
NORD STANDARD FORTRAN
REFERENCE MANUAL

A/S NORSK DATA-ELEKTRONIKK

«Jul-In.

INORD STANDARD FORTRAN
REFERENCE MANUAL

ii

REVISION RECORD
Revision Notes

10/74 Fourth version

ND-60. 011. 04

October 1974

A/S NORSK DATA-ELEKTRONIKK

111

ABSTRAC T
++++

This NORD STANDARD FORTRAN Reference Manual is ‘written for
programmers using the NORD STANDARD FORTRAN System.

The manual assumes a basic knowledge of the FORTRAN language ..
However, extensive use of examples throughout the manual should
be of help to clarify some of the difficulties.

The manual contains the information required to produce and run a
FORTRAN job.

—~ooOoo--

ND-60. 011. 04

iv

TABLE OF CONTENTS
+++

+

Chapters:

1 IN TRODUC TION

1.1 Minimum Machine Configuration

E LE MEN TS OF NORD S TANDARD FORTRAN

C ons tants

Integer
Double Integer
Real
Double Precision Real
Complex
Logical
Octal
Hollerith

Variables

madame-oomp—

Simple Variables
Subscripted Variables
Arrays

I—L Array Structure
. 2 Array NotationWOO

ODNH

Stateme nts
Program U nits[ON

NM

NNN

N

NNNNNNNN

N)

N

has

LON

NNN

N

b-I-i—sl—LHHl-si—sl—

J-L

EXPRESSIONS AND REPLACEMENT STATEMENTS

Arithmetic Expressions

Elements
Rules for Forming Expressions
Order of Evaluation

«16:011-w

I—~.L--I—-

t—I-

comp-

Mixed Mode Arithmetic Expressions
Arithmetic Replacement Statement
Mixed Mode Replacement Statement
Logical Expressions
Relational Expression
Logical Replacement Statementwwwwww

000300

00

OD

ND—GO. 011. 04

N

DD

l

l

n—s

n--L

Ill
[psi—L

I

COMNNNH

NM

NM

NNN

NNNNNNNNN

I

I

«1%

G391

fiihm

CD

wwwwww

mwww

CO

I

HWQGWW

NNI-‘l-‘H

l O

Chapters:

TYPE DECLARATIONS AND STORAGE ALLOCATIONS

TYPE Statement
DIMENSION Statement

. 1 Adjustable Dimensions

C OMMON Stateme nt
C ommon Blocks
EQUIVALENC E Statement
DA TA Statement
BLOCK DA TA StatementfivbvfirPI-P

MP

Ark

H5-

«imam-boo

M

NH

CONTROL STA TEMENTS

Statement Identifiers
GO TO Statements

Unconditional GO TO Statement
ASSIGN Statement
Assigned GO TO Statement
Computed GO TO Statement

IF Statements

Arithmetic IF Statement
Logical IF Statement

DO Statements

DO Loop Execution
DO Nests
D0 Loop Transfer

C ON TINUE Statement
PAUSE Statement
S TOP Stateme nt
E ND Statement

--

untame-

GJQCfiU‘

#tlDWWNNNN

NH

COMP

N

01010101

UIU'IUI

O1

0101

01

01010101

U101

01

PROGRAMS , FUNCTIONS AND SUBPROGRAMS

Main Program and Subprograms
Parameters

. 1 Formal Parameters

. 2 Actual Parameters

Function Subprogram

pm Function Reference
. 2 Function Parameters

Statement Functions
Library Functions
EXTERNAL Statement
Subroutine Subprograms
CA LL Statement
Program Arrangement
RETURN and END Statements
RT—Program Statement

ND—60. 011. 04

gnomczwucnacn

0363630363

0505

03

HHQDWQQUIIF-

mmwmm

NH

”O

INH

g...»

H

I

rhrP-w

C)

III

i-‘t—h-ooqqq Nt-ho

63056303636303

6503

G)

0563

did")

05-

Ill

05

Chapter:

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10. wwwwwwwwwww

QDOJKTGJO'IFPWNH

H O

.11
10.3.12
10.3.13

10.4

viii

TRACE <statement specification> <statement specification>
BREAK 4 statement specification>
COND <Variab1e name > <re1ational operator> <constant >-
DISPLAY <variab1e name > <variab1e name> . . . etc.
BOUND <array name> (<index1> , . . .
RESET
WHERE (or*)
DEVICE <logica1 device number >
> (Step Command)

CONTINUE (or C)
NEST
LDR
EXIT

Examination of variable Values

ND—60. 011. 04

<indexn>)

Page:

10-2
10-3
10-3
10-3
10—3
10-4
10-4
10—4
10-4
10-4
10—4
10—4
10—4

10-5

Amend ices:

ix

APPENDIX A CODING PROCEDURES

APPENDIX B STATEMENTS OF NORD STANDARD FORTRAN

APPENDIX C LIBRARY FUNCTIONS OF NORD FORTRAN IV

APPENDIX D NORD WORD STRUCTURE

APPENDIX E SYSTEM DIAGNOSTICS

APPENDIX F 1/0 DEVICE NUMBERS

APPENDIX G - MIXED NORD STANDARD FORTRAN AND
ASSEMBLY ROUTINES

APPENDIX H - NORD STANDARD FORTRAN DEVIATIONS
FROM USA STANDARD FORTRAN IV
X 3. 9.1966

ND—60.011._04

1-1

IN TRODUC 'IION

The NORD STANDARD FORTRAN System provides a convenient language
for expressing mathematical and scientific problems in a familiar notation.

A set of FORTRAN statements, presented as a source program to the
FORTRAN compiler, produces an object program that contains the
machine language instructions for solving a problem. Compilation is
carried out sequentially, from one subprogram to the next; each sub-
program is independently compiled. Once a program is compiled, and
if no errors are detected by the compiler, a program may be repeatedly
loaded by the loader and executed on the NORD computer with varying
sets of data.

The NORD STANDARD FORTRAN System is compatible with standard
FORTRAN (ref. USA STANDARD FORTRAN, USAS X3.9.1966), except
the deviations quoted in Appendix I, and source programs written in the
NORD STANDARD FORTRAN language will possibly require a few minor
modifications to be accepted by the FORTRAN compiler on other, larger
computer systems.

Minimum Machine Configuration

In order to implement the NORD STANDARD FORTRAN System on a NORD-1
computer, the minimum hardware configuration required is:

— 1 Basic NORD-1 computer with minimum 16K memory unit, or
1 Basic NORD—10 computer with minimum 16K memory unit.

- Floating point hardware arithmetic unit.

- Input device : Teletype, paper tape reader or card reader.

- Output device: Teletype, paper tape punch or line printer.

ND-60.011.04

2.1

2.1.1

2.1.2

2.1.3

2-1

ELEMENTS OF NORD STANDARD FORTRAN

Constants

Eight basic types of constants are used in the NORD STANDARD FORTRAN:
- Integer, Double integer, Real, Double precision real. Complex, Logical,

Octal, and Hollerith. The type of a constant is determined by its form.
The computer word structure for each type is given in Appendix E.

Integer

An integer
astant

consists of up to five decimal digits in the range of
—215é n s 2 —1. An integer constant occupies one word of NORD main
storage.

Examples:

63 —3241 896
247 27963 4343

Double Integer

A double integer constant consists of up to 10 digits in the range of
-231=-2147483'648 s n; 2147483647=231-1. A double integer constant
occupies two consecutive storage locations.

Examples:

-444444 999000000

Real

Real constants are represented by a string of up to ten digits. A real
constant may be expressed with a decimal point or with a fraction and
an exponent representing a power of ten. The forms of real constants
are:

+

.nE .nEts n. n.E-s

n.n n.nEts .n

n is the base; 5 is the exponent to the base 10. The plus sign may be
omitted for a positive 3. The range of s is 0 through 99.

If the range of a real constant is exceeded, the constant is set to the
maximum value, and a diagnostic is provided.

A real constant occupies three consecutive main storage locations.

Examples:

3.1415768 "314. .013469
.31416E1 3.14E06 “31.415E—1

-0. 31415E+01
LTD-60.011- . '04

2.1.4

2.1.5

2. 1 .6

Double Precision Real

Double precision constants may be expressed by one to 23 significant
decimal digits. Their forms are much alike to real constants, but a
D corresponds to E in the exponent part. The range is also equivalent
to that of reals.

A double precision constant occupies six consecutive main storage
locations.

Examples:

0. ODO "1340. D3 3.1415926535D+1
+8. 5D-2 .4D04

Complex

Complex constants are represented by pairs of real constants separated
by a comma and enclosed in parentheses

(R1,R2)

R represents the real part of the complex number, and R the imagi—
nary part. Either constant may be preceded by a - sign.

If the range of the reals comprising the constant is exceeded, a compiler
diagnostic is provided. Diagnostics also occur when the pair of numbers
consists of integer constants, including (0,0).

A complex constant occupies six main storage locations.

Examples:

NORD FORTRAN IV Representation: Complex Numbers:

(1.,3.80) 1.+3.80i
(8.1.16.2) .8.1+16.2i
(-11.09,1.2E-3) -11.09+0.00121
(1. ,0.) 1
(0. ,—1.) -i

Logical

Logical constants are represented by one of the following notations:

. TRUE.

. FALSE.

A logical constant occupies one main storage location; the system
represents .TRUE. by 1 and .FALSE. by 0.

ND—60. 011. 04

2.1.7 Octal

An octal constant is denoted by one to six octal digits postfixed by
the letter B. If more than six digits are specified, the last six are
significant only. '

Examples:

123456B —7B 177777B

Note: If six digits are specified, the most significant one should be
a O or a 1, only, which are represented by one bit.

2 . 1 . 8 Hollerith

A Hollerith constant is a string of alphanumeric characters of the form
a or ‘f'; n is an unsigned decimal integer less than 81 representing the
length of the field f. Spaces are significant in the field f. When n is not a
multiple of 2, the last computer word is left justified with ASCII space
filling the remainder of the word. Hollerith constants may not be used
within expressions.

Example:

2 HOK 3 HSUM 'FORTRANuIV'
2 HuA 6 HEXAMPL 12 HCOMPLEXHDATA
2 HA6 6 HNORD-i 9 HHOLLERITH
1 H1 4 HDATA

Variables[\‘J [0

Variable names are alphanumeric identifiers that represent specific
storage locations.

The NORD STANDARD FORTRAN compiler recognizes simple and
subscripted variable names. -

2. 2. 1 Simple Variables

The type of the variable may be defined in 8. TYPE declaration (Chapter 4).
Otherwise, the type is determined by the first letter of the variable name.
The initial characters I, J, K, L, M and N indicate integer variables:
other initial letters indicate real variables.

A simple variable represents a single quantity; a subscripted variable
represents either an array or one element within an array. A symbolic
name consists of one to six alphanumeric characters, the first of which
must be alphabetic.

ND-60. 011. 04

2.2.2

2. 2.3

Examples of simple integer variables:

N LIN 112
K2P11 NODE JTEST

Examples of simple real variables:

VEC T B23 06 OLE SIXSIX
PE T26 A1B ATE

Subscrigted Variables

A subscripted variable is represented by an alphanumeric identifier
followed by a one, two, three or four dimensional subscript enclosed
in parentheses. If the subscript has more than four dimensions, a
diagnostic is issued, The identifier is the name of the array; subscripts
may be constants, variables, or expressions with integer values. A
non—integer value will cause a compiler diagnostic.

A subscripted variable references a single element in an array, the
subscript describes the relative location of the element within the array.

Subscript Forms

A subscript dimension may have the form of any integer expression.
Mixed mode or real expressions are not allowed.

Examples:

Legal: Illegal:

ARRAY(10* NUM + 5, 20) ARRAY(10. * NUM_+ 2, 20.)
AUG» A(A(2-))
B(I+2,J+3,K+4) B(X+2.,Y+3.,Z+4.)
C (IABS (J)) C (ABS(X))

Arrays

An array is a block of successive memory locations for storage of
variables. In certain contexts, the entire array may be referred to
by the array name without subscripts. Each element of an array is
referenced separately by the array name plus the subscript notation.
Arrays may have one, two, three or four dimensions.

The array name and the dimensions of the array must be declared at
the beginning of the program in a DIMENSION, COMMON or a type statement.
The type of array is determined by the array name or the type declaration.
The number of dimensions in an array subscript indicates the dimension
of‘the array; the magnitude of each dimension indicates the maximum
value that the subscript may take. Program execution errors may result
if subscripts are larger than the dimensions initially declared for the
array.

ND—60.011.04

2.2.3.1

The amount of memory allocated to an array depends on the array type
and dimensions.

The compiler does not necessarily assign sequential storage to two or
more arrays.

Array Structure

Elements of arrays are stored by columns in ascending order of storage
location. The ordering of elements in an array follows the rule that the
first subscript varies most rapidly and the last subscript varies least -'
rapidly. In the array declared as A(3,3,3):

A111 A121 A131
A211 A221 A231
A311 A321 A331 A A

A112 122 132

A212 A222 A232

A312 A322 A332 A 113 A123 A133
. A

A213 223 A233

A A A
313 323 333

The planes are stored in order, starting with the first, as follows:

A111...L A121..L+9....A133 ._.L+72,

A2-11_.L+3 A221_,E+12.
.
.A233

_,I:+75,

A311_.L+6 A321__,L+15. .
.A333

__..L+78,

since one element in K occupies 3 locations.

The location of an array element with respect to the first element is
a function of the maximum array dimensions and the type of the array.
Given DIMENSION A(L,M,N) the location of A(i ,j,k) with respect to
the first element of the array A, is given by:

A+[i-1+L(j-1+M(k—i))]* E
The quantity in brackets is the subscript expression. It must be a
positive integer value. E is the element length in terms of the number
of computer words needed for each element of the array.

For real arrays, E = 3; for integer arrays E = 1.

ND-60. 011. 04

2.2.3.2

2.3

2-6

Array Notation

A subscript describing an array notation cannot have more dimensions
than are specified for the array; thus the elements of the one—dimensional
array A(ID1) may not be referred to as A(I,J, K, L), A(I,J, K) or A(I,J).
Adiagnostic will be given if this is attempted. However, any two—, three-,
or four—dimensional array may always be referred as if it were a one—
dimensional.

The array name without a subscript references the entire array when it
is used in an I/O list, a specification statement other than DIMENSION,
or as a parameter of a function or subroutine subprogram.

Statements

Statements are the basic functional units of the FORTRAN language. An
executable statement performs a calculation or directs control of the
program; a non—executable statement provides the compiler with
information regarding variable structure, array allocation, storage
sharing requirements. Assignment, control, and input/output statements
are executable. The non-executable statements are specification state-
ments, function defining statements, and the DATA, FORMAT, PROGRAM,
FUNCTION, and SUBROUTINE statements.

A statement consists of an initial line which may be followed by any
number of continuation lines. The characters of a statement are written,
one per column, in columns 7 through 72. Continuation lines are marked
by a non—blank character (other than‘blank or zero) in columnt 6. No more
than one statement may be written on a line.

A unique label may be assigned to any statement and must be assigned
to one referred to by other statements. A statement label is a numeric
string of one to five digits; leading zeroes are ignored. Thus 0012 is
equivalent to 12 or 012 when used as a statement label. The label may be
placed anywhere in the label field. Trailing spaces are ignored. Thus
,_,,_,12,_,, izuuuandu H.412 all refer to the same label.

ND-60. 011. 04

2.4 Program Units

A NORD STANDARD FORTRAN program consists of one main program and,
optionally, one or more subprograms. The term program unit refers
to either the main program or a subprogram.

A main program is a set of statements and comments forming a self—
contained computing procedure; it must contain at least one executable
statement. A PROGRAM statement may be used as the first statement
of a main program, but is not necessary. A main program may not
contain a FUNCTION, or a SUBROUTINE statement.

A subprogram is also a set of statements and comments. A procedure
subprogram contains at least one executable statement and is headed by
either a FUNCTION or SUBROUTINE statement.

All program units must be terminated by an END statement.

ND—60. 011. 04

3.1

3.1. 1

3—1

EXPRESSIONS AND REPLACEMENT STATEMENTS

A rithmetic Expressions

An arithmetic expression is a constant, variable (simple or subscripted) ,
an evaluated function, or any combination of these separated by arith-
metic operators, commas, or parentheses to form a meaningful mathe-
matical expression.

Arithmetic Operators:

+ addition - subtraction * multiplication

/ division ** exponentiation

Elements

The elements of arithmetic expressions are formed as follows:

A primary is an arithmetic expression in parentheses, a constant
(positive or zero), variable, array element, or function reference:

(A+B) (-A*B) ((A**B)-(A*B))
124 12.4E-2 0
x A(I,J) SIN(V)

A factor is a primary, or a primary**a primary:

(A+B) (A+B)**X 1**2

A term is a factor, a term/factor, or a term*term:

AakakB (A**B)/X ((A**B)/X)*SIN(V)

A signed term is immediately preceded by a plus or minus:

-A**B -X —(-A*B)

A simple arithmetic expression is a term, or two simple arithmetic
expressions separated by plus or minus:

(A+B)+X x/2. 314 Y/SINOQ—AMB

An arithmetic expression is a simple arithmetic expression, or a signed
term plus or minus a simple arithmetic expression:

-X/Y I**2+K -A **B-X/Y ,

ND—60. 011. 04

3.1.2

3.1.3

Rules for Forming Expressions

Two arithmetic operators may not be adjacent to each other; X + — Y is
'

an illegal expression. The subtraction operator may not be used as a
sign of negation. -X implies O—X and must be enclosed in parentheses
when preceded by another operator: X + (-Y) is a legal expression.

Parentheses may be used to indicate grouping as in ordinary mathematical
notation, but they may not be used to indicate multiplication: (X) (Y) does
not imply (X)* (Y); nor does juxtaposition imply multiplication: XY does
not imply X* Y.

Any primary may be raised to a power that is a positive or negative integer
primary, but only a positive real primary can be raised to a real power.
Real and integer quantities may be mixed in the same expression.

A negative primary may not be raised to a power that is a real number:
(—15. 0)" 2.5 is illegal. A primary with a zerovalue may not be raised
to a power value as zero. An element may not be evaluated if its
value is not mathematically defined. Diagnostics are given under run
time.

Order of Evaluation

When the hierarchy of operations in an expression is not completely
specified by parentheses, the operations are performed in the following
order:

** eXponentiation performed first

/ division f* multiplication _
per OI‘med next

+ addition
- subtraction } performed last

Within a sequence of consecutive multiplications and/0r divisions, or
additions and/or subtractions, when the order is not explicitly indicated
by parentheses, expressions are evaluated from left to right.

Whenever ambiguity is possible in the evaluation of an expression,
parentheses should be used. The ambiguous expressiOn A**B**C can be
clarified as (A**B)**C or A**(B**C) only by parentheses.

Examples:

Valid Expressions Invalid Expressions

A* (—B) A*—B
A** (B**C)
(A**B)**C **B**C
—B+C I**A
A~B+C (-A)** C
A—(B+C)
-(A+B)** C evaluated as -((A+B)** C)
—(A+B)
J** I
A**I ND—60.011.o4

3.2

3-3

Mixed Mode Arithmetic Expressions

Arithmetic expressions can contain mixed types of constants and
variables. Mixed mode arithmetic is accomplished through the special
library conversion subroutines (Appendix D).

The order of dominance of the operand types within an expression is
complex—double precision —real—double integer-integer.

In mixed mode arithmetic, the mode used to evaluate any portion of an
expression is determined by the dominant type so far encountered within
the expression, and the normal hierarchy of arithmetic operations;
integer mode will be used when an integer type is first encountered and
will be converted to real mode when a real type is encountered.

The following table indicates how the mode is determined from the
possible combinations of variables. -

' Double
' '

Double
+ _ >1: ,

/ Integer integer Real precision C omplex

Double DoubleInte e t . ' ‘g r In eger integer Real
precision

L, omplex

Double Double Double Real Double 1integer integer integer precision C omp ex

. Double
Real R l R 1 'ea ea Real

precision
C omplex

Double Double ~ Double Double Double
precision precision precision precision precision Complex

C omplex Complex Complex C omplex C omplex C omplex

Examples:

1) Given A,B type real; I,J type integer. The mode of evaluating
the expression (A*B-I+J) will be real because the dominant
operand is type real. It is evaluated:

A*B -b R1 real

Convert I to real

R1 -I -O R2
real

Convert J to real

R2+J - R3 real

ND-60. 011. 04

3-4

2) The use of parentheses can change the evaluation. A, B, I. J are
defined as above. (AwB-(I—n) is evaluated:

A*B _. R1 real

I-J __.. R2 integer

Convert R to real2

R1_R2"R3
real

3) The order of the elements in an expression can change the evaluation.
A, B, I, J are defined as above. The expression ('J-I+A+B) is
evaluated:

J-I _., R1 integer

Convert R1 to real

R
1+155. _. R

2 real

R2+B _, R3 real

am:
1) The order of dominance of the standard operand types within

an expression from highest to lowest is

COMPLEX
DOUBLE PRECISION
REAL
DOUBLE INTEGER
INTEGER

2) The mode of an evaluated arithmetic. expression is referred to
by the name of the dominant operand type.

ND—60. 011. 04

3.3

3) In expressions of the form A**B the following rules apply:

- B may be negative when the form is A**(-B) .

— For the standard types the mode/type relationships are:

1.3199 B

Integer Double Real Double Complex
integer premsion E

Integer Integer Real

T
.Double Double

y integer integer
P Mode of
e Real Real Real } A**B
A

Double Double
precision precision

Complex Complex

The empty squares denote illegal expressions.

Arithmetic Replacement Statement

The general form of the arithmetic replacement statement is

v = e

e is an arithmetic ecpression and v is any variable name, simple or
subscripted written without a sign. The operator = means that v is
replaced by the value of expression e, with conversion for mode if
necessary.

Examples:
REST = X + Y * A
SUM = X+SIN(X)
ARG(I,J) = X+2.* Y(I+1)
PER(1) .—. 5. 2 + X“: Y

ND-60. 011. 04

3.4

3-6

Mixed Mode Replacement Statement

Although the type of an evaluated expression is determined by the type
of the dominant operand, this does not restrict the types that the
identifier v may assume.

Arithmetic Replacement Statement

v=e

v is an identifier, e is the evaluated arithmetic expression.

Rules for Assignment for e to V

Double integer

Double integer

Double integer
Double integer

Double integer

Real

Real

Real

Real

Real

Double prec.

Double prec.

Double prec.

Double prec.

Double prec.

Complex

Complex

Complex

C omplex

C omplex

Integer

Double integer

Real
Double prec .

Complex

Integer

Double integer

Real

Double prec.

Complex

Integer

Double integer

Real

Double prec.

Complex

Integer

Double integer

Real

Double prec .

C omplex

v type e type Assignment

Integer Integer Assign

Integer Double integer Convert double integer to integer and assign
Integer Real Fix and assign
Integer Double prec. Double precision fix and assign
Integer Complex Fix real part and assign

Convert integer to double integer and assign
Assign

Fix to double integer and assign
Double precision fix to double integer and
assign

Fix real part to double integer and assign
Float and assign

Float and assign

Assign

Double precision evaluate and real assign
Assign, real part of e
Double precision float and assign
Double precision float and assign

Real evaluate, Double precision assign

Assign

Real part evaluate, Double precision assign
Float (6)

Float (e)

+ real part, 0 —.. imaginary part
-> real part, 0 + imaginary part

e —> real part, O 4» imaginary part
Real converted e -> real part,
0 + imaginary part

Assign

ND-BO. 011. 04

3-7

Examples:

1) A = I+J is evaluated as: 2) I = J+A is evaluated as:

I+J - R1 integer Convert J to real

Convert R1 to real J+A -> R1 real

Store R1 in A Convert R1 to integer

Store R1 inI

3.5 Logical Expressions

A logical expression has the general form

010p020p03....

The forms 0. are logical variables or relational expressions; and op is

either the logical Operator .AND. indicating conjunction, or .OR.
indicating disjunction.

The logical operator .NOT. indicating negation appears in the form

.NOT. 01

The value of a logical expression is either true or false. Logical ex-

pressions are generally used in logical IF statements. (See Section 5. 3).

Rules:

1) The hierarchy of logical operations is:

First .NOT.
then .AND.
then 10R. .

2) A logical variable or a relational expression is, in itself, a logical

expression. If L1 and L2 are logical expressions, then

.NOT.L1
L1. AND. L2

L1. OR. L2

are logical expressions. If L is a logical expression, then (L) and

((L)) are logical expressions.

3) If L1 and L are logical expressions and 0p is .AND. or .OR. then

L1 0p 0p L2 is always illegal.

ND—60. 011. 04

3.6

4)

5)

The logical operator .NOT. may appear in combination with . AND.

or .OR. only as follows:

.AND. .NOT.

.OR. .NOT.

.AND.(.NOT. ...)

.OR. (.NOT. ...l

.NOT. may appear with itself only in the form

.NOT. (. NOT. (. NOT.

Other combinations will cause compiler diagnostics.

If L1 and L are logical expressions, the logical operators are

defined as gallows:

.NOT. L1 is false only if L1 is true

L1.&ND.L‘2 is true only if L1 and L2
are both true

L1.OR. L2
is false only if L1 and L2

are both ‘false

Examples of logical expressions:

Valid expressions: Illegal egressions:

A.OR.B A.NOT. .OR.B

A.AND. B A.OR. .NOT. . NOT. B

A.OR.B.AND.C.OR.D X.GT.B.AND.C

.NOT.A.AND. B.AND.C

.NOT. (A.AND.B)

X. GT. Y.AND.A

A.AND. .NOT.B

A, B and C are logical variables, X and Y are real.

Relational Expression

A relational expression has the form:

q1 0p q2

where q and q are arithmetic expressions; op is an operator
belonging to the following set:

ND—60.011.04

Operator: Meaning:

. EQ. Equal to

.NE . Not equal to

. GT. Greater than

.GE. Greater than or equal to

.LT. Less than

. LE. Less than or equal to

A relation is true if q1 and q2 statisfy the relation specified by op.

A relation is false if q1 and q2 do not satisfy the relation specified by op.

1) Use a relational operator between two arithmetic expressions:

(11 0P qZ

2) It is not permissible to use the form

Q1 Op 012 013 C13

Instead separate two relational expressions with a logical
operator .AND. or .OR. in any of the form

q1
op q2 .AND. q3

op
q4

q1
op

q2.OR.q3
op

q4

3) The evaluation of a relation of the form q1 op q2 is from left to
right.

The_ relations q1 0p (12. q1 op (C12). ((11) op <12 and (011) on (02) are
equivalent.

Examples:

A. GT. 5. 2

RX—X(5)#A.LT.Y

B—C . EQ. . 5

X(I).GE.X(I-1)

I. LE. 10

ND—60. 011. 04

3. 7

3—10

Logical Replacement Statement

The general form of a logical replacement statement is

E = L

where E is a variable of type logical and L may be a logical or relational
expression, or any of the logical values . TRUE. or FALSE.

Examples:

LOGICAL L1, L2, L3, L4

L1 .TRUE.

L2 .FALSE.

L3 = L1.0R.L2

L4 = L1.AND. .NOT. L3

L1 =X.GE.Y

L2 =L1.0R.Y.EQ.2.

ll

Note: It is illegal to assign a logical or relational expression to an
arithmetic variable, or to assign an arithmetic expression to
a logical variable.

ND—60. 011. 04

. 1

4—1

TYPE DECLARATIONS AND STORAGE ALLOCATIONS

Statements of this kind are also called declarative statements.
Declarative statements are non-executable statements that:

- assign word structure to variables (TYPE),

— reserve storage for arrays and single variables (DIMENSION,
COMMON),

- designate shared storage (COMMON, EQUIVALENCE), and

- assign initial values to variables (DATA).

TYPE Statement

The TYPE statement provides the compiler with information about the
structure of variable or function identifiers. It overrides or confirms
the type implied by the first character of the identifier, and it may
provide dimension information. The TYPE statement has the following
form:

tvig-t-,Vn

t is INTEGER, DOUBLE INTEGER, REAL, COMPLEX, DOUBLE
PRECISION or LOGICAL, and the vi are variable name, array name.
function name, or array declarator.

Example:

INTEGER A, X11, 11, HEP, D36F (1 word/element)
DOUBLE
INTEGER IDOUBL, DWORD (10) (2 words/element)

REAL INTER, ITEST, K25, ALFA (3 words/element)

DOUBLE ,
PRECISION DP (6 words/element)
COMPLEX Ci (6 words /element)
LOGICAL L1, L2, X, Y(5) (1 word/element)

Rules:

1) The TYPE declaration is non—executable and must precede the
first executable statement in a given program.

2) If an identifier is declared in two or more TYPE declarations
a compiler diagnostic will occur.

ND-60. 011. 04

4.2

3) An identifier not decleared in a TYPE statement will be an
integer if the first letter of the identifier is I, J, K, L, M, N;
for any other letter it will be real.

4) An array identifier in the list designates the entire array.

DIMENSION Statement

Storage may be reserved for arrays with non—executable statements,
DIMENSION, COMMON and type.

DIMENSION v1 (11) , . . . , vn(in)

Each v(i) is an array declarator. v. are the array names; (i.) are sub-
scripts containing 1., 2, 3 or 4 integler constant subscript dimensions
separated by commas. The number of dimensions indicates the dimensions
of the array. The magnitude of the value given for each dimension indi-
cates the maximum value that the dimension may take in any subsequent
reference.

From information in a DIMENSION statement, the compiler determines
the number of computer words to reserve for the array named in the
statement.

In the following statement, the number of elements in the array is 125;
the array has three dimensions and its elements are real numbers.

DIMENSION SPACE (5,5,5)

REAL SPACE

The value of a subscript dimension may never be less than i.

The number of computer words reserved for the array, SPACE, is 375.
This is three times the number of elements in the array because the type
of the array is REAL, and in the NORD-i computer, a real number uses
three computer words or 48 bits.

An integer uses one computer word, 16 bits. Therefore, in the following
example the number of computer words reserved for the array ISP is 125.

Example:

DIMENSION ISP (5,5,5)

DIMENSION A(30), 122(10,2), AB(6,20)

DIMENSION H(5,5)

COMPLEX H

The number of elements in H is 25. 6 words are used to form
a complex element; therefore, the number of memory locations
reserved for H is 150.

ND—60.011.04

4.2.1

4.3

Adjustable Dimensions

In a subprogram (see Chapter 6), a formal argument may be declared
to be an array in a type or DIMENSION statement. The corresponding
actual argument is an array name. The dimensions of the formal
argument may be transmitted as arguments, or they may be constant:
of the subprogram. For example,

SUBROUTINE SUB(A,I)
DIMENSION A(J, 5, 5)

'

The number and values of the dimensions need not be the same in both
the calling and the called routines. Storage for the array is not allocated
in the subprogram and the dimension information is used only to compute
addresses. The product of the maximum dimensions of the formal
argument must not exceed the main storage assigned to the actual
argument.

COMMON Statement

A program may be divided into independently compiled subprograms that
use the same data. The COMMON statement reserves storage areas -
blank or labeled - that can be referenced by more than one subprogram.

COMMON/x1/a 1. . . /Xn/an

x are alphanumeric identifiers, and each a is a list composed of simple
variable identifiers and array identifiers, sjubscripted or non-subscripted.

A list ai may not contain formal parameters. If a non—subscripted array
name appears the dimensions must be defined by a DIMENSION statement
in that program unit. Arrays may be dimensioned in the COMMON state-
ment by a subscript string following the array identifier. If an array is
dimensioned in both a COMMON statement and a DIMENSION statement
a compiler diagnostic results

An identifier x. may be a name of one to five alphanumeric characters or
blank. A non-blank name identifies the storage as labeled common; a blank
name identifies blank common. If the name is blank, the first two slashes
may be omitted. Only one name may be assigned to labeled common, but
the name may be specified more than once.

All labeled common storage areas are assigned together in the order of
appearance regardless of the number of identifiers; all blank common
storage areas are assigned together in the order of appearance.

ND—60. 011. 04

4.4

Examples:

COMMON A, B, C
COMMON // A, B, C, D
COMMON /BLOK/ A, B(10) /BLOK2/ C(10), D(10,10)
COMMON /ABC/ D(15), ABC, PER, 11(50)

Common Blocks

The COMMON statement provides the programmer with a means of
reserving blocks of storage areas that can be referenced by more than
one subprogram. The statement reserves both blank and labeled blocks.

If a subprogram does not use all of the locations reserved in a common
block. unused variables may be necessary in the COMMON statement
to ensure proper correspondence of common areas:

Main program : COMMON/SUM/A,B,C
Subprogram : COMMON/SUM/E , F, G

In the above example only the variables E and G are used in the sub-
program. The unused variable F is necessary to space over the area
reserved by B.

Rules:

1) COMMON is non—executable and must precede the first executable
statement in the program. Any number of COMMON statements
may appear in a program unit.

2) Labeled common block identifiers are used only for block identi—
fication within the compiler; they may be used elsewhere in the
program as other kinds of identifiers.

3) An identifier in one common block may not appear in another
common block. If it does, the identifier is doubly defined and an
error message will result.

4) The order of the arrays in a common block is determined by the
COMMON statement.

5) At the beginning of program execution, the contents of the common
block are undefined unless specified by a DATA statement.

The length of a common block in computer words is determined from the
number and type of the list identifiers. In the following statement, the
length of the common block A is 26 computer words. The origin of the
common block is Q(1), (Q and R are real, NR is integer).

ND—60. 011. 04

Examples :

1) Labeled common:

COMMON/A/ Q(4). m4), NR(2)

origin Q (1) Each real variable
Q (2) requires three com-
Q (3) puter words
Q (4)

+12 R (1)
R (2)
R (3)
R (4)

+24 NR (1)
NR (2)

2) W:

COMMON A, B(2), K

COMMON N(2), M(2)

origin
Real

(1)
(1) Real
(1)
(2)
(2) Real
(2)

(1)
(2)
(1)
{2)ggzzwwwmwwm>>>

3) flearranggment of common:

Main program:

COMMON /EX/ TEMP(20)

The labeled common, EX, occupies 60 storage locations.

Subprogram:

COMMON /EX/ B(10), 1(10), J(20)

Thelabeled common occupies the same 60 storage locations as in
the main program, however, 30 locations are used by the real array B,
10 locations are used by the integer array I and 20 locations are used
by the integer array J.

ND—60. 011. 04

4.5 EQUIVALENCF Statement

The EQUIVALENCE statement permits storage to be shared by two or
more variables. It does not equate these variables mathematically.

EQUIVALENCE (k1) , . . . , (kn)

Each k. is an equivalence group of two or more variables or array
elements separated by commas: a ,a , . . . ,a . If an element a. has
a subscript, the subscript must contain only crgnstants. No formal
parameters may appear in an EQUIVALENCE statement. Every element
ai in one equivalence group is assigned the same storage. If a real
number is assigned the same storage as an integer, only the first word
of the real number is shared with the one -word integer.

The first elements of arrays may be aligned by equivalencing the array
names; elements of integer, logical, real, and complex arrays may be
aligned by equivalencing subscripted variables (the subscripts must be
integer constants). Array lengths need not be equal.

Example:

If two arrays, not in common, are equivalenced

DIMENSION A(3), 3(2), 0(4)
[NTEGER A,B,C
EQUIVALENCE (A(3), C(2))

storage locations are assigned as follows:

L A(1)
L+1 A(2) C (1)
L+2 A(3) 0 (2)
L+3 C (3)
L+4 C (4)

M 13(1)
M+1 13(2)

ND-60. 011. 04

4-7

However, if two arrays in common are equivalenced

DIMENSION C(4)
COMMON A(3), 13(2)
EQUIVALENCE (13(2), 0(2)

storage locations are assigned as follows:

L A(1)
L+1 A(2)
L+2 A(3)
L+3 13(1) C (1)
L+4 3(2) C (2)
L+5 C (3)
L+6 C (4)

The EQUIVALENCE statement does not rearrange common, but
arrays may be defined as equivalent so that the length of a common
block is changed. The origin of the common block may not be
changed by an EQUIVALENCE statement.

Rules:

1) EQUIVALENCE is non-executable and must precede the first
executable statement in the program or subprogram.

2) The EQUIVALENCE statement must follow after DIMENSION
or COMMON.

3) No more than one element in an EQUIVALENCE set may belong
to COMMON.

4) An identifier used as a formal parameter cannot also be used in
an EQUIVALENCE statement.

5) EQUIVALENCE cannot rearrange COMMON, however, arrays
may be equivalent so that they change the length of the common
block.

6) An identifier may appear more than once in an EQUIVALENCE
statement.

7) An identifier in a COMMON statement used in an EQUIVALENCE
set is the base identifier for the EQUIVALENCE statement. When
none in the set belongs to COMMON, the identifier with the lowest
address becomes the base identifier. All other elements in the
set are referenced to the base identifier.

ND—60. 011. 04

4.6

4-8

Example:

Align elements of two arrays:

DIMENSION A(10,5), I(150)
EQUIVALENCE (A,I)

5_ READ (N,100) A

10 READ (N,110) I

The EQUIVALENCE statement assigns the first element of array A
and array I to the same storage location. The READ statement 5 stores
array A in consecutive locations. Before statement 10 is executed all
operations using A should be completed as the values of array I will be
read into the storage locations previously occupied by A.

It should be noted that H1), 1(2), and 1(3) are stored into the three
consecutive locations making up A(1).

Example:

EQUIVALENCE (A.B),(C.D),(E.F).(A.F).(B,D)

This statement will be interpreted as and identical to the following
statement:

EQUIVALENCE (A,B,C,D,E , F)

DATA Statement

The DATA statement assigns constant values to variables or arrays in
the source program. It may be used by itself or with a DIMENSION
statement.

DATA kl/d1/""’kn/dn/

k, are lists containing the names of variables or array elements; and di
are corresponding lists of constants (signed or unsigned).

Multiple entries in a list are separated by commas. There must be a
one—to-one correspondence between the elements of a list ki and a list d.
This correspondence establishes the initial values of the elements of
list k..

1

When an element of a list k. is an array element, the subscript must
contain only integer constants. An element of a list ki

may not appear as

a formal parameter.

ND—60. 011 . 04

4.7

4-9

Examples:

1) DIMENSION GRADE (8)

REAL GRADE

INTEGER I

DATA GRADE(1), GRADE (2), GRADE (3), GRADE (4), GRADE (5)
GRADE(6), /60.,65.,70.,75.,80.,85.,/,I/1/

Some elements of the array GRADE are set to the initial values
specified in the associated list: GRADE(1) is to Contain the initial
value 60, , GRADE(2) the initial value 65. , ard so forth. In the same
statement the integer variable I is set to the initial value 1.

Repetition factor:

DIMENSION A(10)
DATA A/1.0, 9* 2.0/

The value 2. 0 will be put into nine consecutive elements.

DIMENSION A(10)
DATA A/1., 2., 5., 2.5, 0.5, 3., 10., 20., 10.; 1.0/

COMPLEX cx
DATA cx/(1.0, 2.0)/

LOGICAL L1(2)
DATA L1/.TRUE., .FALSE./

DIMENSION OUT(3)
DATA OUT/4HTHIS, 3HLJIS, 4HTRUE/

BLOCK DATA Statement

This is of the form:

BLOCK DATA

and may only appear as the first statement of a block data subprogram.
Such subprograms are used to enter initial values into elements of blank -

and labeled common blocks. Only type statements , EQUIVALENCE ,
DATA, DIMENSION, and COMMON statements are permitted in a block
data subprogram.

ND—60.011. 04

4-10

If any entity of a given common block is being given an initial value in
such a subprogram, a complete set of specification statements for the
entire block must be included, even though some of the elements of the
block do not appear in DATA statements.

The block data subprogram should precede all the executable program .
units.

Example of a block data subprogram:

BLOCK DATA
DIMENSION ARR(5)
INTEGER AA~(10)
COMMON /BLOCi/ARR, /BL002/AA
DATA ARR/5n. 0/, AA(1)/1/
END

ND—60.011.04

5.1

5.2

5.2.1

5.2.2

5-1

CONTROL STATEMENTS

Program execution normally proceeds from statement to statement as
they appear in the program. Control statements can be used to alter
this sequence or cause a number of iterations of a program section.
Control may be transferred to an executable statement only; a transfer
to a non—executable statement will result in a program error which is
usually recognized during compilation. With the DO statement, a pre-
determined sequence of instructions can be repeated any number of times
by stepping a simple integer variable after each iteration.

Statement Identifiers

Statements are identified by unsigned numbers, 1 to 32767, which can be

referred to from other sections of the program. An identifier may occupy
any of the first five columns of the coding form; blanks are squeezed out

and leading zeroes are ignored, 1,01,001,0001 are identical. Such an

identifying number is called a statement label.

GO TO Statements

GO TO statements provide transfer of control.

Unconditional GO TO Statement

GO TO k

This statement causes an unconditional transfer to the statement labeled k.

ASSIGN Statement

This statement has the form

ASSIGN k TO 1

where k is a transfer label and i is an integer variable name. This
statement is used in conjunction with assigned GOTO statements using
the same integer variable.

Once having been mentioned in an ASSIGN statement, the integer variable
should not be referred to in any statement other than an assigned GOTO
statement. This applies until it has been redefined, since its content is

an octal address after the execution of the ASSIGN statement.

ND—60. 011. 04

5.2.3

5.2.4

Assigned GO TO Statement

The assigned GO TO statement has the form

GO TO i,(k1,k2,...,kn)

where i is an integer switch variable. Prior to the execution of an
assigned GO TO statement, the variable i must have been given a label
value by an ASSIGN statement. At run time, this label value is checked
against the parenthesized list of labels. Then, if the actual label value
coincides with any one of the list, a transfer is performed to the statement
identified by this label. Otherwise, a run time error message will result,
and the control is transferred to the statement of label k1.

Example:

ASSIGN 1 TO K

10 GO TO K, (1,2,3)

1ASSIGN 2 TO K
GO TO 10

2 K = 20
OUTPUT (1) K

Computed GO TO Statement

GO TO (k1....,kn),i

The ki are statement labels; i is an integer variable. '

Execution of this statement causes a branch to the statement identified by
k. , where i is the value of the integer variable at the time of execution.
If‘i is less than 1 or greater than n, error message "RUN ERR GO" will
result and control returns to label k1.

ND—60. 011. 04

5.3

5.3.1

5-3

Example:

INTEGER A,B,C

A=1
C21

GO TO (10,20,30),c

10A=A+2

GO TO (11 ,21,31),A Control is transferred to the
statement labeled 31

IF Statements

Conditional transfer of Control is provided by the arithmetic IF statement
and the logical IF statement.

Arithmetic IF Statement

The arithmetic IF statement has three branches.

IF (8) k11k29k3

e is an arithmetic expression and k. are statement labels. This statement
tests the evaluated quantity e and julmps to one of the labels k1 according
to the value of e. '

e < 0 jump to k1
e = 0 jump to k2
e > 0 jump to k3

Examples:

IF (A*B—C*SIN(X)) 10,10,20
IF (1) 5,6,7
IF (A/B**2) 3,6,7

ND—60. 011. 04

5.3.2

5.4

5—4

Logical IF Statement

IF (L) s

L is a logical or relational expression and s is a statement. If L is
true (non-zero) , the statement 5 is executed. If L is false (zero), con—
tinue in sequence to the statement following the logical IF.

Example:

IF (L) GO TO 10 (L is logical)
IF (A.AND.B) X=SIN(Y)/p
IF (X.GE.2.) X =2.
IF (Y.GT.5. .OR.Y.LT.-5.) GO T0100

DO Statements

The D0 statement makes it possible to repeat a set of statements and to
change the value of an integer variable during the repetition.

DO 11 1 =
m1,m2.m

DO 11 1 =
m1,m2

3

The DO loop begins with the DO statement and ends with the statement
numbered n; i is the simple integer variable used as an index; m. are the
indexing parameters, In is the initial value assigned to i; m is1 the
final value assigned to i. Each must be either an integer con ant or an
integer variable, m is the increment added to i after each DO loop is
executed. m is an teger constant or an integer variable. If m is
omitted, it is assumed to have the value 1. 'mi and m2 may be negative
and m3 must be greater than zero.

The statement label 11 which terminates the DO loop must be the number
of an executable statement in the same program unit as the DO statement
and must follow it. n may not be the label of any of the following:

GO TO statement

Arithmetic IF

RETURN

STOP

PAUSE

DO statement

ND-60. 011. 04

5.4.1 DO Loop Execution

The DO statement, the statement labeled n, and any intermediate state-
ments constitute a DO loop which consists of the following steps:

i is set to its initial value m1 and the DO loop is executed. At the end of
the DO loop i is increased by m3 (or 1), and the value of i is compared
with m2. If i is less than or equal to m2, the DO 100p is executed. If i is
greater than m2, control passes to the statement immediately following In,
and the DO loop is terminated.

Note that the DO loop is always executed at least once, even if m1 exceeds
mg on the initial entry; The following chart shows a DO loop.

Execute statements in
100p including state-
ment n

i+m ——i.

Yes

No

DO satisfied

ND-60. 011. 04

5.4.2 DO Nests

'A DO 100p containing another D0 loop is called a DO nest. The last
statement of a nested DO loop must either be the same as the last state-
ment of the outer DO 100p or occur before it. If D1, D2, . . . , Dm represent
DO statements, where the subscripts indicate that D1 appears before D2
appears before D3, and n1,n2, . . . ,nm represent the corresponding limits
of the Di, then n,m must appear before “m—i- . .n2 must appear before n1.

DO loops may be nested to the depth of ten at most.

. Examples:

DO loops may be nested in common with other DO
loops:

a) b) 0)

_.D1 __[)1 ._D1

‘D2 D2 D2 13
D3 3

2
D

L
n3 3

n2
_n =n =n

D4 n3 1 2 3

"n4

Lni

ND-60. 011. 04

a) DO 1,I.=1, 10,2 b) DO 109 L=2, LIMIT 0) DO 51=1,5

: I
DO 5 J=I,10

DO 2 {=1, 5 DO 1o_1=1,1o
DO 51f=J,15

DO 3 1é=2, 8 1o CONTIENUE . 5 CONTI:NUE

3 CONTIZNUE DO 20 :K=K1,K2

2 CONTI:NUE 20 CONTI:NUE

DO 4 IE.=1,3 100 CONTIZNUE

4 CONTIZNUE

1 CONTIZNUE

ND—60. 011. 04

5.4.3

5.5

5-8

DO Loop Transfer

In a DO nest, a transfer may be made from one DO loop into a DO loop
that contains it; and a transfer out of a DO nest is permissible.

The special case is transferring out of a nested DO loop and then trans-
ferring back to the nest. In a DO nest, if the range of 1 includes the
range of j and a transfer out of the range of j occurs, then a transfer
into the range of i or j is permissible.

In the following diagram, EXT represents a portion of the program out-
side of the DO nest.

out
in

If two or more DO loops terminate at the same statement and a transfer
is made to the terminal statement outside the inner DO loop, the inner
DO should have its own terminal statement.

No statement within the range of a DO may redefine or otherwise alter
any of the indexing parameters of that DO.

Warning:
The compiler does not check for jumps from an external place
to somewhere within the loop. If this is done, the result will
depend on the last defined value of i.

CONTINUE Statement

CONTINUE

This statement is most frequently used as the last statement of a DO
100p to provide a loop termination when a GO T0 or IF would normally

be the last statement of the loop. If CONTINUE is used elsewhere in the
source program, it acts as a do-nothing instruction and control passes
to the next sequential program statement.

ND—60. 011. 04

5.6

5.7

5.8

5-9

PAUSE Statement

PAUSE

PAUSE n

n is a positive, decimal number. When either statement is encountered,

execution of the object program halts with PAUSE n or PAUSE output on

the typewriter. By pressing an arbitrary character on the Teletype

keyboard, program execution is continued with the statement immediately

following PAUSE.

STOP Statement

STOP

STOP n

n is a positive, decimal number. When either statement is encountered,

execution of the object program terminates. The program exits to the

monitor system. STOP or STOP n is output on the typewriter.

In a main program the END statement will act as 9. STOP statement.

END Statement

END

END marks the physical end of a program unit. It is executable in the

sense that it will effect return from a subprog'ram in the absence of a

RETURN or a STOP in a main program.

ND-60. 011. 04

6.1

6.2

6.2. 1

6-1

PROGRAMS, FUNCTIONS AND SUBPROGRAMS

A FORTRAN program consists of a main program with or without sub-

programs. The main program and subprograms communicate with each
other through parameters and common variables.

Main Program and Subprograms

A main program may be written with or without references to suhprograms.

The PROGRAM statement may be used as the first statement of the main
program.

PROGRAM name

name is an alphanumeric identifier from one to five characters; the first
must be alphabetic. This statement is optional.

A main program may refer to both subroutines and functions which are
compiled independently of the main program. A calling program is a main
program or subprogram that refers to subroutines and functions.

Parameters

Main programs, subprograms, and functions use parameters as one means
of communication. The parameters appearing in a subroutine call or a
function reference are actual parameters. The corresponding parameters
appearing with the subroutine or function name in the definition are formal
parameters. Actual and formal parameters must agree in order, type
and number.

Formal Parameters

The following are permissible forms for formal parameters:

array name

simple variable
function subprogram name

subroutine subprogram name

Since formal parameters are local to‘ the subprogram containing them, they
may be the same as names appearing outside the program unit.

ND—60.011.04

6.2.2

No element of a formal parameter list may appear in a COMMON,
EQUIVALENCE, or DATA statement within the subprogram. When a
formal parameter represents an array, it should be declared in a
DIMENSION statement within the subprogram. Otherwise, the loader
writes an informative error message.

Example :

SUBROUTINE PER(A.I,X)
FUNCTION OLE (X)
A, I and X are formal parameters.

Actual Parameters

The follbwing are permissible forms for actual parameters:

constant

simple or subscripted variable

arithmetic expression

array name

function subprogram name

subroutine subprogram name

When an actual parameter is a subroutine or function name, that name
must also appear in an EXTERNAL statement in the calling program.

Example:

CALL PER(B, K,Y)

B, K and Y are actual parameters.

ND—60. 011. 04

6.3 Function Subprogram

A function subprogram is a computational procedure which returns asingle value associated with the function name. The mode of the function
is determined by its name in the same way as a variable identifier.

The first statement of a function subprogram must have the following
form:

FUNCTION F(a1, . . . ,an)
F is the symbolic name of the function. The name of the function F mustalso appear as a variable name in the defining subprogram. The value ofthis variable at the time of execution of any RE TURN statement in thissubprogram is called the value of the function. The name of the function
must not appear in any non—executable statement in the function sub—program except the FUNCTION statement.

ai are the formal parameters.

The function subprogram may contain any statement except SUBROUTINE,
another FUNCTION statement, or any statement that directly or indirectly
references the function being defined“.

Besides the FUNCTION F (a ,a ,. . ,a) statement where mode is
determined by the first charactgr. the fellowing FUNCTION statements
are accepted as alternate forms

INTEGER FUNCTION F (a1,a2,. . . ,an)REAL FUNCTION F (311,212, . . . ,an)DOUBLE PRECISION FUNCTION F (211,212, . . . ,an)COMPLEX FUNCTION F (a1.a2, . . . ,an)LOGICAL FUNCTION F (a1,a2, . . . ,an)
F is the function name, and ai are formal parameters. The type
FUNCTION statement declares the type of the result returned by the
function. Double integer functions maybe declared by mentioning the
function name in a type—statement list.

Example:

FUNCTION XSQ(A)
XSQ = A*A
RE TURN
END

In RT-FORTRAN, recursive calls are permitted.

ND-60. 011. 04

6.3.1

6.3.2

Function Reference

F(a1,...,an)

F identifies the function being referenced. It is the same as the name
in the FUNCTION statement. ai are the actual parameters.

A function reference may appear any place in an expression where an
operand may be used. The evaluated function will have a single value
associated with the function name. When a function reference is en—
countered in an expression, control is transferred to the function indi—
cated. When a RETURN or END statement in the function subprogram is
encountered, control is returned to the statement containing the function,
with the function reference replaced by the value of the function.

Example:

x = A+B*XSQ(D)

Function Parameters

The formal parameters of a function subprogram may not appear in either
a COMMON, DATA or EQUIVALENCE statement in the function subprogram.
When a function reference is executed, actual parameters are associated
with all appearances of the corresponding formal parameters in executable
statements and statement functions in the defining subprogram. If a formal
parameter appears in a statement redefining its value, the corresponding
actual parameter must be a simple or subscripted variable or an array
name. A formal parameter may not appear in a redefining statement if a
function reference associates it with another formal parameter in the same
subprogram directly or via another element. If an actual parameter is an
arithmetic expression, it is evaluated and its value is associated with the
corresponding formal parameter.

If a formal parameter is an array name, the corresponding actual para-
meter must be an array. A formal parameter used as a format specifi—
cation in a formatted READ or WRITE statement is assumed to be an array.

If an actual parameter is a function or subroutine name, the corresponding
formal parameter must be used as a function or subroutine reference.

A function must have at least one, and not more than 32 parameters.

ND—60. 011. 04

Examples:

1) Function Subprogram

2)

3)

FUNCTION GREAT (A, B)
IF(A—B)1,1,2

1 GREAT=A-B
RETURN

2 GREAT=A+B
END

Calling Program Reference

Z(I , J) =F1+F2-GREAT(C -D, 3 .* IJ)

Function Subprogram

FUNCTION SYCHE(A,B,X)
CALL x '

SYCHE=A/B*2.* (A-B)
END

C allingProgram Reference

EXTERNAL EROS

R=S~SYCHE (TLIM, ULIM, EROS)

In the function subprogram, TLIM, ULIM replaces A,B. The
CALL X is a call to a subroutine named EROS. EROS appears
in an EXTERNAL statement so that the compiler recognizes it
as a subroutine name rather than a variable identifier.

Function Subprogram

FUNCTION A L(W,.X,YI Z)

CALL W(X,Y, Z)
AL=Z**4 .
RETURN
END

ND—60.011. 04

6.4

6-6

Calling Program Reference

EXTERNAL SUM

G=AL(SUM,E,V,H)

In the function subprogram the name of the subroutine (SUM) and
its parameters (E,V,H) replace W and X,Y, Z. SUM appears in
the EXTERNAL statement so that the compiler will treat it as a
subroutine name rather than a variable identifier.

Statement Functions

Statement function definitions must precede the first executable statement
of the program or subprogram and must follow any specification statements.
The name of‘ a statement function must not appear in an EXTERNAL state—
ment, nor as a variable name or an array name in the same program or
subprogram. A statement function applies only to the program or subprogram
containing the definition; it is defined by a statement of the form:

f(a1,a2,...,an) =e

f is the statement function name, e is any expression. ai are variable
names which are dummy arguments indicating type, number, and order
of arguments; they may be the same as variable names of the same type
appearing elsewhere in the program unit. n may not exceed 32. f and e
must be both logical or both non—logical.

Examples:

1. LOGICAL C,P, EQV

EQV(C,P) = (C.AND.P).OR. (.NOT.C.AND. .NOT. P)

2. COMPLEX D,F .
D(A,B) = (3.2,0.9)*EXP(A)* SIN(B)+(2.0,1.)*EXP(Y)*COS(B)

3‘ GROS(R.HRS, OTHER) = R*HRS + R»: . MOTHER

ND—60. 011. 04

6.5

6.6

6.7

6-7

Library Functions

Function subprograms that are used frequently have been written and
stored in a reference library and are available to the programmer
through the compiler.

A list of these functions is found in Appendix D. When a reference appears
in the source program, the compiler identifies it as a library function
and generates a calling sequence within the object program.

Example:

x = SIN (A)+A LOG (B)

EXTERNAL Statement

When the actual parameter list of a given function or subroutine
reference contains a function or subroutine name, that name must be
declared in an EXTERNAL statement. its form is

EXTERNAL namei. namez, nameg,

namei is a function or subroutine name used as a parameter.

The EXTERNAL statement must precede the first executable statement
in any program in which it appears. When it is used, EXTERNAL always
appears in the calling program. (See examples in Section 6. 3.2.)

Subroutine Sub'programs

A subroutine is a computational procedure which may return none, one,
or more values. No value or type is associated with the name of a sub-
routine. The first statement of a subroutine subprog‘ram must be one of
the following:

SUBROU TINE s

SUBROUTINE s (211.. . . .an)

S is an alphanumeric identifier; ai are formal parameters and may be
variable names, array names, or subprogram names.

The name of the subroutine must not appear in any other statement in the
Subprogram. The names of the formal parameters ai may not appear in a
COMMON or DATA statement in the subprogram. The parameters may be
defined or redefined within the subprogram so that they may effectively
return results.

No value is associated with the name of the subroutine, and the subroutine
must be referenced by a CALL statement.

ND-60. 011. 04

6.8

Rules:

1) The name of the subroutine may not appear in any declarative
statement (TYPE, DIMENSION) in the subroutine.

2) The name of the subroutine must never appear within the sub—
routine as an identifier in a replacement statement, in an input/
output list, or as an argument of another CALL’“.

3) No element of a formal parameter list may appear in a COMMON,
EQUIVALENCE , DATA, 0r EXTERNAL statement within the

subroutine.

4) When a formal parameter represents an array, it should be
declared in a DIMENSION statement within the subroutine. If

it is not declared, a loader error will result.

5) The SUBROU TINE statement may have from zero to 32 formal
parameters.

CALL Statement

The executable statement in the calling program to refer to a subroutine

is one of the forms:

CALL S
CALL 8 (31,...,an)

S is the name of the subroutine being called, and a. are actual parameters.
The name may not appear in any specification statement in the calling
program except in EXTERNAL statement. A subroutine may also be
referenced by the appearance of its name in an EXTERNAL statement.

The CALL statement transfers control to the subroutine. When a RETURN

or END statement is encountered in the subroutine, control is returned to

the next executable statement following the CALL in the calling program.

If the CALL statement is the last statement in a DO loop, looping con-

tinues until the loop is satisfied.

Examples:

1) Subroutine Subprogram

SUBROUTINE TEST (X,Y, Z)

Z=2*X+X/Y
END

Note that in RT-FORTRAN, the subroutine name may appear in

a CALL statement both as parameter and as subroutine name.

ND-60.'011.'04

2)

3)

Calling Program References

CALL TEST(X(I),Y(I),A)

CALL TEST(A,B,C)

CALL TEST(X(I)+H, Y(1)+2., W)

Subroutine Subprogram (Matrix Multiply)

SUBROUTINE MATM
COMMON/BLKl/X(20, 20) , Y(20, 20), z<20, 20)
D0101=1,20
DO 10 J=1,20
Z(I,J)=0
DO 10 K=1,20

10 Z(I,J)=Z(I,J)+X(I,K)*Y(K,J)
RETURN
END

CallimLProgram References

COMMON/BLKi/A(20, 20), B(20, 20) , C(20, 20)

.

CALL MATM

Subroutine Subprogram

SUBROUTINE HTAR(Y, Z)
COMMON/1/X(100)
Z=0 I

DO 5 1:1,100
5 Z=Z+X(I)

CALL Y
RETURN
END

ND—60.011.04

6.9

6-10

Calling Prggrarn Reference

COMMON/I/A(100)
EXTERNAL PRNT

CALL HTAR (PRNT,SUM)

4) Subrouti ne Subprogram

SUBROUTINE PIP (A , B, C)

A=B**C ‘

END

Calling Program Reference

CALL PIP (V(1) ,X,3) parameter must agree
in number

Program Arrangement

NORD STANDARD FORTRAN assumes that all statements and comments
appearing between a PROGRAM, SUBROU TINE, or FUNCTION statement,
or the first statement of a main program and an END statement belong to one
program unit. A program unit must consist of at least one executable
statement that is actually executed. Any specification statements or
statement function definitions must precede the first executable statement
with specifications preceding statement function definitions. FORMAT
statement may appear anywhere in a program unit. The last executable
statement in a main program or subprogram must be one of the following:

STOP

RE TURN

END

A subprogram normally contains RE TURN statements that indicate the
end of logic flow within the subprogram and return control to the calling
program. In a function subprogram, control returns to the statement
containing the function reference at which time the value of the function
is made available to the calling program. In subroutine subprograms,
control returns to the next executable statement following the CALL
statement. A STOP statement in the main program causes an exit to
the operating system.

ND-60. 011. 04

6. 10

6-11

END is the final statement in a program or a subprogram. In a sub-

program, END causes a return to the calling program and may replace

a final RE TURN statement.

A typical arrangement of a set of main program and subprograms
follows.

PROGRAM TEST

END

SUBROUTINE Si

END

SUBROU TINE SZ

END

FUNCTION F1 (. . .)

END
FUNCTION F2 (. . .)

END

RETURN and END Statements

A subprogram normally contains one or more RETURN statements that

indicate the end of logic flow within the subprogram and return control

to the calling program. The form is

RETURN l

In function references, control returns to the statement containing the

function. In subroutine subprograms, control returns to the calling

program.

The END statement marks the physical and of a program, subroutine sub—

program or function subprogram. If the RETURN statement is omitted,

END acts as a return to the calling program.

A main program must not contain a RETURN statement.

Nth60{011jo4

6.11

6—12

RT—Program Statement

By using the RT—program statement, the user can generate an RT—
description for his program. This program may be executed in the
same way as all other RT—programs written in assembly code (see
the SINTRAN III Users' Guide for further information). The RT—
statement has the following format:

PROGRAM < prog. name > , < priority >

The < prog. name> may be any acceptable FORTRAN name. It will-
be referred to in the loader tables and must be defined only once. The
<priority> specifies the priority of the RT—program and may be any
unsigned number between 1 and 225. An example might be:

PROGRAM PER, 5

Here PER will be defined to a real-time program with a priority of 5.

The < priority > may be omitted. Then the < priority > will be set to
zero, and a warning message will be printed at load-time.

ND-60.011.04

7.1

7.1.1

7-1

1/0 STATEMENTS

Input/output statements control the transfer of information between the
computer memory and logical units, which can be external devices or
mass storage files.

READ/WRITE Statements (Formatted)

The following definitions for i, n, and L apply for all I/O control
statements.

The logical unit number, i, must be an integer variable, an integer conm
stant. or an array name. (ENCODE —/DECODE —effect.)

In case the device number is an array name, the execution of a WRITE
statement will cause the list elements to be placed in the array according
to the FORMAT statement.

The FORMAT statement describing the format of the data is represented
by n which must be a statement label number or an array name.

The input/output list is specified by L.

ERR=1 _ is an optional clause that is used to transfer control to
1 statement label 11 if an error is detected in the execution

of the input/output statement. The statement label 11
must be contained in the same routine as the input/

‘

output statement.

END=1 is an optional classic that is used to transfer control to
2 statement label I if, during the execution of an input/

output statement, and end of file is encountered on input
or the end of a mass storage file is encountered on
output. The statement labeled 12 must be contained in the
same routine as the input/output statement.

W
WRITE (i, n,ERR-411) L

This statement transfers information from storage locations given by
identifiers in the list (L) to a specified unit (i) according to the
FORMAT statement (n). |

A logical record containing up to 136 ASCII characters are output to
the unit. The number of words in the list (L) and the FORMAT
statement (n) determines the number of records that will be written on
a unit. If the logical record is less than 136 characters, the record will
be terminated with the last data item in the record.

ND—60. 011. 04

7.1.2

Examples:

DIMENSION D(10, 10)
WRITE (5,10) A,B,C

10 FORMAT (3F10.5)

WRITE (5,10)((D(I,J),I=1,N1),J=1,N2)
WRITE (5,10) D
WRITE (5,20) .

20 FORMAT (6X, 5HABCDE)

READ Statement

READ (i,n,ERR=11,END=12) L
This statement transfers information from a specified unit (1)
into storage locations named by the list (L) identifiers according to.
FORMAT statement (11).

The number of words in the list and the format specifications must con-
form to the record structure on the logical unit, (up to 136 characters
per record).

Example 5:

READ (4,10,ERR=98,END=99) X,Y, z
10 FORMAT (3F10. 5)
98 STOP 1
99 STOP 2

DIMENSION mm, 10)
READ (4,11) ((D(I,J),I=1,N1),J=‘1, N2)

11 FORMAT (5E12.2)
READ (4,11) D
READ (4,20)

20 FORMAT (6X,10HINPUTUDATA)

ND-60.011.04

7.2

7.2.1

7.2.2

7.3

INPUT/OUTPUT Statements

The execution of these statements cause the transmission of data to con-form to a standard FORMAT E16. 8 for real list items, and 116 forinteger list items.. (See Section 8. 4.)

OUTPUT Statement

OUTPUT (i,ERR=11) L
This statement transfers information from storage locations given byidentifiers in the list (L) to a specified unit (i) according to a standardFORMAT, (see Section 8.4. 2) . Else the rules are as for WRITEstatement.

Example:

OUTPUT (5) A,B,11,X

DIMENSION D(10)
OUTPUT (5) D

INPUT Statement

INPUT (i,
ERR=l1 ,

END=12) L

This statement transfers information from a specified unit (1)
into storage locations named by the list (L) identifiers according to a
standard FORMAT (see Section 8.4. 1). Else the rules are as for a
READ statement.

Example:

INPUT (4) A,B,C ,
DIMENSION D(5)
INPUT (4) D

01‘

INPUT (4) (D(I) , 1:1, 5)

Binary Input/Output

The binary transmission mode transports bit patterns from one place
to another, e. g. , from an external device into central memory or
reverse.

One half-word (8 bits) is moved at a time. Two neighbour half-words
are placed side by side in one memory location. The order of the half-words is preserved during the transfer.

ND—60. 011. 04

7.3.1

7.3.2

7.4

7.4.1

7-4

Write Binary

WRITE (i,ERR=11) L

This statement transfers information from storage locations given by
identifiers in the list (L) to a specified external unit (i) in binary mode.

Example :

DIMENSION IA(50), 13(10)
WRITE (3) IA, B

Read Binary

READ (i,ERR=11,END=12) L

This statement transfers information from the specified unit (i)
into storage locations named by the list (L) identifiers in binary mode.

Example:

DIMENSION IA(50), B(10)

READ (2) IA,B

Transmission of Arrays

Part or all of an array can be represented as a list item. Multi-
dimensional arrays may appear in the list, with values specified for the
range of the subscripts in an implied DO loop.

Implied DO Loop

The general form is:

(((A(I,J,K)) B(Iy J9 K) ’ Y1=m1! m2) m3) , Y2=n19 n23 113) y Y 3:131) 132,133)

where

A, B are array names,

mimi, pi are unsigned constants or predefined positive integer
variables.
If m3, 113 or p3 is omitted, it is construed as 1.

I,J, K are subscripts of A and B and must be integer variables or
constants.

Y1’Y2- Y3 are I, J, or K; y14=y2rv3

ND-60.011.04

The 1/0 list (L) may contain five nested implied DO loops,

Example:

As an element in an input/output list. the expression

WRITE(i)(((A(I,J,K), I=m1,m2,m3). J=n1.n2,n3), K=p1,p2.P3)

implies a nest of D0 loops of the form

DO 10 , K = p1.l)2,P3

DO 10 J =
n1,n2,n3

D010 1 =m1,m2,m3

WRITE(i) A(I,J,K)

10 CONTINUE

(Be aware that the last way of writing will generate more output
records, as the WRITE generates at least one record every time
it is executed!)

Example:

To write the elements of a 3 by 3 matrix by columns:

((A(1,J). 1:1,3). J=1.3)

To write the elements of a 3 by 3 matrix by rows:

((A(1.J), J=1.3). 1:1.3)

Example:

For example, a multi-dimensional non-subscripted list element,
SPECS, with an associated DIMENSION SPECS (8, 6, 4) statement
is transmitted as if under control of an implied DO 100p:

WRITE(i,n) SPECS

is equivalent to:

WRITE(i,n)(((SPECS(I,J,K), 1:1,8), J=1,6), K=1,4)

ND—60. 011. 04

7.5

7.

7.6.1

7.6.2

7. 6.3

7-6

Addressing Records on Files (SINTRAN III)

On files opened for sequential read-write (RW) the initial record
number of the I/O transfer may be specified in the READ/WRITE
statements.

Example:

READ(i/k ,n)L

This statement transfers information from the kth record of the
file i into storage locations named by the list (L) identifiers accor-
ding to FORMAT statement n.

Mass Storage Statements

To simplify file handling, mass storage statements are provided.
The logical unit number, i, is an integer variable or an integer constant.

REWIND Statement

REWIND 1

Moves the file pointer to the beginning of logical unit no. 1. When the filepointer is already at the beginning of logical unit no. i, the statement actsas a do-nothing statement.

BACKSPACE Statement

BACKSPACE i

Backspaces the pointer one logical record in unit no. 1. When the pointeris already at the beginning of file no. i, the statement acts as a
do-nothing statement.

E ND FILE Statement

E NDFILE i

Writes an end-of-file mark on logical unit i.

ND-60. 011. 04

7.7

7.7.1

7.7.2

Additional Mass Storage Utility Subprograms (SINTRAN III)

Note: If the following subprograms are declared as integers and
treated like functions they will return the value zero if no
errors occurred during the transfer, else the error-code.
Also the appropriate error- message will appear on the
terminal.

Example:

INTEGER SETBL

IERR : SETBL (65,512)
IF (IERR.NE.0) GOTO 100

Open a File

INTEGER OPEN

IERR=OPEN(’< filename>< blank>', < connected file no> , <access code>
or
CALL OPEN(' < filename7< blank) ', < connected file no.7 , (access code7

File name: as in NORD File System
Connected file no: logical file number applied by the user in his

READ/WRITE statements (must be different
from 1).

Access code: 0 — sequential write
1 - sequential read
2 - random read or write
3 é- random read
4 — sequential read or write
5 — sequential write append
6 - random read or write common
7 - random read common

The specified file is opened for access. ‘ The call acts like the OPEN—
FILE command (see NORD File System manual).

Close a File

INTEGER CLOSE

IERR = CLOSE (<file no.>) -
or
CALL CLOSE (<file no. >)

This call will close the file with the specified file number. If the
number is —1, all files for entered user are closed.

ND-60. 011. 04

7.7.3

7.7.4

7.7.5

7-8

Read (Random) Part of a File

INTEGER RFILE

IERR = RFILE ((file no) , < return flag > , < core address > ,

r < block no.) , < no. of words))
0
CALL RFILE (<file no> , < return flag> , < core address >,

<block no. > , < no. of words >)

This is a subroutine to read a random record from a file. file no
identifies the file. If return flag is zero, the program will be set
in a wait state until the transfer is finished. If return flag is set
non—zero, there will be return from RFILE as soon as the transfer is
started, so that the program and the transfer can proceed in parallel.

The parameter core address determines where the record should
be placed. In FORTRAN this can be any array name. block number
gives the file block number where the record starts, while number of
words defines the record size. There is no inherent restriction on
the record size.

Write (Random) Part of a File

INTEGER WFILE

IERR = WFILE (< file no. > , < return f1ag>, <core address>
< block no> , <no. of words >)

or
CALL WFILE (<file no. > , < return flag), < core address 7,

< block n07 , < no. of words 7)

This is a subroutine to write a random record onto a file. The para—
meters have the same meaning as for RFILE. If the record does not
fill the last block completely, the rest of the block will have undefined
contents.

Set Block Size of a File

INTEGER SETBS

IERR = SETBS (< file no. > ,< block size >)
or
SETBS (< file no.) , < block size>)

This call will set the block size of the specified opened file. The block
size may be any number greater than or equal to 1 (default = 256 words).

ND—60.011.04

7.7.6

7.7.7

7.7.8

7-9

Set By_te Pointer of a File

INTEGER SETBL

IERR = SETBL (< file no.) , < byte number >)
or
CAL]: SETBL ((file no, 7 , <, byte numbe1'7)

This call will set the byte pointer of the file to the specified byte number.
The call may be applied on files opened for RW only.

Set Block Pointer of a File

INTEGER SETBT

IERR = SETBT (< file no.> , < block number))
or
CALL SETBT (< file no. > , < block number>)

This call will set the byte pointer of the file to the first byte in the
specified block.

Read Byte Pointer of a File

INTEGER REABT

IERR = REABT (< file no.) , < byte number read))
or
CALL REABT (< file no .> , (byte number read >)

This call will return in second parameter the current byte pointer
of the opened file.

ND—60. 011. 04

OI

8.1

8.1.1

8.1.2

8-1

FORMAT SPECIFICATIONS

Introduction

The FORTRAN FORMATTED INPUT/OUTPUT System, F10, is
completely re—entrant and can therefore be used (shared) by several
different programs on different priority levels simultaneously.

The FIG-System has three different "modes" of transmission of data
beteen an external device and computer memory.

Formatted Input/Output

This is the general FORTRAN input/output whereby the data trans-
mission is performed under control of a FORMAT statement.

Example :

WRITE (5,10) A,B,C,K,L,M

10 FORMAT (2E20.8, 115, F5.1,/,2X,2110)

where (5,10) specifies the logical unit no. 5 (see Appendix H) and
FORMAT statement no. 10 and A,B, ,M is the I/O-list.

Note that the list item and the format specification should normally be
of the same type, but they can also be of different types. A list item of
integer type can be input or output under F or E specification, and a
list item of real type can be input or output under I specification. (0n
input the data string is processed according to the format Specification
before it is converted to the type of the list item. This feature should
therefore be used with caution.)

See Appendix H for 1/0 device numbers.

Binary InputZOutput

This is also a standard FORTRAN feature. Transmission in this mode
will merely move the data from one place to another (specified by the
programmer) with0ut conversion.

Example:

READ (2) L

where (2) specifies logical unit no. 2 and L is the I/O-list.

ND—60. 011. 04

8.1.3

8.2.1

"Free" Format Inputflatandard Format Output

Transmission of data in this mode includes conversion of data similar
to that of formatted I/O. But in using this form of 1/0, the programmer
need have no concern about the FORMAT statement since the data conver-
sion is not under external format control.

Example :

INPUT (2) A,B,C,D,K,L,R

OUTPUT (3) A,B,C,D,K,L,R

Formatted Input/Output

FORTRAN READ and WRITE statements of the form

READ (i,n) L
WRITE (1,11) L

cause the generation of calls to the formatted I/O routine. The form
of these calls is shown in the subroutine specification, "Formatted
Input/Output". In the above statements 1 is a logical unit number, n is
a FORMAT statement number, and L is the I/O list.

FORMAT Statement

The FORMAT statement is used to specify the conversion to be per-
formed on data being transmitted during formatted (BCD) input/output.
It is non-executable and may be placed anywhere in the program. In
general, conversion performed during output is the reverse of that
performed during input. FORMAT statements have the form

FORMAT (s ,s)1, 82, S3, n

where

n 2 0, and
s has either a formatted specification of one of the forms
described below or a repeated group of such specifications
in the form

r(s1 , 52, , Sm)

where m > 0, r is a repeat count (described below), and
51 has one of the format specifications listed below.

Format specifications describe the kind or type of conversion to be per-
formed, specific data to be generated, and editing to be executed. Each
integer or real entity appearing in an input/output is processed by a single
format specification.

ND—60. 011 . 04

8.2.2 Record

A record is a unit, composed of a number of positions or other
smaller units. A NORD—record has variable length, Le. from
one LF to the next CR. The maximum record length has 136
positions. FORMAT statements define records. The first left
parenthesis starts a new record, while the last right parenthesis
terminates it. The number of positions in each record must
not exceed the maximum number, but may be less than it.

Note: The right parenthesis of a parenthesized specification group,
not preceded by a repetition factor, causes termination of a
record.

Example: The program:

PROGRAM T1
DIMENSION A(5)
D01 1:1,5

1 A(I)=10.0*I
DO 2 J=1,5

2 WRITE(1,3) J,(A(I),I=1,5)
FORMAT(2X, 12, (4x, F5. 1))
END

causes the following output:

1 10.0
20.
30.
40.
50.

2 10.0
20.
30.
40.
50.

0000

COCO

2.0.
30.
40.
50. OOOO

20.
30.
40.
50.

5 10.0
20.
30.
40.
50.

0000

OOOO ND—60. 011. 04

8.2.3 FIG—Conversion Specifications

e.

rEw.

e.

rIw

rAw

r Zw

rLw

Tw
tnP

Real number without exponent

Real number with exponent

Double Precision number with exponent

Integer or double integer

Alphanumeric specification

Octal integer specification

Logical specification

Tab—specification

Scaling factor

Editing specifications:

rX

a

r/

Intra—line spacing

Text

Text

Text

New record

The letters r, w, d, n, and s in the specifications above have the
following meanings:

r is an Optional, unsigned integer that indicates that the
specification is to be repeated r times. When r is
omitted, its value is assumed to be 1. For example,
316 is equivalent to I6, 16, I6. For X specification, r
must be defined.

is an unsigned integer that defines the width,
in characters (including digits, decimal points, algebraic
signs and blanks), of the external representation of the
data being processed.

for F, E and D specifications, is an unsigned integer that
specifies the number of fractional digits appearing in
the magnitude portion of the external field.

is an unsigned integer that defines the number of
characters being processed.

is a string of characters acceptable to the FORTRAN
processor.

ND—60. 011. 04

8.2.3.1

8-5

F Format (Fixed Decimal Point)

Form: e. d

Real data may be processed by this form of conversion. The total
width of the field, including decimal point and sign, if any, is specified
by w, and the value of d allows for the appropriate number of digits
in the fractional portion of the field. F format specification should be
used for numbers that range from 1. 0E -10 to 1. 0E10 in absolute value.

OUTPUT

Internal value are rounded to d decimal places with an over all length
of w. The field is right-justified with as many leading blanks as
necessary. Negative values are preceded with a minus sign. Con-
sequently, for the specification F11.4,

27.3.4 is converted to 273.4000

7 is converted to 7. 0000

-. 003 is converted to -. 0030

-442. 30416 is converted to -442. 3042

If a value requires more positions than are allowed by the magnitude of
w, the output field is filled with asterisks. This happens if

w < d+2+n

where

n is the number of digits to the left of the decimal point.

INPUT

Input strings may take any of the integer or real constants forms dis—
cussed below in Section 8. 2.4, "Numeric Input Strings". Each string
will be of length w with (1 characters in the fractional portion of the value.
If a decimal point is present in the input string, the value of d is ignored.
and the number of digits in the fractional portion of the value will be
explicitly defined by that decimal point. For the specification F10. 3,

33 is converted to .033

802142 is converted to 802.142

.34562 is converted to . 34562

—7. 001 is converted to -7. 001

ND—60. 011. 04

8.2.3.2 E Format (Normalized with Exponent)

Form: rEw.d

Real data is processed by this form of conversion.

OUTPUT

Internal values are converted to real constants of the forms

d. ddd dEtee

where the length of the output field is W, and the number is scaled to
have one digit of the mantissa to the left of the decimal point, such
that the number of digits in the mantissa is d+1. The exponent, tee, is
interpreted as a multiplier of the form mice.

1

Internal values are rounded to d+1 digits, and negative values are
preceded by a minus sign. The external field is right—justified and
preceded by the appropriate number of blanks. The following are
examples for the specification E15. 7

90.4450 is converted to 9. 0445000E+01

-435739015 is converted to -4. 3573902E+08

.000375 is converted to 3. 7500000E—04

.2 is converted to 2. 0000000E-01

0.0 is converted to 0.0000000E+00

The field is counted from the right and includes the two exponent digits,
the sign, the letter E, the fractional digits, the decimal-point, the most
significant digit, and the sign of the value (minus or space). If a width
specification is of insufficient magnitude to allow expression of an entire
value, w <d+7, the field will be filled with asterisks. E format can be
used for numbers that range from 1. GB —100 to 1.0E100 in absolute value.

INPUT

The discussion in Section 8. 2.4 contains a description of the form
permissible for strings of input characters. Conversion is identical to
F format conversion. In particular, input fields for conversion in E
format need not have exponents specified.

Examples:

Input Value Specification Converted to

-1134~09E2 E11.6 -11.340900

—409385E-03 E11.2 —4.09385

849935E-02 E10. 5 .0849935

6851 E4.0 6851.0

ND—60. 011. 04

8.2.3.3

8.2.3.4

8.2.3.5

First the decimal point is positioned according to the specification;
then, the value of the exponent is applied to determine the actual position
of the decimal point. In the first example, -113409E2 with a specification
of E11.6 is interpreted as —.113409E02, which when evaluated (i. e. ,
—.1134o9 * 102), becomes -11.34o9oo.

D Format (Normalized with Exponent)

This format is equivalent to the E format. It is also used in the same
way.

I Format (Integer or double integer)

Form: rIw

Integer data is processed by this form of conversion.

OUTPUT

Internal values are converted to integer constants, w giving the maximum
number of digits to be output. (Negative values are preceded by a minus
sign, and the field will be right justified and preceded by the appropriate
number of blanks. The specification I6 implies that:

273 is converted to 273

7 is converted to 7

—24204 is converted to —24204

If the magnitude of data requires more positions than are permitted by
the value of the width w, the field will be filled with asterisks. I format
can be used for integer numbers that range from -32768 to 32767.
I format can also be used for real numbers.

- INPUT
External input strings must take the integer form discussed in Section
8. 2.4.

A Format (Alphanumeric)

Form: rAw

OU TPU T

Internal binary values are converted to character strings at the rate of
eight binary digits (two hexadecimal digits) per character. The more
significant characters are converted first. That is, conversion is from
left to right, at the rate of two characters per word. Note that when the
magnitude of w does not provide for enough positions to express the data
value completely, the external field is shortened from the right (least
significant) portion. This is not treated as an error condition. When w
has a value greater than necessary, the external character string is
preceded by the appropriate number of blank characters.

bin-60.011104

8.2.3.6

For example,
Internal Value Specification Output

HI A2 HI

HO A3 uHO

.'X Al .'

INPUT

Let v=2 (integer) or v=6 (real).
When the width w is larger than necessary (that is, w > v), the list item
is filled with the rightmost characters. For example, if the list item
is integer type, and the specification A10 is used, ABCDEFGHIJ is con-
verted to IJ alone. However, when the value of w is less than v, the
more significant positions of the list item are filled with w characters,
and the remainder of the positions are filled with blanks. Q, with a
specification of A1, is converted to Qu if the list item is an integer.

H Format (Hollerith)

Form: a

OUTPUT

The 11 characters in the strings are transmitted to the external record.
For instance,

Specification External string

1HE 13

7HuuVA LUE LMVALUE

7HKRu3. 95 KRu3. 95

9HX(2, 5)u=u X(2,5)u=u

INPUT

11 characters from the input record are inserted in the format string
following the nH Specification.
For example:

Specification Input string Re sultant- Spec.

3H1 23 ABC 3HABC

5HTRUEL. FA LSE 5H FA LSE

6Hu uuuuu RANDOM 6HRA NDOM

This feature can be used to change titles, dates, column headings, and
so forth, that are to appear on a record generated by the H specification.

ND—GO. 011. 04

8.2.3.7

8.2.3.8

8—9

...Text... or '...Text...‘

This specification may be used instead of nH to input or output text
from a format. The * '5 mark the ends of the Hollerith field. Note
that an * should not be included in an input string under a: specification.
Comma is optional after an at . . a: specification.

Example:

FORMAT (* HOLLERITHsk)

X Format (Skip)

The form of the X specification is

rX

where r must be a 1.

OUTPUT

The next r positions in the output record will be blanks. In other
words, a field of r blanks will be created. For example, the specifications

41mZ, 4X, 4HIJKL

generate the following external string:

WXY Z u u u ._.IJKL

INPUT

The next r characters from the input string are ignored (that is, they
are skipped). For example, with the specifications

F5. 2, 6X, I3

and the input string

76. 411GNORE697

the characters

IGNORE

will not ‘be processed.

ND—60. 011. 04

8.2.3.9

8.2.3.10

8-10

T Format (Tab)

Form: Tw

This specification causes processing to continue at the w'th character
of the input or output record. '

Z Format (Octal)

rZw' or rOwForm:

Octal input/output can be performed specifying any of the data types -

integer or real - in the [/0 list.

As each octal digit represents three bits, and the NORD-i wordlength
is sixteen bits, the following connection is used:

Integers : treated as one 16 bit word, 6 octal digits

Reals : treated as one 48 bit word, 16 octal digits

OUTPUT

Internal binary values are converted to character strings at a rate of
three bits per character.

Integers : If w .>. 6, the leftmost digit is the value of the
leftmost bit of the word.

Reals : If w a 16, the three words are treated as a single
forty —eight bit word.

Note that when the magnitude of w does not provide for enough positions
to express the data value completely, the most significant digits are
truncated. This is not treated as an error condition. When w has a
value greater than necessary, the external character string is pre-
ceded by the appropriate number of blank characters.

Example:

Specification Internal value Oumut value

Integers:

Z8 137420 137420
Z5 137420 37420
Z3 040001 001

Reals:

Z16 040003 100000 000000 2000130000000000
Z11 040003 100000 000000 30000000000

ND-60.011.04

8.2.3.11

8-11

INPUT

w characters from the input record are assembled into the list item at
a rate of three bits per character.

If w < 6 for integers, and w < 16 for reals, the input characters will be
right justified, and the leftmost part will be filled with zeros.

If w > 6 for integers, and w >16 for reals, the list item will be filled
with the rightmost characters.

Example:

Specification Input value Internal value

Integers:

Z6 137326 137326
Z6 Hu2671 002671
Z8 37533235 133235
Z2 35 000035

Reals:

Z16 2000130000000002 040003 100000 000002

L Format (Logical)

Form: e

This code is used only with input and output of logical variables.

If Lw is specified for output and the value of the logical list item is
. TRUE. , the rightmost position of the field with length w contains the
letter T. If the value is .FALSE. , the letter F is printed, instead.

On input, the field width is scanned from left to right for the first
occurrence of T or F, and the value of the corresponding logical list
item is set to .TRUE. or .FALSE. , respectively. All other characters
of the external input field are ignored. In the absence of T or F in the
input field, no value will be stored.

ND-60. 011. 04

8—12

8. 2. 3. 12 / Specifications (Record Separator)

The form of the / specifications is

r/ or /

Each slash (/) specified causes another record to be processed. In the
case of continuous specifications (i. e. , ////. . . / or r/), records are
ignored during input (since no conversion occurs between each of the
slash specifications), and blank records are generated during output
operations. The same condition can occur when a slash specification
and either of the parenthesis characters surrounding the field specifi-
cations are continuous, '(i. e. , r(,/)). A slash preceding the final right
parenthesis in a FORMAT statement is not ignored.

OUTPUT

Whenever a slash specification is encountered, the current record being
processed is output, and another record is begun. If no conversion has
been performed when the slash is encountered, a blank record is created.
The statements

WRITE (5,10)X,K
10 FORMAT (F5.3//I.t3)

are processed in the following manner:

1) A record is begun, and X is converted with the specification F5. 3.

2) The first slash is encountered, the record containing the external
representation of X is terminated, and another record is begun.

3) The second slash is encountered, the second record is terminated,
and a third record is started. Note that since no conversion
occurred between the termination of the first and second records,
the second record was blank.

4) The value of the variable K is converted with the 113 specification,
the closing right parenthesis is encountered, and the third record
is terminated.

If a third item, Z, were added to the output list, as in

WRITE (5,10) X,K, Z

the following additional steps will occur:

5) A fourth record is begun, and Z is converted using the specifica-
tion F5. 3.

ND—60.011,04

8-13

6) The first slash is re-encountered, the fourth record is termi-
nated, and a fifth record is begun.

7) Again, the second slash is processed; the fifth record, which
is blank, is terminated, and the sixth record is started.

8) Since there are no more list items, the specification 113 is not
processed, a termination occurs, and the final or sixth record,
which is also blank, is output.

Note that the processing of Z in steps 5) through 8) is equivalent to
processing with the statement:

10 FORMAT (F5. 3, //)

since the specification 113 was not utilized.

The original FORMAT statement could also have been written a:

10 FORMAT (F5. 3, 2/113)

or

10 FORMAT (F5. 3, 2/,113)

both of which would cause identical effects.

The two statements

WRITE (5,4) X

4 FORMAT (3/E12. 4/)

cause the generatiOn of the three blank records, followed by a record
containing the value of X (converted by the specification E12. 4),
followed by another blank record.

INPUT

The effect of slash specifications during input operations is similar to
the effect for output, except that for input, records are ignored in the
cases where blank records are created during output. For example, the
statements:

READ (5,4) x
4 FORMAT (3/E12. 4/)

cause three records to be bypassed, a value from the fourth record to be
converted (with the specification E12. 4) and assigned to X, and a fifth
record to be bypassed. This means that, as with the last example for
output, records created with a FORMAT statement containing slash
specifications can be input by use of the identical FORMAT statement.
This is not true in FORTRAN systems that ignore a final slash.

ND—60. 011. 04

8-14

8.2.3.13 Scale Factor

Form: 1LnP

This specification effects only E and F output and has no effect on input.

Output: in? in front of

1w : no effect +
Fw. d : (external value) = (internal value) - 10-n

n is an arbitrary integer, n é 99. The + sign in front of n is optional.

Example: internal value = 3. 1456789

Specification Output Comment

F10. 3 Liuuuu3. 146

1PF10.3 uuuu31.457

4PF10. 3 U31456.789

6PF10. 3 "WWW” ’ Too short field ..

'1PF10.3 uuuuuu. 315

”3P F10. 3 uuuuuuo 003

-4PF10. 3 *“HHH’ Too short field

Ew. d : (external value) = (internal value)
a

The mantissa of the output is multiplied by 10 n and in is subtracted
from the exponent part. The inP specification is valid for the specifica-
tion (E or F) it is placed in front of: For instance, in the format

(5P6F15.3, F10. 2)

the 5P scaling factor will have effect on the six real numbers output by
the 6F15. 3 specification only, and the last number output by F10. 2 will
Pit be scaled.

Example: internal value = —3. 1456789

Specification Output Comment

E15. 3 uuuuu’3.146E+00

4PE15. 3 141431456. 789E-04

6PE15. 3 ##***%**#*i‘**** Too short field "

~3PE15. 3 uuum—I-O. 003E+03

-4PE15. 3 ***#¥K-%fifl'i‘**fi** Too short field

ND-60.'011.o4

8—15

8.2. 3. 14 Parenthesized Format Specification

8.2.4

Within a FORMAT statement any number of specifications may be re-
peated by enclosing them in parentheses, preceded by an optional re-
peat count, in the form shown below.

2, s3,
........... sm)

where m > 0. For example, in processing the statement

r(sl,s

3 FORMAT (3(A4,F5.2,3X), 3110)

each repetitive specification is exhausted in turn, as in each singular
specification. The following are additional examples of repetitive
specifications:

34 FORMAT (4X, 2(A8,1X,7E12.3), 14,3(12,15))
1125 FORMAT (/A4, F10.7,5(E14.4,2/) 1314.5)

Nesting of this type is permissible to a depth of two levels. The pre-
sence of parenthesized groups within a FORMAT statement affects the
manner in which the FORMAT is rescanned if more list items are
specified than are processed the first time through the FORMAT state-
ment. In particular, when one or more such groups have appeared, the
rescan begins with the group whose right parenthesis was the last one
encountered prior to the final right parenthesis of the FORMAT state-
ment.

Numeric Input Strings

A numeric input string consists of a string of digits with or without a
leading sign, decimal point, or trailing exponent. An exponent is
normally specified as

Edie

where the plus sign is optional and e is a' one- or two-digit number.
The form ie is also accepted (without the E), in which case the plus
sign is not Optional. Thus, a variety of forms may be used to express
data for numeric input, such as

in in. m in. i.m

inEie in. mEie in. Ee i. mE is

tnie immJ-Ye in. is i. m 1“e

where the plus signs are optional except in an exponent field without
an E (as described above).

ND—60. 011. 04

8-16

Note: The form in is the only form accepted by an I specification.
. All are accepted by E and F specifications.

The field terminates only when the width is exhausted or by a comma
or CR. The following rules applv to blanks in numeric fields with a
width specified:

1) Leading blanks are ignored. except that they are counted as
part of the field width.

2) Once any non-blank character has been found, all blanks be-
yond that point are treated as zeros.

For a format specification such as F10. 0, all the input strings in each
of the columns below produce the value shown in the top line of the co-
lumn. The first three lines in each column are typical numeric fields;
the others are permissible but less readable.

-. 004 7. 5E12 0
-4E-3 .75E+13 0.0

-. 004 75E11

'uuuuu4u‘4 75uuuq6 0 + 0
.uu-lE 750+10 0E

'4uuuuu'8 .uuu75E16 + -

On input, a plus sign for the exponent field following an E is Optional.

ND—60. 011. 04

8. 2.5

8-17

FORMAT and List Interfacing

Formatted input/output operations are controlled by the FORMAT re-
quested by each READ or WRITE statement. Each time a formatted
READ or WRITE statement is executed, control is passed to the
FORMAT processor. The FORMAT processor operates in the following
manner:

1)

2)

4)

When control is initially received, a new input record is read,
or construction of a new output record is begun.

Subsequent records are started only after a slash specification
has been processed (and the preceding record has been termi-
nated), or after the final right parenthesis of the FORMAT has
been sensed. Attempting to read or write more characters
on a record than are or can be physically present does not cause
a new record to be begun; during output operations the extra
characters are lost and during input operations they are
treated as blanks.

During an input operation, processing of an input record is
terminated whenever a slash specification or the final right
parenthesis of the FORMAT is sensed, or when the FORMAT
processor requests an item from the list and no list items re-
main to be processed. Construction of an output record termi-
nates, and the record is written on the same conditions.

Every time a conversion specification (1. e. , D, F,E,I, Z or A
specification) is to be processed, the FORMAT processor
requests a list item. If one or more items remain in the list,
the processor performs the appropriate conversion and proceeds
with the next field specification. If the next specification is one
that does not require a list item (i.e., H, X or /), it is pro—
cessed whether or not another list item exists. Thus, for
example, the statement

WRITE (6,12)
12 FORMAT (///4HABCD)

would produce three blank records and one record containing
ABCD before reaching the final right parenthesis. When there
are no more items remaining in the list and the final right
parenthesis has been reached or a conversion specification has
been found, the current record is terminated, and control is
passed to the statement following the READ or WRITE state-
ment that initiated the input/output operation. .

ND—60. 011. 04

5}

8-18

When the final right parenthesis of a FORMAT statement is
encountered by the FORMAT processor, a test is made to
determine if all list items have been processed. If the list
has been exhausted, the current record is terminated and
control is passed to the statement following the READ or
WRITE statement that initiated the input/output operation.
However. if another list item is present, an additional record
is begun, and the FORMAT statement is rescanned. The
rescan takes place as follows:

a. If there are no parenthesized groups of specifications with-
in the FORMAT statement, the entire FORMAT is rescanned.

b. However, if one or more parenthesized groups do appear,
the rescan is started with the group whose right parenthesis
was the last one encountered prior to the final right paren-
thesis of the FORMAT statement. In the following example,
the rescan begins at the point indicated.

FORMAT(3X, (F7. 2, A5) , (X, 3HABC(314, (E15. 7//) , A3)) , E20. 8, 3HXYZ)

6)

rescan closing final right
begins parenthesis parenthesis
here of internal of FORMAT

group

c. If the group at which the rescan begins has a repeat count (r)
in front of it, the previous value of the repeat count is
used again for each rescan.

Each list item to be converted is processed by one specification
or one iteration of a repeated specification.

ND—60. 011. 04

8.2.6

8-19

Field Termination bv Comma

An additional feature has been introduced for input of numeric input
strings by E. F or I format specification. The numeric input string
can be terminated by a comma (,) relieving the user of the concern of
editing his data in proper columns.

Example: ’

READ (3,10) K,X,Y

10 FORMAT (110,E16.8,F14.2)

The input data string can be typed as

135, 1.23E+6, 235. ,

where the comma will terminate the field of the input string being pro-
cessed.

W a r n in g :

A trap is best illustrated by the following example:

READ (3,10) 11,12,13
10 FORMAT (314)

If the input string is typed as follows

23, 6420, 16,

the internal values of the variables will become

11 = 23

12 = 6420

13 = 0 NB!

The explanation is that as the first comma terminates the first field,
the second comma will terminate the third field because the second
number of four digits will terminate the second field (14).

Example:

If , , , is typed in the above example, the result will become:

11 = 12 = 13 = 0

The presence of a carriage return "CR" in the input string will have
the same effect as a comma, as it will terminate the field.

ND—60. 011. 04

8.3

8.4

8.4.1

8-20

Binary Input/Output

The binary transmission mode merely transports bit-pattern fromone place to another, e. g. . from magnetic tape into computer memoryor the reverse.

One half-word (8 bits) is moved at a time. Two neighbour half-words
are placed side by side in one memory location, The order of thehalf-words is preserved during the transfer.

Standard Format Input/Output

"Free" Format Input

The FIO-system includes an input option that relieves the programmerfrom the difficulty of input format description. The statement that
causes this option is

INPUT (m) list
where m is a logical unit number. The elements of the list determine whichtype of format specification the conversion will follow. An integer inthe list will cause the input conversion to follow an 116 specification;A real in the list will cause the input conversion to follow E16. 0.

Each field in the input data string is terminated either by a comma(,) or a carriage return (CR) (see Section 8. 2. 6). Note that a CR shouldnot be preceded by a comma if the list is not exhausted, as the CRthen will terminate the next field and have the same effect as a commafollowed by a comma. A maximum of twenty data fields can be inputin one record (line).

Example:

INPUT (3) 11,12,X

The data string can be input as
12, 526, 1. 25E-6 CR
or

12 CR LF
526, 1.25E-6 CR

Note:
The conversion will always follow the rules for 116 or E16. 0 specification.

Example:
INPUT (3) x

Typing: 3269, without a decimal point will cause the internal valueto become: X = 3269.

ND—60.011.04

8.4.2

8.5

8-21

Standard Format Output

Standard output formats are 116 for integers, E16. 8 for reals.

The output appears with four numbers on each line, if there is output
sufficient to fill a line.

This type of output is effected by the statement

OUTPUT (In) list

where m is device number.

Format Control

The first character in a formatted output record is always used for
format control to direct the line printer. The table below shows the
reactions of the printer on different characters in the first position.

Character Reaction

Blank Simple record shift

0 Double record shift

1 New page
+ Same record as before

S Append actual record
to last one with no
CR/LF

All other characters in the first position act as blanks and are skipped.

ND—60. 011. 04

9.1

9.1. 1

9—1

DIREC TIONS FOR USE

NORD STANDARD FORTRAN Sys tem for TSS/SINTRAN III

The Compiler

The FORTRAN compiler may be recovered from the TSS Utility Command
Processor (6)) by typing

FTNJ

Initially the compiler will run into its command processor (outputs S
on the Teletype). In this mode it accepts the following commands terminated
by carriage return:

REFMAP A reference map containing all identifiers used along with
their (relative) addresses will be printed on the list file/
device after each compiled program unit.

DEBUG In this mode the compiler will generate the additional
code necessary to run the program supervised by the
FORTRAN Debugging System.

N—TE'N Special NORD-iO code will be generated (default mode on
NORD-iO TSS).

N-ONE Ordinary NORD-i code will be generated.

CLC < octal address>

In front of each listed statement the corresponding core
address will be printed out with the specified number
regarded as base address.

COM (source file > , <1ist file > , <object file >-

This command will start the compilation with the specified
file/device combination. The files may be specified by:

1) Octal file numbers (cfr. Appendix G). Except
from file 1 (Teletype) and 100 (scratch) these files/
devices must be opened/reserved from TSS.

2) Symbolic file/device names. (Cfr. ND Time—
sharing System.)

Example:

(9 FTNJ
$ CLCu65000,
$ REFMAP,
5 COM C-R, L-P, "OBFILE‘D

The compilation terminates when an EOF statement
(necessary!) is encountered and the compiler
returns to its command processor (3).

ND—60. 011. 04.

E <file>

9-3

Deposit new value (octal) into the specified address.
Type the address terminated by / , then the contents
of the location will be printed, and then the user may
type the new value he wants to deposit, or just give
carriage return if no change is wanted.

Example :

Deposit the instruction JMP*-1 (124377)
into location 302
L*D 302/125000 124377
L>k

Examine contents of locations.

This command will print the contents of the specified .
locations in octal format on the Specified logical
file.

Example:

L*E 1 10 153

000010/001234
001235
000000
000000
000014
000015
L*

In this example the contents of locations 10 through 15
are printed on the device with the logical device number 1 .

This command is equal to the MAC command)PRINT.

Fix loader symbol table and set lower bound equal to
current location.

Define new size of loader symbol table.

Example :

L*I 100L* B
The loader symbol table will hold 100 (octal) symbols in
this example.

The loader symbol table is placed immediately after the
loader program, and will be expanded upwards. This
command will also set current locations equal to the new
lower bound.

We will advise the users to use the I command before any
program units are loaded.

ND—60. 011. 04

9-4

CORE LAY OUT

Loader Program

Lower Loader Symbol Table
bound “-"F

C urrent
location

Loaded Programs
W-

L*I 200’)L*

1

Loader Program

C urrent locati on: Loader Symbol Table
lower bound —v

Loaded Programs
W"

M cfile>

Figure

Note:

37777

into loaded programs .

Set start load address.

Example:

L*L 5000)

Table size: 100 symbols

The I command will
expand the symbol
table upwards.
(4 memory locations
for each symbol.)

Take care not to expand the loader symbol table

In this example the next program to be loaded will be
loaded from location 5000 (octal) and upwards.

Manual mode.

Load one program unit (until END) from the file specified
(symbolic or logical) , and return control to the command
processor.

ND—60. 011.. 04

N 4file>

W (file >

X <file >

List undefined symbols .

This command will list all undefined symbols in the
loader Symbol table on the specified logical file.

Example:

L*N 53

PER U006000
PRINT U006010
OLER U006070

L*

These three lines will be
printed by the line printer

Reset loader.

Start execution of the loaded program.

Define upper address for loader area (upper bound).

Example:

L*U 70000)
L*

In this example upper bound will be set to address 70000.

Write defined symbols .

This command will list all defined symbols in the loader
symbol table on the specified logical file.

Example:

L*W 3’
TOR = 005000
NILS = 005010 These lines will be punched

NILSZ = 005011 on paper tape
ALF = 005400

* : 007600 ¢-— Value of current location
C : 070000 4—- Lower address of common
L*: area

This symbol list, until the character 6, may be read
into the MAC assembler's symbol table, and used for
linking of binary programs and BRF programs, or for
debugging purposes.

Define symbols .

This command reads symbols and values from the
specified logical file into the loader symbol table. _
The symbol list must be terminated by the
character * or @ .

ND-60. 011. 04

Example:
*L X 1)

SYMBL = 001000
PER = 050000 Read from the Teletype
SINU = 050100

*
L*

This command may also read a symbol list produced by
the MAC assembler's)LIST command.

Define only undefined symbols.

If the command X is used after the command Y, only
undefined symbols will be defined by the command X and
the other symbols will be skipped.

Example:
*L N 1’2

SYMBL U004000
PER U005000
NILS U005500

L*W 1)
* 2 006000
C : 077777

L*Y
*LX1)

SYMBL = 010000
OLE = 123456

*

L*W 1)

SYMBL = 010000

* : 006000
C: 077777

L*N 1)

PER U005000
NILS U005500

L*

In this example the symbol OLE will not be defined by
the command X, because it was not undefined in loader
symbol table.

ND—60. 011. 04

Z¢fi1e>

H

Undefined symbol.
This command will read symbols from the
specified logical file, and makes them undefined
in the loader symbol table. The symbol list'must be
terminated by the character (aor *. In the location
where the symbol will be undefined, the loader will
deposit the value -1.

Example:

L*Z 1‘,

SYMBL = 10
OLE = 20

*

L*

In this example the symbol SYMBL will be undefined
in address 10 and the symbol OLE in address 20, and
the contents of address 10 and 20 will be -1.

If we now use the N command, the result will be:

L*N 1’
SYMBL U000010

OLE U000020
Lair

The commands X, Y and Z are not standard, but they
are available as an option.

Exit from the loader.

O < file name> , <decimal file number > , <mode>

‘ file name >

The 0 command is used to open a file referenced by
the user program and to assign specified device number
to that file.

Name of file.

< decimal file number>

< mode>

File number used by the user program to reference
the file.

R, W, RX or WX with the following meaning:

R - open for read sequential
W — open for write sequential
RX - open for read random
WX — open for read/write random.

ND—60. 011 . 04

The 0 command may also be used to change the-device
number of a unit record device.

Example:

L*O LINE PRINTER, 123, W

The FORTRAN statement

OUTPUT (123)
will now give output to the line printer.

9.1.3 Map of Memory after Loading

301

Loader

Loader Table ‘_ Original lower bound
Subprogram 1

Main Program

Subprogram 2

Neces sary
Library Routines

Lower common address

77777 COMMON
‘_ Original upper bound

Figure 9. 2

ND—60.011.04

9.2

9-9

Overlay Segmentation of FORTRAN Programs

The overlay structure consists of a main program, referred as theroot segment, and one level of associated overlay segments.

Root segment
(core resident)

.‘_ _ _

E R‘K \ Overlay 1
‘K

<1 4 \
‘4 \(D

8 Overlay area \\
\ Overlay 2
\
\

I

Common area \\

L.
(core resident)

Overlay 3

Core Random-read File

The root segment and the common area reside in memory throughout
the entire execution, while the overlays reside on a random—read file.
When any of the overlay subprograms are called from the root segment,
the run—time system will load the appropriate overlay (if not already
present) into the core overlay area.

Thus the root segment may reference any other root segment or overlay
subprogram, while an overlay subprogram may only reference sub—
programs in its associated overlay or in the root segment.

The root segment is loaded into core in the usual way and ahead of any
overlay. An overlay is specified from the loader by

L* #<namei> ,<name2>,,<nameN>)

where the names refer to subprograms called from the root segment.

When this command is given, the Specified subprograms can be loaded
from a BRF file. It is recommended to keep the overlay subprograms
on a separate BRF file compiled in library mode (ref. Section 9.1.1).
In this way the specified set of subprograms may be selected and loaded
into the overlay independent on the compilation sequence.

ND—60.011.'o4

9—10

In the following example the root segment is compiled into the file
ROOTzBRF, and the subprograms into LIBSUBzBRF (in library mode)
in the sequence SUBRi, SUBRZ, SUBR3, SUBR4. To generate a program
system with SUBRi, SUBR4 on overlay 1 and SUBRZ, SUBR3 on overlay 2,
the following command sequence will apply:

L*A ROOTzBRF
L*# SUBRi, SUBR4
L*A LIBSUBzBRF
L*# SUBRZ, SUBR3
L*A LIBSUBzBRF
L*

The overlay read—only file may be specified by the

G < file name>

When used before the previous mentioned overlay command (4*), the
loader and runtime system will use the specified file instead of the
default scratchfile 100. Thus, it is possible to dump and recover a
generated program system without bothering saving the scratchfile
contents.

Note:

1) A special loader, OVERLAY-BBL, is required to load and
execute with overlays.

2) The debugging option cannot be used in connection with overlays.

ND—60. 011. 04

10

10.1

10.1.1

10.1.2

10.2

10.2.1

10-1

NORD STANDARD FORTRAN DEBUGGING OPTION

By the debugging facility the user is able to execute his program while
tracing, stepping or breaking through it. Variables may be examined
and modified whenever wanted, like an interactive execution on assembly
level. '

The Compilation and Load Procedures

C ompilati on

If the program should be executed in debugging mode, the DEBUG
command must be given before the compilation (SDEBUG).

Loading

In addition to the ordinary run—time system the debugging supervisor
must be present prior to the execution. This supervisor is called
8DBUG and occupies some 1.5K of storage. By typing S from the loader,
the control is transferred to 8DBUG.

Syntax of the Command

When the debugging supervisor prints an 8; on the Teletype, it is ready
to accept a command. The available commands (along with possible
arguments) must be typed on the same line as the & and terminated by
a carriage return.

Space has delimiting effect, but more than one in a sequence are ignored.

Syntax of the Arguments

An argument may be

1) A decimal number.

2) One or two statement specifications.

3) One or more Symbolic FORTRAN variable names.

10.2.1. 1 Statement Specifications

The general syntax is

4 program unit name >, < statement number >+4di splacement >

ND—60. 011. 04

10.2.1.2

10.3

10.3.1

10-2

However, if the referenced statement belongs to the same unit as the
next statement of execution, the unit name may be omitted:

< statement number > + Ldisplacement >

Furthermore, if no numbered statement precedes the referenced one,
the statement number is dropped.

<program unit name> + <displacement>

A zero displacement may be omitted in the specification. All displacements
must be positive.

Examples:

Specification: Comment:

SUBR, 100+2 Two statements beyond that of label 100
in SUBR.

10+5 Five statements beyond that of label 10
in actual unit.

PROG+2 Third statement of PROG.

PROG2,4 Statement with label 4 in PROG2.

Specifying FORTRAN Variable Names

The general syntax is

<program unit name.» , <name>

If the variable belongs to the same unit as the next statement of execution,
the program unit name may be omitted. Arrays may be indexed with
constants as subscripts (array elements).

Examples:

OLE, A
B

SUBR, ARRAY (26)
ARR (1,1,1)

The available Commands

TRACE <statement specification><stateme'nt specification)

The flow of control of the FORTRAN program may be examined through
all statements executed (TRACE <carriage return>) or through one or
more trace areas, each specified by a lower and an upper bound.

ND—60.011.04

10. 3.2

10.3.3

10.3.4

10.3.5

10-3

During execution a reference to each passed statement will be printed
out. These references are preceded by the word TRACE enclosed in
brackets.

Example:

KLTRACE OLE ,10+1 OLE , 100

BREAK Astatement specification>

When the specified statement is reached, the execution will halt and
the control will be transferred to the debugging supervisor. The break is
performed before the specified statement is executed.

Example:

&BREAK OLE , 1 0+2

C OND <variable name > <relational operator> <constant >

When/if specified condition is true, the control will be transferred to
the debugging supervisor.

The specified variable must be of type integer or real only.

All the FORTRAN standard relational operators, i. e. .LT. , . LE. , .EQ. ,
.NE. , .GE. and .GT. are permitted. If the specified condition causes
a break, it will be reset automatically (contrary to the BREAK command).

Examples:

&COND SUBR,A(2) .1362. 4.5,,
&COND I .GT. 6;

DISPLAY <variable name><variable name > . . . etc.

.In trace mode the specified variable names will be printed out followed
by a colon and their current values.

BOUND <array name>~ (<index1>, . . . <indexn>)

The array should be specified with the greatest indices permitted.
If the array is accessed beyond this range, a message will be given
and the control will be transferred to the debugging supervisor.

Example:

&BOUND SUBR,ARR
(4,4))

ND—60. 011. 04

10.3.6

10.3.7

10.3.8

10.3.9

10.3.10

10.3.11

10.3.12

10.3.13

10—4

RESET

RESET may be used in front of the TRACE, BREAK, DISPLAY and
BOUND commands with or without arguments (no arguments of RESET
BREAK and BOUND). Its effect is to delete an earlier given argument
of the four commands listed.

WHERE for *)

WHERE prints 3. reference on the Teletype to the next statement of
execution.

DEVICE (logical device number>

By this command the user may specify the output device of trace
information and display parameters.

> {Step Command)

The next statement will be executed according to the dynamic flow of
control of the program. Thus this command decreases the speed of
execution only and the track is never lost.

CONTINUE (or C)

The execution will continue from the next statement.

NESflf

This command displays the routine nesting in the format:

&NEST
<name of present unit >
<name of caller>

<name of main program>

LDR

The control is transferred to loader.

EXIT

Exits to TSS/SINTRAN III.

ND-60. 011. 04

10.4

10-5

Examination of variable Values

When the supervisor prints the character 8;, the values of single or
subscripted variables may be examined and possibly modified. This
may be obtained by typing the name (cfr. Section 10.2.1.2) of it followed
by a slash:

<variable name>/

The value, which will appear on the right side of the slash, may be
changed by typing a left arrow (4-) along with the new value and terminating
with carriage return. ‘

Examples :

& A / 2. 300000E+100+ 4. 5)
& IARR(10) / —4. 4.,& FUNC, B / 10,

ND—60. 011. 04

APPENDIX A

C ODING PROC E DURES

Statements

FORTRAN coding forms contain 80 columns; the characters of the
language are written, one per column, in columns 7 through 72.
Statements longer than 66 columns may be carried to the next line by
using a continuation designator. No more than one statement may be
written on a line. Blanks may be used freely in FORTRAN statements
to improve readability. Blanks are significant only in Hollerith
fields of format specification nH [or '. . . L .‘ .

Statement Identifiers

Any statement may have an identifier but only statements referred to
elsewhere in the program require identifiers. A statement identifier
(also called a statement label or statement number) is a string of
from one to five digits, 1 to 32767, in columns 1 through 5. The value
of the identifier is not significant, but it must be positive. Leading
zeroes are ignored; 1, 01, 001, 0001 are equivalent forms. Zero is
not a statement identifier. In any given program unit each statement
identifier must be unique.

Lines

A line is a string of maximum 72 characters from the FORTRAN
character set. Lines may be initial, continuation, comment or end.
In an initial line, the first line of any statement, column 6 must be zero
or blank. Only an initial line may have a statement identifier in columns
1 through 5. If there is no statement identifier, columns 1 through 5
are blank. A statement with statement number must be blank in column 6.

If a statement occupies more than one line, all subsequent lines must
have a FORTRAN character other than zero, or blank in column 6.
Every program and subprogram must be terminated by an end line
indicating that the written description of the program unit is 'complete.

Comments

A comment line is designated by the letter C in column 1, and contains
comment information in columns 2 through 72. Comment information
is a convenience to the programmer; it appears in the source program
but is not translated into object code. Continuation is not permitted;
each line of comments must be preceded by the C designator.

ND-60. 011. 04

Carriage Return (CR)

Carriage return is used for termination of a line. It may occur any—
where on the line from column 1 to column 80. If the source program
is punched on cards, column 81 will be CR and column 0 will be LF
(line feed). Source programs typed on paper tape must start each line
with line feed and terminate it with carriage return. Dummy lines and
blank cards are ignored, Any occurrence of characters not included in
the FORTRAN set will result in an error message and the rest of the
statement will be skipped.

Columns 73 to 80 may be used for identification. It is illegal to use
carriage return within the identification. If attempted, the line will
terminate and a new line will be started containing the rest of the
identification.

ND—60. 011. 04

APPENDIX B

STATEMENTS OF NORD STANDARD FORTRAN

I
Statement Form N/E Page

ASSIGN E 5-1

BACKSPACE u E 7-6

BLOCK DATA N 4-10

CALL 5 E 6-8

CALL s(a1,an) E 6-8

COMMON/x /a /. . ./x /a N 4-3
1 1 n n

CONTINUE E 5—8

DATAk/d/,....k /d/ N 4-9
1 1 n n

DIMENSION v1(11).. . .,vn(1n) N 4-2

D0111 =m1.m2 E 5-4

DOni =m1,m2.m3
E 5—4

END E 5—9

ENDFILE u E 7-6

EQUIVALENCE (1(1),. . . ,(kn) N 4-6

EXTERNAL v1, . . _. .vn N 6-7

FORMAT (qitlzi. . .tnznqn) N 8-2

t FUNCTION f (a1....,an) N. 6-3

1 may be any of the following:

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL

GO TO k (unconditional GO TO) E 5-1

N = non-executable, E = executable

ND—60. 011. 04

Cont.

Statement Form N/E Page

GO TO i, (k1,k2, . . . ,kn) (assigned GO TO) E 5-2

GO TO (k1, . . . ,kn) .i (computed GO TO) E 5-2

IF (e)k1,k2,k3 (arithmetic IF) E 5—3

IF (L) s (logical IF) E 5-4
INPUT (i) L (standard format) E 7-3

OUTPUT (i) L (standard format) E 7—2

OUTPUT (i,a) L (RT-FORTRAN) E 9-14

PAUSE E 5—9

PAUSE n E 5-9

PROGRAM N 6-1

READ (i,n) L (formatted) E 7-2

READ (i,n) (formatted) E 7-2

READ (i) L (binary) E 7-4

READ (i) (binary) E 7—4

RE TURN E 6 ~11-

REWIND i E 7—6

STOP E 5-9

STOP n E 5-9

SUBROUTINE s N 6‘7

SUBROUTINE s (211,- . . ,an) N 6-7
t V1,. . . ,vn (type statement) N 4—1

t may be any of the following:
INTEGER
DOUBLE INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL

Cont.
N = non-executable, E = executable

ND—60. 011. 04

C out .
Statement Form N/E Page

v = e (arithmetical replacement) E 3-5

WEI TE (1 , n) L (formatted) E 7 -1

WRI TE (i , n) (formatted) E 7 -1

WRI TE (1,) L (binary) E 7 -3

N = non-executable, E =' executable

ND—60.011.04

f-

APPENDIX C

LIBRARY FUNCTIONS OF NORD STANDARD FORTRAN

External Functions

External Function Definition Number Of Symbolic Type Of
Arguments Name Argument Function

Exponential ea 1 EXP Real Real
1 DEXP Double Double
1 C EXP Complex C omplex

Natural Logarithm log‘3 (a) 1 ALOG Real Real
1 DLOG Double Double
1 C LOG Complex 0omplex

Common Logarithm log1 0 (a) 1 ALOG1 Real Real
DLOG10 Double Double

Trigonometric Sine sin(a) 1 SIN Real Real
1 DSIN Double Double
1 C SIN Complex C omplex

Trigbnometric Cosine cos (a) 1 C OS Real Real
1

1 DC OS Double Double
1 CC OS C omplex C omplex

Hyperbolic Tangent tanh (a) 1 TANH Real Real

Square Root (201/2 1 SQRT Real Real
1 DSQRT Double Double
1 C SQRT C omplex C omplex

Arctangent arctan(a) 1 A TAN Real Real
1 DA TAN Double Double

arctan(a1/az) 2 A TAN2 Real Real
2 DTANZ Double Double

Remaindering* :11 (mod a2) 2 DMOD Double Double

Modulus 1 CABS C omplex Real

*
The function DMOD (a1,a2) is defined as a -

lga
/a2 a , where [so] is

the integer whose magnitude does not exceed t e m nitzude of :6 and
whose sign is the same as the sign of :0.

ND—60. 011. 04

Intrinsic Functions*

- T e of
.Intrinsic Function Definition Number Of. Symbolic

yp
Arguments Name Argument Function

Absolute Value I a] 1 ABS Real Real
IABS Integer Integer
DABS Double Double

Truncation Sign of a times 1 AINT Real Real
largest integer INT Real Integer
é | at IDINT Double Integer

Remaindering’k a1 (mod a2)
2 AMOD Real Real

‘ MOD Integer Integer

Choosing Largest Max (a1 ,a2, . . .) .2- 2 AMAXO Integer Real
Value AMAX1 Real Real

MAXO Integer Integer
MAX1 Real Integer
DMAX 1 Double Double

Choosing Smallest Min (a1,a2,. . .) :2 AMINO Integer Real
Value AMIN1 Real Real

MINO Integer Integer
MIN1 Real Integer
DMINi Double Double

Float Conversion from
integer to real 1 FLOAT Integer Real

Fix Conversion from
real to integer IFIX Real Integer

Transfer of Sign Sign of 3.2 times 2 SIGN Real Real
| ail ISIGN Integer Integer

DSIGN Double Double

Positive Difference 31—Mm(3’1 .32) 2 DIM Real Real
IDIM Integer Integer

Obtain Most Significant
Part of DP Argument 1 SNGL Double Real

Obtain Real Part of
Complex Argument 1 REAL Complex Real

Obtain Imaginary Part
of Complex Argument 1 AIMAG Complex Real

Express Single Prec.
Argument in DP Form 1 DBLE Real Double

Express Two Real
Arguments in Comp.

. Form a1+a?
—1 2 CM'PLX Real Complex

Obtain Conjugate of a
Complex Argument 1 CONJG Complex Complex

*-
The function MOD or AMOD (
the integer whose magnitude d
sign is the same as at: .

ND—GOZ 011. 04

a ,a) is defined as a
(fee not exceed the magnitude of ac and whose

- 1211/3. 1 a2, where lilis

Simulating Routines*

"a. , . , . . Number of Type ofsimulating Routine Definition
Arguments Argument Function

BAXA R**R 2 Real Real

8AXI R**I 2 Real , Real
_ Integer

8DXI DP**I 2 Double , Doubl e
Integer

BIXI I**J 2 Integer Integer

8DIV I/J 2 Integer Integer

8FIX 1 Real Integer

BIAD DI 1+DI2 2 Double . Double
integer integer

BISB D11 -D12 2 Double Double
. integer integer

81 MU D11 *DIZ 2 Double Double
integer integer

BIDV DIi/DIZ 2 Double Double
integer integer

81DI 1 Double I nteger
integer

SIDR 1 Double Real
integer

8RID 1' Real Double
integer

SCAD C 14-02 2 Complex Complex

80 SB C 1 -C2 2 C omplex C omplex

80 MU 01*02 2 Complex Complex

BCDV C 1 /CZ 2 C omplex C omplex

SCXI** C**I 2 Complex, Complex
Integer

* Simulating routines are automatically activated by expressions
shown under the definition.

** BCXI makes use of SQRT, 8AXI, ATAN, SIN and COS.

ND—60. 011. 04

Cont.

. . .I . . . Number of Type oftSunulatmg Routlne Deflm 10n Arguments Argument Function

8DAD DP1+DP2 2 Double Double

8DSB DPi -PD2 2 Double Double

8DMU DP1*PD2 2 Double Double

8DDV DPi/DPZ 2 Double Double

ND-60.011.04

APPENDIX D

NORD WORD STRUCTURE

Instruction word

Op.code X l B Displacement

15 1110 9 8 7 0

One instruction word always occupies one location, 16 bits, of core
memory. The operation code occupies the five most significant bits
(11 - 15), and specifies one of 32 instructions.

For memory reference instructions bits 0 - 10 are used to specify
the address of the instruction. The instructions which do not have an
address, use these bits to further specifications. Bits 8, 9, and 10,
called ,B I and .X are used to control the address computation.

The displacement is an 8 bit signed number ranging from -128 to +127,
using two's complement for negative numbers and sign extension to
produce a 16 bit number.

D a t a w o r (:1

Three basic types of data words exists:

a) Single length numbers:

A 16 bit number which occupies one memory location.
Representation of negative numbers are in two's complement.
Range as integers: ‘32768é x432767

b) Double length numbers:

A 32 bit number which occupies two consecutive locations in
memory, and where negative numbers also are in two's
complement.

n n + 1

Most sign. Least sign.

31 A 16 15 D 0

A double word is always referred to by the address of its most
significant part. Normally a double word is transferred to the
registers so that the most significant part is contained in the
A—register and the least significant in the D-register. Range
as integers: -2 147 483 6484 e 147 483 647

ND—60.011.04

Floating point numbers:

The data format of floating point words is 32 bits mantissa
magnitude, one bit for the sign of the number and 15 bits for
a signed exponent.

The mantissa is always normalized, 0.5 smantissa <1; for
all non—zero numbers bit 31 equals one. The exponent base
is 2. The exponent is biased with 214, i. e. 40000 is added
to the actual exponent, so that a standardized floating zero
contains zero in all 48 bits.

In core store one floating point data word occupies three 16 bit
core locations, which are addressed by the address of the
exponent part.

11 exponent and sign
'n+1 most significant part of mantissa
n+2 least significant part of mantissa

In CPU registers bits 0 - 15 of the mantissa are in the D
register, bits 16 - 31 in the A register, and bits 32 - 47,
exponent and sign, in the T register. These three registers
together are defined as the floating accumulator.

n n + 1 n + 2

w: Exponent Man— tissa

47 T 32 31 A 16 15 D 0

The accuracy is 32 bits or approximately 10 decimal digits,
any integer up to 232 has an exact floating point representation.
The range is:

2-16384 . 0.5 élxl<216383 - 1' or x = 0

or

— 9
10

4931
<1x|<104

31

Examples (octal format):

T A D

0: 0 0 0
+1: 040001 100000 0
-1: 140001 100000 0

ND-60. 011. 04

Any other data word format than those three described here may be
programmed. These three data word formats have corresponding
instructions which make these formats easy and natural to use. It is
also rather easy to program data word formats using one bit data word
(logical variables) and 8 bit data word (character byte).

In FORTRAN, two additional data words are used:

d)

e)

Double precision numbers:

The data format of double precision words is 80 bits mantissa
magnitude, one bit for the sign of the number and 15 bits for
the signed exponent. The mantissa is always normalized,
0.5 smantissa 4 1, and for all non—zero numbers bit 79 equals

one. The exponent base is 2, the exponent is biased with‘ 214,
so that a standardized double precision zero contains zero in
all 96 bits.

In core store one double precision data word occupies six 16
bit core locations, which are addressed by the address of the
exponent part.

n exponent and sign

n+1 most significant part of mantissa

n+2 mantissa

n+3 mantissa

n+4 mantissa

n+5 least significant part of mantissa

The accuracy is 80 bits or approximately 24 decimal digits,
any integer up to 280 has an exact double precision representation.

The range is the same as for floating point numbers.

Complex numbers:

The data format of a complex number is two subsequent floating
point words.

In core store one complex number occupies six 16 bit core

locations which are addressed by the address of the exponent
part of the real part.

n exponent and sign of real part

n+1 most significant part of mantissa of real part

n+2 least significant part of mantissa of real part

n+3 exponent and sign of imaginary part

n+4 most significant part of mantissa of imaginary part

n+5 least significant part of mantissa of imaginary part

ND-‘60.'011.'o4

APPENDIX E

SYSTEM DIAGNOSTICS

C ompiler Error Messages

The error message will be written on either the line printer or the
Teletype, depending on which is specified as the listing device. If the
user has requested a listing of the program, error messages will be
printed on the line following the erroneous line and, in certain cases,
on the next line thereafter. The error messages are selfexplanatory
and are printed in the following format:

***ERROR IN (subprogram unit name><label>+<disp1acement><error text>

where label denotes last statement number or 0 if none are encountered
yet. Displacement denotes the number of statements beyond the labeled
one in which the error occurred.

Loader Error Messages

The loader error messages are selfexplanatory.

ND—60. 011. 04

FORTRAN Formatting Error Messages

Error Type of error
number Meaning F/I

71 Illegal character in format F

72 Parantheses nested deeper than 5 I

73 Attempt to fetch character beyond
format F

74 Attempt to store character beyond
format F

75 "

76 Argument error unidentified type
specification (system error) F

77

78.

79
80 Output record exceeds 134

characters I
81 Format requires a greater input

record I

82 Input record exceeds 134 characters I

33 Wrong parity in input field I

94 Bad character in input field I

85 Integer overflow I

86 Real overflow on input I

87 Real underflow on input I

88 Real overflow on output I

89 System error F

90 Too big input record F

F = Fatal, I = Informative

ND—60. 011 . 04

Arithmetical Library Error Messages
'

The error message is written as a combination of letters, for instance:

ddddd RUN ERR CH

This means that COSH erred in the neighbourhood of core address
ddddd.

In RT-FORTRAN the error looks like

RUN ERR CH rrrrr

Here, rrrrr means the name of the RT—program.

The error messages are:

AA Error in BAXA

BAXA was called with negative base.
Result set to zero.

Overflow in 8AXA.
Result set to 1. 01399.

A1 Error in BAXI

Base equal to zero and exponent negative.
Result set to 1. 0E99.

AT Error in ATAN2

Both arguments equal to 0. 0.
Result set to 0. 0.

CH Error in COSH

Argument greater than 214.
Result set to 1. 0E99.

CO Error in COS

Argument greater than 214.
Result set to 0. 0

D1 Error in 8DIV

Second argument equal to 0.
Result set to :I: 32767, depending on sign of first
argument.

ND-60. 011 . 04

EX

GO

IX

LN

SH

SI

SQ

Error in EXP

Argument greater than 214 ln2.
Result set to 1. 0E99.

Argument error in a computed or assigned GO TO
statement. Program returns to first label in the
list.

Error in BIXI

Overflow in result.
Result set to 32767.

Error in ALOG, ALOG1, ALOGZ

Argument less or equal to 0.
Result set to -1. 0E99.

Error in SINH

Argument greater than 214.
Result set to SIGN(X) . 1. 01399.

Error in SIN

Argument greater than 21“}.
Result set to zero.

Error in SQRT

Argument less than zero.
Result set to zero.

ND—60. 011. 04

APPENDIX F

1/0 DEVICE NUMBERS

Device Number Device

OBU'IPWNP-‘O

Dummy

Teletype 1

Paper tape reader

Paper tape punch

Card reader
Line printer

Not used
‘

ND—60. 011. 04

APPENDIX G

MIXED NORD STANDARD FORTRAN AND ASSEMBLY ROU TINES

The NORD STANDARD FORTRAN Run—time System has been designed to
allow an extensive use of mixed FORTRAN assembly systems. No special
heading format of the assembly routines is necessary, but there exist
some restrictions upon the use of the B-register.

Main Program in Assembly

No restrictions.

Subprograms in Assembly

Calling assembly subroutines/functions from FORTRAN, the value of
the B register by leaving the subprogram must not differ from the
entering value. (System value.) Moreover, no locations in the B field
(B - 2008 through E + 1778) must be changed by the subprogram.

Parameter Access in Subprograms

When entering any assembly subprogram. the A register points to a
string of the actual parameter addresses (if any).

Access of Common Variables

)9ADS

This MAC command is used to generate addresses of LABELED COMMON
variables of a FOR RAN program. Two symbols separated by blank or

plus sign have to follow the command. For example,

PER,)9ADS ES FACIL % PER WILL CONTAIN THE ADDRESS
% OF 'ES + THE VALUE OF FACIL

The first symbol must correspond to a COMMON label declared in the

FORTRAN program. A blank COMMON is accessed by using the symbol

BLANK. The second symbol is a displacement to the COMMON label,
and must have been previously declared as fixed absolute. At load time

the address of the COMMON label is added to the displacement.

ND—60. 011.04

Functions in Assembly

A function must always return with a value, and this must be contained
in the central registers.

Logical functions : Logical value (0 or 1) in the A register.

Integer functions : Value in the A register.

'Real functions : Value in the T—A-D registers ..

Double precision
and complex functions : These are special cases where the least

significant mantissa words or the imaginary
part of the function value must be placed in
locations B register - 172, - 171 and — 170
(extended accumulator of the calling program),
As usual the most significant or real part
must be contained in the T-A-D registers.

The final instruction sequence of a complex function should therefore be:

LDF IMAGPART
STF -172,B %B MUST CONTAIN THE SYSTEM VALUE
LDF REALPART
EXIT

Example of a Subprogram Structure

)9BEG
)9ENT SUBR
SUBR, SWAP SA DB

STA SAVB %SAVES B REGISTER

LDFI,B %ACCESSOF1;PARAMETER

LDF I N—1,B %ACCESS OF N'TH PARAMETER

LDASAVB
COPY SA DB
Exrr %RETURNSTI)FORTRAN

SAVB, 0
)9END

ND—60. 011. 04

Calling Sequence of Single Argument FORTRAN
Library Routines

When the jump to any of these routines is performed, the user should be
be aware that the locations B — 220 through B - 201 are affected to
changes from the library (scratch area). 8

Example:

SAX 1
LDF ARG % PIGK UP ARGUMENT
JPL 1*1 ,X _
NN1 % ANY SINGLE ARGUMENT LIBRARY

% FUNCTION
'- % RE TURN WITH RESULT INACCUMULATOR

Calling a FORTRAN Subprogram from Assembly

The calling sequence is explained through the following example:

)9BEG
)QEXT BENTR SUBR

JPL I (BENTR %8ENTR IS A RUN TIME TRANSITION
%ROU TINE

SUBR C7(FORTRAN SUBROUTINE NAME
N %NUMBER OF PARAMETERS

PARAMi %ADDRESS OF 1. PARAMETER

PARAMN %ADDRESS OF N'TH PARAMETER
- %RETURN,FUNCIRMGVALUEIFANY
— %n¢ACCUMULAT0R

)FILL
)9END

ND—60. 011. 04

Routines Headings and Call Sequences for Assembly
Communication with NORD STANDARD RT—FORTRAN

Main Program in Assembly

)9BEG START
)9EXT BRTEN RTEXT
START, JPL 1*R

STACKDEMAND % NO. OF STACK LOCATIONS
8RTEN

5MP1*1
RTEXT

Subprogram in Assembly

START, ;
EXIT

For the sake of completeness, the corresponding compiled code is
referred:

Main Program in RT-FOR’I‘RAN

START, JPL I*2
STACKDEMAND
8RTEN ’

JMP 1*1
8LEAV

Subprogram in RT—FORTRAN

START, RADD DP AD1
STACKDEMAND

JMP [*1
8LEAV

Subroutine call from assembly:

JPLI mENTR
SUBR

N
PARAMi

PARAMN

ND-60.011.04

% SUBROU TINE ADDRESS
% NUMBER OF PARAMETERS
% ADDRESS OF 1. PARAMETER

% ADDRESS OF N'TH PARAMETER
% RE TURN

Subroutine call from RT-FORTRAN:

JPL I-175,B % JPL I (SENTR
SUBR .
N+1000 % NUMBER OF PARAMETERS+1000
DISCR1 % DESCRIPTOR OF 1. PARAMETER

DISCRN % DESCRIPTOR OF N'TH PARAMETER
% RETURN '

The Descriptor Word Format

A descriptor word is divided into three bytes:

— Displacement part 0-9 (10 bits)
- Parameter type 10—13 (4 bits)
- Address mode bits 14-15 (2 bits)

Paramter type bits:

Bit Bit Bit Bit
13 12 11 10

0 0 0 0 Hollerith constant

Denotes

0 0 0 1 Logical single variable

0 0 1 0 Integer single variable

0 O 1 1 Double integer single variable

0 1 0 0 Real single variable

0 1 0 1 Double real single variable

0 1 1 0 Complex single variable

0 1 1 1 Unused

1 0 0 1 Logical array/logical function

1 0 1 0 Integer array/i nteger function

1 0 1 1 Double integer array/double integer function

1 1 0 0 Real array/real function

1 1 0 1 Double real array/double real function

1 1 1 0 Complex array/complex function

1 1 1 1 Unused

ND—60.011.04

Address Mode. Bits

Bit Bit
15 14 Effective Address

0 0 * J2 d

0 1 (* — d) (indirect)

1 0 Directly B-modified

1 1 Indirectly B—modified

* address of descriptor word
d displacement
() contents of

Using FORTRAN Formatted Program (FIO) from Assembly

Calling sequence:

JPL I (8EN TR
8FIO
IOINFO
DEVNO
FORMP
ERRL
ENDL

JPL I -174 ,-B

N
PARAMi

PARAMN
JPL I -173 ,B

ND—60.011.04

% MAIN ENTRY OF FIO
% INPU T/OU TPUT INFORMATION BITS
% DESCRIPTOR OF FILE/DEVICE
% FORMAT ADDRESS (OR 0)
% OPTIONAL LABEL ADDRESS OF
% ERR=LABEL
% OPTIONAL LABEL ADDRESS OF
%END=IABEL
% 8DATA-CALL (ADDRESS INSERTED
%BY%K»
% NUMBER OF PARAMETERS
% PARAMETER DESCRIPTOR

% 8CLSE-CALL (i/O TERMINATION)

IOINFO

This is a flag word with the following format:

171615141312111076543210

T
f + A L _v _;

LBits
0-5 always zero

Random READ/WRITE

ERR = label if set

END = label if set

FORTRAN compiler flag

READ = 0, WRITE = 1

ASCII mode = 0, binary = 1
Formatted = 0,“'— free format = 1

Format array if set

ENCODE/DECODE if set
Always zero

DE VNO

This is a descriptor (no direct address) for the input/output file. The
format of such descriptors are referenced above.

FORMP

This is the address of a format string, whereby a FORTRAN format
description is packed as ASCII characters, two per word. The string
must be enclosed by a pair of parenthesis:

FORMP = *—2
'(F10. 2,14)
I

ERRL

If bit 7 in IOINFO is set, the formatting program will exit to this address
if an I/O error occurs at run time.

ND—60.011.04

ENDL

If bit 10 in IOINFO is set, the formatting program will exit to this
address if end—of-file is encountered during execution of a READ
statement.

PARAM to PARAMN

The I/O-list represented as descriptors.

The Reserved B-field Locations used by the Run Time System
(BEN'I‘R-BLEAV)

saved return B -
2008

Previous contents of B B — 1778

Run time stack pointer B —
1768

Address of BENTR B f- 1758
Address of 8DATA B - 1748

Address of BCLSE B -
1738

Extended accumulator B - 1728
Extended accumulator B -

1718
Extended accumulator B -

1708
B field 8DATA B —

1678
Pointer to second block B -

1668
Pointer to third block B -

1658
Debugging system cell B -

1648

Register Use by SENTR — 8LEAV

By jumping to a subroutine, the A register will point to a string of
parameter addresses.

ND—60. 011. 04

Re BENTR

Entry

Return :

Re 8LEAV

Entry

Return :

B has its old value.

B has a new value such that the 1. parameter may be
accessed by e.g. LDF 1-163, B etc. , Le; the A register
points to B—163.

The contents of all other registers are destroyed by BENT'R,

B must have the same value as it had when SENTR
(BRTEN) was left last time.

B has the same value as it had when entering SENTR
last time. Only the contents of the X register are destroyed.

ND—60. 011. 04

APPENDIX H

NORD STANDARD FORTRAN DEVIATIONS FROM USA STANDARD
FORTRAN IV X 3. 9. 1966

1. The following format conversion code is missing:

G - Generalized floating point conversion.

2. Additional Features

a) DOUBLE INTEGER type declarations.
b) The logical operators .AND. , .OR. may also operate

on integers.
c) Decimal digits allowed in S'IOP and PAUSE.
d) Apostrophes may delimit Hollerith strings.
e) T format field descriptor.
f) Consecutive slashes in formats cause blank lines when

printed.
g) ASSIGN statement and associated ASSIGNED GOTO

statement are required to be in same program unit.
h) Optional comma in COMPUTED and ASSIGNED GOTO.
i) All types of arithmetic assignment statements.
j) Integer expressions in D0 statements.
k) END: in READ statements.
1) Real and double precision DO control variables.
m) PROGRAM statement.
n) Many levels of parentheses in formats.
0) Expressions in output lists.
p) ERR: in READ /WRITE statements .
q) Seven dimensions in arrays.
r) Array elements may occur in STATEMENT FUNCTION

definitions .
s) A complex number may be equivalenced to two real

numbers . ‘ -
t) Array names without subscripts in EQUIVALENCE.
u) END acts like STOP or RE TURN.
v) Prints all asterisks when number exceeds field.
w) Array name without subscript in DATA statements.
x) Non—FORTRAN characters on COMMENT lines.
y) ENCODE/DECODE effect in 1/0 statements (Ref. VII,

chapter 7 . 1) .

ND—60. 011. 04

t‘

1..
AS NORSK DATA-ELEKTRONIKKA- /

COMMENT AND EVALUATION $HEET
Publ. No.
ND-60. 011. 04 NORD STANDARD FORTRAN

In order for this manual to develop to the point where it best suits your needs,
we must have your comments, corrections, suggestions for additions, etc.
Please write down your comments on this pre-addressed form and post it.
Please be specific wherever possible.

FROM

— we want bits of.the future

A/S NORSK DATA-ELEKTRONIKK QKERNVEIEN 145 OSLO 5 NORWAY PHONE: 217371 TELEX: 18284

Run-‘5

