
,
an

n

COSMOS
Programmer Guide

ND-60.164.3 EN

PRINTING RECORD
Printing Notes

11/84 Version 1 EN
10/85 Version 2 EN
05/86 Version 3 EN

COSMOS Programmer Guide
Pub|.No. ND-—60.164.3 EN

Norsk Data A.S
‘ Graphic CenterH

P40.Box 25, BogerudOl’Sk Data 0621 0510 5, Norway

X
V

!
xx

x

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSI) and can be ordered as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Preface:

THE PRODUCT

This manual documents the COSMOS programmer library which includes the
following libraries:

I Use of XMSG from PLANC (XMP)

I Use of XMSG from FORTRAN (XMF)

Use of RR-LIB from PLANC (RRP)

Use of TLIB from PLANC (TLP)

Use of TLIB from FORTRAN (TLF)

These versions are all based on XMSG version J.

The product number is ND—10609B.

THE READER

This manual is written for the programmer who needs to write data
communication software based on XMSG or RR-LIB.

PREREQUISITE KNOWLEDGE

The reader should have a general understanding of data communication,
knowledge of the SINTRAN III operating system, and programming
experience in PLANC or FORTRAN. Some of the advanced features will
require a general understanding of NPL (Nord Programming Language).

RELATED MANUALS

SINTRAN III Communication Guide ND-60.134
ND—3COSMOS Operator Guide 0.025

CHANGES FROM THE PREVIOUS VERSION

The manual is completely reorganized and most parts are expanded or
rewritten. More examples are included and the manual now covers all
programming libraries of datacommunications available through COSMOS:

Norsk Data ND-60.164.3 EN

VH

T A B L E O F C 0 N T E N T S

Section Page

1 XMSG - TASK TO TASK MESSAGE SYSTEM . l

1.1 Synopsis . . 3
1.2 General Concepts . 3

1.2.1 Task . 3
1.2.2 System . 3
1.2.3 Port . 4
1.2.4 Message Buffer . 4
1.3 XROUT . . . 6
1.4 Privileged XMSG Functions and XROUT Services 6
1.5 Types of Routines . 6
1.6 Sequences of XMSG Calls 7
1.7 General Information about the Routines 7
1.7.1 Options 8
1.7.2 Message Types . 8
1.7.3 Parameter Types 1n the PLANO Interface . 8
1.7.4 The XMSG Command Program - A Debugging Tool 9
1.8 Summary of the Different Routines . . . 9

2 XMSG/PLANC REFERENCE GUIDE . 11

3 XMSG/FORTRAN REFERENCE GUIDE . 87

4 INTRODUCTION TO RR~LIB . 161

4.1 Introduction . 163
4.2 Concepts Related to server/Client 163
4.3 How to Set up a Connection . 164
4.4 The Data~Transfer Phase 164
4.5 Disconnecting 165
4.6 Addressing . 165
4.7 Events . 165
4.8 General Information about the Routines . 165
4.9 Table of Events . 166
4.10 Table of Server Calls 167
4.11 Table of Low-Level Client Calls 167
4.12 Table of High-—Level Client Calls . 168

5 RR-LIB/PLANC REFERENCE GUIDE . 169

5.1 RR—LIB server calls 171

Norsk Data NDS6O.164.3 EN

WH

Section page

5.2 RR-LIB High Level Client — Calls . 183
5.3 RR—LIB Low—Level Client Calls . 189

6 INTRODUCTION TO TLIB . 201

6.1 Introduction . . 203
6.2 General Concepts in TLIB . 203
6.2.1 Connection . 203
6.2.2 Ordinary Data and User Data 204
6.2.3 Expedited Data . . , 204
6.2.4 Limitations on User Data and Expedited Data 205

6.2.5 TLIB Service Data Unit — TSDU 205
6.2.6 TLIB Protocol Data Unit - TPDU . 205
6.2.7 Credit . . 205
6.2.8 TLIB Access Point - TLAP . 206
6.2.9 Events 206
6.3 General Information about the Routines . 207
6.4 Table of Events . 207
6.5 Handling of User Buffers . . 208
6.6 Summary of the Different Routines 209

6.7 Example of Use 210
6.8 XMSG—based TLIB 211
6.8.1 TLIB Size 211
6.8.2 Speed 211

7 TLIB/PLANC REFERENCE GUIDE . 213

7.1 The TLIB/PLANO Record Types 215
7.2 Record Types . . . 215
7.2.1 Identification of a TLAP . 215
7.2.2 Quality of Service . 216
7.2.3 User Buffer Specification 216
7.2.4 Structure of an Event . 217
7.2.5 TLIB/PLANC Reference Section . 218

8 TLIB/FORTRAN REFERENCE GUIDE . 235

8.1 The TLIB/FORTRAN Data Types 237

8.2 Data Specifications . 237
8.2.1 Specification of a TLAP 237
8.2.2 Quality of Service . 238
8.2.3 User Buffer Specification 238
8.2.4 Structure of an Event . . 238
8.2.5 TLIB/FORTRAN Reference Section . 240

Norsk Data ND—60.164.3 EN

Section Page

APPENDIX

A XMSG FUNCTIONS . 257

1 Introduction . 259

2 General . 259

3 User Function Specifications 261

3.1 Manipulating Ports . 261
3.1.1 Open a Port (XFOPN) 262
3.1.2 Close Ports (XFCLS) 262
3.1.3 Port Status (XFPST) 262
3.1.4 General Status (XFGST) 264
3.1.5 Disconnect (XFDCT) 265
3.2 Manipulating Message Buffers 265
3.2.1 Reserving Message Buffer (XFGET) 266
3.2.2 Defining a User Buffer (XFDUB) 267
3.2.3 Releasing Message Buffer (XFREL) 267
3.2.4 Allocating Message Buffers (XFALM) 268
3.2.5 Freeing Allocated Message Buffers (XFFRM) 269
3.2.6 Writing into Message Buffers (XFWRI) 269
3.2.7 Writing only the Header of a Message Buffer (XFWHD) . . 270
3.2.8 Reading from a Message Buffer (XFREA) 270
3.2.9 Reading only the Header of a Message Buffer (XFRHD) . . 271
3.2.10 Define Bank Number for Drivers (XFDBK) 271
3.2.11 Sending Message (XFSND) 272
3.2.12 Returning a Message (XFRTN) 274
3.2.13 Receiving Next Message (XFRCV) 275
3.2.14 Receive and Read Header (XFRRH) 276
3.2.15 Receive and Read Message (XFRRE) 277
3.2.16 List Messages and Ports (XFLMP) 277
3.2.17 Message Status (XFMST) 278
3.2.18 Set Current Message (XFSCM) 278

4 Miscellaneous Functions 279

4.1 Dummy function (XFDUM) 279
4.2 Start Multi-Call (XFSMC) 280
4.3 Define Maximum Memory (XFDMM) 280
4.4 Convert Magic Number to Port and System Number(XFM2P) . . 281
4.5 Convert Port Number to Magic Number (XFPZM) 281
4.6 Define Wake Up Context (XFWDF) 282
4.7 Check System and User Privileges (XFCPV) 282

Norsk Data ND—60.164.3 EN

Section Page

4.8 Make Calling Task Privileged (XFPRV) 283

5 System Function Specifications . 283

5.1 Initialize for System Functions (XFSIN) 283
5.2 Absolute Read from Physical Memory (XFABR) 284
5.3 Create Driver (XFCRD) . . . 284
5.4 Start Driver (XFSTD) 285

B XROUT SERVICES 287

1 General 289

2 XROUT Message Format . 289

3 Services in Detail . 290

3.1 Name a Port (XSNAM) . 290
3.2 Create Connection Port (XSCRS) . . . 290
3.3 Increment or Decrement Free Connection Count (XSNSP) 291
3.4 Send Letter (XSLET) . 291
3.5 Send Letter and Kick (XSLEK) 292
3.6 Return a Null Status Message (XSNUL) 292
3.7 Get Name from Magic Number (XSGNM) 292
3.8 Get Name from Magic Number not Less than Param (XSGNI) 293
3.9 Clear name of a port (XSCNM) 293
3.10 Get Magic Number from Name (XSGMG) 293
3.11 Get Information about Name (XSGIN) 294
3.12 Define Remote Name (XSDRN) 294
3.13 Define Local System (XSDLO) 294
3.14 Define System Routing (XSDSY) . 295
3.15 Get Routing Information for a System (XSGSY) 296
3.16 Starting up/Stopping an Inter-System Link (XSLKI) 296
3.17 Starting up/Stopping a Network Server (XSNET) 297
3.18 Trace Initialize (XSTIN) 298
3.19 Trace Close (XSTCL) . . . 298
3.20 Define Trace Conditions (XSTDC) 299
3.21 Set Crash Information (XSSCI) 299
3.22 Get/Check Attribute (XSGAT) 302
3.23 Define/Remove Attribute (XSDAT) 304
3.24 Get Network Server Information (XSNSI) 305

C The ND-lOO XMSG System From PIOC 307

D XMSG ERROR CODES (PLANC OR FORTRAN) 311

Norsk Data ND~60.164.3 EN

xi

Section Page

1 Error Codes Returned from XMSG Functions 314

2 Error Codes Returned from XROUT Services 323

E RR-LIB ERROR CODES 335

F TLIB ERROR CODES 345

G SAMPLE PROGRAMS USING XMSG/PLANC 355

1 Introduction 357
1.1 Brief Description of CLIENT 357

1.2 Notes 357
1.3 Brief Description of SERVER 358

1.4 Notes . 358
1.5 The Client Program . 359

1.6 The Server Program . 362

H SAMPLE PROGRAMS USING XMSG/FORTRAN 365

1 Introduction 367

1.1 Brief Description of CLIENT 367

1.2 Notes . 367

1.3 Brief Description of SERVER 368
1.4 Notes . . 368

1.5 The Client Program . 369
1.6 The Server Program . 372

I SAMPLE PROGRAMS USING RR—LIB 375

1 Introduction 377

1.1 Brief Description of RR-SERVER . 377

1.2 Brief Description of RR—LOW—CLIENT . 378
1.3 The RR-HIGH—~CLIENT . 378
1.4 The Server Program . . 379

1.5 The Low—level Client Program . 382
1.6 The High- level Client Program 385

J SAMPLE PROGRAMS USING TLIB/PLANC 387

Norsk Data ND-60.164.3 EN

xfi

Section Page

1 Introduction 389
1.1 Brief Description of TLP—SERVER 389
1.2 Brief Description of TLP~CLIENT 389
1.3 The Server Program . 390
1.4 The Client Program . 393

K SAMPLE PROGRAMS USING TLIB/FORTRAN 397

1 Introduction 399
1.1 Brief Description of SERVER 399
1.2 Brief Description of CLIENT 399
1.3 The Server Program . 401
1.4 The Client Program . 404

Index 407

Norsk Data ND—60.164.3 EN

.
:1

.
Ly.

.rv
:

r
A

x
itik

fl
‘

L

COSMOS PROGRAMMER GUIDE 3
XMSG - TASK TO TASK MESSAGE SYSTEM

1 XMSG - TASK T0 TASK MESSAGE SYSTEM

1-1 mile
This chapter explains the general concepts of XMSG and should be read
by all users who are using XMSG.

1.2 General Conggpts

XMSG is a system made for communication between different tasks. The
communicating tasks may reside in the same system or in different
systems.

1.2.1 Task

Many applications require the division of a program system into
separate, asynchronous processes or tasks, that communicate by sending
messages. This separation may be motivated by:

Security considerations like separation of work areas or
definition of interface points.

1 Hardware design (tasks may run in separate systems).

Address space limitations.

Simplicity of program development.

We will use the word task to mean a driver, a direct task, or an RT
(foreground or background) program, all being processes running on ND—
500/PIOC. The XMSG system allows tasks to send messages to each other,
including the handling of memory allocation, queueing, and task
synchronization. Each user of XMSG has an XT-block (task block). The
XT-block is automatically allocated by XMSG.

RT-programs that call XMSG operate as two independent tasks as seen by
XMSG: a use; task and a system task. Separation between these two
tasks is done by using the XFSYS (system mode) option, when one wants
to act as system task. This is only allowed when running on ring 2. It
is used by SINTRAN when using XMSG on behalf of the user (e.g. in
COSMOS remote file access).

1.2.2 §y§ten

A system is a processing unit that runs an independent XMSG kernel. An
ND—lOO CPU is a system, but a PIOC or an ND-SOO is not. These are seen
as part of an ND—lOO, since every PIOC or ND-SOO process which uses
XMSG has a 'shadow' task in the ND~lOO.

Norsk Data ND-60.l64.3 EN

4 COSMOS PROGRAMMER GUIDE
XMSG ~ TASK TO TASK MESSAGE SYSTEM

1.2.3 Part

A task can open ports through which it can send and receive messages.
All ports belong to XMSG in the sense that they are tables residing
in XMSG space in the physical memory. A task becomes the owner of a
port when it executes an Open port call. When a port is opened, it

remains owned by the task until the task decides to close the port or
until the task terminates. A task may have several open ports at the
same time. When a task opens a port, it is identified locally with a
unique pert number (like a file number).

A task identifies other tasks' ports using a 32~bit magic number which
is comprised of the port number, the system number, and a random part.
The random part makes it extremely unlikely that a port, when closed
and then reopened, will have the same identifier.

There is an abbreviated version of the magic number which only
requires 16 bits. This is referred to as hashed magic number, and it
is almost unique.

A port may also be given a name.

A port may have one message or a queue of messages attached to it.

XMSG allocates a port list to your task. This is done so that XMSG can
administrate all opened ports.

When you open a port, XMSG inserts that port on top of the port list.
When you close a port, XMSG takes that port out of the list. If a port
number is specified as zero, XMSG will use the first port in the port
list. This port is referred to as the most recently opened port (or
the default port).

1.2.4 Message Buffer

Message buffers are variable length areas which can be reserved. They
belong to XMSG in the sense that they normally reside in XMSG space in
the physical memory. A task can 'own' a message buffer, meaning that
the message buffer is assigned to the task. The message buffer is
identified by a message identifier. A task may own several message
buffers, at the same time.

Before a task can transfer the contents of its own internal buffer
into the message buffer, the task has to own that buffer. The user
data must be put into a message buffer before you can transfer (send)
the user data to another task.

When assigned to a task, the message buffer remains reserved for that
task until it decides to release it or send it to another task. At
that point either of the following will happen: If the tasks reside in
the same system, the ownership of the buffer is transferred to the
receiving task; otherwise the content of the buffer is transported to

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 5

XMSG - TASK TO TASK MESSAGE SYSTEM

the other system and the buffer goes back to the XMSG buffer pool.
Having read the data, the receiving task may then either release the

received buffer back to the pool, or use it for storing a message to
be sent back to the first, or any other, task.

Note that in many of the calls to XMSG, there are no parameters that

specify the message identifier, because a current (default) message
buffer is assumed.

There are two types of current messages:

1) When a task refers to a message buffer, the message becomes
task current. When a task receives a message buffer, it also
becomes task current.

2) When a task receives a secure message on a port, the message
in addition to becoming task current, the message also
becomes port current on that particular port.

When there is no message parameter in a call which involves a message
buffer, the default message is:

~ For calls of port reference: port current if one exists,
otherwise task current.

— For other types of calls: task current.

A message identifier value of -1 implies the current message. Sending
or releasing a message buffer leads to its currency being lost. The
task may also change the value of the current message, with the 'set
current message' call.

Messages cannot be released, read from or written to by tasks other
than the current owner, or while queued to a port. In the latter case
the message must be received first.

Whenever a message buffer is read from or written to, we are dealing

with user data. The programmer will not see the XMSG headers. Usually,
the communicating tasks will follow some protocol on top of XMSG,
which implies headers within the user data. Whenever an XMSG call
refers to a 'header', this refers to the user data and should not be
confused with XMSG‘s own internal headers.

A message may be sent secure. Such a message will be returned to the
sending port if:

- It cannot be delivered.

~ The receiving port gets closed while the message is current
for that port or queued on that port.

Messages are by default nonsecure. Nonsecure messages are discarded by
XMSG if they cannot be delivered, or are queued on a part that gets
closed, and their message buffers are relased.

Norsk Data ND—60.l64.3 EN

6 COSMOS PROGRAMMER GUIDE
XMSG - TASK TO TASK MESSAGE SYSTEM

If you perform several read/write operations on the same message
buffer, you may have trouble with odd displacements. This is because
XMSG rounds the message displacement to an even number of bytes, so a

'garbage byte' may appear in a message. You will have no such problems

if you consistently specify an even message displacement (or

read/write an even number of bytes).

1.3 XROUT

XROUT is a special program that allows tasks to find each other

initially, by providing a port naming scheme and a message routing

facility.

It can be considered to be equivalent to the 'directory enquiries“

service provided by a public telephone company, but with the following
restriction:

XROUT will never give you somebody else's magic number. It may however

give him a message sent by you, together with your magic number. The

destination task can then notice your message and ring you back, if he

wants to, and thereby give you his magic number. In this special case

your message is called a letter.

The source task will in this case have to know the port name of a port

owned by the destination task. The destination task must have opened
and named a port beforehand, e.g., by using the combined call 'open

and name port'. An alternative to simply naming a port is to declare

it as a connection port. This allows XROUT to control the number of

users that a port can handle simultaneously, and even distribute users

among server parts.

1.4 Privileged XHSG Functions and XROUT Services

Some calls can only be executed by privileged tasks. In order to

become privileged for XMSG, a task must successfully execute the ‘make

calling task privileged' call. In order to do this, the caller must be

either a driver, a direct task, a foreground program, or a background

program logged in as user SYSTEM.

1.5 Types of Routines

The following types of routines exist in the PLANC and FORTRAN XMSG

libraries:

1) Routines executing only XMSG functions.

2) Routines involving XROUT services using XMSG functions.

3) Routines which do formatting of buffers according to the
XROUT conventions. '

Norsk 135m ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 7
XMSG - TASK TO TASK MESSAGE SYSTEM

1.6 Sequences of XHSG Calls

For a task receiving data, a typical sequence is as follows:

1) A named port is opened ('open and name a port').

2) The task waits for a message to arrive ('receive message'
with the 'wait‘ option set).

3) The user data in the message buffer is transferred into a
buffer internal to the task ('read message').

This is a typical sequence for a sending task:

1) An unnamed port is opened ('open port').

2) A message buffer is reserved ('get message').

3) The user data is transferred into the message buffer ('write
into message buffer').

4) Data is sent to the receiving task's port ('send letter').

1.7 General Information about the Routines

The routine implementation in PLANC gives the status as an outvalue:

ROUTINE VOID,INTEGER (parameters). Example of a call:

xmpfrel(0,msgldentifier) =: returnStatus

In FORTRAN the routines are implemented as functions. Example of a
call:

returnStatus = xmffrel(0,msgIdentifier)

Normal return status is zero. If you include the appropriate :DEFS
file in your source code, you may use the symbol XMOK for the zero
status. The file is called XMP:DEFS for PLANC and XMF:DEFS for
FORTRAN. If a call is not terminated, the return status is XMXENTM
(9.9., if no message is waiting when XMPFRCV is called without the
XFWTF option,XMXENTM). Other return statuses are error codes. A list
of the error codes plus their corresponding symbols is provided in
appendix D. However, note that the routines used for buffer formatting
will, if an error is encountered, return —1 as the error code.

In the description of the PLANC calls, an R is used to denote a read
parameter and W stands for write.

Norsk Data ND-60.l64.3 EN

8 COSMOS PROGRAMMER GUIDE
XMSG - TASK TO TASK MESSAGE SYSTEM

In the description of the FORTRAN calls, an I is used to denote an
input parameter and 0 stands for output.

1.7.1 tions

Certain options may be permitted for each call. Which ones you may use
are specified, under each call, later in this manual. How to use them

is specified in the same places.

The options are implemented as flags. This means that certain bits
have to be set in the 'flags' parameter. The bit position may be
referred to by a symbolic name, e.g. XFWTF or XFWAK. These symbols are
included in the XMPzDEFS file for PLANC and in the XMFzDEFS file for

FORTRAN. Be sure to do a $INCLUDE on the relevant file if you wish to
use one of these symbols.

The flags parameter is included in all calls even if there are
currently no options implemented for a particular call. This is to

allow for possible future options. If no options are specified, this
parameter should be set to zero to ensure compatibility with future
versions.

Note that, as a general rule, options not described under a specific
call should not be set when the routine is called. However, an RT—

program that wants to call XMSG as a system task must specify the
XFSYS option (see description on page 3).

For the use of one single option in a call, please see the XMPFGST or
the XMFFGST routine. For using several options simultaneously in one
call we refer you to XMPFSND or XMFFSND.

1-72W
Some of the calls return a message type to the calling task. These
types are explained under the respective calls. The message types are
referred to by symbols, e.g. XMTNO. The symbols are included in the
XMPzDEFS file for PLANC and in the XMFzDEFS file for FORTRAN. Be sure
to do a $INCLUDE on the relevant file if you wish to use one of these
symbols.

1.7.3 Parameter Types in the PLANC Interface

When you call XMSG from PLANC, you will notice in the reference
section that some special data types are used. An example is
Xmmsgidentifier in the XMPFRCV routine. These special data types are
defined in the XMlMPT file. Make sure you do a $INCLUDE on this
file.

Norsk Data ND~60.164.3 EN

COSMQS PRSQRAVMER GUIDE
XMSG m TASK T0 EASE MESSJAGE SYSTEM

LEE “Em EEEEE E: . webugging Tool

The XE’ESGECQEEMEEE“ ram may be
examgie, Ehe CQWMJWUQ LEST M,F SSAGES,
XMSS calEe, Eor a description
COSMOS Qperar fiideu

useful as

a Smefiarv e? renE RouEihes

The different F
that each ragtime name
reaEEne names st
the ELEMC rouEinee,

starEs with XMP. The
:J 3 EE: ’EEE :

In Ehe nexE chagttr Ehe routines

"ENC routines are listed in the following table.

a debugging tool,
LIST—NAMES and in the tracing of

of this program please consult the

are described alphabetically.

Rorsk Data ND~60.164.3 EN

Routine name U*nose Category

XMPEEDB Buffer
XMPEEEN Buffer
XMPBASE Buffer
XMPBEWE . in buffer Buffer
XMFBEET Eetter header Buffer
KMFELQC parameEer in buffer Buffer
XM98RDY ready Buffer
XMFCLRM port name and close port XROUT
XMPCOEF Ehe current configuration XMSG
XM?EERE 'xfle read from physical memory XMSG

’ ,e nEessage buffers XMSG
porE XMSG
sy,s em and user privileges XMSG

a driver for XMSG XMSG
_’ne a bank number for drivers XMSG

EEsEOHnet from XMSG XMSG
Tine maximum memory XMSG

"E a user buffer XMSG
V call XMSG

e Errocated message buffers XMSG
‘ bufre; XMSG

tus XMSG
\ Er . s and ports XMSG

EEE E2? ‘ “Mr“ W gno. to port and/or sys. no. XMSG
KM?§M”‘ ‘ tas XMSG
XMRWQEE XMSG

port number to magic number XMSG
EEingEtask privileged XMSG

.ur XMSG
message XMSG

' XMSG

Notice
corresponding FORTRAN

The FORTRAN routines are identical to

COSMOS PROGRAMMER GUIDE
XMSG — TASK TO TASK MESSAGE SYSTEM

Routine name Purpose Category

XMPFREL Release message buffer XMSG

XMPFRHD Read header XMSG
XMPFRRE Receive and read message XMSG

XMPFRRH Receive and read header XMSG
XMPFRTN Return message XMSG

XMPFSCM Set current message XMSG

XMPFSIN Initialize for system functions XMSG

XMPFSMC Start multi call XMSG
XMPFSND Send message XMSG
XMPFSTD Start driver XMSG
XMPFWDF Define wake—up context XMSG

XMPFWHD Write header XMSG
XMPFWRI Write message XMSG

XMPREAD Read message, not necessarily current XMSG

XMPSEND Send message, not necessarily current XMSG

XMPWRHD Write header, not necessarily current XMSG

XMPWRTE Write message, not necessarily current XMSG

XMPINFC Increment free connection count XROUT

XMPOPCN Create connection port XROUT

XMPOPNM Open and name a port XROUT
XMPROUT Send a message to or via XROUT XROUT

Norsk Data ND*60.164.3 EN

fi§3r123§124$2.3.5.2...22.-.?321...
2

.114...
2..:

...,......,2..

.2
1

.7
.2

.2
.

2
41.22

anvil...
22..

.22.....-
.

.
..

..
.

.
....

.
..

..
.,

.
.

.
.

.
.

:
.

_
.

:22......1
2

2
3

:...

COSMOS PROGRAMMER GUIDE 13

XMSG/PLANC REFERENCE GUIDE

2 XHSG/PLAHC REFERENCE GUIDE

Type: Buffer formatting

Routine name : XMPBADB

No: Parameter Name/ R/W Explanation:
Type:

1 outBuffer R Local user buffer.
Bytes

2 offSet RW Current number of bytes used in
Integer outBuffer.

3 paramValue R 32—bit value to be coded.
lnteger4

4 paramNumber R Parameter number.
Integer

FUNCTION. 2 Appends a 32~bit value as the next parameter in the
buffer. The parameter is coded according to the XROUT

message format described in appendix B.

EXPLANATION 2 This call will append paramValue as the next integer

RULES .

parameter, with parameter number equal to paramNumber,

in the user buffer specified by outBuffer and update the

offSet parameter accordingly.

paramValue will be put into the buffer as an integer4

parameter, or, if (and only if) this is valid, as an

integerZ parameter.

Note that outBuffer must start on an even byte boundary

and that the call parameter offSet must be equal to the

current number of bytes in outBuffer. If one of these

checks fails or if outBuffer is too small to contain the

parameter, -1 will be returned as error code in

returnStatus.

Z The user buffer must have been initialized using

XMPBINI.
Permitted for both non—privileged and privileged tasks.

Continued on next page.

Norsk Data ND—60.164.3 EN

l4

EXAMPLE. . :The
32-

o\0
o\°

o\°
o\°

o\0

COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

example formats a user buffer containing only one
bit value coded as an integer parameter.

First, we initialize the user buffer
xmpbini(myBuff,lengthBuffer,offSet) =: returnStatus
Check returnStatus, and if 0k,
append a 32-bit value as parameter 1
xmpbadb(myBuff,offSet,magicNumb,l) =2 returnStatus
Check returnStatus, and if 0k, put in
the serial number and the service number
xmpbrdy(myBuff,XSGNM,serialnumber) =: returnStatus

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 15
XMSG/PLANC REFERENCE GUIDE

Type: Buffer formatting

Routine name : XMPBAIN

No: Parameter Name/ R/w Explanation:
Type:

1 outBuffer R Local user buffer.
Bytes

2 offSet RW Current number of bytes used Buffer.
Integer

3 paramValue R 16—bit value to be coded.
Integer2

4 paramNumber R Parameter number.
Integer

FUNCTION. . I Appends a 16—bit value as the next parameter in the
buffer. The parameter is coded according to the XROUT
message format described in appendix B.'

EXPLANATION : This call will append paramValue as the next integer

RULES .

EXIWLE .

parameter, with parameter number equal to paramNumber,
in the user buffer specified by outBuffer and it will
update the offSet parameter accordingly.

paramValue will be put into the buffer as an integerZ
parameter.

Note that outBuffer must start on an even byte boundary
and that the call parameter offSet must be equal to the
current number of bytes in outBuffer. If one of these
checks fails or if outBuffer is too small to contain the
parameter, -1 will be returned as error code in
returnStatus.

Z The user buffer must have been initialized using
XMPBINI.
Permitted for both non~privileged and privileged tasks.

I The example formats a user buffer containing only one
16-bit value coded as an integer parameter.

o\° First, we initialize the user buffer

xmpbini(myBuff,lengthBuffer,offSet) =: returnStatus
Check returnStatus, and if 0k,
append a 16—bit value as parameter 1
xmpbain(myBuff,offSet,noOfServic,l) =: returnStatus
Check returnStatus, and if 0k, put in
the serial number and the service number
xmpbrdy(myBuff,XSNSP,serialnumber) =: returnStatus

o\°
0W

o\°
o\°

Norsk Data ND—60.164.3 EN

l6 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPBAST

Type: Buffer formatting

No: Parameter Name/ R/W Explanation:
Type:

1 outBuffer R Local user buffer.
Bytes

2 offSet RW Current number of bytes used in

3 string

4 paramNumber R Parameter number.

Integer outBuffer.
R String to be coded.

Bytes

Integer

FUNCTION. . :

EXPLANATION :

RULES . . . :

EXNPLE..:

Appends a string as the next parameter in the buffer.
The parameter is coded according to the XROUT message
format described in appendix B.

This call will append the specified string as the next
string parameter, with parameter number equal to
paramNumber, in the user buffer specified by outBuffer
and it will update the offSet parameter accordingly.

Note that outBuffer must start on an even byte boundary
and that the call parameter offSet must be equal to the

current number of bytes in outBuffer. If one of these
checks fails or if outBuffer is too small to contain the

parameter, —1 will be returned as error code in
returnStatus.

The user buffer must have been initialized using
XMPBINI.
Permitted for both non-privileged and privileged tasks.

The example formats a user buffer containing only one
string parameter.

o\° First, we initialize the user buffer
xmpbini(myBuff,lengthBuffer,offSet) =: returnStatus
Check returnStatus, and if 0k,
append the string as parameter 1
xmpbast(myBuff,offSet,portName,l) =: returnStatus
Check returnStatus, and if 0k, put in
the serial number and the service number
xmpbrdy(myBuff,XSGIN,serialnumber) =: returnStatus

mo
mo

o\°
c\°

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 17
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPBINI

Type: Buffer formatting

No: Parameter Name/ R/W Explanation:
Type:

1 outBuffer R Local user buffer.
Bytes

2 lengthBuffer R Total length of the buffer in bytes.
Integer

3 offSet W Number of bytes used in outBuffer after
Integer initializing.

FUNCTION. 1 Initializes the user buffer. The buffer is initialized
according to the XROUT message format described in
appendix B.

EXPLANATION 2 When a task sends a service request to XROUT, the
request (and the response from XROUT) must be coded
according to the XROUT message format.

This routine will build and initialize the XROUT header
in the user buffer specified by outBuffer (and
lengthBuffer) for repeated use of the other buffer
formatting routines. On return from the routine, the
offSet parameter contains the lenght in bytes used for
the XROUT header descriptor, i.e., the space left in
outBuffer for coding of parameters using XMPBADB,
XMPBAIN and XMPBAST is equal to lengthBuffer—offSet.
Thus so make sure that the buffer length is big enough
to contain the parameter(s).

Note that outBuffer must start on an even byte boundary
and that lengthBuffer must be big enough to contain the
XROUT header. If one of these checks fails, -1 will be

returned as error code in returnStatus.

Continued on next page.

Norsk Data ND-60.164.3 EN

18 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

RULES . . . 2 Permitted for both non-privileged and privileged tasks.

EXAMPLE . . i The example below formats a buffer containing two
parameters.

a\°
o\°

do
o\°

o\°
o\°

o\°
o\°

o\°
o\°

Specify the total buffer length in bytes.
100 =: lengthBuffer
Initialize the user buffer
xmpbini(myBuff,lengthBuffer,offSet) =: returnStatus
offSet no. of bytes are used for the XROUT header.
Check returnStatus, and if 0k, append parameters.
xmpbast(myBuff,offSet,systName,l) =: returnStatus
Check returnStatus, and if Ok, we have used offSet
no of bytes for the XROUT header and parameter 1.
xmpbain(myBuff,offSet,systNumb,2) =: returnStatus
Check returnStatus, and if Ok, we have used offSet
no. of bytes for the XROUT header and the two
parameters (i.e , no of bytes not yet used in
outBuffer equals lOO—offSet).

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 19

XMSG/PLANC REFERENCE GUIDE

Type: Buffer formatting

Routine name : XMPBLET

No: Parameter Name/ R/W Explanation:
Type:

I headerBuffer R Local user buffer.
Bytes

2 lengthBuffer R Total length of the buffer in bytes.
Integer

3 offSet W Number of bytes used in headerBuffer
Integer after formatting.

4 serialNumber R Reference number.
Integer

5 systemName R Name of destination system.
Bytes

6 portName R Name of remote port.
Bytes

FUNCTION. 2 Formats and codes a header for the XROUT 'Send Letter'
service (XSLET). The letter is created according to the

XROUT message format described in appendix B.

EXPLANATION Z The routine will create the XROUT header that is
required when a task wants to send a letter (service
XSLET) to XROUT.

The header will be created and formatted in the user

buffer specified by headerBuffer. serialNumber is put
into byte 0 of the letter to allow the user task, which
may have more than one request outstanding at the same
time, to distinguish this letter from other messages.

The port name specified by portName is appended as

parameter 1, and the system name specified by systemName

is appended as parameter 2 in the header.

systemName is the name of the system the letter will be

sent to, whereas portName is the name of a (remote

server) port in systemName that you want to contact. If
the length of the name specified by systemName is O, the

local system is assumed.

Note that this routine just prepares the letter in a
local buffer (headerBuffer). It does n93 copy the header
into an XMSG message buffer, nor does it send anything.
The data copying and sending must be done using routines
such as XMPFWRI and XMPROUT.

The XMSG system provides task to task communication
within the same system and between tasks running in
different systems. When a task wants to send a message
directly to another task, the sending task must know the
magic number of a port belonging to the receiving task.

Norsk Data ND-60.164.3 EN

20 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Since the magic number of a port (and the port number)
is allocated by XMSG when a task opens a port, the
sending task must obtain the magic number of the remote
(receiving) port via XROUT (routing task).

When a task (usually a Server task) has opened and named
a port (e.g., using XMPOPCN or XMPOPNM), another task
can now send a message from one of its own ports, via
XROUT, to the named (remote) port. The header of the
message sent via XROUT must contain a 'Send Letter'
(XSLET) service request to XROUT. The remainder of the
message can contain user data for the receiving (server)
task (e.g., protocol information, user name, password
etc.). The remainder of the message will not be looked
at by XROUT (i.e., XROUT will only look at the header of
the message - the letter), thus the user data can be
(coded) in any format legible to the receiving (server)
task.

When XROUT receives the letter, XROUT will look at
systemName, and if systemName has been defined as a
(remote) system name, XROUT will forward the letter
(message) to the XROUT in the specified system.

The destination XROUT will look up the specified
portName in its name table. If portName is a normal
named port (i.e., a port named using XMPOPNM), then
XROUT will forward the whole message to portName. If
portName is a connection port (i.e., a port named using
XMPOPCN), XROUT will look at the free connection counter
for portName and if this is greater than zero, XROUT
will decrement the counter and forward the whole message
to portName. If there are no free connections, XROUT
tries to find another port with the same name (portName)
that have a free connection, and if found, XROUT will
decrement the free connection counter and forward the
message to that port.

When the (server) task receives the message on portName,
it can, and it normally will, check that the sending

task is allowed to use the server before it sends a
(positive) reply to the requester, and thereby givies
away its own magic number. If the server task does not
want to give away its own magic number, it can do so by
sending a (negative) reply with the XFFWD (forward
message) option.

When the requesting task receives the (positive) reply
from the (server) task, it can then use the XMPFMST
routine to extract the magic number of the remote
(server) port (portName), and direct communication with
the remote (server) port can begin.

Note that if XMSG is unable to send the letter to XROUT
in the specified system, or if the destination XROUT
does not know the name of the destination port (i.e., if
portName does not match any named port in systemName),

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 21
XMSG/PLANC REFERENCE GUIDE

RULES .

EXMPLE .

or if portName is a connection port with' no free
connections, then XROUT will return the letter (message)
to the sending port with an error status. The requesting

(sending) task can test whether the remote (server) task
returned a reply or XROUT returned the message by
checking the message type (which is returned as a result

from a call to a 'receive message' or a call to a 'port
status' routin).

Note that headerBuffer must start on an even byte
boundary and that lengthBuffer must be big enough to
contain the formatted XROUT 'Send Letter' service
header. If one of these checks fails, —1 will be
returned as error code in returnStatus.

I Permitted for both non—privileged and privileged tasks.

: The example formats the header for an XROUT letter in
our local buffer.

We are going to send to a port named 's—port‘ in the
system named 'scholar'.
's—port' =: portName
'scholar‘ =: systemName
To recognize the message, we put in a reference no.
111 =: serialNumber
Give xmpblet more than enough space for formatting.
60 =: lengthBuffer

a Let xmpblet create the necessary header.
xmpblet(myBuffer,lengthBuffer,offSet,serialNumber,&

systemName,portName) =: returnStatus
Check returnStatus, and if Ok, then offSet
number of bytes have been used for the XROUT
header. (In this example, offSet=22.)
(If 'scholar' is the name of our own system, we
can of course create the letter specifying a
system name length of zero instead.)
xmpblet(headerBuffer,lengthBuffer,offSet,&

serialNumber,systemName(0: —l),portName)
We can now copy the service header from our
local buffer into the header of a message, fill
the remainder of the message with data for the
receiving task, and send the message via XROUT
using the appropriate routines.
(If we need to send data to the receiving task, we
must make sure that these data are written into the
message after the XROUT header.)

o\°
o\°

o\°
o\°

0\°
o\°

o\°
o\°

o\°
o\°

o\°
o\°

c\°
o\°

o\°
o\°

o\0
o\0

o\°
o\°

Norsk Data ND-60.164.3 EN

22 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: Buffer formatting

Routine name : XMPBLOC

No: Parameter Name/ R/W Explanation:
Type:

1 localBuffer R Local user buffer.
Bytes

2 paramNumber R Parameter number of the parameter that
Integer is to be found.

3 startOfParam W Displacement within localBuffer in
Integer bytes.

4 paramType W Indicates the parameter type of
paramNumber. The parameter type is

Bytes returned as INTEGER or STRING.
5 paramLength W Length of parameter in bytes.

Integer

FUNCTION. . Z Locates a parameter within a buffer coded according to
the XROUT message format described in appendix B.

EXPLANATION : Since the parameters in localBuffer may have been put
into the buffer in a random order, this routine can be
used to locate a specified parameter.

The routine will search through localBuffer for the
parameter number specified by paramNumber. If the
parameter is found, paramType indicates the parameter
type of the located parameter, startOfParam indicates
the position of the first significant byte in the
parameter, and paramLength gives the number of
significant bytes in the parameter. If no parameter with
the requested parameter number is found, -1 is returned
as error code in returnStatus.

Note that localBuffer must start on an even byte
boundary. If not, —1 will be returned as error code in
returnStatus.

RULES . . 2 The user buffer must have been coded according to the
XROUT message format.
Permitted for both non—privileged and privileged tasks.

Continued on next page.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

EXAMPLE. . :The

23

example locates parameter number 1 (which has been
coded as a string parameter containing only the two
characters H and I) in a user buffer containing:

Byte o = 123
l = 0
2—3 = 32
4 = -l
5 = 2
6 = 72
7 = 73
8—9 = 14
etc

o\°
o\°

o\°

Serial number
Status from XROUT (O=Ok)
Length of remainder of mess in bytes
Param. no. 1 (negative means string)
Length of parameter 1 in bytes
First byte of parameter 1
Second byte of parameter 1
Length of parameter 2 in bytes

Specify and locate parameter number 1.
l =: paramNumber
xmpbloc(localBuffer,paramNumber,startOfParam,&

paramType,paramLength) =: returnStatus
Check returnStatus, and if 0k, startOfParam=6,
paramType=STRING and paramlength=2.

Norsk Data ND—60.l64.3 EN

24 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPBRDY

Type: Buffer formatting

No: Parameter Name/ R/W Explanation:
Type:

1 outBuffer R Local user buffer.
Bytes

2 serviceNumber R XROUT service number.
Integer

3 serialNumber R Reference number.
Integer

FUNCTION. 2 Puts the serial number and the service number into a
buffer which has been coded according to the XROUT
message format described in appendix B.

EXPLANATION : When all the necessary parameters have been appended to
outBuffer, this routine can be used to insert the serial
number and the service number in the buffer.
serialNumber will be put into byte 0 and serviceNumber
will be put into byte 1 of the buffer.

Note that since this routine overwrites the first two
bytes of the XROUT header descriptor with the serial
number and the service number, this should be the last
buffer preparation routine called, before the user
buffer is written into a message and sent to XROUT. Note
that this routine does not copy the local user buffer
into any message; this must be done using routines such
as XMPFWRI.

Note that outBuffer must start on an even byte boundary.
If not, -1 will be returned as error code in
returnStatus.

RULES . . 2 The user buffer must have been initialized using
XMPBINI.
Permitted for both non—privileged and privileged tasks.

Continued on next page.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 25
XMSG/PLANC REFERENCE GUIDE

EXAMPLE . . 2 The example build a buffer for the 'Send Letter' (XSLET)
service request. It is similar to the behaviour of
routine XMPBLET.

% Initialize the user buffer

o\°
0W

o\°
o\0

o\"
o\°

0‘9
o\°

o\°

xmpbini(myBuff,lengthBuffer,offSet) =: returnStatus
Check returnStatus, and if 0k, append
the port name as parameter 1
xmpbast(myBuff,offSet,portName,l) =: returnStatus
Check returnStatus, and if 0k, append
the system name as parameter 2
xmpbast(myBuff,offSet,systemName,2) =: returnStatus
Check returnStatus, and if Ok, we will insert
the serial number and the service number XSLET
xmpbrdy(myBuff,XSLET,serialnumber) =: returnStatus
Check returnStatus, and if Ok, we can now write
the buffer into a message and send the request
to XROUT.

Norsk Data ND~60.164.3 EN

26 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPCLNM

Type: XROUT Service

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 portName R Name of the port.
Bytes

3 portNumber R Number of port to be closed.
Integer

FUNCTION. : Closes a port and clears the port name.

EXPLANATION I This routine can be used to close a named port that has
been opened and named using XMPOPNM or XMPOPCN. The port
specified by portNumber will be closed and the name
assigned to portNumber will be cleared (i.e., the name
will be removed from XROUT's name table).

When portNumber is closed, all nonsecure messages
currently queued for that port are released, while all
secure messages (as well as the 'port current' message,
if any) are set nonsecure and returned to the sender.

The specified portNumber should be a port number
returned from a call to XMPOPNM or XMPOPCN, and the
specified portName should be the port name declared when
the port was opened and named.

OPTIONS . I Not implemented, flags should be zero.

RULES .

EXMPLE .

Z Permitted for both non—privileged and privileged tasks.

2 This simple example will close a port and clear the name
of a previously opened and named port.

% Specify the port's name and number, thus
'xx-server' =: portName
4 =: portNumber

% Now, close the port and remove its name
xmpclnm(O,portName,portNumber) =: returnStatus

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 27
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPCONF

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 XMSGpassword W XMSG password (the same as XMSG version
Integer code).

3 configMask W Configuration mask. See below.
Integer

4 XMSGrestartCnt W XMSG restart count.
Integer

FUNCTION.

EXPLANATION :

OPTIONS .

RULES .

EXAMPLE .

2 Gets information about the running XMSG system.

On return, XMSGpassword contains the password which is
needed in order to become a privileged XMSG task (see
routine XMPFPRV). XMSGrestartCnt returns the number of
times that XMSG has been (re)started since the last
warmstart.

The bits currently defined and returned in configMask
are:

bit : set if inter-system XMSG
" " generated with tracing

generated for ND-IOO
file server for file transfer is incl.
used

: set if running on page table 3
generated for ND~lOO/CX instruction set
generated with gateway software for
network servers

\J
G

\U
I¢

-q
>

H
‘C

H
. m 3 0 fl

Note that this bit mask, which is based on XMSG version
J, will most certainly be extended in later XMSG
versions.

. Not implemented, flags should be zero.

2 Permitted for both non-privileged and privileged tasks.

2 xmpconf(O,XMSGpassword,configMask,&
XMSGrestartCnt) =: returnStatus

Norsk Data ND-60.l64.3 EN

28 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFABR

No: Parameter Name/ R/W Explanation:
TYPe=

1 flags R Options.
Integer

2 userBuffer R Address of the user buffer.
Xmuseraddress

3 userDisp R Displacement within userBuffer in bytes.
Integer See note below.

4 readLength R Number of bytes to read.
Integer

5 memoryDisp R Address within bankNumber.
Integer

6 bankNumber R The seven least significant bits (bit 0-
Integer 6) specifies bank number.

FUNCTION. 2 is absolute reading from the part of the physical memory
used by XMSG.

EXPLANATION Z This call allows a task to read a block of data from the
physical memory into its user area specified by
userBuffer (and userDisp).

If bankNumber is zero, a value for bankNumber equal to
the bank in which the XMSG kernel code has been fixed is
assumed. The data is read from the specified bank,
starting from the address specified by memoryDisp, into
the user buffer.

Note that on an ND-lOO, the userDisp is always rounded
down to the previous even byte, if an odd displacement
is specified.

OPTIONS . 2 Not implemented, flags should be zero.

RULES .

EXN‘PLE..:

2 Only permitted for privileged tasks.
Not permitted for drivers.
Not available for tasks running in an ND-SOO.

xmpfabr(0,userBuffer,userDisp,readLength,&
memoryDisp,bankNumber) =: returnStatus

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 29
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFALM

Type: XMSG Function

No: Parameter Name/ R/W Explanation:

,Type:
1 flags R Options.

Integer
2 messageSize R Message size in bytes.

Integer
3 numberOsgs R Number of messages to allocate.

Integer

FUNCTION. : Allocates message buffers to a task.

EXPLANATION 2 Normal message buffers that have been reserved using the
XMPFGET call, lose their association with the task that
got them when they are sent to another task. This
implies that the sending task has no guarantee that it
will be able to get space later.

By allocating message buffers, a task can indicate to
XMSG its long—term buffer requirements. Allocated
messages are removed from the free space pool, and
marked as allocated to the original caller. They do
change owners when sent within a system, but when
released, or sent out of the local system, the message
buffer is put back on the original allocator task's
'Available Allocated Message List (AAML)'.

All allocated messages for a given task must be of the
same size. When an XMPFGET is executed by that task for
a buffer of that size, XMSG will first look at the
task's AAML and take a message buffer from it, if one is

available. Similarly, when a message of that size comes
into the system from another system, XMSG will first
look at the AAML for the receiving task and take a
message buffer from it if, one is available.

Note that if the routine call fails, due to lack of
buffer space, no messages are allocated.

Continued on next page.

Norsk Data ND*60.164.3 EN

30

OPTIONS .

RULES .

EXAMPLE .

COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

2 XFEXC, - Exclusive buffers. If set, the message buffers
are allocated and set aside for exclusive use by the
task, i.e., these message buffers will not be used by
XMSG when a message of messageSize is received from
another system. Buffers allocated with XFEXC do not have
to be of the same size as buffers allocated without this
option set. However, all exclusive buffers must be of
the same size. To reserve one of these exclusive
buffers, the task must call the XMPFGET routine with the
XFEXC flag set.

2 Permitted for both non~privileged and privileged tasks.

: xmpfalm(0,messageSize,numberOsgs) =2 returnStatus

Norsk Data NDe60.l64.3 EN

COSMOS PROGRAMMER GUIDE 31
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFCLS

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options
Integer

2 portNumber R Number of port to be closed
Integer

FUNCTION. : Close(s) port(s).

EXPLANATION Z Closes the specified local port. If portNumber is less
than zero, all ports owned by the calling task will be
closed. If portNumber is zero, the most recently opened
port (i.e., the default port) will be closed.

When a port is closed, all nonsecure messages currently
queued for that port are released, while all secure
messages (as well as the 'port current' message, if any)
are set nonsecure and returned to the sender. If the
port had a name, the name is cleared (i.e., the name is
removed from XROUT's name table).

See also the disconnect call, XMPFDCT.

OPTIONS . 2 Not implemented, flags should be zero.

RULES .

EWLE..

2 Permitted for both non~privileged and privileged tasks.

1 This will close all ports owned by this task:
-l =: portNumber
xmpfcls(0,portNumber) =2 returnStatus

Norsk Data ND—60.l64.3 EN

32 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFCPV

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgIdentifier R The identifier of a received message.
Xmmsgidentifier

3 accessInfo W Access information. See below.
Integer

4 additionallnfo W Additional information. See below.
Integer

FUNCTION. 2 Checks system and user privileges.

EXPLANATION‘: This call allows a task, when a message has been
received, to check the privileges of the sender. If
msgidentifier is not *1, the specified message becomes
the 'task current' message.

If the sending task is allowed to update the routing
tables (i.e., execute the privileged XROUT services
XSDRN and XSDSY) on this system, then accessInfo = 1. If
the message is sent from a task within the local system,
then additionallnfo = 0. If the message is sent from a
task in another system, then additionallnfo = 1.

If the sending task is not allowed to update the routing
tables, then accessInfo = O and additionallnfo contains
the reason:

additionalInfo = 0 implies that the sending task,
as well as the source system are nonprivileged.

additionalInfo = 1 implies that the source system
is privileged, but the sending task is not.

additionallnfo = 2 implies that the sending task
is privileged, but the source system is not.

additionallnfo = 3 if the specified message is a
returned message (it could not be delivered).

An nonprivileged task is a task which has not (yet)
successfully executed the XMPFPRV call. An nonprivileged
system is a remote system which has not (yet) been
defined as a friend to your system, see XROUT service
XSDAT.

Continued on next page.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE L 33
XMSG/PLANC REFERENCE GUIDE

OPTIONS .

RULES .

EXAMPLE .

2 Not implemented, flags should be zero.

: Permitted for both non-privileged and privileged tasks.

3 xmpfcpv(0,msgIdentifier,accessInfo,&
additionallnfo) =: returnStatus

Norsk Data ND—60.l64.3 EN

34 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFCRD

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 interruptLevel R The interrupt level that the driver
Integer should run on.

3 registerBlock R Address of register block (an 8—word
Xmuseraddress buffer).

4 XTblockAddress W Address of the XT—block allocated to the
Integer driver.

FUNCTION.

EXPLANATION :

OPTIONS .

RULES .

EXAMPLE .

2 Defines a driver for XMSG.

This call is used to define an already existing driver,
with a context as specified by registerBlock. The buffer
must contain the register block that the driver will be
started with, in the order required for the Load
Register Block (LRB) hardware instruction. XMSG will
allocate a task block (XT-block) to the driver and
return its address in XTblockAddress.

2 XFPON - Paging on. This must be set if the driver is
running with paging on.

I Only permitted for privileged tasks.
Not permitted for drivers.
Not available for tasks running in ND-SOO.

: 2**XFPON =2 flags
xmpfcrd(flags,interruptLevel,registerBlock,&

XTblockAddress) =2 returnStatus;

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 35
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFDBK

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 bankNo R Bank number.
Integer

FUNCTION. 2 Defines a bank number for drivers.

EXPLANATION : When calling routines which transfer data between a user
area and an XMSG buffer (e.g., XMPFREA, XMPFWRI or
XMPFSMC), drivers specify a physical address as user
buffer (the userAddress parameter). This is in bank 0,
unless they have previously defined a bank number using
the XMPFDBK call.

OPTIONS . 2 Not implemented, flags should be zero.

RULES .

EXAMPLE .

Z Permitted for both non-privileged and privileged tasks.
Not permitted for RT—programs.
Not available for tasks running in ND—SOO.

Z xmpfdbk(0,bankNo) =: returnStatus

Norsk Data ND-60.l64.3 EN

36 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFDCT

Type: XMSG Function

Type:
No: Parameter Name/ R/W Explanation:

1 flags R Options.
Integer

FUNCTION.

EXPLANATION :

OPTIONS .

RULES .

EXAMPLE .

2 Disconnects from XMSG.

Releases all XMSG resources. All ports opened by the
task are closed and all XMSG space belonging to the
current caller is released. Special action is taken in
the case of current messages, and messages waiting on
the input queue (see XMPFSND, XMPFRCV and XMPFCLS).

Note that the following automatic disconnects are
executed by SINTRAN:

User disconnect:
— On return to the SINTRAN command processor
- On log out or RT program termination

System mode disconnect:
— On log out or RT program termination

There is no return from a driver call to XMPFDCT (as the
driver context is released by the call).

: Not implemented, flags should be zero.

2 Permitted for both non—privileged and privileged tasks.

: xmpfdct(0) =: returnStatus;

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 37
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFDMM

Type: XMSG Function

Type:
No: Parameter Name/ R/W Explanation:

1 flags

2 requestedTaskSp R Requested task space in bytes.

R Options.
Integer

Integer

FUNCTION.

EXPLANATION :

OPTIONS .

RULES .

EXIM’LE .

: Defines maximum limit of memory usage.

When a new task is defined in XMSG, its maximum buffer
space is set to a predefined value (defined when the
XMSG system is generated). This can be changed for
privileged tasks using this call. requestedTaskSp will
be set equal to the maximum number of bytes of message
space that can be owned by the task at one time.

2 Not implemented, flags should be zero.

1 Only permitted for privileged tasks.

I xmpfdmm(0,requestedTaskSp) =: returnStatus

Norsk Data ND—60.l64.3 EN

38 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFDUB

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 bufferAddress R Address of physical memory buffer.
Integer4

3 bufferSize R Buffer size in bytes.
Integer

FUNCTION. 1 Defines a user buffer.

EXPLANATION Z This is a privileged call that allows a task to
associate a physical memory buffer with a message
descriptor previously obtained by XMPFGET with
sizeBuffer = 0. All XMSG calls then operate on that
message, as the buffer space was part of the general
XMSG buffer pool, except that XMPFREL only releases the
message descriptor and not the buffer area.

This allows special systems or drivers to fully control
their memory allocation procedures.

This call acts on the ‘task current' message.

Buffers that have been defined in this way cannot be
sent to other systems.

OPTIONS . ! Not implemented, flags should be zero.

RULES .

EXAMPLE .

: Only permitted for privileged tasks.
Not available for tasks running in an ND—SOO.

: xmpfdub(0,bufferAddress,bufferSize) =: returnStatus

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 39
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFDUM

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
TYPE:

1 flags R Options.
Integer

FUNCTION. 2 Dummy call.

EXPLANATION : This call may be useful if the programmer wants to check
that XMSG is up and running. It is also useful for
benchmarking.

OPTIONS . 1 Not implemented, flags should be zero.

RULES . . Permitted for both non-privileged and privileged tasks.

EXAMPLE . : xmpfdum(0) =: returnStatus

Norsk Data ND—60.l64.3 EN

4O COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFFRM

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
TYPe=

1 flags R Options.
Integer

2 noOsgToFree R Number of allocated message buffers to
Integer free.

3 noOsgFreed W Number of message buffers actually
Integer freed.

FUNCTION. 1 Frees allocated message buffers.

EXPLANATION I This call frees message buffers which have been
allocated by XMPFALM.

OPTIONS . . I XFEXC — Exclusive buffers. If set, only those message
buffers which have been allocated with the XFEXC option
set will be freed. If not set, only those meSsage
buffers which have been allocated without the XFEXC
option will be freed.

RULES . . . I Permitted for both non-privileged and privileged tasks.

EXNPLE . . : 2**XFEXC =: flags
xmpffrm(flags,noOsgToFree,noOsgFreed)&

=2 returnStatus

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 41
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFGET

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 sizeBuffer R Number of bytes requested.
Integer

3 msgIdentifier W Message identifier.
Xmmsgidentifier

FUNCTION. 2 Reserves a message buffer.

EXPLANATION : msgIdentifier is returned to the caller for possible use
in subsequent routine calls. Each buffer size has a
maximum, system dependent size defined when the XMSG
system is generated. The total XMSG buffer space owned
by a task cannot exceed another limit, which is
initially set to a value also defined at XMSG generation
time. It may be changed, however, by privileged tasks
using the Define Maximum Memory (XMPFDMM) routine.

Only the current owner of a message is allowed to read
or write in it, give it to someone else, or release it.

Specifying a buffer size of 0 bytes implies that only a
message descriptor will be reserved. Privileged tasks
can then associate a physical memory area with that
message descriptor using the XMPFDUB routine. It is not
allowed to send a buffer of size 0 to another system.

OPTIONS . I XFWTF - Wait flag. If no message buffer of the requested

RULES .

EXAMPLE .

size is available, the task will be suspended. Execution
resumes when a buffer becomes available.

XFEXC - Exclusive buffer. If set, it implies that the
caller wants to reserve exclusively a message buffer
allocated using the XMPFALM. If no such allocated
message buffer is available, an error status is
returned.

2 Permitted for both non~privileged and privileged tasks.

: 20 =: sizeBuffer
xmpfget(O,sizeBuffer,msgIdent) =: returnStatus

Norsk Data ND-60.l64.3 EN

42 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFGST

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 startScanPort R Last port to be scanned.
Integer

3 portNumber W Port number where the message is
Integer waiting.

FUNCTION. . 2 A task may have many open ports. It does not always know
on which one the next message is arriving. XMPFGST
allows the task to check all ports belonging to the
task, i.e., it allows the task to find out whether any
messages are waiting on any port.

EXPLANATION I The parameter startScanPort specifies the last port to
be searched. If startScanPort is zero, this implies the
most recently opened port (i.e., the default port). Note
that the search will begin with the nggt port (if any)
after that specified, and then follow the task's port
list (see example below).

On return, the parameter portNumber contains the port
number where the message, if any, is waiting. If no
messages are waiting and the XFWTF flag is not set, the
base value of the error codes (XMXENTM) is returned as
returnStatus.

For example, if the task has opened four ports and have
got the port numbers 15 (from the 1st XMPFOPN), 4 (from
the 2nd XMPFOPN), 6 (from the 3rd XMPFOPN) and 19 (from
the 4th XMPFOPN), then the port list comprises the ports
19—6—4-15 (in that order!). Port number 19 (the first
port in the list) is the task's default port (i e., if
startScanPort is zero, this port is assumed). If the
task has just handled a message received on port 6, it
can, when it wants to have a 'round~robin' scheduling of
requests, call XMPFGST with startScanPort=6. Port 6 will
then be the last port to be looked at by XMSG. XMSG will
start looking at port 4 to see if a message is waiting.
If no message is waiting on port 4, XMSG will look at
port 15. If no message is waiting on port 15, XMSG will
look at port 19, and, if no message is waiting on port
19, XMSG will finally look at port 6.

Note that calling this routine, when a message is
waiting on one of the ports will lead, to the clearing
of both the 'general wake up' bit for the task and the
'wake up' bit on the returned portNumber. If no message

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 43
XMSG/PLANC REFERENCE GUIDE

OPTIONS .

RULES .

EXAMPLE .

is waiting on any of the ports, XMSG will clear both the
'general wake up' bit for the task and the 'wake up' bit
on all ports opened by the task before checking the
requested option(s). (The 'general wake up' bit may have
been set as a result from a previously executed XMPFGST
call, and the 'wake up' bit on the individual ports may
have been set as a result from previously executed
XMPFPST, XMPFRCV, XMPFRRH or XMPFRRE calls.)

2 XFWTF ~ Wait flag. If set, the task is suspended if no
messages are waiting. Execution resumes when a message
arrives on one of the ports.

XFWAK - General wake up. Unless a message is already
waiting on one of the ports, a 'general wake up' bit
will be set for this task. When 'general wake up' is
set, the next transmission to any of the ports opened by
the task will lead to a wake up of the receiver task,
and clearing of the 'general wake up' bit for that task.

However, be aware that if the task is in XMSG wait
position (for example, if sending a secure message with
wait), i.e. when the task should have been woken up as a
result of a message being sent to one of its ports, the
'general wake up’ bit will be cleared but, the task will
not (and cannot) be woken up.

XFHIP ~ High priority message. Allows a task to check
the arrival of high priority messages. If a high
priority message is waiting on one of the ports and
XFHIP is set, the port number where the high priority
message is waiting is returned in portNumber. If no high
priority message is waiting on any of the ports and
XFHIP is set, and XFWTF is not set, the base value of
the error codes (XMXENTM) is returned as returnStatus,
and when the next message of any type is sent to a port
opened by the task, the task will be woken up (i.e., if
no high priority message is waiting, XFHIP has the same
effect as XFWAK).

2 Permitted for both non—privileged and privileged tasks.

. 2**XFWTF =: flags
4 =: startScanPort
xmpfgst(flags,startScanPort,portNumber) =: returnStatus

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFLMP

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgIdentifier R Message identifier or 0.
Xmmsgidentifier

3 portNo R Port number or 0.
Integer

4 msgIdentFound W Message ID for the first message found
Xmmsgidentifier equal to or greater than requested.

5 msgSize W Message size of msgIdentFound in bytes.
Integer

6 portNoFound W Port no. of the first port found equal
Integer to or greater than requested.

FUNCTION. . :

EXPLANATION :

OPTIONS . . :

RULES . . . :

EXAMPLE . . :

Lists messages and ports.

This call allows a task to obtain information about its
own open ports and its own messages.

msgSize contains the size of the returned msgIdentFound
in bytes. msgIdentFound has either been reserved using
the XMPGET call, using the XMPFALM, or been received as
a result of the message being sent from another task.

If there is no message identifier found equal to or
greater than the requested msgldentifier, then
msgIdentFound is 0.

If there is no port found equal to or greater than the
requested portNo, then portNoFound is 0.

Not implemented, flags should be zero.

Permitted for both non—privileged and privileged tasks.

xmpflmp(0,msgIdentifier,portNo,msgIdentFound,&
msgSize,portNoFound) =: returnStatus

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 45
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFMZP

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 magicNumber R Magic number.
Integer4

3 portNumber W Port number.
Integer

4 systemNumber W System number.
Integer

5 RTinOrOtherlnfo W RT index or other information. See
Integer below.

6 additionallnfo W Additional information. See below.
Integer

FUNCTION.

EXPLANATION

OPTIONS .

RULES .

EXAMPLE .

Z Converts magic number to a port and system number.

2 This call allows a task to convert the magic number to a
port number and a system number.

RTinOrOtherInfo may contain additional information about
the port owner task. If the magic number was that of a
system or that of a remote port, then RTinOrOtherInfo =
—1. If the magic number was that of a local port and the
port owner task is a driver, then RTinOrOtherInfo = —2.
If the magic number was that of a local port and the
port owner task is an RT—program, then RTinOrOtherInfo
equals the SINTRAN RT-index of the RT-program.

additionallnfo may contain additional information about
the specified magic number. If the magic number was that
of a system, then additionallnfo = 3. If the magic
number was that of a local port and the port owner task
is privileged, then additionallnfo = 2. If the magic
number was that of a remote port, or that of a local
port and the port owner task is nonprivileged, then
additionallnfo = l.

2 Not implemented, flags should be zero.

I Permitted for both non-privileged and privileged tasks.

I xmpfm2p(0,magicNumber,portNumber,systemNumber,&
RTinOrOtherInfo,additionallnfo) =: returnStatus

Norsk Data ND-60.l64.3 EN

46 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFMST

No: Parameter Name/ R/W Explanation:
TYPe=

1 flags R Options.
Integer

2 msgIdentifier R Message identifier.
Xmmsgidentifier

3 mnype W Message type, see explanation below.
Integer

4 remoteMagicNum W Magic number of sending port.
Integer4

5 msgLength W Message length in bytes.
Integer

FUNCTION. 1 Obtains message status.

EXPLANATION 2 This call allows a task to extract the sender's magic

Message type:

OPTIONS .

RULES .

EXAMPLE .

number, and get the length and type of a received
message. If msgldentifier is not -1, the specified
message becomes the 'task current' message.

XMTNO - Normal message

XMROU — Message last sent by XROUT (routing program)

XMTHI - High priority message (sent with XFHIP option)

XMTRE - Returned message (sent secure, but could
not be delivered)

. Not implemented, flags should be zero.

2 Permitted for both non-privileged and privileged tasks.

I xmpfmst(0,msgIdentifier,mnype,remoteMagicNum,&
msgLength) =: returnStatus

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 47
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFOPN

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 portNumber W Port number.
Integer

FUNCTION. . I Opens a port.

EXPLANATION I A port is opened and the port number (i.e., the port
identifier) is returned in portNumber.

The opened port becomes the task's default port. When
this port later is closed, the previously opened port,
if any, becomes the task's default port.

OPTIONS . . I Not implemented, flags should be zero.

RULES . : Permitted for both non—privileged and privileged tasks.

EXAMPLE . . 2 xmpfopn(0,portNumber) =: returnStatus

Norsk Data ND-60.l64.3 EN

48 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFPZM

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 portNumber R Port number.
Integer

3 magicNumber W Magic number.
Integer4

FUNCTION. . I Converts port number to magic number.

EXPLANATION 1 This call allows a task to convert a local port number
to a magic number. Any task may obtain the magic number
of its own ports. Privileged tasks can obtain the magic
number of a port owned by another local task.

Note that this routine will only return the magic number
of ports opened by tasks in the local system.

OPTIONS . . I Not implemented, flags should be zero.

RULES . . . I Permitted for both non—privileged and privileged tasks.

EXAMPLE . . I xmpfp2m(0,portNumber,magicNumber) =: returnStatus

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 49
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFPRV

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 XMSGPassword R XMSG password
Integer

FUNCTION. : Make the calling task privileged.

EXPLANATION 2 Some of the routine calls can only be executed by
privileged XMSG tasks. In order to become privileged
(for XMSG), a task must successfully execute the XMPFPRV
call. When the task stops being privileged, the same
call should be used, but with XMSGPassword equal to
zero. The reason for specifying the XMSG password is to
ensure that privileged programs, that base themselves on
accessing XMSG table structures, have been updated to
the current XMSG table definitions.

OPTIONS . 2 Not implemented, flags should be zero.

RULES . . : The caller must be either a driver, a direct task, a

EXAMPLE .

foreground program, or a background program logged in as
user system. Besides this, the program must also specify
the current XMSG password, which can be obtained using
the XMPCONF routine.

2 xmpfprv(O,XMSGPassword) =: returnStatus

Norsk Data ND-60.l64.3 EN

50 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Rmnfinermme: XMPFPST

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 localPort R Port number to be checked.
Integer

3 mnype W Message type, see explanation below.
Integer

4 remotePort w Hashed magic number of remote port.
Integer

5 msgIdentifier W Message identifier.
Xmmsgidentifier

6 queueLength W Number of messages queued for localPort.
Integer

FUNCTION. 2 Checks a port to see if any message is waiting.

EXPLANATION Z If localPort is zero, the most recently opened port
(i.e. the default port) is assumed.

On return from the routine, mnype indicates' the
message type of the first message queued to localPort.
If no message is waiting, mnype is zero. If a message
is waiting, the remotePort, msgldentifier and
queueLength parameters will contain the bashed magic
number of the sending port, the message address and the
number of messages chained to localPort.

If no message is waiting on localPort and the XFWTF flag
is not set, the base value of the error codes (XMXENTM)
is returned as returnStatus.

Note that calling this routine when a message is waiting
on localPort will lead to the clearing of both the
'general wake up' bit for the task and the 'wake up' bit
on localPort. If no message is waiting on localPort,
XMSG will clear both the 'general wake up' bit for the
task and the 'wake up' bit on localPort before checking
the requested option(s). (The 'general wake up' bit may
have been set as a result from a previously executed
XMPFGST call, and the 'wake up' bit on localPort may
have been set as a result from a previously executed
XMPFPST, XMPFRCV, XMPFRRH or XMPFRRE call.)

Continued on next page.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 51
XMSG/PLANC REFERENCE GUIDE

Message type:

OPTIONS .

RULES .

EXAMPLE .

XMTNO — Normal message

XMROU — Message last sent by XROUT (routing program)

XMTHI - High priority message (sent with XFHIP option)

XMTRE — Returned message (sent secure but, could
not be delivered)

I XFWTF - Wait flag. If no message is waiting on
localPort, the task is suspended. Execution resumes when
a message arrives on localPort.

XFWAK ~ Wake up. Unless a message is already waiting on
localPort, a 'wake up' bit will be set on localPort.
When 'wake up' is set on localPort, the next
transmission to this port will lead to a wake up of the
receiver task, and clearing of the 'wake up' bit on
localPort. This option can be enabled on more than one
port at a time.

However, be aware that if the task is in XMSG wait
position (for example, sending a secure message with
wait), when the task should have been woken up as a
result of a message being sent to localPort, the 'wake
up' bit will be cleared but the task will not (and
cannot) be woken up.

XFHIP - High priority message. Allows a task to check
the arrival of high priority messages. If a high
priority message is waiting and XFHIP is set, the
message type XMTHI is returned in mnype. If no high
priority message is waiting, and XFHIP is set and XFWTF
is not set, a zero (0) is returned in mnype. When the
next message of any type is sent to localPort, the
receiving task will be woken up (i.e., if no high
priority message is waiting, XFHIP has the same effect
as XFWAK).

I Permitted for both non—privileged and privileged tasks.

2 xmpfpst(flags,localPort,mnype,remotePort,&
msgIdentifier,queueLength) =: returnStatus

Norsk Data ND-60.l64.3 EN

52 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFRCV

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 localPort R Number of the receiving port.
Integer

3 mnype W Message type, see explanation below.
Integer

4 remotePort W Hashed magic number of remote port.
Integer

5 msgIdentifier W Message identifier.
Xmmsgidentifier

6 msgLengthOrStat W Message length in bytes. If mnype is
XMTRE, msgLengthorStat contains the

Integer error status.

FUNCTION. : Receives a message when it is queued for a port.

EXPLANATION I If a message is waiting on localPort, it will be
received (unchained from the message queue) and its
address returned in msgIdentifier. mnype indicates the
message type of the received message, msgLengthOrStat
gives the message length and remotePort contains the
bashed magic number of the sending port. If the message
type is XMTRE (returned message), then msgLengthOrStat
contains the reason for return.

If localPort is zero, the most recently opened port
(i.e., the default port) is assumed.

A successful receiving causes the received message to
become the 'task current' message. In addition, if it is
a secure message (i.e., a message sent with option XFSEC
set), it becomes the 'port currentI message for
localPort. If the task aborts or localPort is closed
while the message is 'port current', the message will be
returned to the sender with 'return' status.

The 'task current' message is cleared by
releasing/sending it to someone else, or receiving
another message. The 'port current' message is cleared
by releasing/sending it to someone else, or receiving
another secure message. A task may also change the value
of the current message using the XMPFSCM routine.

If no message is waiting on localPort and the XFWTF flag
is not set, the base value of the error codes (XMXENTM)

is returned as returnStatus.

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 53
XMSG/PLANC REFERENCE GUIDE

Message type:

OPTIONS .

RULES .

EXAMPLE .

Note that calling this routine when a message is waiting
on localPort will lead to the clearing of both the
'general wake up' bit for the task and the 'wake up' bit
on localPort. If no message is waiting on localPort,
XMSG will clear both the 'general wake up' bit for the
task and the 'wake up' bit on localPort before checking
the requested option(s). (The 'general wake up' bit may
have been set as a result from a previously executed
XMPFGST call, and the 'wake up' bit on localPort may
have been set as a result from a previously executed
XMPFPST, XMPFRCV, XMPFRRH or XMPFRRE call.)

XMTNO - Normal message

XMROU — Message last sent by XROUT (routing program)

XMTHI - High priority message (sent with XFHIP option)

XMTRE ~ Returned message (sent secure but could
not be delivered)

: XFWTF — Wait flag. If no message is waiting on
localPort, the task is suspended. Execution resumes when
a message arrives on localPort.

XFWAK — Wake up. Unless a message is already waiting on
localPort, a 'wake up' bit will be set on localPort.
When 'wake up' is set on localPort, the next
transmission to this port will lead to a wake up of the
receiver ~task, and clearing of the 'wake up' bit on
localPort.

When the wake up is done, the message is not received,
and so the receiving must be repeated. This option can
be enabled on more than one port at a time.

However, be aware that if the task is in XMSG wait
position(for example, sending a secure message with
wait), when the task should have been woken up as a
result of a message being sent to localPort, the 'wake
up' bit will be cleared, but the task will not (and
cannot) be woken up.

I Permitted for both non-privileged and privileged tasks.

I 2**XFWTF =: flags
XMPFRCV(flags,localPort,mnype,remotePort,&

msgIdent,msgLengthOrStat) =: returnStatus

Norsk Data ND—60.l64.3 EN

54 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFREA

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgDisp R Displacement within message in bytes.
Integer

3 userAddress R Address of user buffer.
Xmuseraddress

4 userDisp R Displacement within userAddress in
Integer bytes. See note below.

5 userLength R Number of bytes you want to read.
Integer

6 readLength W Number of bytes actually read.
Integer

FUNCTION. 1 Reads user data from a message buffer.

EXPLANATION 2 The data is read from the 'task current' message,
starting with displacement msgDisp (rounded up to the
next even byte), into the user buffer specified by
userAddress (and userDisp). readLength is returned to
indicate the actual number of bytes read. If msgDisp is
—l, the reading of the message is resumed from the
current message displacement.

Note that the displacement within the message is always
rounded up to the next even byte and, on a ND-lOO, that
userDisp is always rounded down to the previous even
byte before the data is read.

On return, if the last byte in the message is read, the
current message displacement is set to O, and the
'whole-message—read' flag is set, so that the next
'write message' call (e.g., XMPFWRI or XMPFWHD, will
reset the current message length to zero. Otherwise,
except when readLength is zero, the current message
displacement is set to msgDisp+readLength, where msgDisp
is the specified displacement (rounded up if necessary)
and readLength is the actual number of bytes
transferred. If readLength is zero, the current message
displacement is not updated.

Continued on next page.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 55
XMSG/PLANC REFERENCE GUIDE

OPTIONS . . 2 Not implemented, flags should be zero.

RULES . . . : Permitted for both non—privileged and privileged tasks.

EXAMPLE . . : xmpfrea(0,msgDisp,&
addr(inbuffer(0)) force Xmuseraddress,userDisp&
,userLength,readLength) = : returnStatus

Norsk Data ND—60.l64.3 EN

56 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFREL

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgldentifier R Message identifier.
Xmmsgidentifier

FUNCTION. 2 Releases a message buffer.

EXPLANATION : This call is used to release a message buffer reserved

OPTIONS .

RULES .

EXAM’LE .

by the task. A message buffer is reserved when the task
issues the XMPFGET call or when a message is sent to it
from another task. In the latter case the message must
be received before it can be released.

At any particular time, the total message buffer space
owned by a task cannot exceed a limit defined when the
XMSG system is generated. Therefor, as, a general rule
for a task should be its message buffer release, as soon
as the task is through with it.

A msgldentifier parameter of —1, will release the 'task
current’ message.

If the specified message is an allocated message (i.e.,
a message allocated using the XMPFALM call), the message
will be put back on the original task's 'Available
Allocated Message List' (AAML), see the routine XMPFALM.

2 Not implemented, flags should be zero.

: Permitted for both non—privileged and privileged tasks.

: xmpfrel(0,msgIdentifier) =: returnStatus

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 57
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Rmnjnermme: XMPFRHD

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgIdentifier R Message identifier.
Xmmsgidentifier

3 bytesOTol w Bytes 0 and l of message header.
IntegerZ

4 bytesZTo3 W Bytes 2 and 3 of message header.
IntegerZ

5 bytes4ToS w Bytes 4 and 5 of message header.
Integer2

FUNCTION. 1 Reads only the header of a message buffer.

EXPLANATION : The first 6 bytes of a message buffer are read and
returned in bytesOTol, bytes2To3 and bytes4T05, and then
the current message displacement is set to 6.

If msgIdentifier equals -1, the data will be read from
the 'task current' message. If not —1, the specified
message becomes the 'task current' message before the
data is read.

If the message size is less than 6 bytes, an error
return occurs.

OPTIONS . . 2 Not implemented, flags should be zero.

RULES . : Permitted for both non-privileged and privileged tasks.

EXAMPLE . 1 xmpfrhd(0,msgldentifier,bytesOTol,bytesZT03,&
bytes4T05) =: returnStatus

Norsk Data ND-60.l64.3 EN

58 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFRRE

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 localPort R Number of the receiving port.
Integer

3 userAddress R Address of user buffer.
Xmuseraddress

4 userDisp R Displacement within userAddress in
Integer bytes. See note below.

5 userLength R Number of bytes you want to read.
Integer

6 mnype w Message type, see explanation below.
Integer

7 remotePort w Hashed magic number of the remote port.
Integer

8 msgIdentifier W Message identifier.
Xmmsgidentifier

9 msgLengthOrStat W Message length in bytes. If mnype is
XMTRE, msgLengthorStat contains the

Integer error status.

FUNCTION. .

EXPLANATION :

i Receives a message queued for a port and read from the
message buffer.

If a message is waiting on localPort, it will be
received (unchained from the message queue) and then
userLength number of bytes will be read from the first
byte in the message buffer into the user buffer
specified by userAddress (and userDisp). If the last
byte in the message is read, the current message
displacement is set to O, and the ‘whole-message~read'
flag is set. Thus the next 'write message' call will
reset the current message length to zero. Otherwise, if
the last byte is not read, the current message
displacement is set to the actual number of bytes read.

If localPort is zero, the most recently opened port
(i.e., the default port) is assumed. If userLength is
greater than the message length, only msgLength OrStat
number of bytes will be read into the user buffer.

Note that on an (ND-100, the userDisp (displacement
within the user buffer) is always rounded down to the
previous even byte.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 59
XMSG/PLANC REFERENCE GUIDE

Message type:

OPTIONS .

RULES .

EXAMPLE .

Note that when the message is received, both the 'task
current' message and the 'port current' message will be
set as described under routine XMPFRCV. Note also that
the handling of flags (options) in this routine is
identical to the handling described under XMPFRCV. Also,
the return parameters from the routine are identical to
the return parameters from the XMPFRCV call.

If no message is waiting on localPort and the XFWTF flag
is not set, the base value of the error codes (XMXENTM)
is returned as returnStatus.

You should note that this routine act as if both XMPFRCV
and XMPFREA had been called. Calling this routine,
instead of the other two routines, however eliminates
the overhead associated with each routine and XMSG call.

As for XMPFRCV.

2 As for XMPFRCV.

2 Permitted for both non—privileged and privileged tasks.

: 2**XFWTF =: flags
xmpfrre(flags,localPort,useraddress,userDisp,&

userLength,mnype,remotePort,msgIdent,&
msgLengthOrStat) =2 returnStatus

Norsk Data ND-60.l64.3 EN

60 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFRRH

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 localPort R Number of the receiving port.
Integer

3 mnype W Message type, see explanation below.
Integer

4 remotePort W Hashed magic number of the remote port.
Integer

5 msgIdentifier W Message identifier.
Xmmsgidentifier

6 bytesOTolorStat W Normally first 2 bytes of message. If
mnype is XMTRE, bytesOTolorStat

Integer2 contains the error status.

FUNCTION. 2 Receives a message and reads the header.

EXPLANATION 2 If a message is waiting on localPort, it will be
received (unchained from the message queue). Then the
first two bytes of the message buffer are read and
returned in the bytesOTolorStat parameter.

If localPort is zero, the most recently opened port
(i.e., the default port) is assumed.

Note that when the message is received, both the 'task
current' message and the 'port current' message will be
set as described under routine XMPFRCV. Note also that
the handling of flags (options) in this routine is
identical to the handling described under XMPFRCV. The
return parameters from the routine are identical to the
return parameters from the XMPFRCV call, except that the
first two bytes of user data is returned instead of the
message length.

If no message is waiting on localPort and the XFWTF flag
is not set, the base value of the error codes (XMXENTM)
is returned as returnStatus.

Message type: As for XMPFRCV.

Continued on next page.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 61
XMSG/PLANC REFERENCE GUIDE

OPTICNS . . : As for XMPFRCV.

RULES . . . Z Permitted for both non—privileged and privileged tasks.

EXAWLE . . : 2**XFWTF =: flags
xmpfrrh(flags,localPort,mnype,remotePort,&

msgIdentifier,bytesOTolorStat) =: returnStatus

Norsk Data ND—60.l64.3 EN

62 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFRTN

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgIdentifier R Message identifier.
Xmmsgidentifier

3 localPort R Number of the sending port.
Integer

4 bytesOTol R First 2 bytes of the message header.
Integer2

FUNCTION. 2 Returnes a message to the port from which it came.

EXPLANATION I The user often needs to write a return status into a
message and send it back to the port from which it came
(e.g., replying to a transaction). This call leads to
msgIdentifier being set as the 'task current‘ message
and the 'port current' message for localPort, bytesOTol,
being written into the first two bytes of the message
buffer. Then the message is being returned to the port
from which it was last sent.

If msgIdentifier is -l, the current message is assumed
to be either the 'port current' message, if one exists,
or, if none, the 'task current' message.

The localPort parameter specifies the port from which
the message will be sent. If localPort is zero, the most
recently opened port (i.e. the default port) is assumed.

O’TICNS . : XFWTF — Wait flag. This is only significant when sending
a secure (XFSEC) message to a task in another system.

If set, it implies that the caller will only be
restarted (with proper status) when the message has been
put into the receiver's input queue (i.e., the sending
task is suspended until the message has been sent to the
remote port).

If not set, secure messages that cannot be delivered
will be returned to the sending port.

XFSEC - Secure message. The message will be returned to
the sending port if it cannot be delivered or if the
receiving port is closed (e.g., if the receiving task
terminates) while the message is 'port current'. Non-
secure messages are discarded and released by XMSG if
they cannot be delivered.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 63

XMSG/PLANC REFERENCE GUIDE

RULES .

EXIM’LE .

XFHIP — High priority message. The message will be
chained to the head of the receiver's queue instead of
the tail, following any other high priority messages
already queued.

XFFWD — Forwarding message. The sender information in
the message will not be updated. To the receiver, it
will appear that the message was sent directly from the
previous sending port.

XFBNC - Bounce message. When the receiver issues
'Receive Message' (i.e., the routines XMPFRCV, XMPFRRH
or XMPFRRE), which would have led to this message being
received, it will instead be returned to the sender.

Z Permitted for both non~privileged and privileged tasks.

: xmpfrtn(0,msgldentifier,localPort,dataO) =2 returnStatus

Norsk Data ND—60.l64.3 EN

64 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFSCM

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 portNumber R Port number.
Integer

3 msgIdentifier R Message identifier.
Xmmsgidentifier

FUNCTION. . 1 Sets the current message.

EXPLANATION 2 Since many routines implicitly operate on the current
message, it is useful to be able to set the latter. This
call sets the specified message as the 'task current'
message. If portNumber is >=O, the message is also set
as 'port current' for the specified port. If portNumber
is zero, the most recently opened port (i.e., the
default port) is assumed.

OPTIONS . I Not implemented, flags should be zero.

RULES . . : Permitted for both non—privileged and privileged tasks.

EXAMPLE . Z xmpfscm(0,portNumber,msgIdentifier) =:returnStatus

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 65
XMSG/PLANO REFERENCE GUIDE

Routine name : XMPFSIN

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 XMSGbase W XMSG base field address.
Integer

FUNCTION. 2 Gets XMSG's base field address.

EXPLANATION Z This call returns the base field address of the XMSG
system in the memory bank, where the XMSG kernel code
has been fixed. This address is needed in order to be
able to access XMSG tables.

OPTIONS . : Not implemented, flags should be zero.

RULES . 1 Only permitted for privileged tasks.
Not permitted for drivers.
Not available for tasks running in an ND—SOO.

EXAMPLE . I xmpfsin(O,XMSGbase) =: returnStatus

Norsk Data ND—60.l64.3 EN

66 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFSMC

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 noOfCalls R Number of XMSG functions to be executed
Integer

3 userAddress R Address of user buffer containing the
Xmuseraddress parameters.

4 userDisp R Displacement within userAddress in
Integer bytes. See note below.

5 Treg W The content of the T register.
Integer

6 Areg W The content of the A register.
Integer

7 Dreg W The content of the D register.
Integer

8 Xreg W The content of the X register.
Integer

FUNCTION. 2 Starts multi call.

EXPLANATION 2 This call allows a task to execute a set of XMSG
functions issuing only one routine call. This eliminates
the overhead associated with each routine call (and XMSG
monitor call).

noOfCalls is the number of XMSG functions to be executed
and userAddress is the address of a buffer containing
the parameters for the functions. Each set of parameters
comprise 4 words (T, A, D and X registers), so the
buffer length should be 8*noOfCalls bytes long.
noOfCalls has a maximum, system dependent size defined
when the XMSG system is generated. If noOfCalls is O (or
-l), then the previously executed multi call request
will be re-executed.

Note that on an ND—lOO, the userDisp is always rounded
down to the previous even byte.

The meaning of the T, A, D and X registers depend on the
particular XMSG function. A documentation of the XMSG
functions is provided in appendix A.

XMPFSMC returns as soon as an XMSG function terminates
with status less than or equal to zero (or when all the
functions have been executed). The return parameters
(Treg, Areg, Dreg and Xreg) are set according to the
return registers from the last XMSG function executed.
Completion status is also returned in the returnStatus,

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 67
XMSG/PLANC REFERENCE GUIDE

OPTIONS .

RULES .

EXAMPLE .

XMOK, if the multi call has been successfully executed,
in XMXENTM, if one of the XMSG functions in the multi
call was not terminated, otherwise returnStatus contains
an error code.

You should be aware of the fact that if an XMSG
disconnect function is specified (and executed) as one
of the functions in the multi call, the succeeding
functions in the multi call will not be executed, as the
task context (KT-block) is released by the disconnect
(XFDCT) function.

: Not implemented, flags should be zero.

. Permitted for both non—privileged and privileged tasks.
Not available for tasks running in an ND-SOO.

Z xmpfsmc(0,n00fcalls,userAddress,userDisp,&
Treg,Areg,Dreg,Xreg) =: returnStatus

Norsk Data ND—60.164.3 EN

68 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFSND

Type: XMSG Function

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 localPort R Number of the sending port.
Integer

3 remoteMagicNum R Magic number of the receiving port.
Integer4

FUNCTION. 2 Sends the current message to another task.

EXPLANATION I When a task wants to send a message to another task, it
must know the magic number of a port of the other task.
For a description of how to obtain the magic number, see
under the XMPBLET call, and in the example in appendix
G. A remoteMagicNum parameter of -1 will direct the
message back to the port from wich it was last sent.

The localPort parameter specifies the port from which
the message will be sent. If localPort is zero, the most
recently opened port (i.e., the default port) is
assumed.

Note that there is no parameter specifying the message
that is to be sent, for the reason that the current
(default) message buffer is assumed, namely the 'port
current' message if one exists, or, if none, the 'task

current' message.

OPTIONS . I XFWTF - Wait flag. This is only significant when sending
a secure (XFSEC) message to a task in another system.

If set, it implies that the caller will only be
restarted (with proper status) when the message has been
put into the receiver's input queue (i.e., the sending
task is suspended until the message has been sent to the
remote port).

If not set, secure messages that cannot be delivered

will be returned to the sending port.

XFSEC - Secure message. The message will be returned to

the sending port if it cannot be delivered, or if the
receiving port is closed (e.g., if the receiving task
terminates) while the message is 'port current'. Non—
secure messages are discarded and released by XMSG if
they cannot be delivered.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 69
XMSG/PLANC REFERENCE GUIDE

RULES .

EXANPLE .

XFFWD - Forwarding message. The sender information in
the message will not be updated. To the receiver, it
will appear that the message was sent directly from the
previous sending port.

XFROU — Route message. Ignore the remoteMagicNum
parameter and send the message to the local routing task
(XROUT). The message contents should be parameters to
XROUT. (See appendix B on XROUT services.)

XFRRO - Remote route message. If the XFROU flag is also
set, then send the message to a remote routing task
(XROUT). The 16 most significant bits of remoteMagicNum
is assumed to contain the system number to which the
message will be sent. The message contents should be
parameters to XROUT.

Note that if the XFROU flag is not set and XFRRO is set,
the message will be sent as if XFHIP had been set.

XFHIP - High priority message. If the XFROU flag is not
set, the message will be chained to the head of the
receiver’s queue, instead of the tail, following any
other high priority messages already queued.

Note that if both the XFROU flag and the XFHIP flag are
set, the message will be sent as if XFROU and XFRRO had
been set (i.e., when XFROU is set, setting the XFHIP
flag will act as if the XFRRO flag had been set
instead).

XFBNC ~ Bounce message. When the receiver issues
'Receive Message' (i.e., the routines XMPFRCV, XMPFRRH
or XMPFRRE), which would have led to this message being
received, it will instead be returned to the sender.

. Permitted for both non—privileged and privileged tasks.

. 2**XFSEC + 2**XFHIP =: flags
xmpfsnd(flags,localPort,remoteMagicNum) =1 returnStatus

Norsk Data ND—60.l64.3 EN

70 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPFSTD

Type: XMSG Function

Type:
No: Parameter Name/ R/W Explanation:

1 flags

2 XTblockAddress R The address of the driver task block.

R Options.
Integer

Integer

FUNCTION.

EXPLANATION :

OPTIONS .

RULES . . . :

EXAMPLE .

2 Starts driver.

This call starts the execution of a driver which has
already been defined by the XMPFCRD call.

XTblockAddress must contain the driver's task block
address as returned from the XMPFCRD call. XMPFSTD
overwrites the driver‘s L register with the
XTblockAddress before starting the driver.

In this way a started driver will have the L register
containing its XT—block address. The driver must make
sure that the L register still contains the XT—block
address before calling XMSG.

XMPFSTD does not set the appropriate bit in the PIE
register. Nor does it load or fix any segments. This
should be done using the FIXC and ENTSG monitor calls.

1 Not implemented, flags should be zero.

Only permitted for privileged tasks.
Not permitted for drivers.
Not available for tasks running in ND—SOO.

2 xmpstd(O,XTblockAddress) =: returnStatus

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 71
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFWDF

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 Bregister R The B register of the driver on restart.
Integer

3 restartAddress R Restart address for the driver.
Integer

FUNCTION. . 1 Defines wake up context.

EXPLANATION I If a driver uses the XFWAK (wake up) option, XMSG must
be told where to restart the driver. This is done by
using the XMPFWDF call. When the driver is restarted by
XMSG, it will be restarted in the address specified by
restartAddress with its B register set to the address
specified by Bregister.

OPTIONS . . 2 Not implemented, flags should be zero.

RULES . . . 2 Permitted for both non-privileged and privileged tasks.
Not permitted for RT-programs.
Not available for tasks running in an ND~500.

EXAMPLE . . Z xmpfwdf(0,Bregister,restartAddress) =: returnStatus

Norsk Data ND-60.164.3 EN

72 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFWHD

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 bytesOTol R Bytes 0 and l of the message header.
Integer2

3 bytesZTo3 R Bytes 2 and 3 of the message header.
IntegerZ

4 bytes4ToS R Bytes 4 and 5 of the message header.
Integer2

FUNCTION. . : Writes to the header of the 'task current' message
buffer.

EXPLANATION 1 If the 'whole-messagesread' flag has been set (see
XMPFREA), it is cleared and the current message length
(not the same as size) is set to 0. Then the routine
inserts bytesOTol, bytes2T03 and bytes4T05 as the first
six bytes of the message. If this results in the message
being longer than before, the current message length is
set to 6. It then sets the current message displacement
to 6.

If the message lenght is less than 6 bytes, an error
return occurs.

OPTIONS . 1 Not implemented, flags should be zero.

RULES . . . 2 Permitted for both non—privileged and privileged tasks.

EXAMPLE . Z xmpfwhd(0,bytesOTol,bytesZTo3,bytes4T05) =: returnStatus

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 73
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPFWRI

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgDisp R Displacement within message in bytes.
Integer

3 userAddress R Address of the user buffer.
Xmuseraddress

4 userDisp R Displacement within userAddress in
Integer bytes. See note below.

5 userLength R Number of bytes you want to write.
Integer

6 writtenLength W Number of bytes actually written.
Integer

FUNCTION. 2 Writes user data into a message buffer.

EXPLANATION 2 After building up a data buffer in its own space, a task
transfers the data buffer into the 'task current'
message buffer using XMPFWRI. If the 'whole—message~
read' flag has been set (see XMPFREA), it is cleared and
the current message length (not the same as size) is set
to 0. If msgDisp is —l, a value for msgDisp equal to the
current message displacement is assumed instead, thus
providing an appending function. If msgDisp is odd, 1 is
added to it, and a zero bytes inserted in the message.

If msgDisp+userLength is greater than the message size,
an error return occurs. Otherwise, userLength bytes are
copied from the user buffer into the message buffer, and
the current message displacement is set to
msgDisp+writtenLength (where msgDisp has been rounded
up, if odd). If this copying resulted in the message
being longer than before, the current message length is
also set to msgDisp+writtenLength. writtenLength is
returned to indicate the actual number of bytes
transferred.

Note that the displacement within the message is always
rounded up to the next even byte and, on an ND-lOO, that
userDisp is always rounded down to the previous even
byte before the data is written.

Continued on next page.

Norsk Data ND-60.l64.3 EN

74

OPTIONS .

RULES .

EXAMPLE .

o

a

COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

XFRES - Reset current message length. If set, it leads
'to the current message length being set to 0 before the
user data is transferred into the message buffer. (In
fact it acts as if the 'whole-message-read' flag had
been set.)

Permitted for both non—privileged and privileged tasks.

xmpfwri(flags,msgDisp,&
addr(inbuffer(0)) force Xmuseraddress,&
userDisp,userLength,writtenLength)&
=: returnStatus

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 75
XMSG/PLANC REFERENCE GUIDE

Type: XROUT Service

Rmndnermme: XMPINFC

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 portNumber R Port number returned by XMPOPCN.
Integer

3 extraConn R Number of extra connections.
Integer

4 serialNumber R Reference number.
Integer

FUNCTION. : Increments (or decrements) the free connection count.

EXPLANATION : After opening a connection port using XMPOPCN, a task
can later increment (when the connections become
available) or decrement (when number of connections need
to be reduced) the free connection counter associated
with that port.

If extraConn is positive, the maximum number of
connections that portNumber can handle is increased. If
extraConn is negative, the maximum number of connections
that portNumber can handle will be decreased. If the
resulting number of free connections becomes negative,
an error status will be returned from XROUT.

Note that this routine will not wait for a reply from
XROUT, and so the caller will later receive this reply
from XROUT on the port specified by portNumber.
serialNumber is put into byte 0 of the request sent to
XROUT to allow the caller, who may have many requests
outstanding at the same time, to recognize the reply.

Note that since this routine has to reserve and send a
message to XROUT to increase (or decrease) the number of
connections accepted, the routine will change the task's
current definition of 'task current' message, as well as
the current definition of 'port current' message on
portNumber, if any.

Continued on next page.

Norsk Data ND—60.l64.3 EN

76

OPTIONS .

RULES . .

EXAMPLE .

COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

: Not implemented, flags should be zero.

I Permitted for both non-privileged and privileged tasks.

I When a server port with port number 12, which has
previously been created using XMPOPCN, is able to handle
a new connection, we should inform XROUT.

o
’o

%

n\0
o\°

o\°
o\°

We are able to handle one more connection
1 =: extraConn
on the port number returned from xmpopcn
12 =: portNumber
To recognize the reply, we need a reference no.
100 =: serialNumber
Tell XROUT
xmpinfc(0,portNumber,extraConn,seria1Number)&

=: returnStatus
Check returnStatus, and if 0k, the request has
been sent to XROUT.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 77
XMSG/PLANC REFERENCE GUIDE

Type: XROUT Service

Routine name : XMPOPCN

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 portName R Name of the port.
Bytes

3 uniqueName R Uniqueness flag.
Boolean

4 maxConnections R Maximum number of connections accepted.
Integer

5 portNumber W Port number.
Integer

FUNCTION. 2 Creates a connection port.

EXPLANATION 2 This call is very similar to XMPOPNM, but allows XROUT
to control the number of connections that a port can
handle simultaneously, and even distribute connections
among server (connection) ports.

As for XMPOPNM, a port is opened and its port number is
returned in portNumber, and the port is given the name
specified by portName. If uniqueName is specified as
FALSE, different connection ports are allowed to have
identical names. This means that a system can have
several server tasks, all being accessible through the
same server (connection) port name. Otherwise, if
uniqueName is TRUE, only this port is allowed to have
the name specified by portName. When the port has been
named as portName, XROUT sets a counter (the free
connection counter) associated with that port to the
value specified in maxConnections. The number of
connections that this port can handle, may later be
increased or decreased using XMPINFC.

If another port opened, and named using XMPOPNM, already
has the specified port name (portName), an error status
is returned in returnStatus. The same error is returned
if another port has been created as a connection port
using XMPOPCN with uniqueName set to TRUE.

When somebody contacts portName by sending a letter via
XROUT, XROUT looks at the free connection counter and if
it is greater than zero, XROUT decrements it and
forwards the letter. If there are no free connections,
XROUT tries to find another port with the same name. See
also the description under the routine XMPBLET.

Norsk Data ND-60.l64.3 EN

78

OPTIONS .

RULES .

EXAMPLE .

COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

The maximum port name length accepted by the routine is
defined by the symbol XMMAXNameLength in the XMP:DEFS
file. If portName is longer than XMMAXNameLength in
bytes, -1 will be returned as error code in
returnStatus. If the name length exceed another limit,

which is set at XMSG generation time, the port name will
be truncated by XMSG, i.e., excess characters are
discarded.

Note that since this routine has to reserve and send a
message to XROUT to name the port, the routine will
change the task's current definition of 'task current'
message. Note that the opened port becomes the task's
default port. When this port is closed, the previously
opened port, if any, becomes the task's default port.

2 Not implemented, flags should be zero.

: Permitted for both non—privileged and privileged tasks.

2 In this example we create a server port named ‘xx—
server', and allows another server port to have the same

name.

% Specify the port name
'xx-server' =: portName

% Other ports should also be able to use this name
FALSE =: uniqueName

% Specify maximum no of connections
3 =: maxConnections
Create the port as a connection port
xmpopcn(0,portName,uniqueName,maxConnections,&

portNumber) =: returnStatus
Check returnStatus, and if 0k, 'xx-server' has
been created as a connection port with port
number = portNumber.

a\°
o\°

o\°
o\°

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 79
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPOPNM

Type: XROUT Service

No: Parameter Name/ R/W Explanation:
Type:

1 flags

2 portName R Name of the port.

3 portNumber W Port number.

R Options.
Integer

Bytes

Integer

FUNCTION.

EXPLANATION

OPTIONS .

RULES .

Z Opens and names a port.

I A port is opened and given the name specified by
portName. The port number is returned in portNumber.

If another open port already has the specified name
(portName), an error status is returned in returnStatus.

The maximum port name length accepted by the routine is
defined by the symbol XMMAXNameLength in the XMP:DEFS
file. If portName is longer than XMMAXNameLength in
bytes, -1 will be returned as error code in
returnStatus. If the name length exceed another limit,
which is set at XMSG generation time, the port name will
be truncated by XMSG, i.e., the excess characters are
discarded.

Note that since this routine has to reserve and send a
message to XROUT to name the port, the routine will
change the task's current definition of 'task current'
message. Note that the opened port becomes the task's
default port. When this port is closed, the previously
opened port, if any, becomes the task's default port.

I Not implemented, flags should be zero.

I Permitted for both non-privileged and privileged tasks.

Norsk Data ND—60.l64.3 EN

80 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

EXAMPLE . . 2 The example opens a port with name 'torunn'.

o
6

o
6

o\0
o\°

o\°

No options permitted, so
0 =: flags
Name the port
'torunn' =: portName
Let xmpopnm do the job
xmpopnm(flags,portName,portNumber) =: returnStatus
Check returnStatus, and if 0k, the port
number is returned in portNumber.

Norsk Data ND—60.164.3 EN

cosmos 9120s GUIDE 81
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPREAD

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgIdentifier R Message identifier.
Xmmsgidentifier

3 msgDisp R Displacement within message in bytes.
Integer

4 userAddress R Address of user buffer.
Xmuseraddress

5 userDisp R Displacement within userAddress in
Integer bytes.

6 userLength R Number of bytes you want to read.
Integer

7 readLength W Number of bytes actually read.
Integer

FUNCTION. I Reads user data from a specified message buffer.

EXPLANATION Z The data will be read from the message buffer specified
by msgIdentifier. msgIdentifier will first be set as
'task current' message, then the user data will be read
as described under routine XMPFREA. If msgIdentifier is
-l, the currently defined “task current‘ message is
assumed. readLength is returned to indicate the actual
number of bytes transferred.

OPTICNS . : As for XMPFREA.

RULES .

EXAMPLE .

Z Permitted for both non—privileged and privileged tasks.

I xmpread(flags,msgldentifier,msgDisp,&
addr(inbuffer(0)) force Xmuseraddress,&
userDisp,userLength,readLength)&
= : returnStatus

Norsk Data ND—60.l64.3 EN

82 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Routine name : XMPROUT

Type: XROUT Service

No: Parameter Name/ R/w Explanation:
Type:

1 flags R Options.
Integer

2 msgldentifier R Message identifier.
Xmmsgidentifier

3 localPort R Number of the sending port.
Integer

FUNCTION. 2 Sends a message to, or via, the local routing task
(XROUT).

EXPLANATION : The message specified by msgIdentifier is set as 'task
current' message and as 'port current' message for
localPort. Then the message is sent to the local routing
task (XROUT). If msgIdentifier is ~1, the current

(default) message is assumed instead, namely the 'port
current' message for localPort if one exists, or, if

none, the 'task current‘ message.

Note that the message contents should be parameters to
XROUT. However, if the message contains a letter service

request (see XMPBLET) which is sent via XROUT, the
remainder of the message can contain data for the

(remote) receiving (server) task. When a message is sent
to another task via XROUT, it is forwarded to the

(remote) receiving port as a secure message (i.e., the
message is forwarded as if it had been sent with the

XFSEC flag set, see the description of XFSEC under the
routine XMPFSND).

Note that the routine returns to the caller as soon as

the message has been sent to (or via) XROUT, which means
that it does not wait for (or receives) any reply from
XROUT. This must be done explicitly by the caller.

OPTIONS . 2 Not available, flags should be zero.

RULES . : Permitted for both non—privileged and privileged tasks.

Continued on next page.

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

EXAMPLE .

(server) port.

o\°
o\°

o\°
o\°

o\°
0\°

o\°
o\°

o\°
o\°

o\°
a\0

n\0
0\0

o\°

The message will be sent to a (server) port
named 'zz—port' in the system named 'gokk'.
'zz-port' =2 portName
'gokk' =: systemName
Let xmpblet create the letter in our local buffer.
xmpblet(myBuffer,60,offSet,123,&

systemName,portName) =: returnStatus
Check returnStatus, and if 0k, let’s
reserve an XMSG buffer of 200 bytes.
xmpfget(0,200,msgldent) =: returnStatus
Check returnStatus, and if 0k, copy the letter
created by xmpblet into the XMSG buffer.
offSet =: uLength
xmpfwri(0,0,myBuffer,O,uLength,wLength)&

=: returnStatus
Check returnStatus, and if Ok, write data for
the receiving server task into the XMSG buffer.
xmpfwri(O,wLength,serverData,O,50,offSet)&

=: returnStatus
Check returnStatus, and if 0k, open a port
so that we can send the message.
xmpfopn(0,myPort) =: returnStatus
Check returnStatus, and if 0k, send the message
from myPort via XROUT to the remote port.
xmprout(O,msgIdentifier,myPort) =: returnStatus
Check returnStatus, and if Ok, the message
has been sent.

Norsk Data ND-60.l64.3 EN

83

t This example creates a letter, writes the letter into an
XMSG buffer, fills in data for the receiving task,
sends

and
the message via XROUT using XMPROUT to a remote

84 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPSEND

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgIdentifier R Message identifier.
Xmmsgidentifier

3 localPort R Number of the sending port.
Integer

4 remoteMagicNum R Magic number of the receiving port.
Integer4

FUNCTION. I Sends specified message to another task.

EXPLANATION 2 The message specified by msgIdentifier is set as 'task
current' message and as 'port current' message for
localPort. Then the message will be sent as described

under routine XMPFSND. If msgIdentifier is ~l, the
current (default) message is assumed instead (i.e., in

this case the routine will act exactly as XMPFSND).

OPTIONS . : As for XMPFSND.

RULES . . . : Permitted for both non~privileged and privileged tasks.

EXN’PLE..: 2**XFSEC + 2**XFHIP =z flags
xmpsend(flags,msgldentifier,localPort,&

remoteMagicNum) =: returnStatus

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 85
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPWRHD

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgIdentifier R Message identifier.
Xmmsgidentifier

3 bytesOTol R Bytes 0 and l of the message header.
Integer2

4 bytesZTo3 R Bytes 2 and 3 of the message header.
IntegerZ

5 bytes4ToS R Bytes 4 and 5 of the message header.
IntegerZ

FUNCTION. : Writes to the header of the specified message buffer.

EXPLANATION Z The data will be written into the message buffer
specified by msgIdentifier. msgIdentifier will first be
set as 'task current' message, then the user data will
be written as described under routine XMPFWHD. If
msgIdentifier is —l, the currently defined 'task
current' message is assumed.

(PTIGIS . : As for XMPFWHD.

RULES .

EXWLE .

2 Permitted for both non-privileged and privileged tasks.

I xmpwrhd(O,msgIdentifier,bytes0Tol,bytesZTo3,&
bytes4T05) =: returnStatus

Norsk Data ND-60.164.3 EN

86 COSMOS PROGRAMMER GUIDE
XMSG/PLANC REFERENCE GUIDE

Type: XMSG Function

Routine name : XMPWRTE

No: Parameter Name/ R/W Explanation:
Type:

1 flags R Options.
Integer

2 msgIdentifier R Message identifier.
Xmmsgidentifier

3 msgDisp R Displacement within message in bytes.
Integer

4 userAddress R Address of the user buffer.
Xmuseraddress

5 userDisp R Displacement within userAddress in
Integer bytes.

6 userLength R Number of bytes you want to write.
Integer

7 writtenLength W Number of bytes actually written.
Integer

FUNCTION. . : Writes user data into the specified message buffer.

EXPLANATION : The data will be written into the message buffer
specified by msgIdentifier. msgldentifier will first be
set as ‘task current' message. Then the user data will
be written as described under routine XMPFWRI. If
msgIdentifier is *1, the currently defined 'task
current' message is assumed. writtenLength is returned
to indicate the actual number of bytes transferred.

OPTIONS . . : As for XMPFWRI.

RULES . . . 2 Permitted for both non-privileged and privileged tasks.

EXAMPLE . . : xmpwrte(flags,msgIdentifier,msgDisp,&
addr(inbuffer(0)) force Xmuseraddress,&
userDisp,userLength,writtenLength)&
= : returnStatus

Norsk Data ND-60.l64.3 EN

4m.
.

a“
.m..D.1:15:31;

COSMOS PROGRAMMER GUIDE 89
XMSG/FORTRAN REFERENCE GUIDE

3 REES/FORTRAN REFERENCE GUIDE

Type: Buffer Formatting

Function name : XMFBADB

No: Parameter Name/ I/O Explanation:
Type:

1 outBuffer I Local user buffer.
Integer*2

2 offset IO Current number of bytes in outBuffer.
Integer

3 paramValue I 32 bit value to be coded.
Integer*4

4 paramNumber I Parameter number.
Integer

FUNCTION. 1 Appends a 32-bit value as the next parameter in the
buffer. The parameter is coded according to the XROUT
message format described in appendix B.

EXPLANATION : This call will append paramValue as the next integer
parameter, with parameter number equal to paramNumber,
in the user buffer specified by outBuffer and update the
offSet parameter accordingly.

paramValue will be put into the buffer as an integer*4
parameter, or, if (and only if) this is valid, as an
integer*2 parameter.

Note that outBuffer must start on an even byte boundary
and that the call parameter offSet must be equal to the
current number of bytes in outBuffer. If one of these
checks fails or if outBuffer is too small to contain the
parameter, —1 will be returned as error code in
returnStatus.

Continued on next page.

Norsk Data ND—60.l64.3 EN

9O

RULES .

Exm>LE .

COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

2 The user buffer must have been initialized using
XMFBINI.
Permitted for both non-privileged and privileged tasks.

: The example formats a user buffer containing only one
32—bit value coded as an integer parameter.

C First, we initialize the user buffer
returnStatus = xmfbini(myBuff,lengthBuffer,offSet)

C Check returnStatus, and if 0k,
C append a 32~bit value as parameter 1

returnStatus = xmfbadb(myBuff,offSet,magicNumb,l)
C Check returnStatus, and if 0k, put in
C the serial number and the service number

returnStatus = xmfbrdy(myBuff,XSGNM,serialnumber)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 91
XMSG/FORTRAN REFERENCE GUIDE

Type: Buffer Formatting

Function name : XMFBAIN

No: Parameter Name/ I/O Explanation:
Type:

1 outBuffer I Local user buffer.
Integer*2

2 offset IO Current number of bytes in outBuffer.
Integer

3 paramValue I 16 bit value to be coded.
Integer*2

4 paramNumber I Parameter number.
Integer

FUNCTION. : Appends a 16—bit value as the next parameter in the
buffer. The parameter is coded according to the XROUT
message format described in appendix B.

EXPLANATION : This call will append paramValue as the next integer

RULES .

EXAMPLE .

parameter, with parameter number equal to paramNumber,
in the user buffer specified by outBuffer and it will
update the offSet parameter accordingly.

paramValue will be put into the buffer as an integer*2
parameter.

Note that outBuffer must start on an even byte boundary
and that the call parameter offSet must be equal to the
current number of bytes in outBuffer. If one of these
checks fails or if outBuffer is too small to contain the
parameter, —1 will be returned as error code in
returnStatus.

: The user buffer must have been initialized using
XMFBINI.
Permitted for both non—privileged and privileged tasks.

2 The example formats a user buffer containing only one
16-bit value coded as an integer parameter.

C First, we initialize the user buffer
returnStatus = xmfbini(myBuff,lengthBuffer,offSet)

C Check returnStatus, and if 0k,
C append a 16—bit value as parameter 1

returnStatus = xmfbain(myBuff,offSet,noOfServic,l)
C Check returnStatus, and if Ok, put in
C the serial number and the service number

returnStatus = xmfbrdy(myBuff,XSNSP,serialnumber)

Norsk Data ND—60.l64.3 EN

92 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: Buffer Formatting

Function name : XMFBAST

No: Parameter Name/ I/O Explanation:
Type:

1 outBuffer I Local user buffer which needs
Integer*2 formatting.

2 offset IO Current number of bytes in the buffer.
Integer

3 string I String to be appended.
Character

4 paramNumber I Parameter number.
Integer

FUNCTION. : Appends a string as the next parameter in the buffer.

EXPLANATION :

RULES .

EXAMPLE .

The parameter is coded according to the XROUT message
format described in appendix B.

This call will append the specified string as the next
string parameter, with parameter number equal to
paramNumber, in the user buffer specified by outBuffer
and it will update the offSet parameter accordingly.

Note that outBuffer must start on an even byte boundary
and that the call parameter offSet must be equal to the
current number of bytes in outBuffer. If one of these
checks fails or if outBuffer is too small to contain the
parameter, -1 will be returned as error code in
returnStatus.

1 The user buffer must have been initialized using
XMFBINI.
Permitted for both non~privileged and privileged tasks.

: The example formats a user buffer containing only one
string parameter.

C First, we initialize the user buffer
returnStatus = xmfbini(myBuff,lengthBuffer,offSet)

C Check returnStatus, and if 0k,
C append the string as parameter 1

returnStatus = xmfbast(myBuffer,offset,
portName(l:—l),l)

C Check returnStatus, and if 0k, put in
C the serial number and the service number

returnStatus = xmfbrdy(myBuff,XSGIN,serialnumber)

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 93
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFBINI

Type: Buffer Formatting

No: Parameter Name/ I/O Explanation:
TYPe=

l outBuffer I Local user buffer.
Integer*2

2 lengthBuffer I Total length of the buffer in bytes.
Integer

3 offSet 0 Number of bytes used in outBuffer after
Integer initializing.

FUNCTION. 3 Initializes the user buffer. The buffer is initialized
according to the XROUT message format described in
appendix B.

EXPLANATION 1 When a task sends a service request to XROUT, the
request (and the response from XROUT) must be coded
according to the XROUT message format.

This function will build and initialize the XROUT header
in the user buffer specified by outBuffer (and
lengthBuffer) for repeated use of the other buffer
formatting functions. On return from the function, the
offSet parameter will contain the size in bytes used for
the XROUT header descriptor, i.e., the space left in
outBuffer for coding of parameters using XMFBADB,
XMFBAIN and XMFBAST is equal to lengthBuffer-offSet.
Thus make sure that the buffer length is big enough to
contain the parameter(s).

Note that outBuffer must start on an even byte boundary
and that lengthBuffer must be big enough to contain the
XROUT header. If one of these checks fails, —1 will be
returned as error code in returnStatus.

Continued on next page.

Norsk Data ND—60.l64.3 EN

94 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

RULES . . . 2 Permitted for both non—privileged and privileged tasks.

EXAMPiE . . 2 The example below formats a buffer containing two
parameters.

C Specify the total buffer length in bytes.

G
O

0
0

0
0

lengthBuffer = 100
Initialize the user buffer
returnStatus = xmfbini(myBuff,lengthBuffer,offSet)
offSet no of bytes are used for the XROUT header.
Check returnStatus, and if 0k, append parameters.
returnStatus = xmfbast(myBuff,offSet,

systName(l:—l),l)
Check returnStatus, and if Ok, we have used offSet
no of bytes for the XROUT header and parameter 1.
returnStatus = xmfbain(myBuff,offSet,systNumb,2)
Check returnStatus, and if Ok, we have used offSet
no of bytes for the XROUT header and the two
parameters (i.e.l no of bytes not yet used in
outBuffer equals lOO—offSet).

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 95
XMSG/FORTRAN REFERENCE GUIDE

Type: Buffer Formatting

Function name : XMFBLET

No: Parameter Name/ I/O Explanation:
Type:

1 headerBuffer I Local user buffer.
Integer*2

2 lengthBuffer I Total length of the buffer in bytes.
Integer

3 offSet 0 Number of bytes used in headerBuffer
Integer after formatting.

4 serialNumber I Reference number.
Integer

5 systemName I Name of destination system.
Character

6 portName I Name of remote port.
Character

FUNCTION. 2 Formats and codes a header for the XROUT 'Send Letter'
service (XSLET). The letter is created according to the
XROUT message format described in appendix B.

EXPLANATION : The function will create the XROUT header that is
required when a task wants to send a letter (service
XSLET) to XROUT.

The header will be created and formatted in the user
buffer specified by headerBuffer. serialNumber is put
into byte 0 of the letter to allow the user task, which
may have more than one request outstanding at the same
time, to distinguish this letter from other messages.
The port name specified by portName is appended as
parameter I, and the system name specified by systemName
is appended as parameter 2 in the header.

systemName is the name of the system the letter will be
sent to, whereas portName is the name of a (remote
server) port in systemName that you want to contact. If
the length of the name specified by systemName is 0, the
local system is assumed.

Note that this function just prepares the letter in a
local buffer (headerBuffer). It does not copy the header
into an XMSG message buffer, nor does it send anything.
The data copying and sending must be done using other
functions, i.e., XMFFWRI and XMFROUT.

The XMSG system provides task to task communication
within the same system and between tasks running in
different systems. When a task wants to send a message
to another task, the sending task must know the magic
number of a port belonging to the receiving task. Since

Norsk Data ND—60.l64.3 EN

96 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

the magic number of a port (and the port number) is
allocated by XMSG when a task opens a port, the sending
task must obtain the magic number of the remote
(receiving) port via XROUT (routing task).

When a task (usually a server task) has opened and named
a port (e.g., using XMFOPCN or XMFOPNM), another task
can now send a message from one of its own ports, via
XROUT, to the named (remote) port. The header of the
message sent via XROUT must contain a 'Send Letter'
(XSLET) service request to XROUT. The remainder of the
message can contain user data for the receiving (server)
task (e.g., protocol information, user name, password
etc.). The remainder of the message will not be looked
at by XROUT (i.e., XROUT will only look at the header of
the message — the letter), thus the user data can be
(coded) in any format legible to the receiving (server)
task.

When XROUT receives the letter, XROUT will look at
systemName, and if systemName has been defined as a
(remote) system name, XROUT will forward the letter
(message) to the XROUT in the specified system.

The destination XROUT will look up the specified
portName in its name table. If portName is a normal
named port (i.e., a port named using XMFOPNM), then
XROUT will forward the whole message to portName. If
portName is a connection port (i.e., a port named using
XMFOPCN), XROUT will look at the free connection counter
for portName and if this is greater than zero, XROUT
will decrement the counter and forward the whole message
to portName. If there are no free connections, XROUT
tries to find another port with the same name (portName)
that have a free connection, and if found, XROUT will
decrement the free connection counter and forward the
message to that port.

When the (server) task receives the message on portName,
it can, and it normally will, check that the sending
task is allowed to use the server before it sends a
(positive) reply to the requester, and thereby gives
away its own magic number. If the server task does not
want to give away its own magic number, it can do so by
sending a (negative) reply with the XFFWD (forward
message) option.

When the requesting task receives the (positive) reply
from the (server) task, it can then use the XMFFMST
function to extract the magic number of the remote
(server) port (portName), and direct communication with
the remote (server) port can begin.

Note that if XMSG is unable to send the letter to XROUT
in the specified system, or if the destination XROUT
does not know the name of the destination port (i.e., if
portName does not match any named port in systemName),

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 97
XMSG/FORTRAN REFERENCE GUIDE

RULES .

EXAMPLE .

or if portName is a connection port with no free
connections, then XROUT will return the letter (message)
to the sending port with an error status. The requesting
(sending) task can test whether the remote (server) task
returned a reply or XROUT returned the message by
checking the message type (which is returned as a result
from a call to a ‘receive message' or a call to a 'port
status' function).

Note that headerBuffer must start on an even byte
boundary and that lengthBuffer must be big enough to
contain the formatted XROUT 'Send Letter' service
header. If one of these checks fails, —1 will be
returned as error code in returnStatus.

I Permitted for both non~privileged and privileged tasks.

: The example formats the header for an XROUT letter in
our local buffer.

C We are going to send to a port named 's-port‘ in the
C system named 'scholar'.

portName = 's-port'
systemName = 'scholar'

C To recognize the message, we put in a reference no.
serialNumber = 111

C Give xmfblet more than enough space for formatting.
lengthBuffer = 60

C Let xmfblet create the necessary header.
returnStatus = xmfblet(myBuffer,lengthBuffer,offSet,

serialNumber,systemName(lz—l),portName (l:—l))
Check returnStatus, and if Ok, then offSet
number of bytes have been used for the XROUT
header. (In this example, offSet=22.)
(If 'scholar' is the name of our own system, we
can of course create the letter specifying a
system name length of zero mstead)
xmfblet(headerBuffer,1engthBuffer,offSet,

serialNumber,systemName(O: ~1),portNamel:-l))
We can now copy the service header from our
local buffer into the header of a message, fill
the remainder of the message with data for the
receiving task, and send the message via XROUT.
(If we need to send data to the receiving task, we
must make sure that these data are written into the
message after the XROUT header.)O

O
O

O
O

O
O

O
D

O
O

O
O

O
O

Norsk Data ND-60.l64.3 EN

98 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: Buffer Formatting

Functhxxname : XMFBLOC

No: Parameter Name/ I/O Explanation:
Type:

1 lowBuffer I Local user buffer.
Integer*2

2 paraNumber I Parameter number of the parameter that
Integer is to be found.

3 startOfParam 0 Displacement within localBuffer in
Integer bytes.

4 paramType 0 Indicates the parameter type of
paramNumber. The parameter type is

Character returned as INTEGER or STRING.

5 paramLength 0 Length of parameter in bytes.
Integer

FUNCTION. . I Locates a parameter within a bUffer coded according to
the XROUT message format described in appendix B.

EXPLANATION 2 Since the parameters in localBuffer may have been put
into the buffer in a random order, this function can be
used to locate a specified parameter.

The function will search through localBuffer for the
parameter number specified by paramnumber.__lf the
parameter is found, paramType indicates the parameter
type of the located parameter, startOfParam indicates
the position of the first significant byte in the
parameter, and paramLength gives number of significant
bytes in the parameter. If no parameter with the
requested parameter number is found, -1 is returned as
error code in returnStatus.

Note that localBuffer must start on an even byte
boundary. If not, ~1 will be returned as error code in
returnStatus.

Continued on next page.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 99
XMSG/FORTRAN REFERENCE GUIDE

RULES . . . 1 The user buffer must have been coded according to the
XROUT message format.
Permitted for both non~privileged and privileged tasks.

EXAMPLE . . : The example locates parameter number 1 (which has been
coded as a string parameter containing only the two
characters H and I) in a user buffer containing:

Byte 0 = 123 Serial number
1 = 0 Status from XROUT (O=Ok)
2-3 - 32 Length of remainder of mess in bytes
4 = -l Param. no. l(negative means string)
5 = 2 Length of parameter 1 in bytes
6 = 72 First byte of parameter 1
7 = 73 Second byte of parameter 1
8—9 = 14 Length of parameter 2 in bytes
etc.

C Specify and locate parameter number
paramNumber = l
returnStatus = xmfbloc(localBuffer,paramNumber,

startOfParam,paramType,paramLength)
C Check returnStatus, and if 0k, startOfParam=6,
C paramType=STRING and paramlength=2.

Norsk Data ND-60.l64.3 EN

100 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Fanation name : XMFBRDY

Type: Buffer Formatting

No: Parameter Name/ I/O Explanation:
TYPE:

1 outBuffer R Local user buffer.
Integer*2

2 serviceNumber R XROUT service number.
Integer

3 serialNumber R Reference number.
Integer

FUNCTEON. I Puts the serial number and the service number into a
buffer which has been coded according to the XROUT
message format described in appendix B.

EXPLANATION I When all the necessary parameters have been appended to
outBuffer, this function can be used to insert the
serial number and the service number in the buffer.

serialNumber will be put into byte 0 and serviceNumber
will be put into byte 1 of the buffer.

Note that since this function overwrites the first two
bytes of the XROUT header descriptor with the serial
number and the service number, this should be the last
buffer preparation function called, before the user
buffer is written into a message and sent to XROUT. Note
that this function does ngt copy the local user buffer
into any message; this must be done using a function
such as XMFFWRI.

Note that outBuffer must start on an even byte boundary.
If not, —1 will be returned as error code in
returnStatus.

Continued on next page.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 101
XMSG/FORTRAN REFERENCE GUIDE

RULES. . . :The user buffer must have been initialized using
XMFBINI.
Permitted for both non-privileged and privileged tasks.

EXAMPLE . . I The example build a buffer for the 'Send Letter' (XSLET)
service request. It is similar to the behaviour of
function XMFBLET.

C

C

0
0

0

Initialize the user buffer
returnStatus = xmfbini(myBuffer,lengthBuffer,offSet)
Check returnStatus, and if 0k, append
the port name as parameter 1
returnStatus = xmfbast(myBuffer,offSet,

portName(l:-l),l)
Check returnStatus, and if 0k, append
the system name as parameter 2
returnStatus = xmfbast(myBuffer,offSet,

systemName(l:-l),2)
Check returnStatus, and if Ok, we will insert
the serial number and the service number XSLET
returnStatus = xmfbrdy(myBuffer,XSLET,serialNumber)
Check returnStatus, and if Ok, we can now write
the buffer into a message and send the request
to XROUT.

Norsk Data ND-60.l64.3 EN

102 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

tction name : XMFCLNM

Type: XROUT Service

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 portName I Name of the port.
Character

3 portNumber I Number of the port.
Integer

FUNCTION. 2 Closes a port and clears the port name.

EXPLANATION 2 This function can be used to close a named port that has
been opened and named using XMFOPNM or XMFOPCN. The port
specified by portNumber will be closed and the name
assigned to portNumber will be cleared (i.e., the name
will be removed from XROUT'S name table).

When portNumber is closed, all nonsecure messages
currently queued for that port are released, while all
secure messages (as well as the 'port current' message,
if any) are set nonsecure and returned to the sender.

The specified portNumber should be a port number
returned from a call to XMFOPNM or XMFOPCN, and the

specified portName should be the port name declared when
the port was opened and named.

OPTIONS . 2 Not implemented, flags should be zero.

RULES . . .

EXAWLE .

2 Permitted for both non—privileged and privileged tasks.

: This simple example will close a port and clear the name
of a previously opened port.

C Specify the port's name and number
portName = 'xx-server'
portNumber = 4
returnStatus = xmfclnm(0,portName(l:-l),portNumber)

Norsk Data ND‘60.164.3 EN

COSMOS PROGRAMMER GUIDE 103
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFCONF

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 XMSGpassword O XMSG password (the same as XMSG verSion
Integer code).

3 configMask 0 Configuration mask. See below.
Integer

4 XMSGrestartCnt O XMSG restart count.
Integer

FUNCTION. : Gets information about the running XMSG system.

EXPLANATION :

OPTIONS . .

RULES .

EXAMPLE . c

On return, XMSGpassword contains the password which is
needed in order to become a privileged XMSG task (see
function XMFFPRV). XMSGrestartCnt returns the number of
times XMSG has been (re)started since the last
warmstart.

The bits currently defined in configMask are:

hit : set if inter—system XMSG
" " generated with tracing

generated for ND—lOO
file server for file transfer is incl.
used

: set if running on page table 3
generated for ND—lOO/CX instruction set
generated with gateway software for
network servers

\I
m

U
l-
b

L
U

N
i-
‘O

H U) D O ('9
'

Note that this bit mask, which is based on XMSG version
J, will most certainly be extended in later XMSG
versions.

. Not implemented, flags should be zero.

' Permitted for both non~privileged and privileged tasks.

' returnStatus = xmfconf(O,XMSGpassword,configMask,
XMSGrestartCnt)

Norsk Data ND~60.I64.3 EN

104 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFABR

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 userBuffer I User buffer.
Integer*2

3 userDisp I Address of the user buffer in bytes. See
Integer note below.

4 readLength I Number of bytes to read.
Integer

5 memoryDisp I Address within bankNumber.
Integer

6 bankNumber I The seven least significant bits (0-6)
Integer specifies bank number.

FUNCTION. . : Is a absolute reading from the part of the physical
memory used by XMSG.

EXPLANATION 2 This call allows a task to read a block of data from the
physical memory into its user area specified by
userBuffer (and userDisp).

If bankNumber is zero, a value for bankNumber equal to
the bank in which the XMSG kernel code has been fixed is
assumed. The data is read from the specified bank,
starting from the address specified by memoryDisp, into
the user buffer.

Note that on an ND~100, the userDisp (displacement
within the user buffer) is always rounded down to the
previous even byte, if an odd displacement is specified.

OPTIONS . 2 Not implemented, flags should be zero.

RULES . . 1 Only permitted for privileged users.
Not permitted for drivers.
Not available for tasks running in an ND—SOO.

EXAMPLE . Z returnStatus = xmffabr(0,userBuffer,userDisp,readLength,
memoryDisp,bankNumber)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 105
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFALM

Type: XMSG Function

No: Parameter Name/ I/O Explanation:

Type:

1 flags I Options.
Integer

2 messageSize I Message size in bytes.
Integer

3 numberOsgs I Number of messages to allocate.
Integer

FUNCTION. : Allocates message buffers to a task.

EXPLANATION : Normal message buffers that have been reserved using the
XMFFGET call, lose their association with the task that
got them when they are sent to another task. This
implies that the task has no guarantee that it will be
able to get space later.

By allocating message buffers, a task can indicate to
XMSG its long-term buffer requirements. Allocated
messages are removed from the free space pool, and
marked as allocated to the original caller. They do
change owners when sent within a system, but when
released, or sent out of the local system, the message
buffer is put back on the original allocator task's
"Available Allocated Message List (AAML)".

All allocated messages for a given task must be of the
same size. When an XMFFGET is executed by that task for

. a buffer of that size, XMSG will first look at the
task's AAML and take a message buffer from it, if one is
available. Similarly, when a message of that size comes
into the system from another system, XMSG will first
look at the AAML for the receiving task and take a
message buffer from it, if one is available.

Note that if the function fails, due to lack of buffer
space, no messages are allocated.

Continued on next page.

Norsk Data ND-60.l64.3 EN

106 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

OPTIONS . . 2 XFEXC ~ Exclusive buffers. If set, the message buffers
are allocated and set aside for exclusive use by the
task, i.e., these message buffers will not be used by

XMSG when a message of messageSize is received from
another system. Buffers allocated with XFEXC do not have
to be of the same size as buffers allocated without this
option set. However, all exclusive buffers must be of
the same size. To reserve one of these exclusive
buffers, the task must call the XMFFGET function with
the XFEXC flag set.

RULES . . . : Permitted for both non~privileged and privileged tasks.

EXAMPLE . . : returnStatus = xmffalm(0,messageSize,numberOsgs)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 107
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFCLS

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 portNumber I Number of port to be closed.
Integer

FUNCTION. : Close(s) port(s).

EXPLANATION I Closes the specified local port. If portNumber is less
than zero, all ports owned by the calling task will be
closed. If portNumber is zero, the most recently opened
port (i.e., the default port) will be closed.

When a port is closed, all nonsecure messages currently
queued for that port are released, while all secure
messages (as well as the 'port current' message, if any)
are set nonsecure and returned to the sender. If the
port had a name, the name is cleared (i.e., the name is
removed from XROUT'S name table).

See also the disconnect call, XMFFDCT.

OPTIONS . 2 Not implemented, flags should be zero.

RULES .

EXAMPLE .

2 Permitted for both non—privileged and privileged tasks.

2 This will close all ports owned by this task:
portNumber = ~-l
returnStatus = xmffcls(0,p0rtNumber)

Norsk Data ND—60.164.3 EN

108 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFCPV

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags

2 msgIdentifier I The identifier of a received message.

3 accessInfo 0 Access information. See below.

4 additionallnfo 0 Additional information. See below.

I Options.
Integer

Integer

Integer

Integer

FUNCTION.

EXPLANATION

OPTIONS .

RULES .

EXAMPLE .

2 Checks system and user privileges.

2 This call allows a task, when a message has been
received, to check the privileges of the sender.

If the sending task is allowed to update the routing
tables (i.e., execute the privileged XROUT services
XSDRN and XSDSY) on this system, then accesslnfo = 1. If
the message is sent from a task within the local system,
then additionallnfo = 0. If the message is sent from a
task in another system, then additionallnfo = 1.

If the sending task is ngt allowed to update the routing
tables, then accessInfo = O and D contains the reason:

additionallnfo = 0 implies that the sending task,
as well as the source system are nonprivileged.

additionallnfo = 1 implies that the source system
is privileged, but the sending task is not.

additionalInfo = 2 implies that the sending task
is privileged, but the source system is not.

additionallnfo = 3 if the specified message is
returned (it could not be delivered).

An nonprivileged task is a task which has not (yet)
successfully executed the XMFFPRV call. A nonprivileged
system is a remote system which has not (yet) been
defined as a friend to your system, see the XROUT
service XSDAT.

I Not implemented, flags should be zero.

2 Permitted for both non—privileged and privileged tasks.

2 returnStatus = xmffcpv(0,msgIdentifier,accesslnfo,
additionallnfo)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 109
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFCRD

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 interruptLevel I The interrupt level that the driver
Integer should run on.

3 registerBlock I Register block (an 8-word buffer).
Integer*2

4 XTblockAddress 0 Address of the XT-block allocated to the
Integer driver.

FUNCTION.

EXPLANATION :

OPTIONS .

RULES .

EXAMPLE .

2 Defines a driver for XMSG.

This call is used to define an already existing driver,
with a context as defined in the register block. The
buffer must contain the register block that the driver
will be started with, in the order required for the Load
Register Block (LRB) hardware instruction. XMSG will
allocate a task block (XT-block) to the driver and
return its address in XTblockAddress.

I XFPON — Paging on. This must be set if the driver is
running with paging on.

2 Only permitted for privileged tasks.
Not permitted for drivers.
Not available for tasks running in an ND-SOO.

I flags = 2**XFPON
returnStatus = xmffcrd(flags,interruptLevel,

registerBlock,XTblockAddress)

Norsk Data ND-60.l64.3 EN

110 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFDBK

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 bankNo I Bank number.
Integer

FUNCTION. 2 Defines a bank number for drivers.

EXPLANATION 2 When calling functions which transfer data between a
user area and an XMSG buffer (e.g., XMFFREA, XMFFWRI or
XMFFSMC), drivers specify a physical address of the user
buffer (the inBuffer parameter). This is in bank 0,
unless they have previously defined a bank number using
the XMFFDBK call.

OPTIONS . I Not implemented, flags should be zero.

RULES . . I Permitted for both non-privileged and privileged tasks.
Not permitted for RT programs.
Not available for tasks running in ND-SOO.

EXAMPLE . 2 returnStatus = xmffdbk(0,bankNo)

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE lll
XMSG/FORTRAN REFERENCE GUIDE

Functhxlname : XMFFDCT

Type: XMSG Function

Type:
No: Parameter Name/ I/O Explanation:

1 flags I Options.
Integer

FUNCTION.

EXPLANATION :

OPTIONS .

RULES .

EXAMPLE .

2 Disconnects from XMSG.

Releases all XMSG resources. All ports opened by the
task are closed and all XMSG space belonging to the
current caller is released. Special action is taken in
the case of current messages, and messages waiting on
the input queue (see XMFFSND, XMFFRCV and XMFFCLS).

Note that the following automatic disconnects are
executed by SINTRAN:

User disconnect:
— On return to the background command processor
— On log out or RT program termination

System mode disconnect:
~ On log out or RT program termination

There is no return from a driver call to XMFFDCT (as the
driver context is released by the call).

2 Not implemented, flags should be zero.

: Permitted for both non-privileged and privileged tasks.

2 returnStatus = xmffdct(0)

Norsk Data ND—60.l64.3 EN

112 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFDMM

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags

2 requestedTaskSp I Requested task space in bytes.

I Options.
Integer

Integer

FUNCTION.

EXPLANATION

OPTIONS .

RULES .

EXAMPLE .

2 Defines the maximum limit of memory usage.

I When a new task is defined in XMSG, its maximum buffer
space is set to a predefined value (defined when the
XMSG system is generated). This can be changed for
privileged tasks by using this call. requestedTaskSp
will be set equal to the maximum number of bytes of
message space that can he owned by the task at one time.

2 Not implemented, flags should be zero.

2 Only permitted for privileged tasks.

2 returnStatus = xmffdmm(0,requestedTaskSp)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 113
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFDUB

Type: XMSG Function

Type:
No: Parameter Name/ I/O Explanation:

1 flags

2 bufferAddress I Address of physical memory buffer.
Integer*4

3 bufferLength I Number of bytes in the buffer.

I Options.
Integer

Integer

FUNCTION.

EXPLANATION :

OPTIONS .

RULES .

EXAMPLE .

: Defines a user buffer.

This is a privileged call that allows a task to
associate a physical memory buffer with a message
descriptor previously obtained by XMFFGET with
sizeBuffer = 0. All XMSG calls then operate on that
message, as the buffer space was part of the general
XMSG buffer pool, except that XMFFREL only releases the
message descriptor and not the buffer area.

This allows special systems or drivers to fully control
their memory allocation procedures.

This call acts on the 'task current' message.

Buffers that have been defined in this way cannot be
sent to other systems.

2 Not implemented, flags should be zero.

I Only permitted for privileged tasks.
Not available for tasks running in an ND—SOO.

2 returnStatus = xmffdub(0,bufferAddress,bufferLength)

Norsk Data ND~60.164.3 EN

114 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFDUM

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

FUNCTION. : Dummy call.

EXPLANATION Z This call may be useful if the programmer wants to check
that XMSG is up and running. It is also useful for
benchmarking.

OPTIONS . : Not implemented, flags should be zero.

RULES . Z Permitted for all users.

EXAMPLE . 2 returnStatus = xmffdum(0)

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 115
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFT]:RM

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags 1 Options.
Integer

2 noOsgToFree I Number of allocated message buffers to
Integer free.

3 noOsgFreed 0 Number of message buffers freed.
Integer

FUNCTION. 1 Frees allocated message buffers.

EXPLANATION Z This call frees message buffers which have been
allocated by XMFFALM.

OPTIONS . Z XFEXC — Exclusive buffers. If set, only those message
buffers which have been allocated with the XFEXC option
set will be freed. If not set, only those message
buffers which have been allocated without the XFEXC
option will be freed.

RULES . : Permitted for all users.

EXNPLE . : flags = 2**XFEXC
returnStatus = xmfffrm(flags,noOsgToFree,

noOsgFreed)

Norsk Data ND—60.164.3 EN

116 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFGET

Type: XMSG Function

Type:
No: Parameter Name/ I/O Explanation:

1 flags

2 sizeBuffer I Number of bytes requested.

3 msgIdent 0 Message identifier.

I Options.
Integer

Integer

Integer

FUNCTION.

EXPLANATION :

OPTIONS .

RULES .

BOWLE .

1 Reserves a message buffer from XMSG's buffer pool.

msgIdent is returned to the caller for possible use in
subsequent functions. Each buffer size has a maximum,
system dependent size defined when the XMSG system is
generated. The total XMSG buffer space owned by a task
cannot exceed another limit, which is initially set to a
value defined at XMSG generation time. It may be
changed, however, by privileged tasks using the Define
Maximum Memory (XMFFDMM) function.

Only the current owner of a message is allowed to read
or write in it, give it to someone else, or release it.

Specifying a buffer size of 0 bytes implies that only a
message descriptor will be reserved. Privileged tasks
can then associate a physical memory area with that
message descriptor using the XMFFDUB function. It is not
allowed to send a buffer of size 0 to another system.

2 XFWTF ~ Wait flag. If no message buffer of the requested
size is available, the task will be suspended. Execution
resumes when a buffer becomes available.

XFEXC - Exclusive buffer. If set, it implies that the
caller wants to reserve exclusively a message buffer
allocated using the XMFFALM function. If no such
allocated message buffer is available, an error status
is returned.

2 Permitted for both non—privileged and privileged tasks.

I sizeBuffer = 20
returnStatus = xmffget(0,5izeBuffer,msgldent)

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 117
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFGST

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 startScanPort I Last port to be scanned.
Integer

3 portNumber 0 Port number where the message is
Integer waiting.

FUNCTION. 2 A task may have many open ports. It does not always know
on which one the next message is arriving. XMFFGST
allows the programmer to check all ports belonging to
the task, i.e., it allows the task to find out whether
any messages have been received on any port.

EXPLANATION Z The call parameter startScanPort specifies the last port
to be searched. If startScanPort is zero, this implies
the most recently opened port (i.e., the default port).
Note that the search will begin with the next port (if
any) after that specified, and then follow_-the task's
port list (see example below).

On return, the parameter portNumber contains the port
number where the message, if any, is waiting. If no
message is waiting and the XFWTF flag is not used, the
base value of the error codes (XMXENTM) is returned as a
status.

For example, if the task has opened four ports and have
got the port numbers 15 (from the lst XMFFOPN), 4 (from
the 2nd XMFFOPN), 6 (from the 3rd XMFFOPN) and 19 (from
the 4th XMFFOPN), then the port list comprises the ports
19-6-4-15 (in that order!). Port number 19 (the first
port in the list) is the task's default port (i.e., if
startScanPort is zero, this port is assumed). If the
task has just handled a message received on port 6, it
can, when it wants to have a 'round—robin' scheduling of
requests, call XMFFGST with startScanPort=6. Port“6 will
then be the last port to be looked at by XMSG. XMSG will
start looking at port 4 to see if a message is waiting.
If no message is waiting on port 4, XMSG will look at
port 15. If no message is waiting on port 15, XMSG will
look at port 19, and, if no message is waiting on port
19, XMSG will finally look at port 6.

Note that calling this function, when a message is
waiting on one of the ports, will lead to the clearing
of both the 'general wake up' bit for the task and the
'wake up' bit on the returned portNumber. If no message

Norsk Data ND-60.164.3 EN

118

OPTIONS .

RULES .

EXAMPLE .

COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE'

is waiting on any of the ports, XMSG will clear both the
'general wake up' bit for the task and the 'wake up' bit
on all ports opened by the task beggrg checking the
requested option(s). (The 'general wake up' bit may have
been set as a result from a previously executed XMFFGST
call, and the Iwake up' bit on the individual ports may
have been set as a result from previously executed
XMFFPST, XMFFRCV, XMFFRFH or XMFFRRE calls.)

2 XFWTF - Wait flag. If set, the task is suspended if no
messages are waiting. Execution resumes when a message
arrives on one of the ports.

XFWAK - General wake up. Unless a message is already
waiting on one of the ports, a 'general wake up‘ bit
will be set for this task. When 'general wake up‘ is
set, the next transmission to any of the ports opened by
the task will lead to a wake up of the receiver task,
and clearing of the 'general wake up' bit for that task.

However, be aware that if the task is in XMSG wait
position (for example, if sending a secure message with
wait), when the task should have been woken up as a
result of a message being sent to one of its ports, the
'general wake up' bit will be cleared, but the task will
not (and cannot) be woken up.

XFHIP — High priority message. Allows a task to check
the arrival of high priority messages. If a high
priority message is waiting on one of the ports and
XFHIP is set, the port number where the high priority
message is waiting is returned in portNumber. If no high
priority message is waiting on any of the ports and
XFHIP is set, and XFWTF is not set, the base value of
the error codes (XMXENTM) is returned as returnStatus.
When the next message of any type is sent to a port
opened by the task, the task will be woken up (i.e., if
no high priority message is waiting, XFHIP has the same
effect as XFWAK).

I Permitted for both non—privileged and privileged tasks.

: flags = 2**XFWTF
startScanPort = 4
returnStatus = xmffgst(flags,startScanPort,portNumber)

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 119
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFLMP

No: Parameter Name/ I/O ExpLanation:
Type:

1 flags I Options.
Integer

2 msgIdentifier I Message identifier or O.
Integer

3 portNo I For: number or O.
Integer

4 msgIdentFound 0 Message ID for the first message found
Integer equal to or greater than requested.

5 msgSize 0 Message size in bytes.
Integer

6 portNoFound 0 Port no. of the first port equal to or
Integer greater than requested.

FUNCTION. 2 Lists messages and ports.

EXPLANATION 2 This call allows a task to obtain information about its
own open ports and its own messages.

msgSize contains the number of bytes obtained when the
message was reserved using the Get Message Buffer
(XMFFGET) call, or allocated using the Allocate Message
Buffers (XMFFALM) call.

If there is no message found equal to or greater than
that requested, then msgIdentFound is 0.

If there is no port found equal to or greater than that
requested, then portNoFound is 0.

OPTIONS . 1 Not implemented, flags should be zero.

RULES . Z Permitted for both non-privileged and privileged tasks.

EXAM’LE . I returnStatus = xmfflmp(0,msgIdentifier,portNo,
msgIdentFound,msgSize,portNoFound)

Norsk Data ND~60.164.3 EN

120 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Functhxiname : XMFFMZP

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 magicNumber I Magic number.
Integer*4

3 portNumber 0 Port number.
Integer

4 systemNumber“ 0 System number.
Integer

5 RTinOrOtherInfo 0 RT index or other information. See
Integer below.

6 additionallnfo 0 Additional information. See below.
Integer

FUNCTION.

EXPLANATION

OPTIONS .

RULES .

EXAMPLE .

I Converts magic number to a port and a system number.

I This call allows you to convert the magic number to a
port number and a system number.

RTinOrOtherInfo may contain additional information about
the port owner task. If the magic number was that of a
system or that of a remote port, then RTinOrOtherInfo =
—1. If the magic number was that of a local port and the
port owner task is a driver, then RTinOrOtherlnfo = -2.
If the magic number was that of a local port and the
port owner task is an RT—program, then RTinOrOtherInfo =
RT—index of the RT—program.

additionallnfo may contain additional information about
the specified magic number. If the magic number was that
of a system, then additionallnfo = 3. If the magic
number was that of a local port and the port owner task
is privileged, then additionallnfo = 2. If the magic
number was that of a remote port, or that of a local
port and the port owner task is nonprivileged, then
additionallnfo = l.

2 Not implemented, flags should be zero.

: Permitted for both non~privileged and privileged tasks.

2 returnStatus = xmffm2p(O,magicNumber,portNumber,
systemNumber,RTinOrOtherInfo,additionallnfo)

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 121
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFMST

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgIdentifier I Message identifier.
Integer

3 mnype 0 Type of message, see explanation below.
Integer

4 remoteMagicNum 0 Magic number of port that sent the
Integer*4 message.

5 msgLength 0 Message length in bytes.
Integer

FUNCTION. . I Obtains message status.

EXPLANATION 2 This call allows a task to extract the sender's magic
number, and get the length and type of a received
message .

Message type:
XMTNO - Normal message

XMROU ~ Message last sent by XROUT (routing program)

XMTHI — High priority message (sent with XFHIP
option)

XMTRE - Returned message (sent secure, but could not
be delivered)

OPTIONS . . I Not implemented, flags should be zero.

RULES .

EXAMPLE .

Z Permitted for both non—privileged and privileged tasks.

: returnStatus = xmffmst(O,msgIdentifier,mnype,
remoteMagicNum,msgLength)

Norsk Data ND—60.l64.3 EN

122 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFOPN

No: Parameter Name/ I/O Explanat;on:
Type:

1 flags I Options.
Integer

2 portnumber 0 Port number.
Integer

FUNCTION. . Z Opens a port.

EXPLANATION I A port is opened and the port number (i.e., the port
identifier) is returned in portNumber.

The opened port becomes the task's default port. When
this port is later closed, the previously opened port,
if any, becomes the task's default port.

OPTIONS . . I Not implemented, flags should be zero.

RULES . . . 2 Permitted for both non—privileged and privileged tasks.

EXAMPLE . . 2 returnStatus = xmffopn(0,portnumber)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 123

XMSG/FORTRAN REFERENCE GUIDE

Functhxxname : XMFFP2M

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 portNumber I Port number.
Integer

3 magicNumber 0 Magic number.
Integer*4

FUNCTION. 1 Converts port number to magic number.

EXPLANATION Z This function allows a task to convert a local port
number to a magic number. Any task may obtain the magic
number of its own ports. Privileged tasks can obtain the
magic number of a port owned by another local task.

Note that this function will only return the magic
number of ports owned by tasks in the local system.

OPTIONS . 1 Not implemented, flags should be zero.

RULES .

EXAMPLE .

: Permitted for both non—privileged and privileged tasks.

2 returnStatus = xmffp2m(O,portNumber,magicNumber)

Norsk Data NDm60.l64.3 EN

124 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Functflxxname : XMFFPRV

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 ”xmsgPassword I XMSG password.
Integer

FUNCTION. Makes the calling task privileged.

EXPLANATION I Some of the functions can only be executed by privileged
XMSG tasks. In order to become privileged (for XMSG), a
task must successfully execute the XMFFPRV call. When
you want the task no longer to be privileged, the same
call should be used, but with xmsgPassword equal to
zero. The reason for specifying the XMSG password is to
ensure that privileged programs, that base themselves on
accessing XMSG table structures, have been updated to
the current XMSG table definitions.

OPTIONS . 1 Not implemented, flags should be zero.

RULES .

EXAMPLE .

: The caller must be either a driver, a direct task, a
foreground program, or a background program logged in as
user system. Besides this, the program must also specify
the current XMSG password, which can be obtained using
the XMFFCONF function.

2 returnStatus = xmffprv(C,xmsgPassword)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 125
XMSG/FORTRAN REFERENCE GUIDE

Function n

Type: XMSG Function

ame : XMFFPST

No: Parameter Name/ I/O Explanation:

6 queueLe

Type:

1 flags I Options.
Integer

2 localPort I Port number to be checked.
Integer

3 mnype 0 Message type, see explanation below.
Integer

4 remotePort O Hasned magic number of remote port.
Integer

5 msgIdentifier 0 Message identifier.
Integer

ngth 0 Number of messages queued for localPort.
Integer

FUNCTION.

EXPLANATION :

2 Checks a port to see if any message is waiting.

If localPort is zero, the most recently opened port
(i.e., the default port) is assumed.

On return from the function, mnype indicates the
message type of the first message queued to localPort.
If no message is waiting, mnype is zero. If a message
is waiting, the remotePort, msgIdentifier and
queueLength parameters will contain the bashed magic
number of the sending port, the message address and the
number of messages chained to the localPort.

If no message is waiting on localPort and the XFWTF flag
is not set, the base value of the error codes (XMXENTM)
is returned as returnStatus.

Note that calling this function when a message is
waiting on localPort will lead to the clearing of both
the 'general wake up’ bit for the task and the 'wake up'
bit on localPort. If no message is waiting on localPort,
XMSG will clear both the 'general wake up' bit for the
task and the lwake up' bit on localPort before checking
the requested option(s). (The 'general wake up' bit may
have been set as a result from a previously executed
XMFFGST call, and the 'wake up' bit on localPort may
have been set as a result from a previously executed
XMFFPST, XMFFRCV, XMFFRRH or XMFFRRE call.)

Continued on next page.

Norsk Data ND-60.l64.3 EN

126

OPTIONS .

RULES .

EXAMPLE .

COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Message type:
XMTNO — Normal message

XMROU — Message last sent by XROUT (routing program)

XMTHI - High priority message (sent with XFHIP
option)

XMTRE — Returned message (sent secure but, could not
be delivered)

2 XFWTF — Wait flag. If no message is waiting on
localPort, the task is suspended. Execution resumes when
a message arrives on localPort.

XFWAK - Wake up. Unless a message is already waiting on
localPort, a 'wake up' bit will be set on localPort.
When 'wake up' is set on localPort, the next
transmission to this port will lead to a wake up of the
receiver task, and clearing of the 'wake up' bit on
localPort. This option can be enabled on more than one
port at a time.

However, be aware that if the task is in XMSG wait
position (for example, sending a secure message with
wait), when the task should have been woken up as a
result of a message being sent to localPort, the 'wake
up' bit will be cleared but the task will not (and
cannot) be woken up.

XFHIP - High priority message. Allows a task to check
the arrival of high priority messages. If a high
priority message is waiting and XFHIP is set, the
message type XMTHI is returned in mnype. If no high
priority message is waiting, and XFHIP is set and XFWTF
is not set, a zero (0) is returned in mnype. When the
next message of any type is sent to localPort, the
receiving task will be woken up (i.e., if no high
priority message is waiting, XFHIP has the same effect
as XFWAK).

I Permitted for both non—privileged and privileged tasks.

2 returnStatus = xmffpst(flags,localPort,mnype,
remotePort,msgIdentifier,queueLength)

Norsk Data ND—6D.l64.3 EN

COSMOS PROGRAMMER GUIDE 127
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFRCV

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 localPort I Number of receiving port.
Integer

3 mnype 0 Message type, see explanation below.
Integer

4 remotePort O Hashed magic number of remote port.
Integer

5 msgIdent 0 Message identifier.
Integer

6 msgLengthOrStat 0 Message length in bytes. If mnype is
XMTRE, msgLengthorStat contains the

Integer error status.

FUNCTION.

B<PLANATION :

: Receives a message when it is queued for a port.

If a message is waiting on localPort, it will be
received (unchained from the message queue) and its
address returned in msgldentifier. mnype indicates the
message type of the received message, msgLengthorStat
gives the message length and remotePort contains the
bashed magic number of the sending port. If the message
type is XMTRE (returned message), then msgLengthorStat
contains the reason for return.

If localPort is zero, the most recently opened port
(i.e., the default port) is assumed.

A successful receiving causes the received message to
become the 'task current' message. In addition, if it is
a secure message (i.e., a message sent with option XFSEC
set), it becomes the 'port current' message for
localPort. If the task aborts or localPort is closed
while the message is 'port current', the message will be
returned to the sender with return status.

The current task message is cleared by releasing/sending
it to someone else, or receiving another message. The
current port message is cleared by releasing/sending it
to someone else or receiving another secure message. A
task may also change the value of the current message
using the XMFFSCM function.

If no message is waiting on localPort and the XFWTF flag
is not used, the base value of the error codes (XMXENTM)
is returned as returnStatus.

Norsk Data ND—60.164.3 EN

128

OPTIONS .

RULES .

EXAMPLE .

COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Note that calling this function when a message is
waiting on localPort will lead to the clearing of both
the 'general wake up' bit for the task and the 'wake up’
bit on localPort. If no message is waiting on localPort,
XMSG will clear both the 'general wake up' bit for the
task and the 'wake up' bit on localPort before checking
the requested option(s). (The 'general wake up' bit may
have been set as a result from a previously executed
XMFFGST function, and the 'wake up' bit on localPort may
have been set as a result from a previously executed
XMFFPST, XMFFRCV, XMFFRRH or XMFFRRE function.)

Message type:
XMTNO ~ Normal message

XMROU — Message last sent by XROUT (routing program)

XMTHI - High priority (sent with XFHIP option)

XMTRE — Returned message (sent secure but could not
be delivered)

2 XFWTF ~ Wait flag. If no message is waiting on
localPort, the task is suspended. Execution resumes when
a message arrives on localPort.

XFWAK - Wake up. Unless a message is already waiting on
localPort, a 'wake up' bit will be set on localPort.
When 'wake up' is set on localPort, the next
transmission to this port will lead to a wake up of the
receiver task, and clearing of the 'wake up' bit on
localPort.

When the wake up is done, the message is not received,
and so the receiving must be repeated. This option can
be enabled on more than one port at a time.

However, be aware that if the task is in XMSG wait

position (for example, sending a secure message with
wait), when the task should have been woken up as a
result of a message being sent to localPort, the 'wake
up' bit will be cleared, but the task will not (and
cannot) be woken up.

: Permitted for both non—privileged and privileged tasks.

2 flags = 2**XFWTF
returnStatus = xmffrcv(f1ags,localPort,mnype,

remotePort,msgIdent,msgLengthOrStat)

Norsk Data ND-6D.l64.3 EN

COSMOS PROGRAMMER GUIDE 129
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFREA

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgDisp I Displacementwithin messagein bytes.
Integer

3 inbuffer I User buffer.
Integer*2

4 userDisp I Displacement within inBuffer in bytes.
Integer See note below.

5 userLength I Number of bytes you want to read.
Integer

6 readLength 0 Number of bytes actually read.
Integer

FUNCTION. : Reads user data from a message buffer.

EXPLANATION 2 The data is read from the 'task current' message,
starting with displacement msgDisp (rounded up to the
next even byte), into the user buffer specified by
inBuffer (and userDisp). readLength is returned to
indicate the actual number of bytes read. If msgDisp is
*1, the reading of the message is resumed from the
current message displacement.

On return, if the last byte in the message is read, the
current message displacement is set to O, and the
'whole-message—read' flag is set, so that the next
'write message' function (e.g.,XMFFWRI or XMFFWHD) will
reset the current message length to zero. Otherwise,
except when readLength is zero, the current message
displacement is set to msgDisp+readLength, where msgDisp
is the specified displacement (rounded up if necessary)
and readLength is the actual number of bytes
transferred. If readLength is zero, the current message
displacement is not updated.

OPTIONS . I Not implemented, flags should be zero.

RULES .

EXAWLE .

Z Permitted for both non—privileged and privileged tasks.

2 returnStatus = xmffrea(0,msgDisp,inbuffer,userDisp,
userLength,readLength)

Norsk Data ND~60.164.3 EN

130 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Functhminame : XMFFREL

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgldentifier I Message identifier.
Integer

FUNCTION. 2 Releases message buffer.

EXPLANATION I This call is used to release a message buffer reserved
by the task. A message buffer is reserved by the task
when the task issues the XMFFGET call, and when a
message is sent to it from another task. In the latter
case the message must be received before it can be
released.

At any particular time, the total message buffer space
owned by a task cannot exceed a limit defined when the
XMSG system is generated. Therefore,as a general rule
for a task, its message buffer should be released as
soon as the task is through with it.

A msgldentifier parameter of -1, will release the 'task
current’ message.

If the specified message is an allocated message (i.e.,
a message allocated using the XMFFALM call), the message
will be put back on the original task's 'Available
Allocated Message List' (AAML), see the function
XMFFALM.

OPTIONS . I Not implemented, flags should be zero.

RULES .

EXAMPLE .

I Permitted for both non-privileged and privileged tasks.

1 returnStatus = xmffrel(0,msgldentifier)

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 131
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFRHD

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgIdentifier I Message identifier.
Integer

3 bytesOTol O Bytes 0 and l of message header.
Integer*2

4 bytesZToB O Bytes 2 and 3 of message header.
Integer*2

5 bytes4T05 O Bytes 4 and 5 of message header.
Integer*2

FUNCTION. 2 Reads only the header of a message buffer.

EXPLANATION Z The first 6 bytes of a message buffer are read and
returned in bytesOTol, bytes2To3 and bytes4ToS, and then
the current message displacement is set to 6.

If msgIdentifier is not —1, the specified message
becomes the 'task current' message.

If the message size is less than 6 bytes, an error
return occurs.

OPTIONS . I Not implemented, flags should be zero.

RULES .

EXAMPLE .

2 Permitted for both non—privileged and privileged tasks.

2 returnStatus = xmffrhd(0,msgldentifier,bytesOTol,
bytesZTo3,bytes4T05)

Norsk Data ND—60.164.3 EN

132 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFRRE

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 localPort I Number of the receiving port.
Integer

3 inBuffer I User buffer.
Integer*2

4 userDisp I Displacement within inBuffer in bytes.
Integer See note below.

5 userLength I Number of bytes you want to read.
Integer

6 mnype 0 Message type, see explanation below.
Integer

7 remotePort 0 Hashed magic number of the remote port.
Integer

8 msgIdent 0 Message identifier.
Integer

9 msgLengthOrStat 0 Message length in bytes. If mnype is
XMTRE, msgLengthOrStat contains the

Integer error status.

FUNCTION. . : Receives
the message buffer.

EXPLANATION : If a me
received
userLeng
byte i

a message queued on/for a port and reads from

ssage is waiting on localPort, it will be
(unchained from the message queue) and then

th number of bytes will be read from the first
n the message buffer into the user buffer

specified by inBuffer (and userDisp). If the last byte
in the message is read, the current message displacement
is set to O, and the 'whole-message-read' flag is set.
Thus the next 'write message' call will reset the
current message length to zero. Otherwise, if the last
byte is not read, the current message displacement is
set to the actual number of bytes read.

If localPort is zero, the most recently opened port
(i.e.,
greater
number 0

Note th

the default port) is assumed. If userLength is
than the message length, only message length
f bytes will be read into the user buffer.

at on an ND-LOO, the userDisp (displacement
within the user buffer) is always rounded down to the
previous even byte.

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 133
XMSG/FORTRAN REFERENCE GUIDE

OPTIONS .

RULES .

EXAMPLE .

Note that when the message is received, both the 'task
current' message and the 'port current' message will be
set as described under function XMFFRCV. Note also that
the handling of flags (options) in this function is
identical to the handling described under XMFFRCV. Also
the return parameters from the function are identical to
the return parameters from the XMFFRCV call.

If no message is waiting on localPort and the XFWTF flag
is not set, the base value of the error codes (XMXENTM)
is returned as returnStatus.

You should note that this function act as if both
XMFFRCV and XMFFREA had been called. Calling this
function, instead of the other two functions, eliminates
the overhead associated with each function and XMSG
call.

Message type: As for XMFFRCV.

! As for XMFFRCV.

2 Permitted for both non—privileged and privileged tasks.

1 flags = 2**XFWTF
returnStatus = xmffrre(flags,localPort,userBuffer,

userDisp,userLength,mnype,remotePort,msgIdent,
msgLengthOrStatus) =: returnStatus

Norsk Data ND-60.l64.3 EN

134 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFRRH

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 localPort I Number of the receiving port.
Integer

3 mnype 0 Message type, see explanation below.

Integer
4 remotePort O Hashed magic number of the remote port.

Integer
5 msgIdentifier 0 Message identifier.

Integer
6 bytesOTolorStat 0 Normally first 2 bytes of message. If

mnype is XMTRE, bytesOTolorStat
Integer*2 contains the error status.

FUNCTION.

EXPLANATION :

I Receives and reads the header.

If a message is waiting on localPort, it will be

received (unchained from the message queue). Then the

first two bytes of the message buffer are read and

returned in the bytesOTolorStat parameter. If the length

or size of the received message is less than two bytes,

two random bytes will be returned in bytesOTolorStat.

If localPort is zero, the most recently opened port

(i.e., the default port) is assumed.

Note that when the message is received, both the 'task

current' message and the 'port current' message will be
set as described under function XMFFRCV. Note also that

the handling of flags (options) in this function is
identical to the handling described under XMFFRCV. The

return parameters from the function are identical to the

return parameters from the XMFFRCV call, except that the

first two bytes of user data is returned instead of the

message length.

If no message is waiting on localPort and the XFWTF flag

is not set, the base value of the error codes (XMXENTM)

is returned as returnStatus.

Message type: As for XMFFRCV.

Continued on next page.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 135
XMSG/FORTRAN REFERENCE GUIDE

(PHONS . . : As for XMFFRCV.

RULES . . . 2 Permitted for both non~privileged and privileged tasks.

EXAWLE . . : flags = 2**XFWTF
returnStatus = xmffrrh(flags,localPort,mnype,

remotePort,msgIdentifier,bytesOTolorStatus)

Norsk Data ND-60.l64.3 EN

136 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFRTN

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgIdentifier I Message identifier.
Integer

3 localPort I Number of the sending port.
Integer

4 dataO I First 2 bytes of the message header.
Integer*2

FUNCTION. 1 Returnes a message to the port from which it came.

EXPLANATION 2 The user often needs to write a return status into a
message and send it back to the port from which it came
(e.g., replying to a transaction). This call leads to
msgIdentifier being set as the ”task current' message
and the 'port current' message for localPort, dataO
being written into the first two bytes of the message
buffer. Then the message is being returned to the port
from which it was last sent.

The localPort parameter specifies the port from which
the message will be sent. If localPort is zero, the most
recently opened port (i.e., the default port) is
assumed.

OPTIONS . . 2 XFWTF - Wait flag. This is only significant when sending
a secure (XFSEC) message to a task in another system.

If set, it implies that the caller will only be

restarted (with proper status) when the message has been
put into the receiver's input queue (i.e., the sending
task is suspended until the message has been sent to the
remote port).

If not set, secure messages that cannot be delivered
will be returned to the sending port.

XFSEC - Secure message. The message will be returned to
the sending port if it cannot be delivered, or if the
receiving port is closed (e.g., if the receiving task
terminates) while the message is 'port current'. Non—
secure messages are discarded and released by XMSG if
they cannot be delivered.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 137
XMSG/FORTRAN REFERENCE GUIDE

RULES .

EXAMPLE .

XFHIP — High priority message. The message will be
chained to the head of the receiver's queue instead of
the tail, following any other high priority messages
already queued.

XFFWD - Forwarding message. The sender information in
the message will not be updated. To the receiver, it
will appear that the message was sent directly from the
previous sending port.

XFBNC — Bounce message. When the receiver issues
'Receive Message' (i.e., the functions XMFFRCV, XMFFRRH
or XMFFRRE), which would have led to this message being
received, it will instead be returned to the sender.

Z Permitted for both non-privileged and privileged tasks.

2 returnStatus = xmffrtn(0,msgldentifier,localPort,dataO)

Norsk Data ND—60.l64.3 EN

138 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

FuncthMIname : XMFFSCM

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
TYPE

1 flags I Options.
Integer

2 portNo I Port number.
Integer

3 msgIdentifier I Message identifier.
Integer

FUNCTION. 2 Sets the current message.

EXPLANATION : Since many functions implicitly operate on the current
message, it is useful to be able to set the latter. This
call sets the specified message as the 'task current“
message. If portNo is >=O, the message is also set as
'port current' for the specified port. If portNo is
zero, the most recently opened port (i.e., the default
port) is assumed.

OPTIONS . : Not implemented, flags should be zero.

RULES .

EXAH’LE .

: Permitted for both non~privileged and privileged tasks.

2 returnStatus = xmffscm(0,portNo,msgIdentifier)

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 139
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFSIN

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 XMSGbase O XMSG base field address.
Integer

FUNCTION. 2 Gets XMSG's base field address.

EXPLANATION Z This call returns the base field address of the message
system in the memory bank, where the XMSG kernel code
has been fixed. This address is needed in order to be
able to access XMSG tables.

OPTIONS . I Not implemented, flags should be zero.

RULES . 2 Only permitted for privileged users.
Not permitted for drivers.
Not available for tasks running in an ND—SOO.

EXAMPLE . I returnStatus = xmffsin(O,XMSGbase)

Norsk Data ND~60.164.3 EN

140 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFSMC

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 noOfCalls I Number of XMSG functions to be executed.
Integer

3 userBuffer I Buffer containing the parameters.

Integer*2
4 userDisp I Displacement within the userBuffer, in

Integer bytes, see note below.
5 Treg O The content of the T—register.

Integer
6 Areg 0 The content of the A—register.

Integer
7 Dreg O The content of the D-register.

Integer
8 Xreg O The content of the X~register.

Integer

FUNCTION. 2 Starts multi call.

EXPLANATION I This call allows a task to execute a set of XMSG
functions issuing only one function call. This

eliminates the overhead associated with each function
call (and XMSG monitor call).

noOfCalls is the number of XMSG functions to be executed
and userBuffer is the buffer containing the parameters
for the functions. Each set of parameters comprise 4
words (T, A, D and X registers), so the buffer length
should be 8*noOfCalls bytes long. noOfCalls has a
maximum, system dependent size defined when the XMSG
system is generated. If noOfCalls is O (or ~l), then the
previously executed multi call request will be re—
executed.

Note that on an ND—lOO, the userDisp (displacement
within the user buffer) is always rounded down to the
previous even byte.

The meaning of the T, A, D and X registers depend on the
particular XMSG function. A documentation of the XMSG
functions is provided in appendix A.

XMFFSMC returns as soon as an XMSG function terminates
with status less than or equal to zero (or when all the
functions have been executed). The return parameters
(Treg, Areg, Dreg and Xreg) are set according to the
return registers from the last XMSG function executed.

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 141
XMSG/FORTRAN REFERENCE GUIDE

OPTIONS .

RULES .

EXAMPLE .

Completion status is also returned in the returnStatus,
XMOK, if the multi call has been successfully
executed,in XMXENTM, if one of the XMSG functions in the
multi call was not terminated, otherwise returnStatus
contains an error code.

You should be aware of the fact that if an XMSG
disconnect function is specified (and executed) as one
of the functions in the multi call, the succeeding
functions in the multi call will not be executed, as the
task context (KT—block) is released by the disconnect
(XFDCT) function.

2 Not implemented, flags should be zero.

: Permitted for both non—privileged and privileged tasks.
Not available for tasks running in an ND—SOO.

2 returnStatus = xmffsmc(0,n00fcalls,userBuffer,
userDisp,Treg,Areg,Dreg,Xreg)

Norsk Data ND—60.l64.3 EN

142 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFSND

Type: XMSG Function

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 localPort I Number of the sending port.
Integer

3 remoteMagicNum I Magic number of the receiving port.
Integer*4

FUNCTION. 2 Sends the current message to another task.

EXPLANATION I When a task wants to send a message to another task, it
must know the magic number of a port of the other task.
A description of how to obtain the magic number is given
in the sample programs and under the XMFBLET call. A
remoteMagicNum parameter of —1 will direct the message
back to the port from which it was last sent.

The localPort parameter specifies the port from which
the message will be sent. If localPort is zero, the most

recently opened port (i.e., the default port) is
assumed.

Note that there is no parameter specifying the message
that is to be sent, for the reason that the current
(default) message buffer is assumed, namely the 'port
current' message if one exists, or, if none, the 'task

current' message.

OPTIONS . I XFWTF - Wait flag. This is only significant when sending
a secure (XFSEC) message to a task in another system.

If set, it implies that the caller will only be

restarted (with proper status) when the message has been
put into the receiver's input queue (i.e., the sending
task is suspended until the message has been sent to the
remote port).

If not set, secure messages that cannot be delivered

will be returned to the sending port.

XFSEC — Secure message. The message will be returned to
the sending port if it cannot be delivered, or if the
receiving port is closed (e.g., if the receiving task
terminates) while the message is 'port current'. Non-
secure messages are discarded and released by XMSG if
they cannot be delivered.

Norsk Data ND-6D.l64.3 EN

COSMOS PROGRAMMER GUIDE 143
XMSG/FORTRAN REFERENCE GUIDE

RULES .

EXAMPLE..

XFFWD — Forwarding message. The sender information in
the message will not be updated. To the receiver, it
will appear that the message was sent directly from the
previous sending port.

XFROU - Route message. Ignore the remoteMagicNum
parameter and send the message to the local routing task
(XROUT). The message contents should be parameters to
XROUT. (See appendix B on XROUT services.)

XFRRO - Remote route message. If the XFROU flag is also
set, then send the message to a remote routing task
(XROUT). The 16 most significant bits of remoteMagicNum
is assumed to contain the system number to which the
message will be sent. The message contents should be
parameters to XROUT.

Note that if the XFROU flag is 993 set and XFRRO is set,
the message will be sent as if XFHIP had been set (i.e.,
when XFROU is not set, setting the XFRRO flag will act
as if the XFHIP flag had been set instead).

XFHIP ~ High priority message. If the XFROU flag is not
set, the message will be chained to the head of the
receiver's queue, instead of the tail, following any
other high priority messages already queued.

Note that if both the XFROU flag and XFHIP are set, the
message will be sent as if XFROU and XFRRO had been set.

XFBNC - Bounce message. When the receiver issues
'Receive Message' (i.e., the functions XMFFRCV, XMFFRRH
or XMFFRRE), which would have led to this message being
received, it will instead be returned to the sender.

Z Permitted for both noneprivileged and privileged tasks.

2 flags = 2**XFSEC + 2**XFHIP
returnStatus = xmffsnd(flags,localPort,remoteMagicNum)

Norsk Data ND—60.l64.3 EN

144 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFFSTD

Type: XMSG Function

Type:
No: Parameter Name/ I/O Explanation:

1 flags

2 XTblockAddress I The address of the XT—block belonging to

I Options.
Integer

Integer the driver.

FUNCTION.

EXPLANATION :

OPTIONS .

RULES . .

EXAMPLE .

: Starts driver.

This call starts the execution of a driver which has
already been defined by the XMFFCRD call.

XTblockAddress must contain the driver's task block
address as returned from the XMFFCRD call. XMFFSTD
overwrites the driver's L register with the
XTblocAddress before starting the driver.

In this way a started driver will have the L register
containing its XT—block address. The driver must make
sure that the L register still contains the XT-block
address before calling XMSG.

XMFFSTD does not set the appropriate bit in the PIE
register. Nor does it load or fix any segments. This
should be done using the FIXC and ENTSG monitor calls.

2 Not implemented, flags should be zero.

I Only permitted for priVLleged tasks.
Not permitted for drivers.
Not available for tasks running in ND-SOO.

I returnStatus = xmfstd(0,XTblockAddress)

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 145

XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFWDF

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 Bregister I The B-register of the driver on restart.
Integer

3 restartAddress I Restart address for the driver.
Integer

FUNCTION. . 1 Defines wake-up context.

EXPLANATION ! If a driver uses the XFWAK (wake up) option, XMSG must
be told where to restart the driver. This is done by
using the XMFFWDF call. When the driver is restarted by
XMSG, it will be restarted in the address specified by
restartAddress with its B register set to the address
specified by Bregister.

OPTIONS . . I Not implemented, flags should be zero.

RULES . . . Z Permitted for both non~privileged and privileged tasks.
Not permitted for RT-programs.
Not available for tasks running in an ND—SOO.

EXAMPLE . . 2 returnStatus = xmwdf(O,Bregister,restartAddress)

Norsk Data ND~60.164.3 EN

146 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFWHD

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 bytesOTol I Bytes 0 and l of the message header.
Integer*2

3 bytes2To3 I Bytes 2 and 3 of the message header.
Integer*2

4 bytes4T05 I Bytes 4 and 5 of the message header.
Integer*2

FUNCTION. : Writes to the header of the 'task current' message
buffer.

EXPLANATION 2 If the 'whole-message—read' flag has been set (see
XMFFREA), it is cleared and the current message length
(not the same as size) is set to 0. Then the function
inserts bytesOTol, bytesZTo3 and bytes4T05 as the first
six bytes of the message. If this results in the message
being longer than before, the current message length is
set to 6. It then sets the current message displacement
to 6.

If the message size is less than 6 bytes, an error
return occurs.

OPTIONS . . I Not implemented, flags should be zero.

RULES . I Permitted for both non-privileged and privileged tasks.

EXAMPLE . 2 returnStatus = xmffwhd(0,bytesOTol,bytes2To3,bytes4T05)

Norsk Data ND~60.164.3 EN

cosmos PROGRAMMER GUIDE 147
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFFWRI

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgDisp I Message displacement (within XMSG
Integer buffer), in bytes.

3 outbuffer I User buffer.
Integer*2

4 userDisp I Displacement in the user buffer, in
Integer bytes. This must be an even number.

5 userLength I Number of bytes you want to write.
Integer

6 writtenLength 0 Number of bytes actually written.
Integer

FUNCTION. 1 Writes user data into a message buffer.

EXPLANATION I After building up a data buffer in its own space, a task
transfers the data buffer into the 'task current'
message buffer using XMFFWRI. If the 'whole-message-
read‘ flag has been set (see XMFFREA), it is cleared and
the current message length (not the same as size) is set
to 0. If msgDisp is —l, a value for msgDisp equal to the
current message displacement is assumed instead, thus
providing an appending function. If msgDisp is odd, 1 is
added to it, and a zero bytes inserted in the message.

If msgDisp+userLength is greater than the message size,
an error return occurs. Otherwise, userLength bytes are
copied from the user buffer into the message buffer, and
the current message displacement is set to
msgDisp+writtenLength (where msgDisp has been rounded up
if odd). If this copying resulted in the message being
longer than before, the current message length is also
set to msgDisp+writtenLength. writtenLength is returned
to indicate the actual number of bytes transferred.

Note that the displacement within the message is always
rounded up to the next even byte and, on an ND—lOO, that
userDisp (displacement within the user buffer) is always
rounded down to the previous even byte before the data
is written.

Continued on next page.

Norsk Data ND—60.l64.3 EN

148

OPTIONS .

RULES . . . :

EXAMPLE .

COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

2 XFRES - Reset current message length. If set, it leads
to the current message length being set to 0 before the
user data is transferred into the message buffer. (In
fact it acts as if the 'whole—message—read' flag had
been set.)

Permitted for both non—privileged and privileged tasks.

: returnStatus = xmffwri(flags,msgDisp,outbuffer,userDisp,
userLength,writtenLength)

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 149
XMSG/FORTRAN REFERENCE GUIDE

Type: XROUT Service

Functhxiname : XMFINFC

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 portNumber I Port number returned by XMFOPCN.
Integer

3 extraConn I Number of extra connections.
Integer

4 serialNumber I Reference number.
Integer

FUNCTION. 2 Increments (or decrements) the free connection count.

EXPLANATION : After opening a connection port using XMFOPCN, a task
can later increment (when connections become available)
or decrement (when number of connections need to be
reduced) the free connection counter associated with
that port.

If extraConn is positive, the maximum number of
connections that portNumber can handle is increased. If
extraConn is negative, the maximum number of connections
that portNumber can handle will be decreased. If the
resulting number of free connections becomes negative,
an error status will be returned from XROUT.

Note that this function will not wait for a reply from
XROUT, and so the caller will later receive this reply
from XROUT on the port specified by portNumber.
serialNumber is put into byte 0 of the request sent to
XROUT to allow the caller, who may have many requests
outstanding at the same time, to recognize the reply.

Note that since this function has to reserve and send a
message to XROUT to increase (or decrease) the number of
connections accepted, the function will change the
task's current definition of 'task current' message, as
well as the current definition of 'port current' message
on portNumber, if any.

OPTIONS . 2 Not implemented, flags should be zero.

RULES . 2 Permitted for both non-privileged and privileged tasks.

Continued on next page.

Norsk Data ND—60.l64.3 EN

150 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

EXAMPLE . . : When a server port with port number 12, which has
previously been created using XMFOPCN, is able to handle
a new connection, we should inform XROUT.

C We are able to handle one more connection
extraConn = l

C on the port number returned from xmfopcn
portNumber = 12

C To recognize the reply, we need a reference no.
serialNumber 100

C Tell XROUT
returnStatus - xmfinfc(0,portNumber,extraConn,

serialNumber)
ll

1

Norsk Data ND—6D.l64.3 EN

COSMOS PROGRAMMER GUIDE 151
XMSG/FORTRAN REFERENCE GUIDE

Type: XROUT Service

Function name : XMFOPCN

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 portName I Name of the port.
Character

3 uniqueName I Uniqueness flag.
Logical

4 maxConnections I Maximum number of connections accepted.
Integer

5 portNumber 0 Port number.
Integer

FUNCTION. 2 Creates a connection port.

EXPLANATION Z This call is very similar to XMFOPNM, but allows XROUT
to control the number of connections that a port can
handle simultaneously, and even distribute connections
among server (connection) ports.

As for XMFOPNM, a port is opened and its port number is
returned in portNumber, and the port is given the name
specified by portName. If uniqueName is specified as
FALSE, different connection ports are allowed to have
identical names. This means that a system can have
several server tasks, all being accessible through the
same server (connection) port name. Otherwise, if
uniqueName is TRUE, only this port is allowed to have
the name specified by portName. When the port has been
named as portName, XROUT sets a counter (the free
connection counter) associated with that port to the
value specified in maxConnections. The number of
connections that this port can handle, may later be
increased or decreased using XMFINFC.

If another port, opened and named using XMFOPNM, already
has the specified port name (portName), an error status
is returned in returnStatus. The same error is returned
if another port is created as a connection port using
XMFOPCN with uniqueName set to TRUE.

When somebody contacts portName by sending a letter via
XROUT, XROUT looks at the free connection counter and if
it is greater than zero, XROUT decrements it and
forwards the letter. If there are no free connections,
XROUT tries to find another port with the same name. See
also the description under the function XMFBLET.

Norsk Data ND-60.l64.3 EN

152

OPTIONS .

RULES .

EXAMPLE .

COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

The maximum port name length accepted by the function is
defined by the symbol XbMAXNameLength in the XMPzDEFS
file. If portName is longer than XMMAXNameLength in
bytes, —1 will be returned as error code in
returnStatus. If the name length exceed another limit,
which is set at XMSG generation time, the port name will
be truncated by XMSG, i.e., excess characters are
discarded.

Note that since this function has to reserve and send a
message to XROUT to name the port, the function will
change the task's current definition of 'task current'
message. Note that the opened port becomes the task's
default port. When this port is closed, the previously
opened port, if any, becomes the task's default port.

I Not implemented, flags should be zero.

I Permitted for both non—privileged and privileged tasks.

I In this example we create a server port named 'xx-
server', and allows another server port to have the same
name.

C Specify the port name
'xx-server' =: portName

C Other ports should also be able to use this name
uniqueName = FALSE

C Specify maximum no of connections
maxConnections = 3

C Create the port as a connection port
returnStatus = xmfopcn(0,portName(l:—l),uniqueName,

maxConnections,portNumber)
C Check returnStatus, and if 0k, 'xx-server' has
C been created as a connection port with port

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 153
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFOPNM

Type: XROUT Service

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 portName I Name of the port.
Character

3 portNumber 0 Port number.
Integer

FUNCTION. : Opens and names a port.

EXPLANATION : A port is opened and given the name specified by
portName. The port number is returned in portNumber.

If another open port already has the specified name
(portName), an error status is returned in returnStatus.

The maximum port name length accepted by the function is
defined by the symbol XMMAXNameLength in the XMP:DEFS
file. If portName is longer than XMMAXNameLength in
bytes, ~l will be returned as error code in
returnStatus. If the name length exceed another limit,
which is set at XMSG generation time, the port name will
be truncated by XMSG, i.e., the excess characters are
discarded.

Note that since this function has to reserve and send a
message to XROUT to name the port, the function will
change the task's current definition of 'task current'
message. Note that the opened port becomes the task's
default port. When this port is closed, the previously
opened port, if any, becomes the task's default port.

Continued on next page.

Norsk Data ND-60.l64.3 EN

154 cosmos PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

OPTIONS . . I Not implemented, flags should be zero.

RULES . . . 1 Permitted for both non-privileged and privileged tasks.

EXAMPLE . . I The example opens a port with name 'torunn'.

C No options permitted, so
flags =0

C Name the port
portName = 'torunn'

C Let xmfopnm do the job
returnStatus = xmfopnm(flags,

portName(l:—l),portNumber)
C Check returnStatus, and if Ok, the port
C number is returned in portNumber.

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 155
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFREAD

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgIdentifier I Message identifier.
Integer

3 msgDisp I Message displacement (within XMSG
Integer buffer), in bytes.

4 inbuffer I User buffer.
Integer*2

5 userDisp I Displacement in user buffer, in bytes.
Integer

6 userLength I Number of bytes you want to read.
Integer

7 readLength 0 Number of bytes actually read.
Integer

FUNCTION. 2 Reads user data from a specified message buffer.

EXPLANATION 2 The data will be read from the message buffer specified
by msgIdentifier. msgIdentifier will first be set as
'task current' message, then the user data will be read
as described under function XMFFREA. If msgIdentifier is
—1, the currently defined 'task current‘ message is
assumed. readLength is returned to indicate the actual
number of bytes transferred.

OPTICNS . : As for XMFFREA.

RULES . I Permitted for both non-privileged and privileged tasks.

EXAMPLE . Z returnStatus = xmfread(flags,msgIdentifier,msgDisp,
inbuffer,userDisp,userLength,readLength)

Norsk Data ND—60.164.3 E

156 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Function name : XMFROUT

Type: XROUT Service

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgIdentifier I Message identifier.
Integer

3 localPort I Number of the sending port.
Integer

FUNCTION. 2 Sends a message to, or via, the local routing task
(XROUT).

EXPLANATION I The message specified by msgIdentifier is set as 'task
current' message and as 'port current' message for
localPort. Then the message is sent to the local routing
task (XROUT). If msgldentifier is -l, the current
(default) message is assumed instead, namely the 'port
current' message for localPort if one exists, or, ,if
none, the 'task current' message.

Note that the message contents should be parameters to
XROUT. However, if the message contains a letter service
request (see XMFBLET) which is sent via XROUT, the
remainder of the message can contain data for the
(remote) receiving (server) task. When a message is sent
to another task via XROUT, it is forwarded to the
(remote) receiving port as a secure message (i.e., the
message is forwarded as if it had been sent with the
XFSEC flag set, see the description of XFSEC under the
function XMFFSND).

Note that the function returns to the caller as soon as
the message has been sent to (or via) XROUT, which means
that it does not wait for (or receives) any reply from
XROUT. This must be done explicitly by the caller.

OPTIONS . I Not available, flags should be zero.

RULES . 2 Permitted for both non—privileged and privileged tasks.

Continued on next page.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Emma.

(server) port.

C
C

The message will be sent to a (server) port
named 'zz—port‘ in the system named 'gokk'.
portName = 'zz~port'
systemName = 'gokk'
Let xmfblet create the letter in our local buffer.
returnStatus = xmfblet(myBuffer,60,0ffSet,123,

systemName(l:-l),portName(l:-l))
Check returnStatus, and if 0k, let's
reserve an XMSG buffer of 200 bytes.
returnStatus = xmffget(0,200,msgIdent)
Check returnStatus, and if 0k, copy the letter
created by xmfblet into the XMSG buffer.
uLength = offSet(lz~l)
returnStatus =

xmffwri(0,0,myBuffer,0,uLength,wLength)
C
C

Check returnStatus, and if 0k, write data for
the receiving server task into the XMSG buffer.
returnStatus =

xmffwri(0,wLength,serverData,O,50,offSet)
C
C

C

Check returnStatus, and if 0k, open a port
so that we can send the message.
returnStatus = xmffopn(0,myP0rt)
Check returnStatus, and if 0k, send the message
from myPort via XROUT to the remote port.
returnStatus = xmfrout(0,msgldentifier,myPort)
Check returnStatus, and if Ok, the message
has been sent.

Norsk Data ND—60.l64.3 EN

157

Z This example creates a letter, writes the letter into an
XMSG buffer, fills in data for the receiving task,
sends

and
the message via XROUT using XMFROUT to a remote

158 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Functhxlname : XMFSEND

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgIdentifier I Message identifier.
Integer

3 localPort I Number of sending port.
Integer

4 remoteMagicNum I Magic number of receiving port.
Integer*4

FUNCTION. 2 Sends specified message to another task.

EXPLANATION 2 The message specified by msgIdentifier is set as 'task
current' message and as 'port current' message for
localPort, then the message will be sent as described
under function XMFFSND. If msgIdentifier is —l, the
current (default) message is assumed instead (i.e., in
this case the function will act exactly as XMFFSND).

OPTIONS . : As for XMFFSND.

RULES . . Permitted for both non-privileged and privileged tasks.

Emu; . 2 flags = 2**XFSEC + 2**XFHIP
returnStatus = xmfsend(flags,msgIdentifier,

localPort,remoteMagicNum)

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 159
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFWRHD

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgIdentifier I Message identifier.
Integer

3 bytesOTol I Bytes 0 and l of the message header.
Integer*2

4 bytesZTo3 I Bytes 2 and 3 of the message header.
Integer*2

5 bytes4T05 I Bytes 4 and 5 of the message header.
Integer*2

FUNCTION. 2 Writes to the header of the specified message buffer.

EXPLANATION I The data will be written into the message buffer
specified by msgldentifier. msgIdentifier will first be
set as ltask current' message. Then the user data will
be written as described under function XMFFWHD. If
msgIdentifier is —l, the currently defined 'task
current' message is assumed.

OPTIONS . : As for XMFFWHD.

RULES . 2 Permitted for both non-privileged and privileged tasks.

EXAMPLE . Z returnStatus = xmfwrhd(0,msgldentifier,bytesOTol,
bytesZTo3,bytes4T05)

Norsk Data ND—60.164.3 EN

160 COSMOS PROGRAMMER GUIDE
XMSG/FORTRAN REFERENCE GUIDE

Type: XMSG Function

Function name : XMFWRTE

No: Parameter Name/ I/O Explanation:
Type:

1 flags I Options.
Integer

2 msgIdentifier I Message identifier.
Integer

3 msgDisp I Message displacement (within XMSG
Integer buffer), in bytes.

4 inbuffer I User buffer.
Integer*2

5 userDisp I Displacement in the user buffer, in
Integer bytes.

6 userLength I Number of bytes you want to write.
Integer

7 writtenLength 0 Number of bytes actually written.
Integer

FUNCTION. 2 Writes user data into the specified message buffer.

EXPLANATION I The data will be written into the message buffer
specified by msgIdentifier. msgIdentifier will first be
set as 'task current' message, then the user data will
be written as described under function XMFFWRI. If
msgldentifier is —l, the currently defined 'task
current' message is assumed. writtenLength is returned
to indicate the actual number of bytes transferred.

O’TIONS . : As for XMFFWRI.

RULES . 2 Permitted for both non—privileged and privileged tasks.

BOWLE . 2 returnStatus = xmfwrte(flags,msgIdentifier,msgDisp,
inbuffer,userDisp,userLength,writtenLength)

Norsk Data ND-60.l64.3 EN

m

II
V

.1
.X

x.:l:1
3

1
p

I
..)v.4i(

1111)....
y

1.2
a

ll.
1

.2
.3

2
4

1
1

,
a.

2.2,.
.:

154;;

'.<_: nan 152.313.; "

Nags]: gnata mat-460;

.
.

.
.

.

.5
..~.r

A...
A

.F
...

«.
...

_
..

..
A

.
....

3
5

.1
...

.
..

.
,

..
A

..
...

A.
.A

.f.
1

)
....

.
........

“1:.
.3

.............f.
..

.r
.

...
”...:

:
3.3.;

A
....

..
..

._
A

..
..

.....
A

.
6

..
1

.3
3

.»
.

......f
.

I
...

......k
v...

...A..
......

...
3..

-

.
.

.
.,.

..
,

_
.

.

r
u

y
.

.
A

A.
f

A.
L.

..
>

y
1

A
A

.
A

w

COSMOS PROGRAMMER GUIDE 163
INTRODUCTION TO RR-LIB

4 IHTRODUCTIOH TO RR-LIB

4.1 Introduction

RR-LIB is a set of library routines, interfacing with XMSG. It is
based on a request-response mode of interaction between a client
program and a server program (or between multiple clients and
servers). If your communication is structured as a series of request—
response interactions, then RR—LIB is an efficient tool to use.

Since RR-LIB uses XMSG for communication, the communicating parties
may run on a single system or on any two systems connected in a COSMOS
network.

4.2 Concepts Related to Server/Client

A server is a program which gives service to one or more clients. In
the data—transfer phase, a client using RR-LIB sends a request, which
is a string of bytes, to a server. The client then has to wait for the
response, which is another string of bytes from the server, before it
may send a new request to that server.

RR-LIB has three types of calls:

~ Calls performed by servers. In PLANC these are prefixed by
the letters RRPS, where the S stands for Server.

— Calls performed by clients. In PLANC these are prefixed by
the letters RRPC, where the C stands for Client.

- Calls performed by both servers and clients. In PLANC these
are prefixed by RRPB, where B stands for Both.

The client calls are divided ,into low—level calls and high—level
calls. The high—level calls provide a simpler interface, if the
restrictions imposed by their use are acceptable.

With the high-level calls you may simply select a server, and then
send a request to that server. You receive the response in the same
call as you do the request. Each of these two calls is a combination
of low—level client calls. For example, the select call is the
combination of connection request, wait, and connection confirmation.

In general, we recommend that you use the high-level client calls if
possible.

Norsk Data ND-60.l64.3 EN

164 cosmos PROGRAI‘MER GUIDE
INTRODUCTION TO RR—LIB

If you need to have several, simultaneously outstanding requests to
different servers, then you need to use the low—level calls. If you,
in addition to being a client also are a server, we recommend that you
use the low—level client calls. The same program may indeed be both
server and client.

Also, the low—level calls should be used, if you cannot afford to wait
until the response returns.

4.3 How to Set up a Connection

A connection between a client and a server is created by the following
steps:

1) The client sends a connection request. From PLANC the
RRPCCNRQ call is used. Then the client goes into a waiting
state.

2) The server, going into the waiting state (the RRPBWAIT call
in PLANC), receives the connection indication event from RR—
LIB.

3) The server processes the connection indication event by
performing the connection indiCation call (RRPSCNIN).

4) The server sends a connection response to the client
(RRPSCNRS).

5) RR—LIB signals the connection confirmation event to the
client.

6) The client processes the connection confirmation event by
performing the connection confirmation call (RRPCCNCF). The
connection is now established, and the data transfer can
start.

During the connection phase, it is possible to send user data. The
server may, for example, require that the client sends an
identification with his connection request.

4.4 The Data-Transfer Phase

During the data—transfer phase, the client sends a request (RRPCSNRQ),
goes into a waiting state, and later receives the response from the
server, signalled by an event. To obtain the response, the client has
to perform the 'get response' call (RRPCGTRS).

If the client has set up connections with several servers, it can send
several requests (maximum one per connection) before going into a
waiting state. Note that each response indication event has to he
waited for, because the arrival of responses is signalled one at a
time.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 165
INTRODUCTION TO RR-LIB

4.5 Disconnectigg

Either the server or the ;client may take the initiative of
disconnecting. A disconnect request is sent (RRPBDCRQ), and a
disconnect indication event is signalled by RR—LIB to the other party,
which must then perform the disconnect indication call (RRPBDCIN)
before the disconnect is complete.

4.6 Addressing

When the server starts executing, it has to identify itself with a
server name (which is equivalent to an XMSG port name) before any
clients can connect.

The client addresses the server by specifying the system name where
the server resides, plus the server name.

4.7 Events

Certain changes in the communication system, resulting from actions by
the remote user or RR—LIB, :are signalled to you by the ”event"
mechanism.

Examples of events are: timeout, response has arrived, and disconnect
from remote. Most of these events require processing by calls to RR~
LIB.

The only way an event can be signalled to you is through the RRPBWAIT
call.

Only one event can be signalled in one RRPBWAIT call.

4.8 General Inforlation about the Routines

The routine implementation in PLANC gives the status as an out value:

ROUTINE VOID,INTEGER (parameters).

Example of a call:

RRPCcncf(static,remoteID,serverlnfo) =: RRstatus

Normal return status is zero. If you include the appropriate :DEFS
file in your source code, you may use the symbol OK for the zero
status. The file is called RRPzDEFS for PLANC. Other return status are
error codes. A list of the error codes plus their corresponding
symbols is provided in appendix E.

In the description of the PLANC calls, an R is used to denote a read
parameter and W stands for write.

Norsk Data ND-60.l64.3 EN

166 COSMOS PROGRAMMER GUIDE
INTRODUCTION TO RR-LIB

4.9 Table of Events

The symbols for the event codes are defined in the RsDEFS file. You
may specify a whole set of events by using logical OR to form a bit
mask. ,

Event code Value Explanation

RREVtime l Timeout
RREVcnin 2 Connection request has arrived
RREVcncf 4 Connection is accepted
RREqin 8 Request arrived
RREVrsin 16 Response has arrived
RREVdcin 32 Disconnected from remote
RREVdccf 64 User initiated disconnect is complete
RREVunkn 128 Message arrived on port not known to RR~LIB
RREVothr 256 No RR~LIB event, timeout, or unknown port

The reason for RREVunkn is that you may combine the use of RR—LIB and
XMSG in the same program. As you performed the RRPBWAIT call, to wait
for an event, a message may arrive on a port opened by an XMSG call.
The RREVunkn event tells you that this happened.

The RRPBWAIT routine is at some point performing the 'tmout' monitor
call. If your RT-program becomes rescheduled for execution, for
example by another program, the RREVothr will occur.

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 167
INTRODUCTION TO RR—LIB

4.10 Table of Server Calls

The calls used by server programs are listed in alphabetical order in
this table:

Routine Purpose Phase where used

RRPBABRT Abort connection Disconnect
RRPBDCIN Disconnect indication Disconnect
RRPBDCRQ Disconnect request Disconnect
RRPBINIT Initialize RR~LIB
RRPBWAIT Wait for event Used in all phases
RRPSCNIN Connection indication Connection establishment
RRPSCNRS Connection response Connection establishment
RRPSEND Clear up untidy ends When finished
RRPSGTRQ Get request Data transfer
RRPSSNRS Send response Data transfer

4.11 Table of Low—Level Client Calls

The calls used by low—level client programs are listed in alphabetical
order in this table:

Routine Purpose Phase where used

RRPBABRT Abort connection Disconnect
RRPBDCIN Disconnect indication Disconnect
RRPBDCRQ Disconnect request Disconnect
RRPBINIT Initialize RR-LIB
RRPBWAIT Wait for event Used in all phases
RRPCCNCF Connection confirmation Connection establishment
RRPCCNRQ Connection request Connection establishment
RRPCEND Clear up untidy ends When finished
RRPCGTRS Get response
RRPCSNRQ Send request

Data transfer
Data transfer

Norsk Data NDa60.l64.3 EN

168 COSMOS PROGRAMMER GUIDE
INTRODUCTION TO RR-LIB

4.12 Table of High-Level Client Calls

The calls used by high-level client programs are
alphabetical order in this table:

listed

Routine Purpose

RRPBINIT Initialize RR—LIB
RRPCCALL Send request and get response
RRPCSLCT Select a server
RRPCDISC Disconnect request with wait for completion

Norsk Data ND-60.l64.3 EN

in

COSMOS PROGRAMMER GUIDE 171
RR-LIB/PLANC REFERENCE GUIDE

5 RR-LIB/PLANC REFERENCE GUIDE

5.1 RR—LIB server calls

Rmnjnermme: RRPBABRT

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 remoteID R ID returned from RRPScnin.
Rrid

FUNCTION. . 2 Aborts connection.

EXPLANATION I This end of a connection is aborted. You should use this
call only if a disconnect attempt RRPBderq does not
work, i.e., if you do not get a disconnect confirmation
after a reasonable time.

USAGE . . . I RRPBabrt(static,remoteID) =: RRstatus

Norsk Data ND-60.l64.3 EN

172 COSMOS PROGRAMMER GUIDE
RR—LlB/PLANC REFERENCE GUIDE

Rmfijnermme: RRPBDCIN

Type:
No: Parameter Name/ R/W Explanation:

1 static
Integer array

R Fixed size work space.

2 remoteID R ID returned in actualEvent when
Rrid disconnect was signalled.

3 reason W Reason for disconnect.
Integer

4 info W Information from the client (if client-
Bytes pointer initiated disconnect).

FUNCTION. 3 Disconnects indication.

EXPLANATION 2 A disconnect request from the client is perceived by you

USAGE...:

as a disconnect indication.

This routine should only be called after the disconnect
indication event (RREVdcin) is received.

It should not be called immediately if a "disconnect
pending" error return is obtained from another call.
Otherwise not all of the associated data will have been
received.

RRPBdcin(static,remoteID,reason,info) =: RRstatus

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 173
RR-LIB/PLANC REFERENCE GUIDE

Rmfljnermme: RRPBDCRQ

No: Parameter Name/ R/w Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 remoteID ‘ R ID returned from RRPScnin.
Rrid

3 info R Information for remote end.
Bytes

FUNCTION. . 2 Disconnects request.

EXPLANATION 2 This call disconnects you from a client. It is used to
refuse a connection or break an established connection.

Information may only be sent by the server in response
to a connection indication.

USAGE . . . 1 RRPBdcrq(static,remoteID,info) =: RRstatus

Norsk Data ND-60.l64.3 EN

174 COSMOS PROGRAMMER GUIDE
RR-LIB/PLANC REFERENCE GUIDE

Routh%:name : RRPBINIT

No:l Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 dynamic R Work area for connection control blocks.
Integer array

3 mode R Should be specified as RRMDasServer or
ed RRMDasBoth.

4 maxClientConn R Dummy for servers.
Integer

5 serverName R Name by which you are known to clients.
Bytes

6 bufferArea R Buffers for user data. See below.
Bytes array

7 maxServerConn R Maximum number of simultaneous
Integer connections to clients.

8 serverParam R Other server parameter. See below.

Rrsp

FUNCTION. . 2 Initializes RR—LIB data structures.

EXPLANATION I This must be the first call to RR—LIB. You should use
standard sizes for the RR-LIB work areas: static and
dynamic. These required sizes are given in the RRP:DEFS
file.

The number of buffers in bufferArea must be the same as
maxServerConn. This means that you must use one buffer
per connection, and this buffer is used both for the
request and the response. All these buffers must be the
same size and begin on a word boundary.

If you wish to increase the maximum XMSG task space for
yourself, you must set RRSPisDefault = FALSE and set up
the remaining parameters in RRSP.

Continued on next page.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 175
RR-LIB/PLANC REFERENCE GUIDE

This is the structure of the serverParameter record:

TYPE RRSP = RECORD
BOOLEAN: RRSPisDefault TRUE => default

parameters are used
FALSE => must fill in
remainder of record
requested value of XMSG
task space
current XMSG password

INTEGER: RRSPallocation

o\°
o\°

o\°
o\°

o\°
do

o\°

INTEGER: RRSPpassword
ENDRECORD

RRSPisDefault = TRUE implies that default parameters are
used. In that case you do not specify the other
parameters in the RRSP record.

The server task space should be increased beyond the
usual default value, if the server is likely to handle a
significant number of active connections simultaneously.

RRSPisDefault = FALSE implies that you want to extend
the XMSG task space for yourself. The remainder of the
record has to be filled in.

RRSPallocation is the requested value of the XMSG task
space.

RRSPpassword is the current XMSG password.

Changing the allocation requires the current XMSG
password (XPASW) and that the server is a foreground
program, or a background program logged in as user
system. To obtain the XMSG password, you may use the XM-
LIB routine XMPCONF.

: RRPBinit(static,dynamic,mode,maxClientConn,
serverName,maxServerConn,serverParam) =: RRstatus

Norsk Data ND—60.l64.3 EN

176 COSMOS PROGRAMMER GUIDE
RRtLIB/PLANC REFERENCE GUIDE

Routine name : RRPBWAIT

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 timeout R Maximum waiting time.
tm

3 requestedEvent R Requested event. This includes the
Rrev connection identifier.

4 actualEvent W The event that actually occurred.
Rrev

FUNCTION. . I Waits for event to occur.

EXPLANATION 2 This is the only call in which arriving XMSG messages
(responses or acknowledgements for parts of requests)
are processed.

The tm type in timeout has the following definition:

TYPE RRTM = RECORD
INTEGER: RRTMlength
INTEGER: RRTMunits

ENDRECORD

RRTMlength is the length of the waiting time. RRTMunits
is defined as for the SINTRAN HOLD command:

= Basic time units
Seconds
Minutes
Hourslb

U
JR

JP
J

II
II

[I

A value of O for RRTMlength is equivalent to a poll for
outstanding RR~LIB events of the requested type, on the
requested connection.

The set of desired events is formed from the logical OR
of the corresponding event codes. With the exception of
RREVunkn and RREVothr, you will only receive events
permitted by requestedEvent. Your set of desired events
should always include, RREVdcin because a disconnect may
occur at any time.

Continued on next page.

Norsk Data ND—60.l64.3 EN

cosmos PROGRAMMER GUIDE 177
RR—LIB/PLANC REFERENCE GUIDE

USAGE .

A value of RRanyRemote may be used to accept any
connection. Likewise, RRanyEvent may be used to accept
any event.

Event codes used to form a bit mask:

llCONSTANT RREVtime l
CONSTANT RREVcnin = 2
CONSTANT RREqin = 8
CONSTANT RREVdcin = 32
CONSTANT RREVdccf = 64
CONSTANT RREVunkn = 128

timeout
connection indication
request arrived
disconnected from remote
user disconnect complete
XMSG arrived on port
not known to RR-LIB
exit caused by other than
timeout, an RR—LIB event,
or unknown port
eg., by terminal input

CONSTANT RREVothr = 256

o\°
o\°

o\°
o\°

o\°
o\°

o\°
o\°

o\°
o\°

o\°

Structure of an event:

CONSTANT RRMXevData = 2 Length of the associated
event data.o\°

D\°

TYPE RREV = RECORD
RRID: RREVremote % ID for remote task
INTEGER: RREVevent % BIT MASK of events
INTEGER ARRAY: RREVdata(0:RRMXeVData-l)

ENDRECORD

RREVdata contains data associated with the event. The
meaning of these depends on the RREVevent.

If RREVevent = RREVunkn then RREVdata (0) gives the XMSG
portnumber. In this case the return from RRPBwait is
equivalent to a return from the XMSG general status
function XFGST. Note that the arrived message must be
received (XFRCV) before RRABwait is called again.

2 RRPBwait(static,timeout,requestedEvent,
actualEvent) =: RRstatus

Norsk Data ND~60.164.3 EN

178 COSMOS PROGRAMMER GUIDE
RR-LIB/PLANC REFERENCE GUIDE

Rmfljnezmme: RRPSCNIN

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 remoteID R ID returned in actualEvent when the
Rrid RREVcnin event occurred.

3 clientInfo W Information sent by the client.
Bytes pointer

4 serverInfoBuff W Buffer where you should place return
Bytes pointer information to the client.

FUNCTION. 2 Connection indication.

EXPLANATION 2 This call gives you information from the client after an

USAGE.

RREVcnin event.

The SIZE of the serverInfoBuff gives you the maximum
amount of data that may be returned to the client.

I RRPScnin(static,remoteID,clientInfo,
serverInfoBuff) =: RRstatus

Norsk Data ND‘60.164.3 EN

COSMOS PROGRAMMER GUIDE 179
RR-LIB/PLANC REFERENCE GUIDE

Routine name : RRPSCNRS

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 remoteID R ID returned in actualEvent when the
Rrid RREVcnin event occurred.

3 serverInfo R Information sent back to the client,
Bytes placed in the buffer given by RRPScnin.

FUNCTION. . 2 Connection response.

EXPLANATION 2 Following the RRPScnin call, RRPScnrs accepts the
connection from the client.

USAGE . . . : RRPScnrs(static,remoteID,serverInfo) =2 RRstatus

Norsk Data ND-60.l64.3 EN

180 COSMOS PROGRAMMER GUIDE
RR—LIB/PLANC REFERENCE GUIDE

Routine name : RRPSEND

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

FUNCTION. . Z Ends server functions.

EXPLANATION 2 Used when no more services is to be provided. This call
closes XMSG ports, releases XMSG buffers, etc. You
should disconnect all active connections first, so the
clients are aware that you are gone.

USAGE . . . 2 RRPSend(static) =: RRstatus

Norsk Data ND-60.l64.3 EN

cosmos PROGRAMMER GUIDE 181
RR-LIB/PLANC REFERENCE GUIDE

Routine name : RRPSGTRQ

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 remoteID R ID returned in actualEvent when the
Rrid RREqin event occurred.

3 request W The request from the client.
Bytes pointer

4 responseBuffer W Buffer where you should place the
Bytes pointer response.

FUNCTION. . : Gets request.

EXPLANATION I With this call you obtain a client request after its

USAGE.

arrival has been signalled by the RREqin event.

The size of the responseBuffer gives you the maximum
amount of bytes that may be returned to the client.

I RRPSgtrq(static,remoteID,request,responseBuffer)&
=: RRstat

Norsk Data ND—60.l64.3 EN

182 COSMOS PROGRAMMER GUIDE
RR~LIB/PLANC REFERENCE GUIDE

Rmnjnermme: RRPSSNRS

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 remoteID R ID returned in actualEvent when the
Rrid RREqin event occurred.

3 response R Response to the client, placed in the
Bytes buffer given by RRPSgtrq.

FUNCTION. . : Sends response.

EXPLANATION I With this call you send a response to the client's

USAGE.

request.

Return occurs only after the first part of a long
response is sent. Transmission of the remainder will
occur during one or more succeeding RRPBwait(s).

i RRPSsnrs(static,remoteID,response) =: RRstat

Norsk Data ND-60.164.3 EN

cosmos PROGRAMMER GUIDE
RR—LIB/PLANC REFERENCE GUIDE

183

5.2 RR—LIB High Level Client — Calls

Routine name : RRPBINIT

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 dynamic R Work area for connection control blocks.
Integer array

3 mode R Should be specified as RRMDasClient or
ed RRMDasBoth.

4 maxClientConn R Maximum number of simultaneous
Integer connections to servers.

5 serverName R Dummy for clients.
Bytes

6 bufferArea R Dummy for clients.
Bytes array

7 maxServerConn R Dummy for clients.
Integer

8 serverParam R Dummy for clients.
Rrsp

FUNCTION. 2 Initializes RR—LIB data structures.

EXPLANATION I This must be
standard sizes for the RR—LIB work areas:

USAGE.

dynamic.
file.

the first call to RR-LIB. You should use
static and

These required sizes are given in the RRP:DEFS

: RRPBinit(static,dynamic,mode,maxClientConn,
serverName,bufferArea,maxServerConn,
serverParam) =: RRstatus

Norsk Data ND-60.l64.3 EN

184 COSMOS PROGRAMMER GUIDE
RR-LIB/PLANC REFERENCE GUIDE

Rmfldnermme: RRPCCALL

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 remoteID R The identifier returned by RRPCSLCT.
Rrid

3 request R The client data to be transmitted to the
bytes server.

4 responseBuffer R A buffer in which the server can place
Bytes pointer the response.

5 timeout R Maximum time to wait for a response.
tm

6 response W Server response.
Bytes pointer

7 reason W Reason for the disconnection or
Integer unexpected event value.

FUNCTION. 2 Sends request and waits for response.

EXPLANATION 3 This call is equivalent to RRPCsnrq+RRPBwait+RRPCgtrs.

With this call you may wait for only one connection at a
time. For
calls can

request
boundary.

handling several connections, low—level~client
be more efficient.

and responseBuffer must start on a word
The buffer used for the request and the

response may be the same.

responseBuffer must be large enough to contain the
entire response from the server.

The tm type in timeout has the following definition:

TYPE RRTM = RECORD
INTEGER: RRTMlength
INTEGER: RRTMunits

ENDRECORD

Continued on next page.

Norsk Data NDa60.l64.3 EN

COSMOS PROGRAMMER GUIDE 185
RR-LIB/PLANC REFERENCE GUIDE

RRTMlength is the length of the waiting time. RRTMunits
is defined as for the SINTRAN HOLD command:

1 = Basic time units
2 = Seconds
3 = Minutes
4 = Hours

If the reason for the return is timeout and the client
does not wish to continue to wait, a disconnect request
should be issued.

reason gives the eventual reason if you were
disconnected. If the return was caused by an unexpected
event, then reason specifies it.

response contains the response from the server if, and
only if, status was OK.

1 RRPCcall(static,remoteID,request,responsebuffer,
timeout,response,reason) =: RRstatus

Norsk Data ND—60.l64.3 EN

186 COSMOS PROGRAMMER GUIDE
RR~LIB/PLANC REFERENCE GUIDE

Rmfifinermme RRPCSLCI

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 destSys R String identifying the system where the
Bytes server resides.

3 destServer R Server name.
Bytes

4 clientlnfo R Information from client to server (for
Bytes example an identification).

5 serverInfoBuff R Buffer in which to place information
Bytes pointer from the server back to you.

6 timeout R Maximum waiting time for response from
tm the server.

7 remoteID W Server reference number to be used in
Rrid subsequent calls.

8 serverlnfo W Information returned by the server, or
Bytes pointer disconnect information.

9 reason W Reason for the disconnection or
Integer unexpected event value.

FUNCTION.

EXPLANATION :

Z Selects a server.

A server is selected for future request/response
interactions.

This call is equivalent to
RRPCcnrq+RRPBwait+RRPCcncf/RRPBdcin. This is done
synchronously, i.e., the return does not occur until
timeout or until a response is received from the
server.

If the reason is timeout and the client does not wish to
continue to wait, a request to disconnect should be
made.

clientInfo and serverInfoBuff must start on a word
boundary.

Connection setup overhead is reduced if clientInfo is
also used to include the first request to server and
RRPScnrs is used to return the response.

serverlnfoBuff must be large enough to contain the
entire response from the server.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 187
RR-LIB/PLANC REFERENCE GUIDE

USAGE.

The tm type in timeout has the following definition:

TYPE RRTM = RECORD
INTEGER: RRTMlength
INTEGER: RRTMunits

ENDRECORD

RRTMlength is the length of the waiting time. RRTMunits
is defined as for the SINTRAN HOLD command:

1 = Basic time units
2 = Seconds
3 = Minutes
4 = Hours

reason gives the reason if you were disconnected. If the
return was caused by an unexpected event, then reason
specifies it.

serverInfo contains the information returned by the
server if, and only if, status was OK (i.e., connected)
or disconnected and if the reason parameter indicates
that the disconnect was executed by the server.

reason gives the reason if you were disconnected. If the
return was caused by an unexpected event, then reason
specifies it.

2 RRPCslct(static,destSys,destServer,clientInfo,
serverInfoBuff,timeout,remoteID,serverInfo,
reason) =: RRstatus

Norsk Data ND—60.l64.3 EN

188 COSMOS PROGRAMMER GUIDE
RR~LIB/PLANC REFERENCE GUIDE

Routine name : RRPCDISC

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size for work space.
Integer array

2 remoteID R ID returned from RRPCslct.
Rrid

3 info R Information for remote end.
Bytes

4 timeout R Maximum time to wait for completion.
tm

5 cause W If unexpected event caused return, this
Integer specifies the event.

FUNCTION. . 1 Disconnect request with wait for completion.

EXPLANATION : This cal

info mus

USAGE . . . :RRPCdisc

l is equivalent to RRPBdcrq+RRPBwait.

t start on a word boundary.

(static,remoteID,info,timeout,
cause) =2 RRstatus

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 189
RR-LIB/PLANC REFERENCE GUIDE

5.3 RR—LIB Low-Level Client Calls

Routine name : RRPBABRT

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size for work space.
Integer array

2 remoteID R ID returned from RRPCcnrq.
Rrid

FUNCTION. . 2 Abort connection.

EXPLANATION 2 This end of a connection is aborted. You should use this
call 92;! if a attempt to disconnect: RRPBdcrq does not
work, i.e., if you do not get a confirmation after a
reasonable time.

USAGE . . . : RRPBabrt(static,remoteID) =: RRstatus

Norsk Data ND—60.l64.3 EN

190 COSMOS PROGRAMMER GUIDE
RR-LIB/PLANC REFERENCE GUIDE

Routine name : RRPBDCIN

Type:
No: Parameter Name/ R/W Explanation:

1 static
Integer array

R Fixed size work space.

2 remoteID R ID returned in actualEvent when
Rrid disconnect was signalled.

3 reason W Reason for the disconnection.
Integer

4 info W Information from the server (if server—
Bytes pointer initiated disconnect).

FUNCTION. I Disconnect indication»

EXPLANATION 1 A disconnect request from the server is perceived by you

USAGE.

as a disconnect indication.

This routine should only be called after the disconnect
indication event (RREVdcin) is received.

It should not be called immediately if a "disconnect
pending" error return is obtained from another call.
Otherwise not all of the associated data will have been
received.

2 RRPBdcin(static,remoteID,reason,info) =: RRstatus

Norsk Data ND46O.164.3 EN

COSMOS PROGRAMMER GUIDE 191
RR‘LIB/PLANC REFERENCE GUIDE

Routine name : RRPBDCRQ

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 remoteID R ID returned from RRPCcnrq.
Rrid

3 info R Information for remote end.
Bytes

FUNCTION. . 2 Disconnect request.

EXPLANATION I This call disconnects you from a server. It is used to
break a connection already established or one you are in
the process of establishing.

USAGE . . . I RRPBdcrq(static,remoteID,info) =: RRstatus

Norsk Data ND—60.l64.3 EN

192 COSMOS PROGRAMMER GUIDE
RR~LIB/PLANC REFERENCE GUIDE

Rmninermme: RRPBINIT

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 dynamic R Work area for connection control blocks.
Integer array

3 mode R Should be specified as RRMDasClient or
ed RRMDasBoth.

4 maxClientConn R Maximum number of simultaneous
Integer connections to servers.

5 serverName R Dummy for clients.
Bytes

6 bufferArea R Dummy for clients.
Bytes array

7 maxServerConn R Dummy for clients.
Integer

8 serverParam R Dummy for clients.
Rrsp

FUNCTION. 2 Initializes RR—LIB data structures.

EXPLANATION I This must be the first call to RR~LIB. You should use
standard sizes for the RR-LIB work: areas static and
dynamic. These required sizes are given in the RRPzDEFS
file.

USAGE . I RRPBinit(static,dynamic,mode,maxClientConn,
serverName,bufferArea,maxServerConn,
serverParam) RRstatus

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 193
RR-LIB/PLANC REFERENCE GUIDE

Routine name : RRPBWAIT

No: Parameter Name/ R/w Explanation:
Type:

1 static
Integer array

R Fixed size work space.

2 timeout R Maximum waiting time.
tm

3 requestedEvent R Requested event. This includes the
Rrev connection identifier.

4 actualEvent W The event that actually occurred.
Rrev

FUNCTION. : Waits for event to occur.

EXPLANATION : This is the only call in which arriving XMSG messages
(responses or acknowledgements for parts of requests)
are processed.

The tm type in timeout has the following definition:

TYPE RRTM = RECORD
INTEGER: RRTMlength
INTEGER: RRTMunits

ENDRECORD

RRTMlength is the length of the waiting time. RRTMunits
is defined as for the SINTRAN HOLD command:

= Basic time units
Seconds
Minutes
Hours

w
r—

a

II
"

N

A value of O for RRTMlength is equivalent to a poll for
outstanding RR~LIB events of the requested type, on the
requested connection.

The set of desired events is formed from the logical OR
of the corresponding event codes. With the exception of
RREVunkn and RREVothr, you will only receive events
permitted by requestedEvent. Your set of desired events
should always include RREVdcin, because a disconnect may
occur at any time.

A value of RRanyRemote may be used to accept any
connection. Likewise, RRanyEvent may be used to accept
any event.

Norsk Data ND~60.l64.3 EN

194

USAGE.

COSMOS PROGRAMMER GUIDE
RR-LIB/PLANC REFERENCE GUIDE

Event codes used to form a bit mask:

CONSTANT RREVtime = l timeout
CONSTANT RREVcncf : 4 connection accepted
CONSTANT RREVrsin = 16 response has arrived
CONSTANT RREVdcin : 32 disconnected from remote
CONSTANT RREVdccf = 64 user disconnect complete
CONSTANT RREVunkn = 128 XMSG arrived on port

not known to RR—LIB
exit caused by other than
timeout, an RR—LIB event,
or unknown port
e.g., by terminal input

CONSTANT RREVothr = 256

o\°
o\0

o\°
o\°

o\°
o\°

o\°
o\°

c\°
o\°

o\°

Structure of an event:

CONSTANT RRMXevData = 2 Length of the associated
event data.c\°

o\°

TYPE RREV = RECORD
RRID: RREVremote % ID for remote task
INTEGER: RREVevent % BIT MASK of events
INTEGER ARRAY: RREVdata(O:RRMXevData-l)

ENDRECORD

RREVdata contains data associated with the event. The
meaning of these depends on the RREVevent.

If RREVevent = RREVunkn, then RREVdata (0) gives the
XMSG portNumber. In this case the return from RRPBwait
is equivalent to a return from the XMSG general status
function XFGST. Note that the arrived message must be
received (XFRCV) before RRABwait is called again.

2 RRPBwait(static,timeout,requestedEvent,
actualEvent) =: RRstatus

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 195
RR-LIB/PLANC REFERENCE GUIDE

Routine name : RRPCCNCF

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 remoteID R Identifier returned in actualEvent.
Rrid

3 serverInfo W The information returned by the server.
Bytes pointer

FUNCTION. . 2 Connection confirmation.

EXPLANATION 2 This call is used to process the connection confirmation
event (RREVcncf). You obtain the data associated with
the server’s acceptance of a connect request.

USAGE . . . : RRPCcncf(static,remoteID,serverInfo) =: RRstatus

Norsk Data ND—60.l64.3 EN

196 COSMOS PROGRAMMER GUIDE
RR-LIB/PLANC REFERENCE GUIDE

Rmnjnermme: RRPCCNRQ

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 destSys R String identifying the system where the
Bytes server resides.

3 destServer R Server name.
Bytes

4 clientInfo R Information from client to server (for
Bytes example an identification).

5 serverInfoBuff R Buffer in which to place information
Bytes pointer from server to client.

6 remoteID W Server reference number to be used in
Rrid subsequent calls.

FUNCTION. 2 Connection request.

EXPLANATION :

USAGE.

A connection between the client and a server is
initiated.

clientInfo and serverInfoBuffer must start on a word
boundary.

The connection setup overhead is reduced if clientInfo
is also used to include the first request to the server.
The server could include the response in serverInfo of
RRPScnrs.

1 RRPCcnrq(static,destSys,destServer,clientlnfo,
serverInfoBuff,remoteID) =: RRstatus

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 197
RR-LIB/PLANC REFERENCE GUIDE

Routine name : RRPCEND

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

FUNCTICN. . Z Ends the client functions.

EXPLANATION I Used when no more calls to servers are to be made. This

USAGE.

call closes XMSG ports, releases XMSG buffers, etc. You
should disconnect all active connections first, so the
servers are aware that you are gone.

. : RRPCend(static) =: RRstatus

Norsk Data ND-60.l64.3 EN

198 COSMOS PROGRAMMER GUIDE
RR-LIB/PLANC REFERENCE GUIDE

Routine name : RRPCGTRS

No: Parameter Name/ R/W Explanation:
Type:

1 static
Integer array

2 remoteID R Identifier returned in actualEvent as an
Rrid RREVrsin occurred.

3 response W The response from the server.
Bytes pointer

R Fixed size work space.

FUNCTION. _.
EXPLANATION

USAGE.

1 Gets response.

I With this call you get the response to a previous
request after a response event (RREVrsin) has been
signalled. Your response is stored in the response
buffer, provided by RRPCsnrq.

I RRPCgtrs(static,remoteID,response) =: RRstatus

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE
RR-LIB/PLANC REFERENCE GUIDE

199

Rmnjnermme: RRPCSNRQ

No: Parameter Name/ R/W Explanation:
Type:

1 static R Fixed size work space.
Integer array

2 remoteID R The identifier returned by RRPCcnrq.
Rrid

3 request R The client data to be transmitted to the
Bytes server.

4 responseBuffer R A buffer in which the server can place
Bytes pointer the response.

FUNCTION. 2 Sends request.

EXPLANATION : This call
arbitrary length. Return only occurs after the first
part of a long request is sent. Transmission of the

USAGE.

remainder will
RRPBwait(s

request

).

and

initiates the sending of a request of

occur during one or more succeeding

responseBuffer must start on a word
boundary. The buffer used for the request and the
response may be the same.

. . 2 RRPCsnrq(static,remoteID,request,responseBuffer)
: RRstatus

Norsk Data ND—60.164.3 EN

200 COSMOS PROGRAMMER GUIDE

Norsk Data ND-60.l64.3 EN

V
W

M
V

‘F
M

H
M

,

c nan p Trg-téfl, g

n k *1. arm—601643.

COSMOS PROGRAMMER GUIDE 203
INTRODUCTION TO TLIB

6 INTRODUCTION TO TLIB

6.1 Introduction

TLIB stands for Transport LIBrary. It is a tool for data transfer
between RT programs (including background programs). These programs
may or may not reside in different systems.

The services offered by TLIB are similar to those offered by the 081
Transport Service Specification. Many of the TLIB concepts are taken
from the OSI reference model. The current implementation of TLIB
consists of a set of routines interfacing with XMSG.

The advantages gained by the use of TLIB, rather than by the direct
use of XMSG, are:

- an XMSG-independent interface, similar to the 081 Transport
Service

" the provision of a flow~control mechanism, which means that
the sending rate is adapted to the receiving rate

The disadvantages are:

- increased program size (see section 6.8.1)

- slightly decreased performance (see section 6.8.2)

6.2 General Concepts in TLIB

6.2.1 Connection

Before data can be exchanged between two communicating parties, a
connection between them has to be established. When the data exchange
is finished, the connection has to be terminated. We will refer to the
connection establishment as the connect phase, the exchange of data as
the data transfer phase, and the termination of a connection as the
disconnect phase.

One RT program may operate several connections simultaneously. This
means that you may communicate with several remote users at the same
time. It also means that you may have several dialogues at the same
time, with the same remote user, on different connections.

Norsk Data ND‘60.164.3 EN

204 COSMOS PROGRAMMER GUIDE
INTRODUCTION TO TLIB

Each end point of a connection is identified by two connection
identifiers:

l) The connection identifier selected by you as a user, is
referred to by TLIB, when TLIB contacts you. For each new
connection, you are free to choose a number for your
identifier.

2) The connection identifier selected by TLIB is referred to by
you, when you contact TLIB.

The reason for using two identifiers, rather than one, is that it
provides a convenient way of referencing data belonging to a specific
connection when several connections are open. You may build a table,
in your program, with connection dependent data. Each table entry will
correspond to a particular connection. When TLIB contacts you, the
connection identifier that you get will give you the right table
entry. When you contact TLIB, this is the technique that TLIB uses,
and that is why TLIB wants its own connection identifier.

6.2.2 Ordinary Data and User Data

Data transmitted during the data transfer phase is referred to as
ordinary data.

It is possible to send a smaller amount of data during the connect and
disconnect phases. When a user requests a connection with another
user, the former may want to give the latter some extra information
besides the pure request for contact. The user receiving the
connection request always has a choice of whether or not to accept the
request. Thus it can make its choice dependent upon information coming
from the sender, for example a password. When one user wants to
disconnect the communication, it may want to provide a reason. Such
extra information during connect or disconnect is referred to as use;
data.

6.2.3 Eggggited Data

This is a limited amount of data which can be sent to the remote user,
during the data transfer phase, outside the ordinary data stream. This
data is not bound by the same flow control as ordinary data. The
arrival of the expedited data will be signalled to the remote user
before any ordinary data subsequently is sent. It may or may not be
signalled to the remote user ahead of ordinary data sent previously.

Expedited data is intended only for the exchange of urgent user—level
control information, which must not be blocked by the normal data
flow.

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 205
INTRODUCTION TO TLIB

6.2.4 Lilitations on User Data and Expedited Data

User data is limited to 32 bytes (TLMXuserdata = 32 is defined in the
TLP:DEFS and the TLF:DEFS files).

The amount of expedited data is limited to 8 bytes (TLMXexpeditedData
= 8 is defined in the TLP:DEFS and TLFzDEFS files).

You, as a user, may not redefine these limits.

6.2.5 TLIB Service Data Unit - TSDU

During the data transfer phase, before you send data to a remote user,
you divide the data into one or more logical units. Each unit is
called a TSDU and is delimited by the end-of—TSDU flag. This flag is
set by you when you send the data and it is passed on by TLIB to the
receiving user. Each logical unit of data you receive from a remote
user, during the data transfer phase, is also a TSDU. The TSDU can be
of any length, and may be split arbitrarily between several user
buffers.

Note that TLIB can buffer data internally, in the transport system, if
you have not set the end—of-TSDU flag. To ensure that the last data
given to TLIB has been transmitted to the remote user you must set
this flag.

6.2.6 TLIB Protocol Data Unit ~ TPDU

These are the units of communication that TLIB uses, i.e., they are
internal to the transport system. When you send a TSDU, TLIB will add
a protocol header before it transmits the data. TLIB may split a TSDU
into several TPDUs, depending on the size of the TSDU. However, such a
splitting is not perceived by you as a user.

The data that TLIB receives from the remote end is one or more TPDUs.
TLIB transfers the TSDU to you, i.e., the headers are stripped from
the TPDUs.

Some TPDUs do not contain any data coming from a user. These are TPDUs
used by TLIB for communication control purposes.

6.2.7 Credit

TLIB's flow control mechanism is based on the use of "credit”. The
purpose of the flow control is to avoid congestion in the transport
system.

Norsk Data ND-60.l64.3 EN

206 COSMOS PROGRAMMER GUIDE
INTRODUCTION TO TLIB

At any given point during the data transfer phase, there is a limit on
the amount of data that you are allowed to send. This amount of data
is termed your "credit”. Your credit decreases as you send data,
because you are using buffers in the transport system. Your credit
increases as the remote user removes the incoming data from the
transport system. The buffering strategy of the remote user,
therefore, controls the rate at which you are permitted to send to
him.

During the connect phase, you receive an initial value for your
credit. New credit values are returned each time you send data. Credit
changes, resulting from actions by the remote user or TLIB, are
signalled to you by the "event” mechanism (see section 6.2.9). Before
you send ordinary data, you should always check that you have enough
credit.

6.2.8 TLIB Access Point - TLAP

This is an address, in a form accepted by TLIB, at which a user is
accessible. This address identifies the user regardless of physical
location. *

There are two ways to describe a TLAP:

1) You may use the name of the system where the TLAP resides,
and a ”TLAP suffix”. The suffix is a name, of your choice,
which identifies the TLAP within the system.

2) You may use the "magic number", which uniquely defines the
TLAP within the network.

In the connect phase, a connection is established between two TLAPs.
You may establish several connections between the same TLAPs. Once a
connection is established, TSDUs are transferred between the TLAPs.

6.2.9 Events

Certain changes in the communication system, resulting from actions by
the remote user or TLIB, are signalled to you by the "event"
mechanism.

Examples of events are: timeout, change in credit, and TLIB has
received data. Some events require processing by calls to TLIB.

The only way an event can be signalled to you is through the TLPWAIT
call.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 207
INTRODUCTION TO TLIB

6.3 General Information about the Routines

The routine implementation in PLANC is:

ROUTINE VOID,VOID (parameters)
Example of call: TLPTMLS(tlib_refno,retstat)

In FORTRAN a subroutine implementation is used.

Example of call: CALL TLFTMLS(ITLREF,ISTAT)

Normal return status is zero. If you include the appropriate
definition file in your source code, you may use the symbol OK for the
zero status. The file is called TLPzDEFS for PLANC and TLFzDEFS for
FORTRAN. Other return status are error codes. A list of the error
codes plus their corresponding symbols is provided in appendix F.

Notice that when we refer to a routine in this chapter, it starts with
the letters TLP. This is how the PLANC routines are named. The FORTRAN
routines start with TLF instead of TLP

6.4 Table of Events

The symbols for the event codes are defined in the TLPzDEFS and the
TLFzDEFS files, for PLANC and FORTRAN respectively. You may specify a
whole set of events by using logical OR to form a bit mask.

Event code Value Explanation

TLEVtime l Timeout
TLEVcnin 2 Connection request has arrived
TLEVcncf 4 Connection is accepted
TLEVdain 8 Data has arrived
TLEVcrdt 16 Credit change
TLEdin 32 Expedited data has arrived
TLEcdt 64 You may send more expedited data
TLEVdcin 128 Disconnect due to remote user or TLIB
TLEVdccf 256 Requested disconnection is completed
TLEVunkn 1024 Message arrived on port not known to TLIB
TLEVothr 2048 Not a TLIB event, timeout, or unknown port

The reason for TLEVunkn is that you may combine the use of TLIB and
XMSG in the same RT program. As you performed the TLPWAIT call, to
wait for an event, a message may arrive on a port opened by an XMSG
call. The TLEVunkn tells you that this has happened.

The TLPWAIT routine is at some point performing the 'tmout' monitor
call. If your RT—program becomes rescheduled for execution, for
example by another program, the TLEVothr event will occur.

Norsk Data ND—60.164.3 EN

208 COSMOS PROGRAMMER GUIDE
INTRODUCTION TO TLIB

6.5 Handling of User Buffers

TLIB has no buffers of its own. This means that you have to provide
all the input buffers, by using the TLPPRBF call. Incoming data is
transferred directly from XMSG space into these buffers. The contents
of your output buffers are transferred by TLIB directly into XMSG
space.

When you have provided TLIB with a buffer, TLIB ”owns" this buffer,
although it still physically resides in your program area. Such a
buffer always becomes allocated to a specific connection. To get the
buffer back from TLIB with valid data, you have to do one of the
following calls:

TLPCNIN, TLPCNCF, TLPDAIN, TLPEDIN, or TLPDCIN

You may have several buffers outstanding (i.e., owned by TLIB) to
receive ordinary data. TLIB automatically transfers the data into the
buffers when the data arrives. Having receive buffers available on a
connection will increase throughput on that connection. If TLIB does
not have buffers available, the received data has to wait in the
transport system. Thus the remote user may be prevented from sending
further data until you provide TLIB with the necessary buffer(s).

If a connection indication, a connection confirmation, or a disconnect
indication contains user data, then the first, sufficiently large
buffer provided, following the event, is used for the user data. In
the presence of user data, such a buffer must be provided between the
event and the call TLPCNIN, TLPCNCF, or TLPDCIN.

The first, sufficiently large, buffer provided on a connection after
you are notified of the arrival of expedited data (TLEdin event), is
used for the expedited data. Such a buffer must, therefore, be
provided between the TLEdin event and the call TLPEDIN.

All buffers provided for TLIB are queued for ordinary data, if no user
data or expedited data is waiting. All outstanding buffers on a
connection are automatically returned to you at the end of the
connection, i.e., following TLPDCRQ or TLPDCIN. Once a buffer has been
returned to you either with data, empty, or with an error return, TLIB
will not access the buffer again until you do another TLPPRBF on it.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 209
INTRODUCTION TO TLIB

6.6 Sun-ary of the Different Routines

The different routines are listed in the following table. Notice that
they start with the symbol TLP. This is how the PLANC routines are
named. The corresponding FORTRAN routines start with TLF instead of
TLP. The calls are listed alphabetically.

Routine Purpose Phase where used

TLPCNCF Connection confirmation Connection establishment
TLPCNIN Connection indication Connection establishment
TLPCNRQ Connection request Connection establishment
TLPCNRS Connection response Connection establishment
TLPDAIN Data indication Data transfer
TLPDARQ Data request Data transfer
TLPDCIN Disconnect indication Disconnect
TLPDCRQ Disconnect request Disconnect
TLPEDIN Expedited data indication Data transfer
TLPEDRQ Expedited data request Data transfer
TLPINIT Initialize TLIB
TLPPRBF Provide buffer Used in all phases
TLPSTLS Start listening Connection establishment
TLPTMLS Terminate listening Connection establishment
TLPWAIT Wait for event to occur Used in all phases

Norsk Data ND-60.l64.3 EN

210

6.7 Egéggle of Use

In this
user is termed "server".

Successful Connection Establishment

server
Erogram

client
Erogram TLPSTLS

TLPWAIT
TLPCNRQ .
TLPWAIT .

TLPPRBF

TLPCNIN

TLPCNRS
flEHmF.

TLPCNCF .

o\°
o\°

o\°
o\°

o\°
o\°

o\°
<:\o

o\°
o\0

o\‘7
o\0

o\°
o\°

o\°
o\°

COSMOS PROGRAMMER GUIDE
INTRODUCTION TO TLIB

example, the calling user is termed "client", and the called

permit incoming connection
indication
wait for one
connect to remote user
wait for acceptance
only necessary if
user—data was present
get info from connection
indication event
accept connection
only necessary if
user—data was present
get info from connection
confirmation event
connection now established
and data may be transferred

Data Transfer ~ One or More Instances of the Following Sequence

client or other
server Erogram

TLPWAIT
TLPDARQ

TLPPRBF

TLPDAIN

User—Initiated Termination

o\°
o\°

o\°
o\°

o\°
o\°

o\°
o\0

of Established

client or other
server Erogram

TLPWAIT
TLPDCRQ

TLPDCIN

o\°
o\°

o\°
o\°

transfer initiated by
either user
by one or more calls
this could be done
before data indication
by one or more calls
get data
by one or more calls

Connection

termination initiated by
either user
get info from disconnect
indication event

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 211
INTRODUCTION TO TLIB

6.8 XMSG-based TLIB

This section discusses various aspects of the version of TLIB based on
XMSG.

6.8.1 TLIB Size

Code size is approximately 8.5K words.

The stack plus a data area, which is independent of the maximum number
of connections etc., require approximately 800 words.

In addition, the space required for data which depends on library
parameters is currently, approximately:

30 words per connection
25 words per XMSG port
10 words per queued user buffer
10 words per TPDU queued in XMSG space

6.8-2 @229
The speed is discussed in terms of additional XMSG monitor calls
during the data transfer phase of a connection compared to direct XMSG
use.

The extra overheads are as follows:

i) Each data TPDU requires an extra read/write monitor call for the
TLIB protocol header.

ii) Depending on the relative lengths of the user's logical data
unit (TSDU) and the TLIB transfer unit (data TPDU), the TSDU may
require splitting into a number of data TPDUs.

iii) The implementation of flow control requires the use of an ACK
TPDU, carried by an XMSG message. This requires processing at
both ends. One or more ACKS are generated when data from a TSDU
is transferred into user space.

iv) Because TLIB is a general-purpose transport interface, it can
make no assumptions about traffic flow. This can lead to
inefficient use (unnecessary get/release) of XMSG buffers in the
context of particular traffic patterns, e.g. transactions.

Norsk Data ND—60.l64.3 EN

212 COSMOS PROGRAMMER GUIDE

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 215
TLIB/PLANC REFERENCE GUIDE

7 TLIB/PLANC REFERENCE GUIDE

7.1 The TLIB/PLANC Record Types

The following sections briefly explains the record types used in the
TLIB PLANC interface.

7.2 Record Types

All the records are defined in the TLPzDEFS file. You should include
it in your program.

7.2.1 Identification of a TLAP

The following record is used to define the format of a name. Names
currently defined this way are TLAPnetAddress and TLAPsuffix.

TYPE TLNM = RECORD
INTEGER4: TLNMlength
BYTES: TLNMstring(OzTLMXnameLength ~ 1)

ENDRECORD

Currently there are two ways of defining a TLAP: Using the TLAPZString
format, or the TLAPXMSG format. The type TLAP defines a base record
for the two variants.

TYPE TLAP = RECORD
INTEGER4: TLAPformat

ENDRECORD

When using the TLAPZString format, the TLAP is defined by a "network
address" and a "TLAP suffix". A "network address" is the same as a
system name. A "TLAP suffix" is a name used to identify the TLAP
within the system. Both the network address and the TLAP suffix have a
limit of 32 characters (TLMXnamelength = 32). TLAPformat must be set
to TLtlapZString.

TYPE TLAPZString = TLAP RECORD
TLNM: TLAPnetAddress
TLNM: TLAPsuffix

ENDRECORD

Norsk Data ND-60.l64.3 EN

216 COSMOS PROGRAMMER GUIDE
TLIB/PLANC REFERENCE GUIDE

When using the TLAPXMSG format, the TLAP is defined by a magic number.
TLAPformat must be set to TLtlapMagic.

TYPE TLAPXMSG = TLAP RECORD
INTEGER4: TLAPmagic

ENDRECORD

7.2.2 Quality of Service

Currently, only default quality of service is provided. The value of
TLQSisDefault has to be TRUE.

TYPE TLQS = RECORD
BOOLEAN: TLQSisDefault

ENDRECORD

7.2.3 User Buffer Specification

This is a base record for variants. TLBFid is the buffer identifier.
TLBFformat is the code for the address format.

TYPE TLBF = RECORD
INTEGER: TLBFid
INTEGER: TLBFformat

ENDRECORD

So far there is only one buffer address format: TLlogicalAddress. This
is the corresponding buffer address variant record:

TYPE TLBFLogical = TLBF RECORD
INTEGER: TLBFaddress

ENDRECORD

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 217
TLIB/PLANC REFERENCE GUIDE

7.2.4 Structure of an Event

An event has the following structure:

TYPE TLEV = RECORD
INTEGER: TLEVrefno
INTEGER: TLEVcode
INTEGER ARRAY: TLEVdata(0:TLMXevData-l)

ENDRECORD

TLMXevdata is currently set to 2.

TLEVrefno is a connection identifier belonging to either the user or
TLIB.

TLEVcode is a bit mask of event codes. If this is a received event,
TLEVcode is just one single event. See table of events on page 207.

TLEVdata has meaning only if this is a received event. The meaning is
dependent upon the type of event:

TLEVcode = TLEVdain TLEVdata(0) gives the total amount of data
received since the last signalled event of
this type.
TLEVdata(l) gives the number of complete
TSDUs in the total data.

TLEVcode = TLEdin TLEVdata(O) gives the length of the
expedited data.

TLEVcode = TLEVcnin TLEVdata(O) gives the length of the
or = TLEVcncf user data.
or = TLEVdcin

TLEVcode = TLEVcrdt TLEVdata(O) gives the new value of the
user's credit.

TLEVcode = TLEVunkn TLEVdata(O) gives the XMSG port number.
In this case, TLEVrefno has no significance.
If the TLEVunkn event occurs, the return
from TLPWAIT is equivalent to a return from
the XMSG general status call (XMPFGST).
Note that the message must be received
before TLPWAIT is called again.

Norsk Data ND—60.164.3 EN

218 COSMOS PROGRAMMER GUIDE
TLIB/PLANC REFERENCE GUIDE

7.2.5 TLIB/PLANC Reference Section

Routine name : TLPCNCF

No: Parameter Name/ R/W Explanation:
Type:

1 tlib_refno R Connection identifier belonging to TLIB.
Integer

2 retstat W Return status.
Integer

3 quality W Quality of service.
qs

4 initial_credit W Number of bytes you are allowed to send
Integer initially. This may be zero.

5 userdata W User data.
lf

6 lengthfiuserdata W Length of user data in bytes.
Integer

FUNCTION. .

EXPLANATION :

2 Connection confirmation.

This call is used to receive the information associated
with connection establishment, after TLEVcncf is
signalled.

A connection response coming from the other end will be
perceived by TLIB as a connection confirmation. This is
being flagged as a TLEVcncf event. The W parameters in
TLPCNCF are the data associated with this event.

If user data was sent by the remote end, it is placed in
the first, sufficiently large buffer provided on the
connection, after TLEVcf is signalled. An error return
results if user data is present and no such buffer was
provided.

I tlpcncf(tlib_refno,retstat,quality,initial_credit,&
userdata,length_userdata)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 219
TLIB/PLANC REFERENCE GUIDE

Routine name 2 TLPCNIN

No: Parameter Name/ R/W Explanation:
Type:

1 tlibvrefno R Connection identifier belonging to TLIB.
Integer

2 retstat W Return status.
Integer

3 remote_address W Remote TLAP, given as magic number.
Tlap

4 quality W Quality of service.
qs

5 initial_credit W Number of bytes you are permitted to
Integer send initially (may be zero)t

6 userdata W User data.
lf

7 lengthvuserdata W Length of user data in bytes.
Integer

FUNCTION.

EXPLANATION :

USAGE.

2 Connection indication.

This call is used to receive the information associated
with connection establishment, after TLEVcnin is
signalled.

When you receive a connection request from a remote
TLAP, it will be perceived by your task as a connection
indication. TLIB will signal the connection indication
as an event, TLEVcnin. The W parameters in TLPCNIN are
information associated with this event.

If user data was sent by the remote end, it is placed in
the first, sufficiently large buffer provided on the
connection, after TLEVcnin is signalled. An error return
will result if user data is present and no such buffer
was provided.

I tlpcnin(tlib_refno,retstat,remote_address,quality&
initial‘credit,userdata,length_userdata)

Norsk Data ND—60.l64.3 EN

220 COSMOS PROGRAMMER GUIDE
TLIB/PLANC REFERENCE GUIDE

Rmfifinermme: TLPCNRQ

No: Parameter Name/ R/W Explanation:
Type:

1 user_address R Local TLAP.
Tlap

2 remote_address R Remote TLAP.
Tlap

3 userfirefno R Connection identifier belonging to user.
Integer

4 quality R Quality of service.
qs

5 userdata R User data. Must start on a word
lf boundary.

6 length_userdata R Length of user data. Must be an even
Integer number.

7 retstat W Return status.
Integer

8 tlib_refno W Connection identifier belonging to TLIB.
Integer

FUNCTION. : Connection request.

EXPLANATION 1 A connection between the local and the remote TLAPS is
initiated. Before the exchange of TSDUs can take place,
the connection must be completely established.

USAGE.. 2 tlpcnrq(user_address,remote_address,user_refno,quality,&
userdata,lengthvuserdata,retstat,tlib-refno)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 221
TLIB/PLANC REFERENCE GUIDE

Rmninermme: TLPCNRS

No: Parameter Name/ R/w Explanation:
Type:

1 tlib_refno R Connection identifier belonging to TLIB.
Integer

2 quality R Quality of service.
qs

3 userdata R User data. Must start on a word
lf boundary.

4 lengthfiuserdata R Length of user data. Must be an even
Integer number.

5 retstat W Return status .
Integer

FUNCTION. . 2 Connection response.

EXPLANATION 2 This call will tell the remote user that the connection
request is accepted. It should be invoked when the
connection indication data has been retrieved by
TLPCNIN.

USAGE . . . : tlpcnrs(tlibwrefno,quality,userdata,length_userdata,&
retstat)

Norsk Data ND—60.l64.3 EN

222 COSMOS PROGRAMMER GUIDE
TLIB/PLANC REFERENCE GUIDE

Routine name : TLPDAIN

No: Parameter Name/ R/W Explanation:
Type:

1 tlib_refno R Connection identifier belonging to TLIB.
Integer

2 retstat W Return status.
Integer

3 userflbuffer W Buffer previously given to TLIB for use
lf on this connection.

4 length_data W Length of received data.
Integer

5 flags W Indicates whether this data represents
Integer the end of a TSDU.

FUNCTION. 2 Data indication.

EXPLANATION :

USAGE.

When data is received, it is signalled via the event
TLEVdain. If TLIB is not yet provided with a data
buffer, you must perform a TLPPRBF call. Then you may,
at any time, obtain the data buffer from TLIB.

When it is full, TLIB puts the data buffer in a queue,
waiting to be transferred to you later. This transfer
takes place when you perform the TLPDAIN call. A user
buffer is considered to be full when it is actually
filled with data, or when it contains data representing
the end of a TSDU. The user will not receive a buffer
containing data from more than one TSDU.

A buffer partally full is returned by TLPDAIN when there
is outstanding data on the connection and no full
buffers.

If there is no outstanding data, and you have previously
given a buffer to TLIB, TLPDAIN will return the buffer
to you.

When you receive data representing the end of a TSDU,
flags will be set to TLeotsdumark = 1. This symbol is
defined in the TLP:DEFS file.

I tlpdain(tlib_refno,retstat,user_buffer,&
length_data,flags)

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 223
TLIB/PLANC REFERENCE GUIDE

Routine name : TLPDARQ

No: Parameter Name/ R/W Explanation:
Type:

1 tlib_refno R Connection identifier belonging to TLIB.
Integer

2 user_buffer R TSDU, or part of a TSDU. Must start on a
lf word boundary.

3 length_data R Number of bytes in user_buffer. Must be
Integer even.

4 flags W Indicates whether this data represents
Integer the end of a TSDU.

5 retstat W Return status.
Integer

6 new_credit W The credit you have after a successful
Integer TLPDARQ.

FUNCTION. 1 Data request.

EXPLANATION : To transfer ordinary data to the remote user, you have

USAGE.

to use this call.

If this data represents the end of a TSDU, flags must be
set to tleotsdumark = 1. This symbol is defined in the
TLpzDEFS file.

Make sure that flags are set to tleotsdumark when you
invoke TLPDARQ for the last time. This will ensure that
nothing will be left in the internal buffers of the
transport system.

1 tlpdarq(tlib_refno,user_buffer,length_data,&
flags,retstat,new_credit)

Norsk Data ND—60.l64.3 EN

224 COSMOS PROGRAMMER GUIDE
TLIB/PLANC REFERENCE GUIDE

Routine name : TLPDCIN

No: Parameter Name/ R/W Explanation:
Type:

1 tlibarefno R Connection identifier belonging to TLIB.
Integer

2 retstat W Return status.
Integer

3 disconn_reason W Reason for disconnection coming from the
Integer remote end or from TLIB. See appendix F.

4 userdata W User data.
lf

5 length_userdata W Length of user data in bytes.
Integer

FUNCTION.

EXPLANATION

USAGE.

1 Disconnect indication.

: An incoming disconnect request is perceived by TLIB as a
disconnect indication. TLIB signals this to you via a
TLEVdcin event. TLPDCIN gives you the information
associated with this event.

2 tlpdcin(tlib_refno,retstat,disconnwreason,&
userdata,lengthguserdata)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 225
TLIB/PLANC REFERENCE GUIDE

Rmnjnermme: TLPDCRQ

No: Parameter Name/ R/W Explanation:
Type:

1 tlib_refno R Connection identifier belonging to TLIB.
Integer

2 userdata R User data. Must start on a word
lf boundary. Delivery is not guaranteed.

3 length_userdata R Length of user data. Must be an even

4 retstat
Integer number.

W Return status.
Integer

FUNCTION.

EXPLANATION :

2 Disconnect request.

The purpose of this call is one of the following:

1) To refuse a connection request from a remote
user, signalled by an TLEVcnin event.

2) To terminate an established connection.

Any outstanding buffered data not yet sent to the remote
end is flushed. The same is true for received data not
yet given to you.

When the disconnect is complete, TLIB will signal this
to you via the TLEVdccf event.

No other calls may be invoked on the connection after
you have done a TLPDCRQ.

I tlpdcrq(tlib_refno,userdata,length_userdata,retstat)

Norsk Data ND~60.164.3 EN

226 COSMOS PROGRAMMER GUIDE
TLIB/PLANC REFERENCE GUIDE

Routine name : TLPEDIN

No: Parameter Name/ R/W Explanation:
Type:

1 tlib_refno R Connection identifier belonging to TLIB.
Integer

2 retstat W Return status.
Integer

3 user_buffer W Buffer provided for expedited data.
lf

4 length_expdata W Number of bytes in buffer.
Integer

FUNCTION.

EXPLANATION :

USAGE.

I Expedited data indication.

By using this call, you will receive a unit of expedited
data whose arrival has been signalled by a TLEdin
event.

The first, sufficiently large, user buffer provided to
TLIB for the connection following the TLEdin event
will be used for the expedited data. If no such buffer
was provided, an error return will be given by TLPEDIN.

2 tlpedin(tlib_refno,retstat,user_buffer,&
lengthuexpdata)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 227
TLIB/PLANC REFERENCE GUIDE

Routine name : TLPEDRQ

No: Parameter Name/ R/W Explanation:
Type:

1 tlib_refno R Connection identifier belonging to TLIB.
Integer

2 user_buffer R User buffer. Must start on a word
lf boundary.

3 length_expdata R Number of bytes in user buffer. Must be

4 retstat
Integer even.

W Return status.
Integer

FUNCTION.

EXPLANATION :

USAGE.

2 Expedited data request.

To transfer expedited data to the remote user, this call
is provided.

TLIB guarantees that the arrival of the expedited data
will be signalled to the remote user, before any
ordinary data subsequently will be sent on the
connection. The arrival of the expedited data may or may
not be signalled to the remote user ahead of ordinary
data sent previously.

Only one unit of expedited data may be outstanding at a
time. You may send no more until you receive a TLEcdt
event.

: t1pedrq(tlib_refno,user_buffer,length_expdata,&
retstat)

Norsk Data ND-60.l64.3 EN

228 COSMOS PROGRAMMER GUIDE
TLIB/PLANC REFERENCE GUIDE

Rmnjnermme: TLPINIT

No: Parameter Name/ R/W Explanation:
Type:

1 desired_mode R Specification of TLIB operating mode.
Tlmd

2 tldynamic R Working storage for TLIB.
Integer array

3 retstat W Return status.
Integer

FUNCTION. : Initializes TLIB. This must be the first call on TLIB.

EXPLANATION i TLIB operating mode is specified by the TLMD record
which is defined in the TLPzDEFS file:

TYPE TLMD = RECORD
TLXMuse:
BOOLEAN:
INTEGER:
INTEGER:
INTEGER:
INTEGER:

ENDRECORD

TLMDxmnode
TLMDuniqueSuffix
TLMDmonnections
TLMDmxAccessPoints
TLMDmxBuffers
TLMDmueuedTpdus

TLXMuse is defined by:
TYPE TLXMuse = ENUMERATION (TLXMinUserMode,

Note

TLXMinSystemMode)

that TLXMinSystemMode is very rarely used. If you
really need to use it, we refer you to the XMSG
description.

TLMDuniqueSuffix is set to TRUE if suffix names should
be unique for this task.

TLMDmonnections is the maximum number of connections
you want to
TLMXconnections

use in this task. Standard value
= 20 may be used.

TLMDmxAccessPoints is the maximum number of TLAPs you
want to use in this task. Standard value
TLMXaccesspoints =3 may be used.

TLMDmxbuffers is the maximum number of user buffers in
your task that TLIB can own at one time. Standard value
TLMXbuffers = 2 0 may be used.

TLMDmueuedTpdus is the maximum number of TLIB TPDUs
permitted to be queued in XMSG space at one time.
Standard value TLMXqueuedTpdus = 50 may be used.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 229
TLIB/PLANC REFERENCE GUIDE

The size of tldynamig is dependent upon the values
described above. You dimension it as follows:

INTEGER ARRAY: TLDYNAMIC(O:TLSZdynamic~l).

TLSZdynamic will automatically be calculated for you.

USAGE . . . : tlpinit(desired_mode,tldynamic,retstat)

Norsk Data ND-60.l64.3 EN

230 COSMOS PROGRAMMER GUIDE
TLIB/PLANC REFERENCE GUIDE

Rmnjnermme: TLPPRBF

No: Parameter Name/ R/W Explanation:
Type:

1 tlib_refno R Connection identifier belonging to TLIB.
Integer

2 user_buffer R User buffer. Must start on a word
lf boundary.

3 length_buffer R Length of user buffer. Must be an even
Integer number of bytes.

4 retstat W Return status.
Integer

FUNCTION.

EXPLANATION

2 Provides buffer.

2 A buffer is provided for use by TLIB. Whenever ordinary
data arrives, TLIB stores the data in this buffer.

For user data or expedited data, a buffer has to be
provided where the event, that signals the incoming
data, has occurred.

To get the buffer back from TLIB, you have to perform a
TLIB call. For example, you use the TLPDAIN routine to
obtain ordinary data. To obtain user data from a
connection request, you use the TLPCNIN routine.

I tlpprbf(tlib_refno, user_buffer,&
length_buffer,retstat)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 231
TLIB/PLANC REFERENCE GUIDE

Rmfljnermme: TLPSTLS

No: Parameter Name/ R/W Explanation:
Type:

1 userfiaddress R Local TLAP.
Tlap

2 user_refno R Connection identifier belonging to user.
Integer

3 retstat W Return status.
Integer

4 tlib_refno W Connection identifier assigned by TLIB.
Integer

FUNCTION.

EXPLANATION

USAGE.

2 Starts listening.

I This call tells TLIB that you are willing to receive a
connection indication on the specified TLAP. To receive
multiple simultaneous connections on a TLAP, TLPSTLS
must be invoked the corresponding number of times.

TLIB automatically re-initiates a listening for a new
connection indication after the termination of a
previous connection. The same tlib_refno and user__refno
apply to successive connections.

If you refuse to accept further connection indications,
TLPTMLS should be invoked.

2 tlpstls(user‘address,user_refno,retstat,&
tlib_refno)

Norsk Data NDe60.l64.3 EN

232 COSMOS PROGRAMMER GUIDE
TLIB/PLANC REFERENCE GUIDE

Rmflfinermme: TLPTMLS

No: Parameter Name/ R/W Explanation:
Type:

1 tlib_refno R Connection identifier belonging to TLIB.
Integer

2 retstat W Return status.
Integer

FUNCTION.

EXPLANATION

USAGE.

2 Terminates listening.

: If you want to tell TLIB that you refuse to accept
further connection indications on this connection, you
should use this call. In other words, TLPTMLS cancels
the effect of the prior TLPSTLS.

2 tlptmls(tlib_refno,retstat)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 233
TLIB/PLANC REFERENCE GUIDE

Routine name : TLPWA”~

No: Parameter Name/ R/W Explanation:

l timeout R Maximum waiting time for event.
Tltm

2 requested_event R Requested event.
Tlev

3 retstat W Return status.
Integer

4 actual_event W Actual event.
Tlev

FUNCTION. 2 Waits for event to occur.

EXPLANATION I See also important note on next page.

The Tltm type in timeout has the following definition:

TYPE TLTM = RECORD
TLTMcode: TLTMunits
INTEGER: TLTMlength

ENDRECORD

TLTMcode is defined as follows:

TYPE TLTMcode = ENUMERATION (TLTMbasic,TLTMsecs,
TLTMmins,TLTMhrs)

These TLTMunits denote: basic time units, seconds,
minutes, and hours respectively.

TLTMlength describes the number of time units.

A value of TLinfiniteTime for <timeout.TLTMlength>
specifies an infinite timeout period.

A value of O for <timeout.TLTMlength> is equivalent to a
poll for outstanding TLIB events of the requested type,
on the requested connection.

You may specify that TLIB should wait on a particular
connection for a particular set of events.This is
specified by appropriately setting the desired values in
(requested event.TLEVrefno> and (requested
event.TLEVcode>. <requested_event.TLEVrefno) requires a
connection identifier belonging to TLIB.

Continued on next page.

Norsk Data ND—60.164.3 EN

234 COSMOS PROGRAMMER GUIDE
TLIB/PLANC REFERENCE GUIDE

The set of desired events is formed from the logical OR
of the corresponding event codes.

A value of TLanyRefno may be used to accept any
connection. Likewise, TLanyEvent may be used to accept
any event.

The actual event that has occurred, is returned in
actual_~event, with <actual*_event.TLEVrefno> set to a
user_refno.

I tlpwait(timeout,requested_event,retstat,&
actualfievent)

IWTMT NOTE for those who use the TLEVothr event:

A routine TLOEV can be called as a part of TLPWAIT. If
you use the TLEVothr event, you should provide a
routine in your program called TLOEV:

ROUTINE STANDARD VOID,BOOLEAN: TLOEV

This routine will check all the possible "other"
events you are using, e.g. for the presence of
terminal input, and return TRUE if any are pending
(and FALSE otherwise). TLIB provides a default version
of TLOEV which always returns FALSE. If you want to
make sure that no events of type TLEVothr are missed,
you have to provide TLEOV in your program.

The reason that an "other" event may be missed, is
that all wakeups from the wait state use one single
bit in the program's RT‘description (the SREP bit). If
two wakeups, one leading to an ”other" event followed
by one done by XMSG, occur close together just before
TLIB executes the TMOUT monitor call, the information
about the "other" event is lost.

Norsk Data ND-60.l64.3 EN

..;
3

,

1
.

f.
y

.1.
f

r
y

u
n

3.3%.51547

xhnl_yfilz....
‘rt‘rLILkunfirfrvvk‘r‘Lr..E

L...L3ls
,1”

.y
3};

.v
u.3.,.§.f.,£.:

$31,...
r,....y:..n....

£
1

1
2

1
3

..:L
.i...ffj:

I ' Norsk Data lib-$0

r"\)

COSMOS PROGRAMMER GUIDE 237
TLIB/FORTRAN REFERENCE GUIDE

8 TLIB/FORTRAN REFERENCE GUIDE

8.1 The TLIB/FORTRAN Data Types

The following sections briefly explains the data types used in the
TLIB FORTRAN interface.

8.2 Data §Eggifications

All the symbols referred to, except array names like IRMADD and
IEVENT, are defined in the TLFzDEFS file. You should include it in our
program.

8.2.1 Specification of a TLAP

A TLAP is specified by an INTEGER*4 array. It may be dimensioned as
follows '

DIMENSION IRMADD(O:TLALTLAP-l)

where TLALTLAP = 3 + (TLMXNAMELENGTH/Z).

The different positions in the array may be defined by the following
symbols:

TLAPFORMAT = O
TLAPLNNET = l
TLAPNETADDRESS = 2
TLAPLNSUFFIX = 2+(TLMXNAMELENGTH/4)
TLAPSUFFIX = 3+(TLMXNAMELENGTH/4)
TLAPMAGIC = l

IRMADD(TLAPFORMAT) specifies the format in which the address is given.
There are two possible formats: TLTLAPZSTRING or TLTLAPMAGIC.

If IRMADD(TLAPFORMAT) = TLTLAPZSTRING, then the address is contained
within the array as two character strings:

IRMADD(TLAPLNNET) gives the number of
characters in the "network address". The "network
address" is the same as the system name.
IRMADD<TLAPNETADDRESS), IRMADD(TLAPNETADDRESS+1)....
contain the packed character string for the network
address.

Norsk Data ND-60.164.3 EN

238 COSMOS PROGRAMMER GUIDE
TLIB/FORTRAN REFERENCE GUIDE

IRMADD(TLAPNSUFF) gives the number of characters
in the "TLAP suffix”. This suffix is a name used to
identify the TLAP within the system.
IRMADD(TLAPSUFFIX), IRMADD(TLAPSUFFIX+1)
contain the packed character string for the suffix.

If IRMADD(TLAPFORMAT) = TLTLAPMAGIC, then the address is given as a
magic number. IRMADD(TLAPMAGIC) then contains the magic number.

8.2.2 Quality of Servi

The quality of service is specified by an integer array. It may be
dimensioned as follows: DIMENSION IQOS(O:TLALQOS~1) where TLALQOS = 1.
Only the default quality of service is currently provided. One way of
setting the default value is: IQOS(TLQSISDEFAULT) = TLISDEFAULT.

8.2.3 User Buffer Specification

Buffers are provided to TLIB in the form of INTEGER*2 ARRAYS. They are
provided with a user—supplied identifier, which is used by TLIB to
identify the particular buffer to the user when it is returned (since
the user may have several buffers outstanding on the connection).

8.2.4 Structure of an Event

An event is specified by an integer array. It may be dimensioned as
follows: DIMENSION IEVENT(O:TLALEVENT—l) where TLALEVENT = 4. The
different positions in the array may be defined by the following
symbols:

TLEVREFNO = O
TLEVCODE l
TLEVODATA = 2
TLEVlDATA = 3

IEVENT(TLEVREFNO) is a connection identifier belonging to either the
user or TLIB.

IEVENT(TLEVCODE) is a bit mask of event codes. If this is a received
event, IEVENT(TLEVCODE) is just one single event. See table of events
on page 207.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 239
TLIB/FORTRAN REFERENCE GUIDE

The last two elements of IEVENT have meaning only if this is a
received event. The meaning is dependent upon the type of event:

(TLEVCODE) = TLEVDAIN (TLEVODATA) gives the total amount of data
received since the last signalled event of
this type. (TLEVlDATA) gives the number of
complete TSDUs in the total data.

(TLEVCODE) = TLEVXDIN (TLEVODATA) gives the length of the
expedited data.

(TLEVCODE) = TLEVCNIN (TLEVODATA) gives the length of the user data.
or = TLEVCNCF
or = TLEVDCIN

(TLEVCODE) = TLEVCRDT (TLEVODATA) gives the new value of the user's
credit.

(TLEVCODE) = TLEVUNKN (TLEVODATA) gives the XMSG port number.
In this case TLEVREFNO has no significance.
If the TLEVUNKN event occurs, the return
from TLFWAIT is equivalent to a return from
the XMSG general status call (XMFFGST).
Note that the message must be received
before TLFWAIT is called again.

Norsk Data ND-60.164.3 EN

240 COSMOS PROGRAMMER GUIDE
TLIB/FORTRAN REFERENCE GUIDE

8.2.5 TLIB/FORTRAH Reference Section

Routine name : TLFCNCF

No: Parameter Name/ I/O Explanation:
Type:

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 ISTAT 0 Return status.
Integer

3 1008 0 Quality of service.
Integer array

4 ICREDT 0 Number of bytes you are allowed to send
Integer initially. This may be zero.

5 IUBFID 0 User data.
Integer

6 LENDAT 0 Length of user data in bytes.
Integer

FUNCTION. 1 Connection confirmation.

EXPLANATION :

USAGE.

This call is used to receive the information associated
with connection establishment, after TLEVCNCF is
signalled.

A connection response coming from the other end will be
perceived by TLIB as a connection confirmation. This is
being flagged as a TLEVCNCF event. The output parameters
in TLFCNCF are the data associated with this event.

If user data was sent by the remote end, it is placed in
the first, sufficiently large buffer provided on the
connection after TLEVCNCF is signalled. An error return
results if no such buffer was provided.

I CALL TLFCNCF(ITLREF,ISTAT,IQOS,ICREDT,IUBFID,LENDAT)

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 241
TLIB/FORTRAN REFERENCE GUIDE

Routine name : TLFCNIN

No: Parameter Name/ I/O Explanation:

4 IQOS

Type:

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 ISTAT 0 Return status.
Integer

3 IRMADD 0 Remote TLAP, given as magic number.
Integer*4 array

Integer array
0 Quality of service.

5 ICREDT 0 Number of bytes you are permitted to
Integer send initially (may be zero).

6 IUBFID O Identifier for user buffer.
Integer

7 LENDAT 0 Length of user data in bytes.
Integer

FUNCTION. 1 Connection indication.

EXPLANATION I This call is used to receive the information associated

USAGE.

with the establishment of the connection after TLEVCNIN
is signalled.

When you receive a connection request from a remote
TLAP, it will be perceived by your task as a connection
indication. TLIB will signal the connection indication
as an event, TLEVCNIN. The W parameters in TLFCNIN are
information associated with this event.

If user data was sent by the remote end, it is placed in
the first, sufficiently large buffer provided on the
connection after TLEVCNIN is signalled. An error return
will result if no such buffer was provided.

2 CALL TLFCNIN(1TLREF,ISTAT,IRMADD,IQOS,
ICREDT,IUBFID,LENDAT)

Norsk Data ND-60.l64.3 EN

242 COSMOS PROGRAMMER GUIDE
TLIB/FORTRAN REFERENCE GUIDE

Rmnfinetmme: TLFCNRQ

No: Parameter Name/ I/O Explanation:
Type:

1 IUSADD I Local TLAP.
Integer*4 array

2 IRMADD I Remote TLAP.
Integer*4 array

3 IUSREF I Connection identifier belonging to user.
Integer

4 IQOS I Quality of service.
Integer array

5 IUBUF I User data. Must start on a word
Integer*2 array boundary.

6 LENDAT I Length of user data. Must be an even
Integer number.

7 ISTAT 0 Return status.
Integer

8 ITLREF 0 Connection identifier belonging to TLIB.
Integer

FUNCTION. 2 Connection request.

EXPLANATION 1 A connection between the local and remote TLAPs is
initiated. Before the exchange of TSDUS can take place,
the connection must be completely established.

USAGE . I CALL TLFCNRQ(IUSADD,IRMADD,IUSREF,IQOS,IUBUF,
LENDAT,ISTAT,ITLREF)

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 243
TLIB/FORTRAN REFERENCE GUIDE

Rmfldnermme: ILFCNRS

No: Parameter Name/ I/O Explanation:
Type:

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 IQOS I Quality of service.
Integer array

3 IUBUF I User data. Must start on a word
Integer*2 array boundary.

4 LENDAT I Length of user data. Must be an even
Integer number.

5 ISTAT 0 Return status.
Integer

FUNCTION. . 2 Connection response.

EXPLANATION : This call is used to tell the remote user that the
connection request is accepted. It must be invoked after
the connection indication data has been retrieved by
TLFCNIN.

USAGE . . . 2 CALL TLFCNRS(ITLREF,IQOS,IUBUF,LENDAT,ISTAT)

Norsk Data ND~60.164.3 EN

244 COSMOS PROGRAMMER GUIDE
TLIB/FORTRAN REFERENCE GUIDE

Rmnjnermme: TLFDAIN

No: Parameter Name/ I/O Explanation:
Type:

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 ISTAT 0 Return status.
Integer

3 IUBFID O Identifier for buffer previously given
Integer to TLIB for use on this connection.

4 LENDAT 0 Length of received data.
Integer

5 IFLAGS 0 Indicates whether this data represents
Integer the end of a TSDU.

FUNCTION. 1 Data indication.

EXPLANATION I When data is received, it is signalled via the event

muse.

TLEVDAIN. If TLIB is not yet provided with a data
buffer, you must perform a TLFPRBF call. Then you may,
at any time, obtain the data buffer from TLIB.

When it is full, TLIB puts the data buffer in a queue
for an eventual transfer to you. This transfer from TLIB
is initiated when you perform the TLFDAIN call. A user
buffer is considered to be full when it is actually
filled with data, or when it contains data representing
the end of a TSDU. The user will not receive a buffer
containing data from more than one TSDU.

A partially full buffer is returned by TLFDAIN when
there is outstanding data on the connection, but no
buffers are full.

If there is no outstanding data, and you have previously
given a buffer to TLIB. TLFDAIN will return the buffer
to you.

When you receive data representing the end of a TSDU,
flags will be set to TLEOTSDUMARK = 1. This symbol is
defined in the TLFzDEFS file.

I CALL TLFDAIN(ITLREF,ISTAT,IUBFID,LENDAT,IFLAGS)

Norsk Data NDa60.l64.3 EN

COSMOS PROGRAMMER GUIDE 245
TLIB/FORTRAN REFERENCE GUIDE

Routine name : TLFDARQ

No: Parameter Name/ I/O Explanation:
Type:

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 IUBUF I TSDU, or part of a TSDU. Must start on a
Integer*2 array word boundary.

3 LENDAT I Number of bytes in IUBUF. Must be even.
Integer

4 IFLAGS 0 Indicates whether this data represents
Integer the end of a TSDU.

5 ISTAT 0 Return status.
Integer

6 ICREDT O The credit you have after a successful
Integer TLFDARQ.

FUNCTION. 2 Data request.

EXPLANATION I To transfer ordinary data to the remote user, you have

USAGE.

to use this call.

If this data represents the end of a TSDU, flags must be
set to TLEOTSDUMARK = 1. This symbol is defined in the
TLFzDEFS file.

Make sure that IFLAGS is set to TLEOTSDUMARK when you
invoke TLFDARQ for the last time, to ensure that nothing
will be left in the internal buffers of the transport
system.

2 CALL TLFDARQ(ITLREF,IUBUF,LENDAT,IFLAGS,ISTAT,ICREDT)

Norsk Data ND—60.)64.3 EN

246 COSMOS PROGRAMMER GUIDE
TLIB/FORTRAN REFERENCE GUIDE

Routine name : TLFDCIN

No: Parameter Name/ I/O Explanation:
Type:

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 ISTAT 0 Return status.
Integer

3 IDCRSN 0 Reason for disconnection, coming from
the remote end or from TLIB. See

Integer appendix F.
4 IUBFID O Identifier for buffer with user data.

Integer
5 LENDAT 0 Length of user data in bytes.

Integer

FUNCTION. 1 Disconnect indication.

EXPLANATION I An incoming disconnect request is perceived by TLIB as a
disconnect indication. TLIB signals this to you via a
TLEVDCIN event. TLFDCIN also specifies the information
associated with this event.

USAGE . I CALL TLFDCIN(ITLREF,ISTAT,IDCRSN,IUBFID,LENDAT)

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 247
TLIB/FORTRAN REFERENCE GUIDE

Routine name : TLFDCRQ

No: Parameter Name/ I/O Explanation:
Type:

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 IUBUF I User data. Must start on a word
Integer*2 array boundary. Delivery is not guaranteed.

3 LENDAT I Length of user data. Must be an even
Integer number.

4 ISTAT 0 Return status.
Integer

FUNCTION. 2 Disconnect request.

EXPLANATION 2 The purpose of this call is one of the following:

USAGE.

1) To refuse a connection request from a remote
user, signalled by an TLEVCNIN event.

2) To terminate an established connection.

Any outstanding buffered data not yet sent to the remote
end is flushed. The same is true for received data not
yet given to you.

When the disconnection is complete, TLIB will signal
this to you via the TLEVDCCF event.

No other calls may be invoked on the connection after
you have done a TLFDCRQ.

I CALL TLFDCRQ(ITLREF,IUBUF,LENDAT,ISTAT)

Norsk Data ND—60.l64.3 EN

248 COSMOS PROGRAMMER GUIDE
TLIB/FORTRAN REFERENCE GUIDE

Rmnfinermme: TLFEDIN

No: Parameter Name/ I/O Explanation:
Type: ~

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 ISTAT 0 Return status.
Integer

3 IUBFID O Identifier for buffer provided for
Integer expedited data.

4 LENDAT 0 Number of bytes in buffer.
Integer

FUNCTION. 2 Expedited data indication.

EXPLANATION I By using this call, you will receive a unit of expedited
data whose arrival has been signalled by a TLEVXDIN
event.

The first, sufficiently large user buffer provided to
TLIB for the connection, following the TLEVXDIN event,
will be used for the expedited data. If no such buffer
was provided, an error return will be given by TLFEDIN.

USAGE . 2 CALL TLFEDIN(ITLREF,ISTAT,IUBFID,LENDAT)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 249
TLIB/FORTRAN REFERENCE GUIDE

Rmndnermme: TLFEDRQ

No: Parameter Name/ I/O Explanation:
Type:

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 IUBUF I User buffer. Must start on a word
Integer*2 array boundary.

3 LENDAT I Number of bytes in user buffer. Must be
Integer even.

4 ISTAT 0 Return status.
Integer

FUNCTION. 2 Expedited data request.

EXPLANATION I To transfer expedited data to the remote user, you have
to use this call.

TLIB guarantees that the arrival of the expedited data
will be signalled to the remote user, before any
ordinary data subsequently will be sent on the
connection. The arrival of the expedited data may or may
not be signalled to the remote user, before previousely
sent ordinary data.

Only one unit of expedited data may be outstanding at a
time. You may send no more until you receive a TLEVXDCT
event.

I CALL TLFEDRQ(ITLREF,IUBUF,LENDAT,ISTAT)

Norsk Data ND—60.l64.3 EN

250 COSMOS PROGRAMMER GUIDE
TLIB/FORTRAN REFERENCE GUIDE

Rmnjnermme: TLFINIT

Type:
No: Parameter Name/ I/O Explanation:

1 MODE
Integer array

2 IDYNAM
Integer array

I Specification of TLIB operating mode.

I Working storage for TLIB.

3 ISTAT 0 Return status.
Integer

FUNCTION. : Initializes TLIB. This must be the first call on TLIB.

EXPLANATION I The TLIB operatinq_mode is specified by the MODE array
(symbols are defined in the TLFzDEFS file):

DIMENSION MODE(O:TLALMODE-l) where TLALMODE = 6.

The different positions in the array may be defined by
the following symbols:

TLMDXMSGMODE = O
TLMDUNIQUESUFFIX = l
TLMDMXCONNECTIONS = 3
TLMDMXACCESSPOINTS = 4
TLMDMXBUFFERS = 5
TLMDMXQUEUEDTPDUS * 6

The different values that MODE(TLMDXMSGMODE) can have
are: TLXMINUSERMODE and TLXMINSYSTEMMODE. Note that
TLXMINSYSTEMMODE is very rarely used.

Continued on next page.

Norsk Data ND~60.I64.3 EN

COSMOS PROGRAMMER GUIDE 251
TLIB/FORTRAN REFERENCE GUIDE

MODE(TLMDUNIQUESUFFIX) is set to TLISUNIQUE, if suffix
names should be unique to this task. Otherwise it is set
to TLNONUNIQUE.

MODE(TLMDMXCONNECTIONS) is the maximum number of
connections you want to use in this task. Standard value
TLMXCONNECTIONS = 20 may be used.

MODE(TLMDMXACCESSPOINTS) is the maximum number of TLAPs
you want to use in this task. Standard value
TLMXACCESSPOINTS =3 may be used.

MODE(TLMDMXBUFFERS) is the maximum number of user
buffers in your task that TLIB can own at one time.
Standard value TLMXBUFFERS = 20 may be used.

MODE(TLMDMXQUEUEDTPDUS) is the maximum number of TLIB
TPDUS possible to be queued in XMSG space at one time.
Standard value TLMXQUEUEDTPDUS = 50 may be used.

The size of IDYNAM is dependent upon the values
described above. You dimension it as follows:
DIMENSION IDYNAM(O:TLSZDYNAMIC—l). TLSZDYNAMIC will
automatically be calculated for you.

2 CALL TLFINIT(MODE,IDYNAM,ISTAT)

Norsk Data ND—60.l64.3 EN

252 COSMOS PROGRAMMER GUIDE
TLIB/FORTRAN REFERENCE GUIDE

Rmnjnermme: TLFPRBF

No: Parameter Name/ I/O Explanation:
Type:

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 IUBUF I User buffer. Must start on a word
Integer*2 array boundary.

3 LENUBF I Length of user buffer. Must be an even
Integer number of bytes.

4 IUBFID I Identifier you want to attach to the
Integer user buffer.

5 ISTAT 0 Return status.
Integer

FUNCTION. . 2 Provides buffer.

EXPLANATION : A buffe

USAGE.

data arr

For user
provided
incoming

r is provided for use by TLIB. Whenever ordinary
ives, TLIB stores the data in this buffer.

data or expedited data, a buffer has to be
after the event has occured, that signals the

data.

To get the buffer back from TLIB, you have to perform a
TLIB call. For example, you use the TLFDAIN routine to
obtain ordinary data. To obtain user data from a
connecti

I CALL TLF

on request, you use the TLFCNIN routine.

PRBF(ITLREF,IUBUF,LENUBF,IUBFID,ISTAT)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 253
TLIB/FORTRAN REFERENCE GUIDE

Routine name : TLFSTLS

No: Parameter Name/ I/O Explanation:
Type:

1 IUSADD I Local TLAP.
Integer*4 array

2 IUSREF I Connection identifier belonging to user.
Integer

3 ISTAT 0 Return status.
Integer

4 ITLREF 0 Connection identifier assigned by TLIB.
Integer

FUNCTION. 2 Starts listening.

EXPLANATION 2 This call tells TLIB that you are willing to receive a

USAGE.

connection indication on the specified TLAP. To receive
multiple simultaneous connections on a TLAP, TLFSTLS
must be invoked the corresponding number of times.

TLIB automatically re—initiates a listening for a new
connection indication after the termination of a
previous connection. The same ITLREF and IUSREF apply to
successive connections.

If you refuse to accept further connection indications,
TLFTMLS has to be invoked.

2 CALL TLFSTLS(IUSADD,IUSREF,ISTAT,ITLREF)

Norsk Data ND—60.l64.3 EN

254 COSMOS PROGRAMMER GUIDE
TLIB/FORTRAN REFERENCE GUIDE

Routine name : TLFTMLS

No: Parameter Name/ I/O Explanation:
Type:

1 ITLREF I Connection identifier belonging to TLIB.
Integer

2 ISTAT 0 Return status.
Integer

FUNCTION. I Terminates listening.

EXPLANATION I If you want to tell TLIB that you refuse to accept
further connection indications on this connection, you
must use this call” In other words, TLFTMLS cancels the
effect of the prior TLFSTLS.

USAGE . 2 CALL TLFTMLS(ITLREF,ISTAT)

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 255
TLIB/FORTRAN REFERENCE GUIDE

Routine name : TLFWAIT

No: Parameter Name/ I/O Explanation:
Type:

1 ITMOUT I Maximum waiting time for event.
Integer array

2 IREQEV I Requested event.
Integer array

3 ISTAT 0 Return status.
Integer

4 IACTEV 0 Actual event.
Integer array

FUNCTION.

EXPLANATION :

2 Waits for event to occur.

See also important note on next page.

ITMOUT has the following definition:

DIMENSION ITMOUT(O:TLALTIME-l) where TLALTIME = 2.

The different positions in the array may be defined by
the following symbols:

TLTMUNITS = O, which gives the time unit.
TLTMLENGTH = l, which gives the time length.

The different values that ITMOUT(TLTMUNITS) can have
are:

TLTMBASIC, which means basic time units.
TLTMSECS, which means seconds.
TLTMMINS, which means minutes.
TLTMHRS, which means hours.

ITMOUT(TLTMLENGTH) describes the number of time units.

A value of TLINFINITETIME for ITMOUT(TLTMLENGTH)
specifies an infinite timeout period.

A value of O for ITMOUTCTLTMLENGTH) is equivalent to a
poll for outstanding TLIB events of the requested type,
on the requested connection.

Continued on next page.

Norsk Data ND—60.l64.3 EN

256

USAGE.

COSMOS PROGRAMMER GUIDE
TLIB/FORTRAN REFERENCE GUIDE

You may specify that TLIB should wait on a particular
connection for a particular set of events. This is done
by appropriately setting the desired values in
IREQEV(TLEVREFNO) and IREQEV(TLEVCODE).
IREQEV(TLEVREFNO) requires a connection identifier
belonging to TLIB.

The set of desired events is formed from the logical OR
of the corresponding event codes.

The value TLANYREFNO may be used to accept any
connection. Likewise, TLANYEVENT may be used to accept
any event.

The actual event that has occurred is returned in
IACTEV, with IACTEV(TLEVREFNO) set to a user's
connection identifier.

I CALL TLFWAIT(ITMOUT,IREQEV,ISTAT,IACTEV)

[WIN M)“: for those who use the TLEVOTHR event:

A routine TLOEV can be called as a part of TLFWAIT. If
you use the TLEVOTHR event, you should provide a
routine in your program called TLOEV:

FUNCTION LOGICAL TLOEV

This routine will check all the possible ”other"
events you are using, e.g. for the presence of
terminal input, and return TRUE if any are pending
(and FALSE otherwise). TLIB provides a default version
of TLOEV which always returns FALSE. If you want to
make sure that no events of type TLEVOTHR are missed,
you have to provide TLEOV in your program.

The reason that an "other" event may be missed, is
that all wakeups from the wait state use one single
bit in the program's RT—description (the SREP bit). If
two wakeups, one leading to an "other" event followed
by one done by XMSG, occur close together just before
TLIB executes the TMOUT monitor call, the information
about the "other” event is lost.

Norsk Data ND-60.l64.3 EN

J.
r.

X
e:

5?“.
E

591,.
it»

19.Lr.3w
.r.uh.?l.m

nm
'

,
2

I1.)
‘

‘
.

.
,

:11:
t,

I
,

r‘....
‘

.W
.":..||i;

.11..

,
/

t
-,

‘
.

i
_

.1
3

5
1

}...
I

1.31.1
4

“K
,5

1
..

42...:
L

“mu...
.7

l
r:

I
1.3;:

,.i¥
l:u

7
1

14,.r.:n.«urn
1t

_.
1

1
1

)....(1
fl

i
r)

.
{FARE

v.1,
.:

Ir
.

A
F»

i
~z..,£u?...l.

it
It

1
):?

.
.

.
n

"JP
!

.
“1T

,.
.

.
~

..

,

s
‘

w
‘

u
u

t
..

R.

COSMOS PROGRAMMER GUIDE 259
XMSG FUNCTIONS

1 Introduction

This appendix gives a description of how to execute XMSG functions
using the SINTRAN monitor call MON 200 (MON XMSG). It should also be
of interest to the user that intend to use the XMPFSMC routine (PLANC)
or the XMFFSMC routine (FORTRAN).

2 General

XMSG functions are normally executed using the monitor call MON 200
with parameters being passed in the registers. The T register contains
the particular function required, with option bits set in its high
order byte when required. Note that as a general rule, options, not
described under a specific function, should not be set when the
function is requested. However, an RTmprogram that wants to call XMSG
as a system task can (and must) specify the XFSYS (system mode) option
(see description of 'task' in Chapter 1).

Completion status is returned in the T register as a positive number
(its precise meaning depends on the function) if successful, as zero
if the operation was not terminated and as a negative number when
indicating an error.

We will use the word task to mean a driver, a direct task, or an RT
(foreground or background) program. The XMSG system allows tasks to
send messages to each other, including handling of memory allocation,
queueing, and task synchronization.

A task can open ports through which it can send and receive
information about messages. Data is normally transferred between tasks
via message buffers within XMSG. The sending task first opens a port,
reserves an XMSG message buffer, transfers its data into that buffer
and finally informs the receiving task's port that data is awaiting to
be collected. Reservation and releasing of messages are done
explicitly by the task.

A system is a Processing Unit that runs an independent XMSG kernel. An
ND-lOO CPU is a system, but a PIOC CPU or an ND-SOO CPU is not. These
are respectively seen as part of an ND~lOO, since every PIOC or ND~500
task which uses XMSG has a 'shadow' task in the ND—lOO.

The functions are divided into two groups: user functions (of general
interest) and system functions (used mainly by XROUT and the XMSG~
COMMAND program). The functions in each group are described in the
corresponding sections below: 'User Function SpecificationsI and
'System Function Specifications'.

XROUT services are invoked by sending messages (using functions) to
the task called XROUT. The services, and the method for accessing
them, are described in appendix B.

Norsk Data ND—60.l64.3 EN

260 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

Note that all functions, services, error codes and message types are
referred to symbolically. Their values are defined in the file
XMP:DEFS (or XMFzDEFS).

Note that in many of the functions which follow, there is currently no
parameter returned in the A, D or X registers. However, you must be
aware that this may change in the future. Thus you cannot assume that
the A, D and X registers are preserved from a call of any of these
functions.

In the following descriptions these symbols will be used in the
parameter lists (integer unless otherwise specified):

ISTAT - result status.

XFxxx - function code or option (options are given in parentheses).

NBYTES — number of bytes.

METYP - message type.

MESAD ~ message identifier.

UADD — user buffer address.

ULEN length of user data in bytes.

DISP - displacement within message in bytes.

NMESS — Number of messages.

PORTNO - local port identifier. If zero, the most recently opened
port (i.e., the default port) is assumed.

RPORT - A value that is almost unique for each remote port.

MAGNO - double word (32 bits) containing remote port identifier.

QLEN ~ number of messages currently queued for a port.

DATAO - first two bytes of user data.

BOto3 — Bytes O to 3.

B4t05 - Bytes 4 to 5.

BANKNO Bank number.

PDISP Address within a bank.

PHYSAD - Physical address (24 bits).

XPASW - Password (version code).

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 261
XMSG FUNCTIONS

CONFI - Configuration mask.

RCOUNT — Restart count since last 'warm start'.

NCALLS - Number of functions requested.

SYSNO ~ System number.

INDEX - RT—index.

SPRIV - Task information.

AINFO — Additional information.

BASEAD — XMSG base field address (B register on level 5).

ILEV — Interrupt level.

XTADDR - Task block (XT-block) address.

DBREG - Driver's B register.

DREST — Driver's restart address

The calls will be described by showing the NFL code required to use
them. Please remember that the T register always contains the status
on return and should be checked.

3 User Function Specifications

Some functions and services are privileged. Before calling these, a
task must be defined as privileged by invoking the XFPRV function
described later.

3.1 Manipulating Ports

When a task opens ports they are identified locally with a port number
(like a file number). A task identifies other tasks' ports using a 32
bit magic number (MAGNO) which consists of the port number, the system
number and a random part. The latter guarantees that a port which has
been closed and then reopened does not have the same identifier.

XMSG allocates a port list to your task. This is done so that XMSG can
administrate all your opened ports in an efficient manner. When you
open a port, XMSG inserts that port on top of the port list. When you
close a port, XMSG takes that port out from the list. If you specify a
port number parameter equal to zero in most of the XMSG functions,
XMSG will use the first port in the port list. This port is referred
to as the most recently opened port (or the default port).

Norsk Data ND—60.l64.3 EN

262 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

3.1.1 Open a Port (XFOPN)

T:=XFOPN % Tfifunction
*MON XMSG
T=zISTAT % T:result status
A=zPORTNO % A=port number assigned by XMSG

A port is opened and its number (i.e., the port identifier) is
returned to the calling task.

The opened port becomes the task's default port. When this port is
closed, the previously opened port, if any, becomes the task's default
port.

3.1.2 Close Ports (XFCIS)

T:=XFCLS % T=function
A:=PORTNO % A=number of port to be closed
*MON XMSG
T=:ISTAT % T=result status

The specified local port is Closed. If A<O, all ports owned by the
calling task will be closed. If A=O, the most port recently opened
(i.e., the default port) will be closed.

When a port is closed, all 'non~secure' messages currently queued for
that port are released, while all 'secure' messages (as well as the
'port current' message, if any) are set 'non—secure' and returned to
the sender. If the port had a name, the name is cleared (i.e., the

name is removed from XROUT's name table).

See also disconnect function (XFDCT) for closing ports.

3.1.3 Port Status (XFPST)

T:=XFPST (BONE XFWTF/XFWAK/XFHIP) % T=function BONE options
A:=PORTNO o A=port number to be checked
*MON XMSG
T=:METYP % T=message type or result status (=0
A=:RPORT % A=hashed magic number of remote port
A:=D=:MESAD % D=message identifier
X=zQLEN % X=queue length

If the specified port number in A is zero, the most recently opened

port (i.e., the default port) is assumed.

On return, the T register indicates the message type (see below) of
the first message in the queue (or 0, if there are none). If a message
is waiting, D contains its address and A a value that is usually

unique for the remote port, so it can be used for a quick check that

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 263
XMSG FUNCTIONS

the message has come from a known partner. The X register always
contains the queue length, i.e., number of messages queued for the
port.

Note that calling this function, when a message is waiting on portNo,
will lead to both the 'general wake up' bit for the task and the 'wake
up‘ bit on portNo. If no message is waiting XMSG will clear both the
'general wake up‘ bit for the task and the ‘wake up' bit on portNo,
before checking the requested option(s). (The 'general wake up' bit
may have been set as a result from a previously executed XFGST
function. The 'wake up' bit on portNo may have been set as a result
from a previously executed XFPST, XFRCV, XFRRH or XFRRE function.)

Message types:

XMTNO - Normal message

XMROU - Message last sent by XROUT (routing program)

XMTHI - High priority message (sent with XFHIP option)

XMTRE - Returned message (sent as secure, but could not be delivered)

Options:

If no message is waiting on portNo and the XFWTF (wait flag) is set,
the task is suspended until the next message arrives on portNo. If the
XFWTF is not set, a zero status is returned. Then a 'wake up' bit will
be set on portNo, if XFWAK (wake up) is set.

When 'wake up' has been set on portNo, the next transmission to that
port will lead to a wake up of the receiver task and the 'wake up' bit
on portNo is cleared. This allows timed—out waits to be executed.

The XFWAK option can be enabled on more than one port at a time. Be
aware, however, that if the task is in XMSG wait (for example, by
sending a secure message with wait) when the task should have been
woken up as a result of a message being sent to portNo. The 'wake up'
bit will be cleared, but the task will not (and cannot) be woken up.

The XFHIP (high priority message) option allows a task to check the
arrival of high priority messages. If the XFHIP option is set and a
high priority message is waiting, the message type XMTHI is returned
in the T register. If no high priority message is waiting on portNo
and if XFHIP is set, and XFWTF is not, a zero status is returned in
the T register. When the next message of any type arrives, the task
will be woken up (i.e., if no high priority message is waiting, XFHIP
has the same effect as XFWAK).

Norsk Data ND-60.l64.3 EN

264 cosmos PROGRAMMER GUIDE
XMSG FUNCTIONS

3.1.4 General Status (XFGST)

A task may have many open ports, and it may be unpredictable to which
one the next message will arrive. This function allows the task to
check all ports, i.e., it allows the task to find out whether any
messages have been received on any port.

T:=XFGST (BONE XFWTF/XFWAK/XFHIP) % T=function BONE options
A:=PORTNO % A=last port to be scanned
*MON XMSG
T=zISTAT % T=result status

0‘!
)A=:PORTNO A=port no. where message is

waiting

The call parameter portNo specifies the last port to be searched. If
portNo is zero, this implies the most recently opened port (i.e., the
default port). Note that the search will begin with the next port (if
any) after the one specified, and then follow the task's port list
(see example below).

On return, the A register contains the port number where the message,
if any, is waiting.

For example, if the task has opened four ports and have got the port
numbers 15 (from the lst XFOPN), 4 (from the 2nd XFOPN), 6 (from the
3rd XFOPN) and 19 (from the 4th XFOPN), then the port list comprises
the ports 19—6—4-15 (in that order!). Port number 19 (the first port
in the list) is the task's default port (i.e., if portNo is zero, this
port is assumed). If the task has just handled a message received on
port 6, it can, when it wants to have a 'round-robin' scheduling of
requests, call XFGST with portNOZB. Port 6 will then be the last port
to be looked at by XMSG. XMSG will start looking at port 4 to see if a
message is waiting. If no message is waiting on port 4, XMSG will look
at port 15. Further if no message is waiting on port 15, XMSG will
look at port 19. If no message is waiting on port 19, XMSG will
finally look at port 6.

Note that calling this function, when a message is waiting on one of
the ports, will lead to the clearing of both the 'general wake up' bit
for the task and the 'wake up‘ bit on the returned portNo. If no
message is waiting on any of the ports, XMSG will clear both the
'general wake up' bit for the task and the 'wake up' bit on all ports
opened by the task, before checking the requested option(s). (The
'general wake up' bit may have been set as a result from a previously
executed XFGST function. The ‘wake up‘ bit on the individual ports may
have been set as a result from previously executed XFPST, XFRCV, XFRRH
or XFRRE functions.)

Options:

If no messages are waiting on any of the ports and the XFWTF (general
wait flag) is set, the task is suspended until the next message
arrives on one of the ports. If, instead, the XFWTF is not set, a zero
status is returned. Then a general wake up' bit will be set for this
task, if XFWAK (general wake up) is set.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 265
XMSG FUNCTIONS

When 'general wake up' is set, the next transmission to one of the
ports will lead to a wake up of the receiver task, and clearing of the
Igeneral wake up' bit for that task. '

However, be aware that if the task is in XMSG wait (for example,
sending a secure message with wait) when the task should have been
woken up as a result of a message being sent to one of its ports, the
'general wake up' bit will be cleared, but the task will not (and
cannot) be woken up.

The XFHIP (high priority message) option allows a task to check the
arrival of high priority messages. If a high priority message is
waiting on one of the ports and XFHIP is set, the port number where
the high priority message is waiting, is returned in the A register.
If no high priority message is waiting on any of the ports and XFHIP
is set. While XFWTF is not set, a zero status is returned in the T
register. When the next message of any type is sent to a port opened
by this task, the task will be woken up (i.e., if no high priority
message is waiting, XFHIP has the same effect as XFWAK).

3.1.5 Disconnect (XFDCT)

T2=XFDCT % T=function
*MON XMSG
T=zISTAT % T=result status

This function will release all XMSG resources reserved by the task.
All the ports opened by the task are closed. All XMSG space belonging
to the current caller is released. Special action is taken in the case
of current messages, and messages waiting on the input queue (see
XFSND, XFRCV and XFCLS).

There is no return from driver calls, to XFDCT (as the driver context
is released by the call).

Note that the following automatic disconnection are executed by
SINTRAN:

User task disconnection:
~ On returning to the SINTRAN command processor (@)
- On logout/RT program termination

System task disconnection:
- On logout/RT program termination

3.2 Manipulating Message Buffers

Message buffers are simply variable length areas which can be
reserved. When assigned to a task, they remain reserved until that
task decides to release them or 'send' them to another task. By this
transfer, point ownership is transferred to the receiving task thus
being enable to read the data. Having read the data, the receiving
task may either release the buffers back to the pool or use them

Norsk Data ND~60.164.3 EN

266 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

itself for storing a message to be sent back to the first or any other
task.

Note that in many of the functions which follow, there is no parameter
required to specify the message identifier (MESAD). The reason is,
that a current (default) message buffer is assumed, namely the last
message received on the appropriate port, or, if none, the last port
operated on by the task. Sending or releasing a message leads to its
currency being lost. The task may also change the value of the Current
Message with the XFSCM function. A MESAD value of —1 implies the
current message.

Messages cannot be released, read from or written to by tasks other
than.the current owner or while queued to a port. In the latter case
the message must be received first.

3.2.1 Reserving Message Buffer (XFGET)

T:=XFGET (BONE XFWTF/XFEXC) T=function BONE options

o\°
o\°

A:=NBYTES A=number of bytes requested
*MON XMSG
T=:ISTAT % T=result status
A=:MESAD % A=message identifier

MESAD is returned to the caller for possible use in subsequent
functions. The message buffer consists of a descriptor of the current
owner, sender, size, length etc , and a buffer for user data. The
buffer size has a maximum size, which is system dependent and defined
when the XMSG system is generated.

At any particular time, the total space owned by a task cannot exceed
another limit, which is initially set to a value defined at XMSG
generation time. It can, however, be changed by privileged tasks using
the Define Maximum Memory (XFDMM) function, see page 280.

Only the current owner of a message is allowed to read or write in it,
give it to someone else or release it.

Specifying a buffer size of 0 bytes implies, that only a message
descriptor will be reserved. Privileged tasks can then associate a
physical memory area with that message descriptor by using the Define
User Buffer (XFDUB) function described below. It is not allowed to
send a buffer of size 0 out of the system.

If no message buffer of the requested size is available and XFWTF
(wait flag) is set, the task will be suspended until a message of that
size is available.

If the XFEXC (exclusive buffer) flag is set, it implies, that the
caller wants to reserve an exclusive message buffer, which has been
allocated using the Allocate Message Buffers (XFALM) function with
option XFEXC. If no such allocated message buffer is available, an
error code is returned in the T register.

Norsk Data ND~60.l64.3 EN

COSMOS PROGRAMMER GUIDE 267
XMSG FUNCTIONS

3.2.2 Defining a User Buffer (XFDUB)

This is a privileged function (see XFPRV) that allows a user to
associate a physical memory buffer with a message descriptor
previously obtained by XFGET with NBYTES=O. All XMSG functions whill
then operate on that message as though the buffer space was part of
the general XMSG buffer. An exception is that XFREL (described later)
only releases the message descriptor and not the buffer area.

This allows special systems or drivers to fully control their memory
allocation procedures.

Tz=XFDUB % T=function
AD2=PHYSAD % AD=address of physical memory buffer
X:=NBYTES % X=buffer size in bytes
*MON XMSG
T=:ISTAT % T=result status

The function acts on the 'task current' message. PHYSAD is the
physical (24 bit) address of the start of the buffer. NBYTES is its
size in bytes.

Buffers been defined in this way cannot be sent to other systems.

3.2.3 Releasing Message Buffer (XFREL)

This function is used to release a message buffer reserved by the
task. A message buffer is reserved by the task when the task issues
the 'Reserve Message Buffer' (XFGET) function when a message is sent
to it from another task. Recension is also made,but then the message
must be received before it can be released.

At any particular time, the total message buffer space owned by a task
cannot exceed a limit defined when the XMSG system is generated. Thus
it is a general rule for a task to release its message buffer as soon
as it is through with it.

Tz=XFREL % T=function
A:=MESAD % A=message identifier
*MON XMSG
T=:ISTAT % T=result status

A message identifier of -l in the A register, will release the 'task
current' message.

If the specified message is an allocated message (i.e., a message
allocated using the 'Allocating Message Buffers (XFALM) function), the
message will be put back on the original task's 'Available Allocated
Message List' (AAML), see function XFALM.

Norsk Data ND~60.164.3 EN

268 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

3.2.4 Allocating Message Buffers (XFALM)

Normal messages buffers that have been reserved using the XFGET
function lose their association with the task that initially reserved
them, when they are sent to another task. This implies that the
sending task has no guarantee that it will be able ~to reserve space
later.

By allocating message buffers, a task can indicate to XMSG its long-
time buffer requirements. Allocated messages are removed from the free
space pool and marked as allocated to the original caller. They do
change owners when sent within a system (as do normal message
buffers). When they are released, however, or sent out of the local
system, the message buffer is put back on the originating task's
'Available Allocated Message List (AArHJ'.

All allocated messages for a given task must be of the same size. When
an XFGET is executed by that task for a buffer of that size, XMSG will
first look at the task's AAML and take a message buffer from it, if
one is available. Similarly, when a message of that size comes into
the system from another system, XMSG will first look at the AAML of
the receiving task and take a message buffer from it, if one is
available.

Messages can be allocated to the calling task by:

T:=XFALM (BONE XFEXC) % T=function BONE option
A:=NBYTES * % A=message size in bytes
X:=NMESS % X=no. of messages to allocate
*MON XMSG
T=:ISTAT % T=result status

Note that if the function fails, due to lack of buffer space, no
messages are allocated.

If XFEXC (exclusive buffers) is set, the messages are allocated and
set aside for exclusive use by the task, i.e., these message buffers
will not be used by XMSG when a message of NBYTES bytes is received
from another system. Buffers allocated with XFEXC do not have to be of
the same size as buffers allocated without this option set. However,
all exclusive buffers must be of the same size. To reserve one of
these exclusive buffers, the task must execute the XFGET function with
the option XFEXC set, see page 266.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 269
XMSG FUNCTIONS

3.2.5 Freeing Allocated Message Buffers (XFFRH)

Allocated messages can be freed by:

T:=XFFRM (BONE XFEXC) T=function

o\‘J
o\°

X:=NMESS X=no. of allocated messages to free
*MON XMSG
T=:ISTAT % T=result status
A=:NMESS % A=no. of allocated messages freed

If XFEXC (exclusive buffers) is set, only those message buffers which
are previousely allocated with the XFEXC option set, will be freed. If
XFEXC is not set, only those message buffers which are previousely
allocated without the XFEXC option will be freed. On return, the A
register contains the number of allocated messages actually freed.

3.2.6 writing into Message Buffers (XFWRI)

After building up a data buffer in its own space, a task transfers the
data buffer into the 'task current' message buffer as follows:

T:=XFWRI (BONE XFRES) r:.\
o T=function BONE option

NBYTES=zD % D=number of bytes to write
A:=UADD % A=address of user buffer
X:=DISP % X=displacement within message in bytes
*MON XMSG
T=:ISTAT % T=result status
A:=D=:NBYTES % D=number of bytes actually written

If the 'whole—message—read‘ flag has been set (see XFREA), it is
cleared, and the current message length (ggt the same as size) is set
to 0. If DISP is -l, a value for DISP, equal to the current message
displacement, is assumed instead, thus providing an appending
function. If the displacement (D18?) is odd, 1 is added to it, and a
zero byte inserted in the message. If DISP+NBYTES is greater than the
message size, an error return occurs. Otherwise NBYTES bytes are
copied from UADD into the message buffer, and the current message
displacement is set to DISP+NBYTES (where DISP has been rounded up, if
odd). If this copying resulted in the message being longer than
before, the current message length is also set to DISP+NBYTES. NBYTES
is returned to indicate the actual number of bytes transferred.

Note that the displacement (DISP) is always rounded up to the next
even byte before the data is written.

If you have access to the buffer area directly (either because it was
defined using the XFDUB function or because you have access to the
physical memory), you can, of course, read and write yourself. You
must then however, be aware that the 'current displacement' and
'current length' information in the message descriptor will not be
updated.

Norsk Data ND~60.l64.3 EN

270 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

If the option XFRES (reset message length) is set, it causes the
current message length being set to 0, before the user data is
transferred into the current message (in fact, it acts as if the
'whole-message~read' flag had been set).

3.2.7 Writing only the Header of a Message Buffer (XFWHD)

This function will write six bytes into the ‘task current' message.

T:=XFWHD % T=function
AD:=BOt03 % ADrbytes O to 3 of message header
X:=B4t05 % X=bytes 4 to 5 of message header
*MON XMSG
T=:ISTAT % Tzresult status

If the 'whole-message—read' flag has been set (see XFREA), it is
cleared and the current message length (ngt the same as size) is set
to 0. Then the function inserts the A, D and X registers as the first
six bytes of the message. If this results in the message being longer
than before, the current message length is set to 6. It then sets the
current message displacement to 6.

If the message size is less than 6 bytes, an error return occurs.

3.2.8 Reading from a Message Buffer (XFREA)

T:=XFREA % T=function
NBYTES=zD % D=number of bytes to read
A:=UADD % Asaddress of user buffer
X:=DISP % X=displacement within message in bytes
*MON XMSG
T=zISTAT % T=result status
A:=D=:NBYTES % D=number of bytes actually read

The data is read from the 'task current' message, starting with
displacement DISP (rounded up to the next even byte) into the user
buffer specified by UADD (length NBYTES). On return, NBYTES is set to
the actual number of bytes read. If DISP is —l, the reading of the
message is resumed from the current message displacement. Note that
the displacement (DISP) is always rounded up to the next even byte
before the data is read.

On return, if the last byte in the message is read, the current
message displacement is set to 0. Also the 'whole-message-read' flag
is set, so that the next XFWRI or XFWHD will reset the current message
length to zero. Otherwise, except when NBYTES is zero, the current
message displacement is set to DISP+NBYTES. If NBYTES is zero, the
current message displacement is not updated.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 271
XMSG FUNCTIONS

3.2.9 Reading only the Header of a Message Buffer (XFRHD)

The first six user bytes of a message can be read using:

T:=XFRHD % T=function
A2=MESAD % A=message identifier
*MON XMSG
T=:ISTAT % T=result status
AD=:BOt03 % AD=bytes 0 to 3 of message header
X=:B4t05 % X=bytes 4 to 5 of message header

The first six bytes of the message are returned in the A, D and X
registers (in that order!), and the current message displacement is
set to 6. If MESAD is not —l, the specified message becomes the 'task
current' message.

If the message size is less than 6 bytes, an error return occurs.

3.2.10 Define Bank Number for Drivers (XFDBK)

When calling functions which transfer data between a user area and an
XMSG buffer (e.g., XFREA, XFWRI or XFSMC), drivers specify a physical
address as user address (UADD). This is in bank 0, unless they have
previously defined a bank number using the XFDBK function:

T:=XFDBK % T=function
A:=BANKNO % A=bank number
*MON XMSG
T=:ISTAT % T=result status

This function is only allowed for drivers (i.e., not allowed from RT—
programs).

Norsk Data ND—60.164.3 EN

272 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

3.2.11 Sending Message (XFSND)

When a task wants to 'send‘ a message to another task, it must know
the 'address' or MAGNO of a port of the task. Since port numbers (and
hence MAGNOs) are allocated by XMSG when the port is opened, the
destination MAGNO must be obtained by a task via XROUT.

The task establishes initial contact by sending a message to a
dedicated task named XROUT (see appendix B), to name its port(s).
Subsequently a second task may send a 'letter' via one of its ports
also to XROUT, specifying a destination port by name (see XROUT Letter
Service XSLET). If this name has been previously declared, XROUT will
forward the message to the named port.

The first task can then use the XFMST function (described later) to
extract the MAGNO of the second task. Hence a direct dialogue can
begin. (Note that only ports expecting letters need to have names.
These will usually be ports providing services — 'server ports'.)

By convention, all names of ND standard products and of ND standard
systems will start by *xx, where xx are specific to the product.

In this section it is assumed, that the sender now knows the
destination magic number (MAGNO).

A Message Buffer is 'transferred' from one task to another in this
way:

Tz=XFSND (BONE options) T=function BONE options (see below)
AD:=MAGNO % ADemagiC number of receiving port
X:=PORTNO % X=number of sending port
*MON XMSG
T=:ISTAT % T=result status

A magic number parameter of ~1 (in both A and D) will direct the
message back to the port from which it was last sent.

The call parameter portNo specifies the port from which the message
will be sent. If portNo is zero, the most recently opened port (i.e.
the default port) is assumed.

Note that there is no parameter specifying the message that is to be
sent, for the reason that the current (default) message buffer is
assumed, namely the 'port current' message if one exists, or, if none,
the 'task current' message.

The options are:

XFWTF - Wait flag. This is only significant when a secure message
(XFSEC) is sent to another system (see below).

If set, it implies that the caller will only be restarted
(with proper status) when the message has been put into the
receiver's input queue (i.e., the sending task is suspended
until the message has been sent to the remote port).

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 273
XMSG FUNCTIONS

XFSEC

XFFWD

XFROU

XFRRO

XFHIP —

XFBNC -

If not set, secure messages that cannot be delivered, will be
returned to the sending port.

Secure message. The message will be returned to the sending
port if it cannot be delivered, or if the receiving port is
closed (eg., if the receiving task terminates) while the
message is Iport current‘. Non-secure messages are discarded
and released by XMSG if they cannot be delivered.

Forwarding message. The sender information in the message will
not be updated. Thus, it will appear to the receiver that the
message was sent directly from the previous sending port.

Route message. Ignore the MAGNO parameter and send the message
to the local routing task (XROUT). The message contents should
be parameters to XROUT. (See appendix B on XROUT services.)

Remote route message. If the XFROU bit is also set, then the
message is sent to a remote routing task (XROUT). The A
register is assumed to contain the system number to which the
message will be sent. The message contents should be
parameters to XROUT.

Note that if the XFROU bit is not set and XFRRO is set, the
message will be sent as if XFHIP had been set (i.e., when
XFROU is not set, setting the XFRRO bit will act as if the
XFHIP bit had been set instead).

High priority message. If the XFROU bit is not set, the
message will be chained to the head of the receiver's queue,
following any other high priority messages already queued.

Note that if both the XFROU bit and the XFHIP are set, the
message will be sent as if XFROU and XFRRO had been set (i.e.,
when XFROU is set, setting the XFHIP bit will act as if the
XFRRO bit had been set instead).

Bounce message. When the receiver issues 'Receive Message'
(i.e., XFRCV, XFRRH or XFRRE), which would have led to this
message being received, it will instead be returned to the
sender.

Norsk Data ND—60.l64.3 EN

274 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

3.2.12 Returning a Message (XFRTN)

You will often need to write a return status into a message and send
it back to the port from which it came (e.g., replying to a
transaction):

T:=XFRTN (BONE options) Tefunction BONE options (see below)
DATAO=:D % D=first two bytes of message header
A:=MESAD % Armessage identifier
X:=PORTNO % X=number of sending port
*MON XMSG
T=:ISTAT % T=result status

This leads to MESAD being set as the 'task current' message and the
'port current' message for portNo, DATAO being written into the first
two bytes of the message buffer. Then the message buffer (MESAD) will
be returned to the port from which it was last sent.

If MESAD is ~l, the current message is assumed, namely the 'port
current' message if one exists, or, if none, the 'task current,
message.

The call parameter portNo specifies the port from which the message
will be sent. If portNo is zero, the most recently opened port (i.e.
the default port) is assumed.

The options are:

XFWTF ~ Wait flag. This is only significant when a secure message
(XFSEC) is sent to another system (see below). If set, it
implies that the caller will only be restarted (with proper
status) when the message has been put into the receiver's
input queue (i.e., the sending task is suspended until the
message has been sent to the remote port). If not set, secure
messages that cannot be delivered, will be returned to the
sending port.

IXFSEC Secure message. The message will be returned to the sending
port if it cannot be delivered, or if the receiving port is
closed (eg., if the receiving task terminates) while the
message is ‘port current'l Non—secure messages are discarded
and released by XMSG if they cannot be delivered.

XFHIP High priority message. It will be chained to the head of the
receiver's queue, following any other high priority messages
already queued.

XFFWD l Forwarding message. The sender information in the message will
not be updated. Thus, it will appear to the receiver that the
message was sent directly from the previous sending port.

XFBNC Bounce message. When the receiver issues 'Receive Message‘
(i.e., XFRCV, XFRRH or XFRRE), which would have led to this
message being received, it will instead be returned to the
sender.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 275
XMSG FUNCTIONS

(In fact the function is equal to XFSND, except that the D register
contains two bytes of data and the A register the message address.)

3.2.13 Receiving Next Message (XFRCV)

When a task is ready to handle the next request, it calls XFRCV:

T:=XFRCV (BONE XFWTF/XFWAK) % T=function BONE options
A:=PORTNO A=number of receiving port
*MON XMSG
T=:METYP % T=message type or result status <=0
A=zRPORT % A=hashed magic no. of remote port
A:=D=:MESAD % D=message identifier
X=:NBYTES % X=message length in bytes

If portNo is zero, the most recently opened port (i.e., the default
port) is assumed.

If a message is waiting on the specified port, it is received
(unchained from the message queue) and its address returned in the D
register. The A register contains a value that is usually unique for
the remote port. Thus, it enables a quick check that the message has
come from a known partner. X contains the message length in bytes, and
T the message type (see below).

Note that calling this function when a message is waiting on portNo,
will lead to the clearing of both the 'general wake up' bit for the
task and the 'wake up' bit on portNo. If no message is waiting on
portNo, XMSG will clear both the 'general wake up' bit for the task
and the 'wake up' bit on portNo, before checking the requested
option(s). (The 'general wake up' bit may have been set as a result
from a previously executed XFGST function, and the 'wake up' bit on
portNo may have been set as a result from a previously executed XFPST,
XFRCV, XFRRH or XFRRE function.)

Message types:

XMTNO Normal message

XMROU Message last sent by XROUT (routing program)

XMTHI - High priority message (sent with XFHIP option)

XMTRE Returned message (sent as secure, but could not be delivered)

If the message type (returned in T register) is 'returned' message
(XMTRE), the X register contains the reason for the return (error code
(0).

A successful XFRCV will qualify the received message as the 'task
current' message. In addition, if it is a secure message, it becomes
the 'port current' message for the receiving port. If the message is
'secure', the task aborts or the port is closed while the message is
the 'port current' message, the message will be returned to the sender
with 'return' status.

Norsk Data ND—60.l64.3 EN

276 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

The 'task current' message is cleared by releasing/sending it to
someone else, or receiving another message. The 'port current' message
is cleared by releasing/sending it to someone else, or receiving
another secure message. A task may also change the value of the
current message by the XFSCM function.

Options:

If no message is waiting on portNo and XFWTF (wait flag) is set, the
task is suspended until the next message arrives on portNo. If,
instead, the XFWTF is not set, a zero status is returned. If XFWAK
(wake up) is set, a 'wake up' bit will be set on portNo. The XFWAK
option can be enabled on more than one port at a time.

When Iwake up' is set on portNo, the next transmission to that port
will lead to a wake up of the receiver task, and clearing of the 'wake
up' bit on portNo. This allows timed~out waits to be executed.

When the wake up is done, the message is not received. Hence the
receive must be repeated.

However, be aware that if the task is in XMSG wait (for example,
sending a secure message with wait) when the task should have been
woken up as a result of a message being sent to portNo, the 'wake up'
bit will be cleared, but the task will not (and cannot) be woken up.

3.2.14 Receive and Read Header (XFRRH)

As an alternative to receive, a task may call the XFRRH function,
which receives the next message in the queue (as XFRCV), and also
(additional to XFRCV) reads the first two bytes of the message.

T:=XFRRH (BONE XFWTF/XFWAK) % T=function BONE options
A:=PORTNO A=number of receiving port
*MON XMSG
T=:METYP % T=message type or result status (=0
A=:RPORT % A=hashed magic number of remote port
A:=D=:MESAD % D=message identifier
X=:DATAO % X=first two bytes in message

If portNo is zero, the most recently opened port (i.e., the default
port) is assumed. The options are the same as for the receive function
(XFRCV). When the message is received, both the 'task current' message
and the 'port current' message will be set as described under XFRCV.

As mentioned this function returns the first two bytes of user data
instead of the message length. If the length or size of the received
message is less than two bytes, two random bytes will be returned in
the X register.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 277
XMSG FUNCTIONS

3.2.15 Receive and Read Message (XFRRE)

As an alternative to receive, a task may also call the XFRRE function,
which receives the next message in the queue (as XFRCV), and also
(additional to XFRCV) reads data from the current (received) message.
When the message is received, data will be read from the first byte in
the message buffer into the user buffer. If the last byte in the
message is read, the current message displacement is set to 0, and the
'whole-message—read' flag is set. Thus the next 'write message'
function will reset the current message length to zero. Otherwise, if
the last byte is not read, the current message displacement is set to
the actual number of bytes read.

a‘xaT:=XFRRE (BONE XFWTF/XFWAK) Tzfunction BONE options
NBYTES==D % D=number of bytes to read
A1=PORTNO % A=number of receiving port
X:=UADD % X=address of user buffer
*MON XMSG
T=zMETYP % T=message type or result status <=O
A=:RPORT % A=hashed magic no. of remote port
A:=D=:MESAD % D=message identifier
X=zNBYTES % X=message length in bytes

If portNo is zero, the most recently opened port (i.e., the default
port) is assumed. The options are the same as in the receive function
(XFRCV). If the number of bytes to read (NBYTES) exeeds the message
length, only the number of bytes specified by the message length will
be read into the user buffer.

Note that when the message is received, both the 'task current' and
the 'port current' message will be set as described under function
XFRCV. Note also that the output parameters are identical to the
output parameters of the receive function (XFRCV).

3.2.16 List Messages and Ports (XFlkflfl

This function allows a task to get information about its own open
ports and its own messages.

T:=XFLMP % T=function
Az=MESAD % A:message identifier or O
X:=PORTNO % X=port number or O
*MON XMSG
T=:ISTAT % T=result status
A=2MESAD % Armessage identifier
A:=D=:NBYTES % Demessage size in bytes
X=:PORTNO % Xeport number

On return, the A register contains the message identifier for the
first message found equal to or greater than that requested, or 0 if
not higher. D contains the message size in bytes, i.e., number of
bytes obtained when the message was reserved, either by the Get
Message Buffer (XFGET) function, or received from another task,
allocated by the Allocate Message Buffers (XFALM) function. X contains

Norsk Data ND—60.l64.3 EN

278 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

the port number of the first port found, with a value equal to or
greater than that requested or 0 if not higher.

3.2.17 Message Status (XFMST)

XFMST allows a task to extract the sender's magic number, and get the
length and type of a received message.

T:=XFMST % Tefunction
A:=MESAD % A=message identifier
*MON XMSG
T=1METYP % T=message type or result status (=0
AD=:MAGNO % AD=magic number of sending port
X=:NBYTES % X=message length in bytes

If MESAD is not —1, the specified message becomes the 'task current'
message.

The message type is returned in the T register.

Message types:

XMTNO l Normal message

XMROU ~ Message last sent by XROUT (routing program)

XMTHI - High priority message (sent with XFHIP option)

XMTRE Returned message (sent as secure, but could not be delivered)

It might be expected that this requires an extra call, but:

a) - you often just send a message back to its sender (XFSND with
MAGNO=~1 or XFRTN), and

b) ~ you can read the magic number once, hence that use the
system and port information (RPORT), returned by XFRCV, to
identify the sender, whose MAGNO you now have.

3.2.18 Set Current Message (XFSCH)

Since many functions implicitly operate on the current message, it is
useful to be able to set the latter:

T:=XFSCM % T=function
PORTNO=2D % D=port number
A1=MESAD % A=message identifier
*MON XMSG
T=:ISTAT % T=result status

The specified message is set as the ’task current' message. If the
port number is >=O, the message is also set as the 'port current'
message for the specified port. If the port number is zero, the most
recently opened port (i.e., the default port) is assumed.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 279
XMSG FUNCTIONS

4 Miscellaneous Functions

4.1 Dun-y function (XFDUM)

The effect of this function is merely to return the current
configuration. It is also useful for benchmarking.

T:=XFDUM % T=function
*MON XMSG
T=:ISTAT % T=result status
A=:XPASW % A=XMSG password (version code)
A:=D=:CONFI % D=configuration mask
X=:RCOUNT % X=XMSG restart count

On return, the A register contains the password which is needed in
order to become a privileged XMSG task (see function XFPRV). The X
register returns the number of times that XMSG has been (re)started
since the last warm start.

The bits currently defined in the configuration mask (D register) are:

hit : set if inter—system XMSG
" " generated with tracing

generated for ND-lOO
file server for file transfer is included

is not used
: set if running on page table 3

" " generated for ND~lOO/CX instruction set
generated with gateway software for network servers

II N

u u

\I
G

\m
&

W
N

H
O

Note that this bit mask, which is based on XMSG version J, will most
certainly be extended in later XMSG versions.

Norsk Data ND—60.l64.3 EN

280 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

4.2 Start Multi-Call (XFSHC)

This function allows a task to execute a set of XMSG functions,
issuing only one XMSG monitor call. This eliminates the overhead
associated with each XMSG monitor call.

T:=XFSMC % T=function
X:=NCALLS % X=number of functions requested
A:=UADD % A=address of buffer containing the parameters
*MON XMSG

o\° TADX are parameters from last executed function

NCALLS is the number of functions to be executed. UADD is the address
of a buffer containing the parameters for these functions. Each set of
parameters comprise 4 words (T, A, D and X registers), so the buffer
length should be 8*NCALLS bytes long. NCALLS has a maximum size system
dependent, and defined when the XMSG system is generated. If NCALLS is
O (or -l), then the previously request for multi—calls will be re-
executed.

XFSMC returns as soon as a function, with status less than or equal to
zero, terminates (or when all the functions have been executed), and
the return registers (T, A, D and X) are set according to the return
parameters from the last function executed.

You should be aware of the fact that if the XFDCT function is
specified (and executed) as one of the functions in the multi—call,
the succeeding functions in the multi-call will not be executed, as
the task context (KT—block) is released by the disconnect (XFDCT)
function.

4.3 Define Maximu- Helory (XFDMH)

When a new task is defined in XMSG, its maximum memory usage is set to
a predefined value (a size system dependent and defined when the XMSG
system is generated). This can be changed for privileged tasks by
using XFDMM.

T:=XFDMM % T=function
Az=NBYTES % A=requested task space in bytes
*MON XMSG
T=:ISTAT % T=result status

NBYTES will be set as the maximum number of bytes that can be owned by
the task as message space at one time.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 281
XMSG FUNCTIONS

4.4 Convert Magic Nunber to Port and System Nunber(XFH2P)

This function allows a task to convert the magic number to a port
number and a system number.

T:=XFM2P % T=function
ADz=MAGNO % AD=magic number
*MON XMSG
T=zISTAT % T=result status
A=:PORTNO % A=port number
A:=D=:SYSNO % D=system number
X=:INDEX % X=RT-index or ~l/-2

Note that the returned T register may contain additional information
about the specified magic number. If the magic number was that of a
system, then T=3. If the magic number was that of a local port, and
the task of the port owner is a privileged task, then T=2. If the
magic number was that of a remote port, or that of a local port, and
the task of the port owner is unprivileged, then T=l.

The returned X register may contain additional information about the
port owner task. If the magic number was that of a system, or that of
a remote port, then X=-l. If the magic number was that of a local port
and the task of the port owner is a driver, then X=-2. If the magic
number was that of a local port and the task of the port owner is an
RT‘ program, then X equals SINTRAN'S RT-index of the RT—program.

4.5 Convert Port Number to Magic Number (XFPZH)

This function allows a task to convert a local port number to a magic
number. Any task may obtain the magic number of its own ports.
Privileged tasks can obtain the magic number of a port owned by
another local task.

Tz=XFP2M % Tqnction
A:=PORTNO % A=port number
*MON XMSG
T=:ISTAT % Tiresult status
AD=:MAGNO o\° ADzmagic number for port

Note that this function will only return the magic number of ports
opened by tasks in the local system.

Norsk Data ND—60.l64.3 EN

282 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

4.6 Define wake Up Context (XFWDF)

If a driver uses the XFWAK option, XMSG must be informed about where
to start the driver. This is done by using this function.

T:=XFWDF % T=function
DBREG=zB % B=driver's B register on restart
A:=DREST % A=driver's restart address (P reg)
*MON XMSG
T=:ISTAT % T=result status

This function is only allowed for drivers (i.e., not allowed from RT—
programs).

4.7 Check Systen and User Privileges (XFCPV)

This function allows a task, when a message has been received, to
check the privileges of the sender.

T:=XFCPV % T=function
Az=MESAD % A=message identifier
*MON XMSG
T=:ISTAT % T=result status
A=:SPRIV % A=access information
A:=D=:AINFO % D=additional information

If MESAD is not -1, the specified message becomes the 'task currentI
message.

If the sending task is allowed to update the routing tables on this
system, (i.e., execute the privileged XROUT services XSDRN and XSDSY)
then A=l. If the message is sent from a task within the local system,
then D=0. If the message is sent from a task in another system, then
D=l.

If the sending task is not allowed to update the routing tables, then
A=O and D contains the reason:

D=O implies that the sending task, as well as the source system are
unprivileged.

D=l implies that the source system is privileged, but the sending
task is not.

D=2 implies that the sending task is privileged, but the source
system is not.

D=3 if the specified message is a returned (non~delivery) message.

(An unprivileged task is a task which has not (yet) successfully
executed the XFPRV function. An unprivileged system is a remote system
which has not (yet) been defined as a friend to your system, see XROUT
service XSDAT.)

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 283
XMSG FUNCTIONS

4.8 Make Calling Task Privileged (XFPRV)

Most system functions, as well as some user functions (e.g., Define
Maximum Memory - XFDMM) can only be executed by privileged tasks. In
order to become privileged (for XMSG), a task must successfully
execute the XFPRV function.

In order to do this the caller must be either a driver, direct task,
foreground program or background program, logged in as user SYSTEM.
Besides this, the program must also specify the current XMSG password
in the A register. The password (XPASW) is returned by the dummy
function (XFDUM).

T:=XFPRV % T=function
A:=XPASW % A=XMSG password (version code)
*MON XMSG
T=:ISTAT % T=result status

When the task should no longer be privileged, the same call should be
used, but with the A register equal to zero.

The reason for specifying the XMSG password, is to ensure that
privileged programs, that base themselves on accessing XMSG table
structures, have been updated to the current XMSG table definitions.

5 Systen Function Specifications

Note that all system functions are privileged.

These system functions are mainly used by the XMSG-COMMAND program to
enable you to find out what the message system is doing. They should
22$ normally be called by users, but are included here for reasons of
completeness.

5.1 Initialize for Systel Functions (XFSIN)

This returns the base field address (B register) of the XMSG system in
the memory bank where the XMSG kernel code has been fixed. This
address is needed in order to be able to access XMSG tables by the use
of the system functions.

T:=XFSIN % T=function
*MON XMSG
T=:ISTAT % T=result status
A=zBASEAD % ASXMSG base field address

(B register)

This privileged function is only allowed for RT—programs (i.e., not
allowed from drivers). 3‘

Norsk Data ND—60.l64.3 EN

284 COSMOS PROGRAMMER GUIDE
XMSG FUNCTIONS

5.2 Absolute Read fro. Physical Memory (XFABR)

This function allows a program to read a block of data from the part
of the physical memory which is used by XMSG, into its own user area.

T:=XFABR % Tafunction
ULEN=2D % Dino. of bytes to read
A:=UADD % Araddress of user buffer
X:=PDISP % X=address within the bank
*MON XMSG
T=:ISTAT % T=result status

Note that when calling this function, then bits 8 — 14 of the T
register specify system (source) bank number. If zero (default), the
data will be copied from the bank in which the XMSG kernel has been
loaded, starting from the address specified by PDISP, to the user‘s
logical space. If not zero, the data will be copied from the specified
bank, starting from the address specified by PDISP.

This privileged function is only allowed for RT-programs (i.e., not
allowed from drivers).

5.3 Create Driver (XFCRD)

This function is used to create a driver with a given context, as
defined by the register block. XMSG then allocates an XT—block (task
block) for the driver.

Tz=XFCRD (BONE XFPON) T=function BONE option
UADD=:D % D=address of register block
A:=ILEV % A=interrupt level
*MON XMSG
T=:ISTAT % T=result status
A=:XTADDR % A=XT~block address

The ILEV parameter contains the interrupt level on which the driver
should run on. XFPON (paging on) should be set if paging should be on
when the driver is started. UADD points to an 8 word buffer which
contains the register block that the driver will be started with, in
the order required for the Load Register Block (LRB) hardware
instruction (cf. NORD—lOO Reference Manual - ND—O6.0l4).

XFCRD allocates an XT-block to the driver and returns its address in
the A register.

This privileged function is only allowed for RT-programs fii.e., not
allowed from drivers).

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 285
XMSG FUNCTIONS

5.4 Start Driver (XFSEQI

Starts an already created driver:

T:=XFSTD % T=function
A1=XTADDR % A=XT-block address
*MON XMSG
T=:ISTAT % T=result status

XFSTD overwrites the driver's L register with the driver's XT—block
address before starting the driver.

In this way a started driver will store its XT-block address in the L
register. The driver must make sure that the L register still contains
the XT-block address before XMSG is called.

XFSTD does not set the appropriate bit in the PIE. Nor does it load or
fix any segments. This should be done using FIXC and ENTSG — see the
SINTRAN III Reference Manual ~ ND~60.128.

This privileged function is only allowed for RT—programs (i.e., not
allowed from drivers).

Norsk Data ND-60.l64.3 EN

286 COSMOS PROGRAMMER GUIDE

Norsk Data ND—60.164.3 EN

1“.
£313

auxin?
.[

COSMOS PROGRAMMER GUIDE 289
XROUT SERVICES

1 General

The calls in this manual marked with 'XROUT Services', do not require
any formatting of the messages to XROUT. In these cases the necessary
formatting automatically is performed by the routines called. However,
certain service functions, like 'Get Name from Magic Number' (XSGNM),
require that you format the messages yourself. This can be done using
the routines marked with 'Buffer Formatting'. Even so, you still need
to know the XROUT message format.

You should note that many of the XROUT services are privileged. This
implies that they can only be successfully executed by a privileged
task. See the XMSG call XMPFPRV (Plano) or XMFFPRV (Fortran).

2 XROUT Message Format

The messages that users send to XROUT have a standard format:

Byte O i a serial number returned unchanged by XROUT in order to
allow users, who may have many outstanding requests, to
recognize particular replies. Note that messages sent from
XROUT also return a special message type (XMROU) in the
mnype parameter as a result from a receive call, like
XMPFRCV, XMPFRRH or XMPFRRE. Thus they can be
distinguished from messages originating from other tasks.

In order to comply with the ND standard message format,
the high order bit of byte 0 should be zero.

Byte l — the service number (symbol XSxxx) of the service being
requested. XROUT overwrites this with the return status
from the request: 0 is OK, while other values are errors
as defined by the XR... symbols. These are defined in
appendix D. Note that XROUT service values and
result/error codes are always in the range O..255B, so
that the user may set the high order bit (bit 7) to
indicate user services and/or result status.

Bytes 2-3 - length of remainder of message in bytes, followed by a
sequence of parameter blocks.

Each parameter block has the form:

Byte 0 ~ Parameter number and type (0 means: skip this byte to
allow for fill). Integers have positive values, strings
negative (two's complement of parameter number). If you
use the buffer formatting routines listed in the reference
guide part of this manual, in chapter 2 and 3, you do not
have to observe this sign; The routines will take care of
it for you.

Norsk Data ND~60.164.3 EN

290 COSMOS PROGRAMMER GUIDE
XROUT SERVICES

Byte l — Length of parameter in bytes.

Byte 2 ... Parameter data.

The number and type of parameters are dependent on the particular
service. All parameter blocks must start on even byte boundaries in
the message. If you use the above mentioned formatting routines, they
will do this for you. The message buffer sent to XROUT must be large
enough for the reply, to be prepared if the latter is longer than the
request. This is because XROUT use» the same buffer for the reply. If
the buffer is too small for the reply, an error message will be
returned to the originating task.

3 Services in Detail

The following is a list of XROUT services. The symbolic names XS...
are defined in the files XMpzDEFS for Planc, and XMF:DEFS for Fortran.

3.1 Hale a Pbrt (XSRAH)

In order to name a port, the name must be declared to XROUT. This is
done by sending the XSNAM service request from the port that is to be
named.

Parameter No Type Meaning
In: 1 String Name of port

If any other open port already has the specified name, an error status
is returned. Otherwise the sending port is given the specified name.
If it already had a name, the port is renamed with the new name.

The maximum name length accepted (default = 32 bytes) is defined when
the XMSG system is generated. You should note that XROUT will discard
characters of an eventual excess.

3.2 Create Connection Pbrt (XSCRS)

This service is very similar to XSNAM, but allows XROUT to control the
number of users that a port can handle simultaneously. It may also
distribute users among server ports.

Parameter No Type Meaning
In: 1 String Name of connection port

2 Integer Max. no of connections accepted
3 Integer Uniqueness flag

XROUT first handles the message like an XSNAM service request would do
(see XSNAM above), except that connection ports are allowed to have
identical names, unless the uniqueness parameter is specified and is
non-zero. It then sets a counter (the free connection counter)
associated with that port to the value specified in parameter 2. For
remainder of specification, see the Send Letter service (XSLET) below.

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 291
XROUT SERVICES

3.3 Incre-ent or Deere-ent Free Connection Count (XSNSP)

After opening a connection port (see XSCRS above), a task can later
increment when connections becomes available, or decrement when the
number of connections need to be reduced. For this free connection
count (when connections become available) you may use the XSNSP
service.

Parameter No Type Meaning
In: 1 Integer Number of extra connections

If parameter 1 is positive, the free connection counter is
incremented. If the parameter is negative, the free connection counter
is decremented. (If the resulting number of free connections becomes
negative, an error is returned.)

3.4 Send Letter (XSLET)

This service is used to contact a remote port.

Parameter No Type Meaning
In: 1 String Port or Connection name

2 String System name
4 Integer Local Area Only flag (optional)

If parameter 2 is specified, XROUT will search in the name table, and
if this has been defined as a remote name (see Define Remote Name,
XSDRN, below), the letter is forwarded to the XROUT in the specified
system. If the 'LAN only' flag is set and does not equal zero, the
letter is only forwarded if contact has been established, and the
remote system lies on the local network.

Otherwise XROUT extracts the identifier (parameter 1) and looks up the
string in its name table. If a match is found, XROUT looks at the port
type: If this is a normal named port (named by using the XSNAM
service), the whole message is forwarded (option XFFWD) to the
matching magic number.

If it is a connection port (named by using XSCRS), XROUT looks at the
free connection count; If the count is greater than zero, it
decrements it and forwards the Letter. If not, it tries to find
another port with the same name. If no match is found, the function
code is set to an error value, and the message returned to the sender.

The remainder of the message can contain data for the receiving task
(user name, password,). ‘his will allow the server to check that
the sender is entitled to use that service, before replying and
thereby giving the caller his/her magic number. If the server wants to
reply to the requester without giving away his/her own magic number,
he/she should reply with the forward option (XFFWD).

Norsk Data ND~60.164.3 EN

292 COSMOS PROGRAMMER GUIDE
XROUT SERVICES

3.5 Send Letter and Kick (XSLEK)

This privileged service is identical to the XSLET service described
above, except that it also allows an RT monitor call to be executed on

a specified program.

Parameter No Type Meaning
In:] String Port or Connection name

2 String System name
3 String Name of an RT program
4 Integer Kick flag (optional)

If the destination XROUT does not know the name of the destination
port, it will execute an RT monitor call on the RT program specified
in parameter 3, to start it up and return the letter with status OK.
Note that the requesting program can test whether the target task or
XROUT returned the message by checking the message type.

If parameter 4 is specified as an integer equal to one, XROUT will
precede the RT monitor call with an ABORT.

3.6 Return a null Status Message (XSNUL)

XROUT returns a message of two bytes containing the reference number
and 0 (used for testing/benchmarking).

Parameters : none

3.7 Get Kane from Magic Number (XSGNM)

Any XMSG user can obtain the name of a given port by sending a message
containing the magic number as parameter 1.

Parameter No Type Meaning
In: 1 Integer Magic number
Out: 1 String Port name

The return message will contain the port name appended as parameter 2,

if there was space in the message buffer (make sure there is enough!).

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 293
XROUT SERVICES

3.8 Get Hale from Magic Number not Less than Param (XSGNI)

Any XMSG-user can obtain the name of a port or remote system from the
name table by sending a message containing a magic number as parameter
1.

Parameter No Type Meaning
In: 1 Integer Magic number
Out: 1 Integer Magic number (or O)

2 String Port or System name
3 Integer No of free connection/service points

(optional)

XROUT will return the name with the least system magic number greater
than or equal to the input parameter. The name's magic number is
returned as parameter 1 and the name as parameter 2. If the name was
that of a service, parameter 3 will contain the number of free
connection/service points.

If no name was found, satisfying the above conditions, the first
parameter is zero.

If the request contained no parameter 1, the name of the local system
is returned.

3.9 Clear name of a port (XSCNM)

When a name‘s validity has expired, this service can be used to remove
the name from the name table. It is done by sending the XSCNM service
from the port whose name is to be cleared.

Parameters: none

Name clearing is also done automatically by XROUT when it notices that
a port has been closed.

3.10 Get Magic Number fro- Name (xsam)

This is a privileged service, which returns the magic number for a
particular name (see also XSGIN below).

Parameter No Type Meaning
In: 1 String Name
Out: 1 Integer Magic number

If the specified name is the name of a connection/service port, and
there are more than one port with this name, the magic number of the
most recently defined name will be returned.

Norsk Data ND~60.164.3 EN

294 COSMOS PROGRAMMER GUIDE
XROUT SERVICES

3.11 Get Information about Name (XSGIN)

This service returns information about a port or system name.

Parameter No Type Meaning
In: 1 String Port or System name
Out: 1 Integer Port number (optional)

2 Integer System number

This service takes as input a name as parameter 1 and returns the
system number as parameter 2. If the given name is a port name and not
a system name, the port number is returned as parameter 1.

If the specified name is the name of a connection port, and there are
more than one port with this name, the service only returns
information about the most recently created connection port wich
carries that particular name.

3.12 Define Remote Name (XSDRN)

XSDRN is used for defining the names of systems (specified as
parameter 2 in letters — XSLET and XSLEK services). XSDRN is normally
accessed via the Define—Remote—Name command of the XMSG-COMMAND
background program. XSDRN is privileged, and requires two parameters.

Parameter No Type Meaning
In: 1 String System name

2 hmqfir Sfinmamr

The specified name is put into the name table (must be unique). All
letters that are addressed to that system (parameter 2 in XSLET and
XSLEK), will be forwarded to the specified system. Note that a system
can have many names. Thus the names to be used should be those
identifying functional systems rather than physical systems, whenever
possible (e.g., SIBAS—BACKEND or MAIL—HANDLER rather than ND—lOO—377.)

If the second parameter is not specified, the name is cleared, i.e
removed from XROUT's name table.

I I

3.13 Define Local System (XSDLO)

This defines the specified system number as the number of the local
system.

Parameter No Type Meaning
In: 1 Integer System number or O

The system number must be defined as follows:
For ND—lOO systems= the serial number

ND—SOO systems= the serial number + 5000
ND-lO systems: the serial number + 9000

satellites: the serial number + 10000

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 295
XROUT SERVICES

If parameter 1 is zero, the service will use the SINTRAN system
number.

You are not allowed to redefine the local system number. The
definition of the local system number is done automatically when you
start XMSG.

3.14 Define System Routing (XSDSY)

Whereas Define Remote Name (XSDRN) defines the mapping of a system
name to an XMSG system number, Define System Routing (XSDSY) specifies
how to get to that system. This is not necessary if the system is
directly connected, since XROUT will find out when the link to that
system starts up. It is necessary, however, for systems connected via
neighbours. The XSDSY service is privileged and takes two parameters:

Parameter No Type Meaning
In: 1 Integer System number

2 Integer To be routed via this system (or 0)

The function will update the routing tables thus the specified system
is marked as being available via the system defined in parameter 2. If
the second parameter is zero, the system specified in parameter 1 is
marked as 'not available'.

If no parameter 2 is specified, the specified system is removed from
the system routing table.

The size of the routing table (i e.,the number of other systems the
local system can communicate with) is defined when XMSG is generated.
Note that no non-local system, except directly connected systems, can
communicate with the local system unless it has been defined using the
XSDSY service.

XSDSY is usually accessed by using the Define-System—Route command in
the XMSG—COMMAND program.

Norsk Data ND~60.164.3 EN

296 COSMOS PROGRAMMER GUIDE
XROUT SERVICES

3.15 Get Renting Inforlation for a System (XSGSY)

XMSG-COMMAND allows you to list the routing information held by any
accessible XROUT in an XMSG network‘ This is done by sending XSGSY
messages with an integer parametwr, the object system number. XROUT
replies with a message containing four integer parameters:

Parameter No Type Meaning
In: 1 Integer Object system number
Out: 1 Integer The first system number found greater

than or equal to that requested (or 0 if
none)

2 Integer Connection type
3 Integer Extra info depending on connection type
4 Integer Network info

Par. 2 — Connection type Par. 3 contains:
0 — Unavailable
l — Neighbour Link Index
2 — Via System number
3 ~ Via network server Subaddress
4 - Local Local system number

Par. 4 - Network info
<=377B - Number of hops in right byte (hop count)
>=4OOB - Number of WANS in left byte and number of

hops in right byte, if any.

The integer parameter 4, Network Info, is interpreted as follows. If a
route to a system involves 3 LAN hops, and l WAN, the parameter value
will be 403B, i.e., left byte 001B and right byte 003B.

3.16 Starting up/Stopping an Inter—Systel Link (XSLKI)

This privileged service is used by the Start—Link and Stop~Link
commands in the XMSG-COMMAND program. It is used when one wants to use
an HDLC link or Megalink (which must have been declared in the
generation of SINTRAN) as an inter~system link. The XSLKI request
requires four parameters:

Parameter No Type Meaning
In: 1 Integer Link logical unit number

2 Integer Timeout value in XMSG Time Units (XTU)
(one XTU = 0.1 sec.)

3 Integer Number of frames to allocate (window+l)
4 Integer Number of times to repeat

(if (0 then infinite)

Norsk Data ND~60.l64.3 EN

COSMOS PROGRAMMER GUIDE 297
XROUT SERVICES

If number of frames to allocate (parameter 3) is greater than zero,
XROUT will reserve the link (both input and output data fields), check
that there are enough free frame buffers and then initialize the
interface. The link will then enter the ‘calling' state, which means
that it tries to establish contact with the adjacent system, by
sending a predefined (parameter 4) maximum number of SABM frames.
(SABM= Set Asynchronous galance Mode.)

When an SABM frame is received correctly, the link will enter the
'Connected' state and send Receiver Ready (RR) frames instead. When an
RR from the adjacent system is received, it will enter the RUN state.
At this point, the routing table will be updated to indicate that the
neighbour is available over that particular link. Note that the XSLKI
reply is returned to the requester as soon as the link is put into the
CALL state.

If the number of frames to allocate (parameter 3) is less than zero a
'close' link operation is performed instead; the link is disabled,
released, and the routing information updated.

If parameter 3 is equal to zero, this is a status request and the link
state is returned as parameter 1. Link state: O=DEAD(crashed),
l=INIT(being initialized), 2=CALL(trying to make contact with
neighbour), 3=CONN(contact made with neighbour), 4=RUN(data phase),
5=KILL(closing down).

3.17 Starting up/Stopping a Network Server (XSRET)

XMSG allows one to replace an HDLC/Megalink with any other network
that offers the same facilities. This is done by implementing a
special program, called a network server, that takes the frames that
would have been sent by the XMSG link layer over HDLC/Megalink and
sends them over the other network instead.

The privileged Start/Stop Network Server service therefore is quite
similar to the Start/Stop link service:

Parameter No Type Meaning
In: 1 Integer Magic number of server port

3 Integer Number of buffers to allocate
4 Integer Not equal to zero if WAN

The server magic number must have been obtained previously by direct
communication with the server, eg., using the XSLEK service. The WAN
flag is used to indicate that communication over this server is not
free. Thus all letters that are sent with the 'LAN only' flag should
stop here (cf. XSLET service).

If the number of buffers to allocate (parameter 3) is less than zero,
the specified server is stopped.

If parameter 3 is equal to zero, this is a status request and the
state of the particular network server is returned as parameter 1.
Network server state: O=DEAD(crashed), 1=INIT(being initialized),
2=CALL(trying to make contact with server), 3=CONN(contact made with
server), 4=RUN(data phase), 5=KlLL(closing down).

Norsk Data ND-60.164.3 EN

298 COSMOS PROGRAMMER GUIDE
XROUT SERVICES

3.18 Trace Initialize (XSTIN)

This privileged service is used by the Open—Trace command in the XMSG—
COMMAND program to initialize the trace system. It takes as a
parameter, the file name of the trace file. XROUT then opens and
initializes the file and starts up the trace dump foreground program
(XTRACE).

Parameter No Type Meaning
In: 1 String Name of trace file
Out: 1 Integer SINTRAN error code (optional)

Note that the same trace systems (events) will be enabled as for the
previous trace.

If a file system error occurs when opening the trace file, the SINTRAN

file system error code is returned as parameter 1.

3.19 Trace Close (XSTCL)

This privileged service is the opposite to XSTIN (above). It will
write the last block(s) with trace information to the trace file,
close the trace file and stop XTRACE.

Parameters: none

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 299
XROUT SERVICES

3.20 Define Trace Conditions (XSTDC)

This privileged service takes an integer as a parameter. If it is
positive, the system (event) with that number is enabled for tracing.
If it is negative the actual system is disabled. If zero, all tracing
systems (events) are disabled.

Parameter No Type Meaning
In: 1 Integer Trace system (event) number

The following events can be traced. (Events 0 and l are
automatically enabled.)

0 : Clock. Only output when necessary. Body (2 words) contains
ATIME (in basic time units.)

1 : Trace management. First word of body contains the function
1: open
2: close
3: enable/disable (next word contains the system number -

negative means disable)
8 : XMSG Calls. The 5-word body contains the T—,A- and D—register,

the XT-block address and the X—register from the caller.
9 : XMSG return to user. Body is as for system 8, but with

Result Registers instead.
10 : Kernel context switch - traces queue and element

address.
11 : Link Layer — frame received.
12 : Link layer - bad frame received and ignored.
l3 : Link Layer - send frame. Trace body: AC bytes,length etc.
14 : Network Layer - complete datagram queued to receiver queue.
15 : Network Layer - datagram fragment received.
16 : Network layer - any frame received (inc. route through)
17 : Network layer ~ frame sent
18 : Network layer - control frame received
19 : Link layer - updating transmitter list
20 : Link layer - start transmitter
21 : Network layer — start transmitting new message
22 : Gateway - frame dechained on input

3.21 Set Crash Infor-ation (XSSCI)

This privileged service is used for defining the names of XMSG restart
files and XMSG dump files. In addition, it is used to enable/disable
the auto—restart flag, dump XMSG onto files and to get information
about the currently defined restart/dump files and the current auto~
restart flag. XSSCI is normally accessed via the commands of the XMSG—
COMMAND background program.

Since XSSCI must be able to handle different types of requests (see
above), the service is divided into sub-services.

Norsk Data ND-60.l64.3 EN

300 COSMOS PROGRAMMER GUIDE
XROUT SERVICES

The first parameter in the message sent to XROUT determines the
requested sub—service. The number and type of the other parameters,
depends on the particular sub*service.

The sub~services defined and the appropriate, respective parameters
are as follows.

XSDAR: Enable/disable auto—restart:
This sub—service controls the setting of the auto~restart flag.
If it is zero (default), the automatic XMSG restart facility is
disabled. If not zero, the restart facility is enabled. If the
restart facility is enabled and the restart files have been
defined (see sub—service XSDRF), XMSG will automatically be
restarted if an XMSG crash occurs.

Parameter No Type Meaning
In: 1 Integer Sub-service = XSDAR

2 Integer 0 leads to disable, ><O leads to enable

XSDRF: Define restart files:
The sub-service is used for defining the names of XMSG restart
files. This operation must be done if the automatic restart
facility is to be used.

Parameter No Type Meaning
In: 1 Integer Sub—service = XSDRF

2 String Batch input file name
3 String Batch output file name

When the restart-files are defined and auto—restart enabled,
XROUT will, if an XMSG crash occurs, append the files specified
as parameter 2 and 3 to the batch input and output queues
respectively.
Note that the default owner of the restart files is user
SYSTEM. If the files are owned bysomeone else, the file names
must be prefixed with the name of that user.

If one of the parameters 2 or 3 is not specified, the restart
file names are cleared.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 301
XROUT SERVICES

XSDDF: Define dump files:
The sub-service is used for defining the names of XMSG dump
files. This operation must be done before XMSG can be dumped
onto files (for later investigation). When XMSG is dumped, the
system will be dumped onto the files specified as parameter 2,
3 and 4 in the message.

Parameter No Type Meaning
In: 1 Integer Sub-service = XSDDF

2 String Dump file name for segment 33 and 34
3 String Dump file name for XMSG tables
4 String Dump file name for XMSG message buffer

pool

If one of the parameters 2,3 or 4 is 29: specified, the current
dump file names are cleared. Note that the file name never
should be enclosed in quotes ("). If the file does not exist,
the new file will be created by XROUT. If the file exists, it
must have been created as an indexed file.

XSGDF: Get defined dump files:
The return message will contain the currently defined XMSG dump
file names appended as parameter 2, 3 and 4, if there was
sufficent space in the message (make sure there is enough).

Parameter No Type Meaning
In: 1 Integer Sub-service = XSGDF
Out: 1 String Dump file name for segment 33 and 34

2 String Dump file name for XMSG tables
3 String Dump file name for XMSG message buffer

pool

XSDUX: Dump XMSG onto files:
The sub—service is used to dump XMSG onto files (for post-usus
analysis). This sub—service is normally accessed via theDump—
XMSG command of the XMSG-COMMAND program, and when XMSG is
dumped in the case of an XMSG crash. When accessed, XROUT will
dump XMSG onto the files defined via sub-service XSDDF (see
above).

Parameter No Type Meaning
In: 1 Integer Sub-service = XSDUX

Norsk Data ND-60.164.3 EN

302 COSMOS PROGRAMMER GUIDE
XROUT SERVICES

XSGRF: Get defined restart files:
The return message will contain the currently defined XMSG
restart file names appended as parameter 2 and 3, if there was
sufficient space in the message (make sure there is enough).

Parameter No Type Meaning
In: 1 Integer Sub—service = XSGRF
Out: 1 String Batch input file name

2 String Batch output file name

XSGAR: Get auto-restart definition:
The return message will contain the current auto—restart
definition appended as parameter 2, if there was sufficient
space in the message (make sure there is enough).

Parameter No Type Meaning
In: 1 Integer Sub—service = XSGAR
Out: 1 Integer 0 if disabled, ><O if enabled

3.22 Get/Check Attribute (XSGAT)

This service is also divided into sub—services. The requested sub—
service is specified by the first parameter in the message sent to
XROUT. The number and type of the other parameters in the message,
depends on the requested sub—service.

The sub-services (currently) defined and the appropriate, respective
parameters are as follows:

XSGXV: Get XMSG version:
The return message will contain the version, revision and patch
level of the running XMSG system as parameter 1,2 and 3.

Parameter No Type Meaning
In: I Integer Sub—service = XSGXV
Out: 1 String Version (e.g. 'J').

2 String Revision (e.g. 'OO').
3 Integer Patch level (e.g. O).

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 303
XROUT SERVICES

XSCMG:

XSGCN:

XSGFR:

Check magic number:
Any user may check the validity of a magic number by sending a
message containing the magic number as parameter 2. XROUT will
return information about the requested magic number as
parameter 1.

Parameter No Type Meaning
In: 1 Integer Sub-service = XSCMG

2 Integer Magic number to be checked.
Out: 1 Integer Information about the magic number:

If the magic number is that of an open
port in the accessed XROUT system, then
parameter 1 = 1.
If the magic number is that of a closed
port, that
of a system or that of a port in another
system then parameter I = O.

Deabbreviate system or port name:
Any user may deabbreviate a system or port name by sending a
message containing the abbreviated name as parameter 2. XROUT
replies with a message containing the full name of the port or
system as parameter 2. If the name is a port name, the port
number is returned as parameter I; if the name is that of a
system, the system number is returned as parameter 3.

Parameter No Type Meaning
In: 1 Integer Sub—service = XSGCN.

2 String Abbreviated name.
Out: 1 Integer Port number (if the name is a port name).

2 String Deabbreviated (full) name.
3 Integer System no. (if the name is a system name).

Get friend information for a system (privileged):
The List-Friend—Systems command of the XMSG—COMMAND program
allows one to list all systems defined as friends to the local
system. This is done by sending a message with the object
system number as parameter 2. The return message will contain
two parameters (see below).

Parameter No Type Meaning
In: 1 Integer Sub~service = XSGFR.

2 Integer Object friend system number.
Out: 1 Integer The first system number found greater than

or equal to that requested, or 0 if none.
2 Integer Options (not yet implemented).

Norsk Data ND-60.l64.3 EN

304 COSMOS PROGRAMMER GUIDE
XROUT SERVICES

3.23 Define/Remove Attribute (XSDAT)

This privileged service is also divided into sub—services. The
requested sub-service is specified by the first parameter in the
message sent to XROUT. The number and type of the other parameters in
the message, depends on the requested sub—service. XSDAT is normally
accessed via the commands of the XMSG-COMMAND program.

The sub-services (currently) defined and the appropriate, respective
parameters are as follows:

XSDFR: Define friend system:
This service is used to define a system as a friend to the
local system. This is done by sending a message containing the
friend system number as parameter 2.

Parameter No Type Meaning
In: 1 Integer Sub-service = XSDFR.

2 Integer System number.

Note that this friendship is not reciprocal; You cannot declare
yourself as a friend of another system.

XSRFR: Remove friend system:
When a friend system's validity has expired, the service is
used to remove the specified system from the friend system
table. This is done by sending a message containing the system
number as parameter 2.

Parameter No Type Meaning
In: 1 Integer Sub—service = XSRFR.

2 Integer System number.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 305
XROUT SERVICES

3.24 Get Network Server Information (XSNSI)

This is a privileged service, which returns information for a network
server (i.e., a server which has been started by the StartsNetwork-
Server command of the background command program). XSNSI is normally
accessed via the List-Network-Servers command of the XMSG'COMMAND
background program.

Parameter No Type Meaning
In: 1 Integer Virtual system number
Out: 1 Integer The first virtual system number found

greater than or equal to that requested,
or 0 if none.

2 String Network server name.
3 Integer Link index in XMSG.
4 Integer Network type: 0 = local area,

1 = wide area.
5 Integer Network server port number.
6 Integer Gateway port number.
7 Integer Number of receive buffers allocated to

the server.
8 Integer Number of transmit messages allocated

to the server.

(Make sure that the message buffer, which is sent to XROUT, is big
enough to contain the response parameters.)

Norsk Data ND-60.l64.3 EN

306 COSMOS PROGRAMMER GUIDE

Norsk Data ND-60.l64.3 EN

PI ’9 1’fit Fargti‘l‘he"

.
9_

3
L

1
‘1

1
:}.

I.
31..

I
”

L1:
3

....3
V

lr
i

...
313.21

3
k
3

t2
r

.,
‘

.
.

.
..

\
4

1
5

‘".
«

tr
ia

l;
T

i?
1

:3
7

,

COSMOS PROGRAMMER GUIDE 309
The ND-lOO XMSG System From PIOC

The XMSG system running in the ND—lOO may be used by processes in
PIOCOS through a system call. In this way processes in the PIOC may
communicate with tasks in the ND-lOO. Processes in the PIOC may also
use the XMSG in the ND~lOO for internal communication, but in this
case there is considerable overhead involved.

For a complete understanding of programming the PIOC, please see the
PIOC Software Guide (ND—60.161).

XMSG record in PIOC (lZ-byte register block):

TYPE POXM = RECORD PACK
INTEGERZ : Tregister
INTEGERZ : Aregister
INTEGERZ : Dregister
INTEGERZ : Xregister
INTEGER4 : user32bitAddress
ENDRECORD

Example of use:

POXM : xmsgBlock
XFDUM =: xmsgBlock.Tregister

$* LEA xmsgBlock,A0
$* MOVE.W £FNXMSG,DO
$* TRAP £2

The user32bitAddress parameter is only used in the functions XFREA,
XFWRI, XFRRE, and XFSMC.

All elements in a multicall from PIOCOS must consist of the lZ-byte
register blocks, even if the 32-bit address field is not used. Be
aware that the driver edits the multi-call block and inserts XFDBK
calls if the PIOC bank is changed from one call to another.

To avoid problems, you should not specify addresses in more than one
bank (the large 512Byte PIOC has 4 banks).

We recommend that you do not use the XFWTF flag. If the XFWAK flag is
set, the process will continue whether the function is completed or
not. Upon completion, an event (BIT 31) will be generated for the
appropriate process.

When the PIOC is unloaded (either by the PIOC monitor call or by the
PIOC-MONITOR) all processes in the PIOC will be disconnected from
XMSG.

Norsk Data ND-60.l64.3 EN

310 COSMOS PROGRAMMER GUIDE
The ND-lOO XMSG System From PIOC

The following calls are not allowed from the PIOC:

XFABR
XFCRD
XFDBK
XFSTD
XFWDF
XFDBK
XFSIN
XFDUB

Absolute read from physical memory
Define a driver for XMSG
Define a bank number for drivers

, Start driver
Define wake—up context
Define a bank number for drivers
Initialize for system functions
Define a user buffer

Norsk Data ND—60.l64.3 EN

* : 3’11

..
.U...

.
Gmm.

m.m.__.A”

z
i!

,
T

., .,
R

.
N.

,
m.

.ME
D

R.
.3

_
.o;

a
X

.
Ca.

. .1...
_

I
.

W.
,

,
.

,
0

.2
2

2
;:

2
2

2
s
s
-
i
-
-

z
..,2

sfizz

-

i.
2

:
;
S
fi
i

n
s

m
P..

.
C,

,...,D

A.
m.

..k
,

.
_

o
.

E
N

_..2
.

x,
‘2.

A

m...
..

m
m

...
--.-4

.4
4

4
4

.4
4

...

-

44
--

-

.4
-

4
.4

.4
-4

.
..-.4

4
:--4

-.4
,.--4

-:--

4
Gm...

S...
0....
M

414.142.2444....
2442.....-

4.
2:42.5412.4.22.

2-444....
2

.
:

..
.34

2.4-..
.

4......444..444...44i.........!..41.44.............4
43.4

4-
.1

3
4

.
4-4.

.
5.154.444-44:

.f
.

4
...

2
44......

24.4.44...
44.2.44.

4
I...

4.44..
4

M
3

..-
It...

A.

212

COSMOS PROGRAMMER GUIDE 313
XMSG ERROR CODES (PLANC OR FORTRAN)

General

The possible error codes together with the symbol defined in the
XMP:DEFS or XMF:DEFS files are explained in this appendix. XMSG and
XROUT error codes are described in different sections of the appendix.

The different XMSG and XROUT error messages are listed with their
symbolic name, their SEC (Standard Error Code), and the pure XMSG
error codes.

Norsk Data ND—60.164.3 EN

314 COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC OR FORTRAN)

1 Error Codes Returned from XMSG Functions

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENTM 16896 XENTM 0

Description : The base value of the Standard Error System (SEC).
Explanation : This is not an error! Return status of not completed

functions.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENOT 16897 XENOT —1

Description : No more XT-blocks free.
Explanation : Each user of XMSG has, and must have, an XT—block (task

block). An XT-block is automatically allocated by XMSG
as soon as a task which has no task block makes an XMSG
call of any kind.

The maximum number of tasks to be active, i.e., known
by XMSG, at any time, is a system generation definition
parameter.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEIRM 16898 XEIRM —2

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXETMM 16900 XETMM -4

Description : Task is not allowed any more memory.
Explanation : A reserve or allocate message buffer(s) function has

been issued, but the calling task is not allowed to
reserve/allocate the message buffer(s) of the requested
size.

The maximum number of bytes that a task can own at any
time is a system generation definition parameter.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 315
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENIM 16901 XENIM —5

Description : Facility not yet implemented.
Explanation : A function has been called, or an option requested,

that is not yet implemented in XMSG.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEIBP 16902 XEIBP —6

Description : Illegal message buffer pointer.
Explanation : A function which refers to a message has been issued,

but the specified message identifier is not a valid
message identifier.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEBNY 16903 XEBNY —7

Description : Message buffer not yours.
Explanation : A function which refers to a message has been issued,

but the specified message is owned by another task.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEIRT 16904 XEIRT —8

Description : Illegal function for RT~programs (only drivers).
Explanation : A function has been issued which is not legal for RT-

programs, eg., the functions 'Define Bank Number for
Drivers' or the 'Define Wake-up Context'.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENOP 16905 XENOP —9

Description : No more ports available.
Explanation : An open port function has been issued, but all ports

are already in use.

The maximum number of ports to be used simultaneously
is a parameter defined at system generation.

Norsk Data ND-60.164.3 EN

316 COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC 0R FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEIDR 16906 XEIDR ~10

Description : Function not available to drivers.
Explanation : A driver has made a call which is not available for

drivers, i.e., the function is only legal for RT—
programs.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENDM 16907 XENDM ~11

Description : No default message.
Explanation : A function that operates on a default message or a

function that has specified a message identifier of *1
has been issued which requires that a default message
exists, but there is no current default message. A task
may set the current (default) message with the ‘Set
Current Message' function.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEMCH 16908 XEMCH —12

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEBFC 16909 XEBFC —13

Description : Message is in a queue.
Explanation : A function which refers to a message has been issued,

but the specified message is chained to a queue (e.g.,
chained to a port queue or to another internal XMSG
queue).

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEAIN 16910 XEAIN ~14

Description : Not used!

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 317
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEBNC 16911 XEBNC -15

Description : Return of a bounce message.
Explanation : A message sent with option XFBNC is returned to the

sending task. This is not really an error.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEWNA 16912 XEWNA -16

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENVI 16913 XENVI —17

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEILF 16914 XEILF -18

Description : Illegal function code in monitor call.
Explanation : An XMSG function has been requested which does not

exist.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEIMA 16915 XEIMA ~19

Description : Invalid magic number.
Explanation : A send function has been issued, but the destination

magic number does not exist, or the receiving port is
closed before the handling (destination) task has
received the message, or the receiving port is closed
while the message is 'port current' for that particular
port.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEMFL 16916 XEMFL ~20

Description : Message space full.
Explanation : A reserve or allocate message buffer(s) function has

been issued, but there is either no free message
descriptor or no free space in the message buffer pool,
large enough for the requested buffer size.

Norsk Data ND—60.l64.3 EN

318 COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC OR FORTRAN)

The error is also returned if a send function is issued
when a secure message is sent to a task in another
system, and the receiving (destination) task tries to
reserve a message buffer for the incoming message when
there is either no free message, or no free space in
the message buffer pool, large enough for the incoming
message.

The maximum number of messages to be reserved/allocated
simultaneously is a parameter defined at system
generation. This also applies for the total buffer
space available for message buffers.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEILM 16917 XEILM -21

Description : Illegal message size or not enough space left.
Explanation : A reserve/define message buffer function, an allocate

message buffer(s) function, or a function which is used
to write user data into a message buffer has been
issued.

For the first type of function (reserve/define message
buffer), the error is returned if the requested message
size is greater than the maximum message size allowed,
or if the option XFEXC (reserve exclusive message
buffer) is specified and no exclusive message buffer of
the requested size is available.

The maximum message size allowed is a parameter defined
at system generation.

For the second type of function (allocate message
buffers), the error is returned if the requested
message size is equal to zero or greater than the
maximum message size allowed, or of a different size
than previously allocated messages.

For the third type of function (writing into message
buffer), the error is returned if the message buffer
size is too small to contain the user data.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEIPN 16918 XEIPN ~22

Description : Illegal port number.
Explanation : A port referencing function has been issued, but the

specified port is either not active (not in use), or
the specified port number is greater than the highest
port number in the system.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 319
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEPRV 16919 XEPRV -23

Description : Privileged function called without privilege.
Explanation : A privileged function has been called, but the caller

is not privileged. The user may become privileged (for
XMSG) by successfully executing the function 'Make
Calling Task Privileged'.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEPVR 16920 XEPVR —24

Description : Privilege request refused.
Explanation : To become privileged, the caller must be either a

driver, direct task, foreground program on ring 2 or 3,
or a background program logged in as user SYSTEM. The
caller must also specify the correct XMSG password. The
XMSG password can be obtained using the XMPCONF
(XMFCONF) routine.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXERNA 16921 XERNA —25

Description : Remote system not available.
Explanation : A send message function has been issued, but the local

XMSG has no access to the remote system (e.g., if a
link has not been started).

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEROV 16922 XEROV -26

Description : Remote task space overflow.
Explanation : A send message function has been issued and a secure

message was sent to another task. As the receiving,
however, task was not allowed any more memory, the
message was returned to the sending task.

The maximum number of bytes that a task can own at any
time is a parameter defined at system generation.

Norsk Data ND—60.l64.3 EN

320 COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEXBF 16923 XEXBF ~27

Description : Message already has XMSG buffer.
Explanation : The current message is reserved with a number of bytes

not equal to zero.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEDRI 16924 XEDRI ~28

Description : Driver called XMSG before return from previous call.
Explanation : A driver is not allowed to call XMSG until a return has

been made from the previous call.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENDP 16925 XENDP -29

Description : No port open (so default port parameter invalid).
Explanation : A port referencing function, with a specified port

number of zero, has been issued which requires that a
default port exists, but there is no default/open port.
The default port is the most recently opened port.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEITL 16926 XEITL ~30

Description : Illegal transfer length for read/write.
Explanation : A read or write function has been issued, but the

requested number of bytes to transfer is less than
zero, or the current message displacement plus the
number of bytes to transfer becomes less than zero.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEIDP 16927 XEIDP ~31

Description : Illegal displacement in read/write.
Explanation : A read or write function has been issued, but the

specified message displacement is greater than or equal
to the message buffer size.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 321
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEILR 16928 XEILR -32

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENOS 16929 XENOS ~33

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENSE 16930 XENSE ~34

Description : Network sequencing error.
Explanation : A send function has been issued which resulted in the

sending of a message to another system. XENSE is
returned by the receiving (destination) system. For
example, XENSE is returned if the received datagram
identifier (sequence number) is not equal to the
expected sequence number.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXERND 16931 XERND —35

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEPCL 16932 XEPCL ~36

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENRU 16933 XENRU ~37

Description : XMSG not running.
Explanation : XMSG is not started or XMSG has crashed!

When XMSG is running, it spends
checking itself. If one of these checks fails, XMSG
will restart active XMSG tasks by means of this return
status and close itself down.

a lot of its time

Norsk Data ND-60.l64.3 EN

322 COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC OR FORTRAN)

If a task makes an XMSG call when XMSG is not running,
SINTRAN will return this status when it is informed
that XMSG has stopped.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENTO 16934 XENTO ~38

Description : Not usedi

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXENUS l6935 XENUS ~39

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXEREJ 16936 XEREJ ~40

Description : Network remote reject (request retransmit).
Explanation : A send function has been issued which resulted in the

sending of a message to another system. The error is
returned by the receiving (destination) system if the
transport header, which is set up by the local XMSG,
for the message is incorrect.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XNXEIXT 16937 XEIXT ~41

Description 2 Driver called XMSG with illegal XT-block.
Explanation : A driver has made an XMSG call with an illegal task

block in its Leregister, e.g., with an XT-block which
belongs to a RTHprogram, with an XT-block which is not
in use (not active), with an XT—block address which is
outside the valid range for task blocks, or if XMSG has
been stopped and restarted after the driver had
received its XT~block address from XMSG.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXETMU 16938 XETMU —42

Description : Too many multicalls.
Explanation : A ‘Start Multicall' function has been issued, but the

requested number of calls to execute is greater than
the maximum allowed number of calls in a multicall.

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC OR FORTRAN)

The maximum number of calls
parameter defined at system generation.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXECRA 16959 XECRA —63

Description 2 Not used!

2 Error Codes Returned from XRDUT Services

323

in a multicall is a

The error value is always returned in byte 1 of the reply from XROUT.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRSOK 16960 XRSOK 0

Description : Ok, not an error.
Explanation : OK return from a service call.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRISN 16961 XRISN 1

Description : Illegal service number.
Explanation : A service has been requested which does not exist.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRUNN 16962 XRUNN 2

Description : No open port has this name.
Explanation : A service that refers to a port or a system name has

been issued, but no port or system has the specified
name. For example if one of the services. 'Send
Letter', 'Send Letter and Kick', 'Get Information about
Name', 'Define/Clear Remote Name', or 'Get Magic number
from Name' has been issued, the error returned if
the specified port/system name (parameter 1) is
unknown.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRDDF 16963 XRDDF 3

Description : Another port already has this name.
Explanation : A port or system naming service has issued, but

another port or system already has the specified name.

Norsk Data ND—60.l64.3 EN

324 COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNSP 16964 XRNSP 4

Description : No space left for names.
Explanation : A port or system naming service has been issued. When a

new port or system is to be named, XROUT must first
allocate space for the name unit in its name table. The
name table has a size defined at system generation.
When full, this error is returned.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRIPT 16965 XRIPT 5

Description : Illegal parameter type.
Explanation : A parameter in the service request has an illegal type,

i.e., if a parameter is of type 'integer' when it
should have been of type 'string', or if a parameter is
of type 'string' when it should have been of type
'integer'.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRMMP 16966 XRMMP 6

Description : Missing mandatory parameter.
Explanation : A mandatory parameter in the service request is

missing: for example, if a send letter service call has
been issued and parameter 1 (port or connection name)
is missing.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRUNM 16967 XRUNM 7

Description : Unknown magic number.
Explanation : A service has been requested which requires that a

specified magic number exists, or that the sending port
should be named. You get this error message if either
the magic number does not exist, or the sending port
has not been named.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 325
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRMTL 16968 XRMTL 8

Description : Resulting message too long.
Explanation : A service call of any kind has been issued, but the

message containing the service request is either less
than 4 bytes, or it is too small to contain the
returned XROUT parameter(s).

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRSMF 16969 XRSMF 9

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRPRV 16970 XRPRV 10

Description : Caller was not privileged.
Explanation : A privileged service has been requested, but the caller

is not privileged. The user may become privileged (for
XMSG) by successfully executing the function, 'Make
Calling Task Privileged'.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRISY 16971 XRISY 11

Description : Illegal system number parameter.
Explanation : A service which refers to a system number has been

issued, but the specified/requested system number
not be represented-as a l6—bit integer word.

can

The error is also returned from a
Routing' service call if the first parameter (system
number) is equal to zero or equal to the local XMSG
system number; or if the second parameter (via system
number) is equal to the first parameter or equal to the
local XMSG system number; or, if it was a remove system
request (parameter 2 missing), if the specified system
(parameter 1) is not defined in the system routing
table.

'Define System

Norsk Data ND-60.164.3 EN

326 COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNRO 16972 XRNRO 12

Description : No access to remote system.
Explanation : A send letter, e.g., 'Send Letter' or 'Send Letter and

‘ Kick‘, service has been issued, but the specified
remote system (parameter 2) is not available from the
local XMSG system.

The error is, for instance, returned if the remote
system is not defined in the system routing table, if
the link has not yet been started, or if a timeout is
detected by the network layer.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRIIV 16973 XRIIV 13

Description : Illegal integer value.
Explanation : A 'Increment/Decrement Free Connection Count' service

has been issued, but the original (previous) number of
connections plus the requested number of new
connections (parameter 1) becomes less than zero.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNEI 16974 XRNEI 14

Description : Cannot define route to a neighbour.
Explanation : A 'Define System Routing' service has been issued which

requires that the specified system (parameter 1) is not
directly connected. It is not legal to define a route
to an adjacent system (neighbour).

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNXM 16975 XRNXM 15

Description : Invalid service request - no inter—system XMSG.
Explanation : An inter-system XMSG service has been issued in a

single—system XMSG system.

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 327
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRILN 16976 XRILN 16

Description : Illegal/Reserved Log. unit no. for link.
Explanation : A 'Start/Stop Link' or 'Start Network Server' service

call has been issued.

If it is a 'Start Link' request, the error is returned
if the specified link (parameter 1) is already
started/active. If it is not started, the error status
is returned if an error is returned from SINTRAN when
XROUT tries to reserve the specified logical unit
(parameter 1).

If it is a 'Stop Link' request, the error is returned
if the specified link (parameter 1) is not
active/started.

If it is a 'Start Network Server' request, the error is
returned if the specified server (parameter 1) is
already started/in use.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNXL 16977 XRNXL 17

Description : No more XL-Blocks (Link Descriptors).
Explanation : A 'Start Link' or 'Start Network Server' service call

has been issued, but there is no free link descriptor.

Each inter-system link (i.e., HDLC or megalink) and
each virtual link (i.e., link to a network server) has,
and must have, an XL—block. An XL—block is
automatically allocated by XMSG when a new link or
network server is started.

The maximum number of links and/or network servers to
be active, i.e., started, at any time is a parameter
defined at system generation.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNXD 16978 XRNXD 18

Description : Not enough XD/XF—Blocks for start link/start server.
Explanation : A 'Start Link' or 'Start Network Server' service call

has been issued. When an inter*system link (i.e., HDLC
or megalink) or a virtual link (i.e., link to a network
server) is started, a (user) specified number of XD—
blocks (frame blocks) will be allocated for that
particular link. If it is a virtual link, the same
number of message headers (empty message buffers) need

Norsk Data ND—60.l64.3 EN

328 cosmos PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC OR FORTRAN)

to be allocated. When there are not enough free frame—
blocks, or, if it is a 'Start Network Server' service,
there are not enough free message headers (XM-blocks),
this error is returned.

The maximum number of frame—blocks and message headers
that can be allocated/reserved at any time are
parameters defined at system generation.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNTR 16979 XRNTR 19

Description : No trace generated;
Explanation : A ‘Trace initialize' service has been requested, but

the trace facilities are not included in the current
XMSG system. In order to include the trace facilities,
modify the XMSG system definition file and generate a
new system.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRTRA 16980 XRTRA 20

Description : Trace already active.
Explanation : A 'Trace initialize' service has been requested, but

the trace is already initialized.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRTRP 16981 XRTRP 21

Description : Trace passive.
Explanation : A ‘Trace Close' or 'Define/Change Trace Conditions'

service has been requested, but the trace system is not
active.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRTFE 16982 XRTFE 22

Description : Trace/Dump file open error (see param l).
Explanation : A service that refers to a SINTRAN file system name has

been requested, but a file system error was returned
from SINTRAN when XROUT tried to open the trace file.
The SINTRAN file system error is returned as parameter
1 in the response from XROUT.

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 329
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRTRT 16983 XRTRT 23

Description : Trace RT-prog (XTRACE) not found.
Explanation : A 'Trace initialize' service has been requested which

requires that the trace program (XTRACE) exists, but it
does not. XTRACE was (or should have been!) loaded when
XMSG and XROUT were loaded onto their segments.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRTIS 16984 XRTIS 24

Description : Illegal trace system number.
Explanation : A 'Define/Change Trace Conditions' service has been

requested, but the specified trace system (event)
number in parameter 1 is greater than 255.

(XMSG is able to trace up to 255 different system
events, although so many are not yet implemented).

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRBLK 16985 XRBLK 25

Description : Not used!

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRSYD 16986 XRSYD 26

Description : Attempt to redefine local system number.
Explanation : A 'Define Local System' service call has been issued,

but the local system number is already defined. It is
illegal to redefine the local system number.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNLS 16987 XRNLS 27

Description : No local system number defined yet.
Explanation : A service call which refers to another XMSG system has

been issued, which requires that the local system
number is defined. For example, the services 'Define
Remote Name', 'Define System Routing', 'Start Link‘,
'Start Network Server', etc. require that the local
XMSG system number has been defined.

Norsk Data ND—60.l64.3 EN

330 COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRTRE 16988 XRTRE 28

Description : Too many remote names applied to this system.
Explanation : A service used for defining the names of systems, e.g.,

iDefine Remote Name“, has been issued. XMSG can handle
a fixed maximum number of unique names (synonyms) for
each remote system. When this limit is exceeded, this
error is returned.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRRNA 16989 XRRNA 29

Description : Old service calls (<64) cannot go remote.
Explanation : A send letter service call has been issued which

requires that the new type of service (service number
>= 64) is requested.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRBUS 16990 XRBUS 30

Description : Service points busy.
Explanation : A send letter service, e.g., 'Send Letter', which is

used to contact a port defined as a 'connection port',
has been issued. If the free connection counter, for
that particular connection port, is less than or equal
to zero, the letter is returned to the sending task
with this error code.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNSE 16991 XRNSE 31

Description : This is not a service port.
Explanation : A connection port referencing service (eg., the service

'Increment or Decrement Free connection Count') has
been issued, but the referenced port is not a
connection port.

(A connection port is a port named using the 'Create
Connection Port' service.)

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 331
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRRPN 16992 XRRPN 32

Description : Remote port statically declared.
Explanation : A 'Clear Name' service call has been issued, but the

referenced port name is statically declared.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRUKS 16993 XRUKS 33

Description : Unknown remote system name.
Explanation : A send letter service, e.g., 'Send Letter' or 'Send

Letter and Kick', has been issued which requires that
the destination system name (parameter 2) is known by
the local system, but the specified name is not defined
as a name of a (remote) system.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRMFL 16994 XRMFL 34

Description : Remote system message table space full.
Explanation : A send letter service, e.g., 'Send Letter' or 'Send

Letter and Kick', has been issued. The error is
returned if the receiving task tries to reserve a
message descriptor and a message buffer for the
incoming message (letter), when there is either no free
message descriptor, or no free space in the message
buffer pool large enough for the incoming message.

The maximum number of messages that can be reserved
simultaneously and the total buffer space available for
message buffers are parameters at system generation.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRROV 16995 XRROV 35

Description : Remote task message space used up.
Explanation : A send letter, e.g., 'Send Letter' or 'Send Letter and

Kick', service has been issued. The letter was sent to
another task, but the receiving task was not allowed
any more memory, so the letter (message) was returned
to the sending task.

The maximum number of bytes that a task can own at any
time is a parameter at system generation.

Norsk Data ND-60.l64.3 EN

332 COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRRFU 16996 XRRFU 36

Description : Routing table full (too many systems).
Explanation : A system routing definition service call has been

issued. When the system routing is defined, XROUT must
allocate space (for the new system) in the system
routing table. The size of the system routing table
(i.e., the number of other systems that the local
system can communicate with) is defined when XMSG is
generated. When the routing table is full, this error
is returned.

(Two typical services that could receive this error are
'Define System Routing' and 'Start Network Server'.)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNRB 16997 XRNRB 37

Description : No remote batch service available.
Explanation : A 'Remote Append Batch' request has been sent to the

File Transfer server, but no remote batch device has
been defined. In order to include the batch definition,
modify the XMSG system definition file and generate a
new system.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRURT 16998 XRURT 38

Description : Unknown RT name.
Explanation : A 'Send Letter and Kick' service call has been issued

which requires that the specified RT program (parameter
3) exists, but the specified name is not a name of a
RT-program.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRSNR 16999 XRSNR 39

Description : This server is not running.
Explanation : A 'Start Network Server' service call has been issued

which requires that a network server (RT—program) is
running. If the specified magic number (parameter 1) is
invalid, or if the server is not running (e.g., if the
server has been aborted), this error is returned.

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 333
XMSG ERROR CODES (PLANC OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRRND 17000 XRRND 40

Description : Netserver: remote system is not defined.
Explanation : A message should have been sent out of the local system

via a network server, but the specified remote system
is unknown to the network server. (The error is
returned by the network server.)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNNA 17001 XRNNA 41

Description : Netserver: network not available.
Explanation : A message should have been sent to a remote system via

a network server, but the network server has no access
to the remote system. (The error is returned by the
network server.)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRISE 17002 XRISE 42

Description : Netserver: internal server error.
Explanation : A message should have been sent out of the local system

via a network server, but the network server is
malfunctioning (due to inconsistencies). (The error is
returned by the network server.)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRIRQ 17003 XRIRQ 43

Description : Netserver: invalid request.
Explanation : A request is sent to a network server, but the

requested facility is not (yet) implemented in the
server, or the parameters in the request are not
accepted by the network server. (The error is returned
by the network server.)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNGA 17004 XRNGA 44

Description : XMSG not configured with gateway code.
Explanation : A 'Start Network Server' service has been requested,

but the gateway software is not included in the current
XMSG system. In order to include the gateway code,
modify the XMSG system definition file and generate a
new system.

Norsk Data ND—60.l64.3 EN

334 COSMOS PROGRAMMER GUIDE
XMSG ERROR CODES (PLANO OR FORTRAN)

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRRNL 17005 XRRNL 45

Description : Remote system not on same LAN.
Explanation : A 'Send Letter' service call has been issued which

requires that the remote system (parameter 2) lie
inside the local network, but the specified system is
only available via a wide area network.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRNCO 17006 XRNCO 46

Description : No connection to this system (unknown status).
Explanation : A 'Send Letter' service call has been issued which

requires that the letter should only be sent if contact
has (already) been established with the remote system
specified in parameter 2. If the remote system is not
yet connected to the local XMSG system, this error is
returned.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRAMB 17007 XRAMB 47

Description : Ambiguous name.
Explanation : A service that refers to a port or a system name has

been issued, but the specified name is not unique.

SEC Symbol: SEC Value: XMSG Symbol: XMSG Value:
XMXRFFU 17008 XRFFU 48

Description : Friend system table full (too many systems).
Explanation : A 'Define Friend System' service call has been issued.

When a new friend system is defined, XROUT must
allocate space for the new system in the friend system
table. The size of the friend system table (i.e., the
number of systems that can be defined as friends) is
defined when XMSG is generated. When the friend system
table is full, this error is returned.

Norsk Data ND—60.l64.3 EN

1.53:,a1:
.:Ji:

COSMOS PROGRAMMER GUIDE 337
RR-LIB ERROR CODES

General

The different RR-LIB error messages are listed with their symbolic
name, their SEC (Standard Error Code), and their error description.

Norsk Data ND—60.l64.3 EN

338 COSMOS PROGRAMMER GUIDE
RR—LIB ERROR CODES

XMSG Error Codes Coming from Plano or Fortran Interface

Codes Specific to RRPCslct/RRPCoall/RRPCdisc:

SEC Symbol: SEC Value:
RRERnttm 17296

Description : Not terminated (i.e., timeout).

SEC Symbol: SEC Value:
RRERdscn 17297

Description : Disconnected (by server or RR~Lib).

SEC Symbol: SEC Value:
RRERunev 17298

Description : Unexpected event while waiting for reply (i.e.,
RREVunkn or RREVothr).

Codes in General Use:

SEC Symbol: SEC Value:
RRERntcl 17304

Description : Not initialized as client.

SEC Symbol: SEC Value:
RRERntsr 17305

Description : Not initialized as server.

SEC Symbol: SEC Value:
RRERntei 17306

Description : Not initialized as client or server.

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 339
RR-LIB ERROR CODES

SEC Symbol: SEC Value:
RRERbdid 17307

Description : Invalid remote identifier.

SEC Symbol: SEC Value:
RRERbdst 17308

Description : Call not valid in current state.

SEC Symbol: SEC Value:
RRERxsin 17309

Description : Excess information in request or response.

SEC Symbol: SEC Value:
RRERbdln 17310

Description : Parameter of invalid length.

SEC Symbol: SEC Value:
RRERbdnm 17311

Description : Invalid name specified.

SEC Symbol: SEC Value:
RRERbdbf 17312

Description : Bad buffer specification.

SEC Symbol: SEC Value:
RRERbdpm 17313

Description : Other parameter error.

Norsk Data ND-60.164.3 EN

340 COSMOS PROGRAMMER GUIDE
RR-LIB ERROR CODES

SEC Symbol: SEC Value:
RRERxscn 17314

Description : Limit on connections reached.

SEC Symbol: SEC Value:
RRERtslm 17315

Description : Task buffer space limit has been reached.

SEC Symbol: SEC Value:
RRERmsfl 17316

Description : Communication subsystem has no more buffer space.

SEC Symbol: SEC Value:
RRERprrf 17317

Description : Request for privilege refused.

SEC Symbol: SEC Value:
RRERntpr 17318

Description : Function requires privilege.

SEC Symbol: SEC Value:
RRERdcpn 17319

Description : Disconnect pending.

SEC Symbol: SEC Value:
RRERincp 17320

Description : Incomplete received data.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 341
RR-LIB ERROR CODES

SEC Symbol: SEC Value:
RRERfatal 17343

Description : FATAL ERROR value - contact ND.

Errors Related to the Underlying Communication System

If RRERxnru or RRERxcra error codes are received, then the current RR
context has been lost: all connections should be considered closed and
the user is in possession of any outstanding user buffers (with
indeterminate contents). The only permissible call after these errors
is RRPINIT, which will return the same code until XMSG is running
again, at which point new connections may be opened etc.

SEC Symbol: SEC Value:
RRERxnru 17344

Description : XMSG not running (=XENRU)

SEC Symbol: SEC Value:
RRERXCra 17345

Description : XMSG crash (=XECRA)

SEC Symbol: SEC Value:
RRERxnxt 17346

Description : XMSG out of XT-blocks (=XENOT)

SEC Symbol: SEC Value:
RRERxnpt 17347

Description : XMSG out of ports (=XENOP)

SEC Symbol: SEC Value:
RRERxnsp 17348

Description : XMSG has no space for name (=XRNSP)

Norsk Data ND—60.164.3 EN

342

Disconnect Codes

COSMOS PROGRAMMER GUIDE
RR‘LIB ERROR CODES

SEC Symbol: SEC Value:
RRDCuser 17281

Description : Normal disconnect by user.

SEC Symbol: SEC Value:
RRDCrmcg 17282

Description : Remote congestion. All connections at the server are
busy (= XRBUS = All connections at this port busy).

SEC Symbol: SEC Value:
RRDCunsr 17283

Description : Unknown server (= XRUNN = No open port with this name).

SEC Symbol: SEC Value:
RRDCunsy 17284

Description : Unknown system (= XRUKS = Unknown system).

SEC Symbol: SEC Value:
RRDCngfl 17285

Description : Connection negotiation failed (incompatible RRs).

SEC Symbol: SEC Value:
RRDCcref 17286

Description : Connection request refused on this network connection
(= XRNSE = Not a connect port).

Norsk Data ND-60.l64.3 EN

COSMOS PROGRAMMER GUIDE 343
RR—LIB ERROR CODES

SEC Symbol: SEC Value:
RRDCnoac 17287

Description : No access to remote system (= XRNRO or XRNCO).

SEC Symbol: SEC Value:
RRDCrmdd 17288

Description : Remote end has terminated (= XEIMA).

SEC Symbol: SEC Value:
RRDsin 17289

Description : Remote end's buffer was too small for the data sent.

SEC Symbol: SEC Value:
RRDCprer 17290

Description : Protocol error.

Norsk Data ND—60.164.3 EN

344 COSMOS PROGRAMMER GUIDE

Norsk Data ND—60.l64.3 EN

J
i

w «.3:
T

is
s
L

!
i.

COSMOS PROGRAMMER GUIDE 347
TLIB ERROR CODES

General

The different TLIB error messages are listed with their symbolic name,
their SEC (Standard Error Code), and their error description.

Norsk Data ND—60.l64.3 EN

348

Errors Related to TLIB

COSMOS PROGRAMMER GUIDE
TLIB ERROR CODES

SEC Symbol: SEC Value:
TLERNTIN 17192

Description : The user has not done TLPINIT.

SEC Symbol: SEC Value:
TLERBDRF 17193

Description : The user gave an invalid TLIB reference number.

SEC Symbol: SEC Value:
TLERBDCL 17194

Description : The call is not valid in the current state.

SEC Symbol: SEC Value:
TLERBDFM 17195

Description : Parameter of invalid format.

SEC Symbol: SEC Value:
TLERBDLN 17196

Description : Parameter of invalid length.

SEC Symbol: SEC Value:
TLERBDNM 17197

Description : Invalid name specified.

SEC Symbol: SEC Value:
TLERBDPM 17198

Description : Other parameter error.

Norsk Data ND—60.164.3 EN

cosmos PROGRAMMER GUIDE 349
TLIB ERROR CODES

SEC Symbol: SEC Value:
TLERNOUB 17199

Description : TLIB lacks user buffer.

SEC Symbol: SEC Value:
TLERSMUB 17200

Description : The returned buffer is too small.

SEC Symbol: SEC Value:
TLERDCPN 17201

Description 2 There is a disconnect pending.

SEC Symbol: SEC Value:
TLERXOUT 17202

Description : Still expedited data is outstanding.

SEC Symbol: SEC Value:
TLERNOTB 17203

Description : An attempt was made to open too many connections.
Increase TLMXconnections.

SEC Symbol: SEC Value:
TLERNOSD 17204

Description 2 An attempt was made to use too many suffixes.
Increase TLMXaccessPoints.

SEC Symbol: SEC Value:
TLERNOBD 17205

Description : An attempt was made to use too many user buffers.
Increase TLMXbuffers.

Norsk Data ND‘60.164.3 EN

350 COSMOS PROGRAMMER GUIDE
TLIB ERROR CODES

SEC Symbol: SEC Value:
TLERNOQD 17206

Description : Insufficient internal descriptors for XMSG messages.
Increase TLMXqueuedTpdus.

SEC Symbol: SEC Value:
TLERNORM 17207

Description : TLIB cannot get more buffer space from the underlying
system. The user should release some (e.g., by reading
data) and try again.

SEC Symbol: SEC Value:
TLERDPSF 17208

Description : Suffix is already in use by another task.

SEC Symbol: SEC Value:
TLERFATAL 17215

Description : FATAL ERROR value - contact ND.

PLANC programmers can find diagnostic information on
the cause of the error in the EXPORTED variables
TLFATerr and TLFATinfo (see TLlMPT). Contact ND with
the values of these variables.

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 351
TLIB ERROR CODES

Errors Related to the Underlying Communication System

If TLERXNRU or TLERXCRA error codes are received, then the current
TLIB context has been lost. All connections should be considered
closed and all "listens" should be considered terminated. The user is
in possession of any outstanding user buffers (with indeterminate
contents). The only permissible call after these errors is TLPINIT,
which will return the same code until XMSG is running again, at which
point new connections may be opened.

SEC Symbol: SEC Value:
TLERXNRU 17256

Description : XMSG not running (=XMXENRU).

SEC Symbol: SEC Value:
TLERXCRA 17257

Description : XMSG crash (=XMXECRA).

SEC Symbol: SEC Value:
TLERXNXT 17258

Description : XMSG out of task blocks (=XMXENOT).

SEC Symbol: SEC Value:
TLERXNPT 17259

Description : XMSG out of ports (=XMXENOP).

SEC Symbol: SEC Value:
TLERXNSP 17260

Description : XMSG has no space for name (=XRNSP).

Norsk Data ND-60.164.3 EN

352 COSMOS PROGRAMMER GUIDE
TLIB ERROR CODES

Disconnect Codes

Symbol: Return Value
TLDCsesn 128

Description : Normal disconnect by user.

Symbol: Return Value
TLDCrmcg 129

Description : Remote congestion. All connections at this suffix are
busy (= XRBUS = All connections at this port are busy,
or there is no outstanding TLIB listen).

Symbol: Return Value
TLDCngfl 130

Description : Connection negotiation failed (incompatible TLIBs).

Symbol: Return Value
TLDCprer 133

Description : Protocol error.

Symbol: Return Value
TLDCcref 136

Description : Connection request is refused on this network
connection (= XRNSE = Not a connect port).

Symbol: Return Value
TLDCunet 137

Description : Unknown network address (= XRUKS = Unknown system).

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 353
TLIB ERROR CODES

Symbol: Return Value
TLDCusuf 138

Description 2 Unknown suffix address. (= XRUNN = No open port with
this name).

Symbol: Return Value
TLDClcrs 200

Description : Local TLIB resources exceeded (e.g., lack of
descriptors to queue TPDUs or XMSG space overflow).

Symbol: Return Value
TLDCrmrs 201

Description : Remote TLIB resources exceeded (e.g., lack of
descriptors to queue TPDUs or XMSG space overflow).

Symbol: Return Value
TLDCrmdd 202

Description : Remote end has terminated (= XMXEIMA).

Symbol: Return Value
TLDCnoac 203

Description 2 No access to remote system (= XRNRO).

Symbol: Return Value
TLDCunxr 204

Description : Unknown XROUT error code received when trying to reach
remote system.

Norsk Data ND-60.164.3 EN

354 COSMOS PROGRAMMER GUIDE

Norsk Data ND—60.164.3 EN

I}:
A

£1,122...
::

.n
L

n
ad,

a
«h

1|».u.i.fica

COSMOS PROGRAMMER GUIDE 357
SAMPLE PROGRAMS USING XMSG/PLANC

1 Introduction

The following set of two communicating background tasks is only
intended to illustrate how contact may be established.

CLIENT takes the initiative to make contact with SERVER, and SERVER
then replies: "Hello CLIENT”. SERVER has to be started before CLIENT,
because it has to name the port by which CLIENT wants to make contact.

The included files, XMPzDEFS and XMP:IMPT, contain some important
definitions, e.g., the options (XFWTF etc.) and special data types
(e.g., Xmmsgidentifier).

1.1 Brief Description of CLIENT

l) A letter to SERVER is made, consisting only of a letter
header giving the name of the system where SERVER resides,
and the name of a port which SERVER has opened (see the
heading "Format letter to SERVER in internal buffer").

2) Resources from XMSG are requested: a port to communicate
through and an XMSG buffer which the letter can be put into
(see the heading "Get necessary resources from XMSG").

3) The letter is put into the XMSG buffer (XMPFWRI) and the
letter is sent to XROUT (which knows it has to forward it to
the port with the right magic number). The letter cannot be
sent directly to SERVER, because CLIENT has not been informed
of the magic number of SERVER's port at this point (see the
heading ”Send the letter to SERVER through XROUT").

4) A waiting state is entered, assuming that server will
respond (XMPFRCV with XFWTF option). The response arrives at
the port and resides there in an XMSG buffer. It is
transferred to an internal task buffer (XMPFREA), and then
output on the terminal (see the heading "Wait for message
from SERVER, take it when it comes").

5) Finally, the XMSG resources are released before exit (see the
heading ”Release resources and exit”).

1.2 Netes

CLIENT does not have to give a name to its port, therefore the XMPFOPN
call is chosen, rather than XMPOPNM. The latter involves communication
with XROUT to update XROUT's name table.

Norsk Data ND~60.164.3 EN

358 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING XMSG/PLANC

After the response came from SERVER, CLIENT could have obtained
SERVER's magic number and sent messages directly. If SERVER and CLIENT
was supposed to keep the communication going, XROUT would no longer be
needed.

1.3 Brief Bessription 0f SERVER

l) A port is opened and given the name ”s—port”. This is done
by the call XMPOPNM which, in addition to opening a port,
also contacts XROUT, so that XROUT's name table can be
updated with the port name (see the heading "Get necessary
resources from XMSG”).

2) A waiting state is entered, assuming that XROUT will forward
a letter from client (XMPFRCV with XFWTF option). The
response arrives at the port in an XMSG buffer (see the
heading ”Wait for message from XROUT”).

3) The magic number of the CLIENT port is obtained by using the
message status call, XMPFMST (see the heading ”Get magic
number of client”).

4) The same message buffer that was received from CLIENT via
XROUT is used for the message "Hello CLIENT” (XMPFWRI), and
sent to CLIENT using the XMPFSND call (See the heading "Send
message to client").

5) All resources are given back to XMSG.

toe detee

SERVER does not need to obtain a message buffer from XMSG by using
XMPFGET, because it can use the buffer that CLIENT sent via XROUT.

SERVER does not need to read the letter from XROUT, unless is suppsed
to check any user data beyond the letter header (the latter is not
done in the example).

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 359
SAMPLE PROGRAMS USING XMSG/PLANC

1.5 The Client Egggggg

MODULE EX CLIENT PL
$LIST OFF— _
$INCLUDE XMP:DEFS
$INCLUDE XMP21MPT
$LIST ON
2

IMPORT (ROUTINE vorn,voxn: MONO)

CONSTANT SBUFF = 100

INTEGER ARRAY: STACK(0:1000)

INTEGER: FLAGS I: 0. MESSOFFSET := O. BUFFOFFSET 1: 0

INTEGER: SERIALNUMBER := 100. OFFSET :=O‘ MESSLENGTH := 20

BYTES: INBUFFER(0:SBUFF-1)

BYTES: OUTBUFFER(O:SBUFF~1)

BYTES: PORTNAME 3: 'S-PORT‘

BYTES: SYSTEMNAME := ’SNORRE‘

%**********************************kwwk**fi***W***w********k*********kk

Z

% Error handling

%

z******k***w**************w*w***«****w*kwaxw*ww***w*******w******ww**w

ROUTINE VOID.VOID(INTEGER): TERMINATE(ERRNUM)

OUTPUT(1,‘16’.ERRNUM)

MONO

ENDROUTINE
%*******Wki**k**********k*******k*****k**fik*fik*ww***w**k****w*******w*

%

Z Main program

%

%***w****w***********wa**********k**w«w**ww**Aww************w*ww***w**

PROGRAM: MAIN

%

INTEGER: RETURNSTATUS.PORTNUMBER

INTEGER: SIZEBUFFER,WRITTENLENGTH.MSGTYPE.REMOTEPORT

INTEGER: LENGTHORSTAT.READLENGTH\SYSLENGTH

INTEGER: PORTLENGTH

XMMSGIDENTIFIER: MSGIDENT

Norsk Data ND-60.164.3 EN

360 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING XMSG/PLANC

INISTACK STACK

%

%*************W******W*W**w**k*****k*WkwwWKA«WA*h****k******k****fl*k*k

%

% Format letter to SERVER in internal buffer

%

%*********w*ww*ww*w***wwwwww***wwk***www*«xiawnx~*w***w*w*wwww**w*x***

XMPBLET(OUTBUFFER.MESSLENGTH,OFFSET,SERIALNUMBER.&

SYSTEMNAME,PORTNAME) =1 RETURNSTATUS

IF RETURNSTATUS >< XMOK THEN

OUTPUT(1.‘A','Bad status from XMPBLET ‘)

TERMINATE(RETURNSTATUS)

ENDIF
%***********W***%*kkiWW*kfi*****kww*kwwwkfififiAWhAk********k**k*****kwk

%

% Get necessary resources from XMSG

%

x*****w***ww***w*w*w*w****w***w****w*xw**awaxiixxw**$w*t****w**ww***w*

XMPFOPN(FLAGS,PORTNUMBER) :: RETURNSTATUS

IF RETURNSTATUS >< XMOK THEN

OUTPUT(1,‘A‘,’Bad status from XMPFOPN ‘)

TERMINATE(RETURNSTATUS)

ENDIF

%

OFFSET =1 SIZEBUFFER

XMPFGET(FLAGS.SIZEBUFFER,MSGIDENT) =1 RETURNSTATUS

IF RETURNSTATUS)(XMOK THEN

OUTPUT(1,‘A‘,‘Bad status from XMPFGET ‘)

TERMINATE<RETURNSTATUS)

ENDIF
z***********wwwwwww****k*ww*ww*w*ww******Awwx*win*w*******w**w*ww****w

%

% Send the letter to SERVER through XROUT

%

°/,,**)‘(‘k‘k*‘l(‘k‘k*‘k7\"k**7’rW‘kiruk‘k‘k‘Kick‘kvkvV****k*7\'*~kk‘kk‘kk It‘kw V‘K'K‘k**‘k*k7\“k‘k‘k‘k**‘k****“k*'k

SIZEBUFFER =1 MESSLENGTH

XMPFWRI(FLAGS.BUFFOFFSET.ADDR(OUTBUFFER(O)) FORCE XMUSERADDRESS,&

MESSOFFSET,MESSLENGTH,WRITTENLENGTH) =2 RETURNSTATUS

IF RETURNSTATUS)(XMOK THEN

OUTPUT(1,'A‘,‘Bad status from XMPFWR! ‘)

TERMINATE(RETURNSTATUS)

ENDIF

0 =1 FLAGS

XMPROUT(FLAGS.MSGIDENT,PORTNUMBER) =2 RETURNSTATUS

IF RETURNSTATUS >< XMOK THEN

0UTPUT(1.‘A’.’Bad status from XMPROUT ‘)

TERMINATE(RETURNSTATUS)

ENDIF

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 361
SAMPLE PROGRAMS USING XMSG/PLANC

%*********************W**W***kh***A%Afihkk**k*w**k***kk*****k*kfi**kkkww

Z

% Wait for message from SERVER, take it when it comes
Z

%**********k********************k***wkAwk$*w**********k*****k**w***W**

2**XFWTF =: FLAGS

XMPYRCV(FLAGS.PORTNUMBER.MSGTYPE,REMOTEPORT,MSGIDENT,&

LENGTHORSTAT) =2 RETURNSTATUS
IF RETURNSTATUS >(XMOK THEN

OUTPUT(1.'A’.‘Bad status from XMPFRCV ')

TERMINATE(RETURNSTATUS)

ENDIF

O =: FLAGS
XMPFREA<FLAGS.BUFFOFFSET.ADDR(INBUFFER(O)) FORCE XMUSERADDRESS.&

MESSOFFSET.MESSLENGTH,READLENGTH) =1 RETURNSTATUS
IF RETURNSTATUS)(XMOK THEN

OUTPUT(1.‘A'.‘Bad status from XMPFREA ')
TERMINATE(RETURNSTATUS)

ENDIF

OUTPUT(1.'A'.INBUFFER)
z**w*w*******************ww***w***w****w**¢w*****************w********

% Release resources and exit

%*************************************1WWWA**w***********k************

XMPFDCT(FLAGS) =: RETURNSTATUS

ENDROUTINE

ENDMODULE
$EOF

Norsk Data ND—60.l64.3 EN

362 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING XMSG/PLANC

1-6 The Swarm

MODULE EX_SERVER_PL

$LIST OFF

$INCLUDE XMP:DEFS

$INCLUDE XMP:IMPT

$LIST 0N

%

IMPORT (ROUTINE VOID.VOID: MONO)

%

INTEGER ARRAY: STACK(O:1000)

INTEGER: FLAGS := 0. MESSOFFSET 2: 0, BUFFOFFSET z: 0

BYTES: OUTBUFFER := ‘HELLO CLIENT ‘

BYTES: PORTNAME := ‘S—PORT‘
%***********w*****************www********xwwA*w*xw*rww**w**w******w*ww

%

% Error handling

%
%**w********ww***w**********w*****w****w*wwwwwww~w*w**************w***

ROUTINE VOID.VOID(INTEGER): TERMINATE<ERRNUM)

OUTPUT(1,‘I6‘,ERRNUM)

MONO

ENDROUTINE
%**********************w*******w*****w*ww**w******w******w**www*****w*

N
N

Main program

a a

%*******k*k********************fi*****k**W*Wfi***W***k*****************k

PROGRAM: MAIN

%

INTEGER: SERIALNUMBER,RETURNSTATUS,PORTNUMBER

INTEGER: SIZEBUFFEH,WRITTENLENGTH.MSGTYPE.REMOTEPORT

INTEGER: LENGTHORSTAT.LENGTH,READLENGTH

INTEGER: PORTLENGTH

INTEGERQ: REMOTEMAGIC

XMMSGIDENTIFIER: MSGIDENT

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 363
SAMPLE PROGRAMS USING XMSG/PLANC

%

INISTACK STACK
x
z**************w*****w******ww****ww****w*a**«*w***w*******w**ww***k**

%

Z Get necessary resources from XMSG

%

%*******************w***w**w****w*ww**x***wwww*****w**********w*******

XMPOPNM<FLAGS.PORTNAME.PORTNUMBER) =: RETURNSTATUS
IF RETURNSTATUS >< XMOK THEN

OUTPUT(1,‘A‘,‘Bad status from XMPOPNM ')

TERMINATE(HETURNSTATUS)

ENDIF

OUTPUT(1,'A‘.‘PORT OPENED WITH NAME ‘)

0UTPUT(1,‘A‘,PORTNAME)
‘/,‘k*‘k‘k‘k‘r' k‘k‘k*‘k‘k**‘k****‘k‘k‘k*****‘k**‘k‘k**¥(‘k*‘k*‘k‘kW****************‘k****‘k‘k***‘k

% Wait for message from XROUT

%****w**www*****w***ww**w**ww***w****w****w***********w***********w***

2**XFWTF =: FLAGS

XMPFRCV(FLAGS,PORTNUMBER.MSGTYPE,REMOTEPOHT.MSGIDENT,&
LENGTHORSTAT) =: RETURNSTATUS

IF RETURNSTATUS >< XMOK THEN

OUTPUT(1.‘A‘,‘Bad status from XMPFRCV.&

Expecting reply from XROUT ‘)

TERMINATE(RETURNSTATUS)

ENDIF

IF MSGTYPE)< XMROU THEN

0UTPUT(1.'A‘.'WHONG MESSAGE TYPE ')

OUTPUT(1"16‘,MSGTYPE)

MONO

ENDIF
%*****w*****************«*********w**ww************www**************w*

%

% Get magic number of client

%
%*************W*********k*********kwwAAtwfiw**fi***************k******fiW

0 =: FLAGS

XMPFMST(FLAGS,MSGIDENT‘MSGTYPE.REMOTEMAGIC,LENGTH> :: RETURNSTATUS
IF RETURNSTATUS)(XMOK THEN

OUTPUT(1,‘A','Bad status from XMPFMST ’)

TERMINATE(RETURNSTATUS)

ENDIF
%***********************k*w*******www*w***x**x*****w********w******w*w

%

% Send message to client

%***********W************************wKwflfiA*wk*****fi************k***hfi

XMPFWRI(FLAGS.BUFFOFFSET,ADDR<OUTBUFFER(O)) FORCE XMUSERADDRESS,&
MESSOFFSET,SIZE OUTBUFFER,WRITTENLENGTH) =2 RETURNSTATUS

IF RETURNSTATUS)< XMOK THEN

OUTPUT(1,‘A‘.‘Bad status from XMPFWRI ‘)
TERMINATE(RETURNSTATUS)

ENDIF

Norsk Data ND-60.164.3 EN

364 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING XMSG/PLANC

N

0 =2 FLAGS

XMPFSND(FLAGS,PORTNUMBER.REMOTEMAGIC) =: RETURNSTATUS

IF RETURNSTATUS >< XMOK THEN

OUTPUT(1.‘A‘.‘Bad status from XMPFSND ‘)

TERMINATE(RETURNSTATUS)

ENDIF
z**w*****************w********w**w**w***www«**w*xx***********w**w****w

%

% Release resources and exit

%

%****************w****w********w**********ww*w**~*****w*******w*w**x*k

0 =: FLAGS

XMPFDCT(FLAGS) =: RETURNSTATUS

MONO

ENDROUTINE

ENDMODULE

$EOF

Norsk Data ND—60.164.3 EN

4
5):

rue
..

15.\
.1}.

:7:
W:

.

COSMOS PROGRAMMER GUIDE 367
SAMPLE PROGRAMS USING XMSG/FORTRAN

1 Introduction

The following set of two communicating background tasks is only
intended to illustrate how contact may be established.

CLIENT takes the initiative to make contact with SERVER, and SERVER
then replies: "Hello CLIENT". SERVER has to be started before CLIENT,
because it has to name the port which CLIENT wants to make contact.

1.1 Brief Description of CLIENT

l) A letter to SERVER is made, consisting only of a letter
header giving the name of the system where SERVER resides,
and the name of a port which SERVER has opened (see the
heading "Format letter to SERVER in internal buffer").

2) Resources from XMSG are requested: a port to communicate
through and an XMSG buffer which the letter can be put into
(see the heading "Get necessary resources from XMSG").

3) The letter is put into the XMSG buffer (XMFFWRI) and the
letter is sent to XROUT (which is programmed has to forward
it to the port with the right magic number). The letter
cannot be sent directly to SERVER, because CLIENT has not
been informed of the magic number of SERVER's port at this
point (see the heading "Send the letter to SERVER through
XROUT”).

4) A waiting state is entered, assuming that SERVER will respond
(XMFFRCV with XFWTF option). The response arrives at the port
and resides there in an XMSG buffer. It is transferred to an
internal task buffer (XMFFREA), and then output on the
terminal (see the heading "Wait for message from SERVER, take
it when it comes").

5) Finally, the XMSG resources are released before exit (see the
heading ”Release resources and exit").

1.2 Notes

CLIENT does not have to give a name to its port, therefore the XMFFOPN
call is chosen, rather than XMFOPNM. The latter involves communication
with XROUT to update XROUT's name table.

After the response came from SERVER, CLIENT could have obtained
SERVER's magic number and sent messages directly. If SERVER and CLIENT
was supposed to keep the communication going, XROUT would no longer be
needed.

Norsk Data ND—60.164.3 EN

368 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING XMSG/FORTRAN

1.3 Brief Description of SERVER

l) A port is opened and given the name "s-port". This is done
by the call XMFOPNM, which, in addition to opening a port,
also contacts XROUT, so that XROUT'S name table can be
updated with the port name (see the heading “Get necessary
resources from XMSG).

2) A waiting state is entered, assuming that XROUT will forward
a letter from client (XMFFRCV with XFWTF option). The
response arrives at the port in an XMSG buffer (see the
heading "Wait for message from XROUT").

3) The magic number of the CLIENT port is obtained by using the
message status call, XMFFMST (see heading "Get magic number
of client").

4) The same message buffer that was received from CLIENT via
XROUT is being used for the message ”Hello CLIENT" (XMFFWRI),
and sent to CLIENT using the XMFFSND call (See the heading
"Send message to client").

5) All resources are given back to XMSG.

1.4 Rbtes

SERVER does not need to obtain a message buffer from XMSG by using
XMFFGET, because it can use the buffer that CLIENT sent via XROUT.
SERVER does not need to read the letter from XROUT, unless it is
supposed to check any user data beyond the letter header (the latter
is not done in the example).

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 369
SAMPLE PROGRAMS USING XMSG/FORTRAN

1.5 The Client Egggra-

PROGRAM CLIENT

$LIST OFF

$INCLUDE XMF:DEFS

$LIST ON
C

EXTERNAL XMFBLET,XMFOPNM,XMFFGET,XMFFWRI,XMFROUT.XMFFRCV,XMFFMST
+,XMFFSND,XMFFREA,XMFFDCT

INTEGER XMFBLET.XMFOPNM.XMFFGET,XMFFWRI,XMFROUT.XMFFRCV.XMFFMST
+,XMFFSND,XMFFREA.XMFFDCT

C
INTEGER SERIALNUMBER,RETURNSTATUS.OFFSET,MESSLENGTH.PORTNUMBER.

+SIZEBUFFER,MSGIDENT,WRITTENLENGTH,MSGTYPE.REMOTEPORT,
+LENGTHORSTAT.LENGTH,READLENGTH,FLAGS.BUFFOFFSET,MESSOFFSET

C
INTEGER*2 INPUTBUFFER(OZ49)‘OUTPUTBUFFER(O:49)

C

CHARACTER INBUF*100

C

CHARACTER SYSTEMNAME*30,PORTNAME*30

C

EQUIVALENCE (INBUF,INPUTBUFFER(O))
C*~k*~k**~k‘kw~k*‘k**vk‘k‘k‘k‘kuhkw**w~k~k***~k~k~k*k~k**fi'kirw*~k*~k*~k~k***w**~k*ww***k~k**k~k*

C

C Format letter to SERVER in internal buffer

C

c*w**********~k****Hrw*****w**mwmmmm ammMMw****~mww*~k*w****-k*w~mxw

MESSLENGTH = 20

OFFSET = O

SERIALNUMBER = 100

SYSTEMNAME = ‘SNORRE ‘

PORTNAME = 'S-PORT ‘

RETURNSTATUS = XMFBLET(OUTPUTBUFFER.MESSLENGTH,OFFSET,
+ SERIALNUMBER.SYSTEMNAME(1:-1).PORTNAME(1:~1))

IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1.*)‘BAD STATUS FROM XMFBLET'

GO TO 888

ENDIF
C*W***********W****************k****k*nfi**AiiW************k***********

C

C GET NECESSARY RESOURCES FROM XMSG

C
C*W******************W*********W**w**wA***A**k*****k***k*******w*****k

FLAGS = O

RETURNSTATUS = XMFFOPN(FLAGS,PORTNUMBER)
IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1‘*)‘BAD STATUS FROM XMFYOPN'
GO TO 888

ENDIF

Norsk Data ND—60.l64.3 EN

370 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING XMSG/FORTRAN

FLAGS = O
SIZEBUFFER = OFFSET

RETURNSTATUS = XMFFGET(FLAGS,SIZEBUFFER,MSGIDENT)

IF (RETURNSTATUS .NE. XMOK) THEN

WHITE(1.*)’BAD STATUS FROM XMFFGET‘

GO TO 888

ENDIF
c****w***ww*****w**k**w******w***ww****ww«*1r*w«wiw**ww*wwww***k***k*w

C

C SEND THE LETTER TO SERVER THROUGH XROUT

C

C**************fl*******k*******W****W**KW**fiWkwfiK*****k*****fi**kkkww**

FLAGS = 0

MESSLENGTH = OFFSET

BUFFOFFSET = 0

MESSOFFSET = 0

RETURNSTATUS = XMFFWRI(FLAGS,BUFFOFFSET.OUTPUTBUFFER.MESSOFFSET.

+ MESSLENGTH,WRITTENLENGTH)

IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1,*)’BAD STATUS FROM XMFFWRI WHEN CONTACTING XROUT‘

GO TO 888

ENDIF

C

FLAGS = 0

RETURNSTATUS = XMFROUT(FLAGS.MSGIDENT.PORTNUMBER)

IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1,*)'BAD STATUS FROM XMFROUT‘

GO TO 888

ENDIF
C*****k********W*********k********W******kw*A***k*w****k**k*wk****fi*k*

C

C WAIT FOR MESSAGE FROM SERVER. TAKE IT WHEN IT COMES

C
C****************************k****W*i*k*****W***k**************iwwfi***

FLAGS = 2**XFWTF

RETURNSTATUS = XMFFRCV(FLAGS.PORTNUMBER.MSGTYPE.REMOTEPORT,

+ MSGIDENT,LENGTHORSTAT)

IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1.*)’BAD STATUS FROM XMFFRCV'

GO TO 888

ENDIF

FLAGS = O

BUFFOFFSET

MESSOFFSET

LENGTH = 30

RETURNSTATUS = XMFFREA(FLAGS.BUFFOFFSET,INPUTBUFFER,MESSOFFSET‘

+ LENGTH.READLENGTH)

IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1,*)‘BAD STATUS FROM XMFFREA'

GO TO 888

ENDIF

H

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING XMSG/FORTRAN

Ck*********k**k********W*W****k*k***kk$**fi**fiW********w**************k

C

C OUTPUT MESSAGE FROM SERVER

C
c*************www*****ww*w*******w****w*****wx*w*w*w********w***ww*w*x

WRITE (1,100)INBUF

100 FORMAT (2X.A30)

GO TO 999
C*************************W**********i****k***W***W*******************

C

C ERROR MESSAGE

C
C*****************************k*******k************************k******

888 WRITE (1.101)RETURNSTATUS
101 FORMAT(2X,'RETURNSTATUS =‘.16)

c****w***********************w*www****w*wkw*wwww*********************k

C

C RELEASE RESOURCES AND EXIT
C
c******t**********w************w**k***w**ww*w***w***********w******kw*

999 FLAGS = O

RETURNSTATUS = XMFFDCT(FLAGS)

END

Norsk Data ND-60.164.3 EN

371

372 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING XMSG/FORTRAN

1.6 11mg Servem'ggggygg!

PROGRAM SERVER
$LIST OFF
$INCLUDE XMF:DEFS
$LIST ON

C
EXTERNAL XMFOPNM.XMFERCV,XMFFMST,XMEFREA.XMEFWHI.XMEFSND.XMFFDCT
INTEGER XMFOPNM,XMFFRCV,XMFFMST.XMFFREAlXMFFWRI,XMFFSND,XMFFDCT

C

INTEGER SERIALNUMBER.RETURNSTATUS.MESSLENGTH.PORTNUMBER.
+SIZEBUFFER,MSGIDENT,WRITTENLENGTH.MSGTYPE.REMOTEPORT.

+LENGTHORSTAT.LENGTH.READLENGTH,FLAGS,UUFFOFFSET,MESSOFFSET

C

INTEGER*2 OUTPUTBUFFER(OZ49)

C

INTEGER*4 REMOTEMAGIC

C

CHARACTER OUTBUF*100

C

CHARACTER PORTNAME*3O

C

EQUIVALENCE (OUTBUF,OUTPUTBUFFER(O))

C
c******************************w*********ww88*8********w***ww**wk*****

C

C GET NECESSARY RESOURCES FROM XMSG

C
C‘k‘k‘k‘k‘k‘k‘k‘k‘k****‘k****‘k**‘k‘k*‘k*****‘k*‘k‘k*****‘l\"l<kA A*** ****************W*****

PORTNAME = ’S—PORT‘
FLAGS = 0
RETURNSTATUS = XMFOPNM<FLAGS.PORTNAME(1:6).PORTNUMBER)
IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1.*)‘BAD STATUS FROM XMFOPNM‘
GO TO 888

ENDIF
WRITE(1,*)'PORT OPENED WITH NAME ',PORTNAME

C‘k*****‘k**‘k‘k***Y(****‘k***fl~k~k**‘k‘k**‘k‘k*Yr‘k‘k‘k‘fi***‘A’*‘k**‘k***‘k*‘k**‘k*‘k**‘k**~kw*‘k

c
c WAIT FOR MESSAGE FROM XROUT
c
C***‘k‘k‘k*‘k‘k**)\"k‘k‘k‘k****‘k*‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘ki‘fi‘k‘kic‘kk'ki'fi’**** W'k******1\"k**‘k‘kw~k*****‘k

FLAGS = 2**XFWTF
RETURNSTATUS = XMFFRCV<FLAGS.PORT.NUMBER.MSGTYPE.REMOTEPORT,

+ MSGIDENT,LENGTHORSTAT)
IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1.*)’BAD STATUS FROM XMFFRCV. EXPECT. REPLY FROM XROUT‘
GO TO 888

ENDIF

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 373
SAMPLE PROGRAMS USING XMSG/FORTRAN

IF (MSGTYPE .NE. XMROU) THEN
WRITE(1,*)‘WRONG MESSAGE TYPE'

GO TO 890

ENDIF
C‘k‘k‘k‘k‘k‘k‘k‘kki‘k‘k*k‘kk‘k*******‘k*‘k‘k‘k‘k‘k'lhkwwki‘k‘kwW'kfi'**kwk*‘kkw~k*fiwk‘k‘k‘k‘k‘k‘k‘k‘k‘k‘kfi'fi‘ir

C

C GET MAGIC NUMBER OF CLIENT

C

C*W***********k******w********fiik*k***w*k*fl*********************w****i

FLAGS = O

RETURNSTATUS=XMFFMST(FLAGS,MSGIDENT.MSGTYPE.REMOTEMAGIC.LENGTH)

IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1,*)'BAD STATUS FROM XMFFMST‘

GO TO 888

ENDIF

C************k***********fi**k*******kww**wKi*******w***kwwwww***wk****

C

C SEND MESSAGE TO CLIENT

C
Ck*******************k***W**k**w******kw**w*******wfi**********k**k***k

FLAGS : 0

BUFFOFFSET = 0

MESSOFFSET = O

OUTBUF = ‘HELLO CLIENT ‘

RETURNSTATUS = XMFFWRI(FLAGS,BUFFOFFSET,OUTPUTBUFFER.MESSOFFSET.
+ LENGTH,WRITTENLENGTH)

IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1,*)'BAD STATUS FROM XMFFWRI'

GO TO 888

ENDIF

C

FLAGS = 0

RETURNSTATUS = XMFFSND<FLAGS.PORTNUMBER,REMOTEMAGIC)

IF (RETURNSTATUS .NE. XMOK) THEN

WRITE(1.*)‘BAD STATUS FROM XMFFSND‘

GO TO 888

ENDIF

GO TO 999
c************w*****w****k***w****wi***w***kiw*****w***********w*w*w*w*

C

C ERROR MESSAGES

C
ck******ww*k***k******w*******w*w**kwwx**th*k**kwkwww*************k*ww

888 WRITE (1‘101)RETURNSTATUS

101 FORMAT(2X.‘RETURNSTATUS =‘,16)

GO TO 999

890 WRITE (1.102)MSGTYPE
102 FORMAT(2X“MSGTYPE =',I3)

C*******************************fi****$tW**Wk*fiW****AW*************A*$k

C

C RELEASE RESOURCES AND EXIT

C
c****w***w*w*********w***w****r*w****w*wwwA«*fi****kw**w*****w**w*w**wx

999 FLAGS = 0

RETURNSTATUS = XMFFDCT(FLAGS)

END

Norsk Data ND-60.l64.3 EN

374 cosmos PROGRAMMER GUIDE

Norsk Data BID-60.1643 EN

J

g.

.
..

‘
.

,
,

.
,

,

‘
‘.

l
:

.
3

:!
J,

k,
<

a...
;

.Ii.
.

i
r.;

A
.

GauuLJ
IT

,
,

.
‘

.
V

5
.1

,3
1

‘:
...\c

r,
J;

r.
K

:
..T

v
i.

,
“UL,

‘
.

<
.

‘

,
‘

.
Q

,

COSMOS PROGRAMMER GUIDE 377
SAMPLE PROGRAMS USING RR-LIB

1 Introduction

The following set of communicating programs, called RR-SERVER and RR-
LOW-CLIENT, gives an example of connection establishment, a few data
transfer calls, and disconnection.

Notice the inclusion of the files RRPzDEFS and RRPzIMPT, which contain
standard symbols and import definitions respectively. Also note that
RR-SERVER has to be started before RR~CLIENT.

1.1 Brief Description of RR-SERVER

— The first call to RR~LIB is RRPBINIT.

— The loop (DO WHILE TRUE) shows a typical way of processing
incoming events. The server is in a waiting state until an
event occurs. Depending on the type Of event, RR—SERVER
responds appropriately.

Note that since there is no exit from the loop, RR—SERVER may
indefinitely serve different clients, sequentially.

Initialize

Do forever

V

WAIT

EVCNIN EVROIN EVDCIN Other

V

CNIN GTRQ DCIN Unexpected

CNRS SN RS

‘ V

Fig. l. Flowchart of RR—SERVER

Norsk Data ND-60.l64.3 EN

378 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING RR-LIB

1.2 Brief Description of RR~LDH~CLIERT

- The first call to RR—LIB is RRPBINIT.

- A connection request is sent to the server (RRPCCNRQ). This
request contains a greeting, "HI this is client FRED", as
information to the server.

~ Loop for event processing:

The first expected event to occur is the connection
confirmation event (RREVcncf) as the result of a successful
connection request. The client now sends a request to the
server (RRPCSNRQ).

The next expected event to occur is a response indication
event (RREVrsin), which tells the client that a response has
arrived. The client may now send another request, or he/she
may disconnect by sending a RRPBDCRQ.

INN

CNRO

Do WE
\ NOT done

wmr

EVCNCF EVRsN EVDCCF 0mm

CNCF ems 01:30:33? Umeznted

SNRO m? Y“ DCRO END

SNRQ =J¥§fit.

l
Fig. 2. Flowchart of RR-LOW-CLIENT

1.3 The RR-HIGH—CLIENT

A listing of the program RR-HIGH~CLIENT is also included in this
chapter. This client is doing the same as the RR—LOW~CLIENT, but is
using the high-level client calls. The program can be run with the

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING RR-LIB

1.4 The Server £59353!

RR—SERVER.

MODULE X

$LIST OFF

$INCLUDE RRPiDEFS

SINCLUDE RRPIIMPT

$LIST ON

$MACRO CHKstatus(status)
IF "status" >(OK THEN

output(1,'A‘.‘$BAD status‘)
ENDIF

$ENDMACRO

ROUTINE VOID,VOID(BYTES): outtext(text)

output(1.‘A'.text)

ENDROUTINE

INTEGER ARRAY: stk(0:1000)

INTEGER ARRAY: staticRRarea(0:RRSZstatic—1)
INTEGER ARRAY: dynamicRRarea<O:RRSZdynamic~1)

BYTES ARRAY: buffers(1:1,0:100)

BYTES: serverName := 'RRSERVER‘
RRID: clientID

% macro for status checking

% in this simple example all

% errors only cause a

Z “bad—status“ sentence

% program stack

% fixed-size work area for RR~LIB
% dyn.‘size work area for RR-LIB

% user buffer

% server port name
% used to specify remote client

BYTES: serverInfo 2: ‘Welcome to server RRSERVER‘ % server user data to be sent
BYTES: response := ‘this is the response' % with connect-response and

Z send-response

%——— %

PROGRAM: SERVER

RRTM: waitTime

RREV: requestedEvent

RREV: nextEvent

BYTES POINTER: receivedData

BYTES POINTER: outBuffer

BYTES POINTER: outData

INTEGER: RRstatus

INTEGER: reason

RESP: serverParameters

INISTACK STK

RRanyRemote 2:

RRanyEvent =:

32767 =: waitTime.RRTMlength

4 =: waitTime.RRTMun1ts

requestedEvent.RREVevent

a e
a n

o n
o o

requestedEvent.RREVremote %
Z

%

Z

used to specify TIME—OUTS on wait

used to specify requested event

used to specify occurred event

used to refer received data
used to refer response buffer

used to refer response data

status from RR—LIB calls
reason if bad status from RR~LIB
used to specify server parameters

any remote client

any event desired

specification of time—out

values

Norsk Data ND-60.164.3 EN

379

380 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING RR—LIB

TRUE =2 serverParameters.RRSPisDefault % use default server parameters

RRPBinit<staticRRarea.dynamicRRarea.& % start use RR-LIB in server mode

RRMDasServer,0.serverName,& Z (RHPBinit must always be the first

buffers,1.59rverParameters) =2 RHstatus Z RR-LIB call)

CHKstatus(RRstatus>

DO WHILE TRUE

RRPBwait(staticRRarea,waitTime,requestedEvent.& % wait for an event

nextEvent) =: RRstatus

CHKstatus<RRstatus)

IF nextEvent.RREVevent = RREVcnin THEN % connection request has arrived

outtext(‘$SERVER: connect attempt‘)

nextEvent.RREVremote =: clientID 2 specify the remote client

RRPScnin(staticRRarea.clientID.& % get information sent by client

receivedData,outBuffer) =: RRstatus % in connection attempt

CHKstatus(RRstatus)

outtext(‘ with client info‘)

outtext(’$‘)

outtext(IND(receivedData))

ADDR(IND(outBuffer)(MININDEX(IND<uutBuffer),1):&

MININDEX(IND(outBuffer),1)+SIZE serverlnfo~1))&

:: outData

serverInfo =2 IND(outData)

REPScnrs(staticRRarea.clientID.IND(outData)) % accept connection

ELSIF nextEvent.RBEVevent = RREqin THEN Z request has arrived

outtext(’$SERVER: received request‘)

RRPSgtrq(staticHRareaRflarea.c1ientID,&

receivedData,outBuffer) =: RRstatus % get request

CHKstatu5(RRstatus)

outtext('$')

outtext(IND(receivedData))

ADDR(IND(outBuffer)(MININDEX(IND(outBuffer).1):&

MININDEX(IND(outBuffer),1)+SIZE response-1))&

=: outData

response =: IND(outData)

RRPSsnrs(staticRRarea.clientID.& % send response

IND(outData)) =: RRstatus

CHKstatus<RBstatus)

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 381
SAMPLE PROGRAMS USING RR-LIB

ELSIF nextEvent.RREVevent = RREVdcin THEN % disconnected from client
RRPBdcin<staticRRarea,clientID,reason.& % get information associated

receivedData) =: RRstaLus % with disconnect event

CHKstatus(RHstatus)

outtext(‘$SERVER: disconnect‘)

IF reason = RRDCuser THEN % normal disconnect by user

outtext(' by client with client info')

outtext('$‘)

outtext<IND(receivedData))

ELSE % another reason for disconnect
outtext(‘ reason‘)

output<1.‘l5‘.reason)

ENDIF

ELSE

outtext(‘$SERVER: unexpected event‘)

ENDIF

ENDDO

RETURN

ENDROUTINE

ENDMODULE

%———%

Norsk Data ND~60.164.3 EN

382

1.5 The Low—level Client Program

MODULE X

$LIST OFF

$INCLUDE RRPzDEFS

$INCLUDE RRP:IMPT

$LIST 0N

$MACRO CHKstatus(status)

IF “status" >< OK THEN

output(1,‘A“‘$BAD status’)

ENDIF

$ENDMACRO

ROUTINE VOID‘VOID(BYTES): outtext(text)

output(1.‘A‘.text)

ENDROUTINE

INTEGER ARRAY: stk<021000)

INTEGER ARRAY: staticRRatea(OIRRSZstatic—i)

INTEGER ARRAY: dynamicRRarea(OiRRSZdynamic-l)

BYTES: destSystem := ‘DONALD‘

BYTEszdestServer := ‘RRSERVER‘

RRID: serverID

COSMOS_PROGRAMMER GUIDE
SAMPLE PROGRAMS USING RR—LIB

% macro for status Checking

X in this simple example all

% errors only cause a

X "bad-status" sentence

% program stack

% fixed-size work area for RR-LIB

% dyn.—size work area for RR—LIB

% remote system name

. remote server port name

0 used to specify remote server

BYTES: connectInfo := ‘HI. this is client FRED‘ % client user data to be sent

BYTES: request := ‘this is a request‘

BYTES: disconnectlnfo := ‘goodbye‘

BYTES: replyBuffer(0:100)

%___

PROGRAM: THECLIENT

RRTM: waitTime %

RHEV: requestedEvent %

RREV: nextEvent 2

BYTES POINTER: reply %

INTEGER: numberRequests %

INTEGER: requestsCompleted %

INTEGER: RRstatus ”a

BOOLEAN: done

BYTES: nullName(0: -1)

BYTES ARRAY: nullBuffers(0: —1,0: —1) %

RESP: nullRRSP

N
N

INISTACK STK

Norsk Data

% with different kind of

% reQuests

% reply buffer

__________________________________ %

used to specify TIME-OUTS on wait
used to specify requested event

used to specify occurred event

used to refer reply buffer

number of requests client want to send

number of requests client has sent
status from RR—LIB calls

for use

RRPBinit call

ND-60.l64. 3 EN

COSMOS PROGRAMMER GUIDE 383
SAMPLE PROGRAMS USING RR-LIB

RRanyRemote =: requestedEvent.RREVremote % any remote server

RRanyEvent =: requestedEvent.RREVevent % any event desired

ll waitTime.RRTMlength X specification of time-out
2 = waitTime.RRTMunits % values

2 =2 numberRequests

RRPBinit(staticRRarea.dynamicRRarea.& % start to use RR-LIB in client mode

RRMDasClient.1,nullName,& % (RRPBinit must always be the first
nullBuffers,0.nullRRSP) =: Rastatus % RR—LIB call)

CHKstatus(RRstatus)

RRPCcnrq(staticRRarea,destsystem,dest5erver.& % attempt to open a connection

connectInfo.ADDR(replyBuffer).& % to server
serverID) =: RHstatus

CHKstatu5(Rfistatus)

0 =: requestsCompleted

FALSE =: done

D0 WHILE NOT done

RRPBwait(staticRRarea,waitT1me,& % wait for an event

requestedEvent.nextEvent) =1 RRstatus

CHKstatus(RRstatus)

IF nextEvent.RREVevent = RREVcncf THEN % connection accepted

outtext(‘$CLIENT: connect confirmation event‘)
RRPCcncf(staticRRarea.& % get information sent by server

serverID,reply) =2 RRsLatus % when connection was accepted

CHKstatus(RRstatus)

outtext(‘ with server info‘)

outtext(‘$‘)

outtext(IND(reply))

RRPCsnrq(staticRRarea.serverID,request.& % send request

ADDR(rep1yBuffer>) =: RRstatus

CHKstatus<RRstatus)

ELSIF nextEvent.RREVevent = RREVrsin THEN % response has arrived

outtext(‘$CLIENT: received response‘)

RRPCgtrs(staticRHarea.serverID.reply) =: Rflstatus % get response

CHKstatus(RRstatus)

outtext(’$‘>
outtext(IND<reply)J

IF ((requestsCompleted+1) =: requestsCompleted)<numberRequests THEN

RRPCsnrq(staticHRarea.serverID,request,& % send request
ADDR(replyBuffer)) =2 RRstatus

CHKstatus(RRstatus)

ELSE

RRPBdcrq(staticRRarea.serverID,& Z terminate communication

disconnectlnfo) :: RRstatus % with server
CHKstatus(RRstatus)

ENDIF

Nbrsk Data ND—60.l64.3 EN

384 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING RR-LIB

ELSIF nextEvent.RREVevent = RREVdccf THEN % user—initiated disconnect

outtext(’$CLIENT: disconnect complete‘) % is completed

TRUE :2 done

ELSE
outtext('$CLIENT: unexpected even! rusponse‘)

ENDIF

ENDDO

RETURN

ENDROUTINE

ENDMODULE

%---%

Norsk-Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING RR-LIB

1.6 The fligh~1eve1 Client Progggg

MODULE X

$LIST OFF

$INCLUDE RRP:DEFS

$INCLUDE RRPZIMPT

$LIST ON

$MACRO CHKstatus(status)

IF "status" >(OK THEN

output(1.’A',‘$BAD status‘)

ENDIF

$ENDMACRO

ROUTINE VOID,VOID(BYTES):

output(1,'A‘.text)

outtext(text)

% macro for status checking

Z in this simple example all
% errors only cause a

% "bad—status“ sentence

ENDROUTINE

INTEGER ARRAY: stk(0:1000) % program stack

INTEGER ARRAY: staticRRarea(0:RRSZstat1c—1) % fixed-size work area for RReLIB
INTEGER ARRAY: dynamicRRarea(0:RRSZdynamic-I) Z dyn.-size work area for RR-LIB

BYTES: destSystem := ’DONALD‘ Z remote system name
BYTES:destServer := ‘RRSERVER‘ Z remote server port name
RRID: serverID Z used to specify remote server

BYTES: connectlnfo 1: ‘HI, this is client FRED‘ % client user data to be sent
BYTES: request := ‘this is a request' 2 with different kind of
BYTES: disconnectInfo := 'goodbye‘ % requests

BYTES: replyBuffer(0:100) % reply buffer

%---%

PROGRAM: THECLIENT

RRTM: waitTime % used to specify TIME-OUTS on wait

BYTES POINTER: reply Z used to refer reply buffer
INTEGER: numberRequests % number of requests client want to send
INTEGER: requestsCompleted Z number of requests client has sent
INTEGER: RRstatus % status from RR~LIB
INTEGER: reason % reason if bad status from HR—LIB
BYTES: nullName(0: —1) Z for use
BYTES ARRAY: nuIIBuffers(0: —1.0: —1) % 1n
RESP: nuIIRRSP % RRPBintit call

Norsk Data ND-60.164.3 EN

386 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING RR-LIB

INISTACK STK

= waitTime.RRTMlength Z specificatidn of time—out

2 =: waitTime.RRTMunits % values

2 =2 numberRequests

RRPBinit(staticRRarea.dynamicRRarea.& % start use RR—LIB in client mode

RRMDasClient.1,nullName,& Z (RRPBinit must always be the first

nullBuffers,0,nullRRSP) =: RRstatus % RR-LIB call)

CHKstatus(RRstatus)

RRPCslct(staticRRarea.destsystem,dest$erver,& % select server for future

connectInfo.ADDR(replyBuffer),& % interaction

waitTime.serverID,rep1y.reason) =: RRstatus

CHKstatus(RRstatus)

outtext(‘$CLIENT: server selected with server info‘)

outtext(‘$‘)
outtext(IND(reply))

0 =: requestsCompleted

D0 WHILE (requestsCompleted (numberRequests)

RRPCcall(staticRRarea,serverID,request.& % send request and wait for

ADDR(replyBuffer),& % response

waitTime,rep1y.reason) t: RRstatus

CHKstatus(RRstatus)

outtext(’$CLIENT: received response‘)

outtext(’$‘)

outtext(IND(rep1y))

requestsCompleted+1 =: requestsCompleted

ENDDO

RRPCdisc(staticRRarea,serverID,& % terminate connection to server

disconnectlnfo,waitTime.reason) =: RRstatus

CHKstatus(RRstatus)

outtext(‘$CLIENT: disconnect complete‘)

RETURN

ENDROUTINE

ENDMODULE

%—- ---— ——— %

Norsk Data ND-60.164}3 EN

’Q@EMQ$QPR°§BA¥”33 $9 93 s 7 K ' _ . ‘rvi . -’. ‘ ‘}387
i

¥' {i r:' .~ yr, 5: sAPPENDIXwJE

A‘
$u

I

i » ’ ‘ ' ' ' 1 ' - * sAMBI-EPROGBAMS USING TagpLAnc

i
t

l ., f I, ‘f f’,m ,. :.I _ ; NOESkaDEfia ND‘6061§4$3§§N _'sL

i

ea"
2we sv

‘ «My

, fiasskfia ’-

COSMOS PROGRAMMER GUIDE 389
SAMPLE PROGRAMS USING TLIB/PLANC

1 Introduction

The following set of communicating programs, called TLP—SERVER and
TLP-CLIENT, just gives an example of how a connection is established,
and then disconnected. The connection establishment and disconnection
in the example in section 6.7 serve as an outline of what happens at
runtime. It shows the interaction between the two programs.

Notice the inclusion of the files TLP:DEFS and TLP:IMPT, which contain
standard symbols and import definitions respectively. Also note that
TLP-SERVER has to be started before TLP—CLIENT.

1.1 Brief Description of TLP-SERVER

- The first call to TLIB is TLPINIT.

- The next call to TLIB is TLPSTLS. This allows possible
clients to get a connection request through.

— The loop (DO FOREVER) shows a typical way of processing
incoming events. The server is in a waiting state until an
event occurs. Depending on the type of event, TLP-SERVER
responds appropriately.

Note that since there is no exit from the loop, TLP-SERVER
may indefinitely serve ldifferent clients, sequentially, on
this same connection.

1.2 Brief Description of TLP—CLIENT

- The first call to TLIB is TLPINIT.

- A connection request is sent to the server (TLPCNRQ). This
request contains a greeting, "greetings from client”, as user
data.

- Loop for event processing:

The first expected event to occur is the connection
confirmation event (TLEVcncf), as the result of a successful
connection request. If the server sends user data in response
to the greeting, which TLP~SERVER actually does, then a
buffer is provided for the user data (TLPPRBF). Since there
is no ordinary data to send, i.e., no data transfer phase, a
disconnect request (TLPDCRQ) with "farewell" user data is
sent back to the server.

Norsk Data ND—60.l64.3 EN

390

The next expected event to occur

COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING TLIB/PLANC

is a disconnection
confirmation (TLEVdccf) which completes the disconnection,
and thus terminates the dialogue.

1.3 The Server

%---X

Z %

% TLP~SERVER %

Z %

% A simple server illustrating the use of the PLANC interface to TLIB. %

3 Note that the client is not expected to send any data after the %

n connection is established. %

MODULE TLPEXAMPLE

$LIST OFF

$INCLUDE TLP1DEFS

$INCLUDE TLPIIMPT

$LIST 0N

IMPORT (ROUTINE VOID,VOID: MONO)

$MACRO CHKstatus(text,status)

IF status >< 0K THEN

output(1.‘A’.‘$BAD STATUS from ‘) Z

output(1.‘A‘.“text“)

output(1,’16‘."status")

MONO

ENDIF

$ENDMACRO

$MACRO FOREVER

WHILE TRUE

$ENDMACRO

“/0__

%

% GLOBAL DATA

%
x__

INTEGER ARRAY: stack(0:1000)

INTEGER ARRAY: TLdynamic(OzTLSZDYNAMIC-I)

BYTES: serverName := ’SERVER‘

BYTES: greetings := 'welcome to the server'

% define a macro for status checking

% in this simple example, all
errors cause termination

_________________________________°/n

% program stack

% storage for TLIB

% server port name

% server user data to be

% sent with connect response

Norsk Data ND~60.164.3 EN

COSMOS PROGRAMMER GUIDE 391
SAMPLE PROGRAMS USING TLIB/PLANC

%---%

Z

% Main program
%

Z---%

PROGRAM: SERVER

INTEGER: TLIBreference % connection identifier required by TLIB
INTEGER: myReference 2 connection identifier used by program

INTEGER: disconnectReason % reason for disconnect
INTEGER: credit % initial credit for sending data

INTEGER: status % status from TLIB calls
INTEGER: lengthData Z length of data received

BYTES: inputBuffer(0:99> % buffer for received data
TLMD: mode % used to specify TLIB mode

TLTM: maxwaitTime % used to specify max. wait time

TLEV: requestedEvent % used to specify events to wait for

TLEV: actualEvent % gives actual event that occurred

TLBFLOGICAL: buffer % used to describe a buffer

TLAPZSTRING: serverAddress % address of server
TLAPXMSG: clientAddress % address of client as magic number

TLQS: quality X quality of service given by connection

INISTACK Stack

% initialize TLIB

TLXMinUserMode :: mode.TLMDxmsgmode % XMSG in user mode

TRUE :1 mode.TLMDuniqueSuffix % only ONE server active

TLMXconnections =: mode.TLMDmonnections % max. simultaneous connections

TLMXaccessPoints =: mode.TLMDmxAccessPoints Z max. no of TLAPs (ports)

TLMXbuffers =: mode.TLMDmxBuffers % max. buffers owned by TLIB

TLMXqueuedTpdus =: mode.TLMDmueuedTpdus % max. Q‘d TPDUs in XMSG space

TLPINIT<mode,TLdynamic,status) % Always first TLIB call

CHKstatus('TLPINIT‘.status)

1 =: myReference % only one connection at a

% time thus not used anyway!

A start listening

TLtlapzstring =: serverAddress.TLAPformut % address specified as string

0 =: serverAddress.TLAPnetAddress.TLNMlength % don’t specify own system
SIZE serverName =: serverAddress.TLAPsuffix.TLNMlength % server name

serverName =2 serverAddress.TLAPsuffix.TLNMstring(O:SIZE serverName-i)

TLPSTLS(serverAddress.myReference,status,TLIBreference)

CHKstatus<‘TLPstls‘.status)

output(1“A‘.‘Server is listening — name is ‘)
output(1.'A‘.serverName)

TLinfiniteTime =2 maxwaitTime.TLTMLENGTH % wait forever for next event
TLTMhrs =: maxwaitTime.TLTMUNITS

TLanyRefno =: requestedEvent.TLEVrefno % Allow any event to occur
TLanyEvent =: requestedEvent.TLEVcode % on any connection

Norsk Data ND~60.164.3 EN

392 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING TLIB/PLANC

D0 FOREVER
% wait for next event

TLPwait(maxwaitTime.requestedEvent.status.actualEvent)

CHKstatus('TLPwait’,status)

% analyse next event

IF actualEvent.TLEVcode = TLEVcnin THEN

output(1,‘A“‘$connection indicatlon‘)

IF (actualEvent.TLEVdata(0) :: longthnata) > 0 THEN % if user data

TLlogicalAddress =: buffer.TLHFformat Z sent by client

ADDR(inputBuffer(O)) FORCE INTEGER =2 buffer.TLBFaddress % then

TLPprbf(TLIBreference,buffer.lengthData,statu5) % provide an

CHKstatus(‘TLPprbf‘,status) Z input buffer

ENDIF % for it

TLPcnin(TLIBreference,status,clientAddress.quality.&

credit.buffer.lengthData)

CHKstatu5(‘TLPcnin',status)

IF lengthData) 0 THEN % if user data sent

output(1,‘A'.‘ with user data “‘) % by client then

output(1,‘A‘.inputBuffer(0:lengthData—l)) % display it

output(1.‘A‘.‘"‘)

ENDIF

TLlogicalAddress =2 buffer.TLBFformat % accept connection

ADDR(greetings(O)) FORCE INTEGER =: buffer.TLBFaddress % sending

TLPcnrs(TLIBreference.quality.buffer.lengthData.status) % some user

CHKstatus(‘TLPcnrs‘.status) % data

ELSIF actualEvent.TLEVcode = TLEVdcin THEN

output(1,’A‘.‘$disconnect reason')

IF (actualEvent.TLEVdata(O) =2 lengthData) > 0 THEN % if user data

TLlogicalAddress =2 buffer.TLUFformat % then provide

ADDR(inputBuffer(0)) FORCE INTEGER =2 buffer.TLBFaddress% buffer

TLPprbf<TLIBreference,buffer.lengthData,status)

CHKstatus(‘TLPprbf'.status)

ENDIF

TLPdcin(TLIBreference,status.disconnectReason.& % get information

buffer.lengthData) % associated with

CHKstatus(‘TLPcnin‘.status) % disconnection

output(1,‘I4‘,disconnectReason>

IF lengthData > 0 THEN % if user data sent

output(1,’A‘,‘ with user data “‘) Z by client, then

output(1,‘A’,inputBuffer(O:lengthData~1)) % display it

output(1,‘A‘,'"‘)

ENDIF
ELSE

output(1.‘A‘,‘$UNEXPECTED EVENT type‘)

output(1,’16',actualEvent.TLEVcode)

ENDIF

ENDDO

ENDROUTINE

ENDMODULE
%——— %

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING TLIB/PLANC

1.4 The Client Egggra-

%---%
K %

% TLP—CLIENT %
Z %

2 A simple client illustrating the use of the PLANC interface to TLIB. %
a The client merely opens a connection to a server and then closes it. %

% 3
%___a

MODULE TLPEXAMPLE

$LIST OFF
$INCLUDE TLPIDEFS
$INCLUDE TLP:IMPT
$LIST 0N

IMPORT (ROUTINE VOID.VOID: MONO)

$MACRO CHKstatus(text.status) % define a macro for status checking

IF status >< 0K THEN % in this simple example. all
output(1.’A‘.'$BAD STATUS from‘)% errors cause termination

output(1.'A‘,"text“)

output(1.'16‘."status">
MONO

ENDIF

$ENDMACRO

%---%
% Z
% GLOBAL DATA %
% _ Z
%---%

INTEGER ARRAY: stack(0:1000) Z program stack

INTEGER ARRAY: TLdynamic(DzTLSZDYNAMIC—1) % storage for TLIB
BYTES: ownName := ‘CLIENT‘ % own port name

BYTES: serverSystem :: ‘SNORRE‘ % system on which server runs

BYTES: serverName := ‘SERVER‘ % server port name

BYTES: greetings := ‘greetings from client‘ % data to go with connect
% request

BYTES: farewell := 'bye‘ Z data to go with disconnection

%---%
x %
% MAIN PROGRAM %

Z %
%---%

PROGRAM: CLIENT

INTEGER: TLIBreference % connection identifier required by TLIB

Norsk Data ND-60.l64.3 EN

393

394 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING TLIB/PLANC

INTEGER: myReference % connection identifier used by program

INTEGER: credit % initial credit when connected

INTEGER: lengthData % length of data received

INTEGER: status Z status from TLIB call

BYTES: inputBuffer(0:99) % buffer for incoming data

TLMD: mode % used to specify TLIB operating mode

TLTM: maxWaitTime % used to specify max wait time

TLEV: requestedEvent z used to specify events of interest

TLEV: actualEvent % qivvs actual event that occurred

TLBFLOGICAL: buffer % used to describe a buffer

TLAPZSTRING: myAddress % address of client

TLAPZSTRING: serverAddress % address of server as system/name

TLQS: quality % quality of service on connection

BOOLEAN: done % used to indicate when finished

INISTACK stack

TLXMinUserMode =: mode.TLMDxmsgmode

TRUE =1 mode.TLMDuniqueSuff1x

TLMXconnections =' mode.TLMDmonnections

TLMXaccessPoints =' mode.TLMDmxAccessPoints

TLMXbuffers =: mode.TLMDmxBuffers

TLMXqueuedTpdus =. mode.TLMDmueuedTpdus

TLPINIT<mode,TLdynamic,status)

CHKstatus(’TLPINIT‘.status)

TLClastring myAddress.TLAPformat

0 myAddress.TLAPnetAddress.TLNMlength

SIZE ownName myAddress.TLAPsuffix.TLNM1e

ownName myAddress.TLAPsuffix.TLNMstring(

TLtlastring serverAddress.TLAPformat

SIZE serverSystem
serverAddress.TLAPnetAddresserverSystem

SIZE serverName

serverName

TLlogicalAddress buffer.TLBFformat

ADDR(greetings(0)) FORCE INTEGER

TRUE quality.TLQSisDefault

1 myReference

output(i,'A‘.‘$connecting to server...‘)

TLPCNRQ(myAddress,serverAddress.myReference

SIZE greetings,status,TLIBreference

CHKstatus('TLPcnrq‘,status)

2 =' maxWaitTime.TLTMlength

TLTMmins =' maxWaitTime.TLTMunits

TLanyRefno =‘ requestedEvent.TLEVreIno

TLanyEvent =' requestedEvent.TLEVcode

buffer.TLBFaddress

initialize TLIB

XMSG in user mode

want own name to be unique

4 Max simultaneous connections

Max no of TLAPs

Max owned by TLIB

Max q'd TPDUs in XMSG space

°\° (ports)

X
X

Always first TLIB call

connect to server

set up own address

address specified as string

% do not specify own system

ngth

0:SIZE ownName—1)

% own port name

% set up server address

% address specified as string

serverAddress.TLAPnetAddress.TLNMlength

s.TLNMstring(O:SIZE serverSystem—i)

serverAddress.TLAPsuffix.TLNMlength

serverAddress.TLAPsuffix.TLNMstring(0:SIZE serverName—i)

% buffer address is logical

% address in user
% space

% only one connection at a

Z time. thus not used anyway!

,quality.buffer.&

)

% set up to wait for events

% max wait time of 2 minutes

% wait for ANY event

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE 395
SAMPLE PROGRAMS USING TLIB/PLANC

FALSE :2 done

DO WHILE NOT done

% wait for next event
TLPWAIT(maxWaitTime,requestedEvent.status.actualEvent)

CHKstatus(‘TLPwait’.status)

Z analyse event that occurred
IF actualEvent.TLEVcode = TLEVcncf THEN

output(1,'A',‘connected‘)

IF (actualEvent.TLEVdata(O) =2 lengthData) > 0 THEN % if user sent
TLlogicalAddress =: buffer.TLBFformat % data
ADDR(1nputBuffer(0)) FORCE INTEGER =2 buffer.TLBFADDRESS
TLPprbf(TLIBreference.buffer,lengthData‘status) % then provide
CHKstatus(‘TLPprbf‘,status) % buffer for it

ENDIF

TLPcncf(TLIBreference.status,quality.credit.buffer,lengthData)
CHKstatus(‘TLPcncf‘.status)
IF lengthdata > 0 THEN % display user data

output(1.‘A‘.‘ with user data "‘) Z sent by server,
output(1,‘A’.inputBuffer(0:lengthData—i)) % if any

output(1.‘A‘.‘"‘)

ENDIF

% no data to send. therefore disconnect
output(1.'A‘.‘$disconnecting...‘)
TLlogicalAddress =: buffer.TLBFformat

ADDR(farewe11(O)) FORCE INTEGER =: buffer.TLBFaddress
TLPdcrq(TLIBreference.buffer.SIZE farewe11.status)

CHKstatus(‘TLPdcrq‘,status)
ELSIF actualEvent.TLEVcode = TLEVdccf THEN % disconnection

% complete

output(1.‘A‘.‘disconnect complete‘)
TRUE =: done

ELSE

output(1.‘A"‘$UNEXPECTED EVENT type‘)
output(1.‘16‘.actualEvent.TLEVcode)

TRUE =: done

ENDIF

ENDDO

ENDROUTINE

ENDMODULE

Norsk Data ND-60.164.3 EN

396 COSMOS PROGRAMMER GUIDE

Norsk Data ND~60.164.3 EN

.
a

E
m

its:
r.

COSMOS PROGRAMMER GUIDE 399
SAMPLE PROGRAMS USING TLIB/FORTRAN

lIHUmdmihm

The following set of communicating programs, called SERVER and CLIENT,
just gives an example of how a connection is established, and then
immediately disconnected. The connection establishment and
disconnection in the example in section 6.7 serve as an outline of
what happens at runtime. It shows the interaction between the two
programs.

Notice the inclusion of the file TLFzDEFS, which contains standard
symbols. Also note that SERVER has to be started before CLIENT.

1.1 Brief Description of SERVER

The sequence of TLIB call are as follows:

1) The first call to TLIB is TLFINIT.

2) TLFSTLS starts listening on one connection. This allows
possible clients to get a connection request through.

3) The TLFWAIT call brings SERVER into a waiting state. SERVER
is now in principle open for any event (see "requested event
definition"), but is really prepared for a connection
indication from a client.

4) Assuming there is user data in the connection request from
the client, SERVER invokes the TLFPRBF to provide a buffer.
The connection indication event is processed by the TLFCNIN
call.

5) SERVER will acknowledge the client's connection request by
sending back a connection response (TLFCNRS). 'OK' is sent as
user data.

6) SERVER goes into a waiting state (TLFWAIT), expecting a
disconnect indication with user data.

7) A buffer is provided for the user data (TLFPRBF) and the
disconnect indication is processed by invoking TLFDCIN.

1.2 Brief Description of CLIENT

The sequence of TLIB calls is as follows:

1) The first call to TLIB is TLFINIT.

2) A connection request is sent to the server (TLFCNRQ). This
request contains a greeting, 'HELLO', as user data.

Norsk Data ND-60.164.3 EN

400 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING TLIB/FORTRAN

3) CLIENT enters a waiting state (TLFWAIT), expecting a
connection confirmation back from the server.

4) Assuming that the server sends user data in the connection
response, CLIENT provides a buffer (TLFPRBF). Then the
connection confirmation is processed by the TLFCNCF call.

5) CLIENT finally disconnects by sending 'BYE' as user data in
the TLFDCRQ call.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 401
SAMPLE PROGRAMS USING TLIB/FORTRAN

1.3 The Server m!

PROGRAM SERVER
$LIST OFF

$INCLUDE Tensrs
$LIST ON

C declarations
EXTERNAL TLFINIT.TLFCNRQ.TLFWAIT.TLFCNCF.TLFDCIN

C define array for use by TLIB
INTEGER TLDYNAMIC(OzTLSZDYNAMIC—I)

C define array to store TLIB mode
INTEGER MODE(O:TLALMODE—1)

C define array for timeout period on wait

INTEGER MAXWAIT(O:TLALTIME—1)

C define arrays to store requested and actual events

INTEGER REQUEST(O:TLALEVENT—1)

INTEGER ACTUAL(O:TLALEVENT*1)

C define array to store user data on connection open and close

INTEGER USERDATA(O:(TLMXUSERDATA/2)—l)

C storage for return status from TLIB calls

INTEGER RETSTAT

C TLAP definitions

INTEGER*4 USADD<02TLALTLAP-1)

INTEGER*4 IRMADD<0zTLALTLAP—1)
C network address and suffix definitions

CHARACTER UN*(TLMXNAMELENGTH).USAITLNXNAMELENGTH)

EQUIVALENCE (USADD(TLAPNETADDRESS).UN),(USADD(TLAPSUFFIX).US)
C reply definition

EQUIVALENCE (USERDATA(0).REPLY)

CHARACTER REPLY*(6)

C quality of service

INTEGER QOS(0:TLALQOS—1)

C initialize TLIB:

C XMSG is called in user mode

MODE<TLMDXMSGMODE) = TLXMINUSERMODE

C and require the T-suffix names to be unique

MODE<TLMDUNIQUESUFFIXl = TLISUNIQUE

MODE<TLMDMXCONNECTIONS) = TLMXCONNECTIONS
MODE(TLTLMXACCESSPOINTS) = TLMXACCESSPOINTS
MODE(TLMDMXBUFFERS) = TLMXBUFFERS

MODE(TLMDMXQUEUEDTPDUS) = TLMXQUEUEDTPDUS
CALL TLFINIT(MODE.TLDYNAMIC.RETSTATJ

IF (RETSTAT .NE. OK) THEN

WRITE(1,*)’BAD STATUS FROM TLFINIT‘
GO TO 999

ENDIF

C start listening on one connection

IUSREF=1

C local address definition
USADD<TLAPFORMAT)ZTLTLAPBSTRING

Norsk Data ND—60.l64.3 EN

402 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING TLIB/FORTRAN

USADD(TLAPLNNET)=6

UN=‘SNORRE'

USADD(TLAPLNSUFFIX)=6

US=‘S-PORT‘

C timeout definition

MAXWAIT<TLTMUNITS)=TLTMMINS

MAXWAIT(TLTMLENGTH)=1O

C requested event definition

REQUEST<TLEVHEFNO)=TLANYHEFNO

REQUEST(TLEVCODE)=TLANYEVENT

CALL TLFSTLS(USADD.IUSREF.RETSTAT.ITLREF)

IF(RETSTAT.NE.OK) THEN

WRITE(1.*)‘BAD STATUS FROM TLFSTLS‘

GO TO 999

ENDIF

WRITE(1.*)‘SERVER IS LISTENING'

C wait for TLEVCNIN

ICALL TLFWAIT<MAXWAIT,REQUEST,RETSTAT,ACTUAL)

IF(RETSTAT.NE.OK) THEN

WRITE(1,*)‘BAD STATUS FROM TLFWAIT‘

GO TO 999

ENDIF

IF(ACTUAL(TLEVCODE).EQ.TLEVTIME) THEN

WRITE(1.*)‘TIMEOUT‘

GO TO 999

ENDIF

IF(ACTUAL(TLEVCODE).NE.TLEVCNIN) THEN

WRITE(1,*)‘UNEXPECTED EVENT CODE ‘.ACTUAL(TLEVCODE)

GO TO 999

ENDIF

LDATA=ACTUAL<TLEVODATA)

LDATA=((LDATA+1)I2)*2

C provide buffer and get user data

CALL TLFPRBF(ITLREF.USERDATA.LDATA.0.RETSTAT)

IF(RETSTAT.NE.OK) THEN

WRITE(1 , *) ‘ BAD STATUS FROM TLFPRBF , CONNECTION DATA‘

GO TO 999

ENDIF

CALL TLFCNIN(ITLREF,RETSTAT.IRMADD,QOS,ICRED,0.LENDAT)

WRITE(1.*)‘USERDATA: ‘

WRITE(1.100)REPLY

100 FORMAT(2X.A6)

C send reply

REPLY=‘0K ‘

LDATA=6

CALL TLFCNRS<ITLREF,QOS,USERDATA.LDATA.RETSTAT)

IF(RETSTAT.NE.0K) THEN

WRITE(1,*)‘BAD STATUS FROM TLFCNRS‘

GO TO 999

ENDIF

Norsk Data DID-60.1643 EN

COSMOS PROGRAMMER GUIDE 403
SAMPLE PROGRAMS USING TLIB/FORTRAN

C wait for disconnect data

Cget

999

CALL TLFWAIT(MAXWAIT,REQUEST.RETSTAT.ACTUAL)

IF(RETSTAT.NE.0K) THEN

WRITE(1,*)‘BAD STATUS WHEN WAITING FOR DISCONNECT'

GO TO 999

ENDIF

IF(ACTUAL(TLEVCODE).NE.TLEVDCIN) THEN

WRITE(1,*)’UNEXPECTED EVENT CODE ',ACTUAL(TLEVCODE)
GO TO 999

ENDIF

LDATA=ACTUAL(TLEVODATA)

LDATA=((LDATA+1)/2)*2

buffer and user data

CALL TLFPRBF(ITLREF,USERDATA.LDATA.O,RETSTAT)

IF(HETSTAT.NE.0K) THEN

WRITE(1.*)'BAD STATUS FROM TLPRBF. DISCONNECT DATA'

GO TO 999

ENDIF

CALL TLFDCIN(ITLREF,RETSTAT,IDCRSN,IDUM.LENDAT)

WRITE(1.*)‘USERDATA: ’

WRITE(1.1OD)REPLY

IF(RETSTAT.NE.OK) THEN

WRITE(1.*)'BAD STATUS FROM TLFDCIN‘

ENDIF V

END

Norsk Data ND-60.164.3 EN

404 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING TLIB/ FORTRAN

1.4 The Client EEQSEE!

PROGRAM CLIENT

$LIST OFF

$INCLUDE TLF:DEFS

$LIST ON

C declarations
EXTERNAL TLFINIT,TLFCNRQ.TLFWAIT.TLFCNCF,TLFDCIN

C define array for use by TLIB

INTEGER TLDYNAMIC(OzTLSZDYNAMIC-i)

C define array to store TLIB mode

INTEGER MODE(O:TLALMODE-1)

C define array for timeout period on wait

INTEGER MAXWAIT<0tTLALTIME—1)

C define arrays to store requested and actual events

INTEGER REQUEST(0:TLALEVENT~1)

INTEGER ACTUAL(O:TLALEVENT—1)

C define array to store user data on connection open and close

INTEGER USERDATA(0:(TLMXUSERDATA/2)-1)

C storage for return status from TLIB calls

INTEGER RETSTAT

C TLAP definitions

INTEGER“! REMADD< 0 :TLALTLAP— 1)

INTEGER*4 USADD(O:TLALTLAP-1)

C network address and suffix definitions

CHARACTER RN*(TLMXNAMELENGTH).RS*(TLMXNAMELENGTH).
+UN*(TLMXNAMELENGTH),US*(TLMXNAMELENGTH)

EQUIVALENCE (REMADD(TLAPNETADDRESS).RN).(REMADD(TLAPSUFFIX),RS)

EQUIVALENCE (USADD(TLAPNETADDRESS>.UN),(USADD(TLAPSUFFIX),US)

CHARACTER NETNAME*(TLMXNAMELENGTH).SUFFNAME*(TLMXNAMELENGTH)

CHARACTER NETNAM1*(TLMXNAMELENGTH),SUFFNAIA(TLMXNAMELENGTH)

C message definition

CHARACTER MESS*(6)

EQUIVALENCE (USERDATA(0),MESS)

C quality of service

INTEGER QOS(0:TLALQOS—1)

C initialize TLIB:

C XMSG is called in user mode

MODE(TLMDXMSGMODE) = TLXMINUSERMODE

C and require the T-suffix names to be unique

MODE(TLMDUNIQUESUFFIX) = TLISUNIQUE

MODE(TLMDMXCONNECTIONS) = TLMXCONNECTIONS

MODE<TLTLMXACCESSPOINTS) = TLMXACCESSPOINTS

MODE(TLMDMXBUFFERS) = TLMXBUFFERS

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING TLIB/FORTRAN

MODE(TLMDMXQUEUEDTPDUS) = TLMXQUEUEDTPDUS

CALL TLFINIT(MODE.TLDYNAMIC‘RETSTAT)

IF (RETSTAT .NE. OK) THEN

WRITE(1.*)'BAD STATUS FROM TLFINIT‘
GO TO 999

ENDIF

C remote address definition

REMADD(TLAPFORMAT)=TLTLAP28TRING

REMADD(TLAPLNNET)=6
RN=‘SNORRE‘

REMADD(TLAPLNSUFFIX)=6
RS=‘S-PORT'

C local address definition
USADD(TLAPFORMAT)=TLTLAPZSTRING

USADD(TLAPLNNET)=6

UNz‘SNORRE‘

USADD<TLAPLNSUFFIX>=6
US=’C~PORT‘

C timeout definition

MAXWAIT(TLTMUNITS)=TLTMMINS

MAXWAIT(TLTMLENGTH)=1O
C requested event definition

REQUEST<TLEVREFNO)=TLANYREFNO
REQUEST<TLEVCODE)=TLANYEVENT

C send connection request

MESS=‘HELLO ‘

IUSREF=1

LENDAT=6

QOS(TLQSISDEFAULT)=TLISDEFAULT
CALL TLFCNRQ(USADD,REMADD.IUSREF.QOS‘USERDATA.LENDAT,RETSTAT,

+ITLHEF)
IF(RETSTAT.NE.0K)THEN

WRITE(1.*)‘BAD STATUS FROM TLFCNRQ'
GO TO 999

ENDIF

C wait for connection confirmation
CALL TLFWAIT(MAXWAIT.HEQUEST.RETSTAT,ACTUAL)
IF(RETSTAT.NE.OK) THEN

WRITE(1,*)‘BAD STATUS FROM TLFWAIT‘
GO TO 999

ENDIF

IF(ACTUAL(TLEVCODE).EQ.TLEVTIME) THEN
WRITE(1,*)‘TIME OUT‘
GO TO 999

ENDIF
IF(ACTUAL(TLEVCODE).NE.TLEVCNCF) THEN

WRITE(I.*)‘UNEXPECTED EVENT CODE’,ACTUAL(TLEVCODE)
IF(ACTUAL(TLEVCODE).EQ.TLEVDCIN) THEN

CALL TLFDCIN(ITLREF,ISTAT.IDCRSN,IUEFID,LENDAT)
WRITE(1,*)'DISCONNECT REASON‘.IDCRSN

ENDIF

GO TO 999

ENDIF

LDATA:ACTUAL(TLEVODATA)
LDATA=((LDATA+1)/2)*2

Norsk Data ND-60.164.3 EN

405

406 COSMOS PROGRAMMER GUIDE
SAMPLE PROGRAMS USING TLIB/FORTRAN

C provide buffer and get user data

CALL TLFPRBF(ITLREF.USERDATA,LDATA.0,8ETSTAT)

IF(RETSTAT.NE.0K)THEN

WRITE(1,*)‘BAD STATUS FROM TLFPRBF‘

GO TO 999

ENDIF

CALL TLFCNCF(ITLREF,RETSTAT.IQOS.ICRED,0.LENDAT)

IF<RETSTAT.NE.0K)THEN

WRITE(1,*)‘BAD STATUS FROM TLFCNCF‘

GO TO 999

ENDIF

WRITE(1.*)‘USERDATA ‘

WRITE(1,200)MESS

200 FORMAT(2X.A6>

C send disconnect request

MESS=‘BYE ’

LENDAT=6

CALL TLFDCRQ<ITLREF,USERDATA,LENDAT,RET5TAT)

IF(RETSTAT.NE.0K)THEN

WRITE(1,*)‘BAD STATUS FROM TLFDCRQ‘

ENDIF

999 END

Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE
Index

Index

accessInfo
actual event
actualEvent .
additionalInfo

addressing
allocation

port
task

Areg
asyncronous processes .
background
bankNo
bankNumber
Bregister .
buffer

default .
pool . . .

bufferAddress .
bufferArea
bufferLength .
buffers in TLIB .
bufferSize
bytesOTol .

bytesOTolorStat .
bytesZTo3 .

bytes4T05 .

cause .
client . .

high—level
low-level .

clientInfo
configMask
connection

confirmation
identifier
indication
request .‘
response

credit .
current message .
data—transfer phase .
dataO . . .
debugging tool
default

buffer
port

desired mode
destServer

Norsk Data ND—60.164.3 EN

. 5.

. 38, 113.

. 174, 183, 192.

. 113.

. 208.

. 38.

. 57, 62, 72, 85,

407

. 32, 108.

. 233.

. 176, 193.

. 32, 45, 108,
120.

. 165.

131, 146, 159.
. 60, 134.
. 57, 72, 85, 131,

146, 159.
. 57, 72, 85, 131,

146, 159.
. 188.
. 163.
. 163.
. 163.
. 178, 186, 196.
. 27, 103.
. 164, 203.
. 164.
. 204.
. 164.
. 164.
. 164.
. 205.
. 5.
. 164.
. 136.
. 9.

. 5.

. 4.

. 228.

. 186, 196.

408

destSys .
disconn reason
disconnect

‘indication
request .

displacement
Dreg
dynamic . .
end—of-TSDU .
event . . .

FORTRAN .
PLANC .
RREVcncf
RREVcnin
RREVdata
RREVdccf
RREVdcin .
RREVevent .
RREVothr
RREVremote
RREqin
RREVrsin
RREVtime
RREVunkn
RRMXevData
table .

expedited data
extraConn .
flags .

flow control
foreground
function types
bashed magic number .
headerBuffer
high~1eve1 calls
IACTEV

,Norsk Data ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE
Index

. 186, 196.

. 224.

. 165.

. 165.

. 165.

. 6.

. 66, 140.

. 174, 183, 192.

. 205.

. 165, 206, 207.

. 238.

. 217.

. 166, 194.

. 166, 177.

. 177, 194.

. 166, 177, 194.

. 166, 177, 194.

. 177, 194.

. 166, 177, 194.

. 177, 194.

. 166, 177.

. 166, 194.

. 166, 177, 194.

. 166, 177, 194.

. 177, 194.

. 166.

. 204.

. 75, 149.

. 8, 26-29, 31,
32, 34-42,
44-50, 52, 54,
56-58, 60, 62,
64-66, 68,
70—73, 75, 77,
79, 81, 82,
84-86, 102—105,
107-117,
119—125, 127,
129—132, 134,
136, 138—140,
142, 144~l47,
149, 151, 153,
155, 156,
158—160, 222,
223.

. 203, 205.

. 3.

. 6.

. 4.

. 19, 95.

. 163.

. 255.

COSMOS PROGRAMMER GUIDE
Index

ICREDT
IDCRSN
IDYNAM
IFLAGS .
inbuffer

info

initial credit
interruptLevel
IQOS
IREQEV
IRMADD
ISTAT .

ITLREF

ITMOUT
IUBFID

IUBUF .

IUSADD
IUSREF
LENDAT
length

buffer
data
expdata .
userdata

lengthBuffer
LENUBF
letter
localBuffer .
localPort .

low-level calls .
lowBuffer .
magicNumber .

magic number
bashed

maxClientConn .
maxConnections
maxServerConn .
memoryDisp
message .

buffer

Norsk Data ND-60.164.3 EN

409

. 240, 241, 245.

. 246.

. 250.

. 244, 245.

. 129, 132, 155,
160.

. 172, 173, 188,
190, 191.

. 218, 219.

. 34, 109.

. 240-243.

. 255.

. 241, 242.

. 240-250,
252-255.

. 240-249,
252-254.

. 255.

. 240, 241, 244,
246, 248, 252.

. 242, 243, 245,
247, 249, 252.

. 242, 253.

. 242, 253.

. 240-249.

. 230.

. 222, 223.

. 226, 227.

. 218—221, 224,
225.

. 17, 19, 93, 95.

. 252.

. 6.

. 22.

. 50, 52, 58, 60,
62, 68, 82, 84,
125, 127, 132,
134, 136, 142,
156, 158.

. 163.

. 98.

. 45, 48, 120,
123.

. 4.

. 4.

. 174, 183, 192.

. 77, 151.

. 174, 183, 192.

. 28, 104.

. 5.

. 4.

410

current .
displacement
identifier
port current
queue .
secure
task current
types .

messageSize .
mode

msgDisp .

msgIdent
msgIdentFound .
msgIdentifier .

msgLength . . .
msgLengthOrStat .

msgSize .
mnype .

ND-SOO
new credit
noOfCalls .
noOsgFreed
noOsgToFree .
numberOsgs
offSet

options .
OSI

reference
transport service specification .

outBuffer .

paramLength .
paramNumber .

paramType .
paramValue
paraNumber

Norsk Data ND-60.164.3 EN

C
D

U
1

U
1

J>
U

1
4

>
®

U
1

COSMOS PROGRAMMER GUIDE
Index

, 5.

. 29, 105.

. 174, 183, 192,
250.

. 54, 73, 81, 86,
129, 147, 155,
160.

. 116, 127, 132.

. 44, 119.

. 32, 41, 44, 46,
50, 52, 56~58,
60, 62, 64, 81,
82, 84-86, 108,
119, 121, 125,
130, 131, 134,
136, 138, 155,
156, 158—160.

. 46, 121.

. 52, 58, 127,
132.

. 44, 119.

. 46, 50, 52, 58,
60, 121, 125,
127, 132, 134.

. 3.

. 223.

. 66, 140.

. 40, 115.

. 40, 115.

. 29, 105.

. 13, 15—17, 19,
89, 91—93, 95.

. 7, 8.

. 203.

. 203.

. 13, 15—17, 24,
89, 91*93, 100,
147.

. 22, 98.

. 13, 15, 16, 22,
89, 91, 92.

. 22, 98.

. 13, 15, 89, 91.

. 98.

COSMOS PROGRAMMER GUIDE
Index

phases during communication .
PIOC
port

allocation
default .
list
name
number

portName

portNo
portNoFound .
portNumber

privileged tasks
quality .
queue message .
queueLength .
readLength

reason

registerBlock .
remote address
remoteID

remoteMagicNum

remotePort

request .
request-response
requested event .
requestedEvent
requestedTaskSp .
response
responseBuffer
restartAddress
retstat .

return status .
routine types .
RR-LIB prefixes .

Norsk Data ND‘60.164.3 EN

é
p

b
h

b
b

w
m

411

03.

.

. 19, 26, 77, 79,
95, 102, 151,
153.

. 44, 119, 138.

. 44, 119.

. 26, 31, 42, 45,
47, 48, 64, 75,
77, 79, 102,
107, 117, 120,
122, 123, 149,
151, 153.

. 6.

. 218-221.

. 4.

. 50, 125.

. 28, 54, 81, 104,
129, 155.

. 172, 184, 186,
190.

. 34, 109.

. 219, 220.

. 171—173, 178,
179, 181, 182,
184, 186,
188-191, 195,
196, 198, 199.

. 46, 68, 84, 121,
142, 158.

. 50, 52, 58, 60,
125, 127, 132,
134.

. 181, 184, 199.

. 163.

. 233.

. 176, 193.

. 37, 112.

. 182, 184, 198.

. 181, 184, 199.

. 71, 145.

. 218—228,
230*233.

. 7.

. 6.

. 163.

412 COSMOS PROGRAMMER GUIDE
Index

RRanyEvent . 193.
RRanyRemote . 177, 193.
RRDCcref (Error symbol) 342.
RRDCngfl (Error symbol) 342.
RRDCnoac (Error symbol) 343.
RRDCprer (Error symbol) 343.
RRDCrmcg (Error symbol) 342.
RRDCrmdd (Error symbol) 343.
RRDCunsr (Error symbol) . 342.
RRDCunsy (Error symbol) 342.
RRDCuser (Error symbol) 342.
RRDsin (Error symbol) 343.
RRERbdbf (Error symbol) 339.
RRERbdid (Error symbol) 339.
RRERbdln (Error symbol) 339.
RRERbdnm (Error symbol) 339.
RRERbdpm (Error symbol) 339.
RRERbdst (Error symbol) 339.
RRERdcpn (Error symbol) 340.
RRERdscn (Error symbol) 338.
RRERfatal (Error symbol) 341.
RRERincp (Error symbol) 340.
RRERmsfl (Error symbol) 340.
RRERntcl (Error symbol) 338.
RRERntei (Error symbol) 338.
RRERntpr (Error symbol) 340.
RRERntsr (Error symbol) 338.
RRERnttm (Error symbol) 338.
RRERprrf (Error symbol) 340.
RRERtslm (Error symbol) 340.
RRERunev (Error symbol) 338.
RRERxcra (Error symbol) 341.
RRERxnpt (Error symbol) 341.
RRERxnru (Error symbol) 341.
RRERxnsp (Error symbol) 341.
RRERxnxt (Error symbol) 341.
RRERxscn (Error symbol) 340.
RRERxsin (Error symbol) 339.
RREVCa . 166, 194, 195.
RREVcnin . 166, 177.
RREVdata . 177, 194.
RREVdCCf . 166, 177, 194.
RREVdcin . 166, 172, 176,

177, 190, 194.
RREVevent . 177, 194.
RREVothr . 166, 176, 177,

194.
RREVremote . 177, 194.
RREqin . 166, 177, 181.
RREVrsin . 166, 194.
RREVtime . 166, 177, 194.
RREVunkn . 166, 176, 177,

194.

Norsk Dara ND-60.164.3 EN

COSMOS PROGRAMMER GUIDE
Index

RRMMevData
RRPzDEFS
RRPBABRT
RRPBDCIN
RRPBDCRQ
RRPBINIT
RRPBWAIT
RRPCCALL
RRPCCNCF
RRPCCNRQ
RRPCDISC
RRPCEND .
RRPCGTRS
RRPCSLCT
RRPCSNRQ
RRPSCNIN
RRPSCNRS
RRPSEND .
RRPSGTRQ
RRPSSNRS . ..
RRSPallocation
RRSPisDefault .
RRSPpassword
RRTMlength

RRTMunits .

RT
RTinOrOtherInfo .
secure message
security
sequencing
serialNumber

server
serverInfo
serverInfoBuff
serverName
serverParam .
serviceNumber .
shadow task .
sizeBuffer
startOfParam
startScanPort .
static

string .
system task .
systemName
systemNumber

Norsk Data ND—60.l64.3 EN

413

. 177, 194.

. 166.

. 171, 189.

. 172, 190.

. 173, 191.

. 174, 183, 192.

. 176, 193.

. 184.

. 195.

. 196.

. 188.

. 197.

. 164, 198.

. 186.

. 199.

. 178.

. 179.

. 180.

. 181.

. 182.

. 175.

. 174.

. 175.

. 176, 184, 187,
193.

. 176, 184, 187,
193.

. 3.

. 45, 120.

. 5.

. 3.

. 7.

. 19, 24, 75, 95,
100, 149.

. 163.

. 179, 186, 195.

. 178, 186, 196.

. 174, 183, 192.

. 174, 183, 192.

. 24, 100.

. 3.

. 41, 116.

. 22, 98.

. 42, 117.

. 171-174, 176,
178—184, 186,
188-193,
195—199.

. 16, 92.

. 3, 8.

. 19, 95.

. 45, 120.

414 COSMOS PROGRAMMER GUIDE
Index

table event .
task . . .

allocation
block .
privileged
system
user . 3.

timeout . 176, 184, 186,
188, 193, 233.

TLAP . 206.
FORTRAN . 237.
PLANC . 215.

TLDCcref . 352.
TLDClcrs . 353.
TLDCngfl . 352.
TLDCnoac . 353.
TLDCprer . 352.
TLDCrmcg . 352.
TLDCrmdd . 353.
TLDCrmrs . 353.
TLDCsesn . 352.
TLDCunet . 352.
TLDCunxr . 353.
TLDCusuf . 353.
tldynamic . 228.
TLERBDCL . 348.
TLERBDFM . 348.
TLERBDLN . 348.
TLERBDNM'. 348.
TLERBDPM . 348.
TLERBDRF . 348.
TLERDCPN . 349.
TLERDPSF . 350.
TLERFATAL . 350.
TLERNOBD . 349.
TLERNOQD . 350.
TLERNORM . 350.
TLERNOSD . 349.
TLERNOTB . 349.
TLERNOUB . 349.
TLERNTIN . 348.
TLERSMUB . 349.
TLERXCRA . 351.
TLERXNPT . 351.
TLERXNRU . 351.
TLERXNSP . 351.
TLERXNXT . 351.
TLERXOUT . 349.
TLFCNCF . 240.
TLFCNIN . 241.
TLFCNRQ . 242.
TLFCNRS . 243.

66.

w
m

w
w

w
r—

a

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE
Index

TLFDAIN .
TLFDARQ .
TLFDCIN .
TLFDCRQ .
TLFEDIN .
TLFEDRQ .
TLFINIT .
TLFPRBF .
TLFSTLS .
TLFTMLS .
TLFWAIT .
TLIB

calls from FORTRAN
calls from PLANC
refno .

routines
TLPCNCF .
TLPCNIN .
TLPCNRQ .
TLPCNRS .
TLPDAIN .
Tummm.
TLPDCIN .
TLFDCRQ .
TLPEDIN .
TLPEDRQ .
TLPINIT .
TLPPRBF .
TLFSTLS .
TLPTMLS .
TLPWAIT .
TPDU
Treg
TSDU

length
uniqueName
user

address .
buffer

buffers .
data
refno .
task

userAddress .

userBuffer
userdata

userDisp

Norsk Data ND—60.l64.3 EN

415

. 244.

. 245.

. 246.

. 247.

. 248.

. 249.

. 250.

. 252.

. 253.

. 254.

. 255.

. 207.

. 207.

. 218—227,
230—232.

. 209.

. 218.

. 219.

. 220.

. 221.

. 222.

. 223.

. 224.

. 225.

. 226.

. 227.

. 228.

. 230.

. 231.

. 232.

. 233.

. 205.

. 66, 140.

. 205.

. 205.

. 77, 151.

. 220, 231.

. 222, 223, 226,
227, 230.

. 208.

. 204.

. 220, 231.

. 3.

. 54, 58, 66, 73,
81, 86.

. 28, 104, 140.

. 218—221, 224,
225.

. 28, 54, 58, 66,
73, 81, 86, 104,
129, 132, 140,
147, 155, 160.

416 COSMOS PROGRAMMER GUIDE
Index

userLength . 54, 58, 73, 81,
86, 129, 132,
147, 155, 160.

writtenLength . 73, 86, 147,
160.

XEAIN (Error symbol) . 316.
XEBFC (Error symbol) . 316.
XEBNC (Error symbol) 317.
XEBNY (Error symbol) 315.
XECRA (Error symbol) . 323.
XEDRI (Error symbol) . 320.
XEIBP (Error symbol) 315.
XEIDP (Error symbol) 320.
XEIDR (Error symbol) . 316.
XEILF (Error symbol) 317.
XEILM (Error symbol) 318.
XEILR (Error symbol) . 321.
XEIMA (Error symbol) 317.
XEIPN (Error symbol) 318.
XEIRM (Error symbol) 314.
XEIRT (Error symbol) 315.
XEITL (Error symbol) 320.
XEIXT (Error symbol) 322.
XEMCH (Error symbol) 316.
XEMFL (Error symbol) 317.
XENDM (Error symbol) 316.
XENDP (Error symbol) J 320.
XENIM (Error symbol) 315.
XENOP (Error symbol) 315.
XENOS (Error symbol) 321.
XENOT (Error symbol) 314.
XENRU (Error symbol) 321.
XENSE (Error symbol) 321.
XENTM (Error symbol) 314.
XENTO (Error symbol) 322.
XENUS (Error symbol) 322.
XENVI (Error symbol) 317.
XEPCL (Error symbol) 321.
XEPRV (Error symbol) 319.
XEPVR (Error symbol) 319.
XEREJ (Error symbol) 322.
XERNA (Error symbol) 319.
XERND (Error symbol) 321.
XEROV (Error symbol) 319.
XETMM (Error symbol) 314.
XETMU (Error symbol) 322.
XEWNA (Error symbol) 317.
XEXBF (Error symbol) . . , 320.
XFABR . 284.
XFALM . 268.
XFCLS . 262.
XFCPV . 282.

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE 417
Index

XFCRD . 284.
XFDBK . 271.
XFDCT . 265.
XFDMM . 280.
XFDUB . 267.
XFDUM . 279.
XFFRM . 269.
XFGET . 266.
XFGST . 264.
XFLMP . 277.
XFMZP . 281.
XFMST . 278.
XFOPN . 262.
XFP2M . 281.
XFPRV . 283.
XFPST . 262.
XFRCV . 275.
XFREL . 267.
XFRHD . 271.
XFROU . 6.
XFRRE . 277.
XFRRH . 276.
XFRTN . 274.
XFSCM . 278.
XFSIN . 283.
XFSMC . 280.
XFSND . 272.
XFSTD . 285.
XFSYS . 3, 8.
XFWDF . 282.
XFWHD . 270.
XFWRI . 269.
XMF:DEFS . 8.
XMFBADB . 89.
XMFBAIN . 91.
XMFBAST . 92.
XMFBINI . 93.
XMFBLET . 95.
XMFBLOC . 98.
XMFBRDY . 100.
XMFCLNM . 102.
XMFCONF . 103.
XMFFABR . 104.
XMFFALM . 105.
XMFFCLS . 107.
XMFFCPV . 108.
XMFFCRD . 109.
XMFFDBK . 110.
XMFFDCT . 111.
XMFFDMM . 112.
XMFFDUB . 113.
XMFFDUM . 114.

Norsk Data ND—60.164.3 EN

418 COSMOS PROGRAMMER GUIDE
Index

XMFFFRM . 115.
XMFFGET . 116.
XMFFGST . 117.
XMFFLMP . 119.
XMFFMZP . 120.
XMFFMST . 121.
XMFFOPN . 122.
XMFFPZM . 123.
XMFFPRV . .2. 124.
XMFFPST . 125.
XMFFRCV . 127.
XMFFREA . 129.
XMFFREL 130.
XMFFRHD . 131.
XMFFRRE . 132.
XMFFRRH . 134.
XMFFRTN . 136.
XMFFSCM . 138.
XMFFSIN . 139.
XMFFSMC . 140.
XMFFSND . 142.
XMFFSTD . 144.
XMFFWDF . 145.
XMFFWHD . 146.
XMFFWRI . 147.
XMFINFC . 149.
XMFOPCN . 151.
XMFOPNM . 153.
XMFREAD . 155.
XMFROUT . 156.
XMFSEND . 158.
XMFWRHD . 159.
XMFWRTE . 160.
XMPzDEFS . 8.
XMPBADB . 13.
XMPBAIN . 15.
XMPBAST . 16.
XMPBINI . l7.
XMPBLET . 19.
XMPBLOC . 22.
XMPBRDY . 24.
XMPCLNM . 26.
XMPCONF . 27.
XMPFABR . 28.
XMPFALM . 29.
XMPFCLS . 31.
XMPFCPV . 32.
XMPFCRD . 34.
XMPFDBK . 35.
XMPFDCT . 36.
XMPFDMM . 37.
XMPFDUB . 38.

Norsk Data ND—60.l64.3 EN

COSMOS PROGRAMMER GUIDE 419
Index

XMPFDUM . 39.
XMPFFRMx. 40.
XMPFGET . 41.
XMPFGST . 42.
XMPFLMP . 44.
XMPFMZP . 45.
XMPFMST . 46.
XMPFOPN . 47.
XMPFPZM . 48.
XMPFPRV . 49.
XMPFPST . 50.
XMPFRCV . 52.
XMPFREA . 54.
XMPFREL . 56.
XMPFRHD . 57.
XMPFRRE . 58.
XMPFRRH . 60.
XMPFRTN . 62.
XMPFSCM . 64.
XMPFSIN . 65.
XMPFSMC . 66.
XMPFSND . 68.
XMPFSTD . 70.
XMPFWDF . 71.
XMPFWHD . 72.
XMPFWRI . 73.
XMPINFC . 75.
XMPOPCN . 77.
XMPOPNM . 79.
XMPREAD . 81.
XMPROUT . 82.
XMPSEND . 84.
XMPWRHD . 85.
XMPWRTE . 86.
XMSG

buffer . . .
calls from FORTRAN
calls from PLANC
flags
list of functions .
list of routines
options .

XMSG—COMMAND .
XMSGbase . 65, 139.
XMSGpassword . 27, 49, 103,

124.
XMSGrestartCnt 27, 103.
XMTNO . 8.
XMXEAIN (Error symbol) 316.
XMXEBFC (Error symbol) 316.
XMXEBNC (Error symbol) 317.
XMXEBNY (Error symbol) 315.

\O
\l
\0

\0
\l
\l
\l
m

Norsk Data ND—60.164.3 EN

420

XMXECRA
XMXEDRI
XMXEIBP
XMXEIDP
XMXEIDR
XMXEILF
XMXEILM
XMXEILR
XMXEIMA
XMXEIPN
XMXEIRM
XMXEIRT
XMXEITL
XMXEIXT
XMXEMCH
XMXEMFL
XMXENDM
XMXENDP
XMXENIM
XMXENOP
XMXENOS
XMXENOT
XMXENRU
XMXENSE
XMXENTM
XMXENTO
XMXENUS
XMXENVI
XMXEPCL
XMXEPRV
XMXEPVR
XMXEREJ
XMXERNA
XMXERND
XMXEROV
XMXETMM
XMXETMU
XMXEWNA
XMXEXBF

XMXRBLK
XMXRBUS
XMXRDDF
XMXRFFU
XMXRIIV
XMXRILN
XMXRIPT
XMXRIRQ
XMXRISE
XMXRISN
XMXRISY
XMXRMFL

(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error

symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)

Norsk Data ND—60.164.3 EN

COSMOS PROGRAMMER GUIDE

. 323.

. 320.

. 315.

. 320.

. 316.

. 317.

. 318.

. 321.

. 317.

. 318.

. 314.

. 315.

. 320.

. 322.

. 316.

. 317.

. 316.

. 320.

. 315.

. 315.

. 321.

. 314.

. 321.

. 321.

. 314.

. 322.

. 322.

. 317.

. 321.

. 319.

. 319.

. 322.

. 319.

. 321.

. 319.

. 314.

. 322.

. 317.

. 320.

. 334.

. 329.

. 330.

. 323.

. 334.

. 326.

. 327.

. 324.

. 333.

. 333.

. 323.

. 325.

. 331.

Index

COSMOS PROGRAMMER GUIDE 42]
Index

XMXRMMP (Error symbol
XMXRMTL (Error symbol
XMXRNCO (Error symbol
XMXRNEI (Error symbol
XMXRNGA
XMXRNLS . 329.
XMXRNNA . 333.

) . 324.
)
)
)

()
()
()

XMXRNRB (Error symbol) 332.
()
()

)
)
)
)
)
)

. 325.

. 334.

. 326.

. 333.

XMXRNRO . 326.
XMXRNSE . 330.
XMXRNSP (Error symbol . 324.
XMXRNTR (Error symbol . 328.
XMXRNXD (Error symbol . 327.
XMXRNXL (Error symbol . 327.
XMXRNXM (Error symbol . 326.
XMXRPRV (Error symbol 325.
XMXRRFU (Error symbol) 332.
XMXRRNA (Error symbol) . 330.
XMXRRND (Error symbol) . 333.
XMXRRNL (Error symbol) 334.
XMXRROV (Error symbol) 331.
XMXRRPN (Error symbol) . 331.
XMXRSMF (Error symbol) 325.
XMXRSNR (Error symbol) 332.
XMXRSOK (Error symbol) 323.
XMXRSYD (Error symbol) 329.
XMXRTFE (Error symbol) 328.
XMXRTIS (Error symbol) 329.
XMXRTRA (Error symbol) 328.
XMXRTRE (Error symbol) 330.
XMXRTRP (Error symbol) 328.
XMXRTRT (Error symbol) 329.
XMXRUKS (Error symbol) 331.
XMXRUNM (Error symbol) 324.
XMXRUNN (Error symbol) 323.
XMXRURT (Error symbol) 332.
XRAMB (Error symbol) 334.
XRBLK (Error symbol) 329.
XRBUS (Error symbol) 330.
XRDDF (Error symbol) 323.
Xreg 66, 140.
XRFFU (Error symbol) 334.
XRIIV (Error symbol) . 326.
XRILN (Error symbol) 327.
XRIPT (Error symbol) 324.
XRIRQ (Error symbol) 333.
XRISE (Error symbol) . 333.
XRISN (Error symbol) . 323.
XRISY (Error symbol) 325.
XRMFL (Error symbol) 331.
XRMMP (Error symbol) 324.
XRMTL (Error symbol) 325.

Norsk Data ND-60.l64.3 EN

422

XRNCO
XRNEI
XRNGA
XRNLS
XRNNA
XRNRB
XRNRO
XRNSE
XRNSP
XRNTR
XRNXD
XRNXL
XRNXM
XROUT

(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error

format
letter
message .

XRPRV
XRRFU
XRRNA
XRRND
XRRNL
XRROV
XRRPN
XRSMF
XRSNR
XRSOK
XRSYD
XRTFE
XRTIS
XRTRA
XRTRE
XRTRP
XRTRT
XRUKS
XRUNM
XRUNN
XRURT

(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error
(Error

XSCNM .
XSCRS .
XSDAT .
XSDLO .
XSDRN .
XSDSY .
XSGAT .
XSGIN .
XSGMG .
XSGNI
XSGNM .
XSGSY .
XSLEK .
XSLET .

symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)

symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)
symbol)

COSMOS PROGRAMMER GUIDE

Norsk Data ND-60.164.3 EN

. 334.

. 326.

. 333.

. 329.

. 333.

. 332.

. 326.

. 330.

. 324.

. 328.

. 327.

. 327.

. 326.

. 289.

. 289.

. 325.

. 332.

. 330.

. 333.

. 334.

. 331.

. 331.
325.
332.
323.

. 329.

. 328.

. 329.

. 328.

. 330.
328.
329.
331.

. 324.

. 323.

. 332.

. 293.

. 290.

. 304.

. 294.

. 294.

. 295.

. 302.

. 294.

. 293.

. 293.

. 292.

. 296.

. 292.

. 291.

Index

COSMOS PROGRAMMER GUIDE 423
Index

XSLKI . 290.
XSNAM . 290.
XSNET . 297.
XSNSI . 305.
XSNSP . 291.
XSNUL . 292.
XSSCI . 299.
XSTCL . 298.
XSTDC . 299.
XSTIN . 298.
XTblockAddress 34, 70, 109,

144.

Norsk Data ND—60.164.3 EN

************** SEND US YOUR COMMENTS!!! *****‘llr********

Please let us know if you
' find errors
' cannot understand information
' cannot find information
' find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader’s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

HHHHHH HELP YOURSELF BY HELPING US!! ****.,.****H*

Manual name: cosmos Programmer Guide Manual number: ND—60.164.3 EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual .7

Your name: Date' a

Company: Position'

Address: _

What are you using this manual for .7

NOTE! Send to:
This form is primarily for Norsk Data AS _ .
documentation errors. Software and Documentation Department
system errors should be reported on Pop Box 25, Bogerud Norsk Data's answer will be found
Customer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

Naursk Data A.S

Documentation Department
P.C). Box 25, Bogerud
0621 Oslo6, Norway

