
NORD PL

User’s Guide

‘
A/S NORSK DATA-ELEKTRONIKK

NORD PL

User’s Guide

REVISION RECORD
Revision Notes

8 73 nal rinti

Publ. No. ND-60. 047. 01
August 1973

A/S NORSK DATA-ELEKTRONIKK
‘I’ (Dkernveien 145, 0510 5 - Tlf. 21 73 71

ii

TABLE OF CONTENTS

—-ooOoo—-

Chapters:

1 INTRODUCTION

1.1 Machine Oriented Languages
1. 2 Properties of the NORD PL

2 ENVIRONMENTS

3 STRUCTURE OF NORD PL

Basic Elements

Symbols
Numbers
Reserved Combinations
Character and String Contants
Registerswwwwww HHHHHH mrF-CDNH

Data Structure
Data Expressions
Executable Expressions
Statement Structure
Program Structure — Scope of Variables9.700.030)“ CEUIrP‘CON

THE INDIVIDUA L STATEMENTS4;

Declaration Statements

Data Declarations
Symbolic Contants
Addressing Mode Specifications
Subroutine Declarations14".“??? HHHHH $03M?“

Executable Statements

Arithmetical Statements
Control Statements

GO Statements
CA LL Statements
EXIT Statements
IF Statements
FOR Statementseeeee

3‘?“

e

PNNP’N

NH

OWQWNH

N[)-60.047.01

ennui-A:-

A

gunner-d

H

“I; ,4;

I

010'!

fir???»-

fin;

mammal

015301 ”NH

0505

03530)

C900

WMH

iii

ADDITIONA L FE ATURES

Commands
Conditional Compiling
In—line Assembly Coding

USING THE COMPILER

Preparing NORD PL Programs
Compiling NORD PL Programs
Diagnostic Messages

.1 Diagnostic Messages from the Compiler

. 2 Diagnostic Messages from the Assembler

Appendices:

w
g>g>> NH

OPERATORS AND RESERVED SYMBOLS

Non—alphanumeric Elements
Reserved Symbols

PROGRAMMER '8 CHECK LIST

--ooOoo--

ND-60. 047. 01

1. 1

. 2

1-]

INTRODUCTION

Machine Oriented Languages

A machine oriented language is a medium level language, standing
between the high level languages and assembly code. The syntax
resembles that of ALGOL. However. the use is intended to be like that
of an assembler, because all facilities of the computer can be reached.

a) The complete instruction set with all addressing modes

b) All registers

c) All available memory locations

Comparing a machine oriented language to assembly code:

a) It is easier to write programs, and the error checking can be
more extensive.

b) The programs will be more readable for others.

Comparing a machine oriented language to high level language:

a) A PL- language will give more optimal object code, about the same
as for assembly code.

b) The programmer is not dependent on fixed calling sequences or
data structures.

One of the main applications of machine oriented language is system
programming (operating systems, compilers). where efficiency as well as
readability is needed.

Properties of the NORDPL

The NORD PL is designed for the NORD—l, NORD—lO and NORD-20
computers. The object output is MAC assembler source code. Therefore,
including of assembly code sequences is very easy. All the debug facilities
of MAC are immediately available, including symbolic references to labels
and variables.

The statement set includes:

a) Arithmetical statements, consisting of arithmetical/logical
expressions and assignments. Constant expressions are also
included. These will be evaluated at compile time.

b) Control statements, including:

FOR - loop control
IF — conditional branching
GO — unconditional branching
CALL — subroutine call

ND-GO . 047 . 01

1—2

0) Declaration statements, with type specifications and data
presetting.

The compiler also includes conditional compiling.

ND-60. 047. 01

2-1

E NVIRONMENTS

The compiler needs about 5. 7 K of core plus main symbol table
(5 locations per symbol). The text is compiled in one pass. The
compiler and the assembler can be coupled together as co-routines,
so that even the whole compiling-assembling can be performed in one
single pass.

The compiler can be run either as a freestanding system, under
NORD-OPS or under TSS.

ND-60. 047. 01

3.

3.

3.

3.

1

1.

1.

.1.

l.

1

STRUCTURE OF NORD PL

Basic Elements

W
A symbol is a string of digits and letters. where the first 5 characters
only are significant. The rest will be taken as a comment. At least
one of the 5 first must be a letter (not necessarily the very first).
A symbol can be used for a variable, a label or a constant.

Examples:

NEW SYMBOL. A1. 1A

Numbers

In decimal mode the compiler will normally regard a string of digits as
a decimal number. If the string is immediately preceded by a 82. it will
be an octal number. In octal mode the digit string will be octal in any
case. Decimal/octal mode is set by commands. Initially the compiler
is in octal mode.

Floating point numbers have the same syntax as MAC floating point,
except that the sign # is used instead of E; besides the number must
always start with a digit.

Example:

0. 332% — 33

Reserved Combinations

Some symbols are reserved for special use. as operatbrs, statement
symbols or register identifiers. Some special characters are also used.
A complete list is found in Appendix A.

Character and String Constants

Character constants have the same form as in MAC. #7 73" A puts the
7 bits ASCII equivalent of A right adjusted in a word. and #5 AB packs
the characters A and B into one word. The string has also the same form.

'ABCD' will be packed as:

A B
C D

I

ND-60.047.01

3.1.5

3.

3.

2

3

Registers

The registers have fixed names:

P TAD
X K
T z
A Q
D 0
L C
B M
AD 0

If the number 0 is found in an executable expression, it will be regarded
as the zero register, not as a constant.

Data Structure

Three data types are available:

a) Integers (16 bits)

b) ' Double (32 bits)

0) Real (48 bits)

These types can be used either as single variables or arrays. Pointers
to the actual variables can also be declared.

All data must be declared before they can be used. However, the actual
location can be delayed, allowing for instance a data table to be placed
after the code using it.

The addressing mode is defined by the context of the declaration.

Static data can be initialized.

Data Expressions

A data expression is evaluated at compile time. The operands consist of
constants and symbols. If labels or variables are used, their address
values will be used. The operators are:

+ Add
- Subtract
* Multiply
\ Byte separation (equivalent to "*

4008 +")

The expression is evaluated strictly from left to right. If a label or a
variable's reference occurs, only + and — are allowed [or the rest of the
expression.

ND-60.047.01

3.4

3-3

Examples: MAC equivalents:

1+2*10 30

1 \ 1 401

#A\ ##B (equivalent to #AB) #AB
5+2+LAB1—VAR2 7+LAB1-VAR2

Data expressions can be found in:

a) Declaraction statements as initializations

b) Call statements as parameters

c) Executable statements as operands, surrounded by quotes (").

Executable Expression

In general an executable expression specifies a series of operations
between the primary operand, which is a register, and different
secondary operands, which can be registers. variables or constants.
If the expression starts with a register, this register will be the primary
ope rand throughout the expression.

Examples: MAC equivalents

A+V1+55=:V2 ADD V1
AAA 55
STA V2

X+o= :L-10 AAX 5
COPY SX DL
AAX -10

The operations are executed strictly from left to right. with no implicit
or explicit priority.

Operators

Arithmetical

:= Load

=2 Store

:=: Swap
— Subtract

+ Add

Multiply

\ Divide (reals only)

ND-60. 047. 01

3-4

S h i f t

SHZ shift with zero end input

SH arithmetical shift

SHR rotational shift

SHL shift with link end input

L o g i c a l

/ \ And
\ / Or

XOR Exclusive or

—, one 's complement

BONE set bit

BZERO reset bit

Special unary:

MIN Memory increment (MIN instruction)

GOSW Switch

Example: MAC equivalent:

A+4 GOSW L1, L2 AAA 4
RADD SA DP
JMP L1
JMP L2

An expression can also start with a variable. Then the A, AD or TAD
will be the primary operator, if the variable is an integer, double or
real. The first Operation is assumed to be a load.

Example:

If IX is an integer, then the expression

IX+1Y=: [Z is equivalent to A:=IX+IY=:IZ

If a variable is included in quotes ("). it is said to be referenced. Then
it is accessed one time less indirect than otherwise. This means that a
referenced pointer will be referenced as a variable, and a referenced
variable or label will give the address value. A constant will have the
same meaning whether it is referenced or not. Inside the quotes even
whole data expressions can be placed (see Section 3. 3). Then all variables
will be represented with their address values (even the pointers).

ND-60. 047. 01

3.5

3-5

Examples:

Let PNT1 be a pointer, V1 a variable and LL a label.

NORD PL MAC equivalents

PNT1 LDA I PNT1
"PNT1" LDA PNT1
V1 LDA V1
"V1" LDA (V1
"PNT1+V1+5” LDA (PNT1+V1+5

The number 0 will be regarded as the zero register. If constant
with value zero is wanted, it should be surrounded by quotes (").

Examples:

NORD PL MAC equivalents

0::T COPY DT
0::VAR STZ VAR
"0"=:VAR SAA OzSTA VAR
A BONE "0" BSET ONE 0 DA

Statement Structure

A statement is normally terminated by a semicolon or a carriage
return. Using a command (ICR), it is possible to set the compiler in
"ignore—carriage return" mode, so that the carriage return will be
ignored. Then a statement can consist of several lines.

A command begins with the percent Sign (%). Then the rest of the line
will be ignored.

If a statement starts with an asterisk (*), the rest of the line is regarded
as MAC assembly code.

If a statement starts with an at (Q) , it is regarded as a command to
the compiler.

ND-60. 047.01

3.6

t l' f If‘

Program Structure - Scope of Variables

Since the NORD—l/l 0/20 computers have direct addressing areas of
256 words, the programs will usually be divided into small subroutines.
Therefore, NORD PL has a subroutine feature, where labels and variables
defined within a subroutine are local to that subroutine. Labels and

'

variables defined outside the subroutines are global.

There is only one level of subroutines; it is not' possible to declare a
subroutine within another subroutine.

Example of layout:

Global . , .
data lSubroutme

1
l Subroutine

2

Local Subroutine Local Subroutine
data code data code

ND-GO. 047. 01

4.1

4.1.1

THE INDIVIDUAL STATEMENTS

Declaration Statements

Data Declarations

Variables must be declared to be one of the types:

INTEGER

DOUBLE

REAL

In addition two optional declaration symbols can be added:

ARRAY

POINTER

These will modify the addressing mode. After the declaration symbols
a list of variables can follow. The variables can be initialized,
either as default zeros, or to specified values.

Examples: MAC equivalents

INTEGER INTI, INT2 INT1,0
INT2, 0

REAL FLX FLX.0;0:0;

DOUBLE SYM, SY2=SYM,S3 SYM. 0; 0
SY2=SYM
SS. 0: 0

INTEGER POINTER PVAR:=VAR PVAR, VAR

REAL ARRAY FX(20), FY(30) FX=*;*+20+20+20/
FY=*;*+30+30+30/

INTEGER ARRAY TEXT:='STRING' TEXT. 'STRING'

A declared entity can be initialized by several elements. divided by a
comma, the whole list enclosed in parentheses.

INTEGER ARRAY PARLIST:=.(LOGNO,
AREA. "100", "15") PARLI. LOGNO

AREA
(100
(15

Each element can be a data expression.

ND-60 . 047 . 01

4.1.

4.1.

2

3

Data can also be initialized with no name attached to it by using
the DATA statement:

DATA m4,XY,5)

is equivalent to

INTEGER DUMMY := (44, XY, 5)

The actual place of data can be delayed, so that data can be placed
after the code physically. Then the variables can be declared equal
to question mark the first time and later be declared a second time.

Example:

INTEGER ARRAY TABLE=?
SUBR S

RBUS
INTEGER ARRAY TABLE (1000)

Symbolic Contants

Symbols can be defined to be constants, using the SYMBOL statement.

Example: MAC equivalent

SYMBOL L200=200 , L21 0
=L200+1() L200=200

L21 0i-‘L200+1 0

The value can be a data expression of numbers and defined symbols.
If the value is omitted. it will be one greater than the former value.

Example 5: MA C equivalent

SYMBOL 50,81 , 82.83 SO=0
81:1
82:2
S3=3

SYMBOL CHA=# #A,CHB, CHC CIIA=# #A
- CHB=CHA+1

CHC=CIIB+1

Addressing Mode Specifications

The addressing mode of a variable is dependent on the context of the
declaration statement. If nothing else is stated. a variable declared
inside a subroutine (between a SUBR and a RBUS statement) is directly
P-relative addressed. otherwise indirect addressed. If a variable is to be
B—relative addressed, its declaration statement must be enclosed by
a BASE -ESAB pair or a DISP —PS1D pair.

ND-60. 047. 01

If the variables are static allocated, BASE can be used, followed by a
base-field identifier.

Example: MAC equivalent

BASE BA BA=*+200
INTEGER BVAR1 , BVARZ BVARi ,0

BVAR2 , 0
INTEGER POINTER PSUB2=SUB PSUB, SUB

ESAB

The instruction to get a BASE variable can be

LDA BVARI — BA, B

If the variables are dynamic allocated, for instance as variables
in an element of a data structure, DISP should be used. followed by
the displacement of the first variable. Such variables cannot be
initialized.

Example: MAC equivanlent

DISP — 200 D1=-200
INTEGER D1.D2 D2=-177
INTEGER ARRAY DARR(10) DARR=-17G
INTEGER ENDA ENDA=-166

PSID

It is the user‘s responsibility to set the B register to the proper value.

Addressing modes:

T
Add“ BASE DISP Local Globalypo

INTEGER J LDA J—BA,B LDA J. B LDA J LDA I (J
"J" LDA (J LDA (J LDA (J

INTEGER PP LDAI PP-BA‘B LDA l PP.B LDAI pp Illegal
POINTER "pp" LDA PP-BA,B LDA PP,I3 LDA PP LDA I (PP

REAL R LDF R—BA,B LDF R,B LDF R LDF l (R
"R" LDA (R LDA (R LDA (R

INTEGER XB LDA X B—BA LDA x13, B LDA I, X LDA 1.x (XB
ARRAY ,B,X .x (x13

"XB" LDA (x13 LDA (XB LDA (x13

INTEGER ._ LDAI LL-BA LDA 1 LL Illegal Illegal
ARRAY LL ,3, X .13. x
POINTER "LL" LDA LL—BA,B LDA LL,B " "

ND-GO. 047. 01

4.1.4

4.2

4.4

DISP- or BASE —addressed variables can be forced to be X—addressed
instead of B-addressed. Then the variable must be preceded by an X
value denotation and a period (.).

Examples: MAC equivalents

X. DD LDA DD,X

START. DD LDX START
LDA DD,X

START. ELI. VAL LDX START
LDX EL1,X
LDA VAL, X

This access method is useful for addressing data structures.

Subroutine Declarations

A subroutine statement starts with the symbol SUBR. followed by a
list of entrypoints. The entrypoints will be global symbols. Other
labels and variables declared after the subroutine heading will be killed
at the end of the subroutine. The end is marked by the symbol RBUS,
which is a formal declaration only.

It is the programmer's responsibility to provide a return jump from
the subroutine (using EXIT, EXITA or G0).

Example:

SUBR ENTl, ENT2

lENTl :

gm
liBUS

Executable Statements

An executable statement can only be found within a subroutine.

ND-GO. 047. 01

4.2.1

4.2.2

4.2.2.1

4.2.2.2

Arithm etical Statements

An arithmetical statement consists of an executable expression, as described
in section 3.4. If the expression begins with a variable, the A, AD or TAD
register will be used as the primary operand, depending on the type of the
variable.

Control Statements

GO Statements

The G0 statement is used for unconditional branching. It consists of the
symbol GO followed by a label or a pointer.

Examples: MAC equivalents:

INTEGER POINTER RET: = RETX RET, RETX
LL: GO RET JMP I RET

GO LL JMP LL

GO ENTX % EXTERNAL JMP I (ENTX
ENTRYPOINT

If a subroutine is long, it can be useful to force a jump to be indirect,
as not to exceed the displacement range. This can be done by placing the
symbol FAR after G0.

Example: MAC equivalent

GO FAR LL JMP I (LL

CALL Statements

The simplest form of a subroutine call is the symbol CALL followed by a
subroutine entrypoint, a pointer or a local label. If it is not yet defined,
it is assumed to be an entrypoint of a succeeding subroutine. The para—
meters can be transferred by the registers.

The simple CALL statement can also be followed by a parameter list, being
eauivalent to the data list of the DATA statement. This can be used by
placing the parameter addresses after the subroutine jump.

ND—60. 047. 01

4.2.2.4

4—6

Examples: MAC equivalents:
INTEGER POINTER PNTR: = SUBO PNTR, SUBO
CALL SUBl JPL I (SUBl
CALL PNTR JPL I PNTR
CALL SUB2 (V1. SX2, WM) JPL I (SUB2

V1
SXZ
WM

EXIT Statements

Return from subroutines can be performed by EXIT (which is compiled to EXIT)
or EXITA (which is compiled to EXIT ADl) . If these means for subroutine
return areused, the programmer should ensure that the L register contents have
not been destroyed, for instance by a subroutine call within the subroutine,

IF Statements

The IF statement has the general form:

IF <conditions> THEN <statements> ELSE <statements> FI

ELSE can be omitted.

Between IF and THEN there can be several conditions, delimited by the OR
or AND symbols. The conditions are evaluated from left to right. If a condition
followed by AND or THEN is not true, the statements after THEN are bypassed.
If a condition followed by OR or THEN is true, the statements after THEN are
executed. Otherwise more conditions will be tested.

There are two types of conditions: relations and bit tests.

A relation consists of two executable expressions with a relational operator
between them:

> Greater

< Less
:2 Equal

> = Greater or eoual

< = Less or equal

> < Not equal

If the first element of the first expression is a variable or a constant, the A
or TAD register is considered as the primary register.

ND-60 . 047 . 01

4—7

If the first element of the second expression is a variable or a constant,
the T register is considered as the primary register. This means that
the relation

IF VARl VARZ THEN. . . is equivalent to

IF A: = VARl T: = VARZ THEN. . .

An expression can be empty. Then the present value of the A or T register
will be used.

IF > THEN. . . is equivalent to

IF A >T THEN...

This means that a construction like this is possible,

IF VAR1= 4 OR: 6 OR: 7 THEN...

If the first expression is of type REAL, the second must be equal to zero.

It is also possible to compare absolute values, where the register contents
are considered as positive numbers from 0 to 64K. Then the two relational
operators can be used:

4 < Less

> > = Greater or equal

In the NORD—l version the second expression must be equal to zero.

Examples: MAC equivalents:

IF VAR—D<VAR2 THEN.... LDA VAR
RSUB SD DA
LDT VARZ
SKI) IF DA LST ST
JMP BYPAS

IFA +10=0THEN... AAA 10
JAF BYPAS

IF A — LLIM> > = 0 THEN SUB LLIM
BSKP ONE SSC
JMP BYPAS
(NORD—l version)

A condition can be a bit test.

The bit to be tested can be one of the single bit registers. The condition
can be inverted by placing the symbol NBIT after the register specification.

ND-60. 047. 01

4.2.2.5

4-8

Examples: MAC equivalents:

IF K THEN. . . BSKP ONE SSK
JMP BYPAS

IF M NBIT THEN... BSKP ZRO SSM
JMP BYPAS

A bit in the general registers can also be specified. An expression determines
the register. Then one of the symbols BIT or NBIT selects 1 or 0 as true. At
last a constant determines the bit number.

Examples: MAC equivalents:

IF T BIT 7 THEN... BSKP ONE 70 DT
JMP BYPAS

IF NBIT 1 THEN BSKP ZRO 10 DA
JMP BYPAS

The construction THEN GOclabel> F1 can be abbreviated to GO élabel> .

For instance IF A4 0 GO ERR

is equivalent to IF A < 0 THEN GO ERR FI

MAC equivalent: JAN ERR

FOR Statements

The FOR statement is used for iterative purposes. Between FOR and DO
the iteration specifications. Between DO and OD are the statements to be
executed.

The general version has the form:

FOR <control variable> STEP <step count> TO <1imit> DO <statements> OD

The control variable normally specifies a register, which can be initialized
by an expression.

The step count is a constant defining the stop size. STEP can be omitted,
then assuming 1 as a default step. The limit is compared to the control variable
before each execution. If it exceeded, there will be no more executions.

ND-GO. 047. 01

Example:

FOR X: =- VAR STEP 3 TO 50 DO A + ARR (X) OD

MAC equivalent:

LDX VAR % SET INITIAL VALUE
NEXT, SAT 50

SKP IF DT GRE SX % TEST LIMIT
JMP BYPAS
ADD 1, X (ARR
AAX 3 % STEP CONTRON VAR
JMP NEXT

BYPAS,
In case of beginning with a variable or constant, the expression after FOR
will take A as the primary register and the expression after TO will take T
as the primary register. However, if the expression after FOR consists of
one single variable, this variable will be taken as the control variable instead
of a register.

Example: MAC equivalent:

FOR J TO T no CALL INCR OD LDA J
NEXT, SKP IF DT GRE SA

JMP BYPAS
JPL I (INCR
LDA J
AAA 1
STA J
JMP NEXT

BYPAS,
If only simple counting is wanted, the two following special cases are avail—
able:

3) A single variable between FOR and DO:

Example: MAC equivalent:

FOR VAR DO..... OD NEXT,

MIN VAR
JMP NEXT

This means that if the control variable contains negative number
before entering FOR, this will be the number of executions.

b) An X—expression between FOR and DO:

Example: MAC equivalent:

FOR X: = -5 DO. . . .OD SAX -5 % 5 EXECUTIONS
NEXT,

JNC NEXT

ND-GO. 047. 01

4—10

The loop can also start with just a single DO. Then there will
be an unconditional jump back.

Example: MAC equivalent:
DO OD N EXT,

JMP NEXT

ND-GO. 047. 01

5

5. 1

ADDITIONAL FEATURES

Commands

A command starts with a circled alpha ((4)) followed by the command name.
The command names are not reserved symbols, so that the same symbol
can be used for a command name as well as for a user variable. After
the command name parameters may follow, seperated by commas.

Some of the commands are used for conditional compiling, being described
in Section 5. 2. In Section 5.3 in—line assembly coding is treated. The re—
maining commands are described below.

63 ICR — "Ignore carriage return"—mode .
This command is to be used if a statement should need :
several lines (especially declaration statements) . The
carriage return is treated as if it were a space.

@ CR - "Carriage return"—mode.
After this command carriage return will have the same
effect as the semicolon (;), so that it will terminate the
current statement.

(9 EOF - "End of file".
This command is used for exit from the compiler to
the operating system. The MAC command)LINE is
output on the object device.

@CLEAR — Clear the symbol table of the compiler.

@OCT ~ All integer numbers will be treated as octal.

@DEC - Integer numbers will be treated as decimal, except
for those preceded by the "8;" sign.

@DEV — <input device>, <list device >, <object output device>.
This command is used for setting device numbers for
the compiler. If the list device 0, the error messages
will be printed on the output communication device,
otherwise on the list device.

If list output and object output use the same device
number, the object output will appear left adjusted and
the source program will be listed :32 columns to the right.
The source program will be preceded by "%" signs, so
that the mix can be assembled.
Example: @DEV4, 5, 3

For the TSS version files and devices can be specified
symbolically in the TSS notation. The necessary closing
and opening of files will be done. Numeric and symbolic
representation can not be mixed in the same DEV—
command, except for the single digit 0.

If a device is not specified at all, the old one will be used.

ND-GO. 047 . ()1

5. 2

5-2

Examples:

CD DEV T-R, 0, OBJECT FILE

4) DEV [NP-FILE, L—P

@DEVINP, L-P, L-P

MODE — <input communication device>, <output communication
device >. The communication devices will be defined.
Normally they will be equal to 1.

Conditional Compiling

The form of conditional compiling is conceptual somewhat similar to
the "Library mode" of the MAC assembler. This means that this
facility is especially well suited for extracting modules from a symbolic
library.

A module to be possibly included is headed by the command

60 LIB

followed by a logical expression of symbols. For each symbol the compiler
maintains an "include"-flag, which is automatically set if the symbol is
undefined. and reset when the symbol is defined. However, the pro—
grammer can also explicitly put the "include"—flag on or off using the
commands

Q STLIB <symbol> — Set the "library include"—flag

()9 NSLIB 4symbol> - Reset the "library include"-flag

The expression afterGD LIB can have the operators

/ \ And

\ / Or
—, Not

The expression is evaluated from left to right. If tie resulting "include"-
value is true, the following module will be included. otherwise it will be
skipped.

The module is terminated by the command

CD ELIB

The Q) LIB — Q ELIB's can be nested. If a module is skipped, it is skipped
until its correspondingfi) ELIB.

ND-60. 047.01

C71

Example:

CALL SUB1

CALL SUB2

(15 LIB SUB1 \/SUB2

SUBR SUB1, SUB2

a

Q) ELIB

In—line Assembly Coding

% INCLUDE THE FOLLOWING IF
% SUB1 OR SUB2 HAS BEEN
% REFERENCED

% UP To THIS POINT

There are two ways of including assembly coding:

a) If a statement starts with an asterisk (*), the rest of the line
will be taken as assembly code, being copied to the object
output st ream .

b) The command

@MAC

switches the compiler to assembly mode. The text will pass
unchanged to the output stream until an at sign (Q)) is found.

Examples:

*TRA OPR

a) MAC
(43 BORA 17o DX

ND-GO. 047.01

6.1

6—1

USING THE COMPILER

Preparing NORD PL Programs

The compiler can be used in several contexts, such as coupled to a
MAC assembler to produce immediate binary result, or as a separate
system outputting MAC assembly code to a file or external device.
However, the program itself can look the same in all cases.

In case of absolute programs (not BRF) . it is not necessary with any special
heading; the program can start with normal statements.

If on line return to the compiler is wanted, the program should be ended
with the command

@DEV1,0,0
giving the control back to the operator, which can start a new compilation.
If it is the last part to be compiled, it can instead be ended with

03 EOF % EXIT FROM COMPILER

Example of program:

% START OF PROGRAM

INTEGER B1, B2

SUBR SUBl
33:: B1
5:: B2

RBUS

@DEV1,0,0
If the resulting program should be output in BRF format, the pertinent MAC
commands)9BEG,)9END,)9ENT and)9EXT should be inserted as assembly
code.

Example:

% SUBROUTINE To PRINT 2 CHARACTERS
*)9BEG
*)9ENT OUTZ
*)9EXT OUTBT

SUBR OUT2
INTEGER WORD
INTEGER POINTER LINK

OUTZ; T:=L=: "LINK"
A=: WORD SHZ —10 % LEFT BYTE
T:=5: CALL OUTBT % LINE PRINTER
WORD /\ 377; T:=5; CA LL OUTBT % RIGHT BYTE
GO LINK

RBUS
MQEND
@EOF

ND-GO. 047. ()1

6.2

6.3

6.3.1

6-2

Compiling NORD PL Programs

a) Under TSS:

The compiler is fetched by using the command NORD—PL.
It then writes the message NORD PL (version number7,
waiting for input from the terminal. Then give the DEV
command to set the appropriate devices.

Example:

@DEV T-R, L-P, F—P

If the compiler is attached to an assembler, the inter—
communication device is number 6.

Example:

*6, 0, 3S % SET DEVICES FOR THE
% ASSEMBLER

as DEV 2. 5,6 % SET DEVICES FOR THE
% COMPILER

Now the resulting BRF output will come on device no. 3 (punch).

Under NORD—OPS:

The control card is used:

SNORDPL (<input device) ,<list device> , <output device7)

Example:

$NORDPL (2,5,3)

Diagnostic Messages

Diagnostic Messages from the Compiler

If the compiler detects an error, it prints a diagnostic message on the
list device, preceded by some asterisks. If the list device is equal to
zero. it instead on the communication device prints the name of the last
label and the number of lines after the label, followed by the diagnostic
message. Usually the compilation will continue; however, in a few cases
the compilation has to stop, returning control to the operator (aborting
if NORD-OPS).

ND-60. 047. 01

6-3

Message Meaning

Error, ill. base

Error, buffer full

Error in command

Error in compiler

E rror, ill. condition

Error in data expression

Error in decl.

Error, ill. disp.

Error, ill. elem.

Error in elem.

Error, in else/f1

Error, ill. else/fi/od

Error in expr.

Error in for

Error in if

Error in 1/0

Error, no FI/OD

Error, no (

E rror, ill. operation

Error in output

Error in a BASE statement

Too long statement or object instruction

The compiler is destroyed, or may be
there is a bug in the compiler

Error in the conditional compiling
commands (LIB, SLIB, STLIB or NSLIB)

Illegal operand or operator in a data
expression

Error in a declaration statement

Error in a DISP statement

A basic element is found in a place where
it should not be

An ill—formed basic element

Bad nesting of THEN-E LSE-FI

Bad nesting 0f THEN—ELSE—FI or DO-OD

Error in an executable expression

Error in a FOR statement

Error in an IF statement

I/() error signalled by the surrounding
system

Unmatched THEN/E LSE or DO at the end
of a subroutine

Missing left parenthesis in a data list

This operation is not implemented in
hardware, or non-corresponding operands

Error message from the surrounding
system

ND-60. 047. 01

Message Meaning

Error in relation

Error in statement start

Error in subr.

Error, table destroyed

E rror, table full

Error, too complex

E rro r, undefined

Ill—formed relation in an IF or FOR
statement

The statement is illegal in this context,
or illegal element in an expression

Error in a SUB? statement

Probably overlapping of compiled/assem-
bled program and the compiler's symbol
table

Too many symbols in the program

To complex construction in an executable
expression; the backtracking stack is
filled

Undefined local symbols at the end of a
subroutine

ND-GO. 047 . 01

6.3. 2 Diagnostic Messages from the Assembler

Some errors can be detected at assembly time only, because the com-
piler does not keep track of memory address values. Below is a list
of the most usual errors. For more information, see the manual
"MAC User's Guide".

Me ssage Meaning

RANGE EX. A label or variable is used too far away
from where it was defined. It can for
example occur for GO to a label defined
earlier, or at a OD statement.

POSS.FLT May be a label has been defined too far
after the place where it was used. It can
occur for a forward GO or in an ELSE,
F1 or OD statement. However. this

~

message can occur if an undefined
symbol is part of a data expression.
Then it can normally be ignored.

(ERROR Too far between the filling in of literals.
The compiler outputs a)FILL command
at each RBUS statement. However, the
programmer can put *) FILL commands
in between.

ND-60.047.01

APPENDIX A

OPERATORS AND RESERVED SYMBOLS

Non— alphanumeric Elements

Arithmetic Operators

:= Load

=: Store

:=: Swap
- Subtract

Add

Multiply

Divide

Byte separator (Data expressions only)/*+

Logical Operators

/ \ And
\/ Or

One 's complement9

Relational Ope rato rs

> Greater

< Less
= Equal

>= Greater or equal

<= Less or equal

>< Not equal

>> = Absolute greater

<< Absolute less

ND-GO. 047. 01

