BRF-LINKER
User Manual

ND-60.196.01

NOTICE

The infarmation in this dacument is subject to change without notice Norsk Data
A.S assumes no respansibility far any errars that may appear n this document.
Norsk Data A.S assumes no respansibility for the use or reliability of its software
on equipment that is not furnished ar supported by Narsk Data A.S. '

The information described in this dacument is protected by copyright. It may nat
be photocopied, reproduced or translated without the priar consent of Norsk

Data A.3.

Copyright @ 1984 by Norsk Data A.S

This manual is in loose-leaf form far ease of updating. Cld pages may be
removed and new pages easily inserted if the manual is revised.

The loose-leaf form aisc aliows you to place the manual in a ring binder {A)
for greater protection and convenience of use. Ring binders with 4 rings
corresponding to the hoies in the manual may be ordered in two widths, 30
mm and 40 mm. Use the order form below.

The manual may aiso be placed in a plastic cover [B). This cover is mare
suitable for manuals of less than 100 pages than for large manuals. Plastic
cavers may also be ordered below.

5 — _/\h.-— .

h
i

) h '
\

A: Ring Binder B: Plastic Cover

Please send your order to the local ND office or (in Norway) to:
Norsk Data A.S

Graphic Center

P.O. Box 25, Bogerud
0621 Osio 8, Norway

ORDER FORM

| would like to order
. Ring Binders, 30 mm, at nkr 20,- per tinder
. Ring Binders, 40 mm, at nkr 25,- per binder
... Plastic Covers at nkr 10,- per cover
N BITIE i e e e,

Company
Address

PRINTING RECORD

Printing

Notes

| o08/84

VERSION 01

BRF-LINKER User Manual
Publ.No. ND-80,196.01
August 1984

ate ase
LLLAJ b
dnddd deén
2099 800%8
sedsadadn
aee S9848
ohe LL L)
e L1})

sesssssss NORSK DATA A.S

P.Q. Box 25, Bogerud
0621 Osiv 6, Norway

v

Manuais can be updated in two ways, new versions and revisions. New lversians
consist of a complete new manual which replaces the old manual. New versions
incerporate all revisions since the pravious version. Ravisions consist of one
ar mare single pages to be marged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New varsions and revisions are announced in the ND Bulletin and can be
ordered as described below.

The reader’'s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and generat comments are walcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data AS

P.O. Box 25, Bogerud

0621 Oslo 6, Norway

Requests far documentation should be sent to the locat ND office or {in Norway)
to:

Graphic Center
Norsk Data A.S
P.Q. Box 25, Bogerud
0621 Osio 8, Morway

Praface:

THE PROOUCT

This manual describes the BRF-Linker, NJ-10721A, running under
SINTRAN III.

The BRF-Linker is used to read Binary Relocatable Format (or “BRF™)
output from the MAC assembler and from the ND compilers (FORTRAN,
COBOL, PLANC, BASIC, PASCAL, etc.). It will then link this sutput into
a program file and make it executable.

Note that the Multisegment Load feature described in chapter 3 1is only
available undar SINTRAN III wversion [or later versions. [t 1is
therefore not available on the NORO-10.

THE READER

This manual is written for programmers using the BRF-Linker to load
and link programs £o be run in the tima-sharing mode, {(For loading of
real time programs, see the Real Time Loader manual, ND-60.0951.)

PREREQUISITE KNOWLEDGE

Mo previous knowledge of the BRF-Linker is assumed in this manual.
However, some basic knowledge of SINTRAN III commands and of the
principles and commands for compilation is recommended,

THE MANUAL

This manual describes the basic commands for lcading in chapter 3.
Qverlay loading is descrihed in chapter 2, and multisegment loading in
chapter 3. In chaptar 4, can bhe found some commands for inspection and
modification, and An chapter 5, the <commands for editing arvse
explained. A detailed description of the Binary Relocatable Format is
found in chapter B.

A summary of the commands is given in appendix A and a summary of the

various error messages in appendix B. Furthermore, all commands and
@rror messages are included in the index,

RELATEDQ MANUALS

SINTRAN III Reference Manual ND-B0.128
Real Time Logader ND-60.051

ND-5a4.196.01

< vii >

TABLE OF CONTENTS

Section Page
1 THE FUNCTIONS OF THE BRF-LINKER 1
1.1 Command Formats .,« 1
1.2 Loading 0 v e e e e e e e e e e e 2
1.3 Mormal Mode Loading e e e e 4
1.4 Example: Complling, Loading and Running a Program B
1.5 Inspecting and Changing the Symhal Table 6
1.6 Two-bank Systems Versus One-bank Systems 3
1.7 Program Information Commands 10
1.8 Miscellaneous Commands 12
2 THE OQVERLAY SYSTEM 13
2.1 The Multilevel Overlay System 13
2.2 Designing an Overlay Structure 19
2.3 Special Commands for Overlay Loading 16
2.% Example: Creating an Overlay System 17
3 THE MULTISEGMENT SYSTEM 21
1.t © The SINTRAN [I[Segment Files . . . A 21
3.2 Programming Considerations Using Hultlsegment Llnklng .. 22
3.3 Organization of a Multisegment Program System . ., . . ., . 22
3.4 Multisegment Linking Commands 24
3.4, Special BRF-Linker Commands for Hultlsegment Llnklng . 24
3.4, SINTRAN III Commands for Multisegment Programs 26
3.5 Example: Linking a Segmented Program Structure 27
4 PROGRAM INSPECTION COMMANDS 35
5 EDITING COMMANDS ... 37
5.1 Basic Symbel Handlimg oL, 37
5.2 Commands for Updating « o ... 38
5.3 Additional Symbel Commands« 38
5.4 Other Functions « « .« . o . e oo a9
6 THE BINARY RELGCATABLE FORMAT 41
6.1 The BRF Structure . . . e e e e e e 42
6.2 Relocation of Internal Addresses e e e e e e 43
6.3 Program Units 0L 43
6.4 Separate Compilatien o oo L

ND-60.196.01

< wiil »

Section Page

Linking of Program Units, L4
FORTRAN COMMON Blacks« « v v v v v v v v v v . 45
Fix-up Facilities . ., « .« « .« v « v v v . . 486
Checksum « .« « v v v 0 e e e e e e e e e e B
Description of the BRF Can%trol Numhers 46

&y T TN oh
. . PO -
0w - o oW

Appendix
A COMMAND SUMMARY 53
B ERROR MESSAGES B&%

Index e e e e e e e e e e e e e e e e 63

ND-60.196.01

BRF-LINKER USER MANUAL 1
The Functions of the BRF-Linker

1. THE FUNCTIONS OF THE BRF-LINKER

The BRF-Linker is a subsystem which is able to convert the output from
language PTOCBSSOTS (compilers and assemblers) into executable
programs that can run under SINTRAN II1. The object files <created by
the language subsystems are‘in 8inary Relocatable Format (described in
detail in chapter B}, otherwise known as BRF.

The BRF-Linker maintains a symbal table in which all defined
intermodule references, symbols, and labels appear together with their
addresses. [f the address of a symboel has not heen defined bYefare
being used, the symbol entry in the table is marked as undefined. All
symbols must be defined before the program can be executed.
1.1 Command Formats
BRF-Linker is started by typing its name to SINTRAN III:

@BRF-LINKER

Whenever BRF-Linker is ready to process a user command, it will type
aqut the command prompt:

Brl:

BRF-Linker commands follow the same rules as SINTRAN IIl1 commands:

All commands consist of a command name, fallowed by zero or more
paramaters. '

- A space or comma may be used as a separator between the command
name and the parameters, or between two parameters.

- Command names and parameters may be abbreviated as lang as the
abbreviation is unique.

- A missing parameter is indicated by tvping two consecutive commas.
Default values will be used for any missing parameters,

- Some parameters are termed optiagnal. These parameters may be
specified in the command, but if left out the BRF-Linker will not
ask for them, it will Jjust use the default value.

- A carriage return may be used anywhere in the command string. The
BRF-Linker will ask for any paTrTameters, except optional ones, that
wera not specified before the carriage return.

- Numerical parameters may be given in octal or decimal mode., The
default 15 octal mode. A decimal number may be speclfied by a
trailing 0, an octal number by a trailing B. Signed numbers may be
used.

ND-B0.136.01

2 BRF-LINKER USER MANUAL
The Functions of the BRF-Linker

- All control characters available for editing SINTRAN ITI commands
can also be used to edif commands £o the 8RF-Linker.

Thus, in the commands:

Brl: LOAD FILE-1.FILE-2 FILE-]
Brl: EXIT

the words LOAD and EXIT are command names. The EXIT command has no
parameters, whereas the LOAQ command has the three parameters FILE-1,
FILE-2 and FILE-3, separated by commas.

In the command format definitions the parameters are specified in
angular brackets (¢ ... »). Optional parts of the command are enclosed
in square brackets (I ..,]}. A sequence of full stops following a
parameter means that the parameter may be repeated any number of
times.

Thus, the command definition:
Brl: LOAD <file name>[,<file named...]

means that the LOAD command takes as parameters any number af file
namas, of which all but the first are opticnal ({that is, only the
first one will be asked for if not specified]).

Throughout this manual, two different terms are used to denote
guantities of memory, in addition to the usyal terms hit and byte. The
symbols are: word which denotes one 16§-bit NO-180 ward, and page which
is an NO synanym for 1024 16-bit wards.

1.2 Loading

The loading oaperatian consists of fetching relocatable program units
produced by language processors (compilers and assemblers), wlacing
them in the correct place within the address space, linking together
the references hetween the differsnt units and, finally, writing the
completed program out to a pregram file.

The relocatable program units contain information that makes it
possible to place (locate) them anywhere within the address space.
This means that the different units may be placed in the address space
in any sequence., When BRF-Linker has put a program unit in the correct
position, it myst go through the program unit and change all addresses
that depend on where the unit is placed.

The final program resulting from the loading is bound to the loglcal
addresses where it was placed by BRF-Linker., It is therefore referred
to as an absolute program, [t may also be galled an executable program
or a subsystem.

ND-60.196.01

BRF-LINKER USER MANUAL -3
The Functions of the 8RF-Linker

During loading, the BRF-Linker can operate in different modes:

1}

2)

3)

Normal mode:

The loacing is done onto a file of type :PROG. This 1is the
"normal® way of loading a program. Programs must fit into the
agrdinary 64-page (one-bank) or 128-page (two-bank) address space.

Overlay mode;

When the program 1s too large to fit into 128 pages, the averlay
mode may be used to enable different parts cof the program to be
run alternately in the same address space.

Multisegment mode:

Used %o prepare programs which occupy sgveral SINTRAN [II
segments. It makes it possible to use programs extending beyond
the normal 128-page boundaries, and also to improve execution
times by avoiding reading from a :PROG file when the program is
started. It can NOT be ysed with one-bank programs.

No symbolic sourcs code modification is necessary in order to switch
from one of these modes of loading to another.

There are some significant differences between multisegment linking

and

1}

2)

3)

4)

5)

6)

7}

overlay linking:

The Symbolic Debugger canm be wused with overlays, but 1s not
available in the multisegment mode.

The finished overlay system uses the monitor call RFILE to read
code and data during executign of the loaded program. Multisegment
linking wuses the demand paging facilities with named two-bank
segments that is available in SINTRAM [II version I and Llater
versions.

It takes about 5 milliseconds tao switch between segments in the
multisegment mode, while it takes at least 50 millisecagnds befare
execution of a new overlay can start after it has been called.

In multisegment loading, segments can be built during several
loading sessions. When bullding overlay systems, the entire system
must be byilt In a single @RF-Linker session.

Multisegment loading requires the wuse of special SINTRAN TI!
commands which are only available tg¢ user SYSTEM. Overlay loading
may be dane by any user,

Subroutine calls within an overlay structure are resiricted in
that one routine may call another routine only 1if both are in
memory at the same time. Thus, the user must be careful in
organizing the overlay structure. No restrictions an routine calls
apply te multisegment systems.

Iin multisegment dystems, care must be taiken wirth data area layout

to avoid data from one segment being overwritten By data from
another sagmant.

ND-80.196.01

4 BRF-LINKER USER MANUAL
The Functions of the BRF-Linker

1.3 Normal Mode Loading

An executable, or absolute program is always bullt on a file. The filae
is specified using the command

Brl: PRAGRAM-FILE <file name>

where <file name> is the name of the file onto which the program is
linked and loaded, The default file type is :PROG. If the file does
not already exist, the user should instruct the BRF-Linker tc make a
new file by enclosing the file name in double guotes, thus:

Brl: PROGRAM-FILE "<file name)”

PRGGRAM-FILE should be the first command given after the BRF-Linker
has been started.

The BRF-Linker can load BRF-units from one or more files. The loading
is initiated by the command:

8rl: LDAB <file named>[, 6 <file named>...]

where <file-pame» is the name of a file the BRF units should be leaded
from. The default file type is :BRF.

When loading from a file, all routines on that file will normally be
loaded. Any or all routipes on the file may, howsver, have heen
compiled in the so-called library-mode. Such rToutines will anly be
loaded if they are called from a previously loaded routine, otherwise
they will be ignored.

Pebug information ¢n BRF files ¢an be included or ignered throughout
the loading process by the command:

Brl: DEBUG-MODE <ON/OFF>
Default is ON - debug information will be included.
Praogram units from library files (compiled with the "LIARARY-MODE"
ON), can be loaded without being referred to from units already loaded
by using the command:

Brl: LIBRARY-MODE <ON/OFF>

The default wvalue for this command is ON, library units will only be
loaded if referenced.

ND-60.196.01

BRF-LINKER WUSER MANUAL 5
The Functions of the BRF-Linker

If the program is in a high-level 1language, the rTuntime system
routines for that language must also be loaded. These routines are
faund on files with names like:

KHXXXXX - 1BANK: BRF or XXNMH U -2BANK: BRF

where xxxxuxx 1s the name of the programming language, for example:

FORTRAN-~1BANK:8RF ar FORTRAN-ZBANK:8RF

Use the 18ANK or 2BANK version of the runtime system depending on
whether the program is a one-bank or a two-bank program.

Ta leave the BRF-Linker and return ta SINTRAN [II. give the command:
Arl: EXIT

The BRF-Linker will then close the grogram file specified, thereby
making it ready for execution Ffrom SINTRAN IIl, and return you to
SINTRAN III.

The program can now ba started from SINTRAN III by giving a RECOVER
command with the program file name as parameter. For example, Lf the
user has lcaded executable code onto the file EXAMPLE:PROG., then the
program could be started by typing the command:

QRECOVER EXAMPLE
As long as there is no conflict between the program file name and any
SINTRAN [I{ command names we may (and usually do} leave gut the word
RECOYER, s0 we would +§ust type:

@EXAMPLE

If we want to debug the pragram we may instead type the command:

@DEBUG EXAMPLE

which will start up the program under contrel of the
Symbolic¢ Debugger.

1f we want to run the loaded program immediately, we could 1instead
@xit from the BRF-Linker with the command:

Brl: RUN
This command performs an exit from the 8R8F-Linker and then starts
exaecution of the program file opened with the PROGRAM-FILE command at
the beginning of the loading session.
Maote that the BRF-Linker <cannot load programs directly to memory.

Hence, a program file must have been specifled 1n arder to use the RUN
command,

ND-60.136.01

[. BRF-LINKER USER MHANUAL
The Functions of the BRF-Linker

1.4 Example: Compiling, Loading and Running a Program

FORTRAN-100
NO-10Q0/NORD-1Q ANSI 77 FORTRAN COMPILER - 2030%3D
FTN: COMPILE TgSTP:SYMQ,TERﬂIN&L,'TESTP:BRE*

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D
SQURCE FILE: TESTP:SYMB

1* PROGRAM TESTP
2* WRITE(1,*}) 'THIS IS A TEST PROGRAM®
3 END

- CPU TIME USED: Q.8 SECONDS. 3 LINES COMPILED.
- NO MESSAGES

- PROGRAM SIZE=63 COMMON SIZE=0

FTN; EXIT

@BRF-LINKER

- BRF Linker - JULY 3, 1984
Brl: EROCRAM-FILE "TESTP®
Brl: LOAD TESTP,FORTRAN-1BANK
FREE: P Q00105-177777

FREE: P 035043-177777

Brl: EXIT
@IESTR

THIS IS A TEST PROGRAM

1.5 Inspecting and Changing the Symbol Table

Procedurs names, variable names, labels and so on which are defined
and needed in the user’'s program are known as symbols. Symbols may be
up to seven characters long. I[n order to make a loaded and linked
pragram function properly, the BRF-Linker must f1ll in the correct
symbol address wherever there is a reference to a symbol. By symbol
address is meant the address of the word or wards in memory that are
associated with the symbol. Furthermore, the BRF-Linker will keep
track of the places where symbels are referred to, but not yet defirned
and given addresses. Thus, Lt is able to fill in the necessary
information about these iddresses when the symbols get defined.

Yo this end the BRF-Linker keeps a list of all symbels encountered
during lianking. This 1Llist 1s known as the symbel table. The symbol
table may be inspected and manipulated by the user during loading,.

The symbol table is built by the B8RF-Linker from the symbols 1t
encounters in the BRF files. It contalns a list of the symbols and the
addresses in the computer’ s memory they will occupy when the program
is run. Whenever a defipition of a symbol 1s found in a 1input file,
the value of the current load address is stored as the address of the
symhel. The symbol is then known as a defined symbol.

ND-60.196.01

BRF-LINKER USER MANUAL 7
Example: Compiling, Loading and Running a Program

I¥ a referenced symbaol has naot yet peen defined, it is stored in the
symbol table as an undefined symbol. It is then expected to be defined
later. For instance, this will normally be the case with symbols
representing calls to external procedures which have not yet been
loaded.

In the case of programs loaded 1n the twa-bank mode, the load address
is tao a location in the program bank if it is a procedyre name or a
label and to a locaticn in the data bank if it is a variable name. In
the one-bank case, all references are %o the same bank,

To list all symboals in the symbol table, give the command:
Brl: LIST-ENTRIES-DEFINED |,

All wundefined symbols in the program can be listed by giving the
command :

Brl: LIST-ENTRIES-UNDEFINED

Together with each symbol name will be listed the last address where
the symbol was referenced.

The output from the LIST-ENTRIES-DEFINED and LIST-ENTRIES-UNDEFINED
commands may be switched to anaother output device by giving the
command:

Brl: OUTPUT-FILE <file name>

where <file name> 1is the name of the new ocutput file. The default
file type is :SYMB. The oufpuyt device may be reset to the terminal by
giving the QUTPUT-FILE command with an empty file name:

Brl: OUTPUT-FILE .,

To create a new symbol in the symbaol table, use one af the commands:
Brl: OEFINE <symbal>,6 <address> <(P/D>

ar
Brl: DEFINE <symbol>, 6 <symbol> <P/D>

In the first format, the name <symbol> will be defined as referencing
the word given in <address> and in the bank specified Inm the parameter
<P/D>. P specifies a word in the program bank and D a word in the data
bank, If the P/0 parameter is omitted, the default 1L1s the program
bank.

In the second format, the first symbol is defined as referencing the
same word as the second symbol, which must be defined opreviously.
Beware that 1if the already defined symbel (the second <(symbol>
parameter} is located in the data bank [P/D parameter set to D2J), the
P/D parameter must be set to D for the new symbol too, atherwise the
BRF~Linker will output an error message indicating a reference to an
undefined symbol.

ND-60.196. 01

8 BRF-LINKER USER MANUAL
The Functions of the BRF-Linker

We can find which waord an entry refers to by typing:
Brl: DEFINE <symbol>,? <P/D>

The BRF-Linker then writes the octal address of the symbol on the
terminal.

In order to locad the program at an address which differs from the
current address, use the command format:

Brl: DEFINE <#PCLC/#DCLCY>, <address>
The parameter <#PCLC/#0CLC> refers to the current location counter in
the program bank {#PCLC) or data bank (#0CLL). Subsequent laading will
then be performed from the specified address. This command will also

set the BRF-Linker in the specified mode (#PCLC for Program mode or
$0CLC for Data mode).

The address of an entry in the symbol table may be entered into a
memory lecation by the command:

Brl: REFERENCE <symbol>, 6 <address> <P/D>
It doesn’'t matter if the referenced entry is present in the table or
not, as the correct address will bhe filled in when the symbel value 1is
defined. The REFERENCE command creates an 'undefinead’ symbal i¥ the
symbol is not already in. the table, and the BRF-Linker expects it to
be defined later.
An entry is deleted from the symbol fable by:

8rl: REMOVE <symbol> <p/D>
Symbal names may be renamed by the command:

Brl: RENAME <0ld symbol>,K <new symbol>

To set the restart address of the program file specified in the
PROGRAM-FILE command, use one of the command formats: '

Brl: RESTART <address>
or
Brl: RESTART <symbol>
1f ésymbol) is used, then <(symbel> must be a defined table entry

raferring to the program bank. The default restart address will be
equal to the main start address.

ND-60.196.01

BRF-LINKER USER MANUAL g
The Functions of the BRF-Linker

1.6 Two-bank Systems Versus One-bank Systems

To overcome address space constraints in the ND-108, a two-bank system
can he utilized if the compiler (PLANC, COBOL, FORTRAN, PASCAL) 1is
capahle of generating separate output for the program code and the
data part. The address space for each program 1s limited to B4 pages.
A twog-bank pragram uses a separate address space for cocde and data,
thus making Lt possible to have B4 pages of program code and §4 pages
of data.

Since the ND-100 is capable of addressihg data by using an alternative
page table, programs may, in principle, consist of 64 pages of program
code apd 64 pages of data. Programs where caode and data are separated
in this way are called two-bank programs, whereas programs whose code
and data share a single address space of 64 pages, are called one-bank
programs.

Two-bank o¢object programs may be generated by an aoption in the wvarious
campilers and can be loaded by BRF-Linker. The following should be
noted:

- Two-bank programs must be linked with the two-bank versign gf the
aporopriate runtime/library system, for example PLANC-28ANK,
FORTRAN-2BANK, COBOL-Z2BANK, etc.

- Lare must bhe taken when linking assembly or NPL routines wiéh two-
bank systems.

- One-bank and two-bank programs may not be mixed.

~ The «code parts of the two-bank systems are, 1In principle,
caoampletely read-only.

- Overlay tree structures are still available, and bath the code and
data parts are brought in when a link Ls required.

Twao BRF control numbers, PMQ and DMO, are used to put the BRF-Linker
into program ar data mode (see chapter 6}.

Programs compiled in two-bank mode are by default loaded 1nto two
banks of &4 pages each. In this case, the program exscutes with all
accesses tqg the data bank via the alternate page table.

A1l loader commands (DEFINE, REFERENCE, REMOVE) will apply to either

the program code or the data bank according to what is specified in
the mode (P/D) parameter in the commands.

ND-60.1896.01

10 BRF-LINKER USER MANUAL
Example: Compiling, Loading and Running a Program

1.7 Program Information Commands

The commands described in this section can be used independently of
the other BRF-Linker commands, and have no effect on the program being
loaded. They can even be uysed when no PROGRAM-FILE command has heean
given.

Brl: PROGRAM-INFORMATION <file name>
[,<Dump Link Information?YES/NO> <output file>]

The command lists the Lnformation block of a program file. The default
file type is :PROG.

It will print out the <following information: start and restart
address, lower and wupper bounds for: program, data and debug
information.

If the program is an overlay system or a multisegment system, the BRF-
linker will also print the file name specified (in PROGRAM-FILE
command) when this program file was loaded.

If the file contains overlays, it will alsec print averlay informatian.

For multisegment program files, it will oprint out lower and upper
bounds fer link information, and it will ask whether link information
shall be dumped (the default answer is 'No'}). If link information 1is
teo be dumped, 1t will bhe dumped on the specified output file. The
default output_+File is TERMINAL and the default output file type is
:SYMA.

As an example, let us inspect the simple program we compiled and
loaded in section 1.4.

@BRF-LINKER
- BRF Linker - JULY 3, 1984

Brl: PROGRAM-INFORMATION TESTP, ...
Start, Restart : 000011B - Q00011B

Program : 0CO000B - 035042B
Data : 1777178 - 000000B
Debug : Q00000B - 00Q0000EB
Brl: EXIT

The program file name specified in the PROGRAM-FILE command when the
program was loaded, can be changed by the command:

Brl: PATCH-PROGFILE~NAME <(file name>,6 {new name>

The file name is output to the program file in two-bank programs and
in overlay programs. This command will locate the file name on the
program file and write the <new name> instead. It will inform you 1f
an overlaid file name is found. The SINTRAN III file is not renamed.
The maximum number of characters in the file name is 15.

ND-60.196.01

BRF-LINKER USER MANUAL 1M
The functions of the BRF-Linker

The usefulness af this command stems fram the fact that in two-bank
programs to be run under SINTRAN IIl version H or earlier versions,
and in overlay gragrams, the program file 1s opened according to the
name written on the program file itself. If a program file is renamed
by using the SINTRAN III RENAME-FILE command, the program name written
on the file wil}l not be changed. Such changes can be effected with the
PATCH-PROGFILE-NAME command, or by using the COPY-PROGFILE command
described below.

Some difficulties may also be caused if execution of two-bank pragrams
owned by another wuser is attempted under SINTRAN [II version H ar
earlier versions. In fthis case, the file name written on the program
file does not cantain information about the owner or directary.
Attempts to execute the program will therefore not be successful. Such
difficulties c¢an also be overcome by using the PATCH-PROGFILE-NAME
command. Beware however, that the file name 1s still 1limited to a
maximum of 15 characters.

Brl: COPY-PROGFILE <source file>, K <(destination file>
[,<Include Debug?YES/NO>]
[.<Include Link Information?YES/NO>]

This command will copy a program file fraom <(source file>» tg
{destination file>. The default file type Ls :PRQG. [f the source file
includes debug information, the BRF-Linker will ask whether debug
information is to be included or not; thus, the cammand can he used to
strip away debug 1information 1f you answer NO. Default is NO debug
information copled.

For multisegment files, the BRF-Linker will ask whether link
information should be included. The default is NO link infarmation
included. If the link information is not included, the program file
can no longer Be linked to any other pragram files.

If the source file is overlaid or is a twe-bamk praogram, this command
will perform a PATCH-PROGFILE-NAME command using <destination file> as
the new file name.

The BRF-Linker will print out information about the pages copied as
sfhgwn 1n this example [our simple little preogram again}.

@BRF-LINKER
- BRF Linker - JULY 3, 1584

Brl: COPY-PROGFILE TESTP, “TESTX",,.
Total no of pages:17B First page:0B Last page:16B Bank no:0 Program
Brl: EXIT

ND-64.196.01

12 BRF-LINKER USER MANUAL
The Functiaons of the 8RF-Linker

1.8 Miscellaneaous Commands
The command:
Brl:; HELP [<command>]

lists =all available commands matching the abbreviation <command>. If
no command is specified, all 8RF-Linker commands will he listed.

ND-60.196.01

BRF-LINKER USER MANUAL 13
The Qverlay System

2. THE OVERLAY SYSTEM

Scmetimes a large program cannot be run because it is too big to Ffit
into the address space of 64 pages (or §4 pages for the program and &4
pages for datal. One commonly used solution 1s to divide the program
inte reasonably small parts which can be run one at a time, and in
such a way that onme part (or subroutine) can use the space freed when
another routine has finished. Thus the pragram will only need the
space for those routines that have to be in memory at the same time.

The sets of different routines to be loaded one at a time are callaed
overlays or links and the process of loading an overlay to replace an
existing set of routines is called overlaying these routines.

Building averlays with the BRF-Linker is a convenlent way of bypassing
the problem of large programs not being able to fit into the address
space bhecause:

- Programs built as overlay systems do not need source ~ code
modification,

- The Symbolic Debugger is available foar overlays.

An overlay structures cannot be made into a reentrant subsystem.

2.1 The Multilevel Overlay System

In order to use the overlay capability on the ND-30Q, the user must
understand how his program coperates and the relationship between the
madules within it. He should organize his overlay structure {described
below) so0 as to retain iIn memory the links containing commonly usad
routines and place the infrequently used rautines in links which can
overlay one angther., For example, a special error recovery Toutine
would only need to be brought into memery when the corresponding arrar
occurred. Each link should be a <coallection of functionally related
modules and be as self-contained as possible, calling other links as
infrequently as possible. [n particular, refarences to links which
would overlay other links should be kept to a minimum.

A tree structure, called ain overlay structure, can be usad to
illustrate the dependencies among the overlay links. In a tree
structure, each link has only one immediate ancestor, but it may have
more than one immediate descendent. The link containing the reguired
parts of the program and which must always be in memory during
execution is called the root link. Since the root 1link receives
cantrol at the start of execution, it does not have an ancestor. The
remaining links branch away from the root 1link and are structured
according to their interdependencies.

Links which do not have to be in memory at the same time are termed
independaent links whereas links which must be in memory at the same
time are termed dependent links. For example, two modules which do naot
reference each othar or pass data directly to each other, are
indapendent links. When such links are neo longer regulred 1n memcry,

NDO-&60.196.01

14 BRF-LINKER USER MANUAL
The Qverlay System

they can be gverlaid by other links which are brought in. dn the other
hand, a link must have all the links upon which it depends in memory
at the same time and cannot therefaore overlay them. Every link is
dependent on its ancestor, and consequently, on the roat link.

As an illustration, assume we have a program consisting of a main
program MAINP and six subroutines SUBR1, SUBR2, SUBR3I, SUBR4, SUBRS
and SUBRG, The subroutines are related as follows:

1) SUBR1 and SUBRG are’ called dirsctly from MAINF and are independent
of each other.

2) SUBRZ and SUBRS are called directly from SUBRt and are independent
of each other.

3} SUBRY and SUBR4 are called directly fram SUBR2 and are also
independent of each other. :

The following tree structure illustrates the suhroutine dependencies:

MAINP is5 the
MAINP |+ root link
L

3 SUBR? and SUBRS
r are independent
‘ SUBR1 SUBREG ’+—~—— overlays

: {first lewval]

b + SUBRZ and SUBRS
are independent

’]
SUAR2 SUBRS |« overlays
—_‘ {second leveli

{ SUBR 3 and SUBRs4
—————-—7 are independent

SUBRI] SUBR&4 |+ overlays

(third level]

SUBR4 depends on SUYBRY and SUABR2 so they must be 1n memory when 1in
order to execute SUBR4. The chain of links which a link depends on is
referred to as the path of the link, The action of bringing a link
into memory is termed path loading and the chain of links branching
away from a 1link is known as the extended path of that link. In the
previous example, the path of SUBR& is MAINP, SUBR1, and SUBR2. There
are three extended paths of SUBR1:

1} SUBRZ, SUBR3J

2) SUBR2, SUBR4
3) SUBRS

NB-60.196.01

BRF-LINKER USER MANUAL 15
The Overlay System

A link may communicate with other links that lie in its own path or
one of its extended paths., The communication is through references to
glebal symbols. A reference from the current link to a global symbol
in another link in the path is called a backward reference, while a
reference from the current link to a global symbol in another link on
one af its extended paths is called a forward reference. Since zll
links on the path of the current link must be in memory, a backward
raference does not cause any links to be brought into memory. With a
forward reference, however, the referenced link may not be in memory.
It must then be fetched, possibly overlavying a link already there,

2.2 Designing an Overlay Structure

The first step to be taken when designing an overlay structure 1is to
draw a diagram showling the functional relationships among the modules
within the program. The tree begins with the root link which contains
the main program and remains 1in memory thraughout execution, The
remainder of the program is contained in the oaverlay links.

The wuser should remember several poiants when drawing his overlay
structure:

1) References that will overlay existing links should be minimized.

2) Independent links cannot reference each other; communication is by
way of a common link.

3) As a general rule, <¢alls to routines on other links should be
forward references, while returns from routines should be backward
referances,.

$) IF data 1is modified during execution, the modification 1is
destroved gnce the link is overlaid. Therefeore, 1f data required
by another 1link 1s modified, then the data must be returned to
this other link before the link containing the changed data s
gverlaid,

5) Wwhen a link is to be overlaid, no addresses or references to it
should remain.

56) Madules, raoutines or data areas used by several links should be
explicitly loaded 1iato a link that is common to all links using
these modules or data areas. For exampla, a FORTRAN COMMON data
area should bhe in a link in the path of all links referencing it.
Moreaover, COMMON should be positioned in such a way that it never
gets re-initialized after the first call. In gther programming
languages using the distinction between local and global data,
similar considerations must be done for the data which are global
to several link paths,

7)1 The Symbolic Debugger should be used with some care an overlays.
Debugger commands affecting program/data in an overlay should not
be given until a breakpoint is reached on that averlay. Moreover,
thase commands are in effect only while the overlay resides 1in
memory. In other words, overlays are always brought 1nto memory
fully initialized.

ND-60.196.01

16 BRF-LINKER USER- MANUAL
The Overlay System

Tree-structured overlay systems can bhe several levels deep. The amount
of memory required to run an overlay system is at least the amount
needed for the path using the greatest amount of space. This is not
the minimum requirement, however, since special tables must be
included when a program is divided into links.

The root link and the COMMON areas defined within 1t reside in memory
throughout the aentire execution, while the overlays and the COMMON
areas defined within them reside on a random read-only file. This file
is specified with the PROGRAM-FILE command.

2.3 Special Commands for Overlay Loading

Overlay structures are loaded using the same BRF-Linker commands as
for normal loading. However, we also need toc specify that we are
loading a new link in the overlay structure. This 135 done by the
command :

Brl: OVERLAY <level>, <entry name 1>{,...,<entry name n>]

This command specifies that a new overlay link i1s to be generated. The
parameter <level> 1s the overlay level, and <entry name 1> to
<{entry name n> give the names of the subprograms that may be called
from the previous level. After this command has besn given, the
specified subprograms can be loaded from cone or more BRF files. It is
recommended that the overlay subprograms be kept on a separate BRF
file compiled in library mode. In this way, the specified set of
subprograms may be selected and put into the overlay independently of
the compilation sequence,

The level number in an OVERLAY command must not be more than 1 higher
than the level number in the previous OVERLAY command.

The special form:
8rl: OVERLAY 0,

should be used to indicate the start af the root link. This should be
the first command following the PROGRAM-FILE command.

The special form:
Brl: OVERLAY -1,.

will append the last overlaid data part to the previcusly appended cne
in 2-bank programs. This permits all data to be placed consecutively
with no data overlay. Make sure that no previous data overlays share
this arsa with the current data overlay.

To dump the root link, the COQMMON area, and the last overlay link onto
the file specified in the PROGRAM-FILE command, use either the EXIT or
the RUN commands. If you use the RUN command, the aexecution of the
overlay system will start immediately, otherwise the execution of the
pverlay system must be started by a separate command (RECOVER}.

NDO-50.195.01

BRF-LINKER USER MANUAL
The QOverlay System

2.4 Example: Creating an Overlay System
dFORTRAN-100Q
ND-1Q0/NORD-10 ANSI 77 FORTRAN CCMPILER 2030530

FTN: SEPARATE-DATA ON
FTN: COMPILE MAINP, TERMINAL, "MAINP"

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D
SOQURCE FILE: MAINP:SYMB

1% PROGRAM MAINP

2* WRITE (1,*) 'START MAINP'
3* CALL SUBR1(1)

4* CALL SUBR&(6)

5* WRITE (1,*) 'END MAINP'
6* END

- CPU TIME USED: 0.8 SECONDS. 6 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=33 DATA SIZE=62 COMMON SIZE=0

FTN: EXIT

@FORTRAN-100
NO-100/NORD~-10 ANSI 77 FORTRAN COMPILER 203053D

FTN: SEPARATE-DATA ON
FTN: LIBRARY-MODE OWN
FTN: COMPILE SUBR1, TERMINAL, "SUBR1"

ND~-100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D
SOURCE FILE: SUBR1:5YMB

1% SUBROUTINE SUBRT(N)

2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
I CALL SUBR2(2)

4* CALL SUBR5(%)

5% END

-~ CPU TIME USED: Q.7 SECONDS. 5 LINES COMPILED.
~ NO MESSAGES

- PROGRAM SIZE=35 DATA SIZE=59 COMMON SIZE=0
FTIN: EXIT

@FORTRAN-100
ND-100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D

FTN: SEPARATE-DATA ON

FTN: LIBRARY-MQDE ON
FTN: COMPILE SUBR2,TERMINAL, "SUBR2"

ND-50.196.01

BRF-LINKER USER MAMUAL
The Overlay System

ND- {CO/NORD-10 ANSI 77 FORTRAN COMPILER 203053D
SQURCE FILE: SUBRZ:5YMEB

1% SUBROUTINE SUBR2(N)

2t WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'’
3* CALL SUBR3(N+1)

4x CALL SUBR3(N+1)

5% CALL SUBR4(N+2)

6* CALL SUBR4(N+2)

7% END

- CPU TIME USED: 0.8 SECONDS. 7 LINES COMPILED.
-~ NO MESSAGES

- PROGRAM SIZE=55 DATA SIZE=63 COMMON SIZE=0Q
FTN: EXIT

@FORTRAN-100
ND-100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D

FTN: SEPARATE-DATA ON
FIN: LIBRARY-MODE ON

FTN: COMPILE SUBR,TERMINAL,®SUBR"

ND-1QQ/NORD-10 ANSI 77 FORTRAN COMPILER 2030530
SQURCE FILE: SUBR:SIMB

1* SUBROUTINE SUBR3(N)
2% WRITE (1,*) 'SUBROUTINE ', N, ‘' CALLED'
3t END

ND-100/NQRD-1Q ANSI 77 FORTRAN COMPILER 203053D
SOURCE FILE: SUBR:SYMB

4x " SUBROUTINE SUBR4(N)
5% WRITE (1,*) 'SUBROUTINE ' ,N, ' CALLED'
6% END

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER 2030530
SOURCE FILE: SUBR:S5YMB

7* SUBROUTINE SUBRS5(N)
8> WRITE {(1,*) 'SUBROUTINE ',N, ‘ CALLED'
9* END

ND-10G/NORD-10 ANSI 77 FORTRAN COMPILER 203053D
SOURCE FILE: SUBR:S5YMB

10* SUBROUTINE SUBRG6 (N}
11% WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
12* END

- CPU TIME USED: 1.9 SECONDS. 12 LINES COMPILED.
- NO MESSAGES

- PROGRAM SIZE=100 DATA SIZE=156 COMMON SIZE=0
FTN: EXIT

ND-60.196.01

BRF-LINKER USER MANUAL
The Qverlay System

@BRF-LINKER

- BRF Linker - JULY 3, 1984

Brl: PROGRAM-FILE MAINP

Brl: QVERLAY Q,,

Brl; LOAD MAINP, FORTRAN-2BANK

FREE: P Q00065-177711 D 00Q076-177717
FREE: P 027123-177777 D 007430-177777

Brl: OVERLAY 1,SUBR1 .

Brl: LOAD SUBR1, FORTRAN-2BANK

FREE: P 027213-177777 D 007622-177777 DEBUG 000004
FREE: P 027213-177777 D 007622-177777 DEBUG 000004

Brl: QVERLAY 2, SUBR2

Brl: LOAD SUBRZ, FORTRAN~2BANK

FREE: P 027326-177777 D 007720-177777 DEBUG CQGQQ10
FREE: P 027326-177777 D 007720-177777 DEBUG 000010

Brl: OVERLAY 3, SUBR3
Brl: LOAD SUBR, FORTRAN-2BANK

FREE: P 027403-177777 D 007766-177777 DEBUG 000014
FREE: P 027403-177777 D 007766-177777 DEBUG 0Q0014

Brl: OVERLAY J,SUBR4
OVERLAY COMPLETED. BLOCK NO: 2001 27352-27403/7720-7766

SUBR3....27352 P *........ 27403 P

X 7766 D

Brl: LOAD SUBR, FORTRAN-ZBANK

FREE: P 027403-17771117 b 007766-177777 DEBUG 000024
FREE: P Q27403-177777 D Q07766-177777 DEBUG Q00024

Brl: OVERLAY 2,SUBRS
OVERLAY COMPLETED. BLOCK NO: 2003 27352-27403/7720-7766

SUBR4....27352 P *........ 27403 P

P 7766 D

OVERLAY COMPLETED. BLOCK NO: 2005 27237-27352/7622-7720
SUBR2....27237 P *........ 27352 P

LI 7720 D

Bri: LOAD SUBR, FORTRAN-2BANK

FREE: P 027270-177777 D 007670-177777 DEBUG 000040
FREE: P 027270-177777 D 007670-177777 DEBUG 000040

Brl: OVERLAY 1, 6 SUBR6
OVERLAY COMPLETED. BLOCK NC: 2007 27237-27352/7622-7720

SUBRS....27237 P *. 27270 P

Y. 7670 D

OVERLAY COMPLETED. BLOCK NO: 2011 27150-27237/1530-7622
SUBR1....2715Q0 P * 27237 P

LI 7622 D

Brl: LOAD SUBR, FORTRAN-2BANK

FREE: P 027201-177771 D QQ7576-1771717 DEBUG Q00054
FREE: P 027201-177777 D Q07576-177177 DEBUG 000054
Brl: EXIT

OVERLAY COMPLETED. BLOCK NO: 2013 27150-27201/7530-757%
SUBRG....27150p *, 27201 p

L 7576 D

ND-60.196.01

BRF-LINKER USER MANUAL
The Overlay System

GMAINP

START MAINP

SUBROUTINE t CALLED
SUBRCUTINE 2 CALLED
SUBROUTINE 3 CALLED
SUBROUTINE J CALLED
SUBROUTINE 4 CALLED
SUBROUTINE 4 CALLED
SUBROUTINE 5 CALLED
SUBROQUTINE 6 CALLED
END MAINP

ND-80.196.01

BRF-LIMNKER USER MANUAL 21
The Multisegment System

3. THE MULTISEGMENT SYSTEM

The need sometimes arises for programs which are as big and extensive
as those built by overlay linking, but which are not organized
hierarchically like them. The BRF-Linker allows you to build such
programs by using of SINTRAMN [Il's mechanism far handling npamed
reentrant segments.

This mechanism -is only available in SINTRAN IIl version I or later
versions. In particular, this means that it is not available on the
NORD-10.

1.1 The SINTRAN II1 Segment Files

In order to be able to create and use the multisegment linking
facility, the programmer should grasp certain sides of the SINTRAN III
aoperating system, This is provided in this section, which may be
skipped by advancead SINTRAN II! users.

The Kkey element in the SINTRAN IIIl virtual memory system is the
segment file. This iLs a large, contiguous file on the system disk. The
segment file is divided into «contiguous arsas called segments. A
program to be executed must first be put into a segment on the segmant
file. The different pages of the grogram will thep be swapped into
main memory as they are referenced. When the computer’'s main memory is
full, the least recently used pages will be swapped back to their
segments,

For every terminal connected ta the computer there 1s a special
segment, called a background segment, reserved on the segment file.
When an ordinary program is started from a terminal, it is transferred
ta the terminal's background segment. From there it will be swapped
into the main memary as needed. In this way, when several wusers are
running the same program they will st1ll have separate copies of Lt.

A program may he either one-bank or two-bank. In a one-bank program,
toth pragram code and data are loaded into the same - GB4-page address
space, -or bank, in a two-bank pragram, the program code and data are
loaded into two separate 64-page banks, making possible a total
program size of up to 128 pages. Two-bank programs are usually
compliled with the SEPARATE-DATA agption in the caompller turned (N.

A background segment may be either 64 or 128 pages long. If orly one-
bank programs will be run from a terminal, then a 64-page background
segment will suffice. In order to run two-bank programs, Hhowever, we
need a 128-page background segment.

Heavily used programs may be permanently installed on their own
sagments in the segment file. Such oprograms are called reentrant
subsystems. Their pages will then be swapped in fram their segments
instead of from background segments, In this case, the same memary
copy of a page will be shared between all users running the program,
as long as it is not modified. If a uyser tries to modify a3 shared
page, he will get his own private capy of the page instead, and this

ND-60.196.01

22 BRF-LINKER USER MANUAL
The Multisegment System

private c¢opy will be swapped to his Bbackground segment. Thus a
Teentrant subsystem will, during runtime, censist of two different
kinds of pages. Some will be unmodified, shared pages from the
reagntrant segment. The rest will be modified, private pages from the
user's background segment,

3.2 Programming Considerations Using Multisegment Linking

The BRf-Linker uses the two-bank named reentrant segments mechanism to
make multisegment linking possible. This method of combining many
routines on several segments has the advantage that overlays will not
have to he read from a file during execution; control just switches
from one segment to another instead. Another advantage 1is that the
links need not be oprganized hierarchically, giving no means of
cammunication between links on the same overlay levels, only aleng
different branches of the overlay tree. [nstead the program may switch
freely between the various links.

Multisegment linking only works on two-bank programs. Therefore, all
routines in a multisegment structure must be compiled with the
SEPARATE-DATA optian turned ON. Afterwards, the programs Llinked
together in a multisegment structure must be dumped as reentrant
segmaents on the segment file. SINTRAM [II commands relating to the
adminigtration of segment files are found In the version af the
SINTRAN [II Reference Manual (ND-6D.128) and SINTRAN IIl System
Supervisor (ND-30.003} that pertain to your installation. The commands
for dumping programs onto the segment files are privileged, which
means that they are only available to the user SYSTEM.

[t 1is not possible to combine myltisegment and overlay linking within
the same program system.

Data areas which must be globally accessible throaughout execution af a
multisegment program system must fit into areas of data space which
are not used far any other purpose in any sagment accessed by that
program system, Furthermore, such data areas must be loaded so that
they do not overlap, [t Ls, af course, also possible to keep an area
global to some subroutines, and to use it for gther purposes as soGn
as these have finished execution., It is not possible, however, to
create heles in the data areas; they must be loaded consecutively from
the start address for that segment.

3.3 Organization of a Multisegment Program System

The following illustration shows how the multisegment siTucture 1s
organized gn the segments. Even if the drawing shows one particular
program structure, the 'use of segment space 1s the same here as 1n
every ather application of the multisegment, so the information 1t
gives is general,.

ND-60.196.01

BRF-LINKER USER MANUAL 23
The Multisegment System

600-word T
system Sys Sys Sys Svs
routine
At B1 1
b4é~page .
{minus
600 words) l
code parts
_C o
A2 c2
1-page Seg info Seg info Seg info Seg info
segment |---=-===| ~---- - R el Bt bt bl
info al
az2
bt
64-page
data parts
b2
cl
c2
Background Program Program Program
segment segment A segment B segment C

Three program segments plus the user’'s Bbackground segments are used
here. 7The segments have been named A, 8 and C during linking, and the
subroutines and pragrams that they contain have begen numbered
accordingly with capital letters, The data areas used by each program
or subroutine are similarly named in small letters. The drawing shows
one possible call structure. The program numbered Al is the roct nede,
and is statted by typing its name as response to SINTRAN [II's
d-prompt. The program A1l calls the subroutine B!, and from then on the
calls may be executed as shown by the arrows an the diagram.

It is not necessary %o keep data areas as strictly separated as they
are in this i1llustration. If one subprogram and its associated data
areas are not needed any more, the data areas may be wused freely by
ather parts of the program.

MD-60.196.01

24 BRF-LINKER USER MANUAL
The Multisegment System

J.4 Multisegment Linking Commands

Te c¢reate a multisegment program, some special commands both to the
BRF-Linker and to the SINTRAN III operating system are needed. The
reason for this is that during linking, the information necessary to
link the program parts together is added to the absolute program file
{with extensicn :PROG} that the B8RF-Linker creates., This information
is used when the different parts of an absolute program are linked
together with the LINK-TQ command. Dumping of a multisegment program
is done by using some aof the SINTRAN III commands available to wuser
SYSTEM.

3.4.1 Special BRF-Linker Commands for Multisegment Linking

As mentioned in the previous section, the preograms which we want to
link into a multisegment system must be transferred from a yser file
to a2 named segment in a segment file after loading and linking. During
loading, the pregram file must be specified using a special form of
the PROGRAM-FILE command:

Brl: PROGRAM-FILE <file name>/<{segment name>

The {(segment name> is the name of the segment where the reentrant
subsystem will be dumped. This name must be used with the SINTRAM III
commands necessary to place the linked elements on the segment file.
These commands are described in the next section.

The links between the programs on this file and the programs on other
files are established with the command:

Brl: LINK-TO <(file-1>, ... <file-m>

where gach (file~-n> is a program file with links to/from the current
program file. The current program fila is the file specified in the
PROGRAM-FILE command. Each of the files to be linked must have been
loaded as a multisegment program files.

When wusing the command LINK-TO, the BRF-Linker will link the n files
80 that programs in the n sagment pairs can call each aothar. Entries
in the files <file-1>, ... <file-n> are matched with the corresponding
entries in the current program file, If these files are now dumped tao
segment files, routines in the current program file may call routines
in the link files <file-1>, ... <file-n> and vice versa.

Please note that this matching does not imply that proegrams in the
files <file-1>, ... <file-n> will be able to call each other. If this
is desired, a new linking session is neseded to establish these links.

When the relevant information has been written on to the grogram
files, the BRF-Linker will respond by answering:

(entry> LINKED FROM <current file> TO (link file>
(entry> LINKED FROM <(link file> TQ <{current file>.

ND-60.198,01

BRF-LINKER USER MANUAL 25
The Multisegment System

If the BRF-Linker finds the same data or COMMON area in boath the
curraent pragram file and in a link file, it will output the message:

<entry> DEFINED IN BOTH <link file) AND <current file>.

Note that this may not necessarily constitute an error, but you should
check carefully that it is not meant to be the same data or COMMON
area.

If output has been redefined to a file by the OUTPUT-FILE command,
output from the LINK-TO command will be written to this file.

The LINK-TO command will only initiate the linking. Yhe actual linking
procass takas place after the EXIT commanad is given,.

The multisegment linking can be used with all programs compliled in the
two-bank mode. The total global data space (i.e., data space which Ls
avallable from all segments) is limited to a maximum of 63 pages, the
remaining t page is wused far segment information. Local data space can
be overlapped. If a segment using overlapped data space is entered and
another segment has usad the same data space, initial data will ba
used for the segment entared.

When loading a segment, the command:
Brl: DEFIME #DCLC, <address>

shoyuld be wused to place its private data in a suitable area. Due to
the paging system, the data area cannot be divided into smaller parts
than 20008 (2000 octall words. The data of that segment will be placed
contiguously fram that address. The first page {20008 locations) of
the data space is used to store segment information.

External data may be shared between segments simply by linking the
program files together., Nog entry names need to be specified, Data an a
linked segment will not be available beforse that segment has hbeen
entered {must have been called fram another segment). The data applies
until another overlapping segment is activated,

[f the LINK-TO command is given prior to a LQAD command, the defined
data entries in the files linked will be regarded as defined in the
current program file. The entries will not be defined from any LOAD
commands fgllowing LINK-TO, but will he linked from the link files at
EXIT.

If a FORTRAN COMMON area is to be linked from another segment, 1% is
defined by linking the program file whers the common area is defined
to the current program file. All common areas not defined (by LOAD or
by LINK-TD), will be defined when the EXIT command is perfaormed,

When using the multisegment system, the start address is 0 and the
restart address is 1 for the programs created.

ND-60.186.01

26 BRF-LINKER USER MANUAL
The Multisegment System

3.4.2 SINTRAN III Commands for Multisegment Programs

When a program file (with extension :PROG} has been created with
multisegment linking information on it, it must be transferred to a
sagment file,

The following commands do that. They must be performed by the user
SYSTEM.

JDUMP-PROGRAM-REENTRANT <subsystem-name>,(file>[,<segment-name]

which dumps the program file for the main program onto a segment in
the segment file, and:

ALOAD-REENTRANT-SEGMENT <file>, <segment-name>.
which creates subprogram segments on the segment file.

These SINTRAN III commands must be given after the linking sessions
have been finished and the resulting program files have been created.

The reentrant main program segment is accessible to all users. If it
is preferable to have somea degree of privacy for a multisegmant
system, the user can dump only the subprogram segments and keep his
main program on a program " file ({(with wextension :PRCG). The main
program will be read into the user’'s background , segment when it is
requested, and the background segment will subsegquently be used as fthe
main program segment. It will be difficult for unauthorized wusers to
use the subprogram segments without having access to the main praogram.

The segment file area may need to be cleared before loading. The main
pragram segmant is deleted by the SINTRAN II[command:

SDELETE-REENTRANT <subsystem-name>
and the other sesgments by:
JCLEAR-REENTRANT-SEGMENT <segment-name>
If the message;
‘Segment Number xx is not cleared’
appears, this means the segment is currently in use. The SINTRAN III

command CLEAR-REENTRANT-SEGMENT should then be repeated at a later
time.

ND-60.196.01

BRF-LINKER USER MANUAL 27
The Multisegment System

3.5 Example: Linking a Segmented Program Structure

Using the same main program and subroutines as in the example in
section 2.4, we now load the main program (MAINP) and its six
subroutines (SUBR1, SUBRZ2, SUBR3, SUBR4, SUBRS and SUBR6) onto
different segments and run it,

The program has the following call structure:

SEGTO SEGT1 SEGT2 SEGTI SEGT4 SEGTS SEGTE

§4-page
program M | § +| 5 S 5 S S
bank A U u U u U u
I B] B B B B
N R R R R R R
P 1 2 3 4 5]
| [
— | | | I b
|
Saegm. Segm. Segm. Segm. Sagm, Segm. Segm.
info. info. info. info. info. info. info.
64-page | m———— -—f----- = | - -=|----- .| e ——-
data mai
bank ng
subd sub
ri ré
sub sub
r2 r5
_____ DR DS . - . T T
sub sub
rl Th
|
SEGTO SEGT1 SEGT2 SEGT3 SEGT4 SEGTS SEGTS

Note that the size of the illustrated subroutines in the program bank
does not indicate the actual size, but 1s chosen in this way to give a
better view of the calling sequence.

NO-60.1958.01

28

BRF-LINKER USER MANUAL
The Multisegment Systam

The following linking session will create this structure:

@FORTRAN-100
ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D
FTN: SEPARATE-DATA ON

FIN: COMPILE MAIND TERMINAL, "MAINP"

ND-10Q/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D
SOURCE FILE: MATNP:SYMB

1t PROGRAM MAINP

2t WRITE (1,*) 'START MAINP®
3t CALL SUBR1(1)

4= CALL SUBR6(6)

5% WRITE (1,*) 'END MAINP'
6% END

- CPU TIME USED: 1.0 SECONDS. 6 LINES COMPILED.
- NO MESSAGES

- PROGRAM SIZE=53 DATA SIZE=%4 COMMON SIZE=0
FTN: EXIT

@FORTRAN-100
ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D

FTN: SEPARATE-DATA ON
FIN: COMPILE SUBR1, TERMIMNAL, "SUBRt"

ND-1CQ/NORD~-1C ANSI 77 FORTRAN COMPILER ~‘203053D
SOURCE FILE: SUBR1:S5YMB

1* SUBROUTINE SUBR1(N)

2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
3* CALL SUBR2(2)

4x* CALL SUBRS5(5)

5% END

- CPU TIME USED: 1.0 SECONDS. 5 LINES COMPILED.
- NO MESSAGES)

- PROGRAM SIZE=35 DATA SIZE=5% COMMON SIZE=(0
FTN: EXIT

AFORTRAN-100
ND-100/NORD-10Q ANSI 77 FORTRAN CCMPILER - 203053D

FIN: SEPARATE-DATA ON
FTN: COMPILE SUBR2, TERMINAL, "SUBR2"

ND-100/NORD- 10 ANSI 77 FORTRAN COMPILER - 203053D
SOURCE FILE: SUBR2:SYMB

1* SUBRQUTINE SUBR2(N)

2F WRITE (1,*) °'SUBROUTINE ', N, ° CALLED'
KR CALL SUBR3(N+1)

N CALL SUBRI(N+1)

5% CALL SUBR4(N+2)

6* CALL SUBR4(N+2)

T* END

NO-60.196.01

BRF-LINKER YSER MANUAL -
The Multisegment System

- CPU TIME USED: 1.0 SECONDS. 7 LINES COMPILED.
- NO MESSAGES

- PROGRAM SIZE=55 DATA SI2ZE=63 COMMON SIZE=0
FIN: EXIT

@FORTRAN-100

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER -~ 203053D
FIN: SEPARATE-DATA ON

FTN: COMPILE SUBR3, TERMINAL, *SUBR3"

ND-100Q/NORD-10 ANSI 77 FCRTRAN COMPILER - 203053D
SQURCE FILE: SUBR3:5YMB

1% SUBRCUTINE SUBR3(N)
2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
.3 END

- CPU TIME USED: 0.8 SECONDS. 3 LINES COMPILED.
- NO MESSAGES

- PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=0
FIN: EXIT

@FORTRAN-100
ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D

FTN: SEPARATE-DATA ON
FTN: COMPILE SUBR4, TERMINAL, “SUBR4"

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D
SOURCE FILE: SUBR4:SYMB

1% SUBROUTINE SUBR4(N)
2* WRITE (1,*) 'SUBROUTINE ',N, ‘' CALLED'
3t END »

- CPU TIME USED: 1.1 SECONDS. 3 LINES COMPILED.
- NO MESSAGES

~ PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=0
FTN: EXIT

@FORTRAN-100
ND~100/NORD-10 ANSI 77 FORTRAN COMPILER -~ 20Q3053D
FTN: SEPARATE-DATA ON

FTN: COMPILE SUBRS, TERMINAL, *SUBRS"

ND-1CO/NORD-10 ANSI 77 FORTRAN COMPILER - 203Q53D
SOURCE FILE: SUBR5:SYMB

1% SUBROUTINE SUBRS5(N)
2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
3 END

- CPU TIME USED: 0.8 SECONDS. 3 LINES COMPILED.
- NO MESSAGES

- PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=C
FTN: EXIT

ND-60.196.01

BRF-LINKER USER MANUAL
The Multisegment System

@FORTRAN-100

ND-1QC/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D
FTN: SEPARATE-DATA ON

FTN: COMPILE SUBRG,TERMINAL,"“SUBRS"

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D
SOQURCE FILE: SUBR6: SYMB

1* SUBROUTINE SUBR6(N)
2* WRITE (1,*) 'SUBROUTINE ', 6N, ' CALLED'
3* END '

- CPU TIME USED: 0.9 SECONDS. 3 LINES COMPILED.
- NO MESSAGES

- PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=0
FTN: EXIT

@BRF-LINKER
- BRF Linker - JULY 3, 1984

Brl: PROGRAM-FILE ‘FILEQ"/SEGTC

FREE: P 000665-177777 D 002077-1717777
FREE: P 027504-177777 D 010561-177777

Brl: EXIT :
SUBR1....27507 U SUBR6....27523 U

@BRE-LINKER

- BRF Linker - JULY 3, 1984

Brl: - . "

Brl: DEFINE #DCLC. 12000

Brl: LQAD SUBR1

FREE: P Q00643-177777 D 012072-177771
Brl: LINK-TQ FILED

Brl: LOAD FORTRAN-2BANK

FREE: P 027345-1771117 D 016474-177777
Brl: EXIT
SPTAB....13267
SEXCINF. . 12071
SESTACK..21375
55TACK....1077
5FIQ_BL..12087
SUSFILB..14655%
S5CNCT....14656
SALTREC..22332
SUBRT...... 600
SUBR2....27350

LINKED FROM FILEO TO FILE1
LINKED FROM FILEO TO FILE?
LINKED FROM FILEQ TO FILE?
LINKED FROM FILEQ TO FILEt
LINKED FROM FILEQ TO FILE1
LINKED FROM FILEQ TO FILE1
LINKED FROM FILEQ TQO FILE1
LINKED FROM FILEQ TO FILE1
LINKED FROM FILE! TO FILEO
SUBR5....27364 ©

cmoacaacaoaa

@BRF-LINKER
- BRF Linker - JULY 3, 1984

Brl: LOAD SUBR2

FREE: P 000667-1777177 D 022076-177777
Brl: LINK-TO FILEO,FILE?

Brl: LOAD FORTRAN-2BANK

FREE: P 027371-177777 D 026500-177777

NDO-6C.136.01

BRF-LINKER USER MANUAL
The Multisegment System

Brl: EXIT

SPTAB....13313
SEXCINF., 22075
SESTACK. .21421
5STACK....1123
SFIQO_BL..22073
SUSFILB..Z24661
SCNCT....24662
SALTREC. , 22356

LINKED FROM FILEQ TO FILE2
LINKED FROM FILEO TO FILE2
LINKED FROM FILEQO TO FILE2
LINKED FROM FILEO TO FILE2
LINKED FROM FILEQ TO FILE2
LINKED FRCM FILEO TO FILEZ2
LINKED FROM FILEQ TO FILE2
LINKED FROM FILEQ TO FILEZ
LINKED FROM FILE2 TO FILET
SUBR4....27410 U

Lo R v e e I cni S e Y - o

SUBR3....27374

@BRF-LINKER
- BRF Linker - JULY 3, 1984

Brl: LOAD SUBR3

FREE: P 000631-177777 D 032046-177777
Brl: LINK-TC FILEQ,FILE2

Brl: LOAD FORTRAN-2BANK

FREE: P 027333-177777 D 036450-177777
Brl: EXIT

SPTAB....13255 U LINKED FROM FILEC TO FILE3
SEXCINF..32045 U LINKED FROM FILEQ TO FILE3]
SESTACK..21363 U LINKED FROM FILEQO TO FILE3
5STACK....106% U LINKED FROM FILEO TO FILE3
5FI0_BL..32043 U LINKED FROM FILEQC TO FILE3
SUSFILB..3463%1 U LINKED FROM FILEQ TO FILE3
S5CNCT....34632 U LINKED FROM FILEQC TO FILE3
SALTREC..22320 U LINKED FROM FILEQ TO FILE3
SUBR3...... 600 P LINKED FROM FILE3 TO FILE2
@BRF-LINKER

- BRF Linker - JULY 3, 1984

Brl: PROGRAM-FILE FILE4“[5EGT

Brl: DEFINE #DCLC, 32000

Brl: LOAD SUBR4

FREE: P 000631-177777 D 032046-177777

FREE: P 027333~ 1????7 D 036450-177777
Brl: EXIT

5PTAB....13255 U LINKED FRCOM FILEO 1C FILE4
SEXCINF..32045 U LINKED FROM FILEQ TC FILE4
SESTACK..21363 U LINKED FROM FILEO TC FILE4
SSTACK....1065 U LINKED FROM FILEQ TO FILEA4
S5FIO_BL..32043 U LINKED FROM FILEQ TO FILE4
SUSFILB..34631 U LINKED FROM FILEO TO FILE4
SCNCT....34632 U LINKED FROM FILEQ TO FILE4
SALTREC, .22320 U LINKED FRCM FILEQ TO FILE4
SUBR4...... 600 P LINKED FROM FILE4 TO FILEZ

ND-60.1386,01

32 BRF-LINKER USER MANUAL
The Multisegment System

@BRF-LINKER
- BRF Linker - JULY 3, 1984
Brl . - It L

Brl: LOAD SUBRD

FREE: P 000631-177777 D 022046-177777
Brl: LINK-TO FILEQ,FILET

Brl: LOAD FORTRAN-2BANK

FREE: P 027333-177777 D 026450-1777177
Brl: EXIT

SPTAB....13255 U LINKED FROM FILEQ TO FILES
SEXCINF..22045 U LINKED FROM FILEQ TO FILES
SESTACK..21363 U LINKED FROM FILEQ TO FILES
5STACK....1065% U LINKED FROM FILEQ TO FILES
SFIQ_BL..22043 U LINKED FROM FILEQ TO FILES
SUSFILB..24631 U LINKED FRCM FILEQ TO FILES
S5CNCT....24632 U LINKED FROM FILEC TO FILES
5ALTREC..22320 U LINKED FROM FILEQ TO FILES
SUBR5...... 600 P LINKED FROM FILES TO FILE1
@BRE-LINKER

- BRF Linker - JULY 3, 1484

Brl: PROGRAM-FILE "FILEG"/SEGT6

Brl: DEFINE #DCLC, 12000

Brl: LOAD SUBRG6

FREE: P 000631-177777 D 012046-177777

FREE: P 027333- 1?7?77 D 0164530-177777
Brl: EXIT

SPTAB....13255 U LINKED FROM FILEQ TQ FILES
SEXCINF..12045 U LINKED FROM FILEQ TQ FILE®G
SESTACK..21363 U LINKED FROM FILEQO TO FILE®6
SSTACK....1065 U LINKED FROM FILEQ TO FILEG
5FIQ_BL..12043 U LINKED FROM FILEQO TO FILEG
SUSFILBE..14631 U LINKED FRCM FILEO TQ FILE6
S5CNCT....14632 U . LINKED FROM FILEQ TO FILEG
SALTREC. .22320 U LINKED FROM FILEQ TC FILEG
SUBRE...... 600 P LINKED FROM FILE6 TO FILEQ

Note that in order to get just one copy of the FORTRAN runtime system
data tables, the command LOAD FORTRAN-Z2BANK has to be placed after the
LINK-TO command for each subroutine. This is impartant to remember,
because if each subroutine gets its own copy of the runtime system
tables, the loaded program may not work.

ND-60.196.01

BRF-LINKER USER MANUAL 33
The Multisegment System

We can then wuse the described SINTRAN III commands to load and run
these segments. Remember, this loading must be done as user SYSTEM:

@BRLDEMQ

START MAINP

SUBROUTINE 1 CALLED
SUBRQUTINE 2 CALLED
SUBRQUTINE 3 CALLED
SUBROUTINE 3 CALLED
SUBROUTINE 4 CALLED
SUBROUTINE 4 CALLED
SUBROUTINE 5 CALLED
SUBROQUTINE 6 CALLED
END MAINP

ND-6D. 196,01

34

MD-60.196.01

BRF-LINKER

USER MANUAL

BRF-LINKER USER MANUAL 35
Program Inspection Commands

4. PROGRAM INSPECTION COMMANDS

Sometimes 1t is necessary to inspect the contents of the loaded
program. This can he done by the BH8RF-Linker, both an eaxecutable
program files and on a program currently being loaded.

To inspect an existing program file, use the command:
Brl: PROGRAM-FILE <file name)> W

When inspecting existing files, the only linker commands that can be
used are:

LOOK-AT-PROGRAM, LOOK-AT-DATA, RESTART, RUN and EXIT.

Multisegment program files can be inspected and modified, but no
segment names may be specified when using the W option. This must be
done before they are dumped onto the segment files. Patching of
segment files after the dumping has been done is an entirely different
topic not covered by this manual.

The commands:

Brl: LOOK-AT-PROGRAM <address>
and:

B8rl: LOOK-AT-DATA <address>

anable the usar to inspect and modify program/data locations, both on
axecutable program files and on the results of a loading session
before they are written onto such files. The cantents of the lacation
will be written on the terminal as a six-digit octal number, as a
decimal number and as ASCII characters. [f LOGK-AT-PROGRAM is wused,
the symbolic instructions will also be printed.

Mew contents are sntered by typing a new pnumber. The new number may be
given in octal or decimal mode. The default is octal mode. A Cdecimal
number may bhe specified by a trailing 0, an actal number by a trailing
8. Signed numbers may be used.

CR {carriage return! advances to the next address without changing the

contents of the item. EXIT or . ({period) returns control to the
BRF-Linker command processor.

NO-B0.196.01

36

ND-60.196.81

BRF-LINKER

USER MAMNUAL

BRF-LINKER USER MANUAL 37
Editing commands

5. EDITING COMMANDS

The BRF-Linker can also be used for editing files cantaining BRF code
{output frem compilers, the MAC assembler, etc.). The B8RF code farmat
is described in chapter §&. The BRF-Linker, used as an editor, can
perform such operations as combining files, modifying libraries, etc.
Be aware of the following points: ,
- The BRF-Linker will check all ynits for syntax errors and checksum
erTors.

- The default values for the <(first unit> and <last unit> parameters
are the first and the last BRF units on the file respectively.

- All files wused as parameters (except the <output file>} have the
default type :BRF,.

- The units to be specified in the commands can be identified by any
of the names defined by the MAIN or ENTR codes (see chapter 6).

5.1 Basic Symbol Handling
The command:
Srl: LIST-BRF-ENTRIES <file name>, <output file>

will list all defined symbols and their addresses found in <file name>
anto the output file. The output will appear 1n this arder: symbol
name, address and mode {program or datal. ’

As an example, let us use the 8RF-Linker command LIST-ENTRIES to take
a look at the SUBR file containing the subroutines SUBR3I, SUBR4, SUBRS
and SUBREG from the overlay example in sectfion 2.4%:

@RRE-LINKER
- BRF Linker - JULY 3, 1984
Brl: LIST-BRF-ENTRIES SUBR,,,,

SUBR3........ QP SUBR4....... 31 B SUBRS....... 62 P
SUBRG6.....,. M3 e * 144 P

LI 231 0

Brl: EXIT

Brl: APPEND-BRF <source file),<destination file> <after unit>

The BRF units in the source file will be inserted in the destination
file after the unit identified by <after unit>. If ne <¢after unitd> s
specified, the source file will be appended to the destination file
after the last BRF unit in the destination file.

Brl: FETCH-BRF <source file),6 {destination file>, ¢<first unit>,
<last unit>

NB-60.196.01

38 BRF~LINKER WUSER MANUAL
Editing ceommands

The B8RF units in the source file, starting with the <(first unmit> and
including wevery unit up to and including the <last unit)>, will pe
appended to the destinatiaon file fallowing the last BRF wunit which
appears in it.

Brl: DELETE-BRF <file name>, K <(first unit>, 6 ¢(last unit>

The specified BRF units will be deleted from the file. The
<first unit> will be the first unit deleted, then all the 8RF wunits
following it, including <last unit>, will be deleted.

5.2 Commands for Updating
The command:
Brl: REPLACE-BRF <source file>,h <destination file>

will replace the BRF units in the destination file with the same name
as those in the sgurce file hy the BRF units in the source file.

The BRF wunits in the destination file will have the same relative
position within the file after the REPLACE-3RF cgmmand as they had
before.

BRF units in the source file not found in the destination file will be
skippad and a warning message will be issued.

BRF units without symbolic names cannot be replaced.

5.3 Additional Symbal Cosmands
The command:
Brl: PREPARE-BRF-LIBRARY-FILE <source file>

will set up a BRF unit containing an index table of all the BRF units.
The index table is the first BRF unit in the new file. Each element in
the index table consists of 5 words: 3 words for the unit name and 2
words for the byte pointer of the unit. Selective loading {search for
referesnced library units) from a file with an index table will be
faster than loading the same file without the index table.

The index tabhle is invalidated by all commands modifying the contents
of the BRF file [APPEND-BRF, FETCH-BRF, DELETE-8RF and REPLACE-BRF).
The table must be rebullt if any of these commands are performed.

Brl: INSERT-BRF-MESSAGE <(file name>,K <(before unit>, 6 (message>

This command inserts a message in the BRF file Dbhefore the specified
unit, [f the file is prepared with the PREPARE-BRF-LIBRARY-FILE
command, the default position is in the frant of the index table, The
specified message will be print8d when fhe file 1s loaded. If the file
1s a library file headad by an index table, any message inserted 1In
front of the ;ndex table is printed; all other messages (defined by

ND-60.196.01

BRF-LINXER USER MANUAL Ek:|
Editing commands

this command) are located outside 8RF units, and are not written.
Brl: RENAME-BRF <file name>,6 <(old symbal>, 6 <new symbol>

This command changes the name of a symbal in a BRF code file
identified by <file name>., The <old symbol> is the current name of the
symbaol while <new symbol> specifies the new one.

5.4 Other Functions
The command:

Brl: LIST-BRF-CODE <file name> <{first unit>,6 <last umnit>,
<output file>

will 1list the BRF information regarding the <first unit> and all the
other units up to and including <last unit> on the specified source
file on the <output file>. The informatian given is as faollows:

~ Location counter {octal)

- BRF control number (octall

- Name of the BRF control number

- All symbolic names (REF, ENTR, LIBR, MAIMN, ASF, ADS, etc.)
- Binary information {octal}

- Disassembled (if program code)

As an example, we use the BRF-Linker command LIST-BRF-CODE to take a
look at the small example program in section 1.4:

@BRF-LINKER
- BRF Linker - JULY 3, 1984

Brl: WEEIP_J_LJ_L
17 BEG *** new BRF - unit ***

1 32 LONG

1 11 AFL 11

12 14 MAIN TESTP
12 24 LNF 3
12 171400 SaX O

13 135021 JPL I * 2%
14 Q STZ *

15 2 LR 0

16 24 LNF 16
16 0 STZ *

17 O STZ *
20 Q STZ *
21 605 STZ ,B - 173
22 135013 JPL I * 13
23 44013 LDA * 13
24 135013 JPL I * 13
25 44013 LDA * 13
26 135013 JPL T * 13
27 135013 JPL I * 13
30 170777 SAA - 1
31 135012 JPL I * 12
32 124001 JMP * 1
33 135011 JPL I * 11

ND-60.196.01

40

34
35
36
37
40
41
42
43
44
45
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
65
66
67
67
70
M
72
72
73
74
75
75
103
104
105
106
108
108
106
106
106

Brl: EXIT

20
20

20
20
20

20
24

i O B DR = Do = D

[\]

(] [N Y
SN)~ O e (D o DD RO

o -

REF SINIT
REF SEXCEPT
LR Q
REF 5SFIO
LR 0
REF SDAT
REF 5CLs
REF 5XCLO
REF 5SLEAV
LNF 14
52110 LDT X 110
44523 Lba ,B 123
20111 STD * 111
51440 LDT ¢ ,B 40
40440 MIN ,B 40
52105 LDT ,¥ 105
51524 LDT I ,B8 124
20120 STD * 120
51117 LDT I * 117
431522 MIN ,X I ,B 122
40515 MIN ,B 115
2440 sTZ ,X ,B 40
LR 45
LF 26 5TZ * 26
LR 60
LF 1 STZ * 1
AFR 65,40
LR 63
LR 61
LNF 3
1 STZ * 1
2 STZ * 2
13000 sTT X I *
AFR 72,36
LR 70
LR 67
LF 177606 BORA 0 DT
AFR 75,15
AFL)
REF 5FIO_BL
LF 0 STZ *
REF SEXCINF
ARR 103,77
ARR 103, 100
AFR 0,14
AFR 6,16
ENTR label 1,0,0
END checksum : 72054

ND-60.196.01

BRF-LINKER

USER MANUAL

Editing commands

BRF-LINKER USER MANUAL a1
The Binary Relocatable Format

6. THE BINARY RELOCATABLE FORMAT

A program is a set of instructions and data which, when executed, will
perform an algorithm. A program may be in variocus forms. It may be
written in FQRTRAN, assembly code, machine code, etc. But the most
important aspect is whether it is bound to a specific location in
memary or not. We refer to a program that can be movaed to another part
of memory as a relocatable program.

Thus, a FORTRAN program and an assembly program (with only symboalic
addresses) are relocatable praograms, while a program in binary farm is
generally not relocatable. Consider the following three versions aof
the same pragram:

Praogram ABC Program ABC Program ABC
written in writtan in written in
assembly code Binary form tbinary form
{placed fram {placed from
lacation 1t0) location 20)
ABC, JMP I *+1 125001 . 125001
XY2Z 14 24
157 157 157
751 751 751
XYZ, WAIT 151000 151000

The binary program version which is bound to location 10 cannot Dbe
maved to location 20 without changes. The machine code is not in
relocatable format, since there is no information about which words
contain internal addresses that have to be modified depending on the
placement of the program.

If the language processors {compilers and assemblers) produced machine
code directly, this would cause serious problems for programmers.
Since every routine would be fixed in a specific place in memary, any
madification that would c¢hangse the length of any routine would mean
that the whole program system would have to be recompiled. Using
separately compiled routines (including runtime system routines) ar
combining routines written in different languages would be difficult
or impgossible.

For this reason most language processors generate relocatable code.
The relocatable code format used on ND-100 computers 1s ¢calied BRF
{Binary Relocatabhle Format). 1In this format, information about
raferences between the various parts of the program system, such as
procedure calls, references to global data, etc., is coded as symbols.
These symbols are alphapumeric names assigned by the compller to an
instruction or to a data item. The memory locations where thase
instructions and data items will eventually be placed are selected by
the BRF-Linker according to how it places the various program parts 1n
memoTy.

ND-80.,196.01

42 . BRF-LINKER USER MANUAL
The Binary Relocatable Format

6.1 The B8RF Structure

BRF code 1is organized in eight-bit bytes and can be stored on any data
medium {(magnetic tape, disk, etc.). The information contained in the
object program may be organized in the following kind of groups:

- Contrel infarmation is held in a control byte {(which forms the
control number) and is interpreted as loader commands.

- Programmed information is held in two bytes containing a sixteen-
bit word and is termed a P-group.

-. Symbolic information is held in four bytes for MAC and NPL, and
six bytes for FORTRAN, COBOL, etc. This is termed an S-group
containing a symbcl of one to seven six-bit characters.

For further infarmation see the MAC Interactive Assembly and Debugging
System User’'s Guide {ND-B8D.096).

BRF code is made up of a sequence of BRF groups. A BRF group can take
on ane of the following forms:

{control byte>

<control byte><{P-group><P-groupg>
<control byte><(S-group>

{control byte><S~-group>»<P-group>

The example program A8C will Llock Llike -this when broken down
columnwise into BRF groups:

Cantrol byte

mnemonics Control byte P-graup
BEG 17
LF 1 125001
LR 2 5
LF 1 157
LF 1 751
LF 1 151000
END 21 100574

The contents of the control byte will form the control number. Contrel
number 17 {mnemonic BEG} marks the beginning of the program. In
FORTRAN, CQOBOL etc., control number t7 (BEG) is followed by control
number 32 [(LONG) which indicates that all S-groups contaln six bytes
instead of faour. Control number 1 (LF) is followed by a P-group which
is to be loaded unmodified, while control number 2 (LR] is followed by
a P-group which contains an address relative to the Qeginning of the
program, and which should therefore be modified. Cantrol number 21
(END) is followed by a checksum.

NO-60.196.01

BRF-LINKER USER MANUAL 41
The Binary Relocatable Format

Symbols {labels} are represented by S-groups where the six last bits
are zero. (Mote that in the example above, 125001 denotes the
beginning of the program and is not a label.)

6.2 Relaocation of Internal Addresses

Suppose that the load address is set to location 621 (either as a
consequence of previous loading or by using the DEFINE commandg), and
that we are going to load the example program we have looked at.

When the BRF-Linker begins loading, it reads control number 17 (BEG}.
The current Llocation minus 1 is taken as the program’'s first address
{alsa called the “"program base”). In this case, the program base is
620. When loading, the program base iIs added to all P-groups which are
preceded by the control number 2 (LR). The result is shown below.

0
621 125001
625 = 8§20 + §
157
751
131000

6.3 Program Units

A program is compoesed of one main program angd zeTro 4dr more
subprograms, A common name for malin programs and subprograms 1S
program units,

When a compller compiles a program, each program unit 1s translated
without any information about other program wunits. Therefore, the
program units need not be compiled at the same time. Compilation of
some program ynits separately from other program wunits 1is called
separate compilation.

The address (or addresses})! of a program unit where the execution
begins is called the entry point., If the program unit 1is a main
program, the aeantry point 1is <c¢alled +the start address. A word
containing a reference to an entry point in another program unit 1s
termed an external reference,

NM0-60.196.01

44 BRF-LINKER USER MANUAL
The Binary Relocatable Format

6.4 Separate Compilation

The object program consists of one or more BRF program units. The
information necessary to link these together to an executable pragram,
namely the entry points and the external references, is symbolic, and
is placed in the S-groups. The meaning of the S-group is determined by
the preceding control number in the following way:

Control Number Mnemonic Meaning
14 MAIN Symbolic start address
15 LIBR Library subprogram entry point
16 ENTR Symbolic entry point
20 REF Symbolic external reference

The object program units begin with control number 17 (BEG), end with
control number 21 (END) and may contain one of the control numbers 14
(MAIN) or 16 ({ENTR}. A library subprogram has a control number 15
{LIBR) in addition to the t6 (ENTR)., A library subprogram is loadad
only when the LIBR symbol has been referenc¢sd by a REF group and 1is
not alraady defined as a symbolic entry point, Library subprograms
which are not needed are checked through to the END grougp.

I1f the 8RF-Linker dees not receive any other information, the program
units are loaded consecutively, starting at a system-defined address.
However, the program wunits may be loaded elsewhere by means of the
cantrol numbers:

10 (SFL) Start {continue) loading at the lecation in the
pP-group.

11 (AFL} Continue at the current location + the relative
address in the P-groups.

12 {SRL) Continue at the current program hase + the
relative address in the P-group.

The main program and the subprograms may be read in an arbitrary
sequence. [¥ the program unit A refers to another program unit 8, it
does not matter which of them is loaded first. The (necessaryi library
subprograms are loaded last. But if the library subprogram A refers
to another 1library subprogram - B, then A must be loaded first,
otherwise 8 will not be loaded.

6.5 Linking of Program Units

The BRF-Linker has a symbol table where each entry consists of three
words for the symbol (the S-group)! and one word (ADR) for the address.

NG-60.1386.01

BRF-LINKER USER MANUAL 45
The Binary Relocatable Format

ADR may have two different meanings:

1) If a symbalic entry point has been read, then AQR is the meamory
address of the entry point.

2} If only symbolic external references to a symbel have been read,
then the ADR is a peinter to the last location at which the symbol
was referenced. This location contains a pointer to the preceding
reference %to the same symbal, and so on. The first reference
location contains the word 1777778 to mark the end of this list.
One bit in the table entry is used to discriminate between the twe
interpretations aof ADR.

When a symbolic entry point 1is defined, any previous eaxternal
references to this symbol will immediately be changed to the defined
memory address of the symbel. This is done by feollowing the 1list of
references to the symbol described above.

6.6 FORTRAN COMMON Blocks

Some special BRF control numbers are used to ease the 1mplementation
of FORTRAMN COMMON areas and data space alleocation in general.

The memory area 1in which the B8RF-Linker puts the program is a
continuous area from a lower address wup to the upper bound. The
program wunits therefore normally grow upwards. For one-bank programs
(but not for two-bank programs), COMMON blocks are allocatad from the
upper bound downwards. Thus fthe COMMON block address is found by
subtracting the length from the upper bound and reducing the wupper
bound appropriately.

For two-bank programs, COMMON blocks are allocated from the present
data load address upwards like all other data areas.

The COMMON blaock address must be known before the addresses
referencing COMMON are loaded. Therefore the COMMON block address
which uniquely specifies the maximum black length is defined by the
first program unit wusing COMMON data. This explains the restriction

that a COMMON bleck cannot be expanded by the succeeding program
units.

The ASF graup has the farmat:
CASF><{S-group><{P-group>

where the S-group c¢ontains the name of the COMMON block., and the
P-group contains the block length,.

Data in CCMMON is referenced by indirect addressing. Such addresses
are followed by the control number 27 (ADS) which tells the 8RF-Linker
to add the COMMON block address.

ND-6G.136.01

45 BRF-LINKER USER MANUAL
The Binary Relocatable Format

The ADS-group has the format:
{ADS><S-group>

with the interpretation that the value of the S-group is added to the
previously loaded address (P-group).

.7 Fix-up Facilities

The BRF code is designed to allow single-pass, sequential
transformation. This implies that the BRF-Linker must be able to fix
words which have already been loaded. This is done by the four control
numbers & (AFF), 5 [ARF), 6 {AFR}, 7 (ARR} which all have twa P-
groups. The second P-group centains an address, and the first P-graup
has contents which will be added to that address. Both the address and
the contents of the first P-group (which may be an address) may be
relocated relative to the program base, and this therefore gives four
possibilities.

5.8 Checksum

In order to detect read errors during leoading, a checksum is placed
behind each END control byte. Here, everything from the BEG contraol
byte to the END control byte is added together, complemented and put
in a P-group. The control bytes are regarded as eight bits, thes P~
group as sixteen bits, and the $-group as two or three sixteen bit
numbers.

6.9 Description of the BRF Control Numbers

The legal control numbers are consecutive numbers starting at zero and
are interpreted as commands to the BRF-Linker. They are listed in the
following table together with their mnemonics and interpretatian.

The terminology needs some explanation:

CLC is the current location counter. It contains the address where the
next word is to be placed.
PB is the program base aof the current program unit,
CD8 is the COMMON data base (COMMON block address).
W1 and Wn are the contents of the first ¢to the n'th P-group,
respectively.

If "a" is an address or an address expression, then {(a) is the content
af this address. The expression X — (Y) means that the value X will
replace the contents of Y, while X — {({Y)) means that the value X
will be copied to the location having the address found in Y {indirect
addressing).

ND-60.196.01

BRF~LINKER

USER MANUAL
The Binary Relocatable Farmat

BRF control numbers

Cantrol |Mnemonic| No. Interpretation
Number of
(octal) Words
] FEED a Ignored
1 LFE 1 Wi—({CLC}),(CLCI+1—+(CLC)
2 LR 1 Wt+ (PB)—((CLC)), [CLC)+3—{CLC)
3 LC 1 Wi+ (CDB)—{(CLC)), {CLC)+1—{CLC)
4 AFF 2 Wi+ (W2)—2{W2)
5 ARF 2 WI+(PBl+(W2)~—2{W2}
6 AFR 2 - W1+{W2+(PB})—{W2+(PB})
7 ARR 2 Wi+ (PB)+(W2+(PR))—(W2+(PA})
10 SFL 1 Wi—({CLC)
11 AFL 1 Wis(CLC)——(CLL}, fill zeros
12 SRL 1 Wi+ (PB)—{CLC)
13 - Not Used
14 MAIN 2(3}| Symbol in S-group will become the main
entry
15 LIBR 2{3)| Conditional loading
16 ENTR 2{3)| Symbel in the S-group is assigned value
af CLC
17 BEG 0 [CLC}—(PB) First control byte of a unit
20 REF 2(3)| Symbol in S-group is referenced in CLC
21 END 1 W1 contains the BRF-checksum
22 INHB 0 Warns that compilation errors have
occurred
23 EQF g End of loading
24 LNF T+W1| W2, W3, ... Wn—(CLC), ..., (CLC+WI-1}

ND-50.196.01

&7

48 BRF-LINKER USER MANUAL
The Binary Relocatable Format

BRF control numbers - continued

Control |Mnemonic| No. Interpretation
Mumber of
foctal) Words
29 RT 1 W1 contains real time priority
26 ASF Jl4)| <symbol><number> Defines common length.
Value of symbol in loader table = common
start address.
21 ADS 213)| <symbol>+({CLC-1)—{CLC-1]) Adds commen
address
310 MS5G 1+W1| Wt contains length of message in words
31 - Mot used
32 LONG 0 Flags a six-byte S-group
33 - Not used
34 INL 2 WZ—{W1+({PB}?}
as DBL 3 Wi—{wi+(PB)+i-2) (i = 2 to 3}
36 RLL & Wi—{Wit+(PR)+i-2) (1 = 2 to 4)
37 CXL 7 Wi+ (W1+(PB}+i-2} {1 = 2 to T7)
40 «x INC £(5)| W5— (W4 + ADR)
L1 x DBC S{6}| Wi—{W& + ADR + i-5} {i = 5 to §)
£2 * RLC B{T7)| Wi—* (W4 + ADR +» i-5) {1 = 5 to 7]
43 % CXC 2{10)| Wi—{W4 + ADR + 1i-5) (i = 5 to 10}
bk BYL 2 W2ibit 0-7)—{W1+(PB}){bit 0-7) if W2
bit 15=0
W2{bit 0-7)—{Wi+(PB)){bit 8-15) if W2
bit 15=1
45 * BYC 5 WS(bit 0-7)—*{Wsk + ADR)(Dit 0-~T7) 1f WS
bit 15=0
WS{bit 0-T)—{W& + ADR){bit 8-19) if W5
bit 15=1
46 NWL 1 W1 contains line number. (Not in use.}
47 DBG 0 Indicates start/stop of Debug information

ND-80.1986.01

BRF-LINKER USER MANUAL 49
The Binary Relocatable Farmat
BRF control numbers - continued
Control |Mnemonic| No. Interpretation
Number of
{octall Words
50 PMG 0 Indicates start of program pank mode
51 DMO 0 Indicates start of data bank made
52 LRFP 1 Same as LR but PB of program bank
53 LRD 1 Same as LR but PB of data bank
54 DIC - Dictionary table follows. Each element
contains name (3 words) and byte pointer
(2 words). End of table marked by -1.
* The W1, W2, and W3 contain a common block name. At load time thnis

symbol must be defined.

Its value is referred to as ADR.

ND-60.198.01

50

ND-60.195.01

BRF-LINKER

USER MANUAL

BRF-LINKER

USER MANUAL

APPENDIXES

ND-60.196.01

51

52

ND-60.196.01

BRF-LINKER

USER MANUAL

BRF-LINKER USER MANUAL 53
Command Summary

A. COMMAND SUMMARY

In this appendix the various commands of the BRF-Linker are briefly
described.

The BRF-Linker is controlled from the terminal by the following
command words. They may be ahbreviated provided no amhiguity results.
The parameters, 1f any, are separated by a space or a comma.

Brl: APPEND-BRF <source file)>, <destination file> <after unit>

Insert all B8RF wunits 1in the scurce file into the destination file
after the specified unit. If no unit is specified, append the units
from the source file at the end of the destination file.

frl: COPY-PROGFILE <source file)>,K <{destination file>
[,<Include Debug? YES/NO>]
[,<Include Link Information? YES/NO>]

The <source filed» 1is the name of the file to copy from,
(destination file> is the name of the file to copy to. The default
file type is :PROG for both files, The parameter
¢Include debug? YES/NO> glves the user an gpportunity to include debug
information during caepying. Answer YES to include 1t or NO to
delete it. The default answer is NO. For files using the multisegment
system, link information can be deleted while copving. The parameter
<Include Link Information?> gives the user an oppoertunity to include
multisegment link information. The default answer is NO.

8rl: DEBUG-MODE <ON/OFF>

Debug information on BRF files can be accepted or i1gnored. Default
parameter is ON.

8rl: DEFINE <symbol>,K <address>,<P/D>
The symbol will be entered into the B8RF-Linker’'s symbol table. Its

value and mode will be equal to what is specified. Oefault mode is P
{program mode}.

Brl: DEFINE <symbol> ? <P/D>

If defined, the value of the symbol specified will be printed on the
terminal.

Brl: DEFINE <#PCLC/#DCLL>, <address>

Subsequent loading in the specified bank will start from the address
specified.

NO-60.196.01

54 BRF-LINKER USER MANUAL
Command Summary

Brl: DELETE-BRF <file name> <first unit>,6 <last unit>

Delete a sequence of BRF units from the specified file starting with
the <first unit)> and delete the following units up tao and including
the <last unit>.
8rl: EXIT
Control is returned to SINTRAN III.
Brl: FETCH-8RF <scurce file)> K <destination file>, K <first unit),
<last unit>
Fetch a sequences of BRF units from the source file, starting with the
(first unit> and taking all following units up ta and including the
<last unit>, and append them at the end of the <(destination file>.
Brl: RELP [<command>]
List the available loader commands matching <{command> on the terminal.
If no command name is specified, all commands will be listed.
Brl: INSERT-BRF-MESSAGE <file name>, <hefore unit>, 6 <{message>
Insert a message before the specified wunit on a given file. The
message will be printed on the terminal when the file is loaded.

Brl: LIBRARY-MODE <ON/OFF>

Library files can be loaded in library mode or normal {(non-library!
mode. The default wvalue is ON.

Brl: LINK-TO <file-1>, 6 [<file-2>,....,<file-n>]

Perform multisegment linking between the praogram file (as specified in
the PROGRAM-FILE command) and the files specified in this command. The
default file type is :PROG.

Brl: LIST-BRF-CODE <file name>,<first upit>,6 <last unit>,
<output file>
List information from a sequence of BRF units in the specified source

file pon the <output file>, starting with the <(first umnit> and ending
with the <(last unit>,

ND-80.196.01

BRF-LINKER USER MANUAL . 55
Command Summary

Brl: LIST-BRF-ENTRIES <(file name>, K (output file>

List all defined symbols in all BRF units in the specified source file
on the specified output file,

Brl: LIST-ENTRIES-DEFINED

All defined symbols in the BRF-Linker's symbol table (ip both program
code and data banks) and the current address/value will be printed on
the terminal.

Bri: LIST-ENTRIES-UNDEFINED ,,,
This command is similar to LIST-ENTRIES-DEFINED,,, except that
undefined symbols are printed.

Brl: LOAD <file name>[,<file name>,,.]
The file{s} specified will be loaded until the end-of-file marker is
ancountered. The default file type is :BRF.

8rl: LOOK-AT-DATA <address)

Used to inspect and modify data locations.

Brl: LOOK-AT-PROGRAM <address>

Used to inspect and modify program leocations.

Brl: OUTPUT-FILE <file name>

This command is used to specify that output is to be written to the
specified file instead of the terminal. Qutput from the follawing
commands: LIST-ENTRIES-DEFINED, LIST-ENTRIES-UNDEFINED, LINK-TO,
PROGRAM-INFORMATION, LIST-BRF-CODE and LIST-BRF-ENTRIES will be
written ta the file specified. The default file type 1is :SYMB. To
reset output to the terminal, give the command QUTPUT-FILE with no
file name.

Brl: OVERLAY <level>, 6 <entxy name 1>[,..., <entry name n>l

This command specifies that the next overlay link is to be generated.
The <level> i1s the overlay level. The parameters <entry name 1> to
<entry name n> are the names of the subprograms c¢alled from the
previous level. The rooct link is level (0. A 1level must always De
specified when linking overlays.

Nb-60.195.01

58 BRF-LINKER (USER MANUAL
Command Summary

Brl: PATCH-PROGFILE-NAME <(file name>,6 ¢(new name>

This command 1s used to change the name used in the PROGRAM-FILE
cammand when the program file specified by <file name> was written. If
the SINTRAN I1I1 command RENAME-FILE is wused to remame a filile, the
PATCH-PROGFILE~-NAME command can be ysed tao change the file name
written on the file. Note that this command will not change the
SINTRAN [II file name.

Brl: PREPARE-BRF-LIBRARY-FILE <source file>

Generate an index tahle of all BRF units in the <source file> and
insert this index table as a new unit at the very heginning of the
file.

Brl: PROGRAM-FILE <file name>[/<segment name>1[,6 <W>]

The output from the BRF-Linker will be laoaded onto the file specified.
The default file type is :PROG, The /<{segment name)> parameter is used
te specify the segment name in multisegment mode, and the <(W>
parameter is wused to indicate that only the program inspection
commands are to be used on an existing program file.

8rl: PROGRAM-INFORMATION <file name>
[,<Dump Link Information?YES/NO>,K <output file>]

Information concerning the specified program file will be listed. The
default file type is :PROG. The two last parameters are only wvalid for
multisegment program files., The default file type for the output file
is ;SYMB.

Brl: REFERENCE <symbol)>, <address>,6 <P/D>

This command is used to insart or refer to an undefined symbol 1n the
BRF-Linker's symbol table. The following rules apply:

1} If the symbol is not present in the symbel table, the wvalue -1
will be put into the specified address and this address will be
referenced in the table. The specified octal address must be an
unused memory address, otherwise the information stored there
previously will be written over. If no address is given, then the
symbol will be treated as a referenced symhol anly.

2) If the symbol is present, but already referenced {(undefined), the
address specified will be linked into the reference chain.

3) If the symbol is defined, its value will be put intg the address
specified.

4) The default bank is P [program bank].

ND-5D.195.01

BRF-LINKER USER MANUAL 27
Command Summary

Brl: REMOVE <symbol>, <P/D>
If present, this symbol will be removed from the B8RF-Linker's symbol
table.

8rl: RENAME <old symbol>, 6 <new symboal>
This command 1s used to give the specified symbol a new name.
Subsequent references to the <old symbal> will be assumed to be
references to another symhol with the old name.

8rl: RENAME-BRF <file name>, 6 <cld symbol), K <new symbol>
This command is used to change the name of a symbel (<ald symbel>) in
a specified BRF file.

Brl: REPLACE-BRF <source file>, 6 <destination file>
Replace BRF units on the destination file with units from the source
file. UYnits found only in the destination file will not he changed,

whereas units only found in the source file will be ignored, giving a
warning message.

Brl: RESTART <address>

or

Brl: RESTART <(symbol>

To set the restart address (the address that the program starts
exacuting from when you type QCONTINUE at vyour terminal} of the
program file specified in PROGRAM-FILE command. The <(symbol> must be a
defined antry in the program area. The default restart address will be
equal to the main start address. -

Brl: RUN

This command leaves the BRF-Linker and then starts executing the
program file opened with the PROGRAM-FILE command at the beginning of
the loading session.

NO-E0.196.01

58

ND-60.196.01

BRF-LINKER

USER MANUAL

BRF-LINKER USER MANUAL 59
Error Messages

B. ERROR MESSAGES

When an error occurs during a loading sessicn, the BRF-Linker types
the text B8rl message: faollowed by an error message on the terminal or
output device. The wvarious error messages are listed below in
alphabetical order.

In addition to these messages, some of the file system error messages
may appear on your terminal.

AMBIGUOUS COMMAND

The last command name has been abbreviated and is not unique.

CHECKSUM ERROR

The BRF +file contents have been corrupted as a result of hardware or
software errors ogcurring during reading or writing.

COMMON BLOCK EXHAUST AVAILABLE SPACE

The common block size is too large for the remaining free area.

COMMON BLOCK EXPANDED

The length of a previcusly defined common block has been declared to
be larger in a subsequently loaded praogram,

COMPILER SYSTEM ERROR

Erroneous use of generated labels in the compiler.

DATA SPACE EXCEEDED

The current load address of the data has reached the maximum limit of
B4 pages.

DEBUG TABLE FULL
The current address for debug information has reached the absclute

upper limit of the free aresa.

FILE DOES NOT CONTAIN BRF-CODE

Non-interpretable information has appeared on the BRF file.

ND-89.196.01

60 BRF-LINKER USER MANUAL
Error Messages

xxxxx FIRST UNIT IS NOT PRIOR TO LAST UNIT

The BRF unit xxxxxX is not prior to the <(last unit)> specified.

ILLEGAL OVERLAY LEVEL

The overlay level must not be increased by more than 1 from the last
QVERLAY command; the first time it must be 0.

ILLEGAL SEQUENCE OF OVERLAYS

An g¢verlay has rTeferenced a symbol which is not in its path, nor in
any links immediately below it%.

INVALID ADDRESS

An address specified in the last command is not a valid address.

xxxxx INVALID ADDRESS OR NOT DEFINED SYMBOL

The symbol or address xxxxx specified in the last command is not a
valid address or a defined symbol,

INVALID COMMAND

The last command name is unknown,.

INSUFFICIENT BRF-UNIT, SYNTAX ERRORS

Errors have occurred during the compilation process.

MIXED ONE/TWO BANK ROUTINES -

Routines compiled with the compiler command SEPARATE-DATA OFF may not
be mixed with routines compiled with SEPARATE-DATA ON. There 1s an
exception in the case of routines written in MAC and NPL.

NEW CHECKSUM GENERATED

Using the command RENAME to rename a symbal will cause a checksum
error. To avercome this, a new checksum is generated and written to
the BRF file. Note that this message does not necessarily indicate an
arrar.

NO MAIN ENTRY

The user is trying to start a program having no main program module.

ND-60.196.01

BRF-LINKER USER MANUAL 61
Error Messages

NO PROGRAM-FILE SPECIFIED

The command PROGRAM-FILE must be used before any files can be loaded.

NO SUCH FILE

The file name specified in the command is not a legal file name.

xxxxx NOT FOUND IN DESTINATION FILE

The BRF unit xxxxx is not a unit lantry) in the destination file.

xxxxx NOT FOUND IN SOURCE FILE

The BRF unit xxxxx 1s not a unit {entry) in the scurce file.

OVERLAPPING DATA IN LINKED SEGMENTS

The local data corresponding to each code segment must be loaded into
different areas in the data segment.

PROGRAM SPACE EXCEEDED

The current load address of the program area has reached the maximum
limit of 64 pages.

PROGRAM SYSTEM TOO LARGE

Puring overlay Jloading, the averlaid program system has become too
large for the BRF-Linker to handle.

REDEFINITION. LAST APPLIES xxXX yyyy.

The symbal xxxx being defined (either by loading a file or by the
DEFINE cemmand) has alrsady been assigned an oc¢tal value vyyyy. The
first value defined for the symbhol is kept.

REFERENCED ELSEWHERE THAN CURRENT OR PREVIOQUS LEVEL

During overlay loading, references should eonly be to the current or
the next level.

ROOT-SEGMENT NOT INITIATED (OVERLAY O)

-

In overlay loading., the o¢overlay system must be initiated Dy the
command OVERLAY 0, ,.

ND-60.136.01

62 BRF-LINKER LSER MANUAL
Error Messages

SEGMENT-ROUTINE NOT LOADED

In multisegment loading, the routine for segment switching is not
loaded. The library must be lgaded.

xxxxx SYMBOL NOT FOUND

The symbol xxxxx 1is not found in the symbol table.

TOO LONG NAME. WILL BE TRUNCATED

The name 1s too long and will be truncated to a maximum of 15
characters.

UNDEFINED COMMON LABEL

Undefined common block in program.

UNDEFINED ENTRIES

Undefined entries in loaded program.

ND-60.1398.01

BRF-LINKER USER MANUAL
Index

Index

Absolute program 0 4 0 e e e e e e e .2, k.
Absolute program files 2.
Address symbolic start L 0. L. ke,
AMBIGUOQUS COMMAND ., . . ., . . . « . . + v « « « « . , 99,
Angular brackets 1,
APPEND-BRF command T i A <
Backward raference in overlay systems P e
Binary ’
program . ., e 1 I
Relocatable Format e A I
BRF . e 2
code - e e
cantrol number e - Y-
P-group . . . & . & i . e e e e e e e .. k2.
Lo = ok + 1 7 - e 33
8RF-Linker
commands v . . 4 e e s 4 e e e ea o Y, 53,
input . . L L s s s e e e e e e e
maodes
BRF Control
byte . . . e Y-
Lnformatlon . 2
number . . . o e e e e e e e e e .. hB,
BRF Symbaelic LnFormatlon T Y
Brl message &+« 4 v 4 4 4 4 . . . 59,
Carriage return o 0 0 . oo T
Checksum . . Y ¥
CHECKSUM ERROR - 1 I
Camma « © 4 i e e e e e e e e e e
Command
APPEND=BRF & v v e e v e e e e .. 37, 583,
COPY-PROGFILE v & v « « « « « o . 11, 53.
DEBUG-MODE« . v v « &« « & &« « v « « « . 4, 53,
DEFINE « v v « v « « « « v v « v v . .1, 8, 25, 53.
DELETE-BRF e e e e e e e e e e e . 4.38, 54,
DUMP-PROGRAM- REENTRANT e e e e e e e e e e e . . 28,
EXIT . . & v & & v v e v e e e e e e e e . e ... 5, 25, B4,
FETCH-BRF+ .+ « & & v v v &« w v &« v « « « . 38, 854,
HELP . . . e -
INSERT-BRF~- HESSAGE e - I T Y
LIBRARY-MOQDE+ « « 4 &, 54,
LINK=TQ . . . v v . e v v e e e e e e e e e e .. 26, 84,
LIST-BRF=-CODE + + & v « & « & + « . 39, 54,
LIST-BRF-ENTRIES « . + « « + + « « . , 31, 85,
LIST-ENTRIES-DEFINED + . + . . . < . . 1, 55,
LIST-ENTRIES-UNDEFINED . . ., 1, B8,
LOAD O S 1 I
LOAD- REENTRAHT SEGHENT 4 -
LOOK-AT=DATA & & « & &« & = « « « « . . 35, 955,
LOOK~AT-PROGRAM ., . . e« v 4« o+ e + 4+ « « . . 135, 55,
Multisegment PROGRAM- FILE e e e e e e e e e e 24,
QUTPUT-FILE « « &« . « « v v o« « v v « « . 1, 25, 55.

ND-60.196.01

64

OVERLAY ., . . .«
PATCH-PROGFILE- NAHE
PREPARE-BRF-LIBRARY-FILE
PROGRAM-FILE .
PROGRAM~INFORMATION
REFERENCE
REMOVE
RENAME . .
RENAME-BRF
REPLACE-BRF
RESTART
RUN . .
Command abbrevlatlon
Command format
Command summary .
Commands for loading overlays
COMMON
addressing
block
declaration
expansian
length .
COMMON block address .
COMMON BLOCK EXHAUST AVAILABLE SPACE
COMMON BLOCK EXPANDED . .
COMMON bhlocks and Hultlsegment l;nklng
COMPILER SYSTEM ERROR ..
Control
byte in BRF
character .
information in BRF
numbers 1n 8RF
COPY-PROGFILE command
Copvying pregram files
Current location counter
Data
Program
Data
inspection
modification
DATA SPACE EXCEEDED
Debug information
DEBUG TABLE FULL
DEBUG-MOOE command
Debugger and Overlays
Decimal number
Default
file type+ . . .
LIBRARY-MODE
- load-file type
restart address
Default file type

-

ND-60.196.01

BRF-LINKER

16,
10,
3e,
4 L3
10,
8,
8,
8,
39,
is,
8,
s,

1 '
53.
16.

&5,
£5.
45,
43.
45.
46.
59.
55.
25.
59.

2.

42,
42,
11,
1.
46,
8,

8,

35,
35,
59.
L

59.
L3

15.

53.
55.

93.

USER MANUAL

55.
56.
56.

24,

56.

586.
57.
57.

57.
57.

57.
57.

53.

53.

33.

53.

55.
5%,

53.

53.

35,

Index

56.

BRF-LINKER WUSER MANUAL
Index

Defauylt load-file type
Default restart address
Default values for missing parameter
DEFINE command
Defined symbols
DELETE-BRF command
Demand paging
Dependent links in overlay systsms
Design of an overlay system
DUMP-PROGRAM-REENTRANT command
Dumping . .
Hultlsegment program .
Overlay program
Editing commands
Entry point
Error
AMBIGUOUS COMMAND
CHECKSUM ERRQR .
COMMON BLOCK EXHAUST AVAILABLE SPACE
COMMON BLOCK EXPANDED’
COMPILER SYSTEM ERROR
DATA SPACE EXCEEDED
DEBUG TABLE FULL
FILE DOES NOT CONTAIN BRF CUOE
FIRST UNIT IS NOT PRIOR TO LAST UNIT
ILLEGAL OVERLAY LEVEL .
ILLEGAL SEQUENCE OF OVERLAYS .
INSUFFICIENT BRF-UNIT, SYNTAX ERRQRS
INVALID ADDRESS

INVALIO ADORESS OR NOT DEFINED SYHBOL

INVALID COMMAND

MIXED ONE/TWO BANK ROUTINES

NEW CHECKSUM GENERATED

NO MAIN ENTRY

NO PROGRAM-FILE SPECIFIED

MO SUCH FILE .

NOT FOUND 1IN DESTINATION FILE

NOT FOUMD IN SOURCE FILE .
QVERLAPPING DATA IN LINKED SEGHENTS
PROGRAM SPACE EXCEEDED

PROGRAM SYSTEM TOOQ LARGE
REDEFINITION., LAST APPLIES xXxxx yyyy.

REFERENCED ELSEWHERE THAN CURRENT / PREVIOUS LEVEL

ROOT-SEGMENT NOT INITIATED OQVERLAY O
SEGMENT-ROUTINE NOT LOADED
SYMBOL NOT FOQUND .
TOO LONG NAME. WILL BE TRUNCATED
UNDEFINED COMMON LABEL
UNDEFINED ENTRIES

Executable program

Executable program files

Executing overlay programs

ND-60.186.01

59.
59.
59.
59.
59,
59.
59.
59.
60.
60,
&0,
§0.
60.
60.
60.
60¢.
6.
60,
61.
61.
61.
B1.
B1.
B1.
B1.
61,
61.
61.
62.
62.
62.
62.
62.

2 [

16,

29,

54.

53.

53,

65

66 ' BRF-LINKER USEPR MANUAL
Index

Exacution time for overlay systems, . 1.
EXIT command e e e e s s« o« . . B, 25, B&.
Extended path in overlay systems B
External reference+ 4 4 e 4 4. .. . 43,
FETCH-BRF command . . . B - 1T
FILE DOES NOT CONTAIN BRF CODE - 1 I
FIRST UNIT IS NOT PRIOR TO LAST UNIT B0.
Fix~up . T T
FORTRAN CUHHON Yo e e e e e e 4 e e e e e e e 45,
FORTRAN COMMON and

Multisegment linking 4 1

Overlays P -
Forward reference in overlay systems T -
HELP command . . D T
ILLEGAL OVERLAY LEVEL 1
ILLEGAL SEQUENCE QF OVERLAYS 80.
Independent links in overlay systems, ., 13.
[NSERT-BRF-MESSAGE command . . . e 1 L
INSUFFICIENT BRF-UNIT, SYNTAX ERRORS . - o« v 8D,
Intermodule references« . ¢ o«1,

Multisegment program« + + « .« . . 22.
INVALED ADDRESS« =« +« + + . . BO.
INVALID ADODRESS OR NOT DEFINED SYHBOL .« - + « « .+ . . 6B0O.
INVALID COMMAND « « + « + « +« +« « « . GO,
Label & . ¢ v e e e e e e e e e e e e e e T,
Library

files . . . e v 4 e e e e e e a4 e e e e .. by,

ebject programs e T

SUBPYOGramsS o a e e e e e e e e kA,
LIBRARY-MODE command, +« + v « « « « « 4, 5%,
Library object programs « v o« o« . . . &b,
Library subprogram entry point ., Ah,
Link path in overlay + + v « v « « o « « o« k.
LINK=-TO command « « « « o v o « « & « « 2%, 54,
Links

dependent+ 4 < v . 0w e .o 13

independent . . e I I
LIST-8RF-CODE command e - T
LIST-BRF-ENTRIES ¢cammand 31, 55.
LIST-ENTRIES-DEFINED command 1, 5%5.
LIST-ENTRIES-UNDEFINED command T, %%,
LOAD

address . . - . . i v 4 4 4 o+ e 4w s e 4. . . B,

command . . T -1
LOAD-REENTRANT- SEGHENT command - - T
Loading o 0 e e e e e e e 2,

BTTOTS .+ » « « « 4« s o & = + « & 2 24 & s = « « « . hB.

library files+« 4 4 v 0 e e e b
Loading library files+ « « « = « « 4 « « . &,
Location counter, current &b,
LOOK-AT-DATA command - « 4« + « « .« . 35, 55.
LOOK-AT-PROGRAM command « . 35, 55.

NDO-50.196.01

BRF-LINKER USER MANUAL
Index

Missing parameter
MIXED ONE/TWO BANK ROUTINES
Monitor Call RFILE .
Multilevel overlay system
Multisegment

linking .

linking command

mode . . . P e e

PROGRAM- FILE command

restart address

start address
Multisegment and

FORTRAN COMMON

Overlay .
Multisegment file lnformatlon
Multisegment linking command

Multisegment link information strlpplng

Multisegment PROGRAM-FILE command
Named segments two-bank
NEW CHECKSUM GENERATED
Normal mode
NG MAIN ENTRY .
NO PROGRAM-FILE SPECIFIED
MO SUCH FILE
NOT FOUND IN DESTINATION FILE
NOT FOUND IN SQURCE FILE
Object pragram .
Object program unit
Octal number
Dne-bank COMMON
QUTPUT-FILE command .
OVERLAPPING DATA [N LINKED SEGHENTS-.
Overlay
command
debugging
axecution time
linking
lnading
mode .
program executlon
structure
system .
Qverlay links wlth extended paths
Qverlay leoading commands
Qverlay program execution
Overlay program information
Overlay system design
Overlay systems and
backward reference
dependent links
forward reference
independent links

NMD-60.186.01

§0.
13.

22
24,

24,
25.
25.

25.
22,
10.
24,
53.
24.

60.

60.
61.
61.
Bt.
1.
b4,
b4,

L3-8

7 1

B1.
13.

16

5.

558.

18

16.
13.

3 1

14,
15.
16.
10.
15.

15.
3.
15.
13,

54.

25,

55.

55.

35,

67

68 BRF-LINKER USER MANUAL

Index

Overlays and

FORTRAN COMMON ., + « « + « . . 15,

Multisegment « « o« « 22,

Symbolic Debugger < . .13,
P-group in BRF e ... k2.
Page . . . e e e e e e e e e e e e .2,
Parameter dellmlter M T
PATCH-PROGFILE-NAME command S B T
Path loading in overlay systems t&.
PREPARE-BRF-LIBRARY-FILE command 138, 5&.
Program v v vt e e e e e e e e e . k1

L+ ¥ T 2 - e R -

file . . . L L s e e e e e e e e e e e e

information o h e e e e e e .. D,

inspection . 35, 55,

madification, 35, 5%,

relocatable 0 2,

T 5 O < I
PROGRAM-FILE

command 4 e 4 v e e e e .k, 24, 35, 56.

command, inspactica mode 35,
PROGRAM=INFORMATION command 10, 56.
PROGRAM SPACE EXCEEDED &1,
PROGRAM SYSTEM 70O LARGE « . . « . . 81,
Pragrammed information k2,
RECOVER SINTRAM III command ., . . B
REDEFINITION. LAST APPLIES xxxXx yyyy e e e e« . . . BY.
Reentrant named segments, 21.
Reentrant program dumpind 286.
REFERENCE command . . . 8, §56.
REFERENCED ELSEWHERE THAN CURRENT OR PREV[UUS LEVEL . Bt
Relocatable pProgram’+ + « v v v o« v & 4 e ow. 2, &1,
Relocatable pregram file , . . . « . . 2.
REMOVE command « « + « v « « 4+ 4« « « . B, B7.
RENAME command +« . « « « « +« « « . . 8, 57,
RENAME-BRF command . . . e e v e s e e e .38, 57.
REMAME-FILE SIMTRAN III command o e e e e 1.
Renaming symbols + « « « 4 4 o« 4 . . o. . B
REPLACE-BRF command « « « « 4+ « « . . 38, 57.
Restart

address , . . -

address multlsegmant e e e e e e e e e e e ... 25,

command 4 4 4 4 4 4 e e e 4 e e e .. B, BT,
Root link . . T e
ROOT-SEGMENT NOT INITIATED OVERLAY a 81,
RUN command v « « « « « & « « & 4 « « . 5, 57.
S-group . . L
S-groups in BRF . e e e e e e e e k2,
SEGMENT-ROUTINE NOT LOADED T e
Segments L . . e e e e e e e e e e e 2N,

background 0w e e e e e e w20
Separate

assembly e e e e e e ... 4D

NO-60. 196,01

BRF-LINKER USER MANUAL
Index

compilation
Signed decimal number
Space
Square brackets
Start
address
address multisegment

.

Stripping multisegment link

Subsystaem .
Switching times
Symbal
antering
entry
length
table
Symbolic
Debugger
antry point
axternal reference
information 8RF

Symbolic Debugger and Overlays .

Symbolic start address
Symbol BRF
SYMBOL NOT FOUND

.

information

TOO LONG MAME. WILL BE TRUNCATED . .

Two-bank

COMMON

named segments
Undefined

symbol

symbol entry .
UNDEFINED COMMON LABEL
UNDEFINED ENTRIES
User program execution
Word

ND-60.136.01

69

- . -

43,
23,
53.

[N

—_ T} == L7 e
PR

3, 5.
b4, 45,
44, 45,
42.

13, t§.
b,

L1,

62.

62.

snsxsrssnarnrs OSEND US YOUR COMMENTS!IT o visnronnss

Are you frustrated because of unciear information in
this manuai? Do you have troubde finding things?
Why don't you join the Reader’s Club and send us a
note? You will receive a membership card — and
an answer 10 your comments,

Please let us know if yau

* find errors

* cannot understand information

* ¢cannot find information

* find needless information
Do you think we could improve the manual by
rearranging the contents? You could also teil
us if you like the manualil

-

crenenansene HELP YOURSELF BY HELPING US!! . cncunsss

Manual name: BRF=LINKER User Manual Manual number: ND—80,186.01

What problems do you have? {use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name; Date
Company: Position:
Address:

What are you using this manual for ?

NOTE! Send to:

This form is primarily for Norsk Data A.S —
documentation errors. Software and Documentation Department

system errors should be reported on P.O. Box 25, Bogerud Norsk Data’s answer wil be founa

Customer System Reports. Osio 6, Norway an reverse side

Answer from Norsk Data

Answared by Cate

Norsk Data A.S

Cocumentation Cepartment
P.O. Baox 25, Bogerud
0621 Oslo8, Norway

