® COMPLETE PROGRAM GENERATOR

User Manual
ND-60.219.1 EN

COMPLETE PROGRAM GENERATOR

User Manual
ND-60.219.1 EN

The information in this manual is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this manual,
or for the use or reliability of its software on equipment that is not furnished or
supported by Norsk Data A.S.

Copyright © 1987 by Norsk Data A.S Version 1 April 1987

Send all documentation requests to: Norsk Data A.S
Graphics Center
P.O.Box 25 Bogerud

N-0621 Oslo 6
NORWAY

TABLE OF CONTENTS

Section Page

1 Description of Complete-PG 3
2 Database structure requirements 7
3 Screen picture layout requirements 11
3.1 The screen picture . 13
3.1.1 The top 1ine . . . T ' |
3.1.2 The function p1cture Lo e £
3.1.3 Status 1line and message 11ne S 4
3.1.4 Field termination . 18
3.2 BK field and OK field . 19
3.3 Text field20
4 Generating programs with Complete-PG 21
4.1 Starting Compliete-PG e 23
4.2 The different screen pictures in Comp]ete pg Coe e 23
4.3 The screen picture PROGRAM DESCRIPTION25
4.3.1 Description of the fields in the screen pwcture PROGRAM

DESCRIPTION 4 o}
4.4 The screen picture USE OF PROGRAM KEYS S . 28
4.4.1 Description of the fields in the screen p1cture USE OF PROGRAM

KEYS -4
4.5 What happens durwng the generatwng of a program7 .o .41
4.6 The generated program - dialogue between user and screen p1cture 44
4.7 Commands and function keys 80
5 Additional programming in FORTRAN and COBOL &7
5.1 Inserting additional code . . . O 10
5.1.1 Before belonging subroutine ca]] T 10
5.1.2 After belonging subroutine call b1
5.2 How to discern between additional code and generated code I £ V4
5.3 Messages . . S 183
5.4 FORTRAN and COBOL examp}es T - 1)
5.5 Error handling . . R ¥4
5.5.1 Error handling in manua11y defwned subrout1nes b8
5.6 Several CPREAD calls . 89
5.7 READCO O o1 |
5.8 Selecting records . o1
5.9 0 1
5.10 TRIGGER-OKo

Norsk Data ND-60.219.1 EN

11

Section Page

(o3}

Program variables and routines available to a programmer 71

IACTCOD T8
MAINTAB(S) T
OWNMESS T
NOERR o 14
FLNEXT . o o o o a
TRIGGER-NEXT T8
CTEXT s
TEXT . . o T
CRSPNS s
.10 TERMCOD T8
.11 Logical function CPABLED(FLXXXX,1) 77
.12 Subroutine CPIENABL(TRIGGER-XXXX,RESULT) 77
.13 Subroutine CPIN(ISUB)
.14 Subroutine CPOUT(ISUB) . 178
.15 Subroutine CPABORT .. 78

OO0~ WP

[e)e)Nei e o) o Ne oo e o) NeNeo) o o))

~

Documentation of routines in the generated program 79

The structure of the generated program 81
An example of a generated program in FORTRAN 82
An example of a generated program in COBOL 84
Routines in the generated program 87
The most used parameters 88
Tables with variables in FORTRAN and COBOL 89
Documentation of the routines 61
CPBEGINo,
CPREGION g2
CPCURKC 92
CPKEY g3
CPKEYNC a3
CPGET9
CPINRC gs
CPDISP g
CPREAD96
.10 CPBTRANS g
.11 CPUPDATE 97
.12 CPETRANS g
.13 CPRSPNS g8
.14 CPEND g8
.15 CPACTCOD, 99
.16 CPOKCOD 100
.17 CPOTHER 100
.18 CPEXIST 1
.19 CPERTXT . . v . . o o 10
.20 CPTDISP/CPTDISC .103

N -

WO WN e

B e e N L B L IV IR IR I S N P R RN SR R SR SR SO SO
CTOTCTU ARV UIUITACTTUTT OIS DD WM

Norsk Data ND-60.219.1 EN

oo}

0 o 0

O Ww

10

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

11

11.

12

12.
12.

i1

Norsk Data ND-60.219.1 EN

Section Page
Program logic in the generated program . 105
1 COMTAB 107
2 CPENABLE(FLAG)} and CPDISABL(FLAG) . 109
3 Subroutine calls) . 109
4 How the individual bits are set . 109
5 The use of flags in the Complete-PG rout1nes 110
Installation . 113
1 Basic software requirements . 115
.2 CP-SPEC and CP-PROGEN . 115
A programming example . 119
1 Database description . . 121
2 Maintaining firms and their emp]oyees . 123
3 The screen picture: 124
4 Description of fields: . 125
5 Help pictures: . 125
6 Fi1ling in the screen pwctures 126
7 The resulting generated program . 129
8 Extending the example . 141
8.1 Existence control . 142
8.2 Display of data from another rea]m 144
8.3 Manual code . . 148
8.4 Several CPREAD ca11s) 148
8.5 CPREAD calls in manual code . . 148
8.6 Dummy CPREAD call . . .) 150
8.7 CPINVER 1instead of severa] CPREAD ca11s . 151
8.8 Overruling of messages in PG routines . 152
8.9 Calculation of fields . . 153
8.10 Updating of other realms 154
8.11 Free text in the program) 155
8.12 Several free texts on the same record in the program 157
8.13 Selection of records . . 162
8.14 Reading of key in several read ca]]s . 166
Interface to menu control system . 169
1 Subroutines on cp-dummy-1ib . 172
Free text function 175
1 Database requirements . 177
2 Use of free text function . 177

iv

Section Page
13 The HELP function in Complete-PG 179
13.1 Database requirements e R 3
13.2 Programm1ng with the PG help funct1on O < 1 4
13.3 "Stand-alone" . . . O X - 14
13.4 From a user app11catwon S P < 74
13.4.1 Overview of the HELP funct1on e ¢ < X
APPENDIX
A Other auxiliary routines191
Index 200

Norsk Data ND-60.219.1 EN

Complete Program Generator 1

PREFACE

The product This manual describes the Complete Program
Generator, which is a 4th generation
development tool.

Complete Program Generator, from now on called
Complete~PG, is a part of ABM (Application
Building and Maintenance). Complete-PG is an
effective tool for program development and
maintenance of computer systems.

Complete-PG generates error free and efficient
FORTRAN and/or COBOL programs. The programs
control an interactive dialogue between the
user and the screen, and run as ordinary
background programs.

Complete-PG is well suited for large data
volumes and many concurrent users.

Complete-PG is registered with product numbers:
ND-211108 for ND-100
ND-211109 for ND-500

The reader The manual is written mainly for programmers.

The manual The manual gives an introduction to using the
program generator Complete-PG, and explains
requirements for the database structure and
screen picture design.

The manual contains information on where to put
additionral code in the program generated code.

Various routines and program variables that can
be used 1n addition to the automatically
generated routines are also described.

Prerequisite knowledge To use Complete-PG, it is necessary to have
some knowledge about basic software on ND
computers. It is assumed that the readér knows
the SINTRAN operating system and the SIBAS
database system, in addition to the programming
languages FORTRAN or COBOL.

Norsk Data ND-60.219.1 EN

Complete Program Generator

SO TR e e b e e e e e
... ... _ __ _ _ __ @
. - e e S o G o e et o o 2
... . . C o .

Norsk Data ND-60.219.1 EN

Complete Program Generator
Description of Complete-PG

1. DescripTioN oF CoMPLETE-PG

Generation

of programs

Start

Simpler
maintenance

The program generator, which is a part of ABM, is an
efficient tool during program development. It produces
executable FORTRAN or COBOL code for screen functions.

NOTE:

Programs generated by Complete-PG are used to
manage an interactive dialogue between the user and
the screen picture.

Start Complete-PG by giving the command 'Complete-PG’
from the command line in ABM:

ABM command: COMPLETE-PG<!

In addition to making the programming easier, Complete-
PG also makes the maintenance work significantly easier.

When you want to modify a program, you first make the
necessary changes using ABM. Then simply change the
screen picture and generate the program again.

You use only two screen pictures to give commands and
parameter values to Complete-PG.

When you have finished giving your input, the generation
of the program can start. Depending on the input, one or
more of the following files are generated:

e the source version of the program
e the binary code of the program
e program file

You then start the program by typing the name of the
program as a SINTRAN command.

Complete-PG's starting point is a defined 'subschema’
and 'subfunction', and requires that the screen picture
be defined in ABM.

In addition to the rules that apply for definition of
screen pictures in ABM, Complete-PG also places
requirements on the design of the screen picture. This
is described in chapter 3.

Norsk Data ND-60.219.1 EN

Compliete Program Generator
Description of Complete-PG

Programs generated by Complete-PG are short and compact.
Most of the program code is built into standardized
subroutines. These are described in chapter 7.

For complex functions it may be necessary to put in code
manually, ie. code in addition to the code generated by
Complete-PG. How to do this is described in chapter 5.

Norsk Data ND-60.219.1 EN

Complete Program Generator g
Database structure requirements

2. DATABASE STRUCTURE REQUIREMENTS

When you want to use Complete-PG for program
development, you must consider the following points
when structuring the database:

e 'Sets' will not be treated automatically. Some
additional programming is necessary.

e A1l realms that are to be maintained automatically
by applications generated by Complete-PG must have
at least one unique key.

A11 realms that have records against which you want
to use free text, must contain one free text item.
{See page 20.)

This item must be called:

XXTNR in FORTRAN where XX = realm prefix.
TNR in COBOL. '

The item must be defined as INTEGER*4, and be 9
character positions long.

In addition, the realm D3TEXT must be defined in
the database. This is the realm where the free text
records are to be stored.

A redefinition file for installing the realm
D3TEXT 1in the user base is included when ABM with
Complete-PG is delivered.

Norsk Data ND-60.219.1 EN

10

Norsk Data ND-60.219.1 EN

Complete Program Generator

12 Complete Program Generator

Norsk Data ND-60.219.1 EN

Complete Program Generator 13
Screen picture layout requirements

3. SCREEN PICTURE LAYOUT REQUIREMENTS

5.1. THE SCREEN PICTURE

A1l communication between the user and the program is
via screen pictures.

The screen picture of programs to be generated by
Complete-PG must have a standard layout.

A screen picture consists of the following parts:

TOP LINE

FUNCTION PICTURE

STATUS LINE

MESSAGE LINE

Fig. 3.1 - The layout of a screen picture.

The top line, the status 1ine and the message line are
generated by Complete-PG. The function picture, however,
is defined by the user in the screen picture part of
ABM.

On the next pages you will find a description of the
various parts of the screen picture.

Norsk Data ND-60.219.1 EN

14

Complete Program Generator
Screen picture layout requirements

3.1.1. THE TOP LINE

The top line is the first 1ine in all screen pictures,
and it is generated automatically. It is not possible to
edit this line when you define the function picture.

The top line consists of the following fields:

command field

system name function name date and time

Command field

System name

Date and time

Function name

Fig. 3.2 - Top line.

The first field in the top 1ine is a command field that
can be used in parallel with function keys to give
commands. It is four characters long.

System name is connected to your particular system, and
must be specified in the file CP-SPEC:SYMB. This is
described in chapter 9.

The system name is displayed automatically from position
6 in the top line. It can be up to 20 characters long.

This field is used to display the date and time when the
picture is written on the screen.

The generated program will automatically retrieve and
display date and time from position 65 in the top line.

What this field is to contain, is optional.

The field is unigque for each picture, and may for
example contain the function name the user has defined
in ABM. (In the FOCUS library, there is a subroutine
which prints a text in a specified position in the
picture. Use this subroutine if you want to display
extra information in the picture.)

Norsk Data ND-60.219.1 EN

Complete Program Generator 15
Screen picture Tlayout requirements

3.1.72. THE FUNCTION PICTURE

line 1

line 2

line n

Region
Logical Tine

Physical tline

The function picture is the part of the screen picture
the user defines/draws using the screen definition part
of ABM.

Note that line two is the first 1ine you can use to make
your own screen picture. {The first line is reserved for
the top line.)

When the program is generated, you use the function
picture to enter, retrieve and modify data.

key field . data field

key field . data field
REGION 1

key field . data field
REGION 7

Fig. 3.3 - The function picture.

A function picture consists of one or two regions.
Each region may consist of one or more logical lines.

A Togical 1ine may consist of one or more physical lines
on the screen.

NOTE:

From now on, we will us 'line’' to refer to 'logical
line'.

Norsk Data ND-60.219.1 EN

16

Record
Key field
Data field

Search key

Unique

main key

Data set

Page

Owner region

Member region

Several lines

Key field
requirements

Complete Program Generator
Screen picture layout requirements

What we here call a line, is called a 'record' in the
ABM manual, under the description of screen pictures.

A line consists of a key field and a data field.

A key field is a field which corresponds to search keys
in the database. For each search key there may be

one or more key fields. The values you enter here are
used to search for data in the database. The data that
is found, is then printed in the data fields on the
screen.

One or more search keys may be connected to a 1ine. One
key must be defined as main key, and this must be unique
in the database.

A data set consists of all data that can be displayed on
a line, both in key fields and data fields.

A page is defined as all data that can be displayed in a
region, i.e. all data sets in a region.

Data sets in two regions may 'belong together'. If two
regions 'belong together', one of them is the owner
region and the other a member region. An owner region
can only contain one line.

It is simple to define many lines in a region, using the
screen picture part of ABM. It is only necessary to
define the first line in the region completely. Then
copy as many lines as you want using the COPY key. A new
field name is generated automatically for the first
field in each line that is copied. The field name will
be different for each line.

When defining a field in the screen picture, you refer
directly to the corresponding item in the database. If a
database-item is not used, you must refer to a data type
{defined in the data-description menu in ABM).

For a field to be understood as a key field, the
following requirements must be met:

e the element or group element the field refers to, must
be specified as search key ('K'} when creating a
subschema in ABM.

e when generating a program in Complete-PG, you must
specify that a field is to be a key field.

It is possible to define key fields for different search
keys on the same line.

If you are to retrieve or check data against other
registers, the search key for this data must be
specified in subschema and Complete-PG.

Norsk Data ND-60.219.1 EN

Complete Program Generator 17
Screen picture layout reguirements

3.1.3. STATUS LINE AND MESSAGE LINE

Status line

Message line

Queue system
for messages

At the bottom of the screen picture are the status line
and the message line. Like the top line, these are also
written out automatically by Complete~PG. No editing is
possible.

The status line comes right under the function picture,
and shows the name of the current region (the region you
work in at the moment). The status line also shows what
you are doing with the data (what command you have
given), and various other information.

The message line is the bottom line in the picture.
This is where messages from the system/function are
displayed.

There are two types of messages:
e Error messages
e Informative messages

If a message is longer than a line, it is put into a
queue system. The same happens if there are several
messages to be displayed in a series. By pressing any
key, the next message will be displayed on the screen.
In this way you are able to read all messages before the
next one is printed.

Norsk Data ND-60.219.1 EN

18 Complete Program Generator
Screen picture layout reguirements

5.1.4. FIELD TERMINATION

When a character is typed in the last position of a
field in the screen picture, you may decide whether
you want the cursor to remain in the field until CR
is pressed, or you want it to move to the next field.
The latter is done in the following way:

On the work-user area there is a file with various
parameters for your system. The name of this file is
CP-SPEC:SYMB. Read this file into an editor. You will
see that one of the defined parameters is called
NEXTFI. You may set NEXTFI to Y or N.

"DEF ,NEXTFI,<Y>; causes the cursor to move to the
next field when a character is typed in the last
position of the current field.

"DEF ,NEXTFI,<N>; causes the cursor to remain in the
last position of the field until CR is pressed.

Norsk Data ND-60.219.1 EN

Complete Program Generator 19
Screen picture layout requirements

5.2. BK F1eLD aND OK FIELD

Optional

Define with
fixed names

You yourself decide whether you want a treatment code
field (BK field) and/or OK field in the regions in a

‘screen picture.

If you define BK fields and 0K field in a picture, you
must make sure they refer to data types (defined in
data description in ABM) with fixed names:

OKCOD or OKCD1 for OK fields (COBOL/FORTRAN)
BKODE or BKOD1 for BK fields (COBOL/FORTRAN)

Both fields are of type x(1), i.e. one alphanumeric
character.

For BK codes, it is optional what letters or numbers are
presented to the end user. Decide this when installing
Compiete-PG. {See chapter 9.)

In this manual the letters Q, S, M and D are used as
treatment codes for querying, storing, modifying and
deleting.

When generating a program, you decide what BK codes
will be allowed. A1l combinations of Q, S, M and D are
possible. This is described in chapter 4.

Norsk Data ND-60.219.1 EN

20 Complete Program Generator
Screen picture layout reguirements

3.5. TEXT FIELD

The free text function makes it possible to connect an
unlimited amount of free text to a record.

The free text function requires that you have defined a
field of type TTYPE on the line in the screen picture
from where you call the free text function.

TTYPE is a data type with the format PIC X(1). This
field is used only for output.

When a line has text connected to it, a 'T' 1s displayed
in the TTYPE field on the screen. The field is empty if
the line has no text connected to it.

If you want to read more about the free text function,
see page 177.

Norsk Data ND-60.219.1 EN

Complete Program Generator 21

CHAP FER 4

GENERATING PROGRAMS WITH CoMPLETE-PG

Norsk Data ND-60.219.1 EN

22 Complete Program Generator

Norsk Data ND-60.219.1 EN

Complete Program Generator 23
Generating programs with Complete-PG

Iy, GENERATING PROGRAMS WITH COMPLETE-PG

4.1. StarRTING CoMPLETE-PG

In order to start Complete-PG, the ABM database must be
in ‘running' state.

Start Complete-PG by giving the command 'Complete-PG'
from the command line in ABM:

ABM command: COMPLETE-PG«]

You will then be shown the first screen picture in
Complete-PG.

4.?2. THE DIFFERENT SCREEN PICTURES IN COMPLETE-PG

Complete-PG consists of the two screen pictures PROGRAM
DESCRIPTION and USE OF PROGRAM KEYS. By entering data
into these pictures you decide how the program will work
after being generated. It is therefore very important
that these pictures are filled in correctly.

You have to fi11l in both pictures before Complete-PG can
generate the program you want.

The two screen pictures are on two different 'levels'.
See figure 4.1 on the next page. There may be several
USE OF PROGRAM KEYS pictures in connection with

one PROGRAM DESCRIPTION picture.

Norsk Data ND-60.219.1 EN

24 Complete Program Generator
Generating programs with Complete-PG

PROGRAM DESCRIPTION

Level 1
USE OF PROGRAM KEYS
OF PROGRAM KEYS
Region 1
Level 2 upper part Region 2
----------------------------- upper part
lower part
lower part
part 1
part 1
part 2
part 3 part 2
part 3

Fig. 4.1 - The screen pictures in Complete-PG are on two levels.

Navigating You move from the first picture, PROGRAM DESCRIPTION, to
the next one, USE OF PROGRAM KEYS, by

e hitting the '<>'- key in the command field.
You return to the picture PROGRAM DESCRIPTION by
e giving the command 'E' in the command field in the

picture USE OF PROGRAM KEYS.

You can always ask for HELP, no matter where you are in
HELP the screen picture. You will then get a help picture
with information concerning what you are doing.

Norsk Data ND-60.219.1 EN

Complete Program Generator 25
Generating programs with Complete-PG

4.3, THE SCREEN PICTURE PROGRAM DESCRIPTION

After you have given the command Complete-PG on the
command Tine, you will get the first screen picture to
be filled in:

PG > . PROGRAM DESCRIPTION

Program identification.

subfunction : subschema: form:

author e e e e e e e e
program id T

EXP TNt T ON 1 L

Parameters for generate.
object language :
obJect FITename & e,
Toad ProcedUre & .. e e e

Date of
creation T last modification :
last generated Lo

The picture contains the fields SUBFUNCTION, SUBSCHEMA
and FORM, which refer to the SUBFUNCTION, SUBSCHEMA and
FORM 1in ABM.

In this picture you state the programming language you
want the program to be generated in, the name of the
file where the program is to be stored, as well as the
generating procedure you want to use.

On the following pages you will find a more detailed
description of the fields in this picture.

Norsk Data ND-60.219.1 EN

26

Complete Program Generator
Generating programs with Complete-PG

4 3.1. DESCRIPTION OF THE FIELDS IN THE SCREEN PICTURE PROGRAM DESCRIPTION

PG > .

Subfunction

Subschema

Form

This is the command field in the picture.
Choose between these commands:

: stores a new record.
: finds the first record.
: finds the last record.
: finds the next record.
: finds the previous record.
. sets/deletes the search region.
When ‘set’' search region is used, the cursor will be
placed in the SUBFUNCTION field. Type in the lower
1imit. Afterwards you will be asked for the upper
1imit. These limits will be deleted the next time
'S' is given in the command field.
Q : clears the screen picture.
C : copies the screen picture to a file. The system will
ask for the name of the file (output file name:):
M : modifies the current record.
D : deletes the current record.
<>: moves to the next screen picture (USE OF PROGRAM
KEYS).
X : executes the command(s) in the field load
procedure.
E : exits, returns to the ABM command Tine.

U‘)‘UZF“'WWL

The commands F, L, N, P and S search for program
descriptions that already have been generated by
Complete-PaG.

The name of the subfunction defined in ABM which
corresponds to the function to be generated.

The name of the subschema defined in ABM which is
connected to the subfunction above. The name is fetched
automatically after the subfunction has been retrieved,
and cannot be changed.

The name of the form belonging to the subfunction. This
is fetched from the form file (specified in the file
CP-SPEC:SYMB) and is displayed in this field. The riame
of the form cannot be changed here.

Norsk Data ND-60.219.1 EN

Complete Program Generator 27
Generating programs with Complete-PG

Author

Program id

Explanation

Object Tanguage

Object filename

Load procedure

Date of creation

lLast modification

Last generated

The name of the person to be known as the originator of
the program.

The name of the generated program. If you want to call
the generated program as a subroutine from another
program, you have to use this program id as the
subroutine name.

Space reserved for a short description of the program to
be generated.

The programming language that the generated code will be
written in. Choose between ‘FORT' (FORTRAN) and
*COBL' (COBOL).

The name of the file where the generated program will be
stored. This will also be the name of the BRF/NRF file
and any PROG files or domains.

These are the three alternatives:

GENERATE : Generates program code for the function.
COMPILE : Compiles the generated program.
LOAD : Loads the necessary files.

These possibilities may be combined, for example
GENERATE/COMPILE.

GENERATE/COMPILE/LOAD is the default value.

The contents of this field determine what is to be
executed when you give the command 'X' in the command
field.

The time of the first generation of the program.
This date is displayed automatically in the field by
Complete-PG.

The time when the Tast change was made to the function
description. Generated by Complete-PG.

The time of the Jast generation of program code.
Generated automatically by Complete-PG.

Norsk Data ND-60.219.1 EN

Complete Program Generator

28
Generating programs with Complete-PG

4.4, THE screeN PIcTUrRE USE OF PROGRAM KEYS

In this screen picture you establish the search keys for
the program which is to be generated.

>< The picture below will be displayed on the screen when
<> you hit the '<»' key in the command field.

PG . USE OF PROGRAM KEYS
Subfunction: fieldrecord: ...
(1511 ~H ower:
okcode: . textfunction: . action codes:

Realm Key Use D Ex Realm Key Use D Ex Realm Key Use D Ex

Initial values for realm: key:

Item Lowtimit Highlimit Item Lowlimit Hightimit

Norsk Data ND-60.219.1 EN

Complete Program Generator 29
Generating programs with Complete-PG

4.4.1. DESCRIPTION OF THE FIELDS IN THE SCREEN PICTURE USE OF PROGRAM KEYS

PG > . This is the command field in the picture.
‘Choose between these commands:

finds the first record.
finds the last record.
finds the next record.
finds the previous record.
shifts between upper and lower parts of picture.
copies the screen picture to a file. The system will
ask for the name of the file {output file name:).
: modifies the current record.
returns to the previous picture {PROGRAM
DESCRIPTION) .

OWn T2 m

m =<

These commands are also valid for the other menus in
ABM, apart from the command move (shift) between the
upper and lower parts of a picture.

NOTE: .
The screen picture USE OF PROGRAM KEYS consists of an
upper and lower part. All commands affect the part of
the picture where you are at the moment.

Use the command S to move the cursor between the upper
and lower part of the picture.

The commands F, L, N and P have to do with the fact that
several regions in a screen picture are connected to the
program to be generated.

As shown in figure 4.2, several levels of the lower part
of the screen picture may be connected to the same
region.

USE OF PROGRAM KEYS

USE OF PROGRAM KEYS
Region 1
upper part Region 2

------------------------------- upper part

lower part

lower part
t 1
- part 1
t 2
o part 2
-t 3
i I part 3

Fig. 4.2 - An example of the composition of regions.

Norsk Data ND-60.219.1 EN

30

An example of
how to use the
command N:

Subfunction

Fieldrecord

Name

Owner

OKCODE

Complete Program Generator
Generating programs with Complete-PG

Let us look at an example of how you can move both
horizontally and vertically in figure 4.2.

If you want to move horizontally from Region 1 to Region
2, you do the following:

e Make sure that the upper part of the screen picture in
Region 1 is the current work area {(by hitting S if
necessary) .

e Give the command N in the command field.

On the screen you will now see the screen picture for
Region 2.

On the other hand, if you want to move vertically in the
figure, from part 1 to 2 within the same region,
you do the following:

e Make sure that the lower part {part 1) of the picture
is the current work area, by hitting S.

e Give the command N.

The upper part of the picture remains unchanged, but ycu
get a new picture {called part 2 in the figure) on the
lower part of the screen.

e Give the command M to move the cursor to the Tower
part of the screen {the current work area).

Refers to a generated subfunction in ABM. This will be
displayed automatically on the screen, and cannot be
changed.

Record name that is generated by the screen picture part
of ABM, and which defines the region uniquely. (An
example of a record name is 'R1A'.)

The name of the region where you are working at the
moment. The name 1is shown on the status line in the
function picture. If you move between the regions, the
name on the status line changes accordingly.

The owner of the region to be defined.

So far there is fixed dependency between the first and
next region. This field has therefore no importance for
the time being.

If there is an 0K field in the screen picture generated
by ABM, a 'Y' will be displayed in this field. You will
not be able to change this without removing/inserting
the OK field in your screen picture.

Norsk Data ND-60.219.1 EN

Complete Program Generator 31
Generating programs with Complete-PG

Textfunction This field gets the value 'T' if free text is used 1in
the function; that is, if the data type TTYPE is used in
the picture. (See page 20.) You will not be
able to change this without removing/inserting the text
field 1in your screen picture.

Action codes " A combination of legal access codes.
A1l combinations are possible.
Legal values are:

:oquery

: registration

: modification
: deletion

W N

These may be different in the different regions.

Realm The name of the register that the search key (shown in
the key field) belongs to.

Key This is where all the keys {indexes) marked with a 'K'
in a subschema are listed.

These search keys may be used in different ways in the
program:

e There must be only one search key that is a main key
in the main register in the region.

e Some keys can be alternative search keys in the main
register.

e Some search keys can be used to fetch data from
registers other than the main register.

e Some search keys can be used for existence control
towards other registers (i.e. to look up in other
registers and see whether certain data is to be found
there).

You decide how to use a search key by filling in the
fields 'Use', 'D' and 'Ex'.

For each of the search keys you want to use in the
region, you also have to fill in the lower part of the
screen picture. Here you specify which Timits {low
1imit and high 1imit) are to be used for looking up and
searching with the current key in the register.

Norsk Data ND-60.219.1 EN

32

Use

This field can have three different values: MK, AK and
K.

Complete Program Generator
Generating programs with Complete-PG

MK : main key.

The main key belonging to the main register in the
region is marked MK.

NOTE:

Specify only one MK per region. If you want to
update the ma;;~register, the main key

must be unique within the entire database.

When new data is being registered, the MK is checked to
find out whether the record already exists.

When modification or deletion is taking place, the

record is retrieved by means of the MK, and the data
belonging to the record is displayed in the screen

picture.

When a query is being performed, the record in question
is retrieved and displayed on the screen. If the record
does not exist, and the high 1imit {see page 33)

is set to space, the next record in the search region
will be fetched and displayed. If Tow and high limit
are equal, and the record in question is not

found, a message will be given.

In order to search in the main register with certain key
values, the Tower part of the screen picture for this
key has to be filled in correctly. {Low limit and high
Timit.)

AK or Al, AZ,..... A alternative key.

If you want to use alternative search keys to search
through the main register, these should be marked AK.

If you have many keys of this kind in the program, and
would Tike to number them in order that they be input in

a

certain sequence, you mark them with an 'A' and a

successive numbering from 1 to 7. Al will be read from
the screen before A2, etc.

NOTE:
Alternative keys are only valid for querying.

Because alternative keys are only valid for querying,
these keys may be non-unique.

K

. search key towards a register other than the main
register where data is fetched from and/or
checked.

Norsk Data ND-60.219.1 EN

Complete Program Generator 33
Generating programs with Complete-PG

The fields D and Ex are used to show what is to be
performed on the registers.

D(isplay) This field may have one of two values: blank or D.

BLANK : data will not be fetched from another
register.

D : data will be fetched from another realm
by means of this search key.

Retrieved data will be transferred to a screen buffer
and then displayed. If no data is found, and the
action code is modification or registration, an error
message will be displayed. The values have to be input
from the screen.

NOTE:

If data is to be displayed on the screen,

the name of the item in the database must be

the same as the name of the field in the screen pic-
ture {See the ABM manuel, DDTRNSF/DDTRNSC).

Items which are to be retrieved must be marked in
the subschema.

Ex(istence This field may have one of three values: blank, M or E.
control)
BLANK: No control towards another register.

M : Existence check against another register when
storing new data or when modifying data.

E : Leads to existence check against another register
when deleting records from the main register.

Initial values The register where the search key is to be found. -
for realm Fetched automatically from the ABM database.
Key The search key which is to be given a start value

and/or a stop value. This value is read into the field
automatically.

Item Search keys specified under KEY are listed here. If the
search key consists of a group key, all the elements
in the group will be listed. A new record is generated
for each search key, which makes it possible to navigate
between them (F, L, N, P).

Lowlimit/ These fields are used to set up search regions and
highlimit retrieve requested data from the database registers.

Norsk Data ND-60.219.1 EN

34

EXAMPLE 1

Complete Program Generator
Generating programs with Complete-PG

In the further explanation of the fields in this screen
picture, we give a few examples of pictures that are
already filled in. The examples are fetched from chapter
10.

We want to make a program to maintain a register of
employees. The register is called EMPLOYEE, and
contains among other things:

EMPNO - employee's number
EMPNAME - employee’s name

EMPDEPT - department

EMPPOS - position

EMPADDR - address

EMPPOST - postal code

EMPPHON - telephone number

EMPADM -~ place of administration

Employee's number is a unique key in the employee
register.

The program should find the data for one particular
employee when you type in the employee's number in the
picture. It should also be possible to navigate forwards
and backwards in the register {(see 4.7).

Employee's number is a field in the screen picture. The
name of the generated screen record in the screen
picture is Rl.

Fi11ing in the screen picture:

Realm Key Use D Ex - - - - - e -
EMPLOYEE EMPNO MK

Initial values for realm: key: EMPNO

Item Lowlimit Highlimit - - - - - - -
EMPNO R1PNO FORTRAN example
EMPNO R1-EMPNO COBOL example

refers to the field in the screen
picture from where the key value is
to be fetched when searching.

NOTE:

For COBOL, specify which screen record the key item
belongs to, in addition to the name of the key item
itself.

Norsk Data ND-60.219.1 EN

Complete Program Generator 35
Generating programs with Complete-PG

EXAMPLE 2 We use the same register as in exampie number 1. The
program still maintains information about employees, but
now each department maintains information about its own
employees. Users will only be allowed to retrieve
information about employees within their own department.

The group key EMPK1 = EMPADM + EMPNO is used as the
main key.

When users log on to the system, they are asked for the
department they work in. The program fetches this
information from the logging-on system, and moves this
information to the program variable INADM.

Fi1ling out the screen picture:

Realm Key Use D Ex - - - - - - -
EMPLOYEE EMPK1 MK

Initial values for realm: key: EMPK1

Item Lowlimit Highlimit - - - - - - -
EMPADM INADM INADM

EMPNO R1PNO FORTRAN example

EMPADM INADM INADM

EMPNO R1-EMPNO COBOL example

Norsk Data ND-60.219.1 EN

36

EXAMPLE 3

Complete Program Generator
Generating programs with Complete-PG

The program now maintains information both about the
departments and about the employees within each
department.

The screen picture consists of two regions. Region 1
contains the department number and various other
information fetched from the department register.

Region 2 in the picture consists of a list of lines
containing emplioyee numbers and information about the
employees.

The program will manage to navigate through the
department register, and for each department all the
employees will be listed in region 2.

The employee register has the group key:
EMPK2 = EMPDEPT + EMPNO

Fi1ling in region 2 in the screen picture:

Realm Key Use D Ex T
EMPLOYEE EMPK2 MK

Initial values for realm: key: EMPK2

Item Lowlimit Highlimit - - - - - - -
EMPDEPT R1PDEPT R1PDEPT

EMPNO R2PNO FORTRAN example

EMPDEPT RI1-EMPDEPT R1-EMPDEPT COBOL example
EMPNO R2-EMPNO

If you do not want to navigate in the main register by

means of a main key, then low 1limit and high 1imit have -
to be filled in with the same variable/value for all the

items in the main key.

Note that the first part of the group key comes from
region 1, whereas the second part is fetched from region
2. '

When the high 1imit for EMPNO is blank, all of the
employees belonging to a certain department are listed.

Norsk Data ND-60.219.1 EN

Complete Program Generator 37
Generating programs with Complete-PG

EXAMPLE 4 We now want to introduce employee's name, EMPNAME, and
position, EMPPOS, as keys in the employee realm. Instead
of typing in the employee's number you will now be able
to type in the employee's name and get a list of
information on the employee. We also wish to navigate
‘alphabetically between names in the employee realm.

We also want to have the possibility of finding an
employee by typing in the position, that way using the
position title to navigate through the reaim.

Filling in the screen picture:

Realm Key Use D Ex - - - - - - -
EMPLOYEE EMPNO MK
EMPLOYEE EMPPOS A2
EMPLOYEE EMPNAME Al

Initial values for realm: key: EMPNAME

Item Lowlimit Highlimit T S
EMPNAME R1PNAME FORTRAN example
EMPNAME R1-EMPNAME COBOL example
Initial values for realm: key: EMPPOS

Item Lowlimit Highlimit - - = = - - -
EMPPOS R1PPOS FORTRAN example
EMPPOS R1-EMPPOS COBOL example

Norsk Data ND-60.219.1 EN

38 Complete Program Generator
Generating programs with Complete-PG

EXAMPLE 5 In the employee realm, the postal code is stored, but
not the postal address. The postal address is stored on
a separate realm, the postal address realm POADR.
The key to this realm is the postal code POSTCODE.

When searching in the employee realm, you want to be
able to retrieve the postal address corresponding to the
current postal code, and display it on the screen.

When modifying and storing employees, you want to be
able to retrieve the postal address corresponding to the
postal code you have typed in. If this postal code does
not exist in the postal address realm, an error

message will be displayed, and the postal code has to be
retyped.

Fi1ling in the screen picture:

Realm Key Use D Ex - - - - - - -
EMPLOYEE EMPNO MK

POADR POSTCODE K D

Initial values for realm: key: POSTCODE

Item Lowlimit Highlimit - - = - = = =
POSTCODE R1PPOST R1PPOST FORTRAN example

POSTCODE R1-EMPPOST R1-EMPPOST COBOL example

L—— the name of the field in the screen
picture where you type in the postal
code.

Norsk Data ND-60.219.1 EN

Compliete Program Generator
Generating programs with Complete-PG

EXAMPLE 6

When maintaining the employee realm, you also state
the position. A1l approved positions are stored on
a separate realm called POSITION.

When storing and modifying information about employees,
the position realm should be checked to see whether the
position you have specified is registered there. If the
position does not exist, an error message will be
displayed, and you have to retype the position.

Filling in the screen picture:

39

Realm Key Use D Ex - - - = - - -
EMPLOYEE EMPNO MK

POSITION POS K M

Initial values for realm: key: POS

Item Lowlimit Highlimit T
POS R1PPOS R1PPOS FORTRAN example

POS R1-EMPPOS R1-EMPPOS COBOL example

Norsk Data ND-60.219.1 EN

40

EXAMPLE 7

Complete Program Generator
Generating programs with Complete-PG

When maintaining the employee realm, it should not be
permitted to delete an employee who is participating
in a project. We have a separate project realm which
contains the numbers of the employees. One of the keys
in the realm is

PROK1 = PROEMP (employee's No.) + PRONO {project No.)
If the employee you are trying to delete exists on

the project realm, an error message will be displayed,
and the employee will not be deleted from the employee
realm.

Fi11ing in the screen picture:

Realm Key Use D Ex - - - - - - =
EMPLOYEE EMPNO MK

PROJECT PROK1 K E

Initial values for realm: key: PROK1

Item Lowlimit Highlimit - - - = - - -
PROEMP R1PNO R1PNO FORTRAN example
PROEMP R1-EMPNO R1-EMPNO COBOL example
PRONO

Norsk Data ND-60.219.1 EN

Complete Program Generator 41
Generating programs with Complete-PG

4,5, WHAT HAPPENS DURING THE GENERATING OF A PROGRAM?

Before you can instruct Complete-PG to generate a
program, you have to do the following:

o Make the necessary additions/changes to the files:

CP~SPEC:SYMB
CP~PROGEN:MCRO

e Give Complete-PG the necessary information by filling
in the pictures PROGRAM DESCRIPTION and USE OF PROGRAM
KEYS.

e Start the generating by giving the command 'X' in the
picture PROGRAM DESCRIPTION.

The result of the generating is a program that is ready
to be executed.

On the following pages, we shall Took at what really

happens, but a user does not 'see', when a program
is generated.

Norsk Data ND-60.21G.1 EN

42

Complete Program Generator
Generating programs with Complete-PG

(1)

Are generated by
Complete-PG for

each program

CP-SPEC:SYMB

X l PROGRAM DESCRIPTION

(2) <progname>:SPEC
(3) <progname>:MANU
(4) <progname>:BATC

+— CP-PROGEN:MCRO (5)
BATCH PROCESSOR
«— CP-PRO-COBOL :MCRO (6)
or

CP-PRO-FORTRAN:MCRO

(7) CP-LIST:LIST

(8) xxxxx (an executable program)

Fig.

4.3 - What happens when a program is generated.

See chapter 9 about adapting CP-SPEC.

This is a preliminary COBOL/FORTRAN program which
contains information specific to the program in
question.

This file is generated the very first time a program is
generated. Later on, when the program is generated
again, it may contain additional manual code, i.e. code
that the user has programmed herself/himself. This
additional code is taken care of and will always be
inserted in the correct place in the program, whether
the information in the picture USE OF PROGRAM KEYS has
been altered or not.

Input file for the batch processor. Contains the name of
the macro to be run. This is a job that generates,
compiles or loads (or a combination of these options).

Macro to generate, compile or load a generated program.
The macro has to be adapted to your own installation.
Type in the necessary names of the users and libraries.

Norsk Data ND-60.219.1 EN

Complete Program Generator 43
Generating programs with Complete-PG

(6) General COBOL and FORTRAN routines {macros) which are
inserted in the generated program <progname>:SPEC.

{7) This is a list from the job which has been run in the
batch processor.

(8} The resulting executable program {if you have specified
"generate/compile/load').

Progname is the name you have typed in in the field
‘prog id' in the picture PROGRAM DESCRIPTION.

During the generating of a program, these files are
established:

<progname> :BATC
<progname> :SYMB
<progname> :MANU
<progname> : BRF /NRF
<progname> : PROG/DOMAIN

When you start the generating by giving the command 'X',
you will be asked whether you want to generate a main
program. If you reply 'Y', the following files will be
generated, too:

«m-function-name>:SYMB
«m-function-name> :BRF/NRF

Note that Complete-PG only generates subroutines. If you
do not have a menu control system, you have to reply
'Y(es)' when you are asked if you want a main program to
be generated.

Norsk Data ND-60.219.1 EN

44 Complete Program Generator
Generating programs with Complete-PG

6. THE GENERATED PROGRAM — DIALOGUE BETWEEN USER AND SCREEN PICTURE

e Start the generated program by specifying the program
name as if it were a SINTRAN command.

The picture will then be displayed, and the cursor will
be placed within the first key field in the first
region.

There are two different ways of giving commands to the
generated program:

e Give commands in the generated command field in the
upper left-hand corner of the picture.

e Use the function keys.

Key F1 F2 F3 Fa

Command DELE STOR CREG

Comment Delete record Store a new Clear a region

record

Key Fb5 Fe F7 F8

Command CLIN QUER MOD 1

Comment Clear a line Find data Modify data
NOTE:

Function keys used as action code can only be used
in the command field and in key fields. They have no
effect in the other fields.

See description of action codes on page 49.

Norsk Data ND-60.219.1 EN

Complete Program Generator 45
Generating programs with Complete-PG

Querying Command : QUER
Function key : F7
Description : Find data

1. Hit the function key F7 or the action code you have
defined for the command QUER.

The cursor will be placed in the first field belonging
to the main key. This field will be shown in inverse
video on the screen.

2. Type in the data you want to search for and press CR, or
[:— hit the EXECUTE key.

The value you type in in the key field determines what
data will be listed. On the first line, data will be
1isted for the search key that has the same value as the
one typed in, or for the search key that has the closest
higher value. On the next lines, the data will be listed
and sorted on ascending value of the search key until
the page is full (i.e. until data sets are displayed on
all the lines in the region) or until there are no more
data sets in the search region in the database.

If there is more than one search key for the line(s) in
the region, you may move the cursor to the search key
you wish to use, and specify the start value for that
one instead. The data sets will then be listed on
ascending value of the specified search key.

If you ask for data in an owner region, the data set in
the owner region will be presented first. Afterwards,
the data sets in the member region will be sorted on
ascending value of the main key.

Norsk Data ND-60.219.1 EN

46

Registration

. Type in the value of the main key.

Complete Program Generator
Generating programs with Complete-PG

Command . STOR]
Function key : F2
Description : Store data

. Hit the function key F2 or type in the action code

you have defined for storing of data.

Fields which are part of the main key are shown in
inverse video.

The cursor will be placed in the first field that is
part of the main key.

If the value of the main key does not exist in the
database already, you can proceed to store data in
the other fields.

. Hit the EXECUTE key, and the data will be stored.

After the data has been stored, the cursor will be
placed in the first field of the next line if there are
more lines in the picture. But if this is the last line
in the picture, the screen will be cleared, and the last
line will be redisplayed on the first line of the
picture. The cursor will be placed on 1ine number two.

You may edit data that is filled in in advance, by first
specifying that you want to make a query. The data which
is then displayed will remain on the screen until it is
modified by overwriting.

In order to clear the contents of a region while you are
storing data, hit the F4 key. If you only want to clear
a line, you may use the F5 key.

Norsk Data ND-60.219.1 EN

Compiete Program Generator 47
Generating programs with Complete-PG

Modification Command . MODI

Function key : F8

Description : Modify data

When data is to be modified, the system will search for
the record in question. If the record does not exist,
you get a message on the screen telling you so.

1. Hit the function key F8 or type in the action code
you have defined for modification of data.

Fields which are part of the main key are shown in
inverse video on the screen. The cursor will be placed
in the first key field.

2. Move the cursor by means of the arrow keys to the Tline
and the data field where you wish to alter the data.

3. Type on top of the data that 1is already shown in the
field.

4. Hit the EXECUTE key, and the modification will be
[:_ stored.

You may also modify data directly, without going via
querying. This is done by specifying a legal value
for the main key before altering the data field.

Norsk Data ND-60.219.1 EN

48

Deletion

Complete Program Generator
Generating programs with Complete-PG

Command . DELE
Function key : F1
Description : Delete data

When data is to be deleted, the system will search for
the record in question. If the record does not exist,
you will get a message on the screen.

Hit the function key F1 or the corresponding action
code.

Fields that make up the main key, will be shown in
inverse video on the screen. The cursor will be placed
in the first key field.

. Move the cursor to the Tine you want to delete.

Hit the EXECUTE key.

Before the data is deleted, a control determines whether
deletion is permitted. (For instance, you cannot delete
an ‘owner' that has 'members’ connected to it.)

You may also delete data directly without going via
querying. This is done by specifying a legal value
for the main key before deleting the data.

NOTE:

When a line is deleted from the database, it will be
shown in low intensity on the screen. This is done
to show that the line is deleted, but

that you still have the opportunity of cancelling
the command (i.e. you may store the line again}.

Norsk Data ND-60.219.1 EN

Complete Program Generator 49
Generating programs with Complete-PG

Action codes Instead of specifying what kind of action is wanted
by means of function keys, you have the option of using
action codes. In that case, you have to make room for
an action code field in the picture when you define
it.

In the action code field, you specify what kind of
action is to be performed. You may choose among:
querying, modification, storing, and deletion.

A letter or a number represents each of the action
codes. The letters/numbers are optional, and may vary
from one system to another. The action codes are
fetched fromn the files:

CP-SMESS-NO-BOO: SYMB for the Norwegian version
CP-SMESS-EN-BOO:SYMB for the English version

A screen picture with action code fields may look
like this:

In each region, one, several or all action codes may

be permitted: query, modify, store and delete.

Various combinations may be permitted for the different
regions.

Norsk Data ND-60.219.1 EN

50 Complete Program Generator
Generating programs with Complete-PG

}.7. COMMANDS AND FUNCTION KEYS

On the following pages, you will find an overview of the
various function keys together with their meaning, as
well as suggested command words for the functions that
can be chosen in the command field. The command

words can be chosen freely, and are fetched from the
files:

CP-SMESS-NO-B00:SYMB for the Norwegian version
CP-SMESS-EN-BOO:SYMB for the English version

We distinguish between commands/keys that are valid for
separate regions, and those which are valid for the
entire screen picture.

e

Norsk Data ND-60.219.1 EN

Complete Program Generator 51
Generating programs with Complete-PG

COMMANDS AND FUNCTION KEYS FOR SEPARATE REGIONS:

COMMAND FUNCTION KEY DESCRIPTION
SN -~ Choose next search key
SP f= Choose previous search key
== Move to next region
(== Move to previous regijon
NL ¢ Move to next line (if last line
- move to next region)
PL t Move to previous line (if first line
- move to previous region)
CoPY Copy field from previous line
FIRS SHIFT + | «— Show first page (scroll)

- — Show previous page (scroll)

LAST SHIFT + | ——» Show Tast page (scroll)
} }

+ —_— Show next page (scroll)
}
CLIN Fs Clear line {and member lines)

The mode for clearing a 1ine when storing
data lasts until you give the command to
switch off this mode. The status is
displayed on the status line.

OFFCL SHIFT + F5 Switches off the clearing of a line during
storing of data.

Norsk Data ND-60.219.1 EN

52 Complete Program Generator
Generating programs with Complete-PG

.

COMMANDS AND FUNCTION KEYS FOR THE ENTIRE SCREEN PICTURE:

COMMAND FUNCTION KEY DESCRIPTION

CREG F4 Clear region (and member regions)
NR >) Choose next region
PR << Choose previous region
"PRIN Copy picture to a printer/file %

HELP Show help information

SHIFT + HELP Activate advanced help function (see
chapter 13).

NAPL Jump to next predefined function

and transfer main key

PAPL Jump to previous predefined function
and transfer main key

X EXIT Exit from this program
\ Jump to/from command field
TEXT o Call of text function (see chapter 12).

Execute chosen function {(modify, store or
[:— delete)

Norsk Data ND-60.219.1 EN

Complete Program Generator 53
Generating programs with Complete-PG

If an OK field is defined, this may be used
instead of the EXECUTE key. The 0K field is a
field consisting of one character, where you may
type in 'Y' if updating is to be performed, or
"N' if you do not want to update.

An example of a screen picture with an 0K
field:

Key Description OK

Norsk Data ND-60.219.1 EN

54

Complete Program Generator
Generating programs with Complete-PG

COMMANDS / DESCRIPTION

Scroll

Move to
new region

Print
screen picture

Jump to next
application

Commands: FIRS., +. LAST, —

FIRS, +, LAST and - {and corresponding function keys)
are commands which concern the current region. They may
only be used if the page in the region already is filled
in. (See page 15.)

One page often contains only a small part of all the
data to be found in the database for the current search
key. The purpose of these commands is, in a simple way,
to present the selection of data that you are interested
in. The data that is presented is always sorted on
ascending value of the current search key.

By typing in FIRS, you will be shown a page where the
first data set is connected to the search key in

the database with the lowest value.

‘+' will display the following page, i.e. the data sets
which follow the ones that are currently shown on the
screen.

Similarly, '-' will display the previous page, and LAST
the last page.

If you scroll in an owner region, the connected data in
the member region will also be displayed. This is done
in the same way as described under Querying.

Commands: NR. PR

When the program is started, the name of the first
region in the picture is shown on the status Tine. This
means that the first region is the current one, and that
this is where you are working just now. (See explanation
of the region notion on page 15.)

If you want the next region to become the current one,
you type in the command NR. The command PR causes the
previous region to become the current one.

Command: PRIN

If you give the PRIN commant when the cursor is in the
command field, you will get a print-out of the
picture on your screen.

Command: NAPL

Direct transfer from one program to a new, following
program (defined in the menu system), with transfer of
the main key. Search using the main key in the

called program.

Norsk Data ND-60.219.1 EN

Compliete Program Generator 55
Generating programs with Complete-PG

Jump back
to previous
application

Exit from
function

Go to
text function

Command: PAPL

Like NAPL, but with a Jjump back to a program defined as
the previous one in the.menu system.

Command: X

X (exit) causes the function you are at to be stopped.

Command: TEXT

The command TEXT only works if free text is defined for
the program. You may give the command when guerying or
modifying. When querying in the calling program, you may
only query in the free text function.

When modifying in the calling program, you may query,
store, modify, and delete in the free text function.

If free text is registered in a record, a 'T’ is
displayed in the field for free text: otherwise this
field is blank. When returning from the free text
function, you are brought back to the place in the
picture where the free text function was called.

Norsk Data ND-60.219.1 EN

Complete Program Generator

56

Norsk Data ND-60.219.1 EN

Complete Program Generator 57

EhaPITER b

AppiTiONAL PROGRAMMING IN FORTRAN anp COBOL

Norsk Data ND-60.219.1 EN

Complete Program Generator 59
Additional programming in FORTRAN and COBOL

5. AppitioNAL PROGRAMMING IN FORTRAN anp COBOL

Several read
calls

Control/calcula-
lation before
updating

Updating several
realms

It may be necessary to touch up programs that are
generated automatically by the program generator. In
such additional programming there would naturally be
calls to ABM's SIBAS and FOCUS overhead. Additional
programming may be necessary in one or more regions.
Below, we have described the various forms of
additional code that may be useful, and where to
insert this code in the generated code. The rules are
the same for each region.

CompTlete-PG is based on the fact that all data fields
(fields apart from main key, command word, BK field, and
0K field) are read in one read call. However, if you
want an instant input control on fields, the reading
must be split into several read calls.

An examplie of this is shown in chapter 10.

Inserting additional code: Before and after CPREAD.
When all data is read or presented, control and/or
calculation of fields may be required before the data-
base is updated.

An example of this is shown in chapter 10.

Inserting additional code: After CPOKCOD, or after

the last CPREAD call if CPOKCOD is not used.

An updating seguence is surrounded by CPBTRANS and
CPETRANS, which execute SUBEG og SUEND respectively.

If several realms are to be updated, the additional code
must be inserted before CPETRANS.

An example of this is shown in chapter 10.

Inserting additional code: After CPUPDATE.

Norsk Data ND-60.219.1 EN

60

Complete Program Generator
Additional programming in FORTRAN and COBOL

5.1. INSERTING ADDITIONAL CODE

Belonging
subroutine call

In the following description, we use the term
‘belonging subroutine call'. A belonging subroutine is
one of the subroutines that appear in the automatically
generated program, and the manual code always has to be
inserted immediately before or after this subroutine.
For the type of additional code described above, the
belonging subroutine is the one specified after
‘Inserting additional code:'.

Below, we have described how the additional code is
inserted in the generated code.

5.1.1. BEFORE BELONGING SUBROUTINE CALL

If the additional code is to be inserted before a
belonging subroutine call, you have to test whether this
subroutine is to be executed. Whether a subroutine is to
be executed or not depends on the navigating in the
picture.

Necessary syntax for additional code before a call to a
subroutine is shown below.

COBOL syntax will be:

CALL 'CPIENABLE' USING TRIGGER-<flag> RESULT
IF RESULT = 1 THEN
additional code

FORTRAN syntax will be:

IF (CPABLED({FL<«flagg>,1)) THEN
additional code

ENDIF

Norsk Data ND-60.219.1 EN

Complete Program Generator 61
Additional programming in FORTRAN and COBOL

5.1.2. AFTER BELONGING SUBROUTINE CALL

When a subroutine is executed, an 'execute' flag will be
set. If it is set, it will be reset automatically during
the execution of the next subroutine.

This flag may be used in the following additional code
to test whether it should be executed. In this way, you
prevent the execution of the additional code every time
the DO Toop is performed.

The necessary syntax for additional code after a call to
a subroutine is shown below.

COBOL syntax will be:

IF EXECUTE = 1 THEN
additional code

END-IF

FORTRAN syntax will be:

IF (EXECUTE)} THEN
additional code

ENDIF

Norsk Data ND-60.219.1 EN

62

Complete Program Generator
Additional programming in FORTRAN and COBOL

5.2. How TO DISCERN BETWEEN ADDITIONAL CODE AND GENERATED CODE

Storing the
additional code

Name standard

Certain functions demand manual programming in addition
to the generated code. The first time an application is
generated, a file named <program-name>:MANU is created.
This file contains a series of empty macros. Additional
code must be inserted in these macros if it is not to
disappear after regenerating the program.

NOTE:
All additional code should be inserted in the macros
on the file <(program-name>:MANU.

The name of each macro consists of letters and numerals,
for example: ecpreal.

The first letter is'f' or 'e', which specifies either
before or after the belonging subroutine.

The next letters are the same as the first letters in
the belonging subroutine.

The numeral shows which region the manual code belongs
to.

An example of a macro as it is to be found on the file
(this is the macro following CPREAD in region 1):

%,%% Manual code inserted after CPREAD 1;
DEF ,ecpreal, "CRMOD; <> "ICRMOD; ;

An example of a macro containing additional code:

%, %% Manuel code inserted after CPREAD 1:

DEF ,ecpreal, "CRMOD; <

* This is where the additional code starts.
IF (EXECUTE) THEN

ENDIF
* End of additional code.
> " ICRMOD ; ;

Norsk Data ND-60.219.1 EN

Complete Program Generator 63
Additional programming in FORTRAN and COBOL

5.3. MESSAGES

Message file

Message database

A1l messages used in a system should be stored on a
file, with one file for each language you wish

‘to run the system in.

The message file should be as follows:

% Sentences beginning with % are comments.
" Sentences beginning with ° specify the message number.

The messages should be written as described in the ABM
manual.

Let us have a look at an example of a message file:

% Messages to my system
~“sysid = 0

"SSI = 0

0 MY SYSTEM

"1

0:-> First message’

"2

0:-> Second message’

"3

+:-> Error message’

This message file is ‘compiled' by means of UEER-
CONVERT into a message database (see next page).
The name of the message database must be:
UE-UMESS—XX—BZZ

where ZZ is the revision number (00 - 99) and XX
the Tanguage code:

NO - Norwegian

EN - English
TY - German

FR - French

SV - Swedish
DA - Danish

FI - Finnish
IS - Icelandic
IT - Italian
HO - Dutch

PO - Portuguese
SP - Spanish

The message database should belong to the user area
where you run the system.

Norsk Data ND-60.219.1 EN

64

Compiling

Fetch and display
a message

Complete Program Generator
Additional programming in FORTRAN and COBOL

NOTE:

Before compiling the message file,

take a copy of the existing database, so

that you can start again if anything goes wrong.

Compiling the message database:

@ (ABM~SYSJUEER-CONVERT-B
<Message database>
<message file 1>
<message file &>

<message file m>

The file (ABM-SYS)UEER~CONVERT must be the B version
or a later version.

You can also get a list of all the messages in a
message database by giving the command:

@({ABM-SYS)UEER-LIST-B

<Message database>

<List file>

<from error no.> default lowest number
<to error no.> default highest number

The file (ABM-SYS)UEER-LIST must be the B version
or a later version.

If you run the system under USER-ENVIRONMENT, the
language code for the current user will be fetched, and
the message database for that language will be opened.
Without USER-ENVIRONMENT, the English message database
will be opened.

When messages are to be fetched and displayed, you use
the following subroutine: ‘
CPGETMSG (MSGNO)

Parameter 1list:

INTEGER MSGNO : the number of the message to be
fetched

This subroutine concerns both FORTRAN and COBOL.

The message is placed in CTEXT (FORTRAN) / TEXT
(CoBOL). If you want to, you can edit the message
before it is displayed, by means of CPMESS

{or DDWMSGE({ITEXT,MSTA)).

Norsk Data ND-60.219.1 EN

Complete Program Generator 65
Additional programming in FORTRAN and COBOL

5.4. FORTRAN anp COBOL exAMPLES

EXAMPLE 1

Problem:

Comment:

Here we shall show a few examples of how to apply useful
variables and routines. These are viewed in connection
with problems often come across.

Several CPREAD calis are required. This is important
if you want immediate INPUT control.

Suggested solution in FORTRAN:

* Start of additional code
FLNEXT = FLREAD

* End of additional code
CALL CPREAD (1, --- ,FLKEY,FLNEXT)

* Start of additional code
poss. test of field read in CPREAD(1,--)
CALL CPREAD (2, --- ,FLREAD,FLREAD)
poss. test of field read in CPREAD(2,--)
CALL CPREAD (3, --- ,FLREAD,FLOKCOD)
poss. test of field read in CPREAD(3,--)

* End of additional code

Suggested solution in COBOL:

* Manual code inserted before CPREAD (1...
* Start of additional code
MOVE TRIGGER-READ TO TRIGGER-NEXT
* End of additional code
CALL CPREAD (1, --- ,TRIGGER-KEY,TRIGGER-NEXT)
* Manual code inserted after CPREAD (1...
* Start of additional code
poss. test of field read in CPREAD(1,--)
CALL CPREAD (2, --- ,TRIGGER-READ,TRIGGER-READ)
poss. test of field read in CPREAD(2,--)
CALL CPREAD (3, --~ ,TRIGGER-READ,TRIGGER-QK)
poss. test of field read in CPREAD(3,--)
* End of additional code

Here we have used three CPREAD calls. In the parameter
Tists, somewhat different parameters appear. The first
parameter is the counter, which is increased from 1 to
the total number of CPREAD calls. The parameters that
control the field termination will also vary.

In the first CPREAD call, the backward arrow will cause
a jump to the key (FLKEY or TRIGGER-KEY), the next to
last parameter in the call. The ENTER key

or forward arrow will cause a jump to the next

CPREAD call {(FLREAD, TRIGGER-READ)}.

Norsk Data ND-60.219.1 EN

66

EXAMPLE 2

Problem:

Comment:

Complete Program Generator
Additional programming in FORTRAN and COBOL

For CPREAD call number 2, hitting the same keys will
bring the previous CPREAD call or the next CPREAD
call. For the last CPREAD call, the same field
termination will bring the previous CPREAD call or
CPOKCOD. The OK code will be read, or the EXECUTE
key will be prompted for.

Instead of several CPREAD calls, you can use CPINVER.
A1l fields may then be read by means of one CPREAD call,
and a control will be performed for all of the fields.
The fields that are not 0K, and therefore have to be
read once more, are shown in inverse video using
CPINVER, and CPREAD is called again. You thereby get to
know which fields have to be corrected. The combination
of several CPREAD calls and use of CPINVER may also be
applied. See example in chapter 10.

We want INPUT control of certain fields, possibly
together with an error message, as well as activation of
the same CPREAD call (i.e. to read the same field
again).

Suggested solution in FORTRAN:

CALL CPREAD (n, ---)

IF (EXECUTE) THEN
IF (IACTCOD.EQ.2.0R.IACTCOD.EQ.3) THEN
<test field values if any»
IF <error> THEN
CALL CPGETMSG(9)
CALL CPMESS
ENDIF
ENDIF
ENDIF

CALL CPREAD (n+1, ---)

CPREAD must have been activated (EXECUTE = TRUE). If the
action code is Rlegistration) or M{odification) {(i.e.
IACTCOD = 2 or 3), a control of the screen value will be
performed in this additional programming.

If the INPUT value is not correct, the routine CPMESS
will be called. An error message will be displayed, and
the same CPREAD call will be re-activated.

Norsk Data ND-60.219.1 EN

Complete Program Generator 67
Additional programming in FORTRAN and COBOL

Suggested solution in COBOL:

CALL 'CPREAD' USING n, ---

IF EXECUTE = 1
AND {MAINTAB(5)=2 OR MAINTAB(5)=3)
<test field values if any»
IF <feil>
CALL 'CPGETMSG' USING 9
CALL 'CPMESS'.

CALL 'CPREAD' USING n+1, --- .

Comment: CPREAD must have been activated (EXECUTE = 1). If the
action code is R{egistration) or M{odification) (i.e.
MAINTAB(5) = 2 or 3}, a control of the screen value will

be performed in this additional programming.
If the INPUT value is not correct, the routine CPMESS

will be called. An error message is displayed, and the
same CPREAD call is re-activated.

5.5. ERROR HANDLING

If an error should occur, the internal error handling in
Complete-PG will list all the involved routines in

a hierarchical sequence, i.e. the routine on the highest
level is printed first, then the routine on the next
level, etc. Type of error, error status and other
information will also be printed.

All of these error messages will be written on the file
CP-ERROR:LOGG. On the screen, you will get information
about which error has occurred. The program

will be stopped.

Norsk Data ND-60.219.1 EN

68 Complete Program Generator
Additional programming in FORTRAN and COBOL

5.5.1. ERROR HANDLING IN MANUALLY DEFINED SUBROUTINES

You may also use Complete-PG's error handling in your
own subroutines. The standard tayout for this is shown
below.

COBOL syntax will be:

IDENTIFICATION DIVISION.
PROGRAM-ID. name.
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY (ABM-SYS)CP-PROBOT-COM:COPY
LINKAGE SECTION.

PRODECURE DIVISION USING....
MOVE 'name ' TO CSUB
CALL ‘CPIN' USING CSUB.
CALL "RUTINE1" USING...
IF error
MOVE 'RUTINE1® TO CSUB
CALL 'CPABORT'
CALL 'CPOUT' USING CSUB
END-IF
EXIT-PROGRAM

FORTRAN syntax will be:

SUBROUTINE name{ --)
$INCLUDE (ABM-SYS)CP-PROBOT-COM: INCL

csub = 'name’
CALL CPIN{isub)
csub = 'routinel’

CALL routinel
IF (error) GOTO 9900

9900 IF (error) CALL CPABORT
CALL CPOUT(isub)
RETURN
END

In chapter 6 you will find a description of
the routines CPIN, CPABORT and CPOUT.

Norsk Data ND-60.219.1 EN

Complete Program Generator 69
Additional programming in FORTRAN and COBOL

5.6. SeveraL CPREAD caLLs

5.7. READCO

By introducing a counter 1in the parameter list for the
subroutine CPREAD, it is possible to split READ calls.
For each new CPREAD call that you want, vou have to
increase the first parameter by 1. The CPREAD calls will
thus be 'numbered' from 1 to n, where n is the total
number of CPREAD calls. The system will arrange a
sequential execution of all the CPREAD calls.

READCO is an INTEGER variable that corresponds to the
counter in CPREAD. In each CPREAD call this variable
will be increased or decreased by 1 depending on the
termination of the field. This is done by the system.
CPREAD calls will only be executed if READP = READCO.
Through additional programming, you may for instance
use READCO to skip the reading of certain fields in
certain situations.

5.8. SELECTING RECORDS

The CPGET routine uses GETN calls towards SIBAS, and
retrieves as many records from the database as there are
Tines in the screen picture. A1l of these records are
then displayed in the CPDISP routine.

If you need to fetch one record at a time (for example
to display only those records that fulfill certain
criteria), the parameter EVERYLIN may be set to 1 (it is
otherwise equal to 0). Then CPGET will fetch one record,
which is placed in the screen buffer and the database
buffer. This may now be tested. If it is accepted, i.e.
it is to be displayed, you have to set the flag FLOK
(FORTRAN} or TRIGGER-OK (COBOL): It is done 1like this:

FORTRAN:

CALL CPENABLE(FLOK)

COBOL :

CALL 'CPIENABLE' USING TRIGGER-OK

If it is not accepted, you have to reset the 0K flag
{this is not done automatically), and the record will
not be displayed. CPGET will then be repeated, until the
screen picture is full or there are no more records

left in the database.

Norsk Data ND-60.219.1 EN

70 Complete Program Generator
Additional programming in FORTRAN and COBOL

.
5.9. FLOK
FORTRAN: .
The FLOK flag is used to indicate which records are to be
accepted. This flag is set if the record is accepted, and ,”
reset if the record is rejected. *
5.10. TRIGGER-OK
COBOL :
The TRIGGER-0K flag is used to indicate which records are
to be accepted. This flag is set if the record is %
accepted, and reset if the record is rejected. -
%,
.
o
2
.
.
-

Norsk Data ND~60.219.1 EN .

Complete Program Generator . 73
Program variables and routines available to a programmer

b. PROGRAM VARIABLES AND ROUTINES AVAILABLE TO A PROGRAMMER

The other program variables and routines that you may use
for additional programming, are:

IACTCOD, MAINTAB(5), OWNMESS, NOERR, FLNEXT, TRIGGER-NEXT,
CTEXT, TEXT, CRSPNS, TERMCOD, CPABLED, CPIENABL, CPIN(),
CPOUT() and CPABORT.

We shall now describe each one:

6.1. TACTCOD
FORTRAN: .
An INTEGER variable that always keeps track of the action
code last used, and thereby may be used to test the
current action code.

The action codes are:

TACTCOD

querying
storing
modifying
deleting

i
W e

6.2. MAINTAB(5)

C0oBOL:

An INTEGER variable that always keeps track of the last
used action code, and thereby may be used to test the
current action code.

The action codes are:

MAINTAB(5) = 1 : querying

2 : storing

3 : modifying
4 : deleting

i

1

Norsk Data ND-60.219.1 EN

74 Complete Program Generator
Program variables and routines available to a programmer

6.3. OWNMESS

FORTRAN:
A flag {logical variable) used to overrule messages in
the Complete-PG routines.

By setting OWNMESS to .TRUE. before a PG routine, and
moving the preferred message to CTEXT, your own message
will be displayed instead of the standard message from
the PG routine.

OWNMESS must be reset to .FALSE. immediately after the
return from the PG routine.

COBOL :
A variable used to overrule messages in the Complete-PG
routines.

By setting OWNMESS to 1 before a PG routine, and moving
the preferred message to TEXT, your own message will be
displayed instead of the standard message from the PG
routine.

OWNMESS must be reset to 0 immediately after the return
from the PG routine.

6.4. NOERR

FORTRAN:
A flag {logical variable) that is .TRUE. as long as no
error occurs.

COBOL :
A variable that has the value of 1 as long as no error
oCCurs.

6.5. FLNEXT

FORTRAN:

A flag used in connection with several CPREAD calls.
Complete-PG sets FLNEXT = FLOKCOD. If several CPREAD
calls are to be used in the additional programming, you
must set FLNEXT = FLREAD after CPGET.

Norsk Data ND-60.219.1 EN

Complete Program Generator 75
Program variables and routines available to a programmer

6.6. TRIGGER-NEXT

6.7. CTEXT

6.8. TEXT

6.9. CRSPNS

COBOL :

A variable used in connection with several CPREAD calls.
Complete-PG sets TRIGGER-NEXT=TRIGGER-OK. If several
CPREAD calls are to be used in the additional
programming, you must set TRIGGER-NEXT=TRIGGER-READ
after CPGET.

FORTRAN:

A character string containing the message which is to be
displayed for the user. The message in CTEXT is
displayed by means of the routine CPMESS. The routine
CPGETMSG(I) moves message I, from the message file, into
CTEXT. CTEXT may be edited, but the message in the
variable must have ABM/FOCUS format when CPMESS is
called.

COBOL :

A character string containing the message which is to be
displayed for the user. The message in TEXT 1is displayed
by means of the routine CPMESS. The routine CPGETMSG(I)

moves message I, from the message file, into TEXT. TEXT

may be edited, but the message in the variable must have
ABM/FOCUS format when CPMESS is called.

FORTRAN AND COBOL:
A variable containing the last used command word.

(This one is the same for both FORTRAN and COBOL).

Norsk Data ND-60.219.1 EN

76 Complete Program Generator
Program variables and routines available to a programmer

6.10. TERMCOD

TERMCOD (INTEGER variable) contains the last chosen
termination code (termination from a field on the
screen}. The alternatives available are:

Alternatives Meaning
TERMCOD = 0 --» , CR
TERMCOD = 1 N
TERMCOD = 2 <--
TERMCOD = 3 ==)>
TERMCOD = 4 (==
TERMCOD = 5 >
TERMCOD = 6 I ¢~
TERMCOD = 7 {
TERMCOD = 8 t
TERMCOD = 9 EXIT
(==
TERMCOD = 10 SHIFT {
(==
TERMCOD = 11 t
==>
TERMCOD = 12 SHIFT |}
==>
TERMCOD = 13 }
TERMCOD = 14 F5
TERMCOD = 15 F4
TERMCOD = 16 >>
TERMCOD = 17 <<
TERMCOD = 18 CNTR C
TERMCOD = 19 PRINT
TERMCOD = 20 [:»
TERMCOD = 21 <
TERMCOD = 22 ><
TERMCOD = 23 7
TERMCOD = 24 F3
TERMCOD = 25 MARK
TERMCOD = 26 SHIFT F5
TERMCOD = 27 F7
TERMCOD = 28 F2
TERMCOD = 29 F8
TERMCOD = 30 F1

Norsk Data ND-60.219.1 EN

Complete Program Generator 77
Program variables and routines available to a programmer

6.11. Loecicat runcTtion CPABLED(FLXXXX,1)

FORTRAN:

Parameter list:

INTEGER FlLxxxx (Input): The parameter value of the routine to be
tested.

INTEGER (Output)

Function description: The function tests whether the specified
flag is set. TRUE is returned if this is
the case.

6.12. SuBrouTInNe CPIENABL(TRIGGER-XXXX,RESULT)

COBOL :
Parameter list:

INTEGER TRIGGER-xxxx (Input): The parameter value of the routine to be

tested.

INTEGER RESULT (Output)

Routine description: The routine tests whether the specified
flag is set.

RESULT=1 : is returned if the specified
flag is set.

RESULT=0 : is returned if the specified
flag is not set.

6.15. SuBroutine CPINCISUB)

FORTRAN:

Parameter Tist:

INTEGER*2 ISUB(4) (Input): The name of the current routine.
COBOL :

Parameter list:

Norsk Data ND-60.219.1 EN

78 Complete Program Generator
Program variables and routines available to a programmer

PIC X(8) (Input): The name of the current routine.

Routine description: Names of all routines involved are put in a
table. If an error occurs, you may use this
table to retrieve the name of the routine.
If this routine 1s used, it must be called
at the beginning of a subroutine.

6.14. SusroutINe CPOUTC(ISUB)

FORTRAN:
Parameter 1ist:

INTEGER*2 ISUB(4) (Input): Name of the routine that was last executed.

COBOL :

Parameter Tist:

77 ISUB PIC X{(8) (Input): Name of the routine that was last executed.
Routine description: The name of the last routine executed
without error, is removed from
the table.

6.15. SuBrouTINE CPABORT

FORTRAN AND COBOL:

Parameter Tlist: None

Routine description: If an error occurs in a SIBAS call or a FOCUS
call, CPABORT should be called. CPABORT
resets all flags so that the DO Toop is ended
and CPEND is called. CPEND will, if MSTA#0 or
KSTAT#0 and KSTAT#1, write en error message
on the error message file.

NOTE:
An error message is written by CPEND only if
MSTA#0, or KSTAT#1 and KSTAT#O.

Norsk Data ND-60.219.1 EN

W

D |

Complete Program Generator 81
Documentation of routines in the generated program

/. DOCUMENTATION OF ROUTINES IN THE GENERATED PROGRAM

7/.1. THE STRUCTURE OF THE GENERATED PROGRAM

Here we shall give an overview of the program logic used
in the generated program.

Programs generated by Complete~PG are short. A FORTRAN
program consists of 11 to 17 subroutines, while a COBOL
program contains 13 to 19 subroutines.

Out of these subroutines, 11 (in FORTRAN) and 13 (in
COBOL) will always be part of a program generated by
Complete-PG, no matter what the function picture will
look Tike (i.e. the contents of the regions).

Norsk Data ND-60.219,1 EN

82 Complete Program Generator
Documentation of routines in the generated program

7.2. AN EXAMPLE OF A GENERATED PROGRAM IN FORTRAN

The following is part of a generated FORTRAN program. Additional code is
not included in the program. Neither 0K code nor action code is contained
in the program, and the program only handles one realm.

PROGRAM name
<heading»
<declarations»>
¢inciude files»
CALL CPHJON e
CALL CPBEGIN{ --) #fetches picture and opens database
DO WHILE {one region active)
DO WHILE (this region active)
CALL CPREGION(-~)

citmsub(1) = key field
CALL CPKEY{ --) %reads value in key field

CALL CPGET(--) %fetches records of interest

CALL CPINRC(

-) %#fetches data from database buffer

citmsub(1) = key + data field
CALL CPDISP(--) %transfers data to screen

citmsub(1l) = data field

CALL CPREAD(--) %reads data field
CALL CPBTRANS{ -~) %starts transfer
citmsub(1) = all fields in record

CALL CPUPDATE(--) supdates database
CALL CPETRANS kends transfer

CALL CPRSPNS({ --) %“reads response code

CALL CPOVER({ --)
CALL CPHELP

ENDDO
ENDDO

CALL CPEND %terminates program
END

The DO loops are characteristic for the generated program. The first one
encloses all the regions in the program. The other DO Toop(s) enclose(s)
one region each. In this case the other DO loop encloses 9 of the
subroutines.

Norsk Data ND-60.219.1 EN

Complete Program Generator 83
Documentation of routines in the generated program

The length of the In general a program consists of one DO loop for each

program increases region {maximum two regions). For each region included

for each region in the screen picture, the code will increase by n sets
of subroutine calls {in addition to CPBEGIN and CPEND).
‘Two regions will for instance generate at Teast 18
subroutine calls inside the DO loop.

The other 6 In addition to the 11 regular subroutines shown on the

subroutines previous page, you might get calls generated for the
following 6 subroutines, depending on which information
you have given to the generating program:

cpactcon(—) is generated if there is an action code
field in the screen picture.

crokcoD(—) s generated if there is an 0K field in
the screen picture.

CPOTHER(—) s generated if data is to be fetched
from other realms.

cPex1isT(—) s generated if there is an existence
control towards other realms.
CPFRTXT(—) s generated if free text is used in the
screen picture.
cPTDISP(—) s generated if free text is used - puts
a 'T'" in the field on the screen.
Jump out of a A jump out of a DO Toop only takes place if you press
DO Toop the EXIT key, or if an error occurs.

Norsk Data ND-60.219.1 EN

84 Complete Program Generator
Documentation of routines in the generated program

7/.35. AN EXAMPLE OF A GENERATED PROGRAM IN COBOL

Below, you will find part of a generated COBOL program. Additional code is
not included in this program.

IDENTIFICATION DIVISION.
<name>
<heading>
ENVIRONMENT DIVISION.
CONFIGURATION DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
<declarations»
LINKAGE SECTION.
<declarations>
PROCEDURE DIVISION.
MAIN SECTION.
PERFORM STARTUP.
PERFORM REGION UNTIL (no region active)
PERFORM ROUNDUP.
EXIT.

STARTUP SECTION.
CALL 'CPHJON'
<assignment statements>
CALL 'CPBEGIN' USING ---

%#sets help function available
%fetches picture and

opens database

EXIT.

REGION SECTION.

PERFORM REGION-1 UNTIL (region-1 not active)
EXIT.

REGION-1 SECTION.
CALL 'CPREGION' USING ---
CALL 'CPCURKC' USING ---

ddc-select = key field

CALL 'CPKEY' USING ---
CALL 'CPKEYNC' USING ---
CALL 'CPGET' USING ---
CALL 'CPINRC' USING ---

ddc-select = key + data field

CALL 'CPDISP' USING ---

ddc-select = data field
CALL 'CPREAD' ---

%#reads value in key field

%fetches records of interest

#fetches data in database buffer

%transfers data to screen

%reads data field

Continued on next page...

Norsk Data ND-60.219.1 EN

Complete Program Generator 85
Documentation of routines in the generated program

CALL 'CPBTRANS' USING --- %starts transfer
ddc-setect = all fields in

record
CALL 'CPUPDATE' USING --- %updates database
CALL 'CPETRANS' %ends transfer
CALL 'CPRSPNS' %reads response code

CALL 'CPOVER' USING ---

CALL 'CPHELP' USING ---

EXIT.
ROUNDUP SECTION.

CALL 'CPEND' USING --- %terminates the program
EXIT.

The program logic is described in more detail in

chapter 8.
The length of In general, a program consists of one DO loop for each
the program in- region. (We may have a maximum of two regions.) For each
creases with each region included in the screen picture, the code will
region increase by n sets of subroutine calls ({apart from

CPBEGIN and CPEND).

The other 6 In addition to the regular subroutines shown in this

subroutines example, you may have calls generated for the following
6 subroutines, depending on which information you have
given to the generating program:

cPAcTCoD(—) s generated if there is an action code
field in the screen picture.

crokcoD(——) s generated if there is an 0K field in
the screen picture.

CPOTHER(—) s generated if data is fetched from
other realms.

cPeXIST(—) s generated if there is an existence
control towards other realms.

CPFRTXT(—) s generated if free text is used in the
screen picture.

cpoisc(—) s generated if free text is used -

puts a 'T' in the field in the screen
picture.

Norsk Data ND-60.219.1 EN

86 Complete Program Generator
Documentation of routines in the generated program

Jump out of a A Jjump out of a DO loop only takes place if you press
DO loop the EXIT key, or if an error occurs.

Norsk Data ND-60.219.1 EN

Complete Program Generator

Documentation of routines in the generated program

/.4. ROUTINES IN THE GENERATED PROGRAM

These routines are
always generated:

These routines may be
generated, depending on
parameters:

Norsk Data ND-60.219.1 EN

Type

Routine

CPBEGIN Subroutine
CPREGION Function
CPCURKC (CCBOL) Subroutine
CPCURKK (FORTRAN) Function

CPKEY
CPKEYNC (COBOL)

Subroutine
Subroutine

CPKEYNK (FORTRAN) Function

CPGET Subroutine
CPINRC Subroutine
CPDISP Subroutine
CPREAD Subroutine
CPBTRANS Subroutine
CPUPDATE Subroutine
CPETRANS Subroutine
CPRSPNS Subroutine
CPEND Subroutine

Routine Type

CPACTCOD Subroutine
CPOKCOD Subroutine
CPOTHER Subroutine
CPEXIST Subroutine
CPFRTXT Subroutine
CPTDISP/CPTDISC Subroutine

88 Complete Program Generator
Documentation of routines in the generated program

7.4.1. THE MOST USED PARAMETERS

The most often used parameters are described here:

COBOL FORTRAN Exp]anatiqn

DDC-REF-TABLE REFTAB Reference table
(described in ABM manual chap. 6/7).

DDS~xx-SUBSCHEMA | MITEM Total element 1ist information for the
screen picture. {See ABM manual chap. 6.1).

SCV-xx MRECxx Screen value buffer for all the elements
described in MITEM.

DDB-zz~-SUBSCHEMA | KITEM Total element 1ist information for the
database {described in the ABM manual chap.
4.1},

DBV-zz KREC Database value buffer for all the elements

described in KITEM.

Picture record name
Realm name/Realm prefix

XX
ZZ

Norsk Data ND-60.219.1 EN

Complete Program
Documentation of

/.4.2. TABLES

Generator

routines in the generated program

WITH VARIABLES IN FORTRAN anp COBOL

The following is
these tables you
COBOL.

an overview of all variable names used in this manual.

will see the corresponding variable names in FORTRAN and

coBoL

FORTRAN CoBOL : FORTRAN
ANTFEIL TELL-FEIL COMTAB COMTAB
BKODE SCV-DUMMY-BKODE CPFRTXC CPFRTXT
CITMSUB DDS-SELECT CPIENABL CPABLED
CNAME ITEM-NAME CPKEYNC CPKEYNK
COMTAB COMTAB CPCURKC CPCURKK
CPABLED CPIENABL CRSPNS CRSPNS
CPFRTXT CPFRTXC CSUB CSUB/ISUB
CPKEYNK CPKEYNC CURRENT-KEY-NO KEYNR
CPCURKK CPCURKC DBKI-- KIKEY
CRSPNS CRSPNS DBKV-- KVKEY
csuB CSUB DBR~NO-OF-~REALMS =~ KNREA
CTEXT TEXT DBR-REALM-NAMES KREALMS
CTYPE SCREEN-VALUE DBR-REALM-PROTECT KPMOD
ENTEXT ENTEXT DBR-REALM-USAGE KUMGD
EVERYLIN EVERYLIN DBV- KREC
EXECUTE EXECUTE DBV-~XXTNR XXTNR
FLACTCOD TRIGGER-ACTCODE DDB~~SUBSCHEMA KITEM
FLCOMMAN TRIGGER-COMMAN DDC-REF-TABLE REFTAB
FLDISPLY TRIGGER-DISPLAY DDS-SELECT CITMSUB
FLFRTXT TRIGGER-FRTXT DDS-SELECT ITEMSUB
FLGET TRIGGER-GET DDS-XX-SUBSCHEMA MITEM
FLKEY TRIGGER-KEY ENTEXT ENTEXT
FLNEXT TRIGGER-NEXT EVERYLIN EVERYLIN
FLOK TRIGGER-OK EXECUTE EXECUTE
FLOKCOD TRIGGER-OKCODE INDX RCPOINT
FLREAD TRIGGER-READ [TEM-NAME CNAME
FLRESPON TRIGGER-RESPONS ITEM~VALUE TXTNR
FLTRANS TRIGGER-TRANS KEY-NO KEYNR
FLUPDATE TRIGGER-UPDATE KSTAT KSTAT
IACTCOD MAINTAB(5) MAINTAB(5) IACTCOD
I1SUB CSUB MSTA MSTA
ITEMSUB DDS-SELECT NOERR NOERR
ITEXT TEXT OWNMESS OWNMESS
KEYNR CURRENT-KEY-NO READCO READCO
KEY-NO SCREEN-NAME CTYPNAM
KIKEY DBKI-- SCREEN-VALUE CTYPE
KITEM DDB--SUBSCHEMA SCV-DUMMY-BKODE BKODE
KNREA DBR-NO-OF -REALMS SCV~-DUMMY-0KODE OKODE
KPMOD DBR-REALM-PROTECT SCV-XX MREC
KREALMS DBR-REALM-NAMES TELL-FEIL ANTFEIL

Continued on the next page...

Norsk Data ND-60.219.1 EN

90

Complete Program Generator
Documentation of routines in the generated program

FORTRAN COBOL COBOL : FORTRAN :
KREC DBV~ TERMCOD TERMCOD
KSTAT KSTAT - TEXT CTEXT
KUMOD DBR-REALM-USAGE TEXT ITEXT
KVKEY DBKV=- TRIGGER-ACTCODE FLACTCOD
MITEM DDS=XX-SUBSCHEMA TRIGGER-COMMAN FLCOMMAN
MREC SCV-XX TRIGGER-DISPLAY FLDISPLY
MSTA MSTA TRIGGER-FRTXT FLFRTXT
NOERR NOERR TRIGGER-GET FLGET
OKODE SCV-DUMMY-0KODE TRIGGER-KEY FLKEY
OWNMESS OWNMESS TRIGGER-NEXT FLNEXT
RCPOINT INDX TRIGGER-0OK FLOK
READCO READCO TRIGGER-OKCODE FLOKCOD
REFTAB DDC-REF~-TABLE TRIGGER-READ FLREAD
TERMCOD TERMCOD TRIGGER-RESPONS FLRESPON
TXTNR ITEM-VALUE TRIGGER-TRANS FLTRANS
CTYPNAM SCREEN-NAME TRIGGER-UPDATE FLUPDATE
XXTTNR DBV--XXTTNR

READP : The number of the CPREAD call. The number 1is inserted directly as

REG

TNR

a parameter.

: The number of the current region is inserted directly.

: Corresponds to the value of TXTNR (FORTRAN), ITEM-VALUE (COBOL).

Norsk Data ND-60,219.1 EN

Complete Program Generator 91
Documentation of routines in the generated program

/.5. DOCUMENTATION OF THE ROUTINES

In the following routine descriptions, the column marked 'I/0' means the
following:

I : input parameter in the routine.
0 : output parameter in the routine.

7.5.1. CPBEGIN

Routine name: CPBEGIN

Parameters :

CoBOL FORTRAN 1/0 Explanation

DDC-REF-TABLE, REFTAB, 1/0] See ABM manual chapter 7/6.
DBR-NO-OF ~-REALMS KNREA, I Number of realms to be readied.
DBR-REALM-NAMES KREALMS, I Names of realms.
DBR-REALM-USAGE(1) KUMOD, I Usage mode for the realms.
DBR-REALM~PROTECT(1)| KPMOD I Protection mode for the realms.

Routine CPBEGIN is an initiation routine that fetches the

description: picture for the current function from a file, and
transfers it to the screen. The routine alsc readies
the realms to be used. It opens the correct error
message file and initiates all the variables.

Norsk Data ND-60.219.1 EN

Q2 Complete Program Generator
Documentation of routines in the generated program

7.5.2. CPREGION

Routine name: CRREGION

Parameters :

COBOL ,,' FORTRAN 1/0 Explanation

DDC—REF—TABLE REFTAB, |1/0] See ABM manual chapter 7/6.

REG REG, I Active region (is specified as a
constant) .

DDS-xx-SUBSCHEMA MITEMxx, | I See ABM manual chapter 7/6.

SCV-zz MRECzz, I See ABM manual chapter 7/6.

TRIGGER-nnnn FLnnnn I Next routine to be executed.

XX = Realm name

zz = Picture record name

nn = Routine name

Routine Checks to see whether the current region is set active.

description: If so, the parameter TRIGGER-nnnn or Flnnnn will

specify the next routine to be called.

During registration, when all the lines in the picture
are filled in, the routine will clear the region,
display the last 1ine on line number 1, and place the
cursor on line number 2.

The routine moves the valjues for the current line
into the screen buffer (DDGETRC).

7.5.3. CPCURKC

Routine name: CPCURKC (COBOL)
CPCURKK (FORTRAN)

Parameters :

COoBOL FORTRAN I1/0 Explanation

CURRENT-KEY-NO KEYNO | 0 l Current key number.

Routine Returns the number of the search key currently
description: being used.

Norsk Data ND-60.219.1 EN

Complete Program Generator 93
Documentation of routines in the generated program

7.5.4. CPKEY

Routine name: CPKEY

Parameters : |

COBOL y FORTRAN I/0 Explanation

DDC-REF-TABLE REFTAB, | 1 | See ABM manual chapter 7/6.

DDS-xx~SUBSCHEMA MITEMxx, I See ABM manual chapter 7/6.

SCV-xx MRECxx, 0 | See ABM manual chapter 7/6.

TRIGGER-nn FLnnnn, I Previous routine which may be
activated.

TRIGGER-nn FLnnnn I Next routine that will be activated.

xXx = Picture record name

nn = Routine name

Routine When the program is started, and several action codes

description: are permitted, the default action code {‘query') is

switched on. If only one action code is permitted, that
one will be switched on.

If there is a key field in the picture, vou may type in
values for the key. and the action code may be set and
changed. If there is no key field in the picture {(only
Tegal for querying and storing), you have to specify in
the command field what kind of action you require.

CPKEY activates the routines CPGET, CPDISP and the
routine that is specified as input parameter.

7.5.5. CPKEYNC

Routine name: CPKEYNC (COBOL)
CPKEYNK {FORTRAN)

Parameters :

COBOL FORTRAN 1/0 Explanation

CURRENT-KEY-NO KEYNO l 0 ‘ Current key number.

Routine When querying, the current key number is returned.
description: Otherwise it is set to 1 {(i.e. main key).

Norsk Data ND-60.219.1 EN

84 Complete Program Generator
Documentation of routines in the generated program

7.5.6. CPGET

Routine name: CPGET

Parameters :

COBOL FORTRAN I/0 Explanation

EVERYLIN 1 EVERYLIN,| I *

DDC-REF-TABLE ' | REFTAB, I See ABM manual chapter 7/6.

CURRENT-KEY-NO KEYNR, I Number of current search key.

DBKI-xx-zz Klzzzzz, I ABM manual chapter 5/4.

DBKV-xx-zz KVzzzzz, I ABM manual chapter 5/4.

DDS-rr-SUBSCHEMA | MITEMrr, I ABM manual chapter 7/6.

SCV~-rr MRECrr, 0 | ABM manual chapter 7/6.

DDB-xx-SUBSCHEMA | KITEM I ABM manual chapter 5/4.

xx = Realm name

yy = Item name

zz = Index name

rr = Picture record name

* EVERYLIN: The value 0 specifies that all records within
the search region may be displayed without any
control.
The value 1 specifies that the user wants each
record to be -tested before it is displayed.
See example on page 162.

Routine description: Finds records in the database and transfers

the values to a screen buffer.

When EVERYLIN=0O for querying, as many records
are fetched from the database as there are
lines 1in the region.

When EVERYLIN=1 for querying, one record is
fetched from the database at a time. CPGET is
executed repeatedly until all the lines in the
picture are filled in, or until there are no
more records left in the database.

When modifying and deleting, the record
belonging to the key specified in CPKEY is
fetched. If no record is found, you get an
error message, and the CPKEY routine is re-
activated.

When storing, there is a check to see if a
record with the specified key value exists or
not. If the record exists, a message is
displayed, and the user has to give a new key
value.

Norsk Data ND-60.219.1 EN

Complete Program Generator

95

Documentation of routines in the generated program

When querying by means of a key, the search
region is established in accordance with the
Tow/high 1imits specified in the screen picture
‘Use of Program Keys' during the generating of
the program. Records with a key value starting
with the given key are fetched from the

database.
7.5.7. CPINRC
Routine name: CPINRC
Parameters :
COBOL FORTRAN 1/0 Explanation
INDX RCPOINT, I The line the database record is to be
fetched from.
DDB-xx~SUBSCHEMA KITEMxx, 1 xX = Realm name/Realm prefix.
DBV-xx KRECxx 0 | xx = Realm name/Realm prefix.

Routine description:

Fetches database values for the current line
from the total database buffer, and places them
in a local database buffer (i.e. the database
buffer in the input parameter).

/.5.8. CPDISP

Routine name: CPDISP

Parameters

COBOL FORTRAN 1/0 Explanation
DDC-REF-TABLE REFTAB, 1/0| ABM manual chapter 7/6.
DDS-xx~-SUBSCHEMA | MITEMxx, I ABM manual chapter 7/6.
SCV-xx MRECxx 0 | ABM manual chapter 7/6.
xXx = Picture record name

Routine description:

When the action code is query, the desired page
will be displayed on the screen. If you are
modifying or deleting, the desired logical line
will be displayed on the screen.

Norsk Data ND-60.219.1 EN

96 Complete Program Generator
Documentation of routines in the generated program

7.5.9. CPREAD

Routine name: CPREAD

Parameters :

COBOL FORTRAN I/0 Explanation

READP READP, I Number of the current PREAD call.
DDC-REF-TABLE REFTAB, 1/0] ABM manual chapter 7/6.
DDS-xx~-SUBSCHEMA | MITEMxx, I ABM manual chapter 7/6.

SCV-xx MRECxx, 0 | ABM manual chapter 7/6.

TRIGGER-nn FLnnnn, 1 Previous routine that can be activated.
TRIGGER-nn FLnnnn I Next routine that will be activated.
Routine description: The routine is only executed if a variable

READCO=READP. READCO is set to 1 each time the
subroutine CPKEY is executed. Otherwise, it is
up to the user to control READCO so that

the correct CPREAD call is executed.

CPREAD tests if the action code is storing

or modifying. If the test is positive and the
EXECUTE key is not pressed, then all the fields
mentioned in the item 1ist will be read. When
you press the EXECUTE key, the reading will be
terminated, and flag for updating will be set.

If the last field is read and no updating flag
is set, you will be asked if you want to
update. If you do want to update, press the
EXECUTE key, and flags for updating will be set
{i.e. CPBTRANS, CPETRANS and CPUPDATE]).

If you want an automatic updating after the
last CPREAD, i.e. the question about updating
and pressing the EXECUTE key is not wanted, you
have to call the subroutine CPUPMODE after
CPREGION. See description of CPUPMODE in
appendix A.

Norsk Data ND-60.219.1 EN

Complete Program Generator g7
Documentation of routines in the generated program

7.5.10. CPBTRANS

Routine name: CPBIRANS

Parameters :
COBOL FORTRAN I/0 Explanation

DDS-xx-SUBSCHEMA | MITEMxx, ABM manual chapter 7/6.

I
SCV-xx MRECxx, I ABM manual chapter 7/6.
DDB-zz~-SUBSCHEMA | KITEMzz, 1 ABM manual chapter 5/4.
DBV-zz KRECzz 0 | ABM manual chapter 5/4.
Xxx = Picture record name
zz = Realm name/Realm prefix
Routine description: Starts the updating transaction by calling

SUBEG. In addition, the screen buffer is
transferred to the database buffer.

7.5.11. CPUPDATE

Routine name: CPUPDATE

Parameters :

COBOL FORTRAN 1/0 Explanation

DDC-SELECT ITEMSUB, I Subitem 1ist. ABM manual chapter 7/6.
DDB-xx-SUBSCHEMA | KITEMxx, I ABM manual chapter 5/4.

DBV-xx KRECxx I ABM manual chapter 5/4.

XX = Realm name/Prefix

Routine description: Depending on the action code this routine will
execute one of the following functions on the
main realm: store, modify, or delete.

7.5.12. CPETRANS

Routine name: CPETRANS

Parameters : None

Routine description: Ends a critical sequence (SUEND) and resets the
updating flag. Displays a message saying which
updating has taken place.

Norsk Data ND-60.219.1 EN

98

Complete Program Generator

Documentation of routines in the generated program

7.5.15. CPRSPNS

Routine name: CPRSPNS

Parameters : ’

COBOL FORTRAN I/0 Explanation

DDC-REF-TABLE REFTAB, |1/0] See ABM manual chapter 7/6.
DDS-xx~-SUBSCHEMA | MITEMxx, | I See ABM manual chapter 7/6.
SCV-zz MRECzz I See ABM manual chapter 7/6.

Routine description:

7.5.14. CPEND

Increased the line counter if there are several
lines in the picture. Reads the command in the
command field or reacts to predefined function
keys. Sets flags for further execution,
depending on the given command.

Only a legal command or a FOCUS error causes a
return to the main program.

Routine name: CPEND

Parameters : None

Routine description:

The routine terminates the program, and checks
if an error has occurred. If an error has
occurred, i.e. KSTAT#1, KSTAT#0 or MSTA#0, an
error message will be written to the error
message file. A message saying that an error has
occurred will also be displayed on the screen.

Norsk Data ND-60.219.1 EN

Complete Program Generator 99
Documentation of routines in the generated program

7.5.15. CPACTCOD

Routine name: CPACTCOD

Parameters

COBOL FORTRAN 1/0 Explanation

DDC-REF-TABLE REFTAB, 1/0| ABM manual chapter 7/6.
DDS-xx-SUBSCHEMA | MITEMxx, I ABM manual chapter 7/6.

SCV~-xx MRECxX, 0 | ABM manual chapter 7/6.

SCV-DUMMY -BKODE BKODE , 0 The chosen action code.

TRIGGER-nn Flnnnn, | Previous routine that may be activated.
TRIGGER-nn FLnnnn 1 Next routine to be activated.

Routine description: Action code field is read.

If only one action code is legal, this will be
standard. If no action code is legal, querying
will become the standard code.

The current action code is written as default,
and the cursor will be positioned in the next
field. If you want to give or change the action
code, you have to move the cursor back to this
field by means of the left-arrow key.

Legal action codes: :oquerying
: storing
: modifying

. deleting

ELNRC N

Norsk Data ND-60.219.1 EN

100 Compliete Program Generator
Documentation of routines in the generated program

7.5.16. CPOKCOD

Routine name: CPOKCOD

Parameters :

COBOL FORTRAN I/0 Explanation

DDC~REF-TABLE REFTAB, 1/0| ABM manual chapter 7/6.
DDS-xx~-SUBSCHEMA | MITEMxx, I | ABM manual chapter 7/6.

SCV-xx MRECxx, 0 | ABM manual chapter 7/6.
SCV-DUMMY-0KODE 0KODE, 0 | Specified OK code.

TRIGGER-nn FLnnnn I Previous routine that may be activated.
Routine description: Waits until the OK code is 'Y' or 'N',

“or until you press the HOME key
(\). If OK = 'Y', the flag that signals
updating will be made ready.

You can press the EXECUTE key instead of 'Y'.

7.5.17. CPOTHER

Routine name: CPOTHER

Parameters :

COBOL FORTRAN I/0 Explanation

DDC-REF~TABLE REFTAB, I See ABM manual chapter 7/6.
DBKI-xx-zz Klzzzzz, I See ABM manual chapter 5/4.
DBKV-xx-zz KVzzzzz, | See ABM manual chapter 5/4.
DDB-xx~SUBSCHEMA | KITEM, I See ABM manual chapter 5/4.
DBV-xx KRECxx, I See ABM manual chapter 5/4.
DDS-rr-SUBSCHEMA | MITEMrr, I See ABM manual chapter 7/6.
SCV-rr MRECrr 0 See ABM manual chapter 7/6.
xX = Realm name

yy = Item name

zz = Index name

rr = Picture record name

Routine description: Fetches data from the specified realm, and

moves the data to a screen buffer.

When you modify/store, data is fetched and
displayed on the screen. If data is not found,
a message is displayed and the last executed
CPREAD must be executed again.

Norsk Data ND-60.219.1 EN

Complete Program Generator 101
Documentation of routines in the generated program

7.5.18. CPEXIST

Routine name: CPEXIST

Parameters :

COBOL FORTRAN 1/0 Explanation

DBKI-xx-yy Klzzzzz, 1 ABM manual chapter 5/4.

DBKV-xx-yy KVzzzzz 1 ABM manual chapter 5/4.

Routine description: When you store or modify data, this routine

checks if data is found in the specified
realm. If not, a message is displayed and the
tast CPREAD call must be executed again.

When you delete data, the routine checks that
there is no data in the specified member's
realm. If there is any data, an error message
is displtayed and the cursor is positioned in
the key field.

During the generating of the program, a search
is performed of the realm using the key values
stated in low/high 1imit in the screen picture
‘Use of Program Keys'.

Norsk Data ND-60.219.1 EN

102 Complete Program Generator

Documentation of routines in the generated program

7.5.19. CPFRTXT 4

Routine name: CPFRTXT FORTRAN

CPFRTXC COBOL

Parameters

COBOL FORTRAN I/0 Explanation

DDC-REF-TABLE REFTAB, I See ABM manual chapter 7/6.
SCREEN-NAME CTYPNAM, I/01 Name of TT mark in picture.
ITEM-VALUE TXTNR, 1/0} Text number.

SCREEN-VALUE CTYPE, I/0] Value of SCV-xx-TTYPE/ITTYPE.
DDS-xx-SUBSCHEMA | MITEMxx, I | ABM manual chapter 6/7.

SCV-xx MRECxx , I | ABM manual chapter 6/7.

I TEM-NAME INAME , I Name of DB item with value TXTNR.
DDS~zz~SUBSCHEMA | MITEMzz, I ABM manual chapter 6/7.

SCV-zz MRECzz, I ABM manual chapter 6/7.
DDS-xx-SUBSCHEMA | MITEMxx, 1 ABM manual chapter 6/7.

SCV-xx MRECxx, | ABM manual chapter 6/7.
MAINTAB(4) MAINTAB(4)| I | Line number in the picture.
INFOTXT INFOTXT Information may be placed here.

Routine description:

Calls free text function. Checks if it is
permitted to call the function. If it is not
permitted, a message is displayed and you are
returned to the calling function.

When querying in the calling function, you may
only query in the free text function.

When modifying in the calling function, you
may query, store, modify, and delete in the
free text function.

When returned, you are returned to the place
in the picture from where the function was
called.

In the free text function, you may store N
1ines of text per free text.

Norsk Data ND-60.219.1 EN

Complete Program Generator 103
Documentation of routines in the generated program

7.5.20. CPTDISP/CPTDISC

Routine name: CPTDISP FORTRAN
CPTDISC COBOL

Parameters :

COBOL FORTRAN /0 Explanation

DDC-REF-TABLE REFTAB, I See ABM manual chapter 7/6.

DDS-xx-SUBSCHEMA MITEMxx, I ABM manual chapter 6/7.

SCV-xx MRECxx, I ABM manual chapter 6/7.

SVC-xx-TTYPE XXTTYPE, I Screen picture field where 'T' is to be

written.

‘TTYPE ' CXXTTYPE", | 1 Name of screen picture field.

DDB-zz-SUBSCHEMA | KITEMZZ, I | ABM manual chapter 5/4.

DBV-ZZ KRECZZ, 0 | ABM manual chapter 5/4.

DBV-zz-TNR ZZTTNR, Database buffer values for the free text
‘ realm.

EVERYLIN EVERYLIN I See page 94.

Routine description: Displays a 'T' in the field XXTTYPE when the

line in the screen picture has additional text
connected to it. If not, the field is blank.

Norsk Data ND-60.219.1 EN

104

Norsk Data ND-60.219.1 EN

Complete Program

Generator .

Complete Program Generator 105

CHAPITER 8

PROGRAM LOGIC IN THE GENERATED PROGRAM

Norsk Data ND-60.219.1 EN

Complete Program Generator 107
Program logic in the generated program

8. PROGRAM LOGIC IN THE GENERATED PROGRAM

8.1. COMTAB

COMTAB's function

COMTAB(n,1)

COMTAB(n,2)

This chapter is written especially for FORTRAN, but the
principles also are relevant to COBOL.

The following topics are important for understanding how
the generated program works:

o COMTAB
e subroutine CPENABLE(flag)

e subroutine CPDISABL(flag)

COMTAB is a table defined in FORTRAN as
INTEGER*4 COMTAB(8,2), where

'8' specifies the maximum number of regions {(0-7)
(at present, only 2 regions are available), and

‘2" specifies that there are two words (of 32 bits each)
containing information about each region in the
picture.

The flags, which describe each region, are represented
by one bit each in the COMTAB elements.

COMTAB(n,1) is important for understanding

the program logic. This part of the table is used by
the program to describe which routines in the generated
program are to be executed. Each routine call in the DO
loop causes COMTAB(n,1) to be used, in order to test

if the routine in question is to be executed.

After an error exit, or when X(exit) is pressed in the
command field, COMTAB(n,1) will be reset to 0. This
indicates that no routine is ready for execution, and
the DO loop is therefore ended.

COMTAB(n,2) contains a description of each region, based
upon the layout of the screen picture and values
specified in the 'Use of Program Keys' picture.

Norsk Data ND-60.219.1 EN

108 Complete Program Generator
Program logic in the generated program

The routine names with unambiguous bits in COMTAB(n,1)
are listed together with their bit numbers in this

table:

COMTAB(n,1)
Routine Bit
CPREGION 31
CPACTCOD 30
CPRSPNS 29
CPKEY 28
CPREAD 27
CPOKCOD 26
CPUPDATE 25
CPGET 24
CPDISPL 23
CPBTRANS/ 22
CPETRANS 22
OK-flag 21
CPFRTXT 20
Unused 19 - 0

(0K flag is used when one record is fetched at a time.)

Below, we describe the meaning of each of the bits in
COMTAB(n,2):

COMTAB(n,2)
Bit Flag Significance
31 FLREADBK Specifies whether action code is to be read or not.
30 FLREADOK Specifies whether 0K code is to be read.
29 FLSUBLEV Determines whether current region has members.
28-26 FLOWNER Specifies which region, if any, is the owner of -the
current region.
25-23 FLMAXKEY Maximum number of search keys in the region {max.7)
22-20 FLKEYNR Number of current key field.
19-16 FLLEGACT Specifies which action codes are permitted.
19 : querying
18 : storing
17 : modifying
16 : deleting
15 FLTXT Specifies whether free text is in use or not.
14-0 unused

Norsk Data ND-60.219.1 EN

Complete Program Generator 109
Program logic in the generated program

8.2. CPENABLE(FLAG) anp CPDISABL(FLAG)

The purpose of
the routines

8.3. SUBROUTINE

These routines call two FORTRAN library routines which

set and reset flags respectively.

The purpose of CPENABLE and CPDISABL is to activate the
different routines.

When a flag is set, it means that the corresponding
routine is executed when the program gets to this
routine.

When a flag is reset, it means that the corresponding

routine is to be skipped during further execution, until
the routine's flag is set again.

CALLS

As mentioned before, the program will run in a Toop
until the user presses the EXIT key, or until an error
occurs. Each run executes calls of each subroutine which
is part of the DO loop.

Whether the subroutine in question is to be executed in
full or not depends on the corresponding bit in
COMTAB(n,1) being set. At the beginning of each
subroutine, this is tested. If the correct bit is not
set, the subroutine terminates and returns to the main
program, and the next subroutine is called. If the
correct bit is set, this bit will be reset immediately,
and the entire subroutine can be executed.

8.4. How THE INDIVIDUAL BITS ARE SET

An example:

When the program is started, the flag for the routine
CPREGION 1in the first region is set. Afterwards, the
flags will be set and reset according to which command
or navigation is given in the screen picture.

If you type in a command for the next region, a flag is
set for CPREGION in the next region. If you type in

a command for a new search key, a flag for CPKEY will be
set (i.e. new read of key).

Norsk Data ND-60.219.1 EN

110 Complete Program Generator
Program logic in the generated program

8.5. THE USE OF FLAGS IN THE CoMPLETE-PG ROUTINES

Let us have a closer look at the use of flags 1in
Complete-PG routines, and what criteria must be
fulfilled before the routines are executed.

We shall also look at which flags the routine sets when
it is executed, and which flags are set if it is not
executed.

In the column 'Flag reset', it is specified whether
or not the flag is turned off when the routine is

executed.

ROUTINE Criteria for execution Flag reset
CPREGION FLCOMMAN is set or

FLCOMMAN set and MAINTAB(1)=MAINTAB(3). YES
CPAKTCOD FLAKTCOD 1is set. YES
CPKEY FLKEY is set. YES
CPKEYNK FLGET is set. NO
CPGET FLGET is set. YES
CPDISP FLDISPLY 1is set. YES
CPREAD FLREAD is set and READCO=READP. YES
CPOKCOD FLOKCOD is set. YES
CPBTRANS FLTRANS is set. NO
CPETRANS FLTRANS is set. YES
CPUPDATE FLUPDATE 1is set. YES
CPRSPNS FLRESPON is set. YES
CPFRTXT FLFRTXT is set. YES
CPOTHER EXECUTE is set to .TRUE./1 . NO
CPEXIST EXECUTE is set to .TRUE./1 . NO

Setting of flags If the requirements for the routine to be executed are

in the routines: fulfilled, and the routine is executed without any error
occurring, then EXECUTE is set to .TRUE./1 (both in
FORTRAN and COBOL).

If the routine is not to be executed, then EXECUTE 1is
set to .FALSE./O0 {(both in FORTRAN and COBOL).

Norsk Data ND-60.219.1 EN

Complete Program Generator
Program logic in the generated program

111

If the routine is executed, the following flags are set in addition to

EXECUTE :

ROUTINE Normally Display Flags that may be set
executed several regions in certain cases

CPREGION If BK field 1in
picture: FLAKTCOD,
otherwise FLKEY.

CPAKTCOD PREV/FL.COMMAN
or NEXT/FLKEY.

CPKEY PREV/FLAKTCOD When KEY is changed,
or NEXT/CPREAD FLKEY 1is set.
as well as FLGET FLRESPON.
and FLDISPLY. FLFRTXT.

CPKEYNK No flags are set.

CPGET) When EVERYLIN=1

FLGET 1is set until
page is full.
FLCOMMAN and FLRESPON
are set when scrolling
and no more records
found. FLKEY if
record does not exist.
CPDISP When scroiling: FLRESPON.
sets FLGET,
FLDISPLY

in a subregion,

if any.

CPREAD PREV or NEXT. FLFRTXT.
FLUPDATE and FLRESPON.
FLTRANS if
EXECUTE key 1is hit

CPOKCOD PREV can be set. FLFRTXT.
FLUPDATE and
FLTRANS if
EXECUTE key is hit
after 'Y'.

CPBTRANS No flags are set.

CPETRANS No flags are set.

CPUPDATE No flags are set.

CPRSPNS Can set most flags FLKEY. FLFRTXT.
depending on navi- FLGET. FLDISPLY.
gation and posi- FLRESPON.
tion in picture. FLCOMMAN .

CPFRTXT Sets MAINTAB(6),
last used routine.

CPOTHER Can set FLREAD.

CPEXIST Can set FLREAD. FLKEY when deleting.

Norsk Data ND-60.219.1 EN

Complete Program Generator

112

Norsk Data ND-60.219.1 EN

Complete Program Generator 113

EHRAPRIER 9

INSTALLATION

Norsk Data ND-60.219.1 EN

\ ‘\

Complete Program Generator 115
Installation

9. INSTALLATION

This chapter gives an overview of the necessary
preparations before using Complete-PG.

9.1. BASIC SOFTWARE REQUIREMENTS

In order to run Complete-PG, you must have the following
or newer versions of ND software:

SYSTEM: VERSION/RELEASE
PED or WP

ABM C

SIBAS 11 T E

FOCUS G

GPM

JEC B
USER-ENVIRONMENT B

9.2. CP-SPEC anp CP-PROGEN

CP-SPEC:SYMB This file contains installation parameters that must be
initiated for each project:

progen : short name for the system, is shown in the
heading of each generated program.

pgver : version name for the system, is shown in the
heading of each generated program.

decuser : indicates where the generated DEC files from
ABM are stored.

assuser : indicates where the generated ASS files from
ABM are stored.

csysn : system name that is shown in the upper left-
hand corner of the screen picture for each
generated function.

formfil : name of the file where all the pictures are
stored.
brfuser : where the BRF/NRF versions of the programs

are to be stored.

Norsk Data ND-60.219.1 EN

116

CP-PROGEN :MCRO

CP-LIST:LIST

CP-ERROR:LOGG

Complete Program Generator
Installation

symbuser : where the SYMB versions of the programs are
to be stored.

workuser : the user area where one is working.

proguser : indicates where the PROG/DOMAIN versions of
the programs are to be stored.

CP-PROGEN contains the procedure for generating,
compiling and loading the program to be generated.

If you have symbolic versions, BRF/NRF versions or
similar on various users, then you need to type in the
user names for these files. In addition, you need to
insert any personal subroutine Tibraries in the load
procedure, as well as libraries such as COBOL, FORTRAN,
SIBAS (together with the correct user names).

You must also create the files CP-LIST:LIST and é
CP-ERROR:L0OGG on the workuser area:

Generating, compiling and loading is run on BATCH-
processor number 1. Output from this job is stored on
CP-LIST:LIST.

On this file, all the error messages from SIBAS, FOCUS
and SINTRAN are gathered, if they occurred during the
execution of the programs.

When an error occurs during the execution of a program,
you will get a message about this at the bottom of your
screen. Press any key to terminate the program.

A detailed error message is written to CP-ERRQOR:LOGG.

NOTE:
Make sure the files CP-LIST and CP-ERROR are cleared
from time to time.

Norsk Data ND-60.219.1 EN

Complete Program Generator 117

Installation

When using
free text:

When using
the advanced

HELP function:

If the free text function is to be used in programs
generated by Complete-PG, the realm D3TEXT has to be
inserted in the database the programs are going to
access. This can be done by running the redefinition
file CP-REDEF-TEXT:SYMB.

Before running the file, type in the name of the
database, 0S file name and system realm:

e Type in the necessary information on the redefinition
file CP-REDEF-TEXT:SYMB.

o Run CP-REDEF-TEXT:SYMB.
If you want to use the advanced HELP function (see
chapter 13}, you have to redefine the
database by means of the file CP-REDEF-HELP:SYMB.

Béfore running the file, type the name of the
database, 0S file name, and system realm.

Norsk Data ND-60.219.1 EN

Complete Program Generator

118

Norsk Data ND-60.219.1 EN

Complete Program Generator 119

ChaPlER 10

A PROGRAMMING EXAMPLE

Norsk Data ND-60.219.1 EN

L)

» |

Complete Program Generator 121
A programming example

10. A PROGRAMMING EXAMPLE

We will demonstrate the use of Complete-PG by using a programming
example. The example will show a function for maintenance of firms and
their employees.

We have four realms:

e Employee realm

e Firm realm

e Postal code/area realm
e Position category realm

The database structure 1is as follows:

10.1. DATABASE DESCRIPTION

Database description Realm: A1ANSAT -~ EMPLOYEE REALM

- Contains all necessary information
about each employee in each firm.

Itemname Term Type Char Explanation
A1ANSNR EMPLOYEE NUMBER N 4 Employee number
A1ENAVN SNAME AN 15 Surname
A1FNAVN FNAME AN 20 First name
A1STILL POSITION AN 10 Position title
A1BEDNR FIRM NUMBER N 4 Firm number
A1BENAV FIRM NAME AN 30 Name of firm
ALINTLF EXTENSION N 4 Extension
A1KODE CODE N 1 Code number
AITTNR TEXT P N 9 Free text number for person
ALATTNR TEXT A N 9 Free text number for seniority
Key: AL1BEDAN AN
A1BEDNR
ALANSNR
A1STILL AD
AINAVNE AD
A1BEDNR
ALTENAVN

Norsk Data ND-60.219.1 EN

122 Complete Program Generator
A programming example

Database description Realm: B1BEDRI - FIRM REALM

- Alle firms of interest are stored here.

Itemname Term Type Chaf Explanation
B1BEDNR FIRM NUMBER N 4 Firm number
B1BENAY FIRM NAME AN 30 Name of firm
B1KONAYV SHORT NAME AN 8 Short name of firm
B1ADRES ADDRESS AN 30 Address of firm
B1POSNR POSTAL CODE N 4 Postal code
B1TLFNR TELEPHONE NUMBER N 8 Telephone number of firm
B1KODE CODE N 1 Code number
B1SOPD not screen field N 8 Date when firm realm was last updated
Key:
B1BEDNR AN
B1KONAV AD
B1POSNR AD

Database description Realm: P1POST - POSTAL CODE REALM

- A1l postal codes of interest are stored

here.
Itemname Term Type Char Explanation
P1POSNR POSTAL CODE N 4 Postal code
P1PONAV POSTAL AREA AN 30 Name of postal area

Key: P1POSNR AN

Database description Realm: S1STILL - POSITION CATEGORY REALM

- Contains all position categories of

interest.
Itemname Term Type Char Explanation
SISTILL POSITION AN 10 Position category

Key: S1STILL AN

"Norsk Data ND-60.219.1 EN

Complete Program Generator 123
A programming example

10.2. MAINTAINING FIRMS AND THEIR EMPLOYEES

On the basis of this database structure we are going to make the following

function:

Purpose: The function is used to store and maintain firms and
employees within each firm.

Type: On-1ine, updating

Main keys: Firm: Firm number
Employee: Firm number + Employee number

Scrolling keys: Firm: Short name

Employee: Firm number + Surname

Automatic transfer
to other functions: None.

Automatic transfer
from other functions: None.

Use of function: STORING : In accordance with the program
generator.
MODIFYING : In accordance with the program
generator.
DELETING : In accordance with the program
generator.
QUERYING : In accordance with the program
generator.
Messages: 151 : "0:-> Surname must be specified.'"
152 : "0:-> Position category does not exist in
the system.'"
153 : "0:-> Which text do you want (P=1,S=2) . *"
Use of database: {C=Create, M=Modify, D=Delete, R=Retrieve)
BIBEDRI - Firm realm C M D R
ALANSAT - Employee realm C M D R
P1POST - Postal code/area realm R
SISTILL - Position category realm R

Norsk Data ND-60.219.1 EN

124

10.3. THE SCREEN PICTURE:

Complete Program Generator
A programming example

This screen picture is designed in the screen picture part of ABM:

Surname

No.

COURSE SYSTEMS MAINTENANCE yy.mm.dd 99:99
FIRM

Number of firm : Firm R
Short name:........ Address :
Postal code: Area
Tel.: Code

Employee :

Code

First name v Position

Norsk Data ND-60.219.1 EN

Complete Program Generator 125
A programming example

10.4. DESCRIPTION OF FIELDS:

TERM MEANING INPUT REALM
CONTROL REFERENCE
NUMBER OF FIRM| Number belonging to each firm B1BEDRI
that is registered.
FIRM Official name of the firm. ’ B1BEDRI
SHORT NAME Short name of the firm. B1BEDRI
ADDRESS Address of the firm. B1BEDRI
POSTAL CODE Postal code of the firm. B1BEDRI
AREA Name of the postal area. B1BEDRI
TEL Telephone number of the Legal B1BEDRI
firm. Also includes the values:
area code. 01100000 -
09999999
CODE 1..... 9 B1BEDRI
EMPLOYEE NO. Internal number of A1ANSAT
each employee.
CODE 1..... 9 A1ANSAT
SURNAME The surname of each employee. ATANSAT
FIRST NAME The first name of each employee. AL1ANSAT
POSITION Name of position of each A1ANSAT
employee.
EXT. Extension for each employee. Legal ALANSAT
values:
1000 - 99399

10.5. HELP PICTURES:

None.

Norsk Data ND-60.219.1 EN

126 Complete Program Generator
A programming example

10.6. FILLING IN THE SCREEN PICTURES

Before you fill in the two screen pictures in Complete-
PG, you have to do the following:

e Define data types and database in ABM.

e Design the picture in the screen picture part of ABM.
e Define subschema and subfunction.

In this example, we have chosen to give the picture,
subschema and subfunction the same name:

AJBEDR.

e Call Compiete-PG from the command line in ABM by
typing: ‘

ABM command: COMPLETE-PGed

The first picture of Complete-PG will then appear on the
screen.

e Fi11 in the Program Description picture.

Below, this picture is filled in for the program
that is to be generated:

PG > . PROGRAM DESCRIPTION

Program identification.

subfunction : AJBEDR subschema: AJBEDR form: AJBEDR
author : ERIC BROWN :

program 1id . AJBEDR

explanation : MAINTENANCE OF FIRMS AND THEIR EMPLOYEES.

Parameters for generate.

object language : FORT

object filename : 101-AJBEDR

load procedure : GENERATE/COMPILE

Date of
creation : 86 05 22 last modification : 00 00 0O
last generated : 00 00 00

A1l the fields that appear in the two screen pictures in
Complete-PG, are described in chapter 4.

In the field 'load procedure’' we have chosen
GENERATE/COMPILE. We have not inciued LOAD, because this
function is to be loaded together with a menu system,
for example TRUE, which is not described here.

When this picture is registered, the picture Use of
Program Keys will appear on the screen.

Norsk Data ND-60.219.1 EN

Complete Program Generator 127
A programming example

Here you see the picture already filled in for the two
regions. Note that MK is a search key in both regions.

Region 1
PG »>. UsSE 0Ff PROGRAM KEYS
Subfunction: AJBEDR fieldrecord: MI1A
name: BEDRIFT owner:
okcode: N textfunction: N action codes: 1234
Realm Key Use D Ex Realm Key Use D Ex Realm Key Use D Ex
B1BEDRI B1BEDNR MK A1ANSAT ALSTILL
B1BEDRI BI1KONAV AK ALANSAT A1INAVNE

B1BEDRI B1POSNR
AL1ANSAT A1BEDAN

Initial values for realm: B1BEDRI key: B1BEDNR

Item Lowlimit Highlimit Item Lowlimit Highlimit
B1BEDNR M1BEDNR

Region 2 :
PG ». USE 0F PROGRAM KEYS
Subfunction: AJBEDR fieldrecord: MZ2A
name: EMPLOYEE owner: BEDRIFT
okcode: N textfunction: N action codes: 1234
Realm Key Use D Ex Realm Key Use D Ex Realm Key Use D Ex
B1BEDRI B1iBEDNR AIANSAT AL1STILL
B1BEDRI B1KONAV ALANSAT AINAVNE AK

B1BEDRI BIPOSNR
AIANSAT AIBEDAN MK

Initial values for realm: A1ANSAT key: A1BEDAN

Item Lowlimit Highlimit Item Lowlimit Highlimit
A1BEDNR M1BEDNR M1BEDNR
AT1ANSNR M2ANSNR

Norsk Data ND-60.219.1 EN

128 Complete Program Generator
A programming example

When you have filled in both 'Use of Program Keys'
pictures, do the following:

e Return to the first picture (Program Description)
by pressing E in the command field.

e Start the program generating by pressing X
in the command field 1in the Program Description
picture.

e The generating of the program and the compiling will

now be started on batch processor 1, with the (Work
user)CP-LIST:LIST file as output file.

Norsk Data ND-60.219.1 EN

Complete Program Generator 129
A programming example

10.7. THE RESULTING GENERATED PROGRAM

The resulting program will look like this in FORTRAN (see page 134
for COBOL):

Programmer : ERIC BROWN

CHARACTER CTYPE*2, CNAME*8, CTYPNAM*8, INFOTXT*50
INTEGER*4 TXTNR
INTEGER CPCURKK, EVERYLIN, CPKEYNK
INTEGER*2 IBKODE1,IBKODEZ2,I0KCOD1,I0KC0OD2, INAME(4),TYPNAM(4)
LOGICAL ENTEXT
EQUIVALENCE (CNAME, INAME),
+ {CTYPNAM, TYPNAM)
$INCLUDE (abm-user)CP-TRIGGER-TAB:INCL
$INCLUDE (abm-user)CP-PROBOT-COM: INCL

C %A% ABM interface
$INCLUDE (k-1-abm)DECDDI-AJBEDRIV
C %%% ABM interface
$INCLUDE (k-1-abm}ASSDDI-AJBEDRIV
C %%% Init picture name
FORMFILE = '(k-1-abm)KURS:FABM'
C %%% Init leaving field function
NEXTFI = 'Y
EVERYLIN = 0
C %%% Init function name, project name, no. of regions and language
CMAIN "AJBEDRIV'
CSYSTEM "K-1 kurs'
MAINTAB(2) 2
LANGUAGE "FORT'

C %%% Make help function available
CALL CPHJON

1 2 I | I |

C %%% Description and name of region 1
COMTAB({1,2) 555679744
NAMTAB({1) "Firm

Norsk Data ND-60.219.1 EN

130 Complete Program Generator
A programming example

C %%% Description and name of region 2
COMTAB(2,2) = 85950464
NAMTAB(2) = 'Employee

C %%% Get picture

CALL CPBEGIM(REFTAB,KNREA,KREALMS,KUMOD,KPMOD)

C %%% Loop until an error occurs or "EXIT" key is pressed

DO WHILE (MAINTAB(1).NE.O)

DO WHILE (COMTAB(1,1).NE.O .AND. MAINTAB(1).NE.O)

EVERYLIN = 0

CALL CPREGION{REFTAB,1,MITEMM1,MRECM1,FLACTCOD)
C %%% Main key item list region 1

OVITEM{ 1) = 'B1BEDNR'

OVANT = 1
C %%% Read keys

IF {CPCURKK().EQ. 1) THEN
CITMSUB(1) = '+:MIBEDNR *
ENDIF
IF (CPCURKK().EQ. 2) THEN
CITMSUB(1) = '+:M1KONAV *
ENDIF
CALL CPKEY(REFTAB,MITEMM1,MRECM1,FLACTCOD,FLREAD)

C %%% Get record

IF (CPKEYNK().EQ. 1) THEN
LB1BED1 = MI1BEDNR

ENDIF

IF (CPKEYNK({).EQ. 2) THEN
LBI1IKON1 = M1KONAV

ENDIF

CALL CPGET(EVERYLIN,REFTAB, 1,KIB1BED,KVB1BED,
* MITEMM1 ,MRECM1,KITEMB1)

CALL CPGET(EVERYLIN,REFTAB, 2,KIB1KON,KVB1KON,
* MITEMM1,MRECM1,KITEMB1)

IF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.O) THEN
I = REFTAB{7)
C %%% Get data from database buffer
CALL CPINRC({I,KITEMB1,KRECB1)
ELSEIF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.1) THEN

1 =1
C %%% Get data from database buffer
CALL CPINRC(I,KITEMB1,KRECB1)
ENDIF

Norsk Data ND-60.219.1 EN

Complete Program Generator 131
A programming example

C %%% Display on screen

CITMSUB(1) = '-:x!
CALL CPDISP(REFTAB,MITEMM1 ,MRECM1)

FLNEXT = FLOKCOD
C %%% Read from screen

CITMSUB(1) = '-:M1BEDNR *

CALL CPREAD(1,REFTAB,MITEMMI ,MRECM1,FLKEY,FLNEXT)

C %%% Begin transaction
CALL CPBTRANS(MITEMM1 MRECM1,KITEMB1,6KRECB1)

C %%% Update record
CITMSUB(1) ='0:*"

CALL CPUPDATE(ITEMSUB,KITEMB1,KRECB1)
C %%% End transaction

CALL CPETRANS
C %%% Read response kode

CALL CPRSPNS(REFTAB,MITEMM1 ,MRECM1)
CALL CPOVER(MITEMMI1,MRECM1,KITEMB1,KRECB1)

C %%% Swap to help application
CALL CPHELP(REFTAB,MITEMM1,MRECM1 MITEMM2 ,MRECMZ)
ENDDO
DO WHILE (COMTAB(2,1).NE.O .AND. MAINTAB{1).NE.O)

EVERYLIN = O
CALL CPREGION(REFTAB,2,MITEMM2 ,MRECMZ,FLACTCOD)

C %%% Main key item 1ist region 2

"A1BEDNR'
"A1ANSNR'

OVITEM(1)
OVITEM(2)
OVANT = 2

N

C %h% Read keys

IF (CPCURKK().EQ. 1) THEN
CITMSUB(1) = '+:M2ANSNR *

ENDIF

IF (CPCURKK().EQ. 2) THEN
CITMSUB(1) = '+:M2ENAVN *

ENDIF

CALL CPKEY(REFTAB,MITEMM2 ,MRECM2,FLACTCOD,FLREAD)

Norsk Data ND-60.219.1 EN

132

Complete Program Generator
A programming example

%%% Get record

LAIBED1 = MIBEDNR
LAINAVI = M1BEDNR
HA1BED1 = MI1BEDNR
HAINAV1 = M1BEDNR

IF (CPKEYNK().EQ. 1) THEN
LA1BED2 = MZANSNR

ENDIF

IF (CPKEYNK({).EQ. 2) THEN
LAINAVZ = MZENAVN

ENDIF

CALL CPGET(EVERYLIN,REFTAB, 1,KIA1BED,KVALBED,
MITEMM2 ,MRECM2 ,KITEMAL)

CALL CPGET(EVERYLIN,REFTAB, 2,KIAINAV, KVAINAV,
MITEMM2 ,MRECM2 ,KITEMAL)

IF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.O) THEN
1 = REFTAB(7)
%%% Get data from database buffer
CALL CPINRC{I,KITEMA1l,KRECA1)
ELSEIF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.1) THEN
I =1
%%% Get data from database buffer
CALL CPINRC{I,KITEMALl,KRECA1)
ENDIF
%%% Display on screen

CITMSUB(1) = '~:*!
CALL CPDISP(REFTAB,MITEMM2 ,MRECM2)

FLNEXT = FLOKCOD
%%% Read from screen
CITMSUB(1) = ‘—:MZTTYﬁE M2ANSNR *
CALL CPREAD(1,REFTAB,MITEMMZ ,MRECM2,FLKEY,FLNEXT)
A1BEDNR = M1BEDNR
%%% Begin transaction
CALL CPBTRANS(MITEMM2 ,MRECM2,KITEMA1,KRECAL)

%#%% Update record
CITMSUB(1) ='0:*"

CALL CPUPDATE(ITEMSUB,KITEMAL,KRECAL)
%%% End transaction
CALL CPETRANS

%%% Read response kode

Norsk Data ND-60.219.1 EN

Complete Program Generator
A programming example

CALL CPRSPNS{REFTAB,MITEMM2 ,MRECMZ2)
CALL CPOVER(MITEMM2 ,MRECMZ2,KITEMA1,KRECAL)

c %%% Swap to help application
CALL CPHELP(REFTAB,MITEMMZ2 ,MRECM2 ,MITEMM2 MRECMZ2)

ENDDO
ENDDO
C %%% Exit from program

CALL CPEND

END

The program 1is now ready to be loaded and run.

Norsk Data ND-60.219.1 EN

133

134 Complete Program Generator
A programming example

We also include an example of the equivalent COBOL program:

“sk e sk ek ke sk e sk ke sk ok ke ke gk vk ke vk ke ok ok ok vk sk ok sk ke sk vk ok ok ke ok ke vk ke sk ok ke ok ke sk ok ke ok ok ok ok ok ok ke ok ke ke ok ok ok ok ok ok ok ok ok ke ok
* .

IDENTIFICATION DIVISION.
PROGRAM-ID. AJBEDRIV
AUTHOR. ERIC BROWN

*
KhkkkkAkhkhkhkkhkhkhkhkhkhkhkkhkhkhkhkkhkkkkhhhkhkhkhkhkhhhkhrhhkhkhkhkkhhkhkhkrhkkhkhkhkkkhkkkkx
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. ND.
OBJECT-COMPUTER. ND.

*

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY (pg-2C)CP-TRIGGER-TAB:COPY

*

* ABM 1interface
. ,
01 DECDDC-INFO.
COPY (k-1-abm)DECDDC-AJBEDRIV

*

*

* Local declarations.

*

77 CURRENT-KEY-NO COMP .

77 KEY-NO COMP.

77 NULL COMP VALUE O.
77 INDX COMP .

77 STOPP COMP .

77 ITEM-VALUE COMP .

77 EVERYLIN COMP VALUE 0.
77 ENTEXT COMP.

77 SCV-DUMMY-BKODE PIC X(1).

77 SCV-DUMMY-0KCOD PIC X{1).

77 ITEM-NAME PIC X{8).

77 SCREEN-NAME PIC X(8).

77 SCREEN-VALUE PIC X(2).

77 INFOTXT PIC X{(50).

*
*
*

LINKAGE SECTION.

*

COPY (pg-2c)CP-PROBOT-COM: COPY

PROCEDURE DIVISION.

*
*)

MAIN SECTION.

START-MAIN-10.
PERFORM STARTUP.
PERFORM REGION UNTIL NULL = MAINTAB (1).
PERFORM ROUNDUP.

Norsk Data ND-60.219.1 EN

Complete Program Generator 135
A programming example

EXIT-MAIN-99.
EXIT PROGRAM.

STARTUP SECTION.
START-STARTUP-10.

*
* ABM interface

COPY (k-1-abm)ASSDDC-AJBEDRIV

* Init form file name
MOVE ‘(k-1-abm)KURS:FABM' TO FORMFILE.

* Init Teaving field function
MOVE "Y' TO NEXTFI.

* Init function name, project name, no. of regions and language

MOVE 'AJBEDRIV' TO CMAIN.
MOVE 'K-1 kurs' TO CSYSTEM.
MOVE 2 TO MAINTAB(2).
MOVE 'COBL" TO LANGUAGE.

* Description and name of region 1
*
COMPUTE COMTAB(Z, 1) = 555679744 .
MOVE ‘'Firm * TO NAMTAB(1).
* Description and name of region 2
*
COMPUTE COMTAB(2, 2) = 85950464 .
MOVE 'Employee * 70 NAMTAB(2).
*
* Set help function available.

CALL 'CPHJON'
* Get picture

CALL 'CPBEGIN' USING DDC-REF-TABLE, DBR-NO-OF-REALMS,
DBR-REALM-NAMES, DBR-REALM-USAGE(1),
DBR-REALM-PROTECT(1).

EXIT-STARTUP-99.
EXIT.

REGION SECTION.
START-REGION-10.
IF NULL NOT EQUAL COMTAB(1, 1)
PERFORM REGION-1.
IF NULL NOT EQUAL COMTAB(1, 2)
PERFORM REGION-2.

Norsk Data ND-60.219.1 EN

136 Complete Program Generator
A programming example

EXIT-REGION-99.
EXIT.

REGION-1 SECTION.
START-REGION1-10.

*

*

Define region

MOVE O TO EVERYLIN.
CALL 'CPREGION' USING DDC-REF-TABLE, 1, DDS-M1-SUBSCHEMA,
SCV-M1, TRIGGER-ACTCODE.

* Main key item list region 1

MOVE 'B1BEDNR' TO OVITEM(1).
MOVE 1 TO OVANT.

* %%% Read keys

CALL 'CPCURKC' USING CURRENT-KEY-NO.
IF CURRENT-KEY-NO = 1
MOVE '+:B1BEDNR *'
TO DDC-SELECT.
IF CURRENT-KEY-NO = 2
MOVE '+:B1KONAV *'
TO DDC-SELECT.

CALL 'CPKEY' USING DDC-REF-TABLE, DDS-M1-SUBSCHEMA,
SCv-M1,
TRIGGER-ACTCODE, TRIGGER-READ.

* %%% Get record

CALL 'CPKEYNC' USING KEY-NO.
IF KEY-NO = 1
MOVE SCV-M1-B1BEDNR TO DBKV-B1BEDRI-B1BEDNR-LOW-1.
CALL 'CPKEYNC' USING KEY-NO.
IF KEY-NO = 2
MOVE SCV-M1-B1KONAV TO DBKV-B1BEDRI-B1KONAV-LOW-1.

CALL 'CPGET' USING EVERYLIN, DDC-REF-TABLE, 1,
DBKI-B1BEDRI-BIBEDNR ,
DBKV-B1BEDRI-B1BEDNR , DDS-M1-SUBSCHEMA,
SCV-M1, DDB-B1BEDRI-SUBSCHEMA.

CALL 'CPGET' USING EVERYLIN, DDC-REF-TABLE, 2,
DBKI-B1BEDRI-B1KONAV
DBKV-B1BEDRI-B1KONAV , DDS-M1-SUBSCHEMA,
SCV-M1, DDB-B1BEDRI~SUBSCHEMA.

IF EXECUTE = 1
AND EVERYLIN = O
AND MAINTAB(5) NOT = 2
MOVE SCC-START-RW-LINE TO INDX

Norsk Data ND-60.219.1 EN

Complete Program Generator
A programming example

A

*

%

*

%

Get data from database buffer
CALL "CPINRC' USING INDX, DDB-B1BEDRI-SUBSCHEMA,
DBV-B1BEDRI
ELSE :
IF EXECUTE = 1
AND EVERYLIN = 1
AND MAINTAB(5) NOT = 2
MOVE 1 TO INDX
Get data from database buffer
CALL 'CPINRC' USING INDX, DDB-BI1BEDRI-SUBSCHEMA
DBY-B1BEDRI.

5

Display on screen

MOVE '-:x' TO DDC-SELECT.
CALL "CPDISP' USING DDC-REF-TABLE, DDS-M1-SUBSCHEMA,
SCV-M1.

MOVE TRIGGER-OKCODE TO TRIGGER-NEXT.
%%% Read from screen

MOVE '-:B1BEDNR *'
TO DDC-SELECT.

CALL 'CPREAD' USING 1, DDC-REF-TABLE, DDS-M1-SUBSCHEMA,
SCV-M1, TRIGGER-KEY, TRIGGER-NEXT.

Begin transaction

CALL 'CPBTRANS' USING DDS-M1-SUBSCHEMA, SCV-M1,
DDB-B1BEDRI-SUBSCHEMA, DBV-B1BEDRI.

Update record
MOVE 'O *! TO DDC-SELECT.
CALL 'CPUPDATE' USING DDC-SELECT,
DDB~B1BEDRI-SUBSCHEMA, DBV-B1BEDRI.
End transaction

CALL 'CPETRANS'.

Read response kode

CALL 'CPRSPNS' USING DDC-REF-TABLE,
DDS-M1-SUBSCHEMA, SCV-M1.
CALL 'CPOVER' USING DDS-M1-SUBSCHEMA, SCV-M1,
DDB-B1BEDRI-SUBSCHEMA, DBV-B1BEDRI.

%%% Swap to help application

CALL 'CPHELP' USING DDC-REF-TABLE,
DDS-M1-SUBSCHEMA, SCV-M1,
DDS-M2-SUBSCHEMA, SCV-M2.

Norsk Data ND-60.219.1 EN

137

138 Complete Program Generator
A programming example

EXIT-REGION1-99.
EXIT.

REGION-2 SECTION.
START-REGIONZ-10.

*
* Define region

MOVE O TO EVERYLIN.
CALL 'CPREGION' USING DDC-REF-TABLE, 2, DDS-M2-SUBSCHEMA,
SCV-M2, TRIGGER-ACTCODE.

* Main key item 1ist region 2

MOVE 'A1BEDNR' TO OVITEM(1).
MOVE 'ALANSNR' TO OVITEM{ 2).
MOVE 2 TO OVANT.

* %%% Read keys

CALL 'CPCURKC' USING CURRENT-KEY-NO.
IF CURRENT-KEY-NO = 1
MOVE '+:ALANSNR *'
TO DDC-SELECT.
IF CURRENT-KEY-NO = 2
MOVE '+:A1ENAVN *'
TO DDC-SELECT.

CALL 'CPKEY' USING DDC-REF-TABLE, DDS-M2-SUBSCHEMA,
SCv-M2,
TRIGGER-ACTCODE, TRIGGER-READ.

* %%% Get record

MOVE SCV-M1-B1BEDNR TO DBKV-ALANSAT-AL1BEDAN-LOW-1.
MOVE SCV-M1-B1BEDNR TO DBKV-ALANSAT-ALINAVNE-LOW-1.
MOVE SCV-M1-B1BEDNR TO DBKV-A1ANSAT-A1BEDAN-HIGH-1.
MOVE SCV-M1-B1BEDNR TO DBKV-A1ANSAT-AINAVNE-HIGH-1.
CALL 'CPKEYNC' USING KEY-NO.
IF KEY-NO = 1

MOVE SCV-M2-A1ANSNR TO DBKV-ALANSAT-A1BEDAN-LOW-2.
CALL 'CPKEYNC' USING KEY-NO.
IF KEY-NO = 2

MOVE SCV-M2-A1ENAVN TO DBKV-ALANSAT-AINAVNE-LOW-2.

CALL 'CPGET' USING EVERYLIN, DDC-REF-TABLE, 1,
DBKI-ALANSAT-AL1BEDAN
DBKV-A1ANSAT-A1BEDAN , DDS-M2-SUBSCHEMA,
SCV-M2, DDB-ALANSAT-SUBSCHEMA.

CALL 'CPGET' USING EVERYLIN, DDC-REF-TABLE, 2,
DBKI-ALANSAT-AINAVNE
DBKV~ALANSAT-AINAVNE , DDS-M2-~SUBSCHEMA,
SCV-M2, DDB-AIANSAT-SUBSCHEMA.

-Norsk Data ND-60.219.1 EN

Complete Program Generator
A programming exampie

*

»*

*

IF EXECUTE =1
AND EVERYLIN = O
AND MAINTAB(5) NOT = 2
MOVE SCC-START-RW-LINE TO INDX
Get data from database buffer
CALL 'CPINRC' USING INDX, DDB-AL1ANSAT-SUBSCHEMA,
DBY-AL1ANSAT
ELSE
IF EXECUTE = 1
AND EVERYLIN =1
AND MAINTAB(5} NOT = 2
MOVE 1 TO INDX
Get data from database buffer
CALL "CPINRC' USING INDX, DDB-AIANSAT-SUBSCHEMA,
DBV-AL1ANSAT.

Display on screen

MOVE '-:*! TO DDC-SELECT.
CALL 'CPDISP' USING DDC-REF-TABLE, DDS-M2-SUBSCHEMA,
: SCv-M2.

MOVE TRIGGER-OKCODE TO TRIGGER-NEXT.
%%% Read from screen

MOVE '-:TTYPE AIANSNR *'
TO DDC-SELECT.

CALL 'CPREAD' USING 1, DDC-REF-TABLE, DDS-M2-SUBSCHEMA,
SCV-M2, TRIGGER-KEY, TRIGGER-NEXT.

MOVE SCV-M1-B1BEDNR TO DBV-A1ANSAT-A1BEDNR .

Begin transaction

CALL 'CPBTRANS' USING DDS-M2-SUBSCHEMA, SCV-M2,

DDB-AIANSAT-SUBSCHEMA, DBV-A1ANSAT.

Update record
MOVE 'Q:*' TO DDC-SELECT.

CALL 'CPUPDATE" USING DDC-SELECT,

DDB-A1ANSAT-SUBSCHEMA, DBY-AIANSAT.

End transaction

CALL 'CPETRANS'.

Read response kode

CALL 'CPRSPNS' USING DDC-REF-TABLE,
DDS-M2-SUBSCHEMA, SCV-M2.
CALL 'CPOVER' USING DDS-M2-SUBSCHEMA, SCV-M2,

Norsk Data ND-60.219.1 EN

139

140 Complete Program Generator
A programming example

DDB-A1ANSAT-SUBSCHEMA, DBV-AL1ANSAT.

* %%% Swap to help-application
CALL 'CPHELP' USING DDC-REF-TABLE,
DDS-M2-SUBSCHEMA, SCV-MZ,
DDS-M2-SUBSCHEMA, SCV-M2.

EXIT-REGION2-99.
EXIT.

ROUNDUP SECTION.
START-ROUNDUP-01.
* Exit from program
*
CALL 'CPEND'.
EXIT-~-ROUNDUP-99.
EXIT.

Norsk Data ND-60.219.1 EN

Complete Program Generator 141
A programming example

10.8. EXTENDING THE EXAMPLE

In order to show more of the possibilities in Complete-PG, we will now
introduce a few changes in the function. We shall look at the following:

e Existence control

e Display of data from another realm

e Manual code

e Several CPREAD calls

e CPREAD calls 1in manual code

e CPINVER instead of several CPREAD calls

e Overruling of messages in PG routines

e Calculating fields

e Updating other realms

e free text in the application

e Several free texts on the same record in the application

e Selection of records

Norsk Data ND-60.219.1 EN

142 Complete Program Generator
A programming example

10.8.1. EXISTENCE CONTROL

We do not want it to be possible to delete a firm that has employees
registered. Complete-PG can deal with this automatically. The changes that
have to be done are shown in a section of picture number 2 (Use of Program
Keys) in Complete-PG, region 1 :

Realm Key Use D Ex Realm Key Use D Ex Realm Key Use D Ex
B1BEDRI BI1BEDNR MK ALANSAT AILSTILL
B1BEDRI B1KONAV AK A1ANSAT ALENAVN

B1BEDRI B1POSNR
A1ANSAT A1BEDAN K E

Initial values for realm: ALANSAT key: AIBEDAN

Item Lowlimit Highlimit [tem Lowlimit Highlimit
A1BEDNR MI1BEDNR M1BEDNR
AL1ANSNR

We have marked the key AIBEDAN in use (K}, and specified that we shall use
it for existence control when deleting (E). The values we use for search
towards A1ANSAT are firm number + employee number. ALANSNR has not been
given any low/high 1imit, because we use minimum/maximum.

When the change has been mande, the function has to be generated again. The
change of program code as Complete-PG generates it, is shown in the
following part of the program:

CALL CPREAD(1,REFTAB,MITEMM1 ,MRECM1,FLKEY,FLNEXT)
IF (EXECUTE .AND. IACTCOD.EQ.4) THEN
C %%% Existence control against other realms

LA1BED1
HA1BED1

M1BEDNR
M1BEDNR

CALL CPEXIST(KIA1BED,KVA1BED)
ENDIF

C %%% Begin transaction

CALL CPBTRANS(MITEMM1,MRECM1,KITEMB1,KRECB1)

Norsk Data ND-60.219.1 EN

Complete Program Generator 143
A programming example

And the same example in COBOL:

CALL 'CPREAD' USING 1, DDC-REF-TABLE, DDS-M1-SUBSCHEMA,
SCV-M1, TRIGGER-KEY, TRIGGER-NEXT.

IF 1 = EXECUTE
AND MAINTAB(5) = 4

MOVE SCV-M1-B1BEDNR TO DBKV-AL1ANSAT-A1BEDAN-LOW-1
MOVE SCV-M1-B1BEDNR TO DBKV-A1ANSAT-A1BEDAN-HIGH-1

* Existing control against other realms
CALL "CPEXIST' USING DBKI-AIANSAT-AIBEDAN,
DBKV-AIANSAT-A1BEDAN.

*

Begin transaction

CALL 'CPBTRANS' USING DDS-M1-SUBSCHEMA, SCV-M1,
DDB-B1BEDRI-SUBSCHEMA, DBV-B1BEDRI.

Norsk Data ND-60.219.1 EN

144 Complete Program Generator
A programming example

10.8.2. DISPLAY OF DATA FROM ANOTHER REALM

You may want to fetch data from another realm, using a key

value either from a field in the screen picture or from an item in the main
realm in the region, and display this information on the screen. In this
example we want the name of a post-office area to be fetched automatically
from P1POST when we type in the postal code.

Realm, item and key for P1POST must be inserted in the subschema AJBEDR in
ABM. In the picture, the field 'Area’' must be changed to refer to the
P1POST realm.

The changes that must be made in Complete-PG, are shown in a section of
picture number 2 {Use of Program Keys), region 1 :

Realm Key Use D Ex Realm Key Use D Ex Realm Key Use D Ex
B1BEDRI BI1BEDNR MK A1ANSAT AISTILL

BI1IBEDRI BI1KONAV AK A1ANSAT A1ENAVN

B1BEDRI B1POSNR P1POST PI1POSNR K D

ALANSAT A1BEDAN K E

Initial values for realm: P1POST key: P1POSNR

Item Lowlimit =~ Highlimit Item Lowlimit Highlimit
P1POSNR MI1POSNR - M1POSNR

Display in Complete-PG also works as an existence control. If the postal
code that was typed in does not exist in P1POST, CPOTHER will call the
CPREAD call again, if CPREAD was the last call before CPOTHER.

When the change has been made, the function must be generated again. The
change 1in the program code as Complete-PG generates it, is shown in this
section of the program:

Norsk Data ND-60.219.1 EN

Complete Program Generator 145
A programming example

CALL CPGET(EVERYLIN,REFTAB, 2,KIB1KON,KVBIKON,
* MITEMM1 ,MRECM1 ,KITEMB1)

IF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.0Q) THEN
I = REFTAB(7)
C %%% Get data from database buffer
CALL CPINRC(I,KITEMB1,KRECB1)
ELSEIF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.1) THEN

I =1
C %%% Get data from database buffer
CALL CPINRC(I,KITEMB1,KRECB1)
ENDIF
C %%% Get data from other realms

IF (EXECUTE) THEN
IF (NOFOUND.GT.1)} REFTAB(7) =1
C %%% Loop for every line in region
DO FOR I = REFTAB({7), REFTAB(7)+NOFOUND-1

C %%% Get data from database buffer
IF (EVERYLIN.EQ.O .AND. MAINTAB(5).EQ.1) THEN
CALL CPINRC(I,KITEMB1,KRECB1)
ENDIF

C %%% Get data from screen buffer
REFTAB(7} = 1
CALL DDGETRC{REFTAB,MITEMM1 ,MRECM1 ,MSTA)
IF (MSTA.NE.O) CALL CPABORT

C
LP1P0OS1 = M1POSNR
HP1P0OS1 = MI1POSNR
C %%% Get and display data from other realm
CALL CPOTHER(REFTAB,KIP1POS,KVP1POS ,KITEMP1,KRECPL,
* MITEMMI ,MRECM1)
ENDDO
IF (NOFOUND.GT.1) REFTAB(7) =1
ENDIF
C %%% Display on screen
CITMSUB{1) = '—-:*x!

CALL CPDISP(REFTAB,MITEMML,MRECM1)

Norsk Data ND-60.219.1 EN

146 Complete Program Generator
A programming example

The same example in COBOL:

CALL 'CPGET' USING EVERYLIN, DDC-REF-TABLE, 2,
DBKI-B1BEDRI-B1KONAV
DBKV-B1BEDRI-B1KONAV , DDS-M1-SUBSCHEMA,
SCV-M1, DDB-B1BEDRI-SUBSCHEMA.

IF EXECUTE =1
AND EVERYLIN = 0O
AND MAINTAB(5) NOT = 2
MOVE SCC-START-RW-LINE TO INDX
* Get data from database buffer
CALL 'CPINRC' USING INDX, DDB-B1BEDRI-SUBSCHEMA,
DBV~B1BEDRI
ELSE
IF EXECUTE = 1
AND EVERYLIN = 1
AND MAINTAB(5) NOT = 2
MOVE 1 TO INDX
* Get data from database buffer
CALL 'CPINRC' USING INDX, DDB-B1BEDRI-SUBSCHEMA,
DBV-B1BEDRI.

* Get data from other realms

IF 1 = EXECUTE
AND NOFOUND GREATER THAN 1
MOVE 1 TO SCC-START-RW-LINE.

IF 1 = EXECUTE
COMPUTE STOPP = SCC-START-RW-LINE + NOFOUND - 1
* Loop for every line in region
DO FOR INDX FROM SCC-START-RW-LINE BY 1 TO STOPP

* Get data from database buffer
IF EVERYLIN = 0
AND MAINTAB(5) = 1
CALL 'CPINRC' USING INDX, DDB-B1BEDRI-SUBSCHEMA,
DBV-B1BEDRI
END-IF

* Get data from screen buffer
MOVE INDX TO SCC-START-RW-LINE
CALL 'DDGETRC' USING DDC-REF-TABLE, DDS-M1-SUBSCHEMA,
SCV-M1, MSTA

MOVE SCV-M1-B1POSNR TO DBKV-P1POST-P1POSNR~LOW-1
MOVE SCV-M1-B1POSNR TO DBKV-P1POST-P1POSNR-HIGH-1

* Get and display data from other realms
CALL 'CPOTHER' USING DDC-REF-TABLE,
DBKI-P1POST-P1POSNR,
DBKV-P1POST-P1POSNR,
DDB-P1POST-SUBSCHEMA,
DBV-P1POST,

Norsk Data ND-60.219.1 EN

Complete Program Generator 147
A programming example

DDS-M1-SUBSCHEMA, SCV-M1

END-DO.
IF NOFOUND GREATER THAN 1
MOVE 1 TO SCC-START-RW-LINE.

* Display on screen
MOVE ‘'-:*' T0 DDC-SELECT.

CALL 'CPDISP' USING DDC-REF-TABLE, DDS-M1-SUBSCHEMA,
SCV-M1.

Norsk Data ND-60.219.1 EN

148 Complete Program Generator
A programming example

10.8.3. ManuaL cobE

We shall now have a l1ook at a few cases where manual programming is
necessary. The manual code (additional code) must be inserted in the macros
on AJBEDR:MANU. We will list parts of the program, show where the manual
code should be inserted, and what it consists of.

10.8.4. Severar CPREAD caLLs

The field 'Surname' in the screen picture is an alternative key. We
therefore want to add a check to make sure that a value is specified in
this field during registration and modification.

We also want to make sure that the value of the field 'Position' only is
accepted as a legal input value during registration and modification if the
value also exists on the S1STILL realm. This will then be a manually
programmed existence control.

Realm and key for SISTILL must be inserted in the subschema AJBEDR in ABM.
Another change that must be made is the addition of manual code. The
problem of several CPREAD calls may be solved in two ways: by adding more
CPREAD calls in manual code, or by using the generated CPREAD call along
with additional manual code using CPINITEM and CPINVER. Both alternatives
will be shown here.

10.8.5. CPREAD cALLS IN MANUAL CODE

Division into several CPREAD calls means that manual code must be inserted
immediately before and immediately after the generated CPREAD call. The
fields that are to be read by the generated CPREAD call in CITEMSUB, must
be inserted immediately before the CPREAD call, and FLNEXT is set to
FLREAD. The remaining CPREAD calls, with possible tests of input data,
should be inserted immediately after the generated CPREAD call.

In our example we have chosen to use four CPREAD calls. This is 1in order to
have a user interface that is as interactive as possible. We check the
input value from the field 'Surname’'. If value = blank, message number 151
is displayed, and CPMESS causes the CPREAD call for reading of the field to
be executed again.

We check the input value from the field 'Position' by means of a CPEXIST
call. If this value does not exist, the message 'does not exist' will be
displayed automatically, and the CPREAD call will be repeated.

Manual code is inserted in the AJBEDR:MANU file, and the program is
generated again. The changes to the code are shown here:

Norsk Data ND-60.219.1 EN

Complete

Program Generator 149

A programming example

%%% Read from screen
CITMSUB(1} =.'-:M2ANSNR *!

%%% Manual code before CPREAD: read surname. Set FLNEXT.
CITMSUB(1) = '+:MZ2ENAVN *'

FLNEXT = FLREAD
. End of manual code before CPREAD.

CALL CPREAD(1,REFTAB,MITEMM2,MRECM2,FLKEY,FLNEXT)

%%% Manual code after CPREAD: Check surname.

IF (EXECUTE.AND.IACTCOD.NE.4.AND .M2ENAVN.EQ.' ')} THEN
CALL CPGETMSG(151)
CALL CPMESS

ENDIF

%%% Read first name and code.
CITMSUB(1) = '+:M2FNAVN M2KODE *'
CALL CPREAD(2,REFTAB,MITEMM2 ,MRECM2 ,FLREAD,FLREAD)

%%% Read position and check if value is legal.
CITMSUB(1) = '+:M2STILL *'

CALL CPREAD({3,REFTAB,MITEMM2 ,MRECM2,FLREAD,FLREAD)
IF (EXECUTE.AND.IACTCOD.NE.4) THEN

%»h% Existence control against SISTILL realm
LSISTI1 = M2STILL
HS1STI1 = M2STILL
CALL CPEXIST(KIS1STI,KVS1STI)
ENDIF

%%% Read extension.

CITMSUB{1) = '+:M2INTLF =’

CALL CPREAD(4,REFTAB,MITEMM2 ,MRECM2,FLREAD,FLOKCOD)
.Manual code after CPREAD ends.

%%% Begin transaction

Norsk Data ND-60.219.1 EN

150 Complete Program Generator
A programming example

10.8.6. Dummy CPREAD caLL

The question about updating and the reading of the EXECUTE key take
place in the last CPREAD call. If there is manual code (value tests,
search of other realms) after the last CPREAD call, that code will be
executed after the EXECUTE key has been pressed. If you want the
search and/or value tests to be performed before the EXECUTE key is
pressed, you can insert a dummy CPREAD call after the manual code.
CITMSUB/DDC-SELECT then has to be '+:*' for the CPREAD call. If you
want a dummy CPREAD call in the example above, the code must look like
this:

C %%%Read extension.
CITMSUB{1) = '+:MZ2INTLF*'
CALL CPREAD(4,REFTAB,MITEMM2 ,MRECMZ,FLREAD,FLREAD)

C....... Look-up and testing
Co..ot .t Dummy read call
CITMSUB(1) = '+:*'
CALL CPREAD(5,REFTAB,MITEMM2 ,MRECM2,FLREAD,FLOKCOD)

C....... End of manual code.

Norsk Data ND-60.219.1 EN

Complete Program Generator 151
A programming example

10.8.7. CPINVER 1nsTEAD OF SeverRaL CPREAD carts

In this case the manual code must be inserted immediately after the
generated CPREAD call, possibly together with testing of the input data. If
the input data is not 0K, CPINITEM is called with the name of the field to
be re-read as input value. When all manual tests have been performed, and
before any CPEXIST calls, CPINVER is called. If CPINITEM has been called,
CPINVER will display these fields in inverse video and CPREAD will be
executed again. After CPINVER, you can use CPEXIST calls, overruling

the message from the CPEXIST call.

Manual code is added to the AJBEDR:MANU file, and the program must be
generated again. The changes to the code are shown below:

C %%% Read from screen
CITMSUB{1) = '-:MZANSNR *'

CALL CPREAD(1,REFTAB,MITEMM2 ,MRECM2,FLKEY,FLNEXT)

C........ %%% Manual code after CPREAD: Check surname.
IF (EXECUTE.AND.IACTCOD.NE.4) THEN
C %%% Check surname.
IF {M2ENAVN.EQ.' ') CALL CPINITEM(REFTAB, "M2ENAVN ")
C %%% 1f necessary, show fields in inverse video and read again.
CALL CPINVER(REFTAB ,MITEMMZ ,MRECM2)
C %%% Existence control against SISTILL realm
IF (EXECUTE) THEN
LS1ISTI1 = M2STILL
HS1STI1 = M2STILL
OWNMESS = .TRUE.

CALL CPGETMSG(152)
CALL CPEXIST(KISISTI,KVSISTI)
OWNMESS = .FALSE.

ENDIF
ENDIF
C.o........ End of manual code.
C %%% Begin transaction

Norsk Data ND-60.219.1 EN

152 Complete Program Generator
A programming example

10.8.8. OVERRULING OF MESSAGES IN PG ROUTINES

It is possible to overrule messages that are displayed in PG routines. In
our example we have chosen to overrule the message in CPEXIST in the
example, using several CPREAD calls. We want message number 152 to be
displayed if the input position does not exist on the SISTILL realm. The
modified manual code is added to the AJBEDR:MANU file, and the program

is generated again.

Part of the manual code where the change has been made is shown here:

C %%% Read position, and check if value is legal.
CITMSUB(1) = '+:M2STILL *'
CALL CPREAD(3,REFTAB,MITEMMZ2 ,MRECM2 ,FLREAD,FLREAD)
IF (EXECUTE.AND.IACTCOD.NE.4) THEN
C %%% Existence control against S1STILL realm
LS1STI1 = M2STILL
HS1STI1 = M2STILL

C %o Shows,that own message is to be applied.
OWNMESS = .TRUE.
C %%% Moves own message to text string.

CALL CPGETMSG{152)
CALL CPEXIST{KIS1STI,KVS1STI)
OWNMESS = .FALSE.
ENDIF
C %%% Read extension.

Norsk Data ND-60.219.1 EN

Complete Program Generator 153
A programming example

10.8.9. CALCULATION OF FIELDS

The calculation of database items takes place on the basis of fields read
during registration and modification. The calculation can be done
immediately after the fields are read, or when all the fields are read and
the user has ordered the updating of the record. We have chosen to do it in
the latter way. In that case, the calculations are only done when
necessary, and all the calculations are collected in one place in the
program.

In our example, we want to give the item B1SOPD today's date if the record
is updated. We have done it in the following way:

CITMSUB(1) = '-:MIBEDNR * ,
CALL CPREAD(1,REFTAB,MITEMML ,MRECM1,FLKEY,FLNEXT)
Coovvint %%% Manual code : If updating.
IF- (CPABLED(FLUPDATE,1)) THEN
C %A% Get today's date

CALL CPDATUM({CDATUM,DATO)
B1SOPD = DATO

Cooool %%% End of manual code.

C %%% Begin transaction

CALL CPBTRANS{MITEMM1 ,MRECM1,KITEMB1,KRECB1)

C %%% Update record

CITMSUB(1) ='0:*"
CALL CPUPDATE(ITEMSUB,KITEMB1,KRECB1)

C %%% End transaction

CALL CPETRANS

Norsk Data ND-60.219.1 EN

154 Complete Program Generator
A programming example

10.8.10. UPDATING OF OTHER REALMS

Sometimes it is necessary to update several realms. Complete-PG only
updates the main realm in each region. The updating of other realms has to
be added in manual code. The manual code then has to be inserted after
CPUPDATE. Make a test to see whether updating is to be performed by testing
whether CPUPDATE has been performed, and testing whether EXECUTE is true.

A temporary database key must exist on the record that is to be modified or
deleted on the other realm.

In our example we do not need to update other realms. If we had needed
to do so, the code would have Tooked like this:

C %%% Begin transaction
CALL CPBTRANS(MITEMM1,MRECM1 ,KITEMB1,KRECB1)
C %%% Update record

CITMSUB(1) ='0:*"
CALL CPUPDATE(ITEMSUB,KITEMBL,KRECB1)

Coovits %%% Manual code after CPUPDATE: If updating.
IF {(EXECUTE) THEN
C %%% 1f deleting

IF (IACTCOD.EQ.4) THEN
CALL SRASE(KTDBKXX,0,KSTAT)
IF (KSTAT.NE.1) CALL CPABORT

KTDBKXX = 0O
C %h% If modifying
FELSEIF (IACTCOD.EQ.3) THEN
CITMSUB(1)="+4: ==~-~ x !

CALL DDMDFY(KTDBKXX, ITEMSUB,KITEMXX,KRECXX ,KSTAT)
IF (KSTAT.NE.1) CALL CPABORT

C %%% If registering
ELSEIF {IACTCOD.EQ.2) THEN
CITMSUB(1)="+: ----- *

CALL DDSTORE(ITEMSUB,KITEMXX,KRECXX,KSTAT)
IF (KSTAT.NE.1) CALL DDFREMB(KTDBKXX,0,KSTAT)
IF (KSTAT.NE.1) CALL CPABORT

ENDIF
C....ov . %%% End of manual code.
C %4% End transaction

CALL CPETRANS

Norsk Data ND-60.219.1 EN

Complete Program Generator 155

A programming example

10.8.11. FREE TEXT IN THE PROGRAM

We now wish to call the free text function from the employee lines. We
have to use ABM to alter the picture AJBEDR. We introduce a new field into
the 1ine. The field consists of one character position, and the data type
is TTYPE (TTYPE is reserved by Complete-PG for free text).

After the alteration, the employee lines look like this:

Employee :
Text Code
No. T Surname First name v Position Ext.

Now the program has to be generated again. In the 'Use of Program Keys'
picture, 'textfunction: Y' will now be shown. PG will generate new code in
two places in the program: immediately after CPGET and immediately after
CPRSPNS. Below, you can see a section of the program where the new code
parts for the free text function are inserted:

After CPGET :

CALL CPGET({EVERYLIN,REFTAB, 2,KIAINAV,KVAINAV,
MITEMMZ ,MRECM2 ,KITEMA1)

IF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.O) THEN
I = REFTAB{7)
C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1l,KRECAL)
ELSEIF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.1) THEN
I =1
C %%% Get data from database buffer
CALL CPINRC{I,KITEMAL,KRECAL)
ENDIF

C %%% Display text mark

CALL CPTDISP(REFTAB,MITEMM2 ,MRECM2 ,M2TTYPE ,"M2TTYPE ",
KITEMAL1,KRECAL,ALITTNR,EVERYLIN)

C %%% Display on screén

CITMSUB(1) = '-:%!
CALL CPDISP{REFTAB,MITEMM2 ,MRECM2)
C %%% Read response kode

CALL CPRSPNS(REFTAB,MITEMM2 ,MRECM2)
CALL CPOVER(MITEMMZ2 ,MRECM2,KITEMAL ,KRECA1)
%k

Text nr. database item name

Norsk Data ND-60.219.1 EN

156 Complete Program Generator
A programming example

CNAME = 'AITTNR

C %%% Text nr. database i1tem value
TXTNR = AL1TTNR

C %%% Text indicator field name
CTYPNAM = 'M2TTYPE

C %%% Text indicator field value
CTYPE = M2TTYPE

C %%% User info. used in CPFRTXT
INFOTXT = * '

C %%% Swap to free text application

CALL CPFRTXT{REFTAB,TYPNAM,TXTNR,CTYPE ,MITEMMZ ,MRECMZ,
* INAME ,MITEMM1 ,MRECM1 ,MITEMM2 ,MRECMZ ,MAINTAB(4) , INFOTXT)

ENTEXT = .TRUE.

IF (EXECUTE) THEN
IF (ENTEXT) THEN

C %%% Text nr. database item value in return
A1TTNR = TXTNR
C %%% If text connected, display 'T'
MZTTYPE = ' '
IF (TXTNR.GT.0) M2TTYPE = 'T'
CITMSUB(1) = '+:M2TTYPE *'
ENDIF

CALL DDWFLDS({REFTAB,MITEMM2 ,MRECM2 ,MSTA)
IF (MSTA.NE.O) CALL CPABORT
ENDIF

The user may place a value in the variable INFOTXT by using manual
code before CPFRTXT. INFOTXT is displayed in the free text screen form
(which is delivered with ABM/PG) as an information field. It Tooks
1ike this: FREE TEXT CONNECTED TO: INFOTEXT {(the value of INFOTEXT is
displayed here).

Norsk Data ND-60.219.1 EN

Complete Program Generator 157
A programming example

10.8.12. SEVERAL FREE TEXTS ON THE SAME RECORD IN THE PROGRAM

It is possible to attach several free text records to one database record.
We shall here show an example of this by connecting two free text records
to one record in the employee lines. We insert one new field, which
consists of one character of data type, eg. T2TYPE, into the line. We can
only have one field of type TTYPE per record/region.

The employee lines look like this after the alteration:

Employee:
Text Code
No. P S Surname First name v Position Ext.

Some manual code is now required to make the program distinguish between
the two free text references. After CPGET, we insert a copy of the sequence
which was generated when a free text was added (the sequence where

MXTTYPE 1is given a value). In this copy, we must alter the database item,
the text number and the data type.

The code after CPGET will then be like this:

CALL CPGET(EVERYLIN,REFTAB,3,KIALNAV,KVAINAY,
* MITEMMZ ,MRECM2 ,KITEMAL)

IF (EXECUTE .AND. IACTCOD.GT.1) THEN
IF (EVERYLIN.EQ.O) THEN
I = REFTAB(7)
ELSE
I =1
ENDIF

C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1,KRECAL)
ENDIF
C %%% Display text mark
IF (EXECUTE) THEN
IF (NOFOUND.GT.1) REFTAB(7) =1
C %%% Loop for every line in region
DO FOR I = REFTAB{7), REFTAB{7)+NOFOUND-1
C %%% Get data from database buffer

IF (EVERYLIN.EQ.O) THEN
CALL CPINRC{I,KITEMA1,KRECAL)

Norsk Data ND-60.219.1 EN

158 Complete Program Generator
A programming example

ELSE
CALL CPINRC(1,KITEMAL,KRECA1)
ENDIF

C %%% Get data from screen buffer
REFTAB(7) =1
CALL DDGETRC({REFTAB,MITEMM2 ,MRECM2,MSTA)
IF (MSTA.NE.O) CALL CPABORT

IF (ALTTNR.GT.0) THEN
M2TTYPE = 'T'
ELSE
M2TTYPE = '
ENDIF

CALL DDPUTRC{REFTAB,MITEMM2,MRECM2 ,MSTA)
IF (MSTA.NE.O) CALL CPABORT
ENDDO

IF (NOFOUND.GT.1) REFTAB(7) = 1
ENDIF '

C.o....... %%% Manual code : Display text mark
IF (EXECUTE) THEN
IF (NOFOUND.GT.1) REFTAB(7) = 1
C %%% Loop for every 1ine in region
DO FOR I = REFTAB(7), REFTAB(7)+NOFOUND-1

C %%% Get data from database buffer
IF {EVERYLIN.EQ.O) THEN
CALL CPINRC(I,KITEMAL,KRECAL)
ELSE
CALL CPINRC{1,KITEMAL, KRECAL)
ENDIF

C %%% Get data from screen buffer
REFTAB(7) = I
CALL DDGETRC(REFTAB,MITEMM2 ,MRECMZ2 ,MSTA)
IF (MSTA.NE.OQ) CALL CPABORT

IF (ALATTNR.GT.0) THEN
M2T2TYPE = 'T'
ELSE
M2T2TYPE b
ENDIF

CALL DDPUTRC({REFTAB,MITEMM2 ,MRECM2 ,MSTA)
IF (MSTA.NE.O) CALL CPABORT
ENDDO

IF (NOFOUND.GT.1) REFTAB(7) = 1
ENDIF
C........ End of manual code.

C %%% Display on screen

Norsk Data ND-60.219.1 EN

Complete Program Generator 159
A programming example

CITMSUB(1) = '-:*
CALL CPDISP(REFTAB,MITEMMZ ,MRECMZ2)

When the user calls the free text, the application cannot know whether it
is free text for person {A1TTNR) or for seniority (AIATTNR) that should be
used. So that the user can give this information, we add the
necessary additional code before and after the CPFRTXT call.

The way of doing this, i.e. asking the user a question and reading the
user's reply, may vary. The method we have chosen in this example may be
used for up to 10 free texts in connection with the same record:

The user chooses the type of free text by typing in a digit from 1 to 9
{in our example 1 and 2). CPFRTXT is then be called with the correct
parameters, given by the user. This method involves three

manual code sections. Help variables for communication with the user must
be declared. This is done using manual code at the beginning of the
program:

$INCLUDE (abm-user)CP-PROBOT-COM: INCL

C...... %%% Manual code : Manual declaratons
€ CHR : Response code from user.
C
INTEGER CHR
C...... %h% End of manual code.
C %%% ABM interface

$INCLUDE (CCO-ADM-INCL)DECDDI-PROSAJOU

Question to user and reading of reply, as well as assignment of
parameter values is all done before CPFRTXT :

C %%% Read response code

CALL CPRSPNS(REFTAB,MITEMM2 ,MRECM2)

C %%% Text no. database item name
CNAME = "AITTNR '

C %%% Text no. database item value
TXTNR = AITTNR

C %%% Text indicator field name
TYPNAM = "M2TTYPE "

C %%% Text indicator field value

CTYPE = MZ2TTYPE

Cooovii %%% Manual code : Find which additional text is wanted :
IF (CPABLED(FLFRTXT,1)) THEN
CALL DDCMSGE (MSTA)
IF (MSTA.NE.O) THEN
- CALL CPABORT

Norsk Data ND-60.219.1 EN

160 Complete Program Generator
A programming example

ELSE
C %%% Display question for user.
CALL CPGETMSG(103)
CALL DDWMSGE({ITEXT,MSTA)
IF (MSTA.NE.O) THEN
CALL CPABORT

ELSE
C %%% Init. variables.
CHR =0
C %%% Read reply.

DO WHILE (CHR.NE.49.AND.CHR.NE.50.AND.MSTA.EQ.O)
CALL FCRCHR(CHR,MSTA)

ENDDO
IF (MSTA.EQ.0) THEN
C %%% Give parameters correct value according to reply.
IF (CHR.EQ.49) THEN
C %%% Has been given value via generated code.
ELSEIF (CHR.EQ.50) THEN
CNAME = 'ALATTINR
TXTNR = ALATTNR
CTYPNAM = 'M2T2TYPE'
CTYPE = M2T2TYPE
ENDIF
ELSE
CALL CPABORT
ENDIF
ENDIF
ENDIF
ENDIF
C
Cooinl. End of manual code.
C %%% Swap to free text application

CALL CPFRTXT(REFTAB,TYPNAM,TXTNR,CTYPE ,MITEMMZ,
* MRECMZ,INAME ,MITEMM1,MRECM1 ,MITEMM2 ,MRECM2 ,MAINTAB(4))

Immediately after CPFRTXT, the text number must be saved:

C %%% Swap to free text application
CALL CPFRTXT(REFTAB,TYPNAM,TXTNR,CTYPE ,MITEMMZ,
* MRECMZ, INAME ,MITEMM1 ,MRECM1 ,MITEMMZ ,MRECM2 ,MAINTAB(4))

ENTEXT = .TRUE.

C........ %%% Manual code : Return text no. and display 'T' if necessary:
IF (EXECUTE) THEN
IF (CHR.EQ.49) THEN
C %%% Will be given value via generated code.
ELSEIF {CHR.EQ.50) THEN
ENTEXT = .FALSE.
AIATTNR = TXTNR

M2T2TYPE = '
IF (ALATTNR.NE.O) M2T2TYPE = 'T'
CITMSUB(1) = '+:M2T2TYPE*'

ENDIF

ENDIF

Norsk Data ND-60.219.1 EN

Complete Program Generator
A programming example

C......... Manual code ends.

IF (EXECUTE) THEN
IF (ENTEXT) THEN
C %%h%
AITTNR = TXTNR
C %%% 1f text connected, display 'T'
M2TTYPE = *
IF (TXTNR.GT.Q) M2TTYPE = 'T'
CITMSUB(1) = '+:M2TTYPE *'
ENDIF
CALL DDWFLDS{REFTAB,MITEMM2 ,MRECM2 ,MSTA)
IF (MSTA.NE.O) CALL CPABORT
ENDIF

Norsk Data ND-60.219.1 EN

161

162 Compiete Program Generator
A programming example

10.8.13. SELECTION OF RECORDS

When listing from the database to a screen picture, it is possible to
select the records you want displayed. CPGET either fetches one record at a
time (EVERYLIN=1), or as many records as there are lines in the screen
picture (EVERYLIN=0). This is controlled by the parameter EVERYLIN.
Complete-PG sets EVERYLIN to O at the beginning.

In our example, during querying, we now want to 1ist all the employees with
a code equal to the firm's code, as long as it is different from 1. If the
firm's code is equal to 1, all employees are to be listed. While a user is
modifying or deleting, all employees should be listed. This may be solved
by inserting manual code before and after CPGET.

Part of the manual code where the change is made (in FORTRAN):

C %%% Get record
LA1BED1 = MIBEDNR
LA1BNR1 = MI1BEDNR
HA1BED1 = MI1BEDNR
HA1BNR1 = M1BEDNR

IF (CPKEYNK().EQ. 1) THEN
LAIBED2 = M2ANSNR

ENDIF

IF (CPKEYNK{).EQ. 2) THEN
LAIBNR2 = MZENAVN

ENDIF

* ... Manual code before CPGET, select if criteria fulfilled
IF {IACTCOD.EQ.1 .AND. B1KODE.NE.1) EVERYLIN =1

CALL CPGET(EVERYLIN,REFTAB, 1,KIA1BED,KVA1BED,
* MITEMMZ ,MRECM2Z ,KITEMAL)

CALL CPGET(EVERYLIN,REFTAB, 2,KIALINAV,KVALINAV,
* MITEMM2 ,MRECM2 ,KITEMAL)

IF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.O) THEN
1 = REFTAB(7)
C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1l,KRECA1)
ELSEIF (EXECUTE .AND. IACTCOD.NE.2 .AND. EVERYLIN.EQ.1) THEN

I =1
C %%% Get data from database buffer
CALL CPINRC(I,KITEMA1,KRECAL)
ENDIF
* ... Manual code after CPGET
* Only employees with the same code as firm are to be Tisted

IF (EXECUTE .AND. EVERYLIN.EQ.1) THEN
‘IF (A1KODE.EQ.B1KODE) THEN
CALL CPENABLE(FLOK)
ELSE

Norsk Data ND-60.219.1 EN

Complete Program Generator 163
A programming example

CALL CPDISABL(FLOK)
ENDIF
ENDIF

C %%% Display on screen

CITMSUB(1) = '-:*’
CALL CPDISP{REFTAB,MITEMM2 MRECM2)
*....Manual code after cpget.
* Only employees with same code as firm are to be listed.

Norsk Data ND-60.219.1 EN

164 Complete Program Generator
A programming example

Part of the manual code where the change is made (in COBOL):

* %%% Get record
MOVE SCV-M1-B1BEDNR TO DBKV-AIANSAT-A1BEDAN-LOW-1.
MOVE SCV-M1-B1BEDNR TO DBKV-A1IANSAT-A1BNRNA-LOW-1.
MOVE SCV-M1-B1BEDNR TO DBKV-A1ANSAT-A1BEDAN-HIGH-1.
MOVE SCV-M1-B1BEDNR TO DBKV-A1ANSAT-A1BNRNA-HIGH-1.

CALL 'CPKEYNC' USING KEY-NO.
IF KEY-NC = 1
MOVE SCV-M2-A1ANSNR TO DBKV-ALANSAT-A1BEDAN-LOW-2.
CALL 'CPKEYNC' USING KEY-NO.
IF KEY-NO = 2
MOVE SCV-M2-A1ENAVN TO DBKV-ALANSAT-A1BNRNA-LOW-2.

* .. .Manual code before CPGET. Select if criteria fulfilled

IF MAINTAB(5) EQUAL 1
AND DBV-B1BEDR-B1KODE EQUAL 1

MOVE 1 TO EVERYLIN.

CALL 'CPGET' USING EVERYLIN, DDC-REF-TABLE, 1,
DBKI-AIANSAT-A1BEDAN
DBKY-A1ANSAT-AIBEDAN , DDS-M2-SUBSCHEMA,
SCY-M2, DDB-ALANSAT-SUBSCHEMA.

CALL 'CPGET' USING EVERYLIN, DDC-REF-TABLE, 2,
DBKI-ALANSAT-A1BNRNA ,
DBKV-ALANSAT-A1BNRNA , DDS-M2-SUBSCHEMA,
SCV-M2, DDB-ALANSAT-SUBSCHEMA.

IF EXECUTE = 1
AND EVERYLIN =0
AND MAINTAB(5) NOT = 2
MOVE SCC-START-RW-LINE TO INDX
* Get data from databasebuffer
CALL 'CPINRC' USING INDX, DDB-ALANSAT-SUBSCHEMA,
DBV-AL1ANSAT
ELSE
IF EXECUTE = 1
AND EVERYLIN = 1
AND MAINTAB(5) NOT = 2
MOVE 1 TO INDX
* Get data from databasebuffer
CALL "CPINRC' USING INDX, DDB-A1ANSAT-SUBSCHEMA,
DBV-~A1ANSAT.

* . ..Manual code after CPGET
* Only employees with the same ccde as firm are to be listed
IF EXECUTE EQUAL 1
AND EVERYLIN EQUAL 1

IF DBV-B1BEDR-B1KODE EQUAL DBV-ALANSAT-A1KODE
CALL 'CPENABLE' USING TRIGGER-OK

ELSE
CALL 'CPDISABL' USING TRIGGER-OK.

Norsk Data ND-60.219.1 EN

Complete Program Generator 165
A programming example

CALL 'CPDISP' USING DDC-REF-TABLE,
DDS-M2-SUBSCHEMA,
SCv-M2.

Norsk Data ND-60.219.1 EN

166 Complete Program Generator
A programming example

10.8.14. READING OF KEY IN SEVERAL READ CALLS

Sometimes you may want to read the key in several separate READ calls. You
might want to display some information in between, or you do not want all
key fields to be read, depending on what is given in the preceding key
fields.

Read the key in several separate READ calls by using the generated CPKEY
call for the field that is to be read first. Afterwards, use the ABM
DDRFLDS for the remaining fields. In order to terminate the DDRFLDS call in
the same way as the reading of fields in Complete-PG's subroutines, you can
apply the subroutine CPTERMCH.

Example:

In the picture, the key consists of firm number + department + employee
number.

First, the firm number is to be read. Then, the name of the firm is to be
fetched from the firm realm and displayed in the picture before department
and employee number is read. If the firm number you have typed in does not
exist, a message is to be displayed, and you have to type in the firm
number once more.

Norsk Data ND-60.219.1 EN

Complete Program Generator 167
A programming example

Covvvint. Manual code before CPKEY
CITMSUB(1) = ‘+:M1BEDNR*'

C........ End of manual code for CPKEY
CALL CPKEY(REFTAB,MITEMM1 ,MRECM1,FLACTCOD,FLREAD)
C.o....... Manual code after CPKEY
IF (CPABLED(FLREAD,1)). THEN; % i.e. firm number is read
<Fetch firm name from firm realm>
IF (firm not found) THEN

<display message>
CALL CPJUMP(FLKEY)

ELSE
Coovvinit firm found, display name and
Covvnnn i read rest of key

CITMSUB(1) = '+M1BNAVN*'
CALL DDWFLDS(REFTAB,MITEMM1 ,MREM1,MSTA)
IF (MSTA.NE.O) THEN
CALL CPABORT
ELSE
CITMSUB(1) = '+:MIAVDNR M1ANSNR*'
CALL DDRFLDS{REFTAB,MITEMM1,MREM1,MSTA)
IF (MSTA.NE.O) THEN
CALL CPABORT

ELSE
CALL CPTERMCH(RETAB ,MITEMM1 ,MREM1,FLKEY,FLREAD)
ENDIF
ENDIF
ENDIF
ENDIF
C........ End of manual code after CPKEY

Norsk Data ND-60.219.1 EN

Complete Program Generator

168

4
vl
.

Norsk Data ND-60.219.1 EN

Complete Program Generator 169

EHAPTER I

INTERFACE TO MENU CONTROL SYSTEM

Norsk Data ND-60.219.1 EN

Complete Program Generator 171
Interface to menu control system

11. INTERFACE TO MENU CONTROL SYSTEM

A11 programs generated by Complete-PG are subroutines,
and have to be started by a main program or menu control
‘system. This menu control system takes care of the
following tasks:

e opens databases

e initiates FOCUS

e presents menus on the screen and read menu choice

e calls chosen program

e closes databases

e terminates FOCUS

NOTE:

When you have started the generating of a program by
giving the command 'X', you are asked whether you
want a main program to be generated. If you reply
'Y', a main program will be generated to take care of
the above tasks.

There are also some other tasks that have to be solved
through cooperation between the generated program and
the menu control system. These tasks are:

e Find out whether the user has access to the
chosen program, and if so, what kind of access
{only querying, or full access).

e Fetch a free code connected to each user. This
free code may for instance be the administration
unit the user belongs to.

e Reserve flags and check against SIBAS before
updating, and release flags after updating.

e Take care of direct transfer to a new program,
and transfer data area (main key).

Norsk Data ND-60.219.1 EN

172

Complete Program Generator
Interface to menu control system

11.1. SUBROUTINES ON CP-DUMMY-LIB

FRIKODE (CFRIKODE)
CFRIKODE (IFRIKODE)

Parameter 1list:

Routine description:

cHekacs (1Acs)

Parameter list:

Routine description:

SMRESRV (IFLAG)

Parameter list:

Routine description:

SMRELES

Parameter list:

Routine description:

A dummy library called CP-DUMMY-LIB:SYMB comes with
Complete-PG. Here you find the subroutines that will
execute tasks in cooperation with the menu control
system.

The subroutines are empty, because you have to adapt
them to your menu control system. If there is a
feature that you do not want in your system,

simply leave the subroutine empty.

Here follows a description of the routines on
CP-DUMMY-LIB:

FORTRAN

COBOL

Character*40 CFRIKODE
INTEGER*2 IFRIKODE{20)

This routine fetches a text string or code of 40
characters which may be connected to each user
defined in the menu control system. This text string
may contain general information about the user, such
as administrative unit and what kind of access the
user has.

INTEGER IACS

Checks whether the user has access to the program
that s/he has chosen.

Qutput: IACS = 0 : no access.
= 1 : querying only.
= 2 : full access.

INTEGER IFLAG
The routine reserves flags and takes checkpoint.'

Input: IFLAG = 0 : conditional checkpoint.

1 : unconditional checkpoint.

None.

The routine releases flags.

Norsk Data ND-60.219.1 EN

Complete Program Generator 173
Interface to menu control system

Direct transfer
from a program:

When there is a direct transfer from one program to
another, the calling program builds up a buffer with
key values that are to be sent from the calling
program and received by the called program.

Here follows a description of the subroutines with
parameters that take care of this transfer.

CPSEND (NUMBER, ARRAY, STATUS)

Parameter 1list:

Routine description:

INTEGER NUMBER , STATUS
INTEGER*2 ARRAY({*)

The subroutine is called in the calling program, and
transfers a buffer from the calling program to the
called program.

NUMBER : number of 16-bit words that may be
sent (today a maximum of 200).

ARRAY : buffer with the transferred key items and
key values.

STATUS = 0 : means 0OK.

CPRECEIVE (NUMBER,ARRAY, STATUS)

Parameter list:

Routine description:

INTEGER NUMBER , STATUS
INTEGER*2 ARRAY(*)

The subroutine is started from the called program,

and receives a buffer from the calling program. The
subroutine makes the buffer available to the calling
program.

NUMBER : number of 16-bits words that are
~ transferred (today a maximum of 200).

ARRAY : buffer with the key items and key
values that are transferred.

STATUS 1 : data may be received.

0 : no data to receive.

Status is set to 0 when transferred data is
receijved.

Norsk Data ND-60.219.1 EN

174

Complete Program Generator
Interface to menu control system

AUTOFUNK (DIRECTION, STATUS)

Parameter Tlist:

Routine description:

INTEGER DIRECTION , STATUS

The subroutine is called in the calling program when
the command to start the next program or to start
the previous program is given. The routine checks
whether this current program has any following or
preceding program defined.

If the program has a following or preceding program
defined,; the program is ended. If not, a message is
displayed on the screeen.

DIRECTION = 1 check whether a following
program exists (NAPL given)

= -1 : check whether a preceding
program exists (PAPL given)
STATUS = 1 following/preceding program

exists.
= 0 : following/preceding program
does not exist.

Norsk Data ND-60.219.1 EN

176 Complete Program Generator

Norsk Data ND-60.219.1 EN

Complete Program Generator 177

Free text function

12. FREE TEXT FUNCTION

The free text function in Complete-PG gives you the
possibility of connecting a number of text lines to
records in the database.

The free text function works like a standard Complete-PG
line-oriented function, with standard Complete-PG
commands and function keys.

Here we shall have a closer look at what is required of

i the database when the free text function is used.

12.1. DATABASE REQUIREMENTS

Free text item

{/

e Lach realm with records you want to connect free
text to, must contain a free text item. This item must
be called:

XXTNR in FORTRAN where XX=realm prefix
TNR in COBOL

K\QJThe item must be defined as INTEGER*4, and be 9

characters long, i.e. PIC 9(9).

e TTYPE must only be defined for lines or records
belonging to realms with TNR/XXTNR items in the
database. See page 20.

e The TTYPE field is an indicator field which displays a
'T" if there is free text in the record. Otherwise,
the field will be blank. The field is only used for
output.

12.2. USE OF FREE TEXT FUNCTION

Calling
free text:

1l

i

The free text function can be called from all programs
that are defined with free text. Call the free text
function either by

e giving the command 'TEXT' in the command field, or

e pressing this function key

The cursor must be in the part of the picture/record
where TTYPE is defined.

Norsk Data ND-60.219.1 EN

178

Querying:

Storing/

modifying/
deleting:

Complete Program Generator
Free text function

1f there is free text belonging to a record (shown by
TTYPE field = T), the free text function may be called
during a query. If it is called, and there does not
exist any free text in the record (the TTYPE field is
blank), a message will be displayed saying that no free
text is registered.

The record you want to connect free text to must be
registered before the free text is added. In order
to store, modify or delete free text, you must enter
the record that the text is going to be connected to,
with 'modification' access. Then call the free text
function.

Norsk Data ND-60.219.1 EN

Complete Program Generator 179

CHAR FER Is

THE HELP rFuncTiON IN COMPLETE-PG

Norsk Data ND-60.219.1 EN

-

Complete Program Generator 181
The HELP function in Complete-PG

13. THe HELP runction 1IN CoMPLETE-PG

HELP on The HELP function in Complete-PG is flexible, and
several designed to give the user of the Complete-PG
levels generated application, help on most levels. Via the
HELP function, the user may get help information
about:
1. the application he or she is using.
2. each field in the screen picture.
3. each message the application displays.
4. all legal command words which can be used in the

application.
5. all legal function keys which can be used in the
application.

Dynamic help The help information is dynamic. Authorized users

information may modify/register/delete help information. The
amount of help text that can be stored is 1imited
only by the storage space in the SIBAS database.

13.1. DATABASE REQUIREMENTS

Separate The Complete-PG HELP function stores all help

realm information on a separate realm in the database.
This realm, D7HELP, must be inserted in the
database before the PG help function can be used.

CP-REDEF-HELP The insertion of the realm is performed by running
SIB-DRL with the file CP-REDEF-HELP:SYMB.

This file first has to be adapted by adding the
database name, 0S file name and system realm name.

135.2. PROGRAMMING WITH THE PG HELP FUNCTION

During the generating of programs with the
Complete-PG 2C version, the code for calling the PG
help function will be generated automatically for
all applications. The programmer need not think
about the PG help function when programming.

Norsk Data ND-60.219.1 EN

182

Complete Program Generator
The HELP function in Complete-PG

13.3. “StAND-ALONE"

Subroutine

Independent
program

Used stand-alone, the PG help function may be
called in a menu system by calling the subroutinre
AJHELP.

The PG help function may also be run as an
independent program or domain. In that case, a main
program that calls AJHELP must be written:

PROGRAM HELP

Crmmmmmmmm s Main prog. for AJHELP.
CALL AJHELP
END

This main program is compiled and loaded in the same
way as a standard PG application.

13.4. FROM A USER APPLICATION

The PG help function may be called from the user
applications in several ways. Depending on the type
of help that is wanted, the function may be called
by means of five different function keys, or it may
be called via the help menu, which is activated by
pressing SHIFT + HELP.

Norsk Data ND-60.219.1 EN

Complete Program Generator
The HELP function in Complete-PG

15.4.1. Overview oF THE HELP FuncTion

SHIFT + HELP

Function key
USER
APPLICATION
SHIFT + HELP
key
Menu choice
HELP HELP
MENU PICTURE FUNCTION
SHIFT + HELP 1 l
key L I key

SHIFT + HELP key

Overview of
all Tegal
function keys

Overview of
all legal
command words

Norsk Data ND-60.219.1 EN

183

184 Compiete Program Generator
The HELP function in Complete-PG

THE FUNCTION KEYS ARE:

FIELD - Call to the help function for help information
about fields.

PARA . Call to the help function for help information
about the user application.

SENT . Call to the help function for help information
about the last message.

WORD . Call to the help function for help information
about command words.

FUNC + T : Call to the help function for help information
about function keys.

SHIFT + HELP . Call for the help menu.

HeLe mMenu For CompLETE-PG:

/ﬁw\\
Complete PG HELP menu.
Help information about: Called directly from function:
. 1.Field. FIELD
. 2.Picture. PARA
. 3.Messages. SENT
. 4.Function key. FUNC + T

HELP gives an overview of all Tegal function keys.

. 5.Command word. WORD
SHIFT + HELP gives an overview of all Tegal command words.

Navigate with| ¢ | / | 1 | and choose with « | / (ENTER key).

Help may also be chosen by Leave help with EXIT
pressing 1-5 directly!

Norsk Data ND-60.219.1 EN

Complete Program Generator 185
The HELP function in Complete-PG

HELP FUNCTION WITH QUERY ACCESS

Help concerning If the help function is called when you have query
field, access, the user in the cases 1, 2, and 3 (cf. the menu
application, picture) will only get help information about the given
message field/given application or last message. The user will

only be able to page through the help information
registered about this field, function or message.

Help concerning In cases 4 and 5 {cf. the menu picture) the user will be
command word able to type in the command word or press the function
or function key key and get a display of registered help information

about this command word or function key. A new command
word or function key will be read until the EXIT key is
pressed.

HELP FUNCTION PICTURE:

Complete-PG HELP FUNCTION

....... s U Leave help, return to
........... L....v. auiiiiene. o....... function, press: EXIT

..

The help function picture will vary according to which
types of help information is sought. On the 11 lower
lines, the help information will be displayed. This is
the part you may scroll through, if more than 11 lines
of help information is registered. A maximum of 999
Tines of help information may be registered.

The upper part of the picture will look as follows,
where XXXXXX is the field name in ABM, YYYYYYY is the
function name of the calling function, and 999 is the
message number.

Norsk Data ND-60.219.1 EN

186 Complete Program Generator
The HELP function in Complete-PG

PG HELP FUNCTION CALLED FOR HELP ABOUT FIELDS:

Complete-PG HELP FUNCTION

Leave help, return to
function, press: EXIT

HELP INFORMATION:

Help information about field: XXXXXXXX . In function : YYYYYY .

HELP FUNCTION CALLED FOR HELP ABOUT FUNCTION

Complete-PG HELP FUNCTION

P

ﬁ Leave help, return to
' function, press: EXIT

HELP INFORMATION:

Help information about function: YYYYYYYY .

.................. <.Help information about function .>................

PG HELP FUNCTION CALLED FOR HELP ABOUT MESSAGE:

Complete-PG HELP FUNCTION

Message number : 999 Leave help, return to
function, press: EXIT

HELP INFORMATION:

999 : < last message >

Norsk Data ND-60.219.1 EN

Complete Program Generator 187
The HELP function in Complete-PG
PG HELP FUNCTION CALLED FOR HELP ABOUT COMMAND WORD:
Complete~PG HELP FUNCTION
Leave help, return to
function, press: EXIT
Give command you want help information about:
HELP INFORMATION:
.................. <.Help information about command word.>.............
PG HELP FUNCTION CALLED FOR HELP ABOUT FUNCTION KEY:
- \ Complete-PG HELP FUNCTION
; Leave help, return to
function, press: EXIT

Press function key you

want help information about:

HELP INFORMATION:

Norsk Data ND-60.219.1 EN

188 Complete Program Generator
The HELP function in Complete-PG

HELP FUNCTION WITH UPDATE ACCESS:

If the help function is called with update access, the help picture
will look as follows:

Complete-PG HELP FUNCTION

Code : Message number : Leave help, return to
Function : Field name : function, press: EXIT
Press function key you want help info. about:

HELP INFORMATION:

..

..
..
..

..

..

The user will now be able to update all five types of help information.
The keys for the five types of help information are:

Type of help: Key:
[
1. Help on field ! Code + function name + field name.
2. Help on function : Code + function name.
3. Help on message : Code + message number.
4. Help on function key : Code + function key.
5. Help on command word : Code + command word.

Norsk Data ND-60.219.1 EN

Complete Program Generator 189
The HELP function in Complete-PG

FIELD EXPLANATION:

Code This field may be left open if you do not use a TP
monitor such as TRUE.

Function name The name of the function. The name is set
automatically when generating functions in
Complete-PG.

Field name Is the name of the field in the screen picture in
the user application. The name is fetched from ABM.

Message number The number of the message, from the message file.
Function key The FOCUS code for function keys.
Command word The command words in PG applications.

In standard PG functions, the user may alternate
between the five keys in the function, and ask for,
\\ register, modify and remove help information.

Norsk Data ND-60.219.1 EN

190 Complete Program Generator -

-
o
AN
e
R

e

=

5

Norsk Data ND-60.219.1 EN

Complete Program Generator 191

) APPENDIX A

OTHER AUXILIARY ROUTINES

Norsk Data ND-60.219.1 EN

w

Complete Program Generator 193
Other auxiliary routines

OTHER AUXTLIARY ROUTINES

CP-SERVICE

A separate service library, CP-SERVICE, contains
subroutines that may profitably be used for manual
programming. Some service routines are made
especially for setting, resetting or testing the
flags for the various routines.

Below, you will find a description of the various
service routines.

LOGICAL FUNCTION CPABLED (FLXXXX, WORD)

Parameter list:

Routine description:

INTEGER FLXXXX, WORD

The function tests whether the specified flag
is set. TRUE is returned if this is the
case.

CPABORT

Routine description:

Aborts/terminates the program. Must be called when
errors occur. CPABORT should be called if an error
occurs in a SIBAS file or a FOCUS file.

CPABORT resets all flags so that the DO loop is
ended, and CPEND is called. CPEND will, if MSTAfO
or KSTATf1l, write an error message to the error
message file.

NOTE:
An error message is written by CPEND only if
MSTA#0 or KSTAT#1.

Norsk Data ND-60.219.1 EN

194

cPBYTE (IUNIT,CLINE)

Parameter list:

Routine description:

Complete Program Generator
Other auxiliary routines

CHARACTER*(*) CLINE
INTEGER IUNIT

Writes a text string to a specified unit number
without using FORTRAN I1/0.

FUNCTION CPCAVD (INTEG)

Parameter list:

Routine description:

CHARACTER CPCAVD*10
INTEGER*4 INTEG

Converts a double integer to a character string.

_/ FUNCTION CPCAVINT (INTEG)

Parameter 1list:

Routine description:

CHARACTER CPCAVINT*5
INTEGER*2 INTEG

Converts an integer to a character string.

CPDATUM (CDATUM,DATE)

Parameter 1list:

Routine description:

CHARACTER*(*) CDATUM
INTEGER*4 DATE

Fetches the current date and time. Moves this
information to a text string.

CPDELTXT (TTNR,KSTAT)

Parameter list:

Routine description:

INTEGER*4 TTNR I
INTEGER KSTAT 0

Deletes all existing text lines on text number TTNR
from the D3TEXT realm in the database. If everything
is 0K, KSTAT will be returned with a value of 1.

If KSTAT is different to 1, a SIBAS error has
occurred.

KSTAT must be tested after the routine call.

Norsk Data ND-60.219.1 EN

Complete Program Generator 185
Other auxiliary routines

CPDISABL (FLY0OX)

Parameter list:

Routine description:

INTEGER FLxxxx (FORTRAN)
INTEGER TRIGGER-xxxx (COBOL)

FLxxxx = flag of a PG routine. Resets the flag of a
routine (i.e. the routine will not be executed).

CPENABLE (FLYOOX)

Parameter Tist:

Routine description:

INTEGER FLxxxx (FORTRAN)
INTEGER TRIGGER-xxxx {COBOL)

FLxxxx = flag of a PG routine you want executed.
The routine sets this flag.

CPGETMSG (MSGNO)

Parameter list:

Routine description:

INTEGER MSGNO

Gets the message text corresponding to the given
message number from the message file, and moves the
message text to CTEXT.

CPIENABL (TRIGGER-XXXX,RESULT)

Parameter list:

Routine description:

INTEGER TRIGGER-xxxx (Input)
INTEGER RESULT {Output)

The routine tests whether the specified flag is set.

RESULT = 1 if the flag of the PG routine is set,
otherwise RESULT = 0.

cPIN (1SUB)

Parameter list:

Routine description:

INTEGER*2 ISUB(4)

The routine must be called at the beginning of each
subroutine, in order to get the current subroutine

name written to the error message file if an error

occurs in the routine.

Norsk Data ND-60.219.1 EN

196

CPINITEM (REFTAB."FIELDNAME") <= FORTRAN
CPINITEM (REFTAB.FIELDNAME) <= COBOL

Parameter list:
Routine description:

CPINVER.

Complete Program Generator
Other auxiliary routines

INTEGER*2 REFTAB(*), fieldname*(4)

The routine puts field names into REFTAB. CPINITEM
builds a REFTAB 1list for wuse 1in, for example,

CPINVER (REFTAB,MITEM,MREC)

Parameter list:

Routine description:

INTEGER*2 REFTAB(*), MITEM(*), MREC(*)

The routine sets all screen picture fields defined
in REFTAB, into inverse video, and displays a
message for the fields having an illegal value.
The last executed CPREAD call is then executed
again.

crouMP (FLAG)

Parameter list:

Routine description:

INTEGER FLAG : (Input) The name of the
the routine you want to
activate {= FLxxxx}.

This routine activates the desired routine, and
skips intermediate routines (resets all flags) and
intermediate manual code.

CPMESS
Parameter list:

Routine description:

None.

Displays the message in CTEXT. If the last
subroutine call was CPREAD, this call is activated
once more, whereas intermediate routines and manual
code are skipped.

Norsk Data ND-60.219.1 EN

Complete Program Generator 197
Other auxiliary routines

cpout (1SUB)

Parameter 1ist: INTEGER*2 ISUB(4)

Routine description: If CPIN has been called at the beginning of a
subroutine, CPOUT must be called at the end. The
routine checks whether an error has occurred
{NOERR=.FALSE.).

CPEND

Parameter list: None.

Routine description: Terminates the program.

cPswAP (INTEGL., INTEG2Z)
Parameter list: INTEGER INTEGL, INTEG2

Routine description: Swaps the contents of INTEG1 and INTEG2.

CPTERMCH (REFTAB, MITEM, MREC, PREV. NEXT)

Parameter 1ist: INTEGER*2 REFTAB(*), MITEM(*), MREC(*)
INTEGER PREV, NEXT

Routine description: PREV contains the flag of the routine to be executed
when the user presses the left arrow. NEXT contains
the flag of the next routine to be executed.

The routine controls the termination after a read
call in the same way as the read calls in CPREAD.
(See description of function keys.)

CPTOKEY
Parameter 1ist: None.
Routine description: Activates the CPKEY routine, so that a new read of

the key field is permitted. Skips all intermediate
routines and intermediate manual code.

Norsk Data ND-60.219.1 EN

198 Complete Program Generator
Other auxiliary routines

CPTRNSFR (ARRAY1. POS] . ANTALL , ARRAYZ, POS2)

Parameter list: INTEGER*2 ARRAY1({*), ARRAY2(*)
INTEGER POS1, NUMBER} pPOS?2

Routine description: Transfers data from ARRAY1 position P0OS1 to ARRAYZ2
position P0S2.

NUMBER = Number of words to be transferred.

Norsk Data ND-60.219.1 EN

Complete Program Generator 199
Other auxiliary routines

Norsk Data ND-60.219.1 EN

« I

INDEX LIST

Index term Reference

action code . . . : .31, 49
additional code .42
additional programming59, 148
A o 3
alternative key .32
alternative search key31
author L L L2y
AUTOFUNK 174
auxiliary routines .193
batch processor42
BK field 19
btank a Yine46
blank a region46
BRF-file e
calculation of fields 153
CAPABLED .193
CFRIKGDE 1T
CHCKACS e
clear screen picture72
COBOL e
COBOL program . 84
command field .14
generated44

commands for separate regions50
commands for the entire picture52
compile L . L e
COMTAB 107
COPY o, B
copy screen picture .26,29
CPABLEDo
CPABORT78, 193
CPACTCOD o e

> CPBEGIN9

@ CPBTRANS97
CPBYTE19
CPCAVD 194
CPCAVINT 194
CPCURKC o g2
CPDATUM 194
CPDELTXT 194
CPDISABL8
CPDISABLE .. .107, 109
CPDISP 95
CP-DUMMY-LIB 172
CPENABLE ..107, 109, 195
CPEND98, 197
CPETRANS 9T
CPEXIST10
CPERTXT o . . o102
CPGET9
CPGETMSG e

Norsk Data ND-60.219.1 EN

< IT »

Index term Reference
CPIENABL .77, 195
CPIN . . .77, 195
CPINITEM . 196
CPINRC . . 95
CPINVER . . 151, 196
CPJUMP . 196
CPKEY . . . 93
CPKEYNC . . 93
CPMESS . . 196
CPOKCOD . . 100
CPOTHER . . 100
CPOUT 78, 197
CP-PROGEN . . 116
CPREAD . . . 96
CPREAD calls . 69
CPRECEIVE . . 173
CPREGION . 92
CPRSPNS . . 98
CPSEND . . . 173
CP-SERVICE . 193
CP-SPEC . . 115
CPSWAP . . 197
CPTDISC . . 103
CPTDISP . . 103
CPTERMCH . 197
CPTOKEY . . 197
CPTRNSFR . 198
CPUPDATE .97
CRSPNS .75
CTEXT . . 75
current region .17, 30
D field . . . 33

data description . 16

data field . 16

data set . 16

data type . . 16
date 14
date of creation . 27
delete record . . . 26
delete search region . 26
deletion of data . 48

DC Toop . . 82
domains27
dummy CPREAD call . 150
error handling . 67
error message . .17, 116
execute command . . 26
EXECUTE key . . 45
EX-field . 33
existence control . 31, 142
exit e . 26, 29
exit from function . 55
explanation . . .27
field termination . . 18
fieldrecord . . 30

find record . . 26, 29

Norsk Data ND-60.219.1 EN

< IIT »

Index term Reference

FLNEXT o 74
form25 26
form file726
FORTRAN o T
FORTRAN program .. .82
free text .31, 155
free text function20
FRIKODE 1T
function keys .44
function keys for separate regions50
function keys for the entire picture 52
function name .. .14
function picture .15
generate e
generated COBOL program 84
’ generated command field44
generated FORTRAN program82
HELP oo
HELP key 24
help picture24
highlimit .. .33
IACTCOD3
index L L
informative messages17
initial values .. .33
installation .115
item . .. o33
K oo e
Key L o L oo .31, 33
alternative .32
non-unique32
key field16
Tast generated27
last modification27
* Timit
high33
Tow33
Timits3
Tine 15
Togical15
physical .15
Toad L L L2
Toad procedure
logical line .15
Tower limit .. .33
lTowlimit .33
main key .16, 31, 32
unique L. L .32
main program 1n
main register .3
MAINTAB(5)13
manual code .148
member region .. .16, 45
’ menu control system .11
message file .83
message line

Norsk Data ND-60.219.1 EN

< IV >

Index term Reference

MK . . s 32
modification of data47
modify record26,29
move between regions54
name oo 30
NOERR 4s
non-unique key32
NRF=file 2T
object filname 27
object language o..o.o.02d
0K field19
OKCODEo 3
OWNEr a3
owner region .16, 45
OWNMESS a
physical line15
print54
~. PROG-file . . . Y
) PROGRAM DESCRIPTION ¢
program id o210
programming example12
programming language oo ooooo021
guery . . . Y < 1
queue system for messages O
READCO6869
reading of key .. . 166
realmot
record L, 16
region15
current . . . O
registration of data - 1
routine
CPACTCOD9
CPBEGIN
CPBTRANSo 97
CPCURKC o o s 92
CPDISP, 95
CPEND08
CPETRANS 9T
CPEXIST11
CPFRTXT o0
CPGETo 9
CPINRC L9
CPKEY093
CPKEYNC893
CPOKCODL00
CPOTHER ..100
CPREAD09
CPREGION92
CPRSPNS98
CPTDISC103
CPTDISP103
CPUPDATEo Y7
screen buffer .. .33 .
screen picture . . . A NG
screen picture PROGRAM DESCRIPTION ... o238, 28

Norsk Data ND-60.219.1 EN

<V

Index term Reference

screen picture USE OF PROGRAM KEYS23, 28
scroll L 54
search key8
search region .33
selecting records .69
Selection of records162
shift to different part of picture29
side L L L L. s
SMRELES . . .« . . . T2
SMRESRY 172
specify search region7?6
start Complete-PG23
start generated program44
start generatingM
status lineo
subfunction25, 26,30
subroutine
CPABORT718
CPIENABL T
CPIN . . . o T
CPOUT T8
subschema25 26
swap screen picture .26
system name14
TERMCOD16
TEXT . . . T8
text field20
textfunction3
time14
top line 14
treatment code .. .19
treatment code field19
TRIGGER-NEXT .. .15
unique main key .32
upper 1imit .33
USE e
USE OF PROGRAM KEYS .23
use of search key3
USER-ENVIRONMENT .64
variable name .89
variable table89

Norsk Data ND-60.219.1 EN

SEND US YOUR COMMENTS!

Are you frustrated because of unclear information in our
manuals? Do you have trouble finding things?

Please let us know if you:

— find errors

— cannot understand information
— cannot find information

— find needless information.

Do you think we could improve our manuals by rearranging
the contents? You could also tell us if you like the manual.

Send to:
Norsk Data A.S
Documentation Department
P.O. Box 256 BOGERUD
N - 0621 OSLO 6 - Norway

NOTE!
‘ . This form is primarily for documentation errors. Software
and system errors should be reported on Customer System
Reports.
\ COMPLETE PROGRAM GENERATOR
Manual Name:J psenianel Manual number: ND-60.219.1 EN
Which version of the product are you using?
What problems do you have? (use extra pages if needed)
Do you have suggestions for improving this manual?
«o
Your name: Date:
Company: Position:

Address:

What are you using this manual for?

«<0

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
0621 Oslo6, Norway

0 |

