
SINTRAN Ill
Communication Guide

ND-60.134.02

N0TICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk Data
A.S.

Copyright © 1981 by Norsk Data A.S.

This manual is in loose leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose leaf form also allows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre-
sponding to the holes in the manual may be ordered in two widths, 30 mm and

40 mm. Use the order form below.

The manual may also be placed in a plastic cover (3). This cover is more suitable
for manuals of less than 100 pages than for large manuals. Plastic covers may
also be ordered below.

Ii :L: 7 ° W
“

NC-HSKDATAAS mantras

..~:. m 3'3. m
5’23 313%?

F‘
0

A Ring Binder B Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
P.0. Box 4, Lindeberg gérd
Oslo 10

ORDER FORM

I would like to order

Ring Binders, 30 mm, at nkr 20,- per binder

....... Ring Binders, 40 mm, at nkr 25,- per binder

Plastic Covers at nkr 10,- per cover

Name
Company
Address

PRINTING RECORD
Notes
VERSION 01 (SINTRAN l|| Special |/O Guide)

Version 02

SINTRAN ||| Communication Guide

ND -60.134.02

NORSK DATA A.S
P.O. Box 4, Lindeberg gérd
Oslo 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg gérd
Oslo 10

s§2°O0
000no

0808008080808

8

000
00000000s§§ 9

u
we- uUUU

Norsk Data A.S M A N U A L

SIII COMMUNICATION GUIDE

THE READER

This manual is intended for the time-sharing user who
needs a users guide to the communication functions in
SINTRAN III.

PREREQUISITE KNOWLEDGE

SINTRAN III TIME—SHARING-BATCH GUIDE (ND—60.132)

ND-60.13U.02

vi

THE MANUAL

This manual describes commands and monitor calls used
mostly by time-sharing-batch users. The functions are
ordered by functional category as opposed to the
SINTRAN III REFERENCE MANUAL where most of these
functions are documented in alphabetical order. In the
computer examples, user input is underlined.

"..." denotes a single control key. For ex. "rub—out"
means pressing the "rub—out" key. Related manuals are:

SINTRAN III TIME-SHARING—BATCH GUIDE (ND—60.132),
and

SINTRAN III REAL TIME GUIDE (ND-60.133)

Other related SINTRAN III manuals are:

SINTRAN III REFERENCE MANUAL (ND-60.128),
SINTRAN III SYSTEM SUPERVISOR (ND-60.103), and
SINTRAN III RT LOADER (ND-60.051)

This manual partially obsoletes SINTRAN III Users
Guide (ND—60.050) (see ND Bulletin no. 4, 1980).

THE PRODUCT

This manual documents the SINTRAN III VS version F.

ND-60.13H.02

vfi

SINTRAN III/VS

,____---_-__
ND—60.125

INTRODUCTORY Sintr.III
Introduct.

USER'S ND-60.13u ND—60.132 ND-60.133
GUIDES Ccmmunic. Timeshar./ -—- Real Time

Guide Batch Guide Guide

_é

ND-60.151 ND-60.128 ND-60.0S1
REFERENCE Sintr.III Sintr.III Real Time

Utilities Ref. Man. Loader

1‘
7— \

OPERATOR/ ND-30.001 ND-30.003 ND-60.11O
SUPERVISOR NORD 10/50 Sintr.III Postmortem

Oper.Guide Sys.Sup.Gu. Investegatd

\l ‘4 \

ND-60.062 ND-60.122 ND-60.072 ND-60.081 ND—60.112
Sintr.III File Sys. RT-Loader Nordnet Sintr.III
Sys.Dooum. Sys.Docum. Sys.Docum. Sys.Dooum. Data Fields

INTERNAL SYSTEM DOCUMENTATION

SINTRAN III/RT

ND-60.082
Sin.III/RT
Ref. Man.

ix,

T A B L E 0 F C 0 N T E N T S

Section Page

1. INTRODUCTION 2

2. NORD—NET 5

2.1. Introduction 5

2.2. The Communication Line 6
2.2.1. General 6
2.2.2. @COMMUNICATION—STATUS 8

2.2.3. @COMMUNICATION—LINE-STATUS 8

2.3. Remote Terminals 8
2.3.1. General 8
2.3.2. @REMOTE 10
2.3.3. @LOCAL 10
2.3.4. Example of @REMOTE and @LOCAL 11
2.3.5. Detailed Description of Remote Terminal Connection 13

2.”. Remote File Access 15

2.5. Data Transfer 18
2.5.1. General 18
2.5.2. WRQI (MON 163) 21
2.5.3. Example of a foreground data transfer program 22

3. COMMANDS FOR REMOTE JOB ENTRY (RJE) 25

3.1. General 25

3.2. @APPEND—REMOTE 27

3.3. @LIST-REMOTE-QUEUE 27

3.”. @DELETE-REMOTE—QUEUE-ENTRY 27

4. XMSG - TASK—TASK MESSAGE SYSTEM (OPTION) 29

“.1. Introduction 29

ND-60.13H.02

Section Page

”.2. Single— and Multi—machine XMSG 30.

”.3. User Function Specifications 31
H.3.1. Manipulating Ports 32

1.1. Opening Ports (XFOPN) 32
1.2. Closing Ports (XFCLS) 32
1.3. Port Status (XFPST) 33
1.4. General Status (XFGST) 33
1.5. Disconnect (XFDCT) 33

M.3.2. Manipulating Message Buffers 3H
2.1. Reserving Message Buffers (XFGET) 3H
2.2. Defining a User Buffer (XFDUB) 35
2.3. Releasing Message Buffer (XFREL) 35
2.“. Writing into Message Buffers (XFWRI) 35
2.5. Writing only the Header of a Message Buffer

(XFWHD) 36
2.6. Reading from a Message Buffer (XFREA) 36
2.7. Reading only the Header of a Message Buffer

(XFRHD) 36
2.8. Sending Message (XFSND) 37
2.9. Returning a Message (XFHTN) 39
2.10. Receiving Next Message (XFRCV) 39
2.11. Receive and Read (XFRRH) ”O
2.12. Message Status (XFMST) ”O
2.13. Set Current Message (XFSCM) NO

u.3.3. Indirect Data Transfer H1
3.1. Define Indirect Buffer (XFDIB) M1
3.2. Read/Write Indirect Buffer (XFRIB/XFWIB) N1

u.u. XROUT Service Specifications M2
D.N.1. XROUT Message Formats 43

1.1. Integer NM
1.2. ASCII Strings 4H

M.4.2. Services in Detail NM
2.1. Name a Port (XSNAM) NM
2.2. Create Connection Port (XSCRS) M4
2.3. Increment Free Connection Count (XSNSP) H5
2.M. Send Letter (XSLET) 45
2.5. Return a null status message (XSNUL) 46
2.6. Get Name from Magic Number (XSGNM) 46
2.7. Get Name of Port from Port Number (XSGNI) H6
2.8. Clear name (XSCNM) M6
2.9. Find Remote Name (XSREM) H7
2.10. Get Magic Number (XSGMG) M7
2.11. Clear Magic Number (XSCMG) ”7
2.12. Define Remote Name (XSDRN) 48
2.13. Define Machine Routing (XSDMC) 48
2.1”. Get Routing Information for a Machine (XSGMC) H9
2.15. Starting up / Stopping a Multi-Machine Link -

XSLKI 50
2.16. Trace Initialise - XSTIN 50
2.17. Trace Close - XSTCL 50

2.18. Define Trace Conditions — XSDTC 50

ND-60.13u.02

xi

Section Page

4.4.3. NPL Routines for Message Formatting 51
3.1. XBINI — Initialise Buffer 51
3.2. XBAST XBARC - Append String Append Record 51
3.3. XBAIN, XBADB — Append Integer 51
3.4. XBLOC - Locate Parameter 51

4.5. System Function Specifications 52
4.5.1. XFPRV - Make Calling Task Privileged 52
4.5.2. XFSIN - Initialise for System Functions 52
4.5.3. XFABR - Absolute Read from POF 52
4.5.4. XFABW — Absolute Write to POF 53
4.5.5. XFMLK - Message System Look 53
4.5.6. XFMUL — Message System UnLock 53
4.5.7. XFM2P - Convert Magic Number to Port and Machine

Number 53
4.5.8. XFP2M — Convert Port Number to Magic Number 53
4.5.9. XFCRD — Create Driver 54
4.5.10. XFSTD - Start Driver 54

4.6. The XMSG-COMMAND Background Program 55
4.6.1. Output Formatting 56

1.1. LIST—FORMATS 56
1. 2. FETCH-FORMAT 56
1. 3. EDIT-FORMAT 56
1. 4. SAVE-FORMAT 56
1. 5. DUMP-FORMATS 56

4. 6. 2. Commands that List XMSG Tables: 57
2.1. List—Tasks 57
2. 2. List-Ports 57
2. 3. List-Messages 58
2. 4. List-Names 58
2. 5. List-Routing—Info 58
2. 6. List-Links 59
2. 7. List-Frames 59
2. 8. List-Command-Prog-Variables 59
2. 9. Dump-Memory 6O

6.3.
1Modifying

the Routing Tables and Controlling Links 60
3.. Define—Local—Machine 60
3. 2. Define-Machine-Route 60
3.3. Start-Link/Stop Link 60

4.6.4. Commands for Debugging Systems that use XMSG 61
4.1. SAVE—POF and FETCH-POF Commands 61
4. 2. TRACE Generation Commands 61
4.2.1. OPEN—TRACE 63
4.2.2. ENABLE—TRACE 63
4.2.3. DISABLE—TRACE 63
4.2.4. CLOSE—TRACE 63
4.3. Commands for Dumping a Trace File 63
4.3.1 DUMP-TRACE—OPEN/DUMP-TRACE-CLOSE 63
4.3.2 NEXT-TRACE and PREVIOUS-TRACE 64

4.6.5. Commands that act like normal XMSG Function Calls 65
4.6.6. Commands affecting Buffers in XMSG—COMMAND 67

6.1. List-buffer 67

ND-60.134.02

xii

Section Page

6.2. Fill—output—buffer 67
6.3. Clear-buffer 67
6.”. Append-integer 67
6.5. Append—string 67
6.6. Buffer—ready 68
6.7. Decode—buffer 68
6.8. Generate-, Check-Pattern 68

”.6.7. iscellaneous Commands 69
7.1. Mode 69
7.2. Set—port 69
7.3. Get-error—message 69
7.”. Debugprint-on/-off 69
7.5. Monitorcall-on/-off 70
7.6. Help 70
7.7. Disconnect 70
7.8. Exit 70

”.7. Calls from Drivers/Direct Task 71

”.8. Error Handling 71

”.9. Loading Instructions 72
”. 9. 1. Assumptions prior to loading 72
”. 9. 2. Generating XMSG 72
”.9 3. Loading XMSG 73
”.9. ”. Starting XMSG 7”
”.9. 5. Stopping XMSG 7”

”.10. Overview of files on ND-1013O 75
”.10.1. System Definition Files 75

1.1. XMSG-SYS—DEF - XMSG System Definition file 75
1. 2. XMSG-VALUES - Function and Error Symbols 75
1. 3. XMSG—SYSTABS - XMSG Internal Table Descriptions 75
1.”. XMSG-POFTABS - XMSG Internal Table Descriptions 75
1.5 XMSG—SIN-DATA — SINTRAN Table Descriptions 76

”. 10.2. XMSG-XROUT:SYMB - The Routing Program 76
”. 10.3. XMSG-POFCODE23YMB - The POF Kernel Code 76
”.10.”. XMSG-MULTI—MC - The Multi-Machine XMSG Code 76
”. 10. 5. XMSG— COMMAND: PROG - The Command Program 76
”. 10. 6. XMSG-LIBRARY. BRF - Library Routines 76
”. 10. 7. Mode Files 76

7M.XW@%MMMMWE %
7. 2. XMSG-LOAD: MODE 76

”.08. XMSG Generation Definition Symbols (XMSG-SYS—DEF) 77

5. HIGH LEVEL DATA LINK CONTROL (HDLC) DMA (OPTION) 79

5.1. Introduction 79

5.2. The Monitor Call HDLC (MON 201) 79

ND—60.13”.02

)(iii

Section Page

5.2.1. HDLC Monitor Call Format 81
1.1. Calling HDLC in NPL 81
1.2. Calling HDLC from FORTRAN 82
1.3. The use of Device Numbers in Mon HDLC 82

5.2.2. Send DCB (SDCB) 8n
5.2.3. Receive DCB (RDCB) an

5.3. The Driver Control Block 8H
5.3.1. The Driver Control Block Format 85
5.3.2. HDLC-Driver Commands 85

2.1. Device Clear (DEVCL) 86
2.2. Device Initialization (DEVINI) 86
2.3. Device Reset (RESET) 87
2.“. Transfer Frame Data (TRANS) 87
2.5. Device Status (DEVSTAT) 88

5.4. How to Program the HDLC-Driver 89
5.9.1. The Input LDN 89
5.9.2. The Output LDN 89

6. X.21 COMMUNICATION PROTOCOL 91

6.1. Introduction 91

6.2. The Monitor Call X.21 (MON 201) 91
6.2.1. X.21 Monitor Call Format 93

1.1. Calling X.21 in NPL 93
1.2. Calling X.21 from FORTRAN 93
1.3. The Arguments of MON X.21 9H
1.”. The use of Device Numbers in Mon X.21 9H

6.2.2. Send DCB (SDCB) 95
6.2.3. Receive DCB (RDCB) 95

6.3. The X.21 Driver Control Block 95
6.3.1. The X.21 DCB Format 96
6.3.2. The X.21 Commands 97

2.1. Connect (CONNECT) 97
2.2. Disconnect (DISCONNECT) 98
2.3. Call (CALL) 98
2.”. Ready (READY) 98
2.5. Clear (CLEAR) 99
2.6. Get Charging Information (GCHAR) 99
2.7. Redirection of Calls (RDIRC) 100
2.8. Get Status (GSTAT) 100
2.9. Return when call terminated 100

6.”. Writing HDLC Driver for X.21 Network 101

ND—60.134.02

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

t

APPENDICES

MAGTP Functions...........................102

XMSG —Summary Description of Functions
and Parameters.................u....109

XMSG -Example of a Driver using
Message System......................112

XMSG -Symb01 Table.-noocoaooo-aucoIIIIuI-c115

HDLC -Error Codes from the
Monitor Call HDLC...................121

HDLC -Status Codes in the DCB.............123

HDLC -Example of use......................125

X21 -Facility Bits........................129

X21 -Call Progress Signals................131

Error Codes...............................133

X21 —Status Codes in the DCB..............135

Index.....................................139

NI)-60.134.02

SIII COMMUNICATION GUIDE

ND-60.13H.02

2 SIII COMMUNICATION GUIDE
INTRODUCTION

1. INTRODUCTION

Most SINTRAN III users handle local input—output through the file
system. This manual is a guide to the data communication functions
which can be used on the local peripheral equipment. It contains
documentation on the functions available in the SINTRAN III
communication software.

All commands are available for ordinary time—sharing users unless
otherwise noted. Similarly, all monitor calls are public unless
otherwise stated.

Chapter 1 gives an introduction to the manual.

Chapter 2 is a guide to the NORD-NET communication system. NORD—NET
enables a user in the local computer to communicate with other NORD
computers through a distributed data network. Resource-sharing and
inter—program communication are implemented, forming an extension to
the SINTRAN III operating system.

The NORD-NET architecture is based on node—to-node connections. There
is no master/slave relationship imposed in the architecture. This
makes it possible to arrange different types of network structure to
suit various user requirements. The network organization may be
hierarchical, ring or star.

Chapter 3 is a guide to Remote Job Entry (RJE) commands in SINTRAN
III. This is implemented as software packages for emulating RJE to
CDC, Honeywell, IBM, SIEMENS and UNIVAC equipment.

The RJE packages together with packages for interactive terminal
communication on IBM 3270, Honeywell VIP 7750 and Univac UTS-HOO
constitute NORD Intelligent Data Terminals (IDT software packages).

Chapter A is the complete documentation on XMSG task—task message
system (Also called X—message.) A task can be a foreground or
background program, a direct task or a peripheral equipment driver.
The main features of X-message are:

Data Transfer The transfers are message oriented, i.e. data is
transferred in units of variable length messages. Security is provided
by making it impossible to overwrite the data while it is being
transferred. Many tasks may be talking to one receiver (Fan in).

Addressing Ports may be named by a string of ASCII characters. The
access is checked for validity. Abnormal situations, such as abort,
escape, etc. will be handled prOperly.

Syncronization A process may wait for a message or it may be woken up
upon arrival of the next message (MON RT).

General All functions are available from foreground and background
programs, direct tasks and drivers.

XMSG assimilates the functions of internal devices.

ND-60.13u.02

SIII COMMUNICATION GUIDE 3
INTRODUCTION

Chapter 5 describes the monitor call for the HDLC driver. HDLC stands
for High Level Data Link Control, a data transmission format defined
in the ISO 3309 standard. The driver makes it possible for application
programs to use the HDLC interface (ND—720 or ND-730).

Finally, chapter 6 describes the monitor call for the X.21
communication protocol. It makes use of the HDLC driver, and makes
calling and searching on a line switched network easy for the user.

The X.25 procedure on packet level switching is described in a
separate manual.

ND-60.13N.02

SIII COMMUNICATION GUIDE
NORD-NET

ND-60.134.02

SIII COMMUNICATION GUIDE 5
NORD-NET

2. NORD—NET

2.1. Introduction

The NORD—NET communication system is an optional part of the SINTRAN
III I/O system. Its purpose is to provide communication between two or
more independent NORD computer systems. The communication can be
divided into four categories.

1. Remote terminal communication. A user of a local terminal may use
commands and run programs in the remote computer as if his terminal
was connected directly to that computer.

2. Remote file access. Files on a remote computer may be accessed by
commands or monitor calls as if they were local files. However, then
only the functions for open, close, read and write are available

3. Data transfer. A remote and a local program may communicate
directly through the channels in a fashion similar to using an
internal device.

4. Remote load. The remote computer may be loaded from the local
computer. Only main memory can be loaded.

ND-60.134.02

6 SIII COMMUNICATION GUIDE
NORD-NET

Since all communication occurs on serial lines, the line transmission
speed may be a limiting factor.

local remote

: channel 0
16 r channel 1
channels . . .

: channel 15

¢—- channel 0
16 1 channel 1
channels . . .

: channel 15

Figure 2-1 A Communication Line

This chapter describes points 1 to 3. Remote load is described in the
SINTRAN III SYSTEM SUPERVISOR manual. Besides Remote Load, the system
supervisor is responsible for starting and stopping the communication
on a line (use @START-COMMUNICATION and @STOP-COMMUNICATION).

User RT can associate a password with remote file access (@REMOTE-
PASSWORD). A further guide to this command can be found in the manual
SINTRAN III REAL TIME GUIDE (ND—60.133).

2.2. The Communication Line

2.2.1. General

The communication line can be divided logically into a maximum of
sixteen channels each way (figure 2-1).

They are numbered from zero to fifteen. If more channels are required,
another communication line must be added.

Each channel is provided with a buffer on either side. A buffer is
scheduled for transmission either when it is full or when a break
character is written to the buffer.

The set of break characters may be choosen by the user.

ND-60.13H.02

SIII COMMUNICATION GUIDE 7
NORD—NET

Information is transmitted in units called communication frames.
Acknowledgement for correctly received frames are transmitted together
with the frames returned to the sender.

Up to four frames may be transmitted without receiving
acknowledgement. This is done by dividing the buffers into four
groups.

For each group, the buffer is not discarded until acknowledgement for
this group is received. The buffers for sending are always directed to
the four groups in a cyclic manner to ensure a correct sequence.

On the receiving side, they are distributed in the same cyclic manner.

When a buffer is transmitted, it is preceded by a buffer header and
followed by a cyclic check sum.

A logical device number (LDN) is assigned to the channel on either
side. It may be reserved, released, and accessed in a similar manner
to any other device in SINTRAN III.

The LDN on either side may be of a different value (figure 2-2).

The various channels can be interrogated by the commands shown in the
next section.

A channel with an associated background program can only be used for
remote terminal communication.

Such channels are marked with "BACKGROUND" in the report made by these
interrogation commands.

A channel without a background program is used for remote file access
and data transfer.

local remote

LDN=600 : IDN=640
LDN=601 : LDN=641

LDN=617
' . '

: IDN=657

LDN=620 : IDN=660
LDN=621 = LDN=661

LDN=637 : LDN=677

Figure 2-2 Example of Logical Device Numbers in NOBQZNET

ND-60.13H.02

8 SIII COMMUNICATION GUIDE
NORD—NET

2.2.2. @COMMUNICATION—STATUS

@COMMUNICATION-STATUS <line number>,<output file>

Report the status of the <line number> on the <output file>. The
report contains logical device numbers, background vs. data channels,
error information and the current communication state.

2.2.3. @COMMUNICATION—LINE-STATUS

@COMMUNICATION-LINE-STATUS <line number>

This command produces an abbreviated report containing only error
information and the current communication state.

2.3. Remote Terminals

2.3.1. General

‘------local -—-—-—-—-—-¥ §———————— {Quote ________,

channel
TERMINAL-l f t

0

renote remote operator
TERMINAL-2 proces- inter— communi-

sor face cation
. . . and

back-
channel ground

TERMWAIrn t = system
1

Figure 2-3 Remote Terminal Processing

ND-60.13N.O2

SIII COMMUNICATION GUIDE 9
NORD—NET

The channels marked BACKGROUND in the report, mentioned above, can be
connected to a remote processor. These channels are used for
communication between a terminal user in a local SINTRAN III system
and the operator's communication and background system in a remote
SINTRAN III system. Figure 2-3 shows the main parts of the NORD—NET
implementation.

A terminal user may connect to the remote processor by typing the
command @REMOTE <line number> on his terminal. A free channel will be
allocated, if available, to the terminal. The user may now LOG IN on
the remote system. "rub—out" or "del" puts him temporarily back to the
local command processor. The channel is still allocated to the
terminal. Another @REMOTE with the same <line number> puts him back to
the remote command processor. If he instead types @LOCAL the channel
will be disconnected. (A more detailed description is found in section
3.3.5.

For example:

local processing

@REMOTE 1
CHANNEL NUMBERS: LOCAL -6OO REMOTE -600
"escape"
15.5”.20 18 APRIL 1980
ENTER OLE
PASSWORD:
OK
R@

remote processing

R@LOGOUT
16.11.3H 18 APRIL 1980
-EXIT—
"rub-out"

@

local processing

Remote command mode is indicated by R@ as prompt characters instead of
only the @ alone.

ND-60.13u.02

10 SIII COMMUNICATION GUIDE
NORD-NET

A user can be connected to only one line at a time. Thus, if he is
connected to remote line 1 and wants to change to remote line 2, it is
done as follows,

1. Log out as remote user (R@LOGOUT).

2. Type "rub-out".

3. Type @LOCAL.

4. Type @REMOTE 2

5. Log in as remote user on line 2.

Typing "rub-out" to the remote command processor while in remote
command execution mode or remote user mode causes a return to local
mode, but the remote processing will continue. The terminal output
will be saved and displayed when the user returns to remote command
processing.

2.3.2. @REMOTE

@REMOTE <line number>
Connect terminal to remote command processor. If no remote connection
exists for this terminal (no @REMOTE since last @LOCAL) a free channel
is found and the terminal is connected to the background processor of
the remote computer. If a remote connection already exists, the
terminal is connected to this channel. In the latter case, @REMOTE has
the reverse function of "rub—out".

2.3.3. @LOCAL

Disconnect remote connection. The communication channel used by the
remote connection is released and may be used for other purposes.

ND-60.13u.02

SIII COMMUNICATION GUIDE
NORD—NET

2.3.4. Example of @REMOTE and @LOCAL

In this example, @REMOTE and RUB-OUT
disconnect from the remote system.

"escage"
15.25.56 5 SEPTEMBER 1980
VERSION 80.02.01A
ENTER TQM
PASSWORD:
OK
@DATCL
15.26.12 5 SEPTEMBER 1980

(4113.9
1 TOM

38 GROUP—U
670 SYSTEM
672 SYSTEM

@REMOTE
CHANNEL NUMBERS: LOCAL -600, REMOTE -600
"escape"
15.25.25 5 SEPTEMBER 1980
ENTER §1§
PASSWORD:
OK
R@DATCL
15.25.39 5 SEPTEMBER 1980

mm
1 RT

670 SYSTEM
672 SYSTEM
38” SYSTEM

R@"rub-out"
VERSION 80.02.01
@DATCL
15.27.03 5 SEPTEMBER 1980
@REMOTE

mg
15.27.01 5 SEPTEMBER 1980
-— EXIT -—
"rub—out"
VERSION 80.02.01
@LOCAL

@_I:0_G_
15.28.18 5 SEPTEMBER 1980
—- EXIT —-

ND-60.13N.02

are

11

used to connect to and

12 SIII COMMUNICATION GUIDE
NORD—NET

@LOGCUT; terminate remote connection
l . Local terminal

IL

11!

logged out

ESCAPE;
local
log in

corrmands ;
@REMOIE m; , 1' local processing
establ.
*—————-2. Local caImand @IDCAL; term. remote con.
communi— node =
cation +——————
on line D
m @REMOIE n; O

establish
cannunication N
on line n @LOCAL; 0

terminate 'I'
ramte
connection U

"r.”b o‘lt" :

3. Remote can- ————p 6. Local conmand
munication logged mode, channel is
out 4——-—— ,connected

@REMOJIE n..escape"; It It
remote R@LOGCIJT;
log in log out

remote comnands;
terminal local processing

commands;
rennte

1'proces— "rub-out"
sing ——b 4. Remote com— ——-—-—r 5. Local command

mand mode mode, channel is
(logged in) 4———— connected —-
' @RHVIOIE n

R@REMOIE i; as;
connect to next local
remote system processing

Figure 2—4 Remote Processing, State Diagram

ND—60.13H.02

t3
01¢:

P3(DZZ

C)EJ

SIII COMMUNICATION GUIDE 13
NORD—NET

2.3.5. Detailed Description of Remote Terminal Connection

This section is a thorough description of the states of remote
terminal connection.

The state diagram of remote terminal connection is shown in figure 2-
4. The diagram should be compared to figure 2—4 in the SINTRAN III
TIME—SHARING/BATCH GUIDE.

State 1 of figure 2-4 is equivalent to state 1 of figure 2—4.

State 2 of figure 2—5 is equivalent to the other states of figure Z-H
except the response to @REMOTE.

This command establishes communication by reserving a free channel ,if
any. The state is changed to 3.

Normally, the user proceeds to state N by logging on remotely.

All commands will now be processed on the remote system. Typing "rub-
out" causes a transfer to local command mode, state 5.

Note that "rub-out" may be entered while in remote command processing
mode or remote user mode.

This causes any remote processing to proceed as an independent process
while the next commands are processed locally.

Any remote terminal output during state 5 will be collected and
displayed when returning to state 4.

Another @REMOTE n command will cause a transfer to remote command
mode, state 4, using the same channel as before.

In state 5 it is possible to terminate the remote connection (@LOCAL
or @LOGOUT), but this should be avoided. The remote processing may be
left in an indeterminate state. Instead, go back to state 3, type
"rub-out" to change to local communication, and type @LOCAL to
terminate the remote connection. (@LOGOUT will also terminate the
connection.)

State 6 is equivalent to state 5 with respect to handling @REMOTE n.
The state is changed to remote communication, state 3, using the same
channel as before.

ND—60.13H.02

14 SIII COMMUNICATION GUIDE
NORD-NET

Nesting of remote connections is performed in state M by typing
another @REMOTE m command. It could even be a remote connection back
to the local system.

This is necessary for the type of processing shown in figure 2—5.
Here, the user runs a remote program which uses one or more files in
the local system.

The session starts with the first @REMOTE n command, establishing the
interactive dialog on channel a. The user must then establish channel
b by means of a @REMOTE m command back to the local system.

Then log onto the local system and finally type "rub-out" to get back
to the remote system. The user may now start the remote program
(program x) which can be run either in foreground or background.

The program will use a third channel for data transfer (channel 0)
while channel b will be used for administration.

Transfer of data can only occur directly between two systems which
have a direct connection.

If system A connects to system B and B connects to system C, it is
possible to connect to B, log in on B, connect to C and log on to C.
However, any data transfer from A to C must first be made to B and
then to C.

An intermediate file or program in B will take care of this problem.

channel a; interactive

channel b; admini—
stration

local —6 remote system
terminal <—» system containing

‘—T

program x

channel c; one extra
channel pr. file

disk oon- opened in the local
taining system
file a

Figure 2—5 Remote Program Using a Local File.

ND-60.13H.02

SIII COMMUNICATION GUIDE
NORD-NET

2.M. Remote File Access

Files on a remote NORD system may be opened
system. Only open, close, input and output functions are permitted
remote files. The communication channel to
prefix to the file name. To open a remote
program, the user must be logged in on both
file from a foreground program, the password
system must be set by the @REMOTE-PASSWORD
example, the local file LFIL is read by QED and written to the

be used is CHANNEL-1 and must have beenfile RFIL. The channel to
defined as a peripheral file by user SYSTEM

15

and closed from the local
on

be used is specified as a
file from a background
systems. To open a remote
of user RT on the remote
command. In the following

remote

(@SET-PERIPHERAL-FILE).
LFIL is owned by user PER and RFIL by user OLE.

The
at the end of this section.

"escape"
12.1.06 28 AUGUST
ENTER BER
PASSWORD:
OK
@REMOTE
CHANNEL NUMBERS:
"escape"
12.10.12 28 AUGUST
ENTER 9g
PASSWORD:
OK
R@"rub—out"
@9_E2
QED 3.8
*R LFIL
2N80 WORDS READ
*W CHANNEL-1.RFIL
2480 WORDS WRITTEN

*_E_X
@REMOTE
EMT
12.12.0H 28 AUGUST
-— EXIT -—
"rub-out"
@LCE
12.12.15
—— EXIT --

1980

LOCAL - 600, REMOTE - 600

1980

1980

18 AUGUST 1980

ND—60.134.02

use of CHANNEL-1 as a prefix to the remote file name is explained

16 SIII COMMUNICATION GUIDE
NORD—NET

Note that when the remote file is accessed, the own user name is the
name used when logging in on the remote system. The file RFIL is
expected to be among the files owned by user OLE or user SYSTEM on the
remote system.

When processing the command *w CHANNEL-1.RFIL, two channels are used.
The first is the one allocated to commands. The second is the channel
corresponding to the peripheral file name CHANNEL—1.

The next example is a compilation in the local system. The FORTRAN
source file LFIL is compiled. The compiler listing is output to the
remote line—printer and the object code is output to the new remote
file OBJ:BRF belonging to user OLE.

"escape"
12.25.18 28 AUGUST 1980
ENTER BEE
PASSWORD:
OK
@REMOTE
CHANNEL NUMBERS: LOCAL - 600, REMOTE - 600
"escape"
12.25.30 28 AUGUST 1980
ENTER 9L5
PASSWORD:
OK
R@"rub-out"
@m
NORD-1O FTN COMPILE
$COM LFIL,CHANNEL—1.L-PLCHANNL—Z."OBJ"
189 STATEMENTS COMILED, OCTAL SIZE : 3122
CPU—TIME USED IS 6.9 SEC.

m
@REMOTE

mag
12.32.31 28 AUGUST 1980
—- EXIT -—
"rub-out"
@fl
12.32.UO 28 AUGUST 1980
-— EXIT --

ND-60.13H.02

SIII COMMUNICATION GUIDE 17

NORD-NET

In general, the syntax of a remote file name is:

<channel name>.<local file name>

Only one level of remote connection can be specified. For ex.:

CHANNEL—1.(PACK—ONE:PER)FILA:SYMB;2
CH-2."FILE—2"
KANALH.(SYS)FTNLIBR:BRF

The file number returned from a remote @OPEN—FILE, OPEN statement or

OPEN monitor call will be the logical device number of the channel as

defined in the local computer. After the file is opened, a remote file

may be accessed by READ and WRITE statements, INBT and OUTBT monitor
calls, etc.

ND-60.13”.02

18 SIII COMMUNICATION GUIDE
NORD—NET

2.5. Data Transfer -

2.5.1. General

Any free channel not dedicated to backgrond programs may be used for
data transfer. The channel will then have a function similar to an
internal device. The only difference is that the sending and the
receiving programs are in two different systems. The following rules
apply:

1. The channel must be reserved by the user programs. The logical
device number on either side is used for reservation.

2. The receiving program asks for input (by using a monitor call or
statement) and is set in a waiting state until data is received
through the channel.

3. The sending program outputs to the channel (by using a monitor call
or statement) and is set in a waiting state under one of the following
conditions:

the receiving program has not asked for input,

a break character is sent,

the buffers available are almost full, or

- a wait acknowledge (WACK) is received from the channel.

The sending program is restarted when a request for input is received
through the channel. The request is sent from the receiving program
when it detects a break character.

A wait acknowledge is sent if the input queue for a channel exceeds a
predefined number of buffers. (The number is defined at system
generation time.) The wait will prevent one channel occupying the
whole buffer pool if the receiver reads data at a lower rate than the
sending program.

A wait acknowledge simulates a break character at the end of the last
transmitted buffer on the channel.

M. The break strategy may be defined by the receiving program. The
strategy is transmitted to the sending system as a special buffer. It
is possible to specify no break is permitted occur.

A buffer will then be transmitted only if it is full or the sending
program executes CLOSE-FILE or IOSET function on the channel. The
break strategy should cause as few breaks as possible in order to
reduce the system overhead.

ND-60.13N.02

SIII COMMUNICATION GUIDE
NORD-NET

The following standard monitor calls may be used on

channel:

RESRV - Reserve channel

RELES - Release channel

INBT - Read a byte

OUTBT - Write a byte

BBINB, M8INB, BUINW - Read 8 bytes

BBOUT, M8OUT - Write 8 bytes

CIBUF — Clear input buffer

COBUF - Clear output buffer

IOSET — On input: function : —1: clear input buffer
—2: set break strategy

0n output: function: -1: send last buffer

a

-2: clear output buffer
>1000: the receiver will display an

error message corresponding
to (function - 1000).

BRKM - Set break strategy

19

communication

ECHOM - Set echo strategy. The command will only have an effect if the

program on the other side is a remote terminal processor.

MAGTP - Transfer a block of data to or from a communication channel.

RFILE — Read a block of data from a communication channel.

WFILE - Write a block of data to a communication channel.

ND-60.13N.02

20 SIII COMMUNICATION GUIDE

In the following example, data is received from
channel having the LDN : 600:

LDA (REPAR E
MON 122 E RESERVE CHANNEL
LDT (600 %
MON 13 E CLEAR INPUT BUFFER
JMP ERROR E ERROR EXIT
SAA —1 E
MON u E SET BREAK STRATEGY

LOOP, LDT (600 E
MON 1 E INPUT A BYTE
JMP TEST E TEST FOR ERROR

JMP LOOP E

% IF ERROR = 161, NO ANSWER FROM DEVICE,
% THEN TRY AGAIN AFTER 5 SEC. (CAN BE LIMITED
% TO FOR EX. ”0 RETRIES.) THE DRIVER HAS NO
% RETRY FACILITY.
TEST, SAT 161 % T = 161

SKP EQL SA DT % TEST FOR 161
JMP ERROR % NOT 161 - ERROR
LDA (HPAR WAIT 5 SEC.
MON 10” % HOLD
JMP LOOP % TRY AGAIN

Ir

REPAR, (600 E CHANNEL NUMBER
(0 E INPUT BUFFER
(O E WAIT FOR RESERVATION

HPAR, (5 E 5 SEC.
(2 E UNIT OF SECONDS

)FILL

NORD-NET

the communication

The input buffer should always be cleared, since the previous program
using the channel may have been terminated abnormally.

ND-60.13H.02

SIII COMMUNICATION GUIDE 21
NORD-NET

The following FORTRAN program will write a record to the channel:

I:RESRV(6OOB,1,0)
I=IOSET(6OOB,1,0,—1)

WRITE(6OOB,10) ...
1o FORMAT(...

The corresponding program to read is:

I=RESRV(6OOB,0,0)

READ(6OOB,10) ...
1o FDMMT(.H

2.5.2. WRQI (MON 163)

Place the calling program in a wait state until a request for input is
received from the remote system. The call is useful in interactive
communication programs when the local echoing should wait until the
receiving program asks for input.

ND-60.13u.02

22 SIII COMMUNICATION GUIDE
NORD-NET

2.5.3. Example of a foreground data transfer program

In this example, two foreground programs will be seen. A sending
program, FIRSTR will run in the remote system and a receiving program,
FIRST, will run in the local system:

FIRSTR

- Read records of 5 characters from a file (RT)SEND and send them
through channel 603.

- Terminate when reading EOF from the file.

FIRST

— Read records of.5 characters from channel 603 and write them on the
terminal.

- Terminate when reading EOF.

"escape"
15.18.02 19 OCTOBER 1979
VERSION 78.10.18.B
ENTER RANDI
PASSWORD:
OK
@m
NORD 1O FORTRAN COMPILER FTN—209OF
$COM FIRST111FIRST

1* PROGRAM FIRST,A5
2* CHARACTER IARR*6
3* CALL RESRV(603B,0,0)
u* I=IOSET(603B,0,0,-1)
5* 1 READ(603B,*,END=10)IARR
6* CALL RESV(1,1,0)
7* WRITE(1,*)IARR
8* CALL RELES(1,1)
9* 10 CALL RELES(603B,0)

10* STOP
11* END

11 STATEMENTS COMPILED , OCTAL SIZE: 200
CPU—TIME USED IS 0.5 SEC

1%

ND-60.13H.02

SIII COMMUNICATION GUIDE 23
NORD-NET

@REMOTE
CHANNEL NUMBERS: LOCAL — 600, REMOTE - 600

"escaEe"
15.15.10 19 OCTOBER 1979

VERSION 78.10.18.B
ENTER RANDI
PASSWORD:
OK
My
NORD 1O FORTRAN COMPILER FTN-2090F
$COM FIRSTRI11FIRSTR

1* PROGRAM EIRSTR,A5
2* CHARACTER IARR*5
3* IFILE:2
u* OPEN(IFILE,EILE=’SEND’,ACCEss='R’)
5* CALL RESRV(603B,1,0)
6* I:IOSET(603B,1,0,-2)
7* 1 READ(IFILE,*,END=10,ERR=20)IARR
8* WRITE(603B,*)IARR
9* GO TO 1

10* 20 II=ERRCODE+1000B
11* I=IOSET(603B,1,0,II)
12* GO TO 100
13* 1o I=IOSET(603B,1,0,1003B)
1A* 100 CALL RELES(603B,1)
15* STOP
16* END

16 STATEMENTS COMPILED , OCTAL SIZE: 172
CPU-TIME USED IS 1.0 SEC.
$EAR@AEE

15.15.5H 19 OCTOBER 1979
--EXIT—-
"rub—out"
VERSION 78.10.18.B
@LOCAL

@LOG
15.19.52 19 OCTOBER 1979

—-EXIT--

ND—60.13”.02

24

"escage"
15.19.54 19 OCTOBER 1979

VERSION 78.10.18.B
ENTER BI
PASSWORD:
OK
@RT-LO
REAL-TIME LOADER 78.10.18B

*NREE (RANDI)FIRSTH
NEW SEGMENT NO: 65
*END-LOAD

*Ez
@RT FIRST
@REMOTE
CHANNEL NUMBERS: LOCAL — 600,

"escage"
15.16.u5 19 OCTOBER 1979

VERSION 78.10.18.B
ENTER BI
PASSWORD:
OK
R@RT-LO
REAL—TIME LOADER 78.10.18B

*NREE (RANDI)FIRSTR,,
NEw SEGMENT NO: 111
*END-LOAD
*EX
R@RT FIRSTR

R@LOG
15.17.U9 19 OCTOBER 1979

--EXIT——
"rub-out"

VERSION 78.10.18.B
@LOCAL

@LOG
-15.21.51 19 OCTOBER 1979

-—EXIT-—

PER
PAAL
ESPEN ASKELADD

REMOTE -

ND-60.134.02

600

SIII COMMUNICATION GUIDE
NORD-NET

SIII COMMUNICATION GUIDE 25

COMMANDS FOR REMOTE JOB ENTRY (RJE)

3. COMMANDS FOR REMOTE JOB ENTRY (RJE)

3.1. General

SINTRAN III can be delivered with software packages for emulating RJE

terminals on several large mainframe computers. At present the

available RJE emulators are;

ND-10026 CDC 200 User Emulator, manual ND-60.061

ND-10027 Honeywell GERTS 115, manual ND-60.0u1

ND-10028 IBM HASP Work Station, manual to be issued

ND—10029 UNIVAC NTR (for SINTRAN III/VS), manual ND—60.07O

ND-1003O IBM 2780/3780, manual ND-60.067

ND-10031 UNIVAC DCT 2000, manual ND-60.060

ND-10056 UNIVAC NTR (for SINTRAN III/RT), manual ND-60.070

ND-10057 UNIVAC DCT 2000 (for SINTRAN III/RT), manual ND-60.060

ND—10063 IBM HASP Work Station DMA, manual to be issued

ND—10069 CDC 200 User Multidrop, ND-60.061

These emulators constitute the NORD Intelligent Data Terminals (IDT)

together with the following interactive emulator packages,

ND—10016 IBM 3270, manual ND-60.11u

ND-10059 Honeywell VIP 7750, manual ND-60.100

ND—60.13H.02

26 SIII COMMUNICATION GUIDE
COMMANDS FOR REMOTE JOB ENTRY (RJE)

An emulator is loaded and started as a foreground program by user
SYSTEM. Once the RJE emulator is running any user may append jobs to a
batch queue (in the local computer) in a similar way to local batch.
In general there are three ways in which a SINTRAN III user may run
batch jobs,

1 , he may run local batch as explained in chapter 7 of the manual
SINTRAN III TIME—SHARING/BATCH GUIDE. The jobs contain SINTRAN III
commands.

2 , he may use NORDNET commands to run remote batch in another NORD
computer. These jobs also contain SINTRAN III commands.

3 , he may use RJE commands to submit jobs to a host computer which
is not a NORD computer. The jobs contain commands in the job control
language of the host computer.

Batch jobs can be sent to the remote computer in two ways:

1) e when the emulator is started, a terminal is allocated as the
remote batch console. This is normally terminal 2. The console is
under control of the emulator and the user enters special emulator
commands in order to send remote batch files. The files are not
queued.

2) - a SINTRAN III command permits any time-sharing user to submit
jobs to the remote computer. (User SYSTEM must have started the
emulator from the remote batch console.) The jobs are queued in the
local computer. The commands are shown below.

ND-60.13u.02

SIII COMMUNICATION GUIDE 27

COMMANDS FOR REMOTE JOB ENTRY (RJE)

3.2. @APPEND—REMOTE

@APPEND—REMOTE <remote computer>,<input file>

Append a batch input file to the remote batch queue of a computer. For

ext:

@AP—REM UNIVACIJOB—1

The batch input file JOB-1 is appended to the batch queue of the

remote computer UNIVAC. The file must have read access for user RT.

3.3. @LIST-REMOTE-QUEUE

@LIST—REMOTE-QUEUE <host computer>

List the contents of a remote batch queue. For ex.:

@L-R-Q IBM
1 (SYSTEM)CARD-READER
2 (USER-NAME)IBMJOB

The queue contains two entries, one from the card reader and one from
the file (USER-NAME)IBMJOB.

3.”. @DELETE—REMOTE-QUEUE-ENTRY

@DELETE-REMOTE-QUEUE—ENTRY <remote computer>L<queue entry>

Remove a remote batch input file from the queue for a remote computer.
For ex.:

@D—R-Q—E UNIVAC,JOB—1

The file name JOB-1 is deleted from the queue for the remote computer
UNIVAC.

ND-60.13H.02

28

ND-60.13H.02

SIII COMMUNICATION GUIDE
XMSG - Introduction

SIII COMMUNICATION GUIDE 29
XMSG - Introduction

U. XMSG - TASK-TASK MESSAGE SYSTEM (OPTION)

”.1. Introduction

Many applications require the division of a program system into
separate, asynchronous processes or tasks, that communicate by sending
messages.
This separation may be motivated by security considerations
(separation of work—areas, definition of interface points), by
hardware design (tasks may run in separate machines), by address space
limitations, or simplicity of program development.

We will use the word task to mean a driver, direct task, or RT
(foreground or background) program. The XMSG system allows tasks to
send messages to each other, including handling of memory allocation,
queueing, and task synchronisation.

A task can Open ports through which it can send and receive
information about messages. Data is normally transferred between tasks
via message buffers within XMSG. The sending task first opens a port,
then reserves an XMSG message buffer, transfers his data into that
buffer and finally informs the receiving task’s port that data is
awaiting collection. Reservation and releasing of messages is done
explicitly by the user.

XMSG facilities take two forms: Functions and Services:

XMSG functions are invoked via the XMSG monitor call (200) with
parameters being passed in the registers. The T register indicates the
particular function required with option bits set in its high order
byte when required.

Completion status is returned in the T register, positive (precise
meaning depends on the function) if successful, zero if the operation
was not terminated and negative indicating an error.

The functions are divided into two groups: user functions (of general
interest) and system__£unctions (used mainly by XROUT and XMSG-
COMMAND). The functions in each group are described in the
corresponding sections below: 'User Function Specifications’ and
’System Function Specifications'.

XMSG Services are invoked by sending messages (using functions) to a
standard task called XROUT. The services and method for accessing them
are described in the section ’XROUT Service Specifications' below.

Note that all function, service and error codes are referred to
symbolically. Their values are defined in file XMSG-VALUES (see
Appendix D), which should thus be used as an include file when
compiling the task code. The routine XMERR in XMSG-LIBRARY converts an
XMSG error code in the A-register to a pointer to an explanatory text
returned in the A—register. The text is in ASCII characters terminated
by a quote character (').

ND-60.13u.02

3o SIII COMMUNICATION GUIDE
XMSG — Multi—machine XMSG

”.2. Single- and Multi-machine XMSG

XMSG can be configured in two ways:

Single-Machine XMSG only provides communication between tasks running
in a single ND-100 CPU.

Multi-Machine XMSG (XMSGM) also allows communication (but not indirect
buffer access) between tasks running in a group of ND-100s. The
current XMSG version allows up to 6” machines per XMSGM network.

The following extra concepts are used in Multi—machine XMSG:

A machine is a Processing Unit that runs an independent XMSG kernel -
(i.e. ND-1OO CPU - not PIOC (Programmable I/O Controller) or ND-SOO
which are seen as part of a ND-100 since every PIOC or ND—SOO task
which uses XMSG has a 'shadow' task in the ND-100).

A link connects machines.

ND-60.13u.02

SIII COMMUNICATION GUIDE 31
XMSG — User Function Specifications

4.3. User Function Specifications

In the following descriptions these symbols will be used in the
parameter lists (integer unless specified otherwise):

ISTAT — result status

XFxxx - function code (options are indicated in parentheses)

NBYTES — number of bytes

MESAD - message identifier (in fact an address on the XMSG segment)

UADD — user buffer address

ULEN — length of user data in BYTES

DISP - displacement within message in BYTES

PORTNO - local port identifier. If zero, the most recently Opened
port is assumed. ‘

RPORT - remote machine no and port.

MAGNO - double word containing remote port identifier.

XFWTF - wait flag. Leads to IO-wait until the user specified
function terminates.

XFWAK — wake flag. XMSG wakes up the RT program (RTENTRY) when the
user specified function terminates.

QLEN number of messages currently queued for a port.

DATAO first two bytes of user data.

The calls will be described by showing the NFL code required to use
them. The user must remember that the T—register always contains the
status on return (which should be checked!)

Some functions and services are privileged. Before calling these, a
task must make itself privileged by invoking the XFPRV function
described below in the section 'System Functions'. A short description
of XMSG functions is given in appendix B.

ND-60.13U.02

32 SIII COMMUNICATION GUIDE
XMSG - User Function Specifications

4.3.1. Manipulating Ports

When a task opens ports they are identified locally with a port number
(like a file number). A task identifies other tasks' ports using a 32
bit magic number (MAGNO) which comprises the port number, the machine
number and a random part that guarantees that a port that is closed
and then re-opened does not have the same identifier.

The current XMSG version allows addressing of up to 1020 ports per
machine.

U.3.1.1. Opening Ports (XFOPN)

T:=XFOPN (BONE XFPRM); *MON 2XMSG
A::PORTNO

A port is opened and its number returned to the calling task. If the
XFPRM flag is set, the port is defined as permanently open and will
only be closed by an explicit close of that port, or by a close (-2) -
see XFCLS description below.

u.3.1.2. Closing Ports (XFCLS)

T::XFCLS; A:=PORTNO; *MON 2XMSG

Closes the specified local port. If A:-1, all non-permanent ports will
be closed. If A:-2, all ports, including permanently opened ones, will
be closed.

When a port is closed, all 'non-secure’ messages currently queued for
that port are released, while all ’secure’ messages (as well as the
port current message, if any) are set ’non—secure' and returned to the
sender.

A close (A=-1) is automatically executed whenever a background
processor returns to the command input mode (@..) A close (A:-2) is
automatically executed when a background user logs out or a foreground
program terminates or aborts.

ND-60.134.02

SIII COMMUNICATION GUIDE 33

XMSG - User Function Specifications

4.3.1.3. Port Status (XFPST)

T:=XFPST (BONE XFWTF/XFWAK); A::PORTNO; *MON ZXMSG
A;:RPORT; A::D=:MESAD; X=:QLEN

On return T indicates the message type of the first message in the

queue (or 0, if there are none). If a message is waiting, D contains

its address and A the machine number in the lefthand byte and the port
number in the righthand byte of the port from which the message has
been sent. The X register always contains the queue length. The

message types and wait options are as for the receive function (XFRCV)
described later.

M.3.1.U. General Status (XFGST)

A task may have many open ports, and not be sure to which one the next

message is going to come. XFGST allows him to check all ports:

T:=XFGST (BONE XFWTF/XFWAK); :=PORTNO; *MON 2XMSG
A::PORTNO;

The call parameter PORTNO indicates where the message system should

begin the search (next port after that specified). If we have, for
example, just handled a request received on port N, we can then call
XFGST with A=u to find out whether any requests have been received on

any port. Port H will then be the last to be looked at by XMSG. This
is called ’round-robin’ scheduling of requests. The result parameter
PORTNO contains the port number where the message is waiting.

If the XFWTF flag is set, then the task will go into IO—wait if no

messages are waiting, otherwise a zero status will be returned, and if

XFWAK is set, then the task will be 'woken up’ when the next message
arrives.

H.3.1.5. Disconnect (XFDCT)

T : = XFDCT; *MON 2XMSG

Closes all ports. All XMSG space belonging to the current caller is

released. Special action is taken in the case of current messages, and
messages waiting on the input queue (see XFSND, XFRCV and XFCLS).
There is no return from driver calls to XFDCT (as the driver context
is released by the call).

Note that RT-prOgram abort and logout from background lead to
automatic disconnect.

ND-60.13N.02

QM SIII COMMUNICATION GUIDE
XMSG - User Function Specifications

4.3.2. Manipulating Message Buffers

Message buffers are simply variable length areas which can be reserved
within XMSG's address space. When assigned to a task they remain
reserved for that task until it decides to release them or 'send' them
to another task, at which point ownership is transferred to the
receiving task so that it is able to read the data. Having read the
data, the receiving task may then either release the buffers back to
the pool or use them itself for storing a message to send back to the
first or any other task.

Note that in many of the functions which follow, there is no parameter
required to specify the message identifier (MESAD), for the reason
that a current (default) message buffer is assumed, namely the last
message received on the appropriate port, or, if none, the last
operated on by the task. Sending or releasing a message leads to is
currency being lost. The task may also change the value of the Current
Message with the XFSCM function. A MESAD value of -1 implies the
current message.

Messages cannot be released, read from or written to by tasks other
than the current owner or whilst queued to a port. In the latter case
the message must be received first.

u.3.2.1. Reserving Message Buffers (XFGET)

T:=XFGET (BONE XFWTF/XFWAK); A:=NBYTES; *MON 2XMSG
A::MESAD

MESAD is returned to the caller for possible use in subsequent
functions. The message buffer consists of a descriptor of the current
owner, sender, size, length etc., and a buffer for user data. The
buffer size has a maximum, system dependent size (XSMMX) defined when
the XMSG system is generated.

At any particular time, the total space owned by a task cannot exceed
another limit (XSMTS), which is also defined when the XMSG system is
generated.

Only the current owner of a message is allowed to read or write in it,
give it to someone else or release it.

Specifying a buffer length of 0 bytes implies that only a message
descriptor will be reserved. Privileged tasks can then associate a
physical memory area with that message descriptor by using the Define
User Buffer (XFDUB) function described below.

ND-60.13u.02

SIII COMMUNICATION GUIDE 35

XMSG - User Function Specifications

u.3.2.2. Defining a User Buffer (XFDUB)

This is a privileged function (of XFPRV) that allows a user to

associate a physical memory buffer with a message descriptor

previously obtained by XFGET with NBYTES=O. All XMSG functions then

operate on that message as though the buffer space was part of the

general XMSG buffer, except that XFREL (see below) only releases the
message descriptor and not the buffer area.

This allows special systems or drivers to have full control over their

memory allocation procedures, and to allocate, for example, messages
whose buffer areas lie in a PIOC.

T:=XFDUB; AD::PHYSAD; X::NBYTES; *MON 2XMSG

The function acts on the current message. PHYSAD is the physical (24

bit) address of the start of the buffer, and NBYTES is its length in
bytes.

u.3.2.3. Releasing Message Buffer (XFREL)

A buffer is released thus:

T::XFREL; A::MESAD; *MON 2XMSG

M.3.2.N. Writing into Message Buffers (XFWRI)

After building up a data buffer is its own space, a task transfers the

data buffer into the current message buffer as follows:

T:=XFWRI; NBYTES=:D; AzzUADD; X::DISP; *MON 2XMSG
A:=D=:NBYTES

If the 'whole-message-read' flag has been set (see XFREA) it is
cleared, and the current message length (not the same as size) is set
to 0. If DISP is -1, a value for DISP equal to the current message
length is assumed instead, thus providing an append function. If the
displacement is odd, 1 is added to it, and a zero byte inserted in the
message. If DISP+NBYTES is greater than the message size, an error
return occurs. Otherwise NBYTES bytes are copied from UADD into the
message buffer. If this resulted in the message being longer than

before, the current message length is set to DISP+NBYTES (rounded up
if odd). NBYTES is returned to indicate the actual number of bytes
transferred.

If the user has access to the buffer area directly (either because it

was defined using the XFDUB function or because he has access to

physical memory), he can of course do the read and writes himself.

However, he must then be aware that the 'current displacement' and
'current length’ information in the message descriptor will not be

updated.

ND—60.13u.02

36 SIII COMMUNICATION GUIDE
XMSG - User Function Specifications

H.3.2.5. Writing only the Header of a Message Buffer (XFWHD)

T:=XFWHD; AD::BOto3; X::But05; *MON 2XMSG

This function inserts the A, D and X registers as the first six bytes
of the current message, and increments the length parameter if
necessary.

N.3.2.6. Reading from a Message Buffer (XFREA)

T:=XFREA; NBYTES=:D; A::UADD; X::DISP; *MON 2XMSG
A:=D=:NBYTES

The data is read from the current message starting with displacement
DISP (rounded up to the next word boundary) into the user buffer
specified by UADD (length NBYTES) and NBYTES is set to the actual
number of bytes read. If DISP is -1, the reading of the message is
resumed from the point it had reached on the previous read. If the
last byte in the message is read, the 'whole-message-read’ flag is
set, so that the next XFWRI will reset the current message length.

fig Note that' the displacement is always rounded up to the next word
boundary.

4.3.2.7. Reading only the Header of a Message Buffer (XFRHD)

The first six user bytes of a message can be read using:

T:=XFRHD; A:=MESAD; *MON 2XMSG

With the six bytes being returned in the A, D and X registers (in that
order!). If MESAD is not -1, the specified message becomes the current
task message.

ND-60.13H.02

SIII COMMUNICATION GUIDE 37
XMSG — User Function Specifications

4.3.2.8. Sending Message (XFSND)

When a task wants to 'send' a message to another task, it naturally
must know the 'address' or MAGNO of a port of the task. Since port
numbers (and hence MAGNOs) are allocated by XMSG when the port is
opened, the destination MAGNO must be obtained by an executing task
via XMSG.

Initial contact is in fact made by sending a message to a dedicated
task named XROUT (see services below), to first name one's port(s).
Subsequently a second task may send a 'letter' via one of his ports
also to XROUT, specifying a destination port by name (see XROUT Letter
Service XSLET).. If this name has been previous declared, XROUT will
forward the message to the named port.

The first task can then use the XFMST function to extract the MAGNO of
the second task and hence a direct dialogue can begin. (Note that only
ports expecting letters need to have names. These will usually be
ports providing services - 'server ports'.) XROUT and XFMST are
described later.

In this section it is assumed the sender now knows the destination
MAGNO.

A Message Buffer is ’transferred' from one task to another, thus:
T:=XFSND (BONE option); AD:=MAGNO; :=PORTNO; *MON 2XMSG

The Options are:

XFWTF - Wait flag. This is only significant when using multimachine
XMSG and XFSEC (see below). If set, it implies that the caller
will only be restarted (with proper status) when the message
has been put into the receiver’s input queue.
If not set, secure messages that cannot be delivered, will be
returned as if they had been put into the destination queue
and then the port been closed before the message was received
by the destination task.

ND-60.13N.02

38

XFSEC -

XFHIP -

XFFWD -

XFROU —

XFBNC

A magic
message

SIII COMMUNICATION GUIDE
XMSG - User Function Specifications

Secure message. The message will be returned to the sending
port if it cannot be delivered or if the handling program
terminates while the message is ’current'. Non-secure messages
are discarded and released by XMSG if they cannot be
delivered.

High priority message. It will be chained to the head of the
receiver's queue instead of the tail, following any other high
priority messages already queued.

Forwarding. The sender information in the message will not be
updated, so that to the receiver it will appear that the
message was sent directly from the previous sending port.

Ignore the MAGNO parameter and send the message to the local
routing task (XROUT). The message contents should be
parameters to XROUT. (See section on XROUT services.)

Bounce message. When the receiver issues XFRCV which would
have led to this message being received, it will instead be
returned to the sender.

number parameter of -1 (in both A and D) will direct the
back to the port from which it was last sent.

ND-60.13H.02

SIII COMMUNICATION GUIDE 39
XMSG - User Function Specifications

4.3.2.9. Returning a Message (XFRTN)

The user often needs to write a return status into a message and send
it back to the port from which it came (e.g. replying to a
transaction):

T:=XFRTN; DATAO::D; A::MESAD; X:=PORTNO; *MON 2XMSG

leads to DATAO being written into the first two bytes of the message
buffer, and the message buffer being returned to the port from which
it was last sent. The function options are as for XFSND. (In fact the
function is as XFSND, except that the D register contains two bytes of
data and the A register the message address.)

u.3.2.1o. Receiving Next Message (XFRCV)

When a task is ready to handle the next request, it calls XFRCV:

T::XFRCV (BONE XFWTF/WFWAK); A::PORTNO; *MON 2XMSG
A=:RPORT; A:= =:MESAD; X=:NBYTES

If a message is waiting on the specified port, it is received
(unchained from the message queue) and the A register contains the
sending machine (high-order byte) and port number. The D-register
indicates the message address, X the message length in bytes, and T
the message type (see XMSG-VALUES for values):

XMTNO — Normal message.

XMROU - Message last sent by a routing program (XROUT - see below).

XMTHI — High priority (sent with XFHIP option).

XMTRE - Returned message (sent as secure but could not be delivered).

XMTPS — Pseudo message (not used at present!)

If no message is waiting, then if XFWTF is set, the task is suSpended
until the next message arrives, otherwise a zero status is returned
and, if XFWAK is set, the next transmission to that port will lead to
a 'wake up' (RT - MON 100) of the receiver task. This allows timed—out
waits to be executed.

When the ’wake up' is done, the message is not received, and so the
receive must be repeated. This ’wake up' option can be enabled on more
than one port at a time.
A successful XFRCV leads to the returned message becoming the current
message for that task (and port). If that message is 'secure', and, if
the task aborts before the current message is cleared, the message
will be returned to the sender with 'return' status.
The current task message is cleared by releasing/sending it to someone
else, or receiving another secure message.

ND—60.13H.O2

no SIII COMMUNICATION GUIDE
XMSG - User Function Specifications

H.3.2.11. Receive and Read (XFRRH)

As an alternative to receive, the user can call the XFRRH function,
which receives the next message in the queue (as XFRCV), and also
reads the first two bytes of the message:

T:=XFRRH (BONE XFWTF/XFWAK); PORTNO; *MON 2XMSG
A=:RPORT:: =:MESAD; X=:DATAO

Note that this is identical to the receive function, except that it
returns the first two bytes of user data instead of the message
length.

4.3.2.12. Message Status (XFMST)

XFMST allows one to extract the sender’s magic number, and get the
length and type of a received message:

T:=XFMST; A::MESAD; *MON 2XMSG
AD=:MAGNO; =:NBYTES

The message type is returned in the T—register. (See Receive - XFRCV
above.) It might be expected that this requires an extra call, but:

a) - one often just sends a message back to its sender (XFSND
with MAGNO=-1 or XFRTN) and

b) — one can read the magic number once, and after that use the
machine and port information returned by XFRCV to identify
the sender, whose MAGNO you now have.

U.3.2.13. Set Current Message (XFSCM)

Since many functions implicitly operate on the current message, it is
useful to be able to set the latter:

T:=XFSCM; PORTNO::D; AzzMESAD; *MON 2XMSG

Sets the specified message as task current. If the port number is >:O,
the message is also set as current for the specified port.

ND—60.13H.02

SIII COMMUNICATION GUIDE 41

XMSG - User Function Specifications

M.3.3. Indirect Data Transfer

The amount of space available for message buffers is limited, but the

user may wish to transfer large quantities of data within a machine.

He may then, instead of transfering the data into a message buffer

before sending it, just send a buffer description which allows the

receiver to read or write to this buffer when required.

The data area of the message can be used to include usual information

(describing what the indirect buffer contains, fo example).

These functions can only be used between foreground and/or background

programs running on the same machine. The transfer speed is about 3

milliseconds per kbyte (ND-100)

U.3.3.1. Define Indirect Buffer (XFDIB)

Appends to the message descriptor the information required to allow

the receiver to do indirect read and write operations:

T:=XFDIB (BONE XFWOK); ULEsD; :=UADD; :=MESAD; *MON 2XMSG

The XFWOK (Write OK) flag determines whether the task to which the

message is going to be sent, is allowed to write in the buffer area

described by UADD and ULEN.

This definition of the indirect buffer becomes usable only after the

next XFSND (without forwarding option). It then becomes invalid when

the message is sent further, unless forward option is used. This

prevents a user receiving a message and then defining a buffer area in

the virtual space of the last sender. Closing the sending port also

stops access to the indirect buffer.

U.3.3.2. Read/Write Indirect Buffer (XFRIB/XFWIB)

Allows someone who has received a message containing an indirect

buffer address to read or write to that buffer. (Write only if XFWOK

was specified).

T:=XFRIB/XFWIB; NBYTES=:D; A::UADD; X:=DISP; *MON 2XMSG
A::D=:NBYTES

The data is transferred between the local buffer area specified by the

AD registers and the remote indirect buffer specified by the XFDIB

function, starting with the displacement specified in X, which must be

an even number. The transfer terminates, when either the count is
zero, or the remote buffer is exhausted. NBYTES returned is the number
of bytes not transferred.

ND-60.134.02

M2 SIII COMMUNICATION GUIDE
XMSG - XROUT Service Specifications

4.4. XROUT Service Specifications

As mentioned above, XROUT is a special task that allows tasks to find
each other initially by providing a port naming scheme.

It can be considered to be equivalent to the ’directory enquiries’
service provided by a public telephone company, but with the following
restriction

XROUT will never give you somebody else's telephone number, but will
give him a message sent by you, together with your magic number. The
destination task can then look at your message and ring you back, if
he wants to, and thereby give you his magic number.

XROUT is implemented as a standard foreground-program that runs on a
demand segment, and so is relatively independent of the XMSG
communication system as such.

Tasks communicate with XROUT by sending it messages using the XMSG
function XFSND with option XFROU (instead of a MAGNO).

ND—60.13u.02

SIII COMMUNICATION GUIDE M3

XMSG — XROUT Service Specifications

4.4.1. XROUT Message Formats

The messages that users send to XROUT have a standard format:

Byte O — a serial number returned unchanged by XROUT in order to

allow users who may have many requests outstanding, to

recognise particular replies. Note that messages sent from
XROUT also return a special message type (XMROU) in the T-

register as a result from a receive call (XFRCV or XFRRH),
so that they can be distinguished from messages originating
from other tasks.

In order to comply with the ND standard message format, the

high order bit of byte 0 should be zero.

Byte 1 - the service number (symbol XSxxx) of the service being
requested. XROUT overwrites this with the return status
from the request: 0 is OK, whilst other values are errors
as defined by the XR... symbols (of. XMSG-VALUES - e.g.
XRISN=1 — illegal service number). Note: XROUT service
values and result/error codes are always in the range

0..127, so that the user may set the high-order bit (bit 7)
to indicate user services and/or result statuses. The

routine XMRER in XMSG—LIBRARY takes as input a routing
error code in the A-register and returns a pointer in the
A-register, to an error message containing ASCII characters
(terminated by a quote character).

Byte 2-3 - length of remainder of message in bytes. Followed by a
sequence of parameter blocks.

Each parameter block has the form:

Byte 0 - Parameter number and type (0 means skip this byte to allow
for fill). Integers have positive values, strings negative
(two's complement of parameter number).

Byte 1 — Length of parameter in bytes.

Byte 2 ... Parameter data.

The number and type of parameters is dependent on the particular
service. All parameter blocks must start on even byte boundaries in

the message (use zero fill). NPL routines are provided to allow the

building of service messages in a user buffer, which can then be

written to a message buffer (XFWRI) and sent (XFSND). The message sent
to XROUT must be big enough for the reply, if the latter is longer

than the request.

ND—60.13”.02

nu SIII COMMUNICATION GUIDE
XMSG - XROUT Service Specifications

The parameters in sections u.u.1.1 and H.U.1.2 are used.

M.4.1;J. Integer

Since messages will be sent between machines with different word
lengths, integers will be treated as signed, so that the sign bit will
be extended if necessary. This allows the sender to decide how much
space he wishes to use in the message for an integer, and the user to
take appropriate action when receiving.

u.u.1.2. ASCII Strings

The length is defined by the parameter length. If a fixed length
record is required, the record will be filled up with blanks.

H.M.2. Services in Detail

The following list (sections U.M.2.1 through H.H.2.18) of services is
tentative, and will most certainly be extended later. The symbolic
names XS... are defined in the XMSG-VALUES file.

u.u.2.1. Name a Port (XSNAM)

In order for a port be named, this name must be declared to XROUT.
This is done by the XSNAM service with the following parameters:

1 — Identifier (type string)

If an open port already has the specified name, an error status is
returned.
The sending port is then given the specified name. If it previously
already had a name, the port is renamed with the new name.
The maximum name length accepted can be defined when the XMSG system
is generated (symbol XSNLW in XMSG-SYS-DEF, default=32 bytes).

4.4.2.2. Create Connection Port (XSCRS)

Parameters:

1 - Identifier (type string)
2 - Max no of connections accepted (type integer)
3 - Uniqueness flag (type integer)

This service is very similar to XSNAM, but allows XROUT to control the
number of users that a port can handle simultaneously, and even
distribute users among servers.
XROUT first handles the message like an XSNAM service request, except
that unless the uniqueness parameter is specified and is non—zero,
connect ports are allowed to have identical names. It then sets a
counter (the free connection counter) associated with that port to the
value specified in parameter 2. For remainder of specification, see
Letter service (XSLET) below.

ND—60.13H.02

SIII COMMUNICATION GUIDE ”5
XMSG - XROUT Service Specifications

4.4.2.3. Increment Free Connection Count (XSNSP)

Parameter:

1 — No of new free connections (type integer)

After opening a connection port (see XSCRS above), a task can later
increment the free connection count (when connections become
available) by using the XSNSP service.

N.H.2.N. Send Letter (XSLET)

This service is used to contact a remote port. The parameters used by
XROUT is:

1 — Port or Connection Name (type string)
2 - Machine name (type string)

If parameter 2 is specified, XROUT looks this up in the name table,
and if this has been defined as a remote name (see define remote name
below), forwards the letter to the XROUT in the specified machine.

Otherwise XROUT extracts the identifier and looks up the string in its
name table. If a match is found, XROUT looks at the port type. If this
is a normal named port (named using the XSNAM service), the whole
message is forwarded (function XFFWD) to the matching magic number.

If it is a connect port (named using XSCRS), XROUT looks at the free
connect count and if greater than zero, it decrements it and forwards
the letter. If not it tries to find another port with the same name.
If no match is found, the function code is set to an error value, and
the message returned to the sender.

The remainder of the message, can contain data for the receiving task
(user name, password,) to allow the server to check that the
sender is entitled to use that service, before replying to him and
thereby giving the caller his magic number. If the server wants to
reply to the requester without giving away his own magic number, he
should reply with the forward option (XFFWD).

ND—60.13H.02

A6 SIII COMMUNICATION GUIDE
XMSG - XROUT Service Specifications

M.U.2.5. Return a null status message (XSNUL)

XROUT returns a message of two bytes containing the reference number
and 0 (used for testing/benchmarking).

M.4.2.6. Get Name from Magic Number (XSGNM)

Any XMSG user can obtain the name of a given port by sending a message
containing the magic number (integer) as parameter 1. The return
message will contain the port name appended as parameter 2 (type
string), if there was space in the message (make sure there is
enough!)

M.4.2.7. Get Name of Port from Port Number (XSGNI)

Privileged callers may obtain the name of a given port by sending a
message containing the machine number and the port number as parameter
1. XROUT will return the name of the port with the least machine
number/port number greater than or equal to the input parameter. The
port's machine number and port number are returned as parameter 1 and
the name as parameter 2. If no port was found satisfying the above
conditions, the first parameter is zero.

H.N.2.8. Clear name (XSCNM)

When a name's validity has expired, the clear name service can be used
to remove the specified name from the name table.

Name clearing is also done automatically by XROUT when it notices that
a port has been closed.

Other machines that have fetched the current port’s magic number (see
XSREM below) are also informed when the port is closed.

ND—60.13H.02

SIII COMMUNICATION GUIDE ”7
XMSG - XROUT Service Specifications

M.H.2.9. Find Remote Name (XSREM)

In multi-machine XMSG configurations, a local XROUT must be told
explicitly to go and find a remote name. A user process does this by
sending an XSREM request to his local XROUT, who then contacts the
remote XROUT to ask for the target port’s magic number, which it then
enters in its own tables. Note that the magic number is not returned
to the user.

This 'Find Remote Name' request only needs to be done once - at system
initialisation, but it must be done after the remote process has
opened its port and named it locally using the XSNAM service described
above.

Parameters:
1 - Local name (string)
2 - Remote name (string)
3 — Remote machine number (integer)

The local name is the name by which the port can be referred to (after

completion of the XSREM request) locally, whilst the remote name is
that which will be sent to the remote XROUT in order to fetch the
magic number, and so should be the name used by the remote task when
naming its port. A user may normally set the local name the same as
the remote name, but cannot, where this would cause a name conflict.

4.3.2.10. Get Magic Number (XSGMG)

This is a privileged service, which is used between XROUTs in order to

implement the XSREM service described above. It returns the magic
number for a particular name, and implies that the remote XROUT should
inform the calling XROUT when the port is closed (using the XSCMG
service described below). Each XROUT remembers which remote XROUTs
have got each port's magic number using a bit map of 256 bits which is
part of each name record.

Parameters:
1 - Name (string) Result:
1 - Magic Number (integer)

M.U.2.11. Clear Magic Number (XSCMG)

This is another privileged service used for XROUT to XROUT
communication and implies that the specified magic number is no longer
valid. It is sent by an XROUT when it becomes aware that a local port
has been closed to all XROUTs who have obtained that port's magic
number by using the XSGMG service described above.

Parameters:
1 - Magic number (integer)

ND—60.13u.02

M8 SIII COMMUNICATION GUIDE
XMSG - XROUT Service Specifications

M.M.2.12. Define Remote Name (XSDRN)

XSDRN is used for defining the names of machines (specified as
parameter 2 in letters — XSLET service). XSDRN is normally accessed
via the Define—Remote—Name command of the XMSG-COMMAND background
program. XSDRN is privileged.

Two parameters are specified:

1 — Machine name (type integer)
2 - Machine no

The specified name is put into the name table (must be unique) and all
letters that are addressed to that machine (parameter 2 in XSLET) will
be forwarded to the specified machine. Note that a machine can have
many names, so names should be used to identify functional machines
rather than physical machines whenever possible (e.g. SIBAS-BACKEND or
MAIL—HANDLER rather than ND—100—377.)

If the second parameter is not specified, the name is cleared.

N.4.2.13. Define Machine Routing (XSDMC)

Whereas Define Remote Name (XSDRN) defines a mapping of a machine name
to an XMSG machine number, Define Machine Routing (XSDMC) specifies
how to get to that machine. This is not necessary if the machine is
directly connected, since XROUT will find out when the link to that
machine starts up, but is necessary (at present) for both the local
machine and machines connected via neighbours. The XSDCL service
(which is privileged) takes two parameters:

1 - Machine Number
2 - To be routed via this machine (or 0)

It leads to the routing tables being updated such that the specified
machine is marked as being available via the machine defined in
parameter 2. If the second parameter is zero, the cluster is marked as
'not available.’

If no parameter 2 is specified, the machine number is defined as the
number of the local machine. This operation must be done before any
access to multimachine XMSG can be made.

ND—60.13N.02

SIII COMMUNICATION GUIDE H9
XMSG - XROUT Service Specifications

u.u.2.1u. Get Routing Information for a Machine (XSGMC)

XMSG—COMMAND allows one to list the routing information held by any

accessible XROUT in an XMSG network. This is done by sending XSGMC
messages with one integer parameter, the object machine number. XROUT
replies with a message containing one double word parameter which
should be interpreted as u bytes.

The most significant byte is the machine number as requested by the
user, or the next higher known machine number if that machine number
is unknown. If there are no machine numbers greater than or equal to

the input parameter, the byte is zero.

The next byte contains zero.

The next two bytes contains the connection type and address:

Byte 2 - Connection Type Byte 3 contains:
0 - Unavailable
1 - Neighbour Link Index
2 - Via Machine number
n - Local

ND-60.13u.02

50 SIII COMMUNICATION GUIDE
XMSG - XROUT Service Spr‘ifications

H.”.2.15. Starting up / Stopping a Multi-Machine Link - XSLKI

This privileged service is used by the START-LINK and STOP-LINK
commands in XMSG-COMMAND. It is used when one wants to use an HDLC
link (which must have been declared in generation of SINTRAN) as a
multi-machine link. The XSLKI request requires three parameters:

1 — HDLC link logical unit number
2 — Timeout value in Basic Time Units (BTU).
3 — Number of frames to allocate (window+1)

XROUT will reserve the HDLC link (both input and output data fields),
check that there are enough free frame buffers and then initialise the
interface. The link will then go into the ’calling' state, which means
that it tries to make contact with the adjacent machine, by sending a
predefined maximum number of SABM frames. (SABM: Set Asynchronous
§a1ance Mode.)

If the number of frames to allocate (parameter 3) is zero, a 'close'
link operation is performed instead; the link is disabled, released,
and the routing information updated.

4.4.2.16. Trace Initialise - XSTIN

The service is used by the OPEN—TRACE command in XMSG-COMMAND to
initialise the trace system (see description under OPEN-TRACE). It
takes as a parameter, the file name of the trace file. XROUT then
opens and initialises the file, resets the trace infomation and starts
up the trace dump foreground program (XTRACE). Systems 0 and 1 (Clock
and Trace Management) are automatically enabled.

4.4.2.17. Trace Close - XSTCL

T13 is the opposite to XSTIN (above) and leads to the last block(s)
being written, the file closed and XTRACE aborted.

M.4.2.18. Define Trace Conditions — XSDTC

This takes as a parameter, an integer. If it is positive, the system
with that number is enabled for tracing, if it is negative then the
system is disabled.

ND-60.13H.02

SIII COMMUNICATION GUIDE 51

XMSG - XROUT Service Specifications

4.”.3. NPL Routines for Message Formatting

The file XMSG-LIBRARY:BRF contains a set of NPL routines which can be

useful for formatting messages to XROUT. They all act on a local user

buffer which is always pointed at by the X-register. The B-register is

always preserved over a call from any of these NPL routines. They all

give a skip return if OK, non—skip if buffer full.

4.M.3.1. XBINI — Initialise Buffer

This initialises the specified buffer:

XzBuffer Address
A:Buffer length in bytes (H bytes used by header)

u.u.3.2. XBAST XBARC - Append String Append Record

Appends the specified string (terminated by quote character) or record

(of specified length) to the current message:

X=Buffer Address
A=String address (terminated by ’ if XBAST)
D:Number of bytes (for XBARC)
T:Parameter number (complemented by XBAST)

A.A.3.3. XBAIN, XBADB - Append Integer

These routines append an integer as next parameter in the message.

XBAIN always appends a 16-bit value, whereas XBADB takes as input a

32—bit value, which it puts into the message as 16—bits if (and only
if) this is valid:

XzBuffer Address
A/AD=Value (XBAIN/XBADB)
T:Parameter number

U.M.3.H. XBLOC - Locate Parameter

Since the parameters can be put into a message in a random order, it

is useful to have a routine that can find a specified parameter:

X:Buffer Address
T:Parameter Number (always positive)

Result: A:Start of parameter block

ND-60.13H.02

52 ' SIII COMMUNICATION GUIDE
XMSG - XROUT Service Specifications

u.5. Svstem Function Specifications

All system functions are privileged.

These system functions are mainly used by XMSG command program
(background) to enable the user to find out what the message system is
doing. They should got normally be called by users but are included
here for reasons of completeness.

4.5.1. XFPRV — Make Calling Task Privileged

Most system functions, as well as some user functions (e.g. Define
User Buffer — XFDUB) can only be executed by privileged tasks. In
order to become privileged (for XMSG), a task must successfully
execute the XFPRV function.

In order to do this the caller must be either a driver, direct task,
foreground program on ring 2,3 or background program logged in as user
system. Besides this, the program must also specify the current XMSG
password (XPASW) which is defined in the XMSG-POFTABS file in the A-
register:

T::XFPRV; XPASW; *MON 2XMSG

When the task wants to stop being privileged, the same call should be
used, but with the A-register equal to zero.

The reason for specifying the XMSG password is to ensure that
privileged programs that base themselves on accessing XMSG table
structures have been updated to the current XMSG table definitions (in
XMSG-POFTABS).

4.5.2. XFSIN - Initialise for System Functions

This returns the basefield address of the message system in POF, which
is needed in order to be able to access XMSG tables using the system
functions.

XFSIN; *MON 2XMSGT:=
::BASEADDA

4.5.3. XFABR - Absolute Read from POF

This function allows a program to read a block of data from POF into
his user area. This function can be executed even when the message
system is locked (see XFMLK, XFMUL).

T::XFABR; ULEN=:D; A::UADD; X:=ABADD; *MON 2XMSG

ND-60.13H.02

SIII COMMUNICATION GUIDE 53
XMSG - System Function Specifications

M.5.4. XFABW - Absolute Write to POF

This function is simited when the message system is locked.

T:=XFABW; ULEN=:D; A::UADD; ::ABADted when the message system is
locked.

T:=XFABW; ULEN=:D; A:=UADD; X:=ABADD; *MON 2XMSG

M.5.5. XFMLK - Message System Lock

This function locks the message system, so that all requests will be
refused until an unlock is done. This allows consistent modification
of tables to be done using XFABR and XFABW.

T::XFMLK; *MON EXMSG

M.5.6. XFMUL — Message System UnLock

Inverse function to XFMLK:

T:=XFMUL; *MON 2XMSG

M.5.7. XFM2P - Convert Magic Number to Port and Machine Number

T::XFM2P; AD:=MAGNO; *MON 2XMSG
A: :PORT; A::D= :MCNO

4.5.8. XFPZM - Convert Port Number to Magic Number

T:=xfiP2M; A:=PORT; *MON 2XMSG
AD=:MAGNO

ND—60.13N.02

54 SIII COMMUNICATION GUIDE
XMSG — system Function Specifications

4.5.9. XFCRD - Create Driver

This function is used to create a driver with a given context (see
section 4.7 for details on calling XMSG from drivers):

XFCRD (BONE XFPON); UADD::D; A::ILEV; *MON 2XMSGT2:

A=:TASKADD;

The ILEV parameter contains the interrupt level that the driver should
run on. XFPON should be set if paging should be on when the driver is
started (PIT3 assumed), and UADD points to an 8 word buffer.

The buffer contains the register block that the driver will be
started with, in the order required for the Load Register Block (LRB)
hardware instruction (of. NORD—1OO Reference Manual - ND-06.014.01).

XFCRD allocates an XT-block to the driver and returns its address in
the A—register.

4.5.10. XFSTD - Start Driver

Starts an already created driver:

T:=XFSTD; TASKADD; *MON 2XMSG

XFSTD overwrites the driver’s L—register with his XT-block address
before starting the driver.

In this way a driver started will have the L—register containing its
XT—block address. The driver must be set back again before calling
XMSG - see section 4.7 on calling XMSG from drivers.

XFSTD does not set the appropriate bit in the PIE, or load or fix any
segments.

This should be done using FIXC and ENTSG - see SINTRAN III Reference
Manual - ND—60.128.01.

ND—60.134.02

SIII COMMUNICATION GUIDE 55
XMSG - The XMSG-COMMAND Background Program

H.6. The XMSG-COMMAND Background Program

XMSG-COMMAND is a background program that is used to control and
supervise the XMSG system.

It can also be used for XMSG testing and benchmarking.

XMSG—COMMAND accepts commands in the usual SINTRAN way, with
abbreviations being allowed, and prompts for parameters that are not
specified on the command line.

A MODE command allows a file of commands to be executed instead of
having to type them in.

Any command line preceded with the @ sign will be handed over to the
SINTRAN III background command processor for execution.

Many of the commands in the background program use privileged XMSG
functions.

XMSG-COMMAND will automatically use the XFPRV function to make itself
privileged when some of these functions are invoked, but will be
refused if the user is not logged in as ’SYSTEM.’

ND—60.134.02

56 SIII COMMUNICATION GUIDE
XMSG - The XMSG—COMMAND Background Program

4.6.1. Output Formatting

Since the command program is mainly a formatting program for XMSG
tables and trace elements, a generalised formatting facility has been
implemented (QFORM). This is similar to FORTRAN formatted output, but
extended to be able to handle record, table and list structures. It
also allows arithmetic operations to be executed by the format strings
and for formats to call each other - like subroutines.

This is not the place for a complete description of QFORM, but a brief
overview of the commands in XMSG-COMMAND that are associated with
these formats follows:

H.6.1.1. LIST-FORMATS

This lists the formats matching the specified parameter on the
terminal.

H.6.1.2. FETCH-FORMAT

Fetches the specified format into the format edit buffer.

U.6.1.3. EDIT—FORMAT

Allows editing of the format currently in the edit buffer. All normal
S-III edit control characters are allowed. Note that the format is NOT
implicitly saved after editing, so this must be done explicitly using
the following command:

u.6.1.u. SAVE—FORMAT

Saves the current edit buffer contents as a format with the specified
name. If no name is specified, the last name specified will be used.

H.6.1.5. DUMP-FORMATS

Allows all formats matching the specified parameter to be dumped onto
the specified file. The file written is such that it can be executed
using the MODE command (see below) and to have all the formats
reloaded. This makes it easy for users to build up their own format
library.

ND—60.13u.02

SIII COMMUNICATION GUIDE 57
XMSG - The XMSG-COMMAND Background Program

H.6.2. Commands that List XMSG Tables:

The following commands list XMSG tables. They all use the privileged
function XFABR in order to read the tables from the Paging Off area.

4.6.2.1. List—Tasks

This command gives a list of tasks using the local XMSG system.

It prompts for a 'Task Address?'. If an XT-block address is specified,
only that task is listed. If 0 is specified, all tasks are listed. If
nothing is specified, the command repeats what was done last time.

Information given for each task is:

ADDRESS - Address of XT-block (like RT-block)
RT/DR - RT name if RT-program, else *DRIVER*
PROCESS — RT address or interrupt level and paging status
IOW — Y if task is in I/O wait.
GWT - Y if task is in a global wait on all ports
PRV - Y if task is privileged
MEM USED - Number of bytes currently owned by this task
LIMIT - Max number of bytes that can be owned by this task
PORT HD - Port number of last port opened (start of chain)
CURMES - Address of current task message

N.6.2.2. List—Ports

This command can list either one port, or all ports, or all ports

owned by a task. The first prompt asks whether a task port chain is to
be followed, and if so, the second parameter asks for the task
address. If not, a port number can be given, or all ports requested.

The information listed for each port is:

NO - The port number (index in port table)
ADDRESS - Address of port descriptor in physical memory
OWNER TASK — Task address of owner
QHEAD - Address of first message in input queue
QLEN - Number of messages in input queue
CHAIN — Port number of next port belonging to same task
WAK - Task will be woken if a message arrives on this port
PRM - 1 if port was opened with permanent option
IOW - 1 if the task is in 1/0 wait on this port
CURMES - Address of current port message

ND-60.13H.02

58 SIII COMMUNICATION GUIDE
XMSG — The XMSG-COMMAND Background Program

4.6.2.3. List-Messages

List information from the message descriptors. As for ports, list
either a single message, or all messages, or all messages on the input
queue to a port, depending on the reply to the 'Record Address?
prompt.

The information listed for each message is:

ADDRESS — Address of message descriptor in physical memory
OWNER — Task address of owner and name if RT—program
FROM—PORT — Machine number and port index of last sender
LENGTH - Current used message length in bytes
BUFFER — Physical address of start of buffer area
SIZE — Buffer size in bytes
R - 1 - Implies message is being returned.
8 - 1 - Message is a secure message
C - 1 - Message is chained to a queue

N.6.2.H. List-Names

This command asks an XROUT to dump out its name table, listing the
machine and port numbers for each name in XROUT's tables.

In a multi-machine configuration, the command allows access to any
XROUT, so the first prompt asks for the machine number where the XROUT
program is to be found. (Default is local.)

4.6.2.5. List—Routing—Info

As with List—Names, this command accesses an XROUT lying in the
machine specified by the reply to the first prompt. The command lists
out the information that the target XROUT has about how to access each
machine known to it. The information specified for each machine is
(see section 2.6.3, modifying the routing tables, for details):

MCNO — the machine's number
CONNECTION - Connection type:
UNAVAILABLE
VIA MACHINE — Access is via machine
VIA LINK — Access is via (running) link
PIOC NUMBER — Machine is local PIOC
MACHINE/LINK - Specifies the field according to connection type above

ND-60.13H.02

SIII COMMUNICATION GUIDE 59
XMSG - The XMSG—COMMAND Background Program

4.6.2.6. List-Links

This command is used to list the current status of all HDLC links

being used by XMSG (i.e. those that have been started by the START—

LINK command. The information listed for each link is:

NO - link index in XMSG
ADDRESS — in POF of link block (XL-block)
STATE - of connection to adjacent machine. Values are:

DEAD - crashed (fatal timeout or hardware error)
INIT - being initialised (purely internal)
CALL - trying to make contact with neighbour
CONN - contact made.
RUN — data phase.

MCNO — of neighbour (CONN and RUN states only!)
ANY-AC - last HDLC A/C bytes received at all
-RUN — A/C bytes from last RR or INFO frame
LUN - SINTRAN Logical Unit No (Octal)
HDLCST — Transmitter Driver status, if DEAD (octal)
HDLCHW - HDLC Hardware status
TIMEOUT — Timeout value in BTU's

M.6.2.7. List-Frames

This command always list all the frames in the Multi-machine XMSG
frame pool. Information listed for each frame is:

NO - Frame index in pool
ADDRESS - in POF of frame's XD—block
OWNER - address of link that owns it
HANDLER - address of link currently handling it
HAC - HDLC A/C bytes (HEX)
NETAD - Destination/Source mc numbers (HEX)
TRTYP - Transport type
CNT1 - Number of bytes in the first data part
BUFFER1 - Address of the first data part
CNTZ — Number of bytes in the second data part
BUFFER2 — Address of the second data part

N.6.2.8. List—Command—Prog-Variables

Lists the current values of variables that are internal to the command

-program - e.g. buffer addresses, lengths, sizes, as well as the
values for the current task, port and message.

ND-60.134.02

6o SIII COMMUNICATION GUIDE
XMSG — The XMSG-COMMAND Background Program

M.6.2.9. Dump-Memory

Is an unstructured dump of physical memory in bank 0. It takes as
parameters the first and last address of the area to be dumped (in
octal).

M.6.3. Modifying the Routing Tables and Controlling Links

In a multi-machine XMSG configuration, we need to be able to build
tables that specify for each local XMSG where it should send messages
destined for a particular machine. This information lies in the
routing tables. See section 4.2. for a definition of the terms
'machine' and 'link'.

Each machine contains an XROUT program, which in turn contains three
routing tables:

The Machine Location Table (MLT) is almost the same for every machine.
It contains a word for each machine (indexed by machine number) which
indicates either the machine via which this machine can be accessed or
the link index if directly connected. The ’via’ operation can be
repeated.

When a link is established, the machines at each end of the link
exchange identifiers and update their routing tables accordingly.
Otherwise all modification of routing tables must be done manually
using the commands described below. (Note that the commands allow one
to execute the command in any machine to which one has access - ’XROUT
machine?’ prompt.)

u.6.3.1. Define-Local-Machine

This command must be used before multi-machine XMSG is available and
cannot be repeated. It simply informs XMSG of the local XMSG machine
no.

4.6.3.2. Define-Machine-Route

Updates the machine location table in the specified machine (parameter
1 can be accessed via parameter 2).

M.6.3.3. Start-Link/Stop Link

These commands provide a direct interface to the XROUT Start Link
Service: see section u.u for further details.

ND—60.13H.02

SIII COMMUNICATION GUIDE 61
XMSG - The XMSG-COMMAND Background Program

4.6.”. Commands for Debugging Systems that use XMSG

When debugging complex systems made up of many communicating programs,
one may want to take dumps of the XMSG tables every now and then on a
file, and then look at the file afterwards to see how the situation
evolved. XMSG provides two ways of doing this:

1 - Snapshots — Implies writing a copy of XMSG tables to disk, either
at the beginning of a file, or appended to the current contents,
so that snapshots can follow each other. Another command allows
the snapshots to be fetched, and then one can use all the usual
commands on the snapshot instead of on the actual situation.
Since all RT-names are also included as part of the snapshot,
this allows the analysis to be done on another machine. If you
have problems using XMSG, it is strongly recommended that
snapshots are taken in a file which can be sent to Norsk Data on
a diskette.

2 - Tracing. A trace facility has been incorporated into XMSG.
Routines in XMSG place trace elements (of variable length) in
buffers, which when full, are written out on to a contiguous
(wrap—around) disk file by an RT-program called XTRACE. This file
can then be inspected using the trace manipulation routines
described below. Tracing can only be done on ND-100’s (not NORD-
10's.)

H.6.4.1. SAVE-POF and FETCH-POF Commands

SAVE—POE takes a snap-shot of the current POF tables and writes them
out on to a file, together with all RT-program names. (The latter
takes a little time - so do not panic!) The snap—shot can either be
put at the beginning of the output file, or following previous snap-
shots. Default file type is :XPOF.

FETCH—POF reads a snap-shot as specified by the user from a file
previously written using the SAVE-POF command. This copy of POF is
then looked in XMSG-COMMAND’S logical space, either until another
snap-shot is fetched, or until the UNLOCK-POF command is invoked. Note
that the DUMP-MEMORY command does not access the snap—shot, but tries
to access the real physical memory.

M.6.H.2. TRACE Generation Commands

The following commands control the way in which the trace is made.
They should therefore be used whilst the test system is being run.
Note that tracing does take a certain amount of time (partly writing
the information to disk) - preliminary estimates — about 50
microsecs/word traced, on a slow ND—100.

In order to include the trace facilities, XMSG must be generated with
the trace option 8TRAC. This leads to the required calls being
assembled in, as well as inclusion of the handling routines and buffer
space. The RT-program XTRACE is always included.

ND—60.13U.02

52 SIII COMMUNICATION GUIDE
XMSG - The XMSG—COMMAND Background Program

The format of the trace file is simple. The file comprises blocks of
512 words. Block O is the header block and contains the following
information:

Word (oct) Contains
0 ' 0
1 123H56 octal

2-3 : MTIME (basic clock time) when was file opened (OPEN-TRACE)
H-12 : CLOCK (date, time) when file was opened (OPEN-TRACE)

13 : XMSG password to check version information
MOO-777 : Copy of XMSG basefield

The remaining blocks contain the trace information itself. Each block
has a two word header containing the logical block number (incremented
by 1 for each block written - skipping O - indicates that the block
has not yet been used) and the number of trace calls missed since the
last block was written (due to all buffers being full). The remainder
of the block comprises trace elements following immediately after each
other.

Each trace element has a header — which is of interest to the trace
system, and a body, which of interest to the user of the trace system.
The header comprises one word: the left hand byte is the system number
(see ENABLE-TRACE command) and the right hand byte contains the number
of words in the body.

A header that is zero terminates the block.

The following system numbers have been allocated:

System (dec.)
0 : Clock. Only output when necessary. Body (2 words) contains

ATIME (in basic time units.)
Trace management. First word of body contains the function
1: open
2: close
3: enable/disable (next word contains the system number -

negative means disable)
8 : XMSG Calls. The 5-word body contains the T—,A- and D—regs,

the XT-block address and the X-reg from the caller.
9 : XMSG return to user. Body is as for system 8, but with

Ecsult registers instead.
10 : XMSG kernel context switch - traces queue and element

address.
11 XMSG Link Layer frame received.
12 : XMSG Link layer - bad frame received and ignored.
13 : XMSG Link Layer send frame. Trace body: AC bytes, length,

etc.
14 : Network Layer - Complete datagram queued to receiver queue.
15 : Network Layer — Datagram fragment received.
16 Network layer - Any frame received (inc. route thru')0.

ND-60.13u.02

SIII COMMUNICATION GUIDE 63
XMSG - The XMSG-COMMAND Background Program

N.6.4.2.1. OPEN-TRACE

Open the trace file and initialise the trace system. The header block
is written and the first word in all other blocks is set to zero to
indicate unused. Systems 0 and 1 are automatically enabled (clock and
trace management).

Note that since XROUT actually initialises the trace system it is
possible to start a trace in any machine that one may access. XMSG-
COMMAND only sends a start—trace message to the specified XROUT and
waits for the reply.

N.B. The trace file should lie on user RT, since some Sintrans have a
bug preventing direct mode access to files lying under other users. It
must also have been previously created as a contiguous file (of.
SINTRAN REFERENCE MANUAL ND 60.128.02).

H.6.4.2.2. ENABLE-TRACE

Specifies which systems are to be traced. Only one system can be

enabled by each call of the ENABLE—TRACE command, but many systems can
of course be enabled at the same time.

u.6.u.2.3. DISABLE-TRACE

Has the opposite effect to ENABLE-TRACE.

N.6.H.2.4. CLOSE-TRACE

Leads to all traces being disabled, the remaining blocks written to
the trace file, and the trace file is closed.

4.6.”.3. Commands for Dumping a Trace File

The following commands allow ’post-mortem' analysis of a trace file
created using the above commands. Together with the SAVE and FETCH-POE
commands they allow trace analysis to be performed on a machine, other
than the one on which the trace was made. (Send trace files to
Software Service department Norsk Data, if problems are encountered.

H.6.U.3.1. DUMP—TRACE—OPEN/DUMP-TRACE—CLOSE

Opens (or closes) the trace file for dumping. This is done by the
command program itself, so (RT) should be specified if necessary. The
command opens the file and checks its format.

ND-60.13U.02

6M SIII COMMUNICATION GUIDE
XMSG - The XMSG-COMMAND Background Program

U.6.4.3.2. NEXT-TRACE and PREVIOUS—TRACE

These take as parameters the number of trace elements to be dumped and
lead to the trace elements being read and formatted. If the parameter
zero is specified the command will skip either to the first element
(PREVIOUS 0) or last element (NEXT 0) in the current trace. The trace
elements are (at present) always output on the terminal. The time that
is specified is the time in seconds and hundredths of a second between
the trace file being opened and the generation of the trace element.
Resolution is in Basic Time Units (20 msecs).

Each element is formatted by calling the QFORM format whose name is
FXZEnnn where nnn is the decimal representation of the system number
for the system that caused the trace element to be generated. For
example, XMSG-call trace elements are formatted by FXZEOOS. Try the
command 'LIST—FORMAT FXZ' and see!

ND—60.13u.02

SIII COMMUNICATION GUIDE 65

XMSG - The XMSG—COMMAND Background Program

M.6.5. Commands that act like normal XMSG Function Calls

The following commands provide an interactive way of executing XMSG

calls without having to write a program to do it. XMSG-COMMAND just

collects the parameters and executes the appropriate monitor call(s).

An asterisk (*) indicates that the command also asks for a count of
how many times it should repeat the operation. Default is once, and if

any other value is specified, XMSG-COMMAND will take the start and
stop (real) times and calculate the time taken per loop in order to
facilitate benchmarking.

XMSG Function XMSG-COMMAND command

XFDCT Disconnect
XFOPN Open-port
XFCLS Close-port
XFGET Get—message-space
XFREL Release-message-space
XFREA * Read—direct
XFWRI * Write-direct
XFSND Send-message
XFSND (XFROU) Route-message
XFRCV Receive-message
XFMST Message—status
XFSCM Set-current-message
XFGST Wait-general
XFDIB Define-indirect-buffer
XFWIB * Write—indirect
XFRIB * Read-indirect
XFDUM * Dummy-loop
XFRCV & XFSND * Loop-receive-reply (echo)
XFPRV (XPASW) Set-privileged
XFPRV (0) Clear-privileged
XFCRD Create-driver
XFSTD Start-driver
XFMLK Lock-message—system
XFMUL Unlock—message-system
XFSIN Initialise-service-system (automatically)

ND-60.13N.02

66 SIII COMMUNICATION GUIDE
XMSG - The XMSG-COMMAND Background 6 ‘qram

XMSG—COMMAND allows default values to be specified for many of these
parameters.

A list of the current defaults held by XMSG-COMMAND can be obtained
using the 'list—command-prog—variables' command described in section
3.6.2.8. Some commands are more complex, providing a sequence of XMSG
calls:

Ask-Route expects the user to have set up data for a message in the
output buffer using the commands ’clear-buffer’, 'append—integer' and
’append-string' described in sections 3.6.6.3 - 3.6.6.6.

'Ask-route' then does the 'buffer—ready' action, writes the buffer
into a message (which must previously have been got), opens a port if
none is open and sends the message to the XROUT task in the specified
machine.
It then waits for the reply, reads it into the input buffer and
decodes it, (see 'decode-buffer’ section 3.6.6.7).

Remote-Loop is more complex, and expects two other special programs to
be running (echo-slave and echo-master). It is used for more
generalised benchmarking and testing.

ND-60.134.02

SIII COMMUNICATION GUIDE 67

XMSG - The XMSG-COMMAND Background Program

4.6.6. Commands affecting Buffers in XMSG-COMMAND

XMSG-COMMAND has two local buffers — one for input and one for output
which can be used to build up data, which can then be written into a

message and sent using the above commands (see 'ask-route', section

3.6.5, in particular), so that one can interactively build and send
messages to programs that are being tested. The following commands

have been implemented to access these buffers:

4.6.6.1. List—buffer

Lists the addresses, sizes and current lengths of the two buffers, as
well as their contents as ASCII strings. (See also 'decode-buffer'.)

U.6.6.2. Fill—output-buffer

This is the simplest command for putting data in the output buffer -

either a sequence generate by XMSG-COMMAND or typed in as response to

a prompt.

The SINTRAN command LOOK-AT MEMORY can also be used to put information

directly into the buffer, but the length should be preset using the

fill-output-buffer command, as this length is used as default when

writing the data into the XMSG message (write-direct command).

fl.6.6.3. Clear-buffer

This command presets the output buffer for repeated use of the next

three commands, which allow the building up of a message conforming to

the XMSG standard, expected by XROUT (see beginning of section 3.M on
XROUT). Obviously, if this format is not being used, then these
commands (in fact most of the remainder of this section) will not be

relevant.

H.6.6.M. Append-integer

Appends an integer parameter to the current output buffer in the

standard format. Note that this only has an effect in the local XMSG-
COMMAND output buffer.

u.6.6.5. Append-string

As above, but appends a parameter of type string.

ND-60.13u.02

68 SIII COMMUNICATION GUIDE
XMSG - The XMSG-COMMAND Background Program

H.6.6.6. Buffer-ready

When all the parameters have been appended, the serial number and
service number need to be put in (first two bytes in message). This is
done by the Buffer—ready command, which does not copy the local buffer
into the message.

A typical example of the building up of a buffer for sending to XROUT
(or any other task understanding the message standard) would be:

*clear—buffer
*append-string

Parameter no? 1
String? KLODDY

*buffer—ready
Service no? 3
Reference no? 1

*

Note that this just prepares the buffer locally. It must then be
written into a message and sent, using the commands ’write-direct’ and
'send-message’, or the combined command ’ask-route’ if the message is
to be sent to a routing program.

u.6.6.7. Decode-buffer

Having put things into these buffers, either using the above commands,
or by reading messages that have been received, they can be dumped in
an intelligible format (if they are in the standard format) by using
the 'decode-buffer' command. This can decode either the output or
input buffer.

H.6.6.8. Generate—, Check-Pattern

One can also use the remainder of XMSG-COMMAND’s logical memory space
(above 100000 octal) to generate and check patterns which have been
written to, and read from, other areas using the read/write-
direct/indirect commands. Generate and check for linear sequences of
bytes of lengths up to 32 k, with user definable start value and
increment.

ND-60.13H.02

SIII COMMUNICATION GUIDE 69
XMSG — The XMSG-COMMAND Background Program

M.6.7. Miscellaneous Commands

M.6.7.1. Mode

This command asks for the name of a file from which it will read all
further input until it meets an end of file. Mode commands can be
nested to a maximum depth of 8.

The mode file allows the system configuration for a system to be kept
as a source file, ('define—machine—location' and 'define-cluster—
routing—info' commands) which is run when the system is started up.

4.6.7.2. Set—port

Allows the default port number to be set.

u.6.7.3. Get-error-message

Takes as input an XMSG error code (<0) or crash code (>0) and returns
an explanatory text (uses the XMERR routine in XMSG-LIBRARY).

U.6.7.H. Debugprint-on/-off

These commands control the debugprint flag. When this is on, XMSG—
COMMAND writes out the register contents before and after every XMSG
monitor call it makes.

This can be useful for learning how XMSG works. For example by
switching debug print on and using the ’list-names' command, one finds
out how one communicates with XROUT.

ND-60.13M.02

7o SIII COMMUNICATION GUIDE
XMSG - The XMSG-COMMAND Background Program

u.6.7.5. Monitorcall-on/—off

These commands control the monitorcall flag. When this is off, XMSG-
COMMAND skips all XMSG monitor calls. (For debugging).

4.6.7.6. Helg

List commands matching the parameter specified.

fl.6.7.7. Disconnect

Executes the disconnect function (XFDCT) followed by an exit (MON 0).

H.6.7.8. Exit

Does an exit (MON 0) without disconnecting.

ND—60.13u.02

SIII COMMUNICATION GUIDE 71

XMSG - Calls from Drivers and Error Handling

”.7. Calls from Drivers/Direct Task

Since there is no RT—description for drivers and direct tasks, the
message system uses an XT—block (which is a data area it reserves for
each task) for saving the current context. When a driver/direct task
calls the message system, the L-register must contain the address of
this block. If none has so far been allocated, then L must be zero,
leading to a new block being automatically allocated, and its address
returned in L.

When XMSG restarts a driver after executing an XMSG call, it starts it
with a skip return. This allows the driver to have a jump to a wait
routine directly following the XMSG call. (Since XMSG runs on
interrupt level 5, it will not be able to execute the function before
the driver/direct task has done a WAIT.) If the driver is restarted by
XMSG, it will continue at the skip address (with the corresponding
context), but if triggered by an interrupt, it will continue after the
WAIT, or call to WTxx (but must not call XMSG until a return has been
made from the previous function call). No restart is done by XMSG
after a call to the disconnect function (XFDCT).

If the XMSG ’create-driver’ function (XFCRD) is used, it allocates an
XT-block before starting the driver and hands this over to the driver
in its L-register.
Note that this makes it extremely easy to write drivers handling
identical devices with each driver having its own full context, since
it is only necessary to have a word in the datafield where the XT-
block address is saved. Each driver can then wait for messages as a
separate task owning its own port(s).
The XMSG monitor call is special in that it can be called directly
from a driver or direct task in almost the same way as from an RT-
program (see example in appendix C).

”.8. Error Handling

XMSG spends a lot of its time checking itself, since inconsistencies
in the POF tables could easily lead to the destruction of the
operating system. If one of these checks fails (which could be due to
somebody else overwriting XMSG tables or XMSG itself going wrong!),
XMSG will close itself down, return a bad status (XECRA) to the user,
and print an error message on the SINTRAN error device (error number
”6 or 47). If this occurs, a dump of the XMSG basefield should be
taken to find out what has happened.
In the normal course of events, the user will probably have made a
mistake, and so will get an error status returned in his T-register.
The file XMSG-VALUES provides a symbolic name and description for each
of these error messages, which are also listed at the end of this
manual.
The routine XMERR in XMSG-LIBRARY converts an XMSG error code in the
A-register to a pointer to an explanatory text returned in the A-
register. The text is ASCII terminated by a quote character(').

ND—60.13H.02

72 SIII COMMUNICATION GUIDE
XMSG Loading Instructions

”.9. Loading Instructions

This section describes how to load XMSG into a SINTRAN III VS(E)
system:

If a new system has just been installed start at section H.9.1
If a HENT/LOAD operation has been done, start at section H.9.3
If a normal system restart (Master Clear/Load) has been done, start
at section ”.9.”

M.9.1. Assumptions prior to loading

1) That user UTILITY exists and has enough space (300 pages, say).

2) That (UTILITY)SYMBOL-1—LIST:SYMB and SYMBOL-2-LIST contain the
(MAC readable) symbol lists for parts 1 and 2 of SINTRAN. These
are delivered together with SINTRAN.

3) That the SINTRAN system you have ordered has XMSG resident
routines included (library mark 8XMSG). If not, order a new
SINTRAN!

4) That the following subsystems have been installed: MAC, FMAC,
NPL, NRL (with those names!) If other names are used, the
XMSG-:MODE files should be edited accordingly.

4.9.2. Generating XMSG

a) Log in as UTILITY.

b) Copy all XMSG files to UTILITY using the BACKUP-SYSTEM.

0) Define the XMSG Configuration:

If a non—standard XMSG configuration is required, XMSG-SYS-DEF must be
edited. See Appendix D for a list of symbols defined in this file,
together with their meaning and default value. Some care must be taken
here, in particular if the system is to be run on NORD-10, in which
case the 8x100 library mark must be reset and the buffer space moved
from physical memory to POF (XSSBS must be zero, and XSBUF equal to
the number of words of buffer space required). This will then imply
that SXFPP (first page to use in POF) must be decremented accordingly.

d) Generate XMSG:

@MODE XMSG-GENERATEzMODE LINE-PRINTER

This does not affect the running system, but results in the creation
of the files XMSG—POF:BPUN (POF code), XMSG-XROUTzBPUN (Routing
program) and XMSG-SEGMENT:BPUN and their listings.

ND-60.13H.02

SIII COMMUNICATION GUIDE 73

XMSG Loading Instructions

u.9.3. Loading XMSG

This needs to be done after all)HENT and)LOAD operations:

a) Log in as SYSTEM.

b) Load XMSG

@MODE (UTILITY)XMSG—LOAD:M0DELL

1) loads XMSG—POFzBPUN onto segment 33 (non—demand).

2) loads XMSG—SEGMENTzBPUN onto segment 35 (will be FIXC'd in
physical memory to provide buffer space for messages, frames and
indirect transfer).

3) loads XMSG—XROUTzBPUN onto segment 3”.

4) creates the foreground programs XROUT and XTRACE.

5) patches XMSGU+N in resident to -1 to indicate that XMSG is
loaded.

0) Restart the System:

@RESTART-SYSTEM

Leads to the POF space needed by XMSG being reserved as swapping
pages.

If the system does not restart now, but instead stops at ERRFATAL the
chances are that there was not enough space in the Paging Off area.
One can then either do a)HENT or use MACM to patch back location 165
in image to 0 (clears XMSG) and then restart by typing 22! Contact
support for further help in finding space in POF.

ND-60.13N.02

7n SIII COMMUNICATION GUIDE
XMSG Loading Instructions

4.9.4. Starting XMSG

After a normal MASTER CLEAR, LOAD sequence (or RESTART-SYSTEM) the
START—XMSG command in the SINTRAN service program should be executed:

@SINTR
*START-XMSG
OK: XMSG STARTING UP
*2:
@

which leads to the XMSG-POF and buffer area segments being fixed
(FIXC) into physical memory, the monitor call being enabled, and XROUT
started. This operation should be included in the normal start up
sequence and executed before starting NORDNET or SPOOLING, since these
can 'steal' the POF space reserved for XMSG when they fix their
segments.

Since XROUT now has to find Space in which to fix segment 35, it may
take a short time between the 0K: ... message being printed (usually
<Zsecs) and XMSG being fully active. This may imply that it is
worthwhile putting a short HOLD in startup Mode files if the next
operation requires XMSG to be running.

H.9.5. Stopping XMSG

If at any time XMSG needs to be stopped (it can later be restarted),
the STOP-XMSG command in the SINTRAN service program can be used. This
disables the XMSG monitor call and releases the physical memory space.

ND-60.13H.02

SIII COMMUNICATION GUIDE 75

Overview of Files

4.10. Overview of files on ND—1013O

XMSG is loaded in H parts: 1) POF — loaded into physical memory in the

33-6uk part of bank 0 (known as the Paging Off Area - POF) and is on
segment 33, 2) Buffer area in physical memory on segment 35, 3) XROUT
- an RT program running on (demand) segment 3” and H) XMSG—COMMAND — a
normal background program.

The loading address for the POF part of XMSG is system dependent, as
are some of the internal configuration parameters for XMSG, so some
preparation needs to be done and values set by editing a file, unless
a default configuration is required. A short description of the files
distributed on the XMSG floppy disk follows.

The only file that needs to be edited is XMSG-SYS-DEF.

n.1o.1. System Definition Files

These files describe the tables used by XMSG and define the

configuration. They are all of type :SYMB.

u.1o.1.1. XMSG-SYS-DEF - XMSG System Definition file

This file contains a sequence of NFL code that defines the symbols
needed for generating XMSG. The values of these symbols can therefore
be redefined by editing this file, noting that the values are OCTAL.

H.10.1.2. XMSG-VALUES — Function and Error Symbols

This file defines values for symbols used to represent the XMSG
functions and services provided by XROUT, and associated error codes.
Explicit constant values should never be used in programs using XMSG,
but the symbolic names used instead, after including the file (e.g.
MON 2XMSG). This file was previously known as XMSG-FUNC-VALUES

4.10.1.3. XMSG—SYSTABS - XMSG Internal Table Descriptions

NPL file defining the structure of XMSG internal tables shared between
all parts of XMSG. It is not usually relevant to users.

4.10.1.N. XMSG-POFTABS - XMSG Internal Table Descriptions

As XMSG-SYSTABS, but defining tables shared between the POF part and
XMSG-COMMAND.

ND-60.134.02

76 3111 COMMUNICATION GUIDE
Overview of Files

4.10.1.5. XMSG—SIN—DATA — SINTRAN Table Descriptions

As XMSG—SYSTABS, but defines the structure of SINTRAN tables accessed
by XMSG. As far as possible the same symbolic names have been used as
in SINTRAN.

4.10.2. XMSG—XROUT:SYMB — The Routing Program

4.10.3. XMSG—POFCODE:SYMB - The POF Kernel Code

4.10.4. XMSG-MULTI-MC — The Multi-Machine XMSG Code

4.10.5. XMSG-COMMANDzPROG — The Command Program

Needs to be copied in, and dumped as a reentrant subsystem, if
required. Start and restart addresses are 0 and 1 respectively.

4.10.6. XMSG-LIBRARY:BRF - Library Routines

This file contains the BRF form of the routines which can be used to
build up a message to XROUT, as well as an error routine.
This file was previously called XMSG-MESS-FORMAT:BRF

4.10.7. Mode Files

The following mode files (of type :MODE) are used for generating and
loading XMSG.

4.10.7.1. XMSG-GENERATE:MODE

When XMSG is first obtained, or a new version of SINTRAN is ordered,
the XMSG-GENERATE:MODE file should be run using the MODE command after
editing the XMSG-SYS-DEF file to define the XMSG configuration
required, although the values provided are probably OK for a first
attempt!
XMSG-GENERATE creates the files required by XMSG-LOAD:

4.10.7.2. XMSG—LOADzMODE

One of these files should be run (depending on which SINTRAN III
version is being used) using the MODE command after loading a new
system, or restarting after)HENT or)LOAD. After executing it, the
system should be restarted using the RESTART-SYSTEM command (or
MASTER—CLEAR, LOAD).
After restarting, the SINTRAN-SERVICE command START-XMSG, starts XMSG.

ND-60.134.02

SIII COMMUNICATION GUIDE 77
XMSG - System Definition Symbols

H.10.8. XMSG Generation Definition Symbols (XMSG-SYS-DEF)

The following is a list of symbols describing the XMSG configuration
together with their meaning and default values. The symbols are
defined (in OCTAL) in the file XMSG-SYS-DEF. The information at the
end of each comment defines the approximate space required in bytes
(decimal) per element and where (POF=Paging Off, PHYS=Physical Memory
outside bank 0, SEG=XROUT Demand Segment).

Symbol Default Value Meaning of symbol

8x100 Set Library mark set if this generation is only to be run on
ND—100 CPUs.

XMSGM Reset Library mark set to include the multi—machine XMSG code.
8TRAC Reset Library mark set to include trace calls and handling

code.
XSMMX 2000 Maximum message size in bytes.
XSMTS ”000 Maximum number of bytes of message space that can be

owned by a task at one time (see XFGET function - Get
message space.)

XSVBT 2H0 is a "tuning parameter." It determines the minimum
transfer size in bytes for which it is worthwhile using
the window copying mechanism to transfer data between a
user logical space and physical memory. This can be
different for different machines, but a non-optimal
setting will only lead to a slight loss of speed. If in
doubt (!) leave this to the original default.

XSRTP H00 Number of RT programs in this system. (*2 POF.)
X5NAM 100 Maximum number of names that can be remembered in XROUT.

(XROUT demand segment)
XSNLW 20 Maximum length of a name in words (SEG).
XSMLT 20 Maximum machine number in network (*2 POF.)
XSMXH 10 Maximum number of hops a frame can make before it gets

thrown away.
XSLTO 100 Link Layer Receiver timeout in basic time units.
XSIRM 100 Default number of attempts when opening a link.
XSRPM 5 Maximum number of unsuccessful repeats before closing a

link.

ND—60.13M.02

78

X5LNK
XSPIO
XSNBF
XSTSK

XSPRT

XSMES
XSCOM

XSFRM

XSFSZ
XSBUF
XSSBS
5XSG3
5XFPP

5XPPS

X5TRB

OLA-12$:

10

400

20000
35
71

1H0

SIII COMMUNICATION GUIDE
XMSG - System Definition Symbols

Maximum number of links (*64 POF).
Maximum number of PIOCs (*? POF).
Default number of XF-blocks/links (see XSFRM).
Number of task descriptor blocks. This is equal to the
maximum number of tasks that can use XMSG
simultaneously. (*60 POF).
Number of port descriptor blocks. This is equal to the
maximum number of ports that can be opened
simultaneously. (*1H POF).
Number of message descriptors (*32 POF).
Number of frames that can be under transmission
simultaneously from local messages (*U8 POF).
Number of receive or forward frame buffers(*u8 POF,
*XSFSZ PHYS).
Maximum frame size in bytes.
Buffer area in POF in words for NORD-1O only. (*2 POF).
Buffer area in physical memory in words (*2 PHYS).
XMSG segment 3. If SINTRAN III F or later, use 35.
defines the first page that will be used by XMSG in the
POF. (Paging Off Area.)
first page to use in physical memory for message buffers
and frame buffers and indirect transfer buffer.
number of trace buffers if STRAC (*4 POF+*1024 PHYS).

The other symbols set in XMSG-SYS-DEF are dependent on the symbols
defined above.

ND-60.13H.02

SIII COMMUNICATION GUIDE 79
HDLC - High Level Data Link Control

5. HIGH LEVEL DATA LINK CONTROL (HDLC) DMA (OPTION)

5.1. Introduction

The HDLC Monitor Call (MON 201) is used to control a High Level Data
Link Control (HDLC) Interface. This is a synchronous modem interface
which can also be used as an intercomputer link interface. The Monitor
Call MON 201 is currently used by both HDLC DMA Controller (ND-720 or
ND-730) and X.21 (next chapter).

The HDLC DMA option is included in the user's SINTRAN III
configuration when he orders his operating system from Norsk Data A.S.

The HDLC-driver and the user program communicate by means of Driver
Control Blocks (DCB). The first 3 words of the DCB contain control and
status information, while the rest of the block may contain data
frames or additional information. Section 6.4 describes the DCB format
in detail.

'

For the purpose of transferring DCB’s between user programs and the
HDLC-driver, the monitor call HDLC is used as explained in the next
section.

5.2. The Monitor Call HDLC (MON 201)

MON HDLC is used for transferring DCB's back and forth between user
programs and the HDLC-driver.

DCB’s are sent from a user program to the HDLC-driver using SEND. When
a DCB is sent to the driver, it is copied from the user program to a
driver buffer-area. Here it is inserted in a queue of DCB's to the
driver. The driver processes the DCB’s one by one and, after
processing, puts them in another queue of DCB's back to the user
program. The user program can then receive them using RECEIVE. This is
done by copying the DCB from the buffer area to the user program.
Since the receiving of DCB's may be done asynchronously with respect
to the sending, each DCB is given an identifier.

Figure 5-1 shows how the data transfer is organized. The DCB's are
filled with frame data or emptied of frame data by the driver.

ND—60.13u.02

user program

SEND
cannand —————¥

DCB

ocmnand

status
mm

H status 4——
DCB

Figure 5—1

SIII COMMUNICATION GUIDE
HDLC - High Level Data Link Control

buffer area

ooumand

status
1k

HDLC driver

link

1-! status

oatmand

status

H status

Data Organization

ND-60.134.02

SIII COMMUNICATION GUIDE 81

HDLC - High Level Data Link Control

5.2.1. HDLC Monitor Call Format

5.2.1.1. Calling HDLC in NPL

When calling HDLC in NPL, the A—reg points to a list of parameter

addresses.

LDA (PLIST
MON 201
JMP ERROR
JMP OK
_———-—.—--9

PLIST, PARAM1 ADDRESS
PARAM2 ADDRESS
PARAM3 ADDRESS
PARAMN ADDRESS
PARAMS ADDRESS

Parameters 1 to 5 are described in the next section.

There are two basic return sequences.

- skip return: DCB successfully transferred
A-reg contains DCB identifier.

- Non skip return: Error in DOE transfer
A—reg contains error code. (Negative)
See Appendix E

ND-60.13N.02

82 SIII COMMUNICATION GUIDE
HDLC - High Level Data Link Control

5.2.1.2. Calling HDLC from FORTRAN

ISTAT = HDLC (PARAM1,PARAM2,....,PARAM5)

If ISTAT is positive, the transfer of the DCB was sucessful, and ISTAT
is set to the DCB—identifier. Otherwise, if ISTAT is negative, an
error has occured. For further decription, see the list of error codes
in Appendix E.

In the remaining part of this section, we will simply refer to the
argument list as (PARAM1,PARAM2, ...,PARAM5). As described below,
PARAM1 gives the function (0 for SEND, 1 for RECEIVE), PARAM2 is the
logical device number, PARAM3 is the DCB, PARAMA the used DCB size,
PARAMS the max DCB size or a wait flag.

The size of the DCB is given in two parameters, used size and maximum
size. The maximum size is the size of the DCB in the driver buffer
area. The used size is the size of the DCB in the user program, when
it is sent or when it is received. The sent size and the received size
may differ, for instance when the sent DCB contains frame data and the
received DCB only the resulting status. The maximum size will be the
larger of the two used sizes.

The symbols below will be used in the parameter list.

SDCB - Equals 0. Send DCB to driver.
RDCB - Equals 1. Receive DCB from driver.
LDN - Logical Device Number.

One for input, one for output.
DCB — The DCB to be sent or received.
DCB-usize - Used size of the DCB in number of bytes.
DCB-msize — Maximum size of the DCB in number of

bytes.

5.2.1.3. The use of Device Numbers in Mon HDLC

One HDLC-Interface requires use of two logical device numbers (LDN).
One LDN will cover the input part, while the other will cover the
output part of the interface.

For obtaining exclusive access to a LDN, the monitor calls RESERVE and
RELEASE should be used.

Note that there is one SEND queue and one RECEIVE queue for each LDN,
and that one LDN controls only input from the communication link or
output to the communication link. The HDLC driver can handle many
LDN’s and has two queues per LDN. Some queues may be empty (LDN3 SEND
and LDNN RECEIVE).

ND-60.13A.02

SIII COMMUNICATION GUIDE
HDLC - High Level Data Link Control

user program

LDN 1
send ‘F

LDN 1
receive 4-———-—-———'

LDN 2
send ‘P'

LDN 2
receive 4-—-———---

LDN 3
receive 4——

LDN 4
send ‘I'

Figure 5-2 Queues of Driver Control Blocks (DCB)

buffer area

ND-60.13u.02

Bfllfl

<3F171EJ

()t‘tjin-

O

I

83

8H SIII COMMUNICATION GUIDE
HDLC - High Level Data Link Control

5.2.2. Send DCB (SDCB)

Istat = HDLC (SDCB,LDN,DCB—address,DCB-usize,DCB—msize)

SDCB is used when the user program wants to send a DCB to the HDLC-
driver. The DCB is chained to the tail of the driver queue. Only as
many bytes as specified in DCB-usize is sent to the driver. However,
upon later reception of the same DCB, after driver treatment, it might
have grown to the size specified in DCB-msize.

5.2.3. Receive DCB (RDCB)

Istat = HDLC (RDCB,LDN,DCB,DCB—usize,WAITFL)

By means of RDCB, the user program may get DCB’s back from the HDLC-
driver. If no completed DCB exists, the system response depends upon
the use of the WAITFL-parameter. If WAITFL is 1, the calling program
is set in I/O-WAIT until a DCB arrives from the driver. If WAITFL is
O, the user program will always continue whether there exists a DCB
for it or not. However, if RTWT is called after an unsucessful RDCB,
the program will be activated at the instruction following MON RTWAIT,
when a DCB is sent to it. This property may be useful if one program
controls many LDN's, and is not sure which LDN the next DCB is going
to come from and when it will come.

The DCB-usize is set by the driver to the size of the DCB after driver
treatment. DCB size may never exceed the DCB-msize used when the DCB
was sent to the driver.

5.3. The Driver Control Block

A user program makes a request for service to the HDLC-driver by
sending it a block of data called the Driver Control Block (DCB).

The first 3 words in the DCB contain command and status information,
while the rest may contain frame data or additional information. When
the request is granted by the HDLC-driver, the STATUS parameter is
updated, and the DCB is sent back to the user program.

ND-60.13H.02

SIII COMMUNICATION GUIDE 85
HDLC — High Level Data Link Control

5.3.1. The Driver Control Block Format

The DCB has the following general format used when transferring data.

NOTE: Other commands such as device initialization and device status,
have slightly different formats.

-_——_————o-—~..-———__———_

— COMMAND -
— STATUS -
- HARDWARE STATUS —
— FRAME DATA -

_—ww—u~......__..__————-ua.-—--

The various commands are decribed in the next section. Status codes
are found in Appendix E. The hardware status (HSTAT) varies depending
on the transfer direction. It is not updated if the transfer is
successful. If an output LDN is used, hardware status is a copy of the
transmitter transfer status register. This is described under
programming specifications (IOX GP + 12) in the manual "HDLC - High
Level Data Link Control Interface" (ND-12.018). If an input LDN is
used, HARDWARE status is a copy of the receiver list status word found
in the section on receiver lists in the same manual.

In the remainding of this section we will simply refer to the DCB as

(PARAM1,PARAM2,....)

5.3.2. HDLC—Driver Commands

The commands used in the DCB are,

DEVCL (:3) Device Clear
DEVINI (:A) Device Initialization
RESET (:2) Reset Logical Device
TRANS (:1) Transfer Frame Data
DEVSTA (:5) Get Device Status

In this chapter these symbols will be used in the DCB argument list,

STAT - Status. result of operation.
NA - Argument not applicable.
HSTAT — Hardware status. For details see the HDLC

manual ND—12.018.
FRDAT — Frame of data, DCB-usize is the number of

bytes in the frame.

ND-60.13H.02

86 SIII COMMUNICATION GUIDE
HDLC - High Level Data Link Control

5.3.2.1. Device Clear (DEVCL)

(DEVCL,NA,NA)

DEVCL will completely clear the HDLC-interface. Both the input and the
output side of the interface will be cleared. All data transfer to and
from the interface will stop. DCBs currently being processed by the
driver will be returned, with the value of STAT = 110. Further use of
the interface must include the DEVINI command.

Input parameters (set by user)

DEVCL equals 3

5.3.2.2. Device Initialization (DEVINI)

(DEVINI,STAT,HASTAT,MODUS,FRSIZE,MAXERR,DISP)

DEVINI should always be used after DEVICE CLEAR. The command will give
the interface necessary information related to the operation mode.

Input parameters (set by user)

DEVINI equals A

MODUS=O: full duplex operation, MODUS=1= half duplex, MODUS:2:
maintenance mode, looping transmitted data back to received data.

FRSIZ specifies the maximum size of the dataframes to be transferred.

MAXERR is number of retries in case of errors. It only applies to the
output side of the interface.

DISP or displacement is the number of free bytes reserved at the
beginning of each dataframe in the DCB. Only the FRAME DATA part of
the DOB is affected (displaced).

Output parameters (set by driver)

STAT is the resulting status of the operation, see Appendix F.

HSTAT is set to the checksum given by the interface as a response to
the initialize command. See the section on initialization in the HDLC
manual, ND-12.018.

ND-60.134.02

SIII COMMUNICATION GUIDE 87
HDLC - High Level Data Link Control

5.3.2.3. Device Reset (RESET)

(RESET,NA)

The command is used to reset either the input or the output side of
the interface depending on the LDN. It is not necessary to do DEVINI
after this command. DCB's currently being processed by the driver will
be returned, with the value of STAT : 110.

Input parameters (set by user)

RESET equals 2

5.3.2.“. Transfer Frame Data (TRANS)

(TRANS,STATUS,HSTAT,FR-DATA ...)

The command is used for transferring frames of data to and from the
computer. If the DCB is sent to an output LDN, the frame data will be
transferred to the communication link. If the DCB is sent to an input
LDN, the frame data-part of the DCB will be filled with data from the
communication link.

Input parameters (set by user)

TRANS equals 1

Output parameters (set by driver)

STAT is the result of the operation, see Appendix F.

HSTAT, see general description in section 5.3.1

FR-DAT is the array of frame data bytes received or transmitted. The
array length is equal to DCB-usize.

ND-60.134.02

88 SIII COMMUNICATION GUIDE
HDLC - High Level Data Link Control

5.3.2.5. Device Status (DEVSTAT)

(DEVSTAT,NA,NA,ERRN0,0RERR,LHAST,RSTOP,MAXR)

This command will give status information about the LDN used. The
internal parameters inspected will be cleared.

Input parameters (set by user)

DEVSTAT equals 5

Output parameters (set by driver)

ERRNO is set to the total number of errors detected. The internal
parameter ERRNO is set to zero after this call.

ORERR is an OR function of all hardware errors at the LDN. The
hardware status register used, is the transmitter status register for
an output LDN, and the receiver list status word for an input LDN. The
internal parameter ERRNO is set to zero after this call. See the HDLC
manual, ND-12.018.

LHAST is set equal to the last hardware status detected by the driver.
(Transmitter Transfer Status or Receiver List Status word according to
LDN, see the HDLC manual.)

RSTOP is the number of receiver stops due to lack of buffer space.
Note that the user is responsible for providing the input LDN with
sufficient buffer space. He must send enough DCBs with command TRANS
to the LDN. The internal parameter RSTOP is set to zero after this
call.

MAXR is set to the maximum number of DCB's which can possibly be held
by the driver. The argument only applies to an input LDN.

ND-60.13H.02

SIII COMMUNICATION GUIDE 89
HDLC - High Level Data Link Control

5.u. How to Program the HDLC-Driver

The two first DCB's sent to the driver must be DEVICE CLEAR and
DEVICE INITIALIZATION. These DCBs may be sent to both logical devices,
as they will affect both the input and the output side. To check the
driver reaction, the status information from the driver is obtained
when the DCBs are returned by doing two RECEIVE DCB on the same LDN.
After successful completion of DEVICE CLEAR and DEVICE INITIALIZATION,
the actual data transfer may start. The methods of controlling the two
LDNs are somewhat different, as explained below.

5.”.1. The Input LDN

As it is difficult to predict the arrival of data, the driver must
have some amount of buffer space for storing the frame data when it
arrives. This should be done initially by sending empty (command
TRANS) DCBs to the driver. However, the driver is only capable of
holding a limited number of empty DCB’s. This number can be obtained
from the RMAX parameter of the DEVSTAT command. When this limit is
reached, the driver will send the empty DCB back to the source with
status 110.

The user program may then get a DCB back by doing a RECEIVE DCB.
Normally the DCB will now contain data. To maintain the driver's
bufferspace, the user program should, upon receiving one DCB, send the
driver a new empty one.

Note that the receiving part of the interface is activated when the
driver receives the first empty DCB.

5.”.2. The Output LDN

The driver is activated by a "SEND DCB". The command in the DCB should
be TRANSFER. The driver will then always give status information which
the user program can receive on a RECEIVE DCB to the same LDN.

ND—60.13N.02

90 SIII COMMUNICATION GUIDE
HDLC — High Level Data Link Control

ND-60.13H.02

SIII COMMUNICATION GUIDE 89
HDLC — High Level Data Link Control

5.”. How to Program the HDLC—Driver

The two first DCB's sent to the driver must be DEVICE CLEAR and.
DEVICE INITIALIZATION. These DCBs may be sent to both logical devices,
as they will affect both the input and the output side. To check the
driver reaction, the status information from the driver is obtained
when the DCBs are returned by doing two RECEIVE DCB on the same LDN.
After successful completion of DEVICE CLEAR and DEVICE INITIALIZATION,
the actual data transfer may start. The methods of controlling the two
LDNs are somewhat different, as explained below.

5.”.1. The Input LDN

As it is difficult to predict the arrival of data, the driver must
have some amount of buffer space for storing the frame data when it
arrives. This should be done initially by sending empty (command
TRANS) DCBs to the driver. However, the driver is only capable of
holding a limited number of empty DCB’s. This number can be obtained
from the RMAX parameter of the DEVSTAT command. When this limit is
reached, the driver will send the empty DCB back to the source with
status 110.

The user program may then get a DCB back by doing a RECEIVE DCB.
Normally the DCB will now contain data. To maintain the driver’s
bufferspace, the user program should, upon receiving one DCB, send the
driver a new empty one.

Note that the receiving part of the interface is activated when the
driver receives the first empty DCB.

5.4.2. The Output LDN

The driver is activated by a "SEND DCB". The command in the DCB should
be TRANSFER. The driver will then always give status information which
the user program can receive on a RECEIVE DCB to the same LDN.

ND-60.13u.02

90 SIII COMMUNICATION GUIDE
HDLC - High Level Data Link Control

ND-60.13H.02

SIII COMMUNICATION GUIDE 91
X.21 COMMUNICATION PROTOCOL

6. X.21 COMMUNICATION PROTOCOL

6.1. Introduction

The CCITT X.21 recommendation defines the physical characteristics and

the call control procedures between the DTE (Data Terminal Equipment,
The Subscriber) and the DCE (Data Circuit Equipment, The Network). The
Nordic Public Data Network (NPDN) operates in accordance with this
recommendation.

The X.21 Monitor Call is used to control a High Level Data Link (HDLC)
Interface in accordance with the CCITT X.21 recommendation. The
Monitor Call number is the same as for MON HDLC. The system uses the
logical device number (LDN) to distinguish between HDLC and X.21.

The X.21—driver and the user program communicate by means of Driver
Control Blocks (DCB).

For the purpose of transferring DCB’s between user programs and the
X.21-driver, the monitor call X.21 is used. For a description of MON
X.21 see section 6.2 below

The format of the DCB and the different X.21 commands can be found in
section 6.3.

6.2. The Monitor Call X.21 (MON 201)

MON X.21 is used to transferring DCB’s between the user programs and
the X.21-driver.

DCB's are sent from a user program to the X.21-driver using SEND. When
a DCB is sent to the driver, it is copied from the user program to a
driver buffer—area. Here it is inserted in a queue of DCB's to the
driver. The driver processes the DCB's one by one and, after
processing, puts them in another queue of DCB's back to the user
program. The user program can then receive them using RECEIVE. This is
done by copying the DCB from the buffer area to the user program.
Since the receiving of DCB’s may be done asynchronously with respect
to the sending, each DCB is given an identifier.

Figure 6-1 shows the data organization of the X.21 software. The
parameters STATUS and CP-SIGNAL are filled in by the X.21—driver.

ND-60.13H.02

92 SIII COMMUNICATION GUIDE
X.21 COMMUNICATION PROTOCOL

buffer area

user program

CIMMAND

SEND STATUS
CQMAND 5

DCB X.21 driver
STATUS

CCMMAND

FACILITY

comm.
4—r

comma link
STAIUS

FACILITY

CP-SIGN.

CCMMAND

STATUS OCMVIAND
RECEIVE

FACILITY 4—— STATUS
IIIB

CP-SIQI. FACILITY

CP-SIGN.

Figure 6-1 Data Organization in X.21

ND-60.13u.02

SIII COMMUNICATION GUIDE 93
X.21 COMMUNICATION PROTOCOL

6.2.1. X.21 Monitor Call Format

6.2.1.1. Calling X.21 in NPL

When calling X.21 in NPL, the A—register points to a list of parameter
addresses.

LDA (PLIST
MON 201
JMP ERROR

PLIST, PARAM1 ADDRESS
PARAM2 ADDRESS
PARAM3 ADDRESS
PARAMH ADDRESS
PARAM5 ADDRESS

There are two basic return sequences.

w Skip returno DCB successfully transferred
A-register contains DCB identifier.

- Non skip returno Error in DCB transfer
A—register contains error code.
(Negative)

6.2.1.2. Calling X.21 from FORTRAN

ISTAT : x.21 (PARAM1,PARAM2,....,PARAM5)

If ISTAT is positive, the transfer of the DCB was sucessful, and ISTAT
is set to the DCB-identifier. Otherwise, if ISTAT is negative, an
error has occurred. For further decription, see the list of error
codes in Appendix J.

ND—60.13H.O2

9H SIII COMMUNICATION GUIDE
X.21 COMMUNICATION PROTOCOL

6.2.1.3. The Arguments of MON X.21

In the remaining part of this section, we will simply refer to the
argument list as (PARAM1,PARAM2, ...,PARAM5). As decribed below,
PARAM1 gives the function (0 for SEND, 1 for RECEIVE), PARAMZ is the
logical device number, PARAM3 is the DCB address, PARAMH the used DCB
size, PARAMS the maximum DCB size or a wait flag.

The size of the DCB is given in two parameters, used size and maximum
size. The maximum size is the size of the DCB in the driver buffer
area. The used size is the size of the DCB in the user program when it
is sent or when it is received. The sent size and the received size
may be quite different. The maximum size will be the larger of the two
used sizes.

The symbols below will be used in the parameter list.

SDCB — Equals 0. Send DCB to driver.
RDCB - Equals 1. Receive DCB from driver.
LDN - Logical Device Number.
DCB-address - Address of the DCB
DCB-usize - Used size of the DCB in number of bytes.
DCB-msize - Maximum size of the DCB in number of

bytes.

6.2.1.”. The use of Device Numbers in Mon X.21

There is one logical device number (LDN) used for each Data Network
Connection.

To obtain the exclusive access to an LDN, the monitor calls RESERVE
and RELEASE should be used.

Note that there is one SEND queue and one RECEIVE queue for each LDN.

ND-60.13H.02

SIII COMMUNICATION GUIDE 95
X.21 COMMUNICATION PROTOCOL

6.2.2. Send DCB (SDCB)

ISTAT = X.21 (SDCB,LDN,DCB-address,DCB-usize,DCB-msize)

SDCB is used when the user program wants to send a DCB to the X.21-
driver. The DCB is put at the end of the driver queue. Only as many
bytes as specified in DCB-usize are sent to the driver. However, when
receiving the same DCB at a later time (after driver treatment) it
might have grown to the size specified in DCB-msize.

6.2.3. Receive DCB (RDCB)

ISTAT = X.21 (RDCB,LDN,DCB—address,DCB—usize,WAITFL)

By means of RDCB, the user program may get DCB's back from the X.21-
driver. If no complete DCB exists, the system response depends upon
the use of the WAITFL-parameter. If WAITFL is 1, the calling program
is set in I/O-WAIT until a DCB arrives from the driver. If WAITFL is
0, the user program will always continue whether there is a DCB for it
or not. A subsequent call to RTWT (MON 135) should be used to wait for
a DCB. This feature may be useful if one program controls many LDN's,
and it is not known which LDN the next DCB is going to come from, or
when it will come.

The DCB-usize is set by the driver to the size of the DCB after driver
treatment. The DCB size may never exceed the DCB-msize specified, when
the DCB was sent to the driver

6.3. The X.21 Driver Control Block

A user program makes a request for service to the X.21-driver by
sending it a block of data called the Driver Control Block (DCB).

The first 4 words in the DCB contain command and status information,
while the rest of it may contain additional information. When the
request is fulfilled by the X.21-driver, the STATUS parameter is
updated, and the DCB is sent back to the user program.

ND-60.13H.02

96 SIII COMMUNICATION GUIDE
X.21 COMMUNICATION PROTOCOL

6.3.1. The X.21 DCB Format

The X.21 DCB has the following general format.

—— —__—— nugg-u—u.

P1 w COMMAND - Integer (1 word)
P2 ~ STATUS — Integer (1 word)
P3 - FACILITY - Bits (1 word)
PM * CALL PROGRESS SIGNALS — IAS (1 word)
P5 - DTE/DCE PROVIDED INFORMATION - IA5 (n words)

COMMAND is given by the user. A description are found in next section.

FACILITY is given by the user. By using this parameter, the user may
make requests for optional service provided by the network. The coding
is decribed in Appendix H.

STATUS is provided by X.21, and indicates the result of Operation
(Appendix H).

CALL PROGRESS SIGNALS is status information provided by the DCE. The
characters used are selected from the International Alphabet No. 5
(Appendix I).

DTE/DCE PROVIDED INFORMATION field will hold information either given
by the user (DTE PROVIDED) or the DOE (DCE PROVIDED) or both. All
characters in this parameter should be according to the International
Alphabet No. 5.

The only DTE PROVIDED information currently applicable is the
subcriber number used in the CALL command.

When it comes to the DCE PROVIDED information, two different types may
occur;

Called/Calling Line Identification
Charging Information

The Called/Calling Line Identification will have as a prefix the IA5
character "*" when the call is national, and "**" when the call is
international. The Charging Information will have as a prefix the IAS
character "/". For a detailed decription of the Charching Information,
see the specific command.

In the remainding part of this section we will simply refer to the
DCB as

(PARAM1,PARAM2....)

ND—60.134.02

SIII COMMUNICATION GUIDE 97

X.21 COMMUNICATION PROTOCOL

6.3.2. The X.21 Commands

The following values are used for PARAM1.

CONNECT (=—5) Connect LDN's to X.21

DISCONNECT (=—6) Disconnect LDN’s from X.21

CALL (=—1) Call request

READY (:—2) Ready for incoming call

CLEAR (:—3) Clear

GCHAR (=_u) Get charging information

RDIRC (=—7) Redirection of calls

GSTAT (:-8) Get status

TERM (=—9) Returned when call terminated

6.3.2.1. Connect (CONNECT)

(CONNECT,STATUS,NA,NA,ILDN,0LDN,RTUSER)
This command will connect the current X.21 LDN with ILDN (Input
Logical Device Number) and OLDN (Output Logical Device Number), and by
doing so enabling ILDN and OLDN to be used for transfering data on a

X.21 network. All X.21 commands must be sent to the X.21 LDN, while

data is transferred through ILDN and OLDN. The ILDN and OLDN must be

reserved by an RT-program prior to using this command. The RTUSER
parameter holds the address of the RT-program having reserved the ILDN

and the OLDN. RTUSER set to 0 indicates that the current RT-program
has reserved ILDN and OLDN. ILDN, OLDN and RTUSER are all integers.

ND—60.13H.02

98 SIII COMMUNICATION GUIDE
X.21 COMMUNICATION PROTOCOL

6.3.2.2. Disconnect (DISCONNECT)

(DISCONNECT,STATUS,NA,)

The DISCONNECT command is used to cancel the last CONNECT command. The
current X.21 LDN is disconnected from ILDN and OLDN.

6.3.2.3. Call (CALL)

(CALL,STATUS,FACILITY,CP,DTE/DCE PROVIDED INFORMATION)

CALL will try to establish a connection with the DTE having the number
specified by the user in the DTE PROVIDED INFORMATION field. The
parameter must be terminated by "+".

The FACILITY PARAMETER may contain combinations of the following bits;
CHARGING INFORMATION, CALLED LINE INFORMATION, and CONNECT WHEN FREE.
(See appendix H.) In the case of CHARGING INFORMATION, the network
will send charging information when the call is terminated. The
information is available through the GCHAR command. The CALLED LINE
IDENTIFICATION will be returned within the current message in the
DTE/DCE PROVIDED INFORMATION field.

When the CONNECT WHEN FREE facility is requested, the X.21-driver will
wait until the connection is established. If however, a new message is
sent to the X.21-driver the call will be terminated, and the message
will be returned with status 21.

6.3.2.u. Ready (READY)

(READY,STATUS,NA,CP,DTE/DCE PROVIDED INFORMATION)

By sending this command, the user indicates that he is ready to accept
incoming calls. The message will be returned to its originator when an
incoming call arrives, or if some error occurs. The message will also
be returned, and the Ready state terminated if a new message is sent
to the same LDN. If the option for calling line identification is
available for this subcriber, the information will be found in the DCE
PROVIDED INFORMATION field.

The FACILITY parameter is not applicable in this command.

ND-60.13H.02

SIII COMMUNICATION GUIDE 99

X.21 COMMUNICATION PROTOCOL

6.3.2.5. Clear (CLEAR)

(CLEAR,STATUS,NA,CP,NA)

This command will break any existing connection with the network, and
set this subscriber in a "not ready" state. By doing so all
communication with the network is disabled.

Only the STATUS and the Call Progress signals parameters are used in

this command.

6.3.2.6. Get Charging Information (GCHAR)

(GCHAR,STATUS,NA,CP,DCE PROVIDED INFORMATION)

GCHAR is used to retrieve the charging information of the last call

established with the CHARGING bit set in the FACILITY parameter. When
receiving the DCB, the charging information is found in the DCB
PROVIDED INFORMATION part of the DOB. This part informs the subscriber
of either the monetary charges for a call, the duration of a call, or
the number of units used during the call.

The syntax of the part is described below using Backus Normal Form
(BNF) as shown in the CCITT document "DRAFT RECOMMENDATION X.21 -

DRAFT REVISION A" with Addenda T119 and T123.

When charging information is given in monetary charges for the call,
the prefix of the information is 1 and the information consists of x
integer digits optionally followed by a colon and two digits
representing the fraction. In general, the format is:

</><1></><X.....><+>

OI"

</><1></><X.....:YY><+>

ND-60.13U.02

100 SIII COMMUNICATION GUIDE
X.21 COMMUNICATION PROTOCOL

When the charging information is presented as the duraction of a call,
the prefix is 2. The information consists of x integer digits
representing seconds. In general, the format is:

</><2></><x,.,.,><+>

When the charging information is presented as the number of units
used, the prefix is 3. The information consists of x integer digits
representing the units. In general, the format is:

</><3></><X.....><+>

6.3.2.7. Redirection of Calls (RDIRC)

(RDIRC,STATUS,NA,CP,NA)

The purpose of this command is to redirect all incomming calls to
another subscriber. The address of the new subscriber is predefined
within the network.

6.3.2.8. Get Status (GSTAT)

(GSTAT,NA,NA,NA,STATUS)

The command will return the current status of the X.21 LDN. STATUS may
take any of the following values:

:0 The X.21 LDN is not used.

:1 The connect command is used, but no link through the network is
established.

:3 A connection through the network is established and a data transfer
is currently going on.

6.3.2.9. Return when call terminated

(TERM,STATUS,NA)

The DCB will be returned if the current X.21-line is in or enters a
non data phase state. The status parameter in the DCB will be set to
20(octal). See appendix K.

ND—60.13H.02

SIII COMMUNICATION GUIDE 101
X.21 COMMUNICATION PROTOCOL

6.”. Writing HDLC Driver for X.21 Network

The Monitor Call MON X.21 is used for an explicit request to the
network. This is done through the various commands decribed in
previous sections.

When a connection is established, the DTE’s will be responsible for
establishing their own alignment. In this phase, the data phase, a
software driver will control the HDLC interface. Since the network at
any time may initiate a disconnection, the following constraints will
apply to the software driver.

When an input transfer is finished, the receiver transfer status
register will be modified, and be of no use to the driver. But a copy
with some additional information (bit 1” and 13) will be found in the
A—register.

BIT 1U set to 1 means that the connection is broken due to DCE
clearing.

BIT 13 set to 1 means that the transfer just completed is in error.

ND-60.13N.02

W

W

ND—60 .134 . 02

Appendix A 103
MAGTP Functions

Notes

1) See the section "Call Formats" following this section

2) Applies to the whole device, i.e. all units

3) Included in the 80B and later versions

A) Function depends on hardware configuration

5) Select parity and density as follows

800 BPI, odd parity
556 BPI, odd parity
200 BPI, odd parity
800 BPI, even parity
556 BPI, even parity
200 BPI, even parity

<density/parity>

ms—uo

Default value is zero.

In some hardware oonwigurations, the value is selected by setting a
switch on the front panel.

6) Select density as follows

0: 1600 BPI
1: 6250 BPI

<density/parity>

7) Clear unit only as determined by the logical device number.

8) Read density and parity (a)

9) Read parity and density (b)

10) Read format (0). (Floppy disk formats are shown in note 21 below,
while a, b and c are explained in the section "Call Formats" on page

99 and 100.)

11) The format of ISTAT for Tandberg, Pertec or STC is
(condition is set if bit is set)

bit 0: Tape on line
: Write enable ring present

_: Tape standing on load point
3: CRC error/fatal error
A: Set if any of bits 5, 6, 7, 8, 9, 11, or 12 is set
5: Control or modus word error. Trying to write on

unprotected tape, reserving tape at load point,
tape unit not on—line, etc. Action is inhibited.
Bad data block. An error has been detected
End of file has been detected
The search character has been detected
End of tape has been detected. Resetting the bit depends
on the model.
Tandberg, STC: The bit remains on if carrying out a

function after EOT (end-of—tape).

\OOONO“ I.

I.

an

.-

ND-60.13N.02

10” Appendix A
MAGTP Functions

Pertec : The bit is cleared if carrying out a
function after EOT.

10: Word counter is not zero
11: DNA error
12: Overflow (in read)
13: Tape busy or formatter busy
14: LRC error/software error
15: Interrupt when formatter is ready

12) For Hewlett-Packard magnetic tape the format of ISTAT is
(condition is set if bit is set)

bit 0: Ready interrupt enabled (cleared by the interrupt)
1: Error interrupt enabled (cleared by the interrupt)

Device active
Device ready for transfer

. Set if any of bits 6, 9, 10, 11 or 12 is set or if
a reverse command is at load point
Write enable ring present
LRC error
EOF detected
Load point (The unit remains in this state also after
the first forward command after load point is detected)

9: EOT detected
10: Parity error
11: DMA error
12: Overflow in read
13: Density select 1 = 800 BPI
1”: Magnetic tape unit ready (selected, on-line and not

rewinding)
15: Bit 15 is loaded by the previous control word

:LAJN nun

CO~IONU1 u

so

an

.-

13) Only available as @DEVICE-FUNCTION

1”) For Philips cassette the format of ISTAT is (condition is set if
bit is set):

bit Ready for transfer, interrupt is enabled
Error interrupt enabled
Device is active
Device is ready for transfer
Set if any of 0, 1, M or 5 is set
Write enable
Cassette side indicator (A = 1, B = 0)
Bit clock
Read fail
Sync fail
Not used
Not used
Drive fail

13: Write protect violation
1”: Beginning or end of tape
15: Not used

0
1
2
3
)4
5
6
7
8
9
0
1
2_|_|_|

15) For Versatec line-printer the format of ISTAT is (condition is set
if bit is set):

ND—60.13N.02

Appendix A
MAGTP Functions

bit 0:

O‘U’IJZ'LUN -
u

u

u

7:

Ready for transfer, interrupt enabled
Error interrupt enabled
Device active
Device ready for transfer
Set if any of bits 6 or 7 is set
Not used

. No paper
Plotter not on-line

8 - 12: not used, bits set at random
13: Plotter ready
1” - 15: Not used, bits set at random

105

16) For floppy disk the format of ISTAT is (condition is set if bit is
set):

bit 0:
1:
N

|—J|_I WN—IOQQK‘IO‘U'IJZW

uuuuun

1M:
15:

17) Write a block in a unique format to indicate EOF.

Interrupt enabled
Not used
Device busy
Device ready for transfer
Set if bits 5, 8, 11, 12 or 1“ are set
Deleted record detected
Read/write completed
Seek completed
Drive not ready
Write protected
Not used
Address mismatch
CRC error
Not used
Data overrun
Not used

is incremented by one.

18) The disk address is set to zero.

19) The disk address is decremented by one.

20) The disk address is incremented by one.

21) The following formats are available:

<input format>

22) All

The disk address

0: 256 words/sector, 8 sectors/track
(Standard format used by Norsk Data A.S)

1: 128 words/sector, 15 sectors/track
2: 6H words/sector, 26 sectors/track

data on the diskette is overwritten and the diskette is

formatted (i.e. new addresses are written)

23) Read a record even if it has been flagged as deleted.

an) After the record is written it is flagged as deleted.

ND-60.13H.02

106 Appendix A
MAGTP Functions

25) Versatec may be used similarly to other line-printers. OUTBT
(MAC/NFL) WRITE, OUTPUT or OUTCH (FORTRAN) is used to print
characters. In order to reserve the access to the device it should
first be opened, then written to and finally closed. On closing, the
remaining characters to be printed are transmitted to the Versatec.
(RESERV and RELES may also be used.)

26) SINTRAN III can handle at maximum two floppy disk controllers each
having a maximum of three drives. Before it can be used, the floppy
disk must be formatted. (Function 41, see SINTRAN TIME-SHARING/BATCH
GUIDE, section 3.12)

Instead of creating a directory the floppy disk can be used as a
sequential medium. It is then first created as a periheral file (@SET-
PER-Fl, @SET—FI-ACC) and ordinary I/O calls (INBT, OUTBT, etc.) are
used. End—of-file (EOF) must be written after the last write call by
using @DEVICE-FUNCTION or MAGTP, function 12.

27) Read hardware status on last unit operated upon. It can be any
unit on the device.

28) Read hardware status of the last operation on the own device.

29) Tape is positioned immediately after the EOF.

30) Tape is positioned immediately in front of the EOF.

ND-60.13u.02

Appendix A 107
MAGTP Functions

Call Formats

<d> = dummy parameter. Use a variable for this parameter, for ex.:

IDUM=O
ISTAT = MAGTP(UOB,IDUM,1000B,IDUM)

<LDN> = logical device no.

In all formats, except a, ISTAT will receive error status on return.
If ISTAT=0 the call terminated correctly. If ISTAT>0 it contains the
file system error number, see appendix D of SINTRAN III REFERENCE
MANUAL (ND-60.128).

E
The device must be reserved in order to read hardware status.
(If not, a positive value of ISTAT may not be the correct status.)

ISTAT: MAGTP(<function no.>,<d>,<LDN>,<d>,<d>)
ISTAT : Hardware status on return.

2
ISTAT: MAGTP(<function no.>,<d>,<LDN>,<d>,<d>)

E

ISTAT: MAGTP(<function no.>,<array name>,<LDN>,<max. words>,<words read>)

9
ISTAT: MAGTP(<function no.>,<array name>,<LDN>,<words to be written>,<d>)

<words to be written> is rounded off to whole words

2

ISTAT: MAGTP(<function no.>,<d>,<LDN>,<density/parity>,<d>)
ISTAT=O: OK
ISTAT>0: file system error

E
ISTAT: MAGTP(<function no.>,<d>,<LDN>,<input format>,<d>)

For <input format> see note 21) above.

5

ISTAT: MAGTP(<function no.>,<d>,<LDN>,<d>,<output format>)

£1.
ISTAT: MAGTP(<function no.>,<d>,<LDN>,<d>,<disk address>)

ND—60.13N.02

Appendix A108
MAGTP Functions

1

ISTAT: MAGTP(<function no.>,<status array>,<LDN>,<d>,<d>)
<status array> contains H word status on output.

ND-60.13H.02

A P P E N D I X B

XMSG -Summar'y descrigtion of Functions and Parameters

ND-60. 131! . 02

110 Appendix B
XMSG -Summary description of Functions and Parameters

Function T-reg A—reg D-reg X-reg Comment
XFDCT Disconnect
XFOPN Perm. flag :Port no Open port
XFCLS Port no Close port
XFGET XFWTF/XFWAK Size in bytes Get-mess-space

(XFWTF) =Message ptr.
XFREL Message ptr. Release mess.
XFRHD Message ptr. Read header

=< First six bytes of message >
XFWHD < First six bytes of message > Write header
XFREA User buffer Max no bytes Displacement Read block

=Actua1 no
XFWRI User buffer No. of bytes Displacement Write block
XFDIB XFWOK User buffer Size in bytes Message ptr Define ind buf
XFWIB User buffer Size in bytes Displacement Write indirect

:No NOT transfered
XFRIB User buffer Size in bytes Displacement Read indirect

=No NOT transfered
XFMST Message ptr Get mess stat

=Mess type =< Magic number > =Length
XFSCM Message ptr Port no Set our mess

(-1=>task default) (if 0 then task)
XFSND Send opts. < Magic number > Port Send cur mess

=Receiver Qlen
XFRTN Send opts. Message ptr Bytes 0/1 Port Return message

=Receiver Qlen
XFRCV XFWTF/XFWAK Port no Receive mess

=Mess type =Mcno/Port no =Message ptr =Length
XFRRH XFWTF/XFWAK Port no Rec. & Read hd

=Mess type =Mcno/Port no =Message ptr =Bytes 0/1
XFPST XFWTF/XFWAK Port Port status

=Mess type =Mcno/Port no =Message ptr =Queue length
XFGST XFWTF/XFWAK Port Wait general

=port RT if not wait
XFDUB Bank number Address in bank Length Def. User buf
XFSIN =Basefield add Service init
XFPRV Password or O Privilege
XFABR Buffer add Length Absolute add Absolute read
XFABW Buffer add Length Absolute add Absolute write
XFMLK Lock
XFMUL Unlock
XFM2P < Magic number > Magic to port

:Port no =Machine no
XFP2M Port no Port to magic

=< Magic number >
XFRIN Port no Machine no Routing tab Routing init
XFCRD PON bit Level Register blk Create driver

=Task address
XFSTD Task address Start driver

ND—60.134.02

Appendix B 111
XMSG —Summary description of Functions and Parameters

Notes

T register holds result status (<0 if error), except for XFDCT.

Send options: Secure message, High priority, Forward, Route, Bounce
(XFSEC, XFHIP, XFFWD, XFROU, XFBNC.)

Functions that affect the current port message: XFRCV, XFRRH, XFSCM.

Functions that affect the current task message: XFRCV, XFRRH, XFGET,
XFREL, XFRHD, XFSCM.

If a message pointer of —1 is used, the default port message will be
used if possible (port specified and a port default message
available), otherwise the task default will apply.

ND-60.13u.02

A P P E N D I X C

XMSG -Example of a Driver using Message System

ND-60.13H.02

Appendix C
XMSG -Example of a Driver using Message System

This example
driver:

SUBR TGPIB
INTEGER XRMES:=3
INTEGER XRLNG:=6
INTEGER XRPO1:=177NOA
INTEGER NAME:=’GPIB'

TGPIB:
L:=0 ;T:=XFOPN;*MON ZXMSG;JPL
IF T<0 G0 FAR KERR
A: :PORT ;A : =L= :XTBLK

T::XFOPN;CALL MCALL;A=:DPORT
T:=XFGET;A:=2000;CALL MCALL
A::DMESA;T:=B;B:=A;AD::XMDAD;B::T;AD=:DBUFA
A:=12=:D;A::"XRMES";X:=O;T::XFWRI;CALL MCALL
T::XFSND BONE XFROU;X:=PORT;CALL MCALL
T:=XFRCV BONE XFWTF;A:=PORT;CALL MCALL
AD:=DBUFA;*EXAM
IF T><0 THEN ;CALL XERR FI

GCOM:
T:=XFRCV BONE XFWTF;A:=PORT;CALL MCALL

::CURMTY;A:= =:CURMES

113

is an abbreviated version of the kernel of the GPIB bus

% FIRST TWO BYTES IN XROUT MESSAGE
% NEXT TWO BYTES IN XROUT MESSAGE
% PARAMETER LENGTH IN XROUT MESSAGE
% PORT NAME

I (WT11

‘afizfizfifi‘afiaflh‘fi

fih‘hfi

fi‘afi

A:=32=:D;A:=B;X:=0;T:=XFREA;CALL MCALL %

T:=CURMES;T:::B;AD-=XMDAD;B:=T
X::MDATA;*RADD SX DD;COPY SA
A::CURMTY
IF A=XMROU GO FAR LOGON
IF A=XMTRE GO FAR LOGOF

DA ADC;STD CURAD,B %

%
%

<Handle Request as defined in message>

ND-60.13N.02

OPEN COMMAND PORT
CHECK IF ERROR RETURN
SAVE PORT NO. AND
XTBLK ADDRESS
OPEN DMA PORT
GET DMA BUFFER
SAVE DMA BUFFER ADDRESS
WRITE TO MESSAGE
NAME PORT
REC. RESPONS FROM XROUT
READ XROUT STATUS
IF T><0 FATAL ERROR

WAIT FOR COMMAND
SAVE CURRENT MSG. ADDRESS
& TYPE
GET PARAM. BLOCK INTO
DATAFIELD

SAVE BUFFER ADDRESS

IF ROUTED MESSAGE GO LOGON
IF RETURNED MESSAGE GO LOGOF

11“ Appendix C
XMSG —Example of a Driver using Message System

RETUR:
A:=CURMTY;IF A-XMTRE: 0 G0 GCOM % IF LOGOF WAIT NEXT COMMAND
T=:CURFUN;A: H32 ”B X:=O; T: =XFWRI;CALL MCALL % STORE STATUS IN MESSAGE
T:=DINPT;IF T><0. THEN
A:=CURBC+323T:=CURMES;B:=T;
T:=XFSND BONE XFSEC;X:=PORT
G0 GCOM

A :X
; :

WEN;B:::T FI % SET MESSAGE LENGTH
:D; CALL MCALL % RETURN MESSAGE:—1:

ERR: T=:ERCOD;GO RETUR
LOGON: % Handle Connect Request from GPIB User
LOGOF: % Handle Disconnect Request from GPIB User

SRENT: CALL WT11
MCALL: A::AREG;A:="SRENT"::DRIVER;A:=XTBLK:=:L=:"MRETA":=AREG

*MON 2XMSG;JMP I (WT11
IF T<0 GO XERR;GO MRETA

FATER: T=:ERCOD;A:=L;A-1;CALL 9ERR(£93);G0 HGPIB
XERR: =:XERCO;A::L;A-1;CALL 9ERR(£92)
HGPIB: FOR X::0 TO 17 D0

O::UMESS(X)
OD
T::XFDCT;CALL MCALL
GO WT11

RBUS

ND-60.13H.02

W

XMSG -S mbol Table

ND—60.134.02

116 Appendix D
XMSG -Symbol Table

The following is a listing of the XMSG-VALUES file that defines the
symbolic Names for error codes and function values used by XMSG:

%**

%
% XMSG-VALUES:SYMB Defines the values for symbolic
% ———————————————— names for functions and error codes.
%
%**

@LIB SINDA—,
SYMBOL 2XMSG=200 % Monitor call number for XMSG (in SIN-DATA)
@ELIB

% F U N C T I 0 N V A L U E S

SYMBOL XFDUM:O
SYMBOL XFDCT:1
SYMBOL XFGET:2
SYMBOL XFREL=3
SYMBOL XFRHD:u
SYMBOL XFWHD:5
SYMBOL XFREA=6
SYMBOL XFWRI:7
SYMBOL XFSCM=1O
SYMBOL XFMST=11
SYMBOL XFOPN:12
SYMBOL XFCLS:13
SYMBOL XFSND:1H
SYMBOL XFRCV=15
SYMBOL XFPST:16
SYMBOL XFGST=17

Dummy function
Disconnect from message system
Get message space
Release message space
Read header from a message (6 bytes)
Write header to a message (6 bytes)
Read from message to user buffer
Write from user to message
Set current message
Get message status
Open port
Close port
Send message to a remote port
Receive a message on a given port
Get local port status
General status or wait

fiafimxefimefiaa‘efiafifiafi

B‘B‘

% SERVICE FUNCTIONS

Service initialisation function
Service release function (obsolete)
Absolute read block from POF area

SYMBOL XFABW=23 Absolute write block to POF area
SYMBOL XFMLK=24 Lock message system

SYMBOL XFSIN:20 %
%
%
%
%

SYMBOL XFMUL:25 % Unlock message system
%
%
%
%
%

SYMBOL XFSRL:21
SYMBOL XFABR:22

SYMBOL XFM2P:26 Magic number to port id.
SYMBOL XFP2M=27 Port to magic number
SYMBOL XFRIN=3O Routing initialise (obsolete)
SYMBOL XFCRD=31 Create driver with context
SYMBOL XFSTD:32 Start driver

ND-60.13H.02

Appendix D 117
XMSG -Symbol Table

% INDIRECT BUFFER HANDLING FUNCTIONS

SYMBOL XFDIB=33 % Define indirect buffer
SYMBOL XFRIB=3M % Read from indirect buffer
SYMBOL XFWIB=35 % Write to indirect buffer

% FUNCTIONS ADDED AFTER THE FIRST RELEASE

SYMBOL XFPRV=36 % Request privilege
SYMBOL XFRTN=37 % Write word 0 and return message
SYMBOL XFRRH=M0 % Receive message and read word 0
SYMBOL XFDUB=N1 % Define user buffer area for current message
SYMBOL X5FUN=M2 % ** END MARKER ** LEAVE ME HERE PLEASE

% BIT VALUES IN FUNCTION CODE REGISTER (T-REG)

SYMBOL XFWTF:17
SYMBOL XFWAK:16
SYMBOL XFPRM:15
SYMBOL XFOPS:1H
SYMBOL XFPON:15
SYMBOL XFWOK=15
SDBm.HBH=B
SYMBOL XFBNC=1H

If set then wait if operation not terminated
In RCV/PST/GST: Do RTENTRY on status change
In XFOPN: Permanent open requested
In XFOPN: Specified port number required (not impl.)
In XFSTD: Driver to run with paging on
In XFDIB: Allow write access to indirect buffer
In XFSND: High-priority message
In XFSND: Bounce message

SYMBOL XFFWD:13 In XFSND: Forward message
SYMBOL XFROU=12 In XFSND: Message to be sent to local XROUT
SYMBOL XFSEC=11 % In XFSND: Secure message (Return if not deliv’d)
% *** Warning: bits 10, 11 (octal) are used for bank no in XFABR, XFABW ***

B‘E‘Eflflfififlfiflzfi

%
% MESSAGE TYPES: RETURNED AS SUCCESSFULL STATUS FROM XFRCV

SYMBOL XMTNO=1
SYMBOL XMROU:2
SYMBOL XMTHI=3
SYMBOL XMTRE=4
SYMBOL XMKIK:5
SYMBOL XMTPS=6

Normal message
Routed message (Via XROUT)
High priority message
Return message (Abnormal condition)
XROUT has been kicked (no message)
Pseudo message (not used)BERRBQBQEQ

ND-60.13H.02

118

SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL

U S E R

XENOT=-1
XEIRM=—2
XETMM=—u
XENIM:—5
XEIBP=—6
XEBNY:-7
XEISP:—10
XENOP=—11
XEIDR=-12
XENDM=—13
XEMCH=-1u
XEBFC=-15
XEAIN=—16
XECRA=—17
XEWNA=—20
XENVI:—21
XEILF:-22
XEIMA=-23
XEMFL=-2M
XEILM:-25
XEIPN=-26
XEPRV=-27
XEPVR=-30
XERNA:-31
XEROV=-32
XEXBF:-33
XELOK=—34
XENDP=—35
XEITL=—36
XEIDP:—37
XEILR:—40
XENOS=-u1
XENSE=—42
XERND=—u3 “fiflfifififieflfiefifi“flflfififlfiflflflfiflaaflflfififlfifififl

Appendix D
XMSG —Symbol Table

E R R O R S Y M B O L S (Returned in T-reg)

No more XT—blocks free
Non-local remote port illegal here
Task is not allowed any more memory
Facility not yet implemented
Illegal message buffer pointer
Message buffer not yours
Illegal service program calling
No more ports available
Function not available to drivers
No default message
Message is already chained
Message is in a queue.
XMSG Kernel already initialised
XMSG crash (Info in Basefield)
Write Not Allowed (Indirect buffer)
No Valid Indirect buffer defined
Illegal function code in monitor call
Invalid magic number
Message space full
Illegal message size
Illegal port number
Privileged function called without privilege.
Privilege request refused
Remote machine not available
Remote task space overflow
Message already has XMSG buffer (XFDUB)
XMSG locked
No port open (so 'default port’ param invalid)
Illegal transfer length for read/write
Illegal displacement in read/write
Illegal use of reentrant segment in XFDIB
Indirect Buffer not on valid segment
Network sequencing error
Remote machine not defined

ND-60.13u.02

Appendix D
XMSG -Symbol Table

%

SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL

SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL

‘SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL

X R O U T

XSNUL:1OO
XSLET=101
XSNAM=102
XSCNM=103
XSGNM=1OH
XSGNI=105
XSREM=106
XSGMG=107
XSCMG=11O
XSDRN=111
XSDMC=112
XSGMC:113
XSLKI:11H
XSTIN=115
XSTCL=116
XSTDC:117
XSCRS:120
XSNSP=121

B‘B‘sfifitfisfiflhfih‘fifiéfiflfl

aflhfi

%

119

S E R V I C E V A L U E S

command returns 0 status to sender
Send a letter
Give name to this port
Clear name of this port
Get name of port (param: MAGNO)
Get name (param: MC/PORTNO)
Get remote magic number (LOC, REM NAME, MC)
Get magic number (PRIV)
Clear magic number (PRIV)
Define remote name (PRIV)
Define routing for machine N (PRIV)
Get routing info for machine N
Start up specified link
Initialise tracing (open file, ..)
Close tracing
Define tracing conditions
Create connection port
Increment number of free connections

Null

XSMAX=XSNSP % Maximum legal service value

X R O U T E R R 0 R S

Error values returned in byte 1 of return message.

XRISN=1
XRUNN=2
XRDDF=3
XRNSP:N
XRIPT:S
XRMMP:6
XRUNM=7
XRMTL=10
XRSMF=11
XRPRV=12
XRIMC=13
XRNRO=14
XRICL:15
XRIPI=16
XRNXM=17
XRILN=20
XRNXL=21
XRNXD=22
XRNTR=23
XRTRA=ZN
XRTRP=25
XRTFE:26
XRTRT=27
XRTIS=3O
XRBLK=31
XRMCD:32
XRNLM:33
XRTRE:3u
XRRNA=35

fififlfiflflfififififlflflfififlfiflfififlflE‘fi‘cfis‘?‘

%
%

Illegal service number
No open port has this name
Another port already has this name
No space left for names
Illegal parameter type
Missing mandatory parameter
Unknown magic number
Resulting message too long
Standard message format not handled
Caller was not privileged
Illegal machine number parameter
Cannot access remote XROUT
Illegal cluster number parameter
Illegal PIOC number parameter
Invalid service request — no multi-mc XMSG
Illegal/Reserved Log. unit no. for link
No more XL-Blocks (Link Descriptors)
Not enough XD-Blocks for LKINI
No trace generated
Trace already active
Trace passive
Trace file open error (see param 1)
Trace RT-prog (XTRACE) not found
Illegal system number
Bad link - open unsuccessful
Attempt to redefine local machine no
Local machine number not yet defined
Too many remote names to this machine
Old letter calls (service 2) cannot use XMSGM

ND—60.13N.02

120 Appendix D
XMSG -Symbol Table

SYMBOL XRBUS=36 % All connections with this name busy
SYMBOL XRNSE=37 % This is not a connect port
SYMBOL XRRPN:MO % Remote port statically declared.

% XMSG Crash Codes (on System Console and saved in Basefield)

SYMBOL XXEIE:1
SYMBOL XXIOW=2
SYMBOL XXBIN:3
SYMBOL XXMCE:N
SYMBOL XXIEN:5
SYMBOL XXIFL:6
SYMBOL XXIRT:7
SYMBOL XXNBF=1O
SYMBOL XXRIN=11
SYMBOL XXNMM:12
SYMBOL XXNIM:13
SYMBOL XXCLS:1N
SYMBOL XXCHE:15
SYMBOL XXNOR=16
SYMBOL XXICM=17
SYMBOL XX100=20
SYMBOL XXMON=21
SYMBOL XXMMC:22
SYMBOL XXFBI=23
SYMBOL XXPER=24
SYMBOL XXILN=25
SYMBOL XXROU=26
SYMBOL XXHER=27
SYMBOL XXR02=3O
SYMBOL XXTAS=3]
@DEV 1

Illegal entry ptr to XCRMG
Illegal owner of buffer
Memory allocn. inconsistency
Message queue length inconsistency
ZRALL gave port not in XQTAB
INIT: ZFUNC Function >XFMX1
Illegal RT—Description add used.
INIT: No Buffer space available
Inconsistency in resource allocation
More memory released than owned
Not implemented (Cannot recover)
Inconsistency in port chain in CLOSE
Double chaining attempted
No XMSG-RESIDENT found by POF
Inconsistency in XMPRT/XPCMS Pair
This can only be done on ND-100’S
Inconsistency in level 5 monitor queues
Multimachine XMSG not implemented/generated
Frame buffer handling inconsistency
Protocol error in communications system
Illegal LOG NO for HDLC (bad LOGPH)
No legal routing port defined
Error in HDLC Driver or interface to it
Fatal error in XROUT - see XROUT basefield
Task handling (wait,resume) errorBEBQEQflfififlaflflfiflflflflflfiflflsfifiafifia

ND-60.13H.02

A P P E N D I X E

HDLC —Error Codes from the Monitor Call HDLC

ND—60.13H.02

122

These errors (octal)

Appendix E
HDLC -Error Codes from the Monitor Call HDLC

related to the DCB transfer part. The A-
register contains the code on a non—skip return.

ERROR CODE MEANING

The LDN is not reserved by the calling
program
Illegal LDN used. Not known by SINTRAN
No DCB in receiver queue
No vacant buffer for DCB
Illegal DCB-usize
Illegal LDN. Not to be used by MON HDLC
DCB-msize less than DCB-usize
Illegal function
Fatal error. The table is inconsistent

ND-60.13H.02

A P P E N D I X F

HDLC -Status Codes in the DOB

ND-60.13u.02

124 Appendix F
HDLC -Status Codes in the DCB

These codes (octal) are issued by the driver, and found in the STATUS
word in the DCB when returned from the driver.

STATUS

O
100
101
102
103
10”

105
106
107
110

111

112
113

11”
115

116
117
120

MEANING

Operation completed sucessfully
Interface not cleared before initiation
Interface not initiated before transfer
Underrun
Timeout, no output interrupt
Command timeout. Probably a hardware
error.
Illegal command used in DCB
Hardware failure in initiation
DCB overflow. Receiver list is full
Untreated DCB due to Device Clear or
Reset
Input LDN stopped. Possible errors are
over-run, crc-error or lack of
buffer space.
Illegal parameter in DCB
Frame data part of DCB greater than max.
frame-size.
DCB is too small for expected data or info.
Attempt to transfer a frame containing
less than 2 bytes
Connection broken by X.21
Illegal displacement specification
Link locked

ND—60.13H.02

A P P E N D I X G

HDLC -Example of use

ND-60.13H.02

126 Appendix G
HDLC -Example of use

PROGRAM HDLCT,30

THE PROGRAM SENDS FRAMES OF DATA TO A REMOTE COMPUTER, AND
ASSUMES THAT THE DATA IS RETURNED UNALTERED.
THE REMOTE MACHINE MAY BE SIMULATED BY OPERATING THE
INTERFACE IN MAINTENANCE MODUS.

OOOOOO

INTEGER HDLC
INTEGER IDCB(106)
INTEGER SDCB,RDCB,OLUN,ILUN,BC
INTEGER DEVCL,DEVINI,TRANS,LUNSTA
INTEGER FRSIZ,DCBSIZ,MAINT,MAXERR,LISTM
INTEGER CFRSIZ,CMAXER
INTEGER FDPLX,COUNT,MAXDCB
INTEGER COMAND,STAT,HSTAT,FRDAT,MODUS

HDLC PARAMETER DEFINITIONS
GOO

SDCB
RDCB
OLUN
ILUN

O
1
753
752

C DCB ARGUMENT SYMBOLES

COMAND 1
STAT = 2
HSTAT
FRDAT II

II

43W

MODUS
FRSIZ
MAXERR
LISTM II

II

II

II

ODO‘U'IJ:

C DCB ARGUMENT VALUES

TRANS : 1
DEVCL = 3
DEVINI
LUNSTA
CFRSIZ
DCBSIZ
MAINT
CMAXER
COUNT = 0

)4
5
100
CFRSIZ+6
2
2

("DO RESERVE LDN

CALL RESRV (OLUN,o,o)
CALL RESRV (ILUN,o,o)

CO SEND DEVICE CLEAR T0 INTERFACE

ND-60.13A.02

Appendix G 127
HDLC -Example of use

IDCB(COMAND) = DEVCL
ISTATE = HDLC (SDCB,0LUN,IDCB,6,6)
IF (ISTATE .LT. 0) GO TO 2000

0
GET DRIVER RESPONSE TO DEVICE CLEAR

(")0
ISTATE : HDLC (RDCB,OLUN,IDCB,BC,1)
IF (ISTATE .LT. 0)GO TO 2000
IF (IDCB(STAT) .NE. 0) GO TO 3000

C DEVICE CLEAR SUCCESSFULLY DONE, DO DEVICE INITIALIZATION

IDCB(COMAND) : DEVINI
IDCB(MODUS) MAINT
IDCB(FRSIZ) CFRSIZ
IDCB(MAXERR) : CMAXER
ISTATE : HDLC (SDCB,OLUN,IDCB,12,12)
IF (ISTATE .LT. 0) GO TO 2000

GET DRIVER RESPONSE TO DEVICE INITIALIZATION
COO

ISTATE = HDLC (RDCB,OLUN,IDCB,BC,1)
IF (ISTATE .LT. 0) GO TO 2000
IF (IDCB(STAT) .NE. 0) GO TO 3000

DEVICE INITIALIZATION SUCCESSFULLLY COMPLETED.
START THE RECEIVER (INPUT) PART OF THE INTERFACE.
TO PREVENT OVERRUN SUPPORT THE DRIVER WITH SOME BUFFER SPACE
FIRST WE HAVE TO FIND THE MAXIMUM BUFFER SPACE (NUMBER OF
IDCBS) THE DRIVER MAY HANDLE.

OOOOOOO
IDCB(COMAND) = LUNSTA
ISTATE = HDLC (SDCB,ILUN,IDCB,20,20)
IF (ISTATE .LT. 0) GO TO 2000
ISTATE = HDLC (RDCB,ILUN,IDCB,BC,1)
IF (ISTATE .LT. 0) GO TO 2000
IF (IDCB(STAT) .NE. 0) GO TO 3000
MAXDCB = IDCB(8)

THE MAXIMUM NUMBER OF DCBS HELD BY INPUT DRIVER IS "MAXDCB"
SO GIVE THEM TO HIM

COCO
IDCB(COMAND) = TRANS
D0 FOR I = 1,MAXDCB

ISTATE = HDLC (SDCB,ILUN,IDCB,6,DCBSIZ)
IF (ISTATE .LT. o) GO TO 2000

ENDDO

SEND A FRAME OF DATA T0 REMOTE COMPUTER

kOOOOOO COUNT=COUNT+1
IDCB(4)=COUNT
IDCB(COMAND) : TRANS
ISTATE : HDLC (SDCB,OLUN,IDCB,DCBSIZ,DCBSIZ)
IF (ISTATE .LT. 0) GO TO 2000

ND-60.13N.02

128

AOOOOOOO

moon0 O 0

W000000

wokOOKOOO

\D

O

\O

O

K0

0

Appendix G
HDLC -Example of use

ANY REACTION FROM THE DRIVER? IF NOT CALL RTWAIT

FIRST CHECK INPUT PART

ISTATE = HDLC (RDCB,ILUN,IDCB,BC,0)
IF (ISTATE .GT. 0) THEN

IF (IDCB(STAT) .EQ. 0) THEN
IF (IDCB(U) .NE. COUNT) GO TO uooo
IDCB(COMAND) = TRANS
ISTATE = HDLC (SDCB,ILUN,IDCB,6,DCBSIZ)
IF (ISTATE .LT. 0) GO TO 2000
00 TO 900

ELSE
GO TO 3000

‘ ENDIF
ELSEIF (ISTATE .NE. —3) GO TO 2000
ENDIF

so, CHECK THE OUTPUT PART

ISTATE = HDLC (RDCB,0LUN,IDCB,BC,O)
IF (ISTATE .GT. 0) THEN

IF (IDCB(STAT) .EQ. 0) THEN
GO TO 1000

ELSE
GO TO 3000

ENDIF
ENDIF
IF (ISTATE .NE. -3) GO TO 3000
CALL RTWT
GO TO 1000

ERROR IN DCB TRANSFER

CALL ERMON (2H50,ISTATE)
GO TO 9999

DRIVER ERROR

CALL ERMON (2H51,IDCB(STAT))
GO TO 9999

ERROR IN DATA TRANSFER

CALL ERMON (2H52,IDCB(H))

END

ND-60.13H.02

A P P E N D I X H

X.21 —Facilitx Bits

ND-60.134.02

130 Appendix H
X.21 -Facility Bits

In the facility parameter each bit (FACILITY BIT) has a special
meaning. By Setting a specific bit, the correSponding facility will be
requested.

FACILITY BIT FACILITY REQUESTED
0 Charging requested
1 Called line identification
2 Direct call
3 Connect when free

ND-60.134.02

A P P E N D I X I

X.21 -Call Progress Signals

ND—60.134.02

132 Appendix I
X.21 -Call Progress Signals

CODE FUNCTION

00 Reserved for further use
01 Terminal called
02 Redirected call
03 Connect when free

20 No connection
21 Number busy
22 Selection signal Procedure error
23 Selection signal Transmission error

”1 Access barred
”2 Changed number
U3 Not obtainable
MN Out of order
”6 Uncontrolled not ready
M7 DCE power off
48 Invalid facility request
H9 Network fault in local loop
50 Controlled not ready
51 Call information service
52 Incompatible user class of service

61 Network congestion

71 Long term network congestion
72 RPOA out of order

81 Registration/Cancellation confirmed
82 Redirection activated
83 Redirection deactivated

From the user's point of view, group 0 means wait; group 2 and 6 mean
try again, next try may result in a call set up; groups H and 5 and 7
mean there is no reason for a new try, because the answer will be the
same for a longer time. As group 8 is the result of a procedure
between the DTE and the network, no further action needs to be taken.

ND-60.13H.02

W

M

ND—60 . 131i . 02

13” Appendix J
Error Codes

These errors (octal) are related to the DCB transfer part. The code
will be in the A-reg when the monitor call X.21 gives non skip return.

ERROR CODE FUNCTION
-1 The LDN is not reserved by the calling program
-2 Illegal LDN used. Not known by SINTRAN
-3 No DCB in receiver queue
—M No vacant buffer for DCB
—5 Illegal DCB-usize
-6 Illegal LDN. Not to be used by MON X.21
-7 DCB—msize less than DCB—usize
-10 Illegal function

ND-60.13H.02

A P P E N D I X K

X.21 -Status Codes in the DCB

ND—60.13H.02

The codes

Appendix K
X.21 -Status Codes in the DCB

(octal) are given by the Driver, and found in the STATUS
word in the DCB when returned from the driver.

STATUS

32
33
35

FUNCTION

Operation sucessfully completed
Too small message for appropriate information
Illegal LDN used in CONNECT
Illegal command
Illegal command in data phase
Different hardware device numbers for ILDN and OLDN
ILDN or OLDN not reserved
No matching ident entry found in ident table
Network error, is modem power on? (state 1)
No incomming call, ready state terminated.
No LDN previously connected
Missing terminator in selection signals
"No charge" received for last call
Call progress signals received
Multiple call progress signals received
X.21 LDN already connected
Call terminated
Call with facility "CONNECT WHEN FREE" unsuccessfully
terminated
Network timout (in state 2)
Network timout (in state 3)
Network timout (in state 5)

ND-60.13H.02

Appendix K 137
X.21 —Status Codes in the DOB

Numbers shown as x) are references to notes shown on next page

< Function
'

> <-—mag. tape—> Phil— Versa— Floppy NOENET Dynamic
Code. Name C. F. Tandb. Hew- S'IC lips tec Disk canmun logical

1) {Pertec Pack. Cass. 25) 26) Chan. Dev. No

0 Read record c x x x x x x x
1 Write record d x x x x x x x x
2 Read odd num- c x x x

bars of bytes
3 LOOP write to x

read in FCU
4 Read one rec. x

backwards
5 Unlock and b x

stop
6 Lock cassette b x
7 Erase tape b x

10 Advance b x x x x x
through EUR 29]

ll Reverse b x x x x
through EOE 30]

12 Write EOF b x x x x l7)
l3 Rewind b x x x x 18)
14 Write 4 inch b x x x

erase gap
15 Backspace rec. b x x x x 19)
16 Advance rec. b x x x x 20)

17 Unload b x x x

20 Read status 27‘ a x 11) x 12) x 11) 14) x 15)
21 Clear device b x 2) x 2) x 2) x x 3)
22 Clear device a x x x x

w/error exit
23 Select parity e x 5) x 6)

and density,or
Select density

4}
24 Read last a x 11) x 12) x 11) 14) x 15) x 16)

Status 28)
25 Read tape i x x x

status
26 Read byte rec. c x x x
27 Write byte d x x x

rec.

ND—60.13M.O2

138 Appendix K
X.21 -Status Codes in the DOB

< Function
Code. Name

>
C. F. Tandb.

Pertec
Hew—
Pack.

<——qnag. tape——-> Phil-
lips
Cass.

Versa-

25)

Floppy
Disk

26)

NOFNET

Chan.

Dynamic
Logical
Dev. No

30

31

32
33

34

35
.36
37

Set'alphanuml
mode
Set graphic
node
Give form feed
Clear selected
unit

Set diagnostic
nude
n.a.
n.a.
n.a.

(70‘

O‘

0‘

x 7)

40

41
42

43

44

45
46

Set floppy
form
Format floppy
A)read density
B)read parity

and density
C)read format
Read deleted
record
write deleted
record
n.a., 13)
Get current
disk address

00' x 9) x 8)

x 21)

x 22)
x 10)

x 23)

x 24)

(X)

ND-60.134.02

W

Index

ND—60.13H.O2

1H0 Appendix L
Index

This index includes terms which are not complete headings. For names
of commands and monitor calls, the reader should first check with the
table of contents.

Backus Normal Form (BNF)............................... 6.3.2.6
background program....................................... 2.2.1
basefield

b. address.. 4.5 2
XMSG basefield...................................... 4.6.”.2

batch
b. input file... 3 2
local b. .. 3.1
remote b. console....................................... 3 1

BNF E22 Backus Normal Form
bounce message

see under message
break character.. 2.2.1
break strategy... 2.5.1

CCITTO...0DI.0..OIOOOODODOIIIIIOIOOOOOIOIDIII'IIOOOOOOCCII. 6a

2channel-0.0000....0900IIODIIOODI-IOOOOCIIIOQOOOOOIICOIIII an t

1
1

reservation of c. 2.5.1
communication frame...................................... 2.2.1
communication line 2.2.1
current message length

see under message

Data Circuit Equipment (DCE) 6.1
data network connection

see under network
Data Terminal Equipment (DTE).............................. 6.1
data transfer... 1, 2.1
DCB see Driver Control Block
DCE §§§ Data Circuit

Equipment
default message

see under message
density, appendix A
direct task see under task
driver ... ”.1
Driver Control Block.................................. 5.1, 6.1
DTE E22 Data Terminal

Equipment
duration of call....................................... 6.3.2.6

ND—60.13u.02

Appendix L
Index

echo strategy 3.2.1
emulator

interactive e. 3.1
RJE e. 3.1

error (in HDLC).. 5.3.2.5

file number..
fixed length record.................................... U.
floppy disk

appendix A
forwarding... M.
full duplex.. 5

half duplex.. 5.3.2.2
Hewlett-Packard mag. tape

see under magnetic tape
high priority message

see under message

IDT, see NORD Intelligent
Data Terminals

interactive emulator
see under emulator

international alphabet.................................. 6.3
interrupt level...

“.3. LUKOAIO—wait.-Dill-llI.IIO.hIIIIIOOOOOIOOOOIIOIOOOOOOOOIIIOCIII

LDN E22 Logical Device Number
local batch see under batch
lock on the message system

see under message
Logical Device Number (LDN)............................. 2.2.1
LRB (Load Register Block) 4.5.9

ND-60.134.02

1H1

142 Appendix L
Index

magic number........................... 4.3.2.8, 4.3.2.13, 4.4
magnetic tape

Hewlett-Packard m. t.
appendix A

Pertec m. t. appendix A
STC m. t. appendix A
Tandberg m. t. appendix A

maintenance mode...................................... 5.3.2.2
memory allocation... 4.1
message

bounce m. ..
current m. length
default m.
high priority m.
lock on the m. system

o n o

I oa

J=J=J=J= to

o

nth-=0

o

I

LAJUJUJ-

wmwzwwww

-m. buffer..
m. header..
m. length..
m. orientented......................................

- o

a

.

NMNU‘INNNN I

.2

I

meow—‘zm—nmoooozoo

m. size..
a .

NNN-

.

u
secure m. 4

monetary charges...................................... 5

nesting remote connections
see under remote

network.. .. . 6.1
data n. connection................................. 6.2.1.4

NORD Intelligent Data
Terminals (IDT).. 3.

Nordic Public Data Network (NPDN)......................... 6.
NPDN see Nordic Public

Data Network

__\

Paging Off......................... 4.6.2, 4.9.3, 4.10, 4.10.1
paging status... 4.6.2.1
parity, appendix A
Pertec mag. tape

see under magnetic tape
Philips casette tape

see under casette tape
PIE, see Program Interrupt

Enable
POF §§g Paging Off
port.. 4.1

destination p. 4.1
p. address/number................................. 4.3.2.13
p. number................................... 4.3.1, 4.3.1.3
sending p. .. 4.3

ND-60.134.02

Appendix L
Index

queuing... ”.1

real-time
RT desoription...
RT program..
user RT..

receive queue... 5.
reference number...................................... 4.
remote

nesting r. connection................................ 2.3 5
r. batch... 3.1
r. batch console....................................... 3 1

see under batch
r. command mode...................................... 2.
r. file access...
r. file name...

r. port..
r. processor... 2.
r. terminal communication

reservation of channels
see under channel

RJE emulator
see under emulator

RT E22 real-time
RTWT (MON 135)..g................................ 5.2.3, 6.2.3

3 5
2 1
2 H

r. load.. 2.1
H 3
3 5
2 1

secure message
see under message

send queue.. 5.2.1.3
sending port see under port
service number................................. H.N.1, M.6.6.6
STC mag. tape

see under magnetic tape
subscriber.. 6.
syncronization..

task s. ... U
syncronous modem interface................................ 6.
system supervisor... 2

ND-60.13H.02

1U3

144 Appendix L
Index

Tandberg mag. tape
see under magnetic tape

task.. 4.1
direct t. 4 1
t. current message

see under message
t. syncronisation

see under
syncronization

temporary port
see under port

tightly coupled.................................. 4.2, 4.6.2.9

user RT see under real-time

WACK see Wait Acknowledge
wait Acknowledge (wACK)...ODOOODOOOOOOOOOQ0.00.0.0000...

wait stateoooobtO0.0...0.000000000000000000.0IIOOOCOOOI

Whole-message-read flag DOIIIICUCIDtOOOOUIUOI ”03.2.2,)4-

2.5.1
2.5.2
3.2.6

XMSG basefield
see under basefield

XT-block........................ 4.2.1, 4.5.9, 4.5.10, 4.6.1.5

ND-60.134.02

*****9:****SENDUSYOURCOMMENTS!!! **********

? . 7 Are you frustrated because of unclear information

.
9

. in this manual? Do you have trouble finding
things? Why don’t you join the Reader’s Club and

i: send us a note? You will receive a membership
[2 7 card - and an answer to your comments.

' I

Please let us know if you
* find errors
* cannot understand information
* cannot find information
* find needless information

Do you think we could improve the manual by rearranging the
contents? You could also tell us if you like the manual!!

/

* * * a: * 9: 1: * *HELPYOURSELFBYHELPINGUSH * * * * * * * * *

Manualname: SINTRAN III Communication Guide Manual number: ND—60.134.02

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:

Company: Position:
Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department
PO. Box 4. Lindeberg Gard

I
——>

0510 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S.

Documentation Department

PO. Box 4, Lindeberg Gérd

Oslo 10, Norway

