
PRINTING RECORD
Printing Notes

08/76 Original Printing
09/77 Revision A. The following pages have been revised: vi. 2—9, 2—1 1, 2—27,

4—19, 4—25, 7—10, A-8, A—10, A-12, A—13, A-14, B—1,
8-2, 3-3, 3—14, B -17, C—13,D—1,D—6.
The following pages have been added: 4—53, 4-54, 4—55,

4—56. 4-57, C—14

03/79 Revision 8. The followinq pages have been revised: 2—27, 4—53. 4—54.
-6.

01/80 Revision C.
4—55. 4—56. 4_57_ 7—10, A—12. B—1.C-—14,D—2,D
The following pages have been revised: 1—4, 1—6, 2—2, 2—3,

2—6, 2—7, 2—12, 2-31, 3-1, 3-5, 3—7, 4—1 , 4—2, 4—3,
4—4,4—5,4—7,4—8,4—9,4—11,4—14,4—17,4—20.4—21,
4-26, 4—30, 4—31 , 4—32, 4—36, 4—39, 4—41 , 4—44, 4—46,
4—50, 4—51,4—53, 4—54, 5—1 , 5—6, 5—10, 5—11.5—13,
5—14, 5—16,7—3,7—8, 7—9.7—10,7—11,7-12,7—-13, 7—14,
A—1,A—6,A—-8, A—10,A—16,A—18, B—1,B—5,B—6,B—7,
B—8,B—12,B-13.B—14,B—15, B—16.B—19,B—20,C—1,
C—5, 0-11, 0—12. D—2, 0-5, and added page: A—10a.

05/81 Revision D. The following pages have been revised: 1-4, 1—5, 2—6, 2—8,
2-9.2—11,2-18,3—1,4-8,4—16,4—17,4—19,4—24,4-25,
4—46, 4—51.4—52. 5-1 , 5-4, 5—6, 5—8, 5—9, 5—11,5—12,
6—11.6—13,6—14,7-11, A-11, A—14,B-—13,B—15,B—16,
B—20,C-1,C-4,C—10,D—3,D-5.

Most of these pages contain corrections of spelling and language errors.

Changes of technical significance are marked by a vertical line in the margin.

Appendix A.3 has been removed. Refer to the manual ”SlNTRAN Ill

User's Guide“ for File System Error Messages.

ND—10 BASIC — Compiler Reference Manual
ND-60.071.01

O

33:33. NORSK DATA A.S
.

ooo::: P-O. BOX 4, Lindeberg gérd

3:33? Oslo 10, Norway

""W

P R E FAC E

The product

This manual describes the January 1981 version of the BASIC compiler for N D—l 00

and NORD—IO computers.

10034B — 32 bit floating point hardware

10024B — 48 bit floating point hardware

The system consists of the software products

20590 — BASIC compiler for 32 bit floating point

2060D —- Run time library for 32 bit floating point

or

2000E — BASIC compiler for 48 bit floating point

2001 E — Run time library for 48 bit floating point

The reader

This manual is written for anybody who will use the BASIC language for programming
and for those who need a user level description of the ND BASIC compiler.

Prerequisite knowledge

No previous experience with either the BASIC language, other programming or computer
'

hardware is expected. A minimum of knowledge of the Sintran lll operating system is

required in order to log in on the NORD—IO/ND—IOO system.

The manual

The manual is intended to be read sequentially, and is well suited as a guide to programming

in general, using BASIC as a tool. It explains BASIC features and interactive use of the BASIC

system in sufficient detail for self study, and contains a complete description of all commands,

statements and functions available.

Related documentation:

Sintran l|l Introduction (ND—60.125)

ND-60.071.01
Revision D

vii

TABLE OF CONTENTS

+++

Section:

1 INTRODUCTION

1 What is a Computer?
2 What is a Program?

.3 What is BASIC?
4 What is ND BASIC?

1.4.1 The Language
1.4.2 Special Real-Time Facilities
1.4.3 Program Development
1.4.4 The Compiler

1.5 The Manual

1.5.1 Conventions Used in This Manual

2 A BASIC PRIMER

2.1 An Example
2.2 Expressions

2.2.1 Numbers
2.2.2 Variables
2. 2.3 Relational. Operators

2.3 Loops
2.4 Arrays or Matrices
2.5 Use of the System
2.6 Errors and Debugging

2.6.1 Use of Flags

2.7 Summary of Elementary BASIC Statements

2.7.1 LET
2.7.2 READ 'and DATA
2.7.3 PRINT
2.7.4 GOTO
2.7.5 IF-THEN- or IF-GOTO

ND-60.071.01
Revision D

Section:

2.7.6
2.7.7
2.7.8
2.7.9
2.7.10
2.7.11
2.7.12
2.7.13

3.3

3.3.1
3.3.2
3.3.3
3.3.4

3.4

4.1

4.2

4.2.1
4.2.2
4.2.3
4.2.4

viii

FOR and NEXT
DIM
STOP
END
ON-GOTO
REM and Remarks
RESET
INPUT

INTERACTIVE USE OF THE BASIC SYSTEM

Entering the BASIC System

Compiling a BASIC Program
Editing 3 BASIC Program
Naming of Programs

Saving and Retrieving BASIC Programs

The SAVE Command

Executing Your Program

The RUN Command
Terminating Execution
Immediate Mode Execution
Setting Break Points

Leaving the BASIC System

MORE ABOUT BASIC

Elements of BASIC

Constants
Variables
Type Declaration Statements

Arithmetic Expressions

Arithmetic Symbols or Operators
Elements
Rules for Forming Expressions
Order of Evaluation

ND-60.071.01

Page:

2-26
2—27
2-28
2-28
2-28
2—29
2—30
2—30

4—4

Section:

4.3

4.3.1
4.3.2

4.4

4.4.1

4.5

4.5.1

4.6

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7

4.7

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6
4.7.7
4.7.8

4.8

4.8.1
4.8.2

4.9

4.9.1
4.9.2

Mixed Mode Arithmetic Expressions

More About LET
Mixed Mode and LET Statements

Arrays

Array Structure

Functions

Function Classification

Representations of Strings

Assigning Values to Strings and String Comparisons
Relaxation of Requirement for Quotation Marks
More About RESET
String Arrays
An Operator for Combining Strings
String Expressions
Functions Regarding Strings

Formatting Output

Exclamation Marks in PRINT Lists
Commas in PRINT Lists
Empty PRINT Statements
Packed PRINT Lists
Printing Formats for Numbers and Strings
The TAB Function
The MARGIN Statement
The PRINT USING Statement

Input Control

The LINPUT Statement
The MAT INPUT Statement

Program Organization Statements

The Apostrophe Convention
More About REM

ND-60.071.01
Revision D

Page:

4—1 0

4—12
4-12

4-1 4

4—16

4—17

4-18

4-—1 8
4—1 9
4—20
4-20
4—21
4—21
4—21

4—24

Section:

4.10

4.10.1
4.10.2
4.10.3

4.11

4.11.1
4.11.2
4.11.3

4.12
4.13
4.14

4.14.1
4.14.2
4.14.3
4.14.4

4.14.5
4.14.6
4.14.7
4.14.8

5.1

5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7

5.3

5.3.1
5.3.2
5.3.3

Internal Subroutines

The GOSUB and RETURN Statements
The ON — GOSUB Statement
The IF - GOSUB Statement

Internal Fu nctions

One Line DEF Statement
Multiple Line DEF Statements
Strings and Function Definitions

Relational Expressions
Logical Expressions
Other Useful Statements

Multiple Statement Line
The REPEAT Statement and the @ Variable
More About IF
The ON ERROR GOTO Statement and the ERR
Variable
The @ Statement
RANDOM and RND
The COMMON Statement
The Chain Statement

FILES IN BASIC

Introduction

The Connect Device Identifier
The OPEN and CLOSE Statements

Sequential Files

Reading a Sequential File from a Program
Writing a Sequential File from a Program
The Use of the Terminal Itself as a File
Other Input/Output Statements
Margins on Sequential Files
The IF END Statement
Simulating Sequential Files

Random Access Files and Virtual Arrays

Opening a Random Access File
Declaring Virtual Arrays (Virtual DIM Statement)
Virtual String Arrays

N D-60.071.01
Revision D

Page:

4—41

4—41
4—42
4—43

4—44

5—1
5—2

5—4

5—4
5—7
5—8
5—10
5-11
5—1 1
5-12

5°43
5—14
5—14

Section:

5.3.4

6

6.1
6.2
6.3
6.4
6.5
6.6

6.6.1

6.6.2

6.6.3
6.6.4

6.7

6.7.1
6.7.2

6.8
6.9

7.1
7.2
7.3

7.3.1
7.3.2

7.4

7.4.1
7.4.2

7.5

7.5.1

7.6
7.7
7.8

xi

Using a Random Access File from a Program

ARRAY MANIPULATIONS

Introduction
MAT Initialization Statements
.Changing Dimensions Using MAT Statements
Arithmetic Operations
Functions
Input and Output Operations

The MAT READ, MAT PRINT and MAT PRINT
USING Statements
The MAT INPUT and MAT LINPUT Statements
and the NUM Function
The MAT WRITE Statement
MAT Statements and Files

Examples Using MAT Statements

MAT Arithmetic
lnverting a Matrix

Simulating an N-Dimensional Array
The Row-Zero and Column Zero

PROGRAMS, FUNCTIONS AND SUBPROGRAMS

Program Units
Main Program
Parameters

Formal Parameters
Actual Parameters

Fu nction Su bprogram

The EXTERNAL Statement and Function Reference
Function Parameters

Subroutine Subprograms

The CALL Statement

Compilation and Execution with Subprograms
Main Program and Subprogram Linkage
Real Time (RT) Program Statement

ND-60.071.01

Section:

xii

7.9 Stand Alone Execution
7.10 Mixing BASIC With Other Languages

7.10.1 BASIC Strings as Parameters
7.10.2 Types of Parameters
7.10.3 Types of Functions

7.11 Mixed BASIC and Assembly Routines

7.11.1 Parameter Access in Subprograms
7.11.2 Functions in Assembly
7.11.3 Example of a Subprogram Structure
7.11.4 Calling 3 BASIC Subprogram from Assembly

APPENDICES

APPENDIX A

SUMMARY OF ERROR MESSAGES

A.1 Compiler Error Messages
A 2 Run-Time System Error Messages

APPENDIX B

SUMMARY OF ELEMENTS

B. 1 Statements
B.2 Commands
B.3 Functions

APPENDIX C

MISCELLANEOUS INFORMATION

C.1 Roundoff Errors
C.2 Changing Dimensions
C.3 Line Edit Control Characters
C.4 ASCII Character Set
0.5 NORD Word Structure

APPENDIX D

INDEX

ND-60.071.01
Revision C

Page:

7—12
7—13
7—13

7—14
7—14
7—14*
7-15

1.3 WHAT IS BASIC?

One such language which is easy to learn and to use is BASIC. BASIC was
first developed in 1963/64 at Dartmouth College and has since then been
revised several times. An advantage of BASIC is that its rules of form and

grammar are quite simple and easy to learn. It is the purpose of this manual
to present the language BASIC and to show how it is used to solve simple
problems and deal with many situations common in computing. More com-
plicated problems can be solved by combining the simpler steps shown here.

ND-60.071.01

1.4

1.4.1

1.4.2

1.4.3

1—4

WHA T /8 ND BASIC?

The Language

ND BASIC is a simple, powerful, high-level programming language
that facilitates problemsolving for scientific, business and educational
applications run on ND—IOO and NORD—iO computers. Among the
many programming languages currently in use, the rules and grammar
of BASIC must be considered the easiest to learn and use. BASIC
permits the user to solve mathematical problems directly from a key-
board printer or an alphanumeric display terminal. BASIC is
particularly well suited for timesharing applications since the compiler
is reentrant. This permits multiple users to simultaneously call upon
and.uti|ize the same compiler. ‘

The ND BASIC language contains a large number of statement types
and functions with special features includir-j} matrix operation,
alphanumeric information handling, program control and storage facilities
and program editing, as well as documentation and debugging aids.
Several statements designed expressly to perform matrix computations
are incorporated in the operation set. The NORD-lO BASIC has string-, real-,
integer-, and double integer variable types. Variable names may consist
of up to 7 letters and digits.

Special Real- Time Facilities

ND BASIC contains the facilities for linking to external subroutines,
including FORTRAN and MAC assembly language libraries, thus

making it easy to develop real-time application programs in the BASIC
language. This facility makes it possible to use the S'lNTRAN |l| real-
time capabilities as well as other common processors for control systems.

Program Development

ND BASIC provides program control of storage facilities that
save. programs or data on mass storage devices, and later retrieve them
for execution. Program editing permits adding or deleting statement
lines from on-line terminals, including possibilities for correcting
individual characters of a line, using the same editing facilities as in

'

SINTRAN I” command input. Programs may be combined from several
source units, requesting a partial or complete hard-copy listing and re-
numbering statement lines.

ND-60.071.01
Revision D

1.4.4 The Compiler

The ND BASIC compiler may be used in three different modes:

—- Interactive incremental compiler.
— Binary relocatable format (BRFl-compiler.
—- Direct execution of statements and expressions.

In the interactive mode lines typed by the user, or read from an existing
source file, are compiled into machine-instructions and loaded directly
to the user’s virtual memory.

When typing the RUN command, the compiled program is executed at
highest possible speed, much faster than traditional interpreters. Source
lines are kept on a system-scratch-file for later retrieval. Independently
compiled subroutines or library files may be linked, using the integrated
relocating loader when necessary.

In compile-mode lines are read from existing' source files and compiled
into binary relocatable format (BRF)-files, compatible with FORTRAN
or MAC assembly language subroutines. The BRF file may be loaded for
execution by the integrated relocating loader, or by a freestanding loader
normally used with FORTRAN/MAC programs.

In immediate mode lines typed without line number are regarded as ex-
pressions being compiled into machine instructions, and executed directly. Most
statements may be used, with a few exceptions as the FOR/N EXT
statements. The terminal may then function as an advanced calculator.

In all modes extensive error messages are given, making it easy to correct
erroneous statements.

ND-60.071.0‘I
Revision D

1.5

1.5.1

THE MANUAL

This manual describes the language in'steps so that understanding of
material presumes a knowledge of material in previous chapters.

Conventions Used In This Manual

Some documentation conventions are used in this manual to clarify
examples of BASIC syntax. BASIC statements or commands are often
described in general terms using the following conventions:

A statement number is assumed when a statement is

described.

Items in capital letters are reserved BASIC words belonging
to the vocabulary of the BASIC language. (RUN, EDIT,
IF, LET, STEP.)

Items in small letters enclosed in < > are essential elements of
the statement or command being described. (<statement>,
<variable>, <expression>)

Text enclosed in [] is optional.

Some terms which may seem confusing are explained below:

Terminal is any device having a two-way communication with

the computer.

The user types on the keyboard and BASIC prints on the
terminal.

Capital letters marked with a c like Acor C1c indicate the
respective key on the keyboard plus the CTRL key.

N D-60.071.01
Revision C

The program and the resulting run is shown below exactly as it
appears on the terminal:

1 0
1 5
20
30
37
42
55
60
65
70
80
85
90

READ A, B, D, E
LET G=A*E—B'D
IF G=0 THEN 65
READ C, F
LET X=(C*E-B*FI/G
LET Y=(A*F—C*D)/G
PRINT X, Y
GO TO 30
PRINT "N0 UNIQUE SOLUTION”
DATA 1, 2, 4
DATA 2, —7, 5
DATA 1, 3, 4, —7
END

RUN
4 -5.5
6.66667 E—01 1 .66667 E-01

—3. 66667 3.83333

BASIC RUN ERROR 406 IN LINE 30

After typing the program, we type RUN followed by a carriage
return. Up to this poi-rut the computer stores the program and checks
the form of the statements. This process is called compiling. It is
the RUN command which directs the computer to execute your pro-
gram. The message out-of-data error code here may be ignored.
However, in some cases it indicates an error in the program.

ND- 60.071.01

2.2

2—6

EXPRESSIONS

The computer can perform a great many operations; it can add, subtract,
multiply, divide, extract square roots, raise a number to a power and find
the sine of a number (on an angle measured in radians), etc“ We will now
learn how to tell the computer to perform these various operations and
to perform them in the order that we want them done.

The computer performs its primary function (that of computation) by
evaluating formulas which are supplied in a program. These expressions
are very similar to those used in standard mathematical calculation, with
the exception that all BASIC expressions must be written on a single line.
Five arithmetic operations can be used to write an expression, and these
are listed in the following table.

Symbol Example Mug

+ A + B Addition (add B to A)
— A —- B Subtraction (subtract 8 from A)
* A * B Multiplication (multiply B by A)
/ A / B Division (divide A by B)
l or ** X T 2 Raise to the power (find X 2)

We must be careful with parentheses to make sure that we group together
those things which we want together. We must also understand the order
in which the computer does its work. For example, if we type A + B * C T D,
the computer will first raise C to the power D, multiply this result by B and
then add A to the resulting product. This is the same convention as is usual
for A + BCD. if this is not the order intended, then we must use parentheses
to indicate a different order. For example, if it is the product of B and C
that we want raised to the power D, we must write A + (8*CliD; or, if
we want to multiply A+ B by C to the power D, we write (A + B)*CfD.
We could even add A to B, multiply their sum by C, and raise the product
to the power D by writing ((A + B)*C)tD. The order of priorities is sum--
marized in the following rules:

_ The expression inside parentheses is computed before

the parenthesized quantity is used in further com-
putations.

__ In the absence of parentheses in an expression in-
volving addition, multiplication and the raising of a
number to the power, the computer first raises the
number to the power, then performs the multiplica-
tion, and the addition comes last. Division has the
same priority as multiplication, and subtraction the
same as addition.

ND-60.071.01
Revision D

- In the absence of parentheses in an expression invol-
ving operations of the same priority, the operations are
performed from left to right.

The rules are illustrated in the previous example. The rules also tell us that
the computer faced with A - B -— C, will (as usual) subtract B from A and
then C from their difference; faced with A/B/C, it will divide A by B and
'that quotient by C. Given AT BfC, the computer will raise the number A to
the power B and take the resulting number and raise it to the power C. If
there is any question in your mind about the priority, put in more paren-
theses to eliminate possible ambiguities.

In addition to these five arithmetic operations, the computer can evalute
several mathematical functions. These functions are given special English
names, for instance:

Fu notions Interpretation

ATN (X) Find the arctangent of X
EXP (X) Find ex
SQR (X) Find the square root of X (J X)

In place of X, we may substitute any expression or any number in paren-
thesis following any of these formulas. For example, we may aks the com-
puter to find J4 + X3 by writing 30R (4 + Xf3), or the arctangent of
3X - 2eX + 8 writing ATN (3*X — 2 * EXP (X) + 8).

If sitting at the terminal, you need the value of (5/6)17 and you can write
the two-line program:

10 PRINT (5/6) T 17
20 END

and the computer will find the decimal form of this number and print it
out in less time than it took to type the program.

Other functions are also available in BASIC, but these are reserved for
explanation later (Section 3.3).

N 0-60.071 .01
Revison C

2.2.1

2.2.2

2.2.3

2—8

Numbers

A number may be positive or negative and it may contain up to approxi-
mately nine significant digits. For example, all of the following are num-
bers ir' BASIC:2 —3, 675, 1234567, —7654321 and 483.4156. The follow-
ing are not numbers in BASIC:14/3 and $7,. We may ask the computer
to find the decimal expression 14/3 and J7, and to do something with
the resulting number, but we may not include either in a list of DATA.
We gain further flexibility by use of the letter E, which stands for ”times ten
to the power“. Thus, we may write 00123456789E — 2 or 123456789E - 11
or 1234.56789E — 6. We may write ten million as 1E7 (or 1E + 7) and 1965
as 1.965E3 (or 1.965E +3). We do not write E7 as a number, but must write

. 1E7 to indicate that it is 1 that is multiplied by 107-

Variables

A variable in BASIC is denoted by any letter, or a letter followed by up
to six digits and/or letters. Thus, the computer will interpret E7 as a variable
along with A, X, N5, 10 and 01. A variable in BASIC stands for a number,

usually one that is not known to the programmer at the time the program
was written. Variables are given or assigned values by LET READ or INPUT
statements. The value so assigned will not change until the next time a
LET, READ or INPUT statement is encountered with a value for that vari-
able. However, all variables are set to a zero before a RUN command. Thus,
it is not necessary to assign a value to a variable before using the variable
in a computation.

Relational Operators

' Seven other mathematical symbols are provided for in BASIC, symbols
of relation, and these are used in IF -— THEN statements where it is neces-
sary to compare values. An example of the use of these symbols was
given in the sample program in Section 2.1.

Any of the following seven relations may be used:

Symbol Example Meaning

= A = B Is equal to (A is equal to B)
< A < B Is less than (A is less than B)
< = or = < A < = B Is less than or equal to (A is

less than or equal to B)

> A > B Is greater than (A is greater
than B)

> = or = > A > = B Is greater than or equal to (A
is greater than or equal to B)

< > or >< A < > B Is not equal to (A is not equal
to B) -

= = A = = ls approximately equal to

ND-60.071.01
Revision D

2—9

The term ”approximately equal to" means that the two quantities differ
by a very small amount and may be regarded as identical for any practical
purpose. More specifically, A == B is true if:

IA—B|<C *1(A+B/2)|

C is a system constant which equals 5E—7 for 48 bit reals and5E—5 for 32
bit reals (see Appendix C).

Generally, approximately equal quantities appear equal when they are
printed.

ND-60.071.01
Revision D

2.3

2—10

L OOPS

We are frequently interested in writing a program in which one or more
portions are performed not just once but a number of times, perhaps with
slight changes each time. In order to write the simplest program, the one in
which this portion to be repeated is written just once, we use the program
ming device known as a loop.

The programs which use loops can, perhaps, be best illustrated and explained
by two programs for the simple task of printing out a table of the first 100
positive integer numbers together with the square root of each. Without a
loop, our program would be 101 lines long and read:

10 PRINT 1, SQR (1)
20 PRINT 2, SQR (2)
30 PRINT 3, SQR (3)

990 PRINT 99, 80R (99)
1000 PRINT 100, 30R (100)
1010 END

With the following program, using one type of loop, we can obtain the
same table with far fewer lines of instruction, 5 instead of 101:

10 LETX=1
20 PRINT X, SQR (X)
30 LET X = X +1
40 IF X<= 100 THEN 20
50 END

Statement 10 gives the value of 1 to X and “initializes“ the loop. In line
20 both 1 and its square root are printed. Then, in line 30, X is increased
by 1 to 2. Line 40 asks whether X is less than or equal to 100; an affir-

mative ansvyer directs the computer back to line 20. Here it prints 2 and
J2, and goes to 30. Again X is increased by 1, this time to 3, and at 40
it goes back to 20. This process is repeated, line 20 (print 3 and J3),
line 30 (X = 4), line 40 (since 4 < 100 go back to line 20), etc. — until
the loop has been traversed 100 times. Then after it has printed 100 and
its square root, X becomes 101. The computer now receives a negative an-
swer to the question in line 40 (X is greater than 100, not less than or equal
to it), does not return to 20, but moves on to line 50, and ends the program.
All loops contain four characteristics, initialization (line 10), the body
(line 20), modification (line 30), and an exit test (line 40). Because loops
are so important and because loops of the type just illustrated arise so often,
BASIC provides two statements to specify a loop even more simple. They
are FOR and NEXT statements, and their use is illustrated in the program:

ND-60.071.01

2—11

10 FOR X=1 T0100
20 PRINT X, SQR (X)
30 NEXT X
50 END

In line 10, X is set equal to 1, and a test is set up, like that of line 40.
Line 30 carries out two tasks: X is increased by 1 and the test is carried
out to determine whether to go back to 20 or to go on. Thus, lines 10 and
30 take the place of lines 10, 30 and 40 in the previous program — and
they are easier to use.

Note that the value of X is increased by 1 each time we go through the
loop. If we wanted a different increase, we would specify it by writing:

10 FOR X =1 TO lOOSTEP 5

and the computer would assign 1 to X on the first time through the loop
6 to X on the second time through, 11 on the third time, and 96 on the
last time. Another step of 5 whould take X beyond 100, so the program
would proceed to the end after printing 96 and its square root. Step size
must be positive, unless it is aW.

in the absence of a STEP clause, a step size of +1 is assumed.

More complicated FOR statements are allowed. The initial value, the final
value, and the step size may all be expressions of any complexity. For
example, if N and 2 have been specified earlier in the program we could
write:

FOR X=N+7*ZTO(Z—Nl/38TEP(N-4*Z)/10

The loop continues as long as the control variable is algebraically less than
or equal to the final value.

If the initial value is greater than the final value, then the body of the
loop will not be performed at all, but the computer will immediately
pass to the statement following the NEXT. For example, the following
program for adding up the first n integer numbers will give the correct
result 0 when n is 0.

10 READ N
20 LETS=0
30 FOR K =1 TO N
40 LET S = S + K
50 NEXT K
60 PRINTS
70 GO T010
90 DATA 3, 10, 0
99 END

ND-60.071.01
Revision D

2—1 2

It is often useful to have loops within loops. These are called nested loops
and can be expressed with FOR and NEXT statements. However, they must
actually be nested and must not cross, as the following skeleton examples
illustrate:

Allowed Allgyygj

FOR X FOR X
‘ I—FOR Y

r
FOR Y

I-—NEXT Y ‘ FORZ
'—NEXT X [ENEXT Z

'
l—FOR

W
Ngt Allowed l -NEXT W

—NEXT Y
.—FOR X FOR 2

OR Y -NEXT Z
—NEXT X NEXT X

__NEXT Y
'

Note that BASIC does not check for overlap of control variables in nested |odps.

N D-60.071.01
Revision C

2—17

The last line is always stored in the computer, and you can correct it,
even if it resulted in an error message by using the line exit control char-
acters. Any program statement may also be corrected in the same way
by typing the EDIT command followed by the statement number. If you
want to eliminate the statement on line 110 from your program, you may
do this by typing the command DELETE 110. It is also possible to type 110
followed by carriage return. Now, line 110 is still a part of the program,
but the effect of the statement is removed. If you want to insert a state-
ment between those on lines 60 and 70, you can do this by giving it a

line number between 60 and 70.

If it is obvious to you that you are getting the wrong answers to your
problem, even while the computer is running, press the key marked E30
and the control is given to the Operating System. The command CON-
TINUE will restart BASIC with your program intact and you can start to
'make your corrections. If you are in serious trouble, type the command
CLEAR. The word READY, whenever printed, tells you that BASIC is
ready to accept commands or statements from your terminal.

A sample use of the system is shown below:

10 FOR N =1 TO 7
20 PRINT N, SQR(N)
30 NEXT N
50 END

RUN
1 1
2 1.41421
3 1.73205
4 2
5 2.23607
6 2.44949
7 2.64575
READY

ND-60.071.01

2—18

ERRORS AND DEBUGGING

it may occasionally happen that the first run of new problem will be free
of errors and give the correct answers, but it is much more likely that
errors will be present and will have to be corrected. Errors are of two
types: errors of form (or syntax errors) which prevent the running of the
program, and logical errors in the program which cause the computer to
produce wrong answers or no answers at all.

Errors of form will cause error messages to be printed. Logical errors are
often much harder to uncover, particularly when the program gives ans-
wers which seem to be nearly correct. In either case, after the errors are
discovered, they can be corrected by changing lines, by inserting new lines
or by deleting lines from the program. As indicated in the last section, a
line is changed by typing it correctly with the same line number; a line is
inserted by typing it with a line number between those two existing lines;
and a line is deleted by typing DELETE and the actual line number. Notice
that you can insert a line only if the original line numbers are not con-
secutive integers. For this reason, most programmers will start out using
line numbers that are multiples of five or ten, but that is a matter of
choice.

These corrections can be made at any time - whenever you notice them -
either before or after a run. Since the computer sorts lines out and arranges
them in order, a line may be retyped out of sequence. Simply retype the
offending line with its original line number.

As with most problems in computing, we can best illustrate the process of
finding the errors (or “bugs") in a program and correcting (or “debugging“)
it by an example. Let us consider the problem of finding that value of X
between 0 and 3 for which the sine of X is a maximum and ask the machine
to print out this value of X and the value of its sine. If you have studied
trigonometry you know that 1r/2 is the correct value; but we shall use the
computer to test successive values of X from 0 to 3, first using intervals of
.1, then .01, and finally of .001. Thus, we shall ask the computer to find the
sine of 0, of .1, .2, .3, 2.8, 2.9 and of 3, and to determine which
of these 31 values is the largest. It will do it by testing SlNlO) and SlN(.1)
to see which is larger and calling the largest of these two numbers M. Then
it will pick the larger of M and SIN (.2) and call it M. This number will be
checked against SIN (.3) and so on down the line. Each time a larger value
of M is found, the value cf X is “remembered“ in X0. When it finishes,
M will have been assigned to the largest value. it will then repeat the search,
this time checking the 301 numbers 0, .01, .02, .03, 2.98, 2.99,
and 3, finding the sine of each and checking to see which has the largest
sine. At the end of each of these three searches, we want the computer
to print three numbers: the value X0 which has the largest sine, the sine
of that number, and the interval of search.

ND-60.071.01
Revision D

3.1

3.1.1

3—1

INTERACTIVE USE OF THE BASIC SYSTEM

ENTERING THE BASIC SYSTEM

The BASIC system may be entered from the operating system
SINTRAN III by typing

@BASIC

Then the BASIC system starts by identifying itself followed by the word
READY. This word, whenever printed, tells you that BASIC is ready to

accept a command or a statement typed from your terminal.

Compiling 3 BASIC Program

When you start, the system is initialized to accept your program

lines typed directly from the terminal. However, if your program resides

on a mass storage file you may initiate the compilation process by giving
the command:

OLD <file name>

As soon as all the program lines on the specified file has been compiled,
the number of compiled lines along with the number of diagnostics given
will be printed on your terminal. If no diagnostics are given the compiler
has accepted all the statements to be syntactically and semantically correct
and you may try to start the execution of it (see below).

Editing 3 BASIC Program

If compiler diagnostics have occurred these must be corrected before the '

program can be executed. The BASIC system provides commands to list,
delete, change and renumber the program lines.

A line may be changed simply by typing a new line with identical line
number. Then the new line will replace the old one.

A line may also be changed by first typing

EDIT <line number>

and then applying the line edit control characters to produce a modified line.

The control characters are described in Appendix C.3.

ND-60.071.01
Revision D

3—2

Example:

10 LET A =,1
***ERROR IN LINE 10", "SYNTAX ERROR“
ED 10

Now if Zc followed by = is typed this will result in the printout:

1O LET A =

Then if 3 SC is typed in order to remove the comma, Dc will copy the
rest of the old line to the new one.

A line may be listed.on terminal by typing

LIST <line number>

Now this line may be modified without using the EDIT command. More
than one line may be specified, each line number separated by comma.
The word LIST by itself will cause the listing of the entire program.

LIST followed by two line numbers separated by a dash (-) will list the
lines between and including the Specified ones.

A line is removed from the program by typing

DELETE <line number>

More than one line may be specified, separated by commas. Two line num-
bers separated by a dash (-I will delete the lines between and including
the lines specified.

The REN UMBER command is used to change statement line numbers and
the references to these lines. Line numbers in comments are not changed.

A program is renumbered by typing

RENUMBER <new initial line number> [<increment>]

First parameter indicates the new initial line number and the second (if
any) indicates the increment in the line numbers of two successive state-
ments. If no parameters are specified the first statement number will be
100 and the increment will be 10.

ND-60.071.01

4.2.3

4.2.4

(A + B) (—A * B) ((A**B)-(A*B))
124 l2.4E—2 0%
X A(|, J) S|N(V)

A factor is a primary or a primary ** a primary:

(A + B) (A + B)**X |**2

A term is a factor, a term/factor, or a term*term:

A**B (A**B)/X ((A**B)/X)*SIN(V)

A signed term is immediately preceded by a plus or minus:

—A**B —X -(—A*B)

A simple arithmetic expression is a term, or two simple arithmetic expressions
separated by plus or minus:

(A + B)+X% X/2.314 Y/S|N(X)-A**B

An arithmetic expression is a simple arithmetic expression, or a signed term
plus or minus a simple arithmetic expression:

-X/Y l**2 + K% —A**B-7X/Y

Rules for Forming Expressions

Two arithmetic operators may not be adjacent to each other, X + —Y is

an illegal expression. The subtraction operator may not be used as a sign
of negation. —X implies O—X and must be enclosed in parentheses when
preceded by another operator: X + (—Y) is a legal expression.

Parentheses may be used to indicate grouping as in ordinary mathematical
notation but they may not be used to indicate multiplication: (X) (Y) does
not imply (X) * (Y) nor does juxtaposition imply multiplication: XY does
not imply X * Y. Real and integer quantities may be mixed in the same

expression.

Order of Evaluation

When the hierarchy of operations in an expression is not completely specified
by parentheses, the operations are performed in the following order:

N 0-60.071 .01
Revision C

T or H exponentiation performed first

/ division
* multiplication performed next

+ addition
- subtraction 3 performed last

Within a sequence of consecutive multiplications and/or divisions or
additions and/or subtractions,when the order is not explicitly indicated
by parentheses, expressions are evaluated from left to right.

Whenever ambiguity is possible in the evaluation of an expression, paren-
theses should be“ used. The ambiguous expression A**B**C can “be clarified
as (A**B>**C or A**(B**C) only by parentheses.

i'.‘x ,1;

The way an expression is written determines how the computer will evaluate it.

1. .10? 2+1

(The computer evaluates this expression as 100 + 1 = 101. It will
fperform the exponentiation before the addition.

2. 10 f 2/2*3

The value given for this expression is 100 / 2 * 3 = 50 * 3 = 150.
The computer performs the exponentiation first. When multi-
plication and division appear together, the left-most operation
is performed first. Thus, in this example, the division is performed
second and finally the multiplication.

3. 5+2*3—1

The value of this expression is 5 + 6 - 1 = 11 — 1 = 10. The com-
puter performs the multiplication first. As with multiplication and
division, the positions of the + and - symbols determine which
operation is performed first. Addition and subtraction are per-
formed from left to right. So, in this example, the addition is per-
formed second and the subtraction last.

4. 32/41‘2+3*3—1

This expression uses all the available symbols for arithmetic oper-
ations and the steps by which the computer evaluates it are as
follows. First exponentiation is performed and the expression is
reduced to 32 / 16 + 3 * 3 — 1. Then division and multiplica-
tion are performed from left to right and the simplified formula
is 2 + 9 — 1. Finally, addition and subtraction are performed from
left to right and the value of the formula is seen to be 10.

ND-60.071.01
Revision D

4—15

A% ->
‘

A00 (Memory location n)
I
AIo " + 1
A20 n + 2

A
A01 n + 3

A11 " + 4
A21 n + 5

A02 n + 6

A12 n + 7

A22 n + 8

The location of an array element with respect to the first element is a function
of the maximum array dimensions and the type of the array. Given DIM A%

(L, M), the location of A% (I, J) with respect to the first element of arra.,_ A%
is given by.

A%+[I+(~J*(L+1))] *E

The quantity in brackets is the subscript expression. E is the element length
in terms of the number of computer words needed for each element of the
array. In our example, where the array (A%) is of integer type E is equal to
i. For string arrays E will always be equal to 2, because such arrays, in fact,
consist of pointers to the string elements, and the length of each.

ND-60.071.01

4.5

4—16

FUNCTIONS

With the BASIC statements previously described, programs can be written
which compute values of many of the commonly used elementary functions.
For example, the following portion of a BASIC program can be used to find
the absolute value of a number N and store it in A.

220 REM SIGNED NUMBER IN N
230 IF N < 0 THEN 260
240 LET A = N
250 GO TO 270
260 LET A = l—N)
270 REM POSITIVE NUMBER IN A

Because the need for the absolute value of a number arises so frequently
in programming, BASIC provides a simpler way of computing this function.
Certain elementary function names (such as ABS) may appear in BASIC
programs anywhere a number may appear. The function name is followed
by any arithmetic expression enclosed in parenthesis. For example, the
absolute value of a number may alternatively be calculated with the follow-
ing portion of a BASIC program:

220 REM SIGNED NUMBER IN N
230 LET A = ABS (N)
240 REM POSITIVE NUMBER IN A

BASIC computes the value of these functions accurately, it does not store
tables of elementary functions, since it can compute a value for a function
in a few thousandths of a second. If a number which cannot be evaluated
is used with a function, a message is printed on the terminal. For example,
if a program attempts to take the square root of a negative number.

Most of the function names are self-explanatory. The range of the arctangent
function ATN is from —pi/2 to +pi/2. The function INTIX) delivers the largest
integer number not greater than X, for example:

INT (—2.8) = -3
INT (2.8) = 2
INT (-0001) = -I

The INT function can be used to good advantage to round numbers:

100 LET A = INT (A + .5)
110 LET B = INT (100 * B +.5I/100

Statement 100 rounds A to the nearest integer. Line 110 rounds B to the
nearest hundreth.

N D- 60.071.01
Revision D

4.5.1

4-17

Function-calls may be nested. The following program prints the sine of
the angle whose arctangent is T.

10 INPUT T
20 PRINT SIN iTANiTli
30 END

'

Function Classification

Functions in ND BASIC are divided into three main groups:

1. Mathematical functions

2. String functions

3. Miscellaneous functions

These three types of functions can be defined for a BASIC program in
several ways:

1. Built-in library functions

Functions with restricted names; most commonly used in programs.

2. Extended library functions:

Existing functions which may be supplied by scanning a library
file.

3. User internal functions:

Any desirable function defined by the user through a DEF
statement. The name must start with FN.

4. User external functions:

Any desirable function introduced in a BASIC program through
an EXTERNAL statement. The function must be present in
the NORD standard object form (BRF); the source code, how-
ever, may be BASIC, STANDARD FORTRAN, NPL or MAC
assembly.

When a function reference appears in a BASIC program, the compiler gener-
ates a calling sequence within the object program.

All existing functions are listed with a short description in Appendix 8.3.

The way of defining and calling user functions are described later.

ND-60.071.01
Revision D

4.6

4.6.1

4—18

REPRESENTATIONS 0F STRINGS

The BASIC programs described thus far have all dealt with numbers. In
the statement

100 LET A = B + 3.1415926

the sequence 3.1415926 is a representation of a number; the character B
is the name of a number which can vary as the program is executed by
the computer. The character A is the name of a number which may be
changed by the execution of that statement. Although computers are
excellent machines for performing high-speed arithmetic, some of their
most important uses are in the manipulation of entities which do not
represent numbers. A string is such an entity.

A string is a sequence of characters; these include letters, digits, blanks,
and other Special characters such as those which appear on the terminal.
One way of representing a string in BASIC is to enclose it in quotation
marks. Such string constants have already been introduced in INPUT and
PRINT statements. For example, the string in

100 PRINT "NO UNIQUE SOLUTION’l

is a string constant just as the number 3.1415926 in the preceding example
is a numeric constant.

'

Just as BASIC has names for numbers, it also has names for strings.
A name of a simple string is formed exactly as a name for a number,
except that it includes a trailing dollar sign ($1. The string A$ is entirely
distinct from the number A and both names can appear in the same BASIC
program.

Assigning Values to Strings and String Comparisons

A string variable can take on a string value through a READ statement.
The following BASIC program reads three strings and prints them.

10 READ A$, B3, C$
20 PRINT C$; B$; A$,
30 DATA “ING”, "SHAR", "TIME- “

40 END

Note that the items in the DATA statement are representations of strings,
not numbers. This program prints the word TIMESHARING on the
terminal. Since the quotation marks are used to delimit the strings, it is
not possible to create a string containing a quotation mark in this manner.

ND-60.071.01

4.6.2

4—19

Strings can also be assigned values through the use of LET statements.
For example:

10 LET A$ '= ”H2304"
20 LET B$ = A$
30 PRINT B$
4O END

will print the string H2804 on the terminal. It is even possible to omit
the word LET as with arithmetic assignment statements.

Another way that a string can take on a value is by having the program
request the input of a string from the terminal through an INPUT state-
ment. For example:

10 PRINT ”A MIXTURE OF FUEL AND OXlDlZEFl WHICH“
20 PRINT "BURNS SPONTANEOUSLY lS TERMED";
30 INPUT A$
40 IF A$ = "HYPERGOLIC" THEN 70
50 PRINT "WRONG"
60 GO TO 80
70 PRINT "RIGHT”
80 END

After printing the textual message the program will print a question mark.
Suppose the user enters the word "HYPERVENTI LATED" in response.
Statement 40 is a string conditional statement. If the string AS is the same
as the string ”HYPERGOLlC", then statement 70 will be executed next.
Since the user did not enter “HYPERGOLIC” he has WRONG printed
on his terminal. .

Any of the relational cperators except approximately equal (described in
Section 2.2.3) may be used in an IF — THEN statement to compare strings.
The relational operator "<“ is interpreted as meaning “earlier in alphabetical
order than“ and the relational operators are defined appropriately. The
ordering of characters is arbitrarily defined by the ASCII code which is
explained in Appendix 0.4. In any string comparison the strings are assumed.
to be of the same length, i.e., trailing blanks are simulated.

'

Re/axation of Requirement for Quotation Marks

Strings which are entered in response to an INPUT statement need not be
bracketed by quotation marks as long as the items being entered do not
contain commas or do not begin with blanks.

N D-60.071.01
Revision D

4.6.3

4.6.4

4—20

Strings containing commas must be enclosed in quotation marks because
commas are treated as special characters by BASIC. They are used to separate
multiple items entered in response to an INPUT statement containing more
than one variable in the input list. In addition, if the last string on a line
of input being entered in a list via a MAT INPUT statement ends with an
ampersand (8:), the string must be enclosed in quotation marks.

A string in a DATA statement must be enclosed in quotation marks if it
begins with a blank, a digit, 3 plus sign, a minus sign, or a decimal point,
or if it contains a comma or an apostrophe. Ampersands, however, do not

have the special significance in DATA statements that they do in items
being entered in response to INPUT statements. If strings are enclosed in
quotation marks, the quotation marks are not considered to be part of the
string and are ignored.

More About RESET

In DATA statements, numbers and strings may be intermixed. When

a numeric variable appears in a READ statement the next number appear-
ing in the DATA statements is assigned to that numeric variable: when a
string appears in a READ statement, the next string appearing in DATA
statements is assigned to that string variable. Thus, numeric and string
data are managed independently in BASIC. A RESET statement will
reset pointers for both types of data so that subsequent READ statements
will reread the data. A RESET * statement will reset only the pointer for
string data.

The following program illustrates the use of RESET.

100 READ A$, A, B$
110 PRINT “FIRST TIME", A$, A, B$
120 DATA 1, ”2APPLES", PEARS
I30 RESET
140 READ C$
150 PRINT ”SECOND TIME“, CS
160 END

Running this program produces the following input:

FIRST TIME 2 APPLES 1 PEARS
SECOND TIME 2 APPLES

String Arrays

BASIC can also operate on multiple strings arranged as one or two dimensional
arrays. These entities are denoted by a string identifier, followed by one or
two subscripts enclosed in parenthesis. Thus A$l3l denotes the third string
in a list of string A$. Similarly, B$(4, 5) denotes a string in the 4th row
and 5th column of a table of strings B$.

N 060.071 .01
Revision C

4-23

Th SE unci n

SEG$ (A$, X", Y) takes a string and twe expressions as arguments and returns
a substring as a result. The substring starts at character number X in the

input string and ends; at character number Y.

Examglgz

50 LET NEW$ = SEG$ (A$, 3, 3) & B$

N D-60.071.01

4.7

4.7.1

4.7.2

4—24

FORMA 7T/NG OUTPUT
When you write BASIC programs to prepare reports, graphs, tables and
other formatted (or specially arranged) output, it is important that you
will be able to control output format very closely. This section describes
statements which permit construction of neatly aligned tables, labels and
so on.

Exclamation Marks in PRINT Lists

The exclamation mark (I) will cause the terminal print head to move to
the next line, i.e., carriage return and line feed is printed. This will be
repeated for each exclamation mark found as in the example:

10 PRINT l, 1, II, 2
20 END
RUN

‘I

2

Commas in PRINT Lists

The terminal line is considered to be divided into zones of 15 characters
each. The default number of zones is 5 as the standard margin (see Section
4.7.7) is set to 75. Each line begins with column zero.When multiple items
appear in a PRINT list separated by commas, the first item is printed start-
ing at the beginning of the first zone (column 0), the second at the next
zone (column 15), etc. The comma can be considered to cause the ter-
minal print head to space up the next zone preparatory to printing. If the
last zone has just been filled, the terminal print head will move to the
first print zone of the next line. Thus, the statement

100 PRINT , , , , “COL60”

will print the five character “COLBO” beginning at column 60, the begin-
ning of the fifth zone.

If a PRINT list ends in a comma, the terminal print head simple spaces
up to the next 15 character zone and does not move to the beginning
of a new line in preparation for the next PRINT statement unless the
last zone has been filled.

For example, the program:

100 FOR I=1T015
110 PRINTI,
120 NEXTI
130 END

ND-60.071.01
Revision D

4.7.3

4-25

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

READY

Empty PR IN T Statements

A PRINT statement which does not end in any special punctuation mark,

such as a comma, will print the information in the PRINT list and the ter-

minal will be prepared so that further output will begin at the beginning
of the next line. Thus, an empty PRINT statement such as

100 PRINT

will simple advance the paper one line, leaving a blank line if the terminal
print head is already at the beginning of a line. It can be used to cause
the completion of a partially filled line as illustrated in the following
program.

100FORI =1TO4
110FORJ=1TOI
120 LET BII, J) = I
130 PRINT B (I, J),
140 NEXT J
150 PRINT
160 NEXT I a ._
170 END

This program will print B(1,1) on the first line. Without line 150, the .terminal
print head would then go on printing B (2, 1), B (2,2) on the same line.
Line 150 directs the terminal print head to start at the beginning of a new
line after printing the highest J value for a given I. Thus, items are printed
in a triangular format. Output from the preceding program follows:

1
2 2
3 3 3_
4 4 4 4
READY

ND- 60.071.01
Revision D

4.7.4

4.7.5

4—26

Packed PRINT Lists

Using the comma to separate items in PRINT lists, you will find that it
is not possible to print more than five numbers or strings on one line. A
semicolon may be used to print items closely packed on a line. For exam»
ple, the program

100 FOR I =1 TO 15
110 PRINT I;
120 NEXTl
130 END

will cause the following output to be printed.

123456789101112131415

READY

To determine what will be printed using the semicolon separator, it is neces-
sary to know how strings and numbers are printed. In general, when you
use the semicolon to format output, no blanks will be output other
than those automatically output when a number is printed as described in
the following section.

Printing Formats for Numbers and Strings

This section describes the spacing of numbers and strings as they are printed
by a simple PRINT statement.

Strings are printed just as they are, with no leading or trailing spaces. A
space is printed after the right-most digit of a number; negative numbers
are preceded by a minus sign and positive numbers are preceded by a blank.

The number of spaces which will be occupied by the decimal representation
of a number varies according to the magnitude and type (integer or non-integer)
of the number. The following discussion of how numbers are printed will help
in determining the expected printed output.

Numbers may be printed using one of three notations:

i A number printed using integer notation is printed without a
decimal point and contains from 1 to 6 digits. (For example,
twenty printed as 20 is in integer notation.)

II A number printed in fractional notation contains from I to 6
digits and a decimal point. Trailing (right-most) zeros are
dropped and a number less than one is printed with a zero to
the left of the decimal point. (For example, twenty printed as
20. is in fractional notation.)

ND-60.071.01
Revision C

4.11.2

4-45

DEF statements may involve both dummy arguments and variables which
have the same meaning as elsewhere in the program. In the following
example

100 DEF FNX (X, Y) = X * COSIT) + Y * SINIT)
110 DEF FNY (X, Y) = '3‘ X * SIN (T) + Y * COS(T_)
120 LET T = 1.7 'ANGLE IN RADIANS
130 INPUT A, B
140 PRINT ”ROTATED", FNXlA, BI, FNYIA, B)
150 GO TO 130
160 END

the DEF statements involve both the dummy variables X and Y whose
values depend on the arguments of the function and a variable T which
has the same value as it does elsewhere in the BASIC program. If a variable
in a DEF statement is to have its current value in the program when the
function is called, it is not'included in the list of dummy arguments.
It is often called a global variable.

Multiple Line DEF' Statements

The use of the DEF statement described above is limited to those functions
which can be defined in a single BASIC arithmetic statement. Many func-
tions cannot be computed using a single BASIC arithmetic expression,
particularly those which require IF — THEN statements. The following
example demonstrates the format of multiple line DEF statements and
their use for a function which returns the larger of two numbers.

10 DEF FNM (x, Y)
20 LET FNM = x
30 IF Y<= XTHEN 50
4o LET FNM = Y
50 FNEND
55'
60 PRINT FNM (5,4), FNM (—5, —4)
70 PRINT FNMll, FNM(2, FNMI3,0III‘
80 END

The definition of the function extends from line 10 to line 50.

The absence of the equal sign in line 10 indicates that this is a multiple
line DEF; the end of the DEF is indicated by the FNEND statement. The
value which the function delivers must be stored in the variable having
the same name as the function (in this case, FNM) when control reaches the
FNEND statement. As illustrated in line 70, function calls may be nested.
The preceding program prints the numbers 5, —4, and 3.

ND-60.071.01

4.11.3

As with the single line function definition, variables appearing in parentheses

after the function name in a multiple line definition are called dummy argu-

ments, and values are substituted for these arguments when the function is

called. Variables not listed in the DEF statement will use their current value.
There must not be a transfer from inside a multiple line DEF to outside,
nor vice versa. Function definitions may not be nested. Naming conventions

are the same as for single line definitions. Multiple line function definitions
may be placed anywhere in a program because such blocks of code are not executed,

unless they are called.

If a value is not stored as in line 40 above, for the function when control
reaches the FN EN D statement, a value of zero is returned when the function
is called. Any variable assignments made to variables other than the dummy
arguments of the function within the scope of a multiple line definition
affect the values of variables of the same name appearing elsewhere in the
program.

Strings and Function Definitions

The function definitions described thus far delivered numbers as results
and take numbers as arguments. A function may be defined which takes
strings as arguments.

Example;

100 DEF FNN (A$, BS) = ABSiLENIAS) - LENiBSi)
110 INPUT Q13, 02$
120 PRINT "STRING LENGTHS DIFFER BY“; FNN(O.1$, 02$)
130 GO TO 110
140 END

The following function inserts string BS after the n‘th letter of string A$ '

and delivers a string as the value of FN|$.

100 DEF FN|$ (AS, BS, N)
110 LET Ci$ = SEGIA,1,N)
120 LET C23 = SEG$ (AS, N + 1, LENiA$iI
130 LET FN|$ = 01$ &B$ & C2$
140 FNEND
150 '
160 PRINT FNI$ ("XXXZZZ", "YYY", 3)
170 END

When run, this program prints the string “XXXYYYZZZ”..

ND-60.07i .01
Revision D

4.14.4

4—51

The ON ERROR GOTO Statement and the ERR Var/able

ON ERROR GOTO <Iine number>

In Appendix A, a complete list of run-time error messages is given. The occur-
rance of errors marked FATAL will normally cause termination of program
execution, while non-fatal errors will continue after some action has been
taken. A negative argument to the square root function, for example, results
in printing a message and continuing with the result set to zero. However,
an input/output error such as encountering end of file is fatal.

Some applications may require continued execution of a program after
any errors occur. In these situations, you can execute an ON ERROR

GOTO statement within your program. This statement tells BASIC that a
user subroutine exists, beginning at the specified line number which will
analyze any error encountered in the program and possibly attempt to
recover from the error. Note that the GOTO action is not taken when
executing ON ERROR GOTO, but if an error occurs later on, execution
is interrupted and the user written subroutine is started at the line number
indicated without printing any message. ON ERROR GOTO must be executed
prior to any executable statement with which the error handling routine deals.

A system variable, ERR, is available and can be tested according to the error
codes given in Appendix A. Thus, the error handling routine can determine
precisely what error occurred and decide what action is to be taken. It is
possible to switch to different error handling routines by executing several
ON ERROR GOTOs.

Often, it is desirable to let the system handle errors in portions of a pro-
gram. The actual error routine can be disabled by executing ON ERROR
GOTO 0. The occurrence of zero, which cannot be a line number, causes

the system to treat errors as if ON ERROR GOTO had never been executed.

Example:

10 PRINT 1/0
20 ON ERROR GOTO 100
30 PRINT 1/0
40 STOP
100 PRINT “DECIMAL ERROR CODE=";ERR
110 PRINT ”OCTAL ERROR CODE=“;OC$(ERR)
120 ON ERROR GOTOO
130 PRINT 1/0
200 END
RUN

BASIC RUN ERROR 273 IN LINE 10
0
DECIMAL ERROR CODE = 187
OCTAL ERROR CODE = 00000000273

BASIC RUN ERROR 273 IN LINE 120
O

R EADY

ND-60.071.01

Revision D

4.14.5

4.14.6

4—52

The @ Statement

@ <operating system command>

This statement provides a means to execute SlNTRAN lll Commands in
the program sequence or in immediate mode. The command may be of
any type, such as deleting a file, reading the clock or even logging out!
Note that error conditions will return control to the Operating System.
(Restart with CONTINUE.)

Example:

10 @TlME-USED
20 REPEAT 50000: N = N + @
30 @TlME-USED
40 PRINT !,N,!
50 @LOG
60 END
RUN

TlME USED IS 1 SECS OUT OF 41 SECS
TIME USED ‘43 5 SECS OUT OF 48 SECS
1.25002‘E+09
15.13.58 26 APRIL 1976
——EXlT-—

RANDOM and RND

The RAN DOM statement can be used in conjunction with the random
number function to induce variance. lt augments the function RND by
causing it to produce different sets of random numbers. For example,
if this is the first instruction in the program using random numbers,
then repeated program execution will generally produce different results.
When this instruction is omitted, the “standard list“ of random numbers
is obtained.

It is suggested that a simulation model should be debugged without
RANDOM, so that you always obtain the same random numbers for test
runs. After your program is debugged, you may insert

1 RANDOM

before execution.

ND- 60.071.01
Revision D

5.1

5.1.1

FILES IN BASIC

/NTRODUCTION

Files are the retrievable units in which information is stored. All the pro-
grams discussed so far in this manual are examples of files. Files are classified
according to how the information is accessed.

Sequential files are accessed one character after the other. In Chapter 3,
the saving and retrieval of program files are explained. These files are sequen-
tial files.

Data in random access files are accessed using an address. If data is used
in random manner, retrieval using an address is normally much faster than
sequential searching. In BASIC random files are used to hold data arrays
too big for the memory available but still manipulated using BASIC programs.

BASIC utilizes the NORD File system through a set of different monitor

The File System is designed to manipulate files on disks, drums, magnetic
tapes, cassette tapes or standard peripherals. A file means a collection of
records or blocks, ordered randomly or sequentially.

Each file in the system is named with a character string and has one owner,
which has to be defined as a user of the file system. Each user may have
several other users as friends. The file system provides individual protection
of files. with separate protection modes for the owner, the owner‘s friends
and the public’s access of the file.

The user of the file system may treat files on mass storage devices or standard
peripherals in a uniform manner.

The NORD File System is described in detail in the documentation:

SINTRAN Ill Timesharing/Batch Guide (ND—60.132)
SINTRAN Ill Reference Manual (N D—60.128)

The Connect Device Identifier

When accessing a file through any BASIC input/output statement, a so-called
connect device identifier is used, rather than the file name. The file name is
only referenced once, in the OPEN statement which is described below. it
is also possible to access a sequential file if the file is opened by a direct
file system command. In this case, the connect device identifier must cor-
respond to the file system logical device number. Later we shall see that the
connect device identifier may be a string, thus simulating sequential input/output
devices.

ND—60.071.01
Revision D

5-2

The connect device identifier may follow any legal statement having con-
nection with input/output operations and has the general form:

<expression> :

The colon delimiter may be exchanged with the comma delimiter
in input/output statements (INPUT, PRINT, etc.).

The OPEN and CLOSE Statements

I
The OPEN statement is used both to associate a number with a file in the

,‘file system and to describe how the file should be used. Such a description
'

is valid until the CLOSE statement is used or the file is closed by the system.

i":
,‘I

QPEN
\

OPEN # <expression> : FOR <access: mode) <file name>

The first expression is the connect device and may be any numeric expres-
sion. The access mode must be one of the Words listed below:

lNPUT Sequential read access
OUTPUT Sequential write access
APP END Sequential write append
RAN DOM Random read/write access

The file name may be any string expression. The OPEN statement assigns
a file to a number, thereafter all references to the file are made through
the number. There may be up to 10 open files with a program. The con-
nect numbers may be of any range and need not be assigned sequentially.
The open statement must, of course, be executed before any access to the

file is made.

A successful OPEN statement demands an entry; in the file table where

connect number and access information is stored.

CLQSE

CLOSE # <expression> :

The expression indicates the connect number and has the same value as
the expression in the OPEN statement.

The CLOSE statement is used when you are finished using a file. The state-
ment will set the file ready to be opened again and leave an empty entry in
the file table.

N D- 60.071.01

All files should be closed before the end of program execution. This is
very important when using random access files because the CLOSE state-
ment. causes output of the last block.

Examples:

10 INPUT "FILENUMBER", UNIT, “FlLENA-ME", UNIT$
20 OPEN # UNIT: FOR INPUT UNIT$

100 PRINT # UNIT, A, B, C, D, E

190 CLOSE # UNIT:
200 END

N D-60.071.01

5.2

5.2.1

5—4

SEOUENT/A L FILES

In this chapter, storing and loading of data on files is discussed. The ways
of entering data into a program using the READ and DATA statements
or the user terminal (INPUT statement) are both inefficient when the amount
of data increases beyond a few items.

Using files, there is almost no limit to the number of items the program
can process in one run. There are limits on the length of a program to be
compiled and these limits include the DATA statements. Another advantage
is that since the program file is never modified (as it would have to be if
DATA statements were used), there is no chance of the program itself
being inadvertently changed during the typing of a new data set.

Reading a Sequential File from a Program

Throughout the next few sections of this chapter, several versions of the
same fundamental program will illustrate the use of the statements related
to sequential files. This program computes an average grade for each of
several students in a group.

The first version of this program, AVERAGEi, uses data stored in a sequen-
tial file called GRADES.

A listing of AVERAGEI follows:

100 REM PROGRAM NAME — AVERAGEI
110 ‘

120 REM THIS PROGRAM COMPUTES AVERAGE GRADES FOR
130 REM A SET OF STUDENTS. EACH STUDENT IS ASSUMED
140 REM TO HAVE THE SAME NUMBER OF INDIVIDUAL
150 REM GRADES TO BE AVERAGED. THE DATA IS IN A
160 REM SEQUENTIAL FILE CALLED ”GRADES".
I70 REM THE FIRST LINE CONTAINS S, THE NUMBER OF
180 REM STUDENTS, AND G, THE NUMBER OF GRADES PER
190 REM STUDENT. THE REST OF THE FILE CONSISTS OF
200 REM S SETS OF (G +1) LINES. THE FIRST LINE IN A SET
210 REM CONTAINS THE NAME OF A STUDENT, AND THE
220 REM FOLLOWING G LINES IN THE SET EACH CONTAIN
230 REM ONE OF THE STUDENT'S GRADES.
240 ’

250 OPEN #1: FOR INPUT “GRADES”
260 PRINT ”NAME“, “AVERAGE"
270 PRINT
280 INPUT #1 28,6
290FORI=ITOS

ND-60.071.01
Revision D

5-5

300 LET A = 0
310 |NPUT#1 : N$-
320FORJ=1TOG
330 INPUT #1 : X
340 LET A = A + X
350 NEXT J
360 LET A = A/G
330 PRINT N$,A
380 NEXT |
390 CLOSE #1 :
400 END

In AVERAGE1 only one file, GRADES, is used. The OPEN # statement
assigning the file GRADES to file number 1 is in line 250. Thereafter, the
file GRADES is referred to as file # 1 in lines 280, 310, 330, and 390 of
the program.

'

The INPUT # statement differs from the simple INPUT statement only
by the inclusion of the number sign, a file number and a colon. Any list
of variables that is legitimate in a simple INPUT statement is also legitimate
in an INPUT # statement. See Section 2.7.13.

Now, let us briefly run through the whole program before going on to
- consider the construction of the data file GRADES. Lines 100 - 230 are

remarks describing the program, its limitations and instructions for using it.
The OPEN statement has already been described. Lines 260 and 270 print
a heading for the output. Line 280 requests the input of two numbers, 8
and G, from file # 1, the file GRADES. S is the number of students and
G is the number of grades per student. A loop indexed by | begins in line
290 and continues through- line 380. The program ends after this loop has
been executed 8 times, once for each individual whose grades are to be
averaged.

’

Within this loop, line 300 initializes A, the variable used to store the sum
of the grades for an individual. Line 310 requests the input of a string from
file # 1, GRADES. This string is the name of the next individual

whose grades are to be averaged. Another loop begins in line320 and ends
in 350. This loop is executed G times, once for each grade. Within the loop
indexed by J, line 330 inputs a grade, X, from GRADES and line 340 adds

this grade to A, the sum of the grades so far. When this loop has been executed
G times, line 360 divides the sum of the grades, A, by. the number of grades,
G, to get the average grade which is stored in A. Line 370 prints the name
of the individual, N$, and his average, A. Then the loop indexed by l is
executed for the next individual, until all averages have been computed
and printed.

ND-60.071.01

5-6

Now let us consider the data file. The fo'rmat used in constructing a sequential
file to be read by a program is determined by the way in which the INPUT
#2 statements are set up in the program. INPUT # statements,
like simple INPUT statements, contain lists of variables to receive values.
Whereas a simple INPUT statement requests the user of the program to
suoolv these values at run time, the INPUT # statement requests the
values from files, and, of course, no question mark is printed on the terminal.
It considers the contents of the next line in the file (beginning with the
first line in the file), as a response to its request. If there are more numbers
or strings in the line than were requested, the excess is ignored. If there are
not, the next line in the file is interrogated in an attempt to find more
numbers or strings. If the items on the line interrogated do not correspond
in type to the variables in the input list, an error message is printed.

The first INPUT # statement in AVERAGE1 requests two numbers,
S and G. These numbers may either be on the same line in the data file
or on two different lines. The rest of the numbers and strings in GRADES
must be written one per line since they will be read by INPUT #

statements requesting one number at a time. If they were erroneously writ-
ten more than one per line, all but the first number on each line would be
ignored, the computer would look for values beyond the end of the file and
the program run would terminate. The file GRADES must not have line
numbers — just the data requested by the INPUT # statements in
the program. The following is a listing of the file GRADES as written for
use with AVERAGEI. Note that when more than one item is listed on
the same line, the items are separated by commas, as in the first line of
GRADES.

3,4
GERALD FRIEND
78 .
86
61
90
PHILIP CLOUGH
66
87
88
91
ADA SHAW
56
77
81
85

This file could-be created by using the PED editor.

(For information about PED consult the PED User’s Guide (ND—60.124”.

N D60.071 .01
Revision D _

5.2.2

5—7

The following is a run of AVERAGE1 using the data in the file GRADES:

AVERAGEl
NAME AVERAGE

GERALD FRIEND 78.75
PHILIP CLOUGH 83
ADA SHAW 74.75

READY

Writing a Sequential File from a Program

In this section, we will consider how to alter the program AVERAGEl
so that it writes its output into a sequential file instead of printing it on
the terminal. Using a file in this manner allows the user to obtain mul-
tiple copies of the output without re-running the program. In addition,
if there is a lot of output, it is often more convenient and possibly faster
to direct the output to a file and then list the file than to print the
output directly on the terminal.

Two changes need to be made in AVERAGEl; first, another OPEN
statement must be added to assign the output file to a file number; and
second, the simple PRINT statements must be changed to PRINT #—
statements. The following program, AVERAGEZ, incorporates these
changes. The output is printed in a sequential file called AVERAGES.

21o REM PROGRAM NAME - AVERAGEz
220 ' .
230 REM THIS PROGRAM IS LIKE AVERAGEI EXCEPT THAT
24o REM THE OUTPUT IS PRINTED IN A SEQUENTIAL
250 REM FILE CALLED “AVERAGES”.
270'
290 OPEN #1: FOR INPUT “GRADES“
300 OPEN # 2: FOR OUTPUT “AVERAGES"
310 PRINT # 2: “NAME“, “AVERAGE“
320 PRINT # 2:
330 INPUT # 1:S,G
340FOR|=1TOS
350 LET A = o
360 INPUT #1s
370 FORJ=1TOG
380 INPUT # I:X
390 LET A = A + x
400 NEXT J
410 LET A = A/G
420 PRINT III: 2:N$,A
430 NEXT I
440 CLOSE # 1:
450 CLOSE # 2:
460 END

ND-60.071.01

5.2.3

5—8

The input file GRADES is assigned to file # 1 and the output file AVERAGES
is assigned to file # 2..

When the program is run, line 300 will set the file AVERAGES ready to
receive output. Any information in the file will be destroyed and you
should do as follows if you want to save the information:

1. Enter the editor PED (see above)

2. Read the file

3. Save the file using a new name

It is still easier to use the SINTRAN |ll Operating System command:
COPY.

After the program AVERAGE 2 has been run, you can list the file
AVERAGES using COPY or the PED editor. The following printout
results:

NAME AVERAGE

GERALD FRIEND 78.75
PHILIP CLOUGH 83
ADA SHAW 74.75 '

Note that the output of AVERAGE2 and that of AVERAGE1 is identical;
the only programming difference is that the first program prints its output
to a file and AVERAGE1 prints output directly on the terminal. The for-
mat of the output in AVERAGES is the same as that of the output printed
on the terminal when AVERAGE1 is run.

The Use of the Terminal Itself as a File

Suppose now that we wanted to rewrite AVE RAGE2 so that the use of
files for input and output was optional. We could write separate sections
in the program to deal with each option and then to branch to the ap-
propriate section. However, there is an easier way. Both the INPUT
and the PRINT # statements interpret a reference to file number
0 as a reference to the terminal itself and in this case work exactly like
the simple INPUT and PRINT statements.

The following program, AVERAGES, is a revision of AVERAGE2 in which

the user may decide whether or not he wishes to use files. In addition he
may choose the names of the data and output files if he wants to use files.

ND-60.071.01
Revision D

5—9

100 REM PROGRAM NAME - AVERAGE3
110 ' '

120 REM THIS PROGRAM IS LIKE AVERAGE2 EXCEPT
130 REM THAT THERE ARE OPTIONS FOR READING
140 REM DATA FROM A FILE AND PRINTING THE OUTPUT
150 REM INTO A FILE.DATA CAN BE IN A SEQUENTIAL
160 REM FILE OR CAN BE TYPED IN AT RUN TIME. IF THE
170 REM DATA ARE IN A FILE, THE FORMAT IS THE SAME
180 REM AS THAT OF "GRADES" USED IN AVERAGE1 AND
190 REM AVERAGE2. IF THE DATA ARE TO BE TYPED
200 REM IN AT RUN TIME,THEY MUST BE ENTERED
210 REM ACCORDING TO THE SAME FORMAT THEY WOULD
220 REM HAVE WERE THEY IN A FILE.IF OUTPUT IS
230 REM TO GO TO A FILE, THE FILE SHOULD BE SAVED
240 REM BEFORE THE PROGRAM IS RUN.
250 '
270 LET F1 = F2= 0
280 PRINT “ARE DATA IN A FILE — ANSWER NO OR GIVE

FILE NAME”;
290 INPUT A$
300 IF A$ = "NO" THEN 330_
310 OPEN #1 : FOR INPUT AS
320 LET F1 =1
330 PRINT ”SHOULD OUTPUT GO TO A FILE - ANSWER NO

OR GIVE”
340 PRINT "FILE NAME";
350 INPUT A$
360 IF AS = ”NO" THEN 390
370 OPEN # 2: FOR OUTPUT A3
380 LET F2 = 2
390 PRINT # F2:
400 PRINT # F2: “NAME", “AVERAGE“
410 INPUT# F1: S, G
420 PRINT # F2:
430 FOR I=1 TOS
440 LET A = 0
450 INPUT # F1 : N$
460FORJ=1TOG
470 INPUT # F1 : X
480 LET A = A + X
490 NEXT J
500 LET A = A/G
510 PRINT # F2: N$,A
520 NEXT I
530 END

N D-60.071.01
Revision D

5.2.4

5—10

The following is a sample run of AVERAGES using the option to input the
data at run time. This listing shows clearly the correspondence between the
simple INPUT statement and the INPUT # statement.

AVERAGE 3

ARE DATA IN A FILE — ANSWER NO OR GIVE FILE NAME?NO
SHOULD OUTPUT GO TO A FILE — ANSWER NO OR GIVE
FILE NAME? AVERAGES
? 3,4
? GERALD FRIEND
? 78
? 86
.7 61
.7 90
? PHILIP CLOUGH
.7 66
.7 83
? 88
? 91
.7 ADA SHAW
? 56
? 77
? 81
? 85

READY

Note that AVERAGEB will execute as in the example above supplying
the file name, TERMINAL, in the first question.

Other Input/Output Statements

The LINPUT # statement is used to read strings which‘might contain
such special characters as quotation marks, leading blanks, ampersands,
and commas from sequential files. The format of this statement is:

100 LINPUT # <expression> : <Iist of string variables>

Rules governing the use of the LINPUT statement applv to the LINPUT
statement.

N 060.071 .01
Revison C

5-11

As we have seen, the INPUT statement requices a comma or carriage return
as delimiter for the data being entered into a BASIC program. Because the
PRINT statement, in its turn, does not supply the necessary commas, BASIC
will not be able to read its own output. This fact has lead to the implemen-
tation of the WRITE statement Whose purpose is to produce a list readable
by a matching INPUT statement. Thus, commas are automatically inserted
between the items output. This feature, however, is meaningless when not
using files. The format of the statement is: —

IO WRITE # <expression> : <list of variables)

There are also five MAT statements which may be used with sequential
files: MAT PRINT #, MAT WRITE #, MAT PRINT USING #, MA'I
INPUT #, and MAT LINPUT #. These statements are discussed in Chapter
6.

Margins on Sequential Files

MARGIN # <expression> : <expression>

MARGIN # N : M sets a margin of M on file # N just as the
simple MARGIN statement sets a margin on lines output to the terminal.
.The margin for sequential files may be changed at any time. MARGIN # O 2 M
has the same effect as MARGIN M. The interpretation of the margin
setting is the same as the simple MARGIN statement. See Section 4.7.7
for details.

The IF END Statement

IF END # <expression> THEN <line number)

This statement is similar to ON ERROR GOTO, but has effect only when
end of file conditions occur. It must be executed after the OPEN state-
ment and before any INPUT statement reading the actual file. The IF END
statement itself is, in fact, no conditional statement at all. When executed
the line number is stored in the file table telling BASIC to start the user
written error routine if end of the actual file is detected.

The error handling routine can be disabled by executing IF END . . THEN 0.
IF END has the highest priority used together with ON ERROR GOTO.

Examgle: (next page)

N D-60.071.01
Revision D

5.2.7

5—12

10 OPEN # 1‘: FOR INPUT ”XXXX“
20 OPEN # 2: FOR INPUT ”YYYY“
30 IF END #1 THEN 1000
40 IF END # 2 THEN 2000
50 INPUT #1,X: INPUT # 2,Y : GOTO 50
60 STOP
1000 REM HERE IF END #1
1010 IF END #1 THEN O
1020 INPUT # 2,X : GOTO 1020
1030 STOP
2000 REM HERE IF END # 2
2010 IF END #2 THEN 0
2020 INPUT #1,X 2 GOTO 2020
3000 END
RUN

BASIC RUN ERROR 3 IN LINE 2020
END OF FILE

READY

Simulating Sequential Flles

BASIC allows all input/output statements to communicate with internal
strings rather than sequential files. This means that it is possible to convert
the numeric value of any expression to an ASCII string or vice versa, according
to the rules of the respective input/output statements. Previously we have
seen the connect device identifier having numeric values. You will obtain
the effects described above if the connect device identifier is given a string
value. The general form is:

i. < input statement> # <string expression> : <Iist of variables>

2. < output statement> # <string variable> : <iist of expressions>

The string denoting the connect device identifier is now 3 BASIC string
which is used directly and not the name of a sequential file. The OPEN,
CLOSE and MARGIN statements have, of course, no meaning in such

constructions. Note that output terminates if the stardard margin (75) is
exceeded.

If you want to use the numeric value of the substring in A$ starting in
position X, and ending in position Y, just type the statement:

10 INPUT # SEG$ IA$, X, Y): VALUE

On the other hand, if you want to generate a string of the value of A
using a special format described in A$, type the statement:

10 PRINT USING # FORMAT$1A$, A

ND-60.071.01
Revision D

6.6.2

6—11

If V is a vector and M is a matrix, the entries of V are printed in

rows with five entries per row. M is printed as a matrix with the
entries of each row closely packed.

Only array names without parantheses are legal in a MAT PRINT state-
ment. The following statements are illegal:

100 MAT PRINT M(2,3)

110 MAT PRINT TFlNlA)

Vectors as well as matrices may be output in the MAT PRINT USING
statement. Comma is the only legal delimiter of the format string and
the array names in the list. The elements of the arrayls) are printed
according to the format string as with the PRINT USING statement.
The format is used again starting on a new line if there are more
elements than fields. If there are several arrays in the list, a blank line

is left between them, and the format string is used from the beginning.
The shorthand MAT USING may be used,

Example :

10 MAT A = CONl2,2)

30 ' END
RUN

+1 AND 1.00 E+00
'+1 AND 1.00 E+00

READY

The MAT INPUT and MAT LINPUT Statements and the NUM Function

The input is taken from the terminal as with normal INPUT or LINPUT
statements, and a question mark is printed when the program is ready
to accept the input.

If MAT INPUT goes to a vector, the excess data are ignored when
trying to enter more data than the vector can hold. If less data are
entered, the elements not affected remain unchanged. The function
NUM is available after the execution, and returns the number of data
which were .input.

If MAT INPUT goes to a matrix, the data is entered by row. A variable
number of data may not be input; :enough data must be entered to fill
entirely the matrix as it has been dimensioned in MAT INPUT or previously.
The excess data is ignored as with vectors, and the number of data is
available in the function NUM.

N D-60.071.01
Revision D

6—1 2

If you want to input more numbers than can be typed on one line,

it is possible to continue typing on additional lines. If the last item on
a line is followed by an ampersand (&) with no preceding comma and
then by a carriage return, BASIC will accept the input typed so far,
and then expect data continued on the following line. The last string
on a line must be enclosed in quotation marks if its last character is
an ampersand l&).

The following program will call for the input of 24 numbers.

100 DIM M(2,12)
110 MAT lNPUT M

Changing line 110 the program will call for the input of maximum 50
numbers.

110 MAT lNPUT M(50)

String vectors and matrices may also be used in the MAT INPUT
statement, and NUM is updated.

The LINPUT statement is described in Section 4.8.1; the MAT LINPUT
statement allows more than one line of information (possibly containing
commas, leading blanks, etc.) to be input in response to a single state-
ment.

A variable amount. of input is not allowed, and a question mark is
printed for each element.

Common to MAT INPUT and MAT LINPUT is:

- Row 0 and column 0 are ignored.

— Several arrays may appear in the list.

- Arrays may be explicitly redimensioned.

- If not, the current dimensionlsl will determine the
maximum number of elements to be input.

— Insertion of messages in the list is not allowed as
with INPUT and LINPUT.

ND-60.071.01

6—13

Examples:

100 DIM V(5), A(3), M(3,4I
110 MAT INPUT V, AIZI, MI2,3)
120 PRINT ”NUM=";NUM
130 MAT PRINT V;A;M;
140 END
RUN
?1,2&
3
?1,2
?1,2,3,4
?4,5,6
NUM= 6

1 2 3 0 0

..A N (A)

10 MAT LINPUT A$(4)
20 PRINT ”NUM=”;NUM
30 MAT PRINT A$
4o END
RUN
?FIRST
?SECOND, (NEXT EMPTY)
7

?FOURTH
NUM= 4
FIRST
SECOND, (NEXT EMPTY)

FOURTH

N D-60.071.01
Revision D

6.6.3

6.6.4

6—1 4

The MAT WRITE Statement

As described in Section 5.2.4 the WRITE statement produces an out-
put readable by a matching INPUT statement. The MAT WRITE state-
ment outputs the elements of a vector separated by commas on a single
line. The rows of a matrix are output on separate lines, thus readable
by a matching MAT INPUT statement. It is very important, however,
that the number of characters output on one line does not exceed the
margin. This will be dependent on the number of columns and the
range of each element. In fact, this restriction is due to the size of
the input buffer rather than the current margin.

MA T Statements and Files

Any MAT statement performing input or output operations on the
terminal may be used with sequential files as well. The formats of
the statements are:

10 MAT INPUT # <N>$<Iist of arrays>
20 MAT LlNPUT # <N>:<list of string arrays>
30 MAT PRINT # <N>:<Iist of arrays>
40 MAT USING # <N>:<Iist of arrays>
50 MAT WRITE # <N>:<Iist of arrays>

where <N> is the connect device identifier; i.e., the number of the
file being read or written, or the string which simulates a sequential
file.

For a complete discussion of files see Chapter 5.

N D-60.071.01
Revision D

7.9

7—11

STAND ALONE EXECUTION

Previously we have seen that any program unit written in BASIC can

be compiled to machine instructions in BFIF format. Such a program

unit is not dependent on being loaded and executed with the total

BASIC system in memory. Other subsystems exist which are able to

perform the loading and linking procedure:

— SINTRAN ||| Real Time Loader

— NORD—lO/ND—lOO Relocating loader

These are described in the respective manuals.

A BASIC Library and Run-time System is available for stand alone

execution purposes. .This system should be loaded after the BASIC

program units, hence, only the run-time routines required (called for)

are loaded into memory.

ND-60.071.01
Revision D

7.10

7.10.1

7—12

Mixing BASIC With Other Languages

BASIC/FORTRAN/NPL/MAC program units, i.e., programs, sub-
routines or functions may be mixed in an arbitrary combination. —

Within the BASIC system at most one BASIC program unit can be
executed in incremental mode, else all the units must be compiled
to BRF format and linked together by the BASIC built-in loader
or by another loader subsystem. The main program may be created
in either of the languages mentioned above.

BASIC Strings as Parameters

When using a BASIC string as parameter, generally the address of the
two word string-descriptor is transferred to callee. The descripton
contains the string address (1. word) and string length in bytes (2. word).
The string is packed two by two characters in a word.

If, however, a BASIC string appears as parameter to a FORTRAN sub-
program, it must be preceded by a dummy plus sign (+). As an
effect of this the string address instead of the descriptor address is
transferred to callee. This restriction is necessary as the string concept
of BASIC is lacking in FORTRAN.

Assignment to string parameters in non-BASIC subprograms will often fail.
Such variables should be declared in the COMMON storage area.

Example:

10 CALL SUBR1(A$) 'BASlC/BASIC
20 CALL SUBR1(+A$) ’BASIC/FORTRAN

On the other hand, a FORTRAN Hollerith string may be associated

with a BASIC formal parameter by applying a certain function upon
it like:

STRING(<hol|erith string>,<number of characters>)

Example:

10 CALL SUBR2(”ABC“) 'BASlC/BASIC
C FORTRAN/BASIC

CALL SUBR2(STRING(3HABC, 3))

ND-60.071.01
Revision C

A.2

A—11

RUN—TIME SYSTEM ERROR MESSAGES

Run-time error messages are printed as selfexplanatory text. Example:

BASIC RUN ERROR IN LINE 10: PARITY ERROR ON INPUT

When executing "stand alone“ the messages are given as an error code which
is an octal number, and the line number is replaced with the octal address of
the statement. Numbers in the range 0—377 are equivalent to the error codes
returned from the FILE SYSTEM monitor calls. All numbers from 400 and
upwards are BASIC run-time error codes which are explained beldw. FILE
SYSTEM errors are always printed withexplanatory text in addition to the
error code. The ON E RROR GO TO statement will omit printing of run-time
error messages, but the error code is still [available in the function ERR. In
incremental mode errors are always printed with explanatory text. In
B RF-compiler mode the user may prevent text strings being loaded (from
BASLIBR) if the symbol 7ERRP is set té.|2ero by the DEFINE command
prior to loading. If text strings are not loaded, a saving of appr0x. 1K of
memory is achieved.

Error Code Non-
Octal Decimal fatal (x)_ , Interpretation

4-01 257 System error in l/O system

402 258 Format parameter not string

403 259 Illegal delimiter
404 260 Empty string

405 261 Illegal item type

406 262 Out of data

407 263 Not used

410 264 Format error

411 265 System error in l/O system

412 266 x Integer overflow on input
Argument set to largest integer

413 267 Not used

414 268 Input buffer overflow

415 269 Not used

416 270 x Parity error on input.
The character is skipped.

417 271 Bad character on input

420 272 String input error

421 273 Not used

422 274 x Real overflow on input
Argument set to largest real (1E99)

ND-60.071.01
Revision D

A—1 2

Error Code Non-
Octal Decimal fatal (x) Interpretation

423 275 x Real underflow on input
Argument set to zero

424 276 x Real underflow on output
Argument set to zero

425 277 x Real overflow on output
Argument set to largest real (1E99)

426 278 Not used

440 288 Empty or too long string
441 289 Illegal connect device number
442 290 Connect device number used before
443 291 Open-file table filled
444 292 No such connect device number
445 293 Zero or negative margin
446 294 Not used

460 304 x Overflow in integer exponentiation
Result set to largest integer (32767)

461 305 x Overflow in real-integer exponentiation
Result set to largest real (1E99)

462 306 x Base less than zero in real exponentiation
Result set to zero

463 307 x Overflow in real exponentiation
Result set to largest real (1E99)

464 308 x Argument negative in SQR
Result set to zero

465 309 x Argument overflow in SIN
Result set to zero

466 310 x Argument overflow in C08
Result set to zero

467 311 x Overflow in EXP
Result set to largest real (1E99)

470 312 x Argument zero or negative in LOG/LOGiO
Result set to —1 E99

471 313 x Argument error in CAX
Argument set to zero

N D-60.071.01
Revision B

A—13

Error Code Non-
Octal Decimal fatal lx) Interpretation

472 314 x Argument overflow in TAN
Result set to zero

473 315 x Overflow in division
Result set to zero

474 316 x Zero base or negative exponent in
double integer exponentation.
Result set to largest integer.

475 317 x Argument error in ASl, ACO. Result
set to zero.

476 318 Not used

500 320 Double integer in MAT arithmetic
statement.

501 321 Dimension unmatch right of = in
MAT + or —

502 322 Not used

503 323 System error in MAT * or INV

504 324 Not used

505 325 Dimension unmatch right of = in
MAT*

505 326 Dimension error in MAT TRN or
IDN

507 327 MAT A = TRN(A) not allowed

510 328 Both arrays must be square in
MAT INV

511 329 Both arrays must be‘two-dimensional
in MAT INV

512 330 Both arrays must be real in MAT INV

513 331 Not used

514 332 Dimension out of ranae

515 333 _ Argument error in SEG$

516 334 MAT A = A*A not allowed

517 335 Argument error in MATCH

520 335 Argument error in' CNT

521 337 Argument error in |NS$

522 338 Argument error in REP$
523 339 Argument error in MAXI or MINI

524 340 Not used

N D-60.071.01
Revision A

A—14

Error Code Non-
Octal Decimal fatal (x) Interpretation

550 360 GOSUB stack filled

551 361 GOSUB stack empty

552 362 Number of parameters not matching
in ”FN functions“

553 363 Parameter unmatch in “FN functions“

554 364 ”FN stack” filled

555 365 "FN stack“ empty

556 366 Statement removednor missing in
GOTO/GOSUB

557 367 Statement removed or missing in
"FN functions"

560 368 Garbage collection error

561 369 Garbage collection error, out of memory space

562 370 Garbage collection error
563 371 Garbage collection error

564 372 Argument out of range in ON GOTO/
GOSUB

565 373 Too many subprograms

566 374 Chaining requires BASIC Compiler

567 375 x Over/underflow in real addition

570 _ 376 x Over/underflow in real subtraction

571 377 x Over/underflow in real multiplication

572 378 x Overflow in real to integer conversion

ND-60.071.01
Revision D

B-13

If the third parameter is present the compiler will trans-
late the source program into BRF format which is
written on the file/device specified. Normally the third
parameter is left out indicating incremental operating
modus.

ln incremental mode the compiled program will be
appended to the statements already present (if any).

CONTINUE

The execution of the current program will continue following
3 STOP statement or a break state.

DEFAU LT-INTEGER

All variables will become type INTEGER if not explicitly declared
as another type. All constants not including a decimal point or

exponent are compiled into single or double integers.

DEFAULT-REAL

Initial modus.

DEFlNE <symbol><octal value>

The symbol will be entered into the external-entry-table,
its value will be equal to the octal number specified.

DELETE <line number> or <line number—line number>

Remove one or more lines from the current program. Following
the word DELETE the user types the line number of the single
line to be deleted or two line numbers separated by a dash (—)
indicating the first and last line of the section of code to be removed.
If the dash is included and the second argument is omitted, the last
line of the program is assumed. Several single lines or line sections
can be indicated by separating the line numbers, or line number pairs,
with a comma. Note that deletion of lines does not remove belonging
variables or referenced entry points. '

D EPOSlT <octal address>

The old contents of the octal address specified (octally and
symbolically) are displayed and may be changed by typing
the new contents on the same line. By typing carriage return the
next location will be displayed automatically. Termination
character is point i.) followed by carriage return.

ND-60.07l .01
Revision D

3—14

EDIT <line number>

This command copies the actual line to old line preparing
a modification of the line. The line edit control characters
may now be applied.

ENTR | ES-DEFI N ED [<file name>]

All symbols (defined) present in the external-entry-table
will be printed on the terminal. In addition the current
location and the upper bound are displayed in the following
format:

FREE: <current location> - <upper bound>

Default file name is the terminal.

ENTRI ES-UNDEFI N ED [<file name>]

EXIT

FIX

This command is much alike ENTRlES-DEFINED, but only
undefined symbols are printed.

Default file name is the terminal.

Same as BYE.

The current contents of the external-entry-table are fixed
(will not be removed by CLEAR) and the current location
will later act as the lower bound reset-address. The fixed
entries do not appear in any entry list-out.

lDENTlFlERS—USED [<file name>]

All identifiers used in the current program will be listed on
the terminal. Also some type information is given.
Default file name is the terminal.

ND-60.07l .01
Revison C

B—1 5

IGNOR E-MATR l X-CHECK

Normally, if a matrix is accessed beyond its range (greatest
index permitted) a message will be printed. This. command
removes this checking. Note that a matrix check introduces

much overhead as code is generated to compute and check
the indexles) for any array access. Should be used for
debugging purposes only. "N_c_)te that this command does not
concern COMMON and virtual arrays.

LIBRARY

In this mode subroutines and functions are compiled into
library-subprograms. Such subprograms are loaded only if

they are referenced from another routine, else they are

skipped.

LIST
I
<line number—line number> I

5—,.

Produces a listing at the user terminal of the current
program, or one or more lines of that program. The word
LIST by itself will cause the listing of the entire user program.
LIST followed by one line number will list that line; and
LIST followed by two line numbers separated by a dash (—)
will list the lines between and including the lines indicated.
If the dash is included and the second argument is omitted,
the last line of the program is assumed. Several single lines

or line sections can be indicated by separating the line numbers,

or line number pairs, with a comma.

LISTH [<line number> or <line number-line number>]

Same as LIST, but also prints a header containing the
program name and current date.

LOAD <file name>[<file name>...]

The filels) specified will be loaded until EOF (control byte
23) is encountered. The file(s) must be BRF object file(s).

NEW [<program name>]

The BASIC system is initialized and the user may type a
new program from his terminal. The command may be

followed by a program name (see LISTH and RUNH).

ND-60.071 .01
Revision D

3-16

NEXT-LINE

The next line after the last one listed will be printed
on the terminal.

N 100—REAL—OVE R FLOW-CHECK

OBLIST

Turns on/off this check in the compiled code. Overflow as
well as underflow is detected in real arithmetic operations
in the NOR D—100, and an error message is printed (non-fatal).
This option is initially turned off.

Special command for system debugging purposes only.

OLD <fi|e name>

The BASIC system is initiated and the program on the
file specified will be read and compiled.

RECOMPILE

The source program is re-compiled from its internal
scratch file representation. The statements are compiled
in ascending order: thus, this command may be the only
way to get rid of MISPLACED STATEMENT error
messages.

Also the code which belongs to removed or edited state-
ments will disappear.

RENUMBER [<new initial line number> <increment>l

RUN.

RUNH

Changes the statement line numbers and the references to
these line numbers. First parameter indicates the new
initial line number, and the second (if any) indicates the
increment in the line numbers of two successive state-
ments. If no parameters are specified the first statement
number will be 100 and the increment will be 10.

Starts execution of the current program.

Same as RUN, but also prints a header containing the
program name and current date.

ND-60.071.01
Revision D

B—19

Extended
Library Function Explanation

x A=POA(X,Y) returns polar angle of the cartesian
coordinates X and Y

x R=POR(X,Y) returns polar radius of the Cartesian
coordinates X and Y

x Y=F|X(X) returns the truncated value of X;
SGN(X)*|NT(ABSIX))

x Y=FRA(X) returns the fractional part of X

x Y=MAXI(A,B,C...) returns the greatest value

x Y=MlNl(A,B,C...) returns the smallest value

String Functions

Extended
Library Function Explanation

I%=ASC(A$) returns the ASCII value of the first
character in A3

I%=LEN(A$) returns the number of characters'lbytes)
5: -_ in A$

A$=SEG$ returns a substring of B$ starting in
(B$,F%,L%) position F% and ending in position L%

returns a one character string (ASCII)

26

A$=CHR$(X>

A$=OC$(I%%)

N%=CNT(A$,B$)

X$=INS$lA$,
B$,l%)

N%=MATCH(A$.
B$,l%>

corresponding to the value of X
' returns an eleven character digit string

corresponding to the value of |%% (octal)

returns the number of times the string
B$ occurs in A$

returns a string where the contents of
the string B$ is inserted into the string
A$ at the character position |%.

searches the strina A$ fnr the new Irrenne
of the string BS, starting at the l%‘th
character, The returned value is 0

if no occurrence found.
or the position of the first character
that match.

ND-60.071.01
Revision C

Extended
Library Function

x X$=REP$iA$.
B3, |%)

X X$=SPAC$ (|%)

Miscellaneous Functions

Extended
Library Function

B—ZO

Explanation

returns a string where the string A$ is
replaced with the content of the string
B$, starting from the |%'th position
of the string A$.

returns a string of spaces, |% characters
long

Explanation

TABiX)

N%=MAR (|%)

N%=POS(|%)

MAT Y=TRN(X)

MAT Y=(V)*X scalar multiplication of each element
in matrix X -

MAT Y=| NV(X) returns the inverse of matrix X

Y=DET returns the determinant of the last
INV(X) function evaluation.

Y=NUM returns the number of data input in
an array by the last MAT INPUT staterrent.

Y=RND returns a random number between
0 and 1.

Y=ERR returns the last error code if an ON
ERROR GOTO statement occurs in
the program.

ND-60.071.01

PRINT statements only! Moves print
head to position X in the current print
record.

returns the last MARGIN setting of
connect device no. 1%.

returns the current print position of
connect device no. 1%. .—'

returns the transpose of the matrix X

Revision D

(I

APPENDIX C

C.1

MISCELLANEOUS IN FORMATION

ROUNDOFF ERRORS

The smallest number BASIC can handle is approximately 1*10‘1-4931
and the largest number is 1*10T+4931, but input and output are
restricted to be within the following limits: 1*10i—100< lxl<1*10’1100.

BASIC stores numbers correctly to approximately nine significant digits

and generally prints numbers to six significant digits.

The values of the expressions in the FOR or REPEAT statements need
not be integers. However, the user must be cautioned that using a
non-integer step size may result in roundoff errors. These errors occur
because the computer can only store about nine significant digits for
each number it computes. The cumulative effect of these roundoff
errors over a loop executed many times may be significant:

100 FOR X 0 T0 200 STEP 0.001
110 LET Y Y+1
120 REM Y COUNTS THE NUMBER OF TIMES
130 REM THE LOOP IS EXECUTED
140 NEXT X
150 PRlNT X,Y
160 END

This program gave the following output when it was run:

200 199998

R EADY

Note that Y, which counts the number of times the loop is performed,

is not 200001, the expected value, but 199998; the loop has been
executed three times less than might be expected. Consequently,
calculations involving the aning variable or depending on the number
of times the loop was performed would be in error because of roundoff
errors.

Thus, in general, use integer step sizes and integer FROM and TO
elements to avoid roundoff errors. If you want to step over a series

of non—integer values, appropriate operations may be performed on the
running variable within the loop to achieve this result. For instance,
in the example above X may be made to range from 1 to 200 in steps
of .001 using the following technique:

ND-60.071.01
Revision D

100 FOR I = 0 TO 200000
110 LET X = l/1000
120 LET Y = Y+1
130 NEXT l
140 PRINT X,Y
150 END

This program prints a value of 200 for X and 200001 for Y. These
values are the expected ones, and no roundoff error has occurred.

N D-60.071.01

C.2 CHANGING DIMENSIONS

The DIM statement is used to dimension (reserve initial Space for)
subscripted variables. Thus, the same DIM may be executed in a
loop with variable(s) indicating the dimension(s), or the same array
may be referenced in separate DIM statements with different dimen-
eons

Subscripts may be enclosed in parentheses following some MAT
statements as follows (one or two dimensions may be specified
for all but the IDN function, where two identical values are
required).

Fu nctions Statements

MAT A = CON (N,M) MAT INPUT A (N,M)

MAT A = IDN (N,Nl MAT LINPUT A (N,M)

MAT A = ZER (N, M) MAT READ A (NM)

The array A takes on the dimensions specified in the statement.

Redimensioning is implicit in the MAT statements which perform
matrix arithmetic and matrix functions. That is, in the statement
MAT C = A+B, C takes on the dimensions of A and B if unequal.

Note that redimensioning (even reservation of less space) is very
time-consuming as it involves release of old space and reservation
of new space which is always zeroed.

ND-60.071.01

C.3 LINE EDIT CONTROL CHARACTERS

The Line Edit control characters available in BASIC are listed below,
and on the following pages they are given a short description. (The
characters are the same as in SINTRAN Ill command input.)

Function Character

Tab lc

Line Terminate Mc (CR)

Escape Character
take Q literally VCQ

Backspace
one character ‘ AC
one word - Wc
one line QC

Copy
one character Cc
to tab stop Uc
to end of line H‘2
up to Q. OCQ
through Q 269
rest of line (terminate) Dc
rest of line (no printing) Fc

Skip
one character SC
up to _C_ PCC_:
through Q XC_C_

Reprint
fast RC
aligned Tc

Re—Edit YC

Mode Change
insert/replace Ec
terminate LC

ND-60.071.01
Revision D

Octal Decimal ASC
Graphic Value Value Abbreviation Comments

) 51 41) Closing parenthesis
* 52 42 * Asterisk
+ 53 43 + Plus

, 54 44 , Comma
—— 55 45 — Hyphen (Minus)
. 56 46 . Period (Decimal)
/ 57 47 / Slant
0 60 48 0 Zero
1 61 49 1 One
2 62 50 2 Two
3 63 51 3 Three
4 64 52 4 Four
5 65 53 5 Five
6 66 54 6 Six
7 67 55 7 Seven
8 70 56 8 Eight
9 71 57 9 Nine
: 72 58 ; Colon
; 73 59 ; Semi-colon
< 74 60 < Less than
= 75 61 = Equals
> 76 62 > Greater than
? 77 63 ? Question mark
@ 100 64 @ Commercial at
A 101 65 A Uppercase A
B 102 66 B Uppercase B
C 103 67 C Uppercase C
D 104 68 D Uppercase D
E 105 69 E Uppercase E
F 106 70 F Uppercase F
G 107 71 G Uppercase G
H 110 72 H Uppercase H
| 111 73 l Uppercase |
J 112 74 J Uppercase J
K 113 75 K Uppercase K
L 114 76 L Uppercase L
M 115 77 M Uppercase M
N 116 78 N Uppercase N
O 117 79 O Uppercase O
P 120 80 P Uppercase P
O 121 81 O Uppercase Q
R 122 82 R Uppercase R
S 123 83 S Uppercase S

ND-60.071.01

C—10

Octal Decimal ASC
Graphic Value Value Abbreviation_ Comments:

T 124 84 T Uppercase T
U 125 85 U Uppercase U
V 126 86 V Uppercase V
W 127 87 W Uppercase W
X 130 88 X Uppercase X
Y 131 89 Y Uppercase Y
Z 132 90 Z Uppercase Z
[133 91 [Opening bracket
\ 134 92 \ Reversing slant
] 135 93] Closing bracket
/\ 136 94 A Circumflex, up-arrow
_ or <— 137 95 _,UND,BKR Underscore, back arrow
' 140 96 ‘, GRA Grave accent
a 141 97 a, LCA Lowercase a
b 142 98 b, LCB Lowercase b
c 143 99 c, LCC Lowercase c
d 144 100 d, LCD Lowercase d
e 145 101 e, LCE Lowercase e
f 146 102 f, LCF Lowercase f
g 147 103 g, LCG Lowercase g
h 150 104 h, LCH Lowercase h
i 151 105 i, LCl Lowercase i
j 152 106 j, LCJ Lowercase j
k 153 107 k, LCK Lowercase k
l 154 108 I, LCL Lowercase l
m 155 109 m, LCM Lowercase m
n 156 110 n, LCN Lowercase n
o 157 111 o, LCO Lowercase o
p 160 112 p, LCP Lowercase p
q 161 113 q, LCO. Lowercase g
r 162 114 r, LCR Lowercase r
s 163 115 s, LCS Lowercase s
t 164 116 t, LCT Lowercase t
u 155 117 u, LCU Lowercase u
v 166 118 v, LCV Lowercase v
w 157 119 w, LCW Lowercase w
x 170 120 x, LCX Lowercase x
y 171 121 y, LCY Lowercase y
z 172 122 z, LCZ Lowercase z
£ 173 123 £ , LBR Opening (left) brace

| 174 124 I, VLN Vertical line
3» 175 125 J. , RBR Closing (right) brace
~ 176 126 ~, TIL Tilde

177 127 DEL Delete, rubout

ND-60.071.01
Revision D

EXIT
EXP
EXPONENT
EXPRESSIONS
EXTENDED LIBRARY FUNCTIONS
EXTERNAL
EXTERNAL FUNCTIONS
EXTERNAL SUBROUTINES
FILE
FILE SYSTEM
FIX COMMAND
FIX FUNCTION
FLAGS
FNEND .
FOR ‘
FORMAL PARAMETERS
FORTRAN Ii.»
FRA
FRACTIONAL NOTATION
FUNCTION CLASSIFICATION
FUNCTION REFERENCE
FUNCTION STATEMENT
FUNCTIONS» *7
GLOBAL VARIABLES
GOSUB
GOTO
HOLLERITH
IOENTIFIERS
IOENTIFIERS-USED
IDENTITY MATRIX
IF
IFEND
IGNORE-MATRlX-CHECK
IMMEDIATE MODE
INCREMENTAL MODE
INCREMENTAL UNIT
INDEXED VARIABLE
INDEXES
INPUT
INPUT CONTROL
INS SI
INT
INTEGER
INTEGER NOTATION
INTEGER STATEMENT
INTERACTIVE
INTERNAL FUNCTIONS
INTERNAL SUBROUTINES
INV
INVERSION OF MATRICES

ND—60.071.0‘l
Revision D

3-9, 344
247,348
430,431
2-2.2-6
447,348
4-17,7-3,7-4,7-6,B-3
447,74,7-4
1-4,74
2-21,3-4,54 FF,644
3-4,54,A41,A45
B44
349
2-22
4-45,4-46,B-3
240,24 1 ,2-26, 3-3, C4
4-44.7-3FF ,
1-4,1~5,4—17,7-9,7-12,7-13
349
4-26
447
7-4,7-5
74,7—3,7-4,3-3
2-7,446,4-44,6-7,74 FF',348
4-45
4-41 FF,3-4
2-2534
7-12
4-2,7-2,7-6,7-8,7-13
743,344
6-2,6—17
2-3,2-25,449,4-43,4-50,3-4
54 I ,34
B45
1-5,3-5,4-52,A-11
1-5,7-9,7-12,A-11
7-8
243,543
343,2-27
2-30,4-20,5—5FF,B-4
4—36.69
349
4-16,B-18
I-4,44 FF
4-26
4-4,743,3-4
1-5.34
447,444
4-41
6—7,6-8,6-16,B-20
6-7,6-8,6-16

D—4

LEN
LET
LIBRARY
LIBRARY COMMAND
LINE EDIT CONTROL CHARACTERS
LINE NUMBER
LINPUT
LIST
LISTH
LOAD
LOADER
LOG
LOGIO
LOGICAL EXPRESSIONS
LOGICAL OPERATORS
LOOPS
MAC
MACHINE LANGUAGE
MAGNETIC TAPE
MAIN PROGRAM
MAR
MARGIN
MASS STORAGE
MAT
MAT ARITHMETIC STATEMENTS
MAT INPUT
MAT LINPUT
MAT PRINT
MAT PRINTUSING
MAT READ
MAT USING
MAT WRITE
MAT-CON
MAT-IDN
MAT-INV
MAT-TRN
MAT-ZER
MATCH
MATHEMATICAL FUNCTIONS
MATRICES
MATRIX
MAXI
MINI
MISCELLANEOUS FUNCTIONS
MIXED LANGUAGES
MIXED MODE
MULTIPLE LINE DEF
MULTIPLE STATEMENT LINE
NESTED CALLS
NESTED LOOPS
NEW
NEXT
NEXT-LINE

ND-S0.07I.OI

4-22.3-19
2-2,2-23,4-12,4-19,8-5
741
8-15
247,34 ,c-4
2-2,7-8
4—36,5-10,B-5
2-16,3-2,8-15
2-21 ,3-3,7-2,845
79,845
740,741,742
8-18
8-18
4-48—4—50
4-48 I
2-10,2-28,4-50,c-1
1-4,1-5,447,7-9,742 F,
1-2
5-1
7-1 ,7-2
8-20
4-28,5-11,B-5
1-4,3-1,3-4,5-1 (,7
5-1 1 ,5-13,64,8-5,8-8
6-5,6-6,644,8-8
4-36.54 1 ,641,6-12,644,8-1o
5-1 1 ,6-1 1 ,6-12,6-14,B-10
5-11,6-9,6-10,6-14,B-10
541,641,840 '
6-9,6-10,B-11
641,644,840
541,644,841
6-2,6-3,6-4,8-9
6-2,6-3,6-4,8-9
6-7,6-8,B-9
6-7,B-9
6-2.6-3,6-4,B-10
8-19
27,447,848
243,64 FF
2-13,6-1FF
8-19
3-19
4-17,B-20
7-12FF
4—10,4-12,6-1
445
3-6.4-50
447,442,445
2-12
3-3,B-15
2-1o,2-11,2-26,8-5
8-16

D—5

NON-EXECUTABLE STATEMENTS
NPL INORD PL)
NUM
NUMBER SIGNI#)'
NUM3ERS
OBJECT CODE
ORUST
oc$
OCTAL
OLD
ON
ON ERROR GOTO
ONE LINE DEF
OPEN
OPERATING SYSTEM
OPERATORS
OUTPUT CONTROL
PARAMETERS
PARITY .
PERCENT SIGN(%)
PERIPHERALS
PI
POA
POR
POS
PRINT
PRINT USING
PRINT ZONES
PRIORITY
PROGRAM
PROGRAM COMPILATION
PROGRAM DEBUGGING
PROGRAM DEVELOPMENT
PROGRAM EDITING
PROGRAM EXECUTION
PROGRAM LANGUAGE
PROGRAM NAMING
PROGRAM STATEMENT
PROGRAM UNITS
OUESTION MARK(?)
QUOTATION MARK(”)
RANDOM
RANDOM ACCESS FILES
RDN
RE-ENTRANT
READ
READY
REAL
REAL STATEMENT
REAL-TIME
RECOMPILE
RECORD

ND-60.071.01
Revision 0

4-4
4-17,7-9,7-12
4—37,6-11,6-12,6-13,B-20
5-2.5-5
2-8,4-1FF,C-11FF
7-8,7-9
3-15
451,3-19
4-2,4-51,A-11,B-19
2-16,3-1,7-8,3-16
2-28,4-42,B-6
4-51 ,5-1 1 ,A-11,B-6
4-44
5-2,5-13,3-6
2-17,4-52',5-8
2-6,4-6,4-47,4—48
4-2459
7-1FF
C-13
41,7-13
5-1
5-18
3-19
3-19
3-20
2-4,2-21 ,2-24,4-24FF,5-7, 3-5
4-29FF,B-7
4-24
7-10
1-2,7-1 FF
1-5,3-1,7-8,7-11
2-18,2-22
1-4
1-4,2-2,2-17,3-1
3-5,7-8,7-11
1-4
3-3,7-2
7-1 ,7-2,7-1o,3-7
7-1FF
2-30,4-36,4-37,5-6,6-12
2~2,2—21,4—18,4—19
4-52.3-7
5-1 ,5-13
8-18
1-4
2-2,2-23,4-2o,3-7
2-16,2—17,3-1
1-4,4—1FF
4-5.3-7
1-4,7-10,7-11
3-16
5-1

‘REDIMENSIONING
RELATIONAL EXPRESSIONS
RELATIONAL OPERATORS
REM
REMARKS
RENUMBER
REP$
REPEAT
RESET
RESET$
RESET*
RETURN
RND
Row
RUN
RUN-TIME SYSTEM
RUNH
SAVE
SCALAR MULTIPLICATION
SCIENTIFIC NOTATION
SEG$
SEMICOLON(:)
SEQUENTIAL FILES
SET-LOAD-ADDRESS
SGN _
SIMULATING SEQUENTIAL FILES
SIN
SINTRAN III
SOURCE
SPAC$
SOR
SOUARE MATRIX
STAND ALONE EXECUTION
STATEMENTS
STEP
STOP
STRING
STRING EXPRESSIONS
STRING FUNCTIONS
SUBPROGRAMS
SU3ROUTINE STATEMENT
SU3ROUTINES
SUBSCRIPTED VARIABLES
SUBSCRIPTS
SYNTAX
TAB
TABLE-SIZES
TAN
TERMINAL
THEN
TO

ND—60.071.01

2-27,6-3FF,C-3
4.47450
2-8,4-47
2—29,4-39,8-7
229,439
3-2,B-16
3-20
3-6,4—50,B-7,C-1
4-20, B-8
4-20, 8-8
4-20.3-8
4—41,B-8
4.52.3-20
4-14,6-2FF,6-20
2-16,3-5,B-16
7-11,7-14,A-1,A-11
3-3,3-5,7-2,B-16
2-16,3-4,B-17
6-7,B-9,B-20
4-27
4.23319
2-31,4-26,4—34,6-9
5-1 FF,7-1
3-17
B-18
4-22.5-1 ,5-12
2-18, 3-13
1-4,3-1,3-5,5-8,A-15
1-4,1-5,7-8
3-20
2-7,2-10,3-6,B-18
6-2
7-11,A-11
2-2,7-1,3-1
2-11,2-26,4-50,B—3
2-22,2.-28,B-8
4-2,4-3,4-18,5-14,7-12
4-21
4-17,4-21,4-46,B-19
7-1 FF
7-1,7-3,7-6,3-8
4-41 ,7-1
2-13,4-3,4-4,5-14
2-13,2-27,4—3,4-4,4-14
1-6,2-16,2-18,A-1
4-28,3-2o
3-17
B-18
1-6
2-25,4-50, 3-4
2-11,2-26,B-3

L3~ .

