
, NORD-IO/100
PASCAL Compiler

User’s Guide

NORSK DATA AS

NORD-lO/100
PASCAL Compiler

User’s Guide .

NOTICE

The information in this document is subject to change without notice. Norsk Data

A.S assumes no responsibility for any errors that may appear in this document.

Norsk Data A.S assumes no responsibility for the use or reliability of its software

on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not

be photocopied, reproduced or translated without the prior consent of Norsk Data

A.S.

Copyright © 1980 by Norsk Data A.S.

PRINTING RECORD
rinting Notes

12/80 Version 03

NORD-10/100 PASCAL Compiler — User’s Guide
Publication No. ND-60.124.03

NORSK DATA A.S
P.O. Box 4, Lindeberg 93rd
Oslo 10, Norway

iv

Manuals Can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg gérd
Oslo 10

Contents

1. DWHXXIKHEON

1.1.

1.2.

1.3.

The Pascal compiler

The main machine dependent characteristics

The main extensions

2. THE SOURCE PROGRAM

2.1.

2.2.

2.3.

2.4.

2.5.

206'

Identifiers

Keywords

Standard identifiers

Ccmpiler oomnands
2 . 4 . l . Conditional ocmpilation
2.4.2. Multiple source files
2.4.3. Options
2.4.4. Program listing
2.4.5. Special symbols

Eensions in mRD—10/100 Pascal
Variable initialization
Standard procedures and functions
External procedures and functions
External Pascal routines
External FOKL'RAN routines
Generic functions
Miscellaneous extensionsU1U'IUIU1U1U'IU'I

I

~JO‘IU'lubLAJNH

I

NNNNNNN

Implementation dependent features
2 6 l. Structured types
2.6.2. Packed structures
2 6 3. Strings and character arrays
2 6 4. Formal procedures

3 . PROGRAM CCMPILATION

3.1. HELP

3.2. C114PILE

ND—60.124.03

10
11
13
13

13
14
14
15
17
18
18
19

19
19
19
19
20

21

21

21

5.

vi

3.3. CLEAR

3.4. OPTIONS

3.5. 331‘ and RESET

3.6. EXIT

3.7. LINESPP

3.8. VALUE

3.9. Program compilation example

PROGRAMIOADINGANDEDGDJTICN

4 . l . Program loading

4.2. Run-time errors

INPUT/WTPU'I‘

5.1. File variables
5.1.1. The type TEXT
5.1.2. Standard files
5.1.3. Packed files
5.1.4. Non-TEXT files

5.2. Association to external files
5.2.1. WT
5.2.2. DIWI‘
5.2.3. Program heading parameters

5.3. Terminal I/O

5.4. Random access I/O

5.5. WRITEEDF

MLE’IENI‘ATIQ‘I DESCRIPTION

6.1. Memory layout

6.2. loader symbols

6.3. Procedure and function calls

ND-60. 124.03

23

23

23

23

23

23

24

25

25

25

27

27
27
28
28
29

29
29
30
30

31

32

32

33

33

35

36

vii

6 . 4 . Input/Output

7. REALr-TIMEPROGRAMS

8. OVERLAY PROGRAMS

8.1. Modules

8.2. Compilation of modules

8.3. Loading overlay programs

9. SAMPLE Pascal PROGRAM

APPENDIX B Run—time error messages

37

38

39

39

39

42

44

48

NORD—lO/lOO pascal Compiler ‘X

PREFACE;

The product

This manual describes the NORD—lO/lOO Pascal compiler. The compiler is
delivered in two versions, depending on the floating point hardware ofthe computer the compiler is run on, either 32—bit or 48—bit. Themanual applies to both versions.

The reader

The reader is assumed to know the Pascal language, as this manual
describes only the extensions and differences between NORD—lO/lOO
Pascal and Standard Pascal as described in Jensen and Wirth: Pascal
User manual and Report.

The reader is also expected to have sufficient experience with Sintran—
III to be able to enter a program through an editor, and to load and
execute the canpiled program.

The manual

The manual is organized as a reference manual, with the information
ordered according to function. Only differences between Standard Pascal
and NORD—lO/lOO Pascal are described. For oanplete examples of Pascal
programs, refer to chapters 8 and 9. Canpiler error messages and run
time error messages are listed in Appendix A and B, respectively.

ND-60.124.03

NORD—lO/100 Pascal Canpiler
INTRODUCTION

1. IN'I‘ROHJC'I‘ION

The Pascal language was designed in 1971 by Niklaus Wirth. The language
design had two principal aims. The first was to make available a
language suitable to teach programming as a systematic discipline, the
second was to develop implementations of this language which are both
reliable and efficient on presently available canputers.

The success of this language design proves tha- Pascal is not "yet
another language". Today Pascal has been implemented on almost all
computers commonly in use, ranging from the very large canputers to
mini— and micro-computers. It is the first language which shows ability
to bite into danains hitherto reserved for FORTRAN and BASIC. This
ability is not only local, but is apparent on a world—wide scale.

This manual contains the information necessary to compile and execute
Pascal programs on the NORD—lO/loo. It is assumed that the reader is
familiar with the Pascal language. The uninitiated reader is referred
to the Pascal Report or to an appropriate textbook.

Changes or additions relative to the previous version of this manual
are indicated by a vertical bar in the margin.

The present chapter gives a general description of the NORD—lO/lOO
Pascal system. The specific information necessary for the compilation
and execution of Pascal programs is found mainly in chapters 2 to 4.
Most of the chapters 5, 6 and 7 describe features for the more advanced
use of NORD—lO/lOO Pascal.

NORD—lO/lOO Pascal has been implauented according to the definition in
“Niklaus Wirth: The Progranming Language Pascal. Revised Report.
(1973)". Hereafter this language definition will be referred to as
Standard Pascal.

NORD—lO/lOO Pascal is a supefset of Standard Pascal, and has several
extensions in relation to it. Especially, extensions have been
introduced to make it convenient to compile and run Pascal programs in
a time—sharing environment. There are also facilities for the
generation and execution of real—time Pascal programs. Explicit
extensions of the Standard Pascal language will be noted as such in
this manual. The extensions should be avoided if program exportation is
planned or probable.

1.1. The Pascal compiler

The NORD—lO/lOO Pascal compiler was developed from the Pascal TRUNK
compiler designed at E'I'H, Zurich. The compiler produces BRF code,
which can be loaded by the Nord Relocating Loader and then executed. A
program may refer to separately compiled procedures and functions
written in Pascal, FOM'RAN, NFL or assembly language.

ND-60.124.03

6 mRD-IO/100 Pascal Compiler
INTRODUCI‘IQ‘I

1.2. The main machine dependent characteristics

A mRD—lO/IOO Pascal program may be run either as a one-bank or a two-
bank program. As a one—bank program, all progran and data reside within
64K of menory. As a two—bank program, the program may occupy up to 64K
in the instruction bank, and the data occupy up to 64K in the data
bank. One- or two-bank execution may be selected at compile—time with
the B option, or at load time with the DEFINE NOBKS conmand.

Large program systems may be overlaid using the standard NRL overlaying
mechanism.

The NORD—lO/lOO Pascal system has been constructed to run on NORD—
10/100 computers with either 32—bit or 48—bit floating point
arithmetic. Cross canpilation is possible by using the’compiler R
option.

A variable of type seit will by default occupy 8 words, i.e. a set can
have up to 128 elements. The S option can be used to reduce the number
of words occupied by sit variables.

1.3. The main extensions

Variables in the main program can be initialized. There is a convenient
syntax for array initialization.

The procedures (INNECI‘ and DISCDNNEDP enable a program to associate a

Pascal file variable with an external file at run—time. CONNECT has
been implemented such that the actual name of the external file easily
can be entered from the terminal running the program.

Random access I/O can be performed with the routines GE'I‘RAND and
PUTRAND.

ND-60.124.03

NORD—lO/lOO Pascal Compiler 7
THE SOURCE PROGRAM

2. THE SQJRCE PROGRAM

A Pascal source file must contain either

1) A full Pascal program, or
2) One or more procedures, functions or modules.

The source language must be Standard Pascal, with the restrictions and
possible extensions described in this manual.

A full Pascal program will compile into an executable object program,
while procedures, Emotions and modules will compile into code that may
be loaded together with a full program. A source file of the latter
kind must be terminated with the character "." (period).

The source file character set must be ASCII, where the lines are
separated by the Carriage Return character, and optionally, the Line
Feed character. Files produced by QED are acceptable as input to the
compiler.

A source input line must not exceed 100 characters. l1‘he Pascal
compiler will indicate a longer line as an error.

ND-60.l24.03

8 NORD—lO/100 Pascal Ccmpiler
THE SOURCE PROGRAM

2.1. Identifiers

An identifier may be of any length, but only the first 8 characters are
significant. Within an identifier, lower and upper case letters will
be treated as distinct, unless the U option is g (see section 2.4.3) .

2 . 2. Kemrds

The following are Pascal keywords, and cannot be used as identifiers:

Standard Pascal keywords:

ad .ar..rrza aegis case
const 1‘11 d_o downto
else end file for
function ggto i_f in
label M _no_t o_f
o_r packed procedure program
record refiat set then
:9. 3x155 _.__until BE
while with

Extra keywords in NORD—lO/lOO Pascal:

value module

A keyword may be written with lower and/or upper case characters.
However, within a keyword all lower case characters will be converted
to upper case. Thus,

end END End

are all representations of the keyword end.

2. 3. Standard identifiers

Following is a list of the standard identifiers in NORD—lO/lOO Pascal.
A standard identifier may be thought of as having been defined in a
block enclosing the program, and as such, may be redefined. Normally,
such redefinition should be avoided, since it easily may lead to
confusion.

ND-60. 124.03

NORD—lO/lOO Pascal Ccmpiler 9
THE SOURCE PRDGRAM

Standard identifiers in Standard Pascal:

ABS ARCTAN BOOLEAN CHAR
CHR (1)8 DISPOSE EDIN
EDF EXP FALSE GEI'
INPUT INTEGER LN MAXINT
NEW NIL ODD 0RD
OUTPUT PACK PAGE PRED
PUT READ READL'N REAL
RESET REWRITE ROJND SIN
SQR SQRI' SUCC TEXT
TRUE TRUNC UNPACK WRITE
WRI'I'ELN

Extra standard identifiers in Norm-IO/loo Pascal:

CONNECT COSH DIW GEI'RAND
HALT MARK MAXREAL POWER
PUTRAND RELEASE SINH WRITEEDF

All standard identifiers are written with upper case letters.

2 . 4 . Compiler camands

The source program text may contain cannands to the compiler. A ccnmand
is signalled by the character "$" in position one in a source line. The
rest of such a line is treated as a command to the canpiler, and no
part of it will be included in the proper program text.

The available compiler ccnmands are

ssm'
SRESEI‘
$IFI'RUE
SIFFALSE
$ENDIF
$OPI‘IONS
$INCLUDE
$EDF
$LINESPP
$PAGE

A compiler command may be abbreviated to its shortest unambiguous form.

2 . 4 . l . Conditional compilation

The NORD-lO/lOO Pascal compiler may be instructed to skip specified
parts of the source text. This may be useful in order to generate
different versions of a program fran the same source file.

ND-60.124.03

10 bDRD—lO/lOO Pascal Compiler
THE SOURCE PROGRAM

The skipping of source text is steered by flags, which are Boolean
variables. The flag identifiers are distinct from the program
identifiers, therefore no name conflicts between flag and program
identifiers can occur. A flag identifier can have up to 8 significant
characters. No distinction is made between upper and lower case
characters.

A flag is given the value TRUE by the conmand

$SEI‘ <flag>

A flag is given the value FALSE by the ccnmand

$RFSE.T <flag>

The skipping of source text is effected by the ocmnands

$IFI'HJE, $IFE‘AISE, and SENDIF

The ccmnand

$IE'I'RUE <flag>

has the effect:

If <flag> has the value TRUE: No effect.

If <flag> has the value FALSE:
Skip source text up to an $ENDIF <flag> with the same flag name.

The conmand

$IFFALSE <flag>

has the effect:

If <flag> has the value TRUE:
Skip source text up to an $ENDIF <flag> with the same flag name.

If <flag> has the value FALSE: No effect.

If an SIFTKJE or $IFFALSE coumand has a flag parameter that was not
previously defined, it will become defined and given the value FALSE.

Note that when source text is skipped, compiler oonmands (such as $SEI‘,
$IFI'RUE etc.) will also be skipped.

2.4.2. Multiple source files

The $INCIUDE—comnand facilitates insertion in a program of source text
from an alternate file. This is useful when a set of programs (within
the same project, say) use a cannon set of type, variable, and
procedure definitions. Also, "standard" data structures and procedures
for handling problems within a specific problan area, can easily be
incorporated in a program with the $INCLUDE—command.

ND-60.124.03

NORD—lO/lOO Pascal Compiler 11
THE SOURCE PROGRAM

The INCLUDE file may be divided into sections by the $EOF—oatmand.

The command

$INCLUDE <filename>

has the effect of switching the input stream from the present input
file to <filename>. When end of file or $EDF on <filename> is reached,
the input stream will be switched back to the previous input file. The
effect is to insert the text in <filename> at the place where the
$INCLUDE—oqrmand occurs.

The command

$mcwDE

has the effect that the next section of the most recent INCLUDE file is
inserted in the program.

$INCLUDE—commands may be nested to a maximum depth of 4.

2.4.3. _gpjiqls

There is a set of options that affect the output produced by the Pascal
compiler. Each option has a one-letter name.

Some of the options are associated with counters. A counter value
greater than zero means that the option is _o_n, a value equal to or less
than zero means that the option is g. The remaining options are
associated with specific values.

A counter option is increased or decreased by one by writing the option
name followed by "+" or "—" respectively.

The available options are (counter options are indicated by the
character "*"):

Bn Specify n—bank execution of program (n=1 or 2) . Default value is
n=1.

Ic Allow 0 as a legal character in an identifier. c must be in the
set [Ill’llllll#l’l%lll?I’l I’lll’l\l]-

L* Generate listing. Default value is l (93) .

M* List generated object code (MAC). Default value is 0 (off) .

P* Program oode dump. Default value is 0 (off) . This option produces
output which enables a closer inspection of the code generated by
the compiler. This is very useful when tracing a possible error
in the Pascal system. Therefore, whenever there is reason to
believe that a failure is caused by erroneous object code, the
user is requested to submit a listing of a P dump compilation
together with the error report.

ND-60 . 124 . 03

12

Rn

Sn

U*

x*

2*

mRD-10/100 Pascal Compiler
’IHE SOURCE PROGRAM

Specify n—word real (n=2 or 3). Default value is 2 on NORDs with
32-bit floating point arithmetic, and 3 on NORDs with 48—bit
arithmetic. A program that is to be cross-compiled, must not
contain real constants.

Specify n—word sets (n=l,2,...,8). All variables of type _s_g
will then occupy n words, and can have up to 16n elements. The
option can only be used once in a program, and must appear before
any reference to or use of set is made. n=l will cause in-line
code to be generated for most of the set operations. Default
value is n=8 (up to 128 elements).

Generate code to check array indices, subrange assignments,
pointer values and arithmetic overflow. Turning this option off
will make the object program smaller and faster, but also unsafe—.-
Default value is l (g) .

The T option may be switched on and off at any point in the
program, in order to perform run time checks in selected parts of
the program.

Note that the NORD hardware does not facilitate checking of
overflow on floating point arithmetic operations. Therefore,
Pascal can only detect overflow on integer operations. As a
special case, attempted floating division by zero is detected.

Convert lower case characters outside strings to upper case.
Default is l (93) .

For each procedure, list local variables in alphabetical order,
with their respective relative addresses and the number of times
each variable is referenced. Default value is 0 (off).

When 9n_, the loader symbols generated as entry point names for
procedures/functions on the outermost level of a main program or
a separately compiled file will be the names given by the
programmer. If the option is 9g, anonymous entry point names
will be generated for these routines (cfr. section 6.2) . Default
value is l (on) .

Initialize all variables to zero. Default value is 0 (if) .

Options may be set within a comment in the source program. The first
character within the comment must be "$". Thereafter, option settings
separated by "," may follow. Options may also be set following the
$OPI‘IONS compiler command.

Examples :

(*$M+,S3,T-*) means:

M+ List object code.
S3 Sets will occupy 3 words (up to 48 elements).
T— Do not generate testing instructions.

ND-60.l24.03

NORD—lO/lOO Pascal Compiler 13
THE SOURCE PROGRAM

SOPT Z+,U— means:

Z+ Initialize all variables to zero.
Do not convert lower case characters to upper case.C‘.I

2.4.4. Program listing

The ccnnend

$LINESPP n

tells the Pascal compiler to print the program listing with n lines per
page.

The cxxnnand

$PAGE

gives new page in the program listing.

2.4.5. Special symbols

Scne of the special symbols in Standard Pascal have one or more
alternate representations in NORD—10/100 Pascal:

Standard Pascal NORD—lO/100 Pascal

{ {or (*
} }or*)
[[or (.
]] or .)
T T or 9
ad largo: &
E 1050: "

The ” symbol may have various external representations on different
terminals and printers.

2.5. Extensions in MORD—lO/100 Pascal

This section describes most extensions in NORD-lO/lOO Pascal. Refer to
chapter 5 for I/O extensions. Real—time programs and overlay programs
are described in chapters 7 and 8, respectively.

ND—60.124.03

l4 NORD—lO/lOO Pascal Compiler
THE SOURCE PROGRAM

2.5.1. Variable initialization

Scalar and array variables in the main program may be initialized.
Initialization is signalled by the keyword value, and must appear after
the y§£7declarations and before the first procedure or function
declaration, or main program begi_.

Records, sets and pointers may not be initialized.

The syntax for initialization is:

<variableinit>::= value {<initialization>;}*
<initialization>=== <variab1e> = <val>
<val>::= <constant> I (<valuelist>)
<valuelist>::= <aval> { , <aval>}*
<aval>::= <constant> l <count> * <constant>
<count>::= <integer constant>

Examples:

value

x = 2.55;
I = 19;
TABLE = (l,3,2*7'-llll*0);

NAME = ('PASCAL '):

Since a string has the type array of CHAR, a string constant must be
enclosed in parentheses as shown in the last example.

2.5.2. Standard_procedures and functions

SINH and GOSH

These real functions calculate the arithmetic functions sinh and cosh
respectively.

POWER

POWER is a real function with two parameters x and y which calculates
the function xTy. When y is an integer, xTy is (in principle)
calculated by repeated multiplication. When y is real, xTy is
calculated by the formula xTy = eTy 1n(x). Thus, POWER(—l.0,2.0) will
give a runtime error, while POWER(-l.0,2) will give the correct result
1.0.

ND—60.124.03

NORD—lO/lOO Pascal Conpiler 15
THE SOURCE PROGRAM

HALT

HALT is a procedure which takes a string parameter. HALT will write
this string on the terminal and abort the program.

MARKandRELEASE

MARK and RELEASE provide an alternative to DISPOSE for the deallocation
of heap space. In applications where heap space is allocated and
deallocated in a stack fashion, the use of MARK and RELEASE is more
efficient, and may be more convenient, than the use of DISPOSE.

Both procedures take a pointer variable as a parameter. The call
MARK(<ptr>) will assign the address of the current heap top to <ptr>.
The call RELEASE(<ptr>) will deallocate everything on the heap which is
beyond the value of <ptr>.

A program which calls DISPOSE may not call MARK or RELEASE.

2.5.3. External procedures and functions

The Pascal library contains a set of external procedures and Emotions.
To use one of these, the procedure or function must be declared as
external within the program.

An installation may choose to have a system file containing external
declarations for these external procedures and Emotions. This file may
then be included in a program with the $INCLUDE compiler command.

'IUSED

External declaration:

function 'IUSED: REAL; extern;

'IUSED gives the elapsed CPU time in seconds.

TIME and DATE

External declarations:

procedure TIME(var hour, min, sec: INTEGER); extern;
procedure DATE (var year, month, day: INTEGER); extern;

THVIE and DATE give the current time and date respectively.

ND—60. 124 . 03

16 NORD—lO/lOO Pascal Compiler
THE SOURCE PROGRAM

mm

External declaration:

procedure W(echmuode: INTEGER); extern;

Executes MN 3 with echcmode in the A register. This will define the
echo mode for the terminal as specified in the Sintran manual.

BRKM

External declaration:

procedure BRKM(breakmode: INTEGER); extern;

Executes MN 4 with breakmode in the A register. This will define the
break mode for the terminal as specified in the Sintran manual.

MSG

External declaration:

procedure ERMSG(errorno: INTEGER); extern;

Executes MIN 64 with errorno in the A register. This will write the
Sintran error message corresponding to the given error number to the
terminal.

HOLD

External declaration:

procedure HOI.D(time: REAL); extegl;

Suspends execution of the program in <time> seconds. <time> is accurate
to 20 milliseconds.

VERSV

External declaration:

procedure VERSN(y3r_ year, month, day: INTEGER); extern;

Gives the date when the executing program was compiled.

RANIXM

External declaration:

function RANDCMWar x: REAL): REAL; extern;

This function gives a uniformly distributed pseudo randcm aber in the
interval <0,l>. Each new value is calculated from the value of the
parameter. This new value is also assigned to the parameter variable.
Thus, successive calls on RAM with the same variable as a parameter,
produces a uniformly distributed pseudo random number stream.

ND-60.124.03

NORD—lO/lOO Pascal Canpiler 17
THE SGJRCE PEWRAM

NOBANKS

External declaration:

function NOBANKS: INTEGER; giggly

Gives the number of banks (1 or 2) used by the running program.

RUMDDE

External declaration:

function RUNbDDE: IN'I'EHER extern;V.

Gives the execution mode of the running program:

0 — interactive
l - batch
2 — mode
3 — real—time

LUNIT

External declaration:

function LUNIT(var f: <filetype>): INI'EEER; extern;

Gives the logical unit number of the (open) file f.

2.5.4. External Pascal routines

The compiler accepts a source file containing procedure and function
declarations only. The file must be terminated with a dot.

The generated BRF file may be loaded with any Pascal main program which
contains extern declarations of one or more of the Pascal routines.
Only those routines which are actually referred, are loaded (each
external Pascal routine contains a LIBR <entrypoint> loader directive).

External routines may use extern declarations to get access to routines
on the outermost level of the main program, provided the main program
was compiled with the X option Q.

There is no check of the correspondence between the argument list of
the extefl declaration and of the separately canpiled procedure.

A file of Pascal routines may be headed by constant, type and var
definitions. The var definitions, if present, will overlap the
variables of the main program. These definitions may be used in
parameter specifications, or within the routines. The user is warned
that Pascal does not check that the definitions are consistent with

ND—60.124.03

18 mRD-10/100 Pascal Compiler
'IHE SOURCE PROGRAM

corresponding definitions in the main program. It is therefore strongly
recatmended to use the $INCLUDE facility to incorporate global
definitions in an external program module.

2.5.5. External FOKI'RAN routines

Separately compiled EORI'RAN subroutines may be called from a Pascal
program. A FORTRAN routine must be declared in the Pascal program with
a procedure or Emotion heading, and a body consisting of the word
"FORI‘RAN". Example:

procedure RDUTINEQEE x, y: REAL); FORTRAN;

Parameters of any type and kind, except Pascal procedure or function
names, may be transmitted to the POKERAN routine; however, no check is
made that the parameters are consistent with the formal parameters of
the EOKERAN routine. Parameters which are specified as y_a_r_, or which
occupy more than 8 words, are transmitted by reference. Value
parameters occupying 8 words or less are transmitted by value.

FORTRAN routines may only be called from one—bank Pascal programs.

When loading modules for a mix of Pascal and FORTRAN programs, the
following order must be observed:

1) Pascal main program
2) Pascal and FORTRAN external routines
3) FORTRAN library
4) Pascal library

2. 5 . 6 . Generic functions

For each scalar type T there is a function T(n) which converts the
integer n to the value of type T with ordinal number n.

Example:

1129.2
Season = (Winter ,Spring,Smmner,Autumn);

YES.
5: Season;

5 := Season(2);

5 now has the value Sumner.

ND—GO. 124.03

NORD—lO/lOO Pascal Compiler 19
THE SOURCE PROGRAM

2.5.7. Miscellaneous extensions

The compiler accepts octal constants. The syntax for an octal constant
is

{d}*dB
where d is an octal digit.

MAXREAL is a standard real constant with a value equal to the largest
possible floating point value (approximately lOT4930 and 10T76 for 48—
and 32—bit floating point numbers, respectively).

2.6. Implementation dependent features

2.6.1. Structured types

variables of structured types (records and arrays) may be assigned to
and compared, provided the variable type is not packed or contain
packed variables. variables of type packed array [...] a; CHAR are
excepted from this restriction.

2.6.2. Packed structures

Record and array types may be specified as packed. Each single variable
will then occupy a minimum number of bits, and several single variables
may be packed into one computer word. No single variable will cross
word boundaries. Also, a record or an array will always start at a new
word boundary.

The use of packed structures will save data space, but may increase
execution time significantly.

A variable within a packed structure cannot be used as a var parameter
to a procedure.

See chapter 5 for information on packed files.

2.6.3. Strings and character arrays

In Standard Pascal, a string constant with n characters is
automatically given the type packed array [1..n] 9f CHAR. This inhibits
assignment of, or parameter substitution with, a string to a variable
or formal of type array [...] 9f CHAR where the lower bound is
different from 1. In NORD—10/100 Pascal such assignment or substitution

ND-60.124.03

20 NORD—lO/lOO Pascal Compiler
THE SOURCE PROGRAM

will be legal provided the length of the string is equal to the length
of the array.

2. 6 . 4. Formal procedures

A formal procedure may only have value parameters. On entry to a formal
procedure, the actual parameters are checked only to see if they occupy
the same number of words as the formal parameters. The user is warned
that the use of formal procedures with pointer parameters is unsafe.

ND—60.124.03

NORD—lO/lOO Pascal Compiler 21
PROGRAM (IMPILATION

3. mm wVIPILATION

The Pascal compiler is invoked by the command

@PASCAL I

Initially, the compiler enters into a command processing mode, to
enable the user to specify source, list and code files, options etc.
The command processor prompts the user to give a new command with the
character “$".

The available commands are:

HELP
CCMPILE
CLEAR
OPTIONS
SET
RESET
VALUE
LINESPP
EXIT

A cotmand may be abbreviated to its shortest unambiguous form.

Note that the SEI‘, RESEI‘, LINESPP, and OPI'IQIS commands also are
available as compiler commands (cfr. section 2.4).

3.1. HELP

The HELP command lists the available commands on the user's terminal

(or batch output file). The list includes both the command processor
commands and the compiler commands.

3.2. C(MPILE

The C(MPILE command orders Pascal to compile the specified source file.
The present setting of flags and options will be used during the
compilation.

The syntax of the OCEIDILE comand is

COMPILE <source file>, <list file>, «ode file>

The parameter list may be omitted, in which case the command processor
will ask the user to specify the files one by one.

The parameters to CCMPILE may either be the actual file names, or the
logical units (octal) of open files.

ND—60.124.03

22 NORD—lO/lOO Pascal Canpiler
PROGRAM COMPILATION

<source file> contains the program to be compiled.

<list file> is the file on which the listing of the compiled program
will be written. The <list file> parameter may be cmitted, in which
case no listing will be generated.

The listing contains:

in column 1: Source line number (decimal).

in column 2: Relative program and variable addresses (octal) .

in column 3: A numbering of the begin—end, repeat-until,
case-Ed, and i_f_—else pairs in the program, to
iifiicate the nesting structure of the program. Also,
the declaration level for each procedure and function
is indicated.

in column 4: The source program.

The listing is divided into pages with a heading on each page
containing: version of canpiler, date and time of compilation, and
page number.

The listing will indicate a language syntax error at the exact spot
where it was discovered, together with an error number. If a part
of the source text was skipped as a result of the error, the part
that was skipped will be indicated by a line containing the text
**SKIP* at the left, and hyphens under the skipped text. Lines
containing syntax errors will in addition be written on the
terminal.

At the end of the listing a list of the error numbers and an
explanatory text for each error will appear.

A list of all compiler error messages can be found in appendix A.

<code file> is the file on which the BRF output will be written. The
<code file> parameter may be anitted, in which case no object code
will be generated.

In a second or following OCMPILE cannand, only <source file> need be
specified. The previous <list file> and <code file> will be used if
they were specified in a previous OCMPILE conmand. If a new <list file>
or <code file> is specified, the previous file will be closed, and the
new file opened.

Be aware that option and flag values may be affected by a compilation,
and thus may influence the result of a succeeding compilation. Use the
CLEAR cannand to bring the processor back to its initial state.

ND—60.124.03

NORD—lO/100 Pascal Compiler 23
PROGRAM COMPILATION

3.3. CLEAR

The CLEAR conmand brings the command processor back to its initial
state. The following actions are taken by CLEAR:

Set all options to their default values.
Delete all flags.
Close <list file> and <oode file>.

3.4. OPTIONS

The OPTIONS command is used to set compiler options. The ccnmand and
the options are described in section 2.4.3.

3.5. SET and RESET—

The SET and RESET carmands set a flag to TRUE and FALSE, respectively.
These conmands, and the use and effect of flags are described in
section 2.4.1.

3.6. EXIT

The EXIT cannand closes all files and returns control to the operating
system.

3.7. LINESPP

The LINESPP command is described in section 2.4.4.

3.8. VALUE

The cannand

$VALUE OPTIONS

lists the current value of all options.

The cannand

$VALUE FLAGS

lists the current value of all flags.

ND-60.124.03

24 mRD-10/100 Pascal Compiler
PROGRAM CINPILATION

3.9. Program compilation exarrple

Following is an example showing how a canpilation of a program is

performed. User input is underlined.

Terminal input/output Garments

@PASCAL Call Pascal compiler
PASCAL/NORD—lO/lOO VERSIm F 80-11—04 Identifying text
$0PI'ION B2,T— Ccmpile for 2—bank execution and

suppress generation of test
instructions .

$SEI' PARIS Generate "PARIS" version of
program. (Assumes source file
contains $IFI'RUE and $IFFAISE
tests on flag with name PARIS.)

WEE Canpile
Source file=MYPKJG Source is MYPROG
List file=LmE~PRmrER Listing to line printer
Code file=bflPROGCOD§ BRF code goes to MYPROGCDDE

NO ERRORS Message from compiler
24.32 SEIINDS OIJPILATIQ‘I TIME

$EXIT EXit
@ Control to SINI'RAN

ND-60.l24.03

NORD-lO/lOO Pascal Canpiler 25
PROGRAM IOADING AND EX'EKIUTION

4. PRERAMIDADIMEANDEXEUJTIQI

4 . l . Program loading

A compiled NORD—lO/lOO Pascal program must be loaded by the NRL loader
before it can be executed. The reader should consult the NRL manual for
details concerning the loader and the loading process. Here we will
just give an example of how a Pascal program is loaded and executed:

Terminal input/output Cements

(23% Call loader
RELOCATING IDADER LDR—193SG Identifying text
*L MYPROGCODE PASCAL-LIB Load code file and Pascal library
FREE:027433-162504 Free memory area
*@ Execute program
@ Execution finished

When loading files for a Pascal execution, the main program must always
be loaded first, and the Pascal library last. This means that all
external Pascal, FORTRAN or assembly routines and oflmer libraries (i.e.
E'I'NLIBR) must be loaded between the main program and the Pascal
library.

The NRL command PROGRAM-FIE should be used with great care due to
limitiations in the Sintran REKDVER command. Unless special precautions
are taken, a "hole" may remain in the area between code and data. If
there are pages that have never been loaded to (and therefore never
assigned to the file), a Sintran error message: NO SUCH PAGE will be
returned when the program is executed.

Further information on how a running Pascal program utilizes memory,
and how to make an absolute program, can be found in chapter 6.

4 . 2 . Run—time errors

If a program attempts to do an illegal operation, the program will
abort with an appropriate error message. If the error was an illegal
I/O operation, the name of the file variable involved will be part of
the message. A list of all run-time error messages can be found in
appendix B.

The error message will indicate at which absolute address (octal) the
error occurred, and, if the T option was on during compilation, which
line number in the source program this address corresponds to.

ND-60.124.03

26 mRD—10/100 Pascal Canpiler
Pm IDADING AND EXECUTION

Be aware of the following pitfalls regarding the source program line
number:

1 If the T option was turned gf_f_ and 93 one or more times during the
compilation, the source line number may be wrong.

2 If the program calls separately canpiled procedures, the source
line number may be that of an external procedure, if that procedure
was compiled with the T option 92.

3 If an error occurs within an external FORTRAN subroutine or
function, the Pascal system will not be able to give any
information about the error.

If there is any doubt regarding the source line number given in cases 1
and 2 above, you should correlate the octal address in the error
message with the octal progam addresses in the listing by the help of a
loader map. The loader map can be acquired by the NRL *ENI‘RIES—DEFINED
cannand.

If the program aborts with the error message STACK—HEAP OVERFIDN, then
your program needs more space for data. If the program was compiled
with the El option, you may reload and run the program in two—bank mode
(cfr. section 6.1) .

A Pascal main program may contain the declaration of a procedure

procedure FAULT(erno, lino, objad: INTEBER);

$912
w;

The effect is that when a run-time error occurs, FAULT will be called.
The error number, and source line number and object code address of the
error are the actual parameters. The procedure may contain any legal
Pascal code - for example, if the error is considered non—fatal, a jump
to a main program label. If the procedure exits through its Ed, the
normal error processing will be done.

The error numbers are found in appendix B.

It is the progranmer's responsibility that the declaration of FAULT
follows the rules above, and that a program does not continue execution
after a fatal error has occurred.

ND—60. 124.03

NORD—lO/100 Pascal Conpiler 27
INPUT/OUTPUT

5. INHJTCXJTPUT

Input/output is that part of a programming language which is most
operating system dependent. Several design and implementation decisions
therefore have to be taken by any implementor of Pascal. The reader is
warned that sane of the features described in this chapter may not be
implemented, or may work differently, in other Pascal implementations.

5. 1. File variables

File types may be used as any other type in a Pascal program, with the
following limitations:

1) fileo_f_ . . . file o_f. . . . is not allowed.

2) File variables, or structures containing file variables may not be
generated with the NEW constructor.

5.1.1. The type TEXT

There is a standard file type TEXT. A file of type TEXT is assumed to
contain a sequential text, subdivided into lines of maximum 136
characters each.

Note: In NORD-lO/lOO Pascal, the type TEXT is not equivalent to the
type Ecked file o_f_ CHAR. The latter type will be interpreted as
a sequence of characters where no line subdivision is visible.

The following procedures and Emotions may be used on files of type
TEXT:

EDIN READ READIN WRITE WRITEIN

On input, the CR character (value 15 octal) will be taken as a line
separator. An LF character (value 12 octal) following CR will be
ignored. According to Standard Pascal, EDLN(<file>) will become TRUE
when a READ(<fi1e>,c) reads the last character before the CR. When
EDLN(<file>) is THJE, the next READ(<file>,c) will deliver the space
character (value 40 octal) .

0n output, WRITELN will write the two characters CR and LF.

The editing specifications in READ and WRITE are extended to enable I/O
of the octal representation of integers. In READ, an integer parameter
may be followed by a :n specification, while in WRITE, an integer
parameter may have a :n specification after the :<fie1d width>

ND—60.124.03

28 NORD—lO/100 Pascal Compiler
INPUT/CUTPUT

specification. In both cases, if n has the value 8, the octal
representation of the integer will be read or written. If n is not
equal to 8, decimal conversion will be performed.

The following table gives the number of character positions used in the
output file when a value needing a minimum of p characters for its
representation is written. In the table, w is the value of <field
width>. A <field width> of value zero gives the default field.

w=0 0<w<p p<=w(1)

integer 6 p w
real 16 (2) 16(2) ,p(3) w
Boolean 5 w (4) w
character 1 w w
string p w (4) w

(1) Blank fill to the left
(2) Floating point representation
(3) Fixed point representation
(4) The initial w characters of the string

('FAISE‘ and 'TRUE' when Boolean)

5.1.2. Standard files

There are two standard files, INPUT and (IJTPUT, both of type TEXT.
These files may therefore be used without declaration.

5.1.3. Packed files

In a GET or PUT-operation on a non—packed file, a whole number of 16—
bit words will always be transferred.

In the declaration

Ecked file 9; T,

the key—word Ecked will have an effect only if values of type T occupy
8 bits or less. In these cases, PUT and GET will operate as follows:

If the values of type T occupy 6,7 or 8 bits:
Transfer one value.

If the values of type T occupy l, 2, 3, 4 or 5 bits:
Pack (unpack) the maximum number of values in one 16-bit word.
Transfer a word when it is full (PUT) or empty (GET).

Be aware that on reading a file of this kind, it may be the case that
EDF is found too late, if the last word was not completely filled when
the file was written.

ND-60.124.03

NORD-lO/100 Pascal Ccmpiler 29INPUT/OUTPUT

5.1.4. Non-TEXT files

when E is not of type TEXT,

READ(f,x)

is equivalent to

begin x := fT; get(f) egg_
and

WRITE(f,x)

is equivalent to

m f? == x: putm ea.

5.2. Association to external files

The procedures CDNNECT and DISCONNECT have been implemented in NORD—10/100 Pascal to enable run-time association between a file variableand an external file.

5.2.1. CONNECT

The CONNECT procedure can have up to 5 parameters:

CONNECT(<file>,<filename>,<type>,<access>,<status>)

<file> is the variable name of the file.

<filename> is either an integer giving the logical unit number ofan open file, or a string (or an array 9: CHAR) containingthe external name of the file.

<type> is a string giving the default file type.

<access> is a string giving the file access mode OH, R, WX, RX, RW,
WA, WC or RC .

<status> is an integer variable whe;e status for the CONNECT
operation will be left. If the CDNHECT was successful,
<status> will be equal to zero; if an error occurred,
<status> will be equal to the SINTRAN error number.

The <file> parameter is mandatory. One or more of the remainingparameters may be anitted, either by leaving the parameter positionempty, or by prematurely closing the parameter list with the right

ND—60.124.03

30 mRD-IO/100 Pascal Compiler
INPUT/OUTPUT

parenthesis.

The effect of quitting one of the parameters <filename>, <type> and
<access> is that Pascal will enquire the user to supply the value frcm
the terminal.

The effect of quitting the <status> parameter is: If the OONNEJCII
operation failed, then write the error message to the terminal. Repeat
the (IJNNE‘CT operation if the file name was specified from the terminal,
otherwise abort the program.

Remember that RESET or REWRITE must be called before 1/0 on the file
can be performed.

5.2.2. DISMIEET

The DISCHJNEIH‘ procedure has one parameter:

DISCINNECkilefl

The external file will be disassociated fran the <file> variable. If a
file name was given when <file> was opened, the external file will be
closed. A <file> opened with a logical unit number will not be closed.
A later CCNNECI‘ may associate <file> with another external file.

5.2.3. Program heading parameters

The program heading may have file variable names as parameters. For
each of these file variables the compiler will automatically generate
sane code in the beginning of the main program:

For the file INPUT:

CINNECI‘UNPUIHO, 'SYMB' ,‘R'); RESEI'(INPUT)7

For the file (INPUT:

W(GTI'PUT,1,'SY1\B‘,'W'); RFWRITE(OUI‘PU‘I‘);

For other file variables F:

OCNNECI‘(F);

The effect is that for every user—defined file variable in the program
heading the user is enquired to supply the actual file name, type and
access mode. The files INPUT and (IJTPUT will be associated with the
standard input and output files, i.e. the terminal for interactive
jobs, and the appropriate disk or terminal files for mode and batch
jobs.

‘

For all file names in the program heading, except INPUT and OUTPUT, the
call on RESET or REWRITE must be programmed.

ND-60.124.03

NORD—lO/lOO Pascal Canpiler 31
INPUT/OUTPUT

Since CONNECT and DISCONNECT are not part of Standard Pascal, file
variables in programs that are to be ported should appear in the
program heading, instead of being explicitly opened by calls on
CONNECT.

5.3. Terminal I 0

When the actual external file is the terminal running the program,
certain special actions are taken by the I/O system.

On input, a RESET will at read the first character into the file
window, as specified in Standard Pascal. Instead, RESET will put the
space character into the window, and set mm to TRUE. Thus, in the
input from the terminal, an extra initial space will appear. The reason
for this modification is to permit output to the terminal prior to the
first input without program hang—up.

In a READ operation from the terminal, a number syntax error will not
result in a program abortion. Instead, the message

ILLEGAL NUMBER SYNTAX

will be written to the terminal, and the READ performed anew, such that
the correct number can be retyped.

An input TEXT file associated with the terminal will be given logical
unit ntmlber zero. This enables editing of the terminal input with C'I'RL
A and CI'RL Q.

ND—60.124.03

32 NORD—lO/lOO Pascal Compiler
INPUT/OUTPUT

5.4. Random access IQ

A file variable may be associated with an external randcm access file.
Random access I/O may be done on that file with the procedures HJTRAND
and GETRAND. Each of these procedures has two parameters:

<fi1e> and <block number>

P‘U'I'RAND writes the current content of the file window to the given
<block number> on the file. GEI'RAND reads the block in <block number>
on the file into the file window.

The block size is equal to the number of words occupied by the file
canponent type. This block size is determined when the file is opened
by a call on CDNNECT.

RESEI‘ and REWRI'I‘E have no effect on randan access files.

A random access file cannot be packed, but may contain packed elements.

5.5. WRITEEJF

WRITEEDF takes a file variable as a parameter. The procedure will write
an end-of—file mark on the file, provided this operation is meaningful
for the kind of medium on which the file resides.

ND—60 . 124 . 03

NORD-10/100 Pascal Compiler 33
IMPLEMENTATION DESCRIPTION

6 . WATION DESCRIPI‘Im

This chapter will give some information on how the NORD—lO/loo Pascal
system works internally to enable more advanced use of the system. Be
aware that most of the features described in this chapter are very
NORD—lO/lOO and SIN'I'RAN dependent. Therefore, the reader should not
assume that other Pascal implementations work in the same or a similar
manner. Also, the reader is warned that implanentation details may
change in future versions of NORD—lO/lOO Pascal.

6 . l . Memory layout

The following figures show how mamry is utilized by a running Pascal
program (including the Pascal canpiler itself).

One-bank program

address
0 (IOADER)

177777 SYS DATA

Two—bank program

0 (LOADER) STACK
.._-—_._—-_-_—..—-

PROGRAM
_————___"——

(constants) OQISTAN‘I'S

(main data) MAIN DATA

177777 (sys data) SYS DATA

ND-60.124.03

34 NORD—lO/lOO Pascal Compiler
WATICN DESCRIPTION

PROGRAM The Pascal program together with the necessary library
routines.

'

STACK The memory used by procedures and functions that the program
calls. The stack grows from low towards high addresses.

HEAP The memory used by data allocated with the NEW constructor.
The heap grows frcm high towards low addresses.

CINSI‘ANTS The constants referred to by procedures. For each procedure,
a cannon block containing such data is allocated within the
CIJNS'I‘AN'I'S area.

MAIN DATA All variables declared in the main program. This area is a
ccxrmon block named C.MAIN.

SYS DATA The variables and constants used by the Pascal library
routines. This area consists of two cannon blocks named SCRI'L
and SCRI'D.

The object program and Pascal library are identical in the one— and
two-bank versions. When running, the system detects the actual
execution mode by sensing bit zero in the STA'lUS register.

The decision whether to run a program in onebank or two-bank mode may
be postponed till the time when the program is to be loaded. Before
loading, enter the corrmand

*DEE‘INE I‘DBKS n

where n is l or 2. This will result in one— or two—bank execution
respectively. A definition of mBKS takes precedence over the canpile—
time B option.

One-bank prgrams

In a cnebank execution, Pascal will place the stack and heap in the
largest of the two areas

a) address zero to first PROGRAM location
b) last PROGRAM location to first (DJSTANTS location

To make maximum space for the stack and heap, one may either do an
image load, or use the NRL SET-IDAD—ADDRESS ccnmand to minimize area
b) 0

Be aware that the area between the last PROGRAM location and the first
CDNSI‘ANTS location will occupy space on the :PROG file. If default load
address is used, the size of the :PRm file will be in excess of 50
pages .

To make a minimal absolute version of a program, use the SET-LOAD—
ADDRESS cmmand to minimize area b).

ND—60.124.03

NORD—lO/lOO Pascal Compiler 35
DEPLEMENTATION DESCRIPTION

Two-bank programs

A two-bank program is loaded exactly as a onshbank program. Before
execution starts, the CONS'I‘AN'I‘S, MAIN DATA, and SYS DATA areas are
moved to the data bank. The data will be located at the same addresses
as they had in the instruction bank.

To make a minimal absolute version of a two-bank program, use the SET-
LDAD—ADDRESS camand to minimize the space between the PROGRAM and
CONSTANTS areas.

A two—bank program will usually be slower than a one-bank program due
to the necessary ALTON and AL'IOFF monitor calls within the Pascal
library.

Forced allocation of stack and heap

The user may determine where to allocate the stack and heap. This can
be done at load-time by entering the following conmands before the
Pascal library is loaded:

*DEFINE STACK <value>
*DEFINE HEAP <value>

The starting addresses for the stack and heap will then be the given
values. It is the user's responsibility that the definitions are
consistent, and that no part of the stack—heap area overlaps the
program or conmon area. The result of doing one of the definitions and
omitting the other is undefined.

6. 2 . loader symbols

The canpiler generates 7—1etter entry point names. The names found in
the loader map are constructed as follows:

Main entry point: The first 7 letters of the name given by the
programmer in the PROGRAM statement.

Modules regardless of declaration level; procedures and functions on
the outermost level of a main program or a separately compiled file:
The name given by the programner. Note that the loader uses 7—letter
names, so that these identifiers ought to be distinct within the 7
first letters. The compiler can be ordered to make the procedure and
function names anonymous by turning the x option 91:.

Procedures/functions local to other routines or nodules, all procedures
and functions when the X option is gaff: These have the form nnnndd*
where mm are the first four characters of the procedure or function
name. dd are two invented characters, to make entry point names
distinct.

Non—local labels: These have the form LABd+ where dd are invented
characters.

ND-60. 124.03

36 mRD-IO/lOO Pascal Compiler
WATICN DESCRIPTION

External procedures and functions: The name given by the programmer.

Labelled cannon areas: These have the form nnnndd& where nnnn are the
first four characters of the procedure or function with which this
common area is associated. dd are invented characters.

6.3. Procedure and function calls

The following information on how procedure and function calls are
handled by Pascal should enable a user to write simple external
routines in MAC or NFL.

For each procedure or function call, Pascal generates an object on top
of the stack to hold system data, parameters, and data local to the
routine. At the time of entry to the routine, the registers and stack
contain the following data:

x Static Link
A 'Dop of new procedure object relative to B
B Dynamic Link (calling procedure object)
L Return Address

Stack:

(A)+(B) -> system 10c
system loc
system loc
function value
parameter (1)
parameter(2)

parameter (n)

In a proper Pascal procedure, the three system locations are used to
contain Static Link, Dynamic Link, and Return Address.

The function value occupies 0 words if the object is a procedure; 1, 2,
or 3 words if the object is a function.

parameter(i) can have the following form:

when 1313. parameter reference to actual
when value parameter k—word value if k<=8

reference to actual if k>8

The routine may use 200 octal stack locations without causing stack—
heap overflow.

ND—60.124.03

NORD—lO/100 Pascal Ounpiler 37
IMPLEMENTATICN DESCRIPTION

On exit from a procedure or function, the following Jonditions must be
satisfied:

1) The B—register must hold the same value as it had on entry.

2) For a function, the A—, AD—, or TAD-register must hold the function
value.

3) The exit must be to Return Address (= contents of L—register on
entry).

6.4. In tOut ut

To save I/O execution time, the Pascal system buffers access to
sequential files. This is handled automatically by Pascal, and requires
no intervention by the user. Pascal allocates n buffers of 256 words
for the buffering. The first n disk files which the program CXNNEC'I‘S
for sequential I/O will then be accessed via buffers.

By default the number of buffers, 11, is equal to 3. To redefine this
number, either to save space, or to access more than 3 files via
buffers, enter the earmand

*DEE‘INE mBUF n

before loading the program. The maximum legal value for n is 10.

ND—60.124. 03

38 mRD-lO/IOO Pascal Compiler
READ-TIME PRQERAMS

7. Ram-mm

Any Pascal program may be run as a real—time program. This requires no
changes to the BRE' code generated by the compiler. Thus, the same code
may be used for both regular and real-time execution.

To load a program for real—time execution, enter the comnand

*REE'ER-SYMmL SRI'PM

before the Pascal library is loaded. This will have the effect of
selecting library routines adapted to real-time execution. In
particular, the following effects should be noted:

1. When a run—time error occurs, the following statanents will be
executed:

M(50,<Pascal error number>); (*Cfr. appendix B*)
M(51,<source line number>);
RI'EXT;

2. No terminal will be connected to the program. Thus, to execute a
W operation where one or more parameters are missing, unit 1
must be reserved prior to the WI.

The Pascal library is not canpletely re—entrant. However, several real-
time programs may share the same (re—entrant) segment containing
external procedures and/or the Pascal library, provided the real—time
programs have the same mm start address.

The STACK-HEAP area will by default be allocated as for background
programs (cfr. section 6.1) . The placement and size of this area may be
determined by the user if sane other allocation is desired (cfr.
section 6.1) .

For a real—time program, RUNVDDE is equal to 3 (cfr. section 2.5.3).

In case the real—time program does not access files, space may be saved
by entering the command

*DEFINE—SYDML mm 0

before loading the program' (cfr. section 6.4) .

Real—time FORTRAN routines may not be called from a Pascal program.

ND—60. 124.03

NORD—lO/lOO Pascal Compiler 39
OVERLAY PROGRAMS

8. OVERLAY PROGRAMS

Large program systems written in Pascal may be run as a set of overlaid
programs. The Pascal overlay system is adapted to the NRL overlay
generation facility. The reader is referred to the NRL manual (version
G) for details concerning the overlaying of programs.

8.1. Modules

A Pascal program system which is to be run in overlay mode will consist
of a set of modules. A Pascal main program is the base, or root,
module. All other modules will be procedures or functions. A procedure
or function will become an overlay module when the key—word module
precedes the procedure/function declaration.

Example: module procedure CARMEL; w: world); . . .

Modules may be nested. The maximum number of overlay levels is ten.

Modules may appear either

1) within a main program, or

2) in a separately compiled file containing external
modules, procedures and functions.

The modules for a program system may be generated in either way, or by
using a combination of the two.

A module which calls an external, separately compiled module, must
contain an extern declaration of the latter module.

Example: module procedure MADRID(x,y: SPANIARD); extern;

A module may not be forward declared.

A file containing nodule declarations may be headed by a copy of the
main program const, type and var definitions. This feature allows for
easy communication between modules through main program variables. In a
similar manner, nested modules may be used to allow child modules to
communicate through the local variables of the mother module.

8.2. Compilation of modules

The code for each module must be written on a separate BRF file. The
compiler will prompt the user to specify the BRF file when a module
declaration is encountered in the source file. This means that when
compiling a file of modules only, no code file should be specified in
the $CCMPILE command.

ND—60.124.03

40 mRD-10/100 Pascal apiler
OVERLAY PROGRAMS

arm
The following example consists of a main program with modules, and one
external module which the main program calls.

Main program:

PROGRAM mum);
VARA,B,C: ARRAY [1..10,1..10] OF REAL;

I: INTEGER;

Pm RESULT;
VAR I,J: INI'EGER;
BEGIN

BUR I := l ’10 10 DO
BmIN

FOR J := 1 'IO 10 no WRITE(C[I,J]:7);
WRITELN

END
END (*RESULT*)7

MODULE WIRE INIT;
VAR LJ: INTEGER;
BEIN I

FOR I := l '10 10 m
BEGIN AILJ] := SQR(I)*J;

B[I,J] := LN(I)*SQR(J)
END;
RESULT

END (*INIT*);

IVDDULE FUNCTION FACIORIALU: INI'EEER): INTEEER;
BEGIN

IFI<=1THENFACIORIAL:=1
ELSE FACIORIAL := I*FACIORIAL(I—l)

END (*FACIORIAL*);

WWW; EXTERN;

BEGIN (*MAIN PROGRAM")
INIT;
FOR I := 1 '10 10 no WRITE[N(FACIORIAL(I) :10)
ACCLM

END.

ND-60. 124.03

NORD-lO/lOO Pascal Compiler 41
OVERLAY PROGRAMS

External module:

VAR A,B,C: ARRAY [1..10,1..10] OF ;
I: INTEEEIR;

WPROCEUJREACCLM
VARI, STATUS: ‘0

-

PRQIEIIJRE RESULT; EXTERN;

BEGIN SUM := 0.0
FOR K := l '10 10 IX) SUM := SI.M+A[I,K]*B[K,J];
IF SIM > 1.0E6 'IHEN STATU := l;
C[I,J] := SIM

END (*ROW*);

\-

IVDDULE PMIEDURE COLWIN(I: INTEGER);
VAR J: INTEGER;
BEGIN STATUS := 0

FOR J := l '10 1
END (*(XDIIJMNH;

6 no Roww)

MODULE PROCEDURE WRI‘KDL(I: INTEGER);
VAR J: INTEGER;
BEEIN

EUR J := l ‘10 10 DO WRITE(C[I,J]:12);
WRITELN

END (*WRI'ICOL*);

BEGIN (*ACCUM*)
EUR I := 1 'IO 10 DO
RESIN coma);

IF SI'A'IUS = 0 'IHEN WRI'ICOLU)
ELSE WRI'I'EIN('COILW',I:3,' IN ERROR')

END;
RESULT

END (*ACCLlVI*);

This program contains examples of the following:

— Child modules communicate through variables of the mother module
(STATUS)

— Child modules use a procedure within the mother module (ROW)

- A module may be called recursively — in such a case the call is
executed as a normal procedure function call (FACIORIAL)

ND-60.124.03

42 NORD—lO/lOO Pascal Compiler
OVERLAY PROGRAMS

Conpilation of the example programs:

@PASCAL
PASCAL/NORD—lO/lOO VERSION F 80—11—04
$CGVIPILE EXAMPLE LINE-PRINTER "EXAMPLE"
Codefile for module INIT : "INIT"
Codefile for nodule FACIORIAL : "FACIORIAL"
NO ERRORS

1.34 SEKIONDS mIIATION TIME
$OOMPILE ACCUM LINE-PRINTER
Codefile for nodule ACCUM : "AOIIM"
Codefile for module CDHJMN : "(DIUBN'
Codefile for module WRITCDL : "WRITC_QL_"
NO ERRORS

1.20 SECDNDS CDJPILATICN TIME
$EXIT

8.3. loading overlay programs

When loading nodules to create a system of overlaid programs, the
following points must be noted:

- The user must allocate the STACK-KEEP area with the
*DEE‘INE STACK xxxxx and *DEFINE HEAP moo: connands (cfr. section
6.1) . It may be necessary to do a trial load of the system in order
to determine the optimum setting of STPCK and HEAP.

— The Pascal library must be loaded together with the main program,
and with any module which refers routines in the library not
referred to in the main program. To be safe, the library may be
loaded with every nodule (only those routines not already present
will actually be loaded).

— The modules must be loaded in an order which corresponds to the
overlay tree structure, that is:

1. The main program. Call this the current nodule.

2. The next module within the current module. This nodule becomes
the current nodule. Apply rule 2 recursively.

Be aware when specifying entry point names to the loader that NRL reads
the last 7 characters, whereas Pascal will use the 7 first. Therefore,
to avoid problems, never specify longer entry point names than 7
characters.

A file containing an overlay program (:PROG file) should not be renamed
with the Sintran—III RENAME—FILE camand, as the absolute program must
contain a record of the file name where the overlay segments are found.
This record is _n_o_t; updated with the RENAME—FILE cannand.

The file name is recorded exactly as specified in the DUMP conmand,
therefore, to avoid ambiguity with file names created at a later time,
it is reconmended that the file name is not abbreviated. If the user

ND—60. 124. 03

NORD—10/100 Pascal apiler 43
OVERLAY PROGRAMS

name is specified, the :PROG file cannot be copied to other users and
executed. (If the receiving user has access to the original owner's
file, the root segment will be taken frcm the receiver and the overlay
segments from the original owner. This is, at best, hazardous.)

Examgle

Loading of the program example in section 8.2:

@N_RL_
RELQIATING IDADER LDR-l935G
*IMAGE—FILE 100
*OmAY-GENERATIQQ 10
*DEE‘INE STACK 0
*DEFINE HEAP 150000
*DEFINE NOBKS E
*IDAD EXAMPLE PASCAL-LIB
FREE: 007534—174625
*OVERLAY-ENI'RY (l) INIT
*LOAD INIT
OVERLAY l LEVEL 1 CCMPIEI'ED. AREA: 007534-007655

5LDAT=007534 INIT=007534 HEAP=150000
*OVERLAY-ENTRY (l) FAC'IORI
*IOAD FACIORI
OVERLAY 2 LEVEL 1 (IMPIEI'ED. AREA: 007534-007573
FACIORI=007534
*OVERLAY—ENTRY (1) ACCLM
*LOAD ACCUM
OVERLAY 3 LEVEL 1 00mm. AREA: 007534—010022
ROW FS*=OO7534 ACCUM=007700 ACCUFQSx/174615
*OVERLAY-ENI'RY g2) CDUJMN
*LOAD CDLUMN
OVERLAY 4 LEVEL 2 mm. AREA: 010023-010057

COHIMN=010023
*OVERIAY-ENTRY (2) WRITCOL
*mAD WRI'I‘CDL
OVERLAY 5 LEVEL 2 comm. AREA: 010023—010100
WRILOOL=010023
*DIMP "EXAMPLE"
*EXIT

ND-60.124.03

44 DDRD-10/100 Pascal Compiler
SAMPLE Pascal PROGRAM

9. SAMPIEPascalPImRAM

@PASCAL
PASCAL/DDRD—IO/loo VERSICN F 80—11-21
$CQ-IPILE PASSCAN, TERMINAL, "PASSCAN"

PASCAL/NORD—lO/lOO VERSION F 80—11—21 80—12—03

1 000000 PROGRAM PASQIAN ((IJTPUT);
2 000236 (* TIMES 'IHE AVERAGE OF N X N ACEESSE‘S *)
3 000236 GJNST MAXARRAY = 1000;
4 000236 CHUNK = 200;
5 000236 VAR X,Y,K : INTEGER;
6 000241 Z : REAL;
7 000244 STIME : REAL;
8 000247 EI'IME : REAL;
9 000252 TABLE:ARRAY[1..MAXARRAY]OFREAL;

10 006142
11 006142 L1 FUNCTICN TUSED : REAL; EXTERN;
12 177606
13 000000 Bl BEEIN
14 000000 K := (TIUNK;
15 000010 R2 REPEAT
16 000010 B3 FOR X := l '10 K DO BEGIN
17 000020 STIME := ‘IUSED;
18 000025 FORY:=1'IOKDOZ:=TABLE[Y];
19 000051 ETIME := 'IUSED;
20 000056 TABLE [X] := EI‘IME - STIME
21 000066 E3 END ;
22 000076 Z := 0;
23 000103 FORK :=1 '10 K DO Z := Z + TABLE[X];
24 000152 Z := Z / K;
25 000163 WRITEIN (' AVERAGE 'IUSED 'IO ACCESS ', K ,
26 000177 ' X ', K ,' Elms =',Z:8:4);
27 000223 K := K + CHUNK;
28 000231 U2 UNTIL K > MAXARRAY;
29 000237 E1 END.

NO ERRORS
1.46 SW3 WILMION TIME

$EXIT
@NRL
R'ETLBCATING LOADER LDR—193SG
*1v PASSCAN PAS-LIB
FREE: 030146—170501
*RUN

AVERAGE 'IUSED '10 ALXZESS 200 X 200 EIHEENTS = 0.0072
AVERAGE 'IUSED '10 MS 400 X 400 W3 = 0.0140
AVERAGE 'IUSED '10 ACCESS 600 X 600 ELEMENTS = 0.0211
AVERAGE 'IUSED '10 ACCESS 800 X 800 ELEMENI’S = 0.0287
AVERAGE 'IUSED 'IO ACCESS 1000 X 1000 W = 0.0356

ND-60 .124 .03

NORD—lO/lOO Pascal Compiler
Compile—time error messages

\OODQQU'Iv-JNH

F‘P‘P‘P‘P‘F‘F‘ mm-wI—‘O

17:
18:
19:
20:
21:
22:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:

101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:

APPENDIX A Compile—time error messages

Error in simple type
Identifier expected
'PROGRAM' expected
')‘ expected
':' expected
Illegal symbol
Error in parameter list
‘OF' expected
‘(' expected
Error in type
‘[' expected
‘]' expected
‘END‘ expected
';' expected
Integer expected
'=' expected
‘BEGIN' expected
Error in declaration part
Error in field—list
',' expected
'*‘ expected
Illegal character
Error in constant
':=' expected
'THEN' expected
'UNTIL' expected
'DO' expected
"IO‘/'InNN'IO' expected
'IF' expected
'FHE'emncufl
Error in factor
Error in variable
Identifier declared twice
Low bound exceeds high bound
Identifier is not of appropriate class
Identifier not declared
Sign not allowed
Number expected
Incompatible sabrange types
File not allowed here
Type must not be real
Tagfield type must be scalar or subrange
Incompatible with tagfield type
Index type must not be real
Index type must be scalar or subrange
Base type must not be real
Base type must be scalar or subrange
Error in type of standard procedure parameter

ND—60.124.03

45

46

117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:

NORD—lO/lOO Pascal Compiler
cxmpile—time error messages

Unsatisfied forward reference
Forward reference type identifier in variable declaration
Forward declared; repetition of parameter list not allowed
Function result type must be scalar, subrange or pointer
File value parameter not allowed
Forward declared function; repetition of result type not allowed
Misssing result type in function declaration
F—format for real only
Error in type of standard function parameter
Number of parameters does not agree with declaration
Illegal parameter substitution
Result type of parameter function does not agree with declaration
Type conflict of operands
Exepression is not of set type
Tests on equality allowed only
Strict inclusion not allowed
File comparison not allowed
Illegal type of operand(s)
Type of operand must be Boolean
Set element type must be scalar or subrange
Set element types not compatible
Type of variable is not array
Index type is not compatible with declaration
Type of variable is not record
Type of variable must be file or pointer
Illegal parameter substitution
Illegal type of loop control variable
Illegal type of expression
Type conflict
Assignment of files not allowed
Label type incompatible with selecting expression
Subrange bounds must be scalar
Index type must not be integer
Assignment to standard function is not allowed
Assignment to formal function is not allowed
No such field in this record
Type error in read
Actual parameter must be a variable
Control variable must not be formal or global
Multidefined case label
Tbo many cases in case statement
Missing corresponding variant declaration
Real or string tagfields not allowed
Previous declaration was not forward
Again forward declared
Parameter size must be constant
Missing variant in declaration
Substitution of standard proc/func not allowed
Multidefined label
Multideclared label
Undeclared label
Undefined label
Error in base set
value parameter expected
Standard file was redeclared
Undeclared external file

ND—60.124.03

NORD—lO/lOO Pascal Compiler 47
Compile-time error messages

173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
190:
191:
193:
201:
202:
203:
204:
205:
206:
207:
208:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
300:
301:
302:
303:
304:
320:
322:
331:
332:
333:
340:
380:
381:
382:
383:
384:
385:
386:
387:
390:

Fbrtran procedure or function expected
Pascal procedure or function expected
Missing file 'INPUT' in program heading
Missing file 'OUTPUT' in program heading
Illegal assignment to control variable
variable used as control variable in outer loop
Read into control variable not allowed
Source line too long
value of tagfield out of range
Illegal assignment to function name
Ferward declared procedure not defined
Illegal jump to label
variant already defined
Type must be scalar, subrange or array
value list too long
Modules can not be forward declared
Error in real constant: digit expected
String constant must not exceed source line
Integer constant exceeds range
8 or 9 in octal number
Real number overflow
Real number underflcw
Tbo many decimals
String constant of zero length not allowed
Too many nested scopes of identifiers
Too many nested procedures and/or functions
Tbo many forward references of procedure entries
Procedure/function too long
Procedure/function has too many long constants
Tbo many errors on this source line
Tbo many external references
Too many externals
T00 many local files
Expression too complicated
Procedure/function has too many local variables
Tbo many nested scopes of overlays
Division by zero
No case provided for this value
Index expression out of bounds
value to be assigned is out of bounds
Element expression out of range
Internal error (reference out of range)
Internal error (GEHIHHQ
Internal error (LOADAD - packed address)
Internal error (LOADAD — condition address)
Internal error (MAKEMREG)
Internal error (SELECTREG)
Illegal command
Unknown command
Ambiguous camnand
The many flags
Tbo deep nesting of INCLUDE files
INCLUDE open error
Missing file name in INCLUDE
Codefile open error
EDF encountered on source file

ND—60.124.03

48 mRD-lO/lOO Pascal Compiler
Canpiletime error messages

398: Implementation restriction
399: Variable dimension arrays not implemented
400: Internal error (NDAVATI'R, RESEIGATI'RP)

ND-60.124.03

NORD—lO/lOO Pascal Compiler 49
Run—time error messages

APPENDIX B Run-time error messages,

Run-time error messages

19

20

23

25

2].

22

33

17

12

15

16

32

31

AMMENI‘ '10 EXP 'IOO BIG
The argument to EXP will cause arithmetic overflow.

ARGUMENT '10 IN WAS <= 0
The logarithm of a negative number is not defined.

ARGUMENT '10 SIN/COS ’IOO BIG
Lost accuracy makes the function result meaningless.

ARGUMENT 'IO SINH/COSH T00 BIG
The argument will cause arithmetic overflow in the result.

AMJMENI‘ '10 SQRI‘ WAS < 0
The square root of a negative number is not defined.

ARI'I‘I-IMEI'IC OVEIREW
Overflow caused by

a) integer arithmetic operations,
b) floating division by zero, or
c) conversion of real to integer.

BAD ARGUMENT '10 ARCI‘AN
Lost accuracy makes the function result meaningless.

BLOCK DOES NOT EXIST
Program tried to read non-existing block on a random file.

CONNECT ERROR
Failure in an attempt to CONNECT a file. The SINTRAN error message
will indicate the cause.

E0]? ()1 INPUT
Program tried to read past end-of-file on an input file.

FILE ALREADY CCNNEUI‘ED
Program tried to C(XQNECT an already connected file.

FILE ml‘ GJNNECTED
Program tried to access a non-connected file.

FILE DDT RANDCM
Program tried randan access to a sequential file.

FILE MDT SWIAL
Program tried sequential access to a random file.

ND-60. 124.03

50

24

38

34

13

26

37

29

30

28

27

NORD-lO/lOO Pascal Compiler
Run—time error messages

ILLEGAL ARGMENNS) '10 PMER
Either attempt to raise negative number to a real power, or the
arguments will cause arithmetic overflow.

ILLEGAL CALL (N MARK/RELEASE
MARK or RELEASE was called frcm a program which also uses DISPOSE.

ILLEGAL CASE INDEX
The case label corresponding to the value of the case variable is
not defined.

ILLEGAL FORTRAN CALL
A FORTRAN routine was called from a two-bank Pascal program.

ILLEGAL NIMEER SYNTAX
The number being read did not have the correct syntax.

ILLEGAL PARAMETERS '10 EDWAL PM/EUNC
The actual parameters to a formal procedure or function did not
correspond in number or type to the formal parameters.

ILLEGAL SUBRANGE ASSIGMENT
Attempted assignment of a value outside the subrange, or the
controlled variable in a for—loop was of a subrange type and lower
or upper bound of the loop was outside the subrange.

INPUT RECORD TOO DING
A TEXT file record must not exceed 135 characters.

INTERNAL PASCAL ERROR
Error within the Pascal system. Contact a systems expert.

I/O ERROR
An I/O operation failed. The SINTRAN error message will indicate
the cause.

NO RESET
Program tried to read frcm a file without a previous RESET.

m REWRITE
Program tried to write to a file without a previous REWRITE.

POINTER IS NIL
Attempted access to data via a pointer with the value NIL, or call
on RELEASE with a NIL-valued pointer parameter.

POINTER IS OUTSIDE I-IEAP
Attempted access to data via a pointer which did not point to data
within the heap, or call on DISPOSE or RELEASE with a pointer
parameter that did not point within the heap.

RESET (N (IJTPU‘I‘ FILE
RESET was attempted on a write only file.

REWRITE 0N INPUT FILE
REWRITE was attempted on a read only file.

ND-60.124.03

NORD—lO/lOO Pascal Ocmpiler 51
Run-time error messages

8

18

ll

SEI‘ Elm/[ENE CIJTSIDE RANGE
Program attempted to construct a set with an element value not
within the set type.

STACK-HEAP OVERFIUN
The program generated too much data by calling procedures
recursively or with the NEW constructor. Running the program in two
banks (see section 1.2) may solve the problem.

SUBSCRIPT OUT OF RANGE
The index(es) to an array are outside the array bounds.

UNKNGNN IUN
There is no file open on this logical unit.

WWG I/O PARAMETER
Illegal specification of the formatting of a number.

ND-60.124.03

52 mRD-10/100 Pascal Compiler
Index

Index

banks
BRKM

.6, 33.

.16.
c O o o O o a O o u 0 n o I

character set .7.
CLEAR .23.
code file .21.
CDMPILE .21.
ccmpilercolmands...................9.
compile-time errors45.
conditional compilation9.
cxmmmnm .29.
GOSH .14.
DATEUQICIIIII..‘..|...II.DII015.

DISOONNEST .30.
EXEIId .16.
ENDIF .9.
EOF .10.
ERMSG .16.
EXIT .23.
extensions .13, 19.
external procedures15.
FAUET .26.
file .27.
floating point .6.
formal procedures20.
FORTRAN18.
HALT .15.
HEAP .33.
HELP .21.
EKHI) .16.
identifier .8.
IFFALSE .9.
IFTRUE .9.
implementation .33.
INCLUDE .10.
INPUT .28.
Input/Output .27, 37.
keyword .8.
LJNESPP .13, 23.
list file .21.
LUNIT .17.
MARK .15.
MAXREAL .19.
module .8, 39.
multiple source files10.
NOBANKS .17.
octal constants .19.
octal IO .27.
options .11, 23.
OUTPUT .28.
packed files .28.
packed structures19.
PAGE .13.

NORD—lO/lOO Pascal Compiler
Index

POWER . . .
program compilation
program execution
program heading
program loading
RANDOM
random access
real-time programs
RELEASE
RESET
RUNMODE
run—time errors
sample Pascal program . . .
SET command
set type
SINH
source file
source program
special symbols
STACK
standard files
standard identifier
Standard Pascal
standard procedures
strings
structured types
syntax errors
terminal
TEXT
TIME
TUSED
value
variable initialization . .
VERSN
WRITEEOF

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

.25, 33.

53

**********SENDUSYOURCOMMENTS!!! **********

? Are you frustrated because of unclear information

.
. in this manual? Do you have trouble finding

‘
things? Why don’t yJu join the Reader’s Club and

. _ send us a note? You will receive a membership
.
7

. card-and an answer to your comments.

I

Please let us know if you -
" finderrors , r '.
‘ cannot understand information

' . ' ,'
"' cannot find information
" find needless information

Do you think we could improve the manual by rearranging the
contents? You could also tell us if you like the manual!!

/

* * * * * * * * *HELPYOURSELFBYHELPINGUSfl * * * v: * * * * *

Manual name: Nord —10/100 PASCAL COMPILER Manual number: ND —60 . 124 . 03

What problems do you have? (use extra pages if needed)

Your name: — ,, i ~ .__-.f_ 7 7 _7 # — Date:
Company: 7 __-_ , Position:
Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department '

P.O. Box 4, Lindeberg Gard
Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

‘Answer from Norsk Data

Answered by

Norsk Data A.S.

Documentation Department

PO. Box 4, Lindeberg Gard

Oslo 10, Norway

Date

