
THE DATA BASE SYSTEM

SIBAS®
AN INTRODUCTION

A/S NORSK DATA-ELEKTRONIKK

t «a
O...
.0...
00....
0.0...
.0. C.
.0. O
0..

.6!

him

D

THE DATA BASE SYSTEM

SIBAS®
AN INTRODUCTION

REVISION RECORD
Revisio Notes

'174

Pub1.No. ND-60. 057. 01
December 1974

f...— IL.
f”? A/s NORSK DATA-ELEKTRONIKK

/,;';"_-'—f'——_,/f/ Lgbrenvn. 57, 0310 I), Tlf. 21 73 71

SIBAS USERS MANUAL

INDEX

CHAPTER 1.

1.0

1.1

1.2

CHAPTER 2.

2.4

INTRODUCTION

BACKGROUND

CONCEPT OF A DBMS

SIBAS COMPONENTS

STRUCTURING CONCEPTS

OVERVIEW

ITEMS

GROUP ITEMS

RECORD TYPES

2.3.

2.3.

2.3.

2.3.

2.3.

SET

NNNNNNNN

J—‘J—‘bbbbb

.4.

1

2

3

4

5

TYPES

MNOU'IDUJNH

REALM

DATA BASE

CALC RECORDS

SERIAL RECORDS

SEARCH KEYS

REPRESENTATION 0F INDEXES

FLOATING POINT INDEX ITEMS

SET ITEM

SET OCCURRENCES

CHAIN REPRESENTATION OF SET TYPES

ILLUSTRATION OF SET TYPE AND SET OCCURRENCE

INVOLUTED SET TYPES

STORAGE CLASS

NOTE ON SET OCCURRENCES

REMOVAL CLASS

PRIVACY SYSTEM

2.7.1 PRIVACY 0N DATA BASE LEVEL
2.7.2 PRIVACY 0N REALM LEVEL
2.7.3 PRIVACY 0N OCCURRENCE LEVEL
2.7.4 SUMMARY OF THE SETTING OF CURRENT PASSWORD

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: S IBAS

SIGN PROGRAM:

TITLE: INDEX

ND-60. 057. 01

2.8

CHAPTER 3.

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3'8

ii

NULL VALUES 0F KEYS

MANIPULATION CONCEPTS

INTRODUCTION

NAVIGATING ROUND THE DATA BASE

CURRENCY INDICATORS

3.2.1 CURRENT 0F RUN-UNIT INDICATOR (CRUI)

3.2.2 CURRENT SEARCH REGION INDICATOR (CSRI)

3.2.3 THE USE OF CRUI AND CSRI

SUMMARY OF DML STATEMENTS

OUT OF THE BLUE AND RELATIVE FINDS

RECORD AREA AND USE OF GET

DATA BASE EXCEPTION CONDITIONS

CONCURRENT PROCESSING

3.7.1 REALM USAGE MODES AND REALM PROTECTION MODES

3.7.2 RECORD LEVEL LOCK-OUT

3.7.3 RECORDS IN EXTENDED MONITOR MODE

3.7.4 SUMMARY OF PROTECTION LEVELS

CONNECTING AND DISCONNECTING

3.8.1 CONNECTING TO AND DISCONNECTING FROM

A MANUALLY MAINTAINED SET

3.8.2 INSERTING INTO AND REMOVING FROM AN INDEX

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH ICIIRIIOSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN
PROGRAM:

TITLE: INDEX

IUD-60.057.01

'0

(1.0) 1

INTRODUCTION

BACKGROUND

SIBAS is a data base management system, DBMS. which is available

for several different computer hardware lines. The purpose of

this manual is to describe the capabilities of SIBAS in a machine

independent manner. Where a capability does depend on the variant

of SIBAS for a given machine, this is indicated.

It is generally recognized that there are two classes of DBMS,

namely host language systems and self—contained systems. SIBAS is

basically a host language system, although it also contains simple

self—contained interrogation and updating facilities for use by

non-programming users.

A host language DBMS is one which must be called from a standard

programming language and can essentially be regarded as an extension

to that programming language. In the case of SIBAS, it provides most

of the capabilities specified by the CODASYL Programming Language

Committee for a Data Base Facility in COBOL. In addition. since

SIBAS has itself been coded in Basic FORTRAN, similar facilities

are available to the FORTRAN programmer, and other languages supporting
FORTRAN subroutine calls such as PL/l, ALGOL etc.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAlNTRODUCTION

flTLE: BACKGROUND

.ND-60.057.01

l. l

(1.1) l

CONCEPT OF A DBMS

A DBMS is basically a software system which will allow a data base

to be structured in direct access storage in such a way that full

advantage can be taken of the extra dimension provided by such

storage; duplication of data is controllable. Where appropriate,

it may be avoided completely. In addition, several executing pro-

grams may process the data concurrently. The DBMS is responsible

for maintaining the integrity of the data (collectively called a

data base) and for resolving any conflicts which may arise between

executing programs.

In view of the fact that several programs will process the same data

base using different data structures, it is necessary for the user to

define relationships between various parts of the data. These relationships

are effectively paths which serve to speed up the execution of the programs.
Since such paths introduce an element of storage overhead and also

have to be maintained, careful judgement should be exercised by the

user in deciding how many such relationships he should define and

where these should be in the data base. The individual who exercises

this judgement and who is responsible for the design of the data base

is generally referred to as the Data Administrator. In SIBAS, he

must define the data base including its various relationships using

the Schema Tabular Data Description Language which is written on a

simple, easy to use, set of forms.

The programmer who writes programs to process the data in the data base

should be aware of the relevant relationships which have been defined
in order to write efficient programs. Among other languages, he may

program in COBOL and FORTRAN, and has available a set of extra fa-

cilities which are collectively referred to as the Data Manipulation

Language, or DML. He must access these facilities by means of con-

ventional CALL statements. When a programmer's CALL statement is

DEVELOPED BY: CENTRAL INSTWUTE FOR INDUSTRIAL RESEARCH (CHR) OSLO—-NORWAY

DATE SYSTEM: SIBAS

QGN PROGRAM: INTRODUCTION
flTLE CONCEPT OF A DBMS'

ND-60. 057. 01

(1.1) 2

executed, control is transferred to an important component of the
DBMS called the Data Base Control System, or DBCS, which is the
run time support module handling all transfers between the data
base and the program.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIFH OSLO—NORWAY

DATE SYSTEM: SIBAS

PROGRAM: INTRODUCTION

“Tl-E: CONCEPT OF A DBMS
SIGN

ND-60. 057. 01

1.2

(1.2) l

SIBAS COMPONENTS

SIBAS consists of three main components identified as follows:

1. Schema Tabular DDL

2. Data Base Control System

3. Schema Redefinition Language

The first two of these three have already been explained. Experience

with data processing over the past twenty years has indicated the

importance of being able to modify the data structure as new

requirements are identified in the application environment. The SIBAS

Schema Redefinition Language makes it possible for a data administrator

to introduce both additive and modificational changes to an existing

data definition. Furthermore the changes will in most cases not

imply any modification, or recompilation of existing application

programs which use the data base.

In addition to the three components mentioned above, the SIBAS system

contains a Data Base Administrator module, and several utilities.

The Data Base Administrator module makes it possible to specify

run—time statistics, passwords, privacy controls, and backup/logging.

The utilities available are som self-contained interrogation and

updating facilities, recovery programs and statistics programs.

The different SIBAS modules are shown in figure 1.1.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: INTRODUCTION

flTLB SIBAS COMPONENTS

ND-60. 057. 01

(1.2) 2

.DHmmBMommm
wUHHmHH¢Hm

ZMHmMm

m2dMO0Mm

AOMHZOOMm¢m¢H<m

ZOHH<UHAmm¢

m¢mHm

mm<m<H<Q

MU<DUZ<A
ZOHHHZHhMQmm

<mom

ZOHHmHMommmmm<m<fi<n
dam

M¢A=m<H<mom

MQDQOZ

.OHH<MHwHZHE..

mm<m<H<Qmdm.OHmwAOMHzooMOHHZOE

SIBAS MODULESFig. 1.1.

SIBAS

PROGRAlNTRODUCTION

SYSTEM:

TITLE: SIBAS COMPONENTS

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE

SIGN

IU)-60.057.01

(1.2) 3

It must be pointed out that in the areas in which SIBAS does not
closely follow the CODASYL Data Base Facility proposal, the reason

for the deviation is that it is often felt an improvement upon the
degree of data independence offered by the CODASYL approach can in

fact be achieved. Hence, although SIBAS offers the customer a some-

what different approach to data base structuring than proposed by

CODASYL, the options provided in SIBAS are in fact those which cause
the customer to adopt a solution which will make restructuring of the
data base a much easier undertaking. Some of the obviations from
CODASYLS proposal are actually necessary to make a simple, general

schema Redefinition language as the one SIBAS offers.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: S IBAS

$GN PROGRAM: INTRODUCTION

flTLE SIBAS COMPONENTS

IUD—60.057.01

(2.0) l

2. STRUCTURING CONCEPTS

2.0 OVERVIEW

In any DBMS, a number of structure levels are required for describing

the data base. SIBAS, which follows the CODASYL terminology here,

uses six different structure levels as follows: (Figure 2.1)

Item

Group item

Record type

Set type

Realm

Data base.

The first three of these are familiar to any COBOL programmer. For
the benefit of FORTRAN programmers, it must be explained that an
item is essentially the same as a variable. However, in COBOL and

in SIBAS, several items together are collectively referred to as a
"record type". As an example, consider data concerning an employee

in a company

EMPLOYEE

NAME

NUMBER

BIRTH-DATE

SALARY

JOBFTITLE.

The name EMPLOYEE is used to identify a record type in the data base.
The data base will normally contain several such record types. Furtherr

more, there will be several occurrences of each record type. If there

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (SEEN OSLO——NORVVAY

DATE SYSTEM: SIBAS

$GN PROGRAM: STRUCTURING CONCEPTS

"TLE: OVERVIEW

IND-60.057.01

DATA BASE

/

REALM l

\
ALM2a

RECORD

ITEM

Figure 2.1.

ITEM

S IBAS CONCEPTS

(2.0) 2

RECORD

GROUP ITEM

ITEM

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH ICIIRI OSLO— NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING CONCEPTS

"Tl-E: OVERVIEW

Ifl)-60.057.01

{M113

are 1,000 employees in the company then there will be 1,000 record

occurrences of the record type EMPLOYEE in the data base. A "record

occurrence" can usually be referred to simply as a ”record" with

the full term "record occurrence" being used occasionally for the

purpose of extra clarification. Experience with this class of DBMS

has indicated that it is very important for the potential user to dis-

tinguish clearly between "record type" and "record occurrence".

Each record type contains a number of items. In the above example

there are five items as listed. An occurrence of this record type

would consist of one value for each of the five items. For instance,

a record occurrence might be as follows:

SMITH

74890

420531

43000

PROGRAMMER.

The above concepts are fairly commonplace to any user versed in the

practices of commercial data processing. It must be mentioned that,

in SIBAS, all records of a given type are of the same length. In

COBOL terms, the OCCURS DEPENDING clause, traditionally used to

define variable length records, is not supported. In fact, this

facility is a way of defining a hierarchical relationship which uses

an ”intra-record" approach. Such relationships can in SIBAS be de-

fined using the more flexible and more widely advocated ”inter-record"

approach.

A set type is simply a relationship between two or more record types

and is the means by which the data administrator pre-defines ”pre-

ferential paths" in the data base, which the programmer may use when

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING CONCEPTS

“TLB OVERVIEW

ND-60. 057. 01

(2.0) 4

writing a program to process the data in the data base. In the

case of the simplest set type, the relationship provided is such
that the two record types have a single relationship with each
other. This is substantiated by the fact that one record type must
be designated as the owner and the other is then the member. This
situation is often illustrated graphically by the following struc-
ture diagram

DEPARTMENT

EMPLOYEE

In this diagram, DEPARTMENT and EMPLOYEE are each record types, D-E
is a set type in which DEPARTMENT is the owner and EMPLOYEE is the
member.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH ICIIR) OSLO— NORWAY

DATE SYSTEM: S IBAS

SIGN PROGRAM: STRUCTURING CONCEPTS

"TLE: OVERVIEW

LHD-60.057.01

.l

(2.1) 1

ITEMS

The item in SIBAS has the same role as the elementary item in
COBOL. An item declared in the Schema DDL must be designated
as either FIXED, FLOATING, or CHARACTER. In each case, the
hardware representation of the values of an item depends on the
particular variant of SIBAS in use.

The following table indicates the correspondence between SIBAS
item types and COBOL and FORTRAN item types

SIBAS COBOL FORTRAN

FIXED COMPUTATIONAL-n INTEGER
FLOATING COMPUTATIONAL-m FLOATING
CHARACTER ALPHANUMERIC ALPHANUMERIC

The exact values of m and n depend on the COBOL compiler used.

Values of FIXED and FLOATING are always constrained by the hard-
ware representation. Values of CHARACTER items are always con-
strained by the appropriate host language restrictions. For
instance, ANSI COBOL restricts the length of ALPHANUMERIC items to
256 bytes. The character set which may be used in a SIBAS CHARACTER
value depends on the hardware used. In FORTRAN the ALPHANUMERIC
itEm type will generally be defined as INTEGER.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING CONCEPTS
TITLE: ITEMS

IUD-60.057.01

(2.2) l

. 2 GROUP ITEMS

It may be necessary for the data administrator to assign a name to
a collection of a number of items in the same record type. In this

case, the collection is referred to as a group item. The itemsr

need not be contiguous items in the record type as is required in a
COBOL group item. The sequence of the items in the group may also
be different from the sequence in the record type. Only one level
of naming is allowed. In other words, it is not possible to define
a group item which includes another group item and the constituents
in a group item must all be elementary items (in the COBOL sense).
However, an item may participate in more than one group item.
This could be used to implement multilevel groups by including all
items from one or more group items in a new group item.

As a special case a group could consist on only one item. This
enables the user to have alternative names on items.

The group item provides a short hand representation for identifying
a collection of non-contiguous elementary items. It should not be
confused with the repeating group which corresponds to the OCCURS-
clause in COBOL. Repeating groups are implemented in SIBAS by using
the set type structuring. The group item is used in various parts of
SIBAS as indicated in the following sections.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CHR) OSLO— NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING C ONCEPTS

TITLE: GROUP ITEMS

IUD-60.057.01

2.3

2.3.1

(2.3) 1

RECORD TYPES

All SIBAS items must be associated with a single record type in

the data base. There is no facility in the SIBAS Schema DDL for

defining "loose items". When required, this must be done in the
COBOL Working Storage Section or in FORTRAN type variables.

Each record type must be assigned a name which is different from

other names in the Schema. Furthermore, each record type must be

assigned to a location mode. The location mode is essentially a

mechanism.which controls where the record is to be stored in the

data base.

SIBAS supports two location modes which are referred to as CALC
(or calculation mode) and SERIAL. In the first case, the user must

designate either an item or a group item to serve as the primary

record key for the record type.

Records with location mode CALC will be stored in an address calcu-
lated from the primary key. Records with serial location mode will
be stored in the first available location in the realm.

CALC RECORDS

In the case of CALC records, a standard systenrsupplied hashing or

randomizing algorithm is used to distribute the record occurrences
randomly across a space on direct access storage. The space assigned

to all occurrences of a record type is called a realm. The data
administrator must divide the realm into two areas referred to as
the main area and the overflow area. Each of these two areas contains

an integral number of buckets of equal size.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING CONCEPTS

flTLE= RECORD TYPES

bfl)—60.057.01

(2.3) 2

The data administrator must choose a prime number for each CALC

record type based on his estimate of the space required for all

occurrences of this record type. Occurrences of this record type

are then assigned to a specific bucket in the main area or possibly

in the overflow area. The bucket number in the main area is computed

from the value of the key and the prime number as follows:

Key Value
————= +
Prime Number

I F

where I is the integral part of the quotient and F is the fractional

part. The bucket number is then derived from F, and the record occur-

rence is stored in that bucket if there is space available. If not,

then a bucket in the overflow area is used. (Figure 2.2).

Such overflow buckets are accessible from the main area bucket through

a series of pointers. Records are stored in the first available

location of the bucket. When the CALC key is used as a basis for

finding the record, the same hashing algorithm is used and a

sequential search is made through the main area bucket and if necessary

also the relevant overflow bucket(s).

The data administrator must decide, when choosing the CALC key,

whether or not duplicate values of the key are allowed. If not, then

an attempt to store a record which has a primary key value equivalent

to that in a record of the same type already in the realm will be

unsuccessful.

Finally, the prime number which the data administrator assigned will

give the number of buckets in the main area. This matter is discussed

in more detail in Section 6.1.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

‘ DATE SYSTEM: SIBAS

$GN PROGRAM: STRUCTURING CONCEPTS

"TLE= RECORD TYPES

ND-60. 057. 01

MAIN AREA
(2.3) 3

Record Record Record

H—

“W
Pointer to
bucket in
overflow
area

Bucket 1

Bucket 2

Bucket N

Pointer to
previous bucket or
to bucket in main areaOVERFLOW AREA

L... Record Record

-—v

Figure 2.2. CALC RECORDS

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO— NORWAY

DATE

SIGN

SYSTEM: SIBAS

PROGRAM: STRUCTURING CONCEPTS

“TLE RECORD TYPES

ND-60. 057. 01

2.3.2

2.3.3

(2.3) 4

SERIAL RECORDS

Records for which no CALC key is designated will have location

mode of SERIAL. Records of this type will be stored in the first

available free location in the realm. If a record is deleted, then

the next time a new record of the same type is stored in the realm,

it automatically takes the space vacated by the deleted record.

SEARCH KEYS

It is possible to assign one or more search keys (index keys) to a

record type independent of whether its location mode is CALC or

SERIAL. As in the case of CALC, a decision must be taken on whether

more than one record with the same key value is allowed or not.

Normally, at time of initial load, the user would be advised to

enSure that records are in ascending value of a primary key value,

especially if he wishes to make frequent sequential scans through

these records using the primary index as the basis for his accesses.

In fact, in some cases where the record type has a location mode of

SERIAL, and there are search keys defined, it may be rather arbitrary

which of the keys is regarded as the primary key and which are the

secondary keys. In practice if one index is more likely to be used

than the others for serial processing of the records, then that index

should be regarded as the primary key, and the records should

preferably be loaded initially into the data base in ascending order

of the values of this key.

Indexes are maintained in ascending sorted sequence of the key values,

and the records in the realm may be processed in this sequence if

required.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH ICIIRI OSLO—NORWAY

DATE SYSTEM: S IBAS

SIGN
PROGRAM: STRUCTURING CONCEPTS
nTLE: RECORD TYPES

ND-60. 057. 01

2. 3.4

(2.3) 5

Since both CALC keys and search keys may be group items, it is quite
possible for an elementary item to be used as part of several keys.

Finally comes a new concept associated with the primary indexing
technique which is not included in the proposed CODASYL COBOL Data
Base Facility, but is felt to offer the user an extra measure of
flexibility in structuring his data base. An index must be designated
as either automatically maintained or else manually maintained.

If the index is automatically maintained, then at the time a new
record is stored in the realm, the index is automatically updated by
the DBCS. If the index is manually maintained, then the programmer
must include an extra statement in his program if and when he wishes
to cause the index to be updated.

REPRESENTATION OF INDEXES

When a record type has primary or secondary index keys, then for each

key an index is built up during initial load and maintained, where
necessary, during subsequent processing. Each index consists of a
number of levels, and each level contains a number of so-called index
tables. In order to optimize use of storage and of precessing time,
the data administrator must give the DBCS certain information about
each index and its tables.

It is possible for each level in each index to be assigned to a dif—
ferent realm. It must be noted that the realms used to store index
levels must be different from realms used to store records in the

data base. If the user wishes, he may assign an index level by
default to the SIBAS system realm.

Firstly, the data administrator must estimate the number of records
to be indexed. From this he can estimate the initial number of
levels, and he may also decide on a packing density. The system

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIFI) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING CONCEPTS

flTLE: RECORD TYPES

IUD-60.057.01

2.3. 5

(2.3) 6

default for this is 60%. This is information which the system
utilizes when an index table is full and a new one on the same level

is necessary. For each level, it is necessary for the data admin-

istrator to estimate the size of the table. This process is described

in detail in Section 6.3.

FLOATING POINT INDEX ITEMS

There is no restriction on the composition of a group item which may

serve as an index key. The values of the index item are treated as

bit strings and the index maintains the item values in ascending

order. Hence, some caution may be necessary in some variants of

SIBAS when using floating point items in index keys. Since the values

are treated as bit strings when comparisons between values are made,

a printed report generated in the sequence of an index might in fact

not come out in the correct sequence of the decimal values and it

might be advisable to sort the records using a standard sort which

handles floating point sort keys prior to printing.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING CONCEPTS

flTLE RECORD TYPES

ND-60. 057. 01

2.

2.

4

4.1

(2.4) 1

SET TYPES

A set type is normally a relationship between two or more record types.
In each such set type, one record type must be designated as the
owner and each of the others is then a member. For convenience,
one can refer to single member set types and multi-member set types.
There is also a third set type called an involuted set type which
does not fall into either of these two classes and will be discussed
separately.

SET ITEM

When defining a single or multi-member set type in SIBAS, it is first
necessary that a CALC or index key is defined for the owner record
type. Furthermore, the key must be defined Such that duplicate
values of the key are not allowed.

To be able to define a single member set type, there must be an item
(elementary or group) in both the owner record type and the member
record type which ”corresponds" in length and type, but not neces-
sarily in name. In the case of group items, there should normally
be correspondence in the constituent elementary item types, although
it would be possible for an elementary character item in the owner to
correspond to two or more elementary character items in the member.
The item in the owner record type is referred to as the owner set item.
The item in the member record is referred to as the member set item.

The owner set itenlmust be defined as a CALC or index key for which
duplicates are not allowed. The member set item may or may not be
defined as CALC or index key. Duplicates will generally be allowed
for member set item.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

fiGN PROGRAM: STRUCTURING CONCEPTS

"7L5: SET TYPES

IND—60.057.01

2.4.2

2.4.3

(2.4) 2

In the case of multi—member set types, then there must be a member

set item in each member record type which bears the relationship as
described above to the owner set item. In addition, the member set

item in each member must have the same name as in all the other

members in the set type.

In all cases, the choice of an item to be an owner set item or a

member set item imposes no restrictions on its use as primary key

or search key.

SET OCCURRENCES

Each set type in the data base will have a number of set occurrences

(more simply referred to as sets). Each set contains one occurrence

of the owner record type and zero or more occurrences of each member

record type. Sets with no members are called empty sets.

For a given set type, there are in the data base as many sets as

there are occurrences of the owner record type.

It is the set item which determines how member occurrences belong

to a set. If the value of the nwnmer set item for a set type has

the same value as an owner set item, then the member record is
"connected" to the owner's set. At what time this connection will be
established, depends on the "storage class" of the set type (see
section 2.4.6).

CHAIN REPRESENTATION 0F SET TYPES

The physical representation of a set occurrence in the data base
is achieved by a chaining technique. This means that the owner

record in the set contains a pointer to the first member record in

the set which in turn contains a pointer to the next record and so

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIFI) OSLO—NORWAY

DATE SYSTEM: S IBAS

SIGN PROGRAMISTRUCTURING CONCEPTS

"TLE‘ SET TYPES

ND-60. 057. 01

2.4.4

(2.4) 3

on. The last record in the set points back to the owner. The
order of the member records in the set is generally determined by "time
ofarrival”. A chain representation of this kind is essentially
uni—directional. Problems can arise in long chains when a record
is deleted as it is necessary for the DBCS to circumnavigate the
whole chain in order to modify the pointer in the record prior to
the one deleted.

To avoid problems of time consuming deletes in long chains,
it is possible and often advisable for the data administrator to
designate any set type with double link, which means that each
record in each occurrence of the set type contains both a "next"
pointer as above and also a "prior" pointer in the opposite direction

Defining a set type with double links does not add any extra proces-
sing capability, but it does have the effect that certain statements
which depend on the set type relationship may be executed more
rapidly.

ILLUSTRATION OF SET TYPE AND SET OCCURRENCE

To clarify the concepts of set types and chains, Figure 2.3 illustrates
a single member set type. Figure 2.4 illustrates two occurrences of
this set type. Figure 2.5 illustrates how the same sets would appear
if the set type in Figure 2.4 had been declared with double link.
In these figures, the convention of taking a rectangle to represent
a record type and a circle to represent a record occurrence is followed.

In the example illustrated, the set item could be BRANCHFID which
would then be found in both record types BRANCH and CUSTOMER. All
occurrences of CUSTOMER having the same value of BRANCH-ID would
then be chained to the BRANCH record having that value for the item
BRANCH-ID.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIFI) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM=STRUCTURING CONCEPTS

NILE: SET TYPES

bfl)-60.057.01

(2.4) 4

BRANCH ‘
L_

HAS

CUSTOMER

Figure 2.3. Logical relationship

Figure 2.4. Occurrences of HAS with link to next only.

Figure 2.5. Occurrences of HAS With link to next and prior.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO— NORWAY

DATE SYSTEM: SIBAS

$GN PROGRAM: STRUCTURING CONCEPTS

“TLE: SET TYPES

ND-60. 057. 01

(2.4) 5

2.4.5 INVOLUTED SET TYPES

In SIBAS it is possible to have a special set type in which the
owner record type and the member record type are the same. This
special set type is referred to as an involuted set type because
the set relationship is involuted (or turns on itself).

An involuted set type may only be defined if the set item which
designates ownership and the set item which designates membership
are different in name and correspond in type and length. Both items
are of course in the same record type.

This involuted set type (which is not supported in the CODASYL
Data Base Facility proposal) is useful for example in a Bill of
Materials application. Graphically, an involuted set type is de~
picted as follows:

PART

CONTAINS

In' the example the record type PART might contain two items,
PART-NO and CONTAINED-IN which should be defined with same length
and type. PART—NO will be the owner set item and CONTAINED—IN will
be the member set item.

If a given assembly, X, contains three identical sub-assemblies
Y, Z and Q then that part of the overall structure may be depicted
as in figure 2.6.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: S IBAS

$GN PROGRAM: STRUCTURING CONCEPTS
TITLE: SET TYPES

LH3-60.057.01

2.4.6

(2.4) 6

PART-N0 = X
CONTAINED-IN = ?

MEMBERS W/

PART-N0 = Y PART—NO = z PART-NO = Q
CONTAINED-IN = x CONTAINED-IN = x CONTAINED-IN = K

Figure 2.6 INVOLUTED SET TYPE

In figure 2.6 each of the four circles represents an occurrence of

the record type PART. The owner set item (PART-NO) identifies each
record occurrence uniquely. The member set item (CONTAINED-IN)

identifies the OWner record of each set OCCURRENCE.

STORAGE CLASS

It was mentioned in Section 2.4.2 that what time an occurrence of a
member record was conceded to its associated owner occurrence depended
on the storage class.

Storage class is a property of each set type. The storage class

must be declared as either automatic or manual. If the storage class

is automatic, then a member occurrence is automatically connected
into the appropriate set occurrence at the time the record is stored

in the data base, using a DML STORE statement.

If the storage class is manual, then the connection is not made when

the STORE is executed, but the programmer may cause the connection
to be made by using a CONNECT statement. Irrespective of storage
class, a record may not be connected into any occurrence of a set

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIFII OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM:STRUCTURING CONCEPTS

flTLE: SET TYPES

ND-60. 057. 01

(2.4) 7

type into which it is already connected; furthermore, it may
be connected into no more than one occurrence of any given set type.

In SIBAS, storage class is a property of a set type. This applies
to a single member set type, a multi-member set type and an in-
voluted set type. A record type may of course be defined as a
member of several automatic set types and, at the same time, of
several manual set types.

Storage class is regarded as being of sufficient importance in the
structure of a data base to merit a special graphic formalism to
be used when depicting the structure of the data base graphically.
A continuous line is used to illustrate an automatic set type re-
lationship and a dotted line to represent a manual set type relation-
ship. The various possibilities are indicated in the figures on

It must be noted that, in SIBAS, the storage class also
has an effect on whether or not it is permissible to disconnect a
record frana set. If the storage class is automatic, then this is
not permitted, although the record WOuld be moved from one set to an—
other if the value of the member set item changes. If the storage
class is manual, a record may be disconnected from a set using a
DISCONNECT statement.

Finally, it should be noted that it is possible to order the members of a
set type which is manually maintained. This is done by using the CONNECT
BEFORE or CONNECT AFTER statement which will link the record into the set
occurrence before or after an already existing record in the set occurrence.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: S IBAS

SIGN PROGRAM: STRUCTURING CONCEPTS

flTLE: SET TYPES

LU)—60.057.01

Figure 2.7. Examples of

A

AB

Automatic single member

EFG

Automatic multi-member

M
JMM

Involuted automatic

P Q
/

Z/RN/q
R

Two single member set types,
one automatic, one manual.
Set types have same member.

(2.4) 8

possible set types

CD
--<._

O

Manual single member

I
I

A
/ ‘\

/ IJK \\
/ \

J K

Manual multi-member

INN
/'

Involuted manual

S

N
T

$ TU

Two single member I— U

set types, one
automatic, one
manual; member in
one is OWner in
other.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN
PROGRAM:STRUCTURING CONCEPTS

“TLE’ SE? EYFES

IUD-60.057.01

2

2.

.4.7

4.8

(2.4) 9

NOTE ON SET OCCURRENCES

As in the CODASYL proposal there is one important property to note
about the way in which a member record can be connected to a set.

If the record type is a member of a given set type, then an occur—
rence of the record type may be connected into no more than one
occurrence of that set type. That is a member may only have one
owner in one set occurrence. The record type could, however, be
defined as member of other set types (Figure 2.7).

REMOVAL CLASS

In SIBAS the removal class will depend on the option given in the
ERASE statement. This is discussed in more detail under the
definition of this statement.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO— NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING CONCEPTS
"TLEI SET TYPES

ND-60. 057. 01

1;

2.5

(2.5) l

REALM

Realm is the term used in the CODASYL COBOL Data Base Facility to
designate a Sub-division of the data base. It is normally a
physical Sub-division and in SIBAS the realm corresponds in most
variants to the operating system's concept of a file. For this
reason, the naming conventions for realms (and therefore record
types) must correspond to the operating system's naming conventions
for files. The realms are of two types, user realms containing user
records, and system realms containing index tables etc.

In SIBAS, all occurrences of one record type must be assigned to
one user realm. A user realm may hold occurrences of one record
type only. The user realm name will also be the name of the
record type. As mentioned system realms are used for storing
levels of an index table when either a primary index (location mode
indexed) or secondary indexes are defined.

The data administrator must estimate the number of record occurrences
to be stored in each realm. Since records of the same type are of
equal length, this facilitates an estimate of the maximum size of
the realm.

In the case of indexed records, the data administrator must also
estimate the space required for the index tables.

In the case of CALC records, it is necessary to regard the realm
as being divided into a primary area and an overflow area. Each
of these areas is further divided into equal size buckets although
the buCket size in the overflow area may differ from the bucket size
in the primary area.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING CONCEPTS
HTLE REALM

bfl)-60.057.01

(2.6) l

2.6 DATA BASE

For completeness, the data base is identified as the collection of
all records,indexes, set types and realms which are defined in one
single use of the Schema DDL.

Each data base has corresponding to it a source Schema, which in
SIBAS consists of the completed forms for a data base. In addition,
there exists an object Schema which is the set of internal tables
generated when a source Schema is translated using the Schema Trans-
lator. (Figure 2.8).

USERS USERSSOURCE APPLICATION APPLICATIONSCHEMA PROGRAM PROGRAM

OBJECT DATA BASE
SCHEMA CONTROL

SYSTEM

DATA BASE

Figure 2.8. THE DATA BASE CONCEPT

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO—NORWAY

DATE SYSTEM: S IBAS

PROGRAM: STRUCTURING CONCEPTSSIGN
flTLB DATA BASE

LED-60.057.01

(2.6) 2

A program is normally written to process the data in a single data

base. However, further capability is possible in SIBAS depending on

whether or not concurrent processing is allowed. One version of

SIBAS is referred to as the single user version, which means that at

any one time only one program may ne processing a data base. The

other version is the multi—user version and with this version, several

users may access one data base concurrently.

In the single user version, it is possible for a single program to

open a data base, process the data in it, close the data base and

then open a different data base. This capability is not supported

in the multi—user version of SIBAS.

It must be emphasized that in SIBAS, it is necessary for the program

to declare its intention to process a data base by executing an

explicit OPEN statement on the data base. In fact, this has the

effect of opening a SIBAS system realm which contains among other

things the object Schema. Each realm in the data base which the

programmer wishes to process must also be opened, and this is done

using a READY statement. System realms containing an index table to

a realm will be opened when the realm is readied.

In a given installation on a given hardware configuration, there may

be several data bases, each known to the operating system through

the name of its system realm. However, the above restrictions on

the use of these data bases must be observed.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE svsrem; SIBAS

yGN PROGRAM: STRUCTURING CONCEPTS

TITLE: DATA BASE

ND-60. 057. 01

2. 7

(2.7) l

PRIVACY SYSTEM

SIBAS supports three levels of privacy.

1. Privacy on data base level

f0 Privacy on realm level

3. Privacy on record occurrence level.

The privacy checks performed on all levels use a password supplied

by the run-unit to check if the run—unit has authority to carry out

the intended operation. All privacy checking in SIBAS is performed

at run-time and it is therefore possible to redefine the passwords

as often as desired.

A run-unit supplies the run-unit's password when the database is

opened. This password remains the run-unit's "current password" until

modified using the CHANGE CURRENT PASSWORD statement. This special

statement may be used to change the run-unit's current password

whenever necessary.

The table below shows how privacy restrictions on a database is

defined, how and when passwords may be defined and modified, and when

the privacy checks are performed by the SIBAS run-time control system

(DECS).

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN
PROGRAM: STRUCTURING CONCEPTS

flTLE: PRIVACY SYSTEM

eND—bU.UbY.Ul

2.7.1

(2.7) 2

_ —.

PRIVACY LEVEL HOW PRIVACY RESTRJ HOW VALID WHEN PASSWORDS
IS DEFINED PASSWORDS ARE: ARE CHECKED

DEFINED CHANGED

DATA—BASE USING DBA USING USING AT DATABASE
MODULE DBA DBA OPEN

MODULE MODULE

REALM USING DBA USING USING AT READY
MODULE DBA DBA REALM

MODULE MODULE EXECUTION

RECORD USING WHEN A WHEN A WHEN RUN—UNIT
OCCURENCE 1) SCHEMA TABUL RECORD RECORD WANTS TO

DDL OCCUR— OCCUR— MODIFY, DELETE
RENCE RENCE

2) SCHEMA RE_ 13 IS
OR GET ITEMS

DEFINITION STORED MODIFIEDLANGUAGE

The password is of the same lenght and type as used for definition

of data item names for the installation.

PRIVACY ON DATA BASE LEVEL

As indicated on fig. 2.9 data base privacy restrictions and passwords

are defined by use of the Data Base Administrator module (collection

of utility programs). Privacy on this level may be used for two

purposes:

1. To check if a run—unit has authority to open the database.

2. To define global passwords giving certain rights (see 2,7,2)

to all run-units using privacy restricted REALMS.

The password is given as a parameter in the OPEN DATA BASE STATEMENT.

There is a limit to the numbers of times a run-unit unsuccessfully

may try to open the database.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIHI OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING CONCEPTS

flTLE: PRIVACY SYSTEM

IUD-60.057.01

2.

(2.7) 3

IB—PASSWORD 9DATABASE DEFINITION +
VALUE

DATABASE
-IMINISTPJflD'

//////

MODULE

'EALM PASSW. :.
DEFINITION +REALM 1 REALM 2 ALUE

Fig. 2.9 Defining and giving values to data base passwords
and realm passwords

7.2 PRIVACY ON REALM LEVEL

Passwords on REALM level are defined by use of the DEFINE PRIVACY REALM
statement in the Data Base Administrator module (fig. 2.9).
The password is valid for a certain USAGE MODE and
it is also possible to put restrictions on the reading of a REALM in
PROTECTED MODE.

The password may serve two purposes:

1. To check if the run-unit has the authority to READY the REALM
with the specified USAGE MODE and PROTECTION MODE.

2. Defining a "REALM-GLOBAL" password overriding the record
occurrence password.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY\
DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURE CONCEPTS

flTLE: PRIVACY SYSTEM

bfl)-60.057.01

(2.7) 4

(In order to produce reports etc. spanning all of the REALM).

See 2.7.3.

The privacy restrictions and the valid passwords may be modified

using the Data Base Administrator Module.

2.7.3 PRIVACY 0N RECORD OCCURRENCE LEVEL

It is possible with SIBAS to define privacy items on the record

occurrence level.

This privacy item is stored together with the record. For this

reason, the definition of the privacy item which will contain the

value of the record occurrence password, has to be part of the record

type description. Privacy restrictions on the record occurrence level

must therefore be defined using the Schema Tabular DDL or the

Schema Redefinition Language. Record occurrence passwords

considered as a special data item type, see fig. 2.10.

LANGUAGE

EDEFINITION RECORD TYPE
OFRECORD TYPE

ITEM 1 ITEM 2 ITEM 3 ITEM 4 PRIVACY ITEM

(
RECORD TYPE

>DEFINITION Fig. 2.10 Definining a record lock for a record type.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO—NORWAY

DATE SYSTEM: S IBAS

$GN PROGRAM: STRUCTURING CONCEPTS

flTLE: PRIVACY SYSTEM

ND-60. 057.01

2.7.4

STORE OR ITEM 1 ITEM 2 ITEM 3 ITEM 4 PRIVACY ITEM
MODIFY = A B c = D = x X x

(2.7) 5

The privacy item is given a value in the same way as other items in
the record, when the record is stored or modified (fig. 2.11).

Fig. 2.11 Giving value to privacy item.

Like other items, the privacy item need not be given a value when the
record is stored. The privacy item will then be set to a null value
by the DBCS. A record for which privacy on record occurrence level
is defined, but with null value on the privacy item, may be manipulated

as if no privacy item was defined for that record type.

The privacy check is performed when a run-unit tries to retrieve

information from the record (the GET statement) and when a run-unit

tries to modify or delete the record or its set membership.

Note that no restriction is put on the use of FIND-statements.

SUMMARY OF THE SETTING OF CURRENT PASSWORD

Initially the current password is set for a run-unit when the data

base is opened. (Fig. 2.12). Unless a CHANGE PASSWORD is performed,

the value of current password will remain unchanged. When a READY

REALM is performed, current password must match a password which is

defined for the desired mode of operation on the realm. If the run-

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

$6M paoam; STRUCTURING CONCEPTS

flTLB PRIVACY SYSTEM

IND-60.057.01

(2.7) 6

unit performs a record manipulation statement on records where the

value of the record lock is different from the realm password,

current password for the run-unit must be changed before the

manipulation statement is successfully executed.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM STRUCTURING CONCEPTS
TITLE: PRIVACY SYSTEM

ND—60. 057. 01

(3.0) l

MANIPULATION CONCEPTS

INTRODUCTION

The type of data structures described in the preceding Chapter

cannot be handled with the statement types currently available

in the standard programming languages. Therefore, the Data Base
Facility requires that the languages be enhanced by the addition
of what is called a Data Manipulation Language, or DML. The DML
is not a complete language in itself but a set of new statement
types to be added to an existing language. In the case of COBOL,

these statements are added to the Procedure Division.

Each statement has a preprocessor form and an encoded form for use

in the CALL statement. When using SIBAS, each DML statement
will generally be programmed in the latter form. Exception from
this rule is if a SIBAS preprocessor is used. Then the preprocessor
form should be used.

SIBAS may also be used inter-activly via a self-contained inter-
rogation and updating facility. This is a simple language which
enables the user to store, retrieve and update on the data base
independently of any programming language.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM=MANIPULATION CONCEPTS
fiTLE: INTRODUCTION

ND-60. 057. 01

2.8

(2.8) 1

NULL VALUES OF KEYS

Any elementary item in the data base may normally take a null

value, where null implies "no value". In the case of an integer

item, null is represented by zero, which means that care must be

exercised if zero is in fact a frequently occuring and also meaning-
ful value for an integer item. In the case of a floating point

item, null is also represented by zero.

Null for a character item is represented in SIBAS by all blanks.

(0r spaces if the character code terminology prefers that term).

SIBAS does not allow any item which may be used as a basis for

accessing records to take a completely null value. This refers to

calc keys, index keys, search keys, owner set items and member set

items. Any of these may be a group item, in which case it may be

partially null but not wholly null.

Any attempt to store a record in the data base which has a com-

pletely null value for a key or set item will be unsuccessful. Any
attempt to modify an item in a record already in the data base

which would result in such a condition will also be unsuccessful.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: STRUCTURING CONCEPTS

“TLB NULL VALUES OF KEYS

ND—6—0. 057. 01

ll

(2.7) 7
r

OPEN DATABASE

GIVE PASSWORD

‘\\
CHECK
PASSWORD

PASSWORD

NOT VALID

DATA BASE OPENED

;CHANGE CUR— I
IRENT PASSWORD;
'lF NECESSARY

I‘—
PERFORM
READY

CHANGE
CURRENT
PASSWORD

REALM(S)

PASSWORD NOT
VALID FOR
GIVEN MODE

PASSWORD

REALM(S) READIED

RETRIEVE
RECORDS

I
;CHANGE CUR- ;
IRENT PASSWORD!
{1F NECESSARY I

J.._
PERFORM
MANIPULATION

CHANGE
CURRENT
PASSWORD

Fig. 2.12 Use of current password

STATEMENT 0N
RECORDS

i,r \\
CHECK

PASSWORD
PASSWORD

NOT VALID

RECORDS MANIPULATED

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO—NORWAY

DATE SYSTEM: S IBAS'
$6M PROGRAM: STRUCTURING CONCEPTS

flTLE: PRIVACY SYSTEM

ND-60. 057. (1

U

3.1

(3.1) l

NAVIGATING ROUND THE DATA BASE

The CODASYL Data Base Facility approach to processing a data base
calls for the programmer to be able to enter the data base from

outside and to navigate his way around inside. The SIBAS approach
to search keys makes it possible to access all records from outside

in several ways and also to conduct searches in certain regions

within the data base, as will be described.

With a SIBAS data base, it is possible for a program to make two
kinds of access to the data base. The first class is called an

"out of the blue" access. The programmer provides the value of a
key and a single record is found in the data base whose key value
corresponds to the key value specified.

The other class of access is called a relative access, and the re—

cord found always has some relationship to one found previously —

normally the record most recently found.

It must be emphasized that, since the data base is in direct access
storage, both classes of access are essentially "direct" in the
normally accepted meaning of the term. The first access to a data
base which is made in any program must necessarily be an "out of
the blue" one. However, a program will normally contain a mix of
statements from both classes.

The statement which is used to locate (that is, confirm the presence

of) a record in the data base is the FIND statement. Numerous options
of FIND areavailable and may be listed as follows:

1. FIND based on calc key or indexed key

(this could define a search region).

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

smN PROGRAM: MANIPULATION CONCEPTS
flTLE: NAVIGATING ROUND THE

DATA BASE

ND-60. 057. 01

(3.1) 2

2. FIND first or last member record in a set occurrence,

3. FIND next or prior member record in a set relative to

a record recently found.

4. FIND first record in a realm (which defines a search

region).

5. FIND next record in a search region.

6. FIND owner occurrence relative to a member occurrence

recently found.

The execution of a FIND statement may be successful or unseccessful.

If successful a record is located, and an indicator is set to point

to that record, called the CURRENT OF RUN—UNIT indicator. This means

that further DML or host language type actions can be performed on

that record. However, no host language statement such as the COBOL

MOVE or a FORTRAN ASSIGN may be meaningsfully executed on the data in

the record until a successful GET statement has been executed.

A FIND may be unsuccessful. In the case of an out of the blue access,

for example, this may mean that there is no record of the type sought

in the data base whose key values correspond to those specified in

the FIND statement. The relative classes of FIND may be unsuccessful

for a variety of reasons defined in detail in Chapter 5.

If the FIND, or any other statement, is unsuccessful, then a Data

Base Exception Condition is set. It is the responsibility of the

programmer to be fully aware of the Data Base Exception Conditions

which may occur in the course of execution of his program and to

build in appropriate tests and courses of action in each case.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH ICIIR) OSLO—NORWAY

DATE SYSTEM: S IBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

"TLEi NAVIGATING ROUND THE
DATA BASE

PHD-60.057.01

3.2

3.2.1

(3.2) 1

CURRENCY INDICATORS

Programs accessing a SIBAS data base may execute concurrently.

It is also possible that the same program may be executing two or

more times concurrently with different parameter values. For

convenience, each executing instance of a program is referred to

as a run-unit.

As already indicated, a run-unit in the course of its execution

may need to find a record relative to some recently found record

that is found in the same run—unit. The way in which both the

run-unit and the DBCS keep track of where to in the data base pro-

cessing has reached is by means of two so-called currency indicators.

In SIBAS, the two indicators are referred to as

CURRENT OF RUN-UNIT INDICATOR (CRUI)

CURRENT SEARCH REGION INDICATOR (CSRI).

CURRENT OF RUN-UNIT INDICATOR (CRUI)

The CRUI is always updated after the successful execution of each

FIND or STORE statement. The content of this currency indicator

is always a unique identification of a record in the data base.

This record identification is a quantity which distinguishes one

record occurrence in the data base from all others. It is not based

on the data Values in the record but rather on the physical address of

the record in the data base. The physical address of a record may

of course change during the life of a run-unit, but the CRUI will then

be updated accordingly.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO—NORWAY

DATE SYSTEM: S IBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

"TLEI CURRENCY INDICATORS

ND-60. 057. 01

(3.2) 2

The CURRENT OF RUN-UNIT INDICATOR is maintained by the execution of

the FIND and STORE statements. Several other DML statements actually

operate on the record designated by the CRUI, but only succesfull

execution of FIND or STORE will update CRUI.

It is possible for a program to "remember" a CRUI in a temporary

data base key. The CRUI could then be referred to directly from

the same run-unit by use of the temporary data base key, even if another

record is current. If the user remembers more than one CRUI, the

system will build up a remembered list where the temporary data base

keys are used to identify the entries in the list. Each time a

REMEMBER statement is executed a new entry is added to the list

and the entries are removed from the list by executing the FORGET

statement .

Any statement which operate on a record identified by the CRUI can

equally well operate on a record which is identified by a temporary

data base key. For example it is possible to MODIFY a record

identified by a temporary data base key without making it CURRENT

0F RUN-UNIT first.

If a record, which is identified by a temporary data base key, is

moVed physically in the realm, the address in the temporary data

base key, and all other entries in the currency and temporary data

base key list for all concurrent run-units referring to this unique

record will be updated accordingly.

Note that a temporary data base key may only be used during the

"life of a run—unit".

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CHR) OSLO—NORWAY

DATE SYSTEM: SIBAS

$GN PROGRAM: MANIPULATION CONCEPTS

"TLE: CURRENCY INDICATORS

ND—GO. 057. J1

(3.2) 3

3.2.2 CURRENT SEARCH REGION INDICATOR (CSRI)

An "out of the blue" access to the data base may have the effect of

setting the CSRI to a new search region. A search region can be

defined as a collection of records which have something in common.

It can be any of the following:

1. All records with same value of CALC KEY (duplicates

allowed).

2. All records with same value of a INDEX KEY

(duplicates allowed).

3. All records in a realm (i.e. of same type).

4. All records whose index key values are between defined

limits.

The setting of the CSRI depends partly on the form of the FIND

statement and partly on the key specified in the FIND.

The setting of the CSRI to the four types of search regions given

above is done in the following way:

1. FIND using a CALC key for which duplicate values

are allowed.

2. FIND using an INDEX key for which duplicate values

are allowed.

3. FIND first in realm using the name of the realm.

4. FIND between limits giving the upper and lower limit

of an index key item.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM= MANIPULATION CONCEPTS
"Tl-B CURRENCY INDICATORS

.ND-60.057.01

3.2.

(3-2) 4

These four forms of the FIND statement are the only possible ways to

changing the value of the CSRI.

As with the CRUI, it is possible to "remember" the contents of the
CSRI in a temporary search region indicator. The system builds up
a remembered list for temporary search region indicators in the same
way as for temporary data base keys.

Also, either the CSRI or a remembered temporary search region indicator

may be used in accesses to the data base which are in the class:

"relative to some previously found record".

THE USE OF CRUI AND CSRI

At the beginning of the execution of any run-unit, both the CRUI and

the CSRI are regarded as undefined. Hence, the first FIND statement
to be executed, must be one which does not use these indicators, but
which does in fact set them.

When a FIND NEXT in search region relative to some previously found

record is executed and if CSRI is used to identify the search region,

the search region will be the one defined in the latest executed FIND

of one of the forms given in 3.2.2, i.e. current search region.

Furthermore it should be noted that if current record has been

ERASED, CRUI will be undefined. If current record has been MODIFIED

CRUI will still be defined, but the record it is identifying may have

been moved out of current search region. This situation will be

illustrated by an example.

..-, 7.7-- __ «l. ,.<..——
DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

mGN PROGRAM: MANIPULATION CONCEPTS

"TLE= CURRENCY INDICATORS

ND-SU. ()5'1. U

(3.2) 5

CSRI

fij\~fi

®©u®®
CRUI

Fig. 3.1 Illustration of CSRI and CRUI.

In the example a FIND using a key (INDEX or CALC) for which duplicates

are allowed has been executed. Current search region will be defined

as all records with the same value (B) of the key, and current record

will be the first of these records. If a FIND NEXT in search region

using CSRI and CRUI is executed, the next record with value B on the

key will be found and made current record, and CSRI will remain unchanged.

If the key is MODIFIED in this record, the record will be moved out

of current search region, but it will remain current record.

A FIND NEXT using CSRI and CRUI in this situation will have no

meaning. If the user wantsto FIND the third record with value

B on the key, he should execute REMEMBER for the first record using

a temporary data base key, and thenperform a FIND relative to this

record. It should be noted that this situation only occurs if the

key used to define the search region has been MODIFIED.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN "9°6fi9M‘ MANIPULATION CONCEPTS
"TLE= CURRENCY INDICATORS

ND-60. 057. 01

(3.3) 1

3.3 SUMMARY OF DML STATEMENTS

SIBAS provides the following Data Mainpulation Language statements

classified by the level on which they operate

Data Base OPEN, CLOSE

Realm READY, FINISH

Record FIND, STORE, ERASE, LOCK and UNLOCK

Record Item GET, MODIFY

Linkage CONNECT, DISCONNECT

Indexes INSERT REMOVE

Currency Indicator REMEMBER, FORGET

Of the above, the FIND is very important since it is the statement

which the programmer uses to move around the data base.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

$GN PROGRAM: MANIPULATION CONCEPTS

flTLE: SUMMARY OF DML STATEMENTS

ND-60. 057. 01

3.4

(3.4) 1

OUT OF THE BLUE AND RELATIVE FINDS

In any host language DBMS, there are always two classes of FIND

statement. It is useful to identify these classes logically as

"out of the blue" and "relative". Since the data base is stored on
direct access storage devices, then all access to data records are

physically "direct access" in the generally accepted meaning of the
term. Many an access are made from outside the data base using a

key and taking no account of any previous access made to any other

record. An access of this kind is "out of the blue”. The first

(in time) access to a data base made by a run-unit must of necessity

fall in this class.

The other class of access takes into account a previously successful

access to the data base and makes use either of a set type or of a

search region. It must be noted that in addition to the CODASYL

Data Base Facility capabilities for processing in two directions

around a set, SIBAS provides analogous facilities for processing

through a search region (but only in one direction) using any kind of

key (calc or index). It is also possible to process a realm in

physical sequence when the whole realm is made current search region.

A typical program will normally contain a mixture of all kinds of
FIND. The various access mechanisms provided are illustrated in the

figure 3.2.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

“TLE: OUT OF THE BLUE AND
RELATIVE FINDS

ND-60. 057. 01

Realm A

Record A1

Record A2

Record A3
'—

_gif/

Record A4

|

: \’ Set pointer

Realm B

Record Bl

Record B2

Record B3

|
|
|

Le _ ___. _J

set type
indexed.

(3.4) 2

Index entry

Index entry

Key
‘ value ,

v Key
value

Record type A is member in single member
in which B is the owner. A is

B has location mode of CALC.
B2, A3, A4 and A2 make up one set.

Figure 3.2 Access mechanisms in SIBAS
DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO—NORWAY

DATE

fiGN

SYSTEM: SIBAS

PROGRAM: MANIPULATION CONCEPTS

"TLB OUT OF THE BLUE AND
RELATIVE FINDS

IUD-60.057.01

3.

(3.5) l

5 RECORD AREA AND USE OF GET

The effect of successfully executing a FIND is to update the CRUI

and, when appropriate, the CSRI. The record found is then still not

available for further processing using host language statements.

In order to make it available, the programmer must use a GET

statement. GET has the effect of moving all or part of the most

recently found record from an area in core called the buffer area

into the user program. This process is illustrated in the figure 3.3.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

$0M PROGRAM: MANIPULATION CONCEPTS

"7L5: RECORD AREA AND USE OF GET

ND-60. 057. 01

(3.5) 2

ELI USER PROGRAM

BUFFER AREA

ITEM

L;

A B C D

SIBAS RECORD

FIND

A B C D

SIBAS RECORD

DATABASE

Figure 3.3 Illustration of FIND and GET

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH ICIIFII OSLO—NORWAY

DATE

SIGN

SYSTEM: SIBAS

PROGRAM: MANIPULATION CONCEPTS
TITLE= RECORD AREA AND USE OF GET

ND-60. 057. 01

3. 6

(3.6) 1

DATA BASE EXCEPTION CONDITIONS

Frequent use has been made so far in this manual of the phrase
”successful execution of a DML statement". In fact, any of the
DML statements may fail to execute successfully, in which case
it is said that there has been an "unsuccessful execution". The
factors which may cause unsuccessful execution are quite numerous
and are discussed in more detail in Chapter 5. However, when a
DML statement executes unsuccessfully, then a Data Base Exception
Condition is said to have occurred.

Data Base Exception Conditions, DBECs, can be categorized as either
errors or else events about which the programmer must be informed.
Setting a DBEC is the way the DBCS communicates with the programmer.

In each DML call a status parameter is included. Through this parameter
the user is informed if a DBEC has occured during execution of the
statement, and whether the DBEC was an error or a diagnostic.

The user may also test a SIBAS system register called Data Base Status
to get further information about the DML call last executed and the
reason for an eventual DBEC. The register is set after the execution,

successfully or not, of each DML call statement. The Data Base Status
register contains the following information:

— Identification of last DML call statement
- Identification of the DBEC (if any)
- Identification of the latest referenced set
- Identification of latest directly referenced realm
- Identification of latest indirectly referenced realm (if any)
- Identification of item causing DBEC (if any)

To get the information in the Data Base Status register the ACCEPT statement
is used. This is described in detail in chapter 5.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

“TLE DATA BASE EXCEPTION
CONDITIONS

ND-60. 057. 01

3.

3.

(3.7) l

7 CONCURRENT PROCESSING

7.1 REALM USAGE MODES AND REALM PROTECTION MODES

In the multi-user version of SIBAS, each programmer must be aware

of the fact that run-units for his program may interact with other

run-units (even of the same program) which are executing concurrently;

At the time a run—unit executes a READY statement, the programmer is

required to declare the way in which he intends to use the realm and

at the same time how he wishes his run-unit to co—exist with other

run-units using the realm. These two factors are called the usage

mode and the protection mode respectively.

SIBAS supports three realm usage modes as follows:

RETRIEVAL (FIND, GET)

LOAD (STORE, CONNECT, FIND, GET)

UPDATE (ALL)

and two realm protection modes:

NON PROTECTED (other runmunits may update the realm

concurrently).

EXCLUSIVE UPDATE (no other run-units may perform update

or connect in realm, but may retrieve

records in the realm).

When a run-unit readies a realm in usage mode RETRIEVAL, the realm

will be available to the run-unit for execution of FIND and GET

statements only. Usage mode LOAD allows the user to perform STORE

and CONNECT in addition to FIND and GET. Usage mode UPDATE includes

use of all SIBAS statements on records in the realm.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH ICIIFII OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

“TLfii CONCURRENT PROCESSING

ND-60. 057. 01

3.7. 2

(3.7) 2

When protection mode EXCLUSIVE UPDATE is given for a realm, concurrent
run-units will be restricted to perform FIND and GET statements on
the realm (i.e. retrieval only).

When a realm is readied for "NON PROTECTED" use, concurrent run—units

may update, load and retrieve in the realm.

RECORD LEVEL LOCK-OUT

In the case when a realm is readied for "NON PROTECTED” use, it is

possible for the programmer to lock individual records. This is
necessary if the programmer will ensure that a record or a group of
records are not updated while he is using them. (Protection mode of
EXCLUSIVE UPDATE avoids this problem by locking out the whole realm
for other run-units which intend to update it).

The record level lock-out is imposed using a LOCK statement. The
LOCK statement can be used to lock a single specified record, or a

group of specified records. In the latter case the LOCK statement
will only be successfully executed provided that all the desired
records are simultaneously available. The criterion for a record
to be available is that it is not concurrently locked by any other

run-unit. This restriction is necessary to prevent dead lock situations.

When a run-unit has successfully executed a LOCK on a record or a

group of records, these reords have a protection mode of ”EXCLUSIVE
UPDATE" against other run-units. This implies that the records are
protected against all statements except FIND and GET.

When a run-unit has successfully executed a LOCK statement, all the

locked records must be released by performing an UNLOCK statement

before another LOCK statement can be executed. This restriction is
necessary if deadlock is to be avoided.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

"TLE CONCURRENT PROCESSING

ND-60. 057. 01

3.

3.

(3.7) 3

7.3 RECORDS IN EXTENDED MONITOR MODE

The record level lock-out enables a programmer to ensure that a

record or a group of records are protected against concurrent run—

units. But a programmer might find it too restrictive to lock records,

or records might be modified, erased etc. during the time it takes to‘

locate all the records the programmer intends to lock simultaneously

in a LOCK statement. To solve this problem, the current record of a

run-unit and all the records a run-unit has remembered (i.e. all

records on the remembered list), are always in what is called extended

monitor mode. If a record has been modified, erased, connected or

disconnected by another run-unit while it is in extended monitor mode,

a warning will be issued to the run-units which have the record on

their remember list. The warning will have the form of a DBEC, which

will have a specific value depending on what other run-units have done

to the record, and what the present run-unit is trying to do.

The programmer will then have to take action according to the DBEC,

The DBEC could be:

1) Record has been connected or disconnected

2) Record has been modified

3) Record has been erased

4) Record is locked for exclusive update by concurrent

run-unit

5) Record has been inserted in or removed from an index

6) Records physical location on the data base has changed

7.4 SUMMARY OF PROTECTION LEVELS

As it is seen in this section, SIBAS offers three levels of protection

between concurrently executing run-units:

l) Realm protection mode

2) Record level lock—out

3) Records in extended monitor mode

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH ICIIR) OSLO~NORWAY

DATE SYSTEM: SIBAS

SGN PROGRAM: MANIPULATION CONCEPTS

flTLE CONCURRENT PROCESSING

ND-60. 057. 01

(3.7) 4

READY REALM READY REALM
EXCLUSIVE NON
UPDATE PROTECTED

FIND &

c————
RECORDS RECORDS

ECORDS IN
EXTENDED
MONITOR MCDE~

CORDS IN
EXTENDED
MONITOR MODE

r———u__
(.9

LOCK One or more a
RECORDS H 0f the

arecords
3

locked to
other run-

l_"——. unit
g WAIT

iE
MANIPULATE 3, MANIPULATE MANIPULATE

RECORDS RECORDS RECORDS

LEVEL 1 LEVEL 2 LEVEL 3

FIGURE 3.4 Levels of protection between concurrent updating run-units

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: 3 IBAS

mGN PROGRAM: MANIPULATION CONCEPTS

"7L5: CONCURRENT PROCESSING

ND-60. 057. 01

(3.7) 5

Figure 3.4 shows the three levels of protection between concurrent

executing run-units.

Level 1: The realm is readied for EXCLUSIVE UPDATE, and the run-

unit can retrieve and manipulate the records in the realm

knowing that no other run-units can update in the realm.

Level 2: The realm is readied for NON PROTECTED use. The run-unit

performs FIND and REMEMBER on a number of records which will

be in EXTENDED MONITOR MODE. Before manipulating the

records, the run-unit attemps to execute a LOCK on the

records. If one or more of the records have been locked

to another run-unit, the run-unit could perform a wait-loop

until the records have been unlocked. When the LOCK has

been successfully executed, the run-unit can manipulate

the records. If any of the records have been manipulated

by another run-unit before the LOCK was successfully

executed, a warning indicating what has been done to the

record will be issued.

Level 3: The realm is readied for NON PROTECTED use, and the run-unit

retrievesand remembers a number of records which will be in

EXTENDED MONITOR MODE. When the run-unit manipulates the

records, a warning will be issued if some other run-unit

has manipulated the record while it is in extended monitor

mode. The warning will indicate what has been done to

the record (e.g. erased, modified, disconnected).

The run—unit may choose to ignore the warning or take some

action depending on the type of warning issued. The

difference from the record level lock-out situation is that

other run-units may continously manipulate the records,

while locked records will be protected against other run-

units.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

"TLE2 CONCURRENT PROCESSING

.ND-60.057.01

(3.7) 6

The possible effects of concurrent processing are discussed in

detail for each DML-statement in chapter 5.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO-NORWAY

DATE SYSTEM: S IBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

TITLE: CONCURRENT PROCES SING

ND-60. 057. 01

3.8

(3.8) l

CONNECTING AND DISCONNECTING

Connecting and disconnecting records to sets is normally done

automatically by SIBAS through execution of STORE, MODIFY or

ERASE statements.

Manually however, it is possible under certain circumstances to

connect a record into a set and disconnect it from a set. In

SIBAS, it is possible furthermore to use similar facilities to

update an index. Each is described separately.

.1 CONNECTING TO AND DISCONNECTING FROM A MANUALLY MAINTAINED SET

If a record type participates in a set type as a member, then its

occurrences may (at any time during the life of the data base) be

either connected or not connected into a set of that set type.

When the connection actually takes place depends on the storage

class (see 2.4.7) of the set type.

If storage class is automatic, it means that the record will be

connected at the time the STORE is executed. This means that there

must be an occurrence of the owner record type in the data base whose

owner set item values correspond to the member set item values in the

record being stored. If this is not the case, then the record cannot

be stored, and hence not connected. However, if the attempt to store

the record does not include an attempt to store the member set item

(it may be a group item), then the store may be successful,(if all

other restrictions are satisfied),but the connection into the set

item is not made. The member set item value will then be undefined.

A subsequent modification of such a record which provides a value or

values for the complete member set item would cause the connection to

be made. Considerable care is called for in a multi—user environment

when allowing this situation to occur.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

flTLE: CONNECTING AND DISCONNECTING

ND-60. 057. 01

(3.8) 2

If the storage class of the set type is manual, then no connection

is made when the record is stored. However, the CONNECT statement

may be used to connect a record into the set of the set type in which

it is a member. Again there must be an owner in the data base

with an equal valued set item for the connection to be success-

ful. Exactly where in the set the record is connected depends

on the option used. It is possible to connect it at the end of

the set (i.e. last in order of the link to next) or else adjacent

to some previously found record in the set. In this case, it can

be connected before or after the previously found record. If the

storage class is manual, then it is also possible to DISCONNECT

a record from a set into which it previously had been connected.

The various alternative actions which can take place when a STORE,

CONNECT or DISCONNECT is executed are summarized in the table on

page (3.8) 4. The storage class is taken into acc0unt, as is also,

for each storage class, the value of the member set item (MSI) with

respect to owner set item values (081) already in the data base.

It must be noted that the STORE statement operates on a record

occurrence built up in a record area in core by the programmer.

The programmer must designate which of the items in the record type

he intends to provide values for. The case that he does not handle

the member set item is rather special in SIBAS. The CONNECT

and DISCONNECT act on a record which is already stored in the data

base, and it’is the value of the member set item there which may

influence the success or failure of the statement.

A DISCONNECT or a CONNECT or both may take place implicitly during

the course of execution of a MODIFY if the member set item values

are changed. What exactly happens depends also on the storage class

of the set type and also on whether or not the member record was

already connected into some set. The complete picture is summarized

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

$6M PROGRAM: MANIPULATION CONCEPTS

THIE: CONNECTING AND DISCONNECTING

ND-60. 057. 01-

(3.8) 3

in the table on page (3.8) 5, which examines twelve situations depending

on storage class of the set type, whether the member record was

previously connected or not and the relationship of the new member

set item values to owner set item values already in the data base.

In the cases where the member was in fact connected, it is only the set
item values of other owners which are of interest.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO—NORWAY

DATE SYSTEM: SIBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

TITLE: CONNECTING AND DI—SCONNECTING

ND-60. 057. 01

(3.8) 4

HDWWWUUUDw

GA

HOS

HHw3

HOHUDUmNQ

mfimwa

Z

UH

UGO>NHQ

mGOMuHUfiOU

Hmfluo

0G

Wm

HUHMWOUUQm

0Q

@HUOSW

fiOHUflUGNU

mflNmE

W

O=HN>

awUH

uwm

no

mfimwa

HmO

GDHWKV

EQUH

m

H0£EQE

wfimwa

HMS

"coauMGMHaNm

m

wmwa
.

m

mumw

GM

wuoumu

mapmofiammm

uoz
a

z

4
W

Hwnawa

aw

Hana

Hm:

.

fl
m

h

wmfiwadxwr

«mum

w

uoa

Hmzw

vuoomu
aw

nw>fiw

mammowamam

uoz
H

oHnmUfiHmmm

uoz

HawmmUSm/

hawumamaou

uoa

Hm:

Hanna:

__

mhmBH<
m

oflnmowammm

uozW

z

_

AmaOmv

Hmo
*

Hmz

wm

w

388

So
u

E:

.wosoaaw

wmwn

nos

mwaaw>

Boufl

wuww

GM

wuoowu

uow

“enema

Hand
2

umnawa
cw

Hasn

Hm:

_

«mum

Uflumaousmw

wuoumu

cw

mw>fim

suds

voHHm

uoz,

manmuwamnm

uoz.A

Auowaaoo

oav
w

hawuwafiaoo

uon

Hm:

afiumaound

W,f

z

Auaomv

30
«m

G:

W_

Auowadou

.oawv

w

Amfiomv

Hmo
n

Hm:

HomzzoomHn

Homzzoo

mmoym

megawauflm

mmmfio

.

wwmnoum

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIR) OSLO— NORWAY

SIBASSYSTEM:

MANIPULATION CONCEPTSPROGRAM:

CONNECTING AND DISCONNECTINGTITLE:

DATE

SIGN

LHD-60.057.01

(3.8) 5

wwauomuwm

uon

domuuw

mummfi

z

mcommmu

Hmnuo

Mom

mHflmm

MmHQoS

mamas:

wwauompmm

sOMuum

mamma

w

wM—JHQNV

#:q

“0m

H0330

wflmwa

HMO

CONNECTING AND DISCONNECTING

SIBAS

PROGRAM=PMNIPULATION CONCEPTS

SYSTEM:

TITLE:

ND-60. 057. 01

mHm>

Ewufi

umm

uwnEwE

wmm

Hm:

"coaumamamxm

fl

wHLMUMHmmm

.

z

uoz

AwEOmv

Hmo
n

s

30d,

.

wwcfiawxo

_

_

uon

Hmz,

mHQwUflammm
H

wwuuwanoufl

m

mmmoodm

z

uoz

Ahmauo

%:mv

Hmo
*

Hmz

c

nozw

.

mHnmUMHmmm
W

D

,

2

“oz_

qz
u

Hm:

3mm“

_

.

.

_

Hmsamz

W

I

mAumaBo

msow>wum

fiwau

Hmnuov

w

m

Hmo
u

Hm:
awn

_

HomzzoomHQ~w

z

.

W

w

wumwsauafl
H

P

Aumcso

m30m>wum

umau

Hwauov

wwuuwncoo

U

mmmoosm_A

z

,

w

Hwo
*

Hmz

awn

H

w

k

z

W

w

gapz
u

Hmz
awn

W

,

_

I

W

M

.

oHnmowanmm

mmmUUSm

w

M

uoz

Amman

mumw

aw

hawv

Hmo
u

Hmz

3mm

W

mmoHHmam

V

.

_

.

vmuoounoo

M

H

Hflmm
m

2

“oz

Aommn

mung
aw

kamv

Hmo
*

Hmz

soc

uoz

w

w

.

.

J

manmomam

HHmm

manflmmom

uozm

uoz

AADZ
n

Hm:

30E

.

M

UHumfiouD<

,

E

Hmaso

mdow>wua

amau

uwnuov

mmooosm

w

I

w

Hmo
u

Hmz

Bwa

_

«cow

uoa

Aymnao

m50fl>wwm

amau

suov

Hawm

wanflmmom

nozuusn

manmmmom

Hmo
*

Hm:

Bwn

wwuomnaoo

_.

mcow

uou

mm

aHmmoa

uoz_u:n

manfimmom

4492
u

Hmz

3mm

ummmEuwo

Ema

ou
_

MW“

New“
«

coauwsuam

mumum

mmmfio

H
H

z
_

Homzzoo
_

go

o
m

w

.

.

w50fl>mym

mmmgoum

mwsam>

Ewufl

uwm

HonEmE

mmoE

.

DEVELOPED BY: CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIRI OSLO—NORWAY

SIGN

DATE

3.8.2

(3.8) 6

INSERTING INTO AND REMOVING FROM AN INDEX

If there are one or more index keys (search keys) defined for a

record type, then the data administrator must decide when defining

the Schema whether the indexes are automatically maintained or

manually maintained. For completeness and consistency it must be

emphasized that when a record type has a location mode of CALC, then

the calc access mechanism is of necessity "automatically maintained",

but the data administrator must not define this for CALC key items.

Returning to indexes, the concept of an automatically maintained

index is almost completely analogous to an automatic set type.

The "insertion" is normally made when the STORE is executed, but

it depends on the value of the index key item or search key item.

It also depends on whether the key item is named in the list of

items to be stored. If, because of the omission of these items from

the list, the index is not automatically updated at time of STORE,

it will be automatically updated if the index key item in this record
occurence is given a value later (using MODIFY).

A manually maintained index is also analogous to a manual set type.

It is possible to insert and subsequently to remove a record from

an index by using the INSERT or REMOVE statements. The value of the key

item is important in a similar way to the importance of the member

set item of the manual set type.

In the case of both automatically and manually maintained indexes,

the data administrator must take a position on whether or not to

allow duplicate values of the key item in the index. If duplicates

are allowed, there is never any problem about inserting a record

with non-null key values into an index. If duplicates are not

allowed, then whether a INSERT or, in the case of automatically

maintained index, a STORE, is successful or not depends on the absence

or precence of an entry in the index with the same key values as the
subject record.

DEVELOPED BY; CENTRAL INSTITUTE FOR INDUSTRIAL RESEARCH (CIIH) OSLO—NORWAY

DATE
I

SYSTEM: SIBAS

SIGN PROGRAM: MANIPULATION CONCEPTS

flTLEt CONNECTING AND DISCONNECTING

ND-60. 057. 01

—
I A/SNORSK DATA-ELEKTRONIKK

Tlf.217371

COMMENT AND EVALUATION SHEET
The Data Base System SIBAS®
An Introduction ND—60. 057. 01

In order for this manual to develop to the point where it best suits your needs,we must have your comments, corrections, suggestions for additions, etc.
Please write down your comments on this pre-addressed form and post it.
Please be specific wherever possible.

FROM

