

User Manual
ND-60.203.2 EN

The information in this manual is subject to change without notice. Norsk Data A.S assumes no responsibility for
any errors that may appear in this manual. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S. Copyright (©)1986 by Norsk Data A.S.

P i
PRINTING RECORD UPDATING
PRINTING NOTES Manuals can be updated in two ways, new versions and
revisions. New versions consist of a completely new
. manual which replaces the old one, and incorporate all
12/84 Version 1 EN revisions since the previous version. Revisions consist of
06/86 Version 2 EN one or more single pages to be merged into the manual

by the user, each ravised page being listed con the new
printing record sent out with the revision. The old printing
record should be replaced by the new one.

New versions and revisions are announced in the ND
Customer Support Information and can be ordered from
the address below.

The reader's comments form at the back of this manual
can be used both to report errors in the manual and give
an evaluation of the manual. Both detailed and general
comments are welcome.

ABM User Manual
Publ.No. ND-60.203.2 EN

RING BINDER OR PLASTIC COVER

The manual can be placed in a ring binder for greater
Norsk Data protection and convenience of use. Ring binders rnay be
ordered at a price of NKr. 45 - per binder.

The manual may also be placed in a plastic cover. This
: HMF izl;g;’k cover is more suitable for manuals of less than 100 pages
i §x§ it than for larger manuals.

B

Lo sttt ottt s
AT R T

Please send your order, as well as all types of inquiries and
requests for documentation to the local ND office, or (in

Norway) to:
Norsk Data A.S
Graphic Center
P.0.Box 25 BOGERUD
N-0621 OSLO 6 - Norway
[T e e e e

X

l I would like to order

PREFACE

THE PRODUCT

THE READER

PREREQUISITE KNOWLEDGE

THE MANUAL

This manual describes ABM - Application
Building and Maintenance. ABM 1is used for
online building and maintenance of
applications for the SIBAS database.

ABM is registered in the ND Software Library
as the following module:

ABM -~ Application Building and Maintenance
ND-210713B for ND-100
ND-210718B for ND-500

The product is delivered on diskettes
containing al) the necessary files and
programs. The procedure for loading and
implementing the files on the computer is
described in the Program Description Sheet.

The ABM User Manual should be of interest to
database managers, system analysts and
programmers.

The reader should be familiar with either
FORTRAN or COBOL. The reader should also be
familiar with SIBAS DRL (database Definition/
Redefinition Language) and FOCUS (screen
handling system). General descriptions of
these are found in:

FORTRAN Reference Manual ND-60.145
COBOL Reference Manual ND-60.144
SIBAS User Manual ND-60.127
FOCUS Reference Manual ND-60.137

CHAPTER 1 gives a general introduction to ABM.

CHAPTER 2 gives practical information for
using ABM.

CHAPTER 3 gives general information for
writing programs using ABM.

CHAPTERS 4 to 8 give details of the ABM-SIBAS,
ABM-FOCUS and ABM-UTILITY library routines.

CHAPTER 9 gives an example of using ABM. The
example gives a good overview of using the
various modules of ABM.

Norsk Data ND-60.203.2 EN

STANDARD NOTATION

In the
text ;
you see: What it means or what it is used for:

@ Areas shaded grey represent screen pictures.

@ABM ® Text typed in by the user is underlined.
All operating system commands must be
terminated by P

@ @ This symbolizes the SINTRAN 111 prompt sign.
It indicates that you are in touch with the
computer's operating system and can give

it commands.

< ® Thié represents the carriage return key.
On the terminal it may be marked <J, CR,
RETURN or ENTER.

[:~ @ This represents the EXECUTE key.
N ® This represents the HOME key.
CTRL + W ® This is an example of a’ CTRL combination.

It means you press the CTRL key and hold
it down while you press W.

f;:\ ® This key is used for example when moving from one
\53 level of the Subschema pictures down to the next.

SHIFT + <;€> ® These keys are used for example when moving from
<> one level of the Subschema pictures up to the next.

FUNK @ ® This will clear the screen picture.
Note: The keys should be pressed one at a time.

Norsk Data ND-60.203.2 EN

vii

TABLE OF CONTENTS

Section Page
1 INTRODUCTION TO ABM: 3
1.1 The modules of ABM . - . 4
1.2 The dependencies between the ABM modu1es . 7
2 HOW TO USE ABM . 13
2.1 Starting ABM . . . 13
2.2 The ABM commands . . . 15
2.3 Navigation in the command pwctures . . . 18
2.4 Naming conventions for COBOL and FORTRAN programs 20
2.5 Data Description . O 21
2.6 Database Initiation 22
2.7 Os-file 23
2.8 System Realm . 24
2.9 Database Realm . 25
2.10 Database Item 26
2.11 Dbgroup : 27
2.12 Database Set . . 29
2.13 Maintenance of Funct1ons . 30
2.14 Maintenance of Subfunctions 31
2.15 Maintenance of Subschemas) . 32
2.15.1 Navigation in Subschema pwctures) 36
2.16 Generating Schemas . .) 38
2.17 Generating COBOL copy e1ements and FORTRAN 1nc1ude f11es . 43
2.17.1 Generating FORTRAN include files . 47
2.17.2 Generating COBOL copy elements . 50
2.18 Report Generation oL 51
2.19 Screen-Form 53
2.19.1 Before you make a screen form . 54
2.19.2 How to make a screen form: an example 55
2.19.3 Describe-Forms: to examine forms . 57
2.19.4 Rules for fields and records . 59
2.20 Field occurrences in ABM version B . 62
2.21 Database and form connections 64
2.22 Database maintenance . . . 65
2.23 Generating Subschema from form . 68
3 HOW TO WRITE PROGRAMS USING ABM 73
3.1 Writing programs using ABM .) 73
3.2 General structure for FORTRAN programs . 74
3.3 Use of subitem 1ist in FORTRAN programs 75
3.4 General structure for COBOL programs . 76
3.5 Use of subitem 1ist in COBOL programs 77
3.6 SIBAS/FOCUS communication routines . 78

Norsk Data ND-60.203.2 EN

viii

Section Page
3.7 Value buffers for ABM-FC-LIB and forms . 79
4 HOW TO USE ABM-SIB-LIB ROUTINES IN FORTRAN APPLICATIONS 83
4.1 Routines and parameters in ABM-SIBAS-LIBRARY . 83
4.2 ABM-SIB-LIB routines for FORTRAN applications 85
5 HOW TO USE ABM-SIB-LIB ROUTINES IN COBOL APPLICATIONS 93
5.1 Routines and parameters in ABM-SIBAS-LIBRARY . 93
5.2 ABM-SIB-LIB routines for COBOL applications 95
6 HOW TO USE ABM-FOCUS-LIBRARY IN FORTRAN APPLICATIONS . . 103
6.1 Routines and parameters in ABM-FOCUS-LIBRARY 103
6.2 How to use the ABM-FC-LIB routines in FORTRAN app:1<at1ons . . 106
7 HOW TO USE ABM-FOCUS-LIBRARY IN COBOL APPLICATIONS . . 117
7.1 Routines and parameters in ABM-FOCUS-LIBRARY 117
7.2 How to use the ABM-FC-LIB routines in COBOL app11ca110ns . .12l
8 HOW TO USE ABM-UTILITY-LIBRARY . . 135
8.1 Routines and parameters in the ABM-UTILITY-LIBRARY . . 135
8.2 How to use ABM-UTILITY-LIBRARY . Coe e . 136
9 AN EXAMPLE OF USING ABM . 141
9.1 The data model . 142
9.2 The implementation of the data mode1 . 143
9.3 Using ABM . . 146
9.4 Source schema for the samp]e database . 150
9.5 Report of the sample database . 158
9.6 The COBOL copy file 161
9.7 The FORTRAN include file . o . 166
9.8 A COBOL application program: an example . 170
g.9 A FORTRAN application program: an example . 190

Norsk Data ND-60.203.2 EN

Section Page
APPENDIX

A Display code 204
B Storage code206
C Data Dictionary information 208
D Routines in ABM-SIB-LIBRARYz210
E Routines in ABM-FOCUS-LIBRARY21
F Routines in ABM-UTILITY-LIBRARY 214
G Operating the ABMBASE .2186
H Data transfer between application routines 224
I Compilation errors22
J How to load an ABM application 228
K Error messages23
Index 233

Norsk Data ND~G0.203.2 EN

Norsk Data ND-60.203.2 EN

DIALOGUE

DIALOGUE is Norsk Data's total concept

in database management. It has the

complete set of tools and utilities for:

® high performance, easy expansion, and
redefinition of a data base;

® creating a tailored user interface;

® creating and maintaining applications
easily and efficiently;

® generating advanced reports;

® common data dictionary information
for easy coordination and maintenance
of the database and applications.

The modules of DIALOGUE are described below:

USER ENVIRONMENT

4TH GENERATICN
LANGUAGE

REPORT GENERATOR

QUERY LANGUAGE

APPLICATION
BUILDING AND
HMAINTENANCE

DATABASE
MANAGEMENT

UE 1is an integrated part of the SINTRAN
operating system. It can be used
together with DIALOGUE to create a
tailormade, individual interface for the
ND system.

UNIQUE 1is a tool for application
development. It can be used to develop
screen pictures and specify transactions
directly on the screen. It saves about
90% of development time and maintenance
resources.

RG allows the definition of advanced
reports in an easy manner by drawing the
desired layout on the screen.

ACCESS is a tool which can be used to
look at data base information in terms
of tables. It 1is suitable for online
use.

ABM can be used to make demanding
transaction systems. It is used inter-
actively with simple directives. It
saves about 50% of development time and
90% of maintenance resources.

SIBAS is a full CODASYL database
management system. Its features include
high performance, as well as easy
expansion and redefinition of databases.
It is a flexible and a highly secure
system, well suited fer distributed
processing environments.

ABM USER MANUAL 3
Introduction to ABM

1 INTRODUCTION TO ABM:

ABM is a 4th generation Application Building and Maintenance system. It is
built around the data dictionary concept. It is a tool for system analysts
and system programmers.

ABM can be used for the fast, secure and online building and maintenarce of
applications for the SIBAS database. ABM is used interactively with simple
menu-driven directives. Using ABM, one can typically save up to 50% of
development time and 90% of maintenance resources. ABM simplifies the
definition and maintenance of the SIBAS database, and the definition and
maintenance of forms for your application programs. The advantages of using
ABM are summarized below:

DEFINING AND With simple menu-driven commands you can
MAINTAINING THE define a complete SIBAS database. The database
SIBAS DATABASE items, group ~items, sets, realms, system

realms and os-files can be defined, together
with data dictionary information.

ABM also allows for easy addition to, deletion
or redefinition of the database.
DEFINING AND ABM uses the FOCUS system for defining and
MAINTAINING FORMS maintaining forms.
Once forms have been defined with ABM, they
can be easily connected to application

programs.

Forms can also be changed or redefined as

required.
USING APPLICATICN ABM maintains variable declarations and value
PROGRAMS assignments, as defined by the data

descriptions, subschemas and forms. This will
relieve the programmer of having to establish
these declarations again 1in the application
programs.

Norsk Data ND-60.203.2 EN

4 ABM USER MANUAL
Introduction to ABM

1.1 THE MODULES OF ABM

ABM 1is a system for creating information about applications systems that
communicate with the SIBAS databases or the FOCUS screen handling system.
The ABM information contains:

e data descriptions,

e descriptions of the databases (schemas, items, sets, etc.),

e descriptions of subsets of databases (subschemas),

e descriptions of the screen forms, and

e descriptions of functions and subfunctions which connect
screen forms and subschemas.

The information 1in ABM s stored in an ordinary SIBAS database. We will
refer to this ABM database as the ABM catalog. The features of ABM are
described below.

THE HODULES OF ABM: (1) DATA DESCRIPTION MAINTENANCE
(1) This module allows you to describe all
data items 1in the database, and all
DA;QIBEES%EPON fields 1in the forms. Each data item is
@ |1 1w given a unique, easy to remember name.
— . The data description will also contain
géggKSE ?gﬁEN format information, following the
MAINTENANCE MAINTENANCE standard display and storage format
I - {see appendices A and B).
. (3)
SUBSCHEMA [——--J
MA{NTENANCE—l (6) {2) DATABASE (SCHEMA] MAINTENANCE
| l ? E A database schema, also called a DRL
FUNCTION AND K P schema, is a complete description of a
;g?gg’gg;&gg {5) é g SIBAS database. It contains the necessary
G T information for the automatic production
] of DRL input file to initiate or redefine
a database.
{7}
A DRL item must have a unique, easy to
gi?kéggg“m ﬁgg‘éé%”w f?gg;lc’mo'” ggrser:z-e:;mname within a DRL database and
< .

ABM may contain descriptions of several
SIBAS databases.

END-USER

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
Introduction to ABM

(3) SUBSCHEMA

MAINTENANCE
SCHEMA: SUBESCHEMA :
item a-1}p—slitem a-1
item a-2 p—=jitem a-2{REALM
REALMiitem a-3 p—iitem a-3| ‘A’
‘At jitem a-4}—slitem a-4
item a-5
I—* item b-1|REALM
REALM|item b-1} item b-3] ‘B’
'B' |item b-2 _J‘
item b-3}

(4) SCREEN FORM
MAINTENANCE

LEADING TEXT: xx LEADING TEXT: xx
LEADING TEXT: 99.99.99 xxx xxxx

LEADING TEXT.....................
XXXXXX XXX Xxxx 999,99 99939.99
XXXXXXX XXX
XXXXX Xxxx xxxx 999.99 9999, 99
XXXXXXX XXX

(5) FUNCTIOMN AND
SUBFUNCTION
MAINTENANCE

A subschema defines a subset of a deatabase
definition. The definition of the total
database is found in the DRL schema for the
database. A subschema consists of a subset of
the database realms; and for each of these
reaims, a subset of the groups and items from
the realm.

A subschema includes definitions from one, and
only one, database.

A lot of different subschemas may be defined
in ABM, and the size of a subschema may vary
from one item to the total database.

The main purpose of the subschemas is to
specify which part of the database is of
interest in a particular application.

Normally, there will be a close connection
between the fields of a form and the items
in a subschema, used together in the same
application.

A subschema may be connected to more than one
subfunction (which describes a subroutine in
the application).

ABM subschemas are created, changed and
deleted online.

Building a subschema in ABM is done by marking
the desired realms from a 1ist of all realms.
For each of the marked realms, the desired
items and groups are also marked.

The organization of forms is based on the
possibility of dividing the forms into logical
groups of fields. A logical group may often
occur several times in the same form. Thus,
one form may consist of one or more logical
groups, and may have several occurrences of
every logical group. Such a logical group will
be called a form record, or just a record.

Normally, there will be a close connection
between a form record and a subschema record.

The functions and subfunctions in ABM
establish the connection between the programs
and subroutines in the application system, and
their use of database and screen forms.

To each function, one or more subfunctions are
connected; and each subfunction has one
subschema and/or one screen form. The
connection from function to subfunction and,

Norsk Data ND-60.203.2 EN

{6) REPORT GENERATION

(7) HMAKING APPLICATION
PROGRAMS

The application programs
will generally move data
between the screen forms
and the application
database.

ABM USER MANUAL
Introduction to ABM

further, from subfunction to subschema and
screen form, describes the function's use of
the database and forms.

A subfunction may be connected to more than
one function. Online menu commands are used to
create, change and delete ABM functions and
subfunctions.

A report module, which 1s a part of the ABM
system, makes it possible to select and
extract data from the ABM catalog in an easy
way. The result is formatted 1into readable
reports which are immediately available for
the user.

A primary use of the contents 1in the ABM
catalog is the automatic extraction of
information. This information is necessary for
building declarations and assignments for
programs in the application system.

Information needed to run a program using
SIBAS and FOCUS is automatically generated 1N
the INCLUDE/COPY generating module. This
relieves the programmer of establishing
variable declarations and value assignments:
they have already been defined in the data
descriptions, subschemas and screen forms.

The information produced about SIBAS in the
INCLUDE/COPY :files, consists mainly of the
realms to be used. For each realm, the items
and/or indexes to be used in the particular

program are indicated; in other words,
subschema information. Each item is declared
by type (integer, character etc.) and
dimension/length.

The FOCUS information is produced in the same
manner as the SIBAS information. The
ABM-SIBAS/ABM-FOCUS subroutine package should
be used to benefit from the data structure
built in the INCLUDE and COPY files.

Since all items and fields used in connection
with SIBAS and FOCUS are automatically
declared, the need for additional definitions
of Tocal variables 1in your programs is
Timited.

The result of the INCLUDE/COPY commands is
stored in two SINTRAN files. These files
should be added to your code at compilation
time by using the INCLUDE and COPY statements
for FORTRAN or COBOL programs.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
Introduction to ABM

1.2 THE DEPENDENCIES BETWEEN THE ABM MODULES

DATA DESCRIPTIONS

DATA
I—- DESCRIPTION -

DRL-SCHEMA || SCREEN FORM

!

SUBSCHEMA
SUBFUNCTION
FUNCTION

FORTRAN INCLUDE FILES AND
COBOL COPY ELEMENTS

'

FORTRAN AND COBOL PROGRAMS

!

ABM ROUTINES
FOR
SIBAS AND FOCUS
COMMUNICATION

SCREEN FORMS

FORM:
A VDU-form described
in ABM-FOCUS.

The data descriptions are not dependent on
other modules in ABM. However, data
descriptions may refer to DRL schemas or
screen forms. The data descriptions cannot be
deleted without deleting all the referenced
items (field-items and DRL items) 1in screen
forms and DRL schemas.

Changes in a data description may affect
records in all other modules which
refer to the data description, either
directly or indirectly.

DRL SCHEMAS

The SIBAS items defined in the DRL schemas are
dependent only on the data descriptions. The
other parts of the DRL schema are not
dependent on other ABM modules. The SIBAS
items in the DRL schema part are connected to
items in subschemas and screen fields. A DRL
item may therefore not be changed or deleted
without consequences for all the referenced
subschemas and screen fields.

In case of a deletion of a DRL item, all the
referenced items in subschemas and screen
forms must be deleted first.

Al the fields 1in the screen forms are
dependent on the data descriptions directly,
or indirectly via a DRL item. In other words,
a screen field must be connected to either a
data description or a DRL item. A screen form
consists of many screen fields and may be
connected to one or more subfunctions.

A screen form cannot be deleted without
deleting all references from
subfunctions.

Norsk Data ND-60,203.2 EN

SUBSCHEMA

SUBSCHEMA :

A collection of realms
and items/keys within a
database in a DRL schema
described in ABM.

FUNCTION
AND
SUBFUNMCTION

FUNCTION:

A program, i.e.,

a collection of one
or more subfunctions.

SUBFUNCTION:

A subroutine using a
screern and/or a
subschema.

ABM USER MANUAL
Introduction to ABM

The subschema is dependent on the DRL schema
(items, groups, realms and database) and may
be connected to one or more subfunctions.
Subschema information that no longer fits the
DRL schema will blink 1in the subschema
function field, and it is the user's
responsibility to change the subschema

contents.

A subschema cannot be deleted without
deleting all the references from
subfunctions.

A function owns one or more subfunctions, and
is the basis for producing INCLUDE and COPY
files. A subfunction cannot be deleted before
all references from functions are deleted. A
change of the contents in a module will affect
all other directly or indirectly dependent
modules, 1i.e., & change in data descriptions
will cause a redefinition of the DRL schemas
and the screen forms. The result of this will
be a vredefinition of the subschemas; and
further the subfunctions and the functions;
and at Tlast. the INCLUDE files must be
generated. The affected application programs
must be recompiled and reloaded. Depending on
the type of changes, adjustments in the
application programs may be necessary. Some

changes are S0 extensive {1ike the
redefinition of a database), that they are
user controlled, i.e., the whole process is

performed in more than one step.

A subfunction cannot be deleted before all
references from functions are deleted.

Before deleting any item in the database,
you will have to delete the items that are
interconnected to it. To find out how
items in a database are connected, run
the REPORT module. The report generated
from this module will show interconnections
between the Functions, Subfunctions, Forms,
Schemas etc. You <c¢an then use this
information to delete the items that are
connected to a specific item, and then
delete the item itself.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
Introduction to ABM

HO¥ TO USE
ABM
the SIBAS
database must be
running before you
start ABM
ABM command:
A BM press the B HELP !} |
HELP key

an overwiew of the
ABM commands

ABM commands
lead you to specific
screen forms

e COMMAND area ABM command:

HOME area —_— ABM>. DATA DESCRIPTION

FIELD area —

L2

MESSAGE 1ine — ...,

@

(1) HoMe (2) FIELD (3) HELP
COMMANDS COMMANDS KEY

<CR> REGISTER record -+ cursor right. HELP KEY IN THE
F show FIRST record. +«— cursor left. COMMAND AREA GIVES
N show NEXT record. a or CTRL+A key AN ABM OVERVIEW.
P show PREV.record. deletes char.

L show LAST record. CTRL+D++ddeletes HELP KEY IN HOME
G GET record. rest of field. AREA DISPLAYS

D DELETE cur.record. CANCEL key LEGAL COMMANDS.

M MODIFY cur.record. cancels field.

C COPY pic.to file. EXIT key to go to HELP KEY IN FIELD
Q CLEAR screen field Command Area. AREA GIVES FIELD
S SET search region. FUNC @ restores EXPLANATIONS.

E EXIT home area. screen picture.

ANY KEY WILL CLEAR HELP INFORMATION

Norsk Data ND-60.203.2 EN

10

Norsk Data ND-60.203.2 EN

AEM USER MANUAL
How to use ABM

ABM USER MANUAL
How to use ABM

11

CHAPTER 2
HOW TO USE ABM

STARTING ABM

THE ABM COMMANDS

NAVIGATION IN THE COMMAND PICTURES
NAMING CONVENTIONS

DATA DESCRIPTION

DATABASE INITIATION

OS-FILE

SYSTEM REALM

DATABASE REALM

DATABASE ITEM

DBGROUP

DATABASE SET

MAINTENANCE OF FUNCTIONS
MAINTENANCE OF SUBFUNCTIONS
MAINTENANCE OF SUBSCHEMAS
NAVIGATION IN SUBSCHEMAS PICTURES
GENMERATING SCHEMAS

GENMERATING COBOL COPY ELEMENTS AND
FORTRAN INCLUDE FIILES

GENERATING FORTRAN INCLUDE FILES
GENERATING COBOL COPY ELEMENTS
REFORT GENERATION

SCREEN FORMS

BEFORE YOU MAKE A SCREEN IFORM...
HOW TO MAKE A SCREEN FORM: AN EXAMPLE
DESCRIBE-FORMS: TO EXAMINE FORMS
RULES FOR FIELDS AND RECORDS

FIELD OCCURRENCES [N ABM VERSION B
DATABASE AND FORM CONNECTIONS
DATABASE MAINTENANCE

GENMERATING SUBSCHEMA FROM FORM

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
How to use ABM

72 HOW TO USE ABM

2.1 STARTING ABM

13

The SIBAS database must be in a RUNNING state using BIM-log before you
can start ABM. Appendix G will outline how to start and stop SIBAS in

the correct way.

The maintenance functions in ABM are administered by a menu-driven command
system. ABM 1is started by giving the command:

eABM-!

 AAAAAAAAAA
CARA U AAA
CAAA AAA

AAAAAAAAAA
AAA L AAAL

BBBBBBBB
BB
B
BBBBBBBB
BB ' BE

When you start ABM, the

screen picture shown above is displayed. The

following input and commands are now possible:

DATABASE NAME

SIBAS SYSTEM NUMBER

PASSWORD

Give the name of the ABM catalog (ABMBASE).
This name is stored as a default name, so you
can press <.

You can stop ABM at this stage by pressing the
EXIT key.

Give the number of the SIBAS process which
operate the ABM catalog {default process
is 1).

Write the password for your ABM catalog
followed by <. If there 1is no password
implemented on the ABM catalog, just prass <.

Norsk Data ND~60.203.2 EN

14 ABM USER MANUAL
How to use ABM

Then a new screen picture will be displayed. The ABM command line is placed
at the top of the screen.

QEE§ Pressing the HELP key at the ABM command line
- gives an overview of ABM.

ABM COMMAND Give a command to ABM,

Alternatively, the command for starting ABM and its parameters can be
written on one line. For example, if you want to start working with DBITEM,
you can write:

GABM, ,, ,DBITEM«

This will bring you directly from SINTRAN into
the modul of ABM you have specified, in this
example: DBITEM,

The ",," will cause the default value to be
filled in.

DEFAULT VALUES The default values are:
Default ABM Cata1og name is ABMBASE.
Default SIBAS process is 1 (one).
Default password is no password.

The command shown above <can aiso be written
1ike this:

@ABM ABMBASE 1, ,DBITEM«

If you use a password to protect the ABM
catalog:

@ABM ABMBASE 1 password DBITEM<

You may use all the combinations of the
default values as you please.

NOTE:

The ABM catalog must

be in a RUNNING state
using BIM-log before

you start ABM.

Norsk Data ND~-60,203.2 EN

ABM USER MANUAL 15
How to use ABM

2.7 THE AEM COMMANDS

Press the HELP key in ABM command line, and the ABM HELP menu picture will
be displayed. The picture shows all the commands that are available in the
ABM system. Please note that, due to the dependencies between the modules
in ABM when defining a new application database, the commands should be
used in the order described below. However, when modifying an application
database, the commmands can be used in any sequence.

i) When;ycx start to use ABM you~$heuid use the ABM commands in thws ordmr

ESCRIPTION {*7b?id" "the DBfNITE ;~ DBREALM ;' DBSET
ok : dat basa S DBOS?ILE fﬂ DBITEM ‘J,'ﬂ
e L DBSVSREALM DBGROUP
ey generate the dat&basa ,5‘ ; .

ggg{tﬁe1HEtP?§;“ never ymu iake

THE SEQUENCE {1) For each application system:
FOR USING ABM 1. define the DATA DESCRIPTIONS,
COMMANDS WHEN 2. define the DRL schema with the commands
MAKING A NEW DBINITIATE DBITEM
APPLICATION SYSTEM: DBOSFILE DBGROUP
DBSYSREALM DBSET
DBREALM

(2) Generate the schema for your application
database by using the command SCHEMA.

You may

abbreviate (3) For each function in the application system:
the commands 1. define picture SCREEN-FORM

as long as 2 define subschema SUBSCHEMA

the 3. define subfunction SUBFUNCTION

abbreviations 4, define function FUNCTION

are unique. 5. generate INCLUDE files INCLUDE-GENERATE

or COPY elements COPY-GENERATE

(No.4, define function, can be skipped.)

Norsk Data ND-60.203.2 EN

16

EXECUTING SINTRAN
COMMANDS FROM ABM

EDITOR

AEM USER MANUAL
How to use AEM

{4) Run SIB-DRL with the file generated in “SCHEMA"
as input file.

{s) Start the application database.
(See Appendix G.)

{6) Write, compile and Tload your application
programs. {(See the chapter "An example of using
ABM")

The ABM reports may be generated at any time.

You can give Sintran commands from the ABM command
Tine by typing "@" followed by the command. For
example:

ABM command : @LIST-SPOOLING-QUEUE,, <l

The ABM catalog will be closed automatically before
a Sintran command is executed.

This is a special command with return to ABM. The
command has one parameter: the name of the desired
editor. The EDITOR command will start a subsystem
such as PED or NOTIS-WP without stopping ABM.

Give the command followed by the name of the
editor, for example PED. The ABM catalog s
automatically closed before the editing can start.
Finish the editing by pressing the EXIT key. Ycu
will then return to the ABM command line. {The ABM
catalog is automatically opened again.)

Below is an example using the EDITOR command:

ABM command : EDITOR PED«!

<edit in PED>

<press the EXIT key, and you will return to ABM>

ABPM command :

Norsk Data ND~-60.203.2 EN

ABM USER MANUAL
How to use ABM

PROGRAMMING LANGUAGE

DEFINE-PROGHAMMING-
LANGUAGE

GET-PROGRAMMING-
LANGUAGE

AN EXAMPLE

17

In ABM, COBOL is the default Jlanguage type for
applications communicating with screen forms.

If you want to change current language type,
give the command shown below followed by the
desired language; for example, FORTRAN:

ABM command : DEFINE-PROGRAMMING-LANGUAGE FORTRAN<!

If in doubt whether COBOL or FORTRAN is the current
language for a screen form, you can display the
current language on the screen by giving the
command:

ABM command : GET-PROGRAMMING-LANGUAGE«!

Let's say that after having defined screen forms in
ABM with the Tlanguage FORTRAN, you want to write
your applications in COBOL. You'll have to follow
the procedure described below to update the
language type and allow your screen forms to
communicate with COBOL applications.

ABM command : DEFINE-PROGRAMMING-LANGUAGE COBOL-<-
ABM command : SCREEN-FORM<l
FD> MAKE-UPTODATE-FORMS <+

Users of ABM are advised to wuse just one
programming Tlanguage (FORTRAN or COBOL) to
communicate with one ABM catalog. But if you still
want to mix COBOL and FORTRAN, you must follow the
restricted naming conventions for FORTRAN.

Remember also to store the screen forms
communicating with COBOL applications on a
different form file from the screen forms
communicating with FORTRAN applications.

Norsk Data ND-60.203.2 EN

18 ABM USER MANUAL
How to use ABM

7.5 NAVIGATION IN THE COMMAND PICTURES

Most commands from the HELP menu will lead you to a command picture. The
command picture is divided into four different areas. Above the screen
picture frame 1is the COMMAND area. ABM HOME area is the small area at
the left-hand side, and the FIELD area is the main body of the picture.
Below the screen picture frame is the MESSAGE line. This is shown in the
figure below:

COMMAND AREA: ABM command :
ABM HOME AREA: ABM > . DATA-DESCRIPTION
FIELD AREA:
OK ?
© MESSAGE LINE: = —eeeeeemmmee e
THE HELP KEY You can obtain information about the ABM HOME

area commands and the command pictures by pressing
the HELP key.

NAVIGATION From the ABM HOME area, you <can go to the FIELD
area by pressing the < key.

HOME From the FIELD area, you can go to the ABM HOME
area by pressing the \ key. You will automatically
go to the HOME area when the last field in the
FIELD area is filled in. When you escape the FIELD
area by pressing the \ key, the data in the form
will not be stored in the ABM catalog.

EXIT From the ABM HOME area you can go to the COMMAND
area by pressing the E key or the EXIT key.

You can exit from the COMMAND area by pressing the
EXIT key or by typing EXIT . You will then exit
from the ABM system. The ABM catalog will be closed
automatically.

EXECUTE The EXECUTE key (E;) will move the cursor directly
to the 0K field. You may use the EXECUTE key in all
the ABM menus whenever the M (Modify) command is
given. '

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
How to use ABM

MESSAGES

0K?

19

After execution of a command, a message wil]
usually be displayed at the bottom 1line of the
screen. Also, whenever the contents of a field are
redefined or stored, a message will be displayed.
The message indicates whether the operation has
been successful or not.

Most of the ABM command pictures contain an 0K
field. The user is supposed to use this field to
give the final approval or disapproval of the
operation, by writing:

Y - update the ABM catalog.

N - no update of the ABM catalog,
go to the next part of the screen picture.

R - no update, repeat data registration.
The cursor will be positioned in the first
field which is not a key value.

Norsk Data ND-60.203.2 EN

20 ABM USER MANUAL
How to use ADBM

2.4 NAMING CONVENTIONS FOR COBOL AND FORTRAN PROGRAMS

The COPY and INCLUDE modules of ABM can be used to produce parts of
standard COBOL and FORTRAN programs. However, in order to avoid compilation
errors, these programs should use variable names that are unique and are
easily recognizable. There is a "naming convention" for Data Descriptions,
realms, items etc.

The COBOL and FORTRAN programs use slightly different naming conventions.

NAMING CONVENTIONS e For Data Description names referred to
FOR THOSE USING directly in a screen form, the first 8
COBOL characters must be unique.

Example :

Employee List
If the field names are the same as the

Name:c.ovvvinn.. leading text shown in the example, then
Address: the names Function-1 and Function-¢

............... are illegal, since the first 8 chars.
Function-1: are not identical.

NAMING CONVENTIONS e For the Data Description names referred to
FOR THOSE USING in a form, the first 5 characters must be
FORTRAN unique.

e The first two characters in a realm name
must be unique for all realm names 1in an
application database.

e The first two characters of a realm name must
also be used for all items and group item
names in that realm. The next 5 characters in
the item names must be unique within the
realm,

e For item names which are also indexes in the
the application database, characters 3, 4 ard
5 must be unique in that realm.

Example :

realm : EMPLOY e The first 2 characters of the realm
name EMPLOY are used in the names of

items: groups: indexes: all items, and group item(s).

EMNAME key e [t would be illegal to make the items

EMADRES EMFUNCL and EMFUNCZ2 index keys, since

EMFUNC1]EMJOB the 3rd, 4th and 5th characters (FUN)

EMFUNC2 are identical.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 21
How to use ABM

2.5 DATA DESCRIPTION

The DATA-DESCRIPTION function is started by giving the command in full, or
its abbreviation (D-D). The following picture appears on the screen:

DATA DESCRIPTION

THE ABM HOME AREA The upper left-hand corner is the ABM HOME
area. In this area you can give the following
commands:

« enter form field area when HELP key for ABM command

creating a record. information.

F - show FIRST record. N - show NEXT record.
P - show PREVIOUS record. L - show LAST record.
G - GET specific record. 0D - DELETE current record.
M - MODIFY current record. £ - COPY the screen picture
Q - Clear all fields on screen picture. to file.
S - SET/RESET search region each 2nd time. £ - EXIT from home area.

THE FIELD AHREA NAME: A unique name, maximum 30 chars.
EXPLANATION: Free text, maximum 180 chars.

STORAGE & DISPLAY FORMATS: See Appendix A.

GENERATED FORMATS: ;

The e COBOL format: denerated from standard

HELP key display & storage format. Used in
will item/field definitions in COPY elements.
display ® FORTRAN format: generated from standard
the display & storage format. Used in item/

explanations field definitions in INCLUDE files.
of the e SIBAS TYPE & LENGTH: denerated from
FIELD area. standard storage. Used 1in application
database.

Norsk Data ND-60.203.2 EN

22 ABM USER MANUAL
How to use ABM

2.6 DATABASE INITIATION

The command DBINITIATE will initiate a new application database, and cause
the "Initiate Database" statement which is necessary for the DRL run.

DATABASE INITITATION

Database ind

_database name

A1l fields except the dates are input fields.

DATABASE NAME :Database name, unique within the ABM catalog.

SIZE OF :Size in number of 64-word blocks. To avoid problems,
OBJECT SCHEMA give a large size, at least 1000 (default is 4800).
CRE/DEL/UPD :Create is default when defining a new application

database, after the ABM command <! is given.
If the ABM command M (Modify) 1is given, Update is
default. Before Deleting, the user has to substitute
the "U" with a "D" in the CRE/DEL/UPD field.
NOTE: Deletion is only executed on a confirmed database

EXPLANATION :60 characters describing the application database.
DD- INFORMATION :See Appendix C.

HEADING :Max. 30 characters.

PURPOSE :Max. 180 characters.

DATE OF CREATION :Date of creation of the application database.

MODIFICATION :Date of Tast modification of the application database.
LAST DRL-DATE :Date of the Tast run of SCHEMA's confirmation.
AUTOMATIC GEN. :1f Y (Yes), two os-files and one system realm will be
OF 0S-FILES AND made automatically, and the user will not have to give

SYSTEM REALM (Y/N]}? the commands DBOSFILE and DBSYSREALM. The generated
names are made on basis of the given database name. One
of the os-files will hold just the index part of the
database and have "-IX" as suffix. The other os-file
will contain the data and have "-DA” as suffix. The
system realm will be given the same name as the os-file
holding the index. Some naming examples:

Database name : DIALOGUE Database name : TEST

os-file {I) . DIALO-DA os-file (I) : TEST-DA
os-file (II) : DIALO-IX os-file (II) . TEST-IX
system realm : DIALO-IX system realm : TEST-IX

Norsk Data ND~60.203.2 EN

ABM USER MANUAL
How to use ABM

2.7 OS-FILE

23

The command DBOSFILE defines a new os-file (gperating system file) for the
application database.

DATABASE O0S-FILE

s-file name

A1l fields except the dates are input fields.

DB-NAME

05~FILE NAME

PAGE SIZE

DIRECTORY NAME

CRE/DEL/UPD

EXPLANATION
DATE OF CREATION
LAST MODIFICATION

LAST DRL-DATE

:Name of the application database. Must be unique within

the ABM catalog.

:SINTRAN IIT file name. Must be unique within the

application database.

:No. of words in a SIBAS page {default 512).

:4 char. abbreviation of the directory where os-file is

placed. If omitted, the default directory will be used.

:CREATE is the default value. This field is explained in

section Database Initiation.

:60 characters free text.
:Date of definition of the os-file.
:Date of last modification of the os-file.

:Date of the last run of SCHEMA's confirmation.

Norsk Data ND-60.203.2 EN

24 ABM USER MANUAL
How to use ABM

2.8 SYSTEM REALM

The command DBSYSREALM will define, delete or update a system realm for the
application database.

DATABASE SYSTEM

A1l fields except the dates are input fields.

DB-NAME :Name of the application database. Must be unique within
the ABM catalog.

OS-FILE NAME :SINTRAN III file name. Must be unique within the
application database.

SYS-HREALM NAME :System realm (for indexes). Must be unique within
the application database.

REALY SIZE :No. of 64 word pages (default 1000).

CRE/DEL/UPD :CREATE 1is the default value. This field is explained in

section Database Initjation.

EXPLANATION :60 characters describing the realm.

DD- INFORMATION :Data Dictionary information, please refer to
HEADING Appendix C.

PURPOSE

DATE OF CREATION :Date of definition of system realm.
LAST MODIFICATION :Date of last modification of system realm.
LAST DRL-DATE :Date of the last run of SCHEMA'a confirmation.

ADDITIOMNAL OS-FILES:Possibility to choose additional os-files if you use
SIBAS version F or a newer version.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
How toc use ABM

2.9 DATABASE REALM

With the
Calc realm.

commanid DBREALM you can define, delete or modify a Serijal or a

DATABASE REAL

atabase name
ealm name

main sys realm

A1l fields except date/DRL-date are input fields.

DB-NAME

OS-FILE
MAIN SYS-REALM

REALM-NAME
REALMSIZE
RECORD LENGTH

EXPECTED MAXIMUM
NUMBER OF RECORDS
CALC/SERIAL
MAIN-AREA
CALC-KEY
DUPLICATES
CRE/DEL/UPD
HEADING

PURPOSE

DATE OF CREATION

LAST MODIFICATION
LAST DRL-DATE

ADDITIONAL OS-FILES

:The application database. Must have been defined

earlier.

:Must have been defined for this database.
:System realm for storing index keys for this realm.

If omitted, the first defined sys-realm for this
application database will be used.

:Must be unique within the DB name.
:In number of pages of os-file page size (default 100).
:Record Tength in no. of words. One word is always

two bytes {default 500).

:Must be filled in for automatic dimensioning in the

SCHEMA module.

Realm type, Serial or Calc realm (default S).
:No. of pages in main area. For Calc realms only.
:For Calc realms only. Refers to an item or group item

which is or will be defined for the record.

:For Calc realms only. To decide whether the values of

the Calc key must be unigque or may have duplicates.

:CREATE is the default value. This field is explained

in section Database Initiation.

:Max. 30 chars. Text will appear as heading

on screen forms and reports (see also Appendix C).

:Max. 180 chars. Used for documentation and as

ONLINE help {(see also Appendix C).

:Date of definition of database realm.

:Date of last modification of database realm.

:Date of the last run of SCHEMA's confirmation.
:Possibility to choose additional os-files if you use

SIBAS version F or a newer version.

Norsk Data ND-60.203.2 EN

26

ABM USER MANUAL
How to use ABM

2.10 DATABASE ITEM

With the command DBITEM you can create, delete or update an item for a
realm. The following screen picture appears with this command:

DATABASE

. database name

A1l fields except for storage, display and the dates are input fields.

DATABASE NAME

REALM NAME
ITEM NAME

DATA DESCRIPTION

INDEXED ITEM

CRE/DEL/UPD
EXPLANATION
HEADING

PURPOSE

DATE OF CREATION
LAST MODIFICATION

LAST DRL-DATE

STORAGE
DISPLAY

:Application database name; must have been defined

earlier.

:Must be unique within the application database.
:Must be unique within the reaim.

:Must have been created before.

:AD (Automatic, Duplicates allowed).

AN (Automatic, duplicates NOT allowed).
MD (Manual, Duplicates allowed).

MN- {Manual, Duplicates NOT allowed).
BLANK (No index desired).

:CREATE 1is the default value. This field is explained in

section Database Initiation.

:60 characters describing the item.

:Max. 30 chars. Text can appear as heading

on screen forms and reports (see also Appendix C).

:Max. 180 chars. Used for documentation and as

ONLINE help (see also Appendix C).

:Date of definition of database item.
:Date of Tast modification of database item.
:Date of the last run of SCHEMA's confirmation.

STORAGE & DISPLAY 1information is fetched automatically
from DATA DESCRIPTION (see Appendix A).

Norsk Data ND-60,203.2 EN

ABM USER MANUAL 27
How to use ABM

2.1]1 DBGROUP

With the command DBGROUP you can create, delete or update a group item
consisting of elementary items. The items need not be «contiguous in a
record type. Properties such as Calc key, Index key, member set item and
owner set jtem may be assigned to a group item in the same way as they are
assigned to an elementary item. Two screen pictures are associated with the
command DBGROUP. The FIRST picture is as follows:

ATABASE GROUP

atabase name 1gPOUD name

With this picture you primarily declare the name of the DATABASE GROUP.

DATABASE NAME :Database name; must have been defined =2arlier.

REALM NAME :Realm name, must exist.

GROUP NAME :Must be different from all item/group item names in the
realm.

GROUP INDEX :AD (Automatic, Duplicates allowed).

AN {(Automatic, Duplicates NOT allowed).
MD (Manual, Duplicates allowed).

MN (Manual, Duplicates NOT allowed).
BLANK (No index desired).

CRE/DEL/UPD :Create is the default when defining a new group.
This field is explained in section Database Initiation.
EXPLANATION :60 characters describing the group item.
DD- INFORMATION :See Appendix C.
HEADING :Max. 30 characters.
PURPOSE :Max. 180 characters.

DATE OF CREATION :Date of the creation of the group item.
LAST MODIFICATION :Date of the last modification of the group item.
LAST DRL-DATE :Date of the last run of SCHEMA's confirmation.

e In the next picture of the DBGROUP command, you <can define which
elementary items are to be part of the group item.

e The next picture appears when you terminate the 0K field with the < key
or with N.

Norsk Data ND-60.203.2 EN

28 ABM USER MANUAL
How to use ABM

DBGROUP. . . (cont)

In the following picture you can specify which elementary items are to be a
part of a GROUP ITEM:

DATABASE GROUP-MEMBERS

For database/reaim/group

DATABASE NAME I'l These names will be

REALM NAME I'l carried over automatically

GROUP NAME It from the previous picture.

ITEM FIELDS 1 The item fields will contain the names of items in

11l the specified realm of the database.

e In this picture you have to specify the items which
are to be a part of the group item.

e Specify the items by giving them numbers in a sequence; otherwise
you will get an error message.
Moving within the fields . use the keys <+ and — .
Moving from cne field to another : use the keys § and t.

e When you have finished specifying the items, you can go
back to the first picture by pressing the (EXECUTE) key [:‘.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 29
How to use ABM

72.17 DATABASE SET

With the command DBSET, you can specify which record belongs to a
particular set. The owner and member realms must be defined before using
this command. The following screen picture appears with the command:

database name

DBNAME :Application database name; must have been defined
earlier.
SETNAME ‘Must be unigue within the application database.
OWN-REALM :Owner realm name. Must exist.
OWN-ITEM :Owner set item. Must exist.
MEMB- ITEM ‘Member set item. Must exist.
Default: same name as in OWN-ITEM.
CLASS :Storage class (Automatic/Manual). Default "A".
LINK :Link (Single/Double). Default "D".
DD-INFORMATION See Appendix C.
HEADING
PURPOSE
DATE :Date of the creation or last modification in the

ABM catalog.
DATE OF CREATION :Date of the definition of database set.
LAST MODIFICATION :Date of the ltast modification of database set.

LAST DRL-DATE :Date for the last run of SCHEMA's confirmation.
MEMBER REALMS
REALM NAMES :Member realm name must exist.

Only for users of multi-member-set. {Usually just one
realm name is filled out.) Maximum four multi-member-
sets allowed.

Terminate all four fields with <.

Norsk Data ND-60.203.2 EN

30 ABM USER MANUAL
How to use ABM

2.13 MAINTENANCE OF FUNCTIONS

A function 1ir ABM consists of one or more subfunctions which belong
together logically. If you use a function as basis for generating COPY/
INCLUDE files, you will automatically get COPY/INCLUDE files for all
subfunctions which the actual function consists of. If you want to generate
COPY/INCLUDE files from subfunctions instead of functions, you will have to
generate a COPY/INCLUDE file for each subfunction.

The following picture appears with the command FUNCTION:

Date of cres

FUNCTION NAME :Must be unique within each ABM catalog. The name must
not be ALL, CHANGES or STOP, as these are reserved
within ABM.

ONLINE/BATCH :0 or B. Default is "0".

EXPLANATION :Information field for the user.

A function cannot be deleted if subfunctions are
connected. A subfunction is disconnected from the
function by clearing the name from the list.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 31
How to use ABM

2.14 MAINTENANCE OF SUBFUNCTIONS

A subfunction can be used to define parts of an application program.
A subfunction may also be the basis for producing INCLUDE/COPY elements.

In order to use the ABM subroutines for application database, program and
screen communication, a screen picture and/or a subschema must be referred
to in the subfunction.

The command SUBFUNCTION shows the following picture:

SUBFUNCTION

SUBFUNCTION NAME :Must be a unique name within the ABM catalog.
LONG NAME :A more explanatory name, only used for documentation.
EXPLANATION :Information field for the user.
MAIN/SUB ROUTINE :0nly used for documentation.
M: if subfunction is a MAIN routine.
S: if subfunction is a SUB routine.

READY REALM R: if subfunction code includes preparing to
call SIBAS "READY REALM"
<space>: if no READY REALM.
ADD. DECLARATION :Y or N (Yes/No), Y is default. If Y, some additional
declarations will be made in the COPY/INCLUDE files.

These are:
DBSTATUS - Database status
FCSTATUS - Focus/form status
FORMFILE - Form file name
MESSAGE - Message line
TDBKEY - Temporary database key
OPTION - Forget/remember option code
TDBSRI - Temporary search region indicator
OTEXT - Output from DDGTEXT and DDGMSGE
SUBSCHEMA NAME :Name of subschema.
FORM NAME :Form name.

Norsk Data ND-60.203.2 EN

32 ABM USER MANUAL
How to use ABM

2.15 MAIMTENANCE OF SUBSCHEMAS

A subschema specifies which part of the application database is of interest
in a particular application.

Building up a subschema in ABM is done by marking the desired realms from a
list of all realms and then marking the desired items or group items for
each of the already-marked realms.

A new subschema may be generated automatically from a form.

Start the function by typing the command SUBSCHEMA in the ABM command line.
The Subschema Heading picture will be displayed.

SUBSCHEMA HEADING

database name

You can move between different subschemas by using the
commands F, N, P and L in the ABM home area:

: Display First subschema

: Display Next subschema

: Display Previous subschema
: Display Last subschema

™~ o

When giving the command M {Modify) in the ABM home
area you can change the contents of those fields in
the Subschema Heading picture which only contain
comments.

SUBSCHEMA NAME :Name of the subschema. Subschema name must be unique
within the ABM catalog.

LONG NAME :A more explanatory name, only used for documentation.
COMMENTS :Used for documentation.
DATABASE NAME :Name of the database this subschema specifies.

Morsk Data ND-60.203.2 EN

ABM USER MANUAL
How to use ABM

GENERATE SUBSCHEMA
FROM FORM

OK?

33

;Y or N (Yes/No), Y is only possible if you want to

generate a new subschema automatically from a form.
If Y, fi11 in the name of the form you will make a
corresponding subschema of. This will establish a
subschema very quickly. The generated subschema wil]
consist of all the indirectly defined fields in the
specified form. (For further information of the fields
which refer to '"database", "realm" and "item", see
section Generating subschema from form, page 68.)

;Y -~ update the ABM catalog.
:N - no update of the ABM catalog;

go to the next part of the screen picture.

:R - no update, repeat data registration.

If Y in both the OK field and the “generate subschema
from form" field, the subschema will be generated from
the form you have specified. The subschema will be
stored in the ABM catalog.

If Y in the 0K field and N in the "generate subschema
from form" field, the next picture, Subschema Realm,
will be displayed:

SUBSCHEMA REALM

MARKING REALMS

A1l the defined realms of the given database will be
displayed in this picture. Indicate the realms you
want the subschema to consist of by marking the UP
fields for the actual realms. You can choose what the
realms will be used for, and which type of protection
they shall have.

Norsk Data ND-60.203.2 EN

34 ABM USER MANUAL
How to use ABM

up :Legal marking of realms of the UP field:

"UN" - Realms to be used for Update
and with No protection.
“RN" - Realms to be used for Retrieval only
and with No protection.
"UP" - Realms to be used for Update
and with Protection - that is
exclusive update.
- The realm is not of interest in
this subschema.

A screen picture may contain a maximum of 50 realms at
one time. To display the remaining realms, press the
N (Next) key in ABM home area. {You will get a message
on the screen if the database contains more than 50
realms.)

When generating a new subschema (even when there are
more than 50 realms), you do not have to press the N
key. The next screen picture holding the remaining
realms will be displayed automatically.

When you have marked all the realms of interest in one
<::> picture, press the EXECUTE key. The marking of realms
will be stored in the ABM catalog when you confirm the
selection by typing Y in the 0K field.

When generating a new subschema, you will
automatically move on to Subschema Item and Subschemna
Group Item pictures. They look the same. A Subschema
Item picture is shown below.

SUBSCHEMA 1TEM

MARKING ITEMS/ For each marked realm in the subschema realm picture,

GROUP ITEMS all items or group items from the ABM catalog will be
displayed. Indicate the items/group items which are
of interest to you by marking the "MARK" fields as
illustrated on the next page. Then press the EXECUTE
key. The items or group items of the next marked realm
will be displayed, and so on until you have marked all
the actual items/group items of the marked realm.

Morsk Data ND-60.203.2 EN

ABM USER MANUAL
How to use ABM

INDEX

35

:This is key index from DRL-schema . definition in ABM.

The values displayed here are the values which you
filled in during definition of DBITEM or DBGROUP. {See
section Database Item.)

“AD": - Automatic, Duplicates are allowed.
"AN" - Automatic, duplicates are Not allowed.
"MD" - Manual, Duplicates are allowed.

i

“MN" - Manual, duplicates are Not allowed.
" " - No index is desired.

i

:You can select items/group items for the actual realm

by using the following marks:

"T " - Used as Item {not as key).

"K " - Used as Key only.

"IK" - Used as both Item and Key.

- The item will not be used in this
subschema.

For group items the only valid marks are:

"K " - Used as Key only.
“ " - The group will not be used in this
subschema.

A screen picture may contain a maximum of 30 items or
group items. If a realm contains more than 30 items or
group items, press the N key in ABM home area to
display the remaining items/group items.

When generating a new subschema (even when there are
more than 30 items/group items), you do not have to
press the N key. The next screen picture holding the
remaining items/group items will be displayed
automatially. (After you have ended the selection in
one picture by pressing the EXECUTE key and confirmed
the selection by typing Y in the 0K field.)

Here is an example of a filled 1in Subschema Item
picture:

 SUBSCHEMA

“Realm G&IT

Norsk Data ND-60.203.2 EN

36

ABM USER MANUAL
How to use ABM

2.15.1 NAVIGATION IN SUBSCHEMA PICTURES

The SUBSCHEMA command leads to three different levels of related pictures;
Heading picture, Realm picture and Item/Group Item picture, as shown below.

SUBSCHEMA HEADING picture

SUBSCHEMA REALM picture

SUBSCHEMA ITEM picture

SUBSCHEMA GROUP ITEM picture

>
&

. ><
SHIFT + <;;>

F (FIRST)

N (NEXT)

When NOT generating a new subschema, you can move
between related pictures (forms) within the same
level. You can also navigate up and down between
the three levels of pictures by issuing commands
in the ABM home area.

Use this key to move one level of pictures down.

Use these keys to move up one level of pictures.

When the Subschema Realm, Item or Group Item picture
is displayed, the fields will contain the selections
made previously. The fields may also be displayed
by pressing the F key in the ABM home area {see
below) .

If the database contains more than 50 realms or more
than 30 items/group items, you will get a message on
the screen. These are the maximum numbers which can
be shown on the screen at the same time. Press the
N key to display the next picture which contains the
remaining data. You may redisplay the first Realm
picture or the first Item/Group Item picture by
pressing the F key.

Norsk Data ND~60.,203.2 EN

ABM USER MANUAL
How to use ABM

M (MODIFY)

AN EXAMPLE
OF NAVIGATION

37

Pressing the M key in ABM home area of a Subschema
Realm, Item or Group Item picture, will enable you
to change the selection made previously. Wnen the
desired changes are made, terminate with the EXECUTE
key and confirm with Y in the 0K fiald.

Type the command SUBSCHEMA in ABM command line, and
the Subschema Heading picture will be displayed.
(Use the commands F, N, P, and L to move to any
desirable Subschema Heading pictures.)

If you want to move one level down to a Subschema

Realm picture, press the "< key.

Move between related Realm pictures by using the
commands F and N.

If you want to proceed with a oicture one level
down, press the "<" key. Move the cursor to -the
particular realm by using the arrow keys. When
the cursor s positioned on that realm, press the
">" key once more. You will then be asked whether
you want to display the Item picture or the Group
Item picture. Answer I or G, and tha desired picture
will appear.

Move between related Item/Group Item pictures by
using the commands F and N.

If for example, you have displayed a Subschema Item
picture on the screen, and you want to navigate up
to the Heading picture, continue to press SHIFT +
"o>", which will lead you up level by level, until
you reach the Subschema Heading picture.

Norsk Data ND-60.203.2 EN

38 ABM USER MANUAL
How to use ABM

2.1b GENERATING SCHEMAS

tach database has a corresponding source schema which describes the
structure of the database. The source schema is translated into an internal
representation of the database, the object schema, by SIBAS-DRL (Definition
Redefinition _anguage). The ABM SCHEMA command generates complete source
schemas to be processed by SIBAS-DRL.

CSCHEMA

}Daﬁe,éffﬁva&iiéﬁ*g“,

The values from the last Definition/Redefinition/Confirmation run (see
below) for a database are stored in the ABM catalog as a "Schema entry"
When the SCHEMA command has been fissued, these entries can be examined
using the normal commands in the home area {(e.g., F{First), N{Next)......).
When generating the Schema for a new database, the « key is used for
creating a new Schema entry. The following SCHEMA-runs for this database
will have to use the M(Modify) command to change the Schema entry. [f a
Schema entry is deleted (using the D command), the corresponding DRL-files
for Definition and Redefinition will NOT be deleted.

DATABASE NAME ‘Name of an application database in the ABM
catalog.

ACTION: ‘A DRL-program {source schema) for defining the

N {New) given database 1is generated. The program

generates definition of all elements except
those marked "D" in the "cre/del/upd" field.

R [Redefine) :A DRL-program {Redefinition statement for DRL)
for redefining the given database is
generated. DRL-statements are generated for
all changes made to the database since last
Confirmation (see below). No Redefine is
allowed before the first Confirmation of the
database.

Norsk Data ND~60.203.2 EN

ABM USER MANUAL
How to use ABM

C {Confirm]

39

Modifications made to the elements in the ABM
catalog are marked in the "cre/del/upd" field.
When you do an "M" (Modification) in an
ABM picture (after a Confirmation), the
“cre/del/upd” field will automatically be set
to "U".

To delete an element (after a Confirmation),
do an "M" and explicitly mark the
"cre/del/upd" field with a "D".

Setting these flags on modified elements
enables ABM to record that an element has been
modified, but not which fields have been
changed within the element. ABM will
therefore generate redefinition clauses for
all the fields of the element.

For example, if you change the REALM-SIZE of a
serial realm, a CHANGE SERIAL-REALM statement
will be generated. The statement will contain
redefinition of REALM-SIZE, RECORD LENGTH,
HEADING and PURPOSE. Because of this , most
CHANGE-statements in a Redefinition-file wil]
contain several unnessecary clauses, but they
will only have the effect of 'resetting" the
fields to their present value.

:Confirmation may be thought of as a way of

telling ABM that the description contained in
ABM of the application database now equals the
actual structure of the application database.
(for example, when you take your application
from test phase to production.) All elements
marked "D" in the “cre/del/upd" fields will
now be physically deleted from the ABM
catalog, and the remaining elements will have
their ‘“cre/del/upd” fields set to "S" (Set
confirmation filag) to mark them as Confirmed.

A Confirmation will update the DRL-d"tes.

When a Redefinition is run, all changes made
to the database are recorded in the 'cre/del/
upd” field. This enables ABM to locate all
changes made since the last Confirmation run.

After a Confirmation it is impossible for ABM
to sort out the modified elements, since all
"cre/del/upd" fields are set to "S". Running a
Confirmation means that the information about
changes made to the application database is
lTost.

Norsk Data ND-60.203.2 EN

40

ABM USER MANUAL
How to use ABM

In the development phase you may want
to take out a New Schema every time vyou
make database corrections. So, do not
run Confirmation before your application
system is finished.

If, for example, you want to delete an item from a realm after the

clatabase has been confirmed, then:

@ Enter ABM and use the command DBITEM and mark the “"New/Del/Change"
field with "D".

® Run SCHEMA (giving "R" for redefinition].

® Redefine the database using SIBAS-DRL.

¢ Enter ABM and confirm the database once again.

DBA PASSWORD

SINTHAN USER NAME

SCHEMA FILE NAME

COMMENTS

SUPRESS COMMENT

NOTIS-TF

:When redefining the database , a password for

the optional PASSWORD-clause 1in the START
REDEFINITION-statement may be entered. The
password will not be displayed on the screen.

:0utput from Scnhema generation is written to

this wuser area. Default user is the current
user, but the output may be written to another
user area if you have write access to that
user. An empty user name denotes current user.

:Name of output file for Schema generation. The

NEW command generates a DRL-file for database
definition. The REDEFINE command generates a
DRL-file for database redefintion. The
CONFIRM command generates a log-file Jlisting
error messages and the elements that have
been deleted from the ABM catalog. If the file
does not exist, it will be created.

Default file names are:

NEW <database-name>-SCHEMA: SYMB
REDEFINE <database-name>-REDEF :SYMB
CONFIRM <database-name>-CONF :SYMB

:Maximum 180 characters.

:I1f Y (Yes), all comments from "“Explanation"

field will .be omitted. Use this to obtain a
smalier-sized source schema.

:If Y {Yes), NOTIS-TF commands will be added

to make every realm definition start on a new
page. NOTIS-TF will also generate a table of
contents, which is very useful when writing
system documentation.

Norsk Data ND-~60,203.2 EN

ABM USER MANUAL
How to use ABM

DIMENSTONING
THE DATABASE

SUPRESS LISTING
FROM INITIATION

INITIATION OF
THE DATABASE

ONLINE/BATCH EXECUTION

DATE OF CREATION

DATE OF LAST CONFIRMATION

0K?

41

:If Y (Yes), dimensioning of the database will

be done automatically. (At present, the
automatic dimentioning has no effect on CALC-
REALM.) The automatic dimensioning requires
you to have given "Expected maximum number of
records” in the Database Realm menu.

:If Y (Yes), no documentation will be produced

when SIBAS-DRL is run.

:1f Y (Yes), SIBAS-DRL is started automatically

as a batch job after the database definition/
redefinition file has been generated. This
batch Jjob will generate or redefine the
application database. ABM appends a MODE-file
named <database-name>-BATCH:MODE to batch
processor number 1.

Qutput from the batch job is written to
the file «<database-name>-BATCH:LIST. Output
listing from SIBAS-DRL is written to the file
<database-name>~DRL:LIST.

If both Schema generation and SIBAS-DRL are to
be run as batch jobs, they will share the same
MODE-file. This requires, however, that JEC
(Job Execution Control) be installed. A1l
batch Jjobs are executed under current user
(i.e., the "Sintran user name" has no effect).

:"0" will give Schema generation while you

wait. "B" will submit the Schema generation as
a batch job, and return control to home ares
immediately. ABM appends a MODE-file named
<database-name>-BATCH:MODE to batch processor
number 1. OQutput from the batch job is written
to the file <database-name>-BATCH:LIST.

:The system will generate the date of this

Schema generation/Redefinition/Confirmation.

:The system will generate the date of last

Confirmation for this database.

:If Y (Yes), a final approval of the operation

is done. If N {No), the Schema generation will
will not start. If R (Repeat), repeat data
registration. (A thorough explanation of the
OK field is found 1in section Navigation in
the command pictures.)

Norsk Data ND-60.203.2 EN

42

PROCEDURES FOR
DIMENSIONING
SIBAS DATABASES:

ABM USER MANUAL
How to use ABM

Dimensioning of a database can be done
automatically by answering Y to automatically
dimensioning in the Schema picture.

If you do not want the dimensioning to be done
automatically, you have to update the
necessary parameters in the DB modules in ABM.
You may also edit directly on the Schema.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 43
How to use ABM

2.17 GENERATING COBOL COPY ELEMENTS AND FORTRAN INCLUDE FILES

The commands COPY-GEN and INCLUDE-GEN will automatically generate
declarations and assignments needed to run a program using SIBAS and
FOCUS. COPY/INCLUDE-GEN wuses the variable declarations and the value
assignments already defined in data descriptions, subschemas and screen
forms. The output from the generation is separated into two SINTRAN files.
The names of these two files depend on whether you use the command COPY-GEN
or INCLUDE-GEN.

The SINTRAN files from COPY-GEN holding COBOL code are named:

DECDDC-<subfunction name)>:SYMB for declarations
ASSDDC-<subfunction name):SYMB for assignments

The SINTRAN files from INCLUDE-GEN holding FORTRAN code are named:

DECDDI-<(subfunction name)>:SYMB for declarations
ASSDDI-<subfunction name>:SYMB for assignments

The following picture is shown when you use either the command COPY-GEN or
the command INCLUDE-GEN from the ABM command line. (The difference between
these two commands will first be shown 1in the output from the actual
generation).

FUNCTION/SUBFUNCTION :Write the name of a Function or Subfunction.

NAME In ABM version A, you had to refer to a
Function when making COPY elements or INCLUDE
files. In the B version of ABM, you may refer
to a Subfunction instead of a Function.

Norsk Data ND~-60.203.2 EN

44

“SPECIALS"

ALL

CHANGES

ABM USER MANUAL
How to use ABM

When vyou have written a name of a Function or
Subfunction in this field, for example X, ABM
will start searching for a Function named X.
If a Function X exists, generation of COPY/
INCLUDE will 1involve all the Subfunctions
belonging to Function X. (There might be just
one Subfunction belonging to Function X.)

If no Function X is located, ABM will start
searching for a Subfunction named X. If a
Subfunction X is found, the generation of COPY
or INCLUDE will idnvolve Jjust this single
Subfunction.

An error message will be shown on the screen
if ABM does not find either a Function nor a
Subfunction called X.

NOTE:

ABM will always search for a Function
first. If no Function with the actual name
is found, ABM will then search for a
Subfunction with the same name.

Do not let Functions and Subfunctions

which have nothing in common, have the same
name. If X exists both as a Function and a
Subfunction, you will never be able to
generate COPY/INCLUDE from Subfunction X,
since ABM always finds Function X first.

If the actual Function/Subfunction is found,
the cursor will not move to the field called
“Specials”. The cursor will move directly to
the field SINTRAN user name.

If the user does not write a Function name or
a Subfunction name, the cursor will move to
the "Specials" field.

:With "Spesials" you can make special COPY/

INCLUDE generations. Legal values are ALL and
CHANGES.

:Take care ! This generation will take quite a

long time, as using ALL involves all Functions
and Subfunctions defined in the ABM catalog!

:This will make new COPY/INCLUDE files for all

Functions/Subfunctions which have been changed
since last Confirmation.
(See section Generating Schemas, page 38.)

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
How to use ABM

SINTRAN USER NAME

MESSAGE FILE NAME

SUPPRESS OF QUESTIONS
DURING EXECUTION

TPS/FIN COMPATIBLE
PROGRAM CODE

EXECUTION OUTPUT

45

:Current SINTRAN user will be shown in this

field. You have to change this user name to
to generate files on another SINTRAN user.
(You must have write access to the user.)

:Name of the file where messages from the COPY/

INCLUDE generation are written. Default name
is. ABM-MESS-<nnnnns:DATA, where nnnnn is a
five-digit number indicating the terminal from
which the job is executed. You may use ancther
message file name if you want.

:N (No) is default value. During generation of

COPY/INCLUDE, there may appear situations
where further execution seems doubtful. The
user will wusually get a question on the
screen, asking whether the generation should
continue or not. (Use the OK field to answer
Y or N to these questions.)

To suppress such questions and continue the
generation in any case, answer Y (Yes) in this
field.

:Default value s Y (Yes). All code generated

in COPY-GEN has to be TPS «<«1»> compatible.
(No use of COBOL VALUE clause.)

A1l code generated 1in INCLUDE-GEN has to be
both TPS and FTN <2> compatible.

(Variables must not consist of more than seven
significant signs, and you are not allowed to
use DATA statements.)

If N {No), the generated code does not have to
be TPS/FTN compatible. Then the result from
the generation would be just one SINTRAN file
for each Subfunction. This file would contain
the necessary declarations and assignments.
FORTRAN DATA statements and COBOL VALUE clause
could be wused, and FORTRAN vari-ble names
could consist of up to 31 significant signs.
{The possibility of answering N to this
question is not implemented in the Version B
revision 00 of ABM.)

:These two lines (in addition to the usual

INFORMATION message line) are used to give information to
the user during execution of the COPY/INCLUDE
generation.

<1> Tele Prosessing System

2> TPS compatible old FORTRAN compiler

Norsk Data ND-~60.203,2 EN

46

0K?

ABM USER MANUAL
How to use ABM

:Legal wvalues are Y/N/R. Default is Y {Yes).

Y will start generation of COPY/INCLUDE.

IT N (No), execution will not start. After you
have typed N and pressed ENTER {(CR), wyou will
be asked whether you want to continue
generating or not. If Y, cursor will be
positioned in the field "Function/Subfunction
name". Then you can start a new generation.

If you do not want to continue, write N and
the execution terminates.

If R (Repeat), repeat data registration. (See
also explanation of the OK field in section
Navigation in the command picture.)

The 0K field 1is also used during execution.
If you typed N in the "Supress of question”
field, you may get some questions during
execution. Answer these questions by typing Y
or N in the 0K field.

Norsk Data ND-60,203.2 EN

ABM USER MANUAL
How to use ABM

47

2.17.1 GENERATING FORTRAN INCLUDE FILES

The command INCLUDE-GEN 1is used to generate the FORTRAN include files:

DECDDI-<subfunction name):SYMB for declarations,
ASSDDI-<subfunction name)>:SYMB for assignments.

THE OUTPUT FILE

ITEM TYPES:

If the files do not exist, the INCLUDE
program will create the output files;
otherwise the old files will be modified.

The output file will contain the following
information:

Declarations of VARIABLES for each SIRAS jtem
and for each picture field used in the
particular subfunction. The type of the
variables will be the type of the connected
data descriptions.

Declarations of VALUE BUFFERS, one for each
realm and one for each picture record used.

EQUIVALENCE between value buffers and the item
and field variables.

ITEM-LIST and picture FIELD-NAME-LIST, one for
each value buffer. The 1lists include 1length
and type information for all items/fields, and
some additional information about the total
list. The Tlength is the number of words, and
the type is one of the following.

type Description
S Single Integer without any editing.
D Double Integer without any editing.
in Equal to S but with n digits after
decimal point (n = 1-5).
2n Equal to D but with n digits after
decimal point (n =1-10).

0O Character, odd number.
E Character, even number.

Norsk Data ND-60.203.2 EN

4.8

EXPLANATION OF THE
GENEHATED STATEMENTS

ABM USER MANUAL
How’to use ABM

This format 1is derived from the FOCUS field
description for the corresponding data
description, both for SIBAS items and picture
fields.

VARIABLES, VALUEBUFFERS ({low and high Timit)
and INDEX information for each item or group
defined as a key in subschema. It is defined
in a similar way as for items.

Necessary definitions for a READY REALM call,
if the subfunction is marked with READY REALM.

Declaration of SUBITEM LIST. The subitem list
is used by the programmer for calls to the ABM
SIBAS and FOCUS 1libraries.

All this information about the internal
formats of items etc. is produced
automatically on the basis of information
in the ABM catalog.

The programmer need only know the logical
layout of records and item/field names
so he/she can spend more time on the
application. proper rather than on "bit
manipulation”.

To become familiar with the output from COPY
and INCLUDE, study the examples of COPY/
INCLUDE files (see both chapter 9 and the
example floppy disk.)

Rules for the generated statements are shown
on the next page. Names in parentheses are
only used to ease the assignments 1in the
INCLUDE file and should not be used by the
programmer. Array names starting with "C" are
character arrays; all other arrays are integer
arrays.

Norsk Data ND-60,203.2 EN

ABM USER MANUAL
How to use ABM

STIBAS PART:
- Variable name {items) xxaaaaa
- Value buffer {items) KRECxx
- Item, (size&type) list {items) KITEMxx , {CITEMxx)
- Low 1limit variable name [(indexes) Lxxbbbn
- High limit variable name (indexes) Hxxbbbn
- Value buffer (low&high) (indexes) KVxxbbb ;
- Index name information {indexes) KIxxbbb , (Cxxbbb)
- Realm name list (realms) KREALMS , {[CREALMS)
- Usage mode list {(realms) KUMOD
- Protection mode list {realms) KPMOD
PICTURE PART:
- Variable name (field) yyccccec
- Value buffer (field) MRECyy
-~ Field name [size&type) list (field) MITEMyy , (CITEMyy)
- Reference table (FOCUS param.}] REFTAB
BOTH:
- Subitem list
as used in call to the ABM SIB/FC 1lib. ITEMSUB
as used by programmer in assignments CITMSUB
ITEMSUB equivalenced with CITMSUB
WHERE
blo'd : Realm prefix (first 2 characters in realm name).
vy Picture record prefix [first 2 characters in record name).
aaaaa: Unique item name within the realm.
Characters 3 to 7 of item name.
bbb Unique index name within the indexes in the realm. Defined
in same manner as "aaaaa', but with only the first 3
characters after realm prefix.
n Sequence number, starting with 1, for all the member items
in a group index. For an item index it is 1.
cccece: Unique field name within the picture record. If the field
is defined with reference to a SIBAS item, "ccccc” will Le
equal to "aaaaa" from the corresponding item. If the field
is defined with reference to a data description, the first
S characters in the data description name will be used.
Used by the subroutine DDTRNSF to move values from the
SIBAS wvalue buffer [(KRECxx) to the FOCUS value buffer
(MRECyy) or vice versa.
See the section "Naming Conventions..." on page 20.

Norsk Data ND~60.203.2 EN

49

50 ABM USER MANUAL
How to use ABM

2.17.2 GENERATING COBOL COPY ELEMENTS

The generation of COPY elements goes mainly in the same manner as the
INCLUDE-GENERATE procedure. The module is started by the command COPY-GEN.
The generated COBOL copy elements are stored on two SINTRAN files:

DECDDC~-<subfunction name):SYMB for declarations,
ASSDDC-<subfunction name>:SYMB for assignments.

The contents of the output files are logically
the same as for the INCLUDE files, but they
are of course in COBOL syntax. All generated
variables will have a prefix according to the
table below :

COBOL. GENERATED VARIABLES:

Prefix Description

DDS- ABM Screen variable not to be changed by user code
DDB- ABM DataBase variable not to be changed by user code
SCV- SCreen Value

SCC- EEreen §ommand item

SCR- SCreen Return item

DBV- Qatagasg Value

DBR~ Qatagase ﬁealm

DDC- ABM Commo; for Screen and Database

DBKI- DataBase Key Item

DBKV- Qatagase Key Value

A COBOL word can consist of up to 30
significant characters {only 7 in FORTRAN) and
this makes 1ife much easier for those using
ABM/COBOL rather than ABM/FORTRAN. {See the
section "Name Conventions for FORTRAN and
COBOL Programs”.)

Norsk Data ND-60,203.2 EN

ABM USER MANUAL 51
How to use ABM

2.18 REPORT GENERATION

You can generate reports about the ABM catalog by using the command REPORT
from the main menu. An ABM report will typically include information about
all data descriptions, where they are used, and which ones are not used.

The following picture appears with the command:

CREPORT SELECTION

PLEASE MAKE :Give the number of the report you wish to make.
YOUR CHOICE

NOTE:

Some reports [(e.g., the Where-is-Used report) may
generate a lot of output. It may also take a lot
of time to generate the report.

While a report is being generated, the status of
the run will be displayed on the screen.

OUTPUT FILE NAME :Here you can give the name of an existing SINTRAN file.
If the file does not exist, you can give the name of a
file between quotes (" "}, The output will then
automatically be written to this file.

When you have selected a report number and given an
output file name, SELECTION CRITERIA s displayed on
the screen.

The output file will be closed when you exit the report
menu.

SELECTION CRITERIA: You may choose to generate reports from selected
databases, of selected Data Descriptions and so on.

Norsk Data ND~60.203.2 EN

52

ABM USER MANUAL

How to use

ABM

Give command:
SCREEN-FORM«

CREATE-FILE

PARA

FIELD

WRITE

EXIT

Remember, vou

character

forms. You may
like inverse

HOW TO MAKE APPLICATION FORMS
USING THE ABM SCREEN-FORM COMMANI

sets

® Before you create a form, create a file to
store the form.
® Set current record by pressing the PARA key

when defining a new record or modifying an
already existing record.
{See the HELP information for editing keys.)

® Use the FIELD key to define/modify fields.
{See the HELP information for editing keys.)

&

[

EXIT when you have finished.

may use graphics and alternate
and special symbols for your
also wuse various attributes
video, high and low intensity

and blinking mode. For details, use the HELP

key or refer
pages 33-34,

to the FOCUS Reference Manual,

(ND-60.137.5].

=
Press(@ELv for command information.

Write your form to the file you have created.

Norsk Data ND~60.203.2 EN

ABM USER MANUAL
How to use ABM

7.19 SCREEN-FORM

53

A special version of the

FOCUS screen handling system is used for the

online building and maintenance of applications screen forms. It is common
to make a form corresponding to a database subschema, and for the
application program to use this form to access the subschema. You can start
this module with the command SCREEN-FORM. The following screen picture is

displayed:

The following screen form commands are available.

Command

<home >
CLEAR-DEFINITION
CREATE-FILE
DELETE-FORHM
DESCRIBE-FORMS
ENLARGE-FILE
ENVIRONMENT
EXIT

FUNC+@
GET-ENVIRONMENT
GET-KEY-VALUE
HELP

LIST-FILES
LIST-FORMS
MAKE-UPTODATE-FORMS
READ-FORM
SAVE-ENVIRONMENT
WRITE-FORM

Cxxx

Explanation

Enter form definition/modification
Clear current form definition

Make a new form file (:FABM file)
Delete a form from form file/ABM catalog
Give information about a form

Enlarge a form file

Inspect/modify environment

Exit from SCREEN FORM
Redisplay/refresh screen

Get/modify environment specification
Get the numeric value for the key

Give help information

List files {:FABM files for this user)
List forms in form file/ABM catalog
Update forms after environment change
Read a form from form file/ABM catalog
Save environment specification

Store form in form file/ABM catalog
Execute the SINTRAN command xxx

For details about the

or
Refer to the FOCUS

commands use the HELP key

Reference Manual ND-60.137

You can give screen-form commands, together
with the parameters, directly from the FD»
command line.

Default values are obtained by omitting the

parameter, indicated by a comma.

Norsk Data ND-60.203.2 EN

54 ABM USER MANUAL
How to use ABH

2.19.1 BEFORE YOU MAKE A SCREEN FORM...

The screen form that you create will normally be used by an application
program to communicate with a database. So before you make your screen
form

MAKE YOUR Make sure that you have defined your

APPLICATION DATABASE application database in the ABM catalog. The
fields in your screen form should be able to
refer to items in the database.

CREATE A FILE FOR The screen forms that you create will be

YOUR FORMS stored in a file of the type :FABM. This file
must have been created by using the screen
command CREATE-FILE,

NOTE:
Do not use the SINTRAN command CREATE-FILE!!

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 55
How to use ABM

2.19.2 HOW TO MAKE A SCREEN FORM: AN EXAMPLE

Suppose you want to make the EMPLOY form shown below.

Emplqyee List

e Create your application database with the appropriate realms and items.

For example, you could create database EMPLIST with realm EMPLOY, and
items EMNAME, EMADRI, EMADR2, EMFUNC1, and EMFUNC2.

e Define a Data Description for the 0K field.
The form will then contain 2 records. The first, the Rl record, will
consist of 5 fields all referring to items in the EMPLOY realm. The
second, the RZ record, will consist of the 0K field which refers directly
to the Data Description OK-FIELD.

e Start the screen form module with the command SCREEN-FORM< .

e Use the CREATE-FORM command to create a form file.

e Press the HOME key (%) to move into the screen picture.

e Type in the form text and graphics.

e Press the PARA key with the cursor in the first position of the name

field and fi11 in the field definition.

NOTE: In the following examples, the underlined values are filled in by
the user; the others are system default values.

(The additional field attributes are skipped because item name is
terminated by <I.)

Norsk Data ND-60.203.2 EN

56 ABM USER MANUAL
How to use ABM

e Press the FIELD key with the cursor in the first position of the first
address field and fi11 in the field definition.

rRecord name : Qi% L
Data description ﬂ@M@f - 5 :
Latabas& name ; VM?& ST &&a?m nam@kgﬁPaGY L

Ifem hamegﬁM :R‘*J%

0 spﬁawfy mav@ fié?d attré@utﬁs U$e tha % dewnapéaw

(lhe default values are those of the prev1ouslj defined field)
e Use the FIELD key to define the second address field and the function
fields in the same way that the first address field was defined.

e Press the PARA key with the cursor in the OK field and fi1l in the field
definition.

7;§w 13?@@&3 v&?u@

| FouCoNT par.

(The system routine UC converts the field value to uppercase letters.)
e Press the HOME key (%) to move to the command line.

e Use the WRITE-FORM command to write the form to the form file.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 57
How to use ABM

2.19.5 DESCRIBE-FORMS: TO EXAMINE FORMS

The DESCRIBE-FORMS command can be used to examine the contents of a
previously defined form. The output will contain information about form

layout, field positions, field names, field lengths and types of field
references.

How field mames are built up in COBOL and FORTRAN:

CORBOL : Field name is equal to item name. If there 1is no item, the 8
first characters 1in the Data Description name will be used as
field name.

FORTRAN : The two first characters in record name are replaced by the

two first characters in item name to create a field name.
If there is no item, the two first characters in record name +

the 6 first characters in Data Description name will form the
field name.

An example of output from the DESCRIBE-FORM command for the example EMPLOY
form is given in the following :

FORM
Form name : EMPLOY Size : 580
Form start : line 2 column 24
Form end : line 11 column 55 Written : 1986-03-20

{ABM application programming language: FORTRAN)

FORM LAYOUT

Employee List
Name:
Address:

Norsk Data ND~60.203.2 EN

58

ABM USER MANUAL

How to use

FIELD DESCRIPTTIONS

Field

name Format LD LS HELP ST/JuU BWZ Occ
R1NAME X(18) 18 18 None No L
R1ADR1 X(15) 15 15 None No L
R1ADR2 X(15) 15 15 None No L
R1FUNCI] X(12) 12 12 None No L
R1FUNCZ2 X[{12) 12 12 None No L
RZOK-FIE X 1 1 None No L

- Legal char. #Y ,#y ,#N, #n

System routine

uc

F I ELD OCCURRENCEST-S
Record Field [Occ| Line Col Data descr. or DB-name/Realm/Item
R1A R1NAME 1 5 32 EMPLIST /EMPLOY /EMNAME
R1A R1ADR1 1 6 35 EMPLIST /EMPLOY /EMADR1
R1A R1ADR2 1 7 35 EMPLIST /EMPLOY /EMADR2
R1A R1FUNC1 1 8 38 EMPLIST /EMPLOY /EMFUNC1
R1A R1FUNC2 1 9 38 EMPLIST /EMPLOY /EMFUNC2
R2A R20KFIEL! 1 10 48 OKFIELD

Norsk Data ND~60.203.2 EN

ABM

ABM USER MANUAL 59
How to use ABM

2.19.4 RULES FOR FIELDS AND RECORDS

GENERAL e A field is always part of a record. A record consists
of one or more fields.

e The record name can be up to 8 characters long. The
first two characters must be unique within the form
{for example an R1 record, R2 record and so on).

e The storage and display format for a field is fetched
from the connected Data Description (DD). A field
refers to a DD either directly (by reference to a DD
name) or indirectly (via database, realm and item
name) .

e A1l fields in a record must have the same type of
reference to DD names (either directly or indirectly)
- not mixed.

e 1f a record has indirect references to DD names, they
must all refer to items in the same database realm.

DEFINING RECORDS The main difference between standard FOCUS and this
AND FIELDS special version is the way in which fields, records and
record occurrences are defined.

KEYS e Press the PARA key with the cursor in a blank position
to define the first field 1in a new record. The new
record becomes the current record.

= e Press the PARA key with the cursor in an existing
PAR%) record to modify the record. The record becomes current
B record.

You may not use the PARA key in an existing record if
you have copies of that record.

P e Press the FLELD key with the cursor in a blank position
HE@) to define a new field in the current record.

e Press the FIELD key with the cursor in an existing
field to modify the field. The record containing the
field becomes the current record.

Norsk Data ND-60,203.2 EN

60 ABM USER MANUAL
How to use ABM

MARKING FIELDS e Press the SHIFT + PARA keys to mark a record if you
AND HECORDS want to copy, delete, or move 1it. All the affected
fields will be shown in inverse video.

® Press the SHIFT + FIELD keys to mark a field 1if you
want to copy, delete, or move it. The marked field will
be shown in inverse video.

You may not use the SHIFT + FIELD keys to mark a field if you have copies
of the record containing the field.

FIELD DEFINITION When you press the PARA or FIELD key, you will be
be prompted with the Field Definition form. Some of the
fields in this form are explained below:

Record Hame.

Max. 8 chars. A default record name will be assigned.
If you have pressed the PARA key to display this
picture, then you may change the default record name.
{You are not allowed to change the default record name
after having pressed the FIELD key.)

Data Description or Database Name.

If a Data Description name 1is given, the Database
fields will be skipped. Otherwise, you must enter the
Database name, Realm name, and [tem name to which the
form field refers.

Tc give additional attributes to fields, press the |
key in the Item name or Data Description field.

MULTI RECORD EXAMPLE

R4 R5 lLet's say that you have defined two records,
R4 and R5. The cursor is positioned in R5, and
s et R5 1is the current record.

If you want to define a new field in R4, you must first
make R4 the current record by moving the cursor to any
field within R4, pressing either the FIELD key or the
the PARA key, and then pressing the CANCEL key to get
out of the Field Definition prompt. You may then define
trhe new record by pressing the FIELD key with the
cursor in a blank position.

NMorsk Data ND-60.203.2 EN

ABM USER MANUAL 61
How to use ABM

COPYING, HMOVING AND DELETING MARKED FIELDS AND RECORDS

To copy, move or delete a field or a record, you must
first mark it.

ég:}% e Delete marked field or record.

' e Copy marked field or record.

Move the cursor to the new start pcsition for the field or
record, and use the COPY key.

e Move marked field or record.

Move the cursor to the new start pcsition for the field or
record, and use the MOVE key.

RESTRICTIONS e You may not change a record if you have copies of that
record.

e You may not copy a record if it contains copies of a
field.

e You may have a maximum of 35 different records in a form.
e You may have a maximum of 35 copies of a record in a form.

e You may have a maximum of 256 fielcs in a form.

Norsk Data ND-60.203.2 EN

62 ABM USER MANUAL
How to use ABM

2.20) FIELD OCCURRENCES IN ABM VERSION B

It is possible to define field occurences in screen forms. "Mark” a field
by pressing the SHIFT + FIELD keys (the field will be displayed ih inverse
video), move the cursor to a free position and press the COPY key.
Continue to move the cursor and press the COPY key if you want more copies.

The rules for field occurrences are:

e Records containing field occurrences can not be copied. That is, a
field can not be both a field occurrence and a record occurrence.

e Occurrences of a field must be in sequence within the record. (The
sequence is from the top down and from left to right). Otherwise a
WARNING will be displayed when you store the form by the WRITE-FORM
command .

e The field occurrences will make the generated code in COPY/INCLUDE files
more "compact”. The “occurs n times" clause is used 1in COBOL while an
array holding all the field occurrence values is generated in FORTRAN.

e When using a record containing field occurrénces in the routines in
ABM-FC-LIB, you must note the following :

When reading a whole record, split this read into separate DDRFLDS.

Field occurrences must be treated separately 1in one read (see the
following example),

An example of field occurrences in a COBOL environment:

field A Bl B2 B3

field C

This form contains one record, lets call it R1A. The form consists of five
fields; A, Bl, B2, B3 and (. The fijelds Bl, B2 and B3 are field
occurrences.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL

How to use

ABM

63

The field references (the way they refere to database items and Data
Descriptions etc.) are shown in the following table:

name

d| record| database| realm item

A
B1
B2
B3
C

R1A ABMDEMO | UNIT CUSTNO
R1A ABMDEMO | UNIT DATE

R1A ABMDEMO | UNIT DATE

R1A ABMDEMO | UNIT DATE

R1A ABMDEMO | UNIT COMMENTS

— - —— — -

CUSTNO
DATE.O1
DATE.O2
DATE.OQ3
COMMENTS

A COBOL program reading the whole record will look 1ike this:

READ-R1-
MOVE
PERF
MOVE
MOVE
PERF
MOVE
MOVE
PERF

READ-R1-
CALL

IF F

The COPY g

be like th

03

RECORD.
"+:CUSTNO ** TO DDC-SELECT.
ORM READ-R1~FIELDS.
3 TO SCC-RW-NO-OF-LINES.
"+:DATE *' TO DDC-SELECT.
ORM READ-R1-FIELDS.
1 TO SCC-RW-NO-OF-LINES.
"+ : COMMENTS*' TO DDC-SELECT.
ORM READ-R1-FIELDS.
FIELDS.
'DDRFLDS" USING DDC-REF-TABLE,
DDS-R1-SUBSCHEMA,
SCV-R1,
FCSTATUS.
CSTATUS NOT = O PEFORM DD-FC-ERROR.

0CCURS 3.

enerated declarations for the R1A record value buffer would
is:

SCV-R1.

05 SCV-R1-CUSTNO PIC 9(4) COMP.

05 SCV-R1-DATE PIC X{8)

05 SCV-R1-COMMENTS PIC X{(60).

Norsk Data ND-60.203.2 EN

64 ABM USER MANUAL
How to use ABM

2.2] DATABASE AND FORM CONNECTIONS

The parallelism between a database subschema and a form is shown below:

database
subschema : form
realm : record e a realm in a database subschema and a record in
in the form.
item : field e an item in a realm and a field in a record.
USE THE PARALLELISHM A subschema often reflects the use of
BETWHEN A DATABASE SUBSCHEMA a database through a screen form. A
AND A FORM "typical® form contains many fields
organized into 2 or 3 records. Some
records: have fields referring directly to
Data Descriptions [(example: time and
date). The other records refer to items
in database realms.
READ A RECORD FROM A VORM Because of the parallelism between a
AND database subschema and a form, it is easy
STOBKE IT IN THE DATABASE to read a record from the screen and

store it in the database.
You could do this as follows:

CALL DDRFLDS <(form parameters)>
CALL DDTRNSF <(from form parameters to

database parameters>
CALL DDSTORE <database parameters>

ALL PARAMETERS ARE PRODUCED IN This is especially easy because all the
INCLUDE/COPY FILES required parameters are automatically
produced by INCLUDE/COPY modules.

Norsk Data ND~60.203.2 EN

ABM USER MANUAL 65
How to use ABM

72.27 DATABASE MAINTENANCE

You will probably never be completely finished with the development of a
database system. Changes and modifications have to be made from time to
time. After a change/modification 1is done, the affected parts of the
database have to be updated to make the change available for them. The way
this updating is done is dependent on whether the database has been
Confirmed or not.

BEFORE CONFIRMATION Develope a new system by programming, testing
and making constatnt changes. You must know
where to update after a change/modification,
and you must update all the affected parts
of the database.

Before the database has been confirmed,
initiate the database each time you have made
changes to the schema. A1l data in the
database will be lost.

When the start of production is approaching,
run a Confirmation of the database.

AFTER CONFIRMATION After the Confirmation, you may still need to
modify the database, but at this point ABM
helps you with maintainance. Follow the

methods described here, and ABM will update
all the affected parts of the database.

The following procedures are for making changes to a database which has
not been Confirmed.

CHANGING THE e When changing a data description, you must

DATA DESCRIPTION know whether the data description is used in
form{s) or not. All the forms where the data
description is used must be made up-to-date
to make the modified data description
available for them.

Update the forms by either

~ the "make-uptodate-form” command in
screen-form for each form,

- the "make~uptodate-form” command for
all forms in the form-file(s),

- the command "read-form”, modify the
form and "write-form".

When enlarging a field, be sure that the

enlarged field does not overwrite an already
existing field.

Norsk Data ND~60.203.2 EN

66 ABM USER MANUAL
How to use ABM

(The report “"Where-is-used data description”
will help you to find the forms using the
particular data description.}

e Make new copy/include files.

e Recompile and reload your application

programs.
MODIFYING o I[f you modify a form (new fields, deletion of
A FORM fields), remember to Modify the subschema of

the form which has been updated.
e Make new copy/include files.

e Recompile and reload your application

programs.
DELETING A e Data description may not be deleted if it is
DATA DESCRIPTION already in use. A1l the referenced items in

screen forms and DRL schemas must be deleted
first. Run a report to find out where the data
description is used. (The data description may
have been used in a group.)

e Make new copy/include files.

e Recompile and reload your application
programs.

e If the data description is used in a form(s):
READ-FORM, make the changes and WRITE-FORM.

e Modify the subschema of the form which has
which has been updated.

The following examples show you what to do when making changes to an
already confirmed database.

CHANGING THE e Make the changes 1in the particular data
DATA DESCRIPTION description.

e "Make-uptodate-form" if the data description
is used in a form{s).

o Run a Redefinition 1in the schema module
{menu} to generate redefinition statements
for DRL.

e Run DRL.

Norsk Data ND~60.203.2 EN

ABM USER MANUAL
How to use ABM

UPDATE AN OLD ITEM

INSERT A NEW ITEM

67

Make new copy/include elements by COPY-GEN or
INCLUDE-GEN. Use the command CHANGES to let
ABM know which files will be affected.

Recompile and reload your application
programs.

Now the change in the data description is
recognized everywhere.

Make the changes to the item.

The "cre/del/upd"” field will be marked "U".
Run a Redefinition 1in the schema module
{menu) to generate redefinition statements
for DRL.

Run SIB-DRL.

Make new copy/include elements.

Recompile and reload your application
programs.

Try out the modification(s}.

When everything is correct, run a new
Confirmation.

Make the new data descriptionvif necessary.
Create the new item with the command DBITEM.

Run a Redefinition in the schema module {menu)
to generate redefinition statements for DRL.

Run SIB-DRL.
Make new copy/include elements.

Recompile and reload your application
programs.

Try out the modification(s).

When everything is correct, run a new
Confirmation.

Do all modifications within ABM, Take backup of ABM catalog files,
not directly in generated SCHEMAS. application programs and forms.

Norsk Data ND-60.203.2 EN

68 ABM USER MANUAL
How to use ABM

2.23 GENERATING SUBSCHEMA FROM FORM

A new subschema can be generated from an existing form. If you answer "Y"
to the question "generate subschema from form?" in the Subschema Heading
picture, a subschema will be generated.

Some forms, however, will not lead to a meaningful subschema. Generating
subschema from a form containing only 1leading text and no fields, for
example, will result in an "empty" subschema. Nor will records refering
directly to Data Description form the basis of a subschema.

Fach form is analysed before the generation of subschema starts. If the
form is found "meaningful”, a subschema is established; if not, a message
is given on the screen and the generation is stopped.

The subschema will be generated in this way:

e The new subschema will get the same name as the form it was generated
from.

e All records containing fields which have 1indirect referance to Data
Description (i.e. those referring to a database item) will form the basis
of a subschema.

e All referred realms will be marked with "UN". (Update/Non protect)

e All referred items which are not keys in the schema will be marked with
an "I"; keys will be marked with "IK".

NOTE:
No group item will be marked. Marking of group items must be done by
the user after the generation of subschema.

Below is an example of generating subschema based on the picture named
MENU-1C:

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 69
How to use ABM

Below is a specification of the fields found in the MENU-1C picture:

The result of the generation is a subschema named MENU-1C.

Generation of the subschema MENU-1C, can be illustrated by the following
pictures: (This 1is the same procedure you would follow to generate a
a subschema without using automatic generation.)

 SUBSCHEMA HEADING

The picture MENU-1C refers only to the realm named UNIT; so the Subschema
Realm picture establishes just one referance to this realm.

“»§M§.T1 ﬂk 508

anpschémai

Copesim

Norsk Data ND-60.203.2 EN

70 ABM USER MANUAIL
How to use ABM

A1l items refered to by the realm UNIT are listed in the Subschema Item
picture:

SUBSCHEMA

database -

After generating a subschema from a form, group items have to be marked by
the user. Give the command SUBSCHEMA and do M (Modify) on subschema
MENU-1C. Navigate to Subschema Item picture and indicate the group items by
marking the "MARK" fields. (See page 35.)

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 71
How to write programs using ABM

CHAPTEER 3
HOW TO WRITE PROGRAMS USING ABM

¢ WRITING PROGRAMS USING ABM

e GENERAL STRUCTURE FOR FORTRAN PROGRAMS
e USE OF SUBITEM LIST IN FORTRAN PROGRAMS
e GENERAL STRUCTURE FOR COBOL PROGRAMS

e USE OF SUBITEM LIST IN COBOL PROGRAMS

o SIBAS/FOCUS COMMUNICATION ROUTINES

e VALUE BUFFERS FOR ABM-FC—LIB AND FORMS

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
How to write programs using ABM

HOW TO WRITE
FORTRAN & COBOL APPLICATION PROGRAMS

A B M

INCLUDE & COPY L E RS

DECDDI / DECDEC
ASSDDI /the submutm \“‘ASSDDC

available to the
for . user are almost the same Ho
FORTRAN programs or FORTRAN & COBO COBOL programs.

//—_—--‘
application programs
will communicate with the
screen operator by using
the ABM-FC-LIB

library. 1
1At Rl
\\ / = EEETTn e En

communication between the screen form
and the database is maintained by the
subroutines of ABM-SIB-LIB and ABM-FC-LIB.

/—-—_‘N
application application programs application
database communicate with the database
database by using the
subroutines of
ABM-SIBAS-LIB
library.
o) ¥

1. The application program 3. From the screen buffer the
will read data from the data is tranferred to the
screen-form by using the database buffer by using
routine DDRFLDS. the routine DIDTRNSF,

2., The data read from the 4. From the database buffer the
screen is stored in the data is transferred to the
screen buffer. database by using the

routine DDSTORE.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 73
How to write programs using ABM

% HOW TO WRITE PROGRAMS USING ABM

5.1 WRITING PROGRAMS USING ABM

The INCLUDE and the COPY files, together with the subroutine package for
communication with SIBAS/FOCUS, can be wused to write bug-free programs
quickly and efficiently.

ADVANTAGES OF USING The main advantages of using the INCLUDE and
INCLUDE/COPY FILES COPY files are:

e the values on items/fields are automatically
available in the generated varijables;

e only wvariable names without indexes are
transferred 1in the SIBAS/FOCUS calls. The
start position or number-of-words is not
transferred;

e no computing of field numbers, position and
value buffers, or item lengths is necessary.

WRITING GOOD PROGRAHMS For detailed information on writing good
programs, refer to The Elements of Programming
Style by B.W.Kernighan & P.J. Plauger. Below
is a brief summary.

WRITING GOOD PROGRAHMS:

Say what you mean, simply and directly.
Write clearly, not efficiently.

Let the program do the dirty work.

Choose easy~-to-remember variable names.
Document your program properly.

Use proper indentation.

Use library routines.

Avoid temporary variables.

Write & test a big program in small pieces
Do not patch bad code; rewrite it.

® © ® 9 ®© @ © © @ ©

Norsk Data ND~60.203.2 EN

74

ABM USER MANUAL
How to write programs using ABM

3.7 GENERAL STRUCTURE FOR FORTRAN PROGRAMS

The following should
FORTRAN:

THE INCLUDE FILES

COMMUNICATION WITH THE
APPLICATION DATABASE

COMMUNICATION WITH THE
SCREEN

considered when making application programs in

You can use the INCLUDE files 1in your

application programs by the following FORTRAN
statement:

$INCLUDE DECDDI-<subfunc name>
< local declarations (if necessary) >
$INCLUDE ASSDDI-<subfunc name>

< local assignments >
< program code.»

The application programs will generally commu-
nicate with the application database by using
the subroutines of the ABM-SIBAS-LIB library.

Generally the application program communicates
with the screen operator by using the
subroutines of the ABM-FC-LIB library.

Only read/write fields within the same logical
record can be included in the same call,
although one or more occurrences of that
logical record may be influenced {see REFTAB
parameter and DDGETRC/DDPUTRC routines).

Standard picture initiation: one call performs
all the necessary FOCUS calls.

Data transfer between FOCUS and SIBAS buffers
is done by using a c¢all to a special routine
(DDTRNSF) or by ordinary assignments.

NOTE:

When calling SIBAS/FOCUS communication
routines, buffers transferred as parameters
should always be transferred without a
start index.

For example:
{..,KRECxx,..)
not (..,KRECxx(index),..].

Norsk Data ND-60.203.2 EN

ABM USER MANUAL

75

How to write programs using ABM

5.5 USE OF SUBITEM LIST IN FORTRAN PROGRAMS

The INCLUDE files contain an item list, a field-name list and value buffers

for each realm and picture

record type. It is possible, by means of the

subitem list, to subtract parts of an item list or field-name list.

THE SUBITEM LIST

THE RESULT-ITEM LIST

BUILDING SUBITEM LIST

The subitem 1list is declared and dimensioned
in the INCLUDE file as a character array, with

equivalence to an integer array. The
programmer puts values 1into the character
array. The equivalenced integer array is

transferred, together with the total-item
1ist, to the actual SIBAS/FOCUS communication
routine.

In this way it is possible for one call to
access items/fields in the item/field name
Tists.

The SIBAS/FOCUS communication routines compose
a result-item list from the subitem 7Tist, and
the total-item/field-name 1list generated in
the INCLUDE file. This result-item list s
used in SIBAS/FOCUS calls from the

corresponding SIBAS/FOCUS communication
routines.
CITMSUB(1) = 's:<item Ircitem 2>...<item 3>
L I
end mark.

item name or

field-name 1ist.
{8 chars. for each item)
type of subitem list (+,0,-)

The three types of subitem lists are:

+ : Result-item list corresponds to subitem
Tist.

0 : Result-item list corresponds to the
total-item/field-name list.

- : Result-item 1list corresponds to those
items/fields in the total-item 1ist which
are not in the subitem list.

NOTE:

In order to get the number of items per
entry in the subitem list, check the
dimension statement dgenerated in the
INCLUDE file. Maximum number of items
using subitem list with the type + or -
is: [(number of items / 2) + 1.

Norsk Data ND-60.203.2 EN

76 ABM USER MANUAL
How to write programs using ABM

5.4 GENERAL STRUCTURE FOR COBOL PROGRAMS

The programs are written as ordinary COBOL programs, with or without the ND
COBOL extension using EXPORT/IMPORT (see the COBOL manual). In RT and TPS
programming, no common areas are generated. Only local variables are used,
and assignments are used instead of VALUE statements.

THE COPY FILES The Copy files are included in the application
program by means of the COBOL COPY statement:

DATA DIVISION.
WORKING-STORAGE SECTION.

01..;name>.
COPY DECDDC-<subfunction name>.

cadditional declarations»
PROCEDURE DIVISION.

..COPY ASSDDC-¢<subfunction name>.

NOTE:

You have to define your own 01 level for
the declaration part in the WORKING-STORAGE
SECTION. This allows you to wuse the ND
COBOL extension EXPORT/IMPORT on the whole
area of a subfunction.

The program may be structured as usual. The
only difference from "normal” programs is the
way the program communicates with the screen
and the application database, and the way data
is transferred between database buffers and
screen buffers.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL

77

How to write programs using ABM

5.5 USE OF SUBITEM LIST IN COBOL PROGRAMS

The item 1list, field-name 1ist and value buffers are generated in the COPY
files for each realm and each picture record type.

THE SUBITEM LIST

THE RESULT-ITEM LIST

The subitem 1list, DDC-ITEM-LIST, is declared
and dimensioned in DDC-SELECT 1in the COPY
file. If pictures are wused, DDC-SELECT is
declared as a part of the DDC-REF-TABLE
declaration. For database use, it is declared
on the 03 level with the same name. In this
way, one call may access one, some or all
items/fields in the item/field name lists.

The SIBAS/FOCUS communication routines compose
a result-item 1ist from the subitem 1list and
the total-item/field-name 1ist generated in
the COPY file. This result-jtem list 1is used
in SIBAS/FOCUS calls from the corresponding
SIBAS/FOCUS communication routines.

03 DDC-SELECT.

05 DDC-ITEM-LIST.

05 DDC-TYPE PIC X(2). (COPY declaration)! The 'n'

07 DDC-ITEM PIC X{8) OCCURS n. assigned the right value in

There is only one SUBITEM
LIST for each subfunction

in OCCURS is computed and

the COPY generation module.

BUILDING SUBITEM LIST

MOVE 's:citeml><item2>...<item3>*' TO DDC-SELECT

end mark.
item name or field-name 1ist.
{8 chars. for each item)
type of subitem 1ist (+,0,-)

The three types of subitem lists are:

+ : Result-item list corresponds to subitem
list.

0 : Result-item list corresponds to the
total-item/field~name 1ist.

- : Result-item 1list corresponds to those
items/fields in the total-item list which
are not in the subitem 1ist.

MOVE '+:ACCNUMB *' TO DDC-SELECT. from the screen . (The
CALL 'DDRFLDS' USING DDC-REF-TABLE, result 1is placed in the
DDS~R3-SUBSCHEMA, correct part of the SCV~R3
SCV-R3, buffer. All the variables

FCSTATUS. are generated and assigned

This reads only the R3
SUBSCHEMA field (ACCNUMB)

during the COPY run.)

Norsk Data ND-60.203.2 EN

78 ABM USER MANUAL
How to write programs using ABM

3.6 SIBAS/FOCUS COMMUNICATION ROUTINES

A1l communication routines are written in FORTRAN and placed in two library
files: ABM-SIB-LIB-xm:SYMB and ABM-FC-LIB-xm:SYMB {x is the ABM version
number ancd m is the revision number). A mode file, ABM-100-LIB-xm:MODE for
ABM-100 and ABM-500-LIB-xm:MODE for ABM-500, compiles the two files as
standard background libraries. {See the PD sheets)

THE COMMUNICATIONS We will provide here a description of the
ROUTINES communication vroutines. The name of the
routines and the sequence of the parameters
are exactly the same for both FORTRAN and
COBOL users. The only difference is in the
names of the parameters generated by
INCLUDE/COPY. All such parameters are
therefore described both in FORTRAN and COBOL

syntax.
THE SIBAS/FOCUS The communication between SIBAS, FOCUS and
COMPIUNICATION the application program is illustrated in the

following figure:

SCREEN APPLICATION
FORMS DATABASE
APPLICATION
ABM-FC-LIB «—|PROGRAM «— ABM-SIB-LIB

Routines of the Routines of the
ABM~-FC~LIB help ABM~-SIB-LIB help
communication communication
between the between the
application application
program and the program and the
screen forms. application
database.

Norsk Data ND-60.203.,2 EN

ABM USER MANUAL 79
How to write programs using ABM

5.7/ VALUE BUFFERS FOR ABM-FC-LIB AND FORMS

The ABM-FC-LIB routines work internally on a total screen buffer. All
field and record values are read or written into this total screen buffer.
Routines to get (DDGETRC) values from the total screen buffer into the
local program value buffers and vice versa (DDPUTRC) are either called
automatically or must be called explicitly.

Generally, the following holds:

VALUE BUFFERS FOR If your form does not have more than one
ONE occurrence of any record, your
RECORD OCCURRENCE automatically-generated value buffers

(from INCLUDE/COPY) are exactly Tlike
the fields in the form. DDSETRC and
DDPUTRC will be called automatically.

VALUE BUFFERS FOR If your form has more than one occurrence
SEVERAL of a record, then you must transfer the
RECORD OCCURRENCES buffer values yourself. You could do

this, for instance, by storing away the
field values and by c¢alling DDPUTRC/
DDGETRC successively).

The relationship between the program
value buffers and the total screen value
buffers is shown below:

Program value Total screen
buffers produced value buffer
automatically declared and
in INCLUDE/COPY. used internally

in ABM-FC-LIB.
Ri-record:

«—— DDGETRC —

Rl-record
——DDPUTRC —»

R2-record: R2-record

Norsk Data ND-60.203.2 EN

80

ABM USER MANUAL
How to write programs using ABM

Norsk Data ND-60.203.2 EN

AEM USER MANUAL
How to use ABM-5IB-LIB routines in FORTRAN applications

i How TO USE ABM-SIB-LIB ROUTINES IN FORTRAN APPLICATIONS

1 ROUTINES AND PARAMETERS IN ABM-SIBAS—-LIBRARY

Description of routines in ABM-SIB-LIB

ppaccp - ACCUMULATION of item values.

DOFEBL - Find FIRST record between limits using given key.
DDFLBL - Find LAST record between limits using given key.
DOFORG -~ FORGET, nullify the effect of a REMEMBER call.
DDFREMB - FORGET old and REMEMBER a new record or a search region.
DDFTCGT - FIND a specific record and GET the record values.
DDFTCH ~ FIND a specific record.

DLGET - GET the relevant record, items or group items.

DOGETN - GET {(read) a number of records in a search region.
DDGIXN - GET (read) a number of index keys.

DDINKEY - Reset search regions to maximum.

DDINSR - INSEZRT an index key of a record.

DOMDFY - MODIFY values of items or group items in a record.
DDREMO - REMOVE a manually maintained index key.

DDSTORE - STORE a (part) of a record in its realm.

DDTRNSF -~ TRANSFER of values between value buffers {for FORTRAN

applications).
PARAMETERS OF THE ABM—SIB-LIB ROUTINES:

Library name: ABM-SIB~LIB-<version>.

Routines 1in this library calls SIBAS routine
DDACCD ({TDBKEY,INTEG, ITEMSUB,KIxxxxx,KRECxx, ACCID ACCDD

DBSTATUS)
DDFEBL (KIxxxxx,KVxxxxx K DBSTATUS) SFEBL
DDFLBL (KIxxxxx,KVxxxxx,DBSTATUS) SFLBL
DDFORG (TDBSRI,OPTION,DBSTATUS) SFORG
DDFREMB (TDBSRI,OPTION,DBSTATUS) SFORG SREMB
DDFTCGT {KIxxxxx,KVxxxxx,ITEMSUB,KITEMxx,KRECxx ,DBSTATUS) SFTGT
DDFTCH (KIxxxxx,KVxxxxx,DBSTATUS) SFTCH
DDGET {TDBKEY, ITEMSUB ,KITEMxx ,KRECxx,

DBSTATUS) SGET
DDGETN {TDBKEY,TDBSRI,N,ITEMSUB,KITEMxx,KRECxx,

NOFOUND ,DBSTATUS) SGETN
DDGIXN (TDBKEY,TDBSRI,N,KVxxxxx,NOFOUND,DBSTATUS) SGIXN
DDINKEY {KIxxxxx,KVxxxxx) e
DDINSR (TDBKEY,KIxxxxx,DBSTATUS) SINSR
DDMDFY {TDBKEY, ITEMSUB,KITEMxx,KRECxx,DBSTATUS) SMDFY
DDREMO ({TDBKEY,KIxxxxx,DBSTATUS) SREMO
DDSTORE (ITEMSUB,KITEMxx 6 KRECxx,DBSTATUS) STORE
DDTRNSF (KITEMxx,KRECxx,KITEMyy ,KRECyy) e

e Other SIBAS routines are called directly from the programs.

e A direct call to SFORG/SREMB may be used instead of DDFREMB/DDREMB.
Do NOT mix these two calls in the same program.

e Use DDTRNSF in FORTRAN programs only, and use DDTRNSC only in COBOL
programs. All other routines can be called from both FORTRAN and COBOL
programs.

Norsk Data ND-60.203.2 EN

84

ABM USER MANUAL

How to use ABM-SIB-LIB routines in FORTRAN applications

SUBROUTINE PARAMETERS:

(3~ 6] Key item name
(7-10} Key realm name

+ => Result-item list = ITEMSUB
0: => Result-item list = KITEMxx

End subitem list by a '"*'.

=1: Forget/Remember search region
=2: Forget all records
=3: Forget all search regions

Parameter Description
FORTRAN
K s Key item information
(1) (not used)
(2) Key item length {(no. of words)

KV sz Key value. Low & high limit for actual index
KITEM:x Total-item list information
(1) No. of items in item list
{(2) Total length of items (no.of words)
{3- 6) (not used)
{7-10) Realm name
{11->) Total-item list (4 words pr. item)
(N1->) Item length {1 word pr. item)
N1 = 11 + 4*KITEMxx(1)
{(N2~>) Item type {s, D, E, 0O} (1 word pr. item)
N2 = 11 + S5*KITEMxx(1)
I'TEMSUB Subitem list. Type depends on start word

- => Result-item list = KITEMxx minus ITEMSUB

Where result-item list is used in the SIBAS call

Typical subitem list: citmsub{1)="+:<.ITEM.><.ITEM.>....<.ITEM.>*’
KRECxx Value buffer [Record) for all items in KITEMxx.
TOBKEY Temporary database key
TDBSRI Temporary search region indicator
OPTION =0: Forget/Remember record

=4: Forget all records and search regions

an

DESTATUS DBSTATUS different from O or 1 indicates

INTEG Used in routine DDACCD
= " " : Call both routine ACCID and ACCDD
= "§ " : Call ACCID
= "D " : Call ACCDD

error.

Where xxxxx: realm prefix and datatype/item name (generated by INCLUDE)

xX : realm prefix (generated by INCLUDE)

If you have answered Yes to the additional declaration option in the
Subfunction command, the only variables which may be declared by the user

are: INTEG, N, and NOFOUND.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 85
How to use ABM-SIB-LIB routines in FORTRAN applications

.2 ABM-SIB-LIB ROUTINES FOR FORTRAN APPLICATIONS

DDACCD (TDBKEY,INTEG, ITEMSUB,KIxxxxx,KRECxx,DBSTATUS)
I I I I 1/0 0

@ ACCUMULATION of item values.

KIxxxxx and KRECxx are found in the INCLUDE file. INTEG
must be declared by the user. Build up ITEMSUB in order
to specify the exact item list for the SIB-DML call. At
input, the increments are put 1in the KRECxx buffer.
Specify aiso the type of accumulation by giving INTEG
one of the following possible values :

" " - both ACCID and ACCDD are called.
"S " - ACCID 1is called.
“D " - ACCDD 1is called.

At output, the results are found in KRECxx.

DDFTCH (KIxxxxx,KVxxxxx,DBSTATUS)

DDFEBL (KIxxxxx,KVxxxxx,DBSTATUS)

DOFLBL (KIxxxxx,KVxxxxx,DBSTATUS)
1 I 0

® Find a specific record.
¢ Find FIRST record between limits using given key.
¢ Find LAST record between limits using given key.

KIxxxxx and KVxxxxx are found 1in the INCLUDE file.
XXXXX must be the index name.

Data transfer parameters:

Give the key value by assigning a value to the variable
KIXXxxx.

Give the low and high 1imits by assigning values to the
variables Lxxxxxn and HXXxxxn.

Use ordinary assignments.

It 1is only necessary to assign values for those
parameters you want to be different than the default
values.

Default value low limit: 00000B
Default value high 1imit: 777778

Description: KIXXXXX and KVxxxxx are decomposed and the
corresponding SIB-DML call is performed.

Note: At return, DDINKEY is called, which resets the low and
high Timits.

Norsk Data ND-60.203.2 EN

86 ABM USER MANUAL
How to use ABM-SIB-LIB routines in FORTRAN applications

DDFTCGT (KIxxxxx,KVxxxxx,ITEMSUB,KITEMxx,KRECxx,DBSTATUS)
I I I I 0 0

® Find a specific record and get the record values.

KIxxxxx, KVxxxxx, ITEMSUB, KITEMxx and KRECxx are found
in the INCLUDE file. xxxxx is the index name and xx is
the realm prefix.

Give the key value by assigning the wvalue to the
variable Lxxxxxl (Lxxxxx2, Lxxxxx3 and so on if the
key is a group item.)

Build up ITEMSUB in order to specify the exact item
list.

Data read from the database 1is available 1in the
variables corresponding to the value buffer.

(See also description .of DDFTCH and DDGET.)

DDTRNSF (KITEMxx,KRECxx,KITEMyy,KRECyy)
I I 0 0

© TRANSFER of values between value buffers {for FORTHRAN
applications].

The parameters are found in the INCLUDE files. xx and
yy are the realm name prefix abbreviations or picture
record name abbrivation.

Description: Values for items with "equal” names ir the two item
lists are transferred. "Egual"”, in this routine, means
equal in the Tlast 6 characters; that is, only different
in the realm prefix. This is an important difference
from the COBOL DDTRNSC routine.

Note: Because the structures 1in the 1item 1list and value
buffers are exactly the same for the database buffers
and the screen buffers, this routine may be used to
transfer values from:

- one realm buffer to another;

- one picture-record buffer to another;

- a realm buffer to a picture record buffer;
- a picture record buffer to a realm buffer.

Norsk Data ND-60.203.2 EN

ABIM USER MANUAL 87
How to use ABM-SIB-LIB routines in FORTRAN applications

DDFREMB (TDBSRI, OPTION, DBSTATUS)
DDFORG (TDBSRI, OPTION, DBSTATUS)
1/0 I 0

e FORGET old and REMEMBER a new record or a search region.
® FORGET, nullify the effect of a REMEMBER call.

Description: DDFREMB:

This routine forgets the remembered record{s)/search
region(s) indicated by TDBSRI and remembers a new one.
If a record/search region is not previously remembered,
only remember is called.

The input value on TDBSRI indicates remembered or not:
TDBSRI = 0 : Not previously remembered
TDBSRI different from 0 : Previously remembered

Legal OPTION values 0 and 1:

0 : (forget) and remember temporary database key
1 : (forget) and remember search region indicator
DDFORG:

This routine forgets a record (0), a search region (1),
all remembered records (2), all remembered search
regions (3), or all remembered records and search
regions (4) depending on the value in OPTION.

When forgetting one single record/search region, TDBSRI
is reset to zero after the forget call. If TDBSRI = 0
at input, the forget call is skipped.

When forgetting all records/search regions, TDBSRI
serves as a dummy parameter.

Note: At the start of the program and after a FORGET-ALL
call, all wused temporary database keys and search
region indicators should be reset to zero.

Ordinary SFORG and SREMB may be used instead of DDFREMB
and DDFORG, but it is recommended that you use eijther
SFORG/SREMB or DDFREMB/DDFORG throughout the same
program.

Norsk Data ND-G0.203.2 EN

88

ABM USER MANUAL
How to use ABM-SIB-LIB routines in FORTRAN applications

DDGET (TDBKEY,ITEMSUB,KITEMxx,KRECxx,DBSTATUS)

I I

I 0 0

DDMDFY (TDBKEY, ITEMSUB,KITEMxx,KRECxx,DBSTATUS)

I I

I I 0

DDSTORE (ITEMSUB,KITEMxx ,KRECxx,DBSTATUS)

I I

I 0

o GET the relevant records, items or group items.

@ MODIFY values of items or group items in a record.
© STORE a (part of a) record in its realm.

DDSTORE and DDMDFY:

DDGET:

Description:

Note:

KITEMxx and KRECxx are found in the INCLUDE files. »xx
must be the realm name.

Data transfer parameters:
Build up ITEMSUB in order to specify the exact iJtem
Tist for the SIB-DML call.

Assign values to the value buffer by assigning values
to the corresponding variables, either by using the
routine DDTRNSF or by ordinary assignment statements.

Data read from the database 1is available 1in the
variables corresponding to the value buffer.

ITEMSUB and KITEMxx determine the result-item list. In
DDMDFY and DDSTORE, the corresponding values are
transferred to a local value buffer.

The corresponding SIB-DML call is performed.

In DDGET, the wvalues returned are transferred to
KRECxX .

Only variables corresponding to the result-item 1list
{i.e., the item Tist determined by ITEMSUE and KITEMxx)
are used/changed in the «call to DDGET, ODDMDFY and
DDSTORE .

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 89
How to use ABM-SIB-LIB routines in FORTRAN applications

DDINKEY (KIxxxxx,KVxxxxx)
1 0

¢ Reset search regions to maximum.

Input : KIxxxxx
OQutput: KVxxxxx

Description: The value buffer KVxxxxx 1is reset to the default
values.
Low Timit : 00000B
High Timit: 777778

Use: Automatically called from the ASSDDI file for all
referenced indexes.
Called from DDFTCH, DDFEBL and DDFLBL after the SIB-DML
call.
May be called from application programs too, but this
will normally not be necessary.

DDINSR (TDBKEY,KIxxxxx,DBSTATUS)
DDREMO (TDBKEY,KIxxxxx,DBSTATUS)
I I 0

¢ INSERT an index key of a record.
e RFEMOVE a manually maintained index key.

KIxxxxx is found in the INCLUDE file. xxxxx must be the
index name abbreviation.

Description: Call the corresponding SIB-DML call with the index name
found in KIxxxxx.

Norsk Data ND-60.203.2 EN

90 ABM USER MANUAL
How to use ABM-SIB-LIB routines in FORTRAN applications

DDGETN (TDBKEY,TDBSRI,N,ITEMSUB,KITEMxx,KRECxx,NOFOUND,DBSTATUS)
I I I I I 0 0 0

® GET (read] a number of records in a search region.

KITEMxx 1is found 1in the INCLUDE file. xx must be the
realm name. N is the number of records desired. NOFOUND
is the number found {NOFOUND .LE. N}.

Description: ITEMSUB and KITEMxx determine the result-item list. The
corresponding SIBAS call SGETN is performed, and the
NOFOUND occurrences are transferred to KRECxx.

Note: For values of N greater than 1 (if N=1 you can also use
DDGET), the KRECxx buffer must be declared by the
programmer. The format for one occurrence of the
specified record is the same as the generated KRECxx.
You then have to repeat this N times.

DDGIXN (TDBKEY,TDBSRI,N,KVxxxxx,NOFOUND,DBSTATUS)
I I I 0 0 0

® GET (read) a number of index keys.

The description is in the SIBAS manual. KVxxxxx is
found in the INCLUDE file (for N=1).

Description: Set the maximum number of key values desired in N and
call DDGIXN. The number found is returned in NOFOUND
and the 'key list' is found in KVxxxxx.

Note: For values of N greater than 1, KVixxxx must be
declared by the programmer (same here as for DDGETN).

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
How to use ABM-SIB-LIB routines in FORTRAN applications

91

CHAPTER 5

HOW| TO USE ABM-SIB-LIB ROUTINES IN COBOL APPLICATICNS

e SUBROUTINE PARAMETERS

Norsk Data ND-60.203.2 EN

e ROUTINES AND PARAMETERS IN ABM—-SIBAS-LIBRARY

e ABM-SIB-LIB ROUTINES FOR COBOL APPLICATIONS

ABM USER MANUAL g3
How to use ABM-3IB-LIB routines in COBOL applications

]

» HOW TO USE ABM-SIB—LIB ROUTINES IN COBOL APPLICATIONS

oy

.1 ROUTINES AND PARAMETERS IN ABM-SIBAS—LIBRARY

Description of routines in ABM-SIB-LIB

ppaccD - ACCUMULATION of item values.

DOFEBL - 'Find FIRST record between limits using given key.

DOFLBL - Find LAST record between limits using given key.

PDFORG - FORGET, nullify the effect of a REMEMBER call.

DDFREMB - FORGET old and REMEMBER & new record or a search region.
DOFTCGT - FIND a specific record and GET the record values.
DOFICH - FIND a specific record.

DDGET - GET the relevant record, items or group items.

DDGETN - GET (read) a number of records in a search regijon.
pDGIXN - GET (read) s number of index keys.

DDINKEY - Reset search regions to maximum.

DDINSR - INSERT an index key of a record.

DDMDFY - MODIFY values of items or group items in a record.
DDREMO - REMOVE a manually maintained index key.

DDSTORE - STORE a (part) of a record in its realm.

DDTRNSC -~ TRANSFER of values between value buffers (for COBOL appl.)

PARAMETERS OF THE ABM-SIB-LIB ROUTINES:

LLibrary name: ABM-SIB-LIB-<version>.

Routines in this library calls SIBAS routine
DDACCD (TDBKEY,INTEG,DDC~SELECT,DDB-realm-SUBSCHEMA, ACCID

DBV-realm,DBSTATUS) ACCDD
DOFEBL (DBKI-realm-item,DBXV-reaim-item,DBSTATUS) SFEBL
DDFLBL (DBKI-realm-item,DBKV-realm-item,DBSTATUS) SFLBL
DDFORG (TDBSRI,OPTION,DBSTATUS) SFORG
DDFREMB (TDBSRI,OPTION,DBSTATUS) SFORG SREMB
DDFTCGT (DBKI-realm-item,DBKV-realm-item,DDC-SELECT,

DDB-realm-SUBSCHEMA,DBV-realm,DBSTATUS) SFTGT
DOFTCH (DBKI-realm-1item,DBKV-realm-item,DBSTATUS) SETCH
DDGET {TDBKEY ,DDC-SELECT,DDB-realm-SUBSCHEMA ,DBV-realm,

DBSTATUS) SGET
DDGETN {TDBKEY,TDBSRI,N,DDC~SELECT,DDB-realm-SUBSCHEMA,

DBY-realm, NOFOUND,DBSTATUS) SGETHN
DDGIXN ({TDBKEY,TDBSRI,N,DBKY-realm-item,NOFOUND,6DBSTATUS) SGIXN
DDINKEY (DBKI-realm-item,DBKV-realm-item) ——eo.
DDINSR (TDBKEY,DBKI-realm-item,DBSTATUS) SINSR
DDMDFY {TDBKEY,DDC-SELECT,DDB-reaim-SUBSCHEMA,DBY-realm,

DBSTATUS) SMDFY
DDREMO {TDBKEY,DBKI-realm-item,DBSTATUS) SREMO
DDSTORE (DDC~SELECT,DDB-realm-SUBSCHEMA,DBV-realm,DBSTATUS) STORE
DOTRNSC (DDx-~realml-SUBSCHEMA, xxV-realml,DDy-realm2-SUBSCHEMA,

yyV-reaim?)

e Other SIBAS routines are called directly from the programs.

e A direct call to SFORG/SREMB may be used instead of DDFREMB/DDREMB.
Do NOT mix the use of these two calls in the same program.

e Use DDTRNSC only in COBOL programs.

Norsk Data ND-60.203.2 EN

94 ABM USER MANUAL
How to use ABM-SIB-LIB routines in COBOIL applications

SUBROUTINE PARAMETERS:

Parameter Description
COBOL
DBKI-realm—item
(1] {not used)
(2} Key item length {no. of words)
(3- 6] Key item name
(7-10) Key realm name

DBKYV-realm-item Value buffers for total-item list{

DIB-realwm-SUBSCHEMA
(1) No. of items in item list
(2) Total length on items {(no.of words]
{3~ 6) [(not used)
{(7-10]) Realm name

{11->) Total-item list (4 words pr. item]

[N1->) Item length (1 word pr. item]
N1 = 11 + 4*DDB-realm-SUBSCHEMA (1]

(N2->) Item type (s, D, E, 0) (1 word pr. item)

N2 = 11 + 5”DDB-realm-SUBSCHEMA (1)

DIC-SELECT Subitem list. Type depends on start word
+: => Result-item list = DDC-SELECT
-: => Result-item list = [DDB-realm~SUBSCHEMA) minus
DDC-SELECT.
0: => Result-item list = DDB-realm-SUBSCHEMA
Where result-item list is used in the SIBAS call
End subitem list by a """,
Typical subitem list: wmove "+:<ITEM><ITEM>....<ITEM>*' to DDC-SELECT

DEY-realm Only values for items in result-item list are changed/used
TLBKEY Temporary database key
TOBSRI Temporary search region indicator

OPTION =0: Forget/Remember record
=1: Forget/Remember search region
=2: Forget all records
=3: Forget all search regions
=4: Forget all records and search regions

DBSTATUS DBSTATUS different from 0 or 1 indicates an error.

INTEG Used in routine DDACCD
= " " : Call both routine ACCID and ACCDD
= "S " . Call ACCID
= "D " : Call ACCDD

Where realm: realm name (generated by COPY)
item : item name ({generated by COPY)

If you have answered Yes to the additional declaration option in the

Subfunction command, the only variables which may be declared by the user
are: INTEG, N and NOFOUND.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL g5
How to use ABM-SIB-LIB routines in COBOL applications

5.2 ABM-SIB-LIB ROUTINES FOR COBOL APPLICATIONS

DDFTCH Input/Output
DDFEBL ::}w» USING DBKI-realm-item, (1)

DDFLBL DBKV-realm-item, (1)
DBSTATUS. (0)

@ Find a specific record.

¢ Find FIRST record between limits using given key.

e Find LAST record between limits using given key.
DBKI-realm-item and DBKV-realm-item are found in the
COPY file. 'Realm’ and 'item' are the realm and key
item names.
Data transfer parameters:
Give the key value by assigning the value to the
variable DBKV-realm-item.
Give the low and high limits by moving values to the
variables DBKV-realm-item-LOW-n and DBKV-realm-item-
HIGH-n.
It is only necessary to assign values to those
variables you want to be different from the default
values:
Default value low 1imit : 000008
Default value high 1imit = 777778

Description: The given input values are decoded and the

corresponding SIB-DML call s performed. At return,
DDINKEY is called.

Norsk Data ND-~60.203.2 EN

96 ABM USER MANUAL
How to use ABM-SIB-LIB routines in COBOL applications

Input/Cutput
DDFTCGT USING DBKI-realm-1item, (1)
DBKV-realm-item, (1)
DDC-SELECT, (1)
DDB-realm-SUBSCHEMA, (1)
DBV-realm, (0)
DBSTATUS. {0)

@ Find a specific record and get the record values.

DBKI-realm-item, DBKV-realm-item, DDC~SELECT, DDB-
realm-SUBSCHEMA and DBV-realm are found in the COPY
file. 'Realm' and '"item' are the realm and key item
names.

Give the key wvalue by assigning the value to the
variable DBKV-realm-item-LOW-1 (DBKV-realm-item-LOW-2
and so on if the key is a group item.)

Build up DDC-SELECT 1in order to specify the exact item
list.

Data read from the database 1is available 1in the
variables corresponding to the value buffer.

(See also description of DDFTCH and DDGET.)

Input/Output
DDINKEY USING DBKI-realim-item, (1)
DBKV-realm-1item. {0)

® Reset search regions to maximum.

Description: The value buffer DBKV-realm-item 1is reset to the
default values.
Low Timit : 000008
High Timit: 777778

Use: Automatically called from the ASSDBC file for all
referenced indexes.

Note: Called from DDFTCH, DDFEBL and DDFLBL, after the SIB-
DML call.
May be called from application programs too, but this
will normally not be necessary.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 97
How to use ABM-SIB-LIB routines in COBOL applications

DDINSR Input/Output

DDREMO USING TDBKEY, (1)
DBKI-realm-1item, (1)
DBSTATUS. {0)

¢ INSERT an index key of a record.
® REMOVE a manually maintained index key.

DBKI-realm-item is found in the COPY file. 'Realm’ and
"item’ are the reaim and key item names.

Description: Call the corresponding SIB-DML call with the index name
found in the DBKI-realm-item.

DDGET —— Input/Output
- USING TDBKEY, (1)
DDMDFY—- DDC-SELECT, (1)
DDB-realm-SUBSCHEMA, (1)
DBV-realm, (I),(0 for DDGET)
DBSTATUS. {0)

DDSTORE USING DDC~SELECT, (
DDB-realm-SUBSCHEMA, (
DBV-realm, {
DBSTATUS. {

@ GET the relevant record, items or group items.
@ MODIFY values of items or group items in a record.
e STORE a ([part of a) record in its realm.

DDC-SELECT, DDB-realm-SUBSCHEMA and DBV-realm are found
in the COPY files. 'Realm' 1is the realm name.

Data transfer parameters:
Build up DDC-SELECT in order to specify the exact 1item
list for the SIB-DML call.

DDSTORE, DDMDFY: Assign values to the value buffer by assigning values
to the corresponding variables, either by using routine
DDTRNSC or by ordinary assignment statements.

DDGET : Data read from the database 1is available 1in the
variables corresponding to the value buffer.

Description: DDC-SELECT and DDB-realm-SUBSCHEMA determine the
result-item list.
In DDMDFY and DDSTORE, the corresponding values are
transferred to a local value buffer. The corresponding
SIB-DML c¢all 1is performed. In DDGET, the values
returned are transferred to the DBV-realm area.

Note: Only wvariables corresponding to the result-item 1ist ;
that is, the item Tist determined by ODC-SELECT and
DDB-realm-SUBSCHEMA |, are used/changed 1in <calls to

DDGET, DDMDFY, DDSTORE.

Norsk Data ND-60.203.2 EN

98 ABM USER MANUAL
How to use ABM-SIB-LIB routines in COBOL applications

Input/Output
DDGETN USING TDBKEY, {1
TDBSRI, (1)
N, (1)
DDC-SELECT, (1)
DDB-reaim~SUBSCHEMA, {1
DBYV-realm, (1)
NOFOUND, {0)
DBSTATUS. {0)

e GET [read) a number of records in a search region.

The prefixed names are found in the COPY file. 'Realm’
is the realm name. N is number of records desired.
NOFOUND is the number found (NOFOUND ¢ N).

Description: DDC-SELECT and DDB-realm-SUBSCHEMA determine the
result-item list. The corresponding SIBAS call SGETN is
performed, and the NOFOUND occurrences are transferred
to DBV-realm.

Note: For values of N greater than 1 (if N=1 you can also use
DDGET), the DBV-realm buffer must be declared by the
programmer. The format for one occurrence of the
specified record is the same as for the generated one.
You then have to repeat this N times.

Input/Output
DDGIXN USING TDBKEY, {1)
' TDBSRI, (1)
N, (1)
DBKV-realm-item, {0)
NOFQUND, {0)
DBSTATUS. (0)

@ OET (read) a number of index keys.

The parameters are described in the SIBAS ° manual (ND-
60.127.03). DBKV-realm-item 1is found in the COPY file

{for N=1). 'Realm’ and 'item' are realm and key item
names.
Description: Set the maximum number of key values desired in N and

call DDGIXN. The number found is returned in NOFOUND
and the 'key list' is found in the 'low’' part of DBKV-
realm-item.

Note: For values of N greater than 1, the DBKV-realm-item

must be declared by the programmer (like in the call
for DDGETN).

Norsk Datae ND-60.203.2 EN

ABM USER MANUAL 99
How to use ABM-SIB-LIB routines in COBOL applications

Input/Cutput
DDACCD USING TDBKEY, (1)
INTEG, (1)
DDC-SELECT, (1)
DDB-reaim-SUBSCHEMA, (1)
DBV-realm, {1/0)
DBSTATUS. (0)

e ACCUMULATION of item values.

DDC~SELECT, DDB-realm~-SUBSCHEMA and DBV-realm are found
in the COPY file. 'Realm’ is the realm name.

Build up DDC-SELECT in order to specify the exact item
Tist for the SIB-DML call. At input, the increments are
put in the DBV-realm buffer. Specify also the type of
accumulation by giving INTEG one of the possible
values:

" " - both ACCID and ACCDD are called.
"S " - ACCID is called.
"D " - ACCDD is called.

At output the results are found in DBV-realm.

v i v imirart woameir | mine o amamomey | maiminie iy b it ot e oein et it e e i v——— ottt oo sommeers | omvemmans s

Input/Output
DDTRNSC USING DDx-reaiml-SUBSCHEMA, (1)
xxV-realml, (1)
DDy-realm2-SUBSCHEMA, {0)
yyV-realm2. {0)

e TRANSFER of values between value buffers {for COBOL appl.)

Parameters are found in the COPY files. 'Realml’ and
‘realm2’ are the realm names. x and y are either S (for
Screen) or B {for dataBase). xx and yy are either SC
{giving SCV - SCreen Value) or DB {giving DBV -
DataBase Value). ‘Realml' must be different from
‘realm2’.

Description: Values for dtems with "equal” names in the two item
lists are transferred from ‘'realml' to ‘realm2’ .
"Equal” in this routine means equal in all characters.
Note the important difference from DDTRNSF.

Note: Because the structures 1in the item 1ist and value
buffers are exactly the same for the database buffers
and the screen buffers, this routine may be used to
transfer values from:

1

one realm buffer to another;

one picture record buffer to another;

a realm buffer to a picture record buffer;
a picture record buffer to a realm buffer.

i

{

Norsk Data ND-60.203.2 EN

100

ABM USER MANUAL
How to use ABM-SIB-LIB routines in COBOL applications

DDFREMB = Input/Output
DDFORG ~—:L~—» USING TDBSRI, (1/0)

OPTION, (1)
DBSTATUS. (0)

® FORGET old and REMEMBER a new record or a search region.
@ FORGET, nullify the effect of a REMEMBER call.

Description:

Hote:

DDFREMB:

This routine forgets the remembered record/search
region indicated by TDBSRI, and remembers a new one.

If a record/search region is not previously remembered,
only remember is called.

The input value on TDBSRI indicates remembered or not:
TDBSRI = 0 : Not previously remembered.

TDBSRI different from 0 : Previously remembered.

Legal OPTION values 0, 1:

=0 : (forget) and remember temporary database key.

=1 : {forget) and remember search region indicator.

DDFORG:

This routine forgets a record (0}, a search region (1),
all remembered vrecords (2), all remembered search
regions (3), or all remembered records and search
regions (4), depending on the value in OPTION.

When forgetting one single record/search region, TDBSRI
is reset to zero after the forget call. If TDBSRI =0
at input, the forget call is skipped. When forgetting
all records/search regions, TDBSRI serves as a dummy
parameter.

At the start of the program and after a FORGET-ALL
call, all wused temporary database keys and search
region indicators should be reset to zero.

Ordinary SFORG and SREMB may be used instead of DDFREMB
and DDFORG, but it is recommended that you use either
SFORG/SREMB or ODFREMB/DDFORG throughout the same
program.

Norsk Data ND=-60.203.2 EN

ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in FORTRAN applications

b HOW TO USE ABM-FOCUS—LIBRARY IN FORTRAN APPLICATIONS

6.1 ROUTINES AND PARAMETERS IN ABM-FOCUS-LIBRARY

103

The ABM-FC-LIBRARY contains the following "user available" routines:

DDCFLDS
DDCLAT

DDCLF1

DDCLMR

DDCMSGE
DDCOPTF
DDERROR
DDGETRC
DDGMSGE
DDGTEXT

DDGTPIC
DDINITE
DDOPF1

DDPUTRC
DDRFLDS
DDSETAT
DDSETHMR
DDWFLDS
DDWHMSGE

Clears fields/records or parts of records.

Clears attributes.

Closes an opened file.

- Llears "must-read” for fields/records.

- (Clears a message line.

- Copies a displayed picture to file.

- Decodes the error status and returns an error text.
- Gets field values from the total picture buffer.

~ Writes a message to a message line and reads the answer.

- Writes a message in a given line and column and
reads the answer.

- Gets a picture from a file, displays and makes it ready.

- Initiates and terminates the SCREEN part of a program.
- Opens a SINTRAN file for Write, Append access.

- Puts field values into the total picture buffer.

- Reads fields/records or parts of records.

- Sets attributes.

-~ Sets "must-read" for fields/records.

- . Writes fields/records or parts of records.

- Writes a message to the message line.

The ABM-FOCUS-LIBRARY routines and the FOCUS routines:

SUBROUTINE : CALLS FOCUS ROUTINES:
DDCFLDS (REFTAB, MITEMxx, MRECxx, FCSTATUS) FCCLSUB,FCCLFDS
DDCLAT (REFTAB, MITEMxx, MRECxx, FCSTATUS) FCSETAT
DDCLFI (IUNIT, FCSTATUS) FCCLOSE
DDCLMR (REFTAB, MITEMxx, MRECxx, FCSTATUS) FCCLMR
DDCMSGE (FCSTATUS) FCWTXT,FCSCRIN
DDCOPTF (IUNIT, FCSTATUS) FCPRDOC
DDERROR {FCSTATUS, MESSAGE) -
DDGETRC (REFTAB, MITEMxx, MRECxx, FCSTATUS)
DDGMSGE (MESSAGE, OTEXT, FCSTATUS) A1l in DDWMSGE + FCRTXT
DDGTEXT (MESSAGE, OTEXT, ILINE, ICOL, FCSTATUS) CWTXT, FCRTXT
DDGTPIC (FORMFILE, REFTAB,
FCSTATUS) FCODECFF ,FCDECFN,FCCLFDS,FCCLREC
DDINITE (MFLAG) FCINITE
DDOPFI (IFINA, IUNIT, FCSTATUS) FCOPEN
DDPUTRC (REFTAB, MITEMxx, MRECxx, FCSTATUS)
DDRFLDS (REFTAB, MITEMxx, MRECxx, FCSTATUS) FCESUB
DDSETAT (REFTAB, MITEMxx, MRECxx, IATRBT, FCSTATUS) FCSETAT
DDSETMR (REFTAB, MITEMxx, MRECxx, FCSTATUS) FCSETMR
DDWFLDS (REFTAB, MITEMxx, MRECxx, FCSTATUS) FCWSUB
DDWMSGE (MESSAGE, FCSTATUS) FCWTXT,FCPWR,FCSCRIN,FCBELL ,FCRCHR

Norsk Data ND-60.203.2 EN

104 ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in FORTRAN applications

PARAMETER DESCRIPTION
FORTRAN
MITEMxx Total item list information
(1) No. of items in item list.
{2) Total length of items (No of 16-bit words).
(3] No. of records of this type.
(4) First item number in first record of this type.
(s) First word in value buffer in first record
of this type.
(6) Not used.
(7-20) Record type name.
(11->) Total item list (4 words per item).
(N1->) Item length (1 word per item).

N1 = 11 + 4*MITEMxx{1)
{N2->) Item type: S, D, E, O, 1In or 2n. (1 word per item).
N2 = 11 + S5*MITEMxx{1].

{TEMSUB Subitem list: type depends on the start word.
+: => result-item list = ITEMSUB
~-: => result-item list = MITEMxx - ITEMSUB
0: => result-item list = MITEMxx
Where result~item list is used in the FOCUS call.
* => End of subitem list.
Typical subitem list:
citmsub(1)="+:<.ITEM.><.ITEM.>....<.ITEM.>*’
MRECxx Record with picture values for all items in MITEMxx
Only values for items in the result-item list are
changed/used.

LINE, NOLINE Line (record) number & number of occurrences.

LINE = 0 & NOLINE = O: All occurrences of this rec.

LINE > O & NOLINE > O: 'NOLINE' occurrences start-
ing from occurrence 'LINE’
of the record type.

LINE > O & NOLINE = 0: All occurrences starting
from occurrence 'LINE' of
the record type.

(defult from INCLUDE/COPY is LINE=NOLINE=1)

MESSAGE Message type and text.
{(1:1) Message type (not written)
[byte no.1}= + => Turn ON the "prohibited to overwrite message

line" mechanism. The operator has to give CR
before the next message is written on the
message line.

= - => Turn OFF the "prohibited to overwrite
message line" mechanism.

= 0 => The message will be written out on the
message line. There is no prevention of
message.

{(2:2) Delimiter (not written]).
{byte no. 2) Must be equal to ":"
(3:80) Text string, the text that will be displayed.
{bytes 3 through 80}
example of use: cmessage = '+: Please give unit type and number''

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in FORTRAN applications

NOTE ! The routines DDRFLDS, DDGMSGE and DDGTEXT will
reset flags that indicate when the operator has
given a CR before the next message.

OTEXT Output message in the DDGTEXT call and the DDGMSGE
call. OTEXT must be defined as a table, and have

Default length is 40 bytes.

IUNIT Logical unit number for the output file (DDCOPTF)
FORMFILE Picture file name
CPNS Picture name (8 characters)
ILINE Line number on the screen (normally 1 - 24/25)
ICOL Column number on the screen {normally 1 - 80)
MRMO Read mode.] Default from INCLUDE is
MWMO Write mode. MRMO=MWMO=1 {"normal” read/write).
FCSTATUS Routine status:

= 0 No error in DD<FOCUS> call.

otherwise : Error situation [see DDERROR].

REFTAB Reference table instead of a long parameter list:
FORTRAN COBOL
{1) - (4) CPNS SCC~PIC-NAME
(5) MRMO SCC~-READ-MODE
(6) MWMO SCC-WRITE-MODE
{(7) LINE SCC~-START-RW~-LINE
(8) NOLINE SCR~RW-NO-OF-LINES
(11) - ITEMSUB DDC-SELECT

In the routine parameters we always refer to REFTAB.
Default values are initiated by ASSDDI-<subfunc>.
Change the values by using the name [(not the index

the same length as MAXOTEXT in the ABM-FC-LIB:INCL.

in REFTAB).
MFLAG Input to DDINITE : 1 init
0 exit
Where xx : realm prefix {(generated by INCLUDE).

The variables which are not automatically decleared are:
TUNIT, ILINE, ICOL, IFINA and IATRBT.

NOTE:
All dimensioning of the parameters should be done in the file
ABM~-FC-LIB:INCL. Default values of the subroutines are supported on
delivery of the program, but these values can be changed by the
user.

FOCUS SIBAS
Remember the parallelism : Picture ---- Database

Record ~--- Realm

Field -=--~ Item

Norsk Data ND-60.203.2 EN

105

106 ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in FORTRAN applications

6.2 HOW TO USE THE ABM-FC-LIB ROUTINES IN FORTRAN APPLICATIONS

DDCFLDS (REFTAB,MITEMxx ,MRECxx,FCSTATUS)
170 I 0 0

e Clears fields/records or parts of records.

Description: The specified parts of the fields on the screen and the
corresponding parts of the picture buffer for the whole
screen are cleared. ‘

The following possibilities exist:

o Clear all fields in a record {LINE=0, NOLINE=0).

e Clear from occurrence LINE no. of picture record type
and all following occurrences of that record type
{NOLINE=0)

o Clear from occurrence LINE no. of picture record type
and the NOLINE following record occurrences.
The picture record type is found in MITEMxx.

Default from INCLUDE is LINE=NOLINE=1.

DDCLAT (REFTAB, MITEMxx, MRECxx, FCSTATUS)
170 I 0 0

8 Clears attributes.

Description: This routine will give the result-item Tlist the
"normal” attribute set.

Use: Normally used to reset the same field set that is
created by the DDSETAT call.

DDCLFI (TUNIT, FCSTATUS)
I 0

@ Closes an opened file.

Use: This routine 1is used to <close files opened by the
DDOPFI routine.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 107
How to use ABM-FOCUS5-LIBRARY in FORTRAN applications

DDCLMR (REFTAB, MITEMxx, MRECxx, FCSTATUS)
1/0 I 0 0

® Clears "must-read” for fields/records.

Description: The corresponding “clear-must-read" FOCUS call s
performed for the fields in the result-item list.

Use: Normally this is used to reset the effect of a DDSETMR

call; that is, reset the "set-must-read” for the same
set of fields that is specified in the DDSETMR call.

DDCMSGE (FCSTATUS)
0

e Clears a message line.

Description: This routine clears the terminal's message line.

s mmacni om— — ———— - o——t o———— s ottt ikt mbbo | nions oo i it et st it wvmoinis mentss siapoisss sy woesme smemniosns e

DDCOPTF (IUNIT,FCSTATUS)
1 0

¢ Copies a displayed picture to a file.

Description: The routine will write a form with leading texts and
field contents to a file.

Use: The file should previously be opened by using the
routine DDOPFI. The returned unit number from this
routine should be wused as 1input in DDCOPTF's IUNIT
parameter.

Norsk Data ND-60.203.2 EN

108 ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in FORTRAN applications

DDGETRC (REFTAB,MITEMxx ,MRECxx,FCSTATUS)
1/0 I 0 0

¢ Gets field values from the total picture buffer.

Description: Field values for all fields 1in ‘the picture record
occurrence given from LINE and MITEMxx are transferred
from the screen picture to MRECxx.

Use: Only one occurrence of each type is available 1in the
application program at one time, as the same value
buffer is used for all occurrences of a picture record

type.

In order to get access to an arbitrary occurrence
(without doing an ABM-FOCUS call}, the routine DDGETRC
is used.

DDGMSGE (MESSAGE, OTEXT, FCSTATUS)
I 0 0

@ Writes a message to a message line and reads the answer.

Description: Works exactly as DDGTEXT, but the message line is
always used.

DDGTEXT (MESSAGE, OTEXT, ILINE, ICOL, FCSTATUS)
I 0 I [0

¢ Writes a message in a given line and columm and
reads the answer.

Description: The text 1in MESSAGE is displayed in position (ILINE,
ICOL) on the operator's screen. It waits for a message
from the operator. The message is returned in the OTEXT
parameters.

Use: Assign the y/x-coordinate values to ILINE/ICOL for the
start position of the message on the screen. Assign
MESSAGE the message to be displayed. The return message
will be found in OTEXT.

Norsk Data ND~-60.203.2 EN

ABM USER MANUAL 109
How to use ABM-FOCUS-LIBRARY in FORTRAN applications

DDGTPIC (FORMFILE,REFTAB,FCSTATUS)
I 1/0 0

¢ Gets a picture from a file, displays and makes it ready.

Assign the FOCUS form-file (:FABM) name to FORMFILE.
Make sure that the CPNS in REFTAB holds the correct
form name.

Description: The necessary ABM-FOCUS routines to initiate a form are
called, and the form is displayed on the screen.

DDINITE (MFLAG)
I

¢ Initiates and terminates the SCREEN part of a program.

DDINITE must be performed right before the first
DDGTPIC call. DDINITE must be the last call before

Teaving the part of the application which uses a FOCUS
picture.

The parameter MFLAG must be set to 1 when initiating
from a background program. The values of the parameter
have the following meanings:

MFLAG > 1: the device is reserved by FOCUS.
MFLAG = 0: terminate. See also the FCINITE call in the
FOCUS REFERENCE MANUAL (ND-60.137).

It should be noted that a maximum number of pictures,
fields and buffer areas are initiated in the ABM-FC-
LIB:INCL file.

Note: For RT/TPS programming, you have to choose another
strategy for initiation; for example, BLOCK DATA
initiation at load time.

Norsk Data ND-60.203.2 EN

110 ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in FORTRAN applications

DDOPFI (IFINA, IUNIT, FCSTATUS)
1 0 0

® Opens a SINTRAN file for Write, Append access.

Descriiption: Opens the file given by the name assigned to IFINA
(for example: IFINA="TEST:SYMB") for Write / Append
access. The file number of the opened files is returned
in IUNIT.

Use: This routine is used for a call to DDCOPTF.

DDPUTRC (REFTAB,MITEMxx ,MRECxx,FCSTATUS)
1/0 I I 0

® Puts field values into the total picture buffer.

Description: This is the inverse of DDGETRC.
Field values for all fields 1in the picture record
occurrence given from LINE and MITEMxx are transferred
from MRECxx to the screen picture.

Use: In order to build up a whole screen picture (before
doing an ABM-FOCUS call), the routine DDPUTRC is used.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL

111

How to use ABM-FOCUS-LIBRARY in FORTRAN applications

DDRFLDS (REFTAB,MITEMxx,MRECxx,FCSTATUS)

I 0 0

e Reads fields/records or parts of records.

Description:

Note:

MITEMxx and MRECxx are found in the INCLUDE files. xx
is the picture record name abbreviation.

Data transfer parameters:

Build up ITEMSUB 1in REFTAB in order to specify the
exact fields for the ABM-FOCUS calls.

Data read from the screen is available in the varijables
corresponding to the value buffer.

A result-item list, which consists of a specified set
of fields, is determined by ITEMSUB and MITEMxx.
FCEDSUB is performed on the set of fields of the
picture record occurrence.

The field values read are transferred from the picture
buffer for the whole screen to MRECxx if only one
record occurrence is read. If more than one record
occurrence is read in one DDRFLDS «¢all, you must
transfer the values yourself by successive calls for
DDGETRC. {(Hint: loop with LINE from 1 to maximum number
of occurrences each time you call DDGETRC, and store
the values).

Before return, the message line is cleared.

With the same call to DDRFLDS, you can read one, some
or all fields in the picture record occurrence. See the
LINE and NOLINE parameter in REFTAB.

The fields will always be read depending on the
sequence in the subitem list. The default sequence for
the total item 1ist is from left to right and from top
to bottom.

Normally, “read" is performed by first cleaning the
fields and then by setting the display dots in the
fields. This can be changed by setting the parameter
MRMO in REFTAB. See the edit mode parameter in FCEDSUB
call in the FOCUS Reference Manual, ND 60.137

The most common setting for MRMO is:
1 {default) : clear fields, display dots and read.

or
2 . read (without clear).

Norsk Data ND-60.203.2 EN

112 ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in FORTRAN applications

DDWFLDS (REFTAB,MITEMxx ,MRECxx,FCSTATUS)
1/0 I I 0

@ ¥Writes fields/records or parts of records.

MITEMxx and MRECxx are found in the INCLUDE files. xx
is the picture record name abbreviation.

Data transfer parameters:

Build up ITEMSUB in REFTAB in order to specify the
exact fields for the ABM-FOCUS calls.

Assign values to the value buffer by assigning values
to the corresponding variables; either by use of the
routine DDTRNSF or by ordinary assignment statements.

Only variables corresponding to the result-item list
are used in DDWFLDS calls.

Description: DDWFLDS works Tike DDRFLDS {only reversed):
The result-item list is composed, and field values are
transferred to the screen buffer for the whole screen.
Finally, the field values are written to the screen (by
FCWSUB) .

- o—— <o— oo s winpoain minrsiman siroinmmy o oot oy oot e e eimgonnn | ovontoins | vniiainsn atniiins | rsitins ettt ket it o oo s oo

DDSETAT (REFTAB, MITEMxx, MRECxx, IATRBT, FCSTATUS)
170 I 0 1 0

% Sets attributes.

Description: This routine is used to set attributes (inverse video,
blink etc.) on fields of a field set.

Use: The elements in the IATRBT integer array of 8 elements
must be assigned value 1 to be enabled, otherwise 0 is
assigned. If no elements are set, the "normal”

attribute 1is set. Attributes can be combined. The
attributes will appear the next time the fields are
displayed.

Effect: The enabeling of the different elements has the
following meaning :

Element Effect on the
number fields

High {increased) intensity
Low (decreased) intensity
Italics

Underlined

Blink (slowly)

Blink {(rapidly)

Inverse video

Invisible {password reading)

OO~ O O D> 0D =

Norgsk Data ND~60.203.2 EN

ABM USER MANUAL 113
How to use ABM-FOCUS-LIBRARY in FORTRAN applications

DDSETMR (REFTAB, MITEMxx, MRECxx, FCSTATUS)
I/0 I 0 0

e Sets "must-read” for fields/records.

Description: The result-item 1list is made from the total-item list
in REFTAB and the subitem 1ist specified in ITEMSUB.
The corresponding "set-must-read" FOCUS call 1s

performed for the fields in question.

Use: Make your subitem 1ist by assigning values to ITEMSUB,
LINE and NOLINE (if occurrences of this record). Call
DDSETMR just before a DDRFLDS call.

Effect: The DDRFLDS call following a DDSETMR call will not be
left before all fields 1in the result-item 1ist are

filled in. Only the fields 1in result-item list of
DDSETMR are affected.

DDWMSGE (MESSAGE, FCSTATUS)
I 0

¢ Writes a message to the message line.

Description: The message in MESSAGE s displayed on the terminal's
message line.

Use: See how to assign value to the MESSAGE parameter in the
parameter description in the beginning of this chapter.

Norsk Data ND~60.203.2 EN

114 ABM USER MANUAL
’ How to use ABM-FOCUS-LIBRARY in FORTRAN applications

DDERROR {FCSTATUS, MESSAGE)
1/0 0

® Decodes error status and returns an error text.

Use: After all DD calls, the status parameters should be
tested.

o If DD<FOCUS-call> then test if parameter not = 0.
If so call DDERROR to decode the error situation.

o If DD<SIBAS-call> then test if parameter not = 1 or
(sometimes) O.
If so call DDERROR to decode the error.

NOTE:
See also the routine DDERMSCG in ABM-UTILITY-LIB
described in chapter 8.

Examples of use:

CALL DDFTCH {(KIDEPNO, KVDEPNO, DBSTATUS)
IF (DBSTATUS .EQ. 0) THEN
<no item found, give message etc.»
DDERROR ELSEIF (DBSTATUS .NE. 1) THEN
called after CALL DDERROR (DBSTATUS, MESSAGE)
SIBAS call. IF (DBSTATUS .EQ. 0) THEN
<call routine to display MESSAGE>
ELSE
<call SDBEC>
ENDIF
ENDIF

CALL DDRFLDS (REFTAB,MITEMR1,MRECR1,FCSTATUS)
IF (FCSTATUS .NE. 0) THEN
CALL DDERROR (FCSTATUS, MESSAGE)

DDERROR IF (FCSTATUS .EQ. 0O) THEN

called after <call routine to display MESSAGE message>
FOCUS ELSE

call. <call routine to display the name of

FOCUS routine where error has occurred
- this is also found in MESSAGE »
ENDIF
ENDIF

Norsk Data ND-50.203.2 EN

ABM USER MANUAL , 117
How to use ABM-FOCUS~LIBRARY in COBOL applications

/ HOW TO USE ABM-FOCUS—LIBRARY IN COBOL APPLICATIONS

/.1 ROUTINES AND PARAMETERS IN ABM-FOCUS—-LIBRARY

The ABM-FC-LIBRARY contains the following "user available" routines:

DDCFLDS
DDCLAT

DDCLFI

DDCLMR

DDCHMSGE
DDCOPTF
DDERROR
DDGETRC
DDGMSGE
DDGTEXT

DDGTPIC
DDINITE
DDOPFI

DDPUTRC
DDRFLDS
DDSETAT
DDSETMR
DDWFLDS
DDWMSGE

i

Clears fields/records or parts of records.
Clears attributes.
Closes an opened file.
Clears "must-read"” for fields/records.
- Clears a message line.
-. Copies a displayed picture to file.
- Decodes the error status and returns an error text.
- Gets field values from the total picture buffer.
- Writes a message to a message line and reads the answer.
- Writes a message in a given line and column and
reads the answer.
- Gets a picture from a file, displays and makes it ready.
- Initiates and terminates the SCREEN part of a program.
- Opens a SINTRAN file for Write, Append access.
- Puts field values into the total picture buffer.
- Reads fields/records or parts of records.
- Sets attributes.
- Sets "must-read” for fields/records.
- Writes fields/records or parts of records.
- Writes a message to the message Tine.

i

t

The ABM-FOCUS-LIBRARY routines and the FOCUS routines:

SUBROUTINE CALLS FOCUS ROUTINES:

ODCFLDS (DDC-REF-TABLE,DDS-realm-SUBSCHEMA, FCCLSUB,FCCLFDS

SCV-realm,FCSTATUS)
DDCLAT (DDC-REF-TABLE,DDS-realm-SUBSCHEMA,SCV-realm,FCSTATUS) FCSETAT
DDCLFI (IUNIT, FCSTATUS) FCCLOSE
DDCLMR (DDC-REF-TABLE,DDS-realm-SUBSCHEMA,SCV-realm,FCSTATUS) FCCLMR
DDCMSGE (FCSTATUS) FCWTXT,FCSCRIN
DDCOPTF (IUNIT, FCSTATUS) FCPRDOC
DDERROR (FCSTATUS, MESSAGE) -
DDGETRC (DDC-REF-TABLE,DDS-realm-SUBSCHEMA,SCV-realm,FCSTATUS)
DDGMSGE (MESSAGE, OTEXT, FCSTATUS) A11 in DDWMSGE + FCRTXT
DDGTEXT (MESSAGE,OTEXT,ILINE,ICOL,FCSTATUS) FCWTXT, FCRTXT
DDGTPIC (FORMFILE,DDC-REF-TABLE,FCSTATUS) FCDECFF,FCDECFN,FCCLFDS,FCCLREC
DDINITE (MFLAG) FCINITE
DDOPFI (IFINA, IUNIT, FCSTATUS) FCOPEN
DDPUTRC (DDC-REF-TABLE,DDS-realm-SUBSCHEMA,SCV-realm,FCSTATUS)
DDRFLDS (DDC-REF-TABLE,DDS-realm-SUBSCHEMA,SCV-realm,FCSTATUS) FCESUB
DDSETAT (DDC-REF-TABLE,DDS-realm-SUBSCHEMA,SCV-realm, IATRBT,

FCSTATUS) FCSETAT
DDSETMR (DDC-REF-TABLE,DDS-realm-SUBSCHEMA,SCV-realm,FCSTATUS) FCSETMR
DDWFLDS (DDC-REF-TABLE,DDS-realm-SUBSCHEMA,SCV-realm,FCSTATUS) FCWSUB
DDWMSGE (MESSAGE, FCSTATUS) FCWTXT,FCPWR,FCSCRIN,FCBELL,FCRCHR

Norsk Data ND-60.203.2 EN

118 ’ - - ABM USER MANUAL
How to& use ABM-FOCUS-LIBRARY in COBOL &pplications

DESCRIPTIONR

PDS-redalm-SUBSCHEMA Total item list information

(1) No. of items in item list.
(2} Total length of items [No of 16-bit words].
£3) No. of records of this type.
{4) First item number in first record of this type.
(5] First word in valuée buffer in first record
of this type.
{6) Not used.
{7-20) Record type name.
(11->) Total item list {4 words per item].
(N1->) Item length {1 word per item).

N1 = 11 + 4*DDS-realm-SUBSCHEMA(1)
(N2->) Item type: S, D, E, O, 1n or 2n. (1 word per item).
N2 = 11 + 5*DDS-realm-SUBSCHEMA({1].

DDC-SELECT Subitén list: type depends don the start word.

H

DDC-SELECT ‘
{DDS-r&alm-SUBSCHEMA)
minus DDC-SELECT

+: => result-item list
-: => result-item list

18

0: => result-item list = DDS-realm-SUBSCHEMA
Where réstult-item list is uséd in the FOCUS call.
* => End of subitem list.

Typical subitem list: o
move '+:<ITEM><ITEM>....<ITEM>*' to DDC-SELECT

SCV-realm Record with picture values for all items.
SCC-START-RW-LINE line {record)} number.

SCC-RW-NO-OF-LINES number of occurrences.
SCC~-START-RW-LINE = 0 & SCC-RW-NO-OF-LINES = O:
All occurrences of this record.
$CC-START-AW-LINE > O & SCC-RW-NO-OF-LINES > O:
'SCC-RW-NO-OF-LINES' occurrericés starting from occurrence
"SCC-START-RW-LINE' of the record type.
SCC-START-RW-LINE > 0 & SCC-RW-NO-OF-LINES = O:
All occurrences starting from occurrence
‘ 'SCC-START-RW-LINE' of the record type.
(default from COPY is SCC-START-RW-LINE = SCC-RW-NO-OF-LINES = 1)

Norsk Data ND-80.203.2 EN

ABM USER MANUAL

How to use ABM-FOCUS-LIBRARY in COBOL applications

MESSAGE
{(1:1)
(byte no.1)

(2:2)

(3:80)
NOTE !
OTEXT
IUNIT
FORMFILE
ILINE
ICOL

FCSTATUS

Default

Message type and text.
Message type (not written).
+ => Turn ON the "prohibited to overwrite message
line” mechanism. The operator has toc press
CR before the next message is written on
the message line.

= - => Turn OFF the "prohibited to overwrite

message line” mechanism.

= 0 => The message will be written out on the

message line. There is no prevention of
message.
Delimiter (not written].

{(byte no. 2] Must be equal to ":".

Text string, the text that will be displayed.

(bytes 3 through 80)

The routines DDRFLDS, DDGMSGE and DDGTEXT will
reset flags that indicate when the operator has
pressed CR before the next message.

Output message in the DDGTEXT call and the DDGMSGE
call. OTEXT must be defined as a table, and have
the same length as MAXOTEXT in the ABM-FC-LIB:INCL
Default length is 40 bytes.

Logical unit number for the output file {DDCOPTF)
Picture file name

SCC-PIC-NAME Picture name { 8 characters)

Line number on the screen {normally 1 - 24/25)
Column number on the screen (normally 1 - 80)

SCC-READ-MODE Read mode.
SCC~-WRITE-MODE Write mode.

Default from COPY: read mode and write mode = 1.

Routine status:
= 0 No error in DD<FOCUS> call.
otherwise : Error situation {see DDERROR]).

DDC-REF~-TABLE
Reference table instead of a long parameter list:

(1) - (4) SCC-PIC-NAME

(5] SCC-READ-MODE

(6) SCC-WRITE-MODE

(7] SCC-START-RW-LINE
(8) SCC~RW-NO-OF-LINES
(11) - DDC-SELECT

In the routine parameters we always refer to DDC-REF-TABLE.
values are initiated by ASSDDC-<subfunc>.
Change the values by using the name [not the index in
DDC-REF-TABLE) .

MFLAG Input parameter to DDINITE : 1 init

0 exit

Where realm : realm name {generated by COPY).

Variables which are not automatically declared are:
IUNIT, ILINE, ICOL, IFINA and IATRBT.

Norsk Data ND-60.203.2 EN

120 ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in COBOL applications

NOTE:

All dimensioning of the parameters should be done in the file
ABM-FC~-LIB:INCL. Default values of the subroutines are supported on
delivery of the program, but these values can be changed by the

user.
FOCUS SIBAS
Remember the parallelism : Picture ---- Database
Record ~---- Realm
Field ---- Ttem

Norsk Data ND-60.203.2 EN

ABM USER MANUAL ‘ 121
How to use ABM-FOCUS-LIBRARY in COBOL applications

/.2 HOW TO USE THE ABM-FC-LIB ROUTINES IN COBOL APPLICATIONS

Input/Output
DDINITE USING MFLAG. (1)

e Initiates and terminates the SCREEN part of a program.

Description: DDINITE must be performed right before the first
DDGTPIC call. DDINITE must be the Tlast call before
leaving the part of the application which uses a FOCUS
picture.

The parameter MFLAG must be set to 1 when initiating
from a background program. The values of the parameter
have the following meanings.

MFLAG > 1: the device is reserved by FOCUS.

MFLAG = 0: terminate.

See also the FCINITE call in the FOCUS REFERENCE MANUAL
{(ND-60.137).

It should be noted that a maximum number of pictures,

fields and buffer areas are initiated in the file
ABM-FC-LIB:INCL.

Input/Qutput
DDCFLDS USING DDC-REF-TABLE, (1/0)
DDS-realm-SUBSCHEMA, (1)
SCV-realm, (0)
FCSTATUS. (0)

® Clears fields/records or parts of records.

Description: The specified parts of the fields on the screen, and
the corresponding parts of the picture buffer for the
whole screen, are cleared.

The following possibilities exist:

e Clear all fields in a record {(SCC-START-RW-LINE=0,
SCC~-RW-NO-OF-LINES=0).

e Clear from occurrence SCC-START-RW-LINE no. of
picture record type and all following occurrences
of that record type (SCC-RW-NO-OF-LINES=0)

e Clear from occurrence SCC-START-RW-LINE no. of
picture record type and the SCC-RW-NO-OF-LINES
following record occurrences.

The picture record type is found in DDS-realm-
SUBSCHEMA.

SCC-START-RW-LINE = SCC-RW-NO-OF-LINES = 1 1is default
from COPY.

Norsk Data ND-60.203.2 EN

122

DDRFLDS

USING

, S ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in COBOL applications

Input/Output
DDC-REF-TABLE, (1/0)
DDS-realm-SUBSCHEMA, (1)
SCV-reatm, (0)
FCSTATUS. (0)

e Reads fields/records or parts of records.

Description:

Note:

DDC-REF-TABLE, DDS-realm-SUBSCHEMA and SCV-realm are
found 1in the COPY file. "Realm” 1s the realm {record)
name.

Data transfer parameters:

Build up DDC-SELECT in ODC-REF-TABLE 1in order to
specify the exact fields for the ABM-FOCUS calls.

Data read from the screen is available in the variables
corresponding to the value buffer.

A result-item 1ist, which consists of a specified set
of fields, 1is determined by DDC-SELECT and DDS-realm-
SUBSCHEMA.

FCEDSUB is performed on the set of fields of the
picture record occurrence.

The field values read are transferred from the picture
buffer for the whole screen to SCV-REALM if only one
record occurrence 1is read. If more than one record
occurrence is read 1in one DDRFLDS call, you must
transfer the values yourself by successive calls for
DDGETRC. (Hint: loop with SSC-START-RW-LINE from 1 to
maximum number of occurrences each time you call
DDGETRC, and store the values).

Before return, the message line is cleared.

With the same call to DDRFLDS, you can read one, some
or all fields in the picture record occurrence. See the
SSC~-START-RW-LINE and SSC-RW-NO-OF-LINES parameter in
REFTAB.

The fields will always be read depending on the
sequence in the subitem 1ist. The default sequence for
the total item list is from left to right and from top
to bottom.

Normally, "read" is performed by first cleaning the
fields and then by setting the display dots in the
fields. This can be changed by setting the parameter
SSC-READ-MODE in REFTAB. See the edit mode parameter in
FCEDSUB call in the FOCUS Reference Manual, ND 60.137

The most common setting for SSC-READ-MODE is:
1 (default) : clear fields, display dots and read.

or
2 : read (without clear).

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in COBOL applications

DDWFLDS

USING

123

Input/Output
DDC~-REF-TABLE, {1/0)
DDS-realm-SUBSCHEMA, (1)
SCV-realm, (1)
FCSTATUS. (0)

¢ Writes fields/records oxr parts of records.

Description:

DDC-REF-TABLE, DDS-realm-SUBSCHEMA and SCV-realm are
found in the COPY file.

Data transfer parameters:

Build up DDC-SELECT 1in DDC-REF-TABLE 1in order to
specify the exact fields for the ABM-FOCUS calls.
Assign values to the value buffer by assigning values
to the corresponding variables, either by use of
routine DDTRNSC or by ordinary assignment statements.

Only wvariables corresponding to the result-item list
are used in DDWFLDS calls.

DDWFLDS works 1ike DDRFLDS {only reversed):
The resutt-item list is composed, and field values are
transferred to the screen buffer for the whole screen.

Finally, the field values are written to the screen {(by
FCWSUB) .

Norsk Data ND-60.,203.2 EN

124 ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in COBOL applications

Input/Output
DDGETRC USING DDC-REF-TABLE, (1/0)
DDS-realm-SUBSCHEMA, (1)
SCV-realm, {0)
FCSTATUS. {0)

® Gets field values from the total picture buffer.

Description: Field values for all fields 1in the picture record
occurrence given from SCC-START-RW-LINE (in DDC-REF-
TABLE) and DDS-realm-SUBSCHEMA are transferred from the
screen picture to SCV-realm.

Use: Only one occurrence of each type is available in the
application program at one time, because the same value
buffer 1is used for all occurrences of a picture record
type.

In order to get access to an arbitrary occurrence

(without doing a ABM-FOCUS call) the routine DDGETRC
should be used.

et e tt—" — W— fo——— oy "ottt it it smmeaats ottt sy o, tommiry ot wwetwimn wmeiowy | mesiomi | omeesian | msasis s o o

Input/Output
DDPUTRC USING DDC-REF-TABLE, {1/0)
DDS-realm-SUBSCHEMA, (1)
SCV-realm, (1)
FCSTATUS. {0)

® Puts field values into the total picture buffer.

Description: This is the inverse of DDGETRC.
Field values for all fields 1in the picture record
occurrence given from SCC-START-RW-LINE and DDS-realm-
SUBSCHEMA are transferred from SCV-realm to the screen
picture.

Use: Only one occurrence of each type is available in the
application program at one time, as the same value
buffer is used for all occurrences of a picture record
type.

In order to build up a whole screen picture (before

doing an ABM-FOCUS call), the routine DDPUTRC should be
used.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 125
How to use ABM-FOCUS-LIBRARY in COBOL applications

Input/Qutput
DDSETMR USING DDC-REF-TABLE, (1/0)
DDS-realm-SUBSCHEMA, {I)
SCV-realm, (0)
FCSTATUS. (0)

e Sets "must-read” for fields/records.

Description: The result-item 1list is made from the total-item list
in DDC-REF-TABLE and the subitem 1list specified 1in
DDC-SELECT. The corresponding ‘“set-must-read” FOCUS
call is performed for the fields in question.

Use: Make your subitem list by assigning values to
DDC-SELECT, SCC-START-RW-LINE and SCC-RW-NO-OF-LINES
(if occurrences of this record). Call DDSETMR just
before a DDRFLDS call.

Effect: The DDRFLDS «call following a DDSETMR call will not be
left before all fields 1in the result-item Jlist are
filled in. Only the fields 1in result-item list of
DDSETMR are affected.

Input/Output
DDCLMR USING DDC-REF-TABLE, {1/0)
DDS-realm-SUBSCHEMA, (1)
SCV-realm, {0)
FCSTATUS. {0)

e Clears "must-read"” for fields/records.

Description: The corresponding "clear-must-read" FOCUS call s
performed for the fields in the result-item list.

Use: Normaily this is used to reset the effect of a DDSETMR

call. That is, reset the "set-must-read" for the same
set of fields that is specified in the DDSETMR call.

Norsk Data ND-60.203.2 EN

126

DDSETAT USING

ABM USER MANUAL
How to use ABM-FOCUS~LIBRARY in COBOL applications

Input/Output
DDC-REF-TABLE, {1/0)
DDS-realm-SUBSCHEMA, (1)
SCV-realm, (0)
TATRBT, (1)
FCSTATUS. (0)

8 Sets attributes.

Description:

Use:

Effect:

This routine is used to set attributes (inverse video,
blink etc.) on fields of a field set.

The elements in the IATRBT integer array of 8 elements
must be assigned value 1 to be enabled, otherwise 0 is
assigned. If no elements are set, the "normal"
attribute is set. Attributes can be combined. The
attributes will appear the next time the fields are
displayed.

The enabling of the different elements has the
following meaning :

Element Effect on the
number fields

High {increased]) intensity
Low {decreased] intensity
Italics

Underlined

Blink (slowly]

Blink (rapidly)

Inverse video

Invisible {password reading)

0~ O W

Norsk Data ND~60.203.2 EN

ABM USER MANUAL 127
How to use ABM-FOCUS-LIBRARY in COBOL applications

Input/Output
DDCLAT USING DDC-REF-TABLE, (1/0)
DDS-realm-SUBSCHEMA, (1I)
SCV-realm, (o)
FCSTATUS. (0)
@ Clears attributes.
Description: This routine will give the result-item Tist the

"normal” attribute set.

Use: Normally used to reset the same field set that is
enabled by the DDSETAT call.

Input/Output
DDCOPTF USING TUNIT, (1)
FCSTATUS. (0)

¢ Copies a displayed picture to a file.

Description: The routine will write a form with leading texts and
field contents to a file.

Use: The file should previously be opened by using the
routine DDOPFI. The returned unit number from this
routine should be used as input in DDCOPTF's TUNIT

parameter.
Input/Output
DDOPFI USING IFINA, (1)
IUNIT, (0)

FCSTATUS. {0)
e Opens a SINTRAN file for Write, Append access.
Description: Opens the file given by the name assigned to IFINA for
Write/Append access. The file number of the opened

file is returned in IUNIT.

Use: This routine 1is wused to open for a call to DDCOPTF.

Norsk Data ND-60,203.2 EN

128 ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in COBOL applications

Input/0Output
DDCLFI USING IUNIT, (1)
FCSTATUS. (0)

@ Closes an opened file.

Use: This routine 1is used to close files opened by the
DDOPFI routine.

Input/Output
DDWMSGE USING MESSAGE , (1)
FCSTATUS. (0)

¢ Writes a message to the message line.

Description: The message in MESSAGE is displayed on the terminal's
message line.

Use: See how to assign a value to the MESSAGE parameter in
the parameter description 1in the beginning of this
chapter.

Input/Output

DDCMSGE USING FCSTATUS. (0)

¢ Clears a message line.

Description: This routine clears the terminal’'s message line.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 129
How to use ABM~-FOCUS-LIBRARY in COBOL applications

Input/Output
DDGTEXT USING MESSAGE, (1)
OTEXT, {0)
ILINE, (1)
icoL, (1)

FCSTATUS. (0)

® Writes a message in a given line and column and
reads the answer.

Description: The text 1in MESSAGE 1s displayed in position (ILINE,
ICOL) on the operator's screen. It waits for a message
from the operator. The message is returned in the OTEXT
parameters.

Use: Assign the y/x-coordinate values to ILINE/ICOL for the
start position of the message on the screen. Assign
MESSAGE the message to be displayed. The return message
will be found in OTEXT.

Input/Output
DDGTPIC USING FORMFILE, (1)
DDC-REF-TABLE, (I/0)
FCSTATUS. (0)

® Gets a picture from a file, displays and makes it ready.
Assign the FOCUS form-file name to FORMFILE. Make sure

that the SCC-PIC-NAME in DDC-REF-TABLE holds the
correct form name {from the ASSDDC-<¢subfunction> file).

Description: The necessary ABM-FOCUS routines to initiate a form are
called, and the form is displayed on the screen.

Norsk Data ND-60.203.2 EN

130 ABM USER MANUAL
How to use ABM-FOCUS-LIBRARY in COBOL applications

Input/0Output
DDGMSGE USING MESSAGE , (1)
OTEXT, (0)
FCSTATUS. (0)

® Writes a message to a message line and reads the answer.

Description: Works exactly as DDGTEXT, but the message line is
always used.

Input/Output
DDERROR USING FCSTATUS, {1/0)
MESSAGE. (0)

@ Decodes error status and returns an error text.

Use: After all DD calls, the status parameters shouild be
tested.

e If DD<FOCUS-call> then test if parameter not = 0.
If so, call DDERROR to decode the error situation.

e [T DD<SIBAS-call» then test if parameter not = 1 or
(sometimes) 0.
I[f so, call DDERROR to decode the error.

NOTE:
See also the routine DDERMSG in ABM-UTILITY-LIB
described in chapter 8. ’

Norsk Data ND-60.203.2 EN

ABM USER MANUAL

How to use ABM-FOCUS-LIBRARY in COBOL applications

Examples of use:

CALL 'DDFTCH' USING DBKI-DEPMENT-DEPNO,
DBKV-DEPMENT-DEPNO,
DBSTATUS.
IF DBSTATUS = O THEN
<no item found, give message etc.>
DDERROR ELSE-IF DBSTATUS NOT = 1 THEN
called after CALL 'DDERROR' USING DBSTATUS,
SIBAS call. TEXT-LINE
IF DBSTATUS = O THEN
<call routine to display TEXT-LINE>
ELSE
<call SDBEC>
END-IF
END-IF
CALL 'DDRFLDS' USING DDC-REF-TABLE,
DDS-R1-SUBSCHEMA,
SCV-R1,
FCSTATUS.
DDERROR IF FCSTATUS NOT = O THEN
called after CALL 'DDERROR' USING FCSTATUS,
"FOCUs" TEXT-LINE
call. IF FCSTATUS NOT = O THEN

<call routine to display TEXT-LINE>
ELSE
<call routine to display the >
END-IF
END-IF

Norsk Data ND-60.203.2 EN

131

132 ABM USER MANUAL
How to use ABM~FOCUS-LIBRARY in COBOL applications

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 135
How to use ABM-UTILITY-LIBRARY

8 HOW TO USE ABM-UTILITY-LIBRARY

8.1 ROUTINES AND PARAMETERS IN THE ABM-UTILITY-LIBRARY

Description of routines in ABM-UTILITY-LIB.

ABDBCLS - C(Closes the database.
ABDBOPN - (pens the database.
DDERMSG -~ Gives an error message.

The ABM-UTILITY-LIB routines:

Routines in this library

ABDBCLS (SIBAS status, database name)
ABDBOPN (device number, database name)

DDERMSG (STATUS)

These routines can be used in both FORTRAN and COBOL applications.

Norsk Data ND-60.203.2 EN

136

ABM USER MANUAL
How to use ABM-UTILITY-LIBRARY

8.2 HOW TO USE ABM-UTILITY-LIBRARY

DDERMSG (STATUS)
0

¢ Gives an error message.

DPescription:

Example of use:

Use this routine from the B version of ABM, if you get
an error status from a DDxxx-routine after a call ta
SIBAS or FOCUS.

DDERMSG uses the User-Environment, and requires some
space. It s assumed that UE-ERMSG-xx-B is found on
user system, or on the particular user from where the
application is executed. xx indicates the language of
the error message; for example, EN (English).

DDERMSG writes the error messages in the language given
in User-Environment. Default language is English.

CALL "DDGET" USING TDBKEY,
DDC-SELECT,
DDB-UNIT-SUBSCHEMA,
DBV-UNIT,
DBSTATUS.

IF DBSTATUS ¢ O

GO TO DD-ERROR
END-IF

CALL "DDRFLDS" USING DDC-REF-TABLE,
DDS-UNIT-SUBSCHEMA,
SCV-UNIT,
FCSTATUS.
IF FCSTATUS » O
GO TO DD-ERROR
END-TIF

DD-ERROR SECTION.
IF FCSTATUS NOT = O THEN

CALL 'DDERMSG' USING FCSTATUS
ELSE

CALL 'DDERMSG' USING DBSTATUS
END-TIF.

Norsk Data ND-60.203.2 EN G

ABM USER MANUAL 137
How to use ABM-UTILITY-LIBRARY

ABDBOPN {device number, database name)
0 0

¢ Opens the database.

Description: This routine prompts for the SIBAS-system-number,
database number, database name and password.
ABDBOPN makes a "SETDEV", (SET DEVICE), and opens the
database. Device number and database name are returned
to the program called ABDBOPN.

e minns cv— —a———. oo——— ——— o—r o ————r ottosons iboinirs ety . e, i simmniin. amatommn | mputsnatss Sttt s ewmvmmen e o St i s

ABDBCLS {SIBAS status, database name)
0 0

® Closes the database.

Description: ABDBCLS closes the database when database name is given
and the SIBAS status is zero.

DDINITE (0) is called.

Norsk Data ND-60.203.2 EN

138 ABM USER MANUAL
How to use ABM-UTILITY-LIBRARY

Norsk Data ND-50.203.2 EN

ABM USER MANUAL 139
An example of using ABM

CHAPTER 9
AN EXAMPLE OF USING ABM

o AN EXAMPLE OF USING ABM

¢ THE DATA MODEL

o THE IMPLEMENTATION OF THE DATA MODEL
¢ USING ABM

o SOURCE SCHEMA FOR THE SAMPLE DATABASE
e REPORT OF THE SAMPLE DATABASE

o THE COBOL COPY FILE

THE FORTRAN INCLUDE FILE

A COBOL APPLICATION PROGRAM: AN EXAMFLE

A FORTRAN APPLICATION PROGRAM: AN EXAMPLE

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 141
An example of using ABM

9 AN EXAMPLE OF USING ABM

Below is an example showing how to make a user application program with
ABM.

THE PROBLEM A radio and television dealer wants a
computerized system to keep track of Video
Cassettes (VC), Music Cassettes (MC), Long
Playing records (LP) and Compact Discs (CD).

SYSTEM SPECIFICATIONS Start by making a loose specification of the
data. Identify the following specifications:

- AVC, MC , LP or a CD is called UNIT.

- Every UNIT will get a label with
a TYPE and NUMBER identification.

- Each UNIT can have zero, one or more
recorded TRACKS.

- A track must belong to at least one UNIT.

- Each track on a UNIT is identified by a
TRACK-NUMBER and a SIDE identification.

- Each track can have an ARTIST NAME,
a PERFORMANCE NAME, an ASSOCIATED NAME and
a TYPE-OF-PERFORMANCE NAME .

HOW THE SYSTEM Each UNIT will be registered 1in the system by
WILL BE OPERATED an operator. Both operator name/initials and
the date of registration will be stored.

On the following pages is an example of how to set up a system. The example
contains four menus shown in this main menu:

 ?2,aRe§ist&aticn5offﬁéw5tkg¢isﬁ‘7v~"

";'~3;~Maxwtanance Lo
~ {uyne1nte modwfy un,ks in the register

4. Questions o
k01331ay a13 tracks with a q%ven art1st"’“~'

9.;Ex1t

Norsk Data ND-60.203.2 EN

142

9.1 THE DATA MODEL

ABM USER MANUAL
An example of using ABM

A data model is a forma

UNIT specifications:

1 description of data elements, made from your data
specifications. You can translate the data model

UNIT

UNIT-TYPE
UNIT-NUMBER
REGISTERED-BY
COMMENTS
REGISTRATION-DATE

To

specify their format. The format of
display

representation,
the following formats.

into a database.

TRACK specifications:

TRACK:
UNIT
has SIDE
TRACKS TRACK-NUMBER
R ARTIST-NAME

TRACK-NAME
UNIT-NAME
TYPE-OF-PERFORMANCE

represent the data items or data descriptions in the system we have to

the data
formats lengths etc. For our example we could use

items indicate

Data Descriptions

name display storage comments

UNIT-TYPE XX text LP, MC, VC or CD
UNIT-NUMBER 9999 integer 1 to 9999
REGISTERED-BY X(4} text initials

COMMENTS X(60) text free text
REGISTRATION-DATE 99'.'99"','99 integer year month day

SIDE X text e.g.A,B or 1,2
TRACK-NUMBER 99 integer 1, 2, 3,
ARTIST-NAME X(40) text artist or group name
TRACK-NAME X(50) text name of the song, movie. .
UNIT-NAME X(50) text name of the cover
TYPE-OF-PERFORMANCE | X(30) text e.g. rock, pop

Norsk Data ND-60.203.2 EN

physical

ABM USER MANUAL 143
An example of using ABM

9.2 THE IMPLEMENTATION OF THE DATA MODEL

The datamodel can now be defined as a SIBAS database. The two main records
UNIT and TRACK can de defined as SIBAS realms. The Data Description in each
record can be used when defining SIBAS ditems. The relation "Unit has
tracks” will become a SIBAS set.

DEFINE KEYS, For accessing information quickly from the
INDEXES & system, define specific items with keys or
GROUP ITEMS indexes. Assign a name to a collection of

items in a record that have a close connection
to each other, e.g. the data items UNIT-TYPE
and UNIT-NUMBER define a unique Group Item for
access to a specific UNIT.

The following, then, shows how the data model can be transferred to a model
that can be directly specified in ABM based on SIBAS terms

THE DATA MODEL:

UNIT: TRACK:
UNIT

UNIT-TYPE has SIDE

UNIT-NUMBER tracks TRACK-NUMBER
REGISTERED-BY e i ARTIST-NAME
COMMENTS TRACK-NAME
REGISTRATION-DATE UNIT-~NAME

TYPE-OF-PERFORMANCE

1 L1

SIBAS DATABASE:

realm: UNIT realm: TRACK

items: groups: indexes: items: groups: indexes:
TRTYPE 1]TRGROUP ey
UNTYPE 1] UNGROUP main key UNITRACK |TRNUMBER 2

UNNUMBER 2 - |TRSIDE

UNREGDAT key TRACKNO

UNREGBY TRARTIST key
UNCOM1 TRNAME key
UNCOM2 TRUNITNA key
UNCOM3 TRPRFTYP

Norsk Data NDB~60.203.2 EN

144 ABM USER MANUAL
An example of using ABM

In the example shown on the previous page, the restricted naming
conventions for FORTRAN are used when giving names to data descriptions,
realms, items and group items. By following the naming conventions for
FORTRAN, you can use the same database (ABMDEMO) for btoth the COBOL and
FORTRAN example.

You can now define the SIBAS database using the DD- and DB~ modules in ABM.

When the database 1is defined, run the SCHEMA module. This will
automatically produce a source schema for the database.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
An example of using ABM

AN OVERVIEW OF ABM - - - -

- ABM catalog
The part of the database
which is of interest in
the application program.
ABM> DATA-DESCRIPTION ABM> SUBSCHEMA

ABM> DBINITE

ABM> DBREALM

y

ABM> SUBFUNCTION

ABM> DBITEM

ABM> DBGROUP

ABM> DBSET

$

ABM> SCHEMA

SOURCE SCHEMA

SIB-DRL

USER WRITTEN PROGRAM

Y

ABM> FUNCTION Communication
with the
screen
operator by
using the

ABM> COPY-GEN ABM-FC-LIB
Tibrary.

ABM> INCLUDE-GEN

DECDDC / DECDDI files

ASSDDC / ASSDDI files |.eg—

{data definition and redefinition module)

L

Communication with the
database by using the

0BJECT SCHEMA

ABM-SIBAS-LIB library.

DATABASE ABMDEMO

Norsk Data ND-60.203.2 EN

146

9.3 USING ABM

ABM USER MANUAL

An example of using ABM

Below are copies of the screen forms used for defining the SIBAS database.

OATA

DLSCRIPT

QN

ABmy

“Name ‘andexplanatian.
“iname CoNET

CcexpYanation: o Four Sy
B LR Long Playing

Foﬁmats} rf: ; i
Coddsplay N e
: foo o ALPHANUBERLL (2]

Daten v
e

~u3it$ikVC,#ngo,Eq§

50030 and Jast modi

iAutdmétia qenébatign~¢f

ABM

CRealn e
i database name : -ABMIEM

reaim name UNLT s
Copeenpg TengERTisg0 oo -

Catesr
Smpain-ared

f bquQ$0a;‘:'y

Date af tres 86
Additional os-fitas:

L rRaimesiye 0 v
expestod mbximum. numbier

Norsk

Data ND-GO

.203.2 EN

We use the ABM
modules 1in
the following order:

DATA-DESCRIPTIONS,
DBINITE,

DBREALM,

DBITEM,

DBGROUP,

DBSET,

SCHEMA,
SUBSCHEMA,
SUBFUNCTION,
FUNCTION

and COPY/INCLUDE.

ABM USER MANUAL
An example of using ABM

e :
wrdatabase nan

ABM),i'H*HFh

Groupii

~database name
Sograuy i adex
Coaraldeiiapd
“axplunation

Logroup name

"DATABASE GROUP-MEMBERS

CFAP database/realm/group : ABMDEMG
Ho Ptem e i e dten
. UNCOME .. UNCOMZ .. UNCOMI
. UNREGHY ., SR

CELTuNeROOR s
CUong dtem o nodtem oo
1 UNTYPE . UNREGDAT

DATABASTH

SET

et :
database name
Ciownerirealm

sot name

Norsk

Data ND-60.203.2 EN

148 ABM USER MANUAIL
An example of using ABM

[asns J i SCHEMA T o ‘ When the database is
Summ;dwrntmnnwdmxmtmanM‘mwt S oo N defﬁned, run the
Database name ABMDEHD . -
Actian (N/R/C) . IBA~ Dasswm‘d . e SCHEMA module. This
: Mnmﬁnu%rnw&. DIALOG~DENMD ot e o : will produce a source
A file 1 < BN 4 S ‘ s ;
Conmones B“‘“?’T‘?”““f”‘,?"f‘a ,,,,,, (L schema. A copy of the
e e . source schema is shown
Cschams tayour. T e in the next section.
B &uppkess coments Y NOTXS TY S : :
Database bchema < = :
: DYmen&xoning the natabase :kN’ Suppress sttfng ronm: tnfttatin

Iaitiation a« “the dabamse W Opline Batch execution (o/b)

Hate:qf craation’s 86,0130 Date of last confvrmatvon

UB\C}FNA H

Subscﬂema neading
: subs hema name MSNU 1C S5 Yon
:‘5 (;Qmm\tlﬂts): iy BRI AN v

- ddtamase name AB&UEND

zmtefaf mmen } . m 30 T s

‘»;SUBSCHEMA RE“AL‘M'f"H

WDrking with subschema ang database - MENU-1C

L up;"
mcx

Norsk Data ND-60,203.2 EN

ABM USER MANUAL

An example of using ABM

ubfuf
H(?mE'

SUBTUNCTION

“Funetion
onam
~enplanation:

OR) fresbateh
Bubruncyd
oW

Norsk Data ND-60.203.2 EN

150 ABM USER MANUAL
An example of using ABM

9.4 $SOURCE SCHEMA FOR THE SAMPLE DATABASE

A schema is a collection of all records, indexes, set types, and realms in
a database.

SOURCE USER Each database has a corresponding
SCHEMA APPLICATION source schema. A source schema can
PROGRAM be translated into an object schema
(database description) by using the
‘ir :I: schema translator SIB-DFRL.
DATA DATABASE
DEFINITION CONTROL The schema 1isting will serve as
REDEFINITION SYSTEM documentation for the contents of
PROGRAM your database.
e

OBJECT
SCHEMA

cdatafile datafile

THE MAIN COMPONENTS OF A DATABASE

To deside the layout of the schema 1isting in the SCHEMA picture, you can
answer Y (Yes) in the NOTIS-TF field. NOTIS-TF directives will then be
added into the output file from SCHEMA. (You can use the output file
containing NOTIS-TF directives as input to DRL.} When this output file is
processed by NOTIS-TF, your schema listing will be formatted and a table of
contents will be included.

A formatted 1isting of the source schema for our sample database is shown
on the following pages.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 151
An example cf using ABM
TABLE OF CONTENTS
Section Page
1 OS-FILE DECLARATION 2
2 REALM DECLARATION 3
2.1 UNIT e e e e e 4
2.1.1 GROUP DECLARATION FOR UNIT 5
2.1.2 ITEM INDEX DECLARATION FOR UNIT 5
2.1.3 GROUP INDEX DECLARATION FOR UNIT 5
2.2 TRACK e e e e e 6
2.2.1 GROUP DECLARATION FOR TRACK 7
2.2.2 ITEM INDEX DECLARATION FOR TRACK 7
2.2.3 GROUP INDEX DECLARATION FOR TRACK 7
3 SET DECLARATION 8

Norsk Data ND-60.203.2 EN

152 ABM USER MANUAL
An example of using ABM

2
*
KEKAHKHKARAKAKANA KA AAARKEEAKRANA KKK AARNANAANAANRRARANRNKNAARNARAKRAARAANKNANA K AKX
* Schema generated by ABM. 86-04-29 10:48 *
KHAKKKRKARKAKRAAA A KN A K AENAKKEAKRKAANAAKRKEANARRRAKNRAAAKRNRAANRNRNARANRNKRRANRKANARNRN K A A
x
START INITIATION DATABASE ABMDEMO
51ZE 4800.
*
*
1 OS-FILE DECLARATION
)
R o e e ot mm e o e ot e e e 2 e ot e o 2 o o oo e o o o o e ot o o o oo o ot e e o o e s e~ e e ES
NEW OS-FILE ABMDE-DA PAGESIZE 512.
)
NEW OS-FILE ABMDE-IX PAGESIZE 512.
X
NEW SYSTEM-REALM ABMDE~IX OS-FILE ABMDE-IX REALMSIZE 100.
A
X
3
X

2 REALM DECLARATION

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
An example of using ABM

2.1 UNIT

*

*

AAKAKRAAF AR ARAAAAARAKRAR KRR AAKR A AR AARARKKRAAARRA A AANNAANAAAARRRA AR AR R

* UNTIT

KEAKAKIRKIAFAK AR ARKIRKAKR AR KA KR AIAKRRARKRRRRAKKKRAANAK AN AR R ARNANRAANRRK A A A KA AR

*

NEW SERIAL-REALM UNIT

0S-FILE ABMDE-DA
REALMSIZE 100
REC LENGTH 500
MAIN ABMDE-1X.
*
K e e e e e e e e o e e e e et e = e e o o e e e o e
NEW ITEM UNIT UNCOM1 TYPE CHARACTER

STORAGE = "ALPHANUMERIC(60}"
DISPLAY "X([(60)"
HEADING “"Comments, first line.".

* *

NEW ITEM UNIT UNCOM2 TYPE CHARACTER
STORAGE - "ALPHANUMERIC(60]}"
DISPLAY . "X(60)"
HEADING ‘"Comments, second line.".

* b

NEW ITEM UNIT UNCOM3 TYPE CHARACTER
STORAGE "ALPHANUMERIC(60)"
DISPLAY "X(60}"
HEADING "Comments, third line.".

K kg

NEW ITEM UNIT UNNUMBER TYPE INTEGER
STORAGE "INTEGER2"
DISPLAY "9899"
HEADING "Unit number.".

) *

NEW ITEM UNIT UNTYPE TYPE CHARACTER
STORAGE "ALPHANUMERIC(2]"
DISPLAY "XX"
HEADING "Unit type.".

* *

NEW ITEM UNIT UNREGDAT TYPE INTEGER
STORAGE "INTEGER4"
DISPLAY “99'.'9g9"'. 'gg9"
HEADING "Registration date.".

* *

NEW ITEM UNIT UNREGBY TYPE CHARACTER

STORAGE "ALPHANUMERIC({4]"
DISPLAY "X{4}"
HEADING . "The operators initials.".

LENGTH

LENGTH

LENGTH

LENGTH

LENGTH

LENGTH

LENGTH

Norsk Data ND-60.203.2 EN

30

30

153

154 ABM USER MANUAL
An example of using ABM

2.1.1 GROUP DECLARATION FOR UNIT

* *
NEW GROUP UNIT UNGROUP
UNTYPE
UNNUMBER
HEADING "Unit identification.”
PURPOSE

"/Owner in set 'UNITRACK'. Duplicates not allowed."
"/Unique identification of an unit in the catalog.".

2.1.2 ITEM INDEX DECLARATION FOR UNIT

NEW INDEX UNIT UNREGDAT
UPDATE IS AUTOMATIC DUPLICATES ARE ALLOWED
SYSTEM-REALM ABMDE-IX.

2.1.3 GROUP INDEX DECLARATION FOR UNIT

*
%
NEW INDEX UNIT UNGROUP

UPDATE IS AUTOMATIC DUPLICATES ARE NOT ALLOWED
5YSTEM-REALM ABMDE-IX.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 155
An example of using ABM

2.2 TRACK

*

KKKKKAAKKHA KA KAKAKNRAAKNRR KRN KAAAARRKAKRRAKAKRKRAKR KRR AR AKRKARNKARN AR AR KKK KR KN KK

* TRACK *

HAKIKAAKKAAAKRK A AR ARARAAA KA AAA KA ARA AN AARR AR A AN A KRAKNARARNKAARRKR R A AR A A AR K K

*

NEW SERIAL-~REALM TRACK

0S-FILE ABMDE-DA

REALMSIZE 100

REC LENGTH 500

MAIN ABMDE-IX.
*
A e e e et e e ot e e e ot ot o 2 e 1t 7 ot o o o o e ot o e o e e ot o o e e e o o *
NEW ITEM TRACK TRTYPE TYPE CHARACTER LENGTH 1

STORAGE "ALPHANUMERIC(2}"
DISPLAY "XX"
HEADING = "Unit type.".

* %

NEW ITEM TRACK TRNUMBER TYPE INTEGER LENGTH 1
STORAGE "“INTEGERZ2"
DISPLAY "9999"
HEADING "Unit number".

® *

NEW ITEM TRACK TRSIDE TYPE CHARACTER LENGTH 1
STORAGE "ALPHANUMERIC(1)"
DISPLAY "X"
HEADING "Side identification.”.

* K

NEW ITEM TRACK TRARTIST TYPE CHARACTER LENGTH 20
STORAGE "ALPHANUMERIC(40)}"
DISPLAY "X(40)})"
HEADING "Artist name.".

* %

NEW ITEM TRACK TRACKNO TYPE INTEGER LENGTH 1
STORAGE "INTEGERZ2"
DISPLAY "99"
HEADING "Track number”.

* ok

NEW ITEM TRACK TRPRFTYP TYPE CHARACTER LENGTH 15
STORAGE ~ "ALPHANUMERIC(30j}"
DISPLAY "X{30)}"
HEADING = "Type of performance.".

* ok

NEW ITEM TRACK TRUNITNA TYPE CHARACTER LENGTH 25
STORAGE "ALPHANUMERIC(50}"
DISPLAY "¥X(50}"
HEADING - "Unit name on a track.".

Norsk Data ND-60.203.2 EN

156 ABM USER MANUAL
An example of using ABM

* K

NEW ITEM TRACK TRNAME TYPE CHARACTER LENGTH 25
STORAGE "ALPHANUMERIC(50)"
DISPLAY "X(50)"
HEADING “Name of performance.'.

2.2.1 GROUP DECLARATION FOR TRACK

*OK

NEW GROUP TRACK TRGROUP
TRTYPE
TRNUMBER
HEADING "Unit identification.”
PURPOSE
“/Member in set 'UNITRACK'. Duplicates allowed.".

2.2.2 ITEM INDEX DECLARATION FOR TRACK

NEW INDEX TRACK TRARTIST
UPDATE IS AUTOMATIC DUPLICATES ARE ALLOWED
SYSTEM~-REALM ABMDE-IX.

x

NEW INDEX TRACK TRUNITNA
UPDATE IS AUTOMATIC DUPLICATES ARE ALLOWED
SYSTEM-REALM ABMDE-IX.

*

NEW INDEX TRACK TRNAME
UPDATE IS AUTOMATIC DUPLICATES ARE ALLOVWED
SYSTEM-REALM ABMDE-IX.

2.2.3 GROUP INDEX DECLARATION FOR TRACK

*

*

NEW INDEX TRACK TRGROUP
UPDATE IS AUTOMATIC DUPLICATES ARE ALLOWED
SYSTEM-REALM ABMDE-IX.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 157
An example of using ABM

3 SET DECLARATION

X K
KAAKEKAKARKAAKARAAARANAAA AR AAKRAAAFRAAARNAKRKAAKAKA AR ARNKAKRAAARKRRAAAAAR AR K KA

* SET definitions *

KAKKAK KKK A I AR KR AA IR YA AR AR KR AR AKRKRAKNAARAARKARKR KA KRR AKRARAKRAKRARAKNARA KA A

*
NEW SET UNITRACK

LINK IS DOUBLE

STORAGE+CLASS IS AUTOMATIC

OWNER UNGROUP UNIT

MEMBER TRGROUP TRACK

HEADING "Relation Unit - Track.".
*END.
ARELEHAAARAKRKAAAAARAKRAAAAAAA A AAAA A AANRAAKRAARARNRAAAKRAAAANXRARANRNANA KRR A KK KA
* End of Schema. *

KEKAKKK KA HIHKRARAAKAANKARKRKAARAKA AN ARKARRFAKRAKNKNANRAKRAKAANKNKRRARNKRAKAKAARNKRAAAARAA

Norsk Data ND~60.203.2 EN

158 ABM USER MANUAL
An example of using ABM

9.5 REPORT OF THE SAMPLE DATABASE

A report of the database is generated by using the command REPORT from the
main menu. An ABM report will typically include information about all data
descriptions: which ones are used, where they are used, and which ones are
not used.

The following is the report for our sample database.

A BM-Repor t : DATA DESCRIPTIONS
Date : 86.03.12 Time : 12:36

All Data Descriptions are listed in alphabetic order.

- CREDATE : Date of Creation.

- MODDATE : Date of last Modification.

- STORAGE : Standard Storage Format.

- DISPLAY : Standard Display Format.

- COBFORM : Cobol Format.

- FORFORM : Fortran Format.

- SITYPE : Sibas Item Type.

- STLENG : Sibas Item Length.

- COMMENT : Explanation/Text, not DD-info.

(*) This report is for
all Data Descriptions

ABM-EREPORT: DATA DESCRIPTIONS Date : 86.03.12 Time : 12:36 Page : 1

Data Description Name : ARTIST-NAME Credate : 86.01.30
Storage : ALPHANUMERIC(40)
Display : X(40)

CobForm : PIC X(40]. ForForm : A
SiType . CHARACTER Sileng : 20
Comment : Full name of the artist and/or group name.

Data Description Name : COMMENTS Credate : 86.01.30

Storage : ALPHANUMERIC(60)
Display : X(60)

CobForm : PIC X(60). ForForm : A
SiType : CHARACTER SilLeng 30
Comment : Free text of 60 characters used for explanation.

Data Description Name : NUMBER Credate : 86.01.30

Storage : INTEGERZ2
Display : 9

CobForm : PIC s9(04) COMP. ForForm : 1
SiType : INTEGER SiLeng 1
Comment : Is used when choosing a menu number.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 159
An example of using ABM

Data Description Name : OK1 Credate : 86.01.30
Storage : ALPHANUMERIC(1)
Display X
CobForm PIC X{1]. ForForm : A
SiType CHARACTER Silkeng : 1
Comment Data descriptions which is referred in picture fields only
Comment Must not be written like 0OK-1 if you use Fortran.
Comment The character '-' will lead to a compiler ervor.
Data Description Name : QK2 Credate : 86.01.30
Storage : ALPHANUMERIC(1)
Display X
CobForm PIC X(1}. ForForm : A
SiType CHARACTER SiLkeng : 1
Comment A data description which is referred in picture fields only
Comment Must not be referenced twice in the same picture.
Comment 0OK2 is used in Menu-4.
Data Description Name : REGISTERED-BY Credate : 86.02.06
Storage : ALPHANUMERIC(4)
Display X(4)
CobForm PIC X(4}. ForForm : A
SiType CHARACTER Sileng 2
Comment The initials to the person who registrates a unit.
Data Description Name : REGISTRATION-DATE Credate : 86.02.06
Storage : INTEGER4
Display 99'.'99"'.'99
CobForm PIC 59(10) COMP . ForForm : I
SiType INTEGER SilLleng : 2
Comment The sequence is year, month and day.
ABM-REPORT: DATA DESCRIPTIONS Date 86.03.12 Time 12:36 Page 2
Data Description Name : SIDE Credate : 86.01.30
Moddate : 86.03.12
Storage ALPHANUMERIC(1)
Display X
CobForm PIC X(1]). ForForm : A
SiType CHARACTER Sileng 1
Comment Side of the unit. LPs and MCs have two sides,
Comment CDs and VCs only one.
Comment It can be labeled 1 and 2, or A and B.
Data Description Name : TRACK-NAME Credate : 86.02.06
Moddate : 85.03.12
Storage ALPHANUMERIC (50}
Display X{50)
CobForm PIC X(50]). ForForm : A
SiType CHARACTER Sileng : 25
Comment On LPs, MCs and CDs this will tyically be the name of the
Comment song or act performed. For VCs it can e.g. be the name of
Comment the act, movie, title etc.

Norsk Data ND-60.203.2 EN

160

ABM USER MANUAL
An example of using ABM

Data Description Name : TRACK-NUMBER Credate : 86.01.30

Storage : INTEGERZ2

Display 99

CobForm PIC S9{04) COMP. ForForm : 1

SiType INTEGER SiLeng 1

Comment On one SIDE of an unit you normally will find many tracks.

Comment The tracks are numbered 1,2,3, etc.

Data Description Name : TYPE-OF-PERFORMANCE Credate : 86.01.30
Moddate : 86.02.06

Storage ALPHANUMERIC(30)

Display X(30)

CobForm PIC X{30}. ForForm : A

SiType CHARACTER Sileng 15

Comment The performances can be classified as e.g.

Comment Rock, Classic, Romantic, Horrors etc.

Data Description Name : UNIT-NAME Credate : 86.01.30
Moddate : 86.03.12

Storage ALPHANUMERIC({50)

Display X(50)

CobForm PIC X{50). ForForm : A

SiType CHARACTER Sileng : 25

Comment For LPs, MCs and CDs this will normally be the cover name.

Comment For VCs it will be the cover name, title of the serie etc.
Data Description Name : UNIT-NUMBER Credate : 86.01.30

Storage : INTEGERZ2

Display 9999

CobForm PIC 59(04) COMP. ForForm : I

SiType INTEGER SilLeng 1

Comment An unit type and number identifies unigely an unit.

Comment Unit numbers are assigned from 1 and up for each unit type.
ABM-EEPORT: DATA DESCRIPTIONS Date : 86.03.12 Time : 12:36 Page : 3
Data Description Name : UNIT-TYPE Credate : 86.01.30

Moddate : 86.03.12

Storage ALPHANUMERIC(2)

Display XX

CobForm PIC X{z2}. ForForm : A

SiType CHARACTER SilLeng : 1

Comment 4 types of units. VC - Video Cassette, CD - Compact Disc,

Comment LP - Long Playing record and MC - Music cassette.

Comment EX - Exit is used for terminate registration of units/tracks

Norsk Data ND-60.,203.2 EN

ABM USER MANUAL 161
An example of using ABM

9.6 THE COBOL COPY FILE

The COBOL COPY file contains values of items and fields in the database.
This makes it especially easy to make application programs. An application
program need only call the COPY file (DECDDC-name:SYMB), and the values of
all items and fields will be automatically available.

The following is the 1listing of the COPY file generated for our sample
database:

THE DECLARATIONS

*
‘k‘k***‘k*i\“k‘k**‘k‘k*'k*‘k‘k*k'ﬁ“k*‘k‘k*k‘k***ﬁ**1\'***1\’***7\'****%***k*k‘h‘k'k**'k
* ABM /DECDDC-MENU-1C [/ * Generated : 86.03.11 15:33
‘k*‘kk*‘)\‘*‘k‘k*‘k**‘k*‘k‘k*‘k*****‘k‘k*‘kﬁ‘k)\'*****k*‘k‘k*‘k******ﬂ*‘k?\‘kﬂ'k*k)*t\“h‘*?*k‘k‘h“k
*

*

e T T Ty * REFERANCE TABLE DECLARATION.

*

03 DDC-REF-TABLE.

05 SCC-PIC-NAME PIC X(8).
05 SCC-READ-MODE PIC 9(4) COMP.
05 SCC-WRITE-MODE PIC 9(4) comP.
05 SCC-START-RW-LINE PIC 9(4) COMP.
05 SCC-RW-NO-OF-LINES PIC 9(4) COMP.
05 SCR-NO-OF-LINES-READ PIC 9(4) COMP.
05 SCR-TERM-CHAR PIC 9(4) COMP.
05 DDC-SELECT.
07 DDC-TYPE PIC X(2).
07 DDC-ITEM-LIST.
09 DDC-ITEM PIC X(8) OCCURS 5.
*
L T T —— * R1 REALM DECLARATION.

03 DDS-R1-SUBSCHEMA.

05 DDS~R1-NO-OF-ITEMS PIC 9(4) COMP.
05 DDS-R1-TOT-ITEM-LEN PIC 9(4) comp.
05 DDS-~R1-NO-OF-RECORDS PIC 9(4) COMP.
05 DDS-R1-FIRST-ITEM-NO PIC 9(4) COMP.
05 DDS-R1~FIRST-WORD-NO PIC 9(4) comp.
05 FILLER PIC 9(4) cowmp.
05 DDS5-R1-RECORD-NAME PIC X(8).
05 DDS-R1-ITEMS.
07 DDS-R1-ITEM-NAME PIC X(8] OCCURS 7.
05 DDS-R1-ITEM-LEN PIC 9(4) COMP OCCURS 7.
05 DDS-R1-ITEM-TYPE PIC X{2) OCCURS 7.

Norsk Data ND-60.203.2 EN

162

03

03

03

SCV-R1.

05 SCV-R1-UNTYPE
05 SCV-R1-UNNUMBER
05 SCV-R1-UNREGBY
05 SCV-R1-UNCOM1
05 SCV-R1-UNCOM2
05 SCV-R1-UNCOM3
05 SCV-R1-UNREGDAT

DDS-R2-SUBSCHEMA.

05
05
05
05
05
05
05
05

05
05

DDS-R2-NO-OF-ITEMS
DDS~R2-TOT-ITEM-LEN
DDS-R2-NO-OF~RECORDS
DDS~R2-FIRST-ITEM-NO
DDS-R2-FIRST-WORD-NO
FILLER
DDS-R2-RECORD-NAME
DDS-~-R2-ITEMS.

07 DDS-R2-ITEM-NAME
DDS-R2-ITEM-LEN
DDS-R2-ITEM-TYPE

SCV-R2.

05
05

SCV-R2-0K1
FILLER

DDB-UNIT-SUBSCHEMA.

05
05
05
05
05

05
05

DDB-UNIT-NO-OF-ITEMS
DDB-UNIT~TOT~-ITEM-LEN
FILLER
DDB-UNIT-RECORD-NAME
DDB-UNIT-ITEMS.

07 DDB-UNIT-ITEM-NAME
DDB-UNIT-ITEM-LEN
DDB~UNIT~ITEM-TYPE

DBV~UNIT.

05
05
05
05
05
05
05

DBV~-UNIT-UNNUMBER
DBV-UNIT-UNTYPE
DBV-UNIT-UNREGDAT
DBV-UNIT-UNREGBY
DBV-UNIT-UNCOM1
DBV~-UNIT-UNCOM2
DBV-UNIT-UNCOM3

ABM USER MANUAL
An example of using ABM

PIC X(2).

PIC 59(04) COMP .

PIC X(4).

PIC X(60].

PIC %(60).

PIiC %(60).

PIC s9(10) COMP .
REALM DECLARATION.

PIC 9(4) COMP.

PIC 9(4) COMP.

PIC 9{4) COMP.

PIC 9(4) CcOMP.

PIC 9(4) COMP.

PIC 9(4) COMP.

PIC X(8).

PIC X(8) OCCURS 1.

PIC 9{4) COMP OCCURS .

PIC X(2) OCCURS 1.

PIC X(1]}.

PIC X.

REALM DECLARATION.

PIC
PIC
PIC
PIC

PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC

Norsk Data ND-60.203.2 EN

9(4) COMP.
9{4) comp
X(8].
Xx(8).
X(8) OCCURS 7.
9{4) COMP OCCURS 7.
X(2) OCCURS 7.
59{04) COMP .
Xx(2).
59(10) COMP .
X(4].
X(60).
X(60).
X(60].

ABM USER MANUAL 163
An example of using ABM

K e e * UNIT INDEX DECLARATIONS.

03 DBKI-UNIT-UNREGDAT.

05 FILLER PIC X{2]}.
05 DBKI-UNIT-UNREGDAT-LEN PIC 94} COMP.
05 DBKI-UNIT-UNREGDAT-~KEY-NAM PIC X(8].
05 DBKI-UNIT-UNREGDAT-RLM-NAM PIC X(8]).

03 DBKV-UNIT-UNREGDAT.
05 DBKV-UNIT-UNREGDAT-LOW-1 PIC S9(10)
COMP .
05 DBKV-UNIT-UNREGDAT-HIGH-1 PIC s9(10]
COMP.

03 DBKI~UNIT-UNGROUP.

05 FILLER PIC X{2]}.
05 DBKI-~UNIT-UNGROUP-LEN PIC 9{4) CoOMP.
05 DBKI~UNIT-UNGROUP-KEY-NAM PIC X(8].
05 DBKI-UNIT-UNGROUP-RLM-NAM PIC X(8).

03 DBKV-UNIT-UNGROUP.

05 DBKV-UNIT-UNGROUP-LOW-1 PIC xX{2}.

05 DBKV-UNIT-UNGROUP-LOW-2 PIC S9(04)
COMP .

05 DBKV-UNIT-UNGROUP-HIGH-1 PIC X(2).

05 DBKV-UNIT-UNGROUP-HIGH-2 PIC 59(04)
COMP.

*
KAKKEHAKKAEREAAKAARARARRAR AR KA AR AR AAKNARRAAKRKRAARANKRAAANAKRKRAAARARN KN NAN R K kA KR

* END OF GENERATED DECLARATIONS.

KAKAAAKKR KRR KRR AR A A AN A AR A A A ARAARKARN A AAKRAARKNAR AR AR ARAARNANAAAARRA LA K KA

*

THE ASSIGNMENTS

*
KKK KA RAK KA AR I A AR A KEAKRAAAKAIAAAA KA A A AR AR AA A A A A Ak hk Ak Ak ke kd vk kkk
* ABM /ASSDDC-MENU-1C / * Generated : 86.03.11 15:33
Sk ke ke ke k ke ke ek ke ke ke ke sk R ok ke ke ok kR sk ok Yo sk Rk ok ok ok ok ek o ok ok sk ok ok ok sk sk ok ok ok ok ok ok kR Rk ok kR ok ok ok ok
*
K e * R1 ASSIGNMENTS .
*
MOVE 7 TO DDS-R1-NO-OF-ITEMS.
MOVE 96 TO DDS-R1-TOT-ITEM-LEN.
MOVE 1 TO DDS-R1-NO-OF-RECORDS .
MOVE 1 TO DDS-R1-FIRST-ITEM-NO.
MOVE 1 TO DDS-R1-FIRST-WORD-NO.
*
MOVE 'R1 ! TO DDS-R1-RECORD-NAME .
*
MOVE 'UNTYPE TO DDS-R1-ITEM-NAME(1).
MOVE 1 TO DDS-RI-ITEM-LEN (1).
MOVE ‘E TO DDS-RI-ITEM-TYPE(1).

Norsk Data ND-60.203.2 EN

164 ABM USER MANUAL
An example of using ABM

MOVE ' UNNUMBER' TO DDS-RI-ITEM-NAME(2).
MOVE 1 TO DDS-R1-ITEM-LEN { 2).
MOVE 'S TO DDS-R1-ITEM-TYPE(2).

*
MOVE 'UNREGBY ' TO DDS-R1-ITEM-NAME(3).
MOVE 2 TO DDS-R1-ITEM-LEN (3).
MOVE 'E ° TO DDS-RI-ITEM-TYPE(3).

*
MOVE 'UNCOM1I TO DDS-R1-ITEM-NAME(4).
MOVE 30 TO DDS-RI-ITEM-LEN (4).
MOVE 'E TO DDS-R1-ITEM-TYPE(4).

*
MOVE 'UNCOMZ TO DDS-R1-ITEM-NAME(5).
MOVE 30 TO DDS-R1-ITEM-LEN { 5).
MOVE 'E TO DDS-R1-ITEM-TYPE(5).

*
MOVE 'UNCOM3 TO DDS-R1-ITEM-NAME{ 6).
MOVE 30 TO DDS-R1-ITEM-LEN { 6).
MOVE 'E ° TO DDS-R1I-ITEM-TYPE(6).

%
MOVE ' UNREGDAT' TO DDS-R1-ITEM-NAME({ 7).
MOVE 2 TO DDS-RI-ITEM-LEN (7).
MOVE ‘D ° TO DDS-R1-ITEM-TYPE(7).

*

K * R2 ASSIGNMENTS.

*
MOVE 1 TO DDS-R2-NO-OF-ITEMS.
MOVE 1 TO DDS-R2-TOT-ITEM-LEN.
MOVE 1 TO DDS-R2-NO-OF -RECORDS.
MOVE 8 TO DDS-R2-FIRST-ITEM-NO.
MOVE 97 TO DDS-R2-FIRST-WORD-NO.

*
MOVE 'R2 ' TO DDS-R2-RECORD-NAME .

*
MOVE ' OK1 : TO DDS-R2-ITEM-NAME(1),
MOVE 1 TO DDS-R2-ITEM-LEN (1).
MOVE '0 ° TO DDS-R2-ITEM-TYPE(1).

*

K * UNIT ASSTGNMENTS .

*
MOVE 7 TO DDB-UNIT-NO-OF-ITEMS.
MOVE 96 TO DDB-UNIT-TOT-ITEM-LEN.

*
MOVE 'UNIT TO DDB-UNIT-RECORD-NAME .

*
MOVE ' UNNUMBER' TO DDB-UNIT-ITEM-NAME(1).
MOVE 1 TO DDB-UNIT-ITEM-LEN { 1).
MOVE 'S ° TO DDB-UNIT-ITEM-TYPE(1).

*
MOVE 'UNTYPE TO DDB-UNIT-ITEM-NAME(2).
MOVE 1 TO DDB-UNIT-ITEM-LEN (2).
MOVE 'E TO DDB-UNIT-ITEM-TYPE(2).

*
MOVE ' UNREGDAT' TO DDB-UNIT-ITEM-NAME(3).
MOVE 2 TO DDB-UNIT-ITEM-LEN { 3).
MOVE ‘D ° TO DDB-UNIT-ITEM-TYPE(3).

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
An example of using ABM

*

KK KE KKK KK KA KK KK AKA A KA IR KAIA KR AR AKRA KK AR AR AR Ak kA kA kA h Ak hhkhkhkk

*)

e K ke Kk Tk ke e d ok ek ek ok ek ek sk ke ok ok ok koK ok ok ok e sk ok ok sk ok ok e ok ok sk ok ok ok ok ok ok ok ok ok kok ok ok e ok

*

MOVE
MOVE
MOVE

MOVE
MOVE
MOVE

MOVE
MOVE
MOVE

MOVE
MOVE
MOVE

MOVE
MOVE
MOVE

CALL

MOVE
MOVE
MOVE

CALL

MOVE
MOVE
MOVE
MOVE
MOVE

"UNREGBY
2
' E v

"UNCOM1
30
1 E +

"UNCOM2
30
¥ E t

"UNCOM3
30
¥ E Ll

i

"UNREGDAT"

"UNIT

‘DDINKEY" USING

"UNGROUP
"UNIT

‘DDINKEY" USING

‘"MENU-1C
1

1
1
1

1

i

t

TO
T0
T0

T0
T0
T0

TO
T0
TO

T0
TO
T0

T0
T0
T0

DDB-UNIT-ITEM-NAME (
DDB-UNIT-ITEM-LEN (
DDB-UNIT-ITEM-TYPE(

DDB-UNIT-ITEM-NAME (
DDB-UNIT-ITEM-LEN
DDB-UNIT-ITEM-TYPE(

DDB-UNIT-ITEM-NAME (
DDB-UNIT-ITEM-LEN (
DDB-UNIT-ITEM-TYPE (

DDB-UNIT-ITEM-NAME (
DDB-UNIT-ITEM-LEN (
DDB-UNIT-ITEM-TYPE (

165

* INITIATION INDEX UNREGDAT IN UNIT.

DBKI-UNIT-UNREGDAT-LEN.

DBKI-UNIT-UNREGDAT-KEY-NAM.
DBKI~-UNIT~UNREGDAT-RLM-NAM.

DBKI-UNIT-UNREGDAT,
DBKV-UNIT-UNREGDAT.

* INITIATION INDEX UNGROUP IN UNIT.

TO DBKI-UNIT-UNGROUP-LEN.

TO DBKI-UNIT-UNGROUP-KEY-NAM.
TO DBKI-UNIT-UNGROUP-RLM-NAM.

DBKI-UNIT-UNGROUP,
DBKV-UNIT-UNGROUP .

TO
T0
TO
T0
T0

* INITIATION FORM/REALMS.

SCC-PIC-NAME.
SCC~-READ-MODE .
SCC-WRITE-MODE.
SCC~-START-RW-LINE.
SCC-RW-NO-OF -LINES.

END OF GENERATED ASSIGNMENTS.

Norsk Data ND~60.203.2 EN

166 ABM USER MANUAL
An example of using ABM

9.7 THE FORTRAN INCLUDE FILE

The FORTRAN INCLUDE file contains values of items and fields in the
database. This makes it specially easy to make application programs. An
application program need only call the INCLUDE file (DECDDI-name:SYMB), and
the values of all items and fields will be automatically available.

The following is the listing of the INCLUDE file generated for our sample
database: :

THE DECLARATIONS

(C:’k*"k**k*’k*\k***k‘k*'k*"k*w‘kw*'k')r‘k*'k*‘kk*’k‘k'kw*k1(*7’f"kk)<7¥k)«"k7\>\‘;&*AAA‘A‘A‘)\AA‘*AA*A'X’A‘)\)\A
C ABM /DECDDI-MENU-1F / % Generated : 86.03.11 11:12
C'k:\'k?:*'k)\"k’kk*‘kv\'kﬁ'*‘k*‘k*iw’k*W‘hk)\‘kk‘k‘k'k'kr\‘ﬁ‘*‘k*x‘k'kk*kﬁ\)(*'k'kv\A"kA‘A'i\ﬁ'AW)\;\Y\"Aﬂ‘AAkﬁk’r\‘i(‘k
INTEGER*2 ITEMSUB(44)
CHARACTER CITMSUB(2)*44
EQUIVALENCE (ITEMSUB ,CITMSUB)
C
C * REFTAB - REFERANCE TABLE
c
INTEGER*2 REFTAB [54), WMRMO, WMWMO,
+ LINE, NOLINE, NOREAD, MTCH
C
CHARACTER CPNS*8
C
EQUIVALENCE (REFTAB(1), CPNS),
+ {REFTAB(5), MRMO]},
+ (REFTAB(6), MWMO),
+ [(REFTAB(7), LINE),
+ (REFTAB(8), NOLINE],
+ (REFTAB(9), NOREAD),
+ (REFTAB(10), MTCH),
+ (REFTAB({11}, CITMSUB]
C
C * R1 -REALM : DIMENSION, VARIABLES
C
INTEGER*2 MRECR1(96) ,MITEMR1{ 66)
CHARACTER CITEMR1(8)* 8
EQUIVALENCE (MITEMR1{ 7) ,CITEMR1(1))
C
INTEGER*2 R1NUMBER
C
INTEGER*4 R1REGDAT
C
CHARACTER RITYPE *2 ,R1IREGBY *4 ,R1COM1 *60 ,
+ R1COM2 *60 L,RICOM3 *60
C
EQUIVALENCE {(R1TYPE ,MRECR1 (1)),
+ (R1NUMBER ,MRECR1{ 2}),
+ {R1REGBY ,MRECR1(3)7,
+ (R1COM1 ,MRECR1 (517,
+ (R1COM2 ,MRECR1(35)),
+ (r1COM3 ,MRECR1(65)7,
+ {R1REGDAT ,MRECR1({ 95)]

Norsk Data ND-60.203.2 EN

ABM USER MANUAL

An example of using ABM

C
C
C
INTEGER*2
CHARACTER
EQUIVALENCE
C
CHARACTER
C
EQUIVALENCE
C
C
C
INTEGER*2
CHARACTER
EQUIVALENCE
C
INTEGER*2
C
INTEGER*4
C
CHARACTER
+
C
EQUIVALENCE
¥
+
+
+
+
+
C
C
C
INTEGER*2
CHARACTER
EQUIVALENCE
C
INTEGER"4
C
EQUIVALENCE
+
C
C
C
INTEGER*2
CHARACTER
EQUIVALENCE
C
INTEGER*2
C
CHARACTER
C
EQUIVALENCE

* R2
MRECR2{ 1)
CITEMR2(2}* 8
(MITEMR2(7)
R20K1 *2
(R20K1 ,MRECR2 (
¥ UNIT
KRECUN([46)

CITEMUN(8)* 8
(KITEMUN(7)

UNNUMBER
UNREGDAT
UNTYPE *2 L,UNREGBY *4 ,UNCOM1 *60
UNCOM2 *60 ,UNCOM3 *60
(UNNUMBER ,KRECUN(1)),
(UNTYPE , KRECUN(2)),
{UNREGDAT ,KRECUN({ 3)),
{(UNREGBY ,KRECUN{ 5)),
(UNCOM1 , KRECUN(7)7,
(UNCOM2 ,KRECUN(37)7,
{(UNCOM3 ,KRECUN(67))
* UNIT ~-INDEX : DIMENSION,
KIUNREG(10) ,KVUNREG(4)
CUNREG(1])*16
{KIUNREG({3) ,CUNREG(1])]
LUNREG1 ,HUNREG1
(LUNREG1 ,KVUNREG{ 1)),
(HUNREG1 ,KVUNREG(3))
* UNIT -INDEX : DIMENSION,
KIUNGRO{10) ,KVUNGRO(4)
CUNGRO{1)*16
{KIUNGRO(3) ,CUNGRO(1))
LUNGRO?2 , HUNGRO2
LUNGRO1 *2 ,HUNGRO1 *2
{LUNGRO1 ,KVUNGRO{ 1)),
(HUNGRO1 ,KVUNGRO{ 3)),
(LUNGROZ2 ,KVUNGRO(2)7,
{(HUNGRO2 ,KVUNGRO(4))

~-REALM

~-REALM

,MITEMR2(46)

,CITEMRZ2(1))

1))

L,KITEMUN(66)

L,CITEMUN(1))

Norsk Data ND-60.203.2 EN

167

DIMENSION, VARIABLES

DIMENSION, VARIABLES

VARIABLES

*UNREGDAT

*UNREGDA1
*UNREGDA1

VARIABLES

*UNGROUP

*UNTYPE 1
*UNTYPE 1
*UNNUMBEZ
*UNNUMBE?Z2

168 ABM USER MANUAIL
An example of using ABM

THE ASSIGNMENTS

C
CRK KK A K KK R KKK KR K KK KK A KK R K KR KKK X KR KKK KRR K KRR KR AKX KRN RKARNKKRARRKRANKARK A KKK A
C ABM /ASSDDI-MENU-1F / * Generated : 86.03.11 11:12

("‘Kl’(‘ki(?{i\'}’(‘k***‘k*kﬁ'*’kd\7\'**ﬂk*k*‘k*****ﬁk**w*%**:\x*’k*)\'*w)’(**}\A‘k‘A’)\k)\)\‘r\‘%r\‘k}\‘A AN K AN

C

C
C * R1 ITEMLISTS
MITEMR1(1) = 7 *NO ITEM
MITEMR1(2] = 096 *LENGTH
MITEMR1(3) = 1 *NO REC.
MITEMR1(4) = 1 AUFTELD
MITEMR1(5) = 1 1 WORD
MITEMR1(6) = 7 AUNTOQ. 1T
CITEMR1(1) = 'R1 '
CITEMR1(2)='RITYPE '; MITEMRI(39}= 1 ; MITEMR1(46)="E "*EVEN CH
CITEMR1(3)='RINUMBER'; MITEMR1{ 40)= 1 ; MITEMR1(47)="S "*SINGEL
CITEMR1(4)='R1REGBY '; MITEMR1(41)= 2 ; MITEMR1(48)="E "*EVEN CH
CITEMR1(5)='R1COM1 '; MITEMR1(42)= 30 ; MITEMR1{ 49)="E "*EVEN CH
CITEMR1(6)='R1COM2 '; MITEMR1(43)= 30 ; MITEMRI(50)="E "*EVEN CH
CITEMR1(7)}='R1COM3 '; MITEMR1({ 44)= 30 ; MITEMR1{(51)="E "*EVEN CH
CITEMR1{ 8)='RI1REGDAT'; MITEMR1(45)= 2 ; MITEMR1(52)="D "*DOUBLE
C
C * R2 ITEMLISTS
C
MITEMR2(1) = 1 *NO ITEM
MITEMR2(2] = 1 *LENGTH
MITEMR2(3) = 1 *NO REC.
MITEMR2(4) = 8 1. FIELD
MITEMR2(5} = 97 *1.WORD
MITEMR2(6) = 1 *UNIQ.IT
CITEMR2(1) = 'R2 '
CITEMR2(2)='R20K1 '; MITEMR2{ 15)= 1 ; MITEMR2(16)="0 "*ODD CH.
C
c * UNIT ITEMLISTS
C
KITEMUN({ 1) = 7 *NO ITEM
KITEMUN{ 2] = 96 *LENGTH
CITEMUN{ 1} = 'UNIT '
CITEMUN(2)}='UNNUMBER'; KITEMUN(39)= 1 ; KITEMUN{ 46)}="S "*SINGEL
CITEMUN(3)='UNTYPE '; KITEMUN(40}= 1 ; KITEMUN{ 47)="E "*EVEN CH
CITEMUN(4)='UNREGDAT'; KITEMUN(41)= 2 ; KITEMUN{ 48)="D "*DOUBLE
CITEMUN(5)='UNREGBY '; KITEMUN(42)= 2 ; KITEMUN[49)="E "*EVEN CH
CITEMUN(6)='UNCOM1 '; KITEMUN{ 43)= 30 ; KITEMUN(50)="E "*EVEN CH
CITEMUN(7)='UNCOM2 '; KITEMUN{ 44)= 30 ; KITEMUN(51])="E "*EVEN CH
CITEMUN(8)=’UNCOM3 '; KITEMUN(45)= 30 ; KITEMUN{ 52)="E "*EVEN CH
C

Norsk Data ND-560.203.2 EN

ABM USER MANUAL 169
An example of using ABM

KIUNREG(2) = 2
*LENGTH

CUNREG(1]) = 'UNREGDATUNIT

CALL DDINKEY (KIUNREG,KVUNREG)

C.
KIUNGRO(2) = 2
*LENGTH
CUNGRO(1) = 'UNGROUP UNIT '
CALL DDINKEY(KIUNGRO,KVUNGRO)
C

C)\"i\’ft“k‘k‘k*}cw*kﬁ’*v\'\‘(**‘k**i\“r\"k'A"k»\'*k**A"k**‘k*v\"k***’k?\“k*‘kﬂ‘k‘k**‘k***A’i"v\'i**%WA**A‘»\"A"A"A’W'A‘A?\

C** STANDARD INITIATION

C’k*‘k‘l’(*‘k**‘k‘k*kk****'k*‘k’k‘k**k****‘k‘k‘k}k‘k‘k**)*****k**)\'k*f(k"ﬂ)\‘t'A’A'k'kﬁ*ﬁ*';\k*k‘kﬂ}kkﬁ‘ﬂ

C
C
C
CPNS = 'MENU-1F '
MRMO = 1
MWMO = 1
LINE = 1
NOLINE = 1
c

C‘k‘k‘k‘k**k*)\"k******‘k*‘k‘k**W*W****)\'v\'f(‘kk**‘k‘k**‘k*‘k*k******‘k*ﬁ‘k‘kﬁv\t'*%‘)\'k*k**'k"k*?\

C** END OF GENERATED STATEMENTS

Cv\"k‘k)\'****‘k‘k*****k*’kA7\’***ki\'*)\"k'k*v\'**‘k’**kk***‘k*k***k*k**‘kﬁ'i\‘ﬁ)\'k*w\‘ﬂ‘?\’A‘*k*‘i\')\k‘A»\:\k*k

C

Norsk Data ND~60.203.2 EN

170

ABM USER MANUAL

An example of using ABM

9.8 A COBOL APPLICATION PROGRAM: AN EXAMPLE

Following is an example of a COBOL program. The program uses the screen

forms shown below: {The "main menu” is shown on page 141.)

The ABM example COBOL %% MERU-) ser

Registration of new unit

Tlunit type amg number
“Operators inftials
COMMEALS 0 s e

Bk registration 1 .

Tne ABM example COBOL “ox MENU-2 »#¢

 Registration of new tracks o

Unit type and number

51de o
Track number.: o

Artistipane
Track:-name
o Undt pawme -

‘ Ty;}%.’(}? : : T ,‘ RN :
: pgrformance R EASCE L

O registration 1 .

The ABM exampls 6oBOL |

e gg%ggg;«wg~; e

Ma%ﬁﬁenaﬁaé of this
Unit type &nd number.

 Operators initials
“iDave of registration
- Commants L

‘”%hénfﬁéfybuﬁwénﬁ todo 7

1. Delete this record and a1l ct
2. Modify this vegord
9, Extt, patuen to main weny o o

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 171
An example of using ABM

Please study the application program along with the comments.
IDENTIFICATION DIVISION,

Program-id. MENU-C.

Author. @Sk
Security. No security.
Remarks. ABM-example written in Cobol.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 MAIN-RECORD.

COPY DECDDC-MENU-C

* * Additional declarations
01 database-name pic x(8).
01 sibas-system-number comp.

PROCEDURE DIVISION.
MAIN SECTION.

perform ASSIGN-VALUE.
perform INITIATE.

do while scv-R1-NUMBER not = 9

perform DISPLAY~-MENU.
then call "MENU-1"
then call "MENU-2"

then call "MENU-3"
then call "MENU-4" end-if.

if scv~-R1-NUMBER
else-if scv-R1-NUMBER
else-if scv-R1-NUMBER =
else-if scv~-R1-NUMEER

H

#

¥
W N

end-do.

Norsk Data ND-60.203.2 EN

172 ABM USER MANUAL
An example of using ABM

perform TERMINATE.
STOP RUN.

ASSIGN-VALUE SECTION.
COPY ASSDDC-MENU-C
INITIATE SECTION.
* Open database

call 'ABDBOPN’ using sibas-system-number,
database-name

* * Ready realm. In the subschema 'MENU-C' the
* realms are marked for doing ready realns
* only.

call 'SRRLM' using dbr-no-of-realms,

dbr-realm-names,
dbr-realm-usage(1),
dbr-realm-protect(1]},
dbstatus

if dbstatus < 0 or = O go to DD~ERROR end-if

* Initiate abm-focus

move 1 to mflag
call 'DDINITE’ using mflag

DISPLAY-MENU SECTION.

* Get the picture from the formfile

move 'COB-EXAMPLE-BOO’ to formfile

call 'DDGTPIC' using formfile,
ddc-ref~-table,
fcstatus

if festatus not 0 go to DD-ERROR end~-if

* Read menunumber

move '+:NUMBER *' to ddc-select

call 'DDRFLDS' using ddc-ref-table,
dds-R1-subschema,
scv-R1,
festatus

if festatus not = 0O go to DD-ERROR end-if

TERMINATE SECTION.

* Normal termination. Finish realms.
call 'SFRLM’ using dbr-no-of-realnms,
dbr-realm-names,
dbstatus

Norsk Data ND~60.203.2 EN

ABM USER MANUAL
An example of using ABM

if dbstatus ¢ O go to DD-ERROR end-if
* * Close database
call 'ABDBCLS' using dbstatus,

database-name

DD-ERROR SECTION.

* Display error information
If festatus not = 0 then

call 'DDERMSG’ using festatus
else

call 'DDERMSG’ using dbstatus
end-if.

* Close database
call 'ABDBCLS' using o,
database-name
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID.
MENU~-1 .

DATA DIVISION.
WORKING-STORAGE SECTION.

01 MAIN-RECORD.
COPY DECDDC-MENU-1C.

* Additional declarations
01 database-name pic x{(8)

PROCEDURE DIVISION.
MAIN SECTION.

perform ASSIGN-VALUE.
move "Y" to scv-R2-0K1.
perform DISPLAY-FORM.

* Loop as long as 'OK registration?’' is not
* not S(top)

perform MENU-1~REGISTRATE-UNIT until scv-R2-0K1="S" or ="g".
exit program.

Norsk Data ND-60.203.2 EN

173

174

ASSIGN-VALUE SECTION.

COPY ASSDDC-MENU-1C.

DISPLAY-FORM.

move
call

'COB-EXAMPLE-BOO' to

'DDGTPIC’ using

if fecstatus not = O

MAIN-LOGIC SECTION.

MENU-1-REGISTRATE~UNIT.

ABM USER MANUAL
An example of using ABM

formfile

formfile,
ddc-ref-~table,
fcstatus
DD~-ERROR end-if

* Write message to the messageline

P

move '-: Please give unit type and number
to message.
call 'DDWMSGE' using message,
fcstatus
if fcstatus not = 0 go to DD-ERROR end-if

move '0O:*' to

call 'DDCFLDS' using

if festatus not = O go to

move '+:UNTYPE UNNUMBER*' to
call 'DDRFLDS’ using
if fcstatus not = O go to
* * Test if unit type
if scv-R1-UNTYPE = 'EX' or = 'ex' then

¥ Clear fields on the screen

ddc-select
ddc~-ref-table,
dds~R1l-subschema,
scv-R1,

fcstatus

DD-ERROR end-if

* Read unit type and number:

ddc-select
ddc-ref-table,
dds-R1-subschema,
scv-R1,
fcstatus
DD-ERROR end-if

= EX(it)

perform END-OF-MENU-1-REGISTRATE-UNIT

dbkv-UNIT-UNGROUP-low-1
dbkv-UNIT-UNGROUP-low-2

end-if
* * Set low limits equal unit type:and number
* Find the specific record

move scv-R1-UNTYPE to

move scv-R1-UNNUMBER to

call 'DDFTCH' using

dbki-UNIT-UNGROUP,
dbkv-UNIT-UNGROUP,
dbstatus

Norsk Data ND-€60.203.2 EN

ABM USER MANUAL
An example of using ABM

175

if dbstatus > O then perform UNIT-EXISTS
else-if dbstatus < O then go to DD-ERROR
else
* * Clear the message line
call 'DDCMSGE’ using fecstatus
if fcstatus not = 0 go to DD-ERROR end-if

* Read rest

move '-:UNTYPE UNNUMBER*' to
call 'DDRFLDS' using
if fecstatus not = O go to

*

move 'O:*' to
call 'DDRFLDS' using
if festatus not = 0 go to
if scv-R2-0K1 = "Y" or = "y"
* * Transfer values
* to realm buffer
call 'DDTRNSC' using
* * Store record
call 'DDSTORE' using
if dbstatus not = 1 go to
else-if scv-R2-0K1 = "N" or = "n"
go to
end~if
end~if

END-OF~MENU-~1-REGISTRATE-UNIT. -
exit program.

UNIT-EXISTS SECTION.

* Write message to

'Ok registration?’

of the record

ddc-select
ddc-ref-table,
dds-Rl-subschema,
scv~-R1,
fcstatus
DD-ERROR end-if
Read OK field
ddc-select
ddc-ref-table,
dds-R2-subschema,
scv~-R2,
fcstatus
DD-ERROR end-if
then

from picture record buffer

dds-R1-subschema,
scv-R1,
ddb-UNIT-subschema,
dbv~UNIT

ddc-select,
ddb~-UNIT~-subschema,
dbv-UNIT,
dbstatus
DD-ERROR end-if

then
MENU-1-REGISTRATE-UNIT

message line

move '+: This unit is already in register ! '''
to message
call 'DDWMSGE' using message,
fcstatus
if fecstatus not = 0 go to DD-ERROR end-if

Norsk Data ND~-60.203.2

EN

176

*

* Get record

move O to
move 'O:*' to
call 'DDGET’ using
if dbstatus not = 1 go to

ABM USER MANUAL
An example of using ABM

tdbkey

ddc-select

tdbkey,

ddc-select,
ddb-UNIT-subschema,
dbv-UNIT,

dbstatus

DD~-ERRQR end-if

* Transfer values from realm buffer
to picture record buffer

call 'DDTRNSC’ using

ddb-UNIT-subschema,
dbv-UNIT,
dds-Rl-subschema,
scv-R1

* Write record to the screen

call 'DDWFLDS' using

if fcstatus not = O go to

DD-ERROR SECTION.

ddc-ref~-table,
dds-Rl-subschema,
scv-R1,

fcstatus
DD~ERROR end-if

* Display error information

If fcstatus not = 0 then

call 'DDERMSG' using
else

call 'DDERMSG' using
end~-if.

* Close database
call 'ABDBCLS' using

STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID.
MENU-2.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 MAIN-RECORD.

COPY DECDDC-MENU-2C.

fcstatus

dbstatus

O B
database~name

* Additional declarations

01 database-name pic

x(8)

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 177
An example of using ABM

PROCEDURE DIVISION.
MAIN SECTION.

perform ASSIGN-VALUE.
move "'Y" to scv-R2-0K1
perform DISPLAY-FORM.

* Loop as long as 'OK registration?’' is

* not S(top)

perform MENU-2-REGISTRATE-TRACK until scv-R2-0K1 ="S" or ="sg"
exit program.

ASSIGN-VALUE SECTION.

COPY ASSDDC-MENU-2C

DISPLAY-FORM.

move 'COB-EXAMPLE-BOQ’ to formfile

call 'DDGTPIC’ using formfile,
ddc~ref-table,
fcstatus

if festatus not = 0 go to DD-ERROR end-if

MAIN-LOGIC SECTION.
MENU-2-REGISTRATE-TRACK.

* Write message to the messageline

move '-: Please give unit type and number '’
to message
call 'DDWMSGE' using message,
fcstatus
if festatus not = O go to DD-ERROR end-if

* Clear fields on the screen

move 'O:*’ to ddc-select

call 'DDCFLDS' using ddc-ref-table,
dds-Rl-subschema,
scv-R1,
fcstatus

if fecstatus not

0 go to DD~-ERROR end-if

* Read unit type and number:

move '+:TRTYPE TRNUMBER*' to ddc-select

call 'DDRFLDS' using ddc-ref-table,
dds-Rl-subschema,
scv-R1,
fcstatus

if fcstatus not = O go to DD-ERROR end-if

Norsk Data ND-60.203.2 EN

178

ABM USER MANUAL
An example of using ABM

* Test if unit type = EX(it)
if scv-R1-TRTYPE = 'EX' or = 'ex' then
perform END-OF-MENU-2-REGISTRATE-TRACK

end-if
* Set low limits equal unit type and number
Find the specific record

move scv~-R1-TRTYPE to dbkv-UNIT-UNGROUP-low-1

move scv-R1-TRNUMBER to dbkv~UNIT~-UNGROUP-1low-2

call 'DDFTCH' using dbki-UNIT-UNGROUP,
dbkv-UNIT-UNGROUP,
dbstatus

if dbstatus 0 then perform UNIT-NOT-IN-REGISTER

A
o

else-if dbstatus
else-if dbstatus

then go to DD-ERROR
then

i
=

* This unit is in the register, clear

messageline
call 'DDCMSGE’ using message ,
fcstatus
if fcstatus not = 0O go to DD~-ERROR end-if
* Read rest of the record
move '-:TRTYPE TRNUMBER*' to ddc-select
call 'DDRFLDS’ using ddc-ref-table,
dds-R1-subschema,
scv~-R1,
fecstatus
if fcstatus not = O go to DD-ERROR end-if
* 'OK registration?’' Read OK field
move '0O:*' to ddc-select
call 'DDRFLDS’ using ddc-ref-table,
dds-R2-subschemna,
scv-~R2,
fcstatus
if fcstatus not = O go to DD-ERROR end-if

if scv-R2-0K1 = "N" or = "n" then
go to MENU-2-REGISTRATE-TRACK

else-if scv-R2-0K1 = "Y" or = "y" then

* Transfer values from picture record buffer
to realm buffer
call 'DDTRNSC' using dds-Rl-subschema,
scv-R1,
ddb~TRACK-subschema,
dbv-TRACK

* Store record:

call 'DDSTORE' using ddc-select,
ddb-TRACK-subschema,
dbv-TRACK,
dbstatus
if dbstatus not = 1 go to DD-ERROR end-if
end-if
end-if

END-OF-MENU-2~REGISTRATE-TRACK.
exit program.

Norsk Data ND~60.203.2 EN

ABM USER MANUAL 179
An example of using ABM

UNIT-NOT-IN-REGISTER SECTION.

move '+: This unit is not in the register! Try again! '’

to message
call 'DDWMSGE' using message,
fcstatus

#
o

if fcstatus not go to DD-ERROR end-if

DD-ERROR SECTION.

* Display error information
If fcstatus not = 0 then

call 'DDERMSG’ using fcstatus
else

call 'DDERMSG’ using dbstatus
end~-if .

* Close database
call 'ABDBCLS' using o,

database-name
STOP RUN,

IDENTIFICATION DIVISION.
PROGRAM-1ID.
MENU-3.

DATA DIVISION.
WORKING~-STORAGE SECTION.

01 MAIN-RECORD.

COPY DECDDC-MENU-3.

* * Additional declarations.
01 database-nanme pic x(8].
01 length comp .
01 iline comp .
01 icol comp .

PROCEDURE DIVISION,
MAIN SECTION.

perform ASSIGN-VALUE.
perform DISPLAY-FORM.
perform MENU-3-MAINTENANCE.
exit program.

Norsk Data ND-60.203.2 EN

180

ASSIGN-VALUE SECTION.

COPY ASSDDC-MENU-3C

ABM USER MANUAIL
An example of using ABM

DISPLAY-FORM.

move 'COB-EXAMPLE-BOO'
call 'DDGTPIC’

if fcstatus not = O

using

formfile
formfile,
ddc-ref~-table,
festatus
DD-ERROR end-if

MAIN~LOGIC SECTION.

MENU-3-MAINTENANCE.

* * Clear

move 'O:*'
call 'DDCFLDS’

i

if fcstatus not o]

fields on the screen

to
using

go to

ddc-select
ddc-ref-table,
dds-Rl-subschena,
scv-R1,

festatus

DD-ERROR end-if

* Write message to the messageline

[}

move '-: Please give unit type and number
to message

call 'DDWMSGE' using message,
fecstatus

if fcstatus not = O go to DD-ERROR end-if

* * Read unit type and number:

move '+ :UNTYPE UNNUMBER*' to ddc-select

call 'DDRFLDS’ using ddc-ref-table,
dds~-Rl-subschema,
scv-R1,
fcstatus

if fcstatus not = 0O go to DD-ERROR end-if

move scv-R1-UNTYPE
move scv-R1-UNNUMBER
move 'Q:™'

call 'DDFTCGT'

to
to
to
using

¥ Set low limits equal unit type and number
Find the specific record and get the
record values

dbkv-UNIT-UNGROUP-1low-1
dbkv-UNIT-UNGROUP-1low-2
ddc-select
dbki-UNIT-UNGROUP,
dbkv-UNIT-UNGROUP,
ddc-select
ddb-UNIT-subschema
dbv-UNIT

dbstatus

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 181
An example of using ABM

it
o

if dbstatus then perform UNIT-NOT-IN-REGISTER
else~if dbstatus ¢ O then go to DD-ERROR
else-if dbstatus then

i
f

* Forget old and remember a new record or
a search region

move O to option
move O to tdbsri
call 'DDFREMB' using tdbsri,
option,
dbstatus
if dbstatus not = 1 go to DD-ERROR end-if

* Transfer values from realm buffer to
picture record buffer
call 'DDTRNSC’ using ddb-UNIT-subschema,
dbv-UNIT,
dds-R1-subschema,
scv-R1

* Write record to the screen

call 'DDWFLDS' using ddc-ref-table,
dds-R1-~subschema,
scv=-R1,
fcstatus

if fcstatus not = O go to DD-ERROR end-if

* Write message to the messageline and read
the answer

move '-: Please give a menu number "'’
to message
call 'DDGMSGE' using message,
otext,
fcstatus
if festatus not = O go to DD-ERROR end-if
if otext = "1" then

* Write a message in the given line and column
and read the answer

move '-: Do you really want to delete this record? "'
to message
move 24 to iline
move 1 to icol
call 'DDGTEXT' using message,
otext,
iline,
icol,
fcstatus
if fcstatus not = 0 go to DD~-ERROR end-if
if otext = "Y" or = "y" then

* Sibas call. Remove the record and all

references to it if no records are connected
as members

move 1 to option

call 'SRASE' using tdbkey,
option,
dbstatus

Norsk Data ND-60.203.2 EN

182 ABM USER MANUAL

An example of using ABM

if dbstatus not = 1 then
* Write a message in the given line and column
and read the answer
move
‘~: Track records connected, delete although? "'’
to message

call 'DDGTEXT’ using message,
otext,
iline,
icol,
fcstatus

if fcstatus not=0 go to DD-ERROR end-if

noon e

if otext = y' or = "y then

* Erase the record and all member records in
the set occurrences

move 3 to option
call 'SRASE' using tdbkey,
option,
dbstatus
if dbstatus not = 1 go to DD-ERROR end-if
end-if

* Display a blank text string in given line
and column

move ' to message

move 44 to length

call 'FCWTXT' using iline,
icol,
message,
length,
fcstatus

if festatus not=0 go to DD-ERROR end-if

end-if
end~if
else-if otext = "2" then

¥ Write message to the messageline
Press Carriage return when ready to mofify

move '-: Modify the record! Press CR "'’
to message
call 'DDGMSGE' using message,
octext
fcstatus
if fcstatus not = O go to DD-ERROR end-if

* Read rest of the record
move '-:UNTYPE UNNUMBER*'

to ddc-select
call 'DDRFLDS’ using ddc-ref~-table,
dds-R1l-subschema,
scv-R1,
fcstatus
if festatus not = O go to DD-ERROR end-if

Norsk Data ND=-60.203.2 EN

ABM USER MANUAL 183
An example of using ABM

* Transfer values from picture record
buffer to realm buffer
call 'DDTRNSC’ using dds-Rl-subschema,
scv-R1,
ddb-UNIT-subschema,
dbv-UNIT

* Modify items in the record
call 'DDMDFY' using tdbkey,
ddc-select,
ddb-UNIT-subschema,

dbv~-UNIT,
dbstatus
if dbstatus not = 1 go to DD-ERROR end-if
else
perform END-OF-MENU-3-MAINTENANCE
end-if
end-if
* * Write message to the messageline and read
* the answer
move '-: Maintenance of several records? ‘'
to message
call 'DDGMSGE’ using message
otext,
fcstatus
if fcstatus not = 0O go to DD-ERROR end-if
if otext = "Y" or = "y" then
perform MENU-3-MAINTENANCE
end-if

END-OF-MENU-3-MAINTENANCE.

UNIT-NOT-IN-REGISTER SECTION,

[

move '+: This unit is not in the register! Try again!

to message
call 'DDWMSGE' using message,
fcstatus

if festatus not = O go to DD-ERROR end-if

DD-ERROR SECTION.

* Display error information
If festatus not = 0 then

call 'DDERMSG' using fcstatus
else
call 'DDERMSG' using dbstatus
end-if .
* * Close database
call '"ABDBCLS' using 0,

database-name
STOP RUN.

Norsk Data ND-60.203.2 EN

184 ABM USER MANUAL
An example of using ABM

IDENTIFICATION DIVISION.
PROGRAM-ID.
MENU-4.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 MAIN-RECORD.
COPY DECDDC-MENU-4C.

* Additional declarations.

01 database-name pic x(8].
01 no-of-records comp .
01 temporary-line comp.
01 flag comp .
01 no-of-rec-written comp .

PROCEDURE DIVISION.
MAIN SECTION.

perform ASSIGN-VALUE.
perform DISPLAY-FORM.
* Loop as long as 'find tracks with a new
artist is not N(o]
perform MENU-4-QUESTIONS until SCV~BR4-0K2 = "N" or = "n".
exit program.

ASSIGN-VALUE SECTION.

COPY ASSDDC-MENU-4C

DISPLAY~FORM.

move 'COB-EXAMPLE-B' to formfile

call 'DDGTPIC' using formfile,
ddc-ref-table,
fcstatus

if fcstatus not = O go to DD-ERROR end-if

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 185
An example of using ABM

MENU-4-QUESTIONS SECTION.

* Write message to the messageline

move '-: Please give artist name '’
to message

call 'DDWMSGE' using message,
fcstatus

if fcstatus not = 0 go to DD-ERROR end-if

* * Read artist name

move '+ :TRARTIST*' to ddc-select

call 'DDRFLDS' using ddc-ref-table,
dds-R1-subschema,
scv-R1,
fcstatus

if festatus not = 0 go to DD~ERROR end-if

Transfer values from picture record
buffer to realm buffer

call 'DDTRNSC® using dds~R1l-subschema,
scv-R1,
ddb-TRACK~subschema,
dbv-TRACK
* * Low limit = artist name read from terminal
* Find first record between limits using given
* key
move scv-R1-TRARTIST to dbkv-TRACK~TRARTIST-low-1
move scv-R1-TRARTIST to dbkv~-TRACK-TRARTIST~-high-1
call 'DDFEBL' using dbki-TRACK-TRARTIST,
dbkv-TRACK-TRARTIST,
dbstatus
if dbstatus = 0 then perform ARTIST-NOT-IN-REGISTER
else-if dbstatus < O then go to DD-ERROR
else-if dbstatus = 1 then

* Count number of records found
move 1 to no-of-records

* Get the items in the record

move '0O:* to ddc-select

call 'DDGET' using tdbkey,
ddc-select,
ddb-TRACK-subschema,
dbv-~TRACK,
dbstatus

if dbstatus not = 1 go to DD-ERROR end-if

+

* Transfer values from realm buffer
to picture record buffer
call 'DDTRNSC' using ddb-TRACK-subschema,
- dbv-TRACK,
dds-R2-subschema,
scv-R2

Norsk Data ND-60.203.2 EN

186 ABM USER MANUAL
An example of using ABM

* Put field values into the total picture

* buffer
call 'DDPUTRC' using ddc-ref-table
: dds-R2-subschema,
scv-R2,
fecstatus
if fcstatus not = O go to DD-ERROR end-if

* Loop as long as records with given artist
name is found in the database [dbstatus=1)
do while dbstatus = 1

* * Sibas call. Find next record in search
* region
call 'SRNIS’ using tdbkey
tdbsri
dbstatus
if dbstatus = 1 then
x ¥ Count number of records found
add 1 to no-of-records

* Get the items in the record

move 'O:*' to ddc-select

call 'DDGET’ using tdbkey,
ddc-select,
ddb-TRACK-subschema,
dbv-TRACK,
dbstatus

if dbstatus not = 1 go to DD-ERROR end-if

* Transfer values from realm buffer
to picture record buffer
call 'DDTRNSC'’ using ddb~-TRACK~subschema,
dbv-TRACK,
dds-R2-subschema,
scv~-R2

* The size of the total picture record buffer
is limited to 600 words (16 bit). It can be
changed {see appendix].

Maximum of R2-records is here 600/29 = 30

if no-of-records > 30 then
* Write message to the messageline
move
'-:The total picture buffer must be increased!'’’

to message
call 'DDWMSGE' using message,
festatus

if fecstatus not=0 go to DD-ERROR end-if
go to LAST-PART
end-if

* Count line record number
add 1 to scc-start-rw-line

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 187
An example of using ABM

* * Put field values into the total picture
* buffer
call 'DDPUTRC' using ddc-ref-table
dds~R2-subschema,
scv-R2,
fcstatus
if fecstatus not = 0 go to DD-ERROR end-if
end-if
end-do
* * Write records from the total picture buffer
* to the screen. It is only possible to list
* 6 record occurences to the screen in this
*

example

* Loop for all record occurences
do for scc-start-rw-line from 1 to no-of-records

* Save occurence number scc-start-rw-line in
the total picture buffer

move scc-start-rw-line to temporary-line

* Get field values from the total picture

* buffer
call 'DDGETRC' using ddc-ref-table
dds~R2-subschema
scv-R2
fcstatus
if fcstatus not = O go to DD-ERROR end-if

* Calculate correct occ. number
scc-start-rw~line on the screen
compute scc-start-rw-line = temporary-line - flag

* Write record to the screen

call 'DDWFLDS' using ddc-ref-table
dds-R2~subschema
scv-R2
fcstatus

if fcstatus not = O go to DD-ERROR end-if

* Count number of records written to the
screen
add 1 to no-of-rec-written

if no-of-rec-written not < 6 then

* The screen is full, reset scc-start-rw-line
and set new flag value

move 1 to scc-start-rw-line
add 6 to flag
* * 'List several tracks, if any?’' Read OK field

move 'Q:*' to ddc-select

call 'DDRFLDS' using ddc-ref-table,
dds~-R3~-subschema,
scv-R3,
fcstatus

if fcstatus not = 0 go to DD-ERROR end-if

Norsk Data ND-60.,203.2 EN

188

*

*

ABM USER MANUAL
An example of using ABM

if scv-R3-0K1 = "N" or "n" then
* Do not want to continue listing several
tracks

go to LAST-PART

else
¥ Clear all occurences of this record
move O to scc-rw-no-of~-lines
call 'DDCFLDS’ using ddc-ref-table,
dds-R2-subschena,
scv-R2,
fcstatus

if fecstatus not=0 go to DD-ERROR end-if

* Reset scc-rw-no-of-lines and
reset number of records written to the
screen
move 1 to scec-rw-no-of-lines
move O to no-of-rec-written

end-if
end-if
* Reset occ number line in the tot pic buffer
move temporary-line to sce-start-rw-line
end-do
end-if
LAST-PART.
* Reset start-rw-line, flag and number of rec
written
move 1 to scc-start-rw-line
move O to flag
move O to no-of-rec-written
¥ Clear field
move 'O:*' to ddc-select
call 'DDCFLDS’ using ddc-ref-table,
dds-R3-subschema,
scv-R3,
fcstatus
if fcstatus not = O go to DD-ERROR end-if
* 'Find tracks with a new artist?' Read OK field
call 'DDRFLDS' using ddc-ref-table,
dds~-R4-~subschema,
scv-R4,
festatus
if fcstatus not = 0 go to DD-ERROR end~if

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
An example of using ABM

if scv-R4-0K2 = "Y" or = "y" then
* * Yes, clear field
call 'DDCFLDS' using

if fecstatus not = O go to

* Clear all occurences of
move O to
call 'DDCFLDS' using

if fcstatus not = O go to

move 1 to
else
go to END-OF-~MENU-4-QUESTIONS

end-if

END-OF-MENU-4-~QUESTIONS.

ARTIST-NOT-IN-REGISTER SECTION.

ddc-ref-table,
dds-R1l-subschena,
scv~R1,
fcstatus
DD-ERROR end-if
this record
scc-rw~-no-of-lines
ddc-ref-table,
dds~-R2-subschema,
scv-R2,

fcstatus

DD-ERROR end-if

* Reset number of occurences

scec~rw-no-of-lines

message
message,
fecstatus

move
"+:This artist name is not in the register! Try again!
to
call 'DDWMSGE' using
if fcstatus not = O go to

DD-ERROR SECTION.

If fecstatus not = 0 then

call 'DDERMSG’ using
else

call 'DDERMSG' using
end-if.

* * Close database

call "ABDBCLS' using
STOP RUN.

DD~ERROR end-if

* Display error information

fcstatus

dbstatus

0,
database~-name

Norsk Data ND-60.203.2 EN

189

190 ABM USER MANUAL
An example of using ABM

9.9 A FORTRAN APPLICATION PROGRAM: AN EXAMPLE

This is an example of a FORTRAN program. The program uses the screen forms
from the sample COBOL application program on page 170.

Please study the application program along with the comments.

PROGRAM MENU
* * Additional declarations.
integer*2 idbname (4}

$INCLUDE DECDDI~MENU-F
$INCLUDE ASSDDI-MENU-F

¥ Open database
call ABDBOPN [isibasno,idbname]

* Ready realm. In the subschema 'MENU-F'
the realms are marked for doing ready realm
only.
call SRRLM (knrea, krealms, kumod, kpmod, dbstatus)
if ([dbstatus.1lt.0} goto 888

* *

MFLAG = 1
call DDINITE (MFLAG])

Initiate abm-focus

do while ([Rlnumber.ne.9)

* Get the picture from the formfile
cformfile = 'FORT-EXAMPLE-BOO'
call DDGTPIC (formfile,reftab,fcstatus)
if{fcstatus.ne.0) goto 888

* Read menunumber
citmsub{1]) = '+:RINUMBER*'
call DDRFLDS (reftab,mitemR1,mrecR1,fcstatus)
if(fcstatus.ne.0) goto 888

if (Rlnumber.eq.1} call MENU1
if {Rinumber.eq.2) call MENU2
if {Rinumber.eq.3) call MENU3
if (Rlnumber.eq.4) call MENU4

end do

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
An example of using ABM

888

999

call

call

goto
call

* Normal termination. Finish realms.
SFRLM (knrea, krealms, dbstatus)
if (dbstatus.lt.1) goto 888

* Close database.
ABDBCLS (0, idbname])

399
ERROR(fcstatus,dbstatus)

SUBROUTINE MENU1

$INCLUDE DECDDI-MENU-1F
$INCLUDE ASSDDI-MENU-1F

cfor
call

* Get the picture from the formfile
mfile = 'FORT-EXAMPLE-BOO'
DDGTPIC (formfile, reftab, fcstatus])
if(fcstatus.ne.0)} goto 888

* Loop as long as 'OK registration?’
S{top)

do while [R20K1.ne.'S'.and.R20Kl.ne.'s')

* Write message to the messageline
cmessage = '~: Please give unit type and number "'’
call DDWMSGE {message, fcstatus)

if(festatus.ne.0) goto 888

* Clear fields on the screen
citmsub(1) = '0:*'
call DDCFLDS (reftab, mitemR1, mrecRl, fcstatus)
if(fcstatus.ne.0) goto 888

* Read unit type and number:
citmsub{1} = '+:R1TYPE RINUMBER*'
call DDRFLDS {reftab, mitemR1l, mrecRl, fcstatus)
if(fcstatus.ne.0) goto 888

* Test if unit type = EX(it])
if [R1TYPE.eq. 'EX'.or.R1TYPE.eq. 'ex']) goto 999

is not

* Set low limits equal unit type and number

Find the specific record
LUNGRO1 R1TYPE
LUNGRO2 R1NUMBER
call DDFTCH (kiUNGRQ, kvUNGRO, dbstatus)

i

if (dbstatus.eq.1} then

* Write message to the message line
cmessage = '+: This unit is already in register !
call DDWMSGE (message, fcstatus)

if(fcstatus.ne.0) goto 888

Norsk Data ND-60.203.2 EN

[

191

182

888

999

ABM USER MANUAL
An example of using ABM

* Get record
citmsub(1]) = 'O:*'
call DDGET (0, itemsub, kitemUN, krecUN, dbstatus)
if[dbstatus.ne.1l) goto 888

* Transfer values from realm buffer
to picture record buffer
call DDTRNSF (kitemUN, krecUN, mitemR1l, mrecR1)

* Write record to the screen
call DDWFLDS (reftab, mitemR1l, mrecRl, fcstatus]
if(fcstatus.ne.0) goto 888

elseif {dbstatus.eq.0) then

* Clear the message line
call DDCMSGE (fcstatus)
if(fcstatus.ne.0) goto 888

* Read rest of the record
citmsub(1) = '-:R1TYPE RI1INUMBER™*'
call DDRFLDS (reftab, mitemR1, mrecRl, fcstatus)
if{fcstatus.ne.0) goto 888

* '0OK registration?’' Read OK field
citmsub{1l) = '0:*'
call DDRFLDS (reftab, mitemR2, mrecRZ, fcstatus)
if (fcstatus.ne.0) goto 888

if (R20Kl.eq.'Y' .or. R20Kl.eq.'y') then

* Transfer values from picture record buffer
to realm buffer
call DDTENSF (mitemR1, mrecR1, kitemUN, krecUN)

* Store record
call DDSTORE (itemsub, kitemUN, krecUN, dbstatus)
if(dbstatus.ne.1) goto 888
end if

elseif [(dbstatus.lt.0) then

goto 888

end if

call ERROR(fcstatus,dbstatus)

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 193
An example of using ABM

SUBROUTINE MENU2

$INCLUDE DECDDI-MENU-2F
$INCLUDE ASSDDI-MENU-2F

* Get the picture from the formfile
cformfile = 'FORT-EXAMPLE-BOO'
call DDGTPIC (formfile, reftab, fcstatus)
if(fcstatus.ne.0) goto 888

* Loop as long as 'OK registration?’ is not
* S(top)
do while (R20Kl.ne.'S'.and.R20Kl.ne.'s')

* Write message to the messageline

t [}

cmessage = ' ~: Please give unit type and number
call DDWMSGE [message, fcstatus])
if (festatus.ne.0) goto 888

* Clear fields on the screen
citmsub(1}) = '0:*'
call DDCFLDS (reftab, mitemR1l, mrecR1l, fcstatus)
if (fcstatus.ne.0) goto 888

* Read unit type and number:
citmsub{(1) = '+:R1TYPE RINUMBER*'
call DDRFLDS (reftab, mitemR1l, mrecR1l, fcstatus)
if(festatus.ne.0) goto 888

* Test if unit type = EX{it])
if (R1TYPE.eq. 'EX'.or.R1TYPE.eq. 'ex') goto 999

* Set low limits equal unit type and number
Find the specific record
LUNGRO1 RI1TYPE
LUNGRO2 = R1NUMBER

i

call DDFTCH (kiUNGRO, kvUNGRO, dbstatus]
if [dbstatus.eq.1) then

* This unit is in the register, read rest of
the record
citmsub{1) = '-:R1TYPE RINUMBER*'
call DDRFLDS (reftab,mitemR1,mrecRl,fcstatus)
if (festatus.ne.0) goto 888

* * 'OK registration?’ Read OK field
citmsub{1}='0:*"
call DDRFLDS (reftab,mitemR2,mrecR2,fcstatus)
if (fcstatus.ne.0)} goto 888

if {R20Kl.eqg.'Y' ' .or.R20Kl.eq.'y']) then
* Transfer values from picture record buffer

to realm buffer
call DDTRNSF (mitemR1,mrecR1l,kitemTR,krecTR)

Norsk Data ND-60.203.2 EN

194 ABM USER MANUAL
An example of using ABM

* ¥ Store record:
call DDSTORE (itemsub,kitemTR,krecTR,dbstatus)
if {dbstatus.ne.l) goto 888
end if

elseif (dbstatus.eq.0) then

¥ * Write message to the messageline
cmessage='+: This unit is not in the reg.! Try again!'"'
call DDWMSGE (message,fcstatus)
if(fcstatus.ne.0) goto 888

else
goto 888
end if

end do

goto 999
888 call ERROR(fcstatus,dbstatus)
999 return

end

SUBROUTINE MENU3

* * Additional declarations,
* Used as otext parameters in the calls
* DDGTEXT and DDGMSG.
* Note! The size must be declared with length
* 40 bytes.
integer*2 iyesno{20),menunumber {20)
character yesno*1 ,cmenunumber®1

equivalence (menunumber(1),cmenunumber), (iyesno(1),yesno]

$INCLUDE DECDDI-MENU-3F
$INCLUDE ASSDDI-MENU-3F

* * Get the picture from the formfile
cformfile = 'FORT-EXAMPLE-BOO'
call DDGTPIC (formfile, reftab, fcstatus)
if(festatus.ne.0) goto 888

100 continue
* Clear fields on the screen
citmsub{1) = '0:*'
call DDCFLDS (reftab, mitemR1l, mrecR1, fcstatus)
if(festatus.ne.0) goto 888

* Yrite message to the messageline

d [

cmessage = '-: Please give unit type and number
call DDWMSGE (message, fcstatus)
if(fcstatus.ne.Q) goto 888

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 195
An example of using ABM

* Read unit type and number:
citmsub(1) = '+:R1TYPE RINUMBER*'
call DDRFLDS (reftab, mitemR1l, mrecR1, fcstatus)
if{fcstatus.ne.0) goto 888

* Set low limits equal unit type and number
Find the specific record and get the record

values
LUNGRO1 = RITYPE
HUNGRO1 = RI1TYPE
LUNGRO2 = RINUMBER
HUNGRO2 = RINUMBER
citmsub(1) = '0:%’

call DDFTCGT (kiUNGRO, kvUNGRO, itemsub, kitemUN, krecUN,
& dbstatus)

if {dbstatus.eq.0) then
* Write message to the messageline
cmessage = '+: This unit is not in the register ! "'’
call DDWMSGE {message, fcstatus])
if(fcstatus.ne.0) goto 888

elseif (dbstatus.eq.1) then

* Remember temporary database key
option = O
tdbsri = 0
call DDFREMB (tdbsri,option,dbstatus)
if (dbstatus.ne.1l) goto 888

* Transfer values from realm buffer to
plicture record buffer
call DDTRNSF (kitemUN, krecUN, mitemR1l, mrecR1)

* Write record to the screen
call DDWFLDS (reftab, mitemR1, mrecRl, fcstatus)
if(fecstatus.ne.0) goto 888

* Write message to the messageline and read
the answer
cmessage = '+: Please give a menu number
call DDGMSGE [message,menunumber,fcstatus)
if(fcstatus.ne.0) goto 888

if [cmenunumber.eq.'1’] then
* Clear the messageline

call DDCMSGE {fcstatus])
if(fcstatus.ne.0) goto 888

Norsk Data ND-60.203.2 EN

186

&

ABM USER MANUAL
An example of using ABM

* Write a message in the given line and column
and read the answer
iline=24 ; icol=1 i
cmessage = '+: Do you really want to delete this record?
call DDGTEXT (message,iyesno,iline,icol,fcstatus)
if(fcstatus.ne.0) goto 888

if (yesno.eq.'Y'.or.yesno.eq.'y') then

* Sibas call. Remove the record and all
references to it if no records are connected
as members

option=1
call SRASE (tdbkey,option,dbstatus)

if (dbstatus.ne.1) then
* Write a message in the given line and column
and read the answer
cmessage='+:Track records connected, delete although?

call DDGTEXT (message,iyesno,iline,icol,fcstatus]
if(fcstatus.ne.0) goto 888

if (yesno.eq.'Y'.or.yesno.eq.'y'] then
* Erase the record and all member records in
the set occurrences
option=3
call SRASE [tdbkey,option,dbstatus)
if(dbstatus.ne.1) goto 888

end if
end if
end if
* Display a blank text string in given line
and column
cmessage=" '

ilength = 44
call FCWTXT {iline,icol,message,ilength,fcstatus)
if(festatus.ne.0) goto 888

elseif {cmenunumber.eq.'2') then

* Write message to the messageline
Press Carriage return when ready to modify
cmessage='+: Modify the record! Press CR '’
call DDGMSGE (message,otext,fcstatus)
if(fcstatus.ne.0) goto 888

* Read rest of the record
citmsub{1) = '-:R1TYPE RINUMBER"'
call DDRFLDS (reftab, mitemR1, mrecR1l, fcstatus)
if(fcstatus.ne.0) goto 888

* Transfer values from picture record buffer

to realm buffer
call DDTRNSF (mitemR1l, mrecR1, kitemUN, krecUN]

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
An example of using ABM

888

999

* Modify items in the record
citmsub(1) = '-:UNTYPE UNNUMBER*'
call DDMDFY {tdbkey,itemsub,kitemUN,krecUN,dbstatus)
if{dbstatus.ne.1) goto 888
end if

elseif (dbstatus.lt.0) then
goto 888

end if

* Write message to the messageline and read

the answer
cmessage='+: Maintenance of several records?
call DDGMSGE (message,iyesno,fecstatus)
if(fcstatus.ne.0) goto 888

[N}

if (yesno.eq.'Y .or.yesno.eq.'y') goto 100

goto 999
call ERROR{fcstatus,dbstatus])

return
end

SUBROUTINE MENU4

$INCLUDE DECDDI-MENU-4F
$INCLUDE ASSDDI-MENU-4F

* Get the picture from the formfile
cformfile="'FORT-EXAMPLE-BOO'
call DDGTPIC (formfile,reftab,fcstatus)
if(fcstatus.ne.0) goto 888

* Loop as long as 'Find tracks with a new
artist?' is not N(o).
do while [(R40K2.ne.'N’'.and.R40K2.ne.'n’')

* Write message to the messageline

' [

cmessage = -: Please give artist name
call DDWMSGE [message,fcstatus)
if(fcstatus.ne.0) goto 888

* Read artist name
citmsub{1) = '+:R1IARTIST*'
call DDRFLDS [reftab,mitele,mrech,fcstatus]
if(fcstatus.ne.0) goto 888

197

* Transfer values from picture record buffer

to realm buffer
call DDTRNSF [mitele,mrech,kitemTR,krecTR]

* Low limits = artist name read from terminal
Find first record between limits using given

key

Norsk Daeta ND-60.203.2 EN

198 ABM USER MANUAL
An example of using ABM

LTRART1 R1ARTIST
HTRART1 R1ARTIST
call DDFEBL (kiTRART,kvTRART,dbstatus)

if (dbstatus.lt.0) goto 888
if (dbstatus.eq.0)} then
* Write message to messageline
cmessage = '+: This artist name is not in the register'''’
call DDWMSGE (message,fcstatus)

if (festatus.ne.0) goto 888

elseif (dbstatus.eq.l) then
* * Count number of records found
norecords = 1
* ¥ Get the items in the record
citmsub{1} = '0:*'
call DDGET (tdbkey,itemsub,kitemTR,krecTR,dbstatus)
if [dbstatus.lt.0) goto 888

* Transfer values from realm buffer
to picture record buffer
call DDTRNSF {kitemTR,krecTR,mitemR2,mrecR2])
* * Put field values into the total picture
* buffer
call DDPUTRC (reftab,mitemR2,mrecR2,fcstatus)
if(fcstatus.ne.0) goto 888

Loop as long as records with given artist
name is found in the database (dbstatus=1)
do while {dbstatus.eq.1)

* * Sibas call. Find next record in search
region
call SRNIS (tdbkey,tdbsri,dbstatus)
if {dbstatus.lt.0) goto 888

if (dbstatus.eq.1) then
* Count number of records found
norecords = norecords + 1

* Get the items in the record
citmsub(1) = '0:*'
call DDGET [tdbkey,itemsub,kitemTR,krecTR,dbstatus)
if [dbstatus.lt.0) goto 888

* Transfer values from realm buffer
to picture record buffer
call DDTRNSF (kitemTR,krecTR,mitemR2Z,mrecR2)

* The size of the total picture record buffer
is limited to 600 words (16 bit). It can be
changed (see appendix].

Maximum of R2-records is here 600/29 = 30

* ¥ %

*

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 199
An example of using ABM

if [norecords.gt.30) then
* Write message to the messageline
cmessage='+:The total picture buffer must be increas
&ed! "'
call DDWMSGE (message,fcstatus)
if(fcstatus.ne.0) goto 888

goto 100

end if

* Count line record number
line = line + 1

* Puts field values into the total picture
* buffer
call DDPUTRC (reftab,mitemR2,mrecR2,fcstatus)

end if
end do
* * Write records from the total picture buffer
* to the screen It is only possible to list 6
* record occurences to the screen in this
* example
* * Loop for all record occurences
do for line = 1, norecords
* * Save occurence number LINE in the total
* picture buffer
itemporaryline = line

* Get field values from the total picture
buffer
call DDGETRC (reftab,mitemR2,mrecR2,fcstatus)
if(fecstatus.ne.0) goto 888

* Calculate correct occ. number LINE on the
screen
line = itemporaryline - iflag

* Write record to the screen
call DDWFLDS (reftab,mitemR2,mrecR2,fcstatus])
if{fcstatus.ne.0) goto 888

* Count number of records written to the
screen
nowritten = nowritten + 1
if {nowritten.eq.6} then
* The screen is full, reset line parameter
and set new flag value
line = 1
iflag = iflag + 6

'List several tracks, if any?' Read OK field
citmsub(1) = '0:*"
call DDRFLDS (reftab,mitemR3,mrecR3,fcstatus)
if (fcstatus.ne.0) goto 888

Norsk Data ND-60.203.2 EN

200 ABM USER MANUAL
“An example of using ABM

if (R30Kl.eq.'N'.or.R30Kl.eq.'n') then

* * Do not want to continue listing several
* tracks
goto 100
else
* * Clear all occurences of this record
* (noline=0)

noline = O
call DDCFLDS (reftab,mitemR2,mrecR2,fcstatus)
if(fcstatus.ne.0) goto 888

* * Reset noline and reset number
* of records written to the screen
noline = 1 ; nowritten = 0
end if
end if
* * Reset occ number LINE in the tot pic buffer
line = itemporaryline
end do
end if
100 continue
* * Reset line, flag and number of records
* written
line = 1 ; iflag = 0 ; nowritten = O
* * Clear field
citmsub(1} = '0:*'

call DDCFLDS (reftab,mitemR3,mrecR3,fcstatus])
if(fcstatus.ne.0) goto 888

* * 'Find tracks with a new artist?’
* Read OK field
call DDRFLDS (reftab,mitemR4,mrecR4,fcstatus)
if(fecstatus.ne.0) goto 888

if (R40K2.eq.'Y' .or.R40K2.eq.'y']) then

* * Yes. Clear fields
call DDCFLDS (reftab,mitemR1,mrecRl,fcstatus)
if{fcstatus.ne.0) goto 888

* Clear all occurences of this record
{(noline=0])
noline = 0
call DDCFLDS (reftab,mitemR2,mrecR2,fcstatus)
if{fcstatus.ne.0) goto 888
* Reset number of occurences
noline = 1

else
goto 999

end if

end do

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
An example of using ABM

888

999

goto 999
call ERROR(fcstatus, dbstatus)

continue
return
end

SUBROUTINE ERROR (fcstatus,dbstatus])
INTEGER*2 fcstatus, dbstatus, idbname(4)

* Display error information

if (fcstatus.ne.0) then
call DDERMSG (fcstatus)
else
call DDERMSG (dbstatus)
end if

* Close database
call ABDBCLS (0,idbname)

stop
end

Norsk Data ND-~60.203.2 EN

201

202 ABM USER MANUAL
An example of using ABM

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 203

APPENDIX

o DISPLAY CODE

o STORAGE CODE

o DATA DICTIONARY INFORMATION

o ROUTINES IN ABM-SIB-LIBRARY

o ROUTINES IN ABM—FOCUS—LIBRARY

o ROUTINES IN ABM-UTILITY-LIBRARY
» OPERATING THE ABMBASE

o DATA TRANSFER BETWEEN APPLICATION
ROUTINES

o COMPILATION ERRORS
o HOW TO LOAD AN ABM APPLICATION
o ERROR MESSAGES

Norsk Data ND-60.203.2 EN

ABM USER MANUAL

Display code

APPENDIX A

DISPLAY CODE

205

The DISPLAY

EXAMPLE:

code

follows
There are, however, a few extensions.
strings in an item when it is printed or displayed.

closely the COBOL syntax for editing pictures.

These extensions can

ITEM CONTENT

DISPLAY CODE

DISPLAYED AS

11 char
11 char
11 char
11 char
5 char
5 char
5 char
5 char

5 char

integer
@11 char
11 char

"Bill Hansen'
"Bill Hansen"
“Bill Hansen"
"Bill Hansen"
"10000"
"10000"
“10000"
" 200"
"10000"

-200
"Bill Hansen"
"Bill Hansen"

KHXKXKKXKXKKX

KEXKKK

x{12)

"Mr. "x(12)
z2zZz7Z.z7
+ZZZZ7 .22
"Kr "zzzzz.zz
+22222.72
896999.,99-~
89999 ,99-
>x(6)

<x(6)

"Bill Hansen'
"Bill H"
“Bill Hansen

“Mr. Bill Hansen

"10000.00"
“+10000.00"
“Kr 10000.00"
" 200.00"
*10000.00 "
"00200.00-"
! Bill H"
"Bill H !

¢ These options are only

Norsk Data ND-60.203.2 EN

allowed in the SCREEN-FORHMs.

insert text

206 ABM USER MANUAL

Norsk Data ND~60.203.2 EN

ABM USER MANUAL 207
Storage code

APPENDIX B
STORAGE CODE

The storage code indicates how data is stored on disk. The storage code is
required for data computation and converting one field to another.

In many cases, a storage code can be generated automatically from a display
code.

Different programming languages and software packages may not able to
handle all types of storage code. Remember this when choosing a storage
code for data items.

STORAGE CODE
DICTIONARY SYNTAX COBOL FORTRAN-77 DISPLAY CODE
ALPHANUMERIC(12) PIC X(12) CHARACTER*12)9.0.0.0.0.0.0.9.0:9.0.¢
equivalenced
with INTEGER{)
INTEGERZ2 PIC S9999 COMP INTEGER™*2 ~-2229
INTEGER4 PIC S9(8) COMP INTEGER*4 ~ZLZ222279
UNPACKED DEC(5,2) PIC S99999V99 eN.A. -22222 .22
PACKED DEC(5,2} PIC S5Z2Z22Z2.2Z COMP-3 eN.A. -22222 .22
PACKED DEC(12,2) PIC SzZ(12}.22 oN.A. -Z2(12).22
COMP-3
eN.A. = No arithmetic possible on this storage code.

Norsk Data ND-60.203.2 EN

208 ABM USER MANUAL

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
Data Dictionary information

APPENDIX C
DATA DICTIONARY INFORMAT

209

ION

The DATA DICTIONARY will ¢
The data contained in the Da
programs such as Query La
Programs and Program Generato

The Data Dictionary informati
DATABASE INITIATE
DATABASE SYSTEM-REALM
DATABASE REALM
DATABASE ITEM
DATABASE SET
DATABASE GROUP

DEFINING THE DATA DICTIONARY

The following is an explanati

PURPOSE

HEADING

DISPLAY
{for data items only)

STORAGE
{for data items only)

ontain descriptions of all data in a database.
ta Dictionary can also be used by other
nguages, Report Generators, Screen Handling
rs.

on is set up in the following commands:

on of the Dictionary parameters:

This information will be used as documentation
of the database unit. It can also be wused as
HELP information while using the database
online.

This 1is wusually a short text indicating the
context of the database unit. It can also be
used, for instance, as a leading text in
screen displays or as report headers.

This 1indicates how the stored data should be
edited. It can also be used by a screen
handier or a report writer for formatting
information.

This information allows programs to convert
data correctly from a stored bit pattern to a
readable version and vice versa.

Norsk Data ND-60.203.2 EN

210 ABM USFD MAMUL.

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
Routines in ABM-SIB-LIBRARY

APPENDIX D
ROUTINES IN ABM-SIB-LIBRARY

Routines for Communication with the Application Database.

Routines in ABM-SIB-LIB COBOL FORTRAN
DDACCD - ACCUMULATION of item values. 99 85
DDFEBL - Find FIRST record between limits using given key. 195 85
DDFLBL - Find LAST record between 1imits using given key. |95 85
DDFORG - FORGET, nullify the effect of a REMEMBER call. 100{ 87
DDFREMB - FORGET old and REMEMBER a new record or a search [100]| 87
region.
DDFTCGT ~ FIND a specific record and GET the record value. |96 86
DDFTCH - FIND a specific record. _ 95 85
DDGET - GET the relevant record, items or group items. 97 88
DDGETN - GET (read) a number of records in a search region|98 90
DDGIXN - GET (read) a number of index keys. 98 90
DDINKEY - Reset search regions to maximum. 96 89
DDINSR - INSERT an index key of a record. 97 89
DDMDFY - MODIFY values of items or group items in a record|97 88
DDREMO - REMOVE a manually maintained index key. - |97 89
DDSTORE - STORE a (part) of a record in its realm. 97 88
DDTRNSF - TRANSFER of values between value buffers 99 86
(for FORTRAN applications).

Norsk Data ND-60.203.2 EN

212 ABM USER MANUAL

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
Routines in ABM-FOCUS-LIBRARY

APPENDIX E
ROUTINES IN ABM-FOCUS—LIBRARY

213

Routines for Communication with Screen Forms.

The ABM-FC-LIBRARY contains the following routines: COBOL FORTRAN

DDCFLDS
DDCLAT
DDCLFI
DDCLMR
DDCMSGE
DDCOPTF
DDERROR

DDGETRC
DDGMSGE

DDGTEXT

DDGTPIC

DDINITE

DDOPFI

DDPUTRC
DDRFLDS
DDSETAT
DDSETHR
DDWFLDS
DDWMSGE

Clears fields/records or parts of records.
Clears attributes.

Closes an opened file.

Clears "must-read" for fields/records.

Clears a message line.

Copies a displayed picture to file.

Decodes the error status and returns an

error text.

Gets field values from the total picture buffer
Writes a message to a message line and reads
the answer.

Writes a message in a given line or column and
reads the answer.

Gets a picture from a file, displays it and
makes it ready.

Initiates and terminates the SCREEN part of

a program.

Opens a SINTRAN file for Write, Append access.
Puts field values into the total picture buffer
Reads fields/records or parts of records.

Sets attributes.

Sets "must-read" for fields/records.

Writes fields/records or parts of records.
Writes a message to the message line.

Norsk Data ND-60.203.2 EN

121
127
128
125
128
127
130

124
130

129
129
121

127
124
122
126
125
123
128

106
106
106
107
107
107
114

108
108

108

109

109

110
110
111
112
113
112
113

214 ABM USER MANUAL

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 215
Routines in ABM-UTILITY-LIBRARY

APPENDIX F
ROUTINES IN ABM-UTILITY-LIBRARY

The ABM-UTILITY-LIBRARY contains the following routines:

BDBCLS - Closes the database. 137
BDBOPN - Opens the database. 137
DDERMSG - Gives an error message. 136

Norsk Data ND~60.203.2 EN

216 ABM USER MANUAL

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 217
Operating the ABMBASE

APPENDIX G
OPERATING THE ABMBASE

It is extremely important when using ABM, to have a fixed operation
strategy. Take orderly backups and use mode files (or user-environment
menu) that you know are free from errors. To avoid losing data and
causing inconsistent 1internal structures in the database, always do a
recovery when the machine stops or whenever SIBAS is aborted.

This appendix is an extract from the SIBAS II OPERATOR MANUAL. It provides
you with some safe operating routines so you can avoid probiems running
ABM. For further information, see SIBAS II OPERATOR MANUAL.
In this appendix you will find descriptions of how to:

o Start ABMBASE with BEFORE-IMAGE-LOG and ROUTINE-LOG.

@ Start ABMBASE, normal procedure,

e Take backup.

L

Verify the structure of the ABMBASE.

L]

Start ABMBASE with recovery from backup and R-LOG.

Norsk Data ND-60.203.2 EN

218 ABM USER MANUAL
Operating the ABMBASE

START ABMBASE WITH BEFORE-IMAGE-LOG AND ROUTINE-LOG

Before Image Log {(BIM-LOG)

BIM-L0OG must be initiated.

The BIM-LOG is a part of the database and resides on the schema os-file
{with filename <«databasename:DATA>). Create the schema file as a
contigous file with a size at least equal to the maximum BIM-LOG sjze.

Routine-log (R-LOG)
For greater security, run Routine-log {R-LOG} as well.

The R-LOG 1is a contigous file (with file name <databasename:L0GG>) which
contains the DML calls/commands given to SIBAS and the input/output data
to/from SIBAS. (Bcreate-file <databasename:LOGG>, size where the size
depends on how many SIBAS calls are performed, and how often backup is
taken.)

The R-LOG must always be on a different disk from the database files in
case of a disk-crash.

The ABM database ABMBASE must be assigned to a free SIBAS process before
use. This 1is achieved through the START command 1in the interactive
SIBAS-SERVICE module. Enter the user RT or SYSTEM 1in order to START
(i.e. assigned to a free SIBAS process).

NOTE: The following points should be kept in mind:

© User RT must have been created as a FRIEND (@CREATE-FRIEND RT)
and given Read/Write/Append access to the database files.
(@SET-FRIEND ACCESS,RT,RWA)

@ The database files must be existing and closed before the START
command will work. SIBAS must be in READY state before the START
command is given.

® The database must be in RUNNING state before applications can
use it. [Give the RUN command.)

Norsk Data ND~60.203.2 EN

ABM USER MANUAL 219
Operating the ABMBASE

Example:

(Everything that YOU type is shown underlined.)

Enter user RT or SYSTEM:

@SIBAS-SERVICE +d

SIBAS I I, versiontE
SIBAS-SERVICE, revision 10, XMSG used for remote communication.

Explanation ? N«
Status for all SIBAS-processes ? N«
SYSTEM NUMBER (00-11=LOCAL, x00-x11=REMOTE, x=DB-machine no):l«l

SIBAS-SYS-NO: 1, SIBAS-500 STATE: READY
>>INITIATE-LOG«d

OWNER:DIA-SYS«

DATABASE NAME : ABMBASE «
INIT-R-LOG
RESET-R-LOG
REMOVE-R-LOG
CONNECT-R-LOG
INIT-BEFORE-IMAGE-LOG
REMOVE-BEFORE-IMAGE-L.0G

O\U"lb(ﬁ)l\)b—*

CODE: 1+
LOG-DTRECTORY, 4 CHAR.:P-TW<l
MAX-S1ZE-1K-PAGES
WHEN CODE=5: BETWEEN APPROX. 504 AND 4096
WHEN CODE=1: BETWEEN 2 AND 30000

SIZE:1000
2: DIRECT-R-LOG WHEN CODE=1
3: CIRCULAR-R-LOG WHEN CODE=1
.+ C-P TRIGGER-SIZE WHEN CODE=5

R-LOG-TYPE or C-P TRIGGER-SIZE:2«!
INITIATION MAY TAKE TIME -WAIT-

Norsk Data ND-60.203.2 EN

220 ABM USER MANUAL
Operating the ABMBASE

SIBAS-SYS-NO: 1, SIBAS-500 STATE: READY
>>INITIATE-LOG
OWNER:DIA-SYS<J
DATABASE-NAME : ABMBASE <
: INIT-R-LOG
RESET-R-L0OG
: REMOVE-R-LOG
CONNECT-R-LOG
INIT-BEFORE-IMAGE-LOG
REMOVE-BEFORE-IMAGE-LOG

DTS W

CODE : 5+
LOG-DTRECTORY, 4 CHAR.:P-TH«l
MAX-SIZE-1K-PAGES
WHEN CODE=5: BETWEEN APPROX. 504 AND 4096
WHEN CODE=1: BETWEEN 2 AND 30000

SIZE:800+«!
2: DIRECT-R-LOG WHEN CODE=1
3: CIRCULAR-R-LOG WHEN CODE=1
: C-P TRIGGER-SIZE WHEN CODE=5

R-LOG-TYPE or C-P TRIGGER—SIZE:Q:i

SIBAS-SYS-NO: 1, SIBAS-500 STATE: READY
>>START +
OWNER:DIA-SYS<!
DATABASE-NAME : ABMBASE «

SIBAS-SYS~NO: 1, SIBAS-500 STATE: DBA
>>RUN !
NEW RUNFLAG ?:E:i

SIBAS-SYS-NO: 1, SIBAS-500 STATE: RUNNING
>>DATABASE-STATUS «J
BEFORE IMAGE LOG ACTIVE
INTERFACE * LOG ADDRESS * TIME
STATISTICS * BLOCK WORD * BASIC-UNIT HOUR/MIN./SEC. DAY/MONTH/YEAR

CURRENT . 1 004 * 41 10:42:01 30.01. 1986
INITIATION * 1 004 * 8 10:41:58 30.01. 1986
LAST OPEN = 0 000 % 0 00:00:00 00.00. 0
LAST CLOSE * 0 000 * 0 00:00:00 00.00. 0
LAST CHECK * 0 000 * 8 10:41:58 30.01. 1986
FILE SIZE * 2000 LOGGED CALLS = 0 LOG-TYPE: DIRECT
DATABASE (DIA-SYS)ABMBASE IS OPENED BY 0 USERS

TOTAL NUMBER OF SIBAS CALLS EXECUTED SINCE START: 9

RUNFLAG 000000B,0FLOG NOT ALLOWED

SIBAS-SYS-NO: 1, SIBAS-500 STATE: RUNNING
>O>EXITd

- EXIT -

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 221
Operating the ABMBASE

START ABMBASE, NORMAL PROCEDURE

Normal start of the ABMBASE. This procedure uses RECOVER to reprocess the
database to achieve better security.

Example:
(Everything that YOU type is shown underlined.)
Enter user SYSTEM

@SIBAS-SERVICE «!

STBAS 1.1, versione€E
SIBAS-SERVICE, revision 10, XMSG used for remote communication.

Explanation ? N«
Status for all SIBAS-processes ? N« :
SYSTEM NUMBER (00-11=LOCAL, x00-x11=REMOTE, x=DB-machine no);;:{

SIBAS-SYS-NO: 1, SIBAS-500 STATE: READY
>>START «J
OWNER:DIA-SYS <
DATABASE-NAME : ABMBASE «J

SIBAS-SYS-NO: 1, SIBAS-500 STATE: DBA
>>RECOVER <4

SIBAS-SYS-NO: 1, SIBAS-500 STATE: RECOVERY
>>STANDARD-REPRQ «
ROLL-BACK TO LAST CHECKPOINT ? :YES<d
PASSWORD: , , «

s 3

REPROCESSING WILL NORMALLY TAKE SOME TIME - WAIT -

REPROCESSING/LISTING STOPPED, REASON:
END OF LOG FOUND

SIBAS-SYS-NO: 1, SIBAS-500 STATE: RECOVERY
>>FINISH«

WILL YOU REALLY FINISH RECOVERY Y
SIBAS-SYS-NO: 1, SIBAS-500 STATE: DBA

>>FORCE-CLOSE <!
OCTAL RUN-ID, (EXAMPLE 40106B), OR -1 IF ALL USERS:-1+«l

>>RUN

SIBAS-SYS-NO: 1, SIBAS-500 STATE: RUNNING
S>EXIT

- EXIT -

Norsk Data ND~60.203.2 EN

222 ABM USER MANUAL
Operating the ABMBASE

TAKE BACKUP

Take regular backup of the ABM catalog and your application system.

NOTE:
Remember to take backup of the database files (ABMBASE:DATA,
ABMOSFI:DATA, ABMBASE:LOGG] and your own form files [:FABM files).

To avoid inconsistent databases, take backup at regular intervals.
The database must always be stopped before backup is taken. (Stop the

database or the machine). The database 1is stopped by giving the STOP
command in the SIBAS-SERVICE module.

Backup procedure:
o Enter the SIBAS-SERVICE module and use the command SET-SIBAS-UNAVAILABLE.
e Broadcast a message.

e Check that the database is closed (use the command DATABASE-STATUS in the
SIBAS-SERVICE module).

e Use the STOP command to stop SIBAS.
e Log in as the user who owns the database and run a mode file to VERIFY
the database. If the verification indicates error in the database,

perform START ABMBASE WITH RECOVERY FROM BACKUP AND R-LOG.

e If the wverification shows that the database 1is okay, carry out the
backup.

e RESET the R-LOG !!
Use the command INITIATE-LOG with code 2.

e Open the database for update and close the database.

e Use the START command to start SIBAS and the RUN command to set SIBAS in
running state.

e SET-SIBAS-AVAILABLE to make it available for users.

e Broadcast a message.

Norsk Data ND~-60.203.2 EN

ABM USER MANUAL 223
Operating the ABMBASE

VERIFY THE STRUCTURE OF THE ABMBASE

To VERIFY a database means to check and see if the internal database
structure is correct. Run a database verification before taking the backup
copy to avoid making a copy of an erroneous database.

Enter RT and stop ABMBASE.
Enter user DIA-SYSTEM.
@SIB2~-DBM<!

Explanation ? NO+J

Interactive ? NO«J
Input-file : TERMINAL <«

List-file : _VERIFIED:SYMB" «J
START ABMBASE . «J
READY ALL. <l

FREE-SPACE-STAT. «J

VERIFY MODE READ-ONLY. <
VERIFY PAGE-LINK DATABASE. <
VERIFY INDEX DATABASE . <!
VERIFY SET DATABASE. o]
EXIT.«d

The result is found in the file VERIFIED:SYMB

If the database verification gives error messages, reprocess the R-L0G
corresponding to the backup. (Start ABMBASE with recovery from backup and
R-1L0G.)

NOTE:

For those using SIBAS version E or an older version:

If you have subfunctions with no connection to a form or no connection

to a subschema, you will get a message when doing 'VERIFY SET DATABASE'.
The message says that 'number of records read via set does not correspond
to number of records read in physical order'.

The difference between members read in physical order and those read via
set is equal to the number of subfunctions wich do not have connections

to both a form and a subschema.

You can ignore this message.

NOTE:

Do not use the command "VERIFY MODE REGENERATE". The ABM catalog version
A and B contains three manually maintained sets, which will be
completely disconnected by this command.

Norsk Data ND-60.203.2 EN

224 ABM USER MANUAL
Operating the ABMBASE

START ABMBASE WITH RECOVERY FROM BACKUP AND R-LOG

This should only be done if the database verification indicates error in
the database, or if there has been a disk crash. Use the R-L0OG to update
the backup files.

Example:

e Enter user DIA-SYSTEM

e Install the backup

e Enter user SYSTEM

@SIBAS-SERVICE+!

e Perform the same commands as shown on page 221 with one exception:
for "ROLL-BACK TO LAST CHECKPOINT?", answer NO<J,

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 225
Data transfer between application routines

APPENDIX H
DATA TRANSFER BETWEEN APPLICATION ROUTINES

In this section we will describe the possible ways of transferring data
between a program and a subroutine (or between two subroutines) where both
have generated INCLUDE/COPY files. In other words, we will describe data
transfer between two subfunctions in ABM.

Data may be transferred as variables in a parameter 1ist.

DATA TRANSFER For FORTRAN, 1local variables must be declared in the

IN FORTRAN: called routine, because variables used in an
equivalence cannot be used as formal parameters in a
subroutine.

Values 1in 1input parameters must be transferred from
these formal parameters to the variables generated in
the INCLUDE-files at the start of the subroutine.

DATA TRANSFER In COBOL, this will be no problem. You can use the

IN COBOL 0l-level as a parameter in a subroutine and use COPY on
the whole area. The use of EXPORT/IMPORT is also a
possibility.

Data may be transferred by transferring the involved
item list, field name 1ist and value buffers as
parameters in the call. The called routine gets the
values by using the routine DDTRNSC from the parameters
to its own 1ists and value buffers.

Data may be transferred through the picture. If both
routines use the same picture, the routine DDGETRC may
be wused to transfer data from the common area storing
the complete picture to the local buffers in the called
routine.

Norsk Data ND~60.203.2 EN

226 ABM USER MANUAL

Norsk Data ND~60.203.2 EN

ABM USER MANUAL
Compilation errors

APPENDIX 1

227

COMPILATION ERRORS

Compilation errors that might occur:

Too many local variables (FORTRAN system limitation).

Illegal equivalence:

Too many variables generated in the INCLUDE file i.e.
the picture and subschema contain too many variables.

Solution:

Sptit the program in two (for example, a program and a
subroutine) each having its own subschema or put a few
of the generated arrays into a common area.

The same variable name is used for two or more
variables. That 1is, one variable is equivalenced into
more than one place in the value buffer.

Normally the field definition in the picture is not
unique, and the field definition for one of the fields
should be changed.

Illegal COBOL declarations:

If, for example, the field definition in the picture is
not wunique, this will result 1in double {or more)
defined wvariable names that Tlater on can not be
referred to in & unigue way. The COBOL compiler will
give a warning only if you try to refer to one of
these,

The solution 1is to go back and redefine one (or more)
of the fields involved.

Norsk Data ND~60.203.2 EN

228 ABM USER MANUAL

Norsk Data ND-60.203.2 EN

ABM USER MANUAL 229
How to load an ABM application

APPENDIX J
HOW TO LOAD AN ABM APPLICATION

Below is an example loading an ABM application on ND-100:

Bbrf-1inker

*prog-file "<name-of-application>”

*1oad ABM-FC-BLOCK % Start by loading ABM-FC-BLOCK which
% contains some common variables used
% by ABM itself.

*load <the application programs»

*Toad ABM-UTILITY-LIBRARY % Contains some special routines, such
% as DDERMSG.
*Toad ABM-SIBAS-LIBRARY % ABM interface to Sibas.
*load SIBAS-LIBRARY
*Toad ABM-FOCUS-LIBRARY % ABM interface to Focus.
*load FOCUS-CODE % Part of Focus library containing code.
*J1oad FOCUS-DATA % Part of Focus library containing data.
*Toad COBOL-LIBRARY % If the application is written in
% COBOL.
*.OAD FORTRAN-LIBRARY % The ABM interface is written in

% FORTRAN, so this library has to be
% loaded even when your application
% is written in COBOL.

*exit

Loading an ABM application on ND-500:

Linkage Loader gives you several possibilities for loading, but the
simplest way is to load everything on one domain.

B1linkage-loader

*set-domain "example”

*open-seg "example”,,,

*Toad ABM-FC-BLOCK

*load <the application programs>
*load ABM-UTILITY-LIBRARY

*1oad ABM-SIBAS-LIBRARY
*FORCE~SEGMENT-LINK ()SIBAS-LIBRARY
*FORCE-SEGMENT-LINK ()SIBAS-MESSAGE
*LOAD ABM-FC-LIBRARY

*L 0OAD FOCUS-CODE

*LOAD FOCUS-DATA

*LOAD COBOL-LIBRARY

*LOAD FORTRAN-LIBRARY

*EXIT

If you want to use TRUE «1> , you ought to compile ABM-FC-LIB with
“conditional compiling”, with the T flag. You can then use TRUE's broadcast
system {(listen to broadcast).

Do not load the ABM-FOCUS libraries before the SIBAS libraries (ABM-SIB-LIB
and SIBAS-LIB) are loaded. ”

<1> Transaction User Environment

Norsk Data ND-60.203.2 EN

230 ABM USER MANUAL
How to load an ABM application

Norsk Data ND~60.203.2 EN

ABM USER MANUAL 231
Error messages

APPENDIX K
ERROR MESSAGES

This appendix contains error messages with standard error codes (SEC) from
the ABM-FC-LIB and ABM-SIB-LIB routines. (See the FOCUS reference manual
and the SIBAS user manual for other SEC's).

SEC OCTAL: ERROR MESSAGE AND EXPLANATION:

16601 Error from ABM error handling routines.

Calling DDERROR or DDERMSG with a wrong parameter or after a
successfully executed DD-call.

16602 Unknown form name.

The form name given in the reference table does not match the
form name used in DDGTPIC.

16603 Trying to use too many forms at the same time.

16604 NOLINE parameter out of range.
You have probably forgotten to reset the NOLINE parameter
after the last 0D-call.

16605 LINE parameter out of range.

You have probably forgotten to reset the LINE parameter after
the Tast DD-call.

16606 NOLINE parameter too large.
The number of record occurences for this record is not that
large.
16607 Invalid message type.
The message has to start with the bytes "+:", "0:" or "-:".
16610 I17egal termination of message.

The message is too long or not terminated by an "'".

Norsk Data ND-60.203.2 EN

232

16611

16612

16613

16614

16615

16616

16617

16620

16621

ABM USER MANUAL
Error messages
Too many items in result-item-list or illegal termination.
You have probably specified too many items in your item-list.
Try to use the "-:" variant instead of the "+:".
The termination character "*" can be missing or wrongly
ptaced.
Result-item-T1ist is empty.
No match on field or item names is found. Check that you are
working with the correct record.
Subitem-Tist is not a subset of total-item-list.
You have specified items/fields that are not part of the
specified record. See the ASSDDI- or ASSDDC- files for the
right item/field names.

I[17egal start word in subitem-list.

The subitem 1ist has to start with the bytes "+:", "0:"

or -:

Subitem-1list is empty.

The specification "+:*" or "-:*" is not allowed.

Too long datarecord for result-item-1ist.

The maximum data value buffer in ABM-SIB-LIB calls is 256
16-bit words.

ICODE parameter in DDFREMB/DDFORG out of range.

See the allowed parameter values in the description of the
routines.

IT11egal or unknown type of accumulation.

From the DDACCD call.

IT1egal values in set attribute.

Unknown or illegal value in the field attribute value to the
DDSETAT call.

Norsk Data ND~60.203.2 EN

ABM USER MANUAL
Index

ABDBCLS .

ABDBOPN .

ABM
command fields
command sequence
HELP menu
how to use
introduction
modules . co
module dependencies .
navigation in screen
object schema
pictures .
source schema .
start .
stop
use . Co .
writing programs

application COBOL .

area
command .
field .
HOME . .

ASSEDI file .

assignments .

backup

BIM-1.0G .

COBOL
application .
communication .
COPY elements .
program structure .
subitem .
syntax

Index

picture

COBOL application example .

COBOL program structure .
code

display .

storage .
command areas

commands data description .

commands for screen forms
command seguence in ABM .

communication SIBAS FOCUS

compilation errors
confirmation of schemas .
connection database form
conventions in naming .
COPY-GEN
COPY elements COBOL .
COPY file example .
current record
data

description example .

Norsk Data ND~60,203.2 EN

233

135.
135.

18.
18.
18.
47.
43.
217.
218.

50.
95.
50.
76.
7.
205.
170.
76.

205.
207.
18.
21.
53.
15.
18.
227.
38.
64.
20.
43.
50.
161.
59.

142.

234

dictionary

model example .
model implementation
transfer

transfer between programs .

DATA-DESCRIPTION
database
example . .
form connection .
group .
initiation
item .
maintenance .
os-file .
parameters
password
realm .
set .
sysrealm
data description
commands
names .
DBGROUP .
items .
DBINITIATE
DBITEM
DBOSFILE
DBREALM .
DBSET .
member
DBSYSREALM
DDACCD

DDC~item-Tist .

DDC-select
DDCFLDS .

DDCLAT
DDCLFI
DDCLMR
DDCMSGE .
DDCOPTF .

DDERMSG .
DDERROR .

DDFEBL

DDFLBL

Norsk Data ND~-60.203.2 EN

ABM USER MANUAL
Index

209.
142.
143.
225.
227.
21

141.
64.
27 .
22.
26.
65.
23.
42.
40.
25.
29.
24.

21.

20.

27, 28.

28.

22.

26.

23.

25.

29.

29.

24.

83-85, 93, 94,
211, 232.

17.

77.

106, 174, 177,
180, 188, 189,
191, 193, 194,
200, 213.

106, 127, 213.
213.

107, 125, 213.
107, 128, 175,
178, 192, 195,
213.

105, 107, 110,
119, 127, 213.
135.

105, 114, 119,
130, 131, 213.
83, 85, 89, 93,
96, 185, 198,
211.

83, 85, 89, 93,
96, 211.

ABM USER MANUAL
Index

DDFORG
DDFREMB .
DDFTCGT .

DDFTCH

DDGET .

DDGETN

DDGETRC .

DDGIXN

DDGMSGE .
DDGTEXT .

DDGTPIC .

DDINITE .

DDINKEY .

DDINSR
DDMDFY

DDOPFI
DDPUTRC .

DDREMO .
DDRFLDS .

Norsk Data ND-60.203.2 EN

235

83, 87, 93, 100,
211.

83, 87, 93, 100,
181, 195, 211.
83, 93, 180,
195, 211.

83, 85, 86, 89,
93, 96, 131,
174, 178, 191,
193, 211.

83, 86, 88, 90,
93, 96-98, 136,
176, 185, 186,
192, 198, 211.
83, 90, 93, 98,
211.

108, 110, 111,
122, 124, 187,
199, 213.

83, 90, 93, 98,
211.

105, 108, 119,
181-183,
195-197, 213.
105, 108, 119,
129, 130, 181,
182, 196, 213.
109, 121, 129,
172, 174, 177,
180, 184, 190,
191, 193, 194,
197, 213, 231.
105, 109, 1189,
121, 172, 190,
213.

83, 85, 89, 93,
95, 165, 211.
83, 89, 93, 211.
83, 88, 93, 97,
183, 197, 211.
167, 110, 127,
213.

110, 124, 186,
187, 198, 199,
213.

83, 89, 93, 211.
105, 111-114,
119, 122, 123,
125, 131, 136,
172, 174, 175,
177, 178, 180,
182, 185, 187,
188, 190-193,
195-197, 199,
200, 213.

236

DDSETAT .
DDSETMR .

DDSTORE

DDTRNSC .

DDTRNSF
DDWFLDS .

DDWMSGE .

DECDDI file .
declarations
default values .
deletion of functions .)
dependencies of ABM modules .
description routine .
description of data .
display code
EDITOR
elements

COBOL .

COPY .
errors compilation
error messages o
example of COBOL application
example of COPY file .
example of database .
example of data model

exampie of FORTRAN application

example of INCLUDE file .
example of report .
example of using ABM
EXECUTE
EXIT
field
area .
attributes
heading .
occurrences .
0K
purpose .

Norsk Data ND-60.203.2 EN

ABM USER MANUAL
Index

106, 112, 126,
127, 213.

107, 113, 125,
213.

83, 88, 93, 97,
175, 178, 192,
194, 211.

83, 86, 93, 97,
123, 175, 176,
178, 181, 183,
185, 186, 225.
83, 86, 88, 99,
112, 192, 193,
195-198, 211.
112, 123, 176,
181, 187, 192,
195, 199, 213.
113, 128, 174,
175, 177, 179,
180, 183, 185,
186, 189, 191,
193-195,
197-199, 213.
47.

43.

42.

30.

7.

83, 93.

21.

205.

16.

50.

50.

227.
231.
170.
161.
141.
142.
190.
166.
158.
146.
18.

18.

18.
55.
209.
62.
32.
209.

ABM USER MANUAL
Index

storage .
file
ASSDDC
ASSDD1I
DECDDC
DECDDI
form example
forms
describe . .
field dpscr1pt1on .
record description
valuebuffers
forms screen
form database connect1on
form to SIBAS communication .
FORTRAN
application . .
application examp?e .
INCLUDE files .
program structure .
routines

FORTRAN programs sub1tem 11st .

functions .

deletion

maintenance . .
generation of reports .
generation of schemas
generation of subschema .
group

index .

items . .
heading field .
HELP menu ABM .
HOME area o
how to use screen forms .
implementation of data model
INCLUDE

example .

file example

file explanations .

file generation .

FORTRAN files .

generation
INCLUDE-GEN . .
initiation database .
introduction ABM
item names .
items in database .
1ine message .
lists of result- 1tems .
Tists of subitems .
loading ABM app11cat10ns
maintenance of database .
maintenance of functions

Norsk Data ND-60.203.2 EN

237

209.

50.
47.
50.
47.
55.

57.
59.
59.
79.
54,
64.
78.

47.
190.
47.
74.
103.
75.

30.
30.
51.
38.
68.

27.
27.

209.
15.
18.
52.

143.

47.

166.
49.
47.
47.
47.
43.
22.

20.
26.
18.
75.
75.

229.
65.
30.

238

maintenance of subfunction
message line

modules in ABM .
module dependencies in ABM
names of items

names of realm

naming conventions

navigation in screen pwcture

navigation in subschemas
object schema .
occurrences
OK field)
operating ABMBASE .
os-file for database
parameters routine)
parameters for routines .
parameters in database
password .
pictures in ABM :
program writing .
programming language
program structure COBOL .
purpose field .
R-LOG .
realm .

names .
record occurrence .
recovery)
redefinition of schemas .
report generation .
report exampie
result-item lists
routine

description .

parameters

routines in ABM-FOCUS-LIBRARY .

SCHEMA
schemas
confirmation
generation
redefinition
schema example
screen form
commands
describe
example .
how to use
making :
valuebuffer .
sets . . .
SIBAS system number .
SIBAS-DRL . .
SIBAS FOCUS communwcat1on .
Sintran commands

Norsk Data ND-60.203.2 EN

ABM USER MANUAL

31.
18.

20.
20.
20.
18.
36.
38.
62.
32.
217.
23.
83.
93.
42.
13.
18.
73.
17.
76.
209.
218.
25.
20.
59.
217.
38.
51.
158.
75.

83, 93.
83, 93.

103.
38.

38.
38.
38.

150.

53.
57.
55.
52.
54.
79.
29.
13.
38.
78.
16.

Index

ABM USER MANUAL
Index

source schema . .
source schema example .
start

ABM . . .

ABMBASE .
stop ABM
storage

code .

field .

structure of FORTRAN programs .

subfunction .

maintenance .
subitem lists . .
subitem list COBOL
subschema
subschema form connection .
subschema group item picture
subschema heading picture .
subschema item picture
subschema realm picture .
syntax COBOL
sysrealm
system realm .o
system number SIBAS .
transfer data
using

ABM . . L.

ABM example

INCLUDE COPY files

using recommendations for ABM .

valuebuffers in screen forms
values default

verify oo

writing programs

Norsk Data ND-60.203.2 EN

38

150.

13

217.

13.

207.
209.

74.

31, 32.

75.
77.
8,

64.
34.
32.
34.
33

32.

205

24.
24.
13

225.

146.

73.
42.
79.
42

223

73.

239

LR R L L L R

Please let us know if you

* find errors

* cannot understand information

* cannot find information

* find needless|information
Do you think we could improve the manual by
rearranging the gontents? You could also tell
us if you like the manuall

W W W AW W W NN W

SEND US YOUR COMMENTS!!! . .cuvrnnnnnns

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader’'s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

HELP YOURSELF BY HELPING US!! . irrrunns

Manual name: ABM User Manual Manual number: ND—60.203.2 EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: _Date:

Company: Position:

Address:

What are you using this manual for ?

NOTE! Send to:

This form is primarily for Norsk Data A.S e
documentation errors. Software and Documentation Department

system errors should be reported on P.0. Box 25, Bogerud Norsk Data’s answer will be found

Customer System [Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by ‘ Date

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud ‘
0621 Oslo6, Norway

