
NOTIS-TF
Macro Guide

ND 6300901

Norsk Data

NOTlS—TF
Macro Guide

ND—63.009.01

NOTECE

The information in this document is subject to change without notice. Norsk Data
AS assumes no responsibility for any errors that may appear in this document.
Norsk Data AS assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS.

The information described in this document is protected by copyright. lt may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data AS.

Copyright © 1983 by Norsk Data A.S

This manual is in loose leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose leaf form also allows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre-
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm, Use the order form below.

The manual may also be placed in a plastic cover (8). This cover is more suitable
for manuals of less than 100 pages than for large manuals. Plastic covers may
also be ordered below.

y

m
“3

A Ring Binder 8 Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Documentation Department
Norsk Data AS
PO. Box 4, Lindeberg gard
Oslo lO

GRBER FQRM

I would like to order

....... Ring Binders. 30 mm, at nkr 20,» per binder

....... Ring Binders, 40 mm, at nkr 25,- per binder

....... Plastic Covers at nkr 10,— per cover

Name ..
Company
Address

PRINTING RECORD
rinting Notes
12/83 Version 01

NOTlS-TF Macro Guide
Publ. No. ND-63.009.01
December 1983

2522:.555 segues: NORSK DATA As0.0.0.... '3 PO. Box 4, Lindeberg gérd.. :::....
° ’°" ”33:. 031010, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg gérd
Oslo 10

Preface:

THE PRODUCT

This guide is intended as a complete documentation of the use of
macros in the NO text formatting system

NDTIS-TF SUT 10079J

THE READER

The guide is primarily intended for experienced users of the text
processing system NOTIS—WP, and the text formatting system NOTIS—TF.
The guide will be of particular interest to users who wish to create
their own macros adapted to their needs for special document formats.

PREREQUISITE KNOWLEDGE

It is assumed that the user has some experience with the text for—
matting system NOTIS~TF, and is acquainted with the directives and
document macros described in the NOTIS—TF Reference Manual — Text
Formatter.

THE GUIDE

The guide provides a theoretical description of the construction and
mode of operation of the various macro types in NOTIS—TF. The guide
explains how these macros may be defined, used and deleted. and gives
numerous examples of how they work in practice. Chapter 10 is entirely
devoted to explaining the examples. most of which have been taken from
the official macro library in NOTIS—TF.

RELATED MANUALS

NOTIS'TF Reference Manual ~ Text Formatter, ND—53.007, describes
standard and advanced directives in the text formatting system
NOTIS~TF.

NOTISvWP Reference Manual — Editor, NDn53.002, is devoted to the text
processing system NOTIS-WP.

ND-63.009.01

VH

TABLE OF CONTENTS

Section Paqe

1 INTRODUCTION . 1

1.1 What is a macro? . 1
1.2 When can macros be used? 1
1.3 Defining and calling macros 2
1.4 Glossary . 3
1.5 Various macro types 4
1.5.1 User macros (MD) 5
1.5.2 Integer macros (1M) 8
1.5.3 System macros . . 7
1.5.4 Reference macros (RD) 8
1.5.5 Trigger macros (TM, ST) 9
1.5.8 Trigger strings 10

2 AN EXPLANATION OF THE SYNTAX . 11

2.1 General syntax for macro calls 11
2.2 Call levels 12
2.3 Directive quotes 14

3 DETAILED DESCRIPTION OF THE MACRO TYPE SYSTEM MACRO 17

4 DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO 20

4.1 MD, Macro define . 21
4.1.1 User macro with a permanent body 22
4.1.2 User macro with macro call in the body . 22
4.1.3 User macro with a variable part in the body ~ macro call

in quotes . 23
4.1.4 User macro including parameters 24
4.1.5 Including parameters with default values . 25
4.1.6 Including parameters with the aid of the PM dilective 27
4.2 MK. macro kill 29
4.3 NA, macro append 30
4.4 MI, macro insert 31

ND-63.009.01

vm

Section Page

4.5 MR, macro remove 32
4.6 CM. clear macro 34
4.7 DM. dump macro 35
4.8 FIX, Fix macro . . . 36
4.9 NREDEF. set no—redefine 37

5 DETAILED DESCRIPTION OF THE MACRO TYPE REFERENCE MACRO . 39

5.1 RD. reference define 39
5.1.1 MK, macro kill 40
5.1.2 MA, macro append 40
5.1.3 MI, macro insert 41
5.1.4 MR 41
5.1.5 CM, clear macro 41
5.1.6 DM. dump macro 41
5.1.7 FIX. fix macro . . . 41
5.1.8 NREDEF. set no—redefine 41

6 DETAILED DESCRIPTION OF THE MACRO TYPE INTEGER MACRO . 43

6.1 IM. integer macro define 43
6.2 MK, macro kill 44
6.3 DM, dump macro 44
6.4 FIX, fix macro 44
6.5 NREDEF. set no redefine 44

7 DETAILED DESCRIPTION OF THE MACRO TYPE TRIGGER MACRO . 45

7.1 TM. trigger macro define 45
7.2 MK, macro kill 48
7.3 MA, macro append 48
7.4 MI, macro insert 48
7.5 MR. macro remove 48
7.6 DM, dump macro 48
7.7 FIX. fix macro 48
7.8 DISABLE, deactivate a trigger macro 49
7.9 ENABLE. activate a trigger macro . 49
7.10 PRIOR, set trigger (variable) priority 49
7.11 Single—triggers 50

8 DETAILED DESCRIPTION OF THE MACRO TYPE TRIGGER STRINGS . 51

ND—53.009.01

Section Page

8.1 TP—STR, title page string 52
8.2 PH—STR, page header string 52
8.3 TL~STR, trailer string 52
8.4 EOF-STR. end of file string 53
8.5 EOD~STR, end of document string 53
8.6 PAR—STR, paragraph string 54
8.7 UND—STR, underline string 55

9 SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANDLING . . . 56

9.1 The directives 0F and NF 56
9.2 The directive AR . 5?
9.3 The directive IF . 59
9.4 Use of macro libraries with the directive LIB—CONT 62
9.5 NOTIS~TF — resource and space requirements in the computer

64

10 EXAMPLES . 67

10.1 The macro BOLD . 68
10.2 The macro SHOW . 69
10.3 The example macro in this manual 70
10.4 The macro BM . 70
10.5 The macro CE . 71
10.6 The macro CP . 72
10.7 The macro SPREAD . 73
10.8 The macro FIG*CP . 75
10.9 The macro SIP . 84
10.10 The macro HEAD . 95
10.11 The macro MEMO . 98

LIST OF EXAMPLES . 101

Index 103

ND~63.009.01

NOTIS-TF MACRO GUIDE 1
INTRODUCTIUN

1 INTROWCTION

1.? WAT ISA 0‘?

A macro is a combination of commands/directives, which can be defined
to simplify trivial and time~consuming routines. Each time you wish to
carry out a specific routine, you enter the name of the defined macro
in your text document. This macro is called/expandedduring formatting,
and executes the routine automatically. The macro is uniquely
identified (given a name). The definition is either entered in the
text document, or included in a separate macro library. NOTIS—TF has
its own. standard macro library which carries out numerous tasks.

The difference between a macro and a directive in NOTIS—TF is that
most macros can be defined. altered and deleted by you. This enables
you to to build up a well adapted macro library of your own.
Directives, however, are defined as a part of the system, and cannot
be altered by the user. The two types are identical in use, ie., they
are entered into the text document and executed (expanded) when the
document is formatted.

A macro often carries out the work of several directives. and can be
used for many different purposes.

1.2 WEN {SAN amends BE USED"?

Macros can be used for a number of things. We shall only mention a few
examples. and leave it to your imagination and requirements to find
others.

1) If a certain item of text, eg., a long word or expression, is
repeatedly used throughout your text. you may define a macro for
this expression. You then call this macro each time you want the
expression included. thus saving time and making sure that the
expression is always correctly spelled.

2) If a specific sequence of commands and directives and/or text is
frequently used in the text, you may define a macro that executes
the sequence. Such a macro may considerably reduce the amount of
actual typing.

3) You may use macros to simplify the updating of blocks of text that
change through the document, eg., version numbers in program
documentation.

4) Macros may be defined to describe formats frequently used in a
document or in a series of documents. In this way you may change
the layout of the text each time you use a macro, thus greatly
facilitating the use of standard formats.

ND—63.009.01

2 NOTIS- TF MACRO GUIDE
INTRODUCTION

5) You can use macros for automatic numbering of text items such as
paragraphs. In this way, new paragraphs can be inserted without
need for manual re~numbering of existing paragraphs. The existing
chapter and section macros in NOTIS—TF have been defined for this
purpose.

6) Macros can be used to create references in a document. The
document may subsequently be modified. but the references will
still be correct.

These are a few simple examples of the use of macros. More concrete
examples will be given later.

1.3 KFENING AME EALLMS Q§

It is important to clearly understand the difference between a macro
call and a macro definition:

« A macro definition is a specification of what is to happen
each time a macro is called. It therefore appears only once,
and is either entered into the text document or included as
part of a macro library.

~ A macro call is entered in the text each time you want the
specific macro definition to be executed. A macro call can
thus be used several times in the text. During formatting of
the document, NOTIS—TF will execute or expand the macro call
in accordance with the definition.

Let us illustrate this with a small example:

Ex-l: You are writing a long report on chloramphenicol. This is a
boring word to write over and over again, and besides it is
easy to misspell it. You therefore define a macro for this
word, and enter the macro definition at the beginning of
your text:

‘md/chl/chloramphenicol:

You have now defined a macro called chl‘ Each time you now
need to use the word chloramphenicol in the text, you call
the macro by typing in ”oh12, as in the following phrase:

Extensive research has shown that ‘chl: is a good cure for

After formatting, the text will read:

Extensive research has shown that chloranphenicol is a good
cure for

ND—63.008.01

NOTIS- TF MACRO GUIDE 3
INTRUDUCTI0N

Many macros are defined with parameters, just as directives may have
parameters. A parameter is a value that must be given in addition to
the macro name, whenever the macro is called.

As you Will see further on in this guide, certain macro definitions
may be rather long and cover several lines. It is therefore a good
principle to start each new line with a circumflex (A). Blank spaces
at the beginning of a line may give unexpected results.

1 . 4 GLOSSARY

This section contains a list of words and expressions that have been
frequently used in this guide, and their definitions. You may wish to
refer back to the list whenever you encounter one of these expressions
in the text, and do not remember the exact definition.

macro A defined combination of commands/directives
and/or text, which is uniquely identified. A macro
may be defined and altered by the user. It is
called in the same way as a directive in NOTIS-TF,
and executes specific operations.

macro definition A specification of the operations to be executed
each time the macro is called.

macro call An expression included in the text each time you
want the macro to be expanded. Has the same format
as a directive in NOTIS~TF, and is used in the
same way.

macro expansion The process resulting from a macro call when the
text document is formatted. A macro expansion
produces a result which corresponds to the macro
definition.

level The expansion of a macro may take place at various
levels. This is the case whenever a macro call
contains calls to other macros, or when directive
quotes have been used.

directive quotes Directive quotes are used to prevent the expansion
of macro calls, and also decide the level on which
the macro expansion is to take place at all times.

user macro A macro type used to define special formats and
layout in text documents.

system macro A pre—defined macro type in the system. Cannot be
influenced by the user. Is used to obtain access
to fixed values in the system.

ND—83.009.01

integer macro

reference macro

trigger macro

parameter

NOTIS— TF MACRO GUIDE
INTRODUCTION

A macro type containing an integer value or an
arithmetic expression. This macro type is used for
different ways of counting, for instance to number
chapters and their related sections.

A macro type used for references within a
document.

A macro type which can only be defined. and not
called. It is automatically expanded each time the
defined conditions are fulfilled.

Macros may be defined to contain parameters. Such
parameters must be included in the macro call. The
number of parameters in the macro call must be the
same as the number defined in the macro
definition.

1.5 VARIWS WACRQ TYPES

NOTIS—TF operates wi

USER MACROS
INTEGER MACROS
SYSTEM MACROS
REFERENCE MACROS
TRIGGER MACRO

TRIGGER STRINGS

th 8 different macro types;

Definition Call

*MD/NAME/BODY; ”NAME/PARAMETER;
AIM/NAME/VALUE; ~SNAME/TYPE;

-SNAME/TYPE:
”RD/NAME/BODY; ‘fiNAME/SIZE;
~TM/NAME/CONDITION/BODY;
“ST/NAME/CONDITION/BODY:
"NAME/BODY;

ND-63.009.01

NOTIS- TF MACRO GUIDE 5
INTROIIJCTI0N

1.5.1 USER MACROS (MD)

The most common macro type is the user macro. User macros are used to
define special formats and layout in a text document. The macro in the
example on page 2 is a user macro. User macros can be defined to
contain a combination of directives and/or text.

The user macro consists of two parts: name and body, and is defined in
the following way:

‘MD/Name/Body;

The name can be a combination of alpha characters, digits and the sign
(hyphen). However, a name has to start with an alpha character,

and end with an alpha character or a digit.

The body can be a combination of text and directives/macros.

The macro is called/expanded in the following way:

‘Name/parameter-I/parameter-2/... ../parameter-n;

The parameters are optional values that you have to input together
with the name. The number of parameters you have to give after the
macro name is defined in the body of the macro definition. Macros are
often defined without parameters. This was the case with the chl macro
on page 2.

Chapter 4 provides a full explanation of user macros.

ND‘83.009.01

6 NOTIS—TF MACRO GUIDE
INTRODUCTION

1.5.2 INFEGER MACRO$ {1%)

The integer macro is a macro containing an integer value between —
32768 and 32767. This macro type is used for different ways of
counting, and to store numbers in macros that may in turn be called
from other macros. Examples were numbered in this guide by using
integer macros.

The integer macro consists of two parts: name and value, and is
defined as follows:

‘IM/name/value;

The name, the same rules apply as in user macros.

The value may be an integer value. or an arithmetic expression
consisting of integer values.

The macro is called/expanded in the following way:

“$name/type;

Type may have the values:

A : Alphabetical representation in upper case.

a : Alphabetical representation in lower case.

R : Represented in Roman numerals, upper case.

r : Represented in Roman numerals, lower case.

N : Represented in numerics.

n : Represented in numerics.

Chapter 6 provides a full explanation of integer macros.

ND—83.009.01

NOTIS-TF MACRO GUIDE 7
INTRODUCTI0N

1.5.3 SYSTEM MACROS

The system macro is a macro type pre—defined in the system, and cannot
be influenced by the user. These macros are used to obtain access to a
series of so«called system values, such as the current date, current
page number, line number. chapter number, etc.

The macro is called/expanded in the following way:

‘$name/tvpe;

Type may have the values:

A : Alphabetical representation in upper case.

a : Alphabetical representation in lower case.

R : Represented in Roman numerals, upper case.

r : Represented in Roman numerals, lower case.

N : Represented in numerics.

n : Represented in numerics.

Chapter 3 provides a full explanation of system macros.

NO-63.009.01

8 NOTIS—TF MACRO GUIDE
INTROWCTION

1.5.4 REFERENCE MACROS (RD)

Reference macros are comparable to user macros. the difference being
that a reference macro may be called before it has been defined.
Reference macros can be used for references within a document.
including forward references to parts of the document that have not
yet been written.

The reference macro consists of two parts: name and body. and is
defined as follows:

‘RD/name/body;

The same rules apply for name and body as in user macros.

The reference macro is called/expanded in the following way:

’#name/size;

The size is the length/size needed to make room for the text resulting
from the expanded macro. This size is actually only required in cases
where the macro is called before it has been defined. However, it is a
good principle to always include it. In cases where the size reserved
proves to be larger than necessary, the text will be right justified
in the reserved field. If the size is too small, the line the text is
on will be expanded by the required number of positions.

Chapter 5 provides a full explanation of reference macros.

ND—63.009.01

NOTIS- TF MACRO GUIDE 9INTRODUCTION

1.5.5 TRIGGER MACROS (TN. 37')

The trigger macro is a complicated kind of user macro, and is not
always easy to understand and to use.

A trigger macro consists of four parts: name. condition. body and
priority. It is defined as follows:

~TM/name/condition/body/priority;
or “ST/name/condition/body/priority;

The same rules apply for name as in user macros.

Condition is a logical expression. which is explained in more detail
in section 7.1

The same rules apply for the body as in user macros, with the
exception that it is impossible to include parameters in a triggermacro.

Priority is explained in section 7.1

A trigger macro is not called. It is automatically expanded when the
conditions defined are fulfilled. In few words, this means that as
soon as a situation arises that fulfills the condition(s) defined, the
macro is expanded. It is subsequently expanded again and again, until
the conditions are no longer fulfilled.

Chapter 7 provides a full explanation of trigger macros.

Single-triggers are a special kind of trigger macro. They are expanded
in the same way as trigger macros, but delete themselves after they
have been expanded the First time. This means that a single—trigger is
never expanded more than once.

ND-63.009.01

1O NOTIS-TF MACRO GUIDE
INTRODUCTION

1.5.5 YRIGGER STRINGS

Trigger strings are a pre—defined kind of single~trigger. The body may
be defined by the user, while the name. condition and priority are
prewdefined.

Each trigger string has a corresponding system macro, ie., a flag
which indicates whether the string is being used or not.

A trigger string body is defined as follows:

‘name/bady;

where name is the pre—defined macro name.

The same rules apply for body as in trigger macros.

Chapter 8 provides a full explanation of trigger strings.

ND~83.009.01

NOTIS-TF MACRO GUIDE 11AN EXPLANATION OF THE SYNTAX

2 AN EXPLANATION OF THE SYNTAX

2.1 GENERAL SYNTAX FUR RACRO CALLS
The general syntax for macro calls is the same as for normal
directives;

1) The call starts with the directive start sign. Default is the
circumflex (”).(This sign may be redefined with the "DS;
directive). In integer macros this is followed by the dollar
sign (3), and in reference macros by the hash (a).

2) Next comes the macro name. followed by a separating sign. Any
non-alphanumeric character. except the hyphen (—) or the
directive end sign, may be used as separating sign. But, you
must use the same separating sign between all the parameters
in a call. This means that the first non—alphanumeric
character that is neither a hyphen nor the directive end sign
becomes the separating sign in the macro call.

3) The various parameters, if any, are input after the macro
name with separating signs between them. The number of
parameters must be the same as in the definition.

4) A macro call is terminated with the directive end sign.
Default is semicolon (;). (This sign may be redefined with
the ~0E; directive).

Note that if you input a directive start sign followed by a space
(blank), the directive start sign will be printed as text, and the
space will be eliminated.

Ex-Z: SURNAME;

In the above example the macro SURNAME will not be called, but will be
printed as "SURNAME; in the text.

ND—63.009.01

12 NOTIS-TF MACRO GUIDE
AN EXPLANATION OF THE SYNTAX

2.2 EALL LEVELS

It is important to understand the level principle in macro calls and
macro definitions.

A call starts with a directive start sign and ends with a directive
end sign on the same level.

Ex~3: ‘MO/NAME/Petersan;

Name : NAME
Body : Peterson
Call : ~NAME;
Result : Peterson

This macro is defined with only one level, and the elements of the
definition are NAME and Peterson. This means that a user macro is
defined with the name NAME and the body Peterson.

It is often useful to include calls to other macros in a macro call
definition. In the example below, the result in the call to the macro
~NAME depends upon the macro “SURNAME.

Exr4: ‘MD/SUHNAME/Smith;
AMO/NAME/His name was ”SURNAME;;

Name : NAME
Body : His name was Smith
Call : ~NAME;
Result : His name was Smith

When NOTISeTF reads the macro definition, the system will encounter a
new directive start sign before the directive end sign, and a call to
‘SUHNAME; which is one level higher will be initiated.

The above definition thus contains two calls that are on different
levels. NOTIS—TF will treat these two calls in the following way:

The definition "MD will be started first, but when the system
reaches the next directive start sign it will start the new call
ASURNAME;

The reading of ‘MD will now be "put aside". and ~SURNAME; will be
expanded. Since this call is not on the lowest level (1). the text
resulting from “SURNAME; will be written in as part of the body of
the "NAME; call. When the "SURNAME; call has been terminated. the
call on the lowest level (the definition. ~MD) will be fetched out
again and terminated.

ND—63.009.U1

NOTIS~TF MACRO GUIDE 13AN EXPLANATION OF THE SYNTAX

In the above example the body in the definition contains a new call to
a new macro. This macro may well in turn contain a call to yet another
macro. which again contains another call. etc. In this way you may
nest calls on an indefinite number of levels (provided you keep a
clear head!).

As can be seen from the above example, the call on the upper level
will always be executed first. You may compare a macro expansion to an
arithmetic expression: the inner parenthesis is always calculated
first.

A macro definition must always be balanced, ie., it must contain the
same number of directive start/directive and signs and the same number
of start quote/end quote signs (see the next section).

ND—53.009.01

14 NOTIS—TF MACRO GUIDE
AN EXPLANATION OF THE SYNTAX

2.3 @IREQHVE QUQTES

In NOTlS—TF the sequences '”<‘ and ">‘ are considered as start quote
and end quote signs respectively. In short, these quotes are used -to
prevent the expansion of a call sequence. This is often a requirement.
for example when you define macros that require parameters.

Let us look at some examples:

Ex~S1 "MU/SURNAME/Smith;
‘MD/NAMEi/‘SUHNAMEi;

Name : NAMEI
Body : Smith
Call : ”MAMEZ;
Result: Emith

This example is similar to the one we have used before, example 4. We
have a macro definition with a new macro call in the body. The
definition is processed as follows:

NOTIS—TF reads the definition until it encounters the new directive
sign in the macro call ‘SUHNAME;. The first call is then
interrupted and "SURNAME; is executed. Thereafter the result is
entered into the body of the definition, and the macro NAMEI is
defined. Here the result will be Smith each time the macro is
called.

Now let us see what happens when you use quotes around the macro call
in the body:

Ex—B: ‘MD/SUHNAME/Smith;
AMU/NAMEZ/‘<“SURNAME;'>;

Name: NAMEZ
Body: ”SURNAME;
Call: "NAMEZ;
Result: Smith

ND-63.009.01

NOTIS—TF MACRO GUIDE 15
AN EXPLANATION OF THE SYNTAX

As you can see, the final result is the same as in the previous
example. Nevertheless. the two are processed in different ways, and it
is important that you understand this. The current macro definition is
executed as follows:

NOTIS—TF reads until it encounters the first start quote sign. All
subsequent signs encountered up to the corresponding end quote are
considered as ordinary text. This means that calls which may be
encountered between the two quotes also will be considered as
ordinary text, and therefore not expanded right away. This is also
true for quotes within quotes.

The macro stem is thus "SURNAME;. Each time the macro ”NAMEZ; is
called, ‘SURNAME; is expanded. The result of ‘NAMEZ; will at all
times depend upon the definition of ‘SUHNAME;.

Let us illustrate the difference between the two types with another
example:

Ex-7: We are now in a situation where the call ”NAMEI; results in
Smith and "NAMEZ; also results in Smith.

But what happens if we change the definition of "SURNAME;?

‘MD/SUHNAME/Brawn;

The hall ”NAMEI; still results in Smith. The call ”NAMEZ;
new results in Brown

Thus, the difference between the two methods is that when a
macro call is written without quotes the result is
irrevocably defined at the time of definition, whereas the
result of a macro call written with quotes is at all times
dependent upon the valid definition of ‘SURNAME;

It is important to note that the quotes themselves disappear after the
macro has been expanded.

In the above example this means that ‘SURNAME; and not ”<‘SURNAME;‘>
becomes the body of the macro NAMEZ.

ND—63.009.01

16 NOTIS-TF MACRO GUIDE
AN EXPLANATION OF THE SYNTAX

When quotes are used in macro definitions, they do not necessarily
have to enclose the whole body. This is illustrated in the following
example:

Ei-B: ”MD/SURNAME/BROWN:
AMD/FIRST~NAME/John;
“MD/MIDDLE-NAME/T. ;
"MD/NAMEZ/‘<“FIRST—NAME;‘> ”MIDDLE~NAME;‘<‘SUHNAME;">i

Name : NAMEZ
Body : FIRST—NAME; T. ”SURNAME;
Call : 'NAMEZ;
Result: JohnT. Brown

In this case. the expansion oi FIRST-NAME and SURNAME will be delayed
because these are written between quotes. whereas MIDDLE—NAME will be
expanded when NAMEZ is defined. The same technique can be used if you
want to include the values of system or integer macros at the time of
definition.

Let us look at an example of a macro requiring a parameter when it is
called:

Ex-S: "MD/TITLE/“<Manual for ‘1;”>;

Name : TITLE
Body : Manual for ‘1;
Call : "TITLE/NUTIS-TF;
Result: Manual for NDTIS-TF

The call "1; is a special call which means that a parameter is to be
inserted here. As you can see, it was important that the call ‘1; was
not executed at the time of definition, but remained in the body. ‘1;
was undefined when ”TITLE; was defined. The result of the macro thus
depends upon the parameter given when the macro is called. More about
parameters on page 24.

On page 24 and page 27 you will find examples of practical use of
quotes, and you will see that quotes are of importance when you define
more advanced macros.

Each time a start quote is encountered, the execution will continue
one level higher. The execution of this level does not terminate until
the corresponding end quote has been encountered. Start quotes within
quotes lead to the execution going one level higher.

Macro definitions must be balanced, ie., there must be an equal number
of start quotes and end quotes.

ND-63.009.D1

NOTIS-TF MACRO GUIDE 17DEEAILED DESCRIPTION OF THE MACRO TYPE SYSTEM MACRO

3 GETAILED DESCRIPTEON QF ?H§ MACRO TYPE SYSTEM NRCRQ
This is the simplest macro type: you can neither define nor modify it,
but only call it.

A system macro is called in the following way:

‘$name/type;

Below is a list of all system macros, with a short functional
description:

CALL DESCRIPTIION FORMAT

SPN Current page number numeric value
SCN Current chapter number numeric value
SSN Current section number numeric string
SAN Current appendix number numeric value
SCPOS Current line position numeric value
SCLINE Current line number numeric value
SSECLEV Current section level numeric value
SLM Left margin number of char.
SRM Right margin number of char.
SL8 Left border number of char.
SOB Right border number of Char.
3TB Top border number of lines
388 Bottom border number of lines
SPL Page length number of lines
s Page width number of char.
STN Text width = SPw — SLB — 308 number of char.
381 Section indentation number of char.
SSS Section spacing number of lines
SSF Minimum section size number of lines
SPI Paragraph indentation number of char.
SP8 Paragraph spacing number of lines
SPF Minimum paragraph size number of lines
SBT Bold text level numeric value
383 Bold section level numeric value
SLS Line spacing number of lines
SHP Horizontal pitch char/inch
SVP Vertical pitch lines/inch
STI Title text
SAU Author text
SDI Distributiion list text
STO Addressee text
SLH Letter head text
SRF Reference text
SAS Abstract text
SCH Chapter heading text
3H1 Page header 1 text
3H2 Page header 2 text
STL Page trailer text

ND~63.009.01

18 NDTIS-TF MACRO BUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE SYSTEM MACRO

$CHEAD Table of contents heading text
SDX Flag for duplex copying active if > 0
SF—PH—STR Flag for PH-STR active if > 0
$F-TL-STR Flag for TL-STR active if > 0
$F~EOD-STR Flag for EOD—STR active if > 0
$F~EOF-STR Flag for EOF—STR active if > 0
$F~PAR~STR Flag for PAR~STR active if >‘0
$F~UND~STR Flag for UND~STR active if > 0
$DATE Date 20.07.1983
SYEAR Full year 1983
SYR Partial year 83
SMM Month 07
SM Single month 7
SDD Day 02
30 Single day 2
SFDATE File date 20.07.1983
SFYEAR File full year 1983
SFYR File partial year 83
SFMM File month 07
SFSM File single year 7
SFDD File day 02
SFSD File single day 2
STIME Time (English) 12:45 am.
STID Time (2L hour clock) 00.45
SHOUR Hour 00
SMIN Minute 45
SSEC Second 36

All these system macros may have a parameter in the call. This
parameter may have one of the following values:

A : Alphabetical representation in upper case.

a : Alphabetical representation in lower case.

R 2 Represented in Roman numerals, upper case.

r : Represented in Roman numerals. lower case.

N : Represented in numerics.

n : Represented in numerics.

Numeric value is default. The representation in Roman numerals is
limited upward to 3999, and Alphanumeric representation to 18278.

Alphabetical representation functions in the following way:

1=a, 2=b. 3=c, 25:2
27=aa, 28=ab, 29=ac 52=az
53=ba, 54=bb. 55=bc, etc.

ND-63.009.01

NDTIS-TF MACRO GUIDE 19
DETAILED DESCRIPTION OF THE MACRO TYPE SYSTEM MACRO

Ex—ifl:

However,

If you write in your text:

This is page ‘$PN;, the result will be:

This is page 19, where 13 is the number of the current page
in the formatted document.

If you write in your text:

This is page ‘SPN,a;, the result will be:

This is page s, where s is the number of the current page in
the formatted document.

If you write in your text:

This is page "$PN.R;, the result will be:

This is page XIX, where XIX is the number of the current
page in the formatted document.

the system macro SSN is a special case. This macro may have
two parameters in the call, the first of which indicates the separator
between numbers on different section levels.

Ex—ll: If you write:

In this section, "$SN,/;,...

the result will be:

In this section, section 3/1/2,...

The call "$SN=l=a; gives the result clalb.

The parameter for the numeric system thus becomes parameter
two in this macro.

The call ~$SN;, without parameters, gives the default result
3.1.2 because the full stop is the default separating sign.

ND-63.009.01

20 NOTIS—TF MACRO GUIDE
OETAILEO DESCRIPTION OF THE MACRO TYPE USER MACRO

4 MTAILEO OESCREPHON OF THE MACRO TYPE USER MACRO

There are some directives that are directly related to user macro
processing:

MD ; Makro Define. defines a user macro.

PW ; Parameter Include. fetches a parameter to the call.

MK ; Makro Kill. deletes a user macro.

NA ; Makro Append, extends the de£inition of a user macro.

MI ; Makro Insert. extends the definition of a user macro.

MR ; Makro Remove, removes part of a user macro definition.

CM : Clear Makro. removes the whole user macro body.

DH ; Dump Makro, writes the macro definition out on the screen.

FIX ; "Fixes“ (locks) a user macro definition. ie., it cannot be
deleted.

NREDEF; No—Redefine, prevents redefining of a user macro.

ND-63.009.01

NOTIS-TF MACRO GUIDE 21DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

4.1 MD. MACRO WFINE

The directive is used to define a user macro. It is an important
directive, and very frequently used.

A user macro functions as follows:

1) The macro first has to be defined. The definition must either
be written in the text document, or included in a modified
version of the standard macro library (file NOTIS—TF-ENG~
xxsIB) which is a part of the system.

2) The call is then input in the text in the position where you
want it. The macro is executed (expanded) when the document
is formatted. In the formatted text the call is then
substituted by the text resulting from the macro.

In other, and slightly more technical words: the text document read by
NOTIS—TF is "pushed aside" each time a macro is encountered, and the
macro body is read instead. Once the macro body has been read and
executed, NOTIS—TF picks up the text document again, and the reading
continues where it was interrupted. ie., after the macro call. You may
therefore compare a user macro call to the inclusion of a new
document. where the macro body is the new document.

A user macro consists of two part: the name and the body. It is
defined in the following way:

'MD/name/bady;

The name can be a combination of alpha characters, digits and the sign
’-' (hyphen). However, a name has to start with an alpha character,
and end with with an alpha character or a digit.

The body can be a combination of text and directives/macros.

ND-63.009.01

22 NOTIS—TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

4. if? USER RRCRO mm A PER ., ER? BODY

The simplest form of user macro is a macro with a permanent body.

EX‘iZI EMU/PRODUCT/NUTIS—TF;

Name: PRODUCT
Body: NOTIS-TF
Call: This is a description of "PRODUCT;
Result: This is a description of NOTIS-TF

As you can see, the macro call in the text document will be
substituted by the macro body in the formatted document.

4. $2 USER CRO sum RRCRO CALL ER THE BODY

Ex-i3: “MD/TITLE/Menual for "PRODUCT;;

Name: TITLE
Body: Manual for NDTIS-TF
Call: “TITLE;
Result: TITLE

The result of this macro will also be a constant text in the body,
despite the body having a variable at the time of definition. That is
to say that PRODUCT will be executed first. because the call for
PRODUCT is inside the call for MB. This leads to the result of PRODUCT
being entered into the body of TITLE, thus making it a constant text.

A macro call is not executed until the whole call has been read, ie
up to and including the directive end sign on the lowest level.

In this case the execution/expansion of ‘TITLE; is carried out as
follows:

~ The directive start sign starts the call.

— Then NOTIS—TF reads up to the first non—alphabetic, non-numeric
sign, in this case ';‘

- NOTIS—TF subsequently goes to the definition of TITLE and continues
the reading there.

ND—63.009.01

NOTIS-TF MACRO GUIDE 23DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

The definition of ”TITLE; will be carried out as follows:

— The directive start sign starts the call (the definition)..

~ Then NOTIS—TF reads up to the first non—alphabetic, non—numeric
sign. in this case '/'. What has been read until now is considered
to be the name of the call.

— NOTIS‘TF subsequently reads up to the next separator sign. In this
case there is none, and the system therefore continues to read up
to the directive end sign. However, before it reaches it a new call
is encountered. The execution of the MD-call is therefore
temporarily 'set aside'. and NOTIS~TF moves up one level.

— The call for PRODUCT is then read in full, and executed. This leads
to the result of PRODUCT being written where the call was found,
ie., in the body of the MD—call. When the PRODUCT—call has been
terminated, the system switches back to the previous level, ie.,
the MD—call.

* The reading is now picked up again where it was interrupted. ie.,
after the call for PRODUCT. This means that once the body of the
MO-call has been fully read, it has been changed into a constant
text.

— The body is then terminated by the directive end sign. The call is
now fully read, and the execution may start.

— What is now to be executed is a call with the name MD. where the
first parameter is TITLE and the body is Manual for NOTIS—TF.

— The body is then entered into the formatted text at the position
where the call "TITLE; was input in the text document.

A call is thus read in its entirety before it is executed. This means
that all calls on higher levels are executed before the main call is
processed.

4.1.3 USER MACRO WITH A VARIABLE PART IN TIE BODY
- MACRO-CALL IN

QUOTES

We shall go one step further and look at a macro with a variable part
in the body.

Ex-14: AMU/TITLE/”<Manual for ‘PHUDUCT;”>;

Name : TITLE
Body : Manual for ”PRODUCT;
Call : ‘TITLE;
Result : Manual for NOTIS—TF

ND-63.009.01

24 NOTIS-TF MACRO GUTDE
OETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

Using directive quotes causes the call for PRODUCT to remain in the
body of the MD~call instead of being executed at the time of
definition.

This can be explained as follows:

When the system starts to read the body of the MD—call, it meets a
start quote. This means that everything that is read up to the
corresponding end quote is considered as normal text. The call for
PRODUCT is therefore not executed, nor does PRODUCT need to have
been defined at this point.

When TITLE is now called, you may imagine that the text document
currently being read is ‘put aside', and the body of TITLE considered
as a text document. The body is now Manual for ‘PRODUCT;. The call for
PRODUCT will only be executed when TITLE is called. It will then be
executed exactly as if it had been entered in the text document.

We say that the macro has a variable body because it is dependent upon
other macros.

We can imagine that the macro TITLE is being used on various occasions
as it is, while the definition of PRODUCT varies. The result of the
macro can thus be modified without modifying the macro definition. The
importance of directive quotes is thus evident, because we could not
alter the definition of PRODUCT without them.

$.1.£ U§Efi fififififi ENSLUBENS P .UTEHS

Another way of defining a macro with a variable body is to include
parameters. This is a very useful mechanism, and is frequently used.

Ex-IS: “MD/TITLE/"<Manual for ‘1;">;

Name : TITLE
Body : Manual for "1;
Call : "TITLE/NUTIS—TF;
Result : Manual for NUTIS-TP

The call "1; is a special directive. and means that parameter 1 which
you write in the macro call is to be included here. In this manner you
may include an 'infinite' number of parameters in a macro simply by
numbering them successively. The parameters do not have to be defined
in ascending order. The same parameter may be used several times in
the same macro. This means that a parameter is not 'used up' after you
have included it the first time.

The result of TITLE is now independent of other macros, but dependent
upon the parameter given in the call for TITLE.

NDa63.099.01

NOTIS—TF MACRO GUIDE 25
DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

Remember that directive quotes are necessary to prevent "1: from being
executed at the time of definition. The parameter is not to be entered
until the macro is called.

4.1.5 INCLUDING PARAMETERS WITH OEFAUlT VALUES
When you used included parameters you may also define a default value
for each parameter. This means that if you do not specify the
parameter when the call is made, the default value will be used. This
is done as in the example below:

Ex—iB:
”MD/TITLE/‘<Manual for ”1,NUTIS—NP;">;

Name : TITLE
Body : Manual for ‘1,NUTIS-WP;

Call-1 : ATITLE/NUTIS-TF;
Result : Manual for NUTIS~TF

In call—1 the parameter NOTIS-TF was given. and was thus included as
parameter 1 according to the definition.

Call—2 : ‘TITLE;
Result : Manual for NUTIS-WP

In call-2 no parameter was given. The default value NOTIS-WP was
therefore used.

Call—3 : "TITLE/;
Result : Manual for NOTIS»WP

In call—3 we gave what is known as an empty parameter. This also leads
to the default value being used. It is necessary to use empty
parameters in those cases where there is more than one parameter to a
call, and you want to use default values for some of them. You give
empty parameters by writing two separators one after the other. A
parameter containing one or more blanks (spaces) will NOT be
considered empty. See the next example.

As mentioned above you may include more than one parameter in a macro.
This is illustrated in the following example.

ND-B3.009.01

26 NOTIS-TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

Ex-l7: "MD/TITLE/“<Manual for ”1,NOTIS-WP; version ”2,A;°>;
Name : TITLE
Body : Manual for A1,NUTIS~WP; version “2,A;

Call-1 : ~TITLE/NOTIS~TF/I;
Result : Manual for NOTIS—TF version I

In callu1 we gave the parameters NOTIS—TF and I. These were therefore
included according to the definition.

Callsz : ‘TITLE/NOTIS-TF;
Result : Manual for NUTIS-TF version A

In call«2 we omitted parameter 2. This caused the default value to be
used‘

Call~3 : ”TITLE;
Result : Manual for NOTIS~WP version A

In call—3 we omitted both parameters. This caused both the default
values to be used.

Call~4 : ATITLE//;
Result : Manual for NOTIS—WP version A

In call—4 we gave 2 empty parameters. This led to the same result as
in call—3.

Call—5 : 'TITLE//////////////;
Result : Manual for NUTIS—WP version A

In call—5 we gave 14 empty parameters. This also gave the same result
as in call—3, illustrating that any excess parameters will simply be
ignored.

Call*6 : ”TITLE//G;
Result : Manual for NOTIS—WP version G

In call—6 we gave an empty parameter 1, whereas 6 was given as
parameter 2. This caused the default value to be used for parameter 1,
while parameter 2 was included according to the definition.

ND—83.009.01

NOTIS-TF MACRO GUIDE 27
DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

4.1.6 INCLUDING PARAMETERS WITH TIE AID OF THE PM DIRECTIVE

There is also another directive For parameter inclusion: PM.

This directive may have 2 parameters: Number and default value.

‘PM/number/default-value;

Number indicates the parameter number, and must be a positive numeric
value.

The same rules apply for default value as for a user macro body.

In the Following example we shall try to demonstrate the difference
between these two ways of including parameters.

Ex-IB: ‘MD/TITLE/‘<Manual for A1,NOTIS-WP; version ‘PM,2,A;">;
AMU/PRUUUCT/NUTIS-TF:
“MD/VERSION/J;

Name : TITLE
Body : Manual for ”1,NOTIS—WP; version ‘PM,Z,A;

Call-1 : ‘TITLE/NOTIS-TF/I;
Result : Manual for NDTIS-TF version I

Call—2 : ‘TITLE/“PRODUCT;/”VERSION;;
Result : Manual for NOTIS—TF version J

Call—3 : 'TITLE/‘<‘PRODUCT;”>/'<‘VEHSION;‘>;
Result : Manual for NOTIS~TF version “VERSION;

In call—1 we gave a constant text in both parameters, and they were
therefore both included in the same way.

In call—2 we gave two macro calls as parameters. However, these were
not written in directive quotes, and were therefore executed when the
call was read. The call was thus executed with two constant texts as
parameters.

In call-3 we gave two macro calls written in quotes as parameters. As
you can see, the parameters were in this case treated differently. It
is in such cases that the difference between the two ways of including
parameters becomes apparent. in the present case the result of
parameter 2 was not a desirable one. However. we picked a simple
example for the sole purpose of describing the two different methods.

ND—63.009.01

28 NOTIS-TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

The differences between the two methods are:

Parameter inclusion according to the first method with
"number/standard; is execution by expanding the parameter as if it
were a call. This means that the parameter is read as a body in a
macro expansion, causing possible calls inside the parameter to be
executed. As you will have seen in call—3, the call for the macro
PRODUCT in parameter 1 was executed.

Parameter inclusion according to the second method.
‘PM/number/standard;. is executed by the parameter being copied in,
but not analyzed. Possible calls in the parameter are therefore not
executed. As you will have seen in call~3, the call for VERSION in
parameter 2 was not executed. The PM directive has the same effect
as an extra set of directive quotes. The execution of the macro
definition will go up one level when the system encounters a ‘PM;
directive.

In the following example we shall illustrate a more concrete case.
where it may be desirable to include a parameter without expansion:

EX“192 ‘MD/MAC-DEF/~<"MD,“1;,aPM=Z;; >i

Name : MAC~DEF
Body : 'MU,"1;,”PM=Z;;

Call-1 : "MAC‘DEF/INDENTATION/‘<'BL=2;"LM=+3;">;
Result : A macro will be defined under the name

INBENTATIDN and with the
body "BL=2:"LM=+3:

Call~2 : “MAC-DEF/EX/’<‘NF;‘LM=+7;"IP=Ex: ;”>;
Result : A macro will be defined under the name

EX and with the
body ‘NF;‘LM=+7:”IP=EX: p

The use of the PM directive makes it possible to include directives as
part of a parameter.

In chapter 10 on page 80 under the example of the macro FIG-UP. you
will find a further example of the use of the PM directive.

ND~63.009.01

NOTIS-TF MACRO GUIDE 29DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

4.2 MK. NACRO KILL

This directive is used to delete or invalidate a macro, ie., to remove
it from the set of defined macros. Attempting to call a killed macro
leads to the same result as attempting to call a macro that has not
been defined, namely an error message.

The MK directive demands a parameter, and is called as follows:

‘MK/Name;

where Name is the name of the macro to be killed.

When you define a macro. it occupies space in the computer memory. How
much space it occupies depends on its size. When you subsequently kill
the macro. you liberate the space it occupied and make room for new
macro definitions. If you work with numerous and large macros, it is
therefore useful to occasionally clean up a little by killing macros
which will no longer be used.

If you define a macro twice (or several times), ie., if you have two
(or several) macro definitions under the same name. the last
definition will be considered valid. However, the previous
definition(s) will not disappear, but will simply be unavailable. If
you now kill the macro bearing this name, you will kill the last
definition and the former definition will again be valid. The
following example may be an illustration:

Ex-Zfl: ‘MD/NAME/Smith;

The call "NAME: will result in Smith.

~MD/NAME/Jones;

The call "NAME: will new result in Jones

~M'K/NAME;

The call ‘NAME: will new result in Smith.

If you try to kill a macro that has not been defined, you will receive
an error message.

ND—53.009.01

3D NOTIS-TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

4.3 NA. MACRO APPEND

The directive is used to extend the body of a user macro or a
reference macro.

The HA directive demands at least two parameters. and is called as
follows:

‘MA/Name/body-element/../body~element;

where Name is the name of the macro to be extended. and body-element
is the addition to the existing macro body. Of course the same syntax
rules as for macro definition also apply here.

The logical construction of a user macro or a reference macro is
outlined below. demonstrating how a macro can be extended.

The definition ”MD/TITLE/NUTIS; leads to a macro being defined which
is built up like this:

TITLE

NOTIS

We then say that the macro consists of two elements. where the name is
one element and the body another.

The call ~MA/TITLE/—TF; will in this case lead to the macro being
extended in the following way:

TITLE

NOTIS ~TF

As can be seen in the syntax definition for this call. it is possible
to extend a macro by more than one body—element in the same call.

ND—63.008.01

NOTIS—TF MACRO GUIDE 31
DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

The call “MA/TITLE/ VERSIUN/ J; will in this case lead to the macro
being extended thus:

TITLE

NOTIS - —TF h“ VERSION J

4.4 MI. MACRO INSERT

This directive is also used to extend the body of a user macro or
reference macro (see also the MA directive, page 30).

The MI directive demands at least two parameters, and is called as
follows:

‘MI/Name/body~element/../body~element;

where Name is the name of the macro to be extended. and body-element
is what is to be included in the existing macro body. The same syntax
rules as for macro definition of course also apply here.

The definition ‘MD/TITLE/NOTIS; causes a macro to be defined which is
built up as follows:

TITLE

NOTIS

The call ‘MI/TITLE/product; will in this case cause the macro to be
extended as follows:

TITLE

product NOTIS

The directive therefore in principle functions as the MA directive.
with the exception that new body—elements are inserted before the
existing elements.

As can be seen in the syntax definition for this call, it is possible
to extend a macro by more than one body—element in the same call.

ND*63.009.01

32 NOTIS~TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO WPE HSER MACRO

The call ~MI/TITLE/ MANUAL/ for program; will in this case cause the
macro to be extended as follows:

TITLE

MANUAL for programr-n product NOTIS

4. 5 MR. MASRG REMOVE

This directive is used to remove a part (an element) of the body in a
user macro or a reference macro.

The MR directive is called in the following way:

'MH/Name/direction;

Where Name is the name of the macro to be reduced. The parameter
direction, which is optional, specifies how the macro body is to be
reduced. It can be given one of the values F or B, where F indicates
that the first (foremost) body-element is to be removed. whereas 8
(this is default) indicates that the body—element at the very back is
to be removed.

To illustrate this, we can start with a macro looking like this:

TITLE

NOTIS —TF ~* VERSION - J

The call "MR/TITLE; will cause the macro to be reduced to:

TITLE

)NOTIS
- —TF P VERSION

In this call it is not specified how the macro is to be reduced. The
default value 8 (back) is therefore used. This therefore caused the
last element in the macro body to be removed.

The call ~MR/TITLE/F; will cause the macro to be further reduced,
thus:

5%? F géggglglfigfi OF THE MACRO TYPE USER MACRO

TITLE

—TF ~‘ VERSION

As we can see. the foremost body—element was now removed.

ND—53.009.01

34 ”ms-37F MACRO GumsDETAILED osscmprwu or me MAD-RU TYPE use; MACRO

4.6 CH. CLEAR MACRO

This directive is used to remove the whole body of a user metro or
reference macro.

The CM directive is called in the following way:

‘CM/Name;

where Name is the name of the macro whose body is to be removed-

To illustrate this we may start with a macro looking like this:

TITLE

NOTIS a —TF L— VERSION a J

The call 'CM/TITLE; will cause the macro to look like this:

TITTEL

-——-i
we can now use the MA directive to build a new body for the macro,

If you want to redefine a macro. the sequence CM. iMA will often be
quicker and less resourceeconsuming than the sequence MK. MD, Ihis is
in particular true when larger and more complex macros are concerned.
The problem will of course not be very noticeable if redefinition
occurs only once. However, for repetitive redefinitions, tor instance
inside a macro often used. the CM, MA sequence may reduce the resource
consumption in NOTIS—TF somewhat.

>1t mm ‘01

NOTIS-TF MACRO GUIDE 35
DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

4.7 U4. WHACRO

This directive can be very helpful if you no longer remember exactly
what you wanted your various macros to do. with the 0M directive you
may cause all the important data about a macro to be displayed on the
screen at any time during the formatting process. While the data is
displayed, the formatting stops and and the system waits for you to
decide whether it should continue or not.

The DM directive is call in the following way:

‘DM/Name;

where Name is the name of the macro to be dumped on the screen.

ND-63.009.01

36‘ iNUIIS-ETF MACRO GUIDE
DETAILED DESCRIPTMN "DF THE MACRO 'r‘WRE EUSER MACRO

4.33 FIX. FIX MACRO

This directive Fixes or 'freezes' a macro definition. Whig meams ¢hat
this particular version of the macro cannot be killed. However, if you
-define a new macro under the same name, the new definition will not we
frozen.

The FIX directive is called in the following way:

”FIX/name/name/.../name;

where Name is the name of the macro to be fixefl or frozen. fis-cah he
seen from the syntax description. it is possible to freeze seveqal
‘maoros in one call.

ND-83.80@.01

NOTIS~TF MACRO GUIDE 37
DETAILED DESCRIPTION OF THE MACRO TYPE USER MACRO

4.9 NREOEF, SET N0~REDEFINE

With this directive you may decide that a macro is to be non—
redefinable.

The NREDEF directive is called in the following way:

“NREDEF/name/name/.../name;

where name is the name of a macro which is to be non—redefinable. As
can be seen from the syntax description, it is possible to set 'no—
redefine' for several macros in one call.

The directive may be useful in a macro library to reserve macro names
whose definitions are hidden from other users.

ND-83.009.01

38

ND«83.009.01

NOTIS~TF MACRU GUIDE

NOTIS-TF MACRO GUIDE 39
DETAILED DESCRIPTION OF THE MACRO TYPE REFERENCE MACRO

5 mTAILEO (ESCRIPTION OF THE MACRO TYPE REFERENCE MACRO

Certain directives are intimately linked to the processing of
reference macros:

RD : Reference Define, defines a reference macro.

MK : Macro Kill, deletes a reference macro.

MA : Macro Append, extends the definition of a reference macro.

MI ; Macro Insert. extends the definition of a reference macro.

MR ; Macro Remove, removes part of a reference macro definition.

0M ; Dump Macro, displays the macro definition on the screen.

FIX ; Fixes a reference macro definition. cannot be deleted.

NREDEF; No—Redefine. prevents redefinition of a reference macro.

5 .1 RD. REFERENCE WINE

This directive is used to define a reference macro.

The construction of a reference macro is directly comparable to that
of a user macro. The only difference is that the reference macro may
be called before it has been defined.

The syntax for the definition of a reference macro is therefore as
follows:

“RD/Name/Body;

where the rules are the same as for user macros.

A reference macro is called in the following way:

‘#Name/Size;

where the rules for name are the same as for user macros. and Size
represents the number of character positions needed for the reference.

ND-63.009.01

40

Ex—Zi:

NOTIS—TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE REFERENCE MACRO

Let us look at a reference macro for page number reference
as an example. You are in the proness of writing the
introduction to a subject, and you want to include a
reference to the page where this subject will later be
described in depth. You may then, for example, input:

this will he explained in depth on page "#PAGE—REF/2;..

This call will reserve 2 character positions in the text at
the location where the reference will in due time be
included. PAGE—REF is a name of your own invention, which
you have to use again when you later define the macro.

When you subsequently reach the location in the text where
you give the in‘depth description of your subject, you
define the reference macro in this way:

”Ho/Pior«aaF/‘$Pu;;

You are now giving your macro the name PAEE—REF already
decided upon in the macro call, and the body contains a call
for the page number system macro. The macro is thus defined
to contain the page number of the current page. Now matter
how much you change document at a later stage, this page
reference will always be correct. This page number will be
right justified in the two character spaces that you
reserved for it in the macro call.

If it turns out that the page number needs, for instance,
three spaces, the reference line will be expanded by one
space and you will receive a message about that during
formatting.

Since the construction of reference macros is almost identical to that
user macros, we shall not explain them further but refer you to the

chapter devoted to user macros (see page 20).
of

5.1.1 MK. MACRQ filth

This directive can be used with reference macros in the same way as
with user macros (see page 29).

5.1.2 no. Mhfififi APPENQ

This directive can be used with reference macros in the same way as
with user macros (see page 30).

ND—63.009.01

NDTI8- TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE REFERENCE MACRO

5.1.3 ME. MACRO INSERT

This directive
with user macros

can
(see

537.4 MR

This directive
with user macros

can
(see

5.1.5 CM. CLEAR NERO

This directive
with user macros

can
(see

5.1.8 W, W? MACRD

This directive
with user macros

can
(see

5.7.7 FIX. FIX fiMRfl

This directive
with user macros

can
(see

be used with reference
page 31).

be used with reference
page 32).

be used with reference
page 34).

be used with reference
page 35).

be used with reference
page 36).

5. 7.8 NREDEF. SET M-‘REWFINE

This directive
with user macros

can
(see

be used with reference
page 37).

ND~63.009.01

macros

macros

macros

macros

macros

macros

in

in

in

in

in

in

the

the

the

the

the

the

same

same

same

same

same

same

way

way

way

way

way

way

41

as

as

as

as

as

as

42

ND—63 .009.01

NOTIS-TF MACRO GUIDE

NOTIS—TF MACRO GUIDE 43
DETAILED DESCRIPTION OF THE MACRO TYPE INTEGER MACRO

6 WTMLEO MSGRIPTION OF TIE MACRO TYPE INTEGER MACRO

Certain directives are directly attached to the processing of integer
macros:

IN ; Integer Macro Define, defines an integer macro.

MK : Macro kill, kills (deletes) an integer macro.

0M ; Dump Macro, displays the macro definition on the screen.

FIX : Fixes an integer macro definition, cannot be deleted.

NREDEF: No‘Redefine, prevents redefinition of the integer macro.

6.? IN. INTEGER MACRO WFINE

The directive is used to define an integer macro.

The integer macro consists of two parts: Name and Value, and is
defined in the following way:

~IM/Name/Value;

The same rules apply to Name as to macro names in general.

The parameter Value may be omitted, in which case the value is
undefined. When used, the parameter must consist either of a number
alone, or of an arithmetic expression. Note that Roman numerals and
alphabetically represented numbers cannot be used in arithmetic
expressions.

The rules for arithmetic expressions are the same as for the AR-
directive in NOTIS~TF. See section 8.2 on page 57.

The following arithmetic operators may be used: () + — * /.

Other rules: The calculations are carried out from left to right, with
parentheses. The number of parenthesis levels is practically
unlimited.

ND—63.009.01

44 NOTIS-TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE INTEGER MACRO

The simplest integer macro definition is therefore:

EK”222 ‘IM/OUANTITY/IOU;

Name : QUANTITY
Value : 100
Call : ... the quantity being ’$0UANTITY;..
Result : ... the quantity being 100...

The example below is a definition with an arithmetic expression. where
the arithmetic expression is used to count relative to the integer
macro in the previous example.

Ex—23: 'IM/UUANTITY-Z/a$0UANTITY;+1;

Name : QUANTITY-2
Value : ”EQUANTITY; + 1
Call : "$QUANTITY—Z;
Result : 101

In this manual we have used a combination of integer macros and other
macro types to automatically number examples. In section 10.3 on page
70 we demonstrate how we have done this.

5.2 MK. MACRQ Kilt.

This directive can be used with integer macros in the same way as with
user macros (see page 29).

6.3 same

This directive can be used with integer macros in the same way as with
user macros (see page 35).

5.4 FIX. FIX RACRO

This directive can be used with integer macros in the same way as with
user macros (see page 36).

6.5 WEE)”. 55?" N0 REKFINE

This directive can be used with integer macros in the same way as with
user macros (see page 3?).

ND—63.009.01

NOTIS—TF MACRO GUIDE 45
DETAILED DESCRIPTION OF THE MACRO TYPE TRIGGER MACRO

7 MTMLED ESCRIPTION OF THE MACRO TYPE TRIGGER MACRO

The trigger macro does not have to be called, but expands (is
'triggered') automatically when the conditions you have defined are
fulfilled.

Certain directives are directly concerned with the processing of
trigger macros:

TM ; Trigger Macro Define, defines a trigger macro.

MK ; Macro kill, kills (deletes) a trigger macro.

MA ; Macro Append, extends the definition of a trigger macro.

MI ; Macro Insert. extends the definition of a trigger macro.

MR ; Macro Remove, removes part of the trigger macro definition.

BM ; Dump Macro, displays the macro definition on the screen.

FIX ; Fixes trigger macro definition so it cannot be deleted.

ENABLE ; Activates a trigger macro.

DISABLE: Deactivates a trigger macro.

PRIOR ; Defines the priority of a trigger (variable).

7.1 TM. TRIGGER MACRO EEFENE

The directive is used to define a trigger macro.

The trigger macro consists of 4 parts: Name, Condition, Body and
Priority, and is defined in the following way:

‘TM/Name/Condition/Body/Priority;

The same rules apply for Name as for macro names in general.

Condition is a logical expression following the same syntax rules as
logical expressions in the IF directive. This is explained in section
9.3 on page 59.

For body you apply the same rules as for user macro bodies. However,
it is important to remember that the expansion of the body MUST lead
to a change in one or several parameters in condition. If this is not
so, the macro will go into an eternal loop. Since a trigger macro is
never explicitly called, parameters cannot be included.

ND—83.009.01

46 NUTIS-TF MACRO GUIDE
DETAILED HEECRIPTION OF THE MACRO TYPE TRIGGER MACRO

The parameter priority sets the macro's priority. This parameter is
optional, the default value is 0 and authorized values are from 0 to
32788. By setting trigger macro priorities you may decide the order of
their expansion in case of a conflict. A conflict may arise if two
macros' conditions are fulfilled simultaneously.A condition in a
trigger macro is built up by the relations between variables and
constants. It is therefore an obvious requirement that the condition
contain at least one variable (trigger). A trigger may be either an
integer macro or one of the following system macros:

SPN
scn
$CLINE
SSECLEV

When a trigger macro is defined the system will create an overview of
the triggers (variables) included in the expression. Each time one of
these triggers is modified. all the trigger macro conditions in which
that particular trigger is included will be tested. For each fulfilled
condition the corresponding macro will be triggered.

EX~242 ‘TM/MARK/‘<‘$CLINE; : 5”>/~< ----- BL;‘>;

The trigger macro’s condition in the example contains a
trigger [variable], namely $CLINE. This means that each time
this trigger is modified, 12., each time the line number
changes, the trigger macro condition will be checked. In
those cases where the condition is fulfilled, the body is
expanded. This means that line number 5 on each page will
contain only -----

When a trigger macro is being expanded, no other trigger macro can
interrupt the process until the whole body has been expanded. If the
expansion of a trigger leads to the modification of one or several
triggers. a situation may arise where several trigger macros are in an
expansion queue.

Ex-ZS: “TM/MARK/"<"$CLINE:
ATM/LINE/”<A$CLINE;

H 5‘>/‘< ————— ‘BL,1;‘>;
5‘>/“< ‘bl;“>;H

In this case we have two trigger macros which both depend
upon the trigger $CLINE. The macro MARK is triggered on line
5 and creates 2 lines. This means that it also creates line
5 before the expansion is through. The macro LINE cannot,
therefore, obtain access where it is supposed to, ie., on
line 6. It is therefore put in a queue and has to wait until
the MARK macro has been fully expanded.

ND—63.009.01

NOTIS-TF MACRO GUIDE 47
DETAILED DESCRIPTION OF THE MACRO TYPE TRIGGER MACRO

The example is simple, but similar situations may lead to a long queue
of trigger macros awaiting access.

The priority in this queue is dependent upon the priorities of the
triggers involved. The priority may be implicitly set with the PRIOR
directive. See section 7.10. If a situation arises where two trigger
macros are triggered by the same variable (SCLINE, for instance), the
order in which the two are expanded will depend upon the trigger macro
priority. This can be specified in the trigger macro definition.

It is important to note that if a trigger macro is to be expanded in a
loop when it is first triggered, it will be entered into the queue
between each expansion. This therefore means that a trigger macro can
be interrupted between two expansions of the body.

It would appear necessary here to provide a complete example:

Ex-ZB: ‘TM/LINE/"<‘$CLINE; =10‘>/‘<‘PHINT*LINE;E>;
ATM/PAGE/A<[”$PN; = 5] AND (“$FIGSIZE <= 15]”>/
‘<‘PHINT—FIG;”>;
‘PBIUH/CLINE/lfl;
"PRIOR/PN/S;

We assume that the macro PRINT-LINE generates a line with a
certain result.

We also assume that the macro PHINT~FIG goes through 15
loops, each loop generating one line.

On each page up to page 5 the macro LINE is triggered on
line 10. When you reach page S the macro PAGE is triggered,
and starts to produce a result. Once line 10 is reached, the
macro LINE is triggered. PAGE was triggered by $PN, whereas
LINE was triggered by $CLINE. Since $CLINE has the higher
priority of the two, the macro LINE will be expanded. Once
LINE has been expanded, the PAGE macro may terminate its
expansion,

This example showed how trigger priority functions. As mentioned
earlier, the trigger macro itself also has a priority. The below
example is an illustration:

EX-27: AP-LINE=ZU;
‘TM/LINE/‘<Q$CLINE; 2 lU”>/”<"PRINT-LINE;‘>/10;
ATM/FIG-T/“<'$CLINE; = "$P—LINE;‘>/ '<”PRINT~FIG;'>/5;

In this case both trigger macros are triggered by $CLINE
when this gets value 10. The trigger priority is therefore
the same here. Since LINE has the higher priority, it will
be expanded first. When it is finished CLINE will have got
value 11, but since FIG~T is already in the queue it will
nevertheless be expanded.

ND~63.009.01

48 NOTIS—TF MACRO GUIDE
QETAILED DESCRIPTION UP THE MACRO TYPE TRIGGER MACRO

If a trigger macro which produces a result attempts to interrupt an
implicit line feed caused by a full text line, the result will in most
cases be unfavorable. An implicit line feed occurs when you use
filling mode 'conditional' or ‘filling' and NOTIS—TF decides where to
break the lines. In such cases it is therefore necessary top use FM=N.
with which the layout 0? the line can be set in advance in the text
editor. If you use trigger macros with $CLINE you thus have to use
FM=N.

in? Mt. LWAERQ flit

This directive can be used with trigger macros in the same way as with
user macros (see page 29).

7.3 M. fifit’fifl MFQ’NQ

This directive can be used with trigger macros in the same way as with
user macros (see page 30).

14 MI. fififlfifl INSERT

This directive can be used with trigger macros in the same way as with
user macros (see sage 31).

?.§ fight eases assess

This directive can be used with trigger macros in the same way as with
user macros (see page 32).

7.5 W. i = M

This directive can be used with trigger macros in the same way as with
user macros (see page 35).

7.7 FIX. FIX M

This directive can be used with trigger macros in the same way as with
user macros (see page 36).

ND~63.009.01

NOTIS—TF MACRO GUIDE 49
DETAILED DESCRIPTION OF THE MACRO TYPE TRIGGER MACRO

7.8 DISABLE. MCTIVATE A TRIGGER MACRO

with this directive you can deactivate a trigger macro. By
deactivating a trigger macro you prevent it from being triggered no
matter which state the implicated triggers are in.

The syntax for this directive is as follows:

”DISABLE/name/name/.../name;

where name is the name of a trigger macro to be deactivated. As you
will see from the syntax it is possible to deactivate several trigger
macros in one call.

7.9 EWLE. ACTIVATE A TRIGGER MACRO

This directive is the opposite of DISABLE. ie.. it activates a passive
trigger macro.

The syntax for this directive is as follows:

'ENABLE/name/name/.../name;

where name is the name of the trigger macro to be activated. As you
can see from the syntax it is possible to activate several trigger
macros in one call.

7.10 PRIOR. SET TRIGGER (VARIABLE) PRIORITY

The syntax for this directive is as follows:

"PHIOR/name/priority;

where name is the name of a trigger macro or of a system macro that
can be used as a trigger in a trigger macro.

Priority is a numeric value in the area 0 - 32767.

ND—63.009.01

50 NOTIS~TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE TRIGGER MACRO

7.1? SIMGLEuTRIGEERS

There is one special type of trigger macro. the so—called single—
trigger (ST). This is a macro which is expanded in the same way as a

trigger macro, but automatically deleted after the first expansion. A
single—trigger is never expanded more than once. It has to be defined

again after expansion if it is to be used again.

A single—trigger is defined in the following way:

"ST/name/condition/body/priority;

where the parameters follow the same rules as for trigger~macros.

ND-83.009.01

N0TI5- TF MACRO GUIDE 5 1
DETAILED WSCRIPTI0N OF THE MACRO TYPE TRIGGER STRINGS

8 DETAILED (ESCRIPTION OF THE MACRO TYPE TRIGGER STRINGS

Trigger strings are a predefined type of single—triggers.

They have predefined names. conditions and priorities. but the body
can be defined by the user.

Contrary to what happens to single~triggers, only the body is deleted
after expansion but not the macro itself.

There is a system macro for each trigger string, a flag which
indicates whether the string is in use or not. The flags are meant to
be used for testing with the IF directive (see section 9.3). They
have value 1 if the trigger string is active, and value 0 if it is
passive.

A trigger string body is defined in the following way:

‘NAME/body;

where name is the predefined macro name.

The same rules apply for body as in trigger macros.

The following trigger strings are defined in the system.

TP—STR : Title page string

PH—STR ; page header string

TL—STR : Trailer string

EUF~STRg End of file string

EDD-STR: End of document string

PAR~STR: Paragraph string

UND—STR: Underline string

It is important to note that the definition of a trigger string body
is equal to MA (macro append) for trigger macros. Ie., the new body
will be appended to a possible existing body in the string.

ND~63.009.01

52 NOTIS~TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE TRIGGER STRINGS

8.? TPeSTR. TITLE PAGE STRING

This is a string which is triggered before the first character is
written in the out~document. This means that if the trigger string has

a defined body, this will be expanded at the time when the system
tries to write the first character in the formatted document.

As can be seen from the name, this trigger string is used to make a
title page for the document.

8.2 PHvSTR. PAGE Hm STRING

This trigger string is triggered after the top border has been
processed, ie.. immediately after the page header.

There is a system macro For this trigger string:

~$F*PH~STH;

which gives value 0 for an empty body and value 1 for a defined body.

An example of use may be the case where you want to move a block of
text over to the next page without terminating the current page. See
the FIG—CP macro in chapter 10

8.3 TL~STR. TRAILER 3TRZNG

This string is triggered in the first line of the bottom border. When
you use it, be careful that there is room for the trailer string in
the bottom border. The trailer string is written in the last line of
the bottom border.

There is a system macro for this trigger string:

‘$F-TL-STR;

which gives value 0 for an empty body and value 1 for a defined body.

A typical example of the use of this trigger—string can be the
generation of footnotes. See the FOOTNOTE macro in the macro library.

ND-B3.009.01

NOTIS-TF MACRO GUIDE 53
DEIAILED DESCRIPTION OF THE MACRO TYPE TRIGGER STRINGS

8.4 EUF—STR. END OF FILE STRING

The trigger string is triggered at the end of the current in—document.
Each in—document has its own EOF—STR. When you define a body for EOFn
STR, it is therefore valid for the current in—document.

There is a system macro for this trigger string:

A$F~E0F~STR;

which gives value 0 for an empty body and value 1 for a defined body.

A typical example of the use of this trigger string can be the
emptying of a figure~queue at the end of each in—documeht, as in the
help macro CLEANUP used by the FIG—GP macro.

8.5 EDD-SIR. END OF DOCUMENT STRING

This trigger string is triggered at the end of the document, after a
possible EOF—STR defined for the main in—document.

There is a system macro for this trigger string:

“$F—Enu—STH;

which gives value 0 for an empty body and value 1 for a defined body.

An example of the use of this trigger string can be the definition of
a reference macro containing the page number for the last page. This
can be used for instance when you want to write letters where the page
numbering should be carried out according to the formula This is page
x of n, where n is the total number of pages.

The trigger string may also be used for various other types of
'cleaning—up' to be carried out at the end of a document.

ND—63.009.01

54 NOTIS-TF MACRO GUIDE
DETAILED DESCRIPTION OF THE MACRO TYPE TRIGGER STRINGS

8.6 PAR—Sm, PARAGRAPH STRING

If this trigger string is defined it is triggered at the start of a
new paragraph instead of the usual paragraph—handling directives. This
13 to say that no paragraph justification is carried out.

There is a system macro for this trigger string:

A$F~PAR-STR;

which gives value 0 ¥or an empty body and value 1 for a defined body.

ND-63.009.01

NDTIS- TF MACRU‘ GUIDE 55
DETAILED DESCRIPTION OF THE MACRO TYPE TRIGGER STRINGS

8.7 UND—STR. UNDERLINE STRING

If this trigger string is defined it is triggered by underline on/off
instead of the usual underline handling directives. This is to say
that no underline on/off will be carried out.

There is a system macro for this trigger string:

‘$F-UND"STR;

which gives value 0 for an empty body and value 1 for a defined body.

An example of the use of this trigger string can be the redefinition
of underlining to be a change in printer font, so that underlined text
blocks in the in—document come out as text printed with another font
in the outwdocument.

ND~63.009.01

56 NDTIS-~TF MACRO GUIDE
SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANOL ING

9 SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANDLING

In this chapter we shall explain the use of some special directives
and techniques frequently used for macro handling. We shall also
further explain levels and the use of directive quotes.

9.? “THE DIRECTWES OF AND NF

We shall start by explaining how the NF and OF directives function.
since these are frequently used for macro handling (see also NOTIS~TF
Reference Manual — Text Formatter, ND—63.007.02, section 3.1.14):

The NF directive leads to storage of certain format parameters:

Left margin (SLM)
Right margin (SRM)
Filling mode (SFM)
Justification mode ($3M)
Left border (SL8)
Right border ($08)
Page width (SPN)
Text width (37w)
Horizontal pitch (SHP)
Vertical pitch (SVP)
Underline status (underline on/off)
Bold text status (SBT)
Font number (SFONT)

After the NF directive you may modify this set of formats. When
you later input a call for the CF directive. the previous set of
formats stored with the NF directive will be called up and used
as the current set again. The set of modified formats will
disappear.

It is possible to nest NF and CF calls. You must, of course, not
have more 0F than you have NF calls. The opposite is of no
consequence, however.

ND~63.009.01

NOTIS—TF MACRO GUIDE 57
SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANDLING

9.2 THE DIRECTIVE AR

The AR directive is used to carry out arithmetic calculations on
figures in numerical representation. This means that Roman numerals or
alphabetically represented values may not be used in these
calculations. The directive consists of two parts. name and
expression, and is called in the following way:

“AB/expression;

Expression can be a combination of numeral values and the following
operators:

+ Addition

— Subtraction

/ Division

* Multiplication

() Parentheses for order of priority

The general rule is that the expression is executed from the innermost
parenthises level and outwards. For operators on the same level,
multiplication and division have the same priority. This priority is
higher than for addition and subtraction, which also have equal
priority.

If one or several right parentheses are omitted in the expression,
these will be added at the end so that the calculation can be carried
out. The result will then of course be wrong, but you will receive a
message on the screen telling you this during formatting. The
multiplication sign before an expression enclosed in parenthesis may
be omitted.

ND-63.009.01

58

Ex—ZB:

NOTIS—TF MACRO GUIDE
SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANDLING

”AR/19 + 3IR$WAGES; — 4];

Ubv1ously the arithmetic expression is not calculated until
the whole AB call has been read. In this example, this leads
to the expression to be calculated looking like this:

13 + 3[n _ 4]

where n is the value of the integer macro WAGES. The
expression will be calculated in the following way:

The value 4 is subtracted from n, which is in turn
multiplied by 3‘ The result is added to 19.

The result of an AR directive lS written where the directive is input,
thus following the same rules as user macro calls.

For
81,

further information, see the example of the FIG~CP macro on page
where the AR directive has been used.

ND-63.003.01

NDTIS-TF MACRO GUIDE 59
SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANDLING

9.3 THE DIRECTIVE IF

The IF directive is used to test logical expressions. The directive
consists of four parts: name, condition, the THEN (true) body and the
ELSE [false] body, and is called in the following way:

‘IF/condition/THEN/ELSE;

where ELSE is optional.

Condition is a logic expression, and the following operators are
authorized:

AND ; Logical relation

0R 3 Logical relation

NOT ; Negation

MISD; Macro IS defined

MIND; Macro IS NOT defined

ODD ; Test for odd numbers

EVEN; Test for even numbers

Apostrophe for string comparison

I) ; Parentheses for isolation of parts of logic expression

: ; Equal to

(> : Different from

)(3 Different from

(; Smaller than

> ; Greater than

(: ; Smaller than or equal to

:(; Equal to or smaller than

): ; Greater than or equal to

ND-63.009.01

60 NOTIS~TF MACRO GUIDE
SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANDLING

:) ; Equal to or greater than

The same rules apply for THEN and ELSE as for user macro bodies.

The condition may be either TRUE or FALSE. If it is true. the THEN
body will be expanded. If it is false, the ELSE body will be expanded.

ND-63.009.01

NDTIS-TF MACRD GUIDE 61
SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANDLING

Ex-ZS: ~IF/odd[‘$pn;]/odd numbers/even numbers;

In this call we are testing whether the current page has an
odd or an even number. If it has an odd number, the text odd
numbers will be written out. If the opposite is true, the
text even numbers will be written out.

On the present page the call will result in:odd numbers

[n the next example we assume that we have already defined a a macro
called DAY, which gives today’s name as a result.

Ex-30:

For IF as

’IF/[A$DD; 20] AND
[' DAY; <> ’Saturday'] AND
("DAY;’ <> ’Sunday'J/Payday!/No money to be had;

H

In this call we are testing whether it is payday. The
criteria is that it must be the 20th of the month, and that
it must be neither Saturday nor Sunday. When this example
was written, it resulted in:

Payday!

for all other directive/macro calls. the rule is that the
whole call is read before it is executed. In the present case this
means that the condition will not be tested until the whole call has
been read.
compared.

This can be important when strings (bits of text) are being

ND~63.009.01

62 NOTIS--TF MACRO GUIDE
SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANDLING

If, for instance, we have a macro, NAME, containing the text Allison’s
which is to be used in a string comparison. this has to be carried out
in the following way:

Ex—SI: ~IF/'<"NAME," = 'Lloyds'”>/

After the IF has been read, the condition will look like
this:

"NAME;’ : ’Lloyds'

This means that ‘NAME; is expanded by analysis of the
condition. As a result, the apostrophe contained in the
macro NAME appears on a higher level than the apostrophes
enclosing NAME, and no confusion arises

If the expression had been written without quotes, like
this:

"IF/’"NAME;' = 'Lloyds’/....

the condition would have looked like this after the IF call
was read:

'Allison's' = 'Lloyds’

The result here is, therefore, that the apostrophe inside
NAME ends up on the same level as the apostrophes enclosing
NAME, and cannot be distinguished from them. This again
leads to a misinterpretation of the expression, and results
in an error message.

9.4 USE OF MACRO LIBRARIES WITH THE DIRECTIVE LIB-CONT

Any program will have a limited storage capacity. For NOTIS—TF, this
means that there is a limit to the number of macros you may define.
This limits depends more on the sum of the macros' sizes than on the
actual number of macros. To get around this problem it is possible to
store macro definitions in library files. The directive LIB-CUNT is
used for this purpose.

The LIB-CONT directive is called in the following way:

~LIB—CUNT/Name-I/Name~2/Name~3/..../Name—n;

The whole call has to be written on the same line.

When a macro library is being included it is initially read up to the
last LIB-CONT directive. The LIB~CONT directives do not necessarily
have to be at the beginning of the library file, but all LIB-CONT
directives must be consecutive.

NDe63.009.01

NOTIS— TF MACRO GUIDE 63
SPECIAL DIRECTI VES FREQUEN TL Y USED FOR MACRO HANDL ING

A macro library will therefore normally be built up like this:

Definition of small, global help macros, as well as integer macros,
etc.

Then the LIBeCONT for all larger macros.

Finally, the definition of these larger macros.

When such a library is being included, all the definitions are read up
to the first LIB-CONT. Then all the LIB~CONT calls are read, and the
reading stops there temporarily.

When LIB—CONT is used, the macro names given as parameters to the
directive are defined as user macros. However. the body itself (the
part that requires the most space) remains undefined.

When one of the macros defined in LIB—CONT is subsequently called,
NOTIS—TF will continue to read the library file until it encounters
the definition of the macro in question. This therefore means that you
may have access to a large number of macros, but only those that are
being used occupy space in the computer's memory.

A macro library is included in the usual way, with the directive
‘IN/Name/L;. The L at the end of the directive tells NOTIS—TF that the
file is to be treated as a library.

If you want to add new macro definitions to the standard macro library
supplied with NOTIS»TF, it is advisable to store them in a separate
library which you then include in the standard library. The inclusion
has to take place before the first LIB~CONT. If you do it in this way,
it is easier for you to upgrade new versions of the standard library
by simply including your own macro library or libraries.

In practice, the maximum number of libraries you will be able to
include is about 10, depending to some extent on the depth of
inclusion levels in your text documents.

ND~63.009.01

64 NOTIS-rTF MACRO GUIDE
SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANDLING

9 .5 NOHS~TF ~ RESOURCE AND SPACE REQUIREMENTS IN THE CLVMPUTER

This section provides a more detailed explanation of the way NOTIS~TF

functions internally, and some knowledge of electronic data processing

is needed to benefit from it. The section is therefore of interest

only to some of you, and may be skipped by the others.

NOTISVTF is a typical batch—oriented application. This means that it
carries out its functions with little or no interactive influence from

the user. It also means that it does not need to wait For anything
while it works, and it is therefore normal that it utilizes all the

available resources in the computer. This may be a disadvantage for

interactive users competing with NOTIS~TF for computer resources.

NOTIS~TF is executed as a 'two~bank' system in ND~1UIND—1UO and ND—
SATELLITE. This means that it uses one segment for instructions and

one segment For data. The division can be illustrated as follows (all
values used here are approximate):

Instruction segment Data segment
48 k—word 64 k—word

Global data 7 k—word Global data 7 k—word

After initi—
Instructions 41 kwword Dynamic data 55 k—word alization this

part is busy.
Ca. 13 k—word

This area is
free for
storage of
macros and
index words
and various
small items
such as file
name for includ—
ed files, etc.
Ca. 42 K—word

Local data 1*2 k—word

As can be seen in the illustration, the remaining available space in
the dynamic data field is used to store macros and index words. The
occupied part of this dynamic data field is used to store all
directives, as well as all macro heads defined in the library. This
means that if the library is extended, or more libraries included,
this part will increase.

ND—63.009.01

NOTI3- TF MACRO GUIDE 65
SPECIAL DIRECTIVES FREQUENTLY USED FOR MACRO HANDLING

To give you an idea of the amount of space occupied by the various
items we shall explain to you the most current data elements.

The basic data element is called Basic—String~Unit (BSU). It is a unit
used for storage of all types of character strings. such as macro
names, macro bodies, index words, document names, etc.

BSU 7 words 1 BSU can store up to 8 characters.

As explained earlier, a macro consists of a head, a name and a body.
This head is also a data element, Macro—Descriptor—Block (MBD).

An index word consists of a head plus the word itself. Index~
Descriptor—Block (IDB).

I08 10 words

Any Tile handled by NOTIS-TF is given a file head, File~Descriptor~
Block (F08). The system will not allocate more FDB's than there are
concurrently opened files. This means that if several files are
included on the same level, they will use the same F08.

FDB 200 words

Based on this explanation we shall give a few examples of how to
calculate the space requirements For the various functions.

If you define a macro as follows:

‘MD/TlTLES/Here are two titles;

it will have the following space requirement:

1 M08 = 30 words
Name = 6 char.): 1 BSU = 7 words
Body 2 17 char.): 3 BSU = 21 words

Total space requirement : 58 words

If you define an index word as follows:

‘XA/Next calendar—year;

ND—63.009.01

66 NOTIS— TF MACRO GUIDE
SPECIAL DIRECTI VES FREQUENTL Y USED FOR MACRO HANDL ING

it will have the following space requirement:

1 108 = 10 words
Name I 18 char.): 3 BSU : 21 words

Total space requirement = 31 words

As mentioned earlier, all these values are approximate and must
therefore be given a certain margin.

In this context we shall take a further look at the effect of the LIB~
CONT directive used in macro libraries. What happens is that NOTIS—TF
reads the file up to and including the last LIB~CONT directive. All
macros contained in these LIB—CONTs will then be defined, but in the
memory they will only occupy 1 M08 plus the name. Now. when they are
used. the body itself will be read from the file. This is why you can
define many large macros. but only be able to use a few of them at the
same time.

If a macro is deleted, the space it occupied Will be made available
for a new macro definition.

ND—63.009.01

NOTIS-TF MACRO GUIDE 67
EXAMPLES

10 EXAMPLES

In this chapter we shall attempt. through examples. to illustrate the
practical use of macros.

The complexity of the macros will increase throughout the chapter.

Most of the examples are based on the standard NOTIS—TF macro library.

ND~63.009.01

68 NOTIS-TF MACRO GUIDE
EXAMPLES

10.1 THE MACRO BOLD

The function of this user macro is to cause text to be printed in bold
prlnt.

A call to this macro may look as follows:

{.something that is ‘BOLD/important;.

The result will be:

.something that is important.

Definition: ‘MD/BULD/‘<ABT=+;‘2;‘BT=—;‘>;

The first call in the body is [‘BT=+;]. which turns bold text mode on.

Then a parameter 13 included. This is the text which is to be printed
1n bold print.

Finally, bold text mode is turned off again with the call [”BT=~;].

ND—63.009.01

N0TI5 - TF MACRO GUIDE 69
EXAMPLES

70.2 THE MACRO SHQW

This macro has more or less the same function as BOLD. but in addition
to to being printed in bold, the text is also centered on a new line.

A call to this macro may look as follows:

...this causes the amount of ‘SHOW/US$ 275; to be deducted...

which results in

...this causes the amount of

US$ 275

to be deducted..

Definition: ”MD/‘<ABL=1;ANF;ABT=+;”JM=C;‘1, ;‘BL=1; 0F; >;

The first call. [ABL=1;], gives a blank line.

The call [‘NF;] leads to storage of the format parameters.

The call [BT=+;] activates bold text mode.

The call I JM=C;] sets justification mode centered. This causes all
subsequent text to be centered.

Then a parameter is included. The default value of this parameter is a
blank. This is not strictly necessary.

After the parameter you find the call [BL:1;]. which causes a blank
line to be added after the centered parameter.

Finally. there is the call [”UF;]. The call causes the format
parameters last stored to be fetched out again. In the present example
this means that the bold text and justification modes will be set back
to the values used before the macro was expanded.

ND~63.009.01

70 NHTIS—IF MACRO GUIDE
EXAMPLES

70.3 THE EXAMPLE MACRO IN THIS a

In this manual we have used a combination of integer macros and other
macros types to automatically number the examples.

We have defined the following macros for this purpose:

I] ‘IM/EX‘NU/U:
2} ‘MU/START—EX/“<‘EX—NU=+1;“NF;'LM=+10;”FM=N;

"IP=Ex-“$EX—MU;: ;‘>;
3] ‘MD/END~EX/”<‘UF;'>;

We started by deTining an integer macro called EX~ND. with value 9.

The second macro definition was a user macro called STARE-EX. The
effect of this macro is as follows: The example number is first
incremented by 1: ['EX—NU = +1;]. Then all the format parameters are
stored: ["NF;]. In the next step the left margin is increased by TU
character positions and filling mode set to no~fillz {ALM=+10;‘FM=H;I.
Afterwards we start an inverted paragraph with the text Ex—n:, where n
is the current example number: ["IP=Ex—'$EX-NU;: :I.

Finally we defined the macro END—EX, used to terminate an example.
This macro fetches the format parameters previously stored: ["HF:}.

An example is thus entered like this:

Ex—32: ‘STAHT-EX;This is an example.,..

10.4 THE MAflRQ EN

The macro is used to set both margins (LM and RM) simultaneously.

Definition: "MD/BM/”<‘LM=AI,U;;‘HM=1,U;;'>;

As you can see, both margins are given the same value. The default
value is 0, which means that a call to BM without a parameter sets
both margins at 0.

It is important to remember that the right margin starts at the value
of the right border (08).

ND-63.669.81

NUTIS—TF MACRO GUIDE 71
EXAMPLES

10.5 THE MACRO CE

The macro is used to center a text on one or on several lines of its
own, depending on the amount of text to be centered.

A call to this macro may look as follows:

”CE/This text will be centered on a line;

resulting in:

This text will be centered on a line

Definition: “MD/CE/A<‘NF;ABL;‘JM=C;‘1;'BL;‘UF;A>;

The first call, ["NF;]. causes the format parameters to be stored.
They can thus be retrieved once the macro has been expanded.

The next call, [”BL;] ensures termination of a non—terminated text
line. The call has no effect if the preceding text line is terminated.

The next call is [“JM=C;], which sets justification mode centered. As
a result, all subsequent text will be centered.

Then a parameter is included. This will be the text to be centered.

The text line resulting from the included parameter is terminated with
a [“BL;] call.

And finally. all parameters which may have been modified are reset to
their original values with the [”0F;] call. In this particular case
only the justification mode is involved.

ND-63.009.01

72 NBTIS-TF MWCRO GUIDE
EXAMPLE3

?@.6 THE MACWQ C?

This macro causes a conditional switch to a new page. ie., if the
number of lines left on the page is inferior to a specified number of
lines, the system will start a new page. If not, it will terminate the
current line of text.

fleiinitiun: "MD/CP/a<"IF/AAH=‘$PL;-"$CLINE;~”$BB;+1;< "1;
/‘<"PE;A>/"<ABL;‘>;‘>i

In the first line we set a condition by calling the IF directive. The
condition consists of testing whether the number of the remaining
lines on the page is inferior to the number specified.

The number of remaining lines is calculated with the AR directive (see
page 57). like this:

Page length (SPL)
- Current line number (SCLINE)
- Bottom border (SBB)

This number is now tested against the number included as parameter 1.

If the condition is fulfilled, the first body in the IF directive is
executed; in this case ["PE;], which causes the switch to a new page.

If the condition is not fulfilled. the second body in the IF directive
is executed; in this case [”BL;], which causes the current line of
text to be terminated. The call has no effect if the current line is
terminated.

ND—53.009.01

NOTIS-TF MACRO GUIDE 73
EXAMPLES

10.7 THE MACRO SPREAD

The macro writes three text strings on the same line, justifying them
left. center and right, respectively. The line is followed by a
specified number of blank lines.

A call to this macro may look as follows:

“SPREAD/SMITH/BRDWN/JOHNSON/Zi

resulting in:

SMITH BROWN JOHNSON

Definition: “MU/SPREAD/‘< BL; NF; FM=F;‘JM=L;h1;ABL='1;
"JM=C;‘2;”BL=-1;”JM=R;
”IF/'h3,*-*;'<>'*—*’/‘3;/“<”BL=1;A>;
”BL=‘4,U;;hUF;">;

The call ['BL;] leads to the termination of the current text line. If
there is none, the call is without effect.

Then the format parameters are stored with the [”NF;] call.

Filling mode filling is set with the [”FM=P;] call, to cause possible
line feeds in parameters or macro body to be ignored.

Justify mode is set to left justification with the [“JM=L;} call.

Parameter 1 is then included, and justified left on the line.

The text line is terminated with the [‘BL=-1;J call. This call causes
everything that is found on the current line to be written out. and
the same line to be started again. This means that no line feed is
carried out.

Justification mode is now set to centered with the [‘JM=C;J call.

Parameter 2 is included at this point. The text in this second
parameter will be centered on the same line where parameter 1 was left
justified.

Parameter 2 is terminated in the same way as parameter 1, with a
["BL=-1;] call.

Justification mode right is now set with the ["JM=H;] call. In this
way parameter 3 is justified right.

ND—53.009.01

74 NOTIS-TF MACRO GUIDE
EXAMPLES

It is not a necessity to have a third parameter in this call. A test
is therefore carried out now, to determine whether a third parameter
has been specified in the call. You will find that this type of
testing is carried out in several of the macros in the macro library.
The test is performed with the IF directive, as follows:

Parameter 3 is included in single quotes, to indicate that it is
a comparison of strings.

The parameter is included with default value *~*. meaning that if
it is not specified in the call, the first string in the
comparison will be *~*. Also, note that the inclusion of
parameter 3 is NOT done between quotes. If it had been. it would
have meant that parameter 3 to the IF call should be included.

The comparison is carried out with the operator <> (different
from).

The other string in the comparison is *—*.

The result is, that if parameter 3 is included and has a value
ditferent from *~*. the result of the comparison will be TRUE. In
the opposite case it will become a comparison of two identical
strings, and the result will be FALSE.

If the result of the comparison is TRUE. the first body in the IF
directive is executed. This means that parameter 3 is included. Note
here that the inclusion of parameter 3 is NOT in quotes. If it had
been, the significance would have been that parameter 3 in the IF
directive should be included, and this is not what we wanted.

If the result of the comparison is FALSE, the second body in the IF
directive is carried out, ie., a blank line is inserted.

The number of blank lines specified in parameter 4 is then inserted.
Default is 0.

Finally. the format parameters are reset to their original values with
the [‘UFIJ call.

ND-53.309.01

NOTIS-TF MACRO GUIDE 75
EXAMPLES

10.8 THE MACRO FIG~CP

The macro makes room for a figure, inserts the figure caption and
numbers it with the current number. If there is insufficient space for
the figure on the current page. it is moved over to the next. However,
the text continues on the current page. The figure is in this case
moved from the text. but all references to the figure number is
maintained. If the figure is bigger than maximum page size an error
message appears on the screen during formatting, and an error message
also appears in the text at the location where you tried to place the
figure.

A call to this macro may look like this:

‘FIG-CP/7/We could have inserted a figure here;

resulting in:

Fig. 1. We could have inserted a figure here

Definition:

“MD'FIG—CP‘
”<‘IMfFIG“BUUM/A1,ZU;; MD FIG-TEXT APM,2;;‘FN=+ ;‘BL;

"IF “AR: $FIG—RUUM;+4;> AR: $PL;— $TB;~ $BB;;f
”(”MS‘M Error in use of macro FIG-UP, fig. A$FN;, -too many lines **;

~BL=2;ANF;”BM=0;
”JM=c;aError in use of macro FIG-GP, fig. ‘$FN;, —tao many lines_
”BL=Z;‘UF;

i>i

“(AIFII‘AR=‘$FIG-HUUM;+4;>”AR:‘$PL;*‘$CLINE;+1-A$BB;:JUR[A$FIG‘PN;=-$PN;Jl
h< PH-STB= < FIG~CPlh>A$FIG-HUUM;I FIG—T XT;‘<;”>;

”FIG- AIT=+1;‘FIG*P =A$PN;;‘CLEANUP;‘>
‘<”IF a$FIG-WAIT;>U ‘<”FN=‘$FN;“A$FIG*WAIT;;”FIG*WAIT=U;“>;

~BL=fl$FIG-BUUM;+1;
“NF; BM=U; AJM=C;uFig. “$FN;. fiFIG—TEXT;_ABL=Z;“UF;

>;,>;

~MK/FIG‘TEXT;”MK/FIG-HUUM;
I‘>

ND-63.009.01

76 NOTISATF MACRO GUIDE
EXAMPLES

The macro may look very complicated and frightening at first, but by
splitting it up into sections we make it easier for ourselves. Let us
split it up into S logical sections, therefore:

'MD‘FIG—CP‘
~(”IN/FIGFROOM/A‘I.20;;AMD‘FIG—TEXT~ PM.2;;”FN=+1;‘BL;

This section carries out all necessary initializations. such as defining
help macros, etc.

2

AIF "AR: $FIG-RO0M;+4:> AR: $PL;- $TB;~ SBB:;‘
“<‘MSL** Error in use of macro FIG—CP. £ig. ~$FN;. ~too many lines **;

~BL=2;~NF;*8M:0;
"3M:C;MError in use of macro FIG-CP, fig. ”$FN;, —too many lines“
*BL=2;h0F;

>

This section takes care of testing. and error handling too if the figure is
bigger than the maximum authorized size.

3

“<‘IF.(”AR:"SFIGwROOM;+4;>‘AR=”$PL;~”$CLINE;+1-'$BB;;)0R(‘$FIG~PN;=”$PN;)
~<"PH”STR=”<*FIG-CP!">'$FIG—R00M;!"FIG—TEXT;”<;A>;

”FIG—wAIT=+1;”FIG—PN=”SPN;;‘CLEANUP;
”>

This section tests whether it is possible to insert the figure on the
current page, if not it puts it in a queue for the next page.

4

A<~IF%‘$FIG‘NAIT;>OI"(AFN=~$FN;~‘$FIG*NAIT;;‘FIG—WAIT=0;~>;
“BLI‘SFIG-ROOM;+1;
ANF;'BM=0; ‘JM=C;_Fig. .3FN;. AFIG—TEXT;_-BL=2;“0F;->;

This section carries out the figure handling itself. ie., reserves the
space required.

ND—63.069.01

NOTIS—TF MACRO GUIDE
EXAMPLES

">;

‘MK/FIG—TEXT;‘MK/FIG-ROOM;
>:

This section does the necessary cleaning up, such as removing local
help macros.

ND—63.009.01

78

A flowchart may contribute to
understand:

Prepare all parameters
for the figure

Is the figure
bigger than maximum size

authorized?

No

Is there room
on the page. and no {igures

in the queue?

Yes

Update figure number, make
the figure and figure text

NGTES~TF MAERlI; GUIDE
EXAMPLES

make this macro even easier

Yes

Give error message in text'
and on screen ’

No

Put the figure at the end
of the figure queue

«u.

Clean up the local help
macros.

NQ-83.G@$.&f

ta

NOTIS- TF MACRO GUIDE 79
EXAMPLES

Now that the logical function of each section has been described. we
shall describe the details in each individual section. Before doing
this, however, we have to describe the relevant global help macros:

FN : This is an integer macro containing the current figure
number.

FIG-WAIT: This is an integer macro containing the number of figures in
the queue for the next page.

FIG~PN : This is an integer macro containing the page number of the
page where you attempted to make the figure lying last in
the queue.

CLEANUP : This is a macro that defines the operations to be carried
out in order to empty the figure queue after the last page.
If the figure queue is empty, no action will be taken.

ND-63.009.01

80 NDTIS-TF MACRO GUIDE
EXAMPLES

DETAILED DESCRIPTION OF SECTION 1 IN THE FIG—CF MACRO

we start by defining the integer macro FIG—ROOM to contain the value
of parameter—1 in the FIG~CP call, the number of lines to be reserved
for the figure. The default value is 20. [‘IM=FIE—RDDM=‘1,ZU;;].

Thereafter we define the macro FIG—TEXT to contain parameter—2 in the
FIG~CP call. the caption: [’MD'FIG-TEXT“PM,2;;]. we have used the PM
directive here because we want to be able to include a directive in
parameter—2. such as a directive for left justification of the text,
for instance.

Then the current figure number incrementation is ensured with
[”FN=+1;], causing the figure to be numbered one number higher than
the previous one.

Finally the current text line is broken with [‘BL;]. If the current
text line is empty, this call is without effect.

ND-63.009.01

NOTIS—TF MACRO GUIDE 81
EXAMPLES

DETAILED DESCRIPTION OF SECTION 2 IN THE FIG-CF MACRO

Here we use [‘IF] to test whether the figure plus 4 lines [’FIG—
ROOM;+4] is bigger than the number of lines available on a page of
text ["AR.'$PL;—”$TB;—‘$BB;;]. The sum of available lines is therefore
calculated as page length minus top border minus bottom border. As
mentioned earlier, this sum is tested against the figure size plus 4
lines. Those 4 lines are needed to make room for the caption plus one
blank line over and under it.

This IF directive has a THEN part and an ELSE part. The THEN part.
which is expanded if the test gives a TRUE value, contains the
remainder of section—2. The ELSE part, which is expanded if the test
gives a FALSE value. contains sections 3 and 4. This means that the
remainder of section 3 plus section 5 are expanded if the figure is
too big for the page (TRUE value). In the opposite case section 3,
possibly section 4. and section 5 are expanded.

The expansion of the remainder of section 2 causes a message to be
written on the screen [AME]. containing the figure number [5[”$FN;].
The same message is also inserted in the text at the location where an
attempt was made to reserve space for the figure. The message in the
text starts with 2 blank lines ["BL=2;]. The format parameters are
stored [‘NF;]. Margins are set to 0 [‘BM=U;]. Justify mode is set
centered [‘JM=C;] The message containing the figure number [”$FN;] is
now written, underlined and centered on a line. The message is
terminated with 2 blank lines [‘BL=2;]. Finally, the format parameters
are set back to their original values [‘OF;]. in this case the
margins.

ND-63.009.01

82 NUTIS—TF MACRO GUIDE
EXAMPLES

DEIAILED DESCRIPTIUN 0F SEETIUN 3 IN THE FIG-CF MACRO

This section also starts with a test ["IF] to check whether the figure
plus 4 lines ["$FIG-RO0M;+4J is bigger than the number of lines left
on the current page [AAR.‘$PL;-‘$CLINE;+1—'$BB;;]. The sum of
remaining lines is therefore calculated as the sum of page length
minus current line plus 1 minus bottom border. As mentioned earlier.
this sum is tested against figure size plus 4 lines. These 4 lines are
needed for the caption plus a blank line over and under it. The IF
directive in fact contains 2 tests with the logic relation 0R. This
means that if one of the tests gives the value TRUE. the total result
becomes TRUE. The other tests consists of checking whether attempts
have been made earlier to reserve space for figures on the current
page, and if such figures are in the queue for the next page {’$FIG~
PN;="$PN;]. If this is the case. the current figure also has to be put
in the queue Tor the next page, whether there is room for it or not on
the current page. Otherwise the order in which the figures are to be
printed might be modified.

The IF directive has a THEN part and an ELSE part. The THEN part.
which is expanded if the test gives the value TRUE, contains the
remainder of section 3. The ELSE part, which is expanded if the test
gives the value FALSE, contains section 4. This means that if there is
insufficient space for the figure on the current page (TRUE value),
the rest of section 3 and section 5 are expanded. In the opposite case
sections 4 and 5 are expanded.

The expansion of the remainder of section 3 causes this FIG—CF call to
be entered into the page header string [”PH-STH]. to be expanded again
at the top of the next page. If there are already FIG—CP calls in the
page header string. the new call is put in a queue after the others.
Then the count for the number of figures in the queue is increased by
one [‘FIG—WAIT=+1;J. and the page number for the last figure in the
queue For the next page is set to the current page number [‘FIG-
PN=A$PN:;J. At the end of this section the macro CLEANUP is called to
activate. if necessary. the cleaning up of the figure queue after the
last page of the document. A call to this macro only has effect the
first time. and repetitive calls are therefore meaningless.

ND—63.009.01

NOTIS-TF MACRO GUIDE 83
EXAMPLES

DETfiILED DESCRIPTION OF SECTION 4 IN THE FIG-CF MACRO

This is the section that reserves space for the figure and prints the
caption.

It starts by testing [‘IF] whether there are figures in the queue
[‘$FIG-WAIT 0]. If this is the case, the current figure must also be
in the queue. The figure number must therefore be adjusted to the
number of figures waiting [‘FN=‘$FN;~”$FIG—NAIT;;J. In addition, the
count for the number of figures in the queue must be set back to 0
[‘FIG—WAIT=0;].

Space is now reserved for the figure, plus a blank line over the
caption ["BL=”$FIG~BOOM;+1;I. The format parameters are stored (‘NF;].
The margins are set to 0 [‘BM=U;] to center the caption on the line.
Justification mode is set to centered [”JM=C;]. The caption containing
the figure number is printed and underlined. It is followed by two
blank lines ["BL=2;]. Finally the format parameters are reset to their
original values [‘UF;]. in this case the margins.

DETAILED DESCRIPTION OF SECTION 5 IN THE FIG—OP MACRO

This section carries out the necessary cleaning up. consisting of the
deletion o? the macros FIG—TEXT ['MK/FIG-TEXT;] og FIG~ROOM [‘MK/FIG-
HUDM;].

ND—63.009.01

34 NDTIS—TF MACRO sums
EXAMPLES

70.9 mt eases Si”?

This macro is used to start a sequence of inverted paragraphs. Each
individual paragraph starts with the macro NP, defined within SIP. The
sequence must be terminated with EIP. to be described at the end of
this section.

The SIP macro can be called with up to 5 parameters, with the
following significance:

1
) This parameter describes how paragraphs created with the NP macro

are to be marked. The options are:

N: Consecutive numbering with numeric values.

R: Consecutive numbering with upper case Roman numerals.

r: Consecutive numbering with lower case Roman numerals.

A: Consecutive numbering with upper case characters.

a: Consecutive numbering with lower case characters.

If this parameter is omitted, paragraphs created with the NP macro
will be marked with a hyphen '«' in the left margin.

2)
This parameter indicates the width of the left margin. If the
parameter is omitted, the default value of 9 is selected.

3)
This parameter indicates how text/margin notations should be
justified. The options are the same as for the 3M directive. If the
parameter is omitted, right justification is selected.

4)
This parameter indicates how the text in the paragraphs should be
justified. If the parameter is omitted. the current value of the
justifiation mode is selected.

NDs63.009.01

NOTIS-TF MACRO GUIDE 85
EXAMPLES

The example below illustrates some of the possible uses of the SIP, NP
and EIP macros.

The macro/text sequence below:

“SIP/N/3;
~NP;This is
"NP;This is
‘SIP/A/3;
"NP;This is
~SIP/r/S;
ANP;This is
numerals.
”NP;This is
numerals.
”HIP;
"NP;This is
AEIP;
”NP;This is
‘EIP;

results in:

1}
This is

2]
This is

A] This

1]

ii]

8] This

the first paragraph with numbers.
the second paragraph with numbers.

the first paragraph numbered with upper case characters.

the first paragraph numbered with lower case Roman

the second paragraph numbered with lower case Roman

the second paragraph numbered with upper case characters.

the third paragraph with numbers

the first paragraph with numbers.

the second paragraph with numbers.

is the first paragraph numbered with upper case characters.

This is the first paragraph numbered with lower case Roman
numerals.

This is the second paragraph numbered with lower case Roman
numerals.

is the second paragraph numbered with upper case
characters.

3]
This is the third paragraph with numbers.

ND-53.009.01

86 NOTIS*TF MACRO GUFDE

U

EXAMPLES

efiniilen:

”MB/SIP/
”<*NF;~FM:E;

“IM=IPN0=1; ‘Mn=Haw: 1
‘IMzIPSz‘3,‘$PS;;; ’Mn=IJM: 4
‘Mn/IP/
“< BL: $IPS CM/MD—SAVP;‘MA/MDvSAVP/"PM:I;;

”If; $1M; <2
'< MS/M Error in use of macro IP, ~MD SAVP;, LM has to ha): 2. **;“>
‘<‘CP=‘$PF,, NFg M: IJM;; IM— SAVP= $LM;;

“IF IJM;
‘< LN: a BM: $Tw; — $IM SAVP; >i
*< IF! IJM- — L i

< LM=~ $MARE RM: 0; >1
< IF I IJM; c JURI IJM « s 1‘

< LM=~ $MARG RM: $Tw; - $1M SAVP;
>;.>;

‘MU—SAVP; “IF!I”$3M;=0JAND(”$5P03;>“$IM—SAVP;) ‘<‘BL;“> ‘<“BL=—1;“>
‘UF;I);

I *, ' ‘IM=MAHG=‘2,9;; ‘LM=+‘$MARG;;
,R;; "MD=JUST=‘5,*~*;; ‘BL;
I

“IF}'"H0w;'='*—*'l
“<‘MB/NP/‘<“IP=» ;‘>;‘>§

< MU/NP/ < IP= $IP 0, HOW;;] ;‘IPN0=+1;“>
IF} JUST; <>'* * < JM= JUST;;‘>

I)!

ND~63.&&3‘&1

NOTIS—TF MACRO GUIDE 87
EXAMPLES

This macro can also be divided into logical sections to make it easier
to understand. We have divided it into 4 main sections, with section 2
presented with 5 sub~sections.

”MD/SIP/
‘<‘NF;“FM=C;

‘IM=IPN0=1; “M0=H0w=‘1,*—*;; “IM=MARG=“2.9;; ”LM=+‘$MARG;;
‘IM=IPs:‘3,‘$PS;;; ”MD:IJM=‘4,R;; ‘MD=JUST=‘5,*-*;; “BL;

This section carries out the necessary initializations, such as defining
help macros. etc.

‘Mo/IP/
‘<‘BL=”$IPS;;"CM/MD—SAVP;”MA/MD—SAVP/“PM=1;;

The whole section 2 consists of a defintion of the IP macro, the basis
for inverted paragraphs. Section 2.1 carries out the necessary initi—
alizations, such as storing parameters, etc.

“IF!“3LM;<ZI
"(AMS/** Error in use of macro IP,"MD~SAVP;, LM has to be): 2. **;‘>

This section tests whether the left margin is wide enough for an inverted
paragraph, and provides an error message when needed.

2.3

<”CP=“$PF;;“NF;‘JM=‘IJM;;‘IM—SAVP=”$LM;;

This section starts the paragraph itself.

2.4

"IFI'“IJM;’:‘R'I
’<”LM=U;”RM="$TN;*‘SIM—SAVP;;">|
“<“IFI‘"1JM;‘:'L'I

‘<”LM=«‘$MARG;;”RM:0;”>i
”<‘IF ('“IJM;'='c‘)0R("IJM;'='s')i

“<‘LM:—‘$MARG;;”RM=“$Tw;—‘$IM—SAVP;;”>;.>;
A);

This section carries out testing and adjustment of margins for the
paragraph.

ND'63.009.0T

88 NOTIS-TF MflCRO GUIDE
EXAMPLES

2.5

”MDvSAVP; "IF!("SRM;=O)AND(”SCPOS;>"$IMvSAVP;) ”<"BL;‘> ‘<‘BL=—1;”>;
”OF;.>;

.>;

This section creates the inverted paragraph. and terminates the IP macro.

"IF "How;'=‘*~*’l
‘<"MD/NP/‘<“1P=~ ;”>;“>§
”<"Mo/NP/”<‘1P=‘$IPN0.“H0N;:) :‘IPN0=+1;‘>;‘>;

This section defines the NP macro from parameters specified for the SIP call.
The NP macro is an alternative to the IP macro in that it provides a standard
text in the margin.

”IF ’AJUST;‘<>'*—*' ”< JM= JUST;; >;->;

This section tests and sets justification mode for the text part of the inverted
paragraphs to follow, and terminates the SIP macro.

Before describing each section separately we shall describe the
individual, global help macros involved:

IM-SAVP
This is an integer macro used in the IP macro to save the
left margin for the paragraph. in order to be able to use it
in calculations and tests.

MD—SAVP
This is also a macro used in the IP macro. It saves the text
parameter to be entered into the left margin.

ND-63.009.01

NOTIS—TF MACRO GUIDE 89
EXAMPLES

DETAILED DESCRIPTION OF SECTION 1 IN THE SIP MACRO

This section first ensures storage of all format parameters [‘NF;].
Then filling mode is set to conditional [‘FM=C;].

Thereatter an integer macro is defined [”IM=IPNO=1;] with a value of
1. This macro is used for consecutive numbering of the inverted
paragraphs created with the NP directive.

We now define a macro to save parameter 1 in the SIP call
[‘MU=H0w=‘1,*-*;;J.

Then we define an integer macro to save parameter 2 in the SIP call.
with default value 9 [‘IM=MAHE=‘Z,9;;].

The left margin is increased by the value stored in MARG
[”LM=+“$MARG;;J

An integer macro is defined to save parameter 3 in the SIP call. in
which default value is set to default paragraph spacing
[”IM=IPS:‘3,A$PS;;;J.

A macro is defined to save parameter 4 in the SIP call, with default
value B [‘MD=IJM=A4,H;;].

A macro is defined to save parameter 5 in the SIP call, with default
empty parameter value *—* as default [AMDZJUST=AS,*—*;;}.

Finally the current text line in the document is terminated [ABL;]. If
there is none, the directive has no effect.

N0-63.009.01

90 NUTIS~TF MACRO GUIDE
EXAMPLES

fiETAft§§ fiEfiGRiPTIUN Q? SECTION 2.1 IN THE SIP MACRO

As mentioned previously, the entire section 2 is there for the purpose
of detining the 1P macro. This section defines the introductory part
of the IP macro.

First the paragraph SpaClng is defined [“BL="$IPS;;].

Then the macro which is going to store the margin text for the
paragraph is cleared [ISM/MD-SAVP;], and parameter~1 in the IP call is
stored in it. I MA/Mfln5AVP/‘PM=1;;].

figthitfifi QéSfifliyylflN 0F SEfltiflfi 2.2 IN THE SIP MACRO

This section consists of testing whether the left margin is wide
enough to C‘eate an inverted paragraph. The minimum value is set to 2
("IFI”$LM;<ZTJ. this test has a THEN part and an ELSE part. If the
result of the test is TRUE, ie., if the margin is too small. the rest
of section 2.2 is expanded. In the opposite case. sections 2.3, 2.4
and 2.5 are expanded.

The rest of section 2.2 consists of writing an error message on the
screen [AME]. This message contains the name of the IP macro. together
with the parameter it was called with.

QEia3LEfl BESflREPTEflN GF SgfiTfflN 2.3 IN THE SIP MfiCRU

This section starts with a conditional form feed [‘CP=‘$PF;;]. ie., if
there are tewer lines left on the page than the value of section
{ooting (SPF). a new page will he started.

After that all the Format parameters are stored [‘NF;].

Justification mode is set to the value defined for justification of
the margin text ["JM=‘IJM;;].

Then the size of the left margin is stored in the integer macro IM—
SAVP ['IM~SAVP:‘$LM;;J.

ND—63.009.01

NOTIS~TF MACRO GUIDE 91
EXAMPLES

UEEQILED DESCRIPTION OF SECTION 2.4 IN THE SIP MHCRO

This section first ests wheth r justification mode for the margin
text is right (R) [”IFf"IJM;’=’R'T]. If this is so, only the next
line in this section is expanded. In the opposite case the next line
is not expanded, but the subsequent lines are.

In the case where margin text justification is right. the left margin
is set to O [ALM=U;J and the right margin to the position the left
margin had [‘RM=”$TW;-‘$IM-SAVP;;J. This means that the entire text
line is limited to the part reserved for the margin text.

If margin text ju tification is not right, the section tests whether
it is left (L) [”IFT"IJM;='L']. If this is the case, only the next
line in this section is expanded. In the opposite case the next line
is not expanded, but the subsequent lines are.

If margin text justification is left, the left margin is reduced by
the size defined for the margin text [”LM=-A$MARG;;J and the right
margin set to 0 [”RM=0;]. This means that the margin text is to be
justified between the left margin and the right border on the sheet,
ie., line length for the paragraph text plus the part reserved for the
margin text.

If margin text justification is not left either, the section tests
whether it is centered (C) or str tched (S)
[.IFl['AIJM;'='C'JUB["IJM;'='S'}TJ. If this is so, the rest of the
section is expanded. If not, the section is terminated.

If the margin text justification is either centered or stretched, the
left margin is reduced by the size reserved for the margin text
[”LM=-“$MAHG;;] and the right margin set in the position of the left
margin [‘BM=’$TW;-A$IMFSAVP;;J. This means that the total text line is
reduced to becoming only that part which has been reserved for margin
text.

ND—63.009.01

92 NWT3-175 MACRG GUIDE
EXAMPLES

DETAILEE DESCRIPTION OF SECTION 2.5 IN THE SIP MACRO

In sections 2.3 and 2.4 we have defined the various format parameters
for justification of the margin text. This section therefore starte
with justification of the margin text [‘MU-SAVP;].

When this has been done we test whether the margin text cuts across
the left margin for the paragraph text. This can only happen if the
right margin is O, and this condition has therefore been incluéed in
the test [‘IF,I”$RM;=U}AND["$CPUS;>”$IM-SAVP;]].

If the test gives TRUE as result, ie.. if the margin text does cut
across the left margin for the paragraph, the line is broken to make
the paragraph text start on a new line [ABL;].

If not, the line is broken so that the paragraph text may start on the
same line [‘BL=—1;], although further to the right, of course.

The section and the whole 1P macro are then terminated by fetching the
format parameters stored at the beginning of section 2.3.

N0—83.00§.31

NOTIS-TF MACRO GUIDE 93
EXAMPLES

DETAILED DESCRIPTION OF SECTION 3 IN THE SIP MACRO

we start. in this section, by testing whether it has been specified
how he paragraphs initiated with the NP macro should be marked
[”IFT’”HOW;’=’*-*’]. If this test gives a TRUE value. ie., if marking
is not specified, the NP macro will be defined to call the 1P macro
with the text '— ‘ [‘MD/NP/‘<“IP=~ ;‘>;].

If not, the NP macro will be defined to call the IP macro the with
paragraph number (SIPNO) as a parameter. in the format specified and
followed by ‘) ‘ [‘MD/NP/‘<‘IP=‘$IPNU,‘HUW;;J ;J. In this case the NP
macro will increment the paragraph number by one ['IPNU=+1;].

DETAILED DESCRIPTION OF SECTION 4 IN THE SIP MACRO

This section tests wh ther justificat on mode for the paragraph text
has been specified [‘IFT”JUST;'<>'*—*’T]. If it has, justification
mode will be set to the value specified [”JM='JUST;;].

ND-63.009.01

.94 NOTIS-TF MACRO GUIDE
EXAMPLES

A sequence of inverted paragraphs started with the SIP macro must
always be terminated with the EIP macro.

Definition:

”MD/EIP/‘<‘MKrIPNU;“MK=NP;‘MK=HUW;~MK=JUST;~MK=IJM;
"LM=-'$MAHG;;"BL="$IPS;;”MK=MAHG;AMK=IPS;'MK=IP;‘UF;‘>;

The expansion of this macro causes the current version of the
following help macros defined in SIP to be killed: IPNU, NP, HOW,
JUST, IJM, MARE, IPS and IP. The margin is set to the previous value.
paragraph spacing is created, and previously stored format parameters
are Fetched again.

This means that when nested SIP levels are used, all macro definitions
on the current SIP level are killed in order for the definitions on
the previous SIP level to become valid again.

ND—63.009.01

NOTIS~TF MACRO GUIDE 95
EXAMPLES

10.10 THE MACRO HEAD

The macro has been created for the purpose of making a simple version
of the company's logo, to be used in letters, memos, etc. The macro
uses a few global macros defined in the macro library. These have to
be modified by the individual user organization, however.

FIRM : Resulting in the firm's name.
FADDRESS : Resulting in the firm's address.
FPHUNE : Resulting in the firm's phone number.
FPLACE : Resulting in the firm's address.
FTELEX : Resulting in the firm's TELEX number.

Definition:

’MD/HEAU/'<”NF;'BT=+;‘JM=L;‘FM=N0;”HD,,—;AHD,,-;
‘HU,,-;‘aw,000 000 0000000 ;
‘HU,,*;”aw,0000 000 00000000 ; ”1/”("FIHM;“>;
‘HU,,-;‘aw,00000 000 000000000 ;
'HU,,-;‘aw,000000000 000 000 ;
“HU,,—;Aaw,000000000 000 000 ; "2/‘(AFADDRESS;ABL=~1;AJM=R;‘FPHONE;“>; ‘JM
"HU,,-;‘aw,000 00000 000000000 ;
‘HU,,‘;"aw,000 0000 00000000
'HU,,-;‘aw,000 000 0000000 ; ‘3/“<‘FPLACE;'BL=-1;‘JM=R;'FTELEX;'>;
‘JM=L;‘HD,,~;“HD,,—;AHD,,—;"HB,,*;‘HD,,-;“HU,,—;”0F;‘>;

ND~63.009.01

:L;

98 NOTIS-TF MACRO GUIDE
EXAMPLES

As you can see, this macro is rather simple.

You should make a note of a few things:

When you use a combination of H0 and EU directives without
automatic return (parameter value ‘— ') you MUST use the same
number of HU and HD directives on the same page or text. If you
do not, the trailer will not be on the right line.

The use of HD and HU in this macro causes the line spacing in the logo
itself to represent only one half of the value of current line spacing
for the text itself.

The macro starts with the storage of format parameters ['NF;]. Bold
text mode is activated [”BT=+;]. Justification and filling modes are
defined I JMIL;‘FM=NU;].

This is followed by two HD without return [”HD,,—;”HB,,-;], which
means that two half line teeds are carried out. but without the paper
going back to the starting point. The number of HD to be included
before and after the logo is in fact immaterial for the result of the
logo itself, but it is of importance when it comes to placing the logo
in relation to the document text.

We have now reached the first line of text in the logo, starting with
half a line shift up, without return [‘HU,,";J. The text part is
written with the AW“directive ("aw 000 000 0000000 1.; This causes
all the characters to be considered as one word, so that no extra
blanks will be inserted in the text during justification.

The next line of the logo is created in the same way, but is followed
by additional text which is parameter T in the macro with the firm's
name as default value: {bi/"<"FIBM;'>;].

Lines 3 and 4 are created in the same way as line 1.

Line 5 in the logo is also followed by extra text, parameter 2 in the
macro, with the firm's street address and phone numbers as default.
These are left and right justified on the line, respectively, to the
right of the logo text: ["2/”<”FADUHESS;”BL=—1;“JM=H;”FPHUNE;'>;]

Justification mode is then set to left justification again [“JM=L;].

Lines 6 and 7 are created in the same way as line 1.

Line 8 in the logo is also followed by extra text, parameter 3 in the
macro. The firm's city/location and TELEX addresses are default. These
are left and right justified on the line, respectively, to the right
of the logo text:

[‘3/’<‘FPLACE‘BL=—1;“JM=H;'FTELEX;">;J

Justification mode is then set to left justification again.
[”JMIL;].

ND—63.009.01

MOTIS-TF MACRO GUIDE 97
EXAMPLES

To counterbalance the 8 HU directives used to create the 1090 text. we
now input 6 HD-calls (making a total of 8 when added to the 2 in the
introduction).

The macro is terminated by resetting all format parameters to their
original values ['UF;}.

If you want to modify this macro, and most of you probably will, you
have to remember that there is only room for a limited number of
alphanumerics of this size on a 'line', especially if you also want to
include your firm's name and address, etc.. as in our example.

ND—83.009.01

38 NOTIS-TF MACRO GUIDE
EXAMPLES

€fl.?? FHE fififififl fiEMfl

The macro is in the document macro category, and is used to write
documents of the MEMORAMDUM type.

The macro may be called with up to 6 parameters:

3. Yo , to whom the memo is sent
2. Copy to (option) . who should receive copy of the memo
3. From . who sent the memo
4. Subject , the subject of the memo
5. Your ref.(option).
8. Our ref.(option)

Definition:

lMD/MEMU/A<ADX;‘PH=U;”T820;
“HEAD/ / / <~ FIRM; M E M U_~>;“IH*SCH.MEMU;
”MD=SUBJECT="4:”<‘UP=Subject: ;‘>;;
fiJM=LifiFM=F;ASIP,,10,U;
'IP=T0: ; IH‘TU ,1;» = < UPiTo: ;'>; IR-TOFF; BL;
"IF!'“2/*—*;'<>'*—*' ‘<‘1P=50py to: ;“IR—T0N,2; > 2;‘<‘IR—T0FF;'>;‘BL;
hHM=31i
”IPrFrom: ;‘IR—TDN,3;‘3=“<‘UP=From: ;‘>;‘IH-TUFF;‘BL=~1;
'HM=0;‘LM=+“AB.‘$PW;*2/5;;
“IF ‘"5/*v*;‘<>’*~*’ ”<‘IP=Your ref: ;“IB-TON,4;‘>’5;'<”IR-TOFF;‘>;“BL;
‘IF ’"6/*-*;'<>'*—*' “<“IP=0ur ref: ;AIR—TUN,5;‘>”6;‘<‘IR—T0PF;'>;‘BL=1;
‘LM=~"AH.”$PW;*2/5;;
“IP=Date: ; IR—TUN,6;»FDATE; IR“TDFF; BL=1;
hIP=SUiCtZ ; IR*TUN,7;_ SUBJECT;w IR'TUFF;
"EIP;~H1=_~SUBJECT;~;AFM=C;“SI=U;“PI=0;"JM=S;"TL=Contd....;
”PH=1;ATB=4;‘8L=Z;“EUU~STR=~<ATL= ;“>;AIH~TUN,8;‘>;

ND-83.009.01

NOTIS—TF MACRO GUIDE 99
EXAMPLES

As you can see. the macro contains some directive call of the “IR—
type. These are directives which prepare a conversion of the document
for storage with NUTIS—IH. We shall not explaion these directives any
further, since they are used independently of schema definition in
NOTIS—IR. They will also be omitted from the explanation so as not to
make it unclear.

This macro is relatively uncomplicated and straightforward, and we
shall therefore give you a step—by—step explanation without splitting
it into sections.

It starts with the specification that the document is for duplex
copying: ['DX;]. The page header function is then turned off, and the
top border set to 0: [‘PH=U;ATB=0;]. This is done because the first
page is to have a memo head instead of the usual page header.

A call to the logo macro is now executed. Parameters 1 and 2 are blank
while parameter 3 becomes the firm’s name with the additional text,
M E M 0 underlined:
[‘HEAD/ / /"<"°FIHM; M E M 0_‘>;].

The help macro SUBJECT is defined to contain parameter 4. If parameter
a is unspecified, you will be asked for the value on the screen during
formatting: [”MD=SUBJECT:”4="<“0P:Subject: ;”>;;].

Justification and filling modes are defined, and inverted paragraphs
are prepared: ["JM=L;”FM=F;ASIP,,ZU,U;].

The leading text 'To: ', with accompanying text From parameter 1,
is written as an inverted paragraph. If parameter 1 is unspecified,
you will be asked for the value on the screen during formatting:
['IPITO: ;”2="<‘UP=T0: ;“>;“BL;].

A test is now run to see whether parameter 2 is specified (this kind
of test has been explained previously). If the parameter is specified,
the leading text 'Copy to: ', and the parameter text, are written as
inverted paragraphs. If parameter 2 is unspecified, the leading text
is n t written either'
["IFf'"2/*~*;'<>'*-*’ ‘<‘IP=Copy to: ;“>‘2;;
J.

The right margin is increased to make room for the reference texts:
["RM=31;]. Then the leading text 'From: ' is written, followed by
parameter 3. If this parameter is unspecified, you will be asked for
the value on the screen during formatting:
[‘IP=Fram: ;”3=”<‘0P=From: ;‘>;].

The contents of this line in now written, NITHOUT linefeed: [ABL=-1;].
This means that subsequent text will be written on the same line.

Right margin is reset to 0, and the left margin is calculated as a
function of the page width (it may of course be set as a constant):
[‘HM=U;‘LM:+‘AH.‘$PW;*2/5;;].

ND—83.009.01

100 NOTIS—TF MACRO GUIDE
EXAMPLES

‘Your ref:' and 'Our ref:' are now written on separate lines relative
to the new margins. if they have been specified. This is done in the
same way as for param ter 2:
[‘IFI'"5/*—*;'<>'*~*'T‘<‘IP=Your ref: ;‘>‘5;; BL;
‘Irl'”5/*—*;'<>'*-*'|‘< IP=Uur ref: ;">“6;;”BL=1;J.

Left margin is now reset to its original value:
[’LM=~‘AR.‘$PW;*2/5;;J.

The leading text 'Date: ', followed by the date when the document
was last updated is written as an inverted paragraph. followed by a
blank line:
[“IP=Date: ;‘FDATE;‘BL=1;].

Then comes the leading text ‘Subject: ' followed by the accompanying
text, underlined, as an inverted paragraph:
[”IP=Subject: ;_“Subject;_].

The sequence of inverted paragraphs is terminated: [‘EIP;].

Header~1 is defined to contain the subject text, underlined:
[‘H1=~‘SUBJCT;_;].

Filling and justification modes as well as section and paragraph
indentations are defined: [‘FM=C;‘SI=D;‘PI=D;”JM=S;].

Page trailer is defined to contain the text 'contd....'
[ATL=contd....;].

The page header function is activated again, and top border set back
to the default value: [‘PH31;"TB=4;].

The MEO head is terminated with two blank lines: [”BL=2;].

Finally. the macro is terminated by defining EDD-3TH
(End~0f~Document STRing) to remove the page trailer. This means that
all the pages except the last one will have 'contd....' as page
trailer: [‘EUD~STH=‘<“TL= ;‘>;J.

If you go through a document macro step by step in this way you will
see that most of them are rather easily modified. especially if you
only want to modify leading texts, etc.

GOOD LUCK!

ND~E3.009.01

NOTIS—TF MACRO GUIDE 101
List of examples

LIST 0F EXAMPLES

Example Page

1 Defining and calling a simple user macro 2

2 Example of the sequence 11

3 Level principle in macro calls 12

4 Level principle in macro calls 12

5 Macro definition without quotes 14

6 Macro definition with quotes 14

7 Expansion of a macro with variable body 15

8 Use of quotes in parts of the macro body 16

9 Definition of parameter in the body 16

10 Various numerical representations of a system macro 19

11 Use of the system macro SSN 19

12 Definition of a user macro With permanent body 22

13 Definition of a user macro with macro call in the body 22

14 Defining a user macro with a variable part in the body 23

15 Defining a user macro including parameters 24

16 Including parameters with default values 25

1? Including several parameters 26

18 Different ways of including parameters 27

19 Including a parameter without expansion 28

20 Redefining macros 29

21 Using the reference macro 40

22 Defining an integer macro 44

23 Defining an integer macro with arithmetic expression 44

24 Simple trigger macro 46

25 Queuing of trigger macros 48

NDe63.009.01

102 NOTIS-TF MACRO GUIDE
List of examples

Example Page

26 Trigger priority 47

27 Trigger macro priority 47

28 Use of the AR directive 58

29 Use of the {F directive 61

30 Use of the IF directive 61

31 String comparison with the IF-direktivet 62

32 Use of the example macro 70

ND-63.009.U1

NUTIS-TF MACRO GUIDE 103
INDEX

Index

ACTIVATE . 49.
AR—directive . 57.
arithmetic expression 5?.
balance . 13, 16.
body . S.

macro—call . 22.
macro—call~quotes 23.
permanent . 22.

body-element . 30.
call . 1.

level . 12.
clear~macro CM 34.
CM clear-macro 34.
condition . 9. 45.
definition time 22.
direction . 32.
directive

quotes . 3. 14.
start . 11.

directives special 56.
DISABLE . 49.
display macro 35.
DM dump—macro 35.
dump—macro DM 35.
empty parameter
EOD~STR enddocument~string 53.
EOF—STR endfile—string 53.
examples . 67.
expand . 1.
FIX fix~macro 36.
fix~macro FIX 36.
format—parameters 56.
help—macro . 79.
IF—directive . 59.
[M integer~define 43.
integer macro 4. 6.
integer-macro . 43.
level . 3. 12, 18.
LIB-CONT . 66.

directive . 62.
MA macro—append 30.
macro . 1. 3.

BM . 70.
body . 5.
bold . 68.
call . 1—3, 11.
CE . 71.
CP . 72.
definition . Z. 3, 21.
elements . 12.
example . 70.
expansion . 1, 3.

ND—63.009.01

m4

FIG—C?
HEAD
integer
MEMO
name . .
redefinition
reference

Show
SIP
spread
system
trigger
user
value

macro-append MA
macro~insert MK
macro—kill MK
macro~remove MR
macros user
MD macro~define
MI macro—insert
MK macro~kill
MR macro—remove
name .
NF—directive
NREDEF set—no—redefine .
Odirective
PAR~STR paragraph—string
parameter

default—value
empty
PM . . .

parameter-inclusion . . .
parameterinclusion no—expansion
parameters default—values
PH—STR pageheader—string
PM parameter~inclusion
PRIOR
priority
quotes
RD reference—define
redefinition
reference

backward
forward
macro . . .

reference—define RD
reference~macro
resources required
separating sign .
set-no—redefine NREDEF

ND~£3-B£Q.B£

”OTIS-77F MERE EUIBE
HIM

75.
95.

98.

37.
4, 8, 39.
69.
84.
73.
3. 7, 17.

3, ZQJ

30.
31.
29.
32.

21.
31.
29.
32.

58.

56.
54.
3. 5, 11” 1%,
24.
27.
25.
27.
24.
28.
25.
52.
27.
49.
48.
3. 14.
39.
37.

N0TI8— TF MACRO GUIDE
INDEX

single—trigger
size . .
space required
special directives
syntax
system macro . . .
TL—STR trailer—string
TM triggermacro . .
TP-STR titlepage—string
trigger

macro
single
string

trigger-macro
type
UND—STR underline~string
user macro
value

ND~63.009.01

9.
8.
64.
56.
11.
3.
52.
45.
52.

4.
9 D

10,

105

50.
39.

7, 17.

9.
50.

51.

**********SENDUSYOURCOMMENTS!!! **********

Are you frustrated because of unclear information
in this manual? Do you have trouble finding
things? Why don’t you join the Reader’s Club and
send us a note? You will receive a membership
card - and an answer to your comments.

Please let us know if you , /
* find errors *\
* cannot understand information
* cannot find information
* find needless information

Do you think we could improve the manual by rearranging the
contents? You could also tell us if you like the manual!! / \

at: *** **** *HELPYOURSELFBYHELPINGUSU ****** * * *

Manual name: NOTIS-TF Macro Guide Manual number: ND-63.009.01

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date: a
Company: Position: _
Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department
PO. Box 4, Lindeberg Gard - —'—’
Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data

Answered by D‘at c

1;

Norsk Data A.S.

Documentation Department

P.O. Box 4, Lindeberg Gard

Oslo 10, Norway

Systems that put people first

I NORSK DATA A.S JERIKOVN. 20 PO. BOX 4 LlNDEBERG GARD OSLO 1O NORWAY
TEL: 02 - 30 90 30 — TELEX: 18661

