
.Norsk Data
_,

NDIX Release C , WW

NDIX
USER’S SUPPLEMENTARY DOCUMENTS

[USD]

ND-60.328.1 EN

NDIX Release C

Operating Systems Group
Norsk Data Ltd
Benham Valence

Newbury, Berkshire, RG’lé -8LU
England

Tel: +44 635 35544

NIB-60328.1? EN

USD-ii . NDIX Release C

Copyright © 1988 by Norsk Data Limited.
This document may not be copied, reproduced, or translated without the express prior consent of Norsk Data
Limited.
Much of the information in this document is further protected by Copyright © 1979, 1980 Regents of the
University of California. Norsk Data Limited, as holders of a UNIXT software license, are permitted to repro—
duce this information, or any portion of it, as it deems necessary for its licensed use of the software.

The information in this manual is subject to change without notice.
Norsk Data Limited assumes no responsibility for any errors that may appear in this manual, or for the use or
reliability of its software on equipment that is not furnished or supported by Norsk Data Limited.

T UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

NDIX Release C - USD-iii

PREFACE

The Product

This manual is part of a suite of manuals which describe Release C of NDIX.
NDIX is Norsk Data’s implementation of the UNIX operating system; the Release C
version runs on ND-SOOO computers.
NDIX Release C is an implementation of 4.2BSD;r UNIX with 4.3BSD networking
and with System V compatibility options added.
The product number for NDIX Release C is ND 211308.

The Documentation Scheme

The documentation describing Release C of NDIX is organized into five manuals, in
a format similar to that used for the 4.2BSD manuals. In this scheme, the "command
calls" are divided into 8 sections, and supporting papers/documents are collated into
"supplementary documentation". This is presented for three types of reader:

1 User
2 Programmer
3 System Manager/Administrator

as follows (abbreviations for "command call" sections are in parenthesis):

0 User’s Reference Manual [URM]

Commands (1)
Games (6)
Macro packages and language conventions (7)

0 User’s Supplementary Documents [USD]

NDIX environment
Getting started
Basic utilities
Communicating with the World
Text editing
Document preparation
Amusements

0 Programmer’s Reference Manual [PRM]

System calls (2)
Library routines (3)
Special files (4)
File formats (5)

' Programmer’s Supplementary Documents [PSD]
Languages
General reference
Programming tools
Programming libraries

1 "BSD" is Berkeley Software Distribution, from the Computer Systems Research Grup, Computer Science Division,
Department of Electrical Engineering and Computer Science. University of California, Berkeley, California 94720.
"4.2880" and "4.3BSD" refer to the release versions 4.2 and 4.3 respectively of these software distributions.

ND—60.328.1P EN

USD-iv

The Manual

The Reader

Related Documentation

ND60.328. lP EN

NDIX Release C

. System Manager’s Manual [SMM]

System maintenance reference functions (8)
System manager's support documents

The “OVERVIEW" information at the start of the Users Reference Manual pro—
vides further details on the organisation of information in these manuals.

This manual contains a compendium of documents which provide a valuable range
of information to support a “User" of NDIX/UNIX.
The first two documents (USDII and USD:2) in this manual provide information
specific to this Release C of NDIX.
The remaining documents cover a broad range of User information on UNIX. The
authors of these documents are experts who are generally-acknowledged for their
very special contribution to the development of the UNIX system; these documents
therefore bear a particular authoritative status in the UNIX world. Not all of these
documents are directly relevant to Release C of NDIX, but they are nevertheless
included to provide an overall picture.

The documents included in this manual fall into two distinct levels of readership.
Some are introductory descriptions, or are written in tutorial form; these are aimed
at the less—experienced User. Others are reference documents, aimed at the more
expert User.
It is assumed that the less—experienced User has a general understanding of comput-
ers and experience of other operating systems, while those readers using the refer—
ence material have a general understanding of NDIX (or UNIX) and its key concepts.

The set of five manuals covering NDIX Release C are as follows:
NDIX User’s Reference Manual ND60.327.1 EN
NDIX User’s Supplementary Documentation ND-60.328.1 EN
NDIX Programmer‘s Reference Manual ND-60.329.1 EN
NDIX Programmer’s Supplementary Documentation (PSD) ND-60.330.1 EN
NDIX System Manager’s Manual ND-60.331.1 EN

The following manuals provide supporting information:
SINTRAN 111 K Release Notes ND60.230
SINTRAN 111 Reference Manual ND—60. 128
SINTRAN 111 System Supervisor Manual ND~30.003
SINTRAN III ND-SOOO Monitor ND-60.136
NDIX Assembler Reference Manual ND-60.249
C Reference Manual ND60.251
NDIX Pascal User Guide ND-60.226
Pascal Reference Manual ND—60.222
NDIX Fortran, Appendix to ND FORTRAN Reference Manual ND-60.145 AP
FORTRAN Reference Manual ND—60.l45
PED User’s Guide NDbO. 121
Backup User’s Guide ND-60.250

NDIX Release C . USD~v

NDIX User’s Supplementary Documents (USD)

TABLE OF CONTENTS

NDIX Environment

NDIX Release C Product Summary USD:l
This document gives a summary of the machine environment, options, and main features included
in the NDIX Release C product.

NDIX for SINTRAN Users USDz2
An introduction for those familiar with ND’s proprietary operating system.

Getting Started
Unix for Beginners ~— Second Edition USDz3

An introduction to the most basic uses of the system.
Learn — Computer~Aided Instruction on UNIX (Second Edition) USDz4

Describes a computer-aided instruction program that takes new users through the basics of files,
the editor, and document prepararation software.

Basic Utilities

An Introduction to the UNIX Shell USD:5
Steve Boume's introduction to the capabilities of sh. a command interpreter especially popular for
writing shell scripts.

An Introduction to the C shell USD:6
This introduction to ask, (a command interpreter popular for interactive work) describes many
commonly used UNIX commands, assumes little prior knowledge of UNIX, and has a glossary
useful for beginners.

DC —- An Interactive Desk Calculator US D:7
An interactive desk calculator, which performs arbitrary-precision integer arithmetic. An excellent
facility if you do not need floating point.

BC - An Arbitrary Precision Desk-Calculator Language USD28
A front end for DC that provides inflx notation, control flow, and built-in functions.

Communicating with the World
Mail Reference Manual USD19

Complete details on one of the programs for sending and reading your mail.
How to Read the Network News USD: 10

Describes how news works (generally) and some alternatives for reading it, readnews and vnews.
How to Use USENET Effectively US D: 1 l

Describes the customs, protocols, and etiquette of network news, plus answers to the questions
most frequently asked by newcomers to the network.

ND-60.328.1P EN

USD—vi ' NDIX Release C

Text Editing

A Tutorial Introduction to the Unix Text Editor USD: 12
An easy way to get started with the line editor, ed.

Advanced Editing on Unix USD213
The next step in learning how to make most effective use of ed.

Edit; A Tutorial USD214
An introduction to edit, a line—oriented editor which is a version of ex, assuming no previous
knowledge of UNIX or text editing.

An Introduction to Display Editing with Vi USD:15
The document to read if you want to learn how to use the vi screen editor.

Vi Command and Function Reference USD: 16
A summary of the commands and functions available in vi; this document does not claim to be a
complete list of all facilities in vi.

Ex Reference Manual (Version 3.5/2.13) USD217
The final reference for the ex editor, which underlies both edit and vi .

SED — A Non-interactive Text Editor USD: 18
Describes a one-pass variant of ed useful as a filter for processing large files.

AWK — A Pattern Scanning and Processing Language (Second Edition) USD219
A program for data selection and transformation.

Document Preparation
Typing Documents on the UNIX System: Using the ~ms Macros with T ROFF and NROFF USD:20

Describes and gives examples of the basic use of the typesetting tools, and “-ms”, a frequently
used package of formatting requests that make it easier to lay out most documents.

A Revised Version of —ms USD221
A brief description of the Berkeley revisions made to the —ms formatting macros for NROFF and
TROFF.

Writing Papers with NROFF using —me USD222
Another popular macro package for NROFF.

~me Reference Manual USD123
The final word on «me.

NROFFfI‘ROFF User’s Manual USD224
Extremely detailed information about these document formatting programs.

A TROFF Tutorial USD:25
An introduction to the most basic uses of TROFF for those who really want to know such things, or
want to write their own macros.

A System for Typesetting Mathematics USD226
Describes eqn. an easy-to-leam language for high-quality mathematical typesetting.

Typesetting Mathematics — User’s Guide (Second Edition) USD:27
More details about how to use eqn.

Tbl — A Program to Format Tables USD128
An easy to use program for typesetting tabular material.

ND~60.328.1P EN

NDIX Release C ' USD-vii

Refer — A Bibliography System USD:29
An introduction to one set of tools used to maintain bibliographic databases. The major program,
refer, is used to automatically retrieve and format the references based on document citations.

Some applications of Inverted Indexes on the UNIX System USD13O
Mike Lesk‘s paper describes the refer programs in a somewhat larger context

Updating Publication Lists USD231
This document describes several commands for updating the publication lists.

Writing Tools — The STYLE and DICTION Programs USD132
These are programs which can help you understand and improve your writing style.

Amusements

Star Trek US 13:33
You are the Captain of the Starship Enterprise. Wipe out the Klingons and save the Federation.

ND—60.328.1P EN

USD-viii ' NDIX Release C

ND-60.328.1P EN

NDIX Release C Product Summary

NDIX Release C Product Summary

NDIX Development Group

Norsk Data Ltd
Benham Valence

Newbury
England

June 1988

ABSTRACT

This document presents an overview of the NDIX Release C product. It highlights mainfeatures of the system; gives a summary of the hardware environment (prerequisites and lim-itations); and takes a snapshot of the many software facilities available.

USDzl—l

ND-60.328.1P EN

USD: 1-2 ' NDIX Release C Product Summaxy

ND-60.328.1P EN

NDIX Release C Product Summary USD:l»3

1. WHAT IS NDIX?
The Norsk Data UNIXT system is known as NDIX. Release C of NDIX is a version of the 4.2BSD UNIX sys—
tem which incorporates the improved inter-process and networking communication features of 4.3BSD UNIX,
plus some System V compatibility options added, all running on the ND—SOOO series of Norsk Data machines.
NDIX is a general purpose, multi-user, interactive operating system which offers a number of features seldom
found in non UNIX-based operating systems.
The product number for NDIX release C is ND-Zl 1308.

2. MAIN FEATURES
Shells. Two command interpreters support string variables, trap handling, structured programming, user
profiles, settable search path, multilevel file name generation, etc.
Document preparation. NROFF typesetter utility is standard MS and ME macro package provide canned
commands for many common formatting and layout situations. TBL provides an easy to learn language for
preparing complicated tabular material. REFER fills in bibliographic citations from a data base.
UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.
Data processing. SED stream editor does multiple editing functions in parallel on a data stream of indefinite
length. AWK report generator does free-field pattern selection and arithmetic operations.
Program development. MAKE controls recreation of complicated software, arranging for minimal recompi—
lation. SCCS provides a source management system, keeping details of changes and able to provide old ver-
sions of programs.

Debugging. ADB does postmortem and breakpoint debugging, handles separate instruction and data spaces,
floating point, etc. DBX is a souree»level debugger usable with all supported languages.
NDIX Assembler. This facility is aimed at system programmers who are faced with having to debug or write
small amounts of assembler language code.
FORTRAN 77. Fortran 77 conforms to the ANSI standard for that language. The [77 compiler is compatible
with C at the object level. A Fortran slmcturer, STRUCT, converts old, ugly Fortran into Ratfor, a structured
dialect usable with F77. Users also have access to efi (a powerful Fortran preprocessor) and m4 (macro proces—
sor, and front end for C, Ratfor and Cobol).
C language. The C programming language. The LINT verifier does strong type checking and detection of
probable errors and portability problems even across separately compiled functions.
Pascal. Pascal is based on ISO level 1 Pascal.
Lexical analyzer generator. LEX converts specification of regular expressions and semantic actions into a
recognizing subroutine. Analogous to YACC.
Standard input-output package. Highly efficient buffered stream 1/0 is integrated with formatted input and
output
Networking. The system provides full support for the Internet Standard TCP/lP network communication pro-
tocols over 10 Mbyte/sec Ethernet

1‘ UNIX is a registered trademark of AT&T in the USA and other countries.

ND—60.328.1P EN

USD:14 ‘ ' NDIX Release (3 Product Summary

3. HARDWARE

3.1. PROCESSORS
The NDIX Release C operating system runs on the ND-SOOO series of computers. These comprise:
0 ND-SOOO large systems: 5200, 5400,5700, 5800.
- ND-SOOO compact systems: 5200, 5400, 5500, 5700.
Minimum memory configuration is 2Mbytes front-end (Le. in the ND—lOO) and 4Mbytes back—end (in the
ND-SOOO). The maximum memory size is 32Mbytes.

3.2. PERIPHERALS - PREREQUISITES AND LIMITATIONS
NDIX supports the following peripheral equipment:
0 Hard disks:

Minimum disk configuration is l40Mb (either 2 x 70Mb or 1 x 140Mb disks) for the large systems and
Compact Model B, and 2 x 125Mb disk for Compact Model A.
Up to 12 hard disks, 4 floppy disks and 16 tape drives can be supported in an NDIX system.
Systems may be set up such that SINTRAN has a disk to itself, or it shares a disk with NDIX. A shared
disk must be one of the following:
A. ND-106130 Fujitsu M322K (140Mb)

ND-105740 CDC 9766 SMD (288Mb)
ND-110041 CDC 9720 EMD 368 (288Mb)
ND-106150 CDC 9715 FSD 515 (450Mb)
ND-110099 NEC D-23S2-H (450Mb).

You can use any of the above disks as a pure NDIX disk as well as any of the following:
B. ND-106170 CDC 9710 RSD (70Mb)

ND-105140 CDC 9762 SMD (75Mb)
ND-110216 125Mb SCSI
ND—110326 310Mb SCSI
ND-110325 630Mb SCSI.

SINTRAN can use any of the above disks as a SlNTRAN-only disk; however, it is recommended that
SINTRAN—only disks are kept as small as is practicable, since this is effectively an unused disk for
NDIX users.

For the NDIX environment:
1. In a shared-disk system, SINTRAN and NDIX can be run together on any disk in the above Group

A.
In addition, between 1 and 11 further disks, selected from the above Groups A or B, may be
installed for NDIX, but SENTRAN can only be used on Disk Drive 0, using Controller 0.

2. In a non-shared system, SINTRAN can be run on any SINTRAN-supported disk, with NDIX using
1 or more (up to 11) disks of the types listed in the above Groups A or B.

0 Floppy disks: 5.25-inch, double—sided, high density. Up to 4 floppy disk drives are supported
0 Magnetic tape:

SCSI tape streamer is standard. The system software is normally distributed on streamer tape.
Up to 16 industry—standard l600bpi Tape Drives are also supported. The following types of drive may
be used:

Cipher 50/100 ips
STC/1950
STC/2925 SCSI.

0 Communications: ND Ethernet, or ND-Megalink (via Xmsg Interface Library).

ND—60.328. 1? EN

NDIX Release C Product Summary USDzl-S

- Terminals: full duplex 96—character ASCII terminals. The following types are supported:
TDV 2200
TDV 1200
Lynwood colour
Lynwood tempest

The maximum terminal/printer count is 128 directly—connected terminals plus the ND—console, plus 126
connected via COSMOS and 64 connected via ethernet. However, in practice the system will not support
more than 32 concurrent users.

0 Printers: the following types are supported:

HP7475A plotter
Matrix Epson LX-86
Matrix Epson LX-800
Matrix Hermes 616CN
Matrix Genicom 3024
Matrix Tally MT 660
Page Elpho-ZO
Page Facit ND-720.
Phillips GP 300

Note that support for these printers is restricted to simple ASCII output only; the NDIX text formatting
utilities support only the Elpho—ZO, GP—300 and basic ASCII output devices.

3.3. OPTIMISING HARDWARE REQUIREMENTS
The minimum memory size and disk space specified above is sufficient to run and maintain NDIX. More is
needed to handle a large number of users, big data bases, or large programs.
The resident system occupies about 1Mbyte, plus a further 10% of main memory for disk buffers.

4. SOFTWARE

Commands, System Calls and Function programs available in NDIX are listed in the relevant NDIX Release C
Reference manuals. These manuals are also available on-line., excluding the Supplementary Documents.
Almost all of the code is written in C. Commands are self-contained and do not require extra setup informa-
tion, unless specifically noted as "interactive". Interactive programs can be made to run from a prepared script
simply by redirecting input. Most programs intended for interactive use (e.g., the editor) allow for an escape
to command level (the Shell). Most file processing commands can also go from standard input to standard out-
put ("filters"). The piping facility of the Shell may be used to connect such filters directly to the input or out-
put of other programs.

4.1. BASIC SOFTWARE
This includes the time-sharing operating system with utilities, a machine language assembler and a compiler
for the programming language C —— enough software to write and run new applications and to maintain NDIX
itself.

4.1.1. Operating System
DNDIX The basic resident code on which everything else depends. Supports the system calls, and

maintains the file system.

For an overview of NDIX Release C, see the "NDIX Release C System Manual“ (PSD25). A
general description of UNIX design philosophy and system facilities appeared in the Com
munications of the ACM, July, 1974. A more extensive survey is in the Bell System Techni-
cal lournal for July-August 1978.

ND-60.328.1P EN

USD21-6

’3 DEVICES

U BOOT

NDIX Release C Product Summary

Capabilities include:
0 Reentrant code for user processes.
0 Separate instruction and data spaces.
0 “Group” access permissions for cooperative projects, with overlapping memberships.
O Alarm-clock timeouts.
OTimer-interrupt sampling and interprocess monitoring for debugging and measurement.
0 Multiplexed 1/0 for machine-to-machine communication.
All 1/0 is logically synchronous. l/O devices are simply files in the file system. Normally,
invisible buffering makes all physical record structure and device characteristics transparent
and exploits the hardware’s ability to do overlapped l/O. Unbuffered physical record 1/0 is
available for unusual applications.

Procedures to get NDIX started.

4.1.2. User Access Control

'3 LOGIN

D PASSWD

D LOCK

U NEWGRP

D LEAVE

Sign on as a new user.
0 Verify password and establish user‘s individual and group (project) identity.
0 Adapt to characteristics of terminal.
OEstablish working directory.
0 Announce presence of mail (from MAIL).
OPublish message of the day.
OExecute user-specified profile.
0 Start command interpreter or other initial program.

Change a password.
OUser can change his own password.
0 Passwords are kept encrypted for security.
Reserve a terminal under password control.
Change working group (project). Protects against unauthorized changes to projects.
Reminds a user when they have to leave.

4.1.3. Terminal Handling

UTABS

UTSET

U Sl lY

’3 CLEAR

D RESET

Set tab stops appropriately for specified terminal type.

Set default terminal characteristics for terminal type.
Set up options for optimal control of a terminal.
OCarriage return+line feed vs. newline.
0 Interpretation of tabs.
0 Parity.
0 Mapping of upper case to lower.
ORaw vs. edited input
0 Delays for tabs, newlines and carriage returns.

Clears the terminal screen.

Resets the terminal to a known state.

4.1.4. File Manipulation

U CAT

DCP

Concatenate one or more files onto standard output. Particularly used for unadomed printing,
for inserting data into a pipeline, and for buffering output that comes from various sources.
Works on any file, regardless of contents.

Copy one file to another, or a set of files to a directory. Works on any file.

ND-60.328.1P EN

NDIX Release C Product Summary USD:l-7

'3 MORE

D PR

U LPR

D PRINT

D LPRM

U CMP

U HEAD

U TAIL

D SPLIT

0 DD

DSUM

DFMT

Filter 3 file for viewing at a terminal one screenfull at a time.
Print files with title, date, and page number on every page.
0 Multicolumn output
OParallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.

As for PR with spooling to the line printer
Remove files from the line printer queue.

Compare two files and report if different.

Print first it lines of input.

Print last I: lines of input
OMay print last I: characters, or from n lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for editing (ED).
Physical file format translator, for exchanging data with foreign systems, especially IBM
370's.

Sum the words of a file.

Simple text fonnatter.

4.1.5. Manipulation of Directories and File Names

DRM

U LN

0 MV

0 CHMOD

D CHOWN

D CHGRP

U TOUCH

U MKDIR

U RMDIR

B CD

U FIND

D INSTALL

Remove a file. Only the name goes away if any other names are linked to the file.
OStep through a directory deleting files interactively.
ODelete entire directory hierarchies.

“Link" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by the files’ owner.

Change owner of one or more files.

Change group (project) to which a file belongs.

Update date of last file modification.

Make a new directory.

Remove a directory.

Change working directory.
Prowl the directory hierarchy finding every file that meets specified criteria.
OCriteria include:

name matches a given pattern,
creation date in given range,
date of last use in given range,
given permissions,
given owner,
given special file characteristics,
boolean combinations of above.

OAny directory may be considered to be the root.
OPerform specified command on each file found.

Install binaries.

ND—60.328.1P EN

USD: 1-8 NDIX Release C Product Summary

4.1.6. Running of Programs

CJSH

D CSH

D TEST

U EXPR

D WAIT

D ECHO

U SLEEP

D NICE

D NOHUP

U KILL

D CRON

0 AT
D TEE
D APPLY

The Shell, or command language interpreter.
OSupply arguments to and run any executable program.
ORedirect standard input, standard output, and standard error files.
OPipes: simultaneous execution with output of one process connected to the input of

another.
OCompose compound commands using:

if then else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.

O Initiate background processes.
OPerform Shell programs, i.e., command scripts with substitutable arguments.
OConstruct argument lists from all file names satisfying specified patterns.
OTake special action on traps and interrupts.
OUser-settable search path for finding commands.
OExecute user-settable profile upon login.
OOptionally announce presence of mail as it arrives.
OProvide variables and parameters with default setting.
OJob control: Allows moving of jobs between foreground and background.
OHistory mechanism: Saves a line of recently used commands and allows their easy reuse.
Alternative shell with a syntax like C.

Test for use in Shell conditionals:
0 String comparison.
OFile nature and accessibility.
O Boolean combinations of the above.

String computations for calculating command arguments.
O Integer arithmetic
0 Pattern matching

Wait for termination of asynchronously running processes.

Print remainder of command line. Useful for diagnostics or prompts in Shell programs, or
for inserting data into a pipeline.

Suspend execution for a specified time.
Run a command in low (or high) priority.
An extension of NICE. Run a command immune to hangup and terminate signals from the
controlling terminal.

Terminate named processes.

Schedule regular actions at specified times.
OActions are arbitrary programs.
OTimes are conjunctions of month, day of month, day of week, hour and minute. Ranges

are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

Run a command on a series of arguments in turn.

0 BASENAME Strip filename affixes.

ND-60.328. lP EN

NDIX Release C Product Summary USDzl—9

U LASTCOMM Give information on previously executed commands.

U WHEREIS

D WHICH

D YES

D SCRIPT

Locate binary, and manual pages for a specified file.

Locate a program file on the user’s search path.

Be repetitively affirmative.

Make typescript of terminal session.

4.1.7. Status Inquiries

ULS

DFILE

U DATE

D DF

D DU

0 QUOT
El LpQ

D UUQ

0 WHO

D W

D USERS

D WHOAMI

D FINGER

'3 GROUPS

D LAST

0 PS

D UPTIME

D IOSTAT

U VMSTAT

D 'lTY

U PWD

D PRINTENV

List the names of one, several, or all files in one or more directories.
OAlphabetic or temporal sorting, up or down.
OOptional information: size, owner, group, date last modified, date last accessed, pennis-

sions, i-node number.

Try to determine what kind of information is in a file by consulting the file system index and
by reading the file itself.

Print today’s date and time. Has considerable knowledge of calendric and horological pecu-
liarities.

Report amount of free space on file system devices.

Print a summary of total space occupied by all files in a hierarchy.

Print summary of file space usage by user id.

List contents of the print queue.

List spooled UUCP requests.

Tell who’s on the system.
OList of presently logged in users, ports and times on.
OOptional history of all logins and logouts.

Tell who is on the system and what they are doing.

Tell who is on the system in a compact form.

Print who you are.

List information about a user.

Show group memberships.

Indicate last logins of users.

Report on active processes.
OList your own or everybody‘s processes.
OTell what commands are being executed.
OOptional status information: state and scheduling info, priority, attached terminal, what

it’s waiting for, size.

Show how long the system has been up.

Print statistics about system l/O activity.

Print statistics about system memory and CPU activity.

Print name of your terminal.

Print name of your working (current) directory.
Print the value of variables in the environment.

ND-6().328.1P EN

USDil-lO NDIX Release C Product Summary

4.1.8. Backup and Maintenance

0 MOUNT

D UMOUNT

D MKFS

U MKNOD

DTAR

U DUMP

U RESTORE

0 SU

Attach a device containing a file system to the tree of directories. Protects against nonsense
arrangements.

Complement of MOUNT. Protects against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entry) for a special file. Special files are physical devices, vir-
tual devices, physical memory, etc.

Manage file archives on magnetic tape.
OCollect files into an archive.
OPrint table of contents.
ORetrieve from archive.

Dump the file system stored on a specified device, selectively by date, or indiscriminately.
Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof. Requires a
password.

0 FSCK DCHECK ICHECK NCHECK

U CLRI

ClSYNC

DCPIO

DMT

DTP

EFF

DSFF

DGFF

Check consistency of file system.
OPrint gross statistics: number of files, number of directories, number of special files, space

used, space free.
0 Report duplicate use of space.
0 Retrieve lost space.
0 Report inaccessible files.
0 Check consistency of directories.
0 List names of all files.

Peremptorily expunge a file and its space from a file system. Used to repair damaged file
systems.

Force all outstanding [/0 on the system to completion. Used to shut down gracefully.

Copy file archives.

Magnetic tape manipulation.

Manipulate tape archive.

Format floppy dislc

Set fioppy format type.

Show current floppy format type.

4.1.9. Accounting

The timing information on which the reports are based can be manually cleared or shutoff completely.
UAC

EISA

Publish cumulative connect time report.
OConnect time by user or by day.
OFor all users or for selected users.

Publish Shell accounting report. Gives usage information on each command executed.
0 Number of times used.
OTotal system time, user time and elapsed time.
OOptional averages and percentages.
O Sorting on various fields.

ND~60.328.1P EN

NDIX Release C Product Summary USD: 1-11

4.1.10. Basic Communication

D MAIL

U CALENDAR

D WRITE

U TALK

U WALL

D MESG

U MSGS

D BIFF

D FROM

U PRMAIL

D XSEND

U CPS

Mail a message to one or more users. Also used to read and dispose of incoming mail. The
presence of mail is announced by LOGIN and optionally by SH.
OEach message can be disposed of individually.
OMessages can be saved in files or forwarded.

Automatic reminder service for events of today and tomorrow.

Establish direct terminal communication with another user.

Establish duplex terminal communication with another user.

Write to all users.

Inhibit receipt of messages from WRITE, WALL and TMK.

Read and send system-wide messages.

Be notified when mail is received.

Print a list of mail senders.
Print mail in the post office.

Send encrypted mail.

Copy to/from SINTRAN

4.1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in section 4.4.
DAR

DAS

D Library

Maintain archives and libraries. Combines several files into one for housekeeping efficiency.
OCreate new archive.
OUpdate archive by date.
OReplace or delete files.
OPrint table of contents.
ORetrieve from archive.

Assembler. Similar to the ND-SOOO assembler, with differences of detail.
OCreates object program consisting of

code, possibly read-only,
initialized data or readwrite code,
uninitialized data.

ORelocatable object code is directly executable without further transformation.
OObject code normally includes a symbol table.
OMultiple source files.
OLocal labels.
OConditional assembly.
O“Conditional jump” instructions become branches, or branches plus jumps, depending on

distance.

The basic run—time library. These routines are used freely by all software. They are
described in the NDIX Release C Programmers Reference Manual (PRM). Highlights
include:
0 Buffered character-by-character I/O.
OFormatted input and output conversion (SCANF and PRINTF) for standard input and out-

put, files, in-memory conversion.
OStorage allocator.
OTime conversions.
ONumbcr conversions.
OPassword encryption.

ND—60.328.1P EN

USD:I~12

D ADB

U DBX

DOD

OLD

'3 LORDER

'3 RANLIB

0 NM

‘3 SYMORDER

0 SIZE

U STRIP

0 TIME

D PROF

U ERROR

‘3 STRINGS

D MAKE

U SCCS

NDIX Release C Product Summary

OQuicksort.
ORandom number generator.
OMathematical function library, including trigonometric functions and inverses, exponential

logarithm, square root, bessel functions.
2

Interactive debugger.
O Postmortem dumping.
OExamination of arbitrary files, with no limit on size.
0 Interactive breakpoint debugging with the debugger as a separate process.
OSymbolic reference to local and global variables.
0 Stack trace for C programs.
0 Output formats:

I», 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions

0 Patching.
0 Searching for integer, character, or floating patterns.
Source level interactive debugger:
O tracing
O conditional breakpoints
0 signal trapping.

Dump any file. Output options include any combination of octal or decimal by words, octal
by bytes, ASCII, opcodes, hexadecimal.
ORange of dumping is controllable.

Link edit. Combine relocatable object files. Insert required routines from specified libraries.
Resulting code is sharable, and has separate instruction and data spaces.

Places object file names in proper order for loading, so that flies depending on others come
after them.

Convert archives to random libraries.

Print the narnelist (symbol table) of an object program. Provides control over the style and
order of names that are printed.

Rearrange namelist.

Report the core requirements of one or more object files.
Remove the relocation and symbol table information from an object file to save space.
Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time—sampling the
execution of a program. Uses floating point.
0 Subroutine call frequency and average times for C programs.
Analyse compiler error messages.

Find the printable strings in a binary file.

Controls creation of large programs. Uses a control file specifying source file dependencies
to make new version; uses time last changed to deduce minimum amount of work necessary.
0 Knows about CC, YACC, LEX, etc.
Source code control system
0 Historical source file archive
OControlled access for editing
OCan be used with MAKE.

ND—60.328.1P EN

NDIX Release C Product Summary USDzl-lB

0 WHAT Shows which SCCS versions of modules were used to construct a file.

4.2. ND]X MANUALS

DOn-line Machine—readable version of the NDIX Release C Reference manuals. The documentation
for NDIX Release C is organised into a format similar to that used in the Berkeley 4.3BSD
documentation, where the Reference manuals containing descriptions of the "command calls"
are divided into 8 functional sections, and supporting papers are collated into "supplementary
documents". Only the Reference Manuals are available on-linc; the Supplementary Docu-
ments are not supported on—line. The Reference Manuals are organised into three
user-categories:
OUser

Users Reference Manual, covering Commands (1), Games (6), and
Miscellaneous (7).

OProgrammer
Programmers Reference Manual, covering System Calls (2),
Library Routines (3), Special Files (4), and File Formats (5).

OSystem Manager
System Managers Manual, covering System Management facilities (8).

U MAN Print specified manual section on your terminal.
D APROPOS Locate commands by keyword lookup.
U WHATIS Simple version of MAN, prints one line only.

4.3. COMPUTER-AIDED INSTRUCTION

U LEARN A program for interpreting CAI scripts, plus scripts for learning about UNIX by using it
OScripts for basic files and commands, editor, advanced files and commands, EQN, MS mac~

ros, C programming language.

4.4. LANGUAGES

4.4.1. The C Language

The UNIX operating system, most of the subsystems and C itself are written in C. For a description of the C
language as implemented by Norsk Data, see Norsk Data’s "C Reference Manual" (ND~60.251). This imple-
mentation conforms to the specification of C described in "The C Programming Language" by Brian W. Ker-
nighan and Dennis M. Ritchie, (Prentice-Hall, 1978), which is generally accepted as the C "standard".
0 CC Compile and/or link edit programs in the C language.

OGeneral purpose language designed for structured programming.
OData types include character, integer, float, double, pointers to all types, functions retum—

ing above types, arrays of all types, structures and unions of all types.
OOperations intended to give machine—independent oontrol of full machine facility, includ-

ing to-memory operations and pointer arithmetic.
OMacro preprocessor for parameteriaed code and inclusion of standard files.
OAll procedures recursive, with parameters by value.
0 Machine—independent pointer manipulation.
ORuntime library gives access to all system facilities.
ODefinable data types.
OBlock structure

U LINT Verifier for C programs. Repons questionable or nonponable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no—effect operations.
Mistyped pointers.
Obsolete syntax.

ND—60.328.1P EN

USDtl—l4

D CB

0 MKSTR

U XS'I'R

NDIX Release C Product Summary

OFull cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of braces.

Create an enor message file from C source.

Extract strings from C programs.

4.4.2. FORTRAN

For a description of FORTRAN as supplied by Norsk Data, see ND’s FORTRAN Reference Manual (ND-
60.l45) and NDIX Appendix (ND-60.145 AP).

Clli'77

U RATFOR

'3 STRUCF

D EFL

U FPR

D FSPLIT

4.4.3. Pascal

For a description
(ND-60.226).

U PC

U PMERGE

U PXREF

A full compiler for ANSI Standard Fortran 77.
OCompatible with C and supporting tools at object level.
OOptional source compatibility with Fortran 66.
OFree format source.
OOptional subscript-range checking, detection of uninitialized variables.
OAll widths of arithmetic: 2- and 4-byte integer; 4— and 8-byte real; 8— and 16-byte com-

plex.

Ratfor adds rational control structure as for C, to Fortran.
0 Compound statements.
0 If-else, do, for, while, repeat-until, break, next statements.
O Symbolic constants.
0 File insertion.
0 Free format source
OTranslation of relationals like >, > =.
OProduces genuine Fortran to carry away.
0 May be used with F77.

Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using statement group—
ing, if—else, while, for, repeat—until.

Extended Fortran Language. Provides similar flow—control constructs to RATFOR.

Fortran source file filter for use with LPR.

Split a multi-routine Fortran file into separate files.

of Pascal as supplied by Norsk Data, see ND’s "NDIX Pascal Reference Manual"

A Pascal compiler conforming to ISO level I.

Merges several Pascal files.

Create a Pascal file cross-reference.

4.4.4. Other Algorithmic Languages

UDC Interactive programmable desk calculator. Has named storage locations as well as conven-
tional stack for holding integers or programs.
OUnlimited precision decimal arithmetic.
0 Appropriate treatment of decimal fractions.
OArbitrary input and output radices, in particular binary, octal, decimal and hexadecimal.
OReverse Polish operators:

+—*/
remainder, power, square root,
load. store, duplicate, clear,
print, enter program text, execute.

ND—60.328. 1? EN

NDIX Release C Product Summary USD: l-15

DBC A C-like interactive interface to the desk calculator DC.
CA“ the capabilities of DC with a high-level syntax.
OArrays and recursive functions.
OImmediate evaluation of expressions and evaluation of functions upon call.
OArbitrary precision elementary functions: exp, sin, cos, atan.
OGo—to—less programming.

4.4.5. Macroprocessing

0 M4 A general purpose macroprocessor.
OStream-oriented, recognizes macros anywhere in text.
OSyntax fits with functional syntax of most higher—level languages.
OCan evaluate integer arithmetic expressions.

4.4.6. Compiler-compilers

U YACC

U LEX

An LR(l)—based compiler writing system. During execution of resulting parsers, arbitrary C
functions may be called to do code generation or semantic actions.
OBNF syntax specifications.
OPrecedence relations.
OAccepts formally ambiguous grammars with non—BNF resolution rules.

Generator of lexical analyzers. Arbitrary C functions may be called upon isolation of each
lexical token.
OFull regular expression, plus left and right context dependence.
OResulting lexical analysers interface cleanly with YACC parsers.

4.5. TEXT PROCESSING

4.5.1. Document Preparation

UED

U EX, VI

D PTX

D SPELL

U CRYI’T

D CTAGS

Interactive context editor. Random access to all lines of a file.
OFind lines by number or pattern. Patterns may include: specified characters, don’t care

characters, choices among characters, repetitions of these constructs, beginning of line, end
of line.

OAdd, delete, change, copy, move or join lines.
OPermute or split contents of a line.
OReplace one or all instances of a pattern within a line.
OCombine or split files.
OEscape to Shell (command language) during editing.
ODo any of above operations on every pattem-selected line in a given range.
OOptional encryption for extra security.

A line oriented text editor, which supports both command and display editing.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a word list
025,000-word list includes proper names.
OHandles common prefixes and suffixes.
OCollects words to help tailor local spelling lists.

Encrypt and decrypt files for security.

Create a tags file for use with EX.

4.5.2. Document Formatting

U NROFF
Advanced typesetting. NROFF drives ASCII terminals of all types.

ND-60.328.1P EN

USD21-l6

DMS

DME
UNEQN

U TBL

NDlX Release C Product Summary

OCompletely definable page format keyed to dynamically planted "interrupts" at specified
lines.

OMaintains several separately definable typesetting environments (e.g., one for body text,
one for footnotes, and one for unusually elaborate headings).

OArbitrary number of output pools can be combined at will.
OMacros with substitutable arguments, and macros invocable in mid—line.
OComputation and printing of numerical quantifies.
OConditional execution of macros.
OTabular layout facility.
OPositions expressible in inches, centimeters, ems, points, machine units or arithmetic com-

binations thereof.
0 Access to character-width computation for unusually difficult layout problems.
OOverstrikes, built-up brackets, horizontal and vertical line drawing.
ODynamic relative or absolute positioning and size selection, globally or at the character

level.
OCan exploit the characteristics of the terminal being used, for approximating special char-

acters, reverse motions, proportional spacing, etc.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or
through the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of NROFF, although
unskilled personnel can easily be trained to enter documents according to predefined formats
such as those provided by MS (see below).

A standardized manuscript layout package for use with NROFFII'ROFF.
O Page numbers and draft dates.
OAutomatically numbered subheads.
O Footnotes.
0 Single or double column.
0 Paragraphing, display and indentation.
O Numbered equations.

Another set of NROFF macros, as used by University of California, Berkeley.
A mathematical typesetting preprocessor for NROFF. Prepares mathematical formulae for
display on any terminal that NROFF knows about, within the graphical capability of the ter-
minal. Formulas are written in a style like this:

sigmasup2~=~ 1 overNsum from i=1 toN(xsubi~xbar)sup2
which produces:

_LN 20'2 — NEW—E)

0 Automatic calculation of size changes for subscripts, sub-subscripts, etc.
0 Full vocabulary of Greek letters and special symbols, such as ‘gamma’, ‘GAlVflVIA’,

‘integral’.
0 Automatic calculation of large bracket sizes.
0 Vertical “piling” of formulae for matrices, conditional alternatives, etc.
0 Integrals, sums, etc., with arbitrarily complex limits.
0 Diacriticals: dots, double dots, hats, bars, etc.
OEasily learned by nonprogrammers and mathematical typists.

A preprocessor for NROFF that translates simple descriptions of table layouts and contents
into detailed typesetting instructions.
OComputes column widths.
O Handles left— and right-justified columns, centered columns and decimal-point alignment.
0 Places column titles.

ND‘60.328.1P EN

NDIX Release C Product Summary

D SOELIM

U REFER

U ADDBIB

U LOOKBIB

D SORTBIB

D COL

U COLCRT

U DEROFF

D CHECKEQ

D CHECKNR

D COLRM

U DICTION

D STYLE

USDzl-17

OTable entries can be text, which is adjusted to fit.
OCan box all or parts of table.
Perform textual inclusions implied by NROFF directive.

Fills in bibliographic citations in a document from a data base (not supplied).
OReferences may be printed in any style, as they occur or collected at the end.
OMay be numbered sequentially, by name of author, etc.
Create or extend a bibliographic database.
Find references in a bibliographic database.

Sort references in a bibliographic database.

Handle files which include reverse line feeds, for one-pass printing.

Filter NROFF output for CRT viewing.
Remove all NROFF commands from input.

Check document for possible errors in NEQN usage.

Check document for possible errors in NROFF usage.

Remove columns from a file.

Check document for phrases from a database of bad diction.

Analyse writing style of a document.

4.6. INFORMATION HANDLING

U SORT

D TSORT

D UNIQ

DTR

DDIFF

U COMM

UJOIN

U GREP

U LOOK

U WC

Sort or merge ASCII files line-by-line. No limit on input size.
OSort up or down.
OSort lexicographically or on numeric key.
OMultiple keys located by delimiters or by character position.
OMay sort upper case together with lower into dictionary order.
OOptionally suppress duplicate data.

Topological sort —~ converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
OPublish lines that were originally unique, duplicated, or both.
0 May give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
OMay coalesce selected repeated characters.
OMay delete selected characters.

Report line changes, additions and deletions necessary to bring two files into agreement.
OMay produce an editor script to convert one file into another.
OA variant (DIFF3) compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows lines present in
first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
OMay print all lines that fail to match.
OMay print count of hits.
OMay print first hit in each file.

Binary search in sorted file for lines with specified prefix.

Count the lines, "words" (blank-separated strings) and characters in a file.

ND-60.328.1P EN

USDzl-l8

D SED

D AWK

D EXPAND

U FOLD

D REV

NDIX Release C Product Summary

Stream-oriented version of ED. Can perform a sequence of editing operations on each line of
an input stream of unbounded length.
0 Lines may be selected by address or range of addresses.
OContnol flow and conditional testing.
0 Multiple output streams.
O Multi—line capability.

Pattern scanning and processing language. Searches input for patterns, and performs actions
on each line of input that satisfies the pattern.
OPattems include regular expressions, arithmetic and lexicographic conditions, boolean com—

binations and ranges of these.
0 Data treated as suing or numeric as appropriate.
OCan break input into fields; fields are variables.
0 Variables and arrays (with non—numeric subscripts).
OFull set of arithmetic operators and control flow.
0 Multiple output streams to files and pipes.
OOutput can be formatted as desired.
0 Multi—line capabilities.

Expand tabs to spaces and vice-versa.
Fold long lines for finite-width output device.
Reverse lines of a file.

4.7. COMMUNICATIONS AND NETWORKING

'3 UUCP

D UCU

'3 UUENCODE

U UUSEND

D UUX

D FTP

D TFTP

D TIP

U TELNET

D NETSTAT

D HOSTID

‘3 HOSTNAME

D SENDMAIL

U RMAIL

D SENDBUG

D RCP

D RLOGIN

'3 RSH

'3 RUPTIME

UNIX to UNIX copy

(UUCP) call UNIX

Encode a binary file for transmission via mail.
Send a file to a remote hosL
UNIX to UNIX command execution.
File transfer program.

Trivial file transfer program.

Connect to a remote system.

User interface to the TELNET protocol.
Show network status.

Set or print identifier of current host system.

Set or print name of current host system.

Send mail over the intemeL

Handle remote mail received via UUCP.

Mail a system bug report.

Remote file copy.

Remote login.

Remote shell.

Show host status of local machines.

ND-60.328.1P EN

NDIX Release C Product Summary USDrl— 19

U RWHO Who is logged in on local machines.

'3 CHECKNEWS Check to see if user has news.
U READNEWS Read news articles.
D POS'I'NEWS Submit news articles.
U VNEWS Read news articles.

4.8. NOVEL’I‘IES, GAMES AND MISCELLANEOUS FUNCTIONS
Among the assortment of interesting items included in this area are:

U ARITHMETIC Speed and accuracy test for number facts.
D BANNER Print output in huge letters.
0 BCD Converts ASCII to card-image form.
D BOGGLE Find as many words as possible in a 4-by-4 grid of letters.

'3 CAL Print a calendar of specified month and year.
U CANFIELD The solitaire game.
D FISH Children ’5 card guessing game.
UFORTUNE Presents a random "fortune cookie" on each invocation. Limited jar of "cookie“ messages

included.

'3 HANGMAN Word-guessing game. Uses the dictionary supplied with SPELL.
U QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.

D WUMP Hunt the wumpus —— thrilling search in a dangerous cave.
U ADVENTURE Explore a colossal cave, find hidden treasures, and discover new rules as you go.
0 SAIL As a sea captain, re-enact an historical or fictional sea battle.

0 TREK As captain of the starship Enterprise, wipe out the invasion fleet and save the Federation.
D WORM As a little worm, navigate the way around to capture food. See how large you can grow.

ND—60.328.1P EN

USD21-20 ' - ' NDIX Release C Product Summary

ND-60.328.1P EN

NDIX for SINTRAN Users USDIZ-l

NDIX for SINTRAN Users

NDIX Development Group

Norsk Data Ltd
Benham Valence

Newbury
England

ABSTRACT

This paper explains the philosophy behind NDIX, gives background information on Norsk
Data’s SIN'I‘RAN Operating System and its data files, and describes a few basic differences
between communicating with SINTRAN and NDIX.

ND-60.328.1P EN

USDz2-2 ' - NDIX for SINTRAN Users

ND-60.328.1P EN

NDIX for SINTRAN Users USD:2—3

1. What is NDIX?
NDIX is Norsk Data’s implementation of the UNIXT operating system for use on ND-SOOO computers. NDIXis an implementation of 4.2BSD UNIX with 4.BBSD networking and with System V compatibility optionsadded.
NDIX Release C runs as a SINTRAN III process in the ND-SOOO, and has full control over the ND-SOOO pro-
cessor, i.e. no other processes can run concurrently in the ND-SOOO processor.
The NDIX process in the ND—SOOO processor has a SINTRAN "shadow" process in the ND-IOO processor.This process is a ReaLTime program, named NDIX. The ND-lOO is an intelligent l/O processor which per—forms all input/output for the NDIX system. This ND—lOO processor runs under control of Norsk Data’sproprietary operating system — SIN'IRAN III VSX/K.
I/O requests from NDIX are communicated to SINTRAN III VSX/K system calls (Monitor Cans). Responsesto NDIX from SINTRAN III are performed by interrupting the ND-SOOO processor. This response mechanismis optimised such that under normal circumstances there are less numbers of interrupts than requests fromNDIX.
SINTRAN has its own logical disk (this can be any disk supported by Norsk Data which will hold SINTRANIII version K). Only a minimal SINTRAN is required, which easily fits on a 70Mb disk, or a 125Mb SCSIdisk.

2. Background information on SINTRAN data files
The following gives background information on SINTRAN data files and on how the NDIX filesystems are
arranged on ND disks.
On disks connected via SCSI controllers, there is no SINTRAN file system present and the whole disk is usedby NDIX.
On disks connected via other controllers, the NDIX filesystem resides on the disk as an ordinary SINTRANsingle contiguous data file. As such, space must be set aside on the disk for the SINTRAN data structures
which are normally associated with such data files. Thus, of the "available" disk space, SINTRAN also
requires several more pages for the following data structures:

On cylinder 0, page 0:
0 The Master Block (2 Kbyte)
On the last available cylinder:
0 An Object File Index Block (2 Kbyte)
' An Object File Page (2 Kbyte)
0 A User File Index Block (2 Kbyte)
0 A User File Page (2 Kbyte)
0 A Bit File (size dependent on disk type)

3. Basic hints on communicating with NDIX
There are several elementary points about communicating with NDIX which are important to mention, becausethey differ from communication with SINTRAN. These concern the prompt character, prompts for parameters,help information, separators, the significance of spaces, upper and lower-case letters, abbreviations, and devicenaming. If you are familiar with UNIX, you will probably not need to read this section.

1' UNIX is a registered lrademark of AT&T in the USA and other counLrics.

ND-60.328.1P EN

USD22-4 ‘ , ' NDIX for SIN'I’RAN Users

Prompt Characters
NDIX uses the following characters as prompts from the two command processors:

Processor Ordinary user Superuser
Boume Shell $ #

C Shell % #

The superuser prompt
The superuser prompt is set in /.profile. You can change it to any other character.

User Prompts
As a general rule, NDIX will not prompt the user for parameters to a command which have not been given. If
you fail to give NDIX the expected parameters, this will constitute an error.

Help

Help information is not implemented in NDIX at the level of the operating system. Some of the individual
commands display help information if the command receives something from the user that it does not expect.

Separators

NDIX and SIN'I'RAN use different characters as separators, both between commands and between parameters.
The scheme is as follows:

Position SiN'I'RAN NDIX
Between commands CR CR or semicolon
Between parameters space or comma space

Spaces

Spaces are significant to NDIX, as separators between distinct elements of the language, just as they are
significant in English. As such, there are places within the language where they are required, other places
where they are prohibited, and still other places where they are optional.
A space is required as a separator between each parameter and the next, and between a command and its asso-
ciated parameters.
Spaces are prohibited within commands and parameters.
Spaces are optional both before and after the semicolon between commands. The semicolon is the separator
which must be present if more than one command is given on one line.
Where spaces are required or optional, they can be duplicated, i.e. instead of inserting one, you may insert
several.

For example, the command

install —s date /bin/date
could equally well have been typed with added spaces where spaces are required, e.g.

install -s date [bin/date
It could NOT have been typed either with missing spaces where they are required, e.g.

install-s date/bin/date
or with added spaces where they are forbidden, e.g.

install —s date /bin /date

ND60.328.1P EN

NDIX for SINTRAN Users US D12-5

Case

NDIX distinguishes between lower—case and UPPER-CASE letters. Generally, typing should be in lower-case.
There are a few exceptions; these will always be noted, i.e. if you copy the case shown in the manuals you
should have no difficulties.

Foreign Language Keyboards
Some terminals may have Norwegian keyboards. Here is a mapping of Norwegian characters to those used by
UNIX and the C programming language.

Keyboard Mapping
Norwegiancharacter Upper case Lower case

a [{
ta \ l
a] }

Abbreviations
Abbreviation of command names and parameters, which is permitted in SINTRAN (so long as abbreviations
are unambiguous), is not permitted in NDIX.

Generic device names
NDIX has a set of generic names for devices, which are different from the SLNTRAN generic names for the
devices. These are:

disksdi
multiplexorsmx
tapes.............................. .m!
Ethernetel
Streamersct

ND-60.328.1P EN

USD:26 ‘ ' ' NDIX for SINTRAN Users

ND-60.328.1P EN

UNIX for Beginners — Second Edition USD13-I

UNIX For Beginners — Second Edition

Brian W. Kernighan

(Updatedfor 438$D by Mark Seiden)

ABSTRACT

This paper is meant to help new users get started on the UNIXT operating system. It
includes:

0 basics needed for day—to—day use of the system — typing commands, correcting typing
mistakes, logging in and out, mail, inter-tenninal communication, the file system, print-
ing files, redirecting I/O, pipes, and the shell.

0 document preparation —~ a brief discussion of the major formatting programs and macro
packages, hints on preparing documents, and capsule descriptions of some supporting
software.

0 UNIX programming — using the editor, programming the shell, programming in C, other
languages and tools.

0 An annotated UNIX bibliography.

T UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD:3~2 ' UNIX for Beginners - Second Edition

ND-60.328.1P EN

UNIX for Beginners - Secbnd Edition USD:3-3

INTRODUCTION
From the user’s point of view, the UNIX operating system is easy to learn and use, and presents few of the
usual impediments to getting the job done. It is hard, however, for the beginner to know where to start, and
how to make the best use of the facilities available. The purpose of this introduction is to help new users get
used to the main ideas of the UNIX system and start making effective use of it quickly.
You should have a couple of other documents with you for easy reference as you read this one. The most
important is The UNIX Programmer's Manual; it is often easier to tell you to read about something in the
manual than to repeat its contents here. The other useful document is A Tutorial Introduction to the UNIX Text
Editor, which will tell you how to use the editor to get text —— programs, data, documents — into the com-
puter.
A word of warning: the UNIX system has become quite popular, and there are several major variants in
widespread use. Of course details also change with time. So although the basic structure of UNIX and how to
use it is common to all versions, there will certainly be a few things which are different on your system from
what is described here. We have tried to minimize the problem, but be aware of it. in cases of doubt, this
paper describes Version 7 UNIX.
This paper has five sections:

1. Getting Started: How to log in, how to type, what to do about mistakes in typing, how to log out. Some
of this is dependent on which system you log into (phone numbers, for example) and what terminal you
use, so this section must necessarily be supplemented by local information.

2. Day-to—day Use: Things you need every day to use the system effectively: generally useful commands; the
file system.

3. Document Preparation: Preparing manuscripts is one of the most common uses for UNIX systems. This
section contains advice, but not extensive instructions on any of the formatting tools.

4. Writing Programs: UNIX is an excellent system for developing programs. This section talks about some of
the tools, but again is not a tutorial in any of the programming languages provided by the system.

5. A UNIX Reading List. An annotated bibliography of documents that new users should be aware of.

1. GETTING STARTED

1.1. Logging In
You must have a UNIX login name, which you can get from whoever administers your system. You also need
to know the phone number, unless your system uses permanently connected terminals. The UNIX system is
capable of dealing with a wide variety of terminals: Tenninet 300’s; Execuport, TI and similar portables;
video (CRT) terminals like the HP2640, etc.; high-priced graphics terminals like the Tektronix 4014; plotting
terminals like those from G31 and DASI; and even the venerable Teletype in its various forms. But note:
UNIX is strongly oriented towards devices with lower case. If your terminal produces only upper case (e.g.,
model 33 Teletype, some video and portable terminals), life will be so difficult that you should look for
another terminal.
Be sure to set the switches appropriately on your device. Switches that might need to be adjusted include the
speed, upper/lower case mode, fun duplex, even parity, and any others that local wisdom advises. Establish a
connection using whatever magic is needed for your terminal; this may involve dialing a telephone call or
merely flipping a switch. In either case, UNIX should type “login:” at you. If it types garbage, you may be at
the wrong speed; check the switches. If that fails, push the “break” or “interrupt” key a few times, slowly.
If that fails to produce a login message, consult a guru.
When you get a login: message, type your login name in lower case. Follow it by a RETURN; the system will
not do anything until you type a RETURN. If a password is required, you will be asked for it, and (if possible)
printing will be turned off while you type it. Don't forget RETURN.
The culmination of your login efforts is a “prompt character,” a single character that indicates that the system
is ready to accept commands from you. The prompt character is usually a dollar sign 3 or a percent sign %.
(You may also get a message of the day just before the prompt character, or a notification that you have mail.)

ND—60.328.1P EN

USD23-4 I ‘ I UNIX for Beginners - Second Edition

1.2. Typing Commands
Once you’ve seen the prompt character, you can type commands, which are requests that the system do some-
thing. Try typing

date

followed by RETURN. You should get back something like

Mon Jan 16 14:17:10 EST 1978

Don't forget the RETURN after the command, or nothing will happen. If you think you’re being ignored, type
a RETURN; something should happen. RETURN won’t be mentioned again, but don’t forget it —— it has to be
there at the end of each line.
Another command you might try is who, which tells you everyone who is currently logged in:

who

gives something like

mb tty01 Jan 16 09:11
ski tty05 Jan 16 09:33
gam ttyll Jan 16 13:07

The time is when the user logged in; “ttyxx” is the system's idea of what terminal the user is on.
If you make a mistake typing the command name, and refer to a non-existent command, you will be told. For
example, if you type

whom

you will be told

whom: not found

Of course, if you inadvertently type the name of some other command, it will run, with more or less mysteri-
ous results.

1.3. Strange Terminal Behavior
Sometimes you can get into a state where your terminal acts strangely. For example, each letter may be typed
twice, or the RETURN may not cause a line feed or a return to the left margin. You can often fix this by log-
ging out and logging back inT.
Or you can read the description of the command stty in section 1 of the manual. To get intelligent treatment
of tab characters (which are much used in UNIX) if your terminal doesn’t have tabs, type the command

stty —tabs

and the system will convert each tab into the right number of blanks for you. If your terminal does have
computer-semble tabs, the command tabs will set the stops correctly for you.

T In Berkeley Unix, the command "reset<control-j>" will often reset a terminal apparently in a strange state because a
fullscrcen editor crashed.

ND—60.328.lP EN

UNIX for Beginners ~ SecOnd Edition USDz3-5

1.4. Mistakes in Typing
If you make a typing mistake, and see it before RETURN has been typed, there are two ways to recover. The
sharp—character # erases the last character typed; in fact successive uses of # erase characters back to the begin-
ning of the line (but not beyond). So if you type badly, you can correct as you go:

dd#atte##e

is the same as date 1.

The at-sign @ erases all of the characters typed so far on the current input line, so if the line is irretrievably
fouled up, type an @ and start the line over.
What if you must enter a sharp or at-sign as part of the text? If you precede either # or @ by a backslash \, it
loses its erase meaning. So to enter a sharp or at—sign in something, type \# or \@. The system will always
echo a newline at you after your at-sign, even if preceded by a backslash. Don’t worry —— the at~sign has been
recorded.

To erase a backslash, you have to type two sharps or two at-signs, as in \##. The backslash is used extensively
in UND< to indicate that the following character is in some way special.

1.5. Read-ahead

UNIX has full read-ahead, which means that you can type as fast as you want, whenever you want, even when
some command is typing at you. If you type during output, your input characters will appear intermixed with
the output characters, but they will be stored away and interpreted in the correct order. So you can type
several commands one after another without waiting for the first to finish or even begin.

1.6. Stopping a Program

You can stop most programs by typing the character “DEL” (perhaps called “delete” or “rubout” on your
terminal). The “interrupt” or “break” key found on most terminals can also be used 2. In a few programs,
like the text editor, DEL stops whatever the program is doing but leaves you in that program. Hanging up the
phone will stop most programs .

1.7. Logging Out
The easiest way to log out is to hang up the phone. You can also type

login

and let someone else use the terminal you were on 4 . It is usually not sufficient just to turn off the terminal.
Most UNIX systems do not use a time-out mechanism, so you’ll be there forever unless you hang up.

1.8. Mail
When you log in, you may sometimes get the message

You have mail.

UND(provides a postal system so you can communicate with other users of the system. To read your mail,
type the command

mail

Your mail will be printed, one message at a time, most recent message first 5. After each message, mail waits
for you to say what to do with it. The two basic responses are d, which deletes the message, and RETURN,
which does not (so it will still be there the next time you read your mailbox). Other responses are described in
the manual. (Earlier versions of mail do not process one message at a time, but are otherwise similar.)

l Many installations set the erase character for display terminals to the delete or backspace key. "my all" tells you what it
aaually is.
2 In Berkeley Unix, "control-c" is the usual way to stop programs. "suy all" tells you the value of your ”intr" key.
3 If you use the c shell, programs running in the background continue running even if you hang up.
4 "controhd" and "logout" are other alternatives.
5 The Berkeley mail program lists the headers of some number of unread pieces of mail in the order of their receipt.

ND-60.328.1P EN

USDz3-6 ' UNIX for Beginners - Second Edition

How do you send mail to someone else? Suppose it is to go to “joe” (assuming “joe” is someone’s login
name). The easiest way is this:

mail joe
now type in the text of the letter
on as many lines as you like
After the last line of the letter
type the character ”control—d",
that is, hold down “control" and type
a letter ”(1".

And that’s it. The “controLd” sequence, often called “EOF” for end-of—file, is used throughout the system to
mark the end of input from a terminal, so you might as well get used to it.
For practice, send mail to yourself. (This isn’t as strange as it might sound — mail to oneself is a handy rem-
inder mechanism.)
There are other ways to send mail — you can send a previously prepared letter, and you can mail to a number
of people all at once. For more details see mail(1). (The notation mail(l) means the command mail which is
described in the section 1 list of UNIX commands, in the Users Reference Manual).

1.9. Writing to other users?
At some point, out of the blue will come a message like

Message from joe tty07...

accompanied by a startling beep. It means that Joe wants to talk to you, but unless you take explicit action
you won’t be able to talk back To respond, type the command

write joe

This establishes a two-way communication path. Now whatever Joe types on his terminal will appear on yours
and vice versa. The path is slow, rather like talking to the moon. (If you are in the middle of something, you
have to get to a state where you can type a command. Normally, whatever program you are running has to ter—
minate or be terminated. If you’re editing, you can escape temporarily from the editor —— read the editor
tutorial.)

A protocol is needed to keep what you type from getting garbled up with what Joe types. Typically it’s like
this:

Joe types write smith and waits.
Smith types write joe and waits.
Joe now types his message (as many lines as he likes). When he’s ready for a reply, he signals it by
typing (0), which stands for “over”.
Now Smith types a reply, also terminated by (0).
This cycle repeats until someone gets tired; he then signals his intent to quit with (00), for “over and
out".
To terminate the conversation, each side must type a “controLd” character alone on a line. (“Delete”
also works.) When the other person types his “control~d”, you will get the message EOF on your
terminal.

If you write to someone who isn’t logged in, or who doesn’t want to be disturbed, you’ll be told. If the target
is logged in but doesn’t answer after a decent interval, simply type “control-d”.

1.10. On-line Manual
The System Manuals are typically kept on—line. If you get stuck on something, and can’t find an expert to
assist you, you can print on your terminal some manual section that might help. This is also useful for getting
the most up~to-date information on a command. To print a manual section, type “man command-name”.
T Although “write" works on Berkeley UNIX, there is a much nicer way of communicating using display-terminals ~—
"talk" splits the screen into two sections, and both of you can type simultaneously (sec talk(l)).

ND-60.328.1P EN

UNIX for Beginners - Second Edition USDz3-7

Thus to read up on the who command, type

man who

and, of course,

man man

tells all about the man command.

1.11. Computer Aided Instruction
Your UND(system may have available a program called learn, which provides computer aided instruction on
the file system and basic commands, the editor, document preparation, and even C programming. Try typing
the command

learn

If learn exists on your system, it will tell you what to do from there.

2. DAY-TO-DAY USE

2.1. Creating Files — The Editor
If you have to type a paper or a letter or a program, how do you get the information stored in the machine?
Most of these tasks are done with the UNIX “text editor" ed. Since ed is thoroughly documented in ed(1) and
explained in A Tutorial Introduction to the UNIX Text Editor; we won’t spend any time here describing how to
use it. All we want it for right now is to make somefiles. (A file is just a collection of information stored in
the machine, a simplistic but adequate definition.)
To create a file called junk with some text in it, do the following:

ed junk (invokes the text editor)
a (command to ””,ed to add text)
now type in
whatever text you want
. (signals the end of adding text)

The that signals the end of adding text must be at the beginning of a line by itself. Don’t forget it, for
until it is typed, no other ed commands will be recognized —- everything you type will be treated as text to be
added.
At this point you can do various editing operations on the text you typed in, such as correcting spelling mis—
takes, rearranging paragraphs and the like. Finally, you must write the information you have typed into a file
with the editor command w:

W

ed will respond with the number of characters it wrote into the file junk.
Until the w command, nothing is stored permanently, so if you hang up and go home the information is lost’r
But after w the information is there permanently; you can re-access it any time by typing

ed junk

Type a q command to quit the editor. (If you try to quit without writing, ed will print a ? to remind you. A
second q gets you out regardless.)
Now create a second file called temp in the same manner. You should now have two files, junk and temp.

“(This is not strictly true —— if you hang up while editing, the data you were working on is saved in a file called ed.hup,
which you can continue with at your next session.

ND-60.328.1P EN

USDz3-8 ‘ UNIX for Beginners - Second Edition

2.2. What files are out there?

The Is (for “list") command lists the names (not contents) of any of the files that UNIX knows about. If you
[We

Is

the response will be

junk
temp

which are indeed the two files just created. The names are sorted into alphabetical order automatically, but
other variations are possible. For example, the command

ls —t

causes the files to be listed in the order in which they were last changed, most recent first. The —l option gives
a “long” listing:

ls ~l

will produce something like

—rw—rw—-rw— l bwk 41 Jul 22 2:56 junk
—rw~rw—rw~ 1 bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the file. The 41 and 78 are the number of characters (which should
agree with the numbers you got from ed). bwk is the owner of the file, that is, the person who created it The
—rw—rw—rw— tells who has permission to read and write the file — in this case everyone.
Options can be combined: ls —lt gives the same thing as ls—l, but sorted into time order. You can also name
the files you’re interested in, and ls will list the information about them only. More details can be found in
15(1).
The use of optional arguments that begin with a minus sign, like —t and —lt, is a common convention for UNIX
programs. In general, if a program accepts such optional arguments, they precede any filename arguments. It
is also vital that you separate the various arguments with spaces: Is—l is not the same as ls -l.

23. Printing Files
Now that you’ve got a file of text, how do you print it so people can look at it? There are a host of programs
that do that, probably more than are needed.
One simple thing is to use the editor, since printing is often done just before making changes anyway. You
can say

ed junk
1,$p

ed will reply with the count of the characters in junk and then print all the lines in the file. After you learn
how to use the editor, you can be selective about the parts you print
There are times when it’s not feasible to use the editor for printing. For example, there is a limit on how big a
file ed can handle (several thousand lines). Secondly, it will only print one file at a time, and sometimes you
want to print several, one after another. So here are a couple of alternatives.
First is cat, the simplest of all the printing programs. cat simply prints on the terminal the contents of all the
files named in a list. Thus

cat junk

prints one file, and

cat junk temp

prints two. The files are simply concatenated (hence the name “cat") onto the terminal.
pr produces formatted printouts of files. As with cat, pr prints all the files named in a list. The difference is
that it produces headings with date, time, page number and file name at the top of each page, and extra lines to

ND-60.328.1P EN

UNIX for Beginners - Second Edition US D13-9

skip over the fold in the paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a new page and prim temp neatly.
pr can also produce multi—column output:

pr -3 junk

prints junk in 3—eolumn format You can use any reasonable number in place of “3” and pr will do its best.
pr has other capabilities as well; see pr(l).
It should be noted that pr is not a formatting program in the sense of shuffling lines around and justifying mar-
gins. The true formatters are nrofl‘ and troff, which we will get to in the section on document preparation.
There are also programs that print files on a high-speed printer. Look in your manual under opr and lpr.
Which to use depends on what equipment is attached to your machine.

2.4. Shuffling Files About
Now that you have some files in the file system and some experience in printing them, you can try bigger
things. For example, you can move a file from one place to another (which amounts to giving it a new name),
like this:

mv junk precious

This means that what used to be “junk” is now “precious". If you do an ls command now, you will get
precious
temp

Beware that if you move a file to another one that already exists, the already existing contents are lost forever.
If you want to make a copy of a file (that is, to have two versions of something), you can use the cp command:

cp precious templ

makes a duplicate copy of precious in templ.
Finally, when you get tired of creating and moving files, there is a command to remove files from the file sys-
tem, called rm.

rm temp templ

will remove both of the files named temp and templ.
You will get a warning message if one of the named files is not there, but otherwise rm, like most UNIX com-
mands, does its work silently. There is no prompting or chatter, and error messages are occasionally curt.
This terseness is sometimes disconcerting to newcomers, but experienced users find it desirable.

2.5. What’s in 3 Filename

So far we have used filenames without ever saying what is a legal name, so it is time for a couple of niles.
First, filenames are limited to 14 characters, which is enough to be descriptive.‘r Second, although you can use
almost any character in a filename, common sense says you should stick to ones that are visible, and that you
should probably avoid characters that might be used with other meanings. We have already seen, for example,
that in the Is command, ls —t means to list in time order. 30 if you had a file whose name was -t, you would
have a tough time listing it by name. Besides the minus sign, there are other characters which have specialmeaning. To avoid pitfalls, you would do well to use only letters, numbers and the period until you’re familiar
with the situation.
On to some more positive suggestions. Suppose you’re typing a large document like a book. Logically this
divides into many small pieces, like chapters and perhaps sections. Physically it must be divided too, for ed
will not readily handle really big files. Thus you should type the document as a number of files. You mighthave a separate file for each chapter, called

1“ In 4.ZBSD the limit was extended to 255 characters.

ND-60.328.1P EN

USD23—10 ' UNIX for Beginners - Second Edition

chapl
chap2
etc...

Or, if each chapter were broken into several files, you might have

chapl.l
chap1.2
chap1.3

chap2.1
chap2.2

You can now tell at a glance where a particular file fits into the whole.
There are advantages to a systematic naming convention which are not obvious to the novice UNIX user. What
if you wanted to print the whole book? You could say

pr chapl.1 chap1.2 chap1.3

but you would get tired pretty fast, and would probably even make mistakes. Fortunately, there is a shortcut
You can say

pr chap“

The * means “anything at all,” so this translates into “print all files whose names begin with chap”, listed in
alphabetical order.

This shorthand notation is not a property of the pr command, by the way. It is system-wide, a service of the
program that interprets commands (the “shell," sh(1)). Using that fact, you can see how to list the names of
the files in the book:

is chap“

produces

chap1.1
chap1.2
chap 1.3

The * is not limited to the last position in a filename —- it can be anywhere and can occur several times. Thus
rm *junk“ ‘temp‘

removes all files that contain junk or temp as any part of their name. As a special case, * by itself matches
every filename, so

pr ‘
prints all your files (alphabetical order), and

rm“

removes all files. (You had better be very sure that that’s what you wanted to say!)
The "‘ is not the only pattem-matching feature available. Suppose you want to print only chapters 1 through 4
and 9. Then you can say

pr chap[12349]"

The [...1 means to match any of the characters inside the brackets. A range of consecutive letters or digits can
be abbreviated, so you can also do this with

pr chap[l-—49]*

Letters can also be used within brackets: [a—z] matches any character in the range a through 2.

ND—60.328.1P EN

UNIX for Beginners - Second Edition USDz3-ll

The ? pattern matches any single character, so

ls ?

lists all files which have singlecharacter names, and

ls —l chap?.l

lists information about the first file of each chapter (chap1.1, chap2.1, etc).
Of these niceties, “ is certainly the most useful, and you should get used to it The others are frills, but worth
knowing.

If you should ever have to turn off the special meaning of *, ?, etc, enclose the entire argument in single
quotes, as in

‘5 l ? I

We’ll see some more examples of this shortly.

2.6. What’s in 3 Filename, Continued
When you first made that file called junk, how did the system know that there wasn’t another junk somewhere
else, especially since the person in the next office is also reading this tutorial? The answer is that generally
each user has a private directory, which contains only the files that belong to him. When you log in, you are
“in" your directory. Unless you take special action, when you create a new file, it is made in the directory
that you are currently in; this is most often your own directory, and thus the file is unrelated to any other file of
the same name that might exist in someone else’s directory.
The set of all files is organized into a (usually big) tree, with your files located several branches into the tree.
It is possible for you to “walk” around this tree, and to find any file in the system, by starting at the root of
the tree and walking along the proper set of branches. Conversely, you can start where you are and walk
toward the root.

Let’s try the latter first. The basic tools is the command pwd (“print working directory”), which prints the
name of the directory you are currently in.
Although the details will vary according to the system you are on, if you give the command pwd, it will print
something like

/usr/your-name

This says that you are currently in the directory your-name, which is in turn in the directory /usr, which is in
turn in the root directory called by convention just /. (Even if it’s not called lusr on your system, you will get
something analogous. Make the corresponding mental adjustment and read on.)
If you new type

ls /usr/your-name

you should get exactly the same list of file names as you get from a plain ls: with no arguments, ls lists the
contents of the current directory; given the name of a directory, it lists the contents of that directory.
Next, try

ls /usr

This should print a long series of names, among which is your own login name your-name. On many sys‘
tems, usr is a directory that contains the directories of all the normal users of the system, like you.
The next step is to try

ls /

You should get a response something like this (although again the details may be different):

ND—60.328. 1? EN

USD13~12 ' UNIX for Beginners — Second Edition

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files that the system knows about; we are at the root of the tree.
Now try

cat lusr/your-name/junk
(if junk is still around in your directory). The name

/usr/your-name/junk

is called the pathname of the file that you normally think of as “junk”. “Pathname” has an obvious mean-
ing: it represents the full name of the path you have to follow from the root through the tree of directories to
get to a particular file. It is a universal rule in the UNIX system that anywhere you can use an ordinary
filename, you can use a pathname.
Here is a picture which may make this clearer:

(root)
/l\
/ I \
/ I \

bin etc usr dev tmp
/I\ /|\//:\\/I\ /l\

da / | \
a m eve m
/ / \ ary

/ \ junk
junk temp

Notice that Mary’s junk is unrelated to Eve’s.
This isn’t too exciting if all the files of interest are in your own directory, but if you work with someone else
or on several projects concurrently, it becomes handy indeed. For example, your friends can print your book
by saying

pr /usr/y0ur-name/chap*
Similarly, you can find out what files your neighbor has by saying

ls /usr/neighb0r~name
or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking around in his files, or vice versa, privacy can be arranged. Each fileand directory has read-write-execute permissions for the owner, a group, and everyone else, which can be setto control access. See 15(1) and chm0d(l) for details. As a matter of observed fact, most users most of thetime find openness of more benefit than privacy.
As a final experiment with pathnames, try

ls /bin lusr/bin

Do some of the names look familiar? When you run a program, by typing its name after the prompt character,the system simply looks for a file of that name. It normally looks first in your directory (where it typicallydoesn’t find it), then in /bin and finally in /usr/bin. There is nothing magic about commands like cat or ls,except that they have been collected into a couple of places to be easy to find and administer.
What if you work regularly with someone else on common information in his directory? You could just log inas your friend each time you want to, but you can also say “I want to work on his files instead of my own".This is done by changing the directory that you are currently in:

ND~60.328.1P EN

UNIX for Beginners — SecOnd Edition USDz3-13

cd lusr/your—friend

(On some systems, cd is spelled chdir.) Now when you use a filename in something like cat or pr, it refers to
the file in your friend’s directory. Changing directories doesn't affect any permissions associated with a file ~
if you couldn’t access a file from your own directory, changing to another directory won’t alter that fact. Of
course, if you forget what directory you’re in, type

pwd

to find out

It is usually convenient to arrange your own files so that all the files related to one thing are in a directory
separate from other projects. For example, when you write your book, you might want to keep all the text in a
directory called book. So make one with

mkdir book

then go to it with

cd book

then start typing chapters. The book is now found in (presumably)

/usr/y0ur-name/book
To remove the directory book, type

rm book/*
rmdir book

The first command removes all files from the directory; the second removes the empty directory.
You can go up one level in the tree of files by saying

cd ..
l‘ :r'.. is the name of the parent of whatever directory you are currently in. For completeness, is an alter-
nate name for the directory you are in.

2.7. Using Files instead of the Terminal
Most of the commands we have seen so far produce output on the terminal; some, like the editor, also take
their input from the terminal. It is universal in UNIX systems that the terminal can be replaced by a file for
either or both of input and output. As one example,

ls

makes a list of files on your terminal. But if you say

ls >filelist

a list of your files will be placed in the file filelist (which will be created if it doesn’t already exist, or
overwritten if it does). The symbol > means “put the output on the following file, rather than on the termi-
nal.” Nothing is produced on the terminal. As another example, you could combine several files into one by
capturing the output of cat in a file:

cat 11 f2 f3 >temp

The symbol >> operates very much like > does, except that it means “add to the end of.” That is,
cat fl f2 f3 >>temp

means to concatenate f1, f2 and T3 to the end of whatever is already in temp, instead of overwriting the exist-
ing contents. As with >, if temp doesn’t exist, it will be created for you.
In a similar way, the symbol < means to take the input for a program from the following file, instead of from
the terminal. Thus, you could make up a script of commonly used editing commands and put them into a file
called script. Then you can run the script on a file by saying

ND~60.328.1P EN

USD:3—14 ’ UNIX for Beginners — Second Edition

ed file <seript

As another example, you can use ed to prepare a letter in file let, then send it to several people with
mail adam eve mary joe <let

2.8. Pipes
One of the novel contributions of the UNIX system is the idea of a pipe. A pipe is simply a way to connect the
output of one program to the input of another program, so the two run as a sequence of processes —— a pipe-
line.

For example,

pr 1‘ g h

will print the files f, g, and h, beginning each on a new page. Suppose you want them run together instead.
You could say

eat f g h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly what we want is to take the output of cat and connect it to the
input of pr. So let us use a pipe:

eatfghlpr

The vertical bar I means to take the output from cat, which would normally have gone to the terminal, and put
it into pr to be neatly formatted.
There are many other examples of pipes. For example,

ls 1 pr -3

prints 3 list of your files in three columns. The program we counts the number of lines, words and characters
in its input, and as we saw earlier, who prints a list of currently-logged on people, one per line. Thus

who I we

tells how many people are logged on. And of course

Is I we

counts your files.
Any program that reads from the terminal can read from a pipe instead; any program that writes on the termi-
nal can drive a pipe. You can have as many elements in a pipeline as you wish.
Many UNIX programs are written so that they will take their input from one or more files if file arguments are
given; if no arguments are given they will read from the terminal, and thus can be used in pipelines. pr is one
example:

pr ——3 a b c

prints files a, b and c in order in three columns. But in
cat a b c 1 pr -3

pr prints the information coming down the pipeline, still in three columns.

2.9. The Shell
We have already mentioned once or twice the mysterious “shell," which is in fact sh(1).‘(The shell is the
program that interprets what you type as commands and arguments. It also looks after translating *, etc., intolists of filenames, and <, >, and I into changes of input and output streams.
T On Berkeley Unix systems, the usual shell for interactive use is the c shell, csh(l).

ND—60.328.1P EN

UNIX for Beginners - Second Edition USDz3—15

The shell has other capabilities too. For example, you can run two programs with one command line by
separating the commands with a semicolon; the shell recognizes the semicolon and breaks the line into two
commands. Thus

date; who

does both commands before returning with a prompt character.
You can also have more than one program running simultaneously if you wish. For example, if you are doing
something time—consuming, like the editor script of an earlier section. and you don’t want to wait around for
the results before starting something else, you can say

ed file <script &

The ampersand at the end of a command line says “start this command running, then take further commands
from the terminal immediately,” that is, don’t wait for it to complete. Thus the script will begin, but you can
do something else at the same time. Of course, to keep the output from interfering with what you’re doing on
the terminal, it would be better to say

ed file <script >script.out &
which saves the output lines in a file called script.out.
When you initiate a command with &, the system replies with a number called the process number, which
identifies the command in case you later want to stop it. If you do, you can say

kill process-number

If you forget the process number, the command ps will tell you about everything you have running. (If you
are desperate, kill 0 will kill all your processes.) And if you’re curious about other people, ps 2 will tell you
about all programs that are currently running.
You can say

(command-1; command-2; command-3) &

to start three commands in the background, or you can start a background pipeline with
command-1 l command-2 &

Just as you can tell the editor or some similar program to take its input from a file instead of from the terminal,
you can tell the shell to read a file to get commands. (Why not? The shell, after all, is just a program, albeit a
clever one.) For instance, suppose you want to set tabs on your terminal, and find out the date and who’s on
the system every time you log in. Then you can put the three necessary commands (tabs, date, who) into a
file, let’s call it startup, and then run it with

sh startup

This says to run the shell with the file startup as input. The effect is as if you had typed the contents of
startup on the terminal.
If this is to be a regular thing, you can eliminate the need to type sh: simply type, once only, the command

chmod +x startup

and thereafter you need only say

startup

to run the sequence of commands. The chm0d(1) command marks the file executable; the shell recognims this
and runs it as a sequence of commands.
If you want startup to run automatically every time you log in, create a file in your login directory called
.profile, and place in it the line startup. When the shell first gains control when you log in, it looks for the
.profile file and does whatever commands it finds in iti We’ll get back to the shell in the section on program-
ming.

1“ The c shell instead reads a file called .Iogln

ND-60.328.1P EN

USDz3-l6 - UNIX for Beginners - Second Edition

3. DOCUMENT PREPARATION
UNIX systems are used extensively for document preparation. There are two major formatting programs, that
is, programs that produce a text with justified right margins, automatic page numbering and titling, automatic
hyphenation, and the like. nroff is designed to produce output on terminals and line-printers. troff (pro-
nounced “tee-roff’ ') instead drives a phototypesetter, which produces very high quality output on photographic
paper. This paper was formatted with troff.

3.1. Formatting Packages
The basic idea of mo“ and troff is that the text to be formatted contains within it “formatting commands"
that indicate in detail how the formatted text is to look. For example, there might be commands that specify
how long lines are, whether to use single or double spacing, and what running titles to use on each page.
Because nroff and troff are relatively hard to learn to use effectively, several “packages” of canned format—
ting requests are available to let you specify paragraphs, running titles, footnotes, multi-column output, and so
on, with little effort and without having to learn nroff and troff. These packages take a modest effort to learn,
but the rewards for using them are so great that it is time well spent.
In this section, we will provide a hasty look at the “manuscript" package known as —ms. Formatting requests
typically consist of a period and two upper—case letters, such as .TL, which is used to introduce a title, or .PP
to begin a new paragraph.
A document is typed so it looks something like this:

.TL
title of document
.AU
author name
.SH
section heading
.PP
paragraph
.PP
another paragraph
.SH
another section heading
.PP
etc.

The lines that begin with a period are the formatting requests. For example, .PP calls for starting a new para-
graph. The precise meaning of .PP depends on what output device is being used (typesetter or terminal, for
instance), and on what publication the document will appear in. For example, —ms normally assumes that a
paragraph is preceded by a space (one line in nroff, 1/2 line in tron“), and the first word is indented. These
rules can be changed if you like, but they are changed by changing the interpretation of .PP, not by re—typing
the document

To actually produce a document in standard format using —ms, use the command
troff —ms files

for the typesetter, and

nroff —ms files

for a terminal. The —ms argument tells troff and nrofi‘ to use the manuscript package of formatting requests.
There are several similar packages; check with a local expert to determine which ones are in common use on
your machine.

3.2. Supporting Tools
In addition to the basic formatters, there is a host of supporting programs that help with document preparation.
The list in the next few paragraphs is far from complete, so browse through the manual and check with people
around you for other possibilities.

ND-60.328.1P EN

UNIX for Beginners - Second Edition USDz3-l7

eqn and neqn let you integrate mathematics into the text of a document, in an easy~to-leam language that
closely resembles the way you would speak it aloud. For example, the eqn input

sum from i=0 to n x sub i ~=~ pi over 2

produces the output
I! it

E, “ 2
The program tbl provides an analogous service for preparing tabular material; it does all the computations
necessary to align complicated columns with elements of varying widths.
refer prepares bibliographic citations from a data base, in whatever style is defined by the formatting package.
It looks after all the details of numbering references in sequence, filling in page and volume numbers, getting
the author’s initials and the journal name right, and so on.
spell and typo detect possible spelling mistakes in a documenLT spell works by comparing the words in your
document to a dictionary, printing those that are not in the dictionary. lt knows enough about English spelling
to detect plurals and the like, so it does a very good job. typo looks for words which are “unusual”, and
prints those. Spelling mistakes tend to be more unusual, and thus show up early when the most unusual words
are printed first.

grep looks through a set of files for lines that contain a particular text pattern (rather like the editor’s context
search does, but on a bunch of files). For example,

grep ’ing$’ chap“

will find all lines that end with the letters ing in the files chap*. (It is almost always a good practice to put
single quotes around the pattern you’re searching for, in case it contains characters like * or $ that have a spe—
cial meaning to the shell.) grep is often useful for finding out in which of a set of files the misspelled words
detected by spell are actually located.
diff prints a list of the differences between two files, so you can compare two versions of something automati-
cally (which certainly beats proofreading by human beings).
we counts the words, lines and characters in a set of files.
tr translates characters into other characters; for example it will convert upper to lower case and vice versa.
This translates upper into lower.

tr A—Z a-z <input >output

sort sorts files in a variety of ways; cref makes cross-references; ptx makes a permuted index (keyword-in-
context listing). sed provides many of the editing facilities of ed, but can apply them to arbitrarily long inputs.
awk provides the ability to do both pattern matching and numeric computations, and to conveniently process
fields within lines. These programs are for more advanced users, and they are not limited to document
preparation. Put them on your list of things to learn about.
Most of these programs are either independently documented (like eqn and tbl), or are sufficiently simple that
the description in the System Manuals is adequate explanation.

3.3. Hints for Preparing Documents
Most documents go through several versions (always more than you expected) before they are finally finished.
Accordingly, you should do whatever possible to make the job of changing them easy.
First, when you do the purely mechanical operations of typing, type so that subsequent editing will be easy.
Start each sentence on a new line. Make lines short, and break lines at natural places, such as after commas
and semicolons, rather titan randomly. Since most people change documents by rewriting phrases and adding,
deleting and rearranging sentences, these precautions simplify any editing you have to do later.
Keep the individual files of a document down to modest size, perhaps ten to fifteen thousand characters.
Larger files edit more slowly, and of course if you make a dumb mistake it’s better to have clobbercd a small
T "typo" is not provided with Berkeley Unix.

ND‘60.328.1P EN

USDz3-18 ' UNIX for Beginners - Second Edition

file than a big one. Split into files at natural boundaries in the document, for the same reasons that you start
each sentence on a new line.
The second aspect of making change easy is to not commit yourself to formatting details too early. One of the
advantages of formatting packages like —ms is that they permit you to delay decisions to the last possible
momenL Indeed, until a document is printed, it is not even decided whether it will be typeset or put on a line
printer.
As a rule of thumb, for all but the most trivial jobs, you should type a document in terms of a set of requests
like .PP, and then define them appropriately, either by using one of the canned packages (the better way) or by
defining your own nroff and trol‘f commands. As long as you have entered the text in some systematic way, it
can always be cleaned up and reformatted by a judicious combination of editing commands and request
definitions.

4. PROGRAMMING
No attempt will be made here to teach any of the programming languages available, but a few words of advice
are in order. One of the reasons why the UNIX system is a productive programming environment is that there
is already a rich set of tools available, and facilities like pipes, I/O redirection, and the capabilities of the shell
often make it possible to do a job by pasting together programs that already exist instead of writing from
xmmh

4.1. The Shell

The pipe mechanism lets you fabricate quite complicated operations out of spare parts that already exist. For
example, the first draft of the spell program was (roughly)

cat collect the files
I tr put each word on a new line
I tr delete punctuation. etc.
I sort into dictionary order
I uniq discard duplicates
I comm print words in text

but not in dictionary

More pieces have been added subsequently. but this goes a long way for such a small effort.
The editor can be made to do things that would normally require special programs on other systems. For
example, to list the first and last lines of each of a set of files, such as a book, you could laboriously type

ed
8 chapl.1
19
$9
e chap1.2

But you can do the job much more easily. One way is to type

ls chap“ >temp

to get the list of filenames into a file. Then edit this file to make the necessary series of editing commands
(using the global commands of ed), and write it into script. Now the command

ed <script

will produce the same output as the laborious hand typing. Altemately (and more easily), you can use the fact
that the shell will perform loops, repeating a set of commands over and over again for a set of arguments:

ND-60.328.1P EN

UNIX for Beginners ~ Second Edition USD:3—19

for i in chap“
do

ed Si <script
done

This sets the shell variable i to each file name in turn, then does the command. You can type this command at
the terminal, or put it in a file for later execution.

4.2. Programming the Shell
An option often overlooked by newcomers is that the shell is itself a programming language, with variables,
control flow (if—else, While, for, case), subroutines, and interrupt handling. Since there are many building-
block programs, you can sometimes avoid writing a new program merely by piecing together some of the
building blocks with shell command files.
We will not go into any details here; examples and rules can be found in An Introduction to the UNIX Shell, by
S. R. Boume.

4.3. Programming in C
If you are undertaking anything substantial, C is the only reasonable choice of programming language: every—
thing in the UNIX system is tuned to it. The system itself is written in C, as are most of the programs that run
on it. It is also a easy language to use once you get started. C is introduced and fully described in The C Pro-
gramming Language by B. W. Kernighan and D. M. Ritchie (Prentice—Hall, 1978). Several sections of the
manual describe the system interfaces, that is, how you do 1/0 and similar functions. Read UNIX Program—
ming for more complicated things.
Most input and output in C is best handled with the standard I/O library, which provides a set of I/O functionsthat exist in compatible form on most machines that have C compilers. In general, it’s wisest to confine thesystem interactions in a program to the facilities provided by this library.
C programs that don’t depend too much on special features of UNIX (such as pipes) can be moved to other
computers that have C compilers. The list of such machines grows daily; in addition to the original PDP—ll, it
currently includes at least Honeywell 6000, IBM 370 and PC families, Interdata 8/32, Data General Nova and
Eclipse, HP 2100, Harris /7, Motorola 68000 family (including machines like Sun Microsystems and Apple
Macintosh), VAX 11 family, SEL 86, and Zilog Z80. Calls to the standard [/0 library will work on all of
these machines.
There are a number of supporting programs that go with C. lint checks C programs for potential portabilityproblems, and detects errors such as mismatched argument types and uninitialized variables.
For larger programs (anything whose source is on more than one file) make allows you to specify the depen-
dencies among the source files and the processing steps needed to make a new version; it then checks the times
that the pieces were last changed and does the minimal amount of recompiling to create a consistent updatedversion.
The debugger adb is useful for digging through the dead bodies of C programs, but is rather hard to learn to
use effectively. The most effective debugging tool is still careful thought, coupled with judiciously placedprint statements}L
The C compiler provides a limited instrumentation service, so you can find out where programs spend their
time and what parts are worth optimizing. Compile the routines with the —p option; after the test run, use prof
to print an execution profile. The command time will give you the gross run-time statistics of a program, but
they are not super accurate or reproducible.

4.4. Other Languages
If you have to use Fortran, there are two possibilities. You might consider Ratfor, which gives you the decent
control structures and free-form input that characterize C, yet lets you write code that is still portable to other
environments. Bear in mind that UNIX Fortran tends to produce large and relatively slow-running programs.
T The "dbx" debugger, supplied starting with 4.ZBSD, has extensive facilities for high-level debugging of C programsand is much easier to use than "adb".

ND-60.328.1P EN

USDz3-2O ' UNIX for Beginners - Second Edition

Furthermore, supporting software like adb, prof, etc., are all virtually useless with Fortran programs. There
may also be a Fortran 77 compiler on your system. If so, this is a viable alternative to Ratfor, and has the
non-trivial advantage that it is compatible with C and related programs. (The Ratfor processor and C tools can
be used with Fortian 77 too.)

If your application requires you to translate a language into a set of actions or another language, you are in
effect building a compiler, though probably a small one. In that case, you should be using the yacc compiler‘
compiler, which helps you develop a compiler quickly. The lex lexical analyzer generator does the same job
for the simpler languages that can be expressed as regular expressions. It can be used by itself, or as a front
end to recognize inputs for a yacc-based program. Both yacc and lex require some sophistication to use, but
the initial effort of learnn them can be repaid many times over in programs that are easy to change later on.
Most UNIX systems also make available other languages, such as Algol 68, APL, Basic, Lisp, Pascal, and Sno-
bol. Whether these are useful depends largely on the local environment: if someone cares about the language
and has worked on it, it may be in good shape. If not, the odds are strong that it will be more trouble than it‘s
worth.

5. UNIX READING LIST

5.1. General:

1 K. L. Thompson and D. M. Ritchie, The UNIX Programmer's Manual, Bell Laboratories, 1978. Lists com-
mands, system routines and interfaces, file formats, and some of the maintenance procedures. You can’t
live without this, although you will probably only need to read section 1. The supplementary document
UNIX Programming ‘ Second Edition. which is included in the Programmers Supplementary Documents
manual (PSD219) ’t, is a useful starting point

2 D. M. Ritchie and K. L. Thompson, The UNIX Time-sharing System, CACM, July 1974. An overview of
the system, for people interested in operating systems. Worth reading by anyone who programs. Contains
a remarkable number of one-sentence observations on how to do things right This document is included in
the Programmer Supplementary Documents manual (PSD:18).

3 The Bell System Technical Journal, (BSTJ) Special Issue on UNIX, July/August, 1978, contains many
papers describing recent developments, and some retrospective material.

4 The 2nd International Corference on Software Engineering, (October, 1976) contains several papers
describing the use of the Programmer’s Workbench (PWB) version of UNIX.

5.2. Document Preparation
1 B. W. Kemighan, “A Tutorial Introduction to the UNIX Text Editor” (USD212) and “Advanced Editing on

UNIX,” (USD213) Bell Laboratories, 1978. Beginners need the introduction; the advanced material will
help you get the most out of the editor.

2 M. E. Lesk, “Typing Documents on UNIX’ Bell Laboratories, 1978. (USD:20). Describes the -—m5 macro
package, which isolates the novice from the vagaries of nroff and troff, and takes care of most formatting
situations. If this specific package isn‘t available on your system, something similar probably is. The most
likely alternative is the PWB/UNIX macro package -mm; see your local guru if you use PWB/UNIXqE

3 B. W. Kemighan and L. L. Cherry, “A System for Typesetting Mathematics,” Bell laboratories Comput-
ing Science Tech. Rep. 17. (USD:26).
M. E. Lesk, “Tbl —— A Program to Format Tables,” Bell Laboratories CSTR 49, 1976. (USDz28).
I. F. Ossanna, Jr., “NROFF/fROFF User’s Manual,” Bell Laboratories CSTR 54, 1976. (USD:24). troff
is the basic formatter used by —ms, eqn and tbl. The reference manual is indispensable if you are going to
write or maintain these or similar programs. But start with:

6 B. W. Kemighan, “A TROFF Tutorial,” Bell Laboratories, 1976. (USD225). An attempt to unravel the
intricacies of trol‘f.

T In this Reading Ust, the references PSD and U31) refer to the Programmers Supplementary Documents manual (ND-
60.330) and Users Supplementary Documents manual (ND-60.328), respectively.
1; 'lhc macro package ~me is additionally available on Berkeley Unix Systems. -mm is typically not available.

ND-60.328.1P EN

UNIX for Beginners - Second Edition USDz3-21

5.3. Programming

1

2

O
O

\I
O

’\
L

I\

B. W. Kemighan and D. M. Ritchie. The C Programming Language, Prentice—Hall, 1978. Contains a
tutorial introduction, complete discussions of all language features, and the reference manual.
B. W. Kemighan and R. Pike, The Unix Programming Environment, Prentice-Hall, 1984. Contains many
examples of C programs which use the system interfaces, and explanations of “why”.
B. W. Kemighan and D. M. Ritchie, “UND(Programming,” Bell Laboratories, 1978. (PSD:19). Describes
how to interface with the system from C programs: 110 calls, signals, processes.
S. R. Boume, “An Introduction to the UNIX Shell,” Bell Laboratories, 1978. (USD15). An introduction
and reference manual for the Version 7 shell. Mandatory reading if you intend to make effective use of the
programming power of this shell.
S. C. Johnson, “Yacc — Yet Another Compiler-Compiler,” Bell Laboratories CS'I'R 32, 1978. CPSD214).
M. E. Lesk, “Lex — A Lexical Analyzer Generator,” Bell Laboratories CSTR 39, 1975. @8115).
S. C. Johnson, “Lint, a C Program Checker,” Bell Laboratories CS'I'R 65, 1977. (PSI:9).
S. l. Feldman, “MAKE —— A Program for Maintaining Computer Programs,” Bell laboratories CSTR 57,
1977. (PSl:12).
J. F. Maranzano and S. R. Boume, “A Tutorial Introduction to ADB,” Bell Laboratories CSTR 62, 1977.
(PSl:10). An introduction to a powerful but complex debugging tool.

ND-60.328.1P EN

USDz3—22 ~ UNIX for Beginners - Second Edition

ND-60.328.1P EN

Learn - Computer-Aided Instruction on UNIX USDz4-1

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kerm‘ghan

Michael E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpreting CAI scripts on
the UNIX}L operating system, and a set of scripts that provide a computerized introduction to
the system.

Six current scripts cover basic commands and file handling, the editor, additional file han-
dling commands, the eqn program for mathematical typing, the “—ms” package of format-
ting macros, and an introduction to the C programming language. These scripts now include
a total of about 530 lessons.
Many users from a wide variety of backgrounds have used learn to acquire basic UNIX
skills. Most usage involves the first two scripts, an introduction to UNIX files and com-
mands, and the UNIX editor.
The second version of learn is about four times faster than the previous one in CPU utiliza-
tion, and much faster in perceived time because of better overlap of computing and printing.
It also requires less file space than the first version. Many of the lessons have been revised;
new material has been added to reflect changes and enhancements in UNIX itself. Scripb
writing is also easier because of revisions to the script language.

1' UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USDz4—2 ' Learn — Computcr-Aided Instruction on UNIX

ND-60.328.1P EN

Learn - Computer‘Aided Instruction on UNIX US 114-3

1. Introduction.

Learn is a driver for CAI scripts. It is intended to permit the easy composition of lessons and lesson frag—
ments to teach people computer skills. Since it is teaching the same system on which it is implemented, it
makes direct use of UNIX facilities to create a controlled UNIX environment. The system includes two main
parts: (1) a driver that interprets the lesson scripts; and (2) the lesson scripts themselves. At present there are
seven scripts:

—— basic file handling commands
—— the UNIX text editors ed and vi
—— advanced file handling
—- the eqn language for typing mathematics
—— the “ms” macro package for document formatting
—— the C programming language

The purported advantages of CA] scripts for training in computer skills include the following:
(a) students are forced to perform the exercises that are in fact the basis of training in any case;
(b) students receive immediate feedback and confirmation of progress;
(c) students may progress at their own rate;
(d) no schedule requirements are imposed; students may study at any time convenient for them;
(e) the lessons may be improved individually and the improvements are immediately available to new

users;

(0 since the student has access to a computer for the CA1 script there is a place to do exercises;
(g) the use of high technology will improve student motivation and the interest of their management

Opposed to this, of course, is the absence of anyone to whom the student may direct questions. If CAI is used
without a “counselor” or other assistance, it should properly be compared to a textbook, lecture series, or
taped course, rather than to a seminar. CAI has been used for many years in a variety of educational areas.
bitzer plato 1970 gray coala 1977 suppes individualize 1967 The use of a computer to teach computer use
itself, however, offers unique advantages. The skills developed to get through the script are exactly those
needed to use the computer; there is no waste effort.
The scripts written so far are based on some familiar assumptions about education; these assumptions are out—
lined in the next section. The remaining sections describe the operation of the script driver and the particular
scripts now available. The driver puts few restrictions on the script writer, but the current scripts are of a
rather rigid and stereotyped form in accordance with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.
First, the way to teach people how to do something is to have them do it. Scripts should not contain long
pieces of explanation; they should instead frequently ask the student to do some task So teaching is always by
example: the typical script fragment shows a small example of some technique and then asks the user to either
repeat that example or produce a variation on it All are intended to be easy enough that most students will get
most questions right, reinforcing the desired behavior.
Most lessons fall into one of three types. The simplest presents a lesson and asks for a yes or no answer to aquestion. The student is given a chance to experiment before replying. The script checks for the correct reply.
Problems of this form are sparingly used.
The second type asks for a word or number as an answer. For example a lesson on files might say

How manyfiles are there in the current directory? Type "answer N", where N is the number offiles.
The student is expected to respond (perhaps after experimenting) with

answer I 7

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing N by 17) isdifficult for non-programmer students, so the first few such lessons need real care.
The third type of lesson is open-ended ——— a task is set for the student, appropriate parts of the input or outputare monitored, and the student types ready when the task is done. Figure 1 shows a sample dialog that

ND-60.328.lP EN

USDz4-4 ' Learn - Computer—Aided Instruction on UNIX

illustrates the last of these, using two lessons about the cat (concatenate, i.e., print) command taken from early
in the script that teaches file handling. Most learn lessons are of this form.

Figure 1: Sample dialog from basic files script

(Student responses in italics; ‘$’ is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food" in this directory. List it
by saying "cat food"; then type "ready".
$ cat food

this is the file
named food.

$ ready

Good. Lesson 3.3a (1)

Of course, you can print any file with 'cat".
In particular, it is common to first use
"ls" to find the name of a file and then "eat"
to print it. Note the difference between
"ls", which tells you the name of the file,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
3 cat President
cat: can’t open President
3 ready

Sorry, that’s not right. Do you want to try again? yes
Try the problem again.
$ Is
.ocopy
X1
roosevelt
$ cat roosevelt

this file is named roosevelt
and contains three lines of
text.

3 ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate"....

After each correct response the computer congratulates the student and indicates the lesson number that has
just been completed, permitting the student to restart the script after that lesson. If the answer is wrong, the
student is offered a chance to repeat the lesson. The “speed” rating of the student (explained in section 5) is
given after the lesson number when the lesson is completed successfully; it is printed only for the aid of script
authors checking out possible errors in the lessons.

ND—60.328. 1? EN

Learn - Computer-Aided Instruction on UNIX USDz4-5

It is assumed that there is no foolproof way to determine if the student truly “understands” what he or she isdoing; accordingly, the current learn scripts only measure performance, not comprehension. If the student canperform a given task, that is deemed to be “learning.” skinner teaching 1961
The main point of using the computer is that what the student does is checked for correctness immediately.Unlike many CAI scripts, however, these scripts provide few facilities for dealing with wrong answers. Inpractice, if most of the answers are not right the script is a failure; the universal solution to student error is toprovide a new, easier script. Anticipating possible wrong answers is an endless job, and it is really easier aswell as better to provide a simpler script.
Along with this goes the assumption that anything can be taught to anybody if it can be broken intosufficiently small pieces. Anything not absorbed in a single chunk is just subdivided.
To avoid boring the faster students, however, an effort is made in the files and editor scripts to provide threetracks of different difficulty. The fastest sequence of lessons is aimed at roughly the bulk and speed of a typi-cal tutorial manual and should be adequate for review and for well—prepared students. The next track isintended for most users and is roughly twice as long. Typically, for example, the fast track might present anidea and ask for a variation on the example shown; the normal track will first ask the student to repeat theexample that was shown before attempting a variation. The third and slowest track, which is often three orfour times the length of the fast track, is intended to be adequate for anyone. (The lessons of Figure l arefrom the third track.) The multiple tracks also mean that a student repeating a course is unlikely to hit thesame series of lessons; this makes it profitable for a shaky user to back up and try again, and many studentshave done so.
The tracks are not completely distinct, however. Depending on the number of correct answers the student hasgiven for the last few lessons, the program may switch tracks. The driver is actually capable of following anarbitrary directed graph of lesson sequences, as discussed in section 5. Some more structured arrangement,however, is used in all current scripts to aid the script writer in organizing the material into lessons. It issufficiently difficult to write lessons that the three-track theory is not followed very closely except in the filesand editor scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from theslower track In others, there is essentially only one track.
The main reason for using the learn program rather than simply writing the same material as a workbook is notthe selection of tracks, but actual hands-on experience. Learning by doing is much more effective than penciland paper exercises.
Learn also provides a mechanical check on performance. The first version in fact would not let the studentproceed unless it received correct answers to the questions it set and it would not tell a student the rightanswer. This somewhat Draconian approach has been moderated in version 2. Lessons are sometimes badlyworded or even just plain wrong; in such cases, the student has no recourse. But if a student is simply unableto complete one lesson, that should not prevent access to the rest. Accordingly, the current version of learnallows the student to skip a lesson that he cannot pass; a “no” answer to the “Do you want to try again?”question in Figure I will pass to the next lesson. It is still true that [earn will not tell the student the rightanswer.
Of course, there are valid objections to the assumptions above. In particular, some students may object to notunderstanding what they are doing; and the procedure of smashing everything into small pieces may provokethe retort “you can’t cross a ditch in two jumps.” Since writing CAI scripts is considerably more tedious thanordinary manuals, however, it is safe to assume that there will always be alternatives to the scripts as a way oflearning. In fact, for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long before the scripts.

3. Scripts.
As mentioned above, the present scripts try at most to follow a three—track theory. Thus little of the potentialcomplexity of the possible directed graph is employed, since care must be taken in lesson construction to seethat every necessary fact is presented in every possible path through the units. In addition, it is desirable thatevery unit have alternate successors to deal with student errors.
In most existing courses, the first few lessons are devoted to checking prerequisites. For example, before thestudent is allowed to proceed through the editor script the script verifies that the student understands files andis able to type. It is felt that the sooner lack of student preparation is detected, the easier it will be on the stu-dent Anyone proceeding through the scripts should be getting mostly correct answers; otherwise, the system

ND-60.328.IP EN

USDz46 ‘ ~ Learn - Computer-Aided Instruction on UNIX

will be unsatisfactory both because the wrong habits are being learned and because the scripts make little effort
to deal with wrong answers. Unprepared students should not be encouraged to continue with scripts.
There are some preliminary items which the student must know before any scripts can be tried. In particular,
the student must know how to connect to a UNIX system, set the terminal properly, log in, and execute simple
commands (e.g., learn itself). In addition, the character erase and line kill conventions (# and @) should be
known. It is hard to see how this much could be taught by computer-aided instruction, since a student who
does not know these basic skills will not be able to run the learning program. A brief description on paper is
provided (see Appendix A), although assistance will be needed for the first few minutes. This assistance, how-
ever, need not be highly skilled.
The first script in the current set deals with files. It assumes the basic knowledge above and teaches the stu-
dent about the ls , cat, mv, rm , cp and difi” commands. It also deals with the abbreviation characters *, ?, and
[l in file names. It does not cover pipes or 1/0 redirection, nor does it present the many options on the Is
command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks, seven are review exer-
cises. There are a total of 75 lessons in all three tracks, and the instructional passages typed at the student to
begin each lesson total 4,476 words. The average lesson thus begins with a 60-word message. In general, the
fast track lessons have somewhat longer introductions, and the slow tracks somewhat shorter ones. The long-
est message is 144 words and the shortest 14.
The second script trains students in the use of the UNIX context editor ed, a sophisticated editor using regular
expressions for searching. ritchie thompson unix seventh edition 1978 %0 See section ed (1). All editor
features except encryption, mark names and ‘;’ in addressing are covered. The fast track contains 2 prere-
quisite checks, 93 lessons, and a review lesson. It is supplemented by 146 additional lessons in other tracks.
A comparison of sizes may be of interest The ed description in the reference manual is 2,572 words long.
The ed tutorial kemighan editor tutorial 1974 is 6,138 words long. The fast track through the ed script is 7,407
words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words. The average ed lesson
is thus also about 60 words; the largest is 171 words and the smallest 10. The original ed script represents
about three man-weeks of effort.
The advanced file handling script deals with [5 options, 1/0 diversion, pipes, and supporting programs like pr,
wc , tall , spell and grep. (The basic file handling script is a prerequisite.) It is not as refined as the first two
scripts; this is reflected at least partly in the fact that it provides much less of a full three-track sequence than
they do. On the other hand, since it is perceived as “advanced,” it is hoped that the student will have some-
what more sophistication and be better able to cope with it at a reasonably high level of performance.
A fourth script covers the eqn language for typing mathematics. This script must be run on a terminal capable
of printing mathematics, for instance the DASI 300 and similar Diablo~based terminals, or the nearly extinct
Model 37 teletype. Again, this script is relatively short of tracks: of 76 lessons, only 17 are in the second
track and 2 in the third track. Most of these provide additional practice for students who are having trouble in
the first track.
The —ms script for formatting macros is a short one-track only script. The macro package it describes is no
longer the standard, so this script will undoubtedly be superseded in the future. Furthermore, the linear style
of a single learn script is somewhat inappropriate for the macros, since the macro package is composed of
many independent features, and few users need all of them. It would be better to have a selection of short les-
son sequences dealing with the features independently.
The script on C is in a state of transition. It was originally designed to follow a tutorial on C, but that docu-
ment has since become obsolete. The current script has been partially converted to follow the order of presen-
tation in The C Programming Language. ritchie kemighan programming 1978 prentice hall but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of exercises for
which the computer provides checking and (upon success) a suggested solution.
This combination of scripts covers much of the material which any UNIX user will need to know to make
effective use of the system. With enlargement of the advanced files course to include more on the command
interpreter, there will be a rehatively complete introduction to UNIX available via learn. Although we make no
pretense that learn will replace other instructional materials, it should provide a useful supplement to existing
tutorials and reference manuals.

ND-60.328.1P EN

Learn - Computer-Aided Instruction on UNIX USD:4—7

4. Experience with Students.
Learn has been installed on many different UNIX systems. Most of the usage is on the first two scripts, so
these are more thoroughly debugged and polished. As a (random) sample of user experience, the learn pro—
gram has been used at Bell Labs at Indian Hill for 10,500 lessons in a four month period. About 3600 of these
are in the files script, 4100 in the editor, and 1400 in advanced files. The passing rate is about 80%, that is,
about 4 lessons are passed for every one failed. There have been 86 distinct users of the files script, and 58 of
the editor. On our system at Murray Hill, there have been nearly 2000 lessons over two weeks that include
Christmas and New Year. Users have ranged in age from six up.
It is difficult to characterize typical sessions with the scripts; many instances exist of someone doing one or
two lessons and then logging out, as do instances of someone pausing in a script for twenty minutes or more.
In the earlier version of learn , the average session in the files course took 32 minutes and covered 23 lessons.
The distribution is quite broad and skewed, however; the longest session was 130 minutes and there were five
sessions shorter than five minutes. The average lesson took about 80 seconds. These numbers are roughly
typical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds per lesson, most of
which is the system printing.
At present working through a section of the middle of the files script took about 1.4 seconds of processor time
per lesson, and a system expert typing quickly took 15 seconds of real time per lesson. A novice would prob-
ably take at least a minute. Thus a UNIX system could support ten students working simultaneously with
some spare capacity.

5. The Script Interpreter.
The learn program itself merely interprets scripts. It provides facilities for the script writer to capture student
responses and their effects, and simplifies the job of passing control to and recovering control from the student.
This section describes the operation and usage of the driver program, and indicates what is required to produce
a new script. Readers only interested in the existing scripts may skip this section.
The file structure used by learn is shown in Figure 2. There is one parent directory (named lib) containing the
script data. Within this directory are subdirectories, one for each subject in which a course is available, one for
logging (named 10g), and one in which user sub—directories are created (named play). The subject directory
contains master copies of all lessons, plus any supporting material for that subject. In a given subdirectory,
each lesson is a single text file. Lessons are usually named systematically; the file that contains lesson n is
called Ln.

Figure 2: Directory structure for learn

lib

play
studentl

files for studentl
student2

files for student2...

files
L0.1a lessons for files course
L0.1b

editor

(other courses)

log

When learn is executed, it makes a private directory for the user to work in, within the learn portion of the filesystem. A fresh copy of all the files used in each lesson (mostly data for the student to operate upon) is made

ND—60.328.1P EN

USDz4-8

each time a student starts a lesson, so the script writer may assume that everything is reinitialized each time a
lesson is entered. The student directory is deleted after each session; any permanent records must be kept else-
where.

Learn - Computer-Aided Instruction on UNIX

The script writer must provide certain basic items in each lesson:
(1) the text of the lesson;
(2) the set-up commands to be executed before the user gets control;
(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;
(4) the evaluating commands to be executed after the user has finished the lesson, to decide whether the

answer is right; and
(5) a list of possible successor lessons.
Learn tries to minimize the work of bookkeeping and installation, so that most of the effort involved in script
production is in planning lessons, writing tutorial paragraphs, and coding tests of student performance.
The basic sequence of events is as follows. First, learn creates the working directory. Then, for each lesson,
learn reads the script for the lesson and processes it a line at a time. The lines in the script are: (1) com-
mands to the script interpreter to print something, to create a files, to test something, etc.; (2) text to be printed
or put in a file; (3) other lines, which are sent to the shell to be executed. One line in each lesson tums control
over to the user; the user can run any UNIX commands. The user mode terminates when the user types yes,
no , ready, or answer. At this point, the user’s work is tested; if the lesson is passed, a new lesson is selected,
and if not the old one is repeated.
Let us illustrate this with the script for the second lesson of Figure 1; this is shown in Figure 3.

Lines which begin with # are commands to the learn script interpreter. For example,
#print

causes printing of any text that follows, up to the next line that begins with a sharp.
#print file

prints the contents offile; it is the same as cal file but has less overhead. Both forms of #print have the added
property that ifa lesson is failed, the #print will not be executed the second time through; this avoids annoying

ND—60.328. 1P EN

Figure 3: Sample Lesson

#print
Of course, you can print any file with “cat".
In particular, it is common to first use
"ls" to find the name of a file and then "cat"
to print it. Note the difference between
"ls", which tells you the name of the files,
and "cat" which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create roosevelt

this file is named roosevelt
and contains three lines of
text.

#copyout
#user
#uncopyout
tail —3 .ocopy >Xl
#cmp X1 roosevelt
#log
#next
3.2b 2

Learn - Computer-Aided Instruction on UNIX US Dz4-9

the student by repeating the preamble to a lesson.
#creale filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This is used for creat-ing and initializing working files and reference data for the lessons.
#ttrer

gives control to the student; each line he or she types is passed to the shell for execution. The #user mode is
terminated when the student types one of yes, no, ready or answer. At that time, the driver resumes interpre-
tation of the script.

#copyin
#uncopyin

Anything the student types between these commands is copied onto a file called .copy. This lets the scriptwriter interrogate the student’s responses upon regaining control.
#copyout
#uncopyout

Between these commands, any material typed at the student by any program is copied to the file .ocopy. Thislets the script writer interrogate the effect of what the student typed, which true believers in the performancetheory of learning usually prefer to the student’s actual input.
#pipe
#unpipe

Normally the student input and the script commands are fed to the UNIX command interpreter (the “shell”)
one line at a time. This won’t do if, for example, a sequence of editor commands is provided, since the input tothe editor must be handed to the editor, not to the shell. Accordingly, the material between #pipe and #unpipecommands is fed continuously through a pipe so that such sequences work. If copyout is also desired thecopyoul brackets must include the pipe brackets.
There are several commands for setting status after the student has attempted the lesson.

#cmpfiIeI fileZ
is an in-Iine implementation of cmp, which compares two files for identity.

#match stuff
The last line of the student’s input is compared to sniff, and the success or fail status is set according to itExtraneous things like the word answer are stripped before the comparison is made. There may be several#march lines; this provides a convenient mechanism for handling multiple “right” answers. Any text up to a# on subsequent lines after a successful #match is printed; this is illustrated in Figure 4, another sample lesson.

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command
#copyin
#user
#uncopyin
#match m$
#match .m$
"m3" is easier.
#log
#next
63.1d 10

ND-60.328.1P EN

USDz4-10 ‘ Learn — Computer-Aided Instruction on UNIX

#bad 51197
This is similar to #match, except that it corresponds to specific failure answers; this can be used to produce
hints for particular wrong answers that have been anticipated by the script writer.

#succeed
#fall

print a message upon success or failure (as determined by some previous mechanism).
When the student types one of the “commands” yes, no, ready, or answer, the driver terminates the #user
command, and evaluation of the student’s work can begin. This can be done either by the built-in commands
above, such as #match and #cmp, or by status returned by normal UNIX commands, typically grep and test.
The last command should retum status true (0) if the task was done successfully and false (non-zero) other-
wise; this status return tells the driver whether or not the student has successfully passed the lesson.
Performance can be logged:

#log file
writes the date, lesson, user name and speed rating, and a success/failure indication onfile. The command

#log
by itself writes the logging information in the logging directory within the learn hierarchy, and is the normal
form.

#nexl

is followed by a few lines, each with a successor lesson name and an optional speed rating on it A typical set
might read

25.13 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10 units, 25.2a for
student with speed near 5, and 25321 for speed near 2. Speed ratings are maintained for each session with a
student; the rating is increased by one each time the student gets a lesson right and decreased by four each time
the student gets a lesson wrong. Thus the driver tries to maintain a level such that the users get 80% right
answers. The maximum rating is limited to 10 and the minimum to 0. The initial rating is zero unless the stu—
dent specifies a different rating when starting a session.
If the student passes a lesson, a new lesson is selected and the process repeats. If the student fails, a false
status is returned and the program reverts to the previous lesson and tries another alternative. If it can not find
another alternative, it skips forward a lesson. bye, bye, which causes a graceful exit from the learn system.
Hanging up is the usual novice’s way out.
The lessons may form an arbitrary directed graph, although the present program imposes a limitation on cycles
in that it will not present a lesson twice in the same session. If the student is unable to answer one of the exer-
cises correctly, the driver searches for a previous lesson with a set of alternatives as successors (following the
#nexz line). From the previous lesson with alternatives one route was taken earlier; the program simply tries a
different one.

It is perfectly possible to write sophisticated scripts that evaluate the student’s speed of response, or try to esti-
mate the elegance of the answer, or provide detailed analysis of wrong answers. Lesson writing is so tedious
already, however, that most of these abilities are likely to go unused.
The driver program depends heavily on features of UNIX that are not available on many other operating sys-
tems. These include the ease of manipulating files and directories, file redirection, the ability to use the com-
mand interpreter as just another program (even in a pipeline), command status testing and branching, the abil—
ity to catch signals like interrupts, and of course the pipeline mechanism itself. Although some parts of learn
might be transferable to other systems, some generality will probably be lost.
A bit of history: The first version of learn had fewer built-in words in the driver program, and made more use
of the facilities of UNIX. For example, file comparison was done by creating a emp process, rather than com-
paring the two files within learn. Lessons were not stored as text files, but as archives. There was no concept
of the in-linc document; even #print had to be followed by a file name. Thus the initialization for each lesson
was to extract the archive into the working directory (typically 4-8 files), then #print the lesson text.

ND—60.328. 1P EN

Learn - Computer—Aided Instruction on UNIX US 114-11

The combination of such things made learn slower. The new version is about 4 or 5 times faster. Further-more, it appears even faster to the user because in a typical lesson, the printing of the message comes first, andfile setup with #create can be overlapped with the printng, so that when the program finishes printing, it isreally ready for the user to type at it.
It is also a great advantage to the script maintainer that lessons are now just ordinary text files. They can beedited without any difficulty, and UNIX text manipulation tools can be apphed to them. The result has beenthat there is much less resistance to going in and fixing substandard lessons.

6. Conclusions
The following observations can be made about secretaries, typists, and other non-programmers who have usedlearn:
(a) A novice must have assistance with the mechanics of communicating with the computer to get throughto the first lesson or two; once the first few lessons are passed people can proceed on their own.
(b) The terminology used in the first few lessons is obscure to those inexperienced with computers. It wouldhelp if there were a low level reference card for UNIX to supplement the existing programmer orientedbulky manual and bulky reference card.
(c) The concept of “substitutable argument” is hard to grasp, and requires help.
(d) They enjoy the system for the most part. Motivation matters a great deal, however.
It takes an hour or two for a novice to get through the script on file handling. The total time for a reasonablyintelligent and motivated novice to proceed from ignorance to a reasonable ability to create new files and mani~pulate old ones seems to be a few days, with perhaps half of each day spent on the machine.
The normal way of proceeding has been to have students in the same room with someone who knows UNIXand the scripts. Thus the student is not brought to a halt by difficult questions. The burden on the counselor,however, is much lower than that on a teacher of a course. Ideally, the students should be encouraged toproceed with instruction immediately prior to their actual use of the computer. They should exercise thescripts on the same computer and the same kind of terminal that they will later use for their real work, andtheir first few jobs for the computer should be relatively easy ones. Also, both training and initial work shouldtake place on days when the UND(hardware and software are working reliably. Rarely is all of this possible,but the closer one comes the better the result For example, if it is known that the hardware is shaky one day,it is better to attempt to reschedule training for another one. Students are very frustrated by machine down-time; when nothing is happening, it takes some sophistication and experience to distinguish an infinite loop, aslow but functioning program, a program waiting for the user, and a broken machine. T
One disadvantage of training with learn is that students come to depend completely on the CAI system, and donot try to read manuals or use other learning aids. This is unfortunate, not only because of the increaseddemands for completeness and accuracy of the scripts, but because the scripts do not cover all of the UNIX sys-tem. New users should have manuals (appropriate for their level) and read them; the scripts ought to be altered

There are several other difficulties which are clearly evident. From the student’s viewpoint, the most serious isthat lessons still crop up which simply can’t be passed. Sometimes this is due to poor explanations, but just asoften it is some error in the lesson itself —~ a botched setup, a missing file, an invalid test for correctness, orsome system facility that doesn’t work on the local system in the same way it did on the development system.It takes knowledge and a certain healthy arrogance on the part of the user to recognize that the fault is not hisor hers, but the script writer‘s. Permitting the student to get on with the next lesson regardless does alleviatethis somewhat, and the logging facilities make it easy to watch for lessons that no one can pass, but it is still aproblem.
The biggest problem with the previous learn was speed (or lack thereof) — it was often excruciatingly slewand made a significant drain on the system. The current version so far does not seem to have that difficulty,although some scripts, notably eqn, are intrinsically slow. eqn, for example, must do a lot of work even toprint its introductions, let alone check the student responses, but delay is perceptible in all scripts from time to
T We have even known an expert programmer to decide the computer was broken when he had simply left his terminal inlocal mode. Novices have great difficulties with such problems.

ND~60.328.1 P EN

USDz4-12 ’ ' Learn - Computer-Aided Instruction on UNIX

time.
Another potential problem is that it is possible to break learn inadvertently, by pushing interrupt at the wrong
time, or by removing critical files, or any number of similar slips. The defenses against such problems have
steadily been improved, to the point where most students should not notice difficulties. Of course, it will
always be possible to break learn maliciously, but this is not likely to be a problem.
One area is more fundamental — some UNIX commands are sufficiently global in their effect that [earn
currently does not allow them to be executed at all. The most obvious is cat, which changes to another direc-
tory. The prospect of a student who is learning about directories inadvertently moving to some random direc—
tory and removing files has deterred us from even writing lessons on cd, but ultimately lessons on such topics
probably should be added.

7. Acknowledgments
We are grateful to all those who have tried learn, for we have benefited greatly from their suggestions

and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldrnan, P. A. Fox, and M. J. McAlpin have pro-
vided substantial feedback. Conversations with E. Z. Rothkopf also provided many of the ideas in the system.
We are also indebted to Don Jackowski for serving as a guinea pig for the second version, and to Tom Plum
for his efforts to improve the C script.

References

1 BL. Bitzer and D. Skaperdas, The Economics of a Large Scale Computer Based Educational System:
Plato IV, in "Computer Assisted Instruction, Testing and Guidance", ed. Wayne Holtzman, pp. 17-29,
Harper and Row, New York, 1970.

2 DC Gray, J.P. Hulskamp, J.H. Kumm, S. Lichtenstein, and NE. Nirnmervoll, COALA - A Minicom-
puter CA1 System, IEEE Trans. Education, vol. 13-20(1), pp. 73-77, Feb. 1977.

3 P. Suppes, 0n Using Computers to Individualize Instruction, in "The Computer in American Education",
ed. D. D. Bushnell and D. W. Allen, pp. 11-24, John Wiley, New York, 1967.

4 BF. Skinner, Why We Need Teaching Machines, Harv. Educ. Review, vol. 31, pp. 377-398, 1961.
Reprinted in Educational Technology, ed. J.P. DeCecco, Holt Rinehart & Winston (New York, 1964).

5 B.W. Kernighan, A Tutorial Introduction to the UNIX text editor, Bell laboratories, 1974. Bell Labora-
tories internal memorandum.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-1

An Introduction to the UNIX Shell

S. R. Bourne

(Updatedfor 4.3850 by Mark Seiden)

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Shelli is a command programming language that provides an interface to the UNIXT
operating system. Its features include control-flow primitives, parameter passing, variables
and string substitution. Constructs such as while, if then else, case and for are available.
Two-way communication is possible between the shell and commands. String-valued
parameters, typically file names or flags, may be passed to a command. A return code is set
by commands that may be used to determine control—flow, and the standard output from a
command may be used as shell input.
The shell can modify the environment in which commands run. Input and output can beredirected to files, and processes that communicate through ‘pipes’ can be invoked. Com-
mands are found by searching directories in the file system in a sequence that can be defined
by the user. Commands can be read either from the terminal or from a file, which allows
command procedures to be stored for later use.

i This paper describes sh(l). if it's the c shell (csh) that you're interested in, a good place to begin is William Joy'spaper "An Introduction to the C shell" (USD16 in this manual).
T UNIX is a registered trademark of AT&T in the USA and other countries.

ND60.328.1P EN

USD25-2 ' - An Introduction to me UNIX Shell

ND-60.328.1P EN

An Introduction to the UNIX Shell [13135-3

1. INTRODUCTION
The shell is both a command language and a programming language that provides an interface to the UNIXoperating system. This memorandum describes, with examples, the UNIX shell. The first section covers mostof the everyday requirements of terminal users. Some familiarity with UNIX is an advantage when readingthis section; sec, for example, "UNIX for beginners" (Reference 1). Section 2 describes those features of theshell primarily intended for use within shell procedures. These include the control-flow primitives and string-valued variables provided by the shell. A knowledge of a programming language would be a help when read—ing this section. The last section describes the more advanced features of the shell. References of the form"see pipe (2)" are to a section of the UNIX Programmer's Manual (Reference 2).

1.1. Simple commands
Simple commands consist of one or more words separated by blanks. The first word is the name of the com-mand to be executed; any remaining words are passed as arguments to the command. For example,

who

is a command that prints the names of users logged in. The command
ls ~l

prints 3 list of files m the current directory. The argument —I tells Is to print status information, size and thecreation date for each file.

1.2. Background commands
To execute a command the shell normally creates a new process and waits for it to finish. A command may berun without waiting for it to finish. For example,

cc pgmc &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the shell not to waitfor the command to finish. To help keep track of such a process the shell reports its process number followingits creation. A list of currently active processes may be obtained using the pS command.

1.3. Input/output redirection
Most commands produce output on the standard output that is initially connected to the terminal. This outputmay be sent to a file by writing, for example,

ls —l >file

The notation >file is interpreted by the shell and is not passed as an argument to Is. Iffile does not exist thenthe shell creates it; otherwise the original contents offile are replaced with the output from Is. Output may beappended to a file using the notation

ls —l >>file

In this casefile is also created if it does not already exist.
The standard input of a command may be taken from a file instead of the terminal by writing, for example,

we <file

The command wc reads its standard input (in this case redirected from file) and prints the number of charac-ters, words and lines found. If only the number of lines is required then

wc —l <file

could be used.

ND—60.328. 1? EN

USD25-4 ' An Introduction to the UNIX Shell

1.4. Pipelines and filters
The standard output of one command may be connected to the standard input of another by writing the ‘pipe‘
operator, indicated by I, as in,

is —l I we

Two commands connected in this way constitute a pipeline and the overall effect is the same as

ls ~l >file; wc <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and are run in
parallel. Pipes are unidirectional and synchronization is achieved by halting we when there is nothing to read
and halting ls when the pipe is full.
A filter is a command that reads its standard input, transforms it in some way, and prints the result as output
One such filter, grep, selects from its input those lines that contain some specified string. For example,

is | grep old

prints those lines, if any, of the output from Is that contain the string old. Another useful filter is sort. For
example,

who l sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,

ls | grep old I we —l

prints the number of file names in the current directory containing the string old.

1.5. File name generation
Many commands accept arguments which are file names. For example,

ls -l main.c

prints information relating to the file main.c.
The shell provides a mechanism for generating a list of file names that match a pattern. For example,

ls ~l *.c

generates, as arguments to ls, all file names in the current directory that end in .c. The character =t= is a pattern
that will match any string including the null string. In general patterns are specified as follows.

* Matches any string of characters including the null string.
? Matches any single character.
[...] Matches any one of the characters enclosed. A pair of characters separated by a minus will

match any character lexically between the pair.
For example,

[a—z]*

matches all names in the current directory beginning with one of the letters a through 2.

/usr/fred/test/‘?
matches all names in the directory /usr/l'red/test that consist of a single character. If no file name is found that
matches the pattern then the pattern is passed, unchanged, as an argument.
This mechanism is useful both to save typing and to select names according to some pattern. It may also be
used to find files. For example,

echo lusr/fred/ak/core

finds and prints the names of all core files in sub—directories of /usr/fred. (echo is a standard UNIX command
that prints its arguments, separated by blanks.) This last feature can be expensive, requiring a scan of all sub—

ND-60.328.IP EN

An Introduction to the UNIX Shell USD:5-5

directories of lusr/fred .
There is one exception to the general rules given for patterns. The character at the start of a file name mustbe explicitly matched.

echo at:

will therefore echo all file names in the current directory not beginning with ‘.‘.
echo .*

will echo all those file names that begin with ‘.’ . This avoids inadvertent matching of the names and ‘..’which mean ‘the cument directory’ and ‘the parent directory' respectively. (Notice that Is suppresses informa-tion for the files ‘.’ and ‘..‘ .)

1.6. Quoting

Characters that have a special meaning to the shell, such as < > a: ? I &, are called metacharacters. A com-plete list of metacharacters is given in appendix B. Any character preceded by a \ is quoted and loses its spe-cial meaning, if any. The \ is elided so that
echo V

will echo 3 single ? , and

echo \\

will echo a single \. To allow long strings to be continued over more than one line the sequence \newline isignored.
\ is convenient for quoting single characters. When more than one character needs quoting the above mechan-ism is clumsy and error prone. A string of characters may be quoted by enclosing the string between singlequotes. For example,

echo xx‘****’xx

will echo

xx****xx

The quoted stn'ng may not contain a single quote but may contain newlines, which are preserved. This quotingmechanism is the most simple and is recommended for casual use.
A third quoting mechanism using double quotes is also available that prevents interpretation of some but notall metacharacters. Discussion of the details is deferred to section 3.4.

1.7. Prompting
When the shell is used from a terminal it will issue a prompt before reading a command. By default thisprompt is ‘$ ' . It may be changed by saying, for example,

PS 1=yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed then the shellwill issue the prompt ‘> ’. Sometimes this can be caused by mistyping a quote mark. If it is unexpected thenan interrupt (DEL) will return the shell to read another command. This prompt may be changed by saying, forexample,

PSZ=more

1.8. The shell and login
Following login (1) the shell is called to read and execute commands typed at the terminal. If the user’s logindirectory contains the file .profile then it is assumed to contain commands and is read by the shell before read-ing any commands from the terminal.

ND-60.328.1P EN

USD:5-6 ‘ An Introduction to the UNIX Shell

1.9. Summary

0 ls
Print the names of files in the current directory.

' ls >file
Put the output from ls intofile.

0 ls I we —I
Print the number of files in the current directory.

- ls l grep old
Print those file names containing the string old.

- ls | grep old l we ~l
Print the number of files whose name contains the string old.

0 cc pgm.c &
Run cc in the background

2. SHELL PROCEDURES
The shell may be used to read and execute commands contained in a file. For example,

sh file[args...]

calls the shell to read commands from file. Such a file is called a command procedure or shell procedure.
Arguments may be supplied with the call and are referred to in file using the positional parameters $1, $2, .
For example, if the file wg contains

who 1 grep $1

then

sh wg fred

is equivalent to

who I grep fred

UNIX files have three independent attributes, read, write and execute. The UNIX command chmod (I) may be
used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status. Following this, the command
wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new process is created
to run the command
As well as providing names for the positional parameters, the number of positional parameters in the call is
available as $#. The name of the file being executed is available as $0 .
A special shell parameter 3* is used to substitute for all positional parameters except $0 . A typical use of this
is to provide some default arguments, as in,

nroff —T450 —ms 3*

which simply prepends some arguments to those already given.

ND-60.328.IP EN

An Introduction to the UNIX Shell USD:5-7

2.1. Control flow - for
A frequent use of shell procedures is to loop through the arguments ($1, $2, ...) executing commands once foreach argument. An example of such a procedure is tel that searches the file /usr/lib/telnos that contains linesof the form

fred mh0123
bert t789
cc-

The text of rel is

for i
do grep $i [usr/lib/telnos; done

The command

tel fred

prints those lines in lusr/lib/telnos that contain the string fred .
tel fred bert

prints those lines containing fred followed by those for berl.
The for loop notation is recognized by the shell and has the general form

for name in w1 w2
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a newline or semi~colon. Furthermore, reserved words like do and done are only recognized following a newline or semicolon.name is a shell variable that is set to the words w1 w2 . . . in turn each time the command—list following do isexecuted. If in w1 w2 is omitted then the loop is executed once for each positional parameter; that is, in$>t< is assumed.
Another example of the use of the for loop is the create command whose text is

fori do >Si; done
The command

create alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation >file may be used on its own tocreate or clear the contents of a file. Notice also that a semicolon (or newline) is required before done.

2.2. Control flow ~ case
A multiple way branch is provided for by the case notation. For example,

case $# in
1) cat >>$l ;;
2) cat >>$2 <$l ;;
*) echo 'usagc: append [from] to’ ;;

esac
is an append command. When called with one argument as

append file

$# is the string 1 and the standard input is copied onto the end offile using the cat command.
append filel file2

appends the contents offile] onto fileZ. If the number of arguments supplied to append is other than I or 2then a message is printed indicating proper usage.

ND—60.328.1P EN

USD15-8 ‘ ‘ An Introduction to the UNIX Shell

The general form of the case command is

case word in
pattern) command—list ;;
..o

esac

The shell attempts to match word with each pattern, in the order in which the patterns appear. If a match is
found the associated command-list is executed and execution of the case is complete. Since * is the pattern
that matches any string it can be used for the default case.
A word of caution: no check is made to ensure that only one pattern matches the case argument. The first
match found defines the set of commands to be executed. In the example below the commands following the
second >t< will never be executed.

case$# in
*)...;;
*)...;;

esac

Another example of the use of the case construction is to distinguish between different forms of an argument.
The following example is a fragment of a cc command.

for i
do case $i in

—locs}) ;;
—*) echo ‘unknown flag $i' ;;
*.c) /lib/c0 $i . .. ;;
*) echo ’unexpected argument $i‘ ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command provides for
alternative patterns separated by a I . For example,

case $i in
~xl—y)...

esac

is equivalent to

case Si in
—[xyl)

esac

The usual quoting conventions apply so that
case$iin

V)
will match the character ? .

ND<60.328.1P EN

An Introduction to the UNIX Shell USD25-9

2.3. Here documents

The shell procedure tel in section 2.1 uses the file /usr/lib/telnos to supply the data for grep. An alternative isto include this data within the shell procedure as a here document, as in,
for i
do grep $i <<!

fred mh0123
bert t789
..o

I
done

In this example the shell takes the lines between «1 and ! as the standard input for grep. The string ! is arbi-trary, the document being terminated by a line that consists of the string following <<.
Parameters are substituted in the document before it is made available to grep as illustrated by the followingprocedure called edg.

ed $3 <<%
g/$ l/S//$2/g
W

%

The call

edg stringl string2 file

is then equivalent to the command

ed file <<%
g/stringl/SI/suingZIg
W

%
and changes all occurrences of string] in file to stringZ. Substitution can be prevented using \ to quote thespecial character $ as in

ed $3 <<+
1,\$S/$ l/$2/g
w
+

(This version of edg is equivalent to the first except that ed will print a ? if there are no occurrences of thestring $1.) Substitution within a here document may be prevented entirely by quoting the terminating string,for example,

grep Si <<\#

#

The document is presented without modification to grep. If parameter substitution is not required in a heredocument this latter form is more efficient.

2.4. Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of letters. digits andunderscores. Variables may be given values by writing, for example,
usemfred box=m000 acct=mh0000

which assigns values to the variables user, box and acct. A variable may be set to the null string by saying,for example,

ND-60.328.1P EN

uses-10 ' - An Introduction to the UNIX Shell

nun:

The value of a variable is substituted by preceding its name with S; for example,
echo $user

will echo fred.
Variables may be used interactively to provide abbreviations for frequently used strings. For example,

b=lusrlfred/bin
mv pgm $b

will move the file pgm from the current directory to the directory lusr/fred/bin . A more general notation is
available for parameter (or variable) substitution, as in,

echo ${user}

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For example,
tmp=/tmp/ps
:78 a >$ (Unpla

will direct the output of ps to the file /tmp/psa, whereas,
ps a >$tmpa

would cause the value of the variable tmpa to be substituted.
Except for $? the following are set initially by the shell. $? is set after executing each command.

$? The exit status (return code) of the last command executed as a decimal string. Most com-
mands return a zero exit status if they complete successfully, otherwise a non-zero exit status is
returned. Testing the value of return codes is dealt with later under if and while commands.

$# The number of positional parameters (in decimal). Used, for example, in the append command
to check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are unique among all
existing processes, this string is frequently used to generate unique temporary file names. For
example,

ps a >/tmp/ps$$

rm /tmp/ps$$

$2 The process number of the last process run in the background (in decimal).
$— The current shell flags, such as —x and —v .

Some variables have a special meaning to the shell and should be avoided for general use.
$MAIL When used interactively the shell looks at the file specified by this variable before it issues a

prompt If the specified file has been modified since it was last looked at the shell prints the
message you have mail before prompting for the next command. This variable is typically set
in the file .profile, in the user’s login directory. For example,

MAIL=/usr/spool/mail/fred

$HOME The default argument for the cd command. The current directory is used to resolve file name
references that do not begin with a / , and is changed using the cd command. For example,

cd /usr/fred/bin

makes the current directory /usr/fred/bin .

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-1 1

cat WI]

will prim on the terminal the file wn in this directory. The command Cd with no argument is
equivalent to

Cd $HOME

This variable is also typically set in the the user’s login profile.
$PATH A list of directories that contain commands (the search path). Each time a command is exe-cuted by the shell a list of directories is searched for an executable file. If SPATH is not setthen the current directory, /bin, and lusr/bin are searched by default. Otherwise SPATH con-

sists of directory names separated by :. For example,

PATH=:/usr/fred/binz/binzlusr/bin
specifies that the current directory (the null string before the first :), lusr/fred/bin, lbin andlusr/bin are to be searched in that order. In this way individual users can have their own‘private’ commands that are accessible independently of the current directory. If the command
name contains a/ then this directory search is not used; a single attempt is made to execute the
command.

$PSl The primary shell prompt suing, by default, ‘S ’.
SPSZ The shell prompt when further input is needed, by default, ‘> ’.
$IFS The set of characters used by blank interpretation (see section 3.4).

2.5. The test command
The test command, although not part of the shell, is intended for use by shell programs. For example,

test —f file

returns zero exit status if file exists and non-zero exit status otherwise. In general test evaluates a predicateand returns the result as its exit status. Some of the more frequently used test arguments are given here, seetest (I) for a complete specification.

test 3 true if the arguments is not the null string
test —f file true iffile exists
test —r file true iffile is readable
test —w file true iffile is writable
test —d file true iffile is a directory

2.6. Control flow - while
The actions of the for loop and the case branch are determined by data available to the shell. A while or untilloop and an if then else branch are also provided whose actions are determined by the exit status retumed bycommands. A while loop has the general form

while command—list,
do command-list2
done

The value tested by the while command is the exit status of the last simple command following while. Eachtime round the loop command-list, is executed; if a zero exit status is returned then command-[£512 is executed;otherwise, the loop terminates. For example,

while test $1
do

shift
done

is equivalent to

ND-60.328.1P EN

USD:5-12 ' - An Introduction to the UNIX Shell

for i
do . . .
done

shift is a shell command that renames the positional parameters $2, $3, . . . as $1, $2, . . . and loses $1 .
Another kind of use for the while/until loop is to wait until some external event occurs and then run some
commands. in an until loop the termination condition is reversed. For example,

until test —f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again. (Presumably
another process will eventually create the file.)

2.7. Control flow - if

Also available is a general conditional branch of the form,

if command—list
then command—list
else command-list
fi

that tests the value retumed by the last simple command following if.
The if command may be used in conjunction with the test command to test for the existence of a file as in

if test —f file
then processfile
else do something else
(i

An example of the use of if, case and for constructions is given in section 2.10.
A multiple test if command of the form

if
then
else if

then
else if

fi
fi

fi

may be written using an extension of the if notation as,

if
then
elif
then ..
elif

h

The following example is the touch command which changes the ‘last modified’ time for a list of files. The
command may be used in conjunction with make (1) to force recompilation ofa list of files.

ND-60.328.1P EN

An Introduction to the UNIX Shell uses-13

flag:
for i
do case $i in

—c) flag=N ;;
*) if test —f $i

then In $i junk$$; m1 junk$$
elif test $flag
then echo file \’$t\' does not exist
else >$i
fi

esac
done

The ~c flag is used in this command to force subsequent files to be created if they do not already exist Other-wise, if the file does not exist, an error message is printed. The shell variable flag is set to some non-nullstn'ng if the —c argument is encountered. The commands
ln...;rm...

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

if commandl
then command2
fi

may be written

commandl && command2

Conversely,

commandl l I commandZ

executes commandZ only if command] fails. In each case the value remmed is that of the last simple com-mand executed.

2.8. Command grouping
Commands may be grouped in two ways,

{ command-list ; }

and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a separate process.For example,

(Cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands

ed x; rm junk

have the same effect but leave the invoking shell in the directory)L

ND-60.328.1P EN

USD:5-14 I ' ' An Introduction to the UNIX Shell

2.9. Debugging shell procedures
The shell provides two tracing mechanisms to help when debugging shell procedures. The first is invoked
within the procedure as

set —v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help isolate
syntax errors. It may be invoked without modifying the procedure by saying

sh ~v proc...

where proc is the name of the shell procedure. This flag may be used in conjunction with the —n flag which
prevents execution of subsequent commands. (Note that saying set ~n at a terminal will render the terminal
useless until an endcf—file is typed.)
The command

set ‘x

will produce an execution trace. Following parameter substitution each command is printed as it is executed.
(Try these at the terminal to see what effect they have.) Both flags may be turned off by saying

set —

and the current setting of the shell flags is available as $— .

2.10. The man command

The following is the man command which is used to diplay sections of the UNIX manual on your terminal. It
is called, for example, as

man sh
man —t ed
man 2 fork

In the first the manual section for sh is displayed. Since no section is specified, section 1 is used. The second
example will typeset (~t option) the manual section for ed. The last prints the fork manual page from section
2, which covers system calls.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD25-15

ed /usr/man

: ’colon is the comment command’
: ’default is nroff ($N), section 1 ($s)’
N=n 5:1

for i
do case Si in

[1—~9]*) s=$i ;;

~t)N=t ;;
~n) N=n ;;
—*) echo unknown flag \’$i\’ ;;

2k) if test —f man$s/$i.$s
then ${N}roff manO/${N}aa man$s/$i.$s
else : ’look through all manual sections’

found=no
forjin123456789
do if test —f man$j/$i.$j

then man $j $i
found=yes

fi
done
case $found in

no) echo ’Si: manual page not found’
esac

f1
esac

done

Figure l. A version of the man command

3. KEYWORD PARAMETERS
Shell variables may be given values by assignment or when a shell procedure is invoked. An argument to a
shell procedure of the form namezvalue that precedes the command name causes value to be assigned to name
before execution of the procedure begins. The value of name in the invoking shell is not affected. For exam- .
ple,

userzfred command

will execute command with user set to fred. The —k flag causes arguments of the form name=valuc to be
interpreted in this way anywhere in the argument list Such names are sometimes called keyword parameters.
If any arguments remain they are available as positional parameters $1, $2,
The set command may also be used to set positional parameters from within a procedure. For example,

set — at:

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that the first argument,
—, ensures correct treatment when the first file name begins with a —.

ND~60.328.1P EN

USD:5-16 ‘ ' ' An Introduction to the UNIX Shell

3.1. Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied with the call.
Keyword parameters are also made available implicitly to a shell procedure by specifying in advance that such
parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are made of all
exportable variables for use within the invoked procedure. Modification of such variables within the procedure
does not affect the values in the invoking shell. It is generally true of a shell procedure that it may not modify
the state of its caller without explicit request on the part of the caller. (Shared file descriptors are an exception
to this rule.)
Names whose value is intended to remain constant may be declared readonly. The form of this command is
the same as that of the export command,

readonly name . . .

Subsequent attempts to set readonly variables are illegal.

3.2. Parameter substitution

If a shell parameter is not set then the null string is substituted for it For example, if the variable d is not set
echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo ${d~.}

which will echo the value of the variable d if it is set and otherwise. The default string is evaluated using
the usual quoting conventions so that

echo ${d—’*’}

will echo * if the variable d is not set. Similarly

echo ${d—~$l}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be assigned a
default value using the notation

echo $(d=.}

which substitutes the same string as

echo $[d~.]

and if d were not previously set then it will be set to the string (The notation ${...=...] is not available
for positional parameters.)
If there is no sensible default then the notation

echo ${d?message}
will echo the value of the variable d if it has one, otherwise message is printed by the shell and execution of
the shell procedure is abandoned. If message is absent then a standard message is printed. A shell procedure
that requires some parameters to be set might start as follows.

:${user’?} $(acct?) ${bin7}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have been evaluated.
If any of the variables user, acct or bin are not set then the shell will abandon execution of the procedure.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD25-l7

3.3. Command substitution
The standard output from a command can be substituted in a similar way to parameters. The command pwd
prints on its standard output the name of the current directory. For example, if the current directory is
lusr/fred/bin then the command

d=‘pwd‘

is equivalent to

d=/usr/fred/bin

The entire string between grave accents (‘.. .‘) is taken as the command to be executed and is replaced with the
output from the command. The command is written using the usual quoting conventions except that a ‘ must
be escaped using a \. For example,

ls ‘echo "$1"‘

is equivalent to

ls $1

Command substitution occurs in all contexts where parameter substitution occurs (including here documents)
and the treatment of the resulting text is the same in both cases. This mechanism allows string processing
commands to be used within shell procedures. An example of such a command is basename which rem0ves a
specified suffix from a string. For example,

basename main.c .c

will print the string main. Its use is illustrated by the following fragment from a cc command.
case $A in

*.c) B=‘basename $A .c‘

esac

that sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.

' foriin‘ls—t‘;d0...
The variable i is set to the names of files in time order, most recent first

0 set ‘date‘; echo $6 $2 $3, $4
will print e.g., 1977 Nov 1, 23:59:59

3.4. Evaluation and quoting
The shell is a macro processor that provides parameter substitution, command substitution and file name gen-
eration for the arguments to commands. This section discusses the order in which these evaluations occur and
the effects of the various quoting mechanisms.
Commands are parsed initially according to the grammar given in appendix A‘ Before a command is executed
the following substitutions occur.

- parameter substitution, e.g. $user
. command substitution, e.g. ‘pwd‘

Only one evaluation occurs so that if, for example, the value of the variable X is the string $y then
echo $X

will echo $y.
- blank interpretation

Following the above substitutions the resulting characters are broken into non»blank words (blank
interpretation). For this purpose ‘blanks’ are the characters of the string SIFS. By default, this

ND—60.328.1P EN

USD:S-l8 ' An Introduction to the UNIX Shell

string consists of blank, tab and newline. The null string is not regarded as a word unless it is
quoted. For example,

a;echo

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to the null string.
0 file name generation

Each word is then scanned for the file pattern characters as, ? and [...1 and an alphabetical list of
file names is generated to replace the word. Each such file name is a separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only substitution
occurs in the word used for a case branch.
As well as the quoting mechanisms described earlier using \ and a third quoting mechanism is provided
using double quotes. Within double quotes parameter and command substitution occurs but file name genera-
tion and the interpretation of blanks does not. The following characters have a special meaning within double
quotes and may be quoted using \.

$ parameter substitution
command substitution
ends the quoted string

\ quotes the special characters $ ‘ " \
For example,

echo "$x"

will pass the value of the variable x as a single argument to echo. Similarly,

echo "$*"

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2 ..."
The notation $@ is the same as $* except when it is quoted.

echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to
echo "$1" "$2"

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.
metacharacter

\ S * ‘ "
n n n n n t
y n n t n n

" y y n y t n

t terminator
y interpreted
n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built—in command eval may be used. For
example, if the variable X has the value $y, and if y has the value pqr then

eval echo 3X

will echo the string pqr.

ND—60.328. 1? EN

An Introduction to the UNIX Shell USD:5-19

In general the em] command evaluates its arguments (as do all commands) and treats the result as input to theshell. The input is read and the resulting command(s) executed. For example,
wg=’eval who! grep’
$wg fred

is equivalent to

who i grep fred

In this example, cm! is required since there is no interpretation of metacharacters, such as l , following substi-tution.

3.5. Error handling
The treatment of errors detected by the shell depends on the type of error and on whether the shell is beingused interactively. An interactive shell is one whose input and output are connected to a terminal (as deter—mined by gtty (2)). A shell invoked with the —1‘ flag is also interactive.
Execution of a command (see also 3.7) may fail for any of the following reasons.
0 Input output redirection may fail. For example, if a file does not exist or cannot be created.
0 The command itself does not exist or cannot be executed
0 The command terminates abnormally, for example, with a "bus error" or "memory fault". See Figure 2below for a complete list of UNIX signals.
- The command terminates normally but retums a non—zero exit status.
In all of these cases the shell will go on to execute the next command. Except for the last case an error mes-sage will be printed by the shell. All remaining errors cause the shell to exit from a command procedure. Aninteractive shell will retum to read another command from the terminal. Such errors include the following.
0 Syntax errors. e.g., if then done
- A signal such as interrupt. The shell waits for the current command, if any, to finish execution and then

either exits or returns to the terminal.
0 Failure of any of the built-in commands such as ed.
The shell flag —e causes the shell to terminate if any error is detected

1 hangup
2 interrupt
3* quit
4* illegal instruction
5* trace trap
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill (1))

Figure 3. UNIX signalsf

Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself ignoresquit which is the only external signal that can cause a dump. The signals in this list of potential interest toshell programs are 1, 2, 3, 14 and 15.

T Additional signals have been added in Berkeley Unix. See sigvec(2) or signal(3C) for an up-to-date list.

ND~60.328.1P EN

USDz5—20 ’ An Introduction to the UNIX Shell

3.6. Fault handling
Shell procedures normally terminate when an interrupt is received from the terminal. The trap command is
used if some cleaning up is required, such as removing temporary files. For example,

trap 'rm /tmp/ps$$; exit’ 2
sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands

rm limp/x3333; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is required; other-
wise, after the trap has been taken, the shell will resume executing the procedure at the place where it was
interrupted.
UMX signals can be handled in one of three ways. They can be ignored, in which case the signal is never
sent to the process. They can be caught, in which case the process must decide what action to take when the
signal is received. Lastly, they can be left to cause termination of the process without it having to take any
further action. If a signal is being ignored on entry to the shell procedure, for example, by invoking it in the
background (see 3.7) then trap commands (and the signal) are ignored.
The use of trap is illustrated by this modified version of the touch command (Figure 4). The cleanup action is
to remove the file junk$$.

flag:
trap ”mt —f junk$$; exit' 1 2 3 15
for i
do case $i in

—c) flag=N ;;
*) if test —f Si

then In $i junk$$; rm junk$$
elif test $flag
then echo file \’$i\' does not exist
else >$i
fi

esac
done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be possible for the
process to die without removing the file.
Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed on exit from
the shell procedure.
A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap. The fol-
lowing fragment is taken from the nohup command.

tr‘ap"12315
which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked commands.
Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps may be
obtained by writing

U39

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the trap command.
scan takes each directory in the current directory, prompts with its name, and then executes commands typed at
the terminal until an end of file or an interrupt is received. interrupts are ignored while executing the requested
commands but cause termination when scan is waiting for input.

ND—60.328. 1? EN

An Introduction to the UNIX Shell USD25—21

d=‘pwd‘
for i in *
do if test —d $d/$i

then cd $d/$i
while echo "$iz"

trap exit 2
read it

do trap : 2; eval $x; done
fi

done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in the variable x.
It returns a non—zero exit status if either an end-of—file is read or an interrupt is received.

3.7. Command execution

To run a command (other than a built—in) the shell first creates a new process using the system call fork. The
execution environment for the command includes input, output and the states of signals, and is established in
the child process before the command is executed. The built—in command exec is used in the rare cases when
no fork is required and simply replaces the shell with a new command. For example, a simple version of the
nohup command looks like

trap "123 15
exec$*

The trap trims off the signals specified so that they are ignored by subsequently created commands and exec
replaces the shell by the command specified.
Most forms of input output redirection have already been described. In the following word is only subject to
parameter and command substitution. No file name generation or blank interpretation takes place so that, for
example,

echo >*.C

will write its output into a file whose name is *.c. Input output specifications are evaluated left to right as
they appear in the command
> word The standard output (file descriptor 1) is sent to the file word which is created if it does not

already exist.
>> word The standard output is sent to file word. If the file exists then output is appended (by seeking to

the end); otherwise the file is created.
< word The standard input (file descriptor 0) is taken from the file word.
<< word The standard input is taken from the lines of shell input that follow up to but not including a

line consisting only of word. If word is quoted then no interpretation of the document occurs.
If word is not quoted then parameter and command substitution occur and \ is used to quote the
characters \ $ ‘ and the first character of word. In the latter case \newline is ignored (cf. quoted
strings).

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is used as the
standard output.

<& digit The standard input is duplicated from file descriptor digit.
<&- The standard input is closed.
>&— The standard output is closed.
Any of the above may be preceded by a digit in which case the file descriptor created is that specified by the
digit instead of the default 0 or 1. For example,

ND-60.328.1P EN

usozs—zz ' ‘ An Introduction to the UNIX Shell

.. . 2>file

runs a command with message output (file descriptor 2) directed to file.

. . 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file descriptor 2 is
created by duplicating file descriptor 1 but the effect is usually to merge the two streams.)
The environment for a command run in the background such as

list *.C [lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty file /dev/null .
This prevents two processes (the shell and the command), which are running in parallel, from trying to read the
same input. Chaos would ensue if this were not the case. For example,

ed file&

would allow both the editor and the shell to read from the same input at the same time.
The other modification to the environment of a background command is to turn off the QUIT and INTER-
RUP'I‘ signals so that they are ignored by the command. This allows these signals to be used at the terminal
without causing background commands to terminate. For this reason the UNIX convention for a signal is that
if it is set to 1 (ignored) then it is never changed even for a short time. Note that the shell command trap has
no effect for an ignored signal.

3.8. Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of argument zero is a
minus, then commands are read from the file .profile.

—c string
If the ——c flag is present then commands are read from string.

—s If the —s flag is present or if no arguments remain then commands are read from the standard input.
Shell output is written to file descriptor 2.

—i If the —i flag is present or if the shell input and output are attached to a terminal (as told by gtty) then
this shell is interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an interactive
shell) and INTERRUPT is caught and ignored (so that wait is interruptable). In all cases QUIT is
ignored by the shell.

ND—60.328.1P EN

An Introduction «5 the UNIX Shell USD:5-23

ACKNOWLEDGEMENTS
The design of the shell is based in part on the original UNIX shell [3] and the PWB/UNIX shell [4], some
features having been taken from both. Similarities also exist with the command interpreters of the Cambridge
Multiple Access System [5] and of CTSS [6].
I would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the shell. I
am also grateful to the members of the Computing Science Research Center and to Joe Maranzano for their
comments on drafts of this document.

REFERENCES
1 B. W. Kemighan, UNIX for Beginners, 1978. Reprinted as USD:3 in the NDIX Users Supplementary

Documents manual (ND-60.328), 1988.
K. Thompson and D. M. Ritchie, Unix Programmers Manual, Bell Laboratories, 1978. Seventh Edition.

3 K. Thompson, The UNIX Command Language, in “Structured Programming ~ Infotech State of the An
Report", pp 375-384, Infotech International Ltd., Maidenhead, Berkshire, England, March 1975.

3 J. R. Mashey, PWB/UNIX Shell Tutorial, September 30, 1977.
S D. F. Hartley (Ed), The Cambridge Multiple Access System - Users Reference Manual, University

Mathematical Laboratory, Cambridge, England. 1968.
6 P. A. Crisman (Ed), The Compatible Time-Sharing System, MIT. Press, Cambridge, Mass, USA. 1965.

ND—60.328.IP EN

USD:5-24 ' - An Introduction to the UNIX Shell

APPENDIX A - Grammar

item: word
input—output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command—list done
for name in word . . . do command—list done
while command—list do command-list done
until command-list do command—list done
case word in case-part . .. esac
if command—list then command—list else-part fi

pipeline: command
pipeline I command

andor: pipeline
andor && pipeline
andor I] pipeline

command—list: andor
command-list ;
command-list &
command-list ; andor
command—list & andor

input-output: > file
< file
» word
<< word

file: word
& digit
& _

case-part: pattern) commandJist ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else—part
else command~list
empty

empty:

word: a sequence of non-blank characters

name: a sequence of letters, digits or underscores starting with a letter

digit: 0123456789

ND-60.328.1P EN

An Introduction to the UNIX Shell

Appendix B ~ Meta-characters and Reserved Words
a) syntactic

l pipe symbol
&& ‘andf symbol

‘orF symbol
command separator«-

case delimiter9. ~40

& background commands
() command grouping
< input redirection
<1: input from a here document
> output creation
» output append

b) patterns

at: match any character(s) including none
? match any single character
[...] match any of the enclosed characters

c) substitution

${...} substitute shell variable
\ substitute command output

d) quoting
\ quote the next character
’...’ quote the enclosed characters except for ’
H II... quote the enclosed characters except for $ ‘ \ "

e) reserved words

if then else elif fi
case in esac
for while until do done
{}

USD15—25

ND-60.328.1P EN

USD:5-26 ‘ An Introduction to the UNIX Shell

ND-60.328.1P EN

An Introduction to the C Shell USD26-l

An Introduction to the C shell

William Joy
(revisedfor 4.3BSD by Mark Seiden)

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNIXT systems. It incorporates good
features of other shells and a history mechanism similar to the redo of INTERIJSP. While
incorporating many features of other shells which make writing shell programs (shell
scripts) easier, most of the features unique to csh are designed more for the interactive UNDC
user.
UNIX users who have read a general introduction to the system will find a valuable basic
explanation of the shell here. Simple terminal interaction with csh is possible after reading
just the first section of this document. The second section describes the shell’s capabilities
which you can explore after you have begun to become acquainted with the shell. Later sec-
tions introduce features which are useful, but not necessary for all users of the shell.
Additional information includes an appendix listing special characters of the shell and a
glossary of terms and commands introduced in this manual.

T UNIX is a registered trademark of AT&T in the USA and other countries.

ND—60.328.lP EN

USD26—2 ' ‘ An Introduction to the c Shell

ND-60.328.1P EN

An Introduction to the C Shell US D26-3

Introduction

A shell is a command language interpreter. Csh is the name of one particular command interpreter on UNIX.The primary purpose of ash is to translate command lines typed at a terminal into system actions, such asinvocation of other programs. Csh is a user program just like any you might write. Hopefully, csh will be avery useful program for you in interacting with the UNIX system.
In addition to this document, you will want to refer to a copy of the W User Reference Manual. The or):documentation in section 1 of the manual provides a full description of all features of the shell and is thedefinitive reference for questions about the shell.
Many words in this document are shown in italics. These are important words; names of commands, andwords which have special meaning in discussing the shell and UNIX. Many of the words are defined in a glos-sary at the end of this document. If you don’t know what is meant by a word, you should look for it in theglossary.

Acknowledgements
Numerous people have provided good input about previous versions of ash and aided in its debugging and inthe debugging of its documentation. I would especially like to thank Michael Ubell who made the crucialobservation that history commands could be done well over the word structure of input text, and implementeda prototype history mechanism in an older version of the shell. Eric Allrnan has also provided a large numberof useful comments on the shell, helping to unify those concepts which are present and to identify and elim-inate useless and marginally useful features. Mike O’Brien suggested the pathname hashing mechanism whichspeeds command execution. Jim Kulp added the job control and directory stack primitives and added theirdocumentation to this introduction.

ND—60.328.1P EN

USDz64 ‘ ‘ An Introduction to the C Shell

1. TERMINAL USAGE OF THE SHELL

1.1. The basic notion of commands
A shell in UNIX acts mostly as a medium through which other programs are invoked. While it has a set of
builtin functions which it performs directly, most commands cause execution of programs that are, in fact,
external to the shell. The shell is thus distinguished from the command interpreters of other systems both by
the fact that it is just a user program, and by the fact that it is used almost exclusively as a mechanism for
invoking other programs.
Commands in the UNIX system consist of a list of strings or words interpreted as a command name followed
by arguments. Thus the command

mail bill

consists of two words. The first word mail names the command to be executed, in this case the mail program
which sends messages to other users. The shell uses the name of the command in attempting to execute it for
you. It will look in a number of directories for a file with the name mail which is expected to contain the
mail program.

The rest of the words of the command are given as arguments to the command itself when it is executed. In
this case we specified also the argument bill which is interpreted by the mail program to be the name of a user
to whom mail is to be sent. In normal terminal usage we might use the mail command as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
EOT
%

Here we typed a message to send to bill and ended this message with a AD which sent an end-of—file to the
mail program. (Here and throughout this document, the notation “"x” is to be read “control-x" and
represents the striking of the x key while the control key is held down.) The mail program then echoed the
characters ‘EOT’ and transmitted our message. The characters ‘% ’ were printed before and after the mail
command by the shell to indicate that input was needed.
After typing the ‘% ’ prompt the shell was reading command input from our terminal. We typed a complete
command ‘mail bill’. The shell then executed the mail program with argument bill and went dormant waiting
for it to complete. The mail program then read input from our terminal until we signalled an end-of—frle via
typing a AD after which the shell noticed that mail had completed and signaled us that it was ready to read
from the terminal again by printing another ‘% ’ prompt.
This is the essential pattern of all interaction with UNIX through the shell. A complete command is typed at the
terminal, the shell executes the command and when this execution completes, it prompts for a new command.
If you run the editor for an hour, the shell will patiently wait for you to finish editing and obediently prompt
you again whenever you finish editing.
An example of a useful command you can execute now is the tset command, which sets the default erase and
kill characters on your terminal ~ the erase character erases the last character you typed and the kill character
erases the entire line you have entered so far. By default, the erase character is the delete key (equivalent to
‘A?’) and the kill character is "‘U‘. Some people prefer to make the erase character the backspace key
(equivalent to ‘AH’). You can make this be true by typing

$01 —8

which tells the program tset to set the erase character to tset’s default setting for this character (a backspace).

1.2. Flag arguments
A useful notion in UNIX is that of aflag argument. While many arguments to commands specify file names or
user names, some arguments rather specify an optional capability of the command which you wish to invoke.
By convention, such arguments begin with the character ‘«’ (hyphen). Thus the command

ND—60.328. 1? EN

An Introduction to the c Shell US D:6-5

15

will produce a list of the files in the current war/dag directory. The option —s is the size option, and
ls ~s

causes 15 to also give, for each file the size of the file in blocks of 512 characters. The manual section for eachcommand in the UNDt reference manual gives the available options for each command. The 15 command has alarge number of useful and interesting options. Most other commands have either no options or only one or
two options. It is hard to remember options of commands which are not used very frequently, so most UNIX
utilities perform only one or two functions rather than having a large number of hard to remember options.

13. Output to files
Commands that normally read input or write output on the terminal can also be executed with this input and/or
output done to a file.
Thus suppose we wish to save the current date in a file called ‘now'. The command

date

will print the current date on our terminal. This is because our terminal is the default standard output for the
date command and the date command prints the date on its standard output. The shell lets us redirect the
standard output of a command through a notation using the metacharacter ‘>’ and the name of the file where
output is to be placed. Thus the command

date > now

runs the date command such that its standard output is the file ‘now’ rather than the terminal. Thus this com-mand places the current date and time into the file ‘now’. It is important to know that the date command was
unaware that its output was going to a file rather than to the terminal. The shell performed this redirection
before the command began executing.
One other thing to note here is that the file ‘now’ need not have existed before the date command was exe-
cuted; the shell would have created the file if it did not exist. And if the file did exist? If it had existed previ~
ously these previous contents would have been discarded! A shell option noclobber exists to prevent this from
happening accidentally; it is discussed in section 2.2.
The system normally keeps files which you create with ‘>’ and all other files. Thus the default is for files to
be permanent. If you wish to create a file which will be removed automatically, you can begin its name with a
‘#’ character, this ‘scratch’ character denotes the fact that the file will be a scratch filenL The system will
remove such files after a couple of days, or sooner if file space becomes very tight Thus, in running the datecommand above, we don’t really want to save the output forever, so we would more likely do

date > #now

1.4. Metacharacters in the shell
The shell has a large number of special characters (like ‘>’) which indicate special functions. We say thatthese notations have syntactic and semantic meaning to the shell. In general, most characters which are nei-
ther letters nor digits have special meaning to the shell. We shall shortly learn a means of quotation which
allows us to use metacharacters without the shell treating them in any special way.
Metacharacters normally have effect only when the shell is reading our input. We need not worry about plac-
ing shell metacharacters in a letter we are sending via mail, or when we are typing in text or data to some
other program. Note that the shell is only reading input when it has prompted with ‘% ‘ (although we can typeour input even before it prompts).

T Note that if your erase character is a ‘#', you will have to precede the ‘N' with a '\'. The fact that the ‘H' diameter isthe old (prcCRT) standard erase character means that it seldom appears in a file name, and allows this convention to be
used for scratch files. If you are using am, your erase character should be a All, as we demonstrated in section 1.1 howthis could be set up.

ND-60.328.1P EN

USDz6-6 ' An Introduction to the C Shell

1.5. Input from files; pipelines
We learned above how to redirect the standard output of a command to a file. It is also possible to redirect
the standard input of a command from a file. This is not often necessary since most commands will read from
a file whose name is given as an argument. We can give the command

sort<data

to run the sort command with standard input, where the command normally reads its input, from the file
‘data’. We would more likely say

sort data

letting the sort command open the file ‘data’ for input itself since this is less to type.
We should note that if we just typed

8011

then the sort program would sort lines from its standard input. Since we did not redirect the standard input, it
would sort lines as we typed them on the terminal until we typed a "D to indicate an end-of—file.
A most useful capability is the ability to combine the standard output of one command with the standard input
of another, i.e. to run the commands in a sequence known as a pipeline. For instance the command

is —s

normally produces a list of the files in our directory with the size of each in blocks of 512 characters. If we
are interested in learning which of our files is largest we may wish to have this sorted by size rather than by
name, which is the default way in which Is sorts. We could look at the many options of Is to see if there was
an option to do this but would eventually discover that there is not Instead we can use a couple of simple
options of the sort command, combining it with Is to get what we want.
The —n option of sort specifies a numeric sort rather than an alphabetic sort. Thus

ls—slsort—n

specifies that the output of the Is command run with the option ~s is to be piped to the command sort run
with the numeric sort option. This would give us a sorted list of our files by size, but with the smallest first.
We could then use the —r reverse sort option and the head command in combination with the previous com-
mand doing

ls—slsort—n—rlhead—S

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We have run this to
the standard input of the sort command asking it to sort numerically in reverse order (largest first). This out—
put has then been run into the command head which gives us the first few lines. In this case we have asked
head for the first 5 lines. Thus this command gives us the names and sizes of our 5 largest files.
The notation introduced above is called the pipe mechanism. Commands separated by ‘l’ characters are con-
nected together by the shell and the standard output of each is run into the standard input of the next The left-
most command in a pipeline will normally take its standard input from the terminal and the rightmost will
place its standard output on the terminal. Other examples of pipelines will be given later when we discuss the
history mechanism; one important use of pipes which is illustrated there is in the routing of information to the
line printer.

1.6. Filenames

Many commands to be executed will need the names of files as arguments. UNIX pat/marries consist of a
number of components separated by ‘/’. Each component except the last names a directory in which the next
component resides, in effect specifying the path of directories to follow to reach the file. Thus the pathname

/etc/m0td

specifies a file in the directory ‘etc’ which is a subdirectory of the root directory ‘/’. Within this directory the
file named is ‘motd’ which stands for ‘message of the day’. A pathname that begins with a slash is said to be
an absolute pathname since it is specified from the absolute top of the entire directory hierarchy of the system
(the root). Pat/mamas which do not begin with ‘/’ are interpreted as starting in the current working directory,

ND-60.328.1P EN

An Introduction to the C Shell USD26-7

which is, by default, your home directory and can be changed dynamically by the cd change directory com-
mand. Such pathnames are said to be relative to the working directory since they are found by starting in the
working directory and descending to lower levels of directories for each component of the pathname. If the
pathname contains no slashes at all then the file is contained in the working directory itself and the pathname
is merely the name of the file in this directory. Absolute pathnames have no relation to the working directory.
Most filenames consist of a number of alphanumeric characters and ‘.’s (periods). In fact, all printing charac-
ters except ‘/’ (slash) may appear in filenames. It is inconvenient to have most non-alphabetic characters in
filenames because many of these have special meaning to the shell. The character ‘.’ (period) is not a shell-
metacharacter and is often used to separate the extension of a file name from the base of the name. Thus

prog.c prog.c prog.crrs prog.cutput
are four related files. They share a base portion of a name (a base portion being that part of the name that is
left when a trailing and following characters which are not are stripped off). The file ‘prog.c' might be
the source for a C program, the file ‘progo’ the corresponding object file, the file ‘prog.errs‘ the errors result—
ing from a compilation of the program and the file ‘progoutput’ the output of a run of the program.
If we wished to refer to all four of these files in a command, we could use the notation

prog-*
This expression is expanded by the shell, before the command to which it is an argument is executed, into a
list of names which begin with ‘prog.’. The character ‘*’ here matches any sequence (including the empty
sequence) of characters in a file name. The names which match are alphabetically sorted and placed in the
argument list of the command. Thus the command

echo prog.*

will echo the names

prog.c prog.crrs prog.o prog.cutput
Note that the names are in sorted order here, and a different order than we listed them above. The echo com-
mand receives four words as arguments, even though we only typed one word as as argument directly. The
four words were generated by filename expansion of the one input word.
Other notations for filename expansion are also available. The character “.7’ matches any single character in a
filename. Thus

echo ? ?? T]?

will echo a line of filenames; first those with one character names, then those with two character names, and
finally those with three character names. The names of each length will be independently sorted.
Another mechanism consists of a sequence of characters between T and ‘1’. This metasequence matches any
single character from the enclosed set. Thus

prog.[co]

will match

prog.c prog.o

in the example above. We can also place two characters around a ‘—’ in this notation to denote a range. Thus
chap.[l—5]

might match files

chap.l chap.2 chap.3 chap.4 chap.5

if they existed. This is shorthand for

chap.[12345]

and otherwise equivalent.
An important point to note is that if a list of argument words to a command (an argument list) contains
filcname expansion syntax, and if this filename expansion syntax fails to match any existing file names, then

ND—60.328.1P EN

USD16—8 I ' An Introduction to the C Shell

the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.
Another very important point is that files with the character at the beginning are treated specially. Neither
‘*’ or ”2’ or the ‘[' ‘]’ mechanism will match it This prevents accidental matching of the filenames and
in the working directory which have special meaning to the system, as well as other files such as .cshrc which
are not normally visible. We will discuss the special role of the file .cshrc later.
Another filename expansion mechanism gives access to the pathname of the home directory of other users.
This notation consists of the character ‘~’ (tilde) followed by another user’s login name. For instance the word
‘~bill’ would map to the pathname ‘/usr/bill’ if the home directory for ‘bill’ was ‘/usr/bill’. Since, on large
systems, users may have login directories scattered Over many different disk volumes with different prefix
directory names, this notation provides a convenient way of accessing the files of other users.
A special case of this notation consists of a ‘~’ alone, e.g. ‘~/mbox’. This notation is expanded by the shell
into the file ‘mbox’ in your home directory, i.e. into ‘/usr/bill/mbox‘ for me on Ernie Covax, the UCB Com—
puter Science Department VAX machine, where this document was prepared. This can be very useful if you
have used cd to change to another directory and have found a file you wish to copy using Cp. If I give the
command

cp thatfile ~

the shell will expand this command to

cp thatfile lusr/bill

since my home directory is /usr/bill.
There also exists a mechanism using the characters ‘{’ and ‘}’ for abbreviating a set of words which have
common parts but cannot be abbreviated by the above mechanisms because they are not files, are the names of
files which do not yet exist, are not thus conveniently described This mechanism will be described much
later, in section 4.2, as it is used less frequently.

1.7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharacters pose a problem in
that we cannot use them directly as parts of words. Thus the command

echo *

will not echo the character ‘*'. It will either echo an sorted list of filenames in the current working directory,
or print the message ‘No match’ if there are no files in the working directory.
The recommended mechanism for placing characters which are neither numbers, digits, ‘/’, ‘.’ or ‘—’ in an
argument word to a command is to enclose it with single quotation characters ‘ ”, i.e.

echo '* ’

There is one special character ‘1’ which is used by the history mechanism of the shell and which cannot be
escaped by placing it within characters. It and the character "’ itself can be preceded by a single ‘\’ to
prevent their special meaning. Thus

echo \\'

prints

ND-60.328.1P EN

An Introduction to the C Shell US D26—9

These two mechanisms suffice to place any printing character into a word which is an argument to a shellcommand. They can be combined, as in
echo \”* ’

which prints
’*

since the first ‘\’ escaped the first and the ‘*’ was enclosed between characters.

1.8. Terminating commands
When you are executing a command and the shell is waiting for it to complete there are several ways to forceit to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely to continue forseveral minutes unless you stop it. You can send an INTERRUPT signal to the cat command by typing AC onyour terminalt Since cat does not take any precautions to avoid or otherwise handle this signal the INTER—RUPT will cause it to terminate. The shell notices that cat has terminated and prompts you again with ‘% ’. Ifyou hit INTERRUPT again, the shell will just repeat its prompt since it handles INTERRUPT signals and chooses tocontinue to execute commands rather than terminating like cal did, which would have the effect of loggingyou out.
Another way in which many programs terminate is when they get an end-of—file from their standard inputThus the mail program in the first example above was terminated when we typed a AD which generates anend—of-file from the standard input. The shell also terminates when it gets an end-of—file printing ‘logout’;UNIX then logs you off the system. Since this means that typing too many AD’s can accidentally log us off, theshell has a mechanism for preventing this. This ignoreeof option will be discussed in section 2.2.
If a command has its standard input redirected from a file, then it will normally terminate when it reaches theend of this file. Thus if we execute

mail bill < preparedtext
the mail command will terminate without our typing a “D. This is because it read to the end-of—file of our file‘prepared.text’ in which we placed a message for ‘bill' with an editor program. We could also have done

cat preparedtext l mail bill

since the cat command would then have written the text through the pipe to the standard input of the mailcommand. When the cat command completed it would have terminated, closing down the pipeline and themail command would have received an end-of—file from it and terminated. Using a pipe here is more compli-cated than redirecting input so we would more likely use the first form. These commands could also havebeen stopped by sending an INTERRUPI‘.
Another possibility for stopping a command is to suspend its execution temporarily, with the possibility ofcontinuing execution later. This is done by sending a STOP signal via typing a AZ. This signal causes all com-mands running on the terminal (usually one but more if a pipeline is executing) to become suspended. Theshell notices that the command(s) have been suspended, types ‘Stopped’ and then prompts for a new command.The previously executing command has been suspended, but otherwise unaffected by the STOP signal. Anyother commands can be executed while the original command remains suspended. The suspended commandcan be continued using the fg command with no arguments. The shell will then retype the command to rem-ind you which command is being continued, and cause the command to resume execution. Unless any inputfiles in use by the suspended command have been changed in the meantime, the suspension has no effect what-soever on the execution of the command. This feature can be very useful during editing, when you need tolook at another file before continuing. An example of command suspension follows.

1’ On some older UNIX systems the DEL or RUBOUT key has the same effect. "slty all" will tell you the IN IR key value.

NDv60.328.1P EN

USD26-10 ' An Introduction to the C Shell

% mail harold
Someone just copied a big file into my directory and its name is
AZ
Stopped
% ls
funnyfile
prog.c
prog.o
% jobs
[I] + Stopped mail harold
% fg
mail harold
funnyfile. Do you know who did it?
EOT
%

In this example someone was sending a message to Harold and forgot the name of the file he wanted to men-
tion. The mail command was suspended by typing AZ. When the shell noticed that the mail program was
suspended, it typed ‘Stopped’ and prompted for a new command. Then the Is command was typed to find out
the name of the file. The jobs command was run to find out which command was suspended. At this time the
fg command was typed to continue execution of the mail program. Input to the mail program was then contin-
ued and ended with a "D which indicated the end of the message at which time the mail program typed EDT.
The jobs command will show which commands are suspended The “2 should only be typed at the beginning
of a line since everything typed on the current line is discarded when a signal is sent from the keyboard. This
also happens on INTERRUPT, and QUIT signals. More information on suspending jobs and controlling them is
given in section 2.6.
If you write or run programs which are not fully debugged then it may be necessary to stop them somewhat
ungracefully. This can be done by sending them a QUTT signal, sent by typing a A\ This will usually provoke
the shell to produce a message like:

Quit (Core dumped)

indicating that a file ‘core’ has been created containing information about the running program’s state when it
terminated due to the QUTI‘ signal. You can examine this file yourself, or forward information to the maintainer
of the program telling him/her where the core file is.
If you run background commands (as explained in section 2.6) then these commands will ignore INTERRUPT
and QUIT signals at the terminal. To stop them you must use the kill command. See section 2.6 for an exam
ple.

If you want to examine the output of a command without having it move off the screen as the output of the

cat letc/passwd

command will, you can use the command

more /etc/passwd

The more program pauses after each complete scrwnful and types ‘—-More—' at which point you can hit a
space to get another screenful, a return to get another line, a "2’ to get some help on other commands, or a ‘q’
to end the more program. You can also use more as a filter, i.e.

cat letc/passwd l more

works just like the more simple more command above.
For stopping output of commands not involving more you can use the "S key to stop the typcout. The typeout
will resume when you hit "Q or any other key, but AQ is normally used because it only restarts the output and
does not become input to the program which is running. This works well on low-speed terminals, but at 9600
baud it is hard to type AS and AQ fast enough to paginate the output nicely, and a program like more is usually
used.

ND-60.328.1P EN

An Introduction to the C Shell USD:6-11

An additional possibility is to use the "O flush output character; when this character is typed, all output fromthe current command is thrown away (quickly) until the next input read occurs or until the next shell prompLThis can be used to allow a command to complete without having to suffer through the output on a slow tenni-nal; A0 is a toggle, so flushing can be turned off by typing "0 again while output is being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way in which it operates.The remaining sections will go yet further into the internals of the shell, but you will surely want to try usingthe shell before you go any further. To try it you can log in to UNIX and type the following command to thesystem:

chsh mynarne [bin/csh

Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:’ to get onto the sys-tem. Thus I would use ‘chsh bill [bin/csh’. You only have to do this once; it takes effect at next login.You are now ready to try using csh.
Before you do the ‘chsh’ command, the shell you are using when you log into the system is ‘/bin/sh‘. In fact,much of the above discussion is applicable to ‘/bin/sh’. The next section will introduce many features particu-lar to ash so you should change your shell to csh before you begin reading it.

2. DETAILS ON THE SHELL FOR TERMINAL USERS

2.1. Shell startup and termination
When you login. the shell is started by the system in your home directory and begins by reading commandsfrom a file .cshrc in this directory. All shells which you may start during your terminal session will read fromthis file. We will later see what kinds of commands are usefully placed there. For now we need not have thisfile and the shell does not complain about its absence.
A login shell, executed after you login to the system, will, after it reads commands from .cshrc, read com-mands from a file .login also in your home directory. This file contains commands which you wish to do eachtime you login to the UNIX system. My .login file looks something like:

set ignoreeof
set mailusr/spool/mail/bill)
echo "Slprompflusers" ; users
alias ts \

’set noglob ; eval ‘tset —s —m dialup2c100rv4pna —m plugboard:?hp2621nl *‘ ’;
ts; stty intr AC kill AU on
set time=lS history=lO
msgs —f
if (—e $mail) then

echo "$[prompt}mail"
mail

endif

This file contains several commands to be executed by UNIX each time I login. The first is a set commandwhich is interpreted directly by the shell. It sets the shell variable ignoreeof which causes the shell to not logme off if I hit "D. Rather, I use the logout command to log off of the system. By setting the mail variable, Iask the shell to watch for incoming mail to me. Every 5 minutes the shell looks for this file and tells me ifmore mail has arrived there. An alternative to this is to put the command
biff y

in place of this set; this will cause me to be notified immediately when mail arrives, and to be shown the firstfew lines of the new message.
Next I set the shell variable ‘time’ to ‘15’ causing the shell to automatically print out statistics lines for com—mands which execute for at least 15 seconds of CPU time. The variable ‘history’ is set to 10 indicating that Iwant the shell to remember the last 10 commands I type in its history list, (described later).

ND-60.328.IP EN

USD:6-12 ' An Introduction to the C Shell

I create an alias ”ts” which executes a tset(l) command setting up the modes of the terminal. The parame-
ters to tset indicate the kinds of terminal which I usually use when not on a hardwired port. I then execute
“ts” and also use the stty command to change the interrupt character to "C and the line kill character to AU.
I then run the ‘msgs’ program, which provides me with any system messages which I have not seen before; the
‘—f’ option here prevents it from telling me anything if there are no new messages. Finally, if my mailbox file
exists, then I run the ‘mail’ program to process my mail.
When the ‘mail’ and ‘msgs’ programs finish, the shell will finish processing my .login file and begin reading
commands from the terminal, prompting for each with ‘% ’. When I log off (by giving the logout command)
the shell will print ‘logout’ and execute commands from the file ‘.logout’ if it exists in my home directory.
After that the shell will terminate and UNIX will log me off the system. If the system is not going down, I will
receive a new login message. In any case, after the ‘logout’ message the shell is committed to terminating and
will take no further input from my terminal.

2.2. Shell variables
The shell maintains a set of variables. We saw above the variables history and time which had values ‘10’
and ‘15’. In fact, each shell variable has as value an array of zero or more strings. Shell variables may be
assigned values by the set command. It has several forms, the most useful of which was given above and is

set namezvalue

Shell variables may be used to store values which are to be used in commands later through a substitution
mechanism. The shell variables most commonly referenced are, however, those which the shell itself refers to.
By changing the values of these variables one can directly affect the behavior of the shell.
One of the most important variables is the variable path. This variable contains a sequence of directory names
where the shell searches for commands. The set command with no arguments shows the value of all variables
currently defined (we usually say set) in the shell. The default value for path will be shown by set to be

% set
argv O
cwd /usr/bill
home /usr/bill
path (. /usr/ucb [bin /usr/bin)
prompt %
shell [bin/csh
status 0
term clOOrv4pna
user bill
%

This output indicates that the variable path points to the current directory ‘.’ and then ‘/usr/ucb‘, ‘/bin' and
‘/usr/bin’. Commands which you may write might be in (usually one of your directories). Commands
developed at Berkeley, live in ‘/usr/ucb’ while commands developed at Bell Laboratories live in ‘/bin' and
‘/usr/bin’.
A number of locally developed programs on the system live in the directory ‘/usr/local’. If we wish that all
shells which we invoke to have access to these new programs we can place the command

set path=(. /usr/ucb /bin /usr/bin /usr/local)
in our file .cshrc in our home directory. Try doing this and then logging out and back in and do

set

again to see that the value assigned to path has changediL
One thing you should be aware of is that the shell examines each directory which you insert into your path and
determines which commands are contained there. Except for the current directory which the shell treats

1" Another directory that might interest you is lusr/new, which contains many useful user~conuibuted programs provided
with Berkeley UNIX.

ND-60.328.1P EN

An Introduction to the C Shell USDz6-13

specially, this means that if commands are added to a directory in your search path after you have started the
shell, they will not necessarily be found by the shell. If you wish to use a command which has been added in
this way, you should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it will find the
newly added command. Since the shell has to look in the current directory ‘.’ on each command, placing it at
the end of the path specification usually works equivalently and reduces overhead.
Other useful built in variables are the variable home which shows your home directory, cwd which contains
your current working directory, the variable ignoreeof which can be set in your .login file to tell the shell not
to exit when it receives an end—of-file from a terminal (as described above). The variable ‘ignoreeoF is one of
several variables which the shell does not care about the value of, only whether they are set or unset. Thus to
set this variable you simply do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable ‘ignoreeof’ no value, but none is desired or required.
Finally, some other built-in shell variables of use are the variables noclobber and mail. The metasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous contents of the
named file. In this way you may accidentally overwrite a file which is valuable. If you would prefer that the
shell not overwrite files in this way you can

set noclobber

in your .login file. Then trying to do

date > now

would cause a diagnostic if ‘now’ existed already. You could type

date >! now

if you really wanted to overwrite the contents of ‘now’. The ‘>!’ is a special metasyntax indicating that
clobbering the file is ok.T

2.3. The Shell’s history list
The shell can maintain a history list into which it places the words of previous commands. It is possible to
use a notation to reuse commands or words from commands in forming new commands. This mechanism can
be used to repeat previous commands or to correct minor typing mistakes in commands.
The following figure gives a sample session involving typical usage of the history mechanism of the shell. In
this example we have a very simple C program which has a bug (or two) in it in the file ‘bug.c’, which we
‘cat’ out on our terminal. We then try to run the C compiler on it, referring to the file again as ‘IS‘, meaning
the last argument to the previous command. Here the ‘l’ is the history mechanism invocation metacharacter,
and the ‘$’ stands for the last argument, by analogy to ‘S’ in the editor which stands for the end of the line.
The shell echoed the command, as it would have been typed without use of the history mechanism, and then
executed it. The compilation yielded error diagnostics so we now run the editor on the file we were trying to
compile, fix the bug, and run the C compiler again, this time referring to this command simply as ‘!c’, which
repeats the last command which started with the letter ‘c’. If there were other commands starting with ‘c’ done
recently we could have said ‘!cc’ or even ‘lcczp’ which would have printed the last command starting with ‘cc'
without executing it.

1 The space between the ‘I' and the word 'now' is critical here, as ‘lnow‘ would be an invocation of the hirtory
mechanism, and have a totally different effea.

ND—60.328.1P EN

USD26-l4

% cat bug.c
mainO

{

}
%cc!$
cc bug.c

printf("hello);

"bug.c", line 4: newline in suing or char constant
"bug.c", line 5: syntax error
% ed !$
ed bug.c
29
48/);f'&/P

printf("hello");
W

30
q
% lc
cc bug.c
% a.out
hello% 1e
ed huge
30
4s/lo/lo\\n./p

printf("hello\n");
W

32
Cl
% !c —o bug
cc bug.c —o bug
% size a.out bug
a.out: 2784+364+1028 = 41761) = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b
% ls —l !*
ls —l a.out bug
—rwxr—xr~x 1 bill 3932 Dec 19 09:41 a.out
—rwxr—xr—x 1 bill 3932 Dec 19 09:42 bug
% bug
hello
% num bug.c l spp
spp: Command not found.
% "sppAssp
num huge I ssp

l mainO
3 l
4 printf("hello\n");
5 }

% !! 1 [pr
num bug.c l ssp t lpr
%

After this recompilation, we ran the resulting ‘a.out’ file, and then noting that there still was a bug, ran the edi-
tor again. After fixing the program we ran the C compiler again, but tacked onto the command an extra ‘—o
bug’ telling the compiler to place the resultant binary in the file ‘bug’ rather than ‘a.out’. In general, the his-
tory mechanisms may be used anywhere in the formation of new commands and other characters may be
placed before and after the substituted commands.

ND‘60.328.1P EN

An introduction to the C Shell

An Introduction to the C Shell US D:6-15

We then ran the ‘size’ command to see how large the binary program images we have created were, and then
an ‘ls —1' command with the same argument list, denoting the argument list ‘*’. Finally we ran the program
‘bug’ to see that its output is indeed correct
To make a numbered listing of the program we ran the ‘num’ command on the file ‘bug.c‘. In order to
compress out blank lines in the output of ‘num’ we ran the output through the filter ‘ssp’, but misspelled it as
spp. To correct this we used a shell substitute, placing the old text and new text between ‘A’ characters. This
is similar to the substitute command in the editor. Finally, we repeated the same command with ‘l!’, but sent
its output to the line printer.
There are other mechanisms available for repeating commands. The history command prints out a number of
previous commands with numbers by which they can be referenced. There is a way to refer to a previous com
mand by searching for a string which appeared in it, and there are other, less useful, ways to select arguments
to include in a new command. A complete description of all these mechanisms is given in the C shell manual
pages in the UNIX Programmer’s Manual.

2.4. Aliases
The shell has an alias mechanism which can be used to make transformations on input commands. This
mechanism can be used to simplify the commands you type, to supply default arguments to commands, or to
perform transformations on commands and their arguments. The alias facility is similar to a macro facility.
Some of the features obtained by aliasing can be obtained also using shell command files, but these take place
in another instance of the shell and cannot directly affect the current shells environment or involve commands
such as cd which must be done in the current shell.
As an example, suppose that there is a new version of the mail program on the system called ‘newmail’ you
wish to use, rather than the standard mail program which is called ‘mail’. If you place the shell command

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form
mail bill

into a call on ‘newmail’. More generally, suppose we wish the command ‘ls' to always show sizes of files,
that is to always do ‘~s’. We can do

alias ls ls —s

or even

alias dir ls —s

creating a new command syntax ‘dir’ which does an ‘15 —s’. If we say

dir ~bill

then the shell will translate this to

is ~s /mnt/bill

Thus the alias mechanism can be used to provide short names for commands, to provide default arguments,
and to define new short commands in terms of other commands. It is also possible to define aliases which
contain multiple commands or pipelines, showing where the arguments to the original command are to be sub-
stituted using the facilities of the history mechanism. Thus the definition

alias ed ’cd\'* ; ls ’

would do an ls command after each change directory Cd command. We enclosed the entire alias definition in
characters to prevent most substitutions from occurring and the character from being recognized as a

metacharacter. The "1" here is escaped with a "\" to prevent it from being interpreted when the alias command
is typed in. The "\l*" here substitutes the entire argument list to the pre—aliasing Cd command, without giving
an error if there were no arguments. The separating commands is used here to indicate that one command
is to be done and then the next. Similarly the definition

alias whois ’grep\"‘ [etc/passwd’

ND-60.328.1P EN

USDz6-16 ' An Introduction to the C Shell

defines a command which looks up its first argument in the password file.
Warning: The shell currently reads the .cshrc file each time it starts up. If you place a large number of com-
mands there, shells will tend to start slowly. A mechanism for saving the shell environment after reading the
.cshrc file and quickly restoring it is under development, but for now you should try to limit the number of
aliases you have to a reasonable number... 10 or 15 is reasonable, 50 or 60 will cause a noticeable delay in
starting up shells, and make the system seem sluggish when you execute commands from within the editor and
other programs.

2.5. More redirection; >> and >&

There are a few more notations useful to the terminal user which have not been introduced yet.
In addition to the standard output, commands also have a diagnostic output which is normally directed to the
terminal even when the standard output is redirected to a file or a pipe. It is occasionally desirable to direct the
diagnostic output along with the standard output. For instance if you want to redirect the output of a long run-
ning command into a file and wish to have a record of any error diagnostic it produces you can do

command >& file

The ‘>&’ here tells the shell to route both the diagnostic output and the standard output into ‘file’. Similarly
you can give the command

command I & lpr

to route both standard and diagnostic output through the pipe to the line printer daemon lpr. T
Finally, it is possible to use the form

command >> file

to place output at the end of an existing file:

2.6. Jobs; Background, Foreground, or Suspended
When one or more commands are typed together as a pipeline or as a sequence of commands separated by
semicolons, a single job is created by the shell consisting of these commands together as a unit Single com-
mands without pipes or semicolons create the simplest jobs. Usually, every line typed to the shell creates a
job. Some lines that create jobs (one per line) are

sort < data
is —s I sort —n I head —5
mail harold

If the metacharacter ‘&’ is typed at the end of the commands, then the job is started as a background job.
This means that the shell does not wait for it to complete but immediately prompts and is ready for another
command. The job runs in the background at the same time that normal jobs, called foreground jobs, con-
tinue to be read and executed by the shell one at a time. Thus

du > usage &

would run the du program, which reports on the disk usage of your working directory (as well as any direc-
tories below it), put the output into the file ‘usage’ and return immediately with a prompt for the next com-
mand without out waiting for du to finish. The du program would continue executing in the background until
it finished, even though you can type and execute more commands in the mean time. When a background job
terminates, a message is typed by the shell just before the next prompt telling you that the job has completed.
In the following example the du job finishes sometime during the execution of the mail command and its
T A command of the form

command >&l file
exists, and is used when noclobber is set and/Ila already exists.
1 If noclobber is set, then an error will result ifflle does not exist, otherwise the shell will create file if it doesn't exist.
A form

command >>! file
makes it not be an error for file to not exist when noclobber is seL

ND—60.328.1P EN

An Introduction to the C Shell USDz6-l7

completion is reported just before the prompt after the mail job is finished.
% du > usage &
[1] 503
% mail bill
How do you know when a background job is finished?
EOT
[I] ~ Done du > usage
%

If the job did not terminate normally the ‘Done’ message might say something else like ‘Killed’. If you wantthe terminations of background jobs to be reported at the time they occur (possibly interrupting the output ofother foreground jobs), you can set the notify variable. In the previous example this would mean that the‘Done’ message might have come right in the middle of the message to Bill. Background jobs are unaffectedby any signals from the keyboard like the S'I‘OP,1NTERRUPT, or QUIT signals mentioned earlier.
Jobs are recorded in a table inside the shell until they terminate. In this table, the shell remembers the com-mand names, arguments and the process numbers of all commands in the job as well as the working directorywhere the job was started. Each job in the table is either running in the foreground with the shell waiting forit to terminate, running in the background. or suspended. Only one job can be running in the foreground atone time, but several jobs can be suspended or running in the background at once. As each job is started, it isassigned a small identifying number called the job number which can be used later to refer to the job in thecommands described below. Job numbers remain the same until the job terminates and then are re-used.
When a job is started in the backgound using ‘&’, its number, as well as the process numbers of all its (top
level) commands, is typed by the shell before prompting you for another command. For example,

%ls-—slsort—n>usage&
[2] 2034 2035
%

runs the ‘IS’ program with the ‘—s’ options, pipes this output into the ‘sort’ program with the ‘—n’ option which
puts its output into the file ‘usage’. Since the ‘&’ was at the end of the line, these two programs were startedtogether as a background job. After starting the job, the shell prints the job number in brackets (2 in this case)
followed by the process number of each program started in the job. Then the shell immediates prompts for anew command, leaving the job running simultaneously.
As mentioned in section 1.8, foreground jobs become suspended by typing AZ which sends a S'IDP signal tothe currently running foreground job. A background job can become suspended by using the stop commanddescribed below. When jobs are suspended they merely stop any further progress until started again, either inthe foreground or the backgound. The shell notices when a job becomes stopped and reports this fact, muchlike it reports the termination of background jobs. For foreground jobs this looks like

% du > usage
AZ
Stopped
%

‘Stopped’ message is typed by the shell when it notices that the du program stopped. For background jobs,using the stop command, it is

% sort usage &
[l] 2345
% stop %I
[l] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change what you are doing (exe—cute other commands) and then return to the suspended job. Also, foreground jobs can be suspended and thencontinued as background jobs using the bg command, allowing you to continue other work and stop waitingfor the foreground job to finish. Thus

ND—60.328.IP EN

USD26-l8 ‘ ' An Introduction to the C Shell

% du > usage
AZ
Stopped
% bg
[1] du > usage &
%

starts ‘du’ in the foreground, stops it before it finishes, then continues it in the background allowing more fore-
ground commands to be executed. This is especially helpful when a foreground job ends up taking longer than
you expected and you wish you had started it in the backgound in the beginning.
All job control commands can take an argument that identifies a particular job. All job name arguments begin
with the character ‘%’, since some of the job control commands also accept process numbers (printed by the
ps command.) The default job (when no argument is given) is called the current job and is identified by a ‘+’
in the output of the jobs command, which shows you which jobs you have. When only one job is stopped or
running in the background (the usual case) it is always the current job thus no argument is needed. If a job is
stopped while running in the foreground it becomes the current job and the existing current job becomes the
previous job ~ identified by a ‘-’ in the output of jobs. When the current job terminates, the previous job
becomes the current job. When given, the argument is either ‘%——’ (indicating the previous job); ‘%#’, where #
is the job number, ‘%pref’ where pref is some unique prefix of the command name and arguments of one of
the jobs; or ‘%?’ followed by some string found in only one of the jobs.
The jobs command types the table of jobs, giving the job number, commands and status (‘Stopped’ or ‘Run-
ning’) of each backgound or suspended job. With the ‘—1' option the process numbers are also typed.

% du > usage &
[l] 3398
% is —s I sort —n > myfile &
[2] 3405
% mail bill
AZ
Stopped
% jobs
[1] — Running du > usage
[2] Running ls —s l sort —n > myfile
[3] + Stopped mail bill
% fg %ls
is —s I sort —n > myfile
% more myfile

The fg command runs a suspended or background job in the foreground. It is used to restart a previously
suspended job or change a background job to run in the foreground (allowing signals or input from the termi—
nal). In the above example we used fg to change the ‘ls' job from the background to the foreground since we
wanted to wait for it to finish before looking at its output file. The bg command runs a suspended job in the
background. It is usually used after stopping the currently running foreground job with the STOP signal. The
combination of the STOP signal and the bg command changes a foreground job into a background job. The
stop command suspends a background job.
The kill command terminates a background or suspended job immediately. In addition to jobs, it may be
given process numbers as arguments, as printed by ps. Thus, in the example above, the running du command
could have been terminated by the command

% kill %1
[I] Terminated du > usage
%

The notify command (not the variable mentioned earlier) indicates that the termination of a specific job should
be reported at the time it finishes instead of waiting for the next prompt
If a job running in the background tries to read input from the terminal it is automatically stopped. When such
a job is then run in the foreground, input can be given to the job. If desired, the job can be run in the

ND-60.328.1P EN

An Introduction to the C Shell USDz6-19

background again until it requests input again. This is illustrated in the following sequence where the ‘5' com-
mand in the text editor might take a long time.

% ed bigflle
120000
1 ,$s/thisword/thatword/
"Z
Stopped
% bg
[1] ed bigfile &
%

. some foreground commands
[1] Stopped (tty input) ed bigfile
% fg
ed bigfile
w
120000
‘1
%

So after the ‘3’ command was issued, the ‘ed’ job was stopped with AZ and then put in the background using
bg. Some time later when the ‘8’ command was finished, ed tried to read another command and was stopped
because jobs in the backgound cannot read from the terminal. The fg command returned the ‘ed’ job to the
foreground where it could once again accept commands from the terminal.
The command

stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to the terminal.
This prevents messages from background jobs from interrupting foreground job output and allows you to run a
job in the background without losing terminal output. It also can be used for interactive programs that some
times have long periods without interaction. Thus each time it outputs a prompt for more input it will stop
before the prompt. It can then be run in the foreground using fg. more input can be given and, if necessary
stopped and retumed to the background. This stty command might be a good thing to put in your .login file if
you do not like output from background jobs interrupting your work. It also can reduce the need for redirect-
ing the output of background jobs if the output is not very big:

% stty tostop
% wc hugefile &
[1] 10387
% ed text
. . . some time later
(1
[I] Stopped (tty output) we hugefile
% fg we
we hugefile

13371 30123 302577
% stty —tost0p

Thus after some time the ‘wc‘ command, which counts the lines, words and characters in a file, had one line of
output. When it tried to write this to the terminal it stopped. By restarting it in the foreground we allowed it
to write on the terminal exactly when we were ready to look at its output. Programs which attempt to change
the mode of the terminal will also block, whether or not tostop is set, when they are not in the foreground, as
it would be very unpleasant to have a background job change the state of the terminal.
Since the jobs command only prints jobs started in the currently executing shell, it knows nothing about back—
ground jobs started in other login sessions or within shell files. The ps can be used in this case to find out
abOut background jobs not started in the current shell.

ND-60.328.1P EN

USDz6-2O - An Introduction to the C Shell

2.7. Working Directories

As mentioned in section 1.6, the shell is always in a particular working directory. The ‘change directory’ com-
mand chdir (its short form cd may also be used) changes the working directory of the shell, that is, changes
the directory you are located in.
It is useful to make a directory for each project you wish to work on and to place all files related to that project
in that directory. The ‘make directory’ command, mkdir, creates a new directory. The pwd (‘print working
directory’) command reports the absolute pathname of the working directory of the shell, that is, the directory
you are located in. Thus in the example below:

% pwd
/usr/bill
% mkdir newpaper
% chdir newpaper
% pwd
lusr/bill/newpaper
%

the user has created and moved to the directory newpaper. where, for example, he might place a group of
related files.
No matter where you have moved to in a directory hierarchy, you can return to your ‘home’ login directory by
doing just

cd

with no arguments. The name always means the directory above the current one in the hierarchy, thus

cd ..

changes the Shell’s working directory to the one directly above the current one. The name can be used in
any pathname, thus,

cd .Jprograms

means change to the directory ‘programs’ contained in the directory above the current one. If you have several
directories for different projects under, say, your home directory, this shorthand notation permits you to switch
easily between them.
The shell always remembers the pathname of its current working directory in the variable cwd. The shell can
also be requested to remember the previous directory when you change to a new working directory. If the
‘push directory’ command pushd is used in place of the cd command, the shell saves the name of the current
working directory on a directory stack before changing to the new one. You can see this list at any time by
typing the ‘directories’ command dirs.

% pushd newpaper/references
~/newpaper/references ~
% pushd /usr/1ib/tmac
/usr/1ib/tmac ~/newpaper/references ~
% dirs
/usr/1ib/tmac ~/newpaper/references ~
% popd
~/newpaper/references ~
% popd

%

The list is printed in a horizontal line, reading left to right, with a tilde (~) as shorthand for your home
directory—in this case ‘/usr/bill’. The directory stack is printed whenever there is more than one entry on it
and it changes. it is also printed by a dirs command. Dirs is usually faster and more informative than pwd
since it ShOWS the current working directory as well as any other directories remembered in the stack.
The pushd command with no argument alternates the current directory with the first directory in the list. The
‘pop directory' popd command without an argument returns you to the directory you were in prior to the

NIB—60328.1? EN

An Introduction to the C Shell USD16-21

current one, discarding the previous current directory from the stack (forgetting it). Typing papd several timesin a series takes you backward through the directories you had been in (changed to) by pushd command.There are other options to pushd and popd to manipulate the contents of the directory stack and to change todirectories not at the top of the stack; see the ash manual page for details.
Since the shell remembers the working directory in which each job was started, it warns you when you might
be confused by restarting a job in the foreground which has a different working directory than the currentworking directory of the shell. Thus if you start a background job, then change the shell’s working directory
and then cause the background job to run in the foreground, the shell warns you that the working directory of
the currently running foreground job is different from that of the shell.

% dirs —l
[mm/bill
% ed myproject
% dirs
~/myproject
% ed progc
1143
"Z
Stopped
% cd ..
% ls
myproject
textfile
% fg
ed progc (wd: ~/myproject)

This way the shell warns you when there is an implied change of working directory, even though no cd com—
mand was issued. In the above example the ‘ed’ job was still in ‘/mnt/bill/project’ even though the shell had
changed to ‘/mnt/bill’. A similar warning is given when such a foreground job terminates or is suspended
(using the STOP signal) since the return to the shell again implies a change of working directory.

% fg
ed prog.c (wd: ~/myproject)

. . . after some editing
q
(wd now: ~)
%

These messages are sometimes confusing if you use programs that change their own working directories, since
the shell only remembers which directory a job is started in, and assumes it stays there. The L1” option of
jobs will type the working directory of suspended or background jobs when it is different from the current
working directory of the shell.

2.8. Useful built-in commands
We now give a few of the useful built—in commands of the shell describing how they are used.
The alias command described above is used to assign new aliases and to show the existing aliases. With no
arguments it prints the current aliases. It may also be given only one argument such as

alias ls

to show the current alias for, e.g., ‘ls’.
The echo command prints its arguments. It is often used in shell scripts or as an interaCLive command to see
what filename expansions will produce.
The history command will show the contents of the history list. The numbers given with the history events
can be used to reference previous events which are difficult to reference using the contextual mechanisms
introduced above. There is also a shell variable called prompt. By placing a ‘1’ character in its value the shellwill there substitute the number of the current command in the history list. You can use this number to referto this command in a history substitution. Thus you could

ND-60.328.IP EN

USDz6—22 ' An Introduction to the C Shell

set prompt=‘\' % ’

Note that the ‘!‘ character had to be escaped here even within "' characters.
The limit command is used to restrict use of resources. With no arguments it prints the current limitations:

cputime unlimited
tilesize unlimited
datasize 5616 kbytes
stacksize 512 kbytes
coredumpsize unlimited

Limits can be set, e.g.:

limit coredumpsize 128k

Most reasonable units abbreviations will work; see the csh manual page for more details.
The Iogoul command can be used to terminate a login shell which has ignoreeof set.
The rehash command causes the shell to recompute a table of where commands are located. This is necessary
if you add a command to a directory in the current Shell’s search path and wish the shell to find it, since other—
wise the hashing algorithm may tell the shell that the command wasn’t in that directory when the hash table
was computed.

The repeat command can be used to repeat a command several times. Thus to make 5 copies of the file one
in the file five you could do

repeat 5 eat one >> five

The serenv command can be used to set variables in the environment. Thus

setenv TERM adm3a

will set the value of the environment variable TERM to ‘adm3a’. A user program printenv exists which will
print out the environment. It might then show:

% printenv
HOME=/usr/bill
SHELL:/blfl/Csh
PATH=:/usr/ucb:/binz/usr/binz/usr/local
TERM=adm3a
USER=bill
%

The source command can be used to force the current shell to read commands from a file. Thus

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect right away.
The time command can be used to cause a command to be timed no matter how much CPU time it takes. Thus

% time cp /etc/rc /usr/bill/rc
0.0u 0.15 0:01 8% 2+lk 3+2io 1pf+0w
% time we letc/rc /usr/bill/rc

52 178 1347 /etc/rc
52 178 1347 /usr/bill/rc
104 356 2694 total

0.1u 0.13 0:00 13% 3+3k 5+3io 7pf+0w
%

indicates that the cp command used a negligible amount of user time (u) and about 1/10th of a system time
(s); the elapsed time was 1 second (0201), there was an average memory usage of 2k bytes of program space
and 1k bytes of data space over the cpu time involved (2+lk); the program did three disk reads and two disk
writes (3+2io), and took one page fault and was not swapped (lpf+0w). The word count command we on the
other hand used 0.1 seconds of user time and 0.1 seconds of system time in less than a second of elapsed time.

ND-60.328.1P EN

An Introduction to the C Shell USD:6-23

The percentage ‘13%’ indicates that over the period when it was active the command ‘wc’ used an average of13 percent of the available CPU cycles of the machine.
The unalias and unset commands can be used to remove aliases and variable definitions from the shell, and
unsetcnv removes variables from the environment.

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are more features of the shell to be
discussed here, and all features of the shell are discussed in its manual pages. One useful feature which is dis-
cussed later is the foreach built-in command which can be used to run the same command sequence with a
number of different arguments.
If you intend to use UNIX a lot you you should look through the rest of this document and the csh manual
pages (sectionl) to become familiar with the other facilities which are available to you.

3. SHELL CONTROL STRUCTURES AND COMMAND SCRIPTS

3.1. Introduction

It is possible to place commands in files and to cause shells to be invoked to read and execute commands from
these files, which are called shell scripts. We here detail those features of the shell useful to the writers of such
scripts.

3.2. Make
It is important to first note what shell scripts are not useful for. There is a program called make which is very
useful for maintaining a group of related files or performing sets of operations on related files. For instance a
large program consisting of one or more files can have its dependencies described in a makefile which contains
definitions of the commands used to create these different files when changes occur. Definitions of the means
for printing listings, cleaning up the directory in which the files reside, and installing the resultant programs are
easily, and most appropriately placed in this makefile. This format is superior and preferable to maintaining a
group of shell procedures to maintain these files.
Similarly when working on a document a makefile may be created which defines how different versions of the
document are to be created and which options of nroff or trajf are appropriate.

3.3. Invocation and the argv variable
A csh command script may be interpreted by saying

% csh script

where script is the name of the file containing a group of csh commands and is replaced by a sequence ofarguments. The shell places these arguments in the variable argv and then begins to read commands from the
script. These parameters are then available through the same mechanisms which are used to reference any
other shell variables
If you make the file ‘script’ executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a ‘#’ character) then a
‘/bin/csh’ will automatically be invoked to execute ‘script’ when you type

script

if the file does not begin with a ‘#’ then the standard shell ‘/bin/sh’ will be used to execute it This allows you
to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution
After each input line is broken into words and history substitutions are done on it, the input line is parsed into
distinct commands. Before each command is executed a mechanism know as variable substitution is done on
these words. Keyed by the character ‘3’ this substitution replaces the names of variables by their values. Thus

ND-60.328.1P EN

USDz6-24 L ' An Introduction to the C Shell

echo Sargv

when placed in a command script would cause the current value of the variable argv to be echoed to the out-
put of the shell script. It is an error for argv to be unset at this point.
A number of notations are provided for accessing components and attributes of variables. The notation

$?name

expands to ‘1‘ if name is set or to ‘0’ if name is not set. It is the fundamental mechanism used for checking
whether particular variables have been assigned values. All other forms of reference to undefined variables
cause errors.
The notation

$#name

expands to the number of elements in the variable name. Thus
% set argv=(a b c)
% echo $?argv
l
% echo $#argv
3
% unset argv
% echo $?argv
O
% echo $argv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus

$argv[1]

gives the first component of argv or in the example above ‘a’. Similarly

$argv[$#argv]

would give ‘c‘, and

$argv[l—2]

would give ‘a b’. Other notations useful in shell scripts are

$11

where n is an integer as a shorthand for

Sargv[n]

the n th parameter and
3*

which is a shorthand for

Sargv

The form

38

expands to the process number of the current shell. Since this process number is unique in the system it can
be used in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input read from the shell’s standard input (not the script it is
reading). This is useful for writing shell scripts that are interactive, reading commands from the terminal, or

ND—60.328. 1? EN

An Introduction to the C Shell USD26-25

even writing a shell script that acts as a filter, reading lines from its input file. Thus the sequence
echo ’yes or no?\c’
set a=($<)

would write out the prompt ‘yes or no?’ without a newline and then read the answer into the variable ‘a’. Inthis case ‘$#a’ would be ‘0’ if either a blank line or endef-file ("D) was typed.
One minor difference between ‘$n ’ and ‘Sargv[n]’ should be noted here. The form ‘$argv[n]’ will yield anerror if n is not in the range ‘1a$#argv’ while ‘$n’ will never yield an out of range subscript error. This is forcompatibility with the way older shells handled parameters.
Another important point is that it is never an error to give a subrange of the form ‘n—’; if there are less than n
components of the given variable then no words are substituted. A range of the form ‘m~n’ likewise returns
an empty vector without giving an error when m exceeds the number of elements of the given variable, pro-
vided the subscript n is in range.

3.5. Expressions
In order for interesting shell scripts to be constnicted it must be possible to evaluate expressions in the shellbased on the values of variables. In fact, all the arithmetic operations of the language C are available in the
shell with the same precedence that they have in C. In particular, the operations ‘==’ and ‘!=’ compare strings
and the operators ‘&&’ and ‘l l’ implement the boolean and/or operations. The special operators ‘==~’ and ‘!~‘
are similar to ‘=’ and ‘!=’ except that the string on the right side can have pattern matching characters (like *,
‘2 or []) and the test is whether the string on the left matches the pattern on the right.
The shell also allows file enquiries of the form

—? filename

where ”2’ is replace by a number of single characters. For instance the expression primitive
.e filename

tell whether the file ‘filename’ exists. Other primitives test for read, write and execute access to the file,
whether it is a directory, or has non-zero length.
It is possible to test whether a command terminates normally, by a primitive of the form ‘{ command]’ which
returns true, i.e. ‘1‘ if the command succeeds exiting normally with exit status 0, or ‘0’ if the command ter-
minates abnormally or with exit status non—zero. If more detailed information about the execution status of a
command is required, it can be executed and the variable ‘$status’ examined in the next command. Since
‘$status’ is set by every command, it is very transient It can be saved if it is inconvenient to use it only in the
single immediately following command.
For a full list of expression components available see the manual section for the shell.

ND-60.328.lP EN

USDz6-26 ' An Introduction to the C Shell

3.6. Sample shell script
A sample shell script which makes use of the expression mechanism of the shell and some of its control
structure follows:

% cat copyc
#
Copyc copies those C programs in the specified list
to the directory ~/backup if they differ from the files
already in ~/backup
#
set noglob
foreach i ($argv)

if ($i !~ *.c) continue # not a .c file so do nothing

if (! ~r ~/backup/$i:t) then
echo $izt not in backup... not cp\’ed
continue __

endif """
cmp —s Si ~/backup/$i:t # to set Sstatus

if ($status I: 0) then
echo new backup of Si
cp $i ~/backup/$i:t

endif
end

This script makes use of the foreach command, which causes the shell to execute the commands between the
foreach and the matching end for each of the values given between ‘(’ and ‘)’ with the named variable, in this
case ‘i’ set to successive values in the list. Within this loop we may use the command break to stop executing
the loop and continue to prematurely terminate one iteration and begin the next. After the foreach loop the
iteration variable (i in this case) has the value at the last iteration.
We set the variable noglob here to prevent filename expansion of the members of argv. This is a good idea, in
general, if the arguments to a shell script are filenames which have already been expanded or if the arguments
may contain filename expansion metacharacters. it is also possible to quote each use of a ‘3’ variable expan-
sion, but this is harder and less reliable.
The other control construct used here is a statement of the form

if (expression) then
command

endif

The placement of the keywords here is not flexible due to the current implementation of the Shelli

TThe following two formats are not currently acceptable to the shell:

if(expression) ii Won't work!
then

command

endif

and

if (expression) then command endif it Won’t work

ND-60.328.1P EN

An Introduction to the C Shell USD:6-27

The shell does have another form of the if statement of the form
if (expression) command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not involve ‘ l ’, ‘&’ or ‘;'and must not be another control command. The second form requires the final ‘\’ to immediately precede theend-of~line.
The more general if statements above also admit a sequence of else—if pairs followed by a single else and anendif, e.g.:

if (expression) then
commands

else if (expression) then
commands

else
commands

end if

Another important mechanism used in shell scripts is the ‘z’ modifier. We can use the modifier ‘:r’ here toextract a root of a filename or ‘:e' to extract the extension. Thus if the variable i has the value ‘/mnt/t"oo.bar’then

% echo Si $i:r $i:e
/mnt/foo.bar /mnt/ioo bar
%

shows how the ‘:r’ modifier strips off the trailing ‘.bar’ and the the ‘ze’ modifier leaves only the ‘bar’. Othermodifiers will take off the last component of a pathname leaving the head ‘:h’ or all but the last component ofa pathname leaving the tail ‘zt’. These modifiers are fully described in the ash manual pages in the User’sReference Manual. It is also possible to use the command substitution mechanism described in the next majorsection to perform modifications on strings to then reenter the Shell’s environment. Since each usage of thismechanism involves the creation of a new process, it is much more expensive to use than the ‘2’ modificationmechanisms: Finally, we note that the character ‘#’ lexically introduces a shell comment in shell scripts (butnot from the terminal). All subsequent characters on the input line after a ‘#’ are discarded by the shell. Thischaracter can be quoted using or ‘\’ to place it in an argument word.

3.7. Other control structures
The shell also has control structures while and switch similar to those of C. These take the forms

while (expression)
commands

end

and

i It is also important to note that the current implementation of the shell limits the number of ‘:‘ modifiers on a '3’substitution to l. 'lhus

% echo 3i Si:h:t
la/b/C /a/b:t
%

does not do what one would expect.

ND—60.328.1P EN

USD:6«28 ‘ An Introduction to the C Shell

switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh. C programmers should note that we use breaksw to exit from a
switch while break exits a while or foreach loop. A common mistake to make in ash scripts is to use break
rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like they do in C, i.e.:

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which is running the script
This is different from previous shells running under UNIX. It allows shell scripts to fully participate in pipe-
lines, but mandates extra notation for commands which are to take inline data.
Thus we need a metanotation for supplying inline data to commands in shell scripts. As an example, consider
this script which runs the editor to delete leading blanks from the lines in each argument file:

% cat deblank
deblank —— remove leading blanks
foreach i ($argv)
ed — Si << ’EOF’
LSS/Al l*//
W

q
’EOF ’
end
%

The notation ‘<< EOF” means that the standard input for the ed command is to come from the text in the
shell script file up to the next line consisting of exactly "EOF". The fact that the ‘EOF’ is enclosed in
Characters, i.e. quoted, causes the shell to not perform variable substitution on the intervening lines. In general,
if any part of the word following the ‘<<’ which the shell uses to terminate the text to be given to the com-
mand is quoted then these substitutions will not be performed. In this case since we used the form ‘ 1,3’ in our
editor script we needed to insure that this ‘$’ was not variable substituted. We could also have insured this by
preceding the ‘3‘ here with a ‘\’, i.e.:

1,\‘SS/"[l*//
but quoting the ‘EOF’ terminator is a more reliable way of achieving the same thing.

ND~60.328. 1? EN

An Introduction to the C Shell USDz6-29

3.9. Catching interrupts
If our shell script creates temporary files, we may wish to catch interruptions of the shell script so that we canclean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a ‘goto label’ and we canremove the temporary files and then do an exit command (which is built in no the shell) to exit from the shellscript. If we wish to exit with a non-zero status we can do
exit(1)

e.g. to exit with status ‘1‘.

3.10. What else?

There are other features of the shell useful to writers of shell procedures. The verbose and echo options andthe related —v and —x command line options can be used to help trace the actions of the shell. The —n optioncauses the shell only to read commands and not to execute them and may sometimes be of use.
One other thing to note is that csh will not execute shell scripts which do not begin with the character ‘#’, thatis shell scripts that do not begin with a comment. Similarly, the ‘lbin/sh’ on your system may well defer to‘csh’ to interpret shell scripts which begin with ‘#’. This allows shell scripts for both shells to live in har-mony.
There is also another quotation mechanism using "" which allows only some of the expansion mechanisms wehave so far discussed to occur on the quoted suing and serves to make this string into a single word as
does.

4. OTHER, LESS COMMONLY USED, SHELL FEATURES

4.1. Loops at the terminal; variables as vectors
It is occasionally useful to use the foreach control structure at the terminal to aid in performing a number of
similar commands. For instance, there were at one point three shells in use on the Cory UNIX system at CoryHall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/csh’. To count the number of persons using each shell one could have
issued the commands

% grep —c csh$ /etc/passwd
27
% grep —c nsh$ /ete/passwd
128
% grep ~c —v sh$ /etc/passwd
430
%

Since these commands are very similar we can use foreach to do this more easily.
% foreach i (’shS' 'csh$' ’~v shS’)
? grep —c $i letc/passwd
? end
27
128
430
%

Note here that the shell prompts for input with ”I ’ when reading the body of the loop.

IND—60328.1? EN

USDz6—3O ' An Introduction to the C Shell

Very useful with loops are variables which contain lists of filenames or other words. For example:

% set a=(‘ ls‘)
% echo $8
csh.n csh.rm
% ls
csh.n
csh.nn
% echo $#a
2
%

The re: command here gave the variable a a list of all the filenames in the current directory as value. We can
then iterate over these names to perform any chosen function.
The output of a command within “’ characters is converted by the shell to a list of words. You can also place
the quoted string within ‘"‘ characters to take each (non-empty) line as a component of the variable;
preventing the lines from being split into words at blanks and tabs. A modifier ‘:x' exists which can be used
later to expand each component of the variable into another variable splitting it into separate words at embed-
ded blanks and tabs.

4.2. Braces { } in argument expansion

Another form of filename expansion, alluded to before involves the characters ‘{’ and ‘}’. These characters
specify that the contained strings, separated by are to be consecutively substituted into the containing char-
acters and the results expanded left to right Thus

A{strl,sti’2,...strn}B

expands to

AstrlB AstrZB AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively (i.e. nested). The
results of each expanded string are sorted separately, left to right order being preserved. The resulting
filenarnes are not required to exist if no other expansion mechanisms are used. This means that this mechan-
ism can be used to generate arguments which are not filenames, but which have common parts.
A typical use of this would be

mkdir ~/{hdrs,retrofit,csh)

to make subdirectories ‘hdrs’, ‘retroftt’ and ‘csh’ in your home directory. This mechanism is most useful when
the common prefix is longer than in this example, i.e.

chown root /usr/ { ucb/ {ex,edit} ,lib/ [ex?.?*,how_ex} }

4.3. Command substitution
A command enclosed in characters is replaced, just before ftlenarnes are expanded, by the output from that
command. Thus it is possible to do

set pwd=‘pwd‘

to save the current directory in the variable pwd or to do
ex ‘ grep —l TRACE *.c‘

to run the editor ex supplying as arguments those files whose names end in ‘.c’ which have the string
‘TRACE’ in them.T

1’ Command expansion also occurs in input redirected with ‘<<’ and within ‘ " ' quotations. Refer to the shell manual
seetion for full details.

ND-60.328. 1? EN

An Introduction to the C Shell USD:6-31

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of different substitutionsperformed by the shell. The exact meaning of certain combinations of quotations is also occasionally impor-tant These are detailed fully in its manual section.
The shell has a number of command line option flags mostly of use in writing UNIX programs, and debuggingshell scripts. See the csh(l) manual section for a list of these options.

ND—60.328.lP EN

USDz6—32 An Introduction to the C Shell

APPENDIX

Special Characters

The following table lists the special characters of csh and the UNIX system, giving for each the section(s) in
which it was discussed. A number of these characters also have spec'ml meaning in expressions. See the ash
manual section for a complete list.

Syntatic mctacharacters

; 2.4
l 1.5
0 2.23.6
& 2.5

Filename metacharacters

/ 1.6
? 1.6
* 1.6
[1 1.6
~ 1.6
{] 4.2

Quotation metacharacters

\ 1.7
' 1.7
" 4.3

Input/output metacharacters
< 1.5
> 1.3

separates commands to be executed sequentially
separates commands in a pipeline
brackets expressions and variable values
follows commands to be executed without waiting for completion

separates components of a file’s pathname
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directories
used to specify groups of arguments with common parts

prevents meta-meaning of following single character
prevents meta~meaning of a group of characters
like ’i , but allows variable and command expansion

indicates redirected input
indicates redirected output

Expansion/substitution metacharacters

$ 3.4
! 2.3
: 3.6
A 2.3
‘ 4.3

Other metacharacters

S 1.3,3.6
- 1.2
% 2.6

ND-60.328.1P EN

indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution v
indicates command substitution

begins scratch file names; indicates shell comments
prefixes option (flag) arguments to commands
prefixes job name specifications

An Introduction to the C Shell USDz6-33

GLOSSARY

This glossary lists the most important terms introduced in the introduction to the shell and gives references to
sections of the shell document for further information about them. References of the form ‘pr (1)’ indicate that
the command pr is in the UND(User Reference manual in section 1. You can look at an online copy of its
manual page by doing

manlpr

References of the form (2.5) indicate that more information can be found in section 2.5 of this manual.

Your current directory has the name as well as the name printed by the command pwd;
see also dirs. The current directory is usually the first component of the search path con-
tained in the variable path, thus commands which are in are found first (2.2). The char-
acter ‘.’ is also used in separating components of filenames (1.6). The character at the
beginning of a component of a pathname is treated specially and not matched by the
filename expansion metacharacters “2’, ‘*’, and ‘[’ ‘1’ pairs (1.6).
Each directory has a file in it which is a reference to its parent directory. After changing
into the directory with chdir, i.e.

chdir paper

you can return to the parent directory by do'mg

chdir ..

The current directory is printed by pwd (2.7).
a.out Compilers which create executable images create them, by default, in the file a.out. for his-

torical reasons (2.3).
absolute pathname

A pathname which begins with a ‘/’ is absolute since it specifies the path of directories
from the beginning of the entire directory system —- called the root directory. Pathnames
which are not absolute are called relative (see definition of relative pathname) (1.6).

alias An alias specifies a shorter or different name for a UNIX command, or a transformation on a
command to be performed in the shell. The shell has a command alias which establishes
aliases and can print their current values. The command unalias is used to remove aliases
(2.4).

argument Commands in UNIX receive a list of argument words. Thus the command

echo 3 b c

consists of the command name ‘echo’ and three argument words ‘a’, ‘b’ and ‘c’. The set of
arguments after the command name is said to be the argument list of the command (1.1).

argv The list of arguments to a command written in the shell language (a shell script or shell pro-
cedure) is stored in a variable called argv within the shell. This name is taken from the
conventional name in the C programming language (3.4).

background Commands started without waiting for them to complete are called background commands
(2.6).

base A filename is sometimes thought of as consisting of a base part, before any character,
and an extension — the part after the ‘.‘. See filename and extension (1.6) and basename
(1).

ND-60.328.1P EN

USDi6-34

bg
bin

break

breaksw

builtin

cat

ed

chdir

chsh

cmp

command

command name

An Introduction to the C Shell

The bg command causes a suspended job to continue execution in the background (2.6).
A directory containing binaries of programs and shell scripts to be executed is typically
called a bin directory. The standard system bin directories are ‘/bin’ containing the most
heavily used commands and ‘/usr/bin’ which contains most other user programs. Programs
developed at UC Berkeley live in ‘/usr/ucb', while locally written programs live in
‘/usr/local’. Games are kept in the directory ‘/usr/games'. You can place binaries in any
directory. If you wish to execute them often, the name of the directories should be a com-
ponent of the variable path.
Break is a builtin command used to exit from loops within the control structure of the shell
(3.7).
The breaksw builtin command is used to exit from a switch control structure, like a break
exits fiom loops (3.7).
A command executed directly by the shell is called a builtin command. Most commands in
UNIX are not built into the shell, but rather exist as files in bin directories. These commands
are accessible because the directories in which they reside are named in the path variable.
A case command is used as a label in a switch statement in the shell’s control structure,
similar to that of the language C. Details are given in the shell documentation ‘esh (l)’
(3.7).

The cat program catenates a list of specified files on the standard output. It is usually used
to look at the contents of a single file on the terminal, to ‘cat a file’ (1.8, 2.3).
The cd command is used to change the working directory. With no arguments, cd changes
your working directory to be your home directory (2.4, 2.7).
The chdir command is a synonym for cd . Cd is usually used because it is easier to type.
The chsh command is used to change the shell which you use on UNIX. By default, you use
an different version of the shell which resides in ‘/bin/sh’. You can change your shell to
‘/bin/csh’ by doing

chsh your«login-name lbin/csh

Thus I would do

chsh bill [bin/csh

It is only necessary to do this once. The next time you log in to UNIX after doing this com-
mand, you will be using csh rather than the shell in ‘/bin/sh’ (1.9).
Cmp is a program which compares files. It is usually used on binary files, or to see if two
files are identical (3.6). For comparing text files the program difl, described in ‘diff (l)’ is
used.

A function performed by the system, either by the shell (a builtin command) or by a pro—
gram residing in a file in a directory within the UNIX system, is called a command (l.l).

When a command is issued, it consists of a command name, which is the first word of the
command, followed by arguments. The convention on UNIX is that the first word of a com—
mand names the function to be performed (1.1).

command substitution

component

continue

control-

ND-60.328. ll) EN

The replacement of a command enclosed in characters by the text output by that com-
mand is called command substitution (4.3).
A part of a pathname between ‘/’ characters is called a component of that pathname. A
variable which has multiple strings as value is said to have several components; each string
is a component of the variable.
A builtin command which causes execution of the enclosing foreach or whiIe loop to cycle
prematurely. Similar to the continue command in the programming language C (3.6).
Certain special characters, called control characters, are produced by holding down the CON-
TROL key on your terminal and simultaneously pressing another character, much like the

An Introduction to the C Shell

core dump

CD

csh

.cshrc

cwd

date

debugging

default

DELETE

detached

diagnostic

directory

directory stack

dirs

du

echo

else

cndif

USDz6-35

SHIFT key is used to produce upper case characters. Thus control-c is produced by holding
down the CONTROL key while pressing the ‘c’ key. Usually UNIX prints 3 caret (A) followed
by the corresponding letter when you type a control character (e.g. ‘AC’ for control-c (1.8).
When a program terminates abnormally, the system places an image of its current state in a
file named ‘core’. This core dump can be examined with the system debugger ‘adb (l)’ or
‘sdb (1)’ in order to determine what went wrong with the program (1.8). If the shell pro—
duces a message of the form

Illegal instruction (core dumped)

(where ‘Illegal instruction’ is only one of several possible messages), you should report this
to the author of the program or a system administrator, saving the ‘core’ file.
The cp (copy) program is used to copy the contents of one file into another file. It is one of
the most commonly used UNIX commands (1.6).
The name of the shell program that this document describes.
The file .cshrc in your home directory is read by each shell as it begins execution. It is usu-
ally used to change the setting of the variable path and to set alias parameters which are to
take effect globally (2.1).
The cwd variable in the shell holds the absolute pathname of the current working directory.
It is changed by the shell whenever your current working directory changes and should not
be changed otherwise (2.2).
The date command prints the current date and time (1.3).
Debugging is the process of correcting mistakes in programs and shell scripts. The shell has
several options and variables which may be used to aid in shell debugging (4.4).
The label default: is used within shell switch statements, as it is in the C language to label
the code to be executed if none of the case labels matches the value switched on (3.7).
The DELETE or RUBOUT key on the terminal normally causes an interrupt to be sent to the
current job. Many users change the interrupt character to be AC.
A command that continues running in the background after you logout is said to be
detached.
An error message produced by a program is often referred to as a diagnostic. Most error
messages are not written to the standard output, since that is often directed away from the
terminal (1.3, 1.5). Error messsages are instead written to the diagnostic output which may
be directed away from the terminal, but usually is not Thus diagnostics will usually appear
on the terminal (2.5).
A structure which contains frles. At any time you are in one particular directory whose
names can be printed by the command pwd. The chdir command will change you to
another directory, and make the files in that directory visible. The directory in which you
are when you first login is your home directory (1.1, 2.7).
The shell saves the names of previous working directories in the directory stack when you
change your current working directory via the pushd command. The directory stack can be
printed by using the dirs command, which includes your current working directory as the
first directory name on the left (2.7).
The dirs command prints the shell’s directory stack (2.7).
The du command is a program (described in ‘du (1)’) which prints the number of disk
blocks is all directories below and including your current working directory (2.6).
The echo command prints its arguments (1.6, 3.6).
The else command is part of the ‘if—thenelseendif’ control command construct (3.6).
If an if statement is ended with the word then , all lines following the if up to a line starting
with the word endif or else are executed if the condition between parentheses after the if is
true (3.6).

ND—60.328.1P EN

USD26—36

EOF

escape

/etc/passwd

exit

exit status

expansion

expressions

extension

is

filename

An Introduction to the C Shell

An end-of—flle is generated by the terminal by a control—d, and whenever a command reads
to the end of a file which it has been given as input. Commands receiving input from a pipe
receive an end—of-file when the command sending them input completes. Most commands
terminate when they receive an end-of-file. The shell has an option to ignore end-qffile
from a terminal input which may help you keep from logging out accidentally by typing too
many control-d’s (1.1, 1.8, 3.8).
A character ‘\’ used to prevent the special meaning of a metacharacter is said to escape the
character from its special meaning. Thus

echo *

will echo the character ‘*’ while just

echo "‘

will echo the names of the file in the current directory. in this example, \escapes ‘*’ (1.7).
There is also a non«printing character called escape, usually labelled ESC or ALTMODE on
terminal keyboards. Some older UNIX systems use this character to indicate that output is to
be suspended. Most systems use control—s to stop the output and control-q to start it.
This file contains information about the accounts currently on the system. It consists of a
line for each account with fields separated by ‘:’ characters (1.8). You can look at this file
by saying

cat /etc/passwd

The commands finger and grep are often used to search for information in this file. See
‘finger (1)’, ‘passwd(5)’, and ‘grep (l)’ for more details.
The exit command is used to force termination of a shell script, and is built into the shell
(3.9).
A command which discovers a problem may reflect this back to the command (such as a
shell) which invoked (executed) it. It does this by returning a non-zero number as its exit
status, a status of zero being considered ‘normal termination’. The exit command can be
used to force a shell command script to give a non-zero exit status (3.6).
The replacement of strings in the shell input which contain metacharacters by other strings is
referred to as the process of expansion. Thus the replacement of the word ‘*’ by a sorted
list of files in the current directory is a ‘filename expansion’. Similarly the replacement of
the characters ‘l!’ by the text of the last command is a ‘history expansion’. Expansions are
also referred to as substitutions (1.6, 3.4, 4.2).
Expressions are used in the shell to control the conditional structures used in the writing of
shell scripts and in calculating values for these scripts. The operators available in shell
expressions are those of the language C (3.5).
Filenames often consist of a base name and an extension separated by the character ‘.’. By
convention, groups of related files often share the same root name. Thus if ‘prog.c’ were a
C program, then the object file for this program would be stored in ‘prog.o’. Similarly a
paper written with the ‘—me’ nroff macro package might be stored in ‘paperme’ while a for-
matted version of this paper might be kept in ‘paper.out' and a list of spelling errors in
‘papererrs’ (1.6).

The job control command fg is used to run a background or suspended job in the fore-
ground (l.8, 2.6).
Each file in UNIX has a name consisting of up to 14 characters and not including the charac-
ter ‘/’ which is used in pathname building. Most filenames do not begin with the character

and contain only letters and digits with perhaps a separating the base portion of the
filename from an extension (1.6).

filcname ex pansion
Filename expansion uses the metacharacters ‘*’, ‘?’ and ‘[’ and ‘1' to provide a convenient
mechanism for naming files. Using filename expansion it is easy to name all the files in the
current directory, or all files which have a common root name. Other filename expansion

ND-60.328.1P EN

An Introduction to the C Shell

flag

foreach

foreground

goto

grep

head

history

home directory

if

ignoreeof

input

USD:6-37

mechanisms use the metacharacter ‘~' and allow files in other users’ directories to be named
easily (1.6, 4.2).
Many UNIX commands accept arguments which are not the names of files or other users but
are used to modify the action of the commands. These are referred to as flag options, and
by convention consist of one or more letters preceded by the character ‘—’ (1.2). Thus the Is
(list files) command has an option ‘—s’ to list the sizes of files. This is specified

ls —s

The foreach command is used in shell scripts and at the terminal to specify repetition of a
sequence of commands while the value of a certain shell variable ranges through a specified
list (3.6, 4.1).
When commands are executing in the normal way such that the shell is waiting for them to
finish before prompting for another command they are said to be foreground jobs or running
in the foreground. This is as opposed to background. Foreground jobs can be stopped by
signals from the terminal caused by typing different control characters at the keyboard (1.8,
2.6).

The shell has a command goto used in shell scripts to transfer control to a given label (3.7).
The grep command searches through a list of argument files for a specified string. Thus

grep bill [etc/passwd
will print each line in the file /etc/passwd which contains the string ‘bill‘. Actually, grep
scans for regular expressions in the sense of the editors ‘ed (l)’ and ‘ex (1)’. Grep stands
for ‘globally find regular expression and print’ (2.4).
The head command prints the first few lines of one or more files. If you have a bunch of
files containing text which you are wondering about it is sometimes useful to run head with
these files as arguments. This will usually show enough of what is in these files to let you
decide which you are interested in (1.5).
Head is also used to describe the part of a pathname before and including the last 7’ char-
acter. The tail of a pathname is the part after the last ‘/’. The ‘:h’ and ‘:t’ modifiers allow
the head or tail of a pathname stored in a shell variable to be used (3.6).
The history mechanism of the shell allows previous commands to be repeated, possibly after
modification to correct typing mistakes or to change the meaning of the command. The
shell has a history list where these commands are kept, and a history variable which con-
trols how large this list is (2.3).

Each user has a home directory, which is given in your entry in the password file,
/etc/passwd . This is the directory which you are placed in when you first login. The cd or
chdir command with no arguments takes you back to this directory, whose name is recorded
in the shell variable home. You can also access the home directories of other users in
forming filenames using a filename expansion notation and the character ‘~’ (1.6).
A conditional command within the shell, the if command is used in shell command scripts
to make decisions about what course of action to take next (3.6).
Normally, your shell will exit, printing ‘logout’ if you type a control-d at a prompt of ‘% '.
This is the way you usually log off the system. You can set the ignoreeof variable if you
wish in your .login file and then use the command logout to logout. This is useful if you
sometimes accidentally type too many control-d characters, logging yourself off (2.2).
Many commands on UNIX take information from the terminal or from files which they then
act on. This information is called input. Commands normally read for input from their
standard input which is, by default, the terminal. This standard input can be redirected
from a file using a shell metanotation with the character ‘<'. Many commands will also read
from a file specified as argument. Commands placed in pipelines will read from the output
of the previous command in the pipeline. The leftmost command in a pipeline reads from
the terminal if you neither redirect its input nor give it a filename to use as standard input.

ND—60.328.1P EN

USD26-38

interrupt

job

job control

job number

jobs

kill

.login

login shell

logout

.logout

lpr

ls

mail

make

makefile

manual

ND-60.328.1P EN

An Introduction to the C Shell

Special mechanisms exist for supplying input to commands in shell scripts (1.5, 3.8).
An interrupt is a signal to a program that is generated by typing "C. (On older versions of
UNIX the RUBOUI‘ or DELETE key were used for this purpose.) It causes most programs to
stop execution. Certain programs, such as the shell and the editors, handle an interrupt in
special ways, usually by stopping what they are doing and prompting for another command.
While the shell is executing another command and waiting for it to finish, the shell does not
listen to interrupts. The shell often wakes up when you hit interrupt because many com—
mands die when they receive an interrupt (1.8, 3.9).
One or more commands typed on the same input line separated by ‘l’ or ‘;’ characters are
run together and are called a job. Simple commands run by themselves without any ‘I’ or
‘;’ characters are the simplest jobs. Jobs are classified as foreground, background, or
suspended (2.6).
The builtin functions that control the execution of jobs are called job control commands.
These are bg,fg, stop, kill (2.6).
When each job is started it is assigned a small number called a job number which is printed
next to the job in the output of the jobs command. This number, preceded by a ‘%’ charac-
ter, can be used as an argument to job control commands to indicate a specific job (2E.
The jobs command prints a table showing jobs that are either running in the background or
are suspended (2.6).
A command which sends a signal to a job causing it to terminate (2.6).
The file .login in your home directory is read by the shell each time you login to UNIX and
the commands there are executed. There are a number of commands which are usefully
placed here, especially set commands to the shell itself (2.1).
The shell that is started on your terminal when you login is called your login shell. It is dif-
ferent from other shells which you may run (e.g. on shell scripts) in that it reads the .login
file before reading commands from the terminal and it reads the .logout file after you logout
(2.1).
The Iogout command causes a login shell to exit. Normally, a login shell will exit when
you hit control—d generating an end-of-file, but if you have set ignoreeof in you .login file
then this will not work and you must use logout to log off the UNIX system (2.8).
When you log off of UNIX the shell will execute commands from the file .logout in your
home directory after it prints ‘logout’.
The command lpr is the line printer daemon. The standard input of lpr spooled and printed
on the UNIX line printer. You can also give lpr a list of filenames as arguments to be
printed It is most common to use lpr as the last component of a pipeline (2.3).
The ls (list files) command is one of the most commonly used UNIX commands. With no
argument filenames it prints the names of the files in the current directory. It has a number
of useful flag arguments, and can also be given the names of directories as arguments, in
which case it lists the names of the files in these directories (1.2).
The mail program is used to send and receive messages from other UNIX users (1.1, 2.1),
whether they are logged on or not.
The make command is used to maintain one or more related files and to organize functions
to be performed on these files. in many ways make is easier to use, and more helpful than
shell command scripts (3.2).
The file containing commands for make is called makefile or Makefile (3.2).
The manual often referred to is the ‘UNIX manual’. It contains 8 numbered sections with a
description of each UNIX program (section 1), system call (section 2), subroutine (section 3),
device (section 4), special data structure (section 5), game (section 6), miscellaneous item
(section 7) and system administration program (section 8). There are also supplementary
documents (tutorials and reference guides) for individual programs which require explana-
tion in more detail. An online version of the manual is accessible through the man com-
mand. Its documentation can be obtained online via

An Introduction to the C Shell USDz6-39

metacharacter

mkdir

modifier

more

noclobber

noglob

notify

onintr

output

path

man man

If you can’t decide what manual page to look in, try the aprop0s(l) command. The supple-
mentary documents are in subdirecton'es of lusr/doc.

Many characters which are neither letters nor digits have special meaning either to the shell
or to UNIX. These characters are called metacharacters. If it is necessary to place these
characters in arguments to commands without them having their special meaning then they
must be quoted. An example of a metacharacter is the character ‘>' which is used to indi-
cate placement of output into a file. For the purposes of the history mechanism, most
unquoted metacharacters form separate words (1.4). The appendix to this user’s manual
lists the metacharacters in groups by their function.
The mkdir command is used to create a new directory.
Substitutions with the history mechanism, keyed by the character ‘!' or of variables using
the metacharacter ‘S’, are often subjected to modifications, indicated by placing the character
‘2‘ after the substitution and following this with the modifier itself. The command substitu-
tion mechanism can also be used to perform modification in a similar way, but this notation
is less clear (3.6).
The program more writes a file on your terminal allowing you to control how much text is
displayed at a time. More can move through the file screenful by screenful, line by line,
search forward for a suing, or start again at the beginning of the file. It is generally the easi—
est way of viewing a file (1.8).
The shell has a variable noclobber which may be set in the file .Iogin to prevent accidental
destruction of files by the ‘>’ output redirection metasyntax of the shell (22, 2.5).
The shell variable noglob is set to suppress the filename expansion of arguments containing
the metacharactcrs ‘~’, ‘*‘, ”.7’, ‘[’ and ‘]’ (3.6).
The notify command tells the shell to report on the termination of a specific background job
at the exact time it occurs as opposed to waiting until just before the next prompt to report
the termination. The notify variable, if set, causes the shell to always report the termination
of background jobs exactly when they occur (2.6).
The onintr command is built into the shell and is used to control the action of a shell com-
mand script when an interrupt signal is received (3.9).
Many commands in UNIX result in some lines of text which are called their output. This out-
put is usually placed on what is known as the standard output which is normally connected
to the user’s terminal. The shell has a syntax using the metacharacter ‘>’ for redirecting the
standard output of a command to a file (1.3). Using the pipe mechanism and the metachar—
acter ‘1’ it is also possible for the standard output of one command to become the standard
input of another command (1.5). Certain commands such as the line printer daemon p do
not place their results on the standard output but rather in more useful places such as on the
line printer (2.3). Similarly the write command places its output on another user's terminal
rather than its standard output (2.3). Commands also have a diagnostic output where they
write their error messages. Normally these go to the terminal even if the standard output
has been sent to a file or another command, but it is possible to direct error diagnostics
along with standard output using a special metanotation (2.5).
The shell has a variable path which gives the names of the directories in which it searches
for the commands which it is given. It always checks first to see if the command it is given
is built into the shell. If it is, then it need not search for the command as it can do it inter-
nally. 1f the command is not builtin, then the shell searches for a file with the name given in
each of the directories in the path variable, left to right. Since the normal definition of the
path variable is

path (. /usr/ucb [bin lusr/bin)

the shell normally looks in the current directory, and then in the standard system directories
‘/usr/ucb', ‘/bin’ and ‘/usr/bin’ for the named command (2.2). If the command cannot be

ND-60.328.1P EN

US 0:6—40

pathname

pipeline

popd

port

pr

printenv

process

program

prompt

pushd

ps

pwd

quit

quotation

An Introduction to the C Shell

found the shell will print an error diagnostic. Scripts of shell commands will be executed
using another shell to interpret them if they have ‘execute’ permission set. This is normally
true because a command of the form

chmod 755 script

was executed to turn this execute permission on (3.3). If you add new commands to a direc-
tory in the path , you should issue the command rehash (2.2).
A list of names, separated by ‘/’ characters, forms a pathname. Each component, between
successive ‘/' characters, names a directory in which the next component file resides. Path-
names which begin with the character ‘/’ are interpreted relative to the root directory in the
filesystem. Other pathnames are interpreted relative to the current directory as reported by
pwd. The last component of a path/tame may name a directory, but usually names a file.
A group of commands which are connected together, the standard output of each connected
to the standard input of the next, is called a pipeline. The pipe mechanism used to connect
these commands is indicated by the shell metacharacter ‘l’ (1.5, 2.3).
The popd command changes the shell’s working directory to the directory you most
recently left using the pushd command. It returns to the directory without having to type its
name, forgetting the name of the current working directory before doing so (2.7).
The part of a computer system to which each terminal is connected is called a port. Usually
the system has a fixed number of ports, some of which are connected to telephone lines for
dial-up access, and some of which are permanently wired directly to specific terminals.
The pr command is used to prepare listings of the contents of files with headers giving the
name of the file and the date and time at which the file was last modified (2.3).
The printenv command is used to print the current setting of variables in the environment
(2.8).
An instance of a running program is called a process (2.6). UNIX assigns each process a
unique number when it is started ~ called the process number. Process numbers can be
used to stop individual processes using the kill or stop commands when the processes are
part of a detached background job.
Usually synonymous with command; a binary file or shell command script which performs a
useful function is often called a program.
Many programs will print a prompt on the terminal when they expect input. Thus the editor
‘ex (1)’ will print a ‘:’ when it expects input. The shell prompts for input with ‘% ’ and
occasionally with ‘? ‘ when reading commands from the terminal (1.1). The shell has a
variable prompt which may be set to a different value to change the shell’s main prompt.
This is mostly used when debugging the shell (2.8).
The pushd command, which means ‘push directory’, changes the shell’s working directory
and also remembers the current working directory before the change is made, allowing you
to return to the same directory via the popd command later without retyping its name (2.7).
The ps command is used to show the processes you are currently running. Each process is
shown with its unique process number, an indication of the terminal name it is attached to,
an indication of the state of the process (whether it is running, stopped, awaiting some event
(sleeping), and whether it is swapped out), and the amount of CPU time it has used so far.
The command is identified by printing some of the words used when it was invoked (2.6).
Shells, such as the csh you use to run the ps command, are not normally shown in the out-
put.
The pwd command prints the full pathname of the current working directory. The dirs
builtin command is usually a better and faster choice.
The quit signal, generated by a control-\ is used to terminate programs which are behaving
unreasonably. It normally produces a core image file (1.8).
The process by which metacharacters are prevented their special meaning, usually by using
the character " in pairs, or by using the character ‘\’, is referred to as quotation (1.7).

ND-60.328.1P EN

An Introduction to the C Shell USD26—41

redirection The routing of input or output from or to a file is known as redirection of input or output
(1.3).

rehash The rehash command tells the shell to rebuild its internal table of which commands are
found in which directories in your path. This is necessary when a new program is installed
in one of these directories (2.8).

relative pathname
A pathname which does not begin with a 7’ is called a relative pathname since it is inter-
preted relative to the current working directory. The first component of such a pathname
refers to some file or directory in the working directory, and subsequent components
between ‘/' characters refer to directories below the working directory. Pathnames that are
not relative are called absolute pathnames (1.6).

repeat The repeat command iterates another command a specified number of times.
root The directory that is at the top of the entire directory structure is called the root directory

since it is the ‘root' of the entire tree structure of directories. The name used in pathnames
to indicate the root is ‘/’. Pathnames starting with ‘/’ are said to be absolute since they start
at the root directory. Root is also used as the part of a pathname that is left after removing
the extension. See filename for a further explanation (1.6).

RUBOUT The RUBOUT or DELETE key is often used to erase the previously typed character; some users
prefer the BACKSPACE for this purpose. On older versions of UNDt this key served as the
INTR character.

scratch file Files whose names begin with a ‘#’ are referred to as scratch files, since they are automati-
cally removed by the system after a couple of days of non—use, or more frequently if disk
space becomes tight (1.3).

script Sequences of shell commands placed in a file are called shell command scripts. It is often
possible to perform simple tasks using these scripts without writing a program in a language
such as C, by using the shell to selectively run other programs (3.3, 3.10).

set The builtin set command is used to assign new values to shell variables and to show the
values of the current variables. Many shell variables have sptxial meaning to the shell itself.
Thus by using the set command the behavior of the shell can be affected (2.1).

setenv Variables in the environment ‘environ (5)‘ can be changed by using the setenv builtin com-
mand (2.8). The printenv command can be used to print the value of the variables in the
environment.

shell A shell is a command language interpreter. It is possible to write and run your own shell,
as shells are no different than any other programs as far as the system is concerned. This
manual deals with the details of one particular shell, called csh.

shell script See script (3.3, 3.10).
signal A signal in UNIX is a short message that is sent to a running program which causes some—

thing to happen to that process. Signals are sent either by typing special control characters
on the keyboard or by using the kill or stop commands (1.8, 2.6).

sort The sort program sorts a sequence of lines in ways that can be controlled by argument flags
(1.5).

source The source command causes the shell to read commands from a specified file. It is most
useful for reading files such as .cshrc after changing them (2.8).

special character
See metacharacters and the appendix to this manual.

standard We refer often to the standard input and standard output of commands. Sec input and out-
put (1.3, 3.8).

status A command normally returns a status when it finishes. By convention a status of zero indi-
cates that the command succeeded. Commands may return non—rem status to indicate that
some abnormal event has occurred. The shell variable status is set to the status returned by
the last command. it is most useful in shell commmand scripts (3.6).

ND60.328.1P EN

USDz642

stop
suing

stty

substitution

suspended

switch

termination

then

time

LSCt

tty

unalias

UNIX

Ul'lSCi

An Introduction to the C Shell

The stop command causes a background job to become suspended (2.6).
A sequential group of characters taken together is called a string. Strings can contain any
printable characters (2.2).
The my program changes certain parameters inside UNIX which determine how your tenni-
nal is handled. See ‘stty (1)’ for a complete description (2.6).
The shell implements a number of substitutions where sequences indicated by metacharac-
ters are replaced by other sequences. Notable examples of this are history substitution
keyed by the metacharacter ‘!' and variable substitution indicated by ‘8’. We also refer to
substitutions as expansions (3.4).
A job becomes suspended after a STOP signal is sent to it, either by typing a control -2 at the
terminal (forforeground jobs) or by using the stop command (for background jobs). When
suspended, a job temporarily stops running until it is restarted by either the fg or bg com—
mand (2.6).

The switch command of the shell allows the shell to select one of a number of sequences of
commands based on an argument string. It is similar to the switch statement in the language
C (3.7).
When a command which is being executed finishes we say it undergoes termination or ter-
minates. Commands normally terminate when they read an end—of-file from their standard
input. It is also possible to terminate commands by sending them an interrupt or quit sig-
nal (1.8). The kill program terminates specified jobs (2.6).
The then command is part of the shell’s ‘if-then-else-endif’ control construct used in com-
mand scripts (3.6).
The time command can be used to measure the amount of CPU and real time consumed by a
specified command as well as the amount of disk i/o, memory utilized, and number of page
faults and swaps taken by the command (2.1, 2.8).
The tset program is used to set standard erase and kill characters and to tell the system what
kind of terminal you are using. It is often invoked in a .login file (2.1).
The word try is a historical abbreviation for ‘teletype’ which is frequently used in UNIX to
indicate the port to which a given terminal is connected. The tty command will print the
name of the try or port to which your terminal is presently connected.
The unalias command removes aliases (2.8).
UNIX is an operating system on which csh runs. UNIX provides facilities which allow csh to
invoke other programs such as editors and text formatters which you may wish to use.
The unset command removes the definitions of shell variables (2.2, 2.8).

variable expansion

variables

verbose

WC

while

word

ND-60.328.IP EN

See variables and expansion (2.2, 3.4).
Variables in csh hold one or more strings as value. The most common use of variables is
in controlling the behavior of the shell. See path, noclobber, and ignoreeof for examples.
Variables such as argv are also used in writing shell programs (shell command scripts)
(2.2).

The verbose shell variable can be set to cause commands to be echoed after they are history
expanded. This is often useful in debugging shell scripts. The verbose variable is set by
the Shell’s ~v command line option (3.10).
The wc program calculates the number of characters, words, and lines in the files whose
names are given as arguments (2.6).
The while builtin control construct is used in shell command scripts (3.7).
A sequence of characters which forms an argument to a command is called a word. Many
characters which are neither letters. digits. ‘—’, nor ‘/’ form words all by themselves even
if they are not surrounded by blanks. Any sequence of characters may be made into a word
by surrounding it with characters except for the characters and ‘l‘ which require spe-
cial treatment (1.1). This process of placing special characters in words without their

An Introduction to the (3 Shell USD26-43

working directory

write

special meaning is called quoting.

At any given time you are in one particular directory, called your working directory. This
directory‘s name is printed by the pwd command and the files listed by Is are the ones in
this directory. You can change working directories using chdir.
The write command is an obsolete way of communicating with other users who are logged
in to UNIX (you have to take turns typing). If you are both using display terminals, use
talk(1), which is much more pleasant

ND—60.328.1P EN

USDt6-44 ' An Introduction to the C Shell

ND-60.328.1P EN

DC - An Interactive Desk Calculator USDz7-1

DC — An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIX“? time~sharing sys-
tem to do arbitrary-precision integer arithmetic. It has provision for manipulating scaled
fixed-point numbers and for input and output in bases other than decimal.
The size of numbers that can be manipulated is limited only by available core storage. On
typical implementations of UNIX, the size of numbers that can be handled varies from
several hundred digits on the smallest systems to several thousand on the largesL

T UNIX is a registered trademark of AT&T in the USA and other countries.

ND—60.328.1P EN

USDz7-2 ‘ DC - An Interactive Desk Calculator

ND-60.328.1P EN

DC — An Interactive Desk Calculator USDz7-3

INTRODUCTION
DC is an arbitrary precision arithmetic package implemented on the UNIX time-sharing system in the form of
an interactive desk calculator. it works like a stacking calculator using reverse Polish notation. Ordinarily DC
operates on decimal integers, but one may specify an input base, output base, and a number of fractional digits
to be maintained.
A language called BC [1] has been developed which accepts programs written in the familiar style of higher-
level programming languages and compiles output which is interpreted by DC. Some of the commands
described below were designed for the compiler interface and are not easy for a human user to manipulate.
Numbers that are typed into DC are put on a push-down stack. DC commands work by taking the top number
or two off the stack, performing the desired operation, and pushing the result on the stack. If an argument is
given, input is taken from that file until its end, then from the standard input

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional commands that are
intended to be invoked by compiled output are described in the detailed description.
Any number of commands are permitted on a line. Blanks and new-line characters are ignored except within
numbers and in places where a register name is expected.
The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string of the digits
0—9 and the capital letters A—F which are treated as digits with values 10—15 respectively. The number
may be preceded by an underscore to input a negative number. Numbers may contain decimal points.

+_*%A

The top two values on the stack are added (+), subtracted (~), multiplied (*), divided (I), remaindered
(%), or exponentiated (A). The two entries are popped off the stack; the result is pushed on the stack in
their place. The result of a division is an integer truncated toward zero. See the detailed description
below for the treatment of numbers with decimal points. An exponent must not have any digits after the
decimal point.

32:
The top of the main stack is popped and stored into a register named x, where x may be any character.
If the s is capitalized, x is treated as a stack and the value is pushed onto it. Any character, even blank
or new—line, is a valid register name.

12:
The value in register x is pushed onto the stack. The register 2: is not altered. If the l is capitalized,
register it is treated as a stack and its top value is popped onto the main stack.
All registers start with empty value which is treated as a zero by the command I and is treated as an
error by the command L.

d
The top value on the stack is duplicated.

P
The top value on the stack is printed. The top value remains unchanged.

f
All values on the stack and in registers are printed.

ND-60.328.1P EN

USD274 ' - DC - An Interactive Desk Calculator

X

treats the top element of the stack as a character string, removes it from the stack, and executes it as a
string of DC commands.

[]
puts the bracketed character string onto the top of the stack.

q
exits the program. If executing a string, the recursion level is popped by two. If q is capitalized, the top
value on the stack is popped and the string execution level is popped by that value.

or >x =x !<x !>x !=x

The top two elements of the stack are popped and compared. Register x is executed if they obey the
stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root The square root of an integer is truncated to an
integer. For the treatment of numbers with decimal points, see the detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX command ter-
minates.

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for further input. If i is capitalized,
the value of the input base is pushed onto the stack. No mechanism has been provided for the input of
arbitrary numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output If 0 is capitalized,
the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the number of
decimal places that are maintained during multiplication, division, and exponentiation. The scale factor
must be greater than or equal to zero and less than 100. If k is capitalized, the value of the scale factor
is pushed onto the stack

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers
Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form of a string of
digits to the base 100 stored one digit per byte (centennial digits). The string is stored with the low-order digit
at the beginning of the string. For example, the representation of 157 is 57,1. After any arithmetic operation

ND~60.328.1P EN

DC ~ An Interactive Desk Calculator USD17—5

on a number, care is taken that all digits are in the range 0-99 and that the number has no leading zeros. The
number zero is represented by the empty string.
Negative numbers are represented in the 100’s complement notation, which is analogous to two’s complement
notation for binary numbers. The high order digit of a negative number is always —1 and all other digits are in
the range 0—99. The digit preceding the high order -1 digit is never a 99. The representation of ~157 is
43,98,—l. We shall call this the canonical form of a number. The advantage of this kind of representation of
negative numbers is ease of addition. When addition is performed digit by digit, the result is formally correct.
The result need only be modified, if necessary, to put it into canonical form.
Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition can be carried out
and the handling of carries done later when that is convenient, as it sometimes is.
An additional byte is stored with each number beyond the high order digit to indicate the number of assumed
decimal digits after the decimal point. The representation of .001 is 13 where the scale has been italicized to
emphasize the fact that it is not the high order digit. The value of this extra byte is called the scale factor of
the number.

The Allocator

DC uses a dynamic suing storage allocator for all of its internal storage. All reading and writing of numbers
internally is done through the allocator. Associated with each suing in the allocator is a four-word header con-
taining pointers to the beginning of the string, the end of the suing, the next place to write, and the next place
to read. Communication between the allocator and DC is done via pointers to these headers.
The allocator initially has one large string on a list of free suings. All headers except the one pointing to this
string are on a list of free headers. Requests for strings are made by size. The size of the string actually sup-
plied is the next higher power of 2. When a request for a suing is made, the allocator first checks the free list
to see if there is a string of the desired size. If none is found, the allocator finds the next larger free string and
splits it repeatedly until it has a string of the right size. Left—over strings are put on the free list. If there are
no larger strings, the allocator u'ies to coalesce smaller free strings into larger ones. Since all strings are the
result of splitting large strings, each suing has a neighbor that is next to it in core and, if free, can be combined
with it to make a string twice as long. This is an implementation of the ‘buddy system’ of allocation described
in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system for more space. The
amount of space on the system is the only limitation on the size and number of strings in DC. If at any time
in the process of uying to allocate a suing, the allocator runs out of headers, it also asks the system for more
space.
There are routines in the allocator for reading, writing, copying, rewinding, forward-spacing, and backspacing
strings. All string manipulation is done using these routines.
The reading and writing routines increment the read pointer or write pointer so that the characters of a suing
are read or written in succession by a series of read or write calls. The write pointer is interpreted as the end
of the informationcontaining portion of a string and a call to read beyond that point retums an end-of-string
indication. An attempt to write beyond the end of a string causes the allocator to allocate a larger space and
then copy the old suing into the larger block

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the operation are popped
from the main stack and their scale factors stripped off. Zeros are added or digits removed as necessary to get
a properly scaled result from the internal arithmetic routine. For example, if the scale of the operands is dif-
ferent and decimal alignment is required, as it is for addition, zeros are appended to the operand with the
smaller scale. After performing the required arithmetic operation, the proper scale factor is appended to the
end of the number before it is pushed on the stack.
A register called scale plays a part in the results of most arithmetic operations. scale is the bound on the
number of decimal places retained in arithmetic computations. scale may be set to the number on the top of
the stack truncated to an integer with the k command. K may be used to push the value of scale on the stack.
scale must be greater than or equal to O and less than 100. The descriptions of the individual arithmetic opera-
tions will include the exact effect of scale on the computations.

ND-60.328.1P EN

USD:7-6 ' DC - An Interactive Desk Calculator

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number with the lower scale
to give both numbers the same scale. The number with the smaller scale is multiplied by 10 if the difference
of the scales is odd. The scale of the result is then set to the larger of the scales of the two operands.
Subtraction is performed by negating the number to be subtracted and proceeding as in addition.
Finally, the addition is performed digit by digit from the low order end of the number. The carries are pro-
pagated in the usual way. The resulting number is brought into canonical form, which may require stripping of
leading zeros, or for negative numbers replacing the high—order configuration 99,—1 by the digit —1. In any
case, digits which are not in the range 0—99 must be brought into that range, propagating any carries or bor-
rows that result.

Multiplication

The scales are removed from the two operands and saved. The operands are both made positive. Then multi-
plication is performed in a digit by digit manner that exactly mimics the hand method of multiplying. The first
number is multiplied by each digit of the second number, beginning with its low order digit. The intermediate
products are accumulated into a partial sum which becomes the final product. The product is put into the
canonical form and its sign is computed from the signs of the original operands.
The scale of the result is set equal to the sum of the scales of the two operands. If that scale is larger than the
internal register scale and also larger than both of the scales of the two operands, then the scale of the result is
set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed from the dividend to
make the scale of the result of the integer division equal to the internal quantity scale. The signs are removed
and saved.

Division is performed much as it would be done by hand. The difference of the lengths of the two numbers is
computed. If the divisor is longer than the dividend, zero is returned. Otherwise the top digit of the divisor is
divided into the top two digits of the dividend. The result is used as the first (high-order) digit of the quotient
It may turn out be one unit too low, but if it is, the next trial quotient will be larger than 99 and this will be
adjusted at the end of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining dividend is smaller
than the divisor. At the end, the digits of the quotient are put into the canonical form, with propagation of
carry as needed The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity returned is the
remains of the dividend at the end of the divide process. Since division truncates toward zero, remainders
have the same sign as the dividend. The scale of the remainder is set to the maximum of the scale of the divi—
dend and the scale of the quotient plus the scale of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer result have a scale
that is the larger of the internal quantity scale and the scale of the operand.
The method used to compute sqrt(y) is Newton’s method with successive approximations by the rule

xn+l : 1/2(xn+-z‘)
X»

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation
Only exponents with zero scale factor are handled. if the exponent is zero, then the result is 1. If the exponent
is negative, then it is made positive and the base is divided into one. The scale of the base is removed.

ND-60.328.1P EN

DC — An Interactive Desk Calculator US Dz7-7

The integer exponent is viewed as a binary number. The base is repeatedly squared and the result is obtained
as a product of those powers of the base that correspond to the positions of the one—bits in the binary represen-
tation of the exponent. Enough digits of the result are removed to make the scale of the result the same as if
the indicated multiplication had been performed.

Input Conversion and Base
Numbers are converted to the internal representation as they are read in. The scale stored with a number is
simply the number of fractional digits input Negative numbers are indicated by preceding the number with a
__ (an underscore). The hexadecimal digits A—F correspond to the numbers 10-15 regardless of input base.
The i command can be used to change the base of the input numbers. This command pops the stack, truncates
the resulting number to an integer, and uses it as the input base for all further input The input base is initial-
ized to 10 but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions. The
command I will push the value of the input base on the stack.

Output Commands
The command p causes the top of the stack to be printed. It does not remove the top of the stack. All of the
stack and internal registers can be output by typing the command I'. The 0 command can be used to change the
output base. This command uses the top of the stack, truncated to an integer as the base for all further output.
The output base in initialized to 10. It will work correctly for any base. The command 0 pushes the value of
the output base on the stack.

Output Format and Base
The input and output bases only affect the interpretation of numbers on input and output; they have no effect
on arithmetic computations. Large numbers are output with 70 characters per line; a \ indicates a continued
line. All choices of input and output bases work correctly, although not all are useful. A particularly useful
output base is 100000, which has the effect of grouping digits in fives. Bases of 8 and 16 can be used for
decirnal—octal or decimal-hexadecimal conversions.

Internal Registers
Numbers or strings may be stored in internal registers or loaded on the stack from registers with the commands
s and l. The command 3): pops the top of the stack and stores the result in register x. x can be any character.
Ix puts the contents of register x on the top of the stack. The I command has no effect on the contents of regis-
ter 1. The 5 command, however, is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on the top of the stack on
the stack. The command 1 pushes the stack size on the stack. The command X replaces the number on the t0p
of the stack with its scale factor. The command Z replaces the top of the stack with its length.

Subroutine Definitions and Calls
Enclosing a string in [] pushes the ascii string on the stack. The q command quits or in executing a string,
pops the recursion levels by two.

Internal Registers — Programming DC
The load and store commands together with [] to store strings. x to execute and the testing commands ‘<’, ‘>’,
‘=’, ‘l<’, ‘l>’, ‘!=’ can be used to program DC. The x command assumes the top of the stack is an string of
DC commands and executes it. The testing commands compare the top two elements on the stack and if the
relation holds, execute the register that follows the relation. For example, to print the numbers 0-9,

[lipl+ si 1i10>a]sa
Osi lax

ND-60.328.1P EN

USD:7-8 ’ ' DC - An Interactive Desk Calculator

Push-Down Registers and Arrays
These commands were designed for used by a compiler, not by people. They involve push-down registers and
arrays. In addition to the stack that commands work on, DC can be thought of as having individual stacks for
each register. These registers are operated on by the commands S and L. Sx pushes the top value of the main
stack onto the stack for the register x. Lx pops the stack for register x and puts the result on the main stack.
The commands s and I also work on registers but not as push-down stacks. l doesn’t effect the top of the
register stack, and s destroys what was there before.
The commands to work on arrays are : and ;. :x pops the stack and uses this value as an index into the array
x. The next element on the stack is stored at this index in x. An index must be greater than or equal to 0 and
less than 2048. ;x is the command to load the main stack from the array x. The value on the top of the stack
is the index into the array x of the value to be loaded

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX command and passes it to UNIX to execute. One other
compiler command is Q. This command uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES
The real reason for the use of a dynamic storage allocator was that a general purpose program could be (and in
fact has been) used for a variety of other tasks. The allocator has some value for input and for compiling (i.e.
the bracket [...] commands) where it cannot be known in advance how long a string will be. The result was
that at a modest cost in execution time, all considerations of string allocation and sizes of strings were
removed from the remainder of the program and debugging was made easier. The allocation method used
wastes approximately 25% of available space.
The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet the base can-
not exceed 127 because of hardware limitations and at the cost of 5% in space, debugging was made a great
deal easier and decimal output was made much faster.
The reason for a stack-type arithmetic design was to permit all DC commands from addition to subroutine exe-
cution to be implemented in essentially the same way. The result was a considerable degree of logical separa-
tion of the final program into modules with very little communication between modules.
The rationale for the lack of interaction between the scale and the bases was to provide an understandable
means of proceeding after a change of base or scale when numbers had already been entered An earlier
implementation which had global notions of scale and base did not work out well. If the value of scale were
to be interpreted in the current input or output base, then a change of base or scale in the midst of a computa»
tion would cause great confusion in the interpretation of the results. The current scheme has the advantage that
the value of the input and output bases are only used for input and output, respectively, and they are ignored in
all other operations. The value of scale is not used for any essential purpose by any part of the program and it
is used only to prevent the number of decimal places resulting from the arithmetic operations from growing
beyond all bounds.
The design rationale for the choices for the scales of the results of arithmetic were that in no case should any
significant digits be thrown away if, on appearances, the user actually wanted them. Thus, if the user wants to
add the numbers 1.5 and 3.517, it seemed reasonable to give him the result 5.017 without requiring him to
unnecessarily specify his rather obvious requirements for precision.
On the other hand, multiplication and exponentiation produce results with many more digits than their
operands and it seemed reasonable to give as a minimum the number of decimal places in the operands but not
to give more than that number of digits unless the user asked for them by specifying a value for scale. Square
root can be handled in just the same way as multiplication. The operation of division gives arbitrarily many
decimal places and there is simply no way to guess how many places the user wants. In this case only, the
user must specify a scale to get any decimal places at all.
The scale of remainder was chosen to make it possible to recreate the dividend from the quotient and
remainder. This is easy to implement; no digits are thrown away.

ND-60.328.1P EN

DC — An Interactive Desk Calculator USD:7—9

REFERENCES
1 L. L. Cherry, R. Morris, BC - An Arbizrary Precision Desk—Calculator Language.
2 K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (OcL 1965).

ND-60.328.1P EN

USD:7-10 I ‘ DC — An Interactive Desk Calculator

ND-60.328.1P EN

BC — An Arbitrary Precision Desk-Calculator Language USD28~l

BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on the PDP—ll
under the UNIXT time—sharing system. The output of the compiler is interpreted and exe-
cuted by a collection of routines which can input, output, and do arithmetic on indefinitely
large integers and on scaled fixed-point numbers.
These routines are themselves based on a dynamic storage allocator. Overflow does not
occur until all available core storage is exhausted.
The language has a complete control structure as well as immediate-mode operation. Func-
tions can be defined and saved for later execution.
Two five hundred—digit numbers can be multiplied to give a thousand digit result in about
ten seconds.
A small collection of library functions is also available, including sin, cos, arctan, log,
exponential, and Bessel functions of integer order.
Some of the uses of this compiler are
0 to do computation with large integers,
0 to do computation accurate to many decimal places,
0 conversion of numbers from one base to another base.

T Ul is a registered trademark of AT&T in the USA and other countries.

ND-6().328.1P EN

USDz8-2 ' BC - An Arbitrary Precision Desk-Calculator Language

ND—60.328. 1? EN

BC — An Arbitrary PrecisiOn Desk-Calculator Language USD18-3

INTRODUCTION
BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX time—sharing system [1].
The compiler was written to make conveniently available a collection of routines (called DC [5]) which are
capable of doing arithmetic on integers of arbitrary sin. The compiler is by no means intended to provide a
complete programming language. It is a minimal language facility.
There is a scaling provision that permits the use of decimal point notation. Provision is made for input and
Output in bases other than decimal. Numbers can be converted from decimal to octal by simply setting the out-
put base to equal 8.
The actual limit on the number of digits that can be handled depends on the amount of storage available on the
machine. Manipulation of numbers with many hundreds of digits is possible even on the smallest versions of
UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language [2]. Those who are
familiar with C will find few surprises in this language.

SIMPLE COMPUTATIONS WITH INTEGERS
The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if you type in the
line:

142857 + 285714

the program responds immediately with the line

428571

The operators —, *, /, %, and A can also be used; they indicate subtraction, multiplication, division, remainder—
ing, and exponentiation, respectively. Division of integers produces an integer result truncated toward zero.
Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated (the ‘unary’
minus sign). The expression

7+—-3

is interpreted to mean that —3 is to be added to 7.
More complex expressions with several operators and with parentheses are interpreted just as in Fortran, with "
having the greatest binding power, then * and % and /, and finally + and ~. Contents of parentheses are
evaluated before material outside the parentheses. Exponentiations are performed from right to left and the
other operators from left to right. The two expressions

aAbAc and a“(b‘c)

are equivalent, as are the two expressions

a‘b‘c and (a‘b)*c

BC shares with Fortran and C the undesirable convention that

a/b‘c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value of an expression can
be assigned to a register in the usual way. The statement

x = x + 3

has the effect of increasing by three the value of the contents of the register named x. When, as in this case,
the outermost operator is an =, the assignment is performed but the result is not printed. Only 26 of these
named storage registers are available.
There is a built-in square root function whose result is truncated to an integer (but see scaling below). The
lines

x = sqrt(19l)
x

ND—60.328.1P EN

USD28-4 ' BC — An Arbitrary Precision Desk-Calculator Language

produce the printed result

13

BASES
There are special internal quantities, called ‘ibase’ and ‘obase'. The contents of ‘ibase’, initially set to 10,
determines the base used for interpreting numbers read in. For example, the lines

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change the input base
back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect For those who deal in hexa—
decimal notation, the characters A—F are permitted in numbers (no matter what base is in effect) and are inter-
preted as digits having values 10—15 respectively. The statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative and large posi-
tive input bases are permitted but useless. No mechanism has been provided for the input of arbitrary numbers
in bases less than 1 and greater than 16.
The contents of ‘obase’, initially set to 10, are used as the base for output numbers. The lines

obase = 16
1000

will produce the output line

3E8

which is to be interpreted as a 3—digit hexadecimal number. Very large output bases are permitted, and they
are sometimes useful. For example, large numbers can be output in groups of five digits by setting ‘obase’ to
100000. Strange (i.e. 1, 0, or negative) output bases are handled appropriately.
Very large numbers are split across lines with 70 characters per line. Lines which are continued end with \.
Decimal output conversion is practically instantaneous, but output of very large numbers (i.e., more than 100
digits) with other bases is rather slow. Non-decimal output conversion of a one hundred digit number takes
about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of internal computation or
on the evaluation of expressions, but only affect input and output conversion, respectively.

SCALING
A third special internal quantity called ‘scale’ is used to determine the scale of calculated quantities. Numbers
may have up to 99 decimal digits after the decimal point. This fractional part is retained in further computa-
tions. We refer to the number of digits after the decimal point of a number as its scale.
When two scaled numbers are combined by means of one of the arithmetic operations, the result has a scale
determined by the following rules. For addition and subtraction, the scale of the result is the larger of the
scales of the two operands. In this case, there is never any tnmcation of the result. For multiplications, the
scale of the result is never less than the maximum of the two scales of the operands, never more than the sum
of the scales of the operands and, subject to those two restrictions, the scale of the result is set equal to the
contents of the internal quantity ‘scale'. The scale of a quotient is the contents of the internal quantity ‘scale’.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of an exponentia—
tion is scaled as if the implied multiplications were performed. An exponent must be an integer. The scale of
a square root is set to the maximum of the scale of the argument and the contents of ‘scale'.

ND-60.328.1P EN

BC — An Arbitrary PrecisiOn Desk-Calculator Language USDz8~5

All of the internal operations are actually carried out in terms of integers, with digits being discarded when
necessary. In every case where digits are discarded, truncation and not rounding is performed.
The contents of ‘scale’ must be no greater than 99 and no less than 0. It is initially set to 0. In case you need
more than 99 fraction digits, you may arrange your own scaling.
The internal quantities ‘scale’, ‘ibase', and ‘obase’ can be used in expressions just like other variables. The
line

scale = scale + 1

increases the value of ‘scale’ by one, and the line

scale

causes the current value of ‘scale’ to be printed.
The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in internal computation
even when ‘ibase’ or ‘obase’ are not equal to 10. The internal computations (which are still conducted in
decimal, regardless of the bases) are performed to the specified number of decimal digits, never hexadecimal or
octal or any other kind of digits.

FUNCTIONS
The name of a function is a single lower-case letter. Function names are permitted to collide with simple vari-
able names. Twenty-six different defined functions are permitted in addition to the twenty—six variable names.
The line

define a(x){

begins the definition of a function with one argument This line must be followed by one or more statements,
which make up the body of the function, ending with a right brace). Return of control from a function occurs
when a return statement is executed or when the end of the function is reached. The return statement can take
either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression in parentheses.
Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one ‘auto’ statement in a function and it must be the first statement in the definition. These
automatic variables are allocated space and initialized to zero on entry to the function and thrown away on
return. The values of any variables with the same names outside the function are not disturbed. Functions
may be called recursively and the automatic variables at each level of call are protected. The parameters
named in a function definition are treated in the same way as the automatic variables of that function with the
single exception that they are given a value on entry to the function. An example of a function definition is

define a(x,y){
auto 2
z : x*y
return(z)

}
The value of this function, when called, will be the product of its two arguments.
A function is called by the appearance of its name followed by a string of arguments enclosed in parentheses
and separated by commas. The result is unpredictable if the wrong number of arguments is used.
Functions with no arguments are defined and called using parentheses with nothing between them: b().
If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

ND-60.328.1P EN

USD186 ' BC — An Arbitrary Precision Desk-Calculator Language

x = a(a(3,4),5)
would cause the value of x to become 60.

SUBSCRIP’I‘ED VARIABLES
A single lower-case letter variable name followed by an expression in brackets is called a subscripted variable
(an array element). The variable name is called the array name and the expression in brackets is called the
subscript Only one-dimensional arrays are permitted. The names of arrays are permitted to collide with the
names of simple variables and function names. Any fractional part of a subscript is discarded before use.
Subscripts must be greater than or equal to zero and less than or equal to 2047.
Subseripted variables may be freely used in expressions, in function calls, and in remm statements.
An array name may be used as an argument to a function, or may be declared as automatic in a function
definition by the use of empty brackets:

f(a[])
define f(a[])
auto all

When an array name is so used, the whole contents of the array are copied for the use of the function, and
thrown away on exit from the function. Array names which refer to whole arrays cannot be used in any other
contexts.

CONTROL STATEMENTS
The ‘iF, the ‘while’, and the ‘for’ statements may be used to alter the flow within programs or to cause itera-
tion. The range of each of them is a statement or a compound statement consisting of a collection of state-
ments enclosed in braces. They are written in the following way

if(relation) statement
while(relation) statement
for(expressionl; relation; expressionZ) statement

or

if(relation) {statements}
while(relation) {statements}
for(expression1; relation; expressionZ) {statements}

A relation in one of the control statements is an expression of the form
x>y

where two expressions are related by one of the six relational operators <, >, <=, >:=, ==, or !=. The relation
== stands for ‘equal to’ and 1: stands for ‘not equal to’. The meaning of the remaining relational operators is
clear.

BEWARE of using 2 instead of == in a relational. Unfortunately, both of them are legal, so you will not get a
diagnostic message, but = really will not do a comparison.
The ‘if’ statement causes execution of its range if and only if the relation is true. Then control passes to the
next statement in sequence.
The ‘while’ statement causes execution of its range repeatedly as long as the relation is true. The relation is
tested before each execution of its range and if the relation is false, control passes to the next statement beyond
the range of the while.
The ‘for’ statement begins by executing ‘expressionl’. Then the relation is tested and, if true, the statements
in the range of the ‘for’ are executed. Then ‘expression2' is executed. The relation is tested, and so on. The
typical use of the ‘for‘ statement is for a controlled iteration, as in the statement

for(i=l; i<=10; i=i+ l) i

which will print the integers from 1 to 10. Here are some examples of the use of the control statements.

ND-60.328.1P EN

BC — An Arbitrary PrecisiOn Desk-Calculator Language US D28-7

define f(n){
auto i, x
X21
f0r(i=1; i<:n; i=i+1) x=x*i
return(x)
}

The line

{(a)

will print a factorial if a is a positive integer. Here is the definition of a function which will compute values of
the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){
auto x, j
x=1
for(j=1; j<=m; j:j+1) x=x*(n—j+l)/j
return(x)
}

The following function computes values of the exponential function by summing the appropriate series without
regard for possible truncation errors:

scale = 20
define e(x){

auto 8, b, c, d, n
a = 1
b = 1
c = l
d = 0
n = 1
while(1==1){

a = a‘x
b = b*n
c = c + a/b
n = n + 1
if(c==d) retum(c)
d = c

}
}

SOME DETAILS
There are some language features that every user should know about even if he will not use them.
Normally statements are typed one to a line. It is also permissible to type several statements on a line
separated by semicolons.
If an assignment statement is parenthesized, it then has a value and it can be used anywhere that an expression
can. For example, the line

(X=y+17)
not only makes the indicated assignment, but also prints the resulting value.
Here is an example of a use of the value of an assignment statement even when it is not parenthesizcd.

X = a[i:i+l]

causes a value to be assigned to x and also increments i before it is used as a subscript.
The following constructs work in BC in exactly the same manner as they do in the C language. Consult the
appendix or the C manuals [2] {or their exact workings.

ND—60.328.1P EN

USD28-8 - BC — An Arbitrary Precision Desk-Calculator Language

Even if you don’t intend to use the constructs, if you type one inadvertently, something correct but unexpected

x=y=z is the same as x=(y:z)
x :+ y x = my
x =— y x : x—y
x ="‘ y x = x*y
x =/ y x = x/y
x:% y x : x%y
x :A y x : x‘y
x++ (x=x+1)—l
x—— (x=x——l)+1
++x x = x+1
--x x = x—l

may happen.

WARNING! In some of these constructions, spaces are significant There is a real difference between x =—- y
and x: -y. The first replaces x by x—y and the second by —y.

THREE IMPORTANT THINGS
1. To exit a BC program, type ‘quit’.
2. There is a comment convention identical to that of C and of PL/I. Comments begin with ‘/*’ and end

with ‘*/’.
3. There is a library of math functions which may be obtained by typing at command level

be -l

This command will load a set of library functions which, at the time of writing, consists of sine (named
‘5’), cosine (‘c’), arctangent (‘a’), natural logarithm (‘1’), exponential (‘e’) and Bessel functions of integer
order (‘j(n,x)’). Doubtless more functions will be added in time. The library sets the scale to 20. You
can reset it to something else if you like. The design of these mathematical library routines is discussed
elsewhere {3}.
If you type

bc file

BC will read and execute the named file or files before accepting commands from the keyboard. In this
way, you may load your favorite programs and function definitions.

ACKNOWLEDGEMENT
The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

REFERENCES

[1]
[2]
[3]

[4i

[5]

K. Thompson and D. M. Ritchie, UND(Programmer's Manual, Bell Laboratories, 1978.
B. W. Kemighan and D. M. Ritchie, The C Programming Language. Prentice‘Hall, 1978.
R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell Laboratories internal
memorandum, 1975.
S. C. Johnson, YACC— Yet Another Compiler-Compiler. Bell laboratories Computing Science Techni-
cal Report #32. 1978.
R. Morris and L. L. Cherry, DC — An Interactive Desk Calculator.

ND-60.328. lP EN

BC - An Arbitrary Precision Desk-Calculator Language USD:8-9

Appendix

1. NOTATION
In the following pages syntactic categories are in italics; literals are in bold; material in brackets [] is optional.

2. TOKENS
Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators may be blanks,
tabs or comments. Newline characters or semicolons separate statements.

2.1. Comments

Comments are introduced by the characters /* and terminated by */.

2.2. Identifiers

There are three kinds of identifiers — ordinary identifiers, array identifiers and function identifiers. All three
types consist of single lower—case letters. Array identifiers are followed by square brackets, possibly enclosing
an expression describing a subscript. Arrays are singly dimensioned and may contain up to 2048 elements.
Indexing begins at zero so an array may be indexed from 0 to 2047. Subscripts are truncated to integers.
Function identifiers are followed by parentheses, possibly enclosing arguments. The three types of identifiers
do not conflict; a program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal poinL The hexadecimal digits A—F are
also recognized as digits with values 10—15, respectively.

3. EXPRESSIONS
The value of an expression is printed unless the main operator is an assignment. Precedence is the same as the
order of presentation here, with highest appearing first Left or right associativity, where applicable, is dis-
cussed with each operator.

ND—60.328.1P EN

USDz8-10 ’ BC — An Arbitrary Precision Desk-Calculator Language

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions are legal on the left
side of an assignment. The value of a named expression is the value stored in the place named.

3.1.1.1. identifiers
Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name [expression 1

Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and chase

The internal registers scale, ibase and obase are all named expressions. scale is the number of digits after the
decimal point to be retained in arithmetic operations. scale has an initial value of zero. ibase and obase are
the input and output number radix respectively. Both ibase and chase have initial values of 10.

3.1.2. Function calls

3.1.2.1. functionmame ([expression [, expression . . .] l)
A function call consists of a function name followed by parentheses containing a comma-separated list of
expressions, which are the function arguments. A whole array passed as an argument is specified by the array
name followed by empty square brackets. All function arguments are passed by value. As a result, changes
made to the formal parameters have no effect on the actual arguments. 1f the function terminates by executing
a return statement, the value of the function is the value of the expression in the parentheses of the return state-
ment or is zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least significant decimal place.
The scale of the result is the scale of the expression or the value of scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of the result is zero.

3.1.2.4. scale (expression)
The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are used to alter the nor-
mal precedence.

3.2. Unary operators

The unary operators bind right to left.

3.2.1. — expression

The result is the negative of the expression.

ND—60.328.1P EN

BC — An Arbitrary PrecisiOn Desk-Calculator language USDz8-1 1

3.2.2. + +named-expressi0n
The named expression is incremented by one. The result is the value of the named expression after increment-
ing.

3.2.3. — -—named—expression

The named expression is decremented by one. The result is the value of the named expression after decre-
menting.

3.2.4. named-expression+ +

The named expression is incremented by one. The result is the value of the named expression before incre-
menting.

3.2.5. namedexpression— —
The named expression is decremented by one. The result is the value of the named expression before decre-
menting.

3.3. Exponentiation operator
The exponentiation operator binds right to left

3.3.1. expression A expression
The result is the first expression raised to the power of the second expression. The second expression must be
an integer. If a is the scale of the left expression and b is the absolute value of the right expression, then the
scale of the result is:
min (axb, max (scale, (1))

3.4. Multiplicative operators
The operators *, /, % bind left to right.

3.4.1. expression * expression
The result is the product of the two expressions. If a and b are the scales of the two expressions, then the
scale of the result is:
min (a+b, max (scale,a, b))

3.4.2. expression / expression
The result is the quotient of the two expressions. The scale of the result is the value of scale.

3.4.3. expression % expression
The % operator produces the remainder of the division of the two expressions. More precisely, a%b is
a—a/b*b.
The scale of the result is the sum of the scale of the divisor and the value of scale

35. Additive operators

The additive operators bind left to right.

3.5.1. expression + expression
The result is the sum of the two expressions. The scale of the result is the maximun of the scales of the
expressions.

3.5.2. expression -— expression
The result is the difference of the two expressions. The scale of the result is the maximum of the scales of the
expressions.

ND—60.328.1P EN

USD28-l2 4 BC — An Arbitrary Precision Desk-Calculator Language

3.6. assignment operators
The assignment operators bind right to left.

3.6.1. named—expression = expression
This expression results in assigning the value of the expression on the right to the named expression on the
left.

3.6.2. named-expression = + expression

3.6.3. named-expression = -— expression

3.6.4. named—expression = * expression

3.6.5. named-expression = / expression

3.6.6. named-expression = % expression

3.6.7. named-expression = " expression
The result of the above expressions is equivalent to “named expression = named expression OP expression”,
where OP is the operator after the = sign.

4. RELATIONS
Unlike all other operators, the relational operators are only valid as the object of an if, while, or inside a for
statement.

4.1. expression < expression

4.2. expression > expression

4.3. expression < = expression

4.4. expression > : expression

4.5. expression = 2 expression

4.6. expression ! = expression

5. STORAGE CLASSES
There are only two storage classes in BC, global and automatic (local). Only identifiers that are to be local to
a function need be declared with the auto command. The arguments to a function are local to the function.
All other identifiers are assumed to be global and available to all functions. All identifiers, global and local,
have initial values of zero. Identifiers declared as auto are allocated on entry to the function and released on
returning from the function. They therefore do not retain values between function calls. auto arrays are
specified by the array name followed by empty square brackets.
Automatic variables in BC do not work in exactly the same way as in either C or PL/I. On entry to a function,
the old values of the names that appear as parameters and as automatic variables are pushed onto a stack. Until
return is made from the function, reference to these names refers only to the new values.

6. STATEMENTS
Statements must be separated by semicolon or newline. Except where altered by control statements, execution
is sequential.

ND-60.328.1P EN

BC -— An Arbitrary Precision Desk-Calculator Language USDz8-13

6.1. Expression statements

When a statement is an expression. unless the main operator is an assignment. the value of the expression is
printed, followed by a newline character.

6.2. Compound statements
Statements may be grouped together and used when one statement is expected by surrounding them with l l.

6.3. Quoted string statements
”any String"

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement
The substatement is executed if the relation is true.

6.5. While statements

while (relation)statement
The statement is executed while the relation is true. The test occurs before each execution of the statement.

6.6. For statements

for (expression; relation; expression) statement
The for statement is the same as

first—expression
while (relation) {

statement
last-expression

}
All three expressions must be present

6.7. Break statements

break

break causes termination of a for or while statement

6.8. Auto statements

auto identifier [, identifier]
The auto statement causes the values of the identifiers to be pushed down. The identifiers can be ordinary
identifiers or array identifiers. Array identifiers are specified by following the array name by empty square
brackets. The auto statement must be the first statement in a function definition.

6.9. Define statements

define ([parameter [,parameter. . .]]){
statements)

The define statement defines a function. The parameters may be ordinary identifiers or array names. Array
names must be followed by empty square brackets.

ND—60.328.1P EN

USD28-14 ' BC - An Arbitrary Precision Desk-Calculator Language

6.10. Return statements

return

return(expression)
The retum statement causes termination of a function, popping of its auto variables, and specifies the result of
the function. The first form is equivalent to return(0). The result of the function is the result of the
expression in parentheses.

6.11. Quit
The quit statement stops execution of a BC program and returns control to UNIX when it is first encountered.
Because it is not treated as an executable statement, it cannot be used in a function definition or in an if, for,
or while statement.

ND-60.328.1P EN

Mail Reference Manual ’ USDz9—1

MAIL REFERENCE MANUAL

Kurt Shoens

Revised by
Craig Leres

Version 2.18
July 27, 1983

ABSTRACT

Mail provides a simple and friendly environment for sending and receiving mail. It divides
incoming mail into its constituent messages and allows the user to deal with them in any
order. In addition, it provides a set of ed -like commands for manipulating messages and
sending mail. Mail offers the user simple editing capabilities to ease the composition of
outgoing messages, as well as providing the ability to define and send to names which
address groups of users. Finally, Mail is able to send and receive messages across such net-
works as the ARPANET, UUCP, and Berkeley network.

This document describes how to use the Mai] program to send and receive messages. The
reader is not assumed to be familiar with other message handling systems, but should be
familiar with the UNIXT shell, the text editor, and some of the common UNIX commands.
"The UNIX Programmer’s Manual, "An Introduction to the C shell", and the various Users
Supplementary Documents 1) covering text editing can be consulted for more information
on these topics.

1" UNIX is a registered trademark of AT&T in the USA and other countries.
1: Documents USDlZ«19 in the NDIX Users Supplementary Documents manual (Nl)~60.328).

ND-60.328.1P EN

USDz9-2 ‘ Mail Reference Manual

ND-60.328.1P EN

Mail Reference Manual '
US D29-3

1. INTRODUCTION
Here is how messages are handled: the mail system accepts incoming messages for you from other people andcollects them in a file, called your system mailbox. When you login, the system notifies you if there are anymessages waiting in your system mailbox. If you are a csh user, you will be notified when new mail arrives ifyou inform the shell of the location of your mailbox. On version 7 systems, your system mailbox is located inthe directory /usr/spool/mail in a file with your login name. If your login name is "sam", then you can makecsh notify you of new mail by including the following line in your .cshrc file:

set mailz/usr/spool/mail/sam
When you read your mail using Mail, it reads your system mailbox and separates that file into the individualmessages that have been sent to you. You can then read, reply to, delete, or save these messages. Each mes—sage is marked with its author and the date they sent it.

2. COMMON USAGE
The Mail command has two distinct usages, according to whether one wants to send or receive mail. Sendingmail is simple: to send a message to a user whose login name is, say, "root", use the shell command:

% Mail root
then type your message. When you reach the end of the message, type an EOT (control—d) at the beginning ofa line, which will cause Mail to echo "BOT" and return you to the Shell. When the user you sent mail to nextlogs in, he will receive the message:

You have mail.
to alert him to the existence of your message.
If, while you are composing the message you decide that you do not wish to send it after all, you can abort theletter with a RUBOUT. Typing a single RUBOUT causes Mail to print

(Interrupt -- one more to kill letter)
Typing a second RUBOUT causes Mail to save your partial letter on the file "deadletter" in your home directoryand abort the letter. Once you have sent mail to someone, there is no way to undo the act, so be careful.
The message your recipient reads will consist of the message you typed, preceded by a line telling who sentthe message (your login name) and the date and time it was sent.
If you want to send the same message to several other people, you can list their login names on the commandline. Thus,

% Mail sam bob john
Tuition fees are due next Friday. Don’t forget!!
<ControI—d>
EOT
%

will send the reminder to sam, bob, and john.
If, when you log in, you see the message,

You have mail.
you can read the mail by typing simply:

% Mail
Mail will respond by typing its version number and date and then listing the messages you have waiting.Then it will type a prompt and await your command. The messages are assigned numbers starting with 1 —~you refer to the messages with these numbers. Mail keeps tack of which messages are new (have been sentsince you last read your mail) and read (have been read by you). New messages have an N next to them inthe header listing and old, but unread messages have a U next to them. Mail keeps track of new/old andread/unread messages by putting a header field called "Status" into your messages.
To look at a specific message, use the type command, which may be abbreviated to simply t. For example, ifyou had the following messages:

ND-60.328.lP EN

USD29—4 ‘ Mail Reference Manual

N 1 root Wed Sep 21 09:21 "Tuition fees"
N 2 sam Tue Sep 20 22:55

you could examine the first message by giving the command:
type 1

which might cause Mail to respond with, for example:

Message 1:
From root Wed Sep 21 09:21:45 1978
Subject: Tuition fees
Status: R

Tuition fees are due next Wednesday. Don’t forgetll

Many Mall commands that operate on messages take a message number as an argument like the type com-
mand. For these commands, there Is a notion of a current message. When you enter the Mall program, the
current message is initially the first one. Thus, you can often omit the message number and use, for example,

i

to type the current message. As a further shorthand, you can type a message by simply giving its message
number. Hence,

1
would type the first message.
Frequently, it is useful to read the messages in your mailbox in order, one after another. You can read the next
message in Mail by simply typing a newline. As a special case, you can type a newline as your first command
to Mail to type the first message.
If, after typing a message, you wish to immediately send a reply, you can do so with the reply command.
Reply, like type, takes a message number as an argument. Mail then begins a message addressed to the user
who sent you the message. You may then type in your letter in reply, followed by a <control—d> at the begin-
ning of a line, as before. Mail will type EOT, then type the ampersand prompt to indicate its readiness to
accept another command. In our example, if, after typing the first message, you wished to reply to it, you
might give the command:

reply

Mail responds by typing:
To: root Subject: Re: Tuition fees

and waiting for you to enter your letter. You are now in the message collection mode described at the begin-
ning of this section and Mail will gather up your message up to a control.d. Note that it copies the subject
header from the original message. This is useful in that correspondence about a particular matter will tend to
retain the same subject heading, making it easy to recognize. If there are other header fields in the message,
the information found will also be used. For example, if the letter had a "To:" header listing several reci—
pients, Mail would arrange to send your replay to the same people as well. Similarly, if the original message
contained a "Ccz" (carbon copies to) field, Mall would send your reply to those users, too. Mail is careful,
though, not we send the message to you, even if you appear in the “To:" or "Ccz" field, unless you ask to be
included explicitly. See section 4 for more details.
Alter typing in your letter, the dialog with Mail might look like the following:

reply
To: root
Subject: Tuition fees

Thanks for the reminder
EOT
&

ND-60.328.1P EN

Mail Reference Manual ' US Dz9-5

The reply command is especim useful for sustaining extended conversations over the message system, with
other "listening" users receiving copies of the conversation. The reply command can be abbreviated to r.
Sometimes you will receive a message that has been sent to several people and wish to reply only to the per-
son who sent it. Reply with a capital R replies to a message, but sends a copy to the sender only.
If you wish, while reading your mail, to send a message to someone, but not as a reply to one of your mes-
sages, you can send the message directly with the mail command, which takes as arguments the names of the
recipients you wish to send to. For example, to send a message to "frank", you would do:

mail frank
This is to confirm our meeting next Friday at 4.
EOT
&

The mail command can be abbreviated to m.

Normally, each message you receive is saved in the file mbox in your login directory at the time you leave
Mail. Often, however, you will not want to save a particular message you have received because it is only of
passing interest. To avoid saving a message in mbox you can delete it using the delete command. In our
example,

delete 1

will prevent Mail from saving message 1 (from root) in mbox. In addition to not saving deleted messages,
Mail will not let you type them, either. The effect is to make the message disappear altogether, along with its
number. The delete command can be abbreviated to simply d.
Many features of Mail can be tailored to your liking with the set command The set command has two forms,
depending on whether you are setting a binary option or a valued option. Binary options are either on or off.
For example, the "ask" option informs Mail that each time you send a message, you want it to prompt you for
a subject header, to be included in the message. To set the "ask" option, you would type

set ask

Another useful Mail option is "hold". Unless told otherwise, Mail moves the messages from your system
mailbox to the file mbox in your home directory when you leave Mail. If you want Mail to keep your letters
in the system mailbox instead, you can set the "hold" option.
Valued options are values which Mail uses to adapt to your tastes. For example, the "SHELL" option tells
Mail which shell you like to use, and is specified by

set SHELL = /bin/csh
for example. Note that no spaces are allowed in "SHELL:/bin/csh". A complete list of the Mail options
appears in section 5.

Another important valued option is "crt". If you use a fast video terminal, you will find that when you print
long messages, they fly by too quickly for you to read them. With the "on" option, you can make Mail print
any message larger than a given number of lines by sending it through the paging program more. For exam-
ple, most CRT users should do:

set crt=24

to paginate messages that will not fit on their screens. More prints a screenful of information, then types
——MORE--. Type a space to see the next screenful.
Another adaptation to user needs that Mail provides is that of aliases. An alias is simply a name which stands
for one or more real user names. Mail sent to an alias is really sent to the list of real users associated with it.
For example, an alias can be defined for the members of a project, so that you can send mail to the whole pro-
ject by sending mail to just a single name. The alias command in Mail defines an alias. Suppose that the
users in a project are named Sam, Sally, Steve, and Susan. To define an alias called "project" for them, you
would use the Mail command:

alias project sam sally Steve susan
The alias command can also be used to provide a convenient name for someone whose user name is incon-
venient. For example, if a user named "Bob Anderson" had the login name "anderson", you might want to
use:

ND-60.328.1P EN

USD:96 ' Mail Reference Manual

alias bob anderson

so that you could send mail to the shorter name, "bob".
While the alias and set commands allow you to customize Mail, they have the drawback that they must be
retyped each time you enter Mail. To make them more convenient to use, Mail always looks for two files
when it is invoked. It first reads a system wide file "lusr/lib/h/Lailrc", then a user specific file, ".mailrc" which
is found in the user’s home directory. The system wide file is maintained by the system administrator and con-
tains set commands that are applicable to all users of the system. The ".mailrc" file is usually used by each
user to set options the way he likes and define individual aliases. For example, my .mailrc file looks like this:

set ask nosave SPIEl/bin/csh
As you can see, it is possible to set many options in the same set command. The "nosave" option is described
in section 5.

Mail aliasing is implemented at the system-wide level by the mail delivery system sendmail. These aliases are
stored in the file /usr/1ib/aliases and are accessible to all users of the system. The lines in /usr/lib/aliases are of
the form:

alias: namel, name2, name3

where alias is the mailing list name and the name, are the members of the list Long lists can be continued
onto the next line by starting the next line with a space or tab. Remember that you must execute the shell
command newaliases after editing /usr/lib/aliases since the delivery system uses an indexed file created by
newaliases.
We have seen that Mail can be invoked with command line arguments which are people to send the message
to, or with no arguments to read mail. Specifying the 4‘ flag on the command line causes Mail to read mes-
sages from a file other than your system mailbox. For example, if you have a collection of messages in the file
"letters" you can use Mail to read them with:

% Mail —f letters
You can use all the Mail commands described in this document to examine, modify, or delete messages from
your "letters" file, which will be rewritten when you leave Mail with the quit command described below.
Since mail that you read is saved in the file mbox in your home directory by default, you can read mbox in
your home directory by using simply

% Mail —f
Normally, messages that you examine using the type command are saved in the file "mbox" in your home
directory if you leave Mail with the quit command described below. If you wish to retain a message in your
system mailbox you can use the preserve command to tell Mail to leave it there. The preserve command
accepts a list of message numbers, just like type and may be abbreviated to pre.
Messages in your system mailbox that you do not examine are normally retained in your system mailbox
automatically. If you wish to have such a message saved in mbox without reading it, you may use the mbox
command to have them so saved. For example,

mbox 2

in our example would cause the second message (from sam) to be saved in mbox when the quit command is
executed. Mbox is also the way to direct messages to your mbox file if you have set the "hold" option
described above. Mbox can be abbreviated to mb.
When you have perused all the messages of interest, you can leave Mail with the quit command, which saves
the messages you have typed but not deleted in the file mbox in your login directory. Deleted messages are
discarded irretrievably, and messages left untouched are preserved in your system mailbox so that you will see
them the next time you type:

% Mail

The quit command can be abbreviated to simply q.
If you wish for some reason to leave Mail quickly without altering either your system mailbox or mbox, you
can type the x command (short for exit), which will immediately return you to the Shell without changing any-
thing.

ND-60.328.1P EN

Mail Reference Manual ' US D:9-7

If, instead, you want to execute a Shell command without leaving Mail, you can type the command precededby an exclamation point, just as in the text editor. Thus, for instance:
ldate

will print the current date without leaving Mail.
Finally, the help command is available to print out a brief summary of the Mail commands, using only thesingle character command abbreviations.

3. MAINTAINING FOLDERS
Mail includes a simple facility for maintaining groups of messages together in folders. This section describes
this facility.
To use the folder facility, you must tell Mail where you wish to keep your folders. Each folder of messages
will be a single file. For convenience, all of your folders are kept in a single directory of your choosing. Totell Mail where your folder directory is, put a line of the form

set folderzletters
in your .mailrc file. If, as in the example above, your folder directory does not begin with a ‘/,’ Mail will
assume that your folder directory is to be found starting from your home directory. Thus, if your home direc~tory is /usr/person the above example told Mail to find your folder directory in /usr/person/letters.
Anywhere a file name is expected, you can use a folder name, preceded with ‘+.’ For example, to put a mes-sage into a folder with the save command, you can use:

save +classwork

to save the current message in the classwork folder. If the classwork folder does not yet exist, it will be
created. Note that messages which are saved with the save command are automatically removed from your
system mailbox.
In order to make a copy of a message in a folder without causing that message to be removed from your sys-
tem mailbox, use the copy command, which is identical in all other respects to the save command. For exam-
ple,

copy +classwork
copies the current message into the classwork folder and leaves a copy in your system mailbox.
The folder command can be used to direct Mail to the contents of a different folder. For example,

folder +classwork
directs Mail to read the contents of the classwork folder. All of the commands that you can use on your sys-tem mailbox are also applicable to folders, including type, delete, and reply. To inquire which folder you are
currently editing, use simply:

folder

To list your current set of folders, use the folders command.
To start Mail reading one of your folders, you can use the —f option described in section 2. For example:

% Mail —f +classwork
will cause Mail to read your classwork folder without looking at your system mailbox.

4. MORE ABOUT SENDING MAIL

4.1. Tilde escapes
While typing in a message to be sent to others, it is often useful to be able to invoke the text editor on the par-
tial message, print the message, execute a shell command, or do some other auxiliary function. Mail provides
these capabilities through tilde escapes, which consist of a tilde (~) at the beginning of a line, followed by asingle character which indicates the function to be performed. For example, to print the text of the message so
far, use:

"P

ND~60.328.1P EN

US D29—8 I Mail Reference Manual

which will print a line of dashes, the recipients of your message, and the text of the message so far. Since
Mail requires two consecutive RUBOUT’s to abort a letter, you can use a single RUBOUT to abort the output of
~p or any other ~ escape without killing your letter.

If you are dissatisfied with the message as it stands, you can invoke the text editor on it using the escape
"C

which causes the message to be copied into a temporary file and an instance of the editor to be spawned. After
modifying the message to your satisfaction, write it out and quit the editor. Mail will respond by typing

(continue)

after which you may continue typing text which will be appended to your message, or type <control-d> to end
the message. A standard text editor is provided by Mail. You can override this default by setting the valued
option "EDITOR" to something else. For example, you might prefer:

set EDITOR=/usr/ucb/ex

Many systems offer a screen editor as an alternative to the standard text editor, such as the vi editor from UC
Berkeley. To use the screen, or visual editor, on your current message, you can use the escape,

~V

~v works like ~e, except that the screen editor is invoked instead A default screen editor is defined by Mail.
If it does not suit you, you can set the valued option "VISUAL" to the path name of a different editor.
It is often useful to be able to include the contents of some file in your message; the escape

~r filename

is provided for this purpose, and causes the named file to be appended to your current message. Mail com-
plains if the file doesn’t exist or can’t be read. If the read is successful, the number of lines and characters
appended to your message is printed, after which you may continue appending text. The filename may contain
shell metacharacters like * and ? which are expanded according to the conventions of your shell.
As a special case of ~r, the escape

~d
reads in the file "deadletter" in your home directory. This is often useful since Mail copies the text of your
message there when you abort a message with RUBOUT.
To save the current text of your message on a file you may use the

~w filename

escape. Mail will print out the number of lines and characters written to the file, after which you may continue
appending text to your message. Shell metacharacters may be used in the filename, as in ~r and are expanded
with the conventions of your shell.
if you are sending mail from within Mail’s command mode you can read a message sent to you into the mes-
sage you are constructing with the escape:

~m4

which will read message 4 into the current message, shifted right by one tab stop. You can name any non-
deleted message, or list of messages. Messages can also be forwarded without shifting by a tab stop with ~f.
This is the usual way to forward a message.

If, in the process of composing a message, you decide to add additional people to the list of message reci~
pients, you can do so with the escape

~t namel name2

You may name as few or many additional recipients as you wish. Note that the users originally on the reci-
pient list will still receive the message; you cannot remove someone from the recipient list with ~t.
If you wish, you can associate a subject with your message by using the escape

~s Arbitrary string of text

which replaces any previous subject with "Arbitrary suing of text." The subject, if given, is sent near the top
of the message prefixed with "Subject" You can see what the message will look like by using ~p.

ND-60.328.1P EN

Mail Reference Manual ' USDz9-9

For political reasons, one occasionally prefers to list cenain people as recipients of carbon copies of a message
rather than direct recipients. The escape

~c namel name2
adds the named people to the "Ccz" list, similar to ~t. Again, you can execute ~p to see what the messagewill look like.
The recipients of the message together constitute the "T02" field, the subject the "Subject" field, and the car-bon copies the "Ccz" field. If you wish to edit these in ways impossible with the ~t, ~s, and ~c escapes, you
can use the escape

~h
which prints "To:" followed by the current list of recipients and leaves the cursor (or printhead) at the end ofthe line. If you type in ordinary characters, they are appended to the end of the current list of recipients. You
can also use your erase character to erase back into the list of recipients, or your kill character to erase them
altogether. Thus, for example, if your erase and kill characters are the standard # and @ symbols,

~h
To: root kurt####bill

would change the initial recipients "root kurt" to "root bill." When you type a newline, Mail advances to the
"Subject" field, where the same mles apply. Another newline brings you to the "Cc:" field, which may beedited in the same fashion. Another newline leaves you appending text to the end of your message. You canuse ~p to print the current text of the header fields and the body of the message.
To effect a temporary escape to the shell, the escape

~!command
is used, which executes command and retums you to mailing mode without altering the text of your message.
If you wish, instead, to filter the body of your message through a shell command, then you can use

~lcommand

which pipes your message through the command and uses the output as the new text of your message. if the
command produces no output, Mail assumes that something is amiss and retains the old version of your mes-
sage. A frequently—used filter is the command fmt, designed to format outgoing mail.
To effect a temporary escape to Mail command mode instead, you can use the

~:Mail command
escape. This is especially useful for retyping the message you are replying to, using, for example:

~:t
It is also useful for setting options and modifying aliases.
If you wish (for some reason) to send a message that contains a line beginning with a tilde, you must double it
Thus, for example,

“This line begins with a tilde.
sends the line

~This line begins with a tilde.

Finally, the escape
~?

prints out a brief summary of the available tilde escapes.
On some terminals (particularly ones with no lower case) tilde’s are difficult to type. Mail allows you to
change the escape character with the "escape" option. For example, I set

set escape:}
and use a right bracket instead of a tilde. if I ever need to send a line beginning with right bracket, I double it,
just as for ~. Changing the escape character removes the special meaning of ~.

ND—60.328.lP EN

USD29-10 ’ Mail Reference Manual

4.2. Network access

This section describes how to send mail to people on other machines. Recall that sending to a plain login
name sends mail to that person on your machine. If your machine is directly (or sometimes, even, indirectly)
connected to the Arpanet, you can send messages to people on the Arpanet using a name of the form

name@ host

where name is the login name of the person you're trying to reach and host is the name of the machine where
he logs in on the Arpanet.

If your recipient logs in on a machine connected to yours by UUCP (the Bell Laboratories supplied network
that communicates over telephone lines), sending mail to him is a bit more complicated. You must know the
list of machines through which your message must travel to arrive at his site. So, if his machine is directly
connected to yours, you can send mail to him using the syntax:

host! name

where, again, host is the name of his machine and name is his login name. If your message must go through
an intermediate machine first, you must use the syntax:

intermediate! hostlname

and so on. It is actually a feature of UUCP that the map of all the systems in the network is not known any-
where (except where people decide to write it down for convenience). Talk to your system administrator about
the machines connected to your site.
If you want to send a message to a recipient on the Berkeley network (Berknet), you use the syntax:

host'name

where host is his machine name and name is his login name. Unlike UUCP, you need not know the names of
the intermediate machines.

When you use the reply command to respond to a letter, there is a problem of figuring out the names of the
users in the "To:" and "Cc:" lists relative to the current machine. If the original letter was sent to you by
someone on the local machine, then this problem does not exist, but if the message came from a remote
machine, the problem must be dealt with. Mail uses a heuristic to build the correct name for each user relative
to the local machine. So, when you reply to remote mail, the names in the "T02" and "Cc:" lists may change
somewhat.

4.3. Special recipients
As described previously, you can send mail to either user names or alias names. It is also possible to send
messages directly to files or to programs, using special conventions. if a recipient name has a ‘/’ in it or
begins with a ‘+‘, it is assumed to be the path name of a file into which to send the message. If the file
already exists, the message is appended to the end of the file. If you want to name a file in your current direc-
tory (ie, one for which a ‘/’ would not usually be needed) you can precede the name with ‘./’ So, to send mail
to the file "memo" in the current directory, you can give the command:

% Mail ./memo

If the name begins with a ‘+,’ it is expanded into the full path name of the folder name in your folder direc-
tory. This ability to send mail to files can be used for a variety of purposes, such as maintaining a journal and
keeping a record of mail sent to a certain group of users. The second example can be done automatically by
including the full pathname of the record file in the alias command for the group. Using our previous alias
example, you might give the command:

alias project sarn sally steve susan /usr/project/mail_record
Then, all mail sent to "project" would be saved on the file "/usr/project/mail_record" as well as being sent to
the members of the project This file can be examined using Mail —f.
It is sometimes useful to send mail directly to a program, for example one might write a project billboard pro-
gram and want to access it using Mail. To send messages to the billboard program, one can send mail to the
special name ‘lbillboard’ for example. Mail treats recipient names that begin with a ‘l’ as a program to send
the mail to. An alias can be set up to reference a ‘l’ prefaced name if desired. Caveats: the shell treats ‘l’
specially, so it must be quoted on the command line. Also, the ‘I program’ must be presented as a single argu-
ment to mail. The safest course is to surround the entire name with double quotes. This also applies to usage

ND-60.328.1P EN

Mail Reference Manual ' USDz9-1 l

in the alias command. For example, if we wanted to alias ‘rrnsgs' to ‘rmsgs -s’ we would need to say:
alias rmsgs "I nnsgs -s"

5. ADDITIONAL FEATURES
This section describes some additional commands of use for reading your mail, setting options, and handling
lists of messages.

5.1. Message lists

Several Mail commands accept a list of messages as an argument. Along with type and delete, described in
section 2, there is the from command, which prints the message headers associated with the message list
passed to it. The from command is particularly useful in conjunction with some of the message list features
described below.
A message list consists of a list of message numbers, ranges, and names, separated by spaces or tabs. Mes-
sage numbers may be either decimal numbers, which directly specify messages, or one of the special characters
"T" "." or "$" to specify the first relevant, current, or last relevant message, respectively. Relevant here
means, for most commands "not deleted" and "deleted" for the undelete command.
A range of messages consists of two message numbers (of the form described in the previous paragraph)
separated by a dash. Thus, to print the first four messages, use

type 1—4

and to print all the messages from the current message to the last message, use
type :3

A name is a user name. The user names given in the message list are collected together and each message
selected by other means is checked to make sure it was sent by one of the named users. If the message con-
sists entirely of user names, then every message sent by one those users that is relevant (in the sense described
earlier) is selected. Thus, to print every message sent to you by "root," do

type root

As a shorthand notation, you can specify simply "*" to get every relevant (same sense) message. Thus,
type *

prints all undeleted messages,
delete *

deletes all undeleted messages, and
undelete *

undeletes all deleted messages.
You can search for the presence of a word in subject lines with /. For example, to print the headers of all mes-
sages that contain the word "PASCAL," do:

from /pascal

Note that subject searching ignores upper/lower case differences.

5.2. List of commands

This section describes all the Mail commands available when receiving mail.
! Used to preface a command to be executed by the shell.
- The - command goes to the previous message and prints it. The — command may be given a

decimal number n as an argument, in which case the nth previous message is gone to and
printed.

Print Like print, but also print out ignored header fields. See also print and ignore.
Reply Note the capital R in the name. Frame a reply to a one or more messages. The reply (or replies

if you are using this on multiple messages) will be sent ONLY to the person who sent you the
message (respectively, the set of people who sent the messages you are replying to). You can

ND-60.328.1P EN

USDz9-12

Type

alias

alternates

chdir

copy

delete

dt

edit

else

endif

exit

file

folders

folder

Mail Reference Manual

add people using the ~t and ~c tilde escapes. The subject in your reply is formed by prefacing
the subject in the original message with "Rez" unless it already began thus. If the original mes-
sage included a "reply-to" header field, the reply will go only to the recipient named by "reply-
to." You type in your message using the same conventions available to you through the mail
command. The Reply command is especially useful for replying to messages that were sent to
enormous distribution groups when you really just want to send a message to the originator.
Use it often.
Identical to the Print command

Define a name to stand for a set of other names. This is used when you want to send messages
to a certain group of people and want to avoid retyping their names. For example

alias project john sue willie kathryn
creates an alias project which expands to the four people John, Sue, Willie, and Kathryn.
If you have accounts on several machines, you may find it convenient to use the /usr/lib/aliases
on all the machines except one to direct your mail to a single account. The alternates com-
mand is used to inform Mail that each of these other addresses is really you. Alternates takes a
list of user names and remembers that they are all actually you. When you reply to messages
that were sent to one of these alternate names, Mail will not bother to send a copy of the mes-
sage to this other address (which would simply be directed back to you by the alias mechanism).
If alternates is given no argument, it lists the current set of alternate names. Alternates is usu‘
ally used in the .mailrc file.
The chdir command allows you to change your current directory. Chdir takes a single argu-
ment, which is taken to be the pathname of the directory to change to. If no argument is given,
chdir changes to your home directory.
The copy command does the same thing that save does, except that it does not mark the mes-
sages it is used on for deletion when you quit
Deletes a list of messages. Deleted messages can be reclaimed with the undelete command
The dt command deletes the current message and prints the next message. It is useful for
quickly reading and disposing of mail.
To edit individual messages using the text editor, the edit command is provided. The edit com-
mand takes a list of messages as described under the type command and processes each by writ-
ing it into the file Messagex where x is the message number being edited and executing the text
editor on it When you have edited the message to your satisfaction, write the message out and
quit, upon which Mail will read the message back and remove the file. Edit may be abbrevi-
ated to e.

Marks the end of the then-part of an if statement and the beginning of the part to take effect if
the condition of the if statement is false.
Marks the end of an if statement.
Leave Mail without updating the system mailbox or the file your were reading. 'Ihus, if you
accidentally delete several messages, you can use exit to avoid scrambling your mailbox.
The same as folder.

List the names of the folders in your folder directory.
The folder command switches to a new mail file or folder. With no arguments, it tells you
which file you are currently reading. If you give it an argument, it will write out changes (such
as deletions) you have made in the current file and read the new file. Some special conventions
are recognized for the name:

ND-60.328.1P EN

Mail Reference Manual ’ USD:9-13

from

headers

help

hold

if

ignore

list

local

Name Meaning
Previous file read
% Your system mailbox
%name Name’s system mailbox
& Your ~/mbox file
+folder A file in your folder directory

The from command takes a list of messages and prints out the header lines for each one; hence
from joe

is the easy way to display all the message headers from "joe".
When you start up Mail to read your mail, it lists the message headers that you have. These
headers tell you who each message is from, when they were sent, how many lines and charac-
ters each message is, and the “Subject" header field of each message, if present. In addition,
Mail tags the message header of each message that has been the object of the preserve com—
mand with a “P." Messages that have been saved or written are flagged with a "*" Finally,
deleted messages are not printed at all. If you wish to reprint the current list of message
headers, you can do so with the headers command. The headers command (and thus the initial
header listing) only lists the first so many message headers. The number of headers listed
depends on the speed of your terminal. This can be overridden by specifying the number of
headers you want with the window option. Mail maintains a notion of the current "window"
into your messages for the purposes of printing headers. Use the 2 command to move forward
and back a window. You can move Mail's notion of the current window directly to a particular
message by using, for example,

headers 40
to move Mail's attention to the messages around message 40. The headers command can be
abbreviated to h.
Print a brief and usually out of date help message about the commands in Mail. Refer to this
manual instead.
Arrange to hold a list of messages in the system mailbox, instead of moving them to the file
mbox in your home directory. If you set the binary option hold, this will happen by default.
Commands in your ".mailrc" file can be executed conditionally depending on whether you are
sending or receiving mail with the if command. For example, you can do:

if receive
commands...

endif

An else form is also available:

if send
commands...

else
commands...

endif

Note that the only allowed conditions are receive and send.
Add the list of header fields named to the ignore list. Header fields in the ignore list are not
printed on your terminal when you print a message. This allows you to suppress printing of cer—
tain machine-generated header fields, such as Via which are not usually of interest The Type
and Print commands can be used to print a message in its entirety, including ignored fields. If
ignore is executed with no arguments, it lists the current set of ignored fields.
List the vaild Mail commands.

Define a list of local names for this host. This command is useful when the host is known by
more than one name. Names in the list may be qualified be the domain of the host. The first

ND-60.328.1P EN

USD19—l4

mail

mbox

next

preserve
quit

reply

save

Mail Reference Manual

name on the local list is the distinguished name of the host The names on the local list are
used by Mail to decide which addresses are local to the host For example:

local ucbarpa.BERKELEY.ARPA arpa.BERKELEY.ARPA \
arpavax.BERKELEY.ARPA LBERKELEYARPA \
ucb~arpa.ARPA

From this list we see that fred@ucbarpa.BERKELEYARPA, harold@arpaBERKELEY, and
Iarry@r are all addresses of users on the local host. The local command is usually not used be
general users since it is designed for local configuration; it is usually found in the file
/usr/lib/Mail.rc.
Send mail to one or more people. If you have the ask option set, Mail will prompt you for a
subject to your message. Then you can type in your message, using tilde escapes as described
in section 4 to edit, print, or modify your message. To signal your satisfaction with the message
and send it, type control—d at the beginning of a line, or a . alone on a line if you set the option
dot. To abort the message, type two interrupt characters (RUBOUT by default) in a row or use
the ~q escape.

Indicate that a list of messages be sent to mbox in your home directory when you quit. This is
the default action for messages if you do not have the hold option set
The next command goes to the next message and types it. If given a message list, next goes to
the first such message and types it. Thus,

l'lCXl. l'OOl

goes to the next message sent by "root" and types it. The next command can be abbreviated to
simply a newline, which means that one can go to and type a message by simply giving its mes—
sage number or one of the magic characters "T" or "".S Thus,

prints the current message and
4

prints message 4, as described previously.
Same as hold. Cause a list of messages to be held in your system mailbox when you quit
Leave Mail and update the file, folder, or system mailbox your were reading. Messages that
you have examined are marked as "read" and messages that existed when you started are
marked as "old." If you were editing your system mailbox and if you have set the binary option
hold, all messages which have not been deleted, saved, or mboxed will be retained in your sys-
tem mailbox. If you were editing your system mailbox and you did not have hold set, all mes-
sages which have not been deleted, saved, or preserved will be moved to the file mbox in your
home directory.

Frame a reply to a single message. The reply will be sent to the person who sent you the mes-
sage to which you are replying, plus all the people who received the original message, except
you. You can add people using the ~t and ~c tilde escapes. The subject in your reply is formed
by prefacing the subject in the original message with "Re:" unless it already began thus. If the
original message included a "reply-to" header field, the reply will go only to the recipient
named by "reply—to." You type in your message using the same conventions available to you
through the mail command.
It is often useful to be able to save messages on related topics in a file. The save command
gives you ability to do this. The save command takes as argument a lit of message numbers.
followed by the name of the file on which to save the messages. The messages are appended to
the named file, thus allowing one to keep several messages in the file, stored in the order they
were put there. The save command can be abbreviated to s. An example of the save command
relative to our running example is:

s l 2 tuitionmail

Saved messages are not automatically saved in mbox at quit time, nor are they selected by the
next command described above, unless explicitly specified.

ND-60.328.1P EN

Mail Reference Manual ‘ USDz9-15

set

shell

SOUFCC

top

type

undelete

unset

visual

write

Set an option or give an option a value. Used to customize Mail. Section 5.3 contains a list of
the options. Options can be binary, in which case they are on or off, or valued. To set a
binary option option on , do

set option

To give the valued option option the value value , do
set optionzvalue

Several options can be specified in a single set command.
The shell command allows you to escape to the shell. Shell invokes an interactive shell and
allows you to type commands to it. When you leave the shell, you will return to Mail. The
shell used is a default assumed by Mail; you can override this default by setting the valued
option "SHELL," eg:

set SHELL—t/bin/csh

The source command reads Mail commands from a file. It is useful when you are trying to fix
your ".mailrc" file and you need to re-read it.
The top command takes a message list and prints the first five lines of each addressed message.
It may be abbreviated to to. If you wish, you can change the number of lines that top prints out
by setting the valued option "toplines." On a CRT terminal,

set toplines=10
might be preferred.
Print a list of messages on your terminal. if you have set the option or: to a number and the
total number of lines in the messages you are printing exceed that specified by art , the messages
will be printed by a terminal paging program such as more.
The undelete command causes a message that had been deleted previously to regain its initial
status. Only messages that have been deleted may be undeleted. This command may be abbrea
viated to u.

Reverse the action of setting a binary or valued option.
It is often useful to be able to invoke one of two editors, based on the type of terminal one is
using. T0 invoke a display oriented editor, you can use the visual command. The operation of
the visual command is otherwise identical to that of the edit command.
Both the edit and visual commands assume some default text editors. These default editors can
be overridden by the valued options "EDITOR" and ”VISUAL" for the standard and screen edi—
tors. You might want to do:

set EDITOR=/usr/ucb/ex VlSUAL:/usr/ucb/vi

The save command always writes the entire message, including the headers, into the file. If you
want to write just the message itself, you can use the write command. The write command has
the same syntax as the save command, and can be abbreviated to simply w. Thus, we could
write the second message by doing:

w 2 file.c

As suggested by this example, the write command is useful for such tasks as sending and
receiving source program text over the message system.
Mail presents message headers in windowfuls as described under the headers command. You
can move Mail's attention forward to the next window by giving the

2+

command. Analogously, you can move to the previous window with:
Z.—

ND—60.328.1P EN

USDz9-16 Mail Reference Manual

5.3. Custom options

Throughout this manual, we have seen examples of binary and valued options. This section describes each of
the options in alphabetical order, including some that you have not seen yet. To avoid confusion, please note
that the options are either all lower case letters or all upper case letters. When I start a sentence such as:
"Ask" causes Mail to prompt you for a subject header, 1 am only capitalizing "ask" as a courtesy to English.

EDITOR

SHELL

VISUAL

append

ask

askcc

autoprint

debug

dot

escape

folder

hold

ignore

ignoreeof

keep

The valued option "EDITOR" defines the pathname of the text editor to be used in the edit
command and ~e. If not defined, a standard editor is used.

The valued option "SHELL" gives the path name of your shell. This shell is used for the I
command and ~! escape. In addition, this shell expands file names with shell metacharacters
like * and ? in them.
The valued option "VISUAL" defines the pathname of your screen editor for use in the visual
command and ~v escape. A standard screen editor is used if you do not define one.
The "append" option is binary and causes messages saved in mbox to be appended to the end
rather than prepended. Normally, Mail will mbox in the same order that the system puts mes-
sages in your system mailbox. By setting "append" you are requesting that mbox be appended
to regardless. It is in any event quicker to append.
"Ask" is a binary option which causes Mail to prompt you for the subject of each message you
send. If you respond with simply a newline, no subject field will be sent.
"Askec" is a binary option which causes you to be prompted for additional carbon copy reci—
pients at the end of each message. Responding with a newline shows your satisfaction with the
current list.
"Autoprint" is a binary option which causes the delete command to behave like dp — thus,
after deleting a message, the next one will be typed automatically. This is useful to quickly
scanning and deleting messages in your mailbox.
The binary option "debug" causes debugging information to be displayed. Use of this option is
the same as using the —d command line flag.
"Dot" is a binary option which, if set, causes Mail to interpret a period alone on a line as the
terminator of a message you are sending.
To allow you to change the escape character used when sending mail, you can set the valued
option "escape." Only the first character of the "escape' option is used, and it must be doubled
if it is to appear as the first character of a line of your message. If you change your escape
character, then ~ loses all its special meaning, and need no longer be doubled at the beginning
of a line.

The name of the directory to use for storing folders of messages. If this name begins with a ‘/’
Mail considers it to be an absolute pathname; otherwise, the folder directory is found relative to
your home directory.
The binary option "hold" causes messages that have been read but not manually dealt with to be
held in the system mailbox. This prevents such messages from being automatically swept into
your mbox.

The binary option "ignore" causes RUBOUT characters from your terminal to be ignored and
echoed as @’s while you are sending mail. RUBOUT characters retain their original meaning in
Mail command mode. Setting the "ignore" option is equivalent to supplying the —i flag on the
command line as described in section 6.
An option related to "dot" is "ignoreeof' which makes Mail refuse to accept a control—d as the
end of a message. "lgnoreeot" also applies to Mail command mode.
The "keep" option causes Mail to truncate your system mailbox instead of deleting it when it is
empty. This is useful if you elect to protect your mailbox, which you would do with the shell
command:

chmod 600 /usr/spool/mail/youmame

ND-60.328.1P EN

Mail Reference Manual ' USDz9-17

keepsave

metoo

noheader

nosave

quiet

record

screen

sendmail

toplines

verbose

where youmame is your login name. If you do not do this, anyone can probably read your
mail, although people usually don’t.
When you save a message, Mail usually discards it when you quit. To retain all saved mes-
sages, set the "keepsave" option.
When sending mail to an alias, Mail makes sure that if you are included in the alias, that mail
will not be sent to you. This is useful if a single alias is being used by all members of the
group. If however, you wish to receive a copy of all the messages you send to the alias, you
can set the binary option "metoo."
The binary option “noheader” suppresses the printing of the version and headers when Mail is
first invoked. Setting this option is the same as using —N on the command line.
Normally, when you abort a message with two RUBOUTs, Mail copies the partial letter to the file
"deadletter" in your home directory. Setting the binary option "nosave" prevents this.
The binary option "quiet" suppresses the printing of the version when Mail is first invoked, as
well as printing the for example "Message 4:" from the type command.
If you love to keep records, then the valued option "record" can be set to the name of a file to
save your outgoing mail. Each new message you send is appended to the end of the file.
When Mail initially prints the message headers, it determines the number to print by looking at
the speed of your terminal. The faster your terminal, the more it prints. The valued option
"screen" overrides this calculation and specifies how many message headers you want printed.
This number is also used for scrolling with the 2 command.
To alternate delivery system, set the "sendmail" option to the full pathname of the program to
use. Note: this is not for everyone! Most people should use the default delivery system.
The valued option "toplines" defines the number of lines that the "top" command will print out
instead of the default five lines.
The binary option "verbose" causes Mail to invoke sendmail with the —v flag, which causes it to
go into versbose mode and announce expansion of aliases, etc. Setting the "verbose" option is
equivalent to invoicing Mail with the -v flag as described in section 6.

6. COMMAND LINE OPTIONS
This section describes command line options for Mail and what they are used for.
~N

—d

—f file

-i

—n

—s string

-U name

-'V

Suppress the initial printing of headers.
Turn on debugging information. Not of general interest.
Show the messages in file instead of your system mailbox. Iffile is omitted, Mail reads mbox
in your home directory.
Ignore tty interrupt signals. Useful on noisy phone lines, which generate spurious RUBOUT or
DELETE characters. It’s usually more effective to change your interrupt character to control—c,
for which see the stty shell command.
Inhibit reading of /usr/lib/Mail.rc. Not generally useful, since /usr/lib/Mail.rc is usually empty.
Used for sending mail. String is used as the subject of the message being composed. lf string
contains blanks, you must surround it with quote marks.
Read names’s mail instead of your own. Unwitting others often neglect to protect their mail-
boxes, but discretion is advised. Essentially, -u user is a shorthand way of doing —f
lusr/spool/user.
Use the -v flag when invoking sendmail. This feature may also be enabled by setting the the
option "verbose".

The following command line flags are also recognized, but are intended for use by programs invoking Mail
and not for people.
—T file Arrange to print on file the contents of the article-id fields of all messages that were either read

or deleted. -T is for the readnews program and should NOT be used for reading your mail.

ND—60.328.l P EN

USD:9«18 ’ Mail Reference Manual

—h number Pass on hop count information. Mail will take the number, increment it, and pass it with -—h to
the mail delivery system. -h only has effect when sending mail and is used for network mail
forwarding.

—r name Used for network mail forwarding: interpret name as the sender of the message. The name
and —r are simply sent along to the mail delivery system. Also, Mail will wait for the message
to be sent and return the exit status. Also restricts formatting of message.

Note that —h and -—r, which are for network mail forwarding, are not used in practice since mail forwarding is
now handled separately. They may disappear soon.

7. FORMAT OF MESSAGES
This section describes the format of messages. Messages begin with a from line, which consists of the word
"From" followed by a user name, followed by anything, followed by a date in the format returned by the crime
library routine described in section 3 of the Unix Programmer’s Manual. A possible crime format date is:

Tue Dec 1 10:58:23 1981

The crime date may be optionally followed by a single space and a time zone indication, which should be
three capital letters, such as PDT.

Following the from line are zero or more headerfield lines. Each header field line is of the form:
name: information

Name can be anything, but only certain header fields are recognized as having any meaning. The recognized
header fields are: article-id, bcc, cc, from, reply~t0, sender, subject, and to. Other header fields are also
significant to other systems; see, for example, the current Arpanet message standard for much more on this
topic. A header field can be continued onto following lines by making the first character on the following line
a space or tab character.
If any headers are present, they must be followed by a blank line. The part that follows is called the body of
the message, and must be ASCII text, not containing null characters. Each line in the message body must be
terminated with an ASCII newline character and no line may be longer than 512 characters. If binary data
must be passed through the mail system, it is suggested that this data be encoded in a system which encodes
six bits into a printable character. For example, one could use the upper and lower case letters, the digits, and
the characters comma and period to make up the 64 characters. Then, one can send a 16-bit binary number as
three characters. These characters should be packed into lines, preferably lines about 70 characters long as
long lines are transmitted more efficiently.
The message delivery system always adds a blank line to the end of each message. This blank line must not
be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a message each time it is for-
warded through a machine.
It should be noted that some network transport protocols enforce limits to the lengths of messages.

8. GLOSSARY
This section contains the definitions of a few phrases peculiar to Mail.
alias An alternative name for a person or list of people.
flag An option, given on the command line of Mail, prefaced with a —. For example, —f is a flag.
header field At the beginning of a message, a line which contains information that is part of the structure of

the message. Popular header fields include to , cc, and subject.
mail A collection of messages. Often used in the phrase,
mailbox The place where your mail is stored, typically in the directory /usr/spool/mail.
message A single letter from someone, initially stored in your mailbox.
message list A string used in Mail command mode to describe a sequence of messages.
option A piece of special purpose information used to tailor Mail to your taste. Options are specified

with the set command.

ND-60.328.1P EN

Mail Reference Manual USDz9-l9

9. SUMMARY OF COMMANDS, OPTIONS AND ESCAPES
This section gives a quick summary of the Mail commands, binary and valued options, and tilde escapes.
The following table describes the commands:

Command
!

Print
Reply
Type
alias
alternates
chdir
COPY
delete
dt

, """- endif
edit
else
exit
file
folder
folders
from
headers
help
hold
if
ignore
list
local
mail
mbox
next
preserve
quit
reply
save
set
shell
top
type
undelete
unset
visual
write
2

Description
Single command escape to shell
Back up to previous message
Type message with ignored fields
Reply to author of message only
Type message with ignored fields
Define an alias as a set of user names
List other names you are known by
Change working directory, home by default
Copy a message to a file or folder
Delete a list of messages
Delete current message, type next message
End of conditional statement; see if
Edit a list of messages
Start of else part of conditional; see if
Leave mail without changing anything
Interrogate/change current mail file
Same as file
List the folders in your folder directory
List headers of a list of messages
List current window of messages
Print brief summary of Mail commands
Same as preserve
Conditional execution of Mail commands
Set/examine list of ignored header fields
List valid Mail commands
List other names for the local host
Send mail to specified names
Arrange to save a list of messages in mbox
Go to next message and type it
Arrange to leave list of messages in system mailbox
Leave Mail; update system mailbox, mbox as appropriate
Compose a reply to a message
Append messages, headers included, on a file
Set binary or valued options
Invoke an interactive shell
Print first so many (5 by default) lines of list of messages
Print messages
Undelete list of messages
Undo the operation of a set
Invoke visual editor on a list of messages
Append messages to a file, don’t include headers
Scroll to next/previous scrwnful of headers

ND-60.328.1P EN

USDz9-2O Mail Reference Manual

The following table describes the options. Each option is shown as being either a binary or valued option.

Option Type Description
EDITOR valued Pathname of editor for ~e and edit
SHELL valued Pathname of shell for shell, ~! and !
VISUAL valued Pathname of screen editor for ~v, visual
aPPend binary Always append messages to end of mbox
ask binary Prompt user for Subject field when sending
askcc binary Prompt user for additional Cc’s at end of message
autoprint binary Print next message after delete
crt valued Minimum number of lines before using more
debug binary Print out debugging information
dot binary Accept . alone on line to terminate message input
escape valued Escape character to be used instead of ~
folder valued Directory to store folders in
hold binary Hold messages in system mailbox by default
ignore binary Ignore RUBOUT while sending mail
ignoreeof binary Don’t terminate letters/command input with TD
keep binary Don’t unlink system mailbox when empty
keepsave binary Don’t delete saved messages by default
metoo binary Include sending user in aliases
noheader binary Suppress initial printing of version and headers
nosave binary Don’t save partial letter in deadletter
quiet binary Suppress printing of Mail version and message numbers
record valued File to save all outgoing mail in
screen valued Size of window of message headers for 2, etc.
sendmail valued Choose alternate mail delivery system
toplines valued Number of lines to print in top
verbose binary Invoke sendmail with the —v flag

The following table summarizes the tilde escapes available while sending mail.

Escape Arguments Description
~! command Execute shell command
~c name Add names to Cc: field
~d Read deadletter into message
~e Invoke text editor on partial message
~f messages Read named messages
~h Edit the header fields
~m messages Read named messages, right shift by tab
~p Print message entered so far
~q Abort entry of letter; like RUBOUT
~r filename Read file into message
~s string Set Subject: field to string
~t name Add names to To: field
~v Invoke screen editor on message
~w filename Write message on file

ND—60.328. 1? EN

command Pipe message through command
string Quote a ~ in front of string

Mail Reference Manual USDz9-21

The following table shows the command line flags that Mail accepts:

Flag
—N
—Tfile
~d
—fflle
—h number
—i
—n
—r name
—s string
—u name
—V

Description
Suppress the initial printing of headers
Article-id’s of read/deleted messages to file
Turn on debugging
Show messages in file or ~/mbox
Pass on hop count for mail forwarding
Ignore tty interrupt signals
Inhibit reading of /usr/lib/Mail.rc
Pass on name for mail forwarding
Use string as subject in outgoing mail
Read name’s mail instead of your own
Invoke sendmail with the —v flag

Notes: -T, ——d, —h, and ~r are not for human use.

10. CONCLUSION
Mail is an attempt to provide a simple user interface to a variety of underlying message systems.

Thanks are due to the many users who contributed ideas and testing to Mail.

ND-60.328.1P EN

US Dz9-22 ‘ Mail Reference Manual

NED—60.328. 1 P EN

How to Read the Network News USD:lO-1

How to Read the Network News

Mark R. Horton

AT&T Bell Laboratories
Columbus, OH 43213

Revised by Rick Adamsfor 2.11

ABSTRACT

USENET (Users’ Network) is a bulletin board shared among many computer systems
around the world. USENET is a logical network, sitting on top of several physical net-

’’’’’ works, including UUCP, BUCN, BERKNET, X25 , and the ARPANET. Sites on USENET
include many universities, private companies, and research organizations. Most of the
members of USENET are either university computer science departments or part of AT&T.
Currently, there are over 50,000 participants at over 2,000 USENET sites in the USA,
Canada, Europe, Japan and Korea with more joining every day. Most are running the
UNl operating system.
The network news, or simply nemews, is the set of programs that provide access to the
news and transfer it from one machine to the next. Nemews was originally written at Duke
University and has been modified extensively by the University of California at Berkeley
and others. Nemews allows articles to be posted for limited or very wide distribution. This
document contains a list of newsgroups that were active at the time the document was writ-
ten. It exists to assist you in determining which newsgroups you may want to subscribe to.
When creating a new article, the level of distribution can be controlled by use of the "Distri-
bution" field. This will prevent notices of apartments for rent in New Jersey being broadcast
to California (or even Europe).
Any user can post an article, which will be sent out to the network to be read by persons
interested in that topic. You can specify which topics are of interest to you by putting them
in a subscription list. Then, whenever you ask to read news, the news reading program will

........ present all unread articles of interest. There are also facilities for browsing through old
news, posting follow—up articles, and sending direct electronic mail replies to the author of
an article.
This paper is a tutorial, aimed at the user who wants to read and possibly post news. The
system administrator who must install the software should see the companion document
USENET Version B InsialIation.

1' UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD210-2 ' How to Read the Network News

ND—60.328. 1 P EN

How to Read the Network News USD210~3

1. WHY USENET?
USENET is useful in a number of ways. Someone wishing to announce a new program or product can reach a
wide audience. A user can ask Does anyone have an x .7 and will usually get several responses within a day
or two. Bug reports and their fixes can be made quickly available without the usual overhead of sending out
mass mailings. Discussions involving many people at different locations can take place without having to get
everyone together.

Another facility with similar capabilities to netnews is the electronic mailing list. A mailing list is a collection
of electronic mailing addresses of users who are interested in a particular topic. By sending electronic mail to
the list, all users on the list receive a copy of the article. While the mailing list facility is quite useful,
USENET offers a number of advantages not present in mailing lists. Getting yourself on a mailing list is not
always easy. You have to figure out who maintains the list and ask them to put you on it. Often these people
are out of town or busy, and don't put you on the list for several days. Sometimes you have to send mail to
the entire mailing list, hoping that one of the readers will tell you who maintains the list. Once you are on the
list, you often find yourself in the middle of a discussion. Nemews keeps old articles around until they expire
(usually about two weeks) so you can browse through old news to catch up on what you missed. Similarly,
referring to an old article is easy, without having to keep a personal file of all old mail to the list.
Another advantage is appreciated by the other users of the system. There is less overhead in having only one
copy of each message sent to each machine, rather than having separate copies sent to each of several users on
the same machine. This cuts down on computer time to process the messages, and on—line costs for telephone
calls to transfer messages from one machine to another (when phone fines are used). Another advantage is in
the disk space consumed. When only one message is sent to each system, only one copy of the message is
kept on disk In a mailing list environment, each user has a copy in a mailbox. Of course, if the mailing list is
small enough the overhead is less than an international newsgroup.

2. HOW DO I READ NEWS?
In the USENET jargon, interest topics are called newsgroups. A newsgroup list appears in a later section,
current as this paper was written. You have your own subscription list of newsgroups to which you are said to
subscribe.

The simplest way to read news is to type the command:
readnews

Other possibilities include: a full-screen—oriented news reading program, vnews (described in the Appendix,)
the notesfile system, which can also be used for news (described in a separate paper,) and m, a very popular
news reading program distributed separately from this package. Each newsgroup to which you subscribe will
be presented, one article at a time. As each article is presented, you will be shown the header (containing the
name of the author, the subject, and the length of the article) and you will be asked if you want more. There
are a number of possible choices you can make at this point. The three most common —— y, n, and q —— are
suggested by the program. (T0 see a complete list of possible responses, type ? for help.) You can type y for
"yes” (or simply hit <RETURN> and the rest of the message will be displayed. (If the message is long, it may
stop before it runs off the top of the screen. Type <SPACE> or <RETURN> to see more of the message.
Another choice you can make is n for "no". This means you are not interested in the message — it will not be
offered to you again. A third option is q for "quit". This causes a record to be made of which articles you
read (or refused) and you will exit nemews. When you have read all the news, this happens automatically.
The q command is mainly useful if you are in a hurry and don't have time to read all the news right now.
(Many users put a readnews (l) or checknews (1) command in their .profile or .login files so that they will
see new news each time they log in.)
If you are reading news for the first time, you may find yourself swamped by the volume of unread news, espe—
cially if the default subscription is all. Don't let this bother you. If you are getting newsgroups in which you
have no interest, you can change your subscription list (see below). Also, bear in mind that what you see is
probably at least two weeks’ accumulation of news. If you want to just get rid of all old news and start anew,
UPC

readnews —K —n all
which will throw away all old news, recording that you have seen it all. Or, you can use the K command to
mark all articles in the current newsgroup as read.

ND-60.328.lP EN

USD: 1041 ' How to Read the Network News

Once you catch up with (or ignore) all the old news, the news will come in daily at a more manageable rate.
(If the daily rate is still too much you may wish to unsubscribe to some of the higher volume, less useful
newsgroups.) Finally, note that while an article is printing, you can hit your interrupt character (usually
<CONTROL-C> or <DELETE>, which will throw away the rest of the article.
Among the other commands you can type after seeing the header of an article are:
x Exit readnews. This is different from q in that the q command will update the record of

which articles you have read, but x will pretend you never started readnews.
N Go on to the next newsgroup. The remaining articles in the current newsgroup are considered

unread, and will be offered to you again the next time you read news.
8 file The article is saved in a disk file with the given name. In practice, what usually happens is

that an article is printed, and then readnews goes on to print the header of the next article
before you get a chance to type anything. So you usually want to write out the previous mes-
sage (the last one you have read in full); in this case, use the form s—filename.

e Erase the memory of having seen this article. It will be offered to you again next time, as
though you had never seen it. The variation (2— (erase memory of the previously read article
instead of the current article) is useful for checking follow-ups to see if anyone has already
said what you wanted to say.

r Reply to the author of the message. You will be placed in the editor, with a set of headers
derived from the message you are replying to. Type in your message after the blank line. If
you wish to edit the header list to add more recipients or send carbon copies, for instance, you
can edit the header lines. Anyone listed on a line beginning with "T0" or "Cc" will receive a
copy of your reply. Note that the path used to receive a piece of news may not be the fastest
way to reply by mail. If speed is important and you know a faster way, edit it in place of what
the reply command supplied. A mail command will then be started up, addressed to the per-
sons listed in the header. You are then returned to readnews. The case r— is also useful to
reply to the previous message. Another variation on this is rd— which puts you in SMAILER
(or mail (I) by default) to type in your reply directly.

f Post a follow-up message to the same newsgroup. This posts an article on this newsgroup with
the same title as the original article. Use common sense when posting follow-ups. (Read Matt
Bishop’s paper "How to use USENET Effectively" for extended discussion of when and when
not to post -- many follow-up articles should have just been replies.) You will be placed in the
editor. Enter your message and exit. The case f— is also useful to follow up the previous mes-
sage. In each case, the editor you are placed in will be vi (l) unless you set EDITOR (in your
environment) to some other editor. You should enter the text of the follow-up after the blank
line.

+ The article is skipped for now. The next time you read news, you will be offered this article
again.

— Go back to the previous article. This toggles, so that two — ’s get you the current article.
Back up one article in the current group. This is not necessarily the previous article.
Unsubscribe from this newsgroup. Your .newsrc (5) file will be edited to change the z for
that newsgroup to an ! preventing you from being shown that newsgroup again.
If you type any unrecognized command, a summary of valid commands will be printed.

C
cr

3. CHANGING YOUR SUBSCRIPTION LIST
If you take no special action you will subscribe to a default subscription list. This default varies locally. To
find out your local default, type

readnews —s
Typically this list will include all newsgroups ending in "general" or "announce", such as general, and
news.announce. (As distributed, the default is general,all.ann0unce . Another popular default is all).
You can change this by creating a file in your home directory named .newsrc which contains as its first line a
line of the form:

options —n newsgroup,newsgroup,newsgroup

ND-60.328.1P EN

How to Read the Network'News USDl—S

If your lines get too long, you can continue them on subsequent lines by beginning those lines with a space.
(The nemews system will put extra lines in this file to record which articles you have read. You should ignore
these lines unless you want to edit them. For example, if you are creating a subscription list for the first time,
and have already read news, you will find some text already in your .newsrc file, recording which articles you
have read. You should put your options line before the first line of the file.) Thus,

options —n general,news.announce,comp.human-nets
will subscribe to those three newsgroups.
An ! can be used to exclude certa'm newsgroups and the word all can be used as a wild card, representing any
newsgroup. You can also use all as a prefix or suffix to match a class of newsgroups. For example,

options ~n all,!talk,!rec.humor,!all.unix
will result in a subscription to all newsgroups except for "talk" group, jokes, and any UNIX information. The
metacharacter . is like / to the shell, and all is like *.
A simpler way to subscribe to news is to subscribe to all, and then use the U readnews command to unsub—
scribe to newsgroups you don’t want to read. This way you will see new newsgroups that are created, get a
chance to evaluate them, and then unsubscribe to those that don’t interest you.
The order of the newsgroups in your .newsrc (after the options line) is the order in which newsgroups will be
shown. If you want something other than the default, move the lines around until you are satisfied with the
order. Be careful to keep the options line as the first line in the file.

4. SUBMITTING ARTICLES
To submit a new news article type

postnews
First, it will ask you if this is a follow—up to an article. Answer yes or no. If yes, you really should have done
an I from readnews, but it will try and figure out which article you are following up to. It will ask for the
newsgroup in which you read the article and the article number. If you can’t remember, go back to readnews
and find out It is important that discussions are kept together. It is very frustrating for someone to read a
follow-up that says:

I agree.
If you answer no, postnewsU) will ask you for the subject of the new article. This should be as informative as
possible. For example, "'67 Porsche for sale in New Jersey" Is much better than "Car for sale” or even "For
sale" . It will then ask which newsgroups you want the article posted in. If you are unsure, type ? instead of
a specific newsgroup and it will show you the list of currently available groups. Then, you will be asked how
far your article should be distributed. It is important to keep this as small as possible to accomplish the pur-
pose of your article. Remember that many newsgroups are read in Europe, Australia, and Asia in addition to
the United States and Canada. It does no good (to use the previous example) to post a "Car for sale in New
Jersey" article with a distribution of world. There is almost no chance that a person in Sweden or Korea
would be interested in buying your car (even if it is a Porsche). It is a waste of money and computer resources
to transmit the article that far. For this specific case, the appropriate distribution would be nj or only in New
Jersey. If there were no local distribution available, at least it should be confined to usa. If you are unsure of
the distributions available at your site, type ? instead of a distribution and you will receive a fist of distribu-
tions valid for your site. If the distribution is world, your article will be read (perhaps with disgust) by
thousands of people around the world.
Then you will be placed in the editor. Enter the text of your article, after the blank line, and exit the editor.
The article will be posted to the newsgroups specified. If you change your mind about the headers while you
are still in the editor, you can edit them as well. Extra headers can also be added before the blank line.

5. BROWSING THROUGH OLD NEWS
There are a number of command line options to the readnews command to help you find an old article you
want to see again. The —n newsgroups option restricts your search to certain newsgroups. The -—x option
arranges to ignore the record of articles read, which is kept in your .newsrc file. This will cause all articles in
all newsgroups to which you subscribe to be displayed, even those which you have already seen. It also causes
readnews to not update the .newsrc file. The -a date option asks for news received after the given date.
Note that even with the —a option, only articles you have not already seen will be printed, unless you combine
it with the —x option. (Articles are kept on file until they expire, typically after two weeks.) The -t keywords

ND-60.328.1P EN

USD: 10-6 ' How to Read the Network News

option restricts the query to articles mentioning one of the keywords in the title of the article. Thus, the com-
mand

readnews —n comp.unix —x —a last thursday ~t setuid
asks for all articles in newsgroup comp.unix since last Thursday about the setuid feature. (Be careful with the
—t option. The above example will not find articles about "suid". nor will it find articles with no title or whose
author did not use the word "setuid" in the title.)
Other useful options include the 4 option (which lists only the headers of articles — a useful form for browsing
through lots of messages.) The ~p option prints the messages without asking for any input; this is similar to
some older news programs on many UNIX systems and is useful for directing output to a printer. The —r
option produces articles in reverse order, from newest to oldest.

6. USER INTERFACES
The user interface of a program Is the view it presents to the user, that is, what it prints and what it allows
you to type. Readnews has options allowing you to use different user interfaces. The interface described
above is called the "msgs" interface because it mimics the style of the Berkeley msgs(1) program. (This pro-
gram, in turn, mimics a program at MIT of the same name.) The key element of the msgs interface is that
after printing the header, you are asked if you want the rest of the message.
Another interface is available with the —e option. In this case, the entire message is printed, header and body,
and you are prompted at the end of the message. The command options are the same as the msgs interface,
but it is usually not necessary to use the — suffix on the r, s, or f commands. This interface is called the
"/bin/mail" (pronounced "bin mail") interface, because it mimics the UNIX program of that name.
A third interface is the Mail(l) (pronounced "cap mail") interface, available with the -—M option. This invokes
the Mail program directly, and allows you to read news with the same commands as you read mail. (This
interface may not work on your system — it requires a special version of Mail with a —T option.)
A fourth interface, is the MH news/mail program from Rand. That program can be used directly to read net-
work news.

A fifth interface, vnews, which works well on display terminals, is described in the Appendix.
A sixth possibility is the notesfile system, described in a separate paper. It is also display-oriented.
A seventh interface is m. It is quite powerful and reminiscent of the EMACS text editor.
An eighth possibility is to use your favorite mail system as an interface. There are a number of different mail
reading programs, including /bin/mail(1), Mail, msg(1), and MH. Any mail system with an option to specify
an alternative mailbox can be used to read news. For example, to use Mail without the —M option, type

readnews —c "Mail —f %"
The shell command in quotes is invoked as a child of readnews. The —f option to Mail names the altemative
mailbox. Readnews will put the news in a temporary file, and give the name of this file to the mailer in place
of the %. There is an important difference when using this kind of interface. The mailers do not give any
indication of which articles you read and which ones you skipped. Readnews will assume you read all the
articles, even if you didn’t, and mark them all read. By contrast, the —M option uses the -—T option to Mail,
asking Mail to tell readnews which articles you read.

7. GETTING NEWS WHEN YOU LOG IN
Most users like to be told when they first log in if there is any news. This way they are reminded of news, but
are not interrupted by it during the day. If you log in once in the morning, you can think of getting the news
as reading the morning newspaper. It is common to put a checknews or readnews command in your .profile
or .login file of commands that are executed when you log in.
Since there might not be any news, and since the readnews command goes to a considerable amount of work
to find all unread news (assuming you are going to read it), there is another command, called checknews,
which tells you if there is any news. The checknews command is smaller and faster than readnews, and was
designed especially for a login file. There are also options to be silent if there is (or is not) news, and to start
up rcadncws automatically if there is news.
The options to checknews are:

ND—60.328. 1? EN

How to Read the Network News USD210-7

~y Print "There is news" if there is any unread news.
—v If —-y is also given, instead of printing "There is news", prints "News: newsgroup giving the

name of the first newsgroup containing unread news. If general is the first newsgroup presented,
this can be used to tell users whether the unread news is important.

—n Print "No news" if there is no unread news.
~e If there is any unread news, start up readnews. Any additional arguments after the —e will be

passed to readnews.
Thus,

checknews —-yn
tells you whether there is any unread news.

checknews —e ——M
starts up readnews with the Mail interface if there is news, and otherwise does nothing.

checknews —y
tells you if there is news, and is silent if there is no news.

8. CREATING NEW NEWSGROUPS
New newsgroups are proposed by the users and created by site administrators. To create a newsgroup, first
make sure this is the right thing to do. Normally a suggestion is first posted to
news.gr0ups,wharever.relatedgroup for a world wide newsgroup, (" whatever.relatedgroup " should be the
group which you are proposing to subdivide.) For example, to propose creating rec.arts.tv.soaps, post the ori‘
ginal article to rec.arts.tv,news.groups). Followups are made to newsgroups only. (You can force this by
putting the line:

Followup-To: newsgroups
in the headers of your original posting). If it is established that there is general interest in such a group, and a
name is agreed on, then ask your local netnews administrator to create the newsgroup. (It can actually be
created by any netnews administrator anywhere on the net, within the SCOpe of the newsgroup.) Once the
newsgroup is created and the first article has been posted, the newsgroup is available for all interested persons
to post to.

9. LIST OF NEWSGROUPS
This section lists the newsgroups that are currently active. It is intended to help you decide what you want to
subscribe to. Note that the list is constantly changing. Note also that this list only describes those groups
available on a network-wide basis. Since not all installations choose to receive all newsgroups, it is recom-
mended that each installation edit the list of local newsgroups to be correct before distributing this document to
their users. If this is not possible, a local appendix can be created.

9.1. Local

Local groups are kept on the current machine only. Local names can be identified by the lack of a prefix, that
is, there are no periods in local newsgroup names.
General News to be read by everyone on the local machine. For example: "The system will be down

Monday morning {or PM." Or, "A new version of program X has been installed." This news-
group is usually mandatory — you are required to subscribe to this newsgroup. (The list of manda-
tory newsgroups varies locally.) This requirement assures that important announcements reach all
users. (Formerly msgs.)

9.2. Network Wide

These are the groups as of the last editing of this manual. The list is undoubtably already out of date. A
current list can be obtained by typing ? to the "Newsgroups?" prompt in postnews.
comp.ai Artificial intelligence discussions.
comp.ai.digest Arpanet Artificial Intelligence Digest. (Moderated)
comp.arch Computer architecture.
comp.bugs.2bsd Reports of UNIX* version 2BSD related bugs.
comp.bugs.4bsd Reports of UNIX version 4BSD related bugs.

ND-60.328.1P EN

USD: lO~8

comp.bugs.misc
comp.bugs.sysS
comp.cog-eng
comp.compilers
compdatabases
comp.dcom.lans
comp.dcom.modems
comp.dcom.telecom
comp.doc
comp.doc.techreports
comp.edu
compemacs
comp.graphics
comp.graphicsdigest
complangada
comp.lang.apl
comp.lang.c
comp.lang.c++
comp.lang.forth
comp.lang.fortran
complanglisp
complangmisc
comp.lang.modula2
comp.lang.pascal
comp.lang.prolog
complangsmalltalk
comp.laser-printers
complsi
comp.mail.headers
comp.mail.maps
comp.mail.uucp
comp.newprod
comp.org.decus
comp.org.usenix
comp.os.cpm
comp.os.eunice
comp.os.os9
comp.os.vms
compperiphs
comp.protocols
comp.protocols.appletalk
comp.protocols.kermit
comp.protocols.tcp-ip
comp.sources.amiga
comp.sources.bugs
comp.sourcesd
comp.sources.garnes
comp.sourcesmac
comp.sources.unix
comp.sources.wanted
comp.std.c
comp.std.intemat
comp.std.mumps
comp.std.unix
com p.sys.amiga
comp.sys.apollo
comp.sys.apple

ND—60.328.1P EN

How to Read the Network News

General bug reports and fixes.
Reports of AT&T System 5 (and System 3) related bugs.
Cognitive engineering.
Compiler construction, etc. (Moderated)
Database and data management issues and theory.
Local area network hardware and software.
Data communications hardware and software.
Telecommunications digest (Moderated)
Public-domain documentation. (Moderated)
Announcements and lists of technical reports.(Moderated)
Computer science education.
EMACS editors of different flavors.
Computer graphics, art, animation, image processing,
Arpanet Digest on Computer Graphics. (Moderated)
The computer language Ada.
The computer language APL.
The computer language C.
The object~oriented computer language C++.
The computer language Forth.
The computer language FORTRAN.
The computer language LISP.
Other computer languages.
The computer language Modula-Z.
The computer language Pascal.
The computer language PROLOG.
The computer language Smalltalk 80.
Laser printers, hardware and software. (Moderated)
Large scale integrated circuits.
Arpanet header-people mailing list.
Various maps, including UUCP maps. (Moderated)
Proposed uucp mail/network standards.
Announcements of new products (Moderated)
DEC* Users’ Society newsgroup.
USENIX Association events and announcements.
The CP/M operating system.
The SRl Eunice system.
The os9 operating system. (Moderated)
DEC’s VMS Operating System(Moderated)
Peripheral devices.
File Transfer Protocol discussions.(Moderated)
Applebus hardware & software. (Moderated)
Information about the Kermit package.(Moderated)
TCP and IP network protocols.(Moderated)
Public Domain Software for the Amiga(Moderated)
Bugs and fixes for comp.sources postings (Moderated)
Any discussion on comp.sources postings.
Postings of recreational software(Moderated)
Public Domain Software for the Macintosh (Moderated)
Public Domain Software for Unix systems (Moderated)
Requests for software, terrncap entries, etc.
C language standards(Moderated)
International standards
The XI 1.1 committee on Mumps (Moderated)
The P1003 committee on UNIX (Moderated)
Commodore Amiga computers -— info, uses, no programs.
Apollo computer systems.(Moderated)
Apple computers.

How to Read the Network News

comp.sys.atari.8bit
comp.sys.atari.st
comp.sysatt
comp.sys.cbm
comp.sys.dec
comp.sys.hp
comp.sys.ibm.pc
comp.sys.ibm.pc.digest
comp.sys.intel
comp.sys.m6809
comp.sys.m68k
comp.sys.m68k.digest
comp.sysmac
comp.sys.mac.digest
comp.sysmasscomp
comp.sys.misc
comp.sys.nsc
comp.sys.pyramid
comp.sys.ridge
comp.sys.sequent
comp.sys.sun
comp.sys.tandy
comp.sys.ti
comp.sys.workstations
comp.terminals
comp.text
comp.unix
comp.unix.questions
comp.unix.wizards
misc.consumers
misc.consumers.house
miscinvest
misc.jobs
misc.kids
misc.legal
misc.misc
misc.psi
misc.taxes
misctest
misewanted
news.admin
newsannounce

USDl-9

8 bit Atari computers.
16 bit Atari computers.
AT&T computers.
Commodore computers.
DEC computers.
Hewlett/Packard computers
IBM personal computers.
Arpanet Digest on the IBM PC family.(Moderated)
Intel computers.
Motorola 6809’s.
Motorola 68000, 68010, 68020 based computers
Arpanet Digest on 68000~based systems.(Moderated)
The Apple Macintosh & Lisa
Arpanet Digest on Apple Macintosh computers (Moderated)
Masseomp computers.(Moderated)
Other types of computers.
National Semiconductor Computers and chips.
Pyramid 90x computers.(Moderated)
Ridge 32 computers and ROS.(Moderated)
Sequent systems, (esp. Balance 8000).(Moderated)
Sun "workstation" computersmoderated)
Tandy/Radio Shack computers
Texas Instruments computers.
Various workstation-type computers.(Moderated)
All sorts of terminals.
Text processing.
UNIX features and bugs.(Moderated)
General questions on UNIX.
Expert discussions, bug reports, and fixes for UNIX.
Consumer interests, product reviews, etc.
Owning and maintaining a house.
Investments and the handling of money.
Job announcements, requests, etc.
Children, their behavior and activities.
Legalities and the ethics of law.
Various discussions too short-lived for other groups.
ESP,PSI, etc (Moderated)
Tax laws and advice.
Testing of network software. Very boring.
Requests for things that are needed.
Comments directed to news administrators.
General announcements of interest to all. (Moderated)

newsannouneeconferences Upcoming conferences (Moderated)
news.announce.newusers
news.config
newsgroups
news.lists
news.misc
news.newsites
newssoftwareh
newssoftwarenotes
newsstargate
newssysadmin
rec.arts.books
rec.arts.comics
rec.arts.drwho
rec.arts.misc

Explanatory postings for new users. (Moderated)
Postings of system down times and interruptions.
Discussions and lists of newsgrp
News-related statistics and 1ists(Moderated)
Discussions of USENET itself.
Postings of new site announcements.
B news software.
Notesftle software from the Univ. of Illinois.
Satellite transmission of news.
Comments directed to system administrators.
Books of all genres, shapes, and sizes.
The funnies, old and new.
Dr. Who.
Other arts related topics.

ND-60.328.IP EN

USDtiO—io

rec.arts.movies
rec.arts.poems
rec.ar1s.sf-lovers
rec .artsstartrek
rCC.an.S.l.V
rec.arts.tv.soaps
rec.audio
rccautos
recautostech
rec.aviation
rec.bicycles
rec.birds
rec.boats
rec.food.cooking
rec.food.drink
rec.food.recipes
rec.food.veg
rec.games.board
rec.games.bridge
rec.games.chess
rec.games.empire
rec.games.frp
recgamesgo
recgameshack
rec.games.misc
rec.games.pbm
rec.games.rogue
rcc.games.trivia
rec.games.video
recgardens
rec.guns
recham-radio
rcc.ham—radio.packet
rec.humor
rec.humor.d
rec.mag
rec.mag.otherrealms
rec.misc
rec.motorcycles
rec.music
rec.music.classical
rec.music.folk
rec.music.gaffa
rec.music.gdead
rec.music.misc
rcc.music.synth
rec.nude
rec.pcts
rcc.photo
rcc.puzzles
recrailroad
rcc.scuba
recskiing
rccsportbaseball
recsportbasketball
rccsport. football
rccsporthockey

ND—60.328.1P EN

How to Read the Network News

Reviews and discussions of movies.
Poetry.
Science fiction lovers’ newsgroup.
Star Trek, the TV show and the movies.
The boob tube, its history, and past and current shows.
Postings about TV soap operas.
High fidelity audio.
Automobiles, automotive products and laws.
Technical aspects of automobiles, et. al.
Aviation rules, means, and methods.
Bicycles, related products and laws.
Hobbyists interested in bird watching.
Hobbyists interested in boating.
Food, cooking, cookbooks, and recipes.
Wines and spirits.
A "distributed cookbook" of recipes.(Moderated)
Vegetarians.
Board games.
Hobbyists interested in bridge.
Chess & computer chess.
The computer game Empire.
Fantasy Role Playing games.
Go.
The computer game Hack.
Other games and computer games.
Play by Mail games.
The computer game Rogue.
Trivia.
Video games.
Gardening, methods and results.
Firearms(Moderated)
Amateur Radio practices, contests, events, rules, etc.
Packet radio setups.
Jokes and the like. May be somewhat offensive.
The content of net.jokes articles
Magazine summaries, tables of contents, etc.
A science fiction and fantasy "magazine". (Moderated)
Other Recreational/participant sports.
Motorcycles and related products and laws.
Reviews and discussion of things musical (Moderated)
Classical music.
Folks discussing folk music of various sorts
Kate Bush lovers. (Moderated)
A group for (Grateful) Dead-heads
Other music related topics.
Synthesizers and computer music
Hobbyists interested in naturist/nudist activities.
Pets, pet care, and household animals in general.
Hobbyists interested in photography.
Puzzles, problems, and quizzes.
Real and model train fans’ newsgroup.
Hobbyists interested in SCUBA diving.
Hobbyists interested in skiing.
Professional baseball.
Professional basketball.
Professional football.
Professional hockey.

How to Read the Network News

rec.sport.misc
rec.travel
rec.video
rec.woodworking
sciastro
sci.bio
sci.crypt
sci.electronics
sci.lang
sci.math
scimathstat
sci .math.symbolic
sci.med
sci.misc
sci .physics
sci.research
scispace
sci .space.shuttle
soc.college
soc.comp
soc.cult11re.afn'can
soc.culture.celtic
socculturegreek
soc.culture.indian
socculuirejewish
soc.human—nets
soc.misc
soc.motss
soc.net-people
soc.risks
soc.roots
soc.singles
SOC.WOa

talkabortion
talk.origins
talk.philosophy
talk.philosophy.misc
talk.philosophy.tech
talkpolitics
talk.politics.arms-d
talk.politics.misc
talk.politics.theory
talk.religion.christian
talk.religion.misc
talk.rumors

USD: 10-11

Other spectator sports.
Travelling all over the world
Video and video components.
Hobbyists interested in woodworking.
Astronomy discussions and information.
Biology and related sciences.
Different methods of data en/decryption.
Electronic design developments, ideas, and components.
Natural languages.
Mathematical discussions and puzzles.
Statistics discussion.
Symbolic algebra discussion.
Medicine and its related products and regulations.
General purpose scientific discussions.
Physical laws, properties, etc.
Research and computer research.
Space, space programs, space related research, etc.
The space shuttle and the STS program.
College, college activities, campus life, etc.
Computers and Society (Moderated)
Africa & things African
Celtics culture.
Greeks culture.
India & things Indian
Information and discussion about Judaism.
Computer aided communications digest.(Moderated)
Other Social topics
Issues pertaining to homosexuality.
Announcements, requests, etc. about people on the net.
Risks to the public from computers (Moderated)
Genealogical matters.
Newsgroup for single people, their activities, etc.
Women’s rights, discrimination, etc.
Abortion.
Evolution versus creationism (sometimes hotl).
Philosophical discussions (Moderated)
Philosophical discussions.
Philosphy and technology (Moderated)
Political problems, systems, solutions. (Moderated)
Arms discussion digest.(Moderated)
Political discussions. Could get hot.
Theory of politics and political systems.
The form and nature of Christianity (Moderated)
Religious, ethical, and moral implications of actions.
For the posting of rumors.

ND-60.328.IP EN

US D: 10—12 ' How to Read the Network News

10. APPENDIX - HOW TO USE VNEWS

10.1. Overview

Vnews is a program for reading USENET news. It is based on readnews but has a CRT-oriented (full screen)
user interface. The command line options are identical. The list of available commands is quite similar,
although since vnews is a visual interface, most vnews commands do not have to be terminated by a newline.
Vnews uses all but the last two lines of the screen to display the current article. The next to the last line is the
secondary prompt line, and is used to input string arguments to commands. The last line contains several
fields. The first field is the prompt field. If vnews is at the end of an article, the prompt is "next?"; otherwise
the prompt is "more?". The second field is the newsgroup field, which displays the current newsgroup, the
number of the current article, and the number of the last article in the newsgroup. The third field contains the
current time, and the last field contains the word "mail" if you have mail. When you receive new mail, the bell
on the terminal is rung and the word "MAIL" appears in capital letters for 30 seconds.

10.2. Commands
Most of the readnews commands have vnews counterparts and vice versa. Some differences are:
0 It lacks a "digest" command (to deal specially with collections of articles bundled together). This would

be nice to have, but it does not seem to be a major deficiency since you can move around in the digest
with vnews commands.

0 To get to the previous group, use the N command with a — argument.
0 Vnews has commands for moving around in the article which readnews does not have since they aren’t

applicable.
- It has a "parent" command which will go to the article that the current article is a follow-up to, and a

"write" command that writes out the body of an article without the header.
0 You can refer to the current article from the shell or while writing a follow—up as $A.
0 The "decrypt" command (for decoding possibly offensive material) always does rot13 which seems to be

the default standard but the readnews version of it occasionally gets confused.

10.3. Commands that differ from "readnews"
Each vnews command may be preceded by a count. Some commands use the count; others ignore it. If count
is omitted, it defaults to one. Some commands prompt for an argument on the second line from the bottom of
the screen. Standard UNIX erase and kill processing is done on this argument. The argument is terminated by
a return. An interrupt (<DELETE> or <BREAK>) gets you out of any partially entered command.
<CR> A carriage retum prints more of the current article, or goes on to the next article if you

are at the end of the current article. A <SPACE> is equivalent to <CR>.
<CONTROL—B> Go backwards count pages.
<CONTROL-B Go forward count pages.
<CONTROL-D> Go forwards half a page.
<CONTROL-U> Go backwards half a page.
<CONTROL-N> Go forwards count lines.
<CONTROL—Z> Go backwards count lines.
<CONTROL-L> Redraw the screen. <CONTROL-L> may be typed at any time.
b Back up one article in the current group.
1 Redisplay the article after you have sent a follow-up or reply.
n Move on to the next item in a digest. " . " is equivalent to n. This is convenient if your tenni-

nal has a keypad.
p Show the parent article (the article that the current article is a follow-up to). This doesn’t work

if the current article was posted by A-news or notesfrles. To switch between the current and
parent articles, use the — command. Unfortunately, if you use several p commands to trace the
discussion back further, there is no command to return to the original level.

ND—60.328.1P EN

How to Read the Network'News USD210—l3

ug Unsubscribe to the cunent group. This is a two character command to ensure that it is not
typed accidentally and to leave room for other types of unsubscn'bes (e.g. unsubscribe to dis-
cussion).

v Print the current version of the news software.
Decrypts a joke. It only handles r0113 jokes. The D command is a toggle; typing another D
re-encrypts the joke.

ND-60.328.1P EN

USD: 1014 ~ How to Read the Network News

ND-60.328.1P EN

How to Use USENET Effectively USD:l 1-1

How to Use USENET Effectively

Matt Bishop

Research Institute for Advanced Computer Science
Mail Stop 230-5

NASA Ames Research Center
Moffett Field, CA 94035

ABSTRACT

USENET is a worldwide bulletin board system in which thousands of computers pass arti-
cles back and forth. Of necessity, customs have sprung up enabling very diverse people and
groups to communicate peaceably and effectively using USENET. These customs are for
the most part written, but are scattered over several documents that can be difficult to find;
in any case, even if a new user can find all the documents, he most likely will have neither
the time nor the inclination to read them all. This document is intended to collect all these
conventions into one place, thereby making it easy for new users to learn about the world of
USENET. (Old—timers, too, will benefit from reading this.)
You should read this document and understand it thoroughly before you even think about
posting anything. If you have questions, please ask your USENET administrator (who can
usually be reached by sending mail to usenet) or a more knowledgeable USENET user.
Believe me, you will save yourself a lot of grief.
The mechanics of posting an article to USENET are explained in Mark Horton’s excellent
paper How to Read the Network News; if you have not read that yet, stop here and do so. A
lot of what follows depends on your knowing (at least vaguely) the mechanics of posting
news.

ND—60.328.1P EN

USD: 1 1—2 ‘ ’ How to Use USENET Effectively

ND—60.328.1P EN

How to Use USENET Effectively USD:I 1-3

1. ALL ABOUT USENET
Before we discuss the customs that have evolved, we ought to look at the history of USENET, what it is today,
and why we need these conventions.

USENET began on a set of computers in North Carolina’s Research Triangle. The programs involved (known
as "netnews" then, and "A news" now) exchanged messages; it was a small, multi-computer bulletin board sys-
tem. As time passed, administrators of other systems began to connect their computers to this bulletin board
system. The network grew. Then, at Berkeley, the news programs were rewritten (this version became known
as "B news") and the format changed to conform to ARPA standards (again, this became the "B protocol for
news".‘{ This version of news was very widely distributed, and at this point USENET began to take on its
current shape.
USENET is a logical network (as opposed to a physical network.) It is also a very amorphous network, in
that there is no central administration or controlling site. There is not even an official list of members,
although there is a very complete unofficial one. A site gets access to USENET by finding some other site
already on USENET that it can connect to and exchange news articles. So long as this second site (called a
neighbor of the first site) remains willing and able to pass articles to and from the first site, the first site is on
USENET. A site leaves the USENET only when no one is willing or able to pass articles to, or accept articles
from, it.

As a result, USENET has no equivalent of a "sysop" or central authority controlling the bulletin board. What
little control is exercised is wielded by the person at each site who is responsible for maintaining the USENET
connecions (this person is called the "USENET administrator.") Because most USENET administrators are
(relatively) new to USENET, and because administering USENET locally involves a great deal of work, most
USENET administrators tend to follow the lead of other, more experienced, administrators (often known some-
what irneverently as "net gurus") This is not an abdication of responsibility, but a means of keeping the
amount of work little enough so it can be done without interfering with the local USENET administrator’s job.
An example of this is the list of currently active newsgroups circulated every month or so. It is not "official" —
no one has that authority ~ but as the maintainer is doing the work that every other USENET administrator
would have to do otherwise, it is accepted as a valid list. If the maintainer changes the list in a way another
USENET administrator finds unacceptable, that administrator can simply ignore the list. (Incidentally, the "net
gurus" became known as such because of the work they have contributed to USENET. Their experience is a
valuable resource for each USENET administrator.)
Because the USENET has grown so wildly, a number of problems have appeared. One of these problems is
technical, and a number of the conventions this document describes spring from attempts to keep this problem
under control.
The technical problem arises due to the transport mechanism used by most USENET sites. Most computers on
USENET do not have access to large-area networks like ARPANET. As a result the only viable transport
mechanism these sites can use is a set of programs collectively known as UUCP and which communicate over
dialup telephone lines. Initially, news programs generated one UUCP command per article. With the explo-
sion of the USENET, the number of articles simply swamped many sites; phone lines would be tied up all day
transmitting news, and many articles would be processed at the same time, slowing down the computers
noticeably.

The solution was to batch messages. This way, many articles are sent via UUCP with one command, and the
command on the receiving machine would split the file into separate articles, which could then be processed
individually. While this increased the size of the files being sent, it cut down on the number of UUCP com-
mands sent, and since sending a command involves quite a bit of overhead, this decreased the duration of
phone calls, and to a lesser degree the load on the computer. At some sites, such as Purdue, this was not quite
enough, so a simple spooler was implemented to process the individual articles one at a time. This reduced the
system load to a very acceptable amount.
However, the problem has not gone away by any means. In one sense it has become worse; as more articles
are posted to the network, phone costs and system load averages increase. and system administrators require
USENET administrators to cut back or eliminate newsgroups and to transmit news only at night (which means
long propagation delays). In short, everyone who has anything to do with administering any USENET site is
1’ See "Standard/or Interchange of USENET Messages" for a description of the two formats.

ND-60.328.1P EN

USD: 1 1-4 ' How to Use USENET Effectively

very concerned about the future of USENET, both in general and at his own site.

Many of the rules you will read address this concern. The fear that USENET may collapse is not a bogeyman,
but very real. We hope it will not collapse, and the rules below outline some ways to prevent problems and
increase the likelihood that enough sites will remain on USENET to keep it alive. There is no central authority
that can force you to follow them, but by doing so you will help keep USENET a valuable resource to the
computer community.

2. DECIDING TO POST
Before you decide to post an article, you should consider a few things.

2.1. Do not repeat postings
This applies even if you did not post the information the first time around. If you know the answer to a ques-
tion someone asked, first read the followups, and if you have something more to contribute, mail it to the ques-
tioner; if you think it should be seen by others, ask the questioner to summarize the answers he receives in a
subsequent article. One of the biggest problems on USENET is that many copies of the same answer to a sim—
ple question are posted.
If you want to repost something because you believe it did not get to other USENET sites due to transmission
problems (this happens sometimes, but a lot less often than commonly believed), do some checking before you
repost. If you have a friend at another USENET site, call him and ask if the article made it to his site. Ask
your USENET administrator if he knows of any problems in the USENET; there are special newsgroups to
which USENET administrators subscribe in which problems are reported, or he can contact his counterparts at
other sites for information. Finally, if you decide you must repost it, indicate in the article subject that it is a
reposting, and say why you are reposting it (if you don't, you’ll undoubtedly get some very nasty mail.)
Reposting announcements of products or services is flatly forbidden. Doing so may convince other sites to
turn off your USENET access.
When school starts, hoards of new users descend upon the USENET asking questions. Many of these ques—
tions have been asked, and answered, literally thousands of times since USENET began. The most common of
these questions, and their answers, have been collected in the hope that the new users will read them and not
re-post the same questions. So, if you want to ask a question, check Appendix I (Answers to Frequently
Asked Questions) to be sure it isn’t one that has been asked and answered literally hundreds of times before
you started reading the USENET.

2.2. Do not post anything when upset, angry, or intoxicated
Posting an article is a lot like driving a car — you have to be in control of yourself. Postings which begin
"Jane, you ignorant slut, are very definitely considered in poor taste’r. Unfortunately, they are also far too
common.
The psychology of this is interesting. One popular belief is that since we interact with USENET via comput-
ers, we all often forget that a computer did not do the posting; a human did. A contributing factor is that you
don’t have to look the target of abuse in the eye when you post an abusive message; eye-to—eye contact has an
amazing effect on inhibiting obnoxious behavior. As a result, discussions on the USENET often degenerate
into a catfight far more readily than would a face-to—face discussion.
Before you post an article, think a minute; decide whether or not you are upset, angry, or high. If you are,
wait until you calm down (or come down) before deciding to post something. Then think about whether or not
you really want to post it. You will be amazed what waiting a day or even a few hours can do for your per-
spectrve.
Bear in mind that shouting hasn’t convinced anyone of anything since the days of Charlemagne, and being
abusive makes people hold even more tenaciously to their ideas or opinions. Gentleness, courtesy, and elo-
quence are far more persuasive; not only do they indicate you have enough confidence in your words to allow
them to speak for you, but also they indicate a respect for your audience. This in turn makes it easier for your
audience to like or respect you — and people tend to be far more interested in, and receptive to, arguments
advanced by those they like or respect than by writers who are abusive. Finally, remember that some
1“ Unless you are critiquing "Saturday Night Live".

ND—60.328.1P EN

How to Use USENET Effectively USD21 1-5

discussions or situations simply cannot be resolved. Because people are different, agreed-upon facts often leadto wildly different feelings and conclusions. These differences are what makes life so wonderful; were we allalike, the world would be a very boring place. So, don’t get frantic; relax and enjoy the discussion. Whoknows, you might even learn something!

2.3. Be sure your posting is appropriate to USENET
Some things are inappropriate to post to USENET. Discussing whether or not some other discussion isappropriate, or if it is in the right newsgroup, is an example. Invariably, the "meta—discussion" generates somany articles that the discussion is simply overwhelmed and vanishes; but the meta-discussion lingers on forseveral weeks, driving most of the readers of that newsgroup out of their collective minds. Help preserve thesanity of your fellow USENET readers by mailing such comments to the people involved, rather than postingthem.

Another example of inappropriate postings is the infamous "spelling flame." Every few months someone takesanother poster to task for poor spelling or grammar. Soon, everyone jumps on the bandwagon, tearing apartone another’s postings for such errors. To put it mildly, this angers almost everyone involved for no real rea~son. Please remember that we all make mistakes, and there are a lot of people for whom English is a secondlanguage. So, try to keep your spelling and grammar comments to yourself — but if you find you simply can-not, mail them to the poster rather than posting them.
Far more insidious are requests similar to "How can I splice into the local cable TV transmission line?" Post-ing to USENET is akin to publishing, so don’t ask for or post instructions on how to do something illegal.And please don't quote the First Amendment, or the laws allowing freedom of speech in your country; whilethe posting programs will not stop you, the aftermath could be very unpleasant — lawsuits and court trials usu-ally are, and the USENET would certainly collapse as sites dropped from it to protect themselves from legal
liability. You wouldn't want that on your conscience, would you? Of course not
Related to this is the next rule.

2.4. Do not post other people’s work without permission
Posting something to USENET puts it in the public domain for all practical purposes. So, be careful aboutposting things like UNDtT -related material (specifically source code) or company documents; consider licens-ing and nondisclosure agreements first. Some people regard the posting of "diffs" based on licensed code to bea suitable compromise, as they are only useful to those who have the base code already.
Copyrighted works are a separate problem. Both United States and international law provide protection forcopyrighted works; other than short extracts for purposes of criticism, you cannot copy a copyrighted work inwhole or in part without permission of the copyright holder (who may, or may not, be the author.) Withoutthis protection, artists could not make any money and hence would have limited incentive to make the fruits oftheir art available at all. Posting a copyrighted work without permission is theft, even though the propertystolen is not tangible in most cases. Hence, posting movie and book reviews, song lyrics, or anything else
which is copyrighted without the permission of the copyright holder, could cause you personally, your company, or the USENET itself to be held liable for damages. Please be very careful that you obey the law when
posting such material!

2.5. Don’t forget that opinions are those of the poster and not his employer.
Every so often, someone will post a particularly disgusting article, and a number of responses will ask if allemployees of the original poster’s company share his (revolting) opinion, or suggest that action be takenagainst that company. Please remember that all opinions or statements in articles are to be attributed to theposter only, and in particular, do not necessarily represent the opinions of the poster’s employer, the owner ofthe computer on which the article originated, or anyone involved with any aspect of USENET — and conse—quently the responsibility for any USENET message rests with the poster and with no one else. The appropri—ate response is not to attack the company or its other employees; let the poster know what you think of hisposting via mail. If the postings continue, take advantage of the news software‘s presenting you with theauthor‘s name and the subject line and then asking if you want to see the article; start looking for the poster’sname or the offensive subject in the articles presented to you and skip them. if you really get offended, you
T UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD:_l 1—6 . How to Use USENET Effectively

can unsubscribe from a newsgroup.
Part of the price of freedom is allowing others to make fools of themselves. You wouldn't like to be censored,
so don’t advocate censorship of others. No one is forcing you to read the postings.
In some countries, posting or receiving certain types of articles may be a criminal offense. As a result, certain
newsgroups which circulate freely within the United States may not be circulated in other nations without risk-
ing civil or criminal liabilities. In this case, the appropriate action for sites in that country is neither to accept
nor to transmit the newsgroup. No site is ever forced to accept or pass on any newsgroup.

3. WHERE TO POST
The various newsgroups and distributions have various rules associated with their use. This section will
describe these rules and offer suggestions on which newsgroups to post your message.

3.1. Keep the distribution as limited as possible
A basic principle of posting is to keep the distribution of your article as limited as possible. Like our modern
society, USENET is suffering from both an information glut and information pollution. It is widely believed
that the USENET will cease to function unless we are able to cut down the quantity of articles. One step in
this direction is not to post something to places where it will be worthless. For example, if you live in Hack-
ensack, New Jersey, the probability of anyone in Korea wanting to buy your 1972 Toyota is about as close to
zero as you can get. 80 confine your posting to the New Jersey area.
To do this, you can either post to a local group, or post to a net-wide group and use the distribution feature to
limit how widely your article will go. When you give your posting program (usually postnews (1)) a distribu—
tion, you are (in essence) saying that machines which do not recognize that distribution should not get the arti-
cle. (Think of it as a subgroup based on locality and you’ll get the idea) For example, if you are posting in
the San Francisco Bay Area, and you post your article to netauto but give ba as the distribution, the article
will not be sent beyond the San Francisco Bay Area (to which the ba distribution is local) even though you put
it in a net-wide newsgroup. Had you given the distribution as ca (the California distribution), your article
would have been sent to all Californian sites on USENET. Had you given the distribution as net, your article
would have been sent to all sites on USENET.

3.2. Do not post the same article twice to different groups
If you have an article that you want to post to more than one group, post to both at the same time. Newer ver-
sions of the news software will show an article only once regardless of how many newsgroups it appears in.
But if you post it once to each different group, all versions of news software will show it once for each news-
group. This angers a lot of people and wastes everybody’s time.

3.3. Do not post to "mod." or "netannounce" newsgroups
You may not post directly to certain newsgroups; you cannot post to some at all. Newer versions of the news
software will inform you when either of these restrictions apply, but older versions of news software will not.
The mod. newsgroups are "bona fide" moderated newsgroups. If you want to have the appropriate moderator
post something, mail it to him. (If you do not know his address, ask your USENET administrator. In some
cases, the software will automatically mail, rather than post, your article to the moderator.)
The newsgroup netannounce and its subgroups are moderated newsgroups designed for important announce-
ments. It is used to post important announcements that everyone on USENET can read. Net.general was
meant to provide such a place, but so many inappropriate messages have been posted there that a lot of people
began to unsubscribe; hence, this moderated newsgroup was set up. Very few messages are posted to it, so
don’t be afraid to subscribe; you will not be overwhelmed.) To post to this group, mail your announcement to
the moderator, and he will either post it or suggest an alternative (such as a more appropriate newsgroup.)
Messages for neLannounce should be short, important enough so that everyone on USENET should see the
headers, not cross-posted to any other newsgroup, and signed; messages which are political, commercial, or
religious in nature will be rejected.

ND-60.328.IP EN

How to Use USENET Effectively USD11 1-7

3.4. Do not post to "netgeneral"
Of course, there are exceptions to this rule, but almost all articles posted to net.general do not belong there.Only articles of general interest and importance to everyone on USENET should be posted there. "Everyone"
includes the USENET readers in Europe, Asia, Australia, Canada, the United States, and possibly other places.
This means that announcements of services or products, test messages, seminar announcements, program
sources and bug reports, requests for addresses, and so forth do not go to net.general. If you wish to post a
follow—up to an article you saw in net.general, put the followup posting in net.followup. (Again, newer ver-
sions of news software will do this automatically, but do not rely on this feature as your software may be old.)
Similarly, never post to neLgeneral and another newsgroup. If your article belongs in any other newsgroup,
put it there, and not in netgeneral. (There is one exception to this rule ~ articles may be cross-posted to
net.general and net.announce. Since net.announce is moderated, though, the exception does not matter to
you.)

3.5. Ask someone if you can’t figure out where to post your article
If you cannot figure out where to post something, look in net.announce.newusers for the list of active news-
groups. (This is posted biweekly. If you can’t find it, look at the list in How to Read the Network News; but
be aware that list is undoubtedly out of date already.) If your article does not seem to fit in any of the listed
groups, post it to netmisc or don’t post it.
If you still are not sure which newsgroup to post your article to, ask an old-timer. If your site doesn’t have
any old-timers (or none of the old-timers will admit to being old—timers), contact any of the following people:

Gene Spafford (spaf@gatech.CSNET, spaf@gatech.UUCP)
Mark Horton (mark@cbosgd.UUCP)
Rick Adams (rick@seismo.CSS.GOV, rick@seismo.UUCP)
Chuq Von Rospach (chuq@sun.UUCP)
Matt Bishop (mab@riacs.ARPA, mab@riacs.UUCP)

We will be happy to help you. But, please, do not post the article to the net before you ask us!

3.6. Be sure there is a consensus before creating a new newsgroup
Creating a new newsgroup is, in general, a very bad idea. Currently, there are so many articles being posted
that the USENET is in dange of collapse as site after site decides to cease to accept and retransmit certain
newsgroups. Moreover, there is no established procedure for deleting a newsgroup, so once created, news-
groups tend to stay around. They also tend to encourage people to think up new newsgroups, and the cycle
repeats. Try to avoid thinking up new newsgroups.
If, however, you believe a new group should be created, be sure you have a consensus that the group is needed
(either a mailing list has enough traffic and readers to justify turning it into a newsgroup, or a discussion in a
current newsgroup becomes so large for a period of time long enough to warrant splitting it into a newsgroup.)
Then post an article to net.news.group as well as any other groups related to your proposed new group, and
discuss the topics you are proposing be covered in your new group, what it should be called, whether it is
really needed, and so forth. Try to resolve all objections, and take into account all suggestions and comments;
finally, have everyone mail you a "yes" or "no" vote on whether the group should be created. Try to get at
least 40 or 50 "yes" votes before creating the group; if you want to be safe, get around 100.

3.7. Watch out for newsgroups which have special rules about posting
Some newsgroups have special rules. This section summarizes them.
net.books Do not post anything revealing a plot or a plot twist without putting the word

"spoiler" somewhere in the "Subject" field. This will let those who do not wish to
have a surprise spoiled skip the article.

net.followup This group is for followups to articles posted in net.general or for results of surveys.
No discussions are allowed.

netjokes If you want to post an offensive joke (this includes racial, religious, sexual, and scara—
logical humor, among other kinds) rotate it. (If you do not kn0w what this means,
look in the section Writing Your Posting .)

ND-60.328.1P EN

USD111-8 ‘ How to Use USENET Effectively

net.movies Do not post anything revealing a plot or a plot twist without putting the word
"spoiler" in the "Subject" field. This will let those who do not wish to have a surprise
spoiled skip the article.

net.news.group Discussions about whether or not to create new groups, and what to name them, go
here. Please mail your votes to the proposer; don’t post them.

net.sources Source code postings go here. Discussions are not allowed. Do not post bug fixes
here.

net.sources.bugs Bug reports and bug fixes to sources posted in net.sources go here.
net.test Use the smallest distribution possible. In the body of the message, say what you are

testing.
net.wanted Requests for things other than source code go here. Please use the smallest distribu-

tion possible. Post offers here, too.
net.wanted.sources Requests for sources go here.

4. WRITING THE ARTICLE
Here are some suggestions to help you communicate effectively with others on the USENET. Perhaps the best
advice is not to be afraid to consult a book on writing style; two of the best are How to Write for the World of
Work by Cunningham and Pearsall, and Elements of Style by Strunk and White.

4.1. Write for your audience
USENET is an international network, and any article you post will be very widely read. Even more impor—
tantly, your future employers may be among the readers! So, try to make a good impression.
A basic principle of all writing is to write at your readers’ reading level. It is better to go below than above.
Aiming where "their heads ought to be" may be fine if you are a college professor (and a lot of us would
dispute even that), but it is guaranteed to cause people to ignore your article. Studies have shown that the
average American reads at the fifth grade level and the average professional reads at the twelfth grade level.

4.2. Be clear and concise

Remember that you are writing for a very busy audience; your readers will not puzzle over your article. So be
very clear and very concise. Be precise as well; choose the least ambiguous word you can, taking into account
the context in which you are using the word. Split your posting into sections and paragraphs as appropriate.
Use a descriptive title in the "Subject" field, and be sure that the title is related to the body of the article. If the
title is not related, feel free to change it to a title that is.

4.3. Proof-read your article

This is a matter of courtesy; since you want others to read your article, the least you can do is check that it
says what you mean in a clear, concise manner. Check for typographical errors, silly grammar errors, and
misspellings; if you have a spelling checking program, use it. Also be sure the article is easy to read. Use
white space — blanks, tabs, and newlines — and both upper and lower case letters. Do not omit the definite and
indefinite articles, either; not only do "a", "an", and "the" make a posting much easier to read, their omission
can make a posting ambiguous.

4.4. Be extra careful with announcements of products or services
When writing a product or service announcement, bear in mind that others will be paying most of the tele-
phone bills. So, if you are announcing several things, combine all the announcements into one article. Mark
the posting as a product or service announcement in the title in the "Subject" field. Advertising hyperbole is
not appropriate here; remember that your audience is to a large degree technically literate, and your product
will stand or fall on its technical merits. Be aware that posting obnoxious or inappropriate advertisements is
very serious and if you do it, you may find your neighbors yanking your USENET access.

ND-60.328.1P EN

How to Use USENET Effectively USD:l 1-9

4.5. Indicate sarcasm and humor
Remember that people cannot see you when they read your posting; hence, all the subtle nuances of body and
facial motion are hidden. It can be quite difficult to tell when you are being sarcastic or humorous. To deal
with this problem, the USENET readers and posters have developed a special sign. Mark passages you intend
to be taken as humorous with the "smiley face", while looks like this: ":—)". (Think of a head facing you lying
on its right side and look again if you don’t understand why that symbol was chosen.) As for sarcasm, there is
no universal symbol for that (unless the sarcasm is meant humorously, in which case use the smiley face
again.) But mark your passage so everyone will realize you are being sarcastic.

4.6. Mark postings which spoil surprises
High on the list of obnoxious messages are those that spoil the plot of a book or movie by giving away an
unexpected detail. If you post such an article, please put the word "spoiler" in the "Subject" field of your post-
ing, so people who do not wish to have a surprise ruined can skip the article.

4.7. Rotate offensive postings
If you feel you must post a message that may offend people, you can do one of two things. You can post it to
the newsgroup netflame or you can take steps to be sure the message will only be read by those who expli-
citly ask for it to be shown to them. In the latter case, the USENET convention is to encrypt these messages
by shifting each letter 13 characters, so that (for example) "a" becomes "".n (In more precise terms, this is a
Caesar cipher of shift 13; on the USENET, it is called r0113 .) When you do this, put the word "rotl3" in the
"Subject" field. The news reader you are using almost certainly has a command to encrypt and decrypt such
messages; if not, use the UNIX command

tr a—zA—Z n—za—mN—ZA—M

4.8. The shorter your signature, the better
Keep signatures concise; 2 or 3 lines are usually plenty. Include your name and addresses on any major net-
works (such as ARPANET, BlTNET, or CSNET). This helps people contact you quickly and easily, usually
more so than by following the return path of the article. Do not include pictures, graphics or clever quotations
that make the signature longer, this is not the appropriate place for them, and many sites resent paying the
phone bills for such signatures.

5. CONCLUSION AND SUMMARY
Here is a list of the rules given above:
a" Deciding to post

0 Do not repeat postings
0 Do not post anything when upset, angry, or intoxicated
- Be sure your posting is appropriate to USENET
0 Do not post other people’s work without permission
0 Don’t forget that opinions are those of the poster and not his company

(3? Where to Post
0 Keep the distribution as limited as possible
0 Do not post the same article twice to different groups
0 Do not post to mod., or netannounce newsgroups
0 Do not post to net.general
0 Ask someone if you can’t figure out where to post your anicle
0 Be sure there is a consensus before creating a new newsgroup
0 Watch out for newsgroups which have special rules about posting

av Writing the Article
. Write for your audience

ND—60.328.1P EN

USD:1 1-10 _ , ~ How to Use USENET Effectively

0 Be clear and concise """ ‘
0 Proofread your article
0 Be extra careful with announcements of products or services
0 Indicate sarcasm and humor
0 Mark postings which spoil surprises
0 Rotate offensive postings
- The shorter your signature, the better

The USENET can be a great place for us all. Sadly, not enough people are following the customs that have
been established to keep the USENET civilized. This document was written to educate all users of the
USENET on their responsibilities. Let’s clean up the USENET, and turn it into a friendly, helpful community
again!

ACKNOWLEDGEMENTS
The writing of this document was inspired by Chuq von Rospach’s posting on USENET etiquette, and it draws
on previous work by Mark Horton, A. Jeff Offutt, Gene Spafford, and Chuq von Rospach.

ND-60.328.1P EN

How to Use USENET Effectively USD: 1 1-11

APPENDIX I: Answers to Frequently Asked Questions

originally from Jerry Schwarz (jerry@eagle.UUCP)
modified by Gene Spafford (spaf@gatech.UUCP)
modified by Matt Bishop (mab@riacs.ARPA)

This document discusses some items that occur repeatedly on USENET. They frequently are submitted bynew users, and result in many followups, sometimes swamping groups for weeks. The purpose of this note isto head off these annoying events by answering some questions and warning about the inevitable consequenceof asking others. If you don’t like my answers, let me know and I may include revisions in future versions ofthis note.

1. What does UNIX stand for?
It is not an acronym, but is a pun on "MULTICS." MULTICS is a large operating system that wasbeing developed shortly before UNIX was created.
What is the derivation of ”foo" as a filler word?
The favorite story is that it comes from "fubar" which is an acronym for "fouled up beyond all recogni-tion", which is supposed to be a military term. (Various forms of this exist, "fouled" usually beingreplaced by a stronger word.) "Foo" and "Bar" have the same derivation.
Is a machine at "foo" on the net?
These questions belong in net.news.config if anywhere, but in fact your best bet is usually to phonesomebody at "too" to find out If you don’t know anybody at "too" you can always try calling and ask-ing for the "computer center." Also, see the newsgroup mod.map, where maps of USENET and theUUCP network are posted regularly.
What does "rc" at the end of files like .newsrc mean?
According to Dennis Ritchie, "The name rc comes from RUNCOM, which was the rough equivalent on
the MIT CTSS system of what UNIX calls shell scripts. Of course RUNCOM derives from "run com—

What do "- (nf)" and ”Orphaned Response" in an item’s title mean?
It means that the item was created by "notefiles," an alternative news handling interface that many peo-
ple prefer. If you want to find out more you can read the Notesfile System Reference Manual or contactuiucdcslessick .
What does " :—) " mean?
This is the net convention for a "smiley face." It means that something is being said in jest. If it doesn’tlook like a smiley face to you, {lop your head over to the left and look again.
How do I decrypt jokes in net.jokes?
The standard cipher used in netjokes in called "rot13." Each letter is replaced by the letter 13 furtheralong in the alphabet (cycling around at the end). Most systems have a built in command to decryptsuch articles; readnewsfl) and vnews(1) have the D command, rn(l) (another popular public-domainfull screen news reader) has the X or <CONTROL-X> commands, notes (1) has % or R. If your sys-tem doesn’t have a program to encrypt and decrypt these, you can quickly create a shell script using tr
(1):

tr A—Za~z N~ZAaMn—za—m
On some versions of UNIX, the tr command should be written as:

If "la—mlln—ZHA—MllN-Zl" "[n—la~mllN~Zl[A—Ml"
netgeneral: Is John Doe out there anywhere?
I suspect that these items are people looking for freshman roommates that they haven’t seen in ten years.If you have some idea where the person is you are usually better off calling the organimtion. For exam-ple, if you call any Bell Labs location and request John Doe’s number. They can give it to you even ifhe works at a different location. If you must try the net, use newsgroup net.net—people, not net.general.
neLmath: Proofs that l = 0.

ND-60.328.1P EN

USD:1 1-12 ‘ How to Use USENET Effectively

10.

11.

12.

13.

14.

15.

16.

17.

18.

Almost everyone has seen one or more of these in high school. They are almost always based on either
division by 0 or taking the square root of a negative number.
net.games: Where can I get the source for empire (6) or rogue (6)?
You can’t. The authors of these games, as is their right, have chosen not to make the sources available.
net.unix-wizards: How do I remove files with ASCII nomeharacters in their names?
You can try to find a pattern that uniquely identifies the file. This sometimes fails because a peculiarity
of some shells is that they strip off the high-order bit of characters in command lines. Next, you can try
an "rm ~i", or "rm -—r" (see rm (1).) Finally, you can mess around with i-node numbers andfind (1).
net.unix-wizards: There is a bug in the way UNIX handles protection for programs that run setuid.
There are indeed problems with the treatment of protection in setuid programs. When this is brought up,
suggestions for changes range from implementing a full capability list arrangement to new kernel calls
for allowing more control over when the effective id is used and when the real id is used to control
accesses. Sooner or later you can expect this to be improved. For now you just have to live with it.
net.women: What do you think about abortion?
Although abortion might appear to be an appropriate topic for net.women, more heat than light is gen-
erated when it is brought up. Since the newsgroup netabortion has been created, all abortion-related
discussion should take place there.
netsingles: What do "MOTOS," "MOTSS,", "MOTAS", and "SO" stand for?
Member of the opposite sex, member of the same sex, member of the appropriate sex, and significant
other, respectively.
net.columbia: Shouldn’t this name be changed?
The name was devised to honor the first space shuttle. It was realized at the time the group began that
the name would quickly become out of date. The intent was to create a bit of instant nostalgia.
net.c0lumbia: Shouldn’t this group be merged with netspace? No. Net.columbia is for timely news
bulletins. Netspace is for discussions.
How do I use the "Distribution" feature?
When postnews (1) prompts you for a distribution, it’s asking how widely distributed you want your
article. The set of possible replies is different, depending on where you are, but at Bell Labs in Murray
Hill, New Jersey, possibilities include:

mh3bcl local to this machine
mh Bell Labs, Murray Hill Branch
nj all sites in New Jersey
btl All Bell Labs machines
an All AT&T machines
usa Everywhere in the USA
na Everywhere in North America
net Everywhere on USENET in the world (same as "world")

If you hit <RETURN>, you’ll get the default, which is the first part of the newsgroup name. This
default is often not appropriate — please take a moment to think about how far away people are likely to
be interested in what you have to say. Used car ads, housing wanted ads, and things for sale other than
specialized equipment like computers certainly shouldn’t be distributed to Europe and Korea, or even to
the next state.

The newsgroup na.f0rsale exists for postings of sale announcements. Its distribution is limited to North
America; posters should restrict this distribution even further, if possible and appropriate.
Why do some people put funny lines ("bug killers") at the beginning of their articles?
Some earlier versions of news had a bug which would drop the first 512 or 1024 bytes of text of certain
articles. The bug was triggered whenever the article started with whitespace (a blank or a tab). A fix
many people adopted was to begin their articles with a line containing a character other than white
space. This gradually evolved into the habit of including amusing first lines.
The original bug has since been fixed in newer version of news, and sites running older versions of news
have applied a patch to prevent articles from losing text The "bug‘killer" lines are therefore probably no

ND«60.328.1P EN

How to Use USENET Effectively USD: 1 l-l3

19.
longer needed, but they linger on.
What is the address or phone number of the "foo" company?
Try the white and yellow pages of your phone directory, first; a sales representative will surely know,
and if you’re a potential customer they will be who you’re looking for. Phone books for other cities are
usually available in libraries of any size. Whoever buys or recommends things for your company will
probably have some buyer’s guides or national company directories. Call or visit the reference desk of
your library; they have several company and organization directories and many will answer questions
like this over the phone. Remember if you only know the city where the company is, you can telephone
to find out their full address or a dealer. The network is not a free resource, although it may look like
that to some people. It is far beuer to spend a few minutes of your own time researching an answer
rather than broadcast your laziness and/or ineptitude to the net.

ND—60.328.lP EN

USDz-11-14 ‘ How to Use USENET Effectively

ND-60.328.1P EN

A Tutorial Introduction tothe UNIX Text Editor USD:l2-1

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kerru‘ghan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNIX? operating system is done with the text-editor ed. This
memorandum is a tutorial guide to help beginners get started with text editing.
Although it does not cover everything, it does discuss enough for most users’ day—to-day
needs. This includes printing, appending, changing, deleting, moving and inserting entire

, _______ _ lines of text; reading and writing files; context searching and line addressing; the substitute
command; the global commands; and the use of special characters for advanced editing.

1* UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USDzl2-2 ' ' ' A Tutorial Introduction to the UNIX Text Editor

ND-60.328.1P EN

A Tutorial Introduction to the m Text Editor USD212—3

Introduction

Ed is a “text editor", that is, an interactive program for creating and modifying “text", using directions pro-vided by a user at a terminal. The text is often a document like this one, or a program or perhaps data for aprogram.
This introduction is meant to simplify learning ed. The recommended way to learn ed is to read this docu-ment, simultaneously using ed to follow the examples, then to read the description in section 1 of the UNIXProgrammer’s Manual, all the while experimenting with ed. (Solicitation of advice from experienced users isalso useful.)
Do the exercises! They cover material not completely discussed in the actual text An appendix summarizesthe commands.

Disclaimer

This is an introduction and a tutorial. For this reason, no attempt is made to cover more than a part of thefacilities that ed offers (although this fraction includes the most useful and frequently used pans). When youhave mastered the Tutorial, try Advanced Editing on UNIX. Also, there is not enough space to explain basicUNIX procedures. We will assume that you know how to log on to UNIX, and that you have at least a vagueunderstanding of what a file is. For more on that, read UNIXfor Beginners.
You must also know what character to type as the end—of—line on your particular terminal. This character is theRETURN key on most terminals. Throughout, we will refer to this character, whatever it is, as RETURN.

Getting Started
We’ll assume that you have logged in to your system and it has just printed the prompt character, usuallyeither a $ or a %. The easiest way to get ed is to type

ed (followed by a return)

You are now ready to go — ed is waiting for you to tell it what to do.

Creating Text - the Append command “a”
As your first problem, suppose you want to create some text starting from scratch. Perhaps you are typing thevery first draft of a paper, clearly it will have to start somewhere, and undergo modifications later. This sec-tion will show how to get some text in, just to get started. Later we’ll talk about how to change it
When ed is first started, it is rather like working with a blank piece of paper — there is no text or informationpresent. This must be supplied by the person using ed; it is usually done by typing in the text, or by reading itinto ed from a file. We will start by typing in some text, and return shortly to how to read files.
First a bit of terminology. In ed jargon, the text being worked on is said to be “kept in a buffer.” Think ofthe buffer as a work space, if you like, or simply as the information that you are going to be editing. In effectthe buffer is like the piece of paper, on which we will write things, then change some of them, and finally filethe whole thing away for another day.
The user tells ed what to do to his text by typing instructions called “commands.” Most commands consist ofa single letter, which must be typed in lower case. Each command is typed on a separate line. (Sometimes thecommand is preceded by information about what line or lines of text are to be affected ~ we will discuss theseshortly.) Ed makes no response to most commands — there is no prompting or typing of messages like“ready”. (This silence is preferred by experienced users, but sometimes a hangup for beginners.)
The first command is append, written as the letter

a

all by itself. It means “append (or add) text lines to the buffer, as i type them in.” Appending is rather likewriting fresh material on a piece of paper.
So to enter lines of text into the buffer,just type an 3 followed by a RETURN, followed by the lines of text youwant, like this:

ND-60.328.lP EN

USD212~4 ‘ A Tutorial Introduction to the UNIX Text Editor

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a line that contains only a period. The “." is used to tell ed that
you have finished appending. (Even experienced users forget that terminating sometimes. If ed seems to
be ignoring you, type an extra line with just “." on it. You may then find you've added some garbage lines to
your text, which you’ll have to take out later.)
After the append command has been done, the buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The a and . aren’t there, because they are not text.
To add more text to what you already have, just issue another a command, and continue typing.

Error Messages —- “?”
If at any time you make an error in the commands you type to ed, it will tell you by typing

?

This is about as cryptic as it can be, but with practice, you can usually figure out how you goofed.

Writing text out as a file - the Write command “w”
It’s likely that you’ll want to save your text for later use. To write out the contents of the buffer onto a file,
use the write command

W

followed by the filename you want to write on. This will copy the buffer’s contents onto the specified file
(destroying any previous information on the file). To save the text on a file named junk, for example, type

w junk

Leave a space between w and the file name. Ed will respond by printing the number of characters it wrote
out. In this case, ed would respond with

68

(Remember that blanks and the retum character at the end of each line are included in the character count.)
Writing a file just makes a copy of the text — the buffer’s contents are not disturbed, so you can go on adding
lines to it. This is an important point. Ed at all times works on a copy of a file, not the file itself. No change
in the contents of a file takes place until you give a w command. (Writing out the text onto a file from time to
time as it is being created is a good idea, since if the system crashes or if you make some hom'ble mistake,
you will lose all the text in the buffer but any text that was written onto a file is relatively safe.)

Leaving ed — the Quit command “q”
To terminate a session with ed, save the text you’re working on by writing it onto a file using the w command,
and then type the command

‘1
which stands for quit. The system will respond with the prompt character ($ or %). At this point your buffer
vanishes, with all its text, which is why you want to write it out before quitting}L
T Actually, ed will print 2’ if you try to quit without writing, At that point, write if you want; if not, another q will get
you out regardless.

NDv60.328. 1? EN

A Tutorial Introduction to the UNIX Text Editor USD212-5

Exercise 1:
Enter ed and create some text using

a

.text...

Write it out using w. Then leave ed with the q command, and print the file, to see that everything worked.(To print aftle, say

pr filename

or

cat filename

in response to the prompt character. Try both.)

Reading text from a file — the Edit command “e”
A common way to get text into the buffer is to read it from a file in the file system. This is what you do to
edit text that you saved with the w command in a previous session. The edit command e fetches the entire
contents of a file into the buffer. So if you had saved the three lines “Now is the time”, etc, with a w com-
mand in an earlier session, the ed command

e junk

would fetch the entire contents of the file junk into the buffer, and respond
68

which is the number of characters in junk. If anything was already in the buffer, it is deletedfirst.
If you use the e command to read a file into the buffer, then you need not use a file name after a subsequent wcommand; ed remembers the last file name used in an e command, and w will write on this file. Thus a good
way to operate is

ed
6 file
[editing session]
W

(1
This way, you can simply say w from time to time, and be secure in the knowledge that if you got the file
name right at the beginning, you are writing into the proper file each time.
You can find out at any time what file name ed is remembering by typing the file command f. In this exam-
ple, if you typed

f

ed would reply

junk

Reading text from a file — the Read command “r”
Sometimes you want to read a file into the butler without destroying anything that is already there. This isdone by the read command r. The command

rjunk

will read the file junk into the buffer; it adds it to the end of whatever is already in the buffer. So if you do aread after an edit:

ejunk
rjunk

ND-60.328.1P EN

USD:12-6 ' A Tutorial Introduction to the UNIX Text Editor

the buffer will contain two copies of the text (six lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, r prints the number of characters read in, after the reading operation is complete.
Generally speaking, r is much less used than c.

Exercise 2:

Experiment with the e command — try reading and printing various files. You may get an error ?name, where
name is the name of a file; this means that the file doesn‘t exist, typically because you spelled the file name
wrong, or perhaps that you are not allowed to read or write it Try alternately reading and appending to see
that they work similarly. Verify that

ed filename

is exactly equivalent to

ed
e filename

What does

f filename

do?

Printing the contents of the buffer — the Print command “p”
To print or list the contents of the buffer (or parts of it) on the terminal, use the print command

P
The way this is done is as follows. Specify the lines where you want printing to begin and where you want it
to end, separated by a comma, and followed by the letter p. Thus to print the first two lines of the buffer, for
example, (that is, lines 1 through 2) say

1,2p (starting line=1, ending line=2 p)
Ed will respond with

Now is the time
for all good men

Suppose you want to print all the lines in the buffer. You could use 1,3p as above if you knew there were
exactly 3 lines in the buffer. But in general, you don’t know how many there are, so what do you use for the
ending line number? Ed provides a shorthand symbol for “line number of last line in buffer” — the dollar
sign $. Use it this way:

1,8p

This will print all the lines in the buffer (line 1 to last line.) If you want to stop the printing before it is
finished, push the DEL or Delete key; ed will type

?

and wait for the next command.
To print the last line of the buffer, you could use

$,$p

but ed lets you abbreviate this to

ND-60.328.1P EN

A Tutorial Introduction to'the UNIX Text Editor USD:12~7

$13

You can print any single line by typing the line number followed by a p. Thus
11)

produces the response

Now is the time

which is the first line of the buffer.
In fact, ed lets you abbreviate even further: you can print any single line by typing just the line number — noneed to type the letter p. So if you say

3
ed will print the last line of the buffer.
You can also use $ in combinations like

3—1 ,$p
which prints the last two lines of the buffer. This helps when you want to see how far you got in typing.

Exercise 3:
As before, create some text using the a command and experiment with the p command. You will find, forexample, that you can’t print line 0 or a line beyond the end of the buffer, and that attempts to print a buffer inreverse order by saying

3,1p

don’t work.

The current line —- “Dot” or “.”
Suppose your buffer still contains the six lines as above, that you have just typed

1,3P
and ed has printed the three lines for you. Try typing just

p (no line numbers)

This will print

to come to the aid of their party.
which is the third line of the buffer. In fact it is the last (most recent) line that you have done anything with.(You just printed it!) You can repeat this p command without line numbers, and it will continue to print line3.
The reason is that ed maintains a record of the last line that you did anything to (in this case, line 3, whichyou just printed) so that it can be used instead of an explicit line number. This most recent line is referred toby the shorthand symbol

(pronounced “dot”).

Dot is a line number in the same way that $ is; it means exactly “the current line”, or loosely, “the line youmost recently did something to.” You can use it in several ways — one possibility is to say
.,$p

This will print all the lines from (including) the current line to the end of the buffer. In our example these arelines 3 through 6.
Some commands change the value of dot, while others do not The p command sets dot to the number of thelast line printed; the last command will set both . and $ to 6.

ND—60.328.1P EN

USD212-8 ' ' ' A Tutorial Introduction to the umx Text Editor

Dot is most useful when used in combinations like this one:

.+1 (or equivalently, .+lp)

This means “print the next line” and is a handy way to step slowly through a buffer. You can also say
.—1 (or .—-lp)

which means “print the line before the current line.” This enables you to go backwards if you wish. Another
useful one is something like

.—3,.—1p

which prints the previous three lines.
Don‘t forget that all of these change the value of dot You can find out what dot is at any time by typing

Ed will respond by printing the value of dot.
Let’s summarize some things about the p command and dot. Essentially p can be preceded by 0, l, or 2 line
numbers. If there is no line number given, it prints the “current line”, the line that dot refers to. If there is
one line number given (with or without the letter p), it prints that line (and dot is set there); and if there are
two line numbers, it prints all the lines in that range (and sets dot to the last line printed.) If two line numbers
are specified the first can't be bigger than the second (see Exercise 2.)
Typing a single return will cause printing of the next line — it’s equivalent to .+lp. Try it. Try typing a —; you
will find that it’s equivalent to .—lp.

Deleting lines: the “d” command
Suppose you want to get rid of the three extra lines in the buffer. This is done by the delete command

(1

Except that d deletes lines instead of printing them, its action is similar to that of p. The lines to be deleted
are specified for d exactly as they are for p:

starting line, ending line d

Thus the command

4,$d

deletes lines 4 through the end. There are now three lines left, as you can check by using
1,$p

And notice that 3 now is line 3! Dot is set to the next line after the last line deleted, unless the last line
deleted is the last line in the buffer. In that case, dot is set to $.

Exercise 4:

Experiment with a, e, r, w, p and (1 until you are sure that you know what they do, and until you understand
how dot, $, and line numbers are used.
If you are adventurous, try using line numbers with a, r and w as well. You will find that a will append lines
after the line number that you specify (rather than after dot); that r reads a file in after the line number you
specify (not necessarily at the end of the buffer); and that w will write out exactly the lines you specify, not
necessarily the whole buffer. These variations are sometimes handy. For instance you can insert a file at the
beginning of a buffer by saying

0r filename

and you can enter lines at the beginning of the buffer by saying

ND-60.328. lP EN

A Tutorial Introduction to the UNIX Text Editor USD:12-9

Oa
.text...

Notice that .w is very different from

Modifying text: the Substitute command “5”
We are now ready to try one of the most important of all commands — the substitute command

S

This is the command that is used to change individual words or letters within a line or group of lines. It iswhat you use, for example, for correcting spelling mistakes and typing errors.
Suppose that by a typing error, line 1 says

Now is th time

— the e has been left off the. You can use 5 to fix this up as follows:
IS/th/IhCI

This says: “in line 1, substitute for the characters (I: the characters the.” To verify that it works ed will notprint the result automatically) say

P

and get

Now is the time

which is what you wanted. Notice that dot must have been set to the line where the substitution took place,since the p command printed that line. Dot is always set this way with the 5 command.
The general way to use the substitute command is

starting-line, ending-line s/change this/to this/
Whatever string of characters is between the first pair of slashes is replaced by whatever is between the secondpair, in all the lines between starting-line and ending-line. Only the first occurrence on each line is changed,however. If you want to change every occurrence, see Exercise 5. The rules for line numbers are the same asthose for p, except that dot is set to the last line changed (But there is a trap for the unwary: if no substitutiontook place, dot is not changed. This causes an error ? as a warning.)
Thus you can say

I ,$s/spel ing/spelling/

and correct the first spelling mistake on each line in the text. (This is useful for people who are consistentmisspellersl)
If no line numbers are given, the 5 command assumes we mean “make the substitution on line dot”, so itchanges things only on the current line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current line, and then prints it, to make sure it worked out right. If itdidn’t, you can try again. (Notice that there is a p on the same line as the s command. With few exceptions, pcan follow any command; no other multi-command lines are legal.)
It’s also legal to say

5/. . .//
which means “change the first string of characters to nothing i.e., remove them. This is useful for deletingextra words in a line or removing extra letters from words. For instance, if you had

ND-60.328.lP EN

USD:12-10 ’ A Tutorial Introduction to the UNIX Text Editor

Nowxx is the time

you can say

S/XXI/p
to get

Now is the time

Notice that // (two adjacent slashes) means “no characters", not a blank. There is a difference! (See below
for another meaning of //.)

Exercise 5:
Experiment with the substitute command. See what happens if you substitute for some word on a line with
several occurrences of that word. For example, do this:

a
the other side of the coin

s/the/on the/p

You will get

on the other side of the coin

A substitute command changes only the first occurrence of the first string. You can change all occurrences by
adding a g (for “global”) to the 5 command, like this:

5/...l.../gp
Try other characters instead of slashes to delimit the two sets of characters in the 5 command — anything
should work except blanks or tabs.
(If you get funny results using any of the characters

A . $ [* \ &

read the section on “Special Characters".)

Context searching — “I . . . I”
With the substitute command mastered, you can move on to another highly important idea of ed — context
searching.
Suppose you have the original three line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains their so you can change it to the. Now with only three lines
in the buffer, it’s pretty easy to keep track of what line the word their is on. But if the buffer contained
several hundred lines, and you’d been making changes, deleting and rearranging lines, and so on, you would
no longer really know what this line number would be. Context searching is simply a method of specifying
the desired line, regardless of what its number is, by specifying some context on it.
The way to say “search for a line that contains this particular string of characters” is to type

/string of characters we want to find/

For example, the ed command

/their/

is a context search which is sufficient to find the desired line - it will locate the next occurrence of the charac-
ters between slashes (“their”). It also sets dot to that line and prints the line for verification:

ND-60.328.1P EN

A Tutorial Introduction to‘the UNIX Text Editor USD212-ll

to come to the aid of their party.

“Next occurrence” means that ed starts looking for the string at line .+1, searches to the end of the buffer,
then continues at line 1 and searches to line dot. (That is, the search “wraps around” from $ to 1.) It scans
all the lines in the buffer until it either finds the desired line or gets back to dot again. If the given string of
characters can’t be found in any line, ed types the error message

?

Otherwise it prints the line it found.
You can do both the search for the desired line and a substitution all at once, like this:

[their/s/their/the/p

which will yield

to come to the aid of the party.
There were three parts to that last command: context search for the desired line, make the substitution, print
the line.

The expression /their/ is a context search expression. In their simplest form, all context search expressions arelike this — a string of characters surrounded by slashes. Context searches are interchangeable with line
numbers, so they can be used by themselves to find and print a desired line, or as line numbers for some other
command, like 5. They were used both ways in the examples above.
Suppose the buffer contains the three familiar lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

/Now/+1
/good/
fpanyl—I

are all cont search expressions, and they all refer to the same line (line 2). To make a change in line 2, you
could say

/NOWI+IS/good/bad/
or

/good/s/g00d/bad/
or

I‘Party/—18/good/bad/
The choice is dictated only by convenience. You could print all three lines by, for instance

/Now/,/party/p

or

/Now/./Now/+2p

or by any number of similar combinations. The first one of these might be better if you don’t know how many
lines are involved. (Of course, if there were only three lines in the buffer, you’d use

l,$p

but not if there were several hundred.)
The basic rule is: a context search expression is the same as a line number, so it can be used wherever a linenumber is needed.

ND—60.328.1P EN

USD212-12 ' A Tutorial Introduction to the UND(Text Editor

Exercise 6:

Experiment with context searching. Try a body of text with several occurrences of the same string of
characters, and scan through it using the same context search.
Try using context searches as line numbers for the substitute, print and delete commands. (They can also be
used with r, w, and a)

Try context searching using ?text? instead of /text/. This scans lines in the buffer in reverse order rather than
normal. This is sometimes useful if you go too far while looking for some string of characters — it’s an easy
way to back up.
(If you get funny results with any of the characters

A . $ [* \ &

read the section on “Special Characters”.)
Ed provides a shorthand for repeating a context search for the same string. For example, the ed line number

/st1ing/

will find the next occurrence of string. It often happens that this is not the desired line, so the search must be
repeated. This can be done by typing merely

//
This shorthand stands for “the most recently used context search expression.” It can also be used as the first
string of the substitute command, as in

/string1/S//string2/
which will find the next occurrence of stringl and replace it by stringZ. This can save a lot of typing. Simi-
iarly

’2?

means “scan backwards for the same expression."

Change and Insert — “c” and “i”
This section discusses the change command

C

which is used to change or replace a group of one or more lines, and the insert command

i VVVVVVV
which is used for inserting a group of one or more lines.
“Change", written as

C

is used to replace a number of lines with different lines, which are typed in at the terminal. For example, to
change lines .+1 through $ to something else, type

.+1,$c

. . . type the lines often you want here . . .

The lines you type between the c command and the . will take the place of the original lines between start line
and end line. This is most useful in replacing a line or several lines which have errors in them.
If only one line is specified in the c command, then just that line is replaced. (You can type in as many
replacement lines as you like.) Notice the use of . to end the input — this works just like the . in the append
command and must appear by itself on a new line. If no line number is given, line dot is replaced. The value
of dot is set to the last line you typed in.

ND-60.328.1P EN

A Tutorial Introduction to‘the UNIX Text Editor USD212—13

“Insert” is similar to append — for instance

/stn'ng/i
. . . type the lines to be inserted here . . .

will insert the given text before the next line that contains “string”. The text between i and . is insertedbefore the specified line. If no line number is specified dot is used. Dot is set to the last line inserted.

Exercise 7:

“Change" is rather like a combination of delete followed by insert. Experiment to verify that
start, end d
i

. text . . .

is almost the same as

start, end 0
. text . . .

These are not precisely the same if line $ gets deleted. Check this out. What is dot?
Experiment with a and i, to see that they are similar, but not the same. You will observe that

line-number a
. text . . .

appends after the given line, while

line-number i
. text . . .

inserts before it. Observe that if no line number is given, i insens before line dot, while a appends after linedot.

Moving text around: the “m” command
The move command m is used for cutting and pasting — it lets you move a group of lines from one place toanother in the buffer. Suppose you want to put the first three lines of the buffer at the end instead. You coulddo it by saying:

1,3w temp
$r temp
1,3d

(Do you see why?) but you can do it a lot easier with the in command:
1,3m$

The general case is

start line, end line m after this line

Notice that there is a third line to be specified - the place where the moved stuff gets put. Of course the linesto be moved can be specified by context searches; if you had

ND—60.328.1P EN

USD:12-14 ' A Tutorial Introduction to the UNIX Text Editor

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two paragraphs like this:

/Second/./end of second/m/Firstl—l

Notice the —-1: the moved text goes after the line mentioned. Dot gets set to the last line moved.

The global commands “g” and “v”
The global command g is used to execute one or more ed commands on all those lines in the buffer that
match some specified suing. For example

g/peling/P
prints all lines that contain peling. More usefully,

g/peling/S/melling/gp
makes the substitution everywhere on the line, then prints each corrected line. Compare this to

l,Ss/peling/pelling/gp

which only prints the last line substituted. Another subtle difference is that the g command does not give a ‘3
if peling is not found where the 5 command will.
There may be several commands (including a, c, i, r, w, but not g); in that case, every line except the last must
end with a backslash \:

g/xxx/.-1s/abc/def/\
.+25/ghi/jkl/\
.—2,.p

makes changes in the lines before and after each line that contains xxx, then prints all three lines.
The v command is the same as g, except that the commands are executed on every line that does not match the
string following v:

v/ /d

deletes every line that does not contain a blank.

Special Characters
You may have noticed that things just don’t work right when you used some characters like ., *, S, and others
in context searches and the substitute command. The reason is rather complex, although the cure is simple.
Basically, ed treats these characters as special, with special meanings. For instance, in a context search or the
first string of the substitute command only, " . " means “any character”, not a period, so

/x.y/

means “a line with an x, any character, and a y,” not just “a line with an x, a period, and a y." A complete
list of the special characters that can cause trouble is the following:

A.$[*\

Warning: The backslash character\ is special to ed. For safety’s sake, avoid it where possible. If you have to
use one of the special characters in a substitute command, you can turn off its magic meaning temporarily by
preceding it with the backslash. Thus

s/\\\ . * / backslash dot star/

ND-60.328.1P EN

A Tutorial Introduction to the UNIX Text Editor USD:12—15

will change \. * into “backslash dot star”.
Here is a hurried synopsis of the other special characters. First, the circumflex " signifies the beginning of aline. Thus

/’\string/

finds string only if it is at the beginning of a line: it will find
string

but not

the string...

The dollar—sign S is just the opposite of the circumflex; it means the end of a line:
/stn'ng$/

will only find an occurrence of string that is at the end of some line. This implies, of course, that
/’\string$/

will find only a line that contains just string, and

/".$/
finds a line containing exactly one character.
The character . as we mentioned above, matches anything;

/x.y/
matches any of

x+y
X'Y
X Y
x.y

This is useful in conjunction with *, which is a repetition character; a* is a shorthand for “any number of
a s, so .* matches any number of anythings. This is used like this:

s/.*/stuf{/

which changes an entire line, or

S/.*, //
which deletes all characters in the line up to and including the last comma. (Since .* finds the longest possi-ble match, this goes up to the last comma.)
The square brackets characters [and] are used to form “character classes”; for example,

/[0123456789]/

matches any single digit — any one of the characters inside the braces will cause a match. This can be abbrevi—ated to [0—9].
Finally, the & is another shorthand character — it is used only on the right—hand part of a substitute commandwhere it means “whatever was matched on the left-hand side”. It is used to save typing. Suppose the currentline contained

Now is the time

and you wanted to put parentheses around it. You could just retype the line, but this is tedious. Or you could
say

S/A/(l
S/$/)/

using your knowledge of A and 5. But the easiest way uses the &:

ND-60.328.1P EN

USD: 12-16 ' A Tutorial Introduction to the UNIX Text Editor

S/.*/(&)/

This says “match the whole line, and replace it by itself surrounded by parentheses.” The & can be used
several times in a line; consider using

S/.*/&? &!!l

to produce

Now is the time? Now is the time!!

You don’t have to match the whole line, of course: if the buffer contains

the end of the world

you could type

/world/S//& is at hand/

to produce

the end of the world is at hand

Observe this expression carefully, for it illustrates how to take advantage of ed to save typing. The string
/world/ found the desired line; the shorthand // found the same word in the line; and the & saves you from
typing it again.

The & is a special character only within the replacement text of a substitute command, and has no special
meaning elsewhere. You can turn off the special meaning of & by preceding it with a \:

s/ampersandNiL/
will convert the word “ampersand” into the literal symbol & in the current line.

Summary of Commands and Line Numbers
The general form of ed commands is the command name, perhaps preceded by one or two line numbers, and,
in the case of e, r, and w, followed by a file name. Only one command is allowed per line, but a p command
may follow any other command (except for e, r, w and q).

a Append, that is, add lines to the buffer (at line dot, unless a different line is specified). Appending
continues until . is typed on a new line. Dot is set to the last line appended.

c Change the specified lines to the new text which follows. The new lines are terminated by a ., as
with a. If no lines are specified, replace line dot. Dot is set to last line changed.

d Delete the lines specified. If none are specified, delete line dot. Dot is set to the first undeleted
line, unless $ is deleted, in which case dot is set to $.

e Edit new file. Any previous contents of the buffer are thrown away, so issue a w beforehand.
f Print remembered filename. If a name follows f the remembered name will be set to it.
g The command

g/—-/commands

will execute the commands on those lines that contain which can be any context search expres-
sion.

i Insert lines before specified line (or dot) until a . is typed on a new line. Dot is set to last line
inserted.

m Move lines specified to after the line named after m. Dot is set to the last line m0ved.
p Print specified lines. If none specified, print line dot. A single line number is equivalent to line-

number p. A single return prints .+l, the next line.

ND-60.328.1P EN

A Tutorial Introduction to the UND< Text Editor USD: 12-17

Quit ed. Wipes out all text in buffer if you give it twice in a row without first giving a w com-mand.

Read a file into buffer (at end unless specified elsewhere). Dot set to last line read.
The command

s/stn'ngl/stringZ/

substitutes the characters string] into stringz in the specified lines. If no lines are specified, makethe substitution in line dot. Dot is set to last line in which a substitution took place, which meansthat if no substitution took place, dot is not changed. s changes only the first occurrence ofstring] on a line; to change all of them, type a g after the final slash.
The command

v/--—/commands

executes commands on those lines that do not contain ---.
Write out buffer onto a file. Dot is not changed.
Print value of dot. (= by itself prints the value of S.)
The line

lcommand-line

causes command-line to be executed as a UNIX command.
Context search. Search for next line which contains this string of characters. Print it. Dot is setto the line where string was found. Search starts at .+1, wraps around from S to 1, and continues
to dot, if necessary.
Context search in reverse direction. Start search at .—1, scan to 1, wrap around to $.

ND-60.328.1P EN

USD212-18 ‘ A Tutorial Introduction to the UNIX Text Editor

ND—60.328.1P EN

Advanced Editing on UNIX USD213-1

Advanced Editing on UNIX

Brian W. Kerru’ghan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated for 4.3BSD by Mark Seiden)

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make effective use of the
UNIXT facilities for preparing and editing text. It provides explanations and examples of

VVV 0 special characters, line addressing and global commands in the editor ed;
0 commands for “cut and paste” operations on files and parts of files, including the mv,

cp, cat and rm commands, and the r, w, m and t commands of the editor;
. editing scripts and editor—based programs like grep and sed.
Although the treatment is aimed at non-programmers, new UNIX users with any background
should find helpful hints on how to get their jobs done more easily.

1‘ UNlX is a registered trademark of AT&T in the USA and other countries.

ND—60.328.1P EN

USD213-2 ‘ Advanced Editing on UNIX

ND—60.328. 1? EN

Advanced Editing on UNIX USD:l3-3

1. INTRODUCTION
Although UNIX provides remarkably effective tools for text editing, that by itself is no guarantee that everyone
will automatically make the most effective use of them. In particular, people who are not computer specialists
—— typists, secretaries, casual users —— often use the system less effectively than they might (There is a good
argument that new users would better use their time learning a display editor, like vi, or perhaps a version of
emacs. like jove. rather than an editor as ignorant of display terminals as ed.)
This document is intended as a sequel to A Tutorial Introduction to the UNIX Text Editor [1], providing expla-
nations and examples of how to edit using ed with less effort. (You should also be familiar with the material
in UNIX For Beginners [2].) Further information on all commands discussed here can be found in section 1 of
the The UNIX User’s Manual [3].
Examples are based on observations of users and the difficulties they encounter. Topics covered include spe-
cial characters in searches and substitute commands, line addressing, the global commands, and line moving
and copying. There are also bn'ef discussions of effective use of related tools, like those for file manipulation,
and those based on ed, like grep and sed.
A word of caution. There is only one way to learn to use something, and that is to use it. Reading a descrip-
tion is no substitute for trying something. A paper like this one should give you ideas about what to try, but
until you actually try something, you will not learn it

2. SPECIAL CHARACTERS
The editor ed is the primary interface to the system for many people, so it is worthwhile to know how to get
the most out of ed for the least effort
The next few sections will discuss shortcuts and labor—saving devices. Not all of these will be instantly useful
to any one person, of course, but a few will be, and the others should give you ideas to store away for future
use. And as always, until you try these things, they will remain theoretical knowledge, not something you
have confidence in.

The List command ‘I’

ed provides two commands for printing the contents of the lines you’re editing. Most people are familiar with
p, in combinations like

l,$p

to print all the lines you’re editing, or

s/abc/def/p

to change ‘abc’ to ‘def’ on the current line. Less familiar is the list command I (the letter ‘1’), which gives
slightly more information than p. In particular, I makes visible characters that are normally invisible, such as
tabs and backspaces. If you list a line that contains some of these, I will print each tab as > and each back-
space as <.T This makes it much easier to correct the sort of typing mistake that inserts extra spaces adjacent
to tabs, or inserts a backspace followed by a Space.
The I command also ‘folds’ long lines for printing —— any line that exceeds 72 characters is printed on multiple
lines; each printed line except the last is terminated by a backslash \, so you can tell it was folded. This is use-
ful for printing long lines on short terminals.
Occasionally the I command will print in a line a string of numbers preceded by a backslash, such as \07 or
\16. These combinations are used to make visible characters that normally don’t print, like form feed or verti-
cal tab or bell. Each such combination is a single character. When you see such characters, be wary —— they
may have surprising meanings when printed on some terminals. Often their presence means that your finger
slipped while you were typing; you almost never want them.

1' These composite characters are created by ovcrstriking a minus and a > or <, so they only appear as < or > on display
terminals.

ND-60.328.1P EN

USD: 13-4 ' Advanced Editing on UNIX

The Substitute Command ‘5’

Most of the next few sections will be taken up with a discussion of the substitute command 5. Since this is the
command for changing the contents of individual lines, it probably has the most complexity of any ed com—
mand, and the most potential for effective use.

As the simplest place to begin, recall the meaning of a trailing g after a substitute command. With
s/this/thal/

and

s/this/thaI/g
the first one replaces the first ‘this’ on the line with ‘that’. If there is more than one ‘this’ on the line, the
second form with the trailing g changes all of them.
Either form of the 5 command can be followed by p or I to ‘print’ or ‘list’ (as described in the previous sec-
tion) the contents of the line:

s/this/that/p
s/this/that/l
S/thiS/that/gp
s/this/that/gl

are all legal, and mean slightly different things. Make sure you know what the differences are.
Of course, any 5 command can be preceded by one or two ‘line numbers’ to specify that the substitution is to
take place on a group of lines. Thus

1,$S/mispell/misspell/
changes thefirst occurrence of ‘mispell’ to ‘misspell’ on every line of the file. But

l,$S/mispell/misspell/g

changes every occurrence in every line (and this is more likely to be what you wanted in this particular case).
You should also notice that if you add a p or I to the end of any of these substitute commands, only the last
line that got changed will be printed, not all the lines. We will talk later about how to print all the lines that
were modified.

The Undo Command ‘u’
Occasionally you will make a substitution in a line, only to realize too late that it was a ghastly mistake. The
‘undo’ command u lets you ‘undo’ the last substitution: the last line that was substituted can be restored to its
previous state by typing the command

u

The Metacharacter ‘.’

As you have undoubtedly noticed when you use ed, certain characters have unexpected meanings when they
occur in the left side of a substitute command, or in a search for a particular line. In the next several sections,
we will talk about these special characters, which are often called ‘metacharacters’.
The first one is the period ‘.'. On the left side ofa substitute command, or in a search with ‘/.../’, the stands
for any single character. Thus the search

/x.y/
finds any line where ‘x‘ and ‘y’ occur separated by a single character, as in

x+y

X“Y
Xuy

x.y

and so on. (We will use U to stand for a space whenever we need to make it visible.)

ND-60.328.1P EN

Advanced Editing on UNIX USDzl3—5

Since matches a single character, that gives you a way to deal with funny characters printed by I. Suppose
you have a line that, when printed with the I command, appears as

th\07is

and you want to get rid of the \07 (which represents the bell character, by the way).
The most obvious solution is to try

S/\07//
but this will fail. (Try it.) The brute force solution, which most people would now take, is to re-type the entire
line. This is guaranteed. and is actually quite a reasonable tactic if the line in question isn’t too big, but for a
very long line, re—typing is a bore. This is where the metacharacter ‘.’ comes in handy. Since ‘\()7’ really
represents a single character, if we say

s/th.is/this/

the job is done. The matches the mysterious character between the ‘h’ and the ‘i’, whatever it is.
Bear in mind that since matches any single character, the command

S/./,/
converts the first character on a line into a which very often is not what you intended.
As is true of many characters in ed, the has several meanings, depending on its context. This line shows all
three:

.s/././
The first is a line number, the number of the line we are editing, which is called ‘line dot’. (We will dis‘
cuss line dot more in Section 3.) The second is a metacharacter that matches any single character on that
line. The third ‘.’ is the only one that really is an honest literal period. On the right side of a substitution,
is not special. If you apply this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

The Backslash ‘\’

Since a period means ‘any character', the question naturally arises of what to do when you really want a
period. For example, how do you convert the line

Now is the time.

into

Now is the time?

The backslash ‘\’ does the job. A backslash turns off any special meaning that the next character might have;
in particular, ‘\.’ converts the from a ‘match anything’ into a period, so you can use it to replace the period
in

Now is the time.

like this:

S/\./?/
The pair of characters ‘\.' is considered by ed to be a single real period.
The backslash can also be used when searching for lines that contain a special character. Suppose you are
looking for a line that contains

.PP

ND-60.328.1P EN

USD:13—6 ‘ Advanced Editing on UNIX

The search

/.PP/

isn’t adequate, for it will find a line like

THE APPLICATION OF

because the ‘.’ matches the letter ‘A’. But if you say
/\.PP/

you will find only lines that contain ‘.PP‘.
The backslash can also be used to turn off special meanings for characters other than For example, con-
sider finding a line that contains a backslash. The search

/\/
won’t work, because the ‘\’ isn’t a literal ‘\’, but instead means that the second ‘/' no longer delimits the
search. But by preceding a backslash with another one, you can search for a literal backslash. Thus

/\\/
does work. Similarly, you can search for a forward slash ‘/’ with

/V/
The backslash turns off the meaning of the immediately following ‘/' so that it doesn’t terminate the /.../ con-
struction prematurely.
As an exercise, before reading further, find two substitute commands each of which will convert the line

\x\.\y

into the line

\x\y

Here are several solutions; verify that each works as advertised.

s/\\\.//
s/x../x/
s/«y/y/

A couple of miscellaneous notes about backslashes and special characters. First, you can use any character to
delimit the pieces of an 5 command: there is nothing sacred about slashes. (But you must use slashes for con-
text searching.) For instance, in a line that contains a lot of slashes already, like

//exec //sys.forLgo // etc...

you could use a colon as the delimiter —-— to delete all the slashes, type

s:/::g

Second, if # and @ are your character erase and line kill characters, you have to type Vi and @; this is true
whether you’re talking to ed or any other program.
When you are adding text with a or i or c, backslash is not special, and you should only put in one backslash
for each one you really want.

The Dollar Sign ‘3’
The next metacharacter, the ‘$’, stands for ‘the end of the line’. As its most obvious use, suppose you have
the line

Now is the

and you wish to add the word ‘time’ to the end. Use the 8 like this:

ND‘60.328.1P EN

Advanced Editing on UNIX USDzl3-7

s/$/utime/

to get

Now is the time

Notice that a space is needed before ‘time’ in the substitute command, or you will get

Now is thetime

As another example, replace the second comma in the following line with a period without altering the first:
Now is the time, for all good men,

The command needed is

s/,$/./
The $ sign here provides context to make specific which comma we mean. Without it, of course, the 5 com-
mand would operate on the first comma to produce

Now is the time. for all good men,

As another example, to convert

Now is the time.

into

Now is the time?

as we did earlier, we can use

S/.$/?/

Like the ‘3’ has multiple meanings depending on context In the line
$S/$/$/

the first ‘$’ refers to the last line of the file, the second refers to the end of that line, and the third is a literal
dollar sign, to be added to that line.

The Circumflex ‘ A ’
The circumflex (or hat or caret) ‘ A ’ stands for the beginning of the line. For example, suppose you are look-
ing for a line that begins with ‘the'. If you simply say

lthe/
you will in all likelihood find several lines that contain ‘the’ in the middle before arriving at the one you want.
But with

/"th6/
you narrow the context, and thus arrive at the desired one more easily.
The other use of ‘A’ is of course to enable you to insert something at the beginning of a line:

S/A/U/
places a space at the beginning of the current line.
Metacharacters can be combined. To search for a line that contains onIy the characters .l’l’ you can use the
command

/"\ .PPS/

ND—60.328.1P EN

USD213-8 ' Advanced Editing on UNIX

The Star ‘ * ’

Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are some indeterminate number of spaces between the x and the y.
Suppose the job is to replace all the spaces between x and y by a single space. The line is too long to retype,
and there are too many spaces to count What now?
This is where the metacharacter ‘*’ comes in handy. A chamcter followed by a star stands for as many con-
secutive occurrences of that character as possible. To refer to all the spaces at once, say

S/XD*y/X0y/

The construction ‘o*’ means ‘as many spaces as possible’. Thus ‘xa*y’ means ‘an x, as many spaces as possi-
ble, then a y’.

The star can be used with any character, not just space. If the original example was instead

text x--------y text

then all ‘—’ signs can be replaced by a single space with the command

s/x—* y/xny/

Finally, suppose that the line was

text x.................. y text

Can you see what trap lies in wait for the unwary? If you blindly type

s/x.*y/xuy/

what will happen? The answer, naturally, is that it depends. If there are no other x’s or y's on the line, then
everything works, but it’s blind luck, not good management Remember that matches any single character?
Then ‘.*’ matches as many single characters as possible, and unless you’re careful, it can eat up a lot more of
the line than you expected If the line was, for example, like this:

text x text x................y text y text
then saying

s/x.*y/xuy/

will take everything from the first ‘x’ to the last ‘y’, which, in this example, is undoubtedly more than you
wanted.

The solution, of course, is to turn off the special meaning of with ‘\.’:

s/x\.*y/x:iy/

Now everything works, for ‘\.*’ means "as many periods as possible".
There are times when the pattern ‘.*’ is exactly what you want. For example, to change

Now is the time for all good men
into

Now is the time.

use ‘.*’ to eat up everything after the ‘for’:
s/ofor.*/./

There are a couple of additional pitfalls associated with ‘ * ‘ that you should be aware of. Most notable is the
fact that ‘as many as possible’ means zero or more. The fact that zero is a legitimate possibility is sometimes
rather surprising, For example, if our line contained

ND—60.328.1P EN

Advanced Editing on UNIX USD213—9

text xy text x y text

and we said

s/xn*y/xuy/
thefirst ‘xy’ matches this pattern, for it consists of an ‘x’, zero spaces, and a ‘y’. The result is that the substi-
tute acts on the first ‘xy’, and does not touch the later one that actually contains some intervening spaces.
The way around this, if it matters, is to specify a pattern like

/xou*y/

which says ‘an x, a space, then as many more spaces as possible, then a y’, in other words, one or more
spaces.
The other startling behavior of ‘*’ is again related to the fact that zero is a legitimate number of occurrences of
something followed by a star. The command

S/x*/Y/g
when applied to the line

abcdef

produces

yaybycydyeyfy
which is almost cenainly not what was intended. The reason for this behavior is that zero is a legal number of
matches, and there are no x’s at the beginning of the line (so that gets converted into a ‘y’), nor between the
‘a’ and the ‘b’ (so that gets converted into a ‘y’), nor and so on. Make sure you really want zero matches;
if not, in this case write

s/XX*/y/g
‘xx*’ is one or more x’s.

The Brackets ‘[1’

Suppose that you want to delete any numbers that appear at the beginning of all lines of a file. You might first
think of trying a series of commands like

1,$s/At *l/
1,$s/A2*//
1.$s/’\3*//

and so on, but this is clearly going to take forever if the numbers are at all long. Unless you want to repeat the
commands over and over until finally all numbers are gone, you must get all the digits on one pass. This is the
purpose of the brackets [and].
The construction

[0123456789]

matches any single digit —— the whole thing is called a ‘character class’. With a character class, the job is
easy. The pattern ‘[0123456789]*’ matches zero or more digits (an entire number), so

l,$s/’\[0123456789] *//
deletes all digits from the beginning of all lines.
Any characters can appear within a character class, and just to confuse the issue there are essentially no special
characters inside the brackets; even the backslash doesn’t have a special meaning. To search for special char—
acters, for example, you can say

/[-\$"[l/
Within [...], the ‘[’ is not special. To get a ‘1’ into a character class, make it the first character.

ND~60.328.lP EN

USD213-10 ‘ Advanced Editing on UNDt

It’s a nuisance to have to spell out the digits, so you can abbreviate them as [0—9]; similarly, [a—z] stands for -------
the lower case letters, and [AaZ] for upper case.

As a final frill on character classes, you can specify a class that means ‘none of the following characters‘. This
is done by beginning the class with a ‘A’:

["0-9]
stands for ‘any character except a digit’. Thus you might find the first line that doesn’t begin with a tab or
space by a search like

/"t"(5pace)(tab)]/

Within a character class, the circumflex has a special meaning only if it occurs at the beginning. Just to con-
vince yourself, verify that

/"[’V‘]/
finds a line that doesn’t begin with a circumflex.

The Ampersand ‘&’
The ampersand ‘&’ is used primarily to save typing. Suppose you have the line

Now is the time TTTTT
and you want to make it

Now is the best time

Of course you can always say

s/the/the best]

but it seems silly to have to repeat the ‘the’. The ‘&’ is used to eliminate the repetition. On the right side of
a substitute, the ampersand means ‘whatever was just matched’, so you can say

s/the/& best/

and the ‘&‘ will stand for ‘the’. Of course this isn’t much of a saving if the thing matched is just ‘the’, but if
it is something truly long or awful, or if it is something like ‘.*’ which matches a lot of text, you can save
some tedious typing. There is also much less chance of making a typing error in the replacement text. For
example, to parenthesize a line, regardless of its length,

S/.*/(&)/

The ampersand can occur more than once on the right side:

s/the/& best and & worst/

makes

Now is the best and the worst time

and

s/.*/&? &!l/

converts the original line into

Now is the time? Now is the timell

To get a literal ampersand, naturally the backslash is used to turn off the special meaning:
s/ampersand/\&/

converts the word into the symbol. Notice that ‘&’ is not special on the left side of a substitute, only on the
rig/ll side.

ND-60.328.1P EN

Advanced Editing on UNDt USD: 13-11

Substituting Newlina
ed provides a facility for splitting a single line into two or more shorter lines by ‘substituting in a newline’.
As the simplest example, suppose a line has gotten unmanageably long because of editing (or merely because
it was unwisely typed). If it looks like

text xy text

you can break it between the ‘x’ and the ‘y’ like this:

Slxy/x\
Y/

This is actually a single command, although it is typed on two lines. Bearing in mind that ‘\’ turns off specialmeanings, it seems relatively intuitive that a ‘\’ at the end of a line would make the newline there no longerspecial.
You can in fact make a single line into several lines with this same mechanism. As a large example, considerunderlining the word ‘very’ in a long line by splitting ‘very’ onto a separate line, and preceding it by the roff
or nrol‘f formatting command ‘.ul'.

text a very big text

The command

slaveryu/\
. ul\
very\
/

converts the line into four shorter lines, preceding the word ‘very’ by the line ‘.ul’, and eliminating the spacesaround the ‘very’, all at the same time.
When a newline is substituted in, dot is left pointing at the last line created.

Joining Lines
Lines may also be joined together, but this is done with the j command instead of 5. Given the lines

Now is
uthe time

and supposing that (lot is set to the first of them, then the command

i
joins them together. No blanks are added, which is why we carefully showed a blank at the beginning of the
second line.
All by itself, aj command joins line dot to line dot+1, but any contiguous set of lines can be joined. Just
specify the starting and ending line numbers. For example,

1,$jp
joins all the lines into one big one and prints it. (More on line numbers in Section 3.)

Rearranging a Line with \(\)
(This section should be skipped on first reading.) Recall that ‘&’ is a shorthand that stands for whatever was
matched by the left side of an 5 command. In much the same way you can capture separate pieces of what wasmatched; the only difference is that you have to specify on the left side just what pieces you‘re interested in.
Suppose, for instance, that you have a file of lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede the name, as in

ND—60.328.1P EN

USD213-12 ‘ ‘ Advanced Editing on UNIX

A. B. Smith
C. Jones

It is possible to do this with a series of editing commands, but it is tedious and error-prone. (It is instructive to
figure out how it is done, though.)
The alternative is to ‘tag‘ the pieces of the pattern (in this case, the last name, and the initials), and then rear-
range the pieces. On the left side of a substitution, if part of the pattern is enclosed between \(and \), what-
ever matched that part is remembered, and available for use on the right side. On the right side, the symbol
‘\1’ refers to whatever matched the first\(...\) pair, ‘\2' to the second \(...\), and so on.
The command

1,$S/"\([".l*\),u*\(.*\)/\20\1/
although hard to read, does the job. The first \(...\) matches the last name, which is any string up to the
comma; this is referred to on the right side with ‘\1’. The second \(...\) is whatever follows the comma and
any spaces, and is referred to as ‘\2’.
Of course, with any editing sequence this complicated, it’s foolhardy to simply run it and hope. The global
commands g and v discussed in section 4 provide a way for you to print exactly those lines which were
affected by the substitute command, and thus verify that it did what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR
The next general area we will discuss is that of line addressn in ed, that is, how you specify what lines are to
be affected by editing commands. We have already used constructions like

1,Ss/x/y/
to specify a change on all lines. And most users are long since familiar with using a single newline (or return)
to print the next line, and with

/thing/

to find a line that contains ‘thing‘. Less familiar, surprisingly enough, is the use of
?thing?

to scan backwards for the previous occurrence of ‘thing’. This is especially handy when you realize that the
thing you want to operate on is back up the page from where you are currently editing.
The slash and question mark are the only characters you can use to delimit a context search, though you can
use essentially any character in a substitute command.

Address Arithmetic
The next step is to combine the line numbers like ‘$’, ‘/.../’ and ‘?...?’ with ‘+’ and ‘-’. Thus

3—1

is a command to print the next to last line of the current file (that is, one line before line ‘$’). For example, to
recall how far you got in a previous editing session,

S—5,$p

prints the last six lines. (Be sure you understand why it’s six, not five.) If there aren’t six, of course, you'll
get an error message.
As another example,

.~3,.+3p

prints from three lines before where you are now (at line dot) to three lines after, thus giving you a bit of con—
text. By the way, the ‘+' can be omitted:

.—3,.3p

is absolutely identical in meaning.

ND-60.328.1P EN

Advanced Editing on UNIX USDzl3-l3

Another area in which you can save typing effort in specifying lines is to use ‘—’ and ‘+' as line numbers by
themselves.

by itself is a command to move back up one line in the file. In fact, you can string several minus signs
together to move back up that many lines:

moves up three lines, as does ‘—3’. Thus

—3,+3p

is also identical to the examples above.
Since ‘—’ is shorter than ‘.——l’, constructions like

-,-S/bad/g00d/
are useful. This changes ‘bad’ to ‘good’ on the previous line and on the current fine.
‘+’ and ‘—’ can be used in combination with searches using ‘/.../’ and ‘?...?', and with ‘$’. The search

Airing/~-
finds the line containing ‘thing’, and positions you two lines before it.

Repeated Searches
Suppose you ask for the search

/horrible thing]
and when the line is printed you discover that it isn’t the horrible thing that you wanted, so it is necessary to
repeat the search again. You don’t have to re-type the search, for the construction

//
is a shorthand for ‘the previous thing that was searched for’, whatever it was. This can be repeated as many
times as necessary. You can also go backwards:

17?

searches for the same thing, but in the reverse direction.

Not only can you repeat the search, but you can use ‘//’ as the left side of a substitute command, to mean ‘the
most recent pattem'.

[horrible thing/
ed prints line with 'horrible thing'

s//good/p
To go backwards and change a line, say

??s//good/
Of course, you can still use the ‘&’ on the right hand side of a substitute to stand for whatever got matched:

//S//&u&/P
finds the next occurrence of whatever you searched for last, replaces it by two copies of itself, then prints the
line just to verify that it worked.

Default Line Numbers and the Value of Dot
One of the most effective ways to speed up your editing is always to know what lines will be affected by a
command if you don’t specify the lines it is to act on, and on what line you will be positioned (i.e., the value
of dot) when a command finishes. If you can edit without specifying unnecessary line numbers. you can save
a lot of typing.

ND-60.328.1P EN

USD: 13—14 L ‘ Advanced Editing on UNIX

As the most obvious example, if you issue a search command like

/thing/

you are left pointing at the next line that contains ‘thing'. Then no address is required with commands like 5
to make a substitution on that line, or p to print it, or I to list it, or d to delete it, or a to append text after it, or
c to change it, or i to insert text before iL
What happens if there was no ‘thing’? Then you are left right where you were ~— dot is unchanged. This is
also true if you were sitting on the only ‘thing‘ when you issued the command. The same rules hold for
searches that use ‘?...?’; the only difference is the direction in which you search.
The delete command d leaves dot pointing at the line that followed the last deleted line. When line ‘3’ gets
deleted, however, dot points at the new line ‘3’.

The line-changing commands a, c and i by default all affect the current line —— if you give no line number with
them, a appends text after the current line, c changes the current line, and i inserts text before the current line.
a, c, and i behave identically in one respect —— when you stop appending, changing or inserting, dot points at
the last line entered. This is exactly what you want for typing and editing on the fly. For example, you can
say

a
text

botch (minor error)

s/botch/correct/ (fix botched line)
a

more text

without specifying any line number for the substitute command or for the second append command. Or you
can say

a
text

horrible botch (major error)

c (replace entire line)
fixed up line

You should experiment to determine what happens if you add no lines with a, c or i.
The r command will read a file into the text being edited, either at the end if you give no address, or after the
specified line if you do. In either case, dot points at the last line read in. Remember that you can even say Or
to read a file in at the beginning of the text. (You can also say Oa or 1i to start adding text at the beginning.)
The w command writes out the entire file. If you precede the command by one line number, that line is writ-
ten, while if you precede it by two line numbers, that range of lines is written. The w command does not
change dot: the current line remains the same, regardless of what lines are written. This is true even if you
say something like

/’\\.AB/,/’\\.AE/w abstract

which involves a context search.
Since the w command is so easy to use, you should save what you are editing regularly as you go along just in
case the system crashes, or in case you do something foolish, like clobben'ng what you’re editing.
The least intuitive behavior, in a sense, is that of the 5 command. The rule is simple ~ you are left sitting on
the last line that got changed. If there were no changes, then dot is unchanged.
To illustrate, suppose that there are three lines in the buffer, and you are sitting on the middle one:

x1
x2
x3

Then the command

ND—60.328.1P EN

Advanced Editing on UNDt USD:l3-15

*,+S/X/y/p
prints the third line, which is the last one changed. But if the three lines had been

x1
y2
y3

and the same command had been issued while dot pointed at the second line, then the result would be to
change and print only the first line, and that is where dot would be set.

Semicolon ‘;’

Searches with ‘/.../’ and ‘?...?’ start at the current line and move forward or backward respectively until they
either find the pattern or get back to the current line. Sometimes this is not what is wanted. Suppose, for
example. that the buffer contains lines like this:

ab

Starting at line 1, one would expect that the command

la/Jb/p
prints all the lines from the ‘ab’ to the ‘bc' inclusive. Actually this is not what happens. Both searches (for
‘a’ and for ‘b') start from the same point, and thus they both find the line that contains ‘ab’. The result is to
print a single line. Worse, if there had been a line with a ‘b’ in it before the ‘ab' line, then the print command
would be in error, since the second line number would be less than the first, and it is illegal to try to print lines
in reverse order.
This is because the comma separator for line numbers doesn’t set dot as each address is processed; each search
starts from the same place. In ed, the semicolon ‘;’ can be used just like comma, with the single difference
that use of a semicolon forces dot to be set at that point as the line numbers are being evaluated. In effect, the
semicolon ‘moves’ dot Thus in our example above, the command

la/;/b/p
prints the range of lines from ‘ab’ to ‘bc’, because after the ‘a’ is found, dot is set to that line, and then ‘b’ is
searched for, starting beyond that line.
This property is most often useful in a very simple situation. Suppose you want to find the second occunence
of ‘thing’. You could say

Ithing/
//

but this prints the first occurrence as well as the second, and is a nuisance when you know very well that it is
only the second one you're interested in. The solution is to say

/thing/'.//
This says to find the first occurrence of ‘thing’, set dot to that line, then find the second and print only that.
Closely related is searching for the second previous occurrence of something, as in

?something?;??

Printing the third or fourth or in either direction is left as an exercise.

ND-60.328.1P EN

USD:13-16 ‘ Advanced Editing on UNIX

Finally, bear in mind that if you want to find the first occurrence of something in a file, starting at an arbitrary
place within the file, it is not sufficient to say

1;/thing/

because this fails if ‘thing’ occurs on line 1. But it is possible to say
Oz/thing/

(one of the few places where 0 is a legal line number), for this starts the search at line 1.

Interrupting the Editor
As a final note on what dot gets set to, you should be aware that if you hit the interrupt or delete or rubout or
break key while ed is doing a command, things are put back together again and your state is restored as much
as possible to what it was before the command began. Naturally, some changes are irrevocable — if you are
reading or writing a file or making substitutions or deleting lines, these will be stopped in some clean but
unpredictable state in the middle (which is why it is not usually wise to stop them). Dot may or may not be
changed.

Printing is more clear cut Dot is not changed until the printing is done. Thus if you print until you see an
interesting line, then hit delete, you are not sitting on that line or even near it. Dot is left where it was when
the p command was started.

4. GLOBAL COMMANDS
The global commands g and v are used to perform one or more editing commands on all lines that either con-
tain (g) or don’t contain (v) a specified pattern.
As the simplest example, the command

g/UNTX/p

prints all lines that contain the word ‘UNIX‘. The pattern that goes between the slashes can be anything that
could be used in a line search or in a substitute command; exactly the same rules and limitations apply.
As another example, then,

g/A\./p
prints all the formatting commands in a file (lines that begin with ‘.').
The v command is identical to g, except that it operates on those line that do not contain an occurrence of the
pattern. (Don’t look too hard for mnemonic significance to the letter ‘v’.) 80

v/A\./p
prints all the lines that don’t begin with —— the actual text lines.
The command that follows g or v can be anything:

g/A\./d

deletes all lines that begin with ‘.’, and

g/A$/d

deletes all empty lines.
Probably the most useful command that can follow a global is the substitute command, for this can be used to
make a change and print each affected line for verification. For example, we could change the word ‘Unix’ to
‘UNIX’ everywhere, and verify that it really worked, with

g/Unix/sl/UNIX/gp
Notice that we used ‘//’ in the substitute command to mean ‘the previous pattem', in this case, ‘Unix‘. The pcommand is done on every line that matches the pattern, not just those on which a substitution took place.
The global command operates by making two passes over the file. On the first pass, all lines that match thepattern are marked. On the second pass, each marked line in turn is examined, dot is set to that line, and thecommand executed. This means that it is possible for the command that follows a g or v to use addresses, set

ND—60.328.lP EN

Advanced Editing on UNIX USD: 13—17

dot, and so on, quite freely.

g/A\.PP/+

print; the line that follows each ‘.PP’ command (the signal for a new paragraph in some formatting packages).
Remember that ‘+’ means ‘one line past dot’. And

g/topic/7"\.SH?1
searches for each line that contains ‘topic’, scans backwards until it finds a line that begins ‘.SH’ (a section
heading) and prints the line that follows that, thus showing the section headings under which ‘topic’ is men—
tioned. Finally,

g/A\ .EQ/+, /"\ .EN/-p
print; all the lines that lie between lines beginning with ‘.EQ’ and ‘.EN’ formatting commands.
The g and v commands can also be preceded by line numbers, in which case the lines searched are only those
in the range specified.

Multi—line Global Commands

It is possible to do more than one command under the control of a global command, although the syntax for
expressing the operation is not especially natural or pleasant. As an example, suppose the task is to change ‘x’
to ‘y" and ‘a’ to ‘b’ on all lines that contain ‘thing’. Then

g/thing/S/X/yA
s/a/b/

is sufficient. The ‘\’ signals the g command that the set of commands continues on the next line; it terminates
on the first line that does not end with ‘\’. (As a minor blemish, you can’t use a substitute command to insert
a newline within a g command)
You should watch out for this problem: the command

g/XIs//y/\
s/a/b/

does not work as you expect. The remembered pattern is the last pattern that was actually executed, so some-
times it will be ‘x’ (as expected), and sometimes it will be ‘a’ (not expected). You must spell it out, like this:

g/x/S/XIY/\
S/a/b/

It is also possible to execute a, c and i commands under a global command; as with other multi-line construc-
tions, all that is needed is to add a ‘\‘ at the end of each line except the last. Thus to add a ‘.nf’ and “.sp’ com‘
mand before each ‘.EQ’ line, type

g/A\.EQ/r \
.nf\
.sp

There is no need for a final line containing a to terminate the i command, unless there are further commands
being done under the global. On the other hand, it does no harm to put it in either.

5. CUT AND PASTE WITH UNIX COMMANDS
One editing area in which non-programmers seem not very confident is in what might be called ‘cut and paste’
operations — changing the name of a file, making a copy of a file somewhere else, moving a few lines from
one place to another in a file, inserting one file in the middle of another, splitting a file into pieces, and splicing
two or more files together.
Yet most of these operations are actually quite easy, if you keep your wits about you and go cautiously. The
next several sections talk about cut and paste. We will begin with the UNIX commands for moving entire files
around, then discuss ed commands for operating on pieces of files.

ND—60.328.1P EN

USD: 13-18 ' Advanced Editing on UNIX

Changing the Name of a File
You have a file named ‘memo’ and you want it to be called ‘paper' instead. How is it done?
The UNIX program that renames files is called mv (for ‘move’); it ‘moves' the file from one name to another,
like this:

mv memo paper

That’s all there is to it: mv from the old name to the new name.

mv oldname newname

Warning: if there is already a file around with the new name, its present contents will be silently clobbered by
the information from the other file. The one exception is that you can’t move a file to itself —-

vX

is illegal.

Making a Copy of a File
Sometimes what you want is a copy of a file —— an entirely fresh version. This might be because you want to
work on a file, and yet save a copy in case something gets fouled up, or just because you’re paranoid.
In any case, the way to do it is with the cp command. (cp stands for ‘copy’; the UNIX system is big on short
command names, which are appreciated by heavy users, but sometimes a strain for novices.) Suppose you
have a file called ‘good’ and you want to save a copy before you make some dramatic editing changes.
Choose a name —— ‘savegood’ might be acceptable —— then type

cp good savegood

This copies ‘good’ onto ‘savegood’, and you now have two identical copies of the file ‘good’. (If ‘savegood’
previously contained something, it gets overwritten.)
Now if you decide at some time that you want to get back to the original state of ‘good’, you can say

mv savegood good

(if you’re not interested in ‘savegood’ any more), or
cp savegood good

if you still want to retain a safe copy.
In summary, mv just renames a file; cp makes a duplicate copy. Both of them clobber the ‘target’ file if it
already exists, so you had better be sure that’s what you want to do before you do it

Removing a File
If you decide you are really done with a file forever, you can remove it with the rm command:

rm savegood

throws away (irrevocably) the file called ‘savegood’.

Putting Two or More Files Together
The next step is the familiar one of collecting two or more files into one big one. This will be needed, for
example, when the author of a paper decides that several sections need to be combined into one. There are
several ways to do it, of which the cleanest, once you get used to it, is a program called cat. (Not all UNIX
programs have two—letter names.) cat is short for ‘concatenate’, which is exactly what we want to do.
Suppose the job is to combine the files ‘filel’ and ‘file2’ into a single file called ‘bigftle’. If you say

cat file

the contents of ‘file’ will get printed on your terminal. If you say

cat filel file2

the contents of ‘filel’ and then the contents of ‘file2’ will both be printed on your terminal, in that order. So

ND-60.328.1P EN

Advanced Editing on UNIX USD213-19

cat combines the files, all right, but it’s not much help to print them on the terminal — we want them in‘bigfile’.
Fortunately, there is a way. You can tell the system that instead of printing on your terminal, you want thesame: information put in a file. The way to do it is to add to the command line the character > and the name ofthe file where you want the output to go. Then you can say

cat filel file2 >bigfile
and the job is done. (As with ep and mv, you’re putting something into ‘bigfile’, and anything that wasalready there is destroyed.)
This ability to ‘capture' the output of a program is one of the most useful aspects of the UNIX system. For—tunately it’s not limited to the cat program —— you can use it with any program that prints on your terminal.We’ll see some more uses for it in a moment.
Naturally, you can combine several files, not just two:

cat filel file2 file3 >bigfile
collects a whole bunch.
Question: is there any difference between

cp good saven

and

cat good >savegood

Answer: for most purposes, no. You might reasonably ask why there are two programs in that case, since catis obviously all you need. The answer is that cp can do some other things as well, which you can investigatefor yourself by reading the manual. For now we'll stick to simple usages.

Adding Something to the End of a File
Sometimes you want to add one file to the end of another. We have enough building blocks now that you cando it; in fact before reading further it would be valuable if you figured out how. To be specific, h0w wouldyou use cp, mv and/0r cat to add the file ‘goodl’ to the end of the file ‘good’?
You could try

cat good goodl >temp
mv temp good

which is probably most direct. You should also understand why
cat good goodl >good

doesn’t work. (Don’t practice with a good ‘good’!)
The easy way is to use a variant of >, called >>. In fact, >> is identical to > except that instead of clobberingthe old file, it simply tacks stuff on at the end. Thus you could say

cat goodl >>good

and ‘goodl’ is added to the end of ‘good’. (And if ‘good’ didn‘t exist, this makes a copy of ‘goodl' called‘good’.)

6. CUT AND PASTE WITH THE EDITOR
Now we move on to manipulating pieces of files —— individual lines or groups of lines. This is another areawhere new users seem unsure of themselves.

Filenames
The first step is to ensure that you know the ed commands for reading and writing files. Of course you can’tgo very far without knowing r and w. Equally useful, but less well known, is the ‘edit’ command e. Withined, the command

ND-60.328.1P EN

USD: 13—20 ‘ Advanced Editing on UNIX

e newfile

says ‘I want to edit a new file called neugflle, without leaving the editor.’ The e command discards whatever
you’re currently working on and starts over on newfile. lt's exactly the same as if you had quit with the q
command, then re-entered ed with a new file name, except that if you have a pattern remembered, then a com‘
mand like // will still work.
If you enter ed with the command

ed file

ed remembers the name of the file, and any subsequent e, r or w commands that don’t contain a filename will
refer to this remembered file. Thus

ed filel
(editing)

w (writes back in filel)
e file2 (edit new file, without leaving editor)

(editing on file2)
w (writes back on file2)

(and so on) does a series of edits on various files without ever leaving ed and without typing the name of any
file more than once. (As an aside, if you examine the sequence of commands here, you can see why many
UNIX systems use 8 as a synonym for ed
You can find out the remembered file name at any time with the f command; just type f without a file name.
You can also change the name of the remembered file name with f; a useful sequence is

ed precious
f junk

(editing)

which gets a copy of a precious file, then uses f to guarantee that a careless w command won’t clobber the ori-
ginal.

Inserting One File into Another

Suppose you have a file called ‘memo’, and you want the file called ‘table’ to be inserted just after the refer-
ence to Table 1. That is, in ‘memo’ somewhere is a line that says

Table 1 shows that
and the data contained in ‘table’ has to go there, probably so it will be formatted properly by nrol‘l‘ or trofl',
Now what?
This one is easy. Edit ‘memo’, find ‘Table 1’, and add the file ‘table’ right there:

ed memo
[I’able 1/
Table 1 shows that [response from ed]
.r table

The critical line is the last one. As we said earlier, the r command reads a file; here you asked for it to be read
in right after line dot. An r command without any address adds lines at the end, so it is the same as $r.

Writing out Part of a File
The other side of the coin is writing out part of the document you’re editing. For example, maybe you want to
copy out into a separate file that table from the previous example, so it can be formatted and tested separately.
Suppose that in the file being edited we have

.TS
...[lots of stuff]

.TE

which is the way a table is set up for the tbl program. To isolate the table in a separate file called ‘table’, first
find the start of the table (the ‘.TS’ line), then write out the interesting part

ND-60.328.1P EN

Advanced Editing on UNIX USD:13-21

/"\.TS/
.TS [ed prints the line it found]
.,/"\.TE/w table

and the job is done. If you are confident, you can do it all at once with

/’\\.TS/; /’\\.TE/w table

and now you have two copies, one in the file you’re still editing, one in the file ‘table’ you’ve just written.
The point is that the w command can write out a group of lines, instead of the whole file. In fact, you can
write out a single line if you like; just give one line number instead of two. For example, if you have just
typed a horribly complicated line and you know that it (or something like it) is going to be needed later, then
save it ——- don’t re-type it. In the editor, say

a
...lots of stuff...
...horrible line...

.w temp
a
...more stuff...

.r temp
a
...more stuff...

This last example is worth studying, to be sure you appreciate what’s going on.

Moving Lines Around
Suppose you want to move a paragraph from its present position in a paper to the end. How would you do it?
As a concrete example, suppose each paragraph in the paper begins with the formatting command ‘.PP’. Think
about it and write down the details before reading on.
The brute force way (not necessarily bad) is to write the paragraph onto a temporary file, delete it from its
current position, then read in the temporary file at the end. Assuming that you are sitting on the ‘.PP’ com—
mand that begins the paragraph, this is the sequence of commands:

.,/"\.PP/—w temp
0: //-d
$r temp

That is, from where you are now (‘.’) until one line before the next ‘.PP’ (‘/’\\.PP/\(mi’) write onto ‘temp’.
Then delete the same lines. Finally, read ‘temp’ at the end.
As we said, that's the brute force way. The easier way (often) is to use the move command m that ed pro-
vides —— it lets you do the whole set of operations at one crack, without any temporary file.
The 2m command is like many other ed commands in that it takes up to two line numbers in front that tell what
lines are to be affected. It is alsofollowed by a line number that tells where the lines are to go. Thus

linel, line2 m line3

says to move all the lines between ‘linel‘ and ‘lineZ' after ‘line3’. Naturally, any of ‘linel’ etc, can be pat-
terns between slashes, S signs, or other ways to specify lines.
Suppose again that you’re sitting at the first line of the paragraph. Then you can say

.,/’\\.PP/—m$

That's all.

As another example of a frequent operation, you can reverse the order of two adjacent lines by moving the first
one to after the second. Suppose that you are positioned at the first. Then

ND—60.328.1P EN

USD:13-22 - Advanced Editing on UNIX

m+

does it. It says to move line dot to after one line after line dot. If you are positioned on the second line,
m— _

does the interchange.

As you can see, the m command is more succinct and direct than writing, deleting and re-reading. When is
brute force better anyway? This is a matter of personal taste —— do what you have most confidence in. The
main difficulty with the m command is that if you use patterns to specify both the lines you are moving and
the target, you have to take care that you specify them properly, or you may well not move the lines you
thought you did. The result of a botched m command can be a ghastly mess. Doing the job a step at a time
makes it easier for you to verify at each step that you accomplished what you wanted to. It’s also a good idea
to issue a w command before doing anything complicated; then if you goof, it’s easy to back up to where you
were.

Marks

ed provides a facility for marking a line with a particular name so you can later reference it by name regardless
of its actual line number. This can be handy for moving lines, and for keeping track of them even after
they’ve been moved. The mark command is k; the command

kx

marks the current line with the name ‘x’. If a line number precedes the k, that line is marked. (The mark
name must be a single lower case letter.) Now you can refer to the marked line with the address

I
X

Marks are most useful for moving things around. Find the first line of the block to be m0ved, and mark it with
’a. Then find the last line and mark it with ’b. Now position yourself at the place where the stuff is to go and
say

’a,’bm.

Bear in mind that only one line can have a particular mark name associated with it at any given time.

Copying Lines
We mentioned earlier the idea of saving a line that was hard to type or used often, so as to cut down on typing
time. Of course this could be more than one line; then the saving is presumably even greater.
ed provides another command, called t (for ‘transfer') for making a copy of a group of one or more lines at
any point. This is often easier than writing and reading.
The t command is identical to the m command, except that instead of m0ving lines it simply duplicates them
at the place you named. Thus

1,t
duplicates the entire contents that you are editing. A more common use for t is for creating a series of lines
that differ only slightly. For example, you can say

a
.......... x (long line)

t. (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
S/y/Z/ (change it a bit)

and so on.

ND-60.328.1P EN

Advanced Editing on UNIX USD: 13-23

The Temporary Escape ‘!’
Sometimes it is convenient to be able to temporarily escape from the editor to do some other UNIX command,
perhaps one of the file copy or move commands discussed in section 5, without leaving the editor. The
‘escape’ command ! provides a way to do this.
If you say

lany UNIX command

your current editing state is suspended, and the UNIX command you asked for is executed. When the com-
mand, finishes, ed will signal you by printing another !; at that point you can resume editing.
You can really do any UNIX command, including another ed. (This is quite common, in fact.) In this case,
you can even do another !.
On Berkeley UNIX systems, there is an additional (and preferable) mechanism called job control which lets
you suspend your edit session (or, for that matter, any program), return to the shell from which you invoked
that program. and issue any commands, then resume the program from the point where it was stopped. See An
Introduction to the C Shell for more details.

7. SUPPORTING TOOLS
There are several tools and techniques that go along with the editor, all of which are relatively easy once you
know how ed works, because they are all based on the editor. In this section we will give some fairly cursory
examples of these tools, more to indicate their existence than to provide a complete tutorial. More information
on each can be found in [3].

Grep
Sometimes you want to find all occurrences of some word or pattern in a set of files, to edit them or perhaps
just to verify their presence or absence. It may be possible to edit each file separately and look for the pattern
of interest, but if there are many files this can get very tedious, and if the files are really big, it may be impos-
sible because of limits in ed.
The program grep was invented to get around these limitations. The search patterns that we have described in
the paper are often called ‘regular expressions’, and ‘grep’ stands for

g/re/P
That describes exactly what grep does —— it prints every line in a set of files that contains a particular pattern.
Thus

grep ’thing’ filel file2 file3
finds ‘thing’ wherever it occurs in any of the files ‘filel’, ‘fileZ’, etc. grep also indicates the file in which the
line was found, so you can later edit it if you like.
The pattem represented by ‘thing’ can be any pattern you can use in the editor, since grep and ed use exactly
the same mechanism for pattern searching. It is wisest always to enclose the pattern in the single quotes ’...’ if
it contains any non-alphabetic characters, since many such characters also mean something special to the
UNIX command interpreter (the ‘shell’). If you don’t quote them, the command interpreter will try to interpret
them before grep gets a chance.
There: is also a way to find lines that don't contain a pattern:

grep —v 'thing’ filel fileZ
finds all lines that don‘t contains ‘thing’. The —v must occur in the position shown. Given grep and grep -—v,
it is possible to do things like selecting all lines that contain some combination of patterns. For example, to
get all lines that contain ‘x’ but not ‘y’:

grep x file... | grep -v y

(The notation l is a ‘pipe’, which causes the output of the first command to be used as input to the second com-
mand; see [2].)

ND-60.328.1P EN

USD: 13-24 ' Advanced Editing on UNIX

Editing Scripts
If a fairly complicated set of editing operations is to be done on a whole set of files, the easiest thing to do is
to make up a ‘script’, Le, a file that contains the operations you want to perform, then apply this script to each
file in turn.

For example, suppose you want to change every ‘Unix' to ‘UNIX’ and every ‘Gcos’ to ‘GCOS' in a large
number of files. Then put into the file ‘script’ the lines

g/UniX/s/IUNIX/g
g/Gcos/s//GCOS/g
w
q

Now you can say

ed filel <script
ed file2 <script

This causes ed to take its commands from the prepared script. Notice that the whole job has to be planned in
advance.

And of course by using the UNIX command interpreter, you can cycle through a set of files automatimlly,
with varying degrees of ease.

Sed
sed (‘stream editor’) is a version of the editor with restricted capabilities but which is capable of processing
unlimited amounts of input. Basically sed copies its input to its output, applying one or more editing com-
mands to each line of input.

As an example, suppose that we want to do the ‘Unix’ to ‘UNIX’ part of the example given above, but without
rewriting the files. Then the command

sed 'S/Unix/UNlX/g’ filel file2
applies the command ‘s/Unix/UNIX/g' to all lines from ‘filel’, ‘file2', etc., and copies all lines to the output.
The advantage of using sed in such a case is that it can be used with input too large for ed to handle. All the
output can be collected in one place, either in a file or perhaps piped into another program.
If the editing transformation is so complicated that more than one editing command is needed, commanch; can
be supplied from a file, or on the command line, with a slightly more complex syntax. To take commands
from a file, for example,

sed ——f cmdfile input-files...

sed has further capabilities, including conditional testing and branching, which we cannot go into here, but
which are described in detail in Sed — A Non-interactive Text Editor.

ACKNOWLEDGEMENT
I am grateful to Ted Dolotta for his careful reading and valuable suggestions.

REFERENCES
[1] Brian W. Kernighan, A Tutorial Introduction to the UNIX Text Editor, Bell Laboratories internal

memorandum.
[2] Brian W. Kernighan, UNIX For Beginners, Bell Laboratories internal memorandum.
[3] Ken L. Thompson and Dennis M. Ritchie, The UNIX Programmer’s Manual. Bell Laboratories.

ND—60.328.1P EN

Edit: A Tutorial USDzl4-l

Edit: A Tutorial

Ricki Blau
James Joyce

Computing Services
University of Califomia

Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edit assumes no prior familiarity
with computers or with text editing. Its aim is to lead the beginning UNIX}L user through the
fundamental steps of writing and revising a file of text. Edit, a version of the text editor
ex, was designed to provide an informative environment for new and casual users.
We welcome comments and suggestions about this tutorial and the UNIX documentation in
general.

1‘ UNIX is a trademark of Bell Laboratories.

ND-60.328.1P EN

USD214~2 ' - Edit: A Tutorial

ND—60.328.1P EN

Edit: A Tutorial ' USD:14-3

Contents
Introduction ..4

Session 1 ..5
Making contact with UND< .. 5
Logging in ...5
Asking for edit ...5
The “Command not found" message ..6
A summary ..6
Entering text ..6
Messages from edit ...6
Text input mode ..6
Making corrections ..7
Writing text to disk ...7
Signing off...8

Session 2 ..9
Adding more text to the file ..9
Interrupt ...9
Making corrections ..9
Listing what’s in the buffer (p) ...9
Finding things in the buffer .. 10
The current line ... 11
Numbering lines (nu) .. ll
Substitute command (5) ... 11
Another way to list what’s in the buffer (2) ... 12
Saving the modified text ... 12

Session 3 .. 14
Bringing text into the buffer (C) .. 14
Moving text in the buffer (m) ... l4
Copying lines (copy) ... 15
Deleting lines (d) ... 15
A word or two of caution .. 16
Undo (u) to the rescue... 16
More about the dot (.) and buffer end (S) .. 16
Moving around in the buffer (+ and —) ... 17
Changing lines (c) ... 17

Session 4 .. 19
Making commands global (g) ... 19
More about searching and substituting ... 19
Special characters ..20
Issuing UNIX commands from the editor ..21
Filenames and file manipulation ...21
The tile (1) command ..21
Reading additional files (r) ..21
Writing parts of the buffer ..22
Recovering files ...22
Other recovery techniques ...22
Further reading and other information ..23
Using ex ...23

ND-60.328.1P EN

USD214—4 ' - Edit: A Tutorial

Introduction

Text editing using a terminal connected to a computer allows you to create, modify, and print text easily. A
text editor is a program that assists you as you create and modify text. The text editor you will learn here is
named edit. Creating text using edit is as easy as typing it on an electric typewriter. Modifying text involves
telling the text editor what you want to add, change, or delete. You can review your text by typing a com-
mand to print the file contents as they are currently. Another program (which we do not discuss in this docu—
ment), a text formatter, rearranges your text for you into “finished form.”
These lessons assume no prior familiarity with computers or with text editing. They consist of a series of text
editing sessions which lead you through the fundamental steps of creating and revising text. After scanning
each lesson and before beginning the next, you should try the examples at a terminal to get a feeling for the
actual process of text editing. If you set aside some time for experimentation, you will soon become familiar
with using the computer to write and modify text In addition to the actual use of the text editor, other
features of UNIX will be very important to your work. You can begin to learn about these other features by
reading one of the other tutorials that provide a general introduction to the system. You will be ready to
proceed with this lesson as soon as you are familiar with (1) your terminal and its special keys, (2) how to
login, (3) and the ways of correcting typing errors. Let’s first define some terms:

program A set of instructions, given to the computer, describing the sequence of steps the computer per—
forms in order to accomplish a specific task. The task must be specific, such as balancing your
checkbook or editing your text. A general task, such as working for world peace, is something
we can all do, but not something we can currently write programs to do.

UNIX UNIX is a special type of program, called an operating system, that supervises the machinery
and all other programs comprising the total computer system.

edit edit is the name of the UND< text editor you will be learning to use, and is a program that aids
you in writing or revising text Edit was designed for beginning users, and is a simplified ver-
sion of an editor named ex.

file Each UNIX account is allotted space for the permanent storage of information, such as pro—
grams, data or text. A file is a logical unit of data, for example, an essay, a program, or a
chapter from a book, which is stored on a computer system. Once you create a file, it is kept
until you instruct the system to remove it. You may create a file during one UNIX session, end
the session, and return to use it at a later time. Files contain anything you choose to write and
store in them. The sizes of files vary to suit your needs; one file might hold only a single
number, yet another might contain a very long document or program. The only way to save
information from one session to the next is to store it in a file, which you will learn in Session
1.

filename Filenames are used to distinguish one file from another, serving the same purpose as the labels
of manila folders in a file cabinet. In order to write or access information in a file, you use the
name of that file in a UNIX command, and the system will automatically locate the file.

disk Files are stored on an input/output device called a disk, which looks something like a stack of
phonograph records. Each surface is coated with a material similar to that on magnetic record-
ing tape, and information is recorded on it.

buffer A temporary work space, made available to the user for the duration of a session of text editing
and used for creating and modifying the text file. We can think of the buffer as a blackboard
that is erased after each class, where each session with the editor is a class.

ND-60.328.1P EN

Edit: A Tutorial ' USD: 14-5

Session 1

Making contact with UNIX
To use the editor you must first make contact with the computer by logging in to UNDt. We’ll quickly review
the standard UNIX login procedure for the two ways you can make contact: on a terminal that is directly
linked to the computer, or over a telephone line where the computer answers your call.

Directly-linked terminals
Turn on your terminal and press the RETURN key. You are now ready to login.

Dial-up terminals
If your terminal connects with the computer over a telephone line. turn on the terminal, dial the system access
number, and, when you hear a high—pitched tone, place the telephone handset in the acoustic coupler, if you
are wsing one. You are now ready to login.

Logging in

The message inviting you to login is:

login:

Type your login name, which identifies you to UNIX, on the same line as the login message, and press
RETURN. If the terminal you are using has both upper and lower case, be sure you enter your login name in
lower case; otherwise UNIX assumes your terminal has only upper case and will not recognize lower case
letters you may type. UNIX types “login:" and you reply with your login name, for example “susan”:

login: susan (and press the RETURN key)

(In the examples, input you would type appears in bold face to distinguish it from the responses from UNIX.)
UNIX will next respond with a request for a password as an additional precaution to prevent unauthorized peo-
ple from using your account. The password will not appear when you type it, to prevent others from seeing
it. The message is:

Password: (type your password and press RETURN)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX will respond
with

Login incorrect.
login:

in which case you should start the login process anew. Assuming that you have successfully logged in, UNIX
will print the message of the day and eventually will present you with a % at the beginning of a fresh line.
The % is the UNIX prompt symbol which tells you that UNIX is ready to accept a command

Asking for edit
You are ready to tell UNIX that you want to work with edit, the text editor. Now is a convenient time to
choose a name for the file of text you are about to create. To begin your editing session, type edit followed
by a space and then the filename you have selected; for example, “text”. After that, press the RETURN key
and wait for edit’s response:

% edit text (followed by a RETURN)
"text" No such file or directory

If you typed the command correctly, you will now be in communication with edit. Edit has set aside a buffer
for use as a temporary working space during your current editing session. Since “text" is a new file we are
about to create the editor was unable to find that file, which it confirms by saying:

ND-60.328.1P EN

USD114~6 ‘ 4 Edit: A Tutorial

"text" No such file or directory
¢‘_11On the next line appears edit’s prompt . , announcing that you are in command mode and edit expects a

command from you. You may now begin to create the new file.

The “Command not found” message
If you misspelled edit by typing, say, “editor", this might appear:

% editor
editor. Command not found
%

Your mistake in calling edit “editor” was treated by UNIX as a request for a program named “editor". Since
there is no program named “editor", UNIX reported that the program was “not found". A new % indicates
that UNIX is ready for another command, and you may then enter the correct command.

A summary

Your exchange with UNIX as you logged in and made contact with edit should look something like this:
login: susan
Password:

A Message of General Interest
% edit text
"text" No such file or directory

Entering text

You may now begin entering text into the buffer. This is done by appending (or adding) text to whatever is
currently in the buffer. Since there is nothing in the buffer at the moment, you are appending text to nothing;
in effect, since you are adding text to nothing you are creating text. Most edit commands have two equivalent
forms: a word that suggests what the command does, and a shorter abbreviation of that word. Many
beginners find the full command names easier to remember at first, but once you are familiar with editing you
may prefer to type the shorter abbreviations. The command to input text is “append". (It may be abbrevi-
ated “3”.) Type append and press the RETURN key.

% edit text
: append

Messages from edit

If you make a mistake in entering a command and type something that edit does not recognize, edit will
respond with a message intended to help you diagnose your error. For example, if you misspell the command
to input text by typing, perhaps, “ad ” instead of “append” or “a”, you will receive this message:

:add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part of your com‘
mand confused edit. The message above means that edit was unable to recognize your mistyped command
and, therefore, did not execute it. instead, a new appeared to let you know that edit is again ready to
execute a command.

Text input mode

By giving the command “append” (or using the abbreviation “3”), you entered text input mode, also known
as append mode. When you enter text input mode, edit stops sending you a prompt. You will not receive any
prompts or error messages while in text input mode, You can enter pretty much anything you want on the
lines. The lines are transmitted one by one to the buffer and held there during the editing session. You may

ND-60.328.1P EN

Edit: A Tutorial ' . USDzl4-7

append as much text as you want, and when you wish to stop entering text lines you should type a period asthe only character on the line and press the RETURN key. When you type the period and press RETURN, yousignal that you want to stop appending text, and edit responds by allowing you to exit text input mode andreenter command mode. Edit will again prompt you for a command by printing “z”.
Leaving append mode does not destroy the text in the buffer. You have to leave append mode to do any ofthe other kinds of editing, such as changing, adding, or printing text If you type a period as the first charac—ter and type any other character on the same line, edit will believe you want to remain in append mode andwill not let you out. As this can be very frustrating, be sure to type only the period and the RETURN key.
This is a good place to learn an important lesson about computers and text: a blank space is a character as far
as a computer is concerned. If you so much as type a period followed by a blank (that is, type a period andthen the space bar on the keyboard), you will remain in append mode with the last line of text being:

Let’s say that you enter the lines (try to type exactly what you see, including “thiss”):
This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
.

The last line is the period followed by a REFURN that gets you out of append mode.

Making corrections
If you have read a general introduction to UNIX, you will recall that it is possible to erase individual letters
that you have typed. This is done by typing the designated erase character as many times as there are charac-
ters you want to erase.
The usual erase character varies from place to place and user to user. Often it is the backspace (control-H), so
you can correct typing errors in the line you are typing by holding down the CTRL key and typing the “"H
key. (Sometimes it is the DEL key.) If you type the erase character you will notice that the terminal back-
spaces in the line you are on. You can backspace over your error, and then type what you want to be the rest
of the line.
If you make a bad start in a line and would like to begin again, you can either backspace to the beginning of
the line or you can use the at—sign “@” to erase everything on the line:

Text edtiing is strange, but@
Text editing is strange, but nice.

When you type the at-sign (@), you erase the entire line typed so far and are given a fresh line to type on.
You may immediately begin to retype the line. This, unfortunately, does not work after you type the line and
press RETURN. To make corrections in lines that have been completed, it is necessary to use the editing com-
mands covered in the next sessions.

Writing text to disk
You are now ready to edit the text. One common operation is to write the text to disk as a file for safekeep-
ing after the session is over. This is the only way to save information from one session to the next, since the
editor’s buffer is temporary and will last only until the end of the editing session. Learning how to write a
file to disk is second in importance only to entering the text. To write the contents of the buffer to a disk file,
use the command “write" (or its abbreviation “w” :

: write

Edit will copy the contents of the buffer to a disk file. If the file does not yet exist, a new file will be created
automatically and the presence of a “[New file]" will be noted. The newly-created file will be given the
name specified when you entered the editor, in this case “text”. To confirm that the disk file has been suc-
cessfully written, edit will repeat the filename and give the number of lines and the total number of characters
in the file. The buffer remains unchanged by the “write” command. All of the lines that were written to diskwill still be in the buffer, should you want to modify or add to them.

ND-60.328.1P EN

USD:14—8 ‘ ' I Edit: A Tutorial

Edit must have a name for the file to be written. If you forgot to indicate the name of the file when you
began to edit, edit will print in response to your write command:

No current filename

If this happens, you can specify the filename in a new write command:

:write text

After the “write" (or “w"), type a space and then the name of the file.

Signing off
We have done enough for this first lesson on using the UNIX text editor, and are ready to quit the session with
edit. To do this we type ”quit” (or “q") and press RETURN:

:write
"text" [New file] 3 lines, 90 characters
:quit
%

The % is from UNIX to tell you that your session with edit is over and you may command UNIX further. Since
we want to end the entire session at the terminal, we also need to exit from UNIX. In response to the UNIX
prompt of “ % ” type the command

% logout

This will end your session with UNIX, and will ready the terminal for the next user. It is always important to
type logout at the end of a session to make absolutely sure no one could accidentally stumble into your aban-
doned session and thus gain access to your files, tempting even the most honest of souls.

This is the end of the first session on UNIX text editing.

ND-60.328.1P EN

Edit; A Tutorial - ' USD114—9

Session 2

Login with UNDt as in the first session:

login: susan (carriage return)
Password: (give password and carriage return)

A Message of General Interest
%

When you indicate you want to edit, you can specify the name of the file you worked on last time. This willstart edit working, and it will fetch the contents of the file into the buffer, so that you can resume editing thesame file. When edit has copied the file into the buffer, it will repeat its name and tell you the number oflines and characters it contains. Thus,

% edit text
“text" 3 lines, 90 characters

means you asked edit to fetch the file named “text” for editing, causing it to copy the 90 characters of textinto the buffer. Edit awaits your further instructions, and indicates this by its prompt character, the colon (z).In this session, we will append more text to our file, print the contents of the buffer, and learn to change thetext of a line.

Adding more text to the file
If you want to add more to the end of your text you may do so by using the append command to enter textinput mode. When “append” is the first command of your editing session, the lines you enter are placed atthe end of the buffer. Here we’ll use the abbreviation for the append command, “a”:

:a
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.

You may recall that once you enter append mode using the “a” (or “append”) command, you need to type aline containing only a period (.) to exit append mode.

Interrupt
Should you press the RUB key (sometimes labelled DELETE) while working with edit, it will send this messageto you:

Interrupt

Any command that edit might be executing is terminated by rub or delete, causing edit to prompt you for anew command. If you are appending text at the time, you will exit from append mode and be expected togive another command. The line of text you were typing when the append command was interrupted will notbe entered into the buffer.

Making corrections
If while typing the line you hit an incorrect key, recall that you may delete the incorrect character or cancelthe entire line of input by erasing in the usual way. Refer either to the last few pages of Session I if you needto review the procedures for making a correction. The most important idea to remember is that erasing acharacter or cancelling a line must be done before you press the RETURN key.

ND-60.328.1P EN

USD: 14-10 ' Edit: A Tutorial

Listing what’s in the buffer (p)
Having appended text to what you wrote in Session 1, you might want to see all the lines in the buffer. To
prim the contents of the buffer, type the command:

: 1,39
The “1”? stands for line I of the buffer, the “$” is a special symbol designating the last line of the buffer,
and “p” (or print) is the command to print from line 1 to the end of the buffer. The command “l,$p” gives
you:

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn‘t mean much here, but
it does illustrate the editor.

Occasionally. you may accidentally type a character that can’t be printed, which can be done by striking a key
while the CTRL key is pressed. In printing lines, edit uses a special notation to show the existence of non-
printing characters. Suppose you had introduced the non—printing character “control—A" into the word “illus-
trate" by accidently pressing the CTRL key while typing “a". This can happen on many terminals because
the CI'RL key and the “A” key are beside each other. If your finger presses between the two keys, control—A
results. When asked to print the contents of the buffer, edit would display

it does illustrAAte the editor.

To represent the control-A, edit shows “AA”. The sequence “A” followed by a capital letter stands for the
one character entered by holding down the CI‘RL key and typing the letter which appears after the “A”. We’ll
soon discuss the commands that can be used to correct this typing error.
In looking over the text we see that “this” is typed as “thiss” in the second line, a deliberate error so we can
learn to make corrections. Let’s correct the spelling.

Finding things in the buffer
In order to change something in the buffer we first need to find it. We can find “thiss" in the text we have
entered by looking at a listing of the lines. Physically speaking, we search the lines of text looking for
“thiss” and stop searching when we have found it. The way to tell edit to search for something is to type it
inside slash marks:

:/thiss/

By typing Ithiss/ and pressing RETURN, you instruct edit to search for “thiss". If you ask edit to look for a
pattern of characters which it cannot find in the buffer, it will respond “Pattern not found”. When edit finds
the characters “thiss”, it will print the line of text for your inspection:

And thiss is some more text

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the line.

T'lhe numeral ”one" is the top lcftvmost key, and should not be confused with the letter “cl".

ND-60.328.1P EN

Edit: A Tutorial - USD: 14-11

The current line

Edit keeps track of the line in the buffer where it is located at all times during an editing session. In general,
the line that has been most recently printed, entered, or changed is the current location in the buffer. The edi-
tor is: prepared to make changes at the current location in the buffer, unless you direct it to another location.
In particular, when you bring a file into the buffer, you will be located at the last line in the file, where theeditor left off copying the lines from the file to the buffer. If your first editing command is “append", the
lines you enter are added to the end of the file, after the current line — the last line in the file.
You can refer to your current location in the buffer by the symbol period (.) usually known by the name“dot”. If you type “." and carriage return you will be instrucung edit to print the current line:

And thiss is some more text.

If you want to know the number of the current line, you can type .= and press RETURN, and edit will respond
with the line number.

2

If you type the number of any line and press RETURN, edit will position you at that line and print its contents:
:2
And thiss is some more text

You should experiment with these commands to gain experience in using them to make changes.

Numbering lines (nu)
The number (nu) command is similar to print, giving both the number and the text of each printed line. To
see the number and the text of the current line type

:nu
2 And thiss is some more text.

Note that the shortest abbreviation for the number command is “nu” (and not “n”, which is used for a dif.
ferent command). You may specify a range of lines to be listed by the number command in the same way
that lines are specified for print. For example, 1,$nu lists all lines in the buffer with their corresponding line
numbers.

Substitute command (5)
Now that you have found the misspelled word, you can change it from “thiss" to “this”. As far as edit is
concemed, changing things is a matter of substituting one thing for another. As a stood for append, so sstands for substitute. We will use the abbreviation “s” to reduce the chance of mistyping the substitute com-
mand. This command will instruct edit to make the change:

ZS/thiss/this/
We first indicate the line to be changed, line 2, and then type an “s" to indicate we want edit to make a sub—
stitution. Inside the first set of slashes are the characters that we want to change, followed by the characters
to replace them, and then a closing slash mark. To summarize:

23/ what is to be changed / what to change it to /
If edit finds an exact match of the characters to be changed it will make the change only in the firstoccurrence of the characters. If it does not find the characters to be changed, it will respond:

Substitute pattern match failed
indicating that your instructions could not be carried out When edit does find the characters that you want tochange, it will make the substitution and automatically print the changed line, so that you can check that thecorrect substitution was made. In the example,

ND—60.328.1P EN

USD: 14-12 . Edit: A Tutorial

:Zs/thiss/this/
And this is some more text.

line 2 (and line 2 only) will be searched for the characters “thiss”, and when the first exact match is found,
“thiss” will be changed to “this”. Strictly speaking, it was not necessary above to specify the number of
the line to be changed. In

:s/thiss/this/

edit will assume that we mean to change the line where we are currently located (“."). In this case, the com-
mand without a line number would have produced the same result because we were already located at the line
we wished to change.

For another illustration of the substitute command, let us choose the line:

Text editing is strange, but nice.

You can make this line a bit more positive by taking out the characters “strange, but ” so the line reads:

Text editing is nice.

A command that will first position edit at the desired line and then make the substitution is:

:lstrange/s/strange, but //

What we have done here is combine our search with our substitution. Such combinations are perfectly legal,
and speed up editing quite a bit once you get used to them. That is, you do not necessarily have to use line
numbers to identify a line to edit. instead, you may identify the line you want to change by asking edit to
search for a specified pattern of letters that occurs in that line. The parts of the above command are:

/strange/ tells edit to find the characters “strange” in the text
5 tells edit to make a substitution
/strange, but // substitutes nothing at all for the characters “strange, but ”

You should note the space after “but” in “/strange, but /’ ’. If you do not indicate that the space is to be taken
out, your line will read:

Text editing is nice.

which looks a little funny because of the extra space between “is” and “nice". Again, we realize from this
that a blank space is a real character to a computer, and in editing text we need to be aware of spaces within a
line just as we would be aware ofan “a” or a “4”.

Another way to list what‘s in the bufi'er (2)
Although the print command is useful for looking at specific lines in the buffer, other commands may be more
convenient for viewing large sections of text. You can ask to see a screen full of text at a time by using the
command 2. if you type

I 11

edit will start with line 1 and continue printing lines, stopping either when the screen of your terminal is full
or when the last line in the buffer has been printed. If you want to read the next segment of text, type the
command

:2

If no starting line number is given for the 2 command, printing will start at the “current” line, in this case the
last line printed. Viewing lines in the buffer one screen full at a time is known as paging. Paging can also be
used to print a section of text on a hardcopy terminal.

Saving the modified text
This seems to be a good place to pause in our work, and so we should end the second session. if you (in
haste) type “q” to quit the session your dialogue with edit will be:

ND«60.328. 1? EN

Edit: A Tutorial ‘ USD214—13

3‘]
No write since last change (:quitl overrides)

This is edit’s warning that you have not written the modified contents of the buffer to disk. You run the risk
of losing the work you did during the editing session since you typed the latest write command. Because in
this lesson we have not written to disk at all, everything we have done would have been lost if edit had
obeyed the q command. If you did not want to save the work done during this editing session, you would
have to type “q!” or (“quill") to confirm that you indeed wanted to end the session immediately. leaving
the file as it was after the most recent “write” command. However, since you want to save what you have
edited, you need to type:

:w
"text" 6 lines, 171 characters

and then follow with the commands to quit and logout'

3 q
% logout

and hang up the phone or turn off the terminal when UNIX asks for a name. Terminals connected to the port
selector will stop after the logout command, and pressing keys on the keyboard will do nothing.

This is the end of the second session on UNIX text editing.

ND-60.328.1P EN

USD:14-14 - ' ' Edit: ATutorial

Session 3

Bringing text into the buffer (e)
Login to UNIX and make contact with edit You should try to login without looking at the notes, but if you
must then by all means do.
Did you remember to give the name of the file you wanted to edit? That is, did you type

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named “text” into the
buffer. If you did forget to tell edit the name of your file, you can get it into the buffer by typing:

:e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated e, tells edit that you want to erase anything that might already
be in the buffer and bring a copy of the file “text” into the buffer for editing. You may also use the edit (6)
command to change files in the middle of an editing session, or to give edit the name of a new file that you
want to create. Because the edit command clears the buffer, you will receive a waming if you try to edit a
new file without having saved a copy of the old file. This gives you a chance to write the contents of the
buffer to disk before editing the next file.

Moving text in the buffer (in)
Edit allows you to move lines of text from one location in the buffer to another by means of the move (In)
command. The first two examples are for illustration only, though after you have read this Session you are
welcome to return to them for practice. The command

: 2,4m$

directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move command is that
you specify the first line to be m0ved, the last line to be moved, the move command “m”, and the line after
which the moved text is to be placed. So,

: 1,3m6

would instruct edit to move lines 1 through 3 (inclusive) to a location after line 6 in the buffer. To move only
one line, say, line 4, to a location in the buffer after line 5, the command would be “4m5”.
Let’s move some text using the command:

:5,$m1
2 lines moved
it does illustrate the editor.

After executing a command that moves more than one line of the buffer, edit tells how many lines were
affected by the move and prints the last moved line for your inspection. If you want to see more than just the
last line, you can then use the print (p), Z, or number (nu) command to View more text. The buffer should
now contain:

This is some sample text.
It doesn’t mean much here, but
it does illustrate the editor.
And this is some more text
Text editing is nice.
This is text added in Session 2.

You can restore the original order by typing.

:4,$m1

or, combining context searching and the move command:

ND-60.328.1P EN

Edit: A Tutorial ‘ USD114~15

:/And this is some/[This is text/m/This is some sample/
(Do not type both examples here!) The problem with combining context searching with the move command
is that your chance of making a typing error in such a long command is greater than if you type line numbers.

Copying lines (copy)
The copy command is used to make a second copy of specified lines, leaving the original lines where they
were. Copy has the same format as the move command. for example:

:2,5c09y 3
makes a copy of lines 2 through 5, placing the added lines after the buffer’s end (8). Experiment with the
copy command so that you can become familiar with how it works. Note that the shortest abbreviation for
copy is co (and not the letter “”,c which has another meaning).

Deleting lines (d)
Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number followed by
delete or d. This example deletes line 4, which is “This is text added in Session 2." if you typed the com-
mands suggested so far.

:4d
It doesn’t mean much here, but

Here “4” is the number of the line to be deleted, and “delete” or “d” is the command to delete the line.
After executing the delete command, edit prints the line that has become the current line (“.”).
If you do not happen to know the line number you can search for the line and then delete it using this
sequence of commands:

:/added in Session 2./
This is text added in Session 2.
:d
It doesn’t mean much here, but

The “/added in Session 2./” asks edit to locate and print the line containing the indicated text, starting its
search at the current line and moving line by line until it finds the text. Once you are sure that you have
correctly specified the line you want to delete, you can enter the delete (d) command. In this case it is not
necessary to specify a line number before the ”d’. If no line number is given, edit deletes the current line
(“.”), that is, the line found by our search. After the deletion, your buffer should contain:

This is some sample text
And this is some more text.
Text editing is nice.
It doesn’t mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.
It doesn’t mean much here, but

To delete both lines 2 and 3:

And this is some more text.
Text editing is nice.

you type

ND-60.328.l P EN

USD: 14-16 ' Edit: A Tutorial

: 2,3d
2 lines deleted

which specifies the range of lines from 2 to 3, and the operation on those lines —— “d” for delete. If you
delete more than one line you will receive a message telling you the number of lines deleted, as indicated in
the example above.
The previous example assumes that you know the line numbers for the lines to be deleted. If you do not you
might combine the search command with the delete command:

:/And this is some/[Text editing is niceJd

A word or two of caution
In using the search function to locate lines to be deleted you should be absolutely sure the characters you
give as the basis for the search will take edit to the line you want deleted. Edit will search for the first
occurrence of the characters starting from where you last edited — that is, from the line you see printed if you
type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which edit will do as easily
as if you had meant it. For this reason, it is usually safer to specify the search and then delete in two separate
steps, at least until you become familiar enough with using the editor that you understand how best to specify
searches. For a beginner it is not a bad idea to double—check each command before pressing RETURN to send
the command on its way.

Undo (u) to the rescue
The undo (u) command has the ability to reverse the effects of the last command that changed the buffer. To
undo the previous command, type “u” or “undo”. Undo can rescue the contents of the buffer from many an
unfortunate mistake. However, its powers are not unlimited, so it is still wise to be reasonably careful about
the commands you give.
It is possible to undo only commands which have the power to change the buffer —— for example, delete,
append, move, copy, substitute, and even undo itself. The commands write (w) and edit (e), which interact
with disk files, cannot be undone, nor can commands that do not change the buffer, such as print. Most
importantly, the only command that can be reversed by undo is the last “undo-able” command you typed.
You can use control—H and @ to change commands while you are typing them, and undo to reverse the effect
of the commands after you have typed them and pressed RETURN.
To illustrate, let’s issue an undo command. Recall that the last buffer-changing command we gave deleted the
lines formerly numbered 2 and 3. Typing undo at this moment will reverse the effects of the deletion, causing
those two lines to be replaced in the buffer.

:u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of the line which
is now “dot” (the current line).

More about the dot (.) and buffer end (S)
The function assumed by the symbol dot depends on its context. It can be used:

1. to exit from append mode; we type dot (and only a dot) on a line and press RETURN;
2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being edited:

If we type “.”= we are asking for the number of the line, and if we type we are asking for the text of the
line.

ND—60.328.1P EN

Edit: A Tutorial ' USD: 14-17

In this editing session and the last, we used the dollar sign to indicate the end of the buffer in commands such
as print, cop)’, and move. The dollar sign as a command asks edit to print the last line in the buffer. If the
dollar sign is combined with the equal sign (3:) edit will print the line number corresponding to the last line
in the buffer.

“.” and “$", then, represent line numbers. Whenever appropriate, these symbols can be used in place of line
numbers in commands. For example

:.,$d

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and —)
When; you are editing you often want to go back and re-read a previous line. You could specify a context
search for a line you want to read if you remember some of its text, but if you simply want to see what was
written a few, say 3, lines ago, you can type

_.3p

This tells edit to move back to a position 3 lines before the current line (.) and print that line. You can move
forward in the buffer similarly:

+2p

instructs edit to print the line that is 2 ahead of your current position.
You may use “+” and “—” in any command where edit accepts line numbers. Line numbers specified with
“+” or “—” can be combined to print a range of lines. The command

:-1,+2copy$
makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied lines will be
placed after the last line in the buffer (3), and the original lines referred to by “—1" and “+2” remain where
they are.

u n,Try typing only , you will move back one line just as if you had typed “~1p”. Typing the command
“+" works similarly. You might also try typing a few plus or minus signs in a row (such as “+++”) to see
edit’s response. Typing RETURN alone on a line is the equivalent of typing “+lp”; it will move you one line
ahead in the buffer and print that line.
If you are at the last line of the buffer and try to move further ahead, perhaps by typing a “+” or a carriage
return alone on the line, edit will remind you that you are at the end of the buffer:

At end-of—file
or

Not that many lines in buffer
Similarly, if you try to move to a position before the first line, edit will print one of these messages:

Nonzero address required on this command
or

Negative address — first buffer line is l
The number associated with a buffer line is the line’s “address”, in that it can be used to locate the line.

Changing lines (c)
You can also delete cenain lines and insert new text in their place. This can be accomplished easily with the
change (c) command. The change command instructs edit to delete specified lines and then switch to text
input mode to accept the text that will replace them. Let's say you want to change the first two lines in the
buffer:

This is some sample text
And this is some more text.

to read

ND-60.328.1P EN

USD: 14-18 ‘ Edit: A Tutorial

This text was created with the UNIX text editor. i“,

To do so, you type:

: 1,2c
2 lines changed
This text was created with the UNIX text editor.

In the command 1,2c we specify that we want to change the range of lines beginning with l and ending with
2 by giving line numbers as with the print command. These lines will be deleted. After you type RETURN to
end the change command, edit notifies you if more than one line will be changed and places you in text input
mode. Any text typed on the following lines will be inserted into the position where lines were deleted by the
change command. You will remain in text input mode until you exit in the usual way, by typing a
period alone on a line. Note that the number of lines added to the buffer need not be the same as the
number of lines deleted.

This is the end of the third session on text editing with UNIX.

DID-60328.1? EN

Edit: A Tutorial ‘ USD: 14-19

Session 4

This lesson covers several topics, starting with commands that apply throughout the buffer, characters with
special meanings, and how to issue UNDt commands while in the editor. The next topics deal with files: more
on reading and writing, and methods of recovering files lost in a crash. The final section suggests sources of
further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if you have a number of
instances of a word to change it appears that you have to type the command repeatedly, once for each time the
change needs to be made. Edit. however, provides a way to make commands apply to the entire contents of
the buffer — the global (g) command.
To print all lines containing a certain sequence of characters (say, “text”) the command is:

:g/text/p

The “g” instructs edit to make a global search for all lines in the buffer containing the characters “text”.
The “p” prints the lines found.
To issue a global command, start by typing a “g” and then a search pattern identifying the lines to be
affected. Then, on the same line, type the command to be executed for the identified lines. Global substitu—
tions are frequently useful. For example, to change all instances of the word “text" to the word “material”
the command would be a combination of the global search and the substitute command:

: g/text/s/text/material/g

Note the “g” at the end of the global command, which instructs edit to change each and every instance of
“text” to “material”. If you do not type the “g” at the end of the command only the first instance of
“text” in each line will be changed (the normal result of the substitute command). The “g” at the end of the

(4 I,command is independent of the g at the beginning. You may give a command such as:

: Ss/text/material/g

to change every instance of “text” in line 5 alone. Further, neither command will change “text” to
“material” if “Text" begins with a capital rather than a lower—case t.
Edit does not automatically print the lines modified by a global command. If you want the lines to be printed,
type a p at the end of the global command:

: g/text/s/text/material/gp

You should be careful about using the global command in combination with any other — in essence, be sure of
what you are telling edit to do to the entire buffer. For example,

:g/ /d
72 less lines in file after global

will delete every line containing a blank anywhere in it This could adversely affect your document, since
most lines have spaces between words and thus would be deleted. After executing the global command, edit
will print a warning if the command added or deleted more than one line. Fortunately, the undo command
can reverse the effects of a global command. You should experiment with the global command on a small file
of text to see what it can do for you.

More about searching and substituting
In using slashes to identify a character string that we want to search for or change, we have always specified
the exact characters. There is a less tedious way to repeat the same string of characters. To change “text" to
“texts” we may type either

:/text/s/text/texts/

as we have done in the past, or a somewhat abbreviated command:

ND-60.328.1P EN

USD: 14-20 ‘ Edit: A Tutorial

:/text/s//texts/

In this example, the characters to be changed are not Specified — there are no characters, not even a space,
between the two slash marks that indicate what is to be changed. This lack of characters between the slashes
is taken by the editor to mean “use the characters we last searched for as the characters to be changed.”
Similarly, the last context search may be repeated by typing a pair of slashes with nothing between them:

:/d06/
It doesn't mean much here, but
://
it does illustrate the editor.

(You should note that the search command found the characters “does” in the word “doesn’t” in the first
search request.) Because no characters are specified for the second search, the editor scans the buffer for the
next occurrence of the characters “does".
Edit normally searches forward through the buffer, wrapping around from the end of the buffer to the begin-
ning, until the specified character string is found. If you want to search in the reverse direction, use question
marks 0) instead of slashes to surround the characters you are searching for.
It is also possible to repeat the last substitution without having to retype the entire command. An ampersand
(&) used as a command repeats the most recent substitute command, using the same search and replacement
patterns. After altering the current line by typing

:s/text/texts/

you type

:/text/&

or simply

://&

to make the same change on the next line in the buffer containing the characters “text”.

Special characters
Two characters have special meanings when used in specifying searches: “$” and “A”. “$” is taken by the
editor to mean “end of the line” and is used to identify strings that occur at the end of a line ,

: gltext.$/s//material./p
tells the editor to search for all lines ending in “text.” (and nothing else, not even a blank space), to change
each final “text.” to “material.", and print the changed lines.
The symbol “A" indicates the beginning of a line. Thus,

:s/A/l. /

instructs the editor to insert “ 1.” and a space at the beginning of the current line.
The characters “$” and “A" have special meanings only in the context of searching. At other times, they are
ordinary characters. If you ever need to search for a character that has a special meaning, you must indicate
that the character is to lose temporarily its special significance by typing another special character, the
backslash 0% before it.

:s/\$/dollar/

looks for the character “3" in the current line and replaces it by the word “dollar". Were it not for the
backslash, the “$" would have represented ”the end of the line" in your search rather than the character
“”.$ The backslash retains its special significance unless it is preceded by another backslash.

Issuing UNIX commands from the editor
After creating several files with the editor, you may want to delete files no longer useful to you or ask for a
list of your files. Removing and listing files are not functions of the editor, and so they require the use of
UNDt system commands (also referred to as “shell" commands, as “shell" is the name of the program that

ND-60.328.1P EN

Edit: A Tutorial ~ USD: 14-21

processes UNIX commands). You do not need to quit the editor to execute a UNIX command as long as youindicate that it is to be sent to the shell for execution. To use the UNIX command rm to remove the filenamed “junk" type:

:!rm junk
l

The exclamation mark (l) indicates that the rest of the line is to be processed as a shell command If thebuffer contents have not been written since the last change, a warning will be printed before the command isexecuted:

[No write since last change]
The editor prints a “!" when the command is completed Other tutorials describe useful features of the sys-tem, of which an editor is only one part.

Filenamos and file manipulation
Throughout each editing session, edit keeps track of the name of the file being edited as the current filename.Edit remembers as the current filename the name given when you entered the editor. The current filenamechanges whenever the edit (e) command is used to specify a new file. Once edit has recorded a currentfilename, it inserts that name into any command where a filename has been omitted. If a write command doesnot specify a file, edit, as we have seen, supplies the current filename. If you are editing a file named“draft3” having 283 lines in it, you can have the editor write onto a different file by including its name in thewrite command:

:w chapter3
"chapter3" [new file] 283 lines, 8698 characters

The current filename remembered by the editor will not be changed as a result of the write command. Thus,if the next write command does not specify a name, edit will write onto the current file (“draft3”) and notonto the file “chapter3”.

The file (0 command
To ask for the current filename, type file (or f). In response, the editor provides current information about thebuffer, including the filename, your current position, the number of lines in the butler, and the percent of thedistance through the file your current location is.

:f
"text" [Modified] line 3 of4 -—75%-—

If the contents of the buffer have changed since the last time the file was written, the editor will tell you thatthe file has been “[Modified]”. After you save the changes by writing onto a disk file, the buffer will nolonger be considered modified:

:w
"text" 4 lines, 88 characters
:f
"text" line 3 of 4 --75%--

Reading additional files (r)
The read (r) command allows you to add the contents of a file to the buffer at a specified location, essentiallycopying new lines between two existing lines. To use it, specify the line after which the new text will beplaced, the read (r) command, and then the name of the file. If you have a file named “example“, the com-mand

z$r example
"example" 18 lines, 473 characters

reads the file “example" and adds it to the buffer after the last line. The current filename is not changed bythe read command.

ND-60.328.1P EN

USD: 14-22 . Edit: A Tutorial

Writing parts of the buffer
The write (w) command can write all or part of the buffer to a file you specify. We are already familiar with
writing the entire contents of the buffer to a disk file. To write only part of the buffer onto a file, indicate the
beginning and ending lines before the write command, for example

:4S,$w ending

Here all lines from 45 through the end of the buffer are written onto the file named ending. The lines remain
in the buffer as part of the document you are editing, and you may continue to edit the entire buffer. Your
original file is unaffected by your command to write part of the buffer to another file. Edit still remembers
whether you have saved changes to the buffer in your original file or not

Recovering files
Although it does not happen very often, there are times UNIX stops working because of some malfunction.
This situation is known as a crash. Under most circumstances, edit’s crash recovery feature is able to save
work to within a few lines of changes before a crash (or an accidental phone hang up). If you lose the con-
tents of an editing buffer in a system crash, you will normally receive mail when you login that gives the
name of the recovered file. To recover the file, enter the editor and type the command recover (rec), fol-
lowed by the name of the lost file. For example, to recover the buffer for an edit session involving the file
“chap6”, the command is:

:recover chap6

Recover is sometimes unable to save the entire buffer successfully, so always check the contents of the saved
buffer carefully before writing it back onto the original file. For best results, write the buffer to a new file
temporarily so you can examine it without risk to the original file. Unfortunately, you cannot use the recover
command to retrieve a file you removed using the shell command rm.

Other recovery techniques
If something goes wrong when you are using the editor, it may be possible to save your work by using the
command preserve (pre), which saves the buffer as if the system had crashed. If you are writing a file and
you get the message “Quota exceeded", you have tried to use more disk storage than is allotted to your
account Proceed with caution because it is likely that only a part of the editor’s buffer is now present in the
file you tried to write. In this case you should use the shell escape from the editor (l) to remove some files
you don't need and try to write the file again. If this is not possible and you cannot find someone to help you,
enter the command

:preserve

and wait for the reply,

File preserved.

If you do not receive this reply, seek help immediately. Do not simply leave the editor. If you do, the buffer
will be lost, and you may not be able to save your file. if the reply is “File preserved.” you can leave the
editor (or logout) to remedy the situation. After a preserve, you can use the recover command once the prob-
lem has been corrected, or the —r option of the edit command if you leave the editor and want to return.
If you make an undesirable change to the buffer and type a write command before discovering your mistake,
the modified version will replace any previous version of the file. Should you ever lose a good version of a
document in this way, do not panic and leave the editor. As long as you stay in the editor, the contents of the
buffer remain accessible. Depending on the nature of the problem, it may be possible to restore the buffer to
a more complete state with the undo command. After fixing the damaged buffer, you can again write the file
to disk.

Further reading and other information
Edit is an editor designed for beginning and casual users. It is actually a version of a more powerful editor
called ex. These lessons are intended to introduce you to the editor and its more commonly—used commands.
We have not covered all of the editor’s commands, but a selection of commands that should be sufficient to
accomplish most of your editing tasks. You can find out more about the editor in the Ex Reference Manual.

ND60.328.1P EN

Edit; A Tutorial ' USD: 14-23

which is applicable to both ex and edit. One way to become familiar with the manual is to begin by reading
the description of commands that you already know.

Using ex

As you become more experienced with using the editor, you may still find that edit continues to meet your
needs. However, should you become interested in using ex. it is easy to switch. To begin an editing session
with ex, use the name ex in your command instead of edit.
Edit commands also work in ex. but the editing environment is somewhat different You should be aware of
a few differences between ex and edit. in edit, only the characters “A", “3", and “\" have special meanings
in searching the buffer or indicating characters to be changed by a substitute command. Several additional
characters have special meanings in ex, as described in the Ex Reference Manual. Another feature of the edit
environment prevents users from accidently entering two alternative modes of editing, open and visual, in
which the editor behaves quite differently from normal command mode. If you are using ex and you
encounter strange behavior, you may have accidently entered open mode by typing “0”. Type the ESC key
and then a “Q” to get out of open or visual mode and back into the regular editor command mode. The
document An Introduction to Display Editing with Vi provide full details of visual mode.

ND—60.328.1P EN

USD: 14-24 ' Edit: A Tutorial

ND—60.328. 1? EN

Edit A Tutorial

Index

addressing see line numbers
ampersand.......20
append mode6-7
append (a) command ...6,7,9
”At end of file" (message) 17
backslash (\)20
buffer4
caret (A) ... 10.20
change (c) command 17
command mode5
“Command not found" (message)5
context search ...11-12.19
control characters (“’\" notation).
control-H ..
copy (co) command. .. 15
corrections ...7.16
current filename...............21
current line(.)... 11.16
delete (d) command... .. 15-16
dial-up .. .5
disk.............................4
documentation3 23
dollar ($)10 16 20
dot (.)... 11,16
edit (text editor) 45,23
edit (e) command5 ..9 14
editing commands:

append (a) ...6.7.9
change (c).. 17
copy (co).... 15
delete (d) 15-16
edit (text editor)... ...3,5.23
edit (e)5,9. 14
file (1) ...21
global (g) ... 19
move (m)14
number (nu) 11
preserve (pre) .. 22
print (p) ...9
quit (CD-~- 8,12
read (r)21
recover (rec)22
substitute (5)11 12.19.20
undo (u)16.22
write (w) ...7 8 12.21.22
1 ... 12
' (shell escape) ..21

—.............................16
+... 17
~... 17
// .12,19
'7720
...11.16
.= 11,16

entering text ...467
erasing

characters (AH) ..7
lines (@)7

error corrections ...7.16
ex (text editor) ..23
Ex Reference Manual ...23
exclamation (l)21
file4
file (1) command21

USD: 14-25

file recovery ..22
filename4,21
global (g) command 19
input mode6-7
Interrupt (message).9
line numbers see also current line

dollar sign (3) 10,16,20
dot (.)...............................11,16
relative (+ and —).... 17

hst9-10
logging in ...5-6
logging out8
“Login incorrect" (message)... 5
minus (—) .. 17
move (m) command ... 14
“Negative address—first buffer line is 1“.. 17
“No current filename" (message)8
”No such file or directory” (message)5,6
“No write since last change" (message)21
non-printing characters9
“Nonzero address required" (message)... ..17
“Not an editor command" (message)..................6
“Not that many lines in buffer" (message) 17
number (nu) command ... 1 1
password....................................5
period () 11,17
plus (+)17
preserve (pre) command... 22
print (p) command9
program ...4
prompts

% (umx) ... 5
(edit) ...5 6 7
(append) ... 6-7

question (7).......................20
quit (q) command" .8,13
read (r) command22
recover (rec) command ...22
recovery see file recovery
references ..3,23
remove (rm) command21,22
reverse command effects (undo) 16.22

...9 10 16 20
...11—12,19,2O

terminals...5—6
text input mode......................7
undo (u) command
UND(............................ 3
write (w) command
1 command ... 12

ND—60.328.1P EN

US D: 14—26 ‘ Edit: A Tutorial

ND—60.328. 1 P EN

An Introduction to Display Editing with Vi USD:15-l

An Introduction to Display Editing with Vi

William Joy

Mark Horton

Computer Science Division
Department of Elecuical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Vi (visual) is a display oriented interactive text editor. When using vi the screen of your
terminal acts as a window into the file which you are editing. Changes which you make to
the file are reflected in what you see.
Using vi you can insert new text any place in the file quite easily. Most of the commands
to vi move the cursor around in the file. There are commands to move the cursor forward
and backward in units of characters, words, sentences and paragraphs. A small set of opera-
tors, like d for delete and c for change, are combined with the motion commands to form
operations such as delete word or change paragraph, in a simple and natural way. This
regularity and the mnemonic assignment of commands to keys makes the editor command
set easy to remember and to use.
Vi will work on a large number of display terminals, and new terminals are easily driven
after editing a terminal description file. While it is advantageous to have an intelligent ter-
minal which can locally insert and delete lines and characters from the display, the editor
will function quite well on dumb terminals over slow phone lines. The editor makes
allowance for the low bandwidth in these situations and uses smaller window sizes and dif-
ferent display updating algorithms to make best use of the limited speed available.
It is also possible to use the command set of vi on hardcopy terminals, storage tubes and
“glass tty’s” using a one line editing window; thus vi's command set is available on all ter-
minals. The full command set of the more traditional, line oriented editor ex is available
within vi; it is quite simple to switch between the two modes of editing.

ND~60.328.1P EN

USD215-2 - An Introduction to Display Editing with Vi

ND—60.328.1P EN

An Introduction to Display Editing with Vi USD:lS—3

l. GETTING STARTED I
This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be running vi on a file
you are familiar with while you are reading this. The first part of this document (sections l through 5)
describes the basics of using vi. Some topics of special interest are presented in section 6, and some nitty-
gritty details of how the editor functions are saved for section 8 to avoid cluttering the presentation here.
Associated with this document is a quick reference card. This card summarizes the commands of vi in a very
compact format

1.1. Specifying terminal type
Before you can start vi you must tell the system what kind of terminal you are using. Here is a (necessarily
incomplete) list of terminal type codes. If your terminal does not appear here, you should consult with one of
the staff members on your system to find out the code for your terminal. If your terminal does not have a
code, one can be assigned and a description for the terminal can be created.

Code Full name Type
2621 Hewlett-Packard 2621A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT—IV Dumb
act5 Microtcnn ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
c100 Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datarnedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit hl9 Intelligent
i100 Infoton 100 Intelligent
mime Imitating a smart act4 Intelligent
t1061 Teleray 1061 Intelligent
vt52 Dec VT»52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used by the system for
this terminal is ‘2621’. In this case you can use one of the following commands to tell the system the type of
your terminal:

% setenv TERM 2621

This command works with the csh shell. If you are using the standard Boume shell sh then you should give
the commands

$ TERM226ZI
3; export TERM

If you want to arrange to have your terminal type set up automatically when you log in, you can use the (set
program. If you dial in on a mime, but often use hardwired ports, a typical line for your .Iogin file (if you use
csh) would be

setenv TERM ‘tset _ ~d mime‘

or for your .profile file (if you use sh)

TERMz‘tset — -d mime‘

Tset knows which terminals are hardwired to each port and needs only to be told that when you dial in you are

1 'lhe financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-AO3 and MCS78—0729l is gratefully acknowledged.

ND-60.328.IP EN

USD:lS—4 ' An Introduction to Display Editing with Vi

probably on a mime. Tset is usually used to change the erase and kill characters, too.

1.2. Editing a file

After telling the system which kind of terminal you have, you should make a copy of a file you are familiar
with, and run vi on this file, giving the command

% vi name

replacing name with the name of the copy file you just created. The screen should clear and the text of your
file should appear on the screen. If something else happens refer to the footnote.2

1.3. The editor’s copy: the buffer

The editor does not directly modify the file which you are editing. Rather, the editor makes a copy of this file,
in a place called the buffer, and remembers the file‘s name. You do not affect the contents of the file unless
and until you write the changes you make back into the original file.

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text which should be
replaced with appropriate input will be given in italics. We will represent special characters in SMALL CAPI-
TALS.

1.5. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals with cursor position«
ing keys, these keys will also work within the editor. If you don’t have cursor positioning keys, or even if you
do, you can use the h j k and l keys as cursor positioning keys (these are labelled with arrows on an admja).3
(Particular note for the HP2621: on this terminal the function keys must be shifted (ick) to send to the
machine, otherwise they only act locally. Unshifted use will leave the cursor positioned incorrectly.)

1.6. Special characters: ESC, CR and DEL
Several of these special characters are very important, so be sure to find them right now. Look on your key-
board for a key labelled ESC or ALT. It should be near the upper left comer of your terminal. Try hitting this
key a few times. The editor will ring the bell to indicate that it is in a quiescent state.4 Partially formed com-
mands are cancelled by ESC, and when you insert text in the file you end the text insertion with ESC. This key
is a fairly harmless one to hit, so you can just hit it if you don’t know what is going on until the editor rings
the bell.
The CR or RETURN key is important because it is used to terminate certain commands. It is usually at the right
side of the keyboard, and is the same command used at the end of each shell command.
Another very useful key is the DEL or RUB key, which generates an interrupt, telling the editor to stop what it is
doing. It is a forceful way of making the editor listen to you, or to return it to the quiescent state if you don‘t
know or don’t like what is going on. Try hitting the ‘/’ key on your terminal. This key is used when you
want to specify a string to be searched for. The cursor should now be positioned at the bottom line of the

2 If you gave the system an incorrect terminal type code then the editor may have just made a mess out of your
screen. This happens when it sends control codes for one kind of terminal to some other kind of terminal. In this case
hit the keys at (colon and the q key) and then hit the RETURN key. This should get you back to the command level
interpreter. Figure out what you did wrong (ask someone else if necessary) and try again.

Another thing which can go wrong is that you typed the wrong file name and the editor just printed an error
diagnostic. in this case you should follow the above procedure for getting out of the editor, and try again this time
spelling the file name correctly.

If the editor doesn't seem to respond to the commands which you type here, try sending an interrupt to it by hitting
the DEL or RUB key on your terminal, and then hitting the :q command again followed by a carriage return.

3 As we will see later, It moves back to the left (like control-h which is a backspace),j moves down (in the same
column), It moves up (in the same column), and! moves to the right.

‘ On smart terminals where it is possible, the editor will quietly flash the screen rather than ringing the bell.

ND-60.328.1P EN

An Introduction to Display Editing with Vi USD:15-5

terminal after a ‘I’ printed as a prompt. You can get the cursor back to the current position by hitting the DEL
or RUB key; try this now.5 From now on we will simply refer to hitting the DEL or RUB key as “sending an
interrupt.”6
The editor often echoes your commands on the last line of the terminal. If the cursor is on the first position of
this last line, then the editor is performing a computation, such as computing a new position in the file after a
search or running a command to reformat part of the buffer. When this is happening you can stop the editor
by sending an interrupt

1.7. Getting out of the editor
After you have worked with this introduction for a while, and you wish to do something else, you can give the
command 22 to the editor. This will write the contents of the editor’s buffer back into the file you are editing,
if you made any changes, and then quit from the editor. You can also end an editor session by giving the
command :q!CR;7 this is a dangerous but occasionally essential command which ends the editor session and
discards all your changes. You need to know about this command in case you change the editor’s copy of a
file you wish only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

2. MOVING AROUND IN THE FILE

2.1. Scrolling and paging
The editor has a number of commands for moving around in the file. The most useful of these is generated by
hitting the control and D keys at the same time, a control-D or "\D’. We will use this two character notation
for referring to these control keys from now on. You may have a key labelled ‘l" on your terminal. This key
will be represented as ‘T’ in this document; ‘A’ is exclusively used as part of the "\x’ notation for control char—
acters.8
As you know now if you tried hitting "D, this command scrolls down in the file. The D thus stands for down.
Many editor commands are mnemonic and this makes them much easier to remember. For instance the com-
mand to scroll up is "U. Many dumb terminals can’t scroll up at all, in which case hitting "U clears the
screen and refreshes it with a line which is farther back in the file at the top.
If you want to see more of the file below where you are, you can hit AE to expose one more line at the bottom
of the screen, leaving the cursor where it is. The command "Y (which is hopelessly non-mnemonic, but next
to "U on the keyboard) exposes one more line at the top of the screen.
There are other ways to move around in the file; the keys "F and "B move forward and backward a page,
keeping a couple of lines of continuity between screens so that it is possible to read through a file using these
rather than "D and "U if you wish.
Notice the difference between scrolling and paging. If you are trying to read the text in a file, hitting "F to
move forward a page will leave you only a little context to look back at. Scrolling on the other hand leaves
more context, and happens more smoothly. You can continue to read the text as scrolling is taking place.

2.2. Searching, gate, and previous context
Another way to position yourself in the file is by giving the editor a suing to search for. Type the character/
followed by a string of characters terminated by CR. The editor will position the cursor at the next occurrence
of this string. Try hitting n to then go to the next occurrence of this string. The character ? will search back-
wards from where you are, and is otherwise like /.9

5 Backspacing over the ‘/' will also cancel the search.
6 On some systems. this interruptibility comes at a price: you cannot type ahead when the editor is computing with the

cursor on the bottom line.
7 All commands which read from the last display line can also be terminated with a BSC as well as an CR.
3 If you don't have a "" key on your terminal then there is probably a key labelled ‘T'; in any case these characters

are one and the same.
9 'Ihese searches will normally wrap around the end of the file, and thus find the string even if it is not on a line in the

direaion you search provided it is anywhere else in the file. You can disable this wraparound in scans by giving the
command :se nowrapscanCR, or more briefly :se nowscx

ND—60.328.lP EN

USD:15-6 ' , An Introduction to Display Editing with Vi

If the search string you give the editor is not present in the file the editor will print a diagnostic on the last line
of the screen, and the cursor will be retumed to its initial position.
If you wish the search to match only at the beginning of a line. begin the search string with an T. To match
only at the end of a line, end the search string with a 3. Thus lTsearchCR will search for the word ‘search’ at
the beginning of a line. and Ilast$CR searches for the word ‘last’ at the end of a line.10
The command G, when preceded by a number will position the cursor at that line in the file. Thus 1G will
move the cursor to the first line of the file. If you give G no count, then it moves to the end of the file.
If you are near the end of the file, and the last line is not at the bottom of the screen, the editor will place only
the character ‘~’ on each remaining line. This indicates that the last line in the file is on the screen; that is, the
‘~’ lines are past the end of the file.
You can find out the state of the file you are editing by typing a "G. The editor will show you the name of
the file you are editing, the number of the current line, the number of lines in the buffer, and the percentage of
the way through the buffer which you are. Try doing this now, and remember the number of the line you are
on. Give a G command to get to the end and then another G command to get back where you were.
You can also get back to a previous position by using the command “ (two back quotes). This is often more
convenient than G because it requires no advance preparation. Try giving a G or a search with I or ? and then
a “ to get back to where you were. If you accidentally hit 11 or any command which moves you far away from
a context of interest, you can quickly get back by hitting

2.3. Moving around on the screen
Now try just moving the cursor around on the screen. If your terminal has arrow keys (4 or 5 keys with
arrows going in each direction) try them and convince yourself that they work. If you don’t have working
arrow keys, you can always use h, j, k, and l. Experienced users of vi prefer these keys to arrow keys,
because they are usually n'ght undemeath their fingers.
Hit the + key. Each time you do, notice that the cursor advances to the next line in the file, at the first non-
white position on the line. The — key is like + but goes the other way.
These are very common keys for moving up and down lines in the file. Notice that if you go off the bottom or
top with these keys then the screen will scroll down (and up if possible) to bring a line at a time into view.
The RETURN key has the same effect as the + key.
Vi also has commands to take you to the top, middle and bottom of the screen. H will take you to the top
(home) line on the screen. Try preceding it with a number as in 3H. This will take you to the third line on the
screen. Many vi commands take preceding numbers and do interesting things with them. Try M, which takes
you to the middle line on the screen, and L, which takes you to the last line on the screen. L also takes
counts, thus 5L will take you to the fifth line from the bottom.

2.4. Moving within a line
Now try picking a word on some line on the screen, not the first word on the line. move the cursor using
RETURN and - to be on the line where the word is. Try hitting the w key. This will advance the cursor to the
next word on the line. Try hitting the b key to back up words in the line. Also try the e key which advances
you to the end of the current word rather than to the beginning of the next word. Also try SPACE (the space
bar) which moves right one character and the BS (backspace or AH) key which moves left one character. The
key h works as "H does and is useful if you don’t have a BS key. (Also, as noted just above, I will move to
the right.)
If the line had punctuation in it you may have noticed that that the w and b keys stopped at each group of
punctuation. You can also go back and forwards words without stopping at punctuation by using W and 8
rather than the lower case equivalents. Think of these as bigger words. Try these on a few lines with punctua—
tion to see how they differ from the lower case w and b.
The word keys wrap around the end of line, rather than stopping at the end. Try moving to a word on a line
below where you are by repeatedly hitting w.

‘0 Actually, the string you give to search for here can be a regular expression in the sense of the editors ex(l) and
«1(1). If you don't wish to learn about this yet, you can disable this more general facility by doing :se nomagloctt; by
putting this command in EXINTT in your environment, you can have this always be in effect (more about EXINIT later.)

ND-60.328.1P EN

An Introduction to Display Editing with Vi USD:15-7

2.5. Summary

SPACE advance the cursor one position
"B backwards to previous page
"D scrolls down in the file
"E exposes another line at the bottom
"F forward to next page
"G tell what is going on
"H backspace the cursor
AN next line, same column
"P previous line, same column
"U scrolls up in the file
"Y exposes another line at the top
+ next line, at the beginning
- previous line, at the beginning
/ scan for a following string forwards
? scan backwards
8 back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
W forward a word, ignoring punctuation
b back a word
9 end of current word
n scan for next instance of / or ? pattern
w word after this word

2.6. View

If you want to use the editor to look at a file, rather than to make changes, invoke it as view instead of vi.
This will set the readonly option which will prevent you from accidently overwriting the file.

3. MAKING SIMPLE CHANGES

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i, everything you type until you
hit ESC is inserted into the file. Try this now; position yourself to some word in the file and try inserting text
before this word. If you are on an dumb terminal it will seem, for a minute, that some of the characters in
your line have been overwritten, but they will reappear when you hit ESC.
Now try finding a word which can, but does not, end in an ‘3’. Position yourself at this word and type e
(move to end of word), then a for append and then ‘sESC’ to terminate the textual insert. This sequence of
commands can be used to easily pluralize a word.
Try inserting and appending a few times to make sure you understand how this works; i placing text to the left
of the cursor, a to the right.
It is often the case that you want to add new lines to the file you are editing, before or after some specific line
in the file. Find a line where this makes sense and then give the command 0 to create a new line after the line
you are on, or the command 0 to create a new line before the line you are on. After you create a new line in
this way, text you type up to an ESC is inserted on the new line.
Many related editor commands are invoked by the same letter key and differ only in that one is given by a
lower case key and the other is given by an upper case key. In these cases. the upper case key often differs
from the lower case key in its sense of direction, with the upper case key working backward and/or up, while
the lower case key moves forward and/or down.
Whenever you are typing in text, you can give many lines of input or just a few characters. To type in more
than one line of text, hit a RETURN at the middle of your input A new line will be created for text, and you

ND-60.328.1P EN

USD:15-8 . An Introduction to Display Editing with Vi

can continue to type. If you are on a slow and dumb terminal the editor may choose to wait to redraw the tail
of the screen, and will let you type over the existing screen lines. This avoids the lengthy delay which would
occur if the editor attempted to keep the tail of the screen always up to date. The tail of the screen will be
fixed up, and the missing lines will reappear, when you hit ESC.
While you are inserting new text, you can use the characters you normally use at the system command level
(usually "H or #) to backspace over the last character which you typed, and the character which you use to kill
input lines (usually @, AX, or AU) to erase the input you have typed on the current line.11 The character "W
will erase a whole word and leave you after the space after the previous word; it is useful for quickly backing
up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are not erased; the cur-
sor moves backwards, and the characters remain on the display. This is often useful if you are planning to
type in something similar. In any case the characters disappear when when you hit ESC; if you want to get rid
of them immediately, hit an ESC and then 2 again.
Notice also that you can’t erase characters which you didn’t insert, and that you can’t backspace around the
end of a line. If you need to back up to the previous line to make a correction, just hit ESC and move the cur-
sor back to the previous line. After making the correction you can return to where you were and use the insert
or append command again.

3.2. Making small corrections

You can make small corrections in existing text quite easily. Find a single character which is wrong or just
pick any character. Use the arrow keys to find the character, or get near the character with the word motion
keys and then either backspace (hit the BS key or "H or even just 11) or SPACE (using the space bar) until the
cursor is on the character which is wrong. If the character is not needed then hit the x key; this deletes the
character from the file. It is analogous to the way you x out characters when you make mistakes on a type-
writer (except it’s not as messy).
If the character is incorrect, you can replace it with the correct character by giving the command rc, where c is
replaced by the correct character. Finally if the character which is incorrect should be replaced by more than
one character, give the command 5 which substitutes a string of characters, ending with ESC, for it. If there are
a small number of characters which are wrong you can precede s with a count of the number of characters to
be replaced. Counts are also useful with x to specify the number of characters to be deleted.

3.3. More corrections: operators

You already know almost enough to make changes at a higher level. All you need to know now is that the d
key acts as a delete operator. Try the command dw to delete a word. Try hitting . a few times. Notice that
this repeats the effect of the dw. The command . repeats the last command which made a change. You can
remember it by analogy with an ellipsis
Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE. This deletes a single
character, and is equivalent to the x command.
Another very useful operator is c or change. The command cw thus changes the text of a single word. You
follow it by the replacement text ending with an ESC. Find a word which you can change to another, and try
this now. Notice that the end of the text to be changed was marked with the character ‘3’ so that you can see
this as you are typing in the new material.

3.4. Operating on lines
It is often the case that you want to operate on lines. Find a line which you want to delete, and type dd, the d
operator twice. This will delete the line. If you are on a dumb terminal, the editor may just erase the line on
the screen, replacing it with a line with only an @ on it. This line does not correspond to any line in your file,
but only acts as a place holder. It helps to avoid a lengthy redraw of the rest of the screen which would be
necessary to close up the hole created by the deletion on a terminal without a delete line capability.

‘1 In fact, the character "H (backspace) always works to erase the last input character here, regardless of what your
erase character is.

ND—60.328.IP EN

An Introduction to Display Editing with Vi USD:15-9

Try repeating the c operator twice; this will change a whole line, erasing its previous contents and replacingthem with text you type up to an ESC.12
You can delete or change more than one line by preceding the dd or cc with a count, i.e. d deletes 5 lines.
You can also give a command like dL to delete all the lines up to and including the last line on the screen, ord3L to delete through the third from the bottom line. Try some commands like this now.13 Notice that the
editor lets you know when you change a large number of lines so that you can see the extent of the change.
The editor will also always tell you when a change you make alTects text which you cannot see.

3.5. Undoing
Now suppose that the last change which you made was incorrect; you could use the insert, delete and append
commands to put the correct material back. However, since it is often the case that we regret a change or
make a change incorrectly, the editor provides a u (undo) command to reverse the last change which you
made. Try this a few times, and give it twice in a row to notice that an u also undoes a u.
The undo command lets you reverse only a single change. After you make a number of changes to a line, you
may decide that you would rather have the original state of the line back. The U command restores the current
line to the state before you started changing it.
You can recover text which you delete, even if undo will not bring it back; see the section on recovering lost
text below.

3.6. Summary

SPACE advance the cursor one position
"H backspace the cursor
"W erase a word during an insert
erase your erase (usually "H or #), erases a character during an insert
kill your kill (usually @, AX, or AU), kills the insert on this line

repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text
deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change:c

m
m

n
w

c
o

’

4. MOVING ABOUT; REARRANGING AND DUPLICATING TEXT

4.1. Low level character motions
Now move the cursor to a line where there is a punctuation or a bracketing character such as a parenthesis or a
comma or period. Try the command be where x is this character. This command finds the next x character to
the right of the cursor in the current line. Try then hitting a ;, which finds the next instance of the same char—
acter. By using the f command and then a sequence of ;’s you can often get to a particular place in a line
much faster than with a sequence of word motions or SPACES. There is also a F command, which is like f, but
searches backward. The ; command repeats F also.
When you are operating on the text in a line it is often desirable to deal with the characters up to. but not
including, the first instance of a character. Try dl‘x for some x now and notice that the x character is deleted.
Undo this with u and then try dtx; the t here stands for to, i.e. delete up to the next x, but not the x. The

12 The command S is a convenient synonym for for cc, by analogy with 5. Think of S as a substitute on lines, while s
is a substitute on characters.

’3 One subtle point here involves using me / search after a d. This will normally delete characters from the current
position to the point of the match. If what is desired is to delete whole lines including the two points, give the pattern as
/pat/+0, a line address.

ND—60.328.1P EN

USD:15- 10 , An Introduction to Display Editing with Vi

command T is the reverse of t.
When working with the text of a single line, an T moves the cursor to the first non-white position on the line,
and a $ moves it to the end of the line. Thus $8 will append new text at the end of the current line.
Your file may have tab (‘1) characters in it. These characters are represented as a number of spaces expanding
to a tab stop, where tab stops are every 8 positions.14 When the cursor is at a tab, it sits on the last of the
several spaces which represent that tab. Try moving the cursor back and forth over tabs so you understand
how this works.
On rare occasions, your file may have nonprinting characters in it. These characters are displayed in the same
way they are represented in this document, that is with a two character code, the first character of which is ‘A’.
On the screen non-printing characters resemble a ‘A' character adjacent to another, but spacing or backspacing
over the character will reveal that the two characters are, like the spaces representing a tab character, a single
character.
The editor sometimes discards control characters, depending on the character and the setting of the beautify
option, if you attempt to insert them in your file. You can get a control character in the file by beginning an
insert and then typing a "V before the control character. The "V quotes the following character, causing it to
be inserted directly into the file.

4.2. Higher level text objects
In working with a document it is often advantageous to work in terms of sentences, paragraphs, and sections.
The operations (and) move to the beginning of the previous and next sentences respectively. Thus the com«
mand d) will delete the rest of the current sentence; likewise d(will delete the previous sentence if you are at
the beginning of the current sentence, or the current sentence up to where you are if you are not at the begin-
ning of the current sentence.
A sentence is defined to end at a ‘.’, ‘l' or ‘?’ which is followed by either the end of a line, or by two spaces.
Any number of closing ‘)’, ‘]’, "" and characters may appear after the ‘2‘ or “2’ before the spaces or end
of line.
The operations { and } move over paragraphs and the operations H and 1] move over sections.15
A paragraph begins after each empty line, and also at each of a set of paragraph macros, specified by the pairs
of characters in the definition of the string valued option paragraphs. The default setting for this option
defines the paragraph macros of the —m and —mm macro packages, i.e. the ‘IP’, ‘.LP’, ‘.PP’ and ‘.QP’, ‘.P’
and ‘.LI’ macros.16 Each paragraph boundary is also a sentence boundary. The sentence and paragraph com-
mands can be given counts to operate over groups of sentences and paragraphs.
Sections in the editor begin after each macro in the sections option, normally ‘.NH’, ‘.SH’, ‘.H’ and ‘.HU’, and
each line with a formfeed "L in the first column. Section boundaries are always line and paragraph boundaries
also.
Try experimenting with the sentence and paragraph commands until you are sure how they work. If you havea large document, try looking through it using the section commands. The section commands interpret apreceding count as a different window size in which to redraw the screen at the new location, and this window
size is the base size for newly drawn windows until another size is specified. This is very useful if you are ona slow terminal and are looking for a particular section. You can give the first section command a small count
to then see each successive section heading in a small window.

‘4 This is settable by a command of the form :54: Lizxot, where x is 4 to set tabstops every four columns. This haseffect on the screen representation within the editor.
‘5 The [[and 1] Operations require the operation character to be doubled because they can move the cursor far from

where it currently is. While it is easy to get back with the command these commands would still be frustrating if theywere easy to hit accidentally.
16 You can easily change or extend this set of macros by assigning a different string to the paragraph: option in yourliXINIT. See section 6.2 for details. The ‘bp' directive is also considered to start a paragraph.

ND—60.328.1P EN

An Introduction to Display Editing with Vi USD: 15—11

4.3. Rearranging and duplicating text
The editor has a single unnamed buffer where the last deleted or changed away text is saved, and a set of
named buffers 3—2 which you can use to save copies of text and to move text around in your file and between
files.
The operator y yanks a copy of the object which follows into the unnamed buffer. If preceded by a buffer
name, "x y, where x here is replaced by a letter a—z, it places the text in the named buffer. The text can thenbe put back in the file with the commands p and P; p puts the text after or below the cursor, while P puts the
text before or above the cursor.
If the text which you yank forms a part of a line, or is an object such as a sentence which partially spans more
than one line, then when you put the text back, it will be placed after the cursor (or before if you use P). If the
yanked text forms whole lines, they will be put back as whole lines, without changing the current line. In this
case, the put acts much like a 0 or 0 command.
Try the command YP. This makes a copy of the current line and leaves you on this copy, which is placed
before the current line. The command Y is a convenient abbreviation for y. The command Yp will also
make a copy of the current line, and place it after the current line. You can give Y a count of lines to yank,
and thus duplicate several lines; try 3YP.
To move text within the buffer, you need to delete it in one place, and put it back in another. You can precede
a delete operation by the name of a buffer in which the text is to be stored as in "ad deleting 5 lines into the
named buffer a. You can then move the cursor to the eventual resting place of the these lines and do a "ap or
"31’ to put them back. In fact, you can switch and edit another file before you put the lines back, by giving a
command of the form :e nameCR where name is the name of the other file you want to edit You will have to
write back the contents of the current editor buffer (or discard them) if you have made changes before the edi-
tor will let you switch to the other file. An ordinary delete command saves the text in the unnamed buffer, so
that an ordinary put can move it elsewhere. However, the unnamed buffer is lost when you change files, so to
move text from one file to another you should use an unnamed buffer.

4.4. Summary.

T first non-white on line
$ end of line
) forward sentence
} forward paragraph
]] forward section
(backward sentence
{ backward paragraph
[[backward section
fx find x forward in line

put text back, after cursor or below current line
y yank operator, for copies and moves
tx up to x forward, for operators
F): f backward in line
P put text back, before cursor or above current line
Tx t backward in line

5. HIGH LEVEL COMMANDS

5.1. Writing, quitting, editing new files
So far we have seen how to enter vi and to write out our file using either 22 or :wCR. The first exits from the
editor, (writing if changes were made), the second writes and stays in the editor.
If you have changed the editor’s copy of the file but do not wish to save your changes, either because you
messed up the file or decided that the changes are not an improvement to the file, then you can give the com-
mand :q!CR to quit from the editor without writing the changes. You can also reedit the same file (starting
over) by giving the command :eXCR. These commands should be used only rarely, and with caution, as it is
not possible to recover the changes you have made after you discard them in this manner.

ND-60.328.1P EN

USD:lS-12 ‘ An Introduction to Display Editing with Vi

You can edit a different file without leaving the editor by giving the command :e nameCR. If you have not
written your file before trying to do this, the editor will tell you, and delay editing the other file. You then
give the command :wCR to save your work, then the :e nameCR command again; or carefully give the com-
mand :e! nameCR, which edits the other file, discarding changes you have made to the current file. To have
the editor automatically save changes, include set aulowrite in your EXINIT, and use :n instead of :e.

5.2. Escaping to a shell

You can get to a shell to execute a single command by giving a vi command of the form :!cdR. The sys-
tem will run the single command cmd and when the command finishes, the editor will ask you to hit a RETURN
to continue. When you have finished looking at the output on the screen, you should hit RETURN and the editor
will clear the screen and redraw it. You can then continue editing. You can also give another : command
when it asks you for a RETURN; in this case the screen will not be redrawn.
If you wish to execute more than one command in the shell, then you can give the command :shCR. This will
give you a new shell, and when you finish with the shell, ending it by typing a "D, the editor will clear the
screen and continue.
On systems which support it, "Z will suspend the editor and return to the (top level) shell. When the editor is
resumed, the screen will be redrawn.

5.3. Marking and returning
The command “ returned to the previous place after a motion of the cursor by a command such as /, ? or G.
You can also mark lines in the file with single letter tags and return to these marks later by naming the tags.
Try marking the current line with the command m, where you should pick some letter for x, say ‘a’. Then
move the cursor to a different line (any way you like) and hit ‘a. The cursor will return to the place which you
marked. Marks last only until you edit another file.
When using operators such as d and referring to marked lines, it is often desirable to delete whole lines rather
than deleting to the exact position in the line marked by m. In this case you can use the form 2: rather than ‘x.
Used without an operator, 3: will move to the first non-white character of the marked line; similarly ” moves
to the first non-white character of the line containing the previous context mark

5.4. Adjusting the screen
If the screen image is messed up because of a transmission error to your terminal, or because some program
other than the editor wrote output to your terminal, you can hit a "L, the ASCII form-feed character, to cause
the screen to be refreshed.
On a dumb terminal, if there are @ lines in the middle of the screen as a result of line deletion, you may get
rid of these lines by typing "R to cause the editor to retype the screen, closing up these holes.
Finally, if you wish to place a certain line on the screen at the top middle or bottom of the screen, you can
position the cursor to that line, and then give a 2 command. You should follow the 2 command with a REFURN
if you want the line to appear at the top of the window, a . if you want it at the center, or a — if you want it at
the bottom.

6. SPECIAL TOPICS

6.1. Editing on slow terminals
When you are on a slow terminal, it is important to limit the amount of output which is generated to your
screen so that you will not suffer long delays, waiting for the screen to be refreshed. We have already pointed
out how the editor optimizes the updating of the screen during insertions on dumb terminals to limit the delays,
and how the editor erases lines to @ when they are deleted on dumb terminals.
The use of the slow terminal insertion mode is controlled by the slowopen option. You can force the editor to
use this mode even on faster terminals by giving the command :se slowCR. If your system is sluggish this
helps lessen the amount of output coming to your terminal. You can disable this option by :se noslowCR.
The editor can simulate an intelligent terminal on a dumb one. Try giving the command :se redrawCR. This
simulation generates a great deal of output and is generally tolerable only on lightly loaded systems and fast
terminals. You can disable this by giving the command

ND-60.328.lP EN

An Introduction to Display Editing with Vi USD: 15-13

:se noredrawCR.

The editor also makes editing more pleasant at low speed by starting editing in a small window, and letting the
window expand as you edit This works particularly well on intelligent terminals. The editor can expand the
window easily when you insert in the middle of the screen on these terminals. If possible, try the editor on an
intelligent terminal to see how this works.
You can control the size of the window which is redrawn each time the screen is cleared by giving window
sizes as argument to the commands which cause large screen motions:

2/?llll"
Thus if you are searching for a particular instance of a common string in a file you can precede the first search
command by a small number, say 3, and the editor will draw three line windows around each instance of the
string which it locates.
You can easily expand or contract the window, placing the current line as you choose, by giving a number on a
2 command, after the z and before the following RETURN, . or -. Thus the command 25. redraws the screen
with the current line in the center of a five line window.17
If the editor is redrawing or otherwise updating large portions of the display, you can interrupt this updating by
hitting a DEL or RUB as usual. If you do this you may partially confuse the editor about what is displayed on
the screen. You can still edit the text on the screen if you wish; clear up the confusion by hitting a "L; or
move or search again, ignoring the current state of the display.
See section 7.8 on open mode for another way to use the vi command set on slow terminals.

6.2. Options, set, and editor startup files
The editor has a set of options, some of which have been mentioned above. The most useful options are given
in the following table.

Name Default Description
autoindent noai Supply indentation automatically
autown'te noaw Automatic write before :n, :ta, "T, !
ignorecase noic Ignore case in searching
lisp nolisp ({) } commands deal with S-expressions
list nolist Tabs print as "I; end of lines marked with S
magic nomagic The characters . [and * are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para=IPLPPPQPp Ll Macro names which start paragraphs
redraw nore Simulate a smart terminal on a dumb one
sections sect=NHSHH HU Macro names which start new sections
shiftwidth sw=8 Shift distance for <, > and input "D and "T
showmatch nosm Show matching (or { as) or } is typed
slowopen slow Postpone display updates during insens
term dumb The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You can set numeric and
string options by a statement of the form

set opt=val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or given while you are running vi by
preceding them with a : and following them with a CR.

17 Note that the command 5:. has an entirely different effect, placing line 5 in the center of a new window.

ND-60.328.1P EN

USD: 15—14 - An Introduction to Display Editing with Vi

You can get a list of all options which you have changed by the command :setCR, or the value of a single
option by the command :set opt?CR. A list of all possible options and their values is generated by :set allCR.
Set can be abbreviated se. Multiple options can be placed on one line, e.g. :se ai aw nuCR.
Options set by the set command only last while you stay in the editor. It is common to want to have certain
options set whenever you use the editor. This can be accomplished by creating a list of ex commands18 which
are to be run every time you start up ex, edit, or vi. A typical list includes a set command, and possibly a few
map commands. Since it is advisable to get these commands on one line, they can be separated with the l
character, for example:

set ai aw terselmap @ ddlmap # x

which sets the options autoindent, autowrite, terse, (the set command), makes @ delete a line, (the first map),
and makes it delete a character, (the second map). (See section 6.9 for a description of the map command)
This string should be placed in the variable EXINIT in your environment. If you use the shell csh, put this
line in the file .Iogin in your home directory:

setenv EXINTI‘ 'set ai aw terselmap @ ddlmap # x’
If you use the standard shell sh, put these lines in the file .profile in your home directory:

EXINITz’set ai aw terselmap @ ddlmap it x’
export EXINIT

Of course, the particulars of the line would depend on which options you wanted to set.

6.3. Recovering lost lines
You might have a serious problem if you delete a number of lines and then regret that they were deleted.
Despair not, the editor saves the last 9 deleted blocks of text in a set of numbered registers 1—9. You can get
the n’th previous deleted text back in your file by the command "n p. The " here says that a buffer name is to
follow, It is the number of the buffer you wish to try (use the number 1 for now), and p is the put command,
which puts text in the buffer after the cursor. If this doesn't bring back the text you wanted, hit u to undo this
and then . (period) to repeat the put command. In general the . command will repeat the last change you
made. As a special case, when the last command refers to a numbered text buffer, the . command increments
the number of the buffer before repeating the command. Thus a sequence of the form

" lpu.u.u.

will, if repeated long enough, show you all the deleted text which has been saved for you. You can omit the u
commands here to gather up all this text in the buffer, or stop after any . command to keep just the then
recovered text The command P can also be used rather than p to put the recovered text before rather than
after the cursor.

6.4. Recovering lost files
If the system crashes, you can recover the work you were doing to within a few changes. You will normally
receive mail when you next login giving you the name of the file which has been saved for you. You should
then change to the directory where you were when the system crashed and give a command of the form:

% vi —r name

replacing name with the name of the file which you were editing. This will recover your work to a point near
where you left off.19

‘8 All commands which start with : are ex commands.
19 in rare cases, some of the lines of the file may be lost. The editor will give you the numbers of these lines and the

text of the lines will be replaced by the string 'bOST'. These lines will almost always be among the last few which you
changed. You can either choose to discard the changes which you made (if they are easy to remake) or to replace the few
lost lines by hand.

ND—60.328. 1P EN

An Introduction to Display Editing with Vi USD: 15-15

You can get a listing of the files which are saved for you by giving the command:
% vi -r

If there is more than one instance of a particular file saved, the editor gives you the newest instance each time
you recover it. You can thus get an older saved copy back by first recovering the newer c0pies.
For this feature to work, vi must be correctly installed by a super user on your system, and the mail program
must exist to receive mail. The invocation “vi -r” will not always list all saved files, but they can be
recovered even if they are not listed.

6.5. Continuous text input
When you are typing in large amounts of text it is convenient to have lines broken near the right margin
automatically. You can cause this to happen by giving the command :se wm=10CR. This causes all lines to
be broken at a space at least 10 columns from the right hand edge of the screen.
If the editor breaks an input line and you wish to put it back together you can tell it to join the lines with J.
You can give J a count of the number of lines to be joined as in 3.] to join 3 lines. The editor supplies whitespace, if appropriate, at the juncture of the joined lines, and leaves the cursor at this white space. You can killthe white space with x if you don’t want it.

6.6. Features for editing programs
The editor has a number of commands for editing programs. The thing that most distinguishes editing of pro—
grams from editing of text is the desirability of maintaining an indented structure to the body of the program.
The editor has a autoindent facility for helping you generate correctly indented programs.
To enable this facility you can give the command :se aiCR. Now try opening a new line with 0 and type somecharacters on the line after a few tabs. If you now start another line, notice that the editor supplies white space
at the beginning of the line to line it up with the previous line. You cannot backspace over this indentation,
but you can use "D key to backtab over the supplied indentation.
Each time you type "D you back up one position, normally to an 8 column boundary. This amount is settable;
the editor has an option called shiftwidth which you can set to change this value. Try giving the command :se
sw=4CR and then experimenting with autoindent again.
For shifting lines in the program left and right, there are operators < and >. These shift the lines you specify
right or left by one slu'ftwidth. Try << and >> which shift one line left or right, and <L and >L shifting the
rest of the display left and right.
If you have a complicated expression and wish to see how the parentheses match, put the cursor at a left orright parenthesis and hit %. This will show you the matching parenthesis. This works also for braces { and }
and brackets [and].

a

If you are editing C programs, you can use the [[and]] keys to advance or retreat to a line starting with a {,
i.e. a function declaration at a time. When I] is used with an operator it stops after a line which starts with };
this is sometimes useful with y]].

6.7. Filtering portions of the buffer
You can run system commands over portions of the buffer using the operator 3. You can use this to sort lines
in the buffer, or to reformat portions of the buffer with a pretty—printer. Try typing in a list of random words,one per line and ending them with a blank line. Back up to the beginning of the list, and then give the com—
mand !}sortCR. This says to sort the next paragraph of material, and the blank line ends a paragraph.

6.8. Commands for editing LISP
If you are editing a LISP program you should set the option lisp by doing :se lispCR. This changes the (and)
commands to move backward and forward over s-expressions. The { and } commands are like (and) but
don’t stop at atoms. These can be used to skip to the next list, or through a comment quickly.
The autoindent option works differently for LISP, supplying indent to align at the first argument to the lastopen list. If there is no such argument then the indent is two spaces more than the last level.

ND-60.328.1P EN

USD215-16 . An Introduction to Display Editing with Vi

There is another option which is useful for typing in LISP, the showmatch option. Try setting it with :se smCR
and then try typing a ‘(’ some words and then a ‘)’. Notice that the cursor shows the position of the ‘(’ which
matches the ‘)’ briefly. This happens only if the matching ‘(’ is on the screen, and the cursor stays there for at
most one second.
The editor also has an operator to realign existing lines as though they had been typed in with lisp and autom—
dent set. This is the = operator. Try the command 2% at the beginning of a function. This will realign all
the lines of the function declaration.
When you are editing LISP,, the [[and 1] advance and retreat to lines beginning with a (, and are useful for
dealing with entire function definitions.

6.9. Macros

Vi has a parameterless macro facility, which lets you set it up so that when you hit a single keystroke, the edi-
tor will act as though you had hit some longer sequence of keys. You can set this up if you find yourself typ-
ing the same sequence of commands repeatedly.
Briefly, there are two flavors of macros:
a) Ones where you put the macro body in a buffer register, say 1. You can then type @x to invoke the

macro. The @ may be followed by another @ to repeat the last macro.
b) You can use the map command from vi (typically in your EXINIT) with a command of the form:

:map Ihs rhsCR

mapping Ihs into rhs. There are restrictions: Ihs should be one keystroke (either 1 character or one
function key) since it must be entered within one second (unless notimeout is set, in which case you can
type it as slowly as you wish, and vi will wait for you to finish it before it echoes anything). The Ihs
can be no longer than 10 characters, the rhs no longer than 100. To get a space, tab or newline into lhs
or rhs you should escape them with a "V. (It may be necessary to double the "V if the map command
is given inside vi, rather than in ex.) Spaces and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :qV‘VCR CR

which means that whenever you type q, it will be as though you had typed the four characters :qR. A "V’s
is needed because without it the CR would end the : command, rather than becoming part of the map
definition. There are two "V’s because from within vi, two "V’s must be typed to get one. The first CR is
part of the rhs, the second terminates the 2 command.
Macros can be deleted with

unmap lhs

If the Ihs of a macro is “#0" through “#9", this maps the particular function key instead of the 2 character
“#” sequence. So that terminals without function keys can access such definitions, the form “#x” will mean
function key x on all terminals (and need not be typed within one second.) The character “#” can be changed
by using a macro in the usual way:

:map AV"V"I #

to use tab, for example. (This won’t affect the map command, which still uses it, but just the invocation from
visual mode.
The undo command reverses an entire macro call as a unit, if it made any changes.
Placing a ‘I’ after the word map causes the mapping to apply to input mode, rather than command mode.
Thus, to arrange for "T to be the same as 4 spaces in input mode, you can type:

:map "T "VWW

where ii is a blank. The "V is necessary to prevent the blanks from being taken as white space between the
l/Lr and rhs.

ND—60.328.1P EN

An Introduction to Display Editing with Vi USD:15-17

7. WORD ABBREVIATIONS
A feature similar to macros in input mode is word abbreviation. This allows you to type a short word andhave it expanded into a longer word or words. The commands are :abbreviate and :unabbreviate (:ab andmm) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences
causes the word ‘eecs’ to always be changed into the phrase ‘Electrical Engineering and Computer Sciences’.Word abbreviation is different from macros in that only whole words are affected. If ‘eecs’ were typed as partof a larger word, it would be left alone. Also, the partial word is echoed as it is typed. There is no need foran abbreviation to be a single keystroke, as it should be with a macro.

7.1. Abbreviations
The editor has a number of short commands which abbreviate longer commands which we have introducedhere. You can find these commands easily on the quick reference card. They often save a bit of typing andyou can learn them as convenient.

8. NITTY-GRITI‘Y DETAILS

8.1. Line representation in the display
The editor folds long logical lines onto many physical lines in the display. Commands which advance lines
advance logical lines and will skip over all the segments of a line in one motion. The command I moves thecursor to a specific column, and may be useful for getting near the middle of a long line to split it in half. Try80[on a line which is more than 80 columns long.20
The editor only puts full lines on the display; if there is not enough room on the display to fit a logical line, theeditor leaves the physical line empty, placing only an @ on the line as a place holder. When you delete lines
on a dumb terminal, the editor will often just clear the lines to @ to save time (rather than rewriting the rest of
the screen.) To maximize the information on the screen, give the "R command.
If you wish, you can have the editor place line numbers before each line on the display. Give the command:se nuCR to enable this, and the command :se nonuCR to turn it off. You can have tabs represented as l‘I andthe ends of lines indicated with ‘3’ by giving the command :se listCR; :se nolistCR turns this off.
Finally, lines consisting of only the character ‘~' are displayed when the last line in the file is in the middle of
the screen. These represent physical lines which are past the logical end of file.

8.2. Counts
Most vi commands will use a preceding count to affect their behavior in some way. The following table givesthe common ways in which the counts are used:

new window size : / ? [I I] ‘ '
scroll amount "D "U
line/column number 2 G I
repeat effect most of the rest

The editor maintains a notion of the current default window size. On terminals which mm at speeds greaterthan 1200 baud the editor uses the full terminal screen. On terminals which are slower than 1200 baud (mostdialup lines are in this group) the editor uses 8 lines as the default window size. At 1200 baud the default is16 lines.
This size is the size used when the editor clears and refills the screen after a search or other motion moves farfrom the edge of the current window. The commands which take a new window size as count all often causethe screen to be redrawn. If you anticipate this, but do not need as large a window as you are currently using,you may wish to change the screen size by specifying the new size before these commands. In any case, thenumber of lines used on the screen will expand if you move off the top with a — or similar command or off thebottom with a command such as RETURN or "D. The window will revert to the last specified size the next time

2° You can make long lines very easily by using J to join together short lines.

ND—60.328.1P EN

USD:15-18 ' , An Introduction to Display Editing with Vi

it is cleared and refilled.21
The scroll commands "D and "U likewise remember the amount of scroll last specified, using half the basic
window sire initially. The simple insert commands use a count to specify a repetition of the inserted text.
Thus 10a+ ESC will insert a grid-like string of text. A few commands also use a preceding count as a line
or column number.
Except for a few commands which ignore any counts (such as AR), the rest of the editor commands use a
count to indicate a simple repetition of their effect. Thus 5w advances five words on the current line, while
SRETURN advances five lines. A very useful instance of a count as a repetition is a count given to the . com—
mand, which repeats the last changing command. If you do dw and then 3., you will delete first one and then
three words. You can then delete two more words with 2..

8.3. More file manipulation commands
The following table lists the file manipulation commands which you can use when you are in vi.

:w write back changes
:wq write and quit
:x write (if necessary) and quit (same as ZZ).
:e name edit file name
:e! reedit, discarding changes
:e + name edit, starting at end
:e +n edit, starting at line n
:e # edit alternate file
:w name write file name
:w! name overwrite file name
:x.yw name write lines x through y to name
:r name read file name into buffer
:r lemd read output of cmd into buffer
:n edit next file in argument list
:n! edit next file, discarding changes to current
:n args specify new argument list
:ta tag edit file containing tag tag, at tag

All of these commands are followed by a CR or ESC. The most basic commands are :w and :e. A normal edit-
ing session on a single file will end with a ll command. If you are editing for a long period of time you can
give :w commands occasionally after major amounts of editing, and then finish with a ll. When you edit
more than one file, you can finish with one with a :w and start editing a new file by giving a :e command, or
set autowrite and use :n <file>.
If you make changes to the editor’s copy of a file, but do not wish to write them back, then you must give an !
after the command you would otherwise use; this forces the editor to discard any changes you have made. Use
this carefully.
The :e command can be given a + argument to start at the end of the file, or a H: argument to start at line n.
In actuality, It may be any editor command not containing a space, usefully a scan like +lpat or +?pat. Informing new names to the e command, you can use the character % which is replaced by the current file name,
or the character # which is replaced by the alternate file name. The alternate file name is generally the lastname you typed other than the current file. Thus if you try to do a :e and get a diagnostic that you haven’t
written the file, you can give a :w command and then a :e # command to redo the previous :e.
You can write part of the buffer to a file by finding out the lines that bound the range to be written using "G,
and giving these numbers after the : and before the w, separated by ,’s. You can also mark these lines with mand then use an address of the form 'x,’y on the w command here.
You can read another file into the buffer after the current line by using the :r command. You can similarly
read in the output from a command,just use lcmd instead of a file name.

2‘ But not by a "L which just rcdraws the screen as it is.

ND-60.328.1P EN

An Introduction to Display Editing with Vi USD:15~19

If you wish to edit a set of files in succession, you can give all the names on the command line, and then editeach one in turn using the command :n. It is also possible to respecify the list of files to be edited by givingthe :n command a list of file names, or a pattern to be expanded as you would have given it on the initial vicommand.

If you are editing large programs, you will find the :ta command very useful. it utilizes a data base of func-tion names and their locations, which can be created by programs such as ctags, to quickly find a functionwhose name you give. If the :ta command will require the editor to switch files, then you must :w or abandonany changes before switching. You can repeat the :ta command without any arguments to look for the sametag again.

8.4. More about searching for strings
When you are searching for strings in the file with / and ?, the editor normally places you at the next or previ-ous occurrence of the string. If you are using an operator such as d, c or y, then you may well wish to affectlines up to the line before the line containing the pattern. You can give a search of the form /pat/—n to refer tothe n’th line before the next line containing pat, or you can use + instead of - to refer to the lines after the onecontaining pat. If you don’t give a line offset, then the editor will affect characters up to the match place,rather than whole lines; thus use ”+0 to affect to the line which matches.
You can have the editor ignore the case of words in the searches it does by giving the command :se icCR. Thecommand :se noicCR tums this off.
Strings given to searches may actually be regular expressions. If you do not want or need this facility, youshould

set nomagic

in your EXINTI‘. In this case, only the characters T and 3 are special in patterns. The character\ is also thenspecial (as it is most everywhere in the system), and may be used to get at the an extended pattern matching
facility. It is also necessary to use a\before a / in a forward scan or a ? in a backward scan, in any case. Thefollowing table gives the extended forms when magic is set.

T at beginning of pattern, matches beginning of line
$ at end of pattern, matches end of line
. matches any character
\< matches the beginning of a word
\> matches the end of a word
[sir] matches any single character in Sir
[Tstr] matches any single character not in str
[x~y] matches any character between x and y
* matches any number of the preceding pattern

If you use nomagic mode, then the . [and * primitives are given with a preceding \

8.5. More about input mode
There are a number of characters which you can use to make corrections during input mode. These are sum—marized in the following table.

ND-60.328.1P EN

USD: 15-20 . An Introduction to Display Editing with Vi

"H deletes the last input character
"W deletes the last input word, defined as by b
erase your erase character, same as "H
kill your kill character, deletes the input on this line
\ escapes a following "H and your erase and kill
ESC ends an insertion
DEL interrupts an insertion, terminating it abnormally
CR starts a new line
"D backtabs over autoindent
O‘D kills all the autoindent
TAD same as O‘D, but restores indent next line
"V quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing "H to correct a single character, or by typing
one or more "W's to back over incorrect words. If you use # as your erase character in the normal system, it
will work like "H.
Your system kill character, normally @, "X or AU, will erase all the input you have given on the current line.
In general, you can neither erase input back around a line boundary nor erase characters which you did not
insert with this insertion command. To make corrections on the previous line after a new line has been started,
hit ESC to end the insertion, move over and make the correction, and then return to where you were to con-
tinue. The command A which appends at the end of the current line is often useful for continuing.
If you wish to type in your erase or kill character (say # or @) then you must precede it with a \, just as you
would do at the normal system command level. A more general way of typing non-printing characters into the
file is to precede them with a "V. The "V echoes as a T character on which the cursor tests. This indicates
that the editor expects you to type a control character. In fact you may type any character and it will beinserted into the file at that point.22
If you are using autoindent you can backtab over the indent which it supplies by typing a /‘D. This backs up
to a shiftwidth boundary. This only works immediately after the supplied autoindent.
When you are using autoindent you may wish to place a label at the left margin of a line. The way to do this
easily is to type T and then AD. The editor will move the cursor to the left margin for one line, and restore the
previous indent on the next. You can also type a 0 followed immediately by a "D if you wish to kill all the
indent and not have it come back on the next line.

8.6. Upper case only terminals
If your terminal has only upper case, you can still use vi by using the normal system convention for typing on
such a terminal. Characters which you normally type are convened to lower case, and you can type upper caseletters by preceding them with a \ The characters { ~] l ‘ are not available on such terminals, but you canescape them as \(\T \) V \’. These characters are represented on the display in the same way they are typed.23

8.7. Vi and ex

Vi is actually one mode of editing within the editor ex. When you are running vi you can escape to the line
oriented editor of ex by giving the command Q. All of the : commands which were introduced above areavailable in ex. Likewise, most ex commands can be invoked from vi using :. Just give them without the :and follow them with aCR.

7-2 This is not quite true. The implementation of the editor does not allow the NULL ("@) diameter to appear in files.Also the LP (linefced or A,1) character is used by the editor to separate lines in the file, so it cannot appear in the middle of
a line. You can insert any other character, however, if you wait for the editor to echo the T before you type the character.
In fan, the editor will treat a following later as a request for the corresponding control character. This is the only way totype "S or ‘Q, since the system normally uses them to suspend and resume output and never gives them to the editor toprocess.

23 The \character you give will not echo until you type another key.

ND<60.328.1P EN

An Introduction to Display Editing with Vi USD: 15-21

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic and be left in thecommand mode of ex. You can then save your work and quit if you wish by giving a command x after the :which ex prompts you with, or you can reenter vi by giving ex a vi command.
There are a number of things which you can do more easily in ex than in vi. Systematic changes in lineoriented material are particularly easy. You can read the advanced editing documents for the editor ed to findout a lot more about this style of editing. Experienced users often mix their use of ex command mode and vi
command mode to speed the work they are doing.

8.8. Open mode: vi on hardcopy terminals and “glass tty’s”
If you are on a hardcopy terminal or a terminal which does not have a cursor which can move off the bottomline, you can still use the command set of vi, but in a different mode. When you give 3 vi command, the edi-tor will tell you that it is using open mode. This name comes from the open command in ex, which is used toget into the same mode.
The only difference between visual mode and open mode is the way in which the text is displayed.
In open mode the editor uses a single line window into the file, and moving backward and forward in the filecauses new lines to be displayed, always below the current line. Two commands of vi work differently inopen: 2 and "R. The 2 command does not take parameters, but rather draws a window of context around thecurrent line and then returns you to the current line.
If you are on a hardcopy terminal, the "R command will retype the current line. On such terminals, the editornormally uses two lines to represent the current line. The first line is a copy of the line as you started to editit, and you work on the line below this line. When you delete characters, the editor types a number of \‘s toshow you the characters which are deleted. The editor also reprints the current line soon after such changes sothat you can see what the line looks like again.
It is sometimes useful to use this mode on very slow terminals which can support vi in the full screen mode.
You can do this by entering ex and using an open command.

ACKNOWLEDGEMENTS
Bruce Englar encouraged the early development of this display editor. Peter Kessler helped bring sanity toversion 2’s command layout Bill Joy wrote versions 1 and 2.0 through 2.7, and created the framework that
users see in the present editor. Mark Horton added macros and other features and made the editor work on alarge number of terminals and UNIX systems.

ND—60.328.1P EN

USD215-22

Ex Quick Reference
Entering/leaving ex

% ex name edit name, start at end
% ex +n name at line n
% ex —t tag start at tag
% ex -—r list saved files
%ex—rnwne
%exname...
%ex-Rname
:x

recover file name
edit first; rest via :n
read only mode
exit, saving changes

An Introduction to Display Editing with Vi

Specifying terminal type
% setenv TERM type
3 TERMztype; export TERM
See also tset(l)

csh and all version 6
sh in Version 7

Some terminal types
2621 43
2645 733
3003 745
33 act4
37 act5
4014 adm3

adm31 dwl h19
adm3a dw2 i100
c100 gt40 mime
dm1520 gt42 owl
dmZSOO h1500 t1061
dm3025 h1510 vt52

Initializing options

: q! exit, discarding changes

Ex states
Command Normal and initial state. Input

prompted for by :. Your kill char-
acter cancels partial command.

Insert Entered by a l and c. Arbitrary
text then terminates with line hav.
ing only . character on it or abnor~
mally with interrupt.

Open/visual Entered by open or vi, terminates
with Q or "\

Ex commands
abbrev ab next 11 unabbrev una
append a number nu undo u
args ar open 0 unmap unm
change c preserve pre version ve
copy co print p visual vi
delete d put pu write w
edit e quit q xit x
file f read re yank ya
global g recover rec window 2
insert l rewind rew escape I
join 1 set 56 [shift <
list I shell Sh print next C R
map source so resubsl &
mark ma stop st rshift >
move m substitute 5 scroll " D

Ex command addresses
’1

$
+

+n

%

line It /pat next with pa!
current ?pat previous with pa!
last x-n n before x
next x,y x through y
previous 'x marked with x
n forward previous context
1,3

ND~60.328.1 P EN

EXINIT place set's here in environment var.
set x enable option
set nox disable option
set x=va1 give value val
set show changed options
set all show all options
set x? show value of option x

Useful options
autolndent ai supply indent
autowrite aw write before changing tiles
ignorecase ic in scanning
lisp () (} are s-exp's
list print "I for tab. 8 at end
magic . [“ special in patterns
number nu number lines
paragraphs para macro names which start
redraw sunulate smart temtinal
scroll command mode lines
sections sect macro names
shiftwidth sw for < >. and input "D
showmatch sm to) and } as typed
slowopen slow choke updates during insert
window visual mode lines
wrapscan ws around end of buffer?
wrapmargin wm automatic line splitting

Scanning pattern formation
T beginning of line
5 end of line

any character
\< beginning of word
\> end of word
[str] any char in sir
[Tm] not in str
[x—y] between x and y

any number of preceding

An Introduction to Display Editing with Vi

Vi Quick Reference
Entering/leaving vi
%vlname
%vl+nname
%vi+name
%vl—r
%vl—rname
%vlname...
%vl-—ttag
% vi +/pal name
% View name
ZZ
"Z

edit name at top
at line It
at end

list saved files
recover file name
edit first; rest via :n
start at tag
search for pa!
read only mode
exit from vi, saving changes
stop vi for later resumption

The display
Last line

@ lines
~ lines
“)5
tabs

Vi states
Command

Insert

Last line

Error messages, echoing input to : / ?
and !. feedback about U0 and large
changes.
On screen only, not in file.
Lines past end of file.
Control characters. A? is delete.
Expand to spaces. cursor at last.

Normal and initial state. Others retum
here. ESC (escape) cancels partial
command.
EnteredbyaiAIoOcCsSR.
Arbitrary text then terminates with ESC
character, or abnormally with interrupt.
Reading input for : / ? or !; terminate
with ESC or CR to execute, interrupt to
cancel.

Counts before vi commands
line/column number
scroll amount
replicate insert
repeat effect

2 G l
"D "U
a i A I
most rest

Simple commands
dw
de
dd
3dd
ltesSC
cwnewESC
easESC
XP

delete a word
leaving punctuation

delete a line
3 lines

insert text abc
change word to new
pluralize word
transpose characters

USD115-23

Interrupting, cancelling
ESC end insert or incomplete cmd
A? (delete or rubout) interrupts
"L reprint screen if A? scrambles it

File manipulation
:w write back changes
:wq write and quit
:q quit
:q! quit, discard changes
:e name edit file name
:e! reedit, discard changes
:9 + name edit, starting at end
:e +n edit starting at line n
:e # edit alternate file
"T synonym for :e #
:w name write file name
:w! name overwrite file name
:sh run shell, then return
:!cmd run cmd, then return
:n edit next file in arglist
:n args specify new arglist
:f show current file and line
"G synonym for :f
:ta tag to tag file entry tag
"1 :ta, following word is tag

Positioning within file
AF forward screenq
"B backward screenfull
"D scroll down half screen
"U scroll up half screen
G goto line (end default)
/pat next line matching pal
?pat prev line matching pat
n repeat last / or ?
N reverse last / or ?
/paI/+n n'th line after pal
?paI?—n n'th line before pa!
]] next section/function
[{ previous section/function
% find matching () { or }

Adjusting the screen
"L clear and redraw
"R retype, eliminate @ lines
zCR redraw, current at window top
1— at bottom
1. at center
Ipat/z- pal line at bottom
D1. use n line window
"E scroll window down 1 line
"Y scroll window up 1 line

ND—60.328.lP EN

USD: 15-24

Marking and returning
previous context

at first non-white in line
mx mark position with letter J:
‘x to mark it
'x at first non-white in line

Line positioning
H home window line
L last window line
M middle window line
+ next line, at first non—white
— previous line, at first non~white
CR return, same as +
l or] next line, same column
T or k previous line, same column

Character positioning
T first non white
0 beginning of line
3 end of line
h or —> forward
I or (— backwards
AH same as (—
space same as —>
fx find 1 forward
F): f backward
tx upto x forward
TX back upto)6
; repeat lastl'FtorT
, inverse of ;
| to specified column
% findmatching({)or}

Words, sentences, paragraphs
word forward
back word
end of word
to next sentence
to next paragraph
back sentence
back paragraph
blank delimited word
back W
to end of Wm

a
g
fi
A

v
U

-
g

Commands for LISP
) Forward sexpression
} but don't stop at atoms
(Back s-expression
{ but don't stop at atoms

ND-60i328l P EN

An Introduction to Display Editing with Vi

Corrections during insert
"H
Aw
erase

kill
\
esc
A?
"D
TAD
0A1)
Av

erase last character
erases last word
your erase, same as "H
your kill, erase input this line
escapes "H. your erase and kill
ends insertion back to command
interrupt, terminates insert
backtab over autoindent
kill autoinderu, save for next

but at margin next also
quote nonprinting character

Insert and replace
a
l
A
I
o
O
rx
R

append after cursor
insert before
append at end of line
insert before first non—blank
open line below
open above
replace single char with x
replace characters

Operators (double to affect lines)
d

"
V

A
”

delete
change
left shift
right shift
filter through command
indent for LISP
yank lines to buffer

Miscellaneous operations

<
X

t
m

5
0

change rest of line
delete rest of line
substitute chars
substitute lines
join lines
delete characters

before cursor
yank lines

Yank and put
P
P

"xy
"m

put back lines
put before
put from buffer 2:
yank to buffer 2:
delete into buffer x

Undo, redo, retrieve
u
U

"dp

undo last change
restore current line
repeat last change
retrieve d'th last delete

Vi Command and Function Reference USDzl6-1

Vi Command & Function Reference

Alan P.W. Hewett

Revisedfor version 2.12 by Mark Horton

ND-60.328.1P EN

USD:16—2 . Vi Command and Function Reference

ND-60.328.1P EN

Vi Command and Function Reference USDzl6-3

l. AUTHOR’S DISCLAIMER
This document does not claim to be 100% complete. There are a few commands listed in the original docu-ment that I was unable to test either because 1 do not speak lisp, because they required programs we don’thave, or because I wasn’t able to make them work. In these cases I left the command out The commandslisted in this document have been tried and are known to work. It is expected that prospective users of thisdocument will read it once to get the flavor of everything that vi can do and then use it as a reference docu-ment. Experimentation is recommended. If you don’t understand a command, try it and see what happens.
[Note: In revising this document, 1 have attempted to make it completely reflect version 2.12 of vi. It does notattempt to document the VAX version (version 3), but with one or two exceptions (wrapmargin, arrow keys)everything said about 2.12 should apply to 3.1. Mark Horton]

2. NOTATION
[option] is used to denote optional parts of a command. Many vi commands have an optional count [cnt]means that an optional number may precede the command to multiply or iterate the command. {variableitem} is used to denote parts of the command which must appear, but can take a number of different values.<character [-character]> means that the character or one of the characters in the range described between thetwo angle brackets is to be typed. For example <esc> means the escape key is to be typed. <a-z> means thata lower case letter is to be typed. A<character> means that the character is to be typed as a control character,that is, with the <cntl> key held down while simultaneously typing the specified character. In this documentcontrol characters will be denoted using the upper case character, but A<uppercase chr> and A<lowercase chr>are equivalent. That is, for example, <"D> is equal to <"d>. The most common character abbreviations usedin this list are as follows:
<esc> escape, octal 033
<cr> carriage return, AM, octal 015
<lf> linefeed "J, octal 012
<nl> newline, AJ, octal 012 (same as linefeed)
<bs> backspace, AH, octal 010
<tab> tab, AI, octal 011
<bell> bell, AG, octal 07
<ff> formfeed, AL, octal 014
<sp> space, octal 040
 delete, octal 0177

3. BASICS
To run vi the shell variable TERM must be defined and exported to your environment. How you do thisdepends on which shell you are using. You can tell which shell you have by the character it prompts you forcommands with. The Bourne shell prompts with ‘3’, and the C shell prompts with ‘%‘. For these examples,we will suppose that you are using an HP 2621 terminal, whose termcap name is “2621”.

3.1. Bourne Shell
To manually set your terminal type to 2621 you would type:

TERM=2621
export TERM

There are various ways of having this automatically or semi-automatically done when you log in. Suppose youusually dial in on a 2621. You want to tell this to the machine, but still have it work when you use ahardwired terminal. The recommended way, if you have the Lset program, is to use the sequence

ND-60.328.1P EN

US D: 16—4 ‘ Vi Command and Function Reference

tset —s —d 2621 > tset$$ ________

. tset$$
rm tset$$

in your .login (for csh) or the same thing using instead of ‘source’ in your .profile (for sh). The above line
says that if you are dialing in you are on a 2621, but if you are on a hardwired terminal it figures out your ter-
minal type from an on-line list.

3.2. The C Shell
To manually set your terminal type to 2621 you would type:

setenv TERM 2621

There are various ways of having this automatically or semi-automatically done when you log in. Suppose you
usually dial in on a 2621. You want to tell this to the machine, but still have it work when you use a
hardwired terminal. The recommended way, if you have the tset program, is to use the sequence

tset ~s —d 2621 > tset$$
source tset$$
rm tset$$

in your .login.* The above line says that if you are dialing in you are on a 2621, but if you are on a hardwired
terminal it figures out your terminal type from an on-line list

4. NORMAL COMMANDS
Vi is a visual editor with a window on the file. What you see on the screen is vi’s current notion of what your
file will contain, (at this point in the file), when it is written out. Most commands do not cause any change in
the screen until the complete command is typed. Should you get confused while typing a command, you can
abort the command by typing an character. You will know you are back to command level when you
hear a <bell>. Usually typing an <esc> will produce the same result. When vi gets an improperly formatted
command it rings the <bell>. Following are the vi commands broken down by function.

4.1. Entry and Exit
To enter vi on a particularfile, type

vifile

The file will be read in and the cursor will be placed at the beginning of the first line. The first screenfull of
the file will be displayed on the terminal.

To get out of the editor, type

22

If you are in some special mode, such as input mode or the middle of a multi—keystroke command, it may be
necessary to type <esc> first.

4.2. Cursor and Page Motion
NOTE: The arrow keys (see the next four commands) on certain kinds of terminals will not work with the
PDP-ll version of vi. The control versions or the hjkl versions will work on any terminal. Experienced users
prefer the hjkl keys because they are always right under their fingers. Beginners often prefer the arrow keys,
since they do not require memorization of which hjkl key is which. The mnemonic value of hjkl is clear from
looking at the keyboard of an adm3a.

‘ On a version 6 system without environments, the invocation of tset is simpler, just add the line “tset —d 262!" to your

ND-60.328.1P EN

Vi Command and Function Reference USD:l6—5

[cnt]<bs> or [cnt]h or [cntlt—
Move the cursor to the left one character. Cursor stops at the left margin of the page. If
cm is given, these commands move that many spaces.

[cnt]’\N or [cntlj or [cntli or [cnt]<lf>
Move down one line. Moving off the screen scrolls the window to force a new line onto
the screen. Mnemonic: Next

[cntJAP or [cnt]k or [cnt]T
Move up one line. Moving off the top of the screen forces new text onto the screen.Mnemonic: Previous

[cnt]<sp> or [cnt]l or [cnt]——>
Move to the right one character. Cursor will not go beyond the end of the line.

[cnt]- Move the cursor up the screen to the beginning of the next line. Scroll if necessary.
[cnt]+ or [cnt]<cr>

Move the cursor down the screen to the beginning of the next line. Scroll up if necessary.
[cnt]$ Move the cursor to the end of the line. If there is a count, move to the end of the line "ent"

lines forward in the file.
A Move the cursor to the beginning of the first word on the line.
0 Move the cursor to the left margin of the current line.
[cm]! Move the cursor to the column specified by the count. The default is column zero.
[cnt]w Move the cursor to the beginning of the next word. If there is a count, then move forward

that many words and position the cursor at the beginning of the word. Mnemonic: next—
word

[cnt]W Move the cursor to the beginning of the next word which follows a "white space"
(<Sp>,<tab>, or <nl>). Ignore other punctuation.

[cndb Move the cursor to the preceding word. Mnemonic: backup—word
[cnt]B Move the cursor to the preceding word that is separated from the current word by a "white

space" (<sp>,<tab>, or <nl>).
[cnt]e Move the cursor to the end of the current word or the end of the "cnt"’th word hence.

Mnemonic: end-of-word
[cnt]E Move the cursor to the end of the current word which is delimited by "white space"

(<sp>,<tab>, or <nl>).
[line number]G Move the cursor to the line specified. Of particular use are the sequences "10" and ""G

which move the cursor to the beginning and the end of the file respectively. Mnemonic:
Go—to

NOTE: The next four commands (AD, AU, "F, AB) are not true motion commands, in that they cannot be usedas the object of commands such as delete or change.
[end/\D Move the cursor down in the file by "cnt" lines (or the last "em" if a new count isn‘t given.

The initial default is half a page.) The screen is simultaneously scrolled up. Mnemonic:
Down

[cntY‘U Move the cursor up in the file by "cnt" lines. The screen is simultaneously scrolled down.
Mnemonic: Up

[cnt]"F Move the cursor to the next page. A count moves that many pages. Two lines of the pre-
vious page are kept on the screen for continuity if possible. Mnemonic: Forward-apage

[cntIAB Move the cursor to the previous page. Two lines of the current pa e are kept if possible.8Mnemonic: Backup-a-page
[cnt](Move the cursor to the beginning of the next sentence. A sentence is defined as ending

with a "l" or "'3" followed by two spaces or a <nl>.
[cnt]) Move the cursor backwards to the beginning of a sentence.

NDs60.328.1P EN

USD:16—6

[cntll

[€a
ll

[[
%

[cnt]H

[cnt]L

m<a-z>

’<a-D

‘<a-z>

4.3. Searches

Vi Command and Function Reference

Move the cursor to the beginning of the next paragraph. This command works best inside
nroff documents. It understands two sets of nrofl' macros, —ms and —mm, for which the
commands ".",IP ".LP", ".PP", ".QP", "P", as well as the nroff command ".bp" are
considered to be paragraph delimiters. A blank line also delimits a paragraph. The nrot‘t‘
macros that it accepts as paragraph delimiters is adjustable. See paragraphs under the Set
Commands section.
Move the cursor backwards to the beginning of a paragraph.
Move the cursor to the next "section", where a section is defined by two sets of nroff mac-
ros, —ms and ~mm, in which ".NH", ".SH", and ".H" delimit a section. A line beginning
with a <ff><nl> sequence, or a line beginning with a "{" are also considered to be section
delimiters. The last option makes it useful for finding the beginnings of C functions. The
nroff macros that are used for section delimiters can be adjusted. See sections under the
Set Commands section.
Move the cursor backwards to the beginning of a section.
Move the cursor to the matching parenthesis or brace. This is very useful in C or lisp
code. If the cursor is sitting on a () { or} the cursor is moved to the matching character at
the other end of the section. If the cursor is not sitting on a brace or a parenthesis, vi
searches forward until it finds one and then jumps to the match mate.
If there is no count move the cursor to the top left position on the screen. If there is a
count, then move the cursor to the beginning of the line "cnt" lines from the top of the
screen. Mnemonic: Home
If there is no count move the cursor to the beginning of the last line on the screen. If there
is a count, then move the cursor to the beginning of the line "cnt" lines from the bottom of
the screen. Mnemonic: Last
Move the cursor to the beginning of the middle line on the screen. Mnemonic: Middle
This command does not move the cursor, but it marks the place in the file and the charac-
ter "<a~z>" becomes the label for referring to this location in the file. See the next two
commands. Mnemonic: mark NOTE: The mark command is not a motion, and cannot be
used as the target of commands such as delete.
Move the cursor to the beginning of the line that is marked with the label "<a-z>".
Move the cursor to the exact position on the line that was marked with with the label "<3-
Z>.

Move the cursor back to the beginning of the line where it was before the last "non-
relative" move. A "non-relative" move is something such as a search or a jump to a
specific line in the file, rather than moving the cursor or scrolling the screen.
Move the cursor back to the exact spot on the line where it was located before the last
"non-relative" move.

The following commands allow you to search for items in a file.
[cnt]f{chr}

[cnt]F{chr}

[cnt]t{chr}

[cnt]T{chr}

lcntl;

ND-60.328.1P EN

Search forward on the line for the next or "cnt"’th occurrence of the character "chr". The
cursor is placed at the character of interest. Mnemonic: find character
Search backwards on the line for the next or "cnt"’th occurrence of the character "chr".
The cursor is placed at the character of interest.
Search forward on the line for the next or "cnt"’th occurrence of the character "chr". The
cursor is placed just preceding the character of interest. Mnemonic: move cursor up to
character

Search backwards on the line for the next or "cnt"’th occurrence of the character "chr".
The cursor is placed just preceding the character of interest.
Repeat the last "f“, "F", "t" or "T" command.

Vi Command and Function Reference USDcl6-7

[cnt], Repeat the last "f", "F", "t" or "'1‘" command, but in the opposite search direction. This isuseful if you overshoot
[cntl/[stringlknb Search forward for the next occurrence of "string". Wrap around at the end of the file doesoccur. The final </> is not required.
[cut]?[stn'ng]?<nl> Search backwards for the next occurrence of "string". If a count is specified, the countbecomes the new window size. Wrap around at the beginning of the file does occur. Thefinal <?> is not required.
n Repeat the last /[string]/ or ?[string]? search. Mnemonic: next occurrence.
N Repeat the last /[string]/ or ?[string]? search, but in the reverse direction.
:g/[stringl/leditor commandl<nl>

Using the : syntax it is possible to do global searches as in the standard UNIX "ed" editor.

4.4. Text Insertion

The following commands allow for the insertion of text. All multicharacter text insertions are terminated withan <esc> character. The last change can always be undone by typing a u. The text insert in insertion modecan contain newlines.
altext}<esc> Insert text immediately following the cursor position. Mnemonic: append
A{text}<esc> Insert text at the end of the current line. Mnemonic: Append
i[text}<esc> Insert text immediately preceding the cursor position. Mnemonic: insert
I{text)<esc> Insert text at the beginning of the current line.
0[text}<esc> Insert a new line after the line on which the cursor appears and insert text there.Mnemonic: open new line
O{text}<esc> Insert a new line preceding the line on which the cursor appears and insert text there.

4.5. Text Deletion

The following commands allow the user to delete text in various ways. All changes can always be undone bytyping the u command
[cntlx Delete the character or characters starting at the cursor position.
[cnt]X Delete the character or characters starting at the character preceding the cursor position.
D Deletes the remainder of the line starting at the cursor. Mnemonic: Delete the rest of line
[cnt]d{motion} Deletes one or more occurrences of the specified motion. Any motion from sections 4.1and 4.2 can be used here. The d can be stuttered (e.g. [cnt]dd) to delete cnt lines.

4.6. Text Replacement
The following commands allow the user to simultaneously delete and insert new text. All such actions can beundone by typing u following the command.
r<chr> Replaces the character at the current cursor position with <chr>. This is a one characterreplacement. No <esc> is required for termination. Mnemonic: replace character
text}<esc> Starts overlaying the characters on the screen with whatever you type. It does not stopuntil an <esc> is typed.
[cnt]s{text}<esc> Substitute for "em" characters beginning at the current cursor position. A "S" will appearat the position in the text where the "cnt"’th character appears so you will know how muchyou are erasing. Mnemonic: substitute
[cnt]S[text]<esc> Substitute for the entire current line (or lines). If no count is given, a "S" appears at theend of the current line. If a count of more than 1 is given, all the lines to be replaced aredeleted before the insertion begins.

ND-60.328.1P EN

USD:16—8 - ‘ ' Vi Command and Function Reference

[cntlc { motion) {text} <esc>
-

Change the specified "motion" by replacing it with the insertion text A "S" will appear at
the end of the last item that is being deleted unless the deletion involves whole lines.
Motion’s can be any motion from sections 4.1 or 4.2. Stuttering the c (e.g. [cnt]cc)
changes cnt lines.

4.7. Moving Text
Vi provides a number of ways of moving chunks of text around. There are nine buffers into which each piece
of text which is deleted or "yanked" is put in addition to the "undo" buffer. The most recent deletion or yank
is in the "undo" buffer and also usually in buffer 1, the next most recent in buffer 2, and so forth. Each new
deletion pushes down all the older deletions. Deletions older than 9 disappear. There is also a set of named
registers, a-z, into which text can optionally be placed. If any delete or replacement type command is preceded
by "<a-z>, that named buffer will contain the text deleted after the command is executed. For example,
"a3dd will delete three lines starting at the current line and put them in buffer "a.* There are two more basic
commands and some variations useful in getting and putting text into a file.
["<a-7,>][cnt]y{motion}

Yank the specified item or "cut“ items and put in the "undo" buffer or the specified buffer.
The variety of "items" that can be yanked is the same as those that can be deleted with the
"d" command or changed with the "c" command. In the same way that "dd" means delete
the current line and "cc" means replace the current line, "yy" means yank the current line.

["<a-z>][cnt]Y Yank the current line or the "cm" lines starting from the current line. If no buffer is
specified, they will go into the "undo" buffer, like any delete would. It is equivalent to
"yy". Mnemonic: Yank

["<a-D]p Put "undo" buffer or the specified buffer down after the cursor. If whole lines were
yanked or deleted into the buffer, then they will be put down on the line following the line
the cursor is on. If something else was deleted, like a word or sentence, then it will be
inserted immediately following the cursor. Mnemonic: put buffer
It should be noted that text in the named buffers remains there when you start editing a
new file with the :e file<esc> command. Since this is so, it is possible to copy or delete
text from one file and carry it over to another file in the buffers. However, the undo buffer
and the ability to undo are lost when changing files.

["<a—z>]P Put "undo" buffer or the specified buffer down before the cursor. If whole lines where
yanked or deleted into the buffer, then they will be put down on the line preceding the line
the cursor is on. If something else was deleted, like a word or sentence, then it will be
inserted immediately preceding the cursor.

[cnt]>{motion} The shift operator will right shift all the text from the line on which the cursor is located to
the line where the motion is located. The text is shifted by one shiftwidth. (See section ””””” '
6.) >> means right shift the current line or lines.

[cnt]<{motion} The shift operator will left shift all the text from the line on which the cursor is located to
the line where the item is located. The text is shifted by one shiftwidth. (See section 6.)
<< means left shift the current line or lines. Once the line has reached the left margin it is
not further affected.

[cnt]={motion} Prettyprints the indicated area according to lisp conventions. The area should be a lisp 5—
expression.

4.8. Miscellaneous Commands
Vi has a number of miscellaneous commands that are very useful. They are:
22 This is the normal way to exit from vi. If any changes have been made, the file is written

out Then you are returned to the shell.

‘ Referring to an upper case letter as a buffer name (A-Z) is the same as referring to the lower case letter, except that text
placed in such a buffer is appended to it instead of replacing iL

ND-60.328. 1? EN

Vi Command and Function Reference USD: 16-9

"L

AR

lent]!

"]

Redraw the current screen. This is useful if someone "write"s you while you are in "vi" orif for any reason garbage gets onto the screen.
On dumb terminals, those not having the "delete line" function (the vt100 is such a tenni-nal), vi saves redrawing the screen when you delete a line by just marking the line with an“@" at the beginning and blanking the line. If you want to actually get rid of the linesmarked with "@" and see what the page looks like, typing a AR will do this.
“Dot" is a particularly useful command. It repeats the last text modifying command.Therefore you can type a command once and then to another place and repeat it by justtyping ".".
Perhaps the most important command in the editor, u undocs the last command thatchanged the buffer. Mnemonic: undo
Undo all the text modifying commands performed on the current line since the last timeyou moved onto it.
Join the current line and the following line. The <nl> is deleted and the two lines joined,usually with a space between the end of the first line and the beginning of what was thesecond line. If the first line ended with a "period“, then two spaces are inserted. A countjoins the next cnt lines. Mnemonic: Join lines
Switch to ex editing mode. In this mode vi will behave very much like ed. The editor inthis mode will operate on single lines normally and will not attempt to keep the "window"
up to date. Once in this mode it is also possible to switch to the open mode of editing. Byentering the command [line numberlopen<nl> you enter this mode. It is similar to thenormal visual mode except the window is only one line long. Mnemonic: Quit visualmode
An abbreviation for a tag command. The cursor should be positioned at the beginning of a
word. That word is taken as a tag name, and the tag with that name is found as if it hadbeen typed in a :tag command.

[cnt]! {motion} {UNIX cmd}<nl>

z{ent} <nl>

Any UNIX filter (e.g. command that reads the standard input and outputs something to thestandard output) can be sent a section of the current file and have the output of the com-mand replace the original text. Useful examples are programs like cb, sort, and mo”. Forinstance, using sort it would be possible to sort a section of the current file into a new list.Using !! means take a line or lines starting at the line the cursor is currently on and passthem to the UNIX command. NOTE: To just escape to the shell for one command, use:!{cmd}<nl>, see section 5.
This resets the current window size to "cut" lines and redraws the screen.

4.9. Special Insert Characters
There are some characters that have special meanings during insert modes. They are:
AV

[MAD or [DVD

"W

<bs>

During inserts, typing a AV allows you to quote control characters into the file. Any char-acter typed after the AV will be inserted into the file.
<AD> without any argument backs up one shiftwidth. This is necessary to rem0ve inden-tation that was inserted by the autoindent feature. "<’\D> temporarily removes all theautoindentation, thus placing the cursor at the left margin. On the next line, the previousindent level will be restored. This is useful for putting "labels" at the left margin. 0<AD>says remove all autoindents and stay that way. Thus the cursor moves to the left margin
and stays there on successive lines until <tab>’s are typed. As with the <tab>, the <AD> isonly effective before any other "non-autoindent" controlling characters are typed.Mnemonic: Delete a shiftwidth
If the cursor is sitting on a word, <AW> moves the cursor back to the beginning of the
word, thus erasing the word from the insert. Mnemonic: erase Word
The backspace always serves as an erase during insert modes in addition to your normal"erase" character. To insert a <bs> into your file, use the <AV> to quote it.

ND-60.328.1P EN

USD: 16-10 ' Vi Command and Function Reference

5. COMMANDS
u,"Typing a . during command mode causes vi to put the cursor at the bottom on the screen in preparation for a

command. In the "z" mode, vi can be given most ed commands. It is also from this mode that you exit from
vi or switch to different files. All commands of this variety are terminated by a <nl>, <cr>, or <esc>.
:w[!] [file] Causes vi to write out the current text to the disk It is written to the file you are editing

unless "file" is supplied. If "file" is supplied, the write is directed to that file instead. If
that file already exists, vi will not perform the write unless the "l" is supplied indicating
you really want to destroy the older copy of the file.

:q[!] Causes vi to exit If you have modified the file you are looking at currently and haven't
written it out, vi will refuse to exit unless the "l" is supplied.

:e[l] [+[cmd]] [file]
Start editing a new file called "file" or start editing the current file over again. The com-
mand ":e!" says "ignore the changes I’ve made to this file and start over from the begin-
ning". It is useful if you really mess up the file. The optional "+" says instead of starting
at the beginning, start at the "end", or, if "cmd" is supplied, execute "cmd" first. Useful
cases of this are where cmd is "n" (any integer) which starts at line number n, and "/text",
which searches for "text" and starts at the line where it is found.
Switch back to the place you were before your last tag command. If your last tag com-
mand stayed within the file, M returns to that tag. If you have no recent tag command, it
will retum to the same place in the previous file that it was showing when you switched to
the current file.

:n[!] Start editing the next file in the argument list. Since vi can be called with multiple file
names, the ":n" command tells it to stop work on the current file and switch to the next file.
If the current file was modifies, it has to be written out before the ":n" will work or else the
”1" must be supplied, which says discard the changes I made to the current file.

:n[!] file [file file ...]
Replace the current argument list with a new list of files and start editing the first file in
this new list

:r file Read in a copy of "file" on the line after the cursor.
:r lcmd Execute the "cmd“ and take its output and put it into the file after the current line.
:lcmd Execute any UNIX shell command.
:ta[l] tag Vi looks in the file named tags in the current directory. Tags is a file of lines in the for-

mat:

"tag filename vi"—search-command

If vi finds the tag you specified in the :ta command, it stops editing the current file if
necessary and if the current file is up to date on the disk and switches to the file specified
and uses the search pattern specified to find the "tagged" item of interest. This is particu—
larly useful when editing multi—file C programs such as the operating system. There is a
program called ctags which will generate an appropriate tags file for C and W7 programs
so that by saying :ta function<nl> you will be switched to that function. It could also be
useful when editing multi~file documents, though the tags file would have to be generated
manually.

6. SPECIAL ARRANGEMENTS FOR STARTUP
Vi takes the value of $TERM and looks up the characteristics of that terminal in the file /etc/termcap. If you
don’t know vi’s name for the terminal you are working on, look in letdtermcap.
When vi starts, it attempts to read the variable EXINIT from your environment.* If that exists, it takes the
values in it as the default values for certain of its internal constants. See the section on "Set Values" for
further details. If EXINIT doesn’t exist you will get all the normal defaults.

‘ On version 6 systems Instead of EXINIT, put the startup commands in the file em in your home directory.

ND—60.328.1P EN

Vi Command and Function Reference USD216-11

Should you inadvertently hang up the phone while inside vi, or should the computer crash, all may not be lostUpon returning to the system, type:

vi ~r file

This will normally recover the file. If there is more than one temporary file for a specific file name, vi recov-ers the newest one. You can get an older version by recovering the file more than once. The command "vi -r"without a file name gives you the list of files that were saved in the last system crash (but not the file justsaved when the phone was hung up).

7. SET COMMANDS
Vi has a number of internal variables and switches which can be set to achieve special affects. These optionscome in three forms, those that are switches, which toggle from off to on and back, those that require anumeric value, and those that require an alphanumeric suing value. The toggle options are set by a commandof the form:

:set option<nl>

and turned off with the command:

:set nooption<nl>

Commands requiring a value are set with a command of the form:
:set option=value<nl>

To display the value of a specific option type:

:set option?<nl>

To display only those that you have changed type:

:set<nl>

and to display the long table of all the settable parameters and their current values type:
:set all<nl>

Most of the options have a long form and an abbreviation. Both are listed in the following table as well as the
normal default value.
To arrange to have values other than the default used every time you enter vi, place the appropriate set com-mand in EXINTT in your environment, e.g.

EXINTT=’set ai aw terse shz/bin/csh’
export EXINIT

or

setenv EXINIT ’set ai aw terse sh=/bin/csh’

for sh and csh, respectively. These are usually placed in your .profile or .login. If you are running a systemwithout environments (such as version 6) you can place the set command in the file em in your home direc-tory.
autoindent ai Default: noai Type: toggle

When in autoindent mode, vi helps you indent code by starting each line in the same
column as the preceding line. Tabbing to the right with <tab> or <AT> will move this
boundary to the right, and it can be moved to the left with <’\D>.

autoprint ap Default: ap Type: toggle
Causes the current line to be printed after each ex text modifying command. This is not of
much interest in the normal vi visual mode.

autowrite aw Default: noaw type: toggle
Autowrite causes an automatic write to be done if there are unsaved changes before certain
commands which change files or otherwise interact with the outside world. These com-
mands are 2!, :tag, :ncxt, :rewind, M, and A].

ND—60.328.1P EN

USD:16—12

beautify bf

directory dir

errorbells eb

hardtabs ht

ignorecase ic

lisp

list

magic

number nu

open

Optimize opt

paragraphs para

prompt

redraw

report

scroll

ND-60.328.1P EN

Vi Command and Function Reference

Default nobf Type: toggle
Causes all control characters except <tab>, <nl>, and <ff> to be discarded.

Default dirzltmp Type: string
This is the directory in which vi puts its temporary file.
Default noeb Type: toggle
Error messages are preceded by a <bell>.
Default: hardtabs=8 Type: numeric
This option contains the value of hardware tabs in your terminal, or of software tabs
expanded by the Unix system.
Default: noic Type: toggle
All upper case characters are mapped to lower case in regular expression matching.
Default nolisp Type: toggle
Autoindent for lisp code. The commands () [[and l] are modified appropriately to affect
s-expressions and functions.
Default: nolist Type: toggle
All printed lines have the <tab> and <nl> characters displayed visually.
Default magic Type: toggle
Enable the metacharacters for matching. These include . * < > [string] ["string] and
[<chr>-<chr>].

Default nonu Type: toggle
Each line is displayed with its line number.
Default: open Type: toggle
When set, prevents entering open or visual modes from ex or edit. Not of interest from vi.
Default opt Type: toggle
Basically of use only when using the ex capabilities. This option prevents automatic <cr>s
from taking place, and speeds up output of indented lines, at the expense of losing typea-
head on some versions of UNIX.
Default para=lPLPPPQPP bp Type: string
Each pair of characters in the suing indicate nrot‘t‘ macros which are to be treated as the
beginning of a paragraph for the { and } commands. The default string is for the -ms and
-mm macros. To indicate one letter nroff macros, such as .P or .11, quote a space in for
the second character position. For example:

:set paragraphs=P\ bp<nl>
would cause vi to consider .P and .bp as paragraph delimiters.
Default prompt Type: toggle
In ex command mode, the prompt character: will be printed when ex is waiting for a com-
mand. This is not of interest from vi.
Default noredraw Type: toggle
On dumb terminals, force the screen to always be up to date, by sending great amounts of
output. Useful only at high speeds.
Default report=5 Type: numeric
This sets the threshold for the number of lines modified. When more than this number of
lines are modified, removed, or yanked, vi will report the number of lines changed at the
bottom of the screen.
Default scroll={ 1/2 window} Type: numeric
This is the number of lines that the screen scrolls up or down when using the <AU> and
<AD> commands.

Vi Command and Function Reference

sections

shell sh

shiftwidth sw

showmatch sm

slowopen slow

tabstop ts

taglength t1

term

[CI'SC

warn

window

USD: 16-13

Default: sections=SHNHH HU Type: string
Each two character pair of this string specify nroff macro names which are to be treated asthe beginning of a section by the I] and [[commands. The default string is for the -ms and
-mm macros. To enter one letter nroff macros, use a quoted space as the second character.
See paragraphs for a fuller explanation.
Default: sh=from environment SHELL or /bin/sh Type: string
This is the name of the sh to be used for ""escaped commands.
Default: sw=8 Type: numeric
This is the number of spaces that a <AT> or <AD> will move over for indenting, and the
amount < and > shift by.
Default: nosm Type: toggle
When a) or } is typed, show the matching (or { by moving the cursor to it for one secondif it is on the current screen.
Default: terminal dependent Type: toggle
On terminals that are slow and unintelligent, this option prevents the updating of the screen
some of the time to improve speed.
Default: ts=8 Type: numeric
<tab>s are expanded to boundaries that are multiples of this value.
Default: tl=0 Type: numeric
If nonzero, tag names are only significant to this many characters.
Default: (from environment TERM, else dumb) Type: string
This is the terminal and controls the visual displays. It cannot be changed when in "visual"
mode, you have to Q to command mode, type a set term command, and do “vi.” to get
back into visual. Or exit vi, fix $TERM, and reenter. The definitions that drive a particu-lar terminal type are found in the file /etc/termcap.
Default: terse Type: toggle
When set, the error diagnostics are short.
Default: warn Type: toggle
The user is warned if she/he tries to escape to the shell without writing out the current
changes.

Default: window={8 at 600 baud or less, 16 at 1200 baud, and screen size — 1 at 2400 baud
or more} Type: numeric
This is the number of lines in the window whenever vi must redraw an entire screen. It is
useful to make this size smaller if you are on a slow line.

W300, w1200, w9600

wrapscan ws

wrapmargin wm

These set window, but only within the corresponding speed ranges. They are useful in an
EXINIT to fine tune window sizes. For example,

set w300=4 w1200=12
causes a 4 lines window at speed up to 600 baud, a 12 line window at 1200 baud, and a
full screen (the default) at over 1200 baud.
Default: ws Type: toggle
Searches will wrap around the end of the file when is option is set When it is off, the
search will terminate when it reaches the end or the beginning of the file.
Default: wm=0 Type: numeric
Vi will automatically insert a <nl> when it finds a natural break point (usually a <sp>
between words) that occurs within "wrn" spaces of the right margin. Therefore with
"wm=0" the option is off. Setting it to 10 would mean that any time you are within 10
spaces of the right margin vi would be looking for a <sp> or <tab> which it could replace
with a <nl>. This is convenient for people who forget to look at the screen while they
type. (In version 3, wrapmargin behaves more like nroff, in that the boundary specified by
the distance from the right edge of the screen is taken as the rightmost edge of the area
where a break is allowed, instead of the leftmost edge.)

ND-60.328.1P EN

USD: 1614 ' Vi Command and Function Reference

writeany wa Default: nowa Type: toggle
Vi normally makes a number of checks before it writes out a file. This prevents the user
from inadvertently destroying a file. When the "writeany" option is enabled, vi no longer
makes these checks.

ND-60.328.1P EN

Ex Reference Manual USDtl7-1

Ex Reference Manual
Version 3.5/2.13 — September, 1980

William Joy

Revisedfor versions 3.5/2.13 by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Ex is a line oriented text editor, which supports both command and display oriented editing.This reference manual describes the command oriented part of ex; the display editingfeatures of ex are described in An Introduction to Display Editing with Vi. Other documents
about the editor include the introduction Edit: A tutorial, the Ex/ea'it Command Summary,and a Vi Quick Reference card.

ND-60.328.1P EN

USD:_17-2 . ' Ex Reference Manual

ND-60.328.1P EN

Ex Reference Manual ‘ USD:l7—3

1. STARTING Rxl
Each instance of the editor has a set of options, which can be set to tailor it to your liking. The command editinvokes a version of ex designed for more casual or beginning users by changing the default settings of someof these options. To simplify the description which follows we assume the default settings of the options.
When invoked, ex determines the terminal type from the TERM variable in the environment It there is aTERMCAP variable in the environment, and the type of the terminal described there matches the TERM variable,then that description is used. Also if the TERMCAP variable contains a pathname (beginning with a I) then theeditor will seek the description of the terminal in that file (rather than the default /etc/termcap.) If there is avariable EXINIT in the environment, then the editor will execute the commands in that variable, otherwise ifthere is a file .exrc in your HOME directory ex reads commands from that file, simulating a source command.Option setting commands placed in EXINIT or .exrc will be executed before each editor session.
A command to enter ex has the following prototype:2

ex[—][—v][—ttag] [—r][—l][-—wn] [—x][—R][+command]name...
The most common case edits a single file with no options, i.e.:

8X name

The - command line option option suppresses all interactive—user feedback and is useful in processing editorscripts in command files. The —v option is equivalent to using vi rather than ex. The A option is equivalent toan initial tag command, editing the file containing the tag and positioning the editor at its definition. The -—roption is used in recovering after an editor or system crash, retrieving the last saved version of the named fileor, if no file is specified, typing a list of saved files. The —l option sets up for editing LISP, setting theshowmatch and lisp options. The —w option sets the default window size to n, and is useful on dialups tostart in small windows. The —x option causes ex to prompt for a key, which is used to encrypt and decrypt thecontents of the file, which should already be encrypted using the same key. see cryp1(l). The —R option setsthe read-only option at the start.3 Name arguments indicate files to be edited. An argument of the form +com-mand indicates that the editor should begin by executing the specified command. If command is omitted, thenit defaults to “$”, positioning the editor at the last line of the first file initially. Other useful commands hereare scanning patterns of the form “/pat” or line numbers, e.g. “+100” starting at line 100.

2. FILE MANIPULATION

2.1. Current file

Ex is normally editing the contents of a single file, whose name is recorded in the current file name. Ex per-forms all editing actions in a buffer (actually a temporary file) into which the text of the file is initially read.Changes made to the buffer have no effect on the file being edited unless and until the buffer contents are writ-ten out to the file with a write command After the buffer contents are written, the previous contents of thewritten file are no longer accessible. When a file is edited, its name becomes the current file name, and itscontents are read into the buffer.
The current file is almost always considered to be edited. This means that the contents of the buffer are logi-cally connected with the current file name, so that writing the current buffer contents onto that file, even if itexists, is a reasonable action. If the current file is not edited then ex will not normally write on it if it alreadyexists.4

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is saved as the alter-nate file name. Similarly if a file is mentioned but does not become the current file, it is saved as the alternatefile name.

‘ The financial support of an [BM Graduate Fellowship and the National Science Foundation under grants MCS74-07644-A03 and MCS78—O729l is gratefully acknowledged.
2 Brackets ‘[' ‘1' surround optional parameters here.
3 Not available in all v2 editors due to memory constraints.
‘ Thefile command will say “(Not editedl" if the current file is not considered edited.

ND-60.328.1P EN

USD:,1 7—4 - Ex Reference Manual

2.3. Filename expansion
Filenames within the editor may be specified using the normal shell expansion conventions. in addition, the
character ‘%’ in filenames is replaced by the current file name and the character ‘#’ by the alternate file

5name.

2.4. Multiple files and named buffers
If more than one file is given on the command line, then the first file is edited as described above. The
remaining arguments are placed with the first file in the argument list. The current argument list may be
displayed with the args command. The next file in the argument list may be edited with the next command.
The argument list may also be respecified by specifying a list of names to the next command. These names
are expanded, the resulting list of names becomes the new argument list, and ex edits the first file on the list.
For saving blocks of text while editing, and especially when editing more than one file, ex has a group of
named buffers. These are similar to the normal buffer, except that only a limited number of operations are
available on them. The buffers have names a through 2.6

2.5. Read only

It is possible to use ex in read only mode to look at files that you have no intention of modifying. This mode
protects you from accidently overwriting the file. Read only mode is on when the readonly option is set. It
can be turned on with the —R command line option, by the View command line invocation, or by setting the
readonly option. It can be cleared by setting noreadonly. It is possible to write, even while in read only
mode, by indicating that you really know what you are doing. You can write to a different file, or can use the
! form of write, even while in read only mode.

3. EXCEPTIONAL CONDITIONS

3.1. Errors and interrupts
When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error diagnostic. If the
primary input is from a file, editor processing will terminate. If an interrupt signal is received, ex prints
“Interrupt” and returns to its command level. if the primary input is a file, then ex will exit when this occurs.

3.2. Recovering from hangups and crashes
if a hangup signal is received and the buffer has been modified since it was last written out, or if the system
crashes, either the editor (in the first case) or the system (after it reboots in the second) will attempt to preserve
the buffer. The next time you log in you should be able to recover the work you were doing, losing at most a
few lines of changes from the last point before the hangup or editor crash. To recover a file you can use the —r
option. If you were editing the file resume. then you should change to the directory where you were when the
crash occurred, giving the command

8X 4' resume

After checking that the retrieved file is indeed ok, you can write it over the previous contents of that file.
You will normally get mail from the system telling you when a file has been saved after a crash. The com-
mand

ex—r

will print a list of the files which have been saved for you. (in the case of a hangup, the file will not appear in
the list, although it can be recovered.)

5 This makes it easy to deal alternately with two files and eliminates the need for tetyping the name supplied on anedit command after a No write since last change diagnostic is received.
6 it is also possible to refer to A through 2; the upper case buffers are the same as the lower but commands append to

named buffers rather than replacing if upper case names are used.

ND—60.328.1P EN

Ex Reference Manual .
USD217-5

4. EDITING MODES
Ex has five distinct modes. The primary mode is command mode. Commands are entered in command modewhen a ‘:’ prompt is present, and are executed each time a complete line is sent. In text input mode ex gath-ers input lines and places them in the file. The append. insert, and change commands use text input mode.No prompt is printed when you are in text input mode. This mode is left by typing a alone at the beginningof a line, and command mode resumes.
The last three modes are open and visual modes, entered by the commands of the same name, and, withinopen and visual modes text insertion mode. Open and visual modes allow local editing operations to be per-formed on the text in the file. The open command displays one line at a time on any terminal while visualworks on CRT terminals with random positioning cursors, using the screen as a (single) window for file editingchanges. These modes are described (only) in An Introduction to Display Editing with Vi.

5. COMMAND STRUCTURE
Most command names are English words, and initial prefixes of the words are acceptable abbreviations. Theambiguity of abbreviations is resolved in favor of the more commonly used commands.7

5.1. Command parameters
Most commands accept prefix addresses specifying the lines in the file upon which they are to have effect.The forms of these addresses will be discussed below. A number of commands also may take a trailing countspecifying the number of lines to be involved in the command.8 Thus the command “10p” will print the tenthline in the buffer while “delete 5” will delete five lines from the buffer, starting with the current line.
Some commands take other information or parameters, this information always being given after the command9name.

5.2. Command variants

A number of commands have two distinct variants. The variant form of the command is invoked by placingan ‘l’ immediately after the command name. Some of the default variants may be controlled by options; inthis case, the ‘1’ serves to toggle the default.

5.3. Flags after commands
The characters ‘#’, ‘p’ and ‘1’ may be placed after many commands.” In this case, the command abbreviatedby these characters is executed after the command completes. Since ex normally prints the new current lineafter each change, ‘p’ is rarely necessary. Any number of ‘+’ or ‘—’ characters may also be given with theseflags. If they appear, the specified offset is applied to the current line value before the printing command isexecuted.

5.4. Comments
It is possible to give editor commands which are ignored. This is useful when making complex editor scriptsfor which comments are desired. The comment character is the double quote: ". Any command line beginningwith " is ignored. Comments beginning with " may also be placed at the ends of commands, except in caseswhere they could be confused as part of text (shell escapes and the substitute and map commands).

5.5. Multiple commands per line
More than one command may be placed on a line by separating each pair of commands by a ‘1’ character.However the global commands, comments, and the shell escape ‘!’ must be the last command on a line, asthey are not terminated by a ‘l’.

7 As an example, the command substitute can be abbreviated '5' while the shortest available abbreviation for the setcommand is ‘se'.
8 Counts are rounded down ifneoessary.
9 Fatamples would be option names in a set command it: “set number", a file name in an edit command, a regularexpression in a substitute command, or a target address for a copy command, i.e. "1,5 copy 25".
1° A ‘p' or '1' must be preceded by a blank or tab except in the single special case ‘dp'.

ND-60.328.lP EN

USD: 17-6 ' ' Ex Reference Manual

5.6. Reporting large changes
Most commands which Change the contents of the editor buffer give feedback if the scope of the change
exceeds a threshold given by the report option. This feedback helps to detect undesirably large changes so
that they may be quickly and easily reversed with an undo. After commands with more global effect such as
global or visual, you will be informed if the net change in the number of lines in the buffer during this com-
mand exceeds this threshold.

6. COMMAND ADDRESSING

6.1. Addressing primitives

The current line. Most commands leave the current line as the last line which they
affect. The default address for most commands is the current line, thus ‘.‘ is rarely
used alone as an address.

n The nth line in the editor’s buffer, lines being numbered sequentially from l.
S The last line in the buffer.
% An abbreviation for “l,$”, the entire buffer.
+n —n An offset relative to the current buffer line.“
lpaz/ ?pat? Scan forward and backward respectively for a line containing pat, a regular expression

(as defined below). The scans normally wrap around the end of the buffer. If all that
is desired is to print the next line containing pat, then the trailing / or ? may be omit-
ted. If pat is omitted or explicitly empty, then the last regular expression specified is
located.12

” ’x Before each non-relative motion of the current line the previous current line is
marked with a tag, subsequently referred to as This makes it easy to refer or
retum to this previous context. Marks may also be established by the mark command,
using single lower case letters x and the marked lines referred to as "x’.

6.2. Combining addressing primitives
Addresses to commands consist of a series of addressing primitives, separated by or Such address lists
are evaluated left-to-right When addresses are separated by ‘;’ the current line ‘.’ is set to the value of the
previous addressing expression before the next address is interpreted. If more addresses are given than the
command requires, then all but the last one or two are ignored. If the command takes two addresses, the first
addressed line must precede the second in the buffer.13

7. CONNAND DESCRIPTIONS
The following form is a prototype for all ex commands:

address command ! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in the file. For
sanity with use from within visual mode, ex ignores a “z” preceding any command.
In the following command descriptions, the default addresses are shown in parentheses, which are not, how‘
ever, part of the command.

” The forms ‘.+3’ ‘+3' and ‘+++' are all equivalent; if the current line is line 100 they all address line 103.
12 The forms V and \? scan using the last regular expression used in a scan; after a substitute // and 2’? would scan

using the substiuite's regular expression.
‘3 Null address specifications are permitted in a list of addresses, the default in this case is the utrrent line ‘.'; thus

‘.100' is equivalent to '.,100'. It is an error to give a prefix address to a command which expects none.

ND—60.328. 1? EN

Ex Reference Manual ‘ USDzl7-9

(. , .+1) join count flags abbrzj
Places the text from a specified range of lines together on one line. White space is adjusted at each junc-tion to provide at least one blank character, two if there was a at the end of the line, or none if thefirst following character is a ‘)’. If there is already white space at the end of the line, then the whitespace at the start of the next line will be discarded.

j!
The variant causes a simpler join with no white space processing; the characters in the lines are simplyconcatenated.

(.) k x

The [c command is a synonym for mark. It does not require a blank or tab before the following letter.

(. , .) list countflags
Prints the specified lines in a more unambiguous way: tabs are printed as ‘Al’ and the end of each line ismarked with a trailing ‘3’. The current line is left at the last line printed.

map lhs rhs
The map command is used to define macros for use in visual mode. t should be a single character,or the sequence “#n”, for n a digit, referring to function key It. When this character or function key istyped in visual mode, it will be as though the corresponding rhs had been typed. On terminals withoutfunction keys, you can type “#n”. See section 6.9 of the “Introduction to Display Editing with Vi” formore details.

(.) mark x

Gives the specified line mark x, a single lower case letter. The x must be preceded by a blank or a tab.The addressing form “x’ then addresses this line. The current line is not affected by this command.

(. , .) move addr abbr. m
The move command repositions the specified lines to be after addr. The first of the moved lines
becomes the current line.

next abbr. n
The next file from the command line argument list is edited.

n!

The variant suppresses warnings about the modifications to the buffer not having been written out, dis-carding (irretrievably) any changes which may have been made.

It filelist
n +commandfilelist

The specified filelist is expanded and the resulting list replaces the current argument list; the first file inthe new list is then edited. If command is given (it must contain no spaces), then it is executed afterediting the first such file.

(. , .) number countflags abbr: # or nu
Prints each specified line preceded by its buffer line number. The current line is left at the last lineprinted.

ND-60.328.1P EN

USD: 17-10 ' Ex Reference Manual

(.) open flags abbr. o
(.) open /pat/flags

Enters inhaline editing open mode at each addressed line. If pat is given, then the cursor will be placed
initially at the beginning of the string matched by the pattern. To exit this mode use Q. See An
Introduction to Display Editing with Vi for more details.

preserve

The current editor buffer is saved as though the system had just crashed This command is for use only
in emergencies when a write command has resulted in an error and you don’t know how to save your
work. After a preserve you should seek help.

(. , .)print count abbr. p or P
Prints the specified lines with non-printing characters printed as control characters ‘Ax’; delete (octal
177) is represented as "\‘2'. The current line is left at the last line printed.

(.)put buffer abbr. pu
Puts back previously deleted or yanked lines. Normally used with delete to effect movement of lines,
or with yank to effect duplication of lines. If no buffer is specified, then the last deleted or yanked text
is restored.17 By using a named buffer, text may be restored that was saved there at any previous time.

quit abbr. q
Causes ex to terminate. No automatic write of the editor buffer to a file is performed. However, ex
issues a warning message if the file has changed since the last write command was issued, and does not
quit.18 Normally, you will wish to save your changes, and you should give a write command; if you
wish to discard them, use the q! command variant

q!

Quits from the editor, discarding changes to the buffer without complaint

(.) read file abbr: r
Places 3 copy of the text of the given file in the editing buffer after the specified line. if no file is given
the current file name is used. The current file name is not changed unless there is none in which case
file becomes the current name. The sensibility restrictions for the edit command apply here also. If the
file buffer is empty and there is no current name then ex treats this as an edit command.
Address ‘0’ is legal for this command and causes the file to be read at the beginning of the buffer. ,-,.
Statistics are given as for the edit command when the read successfully terminates. After a read the
current line is the last line read.19

(.) read lcommand

Reads the output of the command command into the buffer after the specified line. This is not a variant
form of the command, rather a read specifying a command rather than a filename; a blank or tab before
the ! is mandatory.

recoverfile

Recovers file from the system save area. Used after a accidental hangup of the phone or a system
crash20 or preserve command. Except when you use preserve you will be notified by mail when a file
is saved.

‘7 But no modifying commands may intervene between the delete or yank and the put, nor may lines be moved
bclween files without using a named buffer.

‘3 Ex will also issue a diagnostic if there an: more files in the argument list.
‘9 Within open and visual the current line is set to the first line read rather than the last.
2" line system saves a copy of the file you were editing only if you have made changes to the file.

ND—60.328.1P EN

Ex Reference Manual ‘
USD217-7

abbreviate word rhs abbr: ab
Add the named abbreviation to the current list. When in input mode in visual, if word is typed as acomplete word, it will be changed to rhs.

(.) append abbr: a
text

Reads the input text and places it after the specified line. After the command, ‘.’ addresses the last lineinput or the specified line if no lines were input. If address ‘0’ is given, text is placed at the beginningof the buffer.

a!
text

The variant flag to append toggles the setting for the autoindent option during the input of text.

args
The members of the argument list are printed, with the current argument delimited by T and ‘]’.

(. , .) change count abbr: c
text

Replaces the specified lines with the input text. The current line becomes the last line input; if no lineswere input it is left as for a delete.

c!
text

The variant toggles autoindent during the change.

(. , .)copy addrflags abbr: co
A copy of the specified lines is placed after addr, which may be ‘0’. The current line addresses thelast line of the copy. The command I is a synonym for copy.

(. , .)delete bufi'er count flags abbr: d
Removes the specified lines from the buffer. The line after the last line deleted becomes the current line;if the lines deleted were originally at the end, the new last line becomes the current line. If a namedbuffer is specified by giving a letter, then the specified lines are saved in that buffer, or appended to it ifan upper case letter is used.

editfile abbr: e
exfile

Used to begin an editing session on a new file. The editor first checks to see if the buffer has beenmodified since the last write command was issued. If it has been, a warning is issued and the commandis aborted. The command otherwise deletes the entire contents of the editor buffer, makes the named filethe current file and prints the new filename. After insuring that this file is sensible14 the editor reads thefile into its buffer.
If the read of the file completes without error, the number of lines and characters read is typed. If therewere any non-ASCII characters in the file they are stripped of their non-ASCII high bits, and any null char-acters in the file are discarded. If none of these errors occurred, the file is considered edited. If the lastline of the input file is missing the trailing newline character, it will be supplied and a complaint will be

“ ie, that it is not a binary file such as a directory, 3 block or character special file other than /dev/tly, a terminal, ora binary or excwtable file (as indicated by the first word).

ND-60.328.lP EN

USDzl7-8 ' Ex Reference Manual

issued. This command leaves the current line at the last line read.15

e! file

The variant form suppresses the complaint about modifications having been made and not written from
the editor buffer, thus discarding all changes which have been made before editing the new file.

e +n file

Causes the editor to begin at line It rather than at the last line; n may also be an editor command con-
taining no spaces, e.g.: “+/pat”.

file abbr. f

Prints the current file name, whether it has been ‘[Modified]’ since the last write command, whether it is
read only, the current line, the number of lines in the buffer, and the percentage of the way through the
buffer of the current line.16

file file

The current file name is changed tofile which is considered ‘[Not edited]’.

(l , $) global /pat/ cmds abbr: g ,

First marks each line among those specified which matches the given regular expression. Then the given
command list is executed with initially set to each marked line.
The command list consists of the remaining commands on the current input line and may continue to
multiple lines by ending all but the last such line with a ‘\’. If cmds (and possibly the trailing / delim-
iter) is omitted, each line matching pat is printed. Append, insert, and change commands and associ-
ated input are permitted; the terminating input may be omitted if it would be on the last line of the
command list. Open and visual commands are permitted in the command list and take input from the
terminal.

The global command itself may not appear in cmds. The undo command is also not permitted there, as
undo instead can be used to reverse the entire global command. The options autoprint and autoindent
are inhibited during a global, (and possibly the trailing / delimiter) and the value of the report option is
temporarily infinite, in deference to a report for the entire global. Finally, the context mark is set to
the value of ‘.’ before the global command begins and is not changed during a global command, except
perhaps by an open or visual within the global.

g! /pat/ cmds abbr. v
The variant form of global runs cmds at each line not matching pat. VVVVVVVV

(.)insert abbr". i
text

Places the given text before the specified line. The current line is left at the last line input; if there were
none input it is left at the line before the addressed line. This command differs from append only in the
placement of text

text

The variant toggles autoindent during the insert.

15 If executed from within open or visual, the current line is initially the first line ofthe file.
16 In the rare case that the current file is ‘[Not editedl‘ this is noted also; in this case you have to use the form w! to

write to the file, since the editor is not sure that a write will not destroy a file unrelated to the current contents of the
buffer.

ND-60.328.1P EN

Ex Reference Manual ‘ USD: 17-11

rewind abbr: new
The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

With no arguments, prints those options whose values have been changed from their defaults; withparameter all it prints all of the option values.
Giving an option name followed by a “1’ causes the current value of that option to be printed The ‘?’is unnecessary unless the option is Boolean valued. Boolean options are given values either by the form‘set option‘ to turn them on or ‘set nooption’ to turn them off; suing and numeric options are assignedvia the form ‘set option=value’.
More than one parameter may be given to set ; they are interpreted left-to—right.

shell abbr: sh
A new shell is created. When it terminates, editing resumes.

source file abbr: so
Reads and executes commands from the specified file. Source commands may be nested.

(. , .) substitute /pat/repl/ options count flags abbr: 5
On each specified line, the first instance of pattern par is replaced by replacement pattern repl. If theglobal indicator option character ‘g’ appears, then all instances are substituted; if the confirm indication
character ‘0’ appears, then before each substitution the line to be substituted is typed with the string to besubstituted marked with ‘T‘ characters. By typing an ‘y' one can cause the substitution to be performed,
any other input causes no change to take place. After a substitute the current line is the last line substi-
tilted.

Lines may be split by substituting new—line characters into them. The newline in repl must be escapedby preceding it with a ‘\’. Other metacharacters available in pat and repl are described below.

stop

Suspends the editor, returning control to the top level shell. If autowrite is set and there are unsavedchanges, a write is done first unless the form stop! is used. This commands is only available where
supported by the teletype driver and operating system.

(. , .) substitute options count flags abbr: s
If pot and repl are omitted, then the last substitution is repeated. This is a synonym for the 8; com—
mand.

(.,.)taddrflags
The I command is a synonym for copy.

ta tag

The focus of editing switches to the location of tag, switching to a different line in the current file whereit is defined, or if necessary to another file.21
The tags file is normally created by a program such as ctags, and consists of a number of lines withthree fields separated by blanks or tabs. The first field gives the name of the tag, the second the name ofthe file where the tag resides, and the third gives an addressing form which can be used by the editor tofind the tag; this field is usually a contextual scan using ‘/pat/' to be immune to minor changes in the

21 If you have modified the current file before giving a tag command, you must write it out; giving another tagcommand, specifying no tag will reuse the previous tag.

ND—60.328.1P EN

USD: 17-12 ‘ ~ ' Ex Reference Manual

file. Such scans are always performed as if nomagic was set ‘ """ "
The tag names in the tags file must be sorted alphabetically.

unabbreviate word abbr: una

Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that global com-
mands are considered a single command for the purpose of undo (as are open and visual.) Also, the
commands write and edit which interact with the file system cannot be undone. Undo is its own
inverse.

Undo always marks the previous value of the current line as After an undo the current line is
the first line restored or the line before the first line deleted if no lines were restored. For commands
with more global effect such as global and visual the current line regains it’s pre—command value after
an undo.

unmap Ihs

The macro expansion associated by map for [Its is removed.

(l,$)v/pat/cmds
A synonym for the global command variant g!, running the specified cmds on each line which does not
match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last changed

(.) visual type count flags abbr: vi
Enters visual mode at the specified line. Type is optional and may be ‘—’ , ‘T’ or ‘.’ as in the 2 com-
mand to specify the placement of the specified line on the screen. By default, if type is omitted, the
specified line is placed as the first on the screen. A count specifies an initial window size; the default is
the value of the option window. See the document An Introduction to Display Editing with Vi for more
details. To exit this mode, type Q.

visual file
visual +n file

From visual mode, this command is the same as edit.

(1 , $) writefile abbr: w
Writes changes made back to file, printing the number of lines and characters written. Normally file is
omitted and the text goes back where it came from. If afile is specified, then text will be written to that
file.22 If the file does not exist it is created The current file name is changed only if there is no current
file name; the current line is never changed.

If an error occurs while writing the current and edited file, the editor considers that there has been “No
write since last change” even if the buffer had not previously been modified.

(l , $) write>> file abbr: w>>
Writes the buffer contents at the end of an existing file.

22 The editor writes to a file only if it is the current file and is edited, if the file does not exist. or if the file is actually
a telctypc, Idev/tly, Idev/null. Otherwise, you must give the variant form w! to force the write.

NIB—60.328. 1? EN

Ex Reference Manual ‘ USD: 17-13

w! name

Overrides the checking of the normal write command, and will write to any file which the system per-
mits.

(l , $) W !command
Writes the specified lines into command. Note the difference between w! which overrides checks andw ! which writes to a command.

wq name
Like a write and then a quit command.

wq! name

The variant overrides checking on the sensibility of the write command, as w! does.

xit name

If any changm have been made and not written, writes the buffer out Then, in any case, quits.

(. , .)yank bufi‘er count abbr: ya
Places the specified lines in the named buffer, for later retrieval via put. If no buffer name is specified,
the lines go to a more volatile place; see the put command description.

(.+1) 1 count
Print the next count lines, default window.

(.) 2 type count
Prints a window of text with the specified line at the top. If type is ‘~’ the line is placed at the bottom; a
‘.’ causes the line to be placed in the center.23 A count gives the number of lines to be displayed rather
than double the number specified by the scroll option. On a CRT the screen is cleared before display
begins unless a count which is less than the screen size is given. The current line is left at the last line
printed.

! command

The remainder of the line after the ‘1’ character is sent to a shell to be executed. Within the text of com
mand the characters ‘%’ and ‘#’ are expanded as in filenames and the character ‘l’ is replaced with the
text of the previous command. Thus, in particular, ‘I!’ repeats the last such shell escape. If any such
expansion is performed, the expanded line will be echoed. The current line is unchanged by this com-
mand.

If there has been “[No write]" of the buffer contents since the last change to the editing buffer, then a
diagnostic will be printed before the command is executed as a warning. A single ‘!’ is printed when the
command completes.

(addr,addr)!command
Takes the specified address range and supplies it as standard input to command; the resulting output then
replaces the input lines.

($)=
Prints the line number of the addressed line. The current line is unchanged.

7-3 Forms ‘z:' and 'zT' also exist; ‘7;' places the current line in the center, surrounds it with lines of '-—' charactersand leaves the current line at this line. The form ‘zT' prints the window before ‘z—' would. The characters '+', 'T' and
‘—' may be repeated for cumulative effecL On some v2 editors, no type may be given.

ND-60.328.1P EN

USDzl7—14 - ' ’ Ex Reference Manual

(.,.)>countflags
(.,.)<countflags

Perform intelligent shiftn on the specified lines; < shifts left and > shift right. The quantity of shift is
determined by the shiftwidth option and the repetition of the specification character. Only white space
(blanks and tabs) is shifted; no non-white characters are discarded in a left-shift. The current line
becomes the last line which changed due to the shifting.

"D

An end-of-file from a terminal input scrolls through the file. The scroll option specifies the size of the
scroll, normally a half screen of text

(.+1,.+1)
(.+1,.+1)l

An address alone causes the addressed lines to be printed. A blank line prints the next line in the tile.

(. , .) & options countflags

Repeats the previous substitute command.

(. , .) ~ options count flags
Replaces the previous regular expression with the previous replacement pattern from a substitution.

8. REGULAR EXPRESSIONS AND SUBSTITUTE REPLACEMENT PATTERNS

8.1. Regular expressions
A regular expression specifies a set of strings of characters. A member of this set of strings is said to be
matched by the regular expression. Ex remembers two previous regular expressions: the previous regular
expression used in a substitute command and the previous regular expression used elsewhere (referred to as the
previous scanning regular expression.) The previous regular expression can always be referred to by a null re,
eg. ‘//’ or ”IT.

8.2. Magic and nomagic
The regular expressions allowed by ex are constructed in one of two ways depending on the setting of the
magic option. The ex and vi default setting of magic gives quick access to a powerful set of regular expres-
sion metacharacters. The disadvantage of magic is that the user must remember that these metacharacters are
magic and precede them with the character ‘\’ to use them as “ordinary” characters. With nomagic, the
default for edit, regular expressions are much simpler, there being only two metacharacters. The power of the
other metachamcters is still available by preceding the (now) ordinary character with a ‘\’. Note that ‘\’ is thus
always a metacharacter.
The remainder of the discussion of regular expressions assumes that that the setting of this option is magic.24

8.3. Basic regular expression summary
The following basic constructs are used to construct magic mode regular expressions.
char An ordinary character matches itself. The characters ‘T’ at the beginning of a line, ‘$’ at the

end of line, ‘*’ as any character other than the first, ‘\’, ‘[’, and ‘~’ are not ordinary char-
acters and must be escaped (preceded) by ‘\’ to be treated as such.
At the beginning of a pattern forces the match to succeed only at the beginning of a line.

$ At the end of a regular expression forces the match to succeed only at the end of the line.

7" To discern what is true with nomagt'c it suffices to remember that the only special characters in this case will be
‘T' at the beginning of a regular expression, ‘3' at the end of a regular expression, and '\'. With nomagic the characters
‘~‘ and ‘&‘ also lose their special meanings related to the replacement pattern of a substitute.

ND-60.328.1P EN

Ex Reference Manual . ' USD: 17-15

. Matches any single character except the new-line character.
\< Forces the match to occur only at the beginning of a “variable" or “word”; that is, either atthe beginning of a line, or just before a letter, digit, or underline and after a character not

one of these.
\> Similar to ‘\<’, but matching the end of a “variable” or “word”, i.e. either the end of the

line or before character which is neither a letter, nor a digit, nor the underline character.
[string] Matches any (single) character in the class defined by string. Most characters in stringdefine themselves. A pair of characters separated by ‘—’ in string defines the set of charac—

ters collating between the specified lower and upper bounds, thus ‘[a—z]’ as a regular expres—
sion matches any (single) lower—case letter. If the first character of string is an ‘T' then the
construct matches those characters which it otherwise would not; thus ‘[Ta—z]’ matches any-
thing but a lower—case letter (and of course a newline). To place any of the characters ‘T’,
‘[’, or ‘J in string you must escape them with a preceding ‘\’.

8.4. Combining regular expression primitives
The concatenation of two regular expressions matches the leftmost and then longest string which can bedivided with the first piece matching the first regular expression and the second piece matching the second.Any of the (single character matching) regular expressions mentioned above may be followed by the character‘*’ to form a regular expression which matches any number of adjacent occurrences (including 0) of charactersmatched by the regular expression it follows.
The character ‘~’ may be used in a regular expression, and matches the text which defined the replacementpart of the last substitute command. A regular expression may be enclosed between the sequences ‘\(’ and ‘\)’with side effects in the substitute replacement patterns.

8.5. Substitute replacement patterns
The basic memcharacters for the replacement pattern are ‘&’ and ‘~’; these are given as ‘\&’ and ‘\~’ whennomagic is set. Each instance of ‘&’ is replaced by the characters which the regular expression matched. Themetacharacter ‘~’ stands, in the replacement pattern, for the defining text of the previous replacement pattern.
Other metasequences possible in the replacement pattern are always introduced by the escaping character ‘\’.The sequence ‘\n’ is replaced by the text matched by the n-th regular subexpression enclosed between ‘\(' and‘\)’.25 The sequences ‘\u’ and ‘\1’ cause the immediately following character in the replacement to be convertedto upper— or lower—case respectively if this character is a letter. The sequences ‘\U’ and ‘\L’ turn such conver-sion on, either until ‘\E’ or “e’ is encountered, or until the end of the replacement pattern.

9. OPTION DESCRIPTIONS

autoiudent, ai default noai
Can be used to ease the preparation of structured program text At the beginning of each append,
change or insert command or when a new line is opened or created by an append, change, insert, orsubstitute operation within open or visual mode, ex looks at the line ben appended after, the first linechanged or the line inserted before and calculates the amount of white space at the start of the line. It
then aligns the cursor at the level of indentation so determined.
If the user then types lines of text in, they will continue to be justified at the displayed indenting level.
If more white space is typed at the beginning of a line, the following line will start aligned with the first
non-white character of the previous line. To back the cursor up to the preceding tab stop one can hit
"D. The tab stops going backwards are defined at multiples of the shtftwidth option. You cannot back—
space over the indent, except by sending an end—of-file with a "D.
Specially processed in this mode is a line with no characters added to it, which trims into a completelyblank line (the white space provided for the autoindent is discarded.) Also specially processed in this
mode are lines beginning with an ‘T’ and immediately followed by a "D. This causes the input to be

75 When nested, parenthesized subcxpressions are present, It is determined by counting occurrences of '\(' starting
from the 1c.

ND-60.328.1P EN

USDzl7-l6 ' - ‘ ' Ex Reference Manual

repositioned at the beginning of the line, but retaining the previous indent for the next line. Similarly, a
‘0’ followed by a "D repositions at the beginning but without retaining the previous indent.
Autoindent doesn't happen in global commands or when the input is not a terminal.

autoprint, ap default: ap
Causes the current line to be printed after each delete, copy, join, move, substitute, t, undo or shift
command. This has the same effect as supplying a trailing ‘p’ to each such command. Autoprt‘nt is
suppressed in globals, and only applies to the last of many commands on a line.

autowrite, aw default: noaw
Causes the contents of the buffer to be written to the current file if you have modified it and give a next.
rewind, stop, tag, or ! command, or a "T (switch files) or "1 (tag goto) command in visual. Note, that
the edit and ex commands do not autowrite. in each case, there is an equivalent way of switching when
autowrite is set to avoid the autowrite (edit for next, rewind! for .I rewind . stop! for stop, tag! for
tag , shell for l , and :e # and a :ta! command from within visual).

beautify, bf default: nobeautify
Causes all control characters except tab, newline and fomi—feed to be discarded from the input. A com-
plaint is registered the first time a backspace character is discarded. Beautify does not apply to com-
mand input.

directory, dir default: dir=/tmp
Specifies the directory in which ex places its buffer file. If this directory in not writable, then the editor
will exit abruptly when it fails to be able to create its buffer there.

edcompatible default: noedcompatible
Causes the presence of absence of g and c suffixes on substitute commands to be remembered, and to be
toggled by repeating the suffices. The suffix r makes the substitution be as in the ~ command, instead
of like a. 26

errorbells, eb default: noeb
Error messages are preceded by a bell.27 If possible the editor always places the error message in a stan-
dout mode of the terminal (such as inverse video) instead of ringing the bell.

hardtabs, ht default: ht=8
Gives the boundaries on which terminal hardware tabs are set (or on which the system expands tabs).

ignorecase, ic default; noic
All upper case characters in the text are mapped to lower case in regular expression matching. In addi-
tion, all upper case characters in regular expressions are mapped to lower case except in character class
specifications.

lisp default: nolisp
Autoindent indents appropriately for lisp code, and the () { } [I and]] commands in open and visual are
modified to have meaning for lisp.

list default: nolist
All printed lines will be displayed (more) unambiguously, showing tabs and end—of—lines as in the list
command.

26 Version 3 only.
27 Bell ringing in open and visual on cntors is not suppressed by selling noeb.

ND-60.328.1P EN

Ex Reference Manual . ' ' USDzl7-l7

magic default magic for ex and vi”
If nomagic is set, the number of regular expression metacharacters is greatly reduced, with only ‘T’ and‘$’ having special effects. In addition the metacharacters ‘~’ and ‘&’ of the replacement pattern aretreated as normal characters. All the normal metacharacters may be made magic when nomagic is setby preceding them with a ‘\’.

mesg default mesg
Causes write permission to be turned off to the terminal while you are in visual mode, if nomesg isset.”

number, nu default; nonumber
Causes all output lines to be printed with their line numbers. In addition each input line will beprompted for by supplying the line number it will have.

open default: open
If noopen, the commands open and visual are not permitted. This is set for edit to prevent confusionresulting from accidental entry to open or visual mode.

optimize, opt default: optimize
Throughput of text is expedited by setting the terminal to not do automatic carriage returns when print—ing more than one (logical) line of output, greatly speeding output on terminals without addressable cur-sors when text with leading white space is printed.

paragraphs, para default para=IPLPPPQPP LIbp
Specifies the paragraphs for the { and } operations in open and visual. The pairs of characters in theoption’s value are the names of the macros which start paragraphs.

prompt default: prompt
Command mode input is prompted for with a ‘:’.

redraw default: noredraw
The editor simulates (using great amounts of output), an intelligent terminal on a dumb terminal (e.g.during insertions in visual the characters to the right of the cursor position are refreshed as each inputcharacter is typed.) Useful only at very high speed.

remap default: remap
If on, macros are repeatedly tried until they are unchanged.30 For example, if 0 is mapped to O, and 0 ismapped to I, then if remap is set, 0 will map to I, but if noremap is set, it will map to 0.

report default: report==531
Specifies a threshold for feedback from commands. Any command which modifies more than thespecified number of lines will provide feedback as to the scope of its changes. For commands such asglobal, open , undo, and visual which have potentially more far reaching scope, the net change in thenumber of lines in the buffer is presented at the end of the command, subject to this same threshold.Thus notification is suppressed during a global command on the individual commands performed.

23 Nomagic for edit.
29 Version 3 only.
30 Version 3 only.
3‘ 2 for edil.

ND-60.328.1P EN

USD: 17-18 ' ~ Ex Reference Manual

scroll default: scroll=‘/2 window
Determines the number of logical lines scrolled when an end-of.file is received from a terminal input in
command mode, and the number of lines printed by a command mode 2 command (double the value of
scroll).

sections default: sections=SHNHH HU
Specifies the section macros for the [[and]] operations in open and visual. The pairs of characters in
the options’s value are the names of the macros which start paragraphs.

shell, sh default: sh=/bin/sh
Gives the path name of the shell forked for the shell escape command ‘!’, and by the shell command.
The default is taken from SHELL in the environment, if present.

shiftwidth, sw default: sw=8
Gives the width a software tab stop, used in reverse tabbing with "D when using autoindent to append
text, and by the shift commands.

showmatch, sm default: nosm
ln open and visual mode, when a) or } is typed, move the cursor to the matching (or { for one second
if this matching character is on the screen. Extremely useful with lisp.

slowopen, slow terminal dependent
Affects the display algorithm used in visual mode, holding off display updating during input of new text
to improve throughput when the terminal in use is both slow and unintelligent. See An Introduction to
Display Editing with Vi for more details.

tabstop, ts default: ts=8
The editor expands tabs in the input file to be on tabstop boundaries for the purposes of display.

taglength, tl default: tl=0
Tags are not significant beyond this many characters. A value of zero (the default) means that all char-
acters are significant.

tags default: tags=tags /usr/lib/tags
A path of files to be used as tag files for the tag command.32 A requested tag is searched for in the
specified files, sequentially. By default (even in version 2) files called tags are searched for in the
current directory and in /usr/lib (a master file for the entire system.)

term from environment TERM
The terminal type of the output device.

terse default: noterse
Shorter error diagnostics are produced for the experienced user.

warn default: warn
Warn if there has been ‘[No write since last change]’ before a ‘l’ command escape.

window default: window=speed dependent
The number of lines in a text window in the visual command. The default is 8 at slow speeds (600 baud
or less), 16 at medium speed (1200 band), and the full screen (minus one line) at higher speeds.

32 Version 3 only.

ND-60.328.1P EN

Ex Reference Manual ‘ USD117-19

W300, w1200, w9600
These are not true options but set window only if the speed is slow (300), medium (1200), or high(9600), respectively. They are suitable for an 13m and make it easy to change the 8/16/full screenrule.

wrapscan, ws default: ws
Searches using the regular expressions in addressing will wrap around past the end of the file.

wrapmargin, wm default: wm=0
Defines a margin for automatic wrapover of text during input in open and visual modes. See An Intro-duction to Text Editing with Vi for details.

writeany, wa default nowa
Inhibit the checks normally made before write commands, allowing a write to any file which the systemprotection mechanism will allow.

10. LIMITATIONS
Editor limits that the user is likely to encounter are as follows: 1024 characters per line, 256 characters perglobal command list, 128 characters per file name, 128 characters in the previous inserted and deleted text inopen or visual, 100 characters in a shell escape command, 63 characters in a string valued option, and 30characters in a tag name, and a limit of 250000 lines in the file is silently enforced.
The visual implementation limits the number of macros defined with map to 32, and the total number of char-acters in macros to be less than 512.

ACKNOWLEDGEMENTS
Chuck Haley contributed greatly to the early development of ex. Bruce Englar encouraged the redesign whichled to ex version 1. Bill Joy wrote versions 1 and 2.0 through 2.7, and created the framework that users see inthe present editor. Mark Horton added macros and other features and made the editor work on a large numberof terminals and UNIX systems.

ND-60.328.1P EN

USDzl7—20 ‘ - ' Ex Reference Manual

Ex changes -— Version 3.1 to 3.5

This update describes the new features and changes which have been made in converting from version 3.1 to
3.5 of ex. Each change is marked with the first version where it appeared.

UPDATE TO "Ex Reference Manual"

Command line options
3.4 A new command called view has been created. View is just like vt' but it sets readonly.
3.4 The encryption code from the v7 editor is now part of ex. You can invoke ex with the -x option and it

will ask for a key, as ed. The ed 2: command (to enter encryption mode from within the editor) is not
available. This feature may not be available in all instances of ex due to memory limitations.

Commands

3.4 Provisions to handle the new process stopping features of the Berkeley 'ITY driver have been added. A
new command, stop, takes you out of the editor cleanly and efficiently, returning you to the shell.
Resuming the editor puts you back in command or visual mode, as appropriate. If autowrite is set and
there are outstanding changes, a write is done first unless you say “stopl”.

3.4 A

:vi <file>

command from visual mode is now treated the same as a
:edit <file> or :ex <file>

command. The meaning of the vi command from ex command mode is not affected.
3.3 A new command mode command xi: (abbreviated x) has been added. This is the same as wq but will

not bother to write if there have been no changes to the file.

Options
3.4 A read only mode now lets you guarantee you won’t clobber your file by accident You can set the

on/off option readonly (m), and writes will fail unless you use an ! after the write. Commands such as
x, 22, the autowrite option, and in general anything that writes is affected. This option is turned on if
you invoke ex with the ~R flag.

3.4 The wrapmargin option is now usable. The way it works has been completely revamped. Now if you
go past the margin (even in the middle of a word) the entire word is erased and rewritten on the next
line. This changes the semantics of the number given to wrapmargin. 0 still means off. Any other
number is still a distance from the right edge of the screen, but this location is now the right edge of the
area where wraps can take place, instead of the left edge. Wrapmargin now behaves much like
fill/nojustify mode in nrofi‘.

3.3 The options W300, w1200, and w9600 can be set. They are synonyms for window, but only apply at
300, 1200, or 9600 baud, respectively. Thus you can specify you want a 12 line window at 300 baud
and a 23 line window at l200 baud in your EXINIT with

2.9% w300=12 w1200=23

3.3 The new option timeout (default on) causes macros to time out after one second. Turn it off and they
will wait forever. This is useful if you want multi character macros, but if your terminal sends escape
sequences for arrow keys, it will be necessary to hit escape twice to get a beep.

3.3 The new option remap (default on) causes the editor to attempt to map the result of a macro mapping
again until the mapping fails. This makes it possible, say, to map q to # and #l to something else and
get ql mapped to something else. Turning it off makes it possible to map AL to l and map AR to AL
without having "R map to l.

ND-60.328.1P EN

ExReferenceManual ' ’ USD:17—21

3.3 The new (string) valued option tags allows you to specify a list of tag files, similar to the “path” vari-
able of csh. The files are separated by spaces (which are entered preceded by a backslash) and are
searched left to right. The default value is “tags /usr/lib/tags", which has the same effect as before. it
is recommended that “tags” always be the first entry. On Ernie CoVax, /usr/lib/tags contains entries for
the system defined library procedures from section 3 of the manual.

Environment enquiries
3.4 The editor now adopts the convention that a null string in the environment is the same as not being set

This applies to TERM, TERMCAP, and EXINIT.

Vi TUTORIAL UPDATE

Deleted features
3.3 The “q” command from visual no longer works at all. You must use “Q” to get to ex command mode.

The “q” command was deleted because of user complaints about hitting it by accident too often.
3.5 The provisions for changing the window size with a numeric prefix argument to certain visual commands

have been deleted The correct way to change the window size is to use the 2 command, for example
25<cr> to change the window to 5 lines.

3.3 The option "mapinput" is dead. It has been replaced by a much more powerful mechanism: “:mapl”.

Change in default option settings
3.3 The default window sizes have been changed. At 300 baud the window is now 8 lines (it was 1/2 the

screen size). At 1200 baud the window is now 16 lines (it was 2/3 the screen size, which was usually
also 16 for a typical 24 line CRT). At 9600 baud the window is still the full screen size. Any baud rate
less than 1200 behaves like 300, any over 1200 like 9600. This change makes vi more usable on a large
screen at slow speeds.

Vi commands

3.3 The command “22” from vi is the same as “:x<cr>”. This is the recommended way to leave the edi-
tor. Z must be typed twice to avoid hitting it accidently.

3.4 The command AZ is the same as “:stop<cr>”. Note that if you have an arrow key that sends AZ the
stop function will take priority over the arrow function. If you have your “susp” character set to some-
thing besides AZ, that key will be honored as well.

3.3 It is now possible from visual to string several search expressions together separated by semicolons the
same as command mode. For example, you can say

/foo/;/bar

from visual and it will move to the first “bar” after the next “foo”. This also works within one line.
3.3 "R is now the same as "L on terminals where the right arrow key sends AL (This includes the Televideo

912/920 and the ADM 31 terminals.)
3.4 The visual page motion commands "F and AB now treat any preceding counts as number of pages to

move, instead of changes to the window size. That is, 24F moves forward 2 pages.

Macros

3.3 The “mapinput” mechanism of version 3.1 has been replaced by a more powerful mechanism. An “I”
can follow the word “map” in the map command. Map!’ed macros only apply during input mode,
while map’ed macros only apply during command mode. Using “map” or “map!" by itself produces
a listing of macros in the corresponding mode.

3.4 A word abbreviation mode is now available. You can define abbreviations with the abbreviate com—
mand

ND-60.328.1P EN

USD:.l7-22 ' - ’ ' Ex Reference Manual

:abbr foo find outer otter ,,,,,,,, ,

which maps “foo" to “find outer otter". Abbreviations can be turned off with the unabbreviate com-
mand. The syntax of these commands is identical to the map and unmap commands, except that the !
forms do not exist. Abbreviations are considered when in visual input mode only. and only affect whole
words typed in, using the conservative definition. (Thus “foobar” will not be mapped as it would using
“map!”) Abbreviate and unabbreviate can be abbreviated to “a " and “una”, respectively.

ND-60.328. lP EN

SED — A NonlnteractiveText Editor USD:18—l

SED — A Non-interactive Text Editor

Lee E. McMahon

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-interactive context editor that runs on the UNIXT operating system. Sed is
designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated

to be comfortably typed in interactive mode.
3) To perform multiple ‘global’ editing functions efficiently in one pass through the

input.
This memorandum constitutes a manual for users of sed.

T UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD:.18—2 ’ - ' SED — A Non«Intcractive Text Editor

ND-60.328. 1P EN

SED — A Non-Interactive Text Editor USDzl8-3

Introduction

Sed is a non-interactive context editor designed to be especially useful in three cases:
1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to be comfortably

typed in interactive mode;
3) To perform multiple ‘global‘ editing functions efficiently in one pass through the input

Since only a few lines of the input reside in core at one time, and no temporary files are used, the effective sizeof file that can be edited is limited only by the requirement that the input and output fit simultaneously intoavailable secondary storage.
Complicated editing scripts can be created separately and given to red as a command file. For complex edits,this saves considerable typing, and its attendant errors. Sed running from a command file is much moreefficient than any interactive editor known to the author, even if that editor can be driven by a pro-writtenscript

The principal loss of functions compared to an interactive editor are lack of relative addressing (because of theline-at—a—time operation), and lack of immediate verification that a command has done what was intended.
Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interactive and non~
interactive operation, considerable changes have been made between ed and red; even confirmed users of ed
will frequently be surprised (and probably chagrined), if they rashly use sed without reading Sections 2 and 3
of this document. The most striking family resemblance between the two editors is in the class of patterns(‘regular expressions’) they recognize; the code for matching patterns is copied almost verbatim from the code
for ed, and the description of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer’s Manual [1]. (Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation
Sed by default copies the standard input to the standard output, perhaps performing one or more editing com-mands on each line before writing it to the output. This behavior may be modified by flags on the commandline; see Section 1.1 below.
The general format of an editing command is:

[address] ,addressZ] [function] [arguments]
One or both addresses may be omitted; the format of addresses is given in Section 2. Any number of blanks
or tabs may separate the addresses from the function. The function must be present; the available commandsare discussed in Section 3. The arguments may be required or optional, according to which function is given;again, they are discussed in Section 3 under each individual function.
Tab characters and spaces at the beginning of lines are ignored.

1.]. Command-line Flags
Three flags are recognized on the command line:

-n: tells sed not to copy all lines, but only those specified by p functions or p flags after 5 functions
(see Section 3.3);

-e: tells sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing commands, one

to a line.

1.2. Order of Application of Editing Commands
Before any editing is done (in fact, before any input file is even opened), all the editing commands are com-
piled into a form which will be moderately efficient during the execution phase (when the commands are actu-
ally applied to lines of the input file). The commands are compiled in the order in which they are encountered;
this is generally the order in which they will be attempted at execution time. The commands are applied one at
a time; the input to each command is the output of all preceding commands.
The default linear order of application of editing commands can be changed by the fiow—of—control commands,
1 and b (see Section 3). Even when the order of application is changed by these commands, it is still true thatthe input line to any command is the output of any previously applied command.

ND-60.328.1P EN

USD:.184 ‘ ' ' SED — A Non-Interactive Text Editor

1.3. Pattern-space
The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one line of the input
text, but more than one line can be read into the pattern space by using the N command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all assume the fol-
lowing input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:
The command

2‘1
will quit after copying the first two lines of the input The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing
Lines in the input file(s) to which editing commands are to be applied can be selected by addresses. Addresses
may be either line numbers or context addresses.
The application of a group of commands can be controlled by one address (or addresspair) by grouping the
commands with curly braces (‘{)‘XSec. 3.6.).

2.1. Line-number Addresses
A line number is a decimal integer. As each line is read from the input, a line-number counter is incremented;
a line-number address matches (selects) the input line which causes the internal counter to equal the address
line-number. The counter runs cumulatively through multiple input files; it is not reset when a new input file
is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern (‘regular expression’) enclosed in slashes (‘/’). The regular expressions recog-
nized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression, and matches that
character.

2) A circumflex ‘A’ at the beginning of a regular expression matches the null character at the begin—
ning of a line.

3) A dollar-sign ‘$’ at the end of a regular expression matches the null character at the end of a line.
4) The characters ‘\n’ match an imbedded newline character, but not the newline at the end of the pat-

tern space.
5) A period ‘.’ matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk ‘*’ matches any number (including 0) of adjacent

occurrences of the regular expression it follows.
7) A string of characters in square brackets ‘[]’ matches any character in the string, and no others. If,

however, the first character of the string is circumflex ‘A’, the regular expression matches any
character except the characters in the string and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the concatenation of

ND-60.328.1P EN

SED — A Non-Interactive Text Editor USD218-5

strings matched by the components of the regular expression.
9) A regular expression between the sequences ‘\(’ and ‘\)' is identical in effect to the unadorned regu-lar expression, but has side-effects which are described under the 5 command below andspecification 10) immediately below.
10) The expression ’\d’ means the same string of characters matched by an expression enclosed in‘\(’ and ‘\)’ earlier in the same pattern. Here (1 is a single digit; the string specified is thatbeginning with the d th occurrence of ‘\(’ counting from the left. For example, the expression‘A\(.*\)\l ’ matches a line beginning with two repeated occurrences of the same string.
11) The null regular expression standing alone (e.g., ‘//’) is equivalent to the last regular expression

compiled.
To use one of the special characters (A $. * I] \/) as a literal (to match an occurrence of itself in the input),precede the special chamcter by a backslash ‘\’.
For a context address to ‘match’ the input requires that the whole pattern within the address match some por-tion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, l, or 2 addresses. Under each command the maximum number
of allowed addresses is given. For a command to have more addresses than the maximum allowed is con-sidered an error.
If a command has no addresses, it is applied to every line in the input.
If a command has one address, it is applied to all lines which match that address.
If a command has two addresses, it is applied to the first line which matches the first address, and to all subse-quent lines until (and including) the first subsequent line which matches the second address. Then an attempt
is made on subsequent lines to again match the first address, and the process is repeated.
Two addresses are separated by a comma.

Examples:

/an/ matches lines 1, 3, 4 in our sample text
/an.*an/ matches line 1
/’\an/ matches no lines
/./ matches all lines
N matches line 5
/r*an/ matches lines 1,3, 4 (number 2 zero!)
Nan\).*\l/ matches line 1

3. FUNCTIONS
All functions are named by a single character. In the following summary, the maximum number of allowable
addresses is given enclosed in parentheses, then the single character function name, possible argumentsenclosed in angles (< >), an expanded English translation of the single-character name, and finally a descrip-
tion of what each function does. The angles around the arguments are not part of the argument, and should
not be typed in actual editing commands.

3.1. Whole-line Oriented Functions
(2)d —- delete lines

The d function deletes from the file (does not write to the output) all those lines matched by
its address(es).

It also has the side effect that no further commands are attempted on the corpse of a deleted
line; as soon as the d function is executed, a new line is read from the input, and the list of
editing commands is re—started from the beginning on the new line.

(2)n -- next line

The n function reads the next line from the input, replacing the current line. The current line

ND-60.328.1P EN

USD218-6 - SED — A Non-Interactive Text Editor

is written to the output if it should be. The list of editing commands is continued following
the I: command

(l)a\
<text> -~ append lines

The a function causes the argument <text> to be written to the output after the line matched
by its address. The a command is inherently multi-line; a must appear at the end of a line,
and <text> may contain any number of lines. To preserve the one—command-to-a-line fiction,
the interior newlines must be hidden by a backslash character (‘\’) immediately preceding the
newline. The <text> argument is terminated by the first unhidden newline (the first one not
immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the output regardless
of what later commands do to the line which triggered it. The triggering line may be deleted
entirely; <text> will still be written to the output.

The <text> is not scanned for address matches, and ‘no editing commands are attempted on it.
It does not cause any change in the line-number counter.

(1)1\
<text> -- insert lines

The 1' function behaves identically to the a function, except that <text> is written to the out-
put before the matched line. All other comments about the a function apply to the i func—
tion as well.

(2)c\
<text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them with the lines
in <text>. Like a and i, c must be followed by a newline hidden by a backslash; and inte—
rior new lines in <text> must be hidden by backslashes.

The c command may have two addresses, and therefore select a range of lines. If it does, all
the lines in the range are deleted, but only one copy of <text> is written to the output, not
one copy per line deleted. As with a and i, <text> is not scanned for address matches, and
no editing commands are attempted on it It does not change the line—number counter.
After a line has been deleted by a c function, no further commands are attempted on the
corpse.

If text is appended after a line by a or r functions, and the line is subsequently changed, the
text inserted by the c function will be placed before the text of the a or r functions. (The r
function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disappear, as always in
sed commands. To get leading blanks and tabs into the output, precede the first desired blank or tab by a
backslash; the backslash will not appear in the output

Example:

The list of editing commands:
n
a\
XXXX
(1

applied to our standard input, produces:
In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

ND-60.328.1P EN

SED — A Non-Interactive Text'Editor USDzl8—7

In this particular case, the same effect would be produced by either of the two following command liSts:
n n
1\ c\
XXXX XXXX
d

3.2. Substitute Function
One very important function changes parts of lines selected by a context search within the line.

(2)s<pattem><replacement><flags> -- substitute
The s function replaces part of a line (selected by <pattem>) with <replacement>. It can
best be read:

Substitute for <pattem>, <replacement>
The <pattem> argument contains a pattern, exactly like the patterns in addresses (see 2.2
above). The only difference between <pattern> and a context address is that the context
address must be delimited by slash (7’) characters; <pat1ern> may be delimited by any char-
acter other than space or newline.

By default, only the first string matched by <pattern> is replaced, but see the g flag below.
The <replacement> argument begins immediately after the second delimiting character of
<pattem>, and must be followed immediately by another instance of the delimiting character.
(Thus there are exactly three instances of the delimiting character.)
The <replacement> is not a pattern, and the characters which are special in patterns do not
have special meaning in <replacement>. Instead, other characters are special:

& is replaced by the suing matched by <pattem>
\d (where d is a single digit) is replaced by the dth substring matched by parts of

<pattem> enclosed in ‘\(’ and ‘\)'. If nested substrings occur in <pattem>,
the dth is determined by counting opening delimiters (‘\(’).

As in patterns, special characters may be made literal by preceding them
with backslash (‘\’).

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of <pattern> in the
line. After a successful substitution, the scan for the next instance of <pat-
tem> begins just after the end of the inserted characters; characters put into
the line from <replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag causes the line
to be written to the output if and only if a substitution was actually made
by the s function. Notice that if several 5 functions, each followed by a p
flag, successfully substitute in the same input line, multiple copies of the
line will be written to the output; one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was done. The w
flag causes lines which are actually substituted by the 5 function to be writ-
ten to a file named by <filename>. If <filename> exists before red is run,
it is overwritten; if not, it is created.

A single space must separate w and <filename>.
The possibilities of multiple, somewhat different copies of one input line
being written are the same as for p.
A maximum of 10 different file names may be mentioned after w flags and
w functions (see below), combined.

ND—60.328.1P EN

USD:18-8 ' - ‘ SED ‘ A Non-Interactive Text Editor

Examples:

The following command, applied to our standard input,
s/to/by/w changes

produces, on the standard output:
In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea

and, on the file ‘changes’:
Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command'

S/[.,;?2]/*P&*/gp
produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:
/X/s/an/AN/p

produces (assuming nocopy mode):
In XANadu did Kubhla Khan

and the command:

/X/s/an/AN/gp
produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2)p -- print
The print function writes the addressed lines to the standard output file. They are written at
the time the p function is encountered, regardless of what succeeding editing commands may
do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by <filename>. If the file pre
viously existed, it is overwritten; if not, it is created. The lines are written exactly as they
exist when the write function is encountered for each line, regardless of what subsequent
editing commands may do to them.

Exactly one space must separate the w and <filename>.
A maximum of ten different files may be mentioned in write functions and w flags after 5
functions, combined.

(1)r <filename> -- read the contents of a file

The read function reads the contents of <filename>, and appends them after the line matched
by the address. The file is read and appended regardless of what subsequent editing com-
mands do to the line which matched its address. If r and 0 functions are executed on the
same line, the text from the a functions and the r functions is written to the output in the
order that the functions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by a r function

ND~60.328.1P EN

SED
- A Non-Interactive'Text Editor USD;13_9

cannot be opened, it is considered a null file, not an error, and no diagnostic is given.
NOTE: Since there is a limit to the number of files that can be opened simultaneously, care should be takenthat no more than ten files be mentioned in w functions or flags; that number is reduced by one if any r func—tions are present. (Only one read file is open at one time.)

Examp

Assume that the file ‘notel’ has the following contents:
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson and most
eminent successor of Genghiz (Chingiz) Khan, and founder of the Mongol dynasty in China.

Then the following command:
[Kubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson and most
eminent successor of Genghiz (Chingiz) Khan, and founder of the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions
Three functions, all spelled with capital letters, deal specially with pattern spaces containing imbedded new»
lines; they are intended principally to provide pattern matches across lines in the input.

(2)N - Next line

The next input line is appended to the current line in the pattern space; the two input lines
are separated by an imbedded newline. Pattern matches may extend across the imbedded
newline(s).

(2)D
- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern space. If the pat—
tern space becomes empty (the only newline was the terminal newline), read another line
from the input. In any case, begin the list of editing commands again from its beginning.

(2)? -- Print first part of the pattern space
Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower—case counterparts if there are no imbedded newlines in the
pattern space.

3.5. Hold and Get Functions
Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (destroying the pre-
vious contents of the hold area).

(2)H -— Hold pattern space

The H function appends the contents of the pattern space to the contents of the hold area; the
former and new contents are separated by a newline.

(2)g -— get contents of hold area

The g function copies the contents of the hold area into the pattern space (destroying the pre-
vious contents of the pattern space).

ND—60.328.1P EN

USDzl8-10 SED — A Non-Interactive Text Editor

(2)G —- Get contents of hold area

The G function appends the contents of the hold area to the contents of the pattern space; the
former and new contents are separated by a newline.

(2)x -— exchange

Exampie

The commands

1h
13/ did*//
1x
G
S/W :/

The exchange command interchanges the contents of the pattern space and the hold area.

applied to our standard example, produce:
In Xanadu did Kubla Khan :ln Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions
These functions do no editing on the input lines, but control the application of functions to the lines selected
by the address part.

(2)! -- Don’t

The Don't command causes the next command (written on the same line), to be applied to
all and only those input lines not selected by the adress part

(2){ —- Grouping

The grouping command ‘{’ causes the next set of commands to be applied (or not applied) as
a block to the input lines selected by the addresses of the grouping command The first of
the commands under control of the grouping may appear on the same line as the ‘ {' or on the
next line.
The group of commands is terminated by a matching ‘}’ standing on a line by itself.
Groups can be nested.

(0):<label> —- place a label

The label function marks a place in the list of editing commands which may be referred to by
b and 1 functions. The <label> may be any sequence of eight or fewer characters; if two dif-
ferent colon functions have identical labels, a compile time diagnostic will be generated, and
no execution attempted

(2)b<label> « branch to label

The branch function causes the sequence of editing commands being applied to the current
input line to be restarted immediately after the place where a colon function with the same
<label> was encountered. If no colon function with the same label can be found after all the
editing commands have been compiled, a compile time diagnostic is produced, and no execu-
tion is attempted.

A b function with no <label> is taken to be a branch to the end of the list of editing com-
mands; whatever should be done with the current input line is done, and another input line is
read; the list of editing commands is restarted from the beginning on the new line.

ND-60.328.1P EN

SED — A Non~Interactive Text Editor USD: 18—11

(2)t<label> -- test substitutions

The 1 function tests whether any successful substitutions have been made on the current
input line; if so, it branches to <label>; if not, it does nothing. The flag which indicates that
a successful substitution has been executed is reset by:

1) reading a new input line, or
2) executing at function.

3.7. Miscellaneous Functions
(1): -— equals

The = function writes to the standard output the line number of the line matched by its
address.

(1)q -_ quit

The q function causes the current line to be written to the output (if it should be), any
appended or read text to be written, and execution to be terminated.

REFERENCE
[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer’s Manual. Bell Laboratories, 1978.

ND-60.328.1P EN

USD218-12 ‘ SED — A Non-Interactive Text Editor

ND-60.328.1P EN

AWK — A Pattern Scanning and Processing Language (Second Edition) USD119-1

Awk -— A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aha

Brian W. Kerm'ghan

Peter J. Weinberger

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set of files for pat-
terns, and to perform specified actions upon lines or fields of lines which contain instances
of those patterns. Awk makes certain data selection and transformation operations easy to
express; for example, the awk program

length > 72

prints all input lines whose length exceeds 72 characters; the program

NF % 2 ::

prints all lines with an even number of fields; and the program

{ $1 = l0g($l); print }

replaces the first field of each line by its logarithm.
Awk patterns may include arbitrary boolean combinations of regular expressions and of rela-
tional operators on strings, numbers, fields, variables, and array elements. Actions may
include the same pattern—matching constructions as in patterns, as well as arithmetic and
string expressions and assignments, if-else, while, for statements, and multiple output
streams.
This report contains a user’s guide, a discussion of the design and implementation of awk,
and some timing statistics.

ND-60.328.1P EN

USD: 19-2 ' AWK — A Pattern Scanning and Processing Language (Second Edition)

ND-60.328.1P EN

AWK — A Pattern Scanning and Processing Language (Second Edition) USDzl9-3

1. INTRODUCTION
Awk is a programming language designed to make many common information retrieval and text manipulationtasks easy to state and to perform.
The basic operation of awk is to scan a set of input lines in order, searching for lines which match any of a setof patterns which the user has specified. For each pattern, an action can be specified; this action will be per-formed on each line that matches the pattern.
Readers familiar with the UNIXT program grep[l] will recognize the approach, although in awk the patternsmay be more general than in grep, and the actions allowed are more involved than merely printing the match—ing line. For example, the awk program

{print $3, $2}

prints the third and second columns of a table in that order. The program
$2 ~ /A [8 IC/

prints all input lines with an A, B, or C in the second field. The program
$1 2: prev { print; prev 2 $1 }

prints all lines in which the first field is different from the previous first field.

1.1. Usage
The command

awk program [files]

executes the awk commands in the string program on the set of named files, or on the standard input if thereare no files. The statements can also be placed in a file pfile, and executed by the command
awk Jpfile [files]

1.2. Program Structure
An awk program is a sequence of statements of the form:

pattern { action }
pattern { action }

Each line of input is matched against each of the patterns in turn. For each pattern that matches, the associatedaction is executed. When all the patterns have been tested, the next line is fetched and the matching starts
OVCl’.

Either the pattern or the action may be left out, but not both. If there is no action for a pattern, the matchingline is simply copied to the output. (Thus a line which matches several patterns can be printed several times.)If there is no pattern for an action, then the action is performed for every input line. A line which matches nopattern is ignored.
Since patterns and actions are both optional, actions must be enclosed in braces to distinguish them from pat-terns.

1.3. Records and Fields
Awk input is divided into “recor ” terminated by a record separator. The default record separator is a new-line, so by default awk processes its input a line at a time. The number of the current record is available in avariable named NR.
Each input record is considered to be divided into “fields.” Fields are normally separated by white space —~«blanks or tabs — but the input field separator may be changed, as described below. Fields are referred to as$1, $2, and so forth, where $1 is the first field, and $0 is the whole input record itself. Fields may be assigned
1' UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD:19-4 - AWK - A Pattern Scanning and Processing Language (Second Edition)

to. The number of fields in the current record is available in a variable named NF.

The variables FS and RS refer to the input field and record separators; they may be changed at any time to any
single character. The optional command—line argument —Fc may also be used to set F8 to the character c .
If the record separator is empty, an empty input line is taken as the record separator, and blanks, tabs and new-
lines are treated as field separators.
The variable FILENAME contains the name of the current input file.

1.4. Printing
An action may have no pattern, in which case the action is executed for all lines. The simplest action is to
print some or all of a record; this is accomplished by the awk command print. The awk program

{ print }

prints each record, thus copying the input to the output intact More useful is to print a field or fields from
each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items separated by a comma in the print statement will be separated
by the current output field separator when output. Items not separated by commas will be concatenated, so

print $1 $2

runs the first and second fields together.
The predefined variables NF and NR can be used; for example

{ print NR, NF, $0 }

prints each record preceded by the record number and the number of fields.
Output may be diverted to multiple files; the program

{ print $1 >"fool"; print $2 >"f002" }
writes the first field, $1, on the file fool, and the second field on file {002. The >> notation can also be used:

print $1 >>"f00"

appends the output to the file foo. (In each case, the output files are created if necessary.) The file name can
be a variable or a field as well as a constant; for example,

print $1 >32

uses the contents of field 2 as a file name.
Naturally there is a limit on the number of output files; currently it is 10.
Similarly, output can be piped into another process (on UNIX only); for instance,

print 1 "mail bwk"

mails the output to bwk.
The variables OFS and ORS may be used to change the current output field separator and output record
separator. The output record separator is appended to the output of the print statement.
Awk also provides the printf statement for output formatting:

printf format expr, expr,

formats the expressions in the list according to the specification in format and prints them. For example,
printf "%8.2f %10ld\n", $1, $2

prints $1 as a floating point number 8 digits wide, with two after the decimal point, and $2 as a 10«digit long
decimal number, followed by a newline. No output separators are produced automatically; you must add them
yourself, as in this example. The version of printf is identical to that used with C. [2]

ND-60.328.1P EN

AWK — A Pattern Scanning and Processing Language (Second Edition) USDzl9-5

2. PATTERNS
A pattern in front of an action acts as a selector that determines whether the action is to be executed. A varietyof expressions may be used as patterns: regular expressions, arithmetic relational expressions, string-valuedexpressions, and arbitrary boolean combinations of these.

2.1. BEGIN and END
The special pattern BEGIN matches the beginning of the input, before the first record is read. The patternEND matches the end of the input, after the last record has been processed. BEGIN and END thus provide away to gain control before and after processing, for initialization and wrapup.
As an example, the field separator can be set to a colon by

BEGIN { FS = "z" }
.. rest of program

Or the input lines may be counted by

END { print NR }

It" BEGIN is present, it must be the first pattern; END must be the last if used.

2.2. Regular Expressions
The simplest regular expression is a literal string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which will print all lines which contain any occurrence of the name“smith". Ifa line contains “smith" as part ofa larger word, it will also be printed, as in
blacksmithing

Awk regular expressions include the regular expression forms found in the UND(text editor ed[l] and grep(without back-referencing). In addition, awk allows parentheses for grouping, l for alternatives, 4» for “one ormore”, and ? for “zero or one”, all as in lex. Character classes may be abbreviated: [a—zA~ZO—9] is the setof all letters and digits. As an example, the awk program
/[Aa]ho [[leinberger [[KkIernighan/

will print all lines which contain any of the names “Aho,” “Weinberger” or “Kemighan,” whether capital-ized or not.
Regular expressions (with the extensions listed above) must be enclosed in slashes, just as in ed and sed.Within a regular expression, blanks and the regular expression metacharacters are significant. To turn of themagic meaning of one of the regular expression characters, precede it with a backslash. An example is the pat-Kim

/\/.*\/I

which matches any string of characters enclosed in slashes.
One can also specify that any field or variable matches a regular expression (or does not match it) with theoperators ~ and !~. The program

$1 ~ /UJlohn/

prints all lines where the first field matches “john” or “John.” Notice that this will also match “Johnson”,“St. Johnsbury”, and so on. To restrict it to exactly fijlohn, use
$1 ~ /"[jJ]ohn$/

The caret ’\ refers to the beginning of a line or field; the dollar sign 3 refers to the end.

2.3. Relational Expressions
An awk pattern can be a relational expression involving the usual relational operators <, <=, :=, !:, >2, and >.An example is

ND‘60.328.1P EN

USD219-6 ~ AWK - A Pattern Scanning and Processing language (Second Edition)

$2 > $1 + 100
which selects lines where the second field is at least 100 greater than the first field. Similarly,

NF % z: 0

prints lines with an even number of fields.
In relational tests, if neither operand is numeric, a string comparison is made; otherwise it is numeric. Thus,

$1 >= "s"

selects lines that begin with an s, t, u, etc. In the absence of any other information, fields are treated as strings,
so the program

$1>$2

will perform a string comparison.

2.4. Combinations of Patterns

A pattern can be any boolean combination of patterns, using the operators II (or), && (and), and 3 (not). For
example,

$1 >2 "s" && $1 < "t" && $1 3: "smith"
selects lines where the first field begins with “s”, but is not “smith”. && and H guarantee that their
operands will be evaluated from left to right; evaluation stops as soon as the truth or falsehood is determined.

2.5. Pattern Ranges
The “pattern” that selects an action may also consist of two patterns separated by a comma, as in

patl, pat2 {...}

In this case, the action is performed for each line between an occurrence of patl and the next occurrence of
pat2 (inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR 2: 100, NR 2 200 { ... }
does the action for lines 100 through 200 of the input

3. ACTIONS
An awk action is a sequence of action statements terminated by newlines or semicolons. These action state-
ments can be used to do a variety of bookkeeping and string manipulating tasks.

3.1. Built-in Functions
Awk provides a “length" function to compute the length of a string of characters. This program prints each
record, preceded by its length:

{print length, $0}

length by itself is a “pseudo-variable” which yields the length of the current record; Iength(argument) is afunction which yields the length of its argument, as in the equivalent
{print length($0), $0}

The argument may be any expression.
Awk also provides the arithmetic functions sqrt, log, exp, and int, for square root, base e logarithm, exponen-
tial, and integer part of their respective arguments.
The name of one of these built-in functions, without argument or parentheses, stands for the value of the func—
tion on the whole record. The program

ND—60.328.1P EN

AWK — A Pattern Scanning and Processing Language (Second Edition) USD: 19-7

length < 10 || length > 20

prints lines whose length is less than 10 or greater than 20.
The function substr(s, m, n) produces the substring of s that begins at position m (origin 1) and is at most Itcharacters long. If n is omitted, the substring goes to the end of s. The function index(s1,52) returns theposition where the string 52 occurs in 51, or zero if it does not
The function sprintf(f,el,e2, ...) produces the value of the expressions e1, e2, etc., in the printf formatspecified by 1‘. Thus, for example,

x : sprintf("%8.2{ %lOld", $1, $2)

sets x to the string produced by formatting the values of $1 and $2.

3.2. Variables, Expressions, and Assignments
Awk variables take on numeric (floating point) or string values according to context. For example, in

X = l

x is clearly a number, while in
x = "smit "

it is clearly a string. Strings are converted to numbers and vice versa whenever context demands it Forinstance,
X = "3" + N4"

assigns 7 to x. Strings which cannot be interpreted as numbers in a numerical context will generally havenumeric value zero, but it is unwise to count on this behavior.
By default, variables (other than built—ins) are initialized to the null string, which has numerical value zero; thiseliminates the need for most BEGIN sections. For example, the sums of the first two fields can be computedby

{81 +2 $1; $2 +2 $2}
END{ print 51, $2 }

Arithmetic is done internally in floating point. The arithmetic operators are +, -, *, /. and % (mod). The Cincrement +4» and decrement ——- operators are also available, and so are the assignment operators +=, -==, and %=. These operators may all be used in expressions.
9 *:,

3.3. Field Variables

Fields in awk share essentially all of the properties of variables —— they may be used in arithmetic or stringoperations, and may be assigned to. Thus one can replace the first field with a sequence number like this:
{ $1 : NR; print }

or accumulate two fields into a third, like this:
{$1:$2+$3;print$0}

or assign a string to a field:
{ if ($3 > 1000)

$3 = "too big"
print

}
which replaces the third field by “too big” when it is, and in any case prints the record.
Field references may be numerical expressions, as in

{ print $i, $(i+1), $(i+n) }
Whether a field is deemed numeric or string depends on context; in ambiguous cases like

ND-60.328.lP EN

USDzl9-8 ‘ AWK ~— A Pattern Scanning and Processing Language (Second Edition)

if ($1 2: $2)

fields are treated as strings.
Each input line is split into fields automatically as necessary. It is also possible to split any variable or string
into fields:

n : split(s, array, sep)

Splits the the string 5 into array[l], arrayln]. The number of elements found is returned. If the sep argu-
ment is provided, it is used as the field separator; otherwise FS is used as the separator.

3.4. String Concatenation
Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in a print statement,

print $1 " is " $2

prints the two fields separated by “ is Variables and numeric expressions may also appear in concatena-
tions.

3.5. Arrays

Array elements are not declared; they spring into existence by being mentioned. Subscripts may have any
non-null value, including non—numeric strings. As an example of a conventional numeric subscript, the state-
ment

XlNR] = $0
assigns the current input record to the NR-th element of the array x. In fact, it is possible in principle (though
perhaps slow) to process the entire input in a random order with the awk program

{ XiNR] = $0 }
END{ program }

The first action merely records each input line in the array x.
Array elements may be named by non-numeric values, which gives awk a capability rather like the associative
memory of Snobol tables. Suppose the input contains fields with values like apple, orange, etc. Then the
program

/apple/ { x["apple"]++ }
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"] }

increments counts for the named array elements, and prints them at the end of the input

3.6. Flow-of-Control Statements

Awk provides the basic flow-of—control statements if—else, while, for, and statement grouping with braces, as in
C. We showed the if statement in section 3.3 without describing it The condition in parentheses is evaluated;
if it is true, the statement following the if is done. The else part is optional.
The while statement is exactly like that of C. For example, to print all input fields one per line,

i = 1
while (i <= NF) {

print $i
++i

ND-60.328. 1? EN

AWK — A Pattern Scanning and Processing Language (Second Edition) USDzl9-9

The for statement is also exactly that of C:
for (i = 1; i <= NF; i++)

print $i

does the same job as the while statement above.
There is an alternate form of the for statement which is suited for accessing the elements of an associativearray:

for (i in array)
statement

does statement with i set in turn to each element of array. The elements are accessed in an apparently ran-dom order. Chaos will ensue if i is altered, or if any new elements are accessed during the loop.
The expression in the condition part of an if, while or for can include relational operators like <, <=, >, >:, :2(“is equal to"), and 2: (“not equal to"); regular expression matches with the match operators ~ and !~; thelogical operators H, &&, and !; and of course parentheses for grouping.
The break statement causes an immediate exit from an enclosing while or for; the continue statement causesthe next iteration to begin.
The statement next causes awk to skip immediately to the next record and begin scanning the patterns fromthe top. The statement exit causes the program to behave as if the end of the input had occurred.
Comments may be placed in awk programs: they begin with the character # and end with the end of the line,as in

print x, y # this is a comment

4. DESIGN
The UNIX system already provides several programs that operate by passing input through a selection mechan-ism. Grep, the first and simplest, merely prints all lines which match a single specified pattern. Egrep pro—vides more general patterns, i.e., regular expressions in full generality; fgrep searches for a set of keywordswith a particularly fast algorithm. Sed [1] provides most of the editing facilities of the editor ed, applied to astream of input. None of these programs provides numeric capabilities, logical relations, or variables.
Lex [3] provides general regular expression recognition capabilities, and, by serving as a C program generator,is essentially open—ended in its capabilities. The use of (ex, however, requires a knowledge of C programming,and 3 [ex program must be compiled and loaded before use, which discourages its use for one-shot applica—tions.

Awk is an attempt to fill in another part of the matrix of possibilities. It provides general regular expressioncapabilities and an implicit input/output loop. But it also provides convenient numeric processing, variables,more general selection, and control flow in the actions. It does not require compilation or a knowledge of C.Finally, awk provides a convenient way to access fields within lines; it is unique in this respect.
Awk also tries to integrate strings and numbers completely, by treating all quantities as both string andnumeric, deciding which representation is appropriate as late as possible. In most cases the user can simplyignore the differences.
Most of the effort in developing awk went into deciding what awk should or should not do (for instance, itdoesn’t do string substitution) and what the syntax should be (no explicit operator for concatenation) ratherthan on writing or debugging the code. We have tried to make the syntax powerful but easy to use and welladapted to scanning files. For example, the absence of declarations and implicit initializations, while probablya bad idea for a general—purpose programming language, is desirable in a language that is meant to be used fortiny programs that may even be composed on the command line.
In practice, awk usage seems to fall into two broad categories. One is what might be called “report genera-tion” —— processing an input to extract counts, sums, sub-totals, etc. This also includes the writing of trivialdata validation programs, such as verifying that a field contains only numeric information or that certain delim—iters are properly balanced. The combination of textual and numeric processing is invaluable here.

ND-60.328.1P EN

USD: 19-10 . AWK — A Pattern Scanning and Processing Language (Second Edition)

A second area of use is as a data transformer, converting data from the form produced by one program into
that expected by another. The simplest examples merely select fields, perhaps with rearrangements.

5. IM PL EMENTATION

The actual implementation of awk uses the language development tools available on the UNIX operating sys—
tem. The grammar is specified with yacc [4] the lexical analysis is done by Iex; the regular expression recog-
nizers are deterministic finite automata constructed directly from the expressions. An awlc program is
translated into a parse tree which is then directly executed by a simple interpreter.
Awk was designed for ease of use rather than processing speed; the delayed evaluation of variable types and
the necessity to break input into fields makes high speed difficult to achieve in any case. Nonetheless, the pro-
gram has not proven to be unworkably slow.
Table I below shows the execution (user + system) time on a PDP-11/70 of the UNDt programs we, grep,
egrep , fgrep , sed , (ex, and awk on the following simple tasks:

1. count the number of lines.
print all lines containing “doug”.
print all lines containing “doug”, “ken" or “dmr”.
print the third field of each line.
print the third and second fields of each line, in that order.
append all lines containing “doug”, “ken”, and “dmr” to files “jdoug”, “jken”, and “jdmr”, respec-
tively.

.O
‘V

‘P
P

’S
"

7. print each line prefixed by “line-number:
8. sum the fourth column of a table.

The program we merely counts words, lines and characters in its input; we have already mentioned the others.
In all cases the input was a file containing 10,000 lines as created by the command 1s ~1; each line has the
form

—rw—rw—-rw— 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 characters. Times for [ex do not include compile or load.
As might be expected, awk is not as fast as the specialized tools we, sed. or the programs in the grep family,
but is faster than the more general tool Iex. In all cases, the tasks were about as easy to express as awk pro-
grams as programs in these other languages; tasks involving fields were considerably easier to express as awk
programs. Some of the test programs are shown in awk, sed and (ex.

REFERENCES
1. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, May 1975. Sixth Edi-

tion.

2. B. W. Kemighan and D. M. Ritchie, The C Programming Language, Prentice—Hall, Englewood Cliffs,
New Jersey, 1978.

3. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Comp. Sci. Tech. Rep. No. 39, Bell Laboratories,
Murray Hill, New Jersey, October 1975. Reprinted at PSlzl6 in UNIX Programmer’s Manual, Usenix
Association, (1986).

4. S. C. Johnson, "Yacc — Yet Another Compiler-Compiler," Comp. Sci. Tech. Rep. No.32, Bell Labora—
tories, Murray Hill, New Jersey, July 1975. Reprinted as PSlzlS in UNIX Programmer's Manual,
Usenix Association, (1986).

ND<60.328.1P EN

AWK — A Pattern Scanning and Processing Language (Second Edition) USDzl9-1 1

Task
Program 1 2 3 4 5 6 7 8

we 8.6
grep 11.7 13.1
egrep 6.2 11.5 11.6
fgrep 7.7 13.8 16.1

sed 10.2 11.6 15.8 29.0 30.5 16.1
lex 65.1 150.1 144.2 67.7 70.3 104.0 81.7 92.8

awk 15.0 25.6 29.9 33.3 38.9 46.4 71.4 31.1

Table I. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are shown below. The (ex programs are generally too long to show.
AWK:

l.

2.

END{print NR}

Idoug/

lkenldougldmr/

{print $3}

{Print $39 $2}

/ken/{print >"jken"}
/d0ug/ {print >"jdoug"}
ldmr/ {print >"jdmr"}

{print NR ": " $0}

{sum = sum + $4}
END{print sum}

3:

Idoug/p

ldoug/p
ldoug/d
/ken/p
Iken/d
/dmr/p
/dmr/d

HA 1* 1 HA 1* 1 man 1*\) .*/s//\1/p
/1A 1* 1 mm M) [mm 1*\) .*/s//\2 \l/p

/ken/w jken
Idoug/w jdoug
/dmr/w jdmr

LEX:

1. %{
int i;
%}
%%
\n i++;

%%
yywrapo {

printf "%d\n", i);
}

%%
".*d0ug.*$ printf(" %s\n", yytext);

Y

\n ;

ND-60.328.1P EN

USD: 19-12 ~ AWK — A Pattern Scanning and Processmg Language (Second Edition)

NDc60.328.1P EN

Typing Documents on the' UNIX System USD:20-1

Typing Documents on the UNIX System:
Using the —ms Macros with Troff and Nroff

M. E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document describes a set of easy-to-use macros for preparing documents on the UNIXiL
system. Documents may be produced on either the phototypesetter or a on a computer ter-
minal, without changing the input.

, _____ The macros provide facilities for paragraphs, sections (optionally with automatic number-
ing), page titles, footnotes, equations, tables, two-column format, and cover pages forpapers.
This document includes, as an appendix, the text of the “Guide to Preparing Documents
with —ms” which contains additional examples of features of —ms.
This document is a revision of, and replaces, “Typing Documents on UNIX,” dated
November 22, 1974.

T UNIX is a registered trademark of AT&T in the USA and other countries.

ND—60.328.1P EN

USD:20—2 ' Typing Documents on the UNIX System

ND—60.328.1P EN

Typing Documents on the‘ UNDt System USD:20-3

Introduction. This memorandum describes a package of commands to produce papers using the troffand nrojf formatting programs on the UNIX system. As with other rofi—derived programs, text is preparedinterspersed with formatting commands. However, this package, which itself is written in troff commands,provides higher—level commands than those provided with the basic trojf program. The commands available inthis package are listed in Appendix A.
Text. Type normally, except that instead of indenting for paragraphs, place a line reading “.PP” beforeeach paragraph. This will produce indenting and extra space.
Alternatively, the command L? that was used here will produce a left-aligned (block) paragraph. Theparagraph spacing can be changed: see below under “Registers.”
Beginning. For a document with a paper—type cover sheet, the input should start as follows:

[optional overall format .RP — see below]
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author’s institution(s)
.AB
Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .11 here to change.
.AE (abstract end)
text (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author’s institution) just omit the correspondingfields and command lines. The word ABSTRACT can be suppressed by writing “.AB no” for “.AB”. Severalinterspersed .AU and .AI lines can be used for multiple authors. The headings are not compulsory: beginningwith a .PP command is perfectly OK and will just start printing an ordinary paragraph.
Warning: You can’t just begin a document with a line of text. Some —ms command must precede any textinput. When in doubt, use LP to get proper initialization, although any of the commands .PP, .LP, .TL, .SH,.NH is good enough. Figure l at the end of this document shows the legal arrangement of commands at thestart of a document

Cover Sheets and First Pages. The first line of a document signals the general format of the first page.In particular, if it is ".RP" a cover sheet with title and abstract is prepared. The default format is useful forscanning drafts.
In general ~ms is arranged so that only one form of a document need be stored, containing all information; thefirst command gives the format, and unnecessary items for that format are ignored.
Warning: don't put extraneous material between the .TL and .AE commands. Processing of the titling items isspecial, and other data placed in them may not behave as you expect. Don’t forget that some —ms commandmust precede any input text.

Page headings. The ~ms macros, by default, will print a page heading containing a page number (ifgreater than 1). A default page footer is provided only in nroff, where the date is used. The user can makeminor adjustments to the page headings/footings by redefining the strings LH, CH, and RH which are the left,center and right portions of the page headings, respectively; and the strings LF, CF, and RF, which are the left,center and right portions of the page footer. For more complex formats, the user can redefine the macros PTand BT, which are invoked respectively at the top and bottom of each page. The margins (taken from registersHM and FM for the top and bottom margin respectively) are normally 1 inch; the page header/footer are in themiddle of that space. The user who redefines these macros should be careful not to change parameters such aspoint size or font without resetting them to default values.

ND-60.328.1P EN

US D204

Maui—column formats. If you place the
command “.2C" in your document, the document
will be printed in double column format beginning
at that point. This feature is not too useful in com—
puter terminal output, but is often desirable on the
typesetter. The command “.IC” will go back to
one~column format and also skip to a new page.
The “.2C" command is actually a special case of
the command

.MC [column width [gutter width]]

which makes multiple columns with the specified
column and gutter width; as many columns as will
fit across the page are used. Thus triple, quadruple,

. column pages can be printed. Whenever the
number of columns is changed (except going from
full width to some larger number of columns) a
new page is started.

Headings. To produce a special heading,
there are two commands. If you type

.NH
type section heading here
may be several lines

you will get automatically numbered section head-
ings (l, 2, 3, ...), in boldface. For example,

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department Heads
Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number added:

Care and Feeding of Directors
Every section heading, of either type, should

be followed by a paragraph beginning with P? or
.LP, indicating the end of the heading. Headings
may contain more than one line of text.

The .NH command also supports more com-
plex numbering schemes. If a numerical argument
is given, it is taken to be a “level" number and an
appropriate sub-section number is generated.
larger level numbers indicate deeper subsections,
as in this example:

ND—60.328. 11’ EN

Typing Documents on the UNIX System

.NH
Erie-lackawanna
.NH 2
Morris and Essex Division
.NH 3
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2.1. Morris and Essex Division

2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

An explicit “.NH 0” will reset the number-
ing of level 1 to one, as here:

.NH 0
Penn Central

1. Penn Central

Indenred paragraphs. (Paragraphs with
hanging numbers, e.g. references.) The sequence

.1? [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
.IP [2]
Text for second paragraph,

produces
[1] Text for first paragraph, typed normally for

as long as you would like on as many lines
as needed

[2] Text for second paragraph,
A series of indented paragraphs may be followed
by an ordinary paragraph beginning with P? or
.LP, depending on whether you wish indenting or
not The command .LP was used here.

Typing Documents on the‘UNIx System USD22O-5

More sophisticated uses of .1? are also possible. If
the label is omitted, for example, a plain block
indent is produced.

I?
This material will
just be turned into a
block indent suitable for quotations or
such matter.
LP

will produce

This material will just be turned into a block
indent suitable for quotations or such matter.

If a non-standard amount of indenting is required, it
may be specified after the label (in character posi-
tions) and will remain in effect until the next 1’? or
.LP. Thus, the general form of the .IP command
contains two additional fields: the label and the
indenting length. For example,

.1? first: 9
Notice the longer label, requiring larger
indenting for these paragraphs.
.1? second:
And so forth.
.LP

produces this:

first: Notice the longer label, requiring larger
indenting for these paragraphs.

second: And so fonh.
It is also possible to produce multiple nested
indents; the command .RS indicates that the next
.1? starts from the current indentation level. Each
.RE will eat up one level of indenting so you
should balance .RS and .RE commands. The .RS
command should be thought of as “move right"
and the .RE command as “move left”. As an
example

.IP 1.
Bell Laboratories
.RS
.1? 1.1
Murray Hill
.1P 1.2
Holmdel
.[P 1.3
Whippany
.RS
.1? 1.3.1
Madison
.RE
.1P 1.4
Chester
.RE
.LP

will result in

1. Bell Laboratories

1.1 Murray Hill
1.2 Holmdel
1.3 Whippany

1.3.1 Madison
1.4 Chester

All of these variations on .LP leave the right mar-
gin untouched. Sometimes, for purposes such as
setting off a quotation, a paragraph indented on
both right and left is required.

A single paragraph like this is obtained
by preceding it with .QP. More com-
plicated material (several paragraphs)
should be bracketed with .QS and .QE.

Emphasis. To get italics (on the typesetter) or
underlining (on the terminal) say

.I
as much text as you want
can be typed here
.R

as was done for these three words. The .R com—
mand restores the normal (usually Roman) font. If
only one word is to be italicized, it may be just
given on the line with the .I command,

.1 word

and in this case no .R is needed to restore the pre-
vious fonL Boldface can be produced by

.8
Text to be set in boldface
goes here
.R

and also will be underlined on the terminal or line

ND—60.328.1P EN

USDz20—6

printer. As with .I, a single word can be placed in
boldface by placing it on the same line as the .8
command.

A few size changes can be specified similarly
with the commands .LG (make larger). .SM (make
smaller), and NI. (return to normal size). The size
change is two points; the commands may be
repeated for increased nth: (here one .NL cancelled
two .SM commands).

If actual underlining as opposed to italicizing
is required on the typesetter, the command

.UL word

will underline a word. There is no way to under~
line multiple words on the typesetter.

Footnotes. Material placed between lines
with the commands .FS (footnote) and .FE (foot-
note end) will be collected, remembered, and
finally placed at the bottom of the current page*.
By default, footnotes are 11/121h the length of nor-
mal text, but this can be changed using the FL
register (see below).

Displays and Tables. To prepare displays of
lines, such as tables, in which the lines should not
be rearranged, enclose them in the commands .DS
and .DE

.DS
table lines, like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are indented
and left-adjusted. You can also center lines, or
retain the left margin. Lines bracketed by .DS C
and .DE commands are centered (and not re-
arranged); lines bracketed by .DS L and .DE are
left«adjusted, not indented, and not rearranged A
plain .DS is equivalent to .DS I, which indents and
left—adjusts. Thus,

these lines were preceded
by .DS C and followed by

a DB command;
whereas

these lines were preceded
by .DS L and followed by
a DB command.

Note that .DS C centers each line; there is a variant
.DS B that makes the display into a leftvadjusted
block of text, and then centers that entire block.
Normally a display is kept together, on one page.
" Like this.

ND—60.328. 1P EN

Typing Documents on the UNIX System

If you wish to have a long display which may be
split across page boundaries, use .CD, .LD, or .ID
in place of the commands .DS C, .DS L, or .DS I
respectively. An extra argument to the .DS I or
.DS command is taken as an amount to indent.
Note: it is tempting to assume that .DS R will right
adjust lines, but it doesn’t work.

Boxing words or lines. To draw rectangular
boxes around words the command

.BX word

will print as shown. The boxes will not be
neat on a terminal, and this should not be used as a
substitute for italics.
Longer pieces of text may be boxed by enclosing
them with .81 and .82:

.81
text...
.32

as has been done here.

Keeping blocks together. If you wish to
keep a table or other block of lines together on a
page, there are “keep - release” commands. If a
block of lines preceded by .KS and followed by
.KE does not fit on the remainder of the current
page, it will begin on a new page. Lines bracketed
by .DS and .DE commands are automatically kept
together this way. There is also a “keep floating"
command: if the block to be kept together is pre-
ceded by .KF instead of .KS and does not fit on the
current page, it will be moved down through the
text until the top of the next page. Thus, no large
blank space will be introduced in the document

Nrofl/Trojf commands. Among the useful
commands from the basic formatting programs are
the following. They all work with both typesetter
and computer terminal output:

.bp - begin new page.

.br - ”break”, stop running text
from line to line.

.sp n - insert n blank lines.

.na - don’t adjust right margins.

Date. By default, documents produced on
computer terminals have the date at the bottom of
each page; documents produced on the typesetter
don‘t To force the date, say “.DA”. To force no
date, say “.ND”. To lie about the date, say “.DA
July 4, 1776” which puts the specified date at the
bottom of each page. The command

.ND May 8, 1945
in ".RP" format places the specified date on the
cover sheet and nowhere else. Place this line

Typing Documents on the. UNIX System

before the title.

Signature line. You can obtain a signature
line by placing the command .SG in the document.
The authors’ names will be output in place of the
.SG line. An argument to .SG is used as a typing
identification line, and placed after the signatures.
The .SG command is ignored in released paper for—
mat.

Registers. Certain of the registers used by —ms
can be altered to change default settings. They
should be changed with .nr commands, as with

.aS9

to make the default point size 9 point. If the effect
is needed immediately, the normal trofl command
should be used in addition to changing the number
register.
Register Defines Takes Default

effect
PS point size next para. 10
VS line spacing next para. 12 pts
LL line length next para. 6”
LT title length next para. 6”
PD para spacing next para. 0.3 VS
PI para indent next para. 5 ens
FL footnote length next FS 11/12 LL
CW column width next 2C 7/15 LL
GW intercolumn gap next 2C 1/15 LL
PO page offset next page 26/27”
HM top margin next page 1"
FM bottom margin next page 1"

You may also alter the strings LH, CH, and RH
which are the left, center, and right headings
respectively; and similarly LF, CF, and RF which
are strings in the page footer. The page number on
output is taken from register PN, to permit chang-
ing its output style. For more complicated headers
and footers the macros PT and BT can be
redefined, as explained earlier.

Accents. To simplify typing certain foreign
words, strings representing common accent marks
are defined. They precede the letter over which the
mark is to appear. Here are the strings:

Input Output Input Output
*’e e *~a a
*‘e 2: *Ce 6
*:u it *.c c
*’\e 6

Use. After your document is prepared and
stored on a file, you can print it on a terminal with
the command*

‘ If .2C was used, pipe the nrofl output through col; make
the first line of the input ”.pi lusr/bin/ool."

USDz20-7

nroff ——ms file

and you can print it on the typeseuer with the com-
mand

trofi' —msfile

(many options are possible). In each case, if your
document is stored in several files, just list all the
filenames where we have used “file”. If equations
or tables are used, eqn and/or tbl must be invoked
as preprocessors.

References and further study. If you have
to do Greek or mathematics, see eqn [I] for equa-
tion setting. To aid eqn users, -ms provides
definitions of .EQ and .EN which normally center
the equation and set it off slightly. An argument
on .EQ is taken to be an equation number and
placed in the right margin near the equation. In
addition, there are three special arguments to EQ:
the letters C, I, and L indicate centered (default),
indented, and left adjusted equations, respectively.
If there is both a format argument and an equation
number, give the format argument first, as in

.EQ L (1.3a)
for a left-adjusted equation numbered (1.3a).

Similarly, the macros .TS and .TE are defined
to separate tables (see [2]) from text with a little
space. A very long table with a heading may be
broken across pages by beginning it with .TS H
instead of .TS, and placing the line .TH in the table
data after the heading. If the table has no heading
repeated from page to page, just use the ordinary
.TS and .TE macros.

To learn more about trojf see [3] for a gen-
eral introduction, and [4] for the full details
(experts only). Information on related UNIX com-
mands is in [5]. For jobs that do not seem well—
adapted to ~ms, consider other macro packages. It
is often far easier to write a specific macro pack-
ages for such tasks as imitating particular journals
than to try to adapt —ms.

ND-60.328.1P EN

USD:20—8 ' Typing Documents on the UNDt System

ACKNOWLEDGEMENT """""
Many thanks are due to Brian Kemighan for his help in the design and implementation of this package, and for
his assistance in preparing this manual.

REFERENCES

[1] B. W. Kemighan and L. L. Cherry, Typesetting Mathematics— Users Guide (2nd edition), Bell Labora—
tories Computing Science Report no. 17.

[2] M. E. Lesk, Tbl ———A Program to Format Tables, Bell Laboratories Computing Science Report no. 45.
[3] B. W. Kemighan, A Trofi' Tutorial, Bell Laboratories, 1976.
[4] J. F. Ossanna, Nroflr/Trofi' Reference Manual, Bell Laboratories Computing Science Report no. 51.
[5] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978.

ND—60.328. 11’ EN

Typing Documents on the UNIX System

1 C
2C
AB

AI
AU

DA
DE
DS

T
33

8%
5i

§q
List of Commands

Return to single column format.
Start double column format.
Begin abstract.
End abstract
Specify author's institution.
Specify author.
Begin boldface.
Provide the date on each page.
End display.
Start display (also CD, ID, ID).
End equation.
Begin equation.
End footnote.
Begin footnote.

Begin italics.

Begin indented paragraph.
Release keep.
Begin floating keep.
Start keep.

Appendix A

LG
LP

NL
PP

RE
RP
RS
SG
SH
SM

Register Names

Increase type size.

USD:20-9

Left aligned block paragraph.

Change or cancel date.
Specify numbered heading.
Return to normal type size.
Begin paragraph.

Return to regular font (usually Roman).
End one level of relative indenting.
Use released paper format.
Relative indent increased one level.
Insert signature line.
Specify section heading.
Change to smaller type size.
Specify title.

Underline one word.

The following register names are used by —ms internally. Independent use of these names in one’s own mac-
ros may produce incorrect output. Note that no lower case letters are used in any —ms internal name.

#T
IT
AV
CW

1C
2C
A 1
A2
A3
A4

Number registers used in vms
IQ
IR
Kl
Ll
LE

LL
LT
MM
MN
MO

NA
NC
NF
NS
01

String registers used in —ms
KF
KQ
KS
LB
LD
LG
LP
ME
MF
MH
MN
MO

DW GW HM
EF H1 HT
FL H3 IK
FM H4 IM
FP H5 1?

A5 CB DW
AB CC DY
AE CD E1
AI CF E2
AU CH E3
B CM E4
BG CS E5
BT CT EE
C D EL
Cl DA EM
C2 DE EN
CA DS EQ

Ez
FA
FE
FJ
FK
FN
F0
FQ
Fs
Fv
FY
Ho

I
II
12
I3
I4
IS
ID
IE
IM
IP
12
KB

OJ
PD
PF
PI
PN

NL

OD
OK
PP

PY
QF

PO
PQ
PX
RO
ST

R1
R2
R3
R4
R5
RC

RF
RH
RP
RQ
Rs

T. TV
TB VS
TD YE
TN YY
TQ ZN

RT TL
so TM
81 TQ
32 TS
so Tr
SH UL
SM WB
SN WH
SY WT
TA xp
TE XF
TH XK

ND-60.328.1P EN

USD220—10 . Typing Documents on the UNIX System

Order of Commands in Input

v
RP

_.,__l

T‘LN

AlU

AI

AE|\

\17

V
NH, SH

V
PP, LP

{Ext

Figure 1

ND-60.328.1P EN

A Revised Version of ~ms

A Revised Version of —ms

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

USD121-1

ND-60.328.1P EN

USD:21~2 V A Revised Version of —ms

ND-60.328.1P EN

A Revised Version of ~ms
USDz21-3

The —ms macros have been slightly revised and rearranged for the Berkeley UNIXT distribution. Because ofthe rearrangement, the new macros can be read by the computer in about half the time required by the previousversion of ~ms. This means that output will begin to appear between ten seconds and several minutes morequickly, depending on the system load. On long files, however, the savings in total time are not substantial.The old version of ~ms is still available as ~mos
Several bugs in ~ms have been fixed, including a bad problem with the .IC macro, minor difficulties withboxed text, a break induced by .EQ before initialization, the failure to set tab stops in displays, and severalbothersome errors in the refer macros. Macros used only at Bell Laboratories have been removed. There area few extensions to previous —ms macros, and a number of new macros, but all the documented —ms macrosstill work exactly as they did before, and have the same names as before. Output produced with ~ms shouldlook like output produced with *mos.
One important new feature is automatically numbered footnotes. Footnote numbers are printed by means of apre—defined string (\H), which you invoke separately from .FS and .FE. Each time it is used, this stringincreases the footnote number by one, whether or not you use .FS and .FE in your text Footnote numbers willbe superscripted on the phototypesetter and on daisy—wheel terminals, but on low‘resolution devices (such asthe lpr and a crt), they will be bracketed. If you use ** to indicate numbered footnotes, then the .FS macrowill automatically include the footnote number at the bottom of the page. This footnote, for example, was pro-duced as follows:1

This footnote, for example, was produced as follows:**
.FS

.FE

If you are using ** to number footnotes, but want a particular footnote to be marked with an asterisk, ordouble-dagger, then give that mark as the first argument to .FS: 1:
then give that mark as the first argument to .FS: \(dd
.FS \(dd

.FE

Footnote numbering will be temporarily suspended, because the ** string is not used. Instead of a doubledagger, you could use an asterisk * or dagger, represented as \(dd.
Another new feature is a macro for printing theses according to Berkeley standards. This macro is called .TM,which stands for thesis mode. (It is much like the .th macro in —me.) It will put page numbers in the upperright-hand comer; number the first page; suppress the date; and doublespace everything except quotes,displays, and keeps. Use it at the top of each file making up your thesis. Calling .TM defines the .CT macrofor chapter titles, which skips to a new page and moves the pagenumber to the center footer. The P! (P one)macro can be used even without thesis mode to print the header on page I, which is suppressed except inthesis mode. If you want roman numeral page numbering, use an “.af PN i" request.
There is a new macro especially for bibliography entries, called .XP, which stands for exdented paragraph. Itwill exdent the first line of the paragraph by \nCPI units, usually 5n (the same as the indent for the first line ofa .PP). Most bibliographies are printed this way. Here are some examples of exdented paragraphs:
Lumley, Lyle 8., Sex in Crustaceans: Shell Fish Habits, Harbinger Press, Tampa Bay and San Diego, October1979. 243 pages. The pioneering work in this field.
Leffadinger, Harry A., “Mollusk Mating Season: 52 Weeks, or All Year?” in Acra Biologica, vol. 42, no. 11,November 1980. A provocative thesis, but the conclusions are wrong.

1‘ UNIX is a registered trademark of AT&T in the USA and other countries.
1 If you never use the ”\u” string, no footnote numbers will appear anywhere in the text, including down here. Theoutput footnotes will look exactly like footnotes produced with ~mos.
i In the footnote, the doublcdaggcr will appear where the footnote number would otherwise appear, as here.

ND‘60.328.1P EN

USD121-4 ‘ A Revised Version of —ms

Of course, you will have to take care of italicizing the book title and journal, and quoting the title of the
journal article. Indentation or exdentation can be changed by setting the value of number register PI.

If you need to produce endnotes rather than footnotes, put the references in a file of their own. This is similar
to what you would do if you were typing the paper on a conventional typewriter. Note that you can use
automatic footnote numbering without actually having .FS and .FE pairs in your text. If you place footnotes in
a separate file, you can use .lP macros with ** as a hanging tag; this will give you numbers at the left-hand
margin. With some styles of endnotes, you would want to use .PP rather then .1? macros, and specify \H
before the reference begins.

There are four new macros to help produce a table of contents. Table of contents entries must be enclosed in
.XS and .XE pairs, with optional .XA macros for additional entries; arguments to .XS and .XA specify the
page number, to be printed at the right. A final .PX macro prints out the table of contents. Here is a sample of
typical input and output text:

.XS ii
Introduction
.XA 1
Chapter 1: Review of the Literature
.XA 23
Chapter 2: Experimental Evidence
.XE
.PX

Table of Contents

Introduction ... ii
Chapter 1: Review of the Literature .. 1
Chapter 2: Experimental Evidence ... 23

The .XS and .XE pairs may also be used in the text, after a section header for instance, in which case page
numbers are supplied automatically. However, most documents that require a table of contents are too long to
produce in one run, which is necessary if this method is to work. It is recommended that you do a table of
contents after finishing your document. To print out the table of contents, use the .PX macro; if you forget it,
nothing will happen.

As an aid in producing text that will format correctly with both nroff and troff, there are some new string
definitions that define quotation marks and dashes for each of these two formatting programs. The ** suing
will yield two hyphens in nroff, but in troff it will produce an em dash —~, like this one. The *Q and *U
strings will produce “ and ” in trofl‘, but " in nrot‘t‘. (In typesetting, the double quote is traditionally con—
sidered bad form.)

There are now a large number of optional foreign accent marks defined by the ~ms macros. All the accent
marks available in —mos are present, and they all work just as they always did. However, there are better
definitions available by placing .AM at the beginning of your document. Unlike the ~mos accent marks, the
accent strings should come after the letter being accented. Here is a list of the diacritical marks, with exam-
ples of what they look like.

ND-60.328. 1? EN

A Revised Version of —ms
USD121-5

name of accent input output

acute accent e* ’ e
grave accent e*‘ e
circumflex 0*,\ 6
cedilla c*, c
tilde n*~ fi
umlaut u*: h
hacek c*v 5
o-slash o*/ 0
angstrom a*o 3
ae ligature *(ae 3:
AE ligature *(Ae .43
0e ligature *(0e 0:
OE ligature *(Oe (E

If you want to use these new diacritical marks, don’t forget the .AM at the top of your file. Without it, somewill not print at all, and others will be placed on the wrong letter.
It is also possible to produce custom headers and footers that are different on even and odd pages. The DHand .EH macros define odd and even headers, while .0F and .EF define odd and even footers. Arguments tothese four macros are specified as with .tl.

.OH ’ The -mx Macros ’ ’ Page %’

.EH ’Page % ’ ’The -mx Macros’
Note that it would be a error to have an apostrophe in the header text; if you need one, you will have to use adifferent delimiter around the left, center, and right portions of the title. You can use any character as a delim—iter, provided it doesn‘t appear elsewhere in the argument to .OH, .EH, OR or EF.
The —ms macros work in conjunction with the tbl, eqn, and refer preprocessors. Macros to deal with theseitems are read in only as needed, as are the thesis macros (.TM), the special accent mark definitions (.AM),table of contents macros (.XS and .XE), and macros to format the optional cover page. The code for the —mspackage lives in /usr/lib/tmac/tmac.s, and sourced files reside in the directory /usr/ucb/lib/ms.

ND-60.328.1P EN

USDz21-6 ‘ A Revised Version of —ms

ND—60.328. 1 P EN

Writing Papers with NROEF using —me USD222-l

Writing Papers with NROFF using —me

Eric P. Allmani

Project INGRES
Electronics Research Laboratory

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This document describes the text processing facilities available on the UNIXT operating sys—tem via NROFF and the ~me macro package. It is assumed that the reader already is gen-erally familiar with the UNIX operating system and a text editor such as ex. This is intendedto be a casual introduction, and as such not all material is covered. In particular, many vari-ations and additional features of the —me macro package are not explained. For a completediscussion of this and other issues, see The —me Reference Manual and The NROFF/TROFFReference Manual.

1: Author's current address: Briuon Lee, inc., 1919 Addison Suite 105, Berkeley, Califomia 94704
f UNIX is a registered trademark of AT&T in the USA and other countries.

ND—6().328.1P EN

USDz22-2 , Writing Papers with NROFF using —mc

ND-60.328. 1? EN

Writing Papers with NROFF using ~me USD:22-3

INTRODUCTION
NROFF, a computer program that runs on the M operating system, reads an input file prepared by the userand outputs a formatted paper suitable for publication or framing. The input consists of text, or words to beprinted, and requests, which give instructions to the NROFF program telling how to format the printed copy.
Section 1 describes the basics of text processing. Section 2 describes the basic requests. Section 3 introducesdisplays. Annotations, such as footnotes, are handled in section 4. The more complex requests which are notdiscussed in section 2 are covered in section 5. Finally, section 6 discusses things you will need to know ifyou want to typeset documents. If you are a novice, you probably won’t want to read beyond section 4 untilyou have tried some of the basic features out.
When you have your raw text ready, call the NROFF fonnatter by typing as a request to the UNIX shell:

nroff ~me ~Ttypefiles
where type describes the type of terminal you are outputting to. Common values are dtc for a DTC 300$(daisy-wheel type) printer and lpr for the line printer. If the -—T flag is omitted, a "lowest common denomina—tor" terminal is assumed; this is good for previewing output on most terminals. A complete description ofoptions to the NROFF command can be found in The NROFF/TROFF Reference Manual
The word argument is used in this manual to mean a word or number which appears on the same line as arequest which modifies the meaning of that request For example, the request

.sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the .sp request which says to space four lines instead ofone. Arguments are separated from the request and from each other by spaces.

1. BASICS OF TEXT PROCESSING
The primary function of NROFF is to collect words from input lines, fill output lines with those words, justifythe right hand margin by inserting extra spaces in the line, and output the result. For example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, when the
summers seemed bright
and warm and endless,...

will be read, packed onto output lines, and justified to produce:
Now is the time for all good men to come to the aid of their party. Four score and seven years ago,when the summers seemed bright and warm and endless,...

Sometimes you may want to start a new output line even though the line you are on is not yet full; for exam-ple, at the end of a paragraph. To do this you can cause a break, which starts a new output line. Somerequests cause a break automatically, as do blank input lines and input lines beginning with a space.
Not all input lines are text to be formatted. Some of the input lines are requests which describe how to formatthe text. Requests always have a period or an apostrophe (" ’ ") as the first character of the input line.
The text formatter also does more complex things, such as automatically numbering pages, skipping over pagefolds, putting footnotes in the correct place, and so forth.
I can offer you a few hints for preparing text for input to NROFF. First, keep the input lines short. Short inputlines are easier to edit, and NROFF will pack words onto longer lines for you anyhow. In keeping with this, itis helpful to begin a new line after every period, comma, or phrase, since common corrections are to add ordelete sentences or phrases. Second, do not put spaces at the end of lines, since this can sometimes confusethe NROFF processor. Third, do not hyphenate words at the end of lines (except words that should havehyphens in them, such as "mother-in-law"; NROFF is smart enough to hyphenate words for you as needed, but

ND-60.328.1P EN

USD2224 ' Writing Papers with NROFF using —me

is not smart enough to take hyphens out and join a word back together. Also, words such as "mother-in-law"
should not be broken over a line, since then you will get a space where not wanted, such as "mother- in-law" .

2. BASIC REQUESTS

2.1. Paragraphs

Paragraphs are begun by using the .pp request. For example, the input:

‘PP
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago,
when the summers seemed bright and
warm and endless,...

produces a blank line followed by an indented first line. The result is:
Now is the time for all good men to come to the aid of their party. Four score and seven years

ago, when the summers seemed bright and warm and endless,...
Notice that the sentences of the paragraphs must not begin with a space, since blank lines and lines beginning
with spaces cause a break. For example, ifI had typed:

~PP
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago,...

The output would be:

Now is the time for all good men
to come to the aid of their party. Four score and seven years ago,...

A new line begins after the word "men" because the second line began with a space character.
There are many fancier types of paragraphs, which will be described later.

2.2. Headers and Footers

Arbitrary headers and footers can be put at the top and bottom of every page. Two requests of the form
.he title and .fo title define the titles to put at the head and the foot of every page, respectively. The titles are
called three-part titles, that is, there is a left-justified part, a centered part, and a right-justified part. To
separate these three parts the first Character of title (whatever it may be) is used as a delimiter. Any character
may be used, but backslash and double quote marks should be avoided. The percent Sign is replaced by the
current page number whenever found in the title. For example, the input:

.he ”%"

.fo ’Jane Jones”My Book’

results in the page number centered at the top of each page, "lane Jones" in the lower left corner, and "My
Book" in the lower right corner.

2.3. Double Spacing
NROFF will double space output text automatically if you use the request .15 2 , as is done in this section. You

can revert to single spaced mode by typing .ls l .

2.4. Page Layout
A number of requests allow you to change the way the printed copy looks, sometimes called the layout of the
output page. Most of these requests adjust the placing of "white space" (blank lines or spaces). In these expla—
nations, characters in italics should be replaced with values you wish to use; bold characters represent charac-
ters which Should actually be typed.

ND—60.328.1P EN

Writing Papers with NROFF using —me USDz22-5

The .bp request starts a new page.
The request .sp N leaves N lines of blank space. N can be omitted (meaning skip a single line) or can be ofthe form N i (for N inches) or N c (for N centimeters). For example, the input:

.sp 1.5i
My thoughts on the subject
-SP

leaves one and a half inches of space, followed by the line "My thoughts on the subject", followed by a singleblank line.
The .in +N request changes the amount of white space on the left of the page (the indent). The argument Ncan be of the form +N (meaning leave N spaces more than you are already leaving), —N (meaning leave lessthan you do now), or just N (meaning leave exactly N spaces). N can be of the form N i or N c also. Forexample, the input:

initial text
.in 5
some text
.in +Ii
more text
.in ~2c
final text

produces "some text" indented exactly five spaces from the left margin, "more text" indented five spaces plusone inch from the left margin (fifteen spaces on a pica typewriter), and "final text" indented five spaces plusone inch minus two centimeters from the margin. That is, the output is:
initial text

some text
more text

final text

The .ti +N (temporary indent) request is used like .in +N when the indent should apply to one line only, afterwhich it should revert to the previous indent. For example, the input:
.in 1i
.ti 0
Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius’ most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

produces:
Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent book containing translations of

most of Confucius’ most delightful sayings. A definite must for anyone interested in the
early foundations of Chinese philosophy.

Text lines can be centered by using the .ce request. The line after the .ce is centered (horizontally) on thepage. To center more than one line, use .ce N (where N is the number of lines to center), followed by the Nlines. If you want to center many lines but don’t want to count them, type:
.ce 1000
lines to center
.ce 0

The .ce 0 request tells NROFF to center zero more lines, in other words, stop centering.
All of these requests cause a break; that is, they always start a new line. If you want to start a new linewithout performing any other action, use .br.

ND~60.328.1P EN

USD:22-6 ~ Writing Papers with NROFF using —me

2.5. Underlining
Text can be underlined using the .ul request. The .ul request causes the next input line to be underlined when
output. You can underline multiple lines by stating a count of input lines to underline, followed by those lines
(as with the .ce request). For example, the input:

.ul 2
Notice that these two input lines
are underlined.

will underline those eight words in NROFF. (In TROFF they will be set in italics.)

3. DISPLAYS
Displays are sections of text to be set off from the body of the paper. Major quotes, tables, and figures are
types of displays, as are all the examples used in this document. All displays except centered blocks are output
single spaced.

3.1. Major Quotes
Major quotes are quotes which are several lines long, and hence are set in from the rest of the text without
quote marks around them. These can be generated using the commands .(q and .)q to surround the quote. For
example, the input

As Weiaenbaum points out:
((1
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming,...
.)q

generates as output:
As Weizenbaum points out:

It is said that to explain is to explain away. This maxim is nowhere so well fulfilled as in the areas of computer pro-
granuning,...

3.2. Lists
A list is an indented, single spaced, unfilled display. Lists should be used when the material to be printed
should not be filled and justified like normal text, such as columns of figures or the examples used in this
paper. Lists are surrounded by the requests .0 and .)l. For example, type:

Alternatives to avoid deadlock are:
.0
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
.)l

will produce:
Alternatives to avoid deadlock are:

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

3.3. Keeps

A keep is a display of lines which are kept on a single page if possible. An example of where you would use
a keep might be a diagram. Keeps differ from lists in that lists may be broken over a page boundary whereas
keeps will not.

ND-60.328.1P EN

Writing Papers with NROFF using —me USDz22-7

Blocks are the basic kind of keep. They begin with the request .(b and end with the request .)b. If there is notroom on the current page for everything in the block, a new page is begun. This has the unpleasant effect ofleaving blank space at the bottom of the page. When this is not appropriate, you can use the alternative, calledfloating keeps.
Floating keeps move relative to the text. Hence, they are good for things which will be referred to by name,such as "See figure 3" . A floating keep will appear at the bottom of the current page if it will fit; otherwise, itwill appear at the top of the next page. Floating keeps begin with the line .(z and end with the line .)2. For an
example of a floating keep, see figure 1.

.(z
Text of keep to be floated.
SP
.ce
Figure 1. Example of a Floating Keep.
.)z

Figure 1. Example of a Floating Keep.

3.4. Fancier Displays
Keeps and lists are normally collected in nofill mode, so that they are good for tables and such. If you want a
display in fill mode (for text), type .(l F (Throughout this section, comments applied to .(I also apply to .(b and
.(z). This kind of display will be indented from both margins. For example, the input;

.0 F
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
.)l

will be output as:
And now boys and girls, a newer, bigger, better toy than ever before! Be the first on your
block to have your own computer! Yes kids, you too can have one of these modern data
processing devices. You too can produce beautifully formatted papers without even batting
an eye!

Lists and blocks are also normally indented (floating keeps are normally left justified). To get a left-justifiedlist, type .(I L. To get a list centered line-for-line, type .(I C. For example, to get a filled, left justified list,
enter:

.(1 L F
text of block
.)l

The input:

.(l
first line of unfilled display
more lines
.)l

produces the indented text:

ND-60.328.1P EN

USD222-8 ' > Writing Papers with NROFF using —me

first line of unfilled display
more lines

Typing the character L after the .(I request produces the left justified result:
first line of unfilled display
more lines
Using C instead of L produces the line—at-a-time centered output:

first line of unfilled display
more lines

Sometimes it may be that you want to center several lines as a group, rather than centering them one line at a
time. To do this use centered blocks, which are surrounded by the requests .(c and .)c. All the lines are cen-
tered as a unit, such that the longest line is centered and the rest are lined up around that line. Notice that lines
do not move relative to each other using centered blocks, whereas they do using the C argument to keeps.
Centered blocks are not keeps, and may be used in conjunction with keeps. For example, to center a group of
lines as a unit and keep them on one page, use:

.(b L

.(c
first line of unfilled display
more lines
.)c
.)b

to produce:
first line of unfilled display
more lines

If the block requests (.(b and .)b) had been omitted the result would have been the same, but with no guaran-
tee that the lines of the centered block would have all been on one page. Note the use of the L argument to
.(b; this causes the centered block to center within the entire line rather than within the line minus the indent.
Also, the center requests must be nested inside the keep requests.

4. ANNOTATIONS
There are a number of requests to save text for later printing. Footnotes are printed at the bottom of the
current page. Delayed text is intended to be a variant form of footnote; the text is printed only when explicitly
called for, such as at the end of each chapter. Indexes are a type of delayed text having a tag (usually the page
number) attached to each entry after a row of dots. Indexes are also saved until called for explicitly.

4.1. Footnotes

Footnotes begin with the request .(f and end with the request .)l'. The current footnote number is maintained
automatically, and can be used by typing **, to produce a footnote number.1 The number is automatically
incremented after every footnote. For example, the input:

‘ Like this.

ND-60.328.1P EN

Writing Papers with NROFF using —me USD:22-9

.(q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.**
.(f
** James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1950.
Page 77.
.)f
-)q

generates the result:
A man who is not upright and at the same time is presumptuous; one who is not diligent and at the same time isignorant; one who is untruthful and at the same time is incompetent; such men I do not count among acquain-2tances.

It is important that the footnote appears inside the quote, so that you can be sure that the footnote will appearon the same page as the quote.

4.2. Delayed Text
Delayed text is very similar to a footnote except that it is printed when called for explicitly. This allows a listof references to appear (for example) at the end of each chapter, as is the convention in some disciplines. Use*# on delayed text instead of ** as on footnotes.
If you are using delayed text as your standard reference mechanism, you can still use footnotes, except that youmay want to reference them with special charactersf rather than numbers.

4.3. Indexes

An "index" (actually more like a table of contents, since the entries are not sorted alphabetically) resemblesdelayed text, in that it is saved until called for. However, each entry has the page number (or some other tag)appended to the last line of the index entry after a row of dots.
Index entries begin with the request .(x and end with .)x. The .)x request may have a argument, which is thevalue to print as the "page number" . It defaults to the cunent page number. If the page number given is anunderscore ("_") no page number or line of dots is printed at all. To get the line of dots without a pagenumber, type .)x "", which specifies an explicitly null page number.
The .xp request prints the index.
For example, the input:

2 James R. Ware, The Best ofCorJucius, Halcyon House, 1950 Page 77.
1" Such as a dagger.

ND—60.328.IP EN

USD:22-10 . . Writing Papers with NROFF using —me

.(x
Sealing wax
.)x
.(x
Cabbages and kings
.)x _
.(x
Why the sea is boiling hot
.)x 2.5a
.(x
Whether pigs have wings
.)x
.(x
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines.
.)x
.xp

generates:
Sealing wax ...2
Cabbages and kings ...3
Why the sea is boiling hot ..4
Whether pigs have wings ..5
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines..6

The .(x request may have a single character argument, specifying the "name" of the index; the normal index is
x. Thus, several "indices" may be maintained simultaneously (such as a list of tables, table of contents, etc.).
Notice that the index must be printed at the end of the paper, rather than at the beginning where it will prob-
ably appear (as a table of contents); the pages may have to be physically rearranged after printing.

5. FANCIER FEATURES
A large number of fancier requests exist, notably requests to provide other sorts of paragraphs, numbered sec—
tions of the form 1.2.3 (such as used in this document), and multicolumn output.

5.1. More Paragraphs
Paragraphs generally start with a blank line and with the first line indented. It is possible to get left—justified
block-style paragraphs by using .19 instead of .pp, as demonstrated by the next paragraph.
Sometimes you want to use paragraphs that have the body indented, and the first line exdented (opposite of
indented) with a label. This can be done with the .ip request. A word specified on the same line as .ip is
printed in the margin, and the body is lined up at a prespecified position (normally five spaces). For example,
the input:

ND-60.328.1P EN

Writing Papers with NROFF using —me USD122-11

.ip one
This is the first paragraph.
Notice how the first line
of the resulting paragraph lines up
with the other lines in the paragraph.
.ip two
And here we are at the second paragraph already.
You may notice that the argument to .ip
appears
in the margin.
.lp
We can continue text...

produces as output
one This is the first paragraph. Notice how the first line of the resulting paragraph lines up with the otherlines in the paragraph.
two And here we are at the second paragraph already. You may notice that the argument to .ip appears inthe margin.
We can continue text without starting a new indented paragraph by using the .lp request
If you have spaces in the label of a .ip request, you must use an "unpaddable space" instead of a regular space.This is typed as a backslash character ("\") followed by a space. For example, to print the label "Part 1" ,enter:

.ip "Pan\ 1"
If a label of an indented paragraph (that is, the argument to .ip) is longer than the space allocated for the label,.ip will begin a new line after the label. For example, the input:

.ip longlabel
This paragraph had a long label.
The first character of text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

will produce:
longlabel

This paragraph had a long label. The first character of text on the first line will not line up with the texton second and subsequent lines, although they will line up with each other.
It is possible to change the size of the label by using a second argument which is the size of the label. Forexample, the above example could be done correctly by saying:

.ip longlabel 10
which will make the paragraph indent 10 spaces for this paragraph only. If you have many paragraphs toindent all the same amount, use the number register ii. For example, to leave one inch of space for the label,type:

.nr ii li

somewhere before the first call to .ip. Refer to the reference manual for more information.
If .ip is used with no argument at all no hanging tag will be printed. For example, the input:

it) [a]
This is the first paragraph of the example.
We have seen this sort of example before.
.ip
This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

ND-60.328.1P EN

USD122—12 - ‘ ' Writing Papers with NROFF using —me

produces as output:

[a] This is the first paragraph of the example. We have seen this sort of example before.
This paragraph is lined up with the previous paragraph, but it has no tag in the margin.

A special case of .ip is .np, which automatically numbers paragraphs sequentially from 1. The numbering is
reset at the next .pp, .lp, or .sh (to be described in the next section) request. For example, the input:

.np
This is the first point
.np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by the .np request.
.lp
This paragraph will reset numbering by .np.
.np
For example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.
(2) This is the second point. Points are just regular paragraphs which are given sequence numbers automati-

cally by the .np request.
This paragraph will reset numbering by .np.
(1) For example, we have reverted to numbering from one now.
The .bu request gives lists of this sort that are identified with bullets rather than numbers. The paragraphs are
also crunched together. For example, the input:

.bu
One egg yolk
.bu
One tablespoon cream or top milk
.bu
Salt, cayenne, and lemon juice to taste
.bu
A generous two tablespoonfuls of butter

produces3:
0 One egg yolk
0 One tablespoon cream or top milk
0 Salt, cayenne, and lemon juice to taste
0 A generous two tablespoonfuls of butter

5.2. Section Headings
Section numbers (such as the ones used in this document) can be automatically generated using the .sh request.
You must tell .sh the depth of the section number and a section title. The depth specifies how many numbers
are to appear (separated by decimal points) in the section number. For example, the section number 4.2.5 has
a depth of three.
Section numbers are incremented in a fairly intuitive fashion. If you add a number (increase the depth), the
new number starts out at one. If you subtract section numbers (or keep the same number) the final number is

3 By the way. if you put the first three ingredients in a heavy, deep pan and whisk the ingredients madly over a
medium flame (never taking your hand off the handle of the pot) until the mixture reaches the consistency of custard (just
a minute or two), then mix in the butter off-heat, you will have a wonderful llollandaise sauce.

ND-60.328.lP EN

Writing Papers with NROFF uSing ~me USD:22~13

incremented. For example, the input:

.sh 1 "The Preprocessor"

.sh 2 "Basic Concepts"

.sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 "Code Generation"

.sh 3

produces as output the result

1. The Preprocossor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

You can specify the section number to begin by placing the section number after the section title, using spacesinstead of dots. For example, the request:
.sh 3 "Another section" 7 3 4

will begin the section numbered 7.3.4; all subsequent .sh requests will number relative to this number.
There are more complex features which will cause each section to be indented proportionally to the depth ofthe section. For example, if you enter:

.nr si N

each section will be indented by an amount N. N must have a scaling factor attached, that is, it must be of theform Nx, where x is a character telling what units N is in. Common values for x are i for inches, c for cen-timeters, and n for ens (the width of a single character). For example, to indent each section one—half inch,type:

.nr si 0.5i

Section headers without automatically generated numbers can be done using:
.uh "Title"

which will do a section heading, but will put no number on the section.

5.3. Parts of the Basic Paper
There are some requests which assist in setting up papers. The .tp request initializes for a title page. Thereare no headers or footers on a title page, and unlike other pages you can space down and leave blank space atthe top. For example, a typical title page might appear as:

.tp

.sp 2i

.(l C
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
SD
Frank N. Furtcr
.)l
.bp

ND—60.328.1P EN

USDz22-l4 ‘ 1 Writing Papers with NROFF using ~me

The request .th sets up the environment of the NROFF processor to do a thesis, using the rules established at
Berkeley. It defines the correct headers and footers (a page number in the upper right hand comer only), sets
the margins correctly, and double spaces.

The .+c T request can be used to start chapters. Each chapter is automatically numbered from one, and a
heading is printed at the top of each chapter with the chapter number and the chapter name T. For example, to
begin a chapter called "Conclusions", use the request:

.+c "CONCLUSIONS"

which will produce, on a new page, the lines

CHAPTER 5
CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot of the page on the first page of a
chapter. Although the .+c request was not designed to work only with the .th request, it is tuned for the for—
mat acceptable for a PhD thesis at Berkeley.
If the title parameter T is omitted from the .+c request, the result is a chapter with no heading. This can also
be used at the beginning of a paper; for example, .+c was used to generate page one of this document
Although papers traditionally have the abstract, table of contents, and so forth at the front of the paper, it is
more convenient to format and print them last when using NROFF. This is so that index entries can be collected
and then printed for the table of contents (or whatever). At the end of the paper, issue the .++ P request,
which begins the preliminary part of the paper. After issuing this request, the .+c request will begin a prelim-
inary section of the paper. Most notably, this prints the page number restarted from one in lower case Roman
numbers. .+c may be used repeatedly to begin different parts of the front material for example, the abstract,
the table of contents, acknowledgments, list of illustrations, etc. The request .++ B may also be used to begin
the bibliographic section at the end of the paper. For example, the paper might appear as outlined in figure 2.
(In this figure, comments begin with the sequence \".)

5.4. Equations and Tables
Two special UNIX programs exist to format special types of material. Eqn and neqn set equations for the pho-
totypesetter and NROFF respectively. Tbl arranges to print extremely pretty tables in a variety of formats. This
document will only describe the embellishments to the standard features; consult the reference manuals for
those processors for a description of their use.
The eqn and neqn programs are described fully in the document Typesetting Mathematics — User's Guide by
Brian W. Kernighan and Lorinda L. Cherry. Equations are centered, and are kept on one page. They are intro—
duced by the .EQ request and terminated by the .EN request
The .EQ request may take an equation number as an optional argument, which is printed vertically centered on
the right hand side of the equation. If the equation becomes too long it should be split between two lines. To
do this, type:

ND~60.328.1P EN

Writing Papers with NROFF uSing —me

text of chapter one
.+c "NEXT CHAPTER"
.(x t
Next Chapter
.)x
text of chapter two
.+c CONCLUSIONS
.(x t
Conclusions
.)x
text of chapter three
.++ B
.+c BIBLIOGRAPHY
.(x t
Bibliography
.)x
text of bibliography
.++ P
.+c "TABLE OF CONTENTS"
.xp t
.+c PREFACE
text of preface

.th \" set for thesis mode

.fo ”DRAFT” \" define footer for each page

.tp \" begin title page

.(l C \" center a large block
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank Furter
.)l \" end centered part
.+c INTRODUCTION \" begin chapter named "INTRODUCTION".(x t \" make an entry into index ‘t’
Introduction
.)x \" end of index entry

\" begin another chapter
\" enter into index ‘t’ again

\" begin bibliographic information
\" begin another ‘chapter’

\" begin preliminary material

\" print index ‘t’ collected above
\" begin another preliminary section

Figure 2. Outline of a Sample Paper

-EQ (at 34)
text of equation 34
.EN C
.EQ
continuation of equation 34
.EN

the part of the table which you want duplicated at the to
ple, a table definition for a long table might look like:

The C on the .EN request specifies that the equation will be continued.
The tbl program produces tables. It is fully described (including numerous examples) in the document Tb! — AProgram to Format Tables by M. E. Lesk. Tables begin with the .TS request and end with the .TE request.Tables are normally kept on a single page. If you have a table which is too big to fit on a single page, so thatyou know it will extend to several pages, begin the table with the request .TS H and put the request .TH after

p of every page that the table is printed on. For exam—

USDz22~15

ND—60.328.1P EN

USD:22—16 ' ‘ Writing Papers with NROFF using —me

.TS H
c s s
n n n.
THE TABLE TITLE
.TH
text of the table
.113

5.5. Two Column Output

You can get two column output automatically by using the request .2c. This causes everything after it to be
output in twomlumn form. The request be will start a new column; it differs from .bp in that .bp may leave
a totally blank column when it starts a new page. To revert to single column output, use .1c.

5.6. Defining Macros

A macro is a collection of requests and text which may be used by stating a simple request. Macros begin
with the line .de xx (where xx is the name of the macro to be defined) and end with the line consisting of two
dots. After defining the macro, stating the line .xx is the same as stating all the other lines. For example, to
define a macro that spaces 3 lines and then centers the next input line, enter:

.de SS

.sp 3
cc

and use it by typing:

.53
Title Line
(beginning of text)

Macro names may be one or two characters. In order to avoid conflicts with names in ~me, always use upper
case letters as names. The only names to avoid are TS, TH, TE, EQ, and EN.

5.7. Annotations Inside Keeps
Sometimes you may want to put a footnote or index entry inside a keep. For example, if you want to maintain
a "list of figures" you will want to do something like:

.(z

.(c
text of figure
-)C
.ce
Figure 5.
.(x f
Figure 5
.)x
.)z

which you may hope will give you a figure with a label and an entry in the index f (presumably a list of
figures index). Unfortunately, the index entry is read and interpreted when the keep is read, not when it is
printed, so the page number in the index is likely to be wrong. The solution is to use the magic string \! at the
beginning of all the lines dealing with the index. In other words, you should use:

ND-60.328.1P EN

Writing Papers with NROFF using —me USD222—17

.(z

.(c
Text of figure
-)C
.ce
Figure 5.
V.(x f
VFigure 5
\l.)x
.)2

which will defer the processing of the index until the figure is output. This will guarantee that the pagenumber in the index is correcL The same comments apply to blocks (with .(b and .)b) as well.

6. TROFF AND THE PHOTOSE’ITER
With a little care, you can prepare documents that will print nicely on either a regular terminal or when photo-typeset using the TROFF formatting program.

6.1. Fonts
A fan: is a style of type. There are three fonts that are available simultaneously, Times Roman, Times Italic,and Times Bold, plus the special math font. The normal font is Roman. Text which would be underlined inNROFF with the .ul request is set in italics in TROFF.
There are ways of switching between fonts. The requests .r, .i, and .b switch to Roman, italic, and bold fontsrespectively. You can set a single word in some font by typing (for example):

.i word

which will set word in italics but does not affect the surrounding text. In NROFF, italic and bold text is under—lined.
Notice that if you are setting more than one word in whatever font, you must surround that word with doublequote marks (‘ " ’) so that it will appear to the NROFF processor as a single word. The quote marks will notappear in the formatted text. If you do want a quote mark to appear, you should quote the entire string (even ifa single word), and use two quote marks where you want one to appear. For example, if you want to producethe text:

"Master Control "

in italics, you must type:

.1 """Master Control\|
The \l produces a very narrow space so that the "I" does not overlap the quote sign in TROFF, like this:

"Master Control”

There are also several "pseudo-fonts" available. The input:

-(b
.u underlined
.bi "bold-italics"
.bx "words in a box"
.)b

generates

underlined
bold-italics

O I 1 I"

In NROFF these all just underline the text. Notice that pseudo font requests set only the single parameter in thepseudo font; ordinary font requests will begin setting all text in the special font if you do not provide a

ND-60.328.IP EN

USD222—18 ‘ ' Writing Papers with NROFF using —me

parameter. No more than one word should appear with these three font requests in the middle of lines. This is
because of the way TROFF justifies text.

The second parameter of all font requests is set in the original font. For example, the font request;
.b bold face

generates "bold" in bold font, but sets "face" in the font of the surrounding text, resulting in:
boldface.

To set the two words bold and face both in bold face, type:

.b "bold face"

You can mix fonts in a word by using the special sequence \c at the end of a line to indicate "continue text
processing" ; this allows input lines to be joined together without a space between them. For example, the
input:

.u under‘c

.i italics

generates tinderitalics , but if we had typed:

.u under

.i italics

the result would have been Ede; italics as two words.

6.2. Point Sizes

The phototypesetter supports different sizes of type, measured in points. The default point size is 10 points for
most text, 8 points for footnotes. To change the pointsize, type:

.52 +N

where N is the size wanted in points. The vertical spacing (distance between the bottom of most letters (the
baseline) between adjacent lines) is set to be proportional to the type size.
These pointsize changes are temporary!!! For example, to reset the pointsize of basic text to twelve point,
use:

.nr pp 12

.nr sp 12

.nr tp 12

to reset the default pointsize of paragraphs, section headers, and titles respectively. If you only want to set the
names of sections in a larger pointsize, use:

.nr sp 11

alone —— this sets section titles (e.g., Point Sizes above) in a larger font than the default
A single word or phrase can be set in a smaller pointsize than the surrounding text using the .sm request. This
is especially convenient for words that are all capitals, due to the optical illusion that makes them look even
larger than they actually are. For example:

.sm UNIX

prints as UNIX rather than UNIX.
Warning: changing point sizes on the phototypesetter is a slow mechanical operation. On laser printers it may
require loading new fonts. Size changes should be considered carefully.

6.3. Quotes

It is conventional when using the typesetter to use pairs of grave and acute accents to generate double quotes,
rather than the double quote character (‘ " ’). This is because it looks better to use grave and acute accents; for
example, compare "quote" to “quote”.

ND-60.328.1P EN

Writing Papers with NROFF using —me USD222-19

In order to make quotes compatible between the typesetter and terminals, you may use the sequences \‘(lq and
*(rq to stand for the left and right quote respectively. These both appear as " on most terminals, but are
typeset as “ and ” respectively. For example, use:

*(qome things aren't true
even if they did happen-“(Kl

to generate the result:

“Some things aren’t true even if they did happen.”
As a shorthand. the special font request:

.q "quoted text"

will generate “quoted text” . Notice that you must sumound the material to be quoted with double quotemarks if it is more than one word.

ACKNOWLEDGEMENTS
I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use the —me macros to
produce non-trivial papers during the development stages; Ricki Blau, Pamela Humphrey, and Jim Joyce for
their help with the documentation phase; Peter Kessler for numerous complaints years after I was "done" with
this project, most accompanied by fixes (hence forcing me to fix several small bugs); and the plethora of peo—
ple who have contributed ideas and have given support for the project.

ND—60.328.1P EN

USD122-20 ' Writing Papers with NROFF using ~mc

ND-60.328.1P EN

~me Reference Manual , USDz23-l

—ME REFERENCE MANUAL

Release 1.1/25

Eric P. Allman

Electronics Research Laboratory
University of California, Berkeley

Berkeley, California 94720

ABSTRACT

This document describes in extremely terse form the features of the —me macro package for
version seven NROFFfFROFF “r. Some familiarity is assumed with those programs,
specifically, the reader should understand breaks, fonts, pointsizes, the use and definition of
number registers and strings, how to define macros, and scaling factors for ens, points, v’s
(vertical line spaces), etc.
For a more casual introduction to text processing using NROFF, refer to the document Writ-
ing Papers with NROFF using —me.

T NROFF and TROFF are Trademarks of Bell Laboratories.

NIB-60328.1? EN

USD:23-2 ~ —me Reference Manual

ND-60.328.1P EN

——me Reference Manual - USD123-3

INTRODUCTION
There are a number of macro parameters that may be adjusted. Fonts may be set to a font number only. In
NROFF font 8 is underlined, and is set in bold font in TROFF (although font 3, bold in TROFF, is not under-lined in NROFF). Font 0 is no font change; the font of the surrounding text is used instead. Notice that fonts 0
and 8 are "pseudo—fonts"; that is, they are simulated by the macros. This means that although it is legal to seta font register to zero or eight, it is not legal to use the escape character form, such as:

\f8

All distances are in basic units, so it is nearly always necessary to use a scaling factor. For example, therequest to set the paragraph indent to eight one-en spaces is:
.nr pi 8n

and not

.nr pi 8

which would set the paragraph indent to eight basic units, or about 0.02 inch. Default parameter values are
given in brackets in the remainder of this document.
Registers and strings of the form $x may be used in expressions but should not be changed. Macros of the
form $x perform some function (as described) and may be redefined to change this function. This may be a
sensitive operation; look at the body of the original macro before changing it.
All names in «me follow a rigid naming convention. The user may define number registers, strings, and mac-ros, provided that s/he uses single character upper case names or double character names consisting of letters
and digits, with at least one upper case letter. In no case should special characters be used in user-definednames.
On daisy wheel type printers in twelve pitch, the -rx1 flag can be stated to make lines default to one eighth
inch (the normal spacing for a newline in twelve—pitch). This is normally too small for easy readability, so the
default is to space one sixth inch.
This documentation applies to version 1.1/25 of the —me macros.

l. Paragraphing
These macros are used to begin paragraphs. The standard paragraph macro is .pp; the others are all variants to
be used for special purposes.
The first call to one of the paragraphing macros defined in this section or the .sh macro (defined in the next
session) initializes the macro processor. After initialization it is not possible to use any of the following
requests: .sc, .lo, .th, or .ac. Also, the effects of changing parameters which will have a global effect on the
format of the page (notably page length and header and footer margins) are not well defined and should be
avoided.

.lp Begin left-justified paragraph. Centering and underlining are turned off if they were on,
the font is set to \n(pl‘ [1] the type size is set to \n(pp [10p], and a \n(ps space is
inserted before the paragraph [0.35v in TROFF, IV or 0.5V in NROFF depending on dev-
ice resolution]. The indent is reset to \n($i [0] plus \n(po [0] unless the paragraph is
inside a display. (see .ba). At least the first two lines of the paragraph are kept
together on a page.

.pp Like .lp, except that it puts \n(pi [5n] units of indent. This is the standard paragraph
macro.

.ip T I lndented paragraph with hanging tag. The body of the following paragraph is indented
1 spaces (or \n(ii [5n] spaces if I is not specified) more than a non-indented paragraph
(such as with .pp) is. The title T is exdented (opposite of indented). The result is a
paragraph with an even left edge and T printed in the margin. Any spaces in T must be
unpaddable. If T will not fit in the space provided, .ip will start a new line.

.np A variant of .ip which numbers paragraphs. Numbering is reset after a .lp, .pp, or .sh.
The current paragraph number is in \n(Sp.

ND—60.328.1P EN

USDz23-4 . . ~me Reference Manual

2. Section Headings
Numbered sections are similiar to paragraphs except that a section number is automatically generated for each
one. The section numbers are of the form 1.2.3. The depth of the section is the count of numbers (separated
by decimal points) in the section number.
Unnumbered section headings are similar, except that no number is attached to the heading.
.sh +N T a b c d ef Begin numbered section of depth N. if N is missing the current depth (maintained in

the number register \n($0) is used. The values of the individual parts of the section
number are maintained in \n($l through \n($6. There is a \n(ss [1v] space before the
section. T is printed as a section title in font \n(sf [8] and size \n(sp [10p]. The of the
section may be accessed via *($n. If \n(si is non-zero, the base indent is set to \n(si
times the section depth, and the section title is exdented. (See .ba.) Also, an additional
indent of \n(so [0] is added to the section title (but not to the body of the section). The
font is then set to the paragraph font. so that more information may occur on the line
with the section number and title. .sh insures that there is enough room to print the sec-
tion head plus the beginning of a paragraph (about 3 lines total). If a through f are
specified, the section number is set to that number rather than incremented automati-
cally. If any of a throughf are a hyphen that number is not reset. If T is a single
underscore (then the section depth and numbering is reset, but the base indent is not
reset and nothing is printed out. This is useful to automatically coordinate section
numbers with chapter numbers.

.sx +N Go to section depth N [—1], but do not print the number and title, and do not increment
the section number at level N. This has the effect of starting a new paragraph at level
N .

.uh T Unnumbered section heading. The title T is printed with the same rules for spacing,
font, etc., as for .sh.

.$p T B N Print section heading. May be redefined to get fancier headings. T is the title passed
on the .sh or .uh line; B is the section number for this section, and N is the depth of
this section. These parameters are not always present; in particular, .sh passes all three,
.uh passes only the first, and .sx passes three, but the first two are null strings. Care
should be taken if this macro is redefined; it is quite complex and subtle.

.$0 T B N This macro is called automatically after every call to .$p. It is normally undefined, but
may be used to automatically put every section title into the table of contents or for
some sirniliar function. T is the section title for the section title which was just printed,
B is the section number, and N is the section depth.

.$1 — .$6 Traps called just before printing that depth section. May be defined to (for example)
give variable spacing before sections. These macros are called from 3;), so if you
redefine that macro you may lose this feature.

3. Headers and Footers

Headers and footers are put at the top and bottom of every page automatically. They are set in font \n(tf [3]and size \n(tp [10p]. Each of the definitions apply as of the next page. Three-part titles must be quoted ifthere are two blanks adjacent anywhere in the title or more than eight blanks total.
The spacing of headers and footers are controlled by three number registers. \n(hm [4v] is the distance fromthe top of the page to the top of the header, \n(fm [3v] is the distance from the bottom of the page to the bot-tom of the footer, \n(tm [7v] is the distance from the top of the page to the top of the text, and \n(bm [6v] isthe distance from the bottom of the page to the bottom of the text (nominal). The macros .m1, .m2, .m3, and.m4 are also supplied for compatibility with ROFF documents.
.he ’1 ’m ’r ’ Define three—part header, to be printed on the top of every page.
.fo ’1 ’m ’r ’ Define footer, to be printed at the bottom of every page.
.eh ’I ’m ’r ’ Define header, to be printed at the top of every even—numbered page.
.oh ’1 ’m ’r’ Define header, to be printed at the top of every odd-numbered page.

ND<60.328.1P EN

—me Reference Manual - ' USD223-5

.ef ’1 ’m’r’

.of ’l ’m ’r ’

.hx

.ml +N

.m2 +N

.m3 +N

.m4 +N

3P

.Sh

3f

4. Displays

Define footer, to be printed at the bottom of every even~numbered page.
Define footer, to be printed at the bottom of every odd-numbered page.
Suppress headers and footers on the next page.
Set the space between the top of the page and the header [4v].
Set the space between the header and the first line of text [2v].
Set the space between the bottom of the text and the footer [2v].
Set the space between the footer and the bottom of the page [4v].
End this page, but do not begin the next page. Useful for forcing out foomotes, but
other than that hardly every used. Must be followed by a .bp or the end of input
Called at every page to print the header. May be redefined to provide fancy (e.g.,
multi-line) headers, but doing so loses the function of the .he, .fo, .eh, .oh, .ef, and .of
requests, as well as the chapter—style title feature of .+c.
Print footer; same comments apply as in .Sh.
A normally undefined macro which is called at the top of each page (after outputing the
header, initial saved floating keeps, etc); in other words, this macro is called immedi-
ate before printing text on a page. It can be used for column headings and the like.

All displays except centered blocks and block quotes are preceeded and followed by an extra \n(bs [same as\n(ps] space. Quote spacing is stored in a separate register, centered blocks have no default initial or trailingspace. The venical spacing of all displays except quotes and centered blocks is stored in register \n(SR insteadof \n($r.
.(l m f

.)l

-((l

N
.(b m f

.)b

.(z m f

.)z

.(c

Begin list. Lists are single spaced, unfilled text Iff is F, the list will be filled. If m
[I] is I the list is indented by \n(bi [4n]; if M the list is indented to the left margin; if L
the list is left justified with respect to the text (different from M only if the base indent
(stored in \n(Si and set with .ba) is not zero); and if C the list is centered on a line-by-
line basis. The list is set in font \n(df [0]. Must be matched by a .)I. This macro is
almost like .(b except that no attempt is made to keep the display on one page.
End list.

Begin major quote. These are single spaced, filled, moved in from the text on both
sides by \n(qi [4n], preceeded and followed by \n(qs [same as \n(bs] space, and are set
in point size \n(qp [one point smaller than surrounding text].
End major quote.
Begin block. Blocks are a form of keep, where the text of a keep is kept together on
one page if possible (keeps are useful for tables and figures which should not be broken
over a page). If the block will not fit on the current page a new page is begun, unless
that would leave more than \n(bt [0] white space at the bottom of the text If \n(bt is
zero, the threshold feature is turned off. Blocks are not filled unless f is F, when they
are filled. The block will be leftjustified if m is L, indented by \n(bi [4n] if m is I or
absent, centered (line-for—line) if m is C, and left justified to the margin (not to the base
indent) ifm is M. The block is set in font \n(df [0].
End block.
Begin floating keep. Like .0) except that the keep is floated to the bottom of the page
or the top of the next page. Therefore, its position relative to the text changes. The
floating keep is preceeded and followed by \n(zs [1v] space. Also, it defaults to mode
M.
End floating keep.
Begin centered block. The next keep is centered as a block, rather than on a lineby-
line basis as with .(b C. This call may be nested inside keeps.

ND-60.328.1P EN

US D223-6

.)c

5. Annotations

.(d

.)d n

.pd

.(f

.)f n

.$s

.)xl’ A

.xpx

6. Columned Output
.2c +S N

.1c

.bc

7. Fonts and Sizes
.52 +P

.rWX

.bWX

.eX

ND-60.328.1P EN

~me Reference Manual

End centered block.

Begin delayed text. Everything in the next keep is saved for output later with .pd, in a
manner similar to footnotes.
End delayed text. The delayed text number register \n($d and the associated string \"#
are incremented if \‘# has been referenced.
Print delayed text. Everything diverted via .(d is printed and truncated. This might be
used at the end of each chapter.
Begin footnote. The text of the footnote is floated to the bottom of the page and set in
font \n(ff [l] and size \n(fp [8p]. Each entry is preceeded by \n(fs [0.2V] space, is
indented \n(fi [3n] on the first line, and is indented \n(fu [0] from the right margin.
Footnotes line up undemeath two columned output If the text of the footnote will not
all fit on one page it will be carried over to the next page.
End footnote. The number register \n($f and the associated string *“ are incremented
if they have been referenced
The macro to output the footnote seperator. This macro may be redefined to give other
size lines or other types of separators. Currently it draws a 1.5i line.
Begin index entry. Index entries are saved in the index x [x] until called up with .xp.
Each entry is preceeded by a \n(xs [0.2V] space. Each entry is by \n(xu [0.5i]; this
register tells how far the page number extends into the right margin.
End index entry. The index entry is finished with a row of dots with A [null] right
justified on the last line (such as for an author’s name), followed by P [\n%]. If A is
specified, P must be specified; \n% can be used to print the current page number. If P
is an underscore, no page number and no row of dots are printed
Print index x [x]. The index is formated in the font, size, and so forth in effect at the
time it is printed, rather than at the time it is collected.

Enter two-column mode. The column separation is set to +5 [4n, 0.5i in ACM mode]
(saved in \n($S). The column width, calculated to fill the single column line length with
both columns, is stored in \n($l. The current column is in \n($c. You can test register
\n($m [l] to see if you are in single column or double column mode. Actually, the
request enters N [2] columned output.
Revert to single—column mode.
Begin column. This is like .bp except that it begins a new column on a new page only
if necessary, rather than forcing a whole new page if there is another column left on the
current page.

The pointsize is set to P [10p}, and the line spacing is set proportionally. The ratio of
line spacing to pointsize is stored in \n($r. The ratio used internally by displays and
annotations is stored in \n($R (although this is not used by .52).
Set W in roman font, appending X in the previous font. To append different font
requests, use X = \c. If no parameters, change to roman font.
Set W in italics, appending X in the previous font If no parameters, change to italic
font. Underlines in NROFF.
Set W in bold font and append X in the previous font. If no parameters, switch to bold
font. In NROFF, underlines.
Set W in bold font and append X in the previous font. If no parameters, switch to bold
font. .rb differs from .b in that .rb does not underline in NROFF.

—me Reference Manual _ USD:23-7

.uWX

.qWX

.bi WX

.bx WX

8. R0” Support
.ix +N

.bl N

.pa +N

.ro

.ar

.n 1

.n2 N

.sk

Underline W and append X. This is a true underlining, as opposed to the .ul request,which changes to (usually italics in 'I‘ROFF). It won’t work right if W is spread or bro-ken (including hyphenated). In other words, it is safe in nofill mode only.
Quote W and append X. In NROFF this just surrounds W with double quote marks(‘ " ’), but in TROFF uses directed quotes.
Set W in bold italics and append X. Actually, sets W in italic and overstn'kes once.Underlines in NROFF. It won’t work right if W is spread or broken (includinghyphenated). In other words, it is safe in nofill mode only.
Sets W in a box, with X appendal. Underlines in NROFF. It won’t work right if W isspread or broken (including hyphenated). In other words, it is safe in nofill mode only.

Indent, no break. Equivalent to 'in N.
Leave N contiguous white space, on the next page if not enough room on this page.Equivalent to a .sp N inside a block.
Equivalent to .bp.
Set page number in roman numerals. Equivalent to .al' % i.
Set page number in arabic. Equivalent to .at' % 1.
Number lines in margin from one on each page.
Number lines from N, stop if N = 0.
Leave the next output page blank, except for headers and footers. This is used to leavespace for a full-page diagram which is produced externally and pasted in later. To get a
partial-page paste-in display, say .sv N , where N is the amount of space to leave; this
space will be output immediately if there is room, and will otherwise be output at the
top of the next page. However, be warned: if N is greater than the amount of available
space on an empty page, no space will ever be output.

9. Prep rocessor Support
.EQm T

.EN c

.TS 11

.TH

.TE

10. Miscellaneous

.re

.ba +N

Begin equation. The equation is centered if m is C or omitted, indented \n(bi [4n] if m
is I, and left justified if m is L. T is a title printed on the right margin next to the
equation. See Typesetting Mathematics — User's Guide by Brian W. Kernighan and
Lorinda L. Cherry.
End equation. If c is C the equation must be continued by immediately following with
another .EQ, the text of which can be centered along with this one. Otherwise, the
equation is printed, always on one page, with \n(es [0.5v in TROFF, IV in NROFF] space
above and below it.
Table start. Tables are single spaced and kept on one page if possible. If you have a
large table which will not fit on one page, use it = H and follow the header part (to be
printed on every page of the table) with a .TH. See TbI — A Program to Format Tables
by M. E. Lesk.
With .TS H, ends the header portion of the table.
Table end. Note that this table does not float, in fact, it is not even guaranteed to stay
on one page if you use requests such as .sp intermixed with the text of the table. If you
want it to float (or if you use requests inside the table), surround the entire table (includ—
ing the .TS and .TE requests) with the requests .(z and .)z.

Reset tabs. Set to every 0.5i in TROFF and every 0.8i in NROFF.
Set the base indent to +N [0] (saved in \n(Si). All paragraphs, sections, and displays
come out indented by this amounL Titles and footnotes are unaffected. The .sh request
performs a .ba request if \n(si [0] is not zero, and sets the base indent to \n(si*\n($0.

ND-60.328.1P EN

USD:23~8 - ' ~me Reference Manual

.xl +N Set the line length to N [6.0i]. This differs from J! because it only affects the current
environment

.ll +N Set line length in all environments to N [6.0i]. This should not be used after output has
begun, and particularly not in two-columned output The current line length is stored in
\n($l.

.hl Draws a horizontal line the length of the page. This is useful inside floating keeps to
differentiate between the text and the figure.

.lo This macro loads another set of macros (in lusr/lib/me/localme) which is intended to
be a set of locally defined macros. These macros should all be of the form .‘X , where
X is any letter (upper or lower case) or digit.

11. Standard Papers
.tp Begin title page. Spacing at the top of the page can occur, and headers and footers are

supressed. Also, the page number is not incremented for this page.
.th Set thesis mode. This defines the modes acceptable for a doctoral dissertation at Berke-

ley. It double spaces, defines the header to be a single page number, and changes the
margins to be 1.5 inch on the left and one 'mch on the top. .++ and .+c should be used
with it. This macro must be stated before initialization, that is, before the first call of a
paragraphing macro or .sh.

.++ m [-1 This request defines the section of the paper which we are entering. The section type is
defined by m. C means that we are entering the chapter portion of the paper, A means
that we are entering the appendix portion of the paper, P means that the material fol-
lowing should be the preliminary portion (abstract, table of contents, etc.) portion of
the paper, AB means that we are entering the abstract (numbered independently from 1
in Arabic numerals), and 8 means that we are entering the bibliographic portion at the
end of the paper. Also, the variants RC and RA are allowed, which specify renumber~
ing of pages from one at the beginning of each chapter or appendix, respectively. The
H parameter defines the new header. If there are any spaces in it, the entire header
must be quoted. If you want the header to have the chapter number in it, Use the string
\\\\n(ch. For example, to number appendixes A.1 etc., type .++ RA ”’\\\\n(ch.%'.
Each section (chapter, appendix, etc.) should be preceeded by the .+c request It
should be mentioned that it is easier when using TROFF to put the front material at the
end of the paper, so that the table of contents can be collected and output; this material
can then be physically moved to the beginning of the paper.

.+c T Begin chapter with title T. The chapter number is maintained in \n(ch. This register is
incremented every time .+c is called with a parameter. The title and chapter number are
printed by SC. The header is moved to the footer on the first page of each chapter. If
T is omitted, .$c is not called; this is useful for doing your own at the beginning of
papers without a title page proper. .$c calls .$C as a hook so that chapter titles can be
insened into a table of contents automatically. The footnote numbering is reset to one.

.$c T Print chapter number (from \n(ch) and T. This macro can be redefined to your liking.
It is defined by default to be acceptable for a PhD thesis at Berkeley. This macro calls
$C, which can be defined to make index entries, or whatever.

.SSC K N T This macro is called by .$c. It is normally undefined, but can be used to automatically
insert index entries, or whatever. K is a keyword, either "Chapter" or "Appendix"
(depending on the .++ mode); N is the chapter or appendix number, and T is the
chapter or appendix title.

.ac A N This macro (short for .acm) sets up the NROFF environment for photo-ready papers as
used by the ACM. This format is 25% larger, and has no headers or footers. The
author’s name A is printed at the bottom of the page (but olf the part which will be
printed in the conference proceedings), together with the current page number and the
total number of pages N. Additionally, this macro loads the file lusr/lib/me/acmme,
which may later be augmented with other macros useful for printing papers for ACM
conferences. It should be noted that this macro will not work conectly in TROFF, since

ND-60.328.1P EN

—me Reference Manual . USD223-9

it sets the page length wider than the physical width of the phototypesetter roll.

12. Predefined Strings
\u:

*#
*[

\‘1

\‘<

*>

*(dw

\‘(mo

*(td

*(lq
*(rq
*—

Footnote number, actually *[\n($f\"‘]. This macro is incremented after each call to .)t'.
Delayed text number. Actually [\n($d].
Superscript. This string gives upward movement and a change to a smaller point size if
possible, otherwise it gives the left bracket character (‘[’). Extra space is left above theline to allow room for the superscript
Unsuperscript Inverse to *[. For example, to produce a superscript you might type
x*[2*], which will produce x2.
Subscript Defaults to ‘<’ if half-carriage motion not possible. Extra space is left
below the line to allow for the subscript.
Inverse to *<.
The day of the week, as a word.
The month, as a word.

Today’s date, directly printable. The date is of the form . Other forms of the date can
be used by using \n(dy (the day of the month; for example, 30), *(mo (as noted above)
or \n(mo (the same, but as an ordinal number; for example, is 6), and \n(yr (the last
two digits of the current year).
Left quote marks. Double quote in NROFF.
Right quote.
3/4 em dash in TROFF; two hyphens in NROFF.

13. Special Characters and Marks
There are a number of special characters and diacritical marks (such as accents) available through —me. Toreference these characters, you must call the macro so to define the characters before using them.
.sc Define special characters and diacritical marks, as described in the remainder of this

section. This macro must be stated before initialization.

The special characters available are listed below.

Name Usage Example

Acute accent * ’ a* ‘ 2’]
Grave accent *‘ e*‘ z:
Umlat *: u*: ll
Tilde *~ n*~ a
Caret *’\ e*’\ e
Cedilla *, c*, 9
Czech *v e*v e
Circle *0 a*o 3

ACKNOWLEDGEMENTS
I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use the —me macros toproduce non-trivial papers during the development stages; Ricki Blau, Pamela Humphrey, and Jim Joyce fortheir help with the documentation phase; and the plethora of people who have contributed ideas and have givensupport for the project.

ND-60.328.1P EN

USD123-10 . ~mc Reference Manual

ND-60.328.1P EN

NROFF/T‘ROFF Reference Manual [151314-]

NROFFfI‘ROFF User’s Manual

Joseph F. 0ssanna

Bell Laboratories
Murray Hill, New Jersey 07974

October 11, 1976

ND-60.328.1P EN

USDz24-2 ' ' NROFF/I‘ROFF Reference Manual

ND—60.328‘1P EN

NROFF/I‘ROFF Reference Manual USD224-3

Introduction

NROFF and TROFF are text processors under the PDP-ll UNIXT Time-Sharing System1 that format text fortypewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines of textinterspersed with lines of format control information and format the text into a printable, paginated documenthaving a user-designed style. NROFF and TROFF offer unusual freedom in document styling, including: arbi—trary style headers and footers; arbitrary style footnotes; multiple automatic sequence numbering for para-graphs, sections, etc; multiple column output; dynamic font and point-size control; arbitrary horizontal andvertical local motions at any point; and a family of automatic overstriking, bracket construction, and line draw-ing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare inputacceptable to both. Conditional input is pr0vided that enables the user to embed input expressly destined foreither program. NROFF can prepare output directly for a variety of terminal types and is capable of utilizing
the full resolution of each terminal.
Usage

The general form of invoking NROFF (or TROFF) at UNIX command level is
nroff options files (or troff options files)

where options represents any of a number of option arguments and files represents the list of files containing
the document to be formatted. An argument consisting of a single minus (.9 is taken to be a file name
corresponding to the standard input If no file names are given input is taken from the standard input The
options, which may appear in any order so long as they appear before the files, are:

Option Effect

~oIist Print only pages whose page numbers appear in list, which consists of comma-separated
numbers and number ranges. A number range has the form N—M and means pages N
through M; a initial —N means from the beginning to page N; and a final N— means
from N to the end.

~—nN Number first generated page N.
—sN Stop every N pages. NROFF will halt prior to every N pages (default N=l) to allow

paper loading or changing, and will resume upon receipt of a newline. TROFF will stop
the phototypesetter every N pages, produce a trailer to allow changing cassettes, and
will resume after the phototypesetter START button is pressed.

—mname Prepends the macro file /usr/lib/tmac.name to the inputfiles.
-mN Register a (one-character) is set to N.
—-i Read standard input after the input files are exhausted.
—q Invoke the simultaneous input-output mode of the rd request.

NROFF Only
~Tname Specifies the name of the output terminal type. Currently defined names are 37 for the

(default) Model 37 Teletype®, tn300 for the GE TenniNet 300 (or any terminal without
half-line capabilities), 3008 for the DASl—3OOS, 300 for the DASI-300, and 450 for the
DASl—450 (Diablo Hyterm).

—e Produce equally-spaced words in adjusted lines, using full terminal resolution.

TROFF Only
—t Direct output to the standard output instead of the phototypesetter.
—f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

1' UNIX is a registered trademark of A'l‘.T in the USA and other countries.

ND—60.328.1P EN

USD324-4 ~ ‘ Name/more Reference Manual

-w Wait until phototypesetter is available, if currently busy.
—b TROFF will report whether the phototypesetter is busy or available. No text processing

is done.

——a Send a printable (ASCII) approximation of the results to the standard output.
—pN Print all characters in point size N while retaining all prescribed spacings and motions,

to reduce phototypesetter clasped time.

~g Prepare output for the Murray Hill Computation Center phototypesetter and direct it to
the standard output.

Each option is invoked as a separate argument; for example.
nroff —o4,8—10 —'I‘3OOS —mabc file1 file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named file] and fileZ,
specifies the output terminal as a DASI-3OOS, and invokes the macro package abc.
Various pre- and post-processors are available for use with NROFF and TROFF. These include the equation
preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table-construction preprocessor
TBL3. A reverse-line postprocessor C01.“ is available for multiple-column NROFF output on terminals without
reverse-line ability; COL expects the Model 37 Teletype escape sequences that NROFF produces by default.
TK4 is a 37 Teletype simulator postprocessor for printing NROFF output on a Tektmnix 4014. TCAT4 is
phototypesetter-simulator postprocessor for TROFF that produces an approximation of phototypesetter output
on a Tektronix 4014. For example, in

tbl files | eqn 1 troff —-t options I tcat

the first I indicates the piping of TBL’s output to EQN’s input; the second the piping of EQN’s output to
TROFF’s input; and the third indicates the piping of TROFF’s output to TCAT. GCA'I“ can be used to send
TROFF (—g) output to the Murray Hill Computation Center.
The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the index; and
a set of Tutorial Examples. Another tutorial is [5].

Joseph F. Ossanna

References
[l] K. Thompson, D. M. Ritchie; UNIX Programmer's Manual, Sixth Edition (May 1975).
[2] B. W. Kemighan. L. L. Cherry, Typesetting Mathematics — User's Guide (Second Edition), Bell Laboratories inter-

nal memorandum.

[3] M. E. Lesk. Tbl -——A Program to Format Tables, Bell Laboratories intemal memorandum.
[4] lntemal on-line documentation, on um.

[51 B. W. Kemighan, A TROFF Tutorial, Bell Laboratories internal memorandum.

ND-60.328.1P EN

NROFF/I'ROFF Reference Manual [51324-5

SUMMARY AND INDEX

Request Initial IfNo
Form Value“ Argument Notestlt Explanation
1. General Explanation
2. Font and Character Size Control

.ps iN lOpoint previous E Point size; also EiNq‘

.ssN’ 12/36 em ignored E Space-character size set to N/36 em.T

.csFNM off - P Constant character space (width) mode (font F).T

.bd F N off — P Embolden font F by N—l unitsfr

.bd S F N off — P Embolden Special Font when current font is F.7

.ft F Roman previous E Change to font F = x, xx, or 1—4. Also \fx,\f(xx,\fN.

.fp N F R,I,B,S ignored - Font named F mounted on physical position lSNS4.
3. Page Control

.pl :N 11 in 11 in v Page length.

.bp :tN N21 - Bi,v Eject current page; next page number N.

.pn :tN N=l ignored — Next page number N.

.po :tN 0; 26/27 in previous v Page offset.

.ne N - N=1V D,v Need N vertical space (V 2 vertical spacing).

.mk R none internal D Mark current vertical place in register R.

.rt iN none internal D,v Return (upward only) to marked vertical place.
4. Text Filling, Adjusting, and Centering
.br — - B Break.
.fi fill - B,E Fill output lines.
.nf fill — B,E No filling or adjusting of output lines.
.ad r: adj,both adjust E Adjust output lines with mode c.
.na adjust ~ E No output line adjusting.
.ce N off =1 B,E Center following N input text lines.
5. Vertical Spacing

.vs N 1/6in;12pts previous E,p Vertical base line spacing (V).

.15 N N=1 previous E Output N—l Vs after each text output line.

.sp N — N=lV B,v Space vertical distance N in either direction.

.sv N - N=1V v Save vertical distance N.

.05 - -
- Output saved vertical distance.

.ns space - D Turn no-space mode on.

.rs - - D Restore spacing; turn no-space mode off.
6. Line Length and Indenting
.ll iN 6.5 in previous E,m Line length.
.in iN N20 previous B,E,m IndenL
.ti iN - ignored B,E,m Temporary indent.

7. Macros, Strings, Diversion, and Position Traps
.de xx yy - .yy=.. - Define or redefine macro xx; end at call of yy.
.am xx yy — .yy=.. - Append to a macro.
.ds xx string — ignored - Define a string xx containing string.
.25 xx string — ignored - Append string to string xx.
.rm xx - ignored - Remove request, macro, or string.
.rn xx yy - ignored - Rename request, macro, or string xx to y.
.di xx — end D Divert output to macro xx.
.da xx — end D Divert and append to xx.
.wh Nxx - - v Set location trap; negative is w.r.L page bottom.
.ch xxN - - v Change trap location.
.dt N'xx — off D,v Set a diversion trap.

NIB—60328.1? EN

USD224-6

Request Initial If No
Form Value

.it N xx - off

.em xx none none

8. Number Registers

.nr R iN M - —

.at' R c arabic -

.rr R - -

9. Tabs, Leaders, and Fields

Argument Notes

E

NROFF/I‘ROFF Reference Manual

Explanation

Set an input—line count trap.
End macro is xx.

Define and set number register R; autoincrement by M.
Assign format to register R (0:1, i, I, a, A).
Remove register R.

Tab settings; left type, unless t=R(right), C(centered).
Tab repetition character.
Leader repetition character.
Set field delimiter a and pad character I).

10. Input and Output Conventions and Character Translations

.ta Nt 0.8; 0.5in none

.tc c none none

.lc c . none

.fc a b off off

.ec c \ \

.eo on -

.lg N -; on on

.ul N off N=1

.cu N off N=1

.uf F Italic Italic

.cc c

.c2 c ’

.tr abort... none -

m
m

'
0

m
m

-

Set escape character.
Turn off escape character mechanism.
Ligature mode on if N>O.
Underline (italicize in TROFF) N input lines.
Continuous underline in NROFF; like ul in TROFF.
Underline font set to F (to be switched to by ul).
Set control character to c.
Set nobreak control character to c.
Translate a to b, etc. on output.

11. Local Horizontal and Vertical Motions, and the Width Function

12. Overstrike, Bracket, Line~drawing, and Zero-width Functions

13. Hyphenation.

.nh hyphenate —

.hy N hyphenate hyphenate

.hc c \% \%

.hw d .. - ignored
14. Three Part Titles.

.tl ’Ieft ”center ’right ’ -

.pc c % off

.lt iN 6.5 in previous

15. Output Line Numbering.

.nm :N M S I — off

.nn N - N=l

16. Conditional Acceptance of Input
.if c anything - —

.if !C anything- —

.if N anything - —

.if !N anything -

.if ’strt‘ngl ’stringZ ’anything

.if! ’stringl ’string2 ’anything

.ie C anything - -

.el anything - —

ND~60.328.1P EN

E
E
E

No hyphenation.
Hyphenate; N = mode.
Hyphenation indicator character c.
Exception words.

Three part title.
Page number character.
Length of title.

Number mode on or off, set parameters.
Do not number next N lines.

If condition c true, accept anything as input,
for multi-line use \anything \.
If condition c false, accept anything.
if expression N > 0, accept anything.
u If expression N S 0, accept anything.
- If string] identical to stringZ, accept anything.
— If string] not identical to stringZ, accept anything.
If portion of if-else; all above forms (like if).
Else portion of if-else.

NROFFII‘ROFF Reference Manual USD124-7

Request Initial If No
Farm Value Argument Notes Explanation

17. Environment Switching.

.ev N N=0 previous - Environment switched (push down).
18. Insertions from the Standard Input
.rd prompt - prompt=BEL — Read insertion.
.ex - — — Exit from NROFF/I‘ROFF.
19. Input/Output File Switching
.so filename — - Switch source file (push down).
.nx filename end—of-file - Next tile.
.pi program - — Pipe output to program (NROFF only).
20. Miscellaneous

.mc c N — off E,m Set margin character c and separation N.

.tm string - newline - Print string on terminal (UNIX standard message output).is; yy - .yy=.. - Ignore till call of yy.

.pm I - all - Print macro names and sizes;
if 1 present, print only total of sizes.

.11 -
- B Flush output buffer.

21. Output and Error Messages

Notes-

B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
0 Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alphabetical Request and Section Number Cross Reference
ad 4 cc 10 ds 7 fc 9 ie 16 ll 6 nh 13 pi 19 m 7 la 9 vs 5af 8 cc 4 dt 7 fr 4 if 16 is 5 nm 15 pl 3 rr 8 tc 9 wh 7am 7 ch 7 cc 10 f1 20 ig 2O 11 14 mi 15 pm 20 rs 5 ti 6as 7 cs 2 e1 16 fp 2 in 6 mc 21) m 8 pn 3 rt 3 ii 14bd .2 cu 10 cm 7 ft 2 it 7 mk 3 ns 5 po 3 so 19 tm 20bp 3 da 7 co 10 he 13 1c 9 na 4 wt 19 ps 2 sp 5 tr 10br 4 de 7 av 17 hw 13 lg 10 ne 3 os 5 rd 18 ss 2 iii 10c2 10 di 7 ex 18 by 13 ii 10 nf 4 pc 14 rm 7 av 5 ul 10

ND~60.328.1P EN

USD124—8 NROFFII‘ROW Reference Manual

Escape Sequences for Characters, Indicators, and Functions

Section
Reference

10.1
10.1
2.1
2.1
2.1
7

11.1
11.1
11.1
11.1
4.1

10.6
10.7
7.3

13
2.1
7.1
9.1

12.3
4.2

11.1
2.2

11.1
11.3
12.4
12.4

12.1
4.1

11.1
2.3
9.1

11.1
11.1
11.2
5.2

12.2
16
16
10.7

Escape
Sequence

\\
\e\,
\i
_

\.
\(spaCC)
\0
\1
\A

\&
\2
\"

\$N
\%
\(xx
*x, *(xx
\a
\b’abc... ’
\c
\d
\fx,\f(xx,\fN
\h ’N ’
\kx
\l ’Nc ’
\L We ’
\nx,\n(xx
\o’abc... ’
\p
\r
\sN,\sfl:N
\t
\u
\v’N ’
\w’string ’
\x’N ’
\zc
\{
\}
\(newline)
\X

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.
’ (acute accent); equivalent to \(aa
‘ (grave accent); equivalent to \(ga
— Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument ISNS‘)
Default optional hyphenation character
Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion (10. line in NROFF)
Change to font named x or xx, or position N
Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c,
Break and spread output line
Reverse lem vertical motion (reverse line in NROFF)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em vertical motion (1/2 line in NROFF)
Local vertical motion; move down N (negative up)
Interpolate width of string
Extra line-space function (negative before, positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed ab0ve

The escape sequences \\, \., \", \S, *, \a, \n, \t, and \(newline) are interpreted in copy mode (§7.2).

ND—60.328.1P EN

NROFF/I‘ROFF Reference Manual USD224-9

Predefined General Number Registers

Section
Reference

3
l 1.2
7.4
7.4

11.3
15

4.1
ll).
11:2

Register
Name

%
ct
dl
dn
dw

dy
hp
In
mo
nl
sb
st
yr

Description

Current page number.
Character type (set by width function).
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.
Current day of the week (1-7).
Current day of the month (1-31).
Current horizontal place on input line.
Output line number.
Current month (1-12).
Vertical position of last printed text base-line.
Depth of string below base line (generated by width function).
Height of string above base line (generated by width function).
Last two digits of current year.

Predefined Read-Only Number Registers

Section Register
Reference Name

7.3

h
é

k
g

k
é

k
b

é
b

b
h

h
'b

h
h

b
b

z
g

h
is

m

Description

Number of arguments available at the current macro level.
Set to l in TROFF, if -a option used; always 1 in NROFF.
Available horizontal resolution in basic units.
Set to 1 in NROFF, if —T option used; always 0 in TROFF.
Available vertical resolution in basic units.
Post~line extra line—space most recently utilized using \x’N ’.
Number of lines read from current input file.
Current vertical place in current diversion; equal to nl, if no diversion.
Current font as physical quadrant (1—4).
Text base-line high-water mark on current page or diversion.
Current indenL
Current line length.
Length of text portion on previous output line.
Current page offset.
Current page length.
Current point size.
Distance to the next trap.
Equal to l in fill mode and O in nofill mode.
Current venical line spacing.
Width of previous character.
Reserved version-dependent register.
Reserved version-dependent register.
Name of current diversion.

ND-60.328.1P EN

USD:24—10 ‘ NROFF/I‘ROFF Reference Manual

NDv60.328.1P EN

NRCFF/I‘ROFF Reference Manual USD224-11

REFERENCE MANUAL

1. General Explanation

1.1.Form of input. Input consists of text lines, which are destined to be primed, interspersed with controllines, which set parameters or otherwise control subsequent processing. Control lines begin with a controlcharacter—normally . (period) or ’ (acute accent)—-followed by a one or two character name that specifies abasic request or the substitution of a user-defined macro in place of the control line. The control character ’suppresses the break function—the forced output of a partially filled line—caused by certain requests. Thecontrol character may be separated from the request/macro name by white space (spaces and/or tabs) foresthetic reasons. Names must be followed by either space or newline. Control lines with unrecognized namesare ignored.

Various special functions may be introduced anywhere in the input by means of an escape character, normally\ For example, the function \nR causes the interpolation of the contents of the number register R in place ofthe function; here R is either a single character name as in \nx, or left-parenthesis—introduced, two-charactername as in \n(xx.

1.2.Formatter and device resolution. TROFF internally uses 432 unitsfinch, corresponding to the Graphic Sys-tems phototypesetter which has a horizontal resolution of U432 inch and a vertical resolution of 1/144 inch.NROKFF internally uses 240 units/inch, corresponding to the least common multiple of the horizontal and verti-cal resolutions of various typewriter-like output devices. TROFF rounds horizontal/vertical numerical parame-ter input to the actual horizontal/vertical resolution of the Graphic Systems typesetter. NROFF similarly roundsnumerical input to the actual resolution of the output device indicated by the —T option (default Model 37Teletype).

1.3.Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale indi~cators shown in the following table, where S is the current type size in points, V is the current vertical linespacing in basic units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF

i inch 432 240
0 Centimeter 432x50/l 27 240x50/127
P Pica = 1/6 inch 72 240/6
m Em = 5 points 6X5 C
n En = Em/‘2 3x5 C, same as Em
p Point = 1/72 inch 6 240/72
u Basic unit 1 1
v Vertical line space V V

none Default, see below

1n NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent; commonvalues are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same and constructedcharacters such as —> (—9) are often extra wide. The default scaling is ems for the horizontally-oriented
requests and functions ll, in, ti, ta, lt, p0, mc, \h, and \1; V5 for the vertically—oriented requests and functionspl, wh, ch, dt, sp, sv, ne, rt, \v, \x, and \L; p for the vs request; and u for the requests nr, if, and ie. All otherrequests ignore any scale indicators. When a number register containing an already appropriately scalednumber is interpolated to provide numerical input, the unit scale indicator u may need to be appended toprevent an additional inappropriate default scaling. The number, N, may be specified in decimal-fraction formbut the parameter finally stored is rounded to an integer number of basic units.
The absolute position indicator 1 may be prepended to a number N to generate the distance to the vertical orhorizontal place N. For vertically-oriented requests and functions, IN becomes the distance in basic units fromthe current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For all other requestsand functions, lN becomes the distance from the current horizontal place on the input line to the horizontalplace N. For example,

.sp |3.2c

ND-(>0.328.1P EN

US D224- 12 . ' NROFF/I‘ROFF Reference Manual

will space in the required direction to 3.2 centimeters from the top of the page.

1.4.Numerical expressions. Wherever numerical input is expected an expression involving parentheses, the
arithmetic operators +, ~—, /, *, % (mod), and the logical operators <, >, <=, >=, = (or =), & (and), : (or) may
be used. Except where controlled by parentheses, evaluation of expressions is left—wright; there is no operator
precedence. In the case of certain requests, an initial + or — is stripped and interpreted as an increment or
decrement indicator respectively. In the presence of default scaling, the desired scale indicator must be
attached to every number in an expression for which the desired and default scaling differ. For example, if the
number register x contains 2 and the current point size is 10, then

.1! (4.25i+\a’+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5.Notation. Numerical parameters are indicated in this manual in two ways. iN means that the argument
may take the forms N, +N, or -N and that the corresponding effect is to set the affected parameter to N, to
increment it by N, or to decrement it by N respectively. Plain N means that an initial algebraic sign is not an
increment indicator, but merely the sign of N. Generally, unreasonable numerical input is either ignored or
truncated to a reasonable value. For example, most requests expect to set parameters to non-negative values;
exceptions are sp, wh, ch, nr, and if. The requests ps, ft, p0, vs, Is, II, in, and It restore the previous parame-
ter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments are indi-
cated by a pair of lower case letters. Character string arguments are indicated by multicharacter mnemonics.
2. Font and Character Size Control

2.]. Character set. The TROFF character set consists of the Graphics Systems CommercialIII character set plus
a Special Mathematical Font character set——each having 102 characters. These character sets are shown in the
attached TablelI. All ASCII characters are included, with some on the Special Font. With three exceptions, the
ASCII characters are input as themselves, and non-ASCII characters are input in the form \(xx where xx is a
two—character name given in the attached TablelII. The three ASCII exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name

acute accent ’ close quote
‘ grave accent ‘ open quote
— minus - hyphen

The characters ’, ‘, and - may be input by \’, \‘, and \—- respectively or by their names (Table II). The ASCII
characters @, it, ", ’, ‘, <, >, \, {, }, ~, A, and _ exist only on the Special Font and are printed as a l-em space
if that Font is not mounted.

NROFF understands the entire TROFF character set, but can in general print only ASCII characters, additional
characters as may be available on the output device, such characters as may be able to be constructed by over—
striking or other combination, and those that can reasonably be mapped into other printable characters. The
exact behavior is determined by a driving table prepared for each device. The characters ’, ‘, and __ print as
themselves.

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and the Special
Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These fonts are used in this
document. The current font, initially Roman, may be changed (among the mounted fonts) by use of the ft
request, or by imbedding at any desired point either \fx, \f(xx, or \fN where x and xx are the name of a mounted
font and N is a numerical font position. It is not necessary to change to the Special font; characters on that
font are automatically handled. A request for a named but not-mounted font is ignored. TROFF can be
informed that any particular font is mounted by use of the fp request. The list of known fonts is installation
dependent. In the subsequent discussion of font-related requests, F represents either a one/two-character font
name or the numerical font position, 1~4. The current font is available (as numerical position) in the read-only
number register .f.

NROFF understands font control and normally underlines Italic characters (see §10.5).

ND-60.328. lP EN

NROFF/I‘ROFF Reference Manual
USDz24-l3

23. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10, 11, 12,14, 16, 18, 21), 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is used to changeor restore the point size. Alternatively the point size may be changed between any two characters by imbed—ding a \sN at the desired point to set the size to N, or a \siN (ISNS9) to increment/decrement the size by N;\90 restores the previous size. Requested point size values that are between two valid sizes yield the larger ofthe two. The current size is available in the .s register. NROFF ignores type size control.
Request Initial IfNo
Form Value Argument Notes“ Explanation
.ps/iN 10 point previous E Point size set to 1W. Alternatively imbed \sN or \siN. Any

positive size value may be requested; if invalid, the next
larger valid size will result, with a maximum of 36. A
paired sequence +N,-N will work because the previous
requested value is also remembered. Ignored in NROFF.

.ss/N 12/36em ignored E Space—character size is set to N/36 ems. This size is the
minimum word spacing in adjusted text. Ignored in
NROFF.

.csF NM off — P Constant character space (width) mode is set on for font F
(if mounted); the width of every character will be taken to
be N/36 ems. If M is absent, the em is that of the
character’s point size; if M is given, the em is M—points.
All affected characters are centered in this space, including
those with an actual width larger than this space. Special
Font characters occurring while the current font is F are
also so treated. If N is absent, the mode is turned off. The
mode must be still or again in effect when the characters
are physically printed Ignored in NROFF.

.bd/F/N off - P The characters in font F will be artificially emboldened by
printing each one twice, separated by N—l basic units. A
reasonable value for N is 3 when the character size is in the
vicinity of 10 points. UN is missing the embolden mode is
turned off. The column heads above were printed with
.bdlIl3. The mode must be still or again in effect when the
characters are physically printed. Ignored in NROFF.

.bdlSlF/N off - P The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .dB3. The mode must be still or again in effect
when the characters are physically printed.

.ftlF Roman previous E Font changed to F. Alternatively, imbed \fF. The font
name P is reserved to mean the previous font

.t‘plN/F R,I,B,S ignored - Font position. This is a statement that a font named F is
mounted on position N (1—4). It is a fatal error if F is not
known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The default
mounting sequence assumed by TROFF is R, I, B, and S on
positions I, 2, 3 and 4.

3. Page control

Top and bottom margins are not automatically provided; it is conventional to define two macros and to settraps for them at vertical positions 0 (top) and —N (N from the bottom). See §7 and Tutorial Examples §T2.A pseudo-page transition onto the first page occurs either when the first break occurs or when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the first page must be com-pleted before this transition. In the following, references to the current diversion (§7.4) mean that the mechan—ism being described works during both ordinary and diverted output (the former considered as the top

DID-60328.1? EN

USDz24-l4 . . - NROFF/I‘ROW Reference Manual

diversion level).

The useable page width on the Graphic Systems phototypesetter is about 7.54linches, beginning about
1/27Iinch from the left edge of the 8Iinch wide, continuous roll paper. The physical limitations on NROFF out-
put are output-device dependent.

Request Initial If No
Form Value Argument Notes Explanation

.pl/iJV 11in 11in v Page length set to iN. The internal limitation is about
75linches in TROFF and about 13611nches in NROFF. The
current page length is available in the .p register.

.bp/iN N=1 - B*,v Begin page. The current page is ejected and a new page is
begun. If iN is given, the new page number will be :N.
Also see request ns.

.pn/iN :1 ignored — Page number. The next page (when it occurs) will have the
page number iN. A pn must occur before the initial
pseudo-page transition to effect the page number of the first
page. The current page number is in the % register.

.po/iN 0;|26/27imL previous v Page offset. The current left margin is set to iN. The
TROFF initial value provides about llinch of paper margin
including the physical typesetter margin of 1/27linch. In
TROFF the maximum (line-length)+(page-offset) is about
7.54 inches. See §6. The current page offset is available in
the .o register.

.ne/N - N=l V D,v Need N vertical space. If the distance, D, to the next trap
position (see §7.5) is less than N, a forward vertical space
of size D occurs, which will spring the trap. If there are no
remaining traps on the page, D is the distance to the bottom
of the page. If D < V, another line could still be output and
spring the trap. In a diversion, D is the distance to the
diversion trap, if any, or is very large.

.mk/R none internal D Mark the current vertical place in an internal register (both
associated with the current diversion level), or in register R,
if given. See rt request.

.rt/iN none internal D,v Return upward only to a marked vertical place in the
current diversion. If iN (w.r.t. current place) is given, the
place is iN from the top of the page or diversion or, if N is
absent, to a place marked by a previous mk. Note that the
sp request (§5.3) may be used in all cases instead of rt by
spacing to the absolute place stored in a explicit register;
e.lg. using the sequence .mklR .spl|\nRu.

4. Text Filling, Adjusting, and Centering
4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into 3 output text
line until some word doesn’t fit An attempt is then made the hyphenate the word in effort to assemble a part
of it into the output line. The spaces between the words on the output line are then increased to spread out the
line to the current line length minus any current indent. A word is any string of characters delimited by the
space character or the beginning/end of the input line. Any adjacent pair of words that must be kept together
(neither split across output lines nor spread apart in the adjustment process) can be tied together by separating
them with the unpaddable space character "\ " (backslash-space). The adjusted word spacings are uniform in
TROFF and the minimum interword spacing can be controlled with the $5 request (§2). In NROFF, they are
normally nonuniform because of quantization to character-size spaces; however, the command line option —e
causes uniform spacing with full output device resolution. Filling, adjustment, and hyphenation (§l3) can all
be prevented or controlled. The text length on the last line output is available in the .n register, and text base-
line position on the page for this line is in the nl register. The text baseline high-water mark (lowest place)

ND-60.328.IP EN

NROFF/T‘ROFF Reference Manual USD124~15

on the current page is in the .h register.
An input text line ending with ., ?, or ! is taken to be the end of a sentence, and an additional space characteris automatically provided during filling. Multiple inter-word space characters found in the input are retained,except for trailing spaces; initial spaces also cause a break.
When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of the wordand have the resulting output line spread out to fill the current line length.
A text input line that happens to begin with a control character can be made to not look like a control line byprefacing it with the non-printing, zero-width filler character \&. Still another way is to specify output transla-tion of some convenient character into the control character using tr (§10.5).
42.1’nterrupted text. The copying of a input line in nofill (non—fill) mode can be interrupted by terminating thepartial line with a \c. The next encountered input text line will be considered to be a continuation of the sameline of input text. Similarly, a word within filled text may be interrupted by terminating the word (and line)with \c; the next encountered text will be taken as a continuation of the interrupted word. if the interveningcontml lines cause a break, any partial line will be forced out along with any partial word.
Request Initial IfNo
Form Value Argument Notes Explanation
.br — - B Break. The filling of the line currently being collected is

stopped and the line is output without adjustment Text
lines beginning with space characters and empty text lines
(blank lines) also cause a break.

It filllon — B,E Fill subsequent output lines. The register .u is l in fill
mode and O in nofill mode.

.nf filllon - B,E Nofill. Subsequent output lines are neither filled nor
adjusted. Input text lines are copied directly to output lines
without regard for the current line length.

.ad/c adj,both adjust E Line adjustment is begun. If fill mode is not on, adjustment
will be deferred until fill mode is back on. If the type indi-
cator c is present, the adjustment type is changed as shown
in the following table.

Indicator Adjust Type
I adjust left margin only
r adjust right margin only
c center

1) or I] adjust both margins
absent unchanged

.na adjust - E Noadjust. Adjustment is turned off; the right margin will
be ragged. The adjustment type for ad is not changed.
Output line filling still occurs if fill mode is on.

.ce/N off =1 B,E Center the next N input text lines within the current (line-
length minus indent). If N20, any residual count is cleared.
A break occurs after each of the N input lines. If the input
line is too long, it will be left adjusted.

5. Vertical Spacing
5.1.Base-Iine spacing. The vertical spacing (V) between the base-lines of successive output lines can be setusing the vs request with a resolution of 1/144 inch: l/loint in TROFF, and to the output device resolution inNROFF. V must be large enough to accommodate the character sizes on the affected output lines. For thecommon type sizes (9-12 points), usual typesetting practice is to set V to 2 points greater than the point size;TROFF default is 10-point type on a 12-point spacing (as in this document). The current V is available in the.v register. Multiple-V line separation (e. g. double spacing) may be requested with IS.

ND-60.328.1P EN

USD124_ 16 y - NROFF/TROFF Reference Manual

5.2.Extra line-space. If a word contains a vertically tall construct requiring the output line containing it to
have extra vertical space before and/or after it, the extra-line-space function \x’N ’ can be imbedded in or
attached to that word. In this and other functions having a pair of delimiters around their parameter (here ’),
the delimiter choice is arbitrary, except that it can’t look like the continuation of a number expression for N. If
N is negative, the output line containing the word will be preceded by N extra vertical space; if N is positive,
the output line containing the word will be followed by N extra vertical space. If successive requests for extra
space apply to the same line, the maximum values are used. The most recently utilized post-line extra line-
space is available in the .a register.

5.3.Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the no-
space mode and which does not space past a trap. A contiguous block of vertical space may be reserved using
sv.
Request Initial IfNo
Form Value Argument Notes Explanation
.s l/6in;12pts previous E,p Set vertical base—line spacing size V. Transient extra verti-

cal space available with \x ’N ’ (see above).
.lsN N=l previous E Line spacing set to iN. N—l Vs (blank lines) are appended

to each output text line. Appended blank lines are omitted,
if the text or previous appended blank line reached a trap
position.

.sp/N - N=lV B,v Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the distance
to the top of the page. Forward (downward) motion is trun—
cated to the distance to the nearest trap. If the no—space
mode is on, no spacing occurs (see ns, and rs below).

.sv/N — N=1V v Save a contiguous vertical block of size N. If the distance
to the next trap is greater than N, N vertical space is output
No-space mode has no effect. If this distance is less than
N, no vertical space is immediately output, but N is remem-
bered for later output (see 05). Subsequent sv requests will
overwrite any still remembered N.

.05 — - - Output saved vertical space. No-space mode has no effect.
Used to finally output a block of vertical space requested by
an earlier sv request.

.ns space — D No—space mode turned on. When on, the no—space mode
inhibits sp requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with rs.

.rs space - D Restore spacing. The no—space mode is turned off.
Blankltextlline. ~ B Causes a break and output of a blank line exactly like spll.

6. Line Length and Indenting
The maximum line length for fill mode may be set with ll. The indent may be set with in; an indent applicable
to only the next output line may be set with ti. The line length includes indent space but not page offset space.
The line-length minus the indent is the basis for centering with ce. The effect of II, in, or ti is delayed, if a
partially collected line exists, until after that line is output. In fill mode the length of text on an output line is
less than or equal to the line length minus the indent. The current line length and indent are available in regis‘
ters .l and .i respectively. The length of three—part titles produced by tl (see §l4) is independently set by lt.

DID-60328.1? EN

NROFF/I‘ROFF Reference Manual USD:24-l7

Request Initial If No
Form Value Argument Notes Explanation
.ll/iN 6.5 in previous E,m Line length is set to iN. In TROFF the maximum (line-

length)+(page—ofiset) is about 7.54 inches.
.in/iN N=0 previous B,E,m lndent is set to iN. The indent is prepended to each output

line.
.ti/iN - ignored B,E,m Temporary indent. The next output text line will be

indented a distance iN with respect to the current indent.
The resulting total indent may not be negative. The current
indent is not changed

7. Macros, Strings, Diversion, and Position Traps
7.1.Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with atrap. A string is a named string of characters, not including a newline character, that may be interpolated byname at any point. Request, macro, and suing names share the same name list. Macro and string names maybe one or two characters long and may usurp previously defined request, macro, or suing names. Any of theseentities may be renamed with m or removed with rm. Macros are created by de and di, and appended to byam and da; di and da cause normal output to be stored in a macro. Strings are created by ds and appended toby as. A macro is invoked in the same way as a request; a control line beginning .xx will interpolate the con-tents of macro xx. The remainder of the line may contain up to nine arguments. The strings x and xx are inter-polated at any desired point with *x and *(xx respectively. String references and macro invocations may benested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by diver~sion) the input is read in copy mode. The input is copied without interpretation except that:
- The contents of number registers indicated by \n are interpolated.
- Strings indicated by * are interpolated.
- Arguments indicated by \$ are interpolated
- Concealed newlines indicated by \(newline) are eliminated
- Comments indicated by \" are eliminated.
- \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
- \\ is interpreted as t
' \. is interpreted as

These interpretations can be suppressed by prepending a t For example, since \\ maps into a \, \\n will copy as\n which will be interpreted as a number register indicator when the macro or string is reread.
7.3.Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to ninearguments. The argument separator is the space character, and arguments may be surrounded by double-quotesto permit imbedded space characters. Pairs of double‘quotes may be imbedded in double—quoted arguments torepresent a single double-quote. If the desired arguments won’t fit on a line, a concealed newline may be usedto continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous levelbecome unavailable until the macro is completely read and the previous level is restored. A macro’s ownarguments can be interpolated at any point within the macro with \SN, which interpolates the Nth argument(ISNS9). If an invoked argument doesn't exist, a null string results. For example, the macro xx may bedefined by

.de xx \" begin definition
Today is \\$1 the \\$2.
.. \"end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

ND-60.328.1P EN

USD224-18 . ' ’ NROFFII‘ROFF Reference Manual

Note that the \$ was concealed in the definition with a prepended \. The number of currently available argu-
ments is in the .$ register.

No arguments are available at the top (non—macro) level in this implementation. Because string referencing is
implemented as a input-level push down, no arguments are available from within a string. No arguments are
available within a trapinvoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechanism does
not allow an argument to contain a direct reference to a long string (interpolated at copy time) and it is advis-
able to conceal string references (with an extra \) to delay interpolation until argument reference time.
7.4.Diversions. Processed output may be diverted into a macro for purposes such as footnote processing (see
Tutorial §T5) or determining the horizontal and vertical size of some text for conditional changing of pages or
columns. A single diversion trap may be set at a specified vertical position. The number registers dn and dl
respectively contain the vertical and horizontal size of the most recently ended diversion. Processed text that is
diverted into a macro retains the vertical size of each of its lines when reread in nofill mode regardless of the
current V. Constant—spaced (cs) or emboldened (bd) text that is diverted can be reread correctly only if these
modes are again or still in effect at reread time. One way to do this is to imbed in the diversion the appropri-
ate cs or bd requests with the transparent mechanism described in §10.6.
Diversions may be nested and certain parameters and registers are associated with the current diversion level
(the top non-diversion level may be thought of as the 0th diversion level). These are the diversion trap and
associated macro, no-space mode, the internally—saved marked place (see mk and rt), the current vertical place
(.d register), the current high-water text base-line (.h register), and the current diversion name (.2 register).
75. Traps. Three types of trap mechanisms are available—page traps, a diversion trap, and an input-line—count
trap. Macro-invocation traps may be planted using wh at any page position including the top. This trap posi-
tion may be changed using ch. Trap positions at or below the bottom of the page have no effect unless or until
moved to within the page or rendered effective by an increase in page length. Two traps may be planted at the
same position only by first planting them at different positions and then moving one of the traps; the first
planted trap will conceal the second unless and until the first one is moved (see Tutorial Examples §T5). If the
first one is moved back, it again conceals the second trap. The macro associated with a page trap is automati-
cally invoked when a line of text is output whose vertical size reaches or sweeps past the trap position.
Reaching the bottom of a page springs the top-of—page trap, if any, provided there is a next page. The distance
to the next trap position is available in the .t register; if there are no traps between the current position and the
bottom of the page, the distance returned is the distance to the page bottom.
A macro-invocation trap effective in the current diversion may be planted using dt. The .t register works in a
diversion; if there is no subsequent trap a large distance is returned. For a description of input-line-count
traps, see it below.

Request Initial If No
Form Value Argument Notes Explanation
.de/xx/yy — .yy=.. - Define or redefine the macro xx. The contents of the macro

begin on the next input line. Input lines are copied in copy
mode until the definition is terminated by a line beginning
with .yy, whereupon the macro yy is called. In the absence
of yy, the definition is terminated by a fine beginning with

A macro may contain de requests pr0vided the ter-
minating macros differ or the contained definition termina-
tor is concealed. can be concealed as \\.. which will
copy as \.. and be reread as "..".

.am/xx/yy - .yy=.. - Append to macro (append version of de).

.ds/xx/string - ignored — Define a string xx containing string. Any initial double-
quote in string is stripped off to permit initial blanks.

.as/xx/string - ignored - Append string to string xx (append version of ds).

.rm/xx - ignored - Remove request, macro, or string. The name xx is removed
from the name list and any related storage space is freed.
Subsequent references will have no effect.

ND—60.328. 1? EN

NROFF/I‘ROFF Reference Manual USD224—19

.rn/xx/yy - ignored - Rename request, macro, or string xx to y. If yy exists, it is
first removed.

.dilxx — end D Divert output to macro xx. Normal text processing occurs
during diversion except that page offsetting is not done.
The diversion ends when the request di or da is encoun-
tered without an argument; extraneous requests of this type
should not appear when nested diversions are being used.

.dalxx - end D Divert, appending to xx (append version of di).

.wh/N/xx - - v Install a trap to invoke xx at page position N; a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted at N is replaced by xx. A zero N
refers to the top of a page. In the absence of xx, the first
found trap at N, if any, is removed.

.ch/xx/N - - v Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed.

.dt/N/xx - off D,v Install a diversion trap at position N in the current diver-
sion to invoke macro xx. Another (it will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

.it/N/xx — off B Set an input-line—count trap to invoke the macro xx after N
lines of text input have been read (control or request lines
don’t count). The text may be in-line text or text interpo-
lated by inline or trap-invoked macros.

.em/xx none none — The macro xx will be invoked when all input has ended.
The effect is the same as if the contents of xx had been at
the end of the last file processed.

8. Number Registers
A variety of parameters are available to the user as predefined, named number registers (see Summary andIndex, page 7). In addition, the user may define his own named registers. Register names are one or two char-acters long and do not conflict with request, macro, or string names. Except for certain predefined read-onlyregisters, a number register can be read, written, automatically incremented or decremented, and interpolatedinto the input in a variety of formats. One common use of user—defined registers is to automatically numbersections, paragraphs, lines, etc. A number register may be used any time numerical input is expected ordesired and may be used in numerical expressions (§l.4).
Number registers are created and modified using nr, which specifies the name, numerical value, and the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence. If the registers xand xx both contain N and have the auto-increment size M, the following access sequences apply:

Effect on Value
Sequence Register lnterpolated
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n—x x decremented by M N—M
\n+(xx xx incremented by M N+M
\n—-(xx xx docremented by M N—M

When interpolated, a number register is convened to decimal (default), decimal with leading zeros, lower—caseRoman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alphabetic according tothe format specified by af.

ND-60.328.1P EN

USD124-2O . NROFF/I‘ROFF Reference Manual

Request Initial IfNo
Form Value Argument Notes Explanation
.nr/R/iN/M — u The number register R is assigned the value fill with respect to the

previous value, if any. The increment for auto—
incrementing is set to M.

.af/R/c arabic - - Assign format c to register R. The available formats are:

Numbering
Format Sequence

1 0,1,2,3,4,5,...
001 000,001,002,003,004,005,...

i O,i,ii,iii,iv,v,...
I 0,1,II,III,IV,V,...
a 0,a,b,c,...,z,aa,ab,...,7.z,aaa,...
A 0,A,B,C,...,Z,AA,AB,...,ZZ,AAA,...

An arabic format having N digits specifies a field width of
N digits (example 2 above). The read—only registers and the
width function (§1 1.2) are always arabic.

.rr/R - ignored - Remove register R. If many registers are being created
dynamically, it may become necessary to remove no longer
used registers to recapture internal storage space for newer
registers.

9. Tabs, Leaders, and Fields

9.]. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the leader
character) can both be used to generate either horizontal motion or a string of repeated characters. The length
of the generated entity is governed by internal tab stops specifiable with ta. The default difference is that tabs
generate motion and leaders generate a string of periods; tc and lc offer the choice of repeated character or
motion. There are three types of internal tab stops—left adjusting, right adjusting, and centering. In the fol-
lowing table: D is the distance from the current position on the input line (where a tab or leader was found) to
the next tab stop; next-string consists of the input characters following the tab (or leader) up to the next tab (or
leader) or end of line; and W is the width of next—string.

Tab Length of motion or Location of
type repeated characters next-string
Left D Following D

Right D~W Right adjusted within D
Centered D—W/‘2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot be.
Repeated character strings contain an integer number of characters, and any residual distance is prepended as
motion. Tabs or leaders found after the last tab stop are ignored, but may be used as next-string terminators.
Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and leader
respectively, and are equivalent to actual tabs and leaders in copy mode.
9.2.Fz‘e1ds. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the positionwhere the field begins to the next tab stop. The difference between the total length of all the substrings andthe field length is incorporated as horizontal padding space that is divided among the indicated padding places.The incorporated padding is allowed to be negative. For example, if the field delimiter is # and the paddingindicator is ", #AxxxArighttt specifies a right—adjusted string with the string xxx centered in the remaining
space.

ND—60.328.1P EN

NROFFfl‘ROFF Reference Manual USD:24-21

Request Initial If No
Form Value Argument Notes Explanation
.ta/Nt/... 0.8;!05in none E,m Set tab stops and types. t=R, right adjusting; t=C, center—

ing; t absent, left adjusting. TROFF tab stops are preset
every 0.5in.; NROFF every 0.8in. The stop values are
separated by spaces, and a value preceded by + is treated as
an increment to the previous stop value.

.tc/c none none E The tab repetition character becomes c, or is removed
specifying motion.

.lc/c . none E The leader repetition character becomes c, or is removed
specifying motion.

.fc/a/b off off — The field delimiter is set to a; the padding indicator is set to
the space character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations
10.1.Input character translations. Ways of inputting the graphic character set were discussed in §2.l. The
ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed elsewhere. Thenewline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted, and may be used as
delimiters or translated into a graphic with tr (§lO.5). All others are ignored.
The escape character \ introduces escape sequences—causes the following character to mean another character,or to indicate some function. A complete list of such sequences is given in the Summary and Index on page 6.\ should not be confused with the ASCII control character ESC of the same name. The escape character \ canbe input with the sequence \\ The escape character can be changed with cc, and all that has been said aboutthe default \ becomes true for the new escape character. \e can be used to print whatever the current escape
character is. If necessary or convenient, the escape mechanism may be turned off with ac, and restored with
ec.

Request Initial If No
Form Value Argument Notes Explanation
.ec/c \ \ - Set escape character to \, or to c, if given.
.eo on — - Turn escape mechanism off.
10.2.Ligatures. Five ligatures are available in the current TROFF character set — fi, fi, , , and . They maybe input (even in NROFF) by \(fi, \(fl, \(ff, \(Fi, and \(FI respectively. The ligature mode is normally on inTROFF, and automatically invokes ligatures during input.
Request Initial If No
Form Value Argument Notes Explanation
.Ig/N offfion on - Ligature mode is turned on if N is absent or non-zero, and

turned off if N=0. If N=2, only the two—character ligatures
are automatically invoked. Ligamre mode is inhibited for
request, macro, string, register, or file names, and in copy
made. No effect in NROFF.

10.3. Backspacing, underlining, overstriking. etc. Unless in copy mode, the ASCII backspace character isreplaced by a backward horizontal motion having the width of the space character. Underlining as a form ofline-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.
NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on fontposition 2 (normally Times Italic, see §2.2). In addition to it and \fF, the underline font may be selected by uland cu. Underlining is restricted to an output-device-dependent subset of reasonable characters.

ND-60.328.IP EN

USD224-22 . NROFF/I‘ROFF Reference Manual

Request Initial If No
Form Value Argument Notes Explanation

.ul/N off N=1 E Underline in NROFF (italicize in TROFF) the next N input
text lines. Actually, switch to underline font, saving the
current font for later restoration; other font changes within
the span of a ul will take effect, but the restoration will
undo the last change. Output generated by tl (§l4) is
affected by the font change, but does not decrement N. If
N>1, there is the risk that a trap interpolated macro may
provide text lines within the span; environment switching
can prevent this.

.cu/N off N=1 E A variant of ul that causes every character to be underlined
in NROFF. Identical to ul in TROFF.

.uf/F Italic Italic - Underline font set to F. In NROFF, F may not be on posi-
tion I (initially Times Roman).

10.4. Control characters. Both the control character . and the no-brealc control character ’ may be changed, if
desired. Such a change must be compatible with the design of any macros used in the span of the change, and
particularly of any trapinvoked macros.
Request Initial If No
Form Value Argument Notes Explanation

.cc/c . . E The basic control character is set to c, or reset to

.c2/c ’ ’ E The nobreak control character is set to c, or reset to "".
10.5. Output translation. One character can be made a stand—in for another character using tr. All text pro-
cessing (e. g. character comparisons) takes place with the input (stand-in) character which appears to have the
width of the final character. The graphic translation occurs at the moment of output (including diversion).
Request Initial If No
Form Value Argument Notes Explanation

.tr/abcd.... none - 0 Translate a into b, 0 into a, etc. If an odd number of char—
acters is given, the last one will be mapped into the space
character. To be consistent, a particular translation must
stay in effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently output
(without the initial \!); the text processor is otherwise unaware of the line’s presence. This mechanism may be
used to pass control information to a post-processor or to imbed control lines in a macro created by a diver-
sion.

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g. a
string definition, or nofilled text) can be split into many physical lines by ending all but the last one with the
escape \. The sequence \(newline) is always ignored—except in a comment. Comments may be imbedded at
the end of any line by prefacing them with \". The newline at the end of a comment cannot be concealed. A
line beginning with \" will appear as a blank line and behave like .spll; a comment can be on a line by itself
by beginning the line with .\".
11. Local Horizontal and Vertical Motions, and the Width Function
11.1.Local Motions. The functions \v’N’ and \h’N’ can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the positive directions are rightward and downward. A local
motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary that the net
vertical local motion within a word in filled text and otherwise within a line balance to zero. The above and
certain other escape sequences providing local motion are summarized in the following table. As an example,
E2 could be generated by the sequence E\s—2\v’—0.4m’2\v’0.4m ’\s+2; it should be noted in this example that
the 0.4 cm vertical motions are at the smaller size.
11.2. Width Function. The width function \w’string ' generates the numerical width of string (in basic units).
Size and font changes may be safely imbeddcd in string, and will not affect the current environment For

ND—60.328.1P EN

NROFF/I‘ROFF Reference Manual USD124-23

Vertical Effect in Horizontal Effect in
Local Motion TROFF NROFF Local Motion TROFF NROFF

\v’N ’ Move distance N \h’N ' Move distance N
\(space) Unpaddable space-size space\u 1/2 em up 1/2 line up \0 Digit-size space

\d ‘/2 em down V2 line down
\r 1 em up 1 line up \ 1/6 em space ignored

\" 1/12 em space ignored

example, .ti-—\w’l. ’u could be used to temporarily indent leftward a distance equal to the size of the string"1.

The width function also sets three number registers. The registers st and 5!) are set respectively to the highestand lowest extent of string relative to the baseline; then, for example, the total height of the string is\n(stu—\n(sbu. In TROFF the number register ct is set to a value between Oand 3: 0 means that all of thecharacters in string were short lower case characters without descenders (like e); 1 means that at least onecharacter has a descender (like y); 2 means that at least one character is tall (like H); and 3 means that both tallcharacters and characters with descenders are present.
11.3.Mark horizontal place. The escape sequence \kx wfll cause the current horizontal position in the inputline to be stored in register x. As an example, the construction \kxword\h’l\nxu+2u’word will cmboldenword by backing up to almost its beginning and overprinting it, resulting in word.
12. Overstrike, Bracket, Line-drawing, and Zero-width Functions
12.]. Overstriking. Automatically centered overstriking of up to nine characters is provided by the overstrikefunction \o'string '. The characters in string overprinted with centers aligned; the total width is that of thewidest character. string should not contain local vertical motion. As examples, \o’e\" produces é, and\0’\(mo\(sl’ produces é.

12.2.Zero—width characters. The function \zc will output c without spacing over it, and can be used to pro-duce left-aligned overstruck combinations. As examples, \z\(ci\(pl will produce 69 , and \(br\z\(rn\(ul\(br willproduce the smallest possible constructed box D
12.3.Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces(l i l J i i l U H) that can be combined into various bracket styles. The function \b’string ’ may be usedto pile up vertically the characters in string (the first character on top and the last at the bottom); the charactersare vertically separated by lem and the total pile is centered l/Zem above the current baseline (1/2 line in
NROFF). For example, \b'\(lc\(lf’E\l\b’\(rc\(rf ’\x’—0.5m'\x'0.5m’ produces [E]

12.4. Line drawing. The function \l 'Nc ’ will draw a string of repeated c’s towards the right for a distance N.(\l is \(lower case L). If c looks like a continuation of an expression for N, it may insulated from N with a \&.If c is not specified, the _ (baseline rule) is used (underline character in NROFF). If N is negative, a backwardhorizontal motion of size N is made before drawing the string. Any space resulting from N /(size of c) havinga remainder is put at the beginning (left end) of the string._ In the case of characters that are designed to beconnected such as baseline~rule_, underrule _, and root—en , the remainder space is covered by over-lapping.IfN is less than the width of c, a single c is centered on a distance N. As an example, a macro to underscore astring can be written

.de us
\\$1\l ’ l 0\(ul’

or one to draw a box around a string
.de bx
\(br\l\\$1\| \(br\l ' l 0\(rn\l ’ } 0\(ul’

such that

.ul "underlined words"

ND-60.328.lP EN

USD124-24 . - NROFF/FROFF Reference Manual

and

.bx "words in a box"

yield underlined words and

The function \L‘Nc ' will draw a vertical line consisting of the (optional) character c stacked vertically apart
lem (1 line in NROFF), with the first two characters overlapped, if necessary, to form a continuous line. The
default character is the box rule I (\(br); the other suitable character is the bold vertical 1 (\(bv). The line is
begun without any initial motion relative to the current base line. A positive N specifies a line drawn down-
ward and a negative N specifies a line drawn upward. After the line is drawn no compensating motions are
made; the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes. The
zero-width box-rule and the 1/2-em wide underrule were designed to form comers when using l—em vertical
spacings. For example the macro

.de eb

.sp —1 \"compensate for next automatic base-line spacing

.nf \"avoid possibly overflowing word buffer
\h’——.5n’\L’ I \\nau—1'\l’\\n(.lu+1n\(ul’\L’— [\\nau+1’\l’ l 0u——.5n\(ul’ \"draw box
.11

will draw a box around some text whose beginning vertical place was saved in number register a (e. g. using
.mk a) as done for this paragraph.
13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with by, several variants may be
set. A hyphenation indicator character may be imbedded in a word to specify desired hyphenation points, or
may be prepended to suppress hyphenation. In addition, the user may specify a small exception word list.
Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic strings are
considered candidates for automatic hyphenation. Words that were input containing hyphens (minus), em-
dashes (\(em), or hyphenation indicator characters—such as mother-in-law——are always subject to splitting
after those characters, whether or not automatic hyphenation is on or off.
Request Initial If No
Form Value Argument Notes Explanation
.nh hyphenate - E Automatic hyphenation is turned off.
.hyN on,N=l on,N=l E Automatic hyphenation is turned on for N21, or off for

N: 0. If N: 2, last lines (ones that will cause a trap) are
not hyphenated. For N: 4 and 8, the last and first two char-
acters respectively of a word are not split off. These values
are additive; i. e. N= 14 will invoke all three restrictions.

he 6 \% \% E Hyphenation indicator character is set to c or to the default
\%. The indicator does not appear in the output.

.hw word] ignored — Specify hyphenation points in words with imbedded minus signs.
Versions of a word with terminal 5 are implied; i. e. dig—it
implies dig—its. This list is examined initially and after
each suffix stripping. The space available is small—about
128 characters.

14. Three Part Titles.

The titling function tl provides for automatic placement of three fields at the left, center, and right of a linewith a title-length specifiable with It. tl may be used anywhere, and is independent of the normal text collect-ing process. A common use is in header and footer macros.

ND—60.328. 1P EN

NROFF/I‘ROFF Reference Manual [131124-25

Request Initial IfNo
Form Value Argument Notes Explanation
.tl ’Ieft ’center’right ’ - - The strings left, center, and right are respectively left-

adjusted, centered, and right-adjusted in the current title-
length. Any of the strings may be empty, and overlapping
is permitted. If the page~number character (initially %) is
found within any of the fields it is replaced by the current
page number having the format assigned to register %.
Any character may be used as the string delimiter.

.pc c % off - The page number character is set to c, or removed. The
page-number register remains %.

.ltiN 6.5 in previous E,m Length of title set to iN. The line-length and the title-
length are independent. lndents do not apply to titles;
page-offsets do.

15. Output Line Numbering.
Automatic sequence numbering of output lines may be requested with nm. When in effect, a three—digit,arabic number plus a digit-space is prepended to output text lines. The text lines are thus offset by four3 digit-spaces, and otherwise retain their line length; a reduction in line length may be desired to keep theright margin aligned with an earlier margin. Blank lines, other vertical spaces, and lines generated by tlare not numbered. Numbering can be temporarily suspended with nn, or with an .nm followed by a later6 .nm +0. In addition, a line number indent I, and the number-text separation S may be specified in digit-spaces. Further, it can be specified that only those line numbers that are multiples of some number M areto be printed (the others will appear as blank number fields).

Request Initial If No
Form Value Argument Notes Explanation
.nm iNM Sloff E Line number mode. IfiN is given, line numbering is turned on, and

the next output line numbered is numbered iN. Default
values are M: 1, S= 1, and I: 0. Parameters corresponding
to missing arguments are unaffected; a non—numeric argu—
ment is considered missing. In the absence of all argu-
ments, numbering is turned off; the next line number is
preserved for possible further use in number register In.

.nn N - N21 E The next N text output lines are not numbered.
9 As an example, the paragraph portions of this section are numbered with M23: .nm 1 3 was placed atthe beginning; .nm was placed at the end of the first paragraph; and .nm +0 was placed in front of thisparagraph; and .nm finally placed at the end. Line lengths were also changed 03y \w’0000’u) to keep the12 right side aligned Another example is .nm +5 5 x 3 which tums on numbering with the line number ofthe next line to be 5 greater than the last numbered line, with M: 5, with spacing S untouched, and withthe indent I set to 3.

16. Conditional Acceptance of Input
1n the following, c is a one-character, built—in condition name, ! signifies not, N is a numerical expression,string] and stringZ are strings delimited by any non-blank, non-numeric character not in the strings, and any-thing represents what is conditionally accepted.
Request [nitial If No
Form Value Argument Notes Explanation
.ifcanything « - lf condition c true, accept anything as input; in multi-line

case use\{anything\ .
.if !c anything- ~ If condition c false, accept anything.
.if N anything - u If expression N > 0, accept anything.

ND-60.328.1P EN

US D224-26 - NROFF/TROFF Reference Manual

.if !N anything - u If expression N S 0, accept anything.

.if ’strt‘ngI ’stringZ ’anytht‘ng - If string] identical to stringZ, accept anything.

.if! ’strt‘ngI ’stringZ ’anything - If string] not identical to stringZ, accept anything.

.ie c anything - u If portion of if~else; all above fortns (like if).

.el anything - - Else portion of if—else.

The built—in condition names are:

Condition
Name True If

0 Current page number is odd
e Current page number is even
t Formatter is TROFF
n Formatter is NROFF

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically (includ-
ing motions and character size and font), anything is accepted as input. if a ! precedes the condition, number,
or string comparison, the sense of the acceptance is reversed
Any spaces between the condition and the beginning of anything are skipped over. The anything can be either
a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case, the first line
must begin with a left delimiter \{ and the last line must end with a right delimiter \}.

The request ie (if—else) is identical to if except that the acceptance state is remembered. A subsequent and
matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested.
Some examples are:

.if e .tl ‘ Even Page %”’

which outputs a title if the page number is even; and

.ie \n%>1 \{\
’sp 0.5i
.tl ’Page %"’
’sp 11.2i \}
.el .sp l2.5i

which treats page 1 differently from other pages.

17. Environment Switching.
A number of the parameters that control the text processing are gathered together into an environment, which
can be switched by the user. The environment parameters are those associated with requests noting E in their
Notes column; in addition, partially collected lines and words are in the environment. Everything else is glo—
bal; examples are page-oriented parameters, diversion-oriented parameters, number registers, and macro and
string definitions. All environments are initialized with default parameter values.
Request Initial lfNo
Form Value Argument Notes Explanation
.ev N N20 previous - Environment switched to environment OSNSZZ. Switching is

done in push-down fashion so that restoring a previous
environment must be done with .ev rather than specific
reference.

18. Insertions from the Standard lnput

The input can be temporarily switched to the system standard input with rd, which will switch back when two
newlines in a row are found (the extra blank line is not used). This mechanism is intended for insertions in
form-letter-like documentation. On UNIX, the standard input can be the user’s keyboard, a pipe, or afile.

ND-60.328.1P EN

NROFF/TROFF Reference Manual US D124-27

Request Initial If No
Form Value Argument Notes Explanation
.rd prompt — prompt=BEL - Read insertion from the standard input until two newlines

in a row are found. If the standard input is the user’s key—
board, prompt (or a BEL) is written onto the user’s terminal.
rd behaves like a macro, and arguments may be placed
after prompt.

.ex — — - Exit from NROFF/I‘ROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal, the com-mand line option —q will turn off the echoing of keyboard input and prompt only with BEL. The regular inputand insertion input cannot simultaneously come from the standard input.
As an example, multiple copies of a form letter may be prepared by entering the insertions for all the copies inone file to be used as the standard input, and causing the file containing the letter to reinvoke itself using nx(§19); the process would ultimately be ended by an ex in the insertion file.
19. Input/Output File Switching
Request Initial IfNo
Form Value Argument Notes Explanation
.sofilename - — Switch source file. The top input (file reading) level is

switched to filename. The effect of an so encountered in a
macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from
the original file. so’s may be nested.

.nxfilename end-of-file - Next file is filename. The current file is considered ended,
and the input is immediately switched to filename.

.pi program — - Pipe output to program (NROFF only). This request must
occur before any printing occurs. N0 arguments are
transmitted to program.

20. Miscellaneous

Request Initial IfNo
Form Value Argument Notes Explanation
.mc cN - off E,m Specifies that a margin character c appear a distance N to

the right of the right margin after each non-empty text line
(except those produced by tl). If the output line is too—long
(as can happen in nofill mode) the character will be
appended to the line. If N is not given, the previous N is
used; the initial N is 0.2 inches in NROFF and lem in
TROFF. The margin character used with this paragraph was
a 12-point box—rule.

.tm string - newline - After skipping initial blanks, string (rest of the line) is read
in copy mode and written on the user’s terminal.

Jg yy - .yy=.. - Ignore input lines. ig behaves exactly like de (§7) except
that the input is discarded. The input is read in copy mode,
and any autoincremented registers will be affected.

.pm I — all - Print macros. The names and sizes of all of the defined
macros and strings are printed on the user's terminal; if t is
given, only the total of the sizes is printed. The sires is
given in blocks of 128 characters.

.fl - - B Flush output buffer. Used in interactive debugging to force
output

ND-60.328.1P EN

USD224~28 ' NROFF/I‘ROFF Reference Manual

21. Output and Error Messages.

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto UNIX’s
standard message output. The latter is different from the standard output, where NROFF formatted output
goes. By default, both are written onto the user’s terminal, but they can be independently redirected.

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious errors
having only local impact do not cause processing to terminate. Two examples are word overflow, caused by a
word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by an output line that
grew too large to fit in the line buffer: in both cases, a message is printed, the offending excess is discarded,
and the affected word or line is marked at the point of truncation with a * in NROFF and a m in TROFF. The
philosophy is to continue processing, if possible, on the grounds that output useful for debugging may be pro-
duced. If a serious error occurs, processing terminates, and an appropriate message is printed. Examples are
the inability to create, read, or write files, and the exceeding of certain internal limits that make future output
unlikely to be useful.

ND—60.328. 1? EN

NROFF/I‘ROFF Reference Manual [131124-29

TUTORIAL EXAMPLES

Tl. Introduction

Although NROFF and TROFF have by design a syntax reminiscent of earlier text processors* with the intent ofeasing their use, it is almost always necessary to prepare at least a small set of macro definitions to describe
most documents. Such common formatting needs as page margins and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and suing definition, number register. diversion, environment switch-
ing, page—position trap, and conditional input mechanisms provide the basis for user—defined implementations.
The examples to be discussed are intended to be useful and somewhat realistic, but won’t necessarily cover all
relevant contingencies. Explicit numerical parameters are used in the examples to make them easier to read
and to illustrate typical values. In many cases, number registers would really be used to reduce the number ofplaces where numerical information is kept, and to concentrate conditional parameter initialization like that
which depends on whether TROFF or NROFF is being used.
T2. Page Margins

As discussed in §3, header and footer macros are usually defined to describe the top and bottom page margin
areas respectively. A trap is planted at page position 0 for the header, and at —N (N from the page bottom) for
the footer. The simplest such definitions might be

.de hd \"define header
’sp 1i
.. \"end definition
.de to \"define footer’bp

.. \"end definition

.wh 0 hd

.Wh —1i f0

which provide blank linch top and bottom margins. The header will occur on the first page, only if the
definition and trap exist prior to the initial pseudopage transition (§3). In fill mode, the output line thatsprings the footer trap was typically forced out because some part or whole word didn’t fit on it. If anything in
the footer and header that follows causes a break, that word or part word will be forced ouL In this and otherexamples, requests like bp and sp that normally cause breaks are invoked using the Ito-break control character
’ to avoid this. When the header/footer design contains material requiring independent text processing, the
environment may be switched, avoiding most interaction with the running text
A more realistic example would be

.de hd \"header

.if t .0 ’\(rn"\(rn' \"trofl‘ cut mark

.if \\n%>1 \{\
’sp [0.5i—1 \"tl base at 0.5i
.tl ”— % —" \"centered page number
.ps \"rostore size
.ft \" restore font
.vs \} \"restore vs
’sp [1.0i \"space to 1.0i
.ns \"turn on no-space mode

.de f0 \" footer

.ps 10 \"set footer/header size

.ft R \"set font

.vs 12p \"set base-line spacing

.if \\n%:l \{\
’sp |\\n(.pu—0.5i—-l \"tl base 0.5i up

ND-6().328.1P EN

USD:24-30 ' NROFF/I‘ROW Reference Manual

.tl ”— % —” \} \"first page number
'bp

.wh 0 hd

.wh —1i f0

which sets the size, font, and base—line spacing for the header/footer material, and ultimately restores them.
The material in this case is a page number at the bottom of the first page and at the top of the remaining pages.
If TROFF is used, a cut mark is drawn in the form of root-en’s at each margin. The sp’s refer to absolute posi—
tions to avoid dependence on the base-line spacing. Another reason for this in the footer is that the footer is
invoked by printing a line whose vertical spacing swept past the trap position by possibly as much as the
base-line spacing. The Ito—space mode is turned on at the end of hd to render ineffective accidental
occurrences of sp at the top of the running text.

The above method of restoring size, font, etc. presupposes that such requests (that set previous value) are not
used in the running text. A better scheme is save and restore both the current and previous values as shown
for size in the following:

.de f0

.nr 51 \\n(.s \" current size

.ps

.nr 52 \\n(.s \" previous size

. --- \" rest of footer

.de hd

. --- \"header stuff

.ps \\n(sZ \" restore previous size

.ps \\n(sl \" restore current size

Page numbers may be printed in the bottom margin by a separate macro triggered during the footer’s page
ejection:

.de bn \" bottom number

.tl ”— % —” \"centered page number

.wh —-0.5i—1v bn \"tl base 0.5i up

T3. Paragraphs and Headings
The housekeeping associated with starting a new paragraph should be collected in a paragraph macro that, for
example, does the desired preparagraph spacing, forces the correct font, size, base-line spacing, and indent,
checks that enough space remains for more than one line, and requests a temporary indent.

.de pg \" paragraph

.br \"break

.ft R \" force font,

.ps 10 \"size,

.vs 12p \"spacing,

.in 0 \"and indent

.sp 0.4 \"prespace

.ne l+\\n(.Vu \"want more than 1 line

.ti 0.2i \"temp indent

The first break in pg will force out any previous partial lines, and must occur before the vs. The forcing of
font, etc. is partly a defense against prior error and partly to permit things like section heading macros to set
parameters only once. The prespacing parameter is suitable for TROFF; a larger space, at least as big as the
output device vertical resolution, would be more suitable in NROFF. The choice of remaining space to test for
in the ne is the smallest amount greater than one line (the .V is the available vertical resolution).

ND-60.328. l P EN

NROFF/I‘ROFF Reference Manual [5924-31

A macro to automatically number section headings might look like:
.de sc \"section
. --- \"l‘orce font, etc.
.sp 0.4 \"prespace
.ne 2.4+\\n(.Vu \" want 2.4+ lines
.fi
\\n+S.

.nr S 0 1 \"init S
The usage is .sc, followed by the section heading text, followed by .pg. The ne test value includes one line of
heading, 0.4 line in the following pg, and one line of the paragraph text. A word consisting of the next section
number and a period is produced to begin the heading line. The format of the number may be set by af (§8).
Another common form is the labeled, indented paragraph, where the label protrudes left into the indent space.

.de lp \"labeled paragraph
-pg
.in 0.5i \" paragraph indent
.ta 0.2i 0.5i \"label, paragraph
.ti 0
\t\\$1\t\c \"flow into paragraph

The intended usage is ".lp label "; label will begin at 0.2 inch, and cannot exceed a length of 0.3 inch without
intruding into the paragraph. The label could be right adjusted against 0.4 inch by setting the tabs instead with
.ta 0.4iR 0.5i. The last line of lp ends with \c so that it will become a part of the first line of the text that fol-
lows.

T4. Multiple Column Output
The production of multiple column pages requires the footer macro to decide whether it was invoked by other
than the last column, so that it will begin a new column rather than produce the bottom margin. The header
can initialize a column register that the footer will increment and test The following is arranged for two
columns, but is easily modified for more.

.de hd \"header

.nr cl 0 l \"init column count

.mk \"mark top of text

.de f0 \" footer

.ie \\n+(cl<2 \{\

.po +3.4i \"next column; 3.1+0.3

.rt \"back to mark

.ns \} \"no—space mode

.el \{\

.po \\nMu \"restore left margin

'bp \}

.ll 3.1i \"column width

.nr M \\n(.0 \"save left margin
Typically a portion of the top of the first page contains full width text; the request for the narrower line length,
as well as another .mk would be made where the two column output was to begin.
T5. Footnote Processing

The footnote mechanism to be described is used by imbedding the footnotes in the input text at the point of
reference, demarcated by an initial .in and a terminal .ef:

ND—60.328.1P EN

USDI24-32

.fn
Footnote text and control lines...
.ef

In the following, footnotes are processed in a separate environment and diverted for later printing in the space
immediately prior to the bottom margin There is provision for the case where the last collected footnote
doesn‘t completely fit in the available space.

.de hd \" header

.nr x 0 1 \"init footnote count

.nr y 0—\\nb \"current footer place

.ch fo -\\nbu \”reset footer trap

.if \\n(dn .fz \" leftover footnote

.de f0 \" footer

.nr dn 0 \" zero last diversion size

.if \\nx \{\

.ev 1 \"expand footnotes in evl

.nf \" retain vertical size

.FN \" footnotes

.rm FN \"delete it

.if "\\n(.z"fy" .di \"end overflow diversion

.nr x 0 \"disable fx

.ev \} \"pop environment

'bp

.de fx \"procoes footnote overflow

.if \\nx .di fy \"divert overflow

.de fn \" start footnote

.da FN \"divert (append) footnote

.ev 1 \" in environment 1

.if \\n+x:1 .fs \"if first, include separator

.fi \"fill mode

.de ef \" end footnote

.br \" finish output

.nr 2 \\n(.v \"save spacing

.ev \" pop ev

.di \"end diversion

.nr y —\\n(dn \" new footer position,

.if \\nx=1 .nr y {\\n(.v—Wu) \
\" uncertainty correction

.ch fo \\nyu \"y is negative

.if (\\n(nl+lv)>(\\n(.p+\\ny) \

.ch f0 \\n(nlu+lv \"it didn’t fit

.de fs \"separator
\1' li’ \"1 inch rule
.br

.de fz \" get leftover footnote

.fn

.nf \" retain vertical size

.fy \"where fx put it

.ef

ND—60.328.1P EN

NROFF/I‘ROFF Reference Manual

NROFF/TROFF Reference Manual USD224-33

.nr b 1.0i \"bottom margin size

.wh 0 hd \"header trap

.wh 12i f0 \"footer trap, temp position

.wh —\\nbu fx \"fx at footer position

.ch fo -\\nbu \"conceal fit with f0

The header hd initializes a footnote count register x, and sets both the current footer trap position register y
and the footer trap itself to a nominal position specified in register b. In addition, if the register dn indicates a
leftover footnote, fz is invoked to reprocess it The footnote start macro fn begins a diversion (append) in
environment 1, and increments the count x; if the count is one, the footnote separator fs is interpolated. The
separator is kept in a separate macro to permit user redefinition. The footnote end macro ef restores the previ-
ous environment and ends the diversion after saving the spacing size in register I. y is then decremented by
the size of the footnote, available in dn; then on the first footnote, y is further decremented by the difference in
vertical base—line spacings of the two environments, to prevent the late triggering the footer trap from causing
the last line of the combined footnotes to overflow. The footer trap is then set to the lower (on the page) of y
or the current page position (nl) plus one line, to allow for printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in nofill mode in environment 1, and deletes FN. If the footnotes were
too large to fit, the macro fx will be trap-invoked to redivert the overflow into fy, and the register dn will later
indicate to the header whether fy is empty. Both f0 and fx are planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo trap is moved. The footer then terminates the overflow
diversion, if necessary, and zeros x to disable fx, because the uncertainty correction together with a not-too-late
triggering of the footer can result in the footnote rereading finishing before reaching the fx trap.
A good exercise for the student is to combine the multiple—column and footnote mechanisms.
T6. The Last Page

After the last input file has ended, NROFF and TROFF invoke the end macro (§7), if any, and when it finishes,
eject the remainder of the page. During the eject, any traps encountered are processed normally. At the end of
this last page, processing terminates unless a partial line, word, or partial word remains. If it is desired that
another page be started, the end-macro

.de en \"end-macro
\c
'bp

.em en

will deposit a null partial word, and effect another last page.

ND-60.328.lP EN

USDz24-34

Table I

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of l4~point, and with non-alphanumeric
characters separated by 1/4 em space. The Special Mathematical Font was specially prepared for Bell Labora—
tories by Graphic Systems, Inc. of Hudson, New Hampshire. The Times Roman, Italic, and Bold are among
the many standard fonts available from that company.

Times Roman

abcdefghijldmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+—.,/:;=?[]l
oU—-_1/4‘/23/4fiflfffiifil°f’¢®©

Times Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+—.,/:;=?[]/
. U—-_’/4’/23/4fiflfifiijfl °¢ ' ¢ ® ©

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+—.,/:;:?[]|
¢D—-__‘/4‘/23/4fiflfi‘tfifll°f’¢®©

Special Mathematical Font

"’\A_‘~/<>{}#@+—=*
0tBySeCnGLKlpvfionpogtooxq/o)
FQGAEHXYCD‘PQ
\J ZSE~ ¢——><——Ti><+iunc:>
§Vfij<><®€iérm |OHHH

5.28
U r7;

ND~60.328. 1? EN

NRor-F/TROFF Reference Manual

NROFF/T‘ROFF Reference Manual

Table II

USD:24-35

Input Naming Conventions for ’, ‘, and —
and for Non-ASCII Special Characters

Non-ASCII characters and minus on the standard fonts.

Input
Char Name Name

, a

i \

- \(em

- \(hy
— \—
0 \(bu

0 \(sq
._ \(ru
VI \(14
1/2 \(12
3/4 \(34

Non-ASCII characters and ’, ‘,

Character Input Character
Char Name Name

close quote fi \(fi fi
open quote (1 \(fl ft
3/4 Em dash ff \(ff ff
hyphen or ffi \(Fi fti
hyphen fll \(Fl fll
current font minus ' \(de degree
bullet T \(dg dagger
square ’ \(fm foot mark
rule ¢ \(ct cent sign
1/4 ® \(rg registered
1/2 © \(co copyright
3/4

_, +, —, :, and * on the special font.
The ASCII characters @, #, ’, ‘, <, >, \, {, }, ~, A, and _ exist only on the special font
and are printed as a l-em space if that font is not mounted. The following characters
exist only on the special font except for the upper case Greek letter names followed by
T which are mapped into upper case English letters in whatever font is mounted on font
position one (default Times Roman). The special math plus, minus, and equals are pro
vided to insulate the appearance of equations from the choice of standard fonts.

Input
Char Name

+ \(pl
\(mi
\(cq
\(Ihk

\(sc
\(aa
\(ga
\(ul
\(sl
\(*a
\(*b
\(*g
\(*d
W6
\(*Z
\(*y
Y"!
\(*i
\(*k
W1

l
\a

o
o

x
ll

>
2

7
;r

<
p

:l
u

~
t(
fl
0

0
-<

U
>

Q
\l

Character
Name

math plus
math minus
math equals
math star
section
acute accent
grave accent
underrule
slash (matching backslash)
alpha
beta
gamma
delta
epsilon
zeta

eta

theta
iota
kappa
lambda

is”
N

m
t>

~
1

m
>

e
<

x
e

c
c
n

n
Q

n
a

o
m

<
1

z

Input
Name

\(*m
W11
‘(*C
\(*o
\(*p
‘(*r
\(*S
\(ts
\(*t
\(*u
\(*f
\(*X
\(*q
WW
\(*A
\(*B
‘(*G
\(*D
\(*E
\(*Z

Character
Name

mu
nu
xi
omicron
pi
rho
sigma
terminal sigma
tau
upsilon
phi
chi
psi
omega
Alpha?
BetaT
Gamma
Delta
Epsilon?
ta‘l’

NIB-60328.1? EN

USD224-36

Input
Char Name

\(*Y
\(*H
W1
\(*K
\(*L
\(*M
\(*N
WC
‘00
\(*P
\(*R
‘(*S
\(*T
\(*U
\(*F
\(*X
\(*Q
\(*W
\(Sr
\(m
\(>=
\(<=

\(N=

\(31)
\(!=
\(~>
\(<~
\(ua
\(da
\(mu
\(di
\(+—
\(cu
\(ca
\(sb
\(sp
\(ib
\(ip
\(if
\(pd
\(gr
\(no
\(is
\(pt
\(es
\(mo
\(br
\(dd
\(rh
\(lh
\(bs
\(or
\(ci

I<
D

~
E

>
<

e
~

<
~

lm
re

d
o

m
z
z
>

7
<

~
®

m
Ill

IA
lV

é
Q
fi
m

R
b

-J
<

J
Q

J
8

1
U

lfl
U

0
3

C
I+

+
X

F
—

>
T

~
L

l+
l

0
.
.

Character
Name

Eta]L
Theta
Iota)L
Kappa?
Lambda
MuT
Nu]L
Xi
OmicronlL
Pi
RhoiL
Sigma
Tau’r
Upsilon
Phi
ChitL
Psi
Omega
square root
root en extender
>:

(z

identically equal
approx =
approximates
not equal
right arrow
left arrow
up arrow
down arrow
multiply
divide
plus-minus
cup (union)
cap (intersection)
subset of
superset of
improper subset
improper superset
infinity
partial derivative
gradient
not
integral sign
proportional to
empty set
member of
box vertical rule
double dagger
right hand
left hand
Bell System logo
or
circle

ND—60.328.1P EN

('3
~

_
J
.fi

l_
r_

._
_

..
-.

._
A

_
_

..
_

..
J
,.

.—
_

€-

Input
Name

\(lt
\(lb
\(rt
\(rb
\(lk
\(rk
\(bv
\(lf

\(rf
\(lc
\(rc

NROFFfl‘ROFF Reference Manual

Character
Name

left top of big curly bracket
left bottom
right top
right bot
left center of big curly bracket
right center of big curly bracket
bold vertical
left floor (left bottom of big
square bracket)
right floor (right bottom)
left ceiling (left top)
right ceiling (right top)

NROFF/I‘ROFF Reference Manual USD:24-37

May is, 1977

Old Requests

.ad c

.30 name

New Request

.ab text

.sN

Summary of Changes to Nfl‘ROFF Since October 1976 Manual

Options

(Nroff only) Output tabs used during horizontal spacing to speed output as well as reduce
output byte count Device tab settings assumed to be every 8 nominal character widths. The
default settings of input (logical) tabs is also initialized to every 8 nominal character widths.

Efficiently suppresses formatted output. Only message output will occur (from "tm"s and
diagnostics).

The adjustment type indicator "c" may now also be a number previously obtained from the
.3 register (see below).

The contents of file "name" will be interpolated at the point the "so" is encountered. Previ-
ously, the interpolation was done upon return to the file~reading input level.

Prints "text" on the message output and temiinates without further processing. If "text" is
missing, "User Abort." is printed. Does not cause a break. The output buffer is flushed.

forces font "F" to be in size N. N may have the form N, +N, or —N. For example,
.f2 3 -2

will cause an implicit \s-2 every time font 3 is entered, and a corresponding \s+2 when it is
lefL Special font characters occurring during the reign of font F will have the same size
modification. If special characters are to be treated differently,

.fz S F N
may be used to specify the size treatment of special characters during font F. For example,

.f2 3 -3

.f2 S 3 -0
will cause automatic reduction of font 3 by 3 points while the special characters would not be
affected. Any “.fp" request specifying a font on some position must precede “.fz” requests
relating to that position.

New Predefined Number Registers.

.k Read-only. Contains the horizontal size of the text portion (without indent) of the current par-
tially collected output line, if any, in the current environment.

Read‘only. A number representing the current adjustment mode and type. Can be saved and
later given to the "ad" request to restore a previous mode.

Read-only. 1 if the current page is being printed, and mm otherwise.

Read-only. Contains the current line-spacing parameter ("ls").

General register access to the input line-number in the current input file. Contains the same
value as the read-only "."c register.

ND—6().328.lP EN

USD224-38 ' NROFF/I‘ROW Reference Manual

ND—60.328. 1P EN

A TROFF Tutorial , USD125-1

A TROFF Tutorial

Brian W. Kcrnighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

troff is a text~formatting program for driving the Graphic Systems phototypesetter on the
UNIXT and GCOS operating systems. This device is capable of producing high quality text;
this paper is an example of troff output.
The phototypesetter itself normally runs with four fonts, containing roman, italic and bold
letters (as on this page), a full greek alphabet, and a substantial number of special characters
and mathematical symbols. Characters can be printed in a range of sizes, and placed any—
where on the page.
troff allows the user full control over fonts, sizes, and character positions, as well as the
usual features of a forrnatter —— right-margin justification, automatic hyphenation, page
titling and numbering, and so on. It also provides macros, arithmetic variables and opera-
tions, and conditional testing, for complicated formatting tasks.
This document is an introduction to the most basic use of troff. It presents just enough
information to enable the user to do simple formatting tasks like making viewgraphs, and to
make incremental changes to existing packages of troff commands. In most respects, the
UNIX formatter nroff is identical to troff, so this document also serves as a tutorial on
nrof‘f.

ND-6().328.1P EN

USD:25-2 . , , A TROFF Tutorial

ND-60.328.1P EN

A TROFF Tutorial

1. Introduction

troff [1] is a text—formatting program, written
by J. F. Ossanna, for producing high«quality printed
output from the phototypesetter on the UNIX and
GCOS operating systems. This document is an
example of trofl' output.

The single most important rule of using troff
is not to use it directly, but through some intermed-
iary. In many ways, troff resembles an assembly
language — a remarkably powerful and flexible one
—— but nonetheless such that many operations must
be specified at a level of detail and in a form that is
too hard for most people to use effectively.

For two special applications, there are pro-
grams that provide an interface to troff for the
majority of users. eqn [2] provides an easy to learn
language for typesetting mathematics; the eqn user
need know no troff whatsoever to typeset
mathematics. tbl [3] provides the same conveni-
ence for producing tables of arbitrary complexity.

For producing straight text (which may well
contain mathematics or tables), there are a number
of ‘macro packages’ that define formatting rules
and operations for specific styles of documents, and
reduce the amount of direct contact with trotf. In
particular, the ‘—ms’ [4] and PWB/MM [5] pack—
ages for Bell Labs internal memoranda and external
papers provide most of the facilities needed for a
wide range of document preparation. (This memo
was prepared with ‘—ms’.) There are also packages
for viewgraphs, for simulating the older roff for—
matters on UNIX and GCOS, and for other special
applications. Typically you will find these pack-
ages easier to use than troff once you get beyond
the most trivial operations; you should always con—
sider them first.

In the few cases where existing packages
don’t do the whole job, the solution is not to write
an entirely new set of troff instructions from
scratch, but to make small changes to adapt pack-
ages that already exist

In accordance with this philosophy of letting
someone else do the work, the part of troff
described here is only a small part of the whole,
although it tries to concentrate on the more useful
parts. In any case, there is no attempt to be com-
plete. Rather, the emphasis is on showing how to
do simple things, and how to make incremental
changes to what already exists. The contents of the
remaining sections are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length

USD:25-3

Tabs
Local motions: Drawing lines and characters
Strings
Introduction to macros
Titles, pages and numbering
Number registers and arithmetic

11. Macros with arguments
12. Conditionals
13. Environments
14. Diversions

Appendix: Typesetter character set

.... Q
P

W
N

Q
‘E

"

The trotT described here is the C—language version
running on UNIX at Murray Hill, as documented in
[1].

To use troff you have to prepare not only the
actual text you want printed, but some information
that tells how you want it printed. (Readers who
use roff will find the approach familiar.) For trot‘f
the text and the formatting information are often
intertwined quite intimately. Most commands to
troff are placed on a line separate from the text
itself, beginning with a period (one command per
line). For example,

Some texL
.ps 14
Some more text.

will change the ‘point size’, that is, the size of the
letters being printed, to ‘14 point’ (one point is
1/72 inch) like this:

Some text Some more text.

Occasionally, though, something special
occurs in the middle of a line — to produce

Area=1tr2

you have to type

Area = \(*p\fIr\fR\l\s8\uZ\d\sO

(which we will explain shortly). The backslash
character\ is used to introduce troff commands and
special characters within a line of text.

2. Point Sizes; Line Spacing
As mentioned above, the command .ps sets

the point size. One point is 1/72 inch, so 6—point
characters are at most 1/12 inch high, and 36-point
characters are 1/2 inch. There are 15 point sizes,
listed below.

ND-60.328.IP EN

USD125—4

6poimrP-ckmybmwithfivcdmuliauorjugx.
7 point: Pack my box with live down liquor jugs.
8 point: Pack my box with five dozen liquorjugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with live dozen liquor
11 point: Pack my box with five dozen
12 point: Pack my box with five dozen
14 point: Pack my box with five
16 point 18 point 20 point

22 24 28 36
If the number after .ps is not one of these

legal sizes, it is rounded up to the next valid value,
with a maximum of 36. If no number follows .ps,
trol‘f reverts to the previous size, whatever it was.
trol‘f begins with point size 10, which is usually
fine. This document is in 9 point

The point size can also be changed in the
middle of a line or even a word with the in-line
command v. To produce

UNDt runs on a PDP-ll/45

type

\s8UNIX\s10 runs on a \s8PDP-\ll 1/45

As above, k should be followed by a legal point
size, except that \sO causes the size to revert to its
previous value. Notice that \lll can be under-
stood correctly as ‘size 10, followed by an 11’, if
the size is legal, but not otherwise. Be cautious
with similar constructions.

Relative size changes are also legal and use-
ful:

\s—2UNIX\s+2

temporarily decreases the size, whatever it is, by
two points, then restores it. Relative size changes
have the advantage that the size difference is
independent of the starting size of the document
The amount of the relative change is restricted to a
single digit.

The other parameter that determines what the
type looks like is the spacing between lines, which
is set independently of the point size. Vertical
spacing is measured from the bottom of one line to
the bottom of the next. The command to control
vertical spacing is .vs. For running text, it is usu-
ally best to set the vertical spacing about 20%
bigger than the character size. For example, so far
in this document, we have used “9 on 11", that is,

ND-60.328.1P EN

A TROFF Tutorial

.ps 9

.vs llp

If we changed to

.ps 9

.vs 9p
the running text would look like this. After a few
lines, you will agree it looks a little cramped. The
right vertical spacing is partly a matter of taste,
depending on how much text you want to squeeze
into a given space, and partly a matter of traditional
printing style. By default, trofl' uses 10 on 12.

Point size and vertical spacing make
a substantial difference in the amount of
text per square inch. This is 12 on 14.

Pain linemdvcnial rpucingmnkc asubuuminl difl‘crmec inthc amount
oflnxtpatqurc inch. Forcnmpk,l°on12unesabout twiccumunhnpwcu'l
0118. m86m7,Whichitcvcnlmalla. llpncbnlotmcwordsperlixr.but
youcmgoblinduvyingmmndit.

When used without arguments, .ps and .vs
revert to the previous size and vertical spacing
respectively.

The command .sp is used to get extra vertical
space. Unadomed, it gives you one extra blank line
(one .vs, whatever that has been set to). Typically,
that’s more or less than you want, so .sp can be fol—
lowed by information about how much space you
want ~—

.sp 2i

means ‘two inches of vertical space’.

.sp 2p

means ‘two points of vertical space‘; and

.sp 2

means ‘two vertical spaces’ ~—— two of whatever .vs
is set to (this can also be made explicit with
.sp 2v); troff also understands decimal fractions in
most places, so

.sp 1.5i

is a space of 1.5 inches. These same scale factors
can be used after .vs to define line spacing, and in
fact after most commands that deal with physical
dimensions.

It should be noted that all size numbers are
convened internally to ‘machine units’, which are
1/432 inch (1/6 point). For most purposes, this is
enough resolution that you don't have to worry
about the accuracy of the representation. The situa~
tion is not quite so good vertically, where resolu-
tion is 1/144 inch (1/2 point).

A TROFF Tutorial

3. Fonts and Special Characters
troff and the typesetter allow four different

fonts at any one time. Normally three fonts (Times
roman, italic and bold) and one collection of spe-
cial characters are permanently mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHUKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHUKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany of
the special font are listed in Appendix A.

troff prints in roman unless told otherwise.
To switch into bold, use the .ft command

.ft 8

and for italics,

.ft I

To return to roman, use .ft R; to return to the previ-
ous font, whatever it was, use either .ft P or just .ft.
The ‘underline’ command

.ul

causes the next input line to print in italics. .ul can
be followed by a count to indicate that more than
one line is to be italicized.

Fonts can also be changed within a line or
word with the in-line command \f:

boldface text

is produced by

\iBbold\fIface\fR text

If you want to do this so the previous font, what-
ever it was, is left undisturbed, insert extra \fP
commands, like this:

\fBbold\fl’\flface\fl’\fR texNP

Because only the immediately previous font is
remembered, you have to restore the previous font
after each change or you can lose it The same is
true of .ps and .vs when used without an argument.

There are other fonts available besides the
standard set, although you can still use only four at
any given time. The command .fp tells troff what
fonts are physically mounted on the typesetter:

.fp3H

says that the Helvetica font is mounted on position
3. (For a complete list of fonts and what they look
like, see the trol‘f manual.) Appropriate .fp com-
mands should appear at the beginning of your
document if you do not use the standard fonts.

USD225—5

It is possible to make a document relatively
independent of the actual fonts used to print it by
using font numbers instead of names; for example,
\13 and .ft~3 mean ‘whatever font is mounted at
position 3', and thus work for any setting. Normal
settings are roman font on 1, italic on 2, bold on 3,
and special on 4.

There is also a way to get ‘synthetic’ bold
fonts by overstriking letters with a slight offset.
Look at the .bd command in [1].

Special characters have four-character names
beginning with \(, and they may be inserted any—
where. For example,

1/4 + 1/2 = 3/4
is produced by

\(14 + \(12 = \(34

In particular, greek letters are all of the form \(*—,
where — is an upper or lower case roman letter rem—
iniscent of the greek. Thus to get

2((1 x [3) —-> oo

in bare troff we have to type

\(*S(\(*a\(mu\(*b) \(-> \(if
That line is unscrambled as follows:

\(*S
(
\(*a
\(mu
\(*b
)
\(~>
\(if

A complete list of these special names occurs in
Appendix A.

8
J
'V

'U
D

X
Q

A
M

In eqn [2] the same effect can be achieved
with the input

SIGMA (alpha times beta) —> inf

which is less concise, but clearer to the uninitiated.

Notice that each four-character name is a sin-
gle character as far as troff is concerned —— the
‘translate’ command

.tr \(mNem

is perfectly clear, meaning

.tr -——-

that is, to translate — into —.
Some characters are automatically translated

into others: grave ‘ and acute ' accents (apos-

ND-60.328.1P EN

USD225—6

trophes) become open and close single quotes ‘~’;
the combination of is generally preferable to
the double quotes " " Similarly a typed minus
sign becomes a hyphen -. To print an explicit —
sign, use \—. To get a backslash printed, use \e.

4. Indents and Line Lengths

troff starts with a line length of 6.5 inches,
too wide for 81/2Xll paper. To reset the line
length, use the .ll command, as in

.11 (Si

As with .sp, the actual length can be specified in
several ways; inches are probably the most intui-
Live.

The maximum line length provided by the
typesetter is 7.5 inches, by the way. To use the full
width, you will have to reset the default physical
left margin (“page offset"), which is normally
slightly less than one inch from the left edge of the
paper. This is done by the .po command.

.po 0

sets the offset as far to the left as it will go.

The indent command .in causes the left mar-
gin to be indented by some specified amount from
the page offset. If we use .in to move the left mar—
gin in, and .11 to move the right margin to the left,
we can make offset blocks of text:

.in 0.3i

.ll —0.3i
text to be set into a block
.11 +0.3i
.in —0.3i

will create a block that looks like this:

Pater noster qui est in caelis
sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua, sicut in
caelo, et in terra. Amen.

Notice the use of ‘+’ and ‘—' to specify the amount
of change. These change the previous setting by
the specified amount, rather than just overriding it.
The distinction is quite important: .ll+li makes
lines one inch longer; .11 1i makes them one inch
long.

With .in, .11 and .po, the previous value is
used if no argument is specified.

To indent a single line, use the ‘temporary
indent’ command .ti. For example, all paragraphs in
this memo effectively begin with the command

.ti 3

ND-60.328.1P EN

A TROFF Tutorial

Three of what? The default unit for .ti, as for most
horizontally oriented commands (.11, .in, .90), is
ems; an em is roughly the width of the letter ‘m’ in
the current point size. (Precisely, a em in size p is
p points.) Although inches are usually clearer than
ems to people who don’t set type for a living, ems
have a place: they are a measure of size that is
proportional to the current point size. If you want
to make text that keeps its proportions regardless of
point size, you should use ems for all dimensions.
Ems can be specified as scale factors directly, as in
.ti 2.5m.

Lines can also be indented negatively if the
indent is already positive:

.ti —0.3i

causes the next line to be moved back three tenths
of an inch. Thus to make a decorative initial capi-
tal, we indent the whole paragraph, then move the
letter ‘P’ back with a .ti command:

sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua,

sicut in caelo, et in term. Amen.

Pater noster qui est in caelis

Of course, there is also some trickery to make the
‘P’ bigger (just a ‘\s36PeO’), and to move it down
from its normal position (see the section on local
motions).

5. Tabs

Tabs (the ASCII ‘horizontal tab’ character) can
be used to produce output in columns, or to set the
horizontal position of output. Typically tabs are
used only in unfilled text Tab stops are set by
default every half inch from the current indent, but
can be changed by the .ta command. To set stops
every inch, for example,

.ta 1i 2i 3i 4i 5i 6i

Unfortunately the stops are left-justified only
(as on a typewriter), so lining up columns of right-
justified numbers can be painful. If you have many
numbers, or if you need more complicated table
layout, don’t use troff directly; use the tbl program
described in [3].

For a handful of numeric columns, you can
do it this way: Precede every number by enough
blanks to make it line up when typed.

A TROFF Tutorial

.nf

.ta li 2i 3i
1 tab 2 lab 3

40 tab 50 tab 60
700 tab 800 tab 900
.fi

Then change each leading blank into the string V).
This is a character that does not print, but that has
the same width as a digit When printed, this will
produce

.ta 1i 2i 3i
1 2 3

40 50 60
700 800 900

It is also possible to fill up tabbed-over space
with some character other than blanks by setting
the ‘tab replacement character’ with the .tc com-
mand:

.ta 1.5i 2.5i

.tc \(m (\(m is L"
Name tab Age tab

produces

Name Age

To reset the tab replacement character to a blank,
use .tc with no argument. (Lines can also be drawn
with the \l command, described in Section 6.)

troff also provides a very general mechanism
called ‘fields’ for setting up complicated columns.
(This is used by tbl). We will not go into it in this
paper.

6. Local Motions: Drawing lines and characters
Remember ‘Area = rrrz’ and the big ‘P’ in

the Paternoster. How are they done? trofl' pro-
vides a host of commands for placing characters of
any size at any place. You can use them to draw
special characters or to tune your output for a par-
ticular appearance. Most of these commands are
straightforward, but messy to read and tough to
type correctly.

If you won’t use eqn, subscripts and super-
scripts are most easily done with the half-line local
motions \u and \d. To go back up the page half a
point-size, insert a \u at the desired place; to go
down, insert a \d. (\u and \d should always be used
in pairs, as explained below.) Thus

Area = \(*pr’\u2\d

produces

Area = rrr2

To make the ‘2’ smaller, bracket it with \s-Z...\sO.

USDz25-7

Since \u and \d refer to the current point size, be
sure to put them either both inside or both outside
the size changes, or you will get an unbalanced
vertical motion.

Sometimes the space given by \u and \d isn’t
the right amount The \v command can be used to
request an arbitrary amount of vertical motion. The
in—line command

\v ’(amount) ’

causes motion up or down the page by the amount
specified in ‘(amount)’. For example, to move the
‘P’ down, we used

.in +0.6i (move paragraph in)

.11 ~O.3i (shorten lines)

.ti —O.3i (move P back)
\v’2 ’\s36Pw0\v’—-2’ater noster qui est
in caelis

A minus sign causes upward motion, while no sign
or a plus sign means down the page. Thus \v’—2’
causes an upward vertical motion of two line
spaces.

There are many other ways to specify the
amount of motion —-

\v'0.li’
\v'3p'
\v’—O.5m’

and so on are all legal. Notice that the scale
specifier i or p or m goes inside the quotes. Any
character can be used in place of the quotes; this is
also true of all other trol‘f commands described in
this section.

Since trofl' does not take within-the—line vert—
ical motions into account when figuring out where
it is on the page, output lines can have unexpected
positions if the left and right ends aren’t at the
same vertical position. Thus \v, like \u and \d,
should always balance upward vertical motion in a
line with the same amount in the downward direc-
tion.

Arbitrary horizontal motions are also avail—
able —— \h is quite analogous to \v, except that the
default scale factor is ems instead of line spaces.
As an example,

\h’—O.li’

causes a backwards motion of a tenth of an inch.
As a practical matter, consider printing the
mathematical symbol ‘>>’. The default spacing is
too wide, so eqn replaces this by

>\h’~0.3m'>

to produce >.

ND-60.328.1P EN

USDz25—8

Frequently \h is used with the ‘width func-
tion’ \w to generate motions equal to the width of
some character string. The construction

\w’thing’

is a number equal to the width of ‘thing’ in
machine units (1/432 inch). All troff computations
are ultimately done in these units. To move hor-
izontally the width of an ‘x’, we can say

\h\w‘x’u’

As we mentioned above, the default scale factor for
all horizontal dimensions is m, ems, so here we
must have the u for machine units, or the motion
produced will be far too large. trol'f is quite happy
with the nested quotes, by the way, so long as you
don’t leave any out.

As a live example of this kind of construc-
tion, all of the command names in the text, like .sp,
were done by overstriking with a slight offset. The
commands for .sp are

That is, put out ‘.sp', move left by the width of
‘.sp’, move right 1 unit, and print ‘.sp’ again. (Of
course there is a way to avoid typing that much
input for each command name, which we will dis-
cuss in Section 11.)

There are also several special-purpose trofl'
commands for local motion. We have already seen
\0, which is an unpaddable white space of the same
width as a digit. ‘Unpaddable’ means that it will
never be widened or split across a line by line
justification and filling. There is also \(blank),
which is an unpaddable character the width of a
space, \I, which is half that width, \A, which is one
quarter of the width of a space, and \&, which has
zero width. (This last one is useful, for example, in
entering a text line which would otherwise begin
with a ‘.'.)

The command \0, used like

\o’set of characters’

causes (up to 9) characters to be overstruck, cen-
tered on the widest. This is nice for accents, as in

syst\o"e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique
which makes

systeme téléphonique

The accents are \(ga and \(aa, or \‘ and \’;
remember that each is just one character to troff.

You can make your own overstrikes with
another special convention, \z, the zero—motion
command. \zx suppresses the normal horizontal

ND-60.328.1P EN

A TROFF Tutorial

motion after printing the single character x, so
another character can be laid on top of it. Although
sizes can be changed within \0, it centers the char-
acters on the widest, and there can be no horizontal
or vertical motions, so \z may be the only way to
get what you want:

51
is produced by

.sp 2
\s8\z\(sq\s14\z\(sq\s22\z\(sqk36\(sq

The .sp is needed to leave room for the result.
As another example, an extra-heavy semi-

colon that looks like

;insteadof;or;

can be constructed with a big comma and a big
period above it:

\s+6\z,\v'-O.25m'.\v’0.25m \sO
‘0.25m’ is an empirical constant.

A more ornate overstrike is given by the
bracketing function \b, which piles up characters
vertically, centered on the current baseline. Thus
we can get big brackets, constructing them with
piled—up smaller pieces:

{N}
by typing in only this:

.sp
\b‘\(lt\(lk\(lb'\b'\(lc\(ltv x\b’\(rc\(rf \b'\(rt\(rk\(rb’

troff also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. \l'li’ draws a line
one inch long, like this: ________.__._. The
length can be followed by the character to use if
the _ isn’t appropriate; \l'0.5i.’ draws a half-inch
line of dots: The construction \L is
entirely analogous. except that it draws a vertical
line instead of horizontal.

7. Strings

Obviously if a paper contains a large number
of occurrences of an acute accent over a letter ‘e’,
typing \o"e\'" for each 6 would be a great nuisance.

Fortunately, troft’ provides a way in which
you can store an arbitrary collection of text in a
‘string’, and thereafter use the string name as a
shorthand for its contents. Strings are one of

A TROFF Tutorial

several troff mechanisms whose judicious use lets
you type a document with less effort and organize
it so that extensive format changes can be made
with few editing changes.

A reference to a string is replaced by what-
ever text the string was defined as. Strings are
defined with the command .ds. The line

.ds e \o"e\’"

defines the string e to have the value ‘o"e\’"
String names may be either one or two char-

acters long, and are referred to by *x for one char-
acter names or *(xy for two character names.
Thus to get telephone, given the definition of the
string e as above, we can say t*el*ephone.

If a string must begin with blanks, define it
as

.ds xx ” text

The double quote signals the beginning of the
definition. There is no trailing quote; the end of
the line terminates the string.

A string may actually be several lines long; if
troff encounters a \ at the end of any line, it is
thrown away and the next line added to the current
one. So you can make a long string simply by end-
ing each line but the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will dis-
cuss some of these possibilities later.

8. Introduction to Macros
Before we can go much further in trofr, we

need to learn a bit about the macro facility. In its
simplest form, a macro is just a shorthand notation
quite similar to a string. Suppose we want every
paragraph to start in exactly the same way —— with
a space and a temporary indent of two ems:

.sp

.ti +2m

Then to save typing, we would like to collapse
these into one shorthand line, a trof‘f ‘command’
like

P?

that would be treated by troff exactly as

.sp

.ti +2m

.PP is called a macro. The way we tell troff what

USD:25-9

.PP means is to define it with the .de command:

.de PP

.sp

.ti +2m

The first line names the macro (we used ‘.PP’ for
‘paragraph', and upper case so it wouldn’t conflict
with any name that trot‘l‘ might already know
about). The last line .. marks the end of the
definition. In between is the text, which is simply
inserted whenever troff sees the ‘command’ or
macro call

P?

A macro can contain any mixture of text and for-
matting commands.

The definition of P? has to precede its first
use; undefined macros are simply ignored. Names
are restricted to one or two characters.

Using macros for commonly occurring
sequences of commands is critically important. Not
only does it save typing, but it makes later changes
much easier. Suppose we decide that the paragraph
indent is too small, the vertical space is much too
big, and roman font should be forced. Instead of
changing the whole document, we need only
change the definition of P? to something like

.de PP \" paragraph macro

.sp 2p

.ti +3m

.ft R

and the change takes effect everywhere we used
.PP.

\" is a troff command that causes the rest of
the line to be ignored. We use it here to add com-
ments to the macro definition (a wise idea once
definitions get complicated).

As another example of macros, consider
these two which start and end a block of offset,
unfilled text, like most of the examples in this
paper:

.de BS \" start indented block
SP
.nf
.in +0.3i

.de BE \" end indented block

.sp

.fi

.in -0.3i

Now we can surround text like

ND—60.328.1P EN

USDIZS-IO

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands .BS and .BE, and it will come
out as it did above. Notice that we indented by
.in +0.31 instead of .in 0.3i. This way we can nest
our uses of .BS and BE to get blocks within blocks.

If later on we decide that the indent should
be 0.5i, then it is only necessary to change the
definitions of .BS and .BE, not the whole paper.

9. Titles, Pages and Numbering
This is an area where things get tougher,

because nothing is done for you automatically. Of
necessity, some of this section is a cookbook, to be
copied literally until you get some experience.

Suppose you want a title at the top of each
page, saying just
w-left top center top right top-~-
In rot‘t‘, one can say

.he 'left top’center top’right top'

.fo ’left bottom ”center bottom ’right bottom‘
to get headers and footers automatically on every
page. Alas, this doesn’t work in trot‘t', a serious
hardship for the novice. Instead you have to do a
lot of specification.

You have to say what the actual title is
(easy); when to print it (easy enough); and what to
do at and around the title line (harder). Taking
these in reverse order, first we define a macro .NP
(for ‘new page’) to process titles and the like at the
end of one page and the beginning of the next:

.de NP
’bp
’sp 0.5i
.tl ’left top’center top’right top'
’sp 0.3i

To make sure we’re at the top of a page, we issue a
‘begin page’ command ’bp, which causes a skip to
top-of-page (we'll explain the ’ shortly). Then we
space down half an inch, print the title (the use of
.tl should be self explanatory; later we will discuss
parameterizing the titles), space another 0.3 inches,
and we’re done.

To ask for .NP at the bottom of each page,
we have to say something like ‘when the text is
within an inch of the bottom of the page, start the
processing for a new page.’ This is done with a
‘when’ command .wh:

ND-60.328. 1? EN

A TROFF Tutorial

.wh -li NP

(No is used before NP; this is simply the name
of a macro, not a macro call.) The minus sign
means ‘measure up from the bottom of the page’,
so ‘—li’ means ‘one inch from the bottom’.

The .wh command appears in the input out—
side the definition of .NP; typically the input would
be

.de NP

.wh —-li NP

Now what happens? As text is actually being
output, trol‘f keeps track of its vertical position on
the page, and after a line is printed within one inch
from the bottom, the .NP macro is activated. (In
the jargon, the .wh command sets a trap at the
specified place, which is ‘sprung’ when that point
is passed.) .NP causes a skip to the top of the next
page (that’s what the 'bp was for), then prints the
title with the appropriate margins.

Why ’bp and 'sp instead of .bp and .sp? The
answer is that .sp and .bp, like several other com-
mands, cause a break to take place. That is, all the
input text collected but not yet printed is flushed
out as soon as possible, and the next input line is
guaranteed to start a new line of output. If we had
used .sp or .bp in the .NP macro, this would cause
a break in the middle of the current output line
when a new page is started. The effect would be to
print the left-over part of that line at the top of the
page, followed by the next input line on a new out-
put line. This is not what we want. Using ’ instead
of . for a command tells troff that no break is to
take place — the output line currently being filled
should not be forced out before the space or new
page.

The list of commands that cause a break is
short and natural:

.bp .br .ce .fi .nf .sp .in .ti
All others cause no break, regardless of whether
you use a . or a '. If you really need a break, add a
.br command at the appropriate place.

One other thing to beware of —— if you're
changing fonts or point sizes a lot, you may find
that if you cross a page boundary in an unexpected
font or size, your titles come out in that size and
font instead of what you intended. Furthermore,
the length of a title is independent of the current
line length, so titles will come out at the default
length of 6.5 inches unless you change it, which is
done with the .It command.

A TROFF Tutorial

There are several ways to fix the problems of
point sizes and fonts in titles. For the simplest
applications, we can change .NP to set the proper
size and font for the title, then restore the previous
values, like this:

.de NP
’bp
'sp 0.5i
.ft R \" set title font to roman
.ps 10 \" and size to 10 point
.lt 6i \" and length to 6 inches
.tl ’left'center’right’
.ps \" revert to previous size
.ft P \" and to previous font
’sp 0.3i

This version of .NP does not work if the
fields in the .tl command contain size or font
changes. To cope with that requires troff’s
‘environment’ mechanism, which we will discuss in
Section 13.

To get a footer at the bottom of a page, you
can modify .NP so it does some processing before
the ”hp command, or split the job into a footer
macro invoked at the bottom margin and a header
macro invoked at the top of the page. These varia—
tions are left as exercises.

Output page numbers are computed automati—
cally as each page is produced (starting at 1), but
no numbers are printed unless you ask for them
explicitly. To get page numbers printed, include
the character % in the .tl line at the position where
you want the number to appear. For example

.tl ”~ % -"

centers the page number inside hyphens, as on this
page. You can set the page number at any time
with either .bp n, which immediately starts a new
page numbered n, or with .pn n, which sets the
page number for the next page but doesn’t cause a
skip to the new page. Again, .bp +n sets the page
number to n more than its current value; .bp means
.bp +1.

10. Number Registers and Arithmetic
troff has a facility for doing arithmetic, and

for defining and using variables with numeric
values, called number registers. Number registers,
like strings and macros, can be useful in setting up
a document so it is easy to change later. And of
course they serve for any sort of arithmetic compu‘
tation.

USD225-ll

Like strings, number registers have one or
two character names. They are set by the .nr com-
mand, and are referenced anywhere by \nx (one
character name) or \n(xy (two character name).

There are quite a few pre-defined number
registers maintained by troff, among them % for
the current page number; n1 for the current vertical
position on the page; dy, mo and yr for the current
day, month and year, and .s and .f for the current
size and font. (The font is a number from 1 to 4.)
Any of these can be used in computations like any
other register, but some, like .3 and .f, cannot be
changed with .nr.

As an example of the use of number regis—
ters, in the ~ms macro package [4], most significant
parameters are defined in terms of the values of a
handful of number registers. These include the
point size for text, the vertical spacing, and the line
and title lengths. To set the point size and vertical
spacing for the following paragraphs, for example,
a user may say

.aS9

.nr VS 11

The paragraph macro .PP is defined (roughly) as
follows:

.de PP

.ps \\n(PS \" reset size

.vs \\n(VSp \" spacing

.ft R \" font

.sp 0.5v \" half a line

.ti +3m

This sets the font to Roman and the point size and
line spacing to whatever values are stored in the
number registers PS and VS.

Why are there two backslashes? This is the
eternal problem of how to quote a quote. When
troff originally reads the macro definition, it peels
off one backslash to see what’s coming next. To
ensure that another is left in the definition when the
macro is used, we have to put in two backslashes in
the definition. If only one backslash is used, point
size and vertical spacing will be frozen at the time
the macro is defined, not when it is used.

Protecting by an extra layer of backslashes is
only needed for \n, *, \‘S (which we haven’t come
to yet), and \ itself. Things like \s, \f, \h, \v, and so
on do not need an extra backslash, since they are
converted by trofl‘ to an internal code immediately
upon being seen.

Arithmetic expressions can appear anywhere
that a number is expected. As a trivial example,

ND-60.328.1P EN

USD225-12

.nr PS \\n(PS—2

decrements PS by 2. Expressions can use the arith-
metic operators +, —, *, /, % (mod), the relational
operators >, >=, <, <=, =, and I: (not equal), and
parentheses.

Although the arithmetic we have done so far
has been straightforward, more complicated things
are somewhat tricky. First, number registers hold
only integers. trofl' arithmetic uses truncating
integer division, just like Fortran. Second, in the
absence of parentheses, evaluation is done left-to—
right without any operator precedence (including
relational operators). Thus

7*—4+3/13

becomes ‘—1’. Number registers can occur any-
where in an expression, and so can scale indicators
like p, i, m, and so on (but no spaces). Although
integer division causes truncation, each number and
its scale indicator is converted to machine units
(1/432 inch) before any arithmetic is done, so li/2u
evaluates to 0.5i correctly.

The scale indicator u often has to appear
when you wouldn’t expect it — in particular, when
arithmetic is being done in a context that implies
horizontal or vertical dimensions. For example,

.11 7/2i

would seem obvious enough — 31/2 inches. Sony.
Remember that the default units for horizontal
parameters like .11 are ems. That’s really ‘7 ems / 2
inches’, and when translated into machine units, it
becomes zero. How about

.11 7i/2

Sorry, still no good —-— the ‘2’ is ‘2 ems’, so ‘7i/2’
is small, although not zero. You must use

.11 7i/2u

So again, a safe rule is to attach a scale indicator to
every number, even constants.

For arithmetic done within a .nr command,
there is no implication of horizontal or vertical
dimension, so the default units are ‘units’, and 7i/2
and 7i/2u mean the same thing. Thus

.nr ll 7i/2

.ll \\n(llu

does just what you want, so long as you don’t for-
get the u on the .1] command.

11. Macros with arguments
The next step is to define macros that can

change from one use to the next according to
parameters supplied as arguments. To make this

ND—60.328. l P EN

A TROFF Tutorial

work, we need two things: first, when we define
the macro, we have to indicate that some parts of it
will be provided as arguments when the macro is
called. Then when the macro is called we have to
provide actual arguments to be plugged into the
definition.

Let us illustrate by defining a macro .SM that
will print its argument two points smaller than the
surrounding text. That is, the macro call

.SM TROFF

will produce TROFF.
The definition of .SM is

.de S M
\s~2\\$1\s+2

Within a macro definition, the symbol \\$n refers to
the nth argument that the macro was called with.
Thus \\$1 is the string to be placed in a smaller
point size when .SM is called.

As a slightly more complicated version, the
following definition of .SM permits optional second
and third arguments that will be printed in the nor-
mal size:

.de SM
\\$3\s—2\\$ l\s+2\\$2

Arguments not provided when the macro is called
are treated as empty, so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse the
order of arguments because trailing punctuation is
much more common than leading.

By the way, the number of arguments that a
macro was called with is available in number regis-
ter .$.

The following macro BB is the one used to
make the ‘bold roman' we have been using for
troft‘ command names in text. It combines hor-
izontal motions, width computations, and argument
rearrangement.

.de BD
\&\\$3\f1\\$ Ni ’~\w \\$1 ‘u+1 u \\‘S 1\tP\\32

The \h and \w commands need no extra backslash,
as we discussed above. The \& is there in case the
argument begins with a period.

A TROFF Tutorial

Two backslashes are needed with the \\Sn
commands, though, to protect one of them when
the macro is being defined. Perhaps a second
example will make this clearer. Consider a macro
called .SH which produces section headings rather
like those in this paper, with the sections numbered
automatically, and the title in bold in a smaller size.
The use is

.SH "Section title

(If the argument to a macro is to contain blanks,
then it must be surrounded by double quotes,
unlike a string, where only one leading quote is
permitted.)

Here is the definition of the .SH macro:

.nr SH 0 \" initialize section number

.de SH

.sp 0.3i

.ft B

.m SH \\n(SH+1 \" increment number

.ps \\n(PS—l \" decrease PS
\\n(SH. \\‘Bl \" number. title
.ps \\n(PS \" restore PS
.sp 0.3i
.ft R

The section number is kept in number register SH,
which is incremented each time just before it is
used. (A number register may have the same name
as a macro without conflict but a string may not.)

We used \\n(SH instead of \n(SH and \\n(PS
mstead of \n(PS. If we had used \n(SH, we would
get the value of the register at the time the macro
was defined, not at the time it was used. If that’s
what you want, fine, but not here. Similarly, by
using \\n(PS, we get the point size at the time the
macro is called.

As an example that does not involve
numbers, recall our NP macro which had a

.tl ’left’center’right’
We could make these into parameters by using
instead

it *(LT*(CT*(RT’
so the title comes from three strings called LT, CT
and RT. If these are empty, then the title will be a
blank line. Normally CT would be set with some-
thing like

.ds CT -%-

to give just the page number between hyphens (as
on the top of this page), but a user could supply
private definitions for any of the strings.

USD225-13

12. Conditionals

Suppose we want the .SH macro to leave two
extra inches of space just before section 1, but
nowhere else. The cleanest way to do that is to test
inside the .SH macro whether the section number is
l, and add some space if it is. The .if command
provides the conditional test that we can add just
before the heading line is output:

.if \\n(SH=1 .sp 2i \" first section only

The condition after the .if can be any arith-
metic or logical expression. If the condition is log—
ically true, or arithmetically greater than zero, the
rest of the line is treated as if it were text —— here a
command. If the condition is false, or zero or
negative, the rest of the line is skipped.

It is possible to do more than one command
if a condition is true. Suppose several operations
are to be done before section 1. One possibility is
to define a macro .81 and invoke it if we are about
to do section 1 (as determined by an .if).

.de 81
--- processing for section 1 -—-

.de SH

.if\\n(SH=l .51

An altemate way is to use the extended form
of the .if, like this:

.if \\n(SH=1 \[--— processing
for section 1 ----\}

The braces \[and \} must occur in the positions
shown or you will get unexpected extra lines in
your output. troff also provides an ‘if—else’ con-
struction, which we will not go into here.

A condition can be negated by preceding it
with !; we get the same effect as above (but less
clearly) by using

.‘d !\\n(SH>l .51

There are a handful of other conditions that
can be tested with .if. For example, is the current
page even or odd?

.if e .tl "even page title”

.if 0 .tl ”odd page title”
gives facing pages different titles when used inside
an appropriate new page macro.

Two other conditions are t and n, which tell
you whether the forrnatter is troff or nroff.

ND-60.328.1P EN

USD225—l4

.if t troff stuff

.if n nroff stuff

Finally, string comparisons may be made in
an .if:

.if ’stringl’stringZ’ stuff

does ‘stuff’ if string] is the same as stringZ. The
character separating the strings can be anything rea«
sonable that is not contained in either string. The
strings themselves can reference strings with *,
arguments with \‘S, and so on.

13. Environments

As we mentioned, there is a potential prob—
lem when going across a page boundary: parame-
ters like size and font for a page title may well be
different from those in effect in the text when the
page boundary occurs. troff provides a very gen-
eral way to deal with this and similar situations.
There are three ‘environments’, each of which has
independently settable versions of many of the
parameters associated with processing, including
size, font, line and title lengths, fill/nofill mode, tab
stops, and even partially collected lines. Thus the
titling problem may be readily solved by processing
the main text in one environment and titles in a
separate one with its own suitable parameters.

The command .evn shifts to environment n;
it must be 0, 1 or 2. The command .ev with no
argument returns to the previous environment.
Environment names are maintained in a stack, so
calls for different environments may be nested and
unwound consistently.

Suppose we say that the main text is pro-
cessed in environment 0, which is where troff
begins by default. Then we can modify the new
page macro N? to process titles in environment 1
like this:

.de NP

.ev l \" shift to new environment

.lt 6i \" set parameters here

.ft R

.ps 10
any other processing

.ev \" return to previous environment

it is also possible to initialize the parameters for an
environment outside the .M’ macro, but the version
shown keeps all the processing in one place and is
thus easier to understand and change.

ND~60.328. 1? EN

A TROFF Tutorial

14. Diversions

There are numerous occasions in page layout
when it is necessary to store some text for a period
of time without actually printing it. Footnotes are
the most obvious example: the text of the footnote
usually appears in the input well before the place
on the page where it is to be printed is reached. in
fact, the place where it is output normally depends
on how big it is, which implies that there must be a
way to process the footnote at least enough to
decide its size without printing it.

troff provides a mechanism called a diver-
sion for doing this processing. Any part of the out-
put may be diverted into a macro instead of being
printed, and then at some convenient time the
macro may be put back into the input

The command .di xy begins a diversion ——
all subsequent output is collected into the macro xy
until the command .di with no arguments is
encountered. This terminates the diversion. The
processed text is available at any time thereafter,
simply by giving the command

.xy

The vertical size of the last finished diversion is
contained in the built—in number register dn.

As a simple example, suppose we want to
implement a ‘keep-release' operation, so that text
between the commands .KS and .103 will not be
split across a page boundary (as for a figure or
table). Clearly, when a .KS is encountered, we
have to begin diverting the output so we can find
out how big it is. Then when a .KE is seen, we
decide whether the diverted text will fit on the
current page, and print it either there if it fits, or at
the top of the next page if it doesn’t So:

.de KS \" start keep

.br \" start fresh line

.ev l \" collect in new environment

.fi \" make it filled text

.di XX \" collect in XX

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if\\n(dn>=\\n(.t .bp \" bp if doesn’t fit

.nf \" bring it back in no-ftll

.XX \" text

.ev \" return to normal environment

Recall that number register nl is the current posi—
tion on the output page. Since output was being
diverted, this remains at its value when the diver-
sion started. (in is the amount of text in the diver-

A TROFF Tutorial

sion; .t (another built—in register) is the distance to
the next trap, which we assume is at the bottom
margin of the page. If the diversion is large
enough to go past the trap, the .if is satisfied, and a
.bp is issued. In either case, the diverted output is
then brought back with .XX. It is essential to bring
it back in no—fill mode so trofl' will do no further
processing on it.

This is not the most general keeprelease, nor
is it robust in the face of all conceivable inputs, but
it would require more space than we have here to
write it in full generality. This section is not
intended to teach everything about diversions, but
to sketch out enough that you can read existing
macro packages with some comprehension.

Acknowledgements
I am deeply indebted to J. F. Ossanna, the

author of troff, for his repeated patient explanations
of fine points, and for his continuing willingness to
adapt troff to make other uses easier. I am also
grateful to Jim Blinn, Ted Dolotta, Doug McIlroy,
Mike Lesk and Joel Sturman for helpful comments
on this paper.

References

[1] J. F. Ossanna,NROFF/1‘ROFF User’s Manual,
Bell Laboratories Computing Science Techni—
cal Report 54, 1976.

[2] B. W. Kemighan, A System for Typesetting
Mathematics — User’s Guide (Second Edi-
tion), Bell Laboratories Computing Science
Technical Report 17, 1977.

[3] M. E. Lesk, TBL — A Program to Format
Tables, Bell Laboratories Computing Science
Technical Report 49, 1976.

[4] M. E. Lesk, Typing Documents on UNIX,
Bell Laboratories, 1978.

[5] J. R. Mashey and D. W. Smith, PWB/MM —
Programmer's Workbench Memorandum
Macros, Bell Laboratories internal memoran-
dum.

USDZZS-IS

ND—60.328.1P EN

US D225-16

Appendix A: Phototypesetter Character Set
These characters exist in roman, italic, and bold.
the right.

ff \(ff fi \(fi
._ \(ru —\(em
© \(co ‘ \(de
® \(rg ’ Wu

[1 \(n
1/4 \(14
“r W
‘3 We

The following are special-font characters:

\(pl
VW
YE
WP
\(->
\(is
\(sb
\(ib
\(aa
\(sc
\(lt
\(lb
\(lk
\(br
\(* i:

w
o

n
‘t

I
tt

l|
+

’I
U

U
Q

J
T

H
1+

m

"“—
’~

—
r—

—
-—

t<
m

-
“
(
.n

*-

These four characters also have two-character names. The ’
quote mark.

\,

\(mi

\<+-
\(~:

Y4
\(pd
Yw
\(ip
\(ga
\(dd
\(n
\(rb
\(rk
\(or

\‘

—
~

r—
—

1
9

”O
m

C
8

—
)R

J
‘V

X

m \(Fi
1/2 \(12
’ \(fm
- \(hy

\(mu
\<>=
\(no
Ym
\(ua
\(if
\(cu
\(mo
\(ci
\(lh
\(lc
\(lf
\(bv
\(ul

x,

A TROFF Tutorial

To get the one on the left, type the four—character name on

ffl \(Fl
3/4 \(34
¢ \(ct

\(di
\(<=
\(sl
Kg
\(da
\(sr
\(ca
\(es
\(bs
\(rh
\(rc
\(rf
\(ts
\(m

m
t—

-J
Q

@
®

3
«e

—
<1

\m
+

is the apostrophe on terminals; the ‘ is the other

\

These characters exist only on the special font, but they do not have four-character names:

" l } < > ~ A # @
For greek, precede the roman letter by \(* to get the corresponding greek; for example, \(*a is oz.

abgde iklmncoprstufxqwzyh
afiySeCnetKluvéonpotu¢xww

ABGDEZYHIKLMNCOPRSTUFXQW
ABFAEZHGIKAMNEOHPZTY¢XWQ

ND-60.328.1P EN

A TROFF Tutorial

Index
1 (negating conditionals)17
#S (macro argument) 16
#*x. #(xy (invoke suing macro).... 14
#b (bracketing function) ... 13
#d (subscript) ... 1 1
#f (font change)5
#h (horizontal motion)......................12
#nx, #n(xy (number register) .. 15
#0 (overstrike) .. 13
#5 (size change)3
#u (superscript)................11
#v (vertical motion)11
#w (width function)....................12
#2 (zero motion) 13
'command instead of i.command....9
% (page number register) 10,15
.. (end of macro definition)7
.bp... .9.10
.br (break)....9
.ce (center)2
.ds (define string macro)... ...7.14
.fi (fill)2
.ft (change font) ...5
.if (conditional test) ... 16
.in (indent)6
.lg (set ligatures..5
.11 (line length) ... 6
.nf (nofill) ...2
in (set number register) 14
.pn (page number)10
.ps (change point size) 1,3
.sp (space)..4
.55 (set space size)10
.ta (set tab stops) 11
.tc (set tab character) 10
.1 (title)...............................9
.tr (translate characters) .2,6
.ul (italicize) ..6
.vs (vertical spacing) ...3
.wh (when conditional).. 9,17
accents 6.13
apostrophes6
arithmetic .. 15
backslash..................1,35,14,16
begin page (.bp)...9
block macros (81.132)8
bold font (.ft B)5
boustrophedon 12
bracketing function (##b) .. 13
break (.br)9
break—causing commmands9
centering (.ce)2
changing fonts (.ft, #0....................5
changing macros 15
character set4,5,19
character translation (.tr)2.6
columnated output .. 10
commands1
commands that cause break...“9
oonditionals (.if) ... 16
constant proportion ...7
default break list.........
define macro (.dc)7
define suing macro (.ds) ... 14
drawing lines ... 11
cm ..7.11

USD225-17

end of macro (..) ... 7
even page test (e) ...17
till (.fi) ...2
fonts (.ft)..4,19
Greek (#(*-) 5.19
hanging indent (.ti)..12
hints20
horizontal motion (#h) 12
hp (horizontal position register)15
hyphen ..6
i scale indicator4
indent (.in)6
index21
italic font (.ft 1)....4
italicize (.ul) ..6
legal point sizes.................3
ligatures (ff.fi.fl; .1g)...5
line length (.11) ..6
line spacing (.vs) ..3
local motions (#u,#d,#v,#h.#w,#o,#z,#b)11
m scale indicator ...7
machine units ...4,12
macro arguments .. 15
macros7
macros that change15
multiple backslashes 14
negating conditionals (l) 17
new page macro (NP)8
nl (current vertical position register)15
nofill (.nf) ..2
NROFF test (n)...................... ..17
nested quotes12
number registers (.nr,#n) 14
numbered paragraphs 12
odd page test (0)...............17
order of evaluation14
overstrike (#o) ... 13
p scale indicator ...3
page number register (%)
page numbers (.prr, bp).....
paragraph macro (PG) .. 7
Paternoster ..6
point size (.ps)1,3
previous font (#fP, .ft P)5
previous point size (#sO.’\ps)3
quotes6
relative change (i)...6
ROFF .. 1
ROFF header and footer ...8
Roman font (.ft R)4
scale indicator i4
scale indicator m7
scale indicator p3
scale indicator u12
scale indicators in arithmetic.... 15
section heading macro (SC) 15
set space size (.55) ... 10
sizesec point sin
space (.sp)...4
space between lines(vs)3
special characters (#(xx)....
string macros (.ds.#*)14
subscripts (#d)11
superscripts (#u)11
tab character (.tc).. ...11
tabs (.ta)10
temporary indent (.ti)7
titles (.tl) ...8

ND-60.328.1P EN

USD225-18 . A TROFF Tutorial

translate (.tr) ...2.6.12
TROFF examples 19
TROFF test (I).................17
truncating division.... 15
typefacessee fonts
u scale indicator 12
underline (.ul).............6
valid point sizes..............3
vertical motion (#v) ... 11
vertical position on page ...9
vertical spacing (.vs)3
when (.wh)9,17
width function (#w) .. 12
width of digits .. 10
more motion (#2) ... 13

ND-60.328.1P EN

A System for Typesetting Mathematics USD:26-1

A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda L. Cherry

Ben Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the design and implementation of a system for typesetting mathematics.
The language has been designed to be easy to learn and to use by people (for example,
secretaries and mathematical typists) who know neither mathematics nor typesetting.
Experience indicates that the language can be learned in an hour or so, for it has few rules
and fewer exceptions. For typical expressions, the size and font changes, positioning, line
drawing, and the like necessary to print according to mathematical conventions are all done
automatically. For example, the input

sum from i=0 to infinity x sub i 2 pi over 2
produces

1t
ZIP“
i=0 2

The syntax of the language is specified by a small context—free grammar; a compiler-
compiler is used to make a compiler that translates this language into typesetting commands.
Output may be produced on either a phototypesetter or on a terminal with forward and
reverse half—line motions. The system interfaces directly with text formatting programs, so
mixtures of text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

ND-60.328.1P EN

USD226~2 . - A S ystcm for Typesetting Mathematics

ND—60.328.1P EN

A System for Typesetting Mathematics

1. Introduction

“Mathematics is known in the trade as dijfi‘1
cult, or penalty, copy because it is slower, more
difficult, and more expensive to set in type than any
other kind of copy normally occurring in books and
journals." [1]

One difficulty with mathematical text is the
multiplicity of characters, sizes, and fonts. An
expression such as

lirn (tan 1y“: 2 1
x—mfz

requires an intimate mixture of roman, italic and
greek letters, in three sizes, and a special character
or two. (“Requires” is perhaps the wrong word,
but mathematics has its own typographical conven-
tions which are quite different from those of ordi-
nary text) Typesetting such an expression by trad-
itional methods is still an essentially manual opera-
tron.

A second difficulty is the two dimensional
character of mathematics, which the superscript and
limits in the preceding example showed in its sim-
plest form. This is carried further by

131
a +0 b2

01+ b
3a2+ 03+ ..

and still further by

1 log ‘fdeM— b
'21a iae”“+;b

i (11 _ 1 J.

—lTooth'K—Erg—re
m ab b

These examples also show line-drawing, built-up
characters like braces and radicals, and a spectrum
of positioning problems. (Section 6 shows what a
user has to type to produce these on our system.)

"“)

2. Photocomposition
Photocomposition techniques can be used to

solve some of the problems of typesetting
mathematics. A phototypesetter is a device which
exposes a piece of photographic paper or film, plac-
ing characters wherever they are wanted. The
Graphic Systems phototypesetter[2] on the UNIX?
operating system[3] works by \shining light through
a character stencil. The character is made the right

T UNIX is a registered trademark of AT&T in the USA and
other countries.

USD:26-3

size by lenses, and the light beam directed by fiber
optics to the desired place on a piece of photo-
graphic paper. The exposed paper is developed and
typically used in some form of photooffset repro-
duction.

On UNIX, the phototypesetter is driven by a
formatting program called TROFF [4]. TROFF was
designed for setting running text. it also provides
all of the facilities that one needs for doing
mathematics, such as arbitrary horizontal and verti-
cal motions, line-drawing, size changing, but the
syntax for describing these special operations is
difficult to learn, and difficult even for experienced
users to type correctly.

For this reason we decided to use TROFF as
an “assembly language," by designing a language
for describing mathematical expressions, and com-
piling it into TROFF.

3. Language Design
The fundamental principle upon which we

based our language design is that the language
should be easy to use by people (for example,
secretaries) who know neither mathematics nor
typesetting.

This principle implies several things. First,
“normal" mathematical conventions about operator
precedence, parentheses, and the like cannot be
used, for to give special meaning to such characters
means that the user has to understand what he or
she is typing. Thus the language should not
assume, for instance, that parentheses are always
balanced, for they are not in the half—o -n interval
(a,b]. Nor should it assume that that a+b can be
replaced by (a +b)"‘, or that 1/(l—-x) is better written
as TL (or vice versa).

"X

Second, there should be relatively few mles,
keywords, special symbols and operators, and the
like. This keeps the language easy to learn and
remember. Furthermore, there should be few excep-
tions to the rules that do exist: if something works
in one situation, it should work everywhere. If a
variable can have a subscript, then a subscript can
have a subscript, and so on without limit.

Third, “standard” things should happen
automatically. Someone who types “x=y+z+1"
should get “x:y+z+1”. Subscripts and super-
scripts should automatically be printcd in an
appropriately smaller size, with no special interven—
tion. Fraction bars have to be made the right
length and positioned at the right height. And so
on. indeed a mechanism for overriding default
actions has to exist, but its application is the exceo
tion, not the rule.

ND-60.328.1P EN

USD1264

We assume that the typist has a reasonable
picture (a two-dimensional representation) of the
desired final form, as might be handwritten by the
author of a paper. We also assume that the input is
typed on a computer terminal much like an ordi-
nary typewriter. This implies an input alphabet of
perhaps 100 characters, none of them special.

A secondary, but still important, goal in our
design was that the system should be easy to imple-
ment, since neither of the authors had any desire to
make a long—term project of it Since our design
was not firm, it was also necessary that the program
be easy to change at any time.

To make the program easy to build and to
change, and to guarantee regularity (“it should
work everywhere”), the language is defined by a
context-free grammar, described in Section 5. The
compiler for the language was built using a
compiler—compiler.

A priori, the grammar/compiler—compiler
approach seemed the right thing to do. Our subse—
quent experience leads us to believe that any other
course would have been folly. The original
language was designed in a few days. Construction
of a working system sufficient to try significant
examples required perhaps a person~month. Since
then, we have spent a modest amount of additional
time over several years tuning, adding facilities,
and occasionally changing the language as users
make criticisms and suggestions.

We also decided quite early that we would let
TROFF do our work for us whenever possible.
TROFF is quite a powerful program, with a macro
facility, text and arithmetic variables, numerical
computation and testing, and conditional branching.
Thus we have been able to avoid writing a lot of
mundane but tricky software. For example, we
store no text strings, but simply pass them on to
TROFF. Thus we avoid having to write a storage
management package. Furthermore, we have been
able to isolate ourselves from most details of the
particular device and character set currently in use.
For example, we let TROFF compute the widths of
all strings of characters; we need know nothing
about them.

A third design goal is special to our environ—
ment. Since our program is only useful for typeset-
ting mathematics, it is necessary that it interface
cleanly with the underlying typesetting language for
the benefit of users who want to set intermingled
mathematics and text (the usual case). The stan-
dard mode of operation is that when a document is
typed, mathematical expressions are input as part of
the text, but marked by user settable delimiters.
The program reads this input and treats as com-

ND-60.328.1P EN

A System for Typesetting Mathematics

ments those things which are not mathematics, sim-
ply passing them through untouched. At the same
time it converts the mathematical input into the
necessary TROFF commands. The resulting ioutput
is passed directly to TROFF where the comments
and the mathematical parts both become text and/or
TROFF commands.

4. The Language
We will not try to describe the language pre-

cisely here; interested readers may refer to the
appendix for more details. Throughout this section,
we will write expressions exactly as they are
handed to the typesetting program (hereinafter
called “EQN”), except that we won’t show the del—
imiters that the user types to mark the beginning
and end of the expression. The interface between
EQN and TROFF is described at the end of this sec-
tron.

As we said, typing x=y+z+l should produce
x=y+z+l, and indeed it does. Variables are made
italic, operators and digits become roman, and nor-
mal spacings between letters and operators are
altered slightly to give a more pleasing appearance.

Input is free-form. Spaces and new lines in
the input are used by EQN to separate pieces of the
input; they are not used to create space in the out-
put Thus

X = y

+z+1

also gives x=y+z+1. Free-form input is easier to
type initially; subsequent editing is also easier, for
an expression may be typed as many short lines.

Extra white space can be forced into the out-
put by several characters of various sizes. A tilde
“~ ” gives a space equal to the normal word spac—
ing in text; a circumflex gives half this much, and a
tab charcter spaces to the next tab stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the input. For example, to get

f (:)=2nlsin(ax)d:
we write

f(t) = 2 pi int sin (omega t)dt

Here spaces are necessary in the input to indicate
that sin, pi, int, and omega are special, and poten—
tially worth special treatment. EQN looks up each
such string of characters in a table, and if appropri-
ate gives it a translation. In this case, pi and omega
become their greek equivalents, int becomes the
integral sign (which must be moved down and
enlarged so it looks “right"), and sin is made
roman, following conventional mathematical prac-

A System for Typesetting Mathematics

tice. Parentheses, digits and operators are automat-
ically made roman wherever found.

Fractions are specified with the keyword
over:

a+b over c+d+e = 1

produces

a+b
c+d+e—

Similarly, subscripts and superscripts are
introduced by the keywords sub and sup:

X2+y2=22

isproducedby

xsup2+ysup2=zsup2

The spaces after the 2’s are necessary to mark the
end of the superscripts; similarly the keyword sup
has to be marked off by spaces or some equivalent
delimiter. The return to the proper baseline is
automatic. Multiple levels of subscripts or super-
scripts are of course allowed: “x sup y sup 2” is
z”. The construct “something sub something sup
something” is recognized as a special case, so “x
sub i sup 2" is x? instead ofxiz.

More complicated expressions can now be
formed with these primitives:

82 X2 2

ax: =;2‘+’;T

is produced by

{partial sup 2 f} over {partial x sup 2} =
x sup 2 over a sup 2 + y sup 2 over b sup 2

Braces [] are used to group objects together, in this
case they indicate unambiguously what goes over
what on the left-hand side of the expression. The
language defines the precedence of sup to be higher
than that of over. so no braces are needed to get the
correct association on the right side. Braces can
always be used when in doubt about precedence.

The braces convention is an example of the
power of using a recursive grammar to define the
language. It is part of the language that if a con—
struct can appear in some context, then any expres-
sion in braces can also occur in that context

There is a 5q operator for making square
roots of the appropriate size: “5q a+b" produces

a+b , and

x = {—b +— sqrtlb sup 2 43c” over 23

X_—biVbZ——4ac
“ 2a

US Dz26-5

Since large radicals look poor on our typesetter,
5q is not useful for tall expressions.

Limits on summations, integrals and similar
constructions are specified with the keywords from
and to. To get

Ext—>0
i=0

we need only type

sum from i=0 to inf x sub i —> 0

Centering and making the 2 big enough and the
limits smaller are all automatic. The from and to
parts are both optional, and the central part (e.g.,
the E) can in fact be anything:

lim from {x —> pi /2} (tan~x) = inf

is

lirn (tan 1):»
x—WZ

Again, the braces indicate just what goes into the
from part

There is a facility for making braces brack‘
ets, parentheses, and vertical bars of the right
height, using the keywords left and right:

left [x+y over 2a right]~=~1

makes

[all
A left need not have a corresponding right, as we
shall see in the next example. Any characters may
follow left and right, but generally only various
parentheses and bars are meaningful.

Big brackets, etc., are often used with another
facility, called piles, which make vertical piles of
objects. For example, to get

1 if x>0
sign(x)z 0 if 1:0

—1 if x<0

wecan type

sign (x) ~c=~ left {
rpile (1 above 0 above —l}
~~lpile {if above if above if)
~~lpile {x>0 above x=0 above x<0}

The construction “left (" makes a left brace big
enough to enclose the “rpile {...}", which is a
right-justified pile of “above above ...’.’ “lpile”
makes a left-justified pile. There are also centered
piles. Because of the recursive language definition,
a pile can contain any number of elements; any ele-
ment of a pile can of course contain piles.

ND-60.328.1P EN

USDz26—6

Although EQN makes a valiant attempt to use
the right sizes and fonts, there are times when the
default assumptions are simply not what is wanted.
For instance the italic sign in the previous example
would conventionally be in roman. Slides and tran—
sparencies often require larger characters than nor-
mal text. Thus we also provide size and font
changing commands: “size 12 bold {A~x~=~y}"
will produce A X = y. Size is followed by a
number representing a character size in points.
(One point is 1/72 inch; this paper is set in 9 point
type.)

If necessary, an input suing can be quoted in
"...," which turns off grammatical significance, and
any font or Spacing changes that might otherwise
be done on it Thus we can say

lim~ roman "sup" ~x sub n = 0

to ensure that the supremum doesn’t become a
superscript:

lim sup x,,=0

Diacritical marks, long a problem in tradi-
tional typesetting, are straightforward:

g+9+7+2+i=§2

is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar

There are also facilities for globally changing
default sizes and fonts, for example for making
viewgraphs or for setting chemical equations. The
language allows for matrices, and for lining up
equations at the same horizontal position.

Finally, there is a definition facility, so a user
can say

define name "..."

at any time in the document; henceforth, any
occurrence of the token “name" in an expression
will be expanded into whatever was inside the dou«
ble quotes in its definition. This lets users tailor
the language to their own specifications, for it is
quite possible to redefine keywords like sup or
over. Section 6 shows an example of definitions.

The EQN preprocessor reads intermixed text
and equations, and passes its output to TROFF.
Since TROFF uses lines beginning with a period as
control words (e.g., “.ce’ means “center the next
output line”), EQN uses the sequence “.EQ” to
mark the beginning of an equation and “.EN" to
mark the end. The “.EQ” and “.EN" are passed
through to TROFF untouched, so they can also be
used by a knowledgeable user to center equations,

ND-60.328.1P EN

A System for Typesetting Mathematics

number them automatically, etc. By default, how-
ever, “.EQ” and “."EN are simply ignored by
TROFF, so by default equations are printed in-line.

“."EQ and “.EN” can be supplemented by
TROFF commands as desired; for example, a cen-
tered display equation can be produced with the
input:

.ce
EQ
xsubi=ysubi...
.EN

Since it is tedious to type ‘."EQ and “.EN”
around very short expressions (single letters, for
instance), the user can also define two characters to
serve as the left and right delimiters of expressions.
These characters are recognized anywhere in subse-
quent text. For example if the left and right delim-
iters have both been set to “it", the input;

Let #x sub i#, #y# and #alpha# be positive

produces:

Let x,, y and a be positive

Running a preprocessor is strikingly easy on
UNIX. To typeset text stored in file “f one issues
the command:

eqn f l troff

The vertical bar connects the output of one process
(EQN) to the input of another (TROFF).

5. Language Theory

The basic structure of the language is not a
particularly original one. Equations are pictured as
a set of “boxes,” pieced together in various ways.
For example, something with a subscript is just a
box followed by another box moved downward and
shrunk by an appropriate amount. A fraction is just
a box centered above another box, at the right alti-
tude, with a line of correct length drawn between
them.

The grammar for the language is shown
below. For purposes of exposition, we have col-
lapsed some productions. In the original grammar,
there are about 70 productions, but many of these
are simple ones used only to guarantee that some
keyword is recognized early enough in the parsn
process. Symbols in capital letters are terminal
symbols; lower case symbols are non—terminals,
i.e., syntactic categories. The vertical bar I indi—
cates an alternative; the brackets [] indicate
optional material. A TEXT is a string of non—blank
characters or any string inside double quotes; the
other terminal symbols represent literal occurrences

A System for Typesetting Mathematics

of the corresponding keyword.

eqn :box I eqn box

box : text

I I eqn l
I box OVER box
I SQRT box
I box SUB box I box sup box
I[LICIR]PILE{list}
I LEFT text eqn [RIGHT text]
I box[FROMbox][TObox]
I SIZE text box
I [ROMAN I BOLD I ITALIC] box
I box [HAT I BAR I DOT I DOTDOT I TILDE]
I DEFINE text text

list : eqn I list ABOVE eqn
text : TEXT

The grammar makes it obvious why there are
few exceptions. For example, the observation that
something can be replaced by a more complicated
something in braces is implicit in the productions:

eqn :boxqnbox
box:textl {eqn}

Anywhere a single character could be used, any
legal construction can be used

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

a over b over c ?

Is it

{a over b} over c

or is it

a over [b over 0} ?

To answer questions like this, the grammar is
supplemented with a small set of rules that describe
the precedence and associativity of operators. In
particular, we specify (more or less arbitrarily) that
over associates to the left, so the first alternative
above is the one chosen. On the other hand, sub
and sup bind to the right, because this is closer to
standard mathematical practice. That is, we assume
1:“ i815”), not (x“)".

The precedence rules resolve the ambiguity
in a construction like

a sup 2 over b

We define sup to have a higher precedence than
2

over, so this construction is parsed as Eb— instead of
2

11".

USDz26-7

Naturally, a user can always force a particu—
lar parsing by placing braces around expressions.

The ambiguous grammar approach seems to
be quite useful. The grammar we use is small
enough to be easily understood, for it contains none
of the productions that would be normally used for
resolving ambiguity. Instead the supplemental
information about precedence and associativity
(also small enough to be understood) provides the
compiler-compiler with the information it needs to
make a fast, deterministic parser for the specific
language we want. When the language is supple-
mented by the disambiguating rules, it is in fact
LR(t) and thus easy to parseIS].

The output code is generated as the input is
scanned. Any time a production of the grammar is
recognized, (potentially) some TROFF commands
are output. For example, when the lexical analyzer
reports that it has found a TEXT (i.e., a string of
contiguous characters), we have recognized the pro—
duction:

text : TEXT

The translation of this is simple. We generate a
local name for the string, then hand the name and
the string to TROFF, and let TROFF perform the
storage management. All we save is the name of
the string, its height, and its baseline.

As another example, the translation associ-
ated with the production

box : box OVER box

is:

Width of output box =
slightly more than largest input width

Height of output box =
slightly more than sum of input heights

Base of output box =
slightly more than height of bottom input box

String describing output box =
move down;
move right enough to center bottom box;
draw bottom box (i.e., copy suing for bottom box);
move up; move left enough to center top box;
draw top box (i.e., copy string for top box);
move down and left; draw line full width;
return to proper base line.

Most of the other productions have equally simple
semantic actions. Picturing the output as a set of
properly placed boxes makes the right sequence of
positioning commands quite obvious. The main
difficulty is in finding the right numbers to use for
esthetically pleasing positioning.

ND—60.328.1P EN

USD:26—8

With a grammar, it is uSually clear how to
extend the language. For instance, one of our users
suggested a TENSOR operator, to make construc-
tions like I,

k

’ T
NI a i

Grammatically, this is easy: it is sufficient to add a
production like

box : TENSOR [list }

Semantically, we need only juggle the boxes to the
right places.

6. Experience

There are really three aspects of
interest—mow well EQN sets mathematics, how
well it satisfies its goal of being “easy to use,” and
how easy it was to build.

The first question is easily addressed. This
entire paper has been set by the program. Readers
can judge for themselves whether it is good enough
for their purposes. One of our users commented
that although the output is not as good as the best
hand-set material, it is still better than average, and
much better than the worst. In any case, who
cares? Printed books cannot compete with the
birds and flowers of illuminated manuscripts on
esthetic grounds, either, but they have some clear
economic advantages.

Some of the deficiencies in the output could
be cleaned up with more work on our part For
example, we sometimes leave too much space
between a roman letter and an italic one. If we
were willing to keep track of the fonts involved, we
could do this better more of the time.

Some other weaknesses are inherent in our
output device. It is hard, for instance, to draw a
line of an arbitrary length without getting a percep
tible overstrike at one end.

As to ease of use, at the time of writing, the
system has been used by two distinct groups. One
user population consists of mathematicians, chem-
ists, physicists, and computer scientists. Their typi-
cal reaction has been something like:
(1) It’s easy to write, although I make the fol-

lowing mistakes...
(2) How do I do...?
(3) It botches the following things... Why don’t

you fix them?
(4) You really need the following features...

The learning time is short. A few minutes
gives the general flavor, and typing a page or two

ND—60.328. 1? EN

A System for Typesetting Mathematics

of a paper generally uncovers most of the miscon-
ceptions about how it works.

The second user group is much larger, the
secretaries and mathematical typists who were the
original target of the system. They tend to be
enthusiastic converts. They find the language easy
to learn (most are largely self-taught), and have lit-
tle trouble producing the output they want. They
are of course less critical of the esthetics of their
output than users trained in mathematics. After a
transition period, most find using a computer more
interesting than a regular typewriter.

The main difficulty that users have seems to
be remembering that a blank is a delimiter; even
experienced users use blanks where they shouldn’t
and omit them when they are needed. A common
instance is typing

f(x sub i)

which produces

f (xi)
instead of

f (xi)
Since the EQN language knows no mathematics, it
cannot deduce that the right parenthesis is not part
of the subscript

The language is somewhat prolix, but this
doesn’t seem excessive considering how much is
being done, and it is certainly more compact than
the corresponding TROFF commands. For example,
here is the source for the continued fraction expres-
sion in Section 1 of this paper:

asub0+bsub 1 over
{a sub 1 +bsub2over

{a sub2 +bsub3 over
{asub3+... M)

This is the input for the large integral of Section 1;
notice the use of definitions:

define emx "{e sup mxl"
define mab "[m sqn ab)"
define sa "{sqrt a)"
define Sb "{8q b)"
int dx over {a emx — be sup —mx) ~=~
left { lpile {

1 over {2 mab} ~log~
{sa emx — sb) over [sa emx + sb}

above
I over mab ~ tanh sup —1 (sa over sb emx)

above
—1 over mab ~ coth sup -1 (sa over sb emx)

}

A System for Typesetting Mathematics

As to ease of construction, we have already
mentioned that there are really only a few person-
months invested. Much of this time has gone into
two things—fine-tuning (what is the most estheti—
cally pleasing space to use between the numerator
and denominator of a fraction?), and changing
things found deficient by our users (shouldn’t a
tilde be a delimiter?).

The program consists of a number of smafl,
essentially unconnected modules for code genera-
tion, a simple lexical analyzer, a canned parser
which we did not have to write, and some miscel-
lany associated with input files and the macro facil—
ity. The program is now about 1600 lines of C [6],
a high—level language reminiscent of BCPL. About
20 percent of these lines are “print” statements,
generating the output code.

The semantic routines that generate the actual
TROFF commands can be changed to accommodate
other formatting languages and devices. For exam—
ple, in less than 24 hours, one of us changed the
entire semantic package to drive NROFF. a variant
of TROFF, for typesetting mathematics on teletype-
writer devices capable of reverse line motions.
Since many potential users do not have access to a
typesetter, but still have to type mathematics, this
provides a way to get a typed version of the final
output which is close enough for debugging pur-
poses, and sometimes even for ultimate use.

7. Conclusions

We think we have shown that it is possible to
do acceptably good typesetting of mathematics on a
phototypesetter, with an input language that is easy
to learn and use and that satisfies many users’
demands. Such a package can be implemented in
short order, given a compiler-compiler and a decent
typesetting program underneath.

Defining a language, and building a compiler
for it with a compiler-compiler seems like the only
sensible way to do business. Our experience with
the use of a grammar and a compiler—compiler has
been uniformly favorable. If we had written every-
thing into code directly, we would have been
locked into our original design. Furthermore, we
would have never been sure where the exceptions
and special cases were. But because we have a
grammar, we can change our minds readily and still
be reasonably sure that if a construction works in
one place it will work everywhere.

USD:26—9

ACKNOWLEDGEMENTS
We are deeply indebted to J. F. Ossanna, the

author of TROFF, for his willingness to modify
TROFF to make our task easier and for his continu-
ous assistance during the development of our pro-
gram. We are also grateful to A. V. Aho for help
with language theory, to S. C. Johnson for aid with
the compiler—compiler, and to our early users A. V.
Aho, S. I. Feldman, S. C. Johnson, R. W. Ham-
ming, and M. D. McIlroy for their constructive cri-
ticisms.

REFERENCES
[1] A Manual of Style, 12th Edition. University

of Chicago Press, 1969. p 295.
[2] Model CIA/T Photorypesetter. Graphic Sys—

tems, Inc., Hudson, N. H.

[3] Ritchie, D. M., and Thompson, K. L., “The
UNIX time-sharing system." Comm. ACM
17, 7 (July 1974), 365-375.

[4] Ossanna, J. F., TROFF User’s Manual. Bell
Laboratories Computing Science Technical
Report 54, 1977.

[5] Aho. A. V., and Johnson, S. C., “LR Pars-
ing.” Comp. Surv. 6, 2 (June 1974), 99124.

[6] B. W. Kemighan and D. M. Ritchie, The C
Programming Language. Prentice-Hall, Inc.,
1978.

ND-60.328.lP EN

USD:26—10 _ ~ A System for Typesetting Mathematics

ND—60.328. 1P EN

Typesetting Mathematics .— Users Guide (Second Edition) USD:27—l

Typesetting Mathematics —— User’s Guide
(Second Edition)

June 2, 1976

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user’s guide for a system for typesetting mathematics, using the phototypesetters
on the UNIXT and GCOS operating systems.
Mathematical expressions are described in a language designed to be easy to use by people
who know neither mathematics nor typesetting. Enough of the language to set in-line
expressions like lim2(tan 1c)sm 2" = I or display equations like

x—m/

S 2*0(2) ___ elnG(z) : exp [2 kk] : HeS‘z‘lk
1:21 kzl

13 sz 1 $222 5%24_. +12+ 2! + + 2 +22_2!+

_Z 5;, 5:2 s:- 2..
M20 khkz..... 15,20 lk‘kll Zk’kz! mh'km!

kl+712+ ' ‘ ' +Mku=fll

canbelearnedin an hourorso.

The language interfaces directly with the phototypesetting language TROFF, so mathematical
expressions can be embedded in the mnning text of a manuscript, and the entire document
produced in one process. This user’s guide is an example of its output
The same language may be used with the UNIX formatter NROFF to set mathematical expres-
sions on DASI and 681 terminals and Model 37 teletypes.

1* UNIX is a registered trademark of AT&T in the USA and other countries.

ND—60.328.1P EN

US D227-2 . Typeseuing Mathematics — Users Guide (Second Edition)

IND—60.328. 1? EN

Typesetting Mathematics .— Users Guide (Second Edition)

1. Introduction

EQN is a program for typesetting mathematics
on the Graphics Systems phototypesetters on UNDt
and GCOS. The EQN language was designed to be
easy to use by people who know neither mathemat—
ics nor typesetting. Thus EQN knows relatively lit-
tle about mathematics. In particular, mathematical
symbols like +, —, X, parentheses, and so on have
no special meanings. EQN is quite happy to set gar-
bage (but it will look good).

EQN works as a preprocessor for the
typesetter formatter, TROFFU], so the normal mode
of operation is to prepare a document with both
mathematics and ordinary text interspersed, and let
EQN set the mathematics while TROFF does the
body of the text.

On UNIX, EQN will also produce mathematics
on DASI and 681 terminals and on Model 37 tele—
types. The input is identical, but you have to use
the programs NEQN and NROFF instead of EQN and
TROFF. Of course, some things won’t look as good
because terminals don’t provide the variety of char-
acters, sizes and fonts that a typesetter does, but the
output is usually adequate for proofreading.

To use EQN on UNIX,

eqn files | troff

GCOS use is discussed in section 26.

2. Displayed Equations
To tell EQN where a mathematical expression

begins and ends, we mark it with lines beginning
.EQ and .EN. Thus if you type the lines

.EQ
x=y+z
.EN

your output will look like

x=y +2

The .EQ and .EN are copied through untouched; they
are not otherwise processed by EQN. This means
that you have to take care of things like centering,
numbering, and so on yourself. The most common
way is to use the TROFF and NROFF macro package
package ‘—ms’ developed by M. E. LeskB], which
allows you to center, indent, left-justify and number
equations.

With the ‘—ms’ package, equations are cen—
tered by default. To left-justify an equation, use
.EQ L instead of .EQ. To indent it, use .EQ 1. Any of
these can be followed by an arbitrary ‘equation
number’ which will be placed at the right margin.
For example, the input

USDz27~3

.EQ I (3.1a)
x = f(y/2) + y/2
.EN

produces the output

x=f(y/2)+y/2 (3.1a)

There is also a shorthand notation so in—line
expressions like it? can be entered without .EQ and
.EN. We will talk about it in section 19.

3. Input spaces
Spaces and newlines within an expression are

thrown away by EQN. (Normal text is left abso-
lutely alone.) Thus between .EQ and .EN,

x=y+z

md

x=y+z

md

X = y
+z

and so on all produce the same output

x=y +2
You should use spaces and newlines freely to make
your input equations readable and easy to edit. In
particular, very long lines are a bad idea, since they
are often hard to fix if you make a mistake.

4. Output spaces
To force extra spaces into the output, use a

tilde “ ~ ” for each space you want:

x~=~y-t-z

gives

x=y+z

You can also use a circumflex “A”, which gives a
space half the width of a tilde. It is mainly useful
for fine-tuning. Tabs may also be used to position
pieces of an expression, but the tab steps must be
set by TROFF commands.

5. Symbols, Special Names, Greek
EQN knows some mathematical symbols,

some mathematical names, and the Greek alphabet.
For example,

x=2 pi int sin (omega t)dt

produces

x=2nlsin(mz)dz

ND~60.328.1P EN

USDz27—4

Here the spaces in the input are necessary to tell
EQN that int, pi, sin and omega are separate entities
that shOuld get special treatment The sin, digit 2,
and parentheses are set in roman type instead of
italic; pi and omega are made Greek; and int
becomes the integral sign.

When in doubt, leave spaces around separate
parts of the input A very common error is to type
f(pi) without leaving spaces on both sides of the pi.
As a result, EQN does not recognize pi as a special
word, and it appears as f (pi) instead of f (it).

A complete list of EQN names appears in sec-
tion 23. Knowledgeable users can also use TROFF
four—character names for anything EQN doesn't
know about, like \(bs for the Bell System sign © .

6. Spaces, Again

The only way EQN can deduce that some
sequence of letters might be special is if that
sequence is separated from the letters on either side
of it. This can be done by surrounding a special
word by ordinary spaces (or tabs or newlines), as
we did in the previous section.

You can also make special words stand out
by surrounding them with tildes or circumflexes:

x~=~2~pi~int~sin~<~omega~t~)~dt

is much the same as the last example, except that
the tildes not only separate the magic words like
sin. omega, and so on, but also add extra spaces,
one space per tilde:

x=2nlsin((nt)dt

Special words can also be separated by
braces [} and double quotes "..", which have spe-
cial meanings that we will see soon.

7. Subscripts and Superscripts

Subscripts and superscripts are obtained with
the words sub and sup.

x sup 2 + y sub It

gives

X2+yk

EQN takes care of all the size changes and vertical
motions needed to make the output look right. The
words sub and sup must be surrounded by spaces; x
sub2 will give you xsub2 instead of x2. Further-
more, don‘t forget to leave a space (or a tilde, etc.)
to mark the end of a subscript or superscript A
common error is to say something like

y = (x sup 2)+l

which causes

ND—60.328.1P EN

Typesetting Mathematics —— Users Guide (Second Edition)

y=(x2’“
instead of the intended

y=(x2)+1
Subscripted subscripts and superscripted

superscripts also work:

x sub i sub 1

is

xix
A subscript and superscript on the same thing are
printed one above the other if the subscript comes
first:

xsubisupZ

2:?
Other than this special case, sub and sup

group to the right, so x sup y sub 2 means xy', not
x’,.

8. Braces for Grouping

Normally, the end of a subscript or super-
script is marked simply by a blank (or tab or tilde,
etc.) What if the subscript or superscript is some-
thing that has to be typed with blanks in it? In that
case, you can use the braces (and } to mark the
beginning and end of the subscript or superscript:

e sup {i omega t}

is

Rule: Braces can always be used to force EQN to
treat something as a unit, or just to make your
intent perfectly clear. Thus:

x sub {i sub 1} sup 2
is

xi
with braces, but

x sub i sub 1 sup2

Xi?

which is rather different

Braces can occur within braces if necessary:

e sup [i pi sup {rho +1}}

Typesetting Mathematics 4- Users Guide (Second Edition)

eixpol

The general rule is that anywhere you could use
some single thing like x, you can use an arbitrarily
complicated thing if you enclose it in braces. EQN
will look after all the details of positioning it and
making it the right size.

In all cases, make sure you have the right
number of braces. Leaving one out or adding an
extra will cause EQN to complain bitterly.

Occasionally you will have to print braces.
To do this, enclose them in double quotes, like "{".
Quoting is discussed in more detail in section 14.

9. Fractions

To make a fraction, use the word over:

a+b over 2c :1

gives

a +b :1
25

The line is made the right length and positioned
automatically. Braces can be used to make clear
what goes over what:

{alpha + beta} over {sin (x))

is

3:11
Sin(x)

What happens when there is both an over and a sup
in the same expression? In such an apparently
ambiguous case, EQN does the sup before the over,
so

~b sup 2 over pi

-—b2 —2-
is --——- instead of —b " The rules which decide7:
which operation is done first in cases like this are
summarized in section 23. When in doubt, how
ever, use braces to make clear what goes with
what.

10. Square Roots

To draw a square root, use sqrt:

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c}
is

la+b+T-—l——-
ax2+bx+c

Warning —— square roots of tall quantities look
lousy, because a root-sign big enough to cover the
quantity is too dark and heavy:

USD:27—5

sqrt [a sup 2 over b sub 2}
is

b2
Big square roots are generally better written as
something to the power 1/2:

(oz/122$”
which is

(a sup 2 lb sub 2) sup half

11. Summation, Integral, Etc.
Summations, integrals, and similar construc-

tions are easy:

sum from i=0 to (i: inf} x sup i

produces
.3...
216‘
£20

Notice that we used braces to indicate where the
upper part i=oo begins and ends. No braces were
necessary for the lower part i=0, because it con
tained no blanks. The braces will never hurt, and if
the from and to pans contain any blanks, you must
use braces around them.

The from and to parts are both optional, but
if both are used, they have to occur in that order.

Other useful characters can replace the sum
in our example:

int prod union inter

become, respectively,

l H U 0
Since the thing before the from can be anything,
even something in braces, from-to can often be
used in unexpected ways:

lim from (n —> inf} x sub n =0

is

1imx,,=0
n—+oo

12. Size and Font Changes
By default, equations are set in 10—point type

(the same size as this guide), with standard
mathematical conventions to determine what char-
acters are in roman and what in italic. Although
EQN makes a valiant attempt to use esthetically
pleasing sizes and fonts, it is not perfect To
change sizes and fonts, use Size n and roman, italic,

ND-60.328.IP EN

USD227-6

bold and fat. Like sub and sup, size and font
changes affect only the thing that follows them, and
revert to the normal situation at the end of it. Thus

bold x y

is

xy

and

size l4boldx=y+
size 14 {alpha + beta]

gives

X=y+a+B

As always, you can use braces if you want to affect
something more complicated than a single letter.
For example, you can change the size of an entire
equation by

size 12 { }

Legal sizes which may follow size are 6, 7, 8,
9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 36. You
can also change the size by a given amount; for
example, you can say size +2 to make the size two
points bigger, or size —3 to make it three points
smaller. This has the advantage that you don’t
have to know what the current size is.

If you are using fonts other than roman, italic
and bold, you can say font X where X is a one char-
acter TROFF name or number for the font. Since
EQN is tuned for roman, italic and bold, other fonts
may not give quite as good an appearance.

The fat operation takes the current font and
widens it by overstriking: far grad is V and fat {x
sub 1'} is x;.

If an entire document is to be in a non—
standard size or font, it is a severe nuisance to have
to write out a size and font change for each equa—
tion. Accordingly, you can set a “global” size or
font which thereafter affects all equations. At the
beginning of any equation, you might say, for
instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman
thereafter. In place of R, you can use any of the
TROFF font names. The size after gsize can be a
relative change with + or —.

Generally, gsize and gfont will appear at the
beginning of a document but they can also appear

ND-60.328.1P EN

Typesetting Mathematics —— Users Guide (Second Edition)

thoughout a document: the global font and size can
be changed as often as needed. For example, in a
footnote: you will typically want the size of equa-
tions to match the size of the footnote text, which
is two points smaller than the main text. Don't for-
get to reset the global size at the end of the foot-
note.

13. Diacritical Marks

To get funny marks on top of letters, there
are several words:

x dot
x dotdot
x hat
x tilde
x vec
x dyad
x bar
x under In

x
tk

ix
jm

to
x
z
a

-

The diacritical mark is placed at the right height
The bar and under are made the right length for the
entire construct, as in W; other marks are cen-
tered

14. Quoted Text
Any input entirely within quotes ("...") is not

subject to any of the font changes and spacing
adjustments normally done by the equation setter.
This provides a way to do your own spacing and
adjusting if needed:

italic "Sin(x)" + sin (x)

is

sin(x)+sin(x)

Quotes are also used to get braces and other
EQN keywords printed:

"{ size alpha }"

is

{ size alpha}

and

roman "{ size alpha)"

[size alpha }

The construction "" is often used as a place-
holder when grammatically EQN needs something,

1‘: Like this one, in which we have a few random
expressions like 1,- and n2. The sizes for these were set by
the command gsize -2.

Typesetting Mathematics 7— Users Guide (Second Edition)

but you don’t actually want anything in your out-
put. For example, to make 2He, you can’t just type
sup 2 roman He because a sup has to be a super-
script on something. Thus you must say

"" sup 2 roman He

To get a literal quote use “\"”. TROFF char—
acters like \(bs can appear unquoted, but more com-
plicated things like horizontal and vertical motions
with \h and \v should always be quoted. (If you’ve
never heard of \h and \v, ignore this section.)

15. Lining Up Equations
Sometimes it’s necessary to line up a series

of equations at some horizontal position, often at an
equals sign. This is done with two operations
called mark and lineup.

The word mark may appear once at any place
in an equation. It remembers the horizontal posi-
tion where it appeared. Successive equations can
contain one occurrence of the word lineup. The
place where lineup appears is made to line up with
the place marked by the previous mark if at all pos—
sible. Thus, for example, you can say

.EQ I
x+y mark = 2
.EN
.EQ I
x lineup = 1
.EN

to produce

x+y=z

x=1

For reasons too complicated to talk about, when
you use EQN and ‘~ms’, use either .EQI or .EQ L.
mark and lineup don’t work with centered equa-
tions. Also bear in mind that mark doesn’t look
ahead;

x mark =1

x+y lineup =2

isn’t going to work, because there isn‘t room for
the x+y part after the mark remembers where the x
is.

16. Big Brackets, Etc.
To get big brackets [], braces { },

parentheses 0, and bars H around things, use the
left and right commands:

USD:27—7

left [aover b + 1 right}
~=~ left (c over (1 right)
+ left [e right]

{—2—+1l= [all
The resulting brackets are made big enough to
cover whatever they enclose. Other characters can
be used besides these, but the are not likely to look
very good. One exception is the floor and ceiling
characters:

is

left floor x over y right floor
<= left ceiling a over b right ceiling

H3 H
Several warnings about brackets are in order.

First, braces are typically bigger than brackets and
parentheses, because they are made up of three,
five, seven, etc., pieces, while brackets can be made
up of two, three, etc. Second, big left and right
parentheses often look poor, because the character
set is poorly designed.

produces

The right part may be omitted: a “left some-
thing” need not have a corresponding “right some-
thing”. If the right part is omitted, put braces
around the thing you want the left bracket to
encompass. Otherwise, the resulting brackets may
be too large.

If you want to omit the left part, things are
more complicated, because technically you can’t
have a right without a corresponding left. Instead
you have to say

left "" right)

for example. The left means a “left nothing”.
This satisfies the rules without hurting your output

ND-60.328.1P EN

USD227-8

17. Piles
There is a general facility for making vertical

piles of things; it comes in several flavors. For
example:

A ~=~ left [

pile { a above b above c }
M. pile { x above y above 2]

right]

ax
A: by

will make

The elements of the pile (there can be as many as
you want) are centered one above another, at the
right height for most purposes. The keyword above
is used to separate the pieces; braces are used
around the entire list. The elements of a pile can
be as complicated as needed, even containing more
piles.

Three other forms of pile exist: lpile makes
a pile with the elements left-justified; rpile makes a
right-justified pile; and cpile makes a centered pile,
just like pile. The vertical spacing between the
pieces is somewhat larger for 1-, r- and cpiles than
it is for ordinary piles.

roman sign (x)~=~
left {

lpile {1 above 0 above «1}
~~ lpile
{if~x>0 above if~x=0 ab0ve if~x<0}

makes

1 ifx>0
sign(x)= 0 ifx=0

—l ifx<0

Notice the left brace without a matching right one.

18. Matrices
It is also possible to make matrices. For

example, to make a neat array like

x,- X2

yi yz
you have to type

matrix {
ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

l
This produces a matrix with two centered columns.
The elements of the columns are then listed just as

ND-60.328.1P EN

Typesetting Mathematics — Users Guide (Second Edition)

for a pile, each element separated by the word
above. You can also use (col or real to left or right
adjust columns. Each column can be separately
adjusted, and there can be as many columns as you
like.

The reason for using a matrix instead of two
adjacent piles, by the way, is that if the elements of
the piles don’t all have the same height, they won’t
line up properly. A matrix forces them to line up,
because it looks at the entire structure before decid-
ing what spacing to use.

A word of warning about mam‘ces — each
column must have the same number of elements in
it. The world will end if you get this wrong.

19. Shorthand for In-line Equations
In a mathematical document, it is necessary

to follow mathematical conventions not just in
display equations, but also in the body of the text,
for example by making variable names like x italic.
Although this could be done by surrounding the
appropriate parts with .EQ and .EN, the continual
repetition of .EQ and .EN is a nuisance. Further-
more, with ‘—ms', .EQ and .EN imply a displayed
equation.

EQN provides a shorthand for short in—line
expressions. You-can define two characters to
mark the left and right ends of an in-line equation,
and then type expressions right in the middle of
text lines. To set both the left and right characters
to dollar signs, for example, add to the beginning
of your document the three lines

.EQ
delim $$
.EN

Having done this, you can then say things like

Let $alpha sub i$ be the primary variable,
and let $beta$ be zero. Then we can show
that $x sub 13 is $>=0$.

This works as you might expect —— spaces, new-
lines, and so on are significant in the text, but not
in the equation part itself. Multiple equations can
occur in a single input line.

Enough room is left before and after a line
that contains in-line expressions that something like
I

Ex, does not interfere with the lines surrounding
i=1
iL

Typesetting Mathematics .— Users Guide (Second Edition)

To turn off the delimiters,

EQ
delim off
.EN

Warning: don’t use braces, tildes, circumflexes, or
double quotes as delimiters —— chaos will result.

20. Definitions

EQN provides a facility so you can give a
frequently-used string of characters a name, and
thereafter just type the name instead of the whole
string. For example, if the sequence

xsubisubl+ysubisubl

appears repeatedly throughout a paper, you can
save re—typing it each time by defining it like this:

define xy ’x sub i sub 1 + y sub i sub 1’
This makes xy a shorthand for whatever characters
occur between the single quotes in the definition.
You can use any character instead of quote to mark
the ends of the definition, so long as it doesn’t
appear inside the definition.

Now you can use xy like this:

EQ
f(x) = xy
EN

and so on. Each occurrence of xy will expand into
what it was defined as. Be careful to leave spaces
or their equivalent around the name when you actu-
ally use it, so EQN will be able to identify it as spe-
cial.

There are several things to watch out for.
First, although definitions can use previous
definitions, as in

.EQ
define xi ' x sub i ’
define xil ’ xi sub 1 ’
.EN

don’t define something in terms of itself A favorite
error is to say

define X ’ roman X '

This is a guaranteed disaster, since X is now
defined in terms of itself. If you say

define X ’ roman "X" ’

however, the quotes protect the second X, and
everything works fine.

EQN keywords can be redefined. You can
make / mean over by saying

USD127-9

define / ' over ’

or redefine over as / with

define over '/ ’

If you need different things to print on a ter-
minal and on the typesetter, it is sometimes worth
defining a symbol differently in NEQN and EQN.
This can be done with ndefine and (define. A
definition made with ndefine only takes effect if
you are running NEQN; if you use tdefine, the
definition only applies for EQN. Names defined
with plain define apply to both EQN and NEQN.

21. Local Motions

Although EQN tries to get most things at the
right place on the paper, it isn't perfect, and occa—
sionally you will need to tune the output to make it
just right. Small extra horizontal spaces can be
obtained with tilde and circumflex. You can also
say back It and fwd n to move small amounts hor-
izontally. n is how far to move in l/lOO’s of an em
(an em is about the width of the letter ‘m’.) Thus
back 50 moves back about half the width of an m.
Similarly you can move things up or down with up
n and down It. As with sub or sup, the local
motions affect the next thing in the input, and this
can be something arbitrarily complicated if it is
enclosed in braces.

22. A Large Example
Here is the complete source for the three

display equations in the abstract of this guide.

.EQI
G(z)~mark =~ e sup [in ~ G(z))
~=~ explef1(
sum from k>=l (S sub k z sup k) over k right)
~=~ prod from k>=l e sup (S subk zsupk/k}
.EN
.501
lineup=left(l+Ssub 12+
(Ssubl sup225up2}over2!+... right)
left(l+ { Ssub22:up2}over2
+ { Ssusup2zsup4 }over(25up2edot2!)
+ right)
.EN
.EQI
lineup: sum from m>=0left(
sum from
pile (k sub 1 ,k sub 2 ,..., k sub m >20
above
k sub 1 +2k sub 2 + +mk sub in =m)
(Ssublsup{ksubl} }over{l supksubl ksub l l 1 ~
[Ssusup {ksubZ} }over[25upksub2ksub2 I) ~

{Ssubmsupfltsubm}}over[msupksubmksubml)
right) z sup m
.EN

NIB—60328.1? EN

USD227-10

23. Keywords, Precedences, Etc.

If you don't use braces, EQN will do opera~
Lions in the order shown in this list.

dyad vec under bar tilde hat do! dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from 10

These operations group to the left:

over sqrt left right

Ad] others group to the right.
Digits, parentheses, brackets, punctuation

marks, and these mathematical words are converted
to Roman font when encountered:

sin cos tan sinh cosh tanh arc
max min lim log 1n exp
Re Im and if for det

These character sequences are recognized and
translated as shown.

/\ l

m
g

V
A

T
¢

I+
s
iI
II

A
iv

partial
half
prime
approx
nothing
Cdot
times
del
grad

\
.. b

H
:Q

Q
X

,...,

sum

int

prod
union
inter Je

zm
m

g

To obtain Greek letters, simply spell them
out in whatever case you want:

DELTA A iota t
GAMMA l‘ kappa K

ND-60.328.1P EN

Typesetting Mathematics —— Users Guide (Second Edition)

LAMB DA A lambda 7L
OMEGA Q mu p.
PHI <1) nu v
PI H omega 0.)
PSI ‘Y omicron o
SIGMA 2 phi q:
THETA 8 pi 1t
UPSILON Y psi w
XI E rho p
alpha or sigma 6
beta B tau T
chi x theta 9
delta 8 upsilon 1)
epsilon 8 xi g
eta n zeta t;
gamma 7

These are all the words known to EQN
(except for characters with names), together with
the section where they are discussed.

above 17, 18 lpile 17
back 21 mark 15
bar 13 matrix 18
bold 12 ndefine 20
ccol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dotdot 13 size 12
down 21 sqrt 10
dyad 13 sub 7
fat 12 sup 7
font 12 tdefine 20
from 11 tilde l3
fwd 21 to 11
gfont 12 under 13
gsize 12 up 21
hat 13 vec 13
italic 12 ~, A 4, 6
1001 18 { } 8
left 16 8, l4
lineup 15

24. Troubleshooting
If you make a mistake in an equation, like

leaving out a brace (very common) or having one
too many (very common) or having a sup with
nothing before it (common), EQN will tell you with
the message

syntax error between lines x and y, file 2

where x and y are approximately the lines between

Typesetting Mathematics —.— Users Guide (Second Edition)

which the trouble occurred, and z is the name of the
file in question. The line numbers are approximate
—— look nearby as well. There are also self—
explanatory messages that arise if you leave out a
quote or try to run EQN on a non-existent file.

If you want to check a document before actu-
ally printing it (on UND(only),

eqn files >/dev/null

will throw away the output but print the messages.
If you use something like dollar signs as del—

imiters, it is easy to leave one out This causes
very strange troubles. The program checkeq (on
GCOS, use .lcheckeq instead) checks for misplaced
or missing dollar signs and similar troubles.

In-line equations can only be so big because
of an internal buffer in TROFF. If you get a mes-
sage “word overflow”, you have exceeded this
limit If you print the equation as a displayed
equation this message will usually go away. The
message “line overflow” indicates you have
exceeded an even bigger buffer. The only cure for
this is to break the equation into two separate ones.

On a related topic, EQN does not break equa—
tions by itself - you must split long equations up
across multiple lines by yourself, marking each by
a separate .EQ .EN sequence. EQN does warn
about equations that are too long to fit on one line.

25. Use on UNIX

To print a document that contains mathemat-
ics on the UNIX typesetter,

eqn files I troff

If there are any TROFF options, they go after the
"IROFF pan of the command. For example,

eqn files I troff —ms

To run the same document on the GCOS typesetter,
use

eqn files I troff —g (other options) I gcat

A compatible version of EQN can be used on
devices like teletypes and DASI and 681 terminals
which have half-line forward and reverse capabili-
ties. To print equations on a Model 37 teletype, for
example, use

neqn files I nroff

The language for equations recognized by NEQN is
identical to that of EQN, although of course the out-
put is more restricted.

To use a 651 or DASI terminal as the output
device,

USD:27-11

neqn files i nroff ~Tx

where x is the terminal type you are using, such as
300 or 3003.

EQN and NEQN can be used with the TBL pro-
gram[2] for setting tables that contain mathematics.
Use TBL before [N]EQN, like this:

tbl files I eqn | tmff
tbl files l neqn I nroff

26. Acknowledgments
We are deeply indebted to J. F. Ossanna, the

author of TROFF, for his willingness to extend
TROFF to make our task easier, and for his continu-
ous assistance during the development and evolu-
tion of EQN. We are also grateful to A. V. Aho for
advice on language design, to S. C. Johnson for
assistance with the YACC compiler-compiler, and to
all the EQN users who have made helpful sugges—
tions and criticisms.

REFERENCES

[1] J. F. Ossanna, “NROFFII‘ROFF User's
Manual", Bell Laboratories Computing Sci-
ence Technical Report #54, 1976.

[2] M. E. Lesk, ”Typing Documents on UNIX”,
Bell Laboratories, 1976.

[3] M. E. Lesk, “TBL —— A Program for Setting
Tables", Bell Laboratories Computing Sci-
ence Technical Report #49, 1976.

ND-60.328.1P EN

US D:27-12 ' Typesetting Mathematics — Users Guide (Second Edition)

ND-60.328.1P EN

Tbl —— A Program to Format Tables

Tbl —— A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

June 11, 1976*
Revised August 5, 1977

ABSTRACT

USD:28-1

Tbl is a document formatting preprocessor for trojj’ or may? which makes even fairly com—
plex tables easy to specify and enter. It is available on the PDP-ll UNIX?“ system and on
Honeywell 6000 GCOS. Tables are made up of columns which may be independently cen—
tered, night-adjusted, left-adjusted, or aligned by decimal points. Headings may be placed
over single columns or groups of columns. A table entry may contain equations, or may
consist of several rows of text. Horizontal or vertical lines may be drawn as desired in the
table, and any table or element may be enclosed in a box. For example:

1970 Federal Budget Transfers
(in billions of dollars)

Taxes Money
State collected spent Net

New York 22.91 21.35 —1.56
New Jersey 8.33 6.96 —1.37
Connecticut 4.12 3.10 —1.02
Maine 0.74 0.67 —0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 +1.17
Texas 9.33 11.13 +1.80

1‘ UNIX is a registered trademark of AT&T in the USA and other countries.

ND~60.328.1P EN

USDz28-2 . . ‘ Tbl —— A Program to Format Tables

ND-60.328.1P EN

Tbl —— A Program to Format Tables USD128-3

INTRODUCTION
Tb! turns a simple description of a table into a troff or nroff [I] program (list of commands) that prints thetable. Tb] may be used on the PDP-ll UNIX [2] system and on the Honeywell 6000 GCOS system. It attempts toisolate a portion of a job that it can successfully handle and leave the remainder for other programs. Thus 11)]may be used with the equation formatting program eqn [3] or various layout macro packages [4,5,6], but doesnot duplicate their functions.
This memorandum is divided into two parts. First we give the rules for preparing tbl input; then some exam-ples are shown. The description of rules is precise but technical, and the beginning user may prefer to read theexamples first, as they show some common table arrangements. A section explaining how to invoke tbl pre-cedes the examples. To avoid repetition, henceforth read trofl as ”troff or nrofi'.”
The input to lb! is text for a document, with tables preceded by a “.TS” (table start) command and followedby a “ ."I‘E’ (table end) command. Tbl processes the tables, generating trofi‘ formatting commands, and leavesthe remainder of the text unchanged. The “.TS” and “.TE” lines are copied, too, so that trofir page layoutmacros (such as the memo formatting macros [4]) can use these lines to delimit and place tables as they seefit In particular, any arguments on the “ .TS" or ””.TE lines are copied but otherwise ignored, and may beused by document layout macro commands.
The format of the input is as follows:

text
.TS
(able
.TE
text

.TS
table
.TE
text

where the format of each table is as follows:

.TS
options ;
format .
data
.TE

Each table is independent, and must contain formatting information followed by the data to be entered in thetable. The formatting information, which describes the individual columns and rows of the table, may be pre-ceded by a few options that affect the entire table. A detailed description of tables is given in the next section.

INPUT COMMANDS
As indicated above, a table contains, first, global options, then a format section describing the layout of thetable entries, and then the data to be printed. The format and data are always required, but not the options.The various parts of the table are entered as follows:

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this line must fol-low the .TS line immediately and must contain a list of option names separated by spaces, tabs, or com-mas, and must be terminated by a semicolon. The allowable options are:
center —— center the table (default is left—adjust);
expand ~— make the table as wide as the current line length;
box —— enclose the table in a box;
allbox —— enclose each item in the table in a box;
doublebox —— enclose the table in two boxes;

ND-60.328.1P EN

USD228—4 ‘ Tbl —— A Program to Format Tables

2)

tab (x) —— use x instead of tab to separate data items.
linesim (n) —- set lines or rules (e.g. from box) in n point type;
delim (xy) ~ recognize x and y as the eqn delimiters.

The (bl program tries to keep boxed tables on one page by issuing appropriate “need” (.ne) commands.
These requests are calculated from the number of lines in the tables, and if there are spacing commands
embedded in the input, these requests may be inaccurate; use normal Irofi’ procedures, such as keep-
relcase macros, in that case. The user who must have a multi—page boxed table should use macros
designed for this purpose, as explained below under ‘Usage.’

FORMAT. The format section of the table specifies the layout of the columns. Each line in this section
corresponds to one line of the table (except that the last line corresponds to all following lines up to the
next .T&, if any —— see below), and each line contains a key—letter for each column of the table. It is
good practice to separate the key letters for each column by spaces or tabs. Each key-letter is one of the
following:

L or I to indicate a left-adjusted column entry;
R or r to indicate a right—adjusted column entry;
C or c to indicate a centered column entry;
N or n to indicate a numerical column entry, to be aligned with other numerical entries so that the

units digits of numbers line up;
A or a to indicate an alphabetic subcolumn; all corresponding entries are aligned on the left, and

positioned so that the widest is centered within the column (see example on page 15);
S or s to indicate a spanned heading, i.e. to indicate that the entry from the previous column con-

tinues across this column (not allowed for the first column, obviously); or
A to indicate a vertically spanned heading, i.e. to indicate that the entry from the previous row

continues down through this row. (Not allowed for the first row of the table, obviously).
When numerical alignment is specified, a location for the decimal point is sought The rightmost dot (.)
adjacent to a digit is used as a decimal point; if there is no dot adjoining a digit, the rightmost digit is
used as 3 units digit; if no alignment is indicated, the item is centered in the column. However, the spe—
cial non-printing character string \& may be used to override unconditionally dots and digits, or to align
alphabetic data; this string lines up where a dot normally would, and then disappears from the final out-
put In the example below, the items shown at the left will be aligned (in a numerical column) as shown
on the right:

13 13
4 .2 4 .2
26.4.12 26.4.12
abc abc
abc\& abc
43\&3 .22 433 .22
749 .12 749 .12

Note: If numerical data are used in the same column with wider L or r type table entries, the widest
number is centered relative to the wider L or r items (L is used instead of l for readability; they have the
same meaning as key«letters). Alignment within the numerical items is preserved. This is similar to the
behavior of a type data, as explained above. However, alphabetic subcolumns (requested by the a key-
letter) are always slightly indented relative to L items; if necessary, the column width is increased to
force this. This is not true for n type entries.
Warning: the n and 3 items should not be used in the same column.
For readability, the key—letters describing each column should be separated by spaces. The end of the
format section is indicated by a period. The layout of the key-letters in the format section resembles the
layout of the actual data in the table. Thus a simple format might appear as:

ND-6().328.1P EN

Tbl — A Program to Format Tables USDz28-5

c s s
l n n .

which specifies a table of three columns. The first line of the table contains a heading centered across all
three columns; each remaining line contains a left-adjusted item in the first column followed by two
columns of numerical data. A sample table in this format might be:

OveraU title
Item-a 34.22 9. 1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:
Horizontal lines

—— A key—letter may be replaced by ‘__‘ (underscore) to indicate a horizontal line in place of the
corresponding column entry, or by ‘=’ to indicate a double horizontal line. If an adjacent column
contains a horizontal line, or if there are vertical lines adjoining this column, this horizontal line is
extended to meet the nearby lines. If any data entry is provided for this column, it is ignored and
a warning message is printed.

Vertical lines
— A vertical bar may be placed between column key-letters. This will cause a vertical line
between the corresponding columns of the table. A vertical bar to the left of the first key—letter or
to the right of the last one produces a line at the edge of the table. If two vertical bars appear
between key-letters, a double vertical line is drawn.

Space between columns
~ A number may follow the key‘letter. This indicates the amount of separation between this
column and the next column. The number normally specifies the separation in ens (one en is
about the width of the letter ‘n’).* If the “expand” option is used, then these numbers are multi-
plied by a constant such that the table is as wide as the current line length. The default column
separation number is 3. If the separation is changed the worst case (largest space requested)
governs.

Vertical spanning
~— Normally, vertically spanned items extending over several rows of the table are centered in
their vertical range. If a key-letter is followed by t or T, any corresponding vertically spanned
item will begin at the top line of its range.

Font changes
— A key-letter may be followed by a string containing a font name or number preceded by the
letter f or F. This indicates that the corresponding column should be in a different font from the
default font (usually Roman). All font names are one or two letters; a one-letter font name should
be separated from whatever follows by a space or tab. The single letters B, b, I, and i are shorter
synonyms for f8 and fl. Font change commands given with the table entries override these
specifications.

Point size changes
—— A key—letter may be followed by the letter p or P and a number to indicate the point size of the
corresponding table entries. The number may be a signed digit, in which case it is taken as an
increment or decrement from the current point size. If both a point size and a column separation
value are given, one or more blanks must separate them.

Vertical spacing changes
~—- A key-letter may be followed by the letter v or V and a number to indicate the vertical line
spacing to be used within a multi—line corresponding table entry. The number may be a signed
digit, in which case it is taken as an increment or decrement from the current vertical spacing. A
column separation value must be separated by blanks or some other specification from a vertical
spacing request. This request has no effect unless the corresponding table entry is a text block.

‘ More precisely, an en is a number of points (1 point = 1/72 inch) equal to half the wrrcnt type size.

ND-60.328.1P EN

US D228-6 . Tbl — A Program to Format Tables

3)

Column width indication
—— A key-letter may be followed by the letter w or W and a width value in parentheses. This
width is used as a minimum column width. If the largest element in the column is not as wide as
the width value given after the w, the largest element is assumed to be that wide. If the largest
element in the column is wider than the specified value, its width is used. The width is also used
as a default line length for included text blocks. Normal trofir units can be used to scale the width
value; if none are used, the default is ens. If the width specification is a unitless integer the
parentheses may be omitted. If the width value is changed in a column, the last one given con—
trols.

Equal width columns
-— A key-letter may be followed by the letter e or E to indicate equal width columns. All columns
whose key-letters are followed by e or E are made the same width. This permits the user to get a
group of regularly spaced columns.

Note:
The order of the above features is immaterial; they need not be separated by spaces, except as indi-
cated above to avoid ambiguities involving point size and font changes. Thus a numerical column
entry in italic font and 12 point type with a minimum width of 2.5 inches and separated by 6 ens
from the next column could be specified as

np12w(2.5i)f1 6
Alternative notation

—— Instead of listing the format of successive lines of a table on consecutive lines of the format
section, successive line formats may be given on the same line, separated by commas, so that the
format for the example above might have been written:

c s s, l n n .
Default

—— Column descriptors missing from the end of a format line are assumed to be L. The longest
line in the format section, however, defines the number of columns in the table; extra columns in
the data are ignored silently.

DATA. The data for the table are typed after the format. Normally, each table line is typed as one line
of data Very long input lines can be broken: any line whose last character is \ is combined with the fol-
lowing line (and the \ vanishes). The data for different columns (the table entries) are separated by tabs,
or by whatever character has been specified in the option tabs option. There are a few special cases:

Troff commands within tables
—— An input line beginning with a ‘ .‘ followed by anything but a number is assumed to be a com-
mand to trofir and is passed through unchanged, retaining its position in the table. So, for example,
space within a table may be produced by “ .sp" commands in the data.

Full width horizontal lines
~ An input line containing only the character _ (underscore) or = (equal sign) is taken to be a
single or double line, respectively, extending the full width of the table.

Single column horizontal lines
— An input table entry containing only the character _ or = is taken to be a single or double line
extending the full width of the column. Such lines are extended to meet horizontal or vertical lines
adjoining this column. To obtain these characters explicitly in a column, either precede them by
\& or follow them by a space before the usual tab or newline.

Short horizontal lines
.— An input table entry containing only the string _ is taken to be a single line as wide as the
contents of the column. It is not extended to meet adjoining lines.

Vertically spanned items
—— An input table entry containing only the character string \A indicates that the table entry
immediately above spans downward over this row. It is equivalent to a table format kcy~letter of
{AV

ND-60.328.1P EN

'I‘bl —— A Program to Format Tables USD228-7

Text blocks
— In order to include a block of text as a table entry, precede it by T{ and follow it by T). Thus
the sequence

. . . T{
block of
text
T} . . .

is the way to enter, as a single entry in the table, something that cannot conveniently be typed as a
simple string between tabs. Note that the T} end delimiter must begin a line; additional columns
of data may follow after a tab on the same line. See the example on page 12 for an illustration of
included text blocks in a table. If more than twenty or thirty text blocks are used in a table, vari—
ous limits in the trofir program are likely to be exceeded, producing diagnostics such as ‘too many
string/macro names’ or ‘too many number registers.’
Text blocks are pulled out from the table, processed separately by trofi’, and replaced in the table
as a solid block. If no line length is specified in the block of text itself, or in the table format, the
default is to use LXC/(N +1) where L is the current line length, C is the number of table columns
spanned by the text, and N is the total number of columns in the table. The other parameters
(point size, font, etc.) used in setting the block of ten are those in effect at the beginning of the
table (including the effect of the “."TS macro) and any table format specifications of size, spac-
ing and font, using the p, v and f modifiers to the column key-letters. Commands within the text
block itself are also recognized, of course. However, trojf commands within the table data but not
within the text block do not affect that block.

Warnings:
~— Although any number of lines may be present in a table, only the first 200 lines are used in cal—
culating the widths of the various columns. A multi~page table, of course, may be arranged as
several single—page tables if this proves to be a problem. Other difficulties with formatting may
arise because, in the calculation of column widths all table entries are assumed to be in the font
and size being used when the “ .TS” command was encountered, except for font and size changes
indicated (a) in the table format section and (b) within the table data (as in the entry
V+3\fldata\fP\sO). Therefore, although arbitrary trojfir requests may be sprinkled in a table, care
must be taken to avoid confusing the width calculations; use requests such as ‘ .ps’ with care.

ADDITIONAL COMMAND LINES. If the format of a table must be changed after many similar lines, as with
sub-headings or summarizations, the “.T&” (table continue) command can be used to change column
parameters. The outline of such a table input is:

.TS
options ;
format .
data

.T&
format .
data
.T&

format .
data
.TE

as in the examples on pages ll and 15. Using this procedure, each table line can be close to its
corresponding format line.
Warning: it is not possible to change the number of columns, the space between columns, the global
options such as box, or the selection of columns to be made equal width.

ND-60.328.1P EN

USD228-8 - ' ‘ Tbl —- A Program to Format Tables

USAGE
On UNIX, tbl can be run on a simple table with the command

tbl input-file l troff

but for more complicated use, where there are several input files, and they contain equations and ms memoran—
dum layout commands as well as tables, the normal command would be

tbl file-l file-2 . . . leqn l troff «ms

and, of course, the usual options may be used on the trojf and eqn commands. The usage for nrojf is similar to
that for trofi“, but only TELEFYPE® Model 37 and Diablo—mechanism (DASI or 681) terminals can print boxed
tables directly.
For the convenience of users employing line printers without adequate driving tables or post-filters, there is a
special ~TX command line option to tbl which produces output that does not have fractional line motions in it.
The only other command line options recognized by t are —ms and —mm which are turned into commands to
fetch the corresponding macro files; usually it is more convenient to place these arguments on the trofir part of
the command line, but they are accepted by tbl as well.
Note that when eqn and tbl are used together on the same file tbl should be used first. If there are no equations
within tables, either order works, but it is usually faster to run tbl first, since eqn normally produces a larger
expansion of the input than t. However, if there are equations within tables (using the delim mechanism in
eqn), (bl must be first or the output will be scrambled. Users must also beware of using equations in n-style
columns; this is nearly always wrong, since tbl attempts to split numerical format items into two parts and this
is not possible with equations. The user can defend against this by giving the delim(xx) table option; this
prevents splitting of numerical columns within the delimiters. For example, if the eqn delimiters are $3 , giv-
ing delim($$) a numerical column such as “1245 $+— 16$” will be divided after 1245, not after 16.
Tbl limits tables to twenty columns; however, use of more than 16 numerical columns may fail because of lim~
its in troff, producing the ‘too many number registers’ message. Trofi‘ number registers used by tbl must be
avoided by the user within tables; these include two-digit names from 31 to 99, and names of the forms #x, x+,
x1, Ax, and x—, where x is any lower case letter. The names ##, #-, and #A are also used in certain cir-
cumstances. To conserve number register names, the n and a formats share a register; hence the restriction
above that they may not be used in the same column.
For aid in writing layout macros, t defines a number register TW which is the table width; it is defined by the
time that the “ ."TE macro is invoked and may be used in the expansion of that macro. More importantly, to
assist in laying out multi-page boxed tables the macro T# is defined to produce the bottom lines and side lines
of a boxed table, and then invoked at its end. By use of this macro in the page footer a multi-page table can
be boxed. In particular, the ms macros can be used to print a multi-page boxed table with a repeated heading
by giving the argument H to the “ .TS” macro. If the table start macro is written

.TS H
a line of the form

.TH
must be given in the table after any table heading (or at the start if none). Material up to the ”."TH is placed
at the top of each page of table; the remaining lines in the table are placed on several pages as required. Note
that this is not a feature of {[21, but of the ms layout macros.

ND-60.328.1P EN

TbI —— A Program to Format Tables USD:28-9

EXAMPLES
Here are some examples illustrating features of IN. The symbol in the input represents a tab character.

Input: Output:
.TS Language Authors Runs onbox;
0 c c Fortmn Many Almost anything1 l l. PL/l IBM 360/370Language ® Authors ® Runs on C B'I‘L 11/45,H6000,370

BLISS Camegie—Mellon PDP- 10,1 1
Forum ® Many ® Almost anything IDS Honeywell H6000PL/l (0 IBM ® 360/370 Pascal Stanford 370C ® BTL ® 11/45,H6000,370
BLISS ® Carnegie-Mellon ® PDP—10,11
IDS ® Honeywell ® H6000
Pascal ® Stanford ® 370
.TE

Input: Output:
.TS AT&T Common Stock
allbox; Year Price Dividend
C S S 1971 41—54 $2.60e c c
n n n. 2 41-54 2.70
AT&T Common Stock 3 46—55 2.87
Year ® Price 0 Dividend 4 40-53 3.24
1971 ® 41—54 ® $2.60 5 45-52 3.40
2®41—54 ©2.70 6 5159 95*
3 ® 46—55 ® 2.87

fir
4 o 40-53 «D 3.24 (first quarter only)
5 0 45-52 CD 3.40
6 0 51-59 (D .95*
.TE
* (first quarter only)

ND-60.328.1P EN

USD228-10

Input:

.TS
box;
c s s
c I c 1 c
1 | 1 | 11.
Major New York Bridges

Bridge ® Designer (9 Length

Brooklyn 0 J. A. Roebling e 1595
Manhattan o G. Lindenthal e 1470
Williamsburg ® L. L. Buck ® 1600

Queensborough o Palmer & o 1182
© Hombostel

E) o 1380
Triborough ® 0. H. Ammann ® __
® (0 383

Tbl —— A Program 10 Format Tables

Output:

Major New York Bridges
Bridge Designer Length

Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600
Queensborough Palmer & 1182

Hombostel
1380

Triborough O. H. Ammann
383

Bronx Whitestone
Throgs Neck

0. H. Ammann 2300
O. H. Ammann 1800

George Washington O. H. Ammann 3500

Bronx Whitestone ® 0. H. Ammann ® 2300
Throgs Neck ® 0. H. Ammann ® 1800

arge Washington o o. H. Ammann o 3500
.TE

Input:

.TS
cc
np-21n1.
(@3k
‘9.
16346

ND—60.328. 1 P EN

Output:

Stack

23
15
6.5
2.1L

I
I
A

N
N

H

Tbl ——- A Program to Format Tables

Input:

.TS
box;
L L L
L L __
L L l LB
L L _
L L L.
january ® february 0 march
april (0 may
june © july (0 Months
august (0 september
october ® november ® december
.TE

Input:

.TS
box;
dB 5 s 5.
Composition of Foods

.T&
c | c s s
c | c s s
c | c l c l 0.
Food (0 Percent by Weight
\A (D _
\’\ ® Protein © Fat ® Carb0~
\A®\’\®\/\ ® hydrate

.T&
1 In In In.
Apples (f) .4 ® .5 @130
Halibut® 18.4® 5.2® . ..
Limabeans®7.5® .8®22.0
Milk®3.3®4.0®5.0
Mushrooms®3.5® .4®6.0
Rye bread®9.0® .6®52.7
.TE

Output:

USD128-ll

january february march
apnl may
june july Months
august september
october novcmber december

Output:

Composition of Foods
Percent by Weight

Food . CarboProtem Fat hydrate

Apples .4 .5 13.0
Halibut 18.4 5.2
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

ND-60.328.1P EN

USDz28-12

Input

.TS
allbox;
CH 5 s
c cw(li) cw(1i)
lp9 lp9 lp9.
New York Area Rocks
Bra 0 Formation ® Age (years)
Precambrian (D Reading Prong CD >1 billion
Paleozoic ® Manhattan Prong ® 400 million
Mesozoic if) T{
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
T} 03 200 million
Cenozoic 6’) Coastal Plain (D T{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation.
.ad
Tl
.TE

ND-60.328.1P EN

'I'bl —— A Program to Format Tables

Output:

New York Area Rocks
Era Formation Age (years)

Precambrian Reading Prong >1 billion
Paleozoic Manhattan Prong 400 million
Mesozoic Newark Basin 200 million

incl, Stockton.
Lockatong. and
Bnmswick fonna~
Lions; also
Watchungs and
Palisades.

Cenozoic Coastal Plain On Long Island
30,000 years; Cre-
taceous sediments
redeposited by
recent glaciation.

Tb! —— A Program to Format Tables USD:28-13

Input: Output:

Name Definition

'EQ Gamma -1)” 2—1 -rdelim $3 . r(l)— I; e d!-
.EN Sine sin(x):§i.(eu_e'u)

2 1 2Error erf(z)= J; e" dz
7:?

.TS Bessel 1 1: T{

doublebox; 10(2):?!) cos(zsin6)d6
c c ..
11. Zeta mpg/r“ (Re s>1)
Name (‘0 Definition i=1
SP
.vs +2p
Gamma ® SGAMMA (z) = int sub 0 sup inf t sup {2-1} e sup —t dt$
Sine ® 33in (x) = 1 over 2i (e sup ix - e sup ~ix)$
Error 03 $roman erf (z) = 2 over sqrt pi int sub 0 sup 2 e sup [-t sup 2) dt$
Bessel ® $1 sub 0 (z) = 1 over pi int sub 0 sup pi cos (2 sin theta) d theta $
Zeta ® $zeta (s) = sum from k=1 to inf k sup -s ~~(Re~s > US
.vs -2p
.TE

ND-60.328.1P EN

USD:28-14 ~ Tbl -— A Program to Format Tables

Input: Output:

.TS Readability of Text
box, tab(3); Line Width and Leading for mpoim Type
Cb S S S 3 Line Sct 1-Point 2-Poim 4-Point
09-3 S S S 5 Width Solid Leading Leading Leading
Gyms: 9Pica —9.3 -6.0 —5.3 —7.1
:2c21n2ln2ln 14 Pica 41.5 —O.6 4x3 —l.7

. . . l9 Pica —5.0 —5.1 0.0 —2.0Rf‘adab‘.l“y 0f Te“ . . 31 Pica -3.7 —3.8 —2.4 —3.6Ema Width and Leading for 10~Pomt Type 43 Pica ~91 _9-0 _5‘9 —8.8

Linc: Set: 1—Point: 2-Point: 4-Point
Width: Solid: Leading: Leading: Loading

9 Pica:\-9.3 :\-6.0:\-5 .3 :\-7.1
14 Pica:\—4.5 :\-0.6:\-0.3:\-1.7
19 Pica:\-5.0:\-5.l: 0.0:\-2.0
31 Pica:\-3.7:\-3.8:\-2.4:\-3.6
43 Pica :\-9.1 :\-9.0:\-S .9 :\-8.8
.TE

ND-60.328.1P EN

Tbl —— A Program to Format Tables

Input:

.TS
c s
cip-2 s
l n
a n .
Some London Transport Statistics
(Year 1964)
Railway route miles ® 244
Tube ® 66
Sub-surface (D 22
Surface ® 156
.sp .5
.T&
l r
a 1’.
Passenger traffic \— railway
Journeys CD 674 million
Average length (3 4.55 miles
Passenger miles © 3,066 million
.T&
l r
a r.
Passenger traffic \¢ road
Journeys 03 2,252 million
Average length (10 2.26 miles
Passenger miles ® 5,094 million
.T&
l n
a n .
.sp .5
Vehicles ® 12,521
Railway motor cars ® 2,905
Railway trailer cars ® 1,269
Total railway ® 4,174
Omnibuses ® 8,347
.T&
l n
a n.
.sp .5
Staff ® 73,739
Administrative, etc. 63 5,582
Civil engineering ® 5,134
Electrical eng. (0 1,714
Mech. eng. \r railway ® 4,310
Mech. eng. \- road ® 9,152
Railway operations ® 8,930
Road operations ® 35,946
Other 0“) 2,971
.TE

Output:

USD228-15

Some London Transport Statistics
(Yea/1964)

Railway route miles
Tube
Subsurface
Surface

Passenger traffic ~ railway
Journeys
Average length
Passenger miles

Passenger traffic - road
Journeys
Average length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
Civil engineering
Electrical eng.
Mech. eng. — railway
Mech. eng. — road
Railway operations
Road operations
Other

244
66
22

156

674 million
4.55 miles

3,066 million

2,252 million
2.26 miles

5,094 million

12,521
2,905
1,269
4 ,174
8,347

73,739
5,582
5,134
1,714
4,310
9,152
8,930

35,946
2,971

ND-60.328.1P EN

USD128-16 ~ Tbl — A Program to Format Tables

Input:

.ps 8

.vs 10p

.TS
center box;
c s s
ci 5 s
c c c
1B 1 It.
New Jersey Representatives
(Democrats)
.sp .5
Name 03 Office address 0 Phone
.sp .5
James J. Florio ® 23 S . White Horse Pike, Somerdale 08083 (T) 609-627-8222
William J . Hughes ® 2920 Atlantic Ave., Atlantic City 08401 (0 609-345-4844
James J. Howard ® 801 Bangs Ave., Asbury Park 07712 (B 201-774-1600
Frank Thompson, Jr. (D 10 Rutgers Pl ., Trenton 08618 (0 609-599-1619
Andrew Maguire ® 115 W. Passaic St., Rochelle Park 07662 6) 201-843—0240
Robert A. Roe © U.S.P.O., 194 Ward St., Paterson 07510 (B 201—523-5152
Henry Helstoski ® 666 Paterson Ave., East Rutherford 07073 ® 201-939-9090
Peter W. Rodino, Jr. (D Suite 1435A, 970 Broad St., Newark 07102 0 201-645-3213
Joseph G. Minish ® 308 Main St., Orange 07050 03 201-645-6363
Helen S . Meyner ® 32 Bridge St., Lambertville 08530 (D 609397-1830
Dominick V. Daniels 0“) 895 Bergen Ave., Jersey City 07306 03 201-659-7700
Edward J . Patten ® Natl. Bank Bldg., Perth Amboy 08861 (D 201—826—4610
.sp .5
.T&
ci 3 s
18 l n.
(Republicans)
.sp .5v
Millicent Fenwick CD 41 N. Bridge St., Somerville 08876 CD 201-722-8200
Edwin B. Forsythe ® 301 Mill St., Moorestown 08057 «3 609-235-6622
Matthew J. Rinaldo ® 1961 Morris Ave., Union 07083 (f) 201-687-4235
.TE
.ps 10
.vs 12p

ND—60.328.1P EN

Tbl — A Program to Format Tables

Output:

Name

James J. Florio
William J. Hughes
James J. Howard
Wank Thompson, Jr.
Andrew Maguire
Robert A. Roe
Henry Helstoski
Peter W. Rodino, Jr.
Joseph G. Minlsh
Helen S. Meyner
Dominick V. Daniels
Edward J. Patten

Millicent Fenwick
Edwin H. Forsythe
Matthew J. Rinaldo

New Jersey Representatives
(Democrats)

Office address

23 S. White Horse Pike, Somerdale 08083
2920 Atlantic Ave., Atlantic City 08401
801 Bangs Ave, Asbury Park 07712
10 Rutgers PL, Trenton 08618
115 W. Passaic SL, Rochelle Park 07662
U.S.P.O., 194 Ward Sr... Paterson 07510
666 Paterson Ave, East Rutherford 07073
Suite 1435A, 970 Broad SL, Newark 07102
308 Main SL, Orange 07050
32 Bridge SL, Lambenville 08530
895 Bergen Ave, Jersey City 07306
Natl. Bank Bldg, Perth Amboy 08861

(Republicans)

41 N. Bridge SL, Somerville 08876
301 Mill SL, Moorestown 08057
1961 Morris Ave, Union 07083

Phone

609-627-8222
609-345-4844
201 ~774-l600
609599—1619
201843-0240
201 623-5152
201-939-9090
201645—3213
201-645—6363
609-3974830
201-659-7700
201-8264610

201—722-8200
609235—6622
201-6874235

USD228—17

This is a paragraph of normal text placed here only to indicate where the left and right margins are. In this
way the reader can judge the appearance of centered tables or expanded tables, and observe how such tables
are formatted.

Input:

.TS
enmmt
csss
cccc
llnn.
Bell Labs Locations
Name to Address (E Area Code ID Phone
Holmdel ® Holmdel, N. J. 07733 CD 201 0") 949-3000
Murray Hill (9 Murray Hill, N. J. 07974 0‘) 201 03 5826377
Whippany (D Whippany, N. J. 07981 ® 201 ® 386-3000
Indian Hill 0?) Naperville, Illinois 60540 ® 312 ® 690-2000
.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Address
Bell Labs Locations

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 07981
Naperville, lllinois 60540

Area Code
201
201
201
312

Phone
949-3000
582—6377
3863000
6902000

ND—60.328.1P EN

US D128-l8 . ’ ’ Tbl —-— A Program to Format Tables

Input:

.TS
center box;
cl) 5 s s
c | c l c s
ltiw(li) l ltw(l.9i) I lp8 l lw(1.6i)p8.
Some Interesting Places

blame (‘0 Description 03 Practical Information

it
American Museum of Natural History
T} CD TI
The collections fill ll .5 acres (Michelin) or 25 acres (MTA)
of exhibition halls on four floors. There is a full-sized replica
of a blue whale and the world's largest star sapphire (stolen in 1964).
T) ® Hours 0310—5, ex. Sun 11-5. Wed. to 9
\"®\"®Location®T{
Central Park West & 79th St.T)
\" (D \" 03 Admission ® Donation: $1.00 asked
\" (D \" (D Subway ® AA to Slst St.
\" ® \" 03 Telephone (9 212873-4225

Bronx Zoo ‘0 T{
About a mile long and .6 mile wide. this is the largest zoo in America.
A lion cats 18 pounds
of meat at day while a sea lion cats 15 pounds of fish.
T) ‘3 Hours (D T{
10-4230 winter, to 5:00 summer
T}
\"®\"® Location®T{
l85th St. & Southern Blvd, the Bronx.T}
\" (D \A (D Admission (D 31.00, but Tu,We,Th free
\" (D \" ® Subway ® 2, 5 to East Tremont Ave.
\" ® \" ® Telephone ‘9 2l2-933~l759

Brooklyn Museum 03 T(
Five floors of galleries contain American and ancient art.
There are American period rooms and architectural ornaments saved
from Wreckers, such as a classical figure from Pennsylvania Station.
T} ® Hours ‘0 Wed-Sat, 10-5, Sun 12-5
\"®\"® Location®T{
Eastern Parkway & Washington Ave., Brooklyn.
T}
\A ® \A Q“) Admission ® Free
\" ® \A (D Subway ® 2,3 to Eastern Parkway.
V‘ ® \" ® Telephone ® 2126386000

Ti
New‘York Historical Society
T} 65 T{
All the original paintings for Audubon's
.1
Birds of America
.R
are here, as are exhibits of American decorative arts, New York history,
Hudson River school paintings, carriages, and glass paperweights.
T) 03 Hours ‘9 T{
Tues-Fri & Sun, 1—5; Sat 105
T}
\"®\"® Location®T{
Central Park West & 77th St.
T}
\" 33 \A (D Admission ® Free
\" (D \" CD Subway (D AA to 8lst St.
\" ® \A (‘0 Telephone (3 212—873-3400
.TE

ND-60.328.1P EN

Tbl -— A Program to Format Tables USD128~19

Output:

Some Interesting Places
Name Description Practical Information

American Muse- The collections fill 11.5 acres Hours 10-5,cx. Sun 11-5, Wed. m9
um of Natural (Michelin) or 25 acres (MTA) of Location Central Park West & 79th St.
History exhibition halls on four floors. Admission Dman-ommm asked

There is a full-sized replica of a subway AA w 815, SL
blue whale and the world’s larg- Telephone 21237341225
est star sapphire (stolen in 1964).

Bronx Zoo About a mile long and .6 mile Hours 104230 wimcr,to5;oosummcr
Wider this is the 138051 200 in Location 18511. SL & Southern Blvd, theAmerica. A lion cats 18 pounds Bronx.
0f meal a day While a sea lion Admission $1.00, but Tu,We,Th free
cats 15 pounds 0f fiSh- Subway 2, 5 to East Tremont Ave.

Telephone 212933-1759
Brooklyn Museum Five floors of galleries contain Hours Wed-Sat,10—5,Sun12-5

American and ancient art. 'lhere Location Eastern Parkway & Washington
are American period rooms and AW. Brooklyn-
architectural ornaments saved Admission Free
from wreckers, such as a classi- Subway 2,3 to Eastern Parkway.
cal figure from Pennsylvania Sta— Telephone 212-638-5000
tion.

New-York Histor- All the original paintings for Hours Tucs~Fri&Sun, 1—5;Sat 10-5
ical Society Audubon’s Birds of America are mum Central park was, & 77m 5L

here, as are exhibits of American Admission Fm
decorative arts, New York histo— Subway AA w 8m 5L
ry, Hudson River school paint— Telephone 21243733400
ings, carriages, and glass paper-
weights.

ACKNOWLEDGEMENTS
Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted with the design of theprogram. He has also written many of the more intelligible sentences in this document and helped edit all of
it. All phototypesetting programs on UNIX are dependent on the work of J. F. Ossanna, whose assistance withthis program in particular has been most helpful. This program is patterned on a table formatter originally
written by J. F. Girnpel. The assistance of T. A. Dolotta, B. W. Kemighan, and J. N. Smrman is gratefullyacknowledged.

REFERENCES
[1] J. F. Ossanna, NROFF/TROFF User's Manual, Computing Science Technical Report No. 54, Bell Labora-

tories, 1976.
[2] K. Thompson and D. M. Ritchie, “The UNDt Time-Sharing System," Comm. ACM. 17, pp. 365-75

(1974).
[3] B. W. Kemighan and L. L. Cherry, “A System for Typesetting Mathematics,” Comm. ACM. 18, pp.

151—57 (1975).
[4] M. E. Lesk, Typing Documents on UNIX, Bell laboratories internal memorandum.
[5] M. E. Lesk and B. W. Kemighan, Computer Typesetting of Technical Journals on UNIX, Computing Sci—

ence Technical Report No. 44, Bell laboratories, July 1976.
[6] J. R. Mashcy and D. W. Smith, PWB/MM —— Programmer's Workbench Memorandum Macros, Bell La-boratories memorandum.

ND—60.328.1P EN

USD128-20 ' ' ' Tbl — A Program to Format Tables

List of Tbl Command Characters and Words

Command Meaning Section

3 A Alphabetic subcolumn 2
allbox Draw box around all items 1
b B Boldface item 2
box Draw box around table 1
c C Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
e E Equal width columns 2
expand Make table full line width 1
f F Font change 2
i I Italic item 2
l L Left adjusted column 2
n N Numerical column 2
nnn Column separation 2
p P Point size change 2
r R Right adjusted column 2
s S Spanned item 2
t T Vertical spanning at top 2
tab (x) Change data separator character 1
T{ T} Text block 3
v V Vertical spacing change 2
w W Minimum width value 2
.xx Included fro/f command 3

1 Vertical line 2
| | Double vertical line 2

Vertical span 2
\A Vertical span 3
: Double horizontal line 2,3
~ Horizontal line 2,3
_ Short horizontal line 3
Rx Repeat character 3

ND-60.328.1P EN

Refer — A Bibliography System USD229-l

Refer ——- A Bibliography System

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

July 27, 1983

ABSTRACT

Refer is a bibliography system that supports data entry, indexing, retrieval, sorting, runoff,
convenient citations, and footnote or endnote numbering. This document assumes you know
how to use some Unix editor, and that you are familiar with the nroff/troff text formatters.
The refer program is a preprocessor for nroff/troff, like eqn and tbl, except that it is used
for literature citations, rather than for equations and tables. Given incomplete but
sufficiently precise citations, refer finds references in a bibliographic database. The com‘
plete references are formatted as footnotes, numbered, and placed either at the bottom of the
page, or at the end of a chapter.
A number of ancillary programs make refer easier to use. The addbib program is for creat‘
ing and extending the bibliographic database; sortbib sorts the bibliography by author and
date, or other selected criteria; and roffbib runs off the entire database, formatting it not as
footnotes, but as a bibliography or annotated bibliography.
Once a full bibliography has been created, access time can be improved by making an index
to the references with indxbib. Then, the lookbib program can be used to quickly retrieve
individual citations or groups of citations. Creating this inverted index will speed up refer,
and lookbib will allow you to verify that a citation is sufficiently precise to deliver just one
reference.

ND-60.328.1P EN

USD:29-2 . _ Refer — A Bibliography System

Table of Contents

Introduction ..
Data Entry with Addbib ...Printing the Bibliography ..Citing Papers with Refer ...

lntemal Details of Refer ..Changing the Refer Macros ...Acknowledgements ..

ND-60.328.1P EN

\O
O

O
N

O
O

K
U

Ik
-
b

w
'1'." O

Refer —— A Bibliography System V USD229-3

INTRODUCTION
Taken together, the refer programs constitute a database system for use with variable-length information. Todistinguish various types of bibliographic material, the system uses labels composed of upper case letters, pre-ceded by a percent sign and followed by a space. For example, one document might be given this entry:

%A Joel Kies
%T Document Formatting on Unix Using the —m3 Macros
%I Computing Services
%C Berkeley
%D 1980

Each line is called a field, and lines grouped together are called a record; records are separated from each otherby a blank line. Bibliographic information follows the labels, containing data to be used by the refer system.The order of fields is not important, except that authors should be entered in the same order as they are listedon the document. Fields can be as long as necessary, and may even be continued on the following line(s).
The labels are meaningful to nroff/troff macros, and, with a few exceptions, the refer program itself does notpay attention to them. This implies that you can change the label codes, if you also change the macros used bynroff/troff. The macro package takes care of details like proper ordering, underlining the book title or journalname, and quoting the article’s title. Here are the labels used by refer, with an indication of what theyrepresent:

%H Header commentary, printed before reference
%A Author’s name
%Q Corporate or foreign author (unreversed)
%T Title of article or book
%S Series title
%J Journal containing article
%B Book containing article
%R Report, paper, or thesis (for unpublished material)
%V Volume
%N Number within volume
%E Editor of book containing article
%P Page number(s)
%I Issuer (publisher)
%C City where published
%D Date of publication
%0 Other commentary, printed at end of reference
%K Keywords used to locate reference
%L Label used by —k option of refer
%X Abstract (used by roflbib, not by refer)

Only relevant fields should be supplied. Except for %A, each field should be given only once; in the case ofmultiple authors, the senior author should come first. The %Q is for organizational authors, or authors withJapanese or Arabic names, in which cases the order of names should be preserved. Books should be labeledwith the %T, not with the %B, which is reserved for books containing articles. The %J and %B fields shouldnever appear together, although if they do, the %J will override the %B. If there is no author, just an editor, itis best to type the editor in the %A field, as in this example:

%A Bertrand Bronson, ed.

The %E field is used for the editor of a book (%B) containing an article, which has its own author. Forunpublished material such as theses, use the %R field; the title in the %T field will be quoted, but the contentsof the %R field will not be underlined. Unlike other fields, %H, %O, and %X should contain their own punc—tuation. Here is a modest example:

ND-60.328.lP EN

USD129-4 - ' Refer —— A Bibliography System

%A Mike E. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%B Unix Programmer’s Manual
%I Bell Laboratories
%C Murray Hill, NJ
%D 1978
%V 2a
%K refer mkey inv hunt
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \fBrefeNP.

Note that the author’s name is given in normal order, without inverting the surname; inversion is done
automatically, except when %Q is used instead of %A. We use %X rather than %0 for the commentary
because we do not want the comment printed all the time. The %O and %H fields are printed by both refer
and roft‘bib; the %X field is printed only by roftbib, as a detached annotation paragraph.

DATA ENTRY WITH Addbib
The addbib program is for creating and extending bibliographic databases. You must give it the filename of
your bibliography:

% addbib database

Every time you enter addbib, it asks if you want instructions. To get them, type y; to skip them, type
RETURN. Addbib prompts for various fields, reads from the keyboard, and writes records containing the refer
codes to the database. After finishing a field entry, you should end it by typing RETURN. If a field is too long
to fit on a line, type a backslash (\) at the end of the line, and you will be able to continue on the following
line. Note: the backslash works in this capacity only inside addbib.
A field will not be written to the database if nothing is entered into it. Typing a minus sign as the first charac-
ter of any field will cause addbib to back up one field at a time. Backing up is the best way to add multiple
authors, and it really helps if you forget to add something important. Fields not contained in the prompting
skeleton may be entered by typing a backslash as the last character before RETURN. The following line will be
sent verbatim to the database and addbib will resume with the next field. This is identical to the procedure for
dealing with long fields, but with new fields, don’t forget the % key-letter.
Finally, you will be asked for an abstract (or annotation), which will be preserved as the %X field. Type in as
many lines as you need, and end with a control-D (hold down the C1121. button, then press the “(1” key). This
prompting for an abstract can be suppressed with the -a command line option.
After one bibliographic record has been completed, addbib will ask if you want to continue. If you do, type
RETURN; to quit, type q or n (quit or no). It is also possible to use one of the system editors to correct mis‘
takes made while entering data After the “Continue?” prompt, type any of the following: edit, ex, vi, or ed
—— you will be placed inside the corresponding editor, and returned to addbib afterwards, from where you can
either quit or add more data
If the prompts normally supplied by addbib are not enough, are in the wrong order, or are too numerous, you
can redefine the skeleton by constructing a promptfile. Create some file, to be named after the —p command
line option. Place the prompts you want on the left side, followed by a single TAB (controLI), then the refer
code that is to appear in the bibliographic database. Addbib will send the left side to the screen, and the right
side, along with data entered, to the database.

PRINTING THE BIBLIOGRAPHY
Sortbib is for sorting the bibliography by author (%A) and date (%D), or by data in other fields. It is quite
useful for producing bibliographies and annotated bibliographies, which are seldom entered in strict alphabeti-
cal order. It takes as arguments the names of up to 16 bibliography files, and sends the sorted records to stan-
dard output (the terminal screen), which may be redirected through a pipe or into a file.
The ~sKEYS flag to sortbib will sort by fields whose key—letters are in the KEYS string, rather than merely by
author and date. Key-letters in KEYS may be followed by a ‘+‘ to indicate that all such fields are to be used.
The default is to sort by senior author and date (printing the senior author last name first), but ~sA+D will sort
by all authors and then date, and —sATD will sort on senior author, then title, and then date.

ND-60.328.lP EN

Refer — A Bibliography System USD229—5

Roffbib is for running off the (probably sorted) bibliography. It can handle annotated bibliographies —~ anno—tations are entered in the %X (abstract) field. Roffbib is a shell script that calls refer —B and nroff —mbib.It uses the macro definitions that reside in /usr/lib/tmac/tmac.bib, which you can redefine if you know nroffand troff. Note that refer will print the %H and %O commentaries, but will ignore abstracts in the %X field;roffbib will print both fields, unless annotations are suppressed with the —x option.
The following command sequence will Iineprint the entire bibliography, organized alphabetically by author anddate:

%sortbib database 1 mm“) I lpr

This is a good way to proofread the bibliography, or to produce a stand-alone bibliography at the end of apaper. Incidentally, roffbib accepts all flags used with nroff. For example:
%sortbib database I roffbib ~Tdtc --51

will make accent marks work on a DTC daisy-wheel printer, and stop at the bottom of every page for changingpaper. The —n and —0 flags may also be quite useful, to start page numbering at a selected point, or to produceonly specific pages.
Roffbib understands four command-line number registers, which are something like the two—letter numberregisters in ~ms. The ~e argument will number references beginning at one (1); use another number to startsomewhere besides one. The -rV2 flag will double-space the entire bibliography, while ~e will double»space the references, but single-space the annotation paragraphs. Finally, specifying —rL6i changes the linelength from 6.5 inches to 6 inches, and saying —rOli sets the page offset to one inch, instead of zero. (That’s a
capital 0 after —r, not a zero.)

CITING PAPERS WITH Refer
The refer program normally copies input to output, except when it encounters an item of the form:

-[
partial citation
-l

The partial citation may be just an author’s name and a date, or perhaps a title and a keyword, or maybe just adocument number. Refer looks up the citation in the bibliographic database, and transforms it into a full,properly formatted reference. If the partial citation does not correctly identify a single work (either findingnothing, or more than one reference), a diagnostic message is given. If nothing is found, it will say “No suchpaper.” If more than one reference is found, it will say “Too many hits." Other diagnostic messages can be
quite cryptic; if you are in doubt, use checknr to verify that all your .[’s have matching .]’s.
When everything goes well, the reference will be brought in from the database, numbered, and placed at the
bottom of the page. This citationl, for example, was produced by:

This citation,
.[
lesk inverted indexes
.l
for example, was produced by

The .[and .] markers, in essence, replace the .FS and .FE of the —-ms macros, and also provide a numberingmechanism. Footnote numbers will be bracketed on the the lineprinter, but superscripted on daisy-wheel ter-
minals and in troff. In the reference itself, articles will be quoted, and books and joumals will be underlinedin nroff, and italicized in troff.
Sometimes you need to cite a specific page number along with more general bibliographic material. You mayhave, for instance, a single document that you refer to several times, each time giving a different page citation.This‘is how you could get “p. 10” in the reference:

l Mike E.Lesk, USD:30 in this NDIX Users Supplementary Documents manual.

ND-60.328.IP EN

USD:29-6 ' ' Refer — A Bibliography System

.[
kies document formatting
%P 10
.l

The first line, a partial citation, will find the reference in your bibliography. The second line will insert the
page number into the final citation. Ranges of pages may be specified as “%P 56-78”.
When the time comes to run off a paper, you will need to have two files: the bibliographic database, and the
paper to format Use a command line something like one of these:

% refer —p database paper | nroff —ms
% refer op database paper 1 tbl I nroff —ms
% refer -p database paper l tbl [neqn I nroff ~rns

If other preprocessors are used, refer should precede tbl, which must in turn precede eqn or neqn. The —p
option specifies a “private” database, which most bibliographies are.

Refer’s COMMAND-LINE OPTIONS
Many people like to place references at the end of a chapter, rather than at the bottom of the page. The —e
option will accumulate references until a macro sequence of the form

-[
$LIST$
-]

is encountered (or until the end of file). Refer will then write out all references collected up to that point, col-
lapsing identical references. Warning: there is a limit (currently 200) on the number of references that can be
accumulated at one time.

It is also possible to sort references that appear at the end of text The ~sKEYS flag will sort references by
fields whose key-letters are in the KEYS string, and permute reference numbers in the text accordingly. It is
unnecessary to use —e with it, since -s implies —e. Key-letters in KEYS may be followed by a ‘+’ to indicate
that all such fields are to be used. The default is to sort by senior author and date, but —sA+D will sort on all
authors and then date, and —sA+T will sort by authors and then title.
Refer can also make citations in what is known as the Social or Natural Sciences format. Instead of number-
ing references, the -1 (letter ell) flag makes labels from the senior author’s last name and the year of publica-
tion. For example, a reference to the paper on Inverted Indexes cited above might appear as [Lesk1978a], It is
possible to control the number of characters in the last name, and the number of digits in the date. For
instance, the command line argument —l6,2 might produce a reference such as [Kemig78c].
Some bibliography standards shun both footnote numbers and labels composed of author and date, requiring
some keyword to identify the reference. The —k flag indicates that, instead of numbering references, key labels
specified on the %L line should be used to mark references.
The —n fiag means to not search the default reference file, located in /usr/dict/papers/Rv7man. Using this flag
may make refer marginally faster. The —an flag will reverse the first n author names, printing Jones, J. A.
instead of J. A. Jones. Often -al is enough; this will reverse the names of only the senior author. In some
versions of refer there is also the «f flag to set the footnote number to some predetermined value; for example,
—f23 would start numbering with footnote 23.

MAKING AN INDEX
Once your database is large and relatively stable, it is a good idea to make an index to it, so that references can
be found quickly and efficiently. The indxbib program makes an inverted index to the bibliographic database
(this program is called pubindex in the Bell Labs manual). An inverted index could be compared to the
thumb cuts of a dictionary —— instead of going all the way through your bibliography, programs can move to
the exact location where a citation is found.
Indxbib itself takes a while to run, and you will need sufficient disk space to store the indexes. But once it
has been run, access time will improve dramatically. Furthermore, large databases of several million chame-
ters can be indexed with no problem. The program is exceedingly simple to use:

ND-60.328.1P EN

Refer ~— A Bibliography System USD229-7

% indxbib database

Be aware that changing your database will require that you run indxbib over again. If you don’t, you may fail
to find a reference that really is in the database.
Once you have built an inverted index, you can use lookbib to find references in the database. Lookbib can—not be used until you have run indxbib. When editing a paper, lookbib is very useful to make sure that acitation can be found as specified. It takes one argument, the name of the bibliography, and then reads panialcitations from the terminal, returning references that match, or nothing if none match. Its prompt is thegreater-than sign.

% lookbib database
> Ie5k inverted indexes
%A Mike B. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%J Unix Programmer’s Manual
%1 Bell Laboratories
%C Murray Hill, NJ
%D 1978
%V 2a
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \fBrefer’f.
>

If more than one reference comes back, you will have to give a more precise citation for refer. Experimentuntil you find something that works; remember that it is harmless to overspecify. To get out of the lookbibprogram, type a control-D alone on a line; lookbib then exits with an “BOT" message.
Lookbib can also be used to extract groups of related citations. For example. to find all the papers by BrianKemighan found in the system database, and send the output to a file, type:

%lookbib lusr/dict/papers/Ind > kern.refs
> kernighan
> BOT
% cat kern.refs

Your file, “kern.refs”, will be full of references. A similar procedure can be used to pull out all papers ofsome date, all papers from a given journal, all papers containing a certain group of keywords, etc.

Refer BUGS AND SOME SOLUTIONS
The refer program will mess up if there are blanks at the end of lines, especially the %A author line. Addbibcarefully removes trailing blanks, but they may creep in again during editing. Use an editor command ——g/ *S/S/// — to remove trailing blanks from your bibliography.
Having bibliographic fields passed through as string definitions implies that interpolated strings (such as accentmarks) must have two backslashes, so they can pass through copy mode intact. For instance, the word“telephone” would have to be represented:

te* ’le* ’phone

in order to come out correctly. In the %X field, by contrast, you will have to use single backslashes instead.This is because the %X field is not passed through as a string, but as the body ofa paragraph macro.
Another problem arises from authors with foreign names. When a name like “Valery Giscard d’Estaing" isturned around by the —a option of refer, it will appear as “d’Estaing, Valery Giscard,” rather than as “Giscardd’Estaing, Valery." To prevent this, enter names as follows:

%A Vale*'ry Giseard‘Od’Estaing
%A Alexander Csoma\0de‘0l(o*:ro*:s

(The second is the name of a famous Hungarian linguist) The backslash-zero is an nroff/troff request mean-ing to insert a digit~width space. It will protect against faulty name reversal, and also against mis-sorting.

ND—60.328.lP EN

USD:29-8 ‘ ' Refer ~ A Bibliography System

Footnote numbers are placed at the end of the line before the .[macro. This line should be a line of text, not a
macro. As an example, if the line before the .[is a .R macro, then the .R will eat the footnote number. (The
.R is an —ms request meaning change to Roman font.) In cases where the font needs changing, it is necessary
to do the following:

\etal.\tR
.[
awk aho kemighan weinberger
.]

Now the reference will be to Aho et (11.2 The \H changes to italics, and the \IR changes back to Roman font.
Both these requests are nroff/troff requests, not part of —ms. If and when a footnote number is added after this
sequence, it will indeed appear in the output

INTERNAL DETAILS OF Refer
You have already read everything you need to know in order to use the refer bibliography system. The
remaining sections are provided only for extra information, and in case you need to change the way refer
works.
The output of refer is a stream of string definitions, one for each field in a reference. To create stn'ng names,
percent signs are simply changed to an open bracket, and an [F string is added, containing the footnote
number. The %X, %Y and %Z fields are ignored; however, the annobib program changes the %X to an .AP
(annotation paragraph) macro. The citation used above yields this intermediate output:

.ds [F l

.1-

.ds [A Mike E. Lesk

.ds ['1‘ Some Applications of Inverted Indexes on the Unix System

.ds [J Unix Programmer’s Manual

.ds [I Bell laboratories

.ds [C Murray Hill, NJ

.ds [D 1978

.ds [V 2a

.nr [T 0

.nr [A 0

.nr [0 0

.][l journal-article

These string definitions are sent to nroff, which can use the —~ms macros defined in /usr/1ib/mx/tmac.xref to
take care of formatting things properly. The initializing macro .]— precedes the string definitions, and the
labeled macro .1[follows. These are changed from the input .[and .] so that ninning a file twice through refer
is harmless.
The .][macro, used to print the reference, is given a type-number argument, which is a numeric label indicat-
ing the type of reference involved. Here is a list of the various kinds of references:

Field Value Kind of Reference

%J 1 Journal Article
%B 3 Article in Book
%R %G 4 Report, Government Report
%I 2 Book
%M 5 Bell Labs Memorandum (undefined)
none 0 Other

The order listed above is indicative of the precedence of the various fields. In other words, a reference that has
both the %J and %B fields will be classified as a journal article. If none of the fields listed is present then the

2 Alfred V. Aha, Brian W. Kemighan and Peter J. Weinberg”, USDJIQ in this NDIX Users Supplementary
Documents manual.

ND-60.328.1P EN

Refer —~ A Bibliography System USD129-9

reference will be classified as “other.”
The footnote number is flagged in the text with the following sequence, where number is the footnote number:

([.number’(.]

The *([. and *(.] stand for bracketing or superscripting. In nrofl‘ with low-resolution devices such as the Ipr
and a crt, footnote numbers will be bracketed In troff, or on daisy—wheel printers, footnote numbers will be
superscripted. Punctuation normally comes before the reference number, this can be changed by using the —P
(postpunctuation) option of refer.
In some cases, it is necessary to override certain fields in a reference. For instance, each time a work is cited,
you may want to specify different page numbers, and you may want to change certain fields. This citation will
find the Lesk reference, but will add specific page numbers to the output, even though no page numbers
appeared in the original reference.

-I
Iesk inverted indexes
%P 7-13
%I Computing Services
%0 UNX 12.2.2.
.]

The %1 line will also override any previous publisher information, and the %0 line will append some com-
mentary. The refer program simply adds the new %P, %I, and %O strings to the output, and later strings
definitions cancel earlier ones.
It is also possible to insert an entire citation that does not appear in the bibliographic database. This reference,
for example, could be added as follows:

-[
%A Brian Kemighan
%T A Troff Tutorial
%1 Bell Laboratories
%D 1978
.I

This will cause refer to interpret the fields exactly as given, without searching the bibliographic database. This
practice is not recommended, however, because it’s better to add new references to the database, so they can be
used again later.
If you want to change the way footnote numbers are printed, signals can be given on the .[and .1 lines. For
example, to say “See reference (2),” the citation should appear as:

See reference
.I(
partial citation
.1).

Note that blanks are significant on these signal lines. If a permanent change in the footnote format is desired,
it’s best to redefine the I. and .] strings.

CHANGING THE Refer MACROS
This section is provided for those who wish to rewrite or modify the refer macros. This is necessary in order
to make output correspond to specific journal requirements, or departmental standards. First there is an expla-
nation of how new macros can be substituted for the old ones. Then several alterations are given as examples.
Finally, there is an annotated copy of the refer macros used by roffbib.
The refer macros for nrol‘f/troff supplied by the 4ns macro package reside in /usr/lib/mx/tmac.xrcf; they are
reference macros, for producing footnotes or endnotes. The refer macros used by roffbib, on the other hand,
reside in /usr/lib/tmac/tmac.bib; they are for producing a stand-alone bibliography.
To change the macros used by roffbib, you will need to get your own version of this shell script into the direc-
tory where you are working. These two commands will get you a copy of rofTbib and the macros it uses:

ND-60.328.IP EN

USD229-10 - ' Refer «— A Bibliography System

%cp /usr/lib/tmac/tmac.bib bibmac
You can proceed to change bibmac as much as you like. Then when you use rol‘l'bib, you should specify your
own version of the macros, which will be substituted for the normal ones

% rol‘l‘bib -m bibmac filename

where filename is the name of your bibliography file. Make sure there’s a space between —m and bibmac.
If you want to modify the refer macros for use with nroff and the —ms macros, you will need to get a copy of
“tmac.xref”:

%cp /usr/lib/ms/s.ref refmac
These macros are much like “bibmac”, except they have .FS and .FE requests, to be used in conjunction with
the -—ms macros, rather than independently defined .XP and .AP requests. Now you can put this line at the top
of the paper to be formatted:

.so refmac

Your new refer macros will override the definitions previously read in by the —ms package. This method
works only if “refmac” is in the working directory.
Suppose you didn’t like the way dates are printed, and wanted them to be parenthesized, with no comma
before. There are five identical lines you will have to change. The first line below is the old way, while the
second is the new way:

.if !"*([D"" , *([D‘c

.if !”*([D"" \& (*([D)\c
In the first line, there is a comma and a space, but no parentheses. The “\c" at the end of each line indicates
no nrol‘f that it should continue, leaving no extra space in the output. The “\&” in the second line is the do-
nothing character, when followed by a space, a space is sent to the output.
If you need to format a reference in the style favored by the Modern Language Association or Chicago Univer-
sity Press, in the form (city: publisher, date), then you will have to change the middle of the book macro [2 as
follows:

\& (\C
.if !"*([C"" *([C:
*([I\c
.if !"*([D"" , *([D\c
)\C

This would print (Berkeley: Computing Services, 1982) if all three strings were present. The first line prints a
space and a parenthesis; the second prints the city (and a colon) if present; the third always prints the publisher
(books must have a publisher, or else they‘re classified as other); the fourth line prints a comma and the date if
present; and the fifth line closes the parentheses. You would need to make similar changes to the other macros
as well.

ACKNOWLEDGEMENTS
Mike Lesk of Bell Laboratories wrote the original refer software, including the indexing programs. Al
Stangenberger of the Forestry Department wrote the first version of addbib, then called bibin. Greg Shenaut
of the Linguistics Department wrote the original versions of sortbib and rol‘fbib. All these contributions are
greatly appreciated.

ND-60.328.1P EN

Some Applications of Inverted Indexes on the UNIX System USD23O—1

Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

October 27, 1977
Revised June 21, 1978

ABSTRACT

This memorandum describes a set of programs which make inverted indexes to UNIXT text
files, and their application to retrieving and formatting citations for documents prepared
using trofi”.

The indexing and searching programs make keyword indexes to volumes of material too
large for linear searching. Searches for combinations of single words can be performed
quickly. The programs for general searching are divided into two phases. The first makes
an index from the original data; the second searches the index and retrieves items. Both of
these phases are further divided into two parts to separate the data-dependent and algorithm
dependent code.
The major current application of these programs is the trofi' preprocessor refer. A list of
4300 references is maintained on line, containing primarfly papers written and cited by local
authors. Whenever one of these references is required in a paper, a few words from the title
or author list will retrieve it, and the user need not bother to re—enter the exact citation.
Alternatively, authors can use their own lists of papers.
This memorandum is of interest to those who are interested in facilities for searching large
but relatively unchanging text files on the UNIX system, and those who are interested in han-
dling bibliographic citations with UNIX trofi‘.

T UNlX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD130-2 ‘ ' Some Applications of Inverted Indexes on the UNIX System

NDv60.328.1P EN

Some Applications of Inverted Indexes on the UND(System USD:30—3

1. INTRODUCTION
The UNIX system has many utilities (cg. grep, awk, lex, egrep,fgrep, ...) to search through files of text, but
most of them are based on a linear scan through the entire file, using some deterministic automaton. This
memorandum discusses a program which uses inverted indexes ‘ and can thus be used on much larger data
bases.

As with any indexing system, of course, there are some disadvantages; once an index is made, the files that
have been indexed can not be changed without remaking the index. Thus applications are restricted to those
making many searches of relatively stable data. Furthermore, these programs depend on hashing, and can only
search for exact matches of whole keywords. It is not possible to look for arithmetic or logical expressions
(eg. “date greater than 1970”) or for regular expression searching such as that in (ex. 2
Currently there are two uses of this software, the refer preprocessor to format references, and the lookall com—
mand to search through all text files on the UNIX system.3
The remaining sections of this memorandum discuss the searching programs and their uses. Section 2 explains
the operation of the searching algorithm and describes the data collected for use with the lookall command.
The more important application, refer has a user’s description in section 3. Section 4 goes into more detail on
reference files for the benefit of those who wish to add references to data bases or write new trofl macros for
use with refer. The options to make refer collect identical citations, or otherwise relocate and adjust refer-
ences, are described in section 5.

2. SEARCHING

The indexing and searching process is divided into two phases, each made of two parts. These are shown
below.

A. Construct the index.

(1) Find keys — turn the input files into a sequence of tags and keys, where each tag identifies a dis-
tinct item in the input and the keys for each such item are the strings under which it is to be
indexed.

(2) Hash and sort —— prepare a set of inverted indexes from which, given a set of keys, the appropriate
item tags can be found quickly.

B. Retrieve an item in response to a query.
(3) Search - Given some keys, look through the files prepared by the hashing and sorting facility and

derive the appropriate tags.
(4) Deliver —— Given the tags, find the original items. This completes the searching process.

The first phase, making the index, is presumably done relatively infrequently. It should, of course, be done
whenever the data being indexed change. In contrast, the second phase, retrieving items, is presumably done
often, and must be rapid.
An effort is made to separate code which depends on the data being handled from code which depends on the
searching procedure. The search algorithm is involved only in programs (2) and (3), while knowledge of the
actual data files is needed only by programs (1) and (4). Thus it is easy to adapt to different data files or dif—
ferent search algorithms.
To start with, it is necessary to have some way of selecting or generating keys from input files. For dealing
with files that are basically English, we have a key-making program which automatically selects words and
passes them to the hashing and sorting program (step 2). The format used has one line for each input item,
arranged as follows:

namezstarLlength (tab) keyl key2 key3

1 A D. Knuth The Art of Campuler Programming: Vol. 3, Sorting and Searching Addison-Wesley Reading, Mass.
1977. See section 6.5.

2 M. E. lxsk, Lot —A Lexical Analyzer Generalor, Comp. Sci. Tech. Rep. No. 39, Bell Laboratories, Murray Hill,
New Jersey October l975. Reprinted as PSl:l6 in UNIX Programming Manual, Uscnix Association, (1986).

3 loo/ml! is not part of the Berkeley UNIX distribution.

ND-60.328.1P EN

USD:30—4 . Some Applications of Inverted Indexes on the UNIX System

where name is the file name, start is the starting byte number, and length is the number of bytes in the entry.
These lines are the only input used to make the index. The first field (the file name, byte position, and byte
count) is the tag of the item and can be used to retrieve it quickly. Normally, an item is either a whole file or
a section of a file delimited by blank lines. After the tab, the second field contains the keys. The keys, if
selected by the automatic program, are any alphanumeric strings which are not among the 100 most frequent
words in English and which are not entirely numeric (except for four-digit numbers beginning 19, which are
accepted as dates). Keys are truncated to six characters and converted to lower case. Some selection is needed
if the original items are very large. We normally just take the first It keys, with n less than 100 or so; this
replaces any attempt at intelligent selection. One file in our system is a complete English dictionary; it would
presumably be retrieved for all queries.
To generate an inverted index to the list of record tags and keys, the keys are hashed and sorted to produce an
index. What is wanted, ideally, is a series of lists showing the tags associated with each key. To condense
this, what is actually produced is a list showing the tags associated with each hash code, and thus with some
set of keys. To speed up access and fiirther save space, a set of three or possibly four files is produced. These
files are:

File Contents
entry Pointers to posting file

for each hash code
posting Lists of tag pointers for

each hash code
tag Tags for each item
key Keys for each item

(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under each hash code.
To speed up searching, the entry file is an array of pointers into the posting file, one per potential hash code.
Furthermore, the items in the lists in the posting file are not referred to by their complete tag, but just by an
address in the tag file, which gives the complete tags. The key file is optional and contains a copy of the keys
used in the indexing.
The searching process starts with a query, containing several keys. The goal is to obtain all items which were
indexed under these keys. The query keys are hashed, and the pointers in the entry file used to access the lists
in the posting file. These lists are addresses in the tag file of documents posted under the hash codes derived
from the query. The common items from all lists are determined; this must include the items indexed by every
key, but may also contain some items which are false drops, since items referenced by the correct hash codes
need not actually have contained the correct keys. Normally, if there are several keys in the query, there are
not likely to be many false drops in the final combined list even though each hash code is somewhat ambigu-
ous. The actual tags are then obtained from the tag file, and to guard against the possibility that an item has
false-dropped on some hash code in the query, the original items are normally obtained from the delivery pro-
gram (4) and the query keys checked against them by string comparison.
Usually, therefore, the check for bad drops is made against the original file. However, if the key derivation
procedure is complex, it may be preferable to check against the keys fed to program (2). In this case the
optional key file which contains the keys associated with each item is generated, and the item tag is supple-
mented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys for each item. This
file is not usually necessary with the present key-selection program, since the keys always appear in the origi-
nal document.
There is also an option (-Cn) for coordination level searching. This retrieves items which match all but it of
the query keys. The items are retrieved in the order of the number of keys that they match. Of course, n must
be less than the number of query keys (nothing is retrieved unless it matches at least one key).
As an example, consider one set of 4377 references, comprising 660,000 bytes. This included 51,000 keys, of
which 5,900 were distinct keys. The hash table is kept full to save space (at the expense of time); 995 of 997
possible hash codes were used. The total set of index files (no key file) included 171,000 bytes, about 26% of
the original file size. It took 8 minutes of processor time to hash, sort, and write the index. To search fer a

ND—60.328. 11’ EN

Some Applications of Inverted‘lndexes on the UNIX System USD:30-5

single query with the resulting index took 1.9 seconds of processor time, while to find the same paper with asequential linear search using grep (reading all of the tags and keys) took 12.3 seconds of processor time.
We have also used this software to index all of the English stored on our UNIX system. This is the indexsearched by the lookall command. On a typical day there were 29,000 files in our user file system, containingabout l52,000,000 bytes. Of these 5,300 files, containing 32,000,000 bytes (about 21%) were English text.
The total number of ‘words’ (determined mechanically) was 5,100,000. Of these 227,000 were selected askeys; 19,000 were distinct, hashing to 4,900 (of 5,000 possible) different hash codes. The resulting invertedfile indexes used 845,000 bytes, or about 2.6% of the size of the original files. The particularly small indexesare caused by the fact that keys are taken from only the first 50 non-common words of some very long inputfiles.
Even this large lookall index can be searched quickly. For example, to find this document by looking for thekeys “lesk inverted indexes" required 1.7 seconds of processor time and system time. By comparison, just tosearch the 800,000 byte dictionary (smaller than even the inverted indexes, let alone the 27,000,000 bytes oftext files) with grep takes 29 seconds of processor time. The Iookall program is thus useful when looking fora document which you believe is stored on—line, but do not know where. For example, many memos from ourcenter are in the file system, but it is often difficult to guess where a particular memo might be (it might haveseveral authors, each with many directories, and have been worked on by a secretary with yet more direc-tories). Instructions for the use of the Iookall command are given in the manual section, shown in the appen-dix to this memorandum.
The only indexes maintained routinely are those of publication lists and all English files. To make otherindexes, the programs for making keys, sorting them, searching the indexes, and delivering answers must beused. Since they are usually invoked as parts of higher-level commands, they are not in the default commanddirectory, but are available to any user in the directory /usr/Iib/refer. Three programs are of interest: mkey,which isolates keys from input files; inv, which makes an index from a set of keys; and hunt, which searches
the index and delivers the items. Note that the two parts of the retrieval phase are combined into one program,
to avoid the excessive system work and delay which would result from running these as separate processes.
These three commands have a large number of options to adapt to different kinds of input. The user not
interested in the detailed description that now follows may skip to section 3, which describes the refer pro-gram, a packaged-up version of these tools specifically oriented towards formatting references.

Make Keys
The program mkey is the key-making program corresponding to step (1) in phase A. Normally, it reads its
input: from the file names given as arguments, and if there are no arguments it reads from the standard input. It
assumes that blank lines in the input delimit separate items, for each of which a different line of keys should
be generated. The lines of keys are written on the standard output. Keys are any alphanumeric string in the
input; not among the most frequent words in English and not entirely numeric (except that all-numeric stringsare acceptable if they are between 1900 and 1999). In the output, keys are translated to lower case, and trun-cated to six characters in length; any associated punctuation is removed. The following fiag arguments are
recognized by mkey:

-c name Name of file of common words; default is /usr/1ib/eign.
~fname Read a list of files from name and take each as an input argument.
-i chars Ignore all lines which begin with ‘%’ followed by any character in

chars.
—kn Use at most It keys per input item.
4:: Ignore items shorter than n letters long.
-nm lgnore as a key any word in the first m words of the list of common

English words. The default is 100.
-—5 Remove the labels (file:start,length) from the output; just give the

keys. Used when searching rather than indexing.
—w Each whole file is a separate item; blank lines in files are irrelevant.

The normal arguments for indexing references are the defaults, which are —c /u.rr/Iib/eign, —n100, and —I3.For searching, the —s option is also needed. When the big loo/call index of all English files is run, the options

ND-60.328.1P EN

USD:30—6 . Some Applications of Inverted Indexes on the UNIX System

are —w, 4250, and —f (filelt'st). When running on textual input, the mkey program processes about 1000
English words per processor second. Unless the .k option is used (and the input files are long enough for it to
take effect) the output of mkey is comparable in size to its input.

Hash and invert

The inv program computes the hash codes and writes the inverted files. It reads the output of mkey and writes
the set of files described earlier in this section. It expects one argument, which is used as the base name for
the three (or four) files to be written. Assuming an argument of Index (the default) the entry file is named
Index.ia, the posting file lndexib, the tag file Indexic , and the key file (if present) lndexid. The inv program
recognizes the following options:

—a Append the new keys to a previous set of inverted files, making new
files if there is no old set using the same base name.

—d Write the optional key file. This is needed when you can not check
for false drops by looking for the keys in the original inputs, i.e. when
the key derivation procedure is complicated and the output keys are
not words from the input files.

——hn The hash table size is n (default 997); n should be prime. Making n
bigger saves search time and spends disk space.

—i[u] name Take input from file name, instead of the standard input; if u is
present name is unlinked when the sort is started. Using this option
permits the sort scratch space to overlap the disk space used for input
keys.

—n Make a completely new set of inverted files, ignoring previous files.
—p Pipe into the sort program, rather than writing a temporary input file.

This saves disk space and spends processor time.
—v Verbose mode; print a summary of the number of keys which finished

indexing.

About half the time used in inv is in the contained sort. Assuming the sort is roughly linear, however, a guess
at the total timing for inv is 250 keys per second. The space used is usually of more importance: the entry
file uses four bytes per possible hash (note the -—h option), and the tag file around 1520 bytes per item
indexed. Roughly, the posting file contains one item for each key instance and one item for each possible hash
code; the items are two bytes long if the tag file is less than 65336 bytes long, and the items are four bytes
wide if the tag file is greater than 65536 bytes long. Note that to minimize storage, the hash tables should. be
over-full; for most of the files indexed in this way, there is no other real choice, since the entry file must fit in
memory.

Searching and Retrieving.
The hunt program retrieves items from an index. It combines, as mentioned above, the two parts of phase (B):
search and delivery. The reason why it is efficient to combine delivery and search is partly to avoid starting
unnecessary processes, and partly because the delivery operation must be a part of the search operation in any
case. Because of the hashing, the search part takes place in two stages: first items are retrieved which have
the right hash codes associated with them, and then the actual items are inspected to determine false drops, i.e.
to determine if anything with the right hash codes doesn’t really have the right keys. Since the original item is
retrieved to check on false drops, it is efficient to present it immediately, rather than only giving the tag as out-
put and later retrieving the item again. If there were a separate key file, this argument would not apply, but
separate key files are not common.
Input to hunt is taken from the standard input, one query per line. Each query should be in mkey —s output
format; all lower case, no punctuation. The hunt program takes one argument which specifies the base name
of the index files to be searched. Only one set of index files can be searched at a time, although many text
files may be indexed as a group, of course. If one of the text files has been changed since the index, that file is
searched with fgrep,‘ this may occasionally slow down the searching, and care should be taken to avoid having
many out of date files. The following option arguments are recognimd by hunt:

ND-60.328.1P EN

Some Applications of Inverted Indexes on the UNIX System USD230-7

-a Give all output; ignore checking for false drops.
—Cn Coordination level n; retrieve items with not more than n terms of the

input missing; default C0, implying that each search term must be in
the output items.

—F[ynd] “—Fy” gives the text of all the items found; “—Fn“ suppresses them.
“—Fd ” where d is an integer gives the text of the first d items. The
default is —Fy.

—g Do not use fgrep to search files changed since the index was made;
print an error comment instead.

—i string Take string as input, instead of reading the standard input.
-l n The maximum length of internal lists of candidate items is n; default

1000.
—0 string Put text output (“—Fy”) in string; of use only when invoked from

another program.
—p Print hash code frequencies; mostly for use in optimizing hash table

sizes.
--T[ynd] “—Ty” gives the tags of the items found; “—Tn" suppresses them.

“—Td” where d is an integer gives the first (1 tags. The default is
—-Tn.

«t string Put tag output (“—Ty”) in string; of use only when invoked from
another program.

The timing of hunt is complex. Normally the hash table is overfull, so that there will be many false drops onany single term; but a multi-term query will have few false drops on all terms. Thus if a query isunderspecified (one search term) many potential items will be examined and discarded as false drops, wastingtime. If the query is overspecified (a dozen search terms) many keys will be examined only to verify that the
single item under consideration has that key posted. The variation of search time with number of keys is
shown in the table below. Queries of varying length were constructed to retrieve a particular document from
the file of references. In the sequence to the left, search terms were chosen so as to select the desired paper as
quickly as possible. In the sequence on the right, terms were chosen inefficiently, so that the query did not
uniquely select the desired document until four keys had been used. The same document was the target in
each case, and the final set of eight keys are also identical; the differences at five, six and seven keys are pro-
duced by measurement error, not by the slightly different key lists.

Efficient Keys Inefficient Keys
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time

(incl. false) Documents (seconds) (incl. false) Documents (seconds)
1 15 3 1.27 l 68 55 5 .96
2 l 1 0.1 l 2 29 29 2.72
3 l l 0.14 3 8 8 0.95
4 1 1 0.17 4 1 1 0.18
5 l 1 0.19 5 l I 0.21
6 l 1 0.23 6 l l 0.22
7 l l 0.27 7 1 l 0.26
8 1 l 0.29 8 l l 0.29

As would be expected, the optimal search is achieved when the query just specifies the answer; however,
overspecification is quite cheap. Roughly, the time required by hunt can be approximated as 30 millisecondsper search key plus 75 milliseconds per dropped document (whether it is a false drop or a real answer). In
general, overspecification can be recommended; it protects the user against additions to the data base which
turn previously uniquely-answered queries into ambiguous queries.
The mreful reader will have noted an enormous discrepancy between these times and the earlier quoted time of
ar0und 1.9 seconds for a search. The times here are purely for the search and retrieval: they are measured by
running many searches through a single invocation of the hunt program alone. The normal retrieval operation

ND-60.328.1P EN

USD:3(}8 ' ’ Some Applications of Inverted Indexes on the UND(System

involves using the shell to set up a pipeline through mkey to hunt and starting both processes; this adds a fixed
overhead of about 1.7 seconds of processor time to any single search. Furthermore, remember that all these
times are processor times: on a typical morning on our PDP 11/70 system, with about one dozen people logged
on, to obtain 1 second of processor time for the search program took between 2 and 12 seconds of real time,
with a median of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work involved in a single search
may be only 200 milliseconds, after you add the 1.7 seconds of startup processor time and then assume a 4:1
elapsed/processor time ratio, it will be 8 seconds before any response is printed.

3. SELECTING AND FORMATTING REFERENCES FOR TROFF
The major application of the retrieval software is refer, which is a trojf preprocessor like eqn. 4 It scans its
input looking for items of the form

.[
imprecise citation
.]

where an imprecise citation is merely a string of words found in the relevant bibliographic citation. This is
translated into a properly formatted reference. If the imprecise citation does not correctly identify a single
paper (either selecting no papers or too many) a message is given. The data base of citations searched may be
tailored to each system, and individual users may specify their own citation files. On our system, the default
data base is accumulated from the publication lists of the members of our organization, plus about half a dozen
personal bibliographies that were collected. The present total is about 4300 citations, but this increases
steadily. Even now, the data base covers a large fraction of local citations.
For example, the reference for the eqn paper above was specified as

preprocessor like
.I eqn.
.[
kemighan cherry acm 1975
-]
It scans its input looking for items

This paper was itself printed using refer. The above input text was processed by refer as well as tbl and trofir
by the command

refer memo-file / tbl / trofir ~ms

and the reference was automatically translated into a correct citation to the ACM paper on mathematical
typesetting.
The procedure to use to place a reference in a paper using refer is as follows. First, use the Iookbib command
to check that the paper is in the data base and to find out what keys are necessary to retrieve it This is done
by typing lookbib and then typing some potential queries until a suitable query is found. For example, had
one started to find the eqn paper shown above by presenting the query

$ lookbib
kemighan cherry
(BOT)

lookbib would have found several items; experimentation would quickly have shown that the query given
above is adequate. Overspecifying the query is of course harmless. A particularly careful reader may have
noticed that “acm” does not appear in the printed citation; we have supplemented some of the data base items
with common extra keywords, such as common abbreviations for journals or other sources, to aid in searching.

‘ B. W. Kemighan and L. L. Cherry, A System for Typesetting Mathematics, Comm. Assoc. Comp. Mach, vol. 18,
pp. 151-157, Bell laboratories, Murray Hill, New Jersey, March 1975. Reprinted as USDIZ6 in UNIXUscrs Uscnix
Association, (1986).

ND-60.328.1P EN

Some Applications of Inverted Indexes on the UNIX System USD:30—9

If the reference is in the data base, the query that retrieved it can be inserted in the text, between .[and .]brackets. If it is not in the data base, it can be typed into a private file of references, using the format dis-cussed in the next section, and then the —p option used to search this private file. Such a command might read
(if the private references are called mflle)

refer —p myfile document/ tbl / eqn / trojf —ms . . .

where (b! and/or eqn could be omitted if not needed. The use of the ~ms macros 5 or some other macro pack-
age, however, is essential. Refer only generates the data for the references; exact formatting is done by somemacro package, and if none is supplied the references will not be printed.
By default, the references are numbered sequentially, and the —ms macros format references as footnotes at thebottom of the page. This memorandum is an example of that style. Other possibilities are discussed in section
5 below.

4. REFERENCE FILES
A reference file is a set of bibliographic references usable with refer. It can be indexed using the softwaredescribed in section 2 for fast searching. What refer does is to read the input document stream, looking for
imprecise citation references. It then searches through reference files to find the full citations, and inserts them
into the document. The format of the full citation is arranged to make it convenient for a macro package, suchas the —ms macros, to format the reference for printing. Since the format of the final reference is determined
by the desired style of output, which is determined by the macros used, refer avoids forcing any kind of refer-
ence appearance. All it does is define a set of string registers which contain the basic information about the
reference; and provide a macro call which is expanded by the macro package to format the reference. It is the
responsibility of the final macro package to see that the reference is actually printed; if no macros are used, and
the output of refer fed untranslated to troff, nothing at all will be printed.
The strings defined by refer are taken directly from the files of references, which are in the following format.
The references should be separated by blank lines. Each reference is a sequence of lines beginning with %
and followed by a key-letter. The remainder of that line, and successive lines until the next line beginning
with %, contain the information specified by the key-letter. In general, refer does not interpret the informa-
tion, but merely presents it to the macro package for final formatting. A user with a separate macro package,
for example, can add new key-letters or use the existing ones for other purposes without bothering refer.
The meaning of the key-letters given below, in particular, is that assigned by the ~ms macros. Not all infor-
mation, obviously, is used with each citation. For example, if a document is both an internal memorandum
and a journal article, the macros ignore the memorandum version and cite only the journal article. Some kinds
of information are not used at all in printing the reference; if a user does not like finding references by specify-
ing title or author keywords, and prefers to add specific keywords to the citation, a field is available which is
searched but not printed (K).
The key letters currently recognized by refer and —ms, with the kind of information implied, are:

Key Information specified Key Information specified
A Author’s name N Issue number
8 Title of book containing item 0 Other information
C City of publication P Page(s) of article
D Date R Technical report reference
E Editor of book containing item T Title
G Government (NTIS) ordering number V Volume number
I Issuer (publisher)
J Journal name
K Keys (for searching) X or
L Label Y or
M Memorandum label Z Information not used by refer

5 M. E. Desk, Typing Documents on UNIX and GCOS.‘ The -—ms Macros for Trofl, 1977. Revised version reprinted
as USDz20 in UNIX Users Manual, Uscnix Association, (l986).

ND-60.328.1P EN

USD230—10 - ‘ Some Applications of Inverted Indexes on the UNIX System

For example, a sample reference could be typed as:

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctr127
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J I. ACM
%V 23
%N l
%P 1-12
%M abcd-78
%D Jan. 1976

Order is irrelevant, except that authors are shown in the order given. The output of refer is a stream of string
definitions, one for each of the fields of each reference, as shown below.

.1-

.ds [A authors’ names

.ds [T title

.ds [J journal

.] [type—number

The special macro .]-— precedes the string definitions and the special macro .1[follows. These are changed
from the input .[and .] so that running the same file through refer again is harmless. The .}— macro can be
used by the macro package to initialize. The .1[macro, which should be used to print the reference, is given
an argument type-number to indicate the kind of reference, as follows:

Value Kind of reference
Journal article
Book
Article within book
Technical report
Bell Labs technical memorandum
Other

The reference is flagged in the text with the sequence

* ([.number* (.1

O
m
fi
t
-
I

where number is the footnote number. The strings [. and .] should be used by the macro package to format
the reference flag in the text. These strings can be replaced for a particular footnote, as described in section 5.
The footnote number (or other signal) is available to the reference macro .I[as the string register [R
In some cases users wish to suspend the searching, and merely use the reference macro formatting. That is, the
user doesn’t want to provide a search key between .[and .] brackets, but merely the reference lines for the
appropriate document Alternatively, the user can wish to add a few fields to those in the reference as in the
standard file, or override some fields. Altering or replacing fields, or supplying whole references, is easily
done by inserting lines beginning with %; any such line is taken as direct input to the reference processor
rather than keys to be searched. Thus

.[
keyl key2 key3
%Q New format item
%R Override report name
.l

makes the indicated changes to the result of searching for the keys. All of the search keys must be given
before the first % line.

ND‘60.328. 1? EN

Some Applications of Inverted Indexes on the UNIX System USD:30»1I

If no search keys are provided, an entire citation can be provided in-line in the text. For example, if the eqrrpaper citation were to be inserted in this way, rather than by searching for it in the data base, the input would
read

preprocessor like
.I eqn.
.l
%A B. W. Kemighan
%A L. L. Cherry
%T A System for Typesetting Mathematics
%J Comm. ACM
%V 18
%N 3
%P 151-157
%D March 1975
.]
It scans its input looking for items

This would produce a citation of the same appearance as that resulting from the file search.
As shown, fields are normally turned into trofi” strings. Sometimes users would rather have them defined as
macros, so that other trofl commands can be placed into the data. When this is necessary, simply double the
control character % in the data. Thus the input

-[
%V 23
%%M
Bell Laboratories,
Murray Hill, NJ. 07974
-]

is processed by refer into

.ds [V 23

.de [M
Bell laboratories,
Murray Hill, NJ. 07974

The information after %%M is defined as a macro to be invoked by .[M while the information after %V is
turned into a string to be invoked by *([V. At present —ms expects all information as strings.

5. COLLECTING REFERENCES AND OTHER Refer OPTIONS
Normally, the combination of refer and —ms formats output as trojf footnotes which are consecutively num-
bered and placed at the bottom of the page. However, options exist to place the references at the end; to
arrange references alphabetically by senior author, and to indicate references by strings in the text of the form
[Namel975a] rather than by number. Whenever references are not placed at the bottom of a page identical
references are coalesced.
For example, the —e option to refer specifies that references are to be collected; in this case they are output
whenever the sequence

-l
$LIST$
-]

is encountered. Thus, to place references at the end of a paper, the user would run refer with the —e option
and place the above SLISTS commands after the last line of the text. Refer will then move all the references
to that point To aid in formatting the collected references, refer writes the references preceded by the line

ND-60.328.1P EN

US D230—12 . . Some Applications of lnverted Indexes on the UNIX System

.]<

and followed by the line

.]>

to invoke special macros before and after the references.
Another possible option to refer is the —5 option to specify sorting of references. The default, of course, is to
list references in the order presented. The -—5 option implies the -—e option, and thus requires a

-[
$LIST$
.]

entry to call out the reference list The -s option may be followed by a string of letters, numbers, and ‘+’
signs indicating how the references are to be sorted. The sort is done using the fields whose key-letters are in
the string as sorting keys; the numbers indicate how many of the fields are to be considered, with ‘+’ taken as
a large number. Thus the default is —sAD meaning “Sort on senior author, then date." To sort on all authors
and then title, specify ~sA+T. And to sort on two authors and then the journal, write -—sA2.I.
Other options to refer change the signal or label inserted in the text for each reference. Normally these are
just sequential numbers, and their exact placement (within brackets, as superscripts, etc.) is determined by the
macro package. The -—l option replaces reference numbers by strings composed of the senior author’s last
name, the date, and a disambiguating letter. If a number follows the l as in —l3 only that many letters of the
last name are used in the label string. To abbreviate the date as well the form -lm,n shortens the last name to
the first In letters and the date to the last I: digits. For example, the option 43,2 would refer to the eqn paper
(reference 3) by the signal Ker75c1, since it is the first cited reference by Kemighan in 1975.
A user wishing to specify particular labels for a private bibliography may use the ~k option. Specifying 40:
causes the field x to be used as a label. The default is L. If this field ends in —, that character is replaced by a
sequence letter; otherwise the field is used exactly as given.
If none of the refer —produced signals are desired, the —b option entirely suppresses automatic text signals.
If the user wishes to override the ~ms treatment of the reference signal (which is normally to enclose the
number in brackets in nrofir and make it a superscript in troff) this can be done easily. If the lines .[or .]
contain anything following these characters, the remainders of these lines are used to surround the reference
signal, instead of the default. Thus, for example, to say “See reference (2)." and avoid “See reference?” the
input might appear

See reference
-l (
imprecise citation
.]).

Note that blanks are significant in this construction. If a permanent change is desired in the style of reference
signals, however, it is probably easier to redefine the strings I. and .] (which are used to bracket each signal)
than to change each citation.
Although normally refer limits itself to retrieving the data for the reference, and leaves to a macro package the
job of arranging that data as required by the local format, there are two special options for rearrangements that
can not be done by macro packages. The —c option puts fields into all upper case (CAPS-SMALL CAPS in trofi’
output). The key-letters indicated what information is to be translated to upper case follow the c, so that —cA.I
means that authors’ names and journals are to be in caps. The —a option writes the names of authors last name
first, that is A. D. Hall, Jr. is written as Hall, A. D. Jr. The citation form of the Journal of the ACM, for
example, would require both -cA and —a options. This produces authors’ names in the style KERNIGHAN, B. W.
AND CHERRY, L. L. for the previous example. The —a option may be followed by a number to indicate how
many author names should be reversed; «31 (without any —c option) would produce Kernighan, B. W. and L.
L. Cherry, for example.

ND—60.328.1P EN

Some Applications of Inverted Indexes on the UNIX System USD:30—13

Finally, there is also the previously-mentioned —p option to let the user specify a private file of references to be
searched before the public files. Note that refer does not insist on a previously made index for these files. If a
file is named which contains reference data but is not indexed, it will be searched (more slowly) by refer using
fgrep. In this way it is easy for users to keep small files of new references, which can later be added to the
public data bases.

ND—60.328.1P EN

USD230— 14 ~ ‘ ' Some Applications of Inverted Indexes on the UNIX System

ND-60.328.1P EN

Updating Publication Lists ' USD231—1

Updating Publication Lists

M. E. Lesk

ABSTRACT

This document describes the auxiliary programs for managing the updating processing. It is
written to aid clerical users in maintaining lists of references. Primarily, the programs
described permit a large amount of individual control over the content of publication lists
while retaining the usefulness of the files to other users.

ND—60.328.1P EN

USDz3l-2 ~ ‘ ‘ Updating Publication Lists

ND-60.328.1P EN

Updating Publication Lists ’ USD131-3

1. INTRODUCTION
This note describes several commands to update the publication lists. The data base consisting of these lists iskept in a set of files in the directory /usr/dicl/papers on the Version 7 UNIXtL system. The reason for havingspecial commands to update these files is that they are indexed, and the only reasonable way to find the itemsto be updated is to use the index. However, altering the files destroys the usefulness of the index, and makesfurther editing difficult. So the recommended procedure is to
(1) Prepare additions, deletions, and changes in separate files.
(2) Update the data base and reindex.
Whenever you make changes, etc. it is necessary to run the “add & index” step before logging off; otherwisethe changes do not take effect. The next section shows the format of the files in the data base. After that, theprocedures for preparing additions, preparing changes, preparing deletions, and updating the public data baseare given.

2. PUBLICATION FORMAT
The format of a data base entry is given completely in “Some Applications of Inverted Indexes on UNIX" byM. E. Lesk, the first part of this report, (also TM 77-1274-17) and is summarized here via a few examples. Ineach example, first the output format for an item is shown, and then the corresponding data base entry.

Journal article:
A. V. Aho, D. J. Hirschberg, and J. D. Ullman, “Bounds on the Complexity of
the Maximal Common Subsequence Problem,” J. Assoc. Comp. Mach, vol.
23, no. 1, pp. 1-12 (Jan. 1976).

%T Bounds on the Complexity of the Maximal Common
Subsequence Problem
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. Assoc. Comp. Mach.
%V 23
%N 1
%P 1-12
%D Jan. 1976
%M TM 75-1271-7

Conference proceedings:
B. Piabhala and R. Sethi, “Efficient Computation of Expressions with
Common Subexpressions,” Proc. 5th ACM Symp. on Principles of
Programming Languages, pp. 222-230, Tucson, Ariz. (January 1978).

%A B. Prabhala
%A R. Sethi
%T Efficient Computation of Expressions with
Common Subexpressions
%J Proc. 5th ACM Symp. on Principles
of Programming Languages
%C Tucson, Ariz.
%D January 1978
%P 222-230

1‘ UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD:31—4 - ' Updating Publication Lists

Book:
B. W. Kemighan and P. I. Plauger, Software Tools, Addison-Wesley, Reading,
Mass. (1976).

%T Software Tools
%A B. W. Kemighan
%A P. J. Plauger
%I Addison-Wesley
%C Reading, Mass.
%D 1976

Article within book:
I. W. de Bakker, “Semantics of Programming Languages," pp. 173—227 in
Advances in Information Systems Science, Vol. 2, ed. J. T. Tou, Plenum Press,
New York, N. Y. (1969).

%A J. W. de Bakker
%T Semantics of programming languages
%E J. T. Tou
%B Advances in lnfonnation Systems Science, Vol. 2
%I Plenum Press
%C New York, N. Y.
%D 1969
%P 173-227

Technical Report
F. E. Allen, ”Bibliography on Program Optimization,” Report RC—5767, IBM
T. J. Watson Research Center, Yorktown Heights, N. Y. (1975).

%A F. E. Allen
%D 1975
%T Bibliography on Program Optimization
%R Report RC-5767
%l IBM T. J. Watson Research Center
%C Yorktown Heights, N. Y.

Technical Memorandum:
A. V. Aho, B. W. Kemighan and P. J. Weinberg, “AWK — Pattern Scanning
and Processing Language”, TM 77-1271-5, TM 77-1273-12, TM 77-3444-1
(1977).

%T AWK — Pattern Scanning and Processing language
%A A. V. Aho
%A B. W. Kernighan
%A P. l. Weinberger
%M TM 77-1271-5, TM 77427342, TM 77-3444-1
%D 1977

Other forms of publication can be entered similarly. Note that conference proceedings are entered as if jour-
nals, with the conference name on a %J line. This is also sometimes appropn‘ate for obscure publications such
as series of lecture notes. When something is both a report and an article, or both a memorandum and an arti—
cle, enter all necessary information for both; see the first article above, for example. Extra information (such
as “In preparation” or “Japanese translation”) should be placed on a line beginning %0. The most common
use of %0 lines now is for “Also in to give an additional reference to a secondary appearance of the same
paper.

ND-60.328.1P EN

Updating Publication Lists ‘ ' USD:3l-5

Some of the possible fields of a citation are:

Letter Meaning Letter Meaning
A Author K Extra keys
B Book including item N Issue number
C City of publication 0 Other
D Date P Page numbers
E Editor of book R Report number
I Publisher (issuer) T Title of item
J Journal name V Volume number

Note that %B is used to indicate the title of a book containing the article being entered; when an item is an
entire book, the title should be entered with a %T as usual.
Normally, the order of items does not matter. The only exception is that if there are multiple authors (%Alines) the order of authors should be that on the paper. If a line is too long, it may be continued on to the nextline; any line not beginning with % or . (dot) is assumed to be a continuation of the previous line. Again, see
the fn’st article above for an example of a long title. Except for authors, do not repeat any items; if two %Jlines are given, for example, the first is ignored. Multiple items on the same file should be separated by blank
lines.
Note that in formatted printouts of the file, the exact appearance of the items is determined by a set of macros
and the formatting programs. Do not try to adjust fonts, punctuation, etc. by editing the data base; it is wasted
effort. In case someone has a real need for a differently-fonnatted output, a new set of macros can easily be
generated to provide alternative appearances of the citations.

3. UPDATING THE RE-INDEXING
This section describes the commands that are used to manipulate and change the data base. It explains the pro-cedures for (a) finding references in the data base, (b) adding new references, (c) changing existing references,
and (d) deleting references. Remember that all changes, additions, and deletions are done by preparing
separate files and then running an ‘update and reindex’ step.
Checking what’s there now. Often you will want to know what is currently in the data base. There is a spe—
cial command lookbib to look for things and print them out. It searches for articles based on words in the
title, or the author’s name, or the date. For example, you could find the fust paper above with

lookbib aho ullman maximal subsequence 1976
or

lookbib aho ullman hirschberg

If you don’t give enough words, several items will be found; if you spell some wrong, nothing will be found.
There are around 4300 papers in the public file; you should always use this command to check when you are
not sure whether a certain paper is there or not
Additions. To add new papers, just type in, on one or more files, the citations for the new papers. Rememberto check first if the papers are already in the data base. For example, if a paper has a previous memo version,this should be treated as a change to an existing entry, rather than a new entry. If several new papers are beingtyped on the same file, be sure that there is a blank line between each two papers.
Changes. To change an item, it should be extracted onto a file. This is done with the command

pub.chg keyl key2 key3

where the items keyl, key2, key3, etc. are a set of keys that will find the paper, as in the lookbib command.
That is, if

lookbib johnson yacc cstr

will find a item (to, in this case, Computing Science Technical Report No. 32, “YACC: Yet Another
Compiler-Compiler.” by S. C. Johnson) then

pub.chg johnson yacc cstr

will permit you to edit the item. The pub.chg command extracts the item onto a file named “bibxxx” where

ND-60.328.1P EN

USD23 1-6 - ' Updating Publication Lists

“xxx” is a 3-digit number, e.g. “bib234”. The command will print the file name it has chosen. If the set of
keys finds more than one paper (or no papers) an error message is printed and no file is written. Each refer-
ence to be changed must be extracted with a separate pub.chg command, and each will be placed on a separate
file. You should then edit the “bibxxx” file as desired to change the item, using the UNIX editor. Do not
delete or change the first line of the file, however, which begins %# and is a special code line to tell the update
program which item is being altered. You may delete or change other lines, or add lines, as you wish. The
changes are not actually made in the public data base until you run the update command pub.run (see below).
Thus, if after extracting an item and modifying it, you decide that you’d rather leave things as they were,
delete the “bibxxx” file, and your change request will disappear.
Deletions. To delete an entry from the data base, type the command

pub.del keyl key2 key3

where the items keyl, key2, etc. are a set of keys that will find the paper, as with the Iookbib command. That
is, if

lookbib Aho hirschberg ullrnan
will find a paper,

pub.del aho hirschberg ullrnan
deletes it. Note that upper and lower case are equivalent in keys. The pub.de1 command will print the entry
being deleted. It also gives the name of a “bibxxx” file on which the deletion command is stored. The actual
deletion is not done until the changes, additions, etc. are processed, as with the pub.chg command. If, after
seeing the item to be deleted, you change your mind about throwing it away, delete the “bibxxx” file and the
delete request disappears. Again, if the list of keys does not uniquely identify one paper, an error message is
given.

Remember that the default versions of the commands described here edit a public data base. Do not delete
items unless you are sure deletion is proper, usually this means that there are duplicate entries for the same
paper. Otherwise, view requests for deletion with skepticism; even if one person has no need for a particular
item in the data base, someone else may want it there.
If an item is correct, but should not appear in the “List of Publications” as normally produced, add the line

%K DNL

to the item. This preserves the item intact, but implies “Do Not List” to the to the commands that print publi-
cation lists. The DNL line is normally used for some technical reports, minor memoranda, or other low~grade
publications.

Update and reindex. When you have completed a session of changes, you should type the command
pub.run filel file2

where the names “filel”, are the new files of additions you have prepared. You need not list the “bibxxx”
files representing changes and deletions; they are processed automatically. All of the new items are edited into
the standard public data base, and then a new index is made. This process takes about 15 minutes; during this
time, searches of the data base will be slower.
Normally, you should execute pub.run just before you logoff after performing some edit requests. However, if
you don’t, the various change request files remain in your directory until you finally do execute pubnm. When
the changes are processed, the “bibxxx” files are deleted. It is not desirable to wait too long before process-
ing changes, however, to avoid conflicts with someone else who wishes to change the same file. If executing
pub.run produces the message “File bibxxx too old" it means that someone else has been editing the same
file between the time you prepared your changes, and the time you typed pubnm. You must delete such old
change files and re-enter them.
Note that although pub.run discards the “bibxxx” files after processing them, your files of additions are left
around even after pub.run is finished. If they were typed in only for purposes of updating the data base, you
may delete them after they have been processed by pub.run.

ND-60.328.1P EN

Updating Publication Lists ' USDz3l-7

Example. Suppose, for example, that you wish to
(1) Add to the data base the memos “The Dilogarithm Function of a Real Argument” by R. Morris, and“UNIX Software Distribution by Communication Link,” by M. E. Lesk and A. S. Cohen;
(2) Delete from the data base the item “Cheap Typesetters”, by M. E. Lesk, SIGLASH Newsletter, 1973;and

(3) Change “J. Assoc. Comp. Mach." to “Jour. ACM” in the citation for Aho, Hirschberg, and Ullmanshown above.
The procedure would be as follows. First, you would make a file containing the additions, here called“new.1”, in the normal way using the UNIX editor. In the script shown below, the computer prompts are initalics.

$ ed new.1
?
a
%T The Dilogarithm Function of a Real Argument
%A Robert Morris
%M TM 78-1271—1
%D 1978

%T UNIX Software Distribution by Communication Link
%A M. E. Lesk
%A A. S. Cohen
%M TM 78-1274-1, 78—8234-1
%D 1978
w new.1
199
q

Next you would specify the deletion, which would be done with the pub.del command:
$ pub.del lesk cheap typesetters siglash

to which the computer responds:

Will delete: (file bib176)

%T Cheap Typesetzers
%A M. E. Les/c
‘70.] ACM SIGLASH Newsletter
%V 6
%N 4
%P 14-16
%D October 1973

And then you would extract the Aho, Hirschberg and Ullman paper. The dialogue involved is shown below.First run pub.chg to extract the paper; it responds by printing the citation and informing you that it was placedon file bib123. That file is then edited.

ND-60.328.1P EN

USD231-8 . Updating Publication Lists

3 pubchg aho hirschberg ullman
Extracting asfile bib123
%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. Assoc. Comp. Mach.
%V 23
%N I
%P 1-12
%M TM 75—1271-7
%D Jan. 1976

3 ed bib123
312
/Assoc/S/ J/ Jour/p
%J Jour. Assoc. Comp. Mach.
s/Assoc.*/ACM/p
%J Jour. ACM
1,$p
%# /usr/dict/papers/p76 233 245 change
%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J Jour. ACM
%V 23
%N I
%P [~12
%M TM 75-1271—7
%D Jan. 1976

w
292
q
$

Finally, execute pub.run, making sure to remember that you have prepared a new file “new.l”:

$ pubmn new.l

and about fifteen minutes later the new index would be complete and all the changes would be included.

4. PRINTING A PUBLICATION LIST
There are two commands for printing a publication list, depending on whether you want to print one person’s
list, or the list of many people. To print a list for one person, use the pubindlv command:

pubindiv M Lesk

This runs off the list for M. Lesk and puts it in file “output". Note that no is given after the initial. In
case of ambiguity two initials can be used. Similarly. to get the list for group of people, say

puborg xxx

which prints all the publications of the members of organization xxx, taking the names for the list in the file
/usr/dt'ct/papers/centlist/xxx. This command should normally be run in the background; it takes perhaps 15
minutes. Two options are available with these commands:

ND-60.328.1P EN

Updating Publication Lists ' USD231—9

pub.indiv —p M Lesk
prints only the papers, leaving out unpublished notes, patents, etc. Also

pub.indiv -t M Lesk I gcat

prints 3 typeset copy, instead of a computer printer copy. In this case it has been directed to an alternatetypesetter with the ‘gcat’ command. These options may be used together. and may be used with the pub.orgcommand as well. For example, to print only the papers for all of organization ZZZ and typeset them, youcould type

pub.center -t «p 222 l gcat &
These publication lists are printed double column with a citation style taken from a set of publication list mac-ros; the macros, of course, can be changed easily to adjust the format of the lists.

ND-60.328.1P EN

USD231-10 ‘ ‘ L Updating Publication Lists

ND‘60.328.1P EN

Writing Tools —— the STYLE and DICTION Programs

Writing Tools - The STYLE and DICTION Programs

L. L. Cherry

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

W. Vesterman

Livingston College
Rutgers University

ABSTRACT

USD:32-1

Text processing systems are now in heavy use in many companies to format documents.With many documents stored on line, it has become possible to use computers to study writ-ing style itself and to help writers produce better written and more readable prose. The sys-tem of programs described here is an initial step toward such help. It includes programs anda data base designed to produce a stylistic profile of writing at the word and sentence level.The system measures readability, sentence and word length, sentence type, word usage, andsentence openers. It also locates common examples of wordy phrasing and bad diction.The system is useful for evaluating a document’s style, locating sentences that may bedifficult to read or excessively wordy, and determining a particular writer’s style overseveral documents.

ND-60.328.1P EN

(13032-2 ' ' Writing Tools —— the STYLE and DICI‘ION Programs

ND—60.328. 11’ EN

Writing Tools —— the STYLE and‘DlCTION Programs USD:32-3

1. INTRODUCTION
Computers have become important in the document preparation process, with programs to chock for spellingerrors and to format documents. As the amount of text stored on line increases, it becomes feasible and attrac-tive to study writing style and to attempt to help the writer in producing readable documents. The system ofwriting tools described here is a first step toward such help. The system includes programs and a data base toanalyze writing style at the word and sentence level. We use the term “style” in this paper to describe theresults of a writer’s particular choices among individual words and sentence forms. Although many judge~ments of style are subjective, particularly those of word choice, there are some objective measures that expertsagree lead to good style. Three programs have been written to measure some of the objectively definablecharacteristics of writing style and to identify some commonly misused or unnecessary phrases. Although adocument that conforms to the stylistic rules is not guaranteed to be coherent and readable, one that violates allof the rules is likely to be difficult or tedious to read. The program STYLE calculates readability, sentencelength variability, sentence type, word usage and sentence openers at a rate of about 400 words per second ona PDPl 1/70 running the UNIXT Operating System. It assumes that the sentences are well-formed, i. e. thateach sentence has a verb and that the subject and verb agree in number. DICTION identifies phrases that areeither bad usage or unnecessarily wordy. EXPLAIN acts as a thesaurus for the phrases found by DICTION.Sections 2, 3, and 4 describe the programs; Section 5 gives the results on a cross~section of technical docu-ments; Section 6 discusses accuracy and problems; Section 7 gives implementation details.

2. STYLE
The program STYLE reads a document and prints a summary of readability indices, sentence length and type,word usage, and sentence openers. It may also be used to locate all sentences in a document longer than agiven length, of readability index higher than a given number, those containing a passive verb, or those begin-ning with an expletive. STYLE is based on the system for finding English word classes or parts of speech,PARTS [1]. PARTS is a set of programs that uses a small dictionary (about 350 words) and suffix rules topartially assign word classes to English text. It then uses experimentally derived rules of word order to assignword classes to all words in the text with an accuracy of about 95%. Because PARTS uses only a small dic—tionary and general rules, it works on text about any subject, from physics to psychology. Style measures havebeen built into the output phase of the programs that make up PARTS. Some of the measures are simplecounters of the word classes found by PARTS; many are more complicated. For example, the verb count isthe total number of verb phrases. This includes phrases like:

has been going
was only going
to go

each of which each counts as one verb. Figure 1 shows the output of STYLE run on a paper by Kemighanand Mashey about the UNIX programming environment [2]. As the example shows, STYLE output is in fiveparts. After a brief discussion of sentences, we will describe the parts in order.

2.1. What is a sentence?

Readers of documents have little trouble deciding where the sentences end. People don’t even have to stopand think about uses of the character “.” in constructions like 1.25, A. J. Jones, Ph.D., i. e., or etc. . When acomputer reads a document, finding the end of sentences is not as easy. First we must throw away theprinter’s marks and formatting commands that litter the text in computer form. Then STYLE defines a sen-tence as a string of words ending in one of:

T UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD232—4 - ' ' Writing Tools —— the STYLE and DICTION Programs

programming environment
readability grades:

(Kincaid) 12.3 (auto) 12.8 (Coleman-Lian) 11.8 (Flesch) 13.5 (46.3)
sentence info:

no. sent 335 no. wds 7419
av sent leng 22.1 av word leng 4.91
no. questions 0 no. imperatives 0
no. nonfunc wds 4362 58.8% av leng 6.38
short sent (<17) 35% (118) long sent (>32) 16% (55)
longest sent 82 wds at sent 174; shortest sent 1 wds at sent 117

sentence types:
simple 34% (114) complex 32% (108)

_ compound 12% (41) compound4complex 21% (72)
word usage:

verb types as % of total verbs
tobe 45% (373) aux 16% (133) inf 14% (114)
passives as % of non-inf verbs 20% (144)
types as % of total
prep 10.8% (804) conj 3.5% (262) adv 4.8% (354)
noun 26.7% (1983) adj 18.7% (1388) pron 5.3% (393)
nominalizations 2 % (155)

sentence beginnings:
subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot 67%
prep 12% (39) adv 9% (31)
verb 0% (1) sub~conj 6% (20) conj 1% (5)
expletives 4% (13)

Figure 1

.l?/.

The end marker “.”/ may be used to indicate an imperative sentence. Imperative sentences that are not so
marked are not identified as imperative. STYLE properly handles numbers with embedded decimal points and
commas, strings of letters and numbers with embedded decimal points used for naming computer file names,
and the common abbreviations listed in Appendix 1. Numbers that end sentences, like the preceding sentence,
cause a sentence break if the next word begins with a capital letter. Initials only cause a sentence break if the
next word begins with a capital and is found in the dictionary of function words used by PARTS. So the
string

1. D. JONES

does not cause a break, but the string

system H. The

does. With these rules most sentences are broken at the proper place, although occasionally either two sen‘
tences are called one or a fragment is called a sentence. More on this later.

2.2. Readability Grades
The first section of STYLE output consists of four readability indices. As Klare points out in [3] readability
indices may be used to estimate the reading skills needed by the reader to understand a document. The reada-
bility indices reported by STYLE are based on measures of sentence and word lengths. Although the indices
may not measure whether the document is coherent and well organized, experience has shown that high indices
seem to be indicators of stylistic difficulty. Documents with short sentences and short words have low scores;
those with long sentences and many polysyllabic words have high scores. The 4 formulae reported are Kincaid

ND-60.328.1P EN

Writing Tools — the STYLE and DICTION Programs USD:32-5

Formula [4], Automated Readability Index [5], Coleman-Lian Formula [6] and a normalized version of FleschReading Ease Score [7]. The formulae differ because they were experimentally derived using different textsand subject groups. We will discuss each of the formulae briefly; for a more detailed discussion the readershould see [3].
The Kincaid Formula, given by:

Reading_Grade:l l.8*sy1_per_wd+.39*wds_per_sent»l5.59
was based on Navy training manuals that ranged in difficulty from 5.5 to 16.3 in reading grade level. Thescore reported by this formula tends to be in the mid~range of the 4 scores. Because it is based on adult train-ing manuals rather than school book text, this formula is probably the best one to apply to technical docu-ments.
The Automated Readability Index (ARI), based on text from grades 0 to 7, was derived to be easy to automate.The formula is:

Reading_Grade=4.7l *Iet_per~wd+.5*wds_per_sent—21.43
ARI tends to produce scores that are higher than Kincaid and Coleman-Lian but are usually slightly lower thanFlesch.
The Coleman-Liau Formula, based on text ranging in difficulty from .4 to 16.3, is:

ReadingfiGrade=5.89*Iet_per_wd—.3*sentjer_100_wds—15.8
Of the four formulae this one usually gives the lowest grade when applied to technical documents.
The last formula, the Flesch Reading Ease Score, is based on grade school text covering grades 3 to 12. Theformula, given by:

Reading_Sc0re=206.835—84.6*syl_per_wd—l.015*wds_per_sent
is usually reported in the range 0 (very difficult) to 100 (very easy). The score reported by STYLE is scaled tobe comparable to the other formulas, except that the maximum grade level reported is set to 17. The Fleschscore is usually the highest of the 4 scores on technical documents.
Coke [8] found that the Kincaid Formula is probably the best predictor for technical documents; both ARI andFlesch tend to overestimate the difficulty; Coleman—Lian tend to underestimate. On text in the range of grades7 to 9 the four formulas tend to be about the same. On easy text the Coleman~Liau formula is probably pre-ferred since it is reasonably accurate at the lower grades and it is safer to present text that is a little too easythan a little too hard.
If a document has particularly difficult technical content, especially if it includes a lot of mathematics, it isprobably best to make the text very easy to read, i.e. a lower readability index by shortening the sentences andwords. This will allow the reader to concentrate on the technical content and not the long sentences. The usershould remember that these indices are estimators; they should not be taken as absolute numbers. STYLEcalled with “—r number” will print all sentences with an Automated Readability Index equal to or greater than“number”.

2.3. Sentence length and structure
The next two sections of STYLE output deal with sentence length and structure. Almost all books on writingstyle or effective writing emphasize the importance of variety in sentence length and structure for good writing.Ewing’s first rule in discussing style in the book Writing for Results [9] is:

“Vary the sentence structure and length of your sentences."
Leggett, Mead and Charvat break this rule into 3 in Prentice-Hall Handbook for Writers [10] as follows:

“34a. Avoid the overuse of short simple sentences."
“34b. Avoid the overuse of long compound sentences.”
“34c. Use various sentence structures to avoid monotony and increase effectiveness.”

Although experts agree that these rules are important, not all writers follow them. Sample technical documentshave been found with almost no sentence length or type variability. One document had 90% of its sentencesabout the same length as the average; another was made up almost entirely of simple sentences (80%)

ND-60.328.IP EN

USD:32a6 ‘ ‘ Writing Tools —— the STYLE and DlCl"ION Programs

The output sections labeled “sentence info” and “sentence types” give both length and structure measures.
STYLE reports on the number and average length of both sentences and words, and number of questions and
imperative sentences (those ending in “/.”). The measures of non-function words are an attempt to look at the
content words in the document. In English non-function words are nouns, adjectives, adverbs, and non—
auxiliary verbs; function words are prepositions, conjunctions, articles, and auxiliary verbs. Since most func—
tion words are short, they tend to lower the average word length. The average length of non-function words
may be a more useful measure for comparing word choice of different writers than the total average word
length. The percentages of short and long sentences measure sentence length variability. Short sentences are
those at least 5 words less than the average; long sentences are those at least 10 words longer than the average.
Last in the sentence information section is the length and location of the longest and shortest sentences. If the
flag “—1 number" is used, STYLE will print all sentences longer than “number”.
Because of the difficulq in dealing with the many uses of commas and conjunctions in English, sentence type
definitions vary slightly from those of standard textbooks, but still measure the same constructional activity.
1. A simple sentence has one verb and no dependent clause.
2. A complex sentence has one independent clause and one dependent clause, each with one verb. Com‘

plex sentences are found by identifying sentences that contain either a subordinate conjunction or a
clause beginning with words like “that” or “who”. The preceding sentence has such a clause.

3. A compound sentence has more than one verb and no dependent clause. Sentences joined by “;” are
also counted as compound.

4. A compound-complex sentence has either several dependent clauses or one dependent clause and a com-
pound verb in either the dependent or independent clause.

Even using these broader definitions, simple sentences dominate many of the technical documents that have
been tested, but the example in Figure 1 shows variety in both sentence structure and sentence length.

2.4. Word Usage

The word usage measures are an attempt to identify some other constructional features of writing style. There
are many different ways in English to say the same thing. The constructions differ from one another in the
form of the words used. The following sentences all convey approximately the same meaning but differ in
word usage:

The cxio program is used to perform all communication between the systems.
The cxio program performs all communications between the systems.
The cxio program is used to communicate between the systems.
The cxio program communicates between the systems.
All communication between the systems is performed by the cxio program.

The distribution of the parts of speech and verb constructions helps identify overuse of particular construc-
tions. Although the measures used by STYLE are crude, they do point out problem areas. For each category,
STYLE reports a percentage and a raw count In addition to looking at the percentage, the user may find it
useful to compare the raw count with the number of sentences. If, for example, the number of infinitives is
almost equal to the number of sentences, then many of the sentences in the document are constructed like the
first and third in the preceding example. The user may want to transform some of these sentences into another
form. Some of the implications of the word usage measures are discussed below.

Verbs are measured in several different ways to try to determine what types of verb constructions are most fre-
quent in the document. Technical writing tends to contain many passive verb constructions and other
usage of the verb “to be". The category of verbs labeled “tobe” measures both passives and sentences
of the form:

subject robe predicate

ln counting verbs, whole verb phrases are counted as one verb. Verb phrases containing auxiliary verbs
are counted in the category ‘aux”. The verb phrases counted here are those whose tense is not simple
present or simple past. It might eventually be useful to do more detailed measures of verb tense or
mood. lnfinitives are listed as “inf”. The percentages reported for these three categories are based on
the total number of verb phrases found. These categories are not mutually exclusive; they cannot be

ND-60.328.1P EN

Writing Tools — the STYLE and DICTION Programs USD232-7

added, since, for example, “to be going” counts as both “tobe” and “inf”. Use of these three types ofverb constructions varies significantly among authors.

STYLE reports passive verbs as a percentage of the finite verbs in the document. Most style books warnagainst the overuse of passive verbs. Coleman [1 i] has shown that sentences with active verbs are easierto learn than those with paSSive verbs. Although the inverted object-subject order of the passive voiceseems to emphasize the object, Coleman’s experiments showed that there is little difference in retentionby word position. He also showed that the direct object of an active verb is retained better than the sub-ject of a passive verb. These experiments support the advice of the style books suggesting that writersshould try to use active verbs wherever possible. The flag “—p” causes STYLE to print all sentencescontaining passive verbs.

Pronouns
add cohesiveness and connectivity to a document by providing back-reference. They are often a short~hand notation for something previously mentioned, and therefore connect the sentence containing thepronoun with the word to which the pronoun refers. Although there are other mechanisms for such con—nections, documents with no pronouns tend to be wordy and to have little connectivity.

Adverbs
can provide transition between sentences and order in time and space. In performing these functions,adverbs, like pronouns, provide connectivity and cohesiveness.

Conjunctions
provide parallelism in a document by connecting two or more equal units. These units may be wholesentences, verb phrases, nouns, adjectives, or prepositional phrases. The compound and compound—complex sentences reported under sentence type are parallel structures. Other uses of parallel structuresare indicated by the degree that the number of conjunctions reported under word usage exceeds the com-pound sentence measures.

Nouns and Adjectives.
A ratio of nouns to adjectives near unity may indicate the overuse of modifiers. Some technical writersqualify every noun with one or more adjectives. Qualifiers in phrases like “simple linear single—link net-work model” often lend more obscurity than precision to a text.

Nominalizalions
are verbs that are changed to nouns by adding one of the suffixes “merit”, “ance”, “once”, or “ion”.Examples are accomplishment, admittance, adherence, and abbreviation. When a writer transforms anominalized sentence to a non-nominalized sentence, she/he increases the effectiveness of the sentence inseveral ways. The noun becomes an active verb and frequently one complicated clause becomes twoshorter clauses. For example,

Their inclusion of this provision is admission of the importance of the system.When they included this provision, they admitted the importance of the system.
Coleman found that the transformed sentences were easier to learn, even when the transformation pro-duced sentences that were slightly longer, provided the transformation broke one clause into two. Writ-ers who find their document contains many nominali7ations may want to transform some of the sen-tences to use active verbs.

2.5. Sentence openers
Another agreed upon principle of style is variety in sentence openers. Because STYLE determines the type ofsentence opener by looking at the part of speech of the first word in the sentence, the sentences counted underthe heading “subject opener” may not all really begin with the subject. However, a large percentage of sen-tences in this category still indicates lack of variety in sentence openers. Other sentence opener measures helpthe user determine if there are transitions between sentences and where the subordination occurs. Adverbs andconjunctions at the beginning of sentences are mechanisms for transition between sentences. A pronoun at thebeginning shows a link to something previously mentioned and indicates connectivity.
The location of subordination can be determined by comparing the number of sentences that begin with asubordinator with the number of sentences with complex clauses. If few sentences start with subordinate

ND-60.328.lP EN

USD:32-8 . - ' Writing Tools — the STYLE and DICTION Programs

conjunctions then the subordination is embedded or at the end of the complex sentences. For variety the writer
may want to transform some sentences to have leading subordination.
The last category of openers, expletives, is commonly overworked in technical writing. Expletives are the
words “it” and “there", usually with the verb “to be”, in constructions where the subject follows the verb.
For example,

There are three streets used by the traffic.
There are too many users on this system.

This construction tends to emphasize the object rather than the subject of the sentence. The flag “—e” will
cause STYLE to print all sentences that begin with an expletive.

3. DICTION
The program DICTION prints all sentences in a document containing phrases that are either frequently misused
or indicate wordiness. The program, an extension of Aho’s FGREP [12] string matching program, takes as
input a file of phrases or patterns to be matched and a file of text to be searched. A data base of about 450
phrases has been compiled as a default pattern file for DICTION. Before attempting to locate phrases, the pro-
gram maps upper case letters to lower case and substitutes blanks for punctuation. Sentence boundaries were
deemed less critical in DICTION than in STYLE, so abbreviations and other uses of the character “.” are not
treated specially. DICI‘ION brackets all pattern matches in a sentence with the characters “[” “1” .
Although many of the phrases in the default data base are correct in some contexts, in others they indicate wor-
diness. Some examples of the phrases and suggested alternatives are:

Phrase Alternative
a large number of many
arrive at a decision decide
collect together collect
for this reason so
pertaining to about
through the use of by or with
utilize use
with the exception of except

Appendix 2 contains a complete list of the default file. Some of the entries are short forms of problem
phrases. For example, the phrase “the fact” is found in all of the following and is sufficient to point out the
wordiness to the user:

Phrase Alternative
accounted for by the fact that caused by
an example of this is the fact that thus
based on the fact that because
despite the fact that although
due to the fact that because
in light of the fact that because
in view of the fact that since
notwithstanding the fact that although

Entries in Appendix 2 preceded by “~” are not matched See Section 7 for details on the use of “~".
The user may supply her/his own pattern file with the flag “—f patfile”. In this case the default file will beloaded first, followed by the user file. This mechanism allows users to suppress patterns contained in thedefault file or to include their own pet peeves that are not in the default file. The flag “—n" will exclude thedefault file altogether. In constructing a pattern file, blanks should be used before and after each phrase to
avoid matching substn'ngs in words. For example, to find all occurrences of the word “the", the pattern “ the
” should be used. The blanks cause only the word “the” to be matched and not the string “the” in words
like there, other, and therefore. One side effect of surrounding the words with blanks is that when two phrases
occur without intervening words, only the first will be matched.

ND—60.328. 1? EN

Writing Tools — the STYLE and DICTION Programs USD232-9

4. EXPLAIN
The last program, EXPLAIN, is an interactive thesaurus for phrases found by DICI‘ION. The user types oneof the phrases bracketed by DICTION and EXPLAIN responds with suggested substitutions for the phrase thatwill improve the diction of the document.

Table 1
Text Statistics on 20 Technical Documents
variable minimum maximum mean standard deviationReadability Kincaid 9.5 16.9 13.3 2.2

automated 9.0 17.4 13.3 2.5Cole-Liau 10.0 16.0 12.7 1.8Flesch 8.9 17.0 14.4 2.2
sentence info. av sent length 15.5 30.3 21.6 4.0av word length 4.61 5.63 5.08 .29av nonfunction length 5.72 7.30 6.52 .45short sent 23% 46% 33% 5.9long sent 7% 20% 14% 2.9
sentence types simple 31% 71% 49% 11.4

complex 19% 50% 33% 8.3compound 2% 14% 7% 3.3compound-complex 2% 19% 10% 4.8verb types tobe 26% 64% 44.7% 10.3auxiliary 10% 40% 21% 8.7infinitives 8% 24% 15.1% 4.8
passives 12% 50% 29% 9.3

word usage prepositions 10.1% 15.0% 12.3% 1.6
conjunction 1.8% 4.8% 3.4% .9adverbs 1.2% 5.0% 3.4 % 1.0nouns 23.6% 31.6% 27.8% 1.7adjectives 15.4% 27.1% 21.1% 3.4pronouns 1.2% 8.4% 2.5% 1.1
nominalizations 2% 5% 3.3% .8

sentence openers propositions 6% 19% 12% 3.4
adverbs 0% 20% 9% 4.6subject 56% 85% 70% 8.0verbs 0% 4% 1% 1.0subordinating conj 1% 12% 5% 2.7
conjunctions 0% 4% 0% 1.5expletives 0% 6% 2% 1.7

5. RESULTS

5.1. "style"
To get baseline statistics and check the program’s accuracy, we ran STYLE on 20 technical documents. Therewere a total of 3287 sentences in the sample. The shortest document was 67 sentences long; the longest 339sentences. The documents covered a wide range of subject matter, including theoretical computing, physics,psychology, engineering, and affirmative action. Table 1 gives the range, median, and standard deviation ofthe various style measures. As you will note most of the measurements have a fairly wide range of valuesacross the sample documents.
As a comparison, Table 2 gives the median results for two different technical authors, a sample of instructionalmaterial, and a sample of the Federalist Papers. The two authors show similar styles, although author 2 usessomewhat shorter sentences and longer words than author 1. Author 1 uses all types of sentences, while author2 prefers simple and complex sentences, using few compound or compound—complex sentences. The othermajor difference in the styles of these authors is the location of subordination. Author 1 seems to prefer

ND—60.328.1P EN

USD232-10

embedded or trailing subordination, while author 2 begins many sentences with the subordinate clause. The
documents tested for both authors 1 and 2 were technical documents, written for a technical audience. The
instructional documents, which are written for craftspeople, vary surprisingly little from the two technical sam—
ples. The sentences and words are a little longer, and they contain many passive and auxiliary verbs, few
adverbs, and almost no pronouns. The instructional documents contain many imperative sentences, so there
are many sentence with verb openers. The sample of Federalist Papers contrasts with the other samples in
almost every way.

Writing Tools -—- the STYLE and DlCl"ION Programs

Table 2
Text Statistics on Single Authors

variable author 1 author 2 inst. FED
readability Kincaid 11.0 10.3 10.8 16.3

automated ll.0 10.3 11.9 17.8
Coleman—Liau 9.3 10.1 10.2 12.3
Flesch 10.3 10.7 10.1 15.0

sentence info av sent length 22.64 19.61 22.78 31.85
av word length 4.47 4.66 4.65 4.95
av nonfunction length 5.64 5.92 6.04 6.87
short sent 35% 43% 35% 40%
long sent 18% 15% 16% 21%

sentence types simple 36% 43% 40% 31%
complex 34% 41% 37% 34%
compound 13% 7% 4% 10%
compound-complex 16% 8% 14% 25%

verb type tobe 42% 43% 45% 37%
auxiliary 17% 19% 32% 32%
inflnitives 17% 15% 12% 21%
passives 20% 19% 36% 20%

word usage prepositions 10.0% 10.8% 12.3% 15.9%
conjunctions 3.2% 2.4% 3.9% 3.4%
adverbs 5.05% 4.6% 3.5% 3.7%
nouns 27.7% 26.5% 29.1% 24.9%
adjectives 17.0% 19.0% 15.4% 12.4%
pronouns 5.3% 4.3% 2.1% 6.5%
nominalizations 1% 2% 2% 3%

sentence openers prepositions 11% 14% 6% 5%
adverbs 9% 9% 6% 4%
subject 65% 59% 54% 66%
verb 3% 2% 14% 2%
subordinating conj 8% 14% 11% 3%
conjunction 1% 0% 0% 3%
expletives 3% 3% 0% 3%

5.2. "diction"

In the few weeks that DICTION has been available to users about 35,000 sentences have been run with about
5,000 string matches. The authors using the program seem to make the suggested changes about 50~75% of
the time. To date, almost 200 of the 450 strings in the default file have been matched. Although most of these
phrases are valid and correct in some contexts, the 50-75% change rate seems to show that the phrases are used
much more often than concise diction warrants.

ND-60.328.1P EN

Writing Tools —- the STYLE and DICTlON Programs USD232-11

6. ACCURACY

6.1. Sentence Identification
The correctness of the STYLE output on the 20 document sample was checked in detail. STYLE misidentified129 sentence fragments as sentences and incorrectly joined two or more sentences 75 times in the 3287sentence sample. The problems were usually because of nonstandard formatting commands, unknownabbreviations, or lists of non-sentences. An impossibly long sentence found as the longest sentence in thedocument usually is the result of a long list of non-sentences.

6.2. Sentence Types
Style correctly identified sentence type on 86.5% of the sentences in the sample. The type distribution of thesentences was 52.5% simple, 29.9% complex, 8.5% compound and 9% compound—complex. The programreported 49.5% simple, 31.9% complex, 8% compound and 10.4% compoundcomplex. Looking at the errorson the individual documents, the number of simple sentences was under-reported by about 4% and the com—plex and compound-complex were over—reported by 3% and 2%, respectively. The following matrix shows theprograms output vs. the actual sentence type.

Program Results
simple complex compound compcomplex

Actual simple 1566 132 49 17
Sentence complex 47 892 6 65

Type compound 40 6 207 23
comp—complex 0 52 5 249

The system’s inability to find imperative sentences seems to have little effect on most of the style statistics. Adocument with half of its sentences imperative was run, with and without the imperative end marker. Theresults were identical except for the expected errors of not finding verbs as sentence openers, not counting theimperative sentences, and a slight difference (1%) in the number of nouns and adjectives reported.

6.3. Word Usage
The accuracy of identifying word types reflects that of PARTS, which is about 95% correct. The largestsource of confusion is between nouns and adjectives. The verb counts were checked on about 20 sentencesfrom each document and found to be about 98% correct.

7. TECHNICAL DETAILS

7.1. Finding Sentences
The formatting commands embedded in the text increase the difficulty of finding sentences. Not all text in adocument is in sentence form; there are headings, tables, equations and lists, for example. Headings like“Finding Sentences" above should be discarded, not attached to the next sentence. However, since many ofthe documents are formatted to be phototypeset, and contain font changes, which usually operate on the mostimportant words in the document, discarding all formatting commands is not correct. To improve the pro—grams‘ ability to find sentence boundaries, the defomtatting program, DEROFF [13], has been given someknowledge of the formatting packages used on the UNIX operating system. DEROFF will now do the follow—ing:

1. Suppress all formatting macros that are used for titles, headings, author’s name, etc.
2. Suppress the arguments to the macros for titles, headings, author’s name, etc.
3. Suppress displays, tables, footnotes and text that is centered or in no—frll mode.

ND-60.328.1P EN

USD132- 12 . ' ' Writing Tools —— the STYLE and DICTION Programs

4. Substitute a place holder for equations and check for hidden end markers. The place holder is necessary
because many typists and authors use the equation setter to change fonts on important words. For this
reason, header files containing the definition of the EQN delimiters must also be included as input to
STYLE. End markers are often hidden when an equation ends a sentence and the period is typed inside
the EQN delimiters.

5. Add a "." after lists. If the flag —ml is also used, all lists are suppressed. This is a separate flag because
of the variety of ways the list macros are used. Often, lists are sentences that should be included in the
analysis. The user must determine how lists are used in the document to be analyzed.

Both STYLE and DICTION call DEROFF before they look at the text The user should supply the -ml flag if
the document contains many lists of non-sentences that should be skipped.

7.2. Details of DICTION
The program DICTION is based on the string matching program FGREP. FGREP takes as input a file of pat-
terns to be matched and a file to be searched and outputs each line that contains any of the patterns with no
indication of which pattern was matched The following changes have been added to FGREP:
l. The basic unit that DICTION operates on is a sentence rather than a line. Each sentence that contains

one of the patterns is output.
Upper case letters are mapped to lower case.
Punctuation is replaced by blanks.
All pattern matches in the sentence are found and surrounded with “[” “]” .
A method for suppressing a string match has been added. Any pattern that begins with “~” will not be
matched. Because the matching algorithm finds the longest substring, the suppression of a match allows
words in some correct contexts not to be matched while allowing the word in another context to be
found. For example, the word “which” is often incorrectly used instead of “that” in restrictive clauses.
However, “which” is usually correct when preceded by a preposition or The default pattern file
suppresses the match of the common prepositions or a double blank followed by “which” and therefore
matches only the suspect uses. The double blank accounts for the replaced comma

9
‘w

8. CONCLUSIONS
A system of writing tools that measure some of the objective characteristics of writing style has been
developed. The tools are sufficiently general that they may be applied to documents on any subject with equal
accuracy. Although the measurements are only of the surface structure of the text, they do point out problem
areas. In addition to helping writers produce better documents, these programs may be useful for studying the
writing process and finding other formulae for measuring readability.

ND-60.328. 1? EN

Writing Tools
- the STYLE and ‘DlCTlON Programs USD132-13

REFERENCES

l.

10.

11.

12

13.

L. L. Cherry, “PARTS — A System for Assigning Word Classes to English Text,” submitted Communi-cations of the ACM.
B. W. Kemighan and J. R. Mashey, “The UNIX Programming Environment," Software — Practice &Experience , 9, 1—15 (1979).
G. R. Klare, “Assessing Readability," Reading Research Quarterly, l974~l975, 10 , 62-102.
E. A. Smith and P. Kincaid, “Derivation and validation of the automated readability index for use withtechnical materials,” Human Factors, 1970, 12, 457—464.
J. P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom, “Derivation of new readability formu—las (Automated Readability Index, Fog count, and Flesch Reading Ease Formula) for Navy enlisted per-sonnel,” Navy Training Command Research Branch Report 8-75, Feb., 1975.
M. Coleman and T. L. Liau, “A Computer Readability Formula Designed for Machine Scoring,” Jour-nal of Applied Psychology, 1975, 60, 283—284.
R. Flesch, “A New Readability Yardstick,” Journal of Applied Psychology, 1948, 32, 221-233.
E. U. Coke, private communication.
D. W. Ewing, Writing for Results, John Wiley & Sons, Inc., New York, N. Y. (1974).
G. Leggett, C. D. Mead and W. Charvat, Prentice-Hall Handbook for Writers, Seventh Edition,Prentice-Hall lnc., Englewood Cliffs, N. J. (1978).
E. B. Coleman, ”Learning of Prose Written in Four Grammatical Transformations,” Journal of AppliedPsychology. 1965, vol. 49, no. 5, pp. 332-341.
A. V. Aho and M. J. Corasick, “Efficient Suing Matching: an aid to Bibliographic Search,” Communi-cations of the ACM, 18, (6), 333-340, June 1975.
Bell Laboratories, ”UNIX TIME-SHARING SYSTEM: UNIX PROGRAMMER'S MANUAL," SeventhEdition, Vol. 1 (January 1979).

ND—60.328.1P EN

USD:32-14

ND—60.328. 1? EN

a. d.
A. M.
a. m.
b. c.
Ch.
ch.
ckls.
dB.

depL
Dcpts.
depts.
Dr.
Drs.
e. g.

et a1.
etc.
Fig.

Figs.
figs.
fL
i. 6.

Inc.

Writing Tools —— the STYLE and DICTION Programs

Appendix 1

STYLE Abbreviations

Nos.
nos.
P. M.
p. m.
Ph. D.
Ph. d.
Ref.
ref.
Refs.
refs.
St.
vs.
yr.

Writing Tools —— the STYLE and DICTION Programs

a great deal of
a large number of
a lot of
a majority of
a need for
a number of
a particular preference for
a preference for
a small number of
a tendency to
abovementioned
absoluw complete
absoluw essential
accomplished
accordingly
activate
actual
added increments
adequate enough
advent
afford an opportunity
aggregate
all of
all throughout
along the line
an indication of
analyzation
and etc
and or
another additional
any and all
anive at a
as a matter of fact
as a method of
as good or better than
as of now
as per
as regards
as related to
as to
assistance
assistance to
assistance to
assuming that
at a later date
at about
at above
at all times
at an early date
at below
at the present
at the time when
at this point in time
at this time
at which time
at your earliest convenience
authorization
awful
basic fundamentals
basically
be cognizant of
being as
being that
brief in duration
bring to a conclusion
but that
but what
by means of
by the use of
carry out experiments

Appendix 2
Default DICTION Patterns

center about
center around
center portion
check into
check on
check up on
circle around
close proximity
collaborate together
colled together
combine together
come to an end
commence
common accord
compensation
completely eliminated
comprise
concerning
conduct an investigation of
conjecture
connect up
consensus of opinion
consequent result
consolidate together
construct
contemplate
continue on
continue to remain
could of
count up
couple together
debate about
decide on
deleterious effect
demean
demonstrate
depreciate in value
deserving of
desirable benefits
desirous of
different than
discontinue
disutility
divide up
doubt but
due to
duly noted
during the time that
each and every
early beginnings
effectuate
emotional feelings
empty out
enclosed herein
enclosed herewith
end result
end up
endeavor
enter in
enter into
enthused
entirely complete
equally good as
essentially
eventuatc

every now and then
exactly identical
experiencing difficulty
fabricate
face up to

facilitate
facts and figures
fast in action
fearful of
fearful that
few in number
file away
final completion
final ending
final outcome
fmal result
finalize
find it interesting to know
first and foremost
first beginnings
first initiated
firstly
follow after
following after
for the purpose of
for the reason that
for the simple reason that
for this reason
for your information
from the point of view of
full and complete
generally agreed
good and
got to
gratuitous
greatly minimize
head up
help but
helps in the production of
hopeful
if and when
if at all possible
impact
implement
important essentials
importantly
in a large measure
in a position to
in accordance
in advance of
in agreement with
in all cases
in back of
in behalf of
in behind
in between
in case
in close proximity
in confiia with
in conjunction with
in connection with
m fact
in large measure
in many cases
in most cases
in my opinion I think
in order to
in rare cases
in reference to
in regard to
in regards to
in relation with
in short supply
in size
in terms of

USD:32-15

in the amount of
in the case of
in the course of
in the event
in the field of
in the form of
in the instance of
in the interim
in the last analysis
in the matter of
in the near future
in the neighborhood of
in the not too distant future
in the proximity of
in the range of
in the same way as described
in the shape of
in the vicinity of
in this case
in view of the
in violation of
inasmuch as
indicate
indicative of
initialize
initiate
injurious to
inquire
inside of
institute a
intents and purposes
interrningle
irregardless
is defined as
is used to control
is when
is where
it is incumbent
it stands to reason
it was noted that if
joint cooperation
joint partnership
just exactly
kind of
know about
last but not least
later on
leaving out of consideration
liable
link up
literally
little doubt that
lose out on
lots of
main essentials
make a
make adjustments to
make an
make application to
make contaa with
make mention of
make out a list of
make the acquaintance of
make the adjustment
manner
maximum possible
meaningful
meet up with
melt down
melt up

ND-60.328.1P EN

USDz32—16

methodology
might of
minimize as far as possible
minor importance
miss out on
modification
more preferable
most unique
must of
mutual cooperation
necessary requisite
necessitate
need for
nice
not be un
not in a position to
not of a high order of accuracy
not an
notwithstanding
of considerable magnitude
of that
of the opinion that
off of
on a few occasions
on account of
on behalf of
on the grounds that
on the occasion
on the part of
one of the
09¢" “P
operates to correct
outside of
over with
overall
past history
perceptive of
perform a measurement
perform the measurement
permits the reduction of
personalize
pertaining to
physical size
plan ahead
plan for the future
plan in advance
plan on
present a conclusion
present a report
presently
prior to
prioritize
proceed to
procure
produdive of
prolong the duration
protmde out from
provided that
pursuant to
put to use in
range all the way from
reason is because
reason why
recur again
reduce down
refer back
reference to this
reflective of
regarding
regretful
reinitiate
relative to
repeat again
representative of

ND-60.328.1P EN

resultant effect
resume again
retreat back
return again
return back
revert back
seal off
seems apparent
send a communication
short space of time
should of
single unit
situation
so as to
sort of
spell out
still continue
still remain
subsequent
substantially in agreement
succeed in
suggestive of
superior than
surrounding circumstances
take appropriate
take cognizance of
take into consideration
termed as
terminate
temtination
the author
the authors
the case that
the fact
the foregoing
the foreseeable future
the fullest possible extent
the majority of
the nature
the necessity of
the only difference being that
the order of
the point that
the truth is
there are not many
through the medium of
through the use of
throughout the entire
time interval
to summarize the above
total effect of all this
totality
transpire
true facts
try and
ultimate end
under a separate cover
under date of
under separate cover
under the necessity to
underlying purpose
undertake a study
uniformly consistent
unique
until such time as
up to this time
upshot
utilize
very
very complete
very unique
vital

Writing Tools ~— the STYLE and DICTION Programs

which
~ about which
~ after which
~ at which
~ between which
~ by which
~ for which
~ from which
~ in which
~ into which
~ of which
~ on which
~ on which
~ over which
~ through which
~ to which
~ under which
~ upon which
~ with which
~ vn‘thout which
with a View to
with reference to
with regard to
with the exwption of
with the object of
with the result that
with this in mind, it is clear that
within the realm of possibility
without further delay
worth while
would of
wise
~ clockwise
~ likewise
~ otherwise

S tar Trek

STAR

TREK

by

Eric Allman
University of California

Berkeley

USD233-1

ND-60.328.1P EN

USD:33-2 - ' ‘ StarTrek

INTRODUCTION

Well, the federation is once again at war with the Klingon empire. It is up to you, as captain of the USS.
Enterprise, to wipe out the invasion fleet and save the Federation.

For the purposes of the game the galaxy is divided into 64 quadrants on an eight by eight grid, with quadrant
0,0 in the upper left hand comer. Each quadrant is divided into 100 sectors on a ten by ten grid. Each sector
contains one object (e.g., the Enterprise, a Klingon, or a star).

Navigation is handled in degrees, with zero being straight up and ninty being to the right. Distances are meas-
ured in quadrants. One tenth quadrant is one sector.

The galaxy contains starbases, at which you can dock to refuel, repair damages, etc. The galaxy also contains
stars. Stars usually have a knack for getting in your way, but they can be triggered into going nova by shoot-
ing a photon torpedo at one, thereby (hopefully) destroying any adjacent Klingons. This is not a good practice
however, because you are penalized for destroying stars. Also, a star will sometimes go supernova, which
obliterates an entire quadrant. You must never stop in a supernova quadrant, although you may ”jump over"
one. -

Some starsystems have inhabited planets. Klingons can attack inhabited planets and enslave the populace,
which they then put to work building more Klingon battle cruisers.

ND—60.328.1P EN

Star Trek - ' USD:33~3

STARTING UP THE GAME

To request the game, issue the command

/usr/games/trek

from the shell. If a filename is stated, a log of the game is written onto that file. If omitted, the file is notwritten. If the “aa” flag is stated before the filename, thata file is appended to rather than created.

The game will ask you what length game you would like. Valid responses are "short", "medium", and "long".You may also type "restart", which restarts a previously saved game. Ideally, the length of the game does notaffect the difficulty, but currently the shorter games tend to be harder than the longer ones.

You will then be prompted for the skill, to which you must respond "novice", "fair", "",good "expert", "com-modore", or "impossible". You should start out with a novice and work up, but if you really want to see howfast you can be slaughtered, start out with an impossible game.

In general, throughout the game, if you forget what is appropriate the game will tell you what it expects if youjust type in a question mark.

ND-60.328.lP EN

USDz33~4 . ~ ‘ Star Trek

ISSUING COMMANDS

If the game expects you to enter a command, it will say "Command: " and wait for your response. Most com-
mands can be abbreviated.

At almost any time you can type more than one thing on a line. For example, to move straight up one qua—
drant, you can type

move 0 1

or you could just type
move

and the game would prompt you with
Course:

to which you could type
0 1

The "1" is the distance, which could be put on still another line. Also, the "move" command could have been
abbreviated "mov", "mo", or just "'m'.

If you are partway through a command and you change your mind, you can usually type "-"1 to cancel the
command.

Klingons generally cannot hit you if you don’t consume anything (e.g., time or energy), so some commands
are considered "free". As soon as you consume anything though -- POW!

ND—60.328. 1? EN

Star Trek ' USD133-5

THE COMMANDS

Short Range Scan

Mnemonic: srscan
Shortest Appreviation: 5
Full Commands: srscan

srscan yes/no
Consumes: nothing

The short range scan gives you a picture of the quadrant you are in, and (if you say "yes") a status report
which tells you a whole bunch of interesting stuff. You can get a status report alone by using the static: com-
mand. An example follows:

Short range sensor scan

0123456789
0 . * . * 0 stardate 3702.16
1 E . 1 condition RED
2 . . * 2 position 03/1 ,2
3 * . # 3 warp factor 5.0
4 . 4 total energy 4376
5 * . * 5 torpedoes 9
6 . @ 6 shields down, 78%
7 . . 7 Klingons left 3
8 . K 8 time left 6.43
9 * 9 life support damaged, reserves = 2.4

0 l 2 3 4 5 6 7 8 9

Distressed Starsystem Marcus XII

The cast of characters is as follows:
the hero
the villain
the starbase
stars
inhabited starsystem
empty space
a black hole

©
*
=

tt
;!

:m

The name of the starsystem is listed underneath the short range scan. The word "distressed", if present, means
that the starsystem is under attack.

Short range scans are absolutely free. They use no time, no energy, and they don’t give the Klingons another
chance to hit you.

ND-60.328.1P EN

USDt33-6 - ' Star Trek

Status Report

Mnemonic: status
Shortest Abbreviation: st
Consumes: nothing

This command gives you information about the current status of the game and your ship, as follows:

Stardate -- The current stardate.

Condition -— as follows:
RED -- in battle
YELLOW —- low on energy
GREEN «- normal state
DOCKED -— docked at starbase
CLOAKED -- the cloaking device is activated

Position -- Your current quadrant and sector.

Warp Factor -— The speed you will move at when you move under warp power (with the move com—
mand).

Total Energy —- Your energy reserves. If they drop to zero, you die. Energy regenerates, but the
higher the skill of the game, the slower it regenerates.

Torpedoes —— How many photon torpedoes you have left.

Shields -— Whether your shields are up or down, and how effective they are if up (what percentage of
a hit they will absorb).

Klingons Left -- Guess.

Time Left -- How long the Federation can hold out if you sit on your fat ass and do nothing. If you
kill Klingons quickly, this number goes up, otherwise, it goes down. If it hits zero, the
Federation is conquered.

Life Support -— lf "active", everything is fine. If "damaged", your reserves tell you how long you
have to repair your life support or get to a starbase before you starve, suffocate, or some-
thing equally unpleasant.

Current Crew - The number of crew members left. This figures does not include officers.

Brig Space -— The space left in your brig for Klingon captives.

Klingon Power -- The number of units needed to kill a Klingon. Remember, as Klingons fire at you
they use up their own energy, so you probably need somewhat less than this.

Skill, Length -- The skill and length of the game you are playing.

Status infomation is absolutely free.

ND-60.328.1P EN

Star Trek ' ' ' USD:33-7

Long Range Scan

Mnemonie: lrscan
Shortest Abbreviation: l
Consumes: nothing

Long range scan gives you information about the eight quadrants that surround the quadrant you're in. A sam~ple long range scan follows:

Long range scan for quadrant 0,3

l*!*!*!
O!108! 6119!
1! 9t///! 8!

The three digit numbers tell the number of objects in the quadrants. The units digit tells the number of stars,the tens digit the number of starbases, and the hundreds digit is the number of Klingons. "*" indicates thenegative energy barrier at the edge of the galaxy, which you cannot enter. "///" means that that is a supernovaquadrant and must not be entered.

Damage Report

Mnemonic: damages
Shortest Abbreviation: da
Consumes: nothing

A damage report tells you what devices are damaged and how long it will take to repair them. Repairsproceed faster when you are docked at a starbase.

Set Warp Factor

Mnemonic: warp
Shortest Abbreviation: w
Full Command: warp factor
Consumes: nothing

The warp factor tells the speed of your starship when you move under warp power (with the move command).The higher the warp factor, the faster you go, and the more energy you use.

The minimum warp factor is 1.0 and the maximum is 10.0. At speeds above warp 6 there is danger of thewarp engines being damaged. The probability of this increases at higher warp speeds. Above warp 9.0 thereis a chance of entering a time warp.

ND-60.328.1P EN

USD133-8 - ’ Star Trek

Move Under Warp Power

Mnemonic: move
Shortest Abbreviation: In
Full Command: move course distance
Consumes: time and energy

This is the usual way of moving. The course is in degrees and the distance is in quadrants. To move one sec—
tor specify a distance of 0.1.

Time is consumed proportionately to the inverse of the warp factor squared, and directly to the distance.
Energy is consumed as the warp factor cubed, and directly to the distance. if you move with your shields up it
doubles the amount of energy consumed.

When you move in a quadrant containing Klingons, they get a chance to attack you.

The computer detects navigation errors. If the computer is out, you run the risk of running into things.

The course is determined by the Space Inertial Navigation System [SlNS]. As described in Star Fleet Techni-
cal Order TO:02:06:12, the SlNS is calibrated, after which it becomes the base for navigation. If damaged,
navigation becomes inaccurate. When it is fixed, Spock recalibrates it, however, it cannot be calibrated
extremely accurately until you dock at starbase.

Move Under Impulse Power

Mnemonic: impulse
Shortest Abbreviation: i
Full Command: impulse course distance
Consumes: time and energy

The impulse engines give you a chance to maneuver when your warp engines are damaged; however, they are
incredibly slow (0.095 quadrants/stardate). They require 20 units of energy to engage, and ten units per sector
to move.

The same comments about the computer and the SINS apply as above.

There is no penalty to move under impulse power with shields up.

Deflector Shields

Mnemonic: shields
Shortest Abbreviation: sh
Full Command: shields up/down
Consumes: energy

Shields protect you from Klingon attack and nearby novas. As they protect you, they weaken. A shield which
is 78% effective will absorb 78% of a hit and let 22% in to hurt you.

The Klingons have a chance to attack you every time you raise or lower shields. Shields do not rise and lower
instantaneously, so the hit you receive will be computed with the shields at an intermediate effectiveness.

It takes energy to raise shields, but not to drop them.

ND-60.328.1P EN

Star Trek ‘ ' USDz33-9

Cloaking Device

Mnemonic: cloak
Shortest Abbreviation: cl
Full Command: cloak up/down
Consumes: energy

When you are cloaked, Klingons cannot see you, and hence they do not fire at you. They are useful for enter-ing a quadrant and selecting a good position, however, weapons cannot be fired through the cloak due to thehuge energy drain that it requires.

The cloak up command only starts the cloaking process; Klingons will continue to fire at you until you dosomething which consumes time.

Fire Phasers

Mnmemonic: phasers
Shortest Abbreviation: p
Full Commands: phasers automatic amount

phasers manual amtl course] spreadl
Consumes: energy

Phasers are energy weapons; the energy comes from your ship’s reserves ("total energy" on a srscan). It takesabout 250 units of hits to kill a Klingon. Hits are cumulative as long as you stay in the quadrant.

Phasers become less effective the further from a Klingon you are. Adjacent Klingons receive about 90% ofwhat you fire, at five sectors about 60%, and at ten sectors about 35%. They have no effect outside of the qua-dram.

Phasers cannot be fired while shields are up; to do so would fry you. They have no effect on starbases or stars.

In automatic mode the computer decides how to divide up the energy among the Klingons present; in manualmode you do that yourself.

In manual mode firing you specify a direction, amount (number of units to fire) and spread (0 -> 1.0) for eachof the six phaser banks. A zero amount terminates the manual input.

ND-60.328.1P EN

1130:3340 - ' ’ Star Trek

Fire Photon Torpedoes

Mnemonic: torpedo
Shortest Abbreviation: t
Full Command: torpedo course [yes/no] [burst angle]
Consumes: torpedoes

Torpedoes are projectile weapons —- there are no partial hits. You either hit your target or you don’t. A hit on
a Klingon destroys him. A hit on a starbase destroys that starbase (woopsi). Hitting a star usually causes it to
go nova, and occasionally supernova.

Photon torpedoes cannot be aimed precisely. They can be fired with shields up, but they get even more ran«
dom as they pass through the shields.

Torpedoes may be fired in bursts of three. If this is desired, the burst angle is the angle between the three
shots, which may vary from one to fifteen. The word "no" says that a burst is not wanted; the word "yes"
(which may be omitted if stated on the same line as the course) says that a burst is wanted.

Photon torpedoes have no effect outside the quadrant.

Onboard Computer Request

Mnemonic: computer
Shortest Abbreviation: c
Full Command: computer request; request...
Consumes: nothing

The computer command gives you access to the facilities of the onboard computer, which allows you to do all
sorts of fascinating stuff. Computer requests are:

score -- Shows your current score.

course quad/sect -— Computes the course and distance from whereever you are to the given location.
If you type "course /x,y” you will be given the course to sector x,y in the current quadrant

move quad/sect -— Identical to the course request, except that the move is executed.

chart -- prints a chart of the known galaxy, i.e., everything that you have seen with a long range scan.
The format is the same as on a long range scan, except that ”..." means that you don’t yet
know what is there, and "1." means that you know that a starbase exists, but you don’t
know anything else. "SSS" mans the quadrant that you are currently in.

trajectory -- prints the course and distance to all the Klingons in the quadrant

warpcost dist warp_factor -- computes the cost in time and energy to move ‘dist’ quadrants at warp
‘warp_factor’.

impcost dist -— same as warpcost for impulse engines.

pheff range -- tells how effective your phasers are at a given range.

distresslist —— gives a list of currently distressed starbases and starsystems.

More than one request may be stated on a line by scpcrating them with semicolons.

ND~60.328.1P EN

Star Trek ' ‘ USD133—ll

Dock at Starbase

Mnemonic: dock
Shortest Abbreviation: do
Consumes: nothing

You may dock at a starbase when you are in one of the eight adjacent sectors.

When you dock you are resupplied with energy, photon torpedoes, and life support reserves. Repairs are alsodone faster at starbase. Any prisoners you have taken are unloaded. You do not recieve points for taking pris—
oners until this time.

Starbases have their own deflector shields, so you are safe from attack while docked.

Undock from Starbase

Mnemonic: undock
Shonest Abbreviation: u
Consumes: nothing

This just allows you to leave starbase so that you may proceed on your way.

Rest

Mnemonic: rest
Shortest Abbreviation: r
Full Command: rest time
Consumes: time

This command allows you to rest to repair damages. It is not advisable to rest while under attack.

Call Starbase For Help

Mnemonic: help
Shortest Abbreviation: help
Consumes: nothing

You may call starbase for help via your subspace radio. Starbase has long range transporter beams to get you.
Problem is, they can‘t always rematerialize you.

You should avoid using this command unless absolutely necessary, {or the above reason and because it counts
heavily against you in the scoring.

NIB—60328.1? EN

0513:3342 ' ' ’ StarTrek

Capture Klingon

Mnemonic: capture
Shortest Abbreviation: ca
Consumes: time

You may request that a Klingon surrender to you. If he accepts, you get to take captives (but only as many as
your brig can hold). It is good if you do this, because you get points for captives. Also, if you ever get cap~
lured, you want to be sure that the Federation has prisoners to exchange for you.

You must go to a starbase to turn over your prisoners to Federation authorities.

Visual Scan

Mnemonic: visual
Shortest Abbreviation: v
Full Command: visual course
Consumes: time

When your short range scanners are out, you can still see what is out "there" by doing a visual scan. Unfor-
tunately, you can only see three sectors at one time, and it takes 0.005 stardates to perform.

The three sectors in the general direction of the course specified are examined and displayed.

Abandon Ship

Mnemonic: abandon
Shortest Abbreviation: abandon
Consumes: nothing

The officers escape the Enterprise in the shuttlecraft. If the transporter is working and there is an inhabitable
starsystem in the area, the crew beams down, otherwise you leave them to die. You are given an old but still
usable ship, the Faire Queene.

Ram

Mnemonic: ram
Shortest Abbreviation: ram
Full Command: ram course distance
Consumes: time and energy

This command is identical to "move", except that the computer doesn’t stop you from making navigation
errors.

You get very nearly slaughtered if you ram anything.

ND-60.328.1P EN

Star Trek ‘ USD133—l3

Self Destruct

Mnemonic: destruct
Shortest Abbreviation: destruct
Consumes: everything

Your starship is self—destructed. Chances are you will destroy any Klingons (and stars, and starbases) left inyour quadrant.

Terminate the Game

Mnemonic: terminate
Shortest Abbreviation: terminate
Full Command: terminate yes/no

Cancels the current game. No score is computed. If you answer yes, a new game will be started, otherwisetrek exits.

Call the Shell

Mnemonic: shell
Shortest Abbreviation: shell

Temporarily escapes to the shell. When you log out of the shell you will return to the game.

ND-60.328.1P EN

USD:33«14 ‘ ' Star Trek

SCORING

The scoring algorithm is rather complicated. Basically, you get points for each Klingon you kill, for your
Klingon per stardate kill rate, and a bonus if you win the game. You lose points for the number of Klingons
left in the galaxy at the end of the game, for getting killed, for each star, starbase, or inhabited starsystem you
destroy, for calling for help, and for each casualty you incur.

You will be promoted if you play very well. You will never get a promotion if you call for help, abandon the
Enterprise, get killed, destroy a starbase or inhabited starsystem, or destroy too many stars.

ND-60.328.1P EN

Star Trek

COMMAND SUMMARY

Command

abandon

capture
cloak up/down
computer request;
damages
destruct
dock
help
impulse course distance

lrscan
move course distance

phasers automatic amount
amtl course] spreadl

torpedo course [yes] angle/no
ram course distance

rest time
shell
shields up/down
srscan [yes/no]
status

terminate yes/no
undock
visual course
warp warp_{aetor

Requires

shuttlecraft,
transporter

subspace radio
cloaking device
computer

computer

subspace radio
impulse engines,
computer, SINS

LR. sensors
warp engines,

computer, SINS
phasers, computer
phasers
torpedo tubes
warp engines,

computer, SLNS

shields
S .R. sensors

USD133-15

Consumes

time
energy

time, energy

time, energy

energy phasers manual
energy
torpedoes
time, energy

time

energy

ND—60.328.1P EN

USD:33—16 ‘ ‘ ‘ Star Trek

N-I)60.328.1P EN

