User Manual
ND-60.214.01

CC-100 and CC-500
C-Compiler ND-100/500

,

CC-100 and CC-500
C-Compiler ND-100/500
User Manual

ND-60.214.01

NOTICE

The information i this document 1y subject to change without notice Norsk Data
A5 assumes no responsibility for any errors that may appear m thas dociment
Norsk Data A5 assumes no responstibity for the use or reliability of its soltware

on equipment that s not furnished or supported by Norsk Data A S
The information described in this document is protected by copynght. It may not
be photocopied, reproduced or translated without the prior consent of Norsk

Data A:S.

Copyright @ 1984 by Norsk Data A S

This manual s om loose feat torm for ease of updatmg Old pages may be
removed and new pages casdy msedted b the maonual s revised

e toose teal form also allows you to place the manual moa tng binder (A
for greater protection and convenience of use Bmmg bmders with 4 rings
corresponding to the holes in the manual may be ordered in two widths, 30
mm and 40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more
suitable for manuals of less than 100 pages than for large manuals. Plastic
covers may also be ordered below.

é“‘l /\M 1
\ T TR j _/ e
— o
':X NCRSK DATA AS
SR g i, B
& af i o (R
e e
Lﬂ

A Ring Binder B. Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Norsk Data A.S
Graphic Center

P.O. Box 25, Bogerud
0621 Oslo 6, Norway

ORDER FORM

I would like to order
Ring Binders, 30 mm, at nkr 20, per binder
...... Ring Binders, 40 mm, at nkr 25, per binder

...... Plastic Covers at nkr 10,- per cover

Company

Address

Printing

o

R/”e;sion 01

~ PRINTING RECORD

Notes

CC-100 and CC-500 C-Compilers for ND-100/500 User Manual
Publ.No. ND-60.214.01

0ee 000 000
s3e > »0555 5 @0
200 >0 € Norsk Data A.S
260 00660 290 .
oo %822 1443 Graphic Center

Norsk Da:tvé

P.O.Box 25, Bogerud
0621 Oslo 6, Norway

v

Manuals can be updated in two ways, new versions and revisions. New lversions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be
ordered as described below

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department

Norsk Data AS
P.O. Box 25, Bogerud)
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or {in Norway)
to:

Graphic Center
Norsk Data AS
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

Preface:
THE PRODUCT This manual covers the programming language C - or
perhaps more known as +the “UNIX" programming
language - as described in the book:

The C Programming Language
by
Brian W. Kernighan and Dennis M. Ritchie
Bell Telephone Laboratories, Incorporated
©1978
Prentice-Hall Software Series
ISBN 0-13-110163-3

This implementation is made by the University of
Luled, and IAR Systems AB, Sweden, in cooperation
with Norsk Data A.S.

The compiler and its accompanying libraries are
available for the ND-100 and the ND-500 computers,
running under the operating system SINTRAN III VSX
and 500/VsX.

Product numbers: ND-10760, for the ND-100, and
ND-10761, for the ND-500.

THE READER This manual is intended for the experienced
programmers, having either good knowledge of the C
language from the above mentioned publication, or
having good experience with the ND-computers and
system software.

PREREQUISITE KNOWLEDGE
The readers are expected to have extended
programming experience, good knowledge of
ND-computers and system utilities as editors and
program-linkage-loaders, as well as file-handling
and related topics.

RELATED MANUALS SINTRAN III Reference Manual ND-60.128
Symbolic Debugger ND-60.158
ND-100 ND Relocatable Loader (NRL) ND-60.066
ND-100 BRF-LINKER ND-60.196
ND-500 LOADER/MONITOR ND-60.136

© Copyright 1984 by Norsk Data A.S.

© Copyright 1984 by IAR Systems AB (ND-100 version)

ND-60.214.01

vii

TABLE OF CONTENTS

Section Page
1 The C Language. 1
1.1 Relocatable Libraries. . . 1
1.2 Standard Library Definitions Include Flles. 2
2 Sample Session. 5
3 Running CC-100/500. 7
3.1 Compiling ND-100 programs. 7
3.2 Loading ND-100 C programs. 8
3.3 Compiling ND-500 programs. 9
3.4 Loading ND-500 C programs. . 10
3.5 Using the SYMBOLIC DEBUGGER on ND SOO C programs. 11
3.5.1 How to Look At and to Set Values to Variables 12
3.5.2 Simple Variables 12
3.5.3 Pointers . 13
3.5.4 Character Strlngs 13
3.5.5 Arrays 13
3.5.6 Structures and Unlons 13
3.5.7 Bit Fields . 13
3.5.8 Enumeration Varlables 14
3.5.9 Variables in Inner Blocks 14
3.5.10 Pointers to functions 14
3.6 Compiler diagnostics. 15
4 The Command Line. 17
4.1 Startup functions ARGC and ARGV. 17
4.2 Redirection of standard Input and Output flles 17
5 Implementation Notes. 19
5.1 Identifiers. . 19
5.2 Data representatlon 19
5.3 Register declarations. 20
5.4 Include files. .. 20
5.5 Pre-defined "#define" symbols 20
) Deviations From Standard C. 21

ND-60.214.01

viii

Section Page
6.1 Unsigned values. 21
6.2 The “"void" data type. 21
6.3 Enumeration types. . 21
6.4 Structure and union a551gnments. 22
6.5 Static declarations. 22
6.6 Pre-processor directives. 23
7 CC-100/500 System and I1I/0 Library. 25
7.1 System and I/0 Libraries. . 25
7.2 System Calls and Error Numbers - INTRO(Z) 26
7.2.1 CREAT(2) - Create a New File or Rewrite an Exxotlng One 29
7.2.2 OPEN(2) - Open for Reading or Writing. 30
7.2.3 READ(2) - Read from File. 32
7.2.4 WRITE(2) -~ Write on a File. . 33
7.2.5 LSEEK(2) - Move Read/Write File Pornter 34
7.2.6 CLOSE(2) - Close a File Descriptor. 35
7.2.7 UNLINK(2) - Remove Directory Entry. 36
7.2.8 EXIT(2) - Terminate Program. e e 37
7.3 Standard I/0 Subroutines and Libraries - INTRO(3) 38
7.3.1 ABS(3C) - Return Integer Absolute Value. . . 41
7.3.2 ATOF (3C) - Convert ASCII String to Floating- Pornt Number. 42
7.3.3 CONV(3C) - Translate Characters. 43
7.3.4 CTYPE(3C) - Classify Characters. . 45
7.3.5 ECVT(3C) - Convert Floating-Point Number to Strlng 46
7.3.6 STRING(3C) - String Operations. . 47
7.3.7 STRTOL(3C) - Convert String to Integer 50
7.3.8 SWAB(3C) - Swap Bytes. 51
7.3.9 FREXP(3C) - Manipulate Parts of Floatlng P01nt Numbers 52
7.3.10 ISATTY(3C) - Find If File Is a Terminal. 53
7.3.1 MALLOC(3C) - Main Memory Allocator. 54
7.3.12 MEMORY (3C) - Memory Operations. 56
7.3.13 MKTEMP(3C) - Make a Unique Filename. 58
7.3.14 PERROR(3C) - System Error Messages. 59
7.3.15 SETIMP(3C) - Non-Local Goto. . 60
7.3.16 VARARGS(3) - Variable Argument LlSt . 61
7.4 Standard Buffered Input/Output Package - STDIO(3S) 63
7.4.1 GETC(3S) - Get Character or Word From Stream. 65
7.4.2 GETS(35) - Get a String From a Stream. . 67
7.4.3 PUTC(3S) - Put Character or Word On a Stream. 68
7.4.4 PUTS(38) - Put a String On a Stream. 70
7.4.5 FOPEN(3S) - Open a Stream. . 71
T.4.6 FREAD(3S) - Array Input/Output. 73
7.4.7 FSEEK({38) - Reposition a File Pointer In a Stream 74
7.4.8 FCLOSE(3S) - Close or Flush a Strean. 75
7.4.9 FERROR(35) - Stream Status Inquiries. 76
7.4.10 PRINTF(35) - Print Formatted Output. 77
7.4.11 SCANF (35) - Convert Formatted Input. 81
7.4.12 SETBUF(35) - Assign Buffering To a Stream. 85
7.4.13 UNGETC(38) - Push Character Back Into Input Stream 86

ND-60.214.01

Section Page
7.5 Mathematical Library Functions - INTRO(3M) o 87
7.5.1 EXP(3M) - Exponential, Logarithm, Power, Square root. 88
7.5.2 FLOOR (3M) - Absolute value, Floor, Ceiling Functions. 89
7.5.3 GAMMA (3M) - Log Gamma Function. 30
7.5.4 HYPOT (3M) -~ Euclidean Distance. 91
7.5.5 JO(3M) - Bessel Functions. . 92
7.5.6 SIN(3M) - Trigonometric Functions. 93
7.5.1 SINH(3M) - Hyperbolic Functions. 94
APPENDIX

A Appendix A: CC-500 Interfacing With Other Languages. 94
B Appendix B: CC-100 Interfacing with other languages. 98
c Appendix C: Summary of C syntax. 102
Index 107

ND-60.214.01

CC-100 and CC-500. 1
The C Language.

1 The C Lanquage.

The C programming language was developed at Bell ILaboratories and was
originally used to implement the UNIX operating system.

The reasons for using C for general purpose programming are several:

C combines high and low-level features which makes it a more
"complete" language than for example Pascal and FORTRAN.

Due to the language design it is relatively easy to make C compilers produce
efficient code so that assembly language will seldom be needed.

There 1s one (only one) recognized standard for the C language ("The C
Programming Language" by Kernighan and Ritchie).

Perhaps the most important feature of C is that it has proved to be a very

portable language, virtually independent of operating systems and CPU
wordlength.

This 1is more important than ever before since a good piece of software which
you may have invested several years of development in, is likely to ‘“survive"
changing hardware environments.

With CC-100/500 users of ND-computers can join the
rest of the computing wor!d, and that without
changing operating system, editor etc.!!
The name of the ND-100 and ND-500 C compiler is
@CC-100 and @CC-500

respectively.

1.1 Relocatable Libraries.

The relocatable libraries includes all system functions described in
7.

The CC-HEADER file pust be loaded prior to the user's object files,
and the libraries and TRAILER files afterwards. This is necessary to
set up the proper initialization and termination routines.

On the ND-100, the libraries are separated in 1- and 2-bank versions.
The default compiler option is 2-bank, hence all loading must use the
CC-2 library files. It is not allowed to mix 1- and 2-bank routines,
the NRL or BRF-LINKER will give an error nessage.

To compile in 1-bank mode, the compiler-option "-s" must be given.

ND-60.214.01

2 CC-100 and CC-500.

The C Language.

ND-100

CC-1HEADER-A:BRF 1-bank version header file

CC~1BANK-A:BRF 1-bank version library file
CC~1TRAILER-A:BRF 1~bank version +trailer file
CC-2HEADER-A:BRF 2-bank version header file

CC-2BANK-A:BRF 2-bank version library file
CC-2TRAILER-A:BRF 2-bank version trailer file

On the ND-500 there is only one mode, thus one set of library files
are necessary.

ND-500

CC-HEADER-A:NRF
CC-LIBRARY-A:NRF

1.2 Standard Library Definitions Include Files.

To get the proper symbols defined for the standard functions described
in 7 the source-program must contain at least once a

reference to the “header"-file, wusing the #INCLUDE "(file-name)"
preprocessor statement. Please observe that an header-file must only
be referred to once, otherwise duplication of symbols will occur.

Further, the name of the include-file must be enclosed either in a set
of arrow brackets, <(filename>; or a set of double quotes “filename".

The arrow-brackets will direct the compiler to locate the
include-files stored under the user C-INCLUDE, the double-quotes will
use the standard file-search function in the operating system: first
search among the files in the current user's own file-catalogue, if
not found there, the search continues at user SYSTEM.

The header files will have the filetype :H, and exist in both ND-100

and ND-500 versions. The compilers will automatically select the
proper kind.

The 1installation procedure described in Appendix C will store the
standard header-files under the user "C-INCLUDE".

The names of the standard header files and their funtions are:

ERRNO:H C runtime error number macro definitions.

STDIO:H A file containing I/0 macro definitions.

CTYPE:H Useful macro definitions like toupper, isalpha
etc.

MATH:H Declares external math functions.

FCNTL:H File control block used with the OPEN function.

ND-60.214.01

CC.100 and CC-500.
The C Language.

SETJMP:H

VARARGS:H

Functions for saving and restoring the stack
environment, useful for dealing with errors
and interrupts encountered in low-level
subroutines.

Macroes for writing portable procedures which
accepts a variable number of arguments.

These header files required for CC-500 only:

MEMORY : H

STRING:H

Memory allocation routines.

A collection of usefull string manipulations
functions.

ND-60.214.01

CC-100 and CC-500.

ND-60.214.01

CC-100 and CC-500.
Sample Session.

2 Sample Session.

In this section a small C program is compiled and loaded, showing both
the ND-100 and ND-500 procedure.

The program has been taken from the book previously mentioned, and
should be fairly typical of a program written in C.

It 1is assumed that the program has been stored in the file CAT:C

include <stdio.h>
main{ argc, argv) /* concatenate files */
int argc;
char *argv[];
{
int i;
char c;
FILE * fp;
1f(arge == 1)
{
printf("Usage: cat < file 1 > [< file 2 > 1").

printf(... [¢ file N > J\n");
exit();
}
for(i = 1; 1 < argc; ++i)

{
fp fopen(argv[1 7,
if(fp == NULL)
{

nru);

printf("Cannot open %s\n", argv[i]);
break;

)
while((¢

= getc(fp)) != EOF) putchar(c);
fclose(fp);

The program concatenates the contents of one or more files, to the
standard output device, the terminal. The name(s) of the file(s) must
be given on the command line, where also the output file may be
redirected using the >file option.

For ND-100: @cc-100 cat:c
@nrl
*prog-file "CAT"
*load cc-2header, cat, cc-2bank, cc-2trailer

*exit
@
For ND~500: n500:¢c-500 cat:c

ND-60.214.01

6 CC-100 and CC-500.
Sample Session.

n500:linkage-loader

nll:set-domain "cat"

nll:load-segment cc-header, cat, cc-library
nll:exit

n500:

To run the program give the command:
@cat cat:c or n500:cat cat:c

and see what happens (the program should print a copy of the file
CAT:C). Then try :

@cat n500:cat

And you should get the message "Usage : cat < file 1 > .. ."
indicating that the program is not activated the proper way.

@cat file

where "file" does not exist and the program will tell you that it has
failed to open the file "file".

To catenate several files into another file the command would look as

@cat file-a file-b file-c >file-abc

ND-60.214.01

CC-100 and €C-500.
Running CC-100/500.

3 Running CC-100/500.

3.1 Compiling ND-100 programs.

The ND-100 C compiler is invoked by:

@cc-100

[-flags] sourcefilename:C

Note: The source filename must have the extension ":C".

The currently implemented flags and their meaning are:

-b
-C
~-dSYM

~-dSYM=nn

~1i(DIR)

-1 FIL

-0 FIL

-~uSYM

Examples:

This (ND-100)
library mode
(OBJ)YATOB:BRF.

Compile in library mode.

Send comments through the preprocessor.
Define symbol SYM. Equal to: f#define SYM 1
Define symbol SYM Equal to: #define SYM nn
Suppress compiler warnings.

The compiler will only process macro definitions. The
result will appear on stdout.

Add directory (DIR) to "#include" search list.

A merged list of the C program and the corresponding
assembly code is written onto the file FIL:LST. ND-100
only.

The file FIL:BRF will receive the object code instead
of the default sourcefile:BRF

Compile in single bank mode. ND-100 only.

Undefine symbol SYM. Only useful for disabling the
predefined symbols (SIN3 or ND_100/ND500) .

@CC-100 -B -0 (OBJ)ATOB ATOB:C

example shows a compilation of the file ATOB:C in
and the objeci code is vedirected +to the file

If the object-file does not exist, it will be created using the same
name as the source-file, but with the file-type :BRF.

ND-60.214.01

8 CC-100 and CC-500.
Running CC-100/500.

3.2 Loading ND-100 C programs.

The code produced by CC-100 can be made into :PROG files by using NRL
or BRF~LINKER.

Below is the sequence to use:

@NRL

*PROG-FILE <your own :PROG file)
*LOAD CC-?HEADER-A

*LOAD <your own files)

*LOAD CC-?BANK-A

*LOAD CC-?TRAILER

*EXIT

Note that the question mark ("?") denotes that this character should
be either "1" or "2" depending on if one or two-bank code has been
generated.

Note that one-bank code is generated by activating the "-s" command
line option at compile-time.

The size of the heap (for "malloc” and "free") is by default set to
30000B but can also be manually set in @NRL by using:

*DEFINE HHEAPZ <(value>

Note that this must be done before loading takes place!

The size of the run-time stack is:

i

1-bank load: {(stacksize) (lowest COMMON address) - HHEAPZ -

<highest load address)
2-bank load: <(stacksize) 1777778 - #HEAPZ -
<highest data load address)

i

ND-60.214.01

CC-100 and CC-500.
Compiling ND-500 programs.

3.3 Compiling ND-500 programs.

The ND 500 C compiler is invoked by:
n500:CC-500 [-flags] sourcefilename:C
Note: The source filename must have the extension “:C".
The currently implemented flags and their meaning are:
~-b Compile in library mode.

- Send comments through the preprocessor.

~dSYM Define symbol SYM. Equal to: f#idefine SYM 1

-dSYM=nn Define symbol SYM Equal to: fidefine SYM nn

~W Suppress compiler warnings.

-e The compiler will only process macro definitions. The

result will appear on stdout.

-1(DIR) Add directory (DIR) to "f#include" search list.

-0 FIL The file FIL:NRF will receive the object code instead

of the default sourcefile:NRF.

-uSYM Undefine symbol SYM. Only useful for disabling the
prededined symbols (SIN3 or ND_100/ND500).

-1 Compile the program and leave the assembler language
output on a <corresponding file with
ND-500 only.

~-g Compile in debug mode. ND-500 only.

extension

This (ND-500) example shows a compilation of the file ATOB:C where the

code will be put on the file ATOB:NRF

n500:CC-500 ATOB:C

If the object-file does not exists, it will be created using the same

name as the source-file, but with the file-type :NRF.

ND-60.214.01

10 CC-100 and CC-500.
Compiling ND-500 programs.

3.4 Loading ND-500 C programs.

The code produced by CC-500 can be made into executable domains by
using the ND-500 LINKAGE-LOADER.

Below is the sequence to use:

n500: LINKAGE-LOADER

NLL: SET-DOMAIN "Your execute domain"
NLL: LOAD-SEGMENT CC-HEADER-A

NLL: LOAD-SEGMENT <(Your own files>
NLL: LOAD-SEGMENT CC-LIBRARY-A

NLL: END-DOMAIN

NLL: EXIT

The size of the heap {for "malloc" and “"free") is by default set to
50000B but can also be manually set in LINKAGE-LOADER by using:

*DEFINE-ENTRY HEAP <(size> D

Note that this must be done before loading CC-LIBRARY!

The size of the run-time stack is by default set to 50000B but can
be changed in the same way as the HEAP:

*DEFINE-ENTRY STACK (size> D

ND-60.214.01

CC-100 and CC-500. 11
Using the SYMBOLIC DEBUGGER on ND-500 C programs.

3.5 Using the SYMBOLIC DEBUGGER on ND-500 C programs.

On the ND-500 the debug information 1is generated by the compiler
option '-g'

-g'.

The loading sequence is the same as in the previous example.

The following little program will be referenced to in the debugging
examples:

/* print Fahrenheit-Celsius table for f= 0, 20, ... 300 */
main () {

int lower, upper, step;

float fahr, celsius;

lower = 0O; /* lower limit of temp table*/
upper = 300; /* upper limit of temp table*/
step = 20; /* increment step size x/
fahr = lower;

while (fahr (= upper) f{
celsius= (5.0 / 9.0) * (fahr - 32.0);
printf("%4.0f %6.1£\0", fahr, celsius;
fahr = fahr + step;
}

NB The example does not intend to demonstrate the elegance of a C
program, but is just simple enough to be wused for the debugging
purpose. (The program is taken from the book " The C Programming
Language" mentioned in the preface of this manual).

ND-60.214.01

12 €C-100 and CC-500.

Using the SYMBOLIC DEBUGGER on ND-500 ¢ programs.

After compiling and loading the program, then the debugger 1is
activated by:

1] n500:DEBUGGER <(program’

2| ND500 SYMBOLIC DEBUGGER VERSION

3] START AT 01000000004B

4] *break 13

5] *run

6| BREAK AT MAIN.13

71 *display

8] LOWER = O UPPER = 300 STEP = 20 FAHR = 0.0

9! CELSIUS= -7.13053E+29

10} *continue

111 0 -17.8

121 BREAK AT MAIN.13

13} *display celsius

141 CELSIUS = -1.77778E+01

151 *exit

16] n500:

line 1 activates the DEBUGGER with the user domain

4 sets a BREAK-POINT at line no 13 in the source file,
5 starts execution,
6 the Debugger informs that the line has been reached,
7 give the command to display all local variables,
10 continue execution,
11 output from the progranm,
12 the break-point has been reached again,
13 now, display only the variable CELSIUS,
14 the full f1.pt format is shown.
15 terminate the DEBUGGER

3.5.1 How to Loock At and to Set Values to Variables

The command "display" without arquments shows all variables and
parameters of the scope you currently visit. Also, the values of
simple variables are shown. You can access all global variables by
name, even when you are inside functions.

You will get into problems if you have two or more names that differ

only in letter cases, because the debugger makes no difference between
lower and upper case characters.

3.5.2 Simple Variables

Assumed: char count, letter;

display coun! Jlottor Show values
set count = -15 Set value
display addr (count) Show address

ND-60.214.01

CC-100 and CC-500.
Using the SYMBOLIC DEBUGGER on ND-500 C programs.

3.5.3 Pointers
Assumed: char *letterp = &letter;

It is not possible to use some C conventions, as letterp[0], *letterp,
&letterp, &letter, and ind (letterp + 1).

display letterp Show value of letterp
display ind (letterp) Show value of letter
set ind (letterp) = fa Set value of letter to 'a'

3.5.4 Character Strings

Assumed: char *message = 'now is the time';

There isn't today any convenient way, in the debugger, to look at a
string pointed to by the *message.

display ind(message) Show the value 'n°’

display ind{message + 1) This is illegal!

look-at-data ind(message) Show the first part of string
3.5.5 Arrays

Assumed: 1int mat [10,10], vec[10];
It is not possible to treat matrix and vector names as pointers.

display mat, vec Show all element values
display mat[5,2], vec[9] Show element values

3.5.6 Structures and Unions

Assumed: struct { char ch; int 1 } s;

display s Show all values
set s.1 = 226 Set one of the values

3.5.7 Bit Fields
Assumed: struct { unsigned f3: 3; f16: 16; } bf;

display bf Show all values
set bf.f16 = 226 Set one of the values

ND-60.214.01

14 CC-100 and €C-500.
Using the SYMBOLIC DEBUGGER on ND-500 ¢ programs.

3.5.8 Enumeration Variables
Assumed: enum { black, green, white } colour;

display colour Show value
set colour = white Set value

3.5.9 Variables in Inner Blocks

Assumed: { int chcount; chcount = ... }

In the current version of the debugger, the inner blocks of functions
hae no scope of their own, Therefore, there are only two 1levels of
scope; global scope and function scope. When inside functions, all the
variables of the function are available for inspection and change.

To reduce the possibility of duplicate names, the variables of the
inner block will be suffixed with a hashmark (#) and the 1line number
where the block begins. (The remaining possible problem, is the rare
case when two different inner block variables with the same names are
declared on the same line).

display count#125 Show value of a typical inner
block variable

3.5.10 Pointers to functions
Assumed: int (*funcp)();

display funcp Show start address of the
routine that funcp points to

ND-60.214.01

CC- 100 and CC-500.
Compiler diagnostics.

3.6 Compiler diagnostics.

There are three kinds of error messages from the compiler:

Warnings: the compiler warns you that a construction is "dangerous" 1n
some way.

Try for example to compile a program where a character is added to a
pointer. If you know what you are doing it might be OK to run the
program, but on the other hand it might not. Warnings can be
suppressed by giving the "-w" option when invoking the compiler.

Errors: these are ordinary errors and in most cases the compiler will
tell you what is wrong.

Compiler errors: if the compiler enters never-never-land in its
attempt to compile some strange constructions it will tell you what
went wrong, perhaps suggest some code modification, and abort.

If a compiler error occurs before any other type of error has been
encountered please take a copy of vyour source program, add a
description of the error message and send it to the nearest technical
support center.

ND-60.214.01

16

ND-60.214.01

CC-100 and CC-500.

CC-100 and CC-500.
The Command Line.

4 The Command Linhe.

When starting a C program, the command line (the contents after
@<{prog-name>) is handled to almost standard UNIX format.

4.1 Startup functions ARGC and ARGV.

The main routine is called on by the startup facility with parameters
"argc", "argv" where argc is the number of items on the command line
(the command name included), and argv is a pointer array where the
pointers points to the "item strings" on the command line. Argvl 1]
is a pointer to the first parameter, argv[2] to the second and so
on. The difference compared to UNIX is that argv[O] points to the

entire command line not to the command name, because SINTRAN “"eats"
the command name.

4.2 Redirection of standard Input and OQutput files.

Redirection of 1I/0, <(input-file-name and Youtput-file-name is also
possible. Default file type is :SYMB. If the output file referenced
does not exist it will be created automatically as a :SYMB file.
Example: Assume program name is PROG.

@PROG (lnput redirects the program to read from the file
named INPUT:SYMB instead of the terminal.

@PROG >output:data redirects the program to write data to the file
named OUTPUT:DATA, instead of the terminal.

ND-60.214.01

18

ND-60.214.01

CC-100 and CC-500.

CC-100 and CC-500. 19
Implementation Notes.

5 Implementation Notes.

5.1 Identifiers,
In the ND-100 C compiler internal identifiers have 12 significant
characters while the ND-500 version has 30 significant characters.

For external names the ND-100 version limits the number of significant
characters to 7, and no distinction is made between upper and
tower-case during linkage.

5.2 Data representation.

The various data types have the following length:

CC-100 CcC-500
char 16 bits [1] 8 bits
short 16 bits 16 bits
int 16 bits 32 bits
enun 16 bits 32 bits
unsigned 16 bits 32 bits
unsigned char 16 bits 8 bits
unsigned short 16 bits 16 bits
long 32 bits 32 bits
unsigned long 32 bits 32 bits
float 48 bits 32 bits
double 48 bits [2] 64 bits
pointers 16 bits 32 bits

[1] Characters are stored as integers in main memory but are truncated
to 8 bits when written onto files or streams.

(2] Doubles and floats are considered as equivalent in this
implementation because of efficiency reasons. (ND-100 does not have
double precision arithmetic in the hardware.)

ND-60.214.01

20 CC-100 and CC-500.
Implementation Notes.

5.3 Register declarations.

Register declarations are permitted although they are immediatly
converted to auto.

5.4 Include files.

Include (#include) files have similar syntax compared to UNIX and CP/M
implementations (i.e. ‘“name.ext" is automatically converted to
"NAME:EXT") in order to increase portability between ND and other
computers.

Include files must as under UNIX be surrounded by angle brackets or
double quotes.
These characters have the following meaning for CC-100/500:

“file" =) Search for: FILE

(file> =) ND-100: Search for: (C-INCLUDE)100-FILE
ND-500: Search for: (C-INCLUDE)}500-FILE

5.5 Pre-defined "#define” symbols,

When CC-100 is started an implicit declaration of “#define ND_100" and
"#define SIN3" is performed whereas CC-500 define the symbols ND500
and SIN3.

This feature can be used in conjunction with "#ifdef" to enhance
portability of the source code.

ND-60.214.01

CC-100 and €CC-500.
Deviations From Standard C.

6 Deviations From Standard C.

Probably the best C Reference manual available is the afore-mentioned
“The C Programming Language". Since the publication of that book back
in 1978, a number of small changes have been made to C. Some of these

are described in a one-page Bell document distributed with UNIX
Version 7 and UNIX System III.

This section briefly describes these changes as well as some
particular deviations in this implementation.

6.1 Unsigned values.

An addition to the original C definition is that the reserved word
"unsigned" may also be used on char, short and long variables.

6.2 The "void" data type.

The purpose of the void data type is to declare that a function does
not generate any return-value;

void funcname(a,b,c)

6.3 Enumeration types.

The enumeration type is an unique data type borrowed from Pascal.
Enumeration types are used to get automatic sequencing of named
constants, and by using casts they can be used in expressions.
Probably the best use of the enumeration type is in switch-statements.
The syntax reassembles that of a structure or union declaration.

enum car { saab, pontiac, mercedes }:

Establishes an enumeration type “car" with values “saab", “pontiac" and
"mercedes", with values O, 1 and 2 respectively.

Declares that vehicle is a car,
enum car vehicle, *vp; and vp points to one.

ND-60.214.01

21

22 CC-100 and CC-500.

Deviations From Standard C.

1f(vehicle == saab) vehicle = mercedes;
vp = &vehicle;

These are thus two valid statements. As with structures and unions,
the enumeration type need never be named explicitly. Normally, the
constants begin at O and increase by 1; a name followed by "=" and a
constant is given that value, and the progression continues from the
assigned value. The names of enumerations in the same scope must all
be distinct from each other and from the names of ordinary variables;
in this way they are different from structures and unions.

6.4 Structure and union assignments.

Structures and unions may be assigned to one another as long as both
sides of the assignment are of the same type. They may also pe passed
as arqguments to functions and returned as function values. Thus the
expression to the left of the dot need no longer be a lvalue; it may
also be a function returning a structure or union.

6.5 Static declarations.

The ND-100 implementation of the C language requires that the storage
class "static" is known by the compiler when a static identifier is
referenced.

This is easily solved by using "forward" declarations of functions
that appear later in the file (which also conforms to the C standard):

static foo(); /* Forward declaration of "foo" */

main()
{
foo(); /* Reference to “"foo" */
}

static foo()
{
/* Body of "foo" */
}

ND-60.214.01

CC-100 and CC-500.
Deviations From Standard C.

6.6 Pre-processor directives,

Both compilers have implemented the standard pre-processor directives
as described in "The C programming language", that is:

fidefine identifier token-string
fidefine identifier(identifier, ... ,identifier) token-string

fundef identifier

#include "filename”
#include <filename>

#if constant-expression
#ifdef identifier
#ifndef identifier
felse

ftendif

#line constant identifier

ND-100 special:

flstcod <+|->

The 1stcod directive has been included to aid debugging of C programs

as well as the compiler itself. “#lstcod +" activates a list of the
generated code in mnemonic form whereas "# lstcod -" disables this
listing.

Note that this directive is a counting one (i.e two "# lstcod -"
needs two or more "# lstcod +" to enable listing again. Also note that
the "~-1 FIL" command line option performs an implicit “# lstcod +".

ND-60.214.01

23

24

ND-60.214.01

CC-100 and CC-500.

CC-100 and CC-500.
CC-100/500 System and I/0 Library.

7 CC-100/500 System and I/0 Library.

7.1 stem and I ib ies.

The C language does not include Input and Output statements as a part
of the language, but relies on a set of functions to be called upon to
perform such operations.

The CC-100/500 1/0-libraries contain most UNIX standard functions, and
on the following pages there is a list of the available functions
documented in the form they usually are on a UNIX system.

The number in parenthesis after each function name 1is actually
referring to the name of the chapter in the UNIX programmer's guide
(System V). NB ! Not a part of this manual.

The heading NAME contains the names of the functions described, in
some cases several related functions are described on the same page.

The heading SYNOPSIS gives the declarations of the number of arguments
and their types in functions described, as it appears in the #include
file <stdio.h>. In some cases the name of a special #include file is

specified, containing the definitions that must be declared in the
user program before refering to the actual function.

The heading DESCRIPTION gives an explanation of the function(s)
described, legal values of arguments, and the results expected.

The heading RETURN VALUE explains the type of result to be expected by
the function that is called; and if not successful executed, the error
name and a short explanation of the cause of failure. The error name

refers to the list of names defined in the include file <errno.h)>. See
explanation in section INTRO(2) on page 26.

In the headings DIAGNOSTICS and NOTES some special precautions and
particularities of the functions are explained.

ND-60.214.01

26 CC-100 and CC-500.
System Calls and Error Numbers - INTRO(2).

7.2 gystem Calls and Error Numbers - INTRO(2).

SYNOPSIS #include <errno.h>

LIST OF FUNCTIONS
Name Appears on Pagde Description

close close(2) 35 Close a File Descriptor
creat creat(2) 29 Create a New file, or Rewrite Existing

exit exit(2) 37 Terminate Program

lseek lseek(2) 34 Move Read/Write File Pointer
open open{2) 30 Open for Reading or Writing
read read(2) 32 Read from File

unlink unlink(2) 36 Remove Directory Entry
write write(2) 33 Write on a File
_exit exit(2) 37 Terminate Program without Cleanup

DESCRIPTION

The following sections describes all of the system calls available
in the relocatable library-files.

Most of these calls have one or more error returns. An error
condition is indicated by an otherwise impossible returned value.
This is almost always -1; the individual descriptions specify the
details.

An error number is also made available in the external variable
errno, and if the operating system has indicated an error code
this is made available in the external variable QSerrno (otherwise
OSerrno is cleared whenever errno is set).

Errno 1s not cleared on successful calls, so the error numbers
should be tested only after an error has been indicated.

All of the possible error numbers are not listed in each system
call description because many errors are possible for most of the
calls.

The following 1is a list of the errno error numbers that are used
in this implementation, and their names as defined in <errno.h).
For the QSerrno error codes, please consult the documentations of
the operating system.

1 EPERM Not ownerx
Typically this error indicates an attempt to modify a file
in some way forbidden by the file protection system of the
operating system.

2 ENOENT No such file or directory

This error occurs when a file name is specified and the

ND-60.214.01

CC-100 and_CC-500.

System Calls and Error Numbers INTRO(2).

12

13

17

22

23

24

21

33

34

file should exist but doesn't.
EIO I/0 error
Some physical I/0 error occured during a read or write.

This error may in some cases occur on a call following
the one to which it actually applies.

EBADF Bad file number
Either a file descriptor refers to no open file, or a
read (resp. write) request is made to a file which is
open only for writing (resp. reading).

ENOMEM Not enough space

A program asks for more space than the system is able
to supply (used internally by malloc(3C)).

EACCES Permission denied

An attempt was made to access a file in a way forbidden by
the protection systen.

EEXIST File exists

An existing file was mentioned in an inappropriate context.
EINVAL Invalid argument

Some invalid argument (e.g., reading or writing a file for
which lseek has generated a negative pointer). Also set by
the functions in the math package (3M).

ENFILE File table overflow

The system's table of open files is full, and temporarily no
more gpens can be accepted.

EMFILE Too many open files

The open-file-count 1limit of the operating system has been
reached.

EFBIG File too large

The file tried to grow past a file space limit of the file
system.

EDOM Math arqgument

The argument of a function in the math package (3M) is out
of the domain of the function.

ERANGE Result too large

ND-60.214.01

27

28 CC-100 _and CC-500.

System Calls and Error Numbers - INTRO(2).

The value of a function in the math package (3M) is not
representable within machine precision.

DEFINITIONS Unless specifically stated otherwise, the null file name
is treated as if it named a non-existent file.

SEE ALSO intro(3).

NOTE The system calls gpen and unlink in this implementation
accept the usual SINTRAN III abbreviations of file names.
This 1s non-standard, and the use thereof might decrease
the portability of programs.

ND-60.214.01

CC-100 and CC-

CREAT(2)

7.2.1 CREAT(2)

500.
- Create a New File or Rewrite an Existing One.

- Create a New File or Rewrite an Existing One.

NAME creat

SYNOPSIS

DESCRIPTION

[EACCES]

[EACCES]

[EMFILE]

[ENOENT]

RETURN VALUE

SEE ALSO

int creat (file, mode)
char *file;
int mode;

Creat creates a new ordinary file or prepares to rewrite
an existing file named by the file name pointed to by
file.

The file name must not be abbreviated. If no file type is
given, type SYMB is assumed.

Mode is not used in this implementation. 0644 is a common
standard value of mode in most UNIX implementations.

If the file wexists, the length is truncated to O.
Otherwise, the file is created.

Upon successful completion, a non-negative integer,
namely the file descriptor, is returned and the file 1is
open for writing. The file pointer 1is set +to the
beginning of the file. No program may have more than 20
files open simultanecusly.

Creat will fail if one or more of the following are true:

The file does not exist and the directory in which the
file is to be created does not permit writing.

The file exists and access permission is denied.

Twenty (20) file descriptors are currently open or some
open-file-count limit in the operating system is
exceeded.

Error in some component of the file name.

Upon successful completion, a non-negative integer,
namely the file descriptor, is returned. Otherwise, a

value of -1 is returned and errno is set to indicate the
error.

close(2), lseek(2), open(2), read(2), write(2).

ND-60.214.01

29

30

CC-100 and CC-500.

OPEN(2) - Open for Reading or Writing.

7.2.2 OPEN(2) - Open for Reading or Writing.

NAME open

SYNOPSIS fiinclude <fcntl.h>
int open (file, oflag [, mode])
char *file;
int oflag, mode;

DESCRIPTION File points to a file name naming a file. The name may
be abbreviated i1f the oflag O_CREAT is not given. If no
file type is given, type SYMB is assumed.

Open opens a file descriptor for the named file and sets
the file status flags according to the value of oflag.
Oflag values are constructed by or-ing flags from the
following list (of the first three flags below, exactly
one must be used):

O_RDONLY Open for reading only.

0_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_APPEND If set, the file pointer will be set to the end of the
file prior to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise,
the file is created and a value may be given to mode.
This value 1is ignored in this implementation. The file
name must not be abbreviated (in combination with this
flag only).

O_TRUNC If the file exists, its length is truncated to O and the
mode and owner are unchanged.

0_EXCL If O_EXCL and O_CREAT are set, open will fail if the file

RETURN VALUE

ERROR CODES

exists.

Upon successful completion, a non-negative integer,
namely a file descriptor, 1s returned.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

The file pointer used to mark the current position within
the file is set to the beginning of the file.

No program may have more than 20 file descriptors open
simultaneously.

The named file 1is opened unless one or more of the

ND-60.214.01

CC--100 and CC-500. 31

OPEN(2)

[ENOENT]
[EACCES]
[ENFILE]

[EMFILE]

[EEXIST]
[ENOENT]

[ENOENT]

SEE ALSO

- Open for Reading or Writing.

following are true:

O_CREAT is not set and the named file does not exist.
Oflag permission is denied for the named file.

Twenty (20) file descriptors are currently open.

Some open-file-count 1limit in the operating system is
exceeded.

O_CREAT and O_EXCL are set, and the named file exists.
Error in some component of the file name.

O_CREAT is not set, and there are more than one file name
with the given file name as abbreviation.

close(2), creat(2), lseek(2), read(2), write(2).

ND-60.214.01

32 ; CC-100 and CC-500.
READ(2) - Read from File.

7.2.3 READ(2) ..~ Read from File,

NAME read

SYNOPSIS int read (fildes, buf, nbyte)
int fildes;
char *buf;

unsigned nbyte;

DESCRIPTION Fildes is a file descriptor obtained from a creat or open
system call.

Read attempts to read nbyte bytes from the file
associated with fildes into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a
position in the file given by the file pointer associated
with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from
the current position. The wvalue of a file pointer
associated with such a file 1s undefined.

Upon successful completion, read returns the number of
bytes actually read and placed in the buffer; this number
may be less than nbyte if the number of bytes left in the
file is less than nbyte bytes. A value of Q0 is returned
when an end-of-file has been reached.

When reading from the terminal, the following characters
have a special meaning:

ctrl-@ -~ End-of-file

ctrl-A - Remove previous character in line.
ctrl-Q - Clear the current line.

ctrl-R - Rewrite the line as it now looks.

RETURN VALUE Upon successful completion a non-negative integer is
returned indicating the number of bytes actually read.

Otherwise, a -1 is returned and errno is set to indicate

the error.
[EBADF] Fildes is not a valid file descriptor open for reading.
SEE ALSO creat(2), open(2).

ND-60.214.01

CC-100 and CC-

WRITE(2)

7.2.4 WRITE(2)

500.
- Wrile on a File.

- Write on a File.

NAME write

SYNOPSIS

DESCRIPTION

[EBADF]

LEFBIG]

RETURN VALUE

SEE ALSO

int write (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Fildes is a file descriptor obtained from a creat or open
system call.

Write attempts to write nbyte bytes from the buffer
pointed to by buf to the file associated with the fildes.

On devices capable of seeking, the actual writing of data
proceeds from the position in the file indicated by the
file pointer. Upon return from write, the file pointer
is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes
place starting at the current position. The value of a
file pointer associated with such a device is undefined.

If the file was opened with the O_APPEND flag, the file
pointer will be set to the end of the file prior to each

write.

ite will fail and the file pointer will remain
unchanged if one or more of the following are true:

Fildes is not a valid file descriptor open for writing.

An attempt was made to write a file that would exceed a
space limit of the file systen.

Upon successful completion the number of bytes actually
written is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

creat(2), lseek(2), open(2).

ND-60.214.01

33

34

7.2.5 LSEEK(2)

CC-100 and CC-500.
LSEEK(2) - Move Read/Write File Pointer.

- Move Read/Write File Pointer.

NAME lseek

SYNOPSIS

DESCRIPTION

RETURN VALUE

[EBADF]
[EINVAL]

[EINVAL]

SEE ALSO

long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

Fildes is a file descriptor returned from a creat or open
system call. Lseek sets the file pointer associated with
fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set +to its current
location plus offset.

If whence is 2, the pointer is set to the size of the
file plus offset.

Upon successful completion, the resulting pointer
location as measured in bytes from the beginning of the
file is returned.

Lseek will fail and the file pointer will remain
unchanged if one or more of the following are true:

a non-negative integer indicating the file pointer value
1s returned.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

Fildes is not an open file descriptor.
Whence is not O, 1 or 2.
The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the
file pointer associated with such a device is undefined.

creat(2), open(2).

ND-60.214.01

CC-100 and CC-

CLOSE(2)

7.2.6 CLOSE(2)

500.
- Close a File Descriptor.

- Close a File Descriptor.

NAME close

SYNOPSIS

DESCRIPTION

RETURN VALUE

[EBADF]

SEE ALSO

int close (fildes)
int fildes;

Fildes is a file descriptor obtained from a creat or
open system call. Close closes the file descriptor
indicated by fildes.

Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

Close will fail if fildes is not a valid open file
descriptor.

creat(2), open(2).

ND-60.214.01

35

36 CC-100 and CC-500.
UNLINK(2) - Remove Directory Entry.

7.2.7 UNLINK(2) - _Remove Directory Entry.

NAME unlink

SYNOPSIS int unlink (file)
char *file;

DESCRIPTION Unlink removes the directory entry named by the file name
pointed to by file. The name may be abbreviated.

The named file is unlinked unless one or more of the
following are true:

[ENOENT] The named file does not exist.

{ EACCES] The file is open, or removal permission is denied for the
named file.

[ENOENT] There are more than one file name with the given file
name as abbreviation.

[ENOENT] Error in some component of the file name.
RETURN VALUE ©Upon successful completion, a value of 0 is returned.

Otherwise, a value of -1 is returned and exrrno is set to
indicate the error.

SEE ALSO close(2), open(2).

ND-60.214.01

CC-100 and CC-500. 37

EXIT(2)

7.2.8 EXIT(2)

- Terminate Program.

- Terminate Program.

NAME exit, _exit

SYNOPSIS

DESCRIPTION

void exit (status)
int status;

void _exit (status)
int status;

Exit terminates the calling program with the following
consequences:

All of the file descriptors open in the calling program
are closed.

The C function exit may cause cleanup actions before the
program exits. The function _exit circumvents all
cleanup.

ND~-60.214.01

38

7.3 Standard 1/0 Subroutines and Libraries

CC-100 ahd CC-500.
Standard I/O0 Subroutines and Libraries - INTRO(3)

- INTRO(3)

SYNOPSIS

finclude <(stdio.h)

LIST OF FUNCTIONS

Name Appears on Page Description

abs abs(3C) 41 Return Integer Absolute Value

atof atof (3C) 42 Convert ASCII string to Float.-Point Value
atol strtol(3C) 50 Convert String to Integer, Base 10

atol strtol(3C) 50 Convert String to Long Integer, Base 10
calloc malloc{(3C) 54 Main Memory Allocator, gives zeroed mem.space
ecvt ecvt{3C) 46 Convert F1l.Pt Number to string

errno perror(3C) 59 Error Number

fcevt ecvt(3C) 46 Convert F1.Pt Number to Fortran F-format
free malloc(3C) 54 Main Memory Allocator, Free Block

frexp frexp(3C) 52 Manipulates Parts of F1.Pt Numbers

gcvt ecvt(3C) 46 Convert Fl.Pt Number to Fortran F or E-format
isalnum ctype(3C) 45 Classify if Char is Alphanumeric

isalpha ctype(3C) 45 Classify if Char is Letter

isascii ctype(3C) 45 Classify if Char is Ascii

isatty isatty{(3C) 53 Find if File is a Terminal

iscntrl ctype(3C) 45 Classify if Char is Control Char

isdigit ctype(3C) 45 Classify if Char is Digit

isgraph ctype(3C) 45 Classify if Char is Printable except Space
islower ctype(3C) 45 Classify if Char is Lowercase

isprint ctype{3Q) 45 Classify if Char is Printable

ispunct ctype(3C) 45 Classify if Char is Punctuation char
isspace ctype(3C) 45 Classify if Char is Space {blank)
isupper ctype(3C) 45 Classify if Char is Uppercase

isxdigit ctype{3C) 45 Classify if Char is Hex Digit

ldexp frexp(3C) 52 Manipulates Parts of F1.Pt Numbers
longjmp setjmp(3C) 60 Restore Stack Environment

malloc malloc(3C) 54 Main Memory Allocator, gives mem.space
memccpy memory(3C) 56 Memory Operations, Copy until Char
memchr memory{3C) 56 Memory Operations, Find Char in String
memcmp memory(3C) 56 Memory Operations, Compare

memncpy memory(3C) 56 Memory Operations, Copy Char

memset memory(3C) 56 Memory Operations, Set Chars

mktemp mktemp(3C) 58 Make Unique File Name.

modf frexp(3C) 52 Manipulates Parts of F1.Pt Numbers
OSernno perror(3C) 59 Operating System Error Number

perror perror(3C) 59 Print Error Message on stderr

realloc malloc(3C) 54 Main Memory Allocator, Change Size
setjmp setjmp(3C) 60 Save Stack Environment

strcat string(3C) 47 Appends a Sting to another String

strchr string(3C) 47 Find First Occurence of Char

stremp string(3C) 47 Compare two Strings

strcpy string{3C) 47 Copy Strings

strcspn string(3C) 47 Find Number of Non-Matching Chars

strien string(3C) 47 Return Length of String

strncat string{3C) 47 Appends a Sting of N char to another
strncmp string(3C) 47 Compare two Strings of N chax

ND-60.214.01

CC~100 and CC--500

Standard I/0 Subroutines and Libraries -~ INTRO(3)

strncpy string(3C) 47 Copy Strings of N char

strpbrk string(3C) 47 Find Position of First Matching Char
strrchr string(3C) 47 Find Last Occurance of Char

strspn string(3C) 47 Find Number of Matching Chars

strtok s5tring(3C) 47 Return Tokens from String

strtol strtol(3C) 50 Convert String to Long Integer

swab swab{3C) 51 Swap Bytes

sys_errlist

perror(3C) 59 Error Message Table
5ys5_nerr perror(3C) 59 Largest Error Number in Error Table

toascii conv(3C) 43 Translate Characters to Ascii

tolower conv(3C) 43 Translate Characters to Lowercase

toupper conv{(3C) 43 Translate Characters to Uppercase

varargs varargs(3) 61 Variable Argument List

_tolower conv(3C) 43 Translate Characters to Lowercase (macro)
_toupper conv{3c) 43 translate characters fo uppercase (macro)
DESCRIPTION This section describes functions found in various

(3C)

(3M)

DEFINITIONS

character

null-character

libraries, other than those functions that directly
invoke operating system primitives, which are described
in Section 2 of this library documentation. Certaln
major collections are identified by a letter after the
section number:

These functions, together with those of Section 2 and
those marked (3S), constitute the Standard ¢ Library.
Declarations for some of these functions may be obtained
from #include files indicated on the appropriate pages.

These functions constitute the Math Library. Declarations
for these functions may be obtained from the #include
file <math.h>.

These functions constitute the "standard I/0 package"
(see 5tdio(3S)). These functions are in the Standard C
Library already mentioned. Declarations for these
functions wmay be obtained from the finclude file
<{stdio.h>.

is any bit pattern able to fit into a
byte on the machine.

is a character with value O,
represented in the ¢ language as
"\NO'.

character array is a sequence of characters.

null-terminated character array 1s a sequence of characters, the last

string

of which is the null character.

is a designation for a null-
terminated character array.

ND-60.214.01

39

40 CC-100 and CC-500.

Standard I/0 Subroutines and Libraries - INTRO(3)
null-string is a character array containing only
the null character.

NULL pointer 1s the value that 1is obtained by
casting O into a pointer.

The C language guarantees that this value will not match
that of any legitimate pointer, so many functions that
return pointers return it to indicate an error. NULL is
defined as 0 in (stdio.h)>; the user can include his own
definition if he 1s not using <stdio.h>.

SEE ALSO intro(2), stdio(3s).
NOTE The functions fopen and freopen(3S) in this
implementation accept the usual SINTRAN III abbreviations

of filenames. This is non-standard, and the use thereof
might decrease the portability of programs.

ND-60.214.01

CC-100 and CC-500.

ABS(3C)

7.3.1 ABS(3C)

- Return Integer Absolute Value.

- Return Integer Absolute Value.

NAME abs

SYNOPSIS

DESCRIPTION

NOTES

int abs (1)

int 1;

Abs returns the absolute value of its integer operand.

In two's-complement representation, the absolute value of
the negative integer with largest magnitude is undefined.

Some 1implementations trap this error, but others simply
ignore it.

ND-6G.214.01

41

42 CC-100 and CC-500.

ATOF(3C) ~ Convert ASCII String to Floating-Point Number.
7.3.2 ATOF(3C) - Convert ASCII String to Floating-Point Number.
NAME atof
SYNOPSIS double atof (nptr)

char *nptr;

DESCRIPTION Atof converts a character string pointed to by nptr to a
double-precision floating-point number.

The first unrecognized character ends the conversion.

Atof recognizes an optional string of white-space
characters, then an optional sign, then a string of
digits optionally containing a decimal point, then an

optional e or E followed by an optionally signed integer.

If the string begins with an unrecognized character, atof
returns the value zero.

SEE ALSO scanf(3S).

ND-60.214.01

CC-100 and cCC-

CONV(3C)

7.3.3 CONV(3C)

500.
- Translate Characters.

- Translate Characters.

NAME toupper,

SYNOPSIS

DESCRIPTION

tolower, _toupper, _tolower, toascii

finclude (ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int C;

Toupper and tolower

_toupper and

Toascii

have as domain the range of getc(3S): the integers from
-1 through 255.

It the argument of toupper represents a lower-case
letter, the result is the corresponding upper-case
letter.

If the argument of tolower represents an upper-case
letter, the result is the corresponding lower-case
letter.

All other arguments in the domain are returned unchanged.

_tolower

are macros that accomplish the same thing as toupper and
tolower but have restricted domains and are
faster.

_toupper requires a lower-case letter as its argument; 1its
result is the corresponding upper-case letter.

_tolower requires an upper-case letter as its argument;
its result is the corresponding lower-case letter.

Arguments outside the domain cause undefined results.

yields its argument with all bits turned off that are not
part of a standard ASCII character; it is intended for

ND-60.214.01

43

44 CC-100_and CC-500,

CONV (3C) - Translate Characters.

compatibility with other systems.

SEE ALSO ctype(3C), getc(3s).

ND-60.214.0Y e

CC-100 and CC-500.
CTYPE(3C) - Classify Characters.

7.3.4 CTYPE(3C) - Classify Characters.

NAME isalpha, isupper, islower, isdigit, isxdigit, isalnum,
isspace, ispunct, isprint, isgraph, iscntrl, isascii

SYNOPSIS #include <(ctype.h)

int isalpha (c)
int c;

DESCRIPTION These macros classify character-coded integer values by
table lookup. Each is a predicate returning nonzero

true, zero for false.

Isascii is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII
value EOF (-1 - see stdio(3S)).

isalpha c is a letter.

isupper ¢ is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit ¢ 1s a hexadecimal digit [0-9], [A-F] or [a-f].

1salnum ¢ 1s an alphanumeric (letter or digit).

isspace ¢ 1is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct ¢ 15 a punctuation character (neither
alphanumeric).

isprint € 1s a printing character, code 040 (space) through 0176
(tilde).

isgraph ¢ 1s a printing character, like isprint except false for
space.

iscntrl ¢ 1is a delete character (0177) or an oxrdinary control
character (less than 040).

isascii C 1s an ASCII character, code less than 0200.

DIAGNOSTICS If the argument to any of these macros is not in the
domain of the function, the result is undefined.

ND-60.214.01

45

46

7.3.5 ECVT(3C)

CC-100 and CC-500.
ECVT(3C) - Convert Floating-Point Number to String.

- Convert Floating-Point Number to String.

NAME ecvt, fcvt, govt

SYNOPSIS

DESCRIPTION

Ecvt

Fcvt

Gevt

SEE ALSO

NOTES

char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
char *but;

converts vyalue to a null-terminated string of ndiqit
digits and returns a pointer thereto.

The low-order digit is rounded. The position of the
decimal point relative to the beginning of the string is
stored 1indirectly through decpt (negative means to the
left of the returned digits). The decimal point 1is not
included in the returned string.

If the sign of the result is negative, the word pointed
to by sign is non-zero, otherwise it is zero.

is identical to ecvt, except that the correct digit has
been rounded for Fortran F-format output of the number of
digits specified by ndigit.

converts the value to a null-terminated string in the
array pointed to by buf and returns buf. It attempts to
produce ndigit significant digits in Fortran F-format if
possible, otherwise E-format, ready for printing. A minus
sign, if there 1is one, or a decimal point will be
included as part of the returned string. Trailing zeros
are suppressed.

printf (3S).

The return values point to static data whose content is
overwritten by each call.

ND-60.214.01

CC-100 and CC-500.

STRING(3C)

- String Operations.

7.3.6 STRING(3C) - String Operations.

NAME strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,

SYNOPSIS

DESCRIPTION

strchr, strrchr, strpbrk, strspn, strcspn, strtok

finclude <string.h>
char *strcat (s1, s2)
char *s1, *s2;

char *strncat (s1, s2, n)
char *s1, *s2;
int n;

int stremp (s1, s2)
char *s1, *s2;

int strncmp (s1, s2, n)
char *s1, *s2;
int n;

char *strcpy (s1, s2)
char *s1, *s2;

char *strncpy (s1, s2, n)
char *s1, *s2; int n;

int strlen (s)
char *s;

char *strchr (s, c)
char *s, c¢;

char *strrchr (s, c)
char *s, c;

char *strpbrk (s1, s2)
char *s1, *s2;

int strspn (s1, s2)
char *s1, *s2:

int strcspn (s1, s2)
char *s1, *s2;

char *strtok (s1, s2)
char *s1, *s2;

The arguments s1, s2 and s point to strings (arrays of
characters terminated by a null character).

The functions strcat, strncat, strcpy and strncpy all
alter s1. These functions do not check for overflow of
the array pointed to by si.

ND-60.214.01

47

48 CC-100 and CC-500.

STRING(3C) - String Operations.
Strcat appends a copy of string s2 to the end of string si.
Strncat appends at most n characters. Each returns a pointer to
the null-terminated result.
Strcmp compares its arguments and returns an integer less than,

equal to, or greater than 0, according as sl 1is
lexiographically less than, equal to, or greater than

s2.

Strncmp makes the same comparison but looks at at most n
characters.

Strcpy copies string s2 to sl1, stopping after the null character

has been copied.

Strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be
null-terminated if the length of s2 is n or more. Each
function returns si.

Strlen returns the number of characters in s, not including the
terminating null character.

Strchr (stxrchr) returns a pointer to the first (last)
occurrence of character ¢ in string g, or a NULL pointer
if ¢ does not occur in the string. The null character
terminating a string is considered to be part of the
string.

Strpbrk returns a pointer to the first occurrence in string sl of
any character from string s2, or a NULL pointer if no
character from s2 exists in si.

Strspn (strcspn) returns the length of the initial segment of
string g1 which consists entirely of characters from (not
from) string s2.

Strtok considers the string gl to consist of a sequence of zero
or more text tokens separated by spans of one or more
characters from the separator string s2.

The first call (with pointer s1 specified) returns a
pointer to the first character of the first token, and
will have written a null character into sl immediately
following the returned token.

The function keeps track of its position in the string
between separate calls, so that on subsequent calls
(which must be made with the first arqument a NULL
pointer) will work through the string si immediately
following that token.

In this way subsequent calls will work through the string
s1 until no tokens rewmain.

ND-60.214.01

CC-100 and CC-500.

STRING(3C)

NOTES

- String Operations.

The separator string s2 may be different from call to
call. When no token remains in 31, a NULL pointer 1is
returned.

For user convenience, all these functions are declared in
the #include <string.h> header file.

Character movement is performed differently in different

implementations. Thus overlapping moves may vield
surprises.

ND-60.214.01

49

50

CC-100 and CC-500.
STRTOL(3C) - Convert String to Integer.

7.3.7 STRTOL(3C) - Convert String to Integer.

NAME strtol, atol, atoi

SYNOPSIS

DESCRIPTION

Strtol

Atol (strx)
Atoi(str)
SEE ALSO

NOTES

long strtol (str, ptr, base)
char *str;

char **ptr;

int base;

long atol (str) char *str;

int atoi (str) char *str;

returns as a long integer the value represented by the
character string str. The string is scanned up to the
first character 1inconsistent with +the base. Leading
"white-space" characters are ignored.

If the wvalue of ptr is not (char **)NULL, a pointer to
the character terminating the scan is returned in ‘*ptr.
If no integer can be formed, *ptr is set to str, and zero
is returned.

If base is positive (and not greater than 36), it is used
as the base for conversion. After an optional 1leading
sign, leading zeros are ignored, and "0x" or "OX" is
ignored if base is 16.

If base 1is zero, the string itself determines the base
thus: After an optional leading sign, a leading zero
indicates octal conversion, and a leading "Ox" or "OX"
hexadecimal conversion. Otherwise, decimal conversion is
used.

Truncation from 1long to int can, of course, take place
upon assignment, or by an explicit cast.

is equivalent to gtrtol(str, (char **)NULL,

[N

10).

is equivalent to (int) strtol(stx, (char **)NULL, 10).

atof(3C), scanf(3S).

Overflow conditions are ignored.

ND-60.214.01

CC-100 and CC-500. 51

SWAB(3C)

7.3.8 SWAB(3C)

- Swap Bytes.

- Swap Bytes.

NAME swab

SYNOPSIS

DESCRIPTION

void swab (from, to, nbytes)
char *from, *to;
int nbytes;

Swab copies nbytes bytes pointed to by from to the array
pointed to by to, exchanging adjacent even and odd bytes.
It is useful for carrying binary data between PDP-11s and
other machines. Nbytes should be even and non-negative.
If nbytes is odd and positive swab uses nbytes-1 instead.
If nbytes is negative swab does nothing.

ND-60.214.01

52

CC-100 and CC-500.

FREXP(3C) - Manipulate Parts of Floating-Point Numbers.
7.3.9 FREXP(3C) - Manipulate Parts of Floating-Point Numbers.
NAME frexp, ldexp, modf
SYNOPSIS double frexp (value, eptr)
double value;
int *eptr;
double ldexp (value, exp)
double value;
int exp;
double modf (value, iptr)
double value, *iptr;
DESCRIPTION
Frexp returns the mantissa of a double value as a double
quantity, x, of magnitude less than 1 and stores
indirectly, in the location pointed to by eptr, an
integer n such that value = x*2%*p.
Ldexp returns the quantity value*2**exp.
Modf returns the signed fractional part of value and stores

the integral part indirectly in the location pointed to
by iptr.

ND-60.214.01

CC-100 and CC-500.
ISATTY(3C) - Find

7.3.10 ISATTY(3C)

If File Is a Terminal.

- Find If File Is a Terminal.

NAME isatty

SYNOPSIS int isatty (fildes)
int fildes;

DESCRIPTION Isatty

returns 1 if fildes is associated with a terminal

device, O otherwise.

ND-60.214.01

53

54 CC-100 and CC-500.

MALLOC(3C) - Main Memory Allocator.
7.3.11 MALLOC(3C) - Main Memoxry Allocator.

NAME malloc, free, realloc, calloc

SYNOPSIS char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION Malloc and free provide a simple general-purpose memory
allocation package. Malloc returns a pointer to a block
of at least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously
allocated by malloc; after free is performed this space
is made available for further allocation, but 1its
contents are left undisturbed.

Undefined results will occur 1f the space assigned by
malloc is overrun or if some random number 1is handed to
free.

Malloc allocates the first big enough contiguous reach of free
space found in a circular search from the last block
allocated or freed, coalescing adjacent free blocks as it
searches.

It tries to fetch more memory from the memory allocation
system when there is no suitable space already free.

Realloc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved)
block.

The contents will be unchanged up to the lesser of the
new and old sizes.

If no free Dblock of size bytes is available in the
storage area, then realloc will ask malloc to enlarge

the area by size bytes and will then move the data to
the new space.

Realloc also works if ptr points to a block freed since
the last call of malloc, realloc, or callog; thus
sequences of free, malloc and realloc can exploit the

ND-60.214.01

CC-100 and CC-500.

MALLOC(3C)

Calloc

DIAGNOSTICS

NOTE

5EE ALSO

-~ Main Memory Allocator.

search strategy of malloc to do storage compaction.

allocates space for an array of nelem elements of size
elsize. The space is initialized to zeros.

Each of the allocation routines returns a pointer to
space suitably aligned (after possible pointer coercion)
for storage of any type of object.

Malloc, realloc and calloc return a NULL pointer if
there is no available memory or if the area has been
detectably corrupted by storing outside the bounds of a
block. When this happens the block pointed to by ptr
may be destroyed.

Search time increases when many objects have been
allocated; that is, if a program allocates but never
frees, then each successive allocation takes longer.

The size of the available memory can be adjusted at

link-time which is described in the section: Loading ¢
programs.

ND-60.214.01

56 CC-100 and CC-500.
MEMORY (3C) - Memory Operations.

7.3.12 MEMORY(3C) - _Memory QOperations.

NAME memccpy, memchr, memcmp, Remcpy, memset

SYNOPSIS finclude <(memory.h>
char *memccpy (s1, s2, ¢, n)
char *s1, *s2;
int ¢, n;

char *memchr (s, c, n)
char *s;
int ¢, n;

int memcmp (51, s$2, n)
char *s1, *s2:
int n;

char *memcpy (s1, s2, n)
char *s1, *s2;
int n;

char *memset (s, c, n)
char *s;
int ¢, n;

DESCRIPTION These functions operate efficiently on memory areas
{arrays of characters bounded by a count, not terminated
by a null character). They do not check for the overflow
of any receiving memory area.

Memccpy copies characters from memory area g2 into gsi, stopping
after the first occurrence of character ¢ has been
copied, or after n characters have been copied, whichever
comes first. It returns a pointer to the character after
the copy of ¢ in g1, or a NULL pointer if ¢ was not found
in the first n characters of s2.

Memchr returns a pointer to the first occurrence of character [»
in the first n characters of memory area s, or a NULL
pointer if ¢ does not occur.

encm compares its arguments, looking at the first n characters
only, and returns an integer less than, equal to, or
greater than O, according as s!1 is lexicographically less
than, equal to, or greater than s2.

Memcpy copies n characters from memory area s2 to si. It returns
si.
Memset sets the first pn characters in memory area s to the value

of character ¢. 1t returns s .
NOTES For user convenience, all these functions are declared in

ND-60.214.01

CC-100 and CC-500,

MEMORY (3C) - Memory Operations.

the #include <memory.h> header file.

Character movement is performed differently in different
implementations. Thus overlapping moves may yield
surprises.

ND-60.214.01

57

58 CC~100 and CC--500.
MKTEMP (3C) - Make a Unique Filename.

7.3.13 MKTEMP(3C) - Make a Unigue Filename.

NAME mktemp

SYNOPSIS char *mktemp(template)
char *template;

DESCRIPTION Mktemp replaces template by a wunique file name, and
returns the address of the template.

The template should 1look like a file name with between
six and nine trailing X's, which will be replaced with a
letter, the terminal number ({3 digits) of the user
process, and as much of the string ":temp" as possible.
This mean that you will get file type ":t", 1f you have
six trailing X'es, and that you will get file type
":temp", if you have nine trailing X'es.

DIAGNOSTICS If every letter (a through z) thus inserted leads to an
existing file name, wktemp will have shortened vyour
string to zero length wupon veturn (i.e., the first
character is set to '\0'). All other detected errors are
indicated in the same way.

NOTE The replacement of templates depends on the operating
system. The description above is specific for
SINTRAN IIT, and differs somewhat from the pmktemp
descriptions of other library implementations.

ND-60.214.01

CC-100 and CC~500.

PERROR (3C)

- System Error Messages.

7.3.14 PERROR(3C) -_System Error Messages.

NAME perror, errno, OSerrno, sys_errlist, sys_nerr

SYNOPSIS

DESCRIPTION

exreno

2
]
le]

5ys_errlist

sys_nerr

SEE ALSO

vold perror ({s)
char *s;

extern int errno;

extern int OSerrno;

extern char *sys_errlist{ 1;
extern int sys_nerr;

Perror produces a message on the standard error output,
describing the last error encountered during a call to a
system or library function.

The argument string s is printed first, then a colon and
a blank, then the message and a new-line.

If OSerrno 1is not zero, a second message and a new-line
follows.

To be of most use, the argument string should include the
name of the program that incurred the error.

The error numbers are taken from the external variables
errno and OSerrno, who are set when errors occur but are
not cleared when non-erroneous calls are made. The
OSerrno variable is set by library routines to the error
number of the operating system due to which errno is set.
If they set errno of other reasons, Q0Serrno is cleared.

To simplify variant formatting of messages, the array of
message strings sys errlist is provided:; errno can be
used as an index in this table to get the first message
string without the new-line. Sys nerr is the largest
message number provided for in the table; it should be
checked because new error codes may be added to the
system before they are added to the table.

intro(2).

ND-60.214.01

60

CC-100 and CC-500.
SETJMP (3C) - Non-Local Goto.

7.3.15 SETJMP(3C) - Non-Local Goto.

NAME setjmp, longijmp

SYNOPSIS

DESCRIPTION

Setimp

WARNING

finclude <(setjmp.h>
int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

These functions are useful for dealing with errors and
interrupts encountered in a low-level subroutine of a
program.

saves 1ts stack environment in env (whose type, imp buf,
is defined in the {(setijmp.h> header file), for later use
by longijmp. It returns the value O.

restores the environment saved by the last call of setimp
with the corresponding env argument. After longijmp is
completed program execution continues as 1if the
corresponding call of setimp (which must not itself have
returned in the interim) had just returned the value val.

Longjmp cannot cause setijmp to return the value O.

If longjmp is invoked with a second argument of 0O, setjmp
will return 1. All accessible data have values as of the
time longimp was called.

If longimp is called when env was never primed by a call

to setjmp, or when the last such call is in a function
which has since returned, absolute chaos is guaranteed.

ND-60.214.01

CC-~100 and CC-500.

VARARGS(3)

- Variable Argument List

7.3.16 VARARGS(3) ~ Variable Arqument List

NAME varargs

SYNOPSIS

DESCRIPTION

va_alist

va_dcl

va_list

va_start(pvar)

#include <varargs.h)
function(va_alist)
va_dcl

va_list pvar;
va_start(pvar);

f = va_arg(pvar, type);
va_end(pvar);

This set of macroes provides a means of writing portable
procedures that accept variable argument lists. Routines
having variable arguments lists (such as printf(3)) +that
do not use varargs are inherently nonportable, since
different machines use different argument passing
conventions.

is used in a function header to declare a variable
argument list.

is a declaration for va_alist. Note that there is no
semicolon after va_dcl.

is a type which can be used for the variable pvar, which
is used to travererse the list. One such variable must
always be declared.

is always called to initiate pvar to the beginning of
the list.

va_arg(pvar, type)

va_end(pvar)

EXAMPLE

will return the next argument in the list pointed to by
pvar. Type 1s the type the argument is expected to be.
Different types can be mixed, but it is up to the routine
to know what type of argument is expected, since it
cannot be determined at runtime.

is used to finish up.

Multiple traversals, each bracketed by va_start
va_end, are possible.

#include <(varargs.h)
execl(va_alist)
va_dcl
{

va_list ap;

char *file;

char *args[100];

ND-60.214.01

62 CC-100 and CC-500.
VARARGS({3) - Variable Argument List

int argno;

va_start)ap);

file = va_arg(ap, char *);

while (args[argnot++] = va_arg)ap, char *))
va_end(ap);

return execv(file, args);

NOTES It is up to the calling routine to determine how many
arguments there are, since it is not possible to
determine this from the stack frame. For example, execl
passes a O to signal the end of the list. Printf can
tell how many arguments are supposed to be there by the
format.

ND-60.214.01

CC~-100 and CC-500. 63
Standard Buffered Input/Output Package - STDIO(3S)

7.4 Standard Buffered Input/Output Package -~ STDIO(3S)

SYNOPSIS finclude <stdio.h>
FILE *stdin, *stdout, *stderr:

LIST OF FUNCTIONS

Name Appears on Page Description

clearer ferr(3S) 76 Reset error and EOF indicators
fclose fclose(3S) 75 Close a Stream

feof ferror(35) 76 Test if EOF

ferror ferror(3s) 76 Test if error

fdopen fopen(3S) 71 Associate Stream with File Descriptor
fflush fclose(35) 75 Write out Buffered Data for Stream
fgetc getc(35) 65 Get Next Character (function)

fgets gets(35) 67 Get String from stream

filno ferror(3S) 76 Get File Descriptor of Stream
fopen fopen(35) 71 Open a Stream

fprintf printf(3s) 77 Print Formatted Qutput on Stream
fputcar putc(3S) 68 Put Char on Stream (function)

fputs putc(3S) 68 Put String on Stream

fread fread(3s) 73 Array Input

freopen fopen(3S) 71 Attach Preopen Stream to stdin/err/out
fscanf scanf(35) 81 Convert Formatted Input from stream
fseek fseek(3S) 74 Set Position of next in/output on stream
ftell fseek(35) 74 Returns the Offset of Current Byte
fwrite fread(3s) 73 Array Output

getc getc(38) 65 Get Next Character (macro)

getchar getc(3S) 65 Get Next Character (macro)

gets gets(35) 67 Get String from stdin

getw getc(3S) 65 Get Word, eg.integer (macro)
printf printf(3S) 77 Print Formatted Output on stdout
putc putc(3S) 68 Put Character (macro)

putchar putc(3S5) 68 Put Character (macro)

pits putc(38) 68 Put String on stdout

putw putc(35) 68 Put Word eg. integer

rewind fseek(3S) 74 Set Position to the beginning of stream
scanf scanf(35) 81 Convert Formatted Input from stdin

setbuf setbuf(3S) 85 Assign Buffer to a Stream
sprintf printf(3S) 77 “Print" Formatted Output on string
sscanf scanf(35) 81 Convert Formatted Input from string
ungetc ungetc(3S) 86 Push Char Back Into Stream

DESCRIPTION The functions described in the entries of sub-class 3S of
this manual constitute an efficient, user-level 1I/0

buffering schene. The in-line macros getc(3S) and
putc(35) handle characters quickly.

The macros getchar, putchar, and the higher-level
routines fgetc, fgets, fprintf, fputc, fputs, fread,
fscanf, fwrite, gets, getw, printf, puts, putw, and scanf
all use getc and putc; they can be freely intermixed.

ND-60.214.01

64

CC-100 and CC-500.

Standard Buffered Input/Output Package - STDIO(35)

The SINTRAN III file system differs from C and UNIX in the handling of
text files. It uses two characters (\r plus \n) as line delimiters
where C uses only one (\n), and it uses parity bits in characters
where C uses none. This means that text files have to be converted by
the library at file reading and file writing. Of course, these
conversions must not be done for binary files, so we need a convention
that tells the stdio library if the file is a binary file or a text
file.

The stdio library assumes that files are text files as a default, but
the binary mode may be forced to a file by adding the character 'b’' to
the type parameter of the fopen, freopen, and fdopen{(3S) calls. Most C
implementations need not worry about the difference between text files
and binary files, so this is a non-standard convention.

A file with associated buffering is called a stream and is declared to
be a pointer to a defined type FILE. Fopen(3S5) creates certain
descriptive data for a stream and returns a pointer to designate the
stream in all further transactions. Normally, there are three open
streams with constant pointers declared in the <(stdio.h) header file
and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file.

A constant NULL (O) designates a nonexistent pointer.

An integer constant EOF (-1) is returned upon end-of-file or error by
most integer functions that deal with streams (see the individual
descriptions for details).

Any program that uses this package must include the header file of
pertinent macro definitions, as follows:

#include <{(stdio.h>

The functions and constants mentioned in the entries of sub-class 3§
of this manual are declared in that header file and need no further
declaration. The constants and the following "functions" are
implemented as macros (redeclaration of these names is perilous):
getc, getchar, putc, putchar, feof, ferror, clearerr, and fileno.

SEE ALSO open{2), close(2), lseek(2), read(2), write(2),

fclose(35), ferror(3S), fopen(3S), fread(3S), fseek(3S),
getc(3S), gets(3S), printf(3S), putc(3S), puts(3s),
scanf(3S), setbuf(3S), ungetc(3S).

DIAGNOSTICS Invalid stream pointers will usually cause grave

disorder, possibly including program termination.
Individual function descriptions describe the possible
error conditions.

ND-60.214.01

CC-100 and CC~

GETC(38)

7.4.1 GETC(3S)

500.
- Get Character or Word From Stream.

- _Get Character or Word From Stream.

NAME getc, getchar, fgetc, getw

SYNOPSIS

DESCRIPTION

Getc

Getchar

Fgetc

Getw

SEE ALSO

DIAGNOSTICS

NOTES

finclude <stdio.h>
int getc {stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

returns the next text character from the named input
stream. It also moves the file pointer, if defined,
ahead one character in stream. Getc is a macro and so
should not be used if a function is necessary; for
example one should not have a function pointer point to
it.

returns the next character from the standard input
stream, stdin. As in the case of getc, getchar is a
Macro.

performs the same function as getc, but is a genuine
function. Fgetc may run more slowly than getc, but may
take less space per invocation.

returns the next word (i.e. integer) from the named input
stream. The size of a word varies from machine to
machine. It returns the constant EOF upon end-of-file or
error, but as that is a valid integer value, feof and
ferror(3S) should be used to check the success of getw.
Getw increments the associated file pointer, if defined,
to point to the next word. Getw assumes no special
alignment in the file.

fclose(35), ferror(3s), fopen(3S), fread(3S), gets(3s),
putc(3S), scanf(3S).

These functions return the integer constant EOF at
end-of-file or upon an error.

Because getc is implemented as a macro, it may
incorrectly treat a stream argument, causing side
effects. In particular, getc(*f++) may not work
sensibly. Fgetc should be used instead. Because of
possible differences in word length and byte ordering,

ND-60.214.01

66

CC-100 and CC-500.

GETC(35) - Get Character or Word From Stream.

files written using putw are machine-dependent, and may
not be read using getw on a different processor.

ND~60.214.01

CC100 and CC-500.
GETS(3S) - Get a String From a Stream.

7.4.2 GETS(3S) - Get a String From a Stream.

NAME gets, fgets

SYNOPSIS finclude {(stdio.h>
char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;

int n;

FILE *stream;

DESCRIPTION

Gets reads characters from the standard input stream, stdin,
into the array pointed to by s, until a new-line
character is read or an end-of-file condition 1is
encountered. The new-line character is discarded and
the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed
to by s, until n-1 characters are read, or a new-line
character 1s read and transferred to s, or an
end-of-file condition is encountered. The string 1is
then terminated with a null character.

SEE ALSO ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS If end-of-file 1is encountered and no characters have
been read, no characters are transferred to s and a NULL
pointer 1is returned. If a read error occurs, such as
trying to use these functions on a file that has not
been opened for reading, a NULL pointer is returned.
Otherwise s 1s returned.

ND-60.214.01

67

68 CC-100 and CC-500.
PUTC(3S) - Put Character or Word On a Strean.

7.4.3 PUTC(3S) - Put Character or Word On a Stream.

NAME pute, putchar, fputc, putw

SYNOPSIS finclude <{(stdio.h>
int putc (c, stream)
char c¢;

FILE *stream;

int putchar (c¢)
char c;

int fputc (¢, stream)
char c¢;
FILE *stream;

int putw (w, stream)
int w;
FILE *stream;

DESCRIPTION

Putc writes the character ¢ onto the output stream (at the
position where the file pointer, if defined, is
pointing). Putchar(c) is defined as putc(c, stdout).
Putc and putchar are macros.

Fputc behaves 1like putc, but is a function rather than a
macro. Fputc may run more slowly than putc, but may
take less space per invocation.

Putw writes the word (i.e. integer) w to the output stream (at
the position at which the file pointer, if defined, is
pointing). The size of a word is the size of an integer

and varies from machine to machine. Putw neither assumes
nor causes special alignment in the file.

Output streams, with the exception of the standard error stream
stderr, are by default buffered if the output refers to a file
and line-buffered if the output refers to a terminal. The
standard error output stream stderr is by default unbuffered, but
use of freopen(see fopen(3S)) will cause it to become buffered or
line-buffered.

When an output stream is unbuffered information is queued for
writing on the destination file or terminal as soon as written:
when it is buffered many characters are saved up and written as a
block; when it is line-buffered each line of output is queued for
writing on the destination terminal as soon as the line is
completed (that is, as soon as a new-line character is written or
terminal input is requested).

Setbuf(3S) may be used to change the stream's buffering strategy.

ND-60.214.01

CC-100 and €C-500.

PUTC(3S)

SEE ALSO

DIAGNOSTICS

NOTES

- Put Character or Word On a Stream.

fclose(3S), ferror(3S), fopen(3s), fread(3S), printf(3S),
puts(3S), setbuf(3S).

On success, these functions each return the value they
have written. On failure, they return the constant EOF.
This will occur if the file stream is not open for
writing, or if the output file cannot be grown. Because

EOF is a valid integer, ferror(3S) should be used to
detect putw errors.

Because putc is implemented as a macro, it may
incorrectly treat a stream argument causing side
effects. In particular, putc(c, *f++); may not work
sensibly. Fputc should be used instead.

Because of possible differences in word length and byte
ordering, files Wwritten using putw are
machine-dependent, and may not be read using getw on a
different processor. For this reason the use of putw
should be avoided.

ND-60.214.01

70 CC-100 and CC-500.

PUTS(35) - Put a String On a Stream.
7.4.4 PUTS(3S) - Put a String On a Stream.
NAME puts, fputs
SYNOPSIS finclude <stdio.h>
int puts (s)
char *s;
int fputs (s, stream)
char *s;
FILE *stream;
DESCRIPTION
Puts writes the null-terminated string pointed to by s,
followed by a new-line character, to the standard output
stream stdout.
Fputs writes the null-terminated string pointed to by s to the

named output stream.
Neither function writes the terminating null character.
DIAGNOSTICS Both routines return EOF on ervor. This will happen if

the routines try to write on a file that has not been
opened for writing.

SEE ALSO ferror(3s), fopen(3S), fread(3S), printf(3S), putc(3S).
NOTES Puts appends a new-line character while fputs does not.

ND-60.214.01

CC~-100 and CC-500.

FOPEN(3S)

- Open a Stream.

7.4.5 FOPEN(3S) - Open a3 Stream.

NAME fopen, freopen, fdopen

SYNORSIS

DESCRIPTION

Fopen

" T+ [

Hw+|l

u a+ i

#include <(stdio.h>
FILE *fopen (file, type)
char *file, *type;

FILE *freopen (file, type, stream)
char *file, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

opens the file named by file and associates a stream
with it. Fopen returns a pointer to the FILE structure
associated with the stream.

File points to a character string that contains the name
of the file to be opened. This name must not be
abbreviated if the type string contains any of the
characters 'w' or 'a'. If no file type is given, type
SYMB is assumed.

Type 1is a character string having one of the following
values (possibly modified by appending or substituting
characters as detailed further below):

open for reading
truncate or create for writing

append; open for writing at end of file, or
create for writing

open for update (reading and writing)
truncate or create for update

append; open or create for update at
end-of- file

All of these values of +type assume that the file
contains text, so the parity bit may be removed and
conversions between internal (\n) and external (\r
followed by \n) line separation characters may be done.

To achieve a correct handling of binary data, you have
to append the character 'b' (for binary) to the type

ND-60.214.01

71

12 CC-100 and CC-500.

FOPEN(3S) - Open a Streamn.

string, thus giving type one of the values "rb", “"wb",
llabll’ Ilr+bu’ I!w+bll' or Ila+bN.

When the type string contains one of the characters 'w'
or 'a', no abbreviations of the file name are accepted.
If those characters are given in upper case, i.e. as 'W'
or 'A', abbreviations of the file name will be accepted.

These wupper-case alternatives are non-standard, but
faciliate the making of applications that are local to
the SINTRAN III operating system, where file name
abbreviations are frequently used.

Freopen substitutes the named file in place of the open stream.
The original stream is closed, regardless of whether the
open ultimately succeeds. Freopen returns a pointer to
the FILE structure associated with stream.

Freopen is typically wused to attach the preopened streams
associated with stdin, stdout and stderr to other files.

Fdopen assoclates a stream with a file descriptor obtained from
open or creat, which will open files but not return
pointers +to a FILE structure stream which are necessary

input for many of the section 3S library routines. The
type of stream must agree with the mode of the open
file.

When a file 1is opened for update, both input and output may be
done on the resulting stream. However, output may not be
directly followed by input without an intervening fseek or
rewind, and input may not be directly followed by output without
an intervening fseek, rewind, or an input operation which
encounters end-of-file.

A file that is opened for append (i.e., the type string contains
an "a" or "A") can be used in the same way as a file that is
opened for write (i.e, the type string contains a "w" or "W").
Only in the case that the file already existed, some differences
may be noted: The file pointer of the file opened for append will
be initially set to the end of the file, while the file opened
for write will be truncated to zero length.

SEE ALSO open(2), fclose(35).

DIAGNOSTICS Fopen and freopen return a NULL pointer on failure.

NOTE The use of the characters ‘'b', 'W', and 'A' in type
strings are non-standard, and thus non-portable
constructions.

ND--60.214.01

CC-100 and CC-500.

FREAD(3S) - Array Input/Output.

7.4.6 FREAD(3S) - Array Input/Qutput.

NAME fread, fwrite

SYNOPSIS finclude <(stdio.h)
int fread (ptr, size, nitems, stream)
char *ptr;
int size, nitems;

FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE *stream;

DESCRIPTION

Fread copies, into an array beginning at ptr, nitems items of

data from the named input stream, where an item of data
is a sequence of bytes (not necessarily terminated by a
null byte) of length size.
Fread stops appending bytes if an end-of-file or error
condition is encountered while reading stream, or if
nitems items have been read. Fread leaves the file
pointer in stream, if defined, pointing to the byte
following the last byte read if there is one. Fread
does not change the contents of stream.

Fwrite appends at most nitems items of data from the array

pointed to by ptr to the named output stream. Fwrite
stops appending when it has appended nitems items of
data or if an error condition is encountered on stream.
Fwrite does not change the contents of the array pointed
to by ptr.
The variable size is typically sizeof (*ptr) where the
pseudo-function sizeof specifies the length of an item
pointed to by ptr. If ptr points to a data type other
than char it should be cast into a pointer to char.

SEE ALSO read(2), write(2), fopen(3S), getc(3S), gets(3s),
printf(3S), putc(3s), puts(3S), scanf(35), stdio(3s).

NOTE Because the internal data representation of chars is a
word while the external is byte on ND-100 fread and
fwrite have been omitted in the ND-100 library.

DIAGNOSTICS Fread and fwrite return the number of items read or

written. If nitems is non-positive, no characters are
read or written and O 1is returned by both fread and
fwrite.

ND-60.214.01

73

74 CC-100 and CC-500.
FSEEK(33) - Reposition a File Pointer In a Stream.

7.4.7 FSEEK(3S) — Reposition a File Pointer In a Streamn.

NAME fseek, vewind, ftell

SYNOPSIS finclude <(stdio.h>
int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *strean;

DESCRIPTION

Fseek sets the position of the next input or output operation
on the stream. The new position 1is at +the signed
distance offset bytes from the beginning, from the
current position, or from the end of the file, according
as ptrname has the value 0, 1, or 2.

Rewind is equivalent to fseek(stream, OL, 0), except that no
value is returned.

After fseek or rewind, the next operation on a file
opened for update may be either input or output.

Ftell returns the offset of the current byte relative to the
beginning of the file associated with the named stream.

SEE ALSO 1seek (2}, fopen(3S).

DIAGNOSTICS Fseek returns non-zero for improper seeks, otherwise
zero. An improper seek can be, for example, an fseek
done on a file that has not been opened via fopen; in
particular, fseek may not be used on a terminal.

WARNING Although on the UNIX System (it is the same on the
SINTRAN III System) an offset returned by ftell is
measured 1in bytes, and it is permissible to seek to
positions relative to that offset, portability to
non-UNIX Systems requires that an offset be used by
fseek divectly. Arithmetic may not meaningfully be
performed on such a offset, which is not necessarily
measured in bytes.

ND-60.214.01

CC-100 and cC-500.

FCLO5E(3S)

- Close or Flush a Strean.

7.4.8 FCLOSE(3S) _~_Close or Flush a Stream.

NAME fclose, fflush

SYNOPSIS

DESCRIPTION

Fclose

Fflush

DIAGNOSTICS

SEE ALSO

#include <(stdio.h>
int fclose (stream)
FILE *stream;

int fflush (stream)
FILE *stream;

causes any buffered data for the named stream to be
written out, and the stream to be closed.

Fclose 1is performed automatically for all open files
upon calling exit(2).

causes any buffered data for the named stream to be
written to that file. The stream remains open.

These functions return O for success, and EOF if any
error (such as trying to write to a file that has not
been opened for writing) was detected.

close(2), exit(2), fopen(3S), setbuf(3s).

ND-60.214.01

75

76 CC-100 and CC-500.

FERROR(35) - Stream Status Inquiries.

7.4.9 FERROR(3S) - Stream Status Inguiries.

NAME ferror, feof, clearerr, fileno

SYNOPSIS #include <(stdio.h>
int feof (stream)
FILE *stream;
int ferror (stream)
FILE *stream;
void clearerr (stream)
FILE *stream;
int fileno(stream)
FILE *streanm;

DESCRIPTION

Feof returns non-zero when EOF has previously been detected
reading the named input stream, otherwise zero.

exrror returns non-zero when an I/0 error has previously
occurred reading from or writing to the named strean,
otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on
the named stream.

Fileno returns the integer file descriptor associated with the
named stream; see open(?2).

NOTE All these functions are implemented as macros; they
cannot be declared or redeclared.

SEE ALSO open(2), fopen(3S).

ND-60.214.01

CC-100 and CC-500.

PRINTF(35)

- Print Formatted Output.

7.4.10 PRINTF(3S) - Print Formatted Output.

NAME printf, fprintf, sprintf

SYNOPSIS

DESCRIPTION
Printf
Fprintf
Sprintf

char %

flags

field width

#include <(stdio.h>
int printf (format [, arg] ...)
char *format;

int fprintf (stream, format [, arg] ...)
FILE *stream;

char *format;

int sprintf (s, format [, arg] ...)
char *s, format;

places output on the standard output stream stdout.
places output on the named output stream.

places ‘"output", followed by the null character {\0) in
consecutive bytes starting at *s; it is the user's
responsibility to ensure that enough storage is
available.

Each function returns the number of characters
transmitted (not including the \O in the case of
sprintf), or a negative value if an output error was
encountered.

Each of these functions converts, formats, and prints
its args under control of the format. The format is a
character string that contains two types of objects:
plain characters, which are simply copied to the output
stream, and conversion specifications, each of which
results in fetching of zero or more args. The results
are undefined 1if there are insufficient args for the
format. If the format is exhausted while args remain,
the excess args are simply ignored.

Each conversion specification 1is introduced by the

character %. After the %, the following appear in
sequence:

zero or more flags, which modify the meaning of the
conversion specification.

An optional decimal digit string specifying a minimum
field width. If the converted value has fewer characters
than the field width, it will be padded on the left {or
right, if the left-adjustment flag (see below) has been
given) to the field width;

ND-60.214.01

17

78 CC-100 and CC-500.
PRINTF(38) - Print Formatted Output.

precision A precision that gives the minimum number of digits to
appear for the d, o, u, x, or X conversions, the number
of digits to appear after the decimal point for the e
and f conversions, the maximum number of significant
digits for the g conversion, or the maximum number of
characters to be printed from a string in s conversion.
The precision takes the form of a period (.) followed by
a decimal digit string: a null digit string 1s treated
as zero.

long An optional 1 specifying that a following d, o, u, x, or
X conversion character applies to a long integer arg.

asterisk (*) A field width or precision may be indicated by an
asterisk (*) instead of a digit string. In this case,
an integer arg supplies the field width or precision.
The arg that is actually converted is not fetched until
the conversion letter 1is seen, so the args specifying
field width or precision must appear before the arg (if
any) to be converted.

The flag characters and their meanings are:

The result of the conversion will be left-justified
within the field.

+ The result of a signed conversion will always begin with
a sign (+ or -).

blank If the first character of a signed conversion is not a
sign, a blank will be prefixed to the result. This
implies that if the blank and + flags both appear, the
blank flag will be ignored.

This flag specifies that the value is to be converted to
an "alternate form."

For ¢, d, s, and u conversions, the flag has no effect.

For o conversion, it increases the precision to force
the first digit of the result to be a zero.

For x (X) conversion, a non-zero result will have Ox
(0X) prefixed to it.

For e, E, f, g, and G conversions, the result will
always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the
result of these conversions only if a digit follows it).

For g and G conversions, trailing zeroes will not be
removed trom the result (which they normally are).

The conversion characters and their meanings are:

ND-60.214.01

CC-~100 and CC-500.

PRINTF(3S)

d,o,u,x,X

9.G

w

- Print Formatted Output.

The integer arq is converted to signed decimal, unsigned
octal, decimal, or hexadecimal notation (x and Xy,
respectively; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion.

The precision specifies the minimum number of digits to
appear; if the value being converted can be represented
in fewer digits, it will be expanded with leading
zZeroes.

The default precision is 1.

The result of converting a zero value with a precision
of zero is a null string.

The float or double arg is converted to decimal notation
in the style "[-]ddd.ddd", where the number of digits
after the decimal point 1is equal to the precision
specification. If the precision is missing, 6 digits
are output; if the precision is explicitly 0, no decimal
point appears.

The float or double arg is converted in the style
“[-]d.ddde+ _dd", where there is one digit before the
decimal point and the number of digits after it is equal
to the precision; when the precision is missing, 6
digits are produced; if the precision is Zero, no
decimal point appears. The E format code will produce a
number with E instead of e introducing the exponent . The
exponent always contains at least two digits.

The float or double arg is printed in style f or e (or
in style E in the case of a ¢ format code), with the
precision specifying the number of significant digits.
The style used depends on the value converted: style e
will be wused only if the exponent resulting from the
conversion 1is less +than -4 or greater than the
precision. Trailing zeroes are removed from the result;
a decimal point appears only if it is followed by a
digit.

The character arg is printed.

The arg is taken to be a string (character pointer) and
characters from the string are printed until a null
character (\0) is encountered or the number of
characters indicated by the precision specification 1is
reached. If the precision is missing, it is taken to be
infinite, so all characters up to the first null
character are printed. If the string pointer arg has
the value zero, the result is undefined. A pull arg
will yield undefined results.

Print a %; no argument is converted.

ND-60.214.01

79

80

CC-100 and CC-500.

PRINTF(38) - Print Formatted Output.

In no case does a non-existent or small field width cause
truncation of a field; if the result of a conversion is wider
than the field width, the field is simply expanded to contain the

conversion result. Characters generated by printf and fprintf

are printed as if putc(3S) had been called.

EXAMPLES To print a date and time in the form "Sunday, July 3,

10:02", where weekday and month are pointers to
null-terminated strings:

[printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min)

To print pi to 5 decimal places:

|

printf("pi = %.5f", 4*atan(1.0));

SEE ALSO ecvt(3C), putc(35), scanf(35), stdio(3S).

ND-60.214.01

CC-100 and CC-500.

SCANF(39)

- Convert Formatted Input.

7.4.11 SCANF(3S) - Convert Formatted Imput.

NAME scanf, fscanf, sscanf

SYNOPSIS

DESCRIPTION
Scanf
Fscanf

Sscanf

#include <(stdio.h>
int scanf (format [, pointer] ...)
char *format;

int fscanf (stream, format [, pointer] ...)
FILE *stream;

char *format;

int sscanf (s, format [, pointer] ...)
char *s, *format;

reads from the standard input stream stdin.
reads from the named input stream.
reads from the character string s.

Each function reads characters, interprets them
according to a format, and stores the results in its
arguments. Each expects, as arguments, a control string
format described below, and a set of pointer arguments
indicating where the converted input should be stored.

The control string usually contains conversion
specifications, which are used to direct interpretation
of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or
form-feeds) which, except in two cases described below,
cause input to be read up to the next non-white-space
character.

2. An ordinary character (not %), which must match the
next character of the input stream.

3. Conversion specifications, consisting of the
character %, an optional assignment suppressing
character *, an optional numerical maximum field width,
an optional 1 or h indicating the size of the receiving
variable, and a conversion code.

A conversion specification directs the conversion of the
next input field; the result is placed in the variable
pointed to by the corresponding argument, unless
assignment suppression was indicated by *. The
suppression of assignment provides a way of describing
an input field which is to be skipped. An input field

ND-60.214.01

81

82

convertion
codes:

Q
°

e, f,g

CC-100 and CC-500.

SCANF(35) - Convert Formatted Input.

is defined as a string of non-space characters; it
extends to the next ilnappropriate character or until the
field width, if specified, is exhausted.

The conversion code indicates the interpretation of the
input field; the corresponding pointer argument must
usually be of a restricted type. For a suppressed
field, no pointer argument should be given. The
following conversion codes are legal:

a single % 1is expected in the input at this point; no
assignment 1s done.

a decimal integer 1is expected; the corresponding
argument should be an integer pointer.

an unsigned decimal integer is expected: the
corresponding argument should be an unsigned integer
pointer.

an octal integer is expected; the corresponding argument
should be an integer pointer.

a hexadecimal integer 1is expected; the corresponding
argument should be an integer pointer.

a floating point number is expected; the next field is
converted accordingly and stored through the
corresponding argument, which should be a pointer to a
float. The input format for floating point numbers is
an optionally signed string of digits, possibly
containing a decimal point, followed by an optional
exponent field consisting of an E or an e, followed by
an optionally signed integer.

a character string 1is expected; the corresponding
argument should be a character pointer pointing to an
array of characters large enough to accept the string
and a terminating \O, which will be added automatically.
The input field is terminated by a white-space
character.

a character 1s expected; the corresponding argument

should be a character pointer. The normal skip over
white space is suppressed in this case; to read the next
non-space character, use %1s. If a field width 1is

given, the corresponding arqument should refer to a
character array; the indicated number of characters is
read.

indicates string data and the normal skip over leading
white space is suppressed. The left bracket is followed
by a set of characters, which we will call the scanset,
and a right bracket; the input field is the maximal
sequence of 1input characters consisting entirely of
characters in the scanset. The circumflex, (J, when it

ND-60.214 .01

€C-100 and CC-500.

SCANF(3S)

The

- Convert Formatted Input.

appears as the first character in the scanset, serves as
a complement operator and redefines the scanset as the
set of all characters not contained in the remainder of
the scanset string. There are some conventions used 1in
the construction of the scanset. A range of characters
may be represented by the construct first-last, thus
[0123456789] may be expressed [0-9].

Using this convention, first must be lexically less than
or equal to last, or else the dash will stand for
itself. The dash will also stand for itself whenever it
is the first or the last character in the scanset. To
include the right square bracket as an element of the
scanset, it must appear as the first character (possibly
preceded by a circumflex) of the scanset, and in this
case it will not be syntactically interpreted as the
closing bracket. The corresponding argument must point
to a character array large enough to hold the data field
and the terminating \O, which will be added
automatically.

conversion characters &, u, o, and x may be preceded by 1 or

h to indicate that a pointer to long or to short rather than to

int

in the argument list. Similarly, the conversion

characters e , £ , and g may be preceded by 1 to indicate that a
pointer to double rather than to float is in the argument list.

EXAMPLES

Scanf conversion terminates at EOF, at the end of the
control string, or when an input character conflicts
with the control string. In the latter case, the

offending character is left unread in the input stream.

Scanf returns the number of successfully matched and
assigned input items; this number can be zero in the
event of an early conflict between an input character
and the control string. If the input ends before the
first conflict or conversion, EOF is returned.

The call:

int i; float x; char name[507;

scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54 .32E~1 thompson

will assign to

i the value 25,
h:o the value 5.432,
nane will contain thompson\0.

ND-60.214.01

83

84

CC-100 and CC-500.

SCANF(38) - Convert Formatted Input.

Another example:

int i; float x; char name[50];
scanf ("%2d%€%*d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

SEE ALSO

NOTES

DIAGNOSTICS

will assign

i the value 56, as integer,
X the value 789.0 as floating-point
skip 0123,
name the value 56\0 as a string of characters.

The next call to getchar (see getc(3S5)) will return

the character 'a
atof (3C), getc(3S), printf(3S), strtol(3C).

Trailing white space (including a new-line) is left
unread unless matched in the control string.

The Success of literal matches and suppressed
assignments is not directly determinable.

These functions return EOF on end of input and a short
count for missing or illegal data items.

ND-60.214.01

CC--100 and CC-500.

SETBUF(35)

- Assign Buffering To a Stream.

7.4.12 SETBUF(3S) - BAssign Buffering To a Stream.

NAME setbuf

SYNOPSIS

DESCRIPTION

SEE ALSO

NOTE

Finclude <stdio.h>

void setbuf (stream, buf)
FILE *stream;

char *buf;

Setbuf is used after a stream has been opened but before
it is read or written. It causes the character array
pointed to by buf to be used instead of an automatically
allocated buffer.

If buf is a NULL character pointer input/output will be
completely unbuffered.

A constant BUFS5IZ, defined in the <(stdio.h> header file,
tells how big an array is needed:

char buf[BUFSIZ];

A buffer 1is normally obtained from malloc{3C) at the
time of the first getc or putc(3S) on the file, except
that the standard error stream stderr is normally not
buffered.

Output streans directed to terminals are always
line~buffered unless they are unbuffered.

fopen(3S), getc(3S), malloc(3C), putc(3S).
A common source of error is allocating buffer space as

an "automatic" wvariable in a code block, and then
failing to close the stream in the same block.

ND-60.214.01

85

86

CC-100 and CC-500.
UNGETC (38} - Push Character Back Into Input Stream.

7.4.13 URGETC(38) - Push Character Back Into Input Stream.

NAME ungetc

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

finclude <stdio.h>
int ungetc (¢, stream)
char c¢;

FILE *stream;

Ungetc inserts the character ¢ into the buffer
associated with an input streanm. That character, c,
will be vreturned by the next getc call on that streanm.

Ungetc returns ¢, and leaves the file stream unchanged.

One character of pushback is guaranteed provided
something has been read from the stream and the stream
is actually buffered.

If ¢ equals EOF, ungetc does nothing to the buffer and
returns EOF.

Iseek(3S) erases all memory of inserted characters.
fseek(3S), getc(3S), setbuf(3s).

In order that ungetc perform correctly, a read statement
must have been performed prior to the call of the ungetc
function. Ungetc vreturns EOF if it can't insert the
character. In the case that stream is stdin, ungetc will
allow exactly one character to be pushed back onto the
buffer without a previous read statement.

ND-60.214.01

CC-100 and CC-500.
Mathematical Library Functions - INTRO(3M)

7.5 Mathematical Library Functions - INTRO(3M)

DESCRIPTION These functions constitute the
Declarations for these functions may be
the include file <math.h>.

LIST OF FUNCTIONS
Name Appears on Page Description

acos sin.3M 93 Trigonometric functions
asin sin.3M 93 Trigonometric functions
atan sin.3M 93 Trigonometric functions
atan? sin.3M 93 Trigonometric functions
cabs hypot.3M 91 Euclidean distance

ceil floor.3M 89 Ceiling functions

cos sin.3M 93 Trigonometric functions
cosh sinh.3M 94 Hyperbolic functions
exp exp.3M 88 Exponential

fabs floor.3M 89 Absolute value

floox floor.3M 89 Floor

Jamma gamma.3M 90 Log gamma function
hypot hypot.3M 91 Euclidean distance

30 70.3M 92 Bessel functions

31 30.3M 92 Bessel functilons

in 30.3M 92 Bessel functions

log exp.3M 88 Logarithm

log10 exp.3M 88 Logarithm

pow exp.3M 88 Power

sLn sin.3M 93 Trigonometric functions
sinh sinh.3M 94 Hyperbolic functions
sqrt exp.3M 88 Square root

tan sin.3M 93 Trigonometric functions
tanh sinh.3M 94 Hyperbolic functions

y0 J0.3M 92 Bessel functions

A 30.3M 92 Bessel functions

yn 30.3M 92 Bessel functions

ND-60.214.01

math

obtained

library.

from

88 CC-100 and CC~500.
EXP({3M) - Exponential, Logarithm, Power, Square root,

7.5.1 EXP{(3M) - Exponential, Logarithm, Power, Square root.

NAME exp, log, log10, pow, sqrt
SYNOPSIS #include <math.h>

double exp(x)
double x;

double log(x)
double x;

double logl10(x)
double x;

double pow(x, V)

double x, vy;
double sqrt(x)
double x;
DESCRIPTION
Exp returns the exponential function of x.
Log returns the natural logarithm of x; logl10 returns the
base 10 logarithm.
Pow returns x rised to the y:th power.
Sqrt returns the square root of x.
SEE ALSO hypot (3M), sinh(3M), intro{3M)

DIAGNOSTICS pow return a huge value when the correct value would
overflow; errno is set to ERANGE. Pow returns 0 and sets
errno to FEDOM when the second argument is negative and
non-integral and when both arguments are 0.

ND-60.214.01

CC-100 and CC-500.
FLOOR(3M) ~ Absolute value, Floor, Ceiling Functions.

7.5.2 FLOOR(3M) - Absoclute value, Floor, Ceiling Functions.

NAME fabs, floor, ceil

SYNOPSIS #include <math.h>
double floor(x)
double x;

double cell(x)
double x;

double fabs(x)

double x;
DESCRIPTION
Fabs returns the absolute value |x].
Floor returns the largest integer not greater than x.
Ceal returns the smallest integer not less than x.
SEE ALSO abs(3)

ND-60.214.01

89

90

CC-100 and CC-500.

GAMMA (3M) - Log Gamma Function.

7.5.3 GAMMA(IM) - _Log Gamma Function.
NAME gamma
SYNOPSIS finclude <math.h>

double gamma(x)

double x;
DESCRIPTION Gamma returns In |G(]lx])]|, where G denotes the gamma

function. The sign of G(lx]|) 1s returned in the

DIAGNOSTICS

NOTES

external lnteger signgam.

The following C program might be used to calculate G:

y = gamma(x);

if (y > 88.0)
exror();
y = exp(y);
1f(signgam)
Yy = Y

A huge value is returned for negative integer arquments.

There should be a positive indication of error.

ND-60.214.01

CC-100 and CC-500.
HYPOT (3M) - Euclidean Distance.

7.5.4 HYPOT(3M) -~ Euclidean Distance.

NAME hypot, cabs

SYNOPSIS tinclude <math.h)
double hypot(x, y)
double x, vy;

double cabs(z)
struct { double x, y;} z;

DESCRIPTION Hypot and cabs returns

sqri(x*x + y*y),

taking precautions against unwarranted overflows.

SEE ALSO exp(3M) for sgrt

ND-60.214.01

91

92
JO(3M)

7.5.5 JO(3M) - _Begsel Functions.

NEME j0, j1, jn, ¥0, v1, yn

SYNOPSIS ffinclude <math.h>
double jO(x)
double x;

double 31(x)
double x;

double jn{n, x)
double x;

double yO(x)
double x;

double y1(x)
double x;

double yn{n, x)
double x;

CC-100 and CC-500.
- Bessel Functions.

DESCRIPTION These functions calculate Bessel functions of the first
and second kinds for real arguments and integer orders.

DIAGNOSTICS Negative arguments cause y0, y1, and yn to return a huge

negative value and set errno to EDOM.

ND-60.214.01

CC-100 and CC-500.

SIN(3M)

7.5.6 SIN(3M)

-~ Trigonometric Functions.

- Trigonometric Functions.

NAME sin, cos, tan, asin, acos, atan, atan2

SYNOPSIS

DESCRIPTION

finclude <(math.h)
double sin(x)
double x;

double cos(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x, y)
double x, vy;

Sin, cos and tan

Atan?2

returns trigonometric functions of radian arguments. The
magnitude of the argument should be checked by the
caller to make sure the result is meaningful.

returns the arc sin in the range -pi/2 to pi/2.

returns the arc cosine in the range 0 to pi.

returns the arc tangent of x in the range -pi/2 to pi/2.

returns the arc tangent of x/y in the range -pi to pi.

ND-60.214.01

93

94 CC-100 and CC-500.
SINH(3M) - Hyperbolic Functions.

7.5.7 SINH(3M) - Hyperbolic Functions.

NAME sinh, cosh, tanh

SYNOPSIS finclude <math.h>
double sinh(x)

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION These functions compute the designated hyperbolic
functions for real arguments.

ND-60.214.01

CC-100 and CC-500.
Appendix A: CC-500 Interfacing With Other Languages.

Successful interfacing with other languages, is based on good
understanding of the calling sequence, and the layout of the
stackframe in the environment of the calling and called routine.

The following presentation starts with a general description of the
stackframe layout produced by the CC-500 compiler. It 1s continued
with an example where a routine written in C calls another C routine.
The example 1s supposed to illustrate the calling sequence.

Currently only routines written in ND-500 Assembler can be added to

programs written in C. The presentation is therefore ended with some
guidelines showing how these routines should be written.

The stack 1s growing against higher memory addresses. Higher
addresses are upwards in the following description.

| Temporary ¢+ — B._S°P

N?morg locations used in evaluation
______ of expressions

| Temporary _ |

| Aute |
Memorg locaéiuns used ffr local
variables. very variable starts

F—= = — — = 4 on a byte boundary.

| Auto

Ar n Hemor locati uged for uments.

N-L: NN A?T a¥ Ygeﬁtsogge §§‘Yit oﬁggﬁts
exept ? oats and doubles whic need
G4—Eits. Ever argument starts
on a wor oufidary.

________ d bouhd

 Arg 1] « — B.20

N

AU]

L SP_

| RA_]

| Prev. B} ¢« — 8

The following example illustrates the calling sequence produced by
CC-200.

Concider the following situation:

The routine "foo" will call the routine "bar" with thres arguments

fool) {
int 1, j, k;
= bar O j, k, 433

et

ND-60.214.01

95

96

Appendix A: CC-500 Interfacing With Other Languages.

CC-100 and CC-500.

The following code will be generated for the routinsg "fog"

foo:

FU1:

ents

W omove

W omove
W omove
catl

Womaye
ret
2qu

Fui

L7

b.24,h.20+FU1 %

b.28,b.24+FUT %

b 24U %
bar,0 %
A
y’
ri,b.20 pA
b4
-

create a stackframe for

foo, FU1 is the size in bytes
Move first argument into the
stackframe which will be
created by the called
routine. B.Z0 is the
Location of the first
argument in "bar".

The second argument

And the third.

Notice that the hardware
mechanisme for parameter
passing is not usad.

The return value is passec
in register R1.

The called routine

"har' cons

ists of theg following saurce code:

bar ¢ s,

t, u
return

s

(8

=S R

+ g by

For this the

CO-300 will

generate the following code:

bar:

Fui:

ents

w add3

wil +
ret
aqu

Fu1
b.20,b.:

24,

7

% Creoate stackframe

% The arguments s, t, and u has
“ the following addresses

W b.20, b.24, and b.28

% The return value is now in Ri

ND-60.214.01

CC-100 and CC-500.
Appendix A: CC-500 Interfacing With Other Languages.

After the arguments aire moved into the area which will be the ney
stack{frsme but before the <call iz executed, the situation can be
described with the following figure:

Undefineg

| Undefined _ |
| Undefined |
| Undefined |
Undefined |
Lok] ¢ = B.SP
A I
L] « — B.20
LN]
L AUX
LsP]
CRA
Prev. B ¢ — B

of the ENTS instruction in the called routine ‘“bar”
=tack has the following shape:

b e e
b oe e e e e

b e e e e e —

L - = L L L e

dazzembler routine is supposed to begin with an ENTS (enter
stack nztruction. ENTS has one parameter, the size in bytes, for
the stackirams which will be generated.

The size of the frame must at Least be large enough to contain the
default part U 20 bytes 7 as well asz the arguments of the routine.

The first argument will be found at addressz B.20.

The called routine is able to return a value by loading the register
b f

RT with the actual value fore executing the return instruction.

ND-60.214.01

97

98

ND-60.214.01

CC-100 and CC-500.

CC-100 and CC-500.
Appendix B: CC-100 Interfacing with other languages.

Currently only ND-100 assembly routines can be added to ¢ programs
and the technique can be studied in the section “C stack layout”

In ardsr to give the advanced usep som2 1deas on how the run-tims
zystem 15 designed the following information has been include.

Cunsider the fallowing situation:

fooly £
int j, i, k;
1= bar(j, k, 4);

will gensrate the sequence:

foo, Lda #*-1 % size of autos

copy adl sp dx Zaddress where execution is
“oontinued after the call to

Jjmp T (¥csy “the C enter routine csv.

533 4 Zpush the wvalue 4

s5ta i ,b TOS ATOS is equal to -3

min b TOS

Lda ,b 3 npush k

sta 1 ,bh TOg

min sb TOS

Lda o0 1 zpush j

sta 1 ,b TOg

min b TOS

sat 3 “size of parameter block

jptl i Char “call ko bar

sta b4 “store result in i

atc, ...,

ND-60.214 .01

99

100

CC-100 and CC-500.

Appendix B: CC-100 Interfacing with other languages.

and 1n routine bar:

har(

E)

I t g Ly o3
returni s + t + u

0
4

)

the generatad code sequence |

i

bar,

Lda
copy
jmp 7
Lda

add

add

imp

oy

The stack

b e

| _ _undefined |
I B, T
o— ~..l —— . - —’.— —
— __k — - P wv e
be e .._.4_ —_— - —U — — .
o —k-— —_— — —-.t... —
k] 8

in rodtineg "bar" before

the jump to #¥csv will Look Like:

ND-60.214.01

CC-100_and CC-500.

Appendix B: CC-100 Interfacing with other languages.

21l after

the

| _ _undefined =

S

o — ——i-—— —— —_— —

e e ._k _____ v — 4

b ——4_. — — _U__ —_—

L ...‘k.... —_— - ~t_ —
b s

b o e e L S

b e e T el

setup routine *csv

it will Look Like:

Shortly, in vour a:

mvroutine,

air 1f the retvalue

or 1t the pratvalue

ar F the rotbtvalue

|

terminating with

|

53a
copy
jmp

is ap

Ldx

5

adl sp dx

(¥osy

(retvalus

(refvalue

iz a Lang:

jmp

float op

Ciretvalus

fretvalue

doubla;

% Mumber of "auto”

words

ND-60.214.01

101

102 CC-100 and CC-500.

ND-60.214.01

CC-100 and CC-500.
Summary of C syntax.

Appendix C:

Comments:

Identiiiers:

Constants:

or

ar

103

/% ... this is a comment,
may extend over several lines, terminated by #/

CC-100 upte 12 significant characters,
A -2, a-z, 0 -9 and underscore ()
first letter must he alphabetic.

7

CC-500 upto 30 significant characters,
A-Z,a-z,0-%9, and underscore (_J,
first Letter must be alphabetic.

External identifiers: 7 characters, no distinction

between upper and Lower case letters.

C treats words of upper and Lower case as different
identifiers. AlLL reserved werds in C, as type declarations,
standard function names, etc, must be givern in Lower case.

129 decimal (14-bit) 133489 decimal (32-bit)
0123 octal (16=-bit) 012345 octal (32-bit?
Ox13FF hex {le-bit) Ox13FF hex (32-bit)
OX13FF hex (16-bity) OX13FF hex (32-bit)

1290 Long decimal (32-bit)
1290 long decimal (32-bit)
0123L Long octal (32-bit)
01231 Long octal (32~-bits

Ox13FFL Long hex (32-bit)
Ox13FFL Long hex (32-bit)
123.0 float (&4~bitr all float.point constants
123.Eé are treated as double
123.e-6
&’ character (E~-bit)
Y= non—~graphic chaeracter (8-bit)
\n new Line C(LF)
Lt tah (HT
N apostraophe €
A hackslash (N
‘Nddd " char.numeric value (ASCII)
\O14 formfeed (FF) occtal format
VI3 carriage return (CR: decimal format
OO etring terminator (NUL)
\IX7 hell char (BELY hex format
"abc" char. string, all strings are terminated

Hn

empty string. by NUL-char “\O’

ND-60.214.01

104

Tvpe specifiers: CC-100 Lo-500
int 16~bit integer unsigned Jz-bit unsigned
short 16-bit integer 16-bit unsigned
Long 32~bit integer 32-bit integer
float 48-bit fL.pt 3Z-bit fl.pt
double 48-bit fl.pt b4—bi1t fl-pt
char 16-bit Tinput/output & bhite) E~-bit
peinter 16-bit Ja-hbit
enum 16-bit J2-bit
struct variable size, (record type) same
union variable size, (record type) same
typedef user named type of previous decltarations
unsigned 1&4-bit integer Ji~-bit integer
void func.name defines no return-value from function

Short, long, and unsigned can be combined with int, and char.

Storage classes auto local variables /¥ storage class ¥
static global variables A% prefixes tvpe 7
extern global variables /% declaration, as #/
register treated as auto /¥ static int ... *

Declarations: int identifery
shert int digits;

Long », ¥, z; long int maxnumber;

CC-100 _and CC-5090.

Appendix C: Summary of C syntax.

char w, #w;

short char letter;
float f1; double value

Arrays: int tablel107; /o #,
float resultl5073; A% arrays i C begins with #/

char text[1003; J% element O, hoth for *

int multil103 C107; /% vectors and matricec w7

float mix{53 57, /¥ 8/

char screenl24] £803; /» */

Accessing arrays: tablel03; /% elemente can be accessed #
tableld03; /#* using constantse, vari- #

screenllineld Lposd; /% ables, and expressions */

Initislization: int a=s

int tablel107 = 1,2,3,4,5,6,7,8,9,10)/;

float
char
char

Structure definitions:
stiruct name

Structure declaration:

struct name

struct date d =

struct date

pi=3.14169;
NUL="\0"y, LF ="\Di4";
*msg="message";

el

int day, mth, vear;
char mtn_name £41;
b

identifiers

L 31, 12, 1984, "DEC "I;
#od A% pd points to date structure #/

ND-60.214.01

CC~100Q and CC-500. 105
Appendix C: Summary of C syntax.

htructure accessing:

domth_name = "MAY " /¥ dot-notation addressing %/
Operators: unary: binaop:
* indirect EMmsg multiply a*5
/ divide ar’s
- nzgation -1 subtract a-5
+ add a+s
A remainder(modulo) ais
& address of &msg
sizeof number of bytes for a
type =51zeof imsgl
Relational: > Less than
> less and equal
= equal
< greater than
<= greater and equal

= not equal

Logicals &8 terminate evaluation if the expression iz TRUE
if ¢ character == "0 && character == "9)
il terminate evaluation jf the expression is FALSE
if 0 oom=T c=="\n" T c==TNE T)
Assignment: = a=5y a is assigned the value of &
+= a+=51 a iz incremented by 5
- a-=10; a iz decremented by 10
#*= a¥=p+1; is treated as if a = a % (b + 13
++ a++; assigns value after increment by 1
or ++3; assigns value, then increment by 1
- a-—; assigns value, after decrement by 1
or -—3; assigns value, then decrement by 1

EBit wise operators: and
? inclusive or
* exclusive or
184 shift Left
2 shift right

o -

one’s complement (unary)

ND-60.214.01

106

1

i
3u

Statament:

A statsment

exXpresslons

Appendix C:

if lexpr) statement;

if Cexpr) statement; else statement:

for Cinitial-expr; terminate-—e
statement;

while (texpr) statement;

do statemerty while (exprl;

switch lexprl;

Xpry inc

e

CC-100 and CC-500.

Summary of C syntax.

ment-expri)

{case-statement{s); and/or default-statement;’

case constant—expr: statement;
default: statement;

break;

continue;

return (exprl;

goto Label;

Label: statement;

3 null or empty statement

Compound statementz:{ expression;: expression: 3

/¥ may extend over several
Each expression must be terminated by a semicolon (3.

Conditional statement:?:

Prepreocessor:

fexpry 7 dexpr) @ flexprl;

jx
S
i

|
1

-
1,

s
-+
i

by 7azhb
b :

#¥define ddentifier constant-expr

can be a single sxpression, or a group of
within curly brackets (compound statements).

/% max of a or

#define identifieriparameter,...’ macro-body

#undef identifier

#include "filename” ¥ user files or SYSTEM #/
#include <filenamel A% ouser (C-INCLUDE) #*/
#if constant-expression

#ifdef identifier
#ifndef Jdentifier

#else

#endif

#Lline constant-identifier

#lstcod List assembly code onfoff (+{-)

ND-60.214.01

Lines

b

¥/

CC-100 and CC-500. 107
Index

#include Cotype.h o . 0 0 0 L L L 0 L L o L o L e e e e . . A3, 45,
#include {errno.h o o 0 L L L L L e e s e e e e e e e e e e .. 2.
frnclude <fontloh W v 0 o w0 0 0 b e e e e e e w e e e e e . . 3D
#include €math.h . .« . o 0 0 0 0 f s e e e e e e e e e e . . BB-9%,
Hinclude <memory.h . & & 4 & h i e e w h e e e e e e e . . B&.
#include $setimp.h o v o & . L L L e e e e e e e e e e e e b0

#include €stdiosh « & W v v 4 0t e e e s e e e e e e e w w . 3B, 63765 67,
1 k]

frinclude <string.h . o L L L L L L L L L L e e e e e e 4T
tinclude €varargs.h o o v o v 0 v h e e e e e e e e e e e e . b1
ARSTICT return integer absolute value 41.

e
L L A
L T T

= T O <
atan
atan
ATOF(3C) convert
atol

= I 7

3
T O

T
number 42,
e e x e e .o« 5300
A e e e e s s e o« o« SO
D I - L
T o . T2
ceil . .
clearerr -
CLOSEC(2) close a file descriptor & v & v v W v v v v 0 » » « . 35.
CONVC3CY translate characte

¥
*
x
®
I
»
L3
il
7
z
L]

I> =
o
P
-y
bt
il
fa
-5
3
e}
L
[}
-
—
]
W
PU
o
[fw
=
[s]
3
=

3
»
u
.
.
B
»
u
"
=
»
5
»
N

e T S

L1 = .

L 2= e 7
CREATC2) create a new file or rewrite an existing one Z9.

CTYPELICY classify characters o v v w v v v w w w « .« 45,
BOVE v h i e e e e ke ek k a e e e e e ke e e e e e . kA,
ECVTC3CY convert floatingpoint number to string . . « 46.
=
2 .
EXITUZY terminate program . . . v 4w & v 4w 4w v v w « o « w . . 37.

LR T -
EXPO3M) expanential Logarithm power square root 88.
L= = -
L 0
FCLOGE(35) close or flush a stream » w o & v v v » « w o o - . 75.
Fovt o L s e e e e e e e e e e e e e e e e e e e . ha,
TAOPEM & v v v h h e ks e e e e e e
feof o . o v . a0 e e e e e e e
FError o L ot h e e s e e e e e e e e e e e e . T
FERRORC3S) stream status ingquiries . . . v v v v v o w o w v . 76,

fflush . o o . o o L L L o L e e e e e e e e e e e T,
fgetc . . . L o L L L L L L ss.
fgets o« o L o L L L L L L L e e e e e e e e b,
FLILE ¥stdin #stdout #stderr W o v v o o o o oeox 63

ND-60.214.01

108

fiteno .
floor . .
FLOOR M)
fopen . .
FOPEN(35)
fprintf .
fputc . .
fputs . .
fread
FREAD
free . .
freopen .
frexp . .
FREXP(3C)
fscanf .
fseek . .
FSEEK{35)
ftell . .
furite .
gamma . .
GAMMA (3P
govt ..
getc . .
GETC (38
getchar .
gets . .
GETS{35)
getw . .
hypot . .
HYPOT (ZF)
INTROCE)
INTROCZY &
INTROC3M)
isalnum .
isalpha .
isascii .
isatty .
IGATTY (3(
iscntrl .
isdigit .
isgraph .
islower .
isprint .
ispunct .
isspace .
isupper .
iskdigit
L.
JOCERD
)5 S
Ldexp . .

Ly
0

he

" « B u

absolute

a - » "

value

ceiling

open a stream . . . 4 o« . .
array inputocutput

. - » -
" - ow u
M *» w o=
. . .
M w = o
* L -
u » = u
- - » »
» . « =

manipulate

reposition a

Log gamma function

get a string f

N " "

Fuclidean digst

a u “ u

a stream

" a " r
" u u u
» o a -
“ - ° a
= o “ B
a 3 a a

stream . .

file pointer in
or word from

rom a stream .
3MCe W v v w e

a ° " =
® = “ “
" - u »
" u u =
= = " -
8 » - -

of fleoatingpoint numbers

"

introduction to system calls and errar

tandard 10 subroutines and Libraries . . .

introduction

to mathematical

Library

e e s 8 e s x w s w ok e s w
e e s x s w w a e s s e s W
e e x v = w % s e w w e e s
e e s e ke w e e e e w e

find if file iz a terminal
e w ek e a v s s w s e aaw
s e e s s s w s w e e e e o w
W s e s m a e e w e e s e .
e e s s e w w e e s w w w a s
b e e s e a e e e e e e
B, e e w a .
seel tundctrons L0 L L. .

ND-60.

¥ & w m w w om
& s & x = a
¥ a oW W oz om
s s & = e ow
¢« = & w w =
“ = ok v & ow
» u & & = a
s w & oa P
¥ w = w = o=
a x5 a3 =
m w W w m o
» x x = a "
= w & @ 8 m
» w = a . a
“« wom -
" *» = ow v« w
L FR—

214.01

" u
- @
- »
B =
u a
= u
- -
" =
- a
- u
a -
- u
- -
u ®
@ =
- =
= "
" u
- "
- b
x -
" "
u -
" [
» I
u =
" =
" =
a N
- o

e o
B "
= 1
s »
» B
" "
° ¥
n
a w
" .
- "
» "
“ u
« =
" "
" n

CC-100 and CC-500.
Index

. 89,
. 32,
. 71,

. 7.

~ND N
O o~

Sd o) o T W N LR)~

g -0

[SR € S (O (S SN e
LR LR AR @ O ma e W0~ ~P LR LD O 0 0 3 B s mn BB e L LY

Qo G4 a0 G O

R

IS

¥

n

a

v

5

*

€

.

5

[=4
PRI I
.

w P

EE

NN

R

_;\
Sl LR R Laoun Lnouh oun Uy

{

@

®

®

5

CC-100 and CC-500, 109
Index

s . - . 88,
! QQT] T T P N
Langimp . « . o o L e e e e e e e e s e e« . 60,
LEEEK(Z) move readwrite file pointer
Lzeek see SEEK(R) L 7
malloc o . . . L L L. - e . . S54.
MALLOCC3CS main memory allocator Y
L o B T
memchyr s V-
MEMCMB v v v v v 4 v 4 v ow w e e .
MEMEPY v . e e e
MEMORY (3C) memory operations .
memset
mktemp . v v o . L e e e e e e e e s w x w s s 3E.
PIKTEMPCICY make a unigue filename s P
modt Lo e o e s o L e e e e e e . . 3.
OPEMCZY open file for reading or writing 30.
UEEIrN0 © v v v e e e e e e e e e e e e .
perrgr e e w e e a e . . e e w59,
PERROR(IC) system error MEEEATES v & W & & w = w » » = = = o - 59,
T T TS 7 8
printf T . T
FRINTF(3S) print formatted output L L L T
putc e e . LTy
FUTC(3%: put character or word on a stream
PUTChAr « o 0 0 s s e s e e e e e e e e e e - . o« 68,
puts oL o L L L e e e e e e ..o 70,
PUTSC38) put a string on a stream . . . + « o . . . e owow oW 70,
putw Fx e e e e e e e e f e e s e e a e e e . . BB,
READCZ)Y read from file . . v v v 0 v v e v v e e e w o« 32
realloc o . . L L L L L L L L e, . /3N
rewind e e a w w m w w . - e e .
SEANt Lo o o e e e e e e e . . 31,
SCANF (IS convert formatted input -
setbuf . . oL oL L L L o < 1o
SETEUFC3S) acsign buffering te a steam s e e o« . . 85,
set jmp T T T X
SETIMPCSCY nonlocal goto « v v v v 0w v w W ... e w e o.ow 60
S0 0 o e e e e e e e e e e e e e e e, e e W o. . 930
GIMCIMY trigonometric furnctions . . . o o s e e o= o« 93,
sinh o . . L L s s e e e, C e e e e e . P4,
GINHCIMY hyperbolic functions . . . o o &
sprintf o o oL L L L s s L L s e e e e e e e e N

1 e e e w . . B8,
sscanf Lo L o L L L e s e e e e .. 31,
STDIO(3S) standard buffered inputeutput package -

strcat Lo L L L L L e A
strchr o 0 L L L L 00 L .. e r w e e w a e o e ow oW &7,
SEPCMP o o L L s s e e e e e, P
SEPCPY v v w e v e e e e s e e e w e w © w e om s . .
== = T e

ND-60.214.01

110

STRING(3C) string operations

strlien . . .« « . « . .
strncat
stracmp o v . s e e e .
SEPNCPY v w0 v e e e
strpbrk . . « « .« . . .
strrchr o 0 0 0 0 L L
R = T
strtok
strtel

STRTOL(3CY convert string to

swab L
SWABC3CY swap bytes
sys errlist o o
SYS_Nerr . . . o« ox e
tan . .+ v 0 a0 a e e e .
tanh . . . « « « « < .
toascii + v v o 4 v . .
tolower
TOUPPEY & & v v w » o &
ungetc . oo
UNGETC (35!

'

"

=

push character back

UNLINK(2)Y remove directory ent
VARARGS (3} wvariable argument
WRITECZ) write on a file

2
yl o . . 0 .

S 2
=210 B
_tolower L .
_toupper

@

Li

u

N . - 3 u -
= w o * a B " "
e LR a » =
u “ s = = u - -
- " “ " =
P = s N " b
- ° - N .
s w8 w o= 5 »
= « = = » u

B = w W a w e
" = s s o« a

N P o

s w @ » = & = =

*» ® ® w 9w = u =

= s a2 & & " oa

u s a w8 ow ow

= @« om
n “ ® e« w a

“ a s 2 W »
5w ow s ow
- - a s
« = 8 B uw e o=
. . -
s w8 s ® oW W
. = = om

ND-60.214.01

CC-100 and CC-500.
Index

. 47,

LR R R L XX Ry SEND Us YOUR COMMENTS!!! LA R R R R R R R

Please let us know if you
* find errors
* cannot understand information
* cannot find information
* find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell

us if you like the manual!

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader’s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

sexsnnnnrers HELP YOURSELF BY HELPING US!! e

Manual name: CC 100 and CC 500 C -Compiler ND —100/500 Manual number: ND--60.214.01

User Manuali

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name:

Date:
Company: Position:
Address:
What are you using this manual for ?
NOTE! Send to:
This form is primarily for Norsk Data A.S ’ e
documentation errors. Software and Documentation Department
system errors should be reported on P.O. Box 25, Bogerud Norsk Data’s answer will be found

Customer System Reports.

0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
0621 Oslo6, Norway

Systems that put people first

NORSK DATA A.S OLAF HELSETS VEI 5 P.O. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 - 29 54 00 - TELEX: 18284 NDN

