
NORD - 10

Relocating Loader

'
A/S NORSK DATA-ELEKTRONIKK

NORD - 1O

Relocating Loader

REVISION RECORD

GVlSlOl'l N O t e S

1/73 Second Edition H_‘m_v_fiw_ __
otal Revision, superceding all previous issues

Publication Number ND—60.030.03
February 1976

Ill/H NORSK DATA—ELIEKTRONIKK
lim'crnvvion 57, 0310 5 —- TIL: 2] 73 71

TABLE OF CONTENTS

+++
+

Section:

1 GENERAL

1.1 How to Load and Execute a BRF—Program
1.2 Load-Address Control Commands
1.3 Commands Affecting the Symbol-Table
1.4 Saving and Dumping of Binary Programs
1.5 Auxiliary Memory Examination Commands
1.6 Memory-Image Loading
1.7 Overlay Segmentation of FORTRAN Programs

2 THE RELOCATING LOADER

2.1 Binary Relocatable Format
2.2 Relocation of Internal Addresses
2.3 Program Units
2.4 Separate Compiling/Assembling
2.5 Linking of Program Units
2.6 Common Blocks
2.7 Checksum
2.8 Fix-up Facility
2.9 Description of the BRF-Control Numbers

APPENDIX A — Loader Command Summary

APPENDIX B — The Loader Error-Messages

Tables:

2.1 Table of Control Numbers
2.2 The BRF-subset Produced by MAC, FORTRAN

and BASIC

Figures:

1.1 The Overlay Structure

2.1 Example of BRF
2.2 Example of BRF
2.3 Memory Image Before Loading
2.4 Memory Image After Loading
2.5 S-group with Control Number
2.6 Symbol Reference Link
2.7 _ Multiple COMMON Blocks

N D-60.030.03

Page:

_|| _\

_l_l_l_J_I_I—I

ll

LOG)\lCD-I>(.x)r\)

Mi.

NNMMVNNMN —‘-‘-‘(QOJO)U'|-I>

-"

MNMIIQMNM QCOCD-IS-ISMN

iv

The binary relocating loader is used to read BRF output from the MAC
assembler and the NORD FORTRAN/BASIC compilers into memory
and make the program(s) executable.

This manual describes the use of the NORD-lO Relocating Loader
running under the operating system SINTRAN III.

N D- 60.030.03

1~1

GENERAL

Programs transformed (by an assembler or compiler) into Binary
Relocatable Format (BRF) must be read and processed by a loader in
order to be executed by the machine. Relocatable programs may be
loaded anywhere in the memory according to default system addresses
or according to load-addresses specified by the user.

By the load process, the BRF-programs are transformed into an
absolute binary format and the quality of relocatability is lost.

There are three main types of loading:

Ofgsic Loading

This is the most common method of loading, whereby the program is
loaded directly into the users memory space.

0 Memory-l mage Loading

The program is loaded onto a file where it resides in absolute binary
form.

0 Qverlay-Segment Lgading

Parts of the program are loaded into the same memory area and, when
completed, they are written on different areas on a file.

N D-60.0S0.03

1.1

1—2

HOW TO LOAD AND EXECUTEA BRF-PROGRAM

Loader input is obtained from one or more files/library-files. The
loading is initiated by the command:

*LOAD <fi|e name> [<file name>...]

Each of the files Specified will be loaded until end-of—file is detected,
then the control is transferred to the loader command processor (types
*) which is then ready to accept another command. The bracket
contents denote optional parameters.

To obtain the entry-point addresses of the loaded program, use the
command:

* ENTRIES-DEFINED [<file name>]

which will give y0u a printout of the entry-names along with their octal
addresses in memory. If no file/device name is specified, the printout
will appear at your terminal. Also, referenced (not defined) entry-points
nay be requested by the command:

* ENTRIES-UNDEFINED [<file name>].

The octal addresses which appear on this map denote the last reference
address.

If you have loaded a FORTRAN program and some references still
remain, the FORTRAN-runtime/library system-file should be loaded. If
any of these routines are necessary for the execution they will be
selected by the loader and connected with their correSponding refer-
ences.

There should be no undefined entry-points remaining and your program
may be started by the command:

*RUN.

When the program has been executed, the control is transferred to the
operating system (@l.

If you wish to leave the loader and enter the operating system you
simply write:

* EXIT.

You may re-enter the loader by using the system command:

@CONTINUE.

N D- 60.030. 03

1.2 LOAD-ADDRESS CONTROL COMMANDS

If you wish to load your program at an address other than the preset
values you may obtain this by typing:

*SET-LOAD-ADDRESS <octal address>.

Subsequent loading will then be performed from the address specified.

Also, the absolute upper load limit may be redefined with:

*UPPER-LllVllT <octa| address>.

Be certain that no overlapping may occur when manipulating
load-addresses.

N D-60.030.03

1.3 COMMANDS AFFECTING THE SYMBOL-TABLE

Symbolic table-entry-points may be created, renamed or deleted by the
user. An entry is created by:

*DE FINE <entry name> <octal value/address>.

Symbol names may be renamed by:

* RENAME <old symbol name> <new symbol name>

and an entry is deleted by:

* KILL <symbo| name>

The associated address/value of an entry-point may be examined by
typing:

*VALUE <symbol>

The loader then prints the octal number on the terminal.

The associated address/value of an entry-point may be entered into a
memory location by the command:

* REFERENCE <symbol> <octa| memory address>.

It doesn’t matter if the referenced entry-point is present in the table or
not, as the correct address will be filled in when the symbol value is
defined.

!f the message:

LOADER TABLE OVERFLOW

is given it means that there is no more room for entries. The
table—length may be expanded through the command:

*SIZE <number of entries (octal)>.

However, the old table contents are lost. This means that y0u must
repeat the load procedure beginning with an appropriate table length.

All table contents are removed by typing:

* RESET.

However, all entries present may be protected from later removal
(through RESET) by typing:

*FIX.

The RESET will then merely remove all symbols entered after the
moment when the table was fixed.

N D~60.030.03

1—5

Also, the current location when fixing will later act as the lower bound
reset—address.

The user is advised not to fix the table when there are undefined
references.

Fixed entries (are not listed through the commands:
ENTRIES-DEFINED and ENTRIES-UNDEFINED.

ND-60.030.03

1.4 SA V/NG AND DUMP/N6 OF BINARY PROGRAMS

The loaded program may be saved in binary form in two ways:

* DUMP <destination file name> [<start address> <restart address>]

This command saves the loaded program on the specified file. The
program may be retrieved with the RECOVER command. It then starts
in the specified start address. The restart address specifies where the
program should be started with the CONTINUE command. The
dump-!imits may be set by the BOUNDARIES-command. Default
boundaries range from the lowest to the highest address accessed by the
loader since the last recovery. The main entry will act as default start -
and restart addresses.

*BPUN <destination file name> <start addr> <bootstrap addr>

The program-area (default or specified by the BOUNDARIES-
command) will be dumped binary on the destination file with an octal
coded bootstrap ahead. The main start entry of the program may be
Specified symbolically or octally. The bootstrap address (octal number)
specifies where the bootstrap program (44 locations) will be located, if
the program is loaded into a stand-alone NORD-lO or into the users
SINTRAN ||| memory by the PLACE command. Default destination
type: BPUN. Default boundaries range from the lowest to the highest
address accessed by the loader since the last recovery.

When a dump-area, other than the default addresses, is preferred it may
be specified by:

* BOUNDARIES <lower address> <upper address>.

N D- 60.030. 03

1.5 AUXILIARY MEMORY EXAM/NA T/ON COMMANDS

DEPOSIT <octa| address> <new contents>

The new contents are put into the octal address specified. If the last
parameter is missing the old contents are displayed and may be changed
by typing the new contents on the same line. By typing CR the next
location will be displayed automatically. Termination character is point
(.l.

OCTAL—DUMP <lower address> <upper address> [<file name>]

The contents of the locations between lower and upper address will be
dumped on the Specified file, 8 consecutive locations on each line. if
no file-name is Specified the contents are dumped on the terminal.

ASCII-DUMP <lower address> <upper address> [<file name>]

The contents of the locations between lower and upper address will be
dumped on the specified file, 8 consecutive locations (16 characrers) on
each line. Non-visual characters appear as Space. If no file-name is
specified the characters are dumped on the terminal.

ND- 60.030.03

1.6

1—8

MEMORY-[MA GE LOADING

Your program(s) may be loaded directly into a memory-image file
instead of into main memory.

The loader is put into this special mode by the command:

*lMAGE-FILE <fi|e name>

whereby, the file name denotes the memory-image file and has IMAG
as default type.

The IMAGE-FILE must be the first command given after the loader
recovery.

The DUMP- and BPUN-commands apply to memory-images as well as
to pure memory-loaded systems.

N D-60.030.03

1.7 OVERLAY SEGMENTATION OF FORTRAN PROGRAMS

As a program may be too large to fit in the available memory space,
the programmer may decide to divide his program into several
overlay-segment modules. When the program system is generated in this
way, only certain portions (root-segment + one overlay-segment) 0f the
executing program need to be in memory concurrently. The various
overlay-segments reside in the same area of memory at different times,
and during time of execution they are loaded automatically (in binary
form) by the runtime system when the control is transferred to one of
its entry-points. The overlay structure consists of a main program
(referred to as the root segment) and one level of associated overlay
segments.

Root segment

(resrdent)

‘ _. _

Overlay area \
\\

Overlay 1

User Area
\

\
Overlay 2

Common area \

(resident)

Overlay 3

Memory Randomrread file

Figure 1.1. The Overlay Structure

The root segment and the common area reside in memory throughout
the entire execution, while the overlays reside on a random-read file.
This file is specified with the OVERLAY-FILE command which also
acts as an overlay-modus setting. The OVERLAY—FILE command
should, therefore, be the first directive given after recovering the loader
from the operating system. Default type of the overlay-file is OVLY.

Example:

* OV-Fl OVLAY1

Note:

The scratch file 100 may be used as the overlay-file by giving the
command OV- Fl 100.

N 060030.03

The root-segment is generated by loading the main program, along with
some (user selected) frequently used function/subprograms. The root
segment should be completed by loading the FORTRAN runtime and
library-file (if not permanently present since system generation).

Usually, when the root—segment is completed, some undefined sub-
programs are referenced. Such referenced subprograms may be grouped
into overlay-segments in various ways. In generating overlays, the
programmer should organize his program to retain the commonly used
subprograms in the root segment and the less used routines in the
overlay-segments, which reside in memory only temporarily, one at a
time. The set of subprograms on an overlay-segment is specified by the
loader-command:

*OVERLAY-ENTRY <name 1> <name 2>...<name N>

where the names refer to subprograms called from the root segment.

When this command is given, the specified subprograms can be loaded
from one or more BRF files. It is recommended that the overlay
subprograms be kept on a separate BRF file compiled in library mode
(refer FORTRAN Reference Manual). In this way, the Specified set of
subprograms may be selected and loaded into the overlay independently
on the compilation sequence.

When all Specified entry-points are defined and no other undefined
references occur on this overlay, the message:

OVERLAY COMPLETED

is given.

When all specified entry«points are defined but other references occur-
red during the load process, the message:

UNDEF REFERENCES ON OVERLAY

is given. The file(s) containing these entry-points may then be loaded in
order to complete the overlay.

When an overlay is completed another one may be specified and
created according to the outline above.

An overlay system is considered to be complete if no undefined
reference occurs on the entry-map (UNDEFINED-ENTRY command).
It may then be started by the RUN command or saved by the DUMP
command (to be retrieved later).

The user should consider the following restrictions:

0 Only one level of overlays is possible, thus the root segment may
reference any other root segment or overlay subprogram, while
an overlay subprogram may only reference subprograms in its
associated overlay or in the root segment.

N D-60. 030.03

O The FORTRAN-debugging option cannot be used in connection
with overlays.

An example of overlav_qeneration

In the following example the root segment is compiled into the file
ROOTzBRF, and the subprograms into LIBSUBzBRF (in library mode)
in the sequence SUBR1, SUBRZ, SUBR3, SUBR4. To generate a
program system with SUBR1, SUBR4 on overlay 1 and SUBRZ,
SUB R3 on overlay 2, the following command sequence will apply:

*OV-Fl OVERLAY-SYSTEM
*LOAD ROOT
*OV-ENT SUBRl SUBR4
*LOAD LIBSUB
OVERLAY COMPLETED
*OV—ENT SUBR2 SUBR3
*LOAD LIBSUB
OVERLAY COMPLETED

N D-60.030.03

2.1

THE RELOCATING LOADER

BINARY RELOCATABLE FORMAT

BRF is organized in eight bit bytes and is not bound to any particular
data medium (magnetic tape, drum, etc.). The information contained in
the object program may be classified as follows: atrgl-informatign is
held in a control-byte and interpreted as a loader-command; program-
med information is held in two bytes containing a sixteen bit word and
is called a P-group; and symbolic information is held in four (six in
STANDARD FORTRAN) bytes called an arc—up; and contains a
symbol consisting of one to seven six-bit characters.

For further information see the MAC USERS GUIDE.

A BRF-group is defined to be

<control byte>
or <contro| byte> <P-group> <P—grou p>
or <contro| byte> <S-group>
or <control byte> <S-gr0up> <P-grou p>

BRF is a sequence of BRF-groups.

A program is a set of instructions and data which, when it is
interpreted, will perform an algorithm. A program may be in various
forms. It may be written in FORTRAN, assembly code, machine code,
and so forth. By means of special programs (i.e., compilers, assemblers,
loaders, etc.), the program may be transformed from one form to
another, but conceptually we will regard the program to be the same
before and after the transformation. We say that a program is written
in relocatable format or, more briefly, that the program is relocatable,
if the program is not predestined to lie in a specific place in memory.
Thus, a FORTRAN program and an assembly program (with only
symbolic addresses) are relocatable programs, while a machine program
is in general not relocatable (See example 1, 2, and 3 following).

Example 1 Example 2 mingle 3

Program PER written Program PER written Program PER writ-
in assembly mode in machine code and ten in machine code

placed in location 10 and placed in loca-
tion 20

PER, JMP | + 1 125001 125001
OLE 14 24
157 157 157
751 751 751

OLE, WAIT 151000 151000

N D-60.030.03

2—2

The machine program in Example 2 is bound to location 10 and cannot
be moved to location 20 without changes. As we see, the machine code
is not in a relocatable format, because there is no information about
which words contain addresses (internal addresses) that have to be
modified depending on the placement of the program. In BRF, this
information is placed in the control byte. The program PER will, in
BRF, look like Figure 2.1.

1.7 1 125001 2 4 1 157 1 751 1 151000 21 100575

Figure 2.1: Example of BHF

More specifically, we organize the BRF-groups by columns (see Exam-
ples 2 and 3).

Mnemcnits Comml Bytes Puma”;

17 ‘—Control bytesBEG

125001LF 1

LFl 2 5

157 P<grou ps1LF

LF 1 751

151000LF 1

EN 0 1000574

Figure 2.2: Example of BRF

The contents of the control byte are called the control number.
Control number 17 (mnemonic BEG) marks the beginning of the
program. In Standard FORTRAN the 17 (BEG) is followed by 32
(LONGF) which tells us that all S-groups contain six bytes instead of
four. Control number 1 (LF) means that the corresponding P-group will
be loaded unmodified, while control number 2 (LR) means that the
corresponding P-group contains an address, which is given relative to
the beginning of the program. Control number 21 (END) is followed by
a checksum.

ND-60.030.03

Statement numbers (labels) in FORTRAN and BASIC are represented .
by S-groups where the two first and the two last bytes are zero. The
third and fourth byte contain the numerical label value.

N D—60.030.03

2.2 RELOCATION OF INTERNAL ADDRESSES

Suppose the loader has filled the memory up to location 621 and is
going to load the object program described in Figure 2.1.

621 I

Figure 2.3:
.1 lemory Image Before Loading

521

Figure 2.4:
Memory Image After Loading

.2

125001

625

157

751

151000

; 620L+ 5

When the loader reads control number 17 (BEG), the current location
-1 (in this case, 620) is taken as the program's first address (the
so-called program-base). This program base is added to those P-groups
which are preceded by the control number 2 (LR). The result is shown
in Figure 2.4.

N D—60. 030.03

2.3 PROGRAM UNITS

A FORTRAN program is composed of one main program and one or
more subprograms (in FORTRAN, the subprograms are called SUB—
ROUTINE subprograms and FUNCTION subprograms). Those sub—
programs which are part of the system are called library subprograms
and are available for users. A common name for main programs and
subprograms is program unit.

The address (or addresses) of a program unit where the execution
begins is called an entry point. If the program unit is a main program,
the entry point is called a start address. A word containing the address
of an entry point (of another program unit) is called an external
reference.

N D—60.030.03

2.4 SEPA RA TE COMP/LlNG/ASSEMBLING

When the FORTRAN compiler compiles a program, each program unit
is translated without any information about the other program units.
Therefore, the program units need not be compiled at the same time.
This is called separate compiling. Thus, the object program consists of
one or more BRF program units. The information necessary to link
these together to an executable program, namely, the entry points and
the external references, is symbolic, and is placed in the S-groups. The
meaning of the S-group is determined by the preceding control number
in the following way:

Cormo‘ byve
“V f‘—

' ""5; 4 mu);

‘
symbol

Control Number ——-I

Figure 2.5: S—group with Control Number

Control Number Mnemonic Meanm

14 MAIN Symbolic start address

15 LlBR Library subprogram entry
pomt

16 ENTR Symbolic entry point

20 REF Symbolic external reference

The object program units begin with control number 17 (BEG), ends
with control number 21 (END), and may contain at least one of the
control numbers 14 (MAIN) or 16 (ENTR). A library subprogram has a
LlBR group at the beginning of the program unit. Only the necessary
library subprograms are loaded when the LlBR symbol has been
referenced by a REF group and is not already defined as a symbolic
entry point. If not needed, the object program is only check-read to
the END group, without losing control of the BRF syntax.

If the loader does not receive any other information, the program units
are loaded consecutively, starting at a system implemented address.
However, the program units may be loaded elsewhere by means of the
control numbers.

10(SFL) Start (continue) loading at the location in the
P-group.

11 (AFL) Continue at current location + the relative address in
the P—groups.

12 (SRL) Continue at the current program base + the relative
address in the P-group.

N D-60.030.03

The main program and the subprograms may be read in an arbitrary
sequence: i.e., if a program unit 'A' makes references to a program unit
'8’ it does not matter which of them is loaded first. The (necessary)
library subprograms are loaded at last. If a library subprogram 'A’
makes reference to another library subprogram 'B’ then 'A' must appear
first (without any consequences for the user).

N D—60.030.03

2.5 LINKING OF PROGRAM UNITS

The loader has a symbol table where each entry consists of three words
for the symbol (the S-group) and' one word (ADR) for the address.

ADR may have different meanings: If a symbol is not in the table, then
formally ADR = 0. If a symbolic entry point has been read, then ADR
is the memory address of the entry point. If only symbolic external
references to a symbol have been read, then ADR is a pointer to the
last location at which the symbol was referenced. This location contains
a pointer to the preceding reference to the same symbol. The first
reference location contains the word 1777778 to mark the end of this
list. One bit in the table entry is necessary to discriminate between the
two interpretations of ADR.

The link-structure of referenced symbols (not defined) may be visual—
ized as in Figure 2.6.

I l I I 1 reference

ll ._.____
2 reference

Element of referenced symbol
in the loaded table.

.__..._.>
E»las‘

reference

Figure. 2.6; SVmbr'fiI Referrace LIN?

N D-60.030.03

2.6 COMMON BL OCKS

The memory area in which the loader puts the program is a continuous
area from a lower address up to the upper bound. The program units,
therefore, normally grow upwards while the COMMON block is

allocated in the topmost part of the available space. The length of the

COMMON block is given in the object program, and the corresponding
control number is 26 (ASF). The COMMON block address is found by

subtracting this length from the upper bound.

The COMMON block address must be known before the addresses
referencing COMMON are loaded. Therefore, the COMMON block
address which uniquely Specifies the maximum COMMON block length,
is defined by the first program unit using COMMON data. This is the
explanation of the restriction that 3 COMMON block cannot be
expanded by the succeeding program units.

Data which are in COMMON are referenced by indirect addressing.
Such addresses are followed by the control number 27 (ADS) which
tells the loader to add the COMMON block address.

The COMMON block lengths cannot be expanded. The ASF group has
the format:

<ASF> <S-grou p> <P-group>

where the S-group contains the name of the COMMON block, and the
P-group contains the block length. Thus, if the COMMON blocks A, B,
and C are declared in the object program in this succession, the

allocation of the blocks would be as in Figure 2.7.

I

Loader

Increasing
address

177777

Figure 2.7: Multiple COMMON Blocks

N D-60.030.03

The ADS-group has the format:

<ADS> <S-group>

with the interpretation: The value of the S—group is added to the
previously loaded address (P—group).

ND- 60.030.03

2.7

2—11

CHECKSUM

In order to detect read errors during loading, a checksum is placed
behind each END control byte. Here, everything from the BEG control
byte to the END control byte is added together, complemented and
put in a P-group. The control bytes are regarded as eight bits, the
P-group as sixteen bits, and the S—group as two or three sixteen bit
numbers. (in Figure 2.1 all the numbers are given as octal numbers in
two’s complement modulo sixteen bits.)

ND—60.030.03

2.8

2—12

FIX-UP FACILITY

BRF and the loader are designed to allow single-pass, sequential
compiling as discussed in Section 2.1. This implies that the loader is
able to fix words which have already been loaded. This is done by the
four control numbers 4 (AFF), 5 (ARF), 6 (AFR), 7 (ARR) which all
have two P-groups. The second P-group contains an address, and the
first P—group contains a content which will be added into the address.
Both the address and the content (which may be an address itself) may
be relocated with the program base, and thus gives four possibilities.

N D-60.030.03

2.9

2—13

DESCRIPTION OF THE BRF-CONTROL NUMBERS

The legal control numbers are sequential numbers starting at zero and

are interpreted as commands to the loader. They are listed in Table 2.1
together with their mnemonics and their interpretation. The termin—
ology needs some explanation.

CLC is the current location counter. It contains the address where the
next word is to be placed. PB is the program base of the current
program unit. CDB is the COMMON data base (COMMON block
address). W1 to W2 are the contents of the first to the n’th P-group,
respectively.

If ’a' is an address or address expression, then (a) is the content of this
address. The expression X —> (Y) means that the value of X shall
replace the content of Y.

Control _ ,
Number Mnemonlc Interpretation

0 ‘ FEED Neglect

1 LF W1->((CLC)l,(CLC) + 1 —> (CLC)

2 LR W1 + (PB) ->((CLCll, (CLC) + 1 —> (CLC)

3 . LC W1+lCDBl->((CLC)),(CLC)+1—>(CLC)

4 AFF W1 + (W2) -* (W2)

5 ARF w1 + (PB) +(w2) » (W2)
6 AFR W1+(W2+(PB))—>lW2+(PBll

7 ARR w1 + (PB) + (W2 + (PBll + (W2 + (PBl)

10 SFL W1—> (CLC)

11 AFL W1 + (CLC) -> (CLC), fill zeros

12 SRL W1 + (PB) -> (CLC)

13 COMN

14 MAIN Symbol in S-group will become the main en-
try.

15 LlBR Conditional loading

16 ENTR Symbol in S—group is assigned value of CLC

Table 2.1.: Table of Control Numbers

FED-60.030.03

Table 2.1. continued

2—14

Control _ .
Number Mnemonlc Interpretation

17 BEG (CLC) —> (PB) First control bvte of a unit

20 REF Symbol in S-group is referenced in CLC

21 END W1 contains the BRF-checksum

22 INHB Warns that compilation errors have occurred

23 EOF End of loading

24 LNF <W0><W1...WW >->(CLC),...(CLC+
w0 —1) °

25 RT W1 contains real-time priority

26 ASF <symbol> <number> Defines common length

27 ADS <symbol> + (CLC —1)-> (CLC —1) Adds com-
mon address

30 Not used

31 Not used

32 LONG F Flags six bytes S-group

33 Not used

34 INL W2» (W1 + (PB)

35 DBL Wi—>(W1+PB+i—2Hi=2to3)

36 RLL Wi—>(W1+PB+i—2)li=2to4)

37 CXL Wi—>(W1+PB+i—2)(i=2to7)

40 INC W5—> (W4 + ADR)

41 DBC Wi->(W4+ADR+i—5)(i=5t06)

42 RLC Wi—>(W4+ADR+i—5)(i=5to7)

43 CXC Wi-+(W4+ADR+ i—5)(i=5to10)

Table 2.1.: Table of Control Numbers

N D-60.030.03

2—15

With reference to the control numbers 40, 41, 42, and 43, the W1, W2
and W contain a common block name. At load time the symbol must
be defined and its value is referred to as ADR.

WWEJSAJQ
”hi

L‘se'd‘B-v
7”

——7
Number Word MAC Standard‘ljfl Basic

0 I 0 ‘ x x

1 1 . x x x

2 1
!

x x x

3
I

1 x

4 2

5 2 ll

6 2 i x x : x

7 2 x x

10 1 x

11 1 x x

12 1 x

13 1

14 2 (3) x x x

15 l 2 (3) X x x

16 2 (3) x x x

17 0 x x x

20 2(3) x x x

21 1 x x x

22 0 x x x

23 0 x x x

24 1 + W1

25 1 x x x

Table 2.2: The BRF—subset Produced by MAC, FORTRAN and BASIC

N D—60.030.03

Table 2.2, continued

2—16

[Control Belonging Used ‘By
Number Word MAC Standard FTN Basic

26 3 (4) x x

27 2 (3) x x

30

31

32 0 x x

33

34 2 x x

35 3 x

36 4 x

37 7 x

40 4 (5) x

41 5 (6) x

42 6 (7) x

43 9 (10) x

Table 2.2: The BRF-subset Produced by MAC, FORTRAN and BASIC

N D-60.030.03

APPENDIX A

LOADER COMMAND SUMMARY

APPENDIX A

LOADER COMMAND SUMMARY

The loader is controlled from the terminal by the set of commands
listed below. The command words may be abbreviated and the para-
meters (if any) are separated by space or comma.

ASCII—DU MP <|ower address> <upper address> [<file name>]

The contents of the locations between lower and upper address will be
dumped on the specified file, 8 subsequent locations (16 characters) on
each line. Non—visual characters appear as space. If no file-name is
specified the characters are dumped on the terminal.

BOUNDARIES <|ower address> <upper address>

This command is used to specify the dump area in connection with the
BPUN and DUMP commands.

BPUN <destination file name> <start addr> <bootstrap addr>

The program-area (default or specified by the BOUNDARIES com-
mand) will be dumped binary on the destination file with an octal
coded bootstrap ahead. The main start entry of the program may be
specified symbolically or octally. The bootstrap address (octal number)
specifies where the bootstrap program (448 locations) will be located if
the program is loaded into a stand-alone NORD-‘IO. Default destination
type: BPUN. Default boundaries range from the lowest to the highest
address accessed by the loader since last recovery.

DEFI N E<symbol> <octal value>

The symbol will be entered into the loader table. Its value will be equal
to the octal number specified.

Exampl_e_:

W211

DEPOSIT <octa| address> <new contents>

The new contents are put into the octal address specified. If last
parameter is missing the old contents are displayed and may be changed
by typing the new contents on the same line. By typing CR the next
location will be displayed automatically. Termination character is a full
stop (.).

N Du60.030.03

DUMP <destination file name> [<start address> <restart address>]

This command saves the loaded program on the specified file. The
program may be retrieved with the RECOVER command, and then
starts in the specified start address. The restart address specifies where
the program should be started with the CONTINUE command. The
dump-limits may be set by the BOUNDARIES command. Default
boundaries range from the lowest to the highest address accessed by the
loader since last recovery.

ENTRIES-DEFINED [<file name>]

All symbols (defined) present in the loader—table will be printed on the
terminal. In addition the current location and the upper bound are
displayed in the following format:

FREE: <current location>—<upper bound>

Default file name is the terminal.

Example:

E—D
EDMUN = 000777

FREE = 02000-177777

ENTRIES-UNDEFINED [<file-name>]

This command is similar to ENTRIES-DEFINED. However, only
undefined symbols are printed.

Default file name is the terminal.

EXIT

The control is left to the Operating system.

FlX

The current contents of the loader table are fixed (will not be removed
by RESET) and the current location will later act as the lower bound
reset-address. The fixed entries do not appear in any entry list-out.

HELP

List the available loader commands on the terminal.

N D—60.030.03

IMAG E-Fl LE <file name>

The BRF information will be loaded into the file specified instead of
directly into the main memory. Default file type is IMAG.

Qample:

lM-Fl DREAM

KlLL<symbol>

If present, this symbol will be removed from the loader—table.

Example:

,KILL EDMUN

LOAD <file name> [<file name>....]

The fi|e(s) specified will be loaded until end—of —file is encoun-
tered. Default file-type is: BRF.

Example:

LOAD SUBlI SUB2

OCTAL-DUMP <lower address> <upper address> [<file name>]

The contents of the locations between lower and upper address will be
dumped on the Specified file, 8 subsequent locations on each line. If no
file—name is specified the contents are dumped on the terminal.

Example:

OCTAL-DUMP 0 3

000000: 000000 000000 000000 000000

OVERLAY-ENTRY <entry name> [<entry name>....]

Specifies the subprograms on the next overlay. These units may be
called from the root-system or from the actual overlay itself.

OVE R LAY-Fl LE <fi|e no./name>

Specifies the overlay-file and the loader is put into overlay—mode.

N D-60.030.03

t"

APPENDIX B

TH E LOADER ERROR—MESSAG ES

APPENDIX B

THE L OADER ERROR-MESSA GES

AMBIGUOUS

The last command word is abbreviated until an ambiguity has occurred.

AT UPPER LIMIT

The current load address has reached the absolute upper limit or the
beginning of the common area.

BRF CHECKSUM ERROR

The BRF—file contents are damaged due to hardware or software errors
occurring when it was written or read.

COMMON BLOCK EXPANDED

The length of an already defined common block is declared larger in a
subsequently loaded program.

DOUBLY DEFINED

The symbol being defined (either by loading a file or by the DEFINE
command) has already been assigned a value.

ILL BRF—CONTROL NO

Non-interpretive information has appeared on the BRF—file due to
hardware or software errors.

INSUFFICIENT PROGRAM

Error-diagnostics have occurred during the compilation process.

LOADE R-TAB LE OVE RFLOW

The loader symbol table is filled.

NO MAIN ENTRY

The user is trying to start a program with no main module.

N D—60.030.03

NO OVERLAY- FILE SPECIFIED

The command OVERLAY-FILE should be given first.

OVE R LAY ENTRY-TAB LE OVERFLOW

Too many entries in the overlay-system. Table size can only be
expanded by generating a new loader version.

OVERLAY SEGMENT-TABLE OVERFLOW

Too many overlay segments. Table size can only be expanded by
generating a new loader version. Default size: 16 overlays.

AUTO-BUFFER FULL

No more room for automatic-commands.

In addition to the messages listed above, some of the file system
diagnostics (l/O-errors) may appear at your terminal.

N D—60.030.03

to. no. 0000000::::. ::: ::::::::.
:oo:::::o :9: :::

/\/S NKHiSPiI)AWHK7bH,HlCFH(HfiH<K
.3: 0000: 0:000...- L¢rcnveion 57, Oslo 5 — WWF. 21 73 71
too 0000 0000.00.
... ... 0......

COMMENT AND EVALUATION SHEET
NORDfi-10 Relocating Loader Manual
N D-60. 030. 03

In order [or HHS Inununl to develop to the point\vherc it best
sudts your needs. “wulnust have your connnonts. correcfions.
suggesthn1slkn'nddni0ns‘ etc. Please “nitOthnvn your connnonts
on HUS pro—addressed finun and post H. Please be specific
“horevcr possflflo.

FROMI

