
O COMPLETE PROGRAM GENERATOR
User Manual
ND-60.219.1 EN

C
O

G
...

COMPLETE PROGRAM GENERATOR
User Manual
NED—60219.1 EN

The information in this manual is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this manual,
or for the use or reliability of its software on equipment that is not furnished or
supported by Norsk Data A.S.

Copyright © 1987 by Norsk Data A.S Version 1 April 1987

Send all documentation requests to: Norsk Data A.S
Graphics Center
P.O.Box 25 Bogerud
N-0621 Oslo 6
NORWAY

T A B L E O F C 0 N T E N T S

Section Page

1 Description of CompIete—PG , 3

2 Database structure requirements 7

3 Screen picture Iayout requirements 11

3.1 The screen picture 13
3.1.1 The top Tine 14
3.1.2 The function picture 15
3.1.3 Status Tine and message Tine 17
3.1.4 Fieid termination 18
3.2 BK fie and OK fie 19
3.3 Text fie 20

4 Generating programs with Compiete—PG 21

4.1 Starting Compiete PG 23
4.2 The different screen pictures in CompIete— pg 23
4.3 The screen picture PROGRAM DESCRIPTION 25
4.3.1 Description of the fieids in the screen picture PROGRAM

DESCRIPTION 26
4.4 The screen picture USE OF PROGRAM KEYS 28
4.4.1 Description of the fies in the screen picture USE OF PROGRAM

KEYS 29
4.5 What happens during the generating of a program? . . . 41
4.6 The generated program — diaiogue between user and screen picture 44
4.7 Commands and function keys 50

5 AdditionaT programming in FORTRAN and COBOL 57

5.1 Inserting additionai code 60
5.1.1 Before beTonging subroutine caTT 60
5.1.2 After beIonging subroutine caTT 61
5.2 How to discern between additionaI code and generated code ..' . . 62
5.3 Messages 63
5.4 FORTRAN and COBOL exampies 65
5.5 Error handTing 67
5.5.1 Error handTing in manuaiiy defined subroutines 68
5.6 SeveraI CPREAD caTIs 69
5.7 READCO . 69
5.8 SeIecting records 69
5.9 FLOK 70
5.10 TRIGGER-OK 7O

Norsk Data ND—60.219.1 EN

ii

Section Page

0'1 Program variabies and routines availabie to a programmer 71

IACTCOD 73
MAINTAB(5) 73
OWNMESS 74
NOERR , 74
FLNEXT 74
TRIGGER—NEXT 75
CTEXT 75
TEXT , 75
CRSPNS 75

.10 TERMCOD 76

.11 Logicai function CPABLED(FLXXXX,1) 77

.12 Subroutine CPIENABL(TRIGGER—XXXX,RESULT) 77

.13 Subroutine CPIN(ISUB) 77

.14 Subroutine CPOUT(ISUB) 78

.15 Subroutine CPABORT 78

m
m

m
m

H

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
\1 Documentation of routines in the generated program 79

The structure of the generated program 81
An exampie of a generated program in FORTRAN 82
An exampTe of a generated program in COBOL 84
Routines in the generated program 87

The most used parameters 88
TabTes with variabies in FORTRAN and COBOL 89

Documentation of the routines 91
CPBEGIN . 91
CPREGION . 92
CPCURKC 92
CPKEY . 93
CPKEYNC ,. 93
CPGET 94
CPINRC 95
CPDISP 95
CPREAD 96

.10 CPBTRANS 97

.11 CPUPDATE 97

.12 CPETRANS 97

.13 CPRSPNS, 98

.14 CPEND 98

.15 CPACTCOD 99

.16 CPOKCOD 100

.17 CPOTHER 100

.18 CPEXIST 101

.19 CPFRTXT . 102

.20 CPTDISP/CPTDISC 103

N
H

K
O

G
J
V

C
W

U
'I
tb

-
i

\s
\x

\1
\n

\l
\1

\a
w

u
w

u
w

w
w

w
w

w
w

w
u

w
w

w
w

w
w

w
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

b
b

b
(A

N
T

—
-

Norsk Data ND—60.219.1 EN

(ID
0

0
0

0
0

0
0

0
0

0
£0

10

10

1'11

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

11

ll.

12

12.
12.

Norsk Data ND—6D.219 1 EN

Sect1on Page

Program 1og1c 1n the generated program . 105

1 COMTAB 107
2 CPENABLE(FLAG) and CPDISABL<FLAG1 . 109
3 Subrout1ne ca11s . . 109
4 How the 1nd1v1dua1 b1ts are set . 109
5 The use of fTags 1n the Comp1ete— PG rout1nes 110

Insta11at1on . 113

.1 Bas1c software requirements . 115

.2 CP—SPEC and CP—PROGEN . 115

A programm1ng examp1e . 119

1 Database descr1pt1on . . 121
2 Ma1nta1n1ng f1rms and the1r emp1oyees . 123
3 The screen p1cture: 124
4 Descr1pt1on of f1e1ds: . 125
5 He1p p1ctures: . 125
6 F1111ng 1n the screen p1ctures 126
7 The resu1t1ng generated program . 129
8 Extend1ng the examp1e . 141
8.1 Ex1stence contro1 . 142
8.2 D1sp1ay of data from another rea1m 144
8.3 Manua1 code . . 148
8.4 Severa1 CPREAD ca115 . 148
8.5 CPREAD ca11s 1n manua1 code . . 148
8.6 Dummy CPREAD ca11 150
8.7 CPINVER 1nstead of severa1 CPREAD ca11s . 151
8.8 Overru11ng of messages 1n PG rout1nes . 152
8.9 Ca1cu1at1on of f1e1ds . . 153
8.10 Updat1ng of other rea1ms 154
8.11 Free text 1n the program . . 155
8.12 Severa1 free texts on the same record 1n the program 157
8.13 Se1ect1on of records . . 162
8.14 Read1ng of key 1n severaT read ca113 , 166

Interface to menu contro1 system . 169

1 Subrout1nes on cp—dummy—11b . 172

Free text funct1on 175

1 Database requ1rements . 177
2 Use of free text funct1on . 177

iv

Section Page

13 The HELP function in Compiete—PG 179

13.1 Database requ1rements 181
13.2 Programming with the PG help function 181
13.3 "Stand— alone" i . i .. 1 182
13.4 From a user application _ 182
13.4.1 Overview of the HELP function 183

APPENDIX

A Other auxiiiary routines 191

Index 200

Norsk Data ND—60.219.l EN

Compiete Program Generator

PREFACE

The product

The reader

The manuaT

Prerequisite knowiedge

This manuai describes the Compiete Program
Generator, which is a 4th generation
deveiopment tooi.

Compiete Program Generator, from now on caiied
Compiete~PG, is a part of ABM (Appiication
Buiiding and Maintenance). Compiete—PG is an
effective tooi for program deveiopment and
maintenance of computer systems.

Compiete—PG generates error free and efficient
FORTRAN and/or COBOL programs. The programs
controi an interactive diaiogue between the
user and the screen, and run as ordinary
background programs.

Compiete~PG is weii suited for iarge data
voiumes and many concurrent users.

Compiete-PG is registered with product numbers:
ND—211108 for ND~lOO
ND—211109 for ND—SOO

The manuai is written mainiy for programmers.

The manuai gives an introduction to using the
program generator Complete—PG, and expiains
requirements for the database structure and
screen picture design.

The manuai contains information on where to put
additionai code in the program generated code.

Various routines and program variabies that can
be used in addition to the automaticaiiy
generated routines are aiso described.

To use Compiete—PG, it is necessary to have
some knowiedge about basic software on ND
computers. It is assumed that the reader knows
the SINTRAN operating system and the SIBAS
database system, in addition to the programming
ianguages FORTRAN or COBOL.

Norsk Data ND—60.219 1 EN

iifl
é
fl
e

;
_

‘
.

.
.

..
..

,
fw

j/«ivfleflf
,

”ifléfim
m

cm
wéfiigwx

E63?
.5.

“2%
.

,
,,

,
‘

x
;/p\.>

33.4,?
.

m
g.

.
E.

,
,

,
.

4
.nxwwln/m

.
.

w?
u.

\
kkxwaw

x
‘

4
.

.
‘NAYJ

.
“ya/away

.
.

.
‘

.
:

.
a

ml0taw:ene6maP.g0«IDr8te1..D.m0C

Norsk Data ND—60.219.1 EN

Complete Program Generator
Description of Complete-PG

1. DESCRIPTION OF COMPLEie—PG

Generation
of programs

Start

Simpler
maintenance

The program generator, which is a part of ABM, is an
efficient tool during program development. It produces
executable FORTRAN or COBOL code for screen functions.

NOTE:
Programs generated by Complete~PG are used to
manage an interactive dialogue between the user and

the screen picture.

Start CompletewPG by giving the command 'Complete~PG'
from the command line in ABM:

ABM command: COMPLETE—PG<J

In addition to making the programming easier, Complete—
PG also makes the maintenance work significantly easier.

When you want to modify a program, you first make the
necessary changes using ABM. Then simply change the
screen picture and generate the program again.

You use only two screen pictures to give commands and
parameter values to CompleteaPG.

When you have finished giving your input, the generation
of the program can start. Depending on the input, one or
more of the following files are generated:

0 the source version of the program

0 the binary code of the program

0 program file

You then start the program by typing the name of the
program as a SINTRAN command.

Complete—PG‘s starting point is a defined ‘subschema'
and ‘subfunction', and requires that the screen picture
be defined in ABM.

In addition to the rules that apply for definition of
screen pictures in ABM, Complete—PG also places
requirements on the design of the screen picture. This
is described in chapter 3.

Norsk Data ND—60.219.1 EN

Complete Program Generator
Description of Compiete-PG

Programs generated by Complete—PG are short and compact.
Most of the program code is buiit into standardized
subroutines. These are described in chapter 7.

For compiex functions it may be necessary to put in code
manUaiiy, ie. code in addition to the code generated by
Complete—PG. How to do this is described in chapter 5,

Norsk Data ND—6O 219.1 EN

Compiete Program Generator
Database structure requirements

2. DATABASE STRUCTURE REQUIREMENTS

When you want to use Compiete—PG for program
deveTopment, you must consider the foTTowing points
when structuring the database:

0 'Sets' wiTT not be treated automaticaTTy. Some
additionaT programming is necessary.

0 AT] reaims that are to be maintained automaticaTTy
by appiications generated by CompTete—PG must have
at Teast one unique key.

ATT reaTms that have records against which you want
to use free text, must contain one free text item.
(See page 20.)

This item must be caTTed:

XXTNR in FORTRAN where XX = reaTm prefix.
TNR in COBOL. '

The item must be defined as INTEGER*4, and be 9
character positions Tong.

In addition, the reaTm D3TEXT must be defined in
the database. This is the reaim where the free text
records are to be stored.

A redefinition fiTe for instaTTing the reaTm
D3TEXT in the user base is incTuded when ABM with
CompTete—PG is deTivered.

Norsk Data ND—60.219.l EN

10

Norsk Data ND—60.219.1 EN

Comp1ete Program Generator

Compiete Program Generator 13
Screen picture Tayout requirements

3. SCREEN PICTURE LAYOUT REQUIREMENTS

3.1. THE SCREEN PICTURE

ATT communication between the user and the program is
via screen pictures.

The screen picture of programs to be generated by
CompTete~PG must have a standard Tayout.

A screen picture consists of the foTTowing parts:

TOP LINE

FUNCTION PICTURE

STATUS LINE

MESSAGE LINE

Fig. 3.1 — The Tayout of a screen picture.

The top Tine, the status Tine and the message Tine are
generated by CompTete—PG. The function picture, however,
is defined by the user in the screen picture part of
ABM.

0n the next pages you wiTT find a description of the
various parts of the screen picture.

Norsk Data ND—60.219.1 EN

14 CompTete Program Generator
Screen picture Tayout requirements

3.1.1. THE TOP LINE

The top Tine is the first Tine in aTT screen pictures,
and it is generated automaticaTTy. It is not possibTe to
edit this Tine when you define the function picture.

The top Tine consists of the foTTowing fies:

command field system name function name date and time

Command fie

System name

Date and time

Function name

Fig. 3.2 — Top Tine.

The first fie in the top Tine is a command fie that
can be used in paraTTeT with function keys to give
commands. It is four characters Tong.

System name is connected to your particuTar system, and
must be specified in the fiTe CP-SPEC:SYMB. This is
described in chapter 9.

The system name is dispTayed automaticaTTy from position
6 in the top Tine. It can be up to 20 characters Tong.

This fie is used to dispTay the date and time when the
picture is written on the screen.

The generated program wiTT automaticaTTy retrieve and
dispTay date and time from position 65 in the top Tine.

What this fie is to contain, is optionaT.

The fie is unique for each picture, and may for
exampTe contain the function name the user has defined
in ABM. (In the FOCUS Tibrary, there is a subroutine
which prints a text in a specified position in the
picture. Use this subroutine if you want to dispTay
extra information in the picture.)

Norsk Data ND~60.219 1 EN

Complete Program Generator 15
Screen picture layout requirements

3.1.2. THE FUNCTION PICTURE

line 1

line 2

line n

Region

Logical line

Physical line

The function picture is the part Of the screen picture
the user defines/draws using the screen definition part
of ABM.

Note that line two is the first line you can use to make
your own screen picture. (The first line is reserved for
the top line.)

When the program is generated, you use the function
picture to enter, retrieve and modify data.

key field . data field

key field . data field

REGION 1

key field . data field

REGION 2

Fig. 3.3 — The function picture.

A function picture consists of one or two regions.

Each region may consist of one or more logical lines.

A logical line may consist Of one or more physical lines
on the screen.

NOTE:
From now on, we will us 'line' to refer to 'logical
line'.

Norsk Data ND—60.219.1 EN

16

Record

Key field
Data field

Search key

Unique
main key

Data set

Page

Owner region

Member region

Several lines

Key field
requirements

Complete Program Generator
Screen picture layout requirements

What we here call a line, is called a 'record' in the
ABM manual, under the description of screen pictures.

A line consists of a key field and a data field.
A key field is a field which corresponds to search keys
in the database. For each search key there may be
one or more key fields. The values you enter here are
used to search for data in the database. The data that
is found, is then printed in the data fields on the
screen.

One or more search keys may be connected to a line. One
key must be defined as main key, and this must be unique
in the database.

A data set consists of all data that can be displayed on
a line, both in key fields and data fields.

A page is defined as all data that can be displayed in a
region, i.e. all data sets in a region.

Data sets in two regions may 'belong together‘. If two
regions 'belong together', one of them is the owner
region and the other a member region. An owner region
can only contain one line.

It is simple to define many lines in a region, using the
screen picture part of ABM. It is only necessary to
define the first line in the region completely. Then
copy as many lines as you want using the COPY key. A new
field name is generated automatically for the first
field in each line that is copied. The field name will
be different for each line.

When defining a field in the screen picture, you refer
directly to the corresponding item in the database. If a
database—item is not used, you must refer to a data type
(defined in the data—description menu in ABM).

For a field to be understood as a key field, the
following requirements must be met:

a the element or group element the field refers to, must
be specified as search key ('K') when creating a
subschema in ABM.

a when generating a program in Complete—PG, you must
specify that a field is to be a key field.

It is possible to define key fields for different search
keys on the same line.

If you are to retrieve or check data against other
registers, the search key for this data must be
specified in subschema and Complete—PG,

Norsk Data ND—60.219.l EN

Complete Program Generator 17

Screen picture layout requirements

3.1.3. STATUS LINE AND MESSAGE LINE

Status line

Message line

Queue system
for messages

At the bottom of the screen picture are the status line
and the message line. Like the top line, these are also
written out automatically by Complete-PG. No editing is
possible.

The status line comes right under the function picture,
and shows the name of the current region (the region you
work in at the moment). The status line also shows what
you are doing with the data (what command you have
given), and various other information.

The message line is the bottom line in the picture.
This is where messages from the system/function are
displayed.

There are two types of messages:

0 Error messages

0 Informative messages

If a message is longer than a line, it is put into a
queue system. The same happens if there are several
messages to be displayed in a series. By pressing any
key, the next message will be displayed on the screen.
In this way you are able to read all messages before the
next one is printed.

Norsk Data ND—60.219.1 EN

18 Complete Program Generator
Screen picture layout requirements

3.1.4. FIELD TERMINATION

When a character is typed in the last position of a
field in the screen picture, you may decide whether
you want the cursor to remain in the field until CR
is pressed, or you want it to move to the next field.
The latter is done in the following way:

On the work—user area there is a file with various
parameters for your system. The name of this file is
CPeSPEC:SYMB. Read this file into an editor. You will
see that one of the defined parameters is called
NEXTFI. You may set NEXTFI to Y or N.

ADEF,NEXTFI,<Y>; causes the cursor to move to the
next field when a character is typed in the last
position of the current field.

"DEF,NEXTFI,<N>; causes the cursor to remain in the
last position of the field until CR is pressed.

Norsk Data ND—6O 219.1 EN

Complete Program Generator 19
Screen picture layout requirements

3.2. BK FIELD AND 0K FIELD

Optional

Define with
fixed names

You yourself decide whether you want a treatment code
field (BK field) and/or OK field in the regions in a

‘screen picture.

If you define BK fields and OK field in a picture, you
must make sure they refer to data types (defined in
data description in ABM) with fixed names:

OKCOD or OKCDl for OK fields (COBOL/FORTRAN)
BKODE or BKODl for BK fields (COBOL/FORTRAN)

Both fields are of type x(l), i.e. one alphanumeric
character.

For BK codes, it is optional what letters or numbers are
presented to the end user. Decide this when installing
Complete—PG. (See chapter 9.)

In this manual the letters 0, S, M and D are used as
treatment codes for querying, storing, modifying and
deleting.

When generating a program, you decide what BK codes
will be allowed. All combinations of Q, S, M and D are
possible. This is described in chapter 4.

Norsk Data ND~60.219.1 EN

20

3.3. TEXT FIELD

CompTete Program Generator
Screen picture Tayout requirements

The free text function makes it possibTe to connect an
unTimited amount of free text to a record.

The free text function requires that you have defined a
fie of type TTYPE on the Tine in the screen picture
from where you caTT the free text function.

TTYPE is a data type with the format PIC X(1). This
fie is used onTy for output.

When a Tine has text connected to it, a 'T' is dispTayed
in the TTYPE fie on the screen. The fieid is empty if
the Tine has no text connected to it.

If you want to read more about the free text function,
see page 177.

Norsk Data ND~60.219.1 EN

Compiete Program Generator 23
Generating programs with Complete—PG

4. GENERATING PROGRAMS WITH COMPLETE-PG

4.1. STARTING COMPLETE-PG

In order to start Compiete—PG, the ABM database must be
in 'running' state.

Start Compiete—PG by giving the command 'Compiete—PG'
from the command line in ABM:

ABM command: COMPLETE—PG‘J

You wiii then be shown the first screen picture in
Compiete—PG.

4.2. THE DIFFERENT SCREEN PICTURES IN COMPLETE-PG

Compiete—PG consists of the two screen pictures PROGRAM
DESCRIPTION and USE OF PROGRAM KEYS. By entering data
into these pictures you decide how the program wiii work
after being generated. It is therefore very important
that these pictures are fiiied in correctiy.

You have to fiii in both pictures before Complete—PG can
generate the program you want.

The two screen pictures are on two different 'ieveis‘.
See figure 4.1 on the next page. There may be severai
USE OF PROGRAM KEYS pictures in connection with
one PROGRAM DESCRIPTION picture.

Norsk Data ND~60.219.1 EN

24 CompIete Program Generator
Generating programs with Compiete—PG

PROGRAM DESCRIPTION

Level 1

USE OF PROGRAM KEYS
OF PROGRAM KEYS

Region 1
Level 2 upper part Region 2

----------------------------- upper part

lower part

lower part
part 1

part 1
part 2

part 3 part 2

part 3

Fig. 4.1 — The screen pictures in Compiete—PG are on two ieveis.

Navigating You move from the first picture, PROGRAM DESCRIPTION, to
the next one, USE OF PROGRAM KEYS, by

a hitting the '<>'— key in the command fieId.

You return to the picture PROGRAM DESCRIPTION by

0 giving the command ‘E' in the command fieId in the
picture USE OF PROGRAM KEYS.

You can aiways ask for HELP, no matter where you are in
HELP the screen picture. You wiII then get a heIp picture

with information concerning what you are doing.

Norsk Data ND~60.219.1 EN

Compiete Program Generator 25
Generating programs with Complete—PG

11.3. THE SCREEN PICTURE PROGRAM DESCRIPTION

After you have given the command Compiete—PG on the
command iine, you wiii get the first screen picture to
be fiiied in:

PG > . P R 0 G R A M D E S C R I P T I O N

Program identification.
subfunction : subschema: form:
author : ..
program id :
expianation : ..

Parameters for generate.
object 1anguage :
object fiiename : ..
ioad procedure : ...

Date of
creation : 1ast modification :

iast generated :

The picture contains the fieids SUBFUNCTION, SUBSCHEMA
and FORM, which refer to the SUBFUNCTION, SUBSCHEMA and
FORM in ABM.

In this picture you state the programming language you
want the program to be generated in, the name of the
fiie where the program is to be stored, as weii as the
generating procedure you want to use.

On the foiiowing pages you wiii find a more detaiied
description of the fieids in this picture.

Norsk Data ND—60.219.1 EN

26 Compiete Program Generator
Generating programs with Compiete—PG

14.3.1. DESCRIPTION OF THE FIELDS IN THE SCREEN PICTURE PROGRAM IISCRIPTHN

PG > .

Subfunction

Subschema

Form

This is the command fie in the picture.

Choose between these commands:

: stores a new record.
: finds the first record.
: finds the Tast record.
: finds the next record.
: finds the previous record.
: sets/deietes the search region.

When 'set' search region is used, the cursor wiTT be
pTaced in the SUBFUNCTION fie. Type in the Tower
Timit. Afterwards you wiTT be asked for the upper
Timit. These Timits wiTT be deieted the next time
‘S' is given in the command fie.

0 : cTears the screen picture.
C : copies the screen picture to a fiTe. The system wiTT

ask for the name of the fiTe (output file name)2
M : modifies the current record.
D : deTetes the current record.
<>: moves to the next screen picture (USE OF PROGRAM

KEYS).
X : executes the command(s) in the fie Toad

procedure.
E : exits, returns to the ABM command Tine.

M
‘U

Z
F

‘T
T

L

The commands F, L, N, P and S search for program
descriptions that already have been generated by
Compiete—PG.

The name of the subfunction defined in ABM which
corresponds to the function to be generated.

The name of the subschema defined in ABM which is
connected to the subfunction above. The name is fetched
automaticaTTy after the subfunction has been retrieved,
and cannot be changed.

The name of the form beionging to the subfunction. This
is fetched from the form fiTe (specified in the fiTe
CP—SPEC:SYMB) and is dispiayed in this fie. The name
of the form cannot be changed here.

Norsk Data ND-60.219.1 EN

Compiete Program Generator 27
Generating programs with Compiete—PG

Author

Program id

Expianation

Object Tanguage

Object fiTename

Load procedure

Date of creation

Last modification

Last generated

The name of the person to be known as the originator of
the program.

The name of the generated program. If you want to caTT
the generated program as a subroutine from another
program, you have to use this program id as the
subroutine name.

Space reserved for a short description of the program to
be generated.

The programming Tanguage that the generated code wiTT be
written in. Choose between ‘FORT‘ (FORTRAN) and
'COBL‘ (COBOL).

The name of the fiie where the generated program wiTT be
stored. This wiTT aiso be the name of the BRF/NRF fiTe
and any PROG fiies or domains.

These are the three aTternatives:

GENERATE : Generates program code for the function.
COMPILE : Compiies the generated program.
LOAD : Loads the necessary fiies.

These possibiiities may be combined, for exampie
GENERATE/COMPILE.

GENERATE/COMPILE/LOAD is the defauit vaiue.

The contents of this fie determine what is to be
executed when you give the command 'X' in the command
fieid.

The time of the first generation of the program.
This date is dispiayed automaticaTTy in the fieid by
Compiete—PG.

The time when the Tast change was made to the function
description. Generated by Compiete—PG.

The time of the Tast generation of program code.
Generated automaticaiiy by CompTete~PG.

Norsk Data ND—6O 219.1 EN

Compiete Program Generator28
Generating programs with Compiete—PG

4.4. THE SCREEN PICTURE USE OF PROGRAM KEYS

In this screen picture you estabiish the search keys for
the program which is to be generated.

>< The picture beiow wiii be dispiayed on the screen when
<> you hit the ‘<>‘ key in the command fieid.

PG). USE OF PROGRAM KEYS

Subfunction: fieidrecord:
vane: omer:
okcode: . textfunction: . action codes:

Rea‘lm Key Use 0 Ex Reaim Key Use D EX Re~a1m Key Use D EX

Initiai values for reaim: key:

Itan Loni imit High] imit Item LCM imit Highi imit

Norsk Data ND»60.219.1 EN

CompTete Program Generator 29
Generating programs with Compiete—PG

4.4.1. DESCRIPTION OF THE FIELDS IN THE SCREEN PICTURE USE OF PRCHW’I KEYS

PG > . This is the command fieid in the picture.

'Choose between these commands:

finds the first record.
finds the Tast record.
finds the next record.
finds the previous record.
shifts between upper and Tower parts of picture.
copies the screen picture to a fiTe. The system wiTT
ask for the name of the fiTe (output fiTe name:).

: modifies the current record.
returns to the previous picture (PROGRAM
DESCRIPTION).

O
M

'U
Z

f—
‘T

'!
F1

3

These commands are aTso vaTid for the other menus in
ABM, apart from the command move (shift) between the
upper and Tower parts of a picture.

NOTE: ‘
The screen picture USE OF PROGRAM KEYS consists of an
upper and lower part. All commands affect the part of
the picture where you are at the moment.

Use the command 8 to move the cursor between the upper
and Tower part of the picture.

The commands F, L, N and P have to do with the fact that
severe] regions in a screen picture are connected to the
program to be generated.

As shown in figure 4.2, severaT TeveTs of the Tower part
of the screen picture may be connected to the same
region.

USE OF PROGRAM KEYS

_____________________ upper part

USE OF PROGRAM KEYS
Region 1

upper part Region 2

lower part
lower part

t 1

par part 1
t 2

par part 2
“t 3

pal (part 3

Fig. 4.2 — An exampie of the composition of regions.

Norsk Data ND—60.219.1 EN

30

An example of
how to use the
command N:

Subfunction

Fieldrecord

Name

Owner

OKCODE

Complete Program Generator
Generating programs with Complete—PG

Let us look at an example of how you can move both
horizontally and vertically in figure 4.2.

If you want to move horizontally from Region 1 to Region
2, you do the following:

0 Make sure that the upper part of the screen picture in
Region 1 is the current work area (by hitting S if
necessary).

0 Give the command N in the command field.

On the screen you will now see the screen picture for
Region 2.

On the other hand, if you want to move vertically in the
figure, from part 1 to 2 within the same region,
you do the following:

a Make sure that the lower part (part 1) of the picture
is the current work area, by hitting S.

o Give the command N.

The upper part of the picture remains unchanged, but you
get a new picture (called part 2 in the figure) on the
lower part of the screen.

0 Give the command M to move the cursor to the lower
part of the screen (the current work area).

Refers to a generated subfunction in ABM. This will be
displayed automatically on the screen, and cannot be
changed.

Record name that is generated by the screen picture part
of ABM, and which defines the region uniquely. (An
example of a record name is 'RlA'.)

The name of the region where you are working at the
moment. The name is shown on the status line in the
function picture. If you move between the regions, the
name on the status line changes accordingly.

The owner of the region to be defined.

So far there is fixed dependency between the first and
next region. This field has therefore no importance for
the time being.

If there is an OK field in the screen picture generated
by ABM, a 'Y' will be displayed in this field. You will
not be able to change this without removing/inserting
the OK field in your screen picture.

Norsk Data ND-60.219.1 EN

Complete Program Generator 31
Generating programs with Complete—PG

Textfunction

Action codes

Realm

Key

This field gets the value 'T' if free text is used in
the function; that is, if the data type TTYPE is used in
the picture. (See page 20.) You will not be
able to change this without removing/inserting the text
field in your screen picture.

‘ A combination of legal access codes.

All combinations are possible.

Legal values are:

: query
: registration
: modification
: deletion.

5
m

These may be different in the different regions.

The name of the register that the search key (shown in
the key field) belongs to.

This is where all the keys (indexes) marked with a 'K'
in a subschema are listed.

These search keys may be used in different ways in the
program:

c There must be only one search key that is a main key
in the main register in the region‘

0 Some keys can be alternative search keys in the main
register.

0 Some search keys can be used to fetch data from
registers other than the main register.

0 Some search keys can be used for existence control
towards other registers (i e. to look up in other
registers and see whether certain data is to be found
there).

You decide how to use a search key by filling in the
fields 'Use‘, ‘0‘ and ’Ex'.

For each of the search keys you want to use in the
region, you also have to fill in the lower part of the
screen picture. Here you specify which limits (low
limit and high limit) are to be used for looking up and
searching with the current key in the register.

Norsk Data ND—6O 219.1 EN

32

Sse

Complete Program Generator
Generating programs with Complete—PG

This field can have three different values: MK, AK and
K.

MK : main key.

The main key belonging to the main register in the
region is marked MK.

NOTE:
Specify only one MK per region. If you want to
update the maih~register, the main key
must be unique within the entire database.

When new data is being registered, the MK is checked to
find out whether the record already exists.

When modification or deletion is taking place, the
record is retrieved by means of the MK, and the data
belonging to the record is displayed in the screen
picture.

When a query is being performed, the record in question
is retrieved and displayed on the screen. If the record
does not exist, and the high limit (see page 33)
is set to space, the next record in the search region
will be fetched and displayed. If low and high limit
are equal, and the record in question is not
found, a message will be given.

In order to search in the main register with certain key
values, the lower part of the screen picture for this
key has to be filled in correctly. (Low limit and high
limit.)

AK or Al. A2, A7: alternative key.

If you want to use alternative search keys to search
through the main register, these should be marked AK.

If you have many keys of this kind in the program, and
would like to number them in order that they be input in
a certain sequence, you mark them with an 'A‘ and a
successive numbering from 1 to 7. A1 will be read from
the screen before A2, etc.

NOTE:
Alternative keys are only valid for querying.

Because alternative keys are only valid for querying,
these keys may be non—unique.

K : search key towards a register other than the main
register where data is fetched from and/or
checked.

Norsk Data ND—6O 219 1 EN

D(isplay)

Ex(istence
control)

Initial values
for realm

Key

Item

Lowlimit/
highlimit

Complete Program Generator 33
Generating programs with Complete—PG

The fields D and Ex are used to show what is to be
performed on the registers.

This field may have one of two values: blank or D.

BLANK : data will not be fetched from another
register.

D : data will be fetched from another realm
by means of this search key.

Retrieved data will be transferred to a screen buffer
and then displayed. If no data is found, and the
action code is modification or registration, an error
message will be displayed. The values have to be input
from the screen.

NOTE:
If data is to be displayed on the screen,

the name of the item in the database must be
the same as the name of the field in the screen pic—
ture (See the ABM manuel, DDTHNSF/DDTRNSC].
Items which are to be retrieved must be marked in
the subschema.

This field may have one of three values: blank, M or E.

BLANK: No control towards another register.

M : Existence check against another register when
storing new data or when modifying data.

E : Leads to existence check against another register
when deleting records from the main register.

The register where the search key is to be found.
Fetched automatically from the ABM database.

The search key which is to be given a start value
and/or a stop value. This value is read into the field
automatically.

Search keys specified under KEY are listed here. If the
search key consists of a group key, all the elements
in the group will be listed. A new record is generated
for each search key, which makes it possible to navigate
between them (F, L, N, P).

These fields are used to set up search regions and
retrieve requested data from the database registers.

Norsk Data ND—60.219 1 EN

34

EXAMPLE 1

Complete Program Generator
Generating programs with Complete—PG

In the further explanation of the fields in this screen
picture, we give a few examples of pictures that are
already filled in. The examples are fetched from chapter
10.

We want to make a program to maintain a register of
employees. The register is called EMPLOYEE, and
contains among other things:

EMPNO — employee's number
EMPNAME — employee's name
EMPDEPT — department
EMPPOS ~ position
EMPADDR ~ address
EMPPOST — postal code
EMPPHON — telephone number
EMPADM — place of administration

Employee's number is a unique key in the employee
register.

The program should find the data for one particular
employee when you type in the employee's number in the
picture. It should also be possible to navigate forwards
and backwards in the register (see 4.7).
Employee's number is a field in the screen picture. The
name of the generated screen record in the screen
picture is R1.

Filling in the screen picture:

Realm Key Use D Ex — — — _ - _ _

EMPLOYEE EMPNO MK

Initial values for realm: key: EMPNO

Item Lowlimit Highlimit - — — _ — - —
EMPNO R1PNO FORTRAN example

EMPNO R1~EMPNO COBOL example

refers to the field in the screen
picture from where the key value is
to be fetched when searching.

NOTE:
For COBOL, specify which screen record the key item
belongs to, in addition to the name of the key item
itself.

Norsk Data ND-60.219.l EN

Complete Program Generator 35
Generating programs with CompTete—PG

EXAMPLE 2 We use the same register as in exampTe number 1. The
program stiTT maintains information about empToyees, but
now each department maintains information about its own
employees‘ Users will only be aTTowed to retrieve
information about empToyees within their own department.

The group key EMPKl = EMPADM + EMPNO is used as the
main key.

When users Tog on to the system, they are asked for the
department they work in. The program fetches this
information from the Togging—on system, and moves this
information to the program variabTe INADM.

Filling out the screen picture:

Realm Key Use D Ex — « — — — — -
EMPLOYEE EMPK] MK

Initial values for realm: key: EMPKl
Item Lowlimit Highlimit — - — — — - —
EMPADM INADM INADM
EMPNO RIPNO FORTRAN example

EMPADM INADM INADM
EMPNO Rl-EMPNO COBOL example

Norsk Data ND~6O 219.1 EN

36

EXAMPLE 3

Complete Program Generator
Generating programs with Complete—PG

The program now maintains information both about the
departments and about the employees within each
department.

The screen picture consists of two regions. Region 1
contains the department number and various other
information fetched from the department register.

Region 2 in the picture consists of a list of lines
containing employee numbers and information about the
employees.

The program will manage to navigate through the
department register, and for each department all the
employees will be listed in region 2.

The employee register has the group key:
EMPK2 = EMPDEPT + EMPNO

Filling in region 2 in the screen picture:

Realm Key Use D Ex — — — — - — —
EMPLOYEE EMPKZ MK

Initial values for realm: key: EMPKZ
Item Lowlimit Highlimit — — — — — — —
EMPDEPT R1PDEPT R1PDEPT
EMPNO R2PNO FORTRAN example

EMPDEPT Rl—EMPDEPT Rl-EMPDEPT COBOL example
EMPNO RZ—EMPNO

If you do not want to navigate in the main register by
means of a main key, then low limit and high limit have
to be filled in with the same variable/value for all the
items in the main key‘

Note that the first part of the group key comes from
region 1, whereas the second part is fetched from region
2.

When the high limit for EMPNO is blank, all of the
employees belonging to a certain department are listed.

Norsk Data ND—60.219.1 EN

Complete Program Generator 37
Generating programs with Complete—PG

EXAMPLE 4 We now want to introduce employee's name, EMPNAME, and
position, EMPPOS, as keys in the employee realm. Instead
of typing in the employee‘s number you will now be able
to type in the employee's name and get a list of
information on the employee. We also wish to navigate
‘alphabetically between names in the employee realm.

We also want to have the possibility of finding an
employee by typing in the position, that way using the
position title to navigate through the realm.

Filling in the screen picture:

Realm Key Use D Ex - — — — — — —
EMPLOYEE EMPNO MK
EMPLOYEE EMPPOS A2
EMPLOYEE EMPNAME A1

Initial values for realm: key: EMPNAME
Item Lowlimit Highlimit — — — — - — —
EMPNAME RlPNAME FORTRAN example

EMPNAME Hl—EMPNAME COBOL example

Initial values for realm: key: EMPPOS
Item Lowlimit Highlimit — — - - — - —
EMPPOS RlPPOS FORTRAN example

EMPPOS Rl—EMPPOS COBOL example

Norsk Data ND—60.219.l EN

38

EXAMPLE 5

Complete Program Generator
Generating programs with Complete—PG

In the employee realm, the postal code is stored, but
not the postal address. The postal address is stored on
a separate realm, the postal address realm POADR.
The key to this realm is the postal code POSTCODE.

When searching in the employee realm, you want to be
able to retrieve the postal address corresponding to the
current postal code, and display it on the screen.

When modifying and storing employees, you want to be
able to retrieve the postal address corresponding to the
postal code you have typed in. If this postal code does
not exist in the postal address realm, an error
message will be displayed, and the postal code has to be
retyped.

Filling in the screen picture:

Realm Key Use D Ex - — — — — — —
EMPLOYEE EMPNO MK
POADR POSTCODE K D

Initial values for realm: key: POSTCODE
Item Lowlimit Highlimit - — — — ~ — —

POSTCODE R1PPOST RIPPOST FORTRAN example

POSTCODE Rl-EMPPOST Hl-EMPPOST COBOL example

L—— the name of the field in the screen
picture where you type in the postal
code.

Norsk Data ND—60 219.1 EN

Complete Program Generator
Generating programs with Complete—PG

EXAMPLE 6 When maintaining the employee realm, you also state
the position. All approved positions are stored on
a separate realm called POSITION.

When storing and modifying information about employees,
the position realm should be checked to see whether the
position you have specified is registered there. If the
position does not exist, an error message will be
displayed, and you have to retype the position.

Filling in the screen picture:

39

Realm Key Use D Ex - ~ — — — - —
EMPLOYEE EMPNO MK
POSITION POS K M

Initial values for realm: key: POS
Item Lowlimit Highlimit - — _ — — — —
POS R1PPOS R1PPOS FORTRAN example

POS Rl—EMPPOS Rl—EMPPOS COBOL example

Norsk Data ND—60.219.1 EN

40 Compiete Program Generator
Generating programs with Complete—PG

EXAMPLE 7 When maintaining the employee realm, it should not be
permitted to delete an employee who is participating
in a project. We have a separate project realm which
contains the numbers of the employees. One of the keys
in the realm is

PROKl = PROEMP (employee's N0.) + PRONO (project No.)

If the employee you are trying to delete exists on
the project realm, an error message will be displayed,
and the employee will not be deleted from the employee
realm.

Filling in the screen picture:

Realm Key Use D Ex — - — - ~ — —
EMPLOYEE EMPNO MK
PROJECT PROK] K E

Initial values for realm: key: PROKl
Item Lowlimit Highlimit - ~ — — — — -

PHOEMP R1PNO BlPNO FORTRAN example

PHOEMP Rl—EMPNO Rl-EMPNO COBOL example

PRONO

Norsk Data ND—6O 219 1 EN

Compiete Program Generator 41
Generating programs with Compiete—PG

“.5. WHAT HAPPENS DURING THE GENERATING OF A PROGRAM?

Before you can instruct Compiete—PG to generate a
program, you have to do the foiiowing:

0 Make the necessary additions/changes to the fiies:

CP“SPEC:SYMB
CP“PROGEN:MCRO

0 Give Compiete—PG the necessary information by fiiiing
in the pictures PROGRAM DESCRIPTION and USE OF PROGRAM
KEYS.

0 Start the generating by giving the command 'X‘ in the
picture PROGRAM DESCRIPTION.

The resuit of the generating is a program that is ready
to be executed.

On the foiiowing pages, we shaii iook at what reaiiy
happens, but a user does not ‘see‘, when a program
is generated.

Norsk Data ND~60.219.1 EN

42 CompTete Program Generator
Generating programs with CompTete—PG

(1]

each program

Are generated by
Complete-PG for

CP-SPEC15YMB

I
X ‘ PROGRAM DESCRIPTION

[2] <progname> SPEC
[3] <progname>:MANU
[4] <progname> BATC

+—- CP-PROGENzMCHO [5]
BATCH PROCESSOR

+—— CP-PROnCOBOLzMCHO [6]
or

CPePRO~FORTRAN:MCRO

[7] CP—LIST:LIST

(8] xxxxx [an executable program]

Fig. 4.3 — What happens when a program is generated.

See chapter 9 about adapting CP—SPEC.

This is a preTiminary COBOL/FORTRAN program which
contains information specific to the program in
question.

This fiTe is generated the very first time a program is
generated. Later on, when the program is generated
again, it may contain additionaT manuaT code, i.e. code
that the user has programmed herseTf/himseif. This
additionaT code is taken care of and wiTT aTways be
inserted in the correct pTace in the program, whether
the information in the picture USE OF PROGRAM KEYS has
been aTtered or not.

Input fiTe for the batch processor. Contains the name of
the macro to be run. This is a job that generates,
compiTes or Toads (or a combination of these options).

Macro to generate, compiTe or Toad a generated program.
The macro has to be adapted to your own instaTTation,
Type in the necessary names of the users and Tibraries.

Norsk Data ND—BO 219.1 EN

CompTete Program Generator 43
Generating programs with CompTete—PG

(6) GeneraT COBOL and FORTRAN routines (macros) which are
inserted in the generated program <progname> SPEC.

(7) This is a Tist from the job which has been run in the
batch processor.

(8) The resuTting executabie program (if you have specified
‘generate/compiTe/Toad‘).

Progname is the name you have typed in in the fie
'prog id‘ in the picture PROGRAM DESCRIPTION.

During the generating of a program, these files are
estabTished:

<progname>zBATC
<progname>zSYMB
<progname>zMANU
<progname>zBRF/NRF
<progname>zPROG/DOMAIN

When you start the generating by giving the command 'X',
you wiTT be asked whether you want to generate a main
program. If you repiy ‘Y', the foiiowing fiTes wiT) be
generated, too:

<m—function—name>:SYMB
<m—function—name>:BRF/NRF

Note that Compiete—PG onTy generates subroutines. If you
do not have a menu controT system, you have to repTy
'Y(es)’ when you are asked if you want a main program to
be generated.

Norsk Data ND-fiQ-ZlSil EN

44

4.6. THE GENERATED PROGRAM ‘ DIALOGUE BETWEEN USER AND SCREEN PICTURE

Complete Program Generator
Generating programs with Complete—PG

Key
Command
Comment

Key
Command
Comment

0 Start the generated program by specifying the program
name as if it were a SINTRAN command.

The picture will then be displayed, and the cursor will
be placed within the first key field in the first
region.

There are two different ways of giving commands to the
generated program:

0 Give commands in the generated command field in the
upper left—hand corner of the picture.

0 Use the function keys.

F1 F2 F3 F4
DELE STOR CREG
Delete record Store a new Clear a region

record

F5 F6 F7 F8
CLIN OUER MODI
Clear a line Find data Modify data

NOTE:
Function keys used as action code can only be used

in the command field and in key fields. They have no

effect in the other fields.

See description of action codes on page 49.

Norsk Data ND—60 219.1 EN

Complete Program Generator 45
Generating programs with Complete—PG

Querying Command : QUER

Function key : F7

Description : Find data

. Hit the function key F7 or the action code you have
defined for the command QUER.

The cursor will be placed in the first field belonging
to the main key. This field will be shown in inverse
video on the screen.

. Type in the data you want to search for and press CR, or
hit the EXECUTE key.

The value you type in in the key field determines what
data will be listed. On the first line, data will be
listed for the search key that has the same value as the
one typed in, or for the search key that has the closest
higher value. On the next lines, the data will be listed
and sorted on ascending value of the search key until
the page is full (i e. until data sets are displayed on
all the lines in the region) or until there are no more
data sets in the search region in the database.

If there is more than one search key for the line(s) in
the region, you may move the cursor to the search key
you wish to use, and specify the start value for that
one instead. The data sets will then be listed on
ascending value of the specified search key.

If you ask for data in an owner region, the data set in
the owner region will be presented first. Afterwards,
the data sets in the member region will be sorted on
ascending value of the main key.

Norsk Data ND—60.219.1 EN

46 Complete Program Generator
Generating programs with Complete—PG

Registration Command : STOR i

Function key : F2

Description : Store data

1. Hit the function key F2 or type in the action code
you have defined for storing of data.

Fields which are part of the main key are shown in
inverse video.

The cursor will be placed in the first field that is
part of the main key.

2. Type in the value of the main key.

If the value of the main key does not exist in the
database already, you can proceed to store data in
the other fields.

[:- 3. Hit the EXECUTE key, and the data will be stored.

After the data has been stored, the cursor will be
placed in the first field of the next line if there are
more lines in the picture. But if this is the last line
in the picture, the screen will be cleared, and the last
line will be redisplayed on the first line of the
picture. The cursor will be placed on line number two.

You may edit data that is filled in in advance, by first
specifying that you want to make a query. The data which
is then displayed will remain on the screen until it is
modified by overwriting.

In order to clear the contents of a region while you are
storing data, hit the F4 key. If you only want to clear
a line, you may use the F5 key.

Norsk Data ND—60.219.1 EN

Complete Program Generator 47
Generating programs with Complete~PG

Modification Command : MODI

Function key : F8

Description : Modify data

When data is to be modified, the system will search for
the record in question. If the record does not exist,
you get a message on the screen telling you so.

. Hit the function key F8 or type in the action code
you have defined for modification of data.

Fields which are part of the main key are shown in
inverse video on the screen. The cursor will be placed
in the first key field.

. Move the cursor by means of the arrow keys to the line
and the data field where you wish to alter the data.

. Type on top of the data that is already shown in the
field.

. Hit the EXECUTE key, and the modification will be
stored.

You may also modify data directly, without going via
querying. This is done by specifying a legal value
for the main key before altering the data field.

Norsk Data ND—60.219.1 EN

48

Deletion

Complete Program Generator
Generating programs with Complete—PG

Command : DELE

Function key : F1

Description : Delete data

When data is to be deleted, the system will search for
the record in question. If the record does not exist,
you will get a message on the screen.

Hit the function key F1 or the corresponding action
code.

Fields that make up the main key, will be shown in
inverse video on the screen. The cursor will be placed
in the first key field.

. Move the cursor to the line you want to delete.

Hit the EXECUTE key.

Before the data is deleted, a control determines whether
deletion is permitted. (For instance, you cannot delete
an ‘owner' that has “members“ connected to it.)

You may also delete data directly without going via
querying. This is done by specifying a iegal value
for the main key before deleting the data.

NOTE:
When a line is deleted from the database, it will be
shown in low intensity on the screen. This is done
to show that the line is deleted, but
that you still have the opportunity of cancelling
the command (i.e. you may store the line again].

Norsk Data ND—60.219.l EN

Compiete Program Generator 49
Generating programs with CompIete—PG

Action codes Instead of specifying what kind of action is wanted
by means of function keys, you have the option of using
action codes. In that case, you have to make room for
an action code fieId in the picture when you define
it.

In the action code fieId, you specify what kind of
action is to be performed. You may choose among:
querying, modification, storing, and deIetion.

A Ietter or a number represents each of the action
codes. The Ietters/numbers are optionaI, and may vary
from one system to another. The action codes are
fetched fromn the fiies:

CP—SMESS—NO—BOO:SYMB for the Norwegian version
CP«SMESS~EN—BOO:SYMB for the Enish version

A screen picture with action code fieIds may Iook
Iike this:

In each region, one, severaI or aII action codes may
be permitted: query, modify, store and deIete.
Various combinations may be permitted for the different
regions.

Norsk Data ND—60.219.1 EN

50 Compiete Program Generator
Generating programs with Compiete-PG

4.7. COMMANDS AND FUNCTION KEYS

0n the foiiowing pages, you wiii find an overview of the
various function keys together with their meaning, as
weii as suggested command words for the functions that
can be chosen in the command fieid. The command
words can be chosen freeiy, and are fetched from the
fiies:

CP—SMESS—NO—BOO:SYMB for the Norwegian version
CP—SMESS-EN—BOO:SYMB for the Engiish version

We distinguish between commands/keys that are valid for
separate regions, and those which are valid for the
entire screen picture.

4%
’2

“

Norsk Data ND—60.219.1 EN

Complete Program Generator 51
Generating programs with Complete-PG

COMMANDS AND FUNCTION KEYS FOR SEPARATE REGIONS:

COMMAND FUNCTION KEY DESCRIPTION

SN »1 Choose next search key

SP f+ Choose previous search key

:=> Move to next region

<== Move to previous region

NL I Move to next line (if last line
— move to next region)

PL 1 Move to previous line (if first line
~ move to previous region)

COPY Copy field from previous line

FIRS SHIFT + +—— Show first page (scroll)

_ +—— Show previous page (scroll)

LAST SHIFT + ——» Show last page (scroll)
l I

+ -—+ Show next page (scroll)
i

CLIN F5 Clear line (and member lines)

The mode for clearing a line when storing
data lasts until you give the command to
switch off this mode. The status is
displayed on the status line.

OFFCL SHIFT + F5 Switches off the clearing of a line during
storing of data.

Norsk Data ND—60.219.l EN

52 CompTete Program Generator
Generating programs with CompTete—PG

4m
»

COMMANDS AND FUNCTION KEYS FOR THE ENTIRE SCREEN PICTURE:

COMMAND FUNCTION KEY DESCRIPTION

CREG F4 CTear region (and member regions)

NR > > Choose next region

PR < < Choose previous region

"PRIN Copy picture to a printer/fiie %

HELP Show heTp information

SHIFT + HELP Activate advanced heTp function (see
chapter 13).

NAPL Jump to next predefined function
and transfer main key

PAPL Jump to previous predefined function
and transfer main key

X EXIT Exit from this program

\ Jump to/from command fieid

TEXT :22; C811 of text function (see chapter 12).

Execute chosen function (modify, store or
[:— deTete)

Norsk Data ND—60 219.1 EN

Complete Program Generator 53
Generating programs with Complete—PG

If an OK field is defined, this may be used
instead of the EXECUTE key. The OK field is a
field consisting of one character, where you may
type in ‘Y' if updating is to be performed, or
'N' if you do not want to update.

An example of a screen picture with an OK
field:

Key Description OK

Norsk Data ND~60.2;9.1 EN

54 Compiete Program Generator
Generating programs with Compiete—PG

COMMANDS / DESCRIPTION

ScroTT

Move to
new region

Print
screen picture

Jump to next
appTication

Commands: FIRS. +. LAST. ‘

FIRS, +, LAST and — (and corresponding function keys)
are commands which concern the current region. They may
onTy be used if the page in the region aiready is fiTTed
in. (See page 15.)

One page often contains onTy a smaTT part of aTT the
data to be found in the database for the current search
key. The purpose of these commands is, in a simple way,
to present the seiection of data that you are interested
in. The data that is presented is aTways sorted on
ascending vaTue of the current search key.

By typing in FIRS, you wiTT be shown a page where the
first data set is connected to the search key in
the database with the Towest vaiue.

'+' wiTT dispTay the foiiowing page, i.e. the data sets
which foTTow the ones that are currentTy shown on the
screen.

Simiiariy, '—‘ wiTT dispiay the previous page, and LAST
the Tast page.

If you scroTT in an owner region, the connected data in
the member region wiTT aTso be dispTayed. This is done
in the same way as described under Querying.

Commands: NR. PR

When the program is started, the name of the first
region in the picture is shown on the status Tine. This
means that the first region is the current one, and that
this is where you are working just now. (See expianation
of the region notion on page 15.)

If you want the next region to become the current one,
you type in the command NR. The command PR causes the
previous region to become the current one.

Command: PRIN

If you give the PRIN comment when the cursor is in the
command fie, you wiTT get a print—out of the
picture on your screen.

Command: NAPL

Direct transfer from one program to a new, foTTowing
program (defined in the menu system), with transfer of
the main key. Search using the main key in the
caTTed program.

Norsk Data ND—6Q.219.1 EN

CompTete Program Generator 55
Generating programs with Compiete—PG

Jump back
to previous
appTication

Exit from
function

Go to
text function

Command: PAPL

Like NAPL, but with a jump back to a program defined as
the previous one in the menu system.

Command: X

X (exit) causes the function you are at to be stopped.

Command: TEXT

The command TEXT oniy works if free text is defined for
the program. You may give the command when querying or
modifying. When querying in the caTTing program, you may
onTy query in the free text function.

When modifying in the caTTing program, you may query,
store, modify, and deTete in the free text function.

If free text is registered in a record, a ‘T‘ is
dispiayed in the fie for free text; otherwise this
fieid is biank. When returning from the free text
function, you are brought back to the piace in the
picture where the free text function was caTTed.

Norsk Data ND~60.219.1 EN

r.OtaPeneGmaPg0PD.ete«Ipm0C56

Norsk Data ND—60.219.1 EN

G,N.M
.M
.

APRdéR

Complete Program Generator 59
Additional programming in FORTRAN and COBOL

5. ADDITIONAL PROGRAMMING IN FORTRAN AND COBOL

It may be necessary to touch up programs that are
generated automatically by the program generator. In
such additional programming there would naturally be
calls to ABM‘s SIBAS and FOCUS overhead. Additional
programming may be necessary in one or more regions.
Below, we have described the various forms of
additional code that may be useful, and where to
insert this code in the generated code. The rules are
the same for each region.

Several read Complete—PG is based on the fact that all data fields
calls (fields apart from main key, command word, BK field, and

0K field) are read in one read call. However, if you
want an instant input control on fields, the reading
must be split into several read calls.

An example of this is shown in chapter 10.

Inserting additional code: Before and after CPREAD.

Control/calcula— When all data is read or presented, control and/or
lation before calculation of fields may be required before the data—
updating base is updated.

An example of this is shown in chapter 10.

Inserting additional code: After CPOKCOD, or after
the last CPREAD call if CPOKCOD is not used.

Updating several An updating sequence is surrounded by CPBTRANS and
realms CPETRANS, which execute SUBEG og SUEND respectively.

If several realms are to be updated, the additional code
must be inserted before CPETRANS.

An example of this is shown in chapter 10.

Inserting additional code: After CPUPDATE.

Norsk Data ND~60.219.1 EN

60 Compiete Program Generator
Additionai programming in FORTRAN and COBOL

5.1. INSERTING ADDITIONAL CODE

Beionging
subroutine caii

In the foiiowing description, we use the term
‘beionging subroutine caii’. A beionging subroutine is
one of the subroutines that appear in the automaticaiiy
generated program, and the manuai code aiways has to be
inserted immediateiy before or after this subroutine.
For the type of additionai code described above, the
beionging subroutine is the one specified after
“Inserting additionai code ‘.

Be1ow, we have described how the additionai code is
inserted in the generated code.

5.1.1. BEFORE BELONGING SUBROUTINE CALL

If the additionai code is to be inserted before a
beionging subroutine caii, you have to test whether this
subroutine is to be executed. Whether a subroutine is to
be executed or not depends on the navigating in the
picture.

Necessary syntax for additionai code before a caii to a
subroutine is shown beiow.

COBOL syntax wiii be:

CALL 'CPIENABLE' USING TRIGGER~<f1ag> RESULT
IF RESULT = 1 THEN

additionai code

FORTRAN syntax wiii be:

1F (CPABLED(FL<f1agg>,1)) THEN
additionai code

ENDIF

Norsk Data ND—60.219.1 EN

Complete Program Generator 61
Additional programming in FORTRAN and COBOL

5.1.2. AFTER BELONGING SUBROUTINE CALL

When a subroutine is executed, an ’execute‘ flag will be
set. If it is set, it will be reset automatically during
the execution of the next subroutine.

This flag may be used in the following additional code
to test whether it should be executed. In this way, you
prevent the execution of the additional code every time
the DO loop is performed.

The necessary syntax for additional code after a call to
a subroutine is shown below.

COBOL syntax will be:

IF EXECUTE : 1 THEN
additional code

END~IF

FORTRAN syntax will be:

IF (EXECUTE) THEN
additional code

ENDIF

Norsk Data ND—60.219.1 EN

62 Compiete Program Generator
Additionai programming in FORTRAN and COBOL

5.2. HOW TO DISCERN BETWEEN ADDITIONAL CODE AND GENERATED CODE

Storing the
additionai code

Name standard

Certain functions demand manuai programming in addition
to the generated code. The first time an appiication is
generated, a fiie named <program—name>:MANU is created.
This fiTe contains a series of empty macros. Additionai
code must be inserted in these macros if it is not to
disappear after regenerating the program.

NOTE:
All additional code should be inserted in the macros
on the file <program-Iiame>:MANU.

The name of each macro consists of Tetters and numerals,
for exampie: ecpreal.

The first Tetter is‘f' or ‘e', which specifies either
before or after the beionging subroutine.

The next Tetters are the same as the first Tetters in
the beionging subroutine.

The numerai shows which region the manuai code beiongs
to.

An exampTe of a macro as it is to be found on the fiTe
(this is the macro foTTowing CPREAD in region 1):

%,%% Manuai code inserted after CPREAD 1;
DEF,ecpreal,‘CRMOD;<>“ICRMOD;;

An exampie of a macro containing additionai code:

%,%% Manuei code inserted after CPREAD l;
DEF,ecprea1,“CRMOD;<
* This is where the additionaT code starts.

IF (EXECUTE) THEN

ENDIF
* End of additionai code.
>‘ICRMODg;

Norsk Data ND—60.219.1 EN

CompTete Program Generator 53
AdditionaT programming in FORTRAN and COBOL

5.3. MESSAGES

Message fiTe

Message database

ATT messages used in a system shoq be stored on a
fiTe, with one fiTe for each Tanguage you wish
'to run the system in.

The message fiTe shoq be as foTTows:

% Sentences beginning with % are comments.
“ Sentences beginning with “ specify the message number.

The messages shouid be written as described in the ABM
manuaT.

Let us have a Took at an exampie of a message fiTe:

% Messages to my system
_“sysid = O

“851 = 0
‘0 MY SYSTEM
A1
02—) First message‘
‘2
O:-> Second message‘
"3
+:—> Error message'

This message fiTe is 'compiied‘ by means of UEER—
CONVERT into a message database (see next page).
The name of the message database must be:

UE‘UMESS‘XX‘BZZ

where 22 is the revision number (00 — 99) and XX
the Tanguage code:

NO — Norwegian
EN — EngTish
TY — German
FR — French
SV ~ Swedish
DA — Danish
FI — Finnish
IS — IceTandic
IT ~ ItaTian
HO — Dutch
P0 — Portuguese
SP — Spanish

The message database shouid beTong to the user area
where you run the system.

Norsk Data ND—60.219.1 EN

64

Compiling

Fetch and display
a message

Complete Program Generator
Additional programming in FORTRAN and COBOL

NOTE:
Before compiling the message file,
take a copy of the existing database, so

that you can start again if anything goes wrong.

Compiling the message database:

@(ABM—SYS)UEER—CONVERTaB
<Message database>
<message file 1)
<message file 2>

<message file n>

The file (ABM—SYS)UEER—CONVERT must be the 8 version
or a later version.

You can also get a list of all the messages in a
message database by giving the command:

@(ABM-SYS)UEER-LIST—B
(Message database>
(List file>
(from error no.> default lowest number
<to error no.> default highest number

The file (ABM—SYslUEER—LIST must be the B version
or a later version.

If you run the system under USER—ENVIRONMENT, the
language code for the current user will be fetched, and
the message database for that language will be opened.
Without USER—ENVIRONMENT, the English message database
will be opened.

When messages are to be fetched and displayed, you use
the following subroutine: ‘

CPGETMSG(MSGNO)

Parameter list:

INTEGER MSGNO : the number of the message to be
fetched

This subroutine concerns both FORTRAN and COBOL.

The message is placed in CTEXT (FORTRAN) / TEXT
(COBOL). If you want to, you can edit the message
before it is displayed, by means of CPMESS
(or DDWMSGE(ITEXT,MSTA)).

Norsk Data ND—60.219.1 EN

Complete Program Generator 65
Additional programming in FORTRAN and COBOL

5.4. FORTRAN AND COBOL EXAMPLES

Here we shall show a few examples of how to apply useful
variables and routines. These are viewed in connection
with problems often come across.

EXAMPLE 1

Problem: Several CPREAD calls are required. This is important
if you want immediate INPUT control.

Suggested solution in FORTRAN:

* Start of additional code
FLNEXT = FLREAD

* End of additional code
CALL CPREAD (1, -—— ,FLKEY,FLNEXT)

* Start of additional code
poss. test of field read in CPREAD(1,——)
CALL CPREAD (2, ——— ,FLREAD,FLREAD)
poss. test of field read in CPREAD(2,—-)
CALL CPREAD (3, ——— ,FLREAD,FLOKCOD)
poss. test of field read in CPREAD(3,——)

* End of additional code

Suggested solution in COBOL:

* Manual code inserted before CPREAD (1...
Start of additional code

MOVE TRIGGER—READ TO TRIGGER~NEXT
* End of additional code

CALL CPREAD (l, ——— ,TRIGGER—KEY,TRIGGER—NEXT)
* Manual code inserted after CPREAD (l...
* Start of additional code

poss. test of field read in CPREAD(1,——)
CALL CPREAD (2, —-— ,TRIGGER‘READ,TRIGGER-READ)
poss. test of field read in CPREAD(2,—-)
CALL CPREAD (3, —~~ ,TRIGGER-READ,TRIGGER—OK)
poss. test of field read in CPREAD(3,—*)

* End of additional code

>(v-

Comment: Here we have used three CPREAD calls. In the parameter
lists, somewhat different parameters appear. The first
parameter is the counter, which is increased from 1 to
the total number of CPREAD calls. The parameters that
control the field termination will also vary.

In the first CPREAD call, the backward arrow will cause
a jump to the key (FLKEY or TRIGGER~KEY), the next to
last parameter in the call. The ENTER key
or forward arrow will cause a jump to the next
CPREAD call (FLREAD, TRIGGER—READ).

Norsk Data ND—60.219.1 EN

66

EXAMPLE 2

Problem:

Comment:

Complete Program Generator
Additional programming in FORTRAN and COBOL

For CPREAD call number 2, hitting the same keys will
bring the previous CPREAD call or the next CPREAD
call. For the last CPREAD call, the same field
termination will bring the previous CPREAD call or
CPOKCOD. The UK code will be read, or the EXECUTE
key will be prompted for,

Instead of several CPREAD calls, you can use CPINVER.
All fields may then be read by means of one CPREAD call,
and a control will be performed for all of the fields.
The fields that are not OK, and therefore have to be
read once more, are shown in inverse video using
CPINVER, and CPREAD is called again. You thereby get to
know which fields have to be corrected. The combination
of several CPREAD calls and use of CPINVER may also be
applied. See example in chapter 10.

We want INPUT control of certain fields, possibly
together with an error message, as well as activation of
the same CPREAD call (i.e. to read the same field
again).

Suggested solution in FORTRAN:

CALL CPREAD (n, -—-)

IF (EXECUTE) THEN
IF (IACTCOD.EQ.2.0R.IACTCOD.EO.3) THEN

<test field values if any)
IF <error> THEN

CALL CPGETMSG(9)
CALL CPMESS

ENDIF
ENDIF

ENDIF

CALL CPREAD (n+1, ——-)

CPREAD must have been activated (EXECUTE = TRUE). If the
action code is R(egistration) or M(odification) (i e.
IACTCOD = 2 or 3), a control of the screen value will be
performed in this additional programming.

If the INPUT value is not correct, the routine CPMESS
will be called. An error message will be displayed, and
the same CPREAD call will be re—activated.

Norsk Data ND—6O 219.1 EN

Compiete Program Generator 57
Additionai programming in FORTRAN and COBOL

Suggested sqtion in COBOL:

CALL 'CPREAD' USING n, ———

IF EXECUTE = 1
AND (MAINTAB(5)=2 OR MAINTAB(5)=3)
<test fieid vaiues if any>
IF <feii>

CALL 'CPGETMSG’ USING 9
CALL 'CPMESS'.

CALL 'CPREAD' USING n+1, ——— .

Comment: CPREAO must have been activated (EXECUTE = 1). If the
action code is R(egistration) or M(odification) (i e.
MAINTAB(5) = 2 or 3), a controi of the screen vaiue wiII
be performed in this additionai programming.

If the INPUT vaiue is not correct, the routine CPMESS
wiii be caIIed. An error message is dispiayed, and the
same CPREAD call is re—activated.

5.5. ERROR HANDLING

If an error shouid occur, the internai error handiing in
Compiete—PG wiii iist aii the invoived routines in
a hierarchicai sequence, i.e. the routine on the highest
Ievei is printed first, then the routine on the next
ieveI, etc. Type of error, error status and other
information wiii aiso be printed.

A1] of these error messages wiII be written on the fiie
CP—ERRORzLOGG. On the screen, you wiii get information
about which error has occurred. The program
wiII be stopped.

Norsk Data ND‘60.219.1 EN

68 CompIete Program Generator
AdditionaI programming in FORTRAN and COBOL

5.5.1. ERROR HANDLING IN MANUALLY DEFINED SUBROUTINES

You may aIso use CompIete—PG‘s error handIing in your
own subroutines. The standard Iayout for this is shown
beIow.

COBOL syntax wiII be:

IDENTIFICATION DIVISION.
PROGRAM—ID. name.
DATA DIVISION.
WORKING-STORAGE SECTION.

COPY (ABM—SYS)CP~PROBOT—COM:COPY
LINKAGE SECTION.

PRODECURE DIVISION USING ...
MOVE ‘name ' TO CSUB
CALL ‘CPIN' USING CSUB.
CALL ‘RUTINEl' USING...
IF error

MOVE 'RUTINEl' TO CSUB
CALL 'CPABORT'
CALL ‘CPOUT' USING CSUB

END—IF
EXIT—PROGRAM

FORTRAN syntax wiII be:

SUBROUTINE name(-— I
$INCLUDE (ABM~SYS)CP—PROBOT—COM:INCL

csub = ‘name'
CALL CPINIisub)
csub = 'routinel'
CALL routinel
IF (error) GOTO 9900

9900 IF (error) CALL CPABORT
CALL CPOUTIIsub)
RETURN

END

In chapter 6 you wiII find a description of
the routines CPIN, CPABORT and CPOUT.

Norsk Data ND—60.219.l EN

Complete Program Generator 69
Additional programming in FORTRAN and COBOL

5.6. SEVERAL CPREAD CALLS

5.7. READCO

By introducing a counter in the parameter list for the
subroutine CPREAD, it is possible to split READ calls.
For each new CPREAD call that you want, you have to
increase the first parameter by l. The CPREAD calls will
thus be ‘numbered‘ from 1 to n, where n is the total
number of CPREAD calls. The system will arrange a
sequential execution of all the CPREAD calls,

READCO is an INTEGER variable that corresponds to the
counter in CPREAD. In each CPREAD call this variable
will be increased or decreased by 1 depending on the
termination of the field. This is done by the system.
CPREAD calls will only be executed if READP = READCO.
Through additional programming, you may for instance
use READCO to skip the reading of certain fields in
certain situations.

5.8. SELECTING RECORDS

The CPGET routine uses GETN calls towards SIBAS, and
retrieves as many records from the database as there are
lines in the screen picture. All of these records are
then displayed in the CPDISP routine.

If you need to fetch one record at a time (for example
to display only those records that fulfill certain
criteria), the parameter EVERYLIN may be set to 1 (it is
otherwise equal to 0). Then CPGET will fetch one record,
which is placed in the screen buffer and the database
buffer. This may now be tested. If it is accepted, i.e.
it is to be displayed, you have to set the flag FLOK
(FORTRAN) or TRIGGER~OK (COBOL): It is done like this:

FORTRAN:

CALL CPENABLE(FLOK)

COBOL:

CALL 'CPIENABLE' USING TRIGGER—OK

If it is not accepted, you have to reset the OK flag
(this is not done automatically), and the record will
not be displayed. CPGET will then be repeated, until the
screen picture is full or there are no more records
left in the database.

Norsk Data ND—60.219.1 EN

70 Compiete Program Generator
AdditionaT programming in FORTRAN and COBOL

5.9. FLOK
FORTRAN:
The FLOK flag is used to indicate which records are to be
accepted. This fiag is set if the record is accepted, and
reset if the record is rejected.

5.10. TRIGGER-OK
COBOL:
The TRIGGER—0K fiag is used to indicate which records are
to be accepted. This fiag is set if the record is
accepted, and reset if the record is rejected.

Norsk Data ND—60.219.1 EN

.19.
f

v
1.2%.

kw

Complete Program Generator , 73
Program variables and routines available to a programmer

6. PROGRAM VARIABLES AND ROUTINES AVAILABLE TO A PROGRAMMER

The other program variables and routines that you may use
for additional programming, are:

IACTCOD, MAINTAB(5), OWNMESS, NOERR, FLNEXT, TRIGGER—NEXT,
CTEXT, TEXT, CRSPNS, TERMCOD, CPABLED, CPIENABL, CPIN(),
CPOUTi) and CPABORT.

We shall now describe each one:

6.1. IACTCOD

FORTRAN: .
An INTEGER variable that always keeps track of the action
code last used, and thereby may be used to test the
current action code.

The action codes are:

IACTCOD querying
storing
modifying
deleting

H

.
5

m

6.2. MAINTAB(5)
COBOL:
An INTEGER variable that always keeps track of the last
used action code, and thereby may be used to test the
current action code.

The action codes are:

MAINTAB(5) = 1 : querying
2 : storing
3 : modifying
4 : deleting

I!
II

Norsk Data ND—60.219.l EN

74 Complete Program Generator
Program variables and routines available to a programmer

6.3. OWNMESS
FORTRAN:
A flag (logical variable) used to overrule messages in
the Complete~PG routines.

By setting OWNMESS to .TRUE. before a PG routine, and
moving the preferred message to CTEXT, your own message
will be displayed instead of the standard message from
the PG routine.

OWNMESS must be reset to .FALSE. immediately after the
return from the PG routine.

COBOL:
A variable used to overrule messages in the Complete—PG
routines.

By setting OWNMESS to 1 before a PG routine, and moving
the preferred message to TEXT, your own message will be
displayed instead of the standard message from the PG
routine.

OWNMESS must be reset to 0 immediately after the return
from the PG routine.

6.4. NOERR
FORTRAN:
A flag (logical variable) that is .TRUE. as long as no
error occurs.

COBOL:
A variable that has the value of 1 as long as no error
occurs.

6.5. FLNEXT
FORTRAN :
A flag used in connection with several CPREAD calls.
Complete—PG sets FLNEXT = FLOKCOD. If several CPREAD
calls are to be used in the additional programming, you
must set FLNEXT : FLREAD after CPGET.

Norsk Data ND~60.219.1 EN

CompTete Program Generator 75
Program variabTes and routines avaiTabTe to a programmer

6.6. TRIGGER~NEXT

6.7. CTEXT

6.8. TEXT

6.9. CRSPNS

COBOL:
A variabTe used in connection with severaT CPREAD caTTs.
CompTete—PG sets TRIGGER—NEXT2TRIGGER—OK. If severaT
CPREAD caTTs are to be used in the additionai
programming, you must set TRIGGER—NEXT=TRIGGER—READ
after CPGET.

FORTRAN:
A character string containing the message which is to be
dispTayed for the user. The message in CTEXT is
dispTayed by means of the routine CPMESS. The routine
CPGETMSG(I) moves message I, from the message fiTe, into
CTEXT. CTEXT may be edited, but the message in the
variabTe must have ABM/FOCUS format when CPMESS is
caTTed.

COBOL:
A character string containing the message which is to be
dispTayed for the user. The message in TEXT is dispTayed
by means of the routine CPMESS. The routine CPGETMSG(I)
moves message I, from the message fiTe, into TEXT. TEXT
may be edited, but the message in the variabTe must have
ABM/FOCUS format when CPMESS is caTTed.

FORTRAN AND COBOL:
A variabTe containing the Test used command word.

(This one is the same for both FORTRAN and COBOL).

Norsk Data ND-60.219.1 EN

76 CompTete Program Generator
Program variabTes and routines avaiTabTe to a programmer

6.10. TERMCOD

TERMCOD (INTEGER variabTe) contains the Tast chosen
termination code (termination from a fie on the
screen). The aTternatives avaiTabTe are:

ATternatives Meaning

TERMCOD = O ——> , CR
TERMCOD = 1 \
TERMCOD = 2 <——
TERMCOD = 3 ==>
TERMCOD = 4 <==
TERMCOD = 5 ~~>1
TERMCOD = 6 !<——
TERMCOD = 7 l
TERMCOD = 8 1
TERMCOD = 9 EXIT

(:2

TERMCOD = 10 SHIFT T

(:2

TERMCOD = 11 1

=2)

TERMCOD = 12 SHIFT l

==>

TERMCOD = 13 l

TERMCOD = 14 F5
TERMCOD = 15 F4
TERMCOD = 16 >>
TERMCOD = 17 <<
TERMCOD = 18 CNTR C
TERMCOD = 19 PRINT

TERMCOD = 20 [:.
TERMCOD = 21 <>
TERMCOD = 22 ><

TERMCOD = 23 T
TERMCOD : 24 F3
TERMCOD = 25 MARK
TERMCOD = 26 SHIFT F5
TERMCOD = 27 F7
TERMCOD = 28 F2
TERMCOD = 29 F8
TERMCOD = 30 F1

Norsk Data ND—60.219.1 EN

Compiete Program Generator 77
Program variabTes and routines avaiiabie to a programmer

6.11. LOGICAL FUNCTION CPABLED(FLXXXX.1)

FORTRAN:

Parameter Tist:

INTEGER FLxxxx (Input): The parameter vaTue of the routine to be
tested.

INTEGER (Output)

Function description: The function tests whether the specified
fTag is set. TRUE is returned if this is
the case.

6.12. SUBROUTINE CPIENABL(TRIGGER*XXXX.RESULT)

COBOL:

Parameter Tist:

INTEGER TRIGGER~xxxx (Input): The parameter vaTue of the routine to be
tested.

INTEGER RESULT (Output)

Routine description; The routine tests whether the specified
fTag is set.

RESULT=1 : is returned if the specified
fiag is set.

RESULT=0 : is returned if the specified
fIag is not set.

6.13. SUBROUTINE CPINCISUB)

FORTRAN:

Parameter Tist:

INTEGER*2 ISUB(4) (Input): The name of the current routine.

COBOL:

Parameter Tist:

Norsk Data ND—60.219.1 EN

78 Complete Program Generator
Program variabies and routines avaiiabie to a programmer

PIC X(8) (Input):

Routine description:

The name of the current routine.

Names of a1] routines invoived are put in a
table. If an error occurs, you may use this
tabie to retrieve the name of the routine.
If this routine is used, it must be caiied
at the beginning of a subroutine.

6.14. SUBROUTINE CPOUTCISUB)

FORTRAN:

Parameter 1ist:

INTEGER*2 ISUB(4) (Input):

COBOL:

Parameter list:

77 ISUB PIC X(8) (Input):

Routine description:

6.15. SUBROUTINE CPABORT

FORTRAN AND COBOL:

Parameter iist:

Routine description:

Name of the routine that was last executed.

Name of the routine that was 1ast executed.

The name of the iast routine executed
without error, is removed from
the tabie.

None

If an error occurs in a SIBAS caii or a FOCUS
caii, CPABORT should be caiied. CPABORT
resets aii fiags so that the DO ioop is ended
and CPEND is caiied. CPEND wiii, if MSTA¢O or
KSTAT¢O and KSTAT¢1, write en error message
on the error message file.

NOTE:
An error message is written by CPEND only if
MST/3950, or KSTAT¢1 and KSTATséO.

Norsk Data ND—6O 219.1 EN

Compiete Program Generator 81
Documentation of routines in the generated program

7. DOCUMENTATION OF ROUTINES IN THE GENERATED PROGRAM

7.1. THE STRUCTURE OF THE GENERATED PROGRAM

Here we shai] give an overview Of the program logic used
in the generated program.

Programs generated by Compiete~PG are short. A FORTRAN
program consists of 11 to 17 subroutines, whiie a COBOL
program contains 13 to 19 subroutines.

Out of these subroutines, 11 (in FORTRAN) and 13 (in
COBOL) wiii aiways be part of a program generated by
Compiete—PG, no matter what the function picture wiii
100k like (i.e. the contents of the regions).

Norsk Data Np—60.2;9,; EN

82 Compiete Program Generator
Documentation of routines in the generated program

7.2. AN EXAMPLE OF A GENERATED PROGRAM IN FORTRAN

The foTTowing is part of a generated FORTRAN program. AdditionaT code is
not incTuded in the program. Neither OK code nor action code is contained
in the program, and the program onTy handTes one reaTm.

PROGRAM name
<heading>
<decTarations>
<incTude fiTes>
CALL CPHJON ‘;
CALL CPBEGIN(——) Zfetches picture and opens database
DO WHILE (one region active)

DO WHILE (this region active)
CALL CPREGION(—~)

citmsub(l) = key fie
CALL CPKEY(-—) %reads vaTue in key fie

CALL CPGET(~~) %fetches records of interest

CALL CPINRC(—) %fetches data from database buffer

citmsub(1) = key + data fie
CALL CPDISP(—) %transfers data to screen

citmsub(1) = data fie
CALL CPREAD(—-) %reads data fie

CALL CPBTRANS(—~) %starts transfer

citmsub(l) = aTT fies in record
CALL CPUPDATE(——) %updates database

CALL CPETRANS %ends transfer

CALL CPRSPNS(——) Zreads response code

CALL CPOVER(—-)

CALL CPHELP

ENDDO
ENDDO

CALL CPEND %terminates program
END

The D0 Toops are characteristic for the generated program. The first one
encToses aTT the regions in the program. The other DO Toop(s) encTose(s)
one region each. In this case the other DO Toop encToses 9 of the
subroutines.

Norsk Data ND—60.219.1 EN

Complete Program Generator 83
Documentation of routines in the generated program

The length of the In general a program consists of one DO loop for each
program increases region (maximum two regions). For each region included
for each region in the screen picture, the code will increase by n sets

of subroutine calls (in addition to CPBEGIN and CPEND).
‘Two regions will for instance generate at least 18
subroutine calls inside the DO loop.

The other 6 In addition to the 11 regular subroutines shown on the
subroutines previous page, you might get calls generated for the

following 6 subroutines, depending on which information
you have given to the generating program:

CPACTCOD("’) is generated if there is an action code
field in the screen picture.

CPOKCODC ——) is generated if there is an OK field in
the screen picture.

CPOTHER(“*) is generated if data is to be fetched
from other realms.

CPEXIST(‘”) is generated if there is an existence
control towards other realms.

CPFRTXT(“‘) is generated if free text is used in the
screen picture.

CPTDISP(‘") is generated if free text is used — puts
a ‘T' in the field on the screen.

Jump out of a A jump out of a DO loop only takes place if you press
DO loop the EXIT key, or if an error occurs.

Norsk Data ND—60.219.l EN

84 CompIete Program Generator
Documentation of routines in the generated program

7.3. AN EXAMPLE OF A GENERATED PROGRAM IN COBOL

BeTow, you wiIT find part of a generated COBOL program. AdditionaT code is
not incTuded in this program.

IDENTIFICATION DIVISION.
<name>
<heading>
ENVIRONMENT DIVISION.

CONFIGURATION DIVISION.
DATA DIVISION.

WORKING—STORAGE SECTION.
<decTarations>
LINKAGE SECTION.
<decIarations>

PROCEDURE DIVISION.
MAIN SECTION.

PERFORM STARTUP.
PERFORM REGION UNTIL (no region active)
PERFORM ROUNDUP.

EXIT.

STARTUP SECTION.
CALL 'CPHJON'
<assignment statements>
CALL ’CPBEGIN' USING ---

%sets heIp function avaiIabIe

%fetches picture and
opens database

EXIT.

REGION SECTION.
PERFORM REGION—1 UNTIL (region—1 not active)

EXIT.

REGION~1 SECTION.
CALL 'CPREGION' USING ———

CALL 'CPCURKC' USING ———

ddc-seIect = key fieId
CALL 'CPKEY' USING -——

CALL 'CPKEYNC' USING ——~

CALL 'CPGET' USING ———

CALL 'CPINRC' USING ———

ddc—seTect = key + data fieId
CALL 'CPDISP' USING -——

ddc—seTect = data fie
CALL 'CPREAD‘ —~—

%reads vaIue in key fie

%fetches records of interest

Zfetches data in database buffer

Ztransfers data to screen

Zreads data fieId

Continued on next page...

Norsk Data ND-GO 219.1 EN

Compiete Program Generator 85
Documentation of routines in the generated program

CALL 'CPBTRANS‘ USING ——— %starts transfer

ddc—seiect = aTI fieIds in
record

CALL 'CPUPDATE' USING ——— Zupdates database

CALL 'CPETRANS' %ends transfer

CALL 'CPRSPNS' Zreads response code

CALL 'CPOVER‘ USING —-—

CALL 'CPHELP' USING ——-

EXIT.

ROUNDUP SECTION.
CALL 'CPEND' USING —-~ %terminates the program

EXIT.

The program Iogic is described in more detaii in
chapter 8.

The Iength of In genera], a program consists of one DO Ioop for each
the program in— region. (We may have a maximum of two regions.) For each
creases with each region inciuded in the screen picture, the code wiTI
region increase by n sets of subroutine caIIs (apart from

CPBEGIN and CPEND).

The other 6 In addition to the reguiar subroutines shown in this
subroutines exampIe, you may have caIIs generated for the foIIowing

6 subroutines, depending on which information you have
given to the generating program:

CPACTCOD(“‘) is generated if there is an action code
fieId in the screen picture.

CPOKCOD(“) is generated if there is an OK fieid in
the screen picture.

CPOTHER("‘) is generated if data is fetched from
other reaims.

CPEXIST(”") is generated if there is an existence
controi towards other reaIms.

CPFRTXT(‘“) is generated if free text is used in the
screen picture.

CPTDISC(——) is generated if free text is used —
puts a 'T' in the fieid in the screen
picture.

Norsk Data ND—60.219.I EN

86 Complete Program Generator
Documentation of routines in the generated program

Jump out of a A jump out of a DO 100p only takes p1ace if you press
DO 100p the EXIT key, or if an error occurs.

Norsk Data ND~60.219.1 EN

Compiete Program Generator
Documentation of routines in the generated program

7.1). ROUTINES IN THE GENERATED PROGRAM

These routines are
Typeaiways generated: Routine

CPBEGIN Subroutine
CPREGION Function
CPCURKC (COBOL) Subroutine
CPCURKK (FORTRAN) Function
CPKEY
CPKEYNC (COBOL)

Subroutine
Subroutine

CPKEYNK (FORTRAN) Function
CPGET Subroutine
CPINRC Subroutine
CPDISP Subroutine
CPREAD Subroutine
CPBTRANS Subroutine
CPUPDATE Subroutine
CPETRANS Subroutine
CPRSPNS Subroutine
CPEND Subroutine

These routines may be
generated, depending on Routine Type
parameters:

CPACTCOD Subroutine
CPOKCOD Subroutine
CPOTHER Subroutine
CPEXIST Subroutine
CPFRTXT Subroutine
CPTDISP/CPTDISC Subroutine

Norsk Data ND—6Q.219.l EN

87

88 Compiete Program Generator
Documentation of routines in the generated program

7.4.1. THE MOST USED PARAMETERS

The most often used parameters are described here:

COBOL FORTRAN Expianation

DDC-REF—TABLE REFTAB Reference tabie
(described in ABM manua) chap. 6/7).

DDS—xx—SUBSCHEMA MITEM Tota) eiement)ist information for the
screen picture. (See ABM manua) chap. 6.1).

SCV—xx MRECxx Screen vaiue buffer for aii the eiements
described in MITEM.

DDB—zz—SUBSCHEMA KITEM Tota) element)ist information for the
database (described in the ABM manuai chap.
4.1).

DBV—zz KREC Database vaiue buffer for a1) the eiements
described in KITEM.

Picture record name
Reaim name/Reaim prefix

XX
22

Norsk Data ND~60.219.1 EN

CompTete Program
Documentation of

7.4.2. TABLES

Generator
routines in the generated program

WITH VARIABLES IN FORTRAN AND COBOL

The foTTowing is
these tabTes you
COBOL.

an overview of aTT variabTe names used in this manuaT.
wiTT see the corresponding variabTe names in FORTRAN and

COBOL :FORTRAN : COBOL : FORTRAN :

ANTFEIL TELL—FEIL COMTAB COMTAB
BKODE SCV—DUMMY—BKODE CPFRTXC CPFRTXT
CITMSUB DDS-SELECT CPIENABL CPABLED
CNAME ITEM-NAME CPKEYNC CPKEYNK
COMTAB COMTAB CPCURKC CPCURKK
CPABLED CPIENABL CRSPNS CRSPNS
CPFRTXT CPFRTXC CSUB CSUB/ISUB
CPKEYNK CPKEYNC CURRENT—KEY—NO KEYNR
CPCURKK CPCURKC DBKI—— KIKEY
CRSPNS CRSPNS DBKV—— KVKEY
CSUB CSUB DBR—NO~OF—REALMS , KNREA
CTEXT TEXT DBR—REALM~NAMES KREALMS
CTYPE SCREEN—VALUE OBR—REALM—PROTECT KPMOD
ENTEXT ENTEXT DBR—REALM—USAGE KUMOD
EVERYLIN EVERYLIN DBV— KREC
EXECUTE EXECUTE DBV~—XXTNR XXTNR
FLACTCOD TRIGGER-ACTCODE DDBe~SUBSCHEMA KITEM
FLCOMMAN TRIGGER—COMMAN DDC—REF—TABLE REFTAB
FLDISPLY TRIGGER—DISPLAY DDS—SELECT CITMSUB
FLFRTXT TRIGGER—FRTXT DDS—SELECT ITEMSUB
FLGET TRIGGER—GET DDS—XX—SUBSCHEMA MITEM
FLKEY TRIGGER—KEY ENTEXT ENTEXT
FLNEXT TRIGGER—NEXT EVERYLIN EVERYLIN
FLOK TRIGGER—OK EXECUTE EXECUTE
FLOKCOD TRIGGER—OKCODE INDX RCPOINT
FLREAD TRIGGER—READ ITEM—NAME CNAME
FLRESPON TRIGGER—RESPONS ITEM—VALUE TXTNR
FLTRANS TRIGGER—TRANS KEY—NO KEYNR
FLUPDATE TRIGGER—UPDATE KSTAT KSTAT
IACTCOD MAINTAB(5) MAINTAB(5) IACTCOD
ISUB CSUB MSTA MSTA
ITEMSUB DDS—SELECT NOERR NOERR
ITEXT TEXT OWNMESS OWNMESS
KEYNR CURRENT—KEY—NO READCO READCO

KEY«NO SCREEN—NAME CTYPNAM
KIKEY DBKI~— SCREEN—VALUE CTYPE
KITEM DDB—-SUBSCHEMA SCV—DUMMY~BKODE BKODE
KNREA DBR—NO—OF—REALMS SCV—DUMMY—OKODE OKODE
KPMOD DBR—REALM—PROTECT SCV—XX MREC
KREALMS DBR—REALM-NAMES TELL—FEIL ANTFEIL

Continued on the next page...

Norsk Data ND-60.219.; EN

90 CompTete Program Generator
Documentation of routines in the generated program

FORTRAN : COBOL : COBOL : FORTRAN :

KREC DBV~ TERMCOD TERMCOD
KSTAT KSTAT ',* TEXT CTEXT
KUMOD DBR~REALM—USAGE TEXT ITEXT
KVKEY DBKVé— TRIGGER—ACTCODE FLACTCOD
MITEM DDS-XX—SUBSCHEMA TRIGGER—COMMAN FLCOMMAN
MREC SCV-XX TRIGGER—DISPLAY FLDISPLY
MSTA MSTA TRIGGER~FRTXT FLFRTXT
NOERR NOERR TRIGGER—GET FLGET
OKODE SCV—DUMMY—OKODE TRIGGER—KEY FLKEY
OWNMESS OWNMESS TRIGGER-NEXT FLNEXT
RCPOINT INDX TRIGGER—OK FLOK
READCO READCO TRIGGER—OKCODE FLOKCOD
REFTAB DDC—REF~TABLE TRIGGER—READ FLREAD
TERMCOD TERMCOD TRIGGER—RESPONS FLRESPON
TXTNR ITEM—VALUE TRIGGER—TRANS FLTRANS
CTYPNAM SCREEN-NAME TRIGGER—UPDATE FLUPDATE
XXTTNR DBV——XXTTNR

READP : The number of the CPREAD caTT. The number is inserted directTy as

REG

TNR

a parameter.

: The number of the current region is inserted directly.

: Corresponds to the vaiue of TXTNR (FORTRAN), ITEM—VALUE (COBOL).

Norsk Data ND—60,219.l EN

Compiete Program Generator 91
Documentation of routines in the generated program

7.5. DOCUMENTATION OF THE ROUTINES

In the foiiowing routine descriptions, the coiumn marked 'I/O' means the
foiiowing:

I : input parameter in the routine.
0 : output parameter in the routine.

7.5.1. CPBEGIN

Routine name: CPBEGIN

Parameters :
COBOL FORTRAN I/O Expianation

DDC—REF—TABLE, REFTAB, 1/0 See ABM manuai chapter 7/6.
DBR—NO—OF—REALMS KNREA, I Number of reaims to be readied.
DBR—REALM~NAMES KREALMS, I Names of reaims.
DBR—REALM~USAGE(1) KUMOD, I Usage mode for the reaims.
DBR—REALM—PROTECT(1) KPMOD I Protection mode for the reaims.

Routine CPBEGIN is an initiation routine that fetches the
description: picture for the current function from a fiie, and

transfers it to the screen. The routine also readies
the reaims to be used. It opens the correct error
message fiie and initiates a1] the variabies.

Norsk Data ND—60.219 1 EN

92 Complete Program Generator
Documentation of routines in the generated program

7.5.2. CPREGION

Routine name: CRREGION

Parameters : H
COBOL y,’ FORTRAN I/O Explanation

DDC-REF—TABLE REFTAB, 1/0 See ABM manual chapter 7/6.
REG REG, 1 Active region (is specified as a

constant).
DDS—xx—SUBSCHEMA MITEMxx, I See ABM manual chapter 7/6.
SCV—zz MREs, I See ABM manual chapter 7/6.
TRIGGER—nnnn FLnnnn I Next routine to be executed.

xx = Realm name
22 = Picture record name
nn = Routine name

Routine Checks to see whether the current region is set active.
description: If so, the parameter TRIGGER—nnnn or FLnnnn will

specify the next routine to be called.

During registration, when all the lines in the picture
are filled in, the routine will clear the region,
display the last line on line number 1, and place the
cursor on line number 2.

The routine moves the values for the current line
into the screen buffer (DDGETRC).

7.5.3. CPCURKC

Routine name: CPCURKC (COBOL)
CPCURKK (FORTRAN)

Parameters :
COBOL FORTRAN I/O Explanation

CURRENT—KEY—NO KEYNO I O I Current key number.

Routine Returns the number of the search key currently
description: being used.

Norsk Data ND—60.219.1 EN

Complete Program Generator 93
Documentation of routines in the generated program

7.5.4. CPKEY

Routine name: CPKEY

Parameters :%
COBOL 5 FORTRAN I/O Explanation

DDC—REF—TABLE REFTAB, I See ABM manual chapter 7/6.
DDS—xx-SUBSCHEMA MITEMxx, I See ABM manual chapter 7/6.
SCV—xx MRECxx, O See ABM manual chapter 7/6.
TRIGGER—nn FLnnnn, 1 Previous routine which may be

activated.
TRIGGER—nn FLnnnn I Next routine that will be activated.

xx = Picture record name
nn = Routine name

Routine When the program is started, and several action codes
description: are permitted, the default action code ('query') is

switched on. If only one action code is permitted, that
one will be switched on.

If there is a key field in the picture, you may type in
values for the key. and the action code may be set and
changed. If there is no key field in the picture (only
legal for querying and storing), you have to specify in
the command field what kind of action you require.

CPKEY activates the routines CPGET, CPDISP and the
routine that is specified as input parameter.

7.5.5. CPKEYNC

Routine name: CPKEYNC (COBOL)
CPKEYNK (FORTRAN)

Parameters :
COBOL FORTRAN I/O Explanation

CURRENT—KEY—NO KEYNO l O ‘ Current key number.

Routine When querying, the current key number is returned.
description: Otherwise it is set to l (i.e. main key).

Norsk Data ND—6O 219.; EN

94 CompIete Program Generator
Documentation of routines in the generated program

7.5.6. CPGET

Routine name: CPGET

Parameters :
COBOL FORTRAN I/O Expianation

EVERYLIN ,‘ EVERYLIN, I *
DDC—REF-TABLE {I REFTAB, I See ABM manuaI chapter 7/6.
CURRENT—KEY—NO KEYNR, I Number of current search key.
DBKI—xx—zz KIzzzzz, I ABM manuai chapter 5/4.
DBKV-xx—zz Kszzz, I ABM manuaI chapter 5/4.
DDS—rr—SUBSCHEMA MITEMrr, I ABM manuaI chapter 7/6.
SCV-rr MRECrr, 0 ABM manuaI chapter 7/6.
DDB—xx—SUBSCHEMA KITEM I ABM manuaI chapter 5/4.

xx = Reaim name
yy = Item name
22 = Index name
rr 2 Picture record name

* EVERYLIN: The vaIue O specifies that aII records within
the search region may be dispIayed without any
controI.

The vaIue 1 specifies that the user wants each
record to be tested before it is dispiayed.
See exampIe on page 162.

Routine description: Finds records in the database and transfers
the vaIues to a screen buffer.

When EVERYLIN:O for querying, as many records
are fetched from the database as there are
Iines in the region.

When EVERYLIN=1 for querying, one record is
fetched from the database at a time. CPGET is
executed repeatediy untiI aII the Iines in the
picture are fiIIed in, or untii there are no
more records Ieft in the database.

When modifying and deIeting, the record
beionging to the key specified in CPKEY is
fetched. If no record is found, you get an
error message, and the CPKEY routine is re~
activated.

When storing, there is a check to see if a
record with the specified key vaIue exists or
not. If the record exists, a message is
dispIayed, and the user has to give a new key
vaIue.

Norsk Data ND—60.219.1 EN

Compiete Program Generator 95
Documentation of routines in the generated program

When querying by means of a key, the search
region is established in accordance with the
iow/high iimits specified in the screen picture
'Use of Program Keys' during the generating of
the program. Records with a key vaiue starting
with the given key are fetched from the
database.

7.5.7. CPINRC

Routine name: CPINRC

Parameters -
COBOL FORTRAN I/O Expianation

INDX RCPOINT, I The iine the database record is to be
fetched from.

DDB—xx—SUBSCHEMA KITEMxx, I xx = Realm name/Reaim prefix.
DBV—xx KRECxx 0 xx = Reaim name/Reaim prefix.

Routine description: Fetches database vaiues for the current iine
from the totai database buffer, and piaces them
in a iocai database buffer (i.e. the database
buffer in the input parameter).

7.5.8. CPDISP

Routine name: CPDISP

Parameters
COBOL FORTRAN I/O Expianation

DDC—REF~TABLE REFTAB, I/O ABM manuai chapter 7/6.
DDS—xx—SUBSCHEMA MITEMxx, I ABM manuai chapter 7/6.
SCV—xx MRECxx O ABM manuai chapter 7/6.

xx = Picture record name

Routine description: When the action code is query, the desired page
wiii be dispiayed on the screen. If you are
modifying or deieting, the desired iogicai 1ine
wiii be dispiayed on the screen.

Norsk Data ND—60.219.1 EN

96 Complete Program Generator
Documentation of routines in the generated program

7.5.9. CPREAD

Routine name: CPREAD

Parameters :
COBOL FORTRAN I/O Explanation

READP READP, I Number of the current PREAD call.
DDC—REF—TABLE REFTAB, I/O ABM manual chapter 7/6.
DDS~xx~SUBSCHEMA MITEMxx, I ABM manual chapter 7/6.
SCV—xx MRECxx, O ABM manual chapter 7/6.
TRIGGER—nn FLnnnn, I Previous routine that can be activated.
TRIGGER—nn FLnnnn I Next routine that will be activated.

Routine description: The routine is only executed if a variable
READCO=READP. READCO is set to 1 each time the
subroutine CPKEY is executed. Otherwise, it is
up to the user to control READCO so that
the correct CPREAD call is executed.

CPREAD tests if the action code is storing
or modifying. If the test is positive and the
EXECUTE key is not pressed, then all the fields
mentioned in the item list will be read. When
you press the EXECUTE key, the reading will be
terminated, and flag for updating will be set.

If the last field is read and no updating flag
is set, you will be asked if you want to
update. If you do want to update, press the
EXECUTE key, and flags for updating will be set
(i e. CPBTRANS, CPETRANS and CPUPDATE).

If you want an automatic updating after the
last CPREAD, i.e. the question about updating
and pressing the EXECUTE key is not wanted, you
have to call the subroutine CPUPMODE after
CPREGION. See description of CPUPMODE in
appendix A.

Norsk Data ND—60.219.1 EN

Complete Program Generator 97
Documentation of routines in the generated program

7.5.10. CPETRANS

Routine name: CPETRANS

Parameters :
COBOL FORTRAN I/O Explanation

DDS—xx—SUBSCHEMA MITEMxx, ABM manual chapter 7/6.I
SCV—xx MRECxx, I ABM manual chapter 7/6.
DDB~ZZ~SUBSCHEMA KITEMzz, I ABM manual chapter 5/4.
DBV-zz KRECZZ O ABM manual chapter 5/4.

xx = Picture record name
22 = Realm name/Realm prefix

Routine description: Starts the updating transaction by calling
SUBEG. In addition, the screen buffer is
transferred to the database buffer.

7.5.11. CPUPDATE

Routine name: CPUPDATE

Parameters :
COBOL FORTRAN I/O Explanation

DDC-SELECT ITEMSUB, I Subitem list. ABM manual chapter 7/6.
DDB—xx—SUBSCHEMA KITEMxx, I ABM manual chapter 5/4.
DBV—xx KRECxx I ABM manual chapter 5/4.

xx = Realm name/Prefix

Routine description: Depending on the action code this routine will
execute one of the following functions on the
main realm: store, modify, or delete.

7.5.12. CPETRANS

Routine name: CPETRANS

Parameters : None

Routine description: Ends a critical sequence (SUEND) and resets the
updating flag. Displays a message saying which
updating has taken place.

Norsk Data ND-60.219.l EN

98 Compiete Program Generator
Documentation of routines in the generated program

7.5.13. CPRSPNS

Routine name: CPRSPNS

Parameters : ’
COBOL FORTRAN I/O Expianation

DDC—REF—TABLE REFTAB, 1/0 See ABM manuai chapter 7/6.
DDS—xx-SUBSCHEMA MITEMXX, I See ABM manua] chapter 7/6.
SCV—zz MREs I See ABM manuai chapter 7/6.

Routine description: Increased the iine counter if there are severai
1ines in the picture. Reads the command in the
command fieid or reacts to predefined function
keys. Sets flags for further execution,
depending on the given command.

Oniy a iegai command or a FOCUS error causes a
return to the main program.

7.5.14. CPEND

Routine name: CPEND

Parameters : None

Routine description: The routine terminates the program, and checks
if an error has occurred. If an error has
occurred, i.e. KSTAT¢1, KSTAT¢O or MSTA¢O, an
error message wiii be written to the error
message fiie. A message saying that an error has
occurred wiii aiso be dispiayed on the screen.

Norsk Data ND—60.219.1 EN

Compiete Program Generator 99
Documentation of routines in the generated program

7 .5 .15 . CPACTCOD

Routine name: CPACTCDD

Parameters :
COBOL FORTRAN I/O Expianation

DDC—REF~TABLE REFTAB, I/O ABM manuai chapter 7/6.
DDS—xx—SUBSCHEMA MITEMxx, I ABM manuai chapter 7/6,
SCV~xx MRECxx, O ABM manuai chapter 7/6.
SCV—DUMMY—BKODE BKODE, O The chosen action code.
TRIGGER—nn FLnnnn, I Previous routine that may be activated.
TRIGGER—nn FLnnnn 1 Next routine to be activated.

Routine description: Action code field is read.

If oniy one action code is iegai, this wiii be
standard. If no action code is iegai, querying
wiii become the standard code.

The current action code is written as defauit,
and the cursor wiii be positioned in the next
field. If you want to give or change the action
code, you have to move the cursor back to this
fieid by means of the ieft—arrow key.

Legai action codes: : querying
: storing
2 modifying
: deleting

w
H

Norsk Data ND—60.219.1 EN

100 CompIete Program Generator
Documentation of routines in the generated program

7.5.16. CPOKCOD

Routine name: CPOKCUD

Parameters :
COBOL FORTRAN I/O Expianation

DDC—REF—TABLE REFTAB, I/O ABM manuaI chapter 7/6.
DDS-xx—SUBSCHEMA MITEMxx,
SCV-xx MRECxx,
SCV—DUMMY—OKODE OKODE,
TRIGGER-nn FLnnnn

Routine description:

7.5.17. CPOTHER

I ABM manuaI chapter 7/6.
0 ABM manuaI chapter 7/6.
0 Specified OK code.
I Previous routine that may be activated.

Waits untii the OK code is 'Y' or ‘N',
' or untii you press the HOME key
(\). If OK = 'Y‘, the fiag that signais
updating wiII be made ready.

You can press the EXECUTE key instead of ‘Y‘.

Routine name: CPOWHER

Parameters :
COBOL FORTRAN I/O Expianation

DDC—REF—TABLE REFTAB, I See ABM manuai chapter 7/6.
DBKI—xx-zz KIzzzzz, I See ABM manuai chapter 5/4.
DBKV—xx—zz Kszzz, I See ABM manuai chapter 5/4.
DDB—xx—SUBSCHEMA KITEM, I See ABM manuai chapter 5/4.
DBV—xx KRECxx, I See ABM manua] chapter 5/4.
DDS-rr—SUBSCHEMA MITEMrr, I See ABM manuaI chapter 7/6.
SCV—rr MRECrr 0 See ABM manuai chapter 7/6.

xx = Reaim name
yy = Item name
zz = Index name
rr Picture record name

Routine description: Fetches data from the specified reaIm, and
moves the data to a screen buffer.

When you modify/store, data is fetched and
dispIayed on the screen. If data is not found,
a message is displayed and the Iast executed
CPREAD must be executed again.

Norsk Data ND—60.219.1 EN

Compiete Program Generator 101
Documentation of routines in the generated program

7.5.18. CPEXIST

Routine name: CPEXIST

Parameters :
COBOL FORTRAN I/O Expianation

DBKI—xx—yy KIzzzzz, I ABM manuai chapter 5/4.
DBKV—xx~yy Kszzz I ABM manual chapter 5/4.

Routine description: When you store or modify data, this routine
checks if data is found in the specified
reaim. If not, a message is dispiayed and the
iast CPREAD caii must be executed again.

When you deiete data, the routine checks that
there is no data in the specified member's
reaim. If there is any data, an error message
is displayed and the cursor is positioned in
the key fieid.

During the generating of the program, a search
is performed of the reaim using the key vaiues
stated in iow/high iimit in the screen picture
'Use of Program Keys‘.

Norsk Data ND—60.219.1 EN

102 Compiete Program Generator
Documentation of routines in the generated program

7 .5 .19. CPFRTXT

Routine name: CPFRTXT FORTRAN
CPFRTXC COBOL

Parameters
COBOL FORTRAN I/O Expianation

DDC—REF—TABLE REFTAB, I See ABM manuaI chapter 7/6.
SCREEN—NAME CTYPNAM, I/O Name of IT mark in picture.
ITEM—VALUE TXTNR, I/O Text number.
SCREEN—VALUE CTYPE, I/O VaIue of SCV~xx—TTYPE/ITTYPE.
DDS—xx—SUBSCHEMA MITEMXX, I ABM manual chapter 6/7.
SCV—xx MRECxx, I ABM manuaI chapter 6/7.
ITEM—NAME INAME, I Name of DB item with vaIue TXTNR.
DDS~zz—SUBSCHEMA MITEMZZ, I ABM manuaI chapter 6/7.
SCV—zz MREs, I ABM manuaI chapter 6/7.
DDS—xx-SUBSCHEMA MITEMxx, I ABM manuaI chapter 6/7.
SCV—xx MRECxx, I ABM manuai chapter 6/7.
MAINTAB(4) MAINTAB(4) I Line number in the picture.
INFOTXT INFOTXT Information may be pieced here.

Routine description: CaIIs free text function. Checks if it is
permitted to caII the function. If it is not
permitted, a message is dispIayed and you are
returned to the caIIing function.

When querying in the caIIing function, you may
oniy query in the free text function.

When modifying in the caIIing function, you
may query, store, modify, and deiete in the
free text function.

When returned, you are returned to the piece
in the picture from where the function was
caIIed.

In the free text function, you may store N
Iines of text per free text.

Norsk Data ND—6O 219.1 EN

Complete Program Generator 103
Documentation of routines in the generated program

7.5.20. CPTDISP/CPTDISC

Routine name: CPTDISP FORTRAN
CPTDISC COBOL

Parameters :
COBOL FORTRAN l/O Explanation

DDC—REF—TABLE REFTAB, I See ABM manual chapter 7/6.
DDS—xx—SUBSCHEMA MITEMXX, l ABM manual chapter 6/7.
SCV~xx MRECxx, I ABM manual chapter 6/7.
SVC—xx-TTYPE XXTTYPE, I Screen picture field where ‘T' is to be

written.
'TTYPE ' "XXTTYPE", I Name of screen picture field.
DDB—zz—SUBSCHEMA KITEMZZ, I ABM manual chapter 5/4.
DBV—ZZ KRECZZ, O ABM manual chapter 5/4.
DBV—zz—TNR ZZTTNR, Database buffer values for the free text

. realm.
EVERYLIN EVERYLIN I See page 94.

Routine description: Displays a ‘T’ in the field XXTTYPE when the
line in the screen picture has additional text
connected to it. If not, the field is blank.

Norsk Data ND—6O 219 1 EN

104 Comp1ete Program Generator

Norsk Data ND—60.219.1 EN

CompTete Program Generator 107
Program Togic in the generated program

8. PROGRAM LOGIC IN THE GENERATED PROGRAM

8.1. COMTAB

COMTAB's function

COMTAB(n,1)

COMTAB(n,2)

This chapter is written especiaTTy for FORTRAN, but the
principies aTsO are reTevant to COBOL.

The fOTTowing topics are important for understanding how
the generated program works:

0 COMTAB

o subroutine CPENABLE(fTag)

a subroutine CPDISABL(fTag)

COMTAB is a tabTe defined in FORTRAN as
INTEGER*4 COMTAB(8,2), where

'8’ specifies the maximum number Of regions (0—7)
(at present, onTy 2 regions are avaiTabTe), and

'2' specifies that there are two words (of 32 bits each)
containing information about each region in the
picture,

The fiags, which describe each region, are represented
by one bit each in the COMTAB eTements.

COMTAB(n,1) is important for understanding
the program Togic. This part of the tabTe is used by
the program to describe which routines in the generated
program are to be executed. Each routine caTT in the DO
TOOp causes COMTAB(n,1) to be used, in order to test
if the routine in question is to be executed.

After an error exit, or when X(exit) is pressed in the
command fie, COMTAB(n,1) wiTT be reset to O. This
indicates that no routine is ready for execution, and
the DO Toop is therefore ended.

COMTAB(n,2) contains a description Of each region, based
upon the Tayout of the screen picture and vaTues
specified in the 'Use Of Program Keys' picture.

Norsk Data ND—50,319.1 EN

108 Complete Program Generator
Program iogic in the generated program

The routine names with unambiguous bits in COMTABin,l)
are iisted together with their bit numbers in this
tabie:

COMTABin,1)

Routine Bit

CPREGION 31
CPACTCOD 3O
CPRSPNS 29
CPKEY 28
CPREAD 27
CPOKCOD 26
CPUPDATE 25
CPGET 24
CPDISPL 23
CPBTRANS/ 22
CPETRANS 22
OK—fiag 21
CPFRTXT 20

Unused 19 — O

(OK flag is used when one record is fetched at a time.)

Beiow, we describe the meaning of each of the bits in
COMTAB(n,2):

COMTAB(n,2)

Bit Flag Significance

31 FLREADBK Specifies whether action code is to be read or not.
30 FLREADOK Specifies whether 0K code is to be read.
29 FLSUBLEV Determines whether current region has members.
28—26 FLONNER Specifies which region, if any, is the owner of the

current region.
25-23 FLMAXKEY Maximum number of search keys in the region (max.7)
22—20 FLKEYNR Number of current key fieid.
19—16 FLLEGACT Specifies which action codes are permitted.

19 : querying
18 : storing
17 : modifying
16 : deleting

15 FLTXT Specifies whether free text is in use or not.
14—0 unused

Norsk Data ND—60.219.1 EN

Compiete Program Generator 109
Program Togic in the generated program

8.2. CPENABLE(FLAG) AND CPDISABL(FLAG)

The purpose of
the routines

8.3. SUBROUTINE

These routines caTT two FORTRAN Tibrary routines which
set and reset fiags respectiveiy.

The purpose of CPENABLE and CPDISABL is to activate the
different routines.

When a fiag is set, it means that the corresponding
routine is executed when the program gets to this
routine.

When a fTag is reset, it means that the corresponding
routine is to be skipped during further execution, until
the routine's fiag is set again.

CALLS

As mentioned before, the program wiii run in a Toop
untii the user presses the EXIT key, or untii an error
occurs. Each run executes caiis of each subroutine which
is part of the DO 100p.

Whether the subroutine in question is to be executed in
fuii or not depends on the corresponding bit in
COMTAB(n,l) being set. At the beginning of each
subroutine, this is tested. If the correct bit is not
set, the subroutine terminates and returns to the main
program, and the next subroutine is caiied. If the
correct bit is set, this bit wiTi be reset immediateiy,
and the entire subroutine can be executed.

8.4. How THE INDIVIDUAL BITS ARE SET

An exampie:

When the program is started, the fiag for the routine
CPREGION in the first region is set. Afterwards, the
fiags wiTT be set and reset according to which cOmmand
or navigation is given in the screen picture.

If you type in a command for the next region, a fiag is
set for CPREGION in the next region. If you type in
a command for a new search key. a fiag for CPKEY wiii be
set (i e. new read of key).

Norsk Data ND—60 219.1 EN

110 Compiete Program Generator
Program Togic in the generated program

8.5. THE USE OF FLAGS IN THE COMPLETe-PG ROUTINES

Let us have a cToser Took at the use of fiags in
CompTete—PG routines, and what criteria must be
fqiTTed before the routines are executed.

We shaTT aiso Took at which fTags the routine sets when
it is executed, and which fTags are set if it is not
executed.

In the coTumn 'FTag reset‘, it is specified whether
or not the fTag is turned off when the routine is
executed.

ROUTINE Criteria for execution Fiag reset

CPREGION FLCOMMAN is set or
FLCOMMAN set and MAINTAB(1)=MAINTAB(3). YES

CPAKTCOD FLAKTCOD is set. YES

CPKEY FLKEY is set. YES

CPKEYNK FLGET is set. NO

CPGET FLGET is set. YES

CPDISP FLDISPLY is set. YES

CPREAD FLREAD is set and READCO=READP. YES

CPOKCOD FLOKCOD is set. YES

CPBTRANS FLTRANS is set. NO

CPETRANS FLTRANS is set. YES

CPUPDATE FLUPDATE is set. YES

CPRSPNS FLRESPON is set. YES

CPFRTXT FLFRTXT is set. YES

CPOTHER EXECUTE is set to .TRUE./1 . NO

CPEXIST EXECUTE is set to .TRUE./l . NO

Setting of fTags If the requirements for the routine to be executed are
in the routines: fqiTTed, and the routine is executed without any error

occurring, then EXECUTE is set to .TRUE /1 (both in
FORTRAN and COBOL).

If the routine is not to be executed, then EXECUTE is
set to .FALSE./0 (both in FORTRAN and COBOL).

Norsk Data ND—60.219.1 EN

Complete Program Generator
Program logic in the generated program

111

If the routine is executed, the following flags are set in addition to
EXECUTE:

ROUTINE Normally Display Flags that may be set
executed several regions in certain cases

CPREGION If BK field in
picture: FLAKTCOD,
otherwise FLKEY.

CPAKTCOD PREV/FLCOMMAN
or NEXT/FLKEY.

CPKEY PREV/FLAKTCOD When KEY is changed,
or NEXT/CPREAD FLKEY is set.
as well as FLGET FLRESPON.
and FLDISPLY. FLFRTXT.

CPKEYNK No flags are set.
CPGET * When EVERYL1N=1

FLGET is set until
page is full.
FLCOMMAN and FLRESPON
are set when scrolling
and no more records
found. FLKEY if
record does not exist.

CPDISP When scrolling: FLRESPON.
sets FLGET,

FLDISPLY
in a subregion,
if any.

CPREAD PREV or NEXT. FLFRTXT.
FLUPDATE and FLRESPON.
FLTRANS if
EXECUTE key is hit

CPOKCOD PREV can be set. FLFRTXT.
FLUPDATE and
FLTRANS if
EXECUTE key is hit
after ‘Y‘.

CPBTRANS No flags are set.
CPETRANS No flags are set.
CPUPDATE No flags are set.
CPRSPNS Can set most flags FLKEY. FLFRTXT.

depending on navi— FLGET. FLDISPLY.
gation and posi— FLRESPON.
tion in picture. FLCOMMAN.

CPFRTXT Sets MAINTAB(6),
last used routine.

CPOTHER Can set FLREAD.
CPEXIST Can set FLREAD. FLKEY when deleting.

Norsk Data ND—60.219.1 EN

é:
az”

7%?
,

Comp1ete Program Generator

Norsk Data ND—60.219.1 EN

112

«mm
a

.33..
‘

«paw,
,

Complete Program Generator 115
Instaiiation

9. INSTALLATION

This chapter gives an overview of the necessary
preparations before using Complete—PG.

9.1. BASIC SOFTWARE REQUIREMENTS

In order to run Complete—PG, you must have the foiiowing
or newer versions of ND software:

SYSTEM: VERSION/RELEASE:

PED or WP
ABM C
SIBAS II ' E
FOCUS G
GPM
JEC B
USER—ENVIRONMENT B

9.2. CP—SPEC AND CP~PROGEN

CP—SPEC:SYMB This fiie contains instaiiation parameters that must be
initiated for each project:

progen : short name for the system, is shown in the
heading of each generated program.

pgver : version name for the system, is shown in the
heading of each generated program.

decuser : indicates where the generated DEC fiies from
ABM are stored.

assuser : indicates where the generated ASS fiies from
ABM are stored.

csysn : system name that is shown in the upper 1eft—
hand corner of the screen picture for each
generated function.

formfii : name of the file where a1] the pictures are
stored.

brfuser : where the BRF/NRF versions of the programs
are to be stored.

Norsk Data ND-60.219.1 EN

116

CP-PROGENzMCRO

CP—LISTzLIST

CP—ERRORzLOGG

Compiete Program Generator
Instaiiation

symbuser : where the SYMB versions of the programs are
to be stored.

workuser : the user area where one is working.

proguser : indicates where the FROG/DOMAIN versions of
the programs are to be stored.

CP—PROGEN contains the procedure for generating,
compiiing and ioading the program to be generated.

If you have symboiic versions, BRF/NRF versions or
simiiar on various users, then you need to type in the
user names for these fiies. In addition, you need to
insert any personal subroutine 1ibraries in the ioad
procedure, as wei] as iibraries such as COBOL, FORTRAN,
SIBAS (together with the correct user names).

You must also create the fiies CP—LIST LIST and é
CP—ERROR:LOGG on the workuser area:

Generating, compiiing and loading is run on BATCH~
processor number 1. Output from this job is stored on
CP—LISTzLIST.

On this fiie, all the error messages from SIBAS, FOCUS
and SINTRAN are gathered, if they occurred during the
execution of the programs.

When an error occurs during the execution of a program,
you wiii get a message about this at the bottom of your
screen. Press any key to terminate the program.

A detaiied error message is written to CP—ERRORzLOGG.

NOTE:
Make sure the files CP-LIST and CP—ERROR are cleared
from time to time.

Norsk Data ND—BO 219.1 EN

Compiete Program Generator 117
Instaiiation

When using
free text:

When using
the advanced
HELP function:

If the free text function is to be used in programs
generated by Compiete-PG, the realm DBTEXT has to be
inserted in the database the programs are going to
access. This can be done by running the redefinition
fiie CP-REDEF—TEXT SYMB.

Before running the file, type in the name of the
database, OS fiie name and system realm:

0 Type in the necessary information on the redefinition
fiie CP-REDEF—TEXT25YMB.

0 Run CP—REDEF—TEXT SYMB.

If you want to use the advanced HELP function (see
chapter 13), you have to redefine the
database by means of the fiie CP—REDEF—HELP:SYMB.

Before running the fiie, type the name of the
database, OS fiie name, and system reaim.

Norsk Data ND—60 219.1 EN

POtam...eneGmar.-g0WID.et81|D.m0C118

Norsk Data ND~60.219.1 EN

Complete Program Generator 121
A programming example

10. A PROGRAMMING EXAMPLE

We will demonstrate the use of Complete—PG by using a programming
example. The example will show a function for maintenance Of firms and
their employees.

We have four realms:

0 Employee realm
o Firm realm
0 Postal code/area realm
0 Position category realm

The database structure is as follows:

10.1. DATABASE DESCRIPTION

Database description Realm: AlANSAT ~ EMPLOYEE REALM

— Contains all necessary information
about each employee in each firm.

Itemname Term Type Char Explanation

AlANSNR EMPLOYEE NUMBER N 4 Employee number
AlENAVN SNAME AN 15 Surname
AlENAVN FNAME AN 20 First name
AISTILL POSITION AN 10 Position title
AlBEDNR FIRM NUMBER N 4 Firm number
AlBENAV FIRM NAME AN 30 Name Of firm
AllNTLF EXTENSION N 4 Extension
AlKODE CODE N 1 Code number
AlTTNR TEXT P N 9 Free text number for person
AlATTNR TEXT A N 9 Free text number for seniority

Key: AlBEDAN AN
AlBEDNR
AlANSNR

AlsTILL AD

AlNAVNE AD
AlBEDNR
AlENAVN

Norsk Data ND-60,219.I EN

122 Compiete Program Generator
A programming exampTe

Database description ReaTm: BlBEDRI — FIRM REALM

— ATTe firms of interest are stored here.

Itemname Term Type Char Expianation

BlBEDNR FIRM NUMBER N 4 Firm number
BlBENAV FIRM NAME AN 30 Name of firm
BlKONAV SHORT NAME AN 8 Short name of firm
BlADRES ADDRESS AN 30 Address of firm
BlPOSNR POSTAL CODE N 4 PostaT code
BlTLFNR TELEPHONE NUMBER N 8 TeTephone number of firm
BlKODE CODE N 1 Code number
BlSOPD not screen fie N 8 Date when firm reaTm was Tast updated

Key:
BIBEDNR AN

BlKONAV AD

BlPOSNR AD

Database description ReaTm: P1POST — POSTAL CODE REALM

~ ATT postaT codes of interest are stored
here.

Itemname Term Type Char ExpTanation

P1POSNR POSTAL CODE N 4 PostaT code
P1PONAV POSTAL AREA AN 30 Name of postai area

Key: PIPOSNR AN

Database description ReaTm: SISTILL ~ POSITION CATEGORY REALM

— Contains aTT position categories of
interest.

Itemname Term Type Char Expianation

SlSTILL POSITION , AN 10 Position category

Key: SlSTILL AN

‘Norsk Data ND-60.219 1 EN

Compiete Program Generator 123
A programming exampIe

10.2. MAINTAINING FIRMS AND THEIR EMPLOYEES

0n the basis of this database structure we_are going to make the foIIowing
function:

Purpose: The function is used to store and maintain firms and
empioyees within each firm.

Type: On—Iine, updating

Main keys: Firm: Firm number
Empioyee: Firm number + Empoee number

Scroiiing keys: Firm: Short name
Empioyee: Firm number + Surname

Automatic transfer
to other functions: None.

Automatic transfer
from other functions: None.

Use of function: STORING : In accordance with the program
generator.

MODIFYING : In accordance with the program
generator.

DELETING : In accordance with the program
generator.

OUERYING : In accordance with the program
generator.

Messages: 151 : "O:—> Surname must be specified.‘”
152 : "O:—> Position category does not exist in

the system ‘”
153 : ”O:—> Which text do you want (P=l,S=2) : ‘"

Use of database: (C=Create, M=Modify, D=De1ete, R=Retrieve)

BlBEDRI — Firm reaIm C M D R
AlANSAT — Empoee reaIm C M D R
P1POST — Postai code/area reaIm R
SlSTILL — Position category reaIm R

Norsk Data ND—60.219 1 EN

124

10.3. THE SCREEN PICTURE:

Compiete Program Generator
A programming example

This screen picture is designed in the screen picture part of ABM:

SurnameNo.

COURSE SYSTEMS MAINTENANCE yy.mm.dd 99:99
FIRM

Number of firm : Firm :
Short name: Address :
Postai code: Area -
Tei.: Code

Employee :
Code

First name v Position

Norsk Data ND—60.219.1 EN

CompTete Program Generator 125
A programming exampTe

10.4. DESCRIPTION OF FIELDS:

TERM MEANING INPUT REALM
CONTROL REFERENCE

NUMBER OF FIRM Number beTonging to each firm BlBEDRI
that is registered.

FIRM OfficiaT name of the firm. ’ BlBEORI

SHORT NAME Short name of the firm. BlBEDRI

ADDRESS Address of the firm. BlBEDRI

POSTAL CODE PostaI code of the firm. BlBEDRI

AREA Name of the postaT area. BlBEDRI

TEL TeTephone number of the LegaT BlBEDRI
firm. AIso includes the vaTues:
area code. 01100000 —

09999999

CODE 1 9 BlBEDRI

EMPLOYEE NO. InternaI number of AlANSAT
each empToyee.

CODE 1 9 AlANSAT

SURNAME The surname of each empToyee. A1ANSAT

FIRST NAME The first name of each empToyee. AlANSAT

POSITION Name of position of each AlANSAT
empoee.

EXT. Extension for each empToyee. LegaT AlANSAT
vaIues:
1000 — 9999

10.5. HELP PICTURES:

None.

Norsk Data ND—60.219.1 EN

126 CompTete Program Generator
A programming exampIe

10.6. FILLING IN THE SCREEN PICTURES

Before you fiTT in the two screen pictures in CompTete-
PG, you have to do the foTTowing:

0 Define data types and database in ABM.

0 Design the picture in the screen picture part of ABM.

0 Define subschema and subfunction.

In this exampTe, we have chosen to give the picture,
subschema and subfunction the same name:
AJBEDR.

o CaTT Compiete—PG from the command Tine in ABM by
typing: ‘

ABM command: CDMPLETE~PG*J

The first picture of Compiete—PG wiTT then appear on the
screen.

0 FiTT in the Program Description picture.

BeTow, this picture is fiTTed in for the program
that is to be generated:

PG > . P R O G R A M D E S C R I P T I 0 N

Program identification.
subfunction : AJBEDR subschema: AJBEDR form: AJBEDR
author : ERIC BROWN '
program id : AJBEDR
expianation : MAINTENANCE OF FIRMS AND THEIR EMPLOYEES.

Parameters for generate.
object Tanguage : FORT
object fiTename : 101-AJBEDR
Toad procedure : GENERATE/COMPILE

Date of
creation : 86 OS 22 Tast modification : 00 00 DO

Tast generated : 00 00 OO

ATT the fies that appear in the two screen pictures in
CompTete’PG, are described in chapter 4.

In the fie 'Toad procedure' we have chosen
GENERATE/COMPILE. We have not inciued LOAD, because this
function is to be Toaded together with a menu system,
for exampTe TRUE, which is not described here.

When this picture is registered, the picture Use of
Program Keys wiTT appear on the screen.

Norsk Data ND—60.219 1 EN

CompIete Program Generator 127
A programming exampie

Here you see the picture aiready fiiied in for the two
regions. Note that MK is a search key in both regions.

Region 1

PG >. U S E D F P R O G R A M K E Y S

Subfunction: AJBEDR fieIdrecord: MlA
name: BEDRIFT owner:
okcode: N textfunction: N action codes: 1234

ReaIm Key Use D Ex Reaim Key Use D Ex Realm Key Use D Ex
BlBEDRI BlBEDNR MK AlANSAT AlsTILL
BlBEDRI BlKONAV AK AlANSAT AlNAVNE
BlBEDRI BlPOSNR
AlANSAT AlBEDAN

Initiai vaiues for reaIm: BlBEDRI key: BlBEDNR

Item LowIimit HighIimit Item Lowiimit Highiimit
BlBEDNR MlBEDNR

Region 2 :

PG >. U S E O F P R O G R A M K E Y S

Subfunction: AJBEDR fieidrecord: MZA
name: EMPLOYEE owner: BEDRIFT
okcode: N textfunction: N action codes: 1234

ReaIm Key Use D Ex Reaim Key Use D Ex Reaim Key Use D Ex
BlBEDRI BlBEDNR AlANSAT AlsTILL
BlBEDRI BlKONAV AlANSAT AlNAVNE AK
BlBEDRI BlPOSNR
AlANSAT AlBEDAN MK

InitiaI vaiues for reaim: AlANSAT key: AlBEDAN

Item Lowiimit Highiimit Item LowIimit HighIimit
AlBEDNR MlBEDNR MlBEDNR
AlANSNR M2ANSNR

Norsk Data ND—60.219 1 EN

128 Compiete Program Generator
A programming exampie

When you have fiiied in both ’Use of Program Keys'
pictures, do the foiiowing:

a Return to the first picture (Program Description)
by pressing E in the command field.

0 Start the program generating by pressing X
in the command fieid in the Program Description
picture.

a The generating of the program and the compiiing wi11
now be started on batch processor 1, with the (Work
user)CP—LIST:LIST fiie as output fiie.

Norsk Data ND-60.219.1 EN

Complete Program Generator 129
A programming example

10.7. THE RESULTING GENERATED PROGRAM

The resulting program will look like this in FORTRAN (see page 134
for COBOL):

C::::=:::==::S:==:=::::::=:==:::::=2:2:::2::2::::::::::::::::::::::::::

SUBROUTINE AJBEDRIV
C:==:==:=:3:222:222222222222222222Z:ZZZZZZZ:222:2:=::=::::=:::=::::::::

C
C Programmer : ERIC BROWN

C
C
C:=:========::=======::=:=====::==2:2:3==::::==::=::::=Z::==::::::=:==:

CHARACTER CTYPE*2, CNAME*8, CTYPNAM*8, INFOTXT*50
INTEGER*4 TXTNR
INTEGER CPCURKK, EVERYLIN, CPKEYNK
INTEGER*2 IBKODEl,IBKODE2,IOKCODl,IOKCOD2, INAME(4),TYPNAM(4)
LOGICAL ENTEXT
EQUIVALENCE (CNAME,INAME),

+ (CTYPNAM,TYPNAM)
$INCLUDE (abm—user)CP—TRIGGER-TAB:INCL
$INCLUDE (abm—user)CP—PROBOT—COM:INCL

C ZZZ ABM interface

$INCLUDE (k—1~abm)DECDDI—AJBEDRIV

C ZZZ ABM interface

$INCLUDE (k—l—abmlASSDDI—AJBEDRIV

C ZZZ Init picture name
FORMFILE = '(k—l—abm)KURS:FABM'

C ZZZ Init leaving field function
NEXTFI = ‘Y'

EVERYLIN = O

C ZZZ Init function name, project name, no. of regions and language
CMAIN 'AJBEDRIV'
CSYSTEM 'K—l kurs'
MAINTAB(2) 2
LANGUAGE 'FORT'

C ZZZ Make help function available
CALL CPHJON

H
II

II
II

C ZZZ Description and name of region 1
COMTAB(1,2) 555679744
NAMTAB(1) 'Firm

Norsk Data ND—60.219 1 EN

130 CompTete Program Generator
A programming exampie

%%% Description and name of region 2
COMTAB(2,2) = 85950464
NAMTAB(2) = 'Empioyee

%%% Get picture

CALL CPBEGIN(REFTAB,KNREA,KREALMS,KUMOD,KPMOD)

%%% Loop untiT an error occurs or "EXIT” key is pressed

DO WHILE (MAINTAB(1).NE.O)

DO WHILE (COMTAB(1,1).NE.O .AND. MAINTAB(1) NE.0)

EVERYLIN = 0
CALL CPREGION(REFTAB,1,MITEMMl,MRECM1,FLACTCOD)

%%% Main key item Tist region 1

OVITEM(1) = 'BlBEDNR'
OVANT = 1

%%% Read keys

IF (CPCURKK().EQ. 1) THEN
CITMSUB(1) = '+:MlBEDNR *

ENDIF
IF (CPCURKK().EQ. 2) THEN

CITMSUB(1) = '+:M1KONAV *
ENDIF
CALL CPKEY(REFTAB,MITEMM1,MRECM1,FLACTCOD,FLREAD)

%%% Get record

IF (CPKEYNK().E0. 1) THEN
LBlBEDl = MlBEDNR

ENDIF
IF (CPKEYNK().EQ. 2) THEN

LBlKONl = MIKONAV
ENDIF

CALL CPGET(EVERYLIN,REFTAB, 1,KIBlBED,KVBlBED,
MITEMM1,MRECM1,KITEMBI)

CALL CPGET(EVERYLIN,REFTAB, 2,KIBlKON,KVBlKON,
MITEMM1,MRECM1,KITEMBl)

IF (EXECUTE .AND. IACTCOD NE.2 .AND. EVERYLIN E0.0) THEN
I = REFTAB(7)
%%% Get data from database buffer
CALL CPINRC(I,KITEMBl,KRECBl)

ELSEIF (EXECUTE .AND. IACTCOD NE.2 .AND. EVERYLIN.EO.1) THEN
I = 1
%%% Get data from database buffer
CALL CPINRC(I,KITEMBI,KRECBI)

ENDIF

Norsk Data ND-60 219.1 EN

Comp1ete Program Generator 131
A programming examp1e

C %%% Display on screen

CITMSUB(1) = '—:*'
CALL CPDISP<REFTAB,MITEMM1,MRECMl)

FLNEXT = FLOKCOD

C %%% Read from screen

CITMSUB(1) = '- MlBEDNR *

CALL CPREAD(1,REFTAB,MITEMM1,MRECM1,FLKEY,FLNEXT)

C %%% Begin transaction

CALL CPBTRANS(MITEMM1,MRECM1,KITEMBl,KRECBl)

C %%% Update record
CITMSUB(1) ='0 *‘

CALL CPUPDATE(ITEMSUB,KITEMBl,KRECBl)

C %%% End transaction

CALL CPETRANS

C %%% Read response kode

CALL CPRSPNS(REFTAB,MITEMM1,MRECMl)
CALL CPOVER(MITEMM1,MRECM1,KITEMBl,KRECBl)

C %%% Swap to he1p app11cation
CALL CPHELP(REFTAB,MITEMM1,MRECM1,MITEMM2,MRECM2)

ENDDO

DO WHILE (COMTAB(2,1) NE.O .AND. MAINTAB(1).NE.0)

EVERYLIN = 0
CALL CPREGION(REFTAB,2,MITEMMZ,MRECM2,FLACTCOD)

C %%% Main key item 1ist region 2

'AlBEDNR'
'AlANSNR‘

OVITEM(1)
OVITEM(2)
OVANT = 2

II
II

C %%% Read keys

IF (CPCURKK().EQ. 1) THEN
CITMSUB(1) = '+:M2ANSNR *

ENDIF
IF (CPCURKK().EO. 2) THEN

CITMSUB(1) = ‘+:M2ENAVN *
ENDIF
CALL CPKEY(REFTAB,MITEMM2,MRECMZ,FLACTCOD,FLREAD)

Norsk Data ND—6O 219.1 EN

132 CompTete Program Generator
A programming exampTe

C %%% Get record

LAlBEDl = MlBEDNR
LAlNAVl = MlBEDNR
HAlBEDl = MlBEDNR
HA1NAV1 = MlBEDNR
IF (CPKEYNK().EO. 1) THEN

LAlBEDZ = MZANSNR
ENDIF
IF (CPKEYNK() E0. 2) THEN

LAlNAVZ = MZENAVN
ENDIF

CALL CPGET(EVERYLIN,REFTAB, 1,KIAlBED,KVAlBED,
* MITEMM2,MRECM2,KITEMA1)

CALL CPGET(EVERYLIN,REFTAB, 2,KIA1NAV,KVA1NAV,
* MITEMM2,MRECM2,KITEMA1)

IF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN E0 0) THEN
I = REFTAB(7)

C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1,KRECA1)

ELSEIF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EO.1) THEN
I = 1

C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1,KRECA1)

ENDIF

C %%% DispTay on screen

CITMSUB(1) = '— *'
CALL CPDISP(REFTAB,MITEMM2,MRECMZ)

FLNEXT = FLOKCOD

C %%% Read from screen

CITMSUB(1) = ‘-:M2TTYEE MZANSNR *

CALL CPREAD(1,REFTAB,MITEMM2,MRECM2,FLKEY,FLNEXT)

AlBEDNR = MlBEDNR

C %%% Begin transaction

CALL CPBTRANS(MITEMM2,MRECM2,KITEMA1,KRECA1)

C %%% Update record
CITMSUB(1) ='O:*'

CALL CPUPDATE(ITEMSUB,KITEMA1,KRECA1)

C %%% End transaction

CALL CPETRANS

C %%% Read response kode

Norsk Data ND—60.219.1 EN

Compiete Program Generator
A programming exampTe

CALL CPRSPNS(REFTAB,MITEMM2,MRECMZ)
CALL CPOVER(MITEMM2,MRECM2,KITEMAl,KRECAl)

C ‘ %%% Swap to help app11cat10n
CALL CPHELP(REFTAB,MITEMM2,MRECMZ,MITEMM2,MRECM2)

ENDDO

ENDDO

C %%% Exit from program

CALL CPEND

END

The program is now ready to be loaded and run.

Norsk Data ND—60.219.l EN

133

134 CompIete Program Generator
A programming exampIe

We aIso incIude an exampIe of the equivaIent COBOL program:

V**
* .

IDENTIFICATION DIVISION.
PROGRAM—ID. AJBEDRIV
AUTHOR. ERIC BROWN

*

**

*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE—COMPUTER. ND.
OBJECT—COMPUTER. ND.

*

DATA DIVISION.
WORKING—STORAGE SECTION.

COPY (pg—2C)CP—TRIGGER—TAB:COPY
*

* ABM interface* ,

01 OECDDC—INFO.
COPY (k—l—abm)DECODC—AJBEDRIV

*

*

* LocaI decIarations.
*

77 CURRENT-KEY—NO COMP.
77 KEY-NO COMP.
77 NULL COMP VALUE 0.
77 INDX COMP.
77 STOPP COMP.
77 ITEM-VALUE COMP.
77 EVERYLIN COMP VALUE 0.
77 ENTEXT COMP.
77 SCV—OUMMY—BKODE PIC X(l).
77 SCV—DUMMY—OKCOD PIC X(l).
77 ITEM—NAME PIC X(8).
77 SCREEN—NAME PIC X(8).
77 SCREEN—VALUE PIC X(Z).
77 INFOTXT PIC X(SO).

*

*

*

LINKAGE SECTION.
*

COPY (pg-ZCICP—PROBOT—COM COPY

PROCEDURE DIVISION.
*

*

MAIN SECTION.
START—MAIN—IO.

PERFORM STARTUP.
PERFORM REGION UNTIL NULL = MAINTAB (l).
PERFORM ROUNDUP.

Norsk Data ND—60.219 1 EN

Compiete Program Generator 135
A programming example

EXIT—MAIN—99.
EXIT PROGRAM.

STARTUP SECTION.
START—STARTUP—lO.

*

* ABM interface

COPY (k-l—abm)ASSDDC—AJBEDRIV

* Init form fiTe name

MOVE '(k—l—abm)KURS:FABM' TO FORMFILE.

* Init Teaving fieid function
MOVE ‘Y' TO NEXTFI.

* Init function name, project name, no. of regions and Tanguage

MOVE 'AJBEDRIV' TO CMAIN.
MOVE 'K—l kurs' TO CSYSTEM.
MOVE 2 TO MAINTAB(2).
MOVE ‘COBL' TO LANGUAGE.

* Description and name of region 1
*

COMPUTE COMTAB(2, l) : 555679744 .
MOVE “Firm ' TO NAMTAB(1).

* Description and name of region 2
*

COMPUTE COMTAB(2, 2) : 85950464 .
MOVE ‘Empioyee ‘ TO NAMTAB(2).

*

* Set heTp function avaiiabie.

CALL 'CPHJON'

* Get picture

CALL ‘CPBEGIN' USING DDC—REF—TABLE, DBR—NO—OF—REALMS,
DBR~REALM—NAMES, DBR—REALM—USAGE(1),
DBR—REALM—PROTECT(1).

EXIT—STARTUP—QQ.
EXIT.

REGION SECTION.
START-REGION—lO.

IF NULL NOT EQUAL COMTAB(1, l)
PERFORM REGION—l.

IF NULL NOT EQUAL COMTAB(1, 2)
PERFORM REGION—2.

Norsk Data ND~60.219.1 EN

136 Complete Program Generator
A programming exampIe

EXIT—REGION-QQ.
EXIT.

REGION—l SECTION.
START—REGIONl—lO.

*

)(~ Define region

MOVE O TO EVERYLIN.
CALL 'CPREGION‘ USING DDC—REF—TABLE, 1, DDS—Ml-SUBSCHEMA,

SCV—Ml, TRIGGER~ACTCODE.

* Main key item list region 1

MOVE 'BlBEDNR' TO OVITEM(1).
MOVE 1 TO OVANT.

* %%% Read keys

CALL 'CPCURKC' USING CURRENT—KEY—NO.
IF CURRENT-KEY—NO = 1

MOVE ‘+:BlBEDNR *'
TO DDC~SELECT.

IF CURRENT—KEY—NO = 2
MOVE '+:BlKONAV *'

TO DDC—SELECT.

CALL ‘CPKEY' USING DDC—REF—TABLE, DDS—Ml—SUBSCHEMA,
SCV—Ml,
TRIGGER—ACTCODE, TRIGGER—READ.

* %%% Get record

CALL 'CPKEYNC' USING KEY—NO.
IF KEY—NO = 1

MOVE SCV—M1~BlBEDNR TO DBKV—BIBEDRI—81BEDNR~LOW~1.
CALL 'CPKEYNC' USING KEY—NO.
IF KEY—NO = 2

MOVE SCV—Ml—BlKONAV TO OBKV~BlBEDRI—BlKONAV—LOW~1.

CALL 'CPGET' USING EVERYLIN, DDC-REF—TABLE, l,
DBKI—BlBEDRIeBlBEDNR ,
DBKV—BlBEDRI—BlBEDNR , DDS—M1—SUBSCHEMA,
SCV-Ml, DDB—BlBEDRI—SUBSCHEMA.

CALL 'CPGET' USING EVERYLIN, DDC—REF—TABLE, 2,
DBKI-BlBEDRI—BlKONAV ,
OBKV—BlBEDRI—BIKONAV , DDS—M1—SUBSCHEMA,
SCV—Ml, DDB~BlBEORI~SUBSCHEMA.

IF EXECUTE = 1
AND EVERYLIN = 0
AND MAINTAB(5) OT : 2
MOVE SCC-START—RN—LINE TO INDX

Norsk Data ND—60 219.1 EN

Complete Program Generator 137
A programming example

>(_
X‘

)9
X-

>(-

Get data from database buffer
CALL 'CPINRC' USING INDX, DDB—BlBEDRI~SUBSCHEMA,

DBV—BIBEORI
ELSE x

IF EXECUTE = 1
AND EVERYLIN = 1
AND MAINTAB(5) NOT = 2
MOVE 1 TO INDX
Get data from database buffer
CALL 'CPINRC' USING INDX, DDB~BlBEDRI~SUBSCHEMA,

DBV—BlBEDRI.

Display on screen

MOVE '—:*' TO DOC—SELECT.
CALL 'CPDISP' USING DDC—REF—TABLE, DDS—Ml—SUBSCHEMA,

SCV—Ml.

MOVE TRIGGER—OKCODE TO TRIGGER—NEXT.

%%% Read from screen

MOVE '— BlBEDNR *‘
T0 DDC—SELECT.

CALL 'CPREAD' USING l, DDC~REF—TABLE, DDS—Ml—SUBSCHEMA,
SCV—Ml, TRIGGER-KEY, TRIGGER~NEXT.

Begin transaction

CALL 'CPBTRANS' USING DDS—Ml—SUBSCHEMA, SCV—Ml,
DDB—BIBEDRI‘SUBSCHEMA, DBV—BlBEDRI.

Update record

MOVE 'O *' TO DOC—SELECT.

CALL 'CPUPDATE' USING DDC~SELECT,
DDB~BlBEDRI—SUBSCHEMA, DBV—BlBEDRI.

End transaction

CALL 'CPETRANS'.

Read response kode

CALL ‘CPRSPNS' USING DDC—REF—TABLE,
DDS—Ml—SUBSCHEMA, SCV—Ml.

CALL ‘CPOVER' USING DDS-Ml—SUBSCHEMA, SCV—Ml,
DDB—BlBEDRI—SUBSCHEMA, DBV-BlBEDRI.

%%% Swap to heIp appIication
CALL ’CPHELP' USING DOC—REF—TABLE,

DDS—Ml—SUBSCHEMA, SCV—Ml,
DDS~M2—SUBSCHEMA, SCV—MZ.

Norsk Data ND-60.219.1 EN

138 CompIete Program Generator
A programming example

EXIT—REGIONl—99.
EXIT.

REGION—2 SECTION.
START—REGIONZ—IO.

*

* Define region

MOVE 0 TO EVERYLIN.
CALL 'CPREGION' USING DDC—REF—TABLE, 2, DDS—MZ—SUBSCHEMA,

SCV—MZ, TRIGGER—ACTCODE.

* Main key item Iist region 2

MOVE 'AlBEDNR' TO OVITEM(1).
MOVE 'AlANSNR’ TO OVITEM(2).
MOVE 2 TO OVANT.

* %%% Read keys

CALL 'CPCURKC' USING CURRENT-KEY—NO.
IF CURRENT—KEY~NO = 1

MOVE '+:A1ANSNR *'
TO DOC—SELECT.

IF CURRENT—KEY—NO = 2
MOVE '+:A1ENAVN *'

TO DOC-SELECT.

CALL 'CPKEY' USING DDC—REF—TABLE, DDS—M2~SUBSCHEMA,
SCV~M2,
TRIGGER-ACTCODE, TRIGGER—READ.

* %%% Get record

MOVE SCV—Ml—BlBEDNR TO DBKV—AlANSAT—AlSEDAN—LOW—l.
MOVE SCV—Ml—BIBEDNR TO DBKV~A1ANSAT—AINAVNEmLOW—l.
MOVE SCV—Ml—BlBEDNR TO OBKV—AlANSAT—AlBEDAN—HIGH—l.
MOVE SCV-Ml—BlBEDNR TO DBKV—AlANSAT—AlNAVNE—HIGH—l.
CALL 'CPKEYNC' USING KEY—NO.
IF KEY—NO = 1

MOVE SCV—MZ—AlANSNR TO DBKV—AlANSAT-AIBEDAN—LOW—Z.
CALL 'CPKEYNC' USING KEY—N0.
IF KEY—NO = 2

MOVE SCV—MZ—AlENAVN TO DBKV—AlANSAT—AINAVNE—LOW—2.

CALL 'CPGET' USING EVERYLIN, DOC~REF—TABLE, l,
DBKI—AlANSAT—AIBEDAN ,
DBKV—AlANSAT—AIBEDAN , DDS-MZ—SUBSCHEMA,
SCV—MZ, ODBeAlANSAT~SUBSCHEMA.

CALL 'CPGET' USING EVERYLIN, DDC—REF-TABLE, 2,
DBKI~A1ANSAT—A1NAVNE ,
DBKV~A1ANSAT-A1NAVNE , DDS—MZ—SUBSCHEMA,
SCV—MZ, DDB—AlANSAT—SUBSCHEMA.

(Norsk Data ND—60.219.l EN

CompIete Program Generator 139
A programming exampIe

>6
x.

>(.

IF EXECUTE = 1
AND EVERYLIN = 0
AND MAINTAB(5) NOT = 2
MOVE SCC—START—RW—LINE TO INDX
Get data from database buffer
CALL 'CPINRC’ USING INDX, DDB—AlANSAT—SUBSCHEMA,

DBV—AlANSAT
ELSE

IF EXECUTE = 1
AND EVERYLIN = 1
AND MAINTAB(5) NOT = 2
MOVE 1 TO INDX
Get data from database buffer
CALL 'CPINRC' USING INDX, DDBeAlANSAT—SUBSCHEMA,

DBV-AIANSAT.

DispIay on screen

MOVE ‘—:*' TO DOC—SELECT.
CALL 'CPDISP’ USING ODC—REF-TABLE, DDS—MZ—SUBSCHEMA,

' SCV—MZ.

MOVE TRIGGER—OKCODE TO TRIGGER—NEXT.

%%% Read from screen

MOVE '—:TTYPE AlANSNR *'
TO DOC—SELECT.

CALL 'CPREAD' USING 1, DDC—REF—TABLE, DDS—M2“SUBSCHEMA,
SCV—MZ, TRIGGER—KEY, TRIGGER—NEXT.

MOVE SCV~M1~BlBEDNR TO DBV—AlANSAT—AlBEDNR .

Begin transaction

CALL 'CPBTRANS’ USING DDS~M2—SUBSCHEMA, SCV-MZ,
DDB—AlANSAT—SUBSCHEMA, DBV—AlANSAT.

Update record

MOVE 'O *' TO DDC~SELECT.

CALL 'CPUPDATE' USING DOC—SELECT, ,
DDB-AlANSAT—SUBSCHEMA, DBV—AlANSAT.

End transaction

CALL 'CPETRANS'.

Read response kode

CALL 'CPRSPNS‘ USING DDC—REF—TABLE,
DDSaMZ—SUBSCHEMA, SCV—MZ.

CALL 'CPOVER' USING DDS—M2~SUBSCHEMA, SCV—MZ,

Norsk Data ND~6O 219.1 EN

140 CompIete Program Generator
A programming exampIe

DDB—AlANSAT—SUBSCHEMA, DBV—AlANSAT.

* %%% Swap to heIp—appIication
CALL ‘CPHELP' USING DDC~REF-TABLE,

DDS—MZ—SUBSCHEMA, SCV-MZ,
DDS—MZ-SUBSCHEMA, SCV—MZ.

EXIT—REGION2—99.
EXIT.

ROUNDUP SECTION.
START—ROUNDUP—Ol.

* Exit from program
‘k

CALL 'CPEND'.
EXIT-ROUNDUP—99.

EXIT.

Norsk Data ND~60.219.1 EN

Complete Program Generator 141
A programming example

10.8. EXTENDING THE EXAMPLE

In order to show more of the possibilities in Complete—PG, we will now
introduce a few changes in the function. We shall look at the following:

0 Existence control

0 Display of data from another realm

0 Manual code

0 Several CPREAD calls

0 CPREAD calls in manual code

0 CPINVER instead of several CPREAD calls

0 Overruling of messages in PG routines

o Calculating fields

0 Updating other realms

0 Free text in the application

0 Several free texts on the same record in the application

0 Selection of records

Norsk Data ND—60.219.1 EN

142 Complete Program Generator
A programming example

10.8.1. EXISTENCE CONTROL

We do not want it to be possible to delete a firm that has employees
registered. Complete—PG can deal with this automatically. The changes that
have to be done are shown in a section of picture number 2 (Use of Program
Keys) in Complete—PG, region 1 :

Realm Key Use D Ex Realm Key Use D Ex Realm Key Use D Ex
BlBEDRI BlBEDNR MK AlANSAT AlSTILL
BlBEDRI BIKONAV AK AlANSAT AlENAVN
BlBEDRI BlPOSNR
AlANSAT AlBEDAN K E

Initial values for realm: AlANSAT key: AlBEDAN

Item Lowlimit Highlimit Item Lowlimit Highlimit
AlBEDNR MlBEDNR M18EDNR
AlANSNR

We have marked the key AlBEDAN in use (K), and specified that we shall use
it for existence control when deleting (E). The values we use for search
towards AlANSAT are firm number + employee number. AlANSNR has not been
given any low/high limit, because we use minimum/maximum.

When the change has been mande, the function has to be generated again. The
change of program code as Complete—PG generates it, is shown in the
following part of the program:

CALL CPREAD(1,REFTAB,MITEMM1,MRECM1,FLKEY,FLNEXT)

IF (EXECUTE .AND. IACTCOD.EQ.4) THEN

C %%% Existence control against other realms

LAlBEDl
HAlBEDl

MlBEDNR
MlBEDNR

CALL CPEXIST(KIAlBED,KVAlBED)
ENDIF

C %%% Begin transaction

CALL CPBTRANS(MITEMM1,MRECM1,KITEMBI,KRECBl)

Norsk Data ND—6D.219.1 EN

Compiete Program Generator 143
A programming exampie

And the same exampie in COBOL:

CALL TCPREAD' USING 1, DDC—REF—TABLE, DDS—Ml—SUBSCHEMA,
SCV~M1, TRIGGER—KEY, TRIGGER—NEXT.

IF 1 = EXECUTE
AND MAINTAB(5) = 4

MOVE SCV—Ml—BlBEDNR TO DBKV—AlANSAT—AIBEDAN—LOW~1
MOVE SCV—M1~BlBEDNR TO DBKV—AlANSAT—AlBEDAN~HIGH—l

* Existing control against other reaims
CALL 'CPEXIST' USING DBKI~A1ANSAT—AIBEDAN,

DBKV—AlANSAT~AlBEDAN.

X- Begin transaction

CALL 'CPBTRANS' USING DDS«Ml—SUBSCHEMA, SCV—Ml,
DDB—BlBEDRI—SUBSCHEMA, DBV—BlBEDRI.

Norsk Data ND—60 219.1 EN

144 Complete Program Generator
A programming example

10.8.2. DISPLAY OF DATA FROM ANOTHER REALM

You may want to fetch data from another realm, using a key
value either from a field in the screen picture or from an item in the main
realm in the region, and display this information on the screen. In this
example we want the name of a post—office area to be fetched automatically
from PlPOST when we type in the postal code.

Realm, item and key for PlPOST must be inserted in the subschema AJBEDR in
ABM. In the picture, the field 'Area‘ must be changed to refer to the
PlPOST realm.

The changes that must be made in Complete~PG, are shown in a section of
picture number 2 (Use of Program Keys), region 1 ‘

Realm Key Use D Ex Realm Key Use D Ex Realm Key Use D Ex
BlBEDRI BIBEDNR MK AlANSAT AlSTILL
BlBEDRI BlKDNAV AK AlANSAT AlENAVN
BlBEDRI BlPOSNR PlPOST PlPOSNR K D
AlANSAT AlBEDAN K E

Initial values for realm: PlPOST key: PlPOSNR

Item Lowlimit ' Highlimit Item Lowlimit Highlimit
PlPOSNR MIPOSNR ' MlPOSNR

Display in Complete—PG also works as an existence control. If the postal
code that was typed in does not exist in PlPOST, CPOTHER will call the
CPREAD call again, if CPREAD was the last call before CPOTHER.

When the change has been made, the function must be generated again. The
change in the program code as Complete~PG generates it, is shown in this
section of the program:

Norsk Data ND—60.219.1 EN

CompIete Program Generator 145
A programming exampIe

CALL CPGET(EVERYLIN,REFTAB, 2,KIBlKON,KVBlKON,
* MITEMM1,MRECM1,KITEMBI)

IF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.E0.0) THEN
I : REFTAB(7)

C %%% Get data from database buffer
CALL CPINRC(I,KITEMBI,KREC81)

ELSEIF (EXECUTE .AND. IACTCOD.NE 2 .AND. EVERYLIN EO.1) THEN
I = l

C %%% Get data from database buffer
CALL CPINRC(I,KITEMBI,KRECBI)

ENDIF

C %%% Get data from other reaIms
IF (EXECUTE) THEN

IF (NOFOUND.GT.1) REFTAB(7) = 1

C %%% Loop for every Tine in region

00 FOR I = REFTAB(7), REFTAB(7)+NOFOUND~1

C %%% Get data from database buffer
IF (EVERYLIN.E0.0 .AND. MAINTAB(5).EQ.1) THEN

CALL CPINRC(I,KITEMBl,KRECBl)
ENDIF

C %%% Get data from screen buffer
REFTAB(7) = I
CALL DDGETRC(REFTAB,MITEMMI,MRECM1,MSTA)
IF (MSTA.NE 0) CALL CPABORT

C

LPlPOSl = MlPOSNR
HPlPOSl = MlPOSNR

C %%% Get and dispIay data from other reaIm
CALL CPOTHER(REFTAB,KIPlPOS,KVP1POS,KITEMP1,KRECPl,

* MITEMM1,MRECM1)

ENDDO

IF (NOFOUND GT.1) REFTAB(7) = l
ENDIF

C %%% DispIay on screen

CITMSUB(1) = '~:*'
CALL CPDISP(REFTAB,MITEMM1,MRECMl)

Norsk Data ND—60 219 1 EN

146 CompIete Program Generator
A programming exampIe

The same exampIe 1n COBOL:

CALL 'CPGET' USING EVERYLIN, DDC—REF—TABLE, 2,
DBKI«BlBEDRI—BIKONAV ,
DBKV—BlBEDRI~BlKONAV , DDS—Ml—SUBSCHEMA,
SCV-Ml, DDB—BlBEDRI—SUBSCHEMA.

IF EXECUTE = 1
AND EVERYLIN = 0
AND MAINTAB(5) NOT = 2
MOVE SCC—START—RW—LINE TO INDX

* Get data from database buffer
CALL 'CPINRC' USING INDX, DDB—BIBEDRI~SUBSCHEMA,

DBV-BIBEDRI
ELSE

IF EXECUTE = 1
AND EVERYLIN = 1
AND MAINTAB(5) NOT = 2
MOVE 1 TO INDX

* Get data from database buffer
CALL 'CPINRC' USING INDX, DDB—BlBEDRI—SUBSCHEMA,

DBV—BlBEDRI.

* Get data from other reaTms

IF 1 = EXECUTE
AND NOFOUND GREATER THAN 1
MOVE 1 TO SCC—START—RW—LINE.

IF 1 = EXECUTE

COMPUTE STOPP = SCC—START—RW—LINE + NOFOUND — l

* Loop for every Tine in region

DO FOR INDX FROM SCC—START—RW—LINE BY 1 TO STOPP

* Get data from database buffer
IF EVERYLIN = D

AND MAINTAB(5) = 1
CALL 'CPINRC' USING INDX, DDB—BlBEDRI~SUBSCHEMA,

DBV—BIBEDRI
END-IF

* Get data from screen buffer
MOVE INDX TO SCC—START—RW—LINE
CALL 'DDGETRC' USING DDC—REF—TABLE, DDS—Ml—SUBSCHEMA,

SCV—Ml, MSTA

MOVE SCV—Ml—BIPOSNR TO DBKV—PlPOST—P1POSNR—LOW—1
MOVE SCV—Ml—BIPOSNR TO DBKV—PlPOST~PlPOSNR-HIGH—l

* Get and dispIay data from other reaTms
CALL 'CPOTHER' USING DDC—REF—TABLE,

DBKI—PlPOST—PIPOSNR,
DBKV~P1POST—P1PDSNR,
DDB—PlPOST—SUBSCHEMA,
DBV—PIPOST,

Norek Data ND—60.219.I EN

Comp1ete Program Generator 147
A programming examp1e

DDS—Ml-SUBSCHEMA, SCV~M1

END—DO.
IF NOFOUND GREATER THAN 1

MOVE 1 TO SCC~START—RW~LINE.

* Disp1ay on screen

MOVE ‘—:*' T0 DOC—SELECT.
CALL ‘CPDISP' USING DDC~REF—TABLE, DDS—Ml—SUBSCHEMA,

SCVa.

Norsk Data ND—60.219.l EN

148 Complete Program Generator
A programming example

10.8.3. MANUAL CODE

We shall now have a look at a few cases where manual programming is
necessary. The manual code (additional code) must be inserted in the macros
on AJBEDR MANU. We will list parts of the program, show where the manual
code should be inserted, and what it consists of.

10.8.4. SEVERAL CPREAD CALLS

The field 'Surname' in the screen picture is an alternative key. We
therefore want to add a check to make sure that a value is specified in
this field during registration and modification.

We also want to make sure that the value of the field 'Position' only is
accepted as a legal input value during registration and modification if the
value also exists on the SlSTILL realm. This will then be a manually
programmed existence control.

Realm and key for SlSTILL must be inserted in the subschema AJBEDR in ABM.
Another change that must be made is the addition of manual code. The
problem of seVeral CPREAD calls may be solved in two ways: by adding more
CPREAD calls in manual code, or by using the generated CPREAD call along
with additional manual code using CPINITEM and CPINVER. Both alternatives
will be shown here.

10.8.5. CPREAD CALLS IN MANUAL CODE

Division into several CPREAD calls means that manual code must be inserted
immediately before and immediately after the generated CPREAD call. The
fields that are to be read by the generated CPREAD call in CITEMSUB, must
be inserted immediately before the CPREAD call, and FLNEXT is set to
FLREAD. The remaining CPREAD calls, with possible tests of input data,
should be inserted immediately after the generated CPREAD call.

In our example we have chosen to use four CPREAD calls. This is in order to
have a user interface that is as interactive as possible. We check the
input value from the field 'Surname'. If value = blank, message number 151
is displayed, and CPMESS causes the CPREAD call for reading of the field to
be executed again.

We check the input value from the field 'Position' by means of a CPEXIST
call. If this value does not exist, the message ‘does not exist' will be
displayed automatically, and the CPREAD call will be repeated.

Manual code is inserted in the AJBEDR MANU file, and the program is
generated again. The changes to the code are shown here:

Norsk Data ND—60 219.1 EN

Complete Program Generator 149
A programming example

C

C

%%% Read from screen

CITMSUB(1) = ‘—:M2ANSNR *'

%%% Manual code before CPREAD: read surname. Set FLNEXT.
CITMSUB(1) = '+:M2ENAVN *’

FLNEXT = FLREAD
. End of manual code before CPREAD.

CALL CPREAD(1,REFTAB,MITEMM2,MRECM2,FLKEY,FLNEXT)

%%% Manual code after CPREAD: Check surname.
IF (EXECUTE.AND.IACTCOD.NE.4.AND.M2ENAVN.E0.' ‘) THEN

CALL CPGETMSG(151)
CALL CPMESS

ENDIF

%%% Read first name and code.
CITMSUB(1) = ‘+:M2FNAVN MZKODE *'
CALL CPREAD(2,REFTAB,MITEMM2,MRECM2,FLREAD,FLREAD)

%%% Read position and check if value is legal.
CITMSUB(1) = ‘+:MZSTILL *'
CALL CPREAD(3,REFTAB,MITEMM2,MRECM2,FLREAD,FLREAD)
IF (EXECUTE AND IACTCOD.NE 4) THEN

ZZZ Existence control against SlSTILL realm
LSlSTIl = MZSTILL
HSlSTIl = MZSTILL
CALL CPEXIST(KISlSTI,KVSlSTI)

ENDIF

ZZZ Read extension.
CITMSUB(1) = ‘+:M21NTLF *'
CALL CPREAD(4,REFTAB,MITEMM2,MRECM2,FLREAD,FLOKCOD)
.Manual code after CPREAD ends.

%%% Begin transaction

Norsk Data ND—60.219.1 EN

150 CompTete Program Generator
A programming exampTe

10.8.6. DUMMY CPREAD CALL

The question about updating and the reading of the EXECUTE key take
pTace in the Tast CPREAD caTT. If there is manUaT code (vaTue tests,
search of other reaTms) after the Tast CPREAD caTT, that code wiTT be
executed after the EXECUTE key has been pressed. If you want the
search and/or vaTue tests to be performed before the EXECUTE key is
pressed, you can insert a dummy CPREAD caTT after the manuaT code.
CITMSUB/DDC—SELECT then has to be '+:*’ for the CPREAD caTT. If you
want a dummy CPREAD caTT in the exampie above, the code must Took Tike
this:

C %%%Read extension.
CITMSUBil) = '+ M21NTLF*'
CALL CPREAD(4,REFTAB,MITEMM2,MRECMZ,FLREAD,FLREAD)

C Look—up and testing

C Dummy read caTT
CITMSUBiI) = ’+:*'
CALL CPREAD(5,REFTAB,MITEMM2,MRECM2,FLREAD,FLOKCOD)

C End of manuaT code.

Norsk Data ND—60 219.1 EN

Complete Program Generator 151
A programming example

10.8.7. CPINVER INSTEAD OF SEVERAL CPREAD CALLS

In this case the manual code must be inserted immediately after the
generated CPREAD call, possibly together with testing of the input data. If
the input data is not OK, CPINITEM is called with the name of the field to
be re—read as input value. When all manual tests have been performed, and
before any CPEXIST calls, CPINVER is called. If CPINITEM has been called,
CPINVER will display these fields in inverse video and CPREAD will be
executed again. After CPINVER, you can use CPEXIST calls, overruling
the message from the CPEXIST call.

Manual code is added to the AJBEDR:MANU file, and the program must be
generated again. The changes to the code are shown below:

C %%% Read from screen

CITMSUB(1) = '—:M2ANSNR *‘

CALL CPREAD(1,REFTAB,MITEMM2,MRECM2,FLKEY,FLNEXT)

C %%% Manual code after CPREAD: Check surname.
IF (EXECUTE.AND.IACTCOD.NE.4) THEN

C %%% Check surname.
IF (M2ENAVN.EQ ' ') CALL CPINITEM(REFTAB,”M2ENAVN ”)

C %%% If necessary, show fields in inverse video and read again.
CALL CPINVER(REFTAB,MITEMM2,MRECMZ)

C %%% Existence control against SlSTILL realm
IF (EXECUTE) THEN

LSlSTIl = MZSTILL
HSlSTIl = MZSTILL
ONNMESS = .TRUE.
CALL CPGETMSG(152)
CALL CPEXIST(KISlSTI,KVSlSTI)
OWNMESS = .FALSE.

ENDIF
ENDIF

C End of manual code.

C %%% Begin transaction

Norsk Data ND~60.219.1 EN

152 Compiete Program Generator
A programming exampie

10.8.8. OVERRULING 0F MESSAGES IN PG ROUTINES

It is possible to overrule messages that are dispiayed in PG routines. In
our exampie we have chosen to overruie the message in CPEXIST in the
exampie, using severai'CPREAD caiis. We want message number 152 to be
dispiayed if the input position does not exist on the SlSTILL reaim. The
modified manua] code is added to the AJBEDR MANU fiie, and the program
is generated again.

Part of the manuai code where the change has been made is shown here:

C %%% Read position, and check if vaiue is iegai.
CITMSUB(1) = '+ MZSTILL *'
CALL CPREAD(3,REFTAB,MITEMM2,MRECM2,FLREAD,FLREAD)
IF (EXECUTE.AND.IACTCOD.NE.4) THEN

C %%% Existence controi against SlSTILL reaim
LSlSTIl = MZSTILL
HSlSTIl = MZSTILL

C %%% Shows that own message is to be appiied.
OWNMESS = .TRUE.

C %%% Moves own message to text string.
CALL CPGETMSG(152)
CALL CPEXIST(KISlSTI,KVSlSTI)
OWNMESS = .FALSE.

ENDIF
C %%% Read extension.

Norsk Data ND—60.219.1 EN

Complete Program Generator 153
A programming example

10.8.9. CALCULATION OF FIELDS

The calculation of database items takes place on the basis of fields read
during registration and modification. The calculation can be done
immediately after the fields are read, or when all the fields are read and
the user has ordered the updating of the record. We have chosen to do it in
the latter way. In that case, the calculations are only done when
necessary, and all the calculations are collected in one place in the
program.

In our example, we want to give the item BlSOPD today's date if the record
is updated. We have done it in the following way:

CITMSUB(1) = ‘—:MlBEDNR * ,

CALL CPREAD(1,REFTAB,MITEMM1,MRECM1,FLKEY,FLNEXT)
C %%% Manual code : If updating.

IF (CPABLED(FLUPDATE,1)) THEN
C %%% Get today's date

CALL CPDATUM(CDATUM,DATO)
BlSOPD = DATO

C %%% End of manual code.

C %%% Begin transaction

CALL CPBTRANS(MITEMM1,MRECM1,KITEM81,KREC81)

C %%% Update record

CITMSUB(1) =‘O:*'
CALL CPUPDATE(ITEMSUB,KITEM81,KRECBI)

C %%% End transaction

CALL CPETRANS

Norsk Data ND-60.219.l EN

154 CompTete Program Generator
A programming exampIe

10.8.10. UPDATING OF OTHER REALMS

Sometimes it is necessary to update severai reaIms. CompTete-PG oniy
updates the main reaTm in each region. The updating of other reaIms has to
be added in manuaT code. The manuaI code then has to be inserted after
CPUPDATE. Make a test to see whether updating is to be performed by testing
whether CPUPDATE has been performed, and testing whether EXECUTE is true.

A temporary database key must exist on the record that is to be modified or
deIeted on the other reaTm.

In our exampie we do not need to update other reaTms. If we had needed
to do so, the code woq have Iooked Tike this:

C %%% Begin transaction

CALL CPBTRANS(MITEMM1,MRECM1,KITEMBI,KRECBl)

C %%% Update record

CITMSUB(1) ='O:*'
CALL CPUPDATE(ITEMSUB,KITEMBI,KRECBl)

C %%% ManuaT code after CPUPDATE: If updating.
IF (EXECUTE) THEN

C %%% If deieting
IF (IACTCOD.EQ.4) THEN

CALL SRASE(KTDBKXX,O,KSTAT)
IF (KSTAT.NE 1) CALL CPABORT
KTDBKXX = 0

C %%% If modifying
ELSEIF (IACTCOD.EQ.3) THEN

CITMSUB(1)='+: ~~~~~ *'
CALL DDMDFY(KTDBKXX,ITEMSUB,KITEMXX,KRECXX,KSTAT)
IF (KSTAT.NE.1) CALL CPABORT

C %%% If registering
ELSEIF (IACTCOD.EO.2) THEN

CITMSUB(1)='+: ————— *‘
CALL DDSTORE(ITEMSUB,KITEMXX,KRECXX,KSTAT)
IF (KSTAT.NE.1) CALL DDFREMB(KTDBKXX,O,KSTAT)
IF (KSTAT.NE 1) CALL CPABORT

ENDIF
C %%% End of manuaI code.

C %%% End transaction

CALL CPETRANS

Norsk Data ND—60.219.1 EN

Complete Program Generator 155
A programming example

10.8.11. FREE TEXT IN THE PROGRAM

We now wish to call the free text function from the employee lines. We
have to use ABM to alter the picture AJBEDR) We introduce a new field into
the line. The field consists of one character position, and the data type
is TTYPE (TTYPE is reserved by Complete—PG for free text).

After the alteration, the employee lines look like this:

Employee :
Text Code

No. T Surname First name v Position Ext.

Now the program has to be generated again. In the “Use of Program Keys'
picture, 'textfunction: Y' will now be shown. PG will generate new code in
two places in the program: immediately after CPGET and immediately after
CPRSPNS. Below, you can see a section of the program where the new code
parts for the free text function are inserted:

After CPGET :

CALL CPGET(EVERYLIN,REFTAB, 2,KIA1NAV,KVA1NAV,
MITEMM2,MRECM2,KITEMA1)

IF (EXECUTE .AND. IACTCOD NE.2 .AND. EVERYLIN.EQ.O) THEN
I = REFTAB(7)

C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1,KRECA1)

ELSEIF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EO.1) THEN
I = l

C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1,KRECA1)

ENDIF

C %%% Display text mark

CALL CPTDISP(REFTAB,MITEMM2,MRECM2,M2TTYPE,”M2TTYPE ”,
KITEMA1,KRECA1,AlTTNR,EVERYLIN)

C %%% Display on screen

CITMSUB(1) = '~:*'
CALL CPDISP(REFTAB,MITEMM2,MRECMZ)

C %%% Read response kode

CALL CPRSPNS(REFTAB,M1TEMM2,MRECM2)
CALL CPDVER(MITEMM2,MRECM2,KITEMA1,KRECAl)

%%% Text nr. database item name

Norsk Data ND—60.219.l EN

156 CompTete Program Generator
A programming exampTe

CNAME = 'AlTTNR '
C %%% Text nr‘ database item vaTue

TXTNR = AlTTNR
C %%% Text indicator fie name

CTYPNAM = 'MZTTYPE '
C %%% Text indicator fie vaTue

CTYPE = MZTTYPE
C %%% User info. used in CPFRTXT

INFOTXT = ' '

C %%% Swap to free text appTication
CALL CPFRTXT(REFTAB,TYPNAM,TXTNR,CTYPE,MITEMM2,MRECM2,

* INAME,MITEMM1,MRECMl,MITEMM2,MRECMZ,MAINTAB(4),INFOTXT)

ENTEXT = .TRUE.

IF (EXECUTE) THEN
IF (ENTEXT) THEN

C %%% Text nr. database item vaTue in return
AlTTNR = TXTNR

C %%% If text connected, dispTay ‘T'
M2TTYPE = ‘ '
IF (TXTNR.GT.O) MZTTYPE = ‘T'
CITMSUB(1) = '+ M2TTYPE *‘

ENDIF
CALL DDWFLDS(REFTAB,MITEMM2,MRECM2,MSTA)
IF (MSTA.NE 0) CALL CPABORT

ENDIF

The user may pTace a vaTue in the variabTe INFOTXT by using manuaT
code before CPFRTXT. INFOTXT is dispTayed in the free text screen form
(which is deTivered with ABM/PG) as an information fie. It Tooks
Tike this: FREE TEXT CONNECTED TO: INFOTEXT (the vaTue of INFOTEXT is
dispTayed here).

Norsk Data ND-60.219.1 EN

Complete Program Generator 157
A programming example

10.8.12. SEVERAL FREE TEXTS ON THE SAME RECORD IN THE PROGRAM

It is possible to attach several free text records to one database record.
We shall here Show an example of this by connecting two free text records
to one record in the employee lines. We insert one new field, which
consists of one character of data type, eg. T2TYPE, into the line. We can
only have one field of type TTYPE per record/region.

The employee lines look like this after the alteration:

Employee:
Text Code

No. P S Surname First name v Position Ext.

Some manual code is now required to make the program distinguish between
the two free text references. After CPGET, we insert a copy of the sequence
which was generated when a free text was added (the sequence where
MXTTYPE is given a value). In this copy, we must alter the database item,
the text number and the data type.

The code after CPGET will then be like this:

CALL CPGET(EVERYLIN,REFTAB,3,KIAlNAV,KVA1NAV,
* MITEMM2,MRECM2,KITEMA1)

IF (EXECUTE .AND. IACTCOD GT.1) THEN

IF (EVERYLIN.E0.0) THEN
I = REFTAB(7)

ELSE
I = 1

ENDIF

C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1,KRECA1)

ENDIF

C %%% Display text mark

IF (EXECUTE) THEN

IF (NOFOUND.GT.1) REFTAB(7) = l

C %%% Loop for every line in region

DO FOR I = REFTAB(7), REFTAB(7)+NOFOUND~1

C %%% Get data from database buffer
IF (EVERYLIN.EQ.O) THEN

CALL CPINRC(I,KITEMA1,KRECA1)

Norsk Data ND~60.219.1 EN

158 CompIete Program Generator
A programming exampIe

ELSE
CALL CPINRC(1,KITEMAI,KRECA1)

ENDIF

C %%% Get data from screen buffer
REFTAB(7) = I
CALL DDGETRC(REFTAB,MITEMM2,MRECMZ,MSTA)
IF (MSTA.NE.O) CALL CPABORT

IF (AlTTNR.GT.O) THEN
MZTTYPE = ‘T'

ELSE
MZTTYPE = ' '

ENDIF

CALL DDPUTRC(REFTAB,MITEMM2,MRECM2,MSTA)
IF (MSTA NE 0) CALL CPABORT

ENDDO

IF (NOFOUND.GT.I) REFTAB(7) = l
ENDIF '

C %%% ManuaI code : DispIay text mark

IF (EXECUTE) THEN

IF (NOFOUND GT.1) REFTAB(7) = 1

C %%% Loop for every Iine in region

DO FOR I = REFTAB(7), REFTAB(7)+NOFOUND—l

C %%% Get data from database buffer
IF (EVERYLIN E0 0) THEN

CALL CPINRC(I,KITEMA1,KRECA1)
ELSE

CALL CPINRC(1,KITEMA1,KRECA1)
ENDIF

C %%% Get data from screen buffer
REFTAB(7) = I
CALL DDGETRC(REFTAB,MITEMM2,MRECM2,MSTA)
IF (MSTA.NE.O) CALL CPABORT

IF (AlATTNR GT 0) THEN
MZTZTYPE 'T‘

ELSE
MZTZTYPE ' '

ENDIF

CALL DDPUTRC(REFTAB,MITEMM2,MRECM2,MSTA)
IF (MSTA.NE.O) CALL CPABORT

ENDDO

IF (NOFOUND.GT.1) REFTAB(7) = 1
ENDIF

C End of manuaI code.

C %%% Display on screen

Norsk Data ND—60.219.1 EN

CompTete Program Generator 159
A programming exampTe

CITMSUBil) = '—:*'
CALL CPDISP(REFTAB,MITEMM2,MRECM2)

When the user caTTs the free text, the appiication cannot know whether it
is free text for person (AlTTNR) or for seniority (AlATTNR) that shouid be
used. So that the user can give this information, we add the
necessary additionai code before and after the CPFRTXT caTT.

The Way of doing this, i.e. asking the user a question and reading the
user‘s repTy, may vary. The method we have chosen in this exampTe may be
used for up to 10 free texts in connection with the same record:

The user chooses the type of free text by typing in a digit from 1 to 9
(in our exampie 1 and 2). CPFRTXT is then be caTTed with the correct
parameters, given by the user. This method invoTves three
manuai code sections. HeTp variabies for communication with the user must
be deciared. This is done using manuai code at the beginning of the
program:

$INCLUDE (abm—user)CP~PROBOT—COM:INCL

C %%% Manuai code : Manuai deciaratons
C CHR : Response code from user.
C

INTEGER CHR
C %%% End of manuaT code.

C %%% ABM interface

$INCLUDE (CCO~ADM—INCL)DECDDI—PROSAJOU

Question to user and reading of repiy, as weTT as assignment of
parameter vaTues is aTT done before CPFRTXT :

C %%% Read response code

CALL CPRSPNS(REFTAB,MITEMM2,MRECM2)

C %%% Text no. database item name
CNAME = 'AlTTNR ‘

C %%% Text no. database item vaiue
TXTNR = AlTTNR

C %%% Text indicator fie name
TYPNAM = ”MZTTYPE ”

C %%% Text indicator fieid vaiue
CTYPE = MZTTYPE

C %%% ManuaT code : Find which additionai text is wanted :
IF (CPABLED(FLFRTXT,1)) THEN

CALL DDCMSGE(MSTA)
IF (MSTA.NE.O) THEN

‘CALL CPABORT

Norsk Data ND—60.219.1 EN

160 CompIete Program Generator
A programming exampIe

ELSE
C %%% DispIay question for user.

CALL CPGETMSG(103)
CALL DDWMSGE(ITEXT,MSTA)
IF (MSTA NE.O) THEN

CALL CPABORT
ELSE

C %%% Init. variabIes.
CHR = 0

C %%% Read repIy.
DO WHILE (CHR.NE.49.AND.CHR.NE.50.AND.MSTA.EQ.O)

CALL FCRCHR(CHR,MSTA)
ENDDO
IF (MSTA.EQ.O) THEN

C %%% Give parameters correct vaTue according to repIy.
IF (CHR.EQ.49) THEN

C %%% Has been given vaIue via generated code.
ELSEIF (CHR.EO.50) THEN

CNAME = ’AlATTNR ‘
TXTNR = AlATTNR
CTYPNAM = 'M2T2TYPE'
CTYPE = M2T2TYPE

ENDIF
ELSE

CALL CPABORT
ENDIF

ENDIF
ENDIF

ENDIF
C
C End of manuaI code.

C %%% Swap to free text appIication
CALL CPFRTXT(REFTAB,TYPNAM,TXTNR,CTYPE,MITEMMZ,

* MRECMZ,INAME,MITEMM1,MRECM1,MITEMM2,MRECM2,MAINTAB(4))

ImmediateTy after CPFRTXT, the text number must be saved:

C %%% Swap to free text appTication
CALL CPFRTXT(REFTAB,TYPNAM,TXTNR,CTYPE,MITEMMZ,

* MRECM2,INAME,MITEMM1,MRECMI,MITEMM2,MRECM2,MAINTAB(4))

ENTEXT = .TRUE.

C %%% Manuai code : Return text no. and dispTay 'T‘ if necessary:
IF (EXECUTE) THEN

IF (CHR.EQ.49) THEN
C %%% WiTI be given vaIue via generated code.

ELSEIF (CHR.EO.50) THEN
ENTEXT = .FALSE.
AlATTNR : TXTNR
MZTZTYPE = ‘ ‘
IF (AlATTNR.NE.0) MZTZTYPE = 'T‘
CITMSUB(1) = ‘+:M2T2TYPE*‘

ENDIF
ENDIF

Norsk Data ND—60.219.1 EN

CompIete Program Generator
A programming exampIe

C Manua] code ends.

IF (EXECUTE) THEN
IF (ENTEXT) THEN

C %%%
AlTTNR = TXTNR

C %%% If text connected, dispIay 'T'
MZTTYPE = ' ‘
IF (TXTNR.GT.O) MZTTYPE = 'T'
CITMSUB(1) = '+ M2TTYPE *‘

ENDIF
CALL DDWFLDS(REFTAB,MITEMM2,MRECM2,MSTA)
IF (MSTA.NE 0) CALL CPABORT

ENDIF

Norsk Data ND—60 219.1 EN

161

162 Complete Program Generator
A programming example

10.8.13. SELECTION OF RECORDS

When listing from the database to a screen picture, it is possible to
seTect the records you want displayed. CPGET either fetches one record at a
time (EVERYLIN=1), or as many records as there are lines in the screen
picture (EVERYLIN=0). This is controlled by the parameter EVERYLIN.
Complete—PG sets EVERYLIN to O at the beginning.

In our example, during querying, we now want to list all the employees with
a code equal to the firm's code, as long as it is different from 1. If the
firm‘s code is equal to 1, all employees are to be listed. While a user is
modifying or deleting, all employees should be listed. This may be solved
by inserting manual code before and after CPGET.

Part of the manual code where the change is made (in FORTRAN):

C %%% Get record

LAlBEDl = MlBEDNR
LAlBNRl = MlBEDNR
HAlBEDl = MlBEDNR
HAlBNRl = MIBEDNR
IF (CPKEYNK().EO. 1) THEN

LAlBEDZ = MZANSNR
ENDIF
IF (CPKEYNK() E0. 2) THEN

LAlBNRZ = MZENAVN
ENDIF

* Manual code before CPGET, select if criteria fulfilled

IF (IACTCOD.EQ.1 .AND. BlKODE.NE.1) EVERYLIN = 1

CALL CPGET(EVERYLIN,REFTAB, 1,KIA18ED,KVAIBED,
* MITEMM2,MRECM2,KITEMA1)

CALL CPGET(EVERYLIN,REFTAB, 2,KIA1NAV,KVA1NAV,
* MITEMM2,MRECM2,KITEMA1)

IF (EXECUTE .AND. IACTCOD.NE 2 .AND. EVERYLIN E0.0) THEN
I = REFTAB(7)

C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1,KRECA1)

ELSEIF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.1) THEN
I = 1

C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1,KRECA1)

ENDIF

* Manual code after CPGET
* Only employees with the same code as firm are to be listed

IF (EXECUTE .AND. EVERYLIN.EQ.1) THEN
'IF (AlKODE.EQ.BlKODE) THEN

CALL CPENABLE(FLOK)
ELSE

Norsk Data ND—60.219.l EN

Comp1ete Program Generator 153
A programming exampIe

CALL CPDISABL(FLOK)
ENDIF

ENDIF

C %%% Disp1ay on screen

CITMSUB(1) = '—:*'
CALL CPDISP(REFTAB,MITEMM2,MRECMZ)

*....Manua1 code after cpget.
* On1y emp1oyees with same code as firm are to be 1isted.

Norsk Data ND-60.219.l EN

164 CompTete Program Generator
A programming exampIe

Part of the manuaT code where the change is made (in COBOL):

* %%% Get record

MOVE SCV—Ml—BlBEDNR TO DBKV—AlANSAT—AlBEDAN—LOW—1.
MOVE SCV~Ml—BlBEDNR TO DBKV-AlANSAT—AlBNRNA—LOW—1.
MOVE SCV—Ml—BlBEDNR TO DBKV—AlANSAT—AIBEDANAHIGH~1.
MOVE SCV~M1—BIBEDNR TO DBKV—AlANSAT—AlBNRNA—HIGH—1.
CALL 'CPKEYNC' USING KEY—NO.
IF KEY—NO = 1

MOVE SCV—MZ—AIANSNR TO DBKV—AlANSAT-AIBEDAN—LOW~2.
CALL 'CPKEYNC' USING KEY—NO.
IF KEY—NO = 2

MOVE SCV—MZ-AIENAVN TO DBKV—AlANSAT—AlBNRNA—LOW—2.

*....ManuaT code before CPGET. SeTect if criteria fqiTTed

IF MAINTAB(5) EOUAL 1
AND DBV—BlBEDR—BIKODE EQUAL 1

MOVE 1 TO EVERYLIN.

CALL ‘CPGET‘ USING EVERYLIN, DDC—REF-TABLE, 1,
DBKI—AlANSAT—AIBEDAN ,
DBKV—AlANSAT—AIBEDAN , DDS—M2vSUBSCHEMA,
SCV—MZ, ODB~A1ANSAT—SUBSCHEMA.

CALL 'CPGET' USING EVERYLIN, DOC~REF—TABLE, 2,
DBKI—AlANSAT—AIBNRNA ,
DBKV—AlANSAT—AIBNRNA , DDS~M2—SUBSCHEMA,
SCV—MZ, DDB—AlANSAT—SUBSCHEMA.

IF EXECUTE = 1
AND EVERYLIN = O
AND MAINTABIS) NOT = 2
MOVE SCC—START~RW—LINE TO INDX

* Get data from databasebuffer
CALL 'CPINRC' USING INDX, DDB~A1ANSAT—SUBSCHEMA,

DBV—AlANSAT
ELSE

IF EXECUTE = 1
AND EVERYLIN = 1
AND MAINTAB(5) NOT = 2
MOVE 1 TO INDX

* Get data from databasebuffer
CALL 'CPINRC‘ USING INDX, DDB—AIANSAT—SUBSCHEMA,

DBV—AlANSAT.

*....ManuaT code after CPGET
* OnTy empoees with the same code as firm are to be Tisted

IF EXECUTE EQUAL 1
AND EVERYLIN EQUAL 1

IF DBV—BlBEDR—BIKODE EQUAL DBV—AlANSAT—AIKODE
CALL 'CPENABLE' USING TRIGGER~OK

ELSE
CALL 'CPDISABL' USING TRIGGER—OK.

Norsk Data ND—60.219.1 EN

Comp1ete Program Generator 165
A programming examp1e

CALL 'CPDISP' USING DDC—REF«TABLE,
DDS—MZ—SUBSCHEMA,
SCV—MZ.

Norsk Data ND—60.219.l EN

166 Complete Program Generator
A programming exampie

10.8.14. READING OF KEY IN SEVERAL READ CALLS

Sometimes you may want to read the key in severai separate READ caiis. You

might want to dispiay some information in between, or you do not want a1]

key fieids to be read, depending on what is given in the preceding key
fieids.

Read the key in several separate READ calls by using the generated CPKEY
caii for the fieid that is to be read first. Afterwards, use the ABM
DDRFLDS for the remaining fieids. In order to terminate the DDRFLDS caii in

the same way as the reading of fieids in Compiete—PG'S subroutines, you can
appiy the subroutine CPTERMCH.

Exampie:

In the picture, the key consists of firm number + department + empioyee
number.

First, the firm number is to be read. Then, the name of the firm is to be
fetched from the firm reaim and displayed in the picture before department
and empioyee number is read. If the firm number you have typed in does not
exist, a message is to be dispiayed, and you have to type in the firm
number once more.

Norsk Data ND—60.219.l EN

Compiete Program Generator 167
A programming exampie

C Manua] code before CPKEY
CITMSUB(1) = '+:MlBEDNR*'

C End of manuai code for CPKEY

CALL CPKEY(REFTAB,MITEMM1,MRECM1,FLACTCOD,FLREAD)

C Manuai code after CPKEY

IF (CPABLED(FLREAD,1)) THEN; % i.e. firm number is read

<Fetch firm name from firm rea1m>

IF (firm not found) THEN
<dispiay message>
CALL CPJUMP(FLKEY)

ELSE
C firm found, dispiay name and
C read rest of key

CITMSUB(1) = '+MlBNAVN*'
CALL DDWFLDS(REFTAB,MITEMM1,MREM1,MSTA)

IF (MSTA.NE 0) THEN
CALL CPABORT

ELSE
CITMSUB(1) = ‘+:M1AVDNR M1ANSNR*'
CALL DDRFLDS(REFTAB,MITEMM1,MREM1,MSTA)

IF (MSTA.NE.0) THEN
CALL CPABORT

ELSE
CALL CPTERMCH(RETAB,MITEMM1,MREM1,FLKEY,FLREAD)

ENDIF
ENDIF

ENDIF
ENDIF

C End of manuai code after CPKEY

Norsk Data ND—60.219.1 EN

\rOt8ml9neGmaP.g0mfD.et91|D.m0C

168

Norsk Data ND-60.219.1 EN

CompTete Program Generator 171
Interface to menu controT system

11. INTERFACE TO MENU CONTROL SYSTEM

ATT programs generated by Compiete—PG are subroutines,
and have to be started by a main program or menu controT

‘system. This menu controT system takes care of the
foTTowing tasks:

a opens databases

. initiates FOCUS

0 presents menus on the screen and read menu choice

0 caTTs chosen program

0 cToses databases

0 terminates FOCUS

NOTE:
When you have started the generating of a program by
giving the command 'X', you are asked whether you
want a main program to be generated. If you reply
'Y', a main program will be generated to take care of
the above tasks.

There are aTso some other tasks that have to be soTved
through cooperation between the generated program and
the menu controi system. These tasks are:

9 Find out whether the user has access to the
chosen program, and if so, what kind of access
(onTy querying, or fuTT access).

a Fetch a free code connected to each user. This
free code may for instance be the administration
unit the user beTongs to.

a Reserve fTags and check against SIBAS before
updating, and reiease fiags after updating.

0 Take care of direct transfer to a new program,
and transfer data area (main key).

Norsk Data ND—6O 219.1 EN

172

11.1. SUBROUTINES 0N CP—Dunmv-LIB

Compiete Program Generator
Interface to menu controi system

FRIKODE (CFRIKODE)
CFRIKODE (IFRIKODE)

Parameter iist:

Routine description:

cnapux;(IAcs)

Parameter Tist:

Routine description:

SMRESRV (IFLAG)

Parameter Tist:

Routine description:

SMRELES

Parameter Tist:

Routine description:

A dummy Tibrary caiied CP—DUMMY-LIB:SYMB comes with
Compiete—PG. Here you find the subroutines that wiTT
execute tasks in cooperation with the menu controi
system.

The subroutines are empty, because you have to adapt
them to your menu controi system. If there is a
feature that you do not want in your system,
simpiy Teave the subroutine empty.

Here foiiows a description of the routines on
CP—DUMMY—LIB:

FORTRAN
COBOL

Character*40 CFRIKODE
INTEGER*2 IFRIKODE(20)

This routine fetches a text string or code of 40
characters which may be connected to each user
defined in the menu controi system. This text string
may contain genera] information about the user, such
as administrative unit and what kind of access the
user has.

INTEGER IACS

Checks whether the user has access to the program
that s/he has chosent

Output: IACS = O : no access.
: 1 : querying oniy.
= 2 : fuTT access.

INTEGER IFLAG

The routine reserves fiags and takes checkpoint.’

Input: IFLAG O : conditionai checkpoint.
1 : unconditionai checkpoint.

None.

The routine reieases fiags.

Norsk Data ND~60.219.1 EN

Complete Program Generator 173
Interface to menu control system

Direct transfer
from a program:

When there is a direct transfer from one program to
another, the calling program builds up a buffer with
key values that are to be sent from the calling
program and received by the called program.

Here follows a description of the subroutines with
parameters that take care of this transfer.

CPSEND (MERARRAY. STATUS)

Parameter list:

Routine description:

INTEGER NUMBER , STATUS
INTEGER*2 ARRAY(*)

The subroutine is called in the calling program, and
transfers a buffer from the calling program to the
called program.

NUMBER : number of 16—bit words that may be
sent (today a maximum of 200).

ARRAY : buffer with the transferred key items and
key values.

STATUS = O : means OK.

CPRECEIVE (NlMBER.ARRAY.STATUS)

Parameter list:

Routine description:

INTEGER NUMBER , STATUS
INTEGER*2 ARRAY(*)

The subroutine is started from the called program,
and receives a buffer from the calling program. The
subroutine makes the buffer available to the calling
program.

NUMBER : number of 16—bits words that are
- transferred (today a maximum of 200).

ARRAY : buffer with the key items and key
values that are transferred.

STATUS l : data may be received.
0 : no data to receive.

Status is set to 0 when transferred data is
received.

Norsk Data ND—60.219 1 EN

174 Complete Program Generator
Interface to menu contro] system

AUTOFUNK (DIRECTIONISTATUS)

Parameter list:

Routine description:

INTEGER DIRECTION , STATUS

The subroutine is caiied in the caiiing program when
the command to start the next program or to start
the previous program is given. The routine checks
whether this current program has any foiiowing or
preceding program defined.

If the program has a foiiowing or preceding program
defined, the program is ended. If not, a message is
dispiayed on the screeen.

DIRECTION = 1 check whether a foiiowing
program exists (NAPL given)

= —1 : check whether a preceding
program exists (PAPL given)

STATUS = 1 foiiowing/preceding program
exists.

= O : foIiowing/preceding program
does not exist.

Norsk Data ND—60.219.1 EN

Complete Program Generator 177
Free text function

12. FREE TEXT FUNCTION

The free text function in Complete—PG gives you the
possibility of connecting a number of text lines to
records in the database.

The free text function works like a standard Complete—PG
line—oriented function, with standard Complete—PG
commands and function keys.

: Here we shall have a closer look at what is required of
_ the database when the free text function is used.

12.1. DATABASE REQUIREMENTS

Free text item a Each realm with records you want to connect free
text to, must contain a free text item. This item must
be called:

XXTNR in FORTRAN where XX=realm prefix
, TNR in COBOL
i
XcThe item must be defined as INTEGER*4, and be 9

characters long, i.e. PIC 9(9).

0 TTYPE must only be defined for lines or records
belonging to realms with TNR/XXTNR items in the
database. See page 20.

a The TTYPE field is an indicator field which displays a
'T' if there is free text in the record. Otherwise,
the field will be blank. The field is only used for
output.

12.2. USE OF FREE TEXT FUNCTION

Calling The free text function can be called from all programs
free text: that are defined with free text. Call the free text

function either by

a giving the command 'TEXT‘ in the command field, or

o pressing this function key”I11H

The cursor must be in the part of the picture/record
where TTYPE is defined.

Norsk Data ND~60.219.1 EN

178

Querying:

Storing/
modifying/
deleting:

Complete Program Generator
Free text function

If there is free text belonging to a record (shown by
TTYPE field = T), the free text function may be called
during a query. If it is called, and there does not
exist any free text in the record (the TTYPE field is
blank), a message will be displayed saying that no free
text is registered.

The record you want to connect free text to must be
registered before the free text is added. In order
to store, modify or delete free text, you must enter
the record that the text is going to be connected to,
with"modification' access. Then call the free text
function.

Norsk Data ND~60.219.1 EN

CompTete Program Generator 181
The HELP function in CompTete—PG

13. THE HELP FUNCTION IN COMPLETE~PG

HELP on The HELP function in CompTete—PG is fTexibTe, and
severaT designed to give the user of the CompTete—PG
TeveTs generated appTication, heTp on most TeveTs. Via the

HELP function, the user may get heTp information
about:

1. the appTication he or she is using.
2. each fie in the screen picture.
3. each message the appTication dispTays.
4. aTT TegaT command words which can be used in the

appTication.
5. aTT TegaT function keys which can be used in the

appTication.

Dynamic heTp The heTp information is dynamic. Authorized users
information may modify/register/deTete heTp information. The

amount of heTp text that can be stored is Timited
onTy by the storage space in the SIBAS database.

13.1. DATABASE REQUIREMENTS

Separate The CompTete-PG HELP function stores aTT heTp
reaTm information on a separate reaTm in the database‘

This reaTm, D7HELP, must be inserted in the
database before the PG heTp function can be used.

CP—REDEF—HELP The insertion of the reaTm is performed by running
SIB—DRL with the fiTe CP—REDEF—HELP:SYMB.

This fiTe first has to be adapted by adding the
database name, OS fiTe name and system reaTm name.

13.2. PROGRAMMING WITH THE PG HELP FUNCTION

During the generating of programs with the
CompTete—PG 2C version, the code for caTTing the PG
heTp function wiTT be generated automaticaTTy for
aTT appTications. The programmer need not think
about the PG heTp function when programming.

Norsk Data ND—60.219 1 EN

182 Complete Program Generator
The HELP function in Complete—PG

13.3. ”STAND-ALONE"

Subroutine Used stand—alone, the PG help function may be
called in a menu system by calling the subroutine
AJHELP.

Independent The PG help function may also be run as an
program independent program or domain. In that case, a main

program that calls AJHELP must be written:

PROGRAM HELP
C ————————————————————————————— Main prog. for AJHELP.

CALL AJHELP
END

This main program is compiled and loaded in the same
way as a standard PG application.

R: 13.4. FROM A USER APPLICATION

The PG help function may be called from the user
applications in several ways. Depending on the type
of help that is wanted, the function may be called
by means of five different function keys, or it may
be called via the help menu, which is activated by
pressing SHIFT + HELP.

Norsk Data ND—60.219.1 EN

CompTete Program Generator
The HELP function in CompIete—PG

13.1I.1. OVERVIEW OF THE HELP FUNCTION

SHIFT + HELP

Function key
USER

APPLICATION

SHIFT + HELP
key

Menu choice
HELP H E L P

MENU PICTURE FUNCTION

SHIFT + HELP I l
key L ‘ key

SHIFT + HELP key

Overview of
aTT TegaT
function keys

Overview of
a1] TegaT
command words

Norsk Data ND-60 219.1 EN

183

184 Compiete Program Generator
The HELP function in CompTete—PG

THE FUNCTION KEYS ARE:

FIELD : CaTT to the heTp function for heTp information
about fies‘

PARA : CaTT to the heip function for help information
about the user appTication.

SENT : CaTT to the heTp function for heip information
about the Tast message.

WORD : CaTT to the heTp function for heTp information
about command words.

FUNC + T : CaTT to the heTp function for heTp information
about function keys.

SHIFT + HELP : CaTT for the heTp menu.

HELP MENU FOR CmPLETE—PG:

CompTete PG HELP menu.

HeTp information about: CaTTed directTy from function:

. 1.Fie1d. FIELD

. 2.Picture. PARA

. 3.Messages. SENT

. 4.Function key. FUNC + T
HELP gives an overview of aTT TegaT function keys.

. 5 Command word. WORD
SHIFT + HELP gives an overview of aTT TegaT command words.

Navigate with i / 1 and choose with a / (ENTER key).

HeTp may aTso be chosen by Leave heTp with EXIT
pressing 1—5 directiy!

Norsk Data ND—60.219.1 EN

Complete Program Generator 185
The HELP function in Complete-PG

HELP FUNCTION mm QUERY ACCESS

Help concerning If the help function is called when you have query
field, access, the user in the cases 1, 2, and 3 (cf. the menu
application, picture) will only get help information about the given
message field/given application or last message. The user will

only be able to page through the help information
registered about this field, function or message.

Help concerning In cases 4 and 5 (cf. the menu picture) the user will be
command word able to type in the command word or press the function
or function key key and get a display of registered help information

about this command word or function key. A new command
word or function key will be read until the EXIT key is
pressed.

HELP FUNCTION PICTURE:

Complete-PG HELP FUNCTION

.......«rfw,... Leave help, return to

...........E...... function, press: EXIT

..

The help function picture will vary according to which
types of help information is sought. On the 11 lower
lines, the help information will be displayed. This is
the part you may scroll through, if more than 11 lines
of help information is registered. A maximum of 999
lines of help information may be registered.

The upper part of the picture will look as follows,
where XXXXXX is the field name in ABM, YYYYYYY is the
function name of the calling function, and 999 is the
message number.

Norsk Data ND—60.219.1 EN

186 CompIete Program Generator
The HELP function in CompTete-PG

PG HELP FUNCTION CALLED FOR HELP ABOUT FIELDS:

CompIete—PG HELP FUNCTION

Leave heTp, return to
function, press: EXIT

HELP INFORMATION:

HeTp information about fie: XXXXXXXX . In function : YYYYYY .

.................. <.HeTp information about the fie.>................

HELP FUNCTION CALLED FOR HELP ABOUT FUNCTION

CompIete~PG HELP FUNCTION
,/""\

I Leave heTp, return to
" function, press: EXIT

HELP INFORMATION:

HeTp information about function: YYYYYYYY .

.................. <.HeTp information about function .>................

PG HELP FUNCTION CALLED FOR HELP ABOUT MESSAGE:

CompIete—PG HELP FUNCTION

Message number : 999 Leave heTp, return to
function, press: EXIT

HELP INFORMATION:

999 : < Tast message >

.................. <.HeTp information about Tast message.>..............

Norsk Data ND—60.219.1 EN

Compiete Program Generator 187
The HELP function in CompTete-PG

PG HELP FUNCTION CALLED FOR HELP ABOUT COMMAND WORD:

CompTete~PG HELP FUNCTION

Leave heTp, return to
function, press: EXIT

Give command you want heip information about:

HELP INFORMATION:

.................. <.He1p information about command word.>.............

PG HELP FUNCTION CALLED FOR HELP ABOUT FUNCTION KEY:

CompTete—PG HELP FUNCTION

Leave heTp, return to
function, press: EXIT

Press function key you want heTp information about:

HELP INFORMATION:

.................. <.He1p information about function key.>.............

Norsk Data ND—60.219.1 EN

188 Complete Program Generator
The HELP function in Complete—PG

HELP FUNCTION mm UPDATE ACCESS:

If the help function is called with update access, the help picture
will look as follows:

Compiete~PG HELP FUNCTION

Code : Message number : Leave help, return to
Function : Field name : function, press: EXIT
Press function key you want help info. about:

HELP INFORMATION:

..

..

..

..

..

..

The user will now be able to update all five types of help information.
The keys for the five types of help information are:

Type of help: Key:
I

1. Help on field 3 Code + function name + field name.
2. Help on function : Code + function name.
3. Help on message : Code + message number.
4. Help on function key : Code + function key.
5. Help on command word : Code + command word.

Norsk Data ND—60.219.1 EN

Compiete Program Generator 189
The HELP function in CompTete—PG

FIELD EXPLANATION:

Code

Function name

Fieid name

Message number

Function key

Command word

This fieid may be Teft open if you do not use a TP
monitor such as TRUE.

The name of the function. The name is set
automaticaiiy when generating functions in
Compiete—PG.

Is the name of the fie in the screen picture in
the user appiication. The name is fetched from ABM.

The number of the message, from the message fiTe.

The FOCUS code for function keys.

The command words in PG appiications.

In standard PG functions, the user may aiternate
between the five keys in the function, and ask for,
register, modify and remove help information.

Norsk Data ND—60.219 1 EN

za
mfg

fl)¢¢wfimwwxxm
%v

A.
wan

.ww»).
e4?

P.OtaP.eneGmar.g0FD.ete1|D.m0C

Norsk Data ND—60.219.1 EN

190

Complete Program Generator 193
Other auxiliary routines

OTHER AUXILIARY ROUTINES

CP“SERVICE A separate service library, CP—SERVICE, contains
subroutines that may profitably be used for manual
programming‘ Some service routines are made
especially for setting, resetting or testing the
flags for the various routines.

Below, you will find a description of the various
service routines.

LOGICAL FUNCTION CPABLED (FLxxxx. WORD)

Parameter list:

Routine description:

INTEGER FLXXXX, WORD

The function tests whether the specified flag
is set. TRUE is returned if this is the
case.

CPABORT

Routine description: Aborts/terminates the program. Must be called when
errors occur. CPABORT should be called if an error
occurs in a SIBAS file or a FOCUS file.

CPABORT resets all flags so that the DO loop is
ended, and CPEND is called. CPEND will, if MSTAfO
or KSTATfl, write an error message to the error
message file.

NOTE:
An error message is written by CPEND only if
MSTA¢O or KSTATvél.

Norsk Data ND—60.219.1 EN

194

CPBYTE (IUNIT.CLINE)

Parameter Tist:

Routine description:

CompTete Program Generator
Other auxiTiary routines

CHARACTER*(*) CLINE
INTEGER IUNIT

Writes a text string to a specified unit number
without using FORTRAN I/O.

FUNCTION CPCAVD (INTEG)

Parameter Tist:

Routine description:

CHARACTER CPCAVD*10
INTEGER*4 INTEG

Converts a doubie integer to a character string.

-//FUNCTION CPCAVINT (INTEG)

Parameter Tist:

Routine description:

CHARACTER CPCAVINT*5
INTEGER*2 INTEG

Converts an integer to a character string.

CPDATUM (CDATUM.DATE)

Parameter Tist:

Routine description:

CHARACTER*(*) CDATUM
INTEGER*4 DATE

Fetches the current date and time. Moves this
information to a text string.

CPDELTXT (TTNR.KSTAT)

Parameter Tist:

Routine description:

INTEGER*4 TTNR I
INTEGER KSTAT O

DeTetes aTT existing text lines on text number TTNR
from the D3TEXT reaTm in the database. If everything
is OK, KSTAT wiTT be returned with a vaTue of 1.

If KSTAT is different to 1, a SIBAS error has
occurred.

KSTAT must be tested after the routine caTT.

Norsk Data ND—60.219.l EN

Compiete Program Generator 195
Other auxiTiary routines

CPDISABL (FLxxxx)

Parameter Tist:

Routine description:

INTEGER ELxxxx (FORTRAN)
INTEGER TRIGGER—xxxx (COBOL)

FLxxxx = fTag of a PG routine. Resets the fTag of a
routine (i e. the routine wiTT not be executed).

CPENABLE (FLxxxx)

Parameter Tist:

Routine description:

INTEGER FLXXXX (FORTRAN)
INTEGER TRIGGER—xxxx (COBOL)

FLxxxx = fTag of a PG routine you want executed.
The routine sets this fTag.

CPGETMSG (MSGNO)

Parameter Tist:

Routine description:

INTEGER MSGNO

Gets the message text corresponding to the given
message number from the message fiTe, and moves the
message text to CTEXT.

CPIENABL (TRIGGER’XXXX.RESULT)

Parameter Tist:

Routine description:

INTEGER TRIGGER—xxxx (Input)
INTEGER RESULT (Output)

The routine tests whether the specified fTag is set.

RESULT = 1 if the fTag of the PG routine is set,
otherwise RESULT = O.

CPIN (ISUB)

Parameter Tist:

Routine description:

INTEGER*2 ISUB(4)

The routine must be caTTed at the beginning of each
subroutine, in order to get the current subroutine
name written to the error message fiTe if an error
occurs in the routine.

Norsk Data ND—60.219.1 EN

196

CPINITEM (REFTAB."FIELDNAME") <= FORTRAN
CPINITEM (REFTAB.FIELDNAME) <= COBOL

Parameter Tist:

Routine description:

CPINVER.

CompTete Program Generator
Other auxiTiary routines

INTEGER*2 REFTAB(*), fieidname*(4)

The routine puts fieid names into REFTAB. CPINITEM
buds a REFTAB Tist for use in, for exampTe,

CPINVER (REFTABMITEMMREC)

Parameter Tist:

Routine description:

INTEGER*2 REFTAB(*), MITEM(*), MREC(*)

The routine sets aTT screen picture fieids defined
in REFTAB, into inverse video, and dispTays a
message for the fies having an iTTegaT vaTue.
The Tast executed CPREAD caTT is then executed
again.

camp (FLAG)

Parameter Tist:

Routine description:

INTEGER FLAG : (Input) The name of the
the routine you want to
activate (= FLxxxx).

This routine activates the desired routine, and
skips intermediate routines (resets aTT fTags) and
intermediate manuaT code.

CPMESS

Parameter Tist:

Routine description:

None.

DispTays the message in CTEXT. If the Tast
subroutine caii was CPREAD, this caTT is activated
once more, whereas intermediate routines and manuaT
code are skipped.

Norsk Data ND—60 219.1 EN

Complete Program Generator 197
Other auxiliary routines

CPOUT (ISUB)

Parameter list: INTEGER*2 ISUB(4)

Routine description: If CPIN has been called at the beginning of a
subroutine, CPOUT must be called at the end. The
routine checks whether an error has occurred
(NOERR=.FALSE.).

CPEND

Parameter list: None.

Routine description: Terminates the program.

CPSWAP (INTEGl. INTEGZ)

Parameter list: INTEGER INTEGl, INTE62

Routine description: Swaps the contents of INTEGl and INTEGZ.

CPTERMCH (REFTAB. MITEM. MREC. PREV, NEXT)

Parameter list: INTEGER*2 REFTAB(*), MITEM(*), MREC(*)
INTEGER PREV, NEXT

Routine description: PREV contains the flag of the routine to be executed
when the user presses the left arrow. NEXT contains
the flag of the next routine to be executed.

The routine controls the termination after a read
call in the same way as the read calls in CPREAD.
(See description of function keys.)

CPTOKEY

Parameter list: None.

Routine description: Activates the CPKEY routine, so that a new read of
the key field is permitted. Skips all intermediate
routines and intermediate manual code.

Norsk Data ND—60.219.1 EN

198 Compiete Program Generator
Other auxiiiary routines

CPTRNSFR (ARRAvl . P061 , ANTALL ,ARRAVZ. P032)

Parameter 1ist: INTEGER*2 ARRAY1(*), ARRAY2(*)
INTEGER P051, NUMBER, P032

Routine description: Transfers data from ARRAYl position P051 to ARRAYZ
position P052.

NUMBER = Number of words to be transferred.

Norsk Data ND—60.219.1 EN

Comp1ete Program Generator 199
Other auxi11ary routines

Norsk Data ND—60 219.1 EN

< I >

I N D E X L I S T

Index term Reference

action code . . . :1 31, 49
additional code 1 42
additional programming 59, 148
AK 32
alternative key , 32
alternative search key 31
author 27
AUTOFUNK 174
auxiliary routines 1 . . 193
batch processor 42
BK field 19
blank a line 46
blank a region 1. 46
BRF—file 1 . . 27
calculation of fields . ,1 153
CAPABLED 193
CFRIKODE 172
CHCKACS 1 172
clear screen picture 26
COBOL 27
COBOL program t 84
command field , 1 14

generated , , 44
commands for separate regions 50
commands for the entire picture 52
compile 27
COMTAB 107
copy 4 . 54
copy screen picture 1. 26, 29
CPABLED 77
CPABORT 78, 193
CPACTCOD 99

1' CPBEGIN 91
’ CPBTRANS . 97

CPBYTE 1 194
CPCAVD , 194
CPCAVINT , 1 194
CPCURKC 92
CPDATUM 1 194
CPDELTXT 194
CPDISABL 195
CPDISABLE 107, 109
CPDISP 95
CP—DUMMY~LIB 172
CPENABLE 107, 109, 195
CPEND 98, 197
CPETRANS 97
CPEXIST 101
CPFRTXT A 102
CPGET 94
CPGETMSG 195

Norsk Data ND—60.219.1 EN

<II>

Index term Reference

CPIENABL . 77, 195
CPIN . . . 77, 195
CPINITEM . 196
CPINRC . . 95
CPINVER . . 151, 196
CPJUMP . 196
CPKEY . . . 93
CPKEYNC . . 93
CPMESS . . 196
CPOKCOD . . 100
CPOTHER . . 100
CPOUT 78, 197
CP—PROGEN . . 116
CPREAD . . . 96
CPREAD caiis . 69
CPRECEIVE . . 173
CPREGION . 92
CPRSPNS . . 98
CPSEND . . . 173
CP—SERVICE . 193
CP—SPEC . . 115
CPSWAP . . 197
CPTDISC . . 103
CPTDISP . . 103
CPTERMCH . 197
CPTOKEY . . 197
CPTRNSFR . 198
CPUPDATE . 97
CRSPNS . 75
CTEXT . . 75
current region . 17, 30
D fieid . . . 33
data description . 16
data fieid . 16
data set . 16
data type . . 16
date 14
date of creation . 27
deiete record . . . 26
deiete search region . 26
deietion of data . 48
DO 100p . . 82
domains 27
dummy CPREAD caii . 150
error handiing . 67
error message . . 17, 116
execute command . . 26
EXECUTE key . . 45
EX—fieid . 33
existence controi . 31, 142
exit 26, 29
exit from function . 55
expianation . . . 27
fieid termination . , 18
fieidrecord . . 30
find record . . 26, 29

Norsk Data ND—60.219.1 EN

< III >

Index term Reference

FLNEXT . I . I I I . I I I I . I I . I. I I I I I I . I I 74
form . . . I I I I I . I I I I I I I I. I I I I I I I I I 25, 26
form fiie I I I I I I I I . I I . I . .I I . . . I I . I I 26
FORTRAN I I I I I . I I I I I I I . I I. I I I I I I I I . 27
FORTRAN program I . I I I I . I . . I I I. I I . I . I . . 82
free text I I I . I I I . . I . I . . I. . I . I I I I I I 31, 155
free text function I . I . I . I I I I. I I . . I I I . . 20
FRIKODE I I I I I I I I . I . . I I .I I I I I . I . I . I 172
function keys I I I I . I I . I I I II I . . I I I I I . I 44
function keys for separate regions I I I I I I I I I . I I 50
function keys for the entire picture I . I I . I I . I I I 52
function name I I I I I . I I I . . I I. . I . . I . I I I 14
function picture I I I I . I I I I I I .I I I I . . I I I 15
generate I I I I I I . I I I I I II I I I I I I I . I I I 27
generated COBOL program I . I I I I I I .I I I I I I I . . 84
generated command fieid I I I I I I I I. . I I . I I . I I 44
generated FORTRAN program I I . I I I I . II I I . I . I . 82
HELP I I I I I I I . I . . I I I . I I. I I I I I I . I . 24
HELP key . I I . I I . I . . I I I I I I .I . I . I I I I 24
heip picture I I . I I I I I I I . I I I. . I I . . I I I 24
highiimit I . . I . . I I I I I I . . II I I I I I I . I I 33
IACTCOD . . I I . I I I I I I I . I I II I . I . I I I I I 73
index I . . I I I I I I I I . I I I I I. . I I I I . I I I 31
informative messages I I . . I . I I I I. I . I . . I I . 17
initiai vaiues I I . I I I . I I I I . II . I I I . I I I 33
instaiiation I I I I . . I I I I I I I. I I . I I I I . I 115
item I I I I I I I I . I . I I . I . I. I I I I I I . I I 33
K I I I I . . I I . I I I I I I . I I I. I I I . . . I I I 32
key I . I . . I I I I I I I . I I . . I. I I I I I I I I I 31, 33

aiternative . I I I I I I I I I I I. I I I I I I I I I 32
non—unique I I . I I I . . I I I II I I I I . I I I I 32

key fieid I I I . I I I . I . I . . I I. I I . I I I I I I 16
1ast generated I I I I I . I I I I .I . I I I . I I I I I 27
iast modification I I . . I I I I II . . I I I I I I I I I 27
iimit

high I . I . I I I I I . . I I I I. I I I I . I I I I 33
10w . I I I I I I I I I . . I I I I I. I I I I I . . . 33

Iimits I I I I I . I I I I I . I . I II . I I I . I I I I 31
iine I I I . I I I I I I I I . I . I II . I I I I I . . I 15

iogicai . I I I I . I I I . I I I II I . . I I . I I I 15
physicai I I I I I I I I I I I I .I I I I I . I I I I 15

Ioad I I I I I I . I I I I I I I I I . .I I I I I I I I I 27
ioad procedure I I I I I . I I I I I I. I I I . I . . I I 27
iogica] line I I I I I I I . . I I I .I I I I I I . . . I 15
iower 1imit I I I I I I I I I I I I I I. I . . I I I I I . 33
1ow1imit I I I I I I I I I I I I I .I I I . I I I I . I I 33
main key . I I . I I I I I I I I . I .I . I I . I . I I I 16, 31, 32

unique I I I I I I . . I . I I I I II I . . I . I I . 32
main program I I . I I I I I I I I . .I I I . I I I . . I 171
main register I . I . I I . I I I I . I II . . I I I I . . 32
MAINTAB(5) I I . I . . I I I I .. I . . I I I I I 73
manuai code . I I I . I I I I . . . I I. I I . I I I I I I 148
member region I I I I . I I I I . I I I I I I I I I 16, 45
menu controi system I I I I I I I I I I II I I I . I I I I 171
message fiie I I I I I I I . I I I I II . I I I I I I I I 63
message iine I I I I I I I I . I I I .I I . I . I I I I I 17

Norsk Data ND—6O 219.1 EN

<1V>

Index term Reference

MK 4 4 4 32
modification of data . . 4 4 . 4 4 . . 4 47
modify record . . . 4 4 . 4 . 4 4. 4 . 4 26, 29
move between regions . 4 4 4. 4 4 54
name 4 . . 4 4 . . . 3O
NOERR 4 4 4 . .. 4 4 4 74
non—unique key . 4 . . 4 4 4 . 4 . . 4 32
NRF—fiie 4 . 4 . . . 4 44 . . . 4 . . . 27
object fiiname . 4 . . . 4 . 4 . 4 4 . 4 . . . 27
object Ianguage 4. 4 4 . 4 27
OK fieid . . . 4 4 4. 4 . . . 4 . 4 . 19
OKCODE . 4 4 4. 1 4 30
owner 4 . . . 4 . .4 4 4 4 4 30
owner region 4 . . . 4 . . . 4 4. 4 . . . 4 4 . . 16, 45
ONNMESS . 4 . . 4 4 . . 4 . 4. 4 74
physicai iine 4 . 15
print 4 4 4. 54

\\ PROG-fiie . . . 4 . . 4 4 27
) PROGRAM DESCRIPTION . 4 4. 4 . 23

program id 4 . . 4 . 4 . . 27
programming exampIe 1 , 4 . 121
programming Ianguage . . . 4 . 4 4 27
query 4 4. 4 . 45
queue system for messages . . . 4 4 . .. 4 . 4 4 . 17
READCO . 4 4 4 4 69
reading of key . . . 4 4 4 . 4 4 . 166
reaim 4 4 , .. 4 4 . . . 31
record . 4 4 16
region . 4 4 . . . 4 4. . . 4 . 4 . 4 . 15

current 4 . . 4 . . . 4 4 . . . 17
registration of data 4 4 . . 4 46
routine

CPACTCOD 4 4 4 4 99
CPBEGIN 4 . 4 4 4 4 . . 91
CPBTRANS . . 4 . 4 4 . . . 4 4 . . 4 4 97
CPCURKC 4 4 4 4 . . 4 . . 92
CPDISP . 4 . . 4 4 4 . . 4 . . 95
CPEND 4 4 44 . . 4 4 . . 4 98
CPETRANS4 97
CPEXIST 4 4 . . . 4 . . . 4 101
CPFRTXT . . . 4 . . 4 102
CPGET 4 . . 4 . . . 4 4 4. . . 4 94
CPINRC . 4 . 4 4 4 4 4 95
CPKEY 4 4 . 4 4. 93
CPKEYNC 4 . . 4 4 . 4 . 4 . . 93
CPOKCOD 4 4 4 100
CPOTHER I 100
CPREAD 4 4 4 . . 4 4 . . 96
CPREGION . 4 . 4 4 92
CPRSPNS 4 98
CPTDISC 4 4 . . . 4 4 . . 4. 4 . . 4 103
CPTDISP 4 4 4 . .. 4 . . . 4 . 4 103
CPUPDATE 4 . . . 4 4 4 . 4 4 . 4 97

screen buffer 4 . . 4 . 4 33 .
screen picture . . 4 4 4 . 4 . . . 4 . . 13
screen picture PROGRAM DESCRIPTION . 4 . 4. 4 23, 25

Norsk Data ND~60.219.1 EN

< V >

Index term Reference

screen picture USE OF PROGRAM KEYS t 23, 28
scroii 54
search key , 16
search region 33
seiecting records 69
Seiection of records 162
shift to different part of picture . . , 29
side 16
SMRELES 172
SMRESRV 172
specify search region1 26
start Compiete—PG 23
start generated program ,. 44
start generating 41
status iine 17
subfunction , . . 25, 26, 3O
subroutine

CPABORT 78
CPIENABL A 77
CPIN 77
CPOUT 78

subschema 25, 26
swap screen picture 26
system name 14
TERMCOD 76
TEXT 75
text fieid 20
textfunction 31
time 14
top 1ine t 14
treatment code 19
treatment code field 19
TRIGGER—NEXT . 75
unique main key 32
upper Timit 33
use 32
USE OF PROGRAM KEYS 23
use of search key ‘ 31
USER—ENVIRONMENT 64
variabie name 89
variabie tabie 89

Norsk Data ND—60.219.1 EN

SEND US YOUR COMMENTS!

Are you frustrated because of unclear information in our
manuals? Do you have trouble finding things?t.

Please let us know if you:
— find errors
— cannot understand information
— cannot find information
— find needless information.

Do you think we could improve our manuals by rearranging
the contents? You could also tell us if you like the manual.

Send to:
Norsk Data A.S
Documentation Department
PO. Box 25 BOGERUD
N - 0621 OSLO 6 - Norway

NOTE!

‘ . This form is primarily for documentation errors. Software
and system errors should be reported on Customer System
Reports.

N COMPLETE PROGRAM GENERATOR

Manual Nameza User Manual Manual number:W

Which version of the product are you using?

What problems do you have? (use extra pages if needed)

Do 'you have suggestions for improving this manual?

C 0

Your name: Date:

Company: Position:

Address:

What are you using this manual for?

‘ \.

u
Answer from Norsk Data

kl

Answered by Date

tl

Norsk Data A.S

Documentation Department
PO. Box 25, Bogerud
0621 Os|06, Norway

tl

