
000
Q

0
0

0
0

0
0

0
0

Q
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
w

0
0

0
0

0
0

0
0

0
7

0
0

0
0

0
0

0
0

0
Q

0
0

0
O

0
0

0
0

0
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

W
Q

G
O

00000
0

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
Q

0
0

0
0

0
0

0
0

$
0

0
0

0
0

0
®

—500
100/500

User Manual

RID-60214.01

Ier ND
CC-100 and CC

C-Compi

Norsk Data

CC—WO aria CG-EOG
C—Compiier N-mfilwfl

Use? Manuai

NED—60.21401

NOTICE

The information in this document in ambient to change Without notice Nomk Data
/\ 8 assumes no responsrlulity tor any (:H’UI'S that may appear in HHS dommmnt
Norsk Data /\ fir; tissumow no mspoimihility for the use or reliability of HS SOHWUH:
on (:quapiiiont that IS not ilH'HISiHKi or supported by Norsk Data A f;

The information described in this docun‘ient is protected by copyright. it may not
he photocopied, reproduced or translated without the prior consent of Norsk
Data A'S.

Copyright (C) 1984 by Norsk Data AS

lliis manual If. Ill loom: lirnl lmin l()l misc ol llptlillllltl (iltl iiiigitt; niny lit:

removed and llt‘W pour". (Easily ll|1£(.‘ll(‘,(l ll llll‘ llltllllltll it, inVim-rl

llll' lunar: lunl luim also Allows you to lililtit? the manual III .I llllt) llllltl(‘,l (/\)
l()l greater piolcction and convenience ol use Ring binders With 4 rings
corresponding to the holes in the manual may be ordered in two widths, 30
mm and 40 mm. Use the order form below

The manual may also be placed in a plastic cover (8). This cover is more
suitable for manuals of less than 100 pages than for large manuals. Plastic
covers may also be ordered below.

/\ ’1

441‘ > .4- _. .. W K '1

h. “M- 9

PK NORSK DA’A A5

at am e
E5 °‘:E e =5

-: A o

”v--.'l

A Ring; Binder 8, Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Norsk Data A.S
Graphic Center
PO. Box 25, Bogerud
0621 Oslo 6, Norway

ORDER FORM

l would like to order

Ring Binders, 30 mm, at nkr 20, per binder

...... Ring Binders, 40 mm, at nkr 25,, per binder

...... Plastic Covers at nkr 10,- per cover

Company

Address

PRINTING " RECORD "
Printing Notes

’ 01/85 *1/Hegsi0n O1

CC-100 and ICC-500 C‘Compilers for ND-100/500 User Manual
Pub1.No. ND~60.214.01

000 NH!
D H:
M?

Norsk Data A.S
Graphic Center
P.O.Box 25, BogerudNO Sk Data 0621 Oslo 6, Norway

I } D 00 NM!
ND

000 (300

lV

Manuals can be updated in two ways, new versions and revisions, New lversions
consist of a complete new manual which replaces the old manual, New versions
incorporate all revisrons since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision The
old printing record should be replaced by the new one.

New versions; and revisions are announced in the ND Bulletin and can be
ordered as described below

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data AS rrrrr
PO Box 25, Bogerud i
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data AS
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Preface:

THE PRODUCT This manual covers the programming language C ~ or
perhaps more known as the "UNIX" programming
language — as described in the book:

The C Programming Language
by

Brian W. Kernighan and Dennis M. Ritchie
Bell Telephone Laboratories, Incorporated

@1978
Prentice—Hall Software Series

ISBN O"13“110163—3

This implementation is made by the University of
Lulea, and IAR Systems AB, Sweden, in cooperation
with Norsk Data A.S.

The compiler and its accompanying libraries are
available for the ND—lOO and the ND—SOO computers,
running under the operating system SINTRAN III VSX
and BOO/VSX.

Product numbers: ND-10760, for the ND~100, and
ND—10761, for the ND—SOO.

THE READER This manual is intended for the experienced
programmers, having either good knowledge of the C
language from the above mentioned publication, or
having good experience with the ND-computers and
system software.

PREREQUISITE KNOWLEDGE
The readers are expected to have extended
programming experience, good knowledge of
ND—computers and system utilities as editors and
program—linkage—loaders, as well as file—handling
and related topics.

RELATED MANUALS SINTRAN III Reference Manual ND-60.128
Symbolic Debugger ND—60.158
ND-lOO ND Relocatable Loader (NRL) ND—60.066
ND-1OO BRF—LINKER ND-60.196
ND~500 LOADER/MONITOR ND—60.136

Q Copyright 1984 by Norsk Data A.S.

© Copyright 1984 by IAR Systems AB (ND~100 version)

ND-60.214.0l

V“

T A B L E O F C O N T E N T S

Section Page

1 The C Language. 1

1.1 Relocatable Libraries. 1
1.2 Standard Library Definitions Include Files 2

2 Sample Session. 5

3 Running CC—100/500. 7

3.1 Compiling ND-1OO programs. 7
3.2 Loading ND—1OO C programs. 8
3.3 Compiling ND— 500 programs. 9
3.4 Loading ND 500 C programs. 10
3.5 Using the SYMBOLIC DEBUGGER on ND— 500 C programs. 11
3.5.1 How to Look At and to Set Values to Variables 12
3.5 2 Simple Variables . 12
3.5.3 Pointers . 13
3.5.4 Character Strings . 13
3.5.5 Arrays . 13
3.5.6 Structures and Unions . 13
3.5.7 Bit Fields . 13
3.5.8 Enumeration Variables . 14
3.5.9 Variables in Inner Blocks . 14
3.5.10 Pointers to functions . 14
3.6 Compiler diagnostics. 15

4 The Command Line. 17

4.1 Startup functions ARGC and ARGV. 17
4.2 Redirection of standard Input and Output files. 17

5 Implementation Notes. 19

5.1 Identifiers. 19
5.2 Data representation. 19
5.3 Register declarations. 20
5.4 Include files. 20
5.5 Pre defined "#define" symbols. 20

6 Deviations From Standard C. 21

ND'60.214.01

WH

Section Page

6.1 Unsigned values. 21
6.2 The "void" data type. 21
6.3 Enumeration types. 21
6.4 Structure and union assignments 22
6.5 Static declarations. 22
6.6 Pre~processor directives. 23

7 CC~100/500 System and I/O Library. 25

7.1 System and [/0 Libraries . . 25
7.2 System Calls and Error Numbers ~ lNTRO(2) 26
7.2.1 CREAT(2) ~ Create a New File or Rewrite an Existing One 29
7.2.2 OPEN(2)

- Open for Reading or Writing. 30
7.2.3 READ(2) ~ Read from File. 32
7.2.4 WRITE(2) ~ Write on a File. . 33
7.2.5 LSEEK(2) - Move Read/Write File Pointer. 34
7.2.6 CLOSE(2) — Close a File Descriptor. 35
7.2.7 UNLINK(2) ~ Remove Directory Entry. 36
7.2.8 EXIT(2) ~ Terminate Program. 37
7.3 Standard I/O Subroutines and Libraries — INTRO(3) 38
7.3.1 ABS(3C) ~ Return Integer Absolute Value. . . 41
7.3.2 ATOF(3C) - Convert ASCIl String to Floating Point Number. 42
7.3.3 CONV(3C) — Translate Characters. 43
7.3.4 CTYPE(3C) ~ Classify Characters. . 45
7.3.5 ECVT(3C) — Convert Floating Point Number to String. 46
7.3.6 STRING(3C) - String Operations . 47
7.3.7 STRTOL(3C) — Convert String to Integer. 50
7.3.8 SWAB(3C) _ Swap Bytes 51
7.3.9 FREXP(3C) ~ Manipulate Parts of Floating— Point Numbers. 52
7.3.10 ISATTY(3C) — Find If File Is a Terminal. 53
7.3.11 MALLOC(3C) — Main Memory Allocator. 54
7.3.12 MEMORY(3C) — Memory Operations. 56
7.3.13 MKTEMP(3C) — Make a Unique Filename. 58
7 3.14 PERROR(3C) — System Error Messages. 59
7.3.15 SETJMP(3C) _ Non— Local Goto. . 60
7.3.16 VARARGS(3) Variable Argument List . 61
7.4 Standard Buffered Input/Output Package — STDIO(3S) 63
7.4.1 GETC(3S) — Get Character or Word From Stream. 65
7.4.2 GETS(BS) — Get a String From a Stream. . 67
7.4.3 PUTC(3S) — Put Character or Word On a Stream. 68
7.4.4 PUTS(3S) — Put a String On a Stream. 70
7.4.5 FOPEN(3S) — Open a Stream . 71
7.4.6 FREAD(35) ~ Array Input/Output. 73
7.4.7 FSEEK(38) 1 Reposition a File Pointer In a Stream. 74
7.4.8 FCLOSE(3S) — Close or Flush a Stream. 75
7.4.9 FERROR(3S) ~ Stream Status Inquiries. 76
7.4.10 PRINTF(3S) — Print Formatted Output. 77
7.4.11 SCANF(3S) . Convert Formatted Input 81
7.4.12 SETBUF(3S) 1 Assign Buffering To a Stream. 85
7.4.13 UNGETC(BS) - Push Character Back Into Input Stream. 86

ND-60.214.01

Section Page

7.5 Mathematical Library Functions ~ INTRO(3M) 87
7 5.1 EXP(3M) - Exponential, Logarithm, Power, Square root. 88
7.5.2 FLOOR(3M) ~ Absolute value, Floor, Ceiling Functions. 89
7.5.3 GAMMA(3M) - Log Gamma Function. 90
7.5.4 HYPOT(3M) — Euclidean Distance. 91
7.5.5 JO(3M) — Bessel Functions. . 92
7.5.6 SIN(3M) ~ Trigonometric Functions. 93
7.5.7 SINH(3M) — Hyperbolic Functions. 94

AEBEEDLK

A Appendix A: CC—SOO Interfacing With Other Languages. 94

B Appendix B: CC—1OO Interfacing with other languages. 98

C Appendix C: Summary of C syntax. 102

Index 107

ND~60.214.01

CC—1OO and CC—SOO. 1
The C Language.

1 The 9 Language.

The C programming language was developed at Bell Laboratories and was
originally used to implement the UNIX operating system.

The reasons for using C for general purpose programming are several:

C combines high and lonelevel features which makes it a more
"complete" language than for example Pascal and FORTRAN.

Due to the language design it is relatively easy to make C compilers produce
efficient code so that assembly language will seldom be needed.

There is one (only one) reCognized standard for the C language (”The C
Programming Language" by Kernighan and Ritchie).

Perhaps the most important feature of C is that it has proved to be a very
portable language, virtually independent of operating systems and CPU
wordlength.

This is more important than ever before since a good piece of software which
you may have invested several years or development in, is likely to “survive"
changing hardware environments.

with CC—lOO/SOO users of ND~computers can join the
rest of the computing w: id, and that without

changing operating system, editor etc !!

The name of the ND~1OO and ND 500 C compiler is

@CC-lOO and @CC-SOO

respectively.

1.1 Relocatable Libraries.

The relocatable libraries includes all system functions described in
7.

The CC-HEADER file must be loaded prior to the user’s object files,
and the libraries and TRAILER files afterwards. This is necessary to
set up the proper initialization and termination routines.

On the ND—TOO, the libraries are separated in 1— and 2—bank versions.
The default compiler option is 2~bank, hence all loading must use the
CC*2 library files. It is not allowed to mix 1— and 2~bank routines,
the NRL or BRF—LINKER will give an error message.

To compile in 1—bank mode, the compilerwoption "~s" must be given.

ND-60.214.0l

2 C—1 0 nd CC- 0.
The C Language.

ND—1OO

CC‘1HEADER—AzBRF 1—bank version header file
CC'TBANK—AzBRF 1—bank version library file
CC~1TRAILERqBRF 1wbank version trailer file
CC—2HEADER—A:BRF 2~bank version header file
CC—ZBANK—AzBRF 2-bank version library file
CC—ZTRAILER—A BRF 2*bank version trailer file

On the ND~SOO there is only one mode, thus one set of library files
are necessary.

ED~§OQ

CC~HEADER~A2NRF
CC—LIBRARYtAzNRF

1.2 Standard Library Definitions Include Files.

To get the proper symbols defined for the standard functions described
in 7 the source~program must contain at least once a
reference to the “header”—file, using the #INCLUDE “<file—name>"
preprocessor statement. Please observe that an header—file must only
be referred to once, otherwise duplication of symbols will occur.

Further, the name of the include—file must be enclosed either in a set
of arrow brackets, <filename>; or a set of double quotes "filename".

The arrow~brackets will direct the compiler to locate the
include—files stored under the user C—INCLUDE, the double—quotes will
use the standard filessearch function in the operating system: first
search among the files in the current user's own file—catalogue, if
not found there, the search continues at user SYSTEM.

The header files will have the filetype 2H, and exist in both ND~1OO
and ND-SOO versions. The compilers will automatically select the
proper kind.

The installation procedure described in Appendix C will store the
standard header—files under the user "C—INCLUDE".

The names of the standard header files and their funtions are:

ERRNO:H C runtime error number macro definitions.

STDIO:H A file containing I/O macro definitions,

CTYPE2H Useful macro definitions like toupper, isalpha
etc.

MATH:H Declares external math functions.

FCNTL:H File control block used with the OPEN function.

NDw60.214.01

QQWlQQiand CC~§QQ.
The C Language.

SETJMP:H

VARARGS:H

Functions for saving and restoring the stack
environment, useful for dealing with errors
and interrupts encountered in low—level
subroutines.

Macroes for writing portable procedures which
accepts a variable number of arguments.

These header files required for CC—SOO only:

MEMORYzH

STRINGzH

Memory allocation routines.

A collection of usefull string manipulations
functions.

ND-60.214.01

CC—1OO and CCwSOOV

ND-60.214.01

CC 100 and CCHSOO.
Sample Session.

2 gaggle Session.

In this section a small C program is compiled and loaded, showing both
the ND—1OO and ND—SOO procedure.

The program has been taken from the book previously mentioned, and
should be fairly typical of a program written in C.

It is assumed that the program has been stored in the file CAT:C

include (stdio h)
main(argc, argv) /* concatenate files */

int argc;
char *argv[];
{

int i;
char c;
FILE * fp;
if(argc == 1)

{
printf(”Usage: cat < file 1 > [< file 2 >]“);
printf(".V. [< file N >]\n");
exit();

}
for(i = 1; i < argc; ++i)

{
fp fopen(argv[i],
if(fP 3: NULL)

{

urn);

printf("Cannot open %s\n", argv[i]);
break;

}
while((c = getc(fp)) !: EOF) putchar(C);
fclose(fp);

The program concatenates the contents of one or more files, to the
standard output device, the terminal. The name(s) of the file(s) must
be given on the command line, where also the output file may be
redirected using the >file option.

For ND~100: @cc-1OO cat c
@nrl
*prog~file "c321
*load cc—Zheader, cat, cc—Zbank, cc—2trailer
*exit
@

For ND—SOO; n500:cc"500 cat:c

ND-60.214.01

6 CCtO and CC"SOQ¢
Sample Session.

n500:linkage~loader
nllzset—domain "cat:
nll load—segment cc-header, cat, cc~library
nllzexit
nSOO:

To run the program give the command:

@ggt cat c or nSOO cat cat c

and see what happens (the program should print a copy of the file
CATzC). Then try :

@qg: n500:cat

And you should get the message "Usage : cat < file 1 > ..."
indicating that the program is not activated the proper way.

@gat file

where "file" does not exist and the program will tell you that it has
failed to open the file “file“.

To catenate several files into another file the command would look as

@cat file‘a file—b fileec >file—abc

ND~60.214.01

CC 100 and CC—SOO.
Running CC—lOO/SOO.

3 Running CC-100[50Q;

3.1 ggmpilinq ND—1OO proqrams.

The ND~1OO C compiler is invoked by:

@CC-lOO [~flags] sourcefilename C

Note: The source filename must have the extension ":C".

The currently implemented flags and their meaning are:

-b

“C

"dSYM

—dSYM=nn

~i(DIR)

—l FIL

“O FIL

~uSYM

Examples:

This (ND-100)
library mode
(OBJ)ATOB:BRF.

Compile in library mode.

Send comments through the preprocessor.

Define symbol SYM. Equal to: #define SYM 1

Define symbol SYN Equal to: #define SYM nn

Suppress compiler warnings.

The compiler will only process macro definitions. The
result will appear on stdout.

Add directory (DIR) to "#include" search list.

A merged list of the C program and the corresponding
assembly code is written onto the file FILzLST. NDw1OO
only.

The file FIL BRF will receive the object code instead
of the default sourcetilezBRF

Compile in single bank mode. ND—100 only.

Undefine symbol SYN. Only useful for disabling the
predefined symbols (SINB or ND_100/NDSOO).

@CC—lOO -B —O (OBJ)ATOB ATOB:C

example shows a compilation of the file ATOB C in
and the objoci code is redirected to the file

If the object—file does not exist, it will be created using the same
name as the source—file, but with the file type :BRF.

ND~60.214.01

8 CC—1OO and CC 500‘
Running CC‘100/SOO.

3.2 Loading ND-lOO C programs;

The code produced by CC 100 can be made into :PROG files by using NRL
or BRF-LINKER.

Below is the sequence to use:

@NRL
*PROG—FILE (your own :PROG file)
*LOAD CC~?HEADER—A
*LOAD (your own files)
* 0A CC—°BANK—
LQAD CC?£BAILER
*EXIT

Note that the question mark ("?") denotes that this character should
be either "1“ or “2" depending on if one or two~bank code has been
generated.

Note that one~bank code is generated by activating the "~s“ command
line option at compilewtime.

The size of the heap (for "malloc" and "free”) is by default set to
300008 but can also be manually set in @flfl; by using:

*DEFINE #Hggg; (value)

Note that this must be done before loading takes place!

The size of the run~time stack is:

H1—bank load: (stacksize) (lowest COMMON address> " #HEAPZ —
(highest load address)

2—bank load: (stacksize) 1777778 w #HEAPZ »
(highest data load address)

H

ND—60.214.01

CC 100 and CC 500.
Compiling ND~SOO programs.

3.3 Qompiling ND—SOO programs.

The ND 500 C compiler is invoked by:

n500:CC-500 [~flags] sourcefilename:C

Note: The source filename mgst have the extension ":C".

The currently implemented flags and their meaning are:

“b Compile in library mode.

~c Send comments through the preprocessor.

~dSYM Define symbol SYM. Equal to: #define SYM 1

—dSYM=nn Define symbol SYM Equal to: #define SYM nn

~w Suppress compiler warnings.

-e The compiler will only process macro definitions. The
result will appear on stdout.

—i(DIR) Add directory (DIR) to "#include" search list.

«0 FIL The file FIL NRF will receive the object code instead
of the default sourcefilezNRF.

qYM Undefine symbol SYM. Only useful for disabling the
prededined symbols (SIN3 or NDw100/ND500).

~l Compile the program and leave the assembler language
output on a corresponding file with extension 2A5.
ND—SOO only.

«g Compile in debug mode. ND—SOO only.

This (ND-500) example shows a compilation of the file ATOB C where the
code will be put on the file ATOB NRF

n5002CC-SOO ATOB C

If the object~file does not exists, it will be created using the same
name as the source—file, but with the file~type :NRF.

ND~60.214.01

1O CC-1OO and CC~500.
Compiling ND‘SOO programs.

3.4 Loadinq ND—SOO C proqrams.

The code produced by CC~500 can be made into executable domains by
using the ND—SOO LINKAGEHLOADER.

B€1OW is the Sequence t0 USE:

n500:LINKAGE-LOADER
NLL: SET—DOMAIN "Your execute domain"
NLL: LOAD-SEGMENT CC-HEADER-A
NLL: LOAD-SEGMENT (Your own files)
NLL: LOAD~SEGMENT CC*LIBRARY-A
NLL: END~DOMAIN
NLL: 33g];

The size of the heap (for "malloc" and "free") is by default set to
500008 but can also be manually set in LINKAGEeLOADER by using:

*DEFINE'ENTRY HEAP (size) D

Note that this must be done before loading CC—LIBRARY!

The size of the run—time stack is by default set to 500008 but can
be Changed in the same way as the HEAP:

*DEFINEsENTRY STACK (Size) D

ND-60.214.01

CC—1OO and CC-SOO. 11
Using the SYMBOLIC DEBUGGER on ND-SOO C programs.

3.5 gsing the SYMBOLIC DEBUGGER on ND—SOO C programs.

On the ND 500 the debug information is generated by the compiler
option ' '_g.

The loading sequence is the same as in the previous example.

The following little program will be referenced to in the debugging
examples:

/* print Fahrenheit—Celsius table for f: O, 20, ... 300 */
main () {
int lower, upper, step;
float fahr, celsius;
lower 2 O; /* lower limit of temp table*/
upper = 300; /* upper limit of temp tab1e*/
step 2 20; /* increment step size */
fahr 2 lower;
while (fahr <= upper) {

celsius= (5.0 / 9.0) * (fahr ~ 32.0);
printf "%4.0f %6.1f\0“, fahr, celsius;
fahr = fahr + step;
}

NB The example does not intend to demonstrate the elegance of a C
program, but is just simple enough to be used for the debugging
purpose. (The program is taken from the book " The C Programming
Language" mentioned in the preface of this manual).

ND-60.214.01

12 CC—1QO and CC~500.
Using the SYMBOLIC DEBUGGER on ND—SOO C programs.

After compiling and loading the program, then the debugger is
activated by:

1 n500:DEBUGGER <program>
2 NDSOO SYMBOLIC DEBUGGER VERSION
3 START AT 010000000048
4 *break 13
5 *run
6 BREAK AT MAIN.13
7 *display
8 LOWER = O UPPER = 300 STEP = 20 FAHR = 0.0
9 CELSIUS= —7.13053E+29

10 *continue
11 0 —17.8
12 BREAK AT MAIN.13
13 *display celsius
14 CELSIUS = —1.77778E+O1
15 *exit
16 n500:

line 1 activates the DEBUGGER with the user domain
4 sets a BREAK—POINT at line no 13 in the source file,
5 starts execution,
6 the Debugger informs that the line has been reached,
7 give the command to display all local variables,

10 continue execution,
11 output from the program,
12 the break~point has been reached again,
13 now, display only the variable CELSIUS,
14 the full fl.pt format is shown.
15 terminate the DEBUGGER

3.5.1 How to Look At and to Set Values to Variables

The command "display“ without arguments shows all variables and
parameters of the scope you currently visit. Also, the values of
simple variables are shown. You can access all global variables by
name, even when you are inside functions.

You will get into problems if you have two or more names that differ
only in letter cases, because the debugger makes no difference between
lower and upper case characters.

3.5.2 Simple Variables

Assumed: char count, letter;

display counlr lrticr Show values
set count = ~15 Set value
display addr (count) Show address

ND—60.214.01

CC~1OO and CC~500.
Using the SYMBOLIC DEBUGGER on ND-SOO C

3.5.3 Pointers

Assumed: char *letterp = &letter;

13
programs.

It is not possible to use some C conventions, as letterp[0], *1etterp,
&letterp, &letter, and ind (letterp + 1

display letterp
display ind (letterp)
set ind (letterp) = #a

3.5.4 Qharacter Strings

Assumed: char *message

There isn't today any convenient way, in the debugger, to
string pointed to by the *message.

display ind(message)
display ind(message + 1)
look—at-data ind(message)

3.5.5 Arrays

Assumed: int mat [10,10], vec[10];

It is not possible to treat matrix and

display mat, vec
display mat[5,2], vec[9]

3.5.6 Structures and Unions

Assumed: struct { char ch; int i } 5;

display 5
set s.i : 226

3.5.7 Bit Eields

Assumed: struct { unsigned f3: 3; £16:

display bf
set bf.f16 = 226

).

Show value of letterp
Show value of letter
Set value of letter to a

‘now is the time';

look at a

Show the value
This is illegal!
Show the first part of string

n

vector names as pointersl

Show all element values
Show element values

Show all values
Set one of the values

16; } bf;

Show all values
Set one of the values

ND—60.214.01

14 CC—1OO and CC—BOO.
Using the SYMBOLIC DEBUGGER on ND-SOO C programs.

3.5.8 Enumeration Variables

Assumed: enum { black, green, white } colour;

display colour Show value
set colour = white Set value

3.5.9 Variables in Inner Blocks

Assumed: { int chcount; chcount = ... }

In the current version of the debugger, the inner blocks of functions
hae no scope of their own, Therefore, there are only two levels of
scope; global scope and function scope. When inside functions, all the
variables of the function are available for inspection and change.

To reduce the possibility of duplicate names, the variables of the
inner block will be suffixed with a hashmark (#) and the line number
where the block begins. (The remaining possible problem, is the rare
case when two different inner block variables with the same names are
declared on the same line).

display countfi125 Show value of a typical inner
block variable

3.5.10 Eginters to functions

Assumed: int (*funcp)();

display funcp Show start address of the
routine that funcp points to

ND~60.214.01

CC 100 and CC~500.
Compiler diagnostics.

3.6 Compiler diagnostics.

There are three kinds of error messages from the compiler:

Warnings: the compiler warns you that a construction is "dangerous” in
some way.

Try for example to compile a program where a character is added to a
pointer. If you know what you are doing it might be OK to run the
program, but on the other hand it might not. Warnings can be
suppressed by giving the "~w“ option when invoking the compiler.

Errors: these are ordinary errors and in most cases the compiler will
tell you what is wrong.

npiler errors: if the compiler enters never—never~land in its
attempt to compile some strange constructions it will tell you what
went wrong, perhaps suggest some code modification, and abort.

If a compiler error occurs before any other type oi error has been
encountered please take a copy of your source program, add a
description of the error message and send it to the nearest technical
support center.

ND~60.214.01

16

ND-60.214.01

CC~1OO and CC~SOO.

CC—lOO and CC~500.
The Command Line.

4 firewaniliine

When starting a C program, the command line (the contents after
@(prog—name>) is handled to almost standard UNIX format.

4.1 Startup functions ARGC and ARGV.

The main routine is called on by the startup facility with parameters
"argc", "argv" where argc is the number of items on the command line
(the command name included), and argv is a pointer array where the
pointers points to the "item strings" on the command line. Argv[1]
is a pointer to the first parameter, argv[2] to the second and so
on. The difference compared to UNIX is that argv[O] points to the
entire command line not to the command name, because SINTRAN "eats"
the command name.

4.2 Redirection of standard Input and Output files.

Redirection of I/O, (input—file—name and >output—file—name is also
possible. Default file type is :SYMB. If the output file referenced
does not exist it will be created automatically as a :SYMB file.

Example; Assume program name is PROG.

@PROG (input redirects the program to read from the file
named INPUT SYMB instead of the terminal.

@PROG >output data redirects the program to write data to the file
named OUTPUT DATA, instead of the terminal.

ND—60.214.01

18

NDw60.214.01

CC-1OO and CC»500.

CC—1OO and CC*500. 19
Implementation Notes.

5 Implementation Notes.

5.1 ldentifiers.

In the NDa1OO C compiler internal identifiers have 12 significant
Characters while the ND~500 version has 30 significant characters.

For external names the ND—1OO version limits the number of significant
characters to 7, and no distinction is made between upper and
lower—case during linkage.

5.2 Data regresentation.

The various data types have the following length:

CC~1OO fiC-SOO

char 16 bits [1] 8 bits
short 16 bits 16 bits
int 16 bits 32 bits
enum 16 bits 32 bits
unsigned 16 bits 32 bits
unsigned Char 16 bits 8 bits
unsigned short 16 bits 16 bits
long 32 bits 32 bits
unsigned long 32 bits 32 bits
float 48 bits 32 bits
double 48 bits [2] 64 bits
pointers 16 bits 32 bits

[1] Characters are stored as integers in main memory but are truncated
to 8 bits when written onto files or streams.

[2] Doubles and floats are considered as equivalent in this
implementation because of efficiency reasons. (ND—100 does not have
double precision arithmetic in the hardware.)

NDw60.214.01

20 CC~1OO and CC—SOO.
Implementation Notes.

5.3 ReQister declarations.

Register declarations are permitted although they are immediatly
converted to auto.

5.4 gnclude files.

Include (#include) files have similar syntax compared to UNIX and CP/M
implementations (i e. “name.ext" is automatically converted to
“NAME:EXT”) in order to increase portability between ND and other
computers.

Include files must as under UNIX be surrounded by angle brackets or
double quotes.
These characters have the following meaning for CC—100/SOO:

"file“ => Search for: FILE

(file) => ND—100: Search for: (C-INCLUDE)100~FILE
NDsSOO: Search for: (CwINCLUDE)SOO—FILE

5.5 Pre-defined ”#define" symbols.

When CC~100 is started an implicit declaration of “#define ND_100" and
”#define SIN3" is performed whereas CCeSOO define the symbols NDSOO
and SIN3.

This feature can be used in conjunction with “#ifdef“ to enhance
portability of the source code.

ND~60.214.01

CC—lOO and CC-SOO. 21
Deviations From Standard C.

6 Deviations From Standard C.

Probably the best C Reference manual available is the afore~mentioned
"The C Programming Language“. Since the publication or that book back
in 1978, a number of small changes have been made to C. Some of these
are described in a one—page Bell document distributed with UNIX
Version 7 and UNIX System III.

This section briefly describes these changes as well as some
particular deviations in this implementation.

6.1 Unsigned values.

An addition to the original C definition is that the reserved word
"unsigned" may also be used on char, short and long variables.

6.2 The "void“ data type.

The purpose of the void data type is to declare that a function does
not generate any return—value;

void funcname(a,b,c)

6.3 Enumeration types.

The enumeration type is an unique data type borrowed from Pascal.
Enumeration types are used to get automatic sequencing of named
constants, and by using casts they can be used in expressions.
Probably the best use of the enumeration type is in switch—statements.
The syntax reassembles that of a structure or union declaration.

enum car { saab, pontiac, mercedes };

Establishes an enumeration type ”car“ with values "saab", “pontiac” and
“mercedes”, with values 0, 1 and 2 respectively.

Declares that vehicle is a car,
enum car vehicle, *vp; and vp points to one.

ND-60.214.0l

22 CCelQQ_and CCWSOO.
Deviations From Standard C.

if(vehicle == saab) vehicle = mercedes;
vp = &vehicle;

These are thus two valid statements. As with structures and unions,
the enumeration type need never be named explicitly. Normally, the
constants begin at O and increase by 1; a name followed by "=" and a
constant is given that value, and the progression continues from the
assigned value. The names of enumerations in the same scope must all
be distinct from each other and from the names of ordinary variables;
in this way they are different from structures and unions.

6.4 Structure and union assignments.

Structures and unions may be assigned to one another as long as both
sides of the assignment are of the same type. They may also pe passed
as arguments to functions and returned as function values. Thus the
expression to the left of the dot need no longer be a lvalue; it may
also be a function returning a structure or union.

6.5 Static declarations,

The ND—lOO implementation of the C language requires that the storage
class "static" is known by the compiler when a static identifier is
referenced.

This is easily solved by using "forward” declarations of functions
that appear later in the file (which also conforms to the C standard):

static foo(); /* Forward declaration of “foo" */

main()
{

foo(); /* Reference to “foo" */
}

static foo()
{

/* Body of ”foo” */
}

ND—60.214.01

QQ-lQQ and CQ-fiQQ.
Deviations From Standard C.

6.6 Pre—processor directives,

Both compilers have implemented the standard pre~processor directives
as described in "The C programming language", that is:

#define identifier token—string
#define identifier(identifier, ... ,identifier) token—string

#undef identifier

#include "filename"
#include <fi1ename>

#if constant~expression

#ifdef identifier

#ifndef identifier

#else

#endif

#line constant identifier

ND~1OO special:

#lstcod <+|e>

The lstcod directive has been included to aid debugging of C programs
as well as the compiler itself. "#lstcod +" activates a list of the
generated code in mnemonic form whereas “# lstcod —" disables this
listing.

Note that this directive is a gggnting one (i.e two "# lstcod —"
needs two or more "# lstcod +" to enable listing again. Also note that
the "~l FIL" command line option performs an implicit "# lstcod +".

ND‘60.214.01

23

24

ND—60.214.01

CC—1OO and CC*SOO.

CC~1OO and CC~500.
CC~100/SOO System and I/O Library.

7 CC—1QO/500 System and 110 Library.

7.1 stem nd I ib ies.

The C language does not include Input and Output statements as a part
of the language, but relies on a set of functions to be called upon to
perform such operations.

The CC~100/500 I/O—libraries contain most UNIX standard functions, and
on the following pages there is a list of the available functions
documented in the form they usually are on a UNIX system.

The number in parenthesis after each function name is actually
referring to the name of the chapter in the UNIX programmer‘s guide
(System V). NB ! Not a part of this manual.

The heading NAME contains the names of the functions described, in
some cases several related functions are described on the same page.

The heading SYNOPSIS gives the declarations of the number of arguments
and their types in functions described, as it appears in the #include
file <stdio.h>. In some cases the name of a special #include file is
specified, containing the definitions that must be declared in the
user program before refering to the actual function.

The heading DESCRIPTION gives an explanation of the function(s)
described, legal values of arguments, and the results expected.

The heading BETURN_!ALUE explains the type of result to be expected by
the function that is called; and if not successful executed, the error
name and a short explanation of the cause of failure. The error name
refers to the list of names defined in the include file <errno.h>. See
explanation in section INTRO(2) on page 26.

In the headings DIAGNOSTICS and NOTES some special precautions and
particularities of the functions are explained.

ND~60.214.01

26 CC—1OO and CC—SOO.
System Calls and Error Numbers - INTRO(2).

7.2 §Ystem Calls and Error Numbers ~w1§IRO(2).

SYNOPSIS #include (errno h>

LIST OF FUNCTIONS
flaneAunsarsmEaaeDescriptirm

close close(2) 35 Close a File Descriptor
creat creat(2) 29 Create a New file, or Rewrite Existing
exit exit(2) 37 Terminate Program
lseek lseek(2) 34 Move Read/Write File Pointer
open open(2) 30 Open for Reading or Writing
read read(2) 32 Read from File
unlink unlink(2) 36 Remove Directory Entry
write write(2) 33 Write on a File
“exit exit(2) 37 Terminate Program without Cleanup

DESCRIPTION
The following sections describes all of the system calls available
in the relocatable library—files.

Most of these calls have one or more error returns. An error
condition is indicated by an otherwise impossible returned value.
This is almost always —1; the individual descriptions specify the
details.

An error number is also made available in the external variable
errno, and if the operating system has indicated an error code
this is made available in the external variable 95errno (otherwise
OSerrno is cleared whenever errng is set).

Errno is not cleared on successful calls, so the error numbers
should be tested only after an error has been indicated.

All of the possible error numbers are not listed in each system
call description because many errors are possible for most of the
calls.

The following is a list of the errno error numbers that are used
in this implementation, and their names as defined in <errno.h>.
For the OSerrno error codes, please consult the documentations of
the operating system.

1 EPERM Not owner

Typically this error indicates an attempt to modify a file
in some way forbidden by the file protection system of the
operating system.

2 ENOENT No such file or directory

This error occurs when a file name is specified and the

NDw60.214.01

CfindflQ_QQ:§QQi 27
System Calls and Error Numbers INTRO(2).

12

13

17

22

23

24

27

33

34

file should exist but doesn't.

EIO I/O error

Some physical I/O error occured during a read or write.
This error may in some cases occur on a call following
the one to which it actually applies.

EBADF Bad file number

Either a file descriptor refers to no open file, or a
read (resp. write) request is made to a file which is
open only for writing (resp. reading).

ENOMEM Not enough space

A program asks for more space than the system is able
to supply (used internally by malloc(3c)).

EACCES Permission denied

An attempt was made to access a file in a way forbidden by
the protection system.

EEXIST File exists

An existing file was mentioned in an inappropriate context.

EINVAL Invalid argument

Some invalid argument (e.g., reading or writing a file for
which lseek has generated a negative pointer). Also set by
the functions in the math package (3M).

ENFILE File table overflow

The system's table of open files is full, and temporarily no
more opens can be accepted.

EMFILE Too many open files

The open—file—count limit of the operating system has been
reached.

EFBIG File too large

The file tried to grow past a file space limit of the file
system.

EDOM Math argument

The argument of a function in the math package (3M) is out
of the domain of the function.

ERANGE Result too large

ND-60.214.01

28 gC—IOO and C§~500.
System Calls and Error Numbers ~ INTRO(2).

The value of a function in the math package (3M) is not
representable within machine precision.

DEFINITIONS Unless specifically stated otherwise, the null file name
is treated as if it named a non—existent file.

SEE ALSO intro(3).

NOTE The system calls open and unlink in this implementation
accept the usual SINTRAN III abbreviations of file names.
This is non—standard, and the use thereof might decrease
the portability of programs.

ND*60.214.01

CC—1OO and CC—
CREAT(2)

7.2.1 CREAT(2)

NAME creat

SYNOPSIS

DESCRIPTION

[EACCES]

[EACCES]

[EMFILE]

[ENOENT]

RETURN VALUE

SEE ALSO

500.
— Create a New File or Rewrite an Existing One.

— Create a New File or Rewrite an Existing One.

int creat (file, mode)
char *file;
int mode;

Creat creates a new ordinary file or prepares to rewrite
an existing file named by the file name pointed to by
file.

The file name must not be abbreviated. If no file type is
given, type SYMB is assumed.

Mode is not used in this implementation. 0644 is a common
standard value of mode in most UNIX implementations.

If the file exists, the length is truncated to 0.
Otherwise, the file is created.

Upon successful completion, a non—negative integer,
namely the file descriptor, is returned and the file is
open for writing. The file pointer is set to the
beginning of the file. No program may have more than 20
files open simultaneously.

Creat will fail if one or more of the following are true:

The file does not exist and the directory in which the
file is to be created does not permit writing.

The file exists and access permission is denied.

Twenty (20) file descriptors are currently open or some
open~file~count limit in the operating system is
exceeded.

Error in some component of the file name.

Upon successful completion, a non-negative integer,
namely the file descriptor, is returned. Otherwise, a
value of ~1 is returned and errng is set to indicate the
error.

close(2), lseek(2), open(2), read(2), write(2).

ND-60.214.01

29

30

7.2.2 OPEN(2)

NAME open

SYNOPSIS

DESCRIPTION

O_RDONLY

O_WRONLY

O_RDWR

O_APPEND

O_CREAT

O_TRUNC

O_EXCL

RETURN VALUE

ERROR CODES

CCv1OO and CC—SOO.
~ Open for Reading or Writing.OPEN(2)

- Open for Reading or Writing.

#include <fcntl.h>
int open (file, oflag [, mode])
char *file;
int oflag, mode;

File points to a file name naming a file. The name may
be abbreviated if the oflag OWCREAT is not given. If no
file type is given, type SYMB is assumed.

Open opens a file descriptor for the named file and sets
the file status flags according to the value of oflag.

Oflag values are constructed by or—ing flags from the
following list (of the first three flags below, exactly
one must be used):

Open for reading only.

Open for writing only.

Open for reading and writing.

If set, the file pointer will be set to the end of the
file prior to each write.

If the file exists, this flag has no effect. Otherwise,
the file is created and a value may be given to mode.
This value is ignored in this implementation. The file
name must not be abbreviated (in combination with this
flag only).

If the file exists, its length is truncated to O and the
mode and owner are unchanged.

If OaEXCL and O_CREAT are set, open will fail if the file
exists.

Upon successful completion, a
namely a file descriptor, is

non~negative
returned.

integer,

Otherwise, a value of ~1 is returned and errno is set to
indicate the error.

The file pointer used to mark the current position within
the file is set to the beginning of the file.

No program may have more than 20 file descriptors open
simultaneously.

The named file is opened unless one or more of the

ND—60.214.0l

CC~1OO and CC—QOQ. 31
OPEN(2)

[ENOENT]

[EACCES]

[ENFILE]

[EMFILE]

[EEXIST]

[ENOENT]

[ENOENT]

SEE ALSO

~ Open for Reading or Writing.

following are true:

OmCREAT is not set and the named file does not exist.

Qgigg permission is denied for the named file.

Twenty (20) file descriptors are currently open.

Some open—file—count limit in the operating system is
exceeded.

O_CREAT and O_EXCL are set, and the named file exists.

Error in some component of the file name.

O_CREAT is not set, and there are more than one file name
with the given file name as abbreviation.

close(2), creat(2), lseek(2), read(2), write(2).

ND-60.214.01

32 _ CC—lOO and CC—SOO.
READ(2) m Read from File.

7.2.3 READ(2) n, _ Read from File.

NAME read

SYNOPSIS int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION Fildes is a file descriptor obtained from a creat or open
system call.

Read attempts to read nbyte bytes from the file
associated with tildes into the buffer pointed to by but.

On devices capable of seeking, the read starts at a
position in the file given by the file pointer associated
with tildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from
the current position. The value of a file pointer
associated with such a file is undefined.

Upon successful completion, read returns the number of
bytes actually read and placed in the buffer; this number
may be less than nbyte if the number of bytes left in the
file is less than nbyte bytes. A value of O is returned
when an end~of—file has been reached.

When reading from the terminal, the following characters
have a special meaning:

ctrlw@ ~ End—of—file

ctrl~A - Remove previous character in line.

ctrl—Q — Clear the current line.

ctrl—R - Rewrite the line as it now looks.

RETURN VALUE Upon successful completion a nonwnegative integer is
returned indicating the number of bytes actually read.

Otherwise, a —1 is returned and errno is set to indicate
the error.

[EBADF] Fildes is not a valid file descriptor open for reading.

SEE ALSO creat(2), open(2).

ND~60.214.01

CC 100 and CC“
WRITE(2)

7.2.4 WRITE(2)

NAME write

SYNOPSIS

DESCRIPTION

[EBADF]

[EFBIG]

RETURN VALUE

SEE ALSO

500.
~ Write on a File.

~ Write on a File.

int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

Eildes is a file descriptor obtained from a creat or open
system call.

Write attempts to write nbyte bytes from the buffer
pointed to by buf to the file associated with the :ildes.

On devices capable of seeking, the actual writing of data
proceeds from the position in the file indicated by the
file pointer. Upon return from write, the file pointer
is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes
place starting at the current position. The value of a
file pointer associated with such a device is undefined.

If the file was opened with the O_APPEND flag, the file
pointer will be set to the end of the file prior to each
write.

'te will fail and the file pointer will remain
unchanged if one or more of the following are true:

Fildes is not a valid file descriptor open for writing.

An attempt was made to write a file that would exceed a
space limit of the file system.

Upon successful completion the number of bytes actually
written is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

creat(2), lseek(2), open(2).

ND—60.214.01

33

34

7.2.5 LSEEK(2)

NAME lseek

SYNOPSIS

DESCRIPTION

RETURN VALUE

[EBADF]

[EINVAL]

[EINVAL]

SEE ALSO

CC~1OO and CC~500.
LSEEK(2) — Move Read/Write File Pointerl

— Move Read/Write File Pointer.

long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

Eildes is a file descriptor returned from a creat or open
system call. Lseek sets the file pointer associated with
fildes as follows:

If whence is O, the pointer is set to offset bytesl

If whence is 1, the pointer is set to its current
location plus offset.

If whence is 2, the pointer is set to the size of the
file plus offset.

Upon successful completion, the resulting pointer
location as measured in bytes from the beginning of the
file is returned.

Lseek will fail and the file pointer will remain
unchanged if one or more of the following are true:

a non—negative integer indicating the file pointer value
is returned.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

Eildes is not an open file descriptor.

Whence is not 0, 1 or 2.

The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the
file pointer associated with such a device is undefined.

creat(2), open(2).

ND*GO.214.01

CC 100 and CC—
CLOSE(2)

7.2.6 CLOSE(2)

NAME close

SYNOPSIS

DESCRIPTION

RETURN VALUE

[EBADF]

SEE ALSO

500.
— Close a File Descriptor.

- Close a File Descriptor.

int close (fildes)
int fildes;

gildes is a file descriptor obtained from a creat or
open system call. Close closes the file descriptor
indicated by fildes.

Upon successful completion, a value of O is returned.
Otherwise, a value of *1 is returned and errno is set to
indicate the error.

Close will fail if Lilges is not a valid open file
descriptor.

creat(2), open(2).

ND~60.214.01

35

36 CC—1OO and CC~SOO.
UNLINK(2) — Remove Directory Entry.

7.2.7 UNLINK(2) - Remove Directory Entry.

NAME unlink

SYNOPSIS int unlink (file)
char *file;

DESCRIPTION flnlink removes the directory entry named by the file name
pointed to by :ile. The name may be abbreviated.

The named file is unlinked unless one or more of the
following are true:

[ENOENT] The named file does not exist.

[EACCES] The file is open, or removal permission is denied for the
named file.

[ENOENT] There are more than one file name with the given file
name as abbreviation.

[ENOENT] Error in some component of the file name.

RETURN VALUE Upon successful completion, a value of O is returned.

Otherwise, a value of ~1 is returned and errno is set to
indicate the error.

SEE ALSO close(2), open(2).

ND~60.214.01

CC-lOO and CC-SOO. 37
EXIT(2)

7.2.8 EXIT(2)

~ Terminate Program.

— Terminate Program.

NAME exit, “exit

SYNOPSIS

DESCRIPTION

void exit (status)
int status;
void _exit (status)
int status;

grit terminates the calling program with the following
consequences:

All of the file descriptors open in the calling program
are closed.

The C function exit may cause cleanup actions before the
program exits. The function _exit circumvents all
cleanup.

ND“60.214.01

38

7.3 Standard I/O Subroutines and Libraries

SYNOPSIS

cc~100 and cc~500.
Standard I/O Subroutines and Libraries ~ INTRO(3)

- INTRO(3)

#include <stdio.h>

LIST OF FUNCTIONS
Name Appears 9n Page Description

abs abs(3C) 41 Return Integer Absolute Value
atof atof(3C) 42 Convert ASCII string to Float.—Point Value
atoi strtol(3C) 50 Convert String to Integer, Base 10
atol strtol(3C) 50 Convert String to Long Integer, Base 10
calloc malloc(3C) 54 Main Memory Allocator, gives zeroed mem.space
ecvt ecvt(3C) 46 Convert Fl Pt Number to string
errno perror(3C) 59 Error Number
fcvt ecvt(3C) 46 Convert Fl.Pt Number to Fortran F—format
free malloc(3C) 54 Main Memory Allocator, Free Block
frexp frexp(3C) 52 Manipulates Parts of Fl.Pt Numbers
gcvt ecvt(3C) 46 Convert Fl.Pt Number to Fortran F or Evformat
isalnum ctype(3C) 45 Classify if Char is Alphanumeric
isalpha ctype(3C) 45 Classify if Char is Letter
isascii ctype(3C) 45 Classify if Char is Ascii
isatty isatty(3C) 53 Find if File is a Terminal
iscntrl ctype(3C) 45 Classify if Char is Control Char
isdigit ctype(3C) 45 Classify if Char is Digit
isgraph ctype(3C) 45 Classify if Char is Printable except Space
islower ctype(3C) 45 Classify if Char is Lowercase
isprint ctype(3C) 45 Classify if Char is Printable
ispunct ctype(3C) 45 Classify if Char is Punctuation char
isspace ctype(3C) 45 Classify if Char is Space (blank)
isupper ctype(3C) 45 Classify if Char is Uppercase
isxdigit ctype(3C) 45 Classify if Char is Hex Digit
ldexp frexp(3C) 52 Manipulates Parts of Fl.Pt Numbers
longjmp setjmp(3C) 6O Restore Stack Environment
malloc malloc(3C) 54 Main Memory Allocator, gives mem.space
memccpy memory(3C) 56 Memory Operations, Copy until Char
memcbr memory(3C) 56 Memory Operations, Find Char in String
memcmp memory(3C) 56 Memory Operations, Compare
memcpy memory(3C) 56 Memory Operations, Copy Char
memset memory(3C) 56 Memory Operations, Set Chars
mktemp mktemp(3C) 58 Make Unique File Name.
modf frexp(3C) 52 Manipulates Parts of F1.Pt Numbers
OSernno perror(3C) 59 Operating System Error Number
perror perror(3C) 59 Print Error Message on stderr
realloc malloc<3C) 54 Main Memory Allocator, Change Size
setjmp setjmp(3C) 60 Save Stack Environment
strcat string(3C) 47 Appends a Sting to another String
strchr string(3C) 47 Find First Occurence of Char
strcmp string(3C) 47 Compare two Strings
strcpy string(3C) 47 Copy Strings
strcspn string(3C) 47 Find Number of Non—Matching Chars
strlen string(3C) 47 Return Length of String
strncat string(3F) 47 Appends a Sting ofi N char to another
strncmp string(3C) 47 Compare two Strings of N char

ND—60.214.01

O
'O

t.

2:310 and (EC-509=
tandard I/O Subroutines and Libraries

- INTRO(3)

strncpy string(3C) 47 Copy Strings of N char
strpbrk string(3C) 47 Find Position of First Matching Char
strrchr string(3C) 47 Find Last Occurance of Char
strspn string(3C) 47 Find Number of Matching Chars
strtok string(3C) 47 Return Tokens from String
strtol strtol(3C) 50 Convert String to Long Integer
swab swab(3C) 51 Swap Bytes
syscerrlist

perror(3C) 59 Error Message Table
sys_nerr perror(3C) 59 Largest Error Number in Error Table
toascii conv(3C) 43 Translate Characters to Ascii
tolower conv(3C) 43 Translate Characters to Lowercase
toupper conv(3C) 43 Translate Characters to Uppercase
varargs varargs(3) 61 Variable Argument List
ctolower conv(3C) 43 Translate Characters to Lowercase (macro)
Mtoupper conv(3c) 43 translate characters to uppercase (macro)

DESCRIPTION This section describes functions found in various

(3C)

(3M)

DEFINITIONS

character

null;character

libraries, other than those functions that directly
invoke operating system primitives, which are described
in Section 2 of this library documentation. Certain
major collections are identified by a letter after the
section number:

These functions, together with those of Section 2 and
those marked (38), constitute the Standard C Library.
Declarations for some of these functions may be obtained
from #include files indicated on the appropriate pages.

These functions constitute the Math Library. Declarations
for these functions may be obtained from the #include
file <math.h>.

These functions constitute the "standard I/O package"
(see stdio(3S)). These functions are in the Standard C
Library already mentioned. Declarations for these
functions may be obtained from the #include file
<stdio.h>.

is any bit pattern able to fit into a
byte on the machine.

is a character with value 0,
represented in the C language as
'\O'.

character array is a sequence of characters.

null~terminated Character array is a sequence of characters, the last

string

of which is the null character.

is a designation for a null~
terminated character array.

NDA6O.214.O1

39

4O CC*1QO and CC~500.
Standard I/O Subroutines and Libraries — INTRO(3)

null—string is a character array containing only
the null character.

flgLLtinter is the value that is obtained by
casting 0 into a pointer.

The C language guarantees that this value will not match
that of any legitimate pointer, so many functions that
return pointers return it to indicate an error. NULL is
defined as O in <stdio.h>; the user can include his own
definition if he is not using (stdio.h>.

SEE ALSO intro(2), stdio(3S).

NOTE The functions fogen and freopen(3S) in this
implementation accept the usual SINTRAN III abbreviations
of filenames. This is nonfistandard, and the use thereof
might decrease the portability of programs.

ND~60.214.01

CC~100 and CCMSOO. 41
ABS(3C)

7.3.1 ABS(3C)

NAME abs

SYNOPSIS

DESCRIPTION

NOTES

~ Return Integer Absolute Value.

- Return Integer Absolute Value.

int abs (i)
int i;

Abs returns the absolute value of its integer operand.

In two‘s—complement representation, the absolute value of
the negative integer with largest magnitude is undefined.
Some implementations trap this error, but others simply
ignore it.

ND-60.214.01

42 cc—100 and cc—soo.
ATOF(3C) « Convert ASCII String to Floating—Point Number.

7.3.2 ATOF(3C) — Convert ASCII String to Floating—Point Number.

NAME atof

SYNOPSIS double atof (nptr)
char *nptr;

DESCRIPTION Atgf converts a character string pointed to by ngtr to a
double~precision floating—point number.

The first unrecognized character ends the conversion.

At recognizes an optional string of white—space
characters, then an optional sign, then a string of
digits optionally containing a decimal point, then an
optional e or E followed by an optionally signed integer.

If the string begins with an unrecognized character, atofi
returns the value zero.

SEE ALSO scanf(35).

ND—60.214.01

CC 100 and CC~500.
CONV(3C)

7.3.3 CONV(3C)

— Translate Characters.

— Translate Characters.

NAME toupper, tolower, ~toupper, _tolower, toascii

SYNOPSIS

DESCRIPTION

#include (ctype h>

int toupper (c)
int C;

int tolower (c)
int c;

int "oupper (c)
int c;

int _tolower (c)
int C;

int toascii (c)
int C;

Ioupper and tglower

_toupper and

:pascii

have as domain the range of getc(3S): the integers from
~1 through 255.

If the argument of tgupper represents a lower—case
letter, the result is the corresponding upper—case
letter.

If the argument of tolower represents an upper—case
letter, the result is the corresponding lowerecase
letter.

All other arguments in the domain are returned unchanged,

_tolower
are macros that accomplish the same thing as toupper and
tolower but have restricted domains and are
faster.

_toupper requires a lower~case letter as its argument; its
result is the corresponding upper«case letter.

Mtolower requires an upperncase letter as its argument;
its result is the corresponding lower—case letter.

Arguments outside the domain cause undefined results.

yields its argument with all bits turned off that are not
part of a standard ASCII character; it is intended for

NDt60.214.0l

43

44 CC~1QO gnd CQ—SOO,
CONV(3C) K Translate Characters.

compatibility with other systems.

SEE ALSO ctype(3C), 98tc(3S).

ND~60.214.01 _____

CC~1OO and CC~500.
CTYPE(3C) — Classify Characters.

7.3.4 CTYPE(3C) — Classify Characters.

NAME isalpha, isupper, islower, isdigit, isxdigit, isalnum,
isspace, ispunct, isprint, isgraph, iscntrl, isascii

SYNOPSIS #include <ctype.h>

int isalpha (c)
int c;

DESCRIPTION These macros classify character—coded integer values by
table lookup. Each is a predicate returning nonzero
true, zero for false.

Isasgii is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII
value EOF (—1 — see stdio(3S)).

isalpha g is a letter.

isupper g is an upper-case letter.

islower g is a lowerecase letter.

isdigit g is a digit [O~9].

isxdigit c is a hexadecimal digit [O~9], [A~F] or [a—f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new—line, vertical
tab, or form—feed.

ispungt g is a punctuation character (neither
alphanumeric).

isprint c is a printing character, code 040 (space) through 0176
(tilde).

isgraph c is a printing character, like jsprint except false for
space.

iscntrl g is a delete character (0177) or an ordinary control
character (less than 040).

isascii g is an ASCII character, code less than 0200.

DIAGNOSTICS If the argument to any of these macros is not in the
domain of the function, the result is undefined.

ND~60.214.01

45

46

7.3.5 ECVT(3C)

CC—100 and CC—SOO.
ECVT(3C) — Convert Floating—Point Number to String.

~ Convert Ploating~Point Number to String.

NAME ecvt, fcvt, govt

SYNOPSIS

DESCRIPTION

Ecyt

Ecvt

ct

SEE ALSO

NOTES

char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
char *buf;

converts value to a null~terminated string of ndigit
digits and returns a pointer thereto.

The low~order digit is rounded. The position of the
decimal point relative to the beginning of the string is
stored indirectly through decpt (negative means to the
left of the returned digits). The decimal point is not
included in the returned string.

If the sign of the result is negative, the word pointed
to by sign is non~zero, otherwise it is zero.

is identical to ecvt, except that the correct digit has
been rounded for Fortran F~format output of the number of
digits specified by ndigit.

converts the value to a null-terminated string in the
array pointed to by bu; and returns bur. It attempts to
produce ndigit significant digits in Fortran F-format if
possible, otherwise E—format, ready for printing. A minus
sign, if there is one, or a decimal point will be
included as part of the returned string. Trailing zeros
are suppressed.

printf(3s).

The return values point to static data whose content is
overwritten by each call.

ND~60.214.01

CC 100 and CC~SOO.
STRING(3C) ~ String Operations.

7.3.6 STRING(3C) — String Operations.

NAME strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,

SYNOPSIS

DESCRIPTION

strchr, strrchr, strpbrk, strspn, strcspn, strtok

#include <string.h>
char *strcat (s1, 52)
char *51, *52;

char *strncat (s1, 52, n)
char *sl, *52;
int n;

int strcmp (s1, 52)
char *s1, *52;

int strncmp (s1, 52, n)
char *s1, *52;
int n;

char *strcpy (s1, 52)
char *51, *52;

char *strncpY (51, 52, n)
char *s1, *52; int n;

int strlen (5)
char *3;

char *strchr (s, c)
char *5, c;

char *strrchr (s, c)
char *5, c;

char *strpbrk (51, 52)
char *s1, *52;

int strspn (s1, 52)
char *51, *52;

int strcspn (s1, 52)
char *51, *52;

Char *strtok (s1, 52)
char *51, ‘52;

The arguments s1, s3 and s point to strings (arrays of
Characters terminated by a null character).

The functions strcat, strncat, strcpy and strncgy all
alter s1. These functions do not Check for overflow of
the array pointed to by s1.

NDt60‘214.01

47

Strncat

Strcmp

Strncpy

Strlen

filtr_ch_r

gtrpbrk

Strspn

Strtok

CC~1OO and CC—SOO.
STRING(3C) — String Operations.

appends a copy of string s2 to the end of string s1.

appends at most n characters. Each returns a pointer to
the null~terminated result.

compares its arguments and returns an integer less than,
equal to, or greater than 0, according as s1 is
lexiographically less than, equal to, or greater than
52..

makes the same comparison but looks at at most n
characters.

copies string a; to s1, stopping after the null character
has been copied.

copies exactly n characters, truncating sg or adding null
characters to s1 if necessary. The result will not be
null—terminated if the length of s2 is n or more. Each
function returns s1.

returns the number of characters in s, not including the
terminating null character.

(strrchr) returns a pointer to the first (last)
occurrence of character c in string s, or a NULL pointer
if c does not occur in the string. The null character
terminating a string is considered to be part of the
string.

returns a pointer to the first occurrence in string s1 of
any character from string s2, or a NULL pointer if no
character from s; exists in s1.

(strcspn) returns the length of the initial segment of
string s1 which consists entirely of characters from (not
from) string s2.

considers the string s1 to consist of a sequence of zero
or more text tokens separated by spans of one or more
characters from the separator string s2.

The first call (with pointer s1 specified) returns a
pointer to the first character of the first token, and
will have written a null Character into s1 immediately
following the returned token.

The function keeps track of its position in the string
between separate calls, so that on subsequent calls
(which must be made with the first argument a NULL
pointer) will work through the string s1 immediately
following that token.

In this way subsequent calls will work through the string
s1 until no tokens remain.

NDt60.214.01

QJDLand. C0500.
STRING(3C)

NOTES

~ String Operations.

The separator string s2 may be different from call to
call. When no token remains in s1, a NULL pointer is
returned.

For user convenience, all these functions are declared in
the #include <string.h> header file.

Character movement is performed differently in different
implementations. Thus overlapping moves may yield
surprises.

ND—60.214.01

49

50

7.3.7 STRTOL(3C)

STRTOL(3C)

NAME strtol, atol, atoi

SYNOPSIS

DESCRIPTION

Strtgi

A£9l(§:r)

A:9i(§:r)

SEE ALSO

NOTES

long strtol (str, ptr, base)
char *str;
dmr*fiwn
int base;

long atol (str) char *str;

int atoi (str) char *str;

returns as a
character string str.
first character

If the value

— Convert String to Integer.

CC*100 and CC~500.
— Convert String to Integer.

long integer the value represented by the
The string is scanned up to the

inconsistent with the
"white~space“ characters are ignored.

base. Leading

of 9:; is not (char **)NULL, a pointer to
the Character terminating the scan is returned in *etr.
If no integer can be formed, *ptr is set to str, and zero
is returned.

If base is positive (and not greater than 36), it is used
as the base for conversion.
sign, leading zeros are
ignored if base is 16.

If base is
thus: After an optional leading
indicates octal conversion,
hexadecimal conversion.
used.

Truncation

After
ignored,

an optional
and "Ox" or "OX" is

leading

zero, the string itself determines the base
sign, a

and a leading "Ox” or "0X"
Otherwise, decimal conversion is

leading zero

from long to int can, of course, take place
upon assignment, or by an explicit cast.

is equivalent to strtgl(§tr, (Qhar **)NULL,

is equivalent to (int) strtgl(str,

atof(3C), scanf(38).

Overflow conditions are ignored.

ND—60.214.01

.4__).

(char **)NULL, 19).

cc—100 and cc—soo. 5'1
SWAB(3C)

7.3.8 SWAB(3C)

NAME swab

SYNOPSIS

DESCRIPTION

— Swap Bytes.

* Swap Bytes.

void swab (from, to, nbytes)
char *from, *to;
int nbytes;

Saab copies nbytes bytes pointed to by iggm to the array
pointed to by Lg, exchanging adjacent even and odd bytes.
It is useful for carrying binary data between PUP—11s and
other machines. btes should be even and non—negative.
If flbyges is odd and positive swab uses nbytes—1 instead.
If nbytes is negative swab does nothing.

ND—60.214.01

52 CC~1OO and CC-SOO.
FREXP(3C) _ Manipulate Parts of Floating-Point Numbers.

7.3.9 FREXP(3C) — Manipulate Parts of Floating-Point Numbers.

NAME frexp, ldexp, modf

SYNOPSIS double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCR IPTION

Frexg returns the mantissa of a double value as a double
quantity, 5, of magnitude less than 1 and stores
indirectly, in the location pointed to by eptr, an
integer n such that value = §*;**n.

Ldexg returns the quantity value*g**exg.

Modf returns the signed fractional part of value and stores
the integral part indirectly in the location pointed to
by intr-

ND~60.214.01

CC 100 and CC—SOO.
ISATTY(3C) - Find

7.3.10 ISATTY(3C)

NAME isatty

If File Is a Terminal.

— Find If File Is a Terminal.

SYNOPSIS int isatty (tildes)
int fildes;

DESCRIPTION Isatty returns 1 if :ildes is associated with a terminal
device, 0 otherwise.

ND—60.214.01

53

54 CC-1OO and CC-SOO.
MALLOC(3C) — Main Memory Allocator.

7.3.11 MALLOC(3C) — Main hemory Allocatgr.

NAME malloc, free, realloc, calloc

SYNOPSIS char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION Malloc and :ree provide a simple general—purpose memory
allocation package. Mallgc returns a pointer to a block
of at least size bytes suitably aligned for any use.

The argument to iree is a pointer to a block previously
allocated by malloc; after iree is performed this space
is made available for further allocation, but its
contents are left undisturbed.

Undefined results will occur if the space assigned by
malloc is overrun or if some random number is handed to
free.

Mallgg allocates the first big enough contiguous reach of free
space found in a circular search from the last block
allocated or freed, coalescing adjacent free blocks as it
searches.

It tries to fetch more memory from the memory allocation
system when there is no suitable space already free.

Bealloc changes the size of the block pointed to by 2:; to size
bytes and returns a pointer to the (possibly moved)
block.

The contents will be unchanged up to the lesser of the
new and old sizes.

If no free block of size bytes is available in the
storage area, then realloc will ask mallgc to enlarge
the area by size bytes and will then move the data to
the new space.

Realloc also works if pt; points to a block freed since
the last call of malioc, realloc, or callgc; thus
sequences of tree, malice and realloc can exploit the

ND~60.214.01

QQm1OO and CC~500.
MALLOC(3C)

Calloc

DIAGNOSTICS

NOTE

SEE ALSO

— Main Memory Allocator.

search strategy of malloc to do storage compaction.

allocates space for an array of nelem elements of size
elsize. The space is initialized to zeros.

Each of the allocation routines returns a pointer to
space suitably aligned (after possible pointer coercion)
for storage of any type of object.

Malloc, realloc and calloc return a NULL pointer if
there is no available memory or if the area has been
detectably corrupted by storing outside the bounds of a
block. When this happens the block pointed to by pt;
may be destroyed.

Search time increases when many objects have been
allocated; that is, if a program allocates but never
frees, then each successive allocation takes longer.

The size of the available memory can be adjusted at
link~time which is described in the section: Loading C
programs.

ND-60.214.0l

56 CC»1OO and CC~SOO.
MEMORY(3C) ~ Memory Operations.

7.3.12 MEMORY(3C)
- fiemory Operations.

NAME memccpy, memchr, memcmp, memcpy, memset

SYNOPSIS #include <memory.h>
char *memccpy (s1, 52, c, n)
char *si, *52;
int c, n;

char *memchr (s, c, n)
char *5;
int c, n;

int memcmp (s1, 52, n)
char *51, *52;
int n;

char *memcpy (s1, 52, n)
char *51, *52;
int n;

char *memset (s, c, n)
char *5;
int c, n;

DESCRIPTION These functions operate efficiently on memory areas
(arrays of characters bounded by a count, not terminated
by a null character). They do not check for the overflow
of any receiving memory area.

Memccpy copies characters from memory area s; into s1, stopping
after the first occurrence of character g has been
copied, or after g characters have been copied, whichever
comes first. It returns a pointer to the character after
the copy of g in s1, or a NULL pointer if g was not found
in the first n characters of §;.

Memchr returns a pointer to the first occurrence of character 9
in the first 3 characters of memory area s, or a NULL
pointer if 9 does not occur.

e cm compares its arguments, looking at the first n characters
only, and returns an integer less than, equal to, or
greater than 0, according as s1 is lexicographically less
than, equal to, or greater than sg.

Memcpy copies 3 characters from memory area s2 to s1. It returns
51.

Memset sets the first 3 characters in memory area s to the value
of character c. It returns 5 _

NOTES For user convenience, all these functions are declared in

ND~60.214.01

§£~1QO and CC-fiOO.
MEMORY(3C) — Memory Operations.

the #include <memory.h> header file.

Character movement is performed differently in different
implementations. Thus overlapping moves may yield
surprises.

ND~60.214.01

57

58 CC—lOO and CCvSOO.
MKTEMP(3C) — Make a Unique Filename.

7.3.13 MKTEHP(3C)
- Make a Unique Filename.

NAME mktemp

SYNOPSIS char *mktemp(template)
char *template;

DESCRIPTION Mktemp replaces template by a unique file name, and
returns the address of the template.

The template should look like a file name with between
six and nine trailing X‘s, which will be replaced with a
letter, the terminal number (3 digits) of the user
process, and as much of the string " temp" as possible.
This mean that you will get file type ":t", if you have
six trailing X'es, and that you will get file type
":temp", if you have nine trailing X'es.

DIAGNOSTICS If every letter (a through 2) thus inserted leads to an
existing file name, mktemp will have shortened your
string to zero length upon return (i.e , the first
character is set to '\O'). All other detected errors are
indicated in the same way.

NOTE The replacement of templates depends on the operating
system. The description above is specific for
SINTRAN III, and differs somewhat from the mktemp
descriptions of other library implementations.

ND-60.214.01

CC~100 and CC~500.
PERROR(3C) ~ System Error Messages.

7.3.14 PERROR(3C) — System Error Messages.

NAME perror, errno, OSerrno, sys_errlist, sysvnerr

SYNOPSIS

DESCRIPTION

EEIIHO

[s W EO

sys_errlist

sys_nerr

SEE ALSO

void perror (s)
char *5;

extern int errno;

extern int OSerrno;

extern char *sys_errlist[];

extern int sysfinerr;

Perror produces a message on the standard error output,
describing the last error encountered during a call to a
system or library function.

The argument string s is printed first, then a colon and
a blank, then the message and a new—line.

If OSerrno is not zero, a second message and a new—line
follows.

To be of most use, the argument string should include the
name of the program that incurred the error.

The error numbers are taken from the external variables
errno and ogerrno, who are set when errors occur but are
not cleared when non~erroneous calls are made. The
QSerrno variable is set by library routines to the error
number of the operating system due to which errno is set.
If they set errno of other reasons, OSerrno is cleared.

To simplify variant formatting of messages, the array of
message strings sys errlist is provided; errno can be
used as an index in this table to get the first message
string without the new—line. Sys nerr is the largest
message number provided for in the table; it should be
checked because new error codes may be added to the
system before they are added to the table.

intro(2).

ND-60.214.01

59

6O CC—100 and CC~500.
SETJMP(3C) — Non—Local Goto.

7.3.15 SETJMP(3C) - Non~Local Goto.

NAME setjmp, longjmp

SYNOPSIS

DESCRIPTION

Setjmp

WARNING

#include <setjmp.h>
int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

These functions are useful for dealing with errors and
interrupts encountered in a low~level subroutine of a
program,

saves its stack environment in env (whose type, jmp but,
is defined in the <setjmp.h> header file), for later use
by longjmp. It returns the value 0.

restores the environment saved by the last call of setjmp
with the corresponding eny argument, After lgngjmp is
completed program execution continues as if the
corresponding call of setjmp (which must not itself have
returned in the interim) had just returned the value val.

Longjmp cannot cause setjmp to return the value 0.

If longjmp is invoked with a second argument of O, setjmp
will return 1. All accessible data have values as of the
time longjmp was called.

If longjmp is called when egg was never primed by a call
to setjmp, or when the last such call is in a function
which has since returned, absolute chaos is guaranteed.

ND-60.214.01

CCw1OO and CC—SOO.
VARARGS(3) ~ Variable Argument List

7.3.16 VARARGSLQ) — Variable Argument List

NAME varargs

SYNOPSIS #include <varargs.h>
function(va_alist)
vamdcl
va_list pyar;
va_start(pya£);
f = va_arg(pvar, type);
va_end(pvar);

DESCRIPTION This set of macroes provides a means of writing portable
procedures that accept variable argument lists. Routines
having variable arguments lists (such as printf(3)) that
do not use varargs are inherently nonportable, since
different machines use different argument passing
conventions.

vawalist is used in a function header to declare a variable
argument list.

vawdcl is a declaration for va_alist. Note that there is no
semicolon after va_dcl.

vawlist is a type which can be used for the variable pvar, which
is used to travererse the list. One such variable must
always be declared.

va_start(pvar)
is always called to initiate pvar to the beginning of
the list.

vaiarg(2yar.rrpe)
will return the next argument in the list pointed to by
pyar. :ype is the type the argument is expected to be.
Different types can be mixed, but it is up to the routine
to know what type of argument is expected, since it
cannot be determined at runtime.

vawend(pvar) is used to finish up.

Multiple traversals, each bracketed by va_start
va_end, are possible.

EXAMPLE #include <varargs.h>
execl(va_alist)
va_dcl
{

vawlist ap;
char *file;
char *args[100];

ND—60.214.01

61

62 CC~1OO and CC”SQQ;
VARARGS(3) — Variable Argument List

int argno;

va_start)ap);
file = va~arg(ap, char *);
while (args[argno++] = va_arg)ap, char *))

vawend(ap);
return execv(file, args);

NOTES It is up to the calling routine to determine how many
arguments there are, since it is not possible to
determine this from the stack frame. For example, execl
passes a O to signal the end of the list. Print: can
tell how many arguments are supposed to be there by the
format.

ND~60.214.01

CC~1OO and CC—SOO. 63
Standard Buffered Input/Output Package — STDIO(33)

7.4 Standard Buffered Input/Output Package — STDIO(3S)

SYNOPSIS #include <5tdio.h>
FILE *stdin, *stdout, *stderr;

LIST OF FUNCTIONS
Name Appears on Page Description

clearer ferr(35) 76 Reset error and EOF indicators
tclose fclose(3S) 75 Close a Stream
feof ferror(3S) 76 Test if EOF
ferror ferror(3S) 76 Test if error
fdopen fopen(3S) 71 Associate Stream with File Descriptor
fflush fclose(38) 75 Write out Buffered Data for Stream
fgetc getc(3S) 65 Get Next Character (function)
fgets gets(3S) 67 Get String from stream
filno ferror(3S) 76 Get File Descriptor of Stream
fopen fopen(3S) 71 Open a Stream
fprintf printf(3S) 77 Print Formatted Output on Stream
fputcar putc(3S) 68 Put Char on Stream (function)
fputs putc(3S) 68 Put String on Stream
fread fread(3S) 73 Array Input
freopen fopen(35) 71 Attach Preopen Stream to stdin/err/out
fscanf scanf(35) 81 Convert Formatted Input from stream
fseek fseek(35) 74 Set Position of next in/output on stream
ftell fseek(38) 74 Returns the Offset of Current Byte
{write fread(3S) 73 Array Output
getc getc(38) 65 Get Next Character (macro)
getchar getc(3S) 65 Get Next Character (macro)
gets gets(3S) 67 Get String from stdin
getw getc(3S) 65 Get Word, eg.integer (macro)
printf printf(38) 77 Print Formatted Output on stdout
putc putc(3S) 68 Put Character (macro)
putchar putc(3S) 68 Put Character (macro)
puts putc(3S) 68 Put String on stdgut
putw putc(BS) 68 Put Word eg. integer
rewind fseek(3S) 74 Set Position to the beginning of stream
scant scanf(38) 81 Convert Formatted Input from stdin
setbuf setbuf(3S) 85 Assign Buffer to a Stream
sprintf printf(3S) 77 "Print" Formatted Output on string
sscanf scanf(3S) 81 Convert Formatted Input from string
ungetc ungetc(3S) 86 Push Char Back Into Stream

DESCRIPTION The functions described in the entries of sub-class 38 of
this manual constitute an efficient, user~level I/O
buffering scheme. The in—line macros getc(3S) and
putc(3S) handle characters quickly.

The macros getchar, putchar, and the higher—level
routines fgetc, fqets, fprintf, fputc, fputs, fread,
fscanf, fwrite, gets, qetw, printf, puts, putw, and scan:
all use getg and putg; they can be freely intermixed.

ND~60.214.01

64 CC—lOO and CC—5OQL
Standard Buffered Input/Output Package — STDIO(3S)

The SINTRAN III file system differs from C and UNIX in the handling of
text files. It uses two characters (\r plus \n) as line delimiters
where C uses only one (\n), and it uses parity bits in characters
where C uses none. This means that text files have to be converted by
the library at file reading and file writing. Of course, these
conversions must not be done for binary files, so we need a convention
that tells the stdio library if the file is a binary file or a text
file.

The stdio library assumes that files are text files as a default, but
the binary mode may be forced to a file by adding the character 'b’ to
the type parameter of the ropen, fre en, and fdopen(3S) calls. Most C
implementations need not worry about the difference between text files
and binary files, so this is a non~standard convention.

A file with associated buffering is called a stream and is declared to
be a pointer to a defined type FILE. Fopen(3S) creates certain
descriptive data for a stream and returns a pointer to designate the
stream in all further transactions. Normally, there are three open
streams with constant pointers declared in the (stdio h) header file
and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file.

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (—1) is returned upon end~ofefile or error by
most integer functions that deal with streams (see the individual
descriptions for details).

Any program that uses this package must include the header file of
pertinent macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub~class 35
of this manual are declared in that header file and need no further
declaration. The constants and the following ”functions" are
implemented as macros (redeclaration of these names is perilous):
QQLQ, getchar, page, putchar, feof, terror, clearerr, and iilgng.

SEE ALSO open(2), close(2), lseek(2), read(2), write(2),
fclose(35), ferror(3§), fopen(3S), fread(3S), fseek(3S),
getc(3S), gets(35), printf(38), putc(3S), puts(3S),
scanf(3S), setbuf(3S), ungetc(3S).

DIAGNOSTICS Invalid stream pointers will usually cause grave
disorder, possibly including program termination.
Individual function descriptions describe the possible
error conditions.

ND~60.214.01

CC 100 and CC~500.
GETC(3S)

7.4.1 GETC(3S)

~ Get Character or Word From Stream.

~ Get Character or Word From Stream.

NAME getc, getchar, fgetc, getw

SYNOPSIS

DESCRIPTION

(late

getchar

fgetc

mar-r

SEE ALSO

DIAGNOSTICS

NOTES

#include <stdio.h>
int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

returns the next text character from the named input
stream. It also moves the file pointer, if defined,
ahead one character in stream. get; is a macro and so
should not be used if a function is necessary; for
example one should not have a function pointer point to
it.

returns the next character from the standard input
stream, stdin. As in the case of getc, getchar is a
macro.

performs the same function as getc, but is a genuine
function. Fgetc may run more slowly than getc, but may
take less space per invocation.

returns the next word (i.e. integer) from the named input
stream. The size of a word varies from machine to
machine. It returns the constant EOF upon end—of—file or
error, but as that is a valid integer value, fag; and
ferror(35) should be used to check the success of getw.
get! increments the associated file pointer, if defined,
to point to the next word. getg assumes no special
alignment in the file.

fclose(3S), ferror(35), fopen(3S), fread(3$), gets(38),
putc(3S), scanf(3S).

These functions return the integer constant EOF at
end-of file or upon an error.

Because gate is implemented as a macro, it may
incorrectly treat a stream argument, causing side
effects. In particular, getc(*f++) may not worksensibly. Fgetc should be used instead. Because of
possible differences in word length and byte ordering,

ND-60.214.01

65

66 QQ—1OO and QC~500.
GETC(3S)

- Get Character or Word From Stream.

files written using putw are machine~dependent, and may
not be read using ggtw on a different processor.

NDw60.214.01

CC 100 and CC‘SOO.
GETS(3S) — Get a String From a Stream.

7.4.2 GETS(3S) - Get a String From a Stream.

NAME gets, fgets

SYNOPSIS #include (stdio h)
char *gets (5)
char *3;

char *fgets (s, n, stream)
char *5;
int n;
FILE *stream;

DESCRIPTION

Gets reads characters from the standard input stream, stdin,
into the array pointed to by s, until a new—line
character is read or an end—of-file condition is
encountered. The new—line character is discarded and
the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed
to by s, until n~1 characters are read, or a new—line
character is read and transferred to s, or an
end~of—file condition is encountered. The string is
then terminated with a null Character.

SEE ALSO ferror(35), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS If end—of~file is encountered and no characters have
been read, no characters are transferred to s and a NULL
pointer is returned. If a read error occurs, such as
trying to use these functions on a file that has not
been opened for reading, a NULL pointer is returned.
Otherwise s is returned.

ND-60.214.01

67

68 CC~1OO and CCeSOO.
PUTC(33) — Put Character or Word On a Stream.

7.4.3 PUTC(3S) - Put Character or Word On a Stream.

NAME putc, putchar, fputc, putw

SYNOPSIS #include <stdio.h>
int putc (c, stream)
char c;
FILE *stream;

int putchar (c)
char C;

int fputc (c, stream)
char c;
FILE *stream;

int putw (w, stream)
int w;
FILE *stream;

DESCRIPTION

Putc writes the character g onto the output stream (at the
position where the file pointer, if defined, is
pointing). Putchar(g) is defined as putg(g, stdout).
Putc and putchar are macros.

Fputc behaves like putc, but is a function rather than a
macro. Fputc may run more slowly than putc, but may
take less space per invocation.

Putw writes the word (i.e. integer) w to the output stream (at
the position at which the file pointer, if defined, is
pointing). The size of a word is the size of an integer
and varies from machine to machine. Putw neither assumes
nor causes special alignment in the file.

Output streams, with the exception of the standard error stream
stderr, are by default buffered if the output refers to a file
and line—buffered if the output refers to a terminal. The
standard error output stream stderr is by default unbuffered, but
use of freopen(see fopen(3S)) will cause it to become buffered or
line-buffered,

When an output stream is unbuffered information is queued for
writing on the destination file or terminal as soon as written;
when it is buffered many characters are saved up and written as a
block; when it is line~buffered each line of output is queued for
writing on the destination terminal as soon as the line is
completed (that is, as soon as a new-line character is written or
terminal input is requested).

getbuf(33) may be used to change the stream's buffering strategy.

ND-60.214.01

CC-100 and CQ—fiOO.
PUTC(3S)

SEE ALSO

DIAGNOSTICS

NOTES

- Put Character or Word On a Stream.

fclose(3S), ferror(35), fopen(3S), fread(3S), printf(3S),
puts(3S), setbuf(3S).

On success, these functions each return the value they
have written. On failure, they return the constant EOF.
This will occur if the file stream is not open for
writing, or if the output file cannot be grown. Because
EOF is a valid integer, ferrgr(3S) should be used to
detect putw errors.

Because putc is implemented as a macro, it may
incorrectly treat a stream argument causing side
effects. In particular, putc(c, *f++); may not work
sensibly. Fputc should be used instead.

Because of possible differences in word length and byte
ordering, files written using putw are
machine—dependent, and may not be read using getw on a
different processor. For this reason the use of putw
should be avoided.

NDe60.214.01

69

7O CC-lOO and CC~500.
PUTS(35) - Put a String On a Stream.

7.4.4 PUTS(3S) — Put a String On a Stream.

NAME puts, fputs

SYNOPSIS #include <stdio.h)
int puts (5)
char *5;

int fputs (s, stream)
char *5;
FILE *stream;

DESCRIPTION

Puts writes the null—terminated string pointed to by s,
followed by a new—line character, to the standard output
stream stdout.

Fputs writes the null~terminated string pointed to by s to the
named output stream.

Neither function writes the terminating null character.

DIAGNOSTICS Both routines return EOF on error. This will happen if
the routines try to write on a file that has not been
opened for writing.

SEE ALSO ferror(35), fopen(35), fread(3S), printf(3S), putc(38).

NOTES Puts appends a new~line character while fguts does not.

ND—60.214.01

CC~1OO and CC—SOO.
FOPEN(3S) — Open a Stream.

7.4.5 FOPEN(3S) ~ Open a Stream.

NAME fopen, freopen, fdopen

SYNOPSIS

DESCRIPTION

£9 en

n r+ u

Hw+||

ll a+ II

#include (stdio h)
FILE *fopen (file, type)
char *file, *type;

FILE *freopen (file, type, stream)
char *file, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

opens the file named by file and associates a stream
with it. Fopen returns a pointer to the FILE structure
associated with the stream.

File points to a character string that contains the name
of the file to be opened. This name must not be
abbreviated if the type string contains any of the
characters 'w' or ‘a'. If no file type is given, type
SYMB is assumed.

Iype is a character string having one of the following
values (possibly modified by appending or substituting
characters as detailed further below):

open for reading

truncate or create for writing

append; open for writing at end of file, or
create for writing

open for update (reading and writing)

truncate or create for update

append; open or create for update at
endeof— file

All of these values of type assume that the file
contains text, so the parity bit may be removed and
conversions between internal (\n) and external (\r
followed by \n) line separation characters may be done.

To achieve a correct handling of binary data, you have
to append the character ‘b’ (for binary) to the type

ND~60.214.01

71

72 Q§~1OO and QC—SOO;
FOPEN(3S) — Open a Stream.

string, thus giving type one of the values "rb", “wb”,
"ab“, Ilr+bfl' Ilw+bll’ or “a+b“.

When the type string contains one of the characters 'w'
or ‘a', no abbreviations of the file name are accepted.
If those characters are given in upper case, i.e. as ‘W‘
or 'A‘, abbreviations of the file name will be accepted.

These upper—case alternatives are non~standard, but
faciliate the making of applications that are local to
the SINTRAN III operating system, where file name
abbreviations are frequently used.

Egegpep substitutes the named file in place of the open stream.
The original stream is closed, regardless of whether the
open ultimately succeeds. Fregpen returns a pointer to
the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams
associated with stdin, stdout and stderr to other files.

Edopen associates a stream with a file descriptor obtained from
Qpen or great, which will open files but not return
pointers to a FILE structure stream which are necessary
input for many of the section 35 library routines. The
type of stream must agree with the mode of the open
file.

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be
directly followed by input without an intervening fseek or
gewind, and input may not be directly followed by output without
an intervening :seek, rewind, or an input operation which
encounters end—ofsfile.

A file that is opened for append (i.e., the type string contains
an “a“ or "A") can be used in the same way as a file that is
opened for write (1 e, the type string contains a “w“ or "W").
Only in the case that the file already existed, some differences
may be noted: The file pointer of the file opened for append will
be initially set to the end of the file, while the file opened
for write will be truncated to zero length.

SEE ALSO open(2), fclose(3S).

DIAGNOSTICS Fopen and freopen return a NULL pointer on failure.

NOTE The use of the characters ’b‘, 'W', and 'A‘ in type
strings are non—standard, and thus non—portable
constructions.

NDH6O.214.01

CC-100 and CC-500.
FREAD(3S) — Array Input/Output.

7.4.6 FREAD(3S) « Array Input/Output.

NAME fread, fwrite

SYNOPSIS #include (stdi0.h>
int fread (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

DESCRIPTION

Eread copies, into an array beginning at ptr, pitems items of
data from the named input stream, where an item of data
is a sequence of bytes (not necessarily terminated by a
null byte) of length size.

Fread stops appending bytes if an end—ofefile or error
condition is encountered while reading stream, or if
nitems items have been read. Fread leaves the file
pointer in stream, if defined, pointing to the byte
following the last byte read if there is one. Fread
does not change the contents of stream.

Eyrite appends at most nitems items of data from the array
pointed to by ptr to the named output stream. {write
stops appending when it has appended nitems items of
data or if an error condition is encountered on stream.
eite does not change the contents of the array pointed
to by ptr.

The variable size is typically sizeof(*ptr) where the
pseudo—function sizeof specifies the length of an item
pointed to by ptr. If ptr points to a data type other
than char it should be cast into a pointer to char.

SEE ALSO read(2), write(2), fopen(3S), getc(3S), gets(3S),
printf(3S), putc(3S), puts(3S), scanf(3S), stdio(3S).

NOTE Because the internal data representation of chars is a
word while the external is byte on ND-lOO fread and
fwrite have been omitted in the ND—1OO library.

DIAGNOSTICS Fread and :write return the number of items read or
written. If nitems is non—positive, no characters are
read or written and O is returned by both iread andfwrite.

ND-60.214.01

73

74 CCW100 and CC~SOO.
PSEEK(3S) w Reposition a File Pointer In a Stream.

7.4.7 FSEEK(33) ~ Reposition a File Pointer In a Stream.

NAME fseek, rewind, ftell

SYNOPSIS fiinclude <stdio.h>
int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION

Fseek sets the position of the next input or output operation
on the stream. The new position is at the signed
distance offset bytes from the beginning, from the
current position, or from the end of the file, according
as ptrname has the value 0, i, or 2.

Rewind is equivalent to fsgek(§tregm, 0L, 0), except that no
value is returned.

After fseek or remind, the next operation on a file
opened for update may be either input or output.

Ftell returns the offset of the current byte relative to the
beginning of the file associated with the named stream.

SEE ALSO lseek(2), fopen(3S).

DIAGNOSTICS Eseek returns non~zero for improper seeks, otherwise
zero. An improper seek can be, for example, an fseek
done on a file that has not been opened via fopen; in
particular, fseek may not be used on a terminal.

WARNING Although on the UNIX System (it is the same on the
SINTRAN III System) an offset returned by ftell is
measured in bytes, and it is permissible to seek to
positions relative to that offset, portability to
non—UNIX Systems requires that an offset be used by
fiseek directly. Arithmetic may not meaningfully be
performed on such a offset, which is not necessarily
measured in bytes.

ND-60.214.01

CC—lOO and CC—SOO.
FCLOSE(3S) — Close or Flush a Stream.

7.4.8 FCLOSE(3S) "a Close or Flush a Stream.

NAME fclose, fflush

SYNOPSIS

DESCRIPTION

Eclose

Eilush

DIAGNOSTICS

SEE ALSO

#include (stdio.h>
int fclose (stream)
FILE *stream;

int fflush (stream)
FILE *stream;

causes any buffered data for the named stream to be
written out, and the stream to be closed.

Fclose is performed automatically for all open files
upon calling exit(2).

causes any buffered data for the named stream to be
written to that file. The stream remains open.

These functions return 0 for success, and EOF if any
error (such as trying to write to a file that has not
been opened for writing) was detected.

close(2), exit(2), fopen(3S), setbuf(3S).

ND-60.214.01

75

76 CC~1OO and CC~500.
FERROR(3S) m Stream Status Inquiries.

7.4.9 FERROR(3S) ~ Stream Status Inquiries.

NAME ferror, feof, clearerr, fileno

SYNOPSIS #include <5tdio.h>
int feof (stream)
FILE *stream;

int ferror (stream)
FILE *stream;

void clearerr (stream)
FILE *stream;

int fileno(stream)
FILE *stream;

DESCRIPTION

Feof returns non-zero when EOF has previously been detected
reading the named input stream, otherwise zero.

er I returns non—zero when an I/O error has previously
occurred reading from or writing to the named stream,
otherwise zero.

glearerr resets the error indicator and EOF indicator to zero on
the named stream.

Eileno returns the integer file descriptor associated with the
named stream; see open(2).

NOTE All these functions are implemented as macros; they
cannot be declared or redeclared.

SEE ALSO open(2), fopen(38).

ND-60.214.01

CC~100 and CC~500.
PRINTF(3S) ~ Print Formatted Output.

7.4.10 PRINTF(3S) — Print Formatted Output.

NAME printf, fprintf, sprintf

SYNOPSIS

DESCRIPTION

Erintf

Eprintf

Sprintf

char %

flags

field width

#include <stdio.h>
int printf (format [, arg] ...)
char *format;

int fprintf (stream, format [, arg] ...)
FILE *stream;
char *format;

int sprintf (s, format [, arg] ...)
char *5, format;

places output on the standard output stream stdgut.

places output on the named output stream.

places "output", followed by the null character (\0) in
consecutive bytes starting at *s; it is the user's
responsibility to ensure that enough storage is
available.

Each function returns the number of characters
transmitted (not including the \O in the case of
sprintf), or a negative value if an output error was
encountered.

Each of these functions converts, formats, and prints
its args under control of the format. The format is a
character string that contains two types of objects:
plain characters, which are simply copied to the output
stream, and conversion specifications, each of which
results in fetching of zero or more args. The results
are undefined if there are insufficient args for the
format. If the format is exhausted while args remain,
the excess args are simply ignored.

Each conversion specification is introduced by the
character a. After the t, the following appear in
sequence:

zero or more flags, which modify the meaning of the
conversion specification.

An optional decimal digit string specifying a minimum
field width. If the converted value has fewer characters
than the field width, it will be padded on the left (or
right, if the leftfiadjustment flag (see below) has been
given) to the field width;

ND~60.214.01

77

78 CC—lOO and CC~SOQ;
PRINTF(3S) — Print Formatted Output.

precision A precision that gives the minimum number of digits to
appear for the d, o, u, x, or X conversions, the number
of digits to appear after the decimal point for the e
and f conversions, the maximum number of significant
digits for the g conversion, or the maximum number of
characters to be printed from a string in 5 conversion.
The precision takes the form of a period (.) followed by
a decimal digit string: a null digit string is treated
as zero.

long An optional 1 specifying that a following d, o, u, x, or
X conversion character applies to a long integer arg.

asterisk (*) A field width or precision may be indicated by an
asterisk (*) instead of a digit string. In this case,
an integer arg supplies the field width or precision.
The erg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying
field width or precision must appear beigre the erg (if
any) to be converted.

The :lag characters and their meanings are:

The result of the conversion will be leftwjustified
within the field.

+ The result of a signed conversion will always begin with
a sign (+ or “)_

blank If the first character of a signed conversion is not a
sign, a blank will be prefixed to the result. This
implies that if the blank and + flags both appear, the
blank flag will be ignored.

This flag specifies that the value is to be converted to
an "alternate form."

For c, d, s, and u conversions, the flag has no effect.

For 0 conversion, it increases the precision to force
the first digit of the result to be a zero.

For x (X) conversion, a non—zero result will have Ox
(OX) prefixed to it.

For e, E, f, g, and G conversions, the result will
always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the
result of these conversions only if a digit follows it).

For g and G conversions, trailing zeroes will npt be
removed firom the result (which they normally are).

The conversion characters and their meanings are:

NDfl60.214.01

CC~100 and CC~500.
PRINTF(3S) — Print Formatted Output.

d,o,u,x,X The integer arg is converted to signed decimal, unsigned

9.G

m

octal, decimal, or hexadecimal notation (x and X),
respectively; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion.

The precision specifies the minimum number of digits to
appear; if the value being converted can be represented
in fewer digits, it will be expanded with leading
zeroes.

The default precision is 1.

The result of converting a zero value with a precision
of zero is a null string.

The float or double arg is converted to decimal notation
in the style "[~]ddd.ddd", where the number of digits
after the decimal point is equal to the precision
specification. If the precision is missing, 6 digits
are output; if the precision is explicitly 0, no decimal
point appears.

The float or double arg is converted in the style
"[-]d.ddde+ ~_dd", where there is one digit before the
decimal point and the number of digits after it is equal
to the precision; when the precision is missing, 6
digits are produced; if the precision is zero, no
decimal point appears. The E format code will produce a
number with E instead of e introducing the exponent. The
exponent always contains at least two digits.

The float or double arg is printed in style f or e (or
in style E in the case of a G format code), with the
precision specifying the number of significant digits.
The style used depends on the value converted: style e
will be used only if the exponent resulting from the
conversion is less than ~4 or greater than the
precision. Trailing zeroes are removed from the result;
a decimal point appears only if it is followed by a
digit.

The character arg is printed.

The arg is taken to be a string (character pointer) andcharacters from the string are printed until a null
character (\0) is encountered or the number of
characters indicated by the precision specification is
reached. If the precision is missing, it is taken to be
infinite, so all characters up to the first null
character are printed. If the string pointer erg has
the value zero, the result is undefined. A null arg
will yield undefined results.

Print a %; no argument is converted.

ND‘60.214.01

79

80

In no

CQ—1OO and CC~500.
PRINTF(3S) w Print Formatted Output.

case does a non—existent or small field width cause
truncation of a field; if the result of a conversion is wider
than the field width, the field is simply expanded to contain the
conversion result. Characters generated by grintf and :printfi
are printed as if Qu§g(38) had been called.

EXAMPLES

[printf(”%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min); J

To print a date and time in the form "Sunday, July 3,
10:02", where weekday and month are pointers to
nullaterminated strings:

To print Hi to 5 decimal places:

printf("pi = %.5f", 4*atan(1.0)); J

SEE ALSO ecvt(3C), putc(3$), scanf(3S), stdio(35).

ND-60.214.01

CC-1OO and CC~500.
SCANF(3S) — Convert Formatted Input.

7.4.11 SCANF(3$) — Convert Formatted Input.

NAME scant, fscanf, sscanf

SYNOPSIS

DESCRIPTION

Erranf

Essen:

fiscanf

#include <stdio.h>
int scanf (format [, pointer] ...)
char *format;

int fscanf (stream, format [, pointer] ...)
FILE *stream;
char *format;

int sscanf (s, format [, pointer] ...)
char *5, *format;

reads from the standard input stream stdin.

reads from the named input stream.

reads from the character string s.

Each function reads characters, interprets them
according to a format, and stores the results in its
arguments. Each expects, as arguments, a control string
format described below, and a set of pointer arguments
indicating where the converted input should be stored.

The control string usually contains conversion
specifications, which are used to direct interpretation
of input sequences. The control string may contain:

1. White—space characters (blanks, tabs, new~lines, or
form—feeds) which, except in two cases described below,
cause input to be read up to the next non~white-space
character.

2. An ordinary character (not t), which must match the
next character of the input stream.

3. Conversion specifications, consisting of the
character %, an optional assignment suppressing
Character *, an optional numerical maximum field width,
an optional 1 or h indicating the size of the receiving
variable, and a conversion code.

A conversion specification directs the conversion of the
next input field; the result is placed in the variable
pointed to by the corresponding argument, unless
assignment suppression was indicated by *. The
suppression of assignment provides a way of describing
an input field which is to be skipped. An input field

ND~60.2l4.0l

81

82

convertion
codes:

0
6

6.15.9

C—100 and CC—SOO.
SCANF(BS) " Convert Formatted Input.

is defined as a string of non-space characters; it
extends to the next inappropriate character or until the
field width, if specified, is exhausted.

The conversion code indicates the interpretation of the
input field; the corresponding pointer argument must
usually be of a restricted type. For a suppressed
field, no pointer argument should be given. The
following conversion codes are legal:

a single % is expected in the input at this point; no
assignment is done.

a decimal integer is expected; the corresponding
argument should be an integer pointer.

an unsigned decimal integer is expected; the
corresponding argument should be an unsigned integer
pointer.

an octal integer is expected; the corresponding argument
should be an integer pointer.

a hexadecimal integer is expected; the corresponding
argument should be an integer pointer.

a floating point number is expected; the next field is
converted accordingly and stored through the
corresponding argument, which should be a pointer to a
float. The input format for floating point numbers is
an optionally signed string of digits, possibly
containing a decimal point, followed by an optional
exponent field consisting of an E or an e, followed by
an optionally signed integer.

a character string is expected; the corresponding
argument should be a character pointer pointing to an
array of characters large enough to accept the string
and a terminating \O, which will be added automatically.
The input field is terminated by a white—space
character.

a character is expected; the corresponding argument
should be a character pointer. The normal skip over
white space is suppressed in this case; to read the next
non~space character, use %1s. If a field width is
given, the corresponding argument should refer to a
character array; the indicated number of characters is
read.

indicates string data and the normal skip over leading
white space is suppressed. The left bracket is followed
by a set of characters, which we will call the scanset,
and a right bracket; the input field is the maximal
sequence of input characters consisting entirely of
characters in the scanset. The circumflex, (1, when it

ND‘60.214.01

QQ:lQQ_QnQ_QQ:§QQi
SCANF(3S)

The

— Convert Formatted Input.

appears as the first character in the scanset, serves as
a complement operator and redefines the scanset as the
set of all characters not contained in the remainder of
the scanset string. There are some conventions used in
the construction of the scanset. A range of characters
may be represented by the construct jir§t~last, thus
[0123456789] may be expressed [O~9].

Using this convention, tire; must be lexically less than
or equal to last, or else the dash will stand for
itself. The dash will also stand for itself whenever it
is the first or the last character in the scanset. To
include the right square bracket as an element of the
scanset, it must appear as the first character (possibly
preceded by a circumflex) of the scanset, and in this
case it will not be syntactically interpreted as the
closing bracket. The corresponding argument must point
to a character array large enough to hold the data field
and the terminating \O, which will be added
automatically.

conversion characters d, u; o, and x may be preceded by 1 or
h to indicate that a pointer to long or to short rather than to
int in the argument list. Similarly, the conversion
characters e , f , and g may be preceded by l to indicate that a
pointer to double rather than to float is in the argument list.

EXAMPLES

Scanf conversion terminates at EOF, at the end of the
control string, or when an input character conflicts
with the control string. In the latter case, the
offending character is left unread in the input stream.

goanfi returns the number of successfully matched and
assigned input items; this number can be zero in the
event of an early conflict between an input character
and the control string. If the input ends before the
first conflict or conversion, EOF is returned.

The call:

int 1; float x; char name[50];
scanf "%d% %s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to

i the value 25,
n the value 5.432,
name will contain thompson\0.

ND~60.214‘OT

83

84 CC—lQO and CC~SOQ;
SCANF(3S) * Convert Formatted Input.

Another example:

int i; float X; char name[50];
scanf ("t2d%f%*d %[O~9]", &i, &x, name);

with input:

56789 0123 56a72

SEE ALSO

NOTES

DIAGNOSTICS

will assign

i the value 56, as integer,
g the value 789.0 as floating~point

skip 0123,
name the value 56\O as a string of Characters.

The next call to getchat (see getc<3S)) will return
the Character a

atof(3C), getc(38), printf(38), strtol(3C).

Trailing white space (including a new«line) is left
unread unless matched in the control string,

The success of literal matches and suppressed
assignments is not directly determinable.

These functions return E0? on end of input and a short
count for missing or illegal data items.

ND-60.214.0l

CC 100 and CC—SOO.
SETBUF(3S) ~ Assign Buffering To a Stream.

7.4.12 SETBUF(3S) - Assign Buffering To a Stream.

NAME setbuf

SYNOPSIS

DESCRIPTION

SEE ALSO

NOTE

#include <stdio.h>
void setbui (stream, buf)
FILE *stream;
char *buf;

Setbuf is used after a stream has been opened but before
it is read or written. It causes the character array
pointed to by bug to be used instead of an automatically
allocated buffer.

If bu: is a NULL character pointer input/output will be
completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file,
tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from malloc(3C) at the
time of the first getg or putg(35) on the file, except
that the standard error stream stderr is normally not
buffered.

Output streams directed to terminals are always
line~buffered unless they are unbuffered.

fopen(3S), getc(3S), malloc(3C), putc(3S).

A common source of error is allocating buffer space as
an “automatic" variable in a code block, and then
failing to close the stream in the same block.

ND~60.214.01

85

86 CC~1OO and CC~SOO.
UNGETC(3S) m Push Character Back Into Input Stream.

7.4.13 UNGETC(3S) ~ Push Character Back Into Input Stream.

NAME ungete

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

#include <stdio.h>
int ungetc (c, stream)
char C;
FILE *stream;

Ungetg inserts the character Q into the buffer
associated with an input stream. That character, g,
will be returned by the next getc call on that stream.
Ungetc returns 3, and leaves the file stream unchanged.

One character of pushhack is guaranteed provided
something has been read from the stream and the stream
is actually buffered.

If g equals EOF, ungetc does nothing to the buffer and
returns EOE.

Fseek(38) erases all memory of inserted characters.

fseek(3S), getc(38), sethuf(38).

In order that ungetg perform correctly, a read statement
must have been performed prior to the call of the ungetg
function. Engage returns EOE if it can‘t insert the
character. In the case that stream is stdin, unqetc will
allow exactly one character to be pushed back onto the
buffer without a previous read statement.

ND~60.214.01

CC—1OO and CC~SOO.
Mathematical Library Functions ~ INTRO(3M)

7.5 Mathematical Library Functions — INTRO(3M)

DESCRIPTION These functions constitute the math library.
Declarations for these functions may be obtained from
the include file <math.h>.

LIST OF FUNCTIONS
Name Appears on Paqe Description

acos sin.3M 93 Trigonometric functions
asin sin 3M 93 Trigonometric functions
atan sin.3M 93 Trigonometric functions
atan2 sin.3M 93 Trigonometric functions
cabs hypot 3M 91 Euclidean distance
ceil floor.3M 89 Ceiling functions
cos sin.3M 93 Trigonometric functions
cosh sinh.3M 94 Hyperbolic functions
exp exp.3M 88 Exponential
fabs floor 3M 89 Absolute value
floor floor 3M 89 Floor
gamma gamma.3M 90 Log gamma function
hypot hypot.3M 91 Euclidean distance
jO jO.3M 92 Bessel functions
j1 jO.3M 92 Bessel functions
jn jO.3M 92 Bessel functions
log exp.3M 88 Logarithm
log10 exp.3M 88 Logarithm
pow exp.3M 88 Power
sin sin.3M 93 Trigonometric functions
sinh sinh.3M 94 Hyperbolic functions
sqrt exp.3M 88 Square root
tan sin.3M 93 Trigonometric functions
tanh sinh.3M 94 Hyperbolic functions
yO jO.3M 92 Bessel functions
y1 jO.3M 92 Bessel functions
yn jO.3M 92 Bessel functions

ND—60.214.01

87

88 CC—1OO and CC*500.
EXP(3M) — Exponential, Logarithm, Power, Square root.

7.5.1 EXP(3M) * Exponential, Logarithm. Power. Square root.

NAME exp, log, logio, pow, sqrt

SYNOPSIS #include <math.h>
double exp(x)
double X;

double log(x)
double x;

double log10(x)
double x;

double pow(x, y)
double X, y;

double sqrt(x)
double x;

DESCRIPTION

£53 returns the exponential function of 5.

Log returns the natural logarithm of 5; lgn returns the
base 10 logarithm.

Egg returns r rised to the y:th power.

Sgrt returns the square root of 5.

SEE ALSO hypot(3M), sinh(3M), intro(3M)

DIAGNOSTICS Egg return a huge value when the correct value would
overflow; errno is set to ERANGE. Egg returns 0 and sets
errng to EDOM when the second argument is negative and
non integral and when both arguments are 0.

ND—60.214.01

CCM100 and CC~500.
FLOOR(3M) - Absolute value, Floor, Ceiling Functions.

7.5.2 FLOOR(3M) ~ Absolute value, Floor, Ceiling Functions.

NAME fabs‘ floor, ceil

SYNOPSIS #include <math.h>
double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double x;

DESCRIPTION

Eéhé returns the absolute value Igl.

Klee; returns the largest integer not greater than 5.

Cell returns the smallest integer not less than 5.

SEE ALSO abs(3)

ND~60.214.01

89

9O CCw1OO and CC‘SOO.
GAMMA(3M) — Log Gamma Function.

7.5.3 GAMMA(3n) — Log Ganna Function.

NAME gamma

SYNOPSIS #include <math.h>
double gamma(x)
double x;

DESCRIPTION Gamma returns In !§(1§l)l, where Q denotes the gamma
function. The sign of §(lgl) is returned in the

DIAGNOSTICS

NOTES

external integer signgam.

The following C program might be used to calculate g:

y = gamma(x);
if (y > 88.0)

error();
Y : exp(y);
if(signgam)

Y = ”Y;

A huge value is returned for negative integer arguments.

There should be a positive indication of error.

ND~60.214.01

CC~1OO and CC-SOO.
HYPOT(3M) — Euclidean Distance.

7.5.4 HYPOT(3M) — Euclidean Distance.

NAME hypot, cabs

SYNOPSIS #include <math.h>
double hypot(x, y)
double x, y;

double cabs(z)
struct (double x, y;} 2;

DESCRIPTION flygot and cabs returns

sqrt(x*x + y*y),

taking precautions against unwarranted overflows.

SEE ALSO exp(3M) for sgrt

ND~60.214.01

91

92
JO(3M)

7.5.5 30(3M) — Bessel Functions.

NAME j0, jl, in. yo. yl. yn

SYNOPSIS #include <math.h)
double j0(x)
double x;

double j1(x)
double x;

double jn(n, x)
double x;

double y0(x)
double x;

double y1(x)
double x;

double yn(n, X)
double x;

CC~1OO and CC—SOO.
— Bessel Functions.

DESCRIPTION These functions calculate Bessel functions of the first
and second kinds for real arguments and integer orders.

DIAGNOSTICS Negative arguments cause 19, 11, and yn to return a huge
negative value and set errno to EDOM.

ND—60.214.01

CC~1OO and CC-SOO.
SIN(3M) — Trigonometric Functions.

7.5.6 SIN(3M) - Trigonometric Functions.

NAME sin, cos, tan, asin, acos, atan, atan2

SYNOPSIS #include (math.h>
double sin(x)
double x;

double cos(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x, y)
double x, y;

DESCRIPTION

gin, 99s and tan

returns trigonometric functions of radian arguments. The
magnitude of the argument should be checked by the
caller to make sure the result is meaningful.

Asin returns the arc sin in the range "Hi/2 to Ei/Z.

Acos returns the arc cosine in the range 0 to pi.

Atan returns the arc tangent of g in the range “Hi/2 to 21/2-

gtang returns the arc tangent of g/x in the range ‘E1 to pi.

ND‘60.214.01

93

94 CC-1OO and CC"500.
SINH(3M) — Hyperbolic Functions.

7.5.7 SINH(3H) — Hyperbolic Functions.

NAME sinh, cosh, tanh

SYNOPSIS #include <math.h>
double sinh(x)

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION These functions compute the designated hyperbolic
functions for real arguments.

ND~60.214.01

CC—lOO and CC~500.
Appendix A: CCvSOO Interfacing With Other Languages.

Successful interfacing with other languages, is based on good
understanding of the calling sequence, and the layout of the
stackframe in the environment of the calling and called routine.

The following presentation starts with a general description of the
stackframe layout produced by the CC~500 compiler. It is continued
with an example where a routine written in C calls another C routine.
The example is supposed to illustrate the calling sequence.

Currently only routines written in ND—SOO Assembler can be added to
programs written in C. The presentation is therefore ended with some
guidelines showing how these routines should be written.

The stack is growing against higher memory addresses. Higher
addresses are upwards in the following description.

_ Legpgrirx _ t ‘ B.SP
Memory locations used in evaluation______ 0 ex ressxons

_ Leevgrirr _ .
_ iUEP _____

”emery locaéiuns used f r local
varxa les. very variable starts

r ******* on a byte boundary.
L $95? _____

Ar n H or 1 c ti u d for uments.‘ “ i ‘‘‘‘‘‘ Al? at Ygefitsogge ggehit ogggfits
exe t ? oats and doub es w 1: need
64—Eits. Every ar ument starts________ on a word bou dare.

-L‘_F£LL__._i +-B.20
-‘i _______
_ AUX _______
rip _______
_ EA iiiiiii
, Eriv; E _ _ . ‘ ” B

The Foltowing exampte iLLustrates the caLling sequence produced by
CC—SDO.

Concider the foLaing situation:

The routine “F00” wiLL caLL the routine "bar" with three arguments

that) {
int i, j, k;
i = bar (j, k, 4);

k3
!

ND-60.214.01

95

96 gg—ioo and CC*500.
Appendix A: CC~SOO Interfacing with other Languages.

The Fettnwing code wiLL be generated for the routine “Fee”

foo:

FUi:

ents

w move

w move
w move
caLL

w move
ret
equ

FUi “/

b.24,h.BU+FU1 Z

h.28,b.24+FU1 Z
r,b.24+FU1 x

be. r , e z
.7:
7:

r ,1 ,5 b . en 2:
7/

3,?

create a stackframe for
£00, FUi is the size in bytes
Move First argument into
stackframe which wiLL be
created by the caLLed
routine. B.ED is the
Location of the First
argument in "bar".
The second argument
And the third.
Notice that the hardware
mechanisme for parameter
passing is not used.

the

The return vaLue is pflSSéi
in register R1”

The caLLed routine "bar“ cons ists of the TotLowing saurce cede:

her I s, t, u)
return

,I'
L

s + t-+ u E; j

For this the CC~5DU wiLL generate the {oLLowing cede:

bar:

FUi:

ents
w add3

wi +
ret
equ

FU'l
beam;E4,r1

I2 Create stackframe
Z The arguments s, t, and
Z the foLLewing addresses
Z b.3530a hnfié, and b.28
Z The return vaLue is now

u has

in R1

ND~60.214.01

§§;100 and_§Q~500.
Appendix A: CC»SOO Interfacing with Other Languages.

After the argumente are moved into the area which wiLL be the new
etackirame but before the caLL is executed? the situation can he
described with the FoLLowing Figure:

Undefine;

_ Enieiilei _ .
_ ”flyiiled. _ _
_ [inleii'lei ._ ,
[nieii'lei u .

F K _ _ ~ _ _ Q ~ 8.5?

_ L
H L _ - H _ . _ * R 8‘20
N E _______
, EUL
_ 2P ______
_ EA _______

Prev. 8 * w B

of the ENTB instruction in the caLLed routine “her“
etack has the foLLowing Shape:

,_._.....__._u

._,___._._.___-.

w...-———....._.i

....___..._.._.H.4

j eeeembter routine is supposed to begin with an ENTS (enter
it . .V ruction. ENTS has one parameter, the Size in bytes, for
the stackirame which wiLL be generated.

The size oi the frame muet at LeaSt he Large enough to contain the
deiautt part i 20 bytes E as weLt 55 the arguments oi the routine,
The first argument wiLL he found at addreee Buiflq

The caLLed routine is abte to return a vatue by Loading the register
bl? ,R1 with the actuat vaLue iore executing the return inetruction.

ND—60.2i4.01

97

98

ND~60.214.01

CC—1OO and CCw500.

CC*1OO and CC—SOO. 99Appendix B: CC-iOO Interfacing with other languages.

CurrentLy onLy ND~1DU assembLy routines can be added to C programsand the technique can be studied in the sectiun “C Stack Layout”

In order to give the advanced user game ideae on how the runwtimeeyetem ie designed the foLLowinQ information nae been incLude.

Consider the foLLewing Situation:

FDDC) {
int j, i, k;
i : barf j, k, 4 };

etc

wiLL generate the sequence:

{00, Lda *—1 X Size of autos
copy adi Sp dx Zaddreee where execution is

Zcontinued aiter the caLL to
jmp i (ecsv Zthe C enter routine csv.
see 4 Zpush the veLue 4
ate i ,h T05 ZTDS i5 equaL to —3
min ,b TOS
Lda ,b 3 Zpush k
ate 1 ,b TOS
min ,b TOS
Lda ,b 1 Zpush j
eta i ,b TOS
min 5b TOS
set 3 Zeize of parameter bLock
i i (bar aLL to bee
sta ,b 4 Zstore resuLt in i
etc

ND~60.214.01

100 CCw1OO and CCnSQQ;
Appendix B: CC~1OO Interfacing with other languages.

and in routine bar:

barf s, t, u, v j 1
return(5 + t + u)
'1.J

the generated fade sequence i in
bar, Lda *“1

copy adi 5p dx
jmp i (*Csv
Lda ,b —é
add 5b w?
add ,b ~5
jmp i (*CPEt

The stack in Poutine "bar“ before the jump to *CSV wiLL Look Like:

_ _ .Uldafifigd- __ 4 < ————————— a
_ _ _J ______—H a .

.... *i'. - .. vi... _

_ __k,_‘ , W WV v a

y H ”4_ _ __ __U_‘ _

____l<______t_~‘
j 3

ND~60.214.01

g§;100 and CC—fiOO.
Appendix B: CC—iOO Interfacing with other languages.

sud aiter the

_
- _un_d9.fi_ne_d~ “ a

“ ~ -3- _ _ _‘_ ~ .
,— — ——i-—-— —— —-. ——— — a

_ .__ _k _____V ._ —-.. ..

p. __.. “4—. __ ._. ._U._ __ _

__..k.... _ _. ~t_ .. 4

j s
_ p_r9_vi_og_s_B_bar

undefined.___~___._.__._._.i

setup routine *csv it wiLL Look Like:

_ _ _u1dsf£ngd_ fl _ < ————————

_____w —— —.~ -— .— >4

_____x —., .._. _. — .4

Shortty, your assembLy routine du

myroutine, 53a 5
copy adi 5p dx
jmp i (*csv

Lda Eretvatue

or if the retvaLue is a pointer:

I d (retvaLue

an if the retvaLue is a Lang:

I d CwetvaLue

my 5? the retvaLue ii a {Loat or dLubLe:

é Ldf fretvatue

tewmihatihg with

I jmp i E%cret

Z Number of “auto“ words

ND~60.214.01

101

102 CC—1OO and CC~SOO.

ND-60‘214.01

CC"1OO and CC-SOO. 103
Appendix C: Summary of C syntax.

Comments: /* .,. this is a comment,
may extend over severaL Lines? terminated by */

Identifiers: CC~1DD upto 12 significant characters,
A ~ 25 a M a, D — 9 and underscore C“)
first Letter must be aLphabetiC.

7

CC‘SOO upto 30 significant Characters7
A — Z, a — 2, Q ~ 9, and underscore (_)
first Letter must be aLphabetiC.

9

ExternaL identifiers: 7 characters, no distinction
between upper and Lower case Letters.

C treats words of upper and Lower case as different
identifiers. ALL reggrggg words in C, as type decLarationsg
standard function names, etc, must be given in Lower case.

Constants: 129 decimaL (16~bit) 123489 decimaL C3E_bit)
0123 octaL £1é~bit3 012345 octaL (32—bit)
0x13FF hex C16~bit3 OxiBFF hex (32—bit)

or OXiJFF hex €1o~bit) 0X13FF hex (32-bit)

129L Long decimaL (32-bit)
or 129L Long decimaL (32~bit)

0123L Long octaL €32_bit)
or DiEJL Long octaL (”B-bit)

0x13FFL Long hex (7“ bit)
or DxiSFFL Long hex (32~bit)

123.0 {Lost (64~bit3 aLL {Loat.point constants
123.Eé are treated as doubLe
123.e-6

”a” character (8mbit3
’\c’ non~graphic character (Embit)

\n new Line (LP)
\t tab (HT)
\” apostrophe C")
\X baCRsLash (\J

’\ddd‘~ Charunumeric vaLue (ASCII)
\014 {ormfeed (FF) octaL format
\13 carriage return (CR) decimaL format
\000 string terminator CNUL)
\UX? beLL char (BEL) hex Format

"abc" char. string, aLL strings are terminated
"" empty string. by NUL—Char “\D’

ND“60.214.01

104 gg—iOO anQ_QQ:§QQs
Appendix C: Summary of C syntax.

Type specifiers: CC—iDD CC—SUD
int 16—bit integer unsigned 32—bit unsigned
short 16—bit integer 16—bit unsigned
Long 32—bit integer 33—bit integer
{Loat 48—bit Ftupt 32—bit fL.bt
doubLe 48—bit fL.pt 64—bit fL—pt
char 16—bit (input/output 8 bits) 8—bit
pointer 16—bit 32—bit
enum 16—bit 32—bit
struct variabte size, (record type) same
union variabLe sizey {record type) same
typedei user named type of previous deciarations
unsigned 16—bit integer 32—bit integer
void func.name defines no return—vatue from function

Short7 Long, and unsigned can be combined with int? and char,

Storage cLasses auto LocaL variabLes /% stbrage cLass */
static gLobaL variabLes He prefixes type #/
extern gLebaL variabLes /* decLaration, as *E
register treated as auto /* static int u.. e/

DecLarations: int identiier;
short int digits;
Long xg ya a; Long int maxnumber;
char wy *w;
short char Letter;
{Loat ii; dbubLe value

Arrags: int tabLeCiU]; /% .r
{Loat resuLtCSDJ: fe arrays i C begins with if
char textfiDDZ; 5% eLement 0, both for if
int muLtifiGR £103; /* vectors and matrices if
{Loat mixCSJ [53; /r if
char screen£243 £803; /% if

Accessing arrays: tabLeEOJ;
tabLeCiUfi;

accessed/% eLements can be t
vari— e5

.14

/% using constants,a
screenELineJ [pas]; /% abLes, and expressions /

InitiaLieation: int amS
int tableEiO] =(192,33695,6,7,899,10)/;
{Lost
char
char

Structure definitions:
struct name

Structure decLaratidn:
St Y‘UCt name
struct date d :
struct date

piz3ai4i69;
NUL=“\B’;, LF = \014”;
rmsg=“message“;

P’fi

int day? mtb, year;
char mtnhname E4];

}

identifier;
f 31, i2? 1984, "DEC "3;

*pd; /% pd points to date structure */

ND—60.214.01

QC«1OQ~gmigl:SOO. 105
Appendix C: Summary of C syntax;

Structure accessing-
d.mth_name = “HAY “ /* dot~notation addressing */

Oneratere: unary: binop:
* indirect tmsg muLtipLy 3%5
/ divide 5/5
— negation —1 subtract amS
+ add 3+5
2 remainderfmoduLo) 3Z5
& address of &msg
Sizeof number of bytes For a

type =5ize0ffmeg)

ReLationaL:) Less than
)= Less and equaL
= equaL
(greater than
<= greater and equeL

» not equaL

LogicaL: && terminate evaLuatien if the expreeeien i5 TRUE
if t character == "D" && chatactet == “9’ 3

il terminate evaLuation 'f the expv ssien is FALSE
if E m:=’ c==’\n’ T _==’\t’ J

Aasignment: = 3:5, 3 i3 aseigned the vsLue of 5
+= e+=5g 3 i3 incremented by 5
~= am=10; a is decremented by 10
= a=b+1; is treated as if a = a * Cb + 1)
++ a++; assigne vaLue aiter increment by 1

or ++a; assigne vaLue, then increment by 1
~~ a~—; assigns vaLue, after decrement by 1

or -—a; assigns vaLue, then decrement by 1

Bit wise operatore: and
f incLueive 0r
“ excLusive or
<< shift Left
}} shift right
1v ,one 5 compLement {unaryi

ND~60.214.01

106

Iu a:Statement

CC-1OO and QQ;§QQL
Appendix C: Summary of C syntax.

if (expr) etatement;
if (expw) Statement; eLse Statement;
for (initiaL~expr; terminatewex r; increment-exprg)

Statement;
whiLe Cexpr) statement;
do statement; white {exprkg
switch (expr);

{case—statementfs); end/or defauLt—statementg}
case constant~expra statement;
defauLt: etatement;
break;
continue;
return (expr);
goto LabeL;
LabeL: Statement;
; nuLL or empty etatement

A statement can be a SingLe expreesion, or a group oi
expreeeione within curLy bracketg (compound Statementefiu

Compound 5tatement3:{ expression; “no“; expreaeion; }

Conditionat

a!” 21‘ r } b D ? a z h f* max of a or b *5
1-: if «a } b 3 e w a: eLse z = o:

Preproceesor: #define identifier constantwexpr

/* may extend over sevewat Linea #/
Each expressiin must be terminated by a semicoLon (;J.

etetement:?:
fexpr) ? (expr) : fexpr);

#define identifieriparametewfln."* macro~body
#unde? identifier
#incLude ”fiLename“ /* user fites or SYSTEM */
#inCLude {iiLename} /% user fC—INCLUDE) *fl
#if conetentmexpfieesion
#ifdef identifier
#ifndef identifier
#eLse
#endii
#Line constant~identifier
#Lstcod List aseembLy code on/off (+ ~)

ND-60.214.01

QQLJSXlaiflQMQCLEEEQL 107
Index

#include {ctype.h . 43, 45.
#inctude {errno.h . 26.
#inCLude {fCHtL.h . SD.
#inCLude {math.h . 8B~94.
#incLude {memory.h . 56.
#inCLude {setjmp.h . 60.
#inCLude {stdio.h . 38 63~65 57,5 5

#inctude {string.h . 47.
flinctude (vararge.h . 61.
AHEiJCfi return integer absoLute vaLue 41.
BCOE . 93.
erg: . If.
argv . 1x.
aein . 93.
atan
atanE
ATOF(3C) convert

.. 9a.
. 93.

number 3.

u a 1 x: n x a n a n z

b
-

m r H I..
. m L"? 1 3 LC: d" o +

.
F D [u w

.

3 I: t o 3 fl

atoi . 50.
atoL . 50.
tabs . 91.
caLLDC . 54.
CEiL . .
CLearerr
CLOSE(2) ctose a fiLe descripter 35.
CONVfJC) traneLate Characte

. 8?.

C05 . 93.
coeh . 94.
CREAT€EF create a new fiLe or rewrite an existing one 29.
CTYPE($.> cLaSSify characters 45.
ecvt . 4b.
ECVTCSC) convert {Loatingpoint number to string we.
errno . 59.
exit . 37.
EXITEE) terminate program 37.
exp . 88.
CXPCJH) expenentiaL Logarithm power square root 88.
fabe . 89.
{CLose .
FCLOSECSS) CLOSE or {Lush a stream 75.
FCVt . 4G.
fdupen
Feof
{error
FEHRQRCJS} etream status inquiries 7b.
ffLush . 75.
Fgetc . 65.
{gete . 5?.
FILE *std n *5tdout *stderr

NDa60.214.01

108

{iLeno .
{Loor . .
FLOORC3H)
{open . .
FOPEN(33J
fprintf .
{putt . .
{pute . ,
fread
FREAD(
free u .
{reopen .
frexp . .
FREXPtEC)
{scanf .
fseek . .
FSEEH(ZS)
fteLL . w
{write .
gamma 2 .
GAMMA if 3M)
gcvt . .
get: . .
GETC(SBJ
getchar .
gets " u
GETSCSS?
getw . .
hypot . u
HYPOT(3H)
INTROCE)
INTRDES) S
INTROE3H7
isaLnum .
isatpha .
isaecii .
isatty .
ISATTYCSCD
iscntrL .
isdigit .
nraph .
ieLower “
isprint .
iepunct u
isspace .
iSupper .
isxdigit
in . n .

JUIKMV
j! n u .
Ldexp . .

LI
'

q

i J 17‘

u u n -

absoLute vaLue ceiLing

open a stream

array inputoutput u

a .. u n

u u - u

:1 n u .

. u n n

u n n n

u . u u

u . . n

u u u .-

n u . n

manipuLate

repasition a

Log gamma function

get a string f

u u .

EuCLidean diet

I: u u n

a stream
u n w n

n u u n

u n u u

n n u n

. u u u

n u n -

Stream . .

fiLe pointer in

or word from

rom a stream .

ante

u .- u n

n u u u

u n a u

: n u n

u u u u

n u n- .

of {Loatingpoint numbers

n

introduction to system caLLs and error
tandard IO subroutinee and Libraries . . .
introduction to mathematicaL Library

. a a . . u u u a w

. fl

. u . u n , ~ a . . u

. . , . . . ,
Find if fiLe 15 a terminaL

. a ,

. u u . . a u . n a

. g u u . . a . a

. L
u u , n i
. n , u . .

nae! funltvunm . . . u . .

ND-60.

n n u a u u u

n n n 1 I u a

u n n u u u

u . n .

u u u u

n u n v

H u a u

u u . n

u u u u

u .x a u

u u u u

u u . u

n u u n

n u - a

u - n

- n n .

u . . .-

214.01

a .

. n

u u

u -

u u

u n

u n

. a

u u

. n

. u

u u

- n

u .

u l

u u

u n

n a

a n

u u

1 u

n u

u ..

n u

u .

II a

. n

n u

. x

u u

- u

u n

n u

I -

n u

u n

. u

n u

u u

u n

a w

n n

u n

a .

n -

u n

CC-1OO and_Q§;SOO.
Index

. 89.

. 3?.

. ?1.

. 71.

V
G

‘V
6

0
3

%
\1

NJ
"-4

«J
0.3

U!
Ln

\1
kn

\J
\1

V3
‘0

4x

. C1“
LI

N
O

KC
FC

N
0::

L»!
M

\O
\G

I)
45

b
-

.
{,4

Ln
L,n

Ln
x;

In
a.

..;.
a;

U1
\4

\J
Ln

U!
U“!

Cr
:3-

[3
L4

«b
-.l‘-~

4*
m

m
rag

a
r

[.1
L4

uz
r

v
n

n
u

a
I

z
n

c

c;n .1 .
,

I'Lf.

4
‘4

5
r

r
r

45
41

‘
_;x

'3
m

U:
1.,n

U1
U1

U1
U1

U1
U1

LJ

(3

a
n

n
:

§Q~1OO and CC—SOO.
Index

{on
10911:,"
Longjmp
LSEEKffi) move readwrite fiLe pointer . .
Lseek see SEEKtE)
maLLoc
HALLQCCBC) main memory aLLocator . .
memccpy

a. u -

memchr .
memcmp
memcpy
MEMORY(3C3 memory operations .
memset
mhtemp
MHTEHP(3C) make a
modf
OPENfiEJ open fiLe for reading or writing
OSerrno
perror
PERRORCEC) oystem error meesagea . . .
pow
printf
PRINTF(33) print formatted output
put:

a a a u n n n n u

unique {itename

u

.-

PUTC€38§ put character or word on a stream
putchar
puts
PUTSfi35) put a string on a stream
putw
READCE) read from fiLe
reaLLoc
rewind
scan?
SCANFfZS) convert formatted input
Eetbuf
SETBUFCES) aesign buffering to a steam
Betjmp
SETJHP<3C) nonLocaL goto
sin
SINCZNJ trigonometric functions
sinh
SINHCZH) hyperbotic functions
sprintf
Sort
ascent

a:

street
strchr
Strcmp .
gtrcpy
strespn

STDIOCSS) standard buffered inputoutput package

ND~60.214.01

a

88.
88.
6D.
34.
34.
54.
54.
56.
56.
56.
56.
56.
56.
58.
58.

30.
59.
59.
59.
88.
77.
_,
I

68.
68.
68.
7D.
7D.
68.
32.
54.
74.
81.
81.
85.
85.
60.
6D.
93.
93.
94.
94.
77.
85.
81.
63.
47.
I -v
*fr’.

4?.
47.
47.

109

110 QC~1OO and CC—SOO.
Index

STRINGKSC) string operations
strLen .
strncat .
strncmp .
strncpy .
strpbrk .
strrchr . 47.
strspn w
strtok . 47.
strtoL .
STRTOLCJC) convert string to integer SD.
swab . . u ..
SMAB€3CF swap bytes . 51.
syswerrList .
syswnerr . 5?.
tan . 93.
tanh . 94.
toascii . 47
toLower u
toupper a u 43.
unget: . 86
UNGETCCJSI push Character back into input steam Sé.
UNLINHCE) remove directory entry
UARARGSCS) variabLe argument List . u 51.

. . . . 47.
w

HRITE(3) write on a FiLe 33.
yD . 92.
yi . 92.
yn . 92.
_oxit . 3?.
mtOLOWEP .
wtoupper .

ND—60.214.01

*****fl-******** SEND US YOUR COMMENTS!!! **************

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don't you join the Reader’s Club and send us a
note? You will receive a membership card —— and
an answer to your comments.

Please let us know if you
" find errors
‘ cannot understand information
' cannot find information
' find needless information

Do you think we could improve the manual byrearranging the contents? You could also tell
us if you like the manual!

*.,.H***,.,**H HELP YOURSELF BY HELPING US!! HHHHHH

Manual name: CC 100 and CC 500 C Compiler ND 7100/500 Manual number: ND~60.214.01
User Manual

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual .7

Your name:
Date: _.___.____

Company:
Position:

Address:

NOTE! Send to:
This form is primarily for Norsk Data A.S ' _,_’,documentation errors Software and Documentation Departmentsystem errors should be reported on PO, Box 25, Bogerud Nor3k Data’s answer will be foundCustomer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
PO. Box 25, Bogerud
0621 OsloG, Norway

Systems that put people first

NORSK DATA A.S OLAF HELSETS VEI 5 PO. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 — 29 54 00 — TELEX: 18284 NDN

