
SINTRAN ||I

Users Guide

4 NS NORSK DATA-ELEKTRONIKK

00.4 .0. 0......
1.00. 0.. 00......
.0....0. 0.0.0....
000...... .00 0..
0.000.... 00. 0.0
.0. .0... 0.0.0....
0.. 0... 00......
000 0.. 0......



SINTRAN |||
Users Guide





REVISION RECORD

NO te S

Total revision su cedin all i s ri

ND—60. 050. 03
January 1975

S NURSE DATA ~E LE KTRONIKK
im't'anx'feiou 57. 0310 5 — T1f.-. 21 73 1





Chapters

1

H

[\D

[\D

l—‘l—‘HH

l-*

HHHHHp—Iv—I

NNNN

NNNNN

U1

r—Ir—I

U1

p—H—w—H—I

l—*

seesaw“: QWNH

MOSCOW

lb???“

’9'

4;m

fit—‘l

to

TABLE OF CONTENTS

"00000--

INTRODUCTION TO SINTRAN III

Features

Operating Modes
Real—time Processing
Time-sharing Processing
Batch Processing

Programming Languages

Subsystems and Utility Programs

Processing Efficiency
Virtual Memory and Dynamic Program Relocation
Ring Protection
Interrupt System
High Data Throughput

Hardware

Optional Hardware

Example of Configurations

THE COMPONENTS OF SINTRAN

Use of Hardware Facilities

The Interrupt System
Memory Management

Program Structure

System Tables

Program Tables
Input/Output Tables

Parts of the Monitor

Monitor Entry
Central Monitor
Segment Administration
Error Reporting

Input/Output

Background System

ND-60. 050. 03



Chapters

3 THE PROGRAMMER'S INTERACTION WITH THE SYSTEM

3. 1 Monitor Calls

3. 1. 1 Subroutines callable from RT FORTRAN
3. 1. 2 Monitor Calls from Assembly Programs
3. 1. 3 Monitor Calls from Background Programs

3. 2 Commands

3. 2. 1 Background Commands
3. 2. 2 Monitor Commands
3. 2. 3 Console Commands
3. 2. 4 Subsystems

3. 3 Batch System

3. 3. 1 Introduction
3. 3. 2 Example of a Batch Job
3. 3. 3 Definitions
3. 3. 4 Description of Type 2 Batch (MODE type)
3. 3. 5 Description of Type 1 Batch (BATCH type)

3. 3. 5. 1 Explanation of Terms
3. 3. 5. 2 Description of Commands
3. 3. 5. 3 Example of a Batch Run
3. 3. 5. 4 Special Monitor Calls concerning Batch Jobs
3. 3. 5. 5 Error Conditions

4 ACCOUNTING SYSTEM

4. 1 Commands

Appendices

A ASSEMBLY CODE IN SINTRAN
A. 1 Assembly—coded RT Programs
A. 2 SINTRAN Standard for Subroutine Calls
A. 3 Examples of Monitor Calls from Assembly Programs

B SYSTEM MONITOR CALLS SUMMARY

C BACKGROUND SYSTEM COMMAND SUMMARY

D RUN TIME ERRORS

E THE REAL—TIME LIBRARY

F USER EXTENSIONS TO SINTRAN III
F. 1 Monitor Calls
F. 2 User Start Sequence
F. 3 User Restart Sequence

G MONITOR CALL NUMBERS

ND-60. 050. 03

I

r—tNNP-‘P-‘I-‘v—tr-Ir—twmp—H-I

mUOUflDrD>D>>

C)
u-wgnwu



1.

1.

1

1. 1

l~1

INTRODUCTION TO SINTRAN III

SINTRAN III is a multi—programming real-time operating system
that supervises the processing of user programs submitted to a
NORD—lO computer system. SINTRAN III controls the order in
which user programs are executed and allocates the hardware
and software resources they require. SINTRAN III also relieves
the user from program control, input/output and housekeeping
responsibilities by monitoring and controlling the input, loading
compilation, run preparation, execution and output of user pro-
grams.

The system is highly modular and may be used for a wide range
of NORD~10 configurations. Modularity allows memory resident
systems of only 8K, expanding to mass storage systems including
256K main memory. discs. drums. etc. . and connections to other
NORD computers, thus allowing multi-processing systems.

The philosophy behind SINTRAN 111 makes it especially suited for:
- Process Control Systems
- Business Oriented On-line Systems
- Scientific Engineering Timesharing Systems
- Data Communication Systems
- Data Acquisition System

and combinations of these processed concurrently. This, not at
least because of the subsystems offered under SINTRAN III, helps
to ease the users implementation of applications.

Features

SINTRAN III offers the user many important features, some of
these are found elsewhere only in medium to large scale com—
puter systems.

0_perating Midas
SINTRAN 111 allows users to run real—time, timesharing, and batch
programs concurrently.

Time critical real-time processing has always higher priority than
timesharing and batch processing. The number of programs
that can be processed concurrently depends on such factors as
the hardware configuration, the operating modes and the applica—
tion involved.

ND-60. 050. O3



1.

1.

1.

1.

1.

1.

2

3

4

1-2

Real-time Procefitna
Real-time processing allows the user to perform time dependent
and time critical work that requires very rapid information pro—
cessing. Real-time processing is used primarily in applications
where data gathered during a physical process must be input
and operated upon so rapidly that the results can be used to
influence the process as it develops. Real-time processing is
also used in many on-line commercial applications where a
guaranteed response time is required.

A real~time program, called RT program, generally responds
to, or controls external events. Under real—time processing
there are four principal ways of scheduling programs, external
requests, program requests, operators requests and time scheduling.
The programs may have a full range of execution times, frequencies
and start conditions. The system ensures that the most important
RT program will always be run first by providing 256 program
priority levels with any number of programs on each level.

Time—sharing Processing

In time-sharing the programmer interacts conversationally with
the computer, receiving immediate response to his input. Many
users on remote or local terminals can program on-line and make
use of SINTRAN III subsystems. This type of interaction Where
each user receives an equal share of time in a round robin
fashion can be used for program development, information re—
trieval, interactive problem solving, and many more applica-
tions where the user will be best serviced by accessing the
system directly.

Batch processing lets the user submit program jobs for compu-
tation to the computer. The computations are performed without
interactions from the user. Each job contains all control com—
mands, program statements and data required for its execution.
Jobs are loaded through on—site devices such as card readers
and tape readers.

Batch jobs are divided into two categories, local batch jobs and
remote batch jobs. Local batch jobs are those compiled and
executed on the local NORD-lO computer. Remote batch jobs are
those compiled and executed on a host computer on which the
local NORD~10 is a remote terminal.

SINTRAN 111 can handle both the local batch stream and the re—

ND—60. 050. 03



1. 2

1-3

mote batch stream concurrently. The local batch stream is
scheduled in a first—in-firstflout fashion. The local batch jobs
share compute time with the time—shared programs. The re-
mote batch processing runs as a low—priority RT program.
SINTRAN III outputs the job locally on a device such as a line
printer, disc file, or card punch.

Programming Languages

To let the user implement his applications as easily and
economically as possible SINTRAN III accepts programs written
in the following languages:

STANDARD FORTRAN

NODAL

BASIC

NORD PL

MAC

following ANSI STANDARD
FORTRAN and with ISA Real-time
Extensions. The user can call
subroutines written in NORD PL
and MAC from his FORTRAN pro-
gram. FORTRAN programs can be
executed in all three modes of
operation.

interpreting higher-level inter-
active language especially suited
for process control applications.
NODAL can be executed in all three
modes of operation and can call
subroutines in NORD PL and MAC.

interpreter following Dartmouth
College 71 specification. From
his BASIC program the user can
call FORTRAN, NORD PL and MAC
subroutines. Programs written in
BASIC can be executed in time-
sharing and batch modes.

medium level language especially
suited for systems programming.
By using the NORD PL the pro-
grammer will more quickly write
and debug programs, more easily
modify them, and make them more
reliable and easier to read and
understand than using the traditional
assembly language. SINTRAN III is
written in NORD PL.

assembly language and debugging
package for the NORD computers.

Each language translator is accessed by a unique SINTRAN III
command.

ND-60. 050. 03



. 3

1-4

Subsystems and Utility Programs

SINTRAN III is offered with many subsystems and utility pro—
grams which will be extremely efficient tools for the users of
the system.

FILE SYSTEM SINTRAN III offers the user of
mass storage systems a general
purpose file system for use of
permanent files, scratch files,
and peripheral device files. The
system provides a very flexible
file security mechanism that allows
the programmer to specify the degree
of security desired. The files may
be accessed in sequential or random
mode.

SIBAS is a data base system where efforts
are especially put on the users'
possibilities of representing com—
plex data structures and on the
separation of application programs
from the data base. SIBAS is an
extensive tool for applications in
business oriented on-line systems
and ADP systems. SIBAS data
handling routines follow the speci-
fications given in CODASYL DATA
BASE TASK GROUP, APRIL 71
REPORT.

RT LOADER enables the user to load RT pro-
grams into mass storage resident
systems in binary relocatable for-
mat while real-time processing is
running.

QED An interactive program for editing
text. It has extensive facilities
for inserting, deleting, and changing
lines of text, a line editing feature.
Text may be read from and written
into any file. QED is extremely
efficient for on—line program develop—
ment.

RUNOFF The RUNOFF program will help
the user to write reports under
SINTRAN III by processing the raw
text information held in a computer

ND-60. 050. 03



1.

1.

4

4.1

1-5

file, and provide a printed docu—
ment of a quality acceptable for
publication. The control com—
mands are few and easy to learn.

DDC Package The Direct Digital Control packages
running under SINTRAN III, MEAS,
PROCSY, and PROSO give the user
extensive tools for implementing

«u process control applications in his
NORD—10 computer. The packages
control and process analog signals
and perform conventional PID,
cascade, ratio and other regulation
functions.

NORD IDT The NORD Intelligent Data Terminal
programs allow the user to communi-
cate with Honeywell 6000, IBM 360/
370. CYBER 74, and Univac 1108/
1110 machines through remote job
entry terminal simulators.

In addition subsystems also include scientific and statistical pro—
gram libraries.

Processing Efficiency

SINTRAN III offers the user the best efficiency because it takes
full advantage of the NORD—10 computer hardware resources.
Many powerful operating system features are made possible by
utilizing the extremely efficient hardware of the NORD-10. This
in turn makes multi-programming in real—time, time-sharing,
and batch modes possible.

Virtual Memory and Dynamic Program Relocatitfl

The SINTRAN III virtual memory makes it possible to run pro—
grams which are larger than the available main memory, or to
utilize a main memory of 256K words with a program address space
of only 64K words. The virtual memory consists of both main
memory and swapping memory on disc.

Due to the overall ability of the memory management system, user
programs and SINTRAN III subsystems are dynamically relocated
to utilize the main memory most efficiently.

ND—60. 050. 03



1.

1.4.3

1.4.4

1.

4.2

5

1—6

Ring grote ction

By use of the four-mode ring protection system SINTRAN III
offers the users an extremely efficient protect system. A pro—
gram that is placed on a specific ring cannot be accessed by
a program that resides on a ring of lower priority. This system
is used to protect system programs from user programs and
the system kernel from its subsystems. Ring 3 and ring 2 are
used for the system kernel and subsystems, and ring 1 and
ring 0 for user programs. The user programs are individually
protected by use of the page protect system.

In addition to these protect features the ring protection system
equips SINTRAN III with a set of privileged instructions legal
only on ring 3 and ring 2 for use by the SINTRAN III's kernel
and its subsystems. These instructions are of the type which
could be disastrous if executed by a user's program. For any
on—line system with a larger number of potentially undebugged
programs this is extremely important.

Interrupt System.

The structure of SINTRAN III is greatly simplified by use of the
different program levels in NORD—lO. By running independent
tasks at different program levels all priority decisions are
determined by hardware. This is extremely efficient because
almost no overhead takes place due to the rapid context switching.

High Data Throughput

High throughput of data is facilitated by the high-speed direct
memory access channel. The channel is given an ingenuous
solution thereby several high—speed devices can simultaneously
share it, but although be given a total throughput equivalent
to the maximum speed of the channel. There is no channel over—
head time in switching between devices.

Hardware

The minimum hardware configuration required to run SINTRAN III
is:

- NORD~10 standard CPU, including 8K words of main
memory

- Console terminal
~ Paper tape reader

ND—60. 050. 03



1. 5. 1

1-7

Optional Hardware

Main memory up to 256K words, both core and solid
state memory in the same system.

High-speed direct memory access channel 1M word/sec
in interleaved processing.

Up to 4 mass storage controllers (independent of types)
used for system and user program storing.

No limitation in number of mass storage controllers and
types for file and data storage.

Moving—head Cartridge discs. Up to 4 Cartridge disc
units per controller and 5 or 10 M bytes per unit. Average
access time 47. 5 ms, 156K word/sec transfer rate.

Moving—head disc packs. Up to 8 disc packs per con—
troller and 37 or 74 M bytes capacity per pack, 48 ms average
access time, and 600 K word/sec transfer rate.

Fixed—head drum. One drum unit per controller
with capacity from 64K to 104K words per unit. 10. 5 ms
average access time, and 100K words/sec transfer rate.

Magnetic tapes up to 4 units per controller. 7 track,
45 ips, 200, 556, or 800 bpi. 9-track, 75 ips, 800 or
1600 bpi.

Magnetic cassette tapes.

Card readers. 300, 600 or 1000 cards/minute.

NORDCOM graphic and semigraphic colour display
systems.

Line printers. Prints from 200 to 1100 lines per minute.

Terminals. Hard copy: 10 to 120 characters per second.
CRT screen: 10 to 960 characters per second.

Graphic plotters and displays.

Data communication interfaces.

Paper tape readers and punches.

ND—60. 050.03



1. 6

1—8

Example of Configurations

With the wide choice of optional equipment, many hardware
configurations are possible. For example a small main memory
resident system used for a process control application might
appear as shown in Figure 1. 1. In this system the paper tape
reader is used for input and the Teletype for the operators
communication with the system, while the process controller is
connected directly to the process. Implementation may be eased
by use of the DDC package.

Core
thix' nerds

0
mli—m g—- » ,,,, 1,, ~ , A ~~~~h A , , “ ~*"-~—\'\

(‘Pi (‘1)1_u_ HIM-IR , _ > >
/,

1‘"
Paper tape Provess Process

' reader controller

Figure 1. 1: Small Process Control System

ND-60. 050. 03



1-9

This system may easily be extended to the disc resident system
shown in Figure 1. 2. The user programs developed for the
system of Figure 1. 1 can be put directly into the system of
Figure 1. 2. The system of Figure 1. 2 opens the possibilities
for on-line program development in FORTRAN, NORD PL etc.
in timesharing mode, while the process control programs are
executed in real—time mode.

Programs can be written and compiled in FORTRAN, NORD PL
etc. and by using the QED, the FILE SYSTEM and the other
utility packages, the implementation will be greatly eased.

The display terminals are used for on-line communication in
timesharing mode, the line printer for output and the disc
storage for programs and data files. By putting on a synchronous
modem control and a card reader, the system will also have the
capabilities of a small batch system.

32K words
core

NORD-10 ‘ V , \
CPU (.PL I‘O bus >

I 1 /

l i

v 7 ‘ Process : V1 f1 P1P controller: Piocess

\Bus
v Y/

controller Local J 0 bus 5
/

Display Display Line
terminal terminal printer

Figure 2. 1: Combined Process Control and Timesharinq System

ND-60. 050. 03



1-10

Configurations like Figure 1. 3 will be well suited for many
on—line information retrieval and transaction oriented systems
by running the data base system SIBAS under SINTRAN III.
The 148M bytes disc store will hold the data files while the
data entry terminals will be used for data input/output specified
by the application.

SZK words
core

XUPD—lfl
(.‘Pl'

T

Dis )1:L\ . t": s ‘7 I\ t: \
,

i . ‘ J’rlntcr
' ”bot! ”M

Lcrnnnztl recorder

V

Bus
controller

Data -_- - _ , - _ - Data
entr) entry

Figure 1. 3: Transaction Oriented System

ND—60. 050. 03



1—11

A larger processing system is shown in Figure 1. 4, consisting
of two NORD-lO CPU's, standing back—up for each other. The
NORD—lO CPU I is intended to be used in a transaction oriented
system by using bus controller I and accoringly the 148M bytes
disc, magnetic tape station, and the data entry terminals. The
magnetic tape system will be used as a data base back—up
medium. In addition it will have a modem connection to a host
machine acting as a remote terminal.

The NORD—lO CPU 11 is intended for use in a process control
system by using the bus controller 11 and III. In addition the
NORD—lO CPU 11 will be used for program development and
scientific on—line problem solving. By use of the dual bus switch
each NORD-lO CPU I has provisions to control all three bus con—
trollers and both the process control and transaction oriented
application.

ND-60. 050.03



mmguci

=
fl

=

:cgrgflECQ

Q:

x25
:
E

EBmufi

:csgmzdfi

Us:

mzidcmmE:

3.52.0;

mmooop;

jwcfiEoU

95

CL

153d

>532:

.HSiL;

17-12

mm; 25
paZcfizou

2:35in:

:291.3”:

mm:
C,H

mica

MEL;

mzm

:

33:09

»_...—_

|—..

Me;

835

.532.
L3.26

Ewwo:

and“.uEm

wwA,

4h

_

Loggia

_

$3
_

f

1%
2.3

rim

25

15C

2
fir

as:

0....”

saw

2

‘NLU:HICZCVH

:5;

mflc

:.
“

:3:w

1E

ESE

.315
E

Louuvugh
and

oSammiu

9E:
H

.50.

x

313$a

who;
298.5

Mww

whee
2:95

Mmfi

ND-GO. 050. 03



2.

2.

2.

1

1.

1.

1

2

2-1

THE COMPONENTS OF SINTRAN

Use of Hardware Facilities

The Interrupt System

The NORD-lO has 16 program levels. Each of these has a com—
plete register set, so that change of levels needs only 0. 9 as.

SINTRAN uses the levels like this:

15 -
14 -- Internal interrupt
13 - Real—time clock interrupt
12 -- Input interrupt
11 - Mass storage interrupt
10 -- Output interrupt

9 _

8 _

7 ._

6
_

5 - Monitor
4 i

3 ~ RT programs
2 i

1 _

0

Level 14 is activated by monitor calls or by errors detected
by hardware.

External interrupts on levels 10-13 start the proper driver
routines.

Memory Management

The memory management system includes a paging system, a
memory protection system, and a ring protection system.

In SINTRAN III the memory management system is used for the
following purposes:

1) Dynamic memory allocation and paging. The page size
is 1K.

2) Extension of maximum physical address space from 64K
words to 256K words.

3) Memory protection between parts of a program, detecting
attempts to modify read—only areas or executing data.

ND-60. 050. 03



2. 2

2-2

4) Inter—program protection, to prevent one program
directly accessing another program on the SINTRAN 111
system. This is accomplished by means of the ring
protection system.

The ring protection system has four levels. On one level it is
not possible to access areas on higher levels.

On levels 2 and 3 privileged instructions can be executed, and
these levels are used for the SINTRAN 111 system. User programs
are on level 0 and 1.

Program Structure

The basic program concept is the figment. It is a contiguous
area in the logical address space. In physical core it will be
scattered because of the hardware paging system.

There are two types of segments:

- Non-demand segment, all of it must be in core before
the program can be started.

- Demand segment, only part of it is needed at a time.
If a page fault interrupt occurs, the monitor will fetch
the missing page, and the program will continue.

Non-demand segments are normally used for real-time programs.
because of short and well—defined transfer times and fast monitor
call handling.

Demand segments are used when a program is too big to be in
core at a time. The normal use is background processing.

The segment type is determined at load time.

An RT program can have one or two segments. The RT
programs can share segments. This may be used in several
ways:

— A segment may consist of a set of re-entrant sub-
routines.

— A segment may consist of common data areas.

— A program may have its code on one segment and
its data on the other.

ND-GO. 050. 03



2—3

One or both segments can be changed, using the monitor call
MCALL, see Section 3. 1. 2. This can be used for program
segmenting.

In addition to the segments the RT programs can also.have
access to a core resident common data area. This area is placed
on protection ring 1, so that programs on ring 0 cannot access
this area.

A segment can be fixed in core by means of a monitor call, so
that it will not be swapped out until it is released again.

Logical address space:

Monitor 1 Core

'% ' common m J
ISegment A W 64KEZZZ2:222 U]

Y/II /

G.).-. 1 Se ment B0 Ring 2-3 E I Ring 1 Ring 0—1 g

Physical core: Segment A
I Segment B

Monitor ; Core Other segments
tables | common

' //W %, /
[32222222 1/ ’

l r”////A ///é
0 I ___.__._...

._

Dynamic area

Mass storage:

Segment A
Other segments Files

I MA“ I
l .VM l

Segment B

ND—GO. 050. 03



2.

2.

3

3. 1

2—4

System Tables

The system tables are placed in permanent core, not accessible
from the user programs.

Program Tables

RT descriptions Core Hardware
1‘" an Page

Table

Segment
table

The PE description table has one element for each RT program
existing in the system. An element consists of the following:

Loc. 1 : Link. This location is used for linking RT
descriptions together to form the time queues.

Loc. 2 : The right half-word contains the priority of
the RT program and the left half—word some
status information flags.

Loc. 3 and 4 : This is a double precision number indicating
the time when the RT program is to be (or was)
scheduled.

Loc. 5 and 6 : This is the time interval if the RT program is to
be executed periodically.

Loc. 7 : This contains the core address of the first
program instruction.

Loc. 8 : Initial segment numbers. Two numbers, 0—254.
If one of them is equal to zero, the program
uses only one segment. If both are zero, it is
a core resident system program.

ND—60. 050. 03



Loc. 9 - 16

Loc. 17

Loc. 18

Loc. 19

Loc. 20

2-5

Register save area.

Wait link — used for linking the programs
waiting for resource.

Current segment numbers.

Current priority.

Reservation link - used for linking those
resources reserved for this program.

The segment table has one element for each segment in the system.
An element consists of five locations.

Loc. 1

Loc. 2

Loc. 3

Loc. 4

Loc. 5

Segment link. All segments being in core at
the moment and being allowed to be swapped
out are linked together. It is used for the
page—removal strategy.

Page-link—pointing to the segment's first page
in the core map table. If this location con—
tains zero, the segment has no pages in core.

Logical address space for the segment. Bits
0—5 contain the first logical page number and
bits 6-11 contain the number of pages.

Mass storage address of the segment.

Flag bits: Bit 0 segment all in core
Bit 1 : demand segment
Bit 2 : fixed in core
Bit 3 2 use inhibited
Bits 9—15 = protect and ring bits

to be used by the
hardware page table.

The core map table has one element for each physical page, con-
taining information on what is in core at the moment. An element
consists of three locations.

Loc. 1

Loc. 2

Loc. 3

Page-link, linking together the pages be—
longing to a segment.

Logical page number (index into the hard—
ware page table).

Contents to be put into the hardWare page
table.

ND-60. 050. 03



2. 3.2

2-6

The hardware page table consists of 64 high-speed registers,
mapping the 64K logical address space. Each entry has the
format:

15 14 13 12 11 10 9 7- __ 0Y ___._ r
'WPM RPMl FPM l WIP PGU RING Physical page no.

Bits 9—10 : Ring number
Bit 11 : Page used
Bit 10 : Written in page
Bits 13—15 : Memory protect bits

multicuzm EPLGE
Interrupt Data fields Logical Timer Background
table number tilbl GS +‘\111 P proppgq

tubl e

'—"l

I
./7

JL

JE

The interrupt table contains pointers to the data fields of the
physical devices.

The logical number table contains pointers to the data fields of the
logical units (internal or external units).

The data field table contains a data field for each logical unit.
For some units a data buffer is associated.

The timer table contains pointers to the data fields of the devices
needing a time-out check.

The background process table contains pointers to the data fields
of the background terminals.

ND-Gl). 050. 03



2.

2.

4

4. 1

2-7

Parts of the Monitor

The following is a description of the parts of the monitor as shown
in Figure 1. 5 and 1. 6.

Monitor Entry

The monitor works on a separate hardware level. This level
may be activated from several other hardware levels. The task
of Monitor Entry is to find out why the monitor level was activated
and to transfer the program control to the appropriate monitor
function.

The monitor may have several calls at the same time. A program
calling the monitor may be interrupted by a program on a higher
level also calling the monitor, and new calls may occur while
the monitor is working.

A monitor call is performed by linking a representation of the call
to the other calls which may be waiting. The monitor processes
the elements of the chain, deleting each element and executing
the corresponding function. When the chain is empty, the monitor
level is "given up".

Some of the monitor functions imply the possibility of a different
RT program to be activated on return from the monitor. These
monitor functions set a flag to indicate that it should be further
investigated before leaving the monitor level.

The monitor level may be activated for a number of reasons.

From high levels:
- A process interrupt has occurred, and an RT program

should be scheduled for execution.

An I/O transfer is finished, and the waiting RT program
should be restarted.

- A clock interrupt occurs.

From the RT program level:

— The current RT program is finished.

- The current RT program enters waiting mode.

— The user-call RT (<prog. name >) has occured.

The other user-calls (SET, ABSET, . . . . ) do not execute on the
monitor level. However, the monitor level is disabled while the
corresponding subroutines are being executed, in order to prevent
interrupts in critical sections.

ND-GO. 050. 03



2—8

m
.H

8d

mHQ

3mm

WHZH

A<mHXm

Ll
II
I

“

II

.

m:
E

comm

_

mzfiacz;

m
mm:

_

2

@996

m

A

x}

\V

\\

M

\N

\\

\\

_

2

3695

m

mc<oq

.2200

_

.555:

z

mqmz

mm?

moe
«z
Mao

/

K

W

W

/

K

k

wWw

~

woe

:82

#

V||I

”_

mm

mWWM

3250
HE
E
BE
me
2;

fl

=

r

_

fiu>ofimouguhmfim>wfi8:5239,33:9:

ND-60. 050. 03



M O NI T O R

Return from Interrupt

RT—program activated

MONITOR ENTRY

‘ \

CENTRAL PRDG ADM

(Program (Get prog.
scheduling) to core)

I Start or restart
RT—program

Figure 1. 6

ND—60. 050. 03



2.

2.

4.

4.

2

03

2-10

Central IL/lonitor

The task of the central part of the monitor is to determine when
a new RT program is to be started, giving consideration to
priority, time and interrupts.

The central monitor operates on two queues: A time queue and
an execution queue. The queues consist of RT descriptions
which are linked together.

The time queue consists of RT programs which are to be executed
at a future time. The execution queue consists of programs
which should be executed as soon as possible, considering their
priority. The time queue is ordered with respect to time, and
the execution queue with respect to priority.

If an RT program enters the waiting mode, the monitor will take
a look further down the execution queue to see if any interrupted
programs are ready for execution in the meantime. If not, the
monitor will at least find the dummy RT program at the bottom of
the execution queue. This program is part of the system: It has
lower priority than all other programs, it will always be ready
for execution, it will never be finished, and it will do nothing.
It has priority 0. This means that a user program with priority 0
will never be started.

Segment Administration

The lower part of the hardware page table (monitor and core
common area) is never changed. The dynamic upper part will
contain entries for the segments of the currently running RT
program. The unused table entries will contain zero, so that
trying to use their corresponding logical address space will
result in error.

When control is handed from one RT program to another, first
the page table entries of the old program is cleared, leaving
all dynamic part of the page table equal to zero. Then the entries
for the new program will be initialized with values from the core
map table.

If a program is going to be started and its segments are not present
in physical core, some pages in core must first be removed to
give room for the new segments. During the necessary mass
storage transfers the program will be in a waiting mode.

ND-60. 050. 03



2.

2.

4.

5

4

When an error is found by the system, it will be recorded at once,
starting a special system RT program which will write an error
message on terminal 1. Detailed description will be found in
Appendix D, Run Time Errors.

Input/Output

For detailed description of the 1/0 calls, see Chapter 3 and the
manual NORD File System.

The 1/0 system gives several facilities:

1. Servicing external units.

2. File access.

3. Internal message transfer between RT programs.

4. General semaphores for sequencing of critical sections.

Each unit is associated with a logical unit number. Some units
(terminal, files) will have an input and an output part with the
same unit number.

The logical unit numbers are grouped like this:

Octal Numbers:

0-77 Physical devices
100~177 Open files
200—277 Internal devices
300-377 Semaphores
400—477 Process devices
500—577 System devices

The units can be reserved by RT programs, using a monitor
call. They can be released either by another monitor call or
automatically when the program terminates. If a unit is already
reserved, the program will normally be queued for this unit,
being set in a waiting state.

The simplest units consist solely of a logical number which can
be reserved. Their task is to serve as general semaphores.

The external units can be reached by standard INBT and OUTBT
monitor calls. There will normally be a ring buffer associated
with each unit.

ND-60. 050. 03



2-12

An internal message transfer unit consists of an input and an
output part sharing one ring buffer. One RT pogram can put
bytes into the buffer using OUTBT, and a different RT program
can fetch them using INBT. Since the access to external and
internal units is done in the same way, the communication
between two programs in the same computer or in different com—
puters will look the same, except for the unit number.

The files can be accessed sequentially using INBT and OUTBT.
In addition, the file blocks can be accessed randomly using the
RFILE and WFILE monitor calls. Data transfer and processing
can proceed in parallel.

There are two ways of allocating files:

1. Static — the file will consist of a contiguous area
on the mass storage.

2. Dynamic — the file will be scattered in the file area
of the mass storage.

The access routines will be the same for both types of files.
See also the manual NORD File System.

If a program is waiting for input from a unit, it will not be
efficient to restart it each time a byte is ready. Therefore the
program will remain waiting until a break condition occurs.
This break strategy can be set by monitor calls for each unit.
Some drivers have special built—in break strategies.

The external devices are treated by the following parts:

mating E131:
This part is called from the RT program by monitor calls, causing
characters to be filled into the buffer if output, and getting charac-
ters if input. The task includes also converting from logical unit
numbers to physical device numbers.

Driver Routines

The SINTRAN driver routines run on the hardware level of the
device interrupt, transferring one character for each activation
between device and buffer. There are separate drivers for
Teletype input. tape reader input, Teletype/tape punch output,
card readers, communication lines, and data links to other com—
puters.

ND—60.050. 03



2—13

Timer Program

if a requested character has not been transferred in a specified
time. INBT or OUTBT will have an error return.

The allowed time is specified separately for each device. If the
time is specified equal to zero. no time check will be performed.

Background System

Each terminal is connected to a background RT program, so that
several users can work independently of each other. A super-
vising RT program time-slices the background programs by
periodically changing their priorities.

The background system can be used for

— executing background programs,
- RT program supervising,
- system maintenance.

See Section 3. 2 for the use of the commands.

A background program consists of two segments:

a) System segment on protect ring 2. containing routines
for monitor calls and some commands, and open file
tables and buffers.

b) User segment on ring 0. This is the background
user’s working area. where he can load and execute
system programs like the QED editor or the FORTRAN
compiler, or his own programs.

In addition there is a segment shared by all background programs.
It contains the command decoder and most of the command de—
coding routines.

B ackground logical area
d—— —— —--—~— ——r—--r—A—~ ..._..__.._....___..__,—>

'—‘1

1 User segment
‘

terminal 1{ Sy stem segment
L

[System segment I User segment 7 terminal 2
,.__.-_-__.~_!. _ WHF. _ ...._‘__..,,..____....c«__._ l

"— V'

[ Command segment
I

ND—BO 030. ()3





3. 1

.1. 1

3-1

THE PROGRAMMER'S INTERACTION WITH THE SYSTEM

Monitor Calls

The monitor call instruction (MON) is used to perform monitor
functions. From FORTRAN a set of small subroutines are used,
most of them consisting of the MON instruction and an EXIT
only (see Appendix E).

If an RT program name equals zero, the calling RT program will
be used.

Subroutines callable from FORTRAN

The following subroutines are callable from FORTRAN.

CALL RT (<prog. name >)

The RT program specified by the parameter will enter
the execution queue immediately (independent of any
clock interrupt).

Example:

CALL RT (PR1)

CALL SET (<prog. name>, <time>, <time unit>)

The RT program given by aprog. name> will enter the
time queue. The parameter <time unit> may have the
values 1, 2. 3, 4:

1: basic time units
2: seconds
3: minutes
4: hours

Other values will give an error message and the calling
program is aborted. The parameter <time> gives the
number of time units the program has to stay in the time
queue. If the number is Q 0, the RT program will be
transferred from the time queue to the execution queue
the first time the basic time unit counter in the monitor
is incremented.

If the RT program already is put in the time queue, it will
be removed from the queue before being inserted the next
time.

Example:

CALL SET (RTl, 10, 2)

ND-60. 050. 03



3-2

The RT program RTl will be scheduled for execution
in 10 seconds, reckoned from the moment SET is executed.

CALL ABSET (<prog. name>,<second>,<minute>, <hour>)

The RT program given by <prog. name> will enter the
time queue. The three last parameters give the time
of day for execution. If the time is exceeded at the moment
ABSET is called, the program will be scheduled next day
at the time specified.

If the RT program already is put in the time queue, it
will be removed from this queue before being inserted
in the next time.

If a time parameter has an illegal value, an error message
is given, and the calling program is aborted.

If the clock is adjusted by means of a call of CLADJ while
the program is in the time queue, the execution time is
modified to fit the new clock setting.

Example:
CALL ABSET (PROG, O, 30, 17)

The RT program PROG will be scheduled for execution
at 17. 30.

CALL INTV (<prog. name>, <time>, <time unit>)

The RT program given by (prog. name> will be prepared
for periodic execution. The two last parameters give
the time between each execution. However, the first
execution must be initiated by other means, for instance
by a call of SET.

The periodic execution property set by INTV will be
reset by a call of DSCNT (see CALL DSCNT below), thus
stopping a series of periodic executions.

The interval can be modified by another call of INTV
without an intervening DSCNT.

If the starts are delayed because of other RT programs,
the delays will not be accumulated. Thus synchronism
is preserved. However, if the start is delayed until the
time for the next start, an execution is dropped.

ND~60. 050. 03



3-3

The parameter <time unit> may have the values
1, 2, 3, 4:

1: basic time units
2: seconds
3: minutes
4: hours

Other values give an error message, the calling pro—
gram being aborted.

Example:
C THE PROGRAM PP IS TO RUN EACH 20 MINUTE

CALL INTV (PP, 20, 3)

C FIRST EXECUTION STARTS 6 MINUTES FROM
C NOW ON:

CALL SET (PP, 6, 3)

CALL DSET (<prog. name>, <time >)

The RT program given by <prog. name> will enter the
time queue. The parameter <time> is a double precision
number of basic time units giving the time the program
has to stay in the time queue, reckoned from the moment
DSET is called.

Example:

CALL DSET (RTP, TMl)

CALL DABST (<prog. name>,4time>)

The RT program given by aprog. name) will enter the
time queue. The parameter <time> is a double precision
number of basic time units giving the absolute point of
time when the program is to leave the time queue, entering
the execution queue.

Example:

CALL DABST (RTIMP, TM2)

CALL DINTV (< prog. name>, <time>)

The RT program given by aprog. name> will be prepared
for periodic execution. The parameter <time> is a double
precision number of basic time units giving the time between
each execution. See the description of the subroutine INTV.

ND-60. 050.03



3-4

Example:

CALL DINTV (<prog.name>, <time>)

Return from an RT program.

END ~ statement in a main program unit.

STOP - statement.

Control will be given to the monitor, which will release
the reserved resources of the program. If a STOP
statement is used with a number different from zero, the
STOP number will be printed on Terminal 1.

Return from assembly-coded RT programs may be done
by the monitor call RTEXT (MON 0). The registers may then
have arbitrary contents.

Example:

PROGRAM TCOM, 30
CALL SUBR (3)
END

CALL RTWT

The program will be set in a waiting mode. Its re—
sources will not be released. Next time the program
is started, for instance by a call of RT from some other
program, it will continue after the call of RTWT.

CALL HOLD (.Ltime >, <time unit?)

The calling program will be in a waiting state for the
time given as parameters.

<time unit>: 1: basic units
2: seconds
3: minutes
4: hours

CALL ABORT (aprog. name?)

The specified program will be aborted if it is running.
All reserved resources will be released.

Example:

CALL ABORT (PRX)

ND-60. 050. 03



3—5

CALL CONCT (<pr0g. name>,<logical unit>)

The RT program given by the first parameter will be
connected to an interrupt line, i. e. , the program will
be inserted into the execution queue each time an inter—
rupt signal occurs on that line.

The logical unit numbers are determined at system
generation time, belonging to the [/0 system. Several
units can be connected to one program. Illegal numbers
cause the calling program to be aborted, and an error
message will be given.

Example:

CALL CONCT (CPIN, 15)

CALL DSCNT (<prog. name>)

Any connection established by CONCT will be removed.
If the program has been made periodical by INTV,
this will be reset. If the program is in time queue or exe-
cution queue, it will be removed from the queue.

Example:

CALL DSCNT (PRGA)

CALL PRIOR (<prog. name>,<priority>)

The RT program given by <prog. name> will have its
priority permanently changed. The parameter <priority>
keeps the new priority value.

Example:

CALL PRIOR (RTPR, 30)

CALL UPDAT (< minute>, <h0ur>,<day>,<month>, <year >)

The clock and calendar units will get new values. The
internal time representation and time queue will not be
affected.

If a unit is specified outside its range (e. g. , minute >60)
an error message is given, and the calling program is
aborted. For <year> a value <1974 is illegal.

Example:

CALL UPDAT (24, 11, 24, 2, 1974)

This will set current time to February, 24, 1974, at
11. 24 o'clock.

ND-60. 050.03



3-6

CALL CLADJ (4time>, <time unit>)
(clock adjust)

The parameter 4time unit> may have the values 1, 2, 3, 4:

1: basic time units
2: seconds
3: minutes
4: hours

Other values will give an error message, and the calling
program will be aborted. The parameter ¢time> gives
the number of time units the clock/calendar has to be
modified. If the time is positive, the clock/calendar will
be advanced, otherwise the clock/calendar will stand
still for the proper time amount.

If there are any programs in the time queue inserted by
ABSET, these will have their start time and queue
position adjusted to fit the new clock setting. This con—
cerns also periodic execution, if the first start was speci—
fied by means of abset.

Example:

CALL CLADJ (15, 2)

The clock/calendar will be advanced by 15 seconds.

CALL CLOCK (aarray7)

The clock/calendar setting at the moment will be recorded
in the integer array given as parameter. The seven first
elements will contain on return: basic unit, second,
minute, hour, day, month and year.

Example:

CALL CLOCK (IARR)
WRITE (1, 10) IARR

<time>= TIME (0)

This double integer function gives the internal time in
basic time units.

Example:

DT 2 TIME (0)

ND—60.‘050. 03



3'7

CALL FIX (4 segment number >)

This monitor call is used to make a segment temporarily
core resident. The segment, which must be of non—
demand type, will be brought into core. Then it will
be flagged in the segment table, so that it will not be
swapped out.

If asegment number> refers to a non-existent or demand
segment, an error message will be given, and the calling
program will be aborted. Only a limited amount of
physical core can be used for fixed segments at a time.
This amount will be specified at system generation time.

CALL UNFIX (<segment number>)

If the segment has been fixed in core by means of the
FIX call, this property will be undone, so that the
segment can be swapped back to mass storage.

avalue>= IOSET (1.10gica1unit>,4read/write>,<program>,<control>)

Control information will be set for a logical unit. If<read/
write>equals zero, the input part is reserved for a two-way
unit, else if it equals one, it means the write part. If
<;C30nt1"017—‘ equals —1, the unit will be reset. Otherwise
<control> has a special meaning for each device type.
(progranb specifies a program which the unit is supposed
to be reserved by. If not, IOSET will return a negative
function value. This will also occur if an illegal logical
unit is specified. If everything is OK, a value greater
than or equal to zero will be returned.

Example:

IZIOSET (2. 0, FROG, --1)

This means: Clear and reset the tape reader which is
reserved for program PROG.

«value> : RESRV (<;logical unit>.<read/write>,<return flag:>)

This routine is used to reserve a logical unit. If <read/
write> equals zero, the input part is reserved for a two—
way unit, else if it equals one, it means the write part.
If the unit is already reserved, the program will be set
in a waiting state if <return flag> equals zero. If the unit
is reserved and the <return flag> is set non-zero, there
will be an error return with negative function value. If
the unit is free, there will be immediate return with zero
function value.

ND—GO. 050. 03



3-8

CALL RELES (Alogical unit>,<read/write7)

The reserved unit will be released if it is reserved from
the calling program. If <read/write> equals zero, the
input part is reserved for a two-way unit, else if it equals
one, it means the write part.

If RELES is not called, the unit will be released when the
RT program is terminated.

<value>= PRSRV (<logical unit>,<read/write>,<prog.name>)

The logical unit will be reserved for the RT program
specified by the parameter <prog. name>. For a two—way
unit <read/write> equal to zero means that the input part
is already reserved, otherwise that the output part is re—
served. If the unit is already reserved, a negative function
value is returned. If not, zero is returned, and the reser-
vation will be performed.

CALL PRLS (<logical unit>,< read/write>)

The unit will be released from the program having re-
served it.

avalue>= WHERE (<logical unit>,<read/write>)

If the logical unit is reserved for some program, the
address of the RT description will be returned as the function
value. If the unit is free, zero will be returned.

CALL RFILE (<file number >,.<return flag>, <core address >,
<block number>, 4110. of words>)

This is a subroutine to read a random record from a file.
<file number> identifies the file. If <return flag>is
zero, the program will be set in a waiting state until the
transfer is finished. If <return flag> is set non—zero,
there will be return from RFILE as soon as the transfer
is started, so that the program and the transfer can
proceed in parallel.

The parameter (core address> determines where the
record should be placed. In FORTRAN this can be an
array name. <block number> gives the file block number
where the record starts, while <number of words> de-
fines the record size. There is no inherent restriction on
the record size. The first block number is 0.

ND-60. 050. 03



3-9

CALL WFILE (<file number>,‘<return flag>, <core address>
<block number>,<no. of words>)

This is a subroutine to write a random record onto a
file. The parameters have the same meaning as for
RFILE.

Note that when RFILE or WFILE is called directly with
the MON instruction, also the T register should con-
tain the file number.

RFILE and WFILE can also be called as functions to ob—
tain error information. If the transfer went wrong, a
non-zero function value will be returned. Note that
RFILE and WFILE then must be declared as INTEGER
FUNCTION.

CALL WAITF (afile number>, <return flag >)

This call is used to check whether a transfer is finished
or not. If the transfer is finished, there will be immidiate
return. If the 4return flag> is equal to zero and the
transfer is not finished, the calling RT program will be
set in a waiting state until the transfer is finished. If the
<return flag> is set (non-zero) and the transfer is not
finished, there will be an immediate error return
(non-zero integer function value).

<error code> : MAGTP (<function>,<core address>, <unit >,
<maxwords>, <words read >)

This is a monitor call for magnetic tape transfers.
Aunction>is the function code:

0 - Read one record

1 — Write one record

108
— Advance to end-*of-file

118
-- Reverse t0 end—of—file

128
-» Write end—of—file

138
— Rewind

148
~ Write skip

158
- Backspace one record

168
— Advance one record

178
— Unload rewind

208
-~ Read status

ND—60. 050. 03



<error

3-10

<core address> is the logical address where a
record should be read or written.

aunit> is the unit number.

<maxwords> is the number of words (16 bits) to
be read or written. It cannot be greater than 1024
(2048 bytes).

awords read> is the actual size of the record which
is read.

Example:' DIMENSION IARR (1024)
I: MAGTP (0, IARR, 0, 1024, N)
[2 MAGTP (1, IARR, 1,N, 0)

copying a record from unit 0 to unit 1.

code> = ACM (<10g‘ical unit>, <function>, <coreaddr >,
<DMA-addr> , éwordcount>)

This is monitor call to transfer a block of words to/
from an external memory.

<logica1 unit> identifying the external memory. This
unit must be reserved on beforehand.

4function> is the function code:

0 Read
1 - Write
2 - Lock/ write/unlock
3 Clear

Example:

INTEGER FUNCTION ACM
DIMENSION IARR (100)

CALL RESRV (26B, 0, 0)
IX = ACM (26B, 1, IARR, IDMA, 100)

ND—60. 050. 03



3-11

4char.value> 2 INCH (<logical unit>)
(Input character)

This integer function returns an 8—bit character (16 bits
if data link) with no modifications, except for card
reader, where the card code may be converted to ASCII.

If the input buffer is empty, and the device has no charac—
ter ready, the program will be in a waiting state until the
character has been read from the device. INCH internally
uses the monitor call INBT (see Section 3.1.2).

Example:

ICH 2 INCH (1)

ICH will get one character from the device with logical
unit 1. Negative result means error.

CALL OUTCH (Alogical unit > , <char. value >)

The eight least significant bits will be considered to be
a character which will be inserted into the output buffer
of the unit (16 bits if data link). If the buffer is full,
the calling RT program will be set in a waiting state
until there is room for the character. Negative A register
on return means error. OUTCH internally uses the
monitor call OUTBT (see Section 3.1.2).

Example:

CALL OUTCH (3. 12B)

The character "line feed" (octal 12) will be output on
logical unit 3 (usually a paper tape punch).

ND-60. 050.03



.1. 2

3-12

Monitor Calls from Assembly Programs

INBT

OUTBT

CIBUF

COBUF

This monitor call reads an eight-bit byte from a unit.
The T register contains the unit number. The byte
is returned in the A register, with a skip return.
In case of error there will be a non-skip return with
an error number in the A register:

if bad file number
if end of file detected
if card reader error. The card is read.
if illegal device (device not reserved)
if card reader error. The card is not read
(card crash or feed error).

=
128

if end of device (timeout)IJ>

>>>fi>>

||

dunno-:10

This monitor call writes an eight bit byte to a unit.
The T register contains the unit number, and the
A register contains the byte. Normally there will be
a skip-return. In case of error there will be a non—
skip return with an error number in the A register:

A = 2 if bad file number
A : 3 if end of file detected
A 5 if illegal device (device not reserved)

This is a monitor call to clear the buffer for an
input device.

T = logical number.
Return : A = error number
Skipreturn : OK

This is a monitor call to clear the buffer for an
output device.

T = logical number.
Return : A 2 error number
Skipreturn : OK

ND-GO. 050. 03



ISIZE

OSIZE

ABSTR

3-13

The number of characters in the buffer of an input
device is read.

T = logical number.
Return . A error number
Skipreturn : A number of characters

The free room for characters in the buffer of an
output device.

T = logical number.
Return : A
Skipreturn ' A

error number
free room

This is a monitor call for data channel transfers
between physical core and a mass storage. The
monitor call, parameters and core space for transfer
must be in permanent core or on a fixed segment.

The T register contains a logical number for the mass
storage device. The rest of the parameters are
according to the SINTRAN standard call (Appendix A. 2).
The parameters have different meaning for the different
device types.

Discs and drums.

Parameters:

PARI: Function code
0 - Read
1 - Write
2 - Read test
3 - Compare
208 v Read status

PARZ: Core address (double precision)

PAR3: Block address

PAR4: Number of blocks to transport

ND—60. 050. 03



MCALL

MEXIT

3-14

This monitor call is used when a subroutine on a
different segment is wanted.

The T register contains a pointer to a data element
of two locations, holding the address of the sub~
routine. The first location holds the address, and
the second holds the new segment numbers, one in
each half-word. If a segment number is zero, only
the other segment is wanted. If a segment number
is 255, the corresponding segment will be the same
as in the calling program.

A call of MCALL will cause the new segments to be
fetched, and the subroutine will be started. The L
register will then hold the return address, and the
T register contains the segment numbers of the calling
program. Return from the subroutine will be per—
formed by the monitor call MEXIT (see below).

This monitor call will cause a return from the
subroutine.

The T and L registers must have the same values as
they had after the corresponding MCALL. Then the
old segments will be used, and the calling program
will be resumed.

ND—60. 050. 03



3. l. 3 Monitor Calls from Background Programs

The following calls can be used from background programs
only.

ECHOM

Define echo mode

A = 0 means always echo
A : 1 means echo everything but control characters
A = 2 means special MAC echo strategy
A < 0 means no echo

BRKM

Define break mode

A = 0 means
A :

A = 2 means

always break
1 means break only on control characters

special MAC break strategy

For background programs, the monitor calls INBT
and OUTBT can be used also for file access. This
is not possible from RT programs.

The following monitor calls can be used for back—
ground programs as well as for RT programs:

CIBUF
COBUF
ISIZE
OSIZE
CLOCK
TIME
RFILE
WFILE

See also Chapter 6 in the manual NORD File System.

ND-GO. 050. O3



3. 2

3-16

Commands

A terminal is activated by pressing the "escape" key. The
command processor will ask for password, after which the
system prints an a) , expecting a command to be typed.

When the user has finished his work, the command LOGOUT
should be used to release the terminal.

When typing in commands to the command processor, it is
only necessary to type sufficient characters to distinguish the
intended command from all other permissible commands. A
special character, "—", exists in order to separate a command
name into two or more distinct parts. Any and all parts of
a command name may be abbreviated. Consider as an example
the commands LOAD-BINARY and LIST-FILE. The first com-
mand may be typed as LOAD, LOAD—B, L-BINARY, L—B or L0
or in quite a few other ways. The second command may be
typed as LIST, LIST-F, L-FILE, L-F, LI-F or L1. However,
if only L is typed the command processor will indicate that
the command is ambiguous.

The abbreviation look-up function just described is a standard
function which is almost always available to the user when
typing in names. Examples of things which may be abbreviated
are: command names, file names and user names.

The collection of parameters for the commands is done in a
standardized way as follows. The parameters to a command
may be separated by either a comma or any number of spaces.
If the user does not know what parameters a command expects
or in which order he should type them in, he may simply omit
any or all parameters. In this case the command processor will
ask for the required parameters.

The commands consist of three groups:

1) Background commands « calling compilers, assembler,
and editor. These commands can be used by all
timesharing users.

2) Real-time commands — starting and stopping RT
programs, loading new RT programs using the RT
loader. These commands can be called by the users
"RT" and "SYSTEM".

3) System commands — changing locations within the
SINTRAN system, and certain file system commands.
They can be called by the user "SYSTEM".

See also Chapter 6 in the manual NORD File System.

ND-60. 050.03



3.2.1

3-17

Background Commands

LOAD -BINARY file

The LOAD—BINARY command simulates the action of
pressing MASTER CLEAR and LOAD on the NORD-lO.
Input is taken from the specified file.

PLACE -B INARY file

Same as LOAD-BINARY except that the loaded program
is not started up.

GOTO—USER address

The GOTO-USER command transfers control to the user
program at the specified address.

"E scape"

If the "excape" key is pressed while a user program is
running, control will return to the utility command pro-
cessor with a message indicating where the program was
interrupted being typed out. All registers are saved.
Therefore, the user program may be restarted by supplying
the GOTO—USER command with the address at which the
program was interrupted. All open files are closed when
control returns to the utility command processor.

DUMP file, start address, restart address

The DUMP command saves the contents of the user's virtual
memory plus the central registers on the specified file.
The start address parameter indicates where the program
should be started when it is later retrieved with the RE—
COVER command. The restart address parameter indi—
cates where the program should be started when restarted
with the CONTINUE command.

RECOVER file

The RECOVER command retrieves a program from the
specified file and starts it up at its main start address.
There is an alternate form of the RECOVER command which
is provided for the convenience of the user, whereby one
may leave out the name RECOVER completely. In other
words, instead of typing RECOVER MAC one may simply
type MAC.

ND-60. 050. 03



3-18

CONTINUE

The CONTINUE command is used to restart a program
which has previously been started with the RECOVER
command. The program is started up at the address
specified by the third parameter of the DUMP sommand.

STATUS

The STATUS command lists on the Teletype the contents
of the user program's central registers.

LOOK-AT

This is a command to examine and modify locations and
registers. As a parameter it can have one of the three
symbols:

CORE Locations in the User's address
space are affected. The SYSTEM
user can also reach locations in
fixed core.

SEGMENT A second parameter, the segment
number, is required. Then loca—
tions on this segment can be reached.
This is allowed for the REAL-TIME
and SYSTEM users.

IMAGE Locations on the core image on the
mass storage can be reached.
This is allowed for the SYSTEM
user only.

To examine a location, the octal address should be typed,
followed by a slash (/). Then the octal contents will be
printed. The contents can now be changed by typing
an octal number. If a carriage return is given, the
contents of the next location will be printed.

If an asterisk (*) is typed, the current address will be
printed.

The contents of the background program registers can
be accessed in the same way, using a single letter to
address the register. The letters are:

P, X, T, A, D, L, S, B.

If a character not mentioned above is typed, control will
be given back to normal control mode.

ND—60. 050. 03



3.2.2

3-19

DATCL

The current time will be printed, from second up to
year.

MEMORY <lower bound> <upper bound>

The MEMORY command defines the area to be dumped
onto a file by the command DUMP. If the MEMORY
command is not used, the bounds set by the last LOAD-
BINARY, PLACE—BINARY, or RECOVER will be used.

I
The MEMORY command does not affect the logical space
available for the user.

TIME-USED

The CPU time used will be printed.

Monitor Commands

Most of the monitor calls may be executed as operator commands.
The parameters should be specified as (signed) decimal integers,
except for RT programs, which are symbolic names or octal numbers.

RT (prog. name >

Example:

RT STAX

SET 4prog. name ‘> <time> <time unit>

Example:

SET PP2 18 3

ABSET .4 prog. name> < second > < minute 7 <hour >

Example:

ABSET PXY 0 30 18

INTV <prog.name > <time > <time unit>

Example:

INTV SAMPL 2 2

ND-60. 050. 03



3-20

ABORT < prog. name >

Example:

ABORT OPTI

CONCT <prog. name > < int. line number >

Example:

CONCT RESP 257

DSCNT < prog. name >

Example:

DS CNT RESP

PRIOR <prog. name > <priority >

Example:

PRIOR LPM 19

UPDAT < minute > < hour> <day > < month > <year >

Example:

UPDAT 14 10 3 3 1975

CLADJ <time> <time unit>

Example:

CLADJ 10 2

FIX 4 segment number>

Example:

FIX 25

UNFIX 4 segment number>

Example:

UNFIX 25

ND-60. 050. 03



3-21

PRSRV <logical unit > < read/write > < prog. name >

Example:

PRSRV 25 0 PROG

PRLS < logical unit > < read/write >

Example:

PRLS 25 0

RTON '< prog. name >

Example:

RTON PROG

RTOFF < prog. name>

Example:

RTOFF PROG

IOSET < logical unit> , < read/write> < prog. name > <control >

Example:

IOSET 2 0 RTX —1

LIST—TIME-QUEUE

The RT programs in the time queue will be listed.

LIST-EXEC—QUEUE

The RT programs in the execution queue will be
listed.

LIST—SEGMENT <segment number>

The contents of the element in the segment table will
be listed.

LIST-RT-DESCRIPTION <RT-name >

The contents of the RT description will be listed.

ND-6'0. 050. 03



3.2.3

3-22

RTENTER

The user "RT" will be entered as user for the RT
programs. This must be done before any file can
be opened for RT programs. The command should
be given each time the SINTRAN 111 system is started.

GET—RT-NAME <octal RT address>

The corresponding name of the RT program will be
printed. The octal RT address can occur for instance
in error messages.

Console Commands

TERMINAL—STATUS <termina1 number>

The following information is listed:

1. Mode: User mode, When a subsystem or
user program is active, or Command mode.

2. User name.

3. Last command line.

STOP—TERMINAL <terminal number>

The specified terminal will be logged out.

WHO-IS-QN

The active terminals will be listed With terminal
number and user name.

WHERE—IS <file or peripheral name >

The user name and terminal number will be
listed.

STOP-SYSTEM

The computer will stop. It can be restarted by
pushing the RESTART button. Then the system
will continue where it left.



3.2.4

3-23

Sub systems

RT-LOADER

FTN

The FORTRAN Compiler.
Manual: NORD Standard FORTRAN Reference Manual.

QED

Editor.
Manual: QED Users' Manual.

MAC

Assembler
Manual: MAC Users' Guide.

BRL

Loader for background programs.
Manual: Binary Relocating Loader.

MACF

Assembler version for assembling onto file.
Manual: MAC Users' Guide.

NORD PL

Medium level language compiler.
Manual: NORD PL Users' Guide.

LDR

The RT loader will load RT programs onto segments.
Manual: SINTRAN III Real—Time Loader.

Loader including FORTRAN run—time system.
Manual: Binary Relocating Loader

ND-60. 050. 03



3-24

KRYSSREF

Cross reference listing program.

BASIC

Interpreter.
Manual: NORD BASIC Reference Manual.

SORT

SOrting routine.
Manual: NORD SORT System.

ND—60.. 050. 03



3.3

3.3.1

3-25

Batch System

Introduction

In addition to the usual interactive communication with the SINTRAN
background system, the user may also run his background jobs in
batch mode. This means that command input is taken from another
device or file than the terminal., and that device number 1.
which usually identifies the terminal, is interpreted as the
batch input file on input and the batch output file on output.

There are two slightly different ways of running batch jobs in SINTRAN:

Type 2:
A batch job may be initiated by the @MODE command. This
command just changes the command input and output files
to those specified in the @MODE command. The batch job
will continue running under the user currently logged on,
and control will return to the terminal when end—of—
file is reached on the batch input file or the command @MODE
TERMINAL TERMINAL is found on the batch input file.

Type 1.:
A batch process may be initiated by the @BATCH command.
This command will start a background RT program running
independently of any terminal. Control will return to the
terminal immediately after the @BATCH command and this
terminal may be used for other activities running in parallel
with the batch process. Control commands to the batch process
may be given from any terminal.

All the interactive commands may also be used in batch mode, except
the following:

- @LOGOUT and @MODE are illegal in type 1 batch.

— Although they are legal, some commands are not very well
suited for use in batch. Among these are for example the
LOOK-AT. command.

All command parameters have to be written on the same line as the
command itself, because the system cannot ask for missing parameters
in batch mode.

The first character on a system command line is always an £1), which
corresponds to the a) written out by'the system in front of each
command in interactive mode.

ND—60. 050.03



3.3.2

3-26

Example of a Batch Job

The batch input file has the following contents:

@FTN
COM 1, 0,0BJ

PROGRAM TEST
WRITE (1,1)

1 FORMAT (* FORTRAN TEST OUTPUT *)
END
EOF

EX
a LDR
A OBJ
8

Running of this job will give the following output on the batch output
file:

for") FTN

NORD FTN
SCOM 1, 0,0BJ

PROGRAM TEST
WRITE (1,1)

1 FORMAT (* FORTRAN TEST OUTPUT *)
END

EOF
4 STATEMENTS COMPILED
SEX
(a) LDR

BINARY LOADER
L*A OBJ
L*S

FORTRAN TEST OUTPUT

If this job is run as type 1 batch, it should be bracketed by an @ENTER
command identifying the user and two ESC characters Signalling end
of job.

ND—60. 050. 03



3.3.3

3.3.4

3-27

Definitions

- The batch input file is the file or input device from where
SINTRAN takes its command input when running in batch
mode.

Or more precisely: The batch input file is the input part
of device number 1 when running in batch mode.

- The batch output file is the file or output device where
SINTRAN lists command input and command output when
running in batch mode.

91' more precisely: The batch output file is the output part
of device number 1 when running in batch mode.

Description of Type 2 Batch_(MODE type)

The MODE command has the following format:

@MODE 4batch input file> <batch output file>

The effect of this command is to redefine device number 1 to mean the
batch input file on input and the batch output file on output.

When the MODE command is given, SINTRAN will take command input
from the batch input file until another MODE command is found (on the
batch input file), or end of file is reached on the batch input file. The
commands are listed on the batch output file together with the command
output (if any).

If the user programs read from device number 1, input will be taken
from the batch input device, and all output to device number 1.is routed
to the batch output file.

If end of file is reached on the batch input file, control will be returned
to the terminal Teletype.

Error conditions:

If an error condition occurs in a MODE job, the usual error message
will be printed on the batch output file. Then the message

***BATCH JOB ABORTED***

will be printed and control returned to the terminal.

ND—eo. 050.03



3-28

3. 3. 5 Description of Type 1 Batch (BATCH type;

3. 3. 5.1 Explanation of Terms

A batch process is a background RT program very much
alike the background RT programs handling interactive
communication with the SINTRAN system. The task of the
batch process is to process the batch jobs on its batch
input files, one at a time.

In principle, there may be an unlimited number of batch
processes running in parallel with each other, and the other
activities in the system. The maximum number of batch
processes running in parallel is determined by system
generation time.

The extra overhead introduced by adding a batch process is
approximately the same as by adding a terminal.
The number of batch processes will usually be limited to
one or very few, because one of the reasons for batch
processing is to run the jobs one by one, and save overhead
introduced by time sharing them.

A batch process is started by a wBATCH command, and
terminated by an flABORT—BATCH command.

A batch job is an entity consisting of commands to the
SINTRAN system, and possibly source input to the subsystems
and user programs called.

The first command in a batch job is always the @ENTEB
command identifying the user. The last two characters in a
batch job is always E80 (338), signalling end of job. These
two characters corresponds to the command @LOGOUT in
interactive mode. For the convenience of the user who pre—
pares his batch input files from a terminal, the
character SHIFT CTRL M (358) may also be used as end of job
characters. The card code of the ESC character is the multi-
punch 7--8—9.

A batch gueuefl is a queue of batch input file — batch output file
pairs held internally in SINTRAN. A new pair is added to the
queue by the @APPEND—BATCH command. Each batch pro—
cess has its own. batch queue.

When end of file is reached on a batch input file, the batch
process fetches the next batch input file — batch output file
pair on the queue, and continues taking input from the new
batch input file and giving output to the new batch output file.

ND-60. 050.03



3-29

If the batch queue is empty, the batch process will enter
waiting state.

A batch input file may contain any number of jobs, and a
job may use any number of batch input file — batch output
file pairs. Thus, the boundaries between jobs and the
boundaries between batch input files, is completely indepen—
dent of each other.

A batch process will always be in one of the three following
states:

Passive — this means that the batch process is not' started.

Idle - this means that the batch process has
entered waiting state because the batch
queue is empty.

Active — this means that the batch process is working
on some job.

ND—60. 050. 03



OFILl
3—30
OFILZ

Other RT programs
Mass
storage
files
or
output
devices

SINTRAN III
MONITOR

J l |

F
________________ "”1 u

I ' ' pal-J Interactive
Batch process 4. IFILI ' IFIL2 I l A operator

OFILl { OFILZ: : communication
Batch queue

6
@ENTER Job 3 (cont,

Job 1 Mass ES ESt storage C C
1?q Es files

“C C or @ENTER
@ENTER input

1‘ devices Job 4
Job 2 $E E

1 SC Sc
E E

Sc Sc @ENTER
@ENTER

Job 5
Job 3 I

E E
1 SC Sc

IFILI IFILZ

This figure shows a system with one terminal and one batch
process.
its own batch process.

ND-60. 0'50. 03

The dotted line indicates that a batch job may append jobs to



3.3.5. 2

3—31

Description of Commands

@BATCH

This command finds an unused batch process and
starts it. It then prints

BATCH NUMBER = <batch number>

where abatch number> is a decimal integer which
may be used in future commands to identify the
batch process.

If there are no unused batch processes in the system,
the message

NO BATCH AVAILABLE

is printed.

When the batch process is started, it immediately
enters waiting state, because the batch queue will
initially be empty. It will automatically be restarted
when a batch input file - batch output file pair is
entered into the batch queue by an @APPEND—BATCH
command.

The @BATCH command is usually given from a
terminal in interactive mode.

@APPEND—BATCH «:batch number><batch input file>
<batch output file>

This command appends the <batch input file>—
<batch output file> pair specified to the batch queue
for the batch process identified by <batch number>.
If the batch process is idle, it will be restarted.

If the batch queue is full, the message

BATCH QUEUE FULL

will be printed.

If the specified batch process is passive, the message

BATCH PASSIVE

will be printed.

ND-60. 050. 03



3- 32

ljotes:

< If the batch input file is owned by another
user than SYSTEM, the user name should
be specified in brackets in front of the
file name.

The batch input file should have read access
for user SYSTEM and all users having jobs
on it.

- The batch output file should have write and
append access for all users having jobs on
the corresponding batch input file.

Examples of APPEND—BATCH commands:

@APPEND-BATCH 1, CARD-READER, LINE—PRINTER
@APPEND-BATCH 2, (NILS) BAFIL, BOFIL

The @APPEND—BATCH command is usually given from
a terminal in interactive mode.

@LIST-BATCH-PROCESS

This command lists the status of the batch processes
in the system. It has no effect on the batch prOcesses.

Example of @LIST—BATCH-PROCESS command for a
system with three batch processes:

@LIST-BATCH—PROCESS

1 IDLE, NO USER LOGGED ON
2 ACTIVE, USER NILS LOGGED ON

6) 3 PASSIVE

The @LIST-BATCH-PROCESS command is usually given
from a terminal in interactive mode.

ND-60. 050. 03



3-33

(1) LIST—BATCH—QUEUE < batch number >

This command lists the batch queue of the specified
batch process.

Example of @LIST—BATCH-QUEUE command:

@LIST-BATCH-QUEUE 1
CARD-READER LINE-PRINTER

gER)
BINP LINE-PRINTER

The @LIST-BATCH—QUEUE command is usually' given from a terminal in interactive mode.

@ABORT-JOB <batch number ><user name>

This command may be used to abort a batch job.
The job will be aborted and batch input will be
skipped until the next end of job characters. The
batch process will then continue processing the
next job.

If the specified <user name> is not the user currently
logged on the specified <batch number>, nothing
will be done.

The @ABORT—JOB command is usually given from
a terminal in interactive mode.

@ABORT-BATCH <batch number>

This command will abort a batch process and release
all resources reserved by the batch process. Any
job currently running will be aborted immediately,
and the batch queue will be cleared.

The @ABORT-BATCH command is usually given
from a terminal in interactive mode.

ND-60. 050. 03



3—34

@ENTER auser name ><password ><project number><max. time>

This command is legal only as the first command in a
batch job. It identifies the user of the following job,
and corresponds to the log on procedure in inter-
active mode. <user name> may be any name imple—
mented as a user in the system. apassword> should
be the correct password for the specified user.
If the user has no password, just two commas
should be present between <user name> and
aproject number> . <project number> is used

for accounting purposes and may be any decimal
integer. <max.time> is the maximum CPU time
for the job in minutes. If this time limit is reached,
the job will be aborted.

The @ENTER command is always given from a batch
input file in batch mode.

(1) SCHEDULE 4 device number ><device number > , .....

This is a general command specially designed for
use in batch mode. It is used to reserve the devices
mentioned in the parameter list for the current job.
If one or more of them are reserved by other pro—
grams, the batch process will enter waiting state
until they are released. This is very useful in batch
mode, because one does not know if a device will be
free at run time when one prepares a batch job.

To prevent deadlock situations, no devices can be
reserved for the job before the @SCHEDULE com-
mand )is given. If it is, the error message DEVICE
ALREADY RESERVED will be given, and the batch
job will be aborted.

The @SCHEDULE command is usually given from
a batch input file in batch mode.

ND-60. 050. 03



3.3.5.3

3-35

Example of a Batch Run

The file BINP is owned by user PER and has the following contents.

0 ENTER NILS, PWN,5
a FTN
COM 1‘0,100

- FORTRAN STATEMENTS

EOF
EX
@ LDR‘
A 100
s
E E

Sc SC
Fa) ENTER PER, PWP, 4
@SCHEDULE 3
a COPY FAST—PUNCH, PERFILE
E ESC sC

It is assumed that the users NILS and PER have the passwords PWN
and PWP respectively. Of course, the passwords will not be listed
on the batch output file.

To run these two jobs, the following commands could be given from
any terminal:

@ WHERE—IS LINE-PRINTER
(a) FREE TO USE
@ BATCH
a) BATCH NUMBER = 1
@ APPEND—BATCH 1 (PER)BINP, LINE-PRINTER
6'

If you have no more batch jobs to run when the batch process has
entered idle state, an

W ABORT-BATCH 1

should be given to terminate the batch process and release the
line printer.

ND-60. 050.03



3-36

3. 3. 5. 4 Special Monitor Calls concerning Batch Jobs

3.3.5.5

If the monitor call RTEXT (MON 134) is executed by a back—
ground program running in batch mode, the batch job will be
aborted.

The monitor call RSIO (MON 143) may be executed by a back-
ground program if it wants to find out whether it is running
in batch or interactive mode.

The return parameters from RSIO are:

A register : 0 if interactive mode
1 if type 1 batch
2 if type 2 batch (MODE)

T register : command input file number

D register : command output file number

Error Conditions

If an error condition occurs in a batch job, the job will be aborted
and batch input will be skipped until the next end of job characters.
The batch process will then continue with the next batch job.

If an I/O error occurs on the batch input or output file, all jobs on
current batch input file will be skipped and the batch process will
continue with the next batch input file — batch output file pair on the
batch queue.

In most cases, an error message will be printed on the batch output
file, but if an I/O error has occurred on the output file, this is of
course impossible.

ND-60. 050.03



4—1

ACCOUNTING SYSTEM

Whenever a user logs out, a record is written in the account
file on the disc. This file, named (SYSTEM) ACCOUNTS:
DATA, consists of blocks of length 256 words, each block
containing 16 records of 16 words. A record has the following
information:

Word 0—6 user name character
7 user number binary
8 project number binary
9-10 log off time and date binary
ll console seconds binary

' 12 CPU seconds binary
13-15 unused

Log-off time and date are packed into two words, or a 32 bit
field, as follows:

~——-————« date time ——————

6 4 5 5 6 6

year month day hours minutes seconds

31 26 22 17 12 6 0

L—— word 1 word 2————————-

The first block of the file contains only the following infor—
mation:

1. Word 1 contains the number of records written in the
file. This number is increased by 1 for every log-
off.

2. Word 2 contains the desired number of records. When
this number is reached, a message will be sent every
time a user logs off, APPROACHING END OF ACCT
FILE. The accounting file should then be listed, and
then reset by the INIT—ACCOUNTING command.

3. Word 3 contains the maximum number of records. If
this number is reached, a message will be sent every
time a user logs off. END OF ACCT FILE ENCOUNTERED.
N0 accounting is done after this number is reached.

ND-60. 050. 03



4.1

41-2

The account records themselves start in the second block.
The file is updated physically for every new record. This
involves reading and writing the first block (updating the
record count) and writing the block which contains the new
record.

C o m m a n d s

@INIT-ACCOUNTING desired, max

desired: desired number of accounts. By use of this
parameter the user specifies the number
of accounts he wants to the account file be-
fore he gets the warning that the file is
running full. The parameter should be speci—
fied as a decimal number.

max: maximum number of accounts permitted on
the file. When this limit is reached, no
more accounting will take place before the
account file is reset. Users can log off, but
the request for accounting will be ignored.
"max" should be specified as a decimal
number.

This command initializes and starts the accounting system.
It may only be executed by the user SYSTEM. It writes the
first block of the file (SYSTEM) ACCOUNTS:DATA. Word 1
(record count) contains 0. Words 2 and 3 contain the desired
no. and max.no. as given in the command. If 0 or empty,
default values of 500 and 600 are used.

@ START wACCOUNTING

This command starts the accounting, but does not initialize
the accounting file. It may only be executed by user SYSTEM.

6) STOP-ACCOUNTING

This command stops the accounting system. The accounting
file is not affected. It may only be executed by user SYSTEM.

ND-60. 050. 03



APPENDIX A

ASSEMBLY CODE IN SINTRAN

Assembly—coded RT Programs

The name of the RT program, which may be used in other RT
programs, is a pointer to the first location of the RT description.

At the moment when the RT program starts, the machine status is
like this:

The P register contains the starting address, as found' in 10Cation 7 of the RT description.

The other registers have arbitrary values.

In the program itself, all the registers may be used
freely, including the B register.

When program execution is finished, the program control should
be transferred to the monitor by the monitor call RTEXT (MON 0).
The registers may then have arbitrary values.

An example of an assembly-coded RT program follows. The name
of the RT program is PER. It has priority 5.

)9BEG
PRI5 = 5
2RTEX = 0

)9RT PER PRI5
LDA (PARAM

MON 2RTEX
PARAM , NUMBER

)DEC
NUMBER , 5 0

)FILL
)9END

The RT loader will generate the RT description.

ND-60. 050.03



SINTRAN Standard for Subroutine Calls

The subroutine call is performed by a JPL instruction.

Example:
JPL I (SUBR

The A register contains the address of the parameter list. The
parameter list contains the addresses of the actual parameters.
Returns from the subroutine are always to the instruction after
the JPL.

On return, the B and X registers will have the same values as
before the subroutine jump: the other registers may be changed.

The T—A—D registers may have a function value on return.

Note especially that pointers to the RT descriptions are considered
to be variables. Thus, the location in the parameter list will con—
tain the address of such a variable in this case. See Figure A. 1
below.

A Register
Parameter
List

Integer

RT Description

Figure A. 1: Standard Call

ND—60. 050. 03



Examples of Monitor Calls from Assembly
Programs

For subroutines callable from FORTRAN , the corresponding
FORTRAN call will also be shown.

CALL RT (PR1)

LDA (PARAM
MON 100

PARAM, (PR1 % RT PROGRAM

CALL SET (RTl, 10, 2)

LDA (PARAM
MON 101

PARAM, (RTl % RT PROGRAM
(12 % NUMBER OF
(2 % SECONDS

CALL ABSET (PROG. 0, 30, 17)

LDA (PARAM
MON 102

PARAM, (PROG % RT PROGRAM
(0 % SECOND
(36 % MINUTE
(21 % HOUR

ND-60. 050. 03



CALL INTV (PP, 20, 3)

LDA (PARAM
MON 103

PARAM, (PP % RT PROGRAM
(24 % NUMBER OF
(3 % MINUTES

Terminating an RT program:

MON 0

The registers may then have arbitrary contents. A11 re—
served units of this program will be released.

Set a program waiting:

MON 135

The program will stop. It will restart at the same point next
time it is started.

CALL HOLD (5, 2)

LDA (PARAM
MON 104

PARAM, -(5 % TIME
(2 % TIME UNIT

CALL ABORT (PRX)

LDA (PARAM
MON 105

PARAM; (PRX % RT PROGRAM TO BE
% ABORTED

ND-GO. 050. 03



CALL CONCT (CPIN, 5)
LDA (PARAM
MON 106

PARAM, (CPIN
(5

CALL DSCNT (PRGA)
LDA (PARAM
MON 107

PARAM, .(PRGA

CALL PRIOR (RTPR, 30)
LDA (PARAM
MON 110

PARAM, '(RTPR
(36

CALL UPDAT (24, 11, 24, 2, 1974)
LDA (PARAM
MON 111

)DEC
PARAM, (24

(11
(24
(2
(1974

ND-60. 050. 03

% RT PROGRAM
% INTERRUPT LINE NUMBER

% RT PROGRAM

% RT PROGRAM
% NEW PRIORITY



CALL CLADJ (15, 2)

LDA (PARAM
MON 112

PARAM, (17
(2

CALL CLOCK (IARR)

LDA (PARAM
MON 113

PARAM, IARR
IARR, 0;0;0;0;0;0;0;

DELTA = TIME (0)

MON 11
STD DELTA

DELTA, 0; 0

INBT

SAT 2
MON 1
JMP ERROR
S TA CHAR

LDA CHAR
SAT 3
MON 2
JMP ERROR

ND—60. 050.03

% NUMBER OF
of) SECONDS

% CLOCK UNITS WILL BE
% STORED

TAPE READER
INBTc\°

o\°

TAPE PUNCH
OUTBTo\°

o\°



CALL DSET (PROG, DTIME)

LDA (PARAM
MON 126

PARAM, (RTl

DTIME
DTIME, 1

32000

CALL DAB ST (PROG, DTIME)

LDA (PARAM
MON 127

PARAM, IPROG
DTHME
10333
145016

DTIME,

CALL DINTV (PROG, DTIME)

LDA (PARAM
MON 130

(PROG
DTIME

DTIME , 0
6000

PARAM ,

ND-60. 050. 03

T PROGRAM TO BE
CHEDULED(I)o\°

o\° W

“/0 THIS DOUBLE PRECISION
% NUMBER WILL BE ADDED
% TO CURRENT TIME AND
% THE RESULT PLACED IN
% THE RT DESCRIPTION

THIS DOUBLE PRECISION
NUMBER WILL BE PLACED
IN THE RT DESCRIPTIONo\°

c\°

o\°

THIS DOUBLE PRECISION
NUMBER WILL BE PLACED
IN THE RT DESCRIPTIONo\°

o\°

:>\°



ABSTR

LDT LOGNO
LDA (PARAM
MON 131

PARAM, (0
(0
CORA
(2700
(1

CORA, 0
IARR

IARR = *
* + 100/

MCALL, MEXIT

LDA (PARAM

LDT (START
MON 132

START, SUBRl
2005

SUBRl,

MON 133

CALL FIX (33)

LDA (PARAM
MON 115

)DEC
PARAM, (33

ND-60. 050. 03

o\°

o\°

o\°

o\°

o\°

o\°

o\°

o\°

o\°

o\°

o\°

c>\o

o\°

0‘9

o\°

o\°

o\°

o\°

c\°

c\°

%

READ
MEANS WAIT
PHYSICAL CORE ADDRESS
ABSOLUTE BLOCK NUMBER
NUMBER OF BLOCKS

TRANSFER TO THIS AREA
HARDWARE BLOCK SIZE
FOR DRUM (64)

PARAMETER LIST FOR
SUBRl

MCALL, OVER TO SUBRl
RETURN HERE AFTER
MEXIT

SUBRl'S SEGMENT,
4 AND 5

END OF SUBRl
T AND L AS WHEN SUBRl
WAS ENTERED
MEXIT, RETURN TO
CALLING PROG.

SEGMENT NUMBER



CALL UNFIX

IX = IOSET (2,

PARAM ,

IX = RESRV (4,

PARAM ,

CALL RELES

(33

LDA (PARAM
MON 116

0 , PROG , - 1)

LDA (PARAM
MON 141
JAN ERROR

(2
(0
(PROG
(-1

0, 0)

LDA (PARAM
MON 122
JAN ERROR

(4, 0)

LDA (PARAM
MON 123
JAN ERROR

.(4
(0

o\°
op
o\°
o\°

o\°

o\°

o\°

o\°

o\°

ND-60. 050. 03

TAPE READER
INPUT
RT -PROG
CLEAR

ILLEGAL UNIT

CARD READER
INPUT
WAIT IF BUSY

ILLEGAL UNIT



A-10

IX = PRSRV (3, 1, PROGX)

LDA (PARAM
MON 124
JAN ERROR % UNIT RESERVED OR

% NON—EXISTING

PARAM, '(3 % TAPE PUNCH
(1 % OUTPUT
(PROGX

CALL PRLS (3, 1)
LDA (PARAM
MON 125
JAN ERROR

PARAM, (3
(1

IVAL = WHERE (3, 1)
LDA (PARAM
MON 140
JAN ERROR % NON—EXISTING DEVICE
JAZ NRES % NOT RESERVED
STA RTPRG

PARAM, '(3
(1

ND-60. 050. 03



CALL RFILE

PARAM,

CALL WAITF

COBUF

(101B, 0,

(101B,

A-11

IARR, 2, 256)

LDA (PARAM
LDT I PARAM
MON 1 1 7
JAF ERROR

(101
(0
IARR
(2
(400
)FILL
* + 400/

0)

LDA
MON
JAF

(P ARAM
12 1

ERROR

‘(101
(0

SAT 2
MON 13
JMP ERROR

SAT 3
MON 1 4
JMP ERROR

ND-60. 050. 03



ISIZE

IX = MAGTP (0,

PARAM ,

IRD,
)FILL
IARR,

IX = ACM (26B,

PARAM,

)FILL
IARR,

A-12

SAT 2
MON 66
JMP ERROR
STA NCHAR

SAT 3
MON 67
JMP ERROR
STA NLEFT

IARR, 1, 1024, IRD)

LDA (PARAM
MON 144
JAF ERROR

(0 % READ A RECORD
IARR
(l % FROM UNIT 1
(2000 % MAX WORDS
IRD
0 % ACTUAL WORDS READ

at + 2000/ % TO THIS AREA

1, IARR, IDMAD, 100)

LDA (PARAM
MON 145
JAF ERROR

(26 % LOG. NUMBER
(1 % WRITE
IARR
(IDMAD % DMA — ADDRESS
(144 % NO. OF WORDS

9+ + 100/

‘ND—60. 050. 03



B-l

SYSTEM MONITOR CALLS SUMMARY (File System included)

@8382
s

mic:

Mwwqmfio

Ea

uxoofio
08

BO

mam

mg

m9h

cflwmmfi

m:

M0015

x020

$585
2:

3&3

0:

mi

mo»

E75

.EEE

N:

2:30

awash

”:55

.520

mom

on

on

.0q

5%
n
H

ma

.mDmEO

$983.MQQESQ.Q<mO0.0ZDm

20<

mmooo<

mm;

mm;

m?»

“52.3

.001:

m:

EO<

9303

mo

gonasnummgzm

mmopwum

ommpflm

mmmfinmmmfiz

Ego

mfimnmong

QmEZm

833?.

503

com:
on

83

,mamfiz

:3

2:9

.omMHBm

mmmfi

.MQQ<ImmOO

88:2

3%

.335“;

on

mom

8

MHEBEEE

H2

mamm<

Ambom

.EE

8

mi

mom

ommdzfié

NS

3%?

Emnwopg

em
a

$82

on

mg

mg

A

m2<zv

m3

Hmom<

:oflgiomom

ionm

madam

:8

was

z<mHmOm
_

myoamfigmm

poo—8:2

BENZ

.323

Bob

ungunnm

89E

mfiwmmooo<

6.5935

Bflmmooo<

330

9.3302

HE

Z<MBs

APPENDIX B

ND-60. 050. 03



B-2

Ego

mfidnmoyg

cmsopwxoso—

pom

.zwmemH—m

038

“mm

wok

o:

on

.on

mwowwfim
n
<

m

Eomom

69398

was

9:5

swim

93

H565

Sfimopg
Hm
2:

tfim

0:

mm;

mm»

£53

£236

8H

:8

.Emfiqmflmmm

$535

.3

35:35

And

Scam

Smnwong

Hm
9:

82885

e:

mg

mg

522V

SH

8208

.350n

083

Q:
8

Emnwopm

em

93

89300

on

mg

m?»

Ame/SEQ

£3236

omH

>825

.083

53m

a
pm

8&na

Hm
2:

Ea

on

m9»

m9»

@259

.3236

EH

Emma

.09:

Bayopfi

ofi
on.

Edpmogg

Hm
9:

89800

on

mm;

mm;

€q

.5436

2:

90200

3&3

#5350
.E

20

mm»

on

on

.on

Sou
n

.H.

H

5500

.2:

830

mm;

8

mg

.2
2:u
a

3

Macao

nofifinomoa

$96

658%

:3

95

Z<MHmOm

whoemfigam

$9852

mfiwz

uxomn

Eon“

Boyle—5m

Sch

20:38k

Encqmam

03688q

EEO

.3382
B

255.2%

683%

8%?

2::

wm<§22m

31:3

moflzoz

259m

ND—60. 050. O3



B-3

spasm

33

.532

.995

0309m

mmwoo<

m9»

m0%

m9»

.Q<mOO

A0225

*1:

mHUEZ

mpmpompuno

mo

poo—ES:

cmom

mom

on

0:

dd

5%
n
H

-

ww

HNHmH

Some

.00:m

.m
3

doE

IZOD

MS
<2

Imago?“

20.3280

aom

0:

mm»

mm,»

.B\m

.HHZV

fl;

HHmOH

23333

BE»

05
3

Samoan

BM

05

902300

on

ma.

mo»

C222

.mEE

.5436

m3

>57:

83u<

33
m

umom

mm»

o:

on

”an:

.mB
n
B

H

BmZH

.QEE

QoZm

one

no“

figs

Emnmopm

9:28
9:

:5

on

mm»

mm;

QED

.ms

«S

mqom

Aaflmum

2.5V

owmmmmfi

.3t

SEE

mom

on

o:

goo

Sim
n
<

3

092mm

£03930m

flosm

USSMM

:«5

05a

2<mHMOm

mhmaofimpmm

#92852

QENZ

Ixomo—

80.5

IsouIQSm

80.3

@5538!»

5.393%

o2£mmooo<

mzmo

~82q
5

255.25

6839:

833m

2::

wmléazbm

3A<O

MOBHZOS

EMHt

ND—60. 050. 03



B—4

855%

2::
.Ea

Ea

owmmmofi

“9:5

BEEP

max

on

on

800

MOPS
u
<

mo

Emmzw

.Smpwonm

Nam

89$

in:

93

mmdmfiom

o:

wok

mam

S<m

”HHZDV

mNH

mama

.bfloig

Boa
Em

o:

mm»

mm;

82mm

“823$

02

moan

33,
u
<

.33
a

333

mg

oz

0:

fin:

.wfl
n
H

N

89630

3&3

E

800%

up:

3mm

mom

Os

0:

.0:

5%
u
B

we

MNHmO

093
u
<

mmmood
n
H

.2:

:30

mm»

o:

mom

63
n
N

om

ZHQO

.mpgogwom

Empmmmww
so

95:3

:85
w

89$

SHE—mm

on

o:

o:

musogwmwm

30
n
B

m2

EHNHE

.mEofimom

€39“c

AmHZmEOMm

no

23833
m

:3

on

o:

0:

.mamfimmpmv

N3

1552

noEmEom
on

uponm

65.8%

33

95

z<memom

myopmfigmm

$9852

«.s

lxog—

89C

Inchlnsm

80.5

ofiwmmwoo<

Eavqmam

Bflmmooo<

2:3

“8:82
a

233.s

6822:

883m

2::

WM<H>E>HDm

mQH<O

mOHHZOE

$55.m

ND—60. 050. 03



B-5

£2o
em
9:

E5

8

mo»

mg.

a:
$6

2:

am

@939?

2::

$0.63

800
n
N

65
a

.8

M83
u
<

89d

mac?

9.:

gem

mo%

0:

on

.on

2a
u
H

N.

Emu/«mm

@953

.oz.Q<mm<2

.23

Son“

6.802

.Q<moo

:0»Q

80693
a.

wwmm

m0»

m0%

no;

.8200

.523

SH

madam

.Smnmoum

”23.350

93

Mom

«E:

wfi

ozom
om

onH

mom

mg

Raga

sHmm

.Em

.923

NE.

23mm

.Ewhwong

29:50

95

E95

fins

95

ommofiom

0:

mg

no»

§\m.BHZDV

mmfi

mmgmm

A803?

2::

nmufiog

33
um
mm

mm»

o:

o:

noufiog

33

"94.

pmnfisn

2E
u

H.

E.

Bmfimm

Aaflmmm

2::

8H

2E

£328

$225

300
n
N

89H.“

mwnoa

o3

gum

mm»

on

0:

.9H

Moofim
n

H.

m

Omam

$033.3m

whosm

9.59%

:wo

05¢

Z<mfim0h

mpmpwfidpmm

hmpedz

@852

L33.

89¢

lacuna—am

Eon.“

Eflmmmoo<

vagina

2838k

EEO

#9552
E

z<mHs

€09.59:

839mm

2m

Wm<EEDm

mAQ<O

MOHHZOE

SHBmMm

ND-60. 050. O3



B—6

.083

$583

€8.30

93

“m6

mom

mom

wmm

3

BER.

488m?

23:53509

#3309

33,

HQ<

913

835539

3m

mm%

on

o:

.om

SE
n
B

mr

N<Em

A5893

2?:

#3509

3mm,

HQ<

.3389

33

wow

mm;

on

on

.on

23
u
H

3.

HmBMm

Afifimzm

2::

05m

x003

“mm

mom

on

oz

03m

«605

HQ<

.0:

BE
.1.

.H

3

mmfimm

283%

0:5

.3”:t

#003

How

mg

on

o:

poufiom

x005

HQ<

.99

SE
n
H

E

AMBmm

683

swim

93
E

ABHZD

fimpwopg
Hm

3.3m

on

m9»

m9»

332:“

.3236

SH

HMm

.Smpwong

E9550

ofi

90am

mokn

0:

on

o

HNMBm

3.35

Emnwong

39:50

05

31H

0:

wok

mm»

mma

839m

mofihiomoa

$95

959%

Sac

0:3

Z<m8m0m

mpouofiwamm

#3852

@882

nxomn

Scam

Boyle—5m

Scam

05830k

wnwwnfim

mmmmoo/w

mzwo

.Hofiqoz
HE

z<mBZHm

6255

88m
\nm

035

Vm<H>E>HDm

mQQ<O

mOBHZOE

35:.m

ND-60. 050. 03



B-7

393%?

275

$335

980
n
N

.mfim

.m

.on

M003
n
<

Eon“

mung?

wmm

3mm

max

on

on

.9“

3a
n
H

OH

mw<m3

fin:

one

totem
on

ways:

Enhwonn

BM

93

$6

on

m9»

m9»

ABE/5V

o3

HMHEB

$95dd<mm<2

upooon

.QfimOO

.U<_H.m

88%.“
a

823

mm»

mg

3»

.9200

5s

ofi

”HEB

A803?

«:5

do.“

05

A323

.935

980
u
N

Sac

£503

wmm

33.3

m9»

on

on

.o:

x003
n
H

w

0993

£9325
8.
3

3%q
a
E

ES

8

m9»

m2»

523

EH

PBS.»

93”;

.3323

.5202

.53

Ea

x83

31.3:

on

3%

mg

.mbomiué

H:

REED

sofimfiomofl

team

950nm

~13

0:3

Z<MBMOM

whoaofimnmm

popfisz

ofiwz

L423

So:

Lanna—5m

Eonm

033302

waaufium

033302

216

3382
H

2,39s

€2.32:

895%

2::

fimlwggbm

qH<O

mOBHZOS

$55.m

ND-60. 050. 03





APPENDIX C

BACKGROUND SYSTEM COMMAND SUMMARY

Command Parameters Used by Short description

ABORT NAME RT Stop RT program

ABORT-BATCH BATCH—NO. RT Abort batch process

ABORT—JOB BATCH—NO. , USER RT

ABSET NAME, SEC, MIN, RT Start RT program at time
HOUR of day

BATCH RT Start batch process
APPEND—BATCH BATCH-NO. USER

INPUT, OUTPUT

COPY DESTIN. FILE, USER Copy file or device
SOURCE FILE

CLADJ TIME, UNIT RT Adjust internal clock

CONCT NAME, LINE RT Connect RT program to
interrupt line

CONTINUE USER Restart background
program

DATCL USER Print current time and
date on the terminal

DSCNT NAME RT Disconnect the RT program

DUMP FILE, START, USER Save background program
RESTART

FIX SEGM. NO. RT Fix segment in core

GET—RT-NAME OCTAL ADDRESS RT Convert address to name

GOTO—USER ADDRESS USER Start background program

INIT— NUMBER, MAX SYSTEM
ACCOUNTING

INTV NAME, TIME, UNIT RT Connect RT program to
time interval

ND-60. 050. 03



iflfiéer Meaning XX W $2535“
00 Illegal monitor call RT prog. yes

01 Bad RT program address " H

02 Wrong priority in PRIOR " "

04 Ring protect " u

05 Memory protect " n

09 Illegal parameter in CLOCK " H

10 Illegal parameter in ABSET " N

11 Illegal parameter in UPDAT " N

12 Illegal time parameters " H

13 Page fault for non—demand " H

14 Outside segment bounds " H

15 Bad segments in MCALL/
MEXIT " n

16 Bad segment in FIX/UNFIX " N

19 Too big segment " n

20 Segment transfer error
"

hardware block no.
status

22 False interrupt level no. no

23 Device error hardware hardware "

status device no.

24 Internal interrupt bit no. yes

26 Mass storage time—out program no

27 Error in CONCT RT prog. yes

28 FTN I/O Error no. (See NORD File System)

_35 Stack error
"

ND-60. 050. 03



APPENDIX E

THE REAL-TIME LIBRARY

The real—time library consists of a set of subroutines in BRF
format.

Most of the entries are interfaces between the FORTRAN calls
and the monitor calls, consisting of a MON instruction and an
EXIT instruction.

In addition a set of stack operations are included, used by
FORTRAN to obtain re—entrant program units.

The bit string operations according to ISA—S61. 1 are also in—
cluded.

Bit Operations in FORTRAN

Logical Operations

The logical operations are implemented as integer functions in
FORTRAN. In the following m and n are constants, integer
variables or array elements. Operations are performed on a
full word bit by bit.

Inclusive (E

IOR (m, n)

Logical Product

IAND (m, n)

Logical Complement

NOT (m)

Exclusive or

IEOR (m, n)

ND-60. 050. 03



‘-



APPENDIX F

USER EXTENSIONS TO SINTRAN III

Monitor Calls

The monitor calls 1708through 1778 are set aside for the
special needs of a user. The corresponding subroutines can
be included at system generation time.

When the monitor call is executed, the subroutine will be
entered on RT program level. The user's registers are saved
in a data field, to which the X register points. The registers
can be reached using the displacements ZPREG, ZXREG,. ..etc.
The B register will be equal to the user's A register.

The normal entry sequence will do:

a) Get hold of any parameter values in core.

b) Copy the X register to the B register.

0) Turn off the monitor level.

If the parameters are conforming to the SINTRAN standard
calling sequence (see Appendix A), some existing subroutines
can be used for the entry sequence: GETO, GETl, GET2,
GET3, GET4 and GETS. These will move the parameters to the
data field, where the parameters can be reached using the
displacements D0. . . D5.

On exit, the B register should be the same as the X register
on entry. Exit is then a jump to the monitor address RET.

Example:

Monitor call to add two integers.

FORTRAN: I = IPLUS (J, K)

Called subroutine:
)9BEG
)9ENT IPLUS

IPLUS, MON 170
EXIT
)9END

Monitor call routine, USO corresponding to MON 170:

USO, JPL I (GETZ % GET 2 PARAMETER
% VALUES, X=: B

LDA D0, B
ADD D1, B
STA ZAREG,B
JMP I (RET

)FILL
ND-60. 050. 03



. 2 User Start Sequence

When the SINTRAN III system is started, an initializing RT
program calls a user subroutine USTAR. In this routine
the user can do his special initializing, or he can start his
own RT program.

Example:
US TAR, LDA RTPR

JAZ NOPR
LDA (PAR
MON 100 % RT

NOPR, EXIT
PAR, RTPR
RTPR, OWNPR

)FILL

User Restart Sequence

The restart routine being executed after power fail will call
a user routine, Where the user can for instance initialize
process output values. This subroutine is called before the
interrupt system is turned on.

Example:
UREST, LDA I (PINI

IOX PROCU % SOME PROCESS
% OUTPUT

EXIT
)FILL

ND-60. 050. 03



APPENDIX G

MONITOR CALL NUMBERS

The octal number can be used as an argument in the MON
instruction.

RTEXT
INBT
OUTBT
ECHOM
BRKM
RDISK
WDISK
RPAGE
WPAGE
TIME
Not used
CIBUF
COBUF
Not used
OPEN (old version)
CLOSE
Not used
DBRK
GBRK
SBRK
OPEN
DMAC BREAKP.
Not used
ERMSG
QERMS
ISIZE
‘OS IZE
Net used
SMAX
SETBY
REABT
SBSIZ
SETBC
RT
SET
ABSET
INTV
HOLD
ABORT
CONCT

107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146—167
170
171
172
173
174
175
176
177

ND-60. 050. 03

DSCNT
PRIOR
UPDAT
CLADJ
CLOCK
Not used
FIX
UNFIX
RFILE
WFILE
WAITF
RESRV
RELES
PR SRV
PRLS
DSET
DAB ST
DINTV
ABSTR
MCALL
MEXIT
RTEXT
RTWT
RTON
RTOFF
WHERE
IOSET
ERRMON
RSIO
MAGTP
ACM
Not used
USO
US 1
USZ
US 3
US4
US5
U86
US 7



'1-

i1!


