NORD—10 COBOL

Reference Manual




O NORD—10 CGBOL

Reference Manual




R = TS R—

O
REVISION RECORD
Revision Notes
10/77 Original Printing
06/78 Version two, superseding previous issue
05/79 Version three, superseding previous versions
Publ No. ND-60. 089.03
May 1979

ee 000 S0B00000
°

[

® &

PO 9669 Ca0008IE
D 90906000

N NORSK DATA "A.S

|

Lorenveien 57, Postboks 163 @kern, Oslo 5, Norway



PO, PP OD” NIVl

2 o ——

RPN T S ——— = - n i g o x il s e rit bt i A e 5. -

NOTICE

Norsk Data A.S believes that the information described in this manual is accurate
and reliable, and much care has been taken in its preparation. However, no
responsibility, financial or otherwise, is accepted for any consequences arising
out of the use of this material. The information herein is subject to change without
notice.

Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may
not be photocopied, reproduced or translated without the prior consent of
Norsk Data A.S.

Copyright (C) 1978by Norsk DataA.S.

ND-60.089.03

- e — e -



ACKNOWLEDGEMENT

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas. taken from this report as the basis
for an instruction manual or for any other purpose, is free to do so. However, all
such organizations are requested to reproduce this section as part of the
introduction to the document. Those using a short passage, as in a book review,
are requested to mention ‘COBOL’ in acknowledgment of the source, but need
not quote this entire section. :

COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the COBOL
Committee as to the accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) | and Il, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator, Form No. F28—8013, copyrighted
1959 by IBM; FACT, DSI27A5260-2760, copyrighted 1960 by
Minneapolis-Honeyweil

have specifically authorized the use of this material in whole or in part, in the
COBOL specification in programming manuals or similar publications.”’

— —from the ANSI COBOL Standard (X3.23—1974)

ND-60.089.03



vii

TABLE OF CONTENTS

+ + +
Section: . Page:
1 FUNDAMENTAL CONCEPTS OF COBOL 1-—1
1.1 Character Set . 1-—1
1.2 Punctuation 1-2
1.3 Word Formation 1-2
1.4 Coding Rules 1-3
15 Format Notation 1-3
1.6 Level Numbers and Data-Names 1-5
1.7 File-Names 1—6
1.8 Condition-Names 1-6
19 Mnemonic-Names 1—6
1.10 Literals 1-7
1.1 Figurative Constants 1-8
1.12 Structure of a Program 1-9
1.13 Qualification of Names 1—11
1.14 The COPY Statement 1—-1
2 IDENTIFICATION DIVISION 2—1
3 THE ENVIRONMENT DIVISION 3—1
3.1 Configuration Section 3-2
3.2 Input-Output Section 3-2
3.2.1 File-Control 3-3
3.2.1.1 General Format 3-3
3.21.2 Definition of Sequential File Organization 3-5
3.2.1.3 Definition of Relative File Organization 3-56
3214 Definition of Indexed File Organization 3-6
3.2.2 I-O Control Paragraph 3-6
4 THE DATA DIVISION 41
4.1 Data Types 4-—1
4.2 The Data Description Entry 4-3
4.3 Formats for Elementary ltems 4—4
4.4 USAGE Clause 4-5
4.5 PICTURE Clause 4—6
4.6 VALUE Clause 4—-11
4.7 REDEFINES Clause 4—-12
4.8 OCCURS Clause 4-—13
4.9 SYNCHRONIZED Clause 4—-14
4,10 BLANK WHEN ZERO Clause 4-—-14
4.11 JUSTIFIED Clause 4—14
4,12 SIGN Clause 4-—-15
4.13 Level 88 Condition-Names 4—-16
4,14 Level 66 (RENAMES Clause) 4—-18
4.15 Organization of the Data Division 4—-19
4.15.1 General Format 4--19
4,15.2 File Section 4—-19

ND-60.089.03



Section:

ARBDS
—I-l_l-—\.—l
oo ooooo
rw NNNRON
NP WN =

e
— —h
rwih= TN

Awho

PP OPPPPPPPPE®P® © NNNN No ooon ok ww wh-
DA LD a =2 OONOOOAEWN=

qoaoaoooaaaaaaa O oaaa gg gamoa oo oo ana o

5.8.16

viii

FD Entries

BLOCK-Clause
RECORD-Clause
LABEL-Clause

DATA —RECORD(S)-Clause

Working Storage Section
Linkage Section

THE PROCEDURE DIVISION

Statements, Sentences, Procedures-Names
Organization of the Procedure Division
Inter-Program Communication

General :
USING List Appendage to Procedure Header

DECLARATIVES and the USE Sentence
Arithmetic Statements

General

SIZE ERROR Option
ROUNDED Option
GIVING Option

Relative Indexing
File Processing

Definition of Sequential File Organization
Definition of Relative File Organization
Indexed Organization File Processing

File Status Reporting For Indexed Files

COBOL Verbs

ACCEPT Statement
ADD Statement
ALTER Statement
CALL Statement
CLOSE Statement
COMPUTE Statement
DELETE Statement
DISPLAY Statement
DIVIDE Statement
EXHIBIT Statement
EXIT Statement

GO TO Statement

|F Statement
INSPECT Statement
MOVE Statement
MULTIPLY Statement
OPEN Statement
PERFORM Statement
READ Statement
REWRITE Statement

ND-60.089.03

Page:

4—19
4--20
4-20
4—-20
421

4-21
4--21

(1]
L

TrOTTT
oL WW WN =

I
oO~N~NO

— O © w0

oo
| P
-— —
> wio

5

5—15
5—16
5—16
5—17
5—-17
5—18
5—-20
5—-20
521
5—21
5—22
5—22
5-—-23
5--26
5—-28
5-30
5—-30
531
5--32
534



ix

5.8.21 SEARCH Statement
5.8.22 SET Statement

5.8.23 SORT Statement
5.8.24 START Statement
5.8.25 STOP Statement
5.8.26 STRING Statement
5.8.27 SUBTRACT Statement
5.8.28 UNSTRING Statement
5.8.29 WRITE Statement

Appendixes:

A NORD-10 COBOL SYNTAX

B RESERVED WORD LIST

Cc ASCII CHAACTER SET

D DIAGNOSTIC WORD MESSAGES

E ADVANCED FORMS OF CONDITIONS

F NESTING OF IF STATEMENTS

G TABLE OF PERMISSIBLE MOVE OPERANDS
H RELATED DOCUMENTATION

i

ND-60.089.03

Page:

5—-35
5-37
538
5—-41
5—42
5—-43
5—-44
5—45
5—-47

Page:

A—1
B—1
c—1
D—1
E—1
F—1
G—1
G—1



INTRODUCTION

NORD-10 COBOL is based upon American National Standard X3.23-1974.
Elements of the COBOL language are allocated to twelve different functional
processing ""modules”.

Each module of the COBOL Standard has two non-null “levels” -- level 1
represents a subset of the full set of capabilities and features contained in level 2.

In order for a given system to be called COBOL, it‘must provide at least level 1 of
the Nucleus, Table Handling and Sequential I/O modules.

The following summary specifies the content of NORD-10 COBOL with respect
to the Standard.

Module Features Available in NORD-10 COBOL

Nucleus All of level 1, plus these features of level 2:
Levels 77, 01-49, 66, 88.
Value series or range, level 88 conditions.
Use of logical AND/OR/NOT in conditions.
Use of algebraic relational symbols for equality or
inequalities.
Implied subject, or both subject and relation, in relational
conditions.
Nested IF statements; parentheses in conditions; sign
test.
ACCEPTance of data from DATE/ DAY/TIME
STRING and UNSTRING statements
Procedure-names consisting of digits only
COMPUTE with multiple receiving fields
PERFORM VARYING one index
Mnemonic-names for ACCEPT or DISPLAY devices
Qualification of Names (Procedure Division)
The ALL-form of figurative-constants.

Sequential {/0 All of level 1 plus these features of level 2:
RESERVE clause
Multiple operands in OPEN & CLOSE, with individual
' options per file.
Variable used to specify print file ADVANCING LINES.

Relative 1/0 All of level 1 plus:
RESERVE clause
DYNAMIC access mode (with READ next)
START (with key relations EQUAL, GREATER, or NOT
LESS).

Indexed 1/0 1 key only. All of level 1 plus:
RESERVE clause
DYNAMIC access made (with READ NEXT)
START (with key relations EQUAL, GREATER or NOT
LESS)

ND-60.089.03

O



-

Library

Inter-Program
Communication

Table
Handling

Debugging

Sort

xi

Level 1

Level 1

All of level 2, except the "DEPENDING ON"

form of OCCURS clause

Conditional compilation: lines with "D in column 7" are
bypassed unless WITH DEBUGGING MODE.

READY TRACE, RESET TRACE, EXHIBIT.

Level 2; up to 5 sort-file keys.

ND-60.089.03



1.1

FUNDAMENTAL CONCEPTS OF COBOL

CHARACTER SET

The COBOL source language character set consists of the following characters:

Letters A through Z
Blank or space
Digits 0 through 9
Special characters:
+ Plus sign
- Minus sign
* Asterisk
= Equal sign
> Relational sign (greater than)
< Relational sign (less than)
] Dollar sign
) Comma
Semicolon

e s

Period or decimal point
Quotation mark

( Left parenthesis

) Right parenthesis
/

”

~ Apostrophe (alternate of quotation mark)
Slash

Of the previous set, the following characters are used for words:
0 through 9

A through Z
- {hyphen)

The following characters are used for punctuation:

( Left parenthesis A
) Right parenthesis

' Comma

. Period

; Semicolon

The following relation characters are used in simple conditions:

viEA

ND-60.089.03



1.2

1.3

PUNCTUATION

The following general rules of punctuation apply in writing source programs:

1. A period, semicolon, or comma, when used, should not be
preceded by a space, but must be followed by a space.

2. A left parenthesis should not be followed immediately by a space;
a right parenthesis should not be preceded immediately by a
space.

3. At least one space must appear between two successive words

and or literals. Two or more successive spaces are treated as single
space, except in non-numeric literals.

4. Relation characters should always be preceded by a space and
followed by another space.

5. When the period, comma, plus, or minus characters are used in
the PICTURE clause, they are governed solely by rules for report
items. .

6. A comma may be used as a separator between successive

operands of a statement, or between two subscripts.

7. A semicolon or comma may be used to separate a series of
statements or clauses.

WORD FORMATION

A word is composed of a combination of not more than 30 characters, chosen
from the following set of 37 characters:

0 through 9 (digits) 5
A through Z (letters}
- (hyphen)

A word must begin with a letter or a digit; it may not end with a hyphen. A word
is ended by a space, or by proper punctuation. A word may contain more than
one embedded hyphen; consecutive embedded hyphens are also permitted. All
words are either reserved words, which have preassigned meanings, or
programmer-supplied names. If a programmer-supplied name is not unique,
there must be a unique method of reference to it by use of name qualifiers, i.e.
TAX-RATE IN STATE-TABLE. Primarily, a non-reserved word identifies a data
item or field, and is called a data-name. Other cases of non-reserved words are
file-names, condition names, mnemonic-names, and procedure-names.

ND-60.089.03



1.4

1.6

CODING RULES

Since NORD-10 COBOL is a subset of American National Standards Institute
(ANSI) COBOL, programs are written on standard COBOL coding sheets, and
the following rules are applicable. ’

1.

Each line of code could have a six-digit sequence number in
columns 1-6, such that the punched cards are in ascending order.
Blanks are also permitted in columns 1-6.

Reserved words for division, section, and paragraph headers must
begin in Area A (columns 8-11). Procedure-names must also
appear in Area A (at the point where they are defined). Level
numbers may appear in Area A,

All other program elements should be confined to columns 12-72,
governed by the other rules of statement punctuation. If a slash (/)
appears in column 7, the associated card is treated as comments
and will be printed at the top of a new page when the compiler
lists the program.

Columns 73-80 are ignored by the compiler.

Explanatory comments may be inserted on any line within a source
program by placing an asterisk in column 7 of the line. Any
combination of characters may be included in Areas A and B of
that line. The asterisk and the characters will be produced on the
source listing but serve no other purpose. See also Section 1.7 for
using column 7 in continuation lines for non-numeric literals.

FORMAT NOTATION

Throughout this publication, basic formats are prescribed for various clauses or
statements. These generalized descriptions guide the programmer in writing his
own statements. They are presented in an uniform system of notation, explained
in the following paragraphs.

1.

All words printed entirely in capital letters are reserved words.
These are words that have preassigned meanings. In all formats,
words in capital letters represent an actual occurrence of those
words.

All underlined reserved words are required unless the portion of
the format containing them is itself optional. These are key words.
If any key word is missing or is incorrectly spelled, it is considered
an error in the program. Reserved words not underlined may be
included or omitted at the option of the programmer. These words
are optional words; they are used solely for improving readability
of the program.

The characters > < = when appearing in formats, although not
underlined, are required when such formats are used.

ND-60.089.03



10.

1.

12.

—

e i s Pk e i ol e e e Al aamly Ll 13 -

All punctuation and other special characters represent the actual
occurrence of those characters. Punctuation is essential where it is
shown. Additional punctuation can be inserted, according to the
rules for punctuation specified in this publication. In general,
terminal periods are shown in formats in the manual because they
are required; semicolons and commas are not shown generally
because they are optional.

Words printed in lower-case letters in formats represent generic
parts (i.e. data-names) of which a valid representation must
appear.

Parts of a statement of data description entry which are enclosed
in brackets are optional. Parts between matching braces ({})
represents a choice of mutually exclusive options.

Certain entries in the formats consist of a capitalized word(s)
followed by the word ""Clause” or “Statement’’. These designate
clauses or statements that are described in other formats, in
appropriate sections of the text.

In order to facilitate reference to them in the text, some lower-case
words are followed by a hyphen and a digit or letter. This
modification does not change the syntactical definition of the
word.

Alternate options may be explained by separating the mutually
exclusive choices by a vertical stroke, see following example:

AREA
AREA | AREASisequivalentto {AREAS

The ellipsis (...) indicates that the immediately preceding unit may
occur once, or any number of times in succession. An unit means
either a single lower-case word, or a group of lower case words
and one or more reserved words enclosed in brackets or braces. If
a term is enclosed in brackets or braces, the entire unit of which it
is part must be repeated when repetition is specified.

Comments, restrictions, and clarification on the use and meaning
of every format are contained in the appropriate portions of the
manual.

In generalized formats, where optional elements are depicted, their
optionality may be indicated by parentheses instead of brackets,
provided the lack of formality represents no substantial bar to
clarity of comprehension.

ND-60.089.03

P ———— - TR S e TR




g

@

1.6

e et i [T ———— TS S A ——— e o s T e r——— ) — e it e =

LEVEL NUMBERS AND DATA-NAMES

For purposes of processing, the contents of a file are divided into logical records,
with level number 01 specifying a logical record. Subordinate data items that
constitute a logical record are grouped in a hierarchy and identified with level
numbers 02 to 49. Level number 77 identifies a ''stand-alone” item in Working-
Storage. A level number less than 10 may be written as a single digit.

Levels allow specification of subdivisions of a record necessary for referring to
data. Once a subdivision is specified, it may be further subdivided to permit more
detailed data reference. This is illustrated by the following weekly timecard
record, which is divided into four major items: name, employee-number, date,
and hours, with more specific information appearing for name and date.

- LAST-NAME
NAME <FIRST-INIT
MIDDLE-INIT

EMPLOYEE-NUM

TIME-CARD————

MONTH
WEEKS-END-DATE <DAY-NUMBER
YEAR

HOURS-WORKED

Subdivisions of a record that are not themselves further subdivided are called
elementary items. Data items that contain subdivisions are known as “group
items. When a Procedure statement makes reference to a group item, the
reference applies to the area reserved for the entire group.

--Less inclusive groups are assigned numerically higher level numbers. Level

numbers of items within groups need not be consecutive. A group whose level is
k includes all groups and elementary items described under it until a level number
less than or equal to k is encountered. -

Separate entries are written in the source program for each level. To illustrate
level numbers and group items, the weekly timecard record in the previous
example may be described (in part) by Data Division entries having the following
level numbers, data-names and Picture definitions.

Levels 66 (RENAMES) and 88 (condition-names) are special cases of non-
hierarchical levels, and are explained elsewhere in this manual.

01 ° TIME-CARD.

02 NAME.
03 LAST-NAME PICTURE X{(18).
03 FIRST-INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.
02 EMPLOYEE-NUM PICTURE 99999.
02 WEEKS-END-DATE.
05 MONTH PIC 99.
05 DAY-NUMBER PIC 99.
05 YEAR PIC 99.
02 HOURS-WORKED PICTURE 99v9.

ND-60.089.03



T S SO

1.7

1.8

1.9

s i i el
= i

A data-name is a word assigned by the user t0 identify a data item used in a
program. A data-name always refers to a region of data, not to a particular value;
the item referred to often assumes a number of different values during the
course of a program.

A data-name must begin with an alphabetic character. A data-name or the key
word FILLER must be the first word following the level number in each Record
Description entry, as shown in the following general format:

level number data name.
FILLER }

This data-name is the defining name of the entry, and is the means by which
references to the associated data area (containing the value of a data item) are
made.

If some of the characters in a record are not used in the processing steps of a
program, then the data description of these characters need not include a data-
name. In this case, FILLER is written in lieu of a data-name after the level
number.

FILE-NAMES

A file is a collection of data records, such as a deck of punched cards or a reel of
magnetic tape, containing individual records of a similar class or application. A
file-name is defined by a FD entry in the Data Division's File Section. FD is a
reserved word which must be followed by an unique programmer-supplied word
called the file-name. Rules for composition of the file-name word are identical to
those for data-names (Refer to Section 1.3). A sort-file description is defined by
a SD entry in the File Section.

CONDITION-NAMES

A condition-name is defined in level 88 entries within the Data Division. Rules for
formation of name words are specified in Section 1.3; explanations of condition-
name declarations and procedural statements employing them are given in the
chapters devoted to Data and Procedure divisions.

MNEMONIC-NAMES

A mnemonic-name is assigned in the Environment Division for reference in
Accept or Display statements. A mnemonic-name is composed according to the
rules in Section 1.3.

ND-60.089.03



1.10

SRR S G = N = = - " o

LITERALS

A literal is a constant that is not identified by a data-name in a program, but is
completely defined by its own identity. A literal is either non-numeric or numeric.

NON-NUMERIC LITERALS

A non-numeric literal must be bounded by matching quotation marks or
apostrophes and may consist of any combination of characters in the ASCII set,
except quotation marks or apostrophe, respectively. All spaces enclosed by the
quotation marks are included as part of the literal. A non-numeric literal must not
exceed 120 characters in length.

The following are examples of non-numeric literals:
"ILLEGAL CONTROL CARD”
‘CHARACTER-STRING’

"DO'S & DON'T'S"”

Each character of a non-numeric literal (following the introductory delimiter) may
be any character other than the delimiter. That is, if the literal is bounded by
apostrophes, then quotation {*') marks may be within the literal, and vice versa.
Length of a non-numeric literal excludes the delimiters; length minimum is one.

A succession of two "‘delimiters” within a literal is interpreted as a single
representation of the delimiter within the literal.

Only non-numeric literals may be "continued’’ from one line to the next. When a
non-numeric literal is of a length such that it cannot be contained on one line of a
coding sheet, the following rules apply to the next line of coding (continuation
line):

1. A hyphen is placed in column 7 of the continuation line.

2; A delimiter is placed in Area B preceding the continuation of the
literal. !

3. All spaces at the end of the previous line and any spaces following

the delimiter in the continuation line and preceding the final
delimiter of the literal are considered to be part of the literal.

4, On any continuation line, Area A shouid be blank.

ND-60.089.03



1.1

NUMERIC LITERALS

A numeric literal must contain at least one and not more than 18 digits. A
numeric literal may consist of the characters 0 through 9 (optionally preceded by
a sign) and the decimal point. It may contain only one sign character and only
one decimal point. The sign, if present, must appear as the leftmost character in
the numeric literal. If a numeric literal is unsigned, it is assumed to be positive.

A decimal point may appear anywhere within the numeric literal, except as the
rightmost character. If a numeric literal does not contain a decimal point, it is
considered to be an integer.
The following are examples of numeric literals:

72 + 1011 3.14159 —6 -.333 0.5
By use of the Environment specification DECIMAL-POINT IS COMMA, the
functions of characters period and comma are interchanged, putting the

"European’’ notation into effect. In this case, the value of “pi’’ would be 3,1416
when written as a numeric literal.

FIGURATIVE CONSTANTS

A figurative constant is a special type of literal: it represents a value to which a
standard data-name has been assigned. A figurative constant is not bounded by
quotation marks.

ZERO may be used in many places in a program as a numeric literal. Other
figurative-constants are available to provide non-numeric data; the reserved
words for various characters are as follows:
SPACE the blank character represented by ""octal’’ 40
LOW-VALUE the character whose 'octal’’ representation is 00
HIGH-VALUE the character whose ""octal’’ representation is 177
QUOTE the quotation mark, whose “octal” representation is

42 (7-8 in punched cards).

The plural forms of these figurative constants are acceptable to the compiler. A
figurative constant represents as many instances of the associated character as
are required in the context of the statement.

Another form of figurative-constant consists of the reserved word ALL followed

by a one-character non-numeric literal, or followed by one of the above
figurative-constant reserved words.

ND-60.089.03




1.12

STRUCTURE OF A PROGRAM

Every COBOL source program is divided into four divisions. Each division must
be placed in its proper sequence, and each must begin with a division header.

The four divisions, listed in sequence, and their functions are:
IDENTIFICATION DIVISION, which names the program.

ENVIRONMENT DIVISION, which indicates the computer
equipment and features to be used in the program.

DATA DIVISION, which defines the names and characteristics of
data to be processed.

PROCEDURE DIVISION, which consists of statements that direct
the processing of data at execution time.
The following skeletal coding defines program component structure and order.

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
[AUTHOR. comment-entry...]

[INSTALLATION. comment-entry ...]

[DATE-WRITTEN. comment-entry ...]

[DATE-COMPILED. comment-entry ...}

[SECURITY. comment-entry ...]
[REMARKS. comment-entry ...]
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

[SOURCE-COMPUTER. NORD-10.]

[OBJECT-COMPUTER. NORD-10.]

[SPECIAL-NAMES. entry.] ]

—

[INPUT-OUTPUT SECTION.]

[EILE-CONTROL. entry ...]

ﬂ-!}CONTRO L.entry...]
DATA DIVISION.

ND-60.089.03



e A LA AR, 4R A —

e e . L e AR A L M Sl i 323 WSl Wil

FILE SECTION.
{file description entry
record description entry ...}

—WORKING~STORAGE SECTION.

L[data item description entry] ...
[ LINKAGE SECTION.

[data item description entry] ...

DECLARATIVES.
{section-name SECTION. USE Sentence.

{paragraph-name. {sentence}...}... }...

END DECLARATIVES.
{ section-name SECTION.

{paragraph-name. {sentence} ...} ...} ...

ND-60.089.03

PROCEDURE DIVISION [USING identifier-1...].

1l

=

-

SEVNSRPYF-JIK RICTFVPTRTE JP. JICCRUT RN VI S




1.13

1.14

QUALIFICATION OF NAMES

When a data-name, condition-name or paragraph name is not unique,
procedural reference may therefore be accomplished uniquely by use of qualifier
names. For example, if there were two or more items named YEAR, the qualified
reference:

YEAR OF HIRE-DATE

might differentiate between vyear fields in HIRE-DATE and TERMINATION-
DATE.

Qualifiers are preceded by the word OF or IN; successive data-name or
condition-name qualifiers must designate lesser-level-numered groups that
contain all preceding names in the composite reference, i.e., HIRE-DATE must
be a group item {or file-name) containing an item called YEAR. Paragraph-names
may be qualified by their containing section-name.

The maximum number of qualifiers is one for a paragraph-name, five for a data-
name or condition-name. File-names and mnemonic-names must be unigue.

A qualified nhame may only be written in the Procedure Division, or in a level 66
entry.

THE COPY STATEMENT

The statement COPY text-name provides a means of incorporating into a source
program a body of standard COBOL code maintained in a "COPY Library'’ as a
distinctly named (text-name) entity. A COPY statement must be terminated by a
period. A COPY statement may appear anywhere except within the copied entity
itself.

The effect of copying is to augment the source stream processed by the compiler
by insertion of the copied entity in place of the COPY statement, and then
resuming processing of the primary source of input at the end of the copied
entity.

After the text-name operand of COPY the remainder of the source card must be
blank (up to column 72 inclusive).

The text-name consists of a file-description as defined in the NORD File Manual
(ND-60.052) in the form:

(directory-name : user-name) file-name : type;version

where names can be up to 16 characters in length, type up to 4 characters, and

- version a number ranging from 1 to 256.

Only file-name is mandatory, and default type is :SYMB denoting a COBOL
source-file. :

Please refer to the mentioned manual for further information concerning file-
name conventions.

ND-60.089.03



IDENTIFICATION DIVISION

Every COBOL program begins with the Identification Division. This division
identifies both the source program and the resultant output listing. In addition,
the user may include the date the program is written, the date the compilation of
the source program is accomplished and such other information as desired under
the paragraphs shown below:

IDENTIFICATION DIVISION

PROGRAM-ID. Program-name.

[AUTHOR. [comment-entry] ]
[INSTALLATION. [comment-entry] ]
[ DATE-WRITTEN. [comment-entry] |
[ DATE-COMPILED. [comment-entry] |
[SECURITY. [comment-entry] ]
[HEMARKS. [comment-entry] ]

Only the PROGRAM-ID paragraph is required; it must be the first paragraph.
Program-name is any alphanumeric string of characters, the first of which must
be alphabetic. Only the first 6 characters of program-name are retained by the
compiler.

The DATE-COMPILED paragraph, if present and if placed from column 8, causes
the first line of its comment-entry to be replaced by the current date and time
during program compilation.

The contents of any other paragraphs are of no consequence, serving only as
documentary remarks.

ND-60.089.03



Fana e rmr—

USRI SOpr DY R

3

e A L e ————r -+ s o e . Bl e

THE ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.

—

CONFIGURATION SECTION,

[ 0BJECT-COMPUTER.  NORD-10. ]

SPECIAL-NAMES.

[ CONSOLE IS mnemonic name ]

[ cURRENCY SIGN IS literal |

—

INPUT-QUTPUT SECTION.

—

FILE-CONTROL.

{ file-control-entry } . ..

I-0-CONTROL.

[ SAME AREA FOR

ND-60.089.03

—

[ SOURCE-COMPUTER.  NORD-10  [WITH DEBUGGING MODE]. ]

[ DECIMAL-POINT IS COMMA ].

{file name }. . ] e

SN T




3.1

3.2

s bt B

3-2

CONFIGURATION SECTION

The CONFIGURATION SECTION, which has three possible paragraphs, is
optional. The three paragraphs are SOURCE-COMPUTER, OBJECT-
COMPUTER, and SPECIAL-NAMES. The contents of the first two paragraphs
are treated as commentary, except the phase WITH DEBUGGING MODE, if
present, enables normal processing of source lines naming "'D"" in column 7.

In case the currency symbol is not supposed to be the Dollar Sign, the user may
specify a single character non-numeric literal in the Currency Sign clause.
However, the designated character may not be a quote mark, or any of the
characters defined for Picture representations.

The “European’’ convention of separating integer and fraction positions of
numbers by the comma character is specified by employment of the clause
DECIMAL- POINT IS COMMA.

Note that the reserved word IS is required in entries for currency sign definition
and decimal-point convention specification.

INPUT-OUTPUT SECTION

The second section of the Environment Division is mandatory funless the
program has no data files); it begins with the header:

INPUT-OUTPUT SECTION.

This section has two paragraphs: File-Control and 1-O-Control. In the former, the
programmer defines the file assignment parameters, including specification of
buffering.

ND-60.089.03

o



®

3.2.1

3.2.1.1

FILE-CONTROL.

SELECT file name ASSIGN TO

[ESEHVE integer

File-Control

General Format

The general format of the FILE-CONTROL paragraph is shown on the following
page:

Nord file name: type; version”
data name

AREA
AREAS

[ORGANIZATION IS SEQUENTIAL] [ACCESS MODEIS SEQUENTIAL] [FILESTATUS IS data name].

SEQUENTIAL [RELATIVE KEY IS data name]

X ORGANIZATION IS RELATIVE | ACCESS MODEIS{{ RANDOM

For every program file, a Sentence-Entry (beginning with the reserved word
SELECT) is required in the FILE-CONTROL paragraph.

In the Select Sentence-Entry, device is written as a non-numeric literal enclosed
in matching quotation marks or apostrophes. The contents of this literal must be
written to conform to SINTRAN I11/VS file-name conventions.

The user may express the device as a literal whose contents are of the form:
(directory:user) file-name: type;version
for generalized access to any files available to a SINTRAN HI1/VS user. Examples:
SELECT MASTER-FILE ASSIGN "CARD-READER" ...
SELECT FILE-1 ASSIGN "XPDATA:SYMB" ... -
SELECT IN-PUT ASSIGN TO "(JENSEN) FILE17:REC" ...
If the file-name assignment is not a constant, then device may be written as a
data-name, defined later in the program; its value at OPEN-time must contain a

character string representing a valid SINTRAN Il file-name reference as
discussed above.

ND-60.089.03

\

[FILE STATUS IS data name].

DYNAMIC RELATIVE KEY IS data name
’ SEQUENTIAL
KORGANIZATION ISINDEXED | ACCESS MODEIS 4 RANDOM RECORD KEY IS dataname [FILESTATUS IS data nameb
DYNAMIC



If the Reserve clause is not present, the compiler assigns buffer areas. An integer
number of buffers specified by the Reserve clause may be from 1to 7.

If the FILE STATUS entry, data-name-1 defines a two-character Working-
Storage item into which the run-time data management facility places status
information after an 1-O statement. The left-hand character of data-name-1
assumes the values:

‘0’ for successful completion
‘1’ for End-of-File condition
'3’ for a non-recoverable {1-O) error

The right-hand character of data-name-1 is set to ‘0’ if no further status

information exists for the previous I-O operation. The following combinations of
values are possible:

File Status Left  File Status Right Meaning

0 ‘0 0.K.

1’ ‘0 EOF

'3 ‘0’ Permanent error
'3 ‘4’ Disk space full

Both the Access and Organization clauses are optional for sequential input-
output processing. For Relative files, alternate formats are available in the
Environment Division.

ND-60.089.03




3.2.1.2

3.2.1.3

Definition Of Sequential File Organization

Sequential organization is allowed on all types of hardware devices that COBOL
can communicate with. The only access mode is sequential.

Defintion Of Relative File Organization

Relative organization is restricted to disk-based files. Records are differentiated
on the basis of a relative record number which ranges from 1 to 999,999, or to a
lesser maximum for a smaller file. Unlike the case of an Indexed file, where the
identifying key filed occupies a part of the data record, relative record numbers
are conceptual, and are not embedded in the data records.

A relative-organized file may be accessed either sequentially, dynamically or
randomly. In sequential access mode, records are accessed in the order of
ascending record numbers.

In random access mode, the sequence of record access is controlled by the
program, through the means of placing a number in a relative key item. In
dynamic access mode, the program may inter-mix random and sequential access
verb forms at will.

In the Environment Division, the SELECT entry must specify ORGANIZATION IS
INDEXED, and the Access clause format is:

ACCESS MODEIS SEQUENTIAL | RANDOM | DYNAMIC.

Assign, Reserve, and File Status clause formats are identical to those used for
sequentially- or indexed-organized files.

In addition to the usual clauses in the SELECT entry, a clause of the form:
RELATIVE KEY IS data-name-1

is required for random or dynamic access mode, or if a START statement exists
for such a file, even if access mode is sequential.

Data-name-1 must be described as an unsigned external decimal integer item not

contained within any record description of the file itself; its type may not be
binary.

ND-60.089.03



3.2.1.4

3.2.2

Definition Of Indexed File Organization

An indexed-file organization provides for recording records of a “data base’” and
also keeping a directory (called the control index) of pointers that enable direct
location of records having particular unique key vaiues. An indexed file must be
assigned to disk-files only.

A file whose organization is indexed can be accessed either sequentially,
dynamically or randomly.

Sequential access provides access t0 data records in order of ascending values
of the record key.

In the random access mode, the order of access to records is controlled by the
programmer. Each record desired is accerssed by placing the value of its key in a
key data item prior to an access statement,

In the dynamic access mode, the programmer’s logic may alter from sequential
access to random access, and vice versa, at will,

In the Environment Division, the SELECT entry must specify ORGANIZATION 1S
INDEXED, and the Access clause format is:

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC.

Assign, Reserve, and File Status clause formats are identical to those specified in
Section 3.2.1.1 of this manaual.

The format of this clause, which is required, is:
RECORD KEY IS dﬁata-name-1

where data-name-1 is an item defined within the record descriptions of the
associated file description, and ios a group item, an elementary alphanumeric
item or a decimal field. A decimal key must have no P characters in its Picture,
and it may not have a SEPERATE sign. No record key may be subscripted.

If random mode access is specified, the value of data-name-1 designates the

record to be accessed by the next Delete, Read, Rewrite or Write statement.
Each record must have a unique record key value.

/-0 Control Paragraph

The specification permits the programmer to enumerate files that are open only
at mutually exclusive times, in order that they may share the same I-O buffer
areas, which conserves the utilization of memory space.

The format of the Same Area entry (which designates files that all share a
common |-O area) is:

SAME AREA FOR {file-name } ...
No file may be listed in more than one Same Area clause. To conserve space,

SAME AREA entries should be used wherever possible (each entry designating
files open at mutually exclusive times).

ND-60.089.03




4.1

P 5 a 2 @ ks ad i s B e i s R e N b o 0 sl il . o th BB S i

THE DATA DIVISION

Several types of data items can be described in COBOL programs. These data
items are described in the following section.

DATA TYPES

Group Items

A group item is defined as one having further subdivisions, so that it contains
one or more elementary items. In addition, a group item may contain other
groups. An item is a group item if, and only if, its level number is less than the
level number of the immediately succeeding item. If an item is not a group item,
then it is an elementary item. The maximum size of a group item is 4095
characters. '

Elementary Items

An elementary item is a data item containing no subordinate items.

Alphanumeric Item

An alphanumeric item consists of any combination of characters, making a
character string” data field. If the associated picture contains "editing"”’
characters, it is an alphanumeric edited item.

Report (Edited) Item

A report item is an edited numeric item containing only digits and/or special
editing characters. It must not exceed 30 characters in length. A report item can
be used only as a receiving field for numeric data. oy

Numeric Items

External Decimal ltem: An external data item is one in which one computer
character (byte) is employed to represent one digit. A maximum number of 18
digits is permitted; the exact number of digit positions is defined by writing a
specific number of 9-characters in the Picture description. For example,
PICTURE 999 defines a 3-digit item. That is, the maximum decimal value of the
item is nine hundred ninety-nine.

If the Picture begins with the letter S, then the item also has the capability of
containing an ‘‘operational sign”. An operational sign does not occupy a
separate character (byte), unless the “SEPARATE" form of SIGN clause is
included in the item’s description. Regardiess of the form of representation of an
operational sign, its purpose is to provide a sign that functions in the normal
algebraic manner. .

ND-60.089.03



The ""Usage’ of an external decimal item is DISPLAY (see Usage clause).

Internal Decimal Item: An internal decimal item is stored in packed decimal
format. It is attained by inclusion of the COMPUTATIONAL-3 Usage caluse.

A packed decimal item defined by n 9's in its picture occupies [(n + 2)/2] bytes
in memory. All bytes except the rightmost contain a pair of digits, each digit
being represented by the binary equivalentof a valid digit value from 0 to 9.

In the rightmost byte of a packed item is found both the item’s low-order digit
and the operational sign. For this reason, the compiler considers a packed item
to have an arithmetic sign, even if the original Picture lacked an S-character.

Binary Item: A binary item uses the base 2 system to represent an integer not in
excess of 32,767. It occupies one 16-bit word. The leftmost bit of the reserved
area is the operational sign, usage is COMPUTATIONAL, and picture must be of
form S9(n) where n cannot exceed 5. No picture clause is required.

index Item: An index item has no picture; usage is INDEX.

Index Names And Index Items

An-index name is declared not by the usual method of level number, name, and
data description clauses, but implicitly by appearance in the INDEXED BY index
name’’ appendage to an OCCURS clause. Therefore, an index name is
equivalent to an index item, although defined differently.

An index name must be uniquely named. An index item may only be referred to
by a SET statement, a CALL statement’s USING list, a Procedure header USING
list, as the variation item in PERFORM VARYING, or in a relational condition; in
all cases the process is equivalent to dealing with a binary word integer
subscript.

ND-60.089.03




il B e e -yt alne. et o AT

s S i o e A Tl s e N 8 e SRS NS S P L e

4.2 THE DATA DESCRIPTION ENTRY

A Data Description entry specifies the characteristics of each field {item) in a
data record. Every item must be described in a separate entry in the same order
in which the item appears in the record. Each Data Description entry consists of
a level-number, a data-name, and a series of independent clauses followed by a
period.

The general format of a Data Description entry is: -

data-name
} (REDEFINES-clause) (JUSTIFIED-clause)

level-number FILLER
{PICTURE-clause) (USAGE-clause) (SYNCHRONIZED-clause)
(OCCURS-clause) (BLANK-clause) (VALUE-clause) (SIGN-clause).
When this format is applied to specific items of data, it is limited by the nature of
the data being described. The allowable format for the description of each data
type appears below. Clauses which are not shown in a format are specifically
forbidden in that format. Clauses that are mandatory in the description of certain
data items are shown without parentheses.
Group !tem Format

data-name
level-number FILLER } (REDEFINES-clause) (USAGE-clause)

{OCCURS-clause).

Example:
01 GROUP-NAME. -
02 FIELD-B PICTURE X.
. 02 FIELD-C PICTURE X.

Note:

The USAGE clause may only be written at a group level to save repetitious
writing of it at the subordinate element level.

; ND-60.089.03



4.3

FORMATS FOR ELEMENTARY ITEMS

Alphanumeric Item (also called a character-string item)

data-name
level-number {

FILLER } (REDEFINES-clause) (OCCURS-clause)

PICTURE IS an-form (USAGE IS DISPLAY) (JUSTIFIED-clause)

(VALUE IS non-numeric-literal).

Examples:

02 MISC-1 PIC X(53).
02 MISC-2 PICTURE BXXXBXXB.

Report Item (also called a numeric-edited item)

data-name
level-number FILLER } (REDEFINES-clause) (OCCURS-clause)

(USAGEIS DISPLAY)  (BLANK WHEN ZERQ) (PICTURE IS report form).

Example:

02 XTOTAL PICTURE $999,999.99-.

Decimal Item

data-name }

level-number FILLER (REDEFINES-clause) (OCCURS-clause)

PICTURE IS numeric-form  (SIGN-clause)

(VALUE IS numeric-literal). {USAGE-clause)

Examples:

02 HOURS-WORKED PICTURE 99V9, USAGE IS DISPLAY.
02 HOURS-SCHEDULED PIC S99V9, SIGN IS TRAILING.

11 TAX-RATE PIC S99V999 VALUE 1.375, COMPUTATIONAL-3.

ND-60.089.03



4.4

Binary Iltem

data-name
level-number FILLER } (REDEFINES-clause} (OCCURS-clause)

USAGE IS COMPUTATIONAL/COMP/INDEX

{(VALUE IS numeric-literal).

Examples:

02 SUBSCRIPT COMP, VALUE ZERO.
02 YEAR-TO-DATE COMPUTATIONAL.

USAGE CLAUSE

The USAGE clause describes the form in which numeric data is represented.

The USAGE clause may be written at any level. If USAGE is not specified, the
item is assumed to be in “DISPLAY" mode. The format of the USAGE clause is:

COMPUTATIONAL
USAGEIS INDEX

DISPLAY
COMPUTATIONAL-3

INDEX is explained in the Chapter on Table Handling. COMPUTATIONAL usage
defines an integral binary field. COMPUTATIONAL-3, which may be abbreviated
COMP-3, defines a packed (internal decimal) filed.

ND-60.089.03



PENNIPPRERPIEEPNETIR IR R

4.5

i M 2T B ki

PICTURE CLAUSE

The PICTURE clause specifies a detailed description of an elementary level data
item and may include specification of special report editing. The reserved word
PICTURE may be abbreviated as PIC.

The general format of the PICTURE clause is:

an-form
PICTURE IS numeric-form
report-form

There are three possibie types of pictures, as explained in the ensuing
paragraphs.

An-Form Option

This option applies to alphanumeric (character string) items. The PICTURE of an
alphanumeric item is a combination of data description characters X, A, or9
and, optionally, editing characters B, 0 and /. An X indicates that the character
position may contain any character from the computer's ASCII character set. A
Picture that contains at least one of the combinations:

(a) Aand9,or
(b Xand9,or
{c) XandA

in any order is considered as if every 9, A or X character were X. The characters
B, 0 and / may be used to insert blanks or zeros or slashes in the item.

Numeric-Form Option

The PICTURE of a numeric item may contain a valid combination of the
following characters: )

CHARACTER MEANING

9 The character 9 indicates that the actual or conceptual digit
position contains a numeric character. The maximum number of
9'sin a Picture is 18.

Vv The character V indicates the position of an assumed decimal
point. Since a numeric item cannot contain an actual decimal
point, an assumed decimal point is used to provide the compiler
with information concerning the scaling alignment of items
involved in computations. Storage is never reserved for the
character V. Only one V, if any, is permitted in any single Picture.

S This character indicates that the item has an operational sign. It
must be the first character of the Picture.

ND-60.089.03

e T e il sl i e b e B . 1



P The P indicates an assumed decimal scaling position, and is used
to specify the location of an assumed decimal point when the
point is not within the number that appears in the data item. The
scaling position character P is not counted in the size of the data
item. Scaling position characters are counted in determining the
maximum number of digit positions {18) in numeric edited items or
in items that appear as operands in arithmetic statements.

The scaling position character P may appear only to the left or
right of the other characters in the string as a continuous string of
P’s within a PICTURE description. The sign character S and the
assumed decimal point V are the only characters which may
appear to the left of a leftmost string of P’s. Since the scaling
position character P implies an assumed decimal point (to the left
of the P’s if the P’'s are leftmost PICTURE characters and to the
right of the P's if the P’s are rightmost PICTURE characters), the
assumed decimal point symbol V is redundant as either the left-
most or rightmost character within such a PICTURE description.

Report-Form Option

This option describes an item suitable as an "edited’” receiving field for
presentation of a numeric value. The editing characters that may be combined to
describe a reportitem are as follows:

9V.ZCRDB,S+*B0—P/

The characters 9, P and V have the same meaning as for a numeric item. The
meanings of the other allowable editing characters are described in the following
text.

CHARACTER MEANING

The decimal point character (.) specifies that an actual decimal
point is to be inserted in the indicated position and the source item
is to be aligned accordingly. Numeric character positions to the
right of an actual decimal point in a PICTURE must consist of
characters of one type.

Zand* The characters Z and * are called replacement characters. Each
one represents a digit position. Leading zeros to be placed in
positions defined by Z or * are suppressed, becoming blank or *.
Zero suppression terminates upon encountering the decimal point
(. or V) or a non-zero digit. Z or * may appear to the right of an
actual decimal point only if all digit positions are the same.

CRandDB CR and DB are called credit and debit symbols and may appear
only at the right end of a picture. These symbols occupy two
character positions and indicate that the specified symbol is to
appear in the indicated positions if the value of a source item is
negative. |f the value is positive or zero, spaces will appear
instead. CR and DB and + and — are mutually exclusive.

. The comma specifies insertion of a comma between digits. Each
insertion character is counted in the size of the data item, but does
not represent a digit position. The comma may also appear in
conjunction with a floating string, as described below.

ND-60.089.03



A floating string is defined as a leading, continuous series of either S or + or —,
or a string composed of one such character interrupted by one or more insertion
commas and/or decimal point. For example:

SS,SSS,S85S
+++ +
+1{8). + +
SS,58SS,SS

A floating string containing n + 1 occurrences of S or + or —defines n digit
positions. When moving a numeric value into a report item, the appropriate
character floats from left to right, so that the developed report item has exactly
one actual S or + or — immediately to the left of the most significant non-zero
digit, in one of the positions indicated by S or + or — in the PICTURE. Blanks
are placed in all character positions to the left of the single developed S or +
or —. If the most significant digit appears in a position to the right of positions
defined by a floating string, then the developed item contains S or + or — in the
rightmost position of the floating string, and non-significant zeros may follow.
The presence of an actual or implied decimal point in a floating string is treated
as if all digit positions to the right of the point were indicated by the PICTURE
character 9. In the following examples, b represents a blank in the developed
items.

PICTURE Numeric Value Developed Item
S$S5S999 14 bbS014
--,---,999 -456 bbbbbb-456
SSSSSS 14 bbbS14

A floating string need not constitute the entire PICTURE of a report item, as
shown in the preceding examples. Restrictions on characters that may follow a
floating string are given later in this description.

When a comma appears to the right of a floating string, the. string character
floats through the comma in order to be as close to the leading digit as possible.

CHARACTER MEANING

+ and — The character + or — may appear in a PICTURE either singly or in
a floating string. As a fixed sign control character, the + or —
must appear as the last symbol in the PICTURE. The plus sign
indicates that the sign of the item is indicated by either a plus or
minus placed in the character position, depending on the algebraic
sign of the numeric value placed in the report field. The minus sign
indicates that blank. or minus is placed in the character position,
depending on whether the algebraic sign of the numeric value
placed in the report field is positive or negative, respectively.

B Each appearance of B in a PICTURE represents a blank in the final
edited value.

/ Each slash in a PICTURE represents a slash in the final edited
value.

0 Each appearance of 0 in a PICTURE represents a position in the

final edited value where the digit zero will appear.

ND-60.089.03

e ¥



Other rules for a report (edited) item PICTURE are:

1.

The appearance of one type of floating string precludes any other
floating string.

There must be at least one digit position character.

The appearance of a floating sign string or fixed plus or minus
insertion character precludes the appearance of any other of the
sign control insertion characters, namely, +, —, CR, DB.

The characters to the right of a decimal point up to the end of a
PICTURE, excluding the fixed insertion characters +, —, CR, DB
(if present), are subject to the following restrictions:

a. Only one type of digit position character may appear.
That is, Z * 9 and floating-string digit position characters
S + -— are mutually exclusive.

b. If any of the numeric character positions to the right of a
decimal point is represented by + or — or S or Z, then all
the numeric character positions in the PICTURE must be
represented by the same character.

The PICTURE character 9 can never appear to the left of a floating
string, or replacement character.

Additional notes on the PICTURE clause:

1.
2.

A PICTURE clause must only be used at the elementary level.

An integer {m} enclosed in parentheses and following X9 S ZP *
B — or + indicated the number of consecutive occurrences of the
PICTURE character. Except for pictures of the form X(m), the
maximum value of m is 255, unless other limits apply (i.e. max. 18
digits).

Characters V and P are not counted in the space allocation of a
data item. CR and DB occupy two character positions.

A maximum of 30 character positions is allowed in a PICTURE
character string. For example, PICTURE X(89) consists of five
PICTURE characters.

A PICTURE must consist of at least one of the characters AZ * X
9 or at least two consecutive appearances of the + or — or S
characters.

The characters . S V CR and DB can appear only once in a
PICTURE.

When DECIMAL-POINT IS COMMA is specified, the explanations
for period and comma are understood to apply to comma and
period, respectively.

The examples below illustrate the use of PICTURE to edit data. In each example,
a movement of data is implied, as indicated by the column headings. (Data value
shows contents in storage; scale factor of this source data area-is given by the

PICTURE.)

ND-60.089.03



Source Area

PLCTURE

9(5)
9(5)
9(5)
a(a)ve
v9(5)
$9(5)
$9(5)
S9(5)
S$9(5)
9(5)
9(5)
$9(5)
$999v9Yy
$999v99

Data
Value

12345
00123
00000
12345
12345

100123

~-00001
00123
00001
00123

00123

12345
02345
00004

4--10

Receiving Area

PICTURE

$$$,8$9.99
§$5,$59.99
$65$,$59.99
§$%$,$59.99
$$$,889.99
------- .99

kkk*kk* QQCR

72272N27
ZLZINZ7.

ND-60.089.03

- Edited Data

$12,345.00
$123,00
$0,00
$1,234,50
$0.12
123,00
-1.00
+123,00
1.00
4+123.00
123,00
*%12345,00
2345

04



4.6

e . e e e A N L e e e i P B SRR P Sl s e il A s =

VALUE CLAUSE

The VALUE clause specifies the. initial value of working-storage items. The
format of this clause is:

VALUE IS literal

The size of a literal given in a VALUE clause must be less than or equal to the
size of the item as given in the PICTURE clause. The positioning of the literal
within a data area is the same as would result from specifying a MOVE of the
literal to the data area. The type of literal written in a VALUE clause depends on
the type of data item, as specified in the data item formats earlier in this text. For
edited items, values must be specified as non-numeric literals.

When an initial value is not specified, no assumption should be made regarding
the initial contents of an item in Working-Storage.

The VALUE clause may be specified at the group level, in the form of a correctly
sized non-numeric literal, or a figurative-constant. (A form used in level 88 items
is explained in Section 3.15.) The VALUE clause must not be written in a Data
Description entry that also has an OCCURS or REDEFINES clause, or in an entry
that is subordinate to an entry containing an OCCURS or REDEFINES clause.

ND-60.089.03



4.7

i ——— .t S e R, S s

4-12

REDEFINES CLAUSE

This clause specifies that the same area is to contain different data items, or
provides an alternative grouping or description of the same data. The format of
the REDEFINES clause is:

REDEFINES data-name-2

When written, the REDEFINES clause should be the first clause following the
data-name that defines the entry. ' .

When an area is redefined, all descriptions of the area remain in effect. Thus, if B
and C are two separate items that share the same storage ared due to
redefinition, the procedure statements MOVE X TO B or MOVE Y TO C could be
executed at any point in the program. In the first case, B would assume the value
of X and take the form specified by the description of B. In the second case, the
same physical area would receive Y according to the description of c:

For purposes of discussion of redefinition, data-name-1 is termed the subject,
and data-name-2 is called the object. The levels of the subject and object are
denoted by s and t, respectively. The following rules must be obeyed in order to
establish a proper redefinition.

1. s must equal t.

2. The object must be contained in the same record (01 group level
item), unlesss=t=01.

3. Prior to definition of the subject and subsequent to definition of
the object there can be no level numbers that are numerically less
thans.

4. Prior to definition of the subject and subsequent to definition of

the object, if there are other levels equal to s, then they must also
redefine the object.

The length of data-name-1, multiplied by the number of occurrences of
data-name-1, may not exceed the length of data-name-2, except if the level of
data-name-1is 1 (permitted only outside the File Section).

ND-60.089.03




4.8

OCCURS CLAUSE

The OCCURS clause is used in defining related sets of repeated data, such as
tables, lists and arrays. It specifies the number of times that a data item with the
same format is repeated. Data Description clauses associated with an item
whose description includes an OCCURS clause, apply to each repetition of the
item being described. When the OCCURS clause is used, the data name that is
the defining name of the entry must be subscripted whenever it appears in the
Procedure Division. If this data-name is the name of a group item, then all data-
names belonging to the group must be subscripted whenever they are used.

The OCCURS clause must not be used in any Data Description entry having a
level number 01, 66, 77 or 88. The OCCURS clause has the following format:

QCCURS integer TIMES [INDEXED BY index-name...]
Note:

The maximum integer permissible is 4095. (The maximum associated record size
is 4095.)

A subscript is a positive non-zero integer whose value determines to which
element a reference is being made within a table or list. The subscript may be
represented either by a literal or a data-name that has an integral value. Whether
the subscript is enclosed in parentheses and appears after the terminal space of
the name of the element. A subscript must be a decimal or binary item. (The
fatter is strongly recommended, for the sake of efficiency.)

At most three OCCURS clauses may govern any data item. Conseguently, one,
two, or three subscripts may be required. Multiple subscripts are separated by a
comma, i.e. ITEM (I, J).

Example:

01 ARRAY.
03 ELEMENT, OCCURS 3, PICTURE 9(4).

The above example would be allocated storage as shown below.

ELEMENT (1)

ARRAY, consisting of twelve
ELEMENT (2) characters; each item has

4 digits.
ELEMENT (3)

A data-name may not be subscripted if it is being used for any of the following
functions: o

1. When it is being used as a subscript.
2. When it appears as the defining name of a data description entry.
3. When it appears as data-name-2 in a REDEFINES clause.

ND-60.089.03



4.9

4.10

4:11

B
e i A - = EUPTESPEE —

4-14

SYNCHRONIZED CLA USE

The SYNCHRONIZED clause is designed in order t0 allocate space for data in an
efficient manner, with respect to the computer word organization of its central
"memory”. In this compiler, the SYNCHRONIZED specification is treated as
commentary only.

The format of this clause is:

SYNC | SYNCHRONIZED LEFT | RIGHT

BLANK WHEN ZERO CLAUSE

The clause BLANK WHEN ZERO may be written to specify that a report {edited)
field is to contain nothing except blanks if the numeric value moved to it has a
value of zero.

JUSTIFIED CLAUSE

The JUSTIFIED RIGHT clause, which is only applicable to unedited character
string items, signifies that values are stored in a right-to-left fashion, resulting in
space fill on the left when a short field is moved to a longer Justified field, or in
truncation on the left when a long field is moved 10 a shorter Justified field. The
Justified clause is effective only when the associated field is employed as the
“receiving”’ field ina Move statement.

The word JUST isa permissible abbreviation of JUSTIFIED.

ND-60.089.03




4.12

4-15

SIGN CLAUSE

For an external decimal item, there are four possible manners of representing an
operational sign; the choice is controlled by inclusion of a particular form of the
SIGN clause, whose general form is:

[SIGNIS] TRAILING|LEADING [SEPARATE CHARACTER]

The following chart summarizes the effect of various forms of this clause.

SIGN Clause Sign Representation

TRAILING Embedded in rightmost byte
LEADING Embedded in leftmost byte
TRAILING SEPARATE Stored in separate rightmost byte
LEADING SEPARATE Stored in separate leftmost byte

When the above forms are written, the Picture must begin with S.

If no S appears, the item is not signed (and is capable of storing only absolute
values), and the SIGN clause is prohibited.

When S appears at the front of a Picture but no SIGN clause is included in an
item’s.description, the "’default’’ case SIGN IS TRAILING is assumed.

The SIGN clause may be written at a group level; in this case the clause specifies
the sign’s format on any signed subordinate external decimal item.

ND-60.089.03



4.13

LEVEL 88 CONDITION-NAMES

The level 88 condition-name entry specifies a value, list of values, or a range of
values that an elementary item may assume, in which case the name condition is
true, otherwise false. The format of a level 88 item's value clause is:

literal-1 literal-2...]
VALUEIS :
literal-1 THRU literal-2

A level 88 entry must be preceded either by another level 88 entry (in the case of
several consecutive condition-names pertaining to an elementary item) or by an
elementary item. Every condition-name pertains to an elementary item in such a
way that the condition-name may be qualified by the name of the elementary
item and the elementary item’s qualifiers. A condition-name is used in the
Procedure Division in place of a simple relational condition. A condition-name
may pertain to an elementary item {a conditional variable) requiring subscripts. In
this case, the condition-name, when written in the Procedure Division, must be
subscripted according to the same requirements as the associated elementary
item. The type of literal in a condition-name entry must be consistent with the
data type of the conditional variable. In the following example, PAYROLL-
PERIOD is the conditional variable. The picture associated with it limits the value
of the 88 condition-name to one digit.

02 PAYROLL-PERIOD PICTUREISS.
88 WEEKLY VALUEIS 1.
88 SIMI-MONTHLY VALUEIS 2
88 MONTHLY VALUEIS 3.
Using the above description, one may write the procedural condition-nahe test:
IF MONTHLY GO TO DO-MONTHLY.
An equivalent statement is:

|F PAYROLL-PERICD = 3,GOTO DO-MONTHLY.

For rn edited elementary item, values in a condition-name entry must be
expressed in the form of non-numeric literals.

The user may not write a VALUE clause containing both literals in a series and a
range.

ND-60.089.03

s, s & K2l a1 M

¢



4.14

LEVEL 66 (RENAMES CLAUSE)

The RENAMES clause, whose use is restricted to special definition entries having
level number 66, permits alternative names to be defined for overlapping fields.
The format of an entry of this type is:

66 data-name-1 RENAMES data-name-2 [THRU/THROUGH
data-name-3.]

RENAMES is permissible only when the defining level is 66; such entries must all
follow immediately at the end of the record to which they pertain, and the
referenced items data-name-2 and data-name-3 must be defined in the foregoing
record at a level between 02 and 48, inclusive.

No OCCURS clause may govern data-name-2 or data-name-3.

An entry whose level is 66 may be followed only by another level 66 or 01, or by
another FD, SD, Section or Procedure Division.

The following chart illustrates the scope of areas involved in renaming.
Data-name-2 Data-name-3 Data-name-1

Elementary ¢ a Elementary item with same description
as data-name-2.

Group Group - - alternative name. for
data-name-2.

Elementary Elementary Group including all the
Elementary Group contiguous space allocated
Group Group data-name-2 through data-name-3.*

* Data-name-3 must begin to the right of item data-name-2; data-name-3
cannot be subordinate to data-name-2.

Examples of RENAMES:

01 TAB.

03 A.
05 A1PICX.
05 A2PIC XXX.
05 A3PIC XX.
05 A4PIC XX.

03 X
05 X1PICXX.
05 X2PIC XI(6).
05 X3PIC X(8).

66 CRENAMES A. (A1 THRU A4)

66 D RENAMES A1 THRU A3.

66 ERENAMES A4 THRU X2.

66 FRENAMES A2THRU X. (A2 THRU X3)

66 G RENAMES A THROUGH X. (A1 THRU X3)

ND-60.089.03



e i At e e —— —

4-18

4.15 ORGANIZATION OF THE DATA DIVISION

4.15.1 General Format

The following gives the general format of the sections in the Data Division, and
defines the order of their presentation in the source program.

DATA DIVISION.

FILE SECTION.

file-description-entry [record-description-entry] C
sort-file-description-entry {record-description-entry} <

—
CWORKING-STORAGE SECTION. |

77-level-description-entry
record-description-entry |~ "~
b —
LINKAGE SECTION -1

77-level-description-entry
L_ record-description-entry |" "

——

4.15.2 File Section

4.15.2.1 FD Entries

In the FILE SECTION of the Data Division, a FD entry {file definition) must
appear for every selected file. This entry precedes the descriptions of the file’s
record structure(s).

The general form of a FD entry is:
FD file name LABEL-clause

[DATA RECORD(S)-clause ] [BLOCK-clause ] [RECORD-clause ].

ND-60.089.03



AR AR+ L |t e e e b b

4.15.2.2

4.15.2.3

4.15.2.4

4--19

BLOCK-Clause

The BLOCK CONTAINS clause is used to specify the size of a physical record.

CHARACTERS |
BLOCK CONTAINS
integer-1 RECORDS

The BLOCK CONTAINS clause is used to specify characteristics of physical

_records in relation to the concept of logical records.

In order to describe a file that was created by the source editor QED, the user
must specify BLOCK CONTAINS 0 RECORDS; this has the interpretation of
logical record delimitation by Carriage Return and Line Feed. Otherwise, records
are delimited on the basis of record sizes.

When the BLOCK CONTAINS clause is omitted, it is assumed that records are
not blocked. When neither the CHARACTERS or the RECORDS option is
specified, the CHARACTERS option is assumed.

When the RECORDS option is used, the compiler assumes that the block size
provides for integer-1 records.

RECORD-Clause

Since the size of each data record is defined fully by the set of data description
entries constituting the record (level 01) declaration, this clause is always
optional. The format of this clause is:

RECORD CONTAINS integer-2 CHARACTERS

LABEL-Clause

The format of this required FD-entry clause is:

LABEL RECORD |RECORDS IS |ARE OMITTED | STANDARD

The OMITTED option specifies that no labels exist for the file. It must be
specified for files assigned to unit-record devices. It may be specified for files
assigned to magnetic tape unit.

The STANDARD option specifies that labels exist for the file and that the labels
conform to system specifications.

ND-60.089.03



4.15.2.5

4.15.3

4.15.4

4-20

DATA-RECORD(S)-Clause

The optional DATA RECORDS clause identifies the records in the file by name.
Its format is:

RECORD IS
DATA data-name-1 [data-name-2. . . ]
RECORDS ARE

The presence of more than one data-name indicates that the file contains more
than one type of data record. That is, two or more record descriptions may apply
to the same storage area. These records need not have the same description.
The order in which the data-names are listed is not significant.

Data-name-1, data-name-2, etc., are the names of data records, and each must
be preceded in its record description entry by the level number 01.

Working-Storage Section

The second section of the DATA DIVISION begins with the header WORKING-
STORAGE SECTION.

Data description entries in this section may employ level numbers 01-49, as in the
File section, as well as 77. Value clauses, prohibited in the File section (except for
level 88) are permitted throughout the Working-storage section.

Linkage Section

The third section into which the Data Division may be divided is defined by use
of the header LINKAGE SECTION. In this section, the user describes data by
name and attribute, but storage space is not allocated. Instead, these ""dummy”’
descriptions are applied (through the mechanism of the USING list on the
Procedure Division header) to data whose addresses are passed into a
subprogram by a call upon it from a separately compiled program. Consequently,
VALUE clauses are prohibited in the Linkage Section, except in level 88
condition-name entries. Refer to Section 5.3 for futher information.

ND-60.089.03

T A A e AT A Gl B 0




5.1

e i i e s« . o e et . A A b e — s s i el PR ——

THE PROCEDURE DIVISION

in this chapter, the basic concepts of the Procedure Division are explained.
Advanced topics (such as Indexing of tables, Sort, Inter-program
communication and Declaratives) are discussed in subsequent chapters.

STATEMENTS, SENTENCES, PROCEDURE-NAMES

The Procedure portion of a source program specifies those procedures needed to
solve a given EDP problem. These steps (computations, logical decisions, etc.)
are expressed in statements similar to English, which employ the concept of
verbs to denote actions, and statements and sentences to describe procedures.
The Procedure portion must begin with the words PROCEDURE DIVISION.

A statement consists of a verb followed by appropriate operands {data-names or
literals) and other words that are necessary for the completion of the statement.
The two types of statements are imperative and conditional.

IMPERATIVE STATEMENTS

An imperative statement specifies an unconditional action to be taken by the
object program. An imperative statement consists of a verb and its operands,
excluding the IF conditional statement, the READ statement and any 1/O
statement which has an INVALID KEY clause. ’

CONDITIONAL STATEMENTS

A conditional statement stipulates a condition that is tested to determine
whether an alternate path of program flow is to be taken. The IF statement
provides this capability. READ statements, and any |/O statement having an
INVALID KEY clause, are also considered to be conditional. When an arithmetic
statement possesses a SIZE ERROR suffix, the statement is considered to be
conditional rather than imperative.

SENTENCES

A sentence is a single statement or a series of statements terminated by a period
and followed by a space.

PARAGRAPHS

A paragraph is a logical entity consisting of one or more sentences. Each
paragraph must begin with a paragraph-name.

Paragraph-names and section-names are procedure-names. Procedure-names
follow the rules for name-formation. In addition, a procedure-name may consist
only of digits. An all-digit procedure-name may not consist of more than 18
digits; if it has leading zeros, they are all significant.

SECTIONS

A section is composed of one or more successive paragraphs, and must begin
with a section-header. A section header consists of a section-name conforming
to the rules for procedure-name formation, followed by the word SECTION and a
period. A section header must appear on a line by itself. Each section-name must
be unique.

ND-60.089.03



ST PR NP -

5.2

i i . e s e A Al e i 8 5 e M e i i 5 o S A b i . 4

ORGANIZATION OF THE PROCEDURE DIVISION

Discounting the Declaratives region of this division, the PROCEDURE part of a
program may be subdivided in three possible ways:

1. The non-Declaratives portion of the Procedure Division consists of
only paragraphs.

2. The non-Declaratives portion of the Procedure Division consists of
a humber of paragraphs followed by a number of sections {them-
selves each subdivided into one or more paragraphs).

3. The non-Declaratives portion is entirely subdivided into sections
{themselves each subdivided into one or more paragraphs).

The DECLARATIVES portion of the Procedure Division is optional; it provides a
means of designating a procedure to be invoked in the event of an I/O error.

ND-60.089.03



5.3

5.3.1

5.3.2

INTER-PROGRAM COMMUNICATION

General

Separately compiled COBOL program modules may be combined into a single
executable program. Inter-module communication is made possible through the
use of the LINKAGE Section of the Data Division (which follows the Working-
Storage Section) and by the CALL statement and the USING list appendage to
the Procedure Division header of a subprogram module. The Linkage section
describes data made available in memory from another program module. Record
description entries in the LINKAGE section provide data-names by which data-
areas reseerved in memory by other programs may be referenced. Entries in the
LINKAGE section do not reserve memory areas because the data is assumed to
be present elsewhere in memory, in a CALLING program.

Any Record Description clause may be used to describe items in the LINKAGE
Section as long as the following rules are adhered to:

1. The rules concerning contiguous and noncontiguous storage
specified for the Working-storage section.

2. The VALUE clause may not be specified for other than level 88
items.

3. Level 01 items are assumed to start on a computer word boundary.

It is the programmer’s responsibility to ensure proper alignment
between an argument (pointer to data) in a CALL statement and
the corresponding data-name in a USING list on a subprogram
Procedure header.

Using List Appendage To Procedure Header

The Procedure Division header of a CALLable subprogram is written as:

PROCEDURE DIVISION USING data-name. . .

Each of the data-name operands is an entry in the Linkage Section of the
subprogram, having level 77 or 01. Addresses are passed from an external CALL
in one-to-one correspondence to the operands in the USING list of the
Procedure header so that data in the calling program may be manipulated in the
subprogram. '

ND-60.089.03



5.4

5-4

DECLARATIVES AND THE USE SENTENCE

The Declaratives region provides a method of including procedures that are
executed not as part of the sequential coding written by the programmer, but
rather when a condition occurs which cannot normally be tested by the
programmer.

Although the system automatically handles checking and creation of standard
labels and executes error recovery routines in the case of input/output errors,
additional procedures may be specified by the COBOL programmer.

Since these procedures are executred only at the time an error in reading or
writing occurs, they cannot appear in the regular sequence of procedural state-
ments. They must be written at the beginning of the Procedure Division in a
subdivision called DECLARATIVES. Related procedures are preceded by a USE
sentence or with the key words END DEC LARATIVES.

The key words DECLARATIVES and END DECLARATIVES must each begin in
Area A and be followed by a period. No other text may appear on the
Declaratives at the front of the Procedure Division.

PROCEDURE DIVISION.

DECLARATIVES.

section-name SECTION. USE sentence.
[paragraph-name. [sentence ] ... ]

END DECLARATIVES.

The USE sentence defines the applicability of the associated section of coding.

A USE sentence, when present, must immediately follow a section header in the
Declarative portion of the Procedure Division and must be followed by a period
followed by a space. The remainder of the section must consist of one or more
procedural paragraphs that define the procedures to be used. The USE sentence
itself is never executed; rather, it defines the conditions for the execution of the
USE procedure.

The format of the USE sentence is:

ERROR
USE AFTER STANDARD {EXCEPﬂON PROCEDURE ON
file-name ... ... | INPUT | QUTPUT | 1-0.

The words EXCEPTION and ERROR may be used interchangeably. The
associated declarative section is executed (by the Perform mechanism) after the
standard .1-O recovery procedures for the files designated, or after the invalid key
condition arises on a statement lacking the INVALID KEY clause. A given file-
name may not be associated with more than one declarative section, but more
than one file-name may be associated with one USE sentence.

ND-60.089.03

s b DB DT A b a4 o T AR Sar L e




Within a declarative section there must be no reference to any non-declarative
procedure. Conversely, in the non-declarative portion there must be no reference
to procedure-names that appear in the declaratives section, except that
PERFORM statements may refer to a USE procedure, or to procedures
associated with it.

An exit from a declarative section is inserted by the compiler following the last
statement in the section. All logical program paths within the section must lead
to the exit point.

ND-60.089.03



5.5

5.5.1

ARITHMETIC STATEMENTS

General

There are five arithmetic statements: ADD, SUBTRACT, MULTIPLY, DIVIDE
and COMPUTE. Any arithmetic statement may be either imperative or
conditional. When an arithmetic statement includes an ON SIZE ERROR
specification, the entire statement is termed -conditional, since whether or not
the size-error condition arises is data-dependent.

An example of a conditional arithmetic statement is:

ADD 1 TO RECORD-COUNT, ON SIZE ERROR MOVE ZERO TO
RECORD-COUNT, DISPLAY "LIMIT 99 EXCEEDED".

Note that if a size error occurs (in this case, it is apparent that RECORD-COUNT
has Picture 99, and cannot hold a value of 100}, both the MOVE and DISPLAY
statements are executed. Otherwise, the MOVE and DISPLAY statements are
not executed.

The three statement components that may appear in arithmetic statements
(GIVING option, ROUNDED option, and SIZE ERROR option) are discussed in
detail later in this section.

Basic Rules for Arithmetic Statements

1. All data-names used in arithmetic statements must be elementary
numeric data items that are defined in the Data Division of the
program, except that operands of the GIVING option may be re-
port items. Index-names and index-items are not permissible in
these arithmetic statements.

2. Decimal point alignment is supplied automatically throughout the
computation.
3. Intermediate result fields generated for the evaluation of arithmetic

expressions assure the accuracy of the result field, except where
high-order truncation is necessary.

ND-60.089.03



5.5.2

5.56.3

et i o o il e B - FEREES ST e

SIZE ERROR Option

If, after decimal-point alignment and any low-order truncation, the value of a
calculated result exceeds the largest value which the receiving field is capable of
holding, a size error condition exists.

The Size Error option is written immediately after any arithmetic statement, as an
extension of the statement. The format of the Size Error option is:

ON SIZE ERROR imperative statement ...

If the SIZE ERROR option is present, and a size error condition arises, the value
of the resultant data-name is unaitered and the series of imperative statements
specified for the condition is executed.

If the SIZE ERROR option has not been specified and a size error condition
arises, no assumption should be made about the final result.

An arithmetic statement, if written with a SIZE ERROR option, is not an
imperative statement. Rather, it is a conditional statement and is prohibited in
contexts where only imperative statements are allowed.

ROUNDED Option

If, after decimal-point alignment, the number of places calculated for the result is
greater than the number of places in the data item that is to be set equal to the
calculated result, truncation occurs unless the ROUNDED option has been
specified.

When the ROUNDED option is specified, the least significant digit of the
resultant data-name has its value increased by 1 whenever the most significant
digit of the excess is greater than or equal to 5. .

Rounding of a computed negative result is performed by rounding the absolute
value of the computed result and then making the final result negative.

The following chart illustrates the relationship between a calculated result and

the value stored in an item that is to receive the calculated result, with and
without rounding.

Item to Receive Calculated result

Calculated PICTURE Value After Value After
Resuit Rounding Truncating
—12.36 S99v9 —124 —12.4
8.432 9vo 8.4 8.4

35.6 99v9 35.6 35.6

65.6 S99V 66 65

.0055 SVv999 .006 .005

lllustration of Rounding

ND-60.089.03



5.6.4

5-8

GIVING Option

If the GIVING option is written, the value of the data-name that follows the word
GIVING is made equal to the calculated resuit of the arithmetic operation. The
data-name that follows GIVING is not used in the computation and may be a
report item.

ND-60.089.03 é;



e

5.6

5.7

5.7.1

MR TS SN . e e ol e SRt e

RELATIVE INDEXING

A user reference to an item in a table controlled by an OCCURS clause may be
expressed with a proper number of subscripts, separated by commas, and the
whole enclosed in matching parentheses. See the following example:

TAX-RATE (BRACKET, DEPENDENTS)
XCODE(1,2)

where subscripts are ordinary integer decimal data-names, or integer constants,
or binary integer (COMPUTATIONAL or INDEX) items, or index-names.

A further case exists, called relative indexing. In this case, a ““subscript” may be
expressed as follows:

+ .
name __ integer constant

where a space must be on either side of the plus or minus, and “name” may be
any proper index-name or index-item. See the following example:

XCODE(l +3,J—1).

FILE PROCESSING

Definition Of Sequential File Organization

Sequential organization can be used on all types of files. Records are
differentiated on the basis of their physical position.

A sequential-organized file may only be accessed sequentially. Records are
accessed in the order of physical position.

ND-60.089.03



e e RPN SEPAT TV PEPUP SR

5.7.2

SR PR RLI P | M S e SRR B

5-10

Definition Of Relative File Organization

Relative organization is restricted to disk-based files. Records are differentiated
on the basis of a relative record number which ranges from 1 to 999,999, or to a
lesser maximum for a smaller file. Unlike the case of an Indexed file, where the
identifying key field occupies a part of the data record, relative record numbers
are conceptual, and are not embedded in the data records.

A relative-organized file may be accessed either sequentially, dynamically or
randomly. In sequentiai access mode, records are accessed in the order of
ascending record numbers.

In random access mode, the sequence of record access is controfled by the
program, through the means of placing a number in a relative key item. In
dynamic access mode, the program may inter-mix random and sequential access
verb forms at will.

In the Environment Division, the SELECT entry must specify ORGANIZATION IS
RELATIVE, and the Access clause format is:

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC.

Assign, Reserve, and File Status clause formats are identical to those specified in
Section 3.2.1.1 of this manual.

In addition to the usual clauses in the SELECT entry, a clause of the form:

RELATIVE KEY IS data-name-1

is required for random or dynamic access mode, or if a START statement exists
for such a file, even if access mode is sequential.

Data-name-1 must be described as an unsigned external decimal integer item not
contained within any record description of the file itself; its type may not be
binary.

OTHER SYNTAX CONSIDERATIONS

The FD entry for a Retative file is the same as for any other file assigned to disk
(and therefore possessing standard labels).

Within the Procedure Division, the verbs Open, Close, Read, Write, Rewrite,
Delete and Start are available.

ND-80.089.03

e e —— e e ki b T A A B N im0



5.7.3

e - —_— e A e B e e R o S sl b .

Indexed Organization File Processing

DEFINITION OF INDEXED FILE ORANIZATION

An indexed file organization provides for recording records of a "data base” and
also keeping a directory {called the contro/ index) of pointers that enable direct
location of records having particular unique key values. An indexed file must be
assigned to disk-files only.

A file whose organization is indexed can be accessed either sequentially,
dynamically or randomly.

Sequential access provides access to data records in order of ascending values
of the record key.

In random access mode, the order of access to records is controlled by the
programmer. Each record desired is accessed by placing the value of its key in a
key data item prior to an access statement.

In the dynamic access mode, the programmer’s logic may alter from sequential
access to random access, and vice versa, at will.

SYNTAX CONSIDERATIONS (ENVIRONMENT)

In the Environment Division, the SELECT entry must specify ORGANIZATION IS

INDEXED, and the Access clause format is:

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC.

Assign, Reserve, and File Status clause formats are identical to those specified in
Section 3.2.1.1 of this manual.

RECORD KEY CLAUSE
The format of this clause, which is required, is:

RECORD KEY IS data-name-1
where data-name-1 is an item defined within the record descriptions of the
associated file description, and is a group item, an elementary alphanumeric item
or a decimal field. A decimal key must have no P characters in its Picture, and it
may not have a SEPARATE sign. No record key may be subscripted.
If random mode access is specified, the value of data-name-1 designates the

record to be accessed by the next Delete, Read, Rewrite or Write statement.
Each record must have a unique record key value.

ND-60.089.03



PROCEDURE DIVISION STATEMENTS FOR INDEXED FILES

The syntax of the OPEN statement (See Section 5.8.17) also applies to Indexed
organized files, but WITH NO REWIND is prohibited.

The following table summarizes the available statement types and their
permissibility in terms of Access mode and Open option in effect. Where “'X"’
appears, the statement is permissible, otherwise it is not valid under the

associated Access mode and Open option.

ACCESS
MODE IS

Procedure
Statement

Open Option in Effect

Input

Output

I-0

SEQUENTIAL

READ
WRITE
REWRITE
START
DELETE

X

>

RANDOM

READ
WRITE
REWRITE
START
DELETE

i o

DYNAMIC

READ
WRITE
REWRITE
START
DELETE

LI Rl o

In addition to the above statemnts, CLOSE is permissible under all conditions:

the same format shown in Section 5.8.5 is used, but the reserved word options

(LOCK, REMOVAL, NO REWIND, REEL, UNIT) are all irrelevant.

ND-60.089.03



5.7.4

it i AL i s e N

File Status Reporting For Indexed Files

s i i Al e A w o

it il 8 At

Every ISAM call returns a status, it is a word which contains 2 characters, the

following table summarizes the possible settings:

LEFT CHARACTER RIGHT CHARACTER
c i
.g K
: R EERE
s| 8| 3| 3 1 5
g 3] -4 [= o
£l o| X o S| 2| § £
el = c c "
el sl ¢ B 5| 5| 5| 8 g
g g _‘_é § 5| ol ® o . 2
o g g ol B 2@ q'>; = E @
AR B BB
ol ~| & o] | | ©|] ~| @ o
Successful 0 X X
At end 1 X
Invalid key 2 X| XX ] X
Permanent error 3 X
Other 9 X X | XX | X]|X

The "’00” return status is the normal one

the ""98" return status depends on the call executed:

for OPEN
for CLOSE
for START

the other settings are self-explanatory.

ND-60.089.03

file does not correspond to given description
file already closed
function code is invalid



5-14

COBOL VERBS

The COBOL verbs described below are described in the following sections:

ACCEPT MULTIPLY
ADD OPEN
ALTER PERFORM
CALL READ t
CLOSE REWRITE
COMPUTE SEARCH
DELETE SET
DISPLAY SORT
DIVIDE START
EXHIBIT STOP

EXIT STRING
GO SUBTRACT
IF UNSTRING
INSPECT WRITE
MOVE

ND-60.089.03



5.8.1

s e i s s i b A —— e s

ACCEPT Statement

The Accept statement is used to enter data into the computer on a low volume
basis, from either punched cards or operator key-in at the computer console.
The format of the Accept statement is: :

ACCEPT data-name [FROM mnemonic-name]

Omission of FROM mnemonic-name implies that input is from the terminal. One
line is read, and as many characters as necessary (depending on the size of the
named data field) are moved, without change, to the indicated field.

When input is to be accepted from the console, a system-generated message
code is typed automatically, execution is suspended, and then after the operator
enters a response, the program stores the acquired data in the field designed by
data-name, and normal execution proceeds.

Following is an example of a form of the ACCEPT statement used to acquire the
current date, day or time:

ACCEPT DATE/DAY/TIME Statement

The standard date, day or time value may be acquired at execution time by a
special form of ACCEPT statement:

O

AT

ACCEPT data-name EROM 4 DAY

TIME

m

The formats of standard values DATE, DAY and TIME are:

DATE - a six digit value of the form YYMMDD (year, month, day).
Example: July 4, 1976 is 760704.

DAY - a five digit “Julian date” of the form YYNNN where YY is the two
low order digits of year and NNN is the day-in-year number
between 1 and 366.

TIME - an eight digit value of the form HHMMSSFF where HH is from 00
to 23, MM is from 00 to 59, SS is from 0 to 59, and FF is from 00
10 99; HH is the hour, MM is the minutes, SS is the seconds, and
FF represents hundredths of a second.

The Picture of data-name should be 9(6), 9(5) or 9(8), respectively, for DATE,
DAY or TIME acquisition, i.e., all the source values are integers. If not, the
standard rules for a move govern storage of the source value in the receiving
item (data-name).

ND-60.089.03

—— e L cebmsmm i a s e e ey e e s B S ——



A L L amaal A Ll e AN A AL A Mhe e

5.8.2

5.8.3

5-16

ADD Statement

The ADD statement adds together two or more numeric values and stores the
resulting sum. The ADD statement format is:

numeric-literal
{ data-name-1

{EKANG} data-name-n [ROUNDED][SIZE-ERROR-clause]

When the TO option is used, the values of all the data-names {including data-
name-n) and literals in the statements are added, and the resulting sum replaces
the value of data-name-n. At least two data-names and/or numeric literals must
follow the word ADD when the GIVING option is written.

Examples of proper ADD statements are:

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED
ADD REGULAR-TIME OVERTIME GIVING GROSS-PAY.

The first statement would result in the total sum of INTEREST, DEPOSIT and
BALANCE being placed at BALANCE, while the second would result in the sum
of REGULAR-TIME and OVERTIME earnings being placed in item GROSS-PAY.

ALTER Statement

The ALTER statement format is:
ALTER paragraph TO [PROCEED TQ]procedure-name

and it is used to modify a simple GO TO statement elsewhere in the Procedure
Division, thus changing the sequence of execution of program statements.

Paragraph (the first operand) must be a COBOL paragraph that consists of only a
simple GO TO statement; the ALTER statement in effect replaces the former

operand of that GO TO by procedure-name. Consider the ALTER statement in
the context of the following program segment.

GATE. GO TO MF-OPEN
MF-OPEN.  OPEN INPUT MASTER-FILE
ALTER GATE TO PROCEED TO NORMAL.
NORMAL. READ MASTER-FILE, AT END GO TO EOF-MASTER.

Examination of the above code reveals the technique of "shutting a gate”,

- providing for a one-time initializing program step.

ND-60.089.03



Q

5.8.4

5.8.5

5-17

CALL Statement

The CALL statement format is:
CALL literal USING data-name...

Literal is a subprogram name defined as the program-id of a separately compiled
program. Data names in the Using list are made available to the called
subprogram by passing addresses to the subprogram; these addresses are
assigned to the Linkage section items declared in the using list of that
subprogram. Therefore the number of data-names specified in matching CALL
and Procedure Division Using lists must be identical.

Note:

Correspondence between caller and callee lists is positional, not by identical
spelling of names.

CLOSE Statement

Upon completion of the processing of a file, a CLOSE statement must be
executed, causing the system to make the proper disposition of the device.
Whenever a file is closed, or has never been opened, READ or WRITE

statements cannot be executed properly.
LOCK
NO REWIND

For convenience in processing parts of multi-reel tape files, the file-name may be
followed by the reserved word REEL or UNIT, in order to advance to the next
reel without waiting to do so automatically upon encountering the end of the
current reel of tape. If a file is closed with the REEL or UNIT modifier, further
input or output is permitted; this type of statement is a reel swap, not a true
close-down of file access.

The format of the CLOSE statement is:

CLOSE file-name J | REEL WITH
UNIT FOR REMOVAL

Suffixes and their interpretation are as follows:
WITH LOCK: further use of the file is prohibited.
FOR REMOVAL: the reel is disrﬁounted from the computer

WITH NO REWIND: the reel is left mounted, and is available for
re-opening at a subsequent time.

However, the reserved word options (WITH NO REWIND or WITH LOCK) are
not meaningful for files with Relative or Indexed organization.

ND-60.089.03



5.8.6

RIS PP THS T [ I — T SR

5-18

COMPUTE Statement

The COMPUTE statement evaluates an arithmetic expression and then stores the
result in a designated numeric or report item.

The format of the COMPUTE statement is:
COMPUTE data-name-1... [ROUNDED]=
data-name-2
numeric-literal [SIZE-ERROR-clause]
arithmetic-expression
An example of such a statement is:
COMPUTE GROSS-PAY ROUNDED = BASE-SALARY *
(1 + 1.5* (HOURS — 40) / 40).
An arithmetic expression is a proper combination of numeric literals, data-
names, arithmetic operators and parentheses. In general, the data-names in an
arithmetic expression must designate numeric data. Consecutive data-names (or
literals) must be separated by an arithmetic operator, and there must be one or
more blanks on either side of the operator. The operators are:
+ for addition
— for subtraction )
* for multiplication

/ for division

Parenthesization may be specified when the normal order of operations is not
desired. Consider the following expression:

A+B/(C—D"E)

Evaluation of the above expression is performed in the following ordered
sequence:

1. Compute the product D times E, considered as intermediate result R1.
2 Compute intermediate result R2 as the difference C — R1.
3.  Divide B by R2, providing intermediate result R3.
4 The final result is computed by addition of A to R3.
Without parentheses, the expression
A+B/C—-D"E

is evaluated as:

R1=B/C
R2 = A + R1
R3=D*E

final result = R2 — R3

ND-60.089.03

R e



P

i i s it it B b " -
PR r———— S

5-19

When parentheses are employed, the following punctuation rules should be
used:

1. A left parenthesis is preceded by one or more spaces.
2. A right parenthesis is followed by one or more spaces.

The expression A — B — C is evaluated as (A — B) — C. Uniary operators are
permitted, see the following example:

COMPUTEA = +C + —4.6.

COMPUTEX = Y
COMPUTEA, B(l) = C — D (3)

ND-60.089.03



5.8.7

5.8.8

5-20

DELETE Statement

DELETE Statement (Relative I-O)
The format of the DELETE statement is:

DELETE file-name RECORD
[INVALID KEY imperative statement .

For a file in a sequential access mode, the immediately previous action must
have been a successful READ statement; the record thus previously made
available is logically removed (or made inaccessible).

For a file with dynamic or random access mode declared, the removal action
pertains to whatever record is designated by the value in the RELATIVE KEY
item (data-name-1). If no such numbered record exists, the Invalid Key condition
arises.

DELETE Statement (Indexedl-O)

The DELETE statement logically removes a record from the Indexed file; the
format of the statement is:

DELETE file-name RECORD
[INVALID KEY imperative statement o

For a file in the sequential access mode, the last input-output statement
executed for file-name must have been a successful Read statement; that record
is deleted.

For a file having random or dynamic mode access, the record deleted is the one
associated with the record key; if there is no such matching record, the invalid
key condition exists, and control passes to the imperative statements in the
INVALID KEY clause, or to an applicable USE Declaratives section if no
INVALID KEY clause exists.

DISPLAY Statement

The DISPLAY statement provides a simple means of outputting low-volume data
without the complexities of File Definition; the maximum total number of
characters to be output is 132.

The format of the DISPLAY statement.is:

data-name}

DISPLAY literal [UPON mnemonic-name]

When the UPON suffix is omitted, it is understood that output is destined to be
printed on the standard display device.

Values output are either literals, figurative constants (one character), or data

fields; if a data item operand is packed, it is displayed as a series of digits
followed by a separate trailing sign.

ND-60.089.03

("\




5.8.9

5.8.10

5-21

DIVIDE Statement

The DIVIDE statement computés a quotient of two numeric values and stores it.
The format of the Divide statement is:

data-name-1 data-name-2
DIVIDE { numeric-literal- 1} { |NTO}{ numeric-literal-2

[GIVING data-name-3][ROUNDED][SIZE-ERROR-clause]

The BY-form signifies that the first operand (data-name-1 or numeric-literal-1) is
the dividend (numerator), and the second operand (data-name-2 or
numeric-literal-2) is the divisor, or denominator. If GIVING is not written in this
case, then the first operand must be a data-name, in which the quotient is
stored.

The INTO-form signifies that the first operand is the divisor and the second
operand is the dividend. If GIVING is not written in this case, then the second
operand must be a data-name, in which the quotient is stored.

Division by zero always causes a size-error condition.

EXHIBIT Statement

The execution TRACE mode may be set or reset dynamically. When set,
procedure-names are printed in the order in which they are executed.

Execution of the READY TRACE statements sets the TRACE mode to cause
printing of every section and paragraph name each time it is entered. The RESET
TRACE statement inhibits such printing. Possession of a printed list of procedure
names in the order of their execution is invaluable in detection of a program
malfunction; it aids in detection of the point at which actual program flow
departed from the expected program flow. Another debugging feature may be
required in order to reveal critical data values at specifically designated points in
the procedure. The EXHIBIT statement provides this facility.

The statement form

literal
EXHIBIT NAMED data-name}

produces a printout of values of the indicated literal, or data items in the format
data-name = value.

Statements EXHIBIT, READY TRACE and RESET TRACE are extensions to
ANS-74 standard COBOL designed to provide a convenient aid to program
debugging.

Programming Note: It is often desirable to include such statements on source

lines that contain D in column 7, so that they are ignored by the compiler unless
WITH DEBUGGING MODE is included in the SOURCE-COMPUTER paragraph.

ND-60.089.03



[UPUBE TR PO

5.8.11

5.8.12

5-22

EXIT Statement

The EXIT statement is used where it is necessary to provide an end-point for a
procedure.

The format for the EXIT statement is:
paragraph-name. EXIT.

EXIT must appear in the source program as a one-word paragraph preceded by a

. paragraph-name. An exit paragraph provides an end-point to which preceding

statements may transfer control if it is decided to bypass some part of a section.

EXIT PROGRAM STATEMENT

The statement EXIT PROGRAM, appearing in a called subprogram, causes
control to be returned to the next executable statement after CALL in the calling
program. This statement must be a paragraph by itself.

Programming Note: Any caller to a COBOL subprogram must assure that
argument pointers (to be used as pointers to the subprogram’s linkage items) are
proper word addresses.

When a COBOL CALL is executed, the arguments (or parameters) must be word

aligned items; the caller receives the effective word addresses as developed by
the COBOL run-time routines.

GO TO Statement

The GO TO statement transfers control from one portion of a program to
another. It has the following general format: .

GO TO procedure-name [... DEPEN DING ON data-name]

The simple form GO TO procedure-name provides the basic means of
transferring the path of flow to a designated paragraph or section.

The more general form designates n procedure-names as a choice of n paths to

transfer to, if the value of data-name is 1 to n, respectively. Otherwise, there is
no transfer of control and execution proceeds in the normal sequence.

ND-60.089.03



5.8.13

5-23

IF Statement

The IF statement permits the programmer to specify a series of procedural
statements to be executed in the event that a stated condition is true. Optionally,
an alternative series of statements may be specified for execution if the condition
is false. The general format of the IF statement is:

NEXT SENTENCE
IF condition {statement{s}-1 }‘ e [ELSE statement(s)-2...]

Examples of IF statements:

1. IF BALANCE = 0 GO TO NOT-FOUND.
2. IFX<1.743 MOVE ‘M’ TO FLAG.
3. IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD 1

TO SKIP-COUNT ELSE GO TO BYPASS.

The first series of statements is executed if, and only if, the designated condition
is true. The second series of statements is executed if, and only if, the
designated condition is false. The second series (ELSE part) is terminated by a
sentence-ending period. If there is no ELSE part to an IF statement, then the first
series of statements must be terminated by a sentence-ending period. Refer to
Appendix F for discussion of nested IF statements.

Regardless of whether the condition is true or false, the next sentence is
executed after execution of the appropriate series of statements, unless a GO TO
is contained in the imperatives that are executed, or unless the nomina!l flow of
program steps is superseded because of an active Perform statement.

A condition is either a simple condition or a compound condition. A compound
condition may not be parenthesized explicitly. A simple relational condition has
the following structure:

operand-1 relation operand-2
where ""operand’’ is a data-name, literal, or figurative-constant.
A compound condition may be formed by connecting two conditions by the
logical operator AND or OR, e.g. A< B OR C = D. Refer to Appendix E

for further permissible forms involving parenthesization, NOT, or ""abbreviation”.

The term relation has three basic forms, expressed by the relational symbols
equals, less than, or greater than (i.e., = or <or >).

Another form of relation that may be used involves the reserved word NOT,
preceding any of the three relational symbols. In summary, the six relations in
conditions are:

Relation Meaning
= is equal to
< is less than
> is greater than
NOT = is not equal to
NOT < is greater than, or equal to
NOT > is less than, or equal to



5-24

The reserved words AND or OR permit the specification of a series of relational
tests, as follows:

a.

Individual relations connected by AND specify a compound condition
that is met {true) only if all the individual relationships are met.

Individual relations connected by OR specify a compound condition that
is met (true) if any of the individual relationships are met.

The following is an example of a compound condition containing both AND and
OR connectors. Refer to Appendix E for formal specification of evaluation rules.

IFX = YAND FLAG = 'Z’ OR SWITCH = 0 GO TO PROCESSING.

In the above example, execution will be as follows, depending on various data

values.

Data Value Does Execution go
X Y FLAG SWITCH to PROCESSING?
10 10 Z' 1 Yes
10 1 2’ 1 No
10 1 Z' 0 Yes
10 10 'p’ 1 No
6 3 'p’ 0 Yes
6 6 p’ 1 No

Usages of reserved word phrasings EQUAL TO, LESS THAN, and GREATER
THAN are accepted equivalents of = < > respectively. Any form of the relation
may be preceded by the word IS, optionally.

Methods of Performing Comparisons

Numeric Comparisons:

The data operands are compared after alignment of their decimal
positions. The results are as defined mathematically, with any negative
values being less than any positive value. An index-name or index item
may appear in a comparison.

Character Comparisons:

Non-equal length comparisons are permitted, with spaces being
assumed to extend the length of the shorter item, if necessary.
Relationships are defined in the ASCII code; in particular, the letters A-Z
are in an ascending sequence, and digits are less than letters. Refer to
Appendix C for all ASCII character representations.

ND-60.089.03



T

5-25

Returning to our discussion of simple conditions, there are three additional forms
of a simple condition, in addition to the relational form, namely: class test,
condition-name test (88}, and sign test.

A class test condition has the following syntactical format:

' NUMERIC
data-name IS [NOT] ALPHABETI

This condition specifies an examination of the data item content to determine
whether all characters are proper digit representations (when the test is for
NUMERIC} or only alphabetic or blank space characters exist (when the test is
for ALPHABETIC). The NUMERIC test is valid only for a group, decimal, or
character item. The ALPHABETIC test is valid only for a group or character item
(Picture an form).

A sign test has the following syntactical format: .

data-name IS [NOT] {NEGATIVE |ZERO | POSITIVE}

This test is equivalent to comparing data-name to zero in order to determine the
truth or falsity of the stated condition.

A condition-name test is expressed by the following syntactical format:

condition-name

where condition-name is defined by a level 88 data division entry.

ND-60.089.03



5.8.14

- 5-26

INSPECT Statement

The INSPECT statement enables the programmer to examine a character-string
item. Options permit various combinations of the following actions:

(a) counting appearances of a specified character,
{b) mapping a specified character into an alternative.
"“{c) qualifying and limiting the above actions by keying those actions

to the appearance of other specific characters.

The format of the INSPECT statement is:
INSPECT data-name-1 [TALLYING-clause][REPLACING-clause]
where TALLYING-clause has the format

CHARACTERS
TALLYING data-name-2 FOR ALL | LEADING operand-3

[BEFORE | AFTER INITIAL operand-4]

and REPLACING-clause has the format

CHARACTERS
REPLACING ALL [ LEADING | FIRST operand-5{ BY operand-§

BEFORE | AFTER INITIAL operand-7}

In the above formats, operand-n may be a quoted literal of length one, a
figurative constant signifying a single character, or a data-name of an item
whose length is one.

Tallying-clause and Replacing-clause may not both be omitted; if both are
present, Tallying-clause must be first.

Tallying-clause causes character-by-character comparison, from left to right, of
data-name-1. When an AFTER INITIAL operand-4 subclause is present, the
counting process begins only after detection of a character in data-name-1
matching operand-4. If BEFORE INITIAL operand-4 is specified, the counting
process terminates upon encountering a character in data-name-1 which
matches operand-4.

Replacing-clause causes replacement of characters under specified conditions. If
BEFORE INITIAL operand-7 is present, replacement does not continue after
detection of a character in data-name-1 matching operand-7. If AFTER INITIAL
operand-7 is present, replacement does not commence until detection of a
character in data-name-1 matching operand-7.

When both TALLYING and REPLACING clauses are present, the two clauses
behave as if two INSPECT statements were written, the first containing only a
TALLYING clause and the second containing only a REPLACING clause.

In developing a TALLYING value, the final result in data-name-2 is equal to the

tallied count plus the initial value of data-name-2. In the first example below, the
item COUNTX is assumed to have been set to zero initially.

ND-60.089.03




5-27

INSPECT ITEM TALLYING COUNTX FOR ALL "L REPLACING LEADING "A”
BY E"" AFTER INITIAL"'L". '

Original (ITEM): SALAMI  ALABAMA
Result (ITEM): SALEM!  ALEBAMA
Final (COUNTX): 1 1

INSPECT WORK-AREA REPLACING ALL DELIMITER BY TRANSFORMATION

Original (WORK-AREA): NEW YORK N Y (length 16)
Original (DELIMITER): {space)

Original (TRANSFORMATION): . (period)

Result (IWORK-AREA): NEW.YORK..N.Y...

ND-60.089.03



5.8.16

5-28

MOVE Statement

The MOVE statement is used to move data from one area of main storage to
another and to perform conversions and/or editing on the data that is moved.
The MOVE statement has the following format: .
MOVE data-name-1 TQ data-name-2 [data-name-3...]
literal .
The data represented by data-name-1 or the specified literal is moved to the area
designated by data-name-2. Additional receiving fields may be specified

(data-name-3 etc.) When a group item is a receiving field, characters are moved
without regard to the level structure of the group involved and without editing.

Subscripting or indexing associated with data-name-2 is evaluated immediately
before data is moved to the receiving field. The same is true for other receiving
fields (data-name-3, etc., if any). But for the source field, subscripting or
indexing (associated with data-name-1) is evaluated only once, before any data is
moved.

Toillustrate, consider the statement
MOVE A (B) TO B, C (B),
which is equivalent to

MOVE A (B) TO temp
MOVE temp TO B
MOVE temp TO C (B)

where temp is an intermediate result field assigned automatically by the
compiler.

The following considerations pertain to moving items:

1. Numeric (external or internal decimal, binary, numeric literal, or
ZERO) or alphanumeric to numeric or report: ’

a. The items are aligned by decimal points, with generation
of zeros or truncation on either end, as required.

b. When the types of the source field and receiving field
differ, conversion to the type of the receiving field takes
place. Alphanumeric source items are treated as unsigned
integers with Usage Display.

c. The items may have special editing performed on them
with suppression of zeros, insertion of a dollar sign, etc.,
and decimal point alignment, as specified by the receiving
area.

ND-60.089.03



el R I T bua = S———— - S i et e i e L. = <N W it i, wh e LA i & e I AT R A ——

" B ittt

5-29
2. Non-numeric source and targets:
a. The characters are placed in the receiving area from left to

right (unless justified right applies).

b. If the receiving field is not completely filled by the data
. being moved, the remaining positions are filled with

' spaces.
c. If the source field is longer than the receiving field, the

move is terminated as soon as the receiving field is filled.

3. When overlapping fields are involved, results are not predictable.

4. Appendix G shows, in table form, all permissible combinations of
source and receiving field types.

Examples of Data Movement (b represents blank):

Source Field Receiving Field

PICTURE Value PICTURE Value before Value after
MOVE MOVE

99va9 1234 S99v99 9876 — 1234 +

99va9 1234 99Vv9 987 123

S9vV9 12— 99Vv999 98765 01200 +

XXX A2B XXXXX YIX8W A2Bbb

8va9 123 99.99 87.65 01.23

. 9 ' ND-60.089.03



5.8.16

5.8.17

5-30

MULTIPLY Staterment

The MULTIPLY statement computes the product of two numeric data items and
stores it.

The format is:

data-name-1
MULTIPLY { numeric-literal-1
data-name-2 [GIVING data-name-3]
BY { numeric-literal-2  GIVING data-name-3

[ROUNDED] [SIZE-ERROR-clause]

When the GIVING option is omitted, the second operand must be a data-name;
the product replaces the value of data-name-2. For example, a new BALANCE
value is computed by the statement MULTIPLY 1.03 BY BALANCE. (Since this
order might seem somewhat unnatural, it is recommended that GIVING always
be written.)

OPEN Statement

The OPEN statement must be executed prior to commencing file processirig. The
format of an OPEN statement is:

INPUT
OPEN |- O file-name ...
OUTPUT

For an INPUT file, opening initiates reading the file's first records into memory,
so that subsequent Read statements may be executed without waiting.

For an OUTPUT file, opening makes available a record area for development of
one record, which will be transmitted to the assigned output device upon the
execution of a Write statement.

Failure to precede (in terms of time sequence) file reading or writing by the
execution of an Open statement is a serious execution-time error which will
cause abnormal termination of a program run.

An |-O opening is valid only for a random mass-storage file; it permits use of the
REWRITE statement for modified records.

ND-60.089.03



L o s A (R

5.8.18

PERFORM Statement

The PERFORM statement permits the execution of a separate body of program
steps. Two formats of the PERFORM statement are available:

Option 1

integer
PERFORM range [{ data-name} TIMES]
Option 2

PERFORM range [VARYING data-name FROM
amount-1 BY amount-2 UNTIL] condition.

In the above syntactical presentation, the following definitions are assumed:

a. Range is a paragraph-name, a section-name, or the construct
procedure-name-1  THRU procedure-name-2. (THROUGH is
synonymous with THRU.)

b. The generic operands amount-1 and amount-2 may be a numeric
* literal or data-name. In practice, these amount specifications are
frequently integers, or data-names that contain integers, and the

specified data-name is used as a subscript within the range.

In Option 1, the designated range is performed (i.e., executed remotely) a- fixed
number of times, as determined by an integer or by the value of an integral data-
item.

In Option 2, the range is performed a variable number of times, in a step-wise
progression, varying from an initial value of data-name = amount-1, with
increments of amount-2, until a specified condition is met.

In an Option 2 Perform, evaluation of the next value of data-name is done on a
dynamic basis so that, at least in theory, amount-2 might be different from time
to time (only if changed within the designated range, of course).

The condition in an Option 2 Perform is evaluated prior to each attempted
execution of the range. Consequently, it is possible to not Perform the range, if
the condition is met at the outset.

At run-time, it is illegal to have concurrently active perform ranges whose
terminus points are the same.

ND-60.089.03

o bt i . 2100 i A e S A i e i S e L S e it N i o e R



-

5.8.19

READ Statement

READ Statement (Sequential I-O)
The format of READ statement is:

READ file-name RECORD [INTO data-name]
[AT END imperative statement ...]

The READ statement makes available the next logical data record of the
designated file from the assigned device.

Since at some time the end-of-file will be encountered, the user should include
the AT END clause. The reserved word END is followed by any number of
imperative statements, all of which are executed only if the end-of-file situation
arises. The last statement in the AT END series must be followed by a period, to
indicate the end of the sentence. If end-of-file occurs but there is no AT END
clause on the READ statement, an applicable Declarative procedure is
performed; if neither AT END nor Declarative exists, a run-time 1/Q error is
considered to have occurred.

When there does exist a data record to be read, successful execution of the
READ statement is immediately followed by execution of the next sentence.

When more than one 01 is subordinate to a file definition, the user must be able
to distinguish between the types of records that are possible, in order to
determine exactly which type is currently available. This requirement can be
achieved by a data comparison, using an IF statement to test a field which has a
unique value for each type of record.

The INTO option permits the user to specify that a copy of the data record is to
be placed into a designated data field immediately after the READ statement.
The data-name must not be defined in the file itself.

In the case of a blocked input file, not every READ statement performs a physical

transmission of data from an external storage device; instead, READ may simply
obtain the next logical record from an input buffer.

ND-60.089.03



5-33

READ Statement (Relative I-0O)
Format 1:

READ file-name [NEXT] RECORD {INTO data-name]
[AT END imperative statement ... ]

Format 2:

READ file-name RECORD [INTO data-name]
[INVALID KEY imperative statement ....]

Format 1 must be used for all files in sequential access mode. The NEXT phrase
must be present to achieve sequential access if the file’s declared mode of
access is Dynamic.

Format 2 is used to achieve random access (declared mode of access either
Random or Dynamic).

If a Relative Key is defined (in the file's SELECT entry), successful execution of a
format 1 READ statement updates the contents of the RELATIVE KEY item
{"*data-name-1"') so as to contain the record number of the record retrieved.

For a Format 2 READ, the record that is retrieved is the one whose refative
record number is pre-stored in the RELATIVE KEY item (’data-name-1"). If no
such record exists, however, the “Invalid Key” condition arises, and is handles
b y
(a) the imperative statements given in the INVALID KEY portion of the READ, or
(b) an associated Declarative section, or (c) by the run-time error handler if
neither of the above is specified.

READ Statement (Indexed I-O)
Format 1 (Sequential Access):

READ file-name [NEXT] RECORD [INTQ data-name]
[AT END imperative statement ...]

Format 2 (Random or Dynamic Access):

READ file-name RECORD [INTQ data-name] [KEY IS data-name-2]
T [INVALID KEY imperative statement ...]

Format 1 with the NEXT option is used for sequential reads of a DYNAMIC
access mode file. The AT END clause is executed when the logical end-of-file
condition arises. If this clause is not written in the source statement, an
appropriately assigned USE Declarative section is given control at end-of-file
time.

in Format 2, the INVALID KEY clause specifies action to be taken if the access
key value does not refer to an extant key in the file.

The "KEY IS” clause designates the record key (declared in the file’s SELECT
entry) as the "current key of record™. If no "KEY 1S" clause is written in a READ
statement, then the (prime)} record key is assumed to be the key of record, for
non-sequential access. The user must ensure that a valid key value is in the
designated key field prior to execution of a random-access Read.

ND-60.089.03

et i B



5.8.20

5-34

REWRITE Statement

REWRITE Statement (Sequential I-O)

The REWRITE statement replaces a logical record on a sequential disk file. The
format is:

REWRITE record-name [FROM data-name]

At the time of execution of this statement, the file to which record-name belongs
must be open for |-O operations {See OPEN Statement, Section 6.8.17).

If a FROM part is included in this statement, the effect is as if MOVE data-name
TO record-name were executed just prior to the REWRITE. Execution of
REWRITE replaces the record that was accessed by the most recent READ
statement, said prior read must have been completed successfully, as indicated
by the File Status indicator. (The file status indicator is updated by execution of
REWRITE.) :

REWRITE Statement (Relative I-O)
The format of the REWRITE statement is:

REWRITE record-name [FROM data-name])
[INVALID KEY imperative statement]

For a file in sequential access mode, the immediately previous action must have
been a successful READ: the record thus previously made available is replaced in
the file by executing REWRITE.

For a file with dynamic or random access mode declared, the record that is
replaced by executing REWRITE is the one whose ordinal number is pre-set in
the RELATIVE KEY item {data-name-1). If no such item exists, the "Invalid Key”
condition arises.

REWRITE Statement (IndexedI-O)

The REWRITE statement logically replaces an existing record, the format of the
statement is:

REWRITE record-name [FROM data-name]
[INVALID KEY imperative statement ...]

The last READ statement must have been successful in order for a REWRITE
statement to be valid. If the value of the record key in record-name (or
corresponding part of data-name, if FROM appears in the statement) does not
equal the key value of the immediately previous read, or if that previous read was
unsuccessful, then the invalid key condition exists and the imperative statements
are executed, if present; otherwise an applicable USE Declaratives section is
executed.

ND-60.089.03



5.8.21

el et e S i St S W Al . e A N

5-35

SEARCH Statement

A linear search of a table may be done using the SEARCH statement; its general
formis:

SEARCH table [VARYING identifier | index-name]

[AT END imperative-statement-1]

{WHEN condition-1 NEXT SENTENGE }
{ imperative-statement-2 }

"Table” is the name of a data-item having an OCCURS clause that includes an
INDEXED-BY list; “'table”” must be written without subscripts or indexes because
the nature of the SEARCH statement causes automatic variation of an index-
name associated with a particular table.

There are four possible “'varying”’ cases:

(a) NO VARYING phrase —— the first-listed index-name for the table
is varied.
(b) VARYING index-name-in-a-different-table — — the first-listed

index-name in table’s definition is varied, implicitly, and the index-
name listed in the VARYING phrase is varied in like manner,
simultaneously.

{c) VARYING index-name-defined-for table —— this specific -index-
name is the only one varied.

(d) VARYING integer-data-item-name — — both this data-item and
the first-listed index-name for table are varied, simultaneously.

The term variation has the following interpretation:

1. The initial value is assumed to have been established by an earlier
statement such as SET.

2. If the initial value exceeds the maximum declared in the applicable
OCCURS clause, the SEARCH operation terminates at once, and
if an AT END phrase exists, the associated imperative statement-1
is executed.

3. If the value of the index is within the range of valid indexes (1, 2,
. up to and including the maximum number of occurrences),
then each WHEN-condition is evaluated until one is true or all are
found to be false. If one is true, its associated imperative state-
ment is executed and the SEARCH operation terminates.

If none is true, the index is incremented by one and step (3} is
repeated. Note that incrementation of index applies to whatever
item and/or index is selected according to rules a-d.

The logic of a SEARCH is depicted in the following chart.

ND-60.089.03



5--36

Vant e 4
7 ’
j/ may be /
/7 null /
/ r4
/ ; /

imperative-
statement-1 [ 7

imperative- Next

condition-1 statement-2 [ Varb

WHEN -
condition-2

-

Increment
indexes

imperative-

.
statement-3

F

SEARCH ALL STATEMENT
Another form of the SEARCH statement (SEARCH ALL) operates on ordered
tables of information. An ordered table is one whose description includes an
OCCURS clause containing a KEY clause:

OCCURS integer TIMES

ASCENDING
{ DESCENDING KEY IS data-name... .

INDEXED BY index-name....
Technically, the ASCENDING or DESCENDING KEY clause is required for a
non-linear search of a table to be able to exploit the known ordering of data
using an optimum "'binary search” method however, in NORD—10 COBOL the
key clause is not mandatory.

The SEARCH ALL statement is different from the other form in the following
respects:

1. Only one WHEN clause is permitted.

2. On the WHEN condition, the only relational operator permitted is
= or {IS) EQUAL TO.

3. On the WHEN condition, the only {ogical operator permitted is
AND; use of OR is prohibited.

ND-60.089.03



i P il

5.8.22

5--37

4, On the WHEN condition, if condition-names are included, they
must be only single-valued (the compiler does not enforce this rule
— — itis a user response).

5. The first index-name associated with named “table” is set to 1
automatically at the beginning of the SEARCH ALL process.

To summarize, format 2 of the SEARCH statement is:
SEARCH ALL table [AT END imperative-statement]
WHEN simple-condition-2 [AND simple-condition-3]

{NEXT SENTENCE | imperative-statement-2 ...}

SET Statement

The SET statement permits the manipulation of index-names, index items, or
binary subscripts for table-handling purposes. There are two formats:

Format 1:
index-name-1 index-name-2
SET index-item-1 .10 index-item-2
data-name-1 data-name-2
integer-2
Format 2:
index-name-4
index-name-3 UPBY index-item-4
SET index-item-3 (...]DOWN BY. data-name-4

integer-4

Format 1 is equivalent to moving the "TQO” value (i.e. integer-2) to multiple
receiving fields written immediately after the verb SET.

Format 2 is equivalent to reduction (DOWN) or increase (UP) applied to each of
the quantities written immediately after the verb SET: the amount of the
reduction or increase is specified by a name or value immediately following the
word BY,

In any SET statement, data-names are_restricted to binary items, except that an
integer decimal item may precede the word TO.

ND-60.089.03



5.8.23

SORT Statement

One of the most fundamental ‘and frequently required business data processing
techniques is file sorting, for often data is collected or produced in one order but
required to be processed or reported in a different order. The COBOL SORT
feature necessitates a sort-file-definition in the File Section and a SORT state-
ment in the Procedure Division. If required, two special statements may also be
used to build a file to be sorted or to retrieve ordered records at the final stage of
sorting.

Interacting with the SORT subsystem, a COBOL object program may modify,
insert, delete or summarize records during the initial or final phases of the sorting
operation.

To use the SORT feature, the programmer provides sort-file definitions (having
the special level indicator SD). There must be a SELECT sentence in the
Environment Division for any SD-file. In a SD-entry, only the RECORD
CONTAINS and DATA RECORDS clauses may appear. In the Procedure
Division, the executable SORT statement initiates a sorting operation.

The format of this statement is:

ASCENDING
SORT sort-file-name ON {DESCENDING} KEY {data-name}...

USING fite-name-1
INPUT PROCEDURE IS range-1 }

GIVING file-name-2

——

OUTPUT PROCEDURE IS range-2

where ranges are defined as section-name-1[THRU section-name-2]. The
following discussions define the syntatic components of the SORT statement.

ASCENDING AND DESCENDING KEYS

ASCENDING and DESCENDING specify whether the records are to be sorted
into an ascending or descending sequence based on one or more sort keys. The
sequence specified is applicable to all sort keys immediately following the
keyword ASCENDING or DESCENDING. Both ASCENDING and DESCENDING
may be specified in the same statement for different keys. Example:

SORT SFILE ASCENDING DEPARTMENT, DESCENDING RATE ...

Sort keys must not be goverened by an OCCURS clause (which would
necessitate subscripting). The appropriate collating sequence, depending on key
type, is used for each key. Sort keys are those data-names contained in the KEY
clause of the SORT statement; all such names must be defined in record(s)
subordinate to the sort-file-name. The major sort key is the first one in the KEY
clause. Up to five sort keys may be defined per SORT. Every record which is
listed in the DATA RECORDS clause of the sort-file must contain within its
Record Description the KEY item data-name-1, data-name-2, etc.; each of the
KEY items must have the same relative position in every one of the records. No
two sort keys should overlap. A particular data item may be used once only in
the KEY description. ) '

ND-60.089.03



5-39

SORT USING FILE-NAME-1

USING indicates that the records to be sorted are those of the files named in the
USING clause and that they are all to be passed to the sorting operation as one
input file. These filels) will be automatically opened, read, and closed; the
programmer must not attempt to do so himself. File-name-1 is defined by a FD
entry, not a sort-file-definition.

SORT INPUT PROCEDURE

INPUT PROCEDURE indicates that the programmer has written an input
procedure to process records before sorting and has included the procedure in
the Procedure Division in the form of one or more distinct sections. The input
procedure passes records one at a time to the SORT system after it has
completed its processing. In other words, the file to be sorted is built up by
procedural statements in the specified range. The input procedure can include
any statements needed to select, create, or modify records. Control must not be
passed to the input procedure except by a SORT statement, because RELEASE
statements (see below) have no meaning unless they are controlled by a SORT
statement. The input procedure must not contain any SORT statements and
must be fully ’self-contained”, in the sense that execution is not passed outside
the range except to revert to the SORT system. The input procedure must
incorporate three specific functions:

1. it must build the records that are to be sorted, one at a time, in the
data record that has been described for the sort-file. This can be
accomplished by using statements such as READ ...INTO ...or
MOVE. If the input is to come initially from a file, the program
must open that file prior to executing the SORT statement.

2. Once a record has been built, the input procedure must make that
record available to the sorting operation by means of the

" RELEASE statement, after which the record just built is no longer
available. Either step 1 or step 3 is next.

3. When all the records have been released, control must pass to the
last statement in the procedure in order to terminate the

procedure. The EXIT statement provides a means of achieving this
return to the SORT subsystem.

RELEASE STATEMENT
The RELEASE statement, which can only appear in an input procedure, causes
one record to be transferred to the sorting operation. If an input procedure is
specified, the RELEASE statement must be included in that procedure. The
format of the RELEASE statement is:

RELEASE record-name [FROM data-name]

where record-name is one of the data records in a sort-file-definition.

ND-60.089.03



5-40

SORT GIVING FILE-NAME-2

GIVING indicates that, after the records have been sorted, they are to be written
as a file on file-name-2. If the programmer specifies the GIVING option all
records that have been sorted will be placed on one file. This file will be
automatically opened, written, and closed by the SORT system, the programmer
must not attempt to do so himself. File-name-2 is defined by a FD entry, not a
sort-file definition.

SORT OUTPUT PROCEDURE

OUTPUT PROCEDURE indicates an output procedure to process records after
they have been sorted and are available finally in merged order. The output
procedure returns the records one at a time from the SORT system after they
have been sorted. In this case, the specified procedure retrieves the records in
the order implied by the sort keys. The output procedure may consist of any
statements needed to select, modify, or copy records being returned (one at a
time, in sorted order) from the sort-file. Control must not be passed to the output
procedure except by a SORT statement, since RETURN statements are meaning-
less unless controlled by a SORT statement. The output procedure must not
include any SORT statements and must be self-contained. The programmer
must write the output procedure so that it incorporates three specific functions:

1. It must obtain sorted records, one at a time, by means of the
RETURN statement. Once a record has been returned, the
previously returned record is no longer available.

2. It performs suitable output operations on each record returned. In
order to produce an output file, the output procedure must
properly open, written, and close it.

3. When the SORT system has returned all records and the output
procedure attempts to execute another RETURN statement (as in
Step 1), the AT END clause of the RETURN statement is
executed. The imperative statement in the AT END clause must
ultimately pass control to the last statement of the output
procedure in order to terminate the entire SORT operation. The
EXIT statement is the usual means of achieving this termination.

RETURN STATEMENT

The RETURN statement causes individual records to be obtained from the
sorting operation after all the records have been sorted, and it indicates what
action is to be taken with regard to each. The format of the RETURN statement
is:

RETURN sort-file-name [INTO data-name]

[ATEND imperative-sta.tement o]
Note that, as in the READ statement, data is obtained by referring to the file-
name. Data processing (as required in Step 2, above) employs appropriate

record, group, and elementary item names contained in the sort-file record
definition.

ND-60.089.03



5.8.24

5-41

START Statement

START Statement (Relative I-O)

The format of the START statement is the same for a Relative file as for an
Indexed file:

GREATER THAN

START file-name KEY IS NOT < data-name
EQUALTO
NOT LESS THAN

[INVALID KEY imperative statement ...]

Execution of this statement specifies the beginning position for reading
operations; it is permissible only for a file whose access mode is defined as
sequential or dynamic. Data-name may only be that of the previously declared
RELATIVE KEY item. When executing this statement, the associated file must be
currently openin INPUT or I-O mode.

START Statement (Indexed [-O)

The START statement enables an Indexed organized file to be positioned for
reading at a specified key value. This is permitted for files open in either
sequential or dynamic access modes. The format of this statement is:

GREATER THAN

START file-name | KEYIS NOT LESS THAN | data-name
EQUALTO
NOT <

[INVALID KEY imperative statement ....]

Data-name must be a declared record key and the value to be matched by a
record in the file must be pre-stored in it. When executing this statement, the file
must be open in the input or I-O mode.

If the KEY phrase is not present, equality between a record in the file and the
record key value is sought. If key relation GREATER or NOT LESS is specified,
the file is positioned for next access at the first record greater than, or greater
than or equal to, the indicated key value.

If no matching record is found, the imperative statements in the Invalid Key
clause are executed, or an appropriate USE Declarative section is executed.

ND-60.089.03



5.8.25

5-42

STOP Statement

The STOP statement is used to terminate or delay execution of the object
program.

The format of this statement is:

RUN

STOP literal

STOP RUN terminates execution of a program, returning control to the
operating system.

The form STOP literal causes the specified literal to be displayed on the console,
and execution to be suspended. Execution of the program is resumed only after
operator intervention. Presumably, the operator performs a function suggested
by the content of the literal, prior to resuming program execution.

ND-60.089.03




5.8.26

e e e o £ o i et R W i B e =

5-43

STRING Statement

The STRING statement allows one to concatenate multiple sending data item
values into a single receiving item. The general format of this statement is:

operand-2
STRING operand-1.. DELIMITED BY
SIZE

INTO identifier-1 [WITH POINTER identifier-2]
[ON OVERFLOW imperative-statement]

In this format, the term operand means a literal, figurative-constant, or data-
name. "ldentifier-1" is the receiving data-item name.

If no POINTER phrase exists, the default value of the logical pointer is one. The
logical pointer value designates the beginning position of the receiving field into
which data placement begins. During movement to the receiving field, the
criteria termination of an individual source is controlled by the
“DELIMITED BY "’ phrase:

DELIMITED BY SIZE: the entire source field is moved (unless the
receiving field becomes full).

DELIMITED BY operand-2: The character string specified by operand-2
is a “Key” which, if found to match a like-numbered succession of
sending characters, terminates the function for the current sending
operand (and causing automatic switching to the next sending operand,
if any).

If at any point the logical pointer {which is automatically incremented by
one for each character stored into identifier-1) is less than one or greater
than the size of identifier-1, no further data movement occurs, and the
imperative statement given in the OVERFLOW PHRASE IS EXECUTED
(if any).

There is no automatic space fill into any position of identifier-1 — — that
is, unaccessed positions are unchanged upon completion of the
STRING statement.

Upon completion of the STRING statement, if there was a POINTER
phrase, the resultant value of identifier-2 equals its original value plus the
number of characters moved during execution of the STRING
statement.

ND-60.089.03



5.8.27

e TR ks T 0 i Tt & e r— b

5—-44

SUBTRACT Statement

The SUBTRACT statement subtracts one or more numeric data items from a
specified item and stores the difference.

The SUBTRACT statement format is:

FROM

data-name-1
{ numeric—litera|-1}

SUBTRACT

data-name-m  GIVING data-name-n
{ numeric literal-m  GIVING data-name-n }

[ROUNDED][SIZE-ERROR-clause]

The effect of the SUBTRACT statement is to sum the values of all the operands
that precede FROM and then to subtract that sum from the value of the item
following FROM.

The result (difference) is stored in data-name-n, if there is a GIVING option.
Otherwise, the result is stored in data-name-m.

ND-60.089.03



5.8.28

5-45

UNSTRING Statement

The UNSTRING statement causes data in a single sending field to be separated
into subfields that are placed into multiple receiving fields. The general format of
the statement is: i

UNSTRING identifier-1

[DELIMITED BY [ALL] operand-1 [OR [ALL] operand-2] ...]

INTO {identifier-2 [DELIMITER IN identifier-3] [COUNT IN identifier-4]}'...

[WITH POINTER identifier-5]

[TALLYING IN identifier-6]

[ON OVERFLOW imperative-statement]
Criteria for separation of subfields may be given in the "DELIMITED BY" phrase.
Each time a succession of characters matches one of the literals or data-item
values named by operand-1, the current collection of sending characters is
terminated and moved to the next receiving field specified by the INTO clause.
Identifier-1 must be a group or character string (alphanumeric) item. When a
data-item is employed as any operand-1, that operand must also be a group or

character string item.

Receiving fields (identifier-2) may be any of the following types of items:

{a) an unedited alphanumeric item

(b) a character-string item

{c) a group item

(d) an external decimal item (numeric, usage DISPLAY) whase

Picture does not contain any P character.

If there is a “DELIMITED BY"” phrase in the UNSTRING statement, then there
may be "DELIMITER IN” phrases following any receiving item (identifier-2)
mentioned in the INTO clause. In this case, the character(s) that delimit the data
moved into identifier-2 are themselves stored in identifier-3. Furthermore, if a
COUNT IN" phrase is present, the number of characters that were moved into
identifier-2 is moved to identifier-4.

If there is a "POINTER” phrase, then identifier-5 must be an integral numeric
item, and its initial value becomes the initial logical pointer value {otherwise,
logical pointer value one is assumed). The examination of source characters
begins at the position in identifier-1 specified by the logical pointer; upon
completion of the UNSTRING statement the final logical pointer value will be
copied into identifier-6 as a ""feedback’’ value.

If at any time the value of the logical pointer is less than 1 or exceeds the size of

identifier-1, then overflow is said. to occur and control passes over to the
imperative statements given in the "ON OVERFLOW"' clause, if any.

ND-60.089.03



5—-46

Overflow also occurs when all receiving fields have been filled prior to exhausting
the source field.

During the course of source field scanning (looking for matching delimiter
sequences), a variable length character string is developed, which, when
completed by recognition of a delimiter or by acquiring as many characters as
the size of the current receiving field can hold, is then moved to the current
receiving field in the standard MOVE fashion.

If there is a "TALLYING IN" phrase, identifier-6 must be an integral numeric
item. The number of receiving fields acted upon, plus the initial value of
identifier-6, will be produced in identifier-6 upon completion of the UNSTRING
statement.

Note:
If an operand reference in either a STRING or UNSTRING statement is variably

subscripted, the effective address for that component is evaluated just once,
prior to beginning the process of stringing or unstringing.

ND-60.089.03



5.8.29

5-47

WRITE Statement

WRITE Statement (Sequentiall-O)
The format of a WRITE statement is:
WRITE record-name [FROM data-name-1]

[{ BAET(-)E:E} ADVANCING {amOLg_cli\lE(S) }]

Ignoring the Advancing option for the moment, we proceed to explain the main
functions of the WRITE statement.

in COBOL, all file output is achieved by execution of the WRITE statement.
Depending on the device assigned, “written’” output may take the form of
printed matter, magnetic recording on tape or disk. The user is reminded also
that you READ file-name, but you WRITE record-name.

Record-name must be one of the level 01 records defined for an output file.

If the data to be output has been developed in Working-Storage or in another
area (for example, in an input file’s record area), the FROM suffix permits the
user to stipulate that the designated data (data-name-1) is to be copied into the
record-name area and then output from there.

The Advancing option is restricted to line printer output files, and permits the
programmer to control the line spacing on the paper in the printer. In the above
format, amount may be either an unsigned integer literal or an integer numeric
data-item having a value; run-time values from 1 to 60 are permitted:

Integer Carriage Control Action
1 Normal single spacing
2 . Doubie spacing
3

Triple spacing

Normal single spacing is assumed (after 1 line) if there is no BEFORE or AFTER
option in the WRITE statement.

Use of the key word AFTER implies that the carriage control action precedes
printing a line, whereas use of BEFORE implies that writing precedes the carriage
control action.



548

WRITE Statement (Relative I-0)
The_format of the WRITE statement is:

WRITE record-name [FROM data-name}
[INVALID KEY imperative statement ...]

If access mode is (defined as or defaulted to) sequential, then completion of a
WRITE statement causes the relative record number of the record just output to
be placed in the RELATIVE KEY item (data-name-1}.

If access mode is random or dynamic, then the user must pre-set the value of
data-name-1 in order to assign the record an ordinal (relative) number,

The Invalid Key condition arises if there already exists a record having the
specified ordinal number, or if the allocated disk space is exceeded.
WRITE Statement (Indexed |-0)

The WRITE statement releases a logical record for an output or input-output file;
its general format is:

WRITE record-name [FROM data-name-1]
[INVALID KEY imperative statement ...}

Just prior to executing the WRITE statement, a valid (unigue) value must be in
that portion of the record-name (or data-name-1 if FROM appears in the
statement) which serves as RECORD KEY.

In the event of an improper key value, the imperative statements are executed, if
the INVALID KEY clause appears in the statement; otherwise there must be ap-
propriate USE Declarative section. The invalid key condition arises if:

a. the key value is not unique;
b. the allocated disk space is exceeded.

ND-60.089.03



i o Sl i

APPENDIXES

ND-60.089.03




Section:

I &6 m m O O W >

— e P o e R el ST s b B R S Sl

DETAILED CONTENTS
+ o+ o+

NORD-10 COBOL SYNTAX

RESERVED WORD LIST

ASCH CHARACTER SET

DIAGNOSTIC MESSAGES

ADVANCED FORMS OF CONDITIONS
NESTING OF IF STATEMENTS

TABLE OF PERMISSIBLE MOVE QOPERANDS
RELATED DOCUMENTATION

ND-60.089.03

Page:

A-—1
B—1
c-1
D—1
E—1
F—1
G—1
H-1

R F SR



e —————e

-

A-1

APPENDIX A

NORD-10 COBOL SYNTAX

H "[3Q0W SNIDS5NE3G HLIM]

ﬁ 0L-QHON

. Ts_s_ou SI INIOd-VID3a H
Tmu__w._zo_w >02mmm:o_

TEmc swowsuw S| FTOSNOD _

"SINVYN-TVIOILS

-

.m.u_Sn__\,_oo-.GmBo_

0L-QHON .mm._.DmS_Oo-momDOm_

"NOILO3S NOILVHNOIANOD

"NOISIAIQ LNIWNOHIANI

H [Anua uswwoo]
_” [Asnua Juawiwoo)
_” [Aslus wawwoo]
H [Asus Jusuwod]
H [Anus uswiwoa]
ﬁ [Annua Juawiwos]

~aweu weiboid

‘SHYVINIYH

"ALIHND3S

‘3NdNOJ-31Lva

‘NILL1ldM-31vd
‘NOLLVTIVLSNI
"HOHLNV

"ArNVvHO0Hd

"NOISIAIG NOILVIIdILN3al

) ed e ) e el

ND-60.089.03



.l i

A-2

wo[ feweueny ) 404 V3HV INVS |
“JOEINOD-0-1
~ JINVNAQ 3
“[sweu eep S SALVIS 3114] eweu elep S| A3X GHOJ3Y WOONVH § SI3a0W SS300V | G3X3ANI SINOILVZINVOHO
TVILN3N03S
=
aweu eiep S| AN SAILYI3Y JINVNAQ .
{ ‘[eweueep §i SAIVIS 3] INOGNVH [ [S13a0W §S300V | IAILVI3H SINOILVZINYOHO V
[sweu erep S| AN FAILV13E] TVIININO3S
ﬁ ‘[oweu e1ep 5| SAIVIS 3 14] [TVIININOIS S13QOW SS300V]  [TVIININO3S SINOILVZINVOHO) J

sweu ejep
,,8dAl :aweu ajy p1ON

Sv3yv —
vagy { ‘°Bewl 3AY3S3H

W 01 NDISSV aweusjy 153735

“TO41NOJ-37Hd

‘NOILD3S L1Nd1NO-LNdNI

ND-60.089.03




AJjua-uondiiossp-pi02al
-[eAsl-10
Anua-uonduossp-laasi-£L

L

=

Aijua-uonduosap-piooal
-jeAsl-L0
Anua-uonduossp-18As|-£ L

ve o

"NOILO3S AOVIINIT |

"NOILJ3S 3IDVHOLS-ONINEOM

||

Anua-uondudsap-plodai-aAs|-L0

. TES elep S| g40034 VLIVa u

_”wmm._.o<m<_._u JaBajul SNIVLNOD 5003y H_

aweusjy Gs

+++ {Ajua-uonduosap-pi0dai-fos-{ 0}

T e REL ]

-+ {oweu e1ep}

B s| @goo3yg [ V4ivd
gaImwo| (3uvy Souwooss | — |
guvanvis(] SI  Guoo3y | 138Vl

756<x<:o 19681u1 SNIVLNOD G40D34 _

-—

SHILOVHVHD

1 Sag0034d Jabaiul SNIVLNOD X208
aweu ajfy m_uhu_.
‘NOILO3S 3714

‘NOISINIg V1va

ND-60.089.03



R

A—4

Tes__ SI3NIVA _

[ OH3Z NaHM NV |

Lz Tm_u_h W
Fxo_ INAS
tﬂ Q3ZINOYHONAS
ONITIVHL _ |
kao<m<:o mzmwamm_ Muoaw T_ zo_mu
_ ]
X3ANI
5 AV 1dSIa
€-dINOD
£ 1YNOILY.LNdWOD 7_ 39vSN g
Y3LNdWOD | -
IVNOILVLNJWNOD B
4 . =
: Jid
|16 -, o]

Tsm:-smu mm_z_umomﬁ
g8 | =
?Emc-ﬂmtw 10

A A N NI NSNS N
Anua-uonduosap-pi102ai-9nsl-10

..Teﬁ__ SI3INIVA

]
]

?EN NIHM JNV8

Isnr
AN *om_m;w: L

IHOM INAS
1437 G3ZINOHHONAS

o
K7
—_—

___ ONMIVYL —
?Eoé.qxomkqmmnmm *w|z_aqm:“v ?

X3ANI
AV1dsSid
‘£-dINOD

m ITVYNOLLVLNdINOD _”w_ 39vsn ”_
dINOJ
TVYNOILVLINGNOD

Bus-1910e1RYD G| Aﬁ U_mv

L

3dNLIId

H31d
aweu-eiep

ﬂuﬂw-co:atomoqv-_w>m_-mm

TEE eiep 53 z_“_mom_&

ND-80.089.03




T S

A-5

NYHL

EE
HONOYHL

NYHL

B B Rttt i TSV VoYY T

ﬂ.

* {sweu-xepui} A8 GIXIANI | ]

E— B5NIGNI0SIa
_urr fjoute:EI8pHS 1 A oz_ozwumL

_ ONMIVEL -
Tu5<m<xo 31v49343s _ .I|oz_o<m_._w T_ NOIS _
—

|esal|

{ jessu} SIINTVA 8weu-uolpuod g8

-

aweu-elep SINVNIY oweu-elep 99
—

: Tss__ SITMVA H
]

?EN NIHM NV

sar )|
SIS TE.E:L

1HOIY ONAS
a

1437 3ZINOYHONAS

=

S3IWIL JeBaiul SHNDJ0 |

X3aNI
AVidsia
€-dWN0D

€ 1VNOILVLNdNOD T_wo<w3
Y93LNdNOD
IVNOILYLNJNOD

[pomsemmes {3}

_Hm_..cm: elep SINI4303Y ”_

4
ERRIE! .
sweu-elep[ (o

ND-60.089.03



001
AaNIM3Y ON

J<>o_>mmmo“* :zaosmc-m_l
Tz_\smm% _.E\su REED] v 1 38010

HLIM

ﬂ. -+ [sweu-glep ‘] aweu-elep oz_wD_ e 1IVI

aweu-ainpad0id TH.P a33noud H_ Ol ainpsdsoid {31V

S o1 [[SE3 1)) S—
[uewaeis-annesedus GOUHES 321 NO) [JIANNOH] salBusp! Moz_ >.o¥. . .ﬁwz_eou_v aav

JNILL
AVa r WOHAH
31lvd

[sweu-owowoeuw NOY4] | Jeynuap! 14300V

S1USLID1ELS 104 1BULIOY |BIBURYD)

071 IN4IN0 | IRaNi | - * - sweu-ayy NO TINGII0HI Amzo_hm%mwﬁ QUVANVLS 5313V 35
A I N NN NSNS NS
9JUalUas-aAnRIRO3P
L] [ * * * * [ aousiuas] "aweu-ydeibeied w.,
H.zoﬁuwm auWeU-UoNAS
— __=
‘SIAILVEV 1030 aN3
va T _” - * [ @ouaiuas] .oEmc.:nm._mEan

BOUBIUES —— 7 —————
[ -onnesejoep 35N | 'NOILJ3S oweu-uonoss

"S3ALLVHVYII3d

m. - - {sweu-elep} DNISN _ NOISIAIQ 38NA3204d

ND-60.089.03



SEIOVHVHO
fesa| VLLINI ENET 2 Am fesay SNIDV1d34

18143usp! Suoa3g)| lseunveptf K@ {f Ieew)  [GNiavad
1aiiuapt TV
LIS IR [mo L SHILOVHVHD | 53 soynuapt SNIATIVL
JolUSpY Guossg ew)  [SNGVII
Jainuapl v
. selynuspt [53JSNI
INGWILIV1S DAN 3513 TONELNIS DGN)  uompuoo i
* wswalels 3573 ﬁ JuawWa3els B

ﬁoc_E%_ NOONION3d3a " *° ?w:hw_cﬁmwwm%a w 0105
" [ WwE504d] I3
[uewareis-annesedu mnwm %mm Mlﬂﬂ n_w_m“ _“ Jounusp! SNIATS _m._op__u_w__“wﬂ._%“_u.__ gwhlm_ _Emu__u_w__““rhwh ETeTe]
[ sweu-owowsuw NOdN] - * = w AV1dSia
saynuapl

[ Juawazeis-annesaduwi A3N QITVANI] QYOD3Y sweu-ay 313730

[ 3uswales-aaneiadwi YOYYI 3ZIS NO] uoissaidxs-onswyile =
{ [ GTANNGH) eunuept} IINAWOD

ND-60.089.03

<3




OV IPNT

~ JDON3LIN3S IX3IN
o ﬁ*co&m«ﬁw-o%ﬂmag uonipuod NIHM

ﬁcmESmm-mZEonE_ _ suueL-xepul _m__co_
“ u.u .ozm:.q hw_tEmE oz_>m<>.$.~u.

[ wawareis-aanesadwl AFN GRAVANI] [ seyiruapt NOH4] sweu-piodal

wawareis-aanesadwt GNI LY [ Jaynuap O1NI] GHOIIY dweu-aly

[ 1eyynuapi NOH4] sweu-piodal

[ wwewalers-annessdul A3y GITVANI [ oweu-eiep S| A3x] [ seuynuapt GINI] @HOO3Y
[ wawarers-anpesadwn gN3 Lv] [ seunuepi OINI] @403 [ 1X3

HOYV3S

3114M3Y

NYN134

3Sv33d

—— aweu-9|!
z@ 14 av3d ,

jesay)] — |esay| aweu-xapul 14
uonipuod 1 LNN 18ynuap! A8 aWeU-xapul WOHd ._mEEva ONIAHVA
Japuapt
1ebarun
SINIL 181§HUBPI
NHHL =
aweu-ainpasosd aweu-amnpaosoid
pas AONOYHL p N"0443d
ol
© - {sweu-ajy} Ind1NO N3dO
1NdNiI

[wswalers sanessdwi HOouE3 3215 NO] [G3ANNOY] JBuept ONIAID 8- 3UPoBSINY - g _ee__oEEEW

[soynuap) GNIAID) 18yauop! Jalnuap!

.. — esad
{1ayynuept} OL ﬁ i aen

ATdILINN

wﬂ,d.w_.

ND-60.089.03



OEMC-CO_uOOm Ew awieu-uondes

HONOHHL S134NA3004d ._.sz_\w

aweu-3)3  HNIAID

HONOYHL

aweu-uonoss NYHL aweu-uonoes
aweu-3jly  ONIS

S13una3ooyd szw

SNIGN30S3a ——
o .« « { 3WRU-B)E aweu-3
{ P} A sz_oz%m& NO sweu-a3ly 1HOS

Jabaru AGNMOG| ... . .
bmc:cov_v A Imnla.w { sweu-xapui} 135

_wmmuc_ .u
.I oEm:-xmu:_ I|.
sweuxepuly Ol ***§ " 5 niep f 13
RN = ——

: 196331 .
+ — BWRU-X3pUI |  ———e
aweu-xapul OL 4 joynuop| L35
1anuapl

JONILNIS-1X3IN
awalels-aapessdwl

sweu-uonipuod

anNv

fesay) =_SI aweu-elep
hmcacm 0LIvND3 Sl

awieu-uonIpuod

ﬁm _m‘_muw = ww ——
Hiuapl oL O Si

[ uewsieis-arnesadun NI Lv]  Jeynuapl FIV RO8v3s

Z
w
I
3

ND-60.089.03



A-10

uawayels-sanesadwn A3 QITVANI

30Vd [ seynuapl WOHS] sweu-piodas  J1IHM

ONIONVAQY H3idv

S3INN Jabarul 3403349
NN Jaynuapl

-

L
fuswarers-ennesadwi MOTIHIAO NO_
[ 4euBusp! NI ONIATIVL
5oynuapI BILNIOD HLIM]
« « « { [ 4aynuapt NI INNOJ) [ saynuap! NI BILIN13G) seususpl } GINT
fe Mac__ﬂwﬁ_v__ [ TIv] 50 *mc_muwm_ [ TT¥) A8 GILIATTAC | soupuspl  SNIHISNN
[ wawsaleis-aAnesadwn §oHY3 3ZIS NOJ
181UapI HNIAID [B18}j-OUaWN —_ |eid)-oUBWNU
{[a3annoy] [ Joynuep DNIAD] ac_E%w [eE a_sc%w 3veians
[ wewareis-aanesadw MO T493A0 NO] [eynuapi HIINIOd HLIM) s8ynuapt OLNI
3ZIS
e |e1ady e [essy
P A8 GILNIN3A _o_ ynuopit [ ONIHLS
_m._m«:
z:m do1S
= -
NVH1SS3110N
> ION
0LTVNO3
[ Juowarers-anpesadwi A3 QITVANI] | aweu-eiep = SIAIN | eweu-aly IHVIS
= ION
NVHLE3IVIEO
<

ND-60.089.03



S W ST

APPENDIX B
RESERVED WORD LIST

01
080
052
037
o
ARt

A ;
048
031
108

S R
ACCESS
ALITI

AT ANC TNG
AF TER

AL
ALFHARETIC
ALTER

AR

ARE

H'ﬂwh
®.OCK
Y
Al
CHaRACTER
e .
CLUOSE
COMMA
COMP

VO CoE-3

COMPUTATTONAL,
COMPUTETLONAL -3
coMPuTE

COFRF TGURST IO
CONSOLE
CONTAING

COryY

COLMT

CURRENCY

UATH

TIATE
DATE-~COMPILED
OATE-WRITTEN
iy

3% LESUGGTING

G T HAL - LT
LECLARATIVES

i T TEI
TTER
NG
HMOENG

TTUTTE

B-1

ND-60.089.03

007
O3
074
053
046
Q4%
034
047
114
089
061
1146
004
003
0&6Y
109
009
Q25
073
OR?
088

C 059

036
Q08
008
03¢
102
(&4
050
104
0lL4
Q20
Q04
O
068
042
199
G030
045
021
018
018
040
088
Vo
17
036
111
042
042

QIUrSTON
DoWN
HYNaHMLec
LB

ENT

[FNY ERONMENT
ERUAL

E Ry RO
EXCEPTLION
EXHIRIT
EXILT

E

Fn

= []f\

FROM

GIVING

Gl

G TE
HIGH-UAL LI
HIGH-VALUES
10

T Q- CONTRCL
TOENTIFICATION

Ii‘!llf

L (4
THITIAL
TRl T
TMELT = QUETRUT
TNSFECT
THETALLATION
THTO

LetvaLl Tl

s

JUET
JUSTIFLIED
VFY

LESH

LIS

e s e il i e il = et



Q0%
120
007
Q7
oal
Qa7
QuY
L3
200
130
074
033
Q34
197
0Ll
104
103
R0
Qa7
Qa7
032
Q7
039
148
110
124
Q%4
0.2
012
149
201
OO 1
Qa3
127
202
00%
009
083
044
043
084
LIS
084
010
Q20
073
199
044
174
O&l
072
043
074
Lile
jay

L INKAGE
LOCK
LOW~-DALUE
LOW-VALUES
MOTIE

MOWE
MULTERLY
NaM kT
NEGATIVE
MEXT

M0

NOT
MUMERTC
DRJECT-COMPUTER
DCCURS

0OF

DFF
CHELTTED

1N

REN

0k
ORGANTZATZON
QUTEUT
ORVERFLOW
UMN'!

FLCTURE
FOTNTER
FOSITIVE

FrROGRAM-LD
QRUOTE
QLIDTES
AN
REALD

RE ALY

Rt CORD
RECOROTING
RECORDS

FFHFFINFJ

LLLLﬁSL
REMARKS
REMOVAL,
Rl M A S
REFL. .,l ITMNG

"ll;!il..

ND-60.089.03

018
Que
0462

101

ELGHT
FOUNDET

FLIM

LA &

Q53 4

00

199

070
132
'33

Lm/
105

060 n'

072
131
D006
004
100
OB
0&8
107
062
OFS
058
017
017
053

Q52

LLECT
SENTENCE
ARATE
TRUEMTIAL

(]f\ T
SOLRGE -
SEalE
ShPaCES
O TAL-NAME D
STANDGERD
START

STaTUs

sSTOF

STRIMG
SUBRTRACT

SYNI
SV\FHRHNTZEN
IHﬁH

THREOGSH

THRL)

TTMF

COMPLTER

sU
TRACE
THe LT MG

gOURETRIMG

LIMNTIL
L

GOUFON

UsAGE
WEAES

LIS TG
UL
LAY TN

5 WHEN

WETH

WORKIHG -3 TORAGE

0)'

!llH‘



APPENDIX C

ASCII CHARACTER SET

Character

A

N-<><§<C—|U?30'002gl—7<‘—-IG)'anOW

Octal Value

101
102
103
104
105
106
107
110
m
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
(K]
132

Character

WONONHBWN—=0O

Blank (SPACE)

Plus-zero (zero with embedded positive sign);
Minus-zero (zero with embedded negative sign);

ND-60.089.03

173
175

Octal Value

60
61
62



PR

S

O

o e A A 883 S

€6 S0 26 94 20 96 S0 49 B4 S ¢ FE CE Ce G4 Ve C6 SP SE 4 Cs VL B4 94 TS 40 €O 00 VO C4 SO 46 C= 20 o4 T4 o4 Ge

NOoOUDUNRPROVYVONSGUDPWUHNHOIODONOAUDWRAPLOQYCDDINOGLODL W -O

IS

Ml WL WG WWRRNISIERNRNRNRN AR, LR e HOOO0 OO0 OO00 OO
R Ro]

..

D
<
s

41
42
a3
443
a5
46
473

[ - N
o N
e o8 vo

RO R GRE]
oo oo o8

i

atiu

O OUND>UD>DWR
ee 9o 2+ v 04 00 oo ce oe

GG

Al s iy o A ST il ile o sk ol R s

APPENDIX D
DIAGNOSTIC MESSAGES

FILE SECTION ASSUMELN HERE.

OFERAND OUTFUT AS INTEGER.,

DATA DIVISION ASSUMED HERE.

AREA-A VIOLATION; RESUMFTIDN AT NEXT FARAGRAFPH/SECTION/DIVISION/VERE,
ERRONEOUS DEVICE ASSIGMMENT. _

ERROR IN SELECT-SENTENCE; RESUMFTION AT NEXT SELECT OR AREA-A.
ELEMENT NOT DEFINED,

ERRONEOUS RERUN-ENTRY IS IGNORED.

ERRONEOUS FILE—-NAME IS IGNORED,

BLANK WHEN ZERO IS DISALLOWED.

STATEMENT DELETED DUE TO ERRUNEOUS SYNTAX.

. RECORD MIN/MAX DISAGREES WITH RECORD CONTAINS, LATTER SIZES FREVAIL.

FILE NOT SELECTELNs ENTRY RYFASSED.

RELUNDANT FDIL FROCESSED AS IS.

INVALIL ERLOCKING IS IGNORED.

INVALID RECORD SIZE(S) IGNORED,

UNIT-RECORD FILE ELOCKING IS IGMNORED.

INCOMFLETE FILE DESCRIFTION,

SUERSCRIFY OR INDEX-NAME IS NOT UNIQUE.

SOURCE EYFASSED UNTIL NEXT FO/SECTION.

FROCEDURE DIVISION ASSUMED HERE.

OMITTED WORD SECTION IS ASSUMED HERE.
MISORDERED/REDUNIANT SECTION FROCESSED AS IS,
ERRONEOUS SUERSCRIFTING; STATEMENT DELETED.,

ERRCMEOUS QUALIFICATION; LAST LECLARATION USELD.

ITEM ASSUMEL TO RE RINARY.

REDUNDANT CLAUSE IGNORED., -
NAME OMITTED; ENTRY RYFASSED.

IMPROFER REDEFINITION IGNORED.

OCCURS DISALLOWED AT LEVEL 01/77» OR COUNT TOO HIGH.
INVALID VALUE IGMNORED.

WORKING-STORAGE ASSUMED HERE.

LEVEL 01 ASSUMED.

FICTURE IGNORED FOR INDEX ITEM.,

FERIOD ASSUMEL AFTER FROCEDURE-NAME DEFINITION.
GROUF ITEM» THEREFORE FIC/JUST/RLANK/SYNC IS IGNORED.
FI-VALUE IGNORED SINCE LARELS ARE OMITTELD,.

STATEMENT DELETED DUE TO NON-NUMERIC OFERAND.
STATEMENT DELETED RECAUSE INTEGRAL ITEM IS REQUIRED.
LITERAL TRUNCATED TO SIZE OF ITEM.

EXCESSIVE OCCURS CLAUSE NESTING IS IGNORED.,

DATA RECORDS CLAUSE WAS INACCURATE.

GROUF SIZE > 40953 LENGTH SET 70 1.

_REQUIRED IIATA SFACE EXCEEDS MAX. AVATLAERLE.
‘DATA-NAME "IN ASSIGN CLAUSE IS UNIEFINED OR WRONG TYFE.
IMFROFER USE OF 66 (RENAMES).

A FARAGRAFH DECLARATION IS REQUIRED HERE.

USING-LIST ITEM LEVEL MUST EE 01/77/WORL-ALIGNELD.

VALUE DISALLOWED DUE TO OCCURS/RENEFINES/TYFE CONFLICT,
CLAUSES OTHER THAN VALUE DELETED.

SURSCRIFT O OR OVER MAX. NO. OCCURENCESs 1 USED,

RIGHT FARENTHESIS REQUIRED AFTER SUBSCRIFTS.

MISSING FROGRAM-IN/FROGRAM-NAME. DIEFAULT FROGRAM NAME = MAINCR.
EXTERNAL DECIMAL ITEM IS UNSIGNED.

LAEEL RECORDS OMITTED ASSUMED FOR UNIT-RECORD FILE.
INCOMPLETE (OR TOO LONG) STATEMENT LELETED.

TERMINAL FERIOD ASSUMED ARQVE.

VARYING ITEM MAY NQT RBE SURSCRIFTED,

SINGLE-SFPACING ASSUMED DUE TO IMFROFER ADVANCING COUNT,
FROCEDURE-NAME IS UNRESOLVABRLE.

KEY LOECLARATION OF THIS FILE IS NOT CORRECT.

ND-60.089.03



611
623
63
841
653
863
671

69

703
713
723
733
74:
753
80:
812
823
83:
841
853
863

STATEMENT DELETED BECAUSE OFERAND IS NOT A FILE-NAME.
*COMFP®" IGNORED FOR DECIMAL ITEM.

KEY MUST ES DECIMAL OR CHARACTER ITEMs MAX. 255 EBYTES. STATEMENT DELETEL.

FICTURE CLAUSE IS BAD FORMED. FIC X ASSUMELD.
CONDITIONAL I/0 STATEMENT LDISALLOWED WITHIN °IF®.
EADll SORT/RELEASE/RETURN USAGE.

COFY FILE CANNOT EE FOUND.

CONTINUATION LINE DISALLOWED HERE,

ILLEGAL CHARACTER IN COLUMN 7.

CONTINUATION LINEr, THEREFORE COL 8-11 MUST RE SFACES,
ILLEGAL CHARACTER., IGNUOREL,

FAULTY QUOTED LITERAL.,

ERRONEQUS FUNCTUATION, REQUIRED ELANKS ASSUMED.
ELEMENT IS MALFORMELD.

QUOTED LITERAL/NUMERIC ELEMENT/NAME IS TOO LONG.
ILLEGAL MOVE OR COMFARISON IS DELETED,

DISFLAY LIMIT IS 132 CHARACTERS (CONSOLE/FRINTER).
FILE NEVER OFENED.

FILE NEVER CLOSELD,

INCONSISTENT REALD USAGE.

INCONSISTENT WRITE USAGE.

*NELETE® NOT VALID FOR NON-ORGANIZED FILE.,

KEYS MAY ONLY AFFLY TO AN INOEXED/RELATIVE FILE.

ND-60.089.03



e e

APPENDIX E

ADVANCED FORMS OF CONDITIONS

EVALUATION RULES FOR COMPOUND CONDITIONS

1. Evaluation of individual simple conditions is done first.

2. AND-connected simple conditions are next evaluated as a single
result.

3. OR and its adjacent conditions (or previously evaluated results) are

then evaluated.

Examples:

(a)

(b)

(c)

A<BORC =DORENOT>F

The evaluation is equivalent to (A < B) OR (C = D)} OR (E , F)
and is true if any of the three individual parenthesized simple
conditions is true.

WEEKLY AND HOURS NOT = 0

The evaluation is equivalent, after expanding level 88
condition-name WEEKLY, to

(PAY-CODE = 'W’) AND (HOURS #0)

and is true only if both the simple conditions are true.

A=1ANDB =2ANDC> -3

OR P NOT EQUAL TO ""SPAIN"

is evaluated as

[(A = 1)AND (B = 2) AND (G > —3)]
OR (P #“SPAIN")

If P = "SPAIN", the compound condition can only be true if
all three of the following are true:

(c.1) A=1

{c.2) B=2
(c.3) G>-3

However, if P is not equal to "SPAIN”, the compound
condition is true regardtess of the values of A, B and G.

ND-60.089.03



PARENTHESIZED CONDITIONS

Parentheses may be written around a condition or parts thereof in order to take
precedence in the evaluation order. Examples:

IFA = BAND(A =50RA =1)
PERFORM PROCEDURE —44.

In this case, PROCEDURE —44 is executed if A = 5 OR A = 1 while at the same
time A = B.

ABBREVIATED CONDITIONS

For the sake of brevity, the user may omit the "“subject’” when it is common to
several successive relational tests. For example, the condition A = 5 OR A=1
may be written A = 5 OR = 1. This may also be written A = 5 OR 1, where
both subject and relation being common are implied.
Other examples:

IFA=BORCORY
is a shortened form of

IFA=BORA=CORA=Y
Caution: Abbreviations in which the subject and relation are implied are only

permissible in relation tests; the subject of a sign test or class test cannot be
omitted.

NOT, THE LOGICAL NEGATION OPERATOR

in addition to its use as a part of a relation (i.e. IF A IS NOT = B), "NOT" may
precede a condition. For example, the condition NOT (A = B OR C) is true when
(A = BOR A = C)is false. The word NOT may precede a level 88 condition
name, also.

ND-60.089.03



APPENDIX F
NESTING OF IF STATEMENTS

A ""nested IF” exists when, in a single sentence, more than one IF precedes the
first ELSE.

Example:
IFX=YIFA=8B
MOVE "*"" TO SWITCH
ELSE MOVE "A” TO SWITCH
ELSE MOVE SPACE TO SWITCH

The flow of the above sentence may be represented by a tree structure:

F T

ol

Space —= Switch

%

E Nt
.

A — SwitchJ *—Quwitch

Next \‘
Ssentence

Another useful way of viewing nested IF structures is based on numbering IF and
ELSE verbs to show their priority.

¥ X =Y
: I, A= B ,
true : true—action. : MOVE "*" TO SWITCH
:1(!1101\1: : |~:|.sr,2 I':llsc—:l’cti'onzz MOVE "A" TO SWITCH
1

ELSE
1

f:il:;o-—.'lctionl: MOVE SPACE TO SWITCH,

ND-60.089.03



The above illustration shows clearly the fact that IF, is wholly nested within the
true-action side of IF,. .

It is not required that the number of ELSEs in a sentence be the same as the
number of IFs; there may be fewer ELSE branches.

Examples:

iF M=5bIFK=20
GO TOM1KOELSE GO TO MNOT1.

IF AMOUNT IS NUMERIC IF AMOUNT
IS ZERO GO TO CLOSE-OUT.

In the latter case, IF, could equally well have been written as AND.

ND-60.089.03



G--1

APPENDIX G

*LE pa3oxa 1ou Aew

y1bug) aoinos ‘abajul paubisun ue se palesll S| 90INOG = (D)
‘ano|A dnolo
B JO 10844 8yl JO UOISSNOSIP 10} |enuew siyl Jo G1'g'G
uonoag 2as ‘anopy dnoi9 e passpisuod st wey dnolb
e ul puesado BulAIBDAL JO BDINOS JBYYS YUM dAow Auy = (g)
*Aue JI ‘paioub) sy ubis 824n0g ) :S310N
(8) M0 (810 (8) 30 (9) 0 (9) 30 (8) %0 dnoig
(9) %0 p (o) A0 (J) M0 {2) M0 (D)0 ouswnueydyy
{8) 30 p[0] p{0] paupa ouawnueyd)y
(9) %0 MO MO palIpa JuaWNN
()0 O MO 3O JaBarul-uou ouaWNpN
(8) M0 (V)0 (V)0 A0 A0 0 Jabajul ouewnN
paup3 paup3 Jabajul-uop Jabayj puesad(
dnoig opswinueydyy  ouswnueyd)y ouaWwNN STFETIV TN oUW 22inog

TABLE OF PERMISSIBLE MOVE OPERANDS

Juswalels JAQIN Ul puesadQ Buinisosy

ND-60.089.03



APPENDIX H

RELATED DOCUMENTATION-

More comprehensive information is to be obtained through the following

manuals:

ND—60.090
ND —60.066
ND —60.050
ND —60.052

NORD-10 COBOL Users Guide
NORD — 10 Relocating Loader
SINTRAN lll Users Guide
NORD File System

Especially the NORD—10 COBOL Users Guide gives information concerning
various system aspects, various program efficiency techniques giving valuable
hints to the programmers for best utilization of the system, and the COBOL inter-

active debugging system.

ND-60.089.03



sg2, 38 sasssss,
200%0 203 60000000 NORSK DATA A.S.

0000006890 gg: gg: ) ;
an 85008808 P.O. Box 4, Lindeberg gird, Oslo 10
0090 6000000

COMMENT AND EVALUATION SHEET

ND-60. 089. 03 COBOL REFERENCE MANUAL

In order for this manual to develop to the point where it best suits
your needs, we must have your comments, corrections, suggestions
for additions, etc. Please write down your comments on this pre-
addressed form and post it. Please be specific wherever possible.

FROM

B

ND-60.089.03






