
ND—PASCAL
'

User's Guide

ND—60.124.05

21+...



NOTICE

The information in this document is subject to change without notice. Norsk Data'
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is net furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright © 1984 by Norsk Data A.S

Inf.



PRINTING _ RECORD
Printing Notes

12/80 Version 03
04/82 Version 04
01 Version

ND PASCAL User’s Guide
Publ.No. ND—60.124.05
January 1984

5552:.555 £25532: NORSK DATA A-s
333.3333: :3... :3: PD. Box4,Lindeb_erg gérd::: °::: :::::5:° 051010,Non~ay

”We;



iv

Manuals can be updated in two ways, new versions and revisions. New versions'
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one ormore single pages to be merged into the manual by the user, each revised pagebeing listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one. ,

New versions and revisions are announced in the ND Bulletin and can be ordered»--as described below. ' " ' ' ‘ ' ' ‘

The reader's-comments form at the back of this manual can be USed both to
”report errors in the manual and to give an evaluation _of the manual. Both

detailed and general comments are welcome. r
’ These forms,k‘together with all .types of inquiry and requests for documentation 5,should be sent to the local ND office or l in Norway} to:

‘ Documentation Department
Norsk Data A.S
P.0. Box4, Lindeberg gérd ~ ,

. ”Oslo 10 _



my

Ifl2_££222££

This manual describes version J of the Pascal compilers for the ND—100
and the ND-SDO. The ND-100 Pascal compiler is delivered in two
versions. one for 32-bit and one for 48-bit floating point hardware.
As the three compilers differ only in machine—dependent respects, they
are described in the same manual.

'

The Reader

The reader is assumed to know the Pascal language, as this manual
mainly describes only the extensions and differences between ND-Pascal
and Standard Pascal as described in Jensen and Nirth: Pascal User
manual and Report.

The reader is also expected to have sufficient experience with the
SINTRAN operating system to be able to enter a program through an
editor. and to load and execute the compiled program.

The Manual

The manual is organized as a reference manual. with the information
ordered according to function. For the most part. only differences
between Standard Pascal and ND-Pascal are described. For a complete
example of a Pascal program, refer to chapter 9. Compiler error
messages and run time error messages are listed‘in Appendices A and B.‘

The manual uses the term ND-Pascal to mean either of the compilers.
Those parts of the manual which are 'relevant to only one of the
computers. are marked as such in the chapter or section heading. Also.
a part- of the text may be marked with the comment N100 or N500 to
signify that the text is relevant to the ND-100 or the ND-500 only.

ND-60.12L.05





vfi ‘~-

T A B L E 0 F C 0 H T E H T 5

Section

1 INTRODUCTION . . . . . . . .I. . . . . . . . . . .

1.1 The Pascal Compiler

1.2 The Main Implementation Dependent Characteristics

1.3 The Main Extensions

THE SOURCE PROGRAM . . . . . . . .'. . . . . . .

2.1 Special Symbols

2.2 Identifiers

2.3 Keywords

2.1 Standard Identifiers {

2.5 Compiler Commands
2.5.1 Conditional compilation

, 2.5.2 Multiple source files
2 5.3 Intermixing definition sections
2 5.‘ Options
2 5.5 Program listing

2.8 Implementation Dependent Features
2.6.1 Standard types

Structured types
Packed structures
Strings and character arrays
Procedure parameters

.1 Conformant arrays

.2 Formal procedures
ND-SDO traps

NNNN u... mmcnm ..-

U'IIIIIIIIJ'IO‘UN2.6.

2.? Extensions in ND-Pascal
2.7.1 Variable initialization

External Pascal routines
External routines in other languages
Standard procedures and functions
External procedures and functions
Generic functions -NNNNN ..... NN'd-qd GIU'IJ‘UN

ND-60.12£.05

Pane

18
15
16
17
18
18
23

M



flfi

figction Pang

2.7.7 Miscellaneous extensions 23

3 PROGRAM COMPILATION . . . . . . . . . . . . . . . . . . . . 25

3.1 HELP . 25

3.2 COMPILE '
25

3.3 RUN 27

3.4 CLEAR '
28

3.5 OPTIONS 28

3.5 SET and RESET . 23

3.7EXU' _- _ 28
3.8 LINESPP '

28

3.9 VALUE 28

3.10 SINTRAN Commands 29

3.11 Program Compilation Example 29

4 PROGRAM LOADING AND EXECUTION . . Z . . . . . . . . . . . . 31

4.1 Program Loading 31
4.1.1 ND-1DD program loading 31
4.1.2 ND-SDD program loading 32

4.2 Run-Time Errors 33
4.2.1 Trapping run-time errors 34

5 INPUT/OUTPUT . . . . . . . . .'. . . . . . . . . . . . . . .' 35

5.1 File Variables 35
5.1.1 The type TEXT 35
5.1.2 Standard files 36
5.1.3 Packed files 36
5 1 .4 Non-TEXT files '

. . 37

ND-BO.124.0S

Inf.



Section Paqe

5.2 Association to External Files 37
5.2.1 CONNECT 38
5.2.2 DISCONNECT 38
5.2.3 Scratch files 39
5.2.4 Program heading parameters 39

5.3 Terminal IIO go

5.4 Random Access 110 41

5 ND—100 REAL-TIME PROGRAMS 43

"
_ 7 ND—1OO OVERLAY PROGRAMS 45

(
-

7.1 Modules 45

7.2 Compilation of Modules 46

7.3 Loading Overlay Programs 49

7.4 Executing Overlay Programs '51

8 IMPLEMENTATION DESCRIPTION 53

'
8.1 ND-1OD Implementation 53

8.1.1 Memory layout 53
1.1 One-bank programs 54
1.2 Two-bank programs 55
1.3 Forced allocation of stack and heap 55

8.1.2 Loader symbols 56
8.1.3 Procedure and function calls 58
8.1.4 Interface to FORTRAN and PLANC 58
8.1.5 Input/Output 58

8.2 ND-SOO Implementation 80
8.2.1 Memory layout . 60

1.1 Forced allocation of stack and heap 51
1.2 The size of the heap 51.

8.2.2 Loader symbols 61?
8.2.3 Procedure and function calls 62
8.2.4 Input/Output 63

8 SAMPLE Pascal PROGRAM . . . . . . . 85

ND-BO.124.05



figction

9.1 ND-IOO Sample Program

9.2 ND-SOD Sample Program

APPENDIX A Compile- Time Error Messages

APPENDIX 8 Run- Time Error Messages

Index

ND-80.125.05

Pace

55

87

59

73

76



ND-Pascal
1INTRODUCTION '

1 INTRODUCTION

The Pascal language was designed in 1971 by Niklaus Wirth. The
language design had two principal aims. The first was to make
available a language suitable to teach programming as a systematic
discipline. the second was to develop implementations of this language
which are both reliable and efficient on presently availablecomputers. - .

The success of this language design proves that Pascal is not 'yet
another language". Today. Pascal has been implemented on almost all
computers commonly in use. ranging from the very large computers to
mini- and micro-computers.

This manual contains the information necessary to compile and execute
Pascal programs on the ND-IOO and the ND-SOD. It is assumed that thereader is familiar with the Pascal language. The uninitiated reader is
referred to the Pascal Report or to an appropriate textbook.

The present chapter gives a general description of the ND-Pascal
system. The specific information necessary vfor the compilation and
execution -of Pascal programs is found mainly in chapters 2 to b. Most
of chapters 5 to 3 describe features for the more advanced use of ND-
Pascal.

ND-Pascal has been implemented according to the definition in “Niklaus
Wirth: The Programming Language Pascal. Revised Report. (1973)”. Also.
the specifications in the ISO Pascal standard have been adhered to.Hereafter this language definition will be referred to as Standard
Pascal.

ND-Pascal is a superset of Standard Pascal. and has several extensions
in relation to it. Especially, extensions have been introduced to
facilitate the compilation and execution of Pascal programs in a time-sharing environment. Explicit extensions of the Standard Pascal
language will be noted as such in this manual. The extensions should
be avoided if program exportation is planned or probable. '

J.-_1_T.h.e_P_a.s_c_al_c_ail_e_r

The ND-Pascal compiler was developed from the Pascal TRUNK compilerdesigned at ETH, Zurich. The compiler produces relocatable code.
which can be loaded by the appropriate loader (ND-100 NRL or ND-SOD
Linkage Loader) and then executed. A program may refer to separately
compiled procedures and functions written in Pascal. FORTRAN, PLANC.
COBOL or assembly language.

The ND—Pascal compiler is itself written in Pascal. Also. parts of the
run-time library are written in Pascal.

'

ND—60.124.05

1.4.3.



2 NDfPascal
INTRODUCTION

1.2 The Main Implementation Dependent Characteristics

The maximum set size is 256 elements. A variable of type set will
occupy the minimum number of words necessary to.represent the values
in the set type. Sets of subranges of integer will contain 255
elements.

fllflfli A Pascal program may be run either as a one-bank or a two-bank
program.‘ As a one-bank program. all program and data reside
within 128K bytes of memory. As a two-bank program. the program
may occupy up to 128K bytes in the instruction bank. and the
data occupy up to 128K bytes in the data bank. One- or two-bank
execution may be selected at compile-time with the 8 option. or
at load-time with the DEFINE NOBKS command.

A Pascal program may be run as a real-time program.

Large program systems may be overlaid using the standard NRL
'overlaying mechanism.

fling: The buddy instructions of the ND-SOO hardware are utilized when
a program _administers the heap_ with rthe NEH and DISPOSE- procedures." -

| 3 II . E ! .

Variables in the main program can be initialized. There is a
convenient syntax for array initialization. 1‘

Variable conformant arrays, as specified in the ISO Pascal standard.
are implemented. With this mechanism, a formal parameter will be
compatible with actual array parameters of different sizes.

N100: The type LONGINT is a standard integer type with a precision of
32 bits.

flifln: The type LONGREAL is a standard real type with a precision of
approximately 16 digits.

The procedures CONNECT and DISCONNECT enable a program to associate a
Pascal file variable with an external file at run-time. CONNECT has
been implemented such that the actual name of the external file easily
can be entered from the terminal running the program.

Random access I/O can be performed with the procedures GETRAND and
PUTRAND.

Through the use of the FAULT procedure. a program may trap run-time
errors.

ND-60.125.05



ND-Pascal

ND-60.12£.05

3...,
;_



A '
ND-Pascal

THE SOURCE PROGRAM

2 IflE_§QflR§E_ERQ§RAM

A Pascal source file must contain either

1) A full Pascal program, or
2) One or more procedures or functions. or
3) N100: One or more procedures, functions. or modules.

The source language must be Standard Pascal. with the restrictiOns and
possible extensions described in this manual.

A full Pascal program compiles into an executable object program,
while procedures and functions compile into code that may be loaded
together with a full program. A source file of the latter kind must be
terminated with the character ‘.‘ (period).

The source file character set must be ASCII. where the lines are '
separated by the Carriage Return character. and optionally. the Line. ' (
Feed character.' Files produced by OED, TED and PED are acceptable as
input to the compiler.

The compiler recognizes the source file types :PASC and :SYMB by
default. :PASC being the primary type. Any other file type must be
specified explicitly.

A source input line must not exceed 96 characters. The Pascal
compiler indicates a longer line as an error. -

Zil_§nesial_§1mbels

Some of the special symbols in Standard Pascal have one or more
alternate representations in ND—Pascal:

Standard Pascal ND-Pascal

or a
or (*
or *)
or (.
or .)

and or. A
22$ 0r

v-u-v-a-h—o

”HI—IH-Or-s—o

l—l

Q.n
O3 fl'

The
'

symbol has various external' representations on different
terminals and printers.

A comment opening with the character '{' must be closed with the
character '}". Similarly, '(*' is matched only by ”*)'.

ND-60.12£.05



ND-Pascal 5
THE SOURCE PROGRAM

2 I .5. .

An identifier may be of any length. but only the first eight
characters are significant. Within an identifier, lower case letters
are converted to upper case, unless the U option is gig.

2.3 Keywords

The following are Pascal keywords. and cannot be used as identifiers:

Standard Pascal keywords:

and arrai begin case
sens; dix d2 flflflflifl
else 2nd file is:
inaction 9212 ii in
13mm nil net
2i 2: dashed nrgcedure
Diagram regard 122231 is;
then is 1122 uniil
11: while with

Extra keywords in ND-Pascal:

module value

Note: The keyword module is legal. but has no effect in Np-SOO Pascal.
It is retained in ND-SDO Pascal to facilitate porting of
programs between the NO-IOU and the ND-SDD.

A keyword may be written with lower and/or upper case characters.
However. within a keyword all lower case characters will be converted
to upper case. Thus.

end END ’ End

are all representations of the keyword end.

2.£ Standard Identifiers

Following is a list of 'the standard identifiers in ND-Pascal. A
standard identifier may be considered as if it were defined in a block
enclosing the program, and as such. may be redefined. Normally, such
redefinition should be avoided. since it easily may lead to confusion.

ND-60.125.05



6 ND—Pascal
THE SOURCE PROGRAM

Standard identifiers in Standard Pascal:

ABS ARCTAN BOOLEAN CHAR
CHR COS

.
DISPOSE EOLN

EOF EXP FALSE GET
INPUT INTEGER I LN MAXINT
NEW ODD ORD OUTPUT
PACK PAGE PRED PUT
READ READLN REAL RESET
REWRITE ROUND SIN SOR
SORT SUCC TEXT TRUE
TRUNC UNPACK WRITE WRITELN

Extra standard identifiers in ND-Pascal:

CONNECT COSH DISCONNECT FIRST
GETRAND HALT LAST LHAXINT
LONGINT LONGREAL LLROUNO " 7LTRUNC
MARK MAXREAL ‘,POWER 'PUTRAND
RELEASE SINH '

All standard identifiers are written in upper case letters.

2.5 Compiler Commands

The source program text may contain commands to the compiler. A
command is signalled by the character ‘5' in position one of a source
line. The rest of such a line is treated as a command to the compiler.
and no

part
of it

will
be included in the

proper program text

The available compilercommands are

$SET
$RESET3?‘ >“-1‘~*
$1FTRUE‘V
$IFFALSE
SENDIF
$0PTIONS
SINCLUDE
$50?
SLINESPP
SPAGE

A compiler command may be abbreviated‘ to 'its shortest unambiguous
form. ‘

. . . .

The ND-Pascal compiler may be instructed to skip specified parts of
the source text. This may be useful in order to generate different
versions of a program from the same source file.

NO'SO.124.0S

Wu“



ND-Pascal 7
THE SOURCE PROGRAM

The skipping of source text is steered by ilfisi. which are Boolean
variables. The flag identifiers are distinct from _the program
identifiers, Ktherefore .no name conflicts between flag and program
identifiers can occur. A flag identifier can have up to eight
significant characters. No distinction is made between upper and lower
case characters.

A flag is given the value TRUE by the command

$SET (flag)

A flag is given the value FALSE by the command

SRESET (flag)

The skipping of source tekt is effected by the commands

SIFTRUE. SIFFALSE, and SENDIF

The command

SIFTRUE (flag)

has the effect:

If <f1ag> has the value TRUE: No effect.

If <flag> has the value FALSE: '
‘ .

Skip source text up to an SENDIF <flag> with the same flag name.

The command

SIFFALSE <flag>

has the effect:

If (flag) has the value TRUE:
Skip source text up to an SENOIF <flag> with the same flag name.

If (flag) has the value FALSE: No effect.

If an SIFTRUE or SIFFALSE command has a flag parameter that was. not
previously defined. it will become defined and given the value FALSE.

Note that when source text is skipped, compiler commands (such as
$SET, SIFTRUE etc.) will also be skipped.

2.5.2 Multiple source files

The SINCLUDE—command facilitates insertion of source text from an
alternate file in the program being compiled. This is useful when a
set of programs (within the same project. say) use a common, set of
type. variable. and 'procedure definitions. Also, Tstandard' data
structures and procedures for handling problems within a specific
problem area, can easily .be incorporated in a program with the

ND-60.124.05



8 ND-Pascal
THE SOURCE PROGRAM

SINCLUDE-command.

The INCLUDE file may be divided into sections by the SEOcommand.

The command

SINCLUDE <filename>

has the effect of switching the input stream from the present input
file to <filename>. When end of file or SEOF on <filename> is reached.
the input stream will be switched back to the previous input file. The
effect is to insert the text in

<filename>
at the place where the

SINCLUDE— command occurs. I

The command

SINCLUDE

has the effect that the next section of the most recent INCLUDE file
is inserted in the program.

SINCLUDE-commands may be nested to a maximum depth of four.

2.5.3 Intermixing definition sections;

In the standard mode, when the N option is off No- Pascal requires
that the label, const, tyg , var. value. and procedure Ifunction
sections of a block appear in this order. When the N option is on,
these sections may appear in any order. and each section kind may
appear more than once. However. a main program may not contain another
ya; section after a value section, or after the first procedure or
function declaration. ' ' ' ‘ ”

Zlfili_QELiafl£

There is a set of options that affect the output produced by the
Pascal compiler. Each option has a one-letter name.

Some of the options are associated with counters. A counter value
greater than zero means that the option is on, a value equal _to or
less than zero means that the option is 91:. The remaining options are
associated with specific values, '

A counter option is increased or -decreased by one by writing the
option name followed by '+' or "— . respectively.

The available options are (counter options are indicated by the
character '*"):

ND-60.124.05



«rd

ND-Pascal 9
THE SOURCE PROGRAM

Bn

ct

Ic

Lt

Mt

P?

Rn

T*

fllflfl: Specify n-bank execution of program (n=1 or n=2). When n=2
the compiler will produce two-bank BRF code. Default value
is n=l.

When an, the value range of CHAR is extended to 256 values
(internal values 0 to 255). Also. on TEXT files parity will not
be removed on input, nor generated on output, and both values 15
octal and 215 octal will give EOLN = TRUE. The default value is
0 (gji). which implies that CHAR is the ASCII set (123 values),
and that parity is removed (generated) on input (output) from/to
TEXT files.

Allow c as a legal character in an identifier. c must be in the
set ['!'."'.'#','Z'.'?'.'_'.'I'.'\1]. The character ”a" should
in general be avoided, since it is used in entry point names in
the Pascal library.

Generate listing. Default value is 1 (on).

List generated object code in symbolic form. Default value is 0
(off). .

This option (Non-standard) must be on to allow the following
extensions to be used: _

a) Intermixing definition sections. p .
b) Use of the FAULT procedure for error trapping.

Default value is 0 (211).

Program code dump. Default value is 0 (gii). This option
produces listing obtput which enables a closer inspection of the
code generated by the-compiler. This is very useful when tracing
a possible error in the Pascal system. Therefore, whenever there
is reason to 'believe that a failure is caused by erroneous
object code. the user is requested to submit a listing of a P
dump compilation together with the error report.

N100: Specify n—word. real '(n=2 or n=3). Default value is 2 on
ND-1005 with 32-bit floating point hardware. and 3 on ND-
1003 with ka-bit hardware. A program that is to be cross-
compiled must not contain real constants.

Generate code to check array indices. subrange assignments,
pointer values and arithmetic overflow. Turning this option of:
will make the ‘object program smaller and faster, but also
unsafe. Default value is 1 (on).

The T. option may be switched on and off at any point in the
program, in order to perform run time checks in selected parts
of the program.

Elfin: The ND-100 hardware does not facilitate the checking of
overflow on floating point arithmetic operations.
Therefore, ND-Pascal can only detect overflow on integer
operations. As a special case, attempted floating division
by zero is detected. - -

ND-60.12k.05



10 ND-Pascal
THE SOURCE PROGRAM

N500: In the ND-SOO, overflow is trapped by hardware. and not by
explicit code checking for overflow. This implies that
check for overflow will not be turned off by turning the T
option off. However. a program may use the SETE and CLTE
procedures (cfr. section 2.7.5) to dynamically turn any
hardware trap on or off. '

U* Convert lower case characters outside strings to upper case.
Default is 1 (23).

V* For each procedure, list local variables in alphabetical order,
with their respective relative addresses and the number of times
each variable is referenced. Default value is O (911).

X* When 'Qfl: the loader symbols generated as entry point names for‘
procedures/functions on the outermost leVel of a main program or
a separately compiled file will 'be 'the names given by the
programmer. If the option is 911, anonymous entry point names
will be generated for these routines (cfr. chapter a). Default
value is 0 (gji).v

2* Initialize all variables to zero: At load—time. 'initialize all
main program variables to zero before -the value section is

ivloaded. At run- time. every time a procedure is called or an
object generated by NEW, all variables local to that procedure
or object

will be initialized to zero. Default value is D (211).

Options may be set within a comment in the source program.' The first
character within the comment must be 'S'. Thereafter. option settings
separated by '.' may

follow.
Options may

also be set ,following the

SOPTIONS compiler command.
' ‘

Examples:

{SH+.I_.T-} means:

M+ List object code.
I Allow '_' as a legal character in an identifier.
T- Do not generate testing instructions.

SOPT 2+.U- means:

2+ Initialize all variables to zero.
U- Do not convert lower case characters to upper case.

2.5.5 Proqram listing

The command

SLINESPP n

ND-GO.124.05 “



ND-Pascal
I

11THE SOURCE PROGRAM

orders the Pascal compiler to print the program listing with n lines
per page. The default value for n is 80. (This default may be set to
some other value when the ND—Pascal system is installed.)

The command

SPAGE

gives new page in the program listing.

2.6 Implementation Dependent Features

2.6.1 Standard types

Standard Pascal has the following standard types:

~BOOLEAN, CHAR, INTEGER, REAL. TEXT

. ND-Pascal in addition has the following standard types:

LONGINT, LONGREAL

Actually, LONGINT is an extension only in ND-IOO Pascal. while
LONGREAL is an extension only in NO-SOO Pascal. In No-1oo Pascal

. LONGREAL is equivalent to REAL. In ND-SOO Pascal LONGINT is eduivalent
to INTEGER.

The following table gives the memory space. Vin bytes. occupied by
variables of the standardA types (provided they do not occur within
packed structures)i

fllflfl ' fllflfl flfiflfl
32-bit £8-bit

BOOLEAN
CHAR
INTEGER
LONGINT
REAL
LONGREAL
TEXT 1 mrr-rNNN mmmomnm mmrrr-n—n

ND-60.12‘.05



12
'

ND—Pascal
THE SOURCE PROGRAM

The maximum values and accuracy of the arithmetic types are given in
the following table: . -

Maximum value Precision

2-byte INTEGER 32.787 —
4-byte INTEGER 2.147,‘B3.6b7 -
k-byte REAL 10I75 7 digits'
s-byte REAL 10I£930 10 digits
8-byte REAL 10175 16 digits

An integer constant which exceeds the 16-bit integer maximum value
will get the type LONGINT. Also, an integer constant may be suffixed
with the letter L to force it to become a LONGINT constant.

The standard functions LROUND and LTRUNC are available to round or
truncate, respectively, reals to LONGINT.

In an array declaration, the indices may not be of type LONGINT.

LHAXINT isv a standard constant with a value equal to the maximum
LONGINT value. , '2 . . , , i

A real constant with 10 or more digits is ‘giveni'the type LONGREAL
Also. the type of a real constant will be LONGREAL if the exponent
character 0 is used instead of E.

when necessary; ND- Pascal automatically converts from
INTEGER

to REAL
or LONGREAL. and between REAL

and
LONGREAL.

HAXREAL is a standard constant with a value equal to the maximum
floating point value.

‘

2.6.2 Structured types

Variables of structured types (records and arrays) may be assigned to
and compared for equality or inequality. provided the variable type is
not packed nor contains packed variables. Variables of type packed
array [...] gfi CHAR may be assigned to and compared using all the
relational operators (=. <>. <, <=, >=. >).

Note that there is no syntax for the specification of a structured
constant.

2i§i1_£a§ked_ssrueiures

Record and array types may be specified as packed. Each single
variable will then occupy a minimum number of bits. and several single
variables may be packed into one computer byte or word. A record or an
array will always start at a word (N100) or byte (N500) boundary.

ND-60.12$.05



at“

ND-Pascal 13
THE SOURCE PROGRAM

The use of packed structures saves data space. but may increase
execution time significantly.

A variable within a packed structure cannot be used as 3 ya; parameter
to a procedure. However. the standard procedure READ may have an
element of a packed array ... g1 CHAR as a parameter.

See chapter 5 for information on packed files.

2.6.£ Strings and character arrays

A string constant is padded with blanks to the réquired lengtht The
string may occur in a yalue section. in an assignment statement, as an
actual parameter, or in a Boolean expression. This is an extension to
Standard Pascal.

In Standard Pascal. a string constant with n characters is of the type
packed array [1..n] gi'CHAR. This inhibits assignment of. or parameter
substitution with. a string to'a variable or formal of type gagged
array [...] 21 CHAR where the lower bound is different from 1. In ND-
Pascal such assignment or substitution is legal. proVided the length
of the string is equal to the length of_the array.

WW

Variable conformant arrays. as specified in the ISO Pascal ’standard,
are implemented in ND-Pascal. (Conformant arrays by value is not
implemented.)

A variable (non-value) formal parameter may be specified as a
conformant array. It is then possible to transmit array parameters of
different sizes through this formal parameter. The index bounds of the
actual parameter are implicitly available to the body of the called
procedure.

A conformant array parameter is specified as such in the procedure
heading by the following syntax:

(variable-parameter-specification) ::=
.‘var' (identifier-list) ':'

( <type-identifier> I (conformant-array—schema) )

(conformant-array—schema) ::=
"array '[' (index-type—specification)
{ ';' (index-type-specification) } '1' "of"

ND—60.125.05

z



1L ND-Pascal
THE SOURCE PROGRAM

( 2type-identifier) I (conformant-array-schema) )

(index—type-specification) ::=
(bound-identifier) '..' (bound-identifier) ”:
(ordinal-type-identifier)

<bound-identifier> ::=
(identifier)

Example:

ngggure matmult(ya; x, y. z: array [11..h1i INTEGER] of
32131 [12..h2: INTEGER] Rf REAL):

If the component of a conformant-array-schema is itself a conformant—
array—schema. then an abbreviated form of definition. equivalent to
the abbreviated form of multiple-dimension array definition, may be
used.

, Example:

3113i [11..h1: T1] 21 31131 [12..h2: T2] 91 T3

5 is equivalent to

ELLE! [li..h1: T1; 12..h2: T2] 2i T3

when transmitting an array as a parameter through a formal _conformant
array parameter, the actual parameter must be genigzmable with the
conformant-array-schema. The term conformable is defined as follows:

If T1 is an array-type. and T2 is the type denoted by the ordinal-
type-identifier of the index-type-specification of a conformant-
array-schema. then T1 Vis- conformable with 1the conformant-array-
schema if all the following four statements are true. '

(a) The index-type of T1 is compatible with T2.

(b) The smallest and largest value of the index-type of.T1 lie
within the closed interval defined by values of T2. '

(c) The component type of T1 is the same as the component type of
the conformant-array-schema. or is conformable to the component
conformant-array-schema.

(d) If T1 is designated packed then T2 must be declared as packed.

It is an error if the smallest or largest value of the index-type of
T1 lies outside the closed interval defined by the values of T2.

The bound-identifiers denote the smallest and largest values.
respectively. of the index—type of the actual parameters. These values
are implicitly transmitted to the called procedure. The procedure may
not change the values of the bound—identifiers.

ND-60.12‘.05



ND-Pascal 15
THE SOURCE PROGRAM .

Example:

m >.<. y. 2:31:11 [1..10191 REAL:
p. q. r: 311.13.! [0..1001 91 REAL:

procedure product1x31 a, b. c: 3x131 [low..high: INTEGER] 91 REAL);
131 i: INTEGER:
D££lfl

12: i := low 12 high g2
c[i] := a[i]*b[i]

end (*product*):

product1x,y.z);

producttp,q.r):

2.6.5.2 Formal procedures

A procedure which appears as an actual procedure parameter. may itself
only have value parameters. On entry to a formal procedure. ND-Pascal
checks the actual parameters only to see if they occupy the same
number of words as the formal parameters. The user is warned that the
use of formal procedures with pointer parameters is unsafe.

2.6.6 ND-SOO tra 5

When an ND-SOD Pascal programs is started. the following traps are set
in the OTE register: '

bit 9 overflow
bit 11 invalid operation
bit 12 divide by zero
bit 14 floating overflow
bit 15 illegal operand value
bit 2‘

’
address zero access

bit 25 descriptor range
bit 25 illegal index
bit 27 stack overflow

When a routine defined as STANDARD is _entered, all trap bits are
switched ”off.- The trap bits are restored when return to.Pascal ismade. '

The reader is referred to the ND-SOO Reference Manual (ND-05.009) for
further details on hardware traps.

ND-60.124.05



16 .
ND-Pascal

THE SOURCE PROGRAM

2.7 Extensions in NO-Pascal

This section describes most extensions in ND- Pascal. Refer to chapter
5 for I/O extensions. Real— time programs are described in chapter 5,
and overlays are described in chapter 7.

2.7.1 Variable initialization

Scalar and array variables in the main program may be initialized.
Initialization is signalled by the keyword yalug. A value section must
appear after the var-declarations and before the first procedure or
function declaration, or main program begin.

Packed arrays, except for packed array ... gj CHAR. records, sets and
pointers may not be initialized.

The syntax for initialization is:

<variableinit> ::= 'value' (initialization)
. M' -' ' { (initialization) }
(initialization) = ’

(Variable) '2' (val) ':'
-<va1) ::= i~ ‘ (constant) I '("(valuelist) ')'
(valuelist) :5: (aval) {",' (aval) } 7'
<aval> ::= ‘77 ‘ = (constant) I (count) '*' (constant)
(count) ::= (integer constant)

Examples:

yalue
w= 2. 55:
I-= 19:
TABLE = (1,3,2*7,-1,11*D):
NAME = (' PASCAL "):

Since a string has the type nicked Elli! [1..n] oi CHAR. a string
constant must be enclosed in parentheses as shown in the last example.

2.7.2 External Pascal routines

The compiler accepts a source file containing proeedure and Function
declarations only. The file must be terminated with a period.

The generated relocatable file may be loaded with any Pascal main
program which contains extggngl declarations of one or more of the
Pascal routines. Only those routines which are actually referred, are"
loaded (each external Pascal routine contains a LIB (entrypoint)
loader directive). An external declaration is a procedure or function
heading followed by a body consisting of the word 'EXTERN'. Example:

ND-60.12k.05



d‘d

ND-Pascal '
17

THE SOURCE PROGRAM

iungfiign f(x: REAL): INTEGER; EXTERN:

External routines may use external‘ declarations to get acCess to
routines on the outermost level of the main program. provided the main
program was compiled with the X option 9n.

There is no check of the correspondence between the parameter list of
the external declaration and of the separately compiled procedure.

A file of Pascal routines may be headed by constant, type and variable
definitions. The variable definitions. if present. will overlap the
variables of the main program. These definitions may be _used in
parameter. specifications, or within the routines. The user is warned
that ND-Pascal does not check that the definitions are consistent with
corresponding definitions in the main program. It is therefore
strongly recommended that the SINCLUDE facility be used to incorporate
global definitions in an external program module.

WWW
' Separately compiled FORTRAN, PLANC or COBOL subroutines may be called

from an ND-Pascal program. Such a routine must be .declared in the
Pascal program with a procedure or function heading. and a body
consisting of the word “STANDARD“. Example: -

procedure ext(yar x. y: REAL): STANDARD:

Parameters of any type and kind. except Pascal procedure or function
names. may be transmitted to the external routine: however. no check
is made that the parameters are consistent with the formal arguments
of that routine. -

fllflfl: In order to interface to the old version of ND-1DO FORTRAN. the
_ routine must be specified as 'FORTRAN‘.

N500: All hardware traps are switched off when entering a STANDARD
routine. The original traps are restored when returning to
Pascal.

Pointers to the actual arguments are transferred to the external
routine. A value (non-gag) parameter will be copied to a scratch area,
and a pointer to this copy transferred.

Be aWare that many library utility routines in other languages may get
the parameters transferred in a non-standard way. and thus may not be
called directly from a Pascal program.

When loading modules for a mix of Pascal and routines in other
languages, the following order must be observed:

1) Pascal main program

ND-60.124.05

mufl



18 ND—Pascal-
THE SOURCE PROGRAM

2) Pascal and other external routines
3) Other language libraries as necessary

'.4) Pascal library

In addition to the standard procedures and functions in Standard
Pascal, the following are standard in NO-Pascal.

SINH and COSH

These real functions calculate the arithmetic functions sinh and
cosh respectively. '

:POHER

POWER is a real function with two _parameters x and y which
calculates the function xly. When y is real. n is calculated by
the formula xly = eI(y*ln(x)). Thus. POWER(-1.0.2.0) will give a
runtime error. while POWER(-1.0.2) will give the correct result 1.0.

IHALT

HALT is a procedure which takes an optional string parameter. HALT
writes the string (if any) to the terminal; and aborts the program.

MARK and 'RELEASE provide an alternative ‘to :DISPOSE for the~ deallocation of heap space. In applications ‘where’ heap space_ is
allocated and .deallocated in a stack fashion. the use of HARK and'
RELEASE is more efficient, and may be more convenient. than the use
of DISPOSE. ‘

Both procedures take a pointer variable as a parameter. The call
MARK(<ptr>) assigns the address of the current heap top to <ptr>.
The call RELEASE(<ptr>) deallocates all variables on the heap beyond
the value of (ptr).

A program which calls DISPOSE may not call MARK or RELEASE.

u '
.

2.7.5 External procedures and functions

The Pascal library contains a set of external -procedures and
functions. To use one of these. the procedure or function must be
declared as external within the program.

An installation may choose to have a system file containing external
declarations for these external procedures and functions. This file
may then be included in a program with the SINCLUDE compiler command.

ND-60.125.05



ma...
ND-Pascal 19
THE SOURCE PROGRAM

TUSED

'External declaration:

inaction TUSED: REAL: EXTERN:

TUSED gives the elapsed CPU time in seconds.

Ilfl£_anQ_RAlE

External declarations:

procedure TIME(1§1 hour, min. sec: INTEGER): EXTERN:

procedure DATE(1§; year, month. day: INTEGER): EXTERN:‘

TIME and DATE give the current time and date. respectively.

Efiflflfl

External declaration:
.

T
,

procedure ECHOMtechomode: INTEGER): EXTERN:

Executes HON ECHOH with echomode as parameter. This will define the
echo mode for the terminal as specified in the SINTRAN manual.

Note: The file CONNECTed to the terminal must have logical unit
number 1. ' -

war

ERKH

External declaration:

procedure BRKM(breakmode: INTEGERT; EXTERN:

Executes HON BRKM with breakmode as parameter. This will define the
break mode for the terminal as specified in the SINTRAN manual.

ugtg: The file CONNECTed to the terminal must have logical unit
number 1. '

Eflflfifi

External declaration:

procedure ERMSG(errorno: INTEGER): EXTERN:

Executes HON ERHSG with errorno as parameter. This will write the
SINTRAN error message corresponding to the given error number to the
terminal.

ND-SO.124.05



20

31k”.
ND—Pascal

THE SOURCE PROGRAM

flQLQ

External declaration:

procedure HOLDltime: REAL): EXTERN:

Suspends execution of the program in (time) seconds. (time) is
accurate to 20 milliseconds.

VERSN

External declaration:

nzgggdurg VERSN(ya; year, month, day: INTEGER): EXTERN;

Gives the date when the executing program was compiled.

-, 33. we
Bflflflflflfi

' External declaration: (

function RUNMODE: INTEGER: EXTERN:

Gives the execution mode of the running program: "’

0 E interactive
1 - batch

'

2 - mode ' '
_ . .

3 - real-time - '

EREEHEM

External declaration:

function_FREEMEM: LONGINT; EXTERN:

Gives the size of the present free memory. that is. the size of the
area between stack top and heap top, in number of bytes.

Lflflll

External declaration:

jungtigfi LUNIT(¥31 f: (filetype>): INTEGER: EXTERN:

Gives the logical unit number of the (open) file f.

lillfi

External declaration:

function ISIZE(lun: INTEGER): INTEGER: EXTERN:

ND-60.124.05



ND-Pascal 21
THE SOURCE PROGRAM

Gives the result of a HON ISIZE on the given logical unit.

.9511E

External declaration:

function OSIZEllun: INTEGER): INTEGER; EXTERN:

Gives the result of a MON OSIZE on the given logical unit.

BQBJENI

External declaration:

procedure ROBJENT(lun: INTEGER; var b: 8UFFER:.‘
var status: INTEGER): EXTERN:

Reads the object entry of the file with logical unit lun into the
buffer b. BUFFER may be any type with a length of at least 6‘ bytes.
The SINTRAN status of the operation is left in the status parameter.

QOfiHAuQ

External declaration:

procedure COMMAND(str: STRING): EXTERN:

Performs HON COHND with str as parameter. The type STRING must be
defined as packed array -... pi CHAR. The -value str must be
terminated by the character "' (written "" within a string
constant)..

fllflfl: In ND-1DD Pascal 'the type‘STRING must have a length greater
than 16. ‘ '

fliflfl: The ND-SOD monitor allows only a subset of the SINTRAN
commands to be executed by the COMND monitor call.

flQLEl

External declaration:

procedure MDLFI(yg; str: STRING): EXTERN:

Deletes the file with the name Found in str.

REABT

External declaration:

pnegure REABTtlunit: INTEGER; ya; ibyte: LONGINT): EXTERN:

Executes the REABT monitor call.

ND-80.125.05

W45



ND-Pascal
THE SOURCE_PROGRAH

§£lfil

External declaration:

nngggQuLe SETBT(lunit: INTEGER: ibyte: LONGINT): EXTERN:

Executes the SETBT monitor call.

RMAX

External declaration:

nzgggfiuzg RMAX(1unit: INTEGER; 131 ibyte: LONGINT): EXTERN;

Executes the RMAX monitor call:

§MAX
.‘

C External declaration:
V

, * _ '
_1

(’
'Qfggeguze SMAX(lunit: INTEGER; ibyte: LONGINT); EXTERN;

Executes the SMAX monitor call.

RANDQM

External declaration:

‘Vfunction RANDOM(var x: REAL): REAL: EXTERN:
This function produces a uniformly distributed pseudo random numberin the open interval (0,1). Each new value is calculated from thevalue of the parameter.- The new value is also assigned to the
parameter variable. Thus, successive calls on RANDOM with the samevariable as a parameter. produces_a uniformly distributed pseudo
random number stream. -. a , » . -~

N500:I§ETE
External declaration:

niggeguxg SETE(bitno: INTEGER): EXTERN:

Sets the given bit in own trap enable register.

»£LIE
'

External declaration:

grocedure CLTElbitno: INTEGER): EXTERN:

Clears the given bit in own trap enable register.

ND-50.124.05



ND-Pascal
23THE SOURCE PROGRAM

_ I 3
.

E
.

For each scalar type T there is a function-T(n) which converts theinteger n to the value of type T with ordinal number n.

Example:

E
Season = (Winter.Spring.Summer.Autumn):

var
5: Season;

5 :- Season(2):

5 now has the value Summer.

The functions FIRST(T) and LAST(T). where T is an ordinal typeidentifier. gives the value of type T which is the smallest andgreatest value. respectively. within the type T.

Example:

LAST(Season) is equal to Autumn.

2.7.1 Miscellaneous extensions

The compiler accepts octal and hexadecimal integer constants. Thesyntax is as follows:

(octal constant) ::= (sign) (octdig) { (octdig) } (size) “a'(hex constant) ::= (sign) (digit) { (hexdig) } (size) ‘H'(sign) ::= (empty) I '+' 1 '-'
<0Ctdig> ::= '0“I"1'I"2'l'3'l'$'l'5'l'5'l'7'
(hexdig) ::= (digit) l “A" | “a“ | 'C' | 'n' | 'E' | ‘F'(size) ::= (empty) I 'L'

ND-60.124.05



24

ND-50.126.05

ND—Pascal
1.._.



ND-Pascal
25PROGRAM COMPILATION

3-PROGRAH QOHPILATION

The ND-Pascal compiler is invoked by the command

fllflfl: OPASCAL fling: ONO—SOO—HONITOR PASCAL

Initially. the compiler enters into a command processing mode, toenable the user to specify source. list and code files. options etc.
The command processor prompts the user to give a new command with the
character "S".

N109: If the compiler has been aborted by typing the ESC key. it may
be resumed with the DCONTINUE command. In this case the previous
flag and option settings are retained. However, files have been
closed and their names are no longer known to the compiler.

The available commands are:

HELP
COMPILE
RUN
CLEAR
OPTIONS
SET “
RESET
VALUE
LINESPP
EXIT

A command may be abbreviated to its shortest unambiguous form.

Note that the SET. RESET, ’LINESPP.' and OPTIONS commands also are
available as compiler commands (cfr. section 2.5).

3.1 HELP

The HELP command lists the available commands on the user's terminal
(or batch output file). The list includes both the command processor
commands and the compiler commands. '

3.2 COMPILE

The COMPILE commandA instructs ND—Pascal to compile the specified
source file. The present setting of flags and options will be used
during the compilation.

The syntax of the COMPILE command is

ND-60.124.05

ma...



25 ND-Pascal. PROGRAM COMPILATION

COMPILE (source file). (list file). (code file)

The entire parameter list may be omitted. in which case the command
processor prompts the user to specify the files one by one. If only
one or two parameters are specified, defaults are assumed for the
remaining parameters.

The parameters to COMPILE may either be the actual file names, or the
logical units (octal) of open files.

(source file) contains_ the program td be compiled. The default file
types are :PASC and :SYHB. :PASC being the primary type.

(list fi1e> is the file to which the listing of the compiled program
is written. The (list file) parameter may be omitted. in which
case no listing is generated.

wThe listing contains:

in column 1: The character '*' if the line contains one or more
language features not in Standard Pascal. Otherwise
the character .

in column 2: Program (source) line number.

in column 3:. Source file line number and nesting level for
INCLUDEd files.

in column 4: Relative program and variable addresses (octal).

in column 5: A numbering of the begin-gag. regeat-until.
case-gflg, and ii-else pairs in the program. to
indicate the nesting structure of the program. Also.
the declaration level for each procedure and
function is indicated.

in column 6: The source program.

Columns k and 5 are suppressed if the listing file is the
terminal.

The listing is divided into pages with a heading on each page
containing: version of compiler. date and time of compilation. and
page number. '

The listing indicates a language syntax error at the exact spot
where it was discovered. together with an error number. If a part
of the source text was skipped as a result of the error. the part
that was skipped is indicated by a line containing the text
**SKIP* at the left. and hyphens under the skipped text. Lines
containing syntax errors are also written to the terminal.

At the end of the listing a list of the error numbers and an
explanatory text for each error will appear.

ND-60.12k.05



ND-Pascal
2?PROGRAM COMPILATION

A list of all compiler error messages is found in appendix A.

(code file) is the file on which the relocatable output will be
written. The (code file) parameter may be omitted, in which case
no object code is generated. Be aware that the ND-SDD Linkage
Loader does not accept a file number as an NRF input file.

In a second or following COMPILE command. only (source file) need be
specified. The previous (list file) and (code file) are used if they
were specified in a previous COMPILE command. If a new (list file) or(code file) is specified. the previous file is closed. and the newfile opened. '

-

Be aware that option and flag values may be affected by a compilation,
and thus may influence the result of a succeeding compilation. Use the
CLEAR command to bring the processor back to its initial state.

3.3 RUN

The RUN command may be used to compile and execute a program, or to
load and execute a previously compiled program.

The syntax of'the RUN command is

RUN <filename>

where ~the <filename> parameter is optional. If not present, the most
recently produced relocatable file is loaded and executed.

If <filename> is given, the following actions are taken:

Pascal-attempts to open (filename>:PASC (or (filename>:SYM8) and
<fi1ename>zBRF (N190) or (filename>:NRF (N590):

a) If only the :PASC (:SYHB) file exists, the program is compiled
to a scratch file, and then loaded and executed.

b) If only the file containing the relocatable code exists, then
this program is loaded and executed.

c) If both exist, a compilation to the relocatable file is done ifthe :PASC (:SYMB) file is more recent than the relocatable file.
Then the relocatable file is loaded and executed.

Note: After a program has finished a RUN execution, the SINTRAN '9'
prompt character will not appear. The user therefore must type ESC
to get back to SINTRAN command mode.

ND-60.126.05



28 ND-Pascal
PROGRAM COMPILATION

3.4 CLEAR

The CLEAR. command brings the command processor back to its initial
state. The following actions are taken by CLEAR:

Set all options to their default values.
Delete all flags.
Close (list file) and (code file).

3.5 OPTIONS

The OPTIONS command is used to set compiler'options. The command and
the options are described in section 2.5.4.

3.5 5E[ and BE§E[

The SET and RESET commands set a flag to TRUE and FALSE. respectively.
These commands. and the use and effect ~of flags are described in
section 2.5.1. » ‘ ~ »

3.7 EXIT

The EXIT command closes all files and returns control to the operating
system. '

3.§ [INESPP

The LINESPP command is described in section 2.5.5.

3.9 VALUE

The command

SVALUE ORTIONS

lists the current value of all options.

The command

SVALUE FLAGS

lists the current value of all flags.

ND-50.124.05



ND-Pascal
29PROGRAM COMPILATION

MW

SINTRAN commands may be executed by starting a command line with thecharacter ‘9". Pascal will then pass the rest of the line to SINTRAN
for interpretation and execution.

NSOO: The ND—SOO monitor allows only a subset of the SINTRAN commands
to be executed. When attempting to execute a SINTRAN command
outside this subset. the SINTRAN error message is written to the
terminal.

3.11 Program Compilation Example

Following is an example of a program compilation. User input is
underlined. '

Terminal input/output Comments

OPASCAL ' ‘
Call Pascal compiler

or
BHD‘5DD-MONITOR PASCAL

'
Call Pascal compiler

PASCAL/ND-xxx VERSION J 83—xx-xx Identifying text
SOPTION T-.M+ Suppress generation of test

instructions and list generated
object code. .SSEI PARIS . Generate “PARIS“ version of
program. (Assumes source file
contains $IFTRUE and SIFFALSE

- - tests on flag with name PARIS.)
SCOMPILE Compile
Source file=MYPRQ§ Source is MYPROG
List file=L1fl£;flfijfilfifi Listing to line printer
Code fiie=niggggggnfi Relocatable code to MYPROGCODE

NO ERRORS Messages from compiler
LENGTH OF PROGRAM: 010778 WORDS/BYTES
LENGTH OF FIXED DATA: 002038 WORDS/BYTES

5 USES OF NON-STANDARD FEATURES
25.32 SECONDS COMPILATION TIME

EXIT Exit5
9

' Control to SINTRAN

Cfr. chapter 9 for a complete example of a program compilation and
execution.

ND-60.124.05

111.”!



30

ND-60.124.05

ND—Pascal

31m.



43rd

ND-Pascal 31
PROGRAM LOADING AND EXECUTION

5 PROGRAM LOADING AND EXECUTION

4.1 Program Loading

This chapter gives examples of the loading and execution of ND-Pascal
programs. Further information on memory allocation. absolute programs
etc. is found in chapter 8. Cfr. chapter 9 for a complete example of a
program compilation and execution.

L 1 1 NQ—1gg gzggzam lgggjgg

A compiled ND-1UO Pascal program must be loaded by the NRL loader
before it can be executed. Also. the Pascal library must be loaded
together with the object program. The library comes in two versions:
PASCAL- LIB: BRF for one- bank code. and PASCAL- ZLIB: BRF for two- bank
code. The reader should consult the NRL manual (ND- 60. 066) for details
concerning the loader and the loading process.

Example (one—bank program):

Terminal input/output Comments

BNRL Call loader '
RELOCATING LOADER LDR-1935x Identifying text
*LOAD HYPROGCODE PASCAL-LIB Load code file and Pascal library
FREE:027433-162504 Free memory area A
*Bufl _ ExeCute program

0 — Execution finished

A two-bank program may be generated in one of two ways:

1. OCC Compile program, producing one- bank code
aNRL
RELOCATING LOADER
*DEFINE NOBKS 2
*LDAD HYPROGCODE PASCAL-LIB
*ggu

2. SCC Compile program with option 82. producing two-bank code
aflflL
RELOCATING LOADER . . .
*PROG-FILE MYPROG
*LOAD MYPROGCODE PASCAL-ZLIB
*EXIT
ERECOVER MYPROG

ND-60.124.05



32 ND-Pascal
‘PRDGRAM LOADING AND EXECUTION

Method number 2 will save space in the instruction bank. however.
method number 1 must be used with SINTRAN version H or earlier if the
program is to be dumped as a re-entrant subsystem. The reader should

: consult section 8.1.1 for further details on two-bank programs.

When loading files for a Pascal execution, the main program must
always be loaded first, and the Pascal library last. This means that
all external Pascal, FORTRAN or assembly routines and other libraries
(1. e. FTNLIBR) must be loaded between the main program and the Pascal

library.

Take note of the fact that NRL uses entry point names with seven
letters, and gives no warning when an already defined name is
redefined. This may lead to undetected name conflicts when loading a
Pascal program which was compiled with the X option 25, or when
loading separately compiled Pascal procedures. Under these
circumstances, procedure and function names therefore should bedistinct within the first :seven letteres Cfr. section 8.1.2 for
further

details on
entry

point names 7 . p.‘

Instead of direct 'execution with the RUN-command, as shown in the
above example, a program may ‘be ‘dumped ‘on a :PROG file and
subsequently executed any number of times. Also. by generating a :BPUN
file, a Pascal program may be dumped as a ‘re-entrant subsystem. The
entry point name of the start address of the program is the name which
appears in the ngxam statement. This name and the corresponding
program address are found in the loader map.

If the label? 0 (zero) appears in the main program. its address will
appear in the loader map with the name CONTINU. This ‘address may be
used as a restart address for the program. It is the programmer's
responsibility that ?necessary reinitialization. is done ‘after a
restart. For example, files which might have been open when the
program was aborted. should be DISCDNNECTed in order to deallocate I/D
buffers.

The NRL command PRDG- FILE should be used with great care due to
limitations in the SINTRAN RECOVER command. Unless special precautions
are taken. a 'hole' may remain in the area between code and data. If
there are pages that have never been loaded to (and therefore never

'_assigned to the file). a SINTRAN error message: ND SUCH PAGE will be
returned when the program is executed.

Wm

A compiled ND-SDD Pascal program must be loaded by the ND- 500 Linkage
Loader before it can be executed. Also, the Pascal library must be
loaded together with the object program. The library is found on the
file PASCAL— LIB: NRF. The reader should consult the ND- 500 Linkage
Loader manual (ND—60. 136) for details concerning

the loader and theloading process. -

ND-60.124.05

1..



ND-Pascal 33PROGRAM LOADING AND EXECUTION

Example:

Terminal input/output _ ' 1 .Comments

ONO—SUD-HONITOR LINKAGE-LOADER Call loader
ND-Linkage-Loader - x Identifying text
NLL:5EI;QQM_§£RAI£fl;flQflAlfl
NLL:LQAQ-§E§ MIEBQQQQQE Load code file
Program:....xxxxx P01 Data: ....... xxxxx DO1
NLLzEXIT
SEGMENT N0 ......... xx‘ IS LINKED Pascal library is auto—linked
3ND-500-MONITOR SCRATCH-DOMAIN Execute program

a Execution finished

4.2 Run-Time Errors

If a program attempts to do an illegal operation. the program is
aborted with an appropriate error message. If the error was an illegal
I/0 operation. the name of the file variable involved will be part of
the message. A list of all run- time error messages is found in
appendix 8. '

The error message indicates at which absolute' address (octal) the
error occurred. and, if the T option was on during compilation. which'
line number in the source program this address corresponds to.

Be aware of the following
pitfalls

regarding the source program line
number: '

1) If the T option was turned 911 and on one or more times during the
compilation the source line number may be wrong.

2) If the program calls separately compiled procedures. the source
line number may be that of an external procedure. if that
procedure was compiled with the T.option 9g.

3) If an error occurs within an external routine in another language.
the Pascal system will not be able to give any information about
the error.

If there is any doubt regarding the source line number given in cases
1) and 2) above, you should correlate the octal address in the error
message with the octal program addresses in the listing by the help of
a loader map. The loader map can be acquired by the NRL ENTRIES-
OEFINED command or the Linkage Loader LIST-MAP command.

ND-60.124.05



34 ND-Pascal
PROGRAM LOADING AND EXECUTION

£.2.1 Trapping run-time errors.

A Pascal main program may contain the declaration of a procedure

procedure FAULT(erno, lino. objad. status: INTEGER):

mé'
The effect is that when a run-time error occurs. FAULT will be called.

Note: The N option must be on in order to make FAULT have this effect.

The parameters are

erno The error number. The meaning of these is found in appendix
8. ‘

lino The source program line number at which the error occurred.

objad The object code address at which the error occurred.

status The SINTRAN error status in case of a file system or I/O
error (error numbers 17. 33. and 37).

The procedure may contain any legal Pascal code - for example. if the
error is considered non-fatal, a jump to a main program label. If the
procedure exits through its gag, the normal error processing is done.

It is the programmer's responsibility that the declaration of FAULT
follows the rules above, and that a program does not continue
execution after a fatal error has occurred. In particular. be aware of
the possibility that FAULT will be called 'recursively if an error
occurs within the FAULT routine itself.

ND—60.12‘.05



MI

ND-Pascal 35
INPUT/OUTPUT

5 1NPUT£0UTPUT

Input/output is that part of a programming language which is most
operating system dependent. Several design and implementation
decisions therefore must be taken by any implementor of Pascal. The
reader is warned that some of the features described in this chapter
may not be implemented, or may work_differently. in other Pascalimplementations. '

5 F' e ‘
e

File types may be used as,any other type in a Pascal program, with thefollowing limitations:

1) iii: 2i T where T is or contains a file type is not allowed.

2) File variables, or structures containing file variables may not be
generated with the NEW constructor. A file variable may not occur
in a variant of a record. -

3) Assignment to a file variable f (not to be confused with the file
buffer fl) is not possible, nor is the use of a file variable in
an expression. ‘ “

5.1.1 The type TEXT

There is a standard file type TEXT. A file of type TEXT is assumed to
contain a sequential text. subdivided into lines. A line may contain
any number of characters.

Note: The type TEXT is not equivalent to the type packed £11: g1 CHAR.
The latter type will be interpreted as a sequence of characters
where no line subdivision is visible.

The following procedures and functions may be used on files of type
TEXT:

EOLN _READ READLN ‘WRITE WRITELN

0n input. the CR character (value 15 octal) is taken as a line
separator. An LF character (value 12 octal) following CR is ignored.
According to Standard Pascal, EOLN(<file>) becomes TRUE when a
READ(<file>,c) reads the last character before the CR. When
EOLN(<file>) is TRUE. the next READ(<file>,c) delivers the space
character (value AD'octal). 0n input. character parity is removed.

0n output, WRITELN writes the two characters CR and LF. Characters
output will have even parity.

ND-60.12k.05 “



36 ND-Pascal
INPUT/OUTPUT

The characters in a TEXT file are assumed to be ASCII characters withinternal values in the range D..127. When the C option is on, however.
the internal values can be in the range D..255. In this case, theparity bit is neither removed on input, nor generated on output.

The editing specifications in READ and WRITE are extended to enable
I/O of non-decimal representation of integers. In READ. an integerparameter may be followed by a :(radix) specification. while in HRITE.
an integer parameter may have a :<radix> specification after the:<field width) specification. In this case. the <radix>-base
representation of the integer is read or written. <radix> must be in
the range 2 to 35. Digits in the range (D..35 are represented by the
uppercase letters A..Z. .

The following table gives the number of character positions used ih
the output file when a value needing a minimum of p characters for itsrepresentation is written. In the table. w is the value of <fieldwidth). .

default D < w < p p <= w (1)
M‘fifl—O

1
I -CHAR 1 w

BOOLEAN 6 6 w {3) w
INTEGER. decimal '

B 12 p w
LONGINT, decimal 12 12 p w
INTEGER. non-decimal - - w 1‘) , w
LONGINT, non-decimal — .- w (4) wREAL. floating point 12 (5) 12 w (2) w
REAL, fixed point - - p w
string p p w (3) w

(1) Blank fill to the left
(2) Minimum 10 for kavbit reals, minimum 8 for 32- and 65-bit

reals ‘
(3) The initial w characters of the string

<('FALSE ' and 'TRUE "-when Boolean)
(4) The w least significant digits
(5) 12 for 32-bit reals. 18 for (8-bit reals

was

There are two standard files, INPUT and OUTPUT. both of type TEXT.These files may therefore be used without declaration.

illli_£3£k£fl_£il£§

In a.GET or PUT-operation. an integral number of 8-bit bytes willalways be transferred. If the file is not designated packed, this
number may be deduced from the table in section 2.6.1.

ND-60.124.05 “

in;



dd’

ND-Pascal '
37INPUT/OUTPUT

In the declaration

packed file _j T.

the keyword nicked has an effect only if the values of type T occupy
no more than eight bits (fllflfl) or 16 bits (fliflfl). In these cases, PUT
and GET will read or write the minimum number of bytes necessary torepresent the value.

Since the internal representation of values may use a different number
of bytes on the ND-IOO and the NO-SOO. non-packed files may beincompatible as seen from ND—1UU Pascal and ND-SUU Pascal. That is, a
file 91 T generated on one computer may not be readable on the other
computer, using the same file declaration.

If a file type is designated packed, however. the external file
structures assumed by ND-IOO Pascal and ND-500 Pascal will usually beidentical. Especially, if the type T occupies eight bits or less, then
gagged £113 of T will always correspond to the same file structure on
the two computers.

5:1.k Non-TEXT files

When f is not of type TEXT. then

READ(f,x); is equivalent to

23313 x := fl: gettf) gag:

NRITE(f.x): is equivalent to

begin fl := x: put(f) end:

htnt,x1.x2.....xn): is equivalent to

READ(f.x1): READ(f.x2): ... READ(f.xn):

WRITEIf,x1,x2.....xn): is equivalent to

WRITE(€,X1); WRITE(f.x2): ... NRITEtf.xn);

. .
E_ l

.

The procedures CONNECT and DISCONNECT have been implemented in ND-
Pascal to enable run-time association between a file variable and an
external file.

ND—60.124.05



38
I

ND—Pascal
INPUT/OUTPUT

5.2.1 CONNECT (i
The CONNECT procedure can have up to five parameters;

CONNECT(<file>,<filename>.<type>.(access).<status))

(file) is the variable name of the file.

(filename) is either an integer giving the logical unit number of
an open file. or a string (or a packed array oi CHAR)
containing the external name of the file.

(type) is a string giving the default file type.

<access> is _a string giving the file access mode (w. R, NX. RX.
Rw. WA. WC or RC. or the reverse of one of these strings).

(status) is an integer variable where status for the CONNECT
operation is left. If the CONNECT was successful, (status)
will be equal to zero; if an error occurred. <statUs> will
be equal to'the SINTRAN error number.

The (file) parameter is mandatory. One or more of the remaining
parameters may be omitted. either by leaving the parameter -position
empty, or by prematurely closing the parameter list with the right
parenthesis.

'The effect of omitting one of the parameters <filename>. (type) and
(access) is that Pascal will enquire the user to supply the value from

'the terminal. When CONNECTing a logical unit the <type> parameter may
be omitted. and in that case will not be enquired for.

The effect of omitting the (status) parameter is. If the CONNECT
operation failed, then write the error message to the terminal. Repeat
the CONNECT operation if the file name was specified from the terminal
and the job is interactive, otherwise abort the program.

Remember that RESET or RENRITE must be called before
sequential

1/0 on
the file can be performed. (

Example:

CONNECT(infile,,'SYMB'.'R'); RESETlinfile):

5.2.2 DISCONNECT

The DISCONNECT procedure has one parameter:

DISCONNECT(<file>)

The external file will be disassociated from the <file> variable. If a
file name was given when (file) was opened, the external file will be
closed. A (file) opened with a logical unit number will not be closed.
A later CONNECT may associate (file) with another external file.

ND-60.124.05



ND—Pascal - 39
INPUT/OUTPUT

When ND-Pascal goes through a block end, all files local to that block
will implicitly be DISCONNECTed.

542l1_§££31£fl_£il&§

If a RENRITE(<fi1e>) is done on an tun-CONNECTed file. Pascal will
create. if necessary, a scratch file with the name <file>-cc:TEMP, and
open it. cc are two characters generated to make filenames distinct.

If a scratch file is DISCONNECTed. or the program terminates normally,
the file will be deleted.

5.2.k Program heading parameters

The program heading may have file variable names as parameters. For
each of these file variables the compiler automatically generates some
code in the beginning of the main program:

For the file INPUT:

CONNECT(INPUT,O,.'R'): RESET(INPUT):

For the file OUTPUT: ,’-
CONNECTiOUTPUT,1,.'N'): PENRITE(0UTPUT):

For other file variables F:

CONNECT(F):

The effect is that for every user-defined file variable in the program
, heading, the user is enquired to supply the actual file name, type and

access mode. The files INPUT and OUTPUT are associated with the
standard input and output files. i.e. the terminal for interactive
jobs, and the appropriate disk or terminal files for mode and batch
jobs. Files other than INPUT and OUTPUT must be declared in the main
program 13; section; .

For all file names in the program heading. except INPUT and OUTPUT,
the call-on RESET or REWRITE must be programmed.

Since CONNECT and DISCONNECT are not part of Standard Pascal, file
variables in programs that are to be ported should appear in the
program heading. instead of being explicitly opened by calls on
CONNECT.

ND-60.124.05

we“



40
ND-Pascal

INPUT/OUTPUT

5.3 Terminal I10

When the actual external file is the terminal running the program,
certain special actions are taken by the I/O system.

On input, a RESET will DQL read the first character into the file
window. as specified in Standard Pascal. Instead. RESET will put the
space character into the window. Thus. in the input from the terminal,
an extra initial space will appear. The reason for this modification
is to permit output to the terminal prior to the first input without
program hang-up.

0n the first file which a program CONNECTS for input from the terminal
(as for instance the default connection of INPUT). EOLN will be TRUE
initially if no text followed the program name in the program call
command line. H

An input TEXT file associated with 'TERMINAL' is given 'logical unit
number zero. This enables editing of the terminal input with CTRL A
and CTRL 0. Be aware that SINTRAN converts lower case characters to
upper case on input from unit zero. A file may be CONNECTed for input
from logical unit one, where this conversion is not done Editing with
CTRL A and CTRL 0 is not possible on unit one.

In some applications (e 9. screen- handling) it is necessary to _read
from the keyboard on a character--by- character basis. and with no echo.
To do this from a Pascal program. use the method illustrated by the
following example:

131 keyboard: TEXT;

-exeeegyze ECHOM(mode: INTEGER): EXTERN;
nzeeeguee BRKH(mode: INTEGER); EXTERN:-

begin (* Main program *)
CONNECT(keyboard,1,.'R'); RESET(keyboard):
ECHOH(-1): BRKM(0): -

repeat
GEleyboard):
(* Do action on character now in keyboard] *)
(* Program must do its own echoing *)

until

end.

In a READ operation from the terminal. a number syntax error does not
result in the program being aborted (provided the program is run
interactively). Instead. the message

ILLEGAL NUMBER SYNTAX

ND-60.124.05



ND-Pascal $1
INPUT/OUTPUT '

is written to the terminal. and the READ performed anew such that the
correct number can be retyped.

mm

A file variable may be associated with an external'random access file.
Random access I/O may be done on that file with the procedures PUTRAND
and GETRAND:

PUTRAND(<f>: (filetype); (block number): INTEGER;
var <status):_INTEGER):

GETRANDt<f>= <filetype>; (block number): INTEGER:
var (status): INTEGER):

PUTRAND writes the current content of the file window to the given
(block number) on the file. GETRAND reads the block in <block number)

~on the file into the file window.

The (status) parameter is optional. If present. the SINTRAN status of
the I/O operation is left in this variable. If not present. the
program aborts in case PUTRAND or GETRAND fails.

The block size is equal to the number of bytes occupied by the file
component type. This block size is determined when the file is opened
by a call on CONNECT. Note that the smallest block size that SINTRAN
accepts is two; therefore it is not possible to randomly access single
bytes of a file. .

RESET and REWRITE have no effect on random access files.

A random access file cannot be packed. but may contain packed
elements.

ND-60.124.05



£2

ND-60.124.DS

ND-Pascal

m;
.



A»;

ND-Pascal
43ND-1OO REAL-TIME PROGRAMS

5 ND-100 REAL-TIME PROGRAMS

Any ND-Pascal program may be run as a real-time program. This requires
no changes to the BRF code generated by the compiler. Thus, the same
code may be used for both regular and real-time execution.

To load a program for real-time execution. enter the command

*REFER—SYMBOL 5RTPH

before the Pascal library is loaded. This will have the effect ofselecting library routines adapted to real-time execution. Inparticular. the following effects should be noted: -

1. When a run-time error occurs. the following statements will beexecuted:
ERMON(50.<Pascal error number)): (* Cfr. appendix B *)
ERMON(51,<source line number)):
RTEXT;

2. No terminal will be connected to the program. Thus. to execute aCONNECT operation where one or more parameters are missing, unit
1 must be reserved prior to the CONNECT.

The Pascal library is not completely re-entrant. However. severalreal-time programs may share the same (re-entrant! segment containingexternal. procedures and/or the Pascal library. provided the real-timeprograms have the same COMMON start address.

The STACK-HEAP area will by default be allocated as for backgroundprograms (cfr. section 8.1)" The placement and size of this area maybe determined by the user if some other allocation is desired‘ (cfr.section 8.1). -

For a real-time program. RUNMODE is equal to 3 (cfr. section 2.7.5).

FORTRAN routines compiled with the old FORTRAN compiler in re-entrant
mode may not be called from a Pascal program.

ND-80.12‘.05



44

N0-60.12‘.05

ND-Pascal



ND-Pascal
45ND-100 OVERLAY PROGRAMS

7 ND-100 OVERLAY PROGRAMS

Large program systems written in ND-Pascal may be run as a set ofoverlaid programs. The Pascal overlay system is adapted to the NRL
overlay generation facility. The reader is referred to the NRL manual
(version G or later) for details concerning the overlaying ofprograms.

7.1 Modules

A Pascal program system which is to be run in overlay mode willconsist of a set of modules. A Pascal main program is the base, or
root, module. All other modules will be procedures or functions. Aprocedure or function will become an overlay module when the key-word
module precedes the procedure/function declaration.

Example: module 2m oumm In: NORWEGIAN):
Modules may be nested. The maximum number of overlay levels is ten.

Modules may appear either

1) within a main program. or

2) in a separately compiled file containing external
modules, procedures and functions.

The modules for a program system maybe generated in either way, or by
using a

combination
of the two.

A module which calls an external, separately compiled module, must
contain an external declaration of the latter module.

Example: module procedure MADRID(x,y: SPANIARD): EXTERN:

A module may not be forward declared.

A file containing module declarations may be headed by a copy of the
main program const, type and var definitions. This feature allows foreasy communication between modules through main program variables. In
a similar manner. nested modules may be used to allow child modules tocommunicate through the local variables of the mother module.

If an external module, procedure or function refers to procedures orfunctions in the main program. the main program must be compiled withthe X option on (cfr. section 8. 1. 2).

ND-60.12k.05



46 ND-Pascal
ND-100 OVERLAY PROGRAMS

7.2 Compilation of Modules

The code for each module must be written on a separate BRF file. The
compiler will prompt the user to specify the BRF file when a module
declaration is encountered in the source file. This means that when
compiling a file of modules only, no code Tile should be specified in
the SCOHPILE command.

mm

The following example consists of a main program with modules, and one
external module which the main program calls.

ND—60.125.05

.n‘.



ND-Pascal
ND-IDO OVERLAY PROGRAMS

flain_n12911m:

nigggam EXAMPLE(0UTPUT):

ggngg SIZE = 10:

1x2; INDEX = 1..SIZE:

x3; A, B. C: ALIA! [INDEX.INDEX] 9i REAL:
I: INTEGER:

grocedure RESULT;
var I. J: INDEX;
begin
fig; I := 1 19 SIZE Q2

8 .

£21 J := 1 19 SIZE fig WRITE(C[I.J]:10):
WRITELN

£22'
end (*RESULT*);

1 19 SIZE fig
J] := SOR(I)*J:
= N(I)*SQR(J):

end (*INIT*):

mggulg iunggign FACTOR(I: INTEGER): INTEGER;
ngain

11 I <= 1 gngn FACTOR := 1
glgg FACTOR := I*FACTOR(I-1)

gnu (*FACTOR*): ‘-

mflflfllfi DIQQEQHIR ACCUM: EXTERN:

nssin (*MAIN PROGRAM*)
.INIT;
'jgx I := 1 33 7 gg WRITELN(FACTOR(I):10):
ACCUH

Eng-

ND-60.124.05

47



43 ND—Pascal
ND-IOO OVERLAY PROGRAMS

External module:

const SIZE = 10:

tyge INDEX = 1..SIZE:

11; A. B. C: 11131 [INDEX,INDEX] 21 REAL:
I: INTEGER:

module grocedure ACCUM;
var I, STATUS: INTEGER:

niggeguxe RESULT: EXTERN:

procedure ROW(J: INDEX):
131 K: INDEX;,

SUM: REAL:
begin SUM := 0.0;

£21 K.:= 1 12 SIZE g9 SUM := SUH+A[I.K]*B[K.J]:
ii SUM > 1.055 Lflfifl STATUS 3:.1:
C[I.J] := SUM

gag (*R0w*):

module nigggguzg COLUMN1I: INTEGER):
131 J: INDEX: 3
22313 STATUS := 0;

£21 J 5: 1 39 SIZE go ROW(J)
2nd 1*CDLUMN*):

moguls nigggdune WRITCOLtl: INTEGER):
131 J: INDEX;
begin

£21 J := 1 Lg SIZE fig WRITE1CII,J]:12):
NRITELN

gag (*NRITCOL*):

begin (*ACCUM*)
£21 I := 1 19 SIZE do
gggin COLUMN1I):
if STATUS = 0 ingn WRITCOL(I)
gig: WRITELN('COLUHN'.I:3,' IN ERROR')

find:
RESULT

gag (*ACCUM*):

This program contains examples of the following:

- Child modules communicate through variables of the mother module
(STATUS)

- Child modules use a procedure within the mother module (RON)

ND-GU.12£.05



ND-Pascal
ND-1OO OVERLAY PROGRAMS 49

- A module may be called recursively - in this case the call isexecuted as a normal procedure or function call (FACTOR)
Compilation of the example programs:

DPASCAL
PASCAL/ND41OO VERSION J 83—xx—xx
SOPT X+
SCOMPILE EXAMPLE LINE-PRINTER 'EXAMPLE'
Codefile for module INIT : LLNLIL
Codafile for module FACTOR : 'FACTOR'

N0 ERRORS .
LENGTH OF PROGRAM: . 0003838 WORDS
LENGTH OF FIXED DATA: 0021468 WORDS

7 USES OF NON-STANDARD FEATURES
1.34 SECONDS COMPILATION TIME

Codefile for module ACCUM : "ACCUM'
Codefile for module COLUMN : 'COLUMN'
Codefile for module WRITCOL : 'WRITCOL‘

NO ERRORS -
LENGTH OF PROGRAM: 000£O3B WORDS
LENGTH OF FIXED DATA: 0000108 WORDS

7 USES OF NON-STANDARD FEATURES
1.20 SECONDS COMPILATION TIME

SEKII

WWW;

When loading modules to create a system of overlaid programs. thefollowing points must be noted:

3 The user must allocate the STACK-HEAP area with the*DEFINE STACK xxxxx and *DEFINE HEAP xxxxx commands (cfr. section8.1). It may be necessary to do a trial load of the systemorder to determine the optimum setting of STACK and HEAP.
in

- The Pascal library must be loaded together with the main program,and with any module which refers routines in the library not
referred to in the main program. To be safe. the library may be'loaded with every module (only those routines not already presentwill actually be loaded).

- When loading two-bank code, one must enter the command

SET-MODE DATA

before the first OVERLAY-GENERATION command.

ND-60.124.05

It”?



50 , ND-Pascal
N0-100 OVERLAY PROGRAMS

— The modules must be loaded in an order which corresponds to the
overlay tree structure. that is:

1. The main program. Call this the current module.

2. The next module within the current module. This module becomes
the current module. Apply rule 2 recursively.

Be aware that when specifying entry point names to the loader, NRL
reads the 13;; 7 characters. whereas Pascal uses the 7 £1155.
Therefore. to avoid problems. never specify entry point names longer
than 7 characters. ' -

A file containing an overlay program (:PROG file) should not be
renamed with the SINTRAN RENAME-FILE command. as the absolute program
must contain a record of the file name where the overlay segments are
found. This record is 59; updated with the RENAME-FILE command.

The file name is recorded exactly as specified in the DUMP command.
Therefore. to avoid ambiguity with file names created at a later time,
it is recommended that the file name is not abbreviated. If the user
name is specified, the :PROG Tile cannot be copied to other users and
executed. (If the receiving user has access to the original owner‘s
file. the root segment will be taken from the receiver and the overlay
segments from the original owner. This is, at best. hazardous.)

ND-60.124.05



.a’u

ND-Pascal
ND-IOD OVERLAY PROGRAMS

Examnlg

Loading of the program example.in section 7.2:

OERL
RELOCATING LOADER LDR-1935X
*IMAGE-FILE 100
*OVERLAY-GENERATION 10
*DEFINE STACK 0
*DEFINE HEAP 150000
*DEFINE NOBKS 2
*LOAD EXAMPLE PASCAL-LIB
FREE: 012774-175‘73
*OVERLAY-ENTRY (1) INIT
*LOAD INIT
OVERLAY 1 LEVEL 1 COMPLETED. AREA:

5LDAT=01277£ INIT=01277£
*OVERLAY-ENTRY (1) FACTOR
*LQAQ_EA£IQR
OVERLAY 2 LEVEL 1 COMPLETED. AREA:

FACTOR=01277£
*OVERLAY-ENTRY (1) ACCUM
*LQAD_A££flM
OVERLAY 3 LEVEL I COMPLETED. AREA:

ACCUFQ&/175#63ROWFS*=012775 ACCUM=0131£0
xngLAx-Eulgx (21 column
t

COLUMN=013254
*OVERLAY-ENTRY (2) NRITCOL
*LQAD.ERLI§QL

0127744013115
HEAP=150000

012774-013033

01277£-013253

OVERLAY 4 LEVEL 2 COMPLETED. AREA: 013264-013320

OVERLAY 5 LEVEL 2 COMPLETED. AREA: 013264-01334]NRITCOL=01326L
*DHHE “EKEHPIE‘
*EXLI

, .

51

An overlaid program is activated by.calling the root module, i.e.

QEXAMPLE

Note: If an overlaid program is interrupted by ESCAPE.
continued with the QCONTINUE command.

ND-60.124.05

it may no; be

XL”;



52

ND-60.124.05

ND-Pascal



ND-Pascal ‘ 53
IMPLEMENTATION DESCRIPTION

8 IMPLEMENTATION DESCRIPTION

This chapter gives some information on how the ND-Pascal system works
internally. to enable more advanced use of the system. Be aware thatmost of the features described in this chapter are machine and SINTRANdependent. Therefore. the reader should not assume that other Pascalimplementations work in the same or a similar manner. Also, the reader
is warned that implementation details may change in future versions ofND-Pascal. '

8.1 ND-IOO Implementation

1 Me u

The following figures show how memory is utilized by a running ND-IOOPascal program (including the Pascal compiler itself).

One-bank program Two-bank program
(one-bank library)

address
_o I ILOADER) I ] (LOADER) I STACK I----------- I |---—-------I - II PROGRAM I I PROGRAM | I

I ----------- I I ----------- | lI STACK | | | ...... l
-l- - - - - -I I I I-| I | I I| HEAP I . l I HEAP I

I ----------- I a I ----------- I ----------- II CONSTANTS I IIconstantsII CONSTANTS |I ----------- I I ----------- I ----------- II MAIN DATA I IImain dataII MAIN DATA I
1-4--------- I l ----------- I ----------- I177777 I svs DATA I IIsvs data) I 575 DATA |

ND-80.12#.U5

M



54 ND-Pascal' IMPLEMENTATION DESCRIPTION

Two-bank program
(two—bank library)

address
a I I SYS DATA I

I I ——————————— l
I I MAIN DATA |
I PROGRAM | ........... I
I | CONSTANTS I
I I ----------- 1
I ---------- I I
I I STACK |. | I I
I |- — _

- - _|
I I I
I I HEAP 1
I I I177777 | | I

PROGRAM The Pascal program together with the necessary library

routines.

STACK The memory used by procedures and functions that the program
calls. The stack grows from low towards high addresses.

HEAP The memory used by data allocated with the NEW constructor.
The heap grows from high towards low addresses.

CONSTANTS The constants referred to by procedures. For each procedure.- a common block containing such data is allocated within the
CONSTANTS area.

MAIN DATA All variables declared in the main program. This area is a., common block named C.MAIN.

SYS DATA The variables and constants used by the Pascal library
aroutines. This area consists of two common blocks named

5CRTL and SCRTD.

8.1.1.1 One-bank programs
. I _In a one-bank execution, Pascal places the stack and heap in the

largest of the two areas

a) address zero to first PROGRAM location
b) last PROGRAM location to first CONSTANTS location

To make maximum space for the stack and heap, one may either do an
image load. or use the NRL SET-LOAD-ADDRESS command to minimize area
b). .

ND-60.124.05



ND-Pascal
55IMPLEMENTATION DESCRIPTION

Be aware that the area between the last PROGRAM location and the firstCONSTANTS location will occupy space on the :PROG file. If the default
load address is used, the size of the :PROG file will be in excess of
50 pages. To make a minimal absolute version of a program. use theSET-LOAD-ADDRESS command to minimize area b).

8.1.1.2 Two-bank programs

A two-bank program may be generated in one of two ways. as described
in section 4.1.1.

Method 1

Compile the program, producing one-bank code. _Before loading, enter
the command

*DEFINE NOBKS 2

Then load the program together with PASCAL-LIB. The program is loadedexactly as a one-bank program. Before execution starts. the CONSTANTS,MAIN DATA. and SYS DATA areas will be copied to the data bank. Thedata will be located at the same Vaddresses .as they had in theinstruction bank.

To make a minimal absolute version of a the program. use the SET-LOAD-
ADDRESS command to minimize the space between the PROGRAM and.rCONSTANTS areas. The absolute program may be dumped to a :PROG file..
or dumped as a re-entrant subsystem.-

This method uses more space in the instruction bank than method 2. but
'must be used if the program is to be dumped as a re-entrant subsystem
under SINTRAN version H or earlier.

Method 2

Compile the program with option 82 set. thereby producing two—bank
code. Then load the program with RASCAL-ZLIB. The absolute program may
be dumped to a :PROG file. or dumped as a re-entrant subsystem underSINTRAN version I or later.

It is not possible to force a one-bank execution from a programcompiled in two-bank mode.

The user may determine where to allocate the stack and heap. This canbe done at load-time by entering the following commands before thePascal library is loaded:

ND-60.124.05



56
ND-Pascal

IMPLEMENTATION DESCRIPTION

*DEFINE STACK <value>
*DEFINE HEAP (value)

The starting addresses for the stack and heap will then be the givenvalues. It is the user's responsibility that the definitions are
consistent, and that no part of the stack-heap area overlaps theprogram or common areas. The result of doing one of the definitionsand omitting the other is undefined.

8.1.2 Loader svmbols

The compiler generates 7—letter entry point names. The names found inthe loader map are constructed as follows:

Main entry ‘point: The first 7 letters of the name given by theprogrammer in the PROGRAM statement.

Modules regardless of declaration level: procedures and functions onthe outermost level of a separately compiled file: procedures andfunctions on the outermost level of a main program when the X optionis 23: The name given by the programmer. Note that the loader uses7-letter names. so that these identifiers must be distinct withinthe 7 first letters. « - ‘

Procedures and functions local to other routines or modules: allprocedures and functions when the X option is 211: These have theform nnnndd* where nnnn are the first four characters of theprocedure or function name..dd are two characters generated to makeentry point names distinct. -

Non-local labels: These have the form nnnndd+ where nnnn are thefirst four characters of the name of ‘the procedure or. function
within which the label occurs. dd are generated characters.

External procedures and functions: The name given by the programmer.

Labelled common areas: These have the form nanndd& where nnnn are thefirst four characters of the name of the procedure or function withwhich this common area is associated. dd are generated characters.

8.1.3 Procedure and function calls

The following -information on how procedure and function calls arehandled by ND-Pascal should enable a user to write simple externalroutines in HAC.or NPL.

For each procedure or function call, Pascal generates an object on topof the stack to hold system data, parameters. and data local to theroutine. At the time of entry to the routine. the registers and stackcontain the following data: '

ND-60.124.05

z



4's;

ND-Pascal
57IMPLEMENTATION DESCRIPTION

X Static Link -
A Top of new procedure object relative to B
8 Dynamic Link (calling procedure object)
L Return Address

Stack:

(A)+(B) —> system location (0)
- system location (1)

system location (2)
system location (3)
system location (4)
system location (5)
function value
parameter (1)
parameter (2)
O

parameter (n)

In a proper Pascal procedure system location (0) contains ReturnAddress, system location (1) contains Dynamic Link. _and systemlocation (4) contains Static Link. The other system Iotations are notused by Pascal. ' - '3

The function value occupies zero words if the object is a procedure;.one, two, or three words if the object is a function.

parameter (1) can have the following form:

when var parameter reference to actual ,when value parameter k-word value if k <= 8 or value is a set.
otherwise reference to actual

The routine, may use 200 octal stack locations without causing stack-heap overflow. - '

0n exit from a procedure or function, the following conditions must besatisfied:

1) The B-register must hold the same value as it had on entry.

2) For a function. the A-, A0-. or TAD-register' must hold thefunction value.

3) The exit must be to Return Address (: contents of _L-register onentry).

ND-60.124.05



58 ND-Pascal
IMPLEMENTATION DESCRIPTION

Example:

The Pascal program contains

function mgngre(a, b: INTEGER): BOOLEAN; EXTERN:

This is an assembly routine which returns the value TRUE if the
magnitude of a is greater than or equal to the magnitude of b.

Assembly routine:

)BBEG
' )9LIB MGNGRE

)SENT MGNGRE

FVAL: 5 z FUNCTION VALUE
AA: 7 z ARGUMENT A
AB: 10 _ z ARGUMENT a
MGNGRE= *

CORY' SA DX _LDD AA,x,a-
RCLR DT -z o = FALSE
SKP IF DA MLST so
RINC DT z 1': TRUE
COPY ST DA
EXIT

TBEND

fill.4 Interface to FORTRAN and PLANC

The routine to be called has to be defined with the body STANDARD.
PLANC routines with or without INISTACK may be called. There is_no
check for stack overflow in the PLANC routines. therefore. HEAP data
in the Pascal program may be destroyed.

FORTRAN routines with or without REENTRANT- MODE set may be called. Tointerface to the old FTN. use the body FORTRAN. With FTN. REENTRANT-- MODE may not be used.

8.1.5 Ingututgut

To save I/O execution time. ND— Pascal buffers access to sequential.files. This is handled automatically by Pascal, and requires no
intervention by the user. Pascal allocates n buffers of 256 words forthe buffering. Up to n disk files which the program has CDNNECTed for
sequential I/O will then be accessed via buffers.

By default the number of buffers, n, is equal to three. To redefine
this number. either to save space. or to simultaneously access morethan

three files via
buffers.

enter the command

ND-60.124.05

2b



ND-Pascali
IMPLEMENTATION DESCRIPTION

*DEFINE NOBUF n

beforé loadidg-the program; The maximum legal value for n is 10.

ND-60.12£.05

59

376..“



60
I

ND-Pascal
IMPLEMENTATION DESCRIPTION

{

8.2 ND-SDD Implementation

8.2.1 Memory layout

The following figure shows how memory is utilized by a running ND—SDD
Pascal program (including the Pascal compiler itself).

Instruction Data Data
segment segment 0 segment 1

address
0 l l I | | SYS DATA |

| PROGRAM | I STACK I I ----------- I .I I I- , _ _ I | MAIN DATA | .I I I | | ----------- I II I I HEAP I ] CONSTANTS l
I_ _ _ _ I | I l___________I
I — I
| l
| |
I I

777777777 I |

PROGRAM The Pascal program together with the necessary library
routines. ‘

STACK The memory used by procedures and functions that the program
calls. The stack grows from low towards high addresses.

HEAP The memory used by data allocated with the NEW constructor.
When deallocation is done with the use of MARK and RELEASE.
the heap grows from high towards low addresses. When DISPOSE
is used, the HEAP area has a fixed size which may be defined
at load-time (see below).

CDNSTANTS The constants referred to by procedures. For each procedure.
a common block containing such.data is allocated within the
CONSTANTS area.

MAIN DATA All variables declared in the main program.

SYS DATA The variables and constants used by the Pascal library
routines. SYS DATA and MAIN DATA lie in a common block named
C.MAIN.

ND-60.124.05



ND—Pascal
A

51
IMPLEMENTATION DESCRIPTION

W

The default size of the STACK- HEAP. area is 400000 octal (= 131. 072
decimal) bytes. The area is allocated by the GSWSP monitor call. This
allocation may be redefined at load——time by entering the following
command before the main program is loaded:

DEFINE-ENTRY STHPSIZE (value) D

The minimum size of the STACK- HEAP area is determined by the number of
I/O buffers (cfr. section 8. 2. k). If the area is too small. the
program will be aborted at the outset with the error message STACK-
HEAP OVERFLOW.

8f2.1.2 The size of the heap

When deallocation of dynamic data is done with DISPOSE. Pascal uses
the ND—500 buddy allocator. In this case the heap area has a fixed
size. The default size is 200000 octal (= 65. 536 decimal) bytes.
(200000 octal bytes are then left for the stack.) This size may be
redefined at load- time by entering the command

DEFINE-ENTRY HEAPSIZE (value) 0

before the main program is loaded. Take care that a definition of
HEAPSIZE is consistent with the definition of STHPSIZE.

Note: ND-
-Pascal

does not combine non- used neighbour buddies.

Momma

' The compiler generates entry point names with maximum 10 letters. The
names found in the loader map are constructed as follows: -

Main entry point: The name given by the programmer in the PROGRAM
statement.

Procedures and functions on the outermost level of a separately
compiled file; procedures and functions on the outermost level of a
main program when the X option is on: The name given by the
programmer. -

Procedures and functions local to other routines; all procedures and
functions when the X option is off: These have the form <name>c*
where (name) is the procedure or function name. c is a character
generated to make entry point names distinct.

Non-local labels: These have the form <name>c+ where <name> is the
name of the procedure or function within which the label is
declared, and c is a generated character.

ND-60.124.05



an)

52 ‘
ND-Pascal

IMPLEMENTATION DESCRIPTION

External procedures and functions: The name given by the programmer.

Labelled common areas: These have the form <name>c& where (name) isthe name of the procedure or function with which this common area is
associated. c is a generated character.

8.2.3 Procedure and function calls

The following information on how procedure and function calls are
handled by ND—Pascal should enable a user to write simple 'external
routines in assembly.code.

When Pascal calls a procedure or function. it will first place the
parameters on the stack beyond the locations needed for system
information. Pascal then executes a CALL instruction to the routine.
When entering the routine. the situation is as follows:

(8) —> PREVB‘ f RETA
SP v
AUX
NARG
function value
parameter (1)' ‘parameter (2)

parameter (n)

An assembly routine with parameters therefore must be entered by anappropriate ENTS instruction.

The function value and each parameter are located at word addresses
relative to B. If a value occupies less than four bytes. it will lieleft justified within a word. One 'to' three trailing bytes. may beunused if the needed space (in bytes) is not a multiple of four.

The function value occupies zero bytes if the routine is a procedure,
and from one to eight bytes. depending on the type of the result, ifthe routine is a function. '

A value parameter occupies the minimum number of bytes necessary torepresent values of the given type. A ya; parameter is a pointer tothe actual parameter, and occupies 4 bytes. A procedure or function
parameter occupies 3 words:.

1. length of parameter area in bytes
2. address of routine
3. static link of routine

A function result must be left in the W1 or F1 (01) register beforeexit from the function, which should be done with a RET instruction.

ND-60.12k.05
’



ND—Pascal
63IMPLEMENTATION DESCRIPTION

An assembly routine may use all registers except the R register. whichmust have the same value on exit as it had on entry.

Example:

The Pascal program contains

function mgngre(a. b: INTEGER): BOOLEAN: EXTERN:

This is an assembly routine which returns the value TRUE if themagnitude of a is greater than or equal to the magnitude of b.

Assembly routine:

MODULE MAGNITUDE

EXPORT MGNGRE
LIB MGNGRE

STACK
FVAL: W BLOCK 1 Z FUNCTION VALUE
AA: W BLOCK 1 ARGUMENT A
AB: W BLOCK 1 Z ARGUMENT B

ENDSTACK

N

ROUTINE IMGNGRE

MGNGRE:
ENTS #SCLC
N1 CLR 2 O
W COMPZ B.AA.B.AB
IF << GO FALSE
W SET1 R1 1 1

FALSE: RET

FALSE

TRUE

ENDROUTINE

ENDMODULE

fllzll_lnnutlflutnui

To save I/O execution time, ND-Pascal buffers access to sequentialfiles. This is handled automatically by Pascal. and requires nointervention by the user. Pascal allocates n buffers of 2048 bytes forthe buffering. Up to n disk files'which the program has CONNECTed forsequential I/O will then be accessed via buffers.

By default, the number of buffers, n. is equal to four. To redefine
this number, either to save space, or to simultaneously access morethan four files via buffers, enter the command

ND-BO.124.05

fin}



a": M
54

ND-Pascal
IMPLEMENTATION DESCRIPTION

DEFINE-ENTRY NOBUF (VElue) 0

before loading the program.

ND-60.124.05



ND-Pascal '
55

SAMPLE Pascal PROGRAM

9 SAMPLE-Pascal PROGRAH'

9.1 ND-100 Sample Program

QPASCAL
'PASCAL/ND-IDD VERSION J 83-xx-xx

SCOMPILE PASSCAN. TERMINAL. 'PASSCAN'

PASCAL/ND-100 VERSION J 83-Xx-xx

PROGRAM PASSCAN (OUTPUT):1
2 1* TIMES THE AVERAGE OF N x N Accesses *1
3 CONST MAXARRAY = 1000;
4 CHUNK = 200:
5 "VAR X.Y,K : INTEGER;
a z : REAL:
7 STIME, ETIME : REAL;
0 TABLE : ARRAY [1..MAXARRAY] OF REAL;
9.

t 10 FUNCTION TUSED : REAL: EXTERN:
11
12 BEGIN K := CHUNK:
13 . REPEAT
14 FOR x := 1 TO K 00 BEGIN
15 STIME := TUSED: .
15 FOR Y := 1 TO K DO 2 := TABLEEY]:
17 ETIME := TUSED:
1e TABLEIXI := ETIME - STIME
19; . - END ; '
20 Z := 0:
21 FOR x := 1 TO K 00 z := z + TABLEEX]:
22 z 1: z I K:
23 NRITELN (‘ AVERAGE TUSED To ACCESS '. K.
24 ' X '. K.' ELEMENTS ='.Z:8:5);
25 K = K + CHUNK
25 UNTIL K > MAXARRAY
27 END.

No ERRORS
LENGTH OF PROGRAM: 0002510 woRos
LENGTH OF FIXED DATA: 0062723 WORDS

1 USES OF NON:STANDARD FEATURES
1.£B SECONDS COMPILATION TIME

SEXLI

(continued on next page)

_ND-BD.126.DS

31‘!

l‘;:



66 ND-Pascal
SAMPLE Pascal PROGRAM

am'
RELOCATING LOADER LDR—1905x
*SET-LOAD-ADDRESS 160000
*LOAD PASSCAN PAS—LIB
FREE: 170270-171332
*DHHE "BESSCEH"
*EXLI
aw

AVERAGE TUSED_TO ACCESS 200 X 200 ELEMENTS = 0.0072
AVERAGE TUSED TO ACCESS ‘00 X #00 ELEMENTS = 0.0140
AVERAGE TUSED TO ACCESS 600 X 600 ELEMENTS = 0.0211
AVERAGE TUSED TO ACCESS 800 X 800 ELEMENTS = 0.0287
AVERAGE TUSED TO ACCESS 1000 X 1000 ELEMENTS = 0.0356

ND-60.124.05



4%

ND-Pascal 67
SAMPLE Pascal PROGRAM

a+2_ND;§00_§Amnl£_£12913m

. aflfl;§flfl;flflflllflfl_£A§$AL
PASCAL/ND-SOO VERSION J B3-XX-XX
SCOMPILE PASSCAN. TERMINAL. 'PASSCAN'

PASCAL/ND-500 VERSION J B3-xx-xx

1 PROGRAM PASSCAN (OUTPUT):
.2 1* TIMES THE AVERAGE OF N X N ACCESSES *)

-3 CONST MAXARRAY = 1000:
4 , CHUNK = 200:
5 VAR Q‘X,Y,K : INTEGER:
8 Z , : REAL:
7 STIME. ETIME : REAL:
8 TABLE : ARRAY [1..NAXARRAV] OF REAL:
9 .

* 10 FUNCTION TUSED : REAL: EXTERN:
11
12 BEGIN K := CHUNK:
13 REPEAT
14 FOR X := 1 TO K 00 BEGIN
15 STIHE := TUSED:
18 FOR Y := 1 TO K DO 2 := TABLEIY]:
17 ETIHE := TUSED;
1B TABLEIX] := ETIHE - STIME

.19 END :
20 . Z := 0;
21 FOR X z: 1 TO K DO 2 E: Z + TABLEEX]:
22 Z := Z l K: '
23 NRITELN (' AVERAGE TUSED TO ACCESS ', K.
24 ° X ‘. K.‘ ELEMENTS ='.Z:8:4);
25 K := K + CHUNK
26 UNTIL K > MAXARRAY
27 END.

NO ERRORS
LENGTH OF PROGRAM: 000007118 BYTES
LENGTH OF FIXED DATA: 000102330 BYTES

1 USES OF NON-STANDARD FEATURES
0.50 SECONDS COMPILATION TIME

$EXIT

v <continued on next page)

ND-60.124.05



53
ND-Pascal

SAMPLE Pascal PROGRAM

aNofSUU-HONITOR LINKAGE—LOADER.
ND-Linkage-Loader - x
NLL: SET-DOMAIN "PASSCAN'
NLL: Wu.
Program: ....... 711 P01 Data: ........ 10233 001NLL: EXIT
SEGMENT N0 ...... 15 IS LINKED
0ND-500-MONITOR PASSCAN

AVERAGE TUSED TO ACCESS 200 X 200 ELEMENTS = 0.0023
AVERAGE TUSED TO ACCESS #00 X #00 ELEMENTS = 0.0038
AVERAGE TUSED TO ACCESS 500 X 600 ELEMENTS = 0.0050
AVERAGE TUSED TO ACCESS ~300-X 800 ELEMENTS = 0.0085

X 1000 ELEMENTS = 0.0082AVERAGE TUSED TO ACCESS 1000

ND-60.124.05



ND-Pascal
CompilefTime Error Messages

A P NDIX A om 'le- ime rror Hessa es

Compile—Time Error Messages

N—I .-

.-

_n

‘

Q

‘0

Q

N

0')

u:

1‘

U

N

d

n

u

n

.-

n

u

n

u

u

u

—A U

d r u

_n LII .-

.n 0'!

NN—b—o—n «atoms:

N N

50:
51:
52:
53:
54:
55:
55:
57:
58:
59:
60:

101:
102:
103:
101:
105:
105:
107:
108:
109:
110:
111:
112}
113:

Error in simple type
Identifier expected
'PROGRAM'_expected
f)' expected ’

expected
Illegal symbol
Error in parameter list‘
'OF' expected
'1' expected
Error in type
'1' expected
'1' expected
'END' expected
':' expected
Integer constant expected 7'=' expected ,HV 1 3'
'BEGIN' expected " '
Error in declaration  ¢5££
Error in field- list
'.' expected
'*‘ expected
Illegal character

Error in constant
':=' expected
'THEN' expected
'UNTIL' expected
'00' expected '_ “
'TO'I'DOWNTO' expected
'IF' expected
'FILE' expected
Error in factor
Error in variable

expected

:Identifier declared twice in same block
Lowbound exceeds highbound
Identifier is not of appropriate class
Identifier not declared
Sign not allowed here
Number expected
Incompatible subrange types
File not allowed here
Type must not be real or longint
Tagfield type must be ordinal
Incompatible with tagfield type
Index type must not be real or longint
Index type must be ordinal

NO-60.121.05

69

141.3.



70

114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
157:
168:
163:
170:

ND-Pascal
Compile-Time Error Messages

Base type must not be real or longint
Base type must be ordinal
Error in type of standard procedUre parameter
Unsatisfied forward reference
Forward reference type identifier in variable declaration
Forward declared — repetition of parameter list not allowed
Function result type must be simple or pointer
File value parameter not allowed
Forward declared function - repetition of result type not allowed
Missing result type in function declaration
Second format specifier only allowed for real and integer
Error in type of standard function parameter
Number of parameters does not agree with declaration
Illegal parameter substitution
Result type of function parameter does not agree with declaration
Types of operands conflict
Exepression is net of set type
Only tests on equality allowed
Strict inclusion not allowed
File comparison not allowed
Illegal type of operand(s)
Type of operand must be Boolean
Set element type must be ordinal
Set element types not compatible
Type of variable is not array
Index type is not compatible with declaration
Type of variable is not record
Type of variable must be file or pointer
Illegal parameter substitution
Illegal type of loop control variable
Illegal type of expression
Type conflict
Assignment of files not allowed
Label type incompatible with selecting expression
Subrange bounds must be ordinal
Index type must not be integer
Assignment to standard function is not allowed
Assignment to function formal parameter is not allowed
No such field in this record
Type error in read
Actual parameter must be a variable
Loop control variable must be local
Multidefined case label
Too many cases in case statement
Corresponding variant declaration is missing
Real and string tagfields not allowed
Previous declaration was not forward
Multiple forward declarations
Parameter size must be constant
Missing variant in declaration
Substitution of standard procedure/function not allowed
Multidefined label
Multideclared label
Undeclared label
Undefined label
Error in base set
Value parameter expected

as

ND-60.124.05



ND-Pascal
71Compile-Time Error Messages

171:
172:
173:
174:
175:
178:
177:
178:
179:
180:
181:
182:
183:
184:
185:
185:
187:
188:

190:
191:

193:

200:
201:
202:
203:
204:
205-
2'05-
207:
208:
209:

250:
251:
252:
253:
254:
255:
258:
257:
258:
259:
250:
251:
262:

300:
301:
302:
303:
304:
305:

320:

Standard file redeclared
Undeclared external file
Fortran procedure or function expected
Pascal procedure or function expected
File 'INPUT' missing from program heading
File 'OUTPUT' missing from program heading
Illegal assignment to control variable
Variable used as control variable in outer loop
Read into control variable not allowed
Source line too long
Value of tagfield out of range
Illegal assignment to function name
Forward declared procedure/function not defined
Illegal jump to label
Variant already defined
Assignment of conformant array not allowed
Illegal assignment to conformant array bound
Variant selector not in range of tagfield type

fype must be ordinal or array
Value list too lpng

Modules cannot be forward declared

Illegal label value
Error in real constant - digit expected
String constant must not cross line boundary
Integer constant exceeds range
8 or 9 or hex-digit in‘octal number
Real number overflow '
Real number underflow
Too many decimal places
String of length zero not allowed
Hex-digit in decimal number~

Too many nested scopes of identifiers
Too many nested procedures/functions
Too many forward references to procedure/function entries
Procedure/function too long
Too many long constants in procedure/function
Too many errors in this source line
Too many external references
Too many external files
Too many local files
Expression too complicated
Too many local variables
Too many nested scopes of overlays
No assignment to function name

Division by zero
No case provided for this value
Index expression out of bounds
Value to be assigned is out of bounds
Element expression out of range
Second operand to mod operator must be > 0

Internal error (reference out of range)

ND-50.124.05

3&5.



«1'8

72

322:

331:
332:
333:

340:

380:
381:
382:
383:
384:
385:
386:
387:

390:

398:
399:
600:

ND-Pascal
Compile-Time Error Messages

Internal error (GETOPR)

Internal error (LOADAD - packed address)
Internal error (LOADAD - condition address)
Internal error (MAKEMREG)

Internal error (SELECTREG)

Illegal compiler command
Unknown compiler command
Ambiguous compiler command
Too many flags
Too deep nesting of INCLUDE files
INCLUDE open error
Missing file name in INCLUDE
Code file open error

EOF encountered on source file

Implementation restriction
Variable-dimension arrays not implemented
Internal error (HOVATTR. RESETGATTRP)

ND-60.125.05



452i

ND-Pascal 73Run-Time Error Messages '

APPENDIX 9 Run-Time Error Messages

Run-Time Error Messages

19

20

25

21

22

33

,17

12

15

16

32

ARGUMENT T0 EXP T00 BIG
The argument to EXP will cause arithmetic overflow.

ARGUMENT TO LN WAS <= 9
The logarithm of a negative number or zero is not defined.

ARGUMENT T0 SIN 0R COS TOO BIG
Lost accuracy makes the function result meaningless.

ARGUMENT T0 SINH 0R COSH T00 BIG
*The argument will cause arithmetic overflow in the result.

ARGUMENT T0 SORT WAS < 0
.The square root of a negative number is not defined.

ARITHMETIC OVERFLOWV
Overflow caused by

a) arithmetic operations.
b) division by zero, or ‘c) conversion of REAL to INTEGER, or
d) conversion of LONGINT to INTEGER.

BAD ARGUMENT TO ARCTAN
Lost accuracy makes the function result meaningless.

BLOCK DOES NOT EXIST
Program tried to read non—existing block on a random file.

.CONNECT ERROR
Failure in an attempt to CONNECT a file. The SINTRAN error message
will indicate the cause.

EOF 0N INPUT
Program tried to read past end-of-file on an input file.

FILE ALREADY CONNECTED
Program tried to CONNECT an already connected file.

FILE NOT CONNECTED
Program tried to access a non-connected file.

FILE NOT RANDOM
Program tried random access to a sequential file.

ND-60.124.05



"\J.

74

31

24

3B

34

£2

13

26

37

40

39

29

30

14

ND-Pascal
Run-Time Error Messages

(FILE NOT SEQUENTIAL
Program tried sequential access to a random file.

ILLEGAL ARGUMENT(S) TO POWER
Either attempt to raise negative number to a real power, or the
arguments will cause arithmetic overflow.

ILLEGAL CALL OF MARK OR RELEASE
MARK or RELEASE was called from a program which also uses DISPOSE.

ILLEGAL CASE INDEX
The case label corresponding to the value of the case variable isnot defined.

ILLEGAL FORTRAN CALL
A FORTRAN routine was called from a two—bank Pascal program.

ILLEGAL MOD OPERATION
Attempted mgg operation with second operand zero or negative. - (

ILLEGAL NUMBER SYNTAX
The number being read did not have the correct syntax.

ILLEGAL PARAMETER(S) TO FORMAL PROCEDURE OR FUNCTION
The_ actual parameters to a formal procedure or function did not
correspond in number or type to the formal parameters.

ILLEGAL SUERANGE ASSIGNMENT . .Attempted assignment of a value outside the subrange. or the
controlled variable in a for-loop was of a subrange type and lower
or upper bound of the loop was outside the subrange.

INTERNAL PASCAL ERROR
Error within the Pascal system. Contact a systems expert.

I/O ERROR ‘

An I/O operation failed. The SINTRAN error message will indicate
the cause.

INVALID OPERAND
Illegal argument to POWER or SORT.

INVALID OPERATION .Error within the Pascal system. Contact a systems expert.

N0 RESET
Program tried to read from a file without a previous RESET.

N0 REWRITE . -
Program tried to write to a file without a previous REWRITE.

NUMBER T00 BIG
The number being read was too big to be represented in the
computer.

ND-60.12L.05



«Ni

ND-Pascal 75
Run-Time Error Messages

10

28

£3

18

11

61

POINTER IS NIL
Attempted access to data via
on DISPOSE or.RELEASE with a

a pointer with the value nil. or call
nil—valued pointer'parameter.

POINTER IS OUTSIDE HEAP
Attempted access to data via
within the heap. or call
parameter that did not point

a pointer which did not point to data
on OISPOSE or RELEASE with a pointer

within the heap.

PUTRAND 0N INPUT FILE
Program attempted PUTRAND on a read only file.‘

-RESET ON OUTPUT FILE
RESET was attempted on a write only file.

REWRITE ON INPUT FILE .
RENRITE was attempted on a read only file.

SET ELEMENT OUT OF RANGE

notProgram attempted to construct a set with an element value
within the set type.

STACK-HEAP OVERFLOW ‘ .
The program generated too much. data by calling procedures
recursively or with the NEW constructor.

SUBSCRIPT OUT OF RANGE
The index(es) to an array are outside the array bounds.

UNAUTHORIZED USE OF PASCAL
The ,soft-key for Pascal has not been entered in the SINTRAN
system. - -

UNKNOWN LOGICAL UNIT
There is no file open on this logical unit.

WRONG I/O PARAMETER
Illegal specification of the formatting of a number.

WRONG LIBRARY VERSION
Either

a) program was compiled with one version of the Pascal compiler
and loaded with another version of the Pascal library. or

b) Nlflfl= floating format (32-bit or La—bit) in program and library
are not the same, or

c) Ming: two-bank program was loaded with one-bank library or vice
versa.

ND-60.124.05



are

76

assembly routines
banks . . . . .
BOOLEAN
BRKM
CHAR
character

parity
set . . . . .

CLEAR
CLTE
COBOL
code file
COMMAND-.
comments
COMPILE .
compiler commands
compiletime errors
conditional compilation
conformant arrays
CONNECT
CONTINUE
COSH . .~-
DATE . . .‘. .
DISCONNECT . . . . . .
ECHOM . . . . . . . . .
ENDIF . . . . . . . . .

.EOF . . . . . . . . . .
ERHSG . . . . . I . . .
EXIT . . . . . . 3 .
extensions
external

functions . .
procedures . .

FAULT . . . . . . .
file . . . . . . .

type . . .
FIRST . . .
flags . . . .
formal procedures
FORTRAN .
FREEHEM . . .
generic functions
GETRAND . . . . .
HALT . . . . . . . . .
HEAP
HELP . . . .
hexadecimal constants
HOLD
identifier
IFFALSE
IFTRUE

ND-GO .12£.05

. . . 17.

55'. 52.
, 53.2.

11.
19.
9 I

9.
5.
28.

.‘22.
17.
25.
21.

25.

69.

13.
38.
32.
18.
19.
38.
19.

7.
19.
28.
16.

58.
18.
82.
9.
20.

23.

15.

20.
23.
41.
18.
18.
25.
23.
28.
5!

9

1

3
9

3

1.

5.
. 1

81,
18.

4.
21,

43.

20,

9.

ND-Pascal

8.

82.
55,

35.

Index

81.

50.



ND-Pascal
Index

implementation
INCLUDE'.
INPUT . . .
inputoutput
INTEGER
ISIZE
keyword
LAST
LINESPP
list file‘ .
LMAXINT
LONGINT
LONGREAL
LROUND
LTRUNC
LUNIT J . .’.
MARK
MAXREAL
MDLFI
module .
multiple source

,NDPascal
octal

constants .
Io .'. . . .

options . L .
'

OSIZE . g . . .
OUTPUT .. . . .
overlay . L . .
packed

files
structures .

PAGE
PLANC
POWER
procedure parameters

,program
, compilation

execution

heading .
loading

overlay
sample

PUTRAND .
RANDOM

access
REABT
REAL
realtime programs

ND-60.12£.05

._12.
.11.

56,

53.
7.
36.
35,
11.
20.
5.
23.
'10.
25.

11.
12.
12.
20.
18.
12.
21.
5.
7.
1.

23.
38.
B.
21.
3E.
65.

36.
12.
10.
17,
18.
13.

25.
67.
19.
60.
39.
10,

45.
64,
41.
22.
51.
21.
5.
43.

60.

40. 58.

26.

45, 56.

27. 28.

58.

15.

29. 46.

27. 31,
66. 68.

17. 315
61, 66,

67.

11.

77

53.

64,

53,

49,
68.

A”?



78 -
ND-Pascal

Index

RELEASE . . . . .'. . . . . . . . . . . . . . . . . r 18.
RESET . . . . . . . . . . . . . . . . . . . . . . . . 6. 28.
RMAX . . . . . . . . . . . . . . . . . . . . . . . . 22.
ROBJENT . . . . . . . . . . . . . . . . . . . .-. . . 21.
RUN . . . . . . . . . . . . . . . . . . . . . . . . . 27.
RUNHODE . ._. . . . . . . . . . . . . . . . . . . . . 20.
runtime errors . . . . . . . . . . . . . . . . . . . 9. 33. 43. 73.
scratch files . . . . . . . . . . . . . . . . . . . 39.
segment . . . . . . . . . . . . . . . . . . . . . . . 50.
set

command . . . . . . . . . . . . . . . . . . . . . 6, 28.
type . . . . . . . . . . . . . . . . . . . . . . . 2.

SETBT . . . . . . . . . . . . . . . . . . . . . . . . 22.
SETE . . . . . . . . . . . . . . . . { . . . . . . . 22.
SINH . . . . . . . . . . . . . . . . . . . . . . . . 18.
SINTRAN command . . . . . . . . . . . . . . . . . . 21, 29.
SHAX . . . . . . . . . . . . . . . . . . . . . . . . 22.
source
+11e25
program . . . . . . . . . ._. . . . . . . . . . . 4.

special symbols . . . . . . . . . . . . . . . I . . b.
STACK . . . . . . . . . . . . . . . . . . . . . . . . 20, 53. 60.
Standard . . . . . . . . . . . . . . . . . . . . . . 17.

files . . . . . . . . . . . . . . . . . . . . . . 36.
functions . . . . . . . . . . . . . . . . . . . . 16. 23.

. identifier . . . . . . . . . . . . . . . . . . . . S.
Pascal . . . . . . . . . . . . . . . . . . . . . . 1.
procedures . . . . . . . . . . . . . : . . . . . . 18.
types . . . . . . . . . . . . . . . . . . . . . . 11.

strings . . . L . . . . . . . . . . . . . . . . . . . 13.
structured types . . . . . . . . . . . . . .‘. . . . 12.
syntax errors . . . . . . . . . . . . . . . . . . . 26. 69.
terminal . . . . . . . . . . . . . . . . . . . . . . 19. 40.
TEXT . . . . . . . . . . . . . . . . . . . . . . . . 11. 35. 50.
TIME . . . . . . . . . . . . . . . . . . . . . . . . 19.
traps . . . . . . . . . . . . . . . . . . . . . . . . 15. 22. 34.
TUSED . . . . . . . . . . . . . . . . . . . . . . . . 19.
value . . . . . . . . . . . . . . . . . . . . . . . . 5. 16. 28.
variable initialization . . . . . . . . . . . . . . 16.
VERSN . . . . . . . . . . . . . . . . . . . . . . . . 20.

ND-EO.124.05


