
ND-100/500 SORT-MERGE

User Guide

ND-eo.2se.1 EN

ND-100/500 SORT-MERGE
User Guide

ND-60.236.1 EN

PREFACE

The product

The reader

Prerequisite knowledge

The manual

Chapter

Chapter

1

2

This manual describes the use of the SORT—
MERGE package:

0 ND~10179 version E, for ND—lOO,
o ND-10344 version C, for ND—SOO.

The package is a general purpose tool for
rearranging data on mass storage files:
disks, magnetic tapes, and floppy diskettes.
The package can be used as a SINTRAN III
subsystem, or called as a subroutine in
application programs.

The readers of this manual fall into two
categories.

The so—called "end user", that is any person
using ND~computers, and needing to create
data on files and organize them in different
ways. The other category is programmers, or
people with a knowledge of writing computer
programs, with the need to include a sorting
process as part of the program.

Both categories of users are expected to have
knowledge of running subsystems, and to
create files using PED or NOTIS—WP text—
editors.

To write a program using the SORT or MERGE
subroutines, the reader should also be
familiar with compiling and loading programs.

This is an new edition of the manual, with
more emphasis on how to use the program,
showing examples throughout.

gives a short introduction to the SORT~MERGE
concept, includes examples of three ways the
program may be used: Interactive mode, that
is typing commands directly from the
terminal; running mode file or batch file
containing all necessary commands; or calling
the SORT or MERGE subroutines from a user—
written application program.

describes the commands that are mandatory in
any sort or merge operation.

ND-60.236.1 EN

Related manuals

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

describes the different types of files and
data fields the program can handle.

describes some additional commands: such as
help and information, scratch file, use of
magnetic tape as input and output, and two
special commands for the ND—SOO computers.

describes the SORT and MERGE subroutines and
their parameters as called from a user
program, handling errors in the program, and
handling errors running mode and batch jobs.

lists all errors that may occur during an
interactive session, together with a short
explanation.

describes the capacity of the program, the
maximum size of the input file and the
scratch file.

explains the methods used for the sort and
merge processes.

Most information on running the SORT-MERGE
program is contained within the manual,
however, programmers may need to refer to the
following manuals:

SINTRAN III Reference Manual ND—60.128
SINTRAN III Timeshar /Batch Guide ND-60.132
ND FORTRAN Reference Manual ND—60.145
ND Relocatable Loader ND~60.066
BRF—LINKER User Guide ND—60.196
ND~500 LINKAGE~LOADERIMONITOR. NDs60.136

ND-60.236.1 EN

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. The SORT Operation .

. The MERGE Operation

. The RECORD-DESCRIPTION Command .

. The KEY—DESCRIPTION Command

. Confirming that the Input File is to be Used as Output File

. Sort Performance Report

. The SORT Command .

. Merge Performance Report .

. The MERGE Command

Illustration of Records in a File .

Illustration of Fields in a Record

ASCII Data Type .

BDC Data Type .

BITSTRING Data Type .

INTEGER Data Type .

NUMERIC—UNSIGNED Data Type

NUMERIC-LEADING~SEPARATE Data Type

NUMERIC-TRAILING*SEPARATE Data Type .

NUMERIC-LEADING~EMBEDDED Data Type

NUMERIC-TRAILING—EMBEDDED Data Type .

REAL Data Type

Alternative Character Set for Business Standard .

Field Array In Call Statements

ND~60.236.1 EN

LIST OF FIGURES

15

18

19

2O

20

22

22

27

29

30

31

31

32

32

32

33

33

34

34

4O

47

1.

2.

3.

8.

9.

W

LIST OF TABLES

Data Types in Call Statement .

Error Numbers and Message Returned from the SORT Program .

The ASCII Character Set

LIST OF EXAMPLES

. Using SORT in Interactive Mode .

. Using SORT in Mode Job .

. Command to start a Mode Job

. Calling SORT from a User—Written Program .

. Sorting Data Using Alternative Collating Sequence

. User~Written Sort Program

. Loading a ND—1OO Sort Program

Loading a ND—SOO Sort Program

Testing Status Code Returned From SORT Or MERGE Subroutine .

10. Job Execution Control (JEC) in Mode or Batch Jobs

ND-60.236.1 EN

48

56

75

10

40

51

52

54

55

57

How to Use the SORT—MERGE Program

General tool

Different file types

SORT—MERGE is a general tool to put records
or lines of a file into ASCENDING
(increasing) or DESCENDING (decreasing)
order, using one or several fields as the
ordering criterion.

SORT—MERGE accepts files from many different
sources, such as output from programs written
in FORTRAN, COBOL, BASIC or other languages,
and files made by the editors PED, NOTIS-WP.

What is SDRT?

file

V

SORT-MERGE
program

“1......
file

Figure 1.

Sort means that all records or lines in one
input file are ordered according to the
contents of one or several fields, whether
text or numeric data, into an ascending or
descending sequence.

Input file

You must specify
— file organization,
— record size. number of sort fields
— position of fields in the record.
— size and type of each field

Output file

The SORT Operation

The contents of the records or lines are not
changed, only the order they appear in the
output file may be different.

Normally the input file is not changed, and
the records are written to another file.
However, it is possible to specify that the
output appears on the same file as the input.

ND—60.236.1 EN

How to Use the SORT-MERGE Program

What is MERGE?

file file .. file

1 I l
SORT—MERGE
program

A...”
file

Figure 2.

Merge takes two or more input files, already
sorted, and combines records from them
according to the contents of specified
fields. The result is a single, sorted file.

Two or more input files. maximum 14

You must specify
— file organization,
— record size. number of sort fields.
- position of fields in the record.
- size and type of each field.

- name of input and output files

One single output file

The MERGE Operation

The merge operation is normally used when
data is collected at a certain frequency, for
example daily, weekly, or monthly, and there
is need to combine all the data before
further processing can continue.

Assuming that each data set is organized in
the same way, and sorted on the same fields,
it is faster to merge the presorted files,
than to sort all data records once more.

ND-lflfl vs ND-Sflfl

Different data types

This manual covers both the ND—iOO and the
ND—SOO versions of the SORT~MERGE programs
and the subroutine libraries.

The two programs behaves in the same way with
a few exceptions.

In the ND-iOO version the data type INTEGER
occupies 2 bytes (16-bits), whereas in the
ND—SOO it occupies 4 bytes (32—bits). Also,
the data type REAL in the ND—1OO occupies 6
bytes (48—bit floating point) and in the ND—
500 it occupies 4 bytes (32—bit floating
point).

ND-60.236.1 EN

How to Use the SORT-MERGE Program

ND-Sflfl conaands

This may influence the position of fields
specified in the KEY—DESCRIPTION command, as
well as the length of data records. However,
using ASCII data types, both programs behaves
identical.

The ND—SOO version also includes two extra
commands which may be used to improve the
speed of the sorting process, these are
explained on page 42.

ND—60.236.1 EN

How to Use the SORT—MERGE Program
Interactive use

INTERACTIVE USE OF THE PROGRAM

Starting the program

Commands and parameters

User input

Correcting typing errors

Do not use NOTIS—WP keys

You can run the SORT—MERGE program directly
from the terminal, typing commands and
parameters in a dialog fashion. Commands and
all necessary parameters may be typed on a
single line, or if you type carriage~return
(+) after the command—name, the program
asks for each parameter separately.

You start the program by typing:

@SORT-MERGE~ 100+J
OI

@3015:furthes—500»—l
When the prompt character (*) appears you can
type a command.

If the command you have given is accepted,
the program displays a leading text for each
parameter, and you are expected to respond
with a value that are suited. The command is
started when all the parameters have been
entered.

If an error is detected, whether it be a
unacceptable command or a wrong parameter
value, an error message is displayed. You
must repeat the command with correct
information. The HELP command gives you an
explanation of the error message, or a list
of all commands and their parameters.

In the examples throughout the manual input
typed by the user is underlin d, and the
carriage~return is marked with + .

Note that this last symbol will, however, not
appear on the terminal.

Occasionally you may notice a typing error
before you have pressed the carriage~return
key. You may correct the line using all of
the standard line~editing features of the
SINTRAN III operating system, e.g. ctrl—A to
delete a single character, ctrl~Q to delete a
whole line, and so on. On certain terminals,
a key marked DEL or a may also be used to
delete single characters.

Beware however, that using any 'NOTIS—WP'
keys, such as WORD, SENT, LINE, ERASE, COPY,
MOVE, etc, may cause the program to terminate
abnormally. The SINTRAN III command

NDv60.236.1 EN

How to Use the SORT-MERGE Program
Interactive use

@CONTINUE, restarts the program, but the
last command you entered must be repeated.

Example of interactive dialog:

@flELP,,“QQMMANQS:TEXI"+J

@soar—~100«J or @sonr~—500
*reg—gescoJ «J
record-length: 1:?0

1+number of fields:
type of fi e: TEXT
*key-gesg
position: n
length of field: ge «J
sequence: ASQEEEEHQ
type 0' data: ASCII
*sgrt
input-file: QE¥fiAHDS:IEXT~J
output~filez

SAME AS INPUT ? (y/N):y«J
254 RECORDS SORTED

CPU TI E = 0.8 SECONDS
*exit
@

Comments:

Write all SINTRAN III commands
on a file called COMMAND52TEXT.
Start the program.
Type the RECORD-DESCRIPTION command

~ length of records in the file
— number of fields used as sort—key
— type of file.

Type the KEY-DESCRIPTION command
~ position where the field starts
a number of characters in the field
— ordering sequence
— type of data: alphanumeric

Type the SORT command
— name of input file
- carriage—return only

The program asks for confirmation

The sorted records can be found on
the input file.
Terminate the program

Example 1. Using SORT in Interactive Mode

In this particular case, a file is made by
using the operating system's HELP command,
and then sorting all lines of that file in
alphabetic order.

The file is in ASCII characters, all lines
varying in size from 1 to 80 characters. The
file type is therefore 'TEXT'.

The field we want to use for sorting begins
in position 9, and is set to 25 characters
length. (The lines are actually longer but
this makes no difference to the result.) We
want the output to appear in ASCENDING order,
and the input file to receive the output of
the sort.

Take a look at the file, both before and
after the sorting, and see if you can match
the various parameters.

ND-60.236.1 EN

How to Use the SORT-MERGE Program
Running SORT from mode file

RUNNING THE PROGRAM FROM MODE
FILE Instead of typing all the commands on the

terminal each time the file is to be sorted,
you may use an editor program to write the
SORT~NERGE commands on a file.

This file can then be given as input file to
the @MODE command which will then read the
commands from the file instead of the
terminal. The output from the program is
written to the terminal, or directed to
another output file.

In such a file you must write each command
and its parameters on a single line. The
dialog mode, or input directly from the
terminal is not allowed.

The example below shows such a command file,
using the same parameters as for the
interactive job in the previous section,
except that the output from the SORT command
is directed to another file.

Example of MODE file

@help,,"commands:text“
@sort-merge-1OO
rec-desc 80, 1, text
key—desc 9,30,ascending,ascii
sort commands text,sorted:text
exit

The command and its parameters are
typed on the same line.

These lines are stored on a file
called SORT-JOB:MODE.

Example 2. Using SORT in Mode Job

@MODE SORT—JOBzMODE,TERMINAL

Assuming that the commands above are stored
in the file SORT~JOB:MODE, starting execution
is done by:

The “dialog“ with the SORT—MERGE
program appears on the TERMINAL,
or it can be directed to a file.
The output from the program is
stored on the file SORTED:TEXT.

Example 3. Command to start a Mode Job

ND-60.236.1 EN

How to Use the SORT‘MERGE Program
Running SORT from mode file

QMUDE saves typing The use of command files and the @MODE
command may save you a lot of typing. Further
information on the use of command files can
be found in the manual SINTRAN III
Timesharing and Batch Guide — ND~60.132.

ND-60.236.1 EN

10 How to Use the SORT-MERGE Program
Calling SORT—MERGE from program

CALLING SORT-MERGE FROM A USER-
NRITTEN PROGRAM

Ease of use

PROGRAM MYSORT

END

CALL SORT(infile,outfile,..

«.1111:s

If the SORT program is used quite frequently,
it may be convenient for the user to have a
program that for example asks the name of
the input file, and then calls the SORT or
MERGE routine, executing the operation from
within the program.

This way the user may have less to worry
about, as all other information to SORT or
MERGE is set up by the program.

The program calls the subroutine
SORT or MERGE with all the para-
meters necessary for the job.

The source program must be compiled
and loaded together with the SORT
library, to make an executable
program.

To start the program, simply type
the program name.

Example 4. Calling SORT from a User—Written Program

Details on how to write a program to perform
a sorting operation is shown on page 45.

ND-60.236.1 EN

The Most Important Commands 13

In this chapter the commands that are needed
in all SORT or MERGE operations are
explained. Other commands also exist but they
are used less often. Their definitions are
given in chapter 4.

The two first commands define the type of
file and the type of data the program is to
work with, and must be given first and in the
order shown, followed by either a SORT or a
MERGE command specifying the files to be used
for input or output.

0 RECORD~DESCRIPTION

e KEY-DESCRIPTION

0 SORT

O MERGE

Several SORT or MERGE commands may be
given, using the same record and key
formats from the current descriptions.

Finally, the command

0 EXIT

terminates the SORT—MERGE program, returning
control to the operating system.

ND-60.236.1 EN

14 The Most Important Commands
RECORDvDESCRIPTION

RECORD-DESCRIPTION with this command you must define three
parameters: the length of the records, the
number of fields the SORT or MERGE is to use
in the comparisons, and whether the type of
records in the file are of fixed or variable
length.

Format:"

grooms—ossekr,gIOnT<recaraélen§ iff?no—of~fieid5)4(type~of#fileiL

(record length)

(ne'er-fields)

<type—of~file>

This parameter can be given either as a fixed
number, e.g. 80, or as two numbers separated
by a colon (z), indicating variable length
records, e.g. 50:80. In this case the first
number is the the minimum number of
characters in a record, and the second number
is the maximum length.

Note that if the <type—of—file) is FIXED,
only the first number is used.

This parameter specifies the number of fields
to be used for comparison by the SORT or
MERGE operation.

This number controls how many parameters the
user may give in the following KEY—
DESCRIPTION command.

A maximum of 10 fields can be used if the
SORT—MERGE program is run in interactive mode
or from a mode file. However, user—written
programs calling the SORT-MERGE routines can
handle up to 99 fields. See page 45.

Note that only the number of fields to be
used in the SORT or MERGE operation should be
specified here, not all the different fields
in a record.

This parameter defines the type of file, and
may take one of the following values:

a TEXT The file is written in 7-bit
ASCII characters; each record is
terminated by a carriage—return and a
line-feed character (CR+LF).

ND-60.236.1 EN

The Most Important Commands
RECORD‘DESCRIPTION

15

This type of file is made by most
programming languages and such text~
editors as PED and NOTIS~WP, and must
contain only printable characters.

For COBOL programs this type of file is
written using “RECORDING MODE T'.

FIXED All records of the file are of
the same length. The file can be in 7~
hit ASCII as for 'TEXT’ files, but other
recording formats may produce fixed
formatted records containing binary
and/or BCD data.

For COBOL programs this type of file is
written using ‘RECORDING MODE F‘, then
there is no carriage—return/line-feed
terminating the records.

Using FIXED length records enables the
SORT-MERGE program to work about 7 times
faster than for TEXT and VARYING type.
Remember to include the carriage—return
and line-feed characters in the record
length, if such are used to terminate
the records.

VARYING Each record has a "byte—count"
indicating the length of the data fields
that follow. This counter is
automatically added for COBOL programs
using 'RECORDING MODE IS V'. This two—
byte counter should n9; be included in
the record—length parameter.

ND-lflu vs ND-Snfl Please note the different size of the data
types INTEGER and REAL in the ND—lOO vs ND-
500, since this may influence the positions
of fields and the length of the data records,
More detailes can be found on page 29ff.

@sort—merge~100

sort indatazdata, sortedzdata
exit

RECORD-DESCRIPTION 50:80. 2. TEXT
key—description 1O 3O ascending ascii, 1 1O descending ascii

Figure 3. The RECORD-DESCRIPTION Command

ND-60.236.1 EN

16 The Most Important Commands
KEY—DESCRIPTION

KEY-DESCRIPTION

Major and Minor keys

Here you must specify four parameters:
sit'o , length, mt 0 data. and mileage

Q;__Qrder, for each fields to be used in the
SORT or MERGE operation.

All fields to be used for comparison by SORT
or MERGE must be defined by a KEY-DESCRIPTION
command. The parameters may be separated with
blanks or commas.

If you run the SORT~MERGE in interactive
mode, the program asks you to enter four
values for each of the fields specified in
the RECORD—DESCRIPTION cemmand.

You may respond with the values for a single
field, one item at a time until all four
values are entered, or with all four values
for one field, or with all values for all
fields at once. The prompt text for each
parameter is repeated until all fields are
satisfactorily entered.

When running the program as a mode job,
however, all field parameters must be given
on the same line as the command.

The order the fields are given in determines
the major or minor order of fields. In other
words, if several records have the same value
in a field, the contents of the minor fields
determines the final order on the output
file.

The first field that is defined, whichever
location it has in the record, becomes the
major field, then the following fields
becomes the minor fields in the order which
they are given.

Format;,:

Mississauga _§§d$iti53>- mm: <$equéa¢s> mpg) ...

(position) The position in the record where the field
begins. The first user data start in position
1, even for files with type VARYING.

ND-60.236.1 EN

The Most Important Commands
KEY—DESCRIPTION

(length)

(sequence)

(type of data)

17

The size of the field in characters (bytes).

If the field is located in the variable part
of a TEXT-record, the SORT or MERGE fills up
the remaining part up to the maximum length
with blanks or zeroes, depending on data
type.

For fields of the data type BCD, see below,
each character or byte represents two digits.

Note that this parameter cannot exceed the
maximum length of the record, and cannot be
larger than 255 bytes. The total length of
all fields cannot exceed 255 bytes either.

The sequence in which the field is to be
ordered:

0 ASCENDING means that the field is
ordered on increasing values: .e.g.
1,2,3,...9, or A,B,C,...Z

o DESCENDING means that the field is
ordered on decreasing values: .e.g.
9.8.7....1, or Z,X,Y,...A

The parameter can be abbreviated to 'A‘ or
“B“ respectively.

The following data types are accepted:

a ASCII, the field is treated according to
ASCII alphabet.

o ASCII—UPPER~CASE, all the characters
are treated as uppercase letters.

0 ALTERNATIVE—ASCII, the field is sorted
using alternate code as defined using
ALTERNATIVE-COLLATING~SEQUENCE command,
see page 39.

o BCD, the field is treated as a set of 4~
bit digits, 2 per byte.

6 BITSTRING, the field is treated as a
series of 8 bit unsigned integers. The
leftmost bit contains the sign.

a INTEGER, the field is treated as a
binary word, length either 2 or 4 bytes,
representing a 16~bit (ND-100) or 32—bit
word (nD—SOO). The leftmost bit contains
the sign.

ND~60.236.1 EN

18

ND—IOU vs ND~500

The Most Important Commands
KEY-DESCRIPTION

9 NUMERIC—UNSIGNED, the field must only
contain numeric ASCII characters. No
sign or special symbols are allowed, and
may disrupt the sort-merge process.

0 NUMERIC-LEADING~SEPARATE, the first
character must only contain a minus (—)
or a plus (+) Sign.

O NUMERIC-TRAILING~SEPARATE, the last
character must only contain the + or ~
sign respectively.

0 NUMERIC~LEADING—EMBEDDED, the first
character may contain the first digit
and the sign, using 'multipunch'
technique.

a NUMERIC-TRAILING~EMBEDDED, the last
character may contain the first digit
and the Sign, using 'multipunch'
technique.

0 REAL, the field consists of a floating-
point number. The length of the field
is either 6 bytes (48~bit ND-100) or 4
bytes (32*bit NDeSOO), depending on the
computer used to create the file.

All parameter names, such as ASCII, NUMERIC—
UNSIGNED, INTEGER, etc, may be abbreviated,
as long as the names do not become ambiguous.

On page 29ff. the different data types are
described in more detailes.

Please note the different size of the data
types INTEGER and REAL in the ND-1OO vs ND~
500, since this may influence the positions
of fields and the length of the data records.
More detailes can be found on page 29ff.

@sort—merge-1OO
record—description 50:80, 2, text
KEY-DESCRIPTION 11 3O ASCENDING ASCII. ’i 10 DESCENDING ASCII
sort indata:data, sorted:data
exit

Figure 4. The KEY-DESCRIPTION Command

ND-60.236.1 EN

The Most Important Commands
SORT command

19

SORT This command starts the sorting operation, if
the record—description and key—description
commands have been given.

Files can be stored on disk, floppy
diskettes, and magnetic tapes. Peripheral
devices such as line~printers and terminals
cannot be used as input or output directly
from the SORT-MERGE program.

The input file may be used to receive the
result of the operation, but care should be
taken, because if the sort fails due to
inconsistency with record—lengths, the
original input file may be destroyed.

Ebrmatzif=hflfg_pflf7

(input—file)

<0utput-file>

Figure 5. Confirming that the

The name may be any standard SINTRAN III file
name, including: remote computer, directory
name, user name, file name, and file type.
Default file type is :DATA.

The output file follows the
the input file,

same format as

If the input file is to receive the sorted
output, a CR (carriage—return) should be
given.

This option must be confirmed with the
following request:

SORT input~file «J

SAME AS INPUT \Y/N): y t]

Input File is to be Used as Output File

Any other response than ‘Y' or 'y',
terminates the command.

The output file can be either INDEXED or
CONTIGUOUS, the latter makes the SORT run
faster. A contiguous file is made by giving a
fixed number of pages when the file is
created. An indexed file is made by giving

ND—60.236.1 EN

20

Successful operation

The Most Important Commands
SORT command

zero (0) pages when the file is created.

When the sort operation is finished
successfully, the following performance
report is printed:

xxxx RECORDS SORTED
CPU—TIME yy.zz SECONDS

Figure 6. Sort Performance Report

Errors detected If the SORT detects an error, either that a
file cannot be read or written, or the
record—length specified does not correspond
with the number of records in the file, an
error message is printed.

If you give a HELP command after such an
error message, a short explanation of the
error is displayed.

All such messages are listed on page 61,
together with how the situation is correct.

@sort—merge—lOO

exit

record-description 50:80, 2, text
keyedescription 10 3O ascending, ascii 1 1O descending ascii
SORT INDATA:DATA. SORTED:DATA

Figure 7. The SORT Command

ND-60.236.1 EN

The Most Important Commands
MERGE command

21

MERGE

Combining sorted files

Handling large files

This command allows a set of files, each
having the same record-layout and
organization, and sorted in the same
sequence, to be collected in one output file.
This contains all records of the input files
ordered according to the fields specified
with the KEY~DESCRIPTION command.

A typical use of the MERGE command is when
data is collected file at certain time
intervals, e.g. weekly or monthly, and the
user wants to combine these files into one
single file. A number of files can be merged
into one file in one operation.

You may find the merge operation particularly
useful if your data files are extremely
large, or if you have limited disk-space for
the work file needed by the SORT-MERGE
program. (See the SCRATCH command on page
38.)

You may divide the large file into several
smaller ones, sort each one separately, and
then combine all the files into one with the
MERGE command.

The size of the largest file that the SORT
procedure can handle, and the space required
by the work file, can be found on page 71.

Format; -' , iii; _ g

mm , (number:grammar-airless?) (nameseoreimputef iles >> ~<output~riie >

<nunber-uf—input-files)

<nanes-of-input—files)

You must specify the number of files the
program is to use for input. The maximum
number is 14.

A set of file names, separated by blanks or
commas. The number of names must correspond
with the number given in the previous
parameter. Default file type is :DATA.

In the interactive mode, the program
continues to ask for file names until the
required number have been given.

NDt60.236.1 EN

22

<0utput—file)

Successful tera1nat1on

The Most Important Commands
MERGE command

The name of the output file. This file must
be large enough to receive all records of the
input files together. Default file type is
:DATA.

An output file must be specified; it is not
possible to use one of the input files as for
the SORT command.

The output file can be either INDEXED or
CONTIGUOUS, the latter reduces the time of
the operation.

When the MERGE operation has been
successfully completed, the following
performance report is printed:

Final pass running
xxxx Records merged
CPU—time: yy.zz Seconds

Figure 8. Merge Performance Report

Errors detected If the MERGE detects an error, either that a
file cannot be read or written, or the
record—length specified does not correspond
to the number of records in a file, the
operation is terminated and an error message
is printed.

If you type the HELP command after such an
error message, a short explanation is
displayed on the terminal.

All such error messages are listed on page
61.

@sort—merge—lOO

exit

record~description 50:80, 2, text
key-description 11 30 ascending ascii, 1 1O descending ascii
MERGE 3 ORDERS-JAN.0RDERS-FEB. UROERSeMAR. Q1~0ROERS

Figure 9. The MERGE Command

ND-60.236.1 EN

The Most Important Commands 23
EXIT command

EXIT This command terminates the SORT—MERGE
program, and returns control to the operating
system.

ND~60.236.1 EN

24

ND~60.236.1 EN

Types of Files and Fields

DIFFERENT TYPES OF FILES
What is 3 FILE?

Figure 10.

FIXED record size

TEXT records

27

A file is a collection of records, or lines,
containing some relevant information.
Examples are names, addresses, and phone
numbers of friends and relatives, or
transactions to an inventory register, just
to mention a few.

For the SORT or MERGE program it is not
important what the file will be used for,
only which fields in the records you want to
use to determine how the records are ordered.

Neither SORT nor MERGE change the contents or
the position of the fields within a record.

A file normally contains
many different records,
each bearing similar
information.

The records in the file
may be of either fixed
size or of variable size.

Illustration of Records in a File

A file may contain records of the same size,
or records of different lengths. The SORT~
MERGE program must he told how the file is
organized; this is done by the RECORD—
DESCRIPTION command.
For this type of file each record in the file
is of the same length. The record may consist
of different types of fields, a mixture of
ASCII characters, BCD, and/or binary fields.

Such files are mostly made by application
programs using formatted output statements.

In COBOL programs the file must be declared
with 'RECORDING MODE F'.

This type of file is often created by the
user with text—editors such as PED or NOTIS-
WP, and consists of 7—bit ASCII characters.

ND-60.236.1 EN

ix: CO

VARYING length records

Types of Files and Fields
FILE TYPES

In COBOL programs the file must be declared
with 'RECORDING MODE T'.

The records may be of the same size (FIXED),
or vary in size (TEXT), however, each record
must be terminated by a CARRIAGE—RETURN and a
LINE—FEED Character.

When looking at the file with the PED or
NOTIS~WP editors, note that the two
terminating characters are not seen. They
must however be counted when determining the
length of the records.

The SORT-MERGE runs considerably faster if
the file is made up of records of fixed
length and even number of bytes, than with
variable length and odd number of bytes.

This type of file is written by COBOL
programs, using file description with the
Clause ‘RECORDING MODE V“,

Each record, which may vary in length,
includes a two—byte count field, indicating
the size of the total record. The remaining

fields may be a mixture of different data
types, such as characters, binary, or BCD
numbers.

When specifying the sort~field position, the
two—byte count field should not be counted,
i.e. the first user field begins at character
position 1.

ND~60.236.1 EN

Types of Files and Fields
FIELD~TYPES

29

DIFFERENT TYPES OF FIELDS
What is a FIELD ? Normally the records in a file contain data

that is broken into several fields. In our
name and address file below, each element,
the name, the address, and the phone—number,
constitutes a separate piece of information
occurring in all records in the file.

A record consist of
one or several fields.
each having similar
data type throughout

name
20 characters

Figure 11.

Adjacent fields

Alphanumeric data

tfiififiifiifi
address phone—number

20 characters 10 digits

Illustration of Fields in a Record

Each of the fields may contain data with
alphabetic or numeric values; they can vary
in size, and in the way a data item is
organized.

For the purpose of the SORT or MERGE
operation, the fields which will be used to
determine the sequence of the output file
must be specified using the KEY-DESCRIPTION
command.

The information about a field consists of
four parts: the character position, the
length of the field, the order of sequence,
and the type of data in the field.

In some cases, where the data is of the same
type, and the fields are adjacent to each
other, as for example the name and the
address field in the record above, the user
can combine the two fields into one sort~key.
This will reduce the time for the SORT—MERGE
operation.

The different types of data that can be
represented in a field are described below:

Alphabetic information consists mostly of
letters from the alphabet, in upper and
lowercase types. Often also digits and
special symbols appear in alphabetic fields.
This is then referred to as alphanumeric
data.

ND-60.236.1 EN

30

ASCII

ASCII

ASCII-UPPERtflASE

ALTERNATIVE-ASCII

Nuaeric data

Types of Files and Fields
FIELD TYPES

Such characters are usually taken from the
ASCII character set, each letter using 8-bits
representing the position of the letter
within the alphabet.

In certain cases the normal character
sequence does not suit the order in which the
user wants the output to appear. In such a
case an ”alternate collating sequence" can be
specified, where the user can define the
order of character sequence in the alphabet.

The field is sorted or merged based on the
ASCIl character set.

[‘—"*"— 8~bit byte. one character position

length of field.
maximum number is 255 bytes

Figure 12. ASCII Data Type

All letters is treated as if they were in
uppercase.

Otherwise the type and organization is like
the ASCII characters.
The field is sorted according to the
alternative collating sequence; the user
defines the order of the character set to be
used.

The type and organization is like the ASCII
characters.

See description of the command ALTERNATIVE—
COLLATING—SEQUENCE on page 39.

Numeric data can be a little bit more
complex. The fields can be made up of BCD
characters, using 4—bits per digit, as fixed
size hyte~strings or bit~strings, many times
referring to the computer's “word—length".

The value can be represented in a binary
fashion, which is efficient for the computer
to handle, but difficult for people. Often,
such binary data must be converted to
alphanumeric characters before it can be read
by people.

ND~60.236.1 EN

Types of Files and Fields
FIELD TYPES

31

The SORT‘MERGE program can
different numeric data types.

handle many

The field consists of binary coded digits
(BCD), as a string of 4—bit numeric data,
packed two and two per characters (bytes).
This type of data is usually produced by
COBOL programs, using the data description
PICTURE COMP—3.

6-bit byte. one character position

ECU-field [Illllll]..[lll]lll}*—'sign in rightmost digit

BED

Figure

BITSTRING

BITSTRING [1111111]...
T

Lfig" sign in

Figure 14.

2 Binary Coded Digits, each 4—bits

13. BBC Data Type

The
as:

length of this field must be calculated

number of digits + 1
——-—-~w— -~«-~~ = number of

2 bytes

Maximum length is 18 digits, or 10 bytes
including the sign position.

In COBOL, the description PICTURE 9(11) COMP—
3, occupies 6 bytes.

The field is regarded as consisting of 8—bit
bytes, and treated as unsigned integer.

8~bit byte.

ill
leftmost hit.

one character position

0 : positive.
1 : negative

BITSTRING Data Type

ND~60.236.1 EN

32 Types of Files and Fields
FIELD TYPES

INTEGER The field is regarded as 16~bit (ND~100) or
32*bit (ND—500) binary words, or 2 or 4
bytes, respectively. The leftmost bit is
treated as sign-bit, indicating negative
value if set to 1.

[’—““~‘** 8-bit byte. one character position

INTEGER [:1:1... length of field. 2 or 4 bytes only

sign in leftmost bit position
0 = positive. 1 : negative.

Figure 15. INTEGER Data Type

mn-tun vs ND—Snfl Please note the different sizes of this data
type in the ND—iOO and the ND-SOO, since this
may influence the position of the fields and
the length of data records.

NUMERIC-UNSIGNED The field must consist of numeric bytes,
characters 0..9, onlyi No sign symbols are
allowed (+ or e), and any other characters in
the field may produce unpredictable result.

f‘”“~"“—— 8—bit byte. one character position

NUMERIC~ [:I:1:l... length of field, upto 18 bytes,
UNSIGNED no Sign allowed. only characters O..9

Figure 16. NUMERIC-UNSIGNED Data Type

In COBOL, the description PICTURE 9(5)
NUMERIC—UNSIGNED, occupies 5 bytes.

NUMERIC—LEABING~SEPARATE The field must consist of numeric bytes only,
but the leftmost byte may contain a minus
sign (~), indicating a negative number.

[‘*———~—* 8—bit byte, one character position

NUMERIC-
LEABING— [:I:1:1;.. length of field. upto 18 bytes.
SEPARATE 1

Figure 17. NUMERIC—LEADING-SEPARATE Data Type

I s |sign byte. only + or ~’ allowed

In COBOL, the description PICTURE 89(5)
NUMERIC~LEADING-SEPARATE, occupies 6 bytes.

ND-60.236.1 EN

Types of Files and Fields 33
FIELD TYPES

NUMERIC~TRAILING—SEPARATE The field must consist of numeric bytes only,
the rightmost byte is reserved for sign
representation.

[—~”‘“““* 8—bit byte. one character position

NUMERIC— [:I~r:[]

TRAILINB- ... length of field, upto 18 bytes.
SEPARATE I

Figure 18. NUMERIC~TRAILING-SEPARATE Data Type

sign byte. only + or — allowed

In COBOL, the description PICTURE 59(5)
NUMERIC—TRAILING—SEPARATE, occupies 6 bytes.

NUMERIC—LEADING—EMBEDDED (*1 The field must consist of numeric bytes only.
The leftmost byte may contain the sign
representation using a 'multipunch' feature,
an old term from the punch—card era, where a
negative digit was indicated with an extra
punch in column 12, creating an alphabetic
character to represent a negative number.

{“~“‘~“" 8-bit byte. one character position

(*l NUMERIC— [:I'T~I:]
LEADING" ... length of field. upto 18 bytes.
EflBEDDED i

Sign byte, ‘0’..‘9'
|J|..IHI

positive
negative

Figure 19. NUMERIC—LEADING-EMBEDDED Data Type

In COBOL, the description PICTURE 89(5)
NUMERIC-LEADING-EMBEDDED, occupies 5 bytes.

(*) Note that the TRAILING—EMBEDDED
representation is the default sign
representation of the ANS COBOL standard. The
embedded sign representation of the former
ND~COBOL systems, (older than 1980) is not
completely compatible with this standard, and
may, in certain cases cause unpredictable
results.

ND-60.236.1 EN

34

NUMERIE—TRAILING-EMBEDUED [*1

(*) NUMERIC- [:1TT—1;}
TRAXLING—
EMBEDDED I

Types of Files and Fields
FIELD TYPES

This is similar to the previous type, but the
rightmost byte may contain the sign, using
the 'multipunch‘ feature to indicate negative
number,

8—bit byte. one character position

length of field. up to 18 bytes.

sign byte, '0'..'9' : positive
'J'..‘R' negative

Figure 20. NUMERIC—TRAILING-EMBEDDED Data Type

REAL

ND—lOO, 48—bit version: 3 x 16-bit words
ND—100, 32—bit version: 2 x 16~bit words
ND—SOO, 32—bit version: 2 x 16—bit words

In COBOL, the description PICTURE 59(5)
NUMERIC-TRAILING—EMBEDDED, occupies 5 bytes.

(*) Note that the TRAILING-EMBEDDED
representation is the default sign
representation of the ANS COBOL standard. The
embedded sign representation of the former
ND~COBOL systems, (older than 1980) is not
completely compatible with this standard, and
may, in certain cases cause unpredictable
results.

This type represents floating—point data. The
length and format of this type depends on the
computer where the data was created.

The following list defines the type assumed
in the different versions of the program and
subroutine libraries:

6 bytes, (REAL*6)
4 bytes. (REAL*4)
4 bytes. (REAL*4)H

H
H

Figure 21. REAL Data Type

ND-lflfl vs NB-SDO

The exact format can be found in the manual
ND—1OO Reference Manual ND—06.014, and ND~SOO
Reference Manual ND—05.009.
Please note the different sizes of this data
type in the ND—100 and the ND—SOO, since this
may influence the position of the fields and
the length of data records.

ND—60.236.1 EN

Some Additional Commands

HELP AND INFORMATION COMMANDS

37

These two commands may help you to find
details on how to use the other commands in
the SORT—MERGE program, and explain errors
that have been found during interactive use
of the program.

HELP command

{ <cnmnand-nane)]

Explanation of errors

INFORMATION

The command has two functions: list available
commands, or explain error messages. The text
appears on the terminal.

If no name is specified, a list of all
commands and their parameters is displayed.

If a command—name is given, a more detailed
description of the command's function and its
parameters is listed.

The name of the commands may be abbreviated.

After an error message has been displayed,
typing HELP (without command—name) gives a
short explanation of the error encountered.

Further details of error messages and
explanations can be found on page 61.

The command displays a short description of
the most important commands, and the order in
which they must be given to conduct a SORT or
MERGE operation. This command directs its
output to the terminal only.

This command has no parameters.

ND—60.236.1 EN

38 Some Additional Commands
SCRATCH FILE

SCRATEH FILE During the sort operation a work file is
needed to store temporary results before
writing the final output file.

Normally the program uses the "scratch" file
assigned to all terminals and batch
processors under the SINTRAN III operating
system.

These scratch files are stored under a common
user called SCRATCH, and the space reserved
may be used for a variety of programs. Should
there not be enough free space, the SORT—
MERGE program may fail, and terminate with an
error message.

This command allows you to define your own
work file, which may under certain
circumstances increase the speed of the SORT-
MERGE program.

<nane-of-file)

The size of the scratch file

Odd sized records

The name of a file, INDEXED or CONTIGUOUS, to
be used as the standard scratch file. Default
file type is :DATA.

The size of the scratch file depends on the
the input file(s), and the length of the
records.

The size of input file(s) can be obtained by
the @FlLE-STATISTICS command.

If the record—length is an odd number of
bytes, the size of the scratch file must be
twice the size of the sum of the input
file(s).

When defining your own scratch file, you
should make the file CONTIGUOUS, by
specifying the required number of pages in
the @CREATE—FILE command of the operating
system.

For further details of the maximum size of
input files, and the size of the scratch
file, please see page 65.

ND~60.236.1 EN

Some Additional Commands
ALTERNATIVE-COLLATING-SEQUENCE

39

ALTERNATIVE-COLLATING-SEOUENCE In certain cases the character sequence used
in the SORT or MERGE operation is not suited
for the user, since in the standard ASCII
character set, the digits and special symbols
come before the uppercase letters, followed
by the lowercase letters.

This command allows you to specify the name
of a file containing this new character set,
to be used for fields where the data type has
been declared with ALTERNATIVE—ASCII.

<name—of—fi1e)

What the file looks like

The name of a file containing the character
sequence to be used. Default file type is
:DATA.

Only one alternative character set may be
active at one time.

The contents of this file are a list of
characters in the required sequence, each
Character on a single line, or several on the
same line separated by a comma.

The file can be made by the PED or NOTIS—WP
editors, as 7—bit ASCII-characters.

Characters not specified in the file is added
to the list, in the order of their ASCII
value. Non—graphic characters, such as line~
feed, carriagewreturn, backspace, and so on,
cannot be specified in the file.

ND~60.236.1 EN

40 Some Additional Commands
ALTERNATIVE~COLLATING~SEQUENCE

The example below shows a file that makes a
text field declared as ALTERNATIVE—ASCII to
be sorted according to the "business“
standard: first the alphabet with both
uppercase and lowercase letters, followed by
numbers and special symbols:

Figure 22. Alternative Character Set for Business Standard

Original
sequence:

ab123
A8123
ahcde
ABEBE

Note that the first Character is a blank
(space), and that each line is terminated by
a carriage—return and line~feed (CR+LF).

Below is an example of how a set of records
are arranged using the normal sequence and
the alternate “business" sequence:

Normal
sequence:

Example 5. Sorting Data Using Alternative

A3123
ABEDE
ah123
abode

ND-60.236.1 EN

Alternative
sequence:

ABBDE
A8123
abode
ah123

Collating Sequence

Some Additional Commands 41
BLOCK~FACTOR ON MAGNETIC TAPES

USING MAGNETIC TAPE AS INPUT OR
OUTPUT The following two commands may be necessary

when using magnetic tapes as input or output
to the SORT~MERGE program.

Normally the SINTRAN 111 operating system
treats magnetic tapes in the same fashion as
disk files; data is read or written in pages
of 2048 characters. In some cases, where data
is to be exchanged with "foreign" systems,
the user may define different blocking of
data.

The two commands are identical in terms of
parameters and usage, except that one relates
to reading tapes as input to the SORT or
MERGE, and the other relates to writing
output to tapes. The commands are therefore
described together.

Format:

o * ., r n 1*
-: BLOCK“, { < "cfimcitfifis‘ "RECORBSV13,].ifrL

(number) The number of units, either specified as
CHARACTERS or RECORDS, that gives the size of
the input or output blocks. The maximum block
size is 8K characters.

<unit> Either ‘CHARACTERS' or 'RECORDS'.

For ‘CHARACTERS' the (number) is the length
of blocks in bytes.

For 'RECORDS' the (number) is taken as
records of fixed type, and the block-size is
calculated as the product of the (number) and
the (record—length) as specified in the
RECORD-DESCRIPTION command.

If the parameter (unit) is not specified, the
(number) parameter is assumed to be
representing ‘CHARACTERS'.

ND~60.236.1 EN

42 Some Additional Commands
ND-SOO COMMANDS

TWO COMMANDS FOR THE ND-500 The following two commands are available only
in the ND—SOO SORT-MERGE, and may be used to
improve the time of the SORT or MERGE
operation.

SECURE <’GN'I'BFF‘> This command is valid for the SORT command
only, and indicates whether the scratch file
or the ingut file should be used as temporary
work file.

SECURE 'ON', which is the default setting,
uses the scratch file, either the standard
one or the one defined by the user, as work
file.

SECURE ‘OFF' uses the ingut file as work
file. This leads to a faster sort, but may
cause serious damage to the input file if the
sort operation should fail.

flN—SEGMENT <'nN'i'nFF'> This command is valid for SORT command only,
and is used to reserve a large portion of
physical memory as working area for the
sorting operation.

ON-SEGMENT ‘ON', reserves up to 256 pages of
memory as working area for the sorting
operation, thus significantly reducing the
sort time.

ON—SEGMENT “OFF', which is the default
setting, uses a standard data—segment, 64
pages, as working area.

The use of this command may lead to
inconvenience for others, since it takes
exclusive use of scarce resources. This may
lead to increased response~time for other
tasks.

ND—60.236.1 EN

Using the SORT—MERGE from a User—written Program 45

THE SORT SUBROUTINE

FORTRAN programs

CDBQL programs

Other languages

Nfltlflfl vs ND-Sflfl

In certain circumstances it may be more
convenient for the end user of an application
to be able to perform a SORT or MERGE
operation directly from a program.

For example, the end user could provide the
names of the input and output files only, the
remaining parameters being embedded in the
program.

The programmer calls the SORT or MERGE
subroutine as a part of the program,
specifying all necessary parameters; compile
and load the program, with the SORT-MERGE
library to build an executable program.

A description of the subroutines and their
parameters is given in the two following
sections, and relates to FORTRAN programming
language.

The COBOL programming language contains its
own SORT and MERGE statements, which in turn
calls these subroutines. However, the COBOL
programmer need not load the SORT~MERGE
library as a part of the program, as it is
included in the COBOL runtime library.

You may call the SORT subroutine from other
programming languages provided that the
language in question conform to the PLANC or
FORTRAN subroutine calling conventions.

Please note the differences in sizes of the
data types INTEGER and REAL in the ND-1OO vs
the ND—SOO, as this may influence the
position of fields to be used by the sorting
operation, as well as the length of data
records. Further details can be found on page
29ff.

ND-60.236.1 EN

46 Using the SORT—MERGE from a User—written Program
SORT SUBROUTINE

:Format ’

CALL SORT (

(input) The name of the input file in FORTRAN
CHARACTER format, or an INTEGER containing a
file number. If a file name is given, SORT
opens the file; if an integer is given, SORT
assumes the file is already opened. Default
type is :DATA.

(output) The name of the output file in FORTRAN
CHARACTER format, or an INTEGER containing a
file number. If a file name is given, SORT
opens the file; if an integer is given, SORT
assumes the file is already opened. Default
file type is :DATA.

If the (output) parameter is given as an
INTEGER containing the value zero (0), the
input file is used as output file. This file
must then be opened with random read—write
access (’Wx‘).

<5cratch> The name of a user defined scratch file in
FORTRAN CHARACTER format, or an INTEGER
containing a tile number. Default file type
is :DATA.

If the (scratch) parameter is given as an
INTEGER containing the value zero (0), the
system~defined scratch file is used.

<nin1en> An INTEGER, specifying the minimum length, in
bytes, of the records in the file.

<max19n> An INTEGER, specifying the maximum length, in
bytes, of the records in the file.

If the (rectype) parameter (see next) defines
a file of the type FIXED, the <max1en>
parameter is ignored.

ND—60.236.1 EN

Using the SORT~MERGE from a User‘written Program 47
SORT SUBROUTINE

<rectype>

<nu~of~fields>

<field~array>

An INTEGER, defining the type of records in
the file. The following values are accepted:

9 0 records are of FIXED type.

9 1 records are of TEXT type, that is
each record is terminated by a carriage—
return and a line~feed, as in the PED
and NOTES—WP 7—bit format, or COBOL
'RECORDING MODE T'.

a 2 records are of VARYING type, where
each record contains a two—byte length
field, as produced by COBOL programs
with 'RECORDING MODE V'.

An INTEGER, containing the number of fields
to be used in the SORT comparison.

The maximum number of fields that can be
sorted in one operation is 99.
An INTEGER ARRAY, consisting of four elements
for each of the sort-fields that is specified
in the parameter <no~of—fields>:

l I 1

pos l1en Iseq Jtype
1 l t

pos Ilen Iseq Itype

[—~ first sort field [second sort field, etc.

Figure 23. Field Array In Call Statements

(p08)

(Ian)

(seq)

The first element specifies the position
where the field begins in the record,
expressed as byte positions, starting from 1.

The second element is the length of the
field, in bytes.

The third element is the sortinqwmseguence,
the value zero (0) for ASCENDING order, or
the value one (1) for DESCENDING order.

NDm60.236.1 EN

48 Using the SORT~MERGE from a User—written Program
SORT SUBROUTINE

(type) The fourth element specifies the type of
data, a number that gives the field's
representation type from the following table:

code data type

0 ASCII *)
1 ALTERNATIVE-ASCII Please note the
2 NUMERIC—UNSIGNED difference in size
3 NUMERIC—LEADING—SEPARATE of these data types
4 NUMERIC—TRAILING—SEPARATE on the ND—lOO VS
5 NUMERIC—LEADING—EMBEDDED the ND-SOO, since
6 NUMERIC~TRAILING-EMBEDDED this may influence
7 INTEGER *) the position of the
8 BCD fields, and the
9 ASCII—UPPER-CASE length of records.

10 BITSTRING
11 REAL *) ,,,,,

Table 1. Data Types in Call Statement

Please refer to page 29, for detailed
explanation of the different data types.

<buffsize> An INTEGER, giving the size, in words, of
the next parameter. This value must be larger
than 4K words.

The size of this area greatly influences the
speed of the sort operation, and should be as
large as possible. See page 71.

<buffarea> An INTEGER ARRAY, of the size specified in
the previous parameter. This area is used
during the sorting operation as working
area.

<block«inp> An INTEGER, specifying the size of magnetic
tape blocks, in bytes, used for input. This
parameter must be set to zero (0) if there
are no tapes, or if the standard block size
is employed.

<block-out) An INTEGER, specifying the size of magnetic
tape blocks, in bytes, used for output. This
parameter must be set to zero (0) if there
are no tapes, or if the standard block size
is employed.

<coll file) The name of a file containing the
ALTERNATIVE—ASCII character set, must be
given if the type 2 is specified for any of
the fields.

ND-60.236.1 EN

Using the SORT-MERGE from a User—written Program 49
SORT SUBROUTINE

(status)

If there is no ALTERNATIVE-ASCII field in
use, this parameter must be zero (0).

The name of the file must be given in FORTRAN
CHARACTER format, or as an INTEGER containing
the file number of a previously opened file.
Default file type is :DATA.

The layout of this file is described on page
39.

An INTEGER, that is set to zero if the SORT
terminates successfully, or non~zero to
indicate an error.

The error number represents either an error
from the SORT subroutine or an error detected
in the operating system.

If the number is in the range 0 to 256 (400
octal) it denotes an operating system error,
usually from the file system, and you should
consult the SINTRAN III Reference Manual for
an explanation.

The error numbers from the SORT subroutine,
in the range of 2584 decimal (5030 octal) to
2604 decimal (5054 octal) are described on
page 61.

ND-60.236.1 EN

50 Using the SORT—MERGE from a User-written Program
MERGE SUBROUTINE

THE MERGE SUBROUTINE

ND—Iflfl vs ND-Sflfl

The MERGE operation can be embedded as a part
of a user~written program, in the same way as
with the SORT subroutine.

Please note the differences in sizes of the
data types INTEGER and REAL in the ND—100 vs
the ND—SOO, as this may influence the
position of fields to be used by the sorting
operation, as well as the length of data
records. Further details can be found on page
29ff.

Format:

ssa‘;pu£; s¢ratsn“m nlen, maxlen,
'” "fie d~array‘ bu fsiZe, bufferea,

all file; statu l_;; _

<no~of-files>

(input)

(output)
(scratch)
(m1nlen)
(maxlen)
<rectype>
(no—of—fields)

<field~array>
(buffsize)
<huffarea>
<hlnck~inp>
(block-out)
(coll-file)
(status)

An INTEGER, indicating the number of files to
be used as input to the MERGE operation.
This parameter controls the number of file

names that must be specified in the next
parameter.

The maximum number of files for input is 14.

A set of file names, in the FORTRAN CHARACTER
format, giving names to the input files. All
files are opened by the subroutine. Default
filetype is :DATA.

All the remaining parameters are identical to
the SORT subroutine.

ND-60.236.1 EN

Using the SORT-MERGE
Example program

from a User—written Program 51

EXAMPLE OF A USER PROGRAM

123458

The following FORTRAN program should give you
an example of how to call the SORT
subroutine:

7

9000

PROGRAH SORTEX
PARAMETER (IBUFSZ 5 280008)
CHARACTERa32 INFILE, OUTFILE
INTEGER BUFFERf IBUFSZ }
INTEGER IFLDNO, IFIELDS€ B 3
DATA IFLDNO / E /, IFIELDS
INFILE “UNSORTHD:DATA’
OUTFILE ”SORTED:DATA"
IEECTYP 1
CALL SORT (INFILE,OUTFILE,U,10,80,IRECTYP,IFLDNO,IFEELDS,

r‘/ 1,20,0,9, ,3,-~.rif...)

I:
ii

Ii

IBUFSZ, BUFFER, 0,0yu, ISTATUS)
IF (ISFATUS .HE. 0) THEN

NRITE {1,9000} [STATUS
ENDIF
Fonnarcx, "are ERROR IN SORT arm”, 05)
END

Example 6. User—Written Sort Program

The file is a 'TEXT' file, with record length
varying from 10 to 80 characters, including
the carriage—return and lineefeed. There are
two sort—fields, the first: position 1,
length 20, sequence ASCENDING, type ASCII~
UPPER, and the second: position 25, length 5,
sequence DESCENDING, and type NUMERIC—
UNSIGNED.

The PARAMETER-statement is used to define the
size of the buffer~area, currently set to
20000 octal. This makes it easy to change the
value to accommodate a larger area at a later
stage.

ND-60.236.1 EN

52 Using the SORT-MERGE from a User—written Program
Loading ND—100

LOADING N0—100 PROGRAMS After the source program has been compiled,
the object-code must be loaded together with
the SORT—MERGE library, to make an
executable program.

For the ND—lOO computers, the following set
of commands could be used:

exit

acc mode fiLe to Load ND~iDO SORTwMERGE Library
acc Cl~bank version)
dBRF~LINKER
progwfiLe sort~exi
Load sort~exi
Load SORTwMERGE~lB
Load FORTRAN~18
List~entries~defined

QC: sort~exi is ready

Example 7. Loading a ND~1OO Sort Program

You should look at the report from from the
loader to find the size of remaining memory
space, and adjust the parameters <buffsiz>
and <buffarea) in the subroutine call
accordingly. In the program example the
bufferesize is defined by a PARAMETER—
statement, if you change the value here, it
automatically changes the size of the buffer—
area also.

'2-banks' program

Larger buffer area

SORT~MERGE-ZB:BRF
FORTRAN-28:33?

The ND—100 FORTRAN compiler can make object—
code in the so-called 1*bank or 2~banks mode,
using the compiler command $SEPARATE-DATA
‘ON' or ‘OFF’.

The 2~hank mode can be very useful, since it
may allow larger work—area for the sorting
operation.

In 2—bank mode, you must use the
corresponding libraries SORT—MERGE~ZB:BRF and
FORTRAN—28:8RF during the loading. Mixing 1*
bank and 2—bank object-code modules is not
allowed, and will be reported by the loader.
Check that all your source programs are
compiled with the compiler command $SEPARATEe
DATA ON, and that you load the correct
versions of the libraries‘

ND-60.236.1 EN

Using the SORT—MERGE from a User—written Program
Loading ND—1OO

Nil—60236.1 EN

53

54 Using the SORT—MERGE from a User~written Program
Loading ND—SOO

LOADING ND-500 PROGRAMS For the ND—SOO computer, the @ND—SOO—LINKAGE~
LOADER must be used to load the object—code,
and the executable program is called a
'domain':

at: m0d9*fite to Load ND"SDU SORTwHERGE Library
EHD~SDU LINKAGEwLOADER
settdomain sort~exi
Load~segment sort~ex1
Librarywsegment SORTMfiERfifiw5UD:NRF
Listwmap
endmdomain
exit
acc SORTwEXl is ready

Example 8. Loading a ND—SOO Sort Program

In the ND—SOO, the instruction—part and the
data—part of a program are automatically
separated, hence, there is only one set of
library files.

ND—66.236.1 EN

Using the SORT—MERGE from a User—written Program 55
Handling errors in the program

HANDLING ERRORS IN THE USER
PROGRAM The SORT and MERGE subroutines return a

value in the parameter (status) of the
subroutine call. This is a zero (0) if the
operation terminates successfully, or a
positive value indicating that an error has
occurred.

No messages are displayed by either SORT or
MERGE when called as subroutines. It is the
programmer's responsibility to test the
status—code returned, and inform the end
user.

1 2 3 I, 5 8 7

PROGRAM EXAMPLE

INTEGER STATUS

CALL SORT C..,u=.,STATUS)
IF (STATUS) THEN

STOP ’ SORT IS READY”
ELSE

CALL MESSAGE (STATUS)
ENDIF
END

Example 9. Testing Status Code Returned From SORT Or MERGE Suhroutine

SINTRAN III error numbers

SDRT—MERGE error numbers

The subroutine MESSAGE should display a text
to the end user in a form and style that can
easily be understood.

Error numbers less than 256 decimal (400
octal) come from the operating system. This
is usually returned from the file system,
indicating that a file does not exists, that
the user does not have the proper file
access, or that there is no more space for
files, etc. Please refer to the SINTRAN III
Reference Manual for further details.

Error numbers in the range 2584 to 2604
decimal, (5030 to 5054 octal), are detected
within the SORT—MERGE subroutines, and
correspond to the following table:

ND-60.236.1 EN

Using the SORT—MERGE from a User—written Program
Handling errors in the program

Decimal Octal Text as displayed in the interactive mode

2584 5030B I/O ERROR
2585 5031B ERROR IN DECIMAL NUMBER
2586 50328 NO SUCH COLLATING SEQUENCE
2587 5033B ERROR IN OCTAL NUMBER
2588 50348 SORT FILE TOO BIG FOR SPECIFIED BUFFER SIZE
2589 50358 TOO MANY KEYS
2590 5036B TOO LONG TOTAL KEY
2591 5037B NO VALUE GIVEN FOR PARAMETER
2592 50408 ERROR IN SPECIFYING ALTERNATIVE COLLATING SEQUENCE
2593 5041B IMPOSSIBLE COMBINATION OF PARAMETER VALUES
2594 50428 NO SUCH RECORD TYPE
2595 5043B ILLEGAL VALUE FOR PARAMETER
2596 5044B RECORD TOO BIG FOR BUFFER SIZE
2597 50458 RECORD GREATER THAN MAX SIZE
2598 5046B EOF FOUND WITHIN RECORD
2599 5047B MISMATCH OF RECORD LENGTH AND FILE SIZE
2600 50508 ILLEGAL COMMAND SEQUENCE..KEY DESCRIPTION MISSING
2601 5051B TOO MANY INPUT FILES
2602 50528 RECORD SMALLER THAN MINIMUM SIZE
2603 5053B NO SUCH KEY TYPE
2604 5054B ILLEGAL COMMND SEQUENCE..RECORD DESCRIPTION MISSING

Table 2. Error Numbers and Message Returned from the SORT Program

ND-60.236.1 EN

Using the SORT—MERGE from a User—written Program 57
Handling errors in mode or batch jobs

HANDLING ERRORS IN MODE 0R BATCH
JOBS
Termination condition When running the SORT~MERGE as mode or batch

jobs, the command file may include statements
that test the termination condition of the
program.

A 'Completion—Code‘ and a 'Standard Subsystem
Identification', is set up in the operating
system by the SORT—MERGE program.

Job Execution Control The JEC subsystem can be used to test and
inform the user of the COMPLETION—CODE, and
perhaps to decide if tasks using the result
of the SORT—MERGE program should be started
or not.

Example of JEC The following example illustrates the use of
JEC commands, with test and display of the
condition—code:

QJEC begin
aJEC define {inputmfiLe},{resuLtwfiLe}
QJEC inquire {inputwfite>;

”Give the fiLe name and type of the FiLe you want to sort:"
mJEC message;

“Give name and type of the PesuLtwfiLe.’
QJEC inquire {resuttwfite>;

”Do not give the name in quotes C”.u"), since the FiLe wiLL be created:"
QJEC create-{its {resutt~fite} D
@JEC SQRT~HERGE
recard~deecription 80, 1, text
keywdescription i, 10, ascending, ascii
sort {input~fite}, {resutt~file>
exit
mJEC if comptetionmcode = 0 go to 100
BJEC message “SORT faiLed“
BJEC printmcomptetion~code
$JEC end
@JEC 100: message "SORT successFuLLy done”
aJEC Zother tasks if SORTwmfifiGE perFormed 0K
QJEC copy terminat5 {resuttiLe>
SJEC end

Example 10. Job Execution Control (JEC) in Mode or Batch Jobs

In this example you can enter the names of
the files to be sorted, perform the sorting
operation, and print the sorted file on the
MODE~output file. You can find more
information about JEC in the SINTRAN III
Utility Manual ND-60.151

ND—GO 236.1 EN

58

ND-60.236.1 EN

Error Messages

ERROR IN OEEIMAL NUMBER

NO SUCH COLLATING SEQUENCE

ERROR IN OCTAL NUMBER

SORT FILE TOO BIG FOR SPECIFIED
BUFFER SIZE

TOO MANY KEYS

TOO LONG TOTAL KEY

NO VALUE GIVEN FOR PARAMETER

ERROR IN SPECIFYING ALTERNATIVE
COLLATING SEQUENCE

IMPOSSIBLE COMBINATION OF
PARAMETER VALUES

NO SUCH RECORD TYPE

ILLEGAL VALUE FOR PARAMETER

RECORD TOO RIG FOR BUFFER SIZE

RECORD GREATER THAN MAX SIZE

61

» Only digits 0..9
field. Please retype.

can be given in this

— Only collating sequence ASCENDING or
DESCENDING can be given. Please retype.

— Only digits 0..7 can be given in this OCTAL
field. Please retype.

~ The file is too large to be sorted by the
SORT~MERGE program. The file must be divided
into several shorter files, then merged.

- The maximum number of sort-fields are 10
when using the SORT-MERGE program. A user—
written program may handle more than 10 sort—
fields at a time.

~ The size for the field is larger than the
RECORD—SIZE, or more than 255 bytes.

- Required parameter(s)
given value(s),
value(s).

has/have not been
and there are no default

~ The alternative-collating—sequence contains
a character that is not allowed. Only
characters between 0 and 177 octal can be
given.

~ Possible inconsistency with the block~
factor command and the record type or number
of characters/records per block. If the
record type is "TEXT”, then the size of block
must be given in characters only. Please
check, and retype command.

« The record types allowed are: "FIXED",
”TEXT", or "VARYING". Please retype command.

- Inconsistency with the block—factor command
and the block size on the tape. Please check,
and retype the command.

— Reading a record has failed as it is to too
big for buffer size. The program terminates.

— The maximum recordslength is larger than
the maximum length given. Please check, and
retype command.

ND-60.236.1 EN

62

EGF FBUND WITHIN RECBRD

MISMATCH 0F RECBRE LENGTH AN!
FILE SIZE

ILLEGAL COMMAND SEQUENCE..KEY
DESCRIPTION MISSING

TOO MANY INPUT FILES

RECURD SMALLER THAN MINIMUM SIZE

NU SUEH KEY YYPE

ILLEGAL SUMMAND SEQUENCE..BEGGRB
DESCRIPTION MISSING

Error Messages

— End of file mark is found within a record.
The program terminates.

— The record—length given for fixed records
is not dividable by the maximum number of
characters in the file. Please check, and
restart the SORT—MERGE program.

— Possibly the key-description command is
wrong, or not given at all. Please check, and
retype the command.

— The maximum number of files accepted by the
MERGE command is 14. Please check, and retype
the command.

— The SORT operation cannot be performed
correctly. A record is found in the file
which is smaller than the minimum size
specified. Please check, and restart the
SORT—MERGE program.

~ One of the sortefields specifies an unknown
data type. The command HELP KEY—DESCRIPTION
lists all available types. Please check, and
retype the command.

- Possibly the record-description command is
wrong, or not given at all. Please check, and
retype the command.

ND~60.236.1 EN

The Capacity of SORT—MERGE 65

SIZE OF THE INPUT FILE The file to be sorted is divided into
partitions, which are sorted independently of
each other. The sorted partitions are stored
temporarily on the scratch file. When all
partitions are sorted, they are merged and
written to the output file. If the file is
small, the entire file is sorted as one
partition.

If not all sorted partitions can be merged in
one pass (due to lack of available memory
buffer area), they will be merged into
greater partitions and stored temporarily
back on the scratch file. The process is
repeated until the number of partitions is
less than the maximum number that can be
merged in one pass.

The maximum input file size the SORT—MERGE
program is capable to sort is approximately:

((30.000 * A) — 60.000.000) bytes,

where A is the buffer area size in bytes.

This gives the maximum size of the input
file:

Buffer area
in Kbytes

Maximum input file size
in Megabytes *)

8
16
32
64

128

180 (90)
420 (210)
900 (450)

1860 (930)
3780 (1830)

*) Note: If the record size is an odd number
of bytes, the maximum size is half (number in
parenthesis), but the required size of the
scratch file is shown in the left column.

The buffer area for the @SORT—MERGE—1OO is 94
Kbytes, and for @SORT—MERGE—SOO 256 Kbytes,
and may thus handle files of up to 2700 and
7620 Megabytes respectively.

ND—60.236.1 EN

66 The Capacity of SORT—MERGE

SIZE OF THE SCRATCH FILE

Rules of thuub

Calculating the required size

The size of the scratch file depends on three
factors: the size of the input file, the
length of the records in the file, and the
size of the buffer area in the sorting
program.

In most cases when using the SORT-MERGE
program, it is easy to determine the size of
the scratch file:

e the scratch file uses the same number of
pages as the input file

e if the record length is specified as an
odd number of bytes, the scratch file
must be tgige as large as the input file

The @FILE~STATISTIC command displays the size
of the input file. The command @USER—
STATISTIC for user SCRATCH, shows the number
of pages that is in use and that is reserved;
the difference is the free space available.

The disk space for these scratch files are
also used by other users on the computer.
Care must therefore be emphasized since
taking up all available space for the sorting
job, may cause inconvenience for others.

The buffer area for the current version
@SORT—MERGE—1OO program is 94 Kbytes, and for
the @SORT~MERGE—500 it is 256 Khytes. If you
are using a user~written sorting program, you
must check the size of the buffer area with
the programmer.

Depending on the size of the input file, the
record length, , and the size of the buffer
area, the three following situations may
occur:

a the sort can be performed within the
buffer area without using the scratch
file at all

e the scratch file must be equal to the
size of the input file

a the scratch file must be twice the size
of the input file

To calculate the size of the scratch file,
the following numbers are used:

ND—60.236.1 EN

The Capacity of SORT—MERGE 67

B 2 the size of the buffer area, in bytes,
r : the maximum record length in bytes, and
l : the size of the input file,

following the steps below.

Calculate the numbers a and 8, and then
compare them with L. The outcome of this
determines the size of the scratch file.

Step 1) to find if the sort needs
any scratch file at all.
calculate a: record length even: record length gag;

B x r B x 2r
a: 0L:

(r+6) (2r+6)

If L is less than or equal to a, then the
sorting process can be performed within the
buffer area, without using a scratch file at
all.

If L is greater than u, a scratch file is
required.

Step 2} to find the size of the
scratch file, calculate B:

B
8 = a x -—

1K

If L is less than or equal to B, then the
scratch file requires the same size as the
input file.

If L is greater than B, then the scratch file
requires twice the size as the input file.

ND~60.236.1 EN

68

ND-60.236.1 EN

Methods Used 71

SORTING ‘ y , _ ,
A most~significant-digit~first radix sort algorithm is used to sort the
partitions, also referred to as the MSD~radix sort.

The number of records sorted in each partition is determined as the integral
number of buffer size/record length. The sorting is performed from the most
significant byte towards the least significant byte. Records with identical k
first bytes in their keys are chained together. The sorting of their k+1‘th key
position will generally split the chain into several subchains. When a chain
contains a single record, its position can be determined and this record is not
involved in any further processing. The sequence of sorted records is built up
in an array and each record will be moved once (at most). The terminal sort
condition is reached when:

n
— = 1 until k < kmax

C k

where: n is the number of records in the partition,
C is the number of different characters in the key

alphabet,
k is the average number of key characters to be processed,
kmax is the total number of key characters in a record

This means that

k = ln n/ln C

If we roughly assume the sorting time (exclusive input/output, which is
proportional to the record length), to be proportional to the numbers of
characters processed (all records in main memory), the algorithm is always
better than normal radix sort where all key positions are processed (in reversed
order) (k=kmax). When either the key~alphabet or the key~length are reduced,
the improvements of MSD~radix are rather poor. However, in practical cases the
improvements are significant. With a record length of 80 characters (all key
characters randomly distributed), key length of 20, C=26 (all letters) and
n=1000 (number of records), the MSDuradix is 9 times faster. If the key is
extended to cover all 80 characters, the difference will increase to about 36
times faster because of its independent of key length.

MERGING
The merging system simply compares the keys of the first records in each
partition and outputs the least (if ascending sequence is specified) of them to
the output file. This is repeated until all partitions are empty. The merging
system uses a variable length buffer for each input file partition and one
2 Kb buffer for the output file.

If the number of partitions sorted is greater than the number of partitions the
system is capable of merging in one pass, then the maximum number of partitions
will be merged and stored temporarily back on the scratch file. This will be
repeated until all sorted partitions are merged and stored back on the scratch
file. The scratch file will now contain sorted partitions with greater

ND-60.236.1 EN

72 Methods Used
Merging

partition size and a smaller number of partitions. A new pass of merging will be
started and the process repeated until all partitions can be merged and written
to the output file.

The number of passes the merge process will require is:

n = [.log a / log b i] + 1 Syntax: [I ~ 3.2 i] = 3

[I3.2!]=3

where: a is the number of partitions sorted from the sort phase and
b is the maximum number of partitions that can be merged.

a = [iF/A'} + 1 and

A — U

b=i |
L + 16

where: F is the size of the input file in bytes,
A is available memory buffer size in bytes,
U is the output buffer size, default 2048 bytes
L is the record length in bytes, or if the record length

is an odd number of bytes, L is 2 * record length.
This is due to even byte block transfer.

If a = 1 then the entire input file is sorted directly into the output file and
no scratch file will be used. If a > 1 and n = 1 then the scratch file will be
of the same size as the input file, and if v > 1, the scratch file needed is
twice the size of the input file.

ND-60.236.1 EN

ASCII character set

Byte Position Byte Position
CHAR Left Right Dec. CHAR Left Right Dec.

NUL ‘ 000000 1 000000 0 0 030000 000060 48
SOH 000400 000001 1 1 030400 000061 49
STX 001000 000002 2 2 031000 000052 50
ETX 001400 000003 3 3 031400 000063 51
EOT 002000 000004 4 4 032000 000064 52
E N 0 002400 000005 5 5 032400 000065 . 53
ACK 003000 000006 6 6 033000 000066 54
B E L 003400 000007 7 7 033400 000067 55
B 8 004000 000010 8 8 034000 000070 56
HT 004400 00001 1 9 9 034400 000071 57
LF 005000 000012 10 ‘ 035000 000072 58
VT 005400 000013 1 1 , 035400 000073 59
F F 006000 000014 12 < 036000 000074 60
CR 006400 000015 13 n 036400 000075 61
80 007000 000016 14 > 037000 000076 62
S! 007400 000017 15 .7 037400 000077 63
0 LE 010000 , 000020 16 @ 040000 000100 64
DC1 010400 000021 17 A 040400 000101 65
DC2 011000 000022 18 B 041000 000102 66
0C3 011400 000023 19 C 041400 000103 67
D C4 012000 000024 20 D 042000 000104 68
NAK 012400 000025 21 E 042400 000105 69
SYN 013000 000026 22 F 043000 000106 70
ETB 013400 000027 23 G 043400 000107 71
CAN 014000 000030 24 H 044000 0001 10 72
EM 014400 - 000031 25 1 044400 0001 11 73
SUB 015000 000032 26 J 045000 000112 74
ESC 015400 000033 27 K 045400 000113 75
F8 016000 000034 28 L 046000 0001 14 76
GS 016400 000035 29 M 046400 0001 15 77
RS 017000 000036 30 N 047000 000116 78
US 017400 000037 31 0 047400 000117 79
SPACE 020000 000040 32 P 050000 000120 80
1 020400 000041 33 0 050400 000121 81
" 021000 000042 34 R 051000 000122 82
021400 000043 35 8 051400 000123 83
8 022000 , 000044 36 T 052000 000124 84
% 022400 000045 37 U 052400 000125 85
& 023000 000046 38 V 053000 000126 86
' 023400 000047 39 W 053400 000127 87
(024000 000050 40 X 054000 000130 88
) 024400 000051 41 Y 054400 000131 89
‘ 026000 000052 42 Z 055000 000132 90
+ 025400 000053 43 [055400 000133 91

, 026000 000054 44 \ 056000 000134 92
—- 026400 000055 45] 056400 000135 93
. 027000 000056 46 A 057000 000136 94
/ 027400 000057 47

Table 3. The ASCII Character Set

ND~60.236.1 EN

76

Byte Positiqn Byte Position -CHAR Left ' Right Dec. f CHAR Left Right" Dec.

__ 057400 000137 95 0 067400 000157 1 1 1060000 000140 96 p 070000 000160 1 126 060400 000141 97 q 070400 000161 1 13b 061000 000142 98 r 071000 000162 1140 061400 000143 99 s 071400 000163 115d 062000 000144 100 1 072000 000164 116e ’ 062400 000145 101 u 072400 000165 1171 063000 000146 102 v 073000 000166 1 139 063400 000147 103 w 073400 000167 119h 054000 000150 104 x 074000 0001 70 1201 064400 000151 105 y 074400 000171 1211 065000 000152 2 106 2 075000 000172 122k 065400 000153 107 075400 000173 1231 066000 000154 108 076000 000174 124171 066400 000155 109 076400 000175 125n 067000 000156 110 077000 000176 126- DEL 077400 000177 127

ND-60.236.1 EN

Summary of SORT-MERGE commands 79

In the summary below the following notation is used:

words underlined (LQAIA) indicate default values,
words in brackets [... 1 indicate optional items,
words in apostrophes ' ' indicate valid entries.

All parameters in the commands may be separated by blanks or commas.

ALTERNATIVE-COLLATING~SEQUENCE (File—name (:DATA))

BLOCK-FACTORtIN

BLOCK-FACTOR-OUT

EXIT

HELP

INFORMATION

KEY’DESCRIPTION

MERGE

RECORD-DESCRIPTION

SCRATCH~FILE

SORT

(Number) [<‘RECORDS' ‘ ' EARACTERS')]

(Number) [(‘RECORDS' l 'CHARACTERS’>]

(no parameters)

[<command>]

(no parameters)

(Position)
(Length (max: 255 bytes >
(Sequence: 'ASCENDING' 'DESCENDING')

" 1
(Type: 'ASCII'

‘ASCII—UPPER‘
'ALTERNATIVE~ASCII‘
'BCD’
'BITSTRING'
‘INTEGER‘
'NUMERIC—UNSIGNED'
'NUMERIC~LEADING~SEPARATE’
'NUMERIC—LEADING~EMBEDDED‘
‘NUMERIC—TRAILING~SEPARATE'
'NUMERIC—TRAILING—EMBEDDED'
'REAL'

— - >
(... repeated for each sort—field ...)

<Number-of~files (max: 14))
(Input filesname (DATA)>....
(Output file—name (:DATA)>

(Record—length: (minimum [: maximum]>
(Number—of—fields (max- 10))
(Record—type: 'FIXED' { 'TEXT' ‘ ‘VARYING'>

(File—name (:DATA)>

(Input file—name: (:DATA))
(Output file-name: (:DATA)>

The SORT or MERGE-command may be repeated for several files, using the same
RECORD—DESCRIPTION and KEY-DESCRIPTION commands.

ND-60.236.1 EN

8O

ND-60.236.1 EN

Index

Indeg

2—banks program .
alphanumeric data
ALTERNATIVE—COLLATING~SEQUENCE command
BLOCK-FACTOR—INPUT command
BLOCK—FACTOR~OUTPUT command
calling SORT-MERGE from a user program
command

ALTERNATIVE—COLLATING-SEQUENCE
BLOCK—FACTOR—INPUT . . .
BLOCK*FACTOR~OUTPUT .
EXIT
HELP . . .
INFORMATION .
KEY-DESCRIPTION .
MERGE
ON—SEGMENT 'ON'I'OFF'
RECORD—DESCRIPTION
SCRATCH—FILE
SECURE 'ON‘I'OFF'
SORT . . .

data type
ALTERNATIVE~ASCII .
ASCII
ASCII~UPPER~CASE
BCD . .
BITSTRING .
INTEGER
NUMERIC-LEADINGMEMBEDDED
NUMERIC—LEADING—SEPARATE
NUMERIC—TRAILING—EMBEDDED .
NUMERIC—TRAILING—SEPARATE .
NUMERIC—UNSIGNED
REAL . .

different type of
FIELDS
FILES .

EXIT command .
FIXED record type .
handling errors in

mode or batch job .
user—program

HELP command
INFORMATION command
input file, size of .
interactive mode . .
JEC job execution control
job execution control JEC .
KEY-DESCRIPTION command .
loading

ND—1OO program
ND—SOO program

MERGE
command .

ND~60.236.1 EN

. 52.

. 29.

. 39.

. 41.

. 41.
10.

. 39.

. 41.

. 41.

. 23.

. 37.

. 37.

. 16.

. 21.
. 42.

. 38.

. 42.
19.

. 30.

. 30.

. 30.

. 31.

. 31.
32.
33.

. 32.

. 34.

. 33.

. 32.
34.

. 29.

. 27.

. 23.

. 27.

. 57.
55.
37.
37.
65.

. 57.

. 57.
16.

. 52.

. 54.

21.

81

8?

subroutine
method used for

merging .
sorting .

mode file .
mode or batch job handling errors in
ND—1OO program loading
ND—1OO vs ND—SOO versions
ND—SOO program loading
numeric data ty es . . .
ON-SEGMENT 'ON‘?'OFF' command .
RECORD—DESCRIPTION command
record type

FIXED .
TEXT .
VARYING . .

SCRATCH—FILE command
scratch fil , size of .
SECURE 'ON'T'OFF‘ command .
size of the

input file
scratch file

SORT
command .
subroutine

subroutine
MERGE .
SORT

TEXT record type
user—program handling errors in .
VARYING record type .

ND-60.236.1 EN

Index

. 50.

. 71.

. 71.

. 57.

. 52.

. 54.

. 30.
_ 42.

14.

. 27.

. 27.

. 28.
38.

. 66.

. 42.

. 65.
66.

. 50.

. 45.

. 27.

. 55.

. 28.

The information in this manual is subject to change without notice. Norsk Data A.S assumes no responsibility for
any errors that may appear in this manual. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipmentthat is not furnished or supported by Norsk Data A.S. Copyright © 1985 by Norsk Data A.S.

PRINTING RECORD
PRINTING NOTES

05.85 Version I

Manual Name: ND—lOO/SOO SORT—MERGE,
User Guide

Manual No.: ND—60.236.I EN

UPDATING

Manuals can be updated in two ways, new versions and
revisions. New versions consist of a completely new
manual which replaces the old one, and incorporate all
revisions since the previous version. Revisions consist of
one or more single pages to be merged into the manual by
the user, each revised page being listed on the new printing
record sent out with the revision. The old printing record
should be replaced by the new one.

New versions and revisions are announced in the
ND Customer Support Information and can be ordered
from the address below.

The reader’s comments form at the back of this manual can
be used both to report errors in the manual and to give an
evaluation of the manual. Both detailed and general
comments are welcome.

RING BINDER OR PLASTIC COVER

The manual can be placed in a ring binder for greater
protection and convenience of use. Ring binders may be
ordered in two widths, 30 mm and 40 mm.

The manual may also be placed in a plastic cover. This cover
is more suitable for manuals of less than 100 pages than for
larger manuals.

Please send your order, as well as all types of inquiries and
requensts for documentation to the local ND office, or (in
Norway) to:

Norsk Data A.S
Graphic Center
PO. Box 25 BOGERUD
N - 0621 OSLO 6 ~ Norway

[— ~~~~~~~~~~~~~~~~y;
I would like to order

..... Ring Binders, 30 mm, at NOK 20.- per binder

..... Ring Binders, 40 mm, at NOK 25.. per binder

..... Plastic Covers, at NOK 10.- per cover

Company:

Address:

SEND US YOUR COMMENTS!

Are you frustrated because of unclear information in our
manuals? Do you have trouble finding things? Why don’t
you join the Reader's Club and send us a note? You will
receive a membership card ~ and an answer to your
comments.

Please let us know if you:
—- find errors
— cannot understand information
— cannot find information
— find needless information.

Do you think we could improve our manuals by rearranging
the contents? You could also tell us if you like the manual.

Send to:
Norsk Data A.S
Documentation Department
P.O. Box 25 BOGERUD
N - 0621 OSLO 6 - Norway

NOTE!

This form is primarily for documentation errors. Software
and system errors should be reported on Customer System
Reports.

Manual Name: ND‘100/500 SORT—MERGE: User Guide Manual number: __ND:6IL.236,J_EN

Which version of the product are you using?

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:

Company: Position:

Address:

What are you using this manual for?

Norsk Data’s answer will be found on the reverse side. é

Answer from Norsk Data:

Answered by: Date:

Norsk Data A.S
Documentation Department
P.O. Box 25 BOGERUD
N - 0621 OSLO 6 - Norway

Systems that put people first

NORSK DATA A.S OLAF HELSETS VEI 5 PO. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 - 29 54 00 - TELEX: 18284 NDN

