

ELEKTROSTATIKK
 Beskyttelse av utstyr følsomt for statisk elektrisitet

ND-13.019.01 NO
1 DEFINISJONER 1
1.1 Antistatisk materiale 1
1.2 Elektrostatisk beskyttelsesmateriale1
1.3 Elektrostatisk felt 1
1.4 Elektrostatisk fordelende materiale 1
1.5 Elektrostatisk følsomt utstyr 1
1.6 Elektrostatisk utladning 1
1.7 Halvledende materiale 2
1.8 Isolerende materiale 2
1.9 Ionevifte 2
1.10 Jord 2
1.11 Ledende materiale 2
1.12 overflate-resistivitet 2
1.13 Operatør 2
1.14 Statisk elektrisitet 2
1.15 Volum-resistivitet 2
2 UTSTYRSLISTE 3
2.1 Antistatisk belegg 3
2.2 Antistatisk forpakningsmateriale 3
2.3 Antistatisk væske 3
2.4 Elektrostatisk fordelende belegg 3
2.5 Elektrostatisk spenningsmaler 3
2.6 Hảndleddsbảnd 3
2.7 Isolasjonstester 3
2.8 Ledende belegg 3
2.9 Ledende skum 4
2.10 Motstand 4
2.11 Mảleelektrode 4
2.12 OHM-meter 4
2.13 Tilledning 4
2.14 Varselskilt 4
2.15 Varsel-klebemerke 4
3 STATISK ELEKTRISITET 5
3.1 Begrepet statisk elektrisitet 5
3.2 Generering av statisk elektrisitet 5
3.2.1 Induktiv-generering 5
3.2.2 Kapasitiv generering 7
3.2.3 Triboelektrisk generering 7
3.3 Skader som følge av statisk elektrisitet 7
4 ELEKTROSTATISK SIKRER BEHANDLING 8
4．1 Generelt 8
4．1．1 Elektrostatisk sikkert område 8
4．2 Elektrostatisk sikker foredling 8
4．2．1 Elektrostatisk sikker arbeidsplass－1）med str申mførende utstyr 9
4．2．2 Elektrostatisk sikker arbeidsplass－2）uten str申mf申rende utstyr 9
4．3 Elektrostatisk sikker pakking 9
4．4 Elektrostatisk sikker lagring 10
4．4．1 Elektrostatisk sikker lagerplass 10
4．5 Elekecostatisk sikker kontroll 10
5 ELEKTROSTATISK SIKKER TRANSPORT 11
6 UTSTYR FOR BESKYTTELSE MOT STATISK ELEKTRISITET 12
6．1 Generelt 12
6．1．1 Skjerming av elektrostatisk følsomt utstyr 12
6．1．2 Beskyttelse mot generering av elektrostatisk ladning 12
6．1．3 Eliminering av statisk ladning 12
6．2 Kontroll og godkjenning 12
6．2．1 Kontroll av belegg 12
6．2．2 Kontroll av håndleddsbånd 14
6．2．3 Kontroll av annet utstyr 14
6．3 Vedlikehold og kontroll av fast installert utstyr 14
7 ANSVARSFORHOLD 15
7．1 Operatфr 15
7．2 Avdelingsleder 15
7．3 ND／QA－Dept． 15
8 OPERATØRTRENING／－OPPLERING 16
9 TABELLER／FIGURER 17
9．1 Den triboelektriske serie－Tabell 1 17
9．2 Ladningskilder－Tabell 2 18
9．3 Arsaker til statisk generering－Tabell 3 19
9．4 Testkrets－Figur 1 20
9．5 Varselskilt－Figur 2 21
9．6 Varsel－klebemerke－Figur 3 22
10 BESKYTTELSES-UTSTYR I BRUK HOS NORSK DATA A.S 23
11 SAMMMENDRAG AV KRAV TIL BESKYTTELSES-UTSTYR 24
11.1 Bordplatebelegg 24
11.2 Gulvbelegg 24
11.3 Hándleddsbánd 24
12 REFERANSELISTE 25
Stikkord 26

FORORD:

FORMAL
Formálet med disse retningslinjene er á beskrive og sette krav til arbeidet med beskyttelse mot statisk elektrisitet. Ved á begrense omfanget av skader som skyldes statisk elektrisitet, vil kvaliteten pá Norsk Datas produkter hфynes og produksjonskostnadene reduseres.

GYLDIGHETSOMRADE

Disse retningslinjene gjelder for all behandling av elektrostatisk f \varnothing lsomt utstyr i områder disponert av Norsk Data. Retningslinjene gjelder ogsá for transport av slikt utstyr.

1 DEFINISJONER

1.1 Antistatisk materiale

Materiale som ikke lar seg generere triboelektrisk, og som har en overflate-resistivitet i omradet fra 10E9 ohm/kvadrat til 10E14 ohm/kvadrat.

1.2 Elektrostatisk beskyttelsesmateriale

Materiale som har en eller flere av de følgende egenskaper:
a) Bare i liten grad lar seg generere triboelektrisk.
b) Fordeler raskt en elektrisk ladning utover overflaten.
c) Beskytter mot elektrostatisk utladning eller elektrostatisk felt.

1.3 Elektrostatisk felt

Konstant elektrisk felt mellom to legemer med forskjellig elektrostatisk ladning.

1.4 Elektrostatisk fordelende materiale

Materiale med en overflate-resistivitet i omradet fra $10 \mathrm{E} 5 \mathrm{ohm} / \mathrm{kvadrat}$ til 10E12 ohm/kvadrat.

1.5 Elektrostatisk følsomt utstyr

Elektrisk eller elektronisk utstyr, sammensetninger eller komponenter som er f申lsomme for elektrostatiske spenningsnivảer mindre enn 4000 volt, når de blir prøvet i en krets som vist i figur 1.

1.6 Elektrostatisk utladning

En forflytning av ladning mellom legemer med forskjellig elektrostatisk potensiale.

1．7 Halvledende materiale

Materiale med en overflate－resistivitet i omradet 10 E 5 til 10E9 ag en volum－resistivitet mellom 10E3 og 10E9．

1．8 Isolerende materiale

Materiale med en averflate－resistivitet større enn 10 E 14 ohm／kvadrat， eller en volum－resistivitet større enn $10 E 12 \mathrm{ohm} / \mathrm{cm}$ ．

1．9 Ionevifte

Et viftesystem som genererer og sprer positive og／eller negative ioner．

1．10 Jord
Masse som er istand til a levere eller oppta en stor elektrisk ladning．

1．11 Ledende materiale

Materiale med en overflate－resistivitet mindre enn $10 E 5$ ohm／kvadrat， eller en volum－resistivitet mindre enn $10 \mathrm{E} 3 / \mathrm{hm} / \mathrm{cm}$ ．

1．12 Overflate－resistivitet

Et materiales overflate－resistivitet er i størrelse lik overflate－ resistansen mellom motstående sidekanter i et kvadratisk legeme av materialet．Overflate－resistansen er ikke avhengig av kvadratets størrelse．

1．13 Operat申r

Person som i sitt daglige arbeide kommer i kontakt med elektrostatisk f申lsomt utstyr．

1．14 Statisk elektrisitet
Elektrisk ladning i ro．

1．15 Volum－resistivitet

Et materiales volum－resistivitet er i st申rrelse lik volum－resistansen til et legeme av materialet，med form som en kube hvor hver sidekant er 1 cm lang．

2 UTSTYRSLISTE

2.1 Antistatisk belegg

Belegg av antistatisk materiale til bruk pa arbeidsbord, gulv og som materiale i forpakning, etc.

2.2 Antistatisk forpakningsmateriale

Emballasje av antistatisk materiale som antistatisk bobleplast, antistatisk ekspandert polystyrene (isopor), antistatiske bokser og antistatiske staver, etc.

2.3 Antistatisk vaske

Væske som påsprøytet en flate gir et antistatisk belegg.

2.4 Elektrostatisk fordelende belegg

Belegg av elektrostatisk fordelende materiale til bruk pa arbeidsbord, gulv og som materiale i forpakning, etc.

2.5 Elektrostatisk spenningsmảler

Instrument for maling av elektrostatiske spenningsniváer med et máleomrade fra 50 volt til 30000 volt.

2. 6 Håndleddsbånd

Bånd av ledende materiale med tilledning til jord, til bruk rundt operatørs hándledd.

2.7 Isolasjonstester

Instrument for måling av elektrisk motstand i området 10E3ohm til 10E10ohm, med en driftsspenning pa 500 volt og en málenфyaktighet på $+/-3 \%$.

2.8 Ledende belegg

Belegg av ledende materiale til bruk pá arbeidsbord, gulv og som materiale i forpakninger.

2.9 Ledende skum

Porøst ledende materiale til bruk for festing av enkeltkomponenter.

2.10 Motstand

Elektrisk motstand med spesifikasjonene: 10E6 ohm, $1 / 4$ watt, mimimum nфyaktighet 0,5\%.

2.11 Mảleelektrode

Sylinderformet lodd av hel messing med dimensjonene: diameter $=6 \mathrm{~cm}$, masse $=2000 \mathrm{~g}$.

2. 12 OHM-meter

Instrument for måling av elektrisk motstand, minimum nøyaktighet +/- 2%.

2.13 Tilledning

Isolert elektrisk leder (kobber eller aluminium) med ledende tverrsnitt lik $0,75 \mathrm{mmE}$ eller større.

2.14 Varselskilt

Skilt som markerer inngang til elektrostatisk beskyttelsesområde. Skiltet har en utforming som vist i fig. 2.

2.15 Varsel-klebemerke

Klebemerke som varsler forekomst av elektrostatisk følsomt utstyr. Klebemerket har en utforming som vist i fig. 3.

3 STATISK ELEKTRISITET

3．1 Begrepet statisk elektrisitet

Statisk elektrisitet er elektrisk ladning i ro．Den elektriske ladningen skyldes forskyvning av elektroner innen et legeme （polarisering），eller forskyvning fra et legeme til et annet （konduktiv oppladning）．Forskyvningen inntreffer som følge av den relative bevegelsen mellom ladede legemer eller mellom ladede og uladede legemer．Ladningsmengden er i første rekke avhengig av st申rrelse，form，sammensetning og elektriske egenskaper hos materialene som danner legemet．

Noen materialer gir lett fra seg elektroner，mens andre materialer lettere tar dem opp．Et legeme som har overskudd pa elektroner har negativ ladning，mens et legeme med underskudd p\＆elektroner er positivt ladet．Nar to legemer blir gnidd mot hverandre og sả separert （eller str申mmer relativt i forhold til hverandre，som f．eks．gasser eller væsker over faste stoffer），blir det ene legemet tilf申rt elektroner mens det andre avgir elektroner．

Disse elektronladningene er like og i de tilfeller hvor materialet er ikke－ledende，forblir de i omradet hvor de ble generert．Derimot blir ladninger i ledende materialer raskt fordelt over materialets overflate．

3．2 Generering av statisk elektrisitet

3．2．1 Induktiv－generering

Et elektrostatisk felt eksisterer mellom et ladet legeme og et annet legeme med forskjellig elektrostatisk potensiale．Ledende og isolerende legemer som føres inn i det elektrostatiske feltet vil bli induktivt polarisert（safremt de ikke kommer i kontakt med det oppladede legemet）．I et ledende legeme vil de elektroner som er nærmest den mest negative del av feltet bli frast申tt．De etterlater seg den delen av legemet med relativ positiv ladning，mens de blir tiltrukket den del av legemet nærmest den positive del av feltet． Legemet blir her negativt ladet．Legemets netto ladning vil forbli null．

Hvis et ledende legeme deretter umiddelbart jordes，vil elektronene str申mme til eller fra den polariserte overflaten nær jord．Legemet selv blir ladet ved akkumulering av overskudd eller underskudd pả elektroner．I et ikke－ledende legeme er elektronene lite mobile．Et slikt polarisert legeme（dipol）har en tendens til a rette seg etter det elektrostatiske feltet og skaper－tilsynelatende－ladninger i overflaten．

EKSEMPLER：

I eksemplene 1 og 2 vil det，på grunn av det elektrostatiske feltet， danne seg en forskyvning innen molekylene．Dette kaller vi en polarisering eller dipol．I eksempel 2，med bryteren lukket，vil det ikke flyte noen str申m fordi en isolator ikke har frie elektroner．En isolator vil utlades ved bruk av antistatiske midler，ionevifte eller gnistoverslag ved meget hфye spenninger．I eksemplene 3 og 4 vil det elektrostatiske feltet føre til en forskyvning av elektronene （str申mst ϕt ）．

Lukking av bryteren（eks．4）gir opphav til et raskt str申mst申t．Dette $b \phi r$ mane til forsiktighet ved bruk av isolerende materialer i nærheten av elektronikk．

Det kan her være passende á fortelle om et merkverdig problem som en amerikansk produsent hadde for en tid siden：

Denne fabrikken produserte kortmoduler basert pa CMOS－kretser． problemet var at kortmoduler som virket om kvelden，feilet den påf \neq lgende morgen．Arsaken viste seg \mathfrak{a} være en avfallspose av plast， fylt med mye elektrostatisk ladet materiale，som rengjøringspersonalet i stor fart trakk forbi hyllene hvor kortmodulene var lagret．Dette kaller vi indusert ladning．

3.2.2 Rapasitiv generering

Kapasitansen til et ladet legeme relativ til et annet legeme eller til jord, har en innvirkning pa det elektrostatiske feltet. Nár kapasitansen blir redusert for en gitt ladning (Q), vil det bli en invers lineær ϕ kning i spenningen basert pa forholdet $Q=C \star V$, hvor C er kapasitansen og V er spenningen. Nár kapasitansen kontinuerlig reduseres, vil spenningen $\phi \mathrm{ke}$ inntil utladningen kommer via en gnistbue. Nár eksempelvis en polyethylene pose blir gnidd, vil ladningspotensialet ligge rundt noen fł hundre volt mens posen ligger pả en benk. Når en person tar denne opp, kan spenningspotensialet heves til flere tusen volt. Dette skjer fordi ladningen (Q) er konstant.

3.2.3 Triboelektrisk generering

Generering av statisk elektrisitet dannet ved gnidning av to materialer, blir kalt triboelektrisk generering. I den triboelektriske serie (se tabell 1), er materialene ordnet i rekkefølge etter evnen til á oppta eller avgi elektroner. Materialer først nevnt i serien har flest frie elektroner, og dermed st申rst mulighet til a avgi disse. Materialene nevnt sist i serien har færrest frie elektroner og dermed størst evne til á oppta disse.

Materialenes triboelektriske egenskaper forandres av faktorer som renhet, trykk mot materiale, gnidningshastighet og separasjon, samt fuktighet og materialets gnidningsareale. I tillegg til gnidning av to forskjellige materialer, kan det ogsá oppnás hфy spenning ved á gni/separere to flater av samme materiale - særlig plast.

3.3 Skader som f申lge av statisk elektrisitet

Elektrostatisk følsomt utstyr kan skades når det utsettes for en elektrostatisk utladning, eller nảr det blir pávirket av et elektrostatisk felt. Elektrostatiske utladninger kan forársake sảvel tilbakevendende feil ("vakkel"), som harde feil.

Forstyrrelser kan bli dannet av en elektrostatisk utladning i nærheten av utstyret. En elektromagnetisk puls generert av gnisten, skaper støy som forstyrrer de omliggende kretsenes forstáelse av de aktuelle elektriske signaler. Nærmere studier av en slik feil i et elektronmikroskop viser overslag mellom banene i kretsen, punkteringer gjennom de forskjellige dielektrika, eller smelting av halvledermetall med kondensering av dette i portovergangen (sákalt "Pregnant gate"). Alt avhengig av elektrisk og temperaturmessig belastning vil en slik port feiltolke signaler nảr det minst ventes, og feilkomponenten i systemet vil bli meget vanskelig a finne.

4 ELEKTROSTATISK SIKKER BEHANDLING

4.1 Generelt

Med behandling menes her alle operasjoner som kan beskrives som foredling, pakking, lagring og kontroll. Alt elektrostatisk f ϕ lsomt utstyr skal behandles innenfor elektrostatisk sikre omráder.

4.1.1 Elektrostatisk sikkert omráde

Følgende retningslinjer gjelder for elektrostatisk sikkert område:
a) Omrảdet skal være fysisk avgrenset fra de ϕ vrige områder i lokalet.
b) Alle adkomstmuligheter til omrảdet skal være merket med varselskilt.
c) Adgangen til området skal være begrenset til á gjelde personer med kunnskaper i elektrostatikk.
d) Bes ϕ kende i omrảdet skal være i f \varnothing lge med personer med kunnskaper i elektrostatikk.
e) Den relative luftfuktigheten i området skal holdes stabil og fortrinnsvis ikke lavere enn 40%.
f) Området skal ha gulvbelegg av ledende eller elektrostatisk fordelende materiale, avhengig av hvilken form for hảndtering av elektronisk utstyr som foregár.
g) Det skal i minst mulig utstrekning forekome legemer av isolerende materiale innenfor omrádet. Der dette ikke lar seg eliminere, skal nevnte legemer behandles med en antistatisk væske; eventuelt kan en ionevifte brukes.

4.2 Elektrostatisk sikker foredling

Med foreding menes enhver manuell eller maskinell hándtering av elektrostatisk følsomt utstyr. Foreding omfatter ogsá enhver hensetting av elektrostatisk følsomt utstyr som strekker seg over kortere tid enn en arbeidsdags varighet. All foredling av elektrostatisk følswomt utstyr skal forega pa en elektrostatisk sikker arbeidsplass. Operat申r skal under foredling alltid benytte ledende hảndleddsbånd med tilledning til jord via en motstand (1*10E6 ohm).

4．2．1 Elektrostatisk sikker arbeidsplass－1）med str申mførende utstyr

Denne arbeidsplassen har str申mf申rende utstyr og verkt申y．
Arbeidsplassen bestảr av：
a）Bordplatebelegg（nár arbeidsbord brukes）av elektrostatisk fordelende materiale．Bordplatebelegget skal ha en tilledning til jord via en motstand（1＊10E6 ohm）．
b）Gulvmatte av elektrostatisk fordelende materiale（nár gulvet er av annet materiale）．Gulvmatten skal ha en tilledning til jord via en motstand（1＊10E6 ohm）．
c）Str $\phi \mathrm{mf} \phi \mathrm{rende}$ verkt $\phi \mathrm{y}$ skal være isolert fra bordplate－og gulvbelegget，samt være forsynt med tilledning til jord．

4．2．2 Elektrostatisk sikker arbeidsplass－2）uten str申mf申rende utstyr

Denne arbeidsplassen har ikke str申mf申rende utstyr og verkt申y． Arbeidsplassen består av：
a）Bordplatebelegg（nảr arbeidsbord brukes）av ledende eller elektrostatisk fordelende materiale．Bordplatebelegget skal ha en tilledning til jord via en motstand（1＊10E6 ohm）．
b）Gulvmatte av ledende eller elektrostatisk fordelende materiale（nár gulvet er av annet materiale）．Gulvmatten skal ha en tilledning til jord via en motstand（1＊10E6 ohm）．

4．3 Elektrostatisk sikker pakking

Med pakking menes her enhver tildekking av elektrostatisk utstyr，med formál a hindre skade som følge av statisk elektrisitet．Alt elektrostatisk følsomt utstyr skal pakkes i en elektrostatisk sikker forpakning．pakkingen skal forega pa en elektrostatisk sikker arbeidsplass（beskrevet i seksjonene 4．2．1 og 4．2．2）og følger disse retningslinjer：
a）Sammensatt elektrostatisk følsomt utstyr som har en ytre innkapsling av ledende materiale，pakkes i antistatisk materiale，f．eks．antistatisk bobleplast，antistatisk plast， antistatisk ekspandert polystyrene（isopor），etc．
b）Sammensatt elektrostatisk følsomt utstyr som ikke har en ytre innkapsling av ledende materiale，f．eks．ferdig monterte printkort，pakkes i ledende materiale（ledende poser，etc．）
c）Elektrostatisk følsomme komponenter i større eller mindre kvanta，f．eks．halvlederkomponenter，pakkes i bảde antistatisk materiale og ledende materiale eller i bare ledende materiale（f．eks．antistatiske／ledende staver eller
komponentbokser.) Alle komponentstaver skal være forsynt med et stykke ledende skum i en eller begge ender for á hindre at komponentene sklir i staven. Komponentbokser skal innholde ledende skum for feste av komponentene. Det ledende skummet i boksen mả festes slik at det ikke kommer i bevegelse.

4.4 Elektrostatisk sikker lagring

Med lagring menes her enhver hensetting av elektrostatisk følsomt utstyr som strekker seg over lengre tid enn en arbeidsdags varighet, forutsatt at utstyret ikke gjennomgar noen form for foredling, pakking, transport eller kontroll. Alt elektrostatisk følsomt utstyr skal være lagret pá en elektrostatisk sikker lagerplass (se neste seksjon) og under lagring vare pakket som beskrevet i seksjon 4.3

4.4.1 Elektrostatisk sikker lagerplass

Lagerplassen bestảr av: Lagerreol av ledende materiale.

4.5 Elektrostatisk sikker kontroll

Med kontroll menes enhver inspeksjon eller test av elektrostatisk f申lsomt utstyr. Kontroll av elektrostatisk følsomt utstyr skal foregá pa en elektrostatisk sikker arbeidsplass, som beskrevet i seksjonene 4.2.1 og 4.2.2.

5 ELEKTROSTATISK SIKKER TRANSPORT

Med transport menes enhver befordring av utstyr til/fra og internt i elektrostatisk sikkert område. Alt elektrostatisk følsomt utstyr skal under transport være pakket som beskrevet i seksjon 4.3.

6 UTSTYR FOR BESKYTTELSE MOT STATISK ELEKTRISITET

6.1 Generelt

Til beskyttelse mot statisk elektrisitet benyttes utstyr som henholdsvis skjermer det elektrostatisk følsomme utstyret, hindrer generering av elektrostatisk ladning, eller eliminerer allerede genererte elektrostatiske ladninger.

6.1.1 Skjerming av elektrostatisk følsomt utstyr

Elektrostatisk følsomt utstyr skjermes mot elektrostatiske felt ved innkapsling i ledende materiale.

6.1.2 Beskyttelse mot generering av elektrostatisk ladning

For a hindre generering av elektrostatisk ladning benyttes kun ledende, elektrostatisk fordelende eller antistatisk materiale i kontakt med elektrostatisk følsomt utstyr.

6.1.3 Eliminering av statisk ladning

For \& eliminere statisk ladning bortledes den elektrostatiske ladning gjennom ledende eller elektrostatisk fordelende materiale.

6.2 Kontroll og godkjenning

Alt utstyr til beskyttelse mot statisk elektrisitet skal kontrolleres og godkjennes av QA-dept. f申r det blir tatt i bruk.

6.2.1 Kontroll av belegg

Formálet med kontrollen er a klargjøre beleggets overflateresistivitet, volum-resistivitet, tribolelektriske genererbarhet og halvspenningstid. Kontrollen utføres i samsvar med NEFPA 56 Ainjer:
a) Mảleobjektet skal ha en kvadratisk form. Kvadratets sidekanter skal ha en lengde i omrádet fra 250 mm til 500 mm . Mảleobjektet skal ha den sammensetning som det har ved sin naturlige funksjon. Dersom det - på grunn av måleobjektets fysiske egenskaper - er nфdvendig med en st申tteplate, skal det leveres to prøver. Den ene skal være montert pa og i elektrisk kontakt med en underlagsplate av ledende materiale, den andre skal være montert pa en underlagsplate av isolerende materiale.

Ved testing skal den relative luftfuktigheten i rommet være lik den lavest málte relative luftfuktigheten i de lokaler belegget eventuelt skal brukes. Den relative luftfuktigheten i testlokalet má under ingen omstendigheter være høyere enn den i brukslokalet. Temperaturen ved testing skal være lik middeltemperaturen i bruksrommet.
b) Ved måling av overflate-restivitet plasseres måleobjektet pá en isolerende underlagsplate. To maleelektroder plasseres midt pá hver sin sides motstáende sidekant av máleobjektet, slik at hele mảleelektrodens anleggsflate er innefor måleobjektets omkrets. Hver av máleelektrodene tilknyttes en isolasjonsmáler og pátrykkes en driftsspenning pa 500 volt. Driftsspenningen skal være påtrykt i 60 sek. f申r overflateresistansen avleses. Málingen gjentas mellom de to andre motstáende sidekanter.

For å sikre god kontakt mellom måleobjekt og máleelektroder, legges det et ark av por申st papir (fuktet i rent vann) med diameter 6 cm , under hver mảleprobe. Dersom måleresultatet avviker for de to málingene, settes mảleobjektets overflateresistans lik den hфyest málte. Beleggmaterialets overflateresistivitet er i størrelse lik den malte overflate-resistans for máleobjektet.
c) Ved mảling av volum-resistivitet plasseres máleobjektet på en ledende underlagsplate. En mảleelektrode plasseres midt pá måleobjektet. Måleelektroden og underlagsplaten tilknyttes en driftsspenning på 500 volt. Driftsspenningen skal vare påtrykt i 60 sek. før volum-resistansen avleses. Málingen gjentas fire ganger med måleelektroden plassert forskjellige steder langs mảleobjektets diagonallinjer.

For á sikre god kontakt mellom mảleelektroden og máleobjektet og mellom maleobjektet og underlagsplaten, brukes et ark av porøst papir (fuktet i rent vann) med en diameter pa 6 cm . Papiret plasseres mellom underlagsplaten og maleobjektet i samme posisjon som måleelektroden, og mellom måleobjektet og mảleelektroden.

Dersom máleresultatene avviker for de fem malingene, settes måleobjektets volum-resistans lik den hфyest málte. Beleggmaterialets overflate-restivitet regnes ut etter formelen $r V=R^{*} A / 1$, der R er máleobjektets volum-resistans, A er mảleobjektets areal og 1 er máleobjektets tykkelse.
d) Ved mảling av triboelektrisk genererbarhet, presses et materiale av syntetisk gummi,lær,bomull,plast eller isopor med diameter lik 6 cm , med et trykk pa 20 Newton mot máleobjektet. Nevnte legeme gnis sả langs en del av máleobjektet 10 ganger i rask rekkefølge. Trykket mot måleobjektet opprettholdes hele tiden.

Umiddelbart etter at gnidningen avsluttes, brukes en elektrostatisk spenningsmáler for å mále den genererte elektrostatiske spenningen på det stedet hvor gnidningen fant sted. Prosedyren gjentas fire steder pả máleobjektet. Dersom
måleresultatene avviker for de fem málingene, settes maleobjektets triboelektriske genererbarhet lik den hфyest måle genererte spenning.
e) Mảling av halvspenningstid utf申res pả samme máte som mảling av triboelektrisk genererbarhet. I tillegg holdes den elektrostatiske spenningsmáleren over den del av mảleobjektet hvor det er generert elektrostatisk spenning. Dette gjøres til spenningen er sunket til det halve av opprinnelig nivá.

Tiden denne spenningsreduksjonen tar, mảles ved hjelp av en stoppeklokke. Dersom mảleresultatene avviker for de fem målingene, settes máleobjektets halvspenningstid lik den lengst malte.

6.2.2 Kontroll av hảndleddsbảnd

Hảndleddsbảndet kontrolleres sammen med tilledning og motstand. Ved testing skal den relative luftfuktigheten i rommet være lik den lavest málte relative luftfuktigheten i de lokaler der håndleddsbảndet eventuelt skal brukes. Den relative luftfuktigheten i testlokalet má under ingen omstendigheter være høyere enn den i brukslokalet. Temperaturen ved testing skal være lik middeltemperaturen i brukslokalene.

Ved testing tres hándleddsbåndet nedover en mảleelektrode. Tilledning og motstand kobles pá og forbindes til en isolasjonsmáler. En driftsspenning på 500 volt patrykkes over hándleddsbảnd, tilledning og motstand. Tilledningen skal beveges i forskjelige retninger mens resistansen leses av. Det skal ikke forekomme vakkel eller dárlig kontakt ved denne málingen.

For godkjenning skal målt resistanse være i omradet fra 0,6*10E6 ohm til 1,2*10E6 ohm.

6.2.3 Kontroll av annet utstyr

Alt annet utstyr for beskyttelse mot statisk elektrisitet, testes pá den máte som best klargjør de beskyttende egenskaper de er ment ả ha.

6.3 Vedlikehold og kontroll av fast installert utstyr

Pả fast installert utstyr for beskyttelse mot statisk elektrisitet, foretas fortl申pende funksjonskontroll, rengjøring, reparasjon og utskiftning. Alle endringer i det fast installerte utstyrets sammensetning, nedtegnes i en spesiell logg. Hver 2 . máned foretas inspeksjon av alt fast installert utstyr for beskyttelse mot statisk elektrisitet, samt inspeksjon av logg.

7 ANSVARSFORHOLD

7．1 Operat申r

En operat申r er ansvarlig for at tildelt antistatisk utstyr brukes etter gjeldende retningslinjer．Operat申ren har ogsd ansvar for at utstyret er rengjort og i orden．

7．2 Avdelingsleder

En avdelingsleder／gruppeleder har ansvar for tildeling，anvendelse og inspeksjon av elektrostatisk beskyttende utstyr，samt logging av dette．Avdelingsleder／gruppeleder kan delegere oppgavene i forbindelse med elektrostatisk beskyttelsesarbeide til en person innen hver gruppe．Dette fritar imidlertid ikke avdelingsleders／gruppeleders ansvar．

7．3 ND／QA－Dept．

ND／QA－dept．har ansvar for a kontrollere og oppdatere Norsk Datas arbeid med beskyttelse mot statisk elektrisitet．Dette medfører：
a）Ansvar for dokumentasjon og oppdatering av beskyttelses－ arbeidet mot statisk elektrisitet．
b）Ansvar for kontroll og godkjenning av beskyttelses－materiale og kontroll av alt annet materiale som kommer i kontakt med elektrostatisk følsomt utstyr．
c）Ansvar for opplæring av operat申r．
d）QA－dept．skal gi l申pende informasjon om alt som angảr statisk elektrisitet til alle berørte parter．

8 OPERATORTRENING/-OPPLARING

Treningsprogram for personell som leder eller utfører arbeid i elektrostatisk følsomme omráder, følger disse hovedpunktene:
a) Tildeling av disse retningslinjene for gjennomlesning.
b) Gjennomgảelse av kurset:
"Beskyttelse mot skade som $£ \not \subset l g e$ av statisk elektrisitet." (Under utarbeidelse av ND-QA.)

9 TABELLER/FIGURER

9.1 Den triboelektriske serie - Tabell 1

Triboelektriske genererbare materialer som vanligvis finnes i produksjonsbedrifter, er listet i tabell 1. Ledningsevnen i noen isolerende materialer $\phi k e r$ med ϕ ket fuktighet og gir en svakt ladningsfordelende effekt over materialets overflate. En annen kilde til statisk generering innen elektronikk-industrien, er kjølespray med forskjellige freonløsninger.

*: hyppig benyttede materialer.

9.2 Ladningskilder - Tabell 2

OBJEKT ELLER PROSESS	MATERIALE ELLER AKTIVITET
Arbeidsflater	Voksede, malte eller polerte flater Vanlige vinyl- eller plastflater
Gulv	Forseglet betong Vokset, lakket trevirke
Bekledning	Vanlige frakker for rene rom Vanlig syntetisk bekledningsmateriale Ikke-ledende sko Ren bomull
Stoler	Lakkert tremateriale Vinyl Glassfiber
Pakking og behandling	Vanlige plastposer, pakkematerialer konvolutter Vanlig bobleplast, plastskum Brett, bokser og skảler av plast
Sammensetning, rensing,, test og reparasjon av omráder	Rensespray Vanlige loddetinnsugere - plast Loddebolter uten jording bust Renseb申rster - syntetisk bust Rensing ved bruk av flytende eller lett fordampende væske Temperaturkammere Kj申lespray Varmepistoler eller blasere Sandblásing Elektrostatisk kopiering

9.3 Arsaker til statisk generering - Tabell 3

Arsaker til statisk generering	Elektrostatisk spenning	
	$\begin{aligned} & (10-20) \% \\ & \text { Rel.fukt. } \end{aligned}$	$\begin{aligned} & (65-90) \% \\ & \text { Rel. fukt. } \end{aligned}$
Gående pá teppe	35 kv	$1,5 \mathrm{kv}$
Gảende på vinylgulv	12 kv	$0,25 \mathrm{kv}$
Arbeid pa benk	6 kv	$0,1 \mathrm{kv}$
Vinylplastmapper til arbeidsinstruksjoner	7 kv	$0,6 \mathrm{kv}$
Vanlig plast plukket opp fra en benk	20 kv	$1,2 \mathrm{kv}$
Arbeidsstol stoppet med polyurethan skum	18 kv	1,5 kv

9.4 Testkrets - Figur 1

FIGUR 1

Testspenningen blir malt over kondensatoren. Kondensatoren utlades gjennom seriemotstanden Ro og det aktuelle testutstyret/komponenten. Utladningen kommer gjennom den prelløse bryteren, og skal ikke vare lenger enn at spenningen over kondensatoren har sunket til ca. 1% av testspenningen og ta maksimum 5 sek. Toleransen pa spenningskilden skal være innen 5% av testspenningen.

9.5 Varselskilt - Figur 2

ADVARSEL

ELEKTROSTATISK BESKYTTELSESOMRÅDE BRUIK BESKYTTELSE MOT STATISK ELEIKTRISITET

ELECTROSTATIC PRECAUTIONS REQUIRED
REF.ND-13.019.1

9.6 Varsel-klebemerke - Figur 3

Static
Handing
precautions Required

10 beskyttelses-utstyr I bruk hos norsk data a.s

a. Statisk sikker arbeidsstasion - 3 M .

ND part no. 785536 - Hándleddsbånd m/jord kabel
ND part no. 785541 - Bordmatte m/jord kabel
ND part no. 785546 - Gulvmatte m/jord kabel (1, $2 \mathrm{~m} * 2,4 \mathrm{~m}$)
b. Antistatiske/skjermede poser.

ND part no. $785527-(20 * 25) \mathrm{cm} / \mathrm{ND}-10 \mathrm{PCB}$
ND part no. $785531-(33 * 41) \mathrm{cm} / \mathrm{ND}-100 \mathrm{PCB}$
ND part no. $785519-(33 * 43) \mathrm{cm} / \mathrm{ND}-500 \mathrm{PCB}$
c. Antistatiske IC staver/ledende skum

ND part no. $785540-(0,70 * 53,6) \mathrm{cm}$. /IC stav
ND part no. $785544-(0,14 * 53,6) \mathrm{cm} . / J C$ stav
ND part no. 785537 - Ledende skum.
d. PCB holdere/bokser/stativ

Ikke lagervare, men kan bestilles og monteres etter behov.
e. Varsel-klebemerke.

ND part no. 785542 - Lagervare
f. Antistatisk væske.

ND part no. 785543 - Staticide ACL - Lagervare

11 SAMMMENDRAG AV KRAV TIL BESKYTTELSES-UTSTYR

11.1 Bordplatebelegg

$\begin{array}{rl}\text { Fordelende materiale }-10^{5}<\rho 0<10^{12} \mathrm{ohm}^{2} \\ 10^{10}<\rho \mathrm{ov} & \mathrm{ohm} / \mathrm{cm}\end{array}$
Ledende materiale -

$0<\rho 0<10^{5}$	ohm 2
$0<\rho v<10^{3}$	ohm $/ \mathrm{cm}$

19.2 Gulvbelegg

11.3 Håndleddsbånd

Den samlede elektriske motstand (serie) for hảndleddsbånd, tilledning og motstand, skal være i omrddet fra $0,6 * 10^{6}$ ohm til $1,2 * 10^{6}$ ohm.

MERK :

Overflate-resistivitet= go
Volum-resistivitet $=\rho V$

12 REFERANSELISTE

Department of Defence - HanDBook / DOD - HDBK - 263, MAY 21980 Department of Defence - HanDBook / DOD - HDBK - 1686, MAY 21980 National Fire Protection Assosiation / NEFPA \#56A

Stikkord

Ansvar 15.
Antistatisk
belegg 3.
forpakningsmateriale 3.
materiale 1.
væske 3.
Arbeidsplass 9.
Avdelingsleder 15
Beskyttelsesmateriale 1.
Beskyttelsesutstyr 12.
Definisjoner 1.
Elektrostatisk
beskyttelsesmateriale 1.
felt 1.
fordelende 3.
Foredling sikker 8.
Generering
induktiv 5.
kapasitiv 7.
statisk 5.
triboelektrisk 7.
Godkjenning 12.
Gruppeleder 15.
Kontroll 10, 12.
Ladning 5.
Lagerplass 10.
Lagring 10.
ND/QA-Dept. 15.
Område 8.
operatør 2.
Operat申rtrening 16.
Opplæring 16
Pakking 9.
Statisk elektrisitet 2, 5 .
Transport 11.
Treningsprogram 16.
Triboelektrisk
generering 7.
serie 7.
Utladning 1.
Utstyrsliste 3.
Vedlikehold 14.

Systems that put people first

