
MAC
nteractive Assembly and Debugging System

User’s Guide

NORSK DATA A.S

MAC
Interactive Assembly and Debugging System

User’s Guide

REVISION RECORD
Revision Notes

Re laces revious issue numbered ND-60.001.01.

MAC — Interactive Assembly and Debugging System, User‘s Guide
ND-60.096.01

NORSK DATA A.S.

LareIn/eien 57, Postboks 163 @kern, Oslo 5, Norway

—I—I-—l mm;

M

—I—I_I_I—I—I—I 'cno'ibwma

wbwwwwwwwbbwwww

NNNNNNNNNNNN

aa—td—acooowmmw—n

d—ICOWVODO'IhOON—d

t—bo

—*O

wwwww

w
NNNNPNNNNNNNNNN

NNNNNNNNNNNN

NNNNNNN

d—l—I—I—A kink);-

TABLE OF CONTENTS
+ + +

INTRODUCTION

Philosophy of MAC
The Structure of this User's Guide
Revisions and Corrections

THE HARDWARE ENVIRONMENT FOR MAC

Instruction and Data Formats in the NORD-10
Single Bit
Half Word Data Items (Bytes)
Single Word Data Items
Double Word Data Items
Triple Word Data Items
Instructions

The NORD-IO Addressing Structure
P Relative Addressing
Indirect P Relative Addressing
B Relative Addressing
Indirect B Relative Addressing
X Relative (or indexed) Addressing
B Relative Indexed Addressing
Indirect P Relative Indexed Addressing
Indirect B Relative Addressing
Byte Addressing
A Word about Nomenclature
Summary of the NORD-10 Addressing Structure

NORD-IO Instruction Repertoire
Memory Reference Instructions
Register Block Instructions
Floating Conversion (Standard Format)
Argument Instrucions
Register Operations
Bit Instructions
Sequencing Instructions
Shift Instructions
Transfer Instructions
Execute Instruction
System Control Instructions
Input/Output Control
Interrupt Identification
Monitor Calls

BASIC MAC

A Simplified Explanation
A Glance at the MAC Language
How MAC Works '

MAC Input/Output
MAC as a Debugging Aid

ND-60.096.01

Page."

N

|

I _.

NNNNNNNNIIQNN

NNNNNNNI

##mmumm

AwNNNAa

O
._|

I
a... COM

I
I

A| 01$
2I _‘ U1

2—16
2—17
2—-19
2—19
2—20
2—20
2—22
2—23
2—24
2—25
2—26

Section:

WWWWWW NWNNNN —I__|_I—I'_J pwbb

NNN

orphan—-

WWWWWWWWWWW

WWWWWW

NNNNNNNNNN

NNNNNN

WWWWWWWWWWW

NW”

hwmubmbwmaP o

—I_a_l b—I

?

???????

?????

?

'cnhwroa

P

PNNNNNN

NNNNA

e
whhwwwN

vi

Detailed Description of Basic MAC
Basic Elements of MAC
Characters
Numbers
Symbols
Expressions

Types of Statements
Comments
Commands
Introduction to Instructions and Constants
Instructions
Constants

The Commands in Basic MAC
Set-Location—Counter
Define-Label

v“

.A.—..

Conditional Assembly I")

EXTENDED MAC

Options
The Options and their Use
Binary Relocatable Format Output (BRF)
Summary of Usage
Commands Included with the BRF Option

Standard Tables
The ZERO, CORE, LIST, PCL and CHANGE Commands
IZERO
)CORE
ILIST
IPCL
ICHANGE

Breakpoint
Decimal Mode
Floating Point Numbers
Disassembler
Two-Pass Assembly
Macros
Introduction to Macros
Defining and Calling 3 Macro
Related Commands

ND-60.096.01

E‘0 ('b

wwww
|
|
|
I
I

mummmm

wwwoooooo

0000

I

III

_a

.:(_o(g

a)

_‘

mm I
|

44 NM
3—18
3—19
3—20
3—20
3—20
3—21
3—21
3—22
3—30

Sect/on:

4.2.10

4.2.10.1
4.2.10.2
4.2.10.3
4.2.10.4
4.2.10.5

4.2.11

01

b14>wN—:

l\cu-l

«dd-.1

ww

NP“

94

N—I

_|

9?

99¢

99?

w
wwwww

—I—I_|

Appendix:

W

I”N

noon

0000

0

ML;

NNNN wN—I

vii

The 9READ, 9TABL, FIX, SSCLC, 9RCLC, SSLPL,
9RLPL Commands
)9READ
)9TABL
)FIX
)9SCLC and)9RCLC
)QSLPL and)9R LPL

The TRACE

USING MAC

Logging In
Preparing a Program for Assembly
Assembly of a Program
Debugging a Program
Dumping a Program

INTRODUCTION TO SUBROUTINES

Parameters
Parameter Transfer via Registers
Example

Parameter Transfer Via Locations Following the Call
Example
Example

Parameter Transfer by Means of the A Register
Example

ERROR MESSAGES AND WARNINGS

BUILT-IN SYMBOLS

Main Symbol Table (Instruction Mnemonics and
Commands)
Local Symbol Table (”Optional” Commands)

MAC 5 PECIAL VERSIONS

MACF (MAC File)
Additional Commands
The)QMOVE Command
The)SYSDF and)ULIST Commands

MACM (MAC Mass Storage)
Special MACM Commands
Loading and Running
Other Information

N D-60.096.01

|

|

|

|

|

I

||II

-‘

(2)0)d

l

mm

umm

#ww

mm

mam

amm

m

mmmmm

|

03>

|

I)

I

I

d—I—I

__l

0000

0000

0

mm

|
NNN—I

|
03030000

Appendix:

PPPP

U

w—h

IT!

viii

ABSTRACTS

NORD-10/S Instruction Code
NORD—10/S Addressing Modes
Register Operations Memo
ASCII Codes

32 BITS FLOATING POINT

ND-60.096.01

1.1

INTRODUCTION

PHIL OSOPHY OF MA C

MAC has the capability to accept code in the MAC language, the symbolic
assembly language for the NORD-10 computer, and to assemble the MAC
code into binary machine code as is necessary for program execution. MAC
also has the capability to examine and change a program, once the program
has been assembled and loaded, and to perform many other functions normal-
ly more closely associated with an interactive debugging system.

Furthermore, MAC has a simple program editing capability. MAC was
designed so it can always be memory resident with the capability to assemble
programs directly into memory. Consequently, MAC can be loaded and then
continually used for all phases of the program construction process. Thus, the
MAC Interactive Assembly and Debugging System has proved to be very
powerful and convenient.

The concept of MAC is not much like that of traditional assemblers. It is a sur-
vivor in the history of Norsk Data and remains active after alot of adjustments
and improvements. One important thing to be emphasized in the introduction
of this manual; the concept of MAC allows the user to be extremely free in his
composition of assembly source programs as well as in the interaction while
debugging programs. We at Norsk Data consider this as an advantage, even if
the lack of a strict syntax may lead to mistakes and problems for the inexper-
ienced user.

The necessity of having a machine-oriented language will always be present
irrespective of the EDP application. However, program systems are becoming
more and more complex, thus being difficult to develop and maintain. ln gen—
eral, but also at Norsk Data, this has enforced so—called machine-oriented and
problem—oriented (high level) languages which produce optimal machine
code. Such languages are often implemented as ”pre-processors" to the
actual assembler languages because including of assembly code sequences is
very easy.

The machine-oriented language, NORD Programming Language (NORD PL or
NPL) produces an object output which is MAC assembler source code.
Hence, all the debug facilities of MAC are immediately available, including
symbolic references to lables and variables. The binary object code produced
by all NORD language processors is called Binary Relocatable Format (BRF).
This standard binary format may, of course, also be produced by MAC.

The intention is obvious; an uncomplicated way to mix languages of any
source.

The MAC system has developed into some different versions which have the
basic MAC principles in common. To avoid confusion we shall give a short des-
cription in the following lines:

ND-60.096.01

MAC

Standard assembler, SINTRAN |l| subsystems or stand-alone.

MACF (MAC-File)

SINTRAN ||| subsystem. Absolute assembly goes to a memory image-file.
Special features are documented in Appendix C of this manual.

MACD or DMAC (MAC-Debugger)

Debugging system under SINTRAN III. Special features are documented in
the manual "SINTRAN III User’s Guide".

MACM (MAC-Mass Storage)

Stand-alone system. Absolute assembly goes directly to different mass stor-
age devices. Mainly used to generate and start SINTRAN Ill. Special features
are documented in the manual ”MACM - MAC Mass Storage Assembler”. A
short description is given in Appendix C of this manual.

N D-60.096.01

1.2 THESTRUCTURE OF THIS USER'S GUIDE

This User's Guide is intended to serve as an introduction to the philosophy,
use, and functioning of the MAC Interactive Assembly and Debugging
System for the NORD-1O computer. It is also intended to serve as a com—
prehensive operation, maintenance, and reference manual. The guide does
not document the internals of the MAC system.

It is assumed that readers of this ”User's Guide” have a rudimentary under-
standing of assembly language programming and of word-oriented, single-
address computers. A specific example in the latter area is presented in
another volume, ”The NORD—10 Reference Manual".

This manual is divded into six chapters, with this introduction as Chapter 1. In
Chapter 2, the hardware environment in which MAC resides and for which
MAC assembles code is discussed. This chapter includes a thorough discus-
sion of the NORD-lO’s addressing structure and instruction repertoire. In
Chapter 3, the basic MAC system is described, first in a simplified, intuitive
fashion, and then rigorously. Chapter 4 describes the various options that can
be added to MAC. Chapter 5 leads the reader through a set of examples which
illustrate the steps of writing, assembling, and debugging a program using
MAC. And finally, Chapter 6 gives an introduction to subroutines and transfer
of parameters.

In addition to these main chapters, this guide has a number of appendixes
which include a list of all MAC's built in symbols and a complete list of error
messages. Finally, an index is provided. Throughout the text of the guide,
appropriate cross-references are given.

Readers with only a rudimentary background in assembly language program-
ming are advised to read carefully Chapter 2, Sections 3.1, 3.2.1, 3.2.2, and
Chapter 5, and to then write and debug a small program before attempting to
read the rest of this guide. Experienced assembly language programmers
should be able to start coding after glancing over the Table of Contents and
Sections 3.1, 3.2, and 4.2. The index will be of aid to all users.

Some documentation conventions and terms which may seem confusing are
explained below:

— capital letters marked with a like A or 0 indicate the respective key
on the keyboard plus the CTRL key.

— Elements may be described in general terms by enclosing a self-
explanatory text in

— Terminal is any device having a two-way communication with the com-
puter.

— The usertypes on the keyboard and MAC prints on the terminal.

ND-60.096.01

1.3 REVISIONS AND CORRECTIONS

This guide represents the amalgamation of all preceding MAC related docu-
ments and supersedes them all. Future changes to the MAC system will be
documented in a series of revisions to this user’s guide which will be issued to
coincide with the release of revisions to the MAC system. Also, revisions will
be issued as necessary to correct errors in the guide or to improve the presen-
tation.

The "loose-leaf” format of the guide will facilitate its frequent revision, since
only pages which have been changed need be distrubuted. Frequent revision
will insure users up-to-date information about the MAC system. The changed
pages distributed as a revision will be dated on the revision page so the user
can correctly up-date his own copy of the guide.

This is your guide. You know best what it should contain. Although we at
Norsk Data have tried to anticipate your needs, great improvement in the
guide’s usefulness and clarity can be achieved if you send us your comments
about it, corrections to it, and suggestions for its improvement will be very
much appreciated. Use the pre—addressed ”Comment and Evaluation Sheet”
at the back of this manual.

ND—60.096 .01

2.1

2.1.1

THE HARDWARE ENVIRONMENT FOR MAC

The purpose of the MAC language, as with all assembly languages, is to sym-
bolically represent words in a computer, in this case the binary words of the
NORD-10 computer. Therefore, before the MAC language is described, it is
appropriate to introduce the reader to the data and instruction formats of the
NORD—10 computer. A more complete description of the NORD—10 computer
may be found in the ”NORD-10 Reference Manual”.

The configuration for operation of MAC ranges from the most advanced
SINTRAN lll installation to the stand-alone NORD-10 with a console type-
writer. Each addition of input/output devices will, of course, enhance MAC’s
performance.

INS TRUCT/ON AND DA TA FORMA TS /N THE NORD- 70

The NORD-10 has a 16-bit word. The bits are conventionally numbered 0 to 15
with the most significant bit numbered 15 and the least significant numbered
0.

16-bit NORD-lO memory word
A

bit 15 bit 0

Figure 2. 7: NORD- 10 Bit Number Convention

The content (or value) of a memory word is conventionally represented by a
6-digit octal number. Thus, the content of a memory word with all 16 bits set
to zero is represented as 000000, while the content of a memory word with all
bits set to one is represented as 177777.

All instructions are contained in exactly one memory word, while data items
contained in one, M0 or three consecutive memory words are recognized by
the NORD-10 Central Processor Unit (CPU).

Sing/e Bit

A single bit data word is typically used for a logical variable; the bit instruc—
tions are used for manipulation of single bit variables. The bit instructions
specify operations on any bit in any of the general registers, as well as the
accumulator indicator K.

ND-60.096.01

2.1.2

2.1.3

2.1.4

Ha/f Word Data Items (Bytes)

The internal representation of characters is ASCII which is an 8-bit code in-
cluding a parity bit. In character strings such bytes are packed two by two in
one 16—bit word. The NORD—10 provides instructions to handle bytes. The
even byte address points to the left half of the word.

15 8 7 0

Even Address Odd Address

byte n byte n+1

Figure 2.2: NORD- 70 Byte Format

Sing/e Word Data Items

Single word data items are considered by the NORD-10 to be either integer
arithmetic or Boolean {logical} 16-bit numbers, and instructions exist to oper-
ate on both types of numbers. Negative arithmetic numbers are represented in
two‘s complement notation, and if the arithmetic numbers are considered to
be signed integers, the range of possible integer values is from —32768 to
32767. Alternatively, integer numbers are often considered to range from 0 to
65537 — except for overflow indications, two’s complement arithmetic gives
the correct answer whether numbers are considered to have a sign bit and 15
bits of magnitude or to have no sign and 16 bits of magnitude.

Double Word Data Items

The optional 32-bits floating point format is discussed in Appendix E.

The programmer may consider two-word data items to be of any type he
desires, since the standard NORD-10 has no hardware instructions which oper-
ate on these data items other than load and store instructions. However, it is
sometimes convenient to consider two-word data items to be 32-bit numbers,
with the more significant 16 bits residing in one memory location and the less
significant 16 bits residing in the next higher numbered memory location. If
this 32-bit number is considered to be a double integer with negative values
represented using two’s complement notation, the possible range of integer
valuesis -2 147 483 648t02 147 483 647.

A double word is always referred to by the address of its most significant part.
Normally, a double word is transferred to the registers so that the most signif-
icant part is contained in the A register and the least significant in the D reg-
ister.

N D-60.096.01

2.1.5 Trio/e Word Data Items

The NORD-10 computer uses three-word data items to hold standard floating
point numbers, also called real numbers.

The data format of floating point words is 32 bits mantissa magnitude, one bit
for the sign of the number and 15 bits for a signed exponent.

The mantissa is always normalized, 0.5 S mantissa < 1; for all non-zero num—
bers bit 31 equals one. The exponent base is 2. The exponent is biased with
214, Le. 400008 is added to the actual exponent, so that a standardized
floating zero contains zero in all 48 bits.

In the computer memory one floating point data word occupies three 16 bit
locations, which are addressed by the address of the exponent part.

n exponent and sign
n + 1 most significant part of mantissa
n + 2 least significant part of mantissa

In CPU registers, bits 0-15 of the mantissa are in the D register, bits 16-31 in
the A register, and bits 32-47, exponent and sign, in the T register. These
three registers together are defined as the floating accumulator.

n n+1 n+2

Exponent Man- tissa

47 T 32 31 A 16 15 D 0

Figure 2. 3: N0RD— 70 Standard Floating Point Format

N D-60.096 .01

2.1.6

2—4

The accuracy is 32 bits or approximately 9 decimal digits, any integer up to 232
— 1 has an exact floating point representation. The range is:

2‘1““ 10.5 s lxl< 216383 *10rx = 0
or

10‘493‘ < lxl<104931
Examples (octal format):

T A D
0: 0 0 0
+1: 040001 100000 0
—1: 140001 100000 0

lncidently, the instructions for loading and storing two and three word data
items are often used as a quick method of simultaneoulsy loading or storing
two or three single word data items.

Instructions

0

All instructions have an operation code in the most signifcant (left) five bits of
the computer word, the bits set in the octal numberl174900; therefore, there
are 32 basic instructions in the NORD-10.

Op. Code X | B Displacement

15 1110987 0

Figure 2. 4: NORD- 70 Instruction Word

The first 24 instructions are commonly called memory address instructions,
and in these instructions, bits 0-7 contain a signed 7-bit number called the dis-
placement. The displacement is always considered to be relative (—128 to
127) to the content of the X, B or P register. In 23 of the first 24 instructions
the content of bits 10, 9 and 8 (represented by 34003) select one of 8 addres-
sing modes. The exception is the conditional jump instruction (CJP) which
uses these bits to specify one of 8 sub—instructions. Also, the displacement in
the CJP instruction is always relative to the P register.

Of the remaining eight basic instructions, one is an input/ output group and
the other specifies what is often called operated groups (i.e., instructions
which do not reference memory locations or do input/output, but do shifts,
inter-register arithmetic, register testing, etc.) The sub-instructions in these
groups are illustrated later.

ND-60.096.01

2.2 THE NORD- 10 ADDRESSING STRUCTURE

As stated in the previous section, a thorough understanding of the hardware
environment for which MAC assembles code is essential for a thorough under-
standing of MAC. Therefore, in this section we try to give the user some under-
standing of the use of the NORD—10 addressing structure. Wise use of the
addressing structure will usually result in significant efficiencies in a program.
Advanced readers may want to skip this section after looking at the table in
Appendix D which summarizes the addressing structure.

An important preliminary to this discussion of the addressing structure is an
explanation of the concept of an effective address, a concept relevant only to
memory address instructions. The effective address is the address of the
memory location that is finally accessed after all address modifications have
taken place in memory address instructions. Suppose, for example, that a par-
ticular instruction is executed which results in the content of the X register
being added to the displacement and finally the content of memory location
14030 being loaded into the A register. The effective address of this particular
execution ofthis particular instruction is 14030.

The NORD-10 has eight different addressing modes, any one of which may be
selected using the X, I and B bits in all memory address instructions except the
conditional jump instruction. Explanations of these eight modes follow.

N D-60.096.01

2.2.1 P Relative Addressing

The first mode which we shall describe is called the P relative addressing mode
and is specified by setting the X, I and B bits all to zero. In this mode the
displacement bits (bits 0-7) specify a positive or negative 7-bit address relative
to the current value of the instruction counter (P register).

Suppose memory location 403 contains the instruction 0040025 which in this
chapter we shall represent by STA 2 and this instruction is executed. (Note
that this is go_t the way the instruction is written in the MAC language.) The X,
| and B bits are all set to zero indicating P relative addressing, and a positive
displacement of 2 is given; therefore, the contents of the A register will be
stored in memory location 405. If instead location 403 contains the instruction
JMP —2 and it is executed, the next instruction to be executed will be taken
from location 401. While there is an obvious limitation to this mode of addres-
sing (locations more than 1283 words away from the instruction being execu-
ted cannot be accessed), this mode of addressing is still quite useful for doing
local jumps and accessing nearby constants and variables.

Memory

~128

Range with
P-relative
addressing

P register

127
Displacement

Effective address

Figure 2. 5: Schematic Illustration ofP Relative A ddressing

ND-60.096.01

2.2.2 Indirect P Relative A ddressing

Since one must be able to access memory locations more than 1288 words
away from the instruction being executed, the simplest method of doing this is
to use the indirect P relative addressing mode, specified by setting the I bit to
one and the X bit and B bit to zero in memory address instructions. In this
mode an address relative to the program counter is computed, just as for P
relative addressing, by adding the displacement to the value of the program
counter; but then, rather than the addressed location actually being accessed,
the contents of the addressed location are used as a 16-bit address of a
memory location which is accessed instead. The following example will make
this clearer.

Suppose location 405 contains the instruction LDA I 2 (0450023) and this in-
struction is executed. Further, suppose memory location 407 contains the
value 16003 and memory location 16003 contains the value 17. The net result
of executing the instruction in location 405 is to load the value 17 in the A
register. First the displacement, 2, of the LDA instruction is added to the value
of the location counter, 405, giving the result of 407; then the contents of loca-
tion 407, 16003, are used as an address and the contents of this address, 17, is
finally loaded into the A register.

An analogy may also be helpful. Suppose your company’s mail boy is told to
pick up a letter from an office, the identity of which may be found on a piece
of paper in the ascend office, beyond the office where the mail boy currently
is. Substitute memory location for office in this analogy and you have indirect
P relative addressing. This addressing mode obviously allows access of loca-
tions anywhere in a 64K (full 16-bit address) memory.

Memory

— P register

Displacement

_- Pointer to any location
within 64K

*— 4— Effective address to any
location within 64K

Figure 2. 6: Schematic illustration ofIndirect P Re/a tive A ddressing

N D-60 .096 .01

2.2.3 B Relative A ddressing

The above two addressing modes are quite sufficient; in fact, theoretically,
either one alone is sufficient. However, if the NORD—10 provided only one or
both of the two addressing modes already described, it would not be particu—
larly convenient or efficient to program. For instance, suppose that two
sub-programs, each a couple of hundred words long, need to communicate.
Within each sub-program memory accesses are commonly made using P rela-
tive addressing, or occasionally, indirect P relative addressing. But between
the subprograms indirect P-relative addressing would have to be used almost
exclusively since, in general, locations in one sub-program which instructions
in the other sub-program must access will not be less than 128 Words apart.
But this is very inefficient since both subprograms contain indirect pointers to
data and instructions local to the other su b-program.

To get around this inefficiency, another addressing mode is available, 8 rela—
tive addressing, which permits both sub—programs to directly address a com-
mon data area. B register relative addressing is specified by setting the X and l
bits to zero and the B bit to one in memory address instructions. This addres—
sing mode is quite closely related to P relative addressing, but instead of the
displacement being added to the current value of the location counter, the
displacement is added to the current value of the B register, and the resulting
sum is used to specify the memory location accessed.

Memory

.. .._ B register

Displacement

r—- -— —- Effective address

Figure 2. 7: Schematic Illustration of B Relative A ddressing

As an example, suppose location 405 contains the instruction LDA —4, B
(0447748) and the B register contains the value 10035 and the instruction in lo—
cation 405 is executed causing the content of location 10031 to be loaded into
the A register. The minus 4 in the displacement field of the LDA instruction in
location 405 is added to the contents of the B register, 10035, giving a sum of
10031, and the contents of locations 10031 are loaded into the A register.

ND-60.096.01

2.2.4 indirect B Re/a tive A ddressing

Naturaily, there is also an indirect 8 relative addressing mode which is Speci—
fied by setting the B and l bits to one and the X bit to zero in memory address
instructions. which has the same relationship to B relative addressing as in-
direct P relative addressing has to P relative addressing. This permits a sub-
program to access data or locations in other sub—programs indirectly via
pointers in an area common to several subprograms. This address mode may
be used for calling library routines.

As an example, suppose location 10031 contains the instruction JPL l 3,8
(1354033) and the B register contains 400, a pointer to an area common to
several sub-programs. Further suppose location 403 contains the value 2000. If
the instruction in location 10031 is executed, the subroutine beinging at loca-
tion 2000 will be called. The displacement, 3, in the JPL instruction is added to
the contents of the B register, 400, giving a result of 403. The contents of loca-
tion 403, 2000, are then used as a pointer to the subroutine.

Memory

__ B register

Displacement
Pomter to any location
within 64K

Effective address

Figure 2.8: Schematic Illustration of Indirect B Relative A ddressing

N D-60 .096 .01

2.2.5 X Relative (or indexed) Addressing

The other four addressing modes all involve use of the X register: the simplest
of these is X relative addressing which works like P and B relative addressing,
but the displacement is added to the X register’s content during the address
calculation instead of to the content of the P or B register. This addressing
mode is often used for randomly accessing the elements of a block of data.

For instance, suppose a recursive subroutine" upon being called saves the con-
tents of the L, A and B registers in a three word block on a push down stack,
and the X register points to the first free register in the stack. The following
code might then be found at the beginning of the recursive subroutine:

* If you are unfamiliar with the concept of recursion, skip this example.

SUB, STA 1,X
COPY SL DA
STA 2,X
COPY SB DA
STA 0,X
AAX 3

The effect of this code is illustrated in the following figure:

Memory

v

.._ . X register upon entry
to the subroutine

d: .. __ B register saved here

Stack < 4.... ---- A register saved here
_. _
‘.

---—# L register saved here
— X register after execution

of AAX instruction

Figure 2.9: Example of Use ofX Relative A ddressing

N D-60.096 .01

2—11

For another example, re-read Section 2.2.3, B Relative Addressing, mentally
substituting "X register” for "B register’ '.

Memom

-— X register

Displacement

Effective address

Figure 2. 70: Schematic Illustration ofX Re/a tive A ddressing

2.2.6 B Re/ative Indexed Addressing

The next addressing mode is called 3 relative indexed addressing; it is speci-
fied by setting the X and B bits to one and the I bit to zero in memory address
instructions. In this mode the contents of the X and B registers and the dis
placement are all added together to form the effective address.

B relative indexed addressing is often very useful; for instance, when acces—
sing row by row elements of a two dimensional array stored column by
column. However, such uses tend to be difficult to describe, so we shall not
attempt a description of one here.

Memory

—— B register

Displacement

Content of X register

Effective address

Figure 2. 7 1: Schematic Illustration ofB Rela tive IndexedAddressing

N D-60.096.01

2.2.7 Indirect P Relative IndexedAddressing

The last two addressing modes are a little difficult to describe but very useful.
Indirect P relative indexed addressing is selected by setting the X and | bits to
one and the B bit to zero in the memory address instruction. This mode allows
successive elements of an array based at an arbitrary place in memory to be
accessed in a convenient manner.

The address calculation in the mode takes place as follows. The contents of
the P register, say 4002, are added to the displacement, say —1, and produce
a sum, 4001. The contents of the location 4001, say 10100, are added to the
contents of the X register, say —100, to produce a new sum, 10000, the effec-
tive addresss. By incrementing the X register, successive locations may be
accessed. For instance, using the above example, locations 10000 through
10100 can be successively accessed by stepping the contents of the X register
from - 100 to zero.

Readers are advised to go over this example carefully: stepping through an
array in this fashion is done very often.

Memory

..._ P register

Displacement
-> Pointer to any location

within 64K

Content of X register

Effective address

Figure 2. 72: Schematic Illustration of Indirect P Re/a tive IndexedA ddressing

ND-60.096.01

2.2.8 Indirect B Relative IndexedAddressing

The addressing mode, indirect B relative indexed, is identical to indirect P rela-
tive indexed addresssing except that the content of the B register is used in
place of the content of the P register i the effective address computation. This
mode can therefore be used to step through arrays pointed to from a data area
common to several sub-programs.

Memory

— B register

Displacement

Content of‘ X register
—Effective address

Figure 2. 13: Schematic Illustration ofIndirect B Bela tive IndexedA ddressing

ND-60.096.01

2.2.9 Byte Addressing

To facilitate the handling of character strings, the NORD-10 provides two in-
structions for byte handling, load byte, LBYT, and store byte, SBYT. Because
of the requirement of full 64K addressing, the LBYT and SBYT use an addres-
sing scheme different from the normal NOR D-10 addressing.

For byte addressing, two of the NORD-lo registers, the T and X registers are
used for addressing the byte. The contents of the T register point to the begin-
ning of the character string, and the contents of the X register point to a byte
within this string. Thus, the address of the word which contains the byte
equals:

(T)+1/2(X).

if the X register is even the byte is in the left part of the word, if X is odd, the
byte is in the right part of the word.

A byte consists of eight bits.

Memory

T Register '7'
0 1
2

W
2

n n+1
n+2 n+3

Figure 2. 14: Schematic Illustration of Byte A ddressing

ND-60.096.01

2.2.10

2.2.11

2—1 5

A Word about Nomenclature

We have tried above to name the various addressing modes systematically in
the hope that this would aid the reader in understanding the function of each
mode and the modes' inter—relations. Unfortunately, the different addressing
modes are generally referred to by much less precise names outside of this
document: P relative addressing is often called normal addressing, indirect P
relative is simply called indirect addressing, double indexing is a common
synonym for indexed B relative addressing, indexed indirect is used for indirect
P relative indexed addressing, etc. The X register is used in a manner common-
ly called post-indexing in the last two addressing modes. The B and P registers
in all addressing modes are used in a manner commonly called ore-indexing.

Summary of the NORD-10Addressing Structure

The addressing structure described above permits 1024 memory locations to
be directly addressed at a given time (—128 to 127 relative to the contents of
each of the P, B and X registers and the sum of the X and B registers). Any
location in memory can be indirectly addressed.

The addressing modes are summarized in Appendix D.

ND-60.096.01

2.3

2—16

NORD- 70 INSTRUCTION REFERTOIRE

In the NOHD-lo all instructions occupy a single word, 16 bits, yielding a very
efficient use of memory, and also producing code with unusual efficiency,
with regard to speed. 48 bits floating point arithmetic operations and floating
integer conversions are standard. The optional 32 bits floating point format isdescribed in Appendix E.

There are 8 general registers:

A register
D register
T register
L register
X register
B register
Program counter
Status register containing TG, K, 2, O, O, C, M indicators

—lU>

(013e .1(I)

and the following special registers:

OPR Operator’s panel switch register
LMP Lamp register
PGS Paging status register
PCR Paging control register
PVL Previous level register
IIC lntemal interrupt code
"5 Internal interrupt enable
PID Priority interrupt detect
PIE Priority interrupt enable
ALD Automatic load descriptor
PES Memory error register
IR Instruction register
PEA Memory error address

In the following A is equal to the displacement, and EL is equal to effective
address.

N D-60.096.01

2—17

2.3.1 Memory Reference Instructions

Op.code 1x) I 131
15141312'1110918 7 615 4 3l210

Displacement (A)

Effective address:

mom—Addressm

w‘kI

m
,B

BZ I

002000
001 000
003000
000400
002400
001 400
003400

Store instructions:

8')?
STA
S‘I'I'
STX
MlN

000000
004000
010000
014000
040000

Load instructions:

LDA
LDT
LDX

044000
050000
054000

Address relative to X
Indirect address
Post—indexing
Address relative to B
Address relative to B and X
Pre—indexing
Pre— and post—indexing

Store zero
Store A
Store T
Store X
Memory increment and skip next
instruction if zero

Load A
Load T
Load X

Arithmetical and logical instructions:

ADD

SUB

AND
ORA
MPY

060000

064000

070000
074000
120000

Add to A (C, 0 and 0 may also be
affected)
Subtract from A (C and 0 may
also be affected)
Logical AND to A
Logical inclusive OR to A
Multiply integer (O and 0 may
also be affected)

Double word instructions:

STD
LDD

DA

DW

020000
024000

-

Store double word
Load double Word

N D-60.096 .01

mmmmmmmm i—f—FI'TI—l—l—l— II
II
n
II
II
H
II
II

EEWWEQXV ++++++++EDDDDDDD

+ x

+"+ x

X

(EL):
(EL):
(EL):
(EL): = X

0
A
T

(EL): = (EL) +1

><:(>

A: = A + (EL)

A: = A—(EL)
A: = A A (EL)
A: = AV(EL)

A :=A*(EL)

(DW): = AD
AD: = (DW)

Standard floating instructions:

TAD l T l A l D)

FW EL IEL-I—T IEL+2I
Exponent Mantissa

STR = STF 030000 Store floating accumulator (FW): = TAD
LDR = LDF 034000 Load floating accumulator TAD: = (FW)
FAD 100000 Add to floating accum. (C may

also be affected) TAD: = TAD + (FW)
FSB 104000 Subtract from floating accum.

(C may also be affected) TAD: = TAD— (FW)
FMU 110000 Multiply floating accum. (C

may also be affected) TAD: = TAD*(FW)
FDV 114000 Divide floating accum. (Z and C

mayalso be affected) TAD: = TAD/(FW)

Byte instructions:

Addressing:

EL = (T) + (X)/2

Least significant bit ofX = 1 Right byte
Least significant bit of X = 0 Left byte
SBYT 142600 Store byte
LBYT 142200 Load byte

ND-60.096.01

2.3.2

2.3.3

Register Block Instructions

1 0101010 Level 000 SRB

1 1 0 1 0 LRB

15141312|11109|87 |5|4l3 210

Addressing:

EL = (X) on current level

Register block instructions are privileged instructions.

LRB 152600 Load register block:
P on spec. level: = (EL)
Xon spec. level: = (EL) + 1
Ton spec. level: = (EL) + 2
Aon spec. level: = (EL) + 3
Don spec. level: = (EL) + 4
Lon spec. level: = (EL) + 5
STS on spec. level: = (EL) + 6
B on spec. level: = (EL) + 7

SRB 152402 Store register block

Specified level:

0 000000 LevelO
01 000010 Level1

017 000170 Leve|15

Floating Conversion (Standard Format)

‘.1 1 0 1 0| sub.inst.l scaling factor

1%141312l11109l8 7
615

4
31210

NLZ 151400
DNZ 152000
NLZ+20 151420
DNZ—20 152360

Convert the no. in A to a floating no. in TAD
Convert the floating no. in TAD to a fixed point no. in A
Integer to floating conversion
Floating to integer conversion

The range of scaling factor is —128 to 127 which gives converting range from
10‘39 to 1039 .

N D-60 .096 .01

2.3.4

2.3.5

Argument Instructions

1 1 1 1 0] function] argument

15.141312111109la7 6 l5 4 31210

Function:

SAA 170400 Set argument to A
AAA 172400 Add argument to A
SAX 171400 Set argument to X
AAX 173400 Add argument to X
SAT 171000 Set argument to T
AAT 173000 Add argument to T
SAB 170000 Set argument to B
AAB 172000 Add argument to B

Argument is a signed number ranging from — 128 to +127.

Register Operations

PPEJI'I‘PFX???

UU

1 1 0 0112 [C] II Flo l source I destin.
n: 2 -l

1511413 1211110913 7 6|5 4 3]210

Arithmetic operations, RAD = 1:

C, O and 0 may be affected by the following instructions:

RADD 146000 Add source to destination
RSU B 146600 Subtract source from destination
COPY 146100 Register transfer
AD1 000400 Also add one to destination
ADC 001000 Also add old carry to destination

Logical operations, RAD = 0:

SWAP 144000 Register exchange

RAND 144400 Logical AND to destination
REXO 145000 Logical exclusive 0 R
RORA 145400 Logical inclusive 0R

CLD 000100 Clear destination before operation
CM1 000200 Use one's complement of source
CM2 000600 Two’s complement (CM1 ADl)

N D-60.096.01

(dr):
(dr):
(dr):
(dr):
(dr):

(sr):
(dr):
(dr):
(dr):
(dr):

ldr)
lsr)

(dr) + lsr)
(dr) — lsr)
lsr)
(dr) + 1
(dr) + C

(dr):
lsr)
(dr) Alsr)
(drl'V-(sr)
ldr) V (sr)

= 0
= (sr)°

Combined instructions:

EXIT 146142 = COPY SL DP Return
from subroutine

RCLR 146100 = COPY Flegister clear
RINC 146400 = RADD AD1 Register increment
RCDR 146200 = RADD CM1 Register decrement

Specify source register (sr):

S D 000010 D register as source
SP 000020 P register as source
S B 000030 B register as source
S L 000040 L register as source
SA 000050 A register as source
ST 000060 T register as source
SX 000070 X register as source

000000 Source value equals zero

Specify destination register (dr):

DD 000001 D register as destination
DP 000002 P register as destination
DB 000003 B register as destination
D L 000004 L register as destination
DA 000005 A register as destination
DT 000006 T register as destination
DX 000007 X register as destination

Extended arithmetic operations:

RMPY 141200 Multiply source with destination;
result in double accumulator AD: = (sr) * (dr)

RDlV 141600 Divide double accumulator with
source; quotient in A, remainder
in D A: = AD//lsrl
(AD = A” (sr) + D)

N 0-60 .096 .01

Bfl/nsflucnbns

2-22

1 1 1' 1' 11 function

1d14 13 1411 10 9|8 7 6 [5 4 3 [2 1 o

[bit no. [destin.

BSKP 175000

BSET 174000

BSTA 176200
BSTC 1760a)
BLDA 176600
BLDC 17640
BANC 177000
BORC 177400
BAND 177200
BORA 177600

Specify condition:

ZRO 000000
ONE 000200
BAC 000600
BCM 0004-00

Specify bit number:

0 000000
0010 000010
0020 000020

Mm wmm

For destination (D) mnemonics, refer to the section for

Skip next location if specified
condition is true
Set specified bit equal

ified condition
Store and clear K
Store complement and set K
Load K
Load bit complement to K
Logical AND with bit compl.
Logical OR with bit compl.
Logical AND to K
Logical OR to K

Specified bit equals zero
Specified bit equals one
Specified bit equals K
Complement specified bit

Specifies bit in dest. reg.

2.3.5. D = 0 specifies STS register.

Specify control flip-flop:

SSTG 000010
SSK 000020
882 000030
880 000040
880 000050
SSC 000060
SSM 000070

specifies floating rounding
specifies one bit accum.
specifies floating p. overflow
specifies dynamic‘overflow
specifies static overflow
specifies carry
specifies multishift link

N D-60.096.01

P: = P +1

(B): = K; K: = 0
(B): = K0; K: =1
K: = (B)
K: = (8)0

K: = KA (B)o
K: = KV‘B)o

K: = K /\ (B)
K: = KVlB)

(B): = 0
(3): =1
(B): = K
(B): = (B)°

B: = 0
B: =1
B: = 2

E=m

register operations,

CD

wwwwwwm u
u
n
n
u
n
u

EOODNX4

2.3.7 Sequencing Instructions

Unconditional jump:

For instruction Word format and effective address, see Section 2.3.1 for
memory reference instructions.

JMP 124000 Jump P = EL
JPL 134000 Jump to subroutine L = P; P = EL

Conditional jump:

1 0 1 1 Olconditionl displacement (A)

151141312111109|876l543[210

JAP 130000 Jump ifA is positive P = P j; A if:A 2 0
JAN 130400 Jump ifA is negative P = P: A if:A<0
JAZ 131000 Jump ifA is zero P = P1: Aif:A = 0
JAP 131400 JumpifA is non-zero P = P: Ais # 0
JXN 133400 Jump ifX is negative P = P: A if:X < 0
JXZ 133000 Jump ifX is zero P = P: A if:X = 0
JPC 132000 Increment X and jump if positive:

X=X+1 P=P¢Aif:X20
JNC 132400 Increment X and jump if negative;

X=X+1 P=PiAif:X<0

Skip instructions:

1 1 0 0 O leonditionl lsource (sr) Idestinidrl

151141312l1110918761543i210

SKP 140000 Skip next instruction if specified
condition is true P = P + 1

Specified condition:

EQL 000000 Equal to
U E0 002000 Unequal to
GRE 001000 Signed greater or equal to
LST 003000 Signed less than
M LST 003400 Magnitude less than
MGRE 001400 Magnitude greater or equal to
IF 000000 May be used freely to obtain
0 000000 easy readability

For source and destination mnemonics, see section for register operations,
2.3.5.

ND—60.096.01

2.3.8 Shift lnstructions

SHT
SHD
SHA
SAD

ROT

ZIN
LIN

SHR

1 1 ILIN 'SAD I I0 1 1 2| '5 g
0 shift counter

_‘ I

15|141312|11|1No 9018017016 [5 4 3|210

1 54000
1 54200
1 54400
1 54600
000000

001000

002000
003000

Shift T register
Shift D register
Shift A register
Shift A and D register connected
Arithmetic shift. During right shift, bit 15 is extended.
During left shift, zeros are shifted in from right.
Rotational shift. Most and least significant bits are
connected.
Zero end input
Link end input. The last vacated bit is fed to M after
every shift instruction.
Shift right, gives negative shift counter. Note that SHR
must precede the specified shift counter.

ND-60.096.01

2 .3 .9 Transfer Instructions

Transfer instructions are privileged instructions.

Level independent instructions:

1 1 0 1 Olsubinstructionl l R
15i14131a1110941 8 7 615 4 31210

TRA 150000 Transfer specified register to A

Specified register R:

STS 1 Status register
OPR 2 Operator’s panel switch register
PSR 3 Paging status register
PVL 4 Previous level code register
IIC 5 Internal interrupt code register
PID 6 Priority interrupt detect register
PIE 7 Priority enable detect register
ALD 12 Automatic load descriptor
PES 13 Parity error status register
PEA 15 Parity error address register

TRR 150100 Transfer A to

Specified register R:

STS 01 Status register (bits 1-7)
LMP 02 Panel data display buffer register
PCR 03 Paging control register
IIE 05 Internal interrupt enable register
PID 06 ' Priority interrupt detect register
PIE 07 Priority interrupt enable register

MC L 150200 Masked clear of specified register
MST 150300 Masked set of specified register

Specified register:

STS 000001 Status register (bits 1-7)
PID 000006 Priority interrupt detect register
PIE 000007 Priority interrupt enable register

N D-60.096 .01

2.3.10 Execute Instruction

2—26

1100000110000| R

[[[0001210

EXR 140600

Specified register R:

SD 000010
SB 000030
SL 000040
SA 000050
ST 000060
SX 000070

Inter-level instructions:

Execute instruction found in specified register

D register
B register
L register
A register
T register
X register

110101111/Ollevel IR

15|141312|11109L8 7 615 4 3121 0

IRR 153600

IRW 153400

Inter Register Read
A: = specified register on specified level
Inter Register Write
Specified register on specified level: = A

IRR and IRW are privileged instructions.

Specified register R:

000000
DD 000001
DP 000002
D B 000003
D L 000004
DA 000005
DT 000006
DX 000007

8 pecified level:

0000 000000
0010 000010

0170 000170

Status register
D register
P register
B register
L register
A register
T register
X register

Level 0
Level 1

Level 15

ND-60.096 .01

2.3.1 1 System Control Instructions

System control instructions are privileged instructions.

ION 150402 Turn on interrupt system
PON 150410 Turn on paging system
IOF 150401 Turn off interrupt system
POF 150404 Turn off paging system

Halt instruction:

1 1 0 1 dsubinstr.‘ wait number

15114131411109[8 7 e]543|21o

WAIT 151000 I When interrupt system off: halts the program and
enters the operator’s communication.

ll When interrupt system on: give up priority. If there are
no interrupt requests on any level, the program on level
zero is entered.

It is legal to specify a WAIT NUMBER 0 — 3778'

2.3.12 Input/Output Control

1 1 1 0 1| deviceaddress

15141312|11109|8 7 6|5 4 3[21o

IOX 164000 Transfer data to/ from specified device.

IOX is a privileged instruction.

NORD-10 may also be delivered with a NORD-1 compatible l/O instruction
IOT.)

N D-60.096 .01

2.3.13

2.3.14

Interrupt ldentification

1100011110 levelcode

15‘141312'11109l87
6 54 3 210

IDENT 143600 Transfer IDENT code of interrupting device with highest
priority on the specified level to A register.

IDENT is a privileged instruction.

Level code:

PL10 000004 Level 10
PL11 000011 Level 11
PL12 000022 Level 12
PL13 000043 Level 13

Monitor Cal/s

1 1 0 1 0 1 1 0 monitorcallnumber

15I141312l11109E
7

615
4

31210

MON 153000 The MON instruction is used in special different con-
texts when running under an operating system.

Examples:

MON 0 End of program or stop
MON 1 Read a character from specified device into the A regi—

ster
MON 2 Output the character contained in the A register on the

specified device.

ND-60.096.01

3.1

3.1.1

BASIC MAC

A SIMPLIFIED EXPLANA TION

A Glance at the MA C Language

A program in the MAC language, as in most other assembly languages, con-
sists of a series of lines (records), each of which contains a command to the as-
sembler or contains an instruction or constant which is to be assembled into a
particular memory location. The particular memory location is selected by the
value of an internal variable called the location counter. After each instruction
or constant is assembled, the value of the location counter is increased by
one. Thus, instructions and constants on successive lines are assembled into
successive memory locations. Lines may have labels, a name (called a symbol)
followed by a comma. Each label is associated with a value, the value of the
location counter when the line containing the label is assembled. Labels pro-
vide a method of symbolically referencing a memory location. One command
which may be given to MAC allows the user to assign an arbitrary value to the
location counter. This command (called ORG in many assemblers) consists of
a value followed by a slash. The following illustration may be helpful:

400/
L, LDA BUNNY

JMP L
BUNNY, 3
200/ 3

The first line of the example sets the location counter to 400. The next line has
a label, L, and indicates that the instruction LDA BUNNY is to be assembled
into location 400. The instruction JMP L is to be assembled into location 401.
Location 402 has a label, BUNNY, and the constant 3 is to be contained in that
location. The next line sets the location counter to 200 and the constant 3 is to
reside in this location.

The above should suffice as an introduction to the MAC language. The lan-
guage is rigorously defined in Section 3.2.

ND-60.096.01

3.1.2 How MA C Works

MAC utilizes two major tables as it processes the input stream {from any

devicel. The symbol table contains an entry for each defined symbol including

operation codes together with the symbols' values. As each new symbol is

defined (usually as a label), the symbol and its value are entered in the table.

The undefined symbol table contains an entry for each use of an undefined

symbol. Every time an instruction or constant is assembled which contains a

reference to a not yet defined symbol, the symbol and the location the instruc—

tion or constant is being assembled into are stored in the undefined symbol

table. Later as undefined symbols become defined, this table is used to find

memory locations which used the symbol when it was undefined and must

now be updated.

Now study the flowchart on the next page.

ND—60.096.01

:- read next statement

l
is this a command to <—yes — is the statement a command?

change the value of
the location no

counter
ll yes no does the statement -— yes —-> enter label into

have a label? symbol table with
current value of

change value of no the location counter

location counter to
specified value —— are there any symbolic no L

+fields in the statement <——— is this symbol in -l—
undefined table

take other appropriate-«-
action yes no yes

perform any arithmetic
operations specified on add symbols value
the fields of the statement into location specified

is the symbol in d——- in undefined table

the symbol table l

i no put the value of the state-

“ ment in the memory delete entry from

make entry for symbol location specified by the undefined table

in undefined table con~ current value of the loca-

sisting of symbol and tion counter

current value of location
counter

. yes
replace symbol by its 4— increment the value of

value the location counter by
one

Figure 3. 1: Simplified Flowchart ofMA C

ND-60.096 .01

3.1.3 MAC Input/Output

MAC input/output is in some sense device independent. For example, MAC
can accept input from the terminal, a file, or any peripheral device. All MAC’s
input/ output is done via three logical data streams, each of which at any time
is connected to files or devices. From now on we will let the word "file” mean
any peripheral device or any collection of records on mass storage devices.
These three logical data streams are called the source stream, list stream and
object stream. All input to MAC comes from the file currently connected to
the source stream. Symbolic output such as listings and error messages go to
the file connected to the list stream, and binary output goes to the file connec-
ted to the object stream.

Later we shall see that these streams may be manipulated by commands. The
command arguments are numbers or names recognized by the file manage-
ment system.

This system, although it may be viewed as a separate system, is an integral
part of the SINTRAN III, and adds powerful file management functions normal-
ly found on large computers.

A file is named with a character string, and this name is used in all commands
to the file system. When a file is accessed, the file name must be connected to
a file number and this number is used in the access routines.

Each file has one owner who has to be defined as a user in SlNTFlAN Ill. The
owner is normally the user who created the file. A file is always allocated in the
owner’s area on the mass storage device (directory). Each user may declare up
to eight other users as friends and give them privileged access possibilities to
his files. Other users are regarded as public users.

The File Management System provides individual protection of files, with
separate protection modes for the owner, owner’s friends and the public users
access of the file. A complete description is given in the manual "NORD File
System" (ND-60.052).

Some combinations of assignments of files to streams are so commonly used,
they have been given names. For instance, if the source stream is coming from
the terminal, MAC is said to be in on-line mode; on the other hand, when the
source is another file, MAC is said to be in off-line mode. The object stream
(binary program) goes to memory during assembly and not to the connected
file! This default condition is called absolute assembly mode, only being sus-
pended by a BRF program sequence or BRF unit. This condition is often called
BRF assembly mode beginning with l9BEG and ending with l9END.

The default file connected to the list stream is the dummy device (no. 0). The
dummy device is generally used as a ”bit sink"; for example, if no listing is
desired, the listing is ”printed” on the dummy device. However, error mes-
sages and other output generated by MAC are printed on the terminal. The
interaction with MAC is somewhat dependent on the input/output system it is
connected to. When running under SINTRAN lll, MAC utilizes a special break
strategy for terminal input. This allows the user to delete one character (Ac) or
a sequence of characters (QC) back to the last break character. Break charac-
ters are carriage return and some others which have to be processed by MAC
immediately, for instance, : and / .

Stand-alone systems do not offer the features mentioned above. In such
systems note also the special interpretation of file names. Whenever a file
name is parameter to a command it is looked up in the local symbol table. The
symbol value is then used as a device number.

ND-60.096.01

3.1.4 MA C as a Debugging Aid

Once a program is assembled into memory or loaded! MAC may be used to in-
spect and change the program, cause the program to start execution, add ad-
ditional instructions or data to the program, and to perform many other func-
tions useful for debugging. Such actions are inititated by a series of MAC com-
mands typed from the terminal. These debugging directives are from the same
set of MAC commands which, when found on a symbolic input file. control
the function of the assembler. Some commands in this set are oriented more
towards what is commonly thought of as assembly functions and also towards
what is more commonly thought of as debugging functions; but, in fact, there
is only one set of commands, and any may be used via any input file.

N 0-60 .096 .01

3.2

3.2.1

3.2.1.1

3.2.1.2

3—6

DETAILED DESCRIPTION OF BASIC MAC

Basic Elements ofMAC

Characters

The most basic element in the MAC language is a character. All more complex
elements are formed from characters. The character set used by MAC is 7-bit
ASCII, right-justified in an 8—bit field with the left bit set to zero {see also
Appendix 0.41. The Operating System performs appropriate character conver-
sions when communicating with inputr'output devices using other character
sets. For instance, the terminals supplied by Norsk Data use 7—bit ASCII
characters right justified in 8-bit fietds with the eighth bit used to give the
character even parity.

Some characters have a special meaning in the MAC language, either as com—
mands or arithmetic operators or special symbols. Letters and digits are gen-
erally used to construct more complex linguistic elements. All characters may
in some cases stand for themselves.

Numbers

There are three kinds of numbers in the MAC language: octal numbers, dec-
imal numbers and floating point numbers. The latter two types of numbers will
be described in Chapter 4 in "Extended MAC“. Octal numbers are formed
from the digits 0 through 7. When printed by MAC, octal numbers always
have six digits and negative numbers are printed in two’s complement nota-
tion. Octal numbers read by MAC consist of one or more digits in two's com-
plement notation. The last six digits specify the number.

For Example:

INPUT becomes lNTERNAL
3 000003

123456 123456
12600012 000012

777777 1 77777

N D-60.096 .01

3.2.1.3 Symbols

Symbols usually consist of a string of letters and digits including at least one
letter. The following are legal symbols:

A
A3
B903
345A
93A234
01122443

Any number of letters and digits may be used in a symbol, but only the last
five characters distinguish symbols. Thus, K12345 and L12345 are treated as
the same symbol. Normally lin octal mode), the digits 8 and 9 are considered
to be letters for the purpose of symbol constructions. Thus, 932 is a symbol,
not a number. No user defined symbol can be defined without a letter or use a
character other than a letter or number, but a number of special symbols built
into MAC contain other characters. Every symbol has either a numerical value
and is said to be defined or does not have a value and is said to be undefined.

There are several special symbols defined in MAC. These are listed below with
an explanation of what their values are:

*

#CC

##A

#ABCD#

value is current value of location counter.

value is content of memory location currently pointed to
by location counter.

value is 000400, B-relative bit in memory address instruc-
tions.

value is 001000, index bit in memory address instruc-
tions.

value is a 16 bit number, the internal code for the two
characters following the sharp sign (#).

value is a 16 bit number, the internal code for the charac-
ter following the two sharp signs. The value is right-
justified, and the most significant bits are zeroed.

value is a 32 bit number. Six bits are used from the inter-
nal representation of the characters in the string en-
closed by the third and the fourth sharp sign. The num-
ber is right-lustified in a double word, and the most sig-
nificant bits are zeroed if the string consists of less than
five characters. If more than five characters, only the
right-most five are used. The two most significant bits
are always zero.

ND-60.096.01

3.2.1.4 , Expressions

Expressions consist of numbers and symbols separated or preceded by the
arithmetic operators + and —. The shift operator, 6) is not unary. In fact,
when starting a line it acts as an abbreviation for the)LlNE command which
stops assembly.

200
A+B—3
260—200
1 (a 10 + B

Expressions are evaluated from left to right and use of parentheses is not
allowed. The value of an expresion is the arithmetic sum of the values of the
symbols and numbers. If A has the value 100 and B the value 3, the values of
the four expressions alone are:

200
100
60
403

Other operations which are implicit are sometimes used when forming the
value of an expression. These will be discussed in Section 3.2.2.4 - Instruc-
tions.

ND-60.096.01

3.2.2

3.2.2.1

Types of Statements

We now begin a detailed explanation of the construction of the MAC lan-
guage. For the purpose of this explanation it is convenient to divide these con-
structs into four categories: instructions, constants, commands and com-
ments. instructions and constants are used to represent the content of
NORD-10 memory locations, commands instruct MAC itself to take various
actions. and comments are used to clarify programs written in the MAC lan—
guage and are ignored by MAC. A program in the MAC language consists of a
series of lines, each terminated by a carriage return. [Line feeds are ignored by
MAC except in strings. See also Section 3.2.3.37. For readability the carriage
return of each input line should be followed by a line feed.) Each line consists
of zero or more instructions, constants, commands and comments. A line con-
sisting only of a carriage return is ignored by MAC.

Comments

A comment is introduced by the character % (percent sign) and continues to
the end of a line. As already stated a comment is ignored by MAC. Any charac-
ters may occur within a comment except, of course, a carriage return which
would end the comment. Here is an example:

% THIS |S A COMMENT

While it can stand alone on a line, a comment often shares a line with instruc-
tions, constants and commands; although when a command does not stand
alone it, by definition, must come last on the line.

N 0-60.096 .01

3.2.2.2 Commands

Commands take a variety of forms which will be described in detail below, but
generally they appear first on a line and are perhaps followed by a comment.
Some examples of commands are:

lFlLL
*:
?
200!

Two commands commonly share a line with instruction and constants as well
as comments. These are the label-definition commands and the set—location-
counter commands. Again, these commands will be described in detail below,
although examples follow immediately.

A, LDA FOO
T T

label def. instruction
command

1000/ # AB
T

set location constant
counter command

ND-60.096 .01

% COMMENT
T

comment

3.2.2.3

3-11

Introduction to Instructions and Constants

Instructions and constants usually appear one to a line, perhaps preceded by a
set location'counter or label-definition command and perhaps followed by a
comment. Each instruction represents exactly one memory word as do most
constants. However, a few constants represent two or more memory words.
Occasionally it is useful to put mare than one instruction or constant on a line.
This may be done by separating the several instructions and constants by semi-
colons. Some examples follow:

L;

T
command

200/
T

command

LDA PER
T

instruction

LDA FOO
T

instruction

01372
T

constant

‘ABCDEFG‘
T

constant

LDA FOO;
T

instruction

LDA FOO;
T

instruction

% LOAD INSTRUCTION
T

comment

% A STRING CONSTANT
T

comment

STA PER
T

instruction

012345; STA PER %ZOWIE
T T T

constant instruction comment

We now describe instructions, constants and commands in greater detail. No
further discussion of comments is necessary.

N D-60.096 .01

3.2.2.4.

3—1 2

Instructions

An instruction consists of a symbolic operation code and zero or more other

symbols or numbers. These symbols or numbers are combined together using

standard arithmetic addition and subtraction operations and a couple of rather

obscure non-arithmetic operations indicated implicitly by the particular oper-

ation code. The addition and subtraction operations are represented by +

(addition), space (addition), tab (addition) and — (subtraction).

A conventional and very readable format starts instruction eight character posi-

tions from the beginning of a line. Character position 13 is always left blank, as

is position 12 unless the symbol l is included in the instruction and as is posi-

tion 11 unless the op-code has four letters as in SWAP.

Beginning with character position 14, the rest of the elements of the instruc-

tion are found with successive elements separated by a single space, a plus

sign or a minus sign; exceptions are the address mode specifies ,X and ,B

which come last in the instruction and are separated from the preceding
elements only by these commas. If the instruction is followed by a comment,
readability is increased if all comments begin at a certain character position.

A tab, if available, is the easiest way to begin the comment in a certain column
as well as the easiest way to skip over the fixed number of columns before
beginning the instruction.

START, LDD 11,x
SWAP SADA
STT 7,3
LDA l FOO,B,X
STA FOO+3,X
STX ZOO—2+MUM
JMP *+4

We now delve a little deeper into the rules for combining the elements of an

instruction. Let us suppose that in memory location 402 of the NORD—10 there
resides an instruction to load the A register with the content of location 405.
One instruction which has the desired function is 044003. This instruction may
be thought to be made up in the following fashion:

044000+000003+000000

044000 = operation code for the load A register instruction
000003 = displacement of 3
000000 = addressing mode

That is, as the sum of the operation code, displacement, and addressing mode
(if this is not clear, reread Section 2.1). Another instruction is 154407, which
specifies that the A register should be arithmetically shifted left 7 bit positions.
This instruction may also be thought of as sum.

154400 + 000000 + 000007

154400 = operation code
000000 = type of shift
000007 = direction and length of shift

ND-60.096.01

Leaving out elements which add nothing to the sum and using space for the
addition operator, these instructions might alternatively be written:

044000 3
154400 7

or hopefully in the more symbolic format

LDA 3
SHA 7

Unfortunately, it is not sufficient to merely think of each instruction as the sum
of the values of the elements of the instruction. We run into trouble with the
addressing structure of the computer.

What happens when, instead of writing

LDA 3

the user wants to write

LDA FOO

where FOO is the label on the third memory location following the location con-
taining the LDA instruction. Let us assume momentarily that the LDA instruc-
tion is in location 1000. Then F00 would have the value 1003. But

LDA 1003

is certainly different from

LDA 3

How can we treat all instructions the same, both those in which the user
desires relative addressing and those in which the user wishes to address an
absolute memory location? The solution lies in using the symbol * when rela-
tive addressing is desired. Thus,

LDA 3

becomes

LDA * + 3

which, if * has the value 1000, is the same as

LDA 1003

But there is still a problem since we cannot just add the value of LDA which is
044000 to 1003 and get the instruction we desire, 044003. The answer is that if
we now subtract the value of * from either representation, we get what we
want. That is,

LDA * + 3—*

is then the same as

LDA FOO—*

in the case where FOO has the value 1003. MAC does this: it automatically sub-
tracts the value of * from such instructions.

N D-60 .096.01

But there are still problems, as we shall see if we consider the instruction

JMP * —1

If we think of this as an arithmetic sum, things do not work out right. The
value of the symbol JMP is 124000, the value of the symbol * is 010001 (the cur-
rent value of the location counter) and the value of 1 is 1 . But

124000 + 010001 — 000001 — 010001

124000 = JMP
010001 = *
—000001 = —1
—010001 = —current value of location counter

is 123777 instead of 124377 which the instruction should compile into. By
using only 16 bit arithmetic operations we manage to change the operation
code and have the wrong displacement. The problem in this case is that we
wish to reference location —1 relative to the current location rather than
absolute memory location 10000 which, when added in, causes the op. code
to change. Even when MAC subtracts the current value of the location coun-
ter from the sum of the instructions, the result is 123777, which, although the
displacement is correct, yields an incorrect operation code and the addressing
mode. The problem is now that the borrow in the subtract 1 (one) operation
carries out of the 8 bit displacement field. Some more complex "correction” is
clearly necessary. What is more, a different correction is necessary for dif-
ferent hardware instruction formats since the width and position of subfields
varies from format to format. We discuss this later.

In order to make it as easy as possible to write programs for the NORD-10 com-
puter in the MAC language, MAC automatically computes the correct relative
address, and the programmer writes all instructions as if fixed addresses were
used. However, the programmer must not exceed the range of the relative ad-
dress. For example, the instructions

STA *—1
STT “—3
LDA *+4
ADD * +5
STA * +3
EXIT

are equivalent to writing

004377
010375
044004
060005
004003
146142

MAC distinguishes memory reference instruction and other kinds of instruc-
tions and takes the appropriate action in each case. Of course, for this to be
possible, the user must use the predefined symbolic operation codes and
addressing mode indicators.

N D-60.096 .01

3—1 5

For all memory address instructions the assembly of the instructions takes
place in the following manner. First, the values of the symbolic operation code
and address mode specifiers are added together — call this result ”sum”. Next,
the values of the rest of the elements of the instruction are added or subtrac-
ted from sum. Then three values are possibly subtracted from sum, the cur-
rent value of the symbol * (the location counter), the current value of the B
location counter or the current value of the X location counter, depending on
the address specification and according to the following chart.

* location counter
B location counter
X location counter
* location counter
B location counter

X B location counter and X location counter
* location counter

,X B location counter

~

~

WXCDCU

XCD

I

r r

I

I I

Now bit 7 of the sum is examined. If it is a 1, 4008 is added to the sum, and this
sum is now the completely assembled instruction. To the reader who is con-
fused about the B location counter and the X location counter - relax! As
opposed to the * location counter, which is automatically updated by MAC,
the B and X location counters are static. The initial values are zero thus having
no effect as described above unless they are affected by the user through the
)QSET (in Section 3.2.3.9).

We will present some examples to show what this all means. Suppose we
have the instruction LDA *+2. The value of the symbol LDA is 044000. To this
is added the current value of * and the value of 2 giving, 044000 + the value of
* +2. Since the specified addressing mode is P relative, the current value of * is
next subtracted from the sum, leaving a value of 044002. Bit seven of this is
zero, so assembly of the instruction is complete. We have the correct oper-
ation code, 044000, and positive displacement of2 relative to the P register.

Next, suppose we have the instruction LDA *—2. To the value of LDA is
added the current value of * and 2 is then subtracted from the sum. Since the
addressing mode is P relative, the value of * is next subtracted giving

044000+*—2—*=044000—2=043776

Bit 7 is now examined and it is 1, so 400 is added to 043776 giving 044376
which is the correct instruction. The operation code is 044000 and the displace-
ment is 376, minusZ when considered to be a 7 bit two's complement number.

Should one of the symbols in an instruction be undefined li.e., has no value)
when the instruction is assembled, the rest of the instruction assembly takes
place normally, and the value of the undefined symbol is later added or subtrac-
ted (whichever is appropriate) when the symbol becomes defined. For exam-
ple, suppose the instruction LDA FOO resides in location 200, but when this
instruction is initially assembled, the symbol FOO has not yet been defined. it
cannot be added in. The addressing mode is P relative, so the current value of
* is subtracted giving 043600 which is stored in location 200 and a note is made
that when FOO becomes defined its value should be added to the value in loca-
tion 200. Later FOO is defined to have the value 204 so that it is added to the
value in 200 giving 044004, which is the correct instruction. Bit 7 is zero so 400
need not be added. If FOO is later defined to have the value 176, then 176 will
be added to 043600, the content of location 200, giving 043776. Because FOO
is defined as 176 but referenced from location 200, a negative diSplacement is
assumed and 400 is added giving 044376, which correctly addresses the loca-
tion two before location 200.

N D-60.096 .01

3.2.2.5

3—1 6

Note: Undefined symbolls) in an instruction at the time the instruction is
first assembled, may result in incorrect assembly when the instruction is later
assembled. This is true when an argument or displacement (not P relative)
turns out to be negative.

Symbolic Code: First Assembly: Later Assembly:

SAA ARG 170400 170377
LDA ,B A—B 044400 044401 044377
ARG = —1
A = 1
B = 2

Observe that 400 has to be added to obtain correct instruction code in both
cases. Such problems are avoided by using the two-pass assembly option.

Further examples of the use of instructions will be found in Chapter 5.

Constants

Constants are identical to instructions except for not having an operation code
as the first element of the expression.

A+B+300
*+2
0+LDA

Consequently, when a constant expression is evaluated, only the explicit arith-
metic operations are performed. In other Words, constants allow construction
of arbitrary 16-bit numbers. As with instructions, the location counter is
increased by one after each constant is assembled and stored in a memory
location.

N D-60.096.01

3.2.3

3.2.3.1

3—17

The Commands in Basic MA C

Commands have a number of different formats. For the most part, commands
direct MAC to take some action and cause no instructions to be assembled,
but there are exceptions.

Two commands are of paramount importance; the set location counter com-
mand and the define label command, which have briefly been mentioned. In
this section these two commands and all the commands available in basic
MAC will be described in detail. Commands available only as parts of options
in extended MAC will be described underthe appropriate option in Chapter 4.

Set-Location-Counter

This command is executed by writing an expression followed by a slash (/l at
the beginning of a line. The expression is evaluated algebraically and may con-
tain symbolic or numeric elements. However, all symbols used must have
values. The location counter is then set to the value of this expression. Thus,

400/

sets the value of the location counter to 400. If the symbol A has the value of
600,

A/

sets the location counter to have the value 600.

A + 3/

would set the location counter to 603. Execution of this command also has the
side effect of printing out the content of the memory location now specified by
the location counter if MAC is the on-line mode. This feature is used to ex-
amine memory locations from the terminal.

ND—60.096.01

3.2.3.2

3—1 8

Define- Label

This command is executed by writing a symbol at the beginning of a line fol—
lowed by a comma (,i. When this command is executed, the specified symbol
is given as its value, the current value of the location counter. Thus,

400/
A.
gives A the value 400. The comma in a label definition must not be confused
with other uses of the comma, as for instance in the symbol ,X. There are
some constraints on the definition of labels, but these will be discussed later.

With the above two commands, instructions and constants, programs can be
written. For example:

400/ LDA FOO
STA L
JMP *

F00, 3
L, 0

This is equivalent to

location 400 044003

124000

ND-60.096.01

3.2.3.3

3—19

This = command is another method of giving a value to a symbol. The way to
use this command is to write a symbol at the beginning of a line and to
immediately follow the symbol by the = sign (no intervening characters inclu-
ding spaces). The = sign is then followed by an expression composed of sym-
bols and numbers. The arithmetic value of this expression is made the value of
the symbol

A=3

There may be no undefined symbols in the expression. This gives A a value of
3. The following programs are equivalent:

PER=4752
PER/ SHT 3

JMP *

and

4752/
PER, SHT 3

JMP *

and

4752/
PER=*; SHT 3;JMP*

During the definition of symbols using either , (comma) or = (equals), two
rules should be followed:

1. A symbol which already has a value should not generally be redefined
(even to the same value), but see Section 3.2.3.9 for an exception to this
rule.

2. A symbol may not be given an undefined value.

The second rule is enforced by MAC which takes no action if the expression
following an = sign contains an undefined symbol and will not permit the loca-
tion counter to become undefined (via a set-location—counter command with
an undefined element in the expression preceding the l). The first rule is not
enforced by MAC except by a warning message. For each additional definition
of a symbol a new value for the symbol is saved, and this new value is then
used in all cases where the value of the symbol is needed. It is possible to
delete the new value and get back to the previous value as is described in
Section 3.2.3.9 in the)KILL command. Also discussed in Section 3.2.3.9 is
the use of the = and)KILL command in conjunction, to change the value of a
symbol and allow use of ”local" and ”global” symbols.

N D-60.096 .01

3.2.3.4

3.2.3.5

3.2.3.6

3—20

This command causes the value of the symbol to the left of the colon to be
printed out on the terminal. The command can be used in two ways: if the
colon immediately follows a symbol, the value of the symbol is printed, other-
wise, the arithmetic value of the preceding expression is printed.

A=4
A:000004
3+A:000004
A+3:000007
A+3 :000007
3+A :000007

If the colon is immediately preceded by a symbol and the symbol is undefined,
the letter U will be printed instead of a value. If, however, a symbol does not
immediately precede the colon and some symbol in the expression is un-
defined, when the symbol later becomes defined the value of the now defined
symbol will be added to the content of the memory location to which the loca-
tion counter was pointing when the colon command was executed. It is im-
probable that the user will desire this.

This command starts execution of a program at the location specified by the
expression preceding the ! If the breakpoint option is not added, registers
other than the P register are undefined. Further use of this command is dis-
cussed in the section describing the breakpoint option - Section 4.2.4.

This command sets up an interval used by other commands. The expression
preceding the < is set as the lower bound of the interval and the expression
following the < is set as the upper bound of the interval. For example:

300 < 4000

sets up an interval of 300 to 4000. If A has the value of 200,

A +300 < 4000

sets up an interval of 500 to 4000. If there is an undefined expression in one of
the expressions, the command is ignored.

ND-60.096 .01

3.2.3.7

3.2.3.8

3—21

(

This command provides a method of storing an ASCil text string in memory.
The format of the command is a single quote followed by a text string and ter-

minated by another single quote. The characters of the text string are placed

in successive memory words, two characters per word, starting at the location

indicated by the current value of the location counter. The terminating single
quote is considered to be part of the text string. After this command, the loca—

tion counter points to the location one after the last location holding charac—

ters of the string. For example, if the string command

'ABCDEF'

is given and the location counter is 400, memory locations 400 through 403 will

have the following contents after execution of this command and the location

counter will have the value 404.

location 400 -'

location 403 —’

No provision has been made for including a single quote within a text string.

$

The user may determine which files are connected with the source, list and

object streams using the $ command (see Section 3.1.3). The $ command has

three octal arguments which precede the $. For example:

2,5,3$

Each argument is a file number. The first argument determines the files con-

nected to the source stream, the second determines the file connected to the

list stream, and the third determines the file connected to the object stream.

If less than three arguments are supplied, the file assignments to only some of

the logical streams are changed. For example,

2,o$

changes only the source and list stream device assignments, and

2$
changes only the source assignment.

However, if no argument to the $ command is furnished (i.e., $ is given

alone), the file specifications before the last)LlNE command are used as

default.

Users are recommended to use the l9ASSM command (described later) which

also accepts file names.

N D—60.096.01

3.2.3.9

3—22

)

This command starts program execution at a location specified by the value of
the symbol immediately following the I. For example,

)SYMBOL

causes a jump to the address given by the value of the symbol SYMBOL. The
symbol must be defined.

The following are technically not commands but library routines. However,
these library routines are used like commands so they will be described in this
section. These routines are all called using the I command. After a routine has
performed its job, it jumps back to the correct place in MAC to continue pro-
cessing the input stream. We shall call these routines commands hereafter.

)9MSG

The text following the)9MSG command up to and including the next carriage
return is printed on the device associated with the list stream. For example,

I9MSG THIS MESSAGE IS PRINTED

causes the text

THIS MESSAGE IS PRINTED

to be printed on the list file. If the list file is set to zero (dummy device), the
message will appear on the terminal.

)BPUN

This command outputs to the object stream a binary dump of the area of
memory specified by the < command. The file has a leader and a loader on
the front and may be read into the NORD-10 by the hardware loader, the oper-
ating system or by MAC itself ()9READ). The fOrmat is often called absolute
binary format as opposed to binary relocatable format. A checksum is
generated and checked by the load program. One or two symbols must be
specified after the)BPUN command (not expressions).

)BPUN PER BOOTE

When the binary dump is read back into the NORD-10 the program may be
started at the location specified by the value of PER at the time the file was
generated. The value of the second symbol determines the end location of the
loader. If this argument is not supplied, the loader will be located as in current
memory.

)CLEAR

The command clears MAC's tables so that another program may be assem-
bled without confusion due to doubly defined symbols. The)CLEAR com-
mand also ”zeros” the B and X location counters.

ND-60.096.01

3—23

)FILL (and literals)

For those users who understand literals, lFlLL dumps the literal table, and
literals are preceded by a left parenthesis ((). For users who are unfamiliar
with literals, we shall first describe them.

Very often one will want to use and refer to a constant in a program. For in-
stance,

LDA FOO
ADD TWO
STA FOO
JMP *

TWO, 2

TWO is a reference to the constant 2. If one uses many constants, it can
become quite tedious to actually write and label all of the constants.

LDA ZEROO
ADD ONE
ADD TWO
ADD THREE
ADD FOUR
STA SUM
JMP *

ZEROO, 0
ONE, 1
TWO, 2
THREE, 3
FOUR, 4
SUM, 0

Literals were invented to save some of this effort. Using literals the above
would be rewritten:

LDA (0
ADD (1
ADD (2
ADD (3
ADD (4
STA SUM
JMP *

SUM, 0

The l is called the literal marker. The idea is that the assembler will now set
aside five memory locations somewhere containing the values 0, 1, 2, 3 and 4
and will also treat (0, (1, (2, (3, and (4 like ligitimate symbols whose values are
the locations holding the 0 through 4. To try to make it clearer, it is just as if
the user had written:

ND-60.096.01

3—24

SOMEWHERE/
(0, 0
(1, 1
(2, 2
(3, 3
(4, 4

A literal causes a value to be placed somewhere with a label which is the literal
itself. But now the problem of locating ”somewhere" arises. The user wants
some control of where the assembler puts these values since the assembler
must not just randomly place them, perhaps over other programs. Thus, we
have the)FILL command. As MAC processes literals it does not immediately
place the values in memory locations but instead saves the values up in an
internal table along with the location referencing the literal. Later, when the
)FILL command is given, MAC dumps all of the literal values it has collected
into the location pointed to by the location counter and successive locations.
Although the user can control where the literal values are placed, the order of
the literal values is not defined. Thus, if the user writes,

400/ LDA (0
ADD (3

500/
)FILL

locations 500 and 501 will contain 0 and 3 in some order, and the LDA and
ADD instructions will refer to the appropriate locations. Obviously, the literal
values must be able to be addressed from the instructions that access them,
i.e., within 128 locations of the accessing instruction.

There are some limitations in the MAC implementation of literals:

1. Nested literals are not allowed, e.g. ((3.

2. Even if nested literals were allowed, some expressions would not be pos-
sible since there is no "close literal” mark.

3. In general, literals with multiple location values are not allowed, with the
exception of floating point numbers.

The MAC implementation is reasonable in some ways. For instance, the fol-
lowing two programs are equivalent.

LDA (4-N LDA (2
COPY SA DD COPY SA DD
LDT (141 LDT A

)FILL)FILL
N =2 A, 141

The)FILL command may be abbreviated by 8.

ND—60.096.01

3—25

)KlLL

This command is used to entpunge symbols from the symbol table or unde-
fined symbol table. The command is useful when the symbol table becomes
overfull, causing the assembler to run slowly or preventing further definition of
symbols. The)KILL command is also used in conjunction with the = com-
mand to change the value of a symbol. For instance,

A=3
B=A
)KILL A
A=B+1
)KILL B

adds one to the value of A.

Combined use of)KILL and = also allows ”declaration” of ”local" symbols.
Forexample,

A=3

'A”=2

lkiLL A

In the interval between the A = 2 command and the)KILL A command, A has
a value of 2. Outside that interval A has a value of 3.

Following the)KlLL command there may be as many symbols (separated by
spaces) as can fit on a line. An attempt is made to delete each symbol in the
list. For each symbol, the symbol table is first searched and the last definition
of the symbol deleted if any definition of the symbol can be found. If none is
found, the undefined symbol table is searched and the last instance of this
symbol is deleted. lf no instance of this symbol is found in either table, MAC
gives up and goes on to the next symbol in the list following)KILL. For each
symbol deleted MAC prints a plus sign (+) on the terminal if MAC is in on—line
mode. Note that multiple definitions of a symbol in combination with the)KILL
command enable a symbol name to be used as a push down stack.

Single symbols may be deleted with the ._ command which has the form

SYMBOL ‘-

which is identical to the command

)KILL SYMBOL

N 0-60.096 .01

3—26

)LlNE

The)LlNE command switches the source stream to standard input (terminal),
and the list stream to the dummy device (number 0). However, the files are not
closed, but the current stream specifications are saved. These specifications
are used if a)9ASSM or $ command, without arguments, is encountered.
Note that)9ASSM or $ without arguments from an input file other than stan-
dard input will have no effect whatsoever! The)LlNE command may be ab-
breviated by 60.

Each time the)LlNE command is executed during the assembly, the number of
errors or warnings issued since the last)LlNE (or start) is output on the ter—
minal like this:

**** 888888 DIAGNOSTICS ****

where 888888 is a six digit octal number. This information is given even if
the error count is zero.

lNWRT

The command puts MAC in non—write mode. That is,)WRITE commands are
ignored. The)WRTM command puts MAC back to write mode. MAC is initial-
ly in non-write mode.

)PRINT

The)PRINT command causes the contents of memory in the interval last speci-
fied by the < command to be printed out on the list stream device.

)PUNCH

The)PUNCH command produces output similar to that of)PRINT, but the out-
put goes to the file associated with the object stream. The format which is
often called octal dump is suitable for loading using the NORD-10's automatic
read mode.

ND-60.096.01

3—27

)98 ET

The command is used to set the value of the B and X location counters. The
command has two arguments, the first of which must be one of the symbols
,X and ,B and the second must be a defined symbol, not an expression. The
arguments are delimited by spaces. For example,

A2400
)SSET ,B A

sets the value of the B location counter to 400 while

B =A+1000
)QSET ,X B

sets the value of the X location counter to 1400.

People writing NORD-10 programs using previous versions of MAC quite com-
monly set up a ”common storage area" with the B register pointing to the
middle of the area. For example,

% COMMON STORAGE AREA

A1, 6'
i

G 0 % center of common storage area
BB2, 0

% PROGRAM START
START, LDA (G

COPY SA DB

Once this is done, individual locations in the common storage area are acces—
sed as follows:

LlD-A A1 —G,B
STA BR2—G,B

MAC itself references symbols common to more than one routine this way.
However, it can grow tiring writing the ”—6“ all the time. Hence, the)QSET
command. If the program above at START were changed to

% PROGRAM START
)QSET ,B G
START, LDA (G

COPY SA DB

then the locations in the common storage area could simply be accessed as fol-
lows:

on A1,B
STA BR2,B

N 0-60.096 .01

Of course, the)SSET command only has an affect at assembly time, and it is
the programmer’s responsibility to make sure that at run-time the B or X reg-
ister is set up in a manner which makes sense of the assembly time setting of
the B or X location counter.

When MAC is loaded, the X and B location counters are set to ”zero” (effec-
tively). Thus, programs written using the old method of accessing locations
relative to the B and X register need not be changed. The)CLEAR command
also "zeros” the X and B location counters. To explicitly zero the X or B loca-
tion counter at assembly time, give the command

)93ET,B ZRO

or

)98ET,X ZRO

To examine the effective contents of the B location counter, give the com-
mand

400—,B

To examine the effective contents of the X location counter, give the com-
mand

1000—,X

)WLOC

The)WLOC command prints out all of the user defined symbols on the device
associated with the list stream. Six symbols are printed on each line.

)WMNE

The)WMNE command prints out the operation codes and addressing mode
specifiers that are built into MAC on the device associated ith the list stream.
Six symbols are printed on each line.

)WRITE

The)WRITE command prints a list of symbols and their values on the device
associated with the list stream. The symbols to be printed are specified fol-
lowing the)WRITE command and are delimited by spaces. The list of symbols
is terminated by the end of the line. Only user defined symbols will be printed
and symbols used but not yet defined are printed with the characters "NF”
(not found) instead of a value. Four symbols are printed on each line.

)WRTM

The)WRTM puts MAC in write mode, that is, the)WRITE command is not
ignored. The)NWRT command puts MAC in non-write mode. MAC is initially
in non-write mode.

N D-60.096.01

3—29

)WRUS

The)WRUS (write undefined symbols) command causes all symbols used but
not yet given values to be printed, in order of their first appearance, to the list
stream. This command may be abbreviated with a question mark (?).

)9ASSM

This command is used to manipulate file names or numbers associated with
the source, list and object streams. The command may be followed up by up
to 3 arguments, each representing a file name or number. The arguments, if
any, must be separated by commas and terminated by carriage return. For
example,

)9ASSM INFIL,0,UTF|L

If a file name is omitted, then the previous file defined by an earlier)9ASSM or
$ command is used. The OPEN, CLOSE and CREATE procedures are auto—
matically taken care of by MAC. When a file associated with a specific stream
is replaced, MAC opens the new file and closes the old one. If a file name is
included in double quotes the file is created before it is opened. Some exam-
plesfollow.

)9ASSM (SANNER) SYMBOLFIL
)9ASSM ,,”BPUNF|L:BPUN"
)9ASSM ,0
)9ASSM
)9ASSM SYMPROG, L-P, "BRFPROG"

The table below contains the additional information which is supplied by MAC
when opening files.

File Connected to: Default Type: Access Code:

Source stream :SYMB RX
List stream :SYMB W
Object stream :BRF W

l9EXIT

This command returns control to the operating system and all files are closed.
Note that the stream specifications are unchanged if you restart MAC with the
@CONTINUE command.

l9PARl

This command acts as a switch and turns off/on parity checking on input. The
parity checking is initially on, i.e., an error message is given if an ASCII charac—
ter is encountered in the source input stream having odd parity.

)9ASCI

This command causes the contents of memory to be dumped on the file con-
nected to the list stream. The format is ASCII, i.e., each word is converted to
two ASCII characters. The dump area corresponds to the interval last speci-
fied bythe < command.

N D-60 .096.01

3.2.3.10

3—30

)9LITR

)9LITR acts as a switch and turns on/off the duplication of literals in the literal
dump area ()FlLL). Initially, literals are not duplicated in order to save memory
Space, i.e., each use of the same literal allocates the same memory location.
However, duplication of literals may appear to advantage when debugging pro-
grams. There are some limitations in this optimization feature:

1. no optimization in two-pass assembly
2. no optimization upon literals with multiple location values

Conditional Assembly l")

The "command sets MAC in conditional assembly mode. MAC then expects a
logical expression terminated by carriage return. The " immediately followed
by carriage return means reset conditional assembly mode.

The expression must consist of symbols separated by logical operators. The
value of the symbol is true if the symbol is located in the undefined symbol
table (referred, but not defined). Else the value is false. Such symbols are
often called library marks.

The logical operators used with the " command are:

(space) AND (A)
+ (plus) 0R (V)
— (minus) NOTll")

Expressions are evaluated from left to right and use of parantheses is not al—
lowed. An expression may begin with the negation operator. If the value of
the expression is true, the text up to the next “ is assembled. If the value is
false, the text up to the next " is ignored.

Example:

"—PER % NOT PEFl

I I I: I I % TEXT
:OIE+_l;lE_Ru % OLE 0R PER

:::::: % TEXT

N D-60.096.01

4.1

4.2

4.2.1

4.2.1.1

EXTENDED MAC

OPTIONS

MAC is orginally a number of different systems, each having its own configur-
ation of facilities. This section describes all of the possible additional facilities,
known as options.

The option concept has survived from the time of expensive memory, but is
not really legitimate today! The MAC assemblers supplied with
NORD-10/SINTRAN lll all include the "options” which are described in the fol-
lowing sections. Symbols related to options are made permanent in the local
symbol table.

THE OPT/0N8 AND THEIR USE

Binary Relocatab/e Format Output (BRF)

An assembler providing no other option than absolute assembly would be
quite constraining for the user. It would be difficult to link programs written in
assembly language to programs written in other languages and vice versa,
each time a library subroutine was to be used it would have to be completely
reassembled, perhaps a time consuming process, etc. Consequently, it has
assembly output which removes the above contraints. This ”option" is not
really an option at all. It is implemented as a part of basic MAC. However, we
delayed its description until this section to simplify the description of basic
MAC.

Summary of Usage

The alternate form of assembly output that was decided upon is a traditional
one: binary relocatable format output (BRF) which is loadable by a suitable
linking relocating loader. For readers unfamiliar with the terms binary relocat-
able format and linking relocating loader, we will briefly explain these terms
and the concepts behind them.

There are fundamentally two concepts to explain: the concept of relocatable
output as contrasted with absolute output and the concept of linking. The
reader is undoubtedly already familiar with absolute output as this is what
MAC normally produces. With absolute output, each instruction or constant
is completely assembled so that it is the correct content of a particular, pre-
defined memory location. In other words, the instruction or constant is ready
to execute once it is loaded into the correct memory location. This instruction
or constant is assembled directly to memory in absolute mode assembly, and
programs may later be dumped in absolute binary format (lBPUN) or octal for-
matllPUNCH).

ND-60.096.01

Relocatable output on the other hand is output produced in a format suitable
for later being loaded anywhere in memory, and is connected to the object
stream when the lSBEG command is executed. The essential feature of this
output format is that addresses may be relative to the beginning of the pro-
gram rather than relative to a particular memory location. Thus, the absolute
code

LDA FOO
JMP *

FOO, *—2

would be assembled to

0/ LDA F00
JMP *

F00, * —2

and would be output including indications that when the code was later
loaded, starting at location 1000 say, it should be modified so it is just as if

1000/ LDA FOO
JMP *

FOO, * —2

had originally been written. The reader will immediately see that a complete
relocatable output and loader system would permit the following:

1 . absolute contents of an absolute location
2. absolute contents of a relocatable location
3. relocatable contents of an absolute location
4. relocatable contents of a relocatable location

MAC is capable of producing the desired results in all four cases.

In order for MAC to "mark" its output so it will correctly be either relocated or
not relocated at load time, when MAC is in BRF mode each symbol is defined
to be either fixed absolute or relocatable. Unless otherwise declared, all sym-
bols declared via the comma command, e.g.,

FOO,

are taken to be relocatable. But even symbols thus declared can be explicitly
declared to be fixed absolute ()9FABS).

Symbols declared with the equal command, e.g.,

A = 3

are declared to be either fixed absolute or relocatable depending on whether
the expression on the right side of the equal sign is fixed absolute or relocat-
able. All constants are fixed absolute. If B is declared to be equal to FOO by
the command

B = FOO

where F00 was defined as above, B is relocatable. Making

A=B—C

where both B and C are relocatable, makes A absolute. If only B was relocat-
able, A would also be relocatable.

ND-60.096.01

The concept of linking allows programs assembled or compiled at separate
times to be loaded into memory and linked together. Thus, it is possible to
write a program which references symbols in other programs which are assem-
bled separately and to load the programs in such a way that they actually
work.

A number of commands have been added to MAC to facilitate production of
relocatable, likable code. These are discussed in detail later in this section, but
four commands which are particularly important will be discussed immedi-
ately.

lQBEG puts MAC in a mode where it produces relocatable, linkable output
which it writes to the object stream.

l9END resets MAC so it produces absolute output which it writes to memory.

)9EXT declares symbols to be external to the particular program being assem-
bled. In other words, symbols declared with the l9EXT statement will be found
in another program and a suitable linkage must be made at load time.

)9ENT declares symbols which may be referenced as external symbols from
other programs. Thus,)9ENT is the complement of)9EXT.

Programs starting with)QBEG and ending with)9END are called program units
or BRF units and may be subprograms as well as main programs. Program
units and communication between them using)9ENT and)9EXT is illustrated
below.

)QBEG MAIN
)9EXT SUBR DATA
MAIN, #

JPL l (SUBR
— Main program unit

LDA | (DATA

)9END

)9BEG
)9ENT SUBR
SUBR, — Subprogram unit

)9END

)QBEG
)9ENT DATA

— Subprogram unit

DATA, 3

)9END

ND-60.096 .01

4.2.1.2

Program units are later loaded anywhere in available memory and linked
together with a loader. Available subsystems which are able to perform the
loading and linking procedure:

- SlNTRAN lll Real-Time Loader
- NORD-10 Relocating Loader

These are described in the respective manuals.

Before discussing the commands related to BRF assembly we recommend the
reader to read the following lines carefully:

- Undefined symbols are always taken to be relocatable. Thus, assembly
in some cases will be different from the programmer’s intention, as in
this example:

A, 0 % Relocatable definition
A-DELTA % Absolute! Meaning: relocatable
A+ DELTA % Illegal expression! Meaning: relocatable
DELTA = 20 % Absolute definition

. The warning ”possible fault" is not given in BRF output mode, even in
situations where the message appears in absolute assembly mode.

Example:

100/ LDA F00
* +200/ FOO, 0 % Range is exceeded, but no message!

These problems are avoided by using the two-pass assembly option.

Commands Included with the BRF Option

In this section we discuss in detail each of the commands included with the
BRF option. Some of them are implemented in order to communicate with
high level program units written in FORTRAN or BASIC. Therefore, it is sup-
posed that the reader has some knowledge about real-time programming and
layout of the COMMON area.

)SBEG

The)SBEG command has already been discussed briefly. The command
instructs MAC to switch to BRF output mode.)QBEG must be followed by car-
riage return, ora space and one label, as in

)SBEG F00

This label is called a main entry other than entries declared by)9ENT and must
be defined by the user at the instruction he wants his program to start (by the
RUN command in the loader). Main entry definition is somewhat different for
real-time programs (see)9RT).

)SBEG also causes MAC’s location counter to be set to one (one may seem a
strange value - ”why not zero?”, the astute reader will ask. However, it is
really set to one but the loader corrects this ”mistake").

ND-60.096.01

)9ENT

As already stated, this command declares the following symbols to be entries.
For example,

)9ENT PER1 FOO ZOO

Entries must later be defined by comma (,) or " = *".

NOTE: The symbols are placed in the local symbol table at the time of the
l9ENT command. Address references are updated when the symbols are
defined (,).)PCL should therefore not be used in connection with "entry"
symbols.

)9EXT

The symbols declared with the)9EXT command are declared to be external
symbols. For example,

)9EXT LUCY SNOOPY CHARLIE BROWN

Externals must later be referenced indirectly (not by displacement”. Due to
limitations in the loader, address arithmetic is not permitted upon externals.

l9END

This command puts MAC back to absolute assembly mode. All symbols
defined since the last lBBEG are deleted from the symbol table. Symbols
referenced since the last lQBEG but undefined are printed on the list file, and at
last a checksum is generated which is checked by the loader. If MAC was al-
ready in absolute assembly mode when the lSEND command is given, symbols
defined since the last use of the lQENT command are deleted from the symbol
table.

)9FABS

The)9FABS comand takes a list of previously defined symbols as arguments.
For instance,

)9FABS AUD BJORG BRITT MARIT UNNI

Each of these symbols are declared to be a fixed absolute rather than a relocat-
able symbol and will not be relocated at load time.

)9EOF

This command will cause an end-of—file mark to be written to the object file
thus terminating a sequence of BRF program units.

l9LlB

This command takes a list of library entry symbols as arguments. For example,

)9LlB SORT

ND-60.096.01

The command is used within library program units (delimited by the IQBEG
and)9END) as follows:

ISBEG
)9LlB SIN COS
)9ENT SIN COS
SIN,

COS,

)9END

When the object code representation of)9LlB is detected within a program
unit by the loader, the code up to the next)9END is loaded if at least one of the
symbols associated with the)9LIB command is undefined in the loaders sym-
bol map. If not, the code up to the next)9END is ignored.

)9AS F

COMMON blocks are normally defined by a high level language program, but
if desired also in assembly (real-time applications).

This command takes two symbols as arguments, 8 COMMON label and a sym-
bol which defines the length of the common area. The latter symbol must be
fixed absolute. For example,

SIZE = 144
)9ASF BLOKl SIZE

The object code of this command will cause the loader to reserve 1445 loca-
tions in the common area. This COMMON block starts at label BLOK1.

)9ADS

The command described above defines a COMMON block, however,)9ADS
is used to access variablels) within a given COMMON block from assembly.
)9ADS takes two symbols as arguments, a COMMON label and a symbol
representing a displacement relative to the COMMON label. A blank
COMMON is accessed by using the symbol BLANK. Note that the location
counter is incremented by one as MAC assembles the displacement into this
location. At load time the address of the COMMON label is added to this dis-
placement. The command may be preceded by a MAC label definition as in
the example:

High level language definition:
COMMON/BLOK2/IARI10)

Assembly access:
DISP = 0
BLOKAD,)9ADS BLOK2 DISP
START, LDX BLOKAD % Address of BLOK2

LDA ,X % First element, lARIl) if FORTRAN
— % First element, lAR(0) if BASIC

ND-60.096.01

4.2.2

4.2.3

)9LC

This command is also used to form 8 COMMON address and takes one symbol

as an argument. For example,

DISP=0
LOWAD,)9LC DlSP
START, LDA LOWAD

AAA — 1 % upper bound

The location counter is incremented by one as the value of the symbol is

assembled into this location. The command is much like)9ADS, but at load

time the lowest COMMON address is added to this displacement.

)9RT

This command declares a program unit to be a real-time program with a

desired priority. It takes two symbols as arguments; the first is the name of the

real time program (main entry), and the second specifies the priority. For

example,

PRIO = 35
)9RT SYSA PRIO

The command must precede the main entry point of the program, thus making

redundant the declaration described under)SBEG. When the object represen-

tation of l9RT is detected by the RT loader a so-called RT description is gener-

ated. Further information is found in the SINTRAN Ill User’s Guide.

Standard Tab/es

This option is presented independent of basic MAC, but is really a necessary
part of a complete assembly system. The size of the three main tables in MAC
may be changed by the)9TABL command (Section 4.2.9.2). Standard sizes of
these tables are:

70008 entries in local symbol table“
200 8 entries in constant table (literals)
40003 entries in undefined symbol table

* Does not include the fixed symbols. The number of fixed symbols depends
on the number of options added.

The ZERO, CORE, LIST, PCL and CHANGE Commands

This option adds five commands to MAC; the)ZERO,)CORE,)LIST,)PCL
and)CHANGE commands. We will discuss each of these commands in turn.

N D-60 .096 .01

4.2.3.1

4.2.3.2

4.2.3.3

)ZERO

First note that this command is a dummy command in BRF mode assembly.

The)ZERO command sets to zero all memory locations in the interval specified

by the < command. For example, the commands

300 < 400
)ZERO

will set all memory locations in the inclusive interval 300 through 400 to zero. If

the command is terminated by carriage return, the above described action is

taken. However, lZERO may be followed by a space and one symbol

{mnemonic or previously defined} which value is added to the zero. -

)CORE

The)CORE command prints to the list stream the upper and lower bounds of

the areas of memory used by MAC. For example,

)CORE
SOFTWARE PROTECTED AREA 063377-072407
TABLE A REA 033775-05671 1

indicates memory locations 63377 through 72407 are occupied by basic MAC

and locations 33775 through 56711 are occupied by the symbol tables.

)UST

The)LlST command ouputs the symbols in the local symbol table (i.e., the

symbols not built into MAC) to the object stream device. lf this device is the

terminal, the symbols and their values will be printed in the format:

)LlST
MAC =037777

PER = 000050
A = 000501

FOO =002713

If the object stream is connected to a file, the symbols will be able to be

reloaded at a later time. Why the object stream? The absolute binary memory

dump produced by)BPUN is logically connected to this stream, and)LlST is

often output to the same file. Thus, later loading will restore the user to the

point where the memory and symbol dump was taken.

ND-60.096.01

4.2.3.4

4.2.3.5

)PCL

The)PCL, or partial clear, command expunges from the local symbol table all
symbols which were defined later (in time) than the symbol specified with the
)PCL command. Symbols thus expunged may be reused: it is as if they had
never existed. For instance:

400/
Si, STA SAVE
82:403

LDA B
83, COPY SL DA

JMP *
SAVE, 0
B, 0
)PCL 82

After execution of the)PCL command above, the symbols S1 and 82 will be
defined and the symbols 83, SAVE and B will not exist.

)CHANGE

The)CHANGE command causes MAC to search an area of memory for all
memory locations which match a certain constant in some specified bits. In
each memory location in which a match is found, the specified bits are
changed to a new constant. This command is used as follows: make the con—
tents of the memory location labeled OLD be the constant that is sought.
Make the contents of the memory location labeled NEW to the new constant.
Make the contents of the memory location labeled MASK be an octal mask in
which bits that are one indicate bits to be checked for a match and changed.
Set up an interval using the < command. Execute the)CHANGE command.

For Example:

OLD/ 000177
NEW/ 000000
MASK/ 000777
2000 < 3000
)CHANGE

will change to zero the low nine bits of all memory locations in the inclusive
interval 2000 through 3000 which are found to contain 177 in the low nine bits.
The memory locations labeled OLD, NEW and MASK are added to MAC as
part of this option.

N D-60.096 .01

4.2.4 Breakpoint

The breakpoint option allows an executing program to stop immediately

before the instruction in any preselected memory location is executed so the

contents of the computer’s registers can be looked at. This is a very useful

debugging aid. Generally three commands are used in connection with break-

points. These commands are the new period (.i command, the / command

and the ! command. Their use is illustrated below. Suppose the program,

400/
LDX M6
LDA ZEERO
AAA
AAA
JNC
JMP

M6, 177722
ZEERO, 0

—-2
*

*—I—|

has been assembled and the command

403.

has been given. This latter command tells MAC to stop program execution

just before the second AAA instruction has been executed. If the program is

now started with the command

400!

the LDX, LDA, and first AAA instructions will be executed and MAC will print

a period preceded and followed by carriage return and line feed, and await fur—

ther commands. Any command may now be given; however, to look at the

contents of one of the registers, give the command

Bn/

where n selects a specific register. Thus, using A in the above example will

print the value 1, the current contents of the A register.

BA/000001

and BX will print 177772

BX/177722

that is, —56.

Suppose the breakpoint is now moved to the JMP instruction with the com-

mand

405.

The command

M6—1.

ND-60.096.01

4—11

would have had the same effect, and in fact, the argument preceding the . can

be any completely defined expression. Execution may now be continued by

giving the command

!

Alone, I causes execution to commence with the instuction upon which the

preceding breakpoint was set. Thus, after the three-instruction loop above has

been executed 553more times, MAC will again print a period preceded and

followed by carriage returnf line feed, and await further commands. Now the

command BA will print a 134

BA/000134

and BX will print a zero

BX/000000

The other registers could be examined with the

BD/
BT/
BL/
BP/
BSTS/
BlR/

commands. The contents of the A, D, T, X, B and L registers can be changed

after the contents of the register has been examined, just as normal memory

locations can be changed using the / command. For example,

BA/0000067

will change the contents of the A register from six to seven.

1!

has a special meaning. Suppose in the example above, after examining the

contents of the A and X registers after the instruction in memory location 403

has been executed the first time, the

1!

command is given. This will cause one instruction to be executed and MAC to

await commands again. Now the

BA/000002

command will print two. Thus

1!

provides a way of stepping through successive instructions in a program. Con—

tinuing with the same example, the command

1!

will move the breakpoint to the JMP * instruction and cause the JNC *—2

instruction to be executed which will cause a jump back to the first AAA

instruction, and a number of instructions will be executed before the breakpo-

int on the JMP * instruction is reached. The command

0 .
N 0-60.096 .01

4.2.5

4—1 2

also has a special meaning when breakpoints are active. It removes the break-
point if it is set, and execution will continue without breaks when the next l is
given.

Several breakpoints (maximum 10) may be specified if MAC runs under con-
trol of the SINTRAN operating system.

Since 0. and 1! are special commands, it is illegal to specify breakpoints in loca-
tions 0, 1 and 2 of memory. In stand-alone systems these locations are even
used to execute a break.

Decimal Mode

This option gives MAC the capability of treating integer numbers which it
reads and writes as decimal as well as octal. This option adds two commands
to MAC,)DEC and)OCT. These two commands set MAC in either decimal or
octal mode, respectively. When MAC is in octal mode, as it is initially, integers
are treated as octal as described in the chapter on basic MAC. When MAC is
in decimal mode, integer numbers are assumed to be in the conventional deci-
mal format, that is, signed numbers consisting of the digits zero through nine.
When in decimal mode all numbers are printed as decimal with leading zeros
elided and zero printed as 0. Thus, if MAC read the following input

)OCT
400/

10
177770

)DEC
8
—8

locations 400 through 403 would contain the octal contents

)OCT
400/000010
401 /177770
402/000010
403/177770

Now the following commands will have the effects shown

)OCT
400<403
)PRINT
000400/000010
177770
000010
177770
6
)DEC
)PRINT
256/8
—8
8
—8

(a

N D-60 .096 .01

4.2.6

4—13

Floating Point Numbers

This option adds to MAC a facility for accepting and printing floating point

numbers. See section 2.1.4 for 48 bits floating point numbers (standard) and

Appendix E for 32 bits floating point numbers {optional}. Readers being con-

cerned with the latter must note that this format occupies two memory loca-

tions when reading this section.

The output format from MAC for floating point numbers is always the same.

We can best describe it with some examples:

3.12000000E—01
—2.61234460E+03

0
2.6000m + 50

—2.40000000E—50

This is a form of the conventional ”scientific" number notation. That is, the

above is a way 0 writing

3.12*10'1
—2.6123446* 103
o
2.6*105°

—2.4*10'5°
Zero is the only number printed in an exceptional way. For those readers famil-

iar with FORTRAN, floating point numbers with the (possible) exception of

zero are printed according to an E153 specification.

The MAC routine which converts the internal binary format of floating point

numbers to the external decimal format rounds to the nearest correct decimal

digit.

The input format for floating point numbers is ”free". Some examples of

floating point numbers acceptable to MAC: are:

1.1
1

—1
0.000001234E15

321.1234
—E1

1.
E

There are two ways of getting MAC to accept a floating point number: using

the [command and using the \ command. We discuss the I: command

first. The I: command instructs MAC that a floating point number follows

which MAC is to convert into internal format and send to the object stream as

three consecutive words. The location counter is then incremented by three.

Some examples ofthe use of the E command are:

)FILL
400/

LDF ([3.2
FAD FOO
JMP *

FOO, [4.5
)FILL

N D-60 .096 .01

4—1 4

This will result in the floating point constant 4.5 being placed in locations
403-4053 and the floating point constant 3.2 being placed in locations
406-4108 . When floating point numbers are written in literals on the same line
as a floating point instruction, it is not necessary to include the [. Thus,

LDX l—6
LDF (7
FMU (6
FDV (3.2E2
JMP *

)FlLL

is identical to writing,

LDX (-6
LDF ([7
FMU (E 6
FDV (L 3.2E2
JMP *

)FILL

The \ command should generally be used only on—line. This command is simi-
lar to the / command but prints the contents of a specified memory location
(three memory locations) as a floating point number instead of as an octal
integer. For example:

PER \ 3.14159260E+00
PER+3\ 0
PER+6\—1.00000000E+ 11

MAC’s output is underlined. Once a floating point number has been printed
using the \ command, the number may be changed by typing a floating point
number preceded by [and followed bya carriage return. Thus,

PER\3.14159259E+00 [10.1
PER\1.01000000E+01

will change the content of location PER, PER+1 and PER+2 to 10.1. If a
floating point number is printed using \ , but it is not desirable to change it,
only a carriage return should be typed.

PER\1.01000000E+01
PER\1.01000000E+01

If a change is made, the location counter is advanced by three. If no change is
made, the location counter remains unchanged.

4oo\1.01ooooooe+01 [01
*:000403

400\1.00000000E+00
*:000400

ND-60.096.01

4.2.7

4—15

Disassemb/er

This option provides a way to print the content of a memory location out in a
symbolic format. This is very useful when examining and changing instruc-
tions while debugging a program. This option adds two new commands to
MAC:)SETSM, which switches MAC into symbolic printout mode, and
)RESSM, which switches MAC back to octal printout mode. An example will
clarify the use of the disassembler option. Suppose the code,

400/
LDA FOO
STA ZOO
J M P * —2

F00, 0
ZOO, 0

has been assembled. Now we switch to symbolic output mode using

)SETSM

Now we examine the content of locations 400 through 404, like this:

400/ LDA *003
401/ STA *003
402/ JMP *—002
403/ $12 *000
404/ STZ *000

or like this:

400 < 200
lPRINT
400/ LDA *003
STA *003
JMP *—002
STZ *000
STZ *000

6a)

The disassembler’ s symbolic output has the following properties:

1. The displacement is written as a three digit octal number.

2. All numbers are written as signed three digit integers.

3. in a ROP or SKP instruction the disassembler will write a zero if the
source or destination is not specified.

4. MIS instructions are not translated. These and other unacceptable num-
bers will be written as six digit octal numbers.

5. Currently, NORD-10 mnemonics (not in NORD-1) are not
translated.

N D-60.096 .01

4.2.8

4—16

Two—Pass Assembly

This option gives MAC the capability to execute assembly in two passes, i.e.,
the source code is scanned twice. Thus, it is possible to use MAC in three
modes: ”debug mode", ”1-pass mode” and ”2-pass mode”. Assembly in two
passes will eliminate the warning "POSSIBLE FAULT” as all symbols are
defined in pass 1. The assembly listing generated in pass 2 is extremely suit-
able for later debugging: an example is given in Figure 4.1, following. Listing
may, however, grow very large, accordingly experienced users may alterna-
tively use the IQSCLC or IQSLPL options which are described later.

Assembly in two passes will normally follow this procedure: set actual value to
the current location counter and type the command

)1 PASS

on-Iine. Then assemble the source program (pass 1). Next, type the command

I2PASS

on—Iine, and assemble the source program again (pass 2). Two-pass listing is
connected to the list stream. MAC may be reset to "debug mode” by the com-
mand

)9 D B U G

Example:

301/000000
)1PASS
I9ASSM FILAMI**” 000000 DIAGNOSTICS H”
I2PASS
)9ASSM FILAMI, L-P, OBJECT
” 000000 DIAGNOSTICS "
I9DBUG

Operating in ”debug mode”, MAC will work as usual (undefined symbols are
allowed).

Output generated by MAC in pass 1 is inhibited; object output as well as out-
put from)WRITE,)LIST, etc. However, error messages are written. One
should note that programs with extensive use of)KILL and/or)PCL require
great capacity of the local symbol table, because all symbols are stored in pass
1.

The final assembly takes place in the second pass. This pass expects that all
symbols are known. Unrecognized symbols will, however, be stored in the
undefined symbol table. If messages are given in pass 1, check if there were
serious error messages or warnings. At)2PASS the current location counter is
automatically reset to the same value as with the)1PASS command. Error
messages in pass 2 are written on the line preceding the erroneous line.

We have experienced that the following points should be emphasized, so
please note:

— Only one BRF unit should be involved in a two-pass assembly.

ND-60.096.01

— No symbols are stored in the undefined symbol table during pass 1.
Therefore, symbols used with conditional assembly (”l must exist in that
table before typing the)1 PASS command.

— The expression PER = OLE demands the OLE is defined at ” = ” in pass 1.

— The message "ALREADY DEFINED” is not issued during pass 1. It is the
user’s responsibility that symbols do not conflict with built-in symbols of
the local symbol table (refer to Appendix 8.2).

The seven fields of the two-pass listing contain this information:

Field 1: Current location counter.

Field 2: Instruction code for memory reference and argument instructions.

Field 3: Addressing modification for memory reference instructions given
as a combination of the letters X, I, B and space.

Field 4: A) Effective location for P-relative memory reference instruc-
tions, given as a 5 digit octal number.

B) For not P-relative memory reference instructions, the displace-
ment is given as a 3 digit signed octal number.

Field 5: Final machine code in octal form.

Field 6: Space or one of the following letters:

R means relocatable expression, given only in BRF assembly.

E means external, given only in BRF assembly.

U Unrecognized symbol. It is stored in the undefined symbol
table with correct address reference.

W Warning — command is not executed.

Field 7: Original symbolic assembly code.

ND-60.096.01

00001
00002
00003
00004
00005
00006
00007

00010
00011

044

00012‘014
00013
00014
00015
00016
00017
00020
00621
00022
00023
00024
00025
00026
00027
00030
00031
00032
00033
00034

00035
00036
00037
00040
00041
00042
00043
00044

030

170
130
134
050

130
054
044

070
134
054
034

124
124

00036

-003
001

00020
00037
00035

00027
-105
-003

00040
00041
00042

001

00043
00044

4—18

000000
000000
000000
000000
000000
000000
000000

044026
144053
014775
030401
150002
171400
130402
135020
050015
146067
133005
056273
045775
146675
070012
135012
055012
034401
175057
125010
125010

015367
000004
000000
077777
000000
000000
000301
000000

Figure 4. 1: Example ofa Two-Pass Listing

ND-60.096.01

mm

2 DECISION ROUFIVE NO 1
)QBEG
)9EVP MAIN
)9EXF SUBRI SUBR2 NEXT PPPI
DIFF=-105
SYSFEM=301
TEST=0

M3; 0
M2: 0
M1: 0
MP: 0
Pl: 0
P2, 0
P3: 0

)9SEF :8 MP

MAIN: LDA
SWAP
STX
STF
IRA
SAX
JAN
JPL I
LDT
RADD
JXZ
LDX
LDA I
RSUB
AND

CONTI: JPL I
LDX I
LDF
BSKP
JMP I
JMP I

VARI: 15367
)FILL

)9EVD

(MP
SA DB
M3 :8
P1 :8
OPR
0
* 2
(SUBRI
UARl
ST DX
CONTI
DIFF :X
M3 :8
SK DA
(77777
(SUBR2
(PPPI
P1 :8
ZRO TEST DX
(SYSFEM
(NEXF

4.2.9

4.2.9.1

Macros

This option gives MAC a simple macro capability.

Introduction to Macros

For readers unfamiliar with the concept, the most basic use of macros is for
abbreviating a multi-line sequence of code or data with a single line. For
instance, it is quite probable that within a program the code sequence to load
the A register from memory and then store the A register to memory might
often be used. For example,

LDA A
STA B

These tw0 instructions logically perform a memory-to-memory "move"
instruction. For increased readability or to save a few characters in the source
program, it might be desirable to abbreviate these two lines to the single line

MOVEAB

Macros permit such an abbreviation. If, somewhere before the first use of the
MOVEAB abbreviation, the following lines of code are written,

)MCDEF MOVEAB
LDA A

]
STA B

the MOVEAB abbreviation becomes valid. The above lines of code are called
the macro definition for the macro MOVEAB. After the macro MOVEAB has
been defined, the line of code

MOVEAB

is called the macro call. Each time the macro MOVEAB is called, it is just as if

the lines

LDA A
STA B

has been written instead. Thus, if MOVEAB is defined as above, then writing

MIN A
MOVEAB
JMP *

is exactly the same as writing

MIN A
LDA A
STA B
JMP *

N D-60.096.01

Similarly, a macro could be used to abbreviate a data sequence. For instance,

if

)MCDEF DATA1
123456
0
123456

J

is first written, writing

FOO, 1
DATA1
2

later is exactly the same as writing

FOO, 1
123456
0
123456
2

Let us now return to the example of the macro to abbreviate a move

sequence. Suppose moves between different locations are desired, e.g.,

LDA A
STA B

LDA D
STA E

LDA PER
STA OLE

Would it not be convenient to be able to specify at the time of the call of the

MOVE macro between which locations the move should be done? For

instance,

MOVE A,B

becomes
LDA A
STA B

While

MOVE PER, OLE

becomes

LDA PER
STA OLE

ND-60.096.01

4.2.9.2

4—21

Macros permit such parameterization of the macro call. A proper macro defini-

tion of the macro MOVE to perform the above function would be:

)MCDEF MOVE $x, $Y
LDA $X % always an extra Space after dummy parameters

]
STA $Y % extra Space

In the above definition parameters $X and $Y are dummy parameters, place
holders, which indicate where arguments of the macro’s call should be substi-

tuted. Thus,

MOVE ABCD,EF

is the same as writing

LDA ABCD
STA EF

Another useful macro to define might be the M00 (memory decrement)

macro,

lMCDEF MDC $1.
LDA 3L % extra space
AAA — 1

1
STA $L % extra space

S ubsequently writing

M D C P ER
MIN P ER

would leave the value of PER unchanged.

Defining and Calling 3 Macro

A rigorous specification for the definition and use of macros follows:

— A macro must be defined before it can be called.

— The macro definition consists of three sections: the macro definition line,
the macro body and the macro termination character.

Macro definition line ————>)MCDEF SUM $A, $3, $c
LDA $A % extra space

Macro body ———I- ADD $B % extra space
STA $C % extra space

Macro termination character ——>

N D-60.096 .01

4L2£13

— The macro definition line consists of the command lMCDEF followed by
at least one space, followed by the macro name and an optional dummy
parameter list. The macro name may be any previously unused MAC
symbol. the dummy parameters must be MAC symbols preceded by the
character 95. The MAC symbols used in a dummy parameter may have
been previously defined. Use in a macro dummy parameter in no way
affects a previous definition of a symbol. The elements of the dummy
parameter list are separated by commas, and a maximum of 20 dummy
parameters may be specified in a macro definition. The first carriage
return after the lMCDEF terminates the macro definition line.

— The macro body starts immediately after the macro definition line and
extends to the termination character.

-— Dummy parameters within the macro body must be followed by a space
or carriage return to be recognized. This following character will not be
included in the macro body when the macro is called, i.e., for correct
assembling, a statement ending with a dummy parameter must be ter-
minated by space and carriage return.

— Macro calls always consist of exactly one line containing the macro
name and an optional actual parameter list. For example,

SUM A,B,C

The macro name must be followed by a space, and actual parameters are
separated by a comma. The macro call is terminated by the first carriage
return after the macro name. Actual parameters may consist of any
characters with the exception of comma and carriage return. For
example,

SUM 60—A, (340,| F00

is the same as writing

LDA 60—A
ADD (340
STA I F00

Related Commands

The macros option includes another command besides)MCDEF and changes
the meaning of the : command. The new command is)LSTM which is connec-
ted to the list stream. It lists the names of all defined macros, one name per
line. The : command when preceded by a macro name, lists the macro defin-
ition, but the dummy parameters will be replaced by the symbols:

$1, $2, $3, $4, $5, $6, $7, $8, $9.
LL$<,$=,$>.$lGLA,$B
For instance,

SUM: LDA$1
ADD , $2

§TA
$3

N 0-60.096 .01

4.2.10

4.2.10.1

4.2.10.2

In order to get the macro definition listed in a tabulated format, each dummy
parameter in the macro body may have to be followed by a space.

The)KILL command will delete a macro name and its associated definition.
The)PCL command should not be used when there is a macro name within its
scope.

The BREAD, 9TABL, FIX, QSCL C, 9RCL C, QSLPL, 9RLPL

Commands

This option adds seven commands to MAC: the)9READ,)9TABL,)FIX,

)SSCLC,)9RCLC,)98LPL and)9RLPL commands.

)9READ

The JQREAD command reads binary information produced by the)BF’UN com-
mand. The information is placed in memory according to the limits Specified
for)BPUN. The octal part is ignored, i.e., the exclamation mark is searched.
Note that the command takes the input from the file last connected to the

object stream unless an optional parameter is supplied. The parameter must
be the file name or number of the binary input file.

Examples:

1,0,101$ % must be opened for ”RX" outside MAC
)QREAD
1,0,3$ % reset object output (101 is closed)

)9READ BlNFlL1 % opened for"RX” by MAC, not closed
)9READ 104 % must be opened for “RX” outside MAC, not closed

)9TAB L

)9TABL enables the user to change the size of the three main tables in MAC.

The current size of the tables may be examined by the)CORE command. One

should be aware that each table entry (one symbol) occupies three memory
locations.)9TABL must be followed by three symbols separated by space,

and terminated with carriage return. The value of each symbol is taken to be

the number of entries for the tables in this order:

1 . Local symbol table (user defined symbols)
2. Constants table (literals)
3. Undefined symbol table

Fixed symbols in the local symbol table are not included. The)9TABL com-

mand also clears the tables.

ND-60.096.01

4.2.10.3

4.2.10.4

4.2.10.5

4—24

Example:

lCLEAR
A = 1000 % number of entries in local symbol table
B = 62 % number of entries in constants table
C = 600 % number of entries in undefined table
l9TABL A B C

)FlX

The)FIX command makes all symbols in the local symbol table permanent.
That is, they will not be deleted by any)CLEAR command given later on. ll
is intended to be used to make global (or system) variables permanent when
assembling a system from parts.

l9SCLC and)9RCLC

)QSCLC switches MAC to a mode which prints the value of the current loca-
tion counter on the device associated with the list stream. The value appears
as a six digit octal number and two spaces preceding the original symbolic
code. This mode is ignored when MAC is operated on-line. The mode is reset
by the lQRCLC command.

)QSLPL and)9RLPL

)QSLPL is implemented to be used when assembling NORD-PL object code.
The printout on the list stream will contain the value of the current location
counter followed by the NORD-PL source statementls). The NORD-PL pro-
gram must be compiled like this:

(0) DEV INPUT, OBJECT, OBJECT

thus having a % preceding the source line. In this mode MAC inhibits printing
of anything but the text between % and line feed.

)9RLPL turns off the mode described above. Note that lQSLPL simulates
)9RCLC and)QSCLC simulates)9RLPL.

ND-60.096.01

4.2.11 The TRA CE

The TRACE is too comprehensive to be described in this manual, therefore
those interested should consult the manual ”The TRACE Routine”
(ND-60.046).

The purpose of TRACE is to be a tool when debugging programs written in
any language, but of course compiled to fit the NORD-10 instruction set.

TRACE executes the other program instruction by instruction, thus having the
control all the time.

Various protection conditions may easily be set through MAC commands and
when violated control is passed to MAC. An extensive log is produced (if
desired) which may be connected to any file.

The commands of TRACE are listed below:

)9lNN Set start point of tracing
)QSTOP Set stop point(s)
)9TPO Set trace point(s)
)9PPO Set printing point(s) (where memory areals) are dumped)
)9LAR Set legal arealsl
)9TAR Set tracing area(s)
)QBAR Set ”blocked" areals)
)9MAR Set memory dump areals)
)9ROT Set rotation counter and address
l9DS Set disassembly of current instruction
)9RDS Reset disassembly of current instruction
)QSTEP Set step counter
)9lOT Set lOT simulation
)9FLT Print floating accumulator as a floating point number
)9TR Start tracing
)9CON Continue after a stop
)9REG Set register print switches
)9NVAL Examine/change new register values
)90VAL Examine/change old register values
)9PRlV Set action to take if a privileged instruction is encountered.

N D-60 .096 .01

5.1

USING MAC

As emphasized in the introduction of this manual, the concept of MAC allows
the user to be extremely free in his composition of the assembly source pro-
grams as well as in the interaction while debugging programs.

In the following we will give some examples of programs and program assem-
blies utilizing features described in this manual. We will simultaneously try to
uncover traps which the user may easily fall into to.

This chapter does not describe the various services the user may obtain from
the SINTRAN lll system such as the Monitor Calls, the Batch Processor, the
Real Time (RT) feature, etc. These are described in detail in the documen-

tation: SINTRAN ll| User’s Guide (ND.60.050).

LOGGING IN

Although MAC may be used as a stand-alone program in the NORD-10, it
comes naturally in this context to describe MAC and other processors as sub-
systems running under an operating system, the NORD SINTRAN l|l Real
Time, timesharing and multi-batch system.

Suppose you are already a legal user of the system, just follow these steps:

1. Turn on the terminal. Turn on the on-line switch.

2. Press ”Escape” (the ESC key).

3. The terminal responds with the time of day, the date, and the word
ENTER.

4. Type the user name, followed by carriage return.

5. The terminal responds by printing PAS SWORD.

6. Type your password. If you have none type carriage return. Remember
that the password will not be echoed on your terminal.

7. The terminal responds with OK.

8. If the accounting system is active the terminal will print PROJECT—
NUMBER. AnSWer this by typing a project number (a decimal number),
followed by carriage return.

9. The terminal prints the character 6). This means that it is expecting a
command.

10. Any subsystem may be loaded by typing its respective name, for exam-
ple:

@MAC
-MAC—

N D-60.096 .01

5.2 PREPARING A PROGRAM FOR ASSEMBL Y

We have already described in Section 3.2.2.4 the conventional format for pro-
grams written in the MAC language. Once written, the program should be
typed and transferred to a file using the OED text-editor which is introduced in
the following lines:

OED is a powerful text—editing program for use with the NORD COMPUTERS.

It is primarily designed for maintaining source-program-files of multiple lan-
guages, such as MAC, NORD-PL, FORTRAN, or BASIC, though it’s conven-
ience and ease of usage makes it suitable for all kinds of text-editing.

The text being edited may be read from and written to any mass-storage file or
l/O device and text lines may be added, modified, replaced and deleted by a
few easy-to—learn commands.

Lines of texts may be addressed in several ways to make it easy for the user to
position a specific line or a collection of lines where editing is to be performed.
Positioning to a particular line may be specified in the commands themselves,
however, just a line address itself can be a command to cause positioning to
occur.

A normal editing sequence consists of:

- a READ command to get the old text from a file, or an APPEND if there
are only new lines from the terminal.

- APPENDING/INSERTING, CHANGING and DELETING text. LIST speci-
fic parts and EDIT single lines to correct errors.

- a WRITE command to save the new text-buffer on a file.

- a FINISH command to leave OED and return to the operating system.

Remember to save your edited text, or it will be lost when a new program is
started.

The default tabulator positions correspond to the conventional format of MAC
programs. Spaces are normally not written by. OED in order to save space in
the files, however, MAC in its turn expands tabulator characters to obtain read-
able assembly listings.

Moreover, form-feeds may be used to divide the program into "pages".
Pagination is recommended since it increases program readability. Form-feeds
are ignored by MAC. Blank lines may also be included in programs. This also
helps readability.

ND-60.096.01

5.3 ASSEMBL Y OFA PROGRAM

Once MAC is loaded and running, a program may be assembled. If the pro—
gram to be assembled does not set the location counter before any instruc—
tions or constants, set the location counter from the terminal using the slash
l/lcommand.

If you are certain that your program ends with a)LINE command (which ter-
inates assembly and gives control to the terminal), start the assembly process
by typing the command l9AS SM with actual parameters.

If while the assembly is in progress, one of MAC's tables fills up, MAC prints
out an error message and goes on-line. When this happens, increase the
capacity of the tables by using the)9TABL command (which also implies a
lCLEAR). Then reset the location counter and start again with)9ASSM.

When the assembly is complete, type a question mark l?) on the terminal to
get a list of undefined symbols. Define these symbols either using the "=" or

commands on-line or by correcting the program and reassembling it.

Once a program has been assembled, it is often convenient to dump it before
starting to have a copy of the original for later debugging. Very often pro-
grams are self-destroying due to bugs. The dump interval is set by using the <
command and desired dump file is connected to the object stream by using
the)9ASSM command. The)BPUN command outputs the absolute binary
dump to the object stream and the)LlST command outputs the symbol list to
the same stream.

In the following, we will use as an example, a program that

outputs a question mark on the terminal
reads a file name from the terminal
opens the file
copies the file to the terminal
exits when it encounters the end-of—file character (027)P‘PWNr‘

We assume this program is already on a file written by OED. The file has the
name EXAMPLE. This file should be written in an orderly and readable man-
ner.

1. Log in as described in Section 5.1.

2. Type MAC, and MAC prints "—MAC—”, when started first time, being
ready to accept input from the terminal.

3. Type *: and MAC responds by printing 000001 which is the value of the
and MAC responds by printing the contents of location 10. (Later debug-
ging by setting breakpoints does not allowthe start address to be 1).

4. Type carriage return and MAC responds by printing line feed as always
in one-line mode. A carriage return alone does not assemble anything
into location 10, and the location counter remains unchanged.

5. Type)QSCLC which later will result in printout of the current location
counter preceding the source line on the list stream.

N D-60.096 .01

Type l9ASSM EXAMPLE, TERM and the following output will appear
on the terminal:

000010 "888 R F

000010 PROGRAM LISTFILE
(X30011 START, SAA# ?; SAT1;
% **** ERROR AT: 000011 **** RANGE EXCEEDED

MON 2; MON 65; SAX 0
000015 LES, SAT 1; MON 1; MON 65; LOT BUFFP; SBYT
000022 AAA—215;
% **** ERROR AT: 000022”** RANGE EXCEEDED

JAZ OPEN; AAX 1; JMP LES
000026 OPEN, LDX BUFFP; SAT 1; LDA (FTYPE
000031 MON 50; MON 65; STX FILIN
000034 PRINT,
% **** ERROR AT: 000034 **** ILL. MNEMONIC PRINT

LDT FILIN; MON 1; MON 65
000037 AAA—27; JAF *2; MON 0; AAA 27
000043 SAT1;MON 2; MON 65; JMP PRINT
% ””ERROR AT: 0m046**** RANGE EXCEEDED
(1)0047 FTYPE, #SY
000050 # MB
000051 BUFFP, BUFFR
000052 BUFFR, 0
000053 BUFFR +200/ 0
(X30253 FI LIN,
% ERROR AT: 000253 POSSIBLE FAULT 000034
% ERROR AT: 000253**** POSSIBLE FAULT 000033

0
000254)FILL
% **** ERROR AT: 000254**** (ERROR 000030

000255 "BBBRF

000255)LINE
” 000007 DIAGNOSTICS ****

We observe some error messages and that the conditional assembly
sequence between "BBBRF and ” are not assembled (printed) because
the symbol 883RF (library mark) is not present in the undefined symbol
table. The)LINE passed control to the terminal, and MAC is now
expecting further input.

Type ? and MAC responds by printing the undefined symbols:

OGRAM TFILE

We have obviously forgotten a comment sign (%I in the line:
PROGRAM LISTFILE.

The error messages are now discussed in turn:

a) A sharp sign (#) is missing and MAC has taken# ?; as a 16 bit value,
also resulting in SAT 1 to be assembled into the same location!

b) The argument +215 is not legal and the instruction should be changed
to SUB (215.

ND-60.096.01

10.

11.

12.

13.

14.

15.

c) The symbol PRINT is reserved for the MAC command)PRlNT. We

decide to change it to PRIUT.

d) The value of the reserved symbol PRINT resulted in a displacement over—

flow. We can change the occurrence of PRINT throughout the program
by using the substitute feature in OED.

e) The definition of FILIN results in two POSSIBLE FAULT warnings.

These are really errors because FILIN is referred twice in memory refer—

ence instructions. Label FILIN must be moved before the definition of

the array BUFFR.

f) The addressing range of a literal is exceeded; i.e., the literal is dumped

(lFlLL) too far from the referencing instruction. The lFlLL must be

moved before the BUFFR definition.

Correct the source and dump the new version on the same file.

Repeat the steps 1 to 6, and the following output will appear on the ter—

minal:
'

000010 ”888 RF

000010 % PROGRAM LISTFILE
000010 START, SAA=II7 # ?; SAT 1; MON 2: MON 65: SAXO
000010 LES, SAT 1; MON 1; MON 65; LOT BUFFP; SBYT
000022 SUB I215; JAZ OPEN; AAX 1; JMP LES
000026 OPEN, LDX BUFFP; SAT 1; LDA {FTYPE
000031 MON 50; MON 65; STX FILIN
000034 PRIUT, LDT FILIN; MON 1; MON 65
000037 AAA—27; JAF *2; MON 0; AAA 27
000043 SAT 1; MON 2; MON 65; JMP PRIUT
000047 FTYPE, #SY
000050 # MB
000051 FILIN, 0
000052)FILL
000054 BUFFP, BUFFR
000055 BUFFR, 0
000056 BUFFR+200I 0
000256 "8BBRF

000256)LIN E

**** 000000 DIAGNOSTICS ****

There are no error messages. Type ? and MAC responds by printing car-

riage return/line feed. There are no undefined symbols, i.e., the assem-

bly seems to be correct.

Type START! or 10! and the program starts printing a ? on the terminal.
Everything is OK so far!

Type the name of the file to be listed, for instance: EXAMPLE followed

by carriage return.

The error message NOT OPENED FOR SEQUENTIAL READ indicates

that something is wrong with the program. Control is given to the oper-

ating system.

The debugging process is described in the next section.

DID-60.09601

5.4 DEBUGG/NGA PROGRAM

Once a program has been assembled or loaded into memory the program may
be run. To start program execution, type an expression to be evaluated to a
starting address followed by an exclamation mark (i). For all but the very
luckiest of us, this last step will lead to a catastrophic program failure and the
program will have to be debugged.

First, get control back to MAC by restarting with the @CONT command.
MAC will now print its characteristic carriage return and line feed. If it does
not, the ”buggy” program destroyed MAC and MAC and the program must
be reloaded (this is an ideal excuse for quitting for the day!).

Once control has been returned to MAC, memory locations can be examined
by typing a location number, a symbol or expression followed by a slash (/l,
e.g.,

200/ 123456

To change the contents of a memory location, first examine its contents as

alone and then type a new value followed by a carriage return. To obtain the
value of a symbol, type the value followed by a colon, e.g.,

FOO:000012
“2000400

Numerous other commands useful for debugging are available. One Special
symbol already mentioned is also very useful during on-line debugging. This is
1‘ which has its value as the value of the memory location pointed to by the
current location counter. Its use is shown below:

A/ BSET 7o ox f ONE
this changes the instruction in location A to

BSET ONE 70 DX

We will now continue the example from the last section.

16. The @ STATUS command in SINTRAN III is always a good debugging
aid, even if the program was interrupted by an ESC. Type STATUS and
the following output is printed on the terminal:

P237
X=55
T=55
A2124
D=0
L=0
5:100
3:0

The MON 65 in location 36 has stopped the program, so obviously the
OPEN call is correct. From the register dump we see that T = X = 55.
Something is perhaps wrong with the T register in MON 1 of location 35?

17. TypeCONTlNUEtorestartMAC.

18. Type PRIUT. and MAC responds with a carriage return/line feed. A
breakpoint is now specified in location 34, after the OPEN call.

ND-60.096 .01

19.

20.

21.

22.

23.

24.

25.

Type START! and the program prints a .7.

Type EXAMPLE and control is immediately given to MAC responding by
printing . indicating that the breakpoint is reached.

Type BT/ and BX/ and BA/ to examine the contents of the respective
registers:

BT/OOOOOl
BX/000055
BA/000101

Type FlLlN/ to examine the contents of location 51:

FILIN/000055

The X register has the value of BUFFFi and is not changed through the
OPEN call. Obviously, the last instruction executed should be STA FILIN
instead of STX FILIN. We can verify this by changing the contents of
FILIN and continue execution.

Type 101 and carriage return which assembles this new value into FILIN.

Type 1! to move the breakpoint to the next location and execute the pre-
vious instruction. Type BT/ and MAC prints the contents of the T reg-
ister BT/000101 which is the new content of FILIN.

Type ! to continue execution without more breakpoints and hope.

The program executes correctly!

Correct the last bug by changing the STX FILIN to STA FILIN in the
source program.

While editing, take the opportunity to insert more comments. It is also
recommended to change the monitor call numbers to symbols which in-
creases readability and reduces futural maintenance costs.

The final assembly and dump procedure is described in the next section.

ND-60.096.01

5.5 DUMP/NGA PROGRAM

The importance of dumping large programs in the debugging phase is already
emphasized. However, any debugged program should always be dumped in a
binary version suitable for later retrieval. MAC/SlNTRAN Ill dump and load
procedures are described below with some comments.

BRF Output

Generated by the)QBEG and)9END commands. Can later be loaded by a
BRF loader subsystem anywhere in memory. Linking to other BRF pro-
gram units is also possible.

Absolute Binary Output

Generated by the)BPUN command. Can later be loaded by)9READ, or
the @PLACE-BINARY command in SINTRAN Ill.

PROG Files

Generated by the @DUMP command in SINTFiAN Ill. Can later be
retrieved by @RECOVER and is the standard format of subsystems.
When debugging large programs it is often useful to dump all memory
including MAC and its tables.

DUMP-REENTRANT

Requires an absolute binary file. Later retrieval will utilize the reentrant
facility of SINTRAN Ill.

The following steps continue with the example from the last section and show
two ways of assembling, dumping and retrieving the program:

26. Absolute Assembly:

(a MAC
—MAC—
l9ASSM EXAMP
“H 000000 DIAGNOSTICS H”
1 < *
)QASSM 1,0 ”LISTFlLE:BPUN”
)BPUN START
)9EXIT
@PLACE-BINARY LISTFILE:BPUN
(3G0 1

The program starts execution in location 1 .

N 0-60.096 .01

27.

5—9

B R F assembly:

@MAC
—MAC—
ISSCLC
888RF
I9ASSM EXAMP, L-P, "LISTFILE"
**** 000000 DIAGNOSTICS ****
I9EXIT
@NRL
—NORD RELOCATING LOADER—
*SET—LOAD-ADDRESS 20000
*LOAD LISTFILE
*RUN

The program starts execution in location 20000.

The listing produced by the)9ASSM EXAMP, L—P, "LISTFILE”” looks
Iikethis:

000002 % GLOBAL DEFINITIONS
000002 F|N|T=0;INBT=1;OUTBT=2;OPENF=50; ERROR=65
000002 "BBBRF
000002 ISBEG START
000001 ”
000001 % PROGRAM LISTFILE
000001 % READ FILE NAME FROM TERMINAL (TERMINATOR =215I
OWOO1 %0PEN FILE FOR SEQUENTIAL READIDEFAULT TYPE = SYMBI
000001 % PRINT ITS CONTENTS ON THE TERMINAL (TERMINATOR = 27)
000001 START, SAA# #?; SAT 1; MON OUTBT; MON ERROR; SAXO
OOWOB LES, SAT 1; MON INBT; MON ERROR; LDT BUFFP; SBYT
000013 SUB(215;JAZOPEN;AAX1;JMP LES
OWOW OPEN, LDX BUFFP; SAT 1; LDA (FTYPE
000022 MON OPENF; MON ERROR; STA FILIN
000025 PRIUT, LDT FILIN; MON INBT; MON ERROR
000030 AAA —27; JAF ‘2; MON FINIT; AAA 27
000034 SAT 1; MON OUTBT; MON ERROR; JMP PRIUT
000040 FTYPE, # SY
000041 # MB
000042 FILIN, 0
000043)FILL
000045 BU FFP, BUFFR
00(XJ46 BUFFR, 0
(1)0047
000247 BU FFR + 200/0
000247 "8BRF
000247)9END
(1)0247 "
000247 ILINE

N D-60.096 .01

INTRODUCTION TO SU BROUTI NES

If the same algorithm is to be applied at several different places in a program, it
is convenient to put the algorithm's instructions in a subroutine. This sub-
routine may be called from anywhere where we wish to execute the special
algorithm.

Main Program Subroutine

JBL | (SUB

JPL I (SUB

Figure 6. 7: Calling a Subroutine

For example, let us assume that the first call of the subroutine SUB in Figure
6.1 is in location 1000 and the next one in location 2000. The subroutine starts,
for example, in location 5000. Then the following takes place:

At the first call the P register has the value 1001. The JPL instruction means
that the value of the P regiser is copied into the L register and the P register
gets the value of the start address of the called su broutine,i.e.,

P=1001—>L
SUB=5000—>P.
Execution then continues at location 5000, and the subroutine is executed.

Finally, the EXIT instruction in the subroutine is executed. EXIT is equivalent
to copying the L register into the P register, i.e.,

L = 1001 —> P.

This actually means a return to the calling program.

At the second call the value of the P register is 2001 which is put into the L
register and the P register is again changed to 5000. By executing the EXIT,
the P register receives the value 2001 which was saved in the L register. A
return to the calling program is performed.

Next, let us assume that the called subroutine also calls a subroutine, as
shown in Figure 6.2.

ND-60.096.01

SUB1, SUB2,

JPL IISUB1 JPL NISUBE

j <

‘\ EXIT

EXIT

Main Program Subroutine 1 Subroutine 2

Figure 6.2: Nested Calling of Subroutines

Figure 6.2 shows that control is never returned to the main program. Why? Let
us assume that the call in the main program is at location 1000, that SUB1
starts in location 2000 and calls SUBZ in location 2100, and that SUBZ starts in
location 3000.

The P and L register then change in the following way:

P = 1001 —> L Main program
SUB1= 2000->P calls SUB1

P = 2101 —- L SUBl
SUBZ = 3000 -> P calls SUBZ

L = 2101—> P EXITin SUBZ

L = 2101—— P EXITin SUB1

The last part of SUBI is repeated infinitely.

Each time a subroutine is called, the L register is changed. This means that a
subroutine has to save the L register before it calls another subroutine.

Generally, it is a good habit to save all registers which are to be used in the sub-
routine before using them, and load them with their original values before
returning to the calling program.

SUBR, STF TAD % SAVE TAD REGISTERS
STX SAVEX % SAVE X REGISTER
COPY SB DA % SAVE
STA SAVEB % B REGISTER
COPY SL DA % SAVE
STA SAVEL % L REGISTER

LDA SAVEL % LOAD
COPY SA DL % LREGISTER
LDA SAVEB % LOAD
COPY SA DB % B REGISTER
LDX SAVEX % LOAD X REGISTER
LDF TAD % LOAD TAD REGISTERS
EXIT

TAD, 0;O;0
SAVEX, 0
SAVEB O
SAVEL, 0

ND-60.096.01

6.1

6.1.1

PARAMETERS

Usually, it is necessary to send information to and from a subroutine. This is
done by the use of parameters. Parameters may be transferred in one of the fol-
lowing three ways:

1. using registers

2. using the locations following the call in the main program

3. using the A register which contains the address of a list of parameter
addresses.

These three methods are discussed in the following sections.

Parameter Transfer via Registers

If we only want to transfer a small number of parameters to or from the sub-
routine, we may use the registers. Then the registers which are to transport
input parameters, are loaded before calling the subroutine. Output parameters
are put into the registers before leaving the subroutine.

Suppose there are four parameters which shall be sent to the subroutine. We
may, for example, use the T, A, D and X registers for that purpose.

Let us also suppose that there is only one output parameter which is transfer-
red by the A register.

Main Program:

LDF Pl % LOAD FIRST3PARAMETERS
LDX P4 % LOAD FOURTH PARAMETER
JPL l (SUBR
STA RES % STORE RESULT

P1,
P2,
P3,
P4, . . .
RES, 0

)FILL

ND-60.096.01

6.1.1.1

Subroutine:

SUBR, STF TAD
STX SAVEX

LDA OUTPT
EXIT

TAD, 0
OUTPT, 0
SAVED, 0
SAVEX, 0

This method is, of course, only useful if the number of parameters is small.

Example

Write a subroutine which computes the sum, the difference and the product
of two numbers contained in the A and the D register. The results are to be
placed into the T (sum), the A (difference) and the D (product) registers.

Main Program:

LDD NUM1
JPL (SUBR
STF SUM

NUM1, . ..
NUM2, . . .
SUM, 0
DlFF, 0
PROD, 0

)FILL

Subroutine:

SUBR, COPY SA DT
RADD SD DT % SUM
STA SAVEA % SAVEA REGISTER
SWAP SA DD % EXCHANGEAAND D
RSUB SADD %D=D—A
MPY SAVEA % A = A * SAVEA
SWAP SA DD % A = DlFF

% D = PROD
EXIT

SAVEA, 0

ND-60.096.01

6.1.2 Parameter Transfer Via Locations Fo/lowing the 06”

If the number of parameters get big or are variable, it is convenient to place
them into some known locations in the memory. These locations may immedi-
ately follow the call. The actual values of the parameters are transferred via
these locations.

Main Program:

JPL l (SUBR
P1, <va|ue>
P2, <va|ue>

PN, <va|ue>

IFILL

How is it possible to access these parameters from the subroutine? We know
that the L register contains the adress of the location following the call. This
means then that L = address (P1) = P1. Also, we have to know how many
parameters we use in order to be able to calculate the correct return address: L
= L + number of parameters. If this number is constant, the L register is
incremented by a constant. If the number of parameters is variable, we trans-
fer it as the first parameter and increment the L register by it.

Subroutine with a fixed number of parameters, say n, 1 S n S 127:

SU BR, STA SAVEA % SAVE A REGISTER
COPY SB DA
STA SAVEB % SAVE B REGISTER
STX SAVEX % SAVEX REGISTER
COPY SL DB % FIRST PARAMETER ADDRESS
SAX n % NO. OF PARAMETERS
RADD SX DL % RETURN ADDRESS
COPY CMI ADi SX DX % X = —X

NEXT, LDA ,B ,X n % LOAD PARAMETER

JNC NEXT % INCREMENTX REGISTER
LDX SAVEX
LDA SAVEB
COPY SA DB
LDA SAVEA
LDA SAVEA
EXIT % RETURN

SAVEA, 0
SAVEB, 0
SAVEX, 0

The X register is loaded with the number of parameters. After having negated
it, we are able to access consecutive parameters only by incrementing the X
register.

N D-60096.01

6.1.2.1

Subroutine with a variable number of parameters contained in the first loca-
tion following the call:

SUB R, STA SAVEA % SAVE A REGISTER
COPY SB DA
STA SAVEB % SAVE B REGISTER
COPY SL DB % ADDRESS TO
LDA ,B % NO. OF PARAMETERS
RADD SA DL % RETURN ADDRESS
RINC DB

NEXT, LDA ,B % ACCESS PARAMETER

RINC DB % INCREMENT B REGISTER
SKP DB EOL SL % TEST IF FINISHED
JMP NEXT % NEXT PARAMETER
LDA SAVEB
COPY SA DB
LDA SAVEA
EXIT

SAVEA, 0
SAVEB, 0

In this, the number of parameters is also included in the location which ac-
tually contains this number.

Example

Write a subroutine which computes the sum, the difference and the product
of two numbers contained in the first two locations following the call. The
results are to be placed in the next three locations following the call in the main
program.

Main Program:

JPL | (SUBR
NUM1, . ..
NUM2, .. .
SUM, 0
DIFF, 0
PROD, 0

)FILL

N D-60.096 .01

Subroutine:

SUBR, STA SAVEA
COPY SB DA
STA SAVEB
COPY SL DB
SAA 5 % NO. OF PARAMETERS IS 5
RADD SA DL % RETURN ADDRESS
LDA ,8
ADD ,B 1
STA ,B2
LDA ,B
SUB ,B 1
STA ,B 3
LDA ,B
MPY ,B 1
STA ,B 4
LDA SAVEB
COPY SA DB
LDA SAVEA
EXIT

SAVEA, 0
SAVEB, 0

6.1.2.2 Example

Write a subroutine which adds a number of numbers. The result is put into the
A register. The subroutine uses the following parameters placed in locations
following the call:

RADDR — return address
N — number of numbers
NUM1 — first number in afield containing at least N numbers

Example:

Main Program:

JPL | (SUBR
CONT
25

NUM1, ..

CONT, sTA RES

lHLL

N D-60.096.01

Subroutine:

SUBR, STX SAVEX
COPY SB DA
STA SAVEB
COPY SL DB
LDA ,B % A CONT
COPY SA DL % RETURN ADDRESS
RINC DB % ADDRESS T0 N0. PARAMETERS
LDX ,B % NO. NUMBERS TO BE ADDED
COPY CM1AD1 SX DX
SAA 0 % CLEAR A REGISTER
RINC DB % INCREMENT B REGISTER
ADD ,8
JNC *—2
LDX SAVEB
COPY SX DB
LDX SAVEX
EXIT

SAVEB, 0
SAVEX, 0

Parameter Transfer by Means of the A Register

The last method we shall discuss is to transfer parameters by only passing the
address of a list of parameter addresses to the subroutine via a register, the A
register.

This is the way parameters are transferred by FORTRAN or SIN TRAN.

Before the main program calls a subroutine, it loads the A register by this
address. The list of parameters may be placed anywhere in the memory, and
the actual values may even be scattered in memory. But in this case, only
executable instructions should follow the call.

Main Program:

P1,
Pn,

LDA (LIST % LIST ADDRESS
JPL I (SUBR

IVION
)FILLP2, . . .

LIST, i=1 %L|ST OF ADDRESSES
P2 % TO PARAMETERS

Pn

ND-60.096.01

6.1.3.1

The only parameter which is directly transferred to the subroutine is contained
in the A register. We copy the A register into the B register and are now able
to access parameters indirectly through the B register.

Subroutine:

SUBR SWAP SA DB
STA SAVEB 96$AVEBREGBTER
LDA 1,30 96ACCESSlstPARAMETER

LDA |,Bl 96ACCESSaPARAMATER

LDA |,Bn 96ACCESSrnhPARAMETER

LDA SAVEB
COPY SADB
Exn

SAVEB, 0

If we write a MAC subroutine which is called by a FORTRAN program we
must not change the B regiser or locations within the B field, i.e., 8-2003
through B +1775 . In this case it is absolutely necessary to save the B register
at the beginning and load it with its original value at the end of the subroutine.

Example

Write a subroutine which addsa number of numbers.

The subroutine uses the following parameters:

N number of numbers
FIELD start address of the field containing the numbers to be

added
SUM result

Main Program:

FELD
*+n/

LDA (usr
JPL |(SUBR

MON
N, n

SUM, b
UST, N

FELD
SUM
)HLL ND60.096.01

6—10

Subroutine:

SUBR, SWAP SA DB % B ‘— LIST
STA SAVEB
STX SAVEX
LDX I ,B %X ‘— N0.0FNUMBERS
SAA 0 % CLEAR A REGISTER

NEXT, RDCR DX % DECREMENT X REGISTER
SKP DXGRE %TESTIF FINISHED
JMP FIN
ADD I ,B,X 1 %ADD NUMBER
JMP NEXT

FIN, STA | ,B 2 % SAVE RESULT
LDA SAVEB
SWAP SA DB
LDX SAVEX
EXIT

SAVEB, 0
SAVEX, 0

NDB0.096.0~1

APPENDIXES

APPENDIX A

ERROR MESSAGES AND WARNINGS

Messages from SINTRAN III or FILE SYSTEM monitor calls are printed as a

self-explanatory text.

MAC messages are printed on the terminal if the list stream is connected to

the dummy device. A message is always preceded by the text:

**** ERROR AT: 888888 ****

where 888888 is a six-digit octal number representing the current location

counter. The number of diagnostics is always printed on the terminal when a

ILINE or 62) is encountered.

The error messages or warnings are listed below in alphabetical order together

with an explanation and eventually action to take.

(ERROR

Literal dumped too far from referencing instruction. Insert a)FILL command in

the source program within the relative addressing range of the instruction.

Reassemble.

IFILL MISSING

Insert a)FILL command before the)9END in the source program. Reassemble.

ALREADY DEFINED <symbol>

The symbol indicated has already been defined in the local symbol table. This

is not necessarily an error. The value of the symbols latest definition is used.

BREAKPOINT NOT RESTORED

This warning indicates that a debugging run was started (I) without reaching

any breakpoint. However, all breakpoints specified are intact.

CHECKSUM ERROR

A checksum error was detected in a I9READ command. Try again or generate

a new binary file.

DISASSEMBLER ERROR

Irrecoverable error in the disassembler option.

ENT DEFINED

A symbol given in a)9ENT command was previously defined. Reassemble

deleting either the symbol’s previous definition (probably before the)QBEG

command) or its inclusion in the)9ENT command.

ND-60.096.01

EXT DEFINED

A symbol given in a)9EXT command was previously defined. Reassemble

deleting either the symbol’s previous definition or its inclusion in the)9EXT

command.

EXT IN ADDRESS ARITHMETIC

An arithmetic expression included an external symbol. For example,

lQBEG
)9EXT PER

LDA I (PER + 1 % |LLEGAL

Correct in the source program and reassemble.

EXT MISSING

An external symbol was included in a)Kl LL command. For example,

l9EXT PER
JPL I (PER
)KILL PER % |LLEGAL
lFl LL

Delete the symbol from the)KILL command in source program and

reassemble.

ILL. ADDRESS

An attempt was made to assemble or jump (via the) command) into MAC

itself. If the latter, try again with a legal address. If the former, correct the pro-

gram and reassemble.

ILL. BRF UNIT INITITIATION

A)9ENT or)9EXT was used somewhere other than before the first instruction

or constant after a)SBEG, or)SBEG was used doubly. Fix the program and re-

assemble.

lLL. BREAKPOINT

Several conditions may cause this message:

— illegal start or brek address
— redefinition of a breakpoint
— maximum number of breakpoints set
— undefined symbol in address expression preceding ! or .

ILL. CHARACTER

An illegal character was found in the source stream. The character is ignored.

ILL. EXPRESSION

MAC has encountered an expression having double relocation or direct access

to an external symbol. For example,

ND-60.096.01

)93EG
IQEXT PER
A, o
B, o

‘
B—A % LEGAL
B+A % ILLEGAL

LDA PER % ILLEGAL
LDA | (PER % LEGAL

Correct the source program and reassemble.

ILL. INSTRUCTION

Something is illegal about an instruction, for instance, JAZ ,3. Correct source
program and reassemble.

ILL. MNEMONIC

An attempt was made to redefine one of MAC’s built-in symbols in the main
symbol table. The attempted definition is ignored.

ILL. USE OF COMMAND

Illegal use of a command. For example,

IKILLS

Fix the source program and reassemble.

MACRO ERROR NO 000001

An attempt was made to redefine a macro or name conflict with another sym-
bol. The macro definition is ignored.

MACRO ERROR NO 000002

The macro tables overflowed. The macro definition is ignored.

MACRO ERROR NO 000003
MACRO ERROR NO 000004

Both these error messages indicate the use of a symbol preceded by a $ within
a macro body but not declared in the macro’s formal parameter list. The macro
definition is ignored.

MISSING PARAMETER

A macro call has insufficient parameters. The call is ignored.

OPTION MISSING

An option was "called” which was not included in MAC. Either do not
attempt to use the option or construct a version of MAC including the option.
Reassemble.

POSSIBLE FAULT

There was possibly, but not necessarily, a fault in assembly into the indicated
location. This message may occur when a symbol is defined and references in
the undefined symbol table are updated. The following conditions are
checked:

ND-60.096.01

_ if not in BRF assembly mode, and

— if the content of the refrence address is different from zero, and

— if the address range (—200) is exceeded

_ then the message is given due to the fact that MAC has "forgotten"
whether the symbol appeared in an instruction or in an address expres—
sion. 1

i
Use the two—pass assembly option, or include the commands related to BRE in
conditional assembly. Then examine the location and correct if necessary. i

l
RANGE EXCEEDED “

An attempt was made to reference a location outside the addressing range of
the referencing instruction, or an argument was outside its limits in an a ggu-
ment instruction. Fix the source program and reassemble.

TABLE FULL/ <table>

One of MAC’s tables overflowed. Use)9TABL to expand the tablels).

SYMBOL NOT DEFINED <symbol>

A symbol included in a command was not previously defined. Define the sym-
bol and try again. Ifyou are not lucky, reassemble.

UDEF ENTRY

An entry was still not defined at)9END. This doesn’t necessarily mean it's an
error, but if it is add the appropriate)9ENT command to the source program
and reassemble.

WHAT?

Illegal use of the) command. Give the correct command on-line and continue
assembly.

ND-60.096.01

APPENDIX B

BUILT—IN SYMBOLS

B .1 MAIN SYMBOL
Commands)

CLEAR 9ASC|
9ASSM QBEG

9ADS 9ASF
9LIB 9FABS

BPUN KILL
PUNCH UNE

$80 580
IRR IRW

LBYT SBYT
MLST GEO

PES PGS
PCR PON

SSTG ION
STS MD

\NAW BCM
BLDC BANC
RORA REXO
RDCR AD1

UN SHT
EOL UEO

RADD ONE
COPY SD

ST SX
DA DT
,X NLZ

AAX SAT
STA JMP
STF STD
JAN JAZ
LDF FAD
STR LDR

B.2

QREG 9CON
SBAR 9MAR

SSTOP mNN
QOT 9DEVN

9RCLC SSCLC
9DBUG 2PASS

DEC BIR
BA BX

NBN CHANGE

TABLE (Instruction

9UTR 9PAR|
SEND 9EXT

9LC 9RT
BSET CLD

WRITE WRTM
WRUS FILL

SSC SSM
IDENT HC

LMP LRB
LSS MON

PL10 PL11
POF PVL
IOF 20R3
PE TRR

BAC BSTA
BORC BAND

CM2 CM1
ADC IF
SHD SHA
GRE LST
ZRO BSKP

SP SB
DD DP
DX SHR

DNZ SAA
AAT SAB
JPL STT

AND ORA
JPC JNC
FSB FMU

9TR
STAR

90VAL
SPNV
9RLPL
1PASS

BB
BT

UST

ND-60.096.01

9RDS
9LAR

9NVAL
HX

SSLPL
RESSM

BSTS
BP

CORE

Mnemonics

9TSS
END

9MSG
VWWNE
NVVRT

SSK
ALD

HE
SRB

NHX3
PL12
RDRI
TRA
MCL

BSTC
BORA
RCLR

ROT
SAD
EXW

BSET

DB

AAA
AAB
MPY
JAP
JXC
FDV

L OCAL SYMBOL TABLE (”Optional" Commands)

9DS
9PPO
9FLT

9TABL
LSTM

SETSM
BL

MASK
PCL

and

9EXH
9EOF

9MSGE
\NLOC
PWNT

SSZ

IOX
MGRE

PL13
RMPY

OPR
MST

BLDA
RAND
NNC

ZN
SKP

RSUB
9NAP

LDD

9ROT
9TPO

SSTEP
9READ
MCDEF

OCT

OLD
ZERO

o1.

APPENDIX C

MAC SPECIAL VERSIONS

This special version of MAC is desgined to operate under SINTRAN III. From
the user's point of view there is no difference in operating MACF or MAC.

When not in BRF output mode, the output goes to a 64K (maximum) random
file called the image-file. This file is expanded during assembly as required by
the program size, thus avoiding waste of mass storage space. All the com-
mands in MAC which access memory are in MACF designed to access the
image-file. For instance,)ZERO,)PRINT,)BPUN, etc.

The main purpose of MACF is to allow the user to build systems anywhere in
memory.

When started MACF requests the name (or number) of the actual image-file.
Here are some examples:

1. IMAGE-FILE:

Carriage return defines the image-file to be the user’s standard scratch
file (file no. 100).

2. IMAGE-FILE: PER

The name of an existing file terminated by carriage return. This file is
automatically opened. The default file type is CORE. A number may
optionally be supplied indicating an already opened file with access code
IIWX’I.

3. IMAGE—FILE: ”PER"

The name of a new file enclosed in double quotes l”) and terminated by
carriage return. This file is created and opened. The default file type is
CORE.

If MACF is restarted using the G) CONTINUE command, the image-file name
is requested again, unless the standard scratch file is being used.

During assembly MACF outputs absolute binary code to a buffer pool. This
pool is exhausted, i.e., written onto the image file by the)LlNE.)9EXlT has the
same effect, but also closes all open files and returns control to SINTRAN l||.
Note that the escape key (ESC) is a dangerous alternative to)9EXIT because
the buffer pool will not be exhausted.

The NEW, OLD and MASK locations belonging to the)CHANGE command
must be examined and/or changed by the @LOOK-AT command in SIN—
TRAN Ill. First use the colon (z) in MACF to examine the value (addresses) of
the three symbols. The breakpoint option is not available.

N D-60 .096 .01

C.1.1

C.1.1.1

C.1.1.2

Additional Commands

The)9MOVE Command

This command is used to move a block of image from one place to another.
)9MOVE must be followed by three standard MAC symbols separated by
spaces and terminated by carriage return. The value of the symbols are taken
to be:

1. a source address
2. a destination address
3. Word count

Example:

)9MOVE A B C

The)SYSDF and lU LIST Commands

)SYSDF puts MACF in a system definition mode. This mode is reset by)LINE

((5) l.

While in system definition mode only those symbols referred to in the
undefined symbol table will be defined when inputting an equal sign definition
to MACF. All other equal sign definitions are ignored.

The purpose of this mode is to avoid filling up the tables with unnecessary sym—
bols.

)ULIST is associated with the object stream. The command makes it possible
to link several separately assembled, but interrelated programs using the
assembler.

)ULIST outputs the undefined symbol table in symbolic code with the fol-
lowing format:

<octaladdress> / l<undefined symbol name) % f means previous
contents
% in this location

(:03 %)LINE

Proposed use:

Each program part is separately assembled and)LlST,)ULIST and)BPUN files
are produced for each part. Finally, the different parts are linked together by
the following three steps:

1. Load all binary files ()9READ)
2. Input all)U LIST files (l9ASSM)
3. Input all)LIST files ()9ASSM)

The system definition mode ()SYSDF) may successfully be used in step 3.

ND-60.096.01

C.2

C.2.1

MA CM (MA C Mass Storage)

MACM is a modified standard MAC assembler. The main difference is its

ability to assemble programs out on a mass storage device (disk or drum) in a

memory image format. Later appearance of disk must be considered as drum

if this is the actual mass storage.

MACM is a stand alone system and when running it has complete control of

the CPU and external devices.

MACM has the capability of swapping itself with the memory image on mass

storage and start in a specified location. Used together with the CTOM boot-
strap program, the user may freely change between the MACM assembler and

his own program much the same as with an ordinary MAC assembler. How-

ever, the problem of protecting MACM from the user program is non-existant
and all memory is available to the user.

”The user program” may, of course, be any program, but in this context it is

the SINTRAN Operating System.

As an aid to debugging MACM has been equipped with commands to save

()SSTOR) and restore ()9RESTl the current image to and from a save area on
the disk. The saved area may be compared with the image area word by word

by means of the compare command (l9COMP). The image area may be loaded
from memory using CTOM after having run the program.

A ”system definition mode" l)SYSDF) may be used when linking ll9ASSMl
and loading ()9READ) the programs. This mode ensures that only those

system-symbol definitions which are referred to will be taken care of, others

are ignored, when reading in a list of definitions from a system or main pro-

gram.

In order to use MACM to link programs separately assembled, the undefined
reference list must be generated ()U LIST).

The image or parts of it may be moved to/from the segment area (of

SINTRAN) by the commands ()QSAVE,)QGET).

Special MA CM Commands

)QSTOR

copies the complete current memory image to the save area.

l9REST

restores the memory image from the save area.

)9COMP

compares word by word the image area and the save area. Any differences are

output to the device connected to the list stream. The)9COMP command is

used with lower and upper limits for the comparison:

A < B
)9COMP ND-60.096.01

The current state of the registers on all levels and the page tables are printed.
Then words from address A to address B, both inclusive, are compared.

)SYSDF

works as described in Appendix C.1.

)U LIST

works as described in Appendix C. 1.

)LINE

In addition to the previous definition of this command, the following will be
effectuated:

1 . reset system definition mode
2. update memory image by emptying the mass storage block buffer in MACM

)9CTOM

is connected to the object stream. It produces two octal bootstraps described
in Section C.2.2. It is important to remember that some parameters given to
)QBYTT or)9ALTR are used. Thus, a CTOM bootstrap always corresponds to
the latest)SBYTT command.

)CTOM1

generates a bootstrap on the floppy disk, unit 0, which is equal to the first part
of the CTOM sequence produced by the)9CTOM command (memory to
image).

)CTOMZ

generates a bootstrap on the floppy disk, unit 0, which is equal to the second
part of the CTOM sequence produced by the)9CTOM command (MACM to
memory).

)QSBLO <number>

is used to manipulate the current block being read or written by MACM
through the stand alone l/O system (IOXLIB). The current block is written
with)QSBLO 177777 (if sequential output to floppy disk or magnetic tape).

Note! This block must not be confused with the mass storage block buffer
which is a part of MACM.

)SBYTT <10 symbols separated by space)

This command makes it possible to; change the "basic parameters” of a
MACM system. This means, for example, that the same binary version of
MACM may be used for drum as well as different disks. The ten symbolic para-
meters for)SBYTT must be previously defined. The meaning of the para-
meters is explained below:

ND-60.096.01

MSTYP: Mass storage type (described later)
DEVNO: Primary mass storage device number
CO RAD: Start address of core load in memory’
LONG: Length of core load in Words“I
CLM: Upper limit for core load numbers (inclusivei‘
B LST: Mass storage address of the segment area
DR ES: Mass storage address of memory image
CR MAX: End of memory address (77777 for 32k mamoryi
MACAD: Mass storage address of area where MACM is saved
DASA: Mass storage address of save area

* Must be Specified but are dummy for SlNTRAN Ill.

The symbol names may of course be anything, but the order of the parameters

is essential (as described).

After the symbols have been given the desired values, type the command:

)SBYTT MSTYP DEVNO CORAD LONG CLM BLST DRES CRMAX MACAD DASA

MACM now writes carriage return/line feed indicating that the command has

been executed. If a symbol in the parameter string is not defined, the error

message:

SYMBOL NOT DEFINED <symbol>

is printed. Restart with)QBYTT.

)9ALTR (up to 10 symbols or numbers separated by commas)

This command is much like)SBYTT, but only specific parameters may be

altered. The order of the parameters are the same as with)QBYTT. Parameters

will remain unchanged if skipped by typing commas or carriage return. Num-

bers may be used instead of defined symbols.

Examples:

)9ALTR ,1550

changes only the primary mass storage device number (DEVNO).

)9ALTR ,,,,,,,77777

changes only the upper memory address (CRMAX).

)QSAVE A B C %|MAGETOD|SK
)9GET A B C %DISKTOIMAGE

A number of 1k blocks is moved to/from memory image and the segment

area.

The three parameters must be defined MAC symbols, and the values are taken

to be:

A = a memory image address
B = size (1k blocks)
C = disk address (1 k blocks relative to BLST)

N 0-60 .096 .01

C22

C23

Loading and Running

L oading

The loading procedure of SINTRAN is described in a separate documentation.

Generally, programs are loaded on the image by using the lQREAD command.

The linking is performed by reading liSASSMl the "lLIST" and "lULlST”

information. However, MACM is also able to assemble symbolic information,

for instance, patches to SINTRAN.

Starting

Transferring control from MACM to a user program is done the usual way by

writing a start address followed by the exclamation mark. This will cause

MACM itself to be saved on the disk in a MACM save area, the current image

is read into memory and control is transferred to the specified location.

Note: The upper 60 locations of the image should not be used as these are

used by the transfer routine.

Using start address 0 (zero) will not cause a transfer to location zero, but

rather force a JMP * to be executed in the transfer program when swapping is

finished.

Return to MA CM

When the user has attempted execution of his program, he may want to return

to MACM either to make corrections in his current program or for reload of

memory of a new program.

This may be done with a 2-part bootstrap program in octal format read by the

microprogram and called CTOM.

The first part is used if the user wants to save his current memory, i.e.,

memory is written on the image area of the disk.

The second part causes MACM to be loaded into memory from its save area

and started.

On paper tape the two parts of the CTOM tape are separated by some blank

tape so the user may only use the second part if he so desires. However, this

will cause his current memory status to be lost.

Other Information

Mass Storage Layout

The figure below shows the layout on disk and the relationship

MACM/SINTRAN.

ND-60.096.01

DISK ADDRESS DISK ADDRESS
0 0

Bootstrap and
Not used Directory Table

DA‘Sifli——'_
—

Save area SINTFIANzDATA

MACAD

MACM area MACM-AREA:DATA

DRES/BLST

Image

________ SEGF|L0:DATA

Segment area

Mass Storage Types

The first parameter of the ISBYTT or)9ALTR command is the mass storage
type (MSTYP). At present the following mass storage types are available:

0 = drum
1 = dummy
2 = CDC cartridge disk
3 = CDC 33/66 megabyte disk
4 = CDC 38/75 megabyte disk
5 = CDC 288 megabyte disk

Note that MACM always accesses u nit 0!

Logical Device Numbers

MACM utilizes the IOXLIB for sequential input/output. At present the fol-
lowing devices are implemented:

Device: Input: Output: Comments:

Dummy — 0
Teletype 1 1 1
Tape-Reader 2 —
Tape-Punch — 3
Card—Reader 4 —
Line-Printer — 5
Link — —
Teletype 2 7 7
Floppy-Disk 10 10
Mag .Tape 11 11 Tandberg/Pertec
Mag.Tape 12 12 Hewlet-Packard

ND-60.096.01

Special Conditions

The MACM system, including IOXLIB and CTOM may halt the execution

(WAIT). Below is a list of the numbered WAIT instructions which may be

executed.

WAITO

The first part of the CTOM bootstrap (memory to image) has executed correct-

ly.

WAIT 17

An error condition has occurred when accessing the logical device number 10,

11 or 12. The WAIT 17 is executed after 10 retries.

WAIT20

An error condition has occurred in the access of the actual mass storage

through the CTOM or swapping program. The status register is displayed in

register A. Inclusive or of errors is tested, but no retries are performed.

N D-60.096.01

APPENDIXD

ABSTRACTS

D.1 NORD- 10/8 INSTRUCTION CODE

1514131211109 8 7 6 5 4 3 210

000.000 STZ 0 0 0 0 0

0 004.000 STA 0 0 0 0 1

010.000 STT 0 0 0 1 0

014.000 STX 0 0 0 1 1

020.000 STD 0 0 1 0 0

1 024.000 LDD 0 0 1 0 1

030.000 STF 0 0 1 1 0

034.000 LDF 0 0 1 1 1

040.000 MIN 0 1 0 0 0

2
044.000 LDA 0 1 0 0 1 x13 DISPLACEMENT
050.000 LDT 0 1 0 1 0 A
054.000 LDX 0 1 0 1 1

060.000 ADD 0 1 1 0 0

3 064.000 SUB 0 1 1 0 1

070.000 AND 0 1 1 1 0

074.000 ORA 0 1 1 1 1

100.000 FAD 1 0 0 0 0

4 104.000 FSB 1 0 0 0 1

110.000 FMU 1 0 0 1 0

114.000 FDV 1 0 0 1 1

120.000 MPY 1 0 1 0 0

5 124.000 JMP 1 0 1 0 1

130.000 CJP 1 0 1 1 0 SUBIN.

134.000 JPL 1 0 1 1 1

140.000 SKP+EXT 1 1 0 0 0 sueuN. EXT S D

6 144.000 ROP 1 1 0 0 1 nAc1ADclAu1CM1ICLD

150.000 MIS 1 1 0 1 0 suaIN.

154.000 SHT 1 1 0 1 1 ZINlROT‘SHASHO‘ INUMBEROFSHIFTS

160.000 N.A. 1 1 1 0 0

$4000 10x 1 1 1 0 1 oewcemoness
7 170.000 ARG 1 1 1 1 0 FUNCTION 1 ARGUMENT

174.000 BOP 1 1 1 1 1 Funcnon lame. o

assssgsasgeaevwF
Q o. q o_ o_ o_ q V N ‘—
8 Sr) 8

9 <1- N 1—

N D-60 .096 .01

D.2 NORD- 70/S ADDRESSING MODES

The displacement may consist of a number ranging from —128 to +127.
Therefore, this addressing mode gives a dynamic range for directly addressing
128 locations backwards and 127 locations forwards.

Generally, a memory reference instruction will have the form:

<operation code) <addressing mode> <displacement>

Note that there is no addition in execution time for relative addressing, pre-
indexing, post—addressing or both. lndirect addressing, however, adds one
extra memory cycle to the execution time.

The address computation is summarized in the table below. The symbols used
are defined as follows:

,X Bit 10 of the instruction
1 Bit 9 of the instruction
,B Bit 8 of the instruction
D Contents of bits 0-7 of the instruction (displacement)
(X) Contents of the X register
(B) Contents of the B register
(P) Contents of the P register
() Means contents of the register or word

The effective address is the address of that memory location which is finally
accessed after all address modifications (pre- and post-indexing) have taken
place in the memory address computation.

Addressing Mode Effective Address Mnemonic X l B

P—relative (P) + D 0 0 0
B-relative (B) + D ,B 0 0 1
indirect P—relative ((P) + D) I O 1 0
indirect B-relative ((B) + D) ,81 0 1 1
X-relative or indexed (X) + D ,X 1 0 0
B-relative indexed (B) + D + (X) ,B ,X 1 0 1
indirect P-relative indexed ((P) + D) + (X) l ,X 1 1 0
indirect B-relative indexed ((3) + D) + (X) ,B I ,X 1 1 1

ND-60.096.01

D.3 REGISTER OPERA T/ONS MEMO

In the examples below A is used as destination register while source register is

B or zero. C is the carry indicator, A and B may be exchanged by any general

register, but the user should always be careful when the program counter is in-

volved.

.NOT. is a logical operator l I’)

.AND. is a logical operator (A)

.EXOR. is a logical operator (V)

.INOR. is a logical operator (V)

RCLR DA %A:=0
RDCR DA %A:=A—1
COPY CM1 DA %A:=—1
RINC DA %A:=A+1
COPY AD1 DA %A:=
RADDADC DA %A:=A+C
COPY ADC DA %A:=
RDCRADC DA %A:=A+C—1
COPY ADCCM1 DA %A:=C—1
RADD SA DA % A:=2*A
COPY CM1 SA DA %A:=—A—1
RINCSA DA %A:=2*A+1
RSUB CLD SA DA %A:=—A
RADD ADC SA DA %A:=2*A+C
COPYADC CM1 SA DA %A:=—A+C—1
RADDSBDA %A:=A+B
RDCR SB DA %A:=A—B—1
COPYCM1 SB DA %A:=—B—1
RINCSBDA %A:=A+B+1
COPYAD1$BDA %A:=B+1
RSUB SB DA %A:=A—B
RSUB CLD SB DA %A:=—
RADDADCSBDA %A:=A+B+C
COPYADC SB DA % A:=B+C
RDCR ADC SB DA %A:=A—B+C
COPYADCCM1 SBDA %A:=—B+C—1
REXO CM1 DA % A:= NOT. A
SWAPSBDA %A:=B,B:=A
SWAPCLDSB DA %A:= ,B:=0
SWAPCM1SBDA °/oA:=—B—1,B:=A
SWAP CM1 CLD SB DA %A:=—B—1,B:=0
RAND SB DA %A:=A.AND.B
RAND CM1 SB DA % A: = (.NOT. B).AND. A
REXO SB DA %A:=A.EXOR. B
REXO CM1 SB DA
REXO CM1 CLD SB DA
RORA SB DA
RORA CM1 SB DA

% A: = (.NOT. B).EXOR. A
% A:=.NOT. B
% A:=A .INOR. B
% A:=(.NOT. B).INOR.A

N D-60 .096 .01

D.4 ASCII CODES

HOLE PUNCHED = MARK : 1
NO HOLE PUNCHED = SPACE = 0

NULUIDLE

LEAST SIGNIFICANT

6 5

Db

{MOST

SIGNIFICANT

7 2

START OF MESSAGE

END OF ADDRESS

END OF MESSAGE

END OF TRANSMISSION a

WHO ARE YOU

ARE YOU .gOO

BELL
FORMAT EFFECTOR dOOOOOOQOQ

HORIZONTAL TAB .-

LINE FEED -oo

VERTICAL TAB

FORM FEED

CARRIAGE RETURN

SHIFT OUT

SHIFT IN

DCO O—‘O—‘O-‘O-‘Odc

READER ON OOH-iofl‘

TAPE (AUX 0N)

READER OFF

(AUX OFF) «Aid—IOOGDOOOOOOOOGOO

ERROR

SYNCHRONOUS IDLE ago;

LOGICAL END OF MEDIA

SO

muflmmw-box SI AdOOOOODaO

S2 aka—‘4...

83

/v—N-<xE<C—cm:nonozz'-xr——-Io-nmoom>® $4 aonoa‘da‘DOOO—A-‘a—Aoooo—A—A—A

V 86 .a.‘...._. -.>

s) 4...... d—Aoo-fi—Aoa dO-‘O-‘OHD

I—_..nHH
SAME
SAME

D-‘D

RUB OUT ‘___._————-—-+ 1 1
% 1 SAME

SAME

T PARITY

N D-60 .096.01

APPENDIX E

32 BITS FLOATING POINT

As the NORD—10 may be supplied with a microprogram which operates on 32

bits floating point numbers, a special MAC version is available for users who

stick to this format.

The main difference in assembly programs is the load and store operations of

the floating accumulator utilizing LDD/STD.

The possibility of maintaining the same source programs for 32 or 48 bits

floating point hardware is very important. Accordingly, the following feature is

implemented in MAC:

Mnemonic Equals (32) Equals (48) Comment

LDR LDD (24000) LDF (34000I Load Real

STR STD (20000) STF (30000) Store Real
20R3 2 3 For tables, etc.

The data format of floating point words is 22 + 1 bits mantissa magnitude,
one bit for the sign of the number and 9 bits for a signed exponent.

The mantissa is always normalized, 0.5 S mantissa < 1. The exponent base is

2. The exponent is biased with 23, Le, 4003 is added to the actual ex-
ponent, so that a standarized floating zero contains zero in all 32 bits.

In the computer memory one floating point data word occupies two 16 bit loca—

tions, which are addressed by the address of the exponent part.

n exponent, sign bit and most significant part of mantissa
n + 1 least significant part of mantissa

in CPU registers, bits 0—15 of the mantissa are in the D register, bits 16-31, the

most significant part of the mantissa, exponent and sign, in the A register.

These two registers together are defined as the floating accumulator.

word 1 (A) word 2 (D)

1514 6 5 0 15 0

H‘— Exponent —->I-—— Normalized Mantissa ---—I--

Sign

The accuracy is 23 bits of 6-7 decimal digits, any integer up to 223 —1 has an

exact floating point representation.

Note: The one extra bit in the mantissa is the most significant, and is set to

one if not all bits in the exponent are zero. It is removed in the result.

The range is

2‘256 *o.5s x< 2255 *1orX = 0

or

10-76 X . 1076
ND—60.096.01

Examples {octa/ format):

A D

0: 0 0
+ 1.0: 040100 0
—1.0: 140100 0
+ 3.0: 040240 0

The instructions affected are:

FAD Floating Point Add
FSB Floating Point Subtract
FMU Floating Point Multiply
FDV Floating Point Divide
N LZ Convert Integer to Floating Point
DNZ Convert Floating Point to Integer

The normalize and denormalize operations for 32—bits floating point use the
same instruction codes as for 48-bits floating point operations, but do not
affect the T register. For the 32-bits DNZ operations, the scaling factor should
always be — 208 other scaling factors will not cause a different result, but will
affect the test for overflow. '

INDEX

The index is being compiled and will possibly be distributed within this
century.l!l

ND-60.096.01

INDEX

32 BITS FLOATING POINT
48 BITS FLOATING POINT
ABSOLUTE
ABSOLUTE ASSEMBLY
ACCESS-CODE
ACTUAL PARAMLILR
ADDRESSING
ARGUMENT
ARITHMETIC OPERATOR
ASCII
ASCII DUMP
B RELATIVE
B=LOCATION COUNTER
BIAS
BINARY DUMP
BINARY INPUT
BINARY RELOCATABLE FORMAT
BIT
BIT OPERATION
BOOLEAN
BOOTSTRAP
BREAK STRATEGY
BREAKPOINT
BRF
BRF ASSEMBLY
BUILT-IN SYMBOLS
BYTE
BYTE ADDRESSING
CHARACTER
CHLCKSUM
CLEAR
COMMAND
COMMENT
COMMON
COMMON BLOCK
CONDITIONAL ASSEMBLY
CONDITIONAL JUMP
CONSTANT
CPU
CTOM
DATA FORMAT
DEBUGGING
DECIMAL MODE
DEFINE SYMBOL

ND-60.096.01

Z'ZIE'1
6-13
“=2
33h.538

3529'c61

“=22
2'5:D“2
2=20'6=17
5E8
SEOID'“
3329
2°8u2'9a2'11'2'13

3=15¢3°37
2:39661

392205930598

6823
““1
261
2922
292
CGSIC'QoCGO
3°“
4910.556
1°1'4'135'8
365946195'805'9
891
261
291432318

2614.396
3=22'“959A91
3322
3510.3917g3‘22
3G9
494ofi'614'7
“=61697

3330
253
3511.3916
2=1YZC39E°1
C939C'45C96
261
191'1'2'3'504-10g4'2505'6
“=12
3518,3319

DELETE SYMBOL 5=25.a=9
DEVICE 3=A.C-7
DISASSEMBLER «=15
DISPLACEMENT 2:6.2=16aZ:A-17
DOUBLE INTEGER 252
DOUBLE HORD 262.2217
DUMMY PARAMETER “=21,h=22
EDIT 5:2
ENTRY A=So695
ERROR MESSAGES 5=ApAo1
EXPONENT 2=3aE~1
EXPRESSION 3=b
EXTERNAL A:3.h-5.A-T7
FILE 5=6,3=29
FILE MANAGEMENT SYSTEM 3=A
FIXED ABSOLUTE A=Z,A~5
FLOATING ACCUMULATOR 2:3
FLOATING CONVERSION 2:19.E=2
FLOATING POINT 2=2.2~3v2=16.2-18.A-13.E-T
FORM FEED 5:2
HALF WORD 2'2
IMAGE-FILE T~ZTC=T
INDIRECT ADDRESSING 2:7.2-9.2=12o2-13
INPUT 2:2703’4153290C'4

INSTRUCTION 2:1:2-Ao3'TTTS'12pD-1
INSTRUCTION FORMAT 2=4.o=1
INSTRUCTION REPERTOIRE 2:16
INTEGER 262
INTERACTIVE 1=1
INTERRUPT 2916.2-27.2=28
INTERVAL 3:20.5=3
IOXLIB C=7

LABEL 351.563.5-18
LIBRARY MARK 3=30
LIBRARY PROGRAM UNIT 495
LINK “”31C93

LIST STREAM 5-4.3=21,3-29
LITERAL 3923q3=30a4-7
LOAD 2e17.a=3.c-5
LOADER 3=22oA-AoS-8
LOCATION COUNTER 3-1.3-15,3=17.A-17.h-2A
LOGICAL 2=2
MACROS A=19
MAGNITUDE £=2o2=3oE~1
MAIN PROGRAM 4:3

N D -60.096 .01

MANTISSA
MASS STORAGE
MEMORY IMAGE
MEMORY REFERENCE
MONITOR CALL
NESTED CALL
NUMBER
OBJECT STREAM
OCTAL DUMP
OCTAL MODE
OPERATING SYSTEM
OPERATION CODE
OPTIONS
OUTPUT
P RELATIVE
PAGING
PARAMETER
PARITY
PARTIAL CLEAR
POSTWINDEXING
PRE-INDEXINb
PRIORITY
PRIVILEGED INSTRUCTION
PROGRAM UNIT
RANDOM
REAL
REAL TIME LOADER
REAL TIME PROGRAM
RECURSIVE
REENTRANT
REGISTER
REGISTER BLOCK
REGISTER OPERATION
RELOCATABLE
SCIENTIFIC NUMBER NOTATION
SCRATCH FILE
SEGMENT
SEQUENCING INSTRUCTION
SHIFT INSTRUCTION
SHIFT OPERATOR
SOURCE STREAM
STACK
STAND ALONE
START ASSEMBLY
START EXECUTION

N D-60.096.01

2$3IE°1
1’2'3'OOC'SOC’SIC'6pC'7

C=3
2217oh;17
2=28
6=2
35613“?

3‘“03'21p3°29

3:26
6312
5811595

2:4.4-17,o=2
631
2527.3U8v3629.Cw6
23612-12

2916.2925.2927
“=21.6=3
3=29
669
2=15TD=2
2915.062
261642UZS.2¢27.2-28
2319.2'2512'2702‘28
6E3
C;1
253046130E'1

“=4
“5404-7
2610
5-8
2916
2319
2620.063
“=2.6-17
4613
C61
C=30c=5

2923
2524
398
33493921.3=29

2°10
1‘202=103‘“95=T
3621p3=29,S=a
3'20055505'89599

SIATEMENT
svop ASSEMBLY
STOP execu110u
STORE
SUBPROGRAM
suanouvxne
SUBSYSIEM
SYMBOL
SYMBOL DUMP
SYMBOL IABLE
SYSTEM CONIROL INSIRUCIION
SYSTEM DEFINITION MODE
IABULATOR
TERMINAL
15x1 SIRING
TRACE
IRIPLE uoao
two's COMPLEMENT
two-PAss ASSEMBLY
WARNINGS
HORD
x RELATIVE
XuLocA1xon counveu

ND-60.096.01

3S9
3c26.5=4
a;1o.a~25
2=17
“=3
6-1
1=21531

3'113'295-7

3228.496c5'3'cw2
3°2pé'7'4‘23'4=2503-1

2:27
C=2.C-3.C=fi
592
1=3
3=21
«=25
Z=5
2‘2'2620

“=16
“‘1705=41A=1
2=1
2=10
3=15.3=27

**********SENDUSYOURCOMMENTS!!! **********

Please let us know if you
* find errors
* cannot understand information
"‘ cannot find information
“ find needless information

Do you think we could improve the manual by rearranging the

contents? You could also tell us if you like the manual!!

Are you frustrated because of unclear information
in this manual? Do you have trouble finding
things? Why don’t you join the Reader’s Club and
send us a note? You will receive a membership
card - and an answer to your comments.

\

/
* * * *- * * * * v:HELPYOURSELFBYHELPINGUS!! * * * * 1: v: * 4: *

Manual name: MAC — Interactive Assembly and
Debugging System, User's Guide

What problems do you have? (use extra pages if needed)

Manual number: ND -60 . 096 . 01

Do you have suggestions for improving this manual?

Your name: _ Date:

Company: Position:

Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department
PO. Box 4, Lindeberg Gard
Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data

Answered by

Norsk Data A.S.

Documentation Department

PO. Box 4. Lindeberg Gard

Oslo 10, Norway

Date

— we make bits for the future

NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE: 30 90 30 TELEX: 18661

