FILE EQUIVALENT TO THE SOURCE-FILE. THIS MAY NOT

... ALWAYS BE POSSIBLE FOR ALLOCATED OR CONTIGUOUS FILES. IF

... THE FILE CANNOT BE CREATED AS DEFINED BY THE SOURCE FILE,

... THE OPERATOR WILL BE ASKED FOR INSTRUCTIONS ABOUT THIS FILE.

... OPTIONS ARE SKIP FILE OR TRY TO MAKE THE FILE CONTIGUOUS

... OR INDEXED. THE QUESTION REQUIRES A YES-NO ANSWER,

... WHERE YES MEANS TRY, NO MEANS SKIP.

... THIS COMMAND CAN SPECIFY A DEFAULT ANSWER FOR ACTIONS TO BE

... TAKEN WHEN REQUIRED BY THE BACKUP-SYSTEM.

... THE FILES WILL THEN BE TREATED ACCORDING TO THIS ANSWER.

... THE BACKUP-SYSTEM HAS INITIALLY N0 DEFAULT ANSWER, QUESTIONS

... MUST BE ANSWERED FROM THE TERMINAL. TO RESET THE BACKUP-SYSTEM

... TO THIS STATE, SIMPLY TYPE CARRIAGE-RETURN WHEN ASKED FOR

... DEFAULT-ANSWER IN THIS CCMMAND.

PARAMETER NUMBER: 1 DEFAULT ANSWER
.. ANSWER SHOULD BE YES, NO, 0R CARRIAGE RETURN.

COMMAND NUMBER: 8 LEAD TEXT: CUF-SERV

SET-SINGLE-SEARCH

... THE NORMAL SEARCH ALGORITHM ON TAPE IS FROM BEGINNING OF

... VOLUME TO END OF VOLUME IN ORDER TO FIND ALL FILES MATCHING

... A GIVEN FILE-NAME.

... SINGLE-SEARCH OPERATES IN THE SAME WAY UNTIL ONE MATCHING

... FILE 0R GROUP OF FILES HAVE BEEN COPIED. COPYING TERMINATES

... AT THE FIRST NON-MATCHING FILE-NAME.

... THE TAPE REMAINS POSITIONED AFTER THE LAST COPIED FILE.

... SINGLE-SEARCH MAKES IT POSSIBLE TO COPY A NUMBER OF DIFFERENT

... FILES, WITH ONE PASS THROUGH THE TAPE. IN ORDER TO ACHIEVE THIS
”.MEHWSWSBEEWMWINNEMWOWHASWMAWMRW
... THE TAPE.

(THIS C(MMAND ONLY AFFECTS INPUT FROM TAPE.)

COMMAND NUMBER: 9 LEAD TEXT: CUF-SERV

RESET-SINGLE-SEARCH

... RESETS TO THE NORMAL SEARCH ALGORITHM.

... (THIS IS THE NORMAL AND DEFAULT MODE FOR THE BACKUP-SYSTEM)

C(MMAND NUMBER: 10 LEAD TEXT: CUF-SERV

EXIT

... RETURN TO THE BACKUP—SYSTEM.

CWMAND NUMBER: 6 LEAD TEXT: BA-SY

EXIT

... LEAVES THE BACKUP—SYSTEM AND RETURNS TO SINTRAN—III.

ND-60.151.01
Rev. B

5.5

5—15

LABEL FORMATS 0N MAGNETIC TAPE VOLUMES

Implementation of magnetic tape VOLUME's in the SlNTRAN-lll
BACKUP-SYSTEM is based upon:

American National Standard Magnetic Tape Labels for Information Interchange
X3.27-1969.

However, some deviations from the standard have been made. Deviations are
marked by a dollar sign ($) in the explanation.

General rules:

— the general tape layout is as follows
EOFi

VOL1 HDR1 HDRZ UHL1“—file1—'EOF1*HDR1 HDR2 UHL1’—file2— * 0R ”

EOV1

where VOL1,HDR1,HDR2,UHL1, EOFl and EOV1 are tape labels, and
asterisks are tape marks.

H All labels are 80 character blocks.

—- All information in the labels are recorded as ASCII characters with the
parity bit cleared.
All unused character positions will contain spaces.
$$$ The user option field (3) in the label UHL1 contains binary information.

— File data is recorded as 2048 character blocks.
These blocks may contain any character. (0—255 dec.)

$$$$Deviation From Standard

— Only the first file on a volume may be a multivolume-file.

— A non standard label, HOLE, has been introduced.
This label can be inserted between the file data blocks.
The important information in this label is a 32-bit binary number contained
in characters 77—80 of the label. The backup-system uses this number in the
following way:
- Each 2048 character block on the tape corresponds to a 1024 16-bit word
block on the disk referred to as a page. The pages are numbered 0, 1, 2, 3,
etc. to establish a logical sequence of pages. If the logical sequences is not
continguous, then a ’HOLE Iabel’ defines where the next block on the tape
logically belongs in the disk file. In order to represent a 'logical HOLE’ on
the tape, the HOLE label will be inserted in front of the next block, stating
this block’s logical number. Blocks of 2048 characters without a HOLE label
are expected to belong to a contiguous logical area and will cause the
logical block number to be incremented by one.

ND—60.151.01
Rev. B

5—16

Example:

log. block no: 0 5 6 7 100 101 120
data HOLE data data data HOLE data data HOLE data

(5) (100) (120)

where data represents file data blocks (2048 characters) and HOLE is a HOLE
label, contents of HOLE label in ().

VOLUME HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1— 3 1 label identifier 3 VOL
4 2 label number 1 1
5—10 3 volume serial number 6 (volume name) $
11 4 accessibility 1 (space)
12-31 5 (not used) 20 (spaces)
32-37 6 (not used) 6 (spaces)
38-51 7 owner identification 14 (name of owner) $
52—79 8 (not used) 28 (spaces)
80 9 label standard level 1 (spaces)

$ field 3 and 7
— These fields contain any alphanumeric characters. If the field is not fully

filled with characters, the last character in the string is a apostrophe. This
character is used to mark the end of string and is not part of the name.
The unused part of such a field is filled with spaces.

ND-60.151.01
Rev. B

5—17

FIRST FILE HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1— 3 1 label identifier 3 HDR
4 2 label number 1 1
5—21 3 file identifier 17 (file name) $
22—27 4 set identification 6 (file type) $
28—31 5 file section number 4 (0001—0002-nnnn)
32—35 6 file sequence number 4 (0001-0002—nnnn)
36—39 7 generation number 4 (file generation) 55
40—41 8 generation version number 2 (version number) $
42-47 9 creation date 6 (ANSI Standard date)
48—53 10 expiration date 6 (spaces) $
54 11 accessibility 1 (space)
55—60 12 block count 6 000000
61 >73 13 system code 13 (spaces)
74-80 14 (not used) 7 (spaces)

$ field 3:

— Apostrophe is used to mark end of string. This character is not part of the
name. Unused part of field is filled with spaces.

39 field 4:

— Only the four first characters are used in this field. If shorter than four
characters, apostrophe is used to mark end of string.

$ field 7:

- Any alphanumeric characters. Field is left justified and apostrophe is used
to mark end of string. The character code in this field identifies a backup
generation of files.

$ field 8:
— This field contains numbers from 1 to 99. Characters are left justified and

one digit numbers will have a apostrophe in the right character. This
number identifies different versions of files with identical file identifiers and
set identifications (fields 3 and 4) and each version must be treated as an
individual file.

39 field 9 and 10:

Creation and experiation date are not used and will contain spaces.

ND-60.151.01
Rev. B

5—~18

SECOND FILE HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1— 3 1 label identifier 3 HDH
4 2 label number 1 2
5 3 record format 1 U
6—10 4 block length 5 (no of characters)
11—15 5 record length 5 (spaces)
16—50 6 res. for operating systems 35 (name of owner $

8. MAX BYTE POINTER)

51—52 7 (not used) 2 (spaces)
53—80 8 (not used) 28 (spaces)

$ field 6:

*- Up to 16 alphanumeric characters starting from position 16 identifying
owner of this file.
If name is shorter than 16 characters, apostrophe is used to mark end of
name.

— 32-41 max byte pointer of file.

END OF FILE LABEL

POSITION FIELD NAME LENGTH CONTENTS

1- 3 1 label identifier 3 EOF
4 2 label number 1 1
5—54 3-11 (same as HDR1) 50 (corresponds HDR1)
55-60 12 block count 6 (number of blocks)
61-80 13-14 (not used) 20 (spaces)

ND—60.151.01
Rev. B

5—19

END OF VOLUME LABEL

POSITION FIELD NAME LENGTH CONTENTS

1-3 1 label identifier 3 EOV
4—80 2-14 same as EOF1 77 (corresponds EOF1)

USER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1—3 1 label identifier 3 UHL
4 2 label number 1 1
5—80 3 user option 76 (file information) $

Explanation of field 3

$$ This field differs from the ANSI label standard. The field contains binary
information for the ND subsystem: BACKUP-SYSTEM SINTRAN III.

Field 3:

POSITION CONTENTS
WITHIN FIELD WITHIN LABEL

1—2 5—6 version number of this file (1—255 dec.)
3—4 7—8 total number of versions (1-255 dec.)
5—8 9—12 filesystem—standard creation—date
13-76 17-80 S—III filesystem object entry

ND-60.151.01
Rev. B

5—20

NON STANDARD 'HOLE' LABEL

POSITION FIELD NAME LENGTH CONTENTS

1—3 1 label identifier 3 HOL
4 2 label number 1 E
5—80 3 user option 76 (information) $

Explanation of field 3:

Field 3:

POSITION CONTENTS
WITHIN FIELD WITHIN LABEL

1-72 5-76 THIS BLOCK IS NOT PART OF THE DATA!
CHARACTERS 77-80 CONTAIN A NUMBER

73-76 77—80 (32-bit binary number stating the logical
block number of the following data
block).

ND-60.151.01
Rev. B

6.1

6.2

LOOK—FILE

INTRODUCTION

LOOK—FILE is a utility system which enables a user to print data, modify data and
browse through the data contained in a file. The DUMP commands allow a
variety of format for output on a terminal or a printing device.

COMMANDS —— SUMMARY

The available commands with their required parameters are:

HELP <command—name or CR>
EXIT '

CALCULATE
DUMP-WORDS <block number><word number><length>
DUMP BYTES <block number><word number><length>
DUMP-ALL <block number><word number><length>
PATCH <block number><word number>
OPEN-FILE <file name><block size>
ZERO <block number>
MOVE—BLOCK <from file name><number of blocks>

<from block number><to block number>

CLOSE—F1 LE
BACK
FORWARD
COMPARE BLOCK <compare file name><number of blocks> <from block number>
LISTAFILE <listing file name>
ON—LIST
OFFALIST
SEARCH <from block number><number of blocks>

ND-6015101
REV. A

6.3 COMMANDS — GENERAL RULES

The system may be entered by typing

@LOOK—FILE

All the commands may be abbreviated in the same way allowed by SINTRAN. All
parameters may be entered on the same line as the command, or they may be
omitted and the system will prompt the user for each command in the required or»
der.

Parameters which require a numeric value may be entered as decimal numbers,
eg. 123, or as octal values which must be followed by the letter 8, eg. 1238.

The OPEN-FILE command must be used to open a file before it is referred to by
any of the other commands.

The format used for printing information includes:

1)

2)

3)

4)

5)

The word number in decimal.

The word number in octal.

A single character indicating the mode being used for the current line, ie. B
for Byte and W for Word.

5 16-bit words output in the mode being used.

The 5 words output as ASCII characters,

Note: any characters whose octal value is less than 408 will be output as an
amperand (8t). The DUMP<ALL command will also output the ASCII
character for values less than 4084

ND—60.151.01
REV. A

6.4 COMMANDS — DETAILED DESCRIPTION

HELP
List one or all commandls) with the required parameters.

EXIT
Leave the system and return to SINTRAN. Note that all files will be closed.

OPENeFILE
Opens a 'global' file which will be used for further operations by other commands.
Other commands will be opened/closed automatically by the specific command
being used. The default block size is 512 16—bit words. The maximum allowed block
size 2048 16—bit words.

Note: The current global file is closed before the OPENrFlLE command is
executed. The file is opened for WRITE access.

CLOSE
Close all currently open files.

CALCULATE
Simple calculations may be performed on decimal or octal values. The resulting va-
lue will be displayed. The operators available are:

+ for addition

—— for subtraction

* for multiplication

/for division

DUMP—WORDS, DUMP—BYTES, DUMPrALL
Display a block of data from the currently opened global file on the user terminal
or, optionally on a LISTAFILE. The display format depends on which command is
being used. The length of data requested must not be longer than the value given
in the OPEN—FILE command for this file.

If the length requested is less than the file's block size, then any DUMP command
will display only the number of words requested If a subsequent
FORWARD/BACK command is used, then it will move the number of words in the
file’s block, and thus some of the block referred by the DUMP command will not
be displayed.

Note: 1, The block numbers begin at 0.
2. The word numbers begin at 1.

BACK, FORWARD
These commands should be used together with the DUMP commands to move
forwards or backwards from the current block number in the current file. These
commands change the current block number.

ND 60 '51 01
Rev A

6—4

PATCH
This command allows modification of any word in the current block of data. Patch
will modify successive words in the block of data until a full stop character (.) is
typed. New value can be given as decimal integer (fax. 1) or octal integer (f.ex.
1777778) or a character string (fex. 'EX')

Note: All bits in a word are modified, including the left—most bit which is
sometimes used for parity.

ZERO
Clear to binary zeroes the complete block specified on the current global file. The
block size given in the OPEN-FILE command for this file is used.

MOVEVBLOCK
Move the first one or more blocks from the named file to the current global file.
The block size of the current global file will be used.

COMPAREABLOCK
Compare the entire named file with the current global file. Any data blocks which
are not identical on both files are printed. The compare file is opened/closed
automatically.

LIST-FILE
The named file is opened for printed output from any DUMP, COMPARE-BLOCK
or SEARCH commands. This file will remain open until a CLOSE or EXIT command
is used. The ON-LlST/OFF-LIST commands may be used to optionally print some
data blocks.

ON- LIST
Switch print for the LIST-FILE on.

OFF - LIST
Switch print for the LIST-FILE off.

SEARCH
This command will search for the first occurrence of a string of words in a number
of data blocks. IF the string being searched for is found, then the data block con—
taining it is displayed, and printed if a LIST—FILE is switched on. After the data
block has been displayed, typing 'NO' will stop further searching. Otherwise, the
search will continue looking for the next occurrence.

no ‘3'“ w m
HL’V /\

7.1

NORD FILE EXTRACT UTILITY COMMAND

INTRODUCTION

File extract is a general purpose UTILITY program which can extract records
from one file and write onto another file or output device

In addition, by using the split option, records not satisfying given extract
selection criteria can be placed in a second output file, thus providing a com—

plete file split possibility.

The program provides for complex record selections invoked by simple

parameters. The user may define his output record layout in several ways. Also, a

wide range of output environment choices are available.

These facilities make the program useful in various data processing situations.
It’s use may range from very simple runs to rather sophisticated processing

FILE-EXTRACT is written in FORTRAN. It handles standard SINTRAN Ill text files,

including variable record length files. Maximum record size is set to 1024 bytes.

r4060 151 (ll
Flex A

7.1.1 Purpose

FILE-~EXTRACT is a utility enabling ND users to process files without writing
specific programs. This sort of file processing may be relevant during program
development, testing or simply validation and correction of data files.

FILE—EXTRACT contains facilities such as:

the extraction of subsets from files based on record numbering

the extraction of subsets from the files based on individual record contents

the rearranging of files

the appending of files or subsets of files to other files

file splitting by one run

reformatting of files according to record layout, length and organization

providing output records containing input record number

providing output records containing the master record's physical address
(see Section 72.4.4)

conversion of transactions from various systems to a common layout

generation of readable reports containing heading and page numbering
routed to a terminal or a line printer

saving of parameter input in MODE files for later automatic processing (see
Section 72.1.1)

building or procedures to be processed with limited run—time parameter
input (see Section 7.2.1.2)

These facilities may be combined in various ways thus meeting new demands as
they occur.

ND 6‘.) 15! 01
Rev A

7.2

7.2.1

COMMAND STRUCTURE

FILE—EXTRACT may be called from a terminal when in SINTRAN I” command

mode.

Command Structure:

@FILE EXTRACT

— NORD FILE EXTRACT UTILITY COMMAND, VER. DD MM YY —

INPUT FILE: <$IVIODE> <$AUTO> <$KEY> <,an>
OUTPUT FILE: <,X> <,A> <:>

<SPLIT OPTION OUTPUT FILE 2: <,A> >

EXTRACT SPECIFICATIONS:
< <SHOW> <extract selection criteria> < : > >

< >

OUTPUT RECORD LAYOUT SPECIFICATIONS:
< <SHOW> <Wnn> <L> <LO> <Hnn> <PAGE[="xxxx"1> <R> <E>

<P> <C> <T> <record Iayout> <:> >
(r >

INPUT RECORDS: 99999, OUTPUT RECORDS: 99999 I: = = = >---l

The program will request input from the user as shown above.

All input fields, except for INPUT-FILE, accept default values. Thus, a "default

run” will cause the input file to be listed on the terminal.

The default value is indicated by typing CARRIAGE RETURN in the specific input
field.

However, the command structure is made in such a way that the required

options may be activated by use of simple parameters. Any other functions are

automatically avoided,

Input File

The input file may be specified as any randomly accessable SINTRAN ||| text file.

A default file type <:SYMB> is assumed when type is not specified. The file is

immediately checked for legal access. If not obtained, an error message will be
written to the terminal before program termination,

ND 60 'BI OI
Rev A

7.2.1.1

7.2.1.2

7—4

Mode File Save Option

The mode file save option may be invoked by typing <$MODE> in response to
the input file question. The following text will be written on the terminal:

MODE SAVE FILE:

In the file specified in answer to this question, all COMMAND INPUT will be
saved as a SINTRAN |l| MODE file. In this way, specifications given for an
extract run may be saved for later automatic processing, thus enabling the user
to generate procedures under the guidance of the program.

Limited Automatic Command Input

The LIMITED AUTOMATIC COMMAND INPUT option may be invoked by typing
<$AUTD> in response to INPUT FILE. The program will immediately ask for:

AUTO RUN-TIME COMMAND FILE:

and then read the command input lines from the file specified here. This facility
is quite similar to the execution of FILE-EXTRACT from a MODE file. The differ-
ence is that a command line in the AUTO RUN-TIME COMMAND FILE may
contain the text $TERM, meaning that this line is to be prompted from the
terminal.

This option is very useful for complex predefined procedures, where some
features are to be requested at run-time. An example could be a pregenerated
report procedure where the user is to specify, at run-time, the output device as
terminal or line printer, or perhaps some additional extract selection criteria to be
read in. All other parameters and the report layout will automatically be read
from the command file.

Such a command file may be generated by the MODE FILE SAVE OPTION (see
Section 7.2.1.1) and then edited by OED or PED. Remember to remove tabs when
in OED (command M T0(0)).

ND760.151.01
Rev A

7.2.1.3

7.2.1.4

Fixed Record Length Input File Option

To process a fixed record length input file not containing record delimiting
characters (octal 015, 012, Le, CR, LF), the F option must be used. The
parameter should follow input file name and be specified as follows:

<,ann>

where nnnn specifies input file record length in bytes (maximum 1024 bytes).

Note that the output file, as a rule, will receive/have the same organization as
the input file.

The following conditions will, however, make a sequential output file out of a
"fixed" input file:

— output file organization change option specified (see Section 7.2.2.3)

— terminal output wait option specified (see Section 72.4.6)

—- line printer/terminal heading option specified (see Sections 7.2.4.7, 7.2.4.8,
7.2.4.9 and 7.2.4.10)

Indexed Access via KEY file

Indexed access via KEY file is initiated by typing <$KEY> in response to the
input file question. The program will then ask for:

KEY FILE NAME:

The KEY file is only supposed to indicate which records of the input file are to be
read and in which order. The KEY file must be a symbolic file, each record
starting with a pointer to a corresponding record within the main input file. Any
trailing contents of a KEY file record will be ignored by FILE-EXTRACT. A KEY file
will normally be output of a FILE-EXTRACT run using the "Random Key Inclusion
Option" and must follow the format used here (see Section 72.4.5). The file
could then be sorted or processed in any way before being utilized as KEY file.

For situations which could benefit from this option, see examples mentioned in
Section 7.2.4.5.

ND—60.1'31.01
Rev A

7.2.2

7.2.2.1

7.2.2.2

Output File

Output file may be any existing/nonexistent SINTRAN Ill disk file or an output
device such as line printer or terminal.

The file name is specified due to the standard SINTRAN syntax. That is,
nonexistent files must be enclosed by double quotes, etc.

Note that random write is always used unless output file TERM (terminal) is
selected or the WAIT option (see Section 7.2.4.6) is switched on. So, when
writing to any other sequential only output device, a dummy WAIT option must
be used.

Default output file is the terminal.

Output File Append Option

The parameter <,A> following output file name, invokes the output file append
option. This means that the output will be appended at the end of the given file.

Note that this option requires an existing output file and is not valid for such
output devices as terminal or line printer.

File Split Option

A <:> at the end of the output file input line invokes the file split option. The
following test will be written to the terminal:

SPLIT OPTION OUTPUT FILE:

Records read, but not qualifying to be written to the main output file according
to the extract selection criteria given (see Section 7.2.3) will now be written to
the SPLIT OPTION OUTPUT FILE. If this option is not specified, those records will
simply be bypassed by FILE—EXTRACT.

The append option <,A> is also available for the split file (see Section 72.2.1)

FIB-60151.01
Rev A

7.2.2.3 Output File Organization Change (X Option)

The X option is used to switch the output file organization, thus making a

sequential file containing end of record characters out of a random. fixed length

record file and vice versa.

Consider a sequential, variable record length input file. By using the X option, a

random, fixed length record output file will be produced. The output record

length Will automatically be computed from the output record layout specifi-

cations given (see Section 7.2.4). Note that X option switch to random file

organization will be ignored when used together with certain other options (see

Section 7.2.1.3).

Sequential records, delimited by End of Record characters will be produced

when the X option is specified in conjunction with the fixed record length input

file option (see Section 7.2.1.3).

Output file organization change may be useful in several situations. Consider a

fixed length random data file needing some special editing. The X option can

produce a OED or PED recognisable version of the file, which could then be edit-

ed and finally reconverted to its orginal organization using the X option once

again.

ND—BO 151 01
REV A

7.2.3 Extract Selection Specifications

One or two input lines are available for extract selection specifications. The
commands given here determine which records are to be written to the output
file.

There are four types of selections available:

— specification of input file record intervals in question (see Section 7.2.3.7)

— specification of input record field values to be satisfied/not satisfied (see
Sections 7.2.3.1 and 7.2.3.2)

— specification at text strings which are to occur/not occur within a record
(see Section 7.2.3.3)

— specification of a text string which is to occur/not occur within a specified
subset of a record (see Section 7.2.3.4)

The selection criteria specified may be connected by the logical operands
<.AND.> and <.OR.> (see Section 7.2.3.5).

Finally, parentheses nesting on groups of selection criteria are allowed (see
Section 72.3.6).

Together, these options provide a sophisticated data selection tool that may be
used for the diverse tasks.

Note that extract criteria, logical operands, values and parentheses must not be
separated by spaces. Spaces are treated as command line terminators.

ND 60151 01
REV A

7.2.3.1 Numeric Field Evaluation

A numeric field evaluation criterion is to be specified in the following manner:

<STARTPOS> [HENDPOS] <operation code> <M|N VALUE>
[—MAX VALUE]

where

STARTPOS

is the start byte number of numeric field within input record.

ENDPOS

End byte number of numeric field within input record. May be omitted for 1
digit fields.

OPERATION CODE

One of the following operation codes must be specified:

equal to
i not equal to
> greater than
<_ less than

MIN VALUE

is the numeric value for operation codes =, a; or the value to compare
with the codes < and >.

MAX VALUE

is the maximum value that may be specified for operation codes = or 4:. It
then specifies the upper numeric limit for a range specification] thus
providing the additional operation codes "inbetween" and "

inbetween”.
not

Example:

15 —- 18 = 1590 — 1862

This means that if this particular extract selection criterion is to be satisfied, byte
15 through 18, within an input record, must contain a numeric value within the
range 1590 to 8262.

[\JD 60 15101
Re» A

7—10

7.2.3.2 Text Field Evaluation

A text field evaluation criterion is specified as follows:

<STARTPOS> [—ENDPOS] <operation code> <"text string">

where:

STARTPOS

is the start byte number within input record to be evaluated.

ENDPOS

is the end byte number within input record to be evaluated. May be
omitted for one byte field.

OPERATION CODE

The two following operation codes are allowed:

: equal to
4: unequal to

TEXT STRlNG

The text string may contain any character and must be surrounded by
double quotes.

Note that the length of the text string must be the same as the field length
specified by the STARTPOS/ENDPOS elements.

If shorter, a limited text string search will be assumed (refer to Section
7.2.3.4).

If longer, the specification will not be accepted and the program termin-
ated with an error message.

Example:

45 — 50 = "OSLO 5"

ND—60.151 01
Rev. A

7—11

7.2.3.3 Text String Search

A text string search specification will cause the entire input record to be scanned

for the existence of the given text string.

A text string search is specified as follows:

TEXT <operation code> <”text string”>

where:

TEXT

specifies search within the entire record.

OPERATION CODE

The two following operation codes are allowed:

equal to
+ unequal to

TEXT STRING

Any text enclosed by double quotes may be specified

Example:

TEXT = "COMMUNICATION"

ND~6015101
Rev. A

7.2.3.4

7—12

Limited Text String Search

A limited text string search will cause the specified subset of the input record to
be scanned for the existance of the given text string.

Syntax:

<STARTPOS> <—ENDPOS> <operation code> <”text string">

where:

STARTPOS

is the start byte number within input record where the text search is to be
done.

ENDPOS

is the end byte number limiting search area within input record.

operation code

The two following operation codes are allowed:

= equal to
+ unequal to

text string

The search text string may contain any characters (except double quote)
and must be enclosed by double quotes.

Note: the length of the text string must be less than the record subset
specified by startpos/endpos.

Example:

45 — 90 = "BOX"

This may extract those customer records having a PO. Box address within the
address fields subset of the record

ND—6U 15101
Rev. A

7.2.3.5

7—13

Logica| Operands

A logical operand is used to connect two extract selection criteria of any kind.

Together with the parentheses nesting (see Section 7.2.3.6) this facility enables
complex extract selections to be made.

Syntax:

<extract criterion A> <|ogical operand> <extract criterion B>

where:

extract criterion A and B

is the same as Sections 7.2.3.1, 7.2.3.2, 7.2.3.3 or 7.2.3.4 except for the
input file record interval option as in Section 7.2.3.7.

logical operand

The two following operands are allowed:

.AND. both criterion A and criterion B must be fulfilled

.OR. either criterion A or B must be fulfilled

Example:

15 — 18 = 1590 — 8260 .OR. 45 — 50 = “OSLO 5”

ND-60.151.01
Rev A

7.2.3.6

7—14

Parentheses Nesting

Parentheses nesting is available for expressing more complex selections.

Extract criteria/groups of extract criteria connected with logical operands may be
surrounded by parentheses/levels of parentheses.

Example:

((1 — 2 = "T1” .OR. 1 —— 2 = "T2") .AND. 10 = 2) .AND. (15 — 22 > 90000
,OR. 23 = ”'")

This could mean something like "select those records of type T1 or T2 having
status code 2 and either have a balance over 90,000 or are marked with a start in
position 23”,

Rules:

A start parenthesis must be placed before an extract criterion or together with
another start parenthesis.

An end parenthesis must be placed after an extract criterion or together with
another end parenthesis.

ND—60 151 .01
Rev A

7.2.3.7

7—15

Input File Record Intervals

By specifying input file record intervals, one may select subsets of the input file
to be evaluated.

Also, this option provides a file rearranging possibility due to the fact that the
program will process input file records in the same order as indicated in the
command line.

If a record interval is followed by another one specifying records already

bypassed, the input file will be rewound before those records are processed.

Syntax:

<start record no.> — <end record no.>,

where:

record no.

Record no. is specified with 1 to 9 digits

is start/end delimitor

is interval terminator. May be followed by parentheses or any other extract

selection criterion including another input file record interval specification.

Note:

When record intervals are used to rearrange a file and the file split option is

active (see Section 7.2.2.2) split file records will be duplicated every time the
input file is rewound.

ND-60151.01
Rev A

7.2.3.8

7.2.3.9

Show First lnput File Record Option

Typing "SHOW” and the RETURN button at the beginning of the command line,
the first input file record will be written to the terminal together with a position
mask line such as:

1234567891234567891234567891234567891234 ..
7205PETTERSEN,PER OSLO 5 223652 80000

This information is meant to be of assistance to the operator to see the position
number for the different fields to be made extract selections from and has
nothing to do with the actual output from the run.

The program will immediately accept input of extract selection specifications.

Note:

By typing another SHOW, the next record will be shown, thus providing selection
of a record type layout representative record.

Command Line Continuation Option

Terminating the first command line with a <:> will provide another line for
extract selection input.

Note:

Used together with the limited automatic command input (see Section 7.2.1.2)
the first line may be specified beforehand, while the second may be used for
additional operator selections at run—time.

ND-6015101
Rev A

7.2.4

7—17

Output Specifications

One or two input lines are available for various output specifications. A number
of parameters are available to specify how records selected by the extract
specifications are to be written (refer also to Section 7.2.3).

There are two main types of specifications available:

1. Specification of output record layout as one or more of the following
elements:

— a copy of input record
— subsets of input record
— imbedded constants
— input record number
— output record number
— input record random address

2. Specification of output environment such as:

— terminal output wait at full screen option
~— line printer/terminal heading specification
._. line printer/terminal predefined headings
q page numbering
— split file record as a copy of input record in spite of output specifica-

tions

Default (CR) makes the output record a copy of input record.

ND-6015101
Rev A

7.2.4.1

7—18

Input Record Subsets Specification

Subsets of input record can be specified to build the output record or to be a
part of it.

Syntax:

<start position> [——end position] [,]

where:

start position

starts the position within input record to be copied to the output record.

end position

ends the position within input record to be copied. May be omitted when
only one character is to be copied.

is specification delimitor in case of more specifications.

Example:

50 — 55, 1 — 20

This will produce an output record containing position 50 through 55 and finally
the first 20 characters of the input record.

Note:

When the output record is specified to contain subsets of the input record, input
records shorter than the subsets specified will result in an output record filled
with spaces as a substitution for the missing input characters.

As a result, this facility can provide a file reformatting possibility, e.g., produce a
fixed record length file out of a variable length one.

ND~60.151.01
Rev. A

7.2.4.2

7.2.4.3

Output Record Constants

Constants may be imbedded in any position of output record.

Syntax:

"text" L]

where:

text

may be any character except for double quotes.

[.1

is used as delimiter in case of more specifications.

Example:

50 — 55, "ABC", 1 — 26

This will insert the string "ABC” within the input record subsets specified.

Input Record Number Inclusion

The input record number may be specified to be the first element of the output
record.

Syntax:

<L>[,]

The command will result in a 5 digit line number indicating source record number
of input file.

Note: It cannot be used together with the <LO> or <R> options.

ND-60.151.01
Rev. A

7.2.4.6

7—22

Terminal Output Wait Option

The WAIT option is intended to be used with the terminal as output file. It simply
makes the program wait for an input character for every given number of lines
written to the terminal, thus enabling the user to study one screen of information
before filling the next one.

The user may, at this point, interrupt the extract run by typing an X (exit). Any

other character, including carriage return, will make the process continue.

Syntax:

W [M] [.l

where;

nn

is a number of lines to be written before waiting for carriage return. De-
fault value is 24 for standard VDU screens.

is specification delimitor in case of more parameters.

ND—60.151.01
Rev. A

7.2.4.7

7 —23

Line Printer/Terminal Output Heading Option

The heading option enables the output from FILE-EXTRACT to be generated as

simple reports with a one line heading, optionally together with page number
(see also Section 7.2.4.8).

Syntax:

H [W] [.1

where:

nn

is the number of lines per page. Default value is 24 (VDU terminal).

is parameter delimitor.

Note:

A common line counter is used for the heading and wait options. Therefore, if in
doubt, the last line numbering specified in the command line will be used.

When all output specifications are given and the heading option is specified, the
program will write a heading mask to the terminal and wait for user input:

HEADING MASK:
123456 123456 123456789.123456789.
KUNDENR. KONTONR. N A V N

The first two lines above are produced by the computer. It simply represents a
position mask of the output record, dimensioning the input record subsets
chosen in the output specifications, corrected with constants if any. This mask
indicates where to type the leading text in order to produce a readable report.
Used together with the show option (see Section 7.2.4.12), the heading should
have all changes to be correctly specified.

ND 60.l5101
Rev A

7.2.4.8

7—24

Line Printer/Terminal Page Numbering Option

The page numbering option will provide a page number to be written before each
heading. The parameter will have no effect when the heading option is not
specified.

Syntax:

PAGE [="page text"] [,]

where:

PAGE

This text which will invoke the option.

page text

The user may define his own 6 character long page text in his own lan-
guage. Default text is ”PAGE”.

Example:

PAGE = "S|DE:"

This will, when used together with the heading option for each page, produce a
heading such as:

SIDE: 9999

HEADING LINE
DETAIL OUTPUT LINE 1
DETAIL OUTPUT LINE 2

ND-60.15l.01
Rev. A

7.2.4.9

7.2.4.10

7.2.4.11

7 —25

Predefined Heading as Extract Command Line

In some cases, it may be useful to have the extract selection specifications

written together with the output. This is provided by the E option, which will

automatically produce the extract command line as the heading line.

Syntax:

E inn} [.1

The option works exactly like the H option (see Section 7.2.4.7) except it doesn't

ask for heading input. Besides, the page numbering option (see Section 7.2.4.8)

will automatically be invoked.

Predefined Heading as Position Mask

The P option produces a position mask as a predefined heading. This may be

useful when record contents are to be studied in their original compressed

format.

Syntax:

P inn] [.1

This option is similar to the E option (see Section 7.2.4.9).

Split File Copy Option

Normally, the split file output (see Section 7.2.2.2) will contain record layout

similar to the main output (no page numbering and no headings). In some cases,

it may be useful to provide a split file containing records as a copy of the input

records. Thus, the C option will turn off any other output record layout

specifications on split file writes.

Syntax:

C [.1

ND~60151.01

. Rev A

7.2.4.12

7.2.4.13

7.2.4.14

7—26

Show First Input File Record Option

The "SHOW” option is also provided as a first command to this output
specifications input line. It works exactly in the same way as described above
(see Section 7.2.3.8). In this case it is meant as a tool to produce an output re—
cord from the right subsets of the input record and also to help design the head-
ing line,

Syntax:

SHOW

Command Line Continuation Option

Terminating the first command line with a <:> will provide another line for
output specification input.

Note.

Used together with the limited automatic command input (see Section 7.2.1.2),
the first line may be specified previously while the second one may be used for
additional operator’s choice at run-time.

Skip Output Record Trailing Spaces

in order to reduce disk space and increase processing speed, skipping trailing
spaces may be desired. The option is supposed to be used in conjunction with
variable record length output files.

Syntax:

T 1.]

ND 60151.01
Rev. A

7.3

7 —-27

RUN- TIME STATUS MESSAGES

In order to enable the user to keep track of the program's progress, a run-time

status message line is implemented:

INPUT RECORDS: 99999, OUTPUT RECORDS: 99999 I: = = > ---—* ----- |

For every 100 input records processed, this line will be written to the terminal.

The right side graph indicates the percentage (in bytes) of the input file being

processed, thus enabling the user to estimate when the process will be finished.

ND—BO. |51.01
Rev A

7-28

**********SENDUSYOURCOM1\'IENTS!!! ********ir*

? ? Are you frustrated because of unclear information

‘
I?

. in this manual? Do you have trouble finding
things? Why don’t you join the Reader’s Club and

: send us a note? You will receive a membership
7 v . card - and an answer to your comments.

0 0

Please let us know if you
“ find errors

‘\
/

’ cannot understand information
‘ cannot find information ..._____
* find needless information

Do you think we could improve the manual by rearranging the
contents? You could also tell us if you like the manual”

/
\

* ***** ***HELPYOURSELFBYHELPINGUSH * ** ***** *

Manual name: SINTAN Iii Utilities Manual Manual number: ND- 60,151.01

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:
Company: - Position:
Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department
PO. Box 4, Lindeberg Gard ———->
Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data

Answered by

Norsk Data A.S.

Documentation Department

PO. Box 4, Lindeberg Gard

Oslo 10, Norway

Date

fill-

