ND—PASCAL
User's Guide

ND—60.124.05

P

NOTICE

The information in this document is subject to change without notice. Norsk Data’

A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prio.r consent of Norsk
Data A.S.

Copyright @ 1984 by Norsk Data A.S

By

PRINTING RECORD

Printing Notes
12/80 Version 03
04/82 Version 04
01/84 Version 05

ND PASCAL User’s Guide
Publ.No. ND—60.124.05
January 1984

33333332, NORSK DATA A.S

essescsss [-0.Box4, Lindeberg gard

333430 Oslo 10, Norway

ml"":

~-as described below. - -

- Documentation Department =~

iv

Manuals can be updated in two ways, new versions and revisions. New versions '
consist of a complete new manual which réplaces the old manual. New versions

incorporate all revisions since the previous version. Revisions consist of one or

more single pages to be merged into the manual by the user, each revised page

being listed on the new printing record sent out with the revision. The old

printing record should be replaced by the new one. :

New versions and revisions are announced in the ND Bullejtin and can be ordered

The reader's .comments form at the back of this manual can be used both to

_report errors in the manual and to give an evaluation of the manual. Both

detailed and general comments are welcome.

"These forms, together with all types of inquiry and requests for documentation -

should be sent to the local ND office or {in Norway) to:

Norsk Data A.S

.. P.O. Box 4, Lindeberg gard -~ -~~~
_Oslo 10 :

ot

The Product

This manual describes version J of the Pascal compilers for the ND-100
and the NOD-500. The NO-100 Pascal compiler is delivered in two
versions, one for 32-bit and one for 48-bit floating point hardware.
As the three compilers differ only in machine-dependent respects, they
are described in the same manual. '

The Reader

The reader is assumed to know the Pascal language, as this manual
mainly describes only the extensions and differences between ND-Pascal
and Standard Pascal as described in Jensen and Wirth: Pascal User
manual and Report.

The reader 1is also expected to have sufficient experience with the
SINTRAN operating system to be able to enter a program through an
editor, and to load and execute the compiled program.

The Manual

The manual is organized as a reference manual, with the information
ordered according to function. For the most part, only differences
between Standard Pascal and ND-Pascal are described. For a complete
example of a Pascal program, refer to chapter 9. Compiler error

messages and run time error messages are listed ‘in Appendices A and B. -

The manual uses the term ND-Pascal to mean either of the compilers.
Those parts of the manual. which are relevant to only one of the
computers, are marked as such in the chapter or section heading. Also,
a part- of the text may be marked with the comment N100 or N500 to
signify that the text is relevant to the ND-100 or the ND-500 only.

ND-60.124.05

vii aak

TABLE OF CONTENTS

Section Page
1 INTRODUCTION . . . + « .+ N . 1
1.1 The Pascal Compiler 1
1.2 The Main Implementation Dependent Characteristics 2

e 1.3 The Main Extensions 2
2 THE SOURCE PROGRAM 4
2.1 Special Symbois 4
2.2 Identifiers 5
2.3 Keywords 5
2.4 Standard Identifiers A 5
2.5 Compiler Commands 8
2.5.1 Conditional compilation 6

. 2.5.2 Multiple source files 7

2.5.3 Intermixing definition sections 8

2.5.4 Options]

2.5.5 Program listing 10

2.6 Implementation Dependent Features 11
2.6.1 Standard types 11

2.6.2 Structured types 12

2.6.3 Packed structures 12

2.6.4 Strings and character arrays +13

2.6.5 Procedure parameters 13

5.1 Conformant arrays 13

: 5.2 Formal procedures 15

2.6.6 ND-500 traps 15

2.7 Extensions in ND-Pascal 16
2.7.1 Variable initialization 16

2.7.2 External Pascal routines 16

2.7.3 External routines in other languages 17

2.7.4 Standard procedures and functions 18

2.7.5 External procedures and functions 18

2.7.6 Generic functions . 23

ND-60.124.08

W]

Section Page

2.7.7 Miscellaneous extensions 23

3 PROGRAM COMPILATION 25

3.1 HELP 25

3.2 COMPILE 25
3.3 RUN 21 .

3.4 CLEAR 28

3.5 OPTIONS 28

3.6 SET and RESET 28

3.7 EXIT 28

3.8 LINESPP 28

3.9 VALUE 28

3.10 SINTRAN Commands 29

3.11 Program Compilation Example 29

(3 PROGRAM LOADING AND EXECUTION 31

4.1 Program Loading 31

§.1.1 ND-100 program loading 31

4.1.2 ND-500 program loading 32

4.2 Run-Time Errors 33

4.2.1 Trapping run-time errors 34

5 INPUT/OUTPUT 35

5.1 File Variables 35

5.1.1 The type TEXT 35

5.1.2 Standard files 36

5.1.3 Packed files 36

5.1 37

viii

.4 Non-TEXT files

ND-60.124.05

IS

sSection Page
5.2 Association to External Files 37
5.2.1 CONNECT 38
5.2.2 DISCONNECT 38
5.2.3 Scratch files 39
5.2.4 Program heading parameters 39
5.3 Terminal /0 40
5.4 Random Access I/0 41
6 ND-100 REAL-TIME PROGRAMS 43
& i 7 ND-100 OVERLAY PROGRAMS 45
1.1 Modules 45
7.2 Compilation of Modules 46
7.3 Loading Overlay Programs 49
7.4 Executing Overlay Programs 51
8 IMPLEMENTATION DESCRIPTION 53
’ 8.1 ND-100 Implementation 53
8.1.1 Memory layout 53
1.1 One-bank programs 54
1.2 Two-bank programs 55
1.3 Forced allocation of stack and heap 55
8.1.2 Loader symbols 56
8.1.3 Procedure and function calls 56
8.1.4 Interface to FORTRAN and PLANC 58
8.1.5 Input/Output 58
8.2 ND-500 Implementation 60
8.2.1 Memory layout . 60
1.1 Forced allocation of stack and heap 61
1.2 The size of the heap 61 .
8.2.2 Loader symbols 61
8.2.3 Procedure and function calls 62
8.2.4 Input/Output 63
9 SAMRLE Pascal PROGRAM 65

ND-60.124.05

Section

Page

8.1 ND-100 Sample Program

9.2 ND-500 Sample Program

APPENDIX A Compile- Time

Error Messages

APPENDIX B8 Run- Time E}ror Messages

Index

ND-60.124.05

65

67

69

13

76

ND-Pascal 1
INTROOUCTION '

1 INTROOUCTION

The Pascal language was designed in 1971 by Niklaus Wirth. The
language design had two principal aims. The first was to make
available a language suitable to teach programming as a systematic
discipline, the second was to develop implementations of this language
which are both reliable and efficient on presently available
computers. '

The success of this language design proves that Pascal is not 'yet
another language”. Today, Pascal has been implemented on almest all
computers commonly in use, ranging from the very large computers to
mini- and micro-computers.

This manual contains the information necessary to compile and execute
Pascal programs on the ND-100 and the ND-500. It is assumed that the
reader is familiar with the Pascal language. The uninitiated reader is
referred to the Pascal Report or to an approprlate textbook.

The present chapter gives a general description of the ND-Pascal
system. The specific information necessary for the compilation and
execution -of Pascal programs is found mainly in chapters 2 to 4. Most
of chapters 5 to 8 describe features for the more advanced use of NOD-
Pascal.

ND-Pascal has been implemented according to the definition in "Niklaus
Wirth: The Programming Language Pascal. Revised Report. (1973)". Alsa,
the specifications in the. IS0 Pascal standard have been adhered to.
Hereafter this language definition w1ll be referred to as Standard
Pascal.

ND-Pascal is a superset of Standard Pascal, and has several extensions
in relation to it. Especially, extensions have been introduced to
facilitate the compilation and execution of Pascal programs in a time-
sharing environment. Exp11c1t extensions of the Standard Pascal
language will be noted as such in this manual. The extensions should
be avoided if program exportation is planned or probable

1.1 The Pascal Compiler

The ND-Pascal compiler was developed from the Pascal TRUNK compiler
designed at E€ETH, Zurich. The compiler produces relocatable code,
which can be loaded by -the appropriate loader (ND-100 NRL or ND- 500
Linkage Loader) and then executed. A program may refer to separately

compiled procedures and functions written in Pascal, FORTRAN, PLANC,
COBOL or assembly language,

The ND-Pascal compiler is itself written in Pascal Also, parts of the
run-time library are written in Pascal.

ND-60.124.05

B

2 ND-Pascal
INTROOUCTION

1.2 The Main Implementation Dependent Characteristics

The maximum set size is 256 elements. A variable of type set will
occupy the minimum number of words necessary to. represent the values
in the set type. Sets of subranges of integer will contain 256
elements.

N10Q: A Pascal program may be run either as a one-bank or a two-bank
program.” As a one-bank program, all program and data reside
within 128K bytes of memory. As a two-bank program, the program
may occupy up to 128K bytes in the instruction bank, and the
data occupy up to 128K bytes in the data bank. One- or two-bank
execution may be selected at compile-time with the B option, or
at load-time with the DEFINE NOBKS command.

A Pascal program may be run as a real-time program.
Large prdgram éyétems may beroderlaiq using the standard NRL
"overlaying mechanism.

N500: The buddy instructions of the ND-500 hardware are utilized when
a program ‘administqrs the heapA'with the NEW and DISPOSE
- procedures. - -

3 11 i Ext A

Variables in the main program can be initialized. There is a
convenient syntax for array initialization. o

Variable conformant arrays. as specified in the IS0 Pascal standard,
are implemented. With this mechanism, a formal parameter will be
compatible with actual array parameters of different sizes.

N100: The type LONGINT is a standard integer type with a precision of
32 bits.

N500: The type LONGREAL is a standard real type with a precision of
approximately 16 digits.

The procedures CONNECT and OISCONNECT enable a program to associate a
Pascal file variable with an external file at run-time. CONNECT has
been implemented such that the actual name of the external file easily
can be entered from the terminal running the program.

Random access 1/0 can be performed with the'procedures GETRAND and
PUTRAND.

Through the use of the FAULT procedure, a program may trap run-time
errors.

ND-60.124.05

ND-Pascal

ND-60.124.05

i

4) ND-Pascal
THE SQURCE PROGRAM

(
b
2 THE SOURCE PROGRAM
A Pascal source file must contain either
1) A full Pascal program, or
2) One or more procedures or functions, or
3) N100: One or more procedures, functions, or modules.
The source language must be Standard Pascal, with the restrictions and
possible extensions described in this manual.
A full Pascal program compiles into an executable object program,
while procedures and functions compile into code that may be loaded
together with a full program. A source file of the latter kind must be
terminated with the character "." (period).
The source file character set must be ASCII, where the lines are
separated by the Carriage Return character, and optionally, the Line. 2 (f

Feed character. Files produced by QED, TED and PED are acceptable as
input to the compiler.

The compiler recognizes the source file types :PASC and :SYMB by
default, :PASC being the primary type. Any other file type must be
specified explicitly.

A source input line must not exceed 96 characters. The Pascal
compiler indicates a longer line as an error. -

2.1 Special Svmbols
Some of the special symbols in Standard Pascal have one or more
alternate representations in ND-Pascal:

Standard Pascal ND-Pascal

or a

or (x
or *)
or

or .)
and or &
not or °~

) eyt ey c—y

D) e T Sy iy g
—

[=8

n
no

o+

The ~ symbol has various external: representations on different
terminals and printers.

A comment opening with the character “{" must be closed with the
character "}". Similarly, "(*" is matched only by ")~

ND-60.124.05

ND-Pascal 5
THE SOURCE PROGRAM

2 1 ifier.
An identifier may be of any 1length, but only the first eight

characters are significant. Within an identifier, lower case letters
are converted to upper case, unless the U option is gff.

2.3 Keywords

The following are Pascal keywords, and cannot be used as identifiers:

Standard Pascal keywords:

and array begin case
const div do downto
else end file for
fupction gotg if in

label = mod nil not
of ar packed Drocedure
Rrogram Iecord Iepeat set

then 1o Lvpe until
yar while with

Extra keywords in ND-Pascal:
module value
Note: Tﬁe keyword modyle is legal, but has no effect in ND-500 Pascal.
It is retained in ND-500 Pascal to facilitate porting of
programs between the ND-100 and the ND-500.
A keyword may be written with lower and/or upper case characters.
However, within a keyword all lower case characters will be converted
to upper case. Thus,

end END . End

are all representations of the keyword end.

2.4 Standard Identifiers

Following is a 1list of "the standard identifiers in ND-Pascal. A
standard identifier may be considered as if it were defined in a block
enclosing the program, and as such, may be redefined. Normally, such
redefinition should be avoided, since it easily may lead to confusion,

ND-60.124.05

6 ND-Pascal
THE SOURCE PROGRAM

Standard identifiers in Standard Pascal:

ABS ARCTAN BOOLEAN CHAR
CHR cos ' DISPOSE EOLN
EOF EXP FALSE GET
INPUT INTEGER . LN MAXINT
NEW 0DD ORD oOuUTPUT
PACK PAGE PRED PUT
READ READLN REAL RESET
REWRITE ROUND SIN SQR
SQRT succ TEXT TRUE
TRUNC UNPACK WRITE WRITELN

Extra standard identifiers in ND-Pascal:

CONNECT COSH OISCONNECT FIRST

GETRAND HALT LAST LMAXINT
LONGINT LONGREAL " LROUND =~ ~ LTRUNC -

MARK MAXREAL ". POWER - PUTRAND
RELEASE SINH A

All standard identifiers are written in upper case letters.

2.5 Compiler Commands

The source program text may contain commands to the compiler. A
command is signalled by the character "$" in position one of a source
line. The rest of such a line is treated as a command to the compller,
and no part of it w1ll be included in the proper program text.

The avallable compller commands are

$SET

SRESET s+ » mo:lv:
SIFTRUE -
SIFFALSE

SENDIF

SOPTIONS

$INCLUDE

$EOF

SLINESPP

$PAGE

A compiler command may be abbreviated to 'its shortest unambiguous
form.]

L =

The ND-Pascal compiler may be instructed to skip specified parts of
the source text. This may be useful in order to generate different
versions of a program from the same source file.

ND-60.124.05

a.
:

ND-Pascal 7
THE SOURCE PROGRAM

The skipping of source text is steered by flags, which are Boolean
variables. The flag identifiers are distinct from .the program
identifiers, ".therefore no name conflicts between flag and program
identifiers can occur. A flag identifier can have up to eight
significant characters. No distinction is made between upper and lower
case characters.
A flag is given the value TRUE by the command

$SET <flag)
A flag is given the value FALSE by the command

SRESET <flag>
The skipping of source text is effected by the commands

SIFTRUE, SIFFALSE, and $ENDIF
The command

SIFTRUE <flag>
has the effect:

If <flag> has the value TRUE: No effect.

-

If <flag> has the value FALSE: 1)
Skip source text up to an $ENDIF <flag> with the same flag name.

The command
SIFFALSE <flag>
has the effect:

If <flag> has the value TRUE:
Skip source text up to an $ENDIF <flag> with the same flag name.

If <flag> has the value FALSE: No effect.

If an SIFTRUE or S$IFFALSE command has a flag parameter that was. not
previously defined, it will become defined and given the value FALSE.

Note that when source text 1is skipped, compiler commands (such as
SET, SIFTRUE etc.) will also be skipped. '

2.5.2 Multiple source files

The SINCLUDE-command facilitates insertion of source text from an
alternate file in the program being compiled. This is useful when a
set of programs (within the same project, say) use a common. set of
type, wvariable, and ' procedure definitions. Also, ‘“standard® data
structures and procedures for handling problems within a specific
problem area, can easily .be incorporated in a program with the

ND-60.124.05

8 ND-Pascal
THE SOURCE PROGRAM

SINCLUDE~command.
The INCLUDE file may be divided into sections by the $EOF:command.
The command

SINCLUDE <filename>
has the effect of switching the input stream from the present input
file to <filename>. When end of file or $EOF on <filename)> is reached,
the input stream will be switched back to the previous input file. The
effect is to insert the text in <f119name> at the place whe:e the
SINCLUDE-command occurs.
The command

SINCLUDE

has the effect that the next section of the.most recent INCLUDE file
is inserted in the program.

SINCLUDE-commands may be nested to a maximum depth of four.

2.5.3 Intermixing definition sections .

In the standard mode, when the N option is off, ND-Pascal requires
that the label, const, type, wvar, value, and procedure/function
sections of a block appear in this order. When the N option is on,
these sections may appear 1in any order, and each section kind may
appear more than once. However, a main program may not contain another
var section after a value section, or after the first procedure or

function declaration.

2.5.4 Options
There is a set of options that affect the output produced by the

Pascal compiler. Each option has a one-letter name.

Some of the options are associated with counters. A counter value
greater than zero means that the option is on, a value equal to or
less than zero means that the option is off. The remaining options are
associated with specific values. '

A counter option is increased or .decreased by one by writing the
option name followed by “+" or "-", respectively.

The available options are (counter options are indicated by the
charactar "x");

ND-60.124.05

i

ND-Pascal 9
THE SOURCE PROGRAM

Bn

Cx

Ic

Lx

M*x

N*%

&

Rn

Tx

N100: Specify n-bank execution of program (n=1 or n=2). When n=2
the compiler will produce two-bank BRF code. Default value
is n=1.

When on, the value range of CHAR is extended to 256 values
(internal values 0 to 255). Also, on TEXT files parity will not
be removed on input, nor generated on output, and both values 15
octal and 215 octal will give EOLN = TRUE. The default value 1is
0 (off), which implies that CHAR is the ASCII set (128 values),
and that parity is removed (generated) on input (output) from/to
TEXT files.

Allow ¢ as a legal character in an identifier. ¢ must be in the
set ("0, 7w, ",V The character "#° should
in general be avoided, since it is used in entry point names in
the Pascal library.

Generate listing. Default value is 1 {gn).

List generated object code in symbolic form. Default value is 0
(off). .

This option (Non-standard) must be gon to allow the following
extensions to be used:

a) Intermixing definition sections. . :

b) Use of the FAULT procedure for error trapping.
Default value is 0 (goff).

Program code dump. Default value is 0 (goff). This option
produces listing output which enables "a closer inspection of the
code generated by the compiler. This is very useful when tracing
a possible error in the Pascal system. Therefore, whenever there
is reason to 'believe that a failure is caused by erroneous
object code, the user is requested to submit a listing of a P
dump compilation together with the error report.

N100: Specify n-word. real (n=2 or n=3). Default value is 2 on
ND-100s with 32-bit floating point hardware, and 3 on NOD-
100s- with 48-bit hardware. A program that is to be cross-
compiled must not contain real constants.

Generate code to check array indices, subrange assignments,
pointer values and arithmetic overflow. Turning this option gff
will make the "object program smaller and faster, but also
unsafe. Default value is 1 (gn).

The T option may be switched on and off at any point in the
program, in order to perform run time checks in selected parts
of the program.

N10Q: The ND-100 hardware does not facilitate the checking of
overflow on floating point arithmetic operations.
Therefore, ND-Pascal «can only detect overflow on integer
operations. As a special case, attempted floating division
by zero‘is detected. v

ND-60.124.05

10 ND-Pascal
THE SOURCE PROGRAM

N500: In the ND-500, overflow is trapped by hardware, and not by
explicit code checking for overflow. This implies that
check for overflow will not be turned off by turning the T
option off. However, a program may use the SETE and CLTE
procedures (cfr. section 2.7.5) to dynamically turn any
hardware trap on or off. ’

U* Convert lower case characters outside strings to upper case.
Default is t (on).

V* For each procedure, list local variables in alphabetical order,
with their respective.relative addresses and the number of times
each variable is referenced. Default value is 0 (goff).

X* When on, the loader symbols generated as entry point names for

'~ procedures/functions on the outermost level of a main program or

a separately compiled file will be "the names given by the

programmer. If the option is off, anonymous entry point names

will be generated for these routines (cfr. chapter 8). Default
value is 0 (off).

Z* Initialize all variables to zero: At load-time, initialize all

main program varlables to zero -before -the value Section is

“:loaded. At run- -time, every “time ‘a procedure 'is _called, or an

object generated by NEW, all varlables local to that procedure

or object w1ll be 1n1t1allzed to zero. Default value is 0 {off).

a3

Options may be set within a comment “in the source program The first
character within the comment must be *$". Thereafter. option settings
separated by °," may follow Options may also ~be set following the
SOPTIONS compller command !)

Examples
{§M+,I_,T-} means:

M+ List object code.
I Allow "_" as a legal character in an identifier.

T- Do not generate testing instructions.
SOPT Z+,U- means:

2+ Initialize all variables to zero.
U- Do not convert lower case characters to upper case.

2.5.5 Program listing

The command

SLINESPP n

ND-60.124.05 =

ND-Pascal ' 11
THE SOURCE PROGRAM

orders the Pascal compiler to print the program listing with n lines
per page. The default value for n is 60. (This default may be set to
some other value when the ND-Pascal system is installed.)

The command

SPAGE

gives new page in the program listing.

2.6 Implementation Dependent Features

2.6.1 Standard types

Standard Pascal has the following standard types:

‘BOOLEAN, CHAR, INTEGER, REAL, TEXT

. ND-Pascal in addition has the following standard types:

LONGINT, LONGREAL

Actually, LONGINT is an extension only in ND-100 Pascal, while
LONGREAL is an extension only in NO-500 Pascal. In ND-100 Pascal
- LONGREAL is equivalent to REAL. In ND-500 Pascal LONGINT is equivalent
to INTEGER.

The following table gives the memory space, in bytes, occupied by
variables of the standard_ types (provided they do not occur within
packed structures):

N10Q - N100Q N500
32-bit 48-bit

BOOLEAN

CHAR

INTEGER

LONGINT

REAL

LONGREAL

TEXT 1

NN
OO PONN
WD I F s

ND-60.124.05

12 ' ND-Pascal
THE SOURCE PROGRAM

The maximum values and accuracy of the arithmetic types are given in
the following table: . .

Maximum value Precision
2-byte INTEGER 32,767 -
4-byte INTEGER 2,147,483,647 -
4-byte REAL 10]76 7 digits
6-byte REAL 10]4930 10 digits
8-byte REAL 1076 16 digits

An integer constant which exceeds the 16-bit integer maximum value
will get the type LONGINT. Also, an integer constant may be suffixed
with the letter L to force it to become a LONGINT constant. a

The standard functions LROUND and LTRUNC are available to round or
truncate, respectively, reals to LONGINT.

In an array declaration, the indices may not be of type LONGINT.

LMAXINT is- a standard constant with a value equal to the maximum
LONGINT value. - : / - , x

A real constant with 10 or more digits iS;Lgivén:'thé tﬁpé LONGREAL .
Also, the type of a real constant will be LONGREAL if the exponent
character D is used instead of E.

When necessary; ND-~ Pascal automatically converts from INTEGER to REAL
or LONGREAL, and between REAL and LONGREAL.

MAXREAL is a standard constant with a value equal to the maximum
floating point value.)

2.6.2 Structured tvpes

Variables of structured types (records and arrays) may be assigned to
and compared for equality or inequality, provided the variable type is
not packed nor contains.packed variables. Variables of type packed
array [...] of CHAR may be assigned to and compared using all the
relational operators (=, <>, <, <=, >=, >).

Note that there is no syntax for the specification of a structured
constant.

2.6.3 Packed structures

Record and array types may be specified as pgacked. Each single
variable will then occupy a minimum number of bits, and several single
variables may be packed into one computer byte or word. A record or an
array will always start at a word (N100) or byte (N500}) boundary.

ND-60.124.05

ND-Pascal 13
THE SOURCE PROGRAM

The use of packed structures saves data space, but may increase
execution time significantly.
A variable within a packed structure cannot be used as a yar parameter

to a procedure. However, the standard procedure READ may have an
element of a packed array ... 9f CHAR as a parameter.

See chapter 5 for information on packed files.

2.6.4 Strings and character arrays

A string constant is padded with blanks to the required 1length. The
string may occur in a value section, in an assignment statement, as an
actual parameter, or in a Boolean expression. This is an extension to
Standard Pascal,

In Standard Pascal, a string constant with n characters is of the type
packed array [1..n] of CHAR. This inhibits assignment of, or parameter
substitution with, a string to a variable or formal of type packed
array [...] of CHAR where the lower bound is different from 1. In NO-
Pascal such assignment or substitution is legal, provided the length
of the striqg is equal to the length of the array.

2.6.5.1 Conformant arravs
Variable conformant arrays, as specified in the IS0 Pascal “standard,

are implemented in ND-Pascal. (Conformant arrays by value is not
implemented.)

A variable (non-value) formal parameter may be specified as a
conformant array. It is then possible to transmit array parameters of.
different sizes through this formal parameter. The index bounds of the
actual parameter are implicitly available to the body of the calleaed
procedure.

A conformant array parameter is specified as such in the procedure
heading by the following syntax:

{variable-parameter-specification) ::=
“var® <identifier-list> *:-
(<type-identifier> | <conformant-array-schema))

{conformant-array-schema) ::=
"arrav” “[° <index-type-specification>
{ ";° <index-type-specification> } "1 ~gf"

ND-60.124.05

oo

14 ND-Pascal
THE SOURCE PROGRAM

(<type-identifier> | <conformant-array-schema))

<index-type-specification> ::=
{bound-identifier> ".." <bound-identifier>
<ordinal-type-identifier>

<bound-~identifier) ::=
<identifier>

Example:

brocedure matmult(yar x, y, 2z: array [11..h1: INTEGER] of
arrav [12..h2: INTEGER] of REAL);

If 'the component of a conformant-array-schema is itself a conformant-
array-schema, then an abbreviated form of definition, equivalent to
the abbreviated form of multiple-dimension array definition, may be
used.

. Example:

illii (11..h1: T11 of arrav [12..h2: T2] of T3
" is equivalent to

array [li..h1: T1; 12..h2: T2} of T3

When transmitting an array as a parameter through a formal conformant
array parameter, the actual parameter must be conformable with the
conformant-array-schema. The term conformable is defined as follows:

If T1 is an array-type, and T2 is the type denoted by the ordinal-
type-identifier of the index-type-specification of a conformant-
array-schema, then T1 .is- conformable with .the conformant-array-
schema if all the following four statements are true. :

{(a) The index-type bf T1 is compatible with T2.

(b) The smallest and largest value of the index-type of .T1 lie
within the closed interval defined by values of T2.)

(c) The component type of T1 is the same as the component type of
the conformant-array-schema, or is conformable to the component
coriformant-array-schema.

(d) If T1 is designated packed then T2 must be declared as packed.

It is an error if the smallest or largest value of the index-type of
T1 lies outside the closed interval defined by the values of T2.

The bound-identifiers denote the smallest and largest values,
respectively, of the index-type of the actual parameters. These values
are implicitly transmitted to the called procedure. The procedure may
not change the values of the bound-identifiers.

ND-60.124.05

ND-Pascal 15
THE SOURCE PROGRAM
Example:

var x, y, z: array [1..10] of REAL;
P, q, r: arrav [0..1001 of REAL;

Rrocedure product(yar a, b, ¢: arravy [low..high: INTEGER] of REAL);
yar i: INTEGER;

beain
for i := low to high do
cli] := alil)=*b[i]

end (*productt);
product(x,y,z);

product(p,q,r);

2.6.5.2 Formal procedures

A procedure which appears as an actual procedure parameter, may itself
only have value parameters. On entry to a formal procedure, ND-Pascal
checks the actual parameters only to see if they occupy the same
number of words as the formal parameters. The user is warned that the
use of formal procedures with pointer parameters is unsafe.

2.6.6 ND-500 traps

When an ND-500 Pascal programs is started, the following traps are set
in the OTE register: '

bit 9 averflow

bit 11 invalid operation

bit 12 divide by zero

bit 14 floating overflow

bit 16 illegal operand value
bit 24 ° address zero access
bit 25 descriptor range

bit 26 illegal index

bit 27 stack overflow

When a routine defined as STANDARD 1is _entefed, all trap bits aTe
switched .off. - The trap bits are restored when return to, Pascal is
made, i

The reader is referred to the ND-500 Reference Manual {ND-05.009) for
further details on hardware traps.

ND-60.124.05

16 . ND-Pascal
THE SOURCE PROGRAM

2.7 Extensions in ND-Pascal

This section describes most extensions in ND- Pascal. Refer to chapter
5 for I/0 extensions. Real-time programs are described in chapter &,

and overlays are described in chapter 7.

2.7.1 Variable initialization

Scalar and array variables in the main program may be initialized.

Initialization is signalled by the keyword yalye. A yalue section must
appear after the var-declarations and before the first procedure or

function declaration, or main program begin.

Packed arrays, except for packed array ... of CHAR, records, sets and
pointers may not be initialized.

The syntax for initialization is:

<{variableinit> ::= “value” <initialization>

& WRERRETLT 2 i { <initialization> }
<initialization> ::= ' <variable> "= <val> “;"
S¢vald ::= T ' <constant> | "(" <valuelist> ")~
{valuelist) ::= ' <avald> { *," <aval> }

<aval> 1:= 7. : - ¢constant> | <count> “%° (constant)
{count> ::= <integer constant>

Examples:

valye
X = 2.55;
I. = 19;
TABLE = (1,3,2*%7,-1,11%0);

NAME = ('PASCAL "):

Since a string has the type packed arrav [1..n] of CHAR, a string
constant must be gnclosed in parentheses as shown in the last example.

2.7.2 External Pascal routines

The compiler accepts a source file containing procedure and function

declarations only. The file must be terminated w1th a period.

The generated rélocatable file may be loaded with any Pascal main

program which contains external declarations of one or more of the

Pascal routines. Only those routines which are actually referred, are’

loaded (each external Pascal routine contains a LIS <entrypoint>
loader directive). An external declaration is a procedure or function
heading followed by a body consisting of the word “EXTERN". Example:

ND-60.124.05

-~

ND-Pascal ' 17
THE SOURCE PROGRAM

function fix: REAL): INTEGER; EXTERN;

External routines may use external declarations to get access to
routines on the outermost level of the main program, provided the main
program was compiled with the X option on.

There 1is no check of the correspondence between the parameter list of
the external declaration and of the separately compiled procedure.

A file of Pascal routines may be headed by constant, type and variable
definitions. The variable definitions, if present, will overlap the
variables of the main program. . These definitions may be used in
parameter specifications, or within the routines. The user is warned
that ND-Pascal does not check that the definitions are consistent with
corresponding definitiens in the main program. It is therefore
strongly recommended that the $INCLUDE facility be used to incorporate
global definitions in an external program module.

2.7.3 External routines in other languages

- Separately compiled FORTRAN, PLANC or COBOL subroutines may be called

from an ND-Pascal program. Such a routine must be . declared in the
Pascal program with a procedure or function heading, and a body
consisting of the word "STANDARD". Example: -

procedure ext{var x, y: REAL): STANDARD;

Parameters of any type and kind, except Pascal procedure or function
names, may be transmitted to the external routine; however, no check
is made that the parameters are consistent with the formal arguments
of that routine. .

N100: In order to interface to the old version of ND-100 FORTRAN, the
~routine must be specified as "FORTRAN".

N500: All hardware traps are switched off when entering a STANDARD
routine. The original traps are restored when returning to
Pascal.

Pointers ta the actual arguments are transferred to the external
routine. A value (non-var) parameter will be copied to a scratch area,
and a pointer to this copy transferred.
Be aware that many library utility routines.in other languages may get
the parameters transferred in a non-standard way, and thus may not be
called directly from a Pascal program.

When loading modules for a mix of Pascal and routines in other
languages, the following order must be observed:

1} Pascal main program

ND-60.124.05

r e

18 ND~Pascal
. THE SOURCE PROGRAM

2) Pascal and other external routines
3) Other language libraries as necessary
" &) Pascal library

In addition to the standard procedures and functions in Standard
Pascal, the following are standard in ND-Pascal.

SINH and COSH

These real functions calculate the arithmetic functions sinh and
cosh respectively. .

- POWER

POWER is a real function with two _parameters x and vy which
calculates the function x|y. When y is real, x]y is calculated by
the formula x[y = elly*ln(x)). Thus, POWER(-1.0,2.0) will give a
runtime error, while POWER(-1.0,2) will give the correct result 1.0.

“HALT :oo e

HALT is a procedure which takes an optional string parameter. HALT
writes the string (if any) to the terminal,“and aborts the program.

MARK and RELEASE provide an alternative to 'DISPOSE for the

- deallocation of heap space. In applications where heap space is
allocated and .deallocated in a stack fashion, the use of MARK and’
RELEASE is more efficient, and may be more convenient, than the use
of DISPOSE. . -

Both procedures take a pointer variable as a parameter. The call
MARK(<ptr>) assigns the address of the current heap top to <ptr>.
The call RELEASE(<ptr>) deallocates all variables on the heap beyond
the value of <ptr>.

A program which calls DISPOSE may not call MARK or RELEASE.

s .
2.7.9 External procedures and functions

The Pascal 1library contains a set of external 'procedures and
functions. To wuse one of these, the procedure or function must be
declared as external within the program.

An installation may choose to have a system file containing external

declarations for these external procedures and functions. This file
may then be included in a program with the $INCLUDE compiler command.

ND-60.124.05

I

ND-Pascal 19
THE SOURCE PROGRAM

TUSED

.External declaration:
function TUSED: REAL; EXTERN;

TUSED gives the elépsed CPU time in seconds.

JIME and DATE

External declarations:
Drocedure TIME{var hour, min, sec: INTEGER); EXTERN;:
procedure DATE{yar year, month, day: INTEGER); EXTERN; '

TIME and DATE give the current time and date, respectively.

ECHOM

External declaration: "> =

procedure ECHOM(echomode: INTEGER); EXTERN;

Executes MON ECHOM with echomode as parameter. This will define the
echo mode for the terminal as specified in the SINTRAN manual.

Note: The file CONNECTed to the terminal must have 1logical wunit
number 1. ' :

BRKM
External declaration:
procedure BRKM(breakmode: INTEGERf: EXTERN;

Executes MON BRKM with breakmode as parameter. This will define the
break mode for the terminal as specified in the SINTRAN manual.

Note: The file CONNECTed to the terminal must have logical unit
number 1. ’

ERMSG
External declaratiqn:
grocedurelERMSG(errorno: INTEGER); EXTERN;
Executes MON ERMSG with.errorno as parameter. This will write the _

SINTRAN error message corresponding to the given error number to the
terminal.

ND-60.124.05

20

ND-Pascal
THE SOURCE PROGRAM

HOLD
External declaration:
procedure HOLD(time: REAL); EXTERN;

Suspends execution of the program in <time> seconds. <time) is
accurate to 20 milliseconds.

VERSN

External declaration:
brocedure VERSN{yar year, month, day: INTEGER); EXTERN;
Gives the date.whén the executing program was compiled.

+ sy S

RUNMODE

" External declaration:
function RUNMODE: INTEGER; EXTERN;

Gives the execution mode of the running

0 - interactive

1 - batch ™ '

2 - mode

3 - real-time
EREEMEM

External declaration:
function FREEMEM: LONGINT; EXTERN;

Gives the size of the present free memory, that is, the size of the
area between stack top and heap top, in number of bytes.

LUNIT
External declaration:

function LUNIT(yar f: <filetype>): INTEGER; EXTERN;
Gives the logical unit number of the (open) file f.

ISIZE

External declaration:

function ISIZE(lun: INTEGER): INTEGER; EXTERN;

ND-60.124.05

W

ND-Pascal 21
THE SOURCE PROGRAM

Gives the result of a MON ISIZE on the given logical unit.

9SIZE

External declaration:
function 0SIZE(lun: INTEGER): INTEGER; EXTERN;

Gives the result of a MON OSIZE on the given logical unit.

ROBJENT
External declaratioh:

procedure ROBJENT(lun: INTEGER; var b: BUFFER;.
' var status: INTEGER); EXTERN;

Reads the object entry of the file with logical unit 1lun into. the
buffer b. BUFFER may be any type with a length of at least §& bytes.
The SINTRAN status of the operation is left in the status parameter.

COMMAND
External declaration:
procedure COMMAND(str: STRING); EXTERN;

Performs MON COMND with str as parameter. The type STRING must be
defined as packed array -... of CHAR. The .value str must be
terminated by the character "'" (written within a string
constant). . ;

NiG0: In ND-100 Pascal - the type ‘STRING must have a length greater
than 16. !)

N500: The ND-500 monitor allows only a subset of the SINTRAN
commands to be executed by the COMND monitor call.

MOLFI
External declaration:

procedure MOLFI{(var str: STRING); EXTERN;
Deletes the file with the name found in str.

REABT

External declaration:

procedure REABT(lunit: INTEGER; var ibyte: LONGINT); EXTERN;

Executes the REABT monitor call.

NDO-60.124,05

A

22

. External decla

ND-Pascal
THE SOURCE PROGRAM

SETBT

External declaration:
Drocedure SETBT(lunit: INTEGER; ibyte: LONGINT); EXTERN;
Executes the SETBT monitor call.

RHAX
External declaration:
proceduyre RMAX(lunit: INTEGER; yar ibyte: LONGINT): EXTERN;

Executes thg RMAX monitor call:

SHAX

rétion:-
procedure SMAX(lunit: INTEGER; ibyte: LONGINT): EXTERN;

Executes the SMAX monitor call.

RANDOM

External declaration:
" function RANDOM(var x: REAL): REAL; EXTERN:
This g?ﬁnction produces. a uniformly distributed pseudo random number
in the open interval <0,1>. Each new value is calculated from the
value of the parameter. The new value is also assigned to the
parameter variable. Thus, successive calls on RANDOM with the same
variable as a parameter, produces a uniformly distributed pseudo
random&number stream. . - A -
N500: SETE
External declaration:
brocedure SETE(bitno: INTEGER); EXTERN;:
Sets the given bit in own trap enable register.
CLTE
' External declaration:

procedure CLTE(bitno: INTEGER); EXTERN:

Clears the given bit in own trap enable register.

ND-60.124,05

%

ND~-Pascal 23
THE SOURCE PROGRAM

_ 7 E ic ¢ .
For each scalar type T there is a function T(n) which converts the
integer n to the value of type T with ordinal number n.

Example:

-

Season = (winter,Spring,Summer,Autumn);
var

s: Season;

s := Season(2);

§ now has the value Summer.
The functions FIRST(T) and LAST(T), where T is an ordinal type
identifier, gives the value of type T which is the smallest and
greatest value, respectively, within the type T.

Example:

LAST(Season) is equal to Autumn.

2.7.7 Miscellaneous extensions

The compiler accepts octal and hexadecimal integer constants. The
syntax is as follows:

<octal constant> ::= <sign> <octdig> { <octdig> } <size> "B"
<hex constant) ::= <signd> <digit> { <hexdig> } <size> “H"

<sign> ::= <empty> | "+ | -

<octdigy ::= U R I el o A R R RSV RN EF TN RS T

<hexdig> ::= <digit> | "A" | "B" | “C¢* | "p* | "E* | "F"
<size> :::= <empty> | ~"L"

ND-60.124.05

24

ND-60.124.05

ND-Pascal

X....

ND-Pascal 25
PROGRAM COMPILATION

3 ‘PROGRAM COMPILATION

The ND-Pascal compiler is invoked by the command
N100: QPASCAL N500: Q3ND-500-MONITOR PASCAL

Initially, the compiler enters into a command processing mode, to
enable the user to specify source, list and code files, options etec.
The command processor prompts the user to give a new command with the
character "$".

N100: If the compiler has been aborted by typing the ESC key, it may
be resumed with the ACONTINUE command. In this case the previous
flag and option settings are retained. However, files have been
closed and their names are no longer known to the compiler.

The available commands are:

HELP
COMPILE
RUN
CLEAR
OPTIONS
SET -
RESET
VALUE
LINESPP
EXIT

A command may be abbreviated to its shortest unambiguous form.

Note that the SET, RESET, " LINESPP,” and OPTIONS commands also are
avallable as compiler commands {(cfr. section 2.9).

3.1 HELP
The HELP command lists the available commands on the user's terminal

(or batch output file). The list includes both the command processor
commands and the compiler commands.)

3.2 COMPILE

The COMPILE command instructs ND-Pascal to compile the specified
source file. The present setting of flags and options will be used
during the compilation.

The syntax of the COMPILE command is

ND-60.124.05

26 ND-Pascal
. PROGRAM COMPILATION

COMPILE <source file>, <list file>, <code file)

The entire parameter 1list may be omitted, in which case the command
processaor prompts the user to specify the files one by one. If only
one or two parameters are specified, defaults are assumed for the
remaining parameters.

The parameters to COMPILE may either be the actual file names, or the
logical units (octal) of open files.

<{source file> contains the program to be compiled. The default file
types are :PASC and . :SYMB, :PASC being the primary type.

<list filed is the file to which the listing of the compiled program
is written. The <list file> parameter may be omitted, in which
case no listing is generated.

'The listing contains:

in column 1: The character "*" if the liﬁe contains one or more
language features not in Standard Pascal. Otherwise
the character " -~

in column 2: Program (source) line number.

in column 3:' Source file 1line number and nesting level for
INCLUDEd files.

in column 4: Relative program and variable addresses (octal).

in column 5: A numbering of the begin-end, repeat-until,
case-end, and if-else pairs in the program, to
indicate the nesting structure'of the program. Also,
the declaration 1level for each procedure and
function is indicated.

in column 6: The source program.

Columns 4% and 5 are suppressed if the listing file is the
terminal.

The listing is divided into pages with a heading on each page
containing: version of compiler, date and time of compilation, and
page number.)

The listing indicates a language syntax error at the exact spot
where it was discovered, together with an error number. If a part
of the source text was skipped'as a result of the error, the part
that was skipped is indicated by a 1line containing the text
xSKIP at the left, and hyphens under the skipped text. Lines
containing syntax errors are also written to the terminal.

At the end of the 1listing a list of the-error numbers and an
explanatory text for each error will appear.

ND-60.124.05

ND-Pascal 27
PROGRAM COMPILATION

A list of all compiler error messages is found in appendix A.

<code file> is the file on which the relocatable output will be
written. The <code file) parameter may be omitted, in which case
no object code is generated. Be aware that the ND-500 Linkage
Loader does not accept a file number as an NRF input file.

In a second or following COMPILE command, only <{source file> need be
specified. The previous <list file> and <code file> are used if they
were specified in a previous COMPILE command. If a new <list file> or
<code file> 1is specified, the previous file is Closed, and the new
file opened. ’ .

Be aware that option and flag values may be affected by a compilation,

and thus may influence the result of a succeeding compilation. Use the
CLEAR command to bring the processor back to its initial state.

3.3 RUN

The RUN command may be used to compile and execute a program, or to
load and execute a previously compiled program.

The syntax of the RUN command is
RUN <filename>

where - the <filename) parameter is optional. If not present, the most
recently produced relocatable file is loaded and executed.

If <filename)> is given, the following actions are taken:

Pascal attempts to open <filename>:PASC (or <filename>:SYMB) and
<filename>:BRF (N100) or <filename)>:NRF (N500):

a) If only the :PASC (:SYMB) file exists, the program is compiled
to a scratch file, and then loaded and executed.

b) If only the file containing the relocatable code exists, then
this program is loaded and executed.

c) If both exist, a compilation‘to the relocatable file is done if
the :PASC (:SYMB) file is more recent than the relocatable file.
Then the relocatable file is loaded and executed.

Note: After a program has finished a RUN execution, the SINTRAN "3°

prompt character will not appear. The user therefore must type ESC
to get back to SINTRAN command mode.

ND-60.124.05

28 ND-Pascal
PROGRAM COMPILATION
3.4 CLEAR

The CLEAR. command brings the command processor back to its initial
state. The following actions are taken by CLEAR:

Set all options to their default values.

Delete all flags.
Close <list file> and <code file>.

3.5 OPTIONS

The OPTIONS command is used to set compiler’ options. The command and
the options are described in section 2.5.4.

3.6 SET and RESET

The SET 'and RESET commands set a flag to TRUE'and FALSE, respectively.
These commands, and the use and effect . of flags are described in
section 2.5.1, : : & : Lo

3.7 EXIT

The EXIT command closes all files and returns control to the operating
system. !

3.8 LINESPP

The LINESPP command is described in section 2.5.5.

3.9 VALUE
The command
SYALUE ObTIONS
lists the current value of all.options.
The command
SYALUE FLAGS

lists the current value of all flags.

ND-60.124.05

ND-Pascal 29
PROGRAM COMPILATION

3.10 SINTRAN Commands
SINTRAN commands may be executed by starting a command line with the

character "@". Pascal will then pass the rest of the line to SINTRAN
for interpretation and execution.

NS00: The ND-500 monitor allows only a subset of the SINTRAN commands
to be executed. When attempting to execute a SINTRAN command
outside this subset, the SINTRAN error message is written to the
terminal.

3.1) Program Compilation Example

Following is an example of a program compilation. User input is
underlined.

Terminal input/output Comments
APASCAL ' Call Pascal compiler
or
OND-500-MQONITOR PASCAL ’ Call Pascal compiler
PASCAL/ND-xxx VERSION J 83-xx-xXx Identifying text
SOPTION T-,M+ Suppress generation of test

instructions and list generated
object code. .

SSET PARIS . Generate "PARIS" version of
program. (Assumes source file
contains SIFTRUE and SIFFALSE

S tests on flag with name PARIS.)

SCOMPILE Compile

Source file=MYPROG Source is MYPROG

List file=LINE-PRINTER Listing to line printer

Code file=MYPROGCOQDE Relocatable code to MYPROGCODE
NO ERRORS Messages from compiler
LENGTH OF PROGRAM: 010778 WORDS/BYTES

LENGTH OF FIXED DATA: 002038 WORDS/BYTES
6 USES OF NON-STANDARD FEATURES
24,32 SECONDS COMPILATION TIME

EXIT Exit

$
2 . Control to SINTRAN

Cfr. chapter 9 for a complete example of a brogram compilation and
execution.

ND-60.124.05

M.,

30

ND-60.124.05

ND-Pascal

B,

-

ND-Pascal 31
PROGRAM LOADING AND EXECUTION

4 PROGRAM LOADING AND EXECUTION

4.1 Program Loading

This chapter gives examples of the loading and execution of ND-Pascal
programs. Further information on memory allocation, absolute programs
etc. is found in chapter 8. Cfr. chapter 9 for a complete example of a
program compilation and execution.

.11 ND-100 prodaram loading

A compiled ND-100 Pascal program must be loaded by the NRL 1loader
before it can be executed. Also, the Pascal library must be loaded
together with the object program. The library comes in two versions:
PASCAL-LIB:BRF for one-bank code, and PASCAL-2LIB:BRF for twa-bank
code. The reader should consult the NRL manual (ND-60.066) for details
concerning the loader and the loading process.

Example (one-bank program):

Terminal input/output Comments

AINRL Call loader °

RELOCATING LOADER LDR-1935x Identifying text

*LOAD MYPROGCODE PASCAL-LIB Load code file and Pascal 11brary
FREE:027433-162504% Free memory area .

*RUN ~ Execute program

) - Execution finished

A two-bank program may be generated in one of two ways:

1. @CC Compile program producing one-bank code
ANRL
RELOCATING LOADER
*DEFINE NOBKS 2
* OAD MYPROGCODE PASCAL-LIB
*RUN

2. JCC Compile program with option B2, producing two-bank code

ANRL

RELOCATING LOADER

*PROG-FILE MYPROG

*LOAD MYPROGCODE PASCAL-2LI8
*EXIT

JRECOVER MYPROG

ND-60.124.05

32 ND-Pascal
[PROGRAM LOADING AND EXECUTION

Method number 2 will save space in the instruction bank, however,
method number 1 must be used with SINTRAN version H or earlier if the
program is to be dumped as a re-entrant subsystem. The reader should
: consult section 8.1.1 for further details on two-bank programs.

When loading files for a Pascal execution, the main program must
always be loaded first, and the Pascal library last. This means that
all external Pascal, FORTRAN or assembly routines and other libraries
(i.e. FTNLIBR) must be loaded between the maln program and the Pascal
llbrary

Take note of the fact that NRL wuses entry point names with seven
letters, and gives no warning when an already defined name is
redefined. This may lead to undetected name conflicts when loading a
Pascal program which was compiled with the X option on, or when
loading separately compiled Pascal procedures. Under these
circumstances, procedure and function names therefore should be
distinct within the first 'seven letteres. Cfr. section 8.1.2 for
further detalls on entry point names.) " e

Instead ‘of direct ‘execution with the RUN-command, as shown in the
above example, a program may ‘be "dumped on a :PROG file and
subsequently executed any number of times. Also, by generating a :BPUN
file, a Pascal program may be dumped as a ‘re-entrant subsystem. The
entry point name of the start address of the program is the name which
appears in the program statement. This name and the corresponding
program address are found in the loader map.
If the 1label ' 0 (zero) appears in the main program, its address will
appear ‘in the loader map with the name CONTINU. This - address may be
used as a restart address for the program. It is the programmer's
responsibility that ' necessary reinitialization. is done “after a
restart. For example, files which might have been open when the
program was aborted, should be DISCONNECTed in order to deallocate I/0
buffers.

The NRL command PROG-FILE- should be used with great care due to
limitations in the SINTRAN RECOVER command. Unless special precautions
are taken, a "hole” may remain in the area between code and data. If
there are pages that have never been loaded to (and therefore never
‘.assigned to the file), a SINTRAN error message: NO SUCH PAGE will be
returned when the program is executed.

4.1.2 ND-500 proaram loading

A compiled ND-500 Pascal program must be loaded by the ND-500 Linkage
Loader before it can be executed. Also, the Pascal library must be
loaded together with the object program. The library is found on the
file PASCAL-LIB:NRF. The reader should consult the ND-500 Linkage
Loader manual (ND-60.136) for details concerning the loader and the
loading process. :

ND-60.124.05

ND-Pascal 33
PROGRAM LOADING AND EXECUTION

Example:
Terminal input/output T . Comments
AND-500-MONITOR LINKAGE-LOADER Call loader
NDO-Linkage-Loader - x Identifying text
NLL:SET-DOM SCRATCH-DOMAIN
NLL:LOAD-SEG MYPROGCODE Load code file
Program:.... XxXxxx P01 Data:....... XxXxxx D01
NLL:EXIT
SEGMENT NO......... xx IS LINKED Pascal library is auto-linked
AND-500-MONITOR SCRATCH-DOMAIN Execute program
a Execution finished

4.2 Run-Time Errors

If a program attempts to do an illegal operation, the program is
aborted with an appropriate error message. If the error was an illegal
I/0 operation, the name of the file variable involved will be part of
the message. A 1list of all run-time error messages is found in
appendix B,)

The error message indicates at which absolute' address (octal) the
error occurred, and, if the T option was on during compilation, which

" line number in the source program this address corresponds to.

Be aware of the following pltfalls regarding the source program 1line
number:)

1) If the T option was turned off and on one or more times during, the
compilation, the source line number may be wrong.

2) If the program calls separately compiled procedures, the source
line number may be that of an external procedure, if that
procedure was compiled with the T .option on.

3)'If an error occurs within an external routine in another language,
the Pascal system will not be able to give any information about
the error.

If there is any doubt regardlng the source line number given in cases
1} and 2) above, you should correlate the octal address in the error
message with the octal program addresses in the listing by the help of
a loader map. The 1loader map can be acquired by the NRL ENTRIES-
DEFINED command or the Linkage Loader LIST-MAP command.

ND-60.124.05

34 ND-Pascal
PROGRAM LOADING AND EXECUTION

$.2.1 Trapping run-time errors

A P;scai main program may contain the declaration of alprocedure
procedure FAULT(erno, lino, objad, status: INTEGER);
end;

The effect is that_when a run-time error occurs, FAULT will be called.

Note: The N option must be on in order to make FAULT have this effect.

The parameters are

erno The error number. The meaning of these is found in appendix
8. '

lino The source program line number at which the error occurred.
objad The object code address at which the error occurred.

status The SINTRAN error status in éase of a file system or 1I/0
error (error numbers 17, 33, and 37).

The procedure may'contain any legal Pascal code - for example, if the
error is considered non-fatal, a jump to a main program label. If the
procedure exits through its end, the normal error processing is done.

It is the programmer's responsibility that the declaration of FAULT
follows the rules above, and that a program does not continue
execution after a fatal error has occurred. In particular, be aware of
the possibility that FAULT will be called ‘recursively if an error
occurs within the FAULT routine itself.

ND-60.124 .05

~dtd

ND-Pascal 35
INPUT/OUTPUT

5 INPUT/QUTPUT

Input/output is that part of a programming language which is most
operating system dependent. Several design and implementation
decisions therefore must be taken by any implementor of Pascal. The
reader is warned that some of the features described in this chapter
may not be implemented, or may work differently, in other Pascal
implementations. '

5 File] e
File types may be used as_any other type in a Pascal program, with the
following limitations:

1) file of T where T is or contains a file type is not allowed.

2) File variables, or structures containing file variables may not be
generated with the NEW constructor. A file variable may not occur
in a variant of a record. :

J) Assignment to a file variable f (not to be confused with the file

buffer f[) is not possible, nor is the use of a file variable in
an expression. . -

5.1.1 The type TEXT

There is a standard file type TEXT. A file of type TEXT is assumed to
contain a sequential text, subdivided into lines. A line may contain
any number of characters.

Note: The type TEXT is nﬁ; equivalent to the type packed file of CHAR.
The latter type will be interpreted as a sequence of characters
where no line subdivision is visible.

The following procedures and functions may be used on files of typé
TEXT:

EOLN _READ READLN ‘WRITE WRITELN

On input, the CR character (value 15 octal) is taken as a line
separator. An LF character (value 12 octal) following CR is ignored.
According to Standard Pascal, EOLN{<file>) becomes TRUE when a
READ(<file>,c) reads the last character before the CR. When
EOLN(<file>) is TRUE, the next READ(<file>,c) delivers the space
character (value 40 octal). On input, character parity is removed.

On output, WRITELN writes the two characters CR and LF. Characters
output will have even parity.

ND-60.124.05 e

36 ND~Pascal
INPUT/OUTPUT

The characters in a TEXT file are assumed to be ASCII characters with
internal values in the range 0..127. When the C option is on, however,
the internal values can be in the range 0..255, In this case, the
parity bit is neither removed on input, nor generated on output.

The editing specifications in READ and WRITE are extended to enable
I/0 of non-decimal representation of integers. In READ, an integer
parameter may be followed by a :<{radix) specification, while in WRITE,
an integer parameter may have a :<radix> specification after the
i<field width> specification. In this case, the <radix>-base
representation of the integer is read or written. <radix> must be in
the range 2 to 36. Digits in the range 10..35 are represented by the
uppercase letters A..Z. .

The following table gives the number of character positions used in
the output file when a value needing a minimum of p characters for its
representation is written. In the table, w is the value of <field
width>. .

default 0 <w<op p <=w (1)
N100 - NS00

CHAR 1 1 = w
BOOLEAN 6 6 w (3) w
INTEGER, decimal "B 12 p w
LONGINT, decimal 12 12 p w
INTEGER, non-decimal - - w (&) LW
LONGINT, non-decimal - - w (&) w
REAL, floating point 12 (5) 12 w (2) w
REAL, fixed point - - p w
string p p w (3) W

(1) Blank fill to the left
(2) Minimum 10 for 48-bit reals, minimum 8 for 32- and 64-bit
reals i
(3) The initial w characters of the string
- ("FALSE ' and 'TRUE .' when Boolean)
{(4) The w least significant digits
(5) 12 for 32-bit reals, 16 for 48-bit reals

5.1.2 Standard files

There are two standard files, INPUT and OUTPUT, both of type TEXT.
These files may therefore be used without declaration.

2.1.3 Packed files
In a . GET or PUT-operation, an integral number of B8-bit bytes will

always be transferred. If the file is not designated packed, this
number may be deduced from the table in section 2.6.1.

ND-860.124.05 =

I

a2 d

ND-Pascal ' 37
INPUT/OUTPUT

In the declaration

packed file of T,

the keyword packed has an effect only if the values of type T occupy
no more than eight bits (N100) or 16 bits (N500). In these cases, PUT
and GET will read or write the minimum number of bytes necessary to
represent the value.

Since the internal representation of values may use a different number
of bytes on the ND-100 and the NOD-500, non-packed files may be
incompatible as seen from ND-100 Pascal and ND-500 Pascal. That is, a
file of T generated on one computer may not be readable on the other
computer, using the same file declaration.

If a file type is designated packed, however, the external file
structures assumed by ND-100 Pascal and ND-500 Pascal will usually be
identical. Especially, if the type T occupies eight bits or less, then
packed file of T will always correspond to the same file structure on
the two computers. ’

5.1.4 Non-TEXT files

When f is not of type TEXT, then
READ(f,x):; is equivalent to
begin x := f]; get(f) end;
WRITE(f,x); is equivalent to
begin f[:= x:iput(f) end:
ﬁéAD(f,x1.x2,;.;.xn): is equivalent tb
READ(f,x1); READ(F,x2); ... READ(f.xn);
WRITE(f.x1.x2.....xn): is equivalent to

WRITE(f,x1); WRITE(f,x2): ... WRITE(f,xn);

.. Ex 1 Fij]
The procedures CONNECT and DISCONNECT have been implemented in ND-

Pascal to enable run-time association between a file variable and an
external file.

ND-60.124.05

38 ‘ ND~-Pascal
INPUT/OUTPUT

5.2.1 CONNECT (7
The CONNEéT procedure can have up to five paraméters; |
CONNECT(<file>,<filename>,<type>,<accessd>,<status>)
<file> i§ the variable name of the file.

<filename> is either an integer giving the logical unit number of

an open file, or a string (or a packed arrayv of CHAR)
containing the external name of the file.

<type> is a string giving the default file type.

<access> 1is a string giving the file access mode (W, R, WX, RX,
RW, WA, WC or RC, or the reverse of one of these strings).

<{status> is an integer variable where status for the CONNECT
operation is left. If the CONNECT was successful, <status>
will be equal to zero; if an error occurred, <status> will
be equal to 'the SINTRAN error number.

The <file> parameter is mandatory. One or more of the remaining
parameters may be omitted, either by leaving the parameter -position
empty, or by prematurely closing the parameter list with the right
parenthesis.

The effect of omitting one of the parameters . <filename>, <type)> and
<access> is that Pascal will. enquire the user to supply the value from
" the terminal. When CONNECTing a logical unit the <type> parameter may
be omitted, and in that case will not be enquired for.

The effect of omitting the <status>. parameter is: If the CONNECT
operation failed, then write the error message to the terminal, Repeat
the CONNECT operation if the file name was specified from the terminal
and the job is interactive, otherwise abort the program.

Remember that RESET. or REWRITE must be called before sequentlal I/0 on
the file can be performed. (

Example:

CONNECT(infile,,"SYMB','R'); RESET(infile);

5.2.2 DISCONNECT

The DISCONNECT procedure has one parameter:
DISCONNECT(<file>)

The external file will be disassociated from the <file) variable. If a

file name was given when <file> was opened, the external file will be

closed. A <file> opened with a logical unit number will not be closed.
A later CONNECT may associate <filed> with another external file,

ND-60.124.05

ND-Pascal . 39
INPUT/OUTPUT

When ND-Pascal goes through a block end, all files local to that block
will implicitly be DISCONNECTed.

5.2.3 Scratch files
If a REWRITE(<file>) is done on én ‘un-CONNECTed file, Pascal will

create, if necessary, a scratch file with the name {file>-cc:TEMP, and
open it. cc are two characters generated to make filenames distinct.

If a scratch file is DISCONNECTed, or the program terminates normally,
the file will be deleted.

5.2.4 Program heading parameters

The program heading may have file variable names as parameters. For
each of these file variables the compiler automatically generates some
code in the beginning of the main program:
For the file INPUT:

CONNECT(INPUT,0,, 'R"); RESET(INPUT):
For the file OUTPUT:

CONNECTEOUTPUT,1,,'N'); kEwRITE(OUTPUT):
For other file variables F:

CONNECT(F);

The effect is that for every user-defined file variable in the program

. heading, the user is enquired to supply the actual file name, type and

access mode. The files INPUT and OUTPUT are associated with the
standard input and output files, i.e. the terminal for interactive
jobs, and the appropriate disk or terminal files for mode and batch
jobs. Files other than INPUT and OUTPUT must be declared in the main
program var section.: "

For all +file names in the program heading, except INPUT and OUTPUT,
the call on RESET or REWRITE must be programmed.

Since CONNECT and DISCONNECT are not part of Standard Pascal, file
variables in programs that are to be ported should ‘appear in the
program heading, instead of being explicitly opened by calls on
CONNECT.

ND-60.124.05

T

40 ND-Pascal
INPUT/QUTPUT

5.3 Terminal I/0

When the actual external file is the terminal runnlng the program,
certain special actions are taken by the I/0 system.

On input, a RESET will pot read the first character into the file
window, as specified in Standard Pascal. Instead, RESET will put the
space character into the window. Thus, in the input from the terminal,
an extra initial space will appear. The reason for this modification
is to permit output to the terminal prior to the first input without
program hang-up.

On the first file which a program CONNECTs for input from the terminal
(as for instance the default connection of INPUT), EOLN will be TRUE
initially if no text followed the program name in the program call
command line. o

An input TEXT file associated with “TERMINAL" is given logical wunit
number zero. This enables editing of the terminal input with CTRL A
and CTRL Q. Be aware that SINTRAN converts lower case characters to
upper case on input from unit zero. A file may be CONNECTed for input
from logical unit one, where this conversion is not done Editing with
CTRL A and CTRL Q is not possible on unit one. E

In some applications (e.g. screen-handling) it is hecessary to read
from the keyboard on a character-by-character basis, and with no echo.
To do this from a Pascal program, use the method illustrated by the
following example:

yvar keyboard: TEXT;

* Rrocedyre ECHOM(mode: INTEGER); EXTERN;
Rrocedure BRKM(mode: INTEGER); EXTERN:.

begin (* Main program %) :
CONNECT(keyboard,1,, 'R'); RESET(keyboard):
ECHOM(-1); BRKM(O0); .
repeat
GET(keyboard);
(* Do action on character now in keyboard] *)

(* Program must do its own echoing %)
until

end.
In a READ operation from the terminal, a number syntax error does not
result in the program being aborted {provided the program is run

interactively). Instead, the message

ILLEGAL NUMBER SYNTAX

ND-60.124.05

ND-Pascal 41
INPUT/OUTPUT :

is written to the terminal, and the READ performed anew such that the
correct number can be retyped.

2.4 Random Access I/Q

A file variable may be associated with an external random access file.
Random access. I/0 may be done on that file with the procedures PUTRAND
and GETRAND:

PUTRAND(<f>: <filetype); <block number): INTEGER;
var <(status>: INTEGER);

GETRAND(<Ff>: <filetype>; <block number>: INTEGER;
var <status>: INTEGER);

PUTRAND writes the current content of the file window to the given
<block number> on the file. GETRAND reads the block in <block number>
-on the file into the file window.

The <status> parameter is optional. If present, the SINTRAN-status of
the 1I/0 operation is left in this variable. If not present, the
program aborts in case PUTRAND or GETRAND fails.

The block size is equal to the number of bytes occupied by the file
component type. This block size is determined when the file is opened
by a call on CONNECT. Note that the smallest block size that SINTRAN
accepts is two; therefore it is not possible to randomly access single
bytes of a file.

RESET and REWRITE have no effect on random access files.

A random access file cannot be packed, but may contain packed
elements.

ND-60.124.05

42

ND-60.124.05

ND-Pascal

B

i

ND-Pascal 43
ND-100 REAL-TIME PROGRAMS

6 ND-100 REAL-TIME PROGRAMS

Any ND-Pascal program may be run as a real-time Program. This requires
no changes to the BRF code generated by the compiler. Thus, the same
code may be used for both regular and real-time execution.

To load a program for real-time execution, enter the command
*REFER-SYMBOL 5RTPM

before the Pascal 1library is loaded. This will have the effect of
selecting 1library routines adapted to real-time execution, In
particular, the following effects should be noted: :

1. When a run-time error occurs, the following statements will be
executed:
ERMON(50,<Pascal error number>); (* Cfr. appendix B x)
ERMON(S1,<source line number>);
RTEXT;

2. No terminal will be connected to the program. Thus, to execute a
CONNECT operation where one or more parameters are missing, unit
1 must be reserved prior to the CONNECT.

The Pascal 1library is not completely re-entrant. However, several
real-time programs may share the same (re-entrant] segment containing
external procedures and/or the Pascal library, provided the real-time
Programs have the same COMMON start.address.

The STACK-HEAP area will by default be allocated as for background
programs (cfr. section B8.1). The placement and size of this area may
be determined by the user if some other allocation is desired (cfr.
section 8.1).

For a real-time program, RUNMODE is equal to 3 (cfr. section 2.7.5).

FORTRAN routines compiled with the old FORTRAN compiler in re-entrant
mode may not be called from a Pascal program.

ND-60.124.05

b4

ND-60.124.05

ND-Pascal

ND-Pascal 45
ND-100 OVERLAY PROGRAMS

7 ND-100 OVERLAY PROGRAMS

Large program systems written in ND-Pascal may be run as a set of
overlaid programs. The Pascal overlay system is- adapted to the NRL
overlay generation facility. The reader is referred to the NRL manual
(version 6 or 1later) for details concerning the overlaying of
programs.

7.1 Modules

A Pascal program system which is to be run in overlay mode will

consist of a set of modules. A Pascal main program is the base, or

root, module. All other modules will be procedures or functions. A

procedure or function will become an overlay module when the key-word
module precedes the procedure/function declaration.

Example: module procedure OSLO(yar n: NORWEGIAN);
Modules may be nested. The maximum number of overlay levels is ten.
Modules may appear either

1) within a main program, or

2) in a separately complled file containing external
modules, procedures and functions.

The modules for a program system may be generated in either way, or by
using a comblnatlon of the two.

A module which <calls an external, separately compiled module, must
contain an external declaration of the latter module.

Example: module procedure MADRID(x,y: SPANIARD); EXTERN;
A module may not be forward declared.

A file containing module declarations may be headed by a copy of the
main program const, type and var definitions. This feature allows for
easy communication between modules through main program variables. 1In
a similar manner, nested modules may be used to allow child modules to
communicate through the local variables of the mother module.

If an- external module, procedure or functlon refers to procedures or
functions in the main program, the main program must be compiled with
the X option gon (cfr. section 8.1.2).

ND-60.124.05

46 ND-Pascal
ND-100 OVERLAY PROGRAMS

1.2 Compilation of Modules

The code for each module must be written on a separate BRF file. The
compiler will prompt the user to specify the BRF file when a module
declaration is encountered in the source file. This means that when
compiling a file of modules only, no code file should be specified in
the $COMPILE command.

Example

The following example consists of a main program with modules, and one
external module which the main program calls.

ND-60.124.05

%....

ND-Pascal
ND-100 OYERLAY PROGRAMS

Main program:
bprogram EXAMPLE(QUTPUT);
const SIZE = 10;
tvpe INDEX = 1,,.SIZE:

yar A, B, C: arrav [INDEX,INDEX] of REAL;
I: INTEGER;

procedure RESULT;
var I, J: INDEX;

begin
for I := 1 to SIZE do
eqi
for J := 1 %o SIZE do WRITE(C[I,J)]:10);
WRITELN
end

end (*RESULT*);

beain
for I := 1 to SIZE do
for J := 1 to SIZE do
begin A[I,J] := SQR(I)*J;

BLI,J]1 := LN(I)XSQR(J);
ClI,J] := 0
end;
RESULT

end (*INITx);

module fynction FACTOR(I: INTEGER): INTEGER;
begin

if I <= 1 thep FACTOR := 1

else FACTOR := I*FACTOR(I-1)
end (*FACTOR%): .

module procedure ACCUM; EXTERN;

begin (*MAIN PROGRAM*)

. INIT;
for I := 1 to 7 do WRITELN(FACTOR(I}:10);
ACCUM

end.

ND-60.124.05

47

48

ND-Pascal

ND-100 OVERLAY PROGRAMS

External module:

const SIZE = 10;
type INDEX = 1,.SIZE;

yar A, B, C: array [INDEX,INDEX] of REAL;
I: INTEGER;

module procedure ACCUM;
var I, STATUS: INTEGER;

procedure RESULT; EXTERN;

procedure ROW(J: INDEX):
var K: INDEX;.

SUM: REAL;
begin SUM := 0.0;

for K.:= 1 to SIZE do SUM := SUM+A[I,K}*BILK,J]:

lf SUM > 1.0E6 then STATUS HESE
C(I,J] := SUM
end (*ROWx);

modyle procedure COLUMN(I: INTEGER):
yar J: INDEX; :
begin STATUS := 0;
for J := 1 to SIZE do ROW(J)
end (*COLUMN*X);

module procedure WRITCOL(I: INTEGER):
yar J: INDEX;
begin
for J := 1 o SIZE do WRITE(C[I,J]:12);
WRITELN
end (*WRITCOL*);

begin (*ACCUM*)
for I := 1 to SIZE dg
begin COLUMN(I):
if STATUS = 0 thep WRITCOL{I)
else WRITELN('COLUMN',I:3," IN ERROR')
end;
RESULT
end (*ACCUM*®);

This‘program.contains examples of the following:

- Child modules communicate through variables of the mother module

{STATUS)

- Child modules use a procedure within the mother module (ROW)

ND-60.124.05

ND-Pascal
ND-100 OVERLAY PROGRAMS

49

- A module may be called recursively - in this case the call is

executed as a normal procedure or function call (FACTOR)
Compilation of the example programs:

APASCAL

PASCAL/ND=100 VERSION J 83-xx-XX

SOPT X+

SCOMPILE EXAMPLE | INE-PRINTER "EXAMPLE"
Codefile for module INIT : ZINIT.
Codefile for module FACTOR : “FACTOR"
NO ERRORS .
LENGTH OF PROGRAM: . 000363B WORDS

LENGTH OF FIXED DATA: 0021468 WORDS
7 USES OF NON-STANDARD FEATURES
1.34 SECONDS COMPILATION TIME
SCOMPILE ACCUM LINE-PRINTER
Codefile for module ACCUM : TACCUM”
Codefile for module COLUMN : "COLUMN"
Codefile for module WRITCOL : “WRITCOL"

NO ERRORS ' :
LENGTH OF PROGRAM: 0004038 WORDS
LENGTH OF FIXED DATA: 0000108 WORDS
7 USES OF NON-STANDARD FEATURES
1.20 SECONDS COMPILATION TIME

SEXIT

1.3 Loading QOverlav Programs

When loading modules to create a system of overlaid programs, the

following points must be noted:

=~ The user must allocate the STACK-~HEAP area with

the

X*DEFINE STACK xxxxx and *DEFINE HEAP xxxxXx commands (cfr. section

8.1). It may be necessary to do a trial load of the system
order to determine the optimum setting of STACK and HEAP.

in

- The Pascal library must be loaded together with the main program,

and with any module which refers routines in the library

not
referred to in the main program. To be safe, the library may be’

loaded with every module (only those routines not already present

will actually be loaded).
- When loading two-bank code, one must enter the command
SET-MODE DATA

before the first OVERLAY-GENERATION command.

ND-60.124.05

50 ND-Pascal
' NO-100 OVERLAY PROGRAMS

- The modules must be loaded in an order which corresponds to the
overlay tree structure, that is:

1. The main program. Call this the current module.

2. The next module within the current module. This module becomes
the current module. Apply rule 2 recursively.

Be aware that when specifying entry point names to the loader, NRL
reads the Jlast 7 <characters, whereas Pascal uses the 7 first.
Therefore, to avoid problems, never specify entry point names longer
than 7 characters. T

A file containing an overlay program (:PROG file) should not be
renamed with the SINTRAN RENAME-FILE command, as the absolute program
must contain a record of the file name where the overlay segments are
found. This record is not updated with the RENAME-FILE command.

The file name is recorded exactly as specified in the DUMP command.
Therefore, to avoid ambiguity with file names created at a later time,
it is recommended that the file name is not abbreviated. If the user
name is specified, the :PROG file cannot be copied to other users and
executed. [(If the receiving user has access to the original owner's
file, the root segment will be taken from the receiver and the overlay
segments from the original owner. This is, at best, hazardous.:)

ND-60.124.05

-

ND-Pascal 51
NO-100 OVERLAY PROGRAMS

Example

Loading of the program examplé.in section 7.2:

INRL

RELOCATING LOADER LDR-1935x
*IMAGE-FILE 100
*OVERLAY-GENERATION 10
*DEFINE STACK 0

*DEFINE HEAP 150000

*DEFINE NOBKS 2

¥LOAD EXAMPLE PASCAL-LIB
FREE: D12774-175473
*OVERLAY-ENTRY (1) INIT

XLOAD INIT
OVERLAY 1 LEVEL 1 COMPLETED. AREA: 012774-013115
S5LDAT=012774 INIT=012774 HEAP=150000
*OVERLAY-ENTRY (1) FACTOR

*LOAD FACTOR

OVERLAY 2 LEVEL 1 COMPLETED. AREA: 012774-013033
FACTOR=012774 '
*OYERLAY-ENTRY (1) ACCUM

*LOAD ACCUM
OVERLAY 3 LEVEL 1 COMPLETED. AREA: 012774-013263
ROWFS*=012774% ACCUM=013140 ACCUFQ&/175463

*OVERLAY-ENTRY (2} COLUMN

*LOAD COLUMN PASCAL-LIB

OVERLAY 4 LEVEL 2 COMPLETED. AREA: 013264-013320
COLUMN=0132564

*QVERLAY-ENTRY ({2) WRITCOL

*LOAD WRITCOL :

OVERLAY 5 LEVEL 2 COMPLETED. AREA: 013264-013341

WRITCOL=013264

*DUMP "EXAMPLE"

*EXIT

1.4 Executing Overlav Proarams

An overlaid program is activated by.calling the root module, i.e.
DEXAMPLE

Note: If an overlaid program is interrupted by ESCAPE, it may pot be
continued with the 2CONTINUE command.

ND-60.124.05

r\‘}lg;)

52

ND-60.124.05

ND-Pascal

ND-Pascal ' 53
IMPLEMENTATION DESCRIPTION

8 IMPLEMENTATION DESCRIPTION

This chapter gives some information on how the ND-Pascal system works
internally, to enable more advanced use of the system. Be aware that
most of the features described in this chapter are machine and SINTRAN
dependent. Therefore, the reader should not assume that other Pascal
implementations work in the same or a similar manner. Also, the reader
is-warned that implementation details may change in future versions of
ND-Pascal. '

8.1 _ND-100 Implementation

8.1.1 Memorv lavout

The following figures show how memory is utilized by a running ND-100
Pascal program (including the Pascal compiler itself).

One-bank program Two-bank program
(one-bank library)

address i
0 | (LOADER) | | (LOADER) | sTACK |
| =-mmmmmme | |-=mmmmeeee | - l
| PROGRAM | | PROGRAM | |
| ==mmmmmeees l |==mmmmeeeee | |
| sTack | g | |- = - - - - l
== e e s] | 1
| | : | | |
| HEap | oy | HEAP |
| === mmmeee 1 I J=mmmmmmmee |
| CONSTANTS | | (constants)| CONSTANTS |
[=mmmmmmeee 1 | ==mmmmmmeee | ===mmmmeees |
| MAIN DATA | | (main data)| MAIN DATA |
| === e l [===mmmmmes [==mmmmmeae |
177777 |_SYS DATA | |{svs data) | SYS DATA |

ND-60.124.05

%,

54 ND-Pascal
© IMPLEMENTATION DESCRIPTION

Two-bank program
(two-bank library)

address
0 | | SYS DATA |
| | -=mmmemeee I
	MAIN DATA
PROGRAM	===ce-ecca-.
	CONSTANTS
	==-mmemeee
-mmmeemmeee	!
	STACK
I	[
1 - - - < - -]	
	HEAP
1777717 | I |

PROGRAM The Pascal program together with the necessary library
routines.

STACK The memory used by procedures and functions that the program
calls. The stack grows from low towards high addresses.

HEAP The memory used by data allocated with the NEW constructor.
The heap grows from high towards low addresses.

CONSTANTS The constants referred to by procedurés. For each procedure,
: a common block containing such data is allocated within the
CONSTANTS area. :

MAIN DATA All variables declared in the main program. This area is a
e common block named C.MAIN.

SYS DATA The variables and constants used by the Pascal 1library
~routines, This area consists of two common blocks named
5CRTL and SCRTD.

8.1.1.1 One-bank programs

‘ .
In a one-bank execution, Pascal places the stack and heap in the

largest of the two areas

a) address zero to first PROGRAM location
b) last PROGRAM location to first CONSTANTS location

To make maximum space for the stack and heap, one may either do an
image 1load, or use the NRL SET-LOAD-ADDRESS command to minimize area
b}. .

ND-60.124.05

5

ND-Pascal 55
IMPLEMENTATION DESCRIPTION

Be aware that the area between the last PROGRAM location and the first
CONSTANTS location will occupy space on the :PROG file. If the default
load address is used, the size of the :PROG file will be in excess of
50 pages. To make a minimal absolute version of a program, use the
SET-LOAD-ADDRESS command to minimize area b).

8.1.1.2 Two-bank programs

A two-bank program may be generated in one of two ways, as described
in section 4.1.1.

Method 1

Compile the program, producing one-bank code. ‘Before 1loading, enter
the command

*DEFINE NOBKS 2

Then load the program together with PASCAL-LIB. The program is loaded
exactly as a one-bank program. Before execution starts, the CONSTANTS,
MAIN DATA, and SYS DATA areas will be copied to the data bank. The
data will be located at the same ~addresses . as they had in the
instruction bank.

To make a minimal absolute version of a the program, use the SET-LOAD-
ADDRESS command to minimize the space between the PROGRAM and .-
CONSTANTS areas. The -absolute program may be dumped to a :PROG file, .
or dumped as a re-entrant subsystem, -

This method uses more space in the instruction bank than method 2, but

‘must be used if the program is to be dumped as a re-entrant subsystem

under SINTRAN version H or earlier. i
Method 2

Compile the program with option B2 set, thereby producing two-bank
code. Then load the program with PASCAL-2LIB. The absolute program may
be dumped to a :PROG file, or dumped as a re-entrant subsystem under
SINTRAN version I or later.

It is not poEsible to force a one-bank execution from a program
compiled in two-bank mode.

ﬁijijdj_fﬁxgga,allocation of stack and heap

The user may determine where to allocate the stack and heap. This can
be done at load-time by entering the following commands before the
Pascal library is loaded:

ND-60.124.05

56 ND-Pascal
IMPLEMENTATION DESCRIPTION

*DEFINE STACK <value)
*DEFINE HEAP <value>

The starting addresses for the stack and heap will then be the given
values. It is the wuser's responsibility that the definitions are
consistent, and that no part of the stack-heap area overlaps the
program or common areas. The result of doing one of the definitions
and omitting the other is undefined.

8.1.2 Loader symbols

The compiler generates 7-letter entry point names. The names found in
the loader map are constructed as follows:

Main entry "point: The first 7 letters of the name given by the
programmer. in the PROGRAM statement.

Modules regardless of declaration level; procedures and functions on
the outermost 1level of a separately compiled file; procedures and
functions on the outermost level of a main program when the X option
is on: The name given by the programmer. Note that the loader uses
7-letter names, so that these identifiers must be distinct within
the 7 first letters. - g :

Procedures and functions local to other routines or modules; all
procedures and functions when the X optiom is off: These have the
form nnnndd* where nnnn are the first four characters of the
procedure or function name. .dd are two characters generated to make
entry point names distinct. -

Non-local 1labels: TheSe have the form nnnndd+ where nnnn are the
first four characters of the name of "the procedure or. function
within which the label occurs. dd are generated characters.

External procedures and functions: The name given by the programmer.

Labelled common areas: These have the form nonndd& where nnnn are the

first four characters of the name of the procedure or function with
which this common area is associated. dd are generated characters.

8.1.3 Procedure and function calls

The following -information on how procedure and function calls are
handled .by ND-Pascal should enable a user to write simple external
routines in MAC. or NPL.

For each procedure or function call, Pascal generates an object on top
of the stack to hold system data, parameters, and data local to the
routine. At the time of entry to the routine, the registers and stack
contain the following data: ’

ND-60.124,05

...

v

ND-Pascal 57
IMPLEMENTATION DESCRIPTION

X Static Link .
A Top of new procedure object relative to B
8 Dynamic Link (calling procedure object)
L Return Address
Stack:

(A)+(B) -> system location (0)
. system location (1)
system location (2)
system location (3)
system location (4)
system location (5)
function value
parameter (1)
parameter (2)

parameter (n)

In a proper Pascal procedure system 1location (0) contains Return
Address, system location (1) contains Dynamic Link, _and system
location (4) contains Static Link. The other system locations are not
used by Pascal. ‘ : .

The function value occupies zero words if the object is a procedure; .

one, two, or three words if the object is a function.

parameter (i) can have the following form:

when var parameter reference to actual ,
when value parameter k-word value if k <= 8 or value is a set,

otherwise reference to actual

The routine may use 200 octal stack locations without causing stack-
heap overflow, . :

On exit from a procedure or function, the following conditions must be
satisfied:

1} The B-register must hold the same value as it had on entry.

2) For a function, the A-, AD-, or TAD-register must hold the
function value.

3) The exit must be to Return Address (= contents of . L-register on
entry).

ND-60.124 .05

58 ND-Pascal
IMPLEMENTATION DESCRIPTION
Example:
The Pascal program contains
function mgngre(a, b: INTEGER): BOOLEAN; EXTERN;

This is an assembly routine which returns the value TRUE if the
magnitude of a is greater than or equal to the magnitude of b.

Assembly routine:
)9BEG

©)9LIB MGNGRE
J9ENT MGNGRE

FVAL= 6 L FUNCTION VALUE
AA= 7 1 ARGUMENT A
AB= 10 . 1 ARGUMENT B
MGNGRE= =

CORY SA DX .

L0O AA,X,8 -

RCLR DT 1 0 = FALSE

SKP IF DA MLST SO

RINC DT 7 1 = TRUE

CoPY ST DA

EXIT
JIEND

8.1.4 Interface to FORTRAN and PLANC

The routine to be called has to be defined with the body STANDARD.
PLANC routines with or without INISTACK may be called. There is no
check for stack overflow in the PLANC routines, therefore, HEAP data
in the Pascal program may be destroyed.

FORTRAN routines with or without REENTRANT-MODE set may be called. To
interface to the old FTN, use the body FORTRAN. With FTN, REENTRANT-
* MODE may not be used.

8.1.5 Input/Output

To save I/0 execution time, ND Pascal buffers access to sequentlal
.files. This is handled automatically by Pascal, and requires no
intervention by the user. Pascal allocates n buffers of 256 words for
the buffering. Up to n disk files which the program has CONNECTed for
sequential I/0 will then be accessed via buffers.

By default the number of buffers, n, is equal to three. To redefine

this number, either to save space, or to simultaneously access more
than three files via buffers. enter the command

ND-60.124.05

%

ND—Pascal.
IMPLEMENTATION OESCRIPTION

*DEFINE NOBUF n

before loading .the program:. The maximum legal value for n is 10.

ND-60.124.05

59

r‘"‘:i

60 ND-Pascal
IMPLEMENTATION DESCRIPTION

8.2 ND-500 Implementation

8.2.1 Memory layout

The following figure shows how memory is utilized by a running ND-500
Pascal program (including the Pascal compiler itself).

Instruction Data Data

segment segment 0 segment 1
address
o | | | | | SYS DATA |

| PROGRAM | | sTack | R —— |
| | - - — _ | | MAIN DATA |
l I I | | == mmmmmme e | (
| | | HEAP | | CONSTANTS |
- - - _| S — |
I - |
I |
| I
| |

IREREAREEI | |

PROGRAM The Pascal program together with the necessary library
routines. '

STACK The memory used by procedurés and functions that the program
calls. The stack grows from low toward; high addresses.

HEAP The memory used by data allocated with the NEW constructor.
When deallocation is done with the use of MARK and RELEASE,
the heap grows from high towards low addresses. When DISPOSE
is used, the HEAP area has a fixed size which may be defined
at load-time (see below).

CONSTANTS The constants referred to by procedures. For each procedure,
a common block containing such data is allocated within the
CONSTANTS area.

MAIN DATA All variables declared in the main program.

SYS DATA The wvariables and constants used by the Pascal library

routines. SYS DATA and MAIN DATA lie in a common block named
C.MAIN.

ND-80.124.05

ND-Pascal ’ 61
IMPLEMENTATION DESCRIPTION

8.2.1.1 Forced allocation of stack and heap

The default size of the STACK-HEAP. area is 400000 octal (= 131,072
decimal) bytes. The area is allocated by the G6SWSP monitor call. This
allocation may be redefined at load-time by entering the following
command before the main program is loaded:

DEFINE-ENTRY STHPSIZE <value> D

The minimum size of the STACK-HEAP area is determined by the number of
1/0 buffers (cfr. section 8.2.4). If the area is too small, the
program will be aborted at the outset with the error message STACK-
HEAP OVERFLOW. ’

8.2.1.2 The size of the heap

When deallocation of dynamic data is done with DISPOSE, Pascal uses
the ND-500 buddy allocator. In this case the heap area has a fixed
size. The default size is 200000 octal (= 65,536 decimal)} bytes.
(200000 octal bytes are then left for the stack.) This size may be
redefined at load-time by entering the command

DEFINE-ENTRY HEAPSIZE <value> D

before the main program is loaded. Take care that a definition of
HEAPSIZE is consistent with the definition of STHPSIZE.

Note: ND-Pascal does not combine non-used neighbour buddies.

8.2.2 Loader svmbols

" The compiler éenerafes entry point names with maximum 10 letters. The
names found in the loader map are constructed as follows:

Main entry point: The name given by the programmer in the PROGRAM
statement.

Procedures and functions on the outermost level of a separately
compiled file; procedures and functions on the outermost level of a
main program when the X option is gn: The name given by the
programmer. :

Procedures and functions local to other routines: all procedures and
functions when the X option is 9ff: These have the form <name)ct
where <name> is the procedure or function name. ¢ is a character
generated to make entry point names distinct.

Non-local labels: These have the form <{name>c+ where <name)> is the

name of the procedure or function within which the label is
declared, and c is a generated character.

ND-60.124.05

)

62 ' ND-Pascal
IMPLEMENTATION DESCRIPTION

External procedures and functions: The name given by the programmer.

Labelled common areas: These have the form <namedcd where <name$ is

the name of the procedure or function with which this common area is
associated. ¢ is a generated character.

8.2.3 Procedure and function calls

The following information on how procedure and function calls are
handled by ND-Pascal should enable a user to write simple ‘external
routines in assembly.code.

When Pascal calls a procedure or function, it will first place the
parameters on the stack bejond the 1locations needed for system
information. Pascal then executes a CALL instruction to the routine.
When entering the routine, the situation is as follows:
(B) -> PREVD -
‘ “© RETA ¢
7 W o Sp '~
AUX -
NARG
function value -
parameter (1))
{27 parameter (2) :

parameter (n)

An assembly routine with parameters therefore must be entered by an
appropriate ENTS instruction.

The function value and each parameter are located at word addresses
relative to B. If a value occupies less than four bytes, it will lie
left justified within a word. One to three ~trailing bytes may be
unused if the needed space (in bytes) is not a multiple of four.

The function value occupies zero bytes if the routine is a procedure,
and from one to eight bytes, depending on the type of the result, if
the routine is a function. ’

A value parameter occupies the minimum number of bytes necessary to
represent values of the given type. A var parameter is a pointer to
the actual parameter, and occupies 4 bytes. A procedure or function
parameter occupies 3 words:

1. length of parameter area in bytes
2. address of routine
3. static link of routine

A function result must be left in the Wi or Fi {D1) register before
exit from the function, which should be done with a RET instruction.

ND-60.124.05

-

ND-Pascal 63
IMPLEMENTATION DESCRIPTION

An assembly routine may use all'registers except the R register, which
must have the same value on exit as it had on entry.
Example:
The Pascal program contains
function mgngre(a, b: INTEGER): BOOLEAN; EXTERN;

This is an assembly routine which returns the value TRUE if the
magnitude of a is greater than or equal to the magnitude of b.

Assembly routine:
MODULE MAGNITUDE

EXPORT MGNGRE
LI8 MGNGRE

STACK
FVAL: W BLOCK 1 1 FUNCTION VALUE
AA: W BLOCK 1 ARGUMENT A
AB: W BLOCK 1 1 ARGUMENT B
ENDSTACK

e

ROUTINE MGNGRE

MGNGRE:
ENTS #SCLC
W1 CLR 10
W COMP2 B.AA,B.AB
IF << GO FALSE
: W SET1 R1 1
FALSE: RET

FALSE

TRUE

ENDROUTINE

ENOMODULE

8.2.% Inout/Qutput

To save I1/0 execution time, ND-Pascal buffers access to sequential
files. This is handled automatically by Pascal, and requires no
intervention by the user. Pascal allocates n buffers of 2048 bytes for
the buffering. Up to n disk files which the program has CONNECTed for
sequential I/0 will then be accessed via buffers.

By default, the number of buffers, n, is equal to four. To redefine

this number, either to save space, or to simultaneously access more
than four files via buffers, enter the command

ND-60.124.05

Qi

A

5k,

64 ND-Pascal

IMPLEMENTATION DESCRIPTION

DEFINE-ENTRY NOBUF <v;lue) D

before loading the program.

ND-60.124.05

ND-Pascal ’ 65
SAMPLE Pascal PROGRAM

9 SAMPLE.Pascal PROGRAM’

9.1 ND-100 Sample Program

JPASCAL
"PASCAL/ND-100 VERSION J 83-XxX-xXX
SCOMPILE PASSCAN, TERMINAL, "PASSCAN"

PASCAL/ND-100 VERSION J 83-xx-xx

PROGRAM PASSCAN (QUTPUT);

1
2 (* TIMES THE AVERAGE OF N X N ACCESSES %)
3 CONST MAXARRAY = 1000;
4 CHUNK = 200;
5 VAR X,Y,K : INTEGER;:
6 z : REAL;
7 STIME, ETIME : REAL;
8 TABLE : ARRAY [1..MAXARRAY] OF REAL;
9
* 10 FUNCTION TUSED : REAL; EXTERN;:
11
12 BEGIN K := CHUNK;
13 & REPEAT
14 FOR X := 1 TO K DO BEGIN
15 STIME := TUSED: .
16 FOR Y := 1 TO K DO Z := TABLE[Y];
17 ETIME := TUSED;
18 TABLELX] := ETIME - STIME
19 : END ; :
20 2 := 0;
21 FOR X := 1 TO K DO Z := Z + TABLE[X];
22 2 := 72/ K;
23 WRITELN (' AVERAGE TUSED TO ACCESS ', K,
24 "X ', K,' ELEMENTS =",Z:8:4);
25 K := K + CHUNK
26 UNTIL K > MAXARRAY
27 END.
NO ERRORS
LENGTH OF PROGRAM: 0002648 WORDS

LENGTH OF FIXED DATA: 006272B WORDS
1 USES OF NON-STANDARD FEATURES
1.46 SECONDS COMPILATION TIME

SEXIT

<continued on next page>

ND-60.124.05

m‘l l‘;n

66 ND-Pascal

SAMPLE Pascal PROGRAM

ANRL

RELOCATING LOADER LDR—19ﬁ5x
*SET-LOAD-ADDRESS 150000
*XLOAD PASSCAN PAS-LISB

FREE: 170270-171332

*DUMP " PASSCAN"
*EXIT
JPASSCAN
AVERAGE TUSED TO ACCESS 200 X 200 ELEMENTS = 0.0072
AVERAGE TUSED TO ACCESS 400 X 400 ELEMENTS = 0.0140
AVERAGE TUSED TO ACCESS 600 X 600 ELEMENTS = 0.0211
AVERAGE TUSED TO ACCESS 800 X 800 ELEMENTS = 0.0287
AVERAGE TUSED TO ACCESS 1000 X 1000 ELEMENTS = 0.0356

ND-60.124.05

il

ND-Pascal 67
SAMPLE Pascal PROGRAM

2.2 NO-500 Sample Program

_ AND-50Q-MONITOR PASCAL

PASCAL/ND-500 VERSION J B83-xx-xx
SCOMPILE PASSCAN, TERMINAL, "PASSCAN"

PASCAL/ND-500 VERSION J 83-xx-xx

1 PROGRAM PASSCAN (OUTPUT);
2 (* TIMES THE AVERAGE OF N X N ACCESSES *)
«3 CONST MAXARRAY = 1000;
4 , CHUNK = 200;
5 VAR " X,Y,K : INTEGER;
6 Z . : REAL;
7 STIME, ETIME : REAL;
8 TABLE : ARRAY [1..MAXARRAY] OF REAL;
9 ,
x 10 FUNCTION TUSED : REAL; EXTERN;
11
12 BEGIN K := CHUNK;
13 REPEAT
14 FOR X := 1 TO K DO BEGIN
15 STIME := TUSED;
16 FOR Y := 1 TO K DO Z := TABLELY]:
17 ETIME := TUSED;
18 TABLE[X] := ETIME - STIME
.19 END ;
20 .2 1= 0;
21 FOR X := 1 TO K DO 2Z == Z + TABLE[X];
22 Z := 2/ K; .
23 WRITELN (' AVERAGE TUSED TO A€CESS ', K,
24 " X ', K,' ELEMENTS =",Z2:8:4);.
25 K :=z K + CHUNK
26 UNTIL K > MAXARRAY
27 END.
NO ERRORS
LENGTH OF PROGRAM: 000007118B BYTES

LENGTH OF FIXED DATA: 00010233B BYTES
1 USES OF NON-STANDARD FEATURES

0.60 SECONDS COMPILATION TIME

SEXIT

.

<continued on next page>

ND-60.124.05

68

aNDTSUU—HONITOR LINKAGE-LOADER,
ND-Linkage-lLoader - x
NLL: SET-DOMAIN "PASSCAN"

NLL: LOAD-SEGMENT PASSCAN -

Program:....... T11 PO1 Data:........
NLL: EXIT
SEGMENT NO...... 15 IS LINKED

AND-500-MONITOR _PASSCAN

AVERAGE TUSED TO ACCESS 200
AVERAGE TUSED TO ACCESS 400
AVERAGE TUSED TO ACCESS 600

AVERAGE TUSED TO ACCESS -800-

AVERAGE TUSED TO ACCESS 1000

200
400
600
éoo
1000

10233 DO1

ELEMENTS
ELEMENTS
ELEMENTS
ELEMENTS

ELEMENTS-

ND-60.124.05

ND-Pascal

SAMPLE Pascal PROGRAM

(=T = I ~ I — N . |

.0023
.0038
.0050
.0065
.0082

ND-Pascal
Compile-Time Error Messages

APPENDIX A ompile-Time Error Messages

Compile-Time Error Messages

e T T T GO
@ NN -
s se ¢ ea me me am ea

N DN
N = O
e wa 8

50;
51:
52
53:
54:
55:
56:
57:
58:
59:
60:

101:
102:
103:
104
105:
106:
107:
108:
109:
110:
111:
112%
113;

- «
O W@V W WN -
% ¢4 es ee se ex 24 as s e

-
w

Error in simple type
Identlfler expected
"PROGRAM' expected

')’ expected -

expected
Illegal symbol
Error in parameter llst’
‘OF' expected
‘(' expected
Error in type
"{' expected
']’ expected
"END’ expected
';' expected
Integer constant expected)
‘s’ expected P — pf
"BEGIN' expected '
Error in declaration part
Error in field-list '
',' expected
‘x' expected
Illegal character

Error in constant

‘:1=' expected

‘THEN' expected

"UNTIL' expected

‘00’ expected <

"TO'/'DOWNTO' expected

"IF' expected

‘FILE' expected

Error in factor

Error in variable
expected

1dentifier declared twiee:in:same block

Lowbound exceeds highbound

Identifier is not of approprlate class
Identifier not declared

Sign not allowed here

Number expected

Incompatible subrange types

File not allowed here

Type must not be real or longint
Tagfleld type must be ordinal
Incompatlble with tagfield type

Index type must not be real or longint
Index type must be ordinal

ND-60.124.05

69

.o)

¥

70

114
115;
116:
117:
118:
119:
120:
121;
122
123:
124
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144
145;
146:
147:
148:
149
150:
151:
152
153:
154
155:
156
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:

ND-Pascal
Compile-Time Error Messages

Base type must not be real or longint

Base type must be ordinal

Error in type of standard procedure paramster

Unsatisfied forward reference

Forward reference type identifier in variable declaration
Forward declared - repetition of parameter list not allowed
Function result type must be simple or pointer

File value parameter not allawed

Forward declared function - repetition of result type not allowed
Missing result type in function declaration

Second format specifier only allowed for real and integer
Error in type of standard function parameter

Number of parameters does not agree with declaration
Illegal parameter substitution

Result type of function parameter does not agree with declaration

Types of operands conflict

Exepression is not of set type

Only tests on equality allowed

Strict inclusion not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be Boolean

Set element type must be ordinal

Set element types not compatible

Type of variable is not array

Index type is not compatible with declaratlon
Type of variable is not record

Type of variable must be file or pointer
Illegal parameter substitution

Illegal type of loop control variable
Illegal type of expression
Type conflict

Assignment of files not allowed
Label type incompatible with selecting expression
Subrange bounds must be ordinal

Index type must not be integer

Assignment to standard function is not allowed
Assignment to function formal parameter is not allowed
No such field in this record)

Type error in read

Actual parameter must be a variable

Loop control variable must be local

Multidefined case label

Too many cases in case statement

Corresponding variant declaration is missing

Real and string tagfields not allowed

Previous declaration was not forward

Multiple forward declarations

Parameter size must be constant

Missing variant in declaration

Substitution of standard procedure/function not allowed
Multidefined label

Multideclared label

Undeclared label

Undefined label

Error in base set

Value parameter expected

HE

ND-60.124.05

ND-Pascal
Compile-Time Error Messages

171: Standard file redeclared

172: Undeclared external file

173: Fortran procedure or function expected

174: Pascal procedure or function expected

175: File "INPUT' missing from program heading

176: File 'OUTPUT' missing from program heading

177: Illegal assignment to control variable

178: Variable used as control variable in outer loop
179: Read into control variable not allowed

180: Source line too long

181: Value of tagfield out of range

182: Illegal assignment to function name

183: Forward declared procedure/function not defined
184: Illegal jump to label

185: Variant already defined

186: Assignment of conformant array not allowed

187: 1Illegal assignment to conformant array bound
188: Variant selector not in range of tagfield type

190: fype must be ofdinal or array
131: Value list too long

183: Modules cannot be forward declared

200: Illegal label value

201: Error in real constant - digit expected

202: String constant must not cross line boundary
203: Integer constant exceeds range

204: 8 or 9 or hex-digit in‘octal number
205: Real number overflow

206: Real number underflow

207: Too many decimal places

208: String of length zero not allowed
209: Hex-digit in decimal number -

250: Too many nested scopes of identifiers
251: Too many nested procedures/functions
252: Too many forward references to procedure/function entries
253: Procedure/function too long

254: Too many long constants in procedure/function

255: Too many errors in this source line

256: Too many external references

257: Too many extérnal files

258: Too many local files

259: Expression too complicated

260: Too many local variables

261: Too many nested scopes of overlays

262: No assignment to function name

300: Division by zero

301: No case provided for this value

302: 1Index expression out of bounds

303: Value to be assigned is out of bounds

304: Element expression out of range

305: Setond operand to mod operator must be > 0

320: Internal error (reference out of range)

ND-60.124.05

A

72

322:

331:
332:
333:

340:

380:
381:
382:
383:
384
385:
386:
387:

390:
398:

399:
400:

Compile-Time

Internal error (GETOPR)

Internal error (LOADAD - packed address)
Internal error (LOADAD - condition address)
Internal error (MAKEMREG)

Internal error (SELECTREG)

Illegal compiler command

Unknown compiler command
Ambiguous compiler command.

Too many flags

Too deep nesting of INCLUDE files
INCLUDE open error

Missing file name in INCLUDE

Code file open error

EOF encountered on source file
Implementation restriction

Variable-dimension arrays not implemented
Internal error (MOVATTR, RESETGATTRP)

ND-60.124.05

ND-Pascal
Error Messages

-

ND-Pascal

73

Run-Time Error Messages

APPENOIX B Run-Time Error Messages

Run-Time Error Messages

19
20
23
25

21

22

33

17

12

15

16

32

ARGUMENT TO EXP TOO BIG
The argument to EXP will cause arithmetic overflow.

ARGUMENT TO LN WAS <= 0
The logarithm of a negative number or zero is not defined.

ARGUMENT TO SIN OR COS TOO BIG
Lost accuracy makes the function result meaningless.

ARGUMENT TO SINH OR COSH Too BIG

“The argument will cause arithmetic overflow in the result.

ARGUMENT TO SQRT WAS < 0

.The square root of a negative number is not defined.

ARITHMETIC OVERFLOW

Overflow caused by
a) arithmetic operations,
b) division by zero, or)
c) conversion of REAL to INTEGER, or
d) conversion of LONGINT to INTEGER.

BAD ARGUMENT TO -ARCTAN
Lost accuracy makes the function result meaningless.

BLOCK DOES NOT EXIST
Program tried to read non-existing block on a random file.

- CONNECT ERROR

Failure in an attempt to CONNECT a file. The SINTRAN error message
will indicate the cause.

EOF ON INPUT
Program tried to read past end-of-file on an input file.

FILE ALREADY CONNECTED
Program tried to CONNECT an already connected file.

FILE NOT CONNECTED
Program tried to access a non-connected file.

FILE NOT RANDOM
Program tried random access to a sequential file.

ND-60.124.05

.g\J‘

T4

31

24

38

34

42

13

26

37

40

39

29

30

14

ND-Pascal
Run-Time Error Messages

(
FILE NOT SEQUENTIAL

Program tried sequential access to a random file.

ILLEGAL ARGUMENT(S) TO POWER

Either attempt to raise negative number to a real power, or the
arguments will cause arithmetic overflow.

ILLEGAL CALL OF MARK OR RELEASE

MARK or RELEASE was called from a program which also uses DISPOSE,

ILLEGAL CASE INDEX

The case label corresponding_to the value of the case variable is

not defined.

ILLEGAL FORTRAN CALL

A FORTRAN routine was called from a two-bank Pascal program.

ILLEGAL MOD OPERATION

Attempted mod operation with second operand zero or negative. - (

ILLEGAL NUMBER SYNTAX

The number being read did not have theicorrect syntax.

TLLEGAL PARAMETER(S) TO FORMAL PROCEDURE OR FUNCTION
The actual parameters to a formal procedure or function did not
correspond in number or type to the formal parameters.

ILLEGAL SUBRANGE ASSIGNMENT -)
Attempted assignment of a value outside the subrange, or the
controlled variable in a for-loop was of a subrange type and lower
or upper bound of the loop was outside the subrange.

INTERNAL PASCAL ERROR
Error within the Pascal system. Contact a systems expert.

I/0 ERROR ~
An I/0 operation failed. The SINTRAN error message will indicate
the cause,.

INVALID OPERAND
Illegal argument to POWER or SQRT.

INVALID OPERATION)
Error within the Pascal system. Contact a systems expert.

NO RESET
Program tried to read from a file without a previous RESET.

NO REWRITE . :
Program tried to write to a file without a previous REWRITE.

NUMBER TOO BIG

The number being read was too big to be represented in the
computer.

ND-60.124.05

nd

ND-Pascal 75
Run-Time Error Messages

10

28

43

18

11

41

POINTER IS NIL
Attempted access to data via
on DISPOSE or .RELEASE with a

a pointer with the value pi},
nil-valued pointer’ parameter.

or call

POINTER IS OUTSIDE HEAP

Attempted access to data via
within the heap, or call
parameter that did not point

a pointer which did not point to data
on DISPOSE or RELEASE with a pointer
within the heap.

PUTRAND ON INPUT FILE

Program attempted PUTRAND on a read only fiie.'

- RESET ON OUTPUT FILE

RESET was attempted on a write only file.

REWRITE ON INPUT FILE .
REWRITE was attempted on a read only file.

SET ELEMENT OUT OF RANGE
not

Program attempted to construct a set with an element value
within the set type.

STACK-HEAP OVERFLOW . .

The program generated too much data by calling procedures

recursively or with the NEW constructor.

SUBSCRIPT QUT OF RANGE
The index(es) to an array are outside the array bounds.

UNAUTHORIZED USE OF'PASCAL
The . soft-key for Pascal has not been entered in the SINTRAN
system. b :

UNKNOWN LOGICAL UNIT

There is no file open on this logical unit.

WRONG I/0 PARAMETER
Illegal specification of the formatting of a number.

WRONG LIBRARY VERSION
Either

a) program was compiled with one version of the Pascal compiler
and loaded with another version of the Pascal library, or

b) N10Q: floating format (32-bit or 4#8-bit) in program and library
are not the same, or

c) N100: two-bank program was loaded with one-bank library or vice
versa.

ND-60.124.05

g

13

16

assembly routines
banks
BOOLEAN
BRKM
CHAR
character

parity

set
CLEAR
CLTE
coBoL
code file
COMMAND - .
comments
COMPILE i
compiler commands
compiletime errors
conditional compilation
conformant arrays
CONNECT
CONTINUE
COSH . .-, i
DATE fe e . @
DISCONNECT
ECHOM
ENDIF . .,

o =1

ERMSG g B
EXIT-
extensions
external
functions) .
procedures . , . , ., ., .,

FAULT
file
type
FIRST
flags,
formal procedures . . ., . .
FORTRAN .
FREEMEM . . i
generic functions
GETRAND S
HALT
HEAP
HELP . 8=
hexadecimal constants
HOLD
identifier
IFFALSE
IFTRUE

ND-&0

.124.05

56,
2,
11.
19,
9'

5,
28.

.22,

17.
25,
21.

25.

69.

13.
38.
32.
18.
19.
38.
19.

19.
28.
16.

56,
16,
62.

20,

. . o 17,

ND-Pascal
Index

62.
9, 53

61,
18,

34.
21,

43,

20,

62.
56,

35.

58.

53,

61,

60.

ND-Pascal
Index

impleméntation . . .

INCLUDE .
INPUT . . .
inputoutput
INTEGER
ISIZE
keyword
LAST
LINESPP
list file .
LMAXINT
LONGINT
LONGREAL
LROUND
LTRUNC . .
LUNIT .., . , .
MARK
MAXREAL
MDLFI
module)
multiple source
. NDPascal
octal
constants
R
options
0SIZE
OUTPUT
overlay
packed
files
structures .
PAGE
PLANC
POWER

procedure parameters .

. program
. compilation

execution

heading
loading

overlay

sample
PUTRAND . .
RANDOM '

access
REABT
REAL ..
realtime programs

.

ND-60.124.05%

.12,
J11.

53,
T.
36.
35,
1.
20.
5.

23.

10,

25.

1.
12.
12.
20.
18.
12.
21,
3.

1.

1.

23,
i6.
8,

21,
36.
§5.

36.
12.
10.
17,
18.
13,

25,
67.
19,
60,
39.
10,
56,
45,
64,

41,

22.
41,

21.

9,

43,

60.
40, 58,
28.
45, 56.
27, 28.
58.
15.
29, 46,
27, 31,
66, 68.
17, 313
61, 68,
67.
1.

77

63.

64,

53,

49,
68.

Ko,

o

78

RELEASE
RESET
RMAX
ROBJIENT
RUN
RUNMODE
runtime errors
scratch files
segment
set
command
type
SETBT
SETE
SINH a
SINTRAN command
SMAX
source
file
program
special symbols
STACK . . .
Standard
files
functions
« ldentifier
Pascal
procedures
types
strings . .
structured types
syntax errors)
terminal
TEXT
TIME
traps
TUSED
value e e e e e
variable initialization
YERSN

ND-60.124.05

18.

. 6,

22.
21,
27.
20.

38.
60.

6,

22.
22,
18.
21,
22.

25.

20,
17.
36.
18,

18.
11.
13.
12.
26,
19,
11,
19.
15,
19.

16.
20.

28.

33,

28.

29.

53,

23.

69.
40.
35,

22,

16,

ND-Pascal

Index

43, 73.

60.

40.

34,

28.

