
Norsk Data

BRF-LINKER
User Manual

ND-60.196.01

This manual is in loose-leaf form for ease of updating. Old pages may be

removed and new pages easily inserted if the manual is revised.

The loose-leaf form also allows you to place the manual in a ring binder (A)
for greater protection and convenience of use. Ring binders with 4 rings
corresponding to the holes in the manual may be ordered in two widths, 30
mm and 40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more
suitable for manuals of less than 100 pages than for large manuals. Plastic
covers may also be ordered below.

‘-“ -
,3

Woman mom.”

5:.
a;

u

.z!

..

A: Ring Binder B: Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Norsk Data A.S
Graphic Center
PO. Box 25, Bogerud
0621 Oslo 6, Norway

ORDER FORM
I would like to order

...... Ring Binders, 30 mm, at nkr 20,- per binder

...... Ring Binders, 40 mm, at nkr 25,- per binder

...... Plastic Covers at nkr 10,- per cover

Name ..
Company ..
Address ..

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in thisdocument
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S,

,

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright © 1984 by Norsk Data A.S

‘ PRINTING RECORD
Printing Notes

08/84 ' VERSION 01

BRF~L|NKER User Manual
Publ.No‘ ND-60.1’96.o1
August 1984

3:33:32. NORSK DATA A.S
.C. .C.

:::...::: PO. Box 25, Bogerud
33:3? 0621 Oslo 6, Norway

IV

Manuals can be updated in two ways, new versions and revisions. New lversions
consist'of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be. replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be
ordered as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

Preface:

THE PRODUCT

This manual describes the BRF—Linker, ND—10721A, running under
SINTRAN III.

The BRF-Linker is used to read Binary Relocatable Format (or “BRF")
output from the MAC assembler and From the ND compilers (FORTRAN,
COBOL. PLANC. BASIC. PASCAL, etc.). It will then link this output into
a program file and make it executable.

Note that the Hultisegment Load feature described in chapter 3 is only
available under SINTRAN III version I or later versions. It is
therefore not available on the NORD-10.

THE READER

This manual is written for programmers using the BRF—Linker to load
and link programs to be run in the time-sharing mode. (For loading of
real time programs. see the Real Time Loader manual, ND-E0.051.)

PREREOUISITE KNOWLEDGE

No previous knowledge of the BRF-Linker is assumed in this manual.
However, some basic knowledge of SINTRAN III commands and of the
principles and commands for compilation is recommended.

THE MANUAL

This manual describes the basic commands for loading in chapter 1.
Overlay loading is described in chapter 2. and multisegment loading in
chapter 3. In chapter 4, can be found some commands for inspection and
modification, and in chapter 5, the commands For editing are
explained. A detailed description of the Binary Relocatable Format is
Found in chapter 6.

A summary of the commands is given in appendix A and a summary of the
various error messages in appendix 8. Furthermore, all commands and
error messages are included in the index.

RELATED MANUALS

SINTRAN III Reference Manual ND—60.126
Real Time Loader ND-60.051

ND-80.196.01

< vii >

TABLE OF CONTENTS

Section Page

1 THE FUNCTIONS OF THE BRF-LINKER 1

1.1 Command Formats 1
1.2 Loading . . 2
1.3 Normal Mode Loading 4
1.4 Example: Compiling. Loading and Running a Program 6
1.5 Inspecting and Changing the Symbol Table 6
1.6 Two—bank Systems Versus One-bank Systems 9
1.7 Program Information Commands 10
1.8 Miscellaneous Commands 12

2 THE OVERLAY SYSTEM . 13

2.1 The Multilevel Overlay System 13
2.2 Designing an Overlay Structure 15
2.3 Special Commands for Overlay Loading 16
2.4 Example: Creating an Overlay System 17

3 THE MUL TISEGMENT SYSTEM 21

3.1 The SINTRAN III Segment Files . . 21
3.2 Programming Considerations Using Multisegment Linking 22
3.3 Organization of a Multisegment Program System 22
3.4 Multisegment Linking Commands 24
3.4.1 Special BRF- Linker Commands for Multisegment Linking 24
3.4.2 SINTRAN III Commands for Hultisegment Programs 26
3.5 Example: Linking a Segmented Program Structure 27

4 PROGRAM INSPECTION COMMANDS 35

5 EDITING COMMANDS . 37

5.1 Basic Symbol Handling 37
5.2 Commands for Updating 38
5.3 Additional Symbol Commands 38
5.4 Other Functions 33

6 THE BINARY RELOCATABLE FORMAT 41

6.1 The BRF Structure 42
6.2 Relocation of Internal Addresses 43
6.3 Program Units f . 43
6.4 Separate Compilation 44

ND-60.196.01

< viii >

Section Page

6.5 Linking of Program Units 44
6.6 FORTRAN COMMON Blocks 45
6.7 Fix-up Facilities . 46
6.8 Checksum . 46
6.9 Description of the BRF Control Numbers #6

Appendix

A COMMAND SUMMARY . 53

B ERROR MESSAGES . 59

Index . 63

ND-60.196.U1

BRF-LINKER USER MANUAL
I

1
The Functions of the BRF—Linker

1. THE FUNCTIONS OF THE BRF-LINKE?

The BRF-Linker is a subsystem which is able to convert the output from
language processors (compilers and assemblers) into executable
programs that can run under SINTRAN III. The object files created by
the language subsystems are in Binary Relocatable Format (described in
detail in chapter 6). otherwise known as BRF.

The BRF-Linker maintains a symbol table in which all defined
intermodule references, symbols, and labels appear together with their
addresses. If the address of a symbol has not been defined before
being used. the symbol entry in the table is marked as undefined. All
symbols must be defined before the program can be executed.

1.1 Command Formats

BRF-Linker is started by typing its name to SINTRAN III:

@BRF-LINKER

Whenever BRF-Linker is ready to process a user command, it will type
out the command prompt:

Brl:

BRF-Linker commands follow the same rules as SINTRAN III commands:

All commands consist of a command name, followed by zero or more
parameters.

- A space or comma may be used as a separator between the command
name and the parameters. or between two parameters.

Command names and parameters may be abbreviated as long as the
abbreviation is unique.

A missing parameter is indicated by typing two consecutive commas.
Default values will be used for any missing parameters.

Some parameters are termed optional. These parameters may be
specified in the command, but if left out the BRF—Linker will not
ask for them, it will just use the default value.

- A carriage return may be used anywhere in the command string. The
BRFfLinker will ask for any parameters, except optional ones. that
were not specified before the carriage return.

- Numerical parameters may be given in octal or decimal mode. The
default is octal mode. A decimal number may be specified by a
trailing D, an octal number by a trailing B. Signed numbers may be
used.

ND-60.196.01

2 BRF—LINKER USER MANUAL
The Functions of the BRF-Linker

— All control characters available for editing SINTRAN III commands
can also be used to edit commands to the BRF-Linker.

Thus. in the commands:

Brl: LOAD FILE-1,FILE-2‘FILE-3
Brl: EXIT

the words LOAD and EXIT are command names. The EXIT command has no
parameters, whereas the LOAD command has the three parameters FILE—1.
FILE—2 and FILE-3, separated by commas.

In the command format definitions the parameters are specified in
angular brackets (< ... >). Optional parts of the command are enclosed
in square brackets ([... 1). A sequence of full stops Following a
parameter means that the parameter may be repeated any number of
times.

Thus, the command definition:

.Brl: LOAD (file name>[,<file name)...]

means that the LOAD command takes as parameters any number of file
names. of which all but the first are optional (that is. only the
first one will be asked for if not specified).

Throughout this manual, two different terms are used to denote
quantities of memory, in addition to the usual terms bit and byte. The
symbols are: word which denotes one 16-bit ND-1OO word. and page which
is an ND synonym for 1024 16—bit words.

1.2 Loading

The loading operation consists of fetching relocatable program units
produced by language processors (compilers and assemblers). placing
them in the correct place within the address space, linking together
the references between the different units and, finally, writing the
completed program out to a program file.

The relocatable program units contain information that makes it
possible to place (locate) them anywhere within the address space.
This means that the different units may be placed in the address space
in any sequence. When BRF-Linker has put a program unit in the correct
position. it must go through the program unit and change all addresses
that depend on where the unit is placed.

The final program resulting from the loading is bound to the logical
addresses where it was placed by BRF—Linker. It is therefore referred
to as an absolute program. It may also be called an executable program
or a subsystem.

ND-BU.196.01

BRF-LINKER USER MANUAL , 3
The Functions of the BRF—Linker

During loading. the BRF-Linker can operate in different modes:

1)

2)

3)

Normal mode:
The loading is done onto a file of type :PROG. This is the
"normal" way of loading a program. Programs must fit into the
ordinary BL-page (one-bank) or 128-page (two-bank) address space.

Overlay mode:
When the program is too large to fit into 128 pages. the overlay
mode may be used to enable different parts of the program to be
run alternately in the same address space.

Multisegment mode:
Used to prepare programs which occupy several SINTRAN III
segments. It makes it possible to use programs extending beyond
the normal 128-page boundaries, and also to improve execution
times by avoiding reading from a :PROG file when the program is
started. It can NOT be used with one-bank programs.

No symbolic source code modification is necessary in order to switch
from one of these modes of loading to another.

There are some significant differences between multisegment linking
and overlay linking:

1)

Z)

3)

4)

5)

6)

7)

The Symbolic Debugger can be used with overlays. but is not
available in the multisegment mode.

The finished overlay system uses the monitor call RFILE to read
code and data during execution of the loaded program. Multisegment
linking uses the demand paging facilities with named two-bank
segments that is available in SINTRAN III version I and later
versions. -

It takes about 5 milliseconds to switch between segments in the
multisegment mode. while it takes at least 50 milliseconds before
execution of a new overlay can start after it has been called.

In multisegment loading, segments can be built during several
loading sessions. When building overlay systems. the entire system
must be built in a single BRF-Linker session.

Multisegment loading requires the use of special SINTRAN III
commands which are only available to user SYSTEM. Overlay loading
may be done by any user.

Subroutine calls within an overlay structure are restricted in
that one routine may call another routine only if both are in
memory at the same time. Thus. the user must be careful in
organizing the overlay structure. No restrictions on routine calls
apply to multisegment systems.

In multisegment systems, care must be taken with data area layout
to avoid data from one segment being overwritten by data from
another segment.

ND-50.195.01

4 BRF—LINKER USER MANUAL
The Functions of the BRF-Linker

1.3 Normal Mode Loading

An executable. or absolute program is always built on a file. The file
is specified using the command

Brl: PROGRAM-FILE (file name)

where (file name) is the name of the file onto which the program is
linked and loaded. The default file type is :PROG. If the file does
not already exist, the user should instruct the BRF-Linker to make a
new file by enclosing the file name in double quotes. thus:

Brl: PROGRAM-FILE “<file name)”

PROGRAM-FILE should be the first command given after the BRF-Linker
has been started.

The BRF-Linker can load BRF-units from one or more files. The loading
. is initiated by the command:

Brl: LOAD <fi1e name>[,<file name)...]

where (file-name) is the name of a file the BRF units should be loaded
from. The default file type is :BRF.

When loading from a file, all routines on that file will normally be
loaded. Any or all routines on the file may. however. have been
compiled in the so-called library-mode. Such routines will only be
loaded if they are called from a previously loaded routine, otherwise
they will be ignored.

Debug information on BRF files can be included or ignored throughout
the loading process by the command:

Brl: DEBUG-MODE <0N/0FF>

Default is ON - debug information will be included.

Program units from library files (compiled with the “LIBRARY-MODE”
0N). can be loaded without being referred to from units already loaded
by using the command:

Brl: LIBRARY-MODE (ON/OFF)

The default value for this command is ON. library units will only be
loaded if referenced.

ND-60.196.01

BRF-LINKER USER MANUAL 5
The Functions of the BRF—Linker

If the program is in a high-level language. the runtime system
routines for that language must also be loaded. These routines are
found on files with names like:

xxxxxxx-IBANKzaRF or xxxxxxx-ZBANKzeRF

where xxxxxxx is the name of the programming language, for example:

FORTRAN-1BANK:BRF or FORTRAN-ZBANKzBRF

Use the IBANK or ZBANK version of the runtime system depending on
whether the program is a one-bank or a two-bank program.

To leave the BRF-Linker and return to SINTRAN III, give the command:

Brl: EXIT

The BRF—Linker will then close the program file specified, thereby
making it ready for execution from SINTRAN III, and return you to
SINTRAN III.

The program can now be started from SINTRAN III by giving a RECOVER
command with the program file name as parameter; For example, if the
user has loaded executable code onto the file EXAMPLE2PROG, then the
program could be started by typing the command:

@BEEQXEBJXAMELE

As long as there is no conflict between the program file name and any
SINTRAN III command names we may (and usually do) leave out the word
RECOVER, so we would just type:

@EXAMPLE

If we want to debug the program we may instead type the command:

@DEBUG EXAMPLE

which will start up the program under control of the
Symbolic Debugger.

If we want to run the loaded program immediately, we could instead
exit from the BRF-Linker with the command:

Brl: RUN

This command performs an exit from the BRF-Linker and then starts
execution of the program file opened with the PROGRAM—FILE command at
the beginning of the loading session.

Note that the BRF—Linker cannot load programs directly to memory.
Hence, a program file must have been specified in order to use the RUN
command.

ND-60.196.01

6 _ » BRF-LINKER USER MANUAL
The Functions of the BRF-Linker

1.4 Example: Compiling, Loading and Running a Program
'

@FORTRAN-TOO
ND—100/NORD-10 ANSI 77 FORTRAN COMPILER — 2030530
FTN: COMPILE TESTP:SYMB,TERMINAL,"TESTPzBRE"

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D
SOURCE FILE: TESTP25YMB

1* PROGRAM TESTP
2* WRITE(1,*) 'THIS IS A TEST PROGRAM'
3* END

- CPU TIME USED: 0.8 SECONDS. 3 LINES COMPILED.
- N0 MESSAGES
- PROGRAM SIZE=69 COMMON SIZE=O
FTN: EXIT

@BRF-LINKER
- BRF Linker - JULY 3, 1984
Brl: EBOQBAM-EILE “132512“
Brl: -
FREE: P 000105-177???
FREE: P 035043-177777
Brl: EXIT

(1.315.512.

THIS IS A TEST PROGRAM

N

1.5 Inspecting and Changing the Symbol Table

Procedure names. variable names. labels and so on which are defined
and needed in the user's program are known as symbols. Symbols may be
up to seven characters long. In order to make a loaded and linked
program function properly, the BRF-Linker must fill in the correct
symbol address wherever there is a reference to a symbol. By symbol
address is meant the address of the word or words in memory that are
associated with the symbol. Furthermore. the BRF—Linker will keep
track of the places where symbols are referred to, but not yet defined
and given addresses. Thus, it is able to fill in the necessary
information about these addresses when the symbols get defined.

To this end the BRF-Linker keeps a list of all symbols encountered
during linking. This list is known as the symbol table. The symbol
table may be inspected and manipulated by the user during loading.

The symbol table is built by the BRF—Linker from the symbols it
encounters in the BRF files. It contains a list of the symbols and the
addresses in the computer's memory they will occupy when the program
is run. Whenever a definition of a symbol is found in a input file,
the value of the current load address is stored as the address of the
symbol. The symbol is then known as a defined symbol.

ND-60.195.01

BRF-LINKER USER MANUAL 7
Example: Compiling. Loading and Running a Program

If a referenced symbol has not yet been defined. it is stored in the
symbol table as an undefined symbol. It is then expected to be defined
later. For instance, this will normally be the case with symbols
representing calls to external procedures which have not yet been
loaded.

In the case of programs loaded in the two-bank mode. the load address
is to a location in the program bank if it is a procedure name or a
label and to a location in the data bank if it is a variable name. In
the one-bank case. all references are to the same bank.

To list all symbols in the symbol table, give the command:

Brl: LIST-ENTRIES-DEFINED ...

All undefined symbols in the program can be listed by giving the
command:

Brl: LIST-ENTRIES-UNDEFINED ,,,

Together with each symbol name will be listed the last address where
the symbol was referenced.

The output from the LIST-ENTRIES-DEFINED and LIST-ENTRIES—UNDEFINED
commands may be switched to another output device by giving the
command:

Brl: OUTPUT-FILE <file name)

where <file name) is the name of the new output file. The default
file type is :SYHB. The output device may be reset to the terminal by
giving the OUTPUT-FILE command with an empty file name:

Brl: OUTPUT-FILE ,,.

To create a new symbol in the symbol table, use one of the commands:

Brl: DEFINE <symbol).<address),<P/D>

or

Brl: DEFINE <symbol).<symbol),<P/D>

In the first format. the name (symbol) will be defined as referencing
the word given in <address) and in the bank specified in the parameter
<P/D). P specifies a word in the program bank and D a word in the data
bank. If the P/D parameter is omitted. the default is the program
bank.

In the second format. the first symbol is defined as referencing the
same word as the second symbol. which must be defined preViously.
Beware that if the already defined symbol (the second (symbol)
parameter) is located in the data bank (P/O parameter set to 0). the
P/D parameter must be set to D for the new symbol too, otherWise the
BRF-Linker will output an error message indicating a reference to an
undefined symbol.

ND-60.196.01

8 BRF-LINKER USER MANUAL
The Functions of the BRF-Linker

We can find which word an entry refers to by typing:

Brl: DEFINE <symbol>,?,<P/D>

The BRF-Linker then writes the octal address of the symbol on the
terminal.

In order to load the program at an address which differs from the
current address. use the command format:

Brl: DEFINE <#PCLC/#DCLC),<address>

The parameter <#PCLC/#DCLC) refers to the current location counter in
the program bank (#PCLC) or data bank (#DCLC). Subsequent loading will
then be performed from the specified address. This command will also
set the BRF-Linker in the specified mode (#PCLC for Program mode or
#DCLC for Data mode).

The address of an entry in the symbol table may be entered into a
memory location by the command:

Brl: REFERENCE <symbol),<address>,<P/D)

It doesn't matter if the referenced entry is present in the table or
not, as the correct address will be filled in when the symbol value is
defined. The REFERENCE command creates an 'undefined' symbol if the
nsymbol is not already in.the table, and the BRF-Linker expects it to
be defined later.

An entry is deleted from the symbol table by:

Brl: REMOVE <symbol>,<P/D)

Symbol names may be renamed by the command:

Brl: RENAME (old symbol),<new symbol)

To set the restart address of the program file specified in the
PROGRAM-FILE command, use one of the command formats:

‘

Brl: RESTART (address)

or

Brl: RESTART (symbol)

If tsymbol) is used, then (symbol) must be a defined table entry
referring to the program bank. The default restart address will be
equal to the main start address.

ND-60.196.01

BRF-LINKER USER MANUAL 9
The Functions of the BRF-Linker

1.5 Two-bank Systems Versus One-bank Systems

To overcome address space constraints in the ND—100, a two-bank system
can be utilized if the compiler (PLANC, COBOL, FORTRAN, PASCAL) is
capable of generating separate output for the program code and the
data part. The address space for each program is limited to 64 pages.
A two-bank program uses a separate address space for code and data.
thus making it possible to have 8k pages of program code and EL pages
of data.

Since the ND-100 is capable of addressing data by using an alternative
page table, programs may, in principle, consist of 64 pages of program
code and 64 pages of data. Programs where code and data are separated
in this way are called two-bank programs, whereas programs whose code
and data share a single address space of 64 pages, are called one—bank
programs.

Two-bank object programs may be generated by an option in the various
compilers and can be loaded by BRF-Linker. The following should be
noted:

— Two—bank programs must be linked with the two-bank version of the
appropriate runtime/library system, For example PLANC-ZBANK,
FORTRAN—ZBANK. COBOL-ZBANK, etc.

- Care must be taken when linking assembly or NPL routines with two-
bank systems.

- One-bank and two-bank programs may not be mixed.

- The code parts of the two—bank systems are, in principle.
completely read—only.

- Overlay tree structures are still available, and both the code and
data parts are brought in when a link is required.

Two BRF control numbers, PMO and DMO, are used to put the BRF-Linker
into program or data mode (see chapter 6).

Programs compiled in two-bank mode are by default loaded into two
banks of 54 pages each. In this case, the program executes with all
accesses to the data bank via the alternate page table.

All loader commands (DEFINE, REFERENCE, REMOVE) will apply to either
the program code or the data bank according to what is specified in
the mode (P/D) parameter in the commands.

ND-60.195.01

10 BRF-LINKER USER MANUAL
Example: Compiling, Loading and Running a Program

1.7 Progra- Infor-ation Commands

The commands described in this section can be used independently of
the other BRF-Linker commands, and have no effect on the program being
loaded. They can even be used when no PROGRAM—FILE command has been
given.

Brl: PROGRAM-INFORMATION (file name)
[,<Dump Link Information?YES/N0>,(output file)]

The command lists the information block of a program file. The default
file type is :PROG.

It will print out the following information: start and restart
address. lower and upper bounds for: program. data and debug
information.

If the program is an overlay system or a multisegment system, the BRF-
linker will also print the file name specified (in PROGRAM-FILE
command) when this program file was loaded.

If the file contains overlays, it will also print overlay information.

For multisegment program files, it will print out lower and upper
bounds for link information, and it will ask whether link information
shall be dumped (the default answer is 'No'). If link information is
to be dumped. it will be dumped on the specified output file. The
default outputnfile is TERMINAL and the default output file type is
:SYHB.

As an example, let us inspect the simple program we compiled and
loaded in section 1.4.

@EflfizLIHKEB
- BRF Linker - JULY 3, 1984

Brl: PROGRAM-INFORMATION TESTP,,,,
Start, Restart : 0000113 - 0000113
Program : 0000003 - 0350423
Data : 1777773 - 0000003
Debug : 0000003 — 0000003

Brl: EXIT

The program file name specified in the PROGRAM-FILE command when the
program was loaded. can be changed by the command:

'

Brl: PATCH-PROGFILE-NAME (file name>,<new name)

The file name is output to the program file in two-bank programs and
in overlay programs. This command will locate the file name on the
program file and write the (new name) instead. It will inform you if
an overlaid file name is found} The SINTRAN III file is not renamed.
The maximum number of characters in the file name is 15.

ND-60.196.01

BRF—LINKER USER MANUAL 11
The Functions of the BRF-Linker

The usefulness of this command stems from the fact that in two-bank
programs to be run under SINTRAN III version H or earlier versions.
and in overlay programs. the program file is opened according to the
name written on the program file itself. If a program file is renamed
by using the SINTRAN III RENAME-FILE command. the program name written
on the file will not be changed. Such changes can be effected with the
PATCH-PROGFILE-NAME command, or by using the COPY—PROGFILE command
described below.

Some difficulties may also be caused if execution of two-bank programs
owned by another user is attempted under SINTRAN III version H or
earlier versions. In this case. the file name written on the program
file does not contain information abdut the owner or directory.
Attempts to execute the program will therefore not be successful. Such
difficulties can also be overcome by using the PATCH-PROGFILE-NAME
command. Beware however. that the file name is still limited to a
maximum of 15 characters.

Brl: COPY-PROGFILE (source file>,<destination file)
[,<Include Debug?YES/N0>]
[,(Include Link Information?YES/NO>]

This command will copy a program file from <source file) to
(destination file>. The default file type is :PROG. If the source file
includes debug information. the BRF-Linker will ask whether debug
information is to be included or not; thus, the command can be used to
strip away debug information if you answer N0. Default is NO debug
information copied.

For multisegment files, the BRF-Linker will ask whether link
information should be included. The default is NO link information
included. If the link information is not included, the program file
can no longer be linked to any other program files.

If the source file is overlaid or is a two-bank program, this command
will perform a PATCH-PROGFILE-NAME command using <destination file) as
the new file name.

The BRF-Linker will print out information about the pages copied as
shown in this example (our simple little program again).

@BEE;L1£K£B_
- BRF Linker - JULY 3, 1984

Brl: COPY-PROGFILE TESTP "TESTX"
Total no of pages:17B First page:OB Last page 163 Bank no:O Program
Brl: EXII

ND-60.198.01

12 BRF-LINKER USER MANUAL
The Functions of the BRF-Linker

1.8 Miscellaneous Commands

The command:

Brl: HELP [<command>]

lists all available commands matching the abbreviation (command). If
no command is specified. all BRF-Linker commands will be listed.

ND-60.196.01

BRF-LINKER USER MANUAL 13
The Overlay System

2. THE OVERLAY SYSTEM

Sometimes a large program cannot be run because it is too big to fit
into the address space of 6‘ pages (or 65 pages for the program and 64
pages for data). One commonly used solution is to divide the program
into reasonably small parts which can be run one at a time. and in
such a way that one part (or subroutine) can use the space freed when
another routine has finished. Thus the program will only need the
space for those routines that have to be in memory at the same time.

The sets of different routines to be loaded one at a time are called
overlays or links and the process of loading an overlay to replace an
existing set of routines is called overlaying these routines.

Building overlays with the BRF-Linker is a convenient way of bypassing
the problem of large programs not being able to fit into the address
space because:

- Programs built as overlay systems do not need source “code
modification.

- The Symbolic Debugger is available for overlays.

An overlay structure cannot be made into a reentrant subsystem.

2.1 The Multilevel Overlay System

In order to use the overlay capability on the ND-100, the user must
understand how his program operates and the relationship between the
modules within it. He should organize his overlay structure (described
below) so as to retain in memory the links containing commonly used
routines and place the infrequently used routines in links which can
overlay one another. For example, a special error recovery routine
would only need to be brought into memory when the corresponding error
occurred. Each link should be a collection of functionally related
modules and be as self—contained as possible, calling other links as
infrequently as possible. In particular, references to links which
would overlay other links should be kept to a minimum.

A tree structure. called an overlay structure, can be used to
illustrate the dependencies among the overlay links. In a tree
structure, each link has only one immediate ancestor, but it may have
more than one immediate descendant. The link containing the required
parts of the program and which must always be in memory during
execution is called the root link. Since the root link receives
control at the start of execution, it does not have an ancestor. The
remaining links branch away from the root link and are structured
according to their interdependencies.

Links which do not have to be in memory at the same time are termed
independent links whereas links which must be in memory at the same
time are termed dependent links. For example, two modules which do not
reference each other or pass data directly to each other, are
independent links. When such links are no longer redoired in memory,

ND-60.195.01

14 BRF-LINKER USER MANUAL
The Overlay System

they can be overlaid by other links which are brought in. On the other
hand, a link must have all the links upon which it depends in memory
at the same time and cannot therefore overlay them. Every link is
dependent on its ancestor, and consequently. on the root link.

As an illustration, assume we have a program consisting of a main
program MAINP and six subroutines SUBR1, SUBRZ, SUBR3. SUBRk. SUBRS
and SUBRG. The subroutines are related as follows:

1) SUBR1 and SUBRB are‘called directly from MAINP and are independent
of each other.

2) SUBRZ and SUBRS are called directly from SUBR1 and are independent
of each other.

3) SUBR3 and SUBRA are called directly- from SUBRZ and are also
independent of each other. -

The following tree structure illustrates the subroutine dependencies:

MAINP is the
MAINP +-—-———————- root link

(SUBR1 and SUBRB
are independent

SUBR1 SUBRS + overlays
r (first level)

SUBRZ and SUBRS
are independent

SUBRZ SUBRS +—-——————-——-— overlays
(second level)

SUBR 3 and SUBRA
are independent

SUBR3 SUBRL s overlays
(third level)

SU8R4 depends on SUBRT and SUBRZ so they must be in memory when in
order to execute SUBRA. The chain of links which a link depends on is
referred to as the path of the link. The action of bringing a link
into memory is termed path loading and the chain of links branching
away from a link is known as the extended path of that link. In the
previous example. the path of SUBRL is MAINP, SUBR1, and SUBRZ. There
are three extended paths of SUBR1:

1) SUBRZ, SU8R3
2) SUBRZ. SUBRk
3) SUBRS

ND-60.196.01

BRF-LINKER USER MANUAL 15
The Overlay System

A link may communicate with other links that lie in its own path or
one of its extended paths. The communication is through references to
global symbols. A reference from the current link to a global symbol
in another link in the path is called a backward reference, while a
reference from the current link to a global symbol in another link on
one of its extended paths is called a forward reference. Since all
links on the path of the current link must be in memory, a backward
reference does not cause any links to be brought into memory. With a
forward reference, however, the referenced link may not be in memory.
It must then be fetched. possibly overlaying a link already there.

2.2 Designing an Overlay Structure

The first step to be taken when designing an overlay structure is to
draw a diagram showing the functional relationships among the modules
within the program. The tree begins with the root link which contains
the main program and remains in memory throughout execution. The
remainder of the program is contained in the overlay links.

The user should remember several points when drawing his overlay
structure:

1) References that will overlay existing links should be minimized.

2) Independent links cannot reference each other; communication is by
way of a common link.

3) As a general rule, calls to routines on other links should be
forward references, while returns from routines should be backward
references;

4) If data is modified during execution, the modification is
destroyed once the link is overlaid. Therefore. if data required
by another link is modified. then the data must be returned to
this other link before the link containing the changed data is
overlaid.

5) When a link is to be overlaid, no addresses or references to it
should remain.

6) Modules. routines or data areas used by several links should be
explicitly loaded into a link that is common to all links using
these modules or data areas. For example, a FORTRAN COMMON data
area should be in a link in the path of all links referencing it.
Moreover, COMMON should be positioned in such a way that it never
gets re-initialized after the first call. In other programming
languages using the distinction between local and global data.
similar considerations must be done for the data which are global
to several link paths.

7) The Symbolic Debugger should be used with some care on overlays.
Debugger commands affecting program/data in an overlay should not
be given until a breakpoint is reached on that overlay. Moreover,
these commands are in effect only while the overlay resides in
memory. In other words. overlays are always brought into memory
fully initialized.

ND-60.196.01

16 BRF-LINKER USER’MANUAL
The Overlay System

Tree-structured overlay systems can be several levels deep. The amount
of memory required to run an overlay system is at least the amount
needed for the path using the greatest amount of space. This is not
the minimum requirement, however, since special tables must be
included when a program is divided into links.

The root link and the COMMON areas defined within it reside in memory
throughout the entire execution, while the overlays and the COMMON
areas defined within them reside on a random read-only file. This file
is specified with the PROGRAM-FILE command.

2.3 Special Com-ands for Overlay Loading

Overlay structures are loaded using the same BRF-Linker commands as
for normal loading. However, we also need to specify that we are
loading a new link in the overlay structure. This is done by the
command:

Brl: OVERLAY <1evel>,<entry name 1>[,...,<entry name n>l

This command specifies that a new overlay link is to be generated. The
parameter <level> is the overlay level, and (entry name 1) to
(entry name n> give the names of the subprograms that may be called
from the previous level. After this command has been given, the
specified subprograms can be loaded from one or more BRF files. It is
recommended that the overlay subprograms be kept on a separate BRF
file compiled in library mode. In this way, the specified set of
subprograms may be selected and put into the overlay independently of
the compilation sequence. ,

The level number in an OVERLAY command must not be more than 1 higher
than the level number in the previous OVERLAY command. -

The special form:

Brl: OVERLAY 0,.

should be used to indicate the start of the root link. This should be
the first command following the PROGRAM-FILE command.

The special form:

Brl: OVERLAY -1,,

will append the last overlaid data part to the previously appended one
in Z-bank programs. This permits all data to be placed consecutively
with no data overlay. Make sure that no previous data overlays share
this area with the current data overlay.

To dump the root link, the COMMON area. and the last overlay link onto
the file specified in the PROGRAM-FILE command, use either the EXIT or
the RUN commands. If you use the RUN command, the execution of the
overlay system will start immediately, otherwise the execution of the
overlay system must be started by a separate command (RECOVER).

ND-60.195.01

BRF-LINKER USER MANUAL
The Overlay System

2.4 Example: Creating an Overlay System

17

@FOBTBAN-JQO
ND-100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D

FTN: SEPARATE-DATA ON
FTN: COMPILE MAINPITERMINAL."MAINP“

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D
SOURCE FILE: MAINP25YMB

1* PROGRAM MAINP
2* WRITE (1,*) 'START MAINP'
3* CALL SUBR1(1)
4* CALL SUBR6(6)
5* WRITE (1,*) 'END MAINP'
6* END

- CPU TIME USED: 0.8 SECONDS.
- NO MESSAGES

6 LINES COMPILED.

- PROGRAM SIZE=53 DATA SIZE=62 COMMON SIZE=O
FTN: EXIT

@Egfilfléflzlgg
ND-100/NORD—10 ANSI 77 FORTRAN COMPILER
FTN: SEPARATE-DATA ON
FTN: LIBRARY-MODE ON
FTN: COMPILE SUBR1LTERMINAL,"SUBR1"

ND-100/NORD-1O ANSI 77 FORTRAN COMPILER
SOURCE FILE: SUBR1:SYMB

1* SUBROUTINE SUBR1(N)
2* WRITE (1,*) 'SUBROUTINE ',N,
3* CALL SUBR2(2)
4* CALL SUBR5(5)
5* END

- CPU TIME USED: 0.7 SECONDS.
- NO MESSAGES

203053D

203053D

' CALLED'

5 LINES COMPILED.

- PROGRAM SIZE=35 DATA SIZE=59 COMMON SIZE=O
FTN: EXIT

@EORTRAN-1OO
ND-100/NORD-1O ANSI 77 FORTRAN COMPILER

FTN: SEPARATE-DATA ON
FTN: LIBRARY-MODE ON
FTN: COMPILE SUBRZ,TERMINAL,"SUBR2"

ND-60.196.01

203053D

1B BRF-LINKER USER MANUAL
The Overlay System

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D
SOURCE FILE: SUBR2:SYMB

1* SUBROUTINE SUBR2(N)
2* WRITE (1,*) ‘SUBROUTINE ‘,N, ' CALLED‘
3* CALL SUBR3(N+1)~
4* CALL SUBR3(N+1)
5* CALL SUBR4(N+2)
6* CALL SUBR4(N+2)
7* ' END

- CPU TIME USED: 0.8 SECONDS. 7 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=55 DATA SIZE=63 COMMON SIZE=O
FTN: EXIT

@W
ND-100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D
FTN: SEPARATE-DATA ON
FTN: LIBRARY-MODE ON
FTN: COMPILE SUBRLTERMINAL1"SUBR"

ND-100/NORD-1O ANSI 77 FORTRAN COMPILER 203053D
SOURCE FILE: SUBR:SYMB

1* SUBROUTINE SUBR3(N)
2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
3* END

ND—100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D
SOURCE FILE: SUBR:SYMB

4*
‘

SUBROUTINE SUBR4(N)
5* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
6* END

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D
SOURCE FILE: SUBR:SYMB

7* SUBROUTINE SUBR5(N)
8* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
9* END

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER 203053D
SOURCE FILE: SUBR:SYMB

10* SUBROUTINE SUBR6(N)
11* WRITE (1,*) 'SUBROUTINE ',N, ‘ CALLED'
12* END

- CPU TIME USED: 1.9 SECONDS. 12 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=100 DATA SIZE=156 COMMON SIZE=0
FTN: EXIT

ND-60.195.01

BRF—LINKER USER MANUAL
The Overlay System

@BRE-LIHKEB
- BRF Linker - JULY 3, 1984
Brl: PROGRAM-FILE MAINP
Brl: OVERLAY 0H
Brl: LOAD MAINP,FORTRAN-2BANK
FREE: P 000065-177777 D 000076-177777
FREE: P 027123-177777 D 007430-177777

Brl: OVERLAY 1.SUBR1
Brl: LOAD SUBR1IFORTRAN-2BANK
FREE: P 027213-177777 D 007622-177777 DEBUG 000004
FREE: P 027213—177777 D 007622-177777 DEBUG 000004

Brl: OVERLAY 2lSUBR2
Brl: LOAD SUBRZKFORTRAN-ZBANK
FREE: P 027326-177777 D 007720-177777 DEBUG 000010
FREE: P 027326-177777 D 007720—177777 DEBUG 000010

Brl: OVERLAY 3.3UBR3
Brl: LOAD SUBR.FORTRAN-ZBANK
FREE: P 027403-177777 D 007766~177777 DEBUG 000014
FREE: P 027403-177777 D 007766-177777 DEBUG 000014

Brl: OVERLAY 3‘SUBR4
OVERLAY COMPLETED. BLOCK NO: 2001 27352-27403/7720-7766
SUBR3....27352 P * 27403 P
* 7766 D
Brl: LOAD SUBR‘FORTRAN-ZBANK
FREE: P 027403-177777 D 007766-177777 DEBUG 000024
FREE: P 027403-177777 D 007766-177777 DEBUG 000024

Brl: OVERLAY 2,5UBR5
OVERLAY COMPLETED. BLOCK NO: 2003 27352-27403/7720-7766
SUBR4....27352 P * 27403 P
* 7766 D
OVERLAY COMPLETED. BLOCK NO: 2005 27237-27352/7622-7720
SUBR2 ...27237 P * 27352 P
* 7720 D
Brl: LOAD SUBR,FORTRAN-2BANK
FREE: P 027270-177777 D 007670-177777 DEBUG 000040
FREE: P 027270-177777 D 007670-177777 DEBUG 000040

Brl: OVERLAY 1,SUBR6
OVERLAY COMPLETED. BLOCK NO: 2007 27237-27352/7622-7720
SUBRS....27237 P * 27270 P
* 7670 D
OVERLAY COMPLETED. BLOCK NO: 2011 27150—27237/7530-7622
SUBR1....27150 P * 27237 P
* 7622 D
Brl: LOAD SUBRIFORTRAN-ZBANK
FREE: P 027201-177777 D 007576-177777 DEBUG 000054
FREE: P 027201-177777 D 007576-177777 DEBUG 000054
Brl: EXIT
OVERLAY COMPLETED. BLOCK NO: 2013 27150-27201/7530-7576
SUBR6....27150 P * 27201 P
* 7576 D

ND-80.196.01

BRF-LINKER USER MANUAL
The Overlay System

@MAINP

START MAINP
SUBROUTINE 1 CALLED
SUBROUTINE 2 CALLED
SUBROUTINE 3 CALLED
SUBROUTINE 3 CALLED
SUBROUTINE 4 CALLED
SUBROUTINE 4 CALLED
SUBROUTINE 5 CALLED
SUBROUTINE 6 CALLED
END MAINP

ND—60.195.01

BRF-LINKER USER MANUAL . 21
The Hultisegment System

3. THE HULTISEGMBIT SYSTEM

The need sometimes arises for programs which are as big and extensive
as those built by overlay linking, but which are not organized
hierarchically like them. The BRF-Linker allows you to build such
programs by using of SINTRAN III's mechanism for handling named
reentrant segments.

This mechanism sis only available in SINTRAN III version I or later
versions. In particular, this means that it is not available on the
NORD-1D.

3.1 The SINTRAN III Segment Files

In order to be able to create and use the multisegment linking
facility, the programmer should grasp certain sides of the SINTRAN III
operating system. This is provided in this section, which may be
skipped by advanced SINTRAN III users.

The key element in the SINTRAN III virtual memory system is the
segment file. This is a large, contiguous file on the system disk. The
segment file is divided into contiguous areas called segments. A
program to be executed must first be put into a segment on the segment
file. The different pages of the program will then be swapped into
main memory as they are referenced. When the computer's main memory is
full, the least recently used pages will be swapped back to their
segments.

For every terminal connected to the computer there is a special
segment, called a background segment. reserved on the segment file.
When an ordinary program is started from a terminal, it is transferred
to the terminal's background segment. From there it will be swapped
into the main memory as needed. In this way, when several users are
running the same program they will still have separate copies of it.

A program may be either one-bank or two-bank. In a one-bank program.
both program code and data are loaded into the same‘ BA-page address
space, ‘or bank. In a two-bank program, the program code and data are
loaded into two separate 64-page banksf making possible a total
program size of up to 128 pages. Two-bank programs are usually
compiled with the SEPARATE-DATA option in the compiler turned ON.

A background segment may be either 64 or 128 pages long. If only one-
bank programs will be run from a terminal, then a 64-page background
segment will suffice. In order to run two—bank programs, however, we
need a 128-page background segment.

Heavily used programs may be permanently installed on their own
segments in the segment file. Such programs are called reentrant
subsystems. Their pages will then be swapped in from their segments
instead of from background segments. In this case, the same memory
copy of a page will be shared between all users running the program,
as long as it is not modified. If a user tries to modify a shared
page, he will get his own private copy of the page instead, and this

ND-80.196.01

22 BRF-LINKER USER MANUAL
The Multisegment System

private copy will be swapped to his background segment. Thus a
reentrant subsystem will, during runtime, consist of two different
kinds of pages. Some will be unmodified, shared pages from the
reentrant segment. The rest will be modified, private pages from the
user's background segment.

3.2 Programming Considerations Using Multisegment Linking

The BRF-Linker uses the two—bank named reentrant segments mechanism to
make multisegment linking possible. This method of combining many
routines on several segments has the advantage that overlays will not
have to be read from a file during execution; control just switches
from one segment to another instead. Another advantage is that the
links need not be organized hierarchically, giving no means of
communication between links on the same overlay levels, only along
different branches of the overlay tree. Instead the program may switch
freely between the various links.

Multisegment linking only works on two-bank programs. Therefore, all
routines in a multisegment structure must be compiled with the
SEPARATE-DATA option turned 0N. Afterwards, the programs linked
together in a multisegment structure must be dumped as reentrant
segments on the segment file. SINTRAN III commands relating to the
administration of segment files are found in the version of the
SINTRAN III Reference Manual (ND—50.128) and SINTRAN III System
Supervisor (ND-30.003) that pertain to your installation. The commands
for dumping programs onto the segment files are privileged, which
means that they are only available to the user SYSTEM.

It is not possible to combine multisegment and overlay linking within
the same program system.

Data areas which must be globally accessible throughout execution of a
multisegment program system must fit into areas of data space which
are not used for any other purpose in any segment accessed by that
program system. Furthermore. such data areas must be loaded so that
they do not overlap. It is, of course, also possible to keep an area
global to some subroutines, and to use it for other purposes as soon
as these have finished execution. It is not possible, however, to
create holes in the data areas; they must be loaded consecutively from
the start address for that segment.

3.3 Organization of a Multisegment Program System

The following illustration shows how the multisegment structure is
organized on the segments. Even if the drawing shows one particular
program structure. the 'use of segment space is the same here as in
every other application of the multisegment, so the information it
gives is general.

ND-60.196.01

BRF-LINKER USER MANUAL 23
The Multisegment System - -

SOD-word
system Sys Sys Sys Sys
routine

A1 B1 C1
64-page a

(minus
600 words)
code parts

1 82
A2 C2

1-page Seg info Seg info Seg info Seg info
segment ------------- - - --------------------------
info a1

32

b1
64-page
data parts

b2

c1

c2

Background Program Program Program
segment segment A segment 8 segment C

Three program segments plus the user's background segments are used
here. The segments have been named A, B and C during linking, and the
subroutines and programs that they contain have been numbered
accordingly with capital letters. The data areas used by each program
or subroutine are similarly named in small letters. The drawing shows
one possible call structure. The program numbered A1 is the root node,
and is started by typing its name as response to SINTRAN III's
9-prompt. The program A1 calls the subroutine B1, and from then on the
calls may be executed as shown by the arrows on the diagram.

It is not necessary to keep data areas as strictly separated as they
are in this illustration. If one subprogram and its assoCiated data
areas are not needed any more, the data areas may be used freely by
other parts of the program.

ND-60.196.01

24 BRF-LINKER USER MANUAL
The Multisegment System

3.4 Multiseguent Linking Con-ands

To create a multisegment program, some special commands both to the
BRF-Linker and to the SINTRAN III operating system are needed. The
reason For this is that during linking, the information necessary to
link the program parts together is added to the absolute program File
(with extension :PROG) that the BRF—Linker creates. This information
is used when the diFFerent parts oF an absolute program are linked
together with the LINK-T0 command. Dumping 0F 3 multisegment program
is done by using some oF the SINTRAN III commands available to user
SYSTEM.

3.4.1 Special BRF-Linker Conuands for Multisegaent Linking

As mentioned in the previous section, the programs which we want to
link into a multisegment system must be transferred From a user File
to a named segment in a segment File aFter loading and linking. During
loading. the program File must be specified using a special Form oF
the PROGRAM-FILE command:

Brl: PROGRAM-FILE (file name>/<segment name)

The (segment name) is the name oF the segment where the reentrant
subsystem will be dumped. This name must be used with the SINTRAN III
commands necessary to place the linked elements on the segment File.
These commands are described in the next section.

The links between the programs on this File and the programs on other
Files are established with the command:

Brl: LINK-T0 (file-1). ... (file-n)

where each <File-n) is a program File with links to/From the current
program File. The current program File is the File speciFied in the
PROGRAM-FILE command. Each oF the Files to be linked must have been
loaded as a multisegment program Files.

When using the command LINK-T0, the BRF-Linker will link the n Files
so that programs in the n segment pairs can call each other. Entries
in the Files <File-1>, ... (File-n) are matched with the corresponding
entries in the current program File. IF these Files are now dumped to
segment Files, routines in the current program File may call routines
in the link Files (File-1), ... (File-n) and vice versa.

Please note that this matching does not imply that programs in the
Files (File-1), ... <File-n) will be able to call each other. IF this
is desired. a new linking session is needed to establish these links.

When the relevant inFormation has been written on to the program
Files. the BRF-Linker will respond by answering:

(entry) LINKED FROM <current file) To (link file)

(entry) LINKED FROM (link file) TO <current file).

ND-60.196.01

BRF—LINKER USER MANUAL 25
The Multisegment System

If the BRF-Linker finds the same data or COMMON area in both the
current program file and in a link file, it will output the message:

(entry) DEFINED IN BOTH (link file) AND (current file).

Note that this may not necessarily constitute an error, but you should
check carefully that it is not meant to be the same data or COMMON
area.

If output has been redefined to a file by the OUTPUT-FILE command.
output from the LINK-T0 command will be written to this file.

The LINK-T0 command will only initiate the linking. The actual linking
process takes place after the EXIT command is given.

The multisegment linking can be used with all programs compiled in the
two-bank mode. The total global data space (i.e., data space which is
available from all segments) is limited to a maximum of 63 pages, the
remaining 1 page is used for segment information. Local data space can
be overlapped. If a segment using overlapped data space is entered and
another segment has used the same data space, initial data will be
used for the segment entered.

When loading a segment, the command:

Brl: DEFINE #DCLC,<address>

should be used to place its private data in a suitable area. Due to
the paging system. the data area cannot be divided into smaller parts
than 20008 (2000 octal) words. The data of that segment will be placed
contiguously from that address. The first page (20008 locations) of
the data space is used to store segment information.

External data may be shared between segments simply by linking the
program files together. No entry names need to be specified. Data on a
linked segment will not be available before that segment has been
entered (must have been called from another segment). The data applies
until another overlapping segment is activated.

If the LINK-T0 command is given prior to a LOAD command. the defined
data entries in the files linked will be regarded as defined in the
current program file. The entries will not be defined from any LOAD
commands following LINK-T0. but will be linked from the link files at
EXIT.

If a FORTRAN COMMON area is to be linked from another segment, it is
defined by linking the program file where the common area is defined
to the current program file. All common areas not defined (by LOAD or
by LINK-T0). will be defined when the EXIT command is performed.

When using the multisegment system. the start address is 0 and the
restart address is 1 for the programs created.

,9

ND-60.196.01

25 BRF-LINKER USER MANUAL
The Hultisegment System

3.4.2 SINTRAN III Commands for Multiseglent Programs

when a program File (with extension :PROG) has been created with
multisegment linking information on it. it must be transferred to a
segment File.

The following commands do that. They must be performed by the user
SYSTEM.

ODUMP-PROGRAM-REENTRANT <subsystem-name>,<file>[,(segment-name>]

which dumps the program File for the main program onto a segment in
the segment file. and:

OLOAD-REENTRANT-SEGMENT <File>.<segment-name>.

which creates subprogram segments on the segment file.

These SINTRAN III commands must be given after the linking sessions
have been Finished and the resulting program Files have been created.

The reentrant main program segment is accessible to all users. If it
is preferable to have some degree of privacy for a multisegment
system, the user can dump only the subprogram segments and keep his
main program on a program 'file (with extension :PROG). The main
program will be read into the user's backgrounda segment when it is
requested, and the background segment will subsequently be used as the
main program segment. It will be difficult for unauthorized users to
use the subprogram segments without having access to the main program.

The segment File area may need to be cleared before loading. The main
program segment is deleted by the SINTRAN III command:

EDELETE-REENTRANT (subsystem-name)

and the other segments by:

aCLEAR-REENTRANT-SEGMENT (segment-name)

If the message:

'Segment Number xx is not cleared'

appears. this means the segment is currently in use. The SINTRAN III
command CLEAR-REENTRANT-SEGMENT should then be repeated at a later
time.

ND-60.196.01

BRF-LINKER USER MANUAL 27
The Hultisegment System

3.5 Example: Linking a Segmented Program Structure

Using the same main program and subroutines as in the example in
section 2.I, we now load the main program (HAINP) and its six
subroutines (SUBRI, SUBRZ, SUBR3, SUBRA, SUBRS and SUBRBI onto
different segments and run it.

The program has the following call structure:

SEGTO SEGT1 SEGT2 SEGT3 SEGT4 SEGTS SEGTE

Ek-page ll
program M -———* S > 8 ¢ S S S S
bank A U U U U U U

I B B B B B B
N R R R R R R
P 1 2 3 4 5 B

I I

I | I I I I I I

Segm. Segm. Segm. Segm. Segm. Segm. Segm.
in?o. info. info. info. info. info. info.

BA-page -— ----- -- ----- -- ----- -— ----- —- ----- -- -----
data mai
bank np

sub sub
r1 r6

sub sub
r2 r5

sub sub
r3 r4

SEGTO SEGTI SEGT2 SEGT3 SEGT4 SEGTS SEGTS

Note that the size of the illustrated subroutines in the program bank
does not indicate the actual size. but is chosen in this way to give a
better view of the calling sequence.

ND-60.196.01

28 . BRF—LINKER USER MANUAL
The Multisegment System

The following linking session will create this structure:

@EORIRAN-IQO
ND-100/NORD-1O ANSI 77 FORTRAN COMPILER - 203053D
FTN: SEPARATE-DATA ON
FTN: COMPILE MAINP‘TERMINALI"MAINP"

ND-100/NORD-1O ANSI 77 FORTRAN COMPILER - 2030530
SOURCE FILE: MAINP:SYMB

1* PROGRAM MAINP
2* WRITE (1,*) 'START MAINP‘
3* CALL SUBR1(1)
4* CALL SUBR6(6)
5* WRITE (1,*) 'END MAINP'
6* END

- CPU TIME USED: 1.0 SECONDS. 6 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=53 DATA SIZE=64 COMMON SIZE=O
FTN: EXIT

@FORTRAN-1OO
ND-100/NORD-1O ANSI 77 FORTRAN COMPILER - 203053D
FTN: SEPARATE-DATA ON
FTN: COMPILE SUBR1,TERMINAL.'SUBR1“

ND-100/NORD-1O ANSI 77 FORTRAN COMPILER -4203053D
SOURCE FILE: SUBR1:SYMB

1*‘ SUBROUTINE SUBR1(N)
2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
3* CALL SUBR2(2)
4* CALL SUBR5(5)
5* END

- CPU TIME USED: 1.0 SECONDS. 5 LINES COMPILED.
- NO MESSAGES '
- PROGRAM SIZE=35 DATA SIZE=59 COMMON SIZE=O
FTN: EXIT

@FORTRAN-1OO
ND-100/NORD-1O ANSI 77 FORTRAN COMPILER - 203053D
FTN: SEPARATE-DATA ON
FTN: COMPILE SUBR2,TERMINAL,“SUBR2"

ND°100/NORD-1O ANSI 77 FORTRAN COMPILER - 203053D
SOURCE FILE: SUBR2:SYMB

1* SUBROUTINE SUBR2(N)
2* WRITE (1,*) 'SUBROUTINE ',N, ‘ CALLED'
3* CALL SUBR3(N+1)
4* CALL SUBR3(N+1)
5* CALL SUBR4(N+2)
6* CALL SUBR4(N+2)
7* END

ND-60.196.01

BRF—LINKER USER MANUAL » 29
The Hultisegment System

- CPU TIME USED: 1.0 SECONDS. 7 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=55 DATA SIZE=63 COMMON SIZE=O
FTN: EXIT

@FORTRAN-1OO
ND-100/NORD-1O ANSI 77 FORTRAN COMPILER - 203053D
FTN: SEPARATE-DATA ON
FTN: COMPILE SUBR3,TERMINALI"SUBR3"

ND-100/NORD-1O ANSI 77 FORTRAN COMPILER - 203053D
SOURCE FILE: SUBR325YMB

1* SUBROUTINE SUBR3(N)
2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'

.3* END

- CPU TIME USED: 0.8 SECONDS. 3 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=O
FTN: EXIT

@FORTRAN-1OO
ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D
FTN: SEPARATE-DATA ON
FTN: COMPILE SUBR4‘TERMINAL,"SUBR4“

ND-100/NORD-1O ANSI 77 FORTRAN COMPILER - 203053D
SOURCE FILE: SUBR4:SYMB

1* SUBROUTINE SUBR4(N)
2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
3* END :

- CPU TIME USED: 1.1 SECONDS. 3 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=O
FTN: EXIT

@Egfiiaéflzlgg
ND-100/NORD-1O ANSI 77 FORTRAN COMPILER - 203053D
FTN: SEPARATE-DATA ON
FTN: COMPILE SUBRS,TERMINAL."SUBR5"

ND-100/NORD-1O ANSI 77 FORTRAN COMPILER - 203053D
SOURCE FILE: SUBR5:SYMB

1* SUBROUTINE SUBR5(N)
2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'
3* END

- CPU TIME USED: 0.8 SECONDS. 3 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=O
FTN: EXIT

ND-60.195.01

30 BRF-LINKER USER MANUAL
The Multisegment System

@FORTRAN-1OO
ND-100/NORD-1O ANSI 77 FORTRAN COMPILER - 203053D
FTN: SEPARATE-DATA ON
FTN: COMPILE SUBR6,TERMINAL,“SUBR6"

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D
SOURCE FILE: ,SUBR6:SYMB

1* ‘ SUBROUTINE SUBR6(N)
2* WRITE'(1,*) 'SUBROUTINE ',N, ' CALLED'
3* END '

- CPU TIME USED: 0.9 SECONDS. 3 LINES COMPILED.
- N0 MESSAGES
~ PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=O
FTN: EXIT

@BRF-LINKER
- BRF Linker - JULY 3, 1984
Brl: - " "

Brl: DEEINE.£D§L§LZQQQ
Brl: LQAD_MAIN2IEQBIEAN:ZBANK
FREE: P 000665-177777 D 002077-177777
FREE: P 027504-177777 D 010561-177777
Brl: EXII ‘
SUBR1....27507 U SUBRG....27523 U

@BRF-LINKER
- BRF Linker - JULY 3, 1984
Brl: - L " " 1
Brl: DEEIHE_KD§L§IJZQQQ
Brl: LQAD_§HBRl
FREE: P 000643-177777 D 012072-177777
Brl: LINK-TO FILEO
Brl: LOAD FORTRAN-ZBANK
FREE: P 027345-177777 D 016474-177777
Brl: EXII
5PTAB....13267
5EXCINF..12071
5ESTACK..21375
SSTACK....1077
5FIO_BL..12067
5USFILB..14655
5CNCT....14656
5ALTREC..22332
SUBR1 600
SUBRZ....27350

EBRF-LINKER
- BRF Linker - JULY 3, 1984
Brl: -
Brl: DEFINE EDQLQ.22QOQ
Brl: LOAD EQERZ
FREE: P 000667-177777 D 022076-177777
Brl: LINK-TO FILEO‘FILE1
Brl: LOAD FORTRAN-ZBANK
FREE: P 027371-177777 D 026500-177777

LINKED FROM FILEO TO FILE1
LINKED FROM FILEO TO FILE1
LINKED FROM FILEO TO FILE1
LINKED FROM FILEO TO FILE1
LINKED FROM FILEO TO FILE1
LINKED FROM FILEO TO FILE1
LINKED FROM FILEO TO FILE1
LINKED FROM FILEO TO FILE1
LINKED FROM FILE1 TO FILEO
SUBRS....27364 UG’UGCGCGGCC}

ND-60.195.01

BRF—LINKER USER MANUAL
The Multisegment System

Brl: Elli
5PTAB....13313
5EXCINF..22075
SESTACK..21421
55TACK....1123
5FIO_BL..22073
5USFILB..24661
5CNCT....24662
5ALTREC..22356
SUBRZ 600
SUBR3....27374

@BRF-LINKER
- BRF Linker - JULY 3, 1984
Brl: — “ "
Brl: QEEIHE_£QQLQI12QQQ
Brl: LQAD SUBR3
FREE: P 000631-177777 D 032046-177777
Brl: LINK-TO FILEO FILEZ
Brl: LOAD FORTRAN-ZBANK
FREE: P 027333-177777 D 036450-177777
Brl: 5x11

LINKED FROM FILEO TO FILE2
LINKED FROM FILEO TO FILEZ
LINKED FROM FILEO TO FILE2
LINKED FROM FILEO TO FILE2
LINKED FROM FILEO TO FILEZ
LINKED FROM FILEO TO FILE2
LINKED'FROM FILEO TO FILEZ
LINKED FROM FILEO TO FILEZ
LINKED FROM FILE2 TO FILE1
SUBR4....27410 UG’UCC‘JCGCCGG

5PTAB....13255 U LINKED FROM FILEO TO FILE3
5EXCINF..32045 U LINKED FROM FILEO TO FILE3
SESTACK..21363 U LINKED FROM FILEO TO FILE3
SSTACK....1065 U LINKED FROM FILEO TO FILE3
5FIO_BL..32043 U LINKED FROM FILEO TO FILE3
5USFILB..34631 U LINKED FROM FILEO TO FILE3
5CNCT....34632 U LINKED FROM FILEO TO FILE3
5ALTREC..22320 U LINKED FROM FILEO TO FILE3
SUBR3 600 P LINKED FROM FILE3 TO FILE2

@flflEzLINKER
- BRF Linker - JULY 3, 1984
Brl: PROGRAM-FILE "FILE4"[SEGT4
Brl: DEFINE #DCLC.3ZOOO
Brl: LOAD SUBR4
FREE: P 000631-177777 D 032046-177777
Brl: LINK-IQ EILEO,EILE2
Brl: LOAD EQRIBAfl-ZBANK
FREE: P 027333-177777 D 036450-177777
Brl: EXIT
5PTAB....13255
5EXCINF..32045
SESTACK..21363
SSTACK....1065
5FIO_BL..32043
5USFILB..34631
5CNCT....34632
5ALTREC..22320
SUBR4 600

LINKED FROM FILEO TO FILE4
LINKED FROM FILEO TO FILE4
LINKED FROM FILEO TO FILE4
LINKED FROM FILEO TO FILE4
LINKED FROM FILEO TO FILE4
LINKED FROM FILEO TO FILE4
LINKED FROM FILEO TO FILE4
LINKED FROM FILEO TO FILE4
LINKED FROM FILE4 TO FILEZ’UGCCCCCGC}

ND-EO.195.01

32 BRF-LINKER USER MANUAL
The Hultisegment System

@BRF-LINKER
- BRF Linker - JULY 3, 1984
Brl: ERQGRAM-EILE "EILE5"(SE§I§
Brl: DEEINE_£DQL§IZZQQQ
Brl: LOAD SUBR§
FREE: P 000631-177777 D 022046-177777
Brl: LINK-IO FILEO FILE1
Brl: LOAD FORTRAN-ZBANK
FREE: P 027333-177777 D 026450-177777
Brl: EXII
5PTAB....13255 U LINKED FROM FILEO TO FILE5
5EXCINF..22045 U LINKED FROM FILEO TO FILES
SESTACK..213S3 U LINKED FROM FILEO TO FILES
55TACK....1065 U LINKED FROM FILEO TO FILES
5FIO_BL..22043 U LINKED FROM FILEO TO FILES
5USFILB..24631 U LINKED FROM FILEO TO FILES
5CNCT....24632 U LINKED FROM FILEO TO FILES
5ALTREC..223ZO U LINKED FROM FILEO TO FILES
SUBRS 500 P LINKED FROM FILES TO FILE1

QflfiilflKEB
- BRE Linker — JULY 3, 1984
Brl: PROGRAM-FILE "FILES“[SEGTS
Brl: DEFINE #DCLC,IZOOO
Brl: LOAD SUBRS
FREE: P 000631-177777 D 012046—177777
Brl: LINK;IQ_EILEQ
Brl: LOAD_£QBIRAN;ZBANK
FREE: P 027333-177777 D 016450-177777
Brl: EXIT
5PTAB....13255 U LINKED FROM FILEO TO FILES
5EXCINF..12045 U LINKED FROM FILEO TO FILES
5E5TACK..213S3 U LINKED FROM FILEO TO FILES
SSTACK....1065 U LINKED FROM FILEO TO FILES
5FIO_BL..12043 U LINKED FROM FILEO TO FILES
5USFILB..14S31 U LINKED FROM FILEO TO FILES
5CNCT....14S32 U ‘LINKED FROM FILEO TO FILES
5ALTREC..2232O U LINKED FROM FILEO TO FILES
SUBRS 600 P LINKED FROM FILES TO FILEO

Note that in order to get just one copy of the FORTRAN runtime system
data tables, the command LOAD FORTRAN—ZBANK has to be placed after the
LINK-T0 command For each subroutine. This is important to remember,
because if each subroutine gets its own copy of the runtime system
tables, the loaded program may not work.

ND-60.195.01

BRF—LINKER USER MANUAL 33
The Multisegment System

We can then Use the described SINTRAN III commands to load and run
these segments. Remember, this loading must be done as user SYSTEM:

@DUME-EBQQBAM-EEEHTBANT ERLQEMO.EILEQ,SEQIO

@LQAD-REEEIBANI-EEQMENI EILE1.§E§I]

@LOAD-BEENIBANI-SEGMENT EILEZ.SE§T2

@LQAD—EEEHIBAHI—SEQMENI EILE3.$EGI§

@LOAD-EEEHTBANI—SEGMENT EILE§.§E§T4

@LQAD;BEEHIRAHI;EE§MEHI_E1LE§LEE§Ii

@LOAD-BEENIRANT-SEQMENI E1L£§.§§GI6

@EBLDEMQ

START MAINP
SUBROUTINE 1 CALLED
SUBROUTINE 2 CALLED
SUBROUTINE 3 CALLED
SUBROUTINE 3 CALLED
SUBROUTINE 4 CALLED
SUBROUTINE 4 CALLED
SUBROUTINE 5 CALLED
SUBROUTINE 6 CALLED
END MAINP

ND-BO.196.01

34

ND-60.195.01

BRF-LINKER USER MANUAL

BRF-LINKER USER MANUAL 35
Program Inspection Commands

4. PROGRAM INSPECTION COMMANDS

Sometimes it is necessary to inspect the contents of the loaded
program. This can be done by the BRF-Linker, both on executable
program files and on a program currently being loaded.

To inspect an existing program file. use the command:

Brl: PROGRAM-FILE (file name),w

When inspecting existing files. the only linker commands that can be
used are:

LOOK-AT-PROGRAM, LOOK-AT-DATA, RESTART, RUN and EXIT.

Multisegment program files can be inspected and modified, but no
segment names may be specified when using the W option. This must be
done before they are dumped onto the segment files. Patching of
segment files after the dumping has been done is an entirely different
topic not covered by this manual.

The commands:

Brl: LOOK-AT-PROGRAM (address)

and:

Brl: LOOK-AT-DATA (address)

enable the user to inspect and modify program/data locations, both on
executable program files and on the results of a loading session
before they are written onto such files. The contents of the location
will be written on the terminal as a six-digit octal number. as a
decimal number and as ASCII characters. If LOOK-AT-PROGRAM is used,
the symbolic instructions will also be printed.

New contents are entered by typing a new number. The new number may be
given in octal or decimal mode. The default is octal mode. A decimal
number may be specified by a trailing D, an octal number by a trailing
B. Signed numbers may be used.

CR (carriage return) advances to the next address without changing the
contents of the item. EXIT or . (period) returns control to the
BRF-Linker command processor.

N0-50.196.01

35

ND-60.196.01

BRF-LINKER USER MANUAL

BRF—LINKER USER MANUAL 37
Editing commands

5. EDITING COMMANDS

The BRF-Linker can also be used for editing files containing BRF code
(output from compilers. the MAC assembler. etc.). The BRF code format
is described in chapter 6. The BRF-Linker, used as an editor, can
perform such operations as combining files, modifying libraries. etc.
Be aware of the following points: '

- The BRF-Linker will check all units for syntax errors and checksum
errors.

- The default values for the <first unit) and (last unit) parameters
are the first and the last BRF units on the file respectively.

- All files used as parameters (except the <output file>) have the
default type :BRF.

- The units to be specified in the commands can be identified by any
of the names defined by the MAIN or ENTR codes (see chapter 6).

5.1 Basic Symbol Handling

The command:

Brl: LIST-BRF-ENTRIES <file name>.<output file)

will list all defined symbols and their addresses found in (file name)
onto the output file. The output will appear in this order: symbol
name, address and mode (program or data). '

As an example. let us use the BRF-Linker command LIST-ENTRIES to take
a look at the SUBR file containing the subroutines SUBR3, SUBR4, SUBRS
and SUBRS from the overlay example in section 2.4:

@flfifiztKER
- BRF Linker - JULY 3, 1984
Brl: LIST-BRF-ENTRIES SUBR
SUBR3 0 P SUBR4 31 P SUBRS 62 P
SUBR6 113 P * 144 P
* 231 D
Brl: EXII

Brl: APPEND-BRF (source file>,<destination file>,<after unit)

The BRF units in the source file will be inserted in the destination
file after the unit identified by (after unit). If no <after unit) is
specified, the source file will be appended to the destination file
after the last BRF unit in the destination file.

Brl: FETCH-BRF (source file>,<destination file>,<first unit),
(last unit)

ND-50.198.01

38 BRF-LINKER USER MANUAL
Editing commands

The BRF units in the source file, starting with the (first unit) and
including every unit up to and including the (last unit). will be
appended to the destination file following the last BRF unit which
appears in itr

Brl: DELETE-BRF (file name>,<first unit>,(last unit)

The specified BRF units will be deleted from the file. The
(first unit) will be the first unit deleted. then all the BRF units
following it. including (last unit), will be deleted.

5.2 Con-ands for Updating

The command:

Brl: REPLACE-BRF (source file>.(destination file)

will replace the BRF units in the destination file with the same name
as those in the source file by the BRF units in the source file.

The BRF units in the destination file will have the same relative
position within the file after the REPLACE-BRF command as they had
before.

BRF units in the source file not found in the destination file will be
skipped and a warning message will be issued.

BRF units without symbolic names cannot be replaced.

5.3 Additional Symbol Con—ands

The command:

Brl: PREPARE-BRF-LIBRARY-FILE (source file)

will set up a BRF unit containing an index table of all the BRF units.
The index table is the first BRF unit in the new file. Each element in
the index table consists of 5 words: 3 words for the unit name and 2
words for the byte pointer of the unit. Selective loading (search for
referenced library units) from a file with an index table will be
faster than loading the same file without the index table.

The index table is invalidated by all commands modifying the contents
of the BRF file (APPEND-BRF, FETCH—BRF. DELETE-BRF and REPLACE-BRF).
The table must be rebuilt if any of these commands are performed.

Brl: INSERT—BRF-MESSAGE (file name>,<before unit>,(message>

This command inserts a message in the BRF file before the specified
unit. If the file is prepared with the PREPARE-BRF-LIBRARY-FILE
_command, the default position is in the front of the index table. The
specified message will be printed when the file is loaded. If the file
is a library file headed by an index table, any message inserted in
front of the index table is printed; all other messages (defined by

ND-60.196.01

BRF-LINKER USER MANUAL 39
Editing commands

this command) are located outside BRF units, and are not written.

Brl: RENAME-BRF (file name>,<old symbol>,<new symbol)

This command changes the name of a symbol in a BRF code file
identified by <file name). The (old symbol) is the current name of the
symbol while <new symbol) specifies the new one.

5.4 Other Functions

The command:

Brl: LIST-BRF-CODE (file name>,<first unit>,<1ast unit),
<output file)

will list the BRF information regarding the <first unit) and all the
other units up to and including (last unit) on the specified source
file on the (output file). The information given is as follows:

- Location counter (octal)
- BRF control number (octal)
- Name of the BRF control number
- All symbolic names (REF. ENTR. LIBR, MAIN. ASF, ADS, etc.)
- Binary information (octal)
— Disassembled (if program code)

As an example, we use the BRF-Linker command LIST-BRF-CODE to take a
look at the small example program in section 1.4:

@BRF-LINKER
- BRF Linker - JULY 3,1984
Brl: LISI-EBE- QQDE IE§IE.,.,

17 BEG *** new BRF - unit ***
1

'
32 LONG

1 11 AFL 11
12 14 MAIN TESTP
12 24 LNF 3
12 171400 SAX O
13 135021 JPL I * 21
14 0 STZ *
15 2 LR O
16 24 LNF 16
16 0 STZ *
17 0 STZ *
20 O STZ *
21 605 STZ ,B - 173
22 135013 JPL I ‘ 13
23 44013 LDA * 13
24 135013 JPL I * 13
25 44013 LDA * 13
26 135013 JPL I * 13
27 135013 JPL I * 13
30 170777 SAA - 1
31 135012 JPL I * 12
32 124001 JMP * 1
33 135011 JPL I * 11

ND-60.195.01

40

34
35
36
37
40
41
42
43
44
45
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
65
66
67
67
7O

‘71
72
72
73
74
75
75

103
104
105
106
106
106
106
106
106

Brl: EXII

20
20

20

20
20
20
20
24

bNNO‘I—kNdNN

”-5

N

AmmmqaO—smamwmN4

REF SINIT
REF SEXCEPT
LR 0
REF 5FIO
LR 0
REF 5DAT
REF. SCLS
REF SXCLO
REF SLEAV
LNF 14

52110 LDT ,X 110
44523 LDA ,B 123
20111 STD * 111
51440 LDT I ,B 40
40440 MIN ,5 40
52105 LDT ,X 105
51524 LDT I ,B 124
20120 STD * 120
51117 LDT I * 117
43522 MIN ,X I ,B 122
40515_MIN ,B 115

2440 STZ ,X ,B 40
LR 45
LP 26 STZ * 26
LR 60
LF 1 STZ * 1
APR 65,40
LR 63
LR 61
LNF 3

1 STZ * 1
2 STZ * 2

13000 STT ,X I *
AFR 72,36
LR 70
LR 67
LF 177606 BORA 0 DT
AFR 75,15
AFL 6
REF 5FIO_BL
LP 0 STZ *
REF SEXCINF
ARR 103,77
ARR 103,100
AFR 0,14
AFR 6,16
ENTR label 1,0,0
END checksum : 72054

ND-60.195.01

BRF—LINKER USER MANUAL
Editing commands

BRF—LINKER USER MANUAL 41
The Binary Relocatable Format

6. TIE BINARY REIOCATABLE FORMAT

A program is a set of instructions and data which, when executed, will
perform an algorithm. A program may be in various forms. It may be
written in FORTRAN, assembly code. machine code, etc. But the most
important aspect is whether it is bound to a specific location in
memory or not. We refer to a program that can be moved to another part
of memory as a relocatable program.

Thus, a FORTRAN program and an assembly program (with only symbolic
addresses) are relocatable programs, while a program in binary form is
generally not relocatable. Consider the following three versions of
the same program:

Program ABC Program ABC Program ABC
written in written in written in
assembly code binary form binary form

(placed from (placed from
location 10) location 20)

ABC, JMP I *+1 125001 .125001
XYZ 14 24
157 157 157
751 751 751

XYZ, WAIT 151000 151000

The binary program version which is bound to location 10 cannot be
moved to location 20 without changes. The machine code is not in
relocatable format, since there is no information about which words
contain internal addresses that have to be modified depending on the
placement of the program.

If the language processors (compilers and assemblers) produced machine
code directly, this would cause serious problems for programmers.
Since every routine would be fixed in a specific place in memory, any
modification that would change the length of any routine would mean
that the whole program system would have to be recompiled. Using
separately compiled routines (including runtime system routines) or
combining routines written in different languages would be difficult
or impossible.

For this reason most language processors generate relocatable code.
The relocatable code format used on ND-100 computers is called BRF
(Binary Relocatable Format). In this format, information about
references between the various parts of the program system, such as
procedure calls, references to global data, etc.. is coded as symbols.
These symbols are alphanumeric names assigned by the compiler to an
instruction or to a data item. The memory locations where these
instructions and data items will eventually be placed are selected by
the BRF-Linker according to how it places the various program parts in
memory.

ND-60.196.01

42 ’ BRF-LINKER USER MANUAL
The Binary Relocatable Format

6.1 The BRF Structure

BRF code is organized in eight-bit bytes and can be stored on any data
medium (magnetic tape. disk, etc.). The information contained in the
object program may be organized in the following kind of groups:

- Control information is held in a control byte (which forms the
control number) and is interpreted as loader commands.

- Programmed information is held in two bytes containing a sixteen-
bit word and is termed a P-group.

— Symbolic information is held in four bytes for MAC and NFL, and
six bytes for FORTRAN, COBOL, etc. This is termed an S-group
containing a symbol of one to seven six-bit characters.

For further information see the MAC Interactive Assembly and Debugging
System User's Guide (ND-60.096).

BRF code is made up of a sequence of BRF groups. A BRF group can take
on one of the following forms:

(control byte)
(control byte>(P-group>(P-group>
(control byte>(S—group)
(control byte>(S-group>(P-group>

The example program ABC will look like Ithis when broken down
columnwise into BRF groups:

Control byte 4
mnemonics Control byte P—group

BEG 17
LF 1 125001
LR 2 5
LF 1 157
LF 1 751
LF 1 151000
END 21 100574

The contents of the control byte will form the control number. Control
number 17 (mnemonic BEG) marks the beginning of the program. In
FORTRAN, COBOL etc., control number 17 (BEG) is followed by control
number 32 (LONG) which indicates that all S-groups contain six bytes
instead of four. Control number 1 (LF) is followed by a P-group which
is to be loaded unmodified. while control number 2 (LR) is followed by
a P-group which contains an address relative to the beginning of the
program. and which should therefore be modified. Control number 21
(END) is followed by a checksum.

ND-SU.196.01

BRF—LINKER USER MANUAL 43
The Binary Relocatable Format

Symbols (labels) are represented by S-groups where the six last bits
are zero. (Note that in the example above, 125001 denotes the
beginning of the program and is not a label.)

5.2 Relocation of Internal Addresses

Suppose that the load address is set to location 521 (either as a
consequence of previous loading or by using the DEFINE command), and
that we are going to load the example program we have looked at.

when the BRF—Linker begins loading, it reads control number 17 (BEG).
The current location minus 1 is taken as the program's First address
(also called the "program base"). In this case, the program base is
620. When loading. the program base is added to all P-groups which are
preceded by the control number 2 (LR). The result is shown below.

0

621 125001
625 = 620 + 5
157
751

151000

6.3 Program Units

A program is composed of one main program and zero or more
subprograms. A common name for main programs and subprograms is
program units.

When a compiler compiles a program, each program unit is translated
without any information about other program units. Therefore, the
program units need not be compiled at the same time. Compilation of
some program units separately from other program units is called
separate compilation.

The address (or addresses) of a program unit where the execution
begins is called the entry point. If the program unit is a main
program. the entry point is called the start address. A word
containing a reference to an entry point in another program unit is
termed an external reference.

ND-EO.196.01

44 BRF-LINKER USER MANUAL
The Binary Relocatable Format

8.4 Separate Compilation

The object program consists of one or more BRF program units. The
information necessary to link these together to an executable program,
namely the entry points and the external references, is symbolic, and
is placed in the S-groups. The meaning of the S-group is determined by
the preceding control number in the following way:

Control Number Hnemonic Meaning

14 MAIN Symbolic start address

15 LIBR Library subprogram entry point

16 ENTR Symbolic entry point

20 REF Symbolic external reference

The object program units begin with control number 17 (BEG), end with
control number 21 (END) and may contain one of the control numbers 1k
(MAIN) or 16 (ENTR). A library subprogram has a control number 15
(LIBR) in addition to the 16 (ENTRT. A library subprogram is loaded
only when the LIBR symbol has been referenced by a REF group and is
not already defined as a symbolic entry point. Library subprograms
which are not needed are checked through to the END group.

If the BRF-Linker does not receive any other information, the program
units are loaded consecutively. starting at a system-defined address.
However, the program units may be loaded elsewhere by means of the
control numbers:

10 (SPL) Start (continue) loading at the location in the
P-group.

11 (AFL) Continue at the current location + the relative
address in the P-groups.

12 (SRL) Continue at the current program base + the
relative address in the P-group.

’

The main program and the subprograms may be read in an arbitrary
sequence. If the program unit A refers to another program unit 8, it
does not matter which of them is loaded first. The (necessary) library
subprograms are loaded last. But if the library subprogram A refers
to another library subprogram - B, then A must be loaded first,
otherwise 8 will not be loaded.

6.5 Linking of Program Units

The BRF-Linker has a symbol table where each entry consists of three
words for the symbol (the S-group) and one word (ADR) for the addresso

ND-50.196.01

BRF-LINKER USER MANUAL 45
The Binary Relocatable Format

ADR may have two different meanings:

1) If a symbolic entry point has been read, then AOR is the memory
address of the entry point.

2) If only symbolic external references to a symbol have been read.
then the ADR is a pointer to the last location at which the symbol
was referenced. This location contains a pointer to the preceding
reference to the same symbol. and so on. The first reference
location contains the word 1777773 to mark the end of this list.
One bit in the table entry is used to discriminate between the two
interpretations of ADR.

When a symbolic entry point is defined. any previous external
references to this symbol will immediately be changed to the defined
memory address of the symbol. This is done by following the list of
references to the symbol described above.

6.6 FORTRAN COMMON Blocks

Some special BRF control numbers are used to ease the implementation
of FORTRAN COMMON areas and data space allocation in general.

The memory area in which the BRF-Linker puts the program is a
continuous area from a lower address up to the upper bound. The
program units therefore normally grow upwards. For one—bank programs
(but not for two—bank programs), COMMON blocks are allocated from the
upper bound downwards. Thus the COMMON block address is found by
subtracting the length from the upper bound and reducing the upper
bound appropriately.

For two—bank programs, COMMON blocks are allocated from the present
data load address upwards like all other data areas.

The COMMON block address must be known before the addresses
referencing COMMON are loaded. Therefore the COMMON block address
which uniquely specifies the maximum block length is defined by the
first program unit using COMMON data. This explains the restriction
that a COMMON block cannot be expanded by the succeeding program
units.

The ASF group has the format:

<ASF><S-group><P—group>

where the S—group contains the name of the COMMON block, and the
P—group contains the block length.

Data in COMMON is referenced by indirect addressing. Such addresses
are followed by the control number 27 (ADS) which tells the BRF-Linker
to add the COMMON block address.

ND-50.196.01

45 BRF—LINKER USER MANUAL
The Binary Relocatable Format

The ADS—group has the format:

<AOS><S-group>

with the interpretation that the value of the S-group is added to the
previously loaded address (P-group).

6.7 Fix—up Facilities

The BRF code is designed to allow single-pass, sequential
transformation. This implies that the BRF-Linker must be able to fix
words which have already been loaded. This is done by the four control
numbers 4 (AFF). 5 (ARF), 6 (AFR), 7 (ARR) which all have two P-
groups. The second P-group contains an address, and the first P-group
has contents which will be added to that address. Both the address and
the contents of the first P-group (which may be an address) may be
relocated relative to the prdgram base. and this therefore gives four
possibilities.

5.8 Checksuu

In order to detect read errors during loading, a checksum is placed
behind each END control byte. Here. everything from the BEG control
byte to the END control byte is added together. complemented and put
in a P-group. The control bytes are regarded as eight bits, the P-
group as sixteen bits, and the S-group as two or three sixteen bit
numbers.

6.9 Description of the BRF Control Numbers

The legal control numbers are consecutive numbers starting at zero and
are interpreted as commands to the BRF-Linker. They are listed in the
following table together with their mnemonics and interpretation.

The terminology needs some explanation:

CLC is the current location counter. It contains the address where the
next word is to be placed.

P8 is the program base of the current program unit.
C08 is the COMMON data base (COMMON block address).

N1 and wn are the contents of the first to the n'th P-group.
respectively.

If “a" is an address or an address expression. then (a) is the content
of this address. The expression X -+ (Y) means that the value X will
replace the contents of Y, while X -* ((Y)) means that the value X
will be copied to the location having the address found in Y (indirect
addressing).

ND*60.196.01

BRF-LINKER USER MANUAL
The Binary Relocatable Format

BRF control numbers

Control Mnemonic No. Interpretation
Number of
(octal) Words

0 FEED 0 Ignored

1 LF 1 w1-*((CLC)),(CLC)+1-*(CLC)

2 LR 1 w1+(PB)-*((CLC)),(CLC)+1-*(CLC)

3 LC 1 w1+(CDB)-*((CLC)),(CLC)+1-*(CLC)

4 AFF 2 w1+(w2)-(w2)

5 ARF 2 w1+(PB)+(w2)—»(w2)

6 AFR 2 - w1+(w2+(PB))-*(w2+(PB))

7 ARR 2 w1+(PB)+(w2+(PB))-*(w2+(PB))

10 SFL 1 N1-*(CLC)

11 AFL 1 w1+(CLC)-*(CLC), fill zeros

12 SRL 1 w1+(PB)-*(CLC)

13 — Not Used

14 MAIN 2(3) Symbol in S-group will become the main
entry

15 LIBR 2(3) Conditional loading

16 ENTR 2(3) Symbol in the S-group lS assigned value
of CLC

17 BEG o‘ (CLC)-*(PB) First control byte of a unit
20 REF 2(3) Symbol in S-group is referenced in CLC

21 END 1 W1 contains the BRF-checksum

22 INHB 0 Warns that compilation errors have
occurred

23 EOF 0 End of loading

24 LNF 1+w1 W2.W3,....Nn—*(CLC),....(CLC+w1-1)

ND-50.195.01

47

43 BRF-LINKER USER MANUAL
The Binary Relocatable Format

BRF control numbers — continued

Control Mnemonic No. Interpretation
Number of
(octal) Words

25 RT 1 W1 contains real time priority

26 ASP 3(4) <symbol><number> Defines common length.
Value of symbol in loader table = common
start address.

27 ADS 2(3) <symbol>+1CLC—1)—*(CLC-1) Adds common
address

30 MSG 1+W1 W1 contains length of message in words

31 - Not used

32 LONG 0 Flags a six-byte S-group

33 — Not used

34 INL 2 W2-*(W1+(PB))

35 DBL 3 Wi-+1W1+(PB)+i—2) (i = 2 to 3)

38 RLL 4 Wi-*(W1+(PB)+i-2) (i = 2 to 4)

37 CXL 7 Wi-*(W1+(PB)+i-2) (i = 2 to 7)

40 * INC 4(5) W5-+(W4 + ADR)

41 * DBC 5(6) Wi-*(W4 + ADR + 1-5) (i = S to 6)

42 * RLC 6(7) Wi-*(W4 + ADR + 1-5) (i = 5 to 7)

43 * CXC 9(10) Wi-*(W4 + ADR + i-S) (i = S to 10)

44 BYL 2 W2(bit 0-7)-*(W1+(PB))(bit 0-7) if W2
bit 15:0

W2(bit 0-7)—*(W1+(PB))(bit 8—15) if W2
bit 15:1

45.* BYC 5 W5(bit 0-7)-*(W4 + ADR)(bit 0-7) if W5
bit 15:0

W5(bit 0-7)-*(W4 + ADR)(bit 8-15) if W5
bit 15:1

46 NWL 1 W1 contains line number. (Not in use.)

47 086 0 Indicates start/stop of Debug information

ND-BO.196.01

BRF-LINKER USER MANUAL
The Binary Relocatable Format

BRF control numbers - continued

49

Control Hnemonic No. Interpretation
Number of
(octal) words

50 PMO 0 Indicates start of program bank mode

51 DMO 0 Indicates start of data bank mode

52 LRP 1 Same as LR but PB of program bank

53 LRD 1 Same as LR but P8 of data bank

54 DIC - Dictionary table follows. Each element
contains name (3 words) and byte pointer
(2 words). End of table marked by ~1.

* The N1, wz, and N3 contain a common block name. At load time
symbol must be defined. Its value is referred to as ADR.

ND-60.195.01

this

50

ND-60.195.01

BRF-LINKER USER MANUAL

BRF-LINKER USER MANUAL

APPENDIXES

ND-60.196.01

51

52

ND-SO.196.01

BRF-LINKER USER MANUAL

BRF-LINKER USER MANUAL 53
Command Summary

A . COMMAND SUMMARY

In this appendix the various commands of the BRF-Linker are briefly
described.

The BRF-Linker is controlled from the terminal by the following
command words. They may be abbreviated provided no ambiguity results.
The parameters. if any, are separated by a space or a comma.

Brl: APPEND-BRF (source file>,<destination file>,<after unit)

Insert all BRF units in the source file into the destination file
after the specified unit. If no unit is specified, append the units
from the source file at the end of the destination file.

Brl: COPY-PROGFILE <source file>,<destination file)
[,<Include Debug? YES/N0>]
[.<Include Link Information? YES/N0)!

The <source file) is the name of the file to copy from,
(destination file) is the name of the file to copy to. The default
file type is :PROG for both files. The parameter
(Include debug? YES/N0) gives the user an opportunity to include debug
information during copying. Answer YES to include it or NO to
delete it. The default answer is NO. For files using the multisegment
system. link information can be deleted while copying. The parameter
(Include Link Information?) gives the user an opportunity to include
multisegment link information. The default answer is NO.

Brl: DEBUG-MODE <0N/0FF>

Debug information on BRF files can be accepted or ignored. Default
parameter is ON.

Brl: DEFINE <symbol>,<address>,<P/D>

The symbol will be entered into the BRF-Linker's symbol table. Its
value and mode will be equal to what is specified. Default mode is P
(program mode).

Brl: DEFINE <symbol>,?,<P/D>

If defined, the value of the symbol specified will be printed on the
terminal.

Brl: DEFINE <#PCLC/#DCLC>,<address)

Subsequent loading in the specified bank will start from the address
specified.

ND-60.195.01

54 V BRF—LINKER USER MANUAL
Command Summary

Brl: DELETE-BRF <file name>,<first unit>,<last unit)

Delete a sequence of BRF units from the specified file starting with
the <first unit) and delete the Following units up to and including
the <last unit>. I

Brl: EXIT

Control is returned to SINTRAN III.

Brl: FETCH-BRF <source file>,<destination file>,<first unit),
(last unit)

Fetch a sequence of 8RF units from the source file, starting with the
(first unit) and taking all following units up to and including the
(last unit>. and append them at the end of the (destination file).

Brl: HELP [<command>l

List the available loader commands matching <command> on the terminal.
If no command name is specified. all commands will be listed.

Brl: INSERT-BRF-MESSAGE (file name>,<before unit>,<message>

Insert a message before the specified unit on a given file. The
message will be printed on the terminal when the file is loaded.

Brl: LIBRARY—MODE <0N/0FF>

Library files can be loaded in library mode or normal (non-library)
mode. The default value is ON.

Brl: LINK-T0 <file—1>,[<file-2>,....,<file—n>]

Perform multisegment linking between the program file (as specified in
the PROGRAM-FILE command) and the files specified in this command. The
default file type is :PROG.

Brl: LIST-BRF-CODE (file name>,<first unit>,<last unit>.
<output file)

List information from a sequence of BRF units in the specified source
file on the (output file), starting with the <first unit) and ending
with the (last unit).

ND-50.195.01

BRF-LINKER USER MANUAL ’ 55
Command Summary

Brl: LIST-BRF-ENTRIES (file name),(output file)

List all defined symbols in all BRF units in the specified source file
on the specified output file.

Brl: LIST-ENTRIES-DEFINED ,,,

All defined symbols in the BRF-Linker's symbol table (in both program
code and data banks) and the current address/value will be printed on
the terminal.

'8r1: LIST-ENTRIES—UNDEFINED ,.,

This command is similar to LIST—ENTRIES-DEFINED,,, except that
undefined symbols are printed.

Brl: LOAD (file name)[,<file name)...]

The file(s) specified will be loaded until the end-of-file marker is
encountered. The default file type is :BRF.

Brl: LOOK-AT-DATA (address)

Used to inspect and modify data locations.

Brl: LOOK-AT-PROGRAH (address)

Used to inspect and modify program locations.

Brl: OUTPUT-FILE (file name)

This command is used to specify that output is to be written to the
specified file instead of the terminal. Output from the following
commands: LIST-ENTRIES-DEFINED. LIST-ENTRIES—UNDEFINED, LINK-T0,
PROGRAM-INFORMATION, LIST-BRF-CODE and LIST-BRF-ENTRIES will be
written to the file specified. The default file type is :SYMB. To
reset output to the terminal. give the command OUTPUT-FILE with no
file name.'

Brl: OVERLAY <1evel),<entry name 1)[,.. .(entry name n)]

This command specifies that the next overlay link is to be generated.
The (level) is the overlay level. The parameters (entry name 1> to
(entry name n) are the names of the subprograms called from the
previous level. The root link is level 0. A level must always be
specified when linking overlays.

ND-80.196.01

56 BRF-LINKER USER MANUAL
Command Summary

Brl: PATCH-PROGFILE-NAME (file name>,<new name)

This command is used to change the name used in the PROGRAM-FILE
command when the program file specified by (file name) was written. If
the SINTRAN III command RENAME-FILE is used to rename a file, the
PATCH-PROGFILE-NAME command can be used to change the file name
written on the file. Note that this command will not change the
SINTRAN III file name.

Brl: PREPARE-BRF-LIBRARY-FILE (source file)

Generate an index table of all BRF units in the <source file) and
insert this index table as a new unit at the very beginning of the
file.

Brl: PROGRAM-FILE (file name>[/<segment name>][,<w>]

The output from the BRF—Linker will be loaded onto the file specified.
The default file type is :PROG. The /<segment name) parameter is used
to specify the segment name in multisegment mode, and the (N)
parameter is used to indicate that only the program inspection
commands are to be used on an existing program file.

Brl: PROGRAM-INFORMATION (file name)
[,(Dump Link Information?YES/N0>,<output file>1

Information concerning the specified program file will be listed. The
default file type is :PROG. The two last parameters are only valid for
multisegment program files. The default file type for the output file
is :SYMB.

Brl: REFERENCE <symbol>,<address>,<P/D>

This command is used to insert or refer to an undefined symbol in the
BRF-Linker's symbol table. The following rules apply:

1) If the symbol is not present in the symbol table, the value -1
will be put into the specified address and this address will be
referenced in the table. The specified octal address must be an
unused memory address, otherwise the information stored there
previously will be written over. If no address is given, then the
symbol will be treated as a referenced symbol only.

2) If the symbol is present, but already referenced (undefined), the
address specified will be linked into the reference chain.

3) If the symbol is defined, its value will be put into the address
specified.

4) The default bank is P (program bank).

N0-60.196.01

BRF-LINKER USER MANUAL 57
Command Summary

Brl: REMOVE <symbol>,<P/D>

If present. this symbol will be removed from the BRF-Linker's symbol
table.

Brl: RENAME (old symbol>,<new symbol)

This command is used to give the specified symbol a new name.
Subsequent references to the (old symbol) will be assumed to be
references to another symbol with the old name.

Brl: RENAME-BRF <fi1e name).<old symbol>,<new symbol)

This command is used to change the name of a symbol (<old symbol)) in
a specified BRF file.

Brl: REPLACE-BRF (source file>.<destination file)

Replace BRF units on the destination file with units from the source
file. Units found only in the destination file will not be changed,
whereas units only found in the source file will be ignored, giving a
warning message.

Brl: RESTART (address)

01'

Brl: RESTART (symbol)

To set the restart address (the address that the program starts
executing from when you type QCONTINUE at your terminal) of the
program file specified in PROGRAM-FILE command. The <symbol> must be a
defined entry in the program area. The default restart address will be
equal to the main start address. -

Brl: RUN

This command leaves the BRF-Linker and then starts executing the
program file opened with the PROGRAM-FILE command at the beginning of
the loading session.

ND-50.196.01

58

'N0—60.195.01

BRF-LINKER USER MANUAL

BRF-LINKER USER MANUAL 59
Error Messages

B . ERROR MESSAGES

When an error occurs during a loading session. the BRF—Linker types
the text Brl message: followed by an error message on the terminal or
output device. The various error messages are listed below in
alphabetical order.

In addition to these messages, some of the file system error messages
may appear on your terminal.

AMBIGUOUS COMMAND

The last command name has been abbreviated and is not unique.

CHECKSUM ERROR

The BRF file contents have been corrupted as a result of hardware or
software errors occurring during reading or writing.

COMMON BLOCK EXHAUST AVAILABLE SPACE

The common block size is too large for the remaining free area.

COMMON BLOCK EXPANDED

The length of a previously defined common block has been declared to
be larger in‘a subsequently loaded program.

COMPILER SYSTEM ERROR

Erroneous use of generated labels in the compiler.

DATA SPACE EXCEEDED

The current load address of the data has reached the maximum limit of
84 pages.

DEBUG TABLE FULL

The current address for debug information has reached the absolute
upper limit of the free area.

FILE DOES NOT CONTAIN BRF-CODE

Non-interpretable information has appeared on the BRF file.

NO-SO.196.01

60 . BRF-LINKER USER MANUAL
Error Messages

xxxxx FIRST UNIT IS NOT PRIOR TO LAST UNIT

The BRF unit xxxxx is not prior to the <last unit) specified.

ILLEGAL OVERLAY LEVEL

The overlay level must not be increased by more than 1 from the last
OVERLAY command: the first time it must be 0.

ILLEGAL SEQUENCE OF OVERLAYS

An overlay has referenced a symbol which is not in its path, nor in
any links immediately below it.

INVALID ADDRESS

An address specified in the last command is not a valid address.

xxxxx INVALID ADDRESS OR NOT DEFINED SYMBOL

The symbol or address xxxxx specified in the last command is not a
valid address or a defined symbol.

INVALID COMMAND

The last command name is unknown.

INSUFFICIENT BRF-UNIT, SYNTAX ERRORS

Errors have occurred during the compilation process.

MIXED ONE/TWO BANK ROUTINES-

Routines compiled‘with the compiler command SEPARATE-DATA OFF may not
be mixed with routines compiled with SEPARATE-DATA 0N. There is an
exception in the case of routines written in MAC and NPL.

NEW CHECKSUM GENERATED

Using the command RENAME to rename a symbol will cause a checksum
error. To overcome this, a new checksum is generated and written to
the BRF file. Note that this message does not necessarily indicate an
error.

N0 MAIN ENTRY

The user is trying to start a program having no main program module_

ND-60.196.01

BRF—LINKER USER MANUAL 61
Error Messages

NO PROGRAM-FILE SPECIFIED

The command PROGRAM-FILE must be used before any files can be loaded.

NO SUCH FILE

The file name specified in the command is not a legal file name.

xxxxx NOT FOUND IN DESTINATION FILE

The BRF unit xxxxx is not a unit (entry) in the destination file;

xxxxx NOT FOUND IN SOURCE FILE

The BRF unit xxxxx is not a unit (entry) in the source file.

OVERLAPPING DATA IN LINKED SEGMENTS

The local data corresponding to each code segment must be loaded into
different areas in the data segment.

PROGRAM SPACE EXCEEDED

The current load address of the program area has reached the maximum
limit of 86 pages.

PROGRAM SYSTEM TOO LARGE

During overlay loading, the overlaid program system has become too
large for the BRF-Linker to handle.

REDEFINITION. LAST APPLIES xxxx yyyy.

The symbol xxxx being defined (either by loading a file or by the
DEFINE command) has already been assigned an octal value yyyy. The
first value defined for the symbol is kept.

REFERENCED ELSEWHERE THAN CURRENT OR PREVIOUS LEVEL

During overlay loading. references should only be to the current or
the next level.

ROOT-SEGMENT NOT INITIATED (OVERLAY 0)
o

In overlay loading. the overlay system must be initiated by the
command OVERLAY 0,,.

ND-ED.196.01

62 BRF—LINKER USER MANUAL
- Error Messages

SEGMENT-ROUTINE NOT LOADED

In multisegment loading, the routine for segment switching is not
loaded. The library must be loaded.

xxxxx SYMBOL NOT FOUND

The symbol xxxxx is not found in the symbol table.

TOO LONG NAME. WILL BE TRUNCATED

The name is too long and will be truncated to a maximum of 15
characters.

UNDEFINED COMMON LABEL

Undefined common block in program.

UNDEFINED ENTRIES

Undefined entries in loaded program.

ND-60.195.01

BRF—LINKER USER MANUAL
Index

Index

Absolute program 2, 4.
Absolute program files 2.
Address symbolic start 44.
AMBIGUOUS COMMAND 59.
Angular brackets 1.
APPEND- BRF command 37, 53.
Backward reference in overlay systems 15.
Binary '

program 41.
Relocatable Format 1, 41.

BRF . 1, 41.
code . 42.
control number 42, 46.
P--group . 42.
S-group . 42.

BRF-Linker
commands . 1, 53.
input . 4.
modes . 2.

BRF Control
byte . 42.
information 42.
number 46.

BRF Symbolic information 42.
Brl message . 59.
Carriage return 1.
Checksum'. 46.
CHECKSUM ERROR 59.
Comma . 1.
Command

APPEND—BRF 37, 53.
COPY-PROGFILE 11. 53.
DEBUG-MODE . 4, 53.
DEFINE L 7, a. 25, 53.
DELETE- BRF 38, 54.
DUMP- PROGRAM- REENTRANT 26.
EXIT . 5, 25. 54.
FETCH- BRF . 38, 54.
HELP . 12, 54.
INSERT- BRF--MESSAGE 38, 54.
LIBRARY- MODE 4, 54.
LINK-T0 . 24, 54.
LIST-BRF-CODE 39, 54.
LIST-BRF-ENTRIES 3T, 55.
LIST-ENTRIES-DEFINED 7, 55.
LIST- ENTRIES-UNDEFINED 7, 55.
LOAD.... 455
LOAD- REENTRANT- SEGMENT 26.
LOOK- AT- DATA 35, 55.
LOOK- AT- PROGRAM 35, 55.
Multisegment PROGRAM- FILE 24.
OUTPUT- FILE 7, 25, 55.

ND-60.196.01

64

OVERLAY
PATCH— PROGFILE— NAME
PREPARE- BRF- LIBRARY- FILE
PROGRAM-FILE
PROGRAM—INFORMATION
REFERENCE
REMOVE
RENAME .
RENAME-BRF
REPLACE-BRF
RESTART
RUN .

Command abbreviation
Command format
Command summary .
Commands for loading overlays
COMMON

addressing
block
declaration
expansion
length

COMMON block address .
COMMON BLOCK EXHAUST AVAILABLE SPACE
COMMON BLOCK EXPANDED
COMMON blocks and Multisegment linking
CDMPILER SYSTEM ERROR
Control

byte in BRF
character .
information in BRF
numbers in BRF

CDPY-PROGFILE command
Copying program files
Current location counter

Data
Program

Data
inspection
modification

DATA SPACE EXCEEDED
Debug information
DEBUG TABLE FULL
DEBUG-MODE command
Debugger and Overlays
Decimal number
Default

file type
LIBRARY-MODE

-load-file type
restart address

Default file type

“?

N0-60.198.01

BRF-LINKER

16.
10.
38.
4.
10.
8.
8.
8.
39.
38.
8.
5.

1.
53.
16.

45.
46.
45.
A5.
45.
48.
59.
59.
25.
59.

42.

42.
#2.
11,
11.
46.

8.

35,
35,
59.

59.
‘ I

15.

53.

55.

53.

USER MANUAL

55.
56.
58.

24,
56.

55.
57.
57.

57.
57.

57.
57.

53.

53.

53.
53.'

55.
55.

53.

53.

35.

Index

56.

BRF-LINKER USER MANUAL
Index

Default load- file type
Default restart address
Default values for missing parameter
DEFINE command
Defined symbols
DELETE BRF command
Demand paging .
Dependent links in overlay sy
Design of an overlay system

stems

DUMP--PROGRAM-REENTRANT command
Dumping .

Multisegment program
Overlay program

Editing commands
Entry point
Error

AMBIGUOUS COMMAND
CHECKSUM ERROR
COMMON BLOCK EXHAUST AVAILABLE SPACE
COMMON BLOCK EXPANDED
COMPILER SYSTEM ERROR
DATA SPACE EXCEEDED
DEBUG TABLE FULL .
FILE DOES NOT CONTAIN BRF- CODE
FIRST UNIT IS NOT PRIOR TO LAST UNIT
ILLEGAL OVERLAY LEVEL
ILLEGAL SEQUENCE OF OVERLA YS
INSUFFICIENT BRF- UNIT, SYNTAX ERRORS
INVALID ADDRESS
INVALID ADDRESS OR NOT DEFINED SYMBOL
INVALID COMMAND .
MIXED ONE/TWO BANK ROUTINE
NEW CHECKSUM GENERATED
NO MAIN ENTRY
N0 PROGRAM- FILE SPECIFIED
NO SUCH FILE .
NOT FOUND IN DESTINATION F
NOT FOUND IN SOURCE FILE

S

ILE

OVERLAPPING DATA IN LINKED SEGMENTS
PROGRAM SPACE EXCEEDED
PROGRAM SYSTEM TOO LARGE
REDEFINITION. LAST APPLIES xxxx yyyy.
REFERENCED ELSEWHERE THAN CURRENT / PREVIOUS LEVEL
ROOT- SEGMENT NOT INITIATED OVERLAY O
SEGMENT- ROUTINE NOT LOADED
SYMBOL NOT FOUND
TOO LONG NAME. WILL BE TRUNCATED
UNDEFINED COMMON LABEL
UNDEFINED ENTRIES

Executable program
Executable program files
Executing overlay programs

ND-BO. 196.01

55.

7.

38

13.
15.
26.
24.
22.
16.
37
43.

59.
59.
59.
59.
59.
59.
5B.
59.
60.
BO.
60.
50.
BO.
60.
BO.
50.
SO.
SO.
81.
61.
61.
51.
61.
E1.
61.
61.
B1.
51.
62.
62.
62.
82.
82.
2.

16.

25,

54.

53.

53.

65

as
'

BRF-LINKER USEP. MANUAL
Index

Execution time for overlay systems 3.
EXIT command 5, 25, 54.
Extended path in overlay systems 14.
External reference 43.
FETCH- BRF command 38, 54.
FILE DOES NOT CONTAIN BRF— CODE 59.
FIRST UNIT IS NOT PRIOR TO LAST UNIT 60.
Fix- up ; . . 46.
FORTRAN COMMON 45.
FORTRAN COMMON and

Multisegment linking 25.
Overlays 15.

Forward reference in overlay systems 15.
HELP command . 12, 54.
ILLEGAL OVERLAY LEVEL GD.
ILLEGAL SEQUENCE OF OVERLAYS 60.
Independent links in overlay systems 13.
INSERT BRF- MESSAGE command 38, 5k.
INSUFFICIENT BRF- UNIT. SYNTAX ERRORS 60.
Intermodule references 1.

Multisegment program 22.
INVALID ADDRESS 60.
INVALID ADDRESS OR NOT DEFINED SYMBOL 60.
INVALID COMMAND Z . 80.
Label g 1.
Library

files . 4.
object programs 64.
subprograms 44.

LIBRARY- MODE command 4. 54.
Library object programs 44.
Library subprogram entry point LL.
Link path in overlay 14.
LINK—TO command 24, 54.
Links

dependent . 13.
independent 13.

LIST- BRF- CODE command 39, 54.
LIST- BRF- ENTRIES command 3?, 55.
LIST-ENTRIES-DEFINED command 7, 55.
LIST-ENTRIES-UNDEFINED command 7, 55.
LOAD

address . 6.
command A, 55.

LOAD- REENTRANT- SEGMENT command 26.
Loading . 2.

errors . 45.
library files 4.

Loading library files 4.
Location counter, current 46.
LOOK-AT-DATA command 35. 55.
LOOK-ATvPROGRAM command 35, 55.

ND-50.196.01

BRF-LINKER USER MANUAL
Index

Missing parameter
MIXED ONE/TWO BANK ROUTINES
Monitor Call RFILE
Multilevel overlay system
Multisegment

linking .
linking command
mode .
PROGRAM- FILE command
restart address
start address

Multisegment and
FORTRAN COMMON
Overlay

Multisegment file information
Multisegment linking command .
Multisegment link information stripping
Multisegment PROGRAM- FILE command
Named segments two-bank
NEW CHECKSUM GENERATED

.Normal mode
NO MAIN ENTRY .
NO PROGRAM- FILE SPECIFIED
NO SUCH FILE
NOT FOUND IN DESTINATION FILE
NOT FOUND IN SOURCE FILE
Object program
Object program unit
Octal number
One- bank COMMON
OUTPUT- FILE command .
OVERLAPPING DATA IN LINKED SEGMENTS
Overlay

command
debugging
execution time
linking
loading
mode .
program execution
structure
system

Overlay links with extended paths
Overlay loading commands
Overlay program execution
Overlay program information
Overlay system design
Overlay systems and

backward reference
dependent links
forward reference
independent links

ND-60.196.01

SO.

13.

22,
24.

24.
25.
25.

25.
22.
10.
24.
53.
24.

50.

so.
51.
51.
s1.
s1.
1.4.
1.4.

45.

61.
13.
18.
15.

55.
1B.

16.
13.

14.
15.
16.
10.
15.

15.
13.
15.
13.

51..

25.

55.

55.

13.

55.

67

68 BRF-LINKER

Overlays and
FORTRAN COMMON
Multisegment
Symbolic Debugger

P-group in BRF
Page
Parameter delimiter
PATCH- PROGFILE- NAME command
Path loading in overlay systems
PREPARE-BRF-LIBRARY-FILE command
Program

base
file
information
inspection
modification
relocatable
unit .

PROGRAM-FILE
command
command, inspection mode

PROGRAM—INFORMATION command
PROGRAM SPACE EXCEEDED
PROGRAM SYSTEM TOO LARGE
Programmed information
RECOVER SINTRAN III command .
REDEFINITION. LAST APPLIES xxxx yyyy
Reentrant named segments
Reentrant program dumping
REFERENCE command
REFERENCED ELSEWHERE THAN CURRENT 0R PREVIOUS LEVEL
Relocatable program
Relocatable program file
REMOVE command
RENAME command
RENAME- BRF command .
RENAME- FILE SINTRAN III command
Renaming symbols
REPLACE-BRF command
Restart

address .
address multisegment
command

Root link
ROOT- SEGMENT NOT INITIATED OVERLAY O
RUN command
S— group
S- groups in BRF
SEGMENT— ROUTINE NOT LOADED
Segments

background
Separate

assembly

ND-60.196.01

15.
22.
13.
42.

10,
14.
as,
1.1.
43,

10.
35.
35,

43.

L I

. 35.
10.
61.
51.
42.

61.
21.
26.
8.
61.
2.

8 v

39.
11.

38.

25.
8.
13.
61.
5.
44.
42.
62.
21.
21.

43.

USER MANUAL

58.

46.

55.
55.

24,

56.

56.

41.

57.
57.
57.

57.

57.

57.

35,

Index

56.

BRF-LINKER USER MANUAL
[ndex

compilation
Signed decimal number
Space
Square brackets
Start

address .
address multisegment .

Stripping multisegment link information
Subsystem
Switching times
Symbol

entering
entry
length
table

Symbolic
Debugger
entry point
external reference
information BRF

Symbolic Debugger and Overlays
Symbolic start address
Symbol BRF
SYMBOL NOT FOUND
TOO LONG NAME. WILL BE TRUNCATED
Two-bank

COMMON
named segments

Undefined
symbol
symbol entry .

UNDEFINED COMMON LABEL
UNDEFINED ENTRIES
User program execution
Word

ND-60.198.01

69

...._¢.5~

4A, 45.
44, 45.
42.
13, 15.
44.
41.
62.
52.

************§* SEND US YOUR COMMENTS!!! **************

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader's Club and send us a
note? You will receive a membership card — and
an answer to your comments.

Please let us know if you‘ find errors
' cannot understand information' cannot find information‘ find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

J

*“H*H*H* HELP YOURSELF BY HELPING US!! “H“..HHH

Manual name: BRF—LlNKER User Manual Manual number: ND—60.196.01

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual .7

Your name: Date'

Company: Position:

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for Norsk Data A.S

—_>documentation errors. Software and Documentation Department
system errors should be reported on PO. Box 25, Bogerud Norsk Data’s answer will be found
Customer System Reports. Oslo 6, Norway on reverse Side

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
PO. Box 25, Bogerud
0621 05106, Norway

Systems that put people first

NORSK DATA AS OLAF HELSETS VE! 5 PO. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 - 29 54 00 - TELEX: 18284 NDN

