
NORD-SO

Assembler

NORSK DATA A.S

i

NORD-50

Assembler

REVISION RECORD
Revision Notes

7/76 Origigglfprintnig' _ :“T: _
———~— -_ ____

Publ. N0. ND-60. 075. 01
July 1976

D0 I I NORSK DATA A15.

Lorenvnicn S7, Poslboks 163 Okcm, 0-,lv) 5 Nor Ivny

n,

“.35!aka. ~s.

TABLE OF CONTENTS

-—oo()oo--

Sections:

1 GENERAL INFORMATION

1 . 1 Introduction

1. 2 Language Characteristics

1.2.1 Definition
1. 2. 2 Symbols used
1.2.3 Types of Statements

1.3 Language Environment

2 LANGUAGE STATEMENTS

2.1 Machine oriented Statements

2.1.1 Symbolic Formats and Object Translations
2.1.2 Memory Reference Instructions
2.1.3 Register Operations
2.1. 4 Argument Instructions

2. 2 Process oriented Statements

2. 2.1 Symbolic Format
2.2. 2 Available Directive Instructions

2.3 Definition of Data

2. 3.1 General Constant
2. 3. 2 Floating, Point Constant
2.3.3 String Constant
2. 3. 4 Address Constant
2.3.5 Formatted Data

2. 4 Macro Extensions

2.4.1 Defining a Macro
2.4.2 Calling 3. Macro

ND-GO. ()75. 01

Sections:

3 USING THE LANGUAGE

.1 How to write a Program

3.1.1 Source Program Format

3.2 How to Prepare for Assembly

3. 3 Assembly Output

3.3.1 The Assembly Listing
3.3.2 Diagnostic Messages

Apgendices:

A SUMMARY ()F INSTRUCTIONS

B SUMMARY OF PSEUDO OPCODES

C SAMPLE LISTING

D BRF IN NORD—50 ASSEMBLER

E NORD-S/NORD~50 LOADER

F OPCODES AND THEIR VALUES IN TIIE THREE
ASSE MB LY MODES

— — oo()oo— -

ND-GO. 075. 01

Egg

1.

1.

1 .

1

2.1

GENERAL INFORMATION

Introduction

The NORD-SO assembler is a two-pass assembler. On the first
pass all macroes are expanded and labels are regognized and stored
in the label table together with their values. Certain pseudo opcodes
that may change the assembly address will also be serviced.

During the second pass all macroes are expanded. the actual assembly
of instructions is performed, all pseudo opcodes that will effect the
assembly address are checked. assembler commands are acted upon
and all output is done.

The NORD-SO instruction repetoire is described in the NORD-50
Reference Manual.

Language Characteristics

Definition

The NORD-SO will execute a program stored in its memory. Each
memory location will contain information that will direct the operation
of the central processing unit or data used or generated during the
execution of the stored program.

To set up the computer to perform a particular task the programmer
may figure out the particular bit pattern required and insert it into
the memory. For a program of any appreciable size this becomes a
tedious task prone to introducing errors.

To aid the programmer in setting up his NORD—SO. the current assembly
program has been made available. The assembler allows the pro-
grammer to use easily remembered acronyms for the different tasks
that the computer may perform. Locations and registers that are used
may be given symbolic names. When this symbolic program is pro-
cessed by the assembler program, the appropriate numerical values
will be obtained and substituted for the symbolic program. and a binary
program is obtained. Writing his program on a symbolic form will
ease the programmers work, and the resulting program is readily
modified.

This assembler is implemented as a two-pass assembler. Thus the
source program has to be processed twice. The assembler contains
tables for labels. macro prototype definitions. opcodes and pseudo
opcodes. During the first pass the following takes place: All labels
are picked up and saved in the label table together with their values.
Each record is checked to see if it contains a pseudo opcode. If
certain pseudo opcodes like ()RG and B88 are detected, the current
assembler address is updated. If the EQU pseudo opcode is used
to define a label. all labels in the argument must have been defined
in a previous record.

ND-GO. 075. 01

1.2.2

1-2

Each pass is terminated by the END pseudo Opeode and the source
file is terminated by the ISOF pseudo opeode. 1f labels are de-
fined as global labels (GLO) or external references (EXT). the
appropriate flag bits are set in the label table.

Each record is checked to see if it contains a macro call, as all
macroes have to be expanded during pass one.

During the second pass the following takes place: Each record is
checked to see if it contains a pseudo opcodc. If not, opcodes are
checked for. If no legal opcodc is found, a check is made to see if
the record contains a macro call. Due to this search sequence of
the tables, a mnemonic appearing in the opeode or pseudo opcode
tables must not be used as a macro name. If a macro call was
detected, a switch is set to "a macro to be expanded" and call
sequence parameters are saved. If a pseudo opcodc is detected ,
similar action as in pass one is taken. If an opcodc is detected, its
numeric value is obtained from the opcodc table, arguments are
evaluated and the numeric instruction is assembled.

If requested, a listing and binary data are output to the assigned files.

Symbols used

An argument may contain a constant, a symbolic label or an
arithmetic combination of any number of these. Several special
characters are used to identify constants and arithmetic operations.
Special characters are used to specify constants as follows.

Octal number. A number preceded by an apostroph (') will be
treated as an octal number by the assembler.

Decimal number. Any number not preceded by a special character
will be treated as a decimal number.

ASCII character. A character preceded by a # will be treated as
its 7 bits ASCII value.

The format of labels has been described in Section 3.1.1. The
values of all labels have been determined and saved in the label
table during pass one. When the assembler is evaluating an argu-
ment, it will obtain the value of labels from the label table.
Constants will be evaluated by the appropriate subroutines. The
values thus obtained may be combined by using the following arith-
metic operators (4-), (-). (*) or (/). By using these Operators
integer arithmetic may be performed as follows:

Addition: A (4-) sign will add what is on the left of the
(+) sign to the first entry to the right of the
(+) sign.

Subtraction: The entry to the right of the (-) sign will be
subtracted from what is on the left of the (-)
sign.

ND-(SO. 075. 01

Multiplication: A (*) Sign will multiply what is on the left
of the (*) sign by the first entry to the right
of the (*) sign.

Division: A (/) Sign will divide what is on the left of
the (/) sign by the first entry to the right of
the (/) Sign.

Unary (4) and (-) are allowed.

It should be noted that the address arithmetic works from left to
right. This is illustrated in the following examples:

2+
2*

C»: 20*

1- 1 0
-l
4(J

Now constants and labels may be used in an argument when the.
above rules for address arithmetic are observed. The following
gives examples of how to use the address arithmetic.

LABEL i 5
'10 * LABT + AB
LABEL * 2/3 + 5
etc.

The fact that the integer arithmetic works from left to right may
often be used to great advantage. If it should be desired to perform
address arithmetic requiring parenthesis are as in F = (A * B)+(C * D)
this may be done as follows:

EEQUC*D
FEQUA*B+E

Current location. The (*) sign will be interpreted as current 10—' cation when it is the first entry in an argument
and when immediately followed by (+), (-). (*)
or,(/).

Literals. A literal is specified by using the (=) Sign. Each
time a literal is specified in a memory reference
instruction, a new location containing the constant
is generated. This constant is specified as if
using the GCN pseudo opcode (see Section 2. 3).
The address field of the memory reference
instruction will refer to this new location.

To Specify a literal. the (=) sign should immediately precede the
literal. The literal may contain a constant. a symbolic label or a
combination of these.

Examples:

To load 10 into register 3:

11DR 3. ‘7 10

ND-GO. 075.01

1. 2.3

To load register 3 with the address of ENTRY:

LDR 3. = ENTRY

Note however: No relocating of ENTRY!

The locations containing the literal constants will appear after the
first LOR pseudo opcode. If a program contains more than one LOR.
the constants appearing after a LOR will only be those requested since
the last LOR.

'

jlypcs of Statements

When writing an assembly program , the programmer has the choice of
three major types of statements,

Machine oriented statements

Process oriented statements

Data definition statements

A machine oriented statement will normally occupy one location in
the object program. The contents of this location will direct the NORD—5
to perform one Specific task when the assembly program is being
executed. The task may be Specified by any of the instructions (opcodes)
listed in Appendix A. A machine oriented statement is specified by an
opcode followed by no more than five arguments depending on the
instruction.

A process oriented statement is used to give the assembler information
concerning the assembly. Pseudo opcodcs may give the start of a
program (ORG), end of program (END), room for data storage (BSS)
etc. It is seen that pseudo opcodes do not generate any data that become
part of object program. But a process oriented statement may determine
the load or assembly location of a machine. oriented statement and its
actual assembled value. A process oriented statement is specified by
a pseudo opcode followed by one or more arguments. A macro call
directs the assembler to fetch one or more statements to be inserted
after the macro call.

A data definition statement is used to introduce data into the assembly
program. Examples of data are decimal constants, floating point
constants and alphanumeric data. The data defined may require one or
more locations of core storage. Data is introduced by a pseudo opcode
followed by one operand giving the data to be introduced.

'

The above statements are described in detail in Section 2.

ND-(if). 075. ()1

1.3 Language Environment

The assembler is written in the NORD-IO assembly language.
Thus, it must be executed on a NORD—IO. The assembler is
a part of the SINTRAN III operating system. Thus, it must
initially be called through the operating system. Once an ’
assembly is started, all input and output is through assigned
files.

‘

ND-GO. 075. 01

2.

2.

2.

1

1.

1.

1

2

2-1

LANGUAGE STATEMENTS

Machine oriented Statements

The NORD—50 will accept the two following major types of executable
instructions ,

Memory Reference Statements

Register Instructions.

Symbolic Formats and Object Translations

All machine instructions are written on symbolic form by the
programmer and translated to the machine instruction format by the '
assembler.

Generally the programmer will specify:

1) An operation tovbe performed.
2) one or more registers to be operated upon, and

3) further specification of operation.

The operation in 1) is given. as the operation code (opcode). Examples
are add and shift Operations. A summary of all opcodes may be found
in Appendix A. Operations in 2) and 3) are given as operands. There
may be from one to five operands depending on the Operation to be
performed. Operands are separated by a comma (,). The opcode is
separated from operands by one or more blanks as in the following
example:

OI’C 0P1, 0P2, 0P3

Memory Reference Instructions

A memory reference instruction is specified by the following general
statement:

OPC R,D,B,X,I

The opcode is given as OPC and may be any of the memory reference
opcodes given in Appendix A.

The register to be operated upon is given as R, and may be any of
the 64 registers available.

The memory location it is desired to reference is given as D.

The remaining three parameters are not necessarily required. Thus
a memory reference instruction may contain only OPC, R and D. If
one of the remaining parameters are required, any preceding parameter
has to be specified. Thus if it is desired to specify X register, a B
register must also be specified. However, if (, ,) is used , the assumed
base register is inserted for B and index register () for X.

ND-60. 075. 01

2. 1.3

If a base register is required it is specified by B. As base register
may be used any of the 15 base registers available. Each time a
memory reference instruction is specified, an assumed base register
is inserted into the machine instruction being assembled, unless a base
register has been specified by the programmer. The assumed base
register is set to zero at the start of each assembly pass and may be
changed by the BAS pseudo opcode.

If it is desired to use an index register for address modification, any
of the 15 index registers may be specified in the X position.

If it is desired to specify an indirect operation, I should be specified
as a non-zero value.

The values substituted for R, D. B, X and I may be any decimal or
octal constants, label or a valid arithmetic combination of constants
and labels. Literals may be used in the D field.

Register Operations

A register operation is specified by the following general statement:

OPC DR,SR, B

The opcode is given as OPC and may be any of the register operations
given in Appendix A.

The register to be Operated upon is given as DR and may be any of
the 64 available registers.

The source register is given as SR, and may be any of the 64 available
registers. A source register is not required for the SZR and SON
opcodes.

Parameter B will contain information depending on the 0pcode
according to the following table

Operation B field contents

Register I/O External register contents
Shift Shift count

iBit Bit number

Logical register Second source register

Register Second source register

Skip Second source register

ND‘GO. 075.01

2.1.4

2.2

2.2.1

2.2.2

2.2.2.1

Argument Instructions

An argument instruction is specified by the following general
statement:

OPC R,A

The opcode is given as OPC may be any of the argument instructions
specified in Appendix A.

The register to be operated upon is given as R, and may be any of
the 64 available registers.

The argument is given as A. The size of the argument is limited to
16 bits. The argument may be a constant, label or any valid arithmetic
combination of these.

Process oriented Statements

A process oriented statement will give a specific directive instruction
to the assembler. Thus the information conveyed will be acted upon
by the assembler at assembly time and used to control the assembly
process. Process oriented statements may be used to specify that a
binary load tape is desired, the next statement should be listed on the
top of the next page, the end of the assembly has been reached, etc.

Symbolic Format

A process oriented statement will be of the form:

POC A, B,C

where POC is a pseudo opcode specifying the directive instruction.
The pseudo opcode will normally contain three alphabetic characters.
The pseudo opcode is followed by one or more arguments. Each
argument will normally be separated by a comma. An argument may
be any valid arithmetic combination.

Available Directive Instructions

Assumed Base Register

One or more assumed base registers may be specified as,

BAS LABEL,B

where LABEL is a label appearing in the source program and B
specifies a base register. B may be a numeric value, symbolic
reference or any valid arithmetic combination of numeric values
and references which will specify any of the 15 available base
registers.

ND-GO. 075.01

A source program may contain several BAS pseudo opcodes associating
base registers to several entry labels.

When a memory reference instruction or address constant (ACN) is
being assembled, the evaluated address will be compared to the value
given to labels referenced by BAS pseudo opcodes, and the one giving
the smallest displacement from the address referenced is selected.
Next the base register associated with this label is inserted into the
instruction or constant being assembled.

A maximum of 8 BAS pseudo opcodes may be specified in a program.
If more than 8 BAS pseudo opcodes are specified, the first assumed
base register specified will be replaced by the new one, etc. Thus the
list for storing assumed base registers are of a circular nature.

Reserve Data Block

A part of memory may be reserved as

BSS A

where the parameter A gives the number of words to be reserved.
A may be any valid arithmetic expression giving a positive number
when evaluated by the assembler. A negative BSS is not valid and
will not reserve any room. The value of a BSS will be listed in column
2 of the assembly listing. If a label is Specified at the same time as
the BSS the label will be giving the value of the location of the first
storage word reserved by the BSS.

‘

The pseudo opcode CLR will clear local labels, global labels and
macro prototype tables. This pseudo opcode should be inserted as the
first instruction in an assembly that does not require any information
left over from a previous assembly.

'

ND-GO. 057.01

2.2.2.4

2.2.2.5

2.2.2.6

991121319921. Assembly
Conditional assembly may be specified by using the following pair
of pseudo 0pcodes

SCA A,B

ECA

The SCA pseudo opcode gives the start of the conditional assembly,
and ECA the end of the conditional assembly. If the two parameters
A and B are not equal. the source statements appearing between the
SCA and ECA statements will be assembled. If A and B are equal,
the source statements between SCA and ECA will -be listedas comments
in the object listing. The comparison between the two parameters is
arithmetic. The parameters A and B may be any valid arithmetic
expression. Conditional assemblies may be nested as

SCA A,B
I aI
SCA C,D
I b
ECA
: c
ECA

Depending on the parameters A,B,C and D sections a, c or b or
a, b, c may be assembled. Nesting rules are similar to FORTRAN
DO statement nesting rules.

The end of a program unit is given by the pseudo opcode END. The
END pseudo opcode will terminate assembly pass 1 and 2. When
END is read at the end of pass 2, all local labels will be erased.
Global labels will survive.

End of File

The end—of—filc is given by the pseudo opcode EOF. The assembly
is terminated when the EOF pseudo opcode is read.

ND—60. 075.01

2.2.2.7

2.2.2.8

2.2.2.9

2.2.2.10

2-6

EQPEYEL‘ZTLQQ
A label may be given a specific value as in

A EQU B

B may be any arithmetic expression. The assembler will
evaluate B and assign this value to A. The value assigned to A
will be listed in column 2 of the assembly listing.

External Reference

The loader may be given information about external references by
using the EXT pseudo opcode as

EXT A,B,C

A.B,C are external labels that the current program wants to
reference. Each time a reference is made to the label A in the
program being assembled, information about this is made a part of
the binary output. This information is thus made available to the
loader which will update the locations in question as soon as
information about the label is made available to the loader.

The FORM pseudo opcode is used to specify data fileds for for-
matted data. This pseudo opeode is described under FDAT in
Section 2.3.

Generate

If it is desired to repeat or generate a source statement several
times, this may be done:

GEN A

Then the next source statement will be repeated A times. A may
be any valid arithmetic statement giving a positive value when
evaluated by the assembler.

If A is zero or negative, the next source statement will appear once.
Any opcode or pseudo opcode may be generated with the exception
of a GEN pseudo opcode. a floating point constant or a string con—
stant. If a label appears on the same line as the GEN pseudo op-
eode. it will be assigned the value of the location given to the first
of the GEN'ed statements.

ND-60. 075. 01

2. 2.2.11

2.2.2.12

2. 2. 2. 13

2.2. 2.14

2.2.2.15

2-7

Global Labels

Labels may be declared to be global as

GLO A,B,C

A, B and C are labels defined in the program. As many labels
as can be accomodated in a 80 column card image may be included
following the GLO, pseudo opcode.

Librerxflatrxmeiet
The loader may be given information about library entry-points by
using the LIB pseudo opcode.

LIB A,B,C

A,B,C are labels defined in the program. The BRF input to the
loader will be skipped up to an END or new LIB if at least one
of the labels are undefined. The LIB pseudo opcode also acts as
a REF on the undefined labels.

Ljiezelflzisge
If any literals have been used in the program, one or more 10-
cations have to be generated. If a LOR pseudo opcode is inserted
immediately following the LOR pseudo opcode.

P3953933-131991 9

The name of a program may be saved as part of the object load
module by using the following pseudo opcode.

MAIN A

A is a label defined in the program. This label and the value
assigned to it will be saved in the load module.

é§§9_rr_112lv__(_>p£i99_s_
Assembly options are specified as:

,OPT A,B,C,D,E,F,G

where

selects no listing
:3

.’>

[V b—I

l-d

selects listing of errors only

ND-60. 075. 01

2.2.2. 16

2.2.2. 17

2-8

C = 1 selects binary output
D selects file no. for source program
E selects file no. for listing of assembly
F selects file no. for binary output

G selects file no. for intermediate storage

Parameters A. B and C must be 0 or 1 or a symbolic expression
giving that value when evaluated. Trailing parameters may be
omitted. Thus. if it is desired to select binary output, only
parameters A.B and C have to be specified. If a file device should
not be changed. its parameter may be set equal to zero.

OPT 0,0,0.27

OPT 0,0,1,0,47

After the two above pSeudo opcodes have been assembled, the source
program is read from file no. 27 and the assembly listing will be
saved on file no. 47. File device numbers should not be changed
during one assembly. Options should be selected as early as
possible in the assembly.

The start address of a program is given as:

()RG A

where the parameter A gives the start location of the program. A
may be any valid arithmetic expression. If one of the parameters
in A is undefined, it will be assumed to be zero for the purpose of
computing the starting address. If the ORG pseudo opcode has been
omitted, the start address is assumed to be zero.

FIPBIEI‘LEPIEXZPQRE
The loader may be given information about entry-points_by using the
REF pseudo opcode as:

REF A,B.C

A,B,C are labels defined in the program. As many labels as can
be in a 80 column card may be included following REF pseudo
0pcode. Each label and the value assigned to it will be saved as
part of the object load module. This information will be picked
up and stored by the loader which will use the information to link
pregrams.

ND-GO. 075.01

2.3

2.3.

2.3.

1

2

If the XRE pseudo opcode is made part of a program, a cross
reference table will beprinted out at the end of the assembly.
All labels. their assigned value and all locations where the label
is referenced will be printed- out. The labels will appear in
alphabetical order. Symbols defined inside macroeswill not be
listed. Only references made subsequent to the XRE pseuso
opcodes will appear in the listing.

Definition of Data

When it is desirable to insert a constant into a given location,
this is achieved by using a pseudo opcode. This pseudo opcode
will direct the assembler to interpret its argument as a constant
to be converted and included as part of the object program. The
pseudo 0pcode itself specifies the type of constant for the assembler.
The following data definition statements are available.

General Constant

A general constant is specified by the following statement:

GCN A

The assembler will evaluate the Operand (A) as single precision
value. The operand may be any combination of numeric values,
labels and arithmetic operators as described in Section 1.2.2.

F loatingL Point Con stant

A floating point constant is specified by the following statement:

FCN A SINGLE PRECISION (32 bits)

DCN A DOUBLE PRECISION (64 bits)

The assembler will evaluate the Operand (A) as a floating point
constant. The operand should be Specified as in the FORTRAN
E or F format statement. The mantissa and exponent may contain
any number of characters consistent with the accuracy of the NORD-50
floating point format.

ND-GO. 075.01

2.3.3

2.3.4

2.3.

2-10

String Constant

A string constant is specified by the following statement,

SCN 'STRING'

The string constant is found between the two apostrophs ('). The
string may contain any character except apostroph. The characters
in the string will be packed four to a word with the first character
in the most significant position in the data word. If only part of the
last word is required for storing characters, the unused part will be
filled with zeroes. Only the characters between the apostrophs will
be stored, not the apostrophs. The characters are stored without
parity. The maximum number of characters is only limited by the
80 character source record length.

Note that the Spostrophs (') are not stored in the string constant.

Address Constant

An address constant is specified by the following statements,

ACN LABEL,B,X,I

The assembler will evaluate the Operand LABEL as a single
precision value. The loader will add the program base to the
value to get an absolute address.

B,X and I Specify base, index and indirect modification of the
address constant.

Thus, the address will be relocated at load time. If it is not
defined as an external, but otherwise similar to a memory
reference instruction with the destination register omitted.

Formatted Data

It is possible to insert data into selected parts of a word'by using
the FORM and FDAT pseudo opcodes. The FORM pseudo opcode
will divide a word into as many as 64 subfields. The FDAT pseudo
opcode will be used to insert data according to the specification
given by the last FORM pseudo opcode. The FORM pseudo opcode
may be used as in

FORM A,B,C

where only three fields are specified. Their lengths are AB and
C respectively. We may select actual numbers for the field lengths

FORM 10, 10, 11, 7

where the word is divided into four fields.

ND-60. 075.01

2.4

2.4.1

2—11

The following FDAT will specify data according to the format
given by the last FORM,

FDAT n+1o, LABEL * 3. 7, '10
When the assembler is evaluating the data given by a FDAT
pseudo opcode, it will go through the following steps.

The data that is to go. into each field is evaluated separately as
a 32 bit constant. The absolute value of the constant is checked
to see if it will fit in its filed. This may result in an error
condition (operand f lag).

Macro Extensions

In its simplest form a macro is an abbreviation for a sequence of
instructions.

Often a sequence of instructions is to be repeated several times.
It is then desirable to form abbreviations, for example we would
like to "attach" a name to the sequence of instructions and use the
name wherever we want the instruction sequence to occur. We
attach the name to the sequence by means of a macro prototype
definition .

Defining a Macro

A macro is defined as a macro prototype. This macro may then
later be inserted into the program sequence one or more times by
using a macro call. The macro prototype may contain any form of
coding. It may contain executable instructions, assembler directive
statements, macro calls and data definitions. This is subject to a
few exceptions that will be listed below. It is noted that a prototype
should not contain another prototype definition.

The prototype is stored in a separate table during the assembly. Thus
the programmer should attempt to write the prototype as compact as
possible in order to conserve storage space. Thus labels should be

‘kept short and comments avoided.

The start of a macro prototype definition is specified by the MACR
pseudo opcode, and the end of the definition by the ICMAC pseudo
opeode. There should be a label associated with the MACR pseudo
Opeode. This label specifies the name of the prototype. The macro
name is given as one to five alphanumeric characters. A macro name
should not be the same as one of the opcodes or pseudo opcodes found
in Appendix A 0g 13.

ND-GO. 075. 01

2-1 2

The MACR pseudo opcode may have one or more parameters. These
parameters specify which labels the prototype should fetch from the
call sequence. There are no label or argument associated with the
EMAC pseudo opcode. Three types of labels may be referenced inside
a macro prototype;

1) Labels defined external to the prototype except internal
labels of another prototype.

2) Labels internal to the macro prototype.

3) Labels given as a parameter in the macro call sequence.
If a label is referenced in the prototype and the same label
appears as a MACR parameter, this label will be treated
as a call sequence parameter. When the macro is called,
the parameter in the corresponding location in the call
sequence will be substituted for the label.
This is illustrated in the following example,

ARNA MACR BAKER
LDR 5,ABLE
MI’Y 5 , $BAKER
STR 5 , CHARLY
RTJ 0,0, 3

CHARLY GCN 0

EMAC

This macro prototype defines a macro called ARNA.
The external label ABLE is referenced. When the macro

. is called, one parameter will be expected in the call sequence.
This parameter will be substituted for BAKER. The internal
label CHARLY is defined. Although the macro may be called
several times, the internal label will not become multiply
defined.

Regular labels may also be defined in a macro prototype.
This would however, defy the purpOse of the macro as the
macro may be called only once. But it would be appropriate
to define an entire program as a macro prototype. This
prototype and a single call to it would then be read during
pass one of an assembly. During the second pass only the
macro call should be read. This way the source would be
read only once. The macro prototype must appear in the
source before it is being called the first time. The prototype
is saved during pass one. If the prototype is read during
pass two, it will be treated as a comment.

ND—GO. 075. 01

2.4.2

When defining a macro prototype the programmer should be
aware of the following:

1)
'

A macro may contain a call to itself or a call to a
second macro that will call the first macro. This
recursivity is limited to a level of 10.

2) A macro prototype should not be placed within another
macro prototype.

3) , A macro is global.

4) A prototype should not contain the GEN pseudo opcode.

5) A maximum of 100 internal labels may be defined in
any prototype.

6) ‘ The maximum number of prototypes that may be de-
fined is 100. This is an assembly parameter that may
be changed by reassembly.

7) A macro name should not be an opcode or pseudo
opcode.

8) All prototypes should be defined before any label is
defined.

Calling a Macro

A previously defined macro prototype may be called by using a
macro call. This will cause the macro to be inserted after the
macro call. The macro specified in Section 2.4.1 may be called
as:

ARNA DOG. 0

Here the macro is called by placing the macro name (ARNA) in
the opcode field. This particular macro requires one parameter in
the call sequence (DOG). The above macro call will produce the
following coding to be inserted immediately after the macro call:

LDR 5, ABLE

MPY 5,D()G

STR 5,CIIARLY

RTJ 0.0.3

CIIARLY GCN 0

It may be noted that the parameter DOG has been inserted into
the MPY instruction.

ND-GO. 075. 01

2-14

If the macro call contains too many parameters, the extra para—
meters will be ignored. If the macro call contains too few
parameters. blanks will be substituted for the parameter.

No program should make more than 1156 macro calls.

The macro call should be terminated by an extra dummy
argument (. 0).

ND-GO. 075. 01

3.1

3.1.1

3.1.1.1

3.1.1.2

3-1

USING THE LANGUAGE

How to write a Program

This section will contain information required by the programmer
when he is going to write his program.

Source Program Form at

The assembler is record oriented. Thus one record will be read
into a buffer at a time for processing. The source will be read from
a disc file or any other input device supported by the [/0 system
being used.

The source program may consist of machine oriented statements,
directive statements to the assembler etc. One such statement will
be contained in each record.

A record contains as many as 80 characters. The record is divided
into four different fields,

1) The label field

2) The opcode field

3) The operand field

4) The comments field

A semi-free record is utilized. The record format is the same as the
record format for the NORD-IO assembly language.

The label field starts in column one.

The opcode field is to the right of the label field
(at least one space ahead of it).

The operand field is to the right of the opcode field
(at least one space ahead of it).
The comments field is to the right of the operand
field (at least two spaces ahead of it).

The Label Field

The label, if any, will have from one to six alphanumeric characters.
The first character must be alphabetic and appears in column 1. The
first space or non-alphanumeric character found after column 1
indicated the end of the label. The period character (.) is treated
like a digit.

ThegpgeéaliieLd.
in this field may appear any of the opcodes or pseudo opcodes found
in Appendix A and B and macro names.

'

ND-GO. 075. 01

3.1.1.3

3.1.1.4

ThaQnerensLliiqlsl
Arguments in the operand are left justified within its field. No space
are allowed between arguments. The first space found indicates the
end of the operand.

The Comments Field

When an (x) is found in column one the whole record is treated as a
comment. If a comment is to appear on the same line as a statement
to be assembled, it may be placed after the last operand. Then there
should be at least one space separating the comment and the operand.
It is suggested that comments start in column thirty -one. Agblank
record is ignored.

Examples showing the format used are shown in Appendix C.

The result of the assembly is listed in three major octal fields where
the third field is broken down into several subfields. Field 1 contains
the address against which the source statement is assembled.

Field _2 contains the result of the assembly. Only information that
will actually be loaded into core during execution will appear in this
field. All information in this field will appear in a binary load module.
The field will never contain assembler or loader information.

The complete instruction in field 2 has been broken down and appears
in the remaining subfields. This will make it easier for the programmer
to determine which registers have been used, what locations have been
referenced etc. Three different formats may be found depending on
whether the assembled instruction is a memory reference, register or
argument instruction. The contents of the different columns are
summarized in the following table.

Field
'

3 4 5 6 7 8 9
Memory Contents I X B OP R D

Reference Bit No. 31 30—27 26-23 22—18 17-12 11-0

Register Contents 0 R mix 0 DR SRA . SRB

Bit No. 31 30—27 26—23 22—18 17—12 11-6 6-0

Argument Contents I R 0 ARG

Bit No. 31 30-29 28-23 22—18 17—16 15—0

When a memory reference instruction has been assembled, the letters
X or C may appear between fields 7 and 8. This indicates that an
external label (X) or a label defined to be in the common area (C) has
been referenced in the instruction. If both an external and a common
label have been referenced, the letter D will appear.

ND-GO. 075.01

3.2

3-3

If the source statement is a pseudo 0pcode like ORG, BSS, EQU
or GEN, the value of the argument will appear in column 3.

If the source statement is an address constant I, X, B and the
displacement will appear in sub-columns 3 through 6. '

How to Prepare for Assembly

When the programmer is ready to assemble his program». the
source 'deck' should contain the following:

1) ()RG pseudo opcode giving the start of the program.

2) CLR pseudo opcode to clear tables if this assembly
does not require information from any previous
assembly.

3) The source program.

4) END pseudo opcode giving the end of the program units.

5) EOF pseudo opcode giving the end of the source file.

The source program should appear in the sequence indicated above.

. The assembly may be recovered from the SINTRAN III command
processor by typing:

0N50ASSM

The assembler will initially run into a command processor which
is ready when it types a #. In this mode a set of commands
terminated by carriage return is accepted:

ASSM {source filc>, (list file> , (object file>

Assembly is started with the specified file combination and con-
tinues until an EOF pseudo opcode is found in the input, or by the
symbolic file names. If zero is used as list and/or object file no.
listing and/or object output is given. When list file is zero, the
XRE pseudo opcode is supressed. source lines with errors, however,
are listed on the Teletype. ,Default file types and access modes:

source file: SYMB RX

list file: SYMB WX
object file: BRF 5 WX

ND-60. 075. 01

3-4

SCRATCH < file)

Use <file> as scratch file between pass 1 and 2.

Default file: 100
Default file type: DATA
Access mode: WX

EX or S(INTRAN)

Return to the SINTRAN III command processor.

Set NORD-5 mode. The assembler acts as a NORD-S
assembler.

N—5X

'NORD-s programs will be assembled to run on a
NORD-SO.

N-50

Set NORD-SO mode. The assembler acts as a NORD—50
assembler.

For the value of the affected 0pcodes in the three assembly modes,
see Appendix F. Also the pseudo 0pcodes FCN and DCN are
affected by the assembly mode.

Note: The binary programs delivered on paper tape from ND
is in the N-50 mode. If N—5 mode is wanted as default
the mode should be changed before the SINTRAN III
command DUMP is given.

ND—GU. 075. ()1

3.3

3.3.1

3.3.2

3.3.2.1

3-5

Assembly Output

The Assembly Listing

. When the appropriate options are selected, the assembler will give
an assembly listing. This listing contains the result of the assembly.
information on assembly errors and a listing of the source.

An example of an assembly is given in Appendix C. Columns 1
through 40 contain several fields of octal information giving the
result of the assembly. Starting in column 45 the source program
is listed. Error flags will appear between the assembly result and
the source listing.

If any assembly errors occurred during the assembly, error flags
will appear right justified in columns 41 through 43. If a system error
occurred, the appropriate message will be listed starting in column 1.
The different error codes are explained in Section 3. 3. 2.

Starting in column 45 the source program is listed. The following
assembler commands will not appear in the listing. liLT, NOLS and
LIST.

Diagnostic Messag'es

When the assembler detects an error, a message to that effect will
appear in the assembly listing. Errors may be introduced due to
programmer errors or due to limitations imposed by the assembler.

Prpgi‘ammqnfinnqna
When the programmer has made an error, one or more error flags
will appear as described in 3. 3. i. The sample in Appendix C should
also be consulted as it shows the error flags as used for the different
instructions. The different error flags are,

Operand error

Illegal base register

Illegal destination register

Illegal opcode

><>27CZJO Illegal index register

Label multiple defined

CZ Label undefined

Q Possible error

When one of these errors except M and Q has been detected, a halt
(STOP) instruction is substituted as the result of the assembly.

ND-(SO. 075. 01

3-6

When one of the limitations of the assembler has been exceeded,
a system error will result. Then a message will appear in the
assembly listing.

System errors are as follows:

1) Label table full.

2) Macro prototype table full.

3) Too many macroes expanded.
4) Cross reference table full.

5) Too many recursive macroes called.

6) Too many macro prototypes stored.

System errors are not recoverable and the assembly will be
terminated.

ND-GO. 075. 01

APPENDIX A

A.1

SUMMARY OF INSTRUCTIONS

Memory Reference Instructions

Mnemonic: Action:

RTJ Return jump
EXC Remote execute
MIN Memory increment

CRG Skip if (R) 2 (Ea)

CRL Skip if (R) 4 (Ea)

CRE Skip if (R) = (Ea)

CRD Skip if (R) 7‘ (Ea)

JRP Jump if (R) 2 O

JRN Jump if (R) 4 0

JRZ Jump if (R) '—' 0

JRF Jump if (R) 7‘ 0
‘. JPM Modify (R) and jump if (R) a 0

JNM - Modify (R) and jump if (R) 4 0
JZM Modify (R) and jump if (R) = 0

JFM Modify (R) and jump if (R) 79‘ 0
ADD Add (Ea) to (R)

SUB Subtract (Ea) from (R)
AND Logical AND between (Ea) and (R)

LDR Load (R) with (Ea)

ADM Add (R) to (Ea)

XMR Exchange (Ea) and (R)

STR Store (R) in (Ea)

MPY Multiply (R) by (Ea)

DIV Divide (R) by (Ea)

LDD Load (FD) with (Ea. Ea + 1)

FTD Store (FD) in (Ea, Ea + 1)

FAD Add (Ea) to (F)

FADD Add (Ea, Ea + 1) to (FD)

ND-GO. 075. 01

A.2

A.2.1

Mnemonic: - My;

FSB Subtract (Ea) from (F)

FSBD Subtract (Ea. Ea + 1) from (FD)

FMU Multiply (F) by (Ea)

FMUD Multiply (FD) by (Ea, Ea + 1)

FDV Divide (F) by (Ea)

FDVD Divide (FD) by (Ea, Ea + 1)

Inter Register Operations

Shift Instructions

Mnemonic: Action:

SLR Left rotational shift
SRR Right rotational shift

SLA Left arithmetical shift

SRA Right arithmetical shift
SLL Left logical shift

SRL Right logical shift

SLRD Left rotational double register shift
SRRD Right rotational double register shift

SLAD Left arithmetical double register shift
SRAD . Right arithmetical double register shift

SLLD ‘
Left logical double register shift

SRLD Right logical double register shift

ND—Gt). 075. 01

A.2.2

A.2.3

Miscellaneous Operations

M nemonic:

BST

BCM

BCL

B82

B80

FIX

FIR

FIXD

FIRD

FLO

FLOD

A rithmetic Operations

Mne monic:

RAD

RSB
RMU

RDV

RAF

RSF

RMF

RDF

RA FD

RSFD

RMFD

RDFD

Action:

Bit set.

Bit complement

Bit clear

Bit skip on zero

Bit skip on one

Convert floating to integer

Convert floating to rounded integer

Convert double precision floating to integer

Convert double precision floating to rounded
integer

Convert integer to floating

Convert integer to double precision floating

Action:

Register add

Register subtract
Register multiply

Register divide

Floating register add

Floating register subtract

Floating register multiply

Floating register divide

Double precision floating register add

Double precision floating register subtract
Double precision floating register multiply

Double precision floating register divide

ND-GO. 075. 01

.2.4 Test and Skip

'
Mne monic:

SGR

ASG

SLE

ASL

SEQ
ASE

SUE

ASU

SGF

ASGF

SLF

ASLF

SEF

ASEF

SUF

ASUF

SGD
AGFD

SLD

ALFD _
SED

AEFD

SUD

AUFD

Action:

Subtract registers and ski

Add registers and.skip if

Subtract. registers and ski
Add registers and skip if

Subtract registers and ski

Add registers and skip if

Subtract registers and ski
Add registers and skip if

Subtract floating registers
if result a 0
Add floating registers and

Subtract floating registers
if result < 0
Add floating registers and

Subtract floating registers
if result = 0

Add floating registers and
Subtract floating registers
if result 75 0
Add floating registers and

Subtract double precision
Add double precision and

Subtract double precision

Add double precision and
Subtract double precision

Add double precision and

Subtract double precision

Add double precision and

ND-GO. 075. 01

p if result 90

result a 0

p if result < 0

result < 0

p if result =' 0
result = 0

p if result 7‘ 0
result 7‘- 0
and skip

skip if result a 0

and skip

skip if result < 0

and skip

skip if result 74 0
and skip

skip if result 75 0
and skip if result 30
skip if result 2 0
and skip if result 4 0

skip if result 4 0
and skip if result = 0
skip if result = O

and skip if result 79 0
skip if result 7‘ 0

A. 2.

.2.

5

U1

Logical Operations

Mne monic:

RND

RNDA

RNDB

RXO

RXOA

RXOB

ROR

RORA

RORB

SZR

A rgument Instructions

Mnemonic:

XORA
ANDA
ORA

SETA

SECA

ADDA

A DCA

DDP

DDN

DDZ

Action:

Register AND

Register AND, use complement of (SRA)

Register AND, use complement of (SRB)

Register exclusive OR

Register exclusive OR, use complement
of (SRA)

Register exclusive OR, use complement
or (SRB)

Register OR

Register OR, use complement of (SRA)

Register OR, use complement of (SRB)

Set all zeroes

Action:

Exclusive or
And

Or

Set register

Set register to complement

Add

Add complement

Skip if (DR) 2 ARG

Skip if (DR) < ARG

Skip if (DR) : ARG

Skip if (on) -/ ARG
Skip if (DR) 2 —ARG

Skip if (DR) < —ARG

Skip if (DR) 7T —ARG

Skip if (DR) 74 —ARG

ND-GO. 075. ()1

APPENDIX B

B-l

SUMMARY OF PSEUDO OPCOI.)ES

BAS LABEL, B

The parameter B specifies a base register associated
with LABEL to be used in memory reference instructions
if a base register has not been specified.

BSS A

The parameter specifies the number of locations that
is to be reserved.

CLR

Clear label tables.

COM

Start assembling into common area.

ECA

End of conditional assembly. Regular assembly is
resumed after a previous SCA.

END

Program end. Will terminate pass one and two and
erase local labels after end of pass two.

EOF End-of file. Will terminate the assembly.

EMAC

End of macro prototype definition.

EQU A
The label is given the value specified by the argument.-

EXT A, B.C. . .

The parameters give the name of labels that are
external to the current program.

FORM A,B.C. . ..

The parameters specify fields for later use by FDAT.

GEN A g
The contents of the next source statement are repeated
the number of times given by the parameter.

GLO A,I3.C. . ..

The parameters give the name of labels that are to be
declared as global labels.

ND-G‘O. 075. 01

HLT

LIB

LIST

LOR

MAIN A

The assembly is temporarily stOpped.

Defines a library entry—point.

If listing of assembly is specified, listing will be
resumed (see NOLS).

All literals requested alter the last LOR will be
defined following LOR.

The parameter gives the name of the program being
assembled.

MACR A.B.(T. . ..

NOLS

Start macro prototype definition. The label gives the
name of the macro. The parameters give call sequence
parameters.

The assembly will not be listed (see LIST).

OPT A,B,C.D,E.F.G

The three first parameters give the desired assembly
options (no listing, list error only. binary output if r 1).
The four last parameters give the FDN of the files used.

ORG A

The selected program counter is set to the value given
by the parameter.

PRG

Start assembling into the program areas.

REF A,B,C. . ..

The parameters give the names of program labels that
are required as external reference points.

SCA A,B

Start conditional assembly. If the two parameters are
equal, the following source statements will not be
assembled (see ECA).

ND—GO. 075. 01

XRE
Save data for a cross reference table to be printed
at the END pseudo opcode.

The following pseudo opcodes are used to specify data:

FDAT A,B,C. .. Formatted data (see FORM)

GCN A General constant

FCN E or F Floating point constant

DCN E or F Double precision constant

SCN 'STRING' String constant

ACN LABEL,B,X,I Address constant

ND—GO. 075.01

APPENDIX C

SAMPLE LISTING

OPT 0.0.1.4,1,3a
CLR

"-‘ SAMPLE LISTING
XRE

0000000620 ORG 400
00620 00027000642 0 00 00 27 00 0642 STR 0,0'LE
00621 00027000643 0 00 00 27 00 0643 STR 0. HANS
00622 24100000000 1 05 00 00 02 000000 SETA 2. 0
00623 00001000637 0 00 00 01 00 0637 RTJ 0.NILS
MONS . REF MONS
00624 00023010643 0 00 00 23 01 0643 MONS LDR 1, HANS
00625 00023020642 0 00 00 23 02 0642 LDR 2, OLE
0062614000010102 014 00 00 01 0102 RAD 1,1. 2
00627 00020010642 0 00 00 20 01 0642 ADD 1, OLE
00630 24040600001 1 05 00 00 01 000001 ADCA 1:1
00631 00023030644 0 00 00 23 03 0644 LDR 3, TALL
00632‘16040000103 O 16 01 00 00 01 03 SGR 0,1, 3
00633 00001000635 0 00 00 01 00 0635 RTJ 0.*+2
00634 00000000000 0 00 00 00 00 000000 STOP 0
00635 00027010643 0 00 00 27 01 0643 STR 1, HANS
00636 07042010001 0 07 01 02 01 0001 EXC 1.1.1, 7.
00637 24100400001 1 05 00 00 02 000001 NILS ADDA 2, 1
00640 00027020642 0 00 00 27 02 0642 STR 2, OLE
00641 00001040624 0 00 00 01 04 0624 RTJ 4, MONS
00642 00000000000 OLE GCN 0
00643 00000000000 HANS GCN 0
00644 0000000001 TALL B55 1

EXT TRULS
0000000002 GEN 2

00645 00000000000 GCN TRULS

00646 00000000000 GCN TRULS
END

HANS 000643 000621 000624 000635
MONS 000624 000624 000641
NILS 000637 000623
OLE 000642 000620 000625 000627 000640
TALL 000644 000631
TRULS 000000 000645 000646

ND—60. 075. 01

cl.—

D-l

APPENDIX D

BRF IN NORD- 50 ASSEMBLER

General

H-Group means two consecutive frames.
W-Group means four consecutive frames (one N—50 word).

S-Group means eight consecutive frames and are used for
symbols only.

Now to the different control numbers:

Feed

Octal value : 0

Comparison with
NORD-10 BRF : FEED

Consists of : <FEED>

Explanation : Ignored

Increase LOC Counter

Octal value : 1

Comparison with
NORD-IO BRF : AFL

Consists of : <AFL> <lI-GROUP>

Explanation : 111 + (CLC) -> (CLC) NB! No zero fill

II1 may be negative

Load one N—50 Word

Ocatal value : 2

Comparison with
NORD—IO BRF : LF

Consists of : <LF><W~GROUP>

Explanation : — If 'add flag' is OFF (see below), then
W1~—>((CLC)), (CLC) +1 ——)(CLC)

- If ‘add flag' is ON, then
w1 + ((CLC)) —>((CLC)), (CLC) +1->(CLC)
and 'add flag' is turned OFF.

ND-60.075. 01

EXT

Octal value

Comparison with
NORD-lO BRF

Consists of

Explanation

Comment

REF

Octal value

Comparison with
NORD- 1 0 BRF

Consists of

Explanation

RE F

: <REF>< S-GROUP >
- If SYMBOL is _r_10_tdefined, then add SYMBOL

to UNDEFINED symbol table with a notifi—
cation that it is used in 10c. (CLC).

- If SYMBOL i_s_defined, then
- if 'add flag' is OFF, then value

(SYMBOL) —>((CLC)) and 'add flag'
is turned ON;

— if 'add flag' is ON, then value
(SYMBOL)+((CLC)) ~> ((CLC))

The expression

OLE+5

where OLE is an external symbol is
output as

<REF> < S-GROUP> <LF> <W-GROUP)

Here the S-GROUP contains the symbol OLE
and the W-GROUP contains the value 5.

ENTR

: <ENTR> <S-GROUP ><H-GROUP >

SYMBOL is entered into DEFINED SYMBOLS
TABLE with a value equal to

H1+(PB)

The UNDEFINED SYMBOL TABLE is then
scanned, and for each occurrence of SYMBOL
in this table, the following steps are performed:

- value of SYMBOL is added into location
referenced;

- the entry is erased from the U.S. T.

ND-GO. 075. 01

D.9

D.10

LIB

Octal value

Comparison with
NORD— 1 0 BRF

Consists of

Explanation
Comment

END

Octal value

Comparison with
NORD- 1 0 BRF

Consists of

Explanation

Comment

LIBR + ENTR

': <LIBR> <S-GROUP> <H-GROUP >
: Identical with ENTR

LIBR denotes the entry point of a library
routine. It also acts as a REF on undefined symbols.

: END

: <END >

(CLC)—>(PB); end of loading

No checksum is provided!

Set Location Counter

Octal value

Comparison with
NORD— 1 0 BRF

Consists of

Explanation

Comment

7

: SFL

: <SFL><W-GROUP>
: W1 —) (CLC)

Not produced by the assembler, but
implemented to ease the production of
memory dumps.

Load a Sequence of N-50 Words

Octal value

Comparison with
NORD-Clo BRF

Consists of

Explanation

Comment

10

LNF

: <LNF> <Ill-GROUP>‘<W-GROUP> ——— < W-GROUP>J
W

Numbered by H-Group!

Wi—>((CLC)), (CLC)+1—>(CLC) i = 1,. . . . ,H.

See SFL above!

ND-GO. 075. 01

D.11 Load one N-50 Word and relocate it

Octal value : 11

Comparison with
NORD—lO BRF : LR

Consists of z < LR> <W-GROUP)

Explanation : As for LF, except W1+(Program Base) ~9((CLC))

ND-GO. 075. 01

APPENDIX E
NORD-50 LOADER
The loader may be recovered from the SINTRAN III command
processor by typing

N5 OLDR

The loader then asks for an ‘output file> to build the executable
format program on. Default output file: 100, default file type:
NOR5, access mode: WX.

When the loader is ready, it types #9. The following set of
commands is then accepted. Files or devices may be specified
with octal numbers if open or with symbolic names.

Load Program Unit

A <file>

Automatic load from <file> until EOF byte on input.
Default file type: BRFS.
Access mode: RX.

LIB Set automatic library load mode. The NORD-50 For-
matted Input/Output Program (N50FIO) is loaded when
this command is given. When the EX command is given,
the necessary parts of NORD-50 Library (N50LIB) are
loaded. This command should be given before any A
or M commands.

M <file>
Manual load from <file> until END byte on input.

Symbol Table Manipulations

C < old name>, (new name>
Change name. The name of defined'or undefined
symbol will be changed.

D < symbol name>, <symbol value>
Define symbol.

DC <symbol name >, <address> , <size>
Define common label

ND-GO. 075. 01

K (symbol name>

Kill symbol.

Change Loader Parameters

R Reset loader.

O <address>

Set origin. Set new value of program base and
current loading address.

CO <address>
Set common origin.

Printouts

W <1ist file>
Print defined symbols on <list file> .

- U < list file>
Print undefined symbols.

P < list file> , <lower 1imit>,<upper limit>

Print area disassembled. The disassembled program
will be printed on <list fi1e> when loaded.

L Set list mode.

N Non list mode. Suppress listing.

Break Conditions

BREAK <A,O,U,F,S,D,P or combinations>

Set break conditions for the program.

StOp on any reference in 4BP,BQ>
Stop on data reference in <BP,BQ>
Stop on store reference in <BP,BQ>
Stop on instruction fetch reference in <BP,BQ>
St0p on overflow
Stop on underflow
Stop on parity errorfiCOWmU>

Default break conditions are SP.

ND-60. 075. 01

BP and BQ are given default values to protect the area between
program end and start of common. The commands O and CO
may be used before ending the loading by (EX) to set other
values to BP and BQ. To give BP the value X and BQ the value
Y type:

A N50LIB
O X-l

and

CO Y

Example: #0 77
#CO 170000
#EX

BP will be 100 and BQ 170000

End Loading

EX or S(INTRAN)
End loading and return to SINTRAN III command
processor.

Q Return without ending the loading.

Installation

MAX <max. memory address for NORD-50>

Give the loader information about the size of your
NORD-50's memory.

Example: #MAX 177777
for a 64K system.

CC <first address in core-common for NORD-50>,
<size of core common in pages>

Give the loader information about the address and
size of the core-common area.

ND-GO. 075. 01

Linking to SINTRAN III

RTDEF

CCDEF

Define RT program names. The command should
be used after the program units referring to the
RT program names are loaded.

Only RT program names which are undefined
symbols to the NORD—50 Loader are defined by
the RTDEF command.

Define core—common labels.

All core-common labels defined by the RT loader
is defined to the NORD-50 loader. The address and
size of core-common should be given by the CC
command when the loader is installed. The CCDEF
command should be used before any program units
are loaded.

ND-GO. 075. 01

APPENDD(F

OPCODES AND THEIR VALUES IN THE THREE ASSEMBLY
NHDDES

FAD 0
F000 0
F53 0
F580 0
FHU O
FHUD 0
FDV 0
F070 0
FLO 090
FLOD 090
FIX 090

'FIXD 090
FIR 090
FIRD 090
RAF 09090
RAFD 09090
RSF. 09090
RSFD 09090
RMF 09090
RHFD 09090
RDF 09090
RDFD 09090
56F 09090
550 09090
SLF 09090
SLO. 09090
SEF 09090
5E0 09090
SUF 09090
SUD 09090
ASGF. 09090
AGFD 09090
ASLF 09090
'ALFD 09090
ASEF 09090
AEFD. 09090
ASUF 09090
AUFD 09090
MSGF 09090
MGFD 09090
HSLF 01090
HLFO 09090
MSEF 09090
MEFO 09090
HSUF 09090
HUFO. 09090
DSGF 01090
DGFD 09090
DSLF, 09090
DLFD 01090
DSEF 09090
DEFD 09010
DSUF 09090
DUFD 09090

N-S

00036000000
00036000000
00035000000
00035000000
00036000000
00036000000
00037000000
00037000000
11100000000
11100000000
10000000000
10000000000
10600000000
10600000000
15000000000
15000000000
15060000000
15060000000
15100000000
15100000000
15160000000
15160000000
17060000000
17060000000
17260000000
17260000000
17660000000
17660000000
17660000000
17660000000
17000000000
17000000000
17200000000
17200000000
17600000000
17600000000
17600000000
17600000000
17100000000
17100000000
17300000000
17300000000
17500000000
17500000000
17700000000
17700000000
17140000000
17160000000
17340000000
17360000000
17560000000
17560000000
17760000000
17760000000

N-5X

00034200000
00034200000
00035200000
noo352ooono
00034200000
00034200000
00037200000
00037200000
11100200000
11100200000
10004002000
10000002000
10400002000
10400002000
15000202020
19000202020
15040202020
15040202020
15100202020
15100202020
15140202020
15160202020
17040202020
17040202020
17240202020
17240202020
17440202020
17440202020
17640202020
17440202020
17040202020
17000202020
17200202020
17200202020
17400202020
17400202o2n
17600202020
17600202020
17100202020
171002020?0
17300202020
17300202020
17500202020
17500202020
17700202020
17700202020
17140202020
17140202020
17340202020
17340202020
17540202020
17540202020
17740202020
17740202020

ND-60. 075. 01

N-SO

00034000000
00034200000
00035000000
00035200000
00036000000
00036200000
00037000000
00037200000
11100000000
11100200000
10000000000
10000002000
10400000000
10600002000
15000000000
15000202020
15040000000
15040202020
15100000000
15100202020
15140000000
15140202020
17060000000
17040202020
17240000000
17240202020
17440000000
17440202020
17660000000
17640202020
17000000000
17000202020
17200000009
17200202090
17600000000
17400202020
17600000000
17600?02020
17100000000
17100202020
17300000000
17300702020
17500000000
17500202020
17700000000
17700202020
17140000000
1716u?0?0?0
17360000000
17340202020
17540000000
1754J202020
17740000000
17740202020

SLRD 09000 >
SRRD 01000
SLAD 0.000
SRAD 00090
SLLD 00090
SRLD 00000

'
FCN 1.0
DCN 1-0

03000000000
03200000000
03500000000
03300000000
03540000000
03340000000

10006000000
00900000000
10006000000
00000000000

0300020?000
03200?02000
03500202000
03300?02000
03540202000
03340202000

10020000000
00000000000
10020000000
00000000000

ND-60. 075. 01

0330020?000
03200202000
03500202000
03300202000
03540202000
03340202000

10020000000

l0020000000
00000000000

NURSK DATA ./\.S.
lzwrcnvn 57 - Posthoks 163. Okern
OSLO 1

COMMENT AND EVALUATION SHEET

ND-60. 075. 01 NORD-SO ASSE MBLER

In order for this manual to develop to the point where it best suits
your needs. we must have your comments. corrections. suggestions
for additions. etc. Please write down your comments on this pro—
addressed form and post it. Please be specific wherever possible.

FROM:

