| NORD

COMPUTER SYSTEMS

BINARY RELOCATING LOADER

i J

NORD

COMPUTER SYSTEMS

BINARY RELOCATING LOADER

7
: / > A/S NORSK DATA-ELEKTRONIKK

REVISION RECORD

Revision Notes
3/170 Original Printing B — ==
1/73 Second Edition

Publication No. ND-60.030.02

January 1973

A/S NORSK DATA-ELEKTRONIKK
Qkernvn. 145, Oslo 5 - TIf. 21 73 71

INTRODUC TION

ii

The loaders are used to read BRF output from the MAC assembler
and the NORD FORTRAN compilers into core, and make the loaded

program (s) executable,

The loader exists in the following versions:

BRL

NORD FORTRAN II Loader

NORD FORTRAN IV Loader

SINTRAN II All Core

Loader II

SINTRAN II All Core
Loader IV

SINTRAN II Real-Time
Loader

Loader for BRF output from MAC assembler
and Mini FORTRAN compiler.

Loader for BRF output from NORD
FORTRAN II compiler and MAC assembler.

Loader for BRF output from NORD
FORTRAN IV compiler, NORD FORTRAN
II compiler, Mini FORTRAN compiler and
MAC assembler.

NORD FORTRAN II Loader with some
extensions for running in a SINTRAN II
system.

NORD FORTRAN IV Loader with some
extensions for running in a SINTRAN II
system.

Loader for BRF output from NORD
FORTRAN IV compiler, NORD FORTRAN
II Compiler, Mini FORTRAN compiler and
MAC assembler. This loader may only be
used in a SINTRAN II mass~storage system.

This manual describes the use of all these versions of the loader except
the NORD FORTRAN IV Loader and the SINTRAN II Real-Time Loader.
In the ordinary NORD FORTRAN IV Loader, the command structure is
different, but a special version of this loader with the same command

structure is available.

ND-60.030.02

Chapters:

1

Do

(¥4

Appendix:
A

[T O T QW T T T SN e

LAV AV

w W

= O 00 -1 Uk N =

O DN =

[y

iii

TABLE OF CONTENTS

--00000--

GENERAL

Binary Relocatable Format
Binary Format

Relocatable Format

Relocation of Internal Addresses
Program Units

Separate Compiling/Assembling
Linking of Program Units
COMMON Block

Checksum

Fix-up Facility

THE BRF-LOADER
Terminology
Loader Parameters
Error Messages

LOADER MONITOR

The Commands
Map of Memory after Loading

SINTRAN II ALL CORE LOADER

--00000-~

ND-60.030.02

T oF
(¢

1
CO QO =

A

[T T T T e
| 1

|
® oo 3L

[A]
[}
o

1.

1.

il

1

2

3

i-1

GENERAL

Binary Relocatable Format

Output from the NORD FORTRAN compiler and the BRF-MAC assembler
is in Binary Relocatable Format, abbreviated to BRF.

To execute the object program it must be read into memory by a loader..

Binary Format

BRF is organized in eight bit bytes and is not bound to a certain data
medium (magnetic tape, drum, etc.). The information contained in
the object program may be classified as follows: Control-information
is held in a control-byte and interpreted as a loader -command;
programmed information is held in two bytes containing a sixteen bit
word and is called a P—group; and symbolic information is held in four
bytes called an S—group and contains a symbol consisting of one to five
six-bit characters.

For further information see the MAC USERS GUIDE.

A BRF~group is defined to be

< control byte >
or < control byte > <P-group> <P-group >
or < control byte> <S-group >

BRF is a sequence of BRF—groups.

Relocatable Format

A program is a set of instructions and data which, when it is interpreted,
will perform an algorithm. A program may be in different forms, it

may be written in FORTRAN, assembly code, machine code, and so forth.
By means of special programs (i.e., compilers, assemblers, loaders
etc.), the program may be transformed from one form to another, but
conceptually we will regard the program to be the same hefore and

after the transformation. We say that a program is written in relocatable
format, or, more briefly, that the program is relocatable, if the pro-
gram is not predestined to lie in a specific place in memory. Thus, a
FORT'RAN program and an assembly program (with only symbolic
addresses) are relocatable programs, while a machine program is in
general not relocatable (see examples 1, 2 and 3 below).

ND-60.030.02

1-2

Example 1 Example 2 Example 3
Program PER written in Program PER written in Program PER writt
assembly code machine code and placed machine code and pl
in location 10 in location 20

PER, JMP I =x 1 125001 125001

OLE 14 24

157 157 157

751 751 751
OLE, WAIT 151000 151000

The machine program in Example 2 is bound to location 10, and cannot

be moved to location 20 without changes. As we see, the machine code

is not in a relocatable format, because there is no information about
which words contain addresses (internal addresses) that have to be modi-
fied depending on the placement of the program. In BRF, this information
is put in the control byte. The program PER will, in BRF, look like
Figure 1.2

171 1] 125001 | 2| 4 | 1| 157 |1 [751 | 1| 151000 | 24 | 100575

Figure 1.1 Example of BRF

To make it more clear, we organize the BRF—groups by columns
(see Examples 2 and 3).

Mnemonics g}?& terI P—groups

BEG 17 = Control-bytes
LF 1 125001

LR 2 4

LF i 157| +———— P-groups
LF 1 751

LF i 151000

END 21 100575

Figure 1.2 Example of BRF

ND-60.030. 02

1.4

1.

5

1-3

The contents of the control byte are called the control number. Control
number 17 (mnemonic BEG) marks the beginning of the program.
Control number 1 (LF) means that the corresponding P-group shall be
loaded unmodified, while control number 2 (LR) means that the
corresponding P-group contains an address, which is given relative to
the beginning of the program. Control number 21 (END) is followed

by a checksum.

Relocation of Internal Addresses

Suppose that the loader has filled core up to location 621 and is going
to load the object program described in Figure { 1.

0-—»/ 0-——»7
/% 4//

621 —» 621 —» 125001
625 =621+4

151000

Figure 1.3 Figure 1.4
Image of core before loading Image of core after loading

When the loader reads control number 17 (BEG), the current location

@(in this case, 621) is taken as the program's first address (the so-called
program-base). This program base is added to those P-groups which
are preceded by the control number 2 (LR). The resultis shown in
Figure 1.4

Program Units

A FORTRAN program is composed of one main program and none or
more subprograms (in FORTRAN, the subprograms are called
SUBROU TINE subprograms and FUNC TION subprograms). Those sub-
programs which are part of the system are called library subprograms
and are available for users. A common name for main programs and
subprograms is program unit.

The address (or addresses) of a program unit where the execution
begins is called an entry point. If the program unit is a main program,
the entry point is called a start address. A word containing the address
of an entry point (of another program unit) is called an external
reference.

ND-60.030. 02

1.6

Separate Compiling/Assembling

When the FORTRAN compiler compiles a program, each program
unit is translated without any information about the other program
units. Therefore, the program units need not be compiled at the
same time. This is called separate compiling. Thus, the object
program consists of one or more BRF program units. The infor-
mation necessary to link these together to an executable program,
namely, the entry points and the external references, is symbolic,
and is placed in the S—groups. The meaning of the S—group is deter-
mined by the preceding control number in the following way:

control byte —— v S-group
symbol

A
control number —

Figure 1.5 S—group with control number

Control number Mnemonic Meaning
14 MAIN Symbolic start address

15 LIBR A warning that this symbol will
appear later as an entry point in
the succeeding (library) subprogram

16 ENTR Symbolic entry point

20 REF Symbolic external reference

The object program units begin with control number 17 BEG), end
with control number 21 (END), and may contain at least one of the
control numbers 14 (MAIN) or 16 (ENTR). A library subprogram

has a LIBR group at the beginning of the program unit. Only the
necessary library subprograms are loaded when the LIBR symbol

has been referenced by a REF group and is not already defined as an
symbolic entry point. If not needed, the object program is only check-
read to the END group, without losing control of the BRF syntax.

If the loader does not get any other information, the program units
are loaded consecutively, starting at a system implemented address.
However, the program units may be put in any other way by means
of the control numbers.

10 (SFL) Start (continue) loading at the location in the
P—group.

11 (AFL) Continue at currentlocation + the relative
address in the P—groups.

12 (SRL) Continue at the current program base + the
relative address in the P—group.

ND-60.030. 02

1.

7

The main program and the subprograms may be read in an arbitrary
sequence; i.e., if a program unit A makes references to a program
unit B, it does not matter which of them is loaded first. The
(necessary) library subprograms are loaded last. If a library sub-
program A makes reference to another library subprogram B, then

A must appear first (without any consequences for the user, however).

Linking of Program Units

The loader has a symbol table which has one entry for each program
unit. Each entry consists of two words (=4 bytes) for the symbol
(the S—group) and one word (ADR) for the address.

ADR may have different meanings: If a symbol is not in the table,
then formally ADR=0. If a symbolic entry point has been read, then
ADR is the memory address of the entry point. If only symbolic
external references to a symbol have been read, then ADR is a
pointer to the last location at which the symbol was referenced.
This location contains a pointer to the preceding reference to the
same symbol. The first reference location contains the word
1777778 to mark the end of this list. One hit in the table entry is
necessary to discriminate between the two interpretations of ADR.
There are two free bits in the symbol, and if the memory size is

less than 32K, at least one bit in ADR.

ND-60.030. 02

OBJECT PROGRAM MEMORY SYMBOL TABLE

177777 --—

1

|

|

|

|

|

|

|

Ji

i -

|
Il

|

STATE 1 REF "FUNC" <
| 1
2
STATE 2 REF "FUNC" > i
|
| "FUNC"
|
I

3
L |<INSTRUCTION>| {
— [

STATE 3ENTR"FUNC"

|
|
|
|
|
I
STATE 4 REF "FUNC" : - <
[
|
|
|

Figure 1.6 The link-method

ND-60.030.02

1.

8

In Figure 1.6, the numbers close to the arrows are the states after

the corresponding input from the object program. REF "FUNC'"is a
symbolic external reference to the entry point FUNC (STATE 1, 2 and
4). ENTR "FUNC" is the entry point FUNC (STATE 3). A rectangle is
a machine word, and if an arrow is starting inside the rectangle, then
the machine word contains a pointer to the location to which the arrow
points. If there are several arrows out from a rectangle, then the
arrow is valid which has the highest number not exceeding the current
STATE number. For instance, in STATE 2, the arrows 3 and 4 are
dummy.

COMMON Block

The memory area in which the loader puts the program is a contiguous
area from a lower address up to the upper bound. The program units
therefore normally grow upwards, while the COMMON block is allocated in
the topmost part of the available space. The length of the COMMON

block is given in the object program, and the corresponding control number
is 13 (COMN). The COMMON block address is found by subtracting this
length from the upper bound. Thus there is indeed no waste space if the
program reaches the COMMON block.

The COMMON block address must be known before the addresses

referencing COMMON are loaded; therefore the COMMON block address,
which uniquely specifies the maximum COMMON block length, is defined

by the first program unit using COMMON data. This is the explanation

of the restriction that the COMMON block cannot be expanded by the succeed-
ing program units,

Data which are in COMMON are referenced by indirect addressing. Such
addresses are preceded by the control number 3 (LC), which tells the
loader to add the COMMON block address.

In order to allow multiple COMMON blocks, modification of the loader is
straight forward, if the restriction not to expand COMMON is accepted.
The COMN group is extended to the format

< COMN » < S-group> <P-group>

where the S—group contains the name of the COMMON block, and the
P-group contains the block length. Thus, if the COMMON blocks A, B
and C are declared in the object program in this succession, then the
allocation of the blocks would be as in Figure 1.7.

)

ND-60.030.02

1.

il

9

10

0
Increasing Loader
addresses
C
B
' A
37777

Figure 1.7 Multiple COMMON Blocks

The LC-group then has to be extended to the format
LF <P-group> < ADS> < S—group>

with the interpretation: The value of the S—group is added to the
previously read P-group.

Checksum

In order to detect read errors during loading, a checksum is put behind
each END control byte. Here is everything from the BEG control byte

to the END control byte added together, complemented and put in a
P-group. The control bytes are regarded as eight bits, the P—group as
sixteen bits, and the S-group as two sixteen bit numbers. (n Figure 1.1,
all the numbers are given as octal numbers, in two's complement modulo
sixteen bits.)

Fix-up Facility

BRF and the loader is designed to allow single-pass, sequential compiling
as discussed in Section 1.3. This implies that the loader is able to fix up
words which have already been loaded. This is done by the four control
numbers 4 (AFF), 5 (ARF), 6 (AFR), 7 (ARR) which all have two P-groups.
The second P—group contains an address, and the first P-group contains a
content which shall be added into the address. Both the address and the
content (which may be an address itself) may be relocated with the program
base, and this gives the four possiblities.

ND-60.030.02

2.

2.

1

2

2-1

THE BRF-LOADER

Terminology

The legal control numbers are sequential numbers starting at zero and
are interpreted as commands to the loader. (The numbers themselves
are used directly as jump parameters in the loader program). They
are listed in a table (Figure 2.1) below, together with their mnemonics
and their interpretation. The terminology needs some explanation.

CLC is the current location counter. It contains the address where
the next word is to be put. PB is the program base of the current
program unit. CDB is the COMMON data base (COMMON block
address). W, , W32 are the contents of the first respective second
P-group.

If a is an address or address expression, then (a) is the content of this
address. The expression X —(Y)means that the value of X shall
replace the content of Y.

The control number list may easily be extended to meet future needs.
The table contains only those used by the FORTRAN compiler,

LLoader Parameters

The following symbols are parameter names in the loader:

CLC current location counter

PB program base to current program

CDB COMMON data base

SA start address

ADR address to a segment which is contained in the program
table TAB

LB lower bound

UB upper bound

CL COMMON length

SKPF skip flag

MANF manual flag

MAXN maximum control numbers plus one

wi, w2 first and second word after a control byte

CHSM checksum

PRIO priority of real time programs

ND-60.030. 02

2-2

TABLE OF CONTROL NUMBERS

Contr.

- Mnemonic Interpretation

0 FEED Neglect

1 LF W, — ((CLC)), (CLC) + 1 —& (CLC)

2 LR W, + (PB) — ((CLC)), (CLC) + 1 —= (CLC)
3 LC W, + (CDB) — ((CLC)), (CLC) + { —= (CLC)
4 AFF Wy + (W,) —"(Wz) h
5 ARF Wy + (PB) + (W,) —=(W,)

6 AFR Wy + (W2 + (PB)) —’-(W2 + (PB))
7 ARR Wy + (PB) + (W, + (PB)) —=(W,, + (PB))

10 SFL W, —= (CLC)

11 AFL W, + (CLC) —* (CLC), fill zeroes

12 SRL W, + (PB) —(CLC)

13 COMN

14 MAIN

15 LIBR

16 ENTR

17 BEG (CLC) —= (PB)

20 REF

21 END

22 INHB

23 EOF

24 LNF <Wo> <WyWw0> — (CLC), ...(CLC+Wy-1)
25 RT W; —* PRIO

26 ASF <symbol > < number >

27 ADS <symbol > + (CLC-1) — (CLC-1)

30 ASG <symbol > < number >

31 ADG <symbol> + (CLC-1) —= (CLC-1)

ND-60.030. 02

2.3

Error Messages

The loader error messages have the format ERR Ldd where dd is a

two-digit error number as explained below.

01
02
03
04
05
06
07
08
09
10
11
12

common,expanded

double defined entry point
checksum error

erroneous program

illegal control number
overlap

no start address

symbol table full

undefined symbols

undefined common or global block
undefined label (system error)

illegal character in octal number

ND-60.030. 02

3.

1

3-1

LOADER MONITOR

The loader is activated and controlled from an on-line Teletype through
a command program called the loader monitor.

The echo modus of the loader may be changed from non-echo to echo
mode or reverse, by typing control K on the Teletype. (If standard I/O -
STIO1 - is used by the loader.)

The Commands

An

Automatic mode.

This command loads program units from the device with the
logical device number n until the control byte EOF is read,
and then returns control to the loader monitor.

Print vale of current location.

This command will print the value of current location, (CLC),
on the device with the logical device number n.

Example:
L»C 12
CLC : 005000
L »

Deposit new value (octal) into the specified address. Type the
address terminated by /, then the contents of the location will
be printed, and then the user may type the new value he wants
to deposit, or just give carriage return if no change is wanted.

Example:

Deposit the instruction JMP » -1 (124377)
into location 302

L » D 302/125000 124377
L *

Examine contents of locations.

This command will print the contents of the specified locations
in octal format on the device with the logical device number n.

Example:
LxE 1 10 15’)

000010/001234
001235

000000

000000

000014

000015

L »

ND-60.030. 02

3-2

In this example the contents of locations 10 through 15 are
printed on the device with the logical device number 1.

This command is equal to the MAC command)PRINT.

Fix loader symbol table and set lower bound equal to current
location.

Define new size of loader symbol table.

Example:
L» I 100,
L »

The loader symbol table will hold 100 (octal) symbols in this
example.

The loader symbol table is placed immediately after the loader
program, and will be expanded upwards. This command will
also set CLC equal to the new LB.

We will advise the users to use the I command before any program
units are loaded.

CORE LAY OUT

0
‘ n,
Loader Program ! n,
Loader Symbol Table Table size: 100 symbols
LB —» n2

Loaded Programs !

CLC+»| .~ |n
| 3
|
|
| 37777

'

Figure 3.1 (cont.)

ND-60.030. 02

3-3

L» 1 200
L * l =
0
o
Loader Program
g
CLC= Loader Symbol Table n The I command will
LB — 2+300 expand the symbol
Loaded Programs SEble GPWERLS .
(3 memory locations
T~ T T —
n, for each symbol.)
37777

Figure 3.1

Note: Take care not to expand the loader symbol table into
loaded programs.

Set start load address.

Example:

L* L 5000 M
In this example the next program to be loaded will be loaded
from location 5000 (octal) and upwards.
Manual mode.
Load one program unit (until END) from the device with the
logical device number n, and return control to loader monitor.
List undefined symbols.
This command will list all undefined symbols in the loader
symbol table on the device with the logical device number n.
Example:

L » N 5)

PER U006000

PRINT U006010

OLER U006070
I, »

These three lines will be printed
by the line printer

Reset loader.

Start execution of the loaded program.

ND-60.030.02

Define upper address for loader area (upper bound).

Example:
L=» U 70000‘)
L »
In this example upper bound will be set to address 70000.

Write defined symbols,

This command will list all defined svmbols in the loader symbol
table on the device with the logical device number n.

Fxample:
L » W 3‘)
TOR = 005000
NILS = 005010 These lines will be punched
NILS2 = 005011 on paper tape
ALF = 005400 |
@ [
* - 007600 <——i Value of current location
C 070000 4——J Lower address of common area
L =

This symbol list, until the character (@. may be read into the
MAC assembler's symbol table, and used for linking of binary
programs and BRF programs, or for debugging purposes.

Define symbols.

This command reads symbols and values from the device with
the logical device number n into the loader symbol table. The
symbol list must be terminated by the character «» or @ .

Example:
L*X 1)
SYMBL = 001000
PER = 050000 Read from the Teletvpe
SINU = 050100
*
L *

This command mayv also read a symbol list produced by the MA
assembler's) LIST command.

ND-60.030.02

Zn

Define only undefined symbols.
If the command X is used after the command Y, only undefined
symbols will be defined by the command X and the other symbols
will be skipped.
Example:

L« N 1‘)

SYMBL U004000
PER U005000
NILS U005500

L*Wi‘)

¥ : 006000
C . 077777

L*Y‘)
L X 1)

SYMBL = 010000
OLE = 123456

¥

L W 1‘)
SYMBL = 010000
@

¥ : 006000

C . 077777

L » N 1‘)

PER U005000
NILS U005500

L »

In this example the symbol OLE will not be defined by the
command X, because it was not undefined in loader symbol table.

Undefined symbol.

This command will read symbols from the device with the
logical device number n, and make then undefined in the loader
symbol table. The symbol list must be terminated by the
character @ or #. In the location where the symbol will be
undefined, the loader will deposit the value -1.

Example :
Lx*x Z 1‘,
SYMBL = 10
OLE = 20
*
L »

ND-60. 030,02

3.

2

Map of

3-6

In this example the symbol SYMBL will be undefined in address
10 and the symbol OLE in address 20, and the contents of address
10 and 20 will be -1.

If we now use the N command, the result will be:

L*‘Ni‘)

SYMBL U000010
OLE U000020

L »

The commands X, Y and Z are not standard, but they are available
as an option.

Memory after Loading

301

Loader

Loader Table < Original LB

Subprogram 1 |
—

Main Program 1

Subprogram 2 :

Necessary
Library Routines

77777

—=1 CDB

COMNGN <« Original UB

Figure 1.2

ND-60.030.02

APPENDIX A

SINTRAN II ALL CORE LOADER

This is an expanded version of the ordinary loaders (BRL, FORTRAN II
and FORTRAN IV loaders) for running under a SINTRAN II system. This
loader can handle the RT byte (25,) and generate an RT-description for
RT-programs. -

The loader exists in two versions:

SINTRAN II ALL CORE LOADER II, which can handle
BRF output from the MAC assembler and the FORTRAN
II compiler.

SINTRAN II ALL CORE LOADER IV, which can handle
BRF output from the MAC assembler and the FORTRAN
IV compiler.

When the loader is entered, the A-register must contain the logical
device number of the calling device, i.e. the logical device number of
the device which has invoked the loader. It will be suitable to start
the loader with a command in the SINTRAN II operator communication,
using the same RT-description as MACD and other low-priority RT-
programs. The entry point for the loader is BRL.

The loader starts by printing a message and a question on the calling
device:

SINTRAN II ALL CORE LOADER II
RESET LOADER?

Then the operator must answer with Y for ves or N for no. If the
operator answers Y, then the loader will be reset (executing the
R-command) and the loader prints the question:

NO. OF RT-PROGRAMS:

and the operator must then answer with a suitable number. (See the
description of the Q-command.)

All commands which are described in Section 3.1 in this manual,
except the S—-command, are included in this version of the loader.

ND-€0.030.02

The following commands are modified:

I

Define new size of loader symbol table.

This command is modified such that it will execute the
Q-command in addition to its previous function.

Fix loader symbol table.

This command will only save the current symbols in the
loader symbol table. These symbols will not be cleared
from the loader symbol table with the R-command. The
F-command will not change CLC, PB or LB.

Additional commands:

Q

Reserve area for RT-descriptions.

This command will ask for number of RT-programs and
will then reserve 9 locations for each RT-program immediately
after the end of the loader symbol table.

Example:

In this example the loader will reserve 110, locations for
RT-descriptions immediately after the 1oad%r symbol table,
and CLC, PB and LB will be set equal to the end of the RT-
descri ption area.

CORE LAY OUT

SINTRAN II
SYSTEM

STACK

SINTRAN II
ALL CORE LOADER

<+«— Loader symbol table
+«— Area for RT-descriptions

Value of CLC, PB and LB

FREE AREA

37777

ND-60.030. 02

T Terminate loader.

This command will terminate the loader, The loader will
print the message EXIT LOADER!, and then call RTEXT
in SINTRAN II monitor,

The SINTRAN II All Core Loader will generate an RT-description for
every RT-program loaded. The priority and the start address of the
RT-program will be set into the RT-description and the other locations
of the RT-description will be zero.

RT-description generated by the loader:

Location no.

0
PRIORITY
0

0
0
0

START ADDRESS

0
0

00 1 O G kW N =, O

Additional error messages:
20 No octal number has been read in connection with a command.

21 Too many RT-programs loaded. The area for RT-description
is already full.

22 Wrong priority of an RT-program. Priority equal to zero or
priority is greater than 255 (377_). This is only a warning
message, the priority is set equal to zero, and the loading will
continue,

ND-60.030.02

A/S N SK DATA-ELEKTRONIKK
[N / OIR D

Erich Mogensens vei 38, Oslo 5 - Tif. 21 73 71

COMMENT AND EVALUATION SHEET

Publication No. ND-60.030.02 Binary Relocating Loader
January 1973

In order for this manual to develop to the point where it best suits your needs,
we must have your comments, corrections, suggestions for additions, etc.
Please write down your comments on this pre-addressed form and post it.
Please bhe specific wherever possible.

FROM

ND-60.030. 02

