
Database

Administrator Module

NORSK DATA AS
I

Database

Administrator Module

REVISION RECORD
Revision Notes

To 77 0 a1 Prin

Pub1.No. ND—60. 097. 01
October 1977

O 0.. 0.0....3: ::.::::::e NORSK DATA A.S.::::z:: :3: :::
O .0000 809.900...: °::: 33.33::- Lmrenveien 57, Postboks 163 0kern, Oslo 5, Norway

S I B A S DATABASE ADMINISTRATOR MODULE

TABLE OF CONTENTS

1 . INTRODUCTION

2 . DBA-UTILITIES STATEMENTS

3 . PRIVACY

4 . INTEGRITY

5 . CONSISTENCY CHECKING

6. SCHEMA REDEFINITION LANGUAGE‘

APPENDICES

A IMPLEMENTOR NOTES & EXAMPLES
A1. .UNIVAC
A2 IBM
A3 NORD

B SUMMARY OF DBA STATEMENTS

ND-60. 097. 01

(l) l

SIBAS DATA BASE ADMINISTRATION MODULE

INTRODUCTION

The DBA—module is a tool which enables the Data Base

Administration to control the efficient and reliable

use of the data base. The functions included in the

DBA—module are shown in the figure below:

—'—3

START
DEA-MODULE —'
___ —

DEF I NE
I DEA-REALM

INTEGRITY
”BA" DEFINITION

TILITIES \REORGANI-\saIION
CONSI-
STENCYPRIVAC“ CHECKI ”5

___. 2
I r—

:DEFINE

I

VERIFY)DEFINE

IPASSWORD
1 CALC KEY ILOGFILE

J .L,

I

(€\[

R,

.

z

..

..

_. J
U,

U‘L

I11

I11

4
r1r“ 4

_m_I>ia/-
5

z

N

m

0

S

C 17

I ._..I -._____u_ .I D‘LETE 1 “ELETE rf———"REMOVE VERIFY — I nrwPASSWORD INDEX KEY IL ILLOGF'LE I L1 1NDFX ! SET--—~J I DEFINE I READY : 4 ‘ ..__.rDISPLAY VERIFY LOGTYPE Ii
IREALM

I i DELETE I “F”I IN. 3.10m SET ~———' I - ”5” __L1 ""
7- ~~4w- m D Hm%

I
_ -WMKREPLAC: . Loerg I I L, REALM J DELE'E CHIHHYpa;5dnnu , .-- .A__ 1 cucup SYSIEJ. ---—-- DEEI IE I STOP ~~ - F R;'nwcurvnIII DEAMODULEI DELETc r.T’ REALM .fiHI“ANNUL n~- ., . 'srR. RIIL4

ILJCHECKPOINT um SYSTEM ILL ”RE I
'ROLLSACK LR "-'M Iour. «FALIIDL’ELASE HEN SERIAL. rLI:-r.L I

IRECOVER II
own 5; _m- .J IIDATAEASE new rA_c IE;

DISPLAY IffifiL’I_:Lv_ .!~~ II
'— LJIEH_I. III I 5?I\V69 ‘ I.

srr -I. ,J;
I CHANGE |
L sfix-nii

DATA BASE ADMINISTRATION FUNCTIONS

The use of any of the DBA—functions is controlled by

the START DEA-MODULE statement. In this statement a

DEA—password may be provided, and the validity of this

passWord is checked on the actual data base. This

prevents the unauthorized use of the DEA—module on a

particular data base.

ND-60. 097. 01

(1.2)

1.2 SYNTAX DESCRIPTION

The data-base administrator statements may be

written in a format free syntax.

Throughout this manual, wherever a Data-Base

Administrator statement is described, some con-

ventions are used:

A A must be present
A A is optional

{g-}
A or B must be present

<§ealm—nam§> "realm-name" is a parameter which may take

different values

[k§b] the parameter "ub" is optional

Parameter values may be SIBAS names, integers, pointer

values See the relevant implementor's note for

the convention used to code these parameters.

The messages issued by the DEA-module are self—

explanatory.

PHD-60.097.01

l

(2) l

DBA‘UTILITIES STATEMENTS

START DEA-MODULE

Function

The function of this statement is to indicate the

user's intention to process data-base administrator

statements and to check that the user is allowed to do

SO.

Syntax

START DBA—MODULE FOR DATABASE <<data-base—name>

[éBA—PASSWORD
<<dba—password%].

Rules

1. "data-base-name" is the name of the data-base as

is given in OPEN DATA-BASE.

2. If privacy is defined for the data—base, the "dba—
'

password" will be checked to decide whether or not

the user is allowed to process dba statements.

3. The effect of this statement is to physically open

the data-base.

ND-60. 097. 01

(2.2) 1

STOP DEA-MODULE

Function

To prevent the further processing of data—base administrator

statements apart from START DEA-MODULE.

Syntax

STOP DEA—MODULE.

Rules

1. The effect of this statement is to physically

close the data-base.

2. Realms previously readied with READY statement are

automatically finished by STOP.

ND-GO. 097. 01

(2.3) l

DEFINE DEA-REALM

Function

Define the data-base administrator realm which is the

realm upon which the passwords and log descriptions are

stored.

Syntax

DEFINE DEA-REALM realm-name> SIZE<size>.

Rules

1. "realm-name“ must be different from any existing
realm name in the data—base schema.

2. "size" is the maximum number of passwords to be
defined for the database.

3. The realm must have been previously assigned by
the operating system. It's size in words should be

approximately the number of passwords x—510.

ND-60. 097. 01

(2.4)

READY REALMS

Function

This statement indicates to the DEA—MODULE the user's

intention to process records on one or more realms.

Syntax

ALL
READY

REALM (:realm-nam€> '

Rules

1. The effect of this statement is to ready the realm

"realm—name" or all the realms in the data-base

for exclusive-update.

2. This statement must be successfully executed

before any PRINT, PATCH or VERIFY statement may be

executed.

bU)-60.097.01

l

(2.5) l

FINISH REALMS

Function

To prevent further processing of the data on one or all

realms.

Syntax

REALM < realm-name >
FINISH .

ALL

Rules

1. The effect of this statement is to prevent further

use of the referred realms for PRINT, PATCH or

VERIFY.

2. The STOP statement automatically finishes all

realms.

DHD-60.097.01

(2.6) 1

PRINT

Function

To print the content of the specified units of information

in a formatted dump form.

Syntax

BUCKET POINTER <address>
ALL PAGE

[
. _

1
r. .PRINT I

<n—umber> ~——RECORD FROM @nlt nr> REALM
WORD <fiealm-name>

PRINT POINTER <address> .

Rules

1. "number" is an integer. If neither "number" nor

ALL are specified, it is assumed that "number" is

equal to l.

2. FROM may specify a data-base address or a word-

address within the realm "realm-name".

3. When RECORD is specified all records within the

defined range are printed, deleted records as well

as active records.

4. All the realms involved must be readied prior to

PRINT.

,.
I

"unit~nr" specifies the start for the dump as a

BUCKET PAGE; RECORD, or WORD number.

6. "address" may be specified in decimal or octal

(NORD, UNIVAC) or hexadecimal (IBM). An "address"

starting with 0 (zero) will be treated as octal or

hexadecimal. Pointer address specification is

machine dependant, see implementors notes.

ND-60. 097. 01

(2.7) l

PATCH

Function

To Replace one word in the data—base.

Syntax

EAEQE <word—nr> BEQEM <realm—name>

REPLACE<§ld—value>> HEEE ‘<hew-Value>.

Ru_1es

l. The use of this statement implies a very good
knowledge of how a SIBAS data—base is built up
internally and should only be used in extreme
cases.

0
2. "word-nr" is the address of the word to be patched

in the realm "realm-name".

3. "old—value" and "new—value" may be specified as
decimal numbers, octal numbers or hexadecimal

numbers (IBM). Numbers starting with 0 (zero) are
treated as octal/hexadecimal.

4. Since no logging takes place while the DBA—module
is under execution, it may be necessary to take
new copies of all or part of the data base after
use of the PATCH function.

PUD-60,097.01

(3.1) l

PRIVACY

GENERAL

The privacy system enables the DBA to restrict the use

of the data base to authorized users. This is done by

defining passwords for the data base or a part of the

data base, and connecting the actual usage mode to each

password. Privacy can be defined on three levels:

1. Privacy on the data base level.

2. Privacy on the realm level.

3. Privacy on the record occurrence level.

The privacy functions of the DEA—module are used to

define and give values to passwords on the data base

and the realm level (fig. 2.1). Either the Data Definition
Language or the Redefinition Language is used to

define privacy on the record occurrence level, and the
Data Manipulation Language is used to give values to

the privacy items in each record occurrence (fig. 2.2).

DATA BASE LEVEL DATA BASE GLODAL .__ DEFINITION DEA-
PASSHDRD

AND VALUE MODULE

LOCAI
PASSWORD

GLOBAL
PASSWORD DEFINITION _

_‘ DEAREALM LEVEL / AND VALUE ‘
MODULELOCAL

PASSWORD

Fig. 2.1: Defining and giving values to passwords on the

Data Base and the Realm level.

ND-60. 097. 01

(3.1)
IE5};
huh-mow

___ ____ /‘ mug-v.25:
._...._. -__...,....,. ”L’- «~-—---\ r.[ilt'5 __"::

"NW" l4_rrn'.*r.m‘ k5 Ir-zs , _Inn 1 In“? 1 .. v 4 R:L_ -LLJIL‘L_J \L‘mfl/ l‘\\{‘[fllflTISN

\\L'A'."\.'JI'.GERECORD TYPE ”-

1
;I]L_[_iacz£1i3__ _ L --l..‘5‘_".’:‘£fi

3 L C PR I was

. RECORD OCCU RREHCES

,__-
- __.. own-s

I
gunl?|‘.;CY VALUE Immun-

nm
L10 I were

»‘ 5.5159:

Fig. 2.2: Defining and giving value to Privacy Items on

the Record Occurrence level.

If privacy is defined on the Data Base Level for a data

base, each run unit must give in a password with the

OPEN DATA BASE statement. This validity of password

will be checked and if it is valid it will remain

"current password" for the run unit until CHANGE
PASSWORD is used to update the current password.

If privacy is defined on the Realm Level, validity of

each run unit's current password will be checked when
READY REALM is executed. The current password for the

run-unit must be valid for the USAGE MODE and PROTECTION

MODE given in the READY REALM statement.

Privacy cannot be defined on system Realms. If privacy

is defined on the Record Occurrence Level, each run

unit's current password will be checked for validity

when the run unit attempts to execute a MODIFY, ERASE,

CONNECT, INSERT or GET on a record. The current pass-

word must match the value of the Privacy Item in the

record. In case of ERASE, all records to be erased in a

single ERASE statement are checked.

Before privacy is defined at the Realm or Data Base

Level, a DEA—password may be defined in addition to
other passwords. The DBA—password will allow a user

(Data Base Administrator) to execute START DEA—MODULE,

and to perform any of the functions included in the
DEA-MODULE and any DML statement.

Table 2.1 shows how privacy restrictions on a data base
are defined, how and when passwords may be defined and

modified, and when the privacy checks are performed by
the SIBAS run—time control system (DECS).

2

(3.113

HOW HOW WHEN THE
TYPE OF HOW PRIVACY PASSWORDS PASSWORDS VALIDITY OF
PRIVACY IS DEFINED ARE GIVEN ARE CURRENT PASS—

VALUES MODIFIED WORD IS CHECKED

AT EXECUTION OF
USING USING OPEN DATABASE

DEA—PASSWORD USING DEA DBA DBA READY REALM
MODULE MODULE MODULE START DEA—MODULE

DATA—BASE USING DBA USING USING AT EXECUTION OF
LEVEL MODULE DBA DBA OPEN DATABASE

MODULE MODULE READY REALM

REALM USING DBA USING USING AT EXECUTION OF
LEVEL MODULE DBA DBA READY REALM

MODULE MODULE

RECORD USING WHEN A WHEN A AT EXECUTION OF
OCCURENCE l) SCHEMA DATA RECORD RECORD MODIFY GET
LEVEL DEFINITION OCCUR- OCCUR— FRASE

LANGUAGE RENCE RENCE CONNECT/DISCONNECT
REDEFINITION IS IS INSERT/REMOVE
LANGUAGE STORED MODIFIED

Table 2.1 Defining and controlling Passwords.

ND-60. 097. 01

(3.2) 1

LOCAL AND GLOBAL PASSWORDS

Passwords defined on the Data Base Level or on the

Realm Level can be either local or global.

A local password on the Data Base Level is valid for

OPEN DATA BASE only. If privacy is defined on Realm

and/or Record Occurrence level a new current password

may have to be given before READY, GET, MODIFY, ERASE,

CONNECT, DISCONNECT, INSERT or REMOVE can be executed.

A global password on the Data Base Level is valid for

OPEN DATA BASE. In addition it will allow the run unit

to execute READY REALM, with the USAGE MODE and PROTECTION

MODE defined for the password, on any realm in the data

base. It will also allow the run unit to execute other

dml-statements, regardless of the value of the privacy

item in each record (MODIFY and ERASE can only be

executed if the realm was readied with USAGE MODE

UPDATE: CONNECT, DISCONNECT, INSERT, REMOVE, can be

executed if the realm was readied with USAGE MODE

LOAD.)

A local password on Realm level is valid only for READY

REALM with the USAGE MODE and PROTECTION MODE defined

for the password.

A global password on Realm level will in addition allow

the run unit to execute dml—statements, regardless of

the value of the privacy item in each record in the

specified realm.

The DEA—PASSWORD is a global password on the database

level with usage mode UPDATE and protection mode

EXCLUSIVE.

ND-60. 097. 01

(3.3) l

USAGE MODE AND PROTECTION MODE

USAGE MODE and PROTECTION MODE must be defined for all
passwords which allow a user to execute READY REALM,
i.e. for global passwords on the Data Base level and
global and local passwords on the Realm level. The
possible USAGE MODES are: RETRIEVAL, LOAD and UPDATE.
The possible PROTECTION MODES are: NON—PROTECTED and
EXCLUSIVE.

Table 2.2 gives a summary of the functions allowed for
different types of password, assuming that privacy is
defined on all three levels.

TYPE OF PASSWORD DATA BASE LEVEL REALM LEVEL

2
3 GLOBAL GLOBAL LOCAL _,(n

W0/)< Ea. NON' NON' NON“. g PROTECTED EXCLUSIVE mum“) EXCLUSIVE PROTECTD EXCLUSIVE :U _| .1 .4 _| .1 .a oFUNCTION E 3 § 3‘ § ‘>‘ § § 5III W In W Ml IJJ “I In DJ IIJ DJ H] DB:" " " ’— " ’2 E a '2 E’ n 'E E ’E 3%$5 3 g .“5 3 E E E r: v- < z: >— < n I- 5 t: uuI-IJ O Q. I.” O D. W O D. Lu 0 D. DJ 0 G- u.) 0 0.
L08a: J 2 CE 4 D K .1 D K J a a: .J 2 K J j m

OPEN DATA BASE X X X X X X X X

3N RETRIEVAL X x X x X X X x x x x x x x x x x x x
p
R
o
T LOAD x x x x x x x x x x x x x
E
C

READY
T
IE, UPDATE x x X x x x x

E RETRIEVAL x x x X ,
REALM g

X X X K X X
L
u LOADf x x X x x x x
v
E

UPDATE x X x x

STORE x x X X X x J x x x x x x
'GET X X X X X X X X x x x x x X

MODIFY. ERASE ELEMENT x ‘ x x x x
ERAS: X X X X Y. x
tERT. REMOVE x x x x x x x x x ,
START DEA-MODULE x

Table 2.2: Functions allowed for different types of privacy. It is assumed that
privacy is defined at- all levels.

ND-60. 097. 01

(3.4) 1

SUMMARY OF THE SETTING OF CURRENT PASSWORD

Initially the current password is set for a run—unit

when the data base is opened. Unless a CHANGE PASSWORD

statement is performed, the value of the current password

will remain unchanged. When a READY REALM statement is
performed, the current password must match a password
which is defined for the desired mode of operation on
the realm. If the run—unit performs a data manipulation
statement on records where the value of the privacy
item is different from the realm password, the current
password for the run-unit must be changed to match the
value of the privacy item before the data manipulation

statement is successfully executed.

ND;60. 097. 01

(3.5)1

3.5 DEFINE PASSWORD

Function

The function of this statement is to register a new password.

Passwords can be of five different types, and for three of them

USAGE MODE and PROTECTION MODE is given with the password.

Syntax

This statement has 5 different formats, one for each password type.

1. DEFINE DEA—PASSWORD @ba-passwor9 .

2. DEFINE LOCAL-PASSWORD <password-l> ON DATABASE

3. DEFINE GLOBAL—PASSWORD <password—2> 0N DATABASE

RETRIEVAL] NON—PROTECTED ‘
USAGE LO_A2 PROTECTION

}UPDATE EXCLUSIVE .

h. pEFINE LOCAL—PASSWORD <pas sword— 3>
ON REALM <ealm—name—>

m NON—PROTECTED“ i

USAGE{
LOAD PROTECTION

{
('1 CT ‘

UPDATE EXCLUOIVE J

5 . DEF _I_N_E: GLOBAL—PASSWORD <pas sword—)}>

ON REALM <ealm-name—2>

WAL— NON—PROTECTED

USAGE{
LOAD PROTECTION

{UPDATE EXCLUSIVE

ND-60. 097. 01

(3.5) 2

Rules

LENGTH OF PASSWORDS. All passwords must follow the

same conventions as SIBAS names, i.e. up to 8

bytes, starting with a letter, no embedded blanks,

but trailing blanks allowed.

DEA—PASSWORD. When a "dba—password" is defined for

a data base it must always be given with the START

DEA-MODULE statement. The "dba—password" will also

serve as a GLOBAL—PASSWORD on a DATABASE with

USAGE UPDATE and PROTECTION EXCLUSIVE. This

implies that the "dba—password" also allows one to

execute any DML-statement in addition to the START

DBA-MODULE.

LOCAL—PASSWORD ON DATABASE. "password—l" will

serve as a local password on the data base level.
The validity of this password is restricted to the
OPEN DATABASE statement.

GLOBAL PASSWORD ON DATABASE. "password-2" will

serve as a global password on the data base level.

In addition its use with the OPEN DATABASE statement,

the password will be valid for the execution of READY

REALM with the USAGE mode and PROTECTION mode

given, and for the execution of any other DML—

statements covered by the usage mode.

LOCAL PASSWORD ON REALM. "password—3" will serve

as a local password for the realm given in "realm—

name-l". It will be valid for executing READY

REALM on the realm given in "realm—name—l" with

the USAGE mode and the PROTECTION mode given.

"password—3" will not give admission to execute
other dml-statements on records in the realm if

privacy on record occurrence level is defined.

ND-60. 097. 01

(3.5) 3

GLOBAL PASSWORD ON REALM. "password—4" will serve
as a global password for the realm given in "realm—
name—2". It will be valid for executing READY
REALM on the realm given in "realm—name—Z" with
the USAGE mode and PROTECTION mode given. In
addition it will give admission to execute any
other DML—statement on the records in the realm
covered by the given USAGE mode.

IDENTICAL PASSWORDS. Two passwords defined on data
base level may be identical if one is local and
the other is global. Two passwords defined on
realm level for a particular realm may be identical
if one is local and the other is global. Passwords
defined for different realms may be identical
(e.g. a password on data base level may be identical
with a password for one or more realms and identical
with the privacy item in one or more record occurrences).
Using the same password on different levels means
that a run-unit may not have to change current
password, and this gives the effect of a "global"
password for a part of the data base.

USAGE and PROTECTION are optional. If USAGE is not
given, RETRIEVAL is assumed. If PROTECTION is not
given, NON—PROTECTED is assumed.

MULTIPLE PASSWORDS. two or more passwords with
different values may be defined with the same
specification, i.e. same type, same realm, same
protection and usage.

ND—60. 097. 01

(3.6) l

REMOVE PASSWORD/PRIVACY

Function

The function of this statement is to remove a single

password defined on realm or data base level or to

remove all privacy defined on the realm or data base

level.

§XEEE§

-
«\PASSWORD <passwor®>

I
DATABASE -

REMOVE ' FROM
PRIVACY L REALM<§ea1m—naméw .——— ‘ ——~ //

Rules

1. REMOVE PASSWORD " password" FROM DATABASE. This

operation will remove the password given in "password"

from the list of passwords on data base level.

2. REMOVE PASSWORD "password" FROM REALM "realm~

name". This option will remove the password given

in "password" from the list of passwords defined

for the realm given in "realm-name".

3. REMOVE PASSWORD "password". Every occurence of

"password" is removed from database description.

4. REMOVE PRIVACY FROM DATABASE. This Option will

remove all passwords defined on data base and

realm level. It will also remove the DEA—password.

5. REMOVE PRlVACY FROM REALM "realm—name". This
option will remove all passwords defined for the

realm given in "realm—name".

6. REMOVE PRIVACY. All passwords defined are removed

from database description, including the DBA—

password.
IUD-60.097.01

(3.7) l

DISPLAY PASSWORD/PRIVACY

Function

The function of this statement is to print the values
and the description of all or some valid passwords.

Syntax

ALL PRIVACY
DISPLAY

PASSWORD <password> .

Rules

1. If the ALL option is given a complete report is
printed containing the values of all passwords

defined for the data base. The report will also
contain the type, usage mode and protection mode
for each password.

2. If the PASSWORD option is given the type(s), usage
mode and protection mode for the password specified
are given. All definitions of the password with
the given value will be printed.

ND—60. 097. 0.1

(3.8) l

REPLACE PASSWORD

Function

The function of this statement is to replace the value
of a password with a new value for all occurrences of
the password (i.e. one at data base level and one or

more at realm level).

Syntax

REPLACE
<:password—l>> fl£2§~<gassword—€>

a

Ru_1e§
l. The value given in "password2" must not be equal

to any already defined password.

IUD-60,097.01

(4.1)

SIBAS INTEGRITY SYSTEM

INTRODUCTION

The SIBAS integrity system includes functions for

logging, rollback, recovery, checkpointing and

the initiation and termination of transactions.

TERMINAL
‘ TERMINAL

3

TRANSACTION TRANSACTION

PROCESSING PROCESSING

PROGRAM
' PROGRAM

BEFORE
LOG

TT‘TI‘T““-—. DATA BASE
TRANSACTIONS

ROLLBACK
FUNCTION

DATA BASE

RECOVERY
FUNCTION

ND-60. 097. 01

(4.1) 2

Checkpointing

In SIBAS a method of checkpointing is used, which

quiesces the system at frequent intervals so that no

transactions are active. If a failure occurs, it is

possible to reconstruct the data base to a state consistent

with the transactions completed at the latest checkpoint.

When a checkpoint is taken, the contents of the SIBAS

buffer area will be written to the data base.

Logging

Logging involves copying to a log file all pages which

are written from the SIBAS buffer area to the data

base. The logging can be done before the pages are

updated, resulting in an "old copy audit trail", or

after the pages are updated resulting in a "new copy

audit trail". The log files can be tape files or direct

access files. It is also possible to log the Data

Manipulation calls.

Rollbagk

In case of a program fault, the execution of a transaction

may stop without closing the realms properly, i.e.

possible updates on the data base may not have been

written from the buffer area to the data base. In this

case the rollback function can be used together with

the "before look" (old copy audit trail) to bring the

data base back to the state of the last or previous

checkpoint.

Recovery

When serious faults occur on the data base, it may not

be possible to recover using the rollback function

(e.g. in the case of a disc fault). In this case the
recovery function must be used. The recovery function
uses a complete dump of the data base and the "after

look" (new copy audit trail). The database dump is
updated with the logged pages up to a specified checkpoint

ND—60. 097. 01

(4-1) 3

and results in a consistent version of the data base.

Dump

Logging is turned off when one is using the DEA-module.

If the database is changed during this DBA—module use, a

full copy ("Dump") of the database should be made.

PHD-60.097.01

(4.2) l

DEFINE LOGFILE

Function

The function of this statement is to define a new file

on which SIBAS logs may be written.

Syntax

TAPE

DEFINE LOG—FILE <<filename MEDIUM

{

DISC

}DRUM

FILE—SIZE <length-l> RESERVED—LENGTH <length-2>

SECTOR—SIZEJ

Rules

1. FILENAME. The "file-name" must be the name of a

file defined to the operating system. No other

logfile with the same name must exist.

2. FILESIZE. The "length-l" must contain the length

of the logfile in computer words.

3. RESERVED—LENGTH. The "length-2" must contain the

number of words reserved on the logfile. When

there are "length-2" words left in the logfile,

the logfile is treated as full, and a checkpoint

is requested. Logging will, however, continue

after the checkpoint is taken until the logfile is

completely filled. It is the DBA's responsibility

that enough space is defined between "length—l"

and "length—2" to hold all the logs created by the

checkpoint. If there is no other log file to

receive new page logs, the execution is terminated.

ND-60. 097. 01

(4.2) 2

BLOCK-GAP/SECTOR—SIZE. The BLOCK-GAP/SECTOR-SIZE

option must be given for logfiles on respectively

tape and disk. The “length—3" must be the block

gap or sector size in computer words. The default

value for sector size is 128 words. The block-gap

value is used to compute how much of the log-file

is actually useful.

MAXIMUM NUMBER OF LOGFILES. The maximum number of

logfiles defined at the same time is two. Different

logtypes may be mixed on the same log-file.

Definition of a log—file on DISC/DRUM has the

effect of physically zeroing the file. If a used

logefile is deleted and defined again, the content

of the file is lost.

ND-60. 097. 01

(4.3) l

DELETE LOGFILE

Function

The function of this statement is to remove the def—

inition of an existing logfile.

Syntax

DELETE LOG-FILE <§ilenam§>

Rules

1. FILENAME. "filename" must refer to a file defined

as a logfile for the database.

DEFINED LOGTYPES. All log—types defined for the

logfile given must be annulled prior to this

statement.

EFFECT OF DELETE. The execution of this statement

does not erase the content of the logfile. The

effect is only to make the file unknown to the

DBA—module.

bHD-60.097.01

A(4.4) l

DEFINE LOG-TYPE

Function

The function of this statement is to define the types

of log which will be taken automatically by the system,

and what types of information the user will be allowed

to log.

Syntax

BEFORE-LOOK

DATABASE AFTER-LOOK

BOTH

DEFINE LOG-TYPE IDML-STATEMENT LOG-FILE

file-nam§>

TRANSACTION_________.__ \
USER-INITIATED DML-STATEMENT

‘ BOTH j

Rules

_ l. FILENAME. The "filename" must previously have been

defined by use of DEFINE LOGFILE. A logfile may be

used to hold different types of logs.

2. AFTER-LOOK. If the AFTER—LOOK option is given,

each page which has been updated will be copied to

the log after it has been written back to the data

base. It is important to note that many users may

have updated the same page in the buffer before it

is written back to the data base and the log is

taken. This log-type is used by the RECOVERY

function (section 4.9).

\
ND-60. 097. 01

(4.4) 2

BEFORE—LOOK. If the BEFORE—LOOK option is given,

each page which is to be updated is copied from

the database to the logfile before the updated

version is written to the data base. The log will

then contain a picture of the database before each

update. The BEFORE—LOOK log is used by the ROLL-

BACK function (section 4.8).

BOTH. If the BOTH option is given, both AFTER—LOOK

and BEFORE—LOOK logs will be taken on the logfile

given in "file-name".

DML-STATEMENT. If this option is given all DML—
statements executed except ACCEPT will be copied
to the logfile given in "file—name". With each

DML-statement the value of each input parameter is
logged. This log—type is the basis for a recovery

procedure, in addition to the already existing
RECOVERY function (section 4.9). This log—type is
also useful for tracing and debugging, and it
might serve as a basis for an automatic restart
procedure.

USER-INITIATED TRANSACTION. If this Option is

given, all users will be allowed to use the LOG-
statement in the DML to write any information to
the log during execution of a SIBAS PROGRAM. The
LOG-statement is described in ch. 5 of the USERS
MANUAL.

USER-INITIATED DML-STATEMENT. If this option is

given, each user will be allowed to use the DML
LOG-statement to log individual DML—statements
during execution of a SIBAS program. The use of
this statement is described in ch. 5 of the USERS
MANUAL.

USER—INITIATED BOTH. If this option is given, all
users will be allowed to use both the formats of

the LOG-statement (see ch. 5 in the USERS MANUAL).

ND—60. 097. 01

(4.5) l

4.5 ANNUL LOG-TYPE

Function

The function of this statement is to remove a log—type

from a given logfile.

Syntax

' BEFORE-LOOK

DATABASE. AFTER-LOOK

1.39211
ANNUL LOG-TYPE 4 DML-STATEMENT 2955:3513?

‘
<file-name>

TRANSACTION

LUSER—INITIATED

{

DML-STATEMENT;

‘ BOTH J

Rules

1. LOGFILE. The file identified by "file—name" must

have been defined as logfile for one or more of

the log—types.

EXISTING LOGS. The logs which are already written

to the logfile will not be deleted when a log-type

is annulled.

ANNUL of a log-type which was not previously

defined is ignored.

PHD-60,097.01

(4.6) l

DEFINE CHECKPOINT

Function

The function of this statement is to define the types

of checkpoint to be taken automatically by the system,

and to give permission to the users to request check—

points.

Syntax

\r \
DEFINE CHECKPOINT {/MAXLOG <§ize

J [EIGN-OFEI USER/JAE9§:FI§EVL<:file-namé> .

Rules

1. FILENAME. The "filename" must previously have been

defined by use of DEFINE LOGFILE. More than one

checkpoint-type may be defined on the same log-

file.

2. MAXLOG. For each time "size" words are written on

the logfile a checkpoint is requested.

3. SIGNOFF. Whenever a user executes a close database

statement a checkpoint is requested.

4. USER. If this option is specified all users are

allowed to request checkpoints from their user

programs. This is done by use of the CHECKPOINT

statement described in ch. 5 of the USERS MANUAL.

5. MULTIPLE LOG—FILES. Every time a checkpoint is

requested, a checkpoint is written on every

defined log-file, i.e. the checkpoint system is

synchronized.

PUD-60,097.01

(4.6) 2

FUNCTION OF CHECKPOINTING. A request for check—

point is not executed until all users have termin—

ated their active transactions. New transactions

are rejected until the checkpoint is taken. When

all user transactions are terminated the internal

record buffers are written to the relevant realms

and a checkpoint record is written on each logfile.

AUTOMATIC CHECKPOINTS. Checkpoint are automatically

requested on all defined logfiles when the data—

base is physically opened or closed. When one

logfile is filled up to the reserved area, a

checkpoint is requested.

\ ND-60. 097. 01

(4.7) l

ANNUL CHECKPOINT

Function

The function of this statement is to annul the taking

of automatic or user initiated checkpoints.

Syntax

ANNUL CHECKPOINT [LAXLOé] {éIGN—OF€] USER LOG-FILE

\ K~
<<file-name>>

.

Rules

1. FILENAME. the "file—name" must be the name of a

file defined as a logfile.

2. MAXLOG. If this option is specified checkpoint on

maxlog words will not be taken.

3. SIGNOFF. If this option is specified checkpoint on

signoff will not be taken.

4. USER. In this case the users are no longer allowed

to request checkpoints.

5. If the option to be annulled is not previously

defined, no error message is given.

ND—60. 097. 01

(4.8) l

ROLLBACK

Function

The function of this statement is to re-establish the

database state to a given or to the previous checkpoint

from the existing database using before—look logs.

Syntax
W

LAST
FROLL—BACL DATABASE TO CHECKPOINT <fcheckp01nt-id>J
‘:

I_.gG-FI_L§_ <file-name-l>
[ADJUST

OTHER LOG—FILE“
/l

Rules

1. FILENAME. The "file—name—l" must previously have

been defined by use of DEFINE LOGFILE. Log of type

BEFORE-LOOK must have been defined.

2. FUNCTION. The database is rolled back, i.e. the

logfile "file—name-l" is read backwards and the

database is updated each time a before—look log

page is found. The process is stopped either when

a checkpoint is found if LAST is specified, or

when a checkpoint is found with a time and date

referring to the same or an earlier identification

than "checkpoint-id". If no match is found when

the start of the logfile is reached, an error

message is given. The database will, however, be

consistent at this point because all logfiles are

started and ended with a checkpoint. If the

logfile is distributed on more than one physical

file, the process may be continued from this point

by giving a new ROLLBACK statement.

ND-GO. 097. 01

(4.8) 2

I/O—ERROR. If an I/O—ERROR occurs during the

rollback, the process is stopped and a SIBAS core

dump results. ’

ADJUST. If two logfiles are specified, the unused

logfile should be adjusted to the same checkpoint

as the actually used logfile. This may be done

with the ADJUST option.

CHECKPOINT IDENTIFICATION. Consists of the time

and date followed by a sequence number.

ND-60. 097. 01

(4.9) l

RECOVER

Function

The function of this statement is to re—establish the

database state to a given checkpoint using a database

dump taken at a specified checkpoint and after—look

logs.

Syntax

RECOVER DATABASE

T9. checkpoint-id>» EOG-FIEE ‘ <ffile-name—l;>

[RDJUST
OTHER LOG-FILE ;] .

Rules

1. FILENAME. The "file-name—l" must have been previously

defined by use of DEFINE LOGFILE. For "file—name—

1" log of type AFTER—LOOK must have been defined.

2. 'CHECKPOINT. The database is recovered, i.e. the

logfile "file—name—l" is read forward until a

checkpoint consistent with the dump is found. The

reading then continues and for each afternlook log

page found the database is updated. The process

continues until a checkpoint equal "checkpoint—id"

is found. If no checkpoint consistent with the

dump is found, an error message is given. In this

case the database will not be updated.

v "checkpoint—id" is not found before the end—of-

file, an error message is given. In this case the

data base will be updated and it will also be

consistent. The recovery process may continue with

a new logfile (or a new tape) by giving the

RECOVERY statement once more.

ND-60. 097. 01

(4.9) 2

I/O—ERROR. If an I/O—ERROR occurs during recovery
the process is stopped and a SIBAS core dump

results.

ADJUST. If two logfiles are specified the unused

logfile should be adjusted to the same checkpoint

as the actually used logfile. This may be done

with the ADJUST option.

CHECKPOINT IDENTIFICATION. Consists of the time

and date followed by a sequence number.

ND-60. 097. 01

(4.10) l

4.10 DISPLAY LOG

Function

Print the description of the log files and/or the types
of log defined on the database.

Syntax

If LOG
DISPLAY .

I LOG-TYPE

gules

1. If the LOG—TYPE option is given — a report is

printed showing the type of log defined for the

database and the identification of the last

checkpoint taken.

2. If the LOG option is given, the description of the
log—file is printed together with it's current

state. Information about log-types is also printed.

ND—60. 097. 01

(5.1) l

CONSISTENCY CHECKING ‘

GENERAL

The consistency checking function are a part of the

integrity control system for the database. These functions

are used to detect integrity breaches. When breaches on

the database integrity are detected, the recovery

system will normally be used to bring the database back

to a consistent state. In some cases the patch functions

can be used to do minor repairs on the database.

It should be noted that consistency checking does not

include validity checking. Validity checking is concerned

with the logical content of the database as viewed by the

user, consistency checking is concerned with the physical

content of the database and its consistency vis a vis the

database's physical construction.

The types of consistency checking which can be performed

in SIBAS are:

- CALC KEY verification

~ INDEX KEY verification

- SET verification

No attempt is made by the consistency processor to

correct breaches.

If breaches are detected, the following information

will be given:

Message:

"Message describing the type of breach"

Information about the record:

"Realm name", "Item name“

"Physical position of the record (pointer)"

"Item value"

"Comparing value"

"Dump of record"
ND-60. 097. 01

(5.1) 2

It must be noted that the item name can be the name of

a pointer (see Record layout printed from DDL processor).

If any syntax error is detected, a message, describing

the type of error, is printed.

All realms to be verified must be readied..

A verify run may look like:

START DEA-MODULE FOR DATABASE FUNCBASE.

READY ALL.

VERIFY CALC DATABASE .

VERIFY INDEX DATABASE .

VERIFY SEI' DATABASE .

FINISH ALL .

STOP .

ND-60. 097.01

(5.2) l

CALC KEY VERIFICATION

Function

This function provides for the verification of calc key

consistency. For each calc key verification, the calc

key of all records stored in the specified realm will

be checked. The value of the calc key is checked against

the bucket number of the record.

No attempt is made to correct errors which are detected

by calc key verification. Information about the record

and its physical position is printed.

Syntax

VERIFY CALC
{
W
REALM <{realm-name;> .}

[MAXREC 0F<integer>J .

Rules

1. DATABASE. If the DATABASE option is given, all

calc keys on the database will be checked.

,2. REALM.If the REALM option is given, the calc key

on the specified realm will be checked.

3. MAXREC.If the MAXREC option is used, the verification

process will stop when "integer" records have been

checked.

ND-60. 097. 01

(5.2) 2

ERROR MESSAGE. If one or more inconsistent calc

keys are detected, the following information is

given for each error:

CALCULATED KEY DOES NOT CORRESPOND TO RECORD KEY

"information about the record" (see 5.1)

ND-60. 097. 01

(5.3) 1

INDEX KEY VERIFICATION

Function

This function checks the consistency of index key

values and index table entries.

The command specifications allow for the checking of

all index tables in the database, or specified index

tables in a realm.

The function of the index key verification is to check

the consistency of the key value of each entry in the

index table with the corresponding key value in the

record for each index key defined. The consistency

checks are performed in two ways:

1) By reading all the entries in the index table and

finding the corresponding record.

2) By scanning all the records and using the key

value to find the corresponding table entry.

This check is performed for automatically

maintained indexes only.

No attempt is made to correct a detected error.

Syntax

r DATABASE
VERIF_'3_{ INDEX

[MAXREC OF éntege1>] .

ND-60. 097. 01

_ \

REALM (realm—nam§> KEY (key-namemL>E%key—name—2

_

._-_

(5.3) 2

Rules

DATABASE. If the DATABASE option is given, all

index keys defined for the database will be

checked.

REALM. If the REALM option is given, all index

keys given in key—name-l, key-name—2 will be

checked.

MAXREC. If the MAXREC option is used, the verifica—

tion process will stop when "integer“ records have
been checked.

ERROR MESSAGE. The errors that may be detected

are:

l) ENTRY IN INDEX TABLE DOES NOT MATCH RECORD

KEY

2) RECORD HAS NO CORRESPONDING ENTRY IN INDEX

TABLE

Information about the record will be printed for

each error detected (see 5.1).

ND-60. 097. 01

(5.4) 1

SET VERIFICATION

Function

This function is used for verifying set relationships

within the database. This function is performed by

traversing records of a set and examining their types

and their pointers.

The set verification utility may be requested to vary

its domain of examination from a single set occurrence,

to all occurrences of a specified set, to all sets of a

database through the specification of the appropriate

format of the VERIFY command.

The consistency checks are performed in two ways:

1) By following all chains from the owner records.

2) By scanning all the member records and using the

member set item value to find an owner record.

This check will be performed for automatically

maintained sets only.

Syntax

The set verification command has three formats:

Format 1: //
VERIFY SET DATABASE

LMAXREC
0Fénteger>j .

Format 2:
VERIFY SET éetname} MAXKEC OF éntegerg.

Format 3:
. / / .

VERIFY SET<set—nam§>USING SET—OCCUR<aer—1tem—value—£>,

[Kéwner—item—value—g>....iJ

[MAXRE_C OFénteger>}

ND-60. 097. 01

(5.4) 2

Rules

DATABASE. Format 1 is used when all occurrences of

all sets defined for the database are to be

verified. The user is warned that the amount of

processing required to accomplish such a function

may be considerable.

ALL SET OCCURRENCES IN A SET. Format 2 is used to

verify all occurrences of a given set.

SINGLE SET OCCURRENCES. Format 3 is used to verify

specified occurrences of a given set. Each set

occurrence is identified uniquely by the value of

the owner set item.

MAXREC. The MAXREC clause is used to specify the

maximum number of records to be verified.

ERROR MESSAGES. The errors detected may be:

1) NO OWNER RECORD FOUND WITH GIVEN OCCURRENCE

2) POINTER POINTS OUTSIDE SET

3) MEMBER ITEM VALUE NOT EQUAL TO OWNER ITEM

VALUE

4) BACKWARD POINTER IS ERRONEOUS

5) OWNER POINTS TO ITSELF

6) MEMBER HAS NO OWNER

7) LOOP, POINTER POINTS TO A PERVIOUS MEMBER OF

SET-OCCURRENCE

8) MEMBER HAS DIFFERENT OWNER

9) NUMBER OF RECORDS READ VIA SET DOES NOT

CORRESPOND TO NUMBER OF RECORDS READ IN PHYSICAL

ORDER

IUD-60,097.01

(5.4) 3

For each error detected information about the record

involved is printed out (see 5.1).

Chains that forms a loop containing more than 512 records

cannot be detected.

For error 9, additional information is printed:

an algebric integer = number of records read in

physical order
- number of records read via

set.

"owner—item—value-l"

each item composing owner—item—value—l must

be given a value. If it is a character item:

write is as a character string delimited by

quotes.

If it is an integer item: write it as an

integer number.

Example:

VERIFY SET PARTOF USING SET—OCCUR

(' MOTOR' 5 10)

(' 950 ' 10 0) .

ND-60. 097. 01

APPENDIX A

IMPLEMENTOR NOTES ON NORD-lO

Command Syntax:

The syntactical units are written on one or more lines.
Each command sequence is concluded by period and carriage
return (".2 ”).

HELP:

ABBREVIA TION
LOOKUP:

OCTAL
NUMBERS:

POINTERS:

N0 command (",2 ") gives a list of all allowed
syntactical units on current command level.
Parameters are listed between parenthesis,
commands without.

A11 commands (not SIBAS names) can be abbreviated,
ambigouity is however not handled. The first
match is used!

All octal numbers must have 0 as first digit. Other—
wise the typed number is treated as decimal.

All pointers contain two machine words, typed as
two octal numbers separated by "x".

Ex: 000400 X 012345

ND-GO. 097. 01

B SUMMARY OF DBA STATEMENTS

START DEA-MODULE FOR DATABA_SE < data-base-name >

[py—mssqgrg)
(dba-pas

sword>j
.

DEFINE DEA-REALM <realm-name> SIZEéize).

ALL
}

READY .
{ w <realm—nam<> '

REALM <realm-mam?
FINISH

ALL

NTER addres s \>

FALL 1 ”PAGE 't—n REALM .PRINT [<nmnbez); 33300111) FROM [<um r> ”—
m <realm-name‘> J

PRINT POINTER <8.ddress> .

PATCH < word-n:- > REALM {realm-name)

REPLACE <31d-value) W_I_TH <newvélue>.

STOP DEA-MODULE .

ND—60. 097. 01

B.2

DEFINE DEA-PASSWORD < dba-password> .

DEFINE LOCAL-PASSWORD <password-l > OH DATABASE .

DEFINE GLOBAL—PASSWORD <password-2> ON DATABASE

w NON-PROTECTED

USAGE{
LOAD PROTECTION
UPDATE EXCLUSIVE

DEFINE LOCAL-PASSWORD (password-3>
0N REALM < realm-name-l>

3.132111% NON-PROTECTED
USAGE LOAD PROTECTION

UPDATE EXCLUSIVE .

DEFINE GLOBAL-PASSWORD <password-h >
0N REALM < realm-nae-Z >

BETH—EVE: NON-PROTECTED
USAGE LOAD PROTECTION

UPDATE EXCLUSIVE .

PASSWORD <password> DATABASE
REMOVE FROM

PRIVACY REA__ILVI realm-name> .

REPLACE < password-l> wéassword-2 > 0

ALL PRIVACY
DISPLAY

_P___ASSWQ__RD (password)
ND-60. 097. 01

B<3

BABE
DEFINE LOG-FILE <filename> MEDIUM

{
DISC
DRUM

FILE-SIZE < length—1) RESERVED-LENGTH (length—2)
BLOCK-GAP

<length_3 > .
SECTOR—SIZE I

_§E_FORE—LOOK—~-— I
DATABASE AFTER—LOOK

BOTH

DEFINE LOG-TYPE DIE-STATEMENT ,, tm
<fi1enname> "

TRANSACTION
USER~-INITIATED

{ DML-STATW}BOTH

QEICETE LOG—FILE <fiIename) .

BEFORE-LOOKr 7DATABASE [AFTER—LOOK
BOTH

ANNUL LOG-TYPE J DIE—STATEMENT L

TRANSACTION
USER—INITIATED r

DML-STATEAENT}I I BOTH J

LOG
DISPLAY .

LOG—TYPE

bU)-60.097.01

LOG—FILE

<file—name> o

3.14

DEFINE CHECKPOINT [MAXLOG (size) SIGN-OFFJ [USERJ

LOG-FILE <fi1e-name> .

ANNUL CHECKPOINT [MAXLOG] [SIGN—OFF]
EJSER

IDG-FILE

<file-neme> .

RECOVER DATABASE

T_q <checkpoint-id > LOG-FILE <fi1e—name-l ‘>

E
ADJUST (7e LOG-FILE] .

LAST
ROLL-BACK DATABASE TO{ CHECICPOINT <checkp01nt-1d>

}

DOG-FILE <file-name-l>
[ADJUST

OTHER LOG—FILE] .

DATABASE
VERIFY CALC { }

REALM <real1n-na.me>

[MAXREC 0Fénteger>1 .

WW
VERIFY mg;

] }REM {exam-mam} fl <key-name-> key-nme-é. .

[MAXREC OF<integex>J .

VERIFY SEI' DATABASE [MAXREC OF integer)] .

_
/.

5
, VERIFY sm<setnam3> MAXREC

0F\1ntegeI>J.

VERIFY SETéet—namggsgm SET-occunéwneritem—value—1>,
[owner-item-value-Q >. . . .

MAXREC
0F<1ntege1>J

.

ND-60. 097 . 01

to. 00¢ 0090090233:. 2:: 23322333. NORSK DATA A- 5-
oouaeouoo new : _
3830:8383 gggseeggo L¢renve1en 57 — Postboks 163, (Dkern
too 0000 00900690000 000 0900900 OSLO 1

COMMENT AND EVALUATION SHEET

ND-60. 097. 01 DATABASE ADMINISTRATOR MODULE

In order for this manual to develop to the point where it best suits
your needs, we must have your comments, corrections, Suggestions
for additions, etc. Please write down your comments on this pre-
addressed form and post it. Please be Specific wherever possible.

FROM

