2 PP

NG

o
e

i,
ﬁ:,

o

i

NDIX Release C . 5T

NDIX
USER’S SUPPLEMENTARY DOCUMENTS
[USD]

ND-60.328.1 EN
NDIX Release C

Operating Systems Group
Norsk Data Ltd
Benham Valence

Newbury, Berkshire, RG1$ SLU
England
Tel: +44 635 35544

ND-60.328.1P EN

USD-ii : NDIX Release C

Copyright © 1988 by Norsk Data Limited.

This document may not be copied, reproduced, or translated without the express prior consent of Norsk Data
Limited.

Much of the information in this document is further protected by Copyright © 1979, 1980 Regents of the
University of California. Norsk Data Limited, as holders of a UNIXT software license, are permitted to Tepro-
duce this information, or any portion of it, as it deems necessary for its licensed use of the software.

The information in this manual is subject 1o change without notice.
Norsk Data Limited assumes no responsibility for any errors that may appear in this manual, or for the use or
reliability of its software on equipment that is not fumnished or supported by Norsk Data Limited.

t UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

NDIX Release C : USD-iii

PREFACE

The Product

This manual is part of a suite of manuals which describe Release C of NDIX.

NDIX is Norsk Data’s implementation of the UNIX operating system: the Release C
version runs on ND-5000 computers.

NDIX Release C is an implementation of 4.2BSD} UNIX with 4.3BSD networking
and with System V compatibility options added.

The product number for NDIX Release C is ND 211308.

The Documentation Scheme

The documentation describing Release C of NDIX is organized into five manuals, in
a format similar to that used for the 4.2BSD manuals. In this scheme, the "command
calls” are divided into 8 sections, and supporting papers/documents are collated into
"supplementary documentation”. This is presented for three types of reader:

1 User
2 Programmer
3 System Manager/Administrator

as follows (abbreviations for "command call" sections are in parenthesis):

. User’s Reference Manual [URM]

Commands (1)
Games (6)
Macro packages and language conventions (7)

. User’s Supplementary Documents [USD]

NDIX environment

Getting started

Basic utilities

Communicating with the World
Text editing

Document preparation
Amusements

. Programmer’s Reference Manual [PRM]

System calls (2)
Library routines (3)
Special files (4)
File formats (5)

. Programmer’s Supplementary Documents [PSD]

Languages

General reference
Programming tools
Progra:nming libraries

1 "BSD" is Berkeley Software Distribution, from the Computer Systems Rescarch Grup, Computer Science Division,
Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720.
"4.2BSD" and "4.3BSD" refer to the release versions 4.2 and 4.3 respectively of these software distributions.

ND-60.328.1P EN

USD-iv

The Manual

The Reader

Related Documentation

ND-60.328.1F EN

NDIX Release C

. System Manager’s Manual [SMM]

System maintenance reference functions (8)
System manager’s support documents

The “OVERVIEW"’ information at the start of the Users Reference Manual pro-
vides further details on the organisation of information in these manuals.

This manual contains a compendium of documents which provide a valuable range
of information to support a ““User’* of NDIX/UNIX.

The first two documents (USD:1 and USD:2) in this manual provide information
specific to this Release C of NDIX.

The remaining documents cover a broad range of User information on UNIX. The
authors of these documents are experts who are generally-acknowledged for their
very special contribution to the development of the UNIX system; these documents
therefore bear a particular authoritative status in the UNIX world. Not all of these
documents are directly relevant to Release C of NDIX, but they are nevertheless
included to provide an overall picture.

The documents included in this manual fall into two distinct levels of readership.
Some are introductory descriptions, or are written in tutorial form; these are aimed
at the less-experienced User. Others are reference documents, aimed at the more
expert User.

It is assumed that the less-experienced User has a general understanding of comput-
ers and experience of other operating systems, while those readers using the refer-
ence material have a general understanding of NDIX (or UNIX) and its key concepts.

The set of five manuals covering NDIX Release C are as follows:

NDIX User’s Reference Manual ND-60.327.1 EN
NDIX User’s Supplementary Documentation ND-60.328.1 EN
NDIX Programmer’s Reference Manual ND-60.329.1 EN
NDIX Programmer’s Supplementary Documentation (PSD) ND-60.330.1 EN
NDIX System Manager’s Manual ND-60.331.1 EN

The following manuals provide supporting information:

SINTRAN III K Release Notes ND-60.230
SINTRAN III Reference Manual ND-60.128
SINTRAN III System Supervisor Manual ND-30.003
SINTRAN III ND-5000 Monitor ND-60.136
NDIX Assembler Reference Manual ND-60.249
C Reference Manual ND-60.251
NDIX Pascal User Guide ND-60.226
Pascal Reference Manual ND-60.222
NDIX Fortran, Appendix to ND FORTRAN Reference Manual ND-60.145 AP
FORTRAN Reference Manual ND-60.145
PED User’s Guide ND-60.121
Backup User’s Guide ND-60.250

NDIX Release C : USD-v

NDIX User’s Supplementary Documents (USD)
TABLE OF CONTENTS

NDIX Environment
NDIX Release C Product Summary USD:1

This document gives a summary of the machine environment, options, and main features included
in the NDIX Release C product.

NDIX for SINTRAN Users usSD:2
An introduction for those familiar with ND’s proprietary operating system.

Getting Started

Unix for Beginners — Second Edition uUSD:3
An introduction to the most basic uses of the system.

Learn — Computer—Aided Instruction on UNIX (Second Edition) USD:4

Describes a computer-aided instruction program that takes new users through the basics of files,
the editor, and document prepararation software.

Basic Utilities
An Introduction to the UNIX Shell USD:5

Steve Bourne’s introduction to the capabilities of sk, a command interpreter especially popular for
writing shell scripts.

An Introduction to the C shell USD:6

This introduction to csh, (a command interpreter popular for interactive work) describes many
commonly used UNIX commands, assumes little prior knowledge of UNIX, and has a glossary
useful for beginners.

DC ~ An Interactive Desk Calculator USD:7

An interactive desk calculator, which performs arbitrary-precision integer arithmetic. An excellent
facility if you do not need floating point.

BC - An Arbitrary Precision Desk-Calculator Language USD:8
A front end for DC that provides infix notation, control flow, and buili-in functions.

Communicating with the World
Mail Reference Manual USD:9

Complete details on one of the programs for sending and reading your mail.
How to Read the Network News USD:10

Describes how news works (generally) and some altematives for reading it, readnews and vnews .
How to Use USENET Effectively USD:11

Describes the customs, protocols, and etiquette of network news, plus answers to the questions
most frequently asked by newcomers to the network.

ND-60.328.1P EN

USD-vi : NDIX Release C

Text Editing

A Tutorial Introduction to the Unix Text Editor USD:12
An casy way to get started with the line editor, ed.

Advanced Editing on Unix USD:13
The next step in learning how to make most effective use of ed.

Edit: A Tutorial USD:14
An introduction to edit, a line—oriented editor which is a version of ex, assuming no previous
knowledge of UNIX or text editing.

An Introduction to Display Editing with Vi USD:15

The document to read if you want to learn how to use the vi screen editor.
Vi Command and Function Reference USD:16

A summary of the commands and functions available in vi; this document does not claim to be a
complete list of all facilities in vi.

Ex Reference Manual (Version 3.5/2.13) uUsSbh:17
The final reference for the ex editor, which underlies both edir and vi.
SED — A Non-interactive Text Editor USD:18

Describes a one-pass variant of ed useful as a filter for processing large files.
AWK - A Pattern Scanning and Processing Language (Second Edition) USD:19
A program for data selection and transformation.

Document Preparation
Typing Documents on the UNIX System: Using the —ms Macros with T ROFF and NROFF USD:20

Describes and gives examples of the basic use of the typesetting tools, and *‘-ms”’, a frequently
used package of formatting requests that make it easier to lay out most documents.

A Revised Version of —ms USD:21
A brief description of the Berkeley revisions made to the —ms formatting macros for NROFF and
TROFE.

Writing Papers with N ROFF using —me UsSD:22
Another popular macro package for NROFF.

—me Reference Manual USD:23
The final word on —-me.

NROFF/TROFF User’s Manual USD:24
Extremely detailed information about these document formatting programs.

A TROFF Tutorial USD:25

An introduction to the most basic uses of TROFF for those who really want to know such things, or
want to write their own macros.

A System for Typesetting Mathematics USDh:26
Describes egn, an easy-to-leamn language for high-quality mathematical typesetting.

Typesctting Mathematics — User’s Guide (Second Edition) USD:27
More details about how to use egn.

Tbl — A Program to Format Tables USD:28
An easy (0 use program for typesetting tabular material,

ND-60.328.1P EN

NDIX Release C ' USD-vii

Refer — A Bibliography System USD:29

An introduction to one set of tools used to maintain bibliographic databases. The major program,
refer, is used to automatically retrieve and format the references based on document citations.

Some applications of Inverted Indexes on the UNIX System USD:30
Mike Lesk’s paper describes the refer programs in a somewhat larger context.

Updating Publication Lists USD:31
This document describes several commands for updating the publication lists.

Writing Tools — The STYLE and DICTION Programs USD:32

These are programs which can help you understand and improve your writing style.

Amusements
Star Trek UsSD:33
You are the Captain of the Starship Enterprise. Wipe out the Klingons and save the Federation.

ND-60.328.1P EN

USD-viii ' NDIX Release C

ND-60.328.1P EN

NDIX Release C Product Summary

NDIX Release C Product Summary

NDIX Development Group

Norsk Data Ltd
Benham Valence
Newbury
England
June 1988

ABSTRACT

This document presents an overview of the NDIX Release C product. It highlights main
features of the system; gives a summary of the hardware environment (prerequisites and lim-
itations); and takes a snapshot of the many software facilities available.

USD:1-1

ND-60.328.1P EN

USD:1-2 ' NDIX Release C Product Summary

ND-60.328.1P EN

NDIX Release C Product Summary USD:1-3

1. WHAT IS NDIX?

The Norsk Data UNIXT system is known as NDIX. Release C of NDIX is a version of the 4.2BSD UNIX sys-
tem which incorporates the improved inter-process and networking communication features of 4.3BSD UNIX,
plus some System V compatibility options added, all running on the ND-5000 series of Norsk Data machines.
NDIX is a general purpose, multi-user, interactive operating system which offers a number of features seldom
found in non UNIX-based operating systems.

The product number for NDIX release C is ND-211308.

2. MAIN FEATURES

Shells. Two command interpreters support siring variables, trap handling, structured programming, user
profiles, settable search path, multilevel file name generation, etc.

Document preparation. NROFF typesetier utility is standard. MS and ME macro package provide canned
commands for many common formatting and layout situations. TBL provides an easy to learn language for
preparing complicated tabular material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple editing functions in parallel on a data stream of indefinite
length. AWK report generator does free-field pattern selection and arithmetic operations.

Program development. MAKE controls re-creation of complicated software, arranging for minimal recompi-
lation. SCCS provides a source management system, keeping details of changes and able to provide old ver-
sions of programs.

Debugging. ADB does postmortem and breakpoint debugging, handles separate instruction and data spaces,
floating point, etc. DBX is a source-level debugger usable with all supported languages.

NDIX Assembler. This facility is aimed at system programmers who are faced with having to debug or write
small amounts of assembler language code.

FORTRAN 77. Fortran 77 conforms to the ANSI standard for that language.' The £77 compiler is compatible
with C at the object level. A Fortran structurer, STRUCT, converts old, ugly Fortran into Ratfor, a structured

dialect usable with F77. Users also have access 0 efl (a powerful Fortran preprocessor) and m4 {macro proces-
sor, and front end for C, Ratfor and Cobol).

C language. The C programming language. The LINT verifier does strong type checking and detection of
probable errors and portability problems even across separately compiled functions.
Pascal. Pascal is based on ISO level 1 Pascal.

Lexical analyzer generator. LEX converts specification of regular expressions and semantic actions into a
recognizing subroutine. Analogous 1o YACC.

Standard input-output package. Highly cfficient buffered stream /O is integrated with formatted input and
output.

Networking. The system provides full support for the Intemet Standard TCP/1P network communication pro-
tocols over 10 Mbyte/sec Ethernet.

t UNIX is a regisicred trademark of AT&T in the USA and other countrics.

ND-60.328.1P EN

USD:14 ‘ ' NDIX Release C Product Summary

3. HARDWARE

3.1. PROCESSORS

The NDIX Release C operating system runs on the ND-5000 series of computers. These comprise:
. ND-5000 large systems: 5200, 5400,5700, 5800.

. ND-5000 compact systems: 5200, 5400, 5500, 5700.

Minimum memory configuration is 2Mbytes front-end (i.e. in the ND-100) and 4Mbytes back-end (in the
ND-5000). The maximum memory size is 32Mbytes.

3.2, PERIPHERALS - PREREQUISITES AND LIMITATIONS
NDIX supports the following peripheral equipment:
. Hard disks:

Minimum disk configuration is 140Mb (either 2 x 70Mb or 1 x 140Mb disks) for the large systems and
Compact Model B, and 2 x 125Mb disk for Compact Model A.

Up to 12 hard disks, 4 floppy disks and 16 tape drives can be supported in an NDIX system.

Systems may be set up such that SINTRAN has a disk to itself, or it shares a disk with NDIX. A shared
disk must be one of the following:

A. ND-106130 Fujitsu M322K (140Mb)
ND-105740 CDC 9766 SMD (288Mb)
ND-110041 CDC 9720 EMD 368 (288Mb)
ND-106150 CDC 9715 ESD 515 (450Mb)
ND-110099 NEC D-2352-H (450Mb).
You can use any of the above disks as a pure NDIX disk as well as any of the following:
B. ND-106170 CDC 9710 RSD (70Mb)
ND-105140 CDC 9762 SMD (75Mb)
ND-110216 125Mb SCSI
ND-110326 310Mb SCSI
ND-110325 630Mb SCSI.
SINTRAN can use any of the above disks as a SINTRAN-only disk; however, it is recommended that
SINTRAN-only disks are kept as small as is practicable, since this is effectively an unused disk for
NDIX users.
For the NDIX environment:

1. In a shared-disk system, SINTRAN and NDIX can be run together on any disk in the above Group
A.

In addition, between 1 and 11 further disks, selected from the above Groups A or B, may be
installed for NDIX, but SINTRAN can only be used on Disk Drive 0, using Controller 0.

2. Inanon-shared system, SINTRAN can be run on any SINTRAN-supported disk, with NDIX using
1 or more (up to 11) disks of the types listed in the above Groups A or B.

. Floppy disks: 5.25-inch, double-sided, high density. Up to 4 floppy disk drives are supported.
. Magnetic tape:
SCSI tape streamer is standard. The system software is normally distributed on streamer tape.

Up to 16 industry-standard 1600bpi Tape Drives are also supported. The following types of drive may
be used:

Cipher 50/100 ips
STC/1950
STC/2925 SCSL.

. Communications: ND Ethernet, or ND-Megalink (via Xmsg Interface Library).

ND-60.328.1P EN

NDIX Release C Product Summary USD:1-5

. Terminals: full duplex 96-character ASCII terminals. The following types are supported:

TDV 2200

TDV 1200
Lynwood colour
Lynwood tempest

The maximum terminal/printer count is 128 directly-connected terminals plus the ND-console, plus 126
connected via COSMOS and 64 connected via ethernet. However, in practice the system will not support
more than 32 concurrent users.

° Printers: the following types are supporied:

HP7475A plotter
Matrix Epson L.X-86
Matrix Epson LX-800
Matrix Hermes 616CN
Matrix Genicom 3024
Matrix Tally MT 660
Page Elpho-20

Page Facit ND-720.
Phillips GP 300

Note that support for these printers is restricted to simple ASCII output only; the NDIX text formatting
utilities support only the Elpho-20, GP-300 and basic ASCII output devices.

3.3. OPTIMISING HARDWARE REQUIREMENTS

The minimum memory size and disk space specified above is sufficient to run and maintain NDIX. More is
needed to handle a large number of users, big data bases, or large programs.

The resident system occupies about 1Mbyte, plus a further 10% of main memory for disk buffers.

4. SOFTWARE

Commands, System Calls and Function programs available in NDIX are listed in the relevant NDIX Release C
Reference manuals. These manuals are also available on-line., excluding the Supplementary Documents.

Almost all of the code is written in C. Commands are self-contained and do not require exira setup informa-
tion, unless specifically noted as "interactive”. Interactive programs can be made to run from a prepared script
simply by redirecting input. Most programs intended for interactive use (e.g., the editor) allow for an escape
to command level (the Shell). Most file processing commands can also go from standard input to standard out-
put ("filters"). The piping facility of the Shell may be used to connect such filters directly to the input or out-
put of other programs.

4.1. BASIC SOFTWARE

This includes the time-sharing operating system with utilities, a machine language assembler and a compiler
for the programming language C — enough software to write and run new applications and to maintain NDIX
itself.

4.1.1. Operating System

ONDIX The basic resident code on which cverything else depends. Supports the system calls, and
maintains the file system.

For an overview of NDIX Release C, see the "NDIX Release C System Manual" (PSD:5). A
general description of UNIX design philosophy and system facilities appeared in the Com-
munications of the ACM, July, 1974. A more extensive survey is in the Bell System Techni-
cal Journal for July-August 1978.

ND-60.328.1P EN

USD:1-6

O DEVICES

OBOOT

NDIX Release C Product Summary

Capabilities include:

OReentrant code for user processes.

O Separate instruction and data spaces.

O ““Group’” access permissions for cooperative projects, with overlapping memberships.
O Alarm-clock timeouts,

O Timer-interrupt sampling and interprocess monitoring for debugging and measurement.
O Multiplexed 1/O for machine-to-machine communication,

All /O is logically synchronous. I/O devices are simply files in the file systemn. Normally,
invisible buffering makes all physical record structure and device characteristics transparent
and exploits the hardware’s ability to do overlapped I/O. Unbuffered physical record [/O is
available for unusual applications.

Procedures to get NDIX started.

4.1.2. User Access Control

OLOGIN

OPASSWD

DOLOCK
UNEWGRP
ULEAVE

Sign on as a new user.

O Verify password and establish user’s individual and group (project) identity.
O Adapt to characteristics of terminal.

OEstablish working directory.

O Announce presence of mail (from MAIL).

OPublish message of the day.

OExecute user-specified profile.

O Start command interpreter or other initial program.

Change a password.
O User can change his own password.
O Passwords are kept encrypted for security.

Reserve a terminal under password control.
Change working group (project). Protects against unauthorized changes to projects.

Reminds a user when they have to leave,

4.1.3. Terminal Handling

OTABS
OTSET
OSTTY

UCLEAR
ORESET

Set tab stops appropriately for specified terminal type.
Set default terminal characteristics for terminal type.

Set up options for optimal control of a terminal.
O Carriage return+line feed vs. newline.

O Interpretation of tabs.

O Parity.

O Mapping of upper case to lower.

ORaw vs. edited input.

O Delays for tabs, newlines and carriage returns.

Clears the terminal screen.

Resets the terminal to a known state.

4.1.4. File Manipulation

UCAT

oce

Concatenate one or more files onto standard output. Particularly used for unadorned printing

’

for inserting data into a pipeline, and for buffering output that comes from various sources.

Works on any file, regardiess of contents.

Copy onc file to another, or a sct of files to a directory. Works on any file.

ND-60.328.1PEN

NDIX Release C Product Summary USD:1-7

0 MORE Filter a file for viewing at a terminal one screenfull at a time.

OPR Print files with title, date, and page number on every page.
O Multicolumn output.
OCParallel column merge of several files.

OLPR Off-line print. Spools arbitrary files to the line printer.

OPRINT As for PR with spooling to the line printer

O PRM Remove files from the line printer queue.

ocmp Compare two files and repont if different.

UHEAD Print first n lines of input.

OTAIL Print last a lines of input
OMay print last n characters, or from n lines or characters to end.

OSpLIT Split a large file into more manageable pieces. Occasionally necessary for editing (ED).

ODpD Physical file format translator, for exchanging data with foreign systems, especially IBM
370’s.

bOsuMm Sum the words of a file.

ORMT Simple text formatter.

4.1.5. Manipulation of Directories and File Names

OrM Remove a file. Only the name goes away if any other names are linked to the file.
OStep through a directory deleting files interactively.
ODelete entire directory hierarchies.

OLN “Link’” another name (alias) to an existing file.
OMV Move a file or files. Used for renaming files.
0O CHMOD Change permissions on one or more files. Executable by the files’ owner.
0O CHOWN Change owner of one or more files.
U CHGRP Change group (project) to which a file belongs.
O TOUCH Update date of last file modification.
""" 0 MKDIR Make a new directory.
O RMDIR Remove a directory.
ocCp Change working directory.
OFIND Prowl the directory hierarchy finding every file that meets specified criteria.

OCriteria include:

name matches a given pattern,

creation date in given range,

date of last use in given range,

given permissions,

given owner,

given special file characteristics,

boolcan combinations of above.,
O Any directory may be considered to be the root.
OPerform specified command on each file found.

OINSTALL Install binarics.

ND-60.328.1P EN

USD:1-8

NDIX Release C Product Summary

4.1.6. Running of Programs

OSH

OCSH
OTEST

OEXPR

OWAIT
OECHO

U SLEEP
U NICE
0ONOHUP

OKILL
O CRON

OAT
UTEE
OAPPLY

The Shell, or command language interpreter.
O Supply arguments to and run any executable program.
ORedirect standard input, standard output, and standard error files.
OPipes: simultaneous execution with output of one process connected to the input of
another.
O Compose compound commands using:
if ... then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.
OlInitiate background processes.
OPerform Shell programs, i.e., command scripts with substitutable arguments.
O Construct argument lists from all file names satisfying specified patterns.
O Take special action on traps and interrupts.
O User-settable search path for finding commands.
OExecute user-settable profile upon login.
O Optionally announce presence of mail as it arrives.
O Provide variables and parameters with default setting.
OlJob control: Allows moving of jobs between foreground and background.
O History mechanism: Saves a line of recently used commands and allows their easy re-use.

Altemnative shell with a syntax like C.

Test for use in Shell conditionals:

O String comparison.

OFile nature and accessibility.

O Boolean combinations of the above.

String computations for calculating command arguments.
O Integer arithmetic
OPattern matching

Wait for termination of asynchronously running processes.

Print remainder of command line. Useful for diagnostics or prompts in Shell programs, Or
for inserting data into a pipeline.

Suspend execution for a specified time.
Run a command in low (or high) priority.

An extension of NICE. Run a command immune to hangup and terminate signals from the
controlling terminal.

Terminate named processes.

Schedule regular actions at specified times.

O Actions are arbitrary programs.

OTimes are conjunctions of month, day of month, day of week, hour and minute. Ranges
are specifiable for each.

Schedule a one-shot action for an arbitrary time.
Pass data between processes and divert a copy into one or more files.

Run a command on a series of arguments in turn.

UBASENAME Strip filename affixes.

ND-60.328.1P EN

NDIX Release C Product Summary

USD:1-9

OLASTCOMM Give information on previously executed commands.

U WHEREIS
0 WHICH

O YES

O SCRIPT

Locate binary, and manual pages for a specified file.
Locate a program file on the user’s search path.
Be repetitively affirmative.

Make typescript of terminal session.

4.1.7. Status Inquiries

oLs

UFILE

UDATE

UDF
Upu
0oQuoT
oLPQ
O UuuQ
UWHO

Ow

O USERS

0 WHOAMI
D FINGER
0O GROUPS
OLAST
ops

U UPTIME
OIOSTAT
OVMSTAT
OTTY
OPWD

U PRINTENV

List the names of one, several, or all files in one or more directories.
O Alphabetic or temporal sorting, up or down.

OOptional information: size, owner, group, date last modified, date last accessed, permis-
sions, i-node number.

Try w determine what kind of information is in a file by consulting the file system index and
by reading the file itself.

Print today’s date and time. Has considerable knowledge of calendric and horological pecu-
liarities.

Report amount of free space on file system devices.

Print a summary of total space occupied by all files in a hierarchy.

Print summary of file space usage by user id.

List contents of the print queue.

List spooled UUCP requests.

Tell who's on the system.
OList of presently logged in users, ports and times on.
OOptional history of all logins and logouts.

Tell who is on the system and what they are doing.
Tell who is on the system in a compact form.

Print who you are.

List information about a user.

Show group memberships.

Indicate last logins of users.

Report on active processes.
OList your own or everybody's processes.
OTell what commands are being executed.

OOptional status information: state and scheduling info, priority, attached terminal, what
it’s waiting for, size.

Show how long the system has been up.

Print statistics about system 1/O activity.

Print statistics about system memory and CPU activity.
Print name of your terminal.

Print name of your working (current) directory.

Print the value of variables in the environment.

ND-60.328.1P EN

USD:1-10

NDIX Release C Product Summary

4.1.8. Backup and Maintenance

0MOUNT

OUMOUNT
0 MKFS
0 MKNOD

DO TAR

0 puMP
URESTORE
osu

Auach a device containing a file system to the tree of directories. Protects against nonsense
arrangements.

Complement of MOUNT. Protects against removing a busy device.
Make a new file system on a device.

Make an i-node (file system entry) for a special file. Special files are physical devices, vir-
tual devices, physical memory, etc.

Manage file archives on magnetic tape.
O Collect files into an archive.

O Print table of contents.

ORetrieve from archive.

Dump the file system stored on a specified device, selectively by date, or indiscriminately.
Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof. Requires a
password.

UFSCK DCHECK ICHECK NCHECK

OCLRI

OSYNC
0cCprIO
OoMmT
oTp
OFF

O SFF
U GFF

Check consistency of file system.

OPrint gross statistics: number of files, number of directories, number of special files, space
used, space free.

OReport duplicate use of space.

ORetrieve lost space.

OReport inaccessible files.

O Check consistency of directories.

OList names of all files.

Peremptorily expunge a file and its space from a file system. Used to repair damaged file
systems.

Force all outstanding [/O on the system to completion. Used to shut down gracefully.
Copy file archives.

Magnetic tape manipulation.

Manipulate tape archive.

Format floppy disk.

Set floppy format type.

Show current floppy format type.

4.1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off completely.

OAC

osa

Publish cumulative connect time report.
OConnect time by user or by day.
CFor all users or for selected users.

Publish Shell accounting report. Gives usage information on each command executed.
O Number of times used.

OTotal system time, user time and elapsed time.

O Optional averages and percentages.

O Sorting on various fields.

ND-60.328.1PEN

NDIX Release C Product Summary USD:1-11

4.1.10. Basic Communication

OMAIL

0O CALENDAR
0 WRITE
OTALK
OwALL
O MESG
OMSGS

O BIFF

O FROM
UPRMAIL
0O XSEND
bcps

Mail a message to one or more users. Also used to read and dispose of incoming mail. The
presence of mail is announced by LOGIN and optionally by SH.

OEach message can be disposed of individually.

OMessages can be saved in files or forwarded.

Automatic reminder service for events of today and tomorrow.
Establish direct terminal communication with another user,
Establish duplex terminal communication with another user.
Write to all users.

Inhibit receipt of messages from WRITE, WALL and TALK.
Read and send system-wide messages.

Be notified when mail is received.

Print a list of mail senders.

Print mail in the post office.

Send encrypted mail.

Copy to/from SINTRAN

4.1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in section 4.4.

O AR

UAS

O Library

Maintain archives and libraries. Combines several files into one for housekeeping efficiency.
OCreate new archive.

OUpdate archive by date.

OReplace or delete files.

OPrnint table of contents.

ORetrieve from archive.

Assembler. Similar to the ND-5000 assembler, with differences of detail.
OCreates object program consisting of
code, possibly read-only,
initialized data or read-write code,
uninitialized data.
ORelocatable object code is directly executable without further transformation.
OObject code normally includes a symbol table.
OMultiple source files.
OLocal labels.
OConditional assembly.

O *““Conditional jump’’ instructions become branches, or branches plus jumps, depending on
distance.

The basic run-time library. These routines are used freely by all software. They are
described in the NDIX Release C Programmers Reference Manual (PRM). Highlights
include:

OBuffered character-by-character 1/0.

OFormatted input and output conversion (SCANF and PRINTF) for standard input and out-
put, files, in-memory conversion.

O Storage aliocator.

OTime conversions.

ONumber conversions.

OPassword encryption.

ND-60.328.1P EN

USD:1-12

U ADB

ODBX

ooD

OoLp

ULORDER

ORANLIB
ONM

USYMORDER
OS1ZE

O STRIP
OTIME

U PROF

OERROR
O STRINGS
OMAKE

usccs

NDIX Release C Product Summary

O Quicksort.

ORandom number generator.

O Mathematical function library, including trigonometric functions and inverses, exponential
logarithm, square root, bessel functions.

»

Interactive debugger.
O Postmortem dumping.
OExamination of arbitrary files, with no limit on size.
O Interactive breakpoint debugging with the debugger as a separate process.
O Symbolic reference to local and global variables.
O Stack trace for C programs.
OOutput formats:
1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions
OPatching.
O Searching for integer, character, or floating patterns.

Source level interactive debugger:
Otracing

O conditional breakpoints
Osignal trapping.

Dump any file. Output options include any combination of octal or decimal by words, octal
by bytes, ASCII, opcodes, hexadecimal.
ORange of dumping is controllable.

Link edit. Combine relocatable object files. Insert required routines from specified libraries.
Resulting code is sharable, and has separate instruction and data spaces.

Places object file names in proper order for loading, so that files depending on others come
after them,

Convert archives to random libraries.

Print the namelist (symbol table) of an object program. Provides control over the style and
order of names that are printed.

Rearrange namelist.

Report the core requirements of one or more object files.

Remove the relocation and symbol table information from an object file to save space.
Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time-sampling the
execution of a program. Uses floating point.
O Subroutine call frequency and average times for C programs.

Analyse compiler error messages.
Find the printable strings in a binary file.

Controls creation of large programs. Uses a control file specifying source file dependencies
to make new version; uses time last changed to deduce minimum amount of work necessary.
OKrnows about CC, YACC, LEX, ctc.

Source code control system

O Historical source file archive
O Controlled access for editing
OCan be used with MAKE,

ND-60.328.1P EN

NDIX Release C Product Summary USD:1-13

OWHAT Shows which SCCS versions of modules were used to construct a file.

4.2. NDIX MANUALS

O On-line Machine-readable version of the NDIX Release C Reference manuals. The documentation
for NDIX Release C is organised into a format similar to that used in the Berkeley 4.3BSD
documentation, where the Reference manuals containing descriptions of the "command calls™
are divided into 8 functional sections, and supporting papers are collated into "supplementary
documents”. Only the Reference Manuals are available on-line; the Supplementary Docu-
ments are not supported on-line. The Reference Manuals are organised into three
user-categories:

OUser
Users Reference Manual, covering Commands (1), Games (6), and
Miscellaneous (7).
OProgrammer
Programmers Reference Manual, covering System Calls (2),
Library Routines (3), Special Files (4), and File Formats (9).
O System Manager
System Managers Manual, covering System Management facilitics 8).

0O MAN Print specified manual section on your terminal.
0O APROPOS Locate commands by keyword lookup.
O WHATIS Simple version of MAN, prints one line only.

43. COMPUTER-AIDED INSTRUCTION

OLEARN A program for interpreting CAI scripts, plus scripts for learning about UNIX by using it.
O Scripts for basic files and commands, editor, advanced files and commands, EQN, MS mac-
ros, C programming language.

4.4. LANGUAGES

4.4.1. The C Language

The UNIX operating system, most of the subsystems and C itself are written in C. For a description of the C
language as implemented by Norsk Data, see Norsk Data’s "C Reference Manual” (ND-60.251). This imple-
mentation conforms to the specification of C described in "The C Programming Language" by Brian W. Ker-
nighan and Dennis M. Ritchie, (Prentice-Hall, 1978), which is generally accepted as the C "standard".

occ Compile and/or link edit programs in the C language.

OGeneral purpose language designed for structured programming.

OData types include character, integer, float, double, pointers to all types, functions return-
ing above types, arrays of all types, structures and unions of all types.

OOperations intended o give machine-independent control of full machine facility, includ-
ing to-memory operations and pointer arithmetic.

OMacro preprocessor for parameterized code and inclusion of standard files.

O All procedures recursive, with parameters by value.

O Machine-independent pointer manipulation.

ORuntime library gives access to all system facilities.

O Definable data types.

OBlock structure

OLINT Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.

Mistyped pointers.
Obsolete syntax.

ND-60.328.1P EN

USbD:1-14

ocCB
O MKSTR
OXSTR

NDIX Release C Product Summary

OFull cross-module checking of separately compiled programs.
A beautifier for C programs. Does proper indentation and placement of braces.
Create an error message file from C source.

Extract strings from C programs.

4.4.2. FORTRAN

For a description of FORTRAN as supplied by Norsk Data, see ND’s FORTRAN Reference Manual (ND-
60.145) and NDIX Appendix (ND-60.145 AP).

OF77

ORATFOR

O STRUCT

OEFL
OFPR
O FSPLIT

4.4.3. Pascal

For a description
(ND-60.226).

OpC
0O PMERGE
OPXREF

A full compiler for ANSI Standard Fortran 77.

O Compatibie with C and supporting tools at object level.

O Optional source compatibility with Fortran 66.

OFree format source.

O Optional subscript-range checking, detection of uninitialized variables.

O All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 16-byte com-
plex.

Ratfor adds rational control structure as for C, to Fortran.

O Compound statements.

Olf-else, do, for, while, repeat-until, break, next statements.
O Symbolic constants.

OFile insertion.

OFree format source

O Translation of relationals like >, > =.

O Produces genuine Fortran to carry away.

O May be used with F77.

Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using statement group-
ing, if-else, while, for, repeat-until.

Extended Fortran Language. Provides similar flow-control constructs to RATFOR.
Fortran source file filter for use with LPR.

Split a multi-routine Fortran file into separate files.

of Pascal as supplied by Norsk Data, see ND's "NDIX Pascal Reference Manual”

A Pascal compiler conforming to ISO level 1.
Merges several Pascal files.

Create a Pascal file cross-reference.

4.4.4. Other Algorithmic Languages

OpC

Interactive programmable desk calculator. Has named storage locations as well as conven-
tional stack for holding integers or programs.
O Unlimited precision decimal arithmetic.
O Appropriate treatment of decimal fractions.
O Arbitrary input and output radices, in particular binary, octal, decimal and hexadecimal,
OReverse Polish operators:

+-*/

remainder, power, square root,

load, store, duplicate, clear,

print, enter program text, execute.

ND-60.328.1P EN

NDIX Release C Product Summary USD:1-15

UBC A C-like interactive interface to the desk calculator DC.
O All the capabilitics of DC with a high-level syntax.
O Arrays and recursive functions.
Olmmediate evaluation of expressions and evaluation of functions upon call.
O Arbitrary precision elementary functions: exp, sin, cos, atan.
OGo-to-less programming.

4.4.5. Macroprocessing

OMm4 A general purpose macroprocessor.
O Stream-oriented, recognizes macros anywhere in text.
OSyntax fits with functional syntax of most higher-level languages.
OCan evaluate integer arithmetic expressions.

4.4.6. Compiler-compilers

OYACC An LR(1)-based compiler writing system. During execution of resulting parsers, arbitrary C
functions may be called to do code generation or semantic actions.
OBNF syntax specifications.
OPrecedence relations.
O Accepts formally ambiguous grammars with non-BNF resolution rules.

O1LEX Generator of lexical analyzers. Arbitrary C functions may be called upon isolation of each
lexical token.
OFull regular expression, plus left and right context dependence.
OResulting lexical analysers interface cleanly with YACC parsers.

4.5. TEXT PROCESSING
4.5.1. Document Preparation

DED Interactive context editor. Random access to all lines of a file.
OFind lines by number or pattern. Pauterns may include: specified characters, don’t care

characters, choices among characters, repetitions of these constructs, beginning of line, end
of linec.

O Add, delete, change, copy, move or join lines.

OPermute or split contents of a line.

OReplace one or all instances of a pattern within a line.

OCombine or split files.

OEscape to Shell (command language) during editing.

ODo any of above operations on every pattern-selected line in a given range.

OOptional encryption for cxtra security.

DEX, VI A line oriented text editor, which supports both command and display editing.
Oprx Make a permuted (key word in context) index.
O SPELL Look for spelling errors by comparing each word in a document against a word list.

025,000-word list includes proper names.
OHandles common prefixes and suffixes.
OCollects words to help tailor local spelling lists.

OCRYPT Encrypt and decrypt files for security.
0O CTAGS Create a tags file for use with EX.

4.5.2. Document Formatting

O NROFF
Advanced typesetting. NROFF drives ASCII terminals of all types.

ND-60.328.1P EN

USD:1-16

omMms

OME
ONEQN

UTBL

NDIX Release C Product Summary

OCompletely definable page format keyed to dynamically planted "interrupts” at specified
lines.

OMaintains several separately definable typesetting environments (e.g., one for body text,
one for footnotes, and one for unusually elaborate headings).

O Arbitrary number of output pools can be combined at will.

O Macros with substitutable arguments, and macros invocable in mid-line.

O Computation and printing of numerical quantities.

O Conditional execution of macros.

O Tabular layout facility.

OPositions expressible in inches, centimeters, ems, points, machine units or arithmetic com-
binations thereof.

O Access to character-width computation for unusually difficult layout problems.

OOverstrikes, built-up brackets, horizontal and vertical line drawing.

O Dynamic relative or absolute positioning and size selection, globally or at the character
level.

OCan exploit the characteristics of the terminal being used, for approximating special char-
acters, reverse motions, proportional spacing, etc.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or
through the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of NROFF, although
unskilled personnel can easily be trained to enter documents according to predefined formats
such as those provided by MS (see below).

A standardized manuscript layout package for use with NROFF/TROFF.
O Page numbers and draft dates.

O Automatically numbered subheads.

O Footnotes.

O Single or double column.

O Paragraphing, display and indentation.

O Numbered equations.

Another set of NROFF macros, as used by University of California, Berkeley.

A mathematical typesetting preprocessor for NROFF. Prepares mathematical formulae for
display on any terminal that NROFF knows about, within the graphical capability of the ter-
minal. Formulas are written in a style like this:

sigma sup 2 ~=~ 1 over N sum from i=1 to N (x sub i~ x bar) sup 2
which produces:

_13 2
o’ = NE(X‘_D

O Automatic calculation of size changes for subscripts, sub-subscripts, etc.

OFull vocabulary of Greek letters and special symbols, such as ‘gamma’, ‘GAMMA’,
‘integral’.

O Automatic calculation of large bracket sizes.

O Vertical ““piling’” of formulae for matrices, conditional alternatives, etc.

O Integrals, sums, etc., with arbitrarily complex limits.

O Diacriticals: dots, double dots, hats, bars, etc.

OEasily learned by nonprogrammers and mathematical typists.

A preprocessor for NROFF that translates simple descriptions of table layouts and contents
into detailed typesetting instructions.
O Computes column widths.

O Handles left- and right-justified columns, centered columns and decimal-point alignment.
OPlaces column titles.

ND-60.328.1P EN

NDIX Release C Product Summary

0 SOELIM
O REFER

U ADDBIB
OLOOKBIB
O SORTBIB
bcoL

O COLCRT
O DEROFF
O CHECKEQ
O CHECKNR
O COLRM

U DICTION
USTYLE

OTable entries can be text, which is adjusted to fit.
OCan box all or parts of table.

Perform textual inclusions implied by NROFF directive.

Fills in bibliographic citations in a document from a data base (not supplied).
OReferences may be printed in any style, as they occur or collected at the end.
OMay be numbered sequentially, by name of author, etc.

Create or extend a bibliographic database.

Find references in a bibliographic database.

Sort references in a bibliographic database.

Handle files which include reverse line feeds, for one-pass printing.
Filter NROFF output for CRT viewing.

Remove all NROFF commands from input.

Check document for possible errors in NEQN usage.

Check document for possible errors in NROFF usage.

Remove columns from a file.

Check document for phrases from a database of bad diction.

Analyse writing style of a document.

4.6. INFORMATION HANDLING

OSORT

OTSORT
O UNIQ

OTR

U DIFF

0O comMm

OJOIN
U GREP

0LOoOK
bDwcC

Sort or merge ASCII files line-by-line. No limit on input size.
OSort up or down.

OSort lexicographically or on numeric key.

OMuluple keys located by delimiters or by character position.
OMay sort upper case together with lower into dictionary order.
OOptionally suppress duplicate data.

Topological sort — converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
OPublish lines that were originally unique, duplicated, or both.
OMay give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
OMay coalesce selected repeated characters.
OMay delete selected characters.

Report line changes, additions and deletions necessary to bring two files into agreement.
OMay produce an editor script to convert one file into another.
OA variant (DIFF3) compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows lines present in

first file only, present in both, and/or present in second only.
Combine two files by joining records that have identical keys.

Print all lincs in a file that satisfy a pattern as used in the editor ED,
OMay print all lines that fail 1o match.

OMay print count of hits.

OMay print first hit in each file.

Binary search in sorted file for lines with specified prefix.

Count the lines, "words" (blank-separated strings) and characters in a file.

ND-60.328.1P EN

USD:1-17

USD:1-18

OSED

0O AWK

OEXPAND

OFOLD
OREV

NDIX Release C Product Summary

Stream-oriented version of ED. Can perform a sequence of editing operations on each line of
an input stream of unbounded length.

OLines may be selected by address or range of addresses.

OControl flow and conditional testing.

O Multiple output streams.

C Multi-line capability.

Pattern scanning and processing language. Searches input for patterns, and performs actions

on each line of input that satisfies the pattern.

OPatterns include regular expressions, arithmetic and lexicographic conditions, boolean com-
binations and ranges of these.

ODeata treated as string or numeric as appropriate.

O Can break input into fields; fields are variables.

O Variables and arrays (with non-numeric subscripts).

OFull set of arithmetic operators and control flow.

O Multiple output streams to files and pipes.

O Output can be formatted as desired.

O Multi-line capabilities.

Expand tabs to spaces and vice-versa.
Fold long lines for finite-width output device.

Reverse lines of a file.

4.7. COMMUNICATIONS AND NETWORKING

byuce
bucu
UUUENCODE
O UUSEND

O yux

OFTP

O TFTP

oTIP
OTELNET
UNETSTAT

O HOSTID

U HOSTNAME

USENDMAIL
ORMAIL
U SENDBUG

ORCP
ORLOGIN
ORSH
ORUPTIME

UNIX to UNIX copy

(UUCP) call UNIX

Encode a binary file for transmission via mail.
Send a file to a remote host.

UNIX to UNIX command execution.

File transfer program.

Trivial file transfer program.

Connect to a remote system.

User interface to the TELNET protocol.
Show network status.

Set or print identifier of current host system.

Set or print name of current host system.

Send mail over the internet.
Handle remote mail received via UUCP.

Mail a system bug report.

Remote file copy.
Remote login.
Remote shell.

Show host status of local machines.

ND-60.328.1P EN

NDIX Release C Product Summary USD:1-19

ORWHO Who is logged in on local machines.

U CHECKNEWS Check 10 see if user has news.
U READNEWS Read news articles.
OPOSTNEWS Submit news articles.

0O VNEWS Read news articles.

4.8. NOVELTIES, GAMES AND MISCELLANEOUS FUNCTIONS
Among the assortment of interesting items included in this area are:

U ARITHMETIC Speed and accuracy test for number facts.

0O BANNER Print output in huge letters.

UBCD Converts ASCII to card-image form.

D BOGGLE Find as many words as possible in a 4-by-4 grid of letters.
U CAL Print a calendar of specified month and year.
UOCANFIELD The solitaire game.

O FISH Children’s card guessing game.

DFORTUNE Presents a random "fortune cookie” on each invocation. Limited Jjar of "cookie" messages
included.

OHANGMAN Word-guessing game. Uses the dictionary supplied with SPELL.

0Quiz Test your knowledge of Shakespeare, Presidents, capitals, etc.

UwWUMP Hunt the wumpus — thrilling search in a dangerous cave.

0O ADVENTURE Explore a colossal cave, find hidden treasures, and discover new rules as you go.

OSAIL As a sea captain, re-enact an historical or fictional sea battle.
UTREK As captain of the starship Enterprise, wipe out the invasion fleet and save the Federation.
UWORM As a little worm, navigate the way around to capture food. See how large you can grow.

ND-60.328.1P EN

USD:1-20 ' . ' NDIX Release C Product Summary

ND-60.328.1P EN

NDIX for SINTRAN Users USD:2-1

NDIX for SINTRAN Users

NDIX Development Group

Norsk Data Ltd
Benham Valence
Newbury
England

ABSTRACT

This paper explains the philosophy behind NDIX, gives background information on Norsk
Data’s SINTRAN Operating System and its data files, and describes a few basic differences
between communicating with SINTRAN and NDIX.

ND-60.328.1P EN

UsSD:2-2 ' . NDIX for SINTRAN Users

ND-60.328.1P EN

NDIX for SINTRAN Users USD:2-3

1. What is NDIX?

NDIX is Norsk Data’s implementation of the UNIXt operating system for use on ND-5000 computers. NDIX
is an implementation of 4.2BSD UNIX with 4.3BSD networking and with System V compatibility options
added.

NDIX Release C runs as a SINTRAN III process in the ND-5000, and has full control over the ND-5000 pro-
cessor, i.e. no other processes can run concurrently in the ND-5000 processor.

The NDIX process in the ND-5000 processor has a SINTRAN "shadow" process in the ND-100 processor.
This process is a Real-Time program, named NDIX. The ND-100 is an intelligent I/O processor which per-
forms all input/output for the NDIX system. This ND-100 processor runs under control of Norsk Data’s
proprietary operating system — SINTRAN III VSX/K.

IO requests from NDIX are communicated to SINTRAN i1 VSX/K system calls (Monitor Calls). Responses
to NDIX from SINTRAN III are performed by interrupting the ND-5000 processor. This response mechanism

is optimised such that under normal circumstances there are less numbers of interrupts than requests from
NDIX.

SINTRAN has its own logical disk (this can be any disk supported by Norsk Data which will hold SINTRAN
I version K). Only a minimal SINTRAN is required, which easily fits on a 70Mb disk, or a 125Mb SCSI
disk.

2. Background information on SINTRAN data files

The following gives background information on SINTRAN data files and on how the NDIX filesystems are
arranged on ND disks.

On disks connected via SCSI controllers, there is no SINTRAN file system present and the whole disk is used
by NDIX.

On disks connected via other controllers, the NDIX filesystem resides on the disk as an ordinary SINTRAN
single contiguous data file. As such, space must be set aside on the disk for the SINTRAN data structures
which are normally associated with such data files. Thus, of the "available” disk space, SINTRAN also
requires several more pages for the following data structures:

On cylinder 0, page 0:

. The Master Block (2 Kbyte)

On the last available cylinder:

. An Object File Index Block (2 Kbyte)

. An Object File Page (2 Kbyte)

. A User File Index Block (2 Kbyte)

. A User File Page (2 Kbyte)

. A Bit File (size dependent on disk type)

3. Basic hints on communicating with NDIX

There are several clementary points about communicating with NDIX which are important to mention, because
they differ from communication with SINTRAN. These concern the prompt character, prompts for parameters,
help information, separators, the significance of spaces, upper and lower-case letters, abbreviations, and device
naming. If you are familiar with UNIX, you will probably not need to read this section.

t UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1PEN

USD:24 ’ . ' NDIX for SINTRAN Users

Prompt Characters
NDIX uses the following characters as prompts from the two command processors:

Processor Ordinary user | Superuser
Boumne Shell $ #
C Shell % #

The superuser prompt
The superuser prompt is set in /.profile. You can change it to any other character.

User Prompts

As a general rule, NDIX will not prompt the user for parameters to a command which have not been given. If
you fail to give NDIX the expected parameters, this will constitute an error.

Help

Help information is not implemented in NDIX at the level of the operating system. Some of the individual
commands display help information if the command receives something from the user that it does not expect.

Separators

NDIX and SINTRAN use different characters as separators, both between commands and between parameters.
The scheme is as follows:

Position SINTRAN NDIX
Between commands CR CR or semicolon
Between parameters | space or comma space

Spaces

Spaces are significant to NDIX, as separators between distinct elements of the language, just as they are
significant in English. As such, there are places within the language where they are required, other places
where they are prohibited, and still other places where they are optional.

A space is required as a separator between each parameter and the next, and between a command and its asso-
ciated parameters.

Spaces are prohibited within commands and parameters.

Spaces are optional both before and after the semicolon between commands. The semicolon is the separator
which must be present if more than one command is given on one line.

Where spaces are required or optional, they can be duplicated, i.e. instead of inserting one, you may insert
several.

For example, the command
install -s date /bin/date

could equally well have been typed with added spaces where spaces are required, e.g.
install -s date /bin/date

It could NOT have been typed either with missing spaces where they are required, e.g.
install-s date/bin/date

or with added spaces where they are forbidden, e.g.
install -s date /bin /date

ND-60.328.1P EN

NDIX for SINTRAN Users USD:2-5

Case

NDIX distinguishes between lower-case and UPPER-CASE letters. Generally, typing should be in lower<ase.
There are a few exceptions; these will always be noted, i.e. if you copy the case shown in the manuals you
should have no difficulties.

Foreign Language Keyboards

Some terminals may have Norwegian keyboards. Here is a mapping of Norwegian characters to those used by
UNIX and the C programming language.

Keyboard Mapping
Norwegian
character Upper case | Lower case
z [{
73 \ |
4])

Abbreviations

Abbreviation of command names and parameters, which is permitted in SINTRAN (so long as abbreviations
are unambiguous), is not permitted in NDIX.

Generic device names

NDIX has a set of generic names for devices, which are different from the SINTRAN generic names for the
devices. These are:

diSKS o di
multiplexors.................. mx
LAPES. .crvceereeererenrererneens mt
Ethemet ... et
SIreamers.....vvcerveenn. ct

ND-60.328.1P EN

USD:2-6 S NDIX for SINTRAN Users

ND-60.328.1P EN

UNIX for Beginners - Second Edition USD:3-1

UNIX For Beginners — Second Edition

Brian W. Kernighan
(Updated for 4. 3BSD by Mark Seiden)

ABSTRACT

This paper is meant to help new users get started on the UNIXt operating system. It

includes:

* basics needed for day-to-day use of the system — typing commands, correcting typing
mistakes, logging in and out, mail, inter-terminal communication, the file system, print-
ing files, redirecting 1/O, pipes, and the shell.

* document preparation — a brief discussion of the major formatting programs and macro

packages, hints on preparing documents, and capsule descriptions of some supporting
software.

* UNIX programming — using the editor, programming the shell, programming in C, other
languages and tools.

* An annotated UNIX bibliography.

t UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD:3-2 ' UNIX for Beginners - Second Edition

ND-60.328.1P EN

UNIX for Beginners - Second Edition USD:3-3

INTRODUCTION

From the user’s point of view, the UNIX operating system is easy to learn and use, and presents few of the
usual impediments to getting the job done. It is hard, however, for the beginner to know where to start, and
how to make the best use of the facilities available. The purpose of this introduction is to help new users get
used to the main ideas of the UNIX system and start making effective use of it quickly.

You should have a couple of other documents with you for easy reference as you read this one. The most
important is The UNIX Programmer's Manual; it is often easier to tell you to read about something in the
manual than 0 repeat its contents here. The other useful document is A Tutorial Introduction to the UNIX Text
Editor, which will tell you how to use the editor to get text — programs, data, documents — into the com-
puter.

A word of warning: the UNIX system has become quitc popular, and there are several major variants in
widespread use. Of course details also change with time. So although the basic structure of UNIX and how to
use it is common t all versions, there will certainly be a few things which are different on your system from
what is described here. We have tried to minimize the problem, but be aware of it. In cases of doubt, this
paper describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type, what to do about mistakes in typing, how to log out. Some
of this is dependent on which system you log into (phone numbers, for example) and what terminal you
use, so this section must necessarily be supplemented by local information.

2. Day-to-day Use: Things you need every day to use the system effectively: generally useful commands; the
file system.

3. Document Preparation: Preparing manuscripts is one of the most common uses for UNIX systems. This
section contains advice, but not extensive instructions on any of the formatting tools.

4. Writing Programs: UNIX is an excellent system for developing programs. This section talks about some of
the tools, but again is not a tutorial in any of the programming languages provided by the system.

5. A UNIX Reading List. An annotated bibliography of documents that new users should be aware of.

1. GETTING STARTED

1.1. Logging In

You must have a UNIX login name, which you can get from whoever administers your system. You also need
to know the phone number, unless your system uses permanently connected terminals. The UNIX system is
capable of dealing with a wide variety of terminals: Terminet 300’s; Execuport, TI and similar portables;
video (CRT) terminals like the HP2640, etc.; high-priced graphics terminals like the Tektronix 4014; plotting
terminals like those from GSI and DASI; and even the venerable Teletype in its various forms. But note:
UNIX is strongly oriented towards devices with lower case. If your terminal produces only upper case (c.g.,
model 33 Teletype, some video and portable terminals), life will be so difficult that you should look for
another terminal.

Be sure 10 set the switches appropriately on your device. Switches that might nced to be adjusted include the
speed, upper/lower case mode, full duplex, even parity, and any others that local wisdom advises. Establish a
connection using whatever magic is needed for your terminal; this may involve dialing a telephone call or
merely flipping a switch. In either case, UNIX should type ‘login:’’ at you. If it types garbage, you may be at
the wrong speed; check the switches. If that fails, push the “‘break’” or “interrupt’” key a few times, slowly.
If that fails to produce a login message, consult a guru.

When you get a login: message, type your login name in lower case. Follow it by a RETURN; the system will
not do anything until you type a RETURN. If a password is required, you will be asked for it, and (if possible)
printing will be turned off while you type it. Don’t forget RETURN.

The culmination of your login efforts is a ‘‘prompt character,”” a single character that indicates that the system
is ready 10 accept commands from you. The prompt character is usually a dollar sign $ or a percent sign %.
(You may also get a message of the day just before the prompt character, or a notification that you have mail.)

ND-60.328.1P EN

USD:34 ' : ‘ UNIX for Beginners - Second Edition

1.2. Typing Commands

Once you've seen the prompt character, you can type commands, which are requests that the system do some-
thing. Try typing

date
followed by RETURN. You should get back something like
Mon Jan 16 14:17:10 EST 1978

Don’t forget the RETURN after the command, or nothing will happen. If you think you're being ignored, type
a RETURN; something should happen. RETURN won’t be mentioned again, but don’t forget it — it has to be
there at the end of each line.

Another command you might try is who, which tells you everyone who is currently logged in:
who
gives something like

mb tty0l Jan 16 09:11
ski tty0S Jan 16 09:33
gam ttyll Jan 16 13:07

The time is when the user logged in; “‘ttyxx’’ is the system’s idea of what terminal the user is on.

If you make a mistake typing the command name, and refer to a non-existent command, you will be told. For
example, if you type

whom
you will be told
whom: not found

Of course, if you inadvertently type the name of some other command, it will run, with more or less mysteri-
ous results.

1.3. Strange Terminal Behavior

Sometimes you can get into a state where your terminal acts strangely. For example, each letter may be typed
twice, or the RETURN may not cause a line feed or a return to the left margin. You can often fix this by log-
ging out and logging back int.

Or you can read the description of the command stty in section 1 of the manual. To get intelligent treatment
of tab characters (which are much used in UNIX) if your terminal doesn’t have tabs, type the command

stty —tabs

and the system will convert each tab into the right number of blanks for you. If your terminal does have
computer-settable tabs, the command tabs will set the stops correctly for you.

1 In Berkeley Unix, the command "reset<control-j>" will often reset a terminal apparently in a strange state because a
fullscreen editor crashed.

ND-60.328.1P EN

UNIX for Beginners - Second Edition USD:3-5

1.4. Mistakes in Typing

If you make a typing mistake, and see it before RETURN has been typed, there are two ways to recover. The
sharp-character # erases the last character typed; in fact successive uses of # crase characters back to the begin-
ning of the line (but not beyond). So if you type badly, you can correct as you go:

dd#attestite
is the same as date 1.

The at-sign @ erases all of the characters typed so far on the current input line, so if the line is irretrievably
fouled up, type an @ and start the line over.

What if you must enter a sharp or at-sign as part of the text? If you precede either # or @ by a backslash \, it
loses its erase meaning. So to enter a sharp or at-sign in something, type \# or \@. The system will always
echo a newline at you after your at-sign, even if preceded by a backslash. Don’t worry — the at-sign has been
recorded.

To erase a backslash, you have (o type two sharps or two at-signs, as in \##. The backslash is used extensively
in UNIX to indicate that the following character is in some way special.
1.5. Read-ahead

UNIX has full read-ahead, which means that you can type as fast as you want, whenever you want, even when
some command is typing at you. If you type during output, your input characters will appear intermixed with
the output characters, but they will be stored away and interpreted in the correct order. So you can type
several commands one after another without waiting for the first to finish or even begin.

1.6. Stopping a Program
You can stop most programs by typing the character ““DEL’’ (perhaps called ‘‘delete’” or “‘rubout’’ on your
terminal). The “‘interrupt’” or “‘break’’ key found on most terminals can also be used 2. In a few programs,
like the text editor, DEL stops whatever the program is doing but leaves you in that program. Hanging up the
phone will stop most programs °.
1.7. Logging Out
The easiest way to log out is to hang up the phone. You can also type

login
and let someone else use the terminal you were on 4 Iis usually not sufficient just to turn off the terminal.
Most UNIX systems do not use a time-out mechanism, so you'll be there forever unless you hang up.
1.8. Mail
When you log in, you may sometimes get the message

You have mail.

UNIX provides a postal system so you can communicate with other users of the system. To read your mail,
type the command

mail

Your mail will be printed, onc message at a time, most recent message first 5. After each message, mail waits
for you to say what 1o do with it. The two basic responses are d, which deletes the message, and RETURN,
which does not (so it will still be there the next time you read your mailbox). Other responses are described in
the manual. (Earlier versions of mail do not process one message at a time, but are otherwise similar.)

! Many installations set the erase character for display terminals to the delete or backspace key. “stty all” tells you what it
actually is.
2In Berkeley Unix, "control” is the usual way to stop programs. “sity all” tells you the value of your "intr” key.
If you use the ¢ shell, programs running in the background continuc running even if you hang up.
4 *control-d" and “logout” are other alternatives.

5 The Berkeley mail program lists the headers of some number of unread picces of mail in the order of their receipt.

ND-60.328.1P EN

USD:3-6 ’ UNIX for Beginners - Second Edition

How do you send mail to someone else? Suppose it is to go to “‘joe’’ (assuming *‘joe’” is someone’s login
name). The easiest way is this:

mail joe

now type in the text of the letter

on as many lines as you like ...

After the last line of the letter

type the character “‘control-d’’,

that is, hold down ““control’’ and type
aletter ““d"’.

And that’s it. The “‘control-d”’ sequence, often called ‘‘EOF’” for end-of-file, is used throughout the system to
mark the end of input from a terminal, so you might as well get used to it.

For practice, send mail to yourself. (This isn’t as strange as it might sound — mail to oneself is a handy rem-
inder mechanism.)

There are other ways to send mail — you can send a previously prepared letter, and you can mail to a number
of people all at once. For more details see mail(1). (The notation mail(1) means the command mail which is
described in the section 1 list of UNIX commands, in the Users Reference Manual).

1.9. Writing to other userst
At some point, out of the blue will come a message like

Message from joe tty07...

accompanied by a startling beep. It means that Joe wants to talk to you, but unless you take explicit action
you won’t be able to talk back. To respond, type the command

write joe
This establishes a two-way communication path. Now whatever Joe types on his terminal will appear on yours
and vice versa. The path is slow, rather like talking to the moon. (If you are in the middle of something, you
have to get to a state where you can type a command. Normally, whatever program you are running has to ter-

minate or be terminated. If you're editing, you can escape temporarily from the editor — read the editor
tutorial.)

A protocol is needed to keep what you type from getting garbled up with what Joe types. Typically it’s like
this:
Joe types write smith and waits.
Smith types write joe and waits.
Joe now types his message (as many lines as he likes). When he’s ready for a reply, he signals it by
typing (o), which stands for ‘“‘over’’.
Now Smith types a reply, also terminated by (o).
This cycle repeats until someone gets tired; he then signals his intent to quit with (00), for “‘over and
out’’.
To terminate the conversation, each side must type a “‘control-d”” character alone on a line. (*‘Delete””

also works.) When the other person types his *‘control-d’’, you will get the message EOF on your
terminal.

If you write to someone who isn’t logged in, or who doesn’t want to be disturbed, you'll be told. If the target
is logged in but doesn’t answer after a decent interval, simply type *‘control-d’".

1.10. On-line Manual

The System Manuals are typically kept on-line. If you get stuck on something, and can’t find an expert to
assist you, you can print on your terminal some manual section that might help. This is also useful for getting
the most up-to-date information on a command. To print a manual section, type ‘“‘man command-name’’.

T Although “write” works on Berkeley UNIX, there is a much nicer way of communicating using display-terminals —
"talk” splits the screen into two sections, and both of you can type simultancously (sec talk(1)).

ND-60.328.1P EN

UNIX for Beginners - Second Edition USD:3-7

Thus to read up on the who command, type
man who

and, of course,
man man

tells all about the man command.

1.11. Computer Aided Instruction

Your UNIX system may have available a program called learn, which provides computer aided instruction on
the file system and basic commands, the editor, document preparation, and even C programming. Try typing
the command

learn

If learn exists on your system, it will tell you what to do from there.
2. DAY-TO-DAY USE

2.1. Creating Files — The Editor

If you have to type a paper or a letier or a program, how do you get the information stored in the machine?
Most of these tasks are done with the UNIX ““text editor’’ ed. Since ed is thoroughly documented in ed(1) and
explained in A Tutorial Introduction to the UNIX Text Editor; we won’t spend any time here describing how to
use it. All we want it for right now is to make some files. (A file is just a collection of information stored in
the machine, a simplistic but adequate definition.)

To create a file called junk with some text in it, do the following:

ed junk (invokes the text editor)

a (command to *‘ed”’, to add text)
now type in

whatever text you want ...

. (signals the end of adding text)

The ““.”” that signals the end of adding text must be at the beginning of a line by itself. Don’t forget it, for

until it is typed, no other ed commands will be recognized — everything you type will be treated as text to be
added.

At this point you can do various editing operations on the text you typed in, such as correcting spelling mis-
takes, rearranging paragraphs and the like. Finally, you must write the information you have typed into a file
with the editor command w:

w

ed will respond with the number of characters it wrote into the file junk.

Until the w command, nothing is stored permanently, so if you hang up and go home the information is lost.t
But after w the information is there permanently; you can re-access it any time by typing

ed junk

Type a q command to quit the editor. (If you try to quit without writing, ed will print a ? to remind you. A
second q gets you out regardless.)

Now create a second file called temp in the same manner. You should now have two files, junk and temp.

t This is not strictly truec — if you hang up while editing, the data you were working on is saved in a file called ed.hup,
which you can continue with at your next session.

ND-60.328.1P EN

USD:3-8 ’ UNIX for Beginners - Second Edition

2.2. What files are out there?

The Is (for “‘list’”) command lists the names (not contents) of any of the files that UNIX knows about. If you
lype

Is
the response will be

junk
temp

which are indeed the two files just created. The names are sorted into alphabetical order automatically, but
other variations are possible. For example, the command

Is —t
causes the files to be listed in the order in which they were last changed, most recent first. The I option gives
a “‘long™’ listing:

Is -1
will produce something like

~rw—-rw-rw— 1 bwk 41 Jul 22 2:56 junk
~rw-rw-—rw— 1 bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the file. The 41 and 78 are the number of characters (which should
agree with the numbers you got from ed). bwk is the owner of the file, that is, the person who created it. The
—rw-rw—rw- tells who has permission to read and write the file — in this case everyone.

Options can be combined: Is -It gives the same thing as Is -1, but sorted into time order. You can also name
the files you're interested in, and Is will list the information about them only. More details can be found in
Is(1).

The use of optional arguments that begin with a minus sign, like —t and -It, is a common convention for UNIX
programs. In general, if a program accepts such optional arguments, they precede any filename arguments. It
is also vital that you separate the various arguments with spaces: Is-1 is not the same as Is —I.

2.3. Printing Files

Now that you’ve got a file of text, how do you print it so people can look at it? There are a host of programs
that do that, probably more than are needed.

One simple thing is to use the editor, since printing is often done just before making changes anyway. You
can say

ed junk
1,$p

ed will reply with the count of the characters in junk and then print all the lines in the file. After you lcarn
how to use the editor, you can be selective about the parts you print.

There are times when it’s not feasible to use the editor for printing. For example, there is a limit on how big a
file ed can handle (several thousand lines). Secondly, it will only print one file at a time, and sometimes you
want to print several, one after another. So here are a couple of alternatives.

First is cat, the simplest of all the printing programs. cat simply prints on the terminal the contents of all the
files named in a list. Thus

cat junk
prints one file, and
cat junk temp

prints two. The files are simply concatenated (hence the name ““cat’’) onto the terminal.

pr produces formatted printouts of files. As with cat, pr prints all the files named in a list. The difference is
that it produces headings with date, time, page number and file name at the top of each page, and cxtra lines to

ND-60.328.1P EN

UNIX for Beginners - Second Edition USD:3-9

skip over the fold in the paper. Thus,
pr junk temp

will print junk neatly, then skip to the top of a new page and print temp neatly.
pr can also produce multi-column output:
pr -3 junk
prints junk in 3-column format. You can use any reasonable number in place of ““3”’ and pr will do its best.
pr has other capabilities as well; see pr(1).

It should be noted that pr is not a formatting program in the sense of shuffling lines around and justifying mar-
gins. The true formatters are nroff and troff, which we will get 1o in the section on document preparation.

There are also programs that print files on a high-speed printer. Look in your manual under opr and Ipr.
Which to use depends on what equipment is attached to your machine.

2.4. Shuffling Files About

Now that you have some files in the file system and some experience in printing them, you can try bigger
things. For example, you can move a file from one place to another (which amounts to giving it a new name),
like this:

mv junk precious
This means that what used to be “‘junk’’ is now *‘precious’. If you do an Is command now, you will get

precious
temp

Beware that if you move a file to another one that already exists, the already existing contents are lost forever.
If you want to make a copy of a file (that is, to have two versions of something), you can use the ¢p command:

cp precious templ

makes a duplicate copy of precious in templ.

Finally, when you get tired of creating and moving files, there is a command to remove files from the file Sys-
tem, called rm.

rm temp templ
will remove both of the files named temp and templ.

You will get a warning message if one of the named files is not there, but otherwise rm, like most UNIX com-
mands, does its work silently. There is no prompting or chatter, and error messages are occasionally curt.
This terseness is sometimes disconcerting to newcomers, but experienced users find it desirable.

2.5. What’s in a Filename

So far we have used filenames without ever saying what is a legal name, so it is time for a couple of rules.
First, filenames are limited to 14 characters, which is enough to be descriptive.t Second, although you can use
almost any character in a filename, common sense says you should stick to ones that are visible, and that you
should probably avoid characters that might be used with other meanings. We have already seen, for example,
that in the Is command, Is —t means to list in time order. So if you had a file whose name was —t, you would
have a tough time listing it by name. Besides the minus sign, there are other characters which have special

meaning. To avoid pitfalls, you would do well to use only letters, numbers and the period unti! you're familiar
with the situation.

On to some more positive suggestions. Suppose you're typing a large document like a book. Logically this
divides into many small pieces, like chapters and perhaps sections. Physically it must be divided too, for ed

will not readily handle really big files. Thus you should type the document as a number of files. You might
have a scparate file for each chapter, called

1 In 4.2BSD the limit was extended 1o 255 characters.

ND-60.328.1P EN

USD:3-10 ' UNIX for Beginners - Second Edition

chapl
chap2
etc...

Or, if each chapter were broken into several files, you might have

chapl.1
chapl.2
chapl.3

chap2.1
chap2.2

You can now tell at a glance where a particular file fits into the whole.

There are advantages to a systematic naming convention which are not obvious to the novice UNIX user. What
if you wanted to print the whole book? You could say

pr chapl.l chapl.2 chapl.3 ...

but you would get tired pretty fast, and would probably even make mistakes. Fortunately, there is a shortcut.
You can say

pr chap*

The * means “‘anything at all,”” so this translates into *‘print all files whose names begin with chap’’, listed in
alphabetical order.

This shorthand notation is not a property of the pr command, by the way. It is system-wide, a service of the

program that interprets commands (the *‘shell,’” sh(1)). Using that fact, you can see how to list the names of
the files in the book:

Is chap*
produces

chapl.1
chap1.2
chapl.3

The * is not limited to the last position in a filename — it can be anywhere and can occur several times. Thus
rm *junk* *temp*

removes all files that contain junk or temp as any part of their name. As a special case, * by itself matches
every filename, so

pr*
prints all your files (alphabetical order), and

rm *

removes all files. (You had better be very sure that that’s what you wanted to say!)

The * is not the only pattern-matching feature available. Suppose you want to print only chapters 1 through 4
and 9. Then you can say

pr chap[12349]*

The [...] means to match any of the characters inside the brackets. A range of consecutive letters or digits can
be abbreviated, so you can also do this with

pr chap{1-49]*

Letters can also be used within brackets: [a-z] matches any character in the range a through z.

ND-60.328.1P EN

UNIX for Beginners - Second Edition USD:3-11

The ? pattern matches any single character, so
Is?

lists all files which have single-character names, and
Is -1 chap?.1

lists information about the first file of each chapter (chapl.1, chap2.1, etc.).
Of these niceties, * is certainly the most useful, and you should get used to it. The others are frills, but worth
knowing.
If you should ever have to tum off the special meaning of *, ?, etc., enclose the entire argument in single
quotes, as in

ls ’ ? 4

We’ll see some more examples of this shortly.

2.6. What’s in a Filename, Continued

When you first made that file called junk, how did the system know that there wasn’t another junk somewhere
else, especially since the person in the next office is also reading this tutorial? The answer is that generally
each user has a private directory, which contains only the files that belong to him. When you log in, you are
““in”" your directory. Unless you take special action, when you create a new file, it is made in the directory
that you are currently in; this is most often your own directory, and thus the file is unrelated to any other file of
the same name that might exist in someone else’s directory.

The set of all files is organized into a (usually big) tree, with your files located several branches into the tree.
It is possible for you to “‘walk’” around this tree, and to find any file in the system, by starting at the root of
the ree and walking along the proper set of branches. Conversely, you can start where you are and walk
toward the root.

Let’s try the latter first. The basic tools is the command pwd (*‘print working directory’”), which prints the
name of the directory you are currently in.

Although the details will vary according to the system you are on, if you give the command pwd, it will print
something like

/usr/your-name

This says that you are currently in the directory your-name, which is in turn in the directory /usr, which is in
turn in the root directory called by convention just /. (Even if it’s not called /usr on your system, you will get
something analogous. Make the corresponding mental adjustment and read on.)

If you now type
Is /usr/your-name

you should get exactly the same list of file names as you get from a plain Is: with no arguments, Is lists the
contents of the current directory; given the name of a directory, it lists the contents of that directory.

Next, try

Is /usr

This should print a long series of names, among which is your own login name your-name. On many sys-
tems, usr is a dircctory that contains the directories of all the normal users of the system, like you.

The next step is to try
Is/
You should get a response something like this (although again the details may be different):

ND-60.328.1P EN

USD:3-12 ' UNIX for Beginners — Second Edition

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files that the system knows about; we are at the root of the tree,
Now try

cat /usr/your-name/junk
(if junk is still around in your directory). The name

/usr/your-name/junk
is called the pathname of the file that you normally think of as “‘junk’’. “‘Pathname’’ has an obvious mean-
ing: it represents the full name of the path you have to follow from the root through the tree of directories to

get to a particular file. It is a universal rule in the UNIX system that anywhere you can use an ordinary
filename, you can use a pathname.
Here is a picture which may make this clearer:

(root)
/1IN
/1A
JA BN

bin etc usr dev mp
/1IN /I\//I\\/I\ /1IN

i /1N
adam eve m
/ / N\ ar{
/N junk
junk temp

Notice that Mary’s junk is unrelated to Eve’s.

This isn’t too exciting if all the files of interest are in your own directory, but if you work with someone else
or on several projects concurrently, it becomes handy indeed. For example, your friends can print your book
by saying

pr /usr/your-name/chap*

Similarly, you can find out what files your neighbor has by saying
Is /usr/neighbor-name

or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking around in his files, or vice versa, privacy can be arranged. Each file
and directory has read-write-execute permissions for the owner, a group, and everyone clse, which can be set
to control access. See Is(1) and chmod(1) for details. As a matter of observed fact, most users most of the
time find openness of more benefit than privacy.

As a final experiment with pathnames, try
Is /bin /usr/bin

Do some of the names look familiar? When you run a program, by typing its name after the prompt character,
the system simply looks for a file of that name. It normally looks first in your directory (where it typically
docsn’t find it), then in /bin and finally in /usr/bin. There is nothing magic about commands likc cat or s,
except that they have been collected into a couple of places to be casy to find and administer.

What if you work regularly with someone else on common information in his directory? You could just log in
as your friend each time you want to, but you can also say ‘I want to work on his files instecad of my own’’,
This is done by changing the directory that you are currently in:

ND-60.328.1P EN

UNIX for Beginners - Second Edition USD:3-13

cd /usr/your-friend

(On some systems, cd is spelled chdir.) Now when you usc a filename in something like cat or pr, it refers to
the file in your friend’s directory. Changing directories doesn’t affect any permissions associated with a file —
if you couldn’t access a file from your own directory, changing 0 another dircctory won’t alter that fact. Of
course, if you forget what directory you're in, type

pwd
to find out.

It is usually convenient to arrange your own files so that all the files related to one thing are in a directory
separate from other projects. For example, when you write your book, you might want to keep all the text in a
directory called book. So make one with

mkdir book

then go to it with
cd book

then start typing chapters. The book is now found in (presumably)
lusr/your-name/book

To remove the directory book, type

rm book/*
rmdir book

The first command removes all files from the directory; the second removes the empty directory.
You can go up one level in the tree of files by saying
cd .

LRI R I

..”" is the name of the parent of whatever directory you are currently in. For completeness, ““.”’ is an alter-
nate name for the directory you are in.

2.7. Using Files instead of the Terminal

Most of the commands we have seen so far produce output on the terminal; some, like the editor, also take
their input from the terminal. It is universal in UNIX systems that the terminal can be replaced by a file for
either or both of input and output. As one example,

Is
makes a list of files on your terminal. But if you say
Is >filelist

a list of your files will be placed in the file filelist (which will be created if it doesn’t already exist, or
overwritten if it does). The symbol > means *‘put the output on the following file, rather than on the termi-
nal.”” Nothing is produced on the terminal. As another example, you could combine several files into one by
capturing the output of cat in a file:

cat f1 2 f3 >temp

The symbol >> operates very much like > does, except that it means “‘add to the end of.’’ That is,
cat f1 2 £3 >>temp

means to concatenate f1, f2 and f3 to the end of whatever is alrcady in tem p. instead of overwriting the exist-
ing contents. As with >, if temp doesn’t exist, it will be created for you.

In a similar way, the symbol < means (0 take the input for a program from the following file, instead of from
the terminal. Thus, you could make up a script of commonly used editing commands and put them into a file
called script. Then you can run the script on a file by saying

ND-60.328.1P EN

USD:3-14 ' UNIX for Beginners — Second Edition

ed file <script

As another example, you can use ed to prepare a letter in file let, then send it to several people with

mail adam eve mary joe <let

2.8. Pipes

One of the novel contributions of the UNIX system is the idea of a pipe. A pipe is simply a way to connect the
output of one program to the input of another program, so the two run as a sequence of processes — a pipe-
line.

For example,
prfgh

will print the files f, g, and h, beginning each on a new page. Suppose you want them run together instead.
You could say

cat f g h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly what we want is to take the output of cat and connect it to the
input of pr. So let us use a pipe:

catfgh|pr

The vertical bar | means to take the output from cat, which would normally have gone to the terminal, and put
it into pr to be neatly formatted.

There are many other examples of pipes. For example,
Is|pr-3

prints a list of your files in three columns. The program we counts the number of lines, words and characters
in its input, and as we saw earlier, who prints a list of currently-logged on people, one per line. Thus

who | we

tells how many people are logged on. And of course
Is | we

counts your files.

Any program that reads from the terminal can read from a pipe instead; any program that writes on the termi-
nal can drive a pipe. You can have as many elements in a pipeline as you wish.

Many UNIX programs are written so that they will take their input from one or more files if file arguments are

given; if no arguments are given they will read from the terminal, and thus can be used in pipelines. pr is one
example:

pr-3abc
prints files a, b and ¢ in order in three columns. But in
catabc|pr-3

pr prints the information coming down the pipeline, still in three columns.

2.9. The Shell

We have already mentioned once or twice the mysterious *‘shell,” which is in fact sh(1).t The shell is the
program that interprets what you type as commands and arguments. [t also looks after translating *, ctc., into
lists of filcnames, and <, >, and | into changes of input and output streams.

T On Berkeley Unix systems, the usual shell for interactive use is the ¢ shell, csh(t).

ND-60.328.1P EN

UNIX for Beginners - Second Edition USD:3-15

The shell has other capabilities too. For example, you can run two programs with one command line by
separating the commands with a semicolon; the shell recognizes the semicolon and breaks the line into two
commands. Thus

date; who

does both commands before returning with a prompt character.

You can also have more than one program running simultaneously if you wish. For example, if you are doing
something time-consuming, like the editor script of an earlier section, and you don’t want to wait around for
the results before starting something else, you can say

ed file <script &

The ampersand at the end of a command line says “‘start this command running, then take further commands
from the terminal immediately,” that is, don’t wait for it to complete. Thus the script will begin, but you can
do something else at the same time. Of course, to keep the output from interfering with what you’re doing on
the terminal, it would be better 10 say

ed file <script >script.out &

which saves the output lines in a file called script.out.

When you initiate a command with &, the system replies with a number called the process number, which
identifies the command in case you later want to stop it. If you do, you can say

kill process-number

If you forget the process number, the command ps will tell you about everything you have running. (If you
are desperate, kill 0 will kill all your processes.) And if you’re curious about other people, ps a will tell you
about all programs that are currently running.

You can say

(command-1; command-2; command-3) &
to start three commands in the background, or you can start a background pipeline with

command-1 | command-2 &
Just as you can tell the editor or some similar program to take its input from a file instead of from the terminal,
you can tell the shell to read a file to get commands. (Why not? The shell, after all, is Just a program, albeit a
clever one.) For instance, suppose you want to sct tabs on your terminal, and find out the date and who's on

the system every time you log in. Then you can put the three necessary commands (tabs, date, who) into a
file, let’s call it startup, and then run it with

sh startup

This says to run the shell with the file startup as input. The effect is as if you had typed the contents of
startup on the terminal.

If this is to be a regular thing, you can climinate the need to type sh: simply type, once only, the command
chmod +x startup

and thereafter you need only say
startup

to run the sequence of commands. The chmod(1) command marks the file executable; the shell recognizes this
and runs it as a sequence of commands.

If you want startup to run automatically every time you log in, create a file in your login directory called
.profile, and place in it the linc startup. When the shell first gains control when you log in, it looks for the

-profile file and does whatever commands it finds in it We'll get back o the shell in the section on program-
ming.

1 The ¢ shell instcad reads a file called Jogin

ND-60.328.1P EN

USD:3-16 : UNIX for Beginners - Second Edition

3. DOCUMENT PREPARATION

UNIX systems are used extensively for document preparation. There are two major formatting programs, that
is, programs that produce a text with justified right margins, automatic page numbering and titling, automatic
hyphenation, and the like. nroff is designed to produce output on terminals and line-printers. troff (pro-
nounced ““tee-roff™) instead drives a phototypesetter, which produces very high quality output on photographic
paper. This paper was formatted with troff.

3.1. Formatting Packages

The basic idea of nroff and troff is that the text to be formatted contains within it *‘formatting commands’’
that indicate in detail how the formatted text is to look. For example, there might be commands that specify
how long lines are, whether to use single or double spacing, and what running titles to use on each page.

Because nroff and troff are relatively hard to leamn to use effectively, several ‘‘packages’’ of canned format-
ting requests are available to let you specify paragraphs, running titles, footnotes, multi-column output, and so
on, with little effort and without having to learn nroff and troff. These packages take a modest effort to learn,
but the rewards for using them are so great that it is time well spent.

In this section, we will provide a hasty look at the *‘manuscript’” package known as —ms. Formatting requests
typically consist of a period and two upper-case letters, such as .TL, which is used to introduce a title, or PP
to begin a new paragraph.

A document is typed so it looks something like this:

.TL

title of document
AU

author name

SH

section heading

PP

paragraph ...

.Pp

another paragraph ...
SH

another section heading
.PP

etc.

The lines that begin with a period are the formatting requests. For example, .PP calls for starting a new para-
graph. The precise meaning of .PP depends on what output device is being used (typesetter or terminal, for
instance), and on what publication the document will appear in. For example, ~ms normally assumes that a
paragraph is preceded by a space (one line in nroff, /2 line in troff), and the first word is indented. These

rules can be changed if you like, but they are changed by changing the interpretation of .PP, not by re-typing
the document.

To actually produce a document in standard format using —ms, use the command
troff —ms files ...

for the typesetter, and
nroff —ms files ...

for a terminal. The ~ms argument tells troff and nroff to use the manuscript package of formatting requests.
There are several similar packages; check with a local expert to determine which ones are in common use on

your machine.
3.2. Supporting Tools

In addition to the basic formatters, there is a host of supporting programs that help with document preparation.
The list in the next few paragraphs is far from complete, so browse through the manual and check with people
around you for other possibilitics.

ND-60.328.1P EN

UNIX for Beginners - Second Edition USD:3-17

eqn and neqn let you integrate mathematics into the text of a document, in an casy-to-learn language that
closely resembles the way you would speak it aloud. For example, the eqn input

sum from i=0 to n x sub i ~=~ pi over 2

produces the output
n
T

The program tbl provides an analogous service for preparing tabular material; it does all the computations
necessary to align complicated columns with elements of varying widths.

refer prepares bibliographic citations from a data base, in whatever style is defined by the formatting package.
It looks after all the details of numbering references in sequence, filling in page and volume numbers, getting
the author’s initials and the journal name right, and so on.

spell and typo detect possible spelling mistakes in a document.t spell works by comparing the words in your
document to a dictionary, printing those that are not in the dictionary. It knows enough about English spelling
to detect plurals and the like, so it does a very good job. typo looks for words which are “‘unusual”’, and
prints those. Spelling mistakes tend to be more unusual, and thus show up early when the most unusual words
are printed first.

grep looks through a set of files for lines that contain a particular text pattern (rather like the editor’s context
search does, but on a bunch of files). For example,

grep ‘ing$’” chap*

will find all lines that end with the letters ing in the files chap*. (It is almost always a good practice 10 put
single quotes around the pattern you’re searching for, in case it contains characters like * or $ that have a spe-
cial meaning to the shell.) grep is often useful for finding out in which of a set of files the misspelled words
detected by spell are actually located.

diff prints a list of the differences between two files, so you can compare two versions of something automati-
cally (which certainly beats proofreading by human beings).

wc counts the words, lines and characters in a set of files.

tr translates characters into other characters; for example it will convert upper to lower case and vice versa.
This translates upper into lower:

tr A-Z a-z <input >output

sort sorts files in a variety of ways; cref makes cross-references; ptx makes a permuted index (keyword-in-
context listing). sed provides many of the editing facilities of ed, but can apply them to arbitrarily long inputs.
awk provides the ability to do both pattern matching and numeric computations, and to conveniently process
fields within lines. These programs are for more advanced users, and they are not limited to document
preparation. Put them on your list of things to learn about.

Most of these programs are either independently documented (like eqn and tbl), or are sufficiently simple that
the description in the System Manuals is adequate explanation.

3.3. Hints for Preparing Documents

Most documents go through several versions (always more than you expected) before they are finally finished.
Accordingly, you should do whatever possible to make the job of changing them easy.

First, when you do the purely mechanical operations of typing, type so that subsequent editing will be easy.
Start each sentence on a new line. Make lines short, and break lines at natural places, such as after commas
and semicolons, rather than randomly. Since most people change documents by rewriting phrases and adding,
deleting and rearranging sentences, these precautions simplify any editing you have to do later.

Keep the individual files of a document down to modest size, perhaps ten to fifteen thousand characters.
Larger files edit more slowly, and of course if you make a dumb mistake it’s better 10 have clobbered a small

t "typo” is not provided with Berkeley Unix.

ND-60.328.1P EN

USD:3-18 : UNIX for Beginners - Second Edition

file than a big one. Split into files at natural boundaries in the document, for the same reasons that you start
cach sentence on a new line.

The second aspect of making change easy is to not commit yourself to formatting details too early. One of the
advantages of formatting packages like —ms is that they permit you to delay decisions to the last possible
moment. Indeed, until a document is printed, it is not even decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all but the most trivial jobs, you should type a document in terms of a set of requests
like .PP, and then define them appropriately, either by using one of the canned packages (the better way) or by
defining your own nroff and troff commands. As long as you have entered the text in some systematic way, it
can always be cleaned up and re-formatted by a judicious combination of editing commands and request
definitions.

4. PROGRAMMING

No attempt will be made here to teach any of the programming languages available, but a few words of advice
are in order. One of the reasons why the UNIX system is a productive programming environment is that there
is already a rich set of tools available, and facilities like pipes, I/O redirection, and the capabilities of the shell
often make it possible to do a job by pasting together programs that already exist instead of writing from
scratch.

4.1. The Shell

The pipe mechanism lets you fabricate quite complicated operations out of spare parts that already exist. For
example, the first draft of the spell program was (roughly)

cat ... collect the files
[tr .. put each word on a new line
| tr .. delete punctuation, etc.
| sort into dictionary order
| uniq discard duplicates
| comm print words in text
but not in dictionary

More picces have been added subsequently, but this goes a long way for such a small effort.

The editor can be made to do things that would normally require special programs on other systems. For
example, to list the first and last lines of each of a set of files, such as a book, you could laboriously type

ed
e chapl.1
Ip
$p
e chapl.2

But you can do the job much more easily. One way is to type

Is chap* >temp

o get the list of filenames into a file. Then edit this file to make the necessary series of editing commands
(using the global commands of ed), and write it into script. Now the command

ed <script

will produce the same output as the laborious hand typing. Alternately (and more easily), you can use the fact
that the shell will perform loops, repeating a set of commands over and over again for a sct of arguments:

ND-60.328.1P EN

UNIX for Beginners — Second Edition USD:3-19

for i in chap*
do

ed $i <script
done

This sets the shell variable i to each file name in turn, then does the command. You can type this command at
the terminal, or put it in a file for later execution.

4.2. Programming the Shell

An option often overlooked by newcomers is that the shell is itself a programming language, with variables,
control flow (if-else, while, for, case), subroutines, and interrupt handling. Since there are many building-

block programs, you can sometimes avoid writing a new program merely by piecing together some of the
building blocks with shell command files.

We will not go into any details here; examples and rules can be found in An Introduction to the UNIX Shell, by
S. R. Bourne.

4.3. Programming in C

If you are undertaking anything substantial, C is the only reasonable choice of programming language: every-
thing in the UNIX system is tuned to it. The system itself is written in C, as are most of the programs that run
onit. Itis also a easy language to use once you get started. C is introduced and fully described in The C Pro-
gramming Language by B. W. Kernighan and D. M. Ritchic (Prentice-Hall, 1978). Several sections of the
manual describe the system interfaces, that is, how you do IfO and similar functions. Read UNIX Program-
ming for more complicated things.

Most input and output in C is best handled with the standard I/O library, which provides a set of /O functions
that exist in compatible form on most machines that have C compilers. In general, it’s wisest to confine the
system interactions in a program to the facilities provided by this library.

C programs that don’t depend too much on special features of UNIX (such as pipes) can be moved to other
computers that have C compilers. The list of such machines grows daily; in addition to the original PDP-11, it
currently includes at least Honeywell 6000, IBM 370 and PC families, Interdata 8/32, Data General Nova and
Eclipse, HP 2100, Harris /7, Motorola 68000 family (including machines like Sun Microsystems and Apple
Macintosh), VAX 11 family, SEL 86, and Zilog Z80. Calls to the standard I/O library will work on all of
these machines.

There are a number of supporting programs that go with C. lint checks C programs for potential portability
problems, and detects errors such as mismatched argument types and uninitialized variables.

For larger programs (anything whose source is on more than one file) make allows you to specify the depen-
dencies among the source files and the processing steps needed to make a new version; it then checks the times
that the pieces were last changed and does the minimal amount of recompiling to create a consistent updated
version.

The debugger adb is useful for digging through the dead bodies of C programs, but is rather hard to Iecamn to

use effectively. The most effective debugging tool is still careful thought, coupled with judiciously placed
print statements.

The C compiler provides a limited instrumentation service, so you can find out where programs spend their
time and what parts are worth optimizing. Compile the routines with the —p option; after the test run, use prof
to print an execution profile. The command time will give you the gross run-time statistics of a program, but
they are not super accurate or reproducible.

4.4. Other Languages

If you have to use Fortran, there are two possibilities. You might consider Ratfor, which gives you the decent
control structures and free-form input that characterize C, yet lets you write code that is still portable to other
environments. Bear in mind that UNIX Fortran tends to produce large and relatively slow-running programs.

t The "dbx" debugger, supplied starting with 4.2BSD, has extensive facilities for high-level debugging of C programs
and is much casier 10 use than "adb”.

ND-60.328.1P EN

USD:3-20 : UNIX for Beginners - Second Edition

Furthermore, supporting software like adb, prof, etc., are all virtually useless with Fortran programs. There
may also be a Fortran 77 compiler on your system. If so, this is a viable alternative to Ratfor, and has the
non-trivial advantage that it is compatible with C and related programs. (The Ratfor processor and C tools can
be used with Fortran 77 t00.)

If your application requires you to translate a language into a set of actions or another language, you are in
effect building a compiler, though probably a small one. In that case, you should be using the yace compiler-
compiler, which helps you develop a compiler quickly. The lex lexical analyzer generator does the same job
for the simpler languages that can be expressed as regular expressions. It can be used by itself, or as a front
end to recognize inputs for a yacc-based program. Both yacc and lex require some sophistication to use, but
the initial effort of learning them can be repaid many times over in programs that are easy to change later on.

Most UNIX systems also make available other languages, such as Algol 68, APL, Basic, Lisp, Pascal, and Sno-
bol. Whether these are useful depends largely on the local environment: if someone cares about the language

and has worked on it, it may be in good shape. If not, the odds are strong that it will be more trouble than it’s
worth.

S. UNIX READING LIST

5.1. General:

1 K. L. Thompson and D. M. Ritchie, The UNIX Programmer's Manual, Bell Laboratories, 1978. Lists com-
mands, system routines and interfaces, file formats, and some of the maintenance procedures. You can’t
live without this, although you will probably only need to read section 1. The supplementary document
UNIX Programming - Second Edition, which is included in the Programmers Supplementary Documents
manual (PSD:19) 1, is a useful starting point.

2 D. M. Ritchie and K. L. Thompson, The UNIX Time-sharing System, CACM, July 1974. An overview of
the system, for people interested in operating systems. Worth reading by anyone who programs. Contains
a remarkable number of one-sentence observations on how to do things right. This document is included in
the Programmer Supplementary Documents manual (PSD:18).

3 The Bell System Technical Journal, (BSTJ) Special Issue on UNIX, July/August, 1978, contains many
papers describing recent developments, and some retrospective material.

4 The 2nd International Conference on Software Engineering, (October, 1976) contains several papers
describing the use of the Programmer’s Workbench (PWB) version of UNIX.

5.2. Document Preparation

1 B. W. Kernighan, “‘A Tutorial Introduction to the UNIX Text Editor’” (USD:12) and *‘Advanced Editing on
UNIX,”” (USD:13) Bell Laboratories, 1978. Beginners need the introduction; the advanced material will
help you get the most out of the editor.

2 M. E. Lesk, “*Typing Documents on UNIX,”’ Bell Laboratories, 1978. (USD:20). Describes the —ms macro
package, which isolates the novice from the vagaries of nroff and troff, and takes care of most formatting
situations. If this specific package isn’t available on your system, something similar probably is. The most
likely alternative is the PWB/UNIX macro package —mm; see your local guru if you use PWB/UNIX.1

3 B. W. Kemighan and L. L. Cherry, “‘A System for Typesetting Mathematics,”” Bell Laboratories Comput-
ing Science Tech. Rep. 17. (USD:26).

M. E. Lesk, ““Tbl — A Program to Format Tables,”” Bell Laboratories CSTR 49, 1976. (USD:28).

J. F. Ossanna, Jr., “NROFF/TROFF User’s Manual,”” Bell Laboratories CSTR 54, 1976. (USD:24). troff
is the basic formatter used by —ms, eqn and tbl. The reference manual is indispensable if you are going to
wrile or maintain these or similar programs. But start with:

6 B. W. Kernighan, ‘‘A TROFF Tutorial,”” Bell Laboratories, 1976. (USD:25). An attempt 1o unravel the
intricacies of troff.

t In this Reading List, the references PSD and USD refer to the Programmers Supplementary Documents manual (ND-
60.330) and Users Supplementary Documents manual (ND-60.328), respectively.
 The macro package -me is additionally available on Berkeley Unix Systems. -mm is typically not available.

ND-60.328.1P EN

UNIX for Beginners - Second Edition USD:3-21

53. Programming

1

2

[o<BEES BN N V]

B. W. Kemighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978. Contains a
tutorial introduction, complete discussions of all language features, and the reference manual.

B. W. Kemighan and R. Pike, The Unix Programming Environment, Prentice-Hall, 1984. Contains many
examples of C programs which use the system interfaces, and explanations of “why”’.

B. W. Kemnighan and D. M. Ritchie, ‘““UNIX Programming,”’ Bell Laboratories, 1978. (PSD:19). Describes
how 1o interface with the system from C programs: 1/O calls, signals, processes.

S. R. Boumne, “‘An Introduction to the UNIX Shell,”” Bell Laboratories, 1978. (USD:5). An introduction
and reference manual for the Version 7 shell. Mandatory reading if you intend to make effective use of the
programming power of this shell.

S. C. Johnson, ““Yacc — Yet Another Compiler-Compiler,”” Bell Laboratories CSTR 32, 1978. (PSD:14).
M. E. Lesk, “‘Lex — A Lexical Analyzer Generator,”’ Bell Laboratorics CSTR 39, 1975. (PS1:15).
S. C. Johnson, “‘Lint, a C Program Checker,”’ Bell Laboratories CSTR 65, 1977. (PS1:9).

S. 1. Feldman, ““MAKE — A Program for Maintaining Computer Programs,”” Bell Laboratories CSTR 57,
1977. (PS1:12).

J. F. Maranzano and S. R. Bourne, ‘A Tutorial Introduction to ADB,”” Bell Laboratories CSTR 62, 1977.
(PS1:10). An introduction to a powerful but complex debugging tool.

ND-60.328.1P EN

USD:3-22 : UNIX for Beginners - Second Edition

ND-60.328.1P EN

Learn - Computer-Aided Instruction on UNIX USD:4-1

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpreting CAI SCripts on
the UNIXt operating system, and a set of scripts that provide a computerized introduction to
the system.

Six current scripts cover basic commands and file handling, the editor, additional file han-
dling commands, the eqn program for mathematical typing, the ‘‘-ms” package of format-
ting macros, and an introduction to the C programming language. These scripts now include
a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to acquire basic UNIX
skills. Most usage involves the first two scripts, an introduction to UNIX files and com-
mands, and the UNIX editor.

The second version of learn is about four times faster than the previous one in CPU utiliza-
tion, and much faster in perceived time because of better overlap of computing and printing.
It also requires less file space than the first version. Many of the lessons have been revised:
new material has been added to reflect changes and enhancements in UNIX itself. Script-
writing is also easier because of revisions to the script language.

t UNIX is a registercd trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD:4-2 ' Learn - Computer-Aided Instruction on UNIX

ND-60.328.1P EN

Learn - Computer-Aided Instruction on UNIX USD:4-3

1. Introduction.

Learn is a driver for CAI scripts. It is intended to permit the easy composition of lessons and lesson frag-
ments to teach people computer skills. Since it is teaching the same system on which it is implemented, it
makes direct use of UNIX facilities to create a controlled UNIX environment. The system includes two main
parts: (1) a driver that interprets the lesson scripts; and (2) the lesson scripts themselves. At present there are
seven scripts:

— basic file handling commands
— the UNIX text editors ed and vi
-~ advanced file handling
-~ the egn language for typing mathematics
— the “‘ms™" macro package for document formatting
— the C programming language
The purported advantages of CAI scripts for training in computer skills include the following:
() students are forced to perform the exercises that are in fact the basis of training in any case;
(b) students receive immediate feedback and confirmation of progress;
(c) students may progress at their own rate;
(d) no schedule requirements are imposed; students may study at any time convenient for them;

(¢) the lessons may be improved individually and the improvements are immediately available to0 new
users;

(f) since the student has access to a computer for the CAI script there is a place to do exercises;
(8) the use of high technology will improve student motivation and the interest of their management.

Opposed to this, of course, is the absence of anyone to whom the student may direct questions. If CAI is used
without a “‘counselor’” or other assistance, it should properly be compared to a textbook, lecture series, or
taped course, rather than to a seminar. CAI has been used for many years in a variety of educational areas.
bitzer plato 1970 gray coala 1977 suppes individualize 1967 The use of a computer to teach computer use
itself, however, offers unique advantages. The skills developed to get through the script are exactly those
needed to use the computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education: these assumptions are out-
lined in the next section. The remaining sections describe the operation of the script driver and the particular
scripts now available. The driver puts few restrictions on the script writer, but the current scripts are of a
rather rigid and stereotyped form in accordance with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.

First, the way to teach people how 10 do something is to have them do it. Scripts should not contain long
pieces of explanation; they should instead frequently ask the student to do some task. So teaching is always by
example: the typical script fragment shows a small example of some technique and then asks the user to either
repeat that example or produce a variation on it. All are intended to be casy enough that most students will get
most questions right, reinforcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a yes or no answer to a
question. The student is given a chance 1o experiment before replying. The script checks for the correct reply.
Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files might say
How many files are there in the current directory? Type “‘answer N'', where N is the number of files.
The student is expected to respond (perhaps after experimenting) with

answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing N by 17) is
difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended — a task is set for the student, appropriate parts of the input or output
arc monitored, and the student types ready when the task is done. Figurc 1 shows a sample dialog that

ND-60.328.1P EN

USD:4-4 ’ Learn - Computer-Aided Instruction on UNIX

illustrates the last of these, using two lessons about the cat (concatenate, i.e., print) command taken from early
in the script that teaches file handling. Most learn lessons are of this form.

Figure 1: Sample dialog from basic files script
(Student responses in italics; ‘$’ is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food” in this directory. List it
by saying “cat food"; then type "ready”.
$ cat food

this is the file

named food.
$ ready

Good. Lesson 3.3a (1)

Of course, you can print any file with "cat”.
In particular, it is common to first use

"Is" to find the name of a file and then "cat"
to print it. Note the difference between

“Is", which tells you the name of the file,
and "cat”, which tells you the contents,

One file in the current directory is named for
a President. Print the file, then type "ready”.
$ cat President

cat: can’t open President

$ ready

Sorry, that’s not right. Do you want to try again? yes

Try the problem again.

$is

.ocopy

X1

rooscvelt

$ cat roosevelt
this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)
The "cat” command can also print several files

atonce. In fact, it is named "cat" as an abbreviation
for "concatenate”....

After each correct response the computer congratulates the student and indicates the lesson number that has
Just been completed, permitting the student to restart the script after that lesson. If the answer is wrong, the
student is offered a chance o repeat the lesson. The “‘speed’” rating of the student (explained in section 5) is
given after the lesson number when the lesson is completed successfully; it is printed only for the aid of script
authors checking out possible errors in the lessons.

ND-60.328.1P EN

Learn - Computer-Aided Instruction on UNIX USD:4-5

It is assumed that there is no foolproof way to determine if the student truly “‘understands’’ what he or she is
doing; accordingly, the current learn scripts only measure performance, not comprehension. If the student can
perform a given task, that is deemed to be “learning.”” skinner teaching 1961

The main point of using the computer is that what the student does is checked for cormrectness immediately.
Unlike many CAI scripts, however, these scripts provide few facilities for dealing with wrong answers. In
practice, if most of the answers are not right the script is a failure; the universal solution to student error is to
provide a new, easier script. Anticipating possible wrong answers is an endless job, and it is really easier as
well as better to provide a simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be broken into
sufficiently small pieces. Anything not absorbed in a single chunk is just subdivided.

To avoid boring the faster students, however, an effort is made in the files and editor scripts to provide three
tracks of different difficulty. The fastest sequence of lessons is aimed at roughly the bulk and speed of a typi-
cal ttorial manual and should be adequate for review and for well-prepared students. The next track is
intended for most users and is roughly twice as long. Typically, for example, the fast track might present an
idea and ask for a variation on the example shown; the normal track will first ask the student to repeat the
example that was shown before attempting a variation. The third and slowest track, which is often three or
four times the length of the fast track, is intended to be adequate for anyone. (The lessons of Figure 1 arc
from the third track.) The multiple tracks also mean that a student repeating a course is unlikely to hit the
same series of lessons; this makes it profitable for a shaky user to back up and try again, and many students
have done so.

The tracks are not completely distinct, however. Depending on the number of correct answers the student has
given for the last few lessons, the program may switch tracks. The driver is actually capable of following an
arbitrary directed graph of lesson sequences, as discussed in section 5. Some more structured arrangement,
however, is used in all current scripts to aid the script writer in organizing the material into lessons. It is
sufficiently difficult to write lessons that the three-track theory is not followed very closely except in the files
and editor scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from the
slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material as a workbook is not
the selection of tracks, but actual hands-on experience. Learning by doing is much more effective than pencil
and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would not let the student
proceed unless it received comect answers to the questions it set and it would not tell a student the right
answer. This somewhat Draconian approach has been moderated in version 2. Lessons are sometimes badly
worded or even just plain wrong; in such cases, the student has no recourse. But if a student is simply unable
o complete one lesson, that should not prevent access to the rest. Accordingly, the current version of learn
allows the student to skip a lesson that he cannot pass; a “‘no’’ answer to the “‘Do you want to ry again?”’
question in Figure 1 will pass to the next lesson. It is still true that learn will not tell the student the right
answer.

Of course, there are valid objections to the assumptions above. In particular, some students may object to not
understanding what they are doing; and the procedure of smashing everything into small pieces may provoke
the retort “you can’t cross a ditch in two jumps.” Since writing CAI scripts is considerably more tedious than
ordinary manuals, however, it is safe 10 assume that there will always be alternatives to the scripts as a way of
learning. In fact, for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long before the scripts.

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus little of the potential
complexity of the possible directed graph is employed, since care must be taken in lesson construction (o see
that every necessary fact is presented in every possible path through the units. In addition, it is desirable that
every unit have alternate successors to deal with student errors.

In most existing courses, the first few lessons are devoted 1o checking prerequisites. For example, before the
student is allowed to proceed through the editor script the script verifies that the student understands files and
is able to type. It is felt that the sooner lack of student preparation is detected, the casier it will be on the sty-
dent. Anyone proceeding through the scripts should be getting mostly correct answers; otherwise, the system

ND-60.328.1P EN

USD:4-6 ‘ . Learn - Computer-Aided Instruction on UNIX

will be unsatisfactory both because the wrong habits are being leamned and because the scripts make little effort
to deal with wrong answers. Unprepared students should not be encouraged to continue with scripts.

There are some preliminary items which the student must know before any scripts can be tried. In particular,
the student must know how to connect to a UNIX system, set the terminal properly, log in, and execute simple
commands (¢.g., learn itself). In addition, the character erase and line kill conventions (# and @) should be
known. It is hard to see how this much could be taught by computer-aided instruction, since a student who
docs not know these basic skills will not be able to run the learning program. A brief description on paper is
provided (see Appendix A), although assistance will be needed for the first few minutes. This assistance, how-
ever, need not be highly skilled.

The first script in the current set deals with files. It assumes the basic knowledge above and teaches the stu-
dent about the Is, cat, mv, rm, cp and diff commands. It also deals with the abbreviation characters *, 7, and

(] in file names. It does not cover pipes or I/O redirection, nor does it present the many options on the Is
command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks, seven are review exer-
cises. There are a total of 75 lessons in all three tracks, and the instructional passages typed at the student to
begin each lesson total 4,476 words. The average lesson thus begins with a 60-word message. In general, the
fast track lessons have somewhat longer introductions, and the slow tracks somewhat shorter ones. The long-
est message is 144 words and the shortest 14.

The second script trains students in the use of the UNIX context editor ed, a sophisticated editor using regular
expressions for searching. ritchie thompson unix seventh edition 1978 %O See section ed (1). All editor
features except encryption, mark names and ‘;’ in addressing are covered. The fast track contains 2 prere-
quisite checks, 93 lessons, and a review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is 2,572 words long.
The ed tutorial kemighan editor tutorial 1974 is 6,138 words long. The fast track through the ed script is 7,407
words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words. The average ed lesson
is thus also about 60 words; the largest is 171 words and the smallest 10. The original ed script represents
about three man-weeks of effort.

The advanced file handling script deals with Is options, I/O diversion, pipes, and supporting programs like pr,
wc, tail, spell and grep. (The basic file handling script is a prerequisite.) It is not as refined as the first two
scripts; this is reflected at least partly in the fact that it provides much less of a full three-track sequence than
they do. On the other hand, since it is perceived as ‘‘advanced,”’ it is hoped that the student will have some-
what more sophistication and be better able to cope with it at a reasonably high level of performance.

A fourth script covers the egn language for typing mathematics. This script must be run on a terminal capable
of printing mathematics, for instance the DASI 300 and similar Diablo-based terminals, or the nearly extinct
Model 37 teletype. Again, this script is relatively short of tracks: of 76 lessons, only 17 are in the second
track and 2 in the third track. Most of these provide additional practice for students who are having trouble in
the first track.

The —ms script for formatting macros is a short one-track only script. The macro package it describes is no
longer the standard, so this script will undoubtedly be superseded in the future. Furthermore, the linear style
of a single learn script is somewhat inappropriate for the macros, since the macro package is composed of
many independent features, and few users need all of them. It would be better to have a selection of short les-
son sequences dealing with the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on C, but that docu-
ment has since become obsolete. The current script has been partially converted to follow the order of presen-
taion in The C Programming Language, ritchie kernighan programming 1978 prentice hall but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a scries of exercises for
which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any UNIX user will nced to know to make
effective use of the system. With enlargement of the advanced files course to include more on the command
interpreter, there will be a relatively complete introduction to UNIX available via learn. Although we make no
pretense that learn will replace other instructional materials, it should provide a uscful supplement to cxisting
tutorials and reference manuals.

ND-60.328.1P EN

Learn - Computer-Aided Instruction on UNIX USD:4-7

4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the first two scripts, so
these are more thoroughly debugged and polished. As a (random) sample of user experience, the learn pro-
gram has been used at Bell Labs at Indian Hill for 10,500 lessons in a four month period. About 3600 of these
are in the files script, 4100 in the editor, and 1400 in advanced files. The passing rate is about 80%, that is,
about 4 lessons are passed for every one failed. There have been 86 distinct users of the files script, and 58 of
the editor. On our system at Murray Hill, there have been nearly 2000 lessons over two weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of someone doing one or
two lessons and then logging out, as do instances of someone pausing in a script for twenty minutes or more.
In the earlier version of learn, the average session in the files course took 32 minutes and covered 23 lessons.
The distribution is quite broad and skewed, however; the longest session was 130 minutes and there were five
sessions shorter than five minutes. The average lesson took about 80 seconds. These numbers are roughly
typical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds per lesson, most of
which is the system printing.

At present working through a section of the middle of the files script took about 1.4 seconds of processor time
per lesson, and a system expert typing quickly took 15 seconds of real time per lesson. A novice would prob-
ably take at least a minute. Thus a UNIX system could support ten students working simultaneously with
some spare capacity.

5. The Script Interpreter,

The learn program itself merely interprets scripts. It provides facilities for the script writer to capture student
responses and their effects, and simplifies the job of passing control to and recovering control from the student.
This section describes the operation and usage of the driver program, and indicates what is required to produce
a new script. Readers only interested in the existing scripts may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory (named lib) containing the
script data. Within this directory are subdirectories, one for each subject in which a course is available, one for
logging (named log), and one in which user sub-directories are created (named play). The subject directory
contains master copies of all lessons, plus any supporting material for that subject. In a given subdirectory,

each lesson is a single text file. Lessons are usually named systematically; the file that contains lesson n is
called Ln.

Figure 2: Directory structure for learn

lib
play
studentl
files for studentl...
student2
files for student2...
files
1.0.1a lessons for files course
LO.1b
editor

(other courses)

log

When learn is executed, it makes a private directory for the user 10 work in, within the learn portion of the file
system. A fresh copy of all the files used in each lesson (mostly data for the student to operate upon) is made

ND-60.328.1P EN

USD:4-8

each time a student starts a lesson, so the script writer may assume that everything is reinitialized each time a
lesson is entered. The student directory is deleted after each session; any permanent records must be kept else-

where.

Learn - Computer-Aided Instruction on UNIX

The script writer must provide certain basic items in cach lesson:

(1) the text of the lesson;

(2) the set-up commands to be executed before the user gets control;

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide whether the
answer is right; and

(5) alist of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort involved in script
production is in planning lessons, writing tutorial paragraphs, and coding tests of student performance.

The basic sequence of events is as follows. First, learn creates the working directory. Then, for each lesson,
learn reads the script for the lesson and processes it a line at a time. The lines in the script are: (1) com-
mands to the script interpreter to print something, to create a files, to test something, etc.; (2) text to be printed
or put in a file; (3) other lines, which are sent to the shell to be executed. One line in each lesson turns control
over to the user; the user can run any UNIX commands. The user mode terminates when the user types yes,
no, ready, or answer . At this point, the user’s work is tested; if the lesson is passed, a new lesson is selected,

and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in Figure 3.

Lincs which begin with # are commands to the learn script interpreter. For example,

#print

causes printing of any text that follows, up to the next line that begins with a sharp.

#print file

prints the contents of file; it is the same as cat file but has less overhead. Both forms of #print have the added
property that if a lesson is failed, the #print will not be executed the second time through; this avoids annoying

ND-60.328.1P EN

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat”
to print it. Note the difference between
“Is", which tells you the name of the files,
and "cat”, which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready”.
#create roosevelt

this file is named roosevelt

and contains three lines of

text.
#copyout
#user
#uncopyout
tail -3 .ocopy >X1
#cmp X1 roosevelt
#log
#next
3.2b2

Learn - Computer-Aided Instruction on UNIX USD:4-9

the student by repeating the preamble to a lesson.
#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This is used for creat-
ing and initializing working files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the shell for execution. The #user mode is
terminated when the student types one of yes, no, ready or answer. At that time, the driver resumes interpre-
tation of the script.

#copyin

#uncopyin
Anything the student types between these commands is copied onto a file called .copy. This lets the script
writer interrogate the student’s responses upon regaining control.

#copyout
#uncopyout

Between these commands, any material typed at the student by any program is copied to the file .ocopy. This
lets the script writer interrogate the effect of what the student typed, which true believers in the performance
theory of learning usually prefer to the student’s actual input.

#pipe

#Hunpipe
Normally the student input and the script commands are fed to the UNIX command interpreter (the ‘‘shell’”)
one line at a time. This won’t do if, for example, a sequence of editor commands is provided, since the input to
the editor must be handed to the editor, not to the shell. Accordingly, the material between #pipe and #unpipe

commands is fed continuously through a pipe so that such sequences work. If copyout is also desired the
copyout brackets must include the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.
#emp filel file2
is an in-line implementation of cmp , which compares two files for identity.
#match stuff
The last line of the student’s input is compared to stuff, and the success or fail status is set according {0 it.
Extraneous things like the word answer are stripped before the comparison is made. There may be several

#maich lines; this provides a convenient mechanism for handling multiple “‘right’* answers. Any text up to a
on subsequent lines after a successful #match is printed; this is illustrated in Figure 4, another sample lesson.

Figure 4: Another Sample Lesson

#print

What command will move the current line
to the end of the file? Type

"answer COMMAND", where COMMAND is the command.
#copyin

#user

#uncopyin

#match m$

#maich .m$

"m$" is easier.

#log

#next

63.1d 10

ND-60.328.1P EN

USD:4-10 ‘ Learn - Computer-Aided Instruction on UNIX

#bad stuff

This is similar to #match, except that it corresponds to specific failure answers; this can be used to produce
hints for particular wrong answers that have been anticipated by the script writer.

#succeed
#fail

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the ‘“‘commands’ yes, no, ready, or answer , the driver terminates the #user
command, and evaluation of the student’s work can begin. This can be done either by the built-in commands
above, such as #match and #cmp, or by status returned by normal UNIX commands, typically grep and test.
The last command should return status true (0) if the task was done successfully and false (non-zero) other-
wise; this status return tells the driver whether or not the student has successfully passed the lesson.

Performance can be logged:
#log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file. The command
#log

by itself writes the logging information in the logging directory within the learn hierarchy, and is the normal
form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it. A typical set
might read

25.1a 10
252a 5§
253a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10 units, 25.2a for
student with speed near 5, and 25.3a for speed near 2. Speed ratings are maintained for each session with a
student; the rating is increased by one each time the student gets a lesson right and decreased by four each time
the student gets a lesson wrong. Thus the driver tries to maintain a level such that the users get 80% right
answers. The maximum rating is limited to 10 and the minimum to 0. The initial rating is zero unless the stu-
dent specifies a different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the student fails, a false
status is returned and the program reverts to the previous lesson and tries another altemnative. If it can not find
another alternative, it skips forward a lesson. bye, bye, which causes a graceful exit from the learn system.
Hanging up is the usual novice’s way out.

The lessons may form an arbitrary directed graph, although the present program imposes a limitation on cycles
in that it will not present a lesson twice in the same session. If the student is unable to answer one of the exer-
cises correctly, the driver searches for a previous lesson with a set of alternatives as successors (following the

#next line). From the previous lesson with alternatives one route was taken carlier; the program simply tries a
different one.

It is perfectly possible to write sophisticated scripts that evaluate the student’s speed of response, or try to esti-
mate the elegance of the answer, or provide detailed analysis of wrong answers. Lesson writing is so tedious
already, however, that most of these abilities are likely to go unused.

The driver program depends heavily on features of UNIX that are not available on many other operating sys-
tems. These include the ease of manipulating files and directories, file redirection, the ability to use the com-
mand interpreter as just another program (even in a pipeline), command status testing and branching, the abil-
ity to catch signals like interrupts, and of course the pipeline mechanism itself. Although some parts of learn
might be transferable to other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in words in the driver program, and made more use
of the facilitics of UNIX. For example, file comparison was done by creating a cmp process, rather than com-
paring the two files within learn. Lessons were not stored as text files, but as archives. There was no concept
of the in-line document; even #print had to be followed by a file name. Thus the initialization for each lesson
was 1o extract the archive into the working directory (typically 4-8 files), then #print the lesson text.

ND-60.328.1P EN

Learn - Computer-Aided Instruction on UNIX USD:4-11

The combination of such things made learn slower. The new version is about 4 or 5 times faster. Further-
more, it appears even faster to the user because in a typical lesson, the printing of the message comes first, and
file setup with #create can be overlapped with the printng, so that when the program finishes printing, it is
really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now Jjust ordinary text files. They can be
edited without any difficulty, and UNIX text manipulation tools can be applied 10 them. The result has been
that there is much less resistance to going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non-programmers who have used
learn:

(@ A novice must have assistance with the mechanics of communicating with the computer to get through
to the first lesson or two; once the first few lessons are passed people can proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with computers. It would
help if there were a low level reference card for UNIX to supplement the existing programmer oriented
bulky manual and bulky reference card.

(c) The concept of ““substitutable argument”’ is hard to grasp, and requires help.
(d) They enjoy the system for the most part. Motivation matters a great deal, however,

It takes an hour or two for a novice to get through the script on file handling. The total time for a reasonably
intelligent and motivated novice to proceed from ignorance to a reasonable ability to create new files and mani-
pulate old ones seems to be a few days, with perhaps half of each day spent on the machine.

The normal way of proceeding has been to have students in the same room with someone who knows UNIX
and the scripts. Thus the student is not brought to a halt by difficult questions. The burden on the counselor,
however, is much lower than that on a teacher of a course. Ideally, the students should be encouraged (o
proceed with instruction immediately prior to their actual use of the computer. They should exercise the
scripts on the same computer and the same kind of terminal that they will later use for their real work, and
their first few jobs for the computer should be relatively easy ones. Also, both training and initial work should
take place on days when the UNIX hardware and software arc working reliably. Rarely is all of this possible,
but the closer one comes the better the result. For example, if it is known that the hardware is shaky one day,
it is better to attempt to reschedule training for another one. Students are very frustrated by machine down-
time; when nothing is happening, it takes some sophistication and experience to distinguish an infinite loop, a
slow but functioning program, a program waiting for the user, and a broken machine. T

One disadvantage of training with learn is that students come to depend completely on the CAI system, and do
not try to read manuals or use other learning aids. This is unfortunate, not only because of the increased
demands for completeness and accuracy of the scripts, but because the scripts do not cover all of the UNIX Sys-
tem. New users should have manuals (appropriate for their level) and read them: the scripts ought to be altered

There are several other difficulties which are clearly evident. From the student’s viewpoint, the most serious is
that lessons still crop up which simply can’t be passed. Sometimes this is due to poor explanations, but just as
often it is some error in the lesson itself — a botched setup, a missing file, an invalid test for correctness, or
some system facility that doesn’t work on the local system in the same way it did on the development system.
It takes knowledge and a certain healthy arrogance on the part of the user to recognize that the fault is not his
or hers, but the script writer's. Permitting the student to get on with the next lesson regardless docs alleviate
this somewhat, and the logging facilities make it easy to waich for lessons that no one can pass, but it is still a
problem.

The biggest problem with the previous learn was speed (or lack thereof) — it was ofien excruciatingly slow
and made a significant drain on the system. The current version so far does not seem to have that difficulty,
although some scripts, notably egn, are intrinsically slow. egn, for example, must do a lot of work even 1o
print its introductions, let alone check the student responses, but delay is perceptible in all scripts from time to

t We have even known an expert programmer to decide the computer was broken when he had simply left his terminal in
local mode. Novices have great difficultics with such problems.

ND-60.328.1P EN

USD:4-12 ’ : Learn - Computer-Aided Instruction on UNIX

time.
Another potential problem is that it is possible to break learn inadvertently, by pushing interrupt at the wrong
time, or by removing critical files, or any number of similar slips. The defenses against such problems have

steadily been improved, to the point where most students should not notice difficulties. Of course, it will
always be possible to break learn maliciously, but this is not likely to be a problem.

One area is more fundamental — some UNIX commands are sufficiently global in their effect that learn
currently does not allow them to be executed at all. The most obvious is cd, which changes to another direc-
tory. The prospect of a student who is learning about directories inadvertently moving to some random direc-

tory and removing files has deterred us from even writing lessons on cd, but ultimately lessons on such topics
probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their suggestions
and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox, and M. J. McAlpin have pro-
vided substantial feedback. Conversations with E. Z. Rothkopf also provided many of the ideas in the system.
We are also indebted to Don Jackowski for serving as a guinea pig for the second version, and to Tom Plum
for his efforts to improve the C script.

References

1 D.L. Bitzer and D. Skaperdas, The Economics of a Large Scale Computer Based Educational System:
Plato IV, in "Computer Assisted Instruction, Testing and Guidance”, ed. Wayne Holtzman, pp. 17-29,
Harper and Row, New York, 1970.

2 D.C. Gray, J.P. Hulskamp, J.H. Kumm, §. Lichtenstein, and N.E. Nimmervoll, COALA - A Minicom-
puter CAI System, IEEE Trans. Education, vol. E-20(1), pp. 73-77, Feb. 1977.

3 P. Suppes, On Using Computers to Individualize Instruction, in "The Computer in American Education",
ed. D. D. Bushnell and D. W. Allen, pp. 11-24, John Wiley, New York, 1967,

4 B.F. Skinner, Why We Need Teaching Machines, Harv. Educ. Review, vol. 31, pp. 377-398, 1961.
Reprinted in Educational Technology, ed. J.P. DeCecco, Holt Rinehart & Winston (New York, 1964).

5 B.W. Kernighan, A Twtorial Introduction to the UNIX text editor, Bell Laboratories, 1974. Bell Labora-
tories internal memorandum.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-1

An Introduction to the UNIX Shell

S. R. Bourne
(Updated for 4.3BSD by Mark Seiden)

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shellt is a command programming language that provides an interface to the UNIX?
operating system. Its features include control-flow primitives, parameter passing, variables
and string substitution. Constructs such as while, if then else, case and for are available.
Two-way communication is possible between the shell and commands. String-valued
parameters, typically file names or flags, may be passed to a command. A return code is set
by commands that may be used 10 determine control-flow, and the standard output from a
command may be used as shell input.

The shell can modify the environment in which commands run. Input and output can be
redirected to files, and processes that communicate through ‘pipes’ can be invoked. Com-
mands are found by searching directories in the file system in a sequence that can be defined
by the user. Commands can be read either from the terminal or from a file, which allows
command procedures to be stored for later use.

1 This paper describes sh(1). If it's the ¢ shell (csh) that you're interested in, & good place to begin is William Joy's
paper "An Introduction to the C shell” (USD:6 in this manual).
T UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD:5-2 ' : An Introduction to the UNIX Shell

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-3

1. INTRODUCTION

The shell is both a command language and a programming language that provides an interface to the UNIX
operating system. This memorandum describes, with examples, the UNIX shell. The first section covers most
of the everyday requirements of terminal users. Some familiarity with UNIX is an advantage when reading
this section; see, for example, "UNIX for beginners” (Reference 1). Section 2 describes those features of the
shell primarily intended for use within shell procedures. These include the control-flow primitives and string-
valued variables provided by the shell. A knowledge of a programming language would be a help when read-
ing this section. The last section describes the more advanced features of the shell. References of the form
"see pipe (2)" are 1o a section of the UNIX Programmer’s Manual (Reference 2).

1.1. Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the name of the com-
mand to be executed; any remaining words are passed as arguments to the command. For example,

who
is a command that prints the names of users logged in. The command
Is -]
prints a list of files in the current directory. The argument —/ tells Is to print status information, size and the
creation date for each file.
1.2. Background commands

To execute a command the shell normally creates a new process and waits for it to finish. A command may be
run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the shell not to wait
for the command to finish. To help keep track of such a process the shell reports its process number following
its creation. A list of currently active processes may be obtained using the ps command.

1.3. Input/output redirection

Most commands produce output on the standard output that is initially connected to the terminal. This output
may be sent to a file by writing, for example,

Is -1 >file

The notation >file is interpreted by the shell and is not passed as an argument to Is. If file does not exist then
the shell creates it; otherwise the original contents of file are replaced with the output from Is. Output may be
appended to a file using the notation

Is -1 >»file
In this case file is also created if it does not already exist.
The standard input of a command may be taken from a file instead of the terminal by writing, for example,

wc <file

The command wc reads its standard input (in this case redirected from file) and prints the number of charac-
ters, words and lines found. If only the number of lines is required then

wc ~] <file

could be used.

ND-60.328.1P EN

USD:54 ’ An Introduction to the UNIX Shell

1.4. Pipelines and filters

The standard output of one command may be connected to the standard input of another by writing the ‘pipe’
operator, indicated by |, as in,

Is—1 | wc
Two commands connected in this way constitute a pipeline and the overall effect is the same as
Is -1 >file; wc <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and are run in
parallel. Pipes are unidirectional and synchronization is achieved by halting wc when there is nothing to read
and halting Is when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the result as output.
One such filter, grep, selects from its input those lines that contain some specified string. For example,

Is | grep old

prints those lines, if any, of the output from Is that contain the string old. Another useful filter is sort. For
example,

who | sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,
Is | grepold | we -1

prints the number of file names in the current directory containing the string old.

1.5. File name generation
Many commands accept arguments which are file names. For example,
Is ~1 main.c
prints information relating to the file main.c.
The shell provides a mechanism for generating a list of file names that match a pattern. For example,

Is —1 %.c

gencrales, as arguments to Is, all file names in the current directory that end in .c. The character * is a pattern
that will match any string including the null string. In general patterns are specified as follows.

* Matches any string of characters including the null string.
? Matches any single character.

[..] Matches any one of the characters enclosed. A pair of characters separated by a minus will
match any character lexically between the pair.

For example,
[a—2z]*

matches all names in the current directory beginning with one of the letters a through z.
[ust/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file name is found that
matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It may also be
uscd to find files. For example,

echo fusr/fred/+/core

finds and prints the names of all core files in sub-directories of /usr/fred. (echo is a standard UNIX command
that prints its arguments, scparated by blanks.) This last feature can be expensive, requiring a scan of all sub-

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-5

directories of /usr/fred.

There is one exception to the general rules given for patterns. The character *." at the start of a file name must
be explicitly matched.

echo *
will therefore echo all file names in the current directory not beginning with ©.”,

echo .x

will echo all those file names that begin with “.”. This avoids inadvertent matching of the names “." and ..’
which mean ‘the current directory’ and ‘the parent directory’ respectively. (Notice that Is suppresses informa-

tion for the files *.” and “..”)
1.6. Quoting

Characters that have a special meaning to the shell, such as < > * ? | &, are called metacharacters. A com-

plete list of metacharacters is given in appendix B. Any character preceded by a \ is quoted and loses its spe-
cial meaning, if any. The \ is elided so that

echo \?
will echo a single ?, and
echo\

will echo a single \. To allow long strings 0 be continued over more than one line the sequence \newline is
ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the above mechan-

ism is clumsy and error prone. A string of characters may be quoted by enclosing the string between single
quotes. For example,

echo XX %% k% “XX
will echo
XXk ok ok kXX

The quoted string may not contain a single quote but may contain newlines, which are preserved. This quoting
mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is also available that prevents interpretation of some but not
all metacharacters. Discussion of the details is deferred to section 3.4 .
1.7. Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By default this
prompt is ‘$ *. It may be changed by saying, for example,

PS1=yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed then the shell
will issue the prompt ‘> *. Sometimes this can be caused by mistyping a quote mark. If it is unexpected then

an interrupt (DEL) will return the shell to read another command. This prompt may be changed by saying, for
example,

PS2=more

1.8. The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If the user’s login
directory contains the file .profile then it is assumed 10 contain commands and is read by the shell before read-
ing any commands from the terminal.

ND-60.328.1P EN

USD:5-6 : An Introduction to the UNIX Shell

1.9. Summary

. Is
Print the names of files in the current directory.
. Is >file

Put the output from Is into file.
. Is | we -1
Print the number of files in the current directory.

. Is | grep old
Print those file names containing the string old.

. Is | grep old | we -1
Print the number of files whose name contains the string old.

. cc pgm.c &
Run cc in the background.

2. SHELL PROCEDURES
The shell may be used to read and execute commands contained in a file. For example,

sh file [args ...]

calls the shell to read commands from file. Such a file is called a command procedure or shell procedure.
Arguments may be supplied with the call and are referred to in file using the positional parameters $1, $2, ...
For example, if the file wg contains

who | grep $1
then

sh wg fred
is equivalent to

who | grep fred

UNIX files have three independent attributes, read, write and execute. The UNIX command chmod (1) may be
used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status. Following this, the command
wg fred

is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchangeably. In cither case a new process is created
to run the command.

As well as providing names for the positional parameters, the number of positional parameters in the call is
available as $#. The name of the file being executed is available as $0.

A special shell parameter $# is used to substitute for all positional parameters except $0. A typical use of this
is to provide some default arguments, as in,

nroff —T450 —ms $x

which simply prepends some arguments to those already given.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-7

2.1. Control flow - for

A frequent use of shell procedures is to loop through the arguments ($1, $2, ...) executing commands once for
each argument. An example of such a procedure is fel that searches the file /usr/lib/telnos that contains lines
of the form

fred mh0123
bert mh(789

see

The text of tel is

for i
do grep $i fusr/libftelnos; done

The command
tel fred
prints those lines in /usr/lib/telnos that contain the string fred .
tel fred bert
prints those lines containing fred followed by those for bert.
The for loop notation is recognized by the shell and has the general form

for name in wi w2 ...
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a newline or semi-
colon. Furthermore, reserved words like do and done are only recognized following a newline or semicolon.
name is a shell variable that is set to the words w! w2 ... in turn each time the command-list following do is

executed. If im w/ w2 ... is omiued then the loop is executed once for each positional parameter; that is, in
3% is assumed.

Another example of the use of the for loop is the create command whose text 1s
for i do >$i; done
The command

create alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation >file may be used on its own to
create or clear the contents of a file. Notice also that a semicolon (or newline) is required before done.

2.2. Control flow - case

A multiple way branch is provided for by the case notation. For example,

case $# in

1) cat »$1 ;;

2) cat >»32 <$1 ;;

*) echo “usage: append [from] to” :;
esac

is an append command. When called with onc argument as
append file

$# is the string / and the standard input is copied onto the end of file using the cat command.
append filel file2

appends the contents of filel onto file2. If the number of arguments supplicd o append is other than 1 or 2
then a message is printed indicating proper usage.

ND-60.328.1P EN

USD:5-8 ‘ : An Introduction to the UNIX Shell

The general form of the case command is

case word in
pattern) conmand-list ;;

coe

€sac

The shell atempts to match word with each pattern, in the order in which the patterns appear. If a match is
found the associated command-list is executed and execution of the case is complete. Since * is the pattern
that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argument. The first

match found defines the set of commands to be executed. In the example below the commands following the
second * will never be executed.

case $# in
3 T
*) ool
esac

Another example of the use of the case construction is to distinguish between different forms of an argument.
The following example is a fragment of a cc command.

for i

do case $i in
—[ocs]) ...
—%) echo “unknown flag $i” ;;
*.C) Aib/c0 $i ... ;
*) echo “unexpected argument $i”
esac

done

To allow the same commands to be associated with more than one pattern the case command provides for
alternative patterns separated by a | . For example,
case $i in
-x|=¥)...
esac
is equivalent to
case $i in
—[xyD) ...
esac

The usual quoting conventions apply so that

case $i in
\7)

will match the character ?.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-9

2.3. Here documents

The shell procedure tel in section 2.1 uses the file /usr/lib/telnos to supply the data for grep. An alternative is
to include this data within the shell procedure as a here document, as in,

fori
do grep $i «!

fred mh0123
bert mh0789

cen

!

done
In this example the shell takes the lines between «<! and ! as the standard input for grep. The string ! is arbi-
trary, the document being terminated by a line that consists of the string following <.

Parameters are substituted in the document before it is made available to grep as illustrated by the following
procedure called edg .

ed $3 <%
g/$1/s//$2/g
w

%
The call

edg string1 string? file
is then equivalent to the command

ed file <%
g/string1/s//string2/g
w

%

and changes all occurrences of stringl in file to string2 . Substitution can be prevented using \ to quote the
special character $ as in

ed $3 <+
1N\$s/$1/$2/g
w

+

(This version of edg is equivalent 1o the first except that ed will print a ? if there are no occurrences of the
string $1.) Substitution within a here document may be prevented entirely by quoting the terminating string,
for example,

grep $i <M

#

The document is presented without modification to grep. If parameter substitution is not required in a here
document this latter form is more efficient.

2.4. Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of letters, digits and
underscores. Variables may be given values by writing, for example,

user=fred box=m000 acct=mh0000)

which assigns values to the variables user, box and acct. A variable may be set 10 the null string by saying,
for example,

ND-60.328.1P EN

USD:5-10

An Introduction to the UNIX Shell

null=

The value of a variable is substituted by preceding its name with $; for example,

will echo fred.

echo $user

Variables may be used interactively to provide abbreviations for frequently used strings. For example,

b=/usr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory /usr/fred/bin. A more general notation is
available for parameter (or variable) substitution, as in,

echo ${user)

which is equivalent to

echo Suser

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a>${tmp}a

will direct the output of ps to the file /tmp/psa, whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substituted.
Except for $? the following are set initially by the shell. $? is set after executing each command.

$?

$#

$$

$!
$-

The exit status (return code) of the last command executed as a decimal string. Most com-
mands return a zero exit status if they complete successfully, otherwise a non-zero exit status is
returned. Testing the value of return codes is dealt with later under if and while commands.

The number of positional parameters (in decimal). Used, for example, in the append command
to check the number of parameters.

The process number of this shell (in decimal). Since process numbers are unique among all

existing processes, this string is frequently used to generate unique temporary file names. For
example,

ps a >/tmp/psS
rm /tmp/ps$$

The process number of the last process run in the background (in decimal).
The current shell flags, such as —x and —v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL

$HOME

When used interactively the shell looks at the file specified by this variable before it issues a
prompt. If the specified file has been modified since it was last looked at the shell prints the
message you have mail before prompting for the next command. This variable is typically set
in the file .profile, in the user’s login directory. For cxample,

MAIL=/usr/spool/mail/fred

The default argument for the cd command. The current directory is used to resolve file name
references that do not begin with a /, and is changed using the ¢d command. For example,
cd /usr/fred/bin

makes the current directory /usr/fred/bin.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-11

cat wn

will print on the terminal the file wn in this directory. The command cd with no argument is
equivalent to

cd $SHOME

This variable is also typically set in the the user’s login profile.

$PATH A list of directories that contain commands (the search path). Each time a command is exe-
cuted by the shell a list of directories is searched for an executable file. If $PATH is not set
then the current directory, /bin, and /asr/bin are searched by default. Otherwise $PATH con-
sists of directory names separated by :. For example,

PATH=:/usr/fred/bin:/bin: usr/bin

specifies that the current directory (the null string before the first :), /usr/fred/bin, /bin and
/usr/bin are to be searched in that order. In this way individual users can have their own
‘private’ commands that are accessible independently of the current directory. If the command
name contains a / then this directory search is not used; a single attempt is made to execute the
command.

$PS1 The primary shell prompt string, by default, $.

$PS2 The shell prompt when further input is needed, by default, ‘> °.

$IFS The set of characters used by blank interpretation (see section 3.4).

2.5. The test command
The test command, although not part of the shell, is intended for use by shell programs. For example,
test —f file

returns zero exit status if file exists and non-zero exit status otherwise. In general fest evaluates a predicate
and returns the result as its exit status. Some of the more frequently used test arguments are given here, see
test (1) for a complete specification.

test s true if the argument s is not the null string
test —f file true if file exists

test —r file true if file is readable

test —w file true if file is writable

test —d file true if file is a directory

2.6. Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell. A while or until
loop and an if then else branch are also provided whose actions are determined by the exit status returned by
commands. A while loop has the general form

while command-list,
do command-list,
done

The value tested by the while command is the exit status of the last simple command following while. Each
time round the loop command-list, is executed; if a zero exit status is returned then command-list, is executed;
otherwise, the loop terminates. For example,

while test $1
do...

shift
done

is equivalent to

ND-60.328.1P EN

USD:5-12 ' : An Introduction to the UNIX Shell

fori

do...

done
shift is a shell command that renames the positional parameters $2, $3, ... as $1, $2, ... and loses $1.
Another kind of use for the while/until loop is to wait until some external event occurs and then run some
commands. In an until loop the termination condition is reversed. For example,

until test —f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again. (Presumably
another process will eventually create the file.)

2.7. Control flow - if
Also available is a general conditional branch of the form,
if command-list
then command-list
else command-list
fi
that tests the value returned by the last simple command following if.
The if command may be used in conjunction with the test command to test for the existence of a file as in
if test —f file
then process file

else do something else
fi

An example of the use of if, case and for constructions is given in section 2.10.
A multiple test if command of the form

if ...

then ...

else if...
then ...
else if...

fi

fi

fi

may be written using an extension of the if notation as,

if ...

then ...

elif

then ..

elif

fi

The following example is the fouch command which changes the ‘last modified’ time for a list of files. The
command may be used in conjunction with make (1) to force recompilation of a list of files.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-13

flag=
for i
do case $i in
—) flag=N ;:

*) if test —f $i
then In $i junk$$; rm junk$$
clif test $flag
then echo file \'$i\" does not exist
else >$i
fi

esac

done

The —¢ flag is used in this command to force subsequent files to be created if they do not already exist. Other-
wise, if the file does not exist, an error message is printed. The shell variable flag is set 1o some non-null
string if the —¢ argument is encountered. The commands

In....m...

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

if command1
then command?2
fi

may be written

command] && command?2
Conversely,

commandl || command2

executes command? only if command] fails. In each case the value returned is that of the last simple com-
mand executed.

2.8. Command grouping
Commands may be grouped in two ways,

{ command-list ; }
and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a separate process.
For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

ND-60.328.1P EN

USD:5-14 ' ' ' An Introduction to the UNIX Shell

2.9. Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first is invoked
within the procedure as

set —v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help isolate
syntax errors. It may be invoked without modifying the procedure by saying

sh —v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the —n flag which
prevents execution of subsequent commands. (Note that saying set —n at a terminal will render the terminal
useless until an end-of-file is typed.)

The command
set —x

will produce an execution trace. Following parameter substitution each command is printed as it is executed.
(Try these at the terminal to see what effect they have.) Both flags may be turned off by saying
set —

and the current setting of the shell flags is available as $—.

2.10. The man command

The following is the man command which is used to diplay sections of the UNIX manual on your terminal. It
is called, for example, as

man sh
man —t ed
man 2 fork

In the first the manual section for sk is displayed.. Since no section is specified, section 1 is used. The second
example will typeset (-t option) the manual section for ed. The last prints the fork manual page from section
2, which covers system calls.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-15

cd /usr/man

: “colon is the comment command”
: “default is nroff ($N), section 1 ($s)”
N=n s=1

for i
do case $i in
[1-91%) s=$i;;
-ON=t ;;
-n) N=n;;
—%) echo unknown flag \"$i\" ;;

*) if test —f man$s/$i.$s
then ${N}roff man0/${N}aa man$s/$i.$s
else : “look through all manual sections”
found=no
forjin123456789
do if test —f man$;/$1.3j

then man $j $i
found=yes
fi
done

case $found in
no) echo “$i: manual page not found”
esac
fi
esac
done

Figure 1. A version of the man command

3. KEYWORD PARAMETERS

Shell variables may be given values by assignment or when a shell procedure is invoked. An argument to a
shell procedure of the form name=value that precedes the command name causes value to be assigned to name
before execution of the procedure begins. The value of name in the invoking shell is not affected. For exam-
ple,

user=fred command

will execute command with user set o fred. The —k flag causes arguments of the form name=value 10 be
interpreted in this way anywhere in the argument list. Such names are sometimes called keyword parameters.
If any arguments remain they are available as positional parameters $1, $2,

The ser command may also be used to set positional parameters from within a procedure. For example,
set — *

will set $1 to the first file name in the current directory, $2 1o the next, and so on. Note that the first argument,
—, ensures correct treatment when the first file name begins with a —.

ND-60.328.1P EN

USD:5-16 ' : ' An Introduction to the UNIX Shell

3.1. Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied with the call.
Keyword parameters are also made available implicitly to a shell procedure by specifying in advance that such
parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are made of all
exportable variables for use within the invoked procedure. Modification of such variables within the procedure
does not affect the values in the invoking shell. It is generally true of a shell procedure that it may not modify

the state of its caller without explicit request on the part of the caller. (Shared file descriptors are an exception
to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this command is
the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

3.2. Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the variable d is not set

echo $d

or
echo ${d}

will echo nothing. A default string may be given as in
echo ${d-.}

which will echo the value of the variable d if it is set and *.” otherwise. The default string is evaluated using
the usual quoting conventions so that

echo ${d—"%")
will echo # if the variable d is not set. Similarly
echo ${d-$1)

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be assigned a
default value using the notation

echo ${d=.}
which substitutes the same string as
echo ${d-.}

and if d were not previously set then it will be set to the string *.". (The notation ${...=...) is not available
for positional parameters.)

If there is no sensible default then the notation
echo ${d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and execution of
the shell procedure is abandoned. If message is absent then a standard message is printed. A shell procedure
that requires some parameters to be set might start as follows.

: ${user?} ${acct?) ${bin?)

Colon (:) is a command that is built in to the shell and does nothing once its arguments have been evaluated.
If any of the variables user, acct or bin are not set then the shell will abandon execution of the procedure.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-17

3.3. Command substitution

The standard output from a command can be substituted in a similar way to parameters. The command pwd
prints on its standard output the name of the current directory. For example, if the current directory is
lusr/fred/bin then the command

d="pwd’
is equivalent to
d=/usr/fred/bin

The entire string between grave accents (...") is taken as the command to be executed and is replaced with the
output from the command. The command is written using the usual quoting conventions except that a * must
be escaped using a \. For example,

Is “echo "$1™
is equivalent to
Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including here documents)
and the treatment of the resulting text is the same in both cases. This mechanism allows string processing
commands to be used within shell procedures. An example of such a command is basename which removes a
specified suffix from a string. For example,

basename main.c .c

will print the string main. Its use is illustrated by the following fragment from a cc command.
case $A in
*.c) B="basename $A
esac
that sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.
. foriin'ls-t';do...

The variable i is set to the names of files in time order, most recent first.

. set “date’; echo $6 $2 $3, $4
will print, e.g., 1977 Nov 1, 23:59:59

3.4. Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and file name gen-
eration for the arguments to commands. This section discusses the order in which these evaluations occur and
the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a command is executed
the following substitutions occur.

. paramelter substitution, e.g. $user
. command substitution, e.g. “pwd’
Only one evaluation occurs so that if, for example, the value of the variable X is the string $y then
echo $X
will echo $y.
. blank interpretation

Following the above substitutions the resulting characters are broken into non-blank words (blank
interpretation). For this purpose ‘blanks’ are the characters of the string $IFS. By default, this

ND-60.328.1P EN

USD:5-18 : An Introduction to the UNIX Shell

string consists of blank, tab and newline. The null string is not regarded as a word unless it is
quoted. For example,

,.

echo
will pass on the null string as the first argument to echo, whereas
echo $null

will call echo with no arguments if the variable null is not set or set to the null string.
. file name genecration

Each word is then scanned for the file pattern characters #, ? and [...] and an alphabetical list of
file names is generated to replace the word. Each such file name is a separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only substitution
occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and "..." a third quoting mechanism is provided
using double quotes. Within double quotes parameter and command substitution occurs but file name genera-

tion and the interpretation of blanks does not. The following characters have a special meaning within double
quotes and may be quoted using \.

$ parameter substitution
command substitution
ends the quoted string
\ quotes the special characters $° " \

For example,
echo "$x”

will pass the value of the variable x as a single argument to echo. Similarly,
echo "$x"

will pass the positional parameters as a single argument and is equivalent to
echo "$1$2..."

The notation $@ is the same as $* except when it is quoted.
echo "$@"

will pass the positional parameters, unevaluated, 0 echo and is equivalent to
echo "$1" "$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.

metacharacter
\ $ *) "
n n n n n t
y n n t n n
Ty oy noy ot n
t terminator
y interpreted

n not interpreted

Figure 2. Quoting mechanisms

In cases where more than onc evaluation of a string is required the built-in command eval may be used. For
example, if the variable X has the value $y, and if y has the value pgr then

eval echo $X
will echo the string pqr.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-19

In general the eval command evaluates its arguments (as do all commands) and treats the result as input to the
shell. The input is read and the resulting command(s) executed. For example,

wg="eval who|grep”
Swyg fred

is equivalent to
who| grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as |, following substi-
tution.

3.5. Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is being
used interactively. An interactive shell is one whose input and output are connected to a terminal (as deter-
mined by grty (2)). A shell invoked with the —i flag is also interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.
) Input output redirection may fail. For example, if a file does not exist or cannot be created.
. The command itself does not exist or cannot be executed.

. The command terminates abnormally, for example, with a "bus error” or "memory fault”. Sce Figure 2
below for a complete list of UNIX signals.

. The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case an error mes-
sage will be printed by the shell. All remaining errors cause the shell to exit from a command procedure. An
interactive shell will return to read another command from the terminal. Such errors include the following.

. Syntax errors. e.g., if ... then ... done

. A signal such as interrupt. The shell waits for the current command, if any, to finish execution and then
either exits or returns 1o the terminal.

. Failure of any of the built-in commands such as cd.
The shell flag —e causes the shell to terminate if any errorf is detected.

1 hangup
2 interrupt
3* quit

4* illegal instruction

5* trace trap

6* IOT instruction

7* EMT instruction

8* floating point exception

9 kill (cannot be caught or ignored)
10* bus error

11* segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock

15 software termination (from kill (1))

Figure 3. UNIX signalst

Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself ignores
quit which is the only external signal that can causc a dump. The signals in this list of potential interest to
shell programs are 1, 2, 3, 14 and 15.

t Additional signals have been added in Berkeley Unix. See sigvec(2) or signal(3C) for an up-to-date list.

ND-60.328.1P EN

USD:5-20 : An Introduction to the UNIX Shell

3.6. Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap command is
used if some cleaning up is required, such as removing temporary files. For example,

trap ‘rm Amp/ps$$; exit’ 2
sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands
rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is required; other-
wise, after the trap has been taken, the shell will resume executing the procedure at the place where it was
interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal is never
sent to the process. They can be caught, in which case the process must decide what action to take when the
signal is received. Lastly, they can be left to cause termination of the process without it having to take any
further action. If a signal is being ignored on entry to the shell procedure, for example, by invoking it in the
background (see 3.7) then trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command (Figure 4). The cleanup action is
to remove the file junk$$.

flag=
trap ‘rm —f junk$3; exit” 123 15
fori
do case $i in
-C) flag=N ;;
*) if test —f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \'$1\" does not exist
else >$i
fi
esac
done

Figure 4. The touch command
The trap command appears before the creation of the temporary file; otherwise it would be possible for the
process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed on exit from
the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap. The fol-
lowing fragment is taken from the nohup command.

trap " 123 15

which causes hangup, interrupt, quit and kill 10 be ignored both by the procedure and by invoked commands.
Traps may be reset by saying
trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps may be
obtained by writing

trap
The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the trap command.
scan takes each directory in the current directory, prompts with its name, and then executes commands typed at

the terminal until an end of file or an interrupt is received. Interrupts are ignored while exccuting the requested
commands but cause termination when scan is waiting for input.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-21

d="pwd’
foriin %
do if test —d $d/$i
then cd $d/%i
while echo "$i:"
trap exit 2
read x
do trap : 2; eval $x; done
fi
done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in the variable x.
It returns a non-zero exit status if either an end-of-file is read or an interrupt is received.

3.7. Command execution

To run a command (other than a built-in) the shell first creates a new process using the system call fork. The
execution environment for the command includes input, output and the states of signals, and is established in
the child process before the command is executed. The built-in command exec is used in the rare cases when
no fork is required and simply replaces the shell with a new command. For example, a simple version of the
nohup command looks like

tap " 12315
exec $x

The trap turns off the signals specified so that they are ignored by subsequently created commands and exec
replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is only subject to
parameter and command substitution. No file name generation or blank interpretation takes place so that, for
example,

echo...>%.c

will write its output into a file whose name is *.c. Input output specifications are evaluated left to right as
they appear in the command.

> word The standard output (file descriptor 1) is sent to the file word which is created if it does not
already cxist.

> word The standard output is sent to file word. If the file exists then output is appended (by seeking to
the end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from the file word.

< word The standard input is taken from the lines of shell input that follow up to but not including a
line consisting only of word. If word is quoted then no interpretation of the document occurs.
If word is not quoted then parameter and command substitution occur and \ is used to quote the
characters \ $ * and the first character of word. In the latter case \newline is ignored (c.f. quoted
strings).

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is used as the
standard output.

<& digit The standard input is duplicated from file descriptor digit.
<&~ The standard input is closed.
>&— The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that specified by the
digit instead of the default 0 or 1. For example,

ND-60.328.1P EN

USD:5-22 ' ‘ An Introduction to the UNIX Shell

.0 2>file
runs a command with message output (file descriptor 2) directed to file.
L 22&1
runs a command with its standard output and message output merged. (Strictly speaking file descriptor 2 is
created by duplicating file descriptor 1 but the effect is usually to merge the two streams.)
The environment for a command run in the background such as
list ¥.c | Ipr &

is modified in two ways. Firstly, the default standard input for such a command is the empty file /dev/null .
This prevents two processes (the shell and the command), which are running in parallel, from trying to read the
same input. Chaos would ensue if this were not the case. For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT and INTER-
RUPT signals so that they are ignored by the command. This allows these signals to be used at the terminal
without causing background commands to terminate. For this reason the UNIX convention for a signal is that
if it is set to 1 (ignored) then it is never changed even for a short time. Note that the shell command trap has
no effect for an ignored signal.

3.8. Invoking the shell
The following flags are interpreted by the shell when it is invoked. If the first character of argument zero is a
minus, then commands are read from the file .profile.
—C string
If the —c flag is present then commands are read from string .

—s If the —s flag is present or if no arguments remain then commands are read from the standard input.
Shell output is written to file descriptor 2.

—i If the —i flag is present or if the shell input and output are attached to a terminal (as told by gtry) then
this shell is interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an interactive
shell) and INTERRUPT is caught and ignored (so that wait is interruptable). In all cases QUIT is
ignored by the shell.

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-23

ACKNOWLEDGEMENTS

The design of the shell is based in part on the original UNIX shell [3] and the PWB/UNIX shell [4], some
features having been taken from both. Similarities also exist with the command interpreters of the Cambridge
Multiple Access System [5] and of CTSS [6].

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the shell. I
am also grateful to the members of the Computing Science Research Center and to Joe Maranzano for their
comments on drafts of this document.

REFERENCES

1 B. W. Kemighan, UNIX for Beginners, 1978. Reprinted as USD:3 in the NDIX Users Supplementary
Documents manual (ND-60.328), 1988.

K. Thompson and D. M. Ritchie, Unix Programmers Manual, Bell Laboratories, 1978. Seventh Edition.

3 K. Thompson, The UNIX Command Language, in "Structured Programming - Infotech State of the Art
Report”, pp 375-384, Infotech International Ltd., Maidenhead, Berkshire, England, March 1975.

3 J. R. Mashey, PWB/UNIX Shell Tutorial, September 30, 1977.

5 D. F. Harley (Ed.), The Cambridge Multiple Access System - Users Reference Manual, University
Mathematical Laboratory, Cambridge, England. 1968.

6 P. A. Crisman (Ed.), The Compatible Time-Sharing System, M.L.T. Press, Cambridge, Mass., USA. 1965.

ND-60.328.1P EN

USD:5-24

APPENDIX A - Grammar

item:

word
input-output
name = value

simple-command: item

simple-command item

command: simple-command

pipeline:

andor:

(command-list)

{ command-list }

for name do command-list done

for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac

if command-list then command-list else-part fi

command
pipeline | command

pipeline
andor && pipeline
andor || pipeline

command-list: andor

command-list ;
command-list &
command-list ; andor
command-list & andor

An Introduction to the UNIX Shell

input-output: > file
< file
>> word
<« word
file: word
& digit
& -
case-part: pattern) command-list 3;
pattern: word
pattern | word
else-part: elif command-list then command-list else-part
else command-list
empty
empty:
word: a sequence of non-blank characters
name: a sequence of letters, digits or underscores starting with a letter
digit: 0123456789

ND-60.328.1P EN

An Introduction to the UNIX Shell USD:5-25

Appendix B - Meta-characters and Reserved Words
a) syntactic
] pipe symbol
&& ‘andf’ symbol
‘orf” symbol
command separator

.o

case delimiter

-
e

& background commands
() command grouping
< input redirection
« input from a here document
> output creation
>> output append
b) patterns
* match any character(s) including none
? match any single character

[...] match any of the enclosed characters

¢) substitution
${...} substitute shell variable

N

. substitute command output

d) quoting
\ quote the next character
" quote the enclosed characters except for ©

1" "

-." quote the enclosed characters except for $ * \ *

e) reserved words

if then else elif fi
case in esac
for while until do done

{3

ND-60.328.1P EN

USD:5-26 : An Introduction to the UNIX Shell

ND-60.328.1P EN

An Introduction to the C Shell USD:6-1

An Introduction to the C shell

William Joy
(revised for 4.3BSD by Mark Seiden)

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNIXt systems. It incorporates good
features of other shells and a history mechanism similar to the redo of INTERLISP. While
incorporating many features of other shells which make writing shell programs (shell
scripts) easier, most of the features unique to csh are designed more for the interactive UNIX
user.

UNIX users who have read a general introduction to the system will find a valuable basic
explanation of the shell here. Simple terminal interaction with csh is possible after reading
Just the first section of this document. The second section describes the shell’s capabilities
which you can explore after you have begun to become acquainted with the shell. Later sec-
tions introduce features which are useful, but not necessary for all users of the shell.

Additional information includes an appendix listing special characters of the shell and a
glossary of terms and commands introduced in this manual.

T UNIX is a registered trademark of AT&T in the USA and other countries.

ND-60.328.1P EN

USD:6-2 ' : An Introduction to the C Shell

ND-60.328.1P EN

An Introduction to the C Shell USD:6-3

Introduction

A shell is a command language interpreter. Csh is the name of one particular command interpreter on UNIX.
The primary purpose of csh is to translate command lines typed at a terminal into system actions, such as
invocation of other programs. Csh is a user program just like any you might write. Hopefully, csh will be a
very useful program for you in interacting with the UNIX System.

In addition to this document, you will want to refer to a copy of the UNIX User Reference Manual. The csh
documentation in section 1 of the manual provides a full description of all features of the shell and is the
definitive reference for questions about the shell.

Many words in this document are shown in italics. These are important words; names of commands, and
words which have special meaning in discussing the shell and UNIX. Many of the words are defined in a glos-
sary at the end of this document. If you don’t know what is meant by a word, you should look for it in the
glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh and aided in its debugging and in
the debugging of its documentation. I would especially like to thank Michael Ubell who made the crucial
observation that history commands could be done well over the word structure of input text, and implemented
a prototype history mechanism in an older version of the shell. Eric Allman has also provided a large number
of useful comments on the shell, helping to unify those concepts which are present and to identify and elim-
inate useless and marginally useful features. Mike O’Brien suggested the pathname hashing mechanism which
speeds command execution. Jim Kulp added the job control and directory stack primitives and added their
documentation to this introduction.

ND-60.328.1P EN

USD:6-4 ‘ ‘ An Introduction to the C Shell

1. TERMINAL USAGE OF THE SHELL

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other programs are invoked. While it has a set of
builtin functions which it performs directly, most commands cause execution of programs that are, in fact,
external to the shell. The shell is thus distinguished from the command interpreters of other systems both by
the fact that it is just a user program, and by the fact that it is used almost exclusively as a mechanism for
invoking other programs.

Commands in the UNIX system consist of a list of strings or words interpreted as a command name followed
by arguments. Thus the command

mail bill
consists of two words. The first word mail names the command to be executed, in this case the mail program
which sends messages to other users. The shell uses the name of the command in attempting to execute it for

you. It will look in a number of directories for a file with the name mail which is expected to contain the
mail program.

The rest of the words of the command are given as arguments to the command itself when it is executed. In
this case we specified also the argument bill which is interpreted by the mail program to be the name of a user
to whom mail is to be sent. In normal terminal usage we might use the mail command as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
EOT
%

Here we typed a message to send to bill and ended this message with a AD which sent an end-of-file to the
mail program. (Here and throughout this document, the notation ““‘Ax”’ is to be read ‘‘control-x’’ and
represents the striking of the x key while the control key is held down.) The mail program then echoed the
characters “‘EOT’ and transmitted our message. The characters ‘% * were printed before and after the mail
command by the shell to indicate that input was needed.

After typing the ‘% * prompt the shell was reading command input from our terminal. We typed a complete
command ‘mail bill’. The shell then executed the mail program with argument bill and went dormant waiting
for it to complete. The mail program then read input from our terminal until we signalled an end-of-file via
typing a AD after which the shell noticed that mail had completed and signaled us that it was ready to read
from the terminal again by printing another ‘% * prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete command is typed at the
terminal, the shell executes the command and when this execution completes, it prompts for a new command.
If you run the editor for an hour, the shell will patienly wait for you to finish editing and obediently prompt
you again whenever you finish editing.

An example of a useful command you can execute now is the tser command, which sets the default erase and
kill characters on your terminal - the erase character erases the last character you typed and the kill character
erases the entire line you have entered so far. By default, the crase character is the delete key (equivalent to
“A7") and the kill character is ‘AU’. Some people prefer to make the erase character the backspace key
(cquivalent to *AH’). You can make this be true by typing

tset —¢

which tells the program fset to set the erase character to tset’s default setting for this character (a backspace).

1.2. Flag arguments

A uscful notion in UNIX is that of a flag argument. While many arguments to commands specify file names or
uscr namces, some arguments rather specify an optional capability of the command which you wish to invoke.
By convention, such arguments begin with the character *~ (hyphen). Thus the command

ND-60.328.1P EN

An Introduction to the C Shell USD:6-5

Is

will produce a list of the files in the current working directory. The option -5 is the size option, and
Is —s

causes /s to also give, for each file the size of the file in blocks of 512 characters. The manual section for each
command in the UNIX reference manual gives the available options for each command. The s command has a
large number of useful and interesting options. Most other commands have either no options or only one or
two options. It is hard to remember options of commands which are not used very frequently, so most UNIX
utilities perform only one or two functions rather than having a large number of hard to remember options.

1.3. Output to files

Commands that normally read input or write output on the terminal can also be executed with this input and/or
output done to a file.

Thus suppose we wish to save the current date in a file called ‘now’. The command
date

will print the current date on our terminal. This is because our terminal is the default standard output for the
date command and the date command prints the date on its standard output. The shell lets us redirect the
standard output of a command through a notation using the metacharacter ‘>’ and the name of the file where
output is to be placed. Thus the command

date > now

runs the date command such that its standard output is the file ‘now’ rather than the terminal. Thus this com-
mand places the current date and time into the file ‘now’. It is important to know that the date command was
unaware that its output was going to a file rather than (o the terminal. The shell performed this redirection
before the command began executing.

One other thing to note here is that the file ‘now’ need not have existed before the date command was exe-
cuted; the shell would have created the file if it did not exist. And if the file did exist? If it had existed previ-
ously these previous contents would have been discarded! A shell option noclobber exists to prevent this from
happening accidentally; it is discussed in section 2.2.

The system normally keeps files which you create with “>’ and all other files. Thus the defautlt is for files to
be permanent. If you wish to create a file which will be removed automatically, you can begin its name with a
‘#' character, this ‘scratch’ character denotes the fact that the file will be a scratch file.t The system will
remove such files after a couple of days, or sooner if file space becomes very tight. Thus, in running the date
command above, we don’t really want to save the output forever, so we would more likely do

date > #now

1.4. Metacharacters in the shell

The shell has a large number of special characters (like *>’) which indicate special functions. We say that
these notations have syntactic and semantic meaning to the shell. In general, most characters which are nej-
ther letters nor digits have special meaning to the shell. We shall shortly learn a means of quotation which
allows us to use metacharacters without the shell treating them in any special way.

Metacharacters normally have effect only when the shell is reading our input. We need not worry about plac-
ing shell metacharacters in a letier we are sending via mail, or when we are typing in text or data to some
other program. Note that the shell is only reading input when it has prompted with ‘% * (although we can type
our input even before it prompts).

T Note that if your erase character is a ‘#°, you will have 1o precede the *#' with a \'. The fact that the ‘#' character is
the old (precrT) standard crase character means that it seldom appears in a file name, and allows this convention to be

used for scratch files. If you are using a CRT, your erase character should be a AH, as we demonstrated in section 1.1 how
this could be set up.

ND-60.328.1P EN

USD:6-6 ' An Introduction to the C Shell

1.5. Input from files; pipelines

We leamed above how to redirect the standard output of a command to a file. It is also possible to redirect
the standard input of a command from a file. This is not often necessary since most commands will read from
a file whose name is given as an argument. We can give the command

sort < data

to run the sort command with standard input, where the command normally reads its input, from the file
‘data’. We would more likely say

sort data

letting the sort command open the file ‘data’ for input itself since this is less to type.
We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the standard input, it
would sort lines as we typed them on the terminal until we typed a AD to indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command with the standard input
of another, i.e. to run the commands in a sequence known as a pipeline. For instance the command

Is -8

normally produces a list of the files in our directory with the size of each in blocks of 512 characters. If we
are interested in learning which of our files is largest we may wish to have this sorted by size rather than by
name, which is the default way in which Is sorts. We could look at the many options of Is to see if there was
an option to do this but would eventually discover that there is not. Instead we can use a couple of simple
options of the sort command, combining it with Is to get what we want.

The —n option of sort specifies a numeric sort rather than an alphabetic sort. Thus

Is —s | sort —

specifies that the output of the Is command run with the option —s is to be piped to the command sort run
with the numeric sort option. This would give us a sorted list of our files by size, but with the smallest first.
We could then use the —r reverse sort option and the head command in combination with the previous com-
mand doing

Is ~s | sort -—n —r | head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We have run this to
the standard input of the sort command asking it to sort numerically in reverse order (largest first). This out-
put has then been run into the command head which gives us the first few lines. In this case we have asked
head for the first 5 lines. Thus this command gives us the names and sizes of our 5 largest files.

The notation introduced above is called the pipe mechanism. Commands separated by ‘1’ characters are con-
nected together by the shell and the standard output of each is run into the standard input of the next. The left-
most command in a pipeline will normally take its standard input from the terminal and the rightmost will
place its standard output on the terminal. Other examples of pipelines will be given later when we discuss the

history mechanism; one important use of pipes which is illustrated there is in the routing of information to the
line printer.

1.6. Filenames

Many commands to be executed will nced the names of files as arguments. UNIX pathnames consist of a
number of components separated by ‘/’. Each component except the last names a directory in which the next
component resides, in effect specifying the path of directories to follow to reach the file. Thus the pathname

fetc/motd
specifies a file in the directory ‘etc’ which is a subdircctory of the root dircctory ‘/. Within this directory the
file named is ‘motd” which stands for ‘message of the day’. A pathname that begins with a slash is said to be

an absolute pathname since it is specified from the absolute top of the entire directory hicrarchy of the system
(the root). Pathnames which do not begin with ¢/’ are interpreted as starting in the current working directory ,

ND-60.328.1P EN

An Introduction to the C Shell USD:6-7

which is, by default, your home directory and can be changed dynamically by the cd change directory com-
mand. Such pathnames arc said to be relative to the working directory since they are found by starting in the
working directory and descending to lower levels of directories for each component of the pathname. If the
pathname contains no slashes at all then the file is contained in the working directory itself and the pathname
is merely the name of the file in this directory. Absolute pathnames have no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and *.’s (periods). In fact, all printing charac-
ters except ‘/° (slash) may appear in filenames. It is inconvenient to have most non-alphabetic characters in
filenames because many of these have special meaning to the shell. The character *.’ (period) is not a shell-
metacharacter and is often used to separate the extension of a file name from the base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that part of the name that is
left when a trailing *.” and following characters which are not *.’ are stripped off). The file ‘prog.c’ might be
the source for a C program, the file ‘prog.o’ the corresponding object file, the file ‘prog.crrs’ the errors result-
ing from a compilation of the program and the file ‘prog.output’ the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the notation
prog.*

This expression is expanded by the shell, before the command to which it is an argument is executed, into a
list of names which begin with ‘prog.”’. The character ‘*’ here matches any sequence (including the empty
sequence) of characters in a file name. The names which match are alphabetically sorted and placed in the
argument list of the command. Thus the command

echo prog.*
will echo the names
prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed them above. The echo com-
mand receives four words as arguments, even though we only typed one word as as argument directly., The
four words were generated by filename expansion of the one input word.

Other notations for filename expansion are also available. The character “?’ matches any single character in a
filename. Thus

echo? 77 177

will echo a line of filenames; first those with one character names, then those with two character names, and
finally those with three character names. The names of each length will be independently sorted.

Another mechanism consists of a sequence of characters between ‘[* and ‘. This metasequence matches any
single character from the enclosed set. Thus

prog.[co]
will match
prog.c prog.o
in the example above. We can also place two characters around a ‘- in this notation o denote a range. Thus
chap.[1-5]
might match files
chap.1 chap.2 chap.3 chap.4 chap.5
if they existed. This is shorthand for
chap.[12345]
and otherwise equivalent.

An important point to note is that if a list of argument words to a command (an argument list) conlains
filename expansion syntax, and if this filcname expansion syntax fails to match any existing file names, then

ND-60.328.1P EN

USD:6-8 ' : An Introduction to the C Shell

the shell considers this to be an error and prints a diagnostic
No match,
and does not execute the command.

Another very important point is that files with the character ‘.’ at the beginning are treated specially. Neither
“*"or ‘7" or the ‘[’ ‘]" mechanism will match it. This prevents accidental matching of the filenames “.” and *..’
in the working directory which have special meaning to the system, as well as other files such as .cshrc which
are not normally visible. We will discuss the special role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home directory of other users.
This notation consists of the character ‘~* (tilde) followed by another user’s login name. For instance the word
‘~bill’ would map to the pathname ‘fust/bill’ if the home directory for ‘bill’ was ‘/usr/bill’. Since, on large
systems, users may have login directories scattered over many different disk volumes with different prefix
directory names, this notation provides a convenient way of accessing the files of other users.

A special case of this notation consists of a ‘~’ alone, e.g. ‘~/mbox’. This notation is expanded by the shell
into the file ‘mbox’ in your home directory, i.e. into ‘/ust/bill/mbox’ for me on Emie Co-vax, the UCB Com-
puter Science Department VAX machine, where this document was prepared. This can be very useful if you
have used cd to change to another directory and have found a file you wish to copy using ¢p. If I give the
command

cp thatfile ~

the shell will expand this command to
cp thatfile fusr/bill

since my home directory is /usr/bill.

There also exists a mechanism using the characters ‘{* and ‘)’ for abbreviating a set of words which have
common parts but cannot be abbreviated by the above mechanisms because they are not files, are the names of
files which do not yet exist, are not thus conveniently described. This mechanism will be described much
later, in section 4.2, as it is used less frequently.

1.7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharacters pose a problem in
that we cannot use them directly as parts of words. Thus the command

echo *

will not echo the character “**. It will either echo an sorted list of filenames in the current working directory,
or print the message ‘No match’ if there are no files in the working directory.

The recommended mechanism for placing characters which are neither numbers, digits, ‘/°, ‘. or ‘-’ in an
argument word to a command is to enclose it with single quotation characters ‘| i.e.

echo ™**

There is one special character ‘!” which is used by the history mechanism of the shell and which cannot be
escaped by placing it within ** characters. It and the character *” itself can be preceded by a single \’ to
prevent their special meaning. Thus

echo \\!

prints

ND-60.328.1P EN

An Introduction to the C Shell USD:6-9

These two mechanisms suffice to place any printing character into a word which is an argument 10 a shell
command. They can be combined, as in

echo \"*”
which prints

%
since the first *\’ escaped the first *”* and the “** was enclosed between **° characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are several ways to force
it 10 stop. For instance if you type the command

cat fetc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely to continue for
several minutes unless you stop it. You can send an INTERRUPT signal 1o the cat command by typing AC on
your terminal.t Since car does not take any precautions to avoid or otherwise handle this signal the INTER-
RUPT will cause it to terminate. The shell notices that car has terminated and prompts you again with ‘% °. If
you hit INTERRUPT again, the shell will just repeat its prompt since it handles INTERRUPT signals and chooses to
continue to execute commands rather than terminating like car did, which would have the effect of logging
you out.

Another way in which many programs terminate is when they get an end-of-file from their standard input.
Thus the mail program in the first example above was terminated when we typed a AD which generates an
end-of-file from the standard input. The shell also terminates when it gets an end-of-file printing ‘logout’;
UNIX then logs you off the system. Since this means that typing too many AD’s can accidentally log us off, the
shell has a mechanism for preventing this. This ignoreeof option will be discussed in section 2.2.

If a command has its standard input redirected from a file, then it will normally terminate when it reaches the
end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a AD. This is because it read to the end-of-file of our file
‘prepared.text’ in which we placed a message for *bill’ with an editor program. We could also have done

cat prepared.text { mail bill

since the cat command would then have written the text through the pipe to the standard input of the mail
command. When the car command completed it would have terminated, closing down the pipeline and the
mail command would have received an end-of-file from it and terminated. Using a pipe here is more compli-
cated than redirecting input so we would more likely use the first form. These commands could also have
been stopped by sending an INTERRUPT.

Another possibility for stopping a command is to suspend its execution temporarily, with the possibility of
continuing execution later. This is done by sending a STOP signal via typing a AZ. This signal causes all com-
mands running on the terminal (usually one but more if a pipeline is executing) o become suspended. The
shell notices that the command(s) have been suspended, types ‘Stopped’ and then prompts for a new command.
The previously executing command has been suspended, but otherwise unaffected by the sTop signal. Any
other commands can be executed while the original command remains suspended. The suspended command
can be continued using the fg command with no arguments. The shell will then retype the command to rem-
ind you which command is being continued, and cause the command 1o resume execution. Unless any input
files in use by the suspended command have been changed in the meantime, the suspension has no effect what-
socver on the execution of the command. This feature can be very uscful during editing, when you need to
look at another file before continuing. An example of command suspension follows.

1 On some older UNIX systems the DEL or RUBOUT key has the same effect. "stty all” will tel} you the INTR key value.

ND-60.328.1P EN

USD:6-10 : An Introduction to the C Shell

% mail harold

Someone just copied a big file into my directory and its name is
AZ

Stopped

% ls

funnyfile

prog.c

prog.o

% jobs

{1] + Stopped mail harold
% fg

mail harold

funnyfile. Do you know who did it?

EOT

%

In this example someone was sending a message to Harold and forgot the name of the file he wanted to men-
tion. The mail command was suspended by typing AZ. When the shell noticed that the mail program was
suspended, it typed ‘Stopped’ and prompted for a new command. Then the Is command was typed to find out
the name of the file. The jobs command was run to find out which command was suspended. At this time the
f¢ command was typed to continue execution of the mail program. Input to the mail program was then contin-
ued and ended with a AD which indicated the end of the message at which time the mail program typed EOT.
The jobs command will show which commands are suspended. The AZ should only be typed at the beginning
of a line since everything typed on the current line is discarded when a signal is sent from the keyboard. This
also happens on INTERRUPT, and QUIT signals. More information on suspending jobs and controlling them is
given in section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to stop them somewhat
ungracefully. This can be done by sending them a QUIT signal, sent by typing a . This will usually provoke
the shell to produce a message like:

Quit (Core dumped)

indicating that a file ‘core’ has been created containing information about the running program’s state when it
terminated due to the QUIT signal. You can examine this file yourself, or forward information to the maintainer
of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will ignore INTERRUPT

and QUIT signals at the terminal. To stop them you must use the kill command. See section 2.6 for an exam-
ple.

If you want to examine the output of a command without having it move off the screen as the output of the
cat fetc/passwd
command will, you can use the command

more /etc/passwd

The more program pauses after each complete screenful and types ‘—More—" at which point you can hit a
space to get another screenful, a return to get another line, a *?” to get some help on other commands, or a ‘q’
to end the more program. You can also use more as a filter, i.e.

cat fetcfpasswd | more
works just like the more simple more command above.

For stopping output of commands not involving more you can use the AS key to stop the typcout. The typcout
will resume when you hit AQ or any other key, but AQ is normally used because it only restarts the output and
docs not become input to the program which is running. This works well on low-speed terminals, but at 9600

baud it is hard to type AS and AQ fast enough to paginate the output nicely, and a program like more is usually
used.

ND-60.328.1P EN

An Introduction to the C Shell USD:6-11

An additional possibility is to use the AQ flush output character; when this character is typed, all output from
the current command is thrown away (quickly) until the next input read occurs or until the next shell prompt.
This can be used to allow a command to complete without having to suffer through the output on a slow termi-
nal; A0 is a toggle, so flushing can be turned off by typing O again while output is being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way in which it operates.
The remaining sections will go yet further into the internals of the shell, but you will surely want to try using

the shell before you go any further. To try it you can log in to UNIX and type the following command to the
system:

chsh myname /bin/csh

Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:” to get onto the Sys-
tem. Thus I would use ‘chsh bill /bin/csh’. You only have to do this once; it takes effect at next login.
You are now ready to try using csh.

Before you do the ‘chsh’ command, the shell you are using when you log into the system is ‘/bin/sh’. In fact,
much of the above discussion is applicable to ‘/bin/sh’. The next section will introduce many features particu-
lar to csh so you should change your shell to csh before you begin reading it.

2. DETAILS ON THE SHELL FOR TERMINAL USERS

2.1. Shell startup and termination

When you login, the shell is started by the system in your home directory and begins by reading commands
from a file .cshrc in this directory. All shells which you may start during your terminal session will read from
this file. We will later see what kinds of commands are usefully placed there. For now we need not have this
file and the shell does not complain about its absence.

A login shell, executed after you login to the system, will, after it reads commands from .cshrc, read com-
mands from a file .login also in your home directory. This file contains commands which you wish to do each
time you login to the UNIX system. My dogin file looks somezhing like:

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${prompt}users" ; users
alias s\
“set noglob ; eval “tset —s ~m dialup:c100rv4pna ~m plugboard:?hp2621nl **;
ts; stty intr AC kill AU crt
set time=13 history=10
msgs —f
if (—¢ $mail) then
echo "${prompt}mail"
mail
endif

This file contains several commands to be executed by UNIX each time I login. The first is a set command
which is interpreted directly by the shell. It sets the shell variable ignoreeof which causes the shell to not log
me off if T hit AD. Rather, I use the logour command to log off of the system. By setting the mail variable, 1
ask the shell to watch for incoming mail to me. Every 5 minutes the shell looks for this file and tells me if
more mail has arrived there. An alternative to this is 1o put the command

biff y

in place of this set; this will cause me 1o be notified immediately when mail arrives, and to be shown the first
few lines of the new message.

Next I set the shell variable ‘time’ 0 15’ causing the shell o automatically print out statistics lines for com-
mands which exccute for at least 15 seconds of CPU time. The variable ‘history’ is set to 10 indicating that [
want the shell to remember the last 10 commands I type in its history list, (described later).

ND-60.328.1P EN

USD:6-12 : An Introduction to the C Shell

[create an alias *‘ts’* which executes a tser (1) command setting up the modes of the terminal. The parame-
ters to tset indicate the kinds of terminal which I usually use when not on a hardwired port. I then execute
“ts” and also use the stty command to change the interrupt character o AC and the line kill character to AU.

['then run the ‘msgs’ program, which provides me with any system messages which I have not seen before; the
‘~f” option here prevents it from telling me anything if there are no new messages. Finally, if my mailbox file
exists, then I run the ‘mail’ program to process my mail.

When the ‘mail” and ‘msgs’ programs finish, the shell will finish processing my .login file and begin reading
commands from the terminal, prompting for each with ‘% . When I log off (by giving the logout command)
the shell will print ‘logout’ and execute commands from the file ‘.logout’ if it exists in my home directory.
After that the shell will terminate and UNIX will log me off the system. If the system is not going down, I will
receive a new login message. In any case, after the ‘logout’ message the shell is committed to terminating and
will take no further input from my terminal.

2.2. Shell variables

The shell maintains a set of variables. We saw above the variables history and time which had values ‘10’
and ‘15’. In fact, each shell variable has as value an array of zero or more strings. Shell variables may be
assigned values by the set command. It has several forms, the most useful of which was given above and is

set name=value

Shell variables may be used to store values which are to be used in commands later through a substitution
mechanism. The shell variables most commonly referenced are, however, those which the shell itself refers to.
By changing the values of these variables one can directly affect the behavior of the shell.

One of the most important variables is the variable path. This variable contains a sequence of directory names
where the shell searches for commands. The set command with no arguments shows the value of all variables
currently defined (we usually say set) in the shell. The default value for path will be shown by set to be

% set

argv 0

cwd fusr/biil
home fusr/bill
path (. /usr/ucb /bin fusr/bin)
prompt %

shell /bin/csh
status 0

term c100rv4pna
user bill

%

This output indicates that the variable path points to the current directory ‘.’ and then ‘/usr/ucbh’, ‘/bin’ and
‘fusr/bin’. Commands which you may write might be in .’ (usually one of your directories). Commands
developed at Berkeley, live in ‘fusr/uch’ while commands developed at Bell Laboratories live in ‘/bin’ and
‘fusr/bin’.

A number of locally developed programs on the system live in the directory ‘/usrflocal’. If we wish that all
shells which we invoke to have access to these new programs we can place the command

set path=(. /usr/ucb /bin fusr/bin /usr/local)
in our file .cshre in our home directory. Try doing this and then logging out and back in and do
set

again to sce that the value assigned to path has changed.t

One thing you should be aware of is that the shell examines each directory which you insert into your path and
determines which commands are contained there. Except for the current directory *.’, which the shell treats

t Another dircctory that might interest you is /usr/new, which contains many uscful user-contributed programs provided
with Berkeley UNIX.

ND-60.328.1P EN

An Introduction to the C Shell USD:6-13

specially, this means that if commands are added to a directory in your search path after you have started the
shell, they will not necessarily be found by the shell. If you wish to use a command which has been added in
this way, you should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it will find the
newly added command. Since the shell has to look in the current directory ‘.’ on each command, placing it at
the end of the path specification usually works equivalently and reduces overhead.

Other useful built in variables are the variable home which shows your home directory, cwd which contains
your current working directory, the variable ignoreeof which can be set in your .login file to tell the shell not
to exit when it receives an end-of-file from a terminal (as described above). The variable ‘ignoreeof” is one of
several variables which the shell does not care about the value of, only whether they are set or unser. Thus to
set this variable you simply do

set ignoreeof
and to unset it do
unset ignoreeof

These give the variable ‘ignoreeof” no value, but none is desired or required.
Finally, some other built-in shell variables of use are the variables noclobber and mail. The metasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous contents of the
named file. In this way you may accidentally overwrite a file which is valuable. If you would prefer that the
shell not overwrite files in this way you can

set noclobber
in your .login file. Then trying to do
date > now
would cause a diagnostic if ‘now” existed already. You could type

date >! now

if you really wanted to overwrite the contents of ‘now’. The ‘>!’ is a special metasyntax indicating that
clobbering the file is ok.t

2.3. The shelP’s history list

The shell can maintain a history list into which it places the words of previous commands. It is possible to
use a notation (o reuse commands or words from commands in forming new commands. This mechanism can
be used to repeat previous commands or to correct minor typing mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechanism of the shell. In
this example we have a very simple C program which has a bug (or two) in it in the file ‘bug.c’, which we
‘cat’ out on our terminal. We then try to run the C compiler on it, referring to the file again as ‘!$’, meaning
the last argument to the previous command. Here the ‘!’ is the history mechanism invocation metacharacter,
and the ‘$’ stands for the last argument, by analogy to ‘$’ in the editor which stands for the end of the line.
The shell echoed the command, as it would have been typed without use of the history mechanism, and then
exccuted it. The compilation yielded error diagnostics so we now run the editor on the file we were rying to
compile, fix the bug, and run the C compiler again, this time referring to this command simply as ‘!c’, which
repeats the last command which started with the letter ‘c’. If there were other commands starting with ‘c’ done

recently we could have said ‘!cc’ or even ‘Icc:p’ which would have printed the last command staring with ‘cc’
without exccuting it.

1 The space between the ‘I' and the word ‘now’ is critical here, as ‘Inow’ would be an invocation of the history
mechanism, and have a totally different effeat.

ND-60.328.1P EN

USD:6-14 : An Introduction to the C Shell

% cat bug.c
main()

{

}
% cc 13

cc bug.c
"bug.c”, line 4: newline in string or char constant
"bug.c”, line 5: syntax error
% ed 1$
ed bug.c
29
4s)/ & fp
printf("hello™);

printf("hello);

w

30

q

% c

¢c bug.c

% a.out

hello% te

ed bugc

30

4s/loftoN\n/p
printf("hello\a");

w
32
q
% !c —o bug
cc bug.c —o bug
% size a.out bug
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b
% 1s -1 1*
Is -1 a.out bug
—rwxr—xr—-x 1 bill 3932 Dec 19 09:41 aout
—rwxr-xr—x 1 bill 3932 Dec 19 09:42bug
% bug
hello
% num bug.c | spp
spp: Command not found.
% Aspphssp
num bug.c | ssp
1 main()
3
4 printf("hello\n");
5}
% ! | lpr
num bug.c ssp ! lpr
%

After this recompilation, we ran the resulting ‘a.out’ file, and then noting that there still was a bug, ran the edi-
tor again. Alfter fixing the program we ran the C compiler again, but tacked onto the command an extra ‘—o
bug’ telling the compiler to place the resultant binary in the file ‘bug’ rather than ‘a.out’. In general, the his-
tory mechanisms may be used anywhere in the formation of new commands and other characters may be
placed before and after the substituted commands,

ND-60.328.1P EN

An Introduction to the C Shell USD:6-15

We then ran the ‘size’ command to see how large the binary program images we have created were, and then
an ‘Is -I' command with the same argument list, denoting the argument list “*’. Finally we ran the program
‘bug’ to see that its output is indeed correct.

To make a numbered listing of the program we ran the ‘num’ command on the file ‘bug.c’. In order to
compress out blank lines in the output of ‘num’ we ran the output through the filter ‘ssp’, but misspelied it as
spp. To correct this we used a shell substitute, placing the old text and new text between ‘A’ characters. This
is similar o the substitute command in the editor. Finally, we repeated the same command with ‘11", but sent
its output to the line printer.

There are other mechanisms available for repeating commands. The history command prints out a number of
previous commands with numbers by which they can be referenced. There is a way to refer to a previous com-
mand by searching for a string which appeared in it, and there are other, less useful, ways to select arguments
to include in a new command. A complete description of all these mechanisms is given in the C shell manual
pages in the UNIX Programmer’s Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transformations on input commands. This
mechanism can be used to simplify the commands you type, 0 supply default arguments to commands, or to
perform transformations on commands and their arguments. The alias facility is similar to a macro facility.
Some of the features obtained by aliasing can be obtained also using shell command files, but these take place
in another instance of the shell and cannot directly affect the current shells environment or involve commands
such as cd which must be done in the current shell.

As an example, suppose that there is a new version of the mail program on the system called ‘newmail’ you
wish to use, rather than the standard mail program which is called ‘mail’. If you place the shell command

alias mail newmail
in your .cshrc file, the shell will transform an input line of the form
mail bill
into a call on ‘newmail’. More generally, suppose we wish the command ‘Is’ to always show sizes of files,
that is to always do ‘~s’. We can do
alias Is Is —s
or even
alias dir Is —s
creating a new command syntax ‘dir’ which does an ‘Is —s’. If we say
dir ~bill
then the shell will translate this to
Is ~s /mnt/bill
Thus the alias mechanism can be used to provide short names for commands, to provide default arguments,
and to define new short commands in terms of other commands. It is also possible to define aliases which

contain multiple commands or pipelines, showing where the arguments 1o the original command are 10 be sub-
stituted using the facilities of the history mechanism. Thus the definition

aliascd ‘cd* ;s ”

would do an Is command after each change directory cd command. We enclosed the entire alias definition in
"™ characters 10 prevent most substitutions from occurring and the character ";" from being recognized as a
metacharacter. The "!" here is escaped with a "\" to prevent it from being interpreted when the alias command
is typed in. The "™\!*" here substitutes the entire argument list to the pre-aliasing cd command, without giving
an error if there were no arguments. The ";" separating commands is used here 1o indicate that one command
is 1o be donc and then the next. Similarly the definition

alias whois “grep ' fetc/passwd”

ND-60.328.1P EN

USD:6-16 : An Introduction to the C Shell

defines a command which looks up its first argument in the password file.

Warning: The shell currently reads the .cshrc file each time it starts up. If you place a large number of com-
mands there, shells will tend to start slowly. A mechanism for saving the shell environment after reading the
.cshre file and quickly restoring it is under development, but for now you should try to limit the number of
aliases you have to a reasonable number... 10 or 15 is reasonable, 50 or 60 will cause a noticeable delay in
starting up shells, and make the system seem sluggish when you execute commands from within the editor and
other programs.

2.5. More redirection; >> and >&
There are a few more notations useful to the terminal user which have not been introduced yet.

In addition to the standard output, commands also have a diagnostic output which is normally directed to the
terminal even when the standard output is redirected to a file or a pipe. It is occasionally desirable to direct the
diagnostic output along with the standard output. For instance if you want to redirect the output of a long run-
ning command into a file and wish to have a record of any error diagnostic it produces you can do

command >& file

The >&” here tells the shell to route both the diagnostic output and the standard output into ‘file’. Similarly
you can give the command

command | & Ipr

to route both standard and diagnostic output through the pipe to the line printer daemon Ipr. t
Finally, it is possible to use the form

command >> file

to place output at the end of an existing file.}

2.6. Jobs; Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands separated by
semicolons, a single job is created by the shell consisting of these commands together as a unit. Single com-
mands without pipes or semicolons create the simplest jobs. Usually, every line typed to the shell creates a
job. Some lines that create jobs (one per line) are

sort < data
Is —s | sort —n | head -5
mail harold

If the metacharacter ‘&’ is typed at the end of the commands, then the job is started as a background job.
This means that the shell does not wait for it to complete but immediately prompts and is ready for another
command. The job runs in the background at the same time that normal jobs, called foreground jobs, con-
tinue to be read and executed by the shell one at a time. Thus

du > usage &

would run the du program, which reports on the disk usage of your working directory (as well as any direc-
tories below it), put the output into the file ‘usage’ and return immediately with a prompt for the next com-
mand without out waiting for du to finish. The du program would continue executing in the background until
it finished, even though you can type and execute more commands in the mean time. When a background job
lerminates, a message is typed by the shell just before the next prompt telling you that the job has completed.
In the following example the du job finishes sometime during the execution of the mail command and its

1 A command of the form
command >&! file
exists, and is used when noclobber is set and file alrcady exists.

t If noclobber is set, then an error will result if file does not exist, otherwise the shell will create Sue if it doesn't exist.
A form

command >>! file
makes it not be an crror for file to not exist when noclobber is set.

ND-60.328.1P EN

An Introduction to the C Shell USD:6-17

completion is reported just before the prompt after the mail job is finished.

% du > usage &

[1] 503

% mail bill

How do you know when a background job is finished?
EOT

[1] -~ Done du > usage

%

If the job did not terminate normally the ‘Done’ message might say something else like ‘Killed’. If you want
the terminations of background jobs to be reported at the time they occur (possibly interrupting the output of
other foreground jobs), you can sct the notify variable. In the previous example this would mean that the
‘Done’ message might have come right in the middle of the message to Bill. Background jobs are unaffected
by any signals from the keyboard like the STOP, INTERRUPT, or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell remembers the com-
mand names, arguments and the process numbers of all commands in the Job as well as the working directory
where the job was started. Each job in the table is either running in the foreground with the shell waiting for
it to terminate, running in the background, or suspended. Only one job can be running in the foreground at
one time, but several jobs can be suspended or running in the background at once. As each job is started, it is
assigned a small identifying number called the Job number which can be used later to refer to the job in the
commands described below. Job numbers remain the same until the job terminates and then are re-used.

When 2 job is started in the backgound using ‘&’, its number, as well as the process numbers of all its (top
level) commands, is typed by the shell before prompting you for another command. For example,

% 1s —s | sort —n > usage &
[2] 2034 2035
%

runs the ‘Is” program with the ‘s’ options, pipes this output into the ‘sort” program with the ‘-n’ option which
puts its output into the file ‘usage’. Since the ‘&’ was at the end of the line, these two programs were started
logether as a background job. After starting the job, the shell prints the job number in brackets (2 in this case)
followed by the process number of each program started in the job. Then the shell immediates prompts for a
new command, leaving the job running simultaneously.

As mentioned in section 1.8, foreground jobs become suspended by typing AZ which sends a STOP signal to
the currently running foreground job. A background job can become suspended by using the stop command
described below. When jobs are suspended they merely stop any further progress until started again, either in
the foreground or the backgound. The shell notices when a Jjob becomes stopped and reports this fact, much
like it reports the termination of background jobs. For foreground jobs this looks like

% du > usage
4

Stopped

%

‘Stopped’ message is typed by the shell when it notices that the du program stopped. For background jobs,
using the stop command, it is

% sort usage &

[1] 2345

% stop %1

[1] + Stopped (signal) sort usage
%

Suspending forcground jobs can be very useful when you need w temporarily change what you are doing (exe-
cute other commands) and then return to the suspended job. Also, foreground jobs can be suspended and then
continued as background jobs using the bg command, allowing you 0 continue other work and stop waiting
for the foreground job to finish. Thus

ND-60.328.1P EN

USD:6-18 ‘ : An Introduction to the C Shell

% du > usage
W4

Stopped

% bg

(1] du > usage &
%

starts “du’ in the foreground, stops it before it finishes, then continues it in the background allowing more fore-
ground commands to be executed. This is especially helpful when a foreground job ends up taking longer than
you expected and you wish you had started it in the backgound in the beginning.

All job control commands can take an argument that identifies a particular job. All job name arguments begin
with the character ‘%’, since some of the job control commands also accept process numbers (printed by the
ps command.) The default job (when no argument is given) is called the current job and is identified bya ‘+’
in the output of the jobs command, which shows you which jobs you have. When only one job is stopped or
running in the background (the usual case) it is always the current job thus no argument is needed. If a job is
stopped while running in the foreground it becomes the current job and the existing current job becomes the
previous job - identified by a “-’ in the output of jobs. When the current job terminates, the previous job
becomes the current job. When given, the argument is either ‘% (indicating the previous job); ‘%#’, where #
is the job number; ‘%pref” where pref is some unique prefix of the command name and arguments of one of
the jobs; or ‘%?" followed by some string found in only one of the jobs.

The jobs command types the table of jobs, giving the job number, commands and status (‘Stopped’ or ‘Run-
ning’) of cach backgound or suspended job. With the ‘-1’ option the process numbers are also typed.

% du > usage &

(173398

% 1s —s 1 sort —n > myfile &

[2} 3405

% mail bill

~Z

Stopped

% jobs

(1] — Running du > usage
[2] Running Is —s | sort —n > myfile
[3] + Stopped mail bill
% fg %ls

Is —s | sort —n > myfile

% more myfile

The fg command runs a suspended or background job in the foreground. It is used to restart a previously
suspended job or change a background job to run in the foreground (allowing signals or input from the termi-
nal). In the above example we used fg to change the ‘Is’ job from the background to the foreground since we
wanted to wait for it to finish before looking at its output file. The bg command runs a suspended job in the
background. It is usually used after stopping the currently running foreground job with the STOP signal. The
combination of the STOP signal and the bg command changes a foreground job into a background job. The
stop command suspends a background job.

The kill command terminates a background or suspended job immediately. In addition to jobs, it may be
given process numbers as arguments, as printed by ps. Thus, in the example above, the running du command
could have been terminated by the command

% kill %1
[1] Terminated du > usage
%

The notify command (not the variable mentioned earlier) indicates that the termination of a specific job should
be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically stopped. When such
a job is then run in the foreground, input can be given to the job. If desired, the job can be run in the

ND-60.328.1PEN

An Introduction to the C Shell USD:6-19

background again until it requests input again. This is illustrated in the following sequence where the ‘s’ com-
mand in the text editor might take a long time.

% ed bigfile

120000
1,3s/thisword/thatword/
AZ

Stopped

% bg

{1] ed bigfile &

%

. some foreground commands
{1] Stopped (tty input) ed bigfile
% fg
ed bigfile
w

120000

q
o

So after the ‘s’ command was issued, the ‘ed’ job was stopped with AZ and then put in the background using
bg. Some time later when the ‘s’ command was finished, ed tried to read another command and was stopped
because jobs in the backgound cannot read from the terminal. The fg command returned the ‘ed’ job to the
foreground where it could once again accept commands from the terminal.

The command
stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to the terminal.
This prevents messages from background jobs from interrupting foreground job output and allows you to run a
Jjob in the background without losing terminal output. It also can be used for interactive programs that some-
times have long periods without interaction. Thus each time it outputs a prompt for more input it will stop
before the prompt. It can then be run in the foreground using fg, more input can be given and, if necessary
stopped and returned to the background. This stry command might be a good thing to put in your .login file if
you do not like output from background jobs interrupting your work. It also can reduce the need for redirect-
ing the output of background jobs if the output is not very big:

% stty tostop
% wc hugefile &
(1] 10387
% ed text
... some time later
q
{1] Stopped (tty output) wc hugefile
% fg wc
wc hugefile
13371 30123 302577
% stty ~tostop

Thus after some time the ‘wc’ command, which counts the lines, words and characters in a file, had one line of
output. When it tried to write this to the terminal it stopped. By restarting it in the foreground we allowed it
to write on the terminal exactly when we were ready to look at its output. Programs which attempt to change
the mode of the terminal will also block, whether or not tostop is set, when they are not in the foreground, as
it would be very unpleasant to have a background job change the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell, it knows nothing about back-
ground jobs started in other login sessions or within shell files. The ps can be used in this case to find out
about background jobs not started in the current shell.

ND-60.328.1P EN

USD:6-20 : An Introduction to the C Shell

2.7. Working Directories

As mentioned in section 1.6, the shell is always in a particular working directory. The ‘change directory’ com-
mand chdir (its short form cd may also be used) changes the working directory of the shell, that is, changes
the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files related to that project
in that directory. The ‘make directory’ command, mkdir, creates a new directory. The pwd (‘print working
directory’) command reports the absolute pathname of the working directory of the shell, that is, the directory
you are located in. Thus in the example below:

% pwd

fusr/bill

% mkdir newpaper
% chdir newpaper
% pwd
Jusr/bill/newpaper
%

the user has created and moved to the directory newpaper. where, for example, he might place a group of
related files.

No matter where you have moved to in a directory hierarchy, you can return to your ‘home’ login directory by
doing just

cd
with no arguments. The name ‘.." always means the directory above the current one in the hierarchy, thus
cd ..

changes the shell’s working directory o the one directly above the current one. The name *..° can be used in
any pathname, thus,

cd ./programs

means change to the directory ‘programs’ contained in the directory above the current one. If you have several
directories for different projects under, say, your home directory, this shorthand notation permits you to switch
easily between them.

The shell always remembers the pathname of its current working directory in the variable cwd. The shell can
also be requested to remember the previous directory when you change to a new working directory. If the
‘push directory’ command pushd is used in place of the cd command, the shell saves the name of the current
working directory on a directory stack before changing to the new one. You can see this list at any time by
typing the ‘directories’ command dirs.

% pushd newpaper/references
~/newpaper/freferences ~

% pushd /usr/lib/tmac

Jusr/libftmac ~/newpaper/references ~
% dirs

fusr/lib/tmac ~/newpaper/references ~
% popd

~/newpaper/references ~

% popd

%

The list is printed in a horizontal line, reading left to right, with a tilde (~) as shorthand for your home
directory—in this case ‘/usr/bill’. The directory stack is printed whenever there is more than one entry on it
and it changes. It is also printed by a dirs command. Dirs is usually faster and more informative than pwd
since it shows the current working directory as well as any other directories remembered in the stack.

The pushd command with no argument alternates the current directory with the first directory in the list. The
‘pop dircctory’ popd command without an argument returns you to the directory you were in prior 1o the

ND-60.328.1P EN

An Introduction to the C Shell USD:6-21

current one, discarding the previous current directory from the stack (forgetting it). Typing popd several times
in a series takes you backward through the directories you had been in (changed t0) by pushd command.
There are other options w pushd and popd to manipulate the contents of the directory stack and to change to
directories not at the top of the stack; see the csh manual page for details.

Since the shell remembers the working directory in which each job was started, it warns you when you might
be confused by restarting a job in the foreground which has a different working directory than the current
working directory of the shell. Thus if you start a background Job, then change the shell’s working directory
and then cause the background job to run in the foreground, the shell wams you that the working directory of
the currently running foreground job is different from that of the shell.

% dirs -1
/mnt/bill

% cd myproject
% dirs
~fmyproject

% ed prog.c
1143

A

Stopped

% cd ..

% 1Is

myproject
textfile

% fg

ed prog.c (wd: ~/myproject)

This way the shell warns you when there is an implied change of working directory, even though no c¢d com-
mand was issued. In the above example the ‘ed’ job was still in ‘/mnt/bill/project’ even though the shell had
changed to */mntbill’. A similar warning is given when such a foreground job terminates or is suspended
(using the STOP signal) since the return to the shell again implies a change of working directory.

% fg

ed prog.c (wd: ~/myproject)
... after some editing

q

(wd now: ~)

%

These messages are sometimes confusing if you use programs that change their own working directories, since
the shell only remembers which directory a job is started in, and assumes it stays there. The ‘~I' option of

Jjobs will type the working directory of suspended or background jobs when it is different from the current
working directory of the shell.

2.8. Useful built-in commands
We now give a few of the useful built-in commands of the shell describing how they are used.
The alias command described above is used to assign new aliases and to show the existing aliases. With no
arguments it prints the current aliases. It may also be given only one argument such as
alias Is
to show the current alias for, e.g., ‘Is’.

The echo command prints its arguments. It is often used in shell scripts or as an interactive command 1o sce
what filename expansions will produce.

The history command will show the contents of the history list. The numbers given with the history events
can be used to reference previous events which are difficult to reference using the contextual mechanisms
introduced above. There is also a shell variable called prompt. By placing a ‘! character in its value the shell
will there substitute the number of the current command in the history list. You can use this number to refer
to this command in a history substitution. Thus you could

ND-60.328.1P EN

USD:6-22 ' An Introduction to the C Shell

sct prompt=\! % ~
Note that the *!” character had to be escaped here even within *” characters.
The limit command is used to restrict use of resources. With no arguments it prints the current limitations:

cputime unlimited
filesize unlimited
datasize 5616 kbytes
stacksize 512 kbytes

coredumpsize unlimited
Limits can be set, e.g.:
limit coredumpsize 128k

Most reasonable units abbreviations will work; see the csh manual page for more details.
The logout command can be used to terminate a login shell which has ignoreeof set.

The rehash command causes the shell to recompute a table of where commands are located. This is necessary
if you add a command to a directory in the current shell’s search path and wish the shell to find it, since other-
wise the hashing algorithm may tell the shell that the command wasn’t in that directory when the hash table
was computed.

The repeat command can be used to repeat a command several times. Thus to make S copies of the file one
in the file five you could do

repeat 5 cat one >> five

The setenv command can be used to set variables in the environment. Thus
setenv TERM adm3a

will set the value of the environment variable TERM to ‘adm3a’. A user program printenv exists which will
print out the environment. It might then show:

% printenv

HOME=/usr/bill

SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a

USER=bill

%

The source command can be used to force the current shell to read commands from a file. Thus
source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect right away.
The time command can be used 1o cause a command to be timed no matter how much CPU time it takes. Thus

% time cp fetc/rc fusr/bill/rc
0.0u 0.15 0:01 8% 2+1k 3+2io 1pf+0w
% time wc fetcfrc fusr/bill/rc

52 178 1347 fetc/rc

52 178 1347 fusr/bill/rc

104 356 2694 towal
0.1u 0.1s 0:00 13% 3+3k 5+3i0 7pf+0w
%

indicates that the cp command used a negligible amount of user time (u) and about 1/10th of a System time
(s); the clapsed time was 1 second (0:01), there was an average memory usage of 2k bytes of program space
and Ik bytes of data space over the cpu time involved (2+1k); the program did three disk reads and two disk
writes (3+2i0), and took one page fault and was not swapped (1pf+Ow). The word count command we on the
other hand used 0.1 seconds of user time and 0.1 seconds of system time in less than a second of clapsed time,

ND-60.328.1P EN

An Introduction to the C Shell USD:6-23

The percentage “13%’ indicates that over the period when it was active the command ‘wc’ used an average of
13 percent of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases and variable definitions from the shell, and
unsetenv removes variables from the environment.

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are more features of the shell 1o be
discussed here, and all features of the shell are discussed in its manual pages. One useful feature which is dis-
cussed later is the foreach built-in command which can be used to run the same command sequence with a
number of different arguments.

If you intend to use UNIX a lot you you should look through the rest of this document and the csh manual
pages (sectionl) to become familiar with the other facilities which are available to you.

3. SHELL CONTROL STRUCTURES AND COMMAND SCRIPTS

3.1. Introduction

It is possible to place commands in files and to cause shells o be invoked to read and execute commands from
these files, which are called shell scripts. We here detail those features of the shell useful to the writers of such
scripts.

3.2. Make

It is important to first note what shell scripts are not useful for. There is a program called make which is very
uscful for maintaining a group of related files or performing sets of operations on related files. For instance a
large program consisting of one or more files can have its dependencies described in a makefile which contains
definitions of the commands used to create these different files when changes occur, Definitions of the means
for printing listings, cleaning up the directory in which the files reside, and installing the resultant programs are
easily, and most appropriately placed in this makefile. This format is superior and preferable to maintaining a
group of shell procedures to maintain these files.

Similarly when working on a document a makefile may be created which defines how different versions of the
document are to be created and which options of nroff or troff are appropriate.

3.3. Imvocation and the argv variable
A csh command script may be interpreted by saying
% csh script ...

where script is the name of the file containing a group of csh commands and *..." is replaced by a sequence of
arguments. The shell places these arguments in the variable argv and then begins to read commands from the

script. These parameters are then available through the same mechanisms which are used to reference any
other shell variabies.

If you make the file ‘script’ exccutable by doing
chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a *#’ character) then a
‘/bin/csh’ will automatically be invoked o execute ‘script’ when you type

script
If the file does not begin with a “#" then the standard shell ‘/bin/sh’ will be used to execute it. This allows you
to convert your older shell scripts to use csh at your convenience.
3.4. Variable substitution

After cach input line is broken into words and history substitutions are done on it, the input line is parsed into
distinct commands. Before each command is executed a mechanism know as variable substitution is done on
these words. Keyed by the character ‘$’ this substitution replaces the names of variables by their values. Thus

ND-60.328.1P EN

USD:6-24 ‘ : An Introduction to the C Shell

echo Sargv

when placed in a command script would cause the current value of the variable argv to be echoed to the out-
put of the shell script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables. The notation
$7name

expands to ‘1’ if name is set or to ‘0’ if name is not ser. It is the fundamental mechanism used for checking
whether particular variables have been assigned values. All other forms of reference to undefined variables
cause errors.

The notation
S#name
expands to the number of elements in the variable name. Thus

% set argv=(a b ¢)
% echo $7argv

1

% echo $#argv

3

% unset argv

% echo $7argv

0

% echo $argv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus

Sargv[1]
gives the first component of argv or in the example above ‘a’. Similarly
Sargv[$#argv]
would give ‘c’, and
Sargv[1-2]
would give ‘a b’. Other notations useful in shell scripts are
$n
where n is an integer as a shorthand for
Sargv(n]
the nth parameter and
§
which is a shorthand for
Sargv
The form
$$

cxpands to the process number of the current shell. Since this process number is unique in the system it can
be uscd in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input read from the shell’s standard input {not the script it is
reading). This is uscful for writing shell scripts that are interactive, reading commands from the terminal, or

ND-60.328.1P EN

An Introduction to the C Shell USD:6-25

even writing a shell script that acts as a filter, reading lines from its input file. Thus the sequence

echo “yes or no\¢’
set a=($<)

would write out the prompt ‘yes or no?” without a newline and then read the answer into the variable ‘a’. In
this case ‘$#a’ would be ‘0’ if either a blank line or end-of-file (AD) was typed.

One minor difference between ‘$n’ and ‘$argv(n]’ should be noted here. The form ‘$argv[n] will yicld an
error if n is not in the range ‘1-$#argv’ while ‘$n’ will never yield an out of range subscript error. This is for
compatibility with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of the form ‘n-"; if there are less than n
components of the given variable then no words are substituted. A range of the form ‘m-n’ likewise returns

an empty vector without giving an error when m exceeds the number of elements of the given variable, pro-
vided the subscript 2 is in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate expressions in the shell
based on the values of variables. In fact, all the arithmetic operations of the language C are available in the
shell with the same precedence that they have in C. In particular, the operations ‘==" and ‘!=" compare strings
and the operators ‘&&’ and ‘I I’ implement the boolean and/or operations. The special operators ‘=~ and ‘1~’
are similar to ‘==’ and ‘!=" except that the string on the right side can have pattern matching characters (like *,
7 or [1) and the test is whether the string on the left matches the pattern on the right.

The shell also allows file enquiries of the form

—? filename

where “?” is replace by a number of single characters. For instance the expression primitive

~¢ filename

tell whether the file ‘filename’ exists. Other primitives test for read, write and execute access to the file,
whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form ‘{ command)’ which
returns true, i.e. ‘1" if the command succeeds exiting normally with exit status 0, or ‘0’ if the command ter-
minates abnormally or with exit status non-zero. If more detailed information about the execution status of a
command is required, it can be executed and the variable ‘$status’ examined in the next command. Since
‘$status’ is set by every command, it is very transient. It can be saved if it is inconvenient to use it only in the
single immediately following command.

For a full list of expression components available see the manual section for the shell.

ND-60.328.1P EN

USD:6-26 : An Introduction to the C Shell

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and some of its control
structure follows:

% cat copyc

#

Copyc copies those C programs in the specified list
to the directory ~/backup if they differ from the files
already in ~/backup

#

set noglob

foreach i ($argv)

if ($i !~ *.c) continuc # not a .c file so do nothing

if (! —r ~/backup/Si:t) then

echo $i:t not in backup... not cp\'ed

continue .
endift

cmp —s $i ~/backup/$i:t # to set $status

if ($status != 0) then
echo new backup of $i
cp i ~/backup/Si:t
endif
end

This script makes use of the foreach command, which causes the shell to execute the commands between the
foreach and the matching end for each of the values given between ‘(" and ‘)’ with the named variable, in this
case ‘i’ set to successive values in the list. Within this loop we may use the command break to stop executing
the loop and continue to prematurely terminate one iteration and begin the next. After the foreach loop the
iteration variable (i in this case) has the value at the last iteration.

We sct the variable noglob here to prevent filename expansion of the members of argv. This is a good idea, in
general, if the arguments to a shell script are filenames which have already been expanded or if the arguments
may contain filename expansion metacharacters. It is also possible to quote each use of a ‘$’ variable expan-
sion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

endif

The placement of the keywords here is not flexible due to the current implementation of the shell.t

$The following two formats are nat currently acceptable to the shell:

if (expression) # Won’t work!
then
command
endif
and
if (expression) then command endif # Won’t work

ND-60.328.1P EN

An Introduction to the C Shell USD:6-27

The shell does have another form of the if statement of the form
if (expression) command
which can be written

if (expression)\
command

Here we have escaped the newline for the sake of appearance. The command must not involve “I”, ‘&’ or 5
and must not be another control command. The second form requires the final \ to immediately precede the
end-of-line.

The more general if statements above also admit a sequence of else—if pairs followed by a single else and an
endif, e.g..

if (expression) then
commands

else if (cxpression) then
commands

else
commands
endif

Another important mechanism used in shell scripts is the ‘" modifier. We can use the modifier “:r’ here to
extract a root of a filename or ‘:e’ to extract the extension. Thus if the variable i has the value ‘/mnt/foo.bar’
then

% echo $i $iir $ize
/mnt/foo.bar /mnt/foo bar
%

shows how the “:r’ modifier strips off the trailing “.bar’ and the the “:¢’ modifier leaves only the ‘bar’. Other
modifiers will take off the last component of a pathname leaving the head “:h’ or all but the last component of
a pathname leaving the tail “:t’. These modifiers are fully described in the ¢csh manual pages in the User’s
Reference Manual. It is also possible 1o use the command substitution mechanism described in the next major
section to perform modifications on strings o then reenter the shell’s environment. Since each usage of this
mechanism involves the creation of a new process, it is much more expensive to use than the *° modification
mechanism.} Finally, we note that the character ‘#’ lexically introduces a shell comment in shell scripts (but
not from the terminal). All subsequent characters on the input line after a ‘#” are discarded by the shell. This
character can be quoted using *** or \’ 10 place it in an argument word.

3.7. Other control structures

The shell also has control structures while and switch similar to those of C. These take the forms

while (expression)
commands
end

and

t It is also important to note that the current implementation of the shell limits the number of *:* modifiers on a '$
substitution to 1. Thus

% ccho $i $i:hxt
fafbic Jafo:r
%

does not do what onc would expect.

ND-60.328.1P EN

USD:6-28 ’ An Introduction to the C Shell

switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh. C programmers should note that we use breaksw to exit from a
switch while break exits a while or foreach loop. A common mistake to make in csh scripts is to use break
rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like they do in C, i.e.:

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which is running the script.
This is different from previous shells running under UNIX. It allows shell scripts to fully participate in pipe-
lines, but mandates extra notation for commands which are to take inline data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As an example, consider
this script which runs the editor to delete leading blanks from the lines in each argument file:

% cat deblank

deblank — remove leading blanks
forcach i ($argv)

ed - $i << "EOF’

LS/ 1¥//

w

q
‘EQOF’
end

%

The notation ‘<< "EOF” means that the standard input for the ed command is to come from the text in the
shell script file up to the next line consisting of exactly ‘’EOF”. The fact that the ‘EOF’ is enclosed in
characters, i.c. quoted, causes the shell to not perform variable substitution on the intervening lines. In general,
if any part of the word following the ‘<<’ which the shell uses to terminate the text to be given to the com-
mand is quoted then these substitutions will not be performed. In this case since we used the form ‘1,$’ in our

editor script we needed to insure that this ‘$’ was not variable substituted. We could also have insured this by
preceding the *$” here with a V', i.e.:

LNSS/AL T/

but quoting the ‘EOF’ terminator is a more reliable way of achicving the same thing.

ND-60.328.1P EN

An Introduction to the C Shell USD:6-29

3.9. Catching interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell script so that we can
clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a ‘goto label’ and we can
remove the temporary files and then do an exit command (which is built in to the shell) to exit from the shell
script. If we wish 10 exit with a non-zero status we can do

exit(1)

e.g. to exit with status ‘1°.

3.10. What else?

There are other features of the shell useful 1o writers of shell procedures. The verbose and echo options and
the related —v and —x command line options can be used to help trace the actions of the shell. The —n option
causes the shell only to read commands and not to execute them and may sometimes be of use.

One other thing to note is that csh will not execute shell scripts which do not begin with the character ‘#’, that
is shell scripts that do not begin with a comment. Similarly, the ‘/bin/sh’ on your system may well defer to
‘csh’ w interpret shell scripts which begin with ‘#°. This allows shell scripts for both shells to live in har-
mony.

There is also another quotation mechanism using *"* which allows only some of the expansion mechanisms we
have so far discussed to occur on the quoted string and serves to make this string into a single word as *”
does.

4. OTHER, LESS COMMONLY USED, SHELL FEATURES

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the foreach control structure at the terminal to aid in performing a number of
similar commands. For instance, there were at one point three shells in use on the Cory UNIX system at Cory
Hall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/csh’. To count the number of persons using each shell one could have
issued the commands

% grep —c csh$ Jetc/passwd
27

% grep —c nsh$ /fetc/passwd
128

% grep —c ~v sh$ Jetc/passwd
430

%

Since these commands are very similar we can use foreach to do this more easily.

% foreach i ("sh$” “csh$” -v sh$")
? grep — $i Jetc/passwd

? end

27

128

430

%

Note here that the shell prompts for input with ‘? * when reading the body of the loop.

ND-60.328.1P EN

USD:6-30 ’ An Introduction to the C Shell

Very useful with loops are variables which contain lists of filenames or other words. For example:

% set a=Cls")
% echo $a
csh.n csham
% 1s

cshon

csh.rm

% echo $#a
2

%

The set command here gave the variable a a list of all the filenames in the current directory as value. We can
then iterate over these names to perform any chosen function.

The output of a command within “*” characters is converted by the shell to a list of words. You can also place
the ©" quoted string within ‘"’ characters to take each (non-empty) line as a component of the variable;
preventing the lines from being split into words at blanks and tabs. A modifier “:x” exists which can be used
later to expand each component of the variable into another variable splitting it into separate words at embed-
ded blanks and tabs.

4.2. Braces { ... } in argument expansion

Another form of filename expansion, alluded to before involves the characters ‘{’ and ‘}’. These characters
specify that the contained strings, separated by °,’ are to be consecutively substituted into the containing char-
acters and the results expanded left to right. Thus

A{strl,str2,...strn} B
expands to
AstrlB Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively (i.e. nested). The
results of each expanded string are sorted scparately, left to right order being preserved. The resulting
filenames are not required to exist if no other expansion mechanisms are used. This means that this mechan-
ism can be used to generate arguments which are not filenames, but which have common parts.

A typical use of this would be
mkdir ~/{hdrs retrofit,csh)

to make subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directory. This mechanism is most useful when
the common prefix is longer than in this example, i.e.

chown root fusr/{ucb/{ex,edit} lib/{ex?.7* how_ex])

4.3. Command substitution

A command enclosed in “’ characters is replaced, just before filenames are expanded, by the output from that
command. Thus it is possible to do

set pwd="pwd’
lo save the current directory in the variable pwd or 1o do
ex “grep -1 TRACE *.¢

to run the editor ex supplying as arguments those files whose names end in ‘¢’ which have the string
‘TRACE’ in them.t

1 Command expansion also occurs in input redirected with ‘<<’ and within * quotations. Refer 1o the shell manual
section for full details.

ND-60.328.1P EN

An Introduction to the C Shell USD:6-31

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of different substitutions
performed by the shell. The exact meaning of certain combinations of quotations is also occasionally impor-
tant. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX programs, and debugging
shell scripts. See the csh(1) manual section for a list of these options.

ND-60.328.1P EN

USD:6-32

An Introduction to the C Shell

APPENDIX

Special Characters

The following table lists the special characters of ¢sh and the UNIX system, giving for each the section(s) in
which it was discussed. A number of these characters also have special meaning in expressions. See the csh
manual scction for a complete list.

Syntatic metacharacters

; 24
| 1.5
0 2236
& 2.5

Filename metacharacters

/ 1.6
? 1.6
* 1.6
(] 1.6
~ 1.6
{) 42

Quotation metacharacters

\ 1.7
’ 1.7
" 43

Input/output metacharacters

< 1.5
> 1.3

scparates commands to be executed scquentially

separates commands in a pipeline

brackets expressions and variable values

follows commands to be executed without waiting for completion

separates components of a file’s pathname

expansion character matching any single character

expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directories
used to specify groups of arguments with common parts

prevents meta-meaning of following single character
prevents meta-meaning of a group of characters
like 'i, but allows variable and command expansion

indicates redirected input
indicates redirected output

Expansion/substitution metacharacters

S 3.4
! 2.3
: 36
A 2.3
¢ 43

Other metacharacters

3 1.3,3.6
- 1.2
% 2.6

ND-60.328.1P EN

indicates variable substitution

indicates history substitution

precedes substitution modifiers

used in special forms of history substitution
indicates command substitution

begins scratch file names; indicates shell comments
prefixes option (flag) arguments to commands
prefixes job name specifications

An Introduction to the C Shell USD:6-33

GLOSSARY

This glossary lists the most important terms introduced in the introduction to the shell and gives references 10
sections of the shell document for further information about them. References of the form ‘pr (1)’ indicate that
the command pr is in the UNIX User Reference manual in section 1. You can look at an online copy of its
manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this manual.

Your current directory has the name ‘. as well as the name printed by the command pwd;
see also dirs. The current directory *.’ is usually the first component of the scarch path con-
tained in the variable path, thus commands which are in ‘.’ are found first (2.2). The char-
acter °." is also used in separating components of filenames (1.6). The character “." at the
beginning of a component of a pathname is treated specially and not matched by the
filename expansion metacharacters ‘?°, “*’, and ‘[‘]’ pairs (1.6).

Each directory has a file *..” in it which is a reference to its parent directory. After changing
into the directory with chdir, i.e.

chdir paper

you can return to the parent directory by doing
chdir ..

The current directory is printed by pwd (2.7).

a.out Compilers which create executable images create them, by default, in the file a.ous. for his-
torical reasons (2.3).

absolute pathname
A pathname which begins with a ‘/" is absolute since it specifies the path of directories

from the beginning of the entire directory system — called the roor directory. Pathname's
which are not absolute are called relative (see definition of relative pathname) (1.6).

alias An alias specifies a shorter or different name for a UNIX command, or a transformation on a
command to be performed in the shell. The shell has a command alias which establishes
aliases and can print their current values. The command unalias is used to remove aliases
(2.4).

argument Commands in UNIX receive a list of argument words. Thus the command

echoabc

consists of the command name ‘echo’ and three argument words ‘a’, ‘b’ and ‘c’. The set of
arguments after the command name is said to be the argument list of the command (1.1).

argv The list of arguments to a command written in the shell language (a shell script or shell pro-
cedure) is stored in a variable called argv within the shell. This name is taken from the
conventional name in the C programming language (3.4).

background Commands started without waiting for them to complete arc called background commands
(2.6).

base A filename is sometimes thought of as consisting of a base part, before any ‘.’ character,
and an extension — the part after the . Sec filename and extension (1.6) and basename
(1.

ND-60.328.1P EN

USD:6-34

bg
bin

break

breaksw

builtin

cat

cd

chdir
chsh

cmp

command

command name

An Introduction to the C Shell

The bg command causes a suspended job to continue execution in the background (2.6).

A directory containing binaries of programs and shell scripts to be executed is typically
called a bin directory. The standard system bin directories are ‘/bin’ containing the most
heavily used commands and ‘/usr/bin’ which contains most other user programs. Programs
developed at UC Berkeley live in ‘fustfuch’, while locally written programs live in
‘/ust/local’. Games are kept in the directory ‘/usr/games’. You can place binaries in any
directory. If you wish to execute them often, the name of the directories should be a com-
ponent of the variable path .

Break is a builtin command used to exit from loops within the control structure of the shell
a3B.D.

The breaksw builtin command is used to exit from a switch control structure, like a break
exits from loops (3.7).

A command executed directly by the shell is called a builtin command. Most commands in
UNIX are not built into the shell, but rather exist as files in bin directorics. These commands
are accessible because the directories in which they reside are named in the path variable.

A case command is used as a label in a switch statement in the shell’s control structure,
similar to that of the language C. Details are given in the shell documentation ‘csh (1)’
(G.7D.

The cat program catenates a list of specified files on the standard output. 1t is usually used
to look at the contents of a single file on the terminal, to ‘cat a file’ (1.8, 2.3).

The cd command is used to change the working directory. With no arguments, cd changes
your working directory to be your home directory (2.4, 2.7).

The chdir command is a synonym for cd. Cd is usually used because it is easier to type.

The chsh command is used to change the shell which you use on UNIX. By default, you use
an different version of the shell which resides in ‘/bin/sh’. You can change your shell to
‘fbin/csh’ by doing

chsh your-login-name /bin/csh
Thus I would do
chsh bill /bin/csh

It is only necessary to do this once. The next time you log in to UNIX after doing this com-
mand, you will be using csh rather than the shell in ‘/bin/sh’ (1.9).

Cmp is a program which compares files. It is usually used on binary files, or t0 see if two
files are identical (3.6). For comparing text files the program diff, described in ‘diff (1) is
used.

A function performed by the system, either by the shell (a builtin command) or by a pro-
gram residing in a file in a directory within the UNIX system, is called a command (1.1).

When a command is issued, it consists of a command name , which is the first word of the
command, followed by arguments. The convention on UNIX is that the first word of a com-
mand names the function to be performed (1.1).

command substitution

component

continue

control-

ND-60.328.1P EN

The replacement of a command enclosed in ' characters by the text output by that com-
mand is called command substitution (4.3).

A part of a pathname between ‘/* characters is called a component of that pathname. A
variable which has multiple strings as value is said to have several components; each string
is a component of the variable.

A builtin command which causes execution of the enclosing foreach or while loop to cycle
prematurely. Similar to the continue command in the programming language C (3.6).

Centain special characters, called control characters, are produced by holding down the CON-
TROL key on your terminal and simultancously pressing another character, much like the

An Introduction to the C Shell USD:6-35

corc dump

cp

csh

.cshrc
cwd

date
debugging
default:
DELETE
detached

diagnostic

directory

directory stack

dirs
du
echo

else
endif

SHIFT key is used to produce upper case characters. Thus control-c¢ is produced by holding
down the CONTROL key while pressing the ‘¢’ key. Usually UNIX prints a caret (A) followed
by the corresponding letter when you type a control character (e.g. “AC’ for control-c (1.8).

When a program terminates abnormally, the system places an image of its current state in a
file named ‘core’. This core dump can be examined with the system debugger ‘adb (1)’ or
‘sdb (1)" in order to determine what went wrong with the program (1.8). If the shell pro-
duces a message of the form

lllegal instruction (core dumped)

(where “Illegal instruction’ is only one of scveral possible messages), you should report this
to the author of the program or a system administrator, saving the ‘core’ file.

The cp (copy) program is used to copy the contents of one file into another file. It is one of
the most commonly used UNIX commands (1.6).

The name of the shell program that this document describes.

The file .cshre in your home directory is read by each shell as it begins execution. It is usu-
ally used to change the setting of the variable path and to set alias parameters which are to
take effect globally (2.1).

The cwd variable in the shell holds the absolute pathname of the current working directory .

It is changed by the shell whenever your current working directory changes and should not
be changed otherwise (2.2).

The date command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell scripts. The shell has
several options and variables which may be used to aid in shell debugging (4.4).

The label default: is used within shell switch statements, as it is in the C language to label
the code to be executed if none of the case labels matches the value switched on G.7.

The DELETE or RUBOUT key on the terminal normally causes an interrupt to be sent to the
current job. Many users change the interrupt character to be AC.

A command that continues running in the background after you logout is said 1o be
detached .

An error message produced by a program is often referred to as a diagnostic. Most error
messages are not written 1o the standard output , since that is often directed away from the
terminal (1.3, 1.5). Error messsages are instead written to the diagnostic output which may
be directed away from the terminal, but usually is not. Thus diagnostics will usually appear
on the terminal (2.5).

A structure which contains files. At any time you are in one particular direciory whose
names can be printed by the command pwd. The chdir command will change you to
another directory, and make the files in that directory visible. The directory in which you
are when you first login is your home directory (1.1, 2.7).

The shell saves the names of previous working directories in the directory stack when you
change your current working directory via the pushd command. The directory stack can be

printed by using the dirs command, which includes your current working directory as the
first directory name on the left (2.7).

The dirs command prints the shell’s directory stack (2.7).

The du command is a program (described in ‘du (1)’) which prints the number of disk
blocks is all dircctories below and including your current working directory (2.6).

The echo command prints its arguments (1.6, 3.6).
The else command is part of the ‘if-then-else-endif” control command construct 3.6).

If an if statement is ended with the word then , all lines following the if up 10 a line starting
with the word endif or else arc cxccuted if the condition between parcntheses after the if is
true (3.6).

ND-60.328.1PEN

USD:6-36

EOF

cscape

fetc/passwd

exit

exit status

expansion

expressions

extension

fg

filecname

An Introduction to the C Shell

An end-of-file is generated by the terminal by a control-d, and whenever a command reads
to the end of a file which it has been given as input. Commands receiving input from a pipe
receive an end-of-file when the command sending them input completes. Most commands
terminate when they receive an end-of-file. The shell has an option to ignore end-of-file
from a terminal input which may help you keep from logging out accidentally by typing too
many control-d’s (1.1, 1.8, 3.8).

A character \" used to prevent the special meaning of a metacharacter is said to escape the
character from its special meaning. Thus

echo *
will echo the character **’ while just
echo *

will echo the names of the file in the current directory. In this example, \ escapes “** (1.7).
There is also a non-printing character called escape, usually labelled ESC or ALTMODE on
terminal keyboards. Some older UNIX systems use this character to indicate that output is to
be suspended. Most systems use control-s to stop the output and control-q to start it.

This file contains information about the accounts currently on the system. It consists of a
line for each account with fields separated by ‘:* characters (1.8). You can look at this file
by saying

cat fetc/passwd

The commands finger and grep are often used to search for information in this file. See
‘finger (1)’, ‘passwd(5)’, and ‘grep (1)" for more details.

The exit command is used to force termination of a shell script, and is built into the shell
(3.9).

A command which discovers a problem may reflect this back to the command (such as a
shell) which invoked (executed) it. It does this by retuming a non-zero number as its exit
status, a status of zero being considered ‘normal termination’. The exit command can be
used to force a shell command script to give a non-zero exit status (3.6).

The replacement of strings in the shell input which contain metacharacters by other strings is
referred to as the process of expansion. Thus the replacement of the word “*’ by a sorted
list of files in the current directory is a ‘filename expansion’. Similarly the replacement of
the characters ‘!!” by the text of the last command is a ‘history expansion’. Expansions are
also referred to as substitutions (1.6, 3.4, 4.2).

Expressions are used in the shell to control the conditional structures used in the writing of
shell scripts and in calculating values for these scripts. The operators available in shell
expressions are those of the language C (3.5).

Filenames often consist of a base name and an extension separated by the character *.’. By
convention, groups of related files often share the same root name. Thus if ‘prog.c’ were a
C program, then the object file for this program would be stored in ‘prog.o’. Similarly a
paper written with the ‘~me’ nroff macro package might be stored in ‘paper.me’ while a for-
matted version of this paper might be kept in ‘paper.out’ and a list of spelling errors in
‘paper.errs’ (1.6).

The job control command fg is used to run a background or suspended job in the fore-
ground (1.8, 2.6).

Each file in UNIX has a name consisting of up to 14 characters and not including the charac-
ter /* which is used in pathname building. Most filenames do not begin with the character
*.’, and contain only letters and digits with perhaps a ‘.’ scparating the base portion of the
filename from an extension (1.6).

filcname cxpansion

Filename expansion uses the metacharacters “*°, *?” and ‘[and ‘]’ to provide a convenient
mechanism for naming files. Using filename expansion it is easy to name all the files in the
current directory, or all files which have a common root name. Other filename expansion

ND-60.328.1P EN

An Introduction to the C Shell USD:6-37

flag

foreach

foreground

goto
grep

head

history

home directory

if

ignoreeof

input

mechanisms use the metacharacter ‘~’ and allow files in other users’ directories to be named
easily (1.6, 4.2).

Many UNIX commands accept arguments which are not the names of files or other users but
are used to modify the action of the commands. These are referred to as flag options, and
by convention consist of one or more letters preceded by the character ‘-’ (1.2). Thus the Is
(list files) command has an option ‘-s’ to list the sizes of files. This is specified

Is —s

The foreach command is used in shell scripts and at the terminal to specify repetition of a
sequence of commands while the value of a certain shell variable ranges through a specified
list (3.6, 4.1).

When commands are executing in the normal way such that the shell is waiting for them to
finish before prompting for another command they are said to be foreground jobs or running
in the foreground. This is as opposed to background. F. oreground jobs can be stopped by

signals from the terminal caused by typing different control characters at the keyboard (1.8,
2.6).

The shell has a command goto used in shell scripts 1o transfer control to a given label (3.7).
The grep command searches through a list of argument files for a specified string. Thus

grep bill fetc/passwd

will print each line in the file /etc/passwd which contains the string ‘bill’. Actually, grep
scans for regular expressions in the sense of the editors ‘ed (1)’ and ‘ex (1)’. Grep stands
for ‘globally find regular expression and print’ (2.4).

The head command prints the first few lines of one or more files. If you have a bunch of
files containing text which you are wondering about it is sometimes useful to run head with
these files as arguments. This will usually show enough of what is in these files to let you
decide which you are interested in (1.5).

Head is also used to describe the part of a pathname before and including the last ‘/° char-
acter. The tail of a pathname is the part after the last */". The “:h’ and “:t" modifiers allow
the head or tail of a pathname stored in a shell variable to be used (3.6).

The history mechanism of the shell allows previous commands to be repeated, possibly after
modification to correct typing mistakes or 1o change the meaning of the command. The
shell has a history list where these commands are kept, and a history variable which con-
trols how large this list is (2.3).

Each user has a home directory, which is given in your entry in the password file,
letc/passwd . This is the directory which you are placed in when you first login. The ¢d or
chdir command with no arguments takes you back to this directory, whose name is recorded
in the shell variable home. You can also access the home directories of other users in
forming filenames using a filename expansion notation and the character ‘~’ (1.6).

A conditional command within the shell, the if command is used in shell command scripts
to make decisions about what course of action 10 take next (3.6).

Normally, your shell will exit, printing ‘logout” if you type a control-d at a prompt of ‘% °.
This is the way you usually log off the system. You can set the ignoreeof variable if you
wish in your .login file and then use the command logout 10 logout. This is useful if you
sometimes accidentally type 100 many control-d characters, logging yourself off (2.2).

Many commands on UNIX take information from the terminal or from files which they then
act on. This information is called input. Commands normally read for input from their
Standard input which is, by default, the terminal. This standard input can be redirected
from a file using a shell metanotation with the character ‘<’. Many commands will also read
from a file specified as argument. Commands placed in pipelines will rcad from the output
of the previous command in the pipeline. The leftmost command in a pipeline reads from
the terminal if you neither redirect its input nor give it a filename to use as standard input .

ND-60.328.1P EN

USD:6-38

interrupt

job

job control

job number

jobs

kill

Jogin

login shell

logout

Jogout

Ipr

Is

mail

make

makefile

manual

ND-60.328.1P EN

An Introduction to the C Shell

Special mechanisms exist for supplying input to commands in shell scripts (1.5, 3.8).

An interrupt is a signal to a program that is generated by typing AC. (On older versions of
UNIX the RUBOUT or DELETE key were used for this purpose.) It causes most programs to
stop execution. Certain programs, such as the shell and the editors, handle an interrupt in
special ways, usually by stopping what they are doing and prompting for another command.
While the shell is executing another command and waiting for it to finish, the shell does not
listen to interrupts. The shell often wakes up when you hit interrupt because many com-
mands die when they receive an interrupt (1.8, 3.9).

One or more commands typed on the same input line separated by ‘I’ or ;" characters are
run together and are called a job. Simple commands run by themselves without any ‘I’ or
;" characters are the simplest jobs. Jobs are classified as foreground, background, or
suspended (2.6).

The builtin functions that control the execution of jobs are called job control commands.
These are bg, fg, stop, kill (2.6).

When each job is started it is assigned a small number called a job number which is printed
next to the job in the output of the jobs command. This number, preceded by a ‘%’ charac-
ter, can be used as an argument to job control commands to indicate a specific job (2.6).

The jobs command prints a table showing jobs that are either running in the background or
are suspended (2.6).

A command which sends a signal to a job causing it to terminate (2.6).

The file .login in your home directory is read by the shell each time you login to UNIX and
the commands there are executed. There are a number of commands which are usefully
placed here, especially ser commands to the shell itself (2.1).

The shell that is started on your terminal when you login is called your login shell. It is dif-
ferent from other shells which you may run (e.g. on shell scripts) in that it reads the dogin
file before reading commands from the terminal and it reads the .logout file after you logout
2.1).

The logout command causes a login shell to exit. Normally, a login shell will exit when
you hit control-d generating an end-of-file, but if you have set ignoreeof in you .login file
then this will not work and you must use logout to log off the UNIX system (2.8).

When you log off of UNIX the shell will execute commands from the file .logout in your
home directory after it prints ‘logout’.

The command Ipr is the line printer daemon. The standard input of Ipr spooled and printed
on the UNIX line printer. You can also give Ipr a list of filenames as arguments to be
printed. It is most common to use /pr as the last component of a pipeline (2.3).

The Is (list files) command is one of the most commonly used UNIX commands. With no
argument filenames it prints the names of the files in the current directory. It has a number
of useful flag arguments, and can also be given the names of directories as arguments, in
which case it lists the names of the files in these directories (1.2).

The mail program is used to send and receive messages from other UNIX users (1.1, 2.1),
whether they are logged on or not.

The make command is used to maintain one or more related files and to organize functions
to be performed on these files. In many ways make is easier to use, and more helpful than
shell command scripts (3.2).

The file containing commands for make is called makefile or Makefile (3.2).

The manual often referred to is the ‘UNIX manual’. It contains 8 numbered sections with a
description of each UNIX program (section 1), system call (section 2), subroutine (section 3),
device (section 4), special data structure (section S), game (section 6), miscellaneous item
(section 7) and system administration program (section 8). There are also supplementary
documents (tutorials and reference guides) for individual programs which requirc explana-
tion in more detail. An online version of the manual is accessible through the man com-
mand. Its documentation can be obtained online via

An Introduction to the C Shell USD:6-39

metacharacter

mkdir
modifier

more¢

noclobber
noglob

notify

onintr

output

path

man man

If you can’t decide what manual page to look in, try the apropos (1) command. The supple-
mentary documents are in subdirectories of fusr/doc.

Many characters which are neither letters nor digits have special meaning either to the shell
Or 10 UNIX. These characters are called metacharacters. If it is necessary to place these
characters in arguments to commands without them having their special meaning then they
must be quoted. An example of a metacharacter is the character ‘>’ which is used to indi-
cate placement of output into a file. For the purposes of the history mechanism, most
unquoted metacharacters form separate words (1.4). The appendix to this user’s manual
lists the metacharacters in groups by their function.

The mkdir command is used to create a new directory.

Substitutions with the history mechanism, keyed by the character ‘!” or of variables using
the metacharacter *$’, are often subjected to modifications, indicated by placing the character
‘" after the substitution and following this with the modifier itself. The command substitu-
tion mechanism can also be used 1o perform modification in a similar way, but this notation
is less clear (3.6).

The program more writes a file on your terminal allowing you to control how much text is
displayed at a time. More can move through the file screenful by screenful, line by line,
search forward for a string, or start again at the beginning of the file. It is generally the easi-
est way of viewing a file (1.8).

The shell has a variable noclobber which may be set in the file dogin to prevent accidental
destruction of files by the ‘>’ output redirection metasyntax of the shell (2.2, 2.5).

The shell variable noglob is set to suppress the filename expansion of arguments containing
the metacharacters ‘~*, “*’, “?’_ ‘[and ‘] (3.6).

The notify command tells the shell to report on the termination of a specific background job
at the exact time it occurs as opposed to waiting until just before the next prompt to report

the termination. The notify variable, if set, causes the shell to always report the termination
of background jobs exactly when they occur (2.6).

The onintr command is built into the shell and is used to control the action of a shell com-
mand script when an interrupt signal is received (3.9).

Many commands in UN<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>