
PIOC
Software Guide

ND-60.161.3 EN‘\ vhflv. __ V_.,..

,
“
:
“
‘
:
:
“
<

é
‘
€

“
:

00.00.000.0000050000
0.009.000.00000000

0.0.00.0003000000
0.0.0.0009
.0...0.....00.000..
.0. 0.0.0.... .0........0...
.0.0..0.0.........000..

D0060000000000000000
98000000088000.0000.

PIOC
Sniware Guide

I‘m-60161.3 EN

This manual is in loose'leaf form for ease of updating, Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose-leaf form also allows you to place the manual in a ring
for greater protection and convenience of use. Ring binders wi
corresponding to the holes in the manual may be ordered in two
mm and 40 mm. Use the order form below.

binder (A)
th 4 rings
Nidths, 30

The manual may also be placed in a plastic cover (B). This cover is more
suitable for manuals of less than 100 pages than for large rnanu
covers may also be ordered below.

als. Plastic:

l
” . :11:

WM”

55:, as 553,155
arses ass:

”N O

A; Ring Binder B: Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Norsk Data A.S
Graphic Center
PO. Box 25, Bogerud
0621 Oslo 6, Norway

ORDER FORM
l would like to order

..... Ring Binders, 30 mm, at nkr 20,— per binder

...... Ring Binders, 40 mm, at nkr 25,- per binder

...... Plastic Covers at nkr 10,- per cover

Name ...

Company ...

Address

Printing

04/83
04/84
06/85

PIOC Software Guide

iii

PRINTING RECORD
Notes

VERSION 01
VERSION 02
VERSION O3

PubI .No. ND-60.1 61 .3 EN

(MI. 0..
‘ .0.

01 ‘ ‘ 0..

0 n'::u I :
000 {I00

Norsk Data

XX

Norsk Data A.S
Graphic Center
P.O,Box 25, Bogerud
0621 Oslo 6, Norway

iv

Vlanuals can be updated in two ways, new versions and revisions. New versions
:onsist of a complete new manual which replaces the old manual. New versions
ncorporate all revisions since the previous version. Revisions consist of one
Dr more single pages to be merged into the manual by the user, each revised
Dage being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

\lew versions and revisions are announced in the Customer Support Information
CSI) and can be ordered as described below.

l’he reader’s comments form at the back of this manual can be used both to
eport errors in the manual and to give an evaluation of the manual. Both
ietailed and general comments are welcome.

Fhese forms and comments should be sent to:

Documentation Department
\lorsk Data AS
3.0. Box 25, Bogerud

8621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
0:

3raphic Center
dorsk Data AS
3.0. Box 25, Bogerud

”3621 Oslo 6, Norway

THE PRODUCT

ND-865 PIOC
ND—867 PIOC
ND-10493C

THE MANUAL

CHANGES FROM PREVIOUS VERSION:

PIOCOS

PIOC-MONITOR

Generating PIOCOS

Tools

Preface;

PIOC (Programmable Input Output Control
an interface card built around a MC6800
microprocessor.

with 128 Kbytes of memory, and
with 512 Kbytes of memory.
PIOC Basic Software.

The card has 4 full duplex serial
communication lines and a local memory
of 128 or 512 Kbytes.

v

.er) is

RAM)

Several PIOC modules can be installed on the
ND-100 or on the ND—SOO series of mini
computers.

This manual describes the PIOC Basic 80‘
version C of May 1985, for use with the
and the ND—SOO computers.

It discusses the available calls to the
operating system, synchronization of pr:
and input/output to the communication 1

It also describes the PIOC-MONITOR, for
debugging and supervising purposes, and
compile, link and load a PIOC applicatic
program.

The appendices contain reference materia
as symbol name tables, error codes and
exception vector assignments.

Version C is compatible with version B,
errors have been corrected. However, new
compilation might be necessary to get cc
data separated, and the names of the inc
files should be changed.

The PIOC-MONITOR-C has some new features
commands. It will only run with SINTRAN
release J, revision 6000 or higher.

The configuration procedures have been
completely changed. Old mode files can r
used.

The include files have new names to matc
ND file name standard. This should be ta
into account when compiling application
programs.

-~ Norsk Data ND-60.161.3 EN -~

itware
ND~1OO

PIOC
cesses
.nes.

how to
in

.1 such

mainly

Ade and
:lude

and
III

ot be

h the
ken

THE R1

PRERE(

RELAT]

Modif
in th(
and t(

,ADER

UISITE KNOWLEDGE

D MANUALS

v

The typical reader of this manual should have
a good understanding of both software and
hardware, and be familiar with computers from
Norsk Data. Readers might be System
Programmers or Application Programmers.

The reader should be familiar with the
following Norsk Data Software Products:

RT (Real Time) Programming in SINTRAN III

PLANC programming language

The SINTRAN III Real Time Loader

The ND-SOO Linkage-Loader and ND-SOO Monitor

PIOC Reference Manual ND—02.003 _
SINTRAN III Communication Guide ND-60.134
SINTRAN III Real Time Loader ND-60.051
ND~500 Loader/Monitor ND~60.136
PLANC Reference Manual ND—60.117
HDLC Interface ND-12.018
MC68000 16 bit Microprocessor Users Manual,
published by Motorola Inc.

cations and additions to the text are marked with a vertical bar
margin area of the page, to the left on an even numbered page,
the right on an odd numbered page.

~- Norsk Data ND~60.161.3 EN “—

vfi

T A B L E O F C O N T E N T S

Section Page

1 INTRODUCTION TO PIOC . 1

1.1 The purpose of PIOC . . . 1
1.2 The PIOC Hardware Architecture . 1
1.3 The PIOC Software 3

2 WORDS AND EXPRESSIONS - QUICK REFERENCE 5

3 PIOCOS . 11

3.1 What is a Process 11
3.2 The Process Hierarchy . 13
3.3 System Calls to PIOCOS . 13
3.4 ,Process Creation and Modification 16
3.5 Process Identification . 19
3.6 Process Synchronization . 20
3.6.1 Time Controlled Monitoring . 24
3.7 How to Synchronize Process Execut ion Through EVENT; 26
3.8 Exception Processing . 29
3.8.1 Asynchronous Exceptions 29
3.8.2 Synchronous Exceptions . 30
3.8.3 FATAL ERRORS 31
3.9 Local XMSG and XROUT Message Transfer and Routing Jystems 32
3.9.1 Reserving and Releasing Ports . . . 34
3.9.2 Getting and Releasing Message Buffer Space . 35
3.9.3 Set Current Message for a Process or for a Port 36
3.9.4 Reading and Writing Messages . 37
3.9.5 Sending And Receiving Messages 38
3.9.6 Message Status . 40
3.9.7 XROUT - Routing and Service Task . 41
3.9.7.1 XROUT Message Formats 41
3.9.7.2 Type of Services 42

4 PHLS, THE PHYSICAL LEVEL SERVER 45

4.1 The Service Points of a Physical Level Server 46
4.1.1 I/O Message Description . 49
4.1.2 Control and Supervise Service Peint 52
4.1.3 Transmit Data Service Point 52
4.1.4 Receive Data Service Point . 53
4.2 PHLS used for HDLC Communication . 54
4.2.1 Control and Supervise Service Point 54
4.2.1.1 Initialize (INIT.REQUEST) 54

-- Norsk Data ND~60.161.3 EN —~

Secti<n Paqe

4.2.1 2 Connect (CONN_REQUEST) 56
4.2.1 3 Disconnect (DISflREQUEST) 56
4.2.2 Transmit Data Service Point 56
4.2.3 Receive Data Service Point . 57
4.3 PHLS for Asynchronous Communication 58
4.3.1 Control and Supervise Service Point 58
4.3.1 1 Initialize (INIT_REQUEST) 58
4.3.1 2 Connect (CONN_REQUEST) 59
4.3.1 3 Disconnect (DISQREQUEST) 60
4.3.2 Transmit Data Service Point 60
4.3.3 Receive Data Service Point . 61

5 HD~1OO ~ PIOC INTERCONNECTION 63

5.1 How to Synchronizze ND~ 100 and PIOC Processes . 63
5.2 Looking Closer into the Kick--mechanism . 64
5.3 What Type of Information is Transferred in the Kick

Channel? 66
5.4 MON PIOC (MON 255) - The PIOC Monitor Call in SINTRAN III 67
5.5 The ND‘1OO Calls in PIOC 74
5.6 The ND—1OO XMSG System from PIOC . 76
5.7 Global Variables in PIOCOS . 77

6 THE PIOCwMONITOR . 79

6.1 The EXIT and HELP Commands 81
6.2 The LIST MODULE STATE and LOAD-ENTRY-~LIST Commands . 82
6.3 Panel Commands . 83

LOAD 83
SEGMENTeLOAD 84
FIX~SEGMENT 84
WRITE‘TO~SEGMENT 84
START-PIOC 85
STOP-PIOC 85
PANIC-STOP—PIOC 85
CONTINUE‘PIOC 86
UNLOAD- PIOC 86

6.4 Debugging Commands . 87
SET-BREAKPOINT 87
RESET BREAKPOINT 87
CLEAR~ALL-BREAKPOINT 87
LIST-BREAKPOINT 87
STEP 88

6.5 LOOK--AT Commands . 89
subcommands CR CODE EXIT PERMIT DEPOSIT EXTRA FORMAT 89

LOOK- AT DATA 90
LOOK-AT-PROGRAM 9O
LOOK-AT—REGISTER 91

-- Norsk Data ND~60.161.3 EN —-

Section Page

LOOK-AT—RELATIVE 91
_ LOOK-SYMBOLIC 91

6.6 The PROCESS—STATUS Command 92

7 COMPILING, LOADING AND EXECUTING PIOC PROCESSES 93

7.1 Compiling PIOC Programs 93
7.2 Global Labels AUTO_START, BUFFER_START and BUFFER_END . . 95
7.3 Loading a PIOCOS Basic System 96
7.4 Loading an Application System 103
7.5 The Procedures of Fixing and Loading The PIOC Memory . . . 110
7.5.1 Path A) Using the LOAD Command 111
7.5.2 Path B) Using the SEGMENT-LOAD Command 113
7.5.3 Path C) Using the MON PIOC Monitor Call in a ND- 100

Program 114
7.6 Object Modules Compiled with SSEPARATE--DATA OFF 115

8 USING LIBRARIES - EXAMPLES 117

APPENDIX

A Symbolic Names for PIOCOS System Calls and Stat Codes
. 125

B Symbolic Names for Functions and Error Codes in XMSG . 129

C PIOC EXCEPTION VECTOR ASSIGNMENTS 135

D PIOC Physical Memory Page Numbers 139

Index 143

~- Norsk Data NDe60.161.3 EN —-

Title Page

1. MaLn parts of a PIOC. 2

2. PIDC memory map 4

3. PIDC process state diagram. 12

4. PIDC process hiearchy. 13

5. Process TYPE and PRIORITY format. 16

6. Precess description registers. 20

7. PIDCOS exception message . 3O

8. XMSG Port to Port Communication. 33

9. Phgsical level servers in PIOC. 45

10? Service points in the PHLS. 46

11. Aldress boundaries for allocating IO buffers. 48

12. Message header in all IO messages. 49

13. Transmit data message format. 52

14. Receive data message format. 53

15. Iiitialize request HDLC message format. 54

16. HDLC transmit data message format. 56

17. HJLC receive data message format. 57

18. ASYNC initialize message format. 58

19. ASYNC transmit data message format. 60

20. ASYNC receive data message format. 61

21. KLck channel in PIOC memory. 64

22. Relationship between NDu1OO and PIOC memory. 72

23. S:arting the PIOC~MONITORvC. 79

24. LLst of commands in PIOC-MONITOR—C. 81

25. Leading symbolic entry names. 82

"~ Norsk Data NDv60.161.3 EN —-

xi

Title Page

26. Setting breakpoints‘ '87

27. Process status display. 92

28. Compiling a program with the PLANC~MC6BOOO compiler. 93

29. Several ways to load programs into PIOC memory. 110

30. Defining global variables if using $SEPARATE’DATA OFF 115

31. Programs synchronizing their activity using kicks. 120

-- Norsk Data ND—60.161.3 EN -~

xfi

List of Tables.

Title Paqe

1. PHIS message types. 51

2. Bald rate for HDLC transmissions. 55

3. Bald rate for ASYNC transmissions. 59

4. Logical Device Number (LDN). 68

5. MOP PIOC functions 68

6. MOD PIOC return values (octal). 69

7. PICCOS FUNCTION VALUES, Part 1. 127

8. PICCOS FUNCTION VALUES, Part 2. 128

9. XMEG-FUNCTION~VALUES, Part 1. 131

10. XMSG~FUNCT$ON~VALUES, Part 2. 132

11. XPSG ERROR SYMBOLS, Part 1. 133

12. XPSG ERROR SYMBOLS, Part 2. 134

13. PlOC EXCEPTION VECTOR ASSIGNMENTS . 137

14. PIOC128KB Physical Page Numbers. 141

15. PIOC512KB Physical Page Numbers, Small Windows. 141

16. PIOCS12KB Physical Page Numbers, Large Windows. 141

-- Norsk Data ND~60.161.3 EN ~-

xfii

List of Programming Examples;

Title Page

1. Routine to execute PIOCOS system call. 14

2. Synchronizing process execution through events. 28

3. Reserve the ND-1OO side of a slot. 70

4. Release the ND—1OO side of a slot. 70

5. Send information to a PIOC process. 70

6. Get information from a PIOC process. 71

7. Load and fix a segment into PIOC memory. 71

8. Remove all fixed segments from PIOC memory. 72

9. Start P100. 73

10. Stop PIOC. 73

11. Compiling a program with the PLANC—MC68000 compiler. 94

12. Reserving a buffer pool for PIOCOS. 95

13. Generating a PIOCOS Basic System using PIOC—GENERATE-Z 97

14. Output from loading a PIOCOS Basic System . 102

15. Loading a user application to the PIOCOS Basic System . 104

16. Output from loading a user application to PIOCOS 109

17. Loading an application using the PIOC—MONITOR' LOAD c>mmand. 111

18. Defining an empty segment, and fixing it in memory 111

19. Using the RT-LOADER to create a PIOC memory segment. 113

20. Loading an application from a ND~1OO segment. I 113

21. Loading an application using MON PIOC from a PLANC pr>gram. 114

22. User library in PLANC. 118

23. Program SPIOC running in PIOC (PLANC). 121

24. Program RPIOC running in ND-1OO (PLANC). 123

-- Norsk Data ND~60.161.3 EN -~

XW

~- Norsk Data ND~60.161.3 EN ~«

PIOC Software Guide

1 INTRODUCTION TO PIOC

This chapter gives a brief overview of the PIOC concept, it
what it consists of, and its typical applications.

1.1 The purpose of PIOC

PIOC is a Programmable l/O Controller interface card for th
and ND-SOO computers. It is based on the powerful Motorola
microprocessor.

Its main purpose is to run complex data communication proto
‘ thus relieve ND~100 of such communication overhead. In addi

may write their own programs, to utilize special communicat
protocols or data reduction routines, before the result is
the ND—100.

PIOC Basic Software is mostly known with the name PIOCOS, a
this is only one but the most important part of PIOC Basic
Because it is shorter, the name PIOCOS will also be used in
manual.

PIOC means grogrammable aut gutput gontroller. PIOCOS is
the gperating gystem for this controller.It is used as the
other ND products but also delivered in connection with an

s purpose,

e ND-lOO
%CS8000

2015 and
tion, users
ion
passed to

lthough
Software.
this

therefore
oasis for
appropriate

PLANC compiler and the ND LinkageeLoader to customers who want to
develop their own application.

Software and applications that can be used with PIOC are be
continuously developed. Thus the range of usage of the PIOC
expand in the future.

1.2 The PIOC Hardware Architecture

The illustration below represents a PC board which contains
controller. The processor on this controller is a MCSBOOO w
on a local memory of 128 or 512Kbyte.

The MCSSOOO can externally be controlled (RESET, HALT etc.)
control register which is accessible from the ND-lOO. The N
also access the whole memory of the PIOC (including DMA) bu
versa.

A timer on the PIOC is used to generate a (programmable) cl
rate) for the four BIOS and an interrupt to MCSSOOO to form

ing
will

the whole
lich works

by a
)-100 can
: not vice

)ck (band
a real

time clock for PIOCOS. The §erial input gutput controllers are used
for communications. The data transfer from and to the 5105 .s done by
DNA with the exception of asynchronous input because of handling
XON/XOFF.

~- Norsk Data ND~60.161.3 EN ~-

PIOC Software Guide

Figure 1. Main parts of a PIOC.

The basic PIOC supports RS 232C (V24/V28) and RS 422 (V11=X27) on all
four channels and may operate in both synchronous (HDLC, SDLC or
BISYNC) or asynchronous mode. The transfer speed may be up to 800
Kbits/second on one line or up to 38400 bits/second on all lines
simultaneausly.

—- Norsk Data ND~60.161.3 EN —w

PIOC Software Guide

1.3 The PIOC Software

The PIOC Basic Software includes the tools needed for loadi
running, and debugging PIOC programs. Your job is to use th
to develop PIOC applications.

The PIOC Basic Software consists of:

o PIOC-MONITOR for debugging, loading and starting
application

0 PIOCOS, the PIOC real time operating system incl
serial link drivers for:

- asynchronous communication modes

a synchronous communication modes

0 Tools for developing PIOC applications:

~ include files to incorporate standard defin
of codes and variable names when compiling
programs

- procedures to generate PIOCOS tailored to a
particular installation

Other software products that are necessary for the whole de
task, are available as separate items:

0 PED full screen editor, supporting a variety of
terminals for writing and modifying source modul.

o PLANC—MC68000 compiler, to produce object module‘
Nord Relocatable Format (:NRF).

0 ND Linkage—Loader, to build executable PIOC
applications

NB! The ND Linkage-Loader must be version G,
that runs in the ND—1OO (the :PROG file, not the
ND—SOO domain).

-« Norsk Data ND~60.161.3 EN ~~

19.
ase tools

a PIOC

1ding

.tions
source

relopment

For the pL
PIOCOS rea
together k

Start of memory (0000B)

START_FREE

User-write

Label END_

ENDGSYSTEM(/END_PIOCOS)-m*’

PIOC Software Guide

rpose of running a multiprogrammed system in PIOC, the
1 time operating system must be loaded in the PIOC memory,
ith the application programs.

v

PIOCOSwdata

/BUFFER_START-——w —————————————————————
Memory—gap

(may he used as
BUFFER-POOL)

process descriptions
and buffer for local
XMSG data

protected area —~~

FREE/BUFFER‘ENDn» ——————— -—————————————
PIOCOS~code

Application code for all
code application

processes
(Label END_PIOCOS)—m—-———~w- ~~~~~~~~~~~~~~~~~~~~

Free area

Default address ZOOOOOB—~—~w ~~~~~~~~~~~~~~~~~~~~~~
Application data/stack for all

data application
processes

End of memory

The illust
module and
automatica

The object
addresses,

Figure 2. PIOC memory map

ration above shows the loading addresses for the PIOCOS
the user written application program, with some

lly generated symbolic labels.

codes and data areas are loaded at different start
if the compiler option $SEPARATE-DATA ON has been used.

~* Norsk Data ND—60.16l.3 EN ~-

PIOC Software Guide

2 WORDS AND EXPRESSIONS * QUICK REFERENCE

This chapter a brief explanation of the most c monly used
expressions throughout this manual. You will also find re erences to
the chapters and sections where they are discussed in more

call

exception

fixed memory

-‘ Norsk Data ND~60.161.3 EN —~

PIOC processes, commonly writte
high—level programming language PL
for operating system assistance,
system calls.

The PIOC operating system, PIOCOS,
calls. Each call makes use of par

etail.

in the ND
C, may ask

by using

offers many
ameters to

tell PIOCOS exactly what type of assistance it
requests. A more detailed explanati
on page 13.

An exception is a signal from a dev
the PIOC
exception is set up when a specia
occurs. There are two types of
asynchronous and synchronous.

on is found

ice or from
microprocessor (MCSBOOO). The

l situation
exceptions,

Asynchronous
hardware devices, for example thos
to one of the four PIOC communic
wants to interrupt a process, or in
communication line error.

connected
tion lines,
case of a

exceptions are sat up when

Synchronous exceptions are set um in case a
process is trying to execute a
processor instruction, trying to f
from an odd address, or if it is
instructions whose normal beh
trapping.

To run any PIOC process, the whole

n illegal
etch a word

executing
aviour is

of the PIOC
memory must be fixed. The memory may consist
of many smaller fixed segments in a
area, or may be only one or more fi
of 128 Kbytes. The largest segment
fixed by SINTRAN III operating syst
Kbytes.

To fix a segment, it must be
non-demand, i.e., the whole segmen
placed into memory before the pro
started. Fixing memory is done by t
command @FIXC (fix contigu
PIOC-MONITOR panel command SEGMENT-
ND-1OO monitor call MON PIOC (MON 2

contiguous
med segment
that can be
am is 128

of the type
t must be
gram can be
me SINTRAN
nus), the
lOAD or the
55).

kick channe

magic numbe

mailbox

message

monitor cal I?
“

PIOC Software Guide

The kick channel is an area in the PIOC memory
which serves the purpose of transmitting
information from PIOC to ND~1OO and vice
versa.

The channel consists_of eight slots, each with
two mailboxes. Two processes must reserve the
same slot to be able to communicate via the
kick channel. See also page 64.

A. magic number identifies a port. Two
PIOC processes may communicate through ports.
When a port is reserved it gets a number, a
magic number, and it may also be given a name.

When a process wants to send a message to an
other process, the message may be addressed
with the magic number of the destination port.
Or XROUT may find the destination process, if
its port name is specified. A magic number is
not reserved for a specific port.

Mailboxes are locations in the consecutive
area in the PIOC memory which is called the
kick channel. They are used for ND—1OO — PIOC
communication.

A ND‘1OO process that wants to send
information to a PIOC process, must send it to
the mailbox. The PIOC process can then fetch
the information from there. The mailboxes and
the kick channel are described in detail on
page 64.

Message is a term used in the XMSG system. A
message is a block of data containing the
information a PIOC process wants to send to an
other PIOC process.

The message must contain both the text and the
'address' of the receiving process. The
messages are transferred via ports, either
directly, giving the destination process‘
magic port number, or via the routing program
XROUT, giving the destination port name.

In this manual, the term 'monitor call‘ is
used when a ND~1OO process uses the
SINTRAN III monitor call PIOC (MON 255) to
communicate with a PIOC process.

PIOC process calls to PIOCOS are named system
calls or just calls.

-- Norsk Data ND—60.161.3 EN -—

PIOC Software Guide

physical level server

PIOCOS

port

QIOCGSS

process description

~~ Norsk Data

PHLS is the part of PIOCOS that h
and output on the four communicatio
PIOC. '

dles input
lines of

a traffic
There is one PHLS for each line. The PHLS
controls and supervises all dat
between PIOC and the peripher
connected to it.

ND—1OO runs under the SINTRAN II
system, the PIOC under PIOCOS
system.

PIOCOS occupies the lower part
memory. The purpose of PIOCOS is to
ongoing activities and to give as
all the running processes.

XMSG (and XROUT)
messages from and to
between processes goes
ports.

can receive
ports.
via their

In XMSG you may refer to a port
name. In this case the message is
the XROUT program. Or you may ref
its magic number. The message is
directly from the sender's po
destination port. The port number i
the sending process to tell XMS
message comes from.

A program may only run in the PI
declared as a process or part of
means that the program must be give
(stack) and static data area, an
holding administrative informatio
(process description).

A process may consist of several p

31 devices

I operating
operating

of the PIOC
manage all

sistance to

and send
Communication

respective

3y the port
routed via
er to it by
then sent

rt to the
used by

where the
V
3
..
J

)C if it is
one. This

1 a dynamic
i an area
1 about it

:ograms and
a program may be part of several pracesses. If
the ‘ process description gets etased, the
process is no longer alive. This means that
PIOCOS no longer knows its name aid where to
find it in memory. More about pricesses is
found on page 11.

holds information for administrating the
process. Only PIOCOS may access
description,
may delete it.

the
but the process itself

process
or others

Each PIOC process has such a description.

In this release of PIOC, version C,
maximum of 30 process descriptions

ND-60.161.3 EN ~~

there is a

BIOCESS St

process tyL_

service 90

system cal:

system prOc

'5 d’

PIOC Software Guide

A process will always be in one out of four
states, ACTIVE, SUSPENDED, DORMANT or DEAD.

When ACTIVE or SUSPENDED, the process is
running: it uses processor time or it waits
for some event to occur. When DORMANT, the
process is passive. The fourth state, DEAD, is
used about processes whose description has
been deleted. The process then no longer
exists.

The four states, and the calls that bring a
process from one state to the other, is shown
on page 12.

There are two types of processes in PIOC,
user and system processes.

The type reflects the purpose of the process.
Some need more privileges than others to do a
more supervising type job. Both types are
declared with the ‘create process‘ call to
PIOCOS.

See user process and system process.

Each of the four PIOC communication lines has
a physical level server for transmitting and
receiving data frames according to the HDLC
format standard.

The physical level server consists of three
service points. They handle line input, line
output and supervision and control of the
line. This is described in more details on
page 46.

A slot is a location in the PIOC kick channel.
The slot is used for communication between
processes, from PIOC to ND-1OO or vice versa.

Each of the eight slots contains two
mailboxes, one for information sent from
ND—100, the other for information sent from
PIOC. See also page 64.

See call.

System processes may bypass the memory
protection scheme and thus access the whole
PIOC memory but are not allowed to execute
privileged instructions in the PIOC (MCSBOOO)
central processor.

I/O operations must executed by issuing calls
to PIOCOS. See call.

—— Norsk Data ND-60.161.3 EN --

PIQC Software Guide

timing scheduler

user QIOCESS

local XMSG

Xflgfll

2 O H Q:

-- Norsk Data

The timing scheduler
which takes care of scheduling
processes at given intervals or

The events may be set up at
relative times, in seconds or basic
(5 ms).

User processes are the type of

is a process in PIOCOS
events for
times.

absolute or
time units

processes
running in the PIOC which may be compared with
the user written programs in the ma
system.

User processes are capable of exec
to PIOCOS, like a user written
ND~100 may execute monitor
SINTRAN III. The user process may
not execute privileged processor i
and have no direct I/O access.

A subset of the XMSG system,
optional part of SINTRAN III, is i
PIOCOS.

This makes it possible for PIOC p
communicate with each other through

See local XMSG.

One "word” in the ND-1OO computer
ie., 2 bytes. 1Kword (1024 words) a
(2048 bytes).

ND-60.161.3 EN --

in computer

uting calls
program in
calls to

, however,
nstructions

which is an
ncluded in

recesses to
ports.

is 16 bits,
re ZKbytes

1O

-— Norsk Data ND-60.161.3 EN --

PIOC Software Guide

PIOC Software Guide

3 PIOCOS

PIOCOS is a real time operating system, running in the PIOC
microprocessor. It gives system assistance to PIOC processe
to SINTRAN III in ND-100. PIOCOS supports multiprogramming,
these main areas:

0 Process initiation.

o Interprocess communication and synchronization.

0 Time scheduling.

0 Exception handling.

0 Dynamic process control.

0 ND-1OO communication.

3.1 Ehat.is_a_zrocesa

A process comprises a program, a process description and an
data area. The process may share code with other processes

11

5, similar
and covers

associated
but must

have a unique process description and data area. The proce
description holds information for process administration,
accessed by the PIOC operating system PIOCOS.

d may be

A process is identified by a process name, given by the FC ATE
function, and a process number returned by PIOCOS. Each pr
associated priority in the range of 1 to 15. 15 is the hig
priority, 1 the lowest. Processes will be scheduled accordi
priority.

ess has an
st

ng to their

Each process must have its own stack and data area. The user is
responsible for providing sufficient stack area, by using
statement INISTACK, as the first statement in a main program.

This statement sets the highest address of the stack in reg
Note that this register must not be used by the process for
purpose.

This version of the PIOC Basic Software, release C, allows
process descriptions.

—v Norsk Data ND~60.161.3 EN —~

the PLANC

ister A7.
any other

up to 30

12

A process

0

o

It is ACTF
it is wait
administer
processor

A process
occurs, th

When a pro

A process
never be r

The illust
process fr

FB
EG

IN

D O E

PIOC Software Guide

vill always be in one of four states:

ACTIVE (running/not running)

SUSPENDED

DORMANT

DEAD

a; when the processor (MC68000) is allocated to it, or when
Lng for processor time. All active processes are
ed by the scheduler which is responsible for allocating the
:o the process having the highest priority.

LS SUSPENDED when it is waiting for an event. When the event
a process becomes active.

:ess is passive, it is in the DORMANT state.

LS DEAD if its process description has been deleted. It can
aached again and is of no use.

ration below shows how the various system calls bring a
am one state to another:

FHAITEVV/

T I V E S U S P E R D B D
FSETEV

(FINTERE’V)

SK
IL

L

W

FCREATE)_

M A N T

Figure 3. PIOC process state diagram.

-- Norsk Data ND~60.161.3 EN -—

PIOC Software Guide

3.2 The Process Hierarchy

Processes running in PIOC may operate on different privilege levels.
User processes (PIOC processes) are allowed to do certain operations,
while the processor (MC68000) has all privileges:

USER PROCESSES

SYSTEM PROCESSES

PIOCOS

MCGBOOO

Figure 4. PIOC process hiearchy.

USER Access to a limited part of the PIOC memory.
PROCESSES: No direct I/O operations, must call PIOCOS.

Nonprivileged instructions only.

SYSTEM Access to every part of PIOC memory and I/O addresses.
PROCESSES: No direct I/O operations, must call PIOCOS.

PIOCOS: Full memory access.
Unlimited I/O access.
May execute all privileged instructions.

MC68000: All possible privileges.

3.3 ntgm llg gg EIOQOS

The PIOC processes request system assistance by system calls.
carried out by a MCGBOOO TRAP 2 assembly instruction.

The microprocessor MC68000 has 16 internal 32 bits registers:

They are

AO
through A7 and DO through D7. System calls to PIOCOS make use of two
of them: A0 and D0.

All system calls require the call number to be in D0 reqister.
return. DO contains a return code.

~~ Norsk Data ND-60.161.3 EN --

Qg

l3

14

i If the call

PIOC Software Guide

executes successfully, DO receives U1OK (*) from PIOCOS.
All 00 values different from U1OK indicates an error situation.

Appendix A, on page 127, contains a list of all possible return
(error) codes, both the symbolic names and the numeric values.

The register A0 is used by most system calls. Most calls require A0 to
hold a parameter block address. The following example illustrates how
to execute system calls from a PIOC program:

% the routine 'CALL_PIOCOS‘ executes any PIOCOS system call
$INCLUDB PIOC—FUNCVAL—C:DEFS
ROUTINE VOID,VOID (FCODE,INTEGER POINTER,INTEGBR):&

CALL_PIOCOS (CALLNO,PARADDR,CSTATUS)

$* MOVE.W CALLNO,DO % Start of MC68000 assembly
$* MOVEA.L PARADDR,AO %

1 $* TRAP #2 %
$* MOVE.W DO,CSTATUS % End of MCSBOOO assembly

I IF CSTATUS >< U1OK THEN % This error test
OUTPUT (1,‘A','$ERROR : ‘) % should be expanded
OUTPUT (1,‘I3',CSTATUS) % or modified to suit

ENDIF % your preference
ENDROUTENE

(*) Each ca
numbers. Th

Lample 1. Routine to execute PIOCOS system call.

L1 and error code has symbolic names, with corresponding
3 file PIOC-FUNCVAL—CxxzDEFS, shown in appendix A on page

127, contains these names. In this manual we use these symbolic names
rather than numbers, which makes the programs easier to read.

~- Norsk Data ND-60.161.3 EN ~—

PIOC Software Guide

Each call is described separately using the following syntax:

Syntax Explanation

DO : call name Register DO contains a number
identifying the call name,
and D0 receives a status code from
PIOCOS when the call has been executed.
A list of call names and their
call numbers is found in appeidix A.

r ‘ ' — ‘ ‘ ‘ “ “ “ 1
A0 ---,)

I par.1 % 2 bytes, Register A0 contains the memgty address
of the first parameter (numbe: 1) in the

l i set of parameters. Parameter
I I is 2 bytes long.

=par.2 % 4 bytes Parameter 2 (4 bytes) is found at memory
I I address AO+2 bytes. The equal sign shows

that the parameter is returne from
i ! PIOCOS after the call has bee executed.

par,3 % 4 bytes Parameter-3 (4 bytes long)
I I is at memory address AO+2+4 bytes.

’ n bytes!

I par.n % 2 bytes’ Parameter n (2 bytes long)
L J is at memory address AO+2+4+ n bytes.

-- Norsk Data ND~60.161.3 EN -—

15

16 PIOC Software Guide

he call is used to create both ordinary PIOC processes and
rocesses. The system processes are used for special

purposes, such as controlling devices connected to PIOC.

AO —-«
DO : FCREATE (DO holds the FCREATE call no.)

-> =PROCESS NO % 2 bytes (given by PIOCOS)
PROCESS NAME % 4 bytes (given by user)
PROCESS TYPE / PRIORITY % 2 bytes (given by user)
START ADDRESS % 4 bytes (given by user)

PROCESS NO is an integer variable that is used for later
refer nce to a process. It is returned from PIOCOS if the call
execu es successfully. Other system calls need this parameter as
an in ut to be able to identify the desired process.

PROCE S NAME is in some cases also used for later reference. It
allow greater flexibility when programming multiprocessing
syste s. '

PROCESS TYPE I [~lwlml—m PRIORITY

Figure 5. Process TYPE and PRIORITY format.

PROCESS TYPE determines whether this is a PIOC user process or a
PIOC
most
proce

PRIOR'
other
the f

START
starts.

The p1
execu

system process. A '1' in the most significant bit of the
significant byte indicates a system process, a ’0‘ a user
55.

ZTY reflects the importance of the process compared to the
processes. Priority ranges from 1 to 15, and is set with

>ur least significant bits in the least significant byte.

ADDRESS is the memory address where the process‘ program
>

:ocess is set in the dormant state and may be made ready for
:ion with the FBEGIN call.

—~ Norsk Data N0«50.161.3 EN ——

PIOC Software Guide

PBEGIN — makes a dormant process ready for execution.

FEND

FABORT « forces a process to terminate.

FKILL ~ deletes the description of a process.

On return, DO contains the status of the operation.

This call puts the dormant process into an active stat
makes it ready for execution. When the scheduler alloc

e, ie.,
ates the

processor to it, execution starts at START-ADDRESS giwen in the
PCREATE call.

DO : FBEGIN

A0 --*~> PROCESS NO % 2 bytes

On return, DO contains the status of the operation.

— the “normal termination‘ call.

If a process executes the FEND call, it enters a dormant state.
This is called a “normal termination'. Any process may
the FBEGIN call to start the terminated process again.

DO : FEND

On return, DO contains the status of the operation.
Any port opened in the ND-1OO XMSG system is closed.
(See page 76).

This call forces the process with the corresponding PR
terminate, ie., makes it dormant. Another process may
FBEGIN call to start the aborted process again.

D0 : FABORT

A0 ---") PROCESS NO % 2 bytes

On return, DO contains the status of the operation.
Any port opened in the ND-1OO XMSG system is closed.
(See page 76).

The call deletes the process description of the specif
process. This brings it into the dead state. The proce
no longer recognized by PIOCOS and cannot be run. A ne
description must be created (with the PCREATE call) be
process can be started.

—~ Norsk Data ND-60.161.3 EN -i

execute

OCESS NO to
execute the

ied
as is then
v process
fore the

17

18

On re

Any P
(See

PIOC Software Guide

DO : FKILL

A0 “-—'> PROCESS NO % 2 bytes

:urn, DO contains the status of the operation.
art opened in the NDwTOO XMSG system is closed.
page 76).

~— Norsk Data ND-60.161.3 EN —«

PIOC Software Guide

3.5 Process Identification

Each process is identified by a name and a number. The name
specified by the user, while the number is returned from PI
the process is declared with the FCREATE call. The followin
be used if a process wants to identify itself or another pr
knowing the process name, but not the process number or vic

FWHOAMI ~ gives a process its process number.

The call is used by a process to identify itself.

DO : FWHOAMI

A0 ———-> =PROCESS NO '2. 2 bytes

PIOCOS returns PROCESS NO to the requesting process.

On return, D0 contains the status of the operation.

9v

is
DCOS when
g calls may
ocess,

versa.

FPROSNO — returns process number if the process name is known.

This call may be used by a process that wants to know
number of another process, of which it only knows the

DO : FPROSNO

A0 --—-> =PROCESS NO % 2 bytes
PROCESS NAME % 4 bytes

On return, DO contains the status of the operation.

the process
tame.

FPRNAME - returns process name if the process number is known.

This call may be used by a process that wants to know
another process, if it only knows the process number.

DO : FPRNAME

A0 '---) PROCESS N0 % 2 bytes
=PROCESS NAME % 4 bytes

On return, DO contains the status of the operation.

«a Norsk Data ND-60.161.3 EN —-

:he name of

19

20

3.6 mm

The process 5
scheduler may
the process 0

31.

PIOC Software Guide

restaurateur

{nchronization is administered by the scheduler. The
set up EVENTS for a PIOC process. An event influences

ily if it receives the expected EVENT.

. b i t n o .

EXPECTED

CURRENT
EVENTS

The process d
information a)
A process may

Figure 6. Process description registers.

ascription contains two 32 bits registers for storing
JOUt the expected events and the actual events occurring.
state the type of event it wants to react to by setting

bits in the one register, while events occurring causes bits to be set
in the other
previous eveni
two registers
more '1's, th¢
suspended pro

register. As events occur, the event bits are OR'ed with
: bits. An event will always cause a comparison of the

They are AND’ed. If the AND operation results in one or
2 event leads to a 'wake~up' signal (kick) for the
:ess.

Events reserved by XMSG
The following two events are reserved for
communication between PIOCOS and a user process:

NXMEVEN v hit 31 is used by the ND~1OO XMSG system, for tasks
(processes) running in the PIOC which
communicates with tasks running in ND—100. (See
NDm1OO XMSG, on page 76.)

XMEVENT ~ bit 30 is used by the PIOCOS XMSG system, for tasks

The other bits

When a process
suspended stat
until an expec
The next illus

which communicates with other tasks in the PIOC.
(See local XMSG, on page 32.)

e .

29 - O can be used for application oriented events.

sets up the expected bit mask, it brings itself into a
Events may occur, but the process remains suspended

ted event occurs. This makes the process active again.
tration shows what may happen in a typical situation:

—- Norsk Data ND-60.161.3 EN

PIOC Software Guide

E = Expected bits, C = Current event bits, blank fields m
zero, 1 means logical one.

1. A process has set up the following expected event bits,
a suspended state.

aan logical

1nd enters

2. An event occurs with the following bit pattern.
The process remains suspended, because E.AND.C is zero.

3. An event occurs with the bit pattern below. (1) from pre‘.
The process remains suspended, because E.AND.C is zero.

w,“ t..., t

1 L

4. An event occurs with the bit pattern below. (1) from prei
E.AND.C is now TRUE (bit 3 set in both registers) and the event
causes the process to be activated.

7. event.

L_
_.

__
__

._
._

._
__

__
.._

._
r_

_.

I E-‘x 1 I
5. The 'expected' bit pattern is cleared. If the process we

be controlled by an event again, a new hit pattern must
up.

For the FWAITEV function also the ‘current' pattern is Clea]

ts to
e set

ed:

For the FSELWAIT function only the bits marked by 'expected
cleared in the 'current' pattern:

are

The least significant bit of the event bits set is used for
communication between PIOCOS and the user process. When a p:
requests a resource (ie., buffer, I/O, semaphores) from the
is notified that the request is being fulfilled by the gene:
events by PIOCOS. In this way a process may request multiple
and use the FWAITEV call (described below) to remain in the
state until a suitable event set occurs.

-- Norsk Data ND-60.161.3 EN _-

ocess
PIOCOS, it
ation of
resources

suspended

21

22 PIOC Software Guide

Four calls are used for setting up, waiting for and testing events:

FWAITEV -

This

sets up the expected event bit pattern.

call sets up the expected event bits, and the process enters
the suspended state, waiting for an event with the corresponding
bits Each time an event occurs, the event bits are tested
against the expected event bits.

DO : FWAITEV

A0 ——--> =CURRENT EVENT BITS % 4 bytes
EVENT BITS % 4 bytes

EVEN" BITS are the 4 bytes containing the hits the process shall
react upon. When an event occurs and if one or several of the
expected event bits are present, "=CURRENT EVENT BITS" is
returned from PIOCOS and cleared in the process description.
”=CU
sinc

On I

FSELWAIT -

This
the c
are c

EVEN”
react
expec
from
have

On It

FSETEV ~ :

This
only

EVEN'
roc

corre

RENT EVENT BITS" reflects all the events that have occurred
the call was executed.

turn, D0 contains the status of the operation.

sets up the expected event bit pattern.

call is identical to FWAITEV except for the fact that only
:orresponding bits of "=CURRENT EVENT BITS” and "EVENT BITS"
:leared in the process.

D0 : FSELWAIT

AO m-~—> =CURRENT EVENT BITS a 4 bytes
EVENT BITS % 4 bytes

' BITS are the 4 bytes containing the hits the process shall
upon. When an event occurs and if one or several of the

:ted event bits are present, =CURRENT EVENT BITS is returned
PIOCOS. =CURRENT EVENT BITS reflects all the events that
occurred since the call was executed.

eturn, DO contains the status of the operation.

;ets up an event for a process.

call is available for processes and drivers, and is thus the
call allowed for exception handlers.

‘ BITS will be OR‘ed with the current event bits of the
55. If the process is currently waiting for the

asponding event bits, it will be activated.

—- Norsk Data ND-60.161.3 EN --

PIOC Software Guide

DO : FSETEV

A0 -~—-> PROCESS NO ' a 2 bytes
EVENT BITS a 4 bytes

PROCESS NO is the identification of the receiving pro:ess.

EVENT BITS are the bits following this event.

On return, DO contains the status of the operation.

FREADEV ~ reads the current event bits.

Before a process executes the FWAITEV call, it may use the
FREADEV call to read the bit pattern of the process‘ :urrent
event hits.

DO : FREADEV

A0 -—~«> =EVENT BITS % 4 bytes

Current event bits are returned in the =EVENT BITS parameter. If
the call executes successfully, the current event bits register
is set to zero.

On return, DO contains the status of the operation.

-~ Norsk Data ND~60.161.3 EN «~

24

3.6.1 Iige_§

PIOC Software Guide

FINTEREV ‘ schedules periodical events.

This ca
and if
It only

PROCESS
event.

EVENT B

11 causes the timing scheduler to set up a future event
desired, to repeat it periodically for the actual process.
affects processes in ACTIVE or SUSPENDED state.

DO : FINTEREV

A0 —~»—) PROCESS NO 2 2 bytes
EVENT BITS %~4 bytes
INTERVAL % 4 bytes
TIME % 4 bytes
UNIT~SIZE % 2 bytes

N0 is the identification of the process receiving the

ITS gives the bits following this event.
g.

INTERVAL is used to distinguish between two operations:

‘TIME is
absolut

UNIT-SI
paramet

- INTERVAL = 0 means: schedule one event at the time
specified in the TIME parameter.

~ INTERVAL > 0 means: schedule periodical events with
intervals INTERVAL. The first interval is at the time
TIME (relative or absolute determined by UNIT-SIZE).

used for giving the time of the first event (relative or
e determined by UNIT~SIZE).

ZE gives the type unit for the TIME and INTERVAL
ers.

UNIT-SIZE = 0: basic time units absolute
UNIT~SIZE = 1: seconds absolute
UNIT—SIZE = 2: basic time units relative
UNIT—SIZE = 3: seconds relative

basic time unit = 5 ms

On retumn, DO contains the status of the operation.

-* Norsk Data ND~60.161.3 EN «e

PIOC Software Guide

FINTERDEL — stops sending the events initiated with FINTEREV.

This call is the opposite of FINTEREV, it stops the periodical
events, if any.

D0 : FINTERDELV

A0 —~~«> PROCESS NO a 2 bytes
EVENT BITS % 4 bytes

EVENT BITS must match the bit pattern of the periodically
scheduled events previously set up with the PINTEREV call. If
several periodical event sets are scheduled for the accual
process, only the one with the matching bit pattern is deleted.
However, if EVENT BITS=O, all periodical events scheduLed for the
process are deleted.

On return, DO contains the status of the operation.

—~ Norsk Data ND~60.161 3 EN ~-

26 PIOC Software Guide

3.7 How_tg_Synchronize Process Execution Through EVENTS

The purpose of this section is to show how two PIOC processes may set
up events
This is not

’or each other, and thereby synchronize their activities.
a complete example, rather an explanation of how to use

the calls explained so far in this chapter.

The PIOC process DONA(LD) is started manually from the PIOC—MONITOR.
It has priority 1 (default). It creates the process SNOO(PY), gives it
priority 5

The diagra
syntax for

m below shows
this pseudo program is:

> PARAMETER-1 a

starts it, and they start to communicate.

the necessary calls in both processes. The

xxx 0- the process puts a value in this parameter.
yyy w> PARAMETER—2 : the process puts a value in this parameter.

(CALL) - : the process executes the < > function.
PARAMYTERw3 <=z zzz : PIOCOS gives this param. a value on return.
PARAMETER~4 (pp) : The parameter has the value (pp).

PRINT "some text" : Explanation of what is going on.

activity in activity in activity in
DONA l PIOCOS i SNOO

| I

<WHOAM1> SNOO‘S program code is
PROC_}0_DON < ==s=== 2 in memory at address

1050008. But it is not
PRINT "I think I'll declared as a process,

create an and it is not running.
other process”

'SNCO' ~‘> PROC_NAME
5 —‘> PROC_PRI

1OSOOCB s~> START_ADDR.
<CREATE>
PROC_}O¢SNO < ====== 3

PRINT "I think I’ll
start it
as well"

PROC_lO_SNO (3)
(BEGIN

-- Norsk Data ND-60.161.3 EN —~

PIOC Software Guide

PRINT ”Better ask
SNOO to start
working again.
Wonder what
event will wake
him up? I'll try
ten different
events."

PROC‘NO_SNOO (3)
1 --> EVENT_BITS

<SETEV>
...ooo1 ======>

ADD 1 TO EVENT_BITS
IF EVENT_BITS =9

THEN
ELSE GOTO

-- Norsk Data ND-60.161.3 EN ~—

PRINT “Good Morning.
Wondei

(WHOAMI)

who I am?"

PROC_NOmME

PROC_NOWME (3)
(PRNAME)

PRINT "Hey, I

PROC_NAME

Im II

PRINT PROC_NPME

PRINT
work“

PRINT a

slee;

"I'll do some

"I'm coing to
waiting

for event bits
0 and 2.“

5 -"> EVENT_BITS
(WAITEV)

TEST AGAINST
5 (...O101).
IF 0 OR 2 THEN ——4 PRINT "Someone gave

me a wakeup
signal"

PRINT “I don't want
to run
anymore..."

PRINT “Goodbye "

(END)

(SNOO stops)

27

28

PRINT

PRINT

“I
11
EVENT_BITS
b
9
e

E SNOO woke
9 during

etween 1 and
, I have to
ecute the

r st of the
l op now.
(N00 has
h gher priority
than me)“

"I'm tired of
this game, and
SNOO makes me
sick. I'll kill
him“

PROC‘NO_SNO (3)
(KILL)

PRINT

(END)

Ex

"Goodbye.”

(DONA stops)

~~ Norsk Data ND-60.161.3 EN --

PIOC Software Guide

(SNOO gets killed)

ample 2. Synchronizing process execution through events;

PIOC Software Guide

3.8 Exception Processing

Exception Processing is associated with interrupts, trap ir
tracing or other exceptional conditions.
PIOCOS distinguishes between two types of exceptions: Async
Synchronous:

- Asynchronous exceptions are caused by interrupts
devices connected to PIOC or communication line

- Synchronous exceptions are caused by a MCGBOOO a
instruction or during execution of such an instr

3.8.1 Asynchronous Exceptions

When an exception occurs, an Asynchronous Service Routine (
be activated. You must write one ASR for each possible inte
and each interrupt must be connected to a proper ASR by a s

The Asynchronous Service Routine always executes in supervi
using the processor supervisor stack. The service routine 1
of executing privileged instructions. An interrupt service
be interrupted by ASRs with higher hardware priority than i

"SET EVENT” (FSETEV) is the only call to PIOCOS that may be
in an asynchronous service routine. The routine is responsi
saving and restoring all used registers and must be termina

structions,

,hronous and

from
errors.

ssembly
uction.

ASR) will
rrupt type
ystem call.

sor state,
s capable
routine may
tself.

included
ble for
ted with

the RTE assembly instruction. To write such routines, yOu need a good
understanding of the MCGBOOO instruction set.

FCRDRV - declares an Asynchronous Service Routine.

Asynchronous Service Routines (ASR‘s) must be part of a system
process, and are declared as follows:

DO : FCRDRV % "CReate DRiVer“

A0 ~-~-> VECTOR NUMBER % 2 bytes
ASR ADDRESS % 4 bytes

The ASR ADDRESS is the address 03'. the ASR routine which is
when an interrupt comes from the specified VECTOR NUMBER. (
appendix C on page 137)

If an interrupt occurs with no driver created for this inte
asynchronous exception is handled like a synchronous except
next section).

-- Norsk Data ND~60.161 3 EN ~~

activated
See

crupt, the
ion. (See

29

I

30 PIOC Software Guide

3-8.2 MW

Synchronous
abnormal cc
from the us

Synchronous

When synchr
message to
and where i

exceptions arise either from the processor recognizing
nditions during execution of processor instructions, or
e of instructions whose normal behaviour is trapping.

exceptions are caused by:

The instructions TRAP (trap), TRAPV (trap on overflow), CHK
(check register against boundaries) or DIV (divide).

Illegal instructions.

Word fetch from odd addresses.

Privilege violations.

onous exceptions occur, PIOC-MONITOR-C will usually write a
the user's terminal, in which it specifies what exception
t occurred:

PIC
at

COS aborted because of <error«message> (exception—no)
address: <zzzzzzz>

A list of e

Figure 7. PIOCOS exception message

xception numbers and the corresponding message can be found
in appendix C, on page 137. If the exception number is outside range
of numbers

‘Un

PIOCOS is t
job. Especi

in the list, the message issued is:

defined interrupt/exception occurring'

hen aborted, which means it is not possible to continue the
ally is the result of some PIOC—MONITOR commands no longer

defined (you will get a message like "PIOC«N100-driver not ready“).

However, there is a function in PIOCOS to define your own handler for
such except
programmers

FTRAPH ~ d6

A0 ~--—>

The trap be
cause the 3

ions. It should be used by very experienced PIOC
only.

clares a traphandler routine

DO : FTRAPH % define a trap handler

TRAP-HANDLER ADDRESS % 4 bytes

dler has to handle all exceptions, which will otherwise
ove mentioned message.

~~ Norsk Data ND—60.161.3 EN —~

PIOC Software Guide *

Note that fatal errors (see below) will not call the trap h

On the stack, the trap handler will find:

- the trap vector number (2 bytes). Note that most
unused traps/interrupts have a common number (25

- an address (4 bytes) where the exception occurr
(or about where » depends on trap number)

— a return address (4 bytes). Note, that a return
address will cause the above mentioned message a
abortion of PIOCOS

33-3 W5.

Fatal errors use the same mechanism to write a terminal mes

andler.

of the
30).

ed

with this
nd

sage as the
exceptions mentioned above. However they can not be handled by a trap
handler.

They occur when PIOCOS detects an software error, which can
handled in a usual way (e.q. errors in the startup phase of

not be
PIOCOS).

The written ”trap vector number“ is in this case usually one of the
errors from PIOC-FUNCVALwC:DEFS.

In some cases only the address will give sufficient informa
the error. The address will then point into the PIOCOS area.
case, please contact ND Technical Support.

-l Norsk Data ND—60.161.3 EN ~~

tion about
In such a

31

32 PIOC Software Guide

3.9 Local‘XMSG and XROUT Message Transfer and Routing Systems

A subset
is implem
within th

There is(

)f the XMSG, TASK-TASK COMMUNICATION SYSTEM of SINTRAN III,
anted as a part of PIOCOS. This allows processes executing
a same PIOC to exchange data between them.

1130 a 'remote' XMSG system which allows PIOC processes to
exchange iata with processes running in other PIOC's or in the ND~100,
the syste

A more de

calls for these are described on page 76.

:ailed description of XMSG is found in SINTRAN III
Communication Guide ND—60.1349

Processes in PIOC communicate with each other and synchronize their
activities by means of messages which are transmitted and received
through ports.

A message
locations
normally
data via
and read

A process
port“ Por
Number.

w Port Number

~ Port Name

— Magic number

is a block of data occupying an-area of consecutive
in memory called a messageubuffer. The sending process

Jpens a port, reserves message—buffer space and transfers its
mts port into the buffer. The message may then be received
3y the respective process.

may own many ports, but two processes may never own the same
:5 are identified by a Port Number, Port Name or Magic

is returned to the process when the call 'open port'
(XFOPN) is used. This is a unique number.

is given a port as soon as the name (in ASCII) is sent
as a message to the system process called XROUT, which
is the message administrator in XMSG.

is returned when the call “get message status' (XFMST)
is used by a process receiving a message, or when the
call 'receive next message' (XFRCV) is used by a
process when it is ready to handle a new request.

«- Norsk Data ND-60.161.3 EN ~~

PIOC Software Guide

process “A“ XROUT

direct message port message name magno
transfer if the I transfer —————————————
'magic number' . ABC nnn 1
of the destination :
port is known. , 4 via XROUT

if only
port port name is known.

process “B”

Figure 8. XMSG Port to Port Communication.

When a process wants to send a message to another process, a message
containing both the text and the destination port name must be sent.
XROUT will then forward a signal to the receiver to tell this process
that there is mail for it. When the message is asked for by the
receiving process and passed to its port, it can then ask for the
sending port’s magic number. Messages can be sent directly to the
destination port using its magic number, if it is known.

V»

The system call FXMSG may perform many functions. The functi
specified as the first parameter pointed to by the AO-regist
functions may again act upon the chosen option. The option v
OR‘ed with the function value. The standard syntax is:

DO : FXMSG

AO -«~—> FUNCTION OR (OPTION) % 2 bytes
function dependent parameters

On return, DO contains the status of the operation.

The OR~operation is performed as follows:

TRUE =: BIT (FUNCTION,OPTION)

Example: SB = FUNCTION % ...OOO101
208 = OPTION % ...O1000O

TRUE =: BIT (FUNCTION,OPTION) % ...O10101
OUTPUT (1,'IZ',FUNCTION)

Result : ZSB

-* Norsk Data ND~60.161 3 EN m~

on is
er. Some
alue is

33

34 PIOC Software Guide

3-9-1R..§_€3W

The following functions controls the creation and/or deletion of
ports:

XFOPN ~ opens a port.

When
retur

The f

DO : FXMSG

A0 —¢wn> XFOPN OR (OPTION) % 2 bytes
=PORT % 2 bytes

a process asks for a port to be opened, the port number is
ned in the =PORT parameter”

ollowing open option may be OR'ed to XFOPN:

XFPRM s Permanent open. This option is used if the port is to be
opened permanently. This means that it only can be
closed with an explicit close or with the CLOSE
parameter set to «2. See the function XFCLS below.

XFCLS w closes ports.

The XMSG message system allows a specific port, all temporary
ports or all ports to be Closed.

DO : FXMSG

A0 —~—-> XFCLS % 2 bytes
PORT % 2 byteS'

PORT is used to specify the number of the port to be closed.

If PORT = ~1, all temporary (non permanent) ports are closed.
If PORT = -2, all ports are closed.

When a port is closed, all secure messages currently queued on
that
their

port are set to ‘return‘ and 'non-secure' and returned to
senders. All 'non-secure‘ messages are released. Secure

messages are described on page 38 (send current message).

-— Norsk Data ND—60.161.3 EN —-

PIOC Software Guide

3.9.2 Getting and Releasing Message Buffer Space

XFGET — gives the process message buffer space.

XFREL — releases message buffer~space.

A process may reserve certain message buffer space:

DO : FXMSG

A0 ----> XFGET % 2 bytes
SIZE / =MESADDRESS % 4 bytes

Buffer-space is allocated on a per task basis, and a t
current allocation is kept. Requests for more space th:
limit allows will not be honoured, but a process can t
eXceed this limit as a result of messages being sent t
this makes it the owner of the message buffer).

Only the process owning the buffer‘space is allowed to

>tal of the
in the
:mporarily
) it (since

read from
it and write to it, send it to someone else, or release it.

The XMSG system remembers how much useful data there i
message and puts this into a parameter. This parameter

; in a
is called

the message length (don‘t confuse with buffer size) and is
initially set to zero. After each write operation the
length is compared with the previous length, so no mes
characters are lost;

LEN:=MAX(LEN,INDX+1)

When the last byte of a message is read, an XMSG flag
'whole—messagenread' is set. This causes the message 1:
parameter to be set to zero just before the next write
is done.

A process may release the message buffer—space it owns

DO : FXMSG

A0 -——~> XFREL % 2 bytes
SIZE / =MESADDRESS % 4 bytes

—— Norsk Data ND—60.161.3 EN ~—

:urrent
sage

:alled
:ngth
operation

35

36 PIOC Software Guide

3.9.3 Set_§grrent Message for a Process or for a Port

Since many
is useful t

A0

The specifi
PORT = O, t
If MESADDRE
current mes

system calls implicitly operate on the current message, it
5 be able to set the latter.

DO : FXMSG

»—-~> XFSCM % 2 bytes
MESADDRESS % 4 bytes
PORT % 2 bytes

ad message is set as current for the specified port. If the
me message is set as current for the process.
35 = ~1, the current message of the process is set as the
sage of PORT.

~~ Norsk Data ND-60.161 3 EN --

PIOC Software Guide 37

3.9.4 Reading and Writing Messages

XFREA « reading a message.

XFWRI - writing a message.

Reading the message is performed by using

DO ; FXMSG‘

A0 -———> XFREA % 2 bytes
UADD % 4 bytes
ULEN / =NBYTES Z 2 bytes
DISP 2 2 bytes

Data is read from the current message starting with di
DISP (rounded up to the next word boundary) into the u

splacement
ser buffer

specified by UADD (length ULEN). NBYTES is set to the actual
number of bytes read.

If DISP = -1, the reading starts from the last charact
the previous read operation.

If the last byte in the message is read, the 'whole~me
flag is set, and the next XFWRI (Write message) will r
current message length.

Note that the displacement (DISP) must always be round
theinertiuord_boundarx.

3r read in

ssagewread'
aset the

:1 up to

Data is transferred from the user space to a message b; calling:

DO : FXMSG

A0 —---> XFWRI % 2 bytes
UADD % 4 bytes
ULEN / =NBYTES % 2 bytes
DISP % 2 bytes

If the 'whole-message-read‘ flag has been set, it will
and “current length' is set to 0 before any writing is
out. If the displacement (DISP) is -1, a value equal t
current message length is assumed, providing an append
the displacement is odd, 1 is added, and a zero byte i
in the message. If DISP+NBYTES is not greater than the
size, ULEN bytes are copied from UADD into the message
the message length is increased to DISP+NBYTES (+1 if
odd). NBYTES returns the actual number of bytes transf

-~ Norsk Data ND~60.161.3 EN ~~

be reset,
carried

3 the
call. If
inserted

message
buffer and

3189 is
erred.

3

3.9.5

PIOC Software Guide

'nc n e'v' s e

XFSND — send current message.
When a p ocess Wishes to send a message to another process it

calls

00 : FXMSG
A0 ~—~~> XFSND OR (OPTION) % 2 bytesMAGNO

% 4 bytesPORT
% 2 bytesThe default message is sent from the local port (PORT) to the

destination port (MAGNO a
The follow ng send options may be OR ed to XFSND
XFSEC ~ Secure messageu The message will be returned to the

sending port if it cannot be delivered or if the
handling program terminates while the message is
'cmrrent'.

XFHIP — High~priority message. It will be chained to the head of
the receiver's queue instead of the tail. If here are
other priority messages in the queue, it will be
inserted after them The receiver Will be informed of
this w en he executes his next receive (XFRCV)XFFWD ~ Foruarding. The sender information in the message Will
not be updated so that the receiver Will be informed
that the message was sent from the preVious sending
port

XFROU ~ IgnOJe the MAGNO parameter and send the message to
XROUT. he message contents must then be in a form
comprehensible to XROUT The rules for this are
described on page 41

XFBNC m Bounce-message. The message sent by the receive call
XFRCV is returned to the sender instead of being
receixed

If MAGNO = ~1, the message Will be sent back to the port from

which it was last sen

—~ Norsk Data ND—60.161.3 EN -~

PIOC Software Guide

XFRCV - receive next message.

When a process is ready to handle the next request, it calls

DO : FXMSG

A0 -~——) XFRCV OR (OPTION) / =TYPE % 2 bytes
PORT % 2 bytes
= MESADDRESS % 4 bytes
= NBYTES % 2 bytes
= MAGNO % 4 bytes
= DATA ADDR a 4 bytes

If a message is waiting at the specified port (PORT), it is
received (unchained from the message queue) and MAGNO contains
the magic number of the sending port. MESADDRESS contains the
address of a status block for the message and NBYTES contains the
message length in bytes. DATA ADDR points directly to the memory
address of the user data part of the message.

The message type is returned through the TYPE parameter.

The following receive options may be OR'ed to XFRCV:

XFWTF - Wait for message. if no message is waiting at the port,
the task is delayed until a message appears at the port.

XFWAK - Wake. If no message is waiting at the port, the next
message that arrives at the port leads to an EVENT with
event bit 30 being set up for the process owning the
port. Events were discussed in detail on page 20.

This phenomenon allows timed~out waits to be executed:
When the EVENT is set up, the message has not yet been
received, so the receive function (XFRCV) must be
repeated. This ‘wake' option can be enabled on more than
one port at a time, and will cause all wake requests for
the process to be cleared when the event comes.

If neither of the options are specified and there is no message
waiting at the port, DO reflects this.

current message for the process and the port. If the essage is
secure (XFSEC option in the XFWRI function), and if the process
aborts before the current message is cleared, the message will be
returned to the sender, with the status reflecting the reason.

A successful XFRCV leads to the returned message beco:rng the

The 'current message' is cleared by:

- releasing or sending it to someone else, or
— receiving another secure message.

-- Norsk Data [VD-60.1613 EN -~

39

40

3.9.6 Messmfitatus

XFMST - extract senders's magic number.

PIOC Software Guide

A process may extract the sender's magic number from a received
message: '

DO : FXMSG

A0 —~m—> XFMST % 2 bytes
MESADDDRESS X 4 bytes
= MAGNO % 4 bytes
= NBYTES % 2 bytes

It may be argued that this requires an extra call, but

1) One often just sends messages back to the senders (MAGNOa-1)g

2) 0

C

SEherwise one can read the magic number once, and after that
e the port information returned by XFRCV to identify the
nder.

»— Norsk Data ND~6O 161.3 EN

PIOC Software Guide

3.9.7 XROUT - Routing and Service Task

As mentioned earlier, XROUT is a special system process tha t allows
processes to find each other by providing a port naming scheme.

If XROUT handles a request from process A to get in touch w
process B, the following restrictions must be considered:

ith

XROUT will not give A‘s port number to process B, but transmits the
message from A along with its port's magic number to B. Pro
then look at A's message and 'call' back if it wants to, an
A its own magic number.

cess B can
d even give

XROUT is implemented as a standard PIOC process, and is called as an
option from the XMSG call 'send current message' (XPSND).

3.9.7.1 XROUT Message germats

Messages are sent to XROUT using the XPROU option of the XE
XMSG. XROUT offers many services. The type of service is sp
message byte 1.

Byte O s A serial number returned unchanged by XROUT
allow processes to have many requests outsta

Byte 1 ~ The service number (symbol XSxxx) of the ser
being requested / =Status of the operation.

Byte 2,3 — Length of the remainder of the message in by

Byte 4 ‘ ...parameters.

Each parameter has the form:

Parameter byte 0 (4)
Integers have positive values
negative.

(5)Parameter byte 1 Length of parameter in bytes

Parameter byte 2..(6.. Parameter data.)

The parameter number is dependent of the service. Parameter
specified for a given service assume default values. All pa
blocks start on even byte boundaries in the message.

“m Norsk Data ND~60.161.3 EN ~-

Parameter number (O is null).

SND call in
ecified in

in order to
nding.

vice

tES.

, strings

S not
rameter

41

42 PIOC Software Guide

In general the following parameter types are used:

Integer Integers will be treated as signed, so that the sign
bit will be extended if necessary. This allows the
sender to decide how much space in the message he
wishes to use for an integer, and allows the user to
take appropriate action when receiving.

ASCII stnjngs The length is defined by the parameter length byte. If
a fixed length record is desired, the record will be
filled up with blanks.

3.9.7.2 1§pe of Services

XSNUL w returns a null status message

XROUT returns a message of two bytes containing the reference
numbel. No parameters.

XSLET m send letter

This service is used to find a remote port. The only parameter
used by XROUT is:

Identifier (type string)

XROUT
table

extracts the identifier and looks up the string in its name
If a match is found, the whole message is forwarded (call

XFFWD‘ to the matching magic number. If no match is found, the
call code is set to an error value, and the message returned to
the sender.

XSNAM - name a port

In order for a port to get a name, the name must be declared to
XROUT

Idc

XROUT
error

This is done by the XSNAM service with one parameter:

antifier (type string)

looks up the name in the name table. If it is present, an
message is returned, otherwise the name is entered, and the

sending port's magic number is included.

XSCNM - d

When
servi

Lear name

the validity of a port name has expired, the clear name
:e removes the specified name from the name table.

~— Norsk Data ND‘GO.161.3 EN ~~

PIOC Software Guide

XSGNM - get name of a port

Any process can get the name of a given port by sending
containing the magic number (integer) as parameter 1. 1
message will contain the port name appended as paramete
string), if there is enou h s ace in the messa e.

~- Norsk Data ND—60.161.3 EN —m

a message
he return
Yr 2 (type

43

44

~- Norsk Data ND—60.161.3 EN ——

PIOC Software Guide

PIOC Software Guide

4 EELS. THE PHYSICAL LEVEL SERVER

The Physical Level Server provides the means to transmit and receive
data on the serial communication lines in a PIOC.

There is one Physical Level Server (PHLS) for each communication line
in PIOC.

I

P PHLS 0 I Duplex
I HDLC I Comm line 0
O
C PHLS 1 Duplex
0 ASYNC I Comm line 1
S

PHLS 2 I Duplex
ASYNC I Comm line 2

PHLS 3 Duplex
HDLC I Comm line 3

l

Figure 9. Physical level servers in PIOC.

Each of the four communication lines may provide service i
or ASYNCHRONOUS mode. The type of PHLS that corresponds to
particular communication line is selected in the PIOC Basic

1 the HDLC
1

System
loading, where the installation generates a PIOCOS operating system
tailored to its requirements. Details of this step is descr
page 96.

During the initiation of a communication line, an automatic
made against the defined configuration. If it does not conf
error status will be returned.

-~ Norsk Data ND—60.161.3 EN -’

.bed on

check is
)rm, an

45

46 PIOC Software Guide

4;1 The Sgrvice Points of a Physical Level Server

Each PHLS has three service points: One service point CONTROLS AND
SUPERVISES the communication line, the second RECEIVES data, and the
third TRANSMITS data.

I/O ssages in the queue PHYSICAL LEVEL SERVER (PHLS)
p = inter to

e next
ssage in —————* CONTROL AND SUPERVISE

the queue Service Point

1““? WP

mp
--_+ RECEIVE DATA

Service Point

——-—-¢ TRANSMIT DATA
Service Point

When activ
service p0
the output

Figure 10. Service points in the PHLS.

ating a PHLS, the request must be addressed to the proper
int. For example: data to be transmitted must be given to
service point.

Each PHLS may be active at all three service points simultaneously.
Requests t
messages.

a and from a service point are passed through a queue of 1/0
The PHLS must be activated in one of the service points with

a parameter pointing to the first message in a queue of I/O messages.
The PHLS w
of the que

ill then process the I/O messages one by one until the end
ue.

-- Norsk Data ND-60.161.3 EN —~

PIOC Software Guide

The PHLS is activated in one of its service points by the following
system call:

DO : FPHLS

A0 ~~—-> PHLS type % 1 byte
PHLS number % 1 byte
Service Point % 2 bytes
Message address % 4 bytes

PHLS type: Indicates the type of the PHLS. 0 means HDLC
type, 1 means ASYNCHRONOUS type. (*)

PHLS number: Indicates which Physical Level Server (PHLS) is
to be used. A PHLS has the number 0, 1, 2 or 3,
reflecting the communication line to which it
belongs.

Service Point: Indicates which of the three service points is to
be activated:

v Control and Supervise Service Point: O
- Receive Service Point: 1

-- Transmit Service Point: 2 (*)

Message Address: Points to the first message in a queue of I/O

(*)

messages to be processed by the PHLS at the given
service point. '

Instead of using these numeric values the user should include the
file PIOC-FUNCVAL~CXX:DEFS into the source file with a $INCLUDE
statement, and use the symbolic names. See appendix A.

-- Norsk Data ND~60.161.3 EN mu

47

48

All I/O
and the

pIOC Software Guide

PIOC memory configuration:

buffer areas for all of the PHLS must not exceed 64 Kbytes,
{ must be allocated within a 64 Kbytes address boundary.

I»- 128 Kb ——I ~ ~ -- - - G — 512 Kb ——I
64 Kb 64 Kb 64 Kb 64 Kb 64 Kb 64 Kb 64 Kb 64 Kb

I l I I

. u e rP . I Id I I
I . o eo I I I I
Co I I I I
S I I I d alt a

I I I I I I I

PLgure 11. Address boundaries for allocating I/O buffers.

~— Norsk Data NDfl60.161.3 EN -—

PIOC Software Guide

4.1.1 110 Message Description

The I/O messages for the different message names have different sizes
and formats. But all I/O messages must have the same message header:

Bit
15 8 7 0

Word I
O BUFFER~SIZE

1 NEXT—MESSAGE (lst word)

2 NEXT—MESSAGE (2nd word)

3 MESSAGE-NAME / =MESSAGE-NAME

4 PRODUCER (SENDER)

5 EVENT-BITS (1st word)

6 EVENTeBITS (2nd word)

7 =SERVICE~POINT-STOPPED =5ERVICE~POINT-FILLED

8 =RETURN~STATUS

9 DATA~LENGTH / =DATA~LENGTH

1O MORE-BITS-USED

11 OFFSET-USER-DATA
I

1 byte 1 byte

Figure 12. Message header in all I/O messages.

BUFFER—SIZE: Specifies the maximum number of byt
message, including the message head

NEXT-MESSAGE: Contains a pointer to the next mess
queue.
Must be within the 64 Kb I/O messaq<

MESSAGE—NAME: Identifies the message type, which .
as either a request or a response.

message
header
used

in all
I/O

mes ages

as in the
er.

age in the

.5 defined

When sent to the PHLS, the message name must
contain the request name (XXX_REQUES
When the message has been processed
service point, the message name is c
the corresponding response name
(XXX-RESPONSE).

-~ Norsk Data ND—60.161.3 EN -~

ST).
by the

:hanged to

49

50

PRODUCER (

EVENT‘BITS:

SERVICE—PO

SERVICE-PC

SENDER):

INT~STOPPED:

INTQFILLED:

RETURNwSTMTUS:

DATAtLENGT

MORE-BITS-

OFFSETwUSE

H:

USED:

R*DATA:

PIOC Software Guide

This word must contain the process number of
the process which shall get the following
event when the message is ready.

The event—bits to be set for the user of the
service point when PHLS has completed
the I/O operation.

This parameter will be set to 1 if PHLS
has processed the I/O message and there are
no more messages in the queue. The service
point must now be restarted by a new
monitor call.

This parameter will be set to 1 when the
message has been processed by PHLS.

Status of the operation on the I/O message.

Specifies the number of bytes in the user data
field, including the OFFSET—USER-DATA
parameter.

Number of bits used after the last byte
(maximum 7 bits). The MORE~BITS~USED parameter
is not to be included in the DATA—LENGTH
parameter.

Number of bytes between the message header and
the user data of the message.

~~ Norsk Data ND-60.161.3 EN —‘

PIOC Software Guide 51

The FPHLS call is used to control all the messages to and from PHLS.
The type of fiunction depends on which user message you choose. Some
basic messages are listed below:

Table 1. PHLS message types.

User message PIOCOS message Valid only for servi:e point:

INIT_REQUEST INITQRESPONSE Control and Supervise
CONN_REQUEST CONN‘RESPONSE Control and Supervise
DIS_REQUEST DIS_RESPONSE Control and Supervise
TRAN_REQUEST TRANwRESPONSE Transmit Data
RECV_REQUEST RECVmRESPONSE Receive Data

The user specifies XXX_REQUEST messages, while PIOCOS sends
XXX_RESPONSE messages when the request has been executed by PHLS.

A logical sequence of messages to the PHLS is

first « request to initialize the line: INIT_REQ EST
second ~ request to connect: CONN_REQ EST

then ~ request to send or receive data: TRAN_REQ EST and
RECV_REQ EST

at any time ~ request to disconnect the line: DIS_REQ EST

The next sections explain the three service points and thei: general
purpose in more detail.

-~ Norsk Data ND~60.161.3 EN —*

52

4.1.2 gong;

This servic
pointer to
to initiali
establish,
Stopping an
are done he

A successfu

PIOC Software Guide

2; and Supervise Seryic§_291u:

a point will only handle a queue of one element, thus the
:he next message should be NIL. This service point is used
:e the serial line communication controllers, and to
supervise and disconnect a connection to a remote partner.
1 starting the Transmit and the Receive data Service Points
re. The mode (HDLC or ASYNCHRONOUS) is defined here.

L CONN_REQUEST starts the two other service points of the
same PHLS, and a DIS_REQUEST stops them.

4.1.3 Transmit Data Service Point

The part of
header) wil
service poi
TRANQREQUES
be set to T

The service
is processe
PHLS.

The message

message hea

USER DATA:

the message containing the user data (not the message
L be transmitted on the serial communication line. The
it only handles I/O messages with the message name
P. Upon completion of the transfer, the message name will
RAN_RESPONSE by PIOCOS.

point will not process any messages before a CONNmREQUEST
l by the Control and Supervise Service Point of the same

9,

5 sent for this service point have the following format:

message header

USER DATA

Figure 13. Transmit data message format.

ier: As described on page 49.

The user data part of the message is found here.
Note that some bytes appear to be untouched
according to the OFFSET—USER-DATA parameter in
the message header.

__ Norsk Data ND—60.161.3 EN ——

PIOC Software Guide

4.1.4 Receive Data Service Point

53

The user data part of the {/0 message will be filled with data from
the serial communication line. The service point only handles I/O
messages with the message name RECV_REQUEST. When the I/O ssage is
filled, the message name will indicate RECVQRESPONSE. The EEta length
parameter will be set to indicate the size of the data fra .

The service point will not process any messages before a CONN_REQUEST
is processed by the Control and Supervise Service Point of the same
PHLS.

The messages sent for this service point have the fiollowing format:

message header

USER DATA

Figure 14. Receive data message format.

message header: As described on page 49.

USER DATA: The user data part of the message is found here.
Note that some bytes appear to be untouched
according to the OFFSET-USER-DATA parameter in
the message header.

-- Norsk Data ND-60.161.3 EN -‘

54

4.2 ggLs used

The PHLS ma
the serial
153309.2 st
(Synchrounors Data Link Control) frames.
the HDLC co
Control Int

PIOC Software Guide

DL Commu ' t'

g be used to transmit and receive data as HDLC frames on
:ommunication lines.
indard. HDLC frames are fully compatible with SDLC

The frame format meets the ISO

If you are not familiar with
cept, we recommend the ND manual ‘High Level Data Link
arface', ND 12.018.

4.2.1 Contrgl and Supervise Service Point

This servic:
pointer to 1
to initiali’
establish, :
Stopping an:
are done her

A successful
same PHLS, 2

4.2.1.1 Inii

The request
initialize J

The message

a pOint will only handle a queue of one element, thus the
:he next message should be NIL. This service point is used
:e the serial line communication controllers, and to
supervise and disconnect a connection to a remote partner.
1 starting the Transmit and the Receive Data Service Points
e.

CONNwREQUEST starts the two other service points of the
ind a DIS_REQUEST stops them.

:ialize {INIT REQUEST)

is used to clear the communication controller and then
.t to send and receive data in the HDLC frame format.

has the format:

message header

SPEED 4 bytes

MODUS Ic;b;a 2 bytes

NETWORK 2 bytes

1 byte I 1 byte

Figure 15. Initialize request HDLC message format.

message heac er: As described on page 49.

~~ Norsk Data ND«60.161.3 EN “-

PIOC Software Guide
/

SPEED Defines the line speed in bits/second. The
following baud rates can be selected for HDLC
transmissions:

Table 2. Baud rate for HDLC transmissions.

50 baud 4800 baud
110 «”— 9600 ~“«
300 “"- 19200 —"»
600 ~“— 38400 —"—

1200 ~"- :
2400 «"— 614400 —"«

819200 baud (max rate to another PIOC only)

MODUS Sets three different modes of operatiou;

a) Bit 0 selects normal or test output moie:

O = normal output, the serial output LS
connected to the line

1 = test output, the serial output is looped
back to the serial input line

b) Bit 1 selects half or full duplex communication,

0 = full duplex,
1 = half duplex.

c) Bit 2 selects the type of IDLE signal to be sent
between data transmissions.

O = the FLAG byte (0111110) is sent t) indicate
idle transmission,

1 = the line is set HIGH (logical 1‘s between
data transmissions.

NETWORK Not presently used.

~~ Norsk Data ND-60.161.3 EN —«

55

56 PIOC Software Guide

4.2.1.2 CQIn§SL_l§QHE_BEQHE§Il

The request
Receive Dat
the communi

At this poi
the message

is used to start the Transmit Data Service Point and the
a Service Point. FLAGS (01111110) will be transmitted on
cation line until the Transmitter Service Point is active.

nt the message has no parameters, and thus consists only of
header.

4.2 1.3 Disconne§t_lfll§_339fl§§Tl

The request
Point and t
be transmit

At this poi
of the mess

4.2.2

The part 0
header) wi
service po'
TRAN_REQUE
he set to

The Transmi

will stop all activities on the Transmit Data Service
he Receive Data Service Point. Then ABORT (11111111)¢will
ted on the communication line.

nt the message has no parameters, and thus consists only
age header.

the message containing the user data (not the message
1 be transmitted on the serial communication line. The
nt only handles I/O messages with the message name

. Upon completion of the transfer, the message name will
RAN_RESPONSE by PIOCOS.

t Data Service Point will always send the user data part of
a I/O message as one HDLC frame.

The service
is processe
PHLS.

The message

message hea

USER DATA:

point will not process any messages before a CONN_REQUEST
d by the Control and Supervise Service Point of the same

5 sent for this service point have the following format:

message header

USER DATA

Figure 16. HDLC transmit data message format.

der: As described on page 49.

The user data part of the message is found here.
Note that some bytes appear to be untouched
according to the OFFSET—USER—DATA parameter in
the message header.

u~ Norsk Data ND¢60.161.3 EN —~

PIOC Software Guide

4.2.3 Receive Data Service Point

The user data part of the I/O message will be filled with
the serial communication line. The service point only handl

57

data from
es I/O

messages with the message name RKCV_REQUEST. When the I/O
filled, the message name will indicate RECV_RESPONSE. The
parameter will be set to indicate the size of the data fra
that the 16 bit CRC will follow the last user data byte,
not be included in the data length parameter.

The service point will not process any messages before a C0
is processed by the Control and Supervise Service Point of
PHLS.

The messages sent for this service point have the following

message header

USER DATA

Figure 17. HDLC receive data message format.

message header: As described on page 49.

USER DATA: The user data part of the message is
Note that some bytes appear to be unto

ssage is
ta length
. Note
t it will

NN;REQUEST
the same

format:

found here.
uched

according to the OFFSET-USER-DATA parameter in
the message header.

~~ Norsk Data ND-60.161.3 EN —~

58

4.3 BEL§_IQr_Asrushrgneus_§9mmunicatinn

PIOC_Software Guide

The PHLS may be used to transmit and receive data in the asynchronous
mode on the serial communication lines.

4.351 Control and Sugervise Service Point

This service point will only handle a queue of one element, thus the
pointer to the next message is of no interest. This service point is
used to ini tialize the serial line communication controllers, and to
establish, supervise and disconnect a connection to a remote partner.
Stopping and starting the Transmit and the Receive data Service Points
are done here.

A successful CONN‘REQUEST starts the two other service points of the
same PHLS, and a DlfiuRfiQUEST stops them.

4.3“i.1 initialize (INIT REQUES 1

The request is used to clear the communication controller and then
initialize it to send and receive data in asynchronous format.
The message

message hea

has the format:

der:

message header

SPEED 4 bytes

MODUS 2 bytes

NETWORK 2 bytes

BITS/CHAR 2 bytes

STOP~BITS 2 bytes

XON XOFF 2 bytes

PARITY 2 bytes

1 byte I 1 byte

As described on page 49.

~- Norsk Data ND‘60.161.3 EN ~-

Figure 18. ASYNC initialize message format.

PIOC Software Guide

SPEED

Table 3. Baud rate for ASYNC transmissions.

MODUS

NETWORK

BITS/CHAR

STOPtBITS

XON

XOFF

PARITY

4.3.1.2 Connect (CONN REQUEST!

This request is used to start the Transmit Data Service Poi
Receive Data Service Point. The communication line will be
(all 1's) until the Transmitter Service Point is active.

~~ Norsk Data ND-60.161.3 EN —~

Defines the line speed in bits/second.
following baud rates_can be selected f
transmissions:

The
or ASYNC

50 baud
110 ~"-
300 -"-
600 —"—

1200 —"~
153600 baud

2400
4800
9600 —"—

19200 —”—
38400

(max rate to

band
_“o.

_“m

another PIOC only)

If set to 1, serial output is looped back to
serial input. The baud rate is set ace
the speed parameter. The serial output
be connected to the line.

Not presently used.

Number of bits per character. Applicab
are 6,7 or 8.

Number of stop bits. 10 means 1 stop b
means 1.5 stop bits, while 20 means 2

Defines the XON character. The charact
will be sent to request temporary susp
output. Normally CTRL/S, octal 23, but
to any other value.

Defines the XOFF character. The charac
must be sent to continue transmitting
after an XON has been set. Normally CT
21, but may be set to any other value.

ording to
will also

le values

it, 15
stop bits.

er that
ension of

may be set

ter that
output
RL/Q, octal

If the XON character is set to the same value as
the XOFF character, the function is di

Defines the type of parity.-O means no
means odd parity, while 3 means even p

sabled.

parity, 2
arity.

1t and the
1e1d high

59

60

1
1

At this poi
message hea

w4.3.1.3 Dig

t
1
t

This reques
point and t
be transmit

At this poi
message hea

1
1

PIOC Software Guide

t the message has no parameters, and thus consists of the
er only.

e IS UK

will stop all activities at the Transmit Data Service
e Receive Data Service Point. Then ABORT (11111111) will
ed on the communication line.

t the message has no parameters, and thus consists of the
er only.

4.3c2 WW

The part of
header) wilL
service poi
TRAN_REQUES .
be set to T

The service
is processe
EELS“

The transfer
XOFF charact
Receive Serv
transmitter
The messages

message heac

USER DATA:

the message containing the user data (not the message
be transmitted on the serial communication line. The

t only handles I/O messages with the message name
Upon completion of the transfer, the message name will

AN_RESPONSE by PIOCOS.

point will not process any messages before a CONN_REQUEST
by the Control and Supervise Service Point of the same

will stop if the Receive Data Service Point receives an
er as specified in the INITIATE message to the Control and
ice Point. The reception of an XON will make the
continue to transfer data.
sent for this service point have the following format:

message header

USER DATA

Figure 19. ASYNC transmit data message format.

er: As described on page 49.

The user data part of the message is found here.
Note that some bytes appear to be untouched
according to the OFFSET-USER—DATA parameter in
the message header.

-- Norsk Data ND~60.161.3 EN ~—

PIOC Software Guide

4.3.3 Receive Data Service Point

The user data part of the I/O message will be filled with
the serial communication line. The service point only hand]

data'from
es I/O

messages with the message name RECVaREQUEST. When the I/O message is
filled, the message name will indicate RECV_RESPONSE. The d
parameter will be set to indicate the size of the data.

All received XON and XOFF characters will be masked out and
included in the data part of the message.

The service point will not process any messages before a CC
is processed by the Control and Supervise Service Point of
PHLS.
The messages sent for this service point have the following

message header

USER DATA

'6‘

Figure 20. ASYNC receive data message format.

message header: As described on page 49.

USER DATA: The user data part of the message is
Note that some bytes appear to be unto

ata length

not

NN_REQUEST
the same

format:

found here.
uched

according to the OFFSET-USER—DATA parameter in
the message header.

-‘ Norsk Data ND—60.161.3 EN —~

61

PIOC Software Guide

5 ND-1C

The PIC
versior
the ND-
the ND~
the tot

The PIC
up to 1
activat
either

The PIC
start t

From PI
address
this me
dependi
process

An ND—1
(proces
PIOCeUS
ALTON/A
part of

0 - PIOC INTERCONNECTION

C memory is physically located on the PIOC interface board. Two
5 of PIOC are available: the ND—865 with 128 Kbytes memory, and
867 with 512 Kbytes memory. This memory is accessible from both
100 and the PIOC processors, and it is defined as a part or
al memory configuration.

C programs are placed on one or more segments, each occupying
28 Kbytes on the segment file(s). When the PIOC program is
ed, the segment(s) are copied into SINTRAN III's swapping area,
by the PIOC-MONITOR or a user written ND-1OO RT~program.

C segment(s) must be FIXED into the memory before being able to
he PIOC program.

OC's point of view, the memory will have logical and physical
es from O to 128Kb or 512Kh respectively. The lower part of
mory contains the PIOC operating system PIOCOS, 17 to 29 Kbytes
ng on the configurations, while the upper part contains user
es (here called PIOCwUSER part).

00 RT-program in SINTRAN III may share data with the programs
ses) in the PIOCeUSER part of PIOC. This is done by placing the
ER segment in the alternative page table. By use of
LTOFF, the RT~program may read or write data in the PIOC—USER

memory, while a PIOC process is not allowed to access the ND~
100 memory directly.

Note th
bytes i
(MCSBOO
protect
other i

5&1 How

Process
a resul
PIOCOS).
100 pro
process
process

at it is highly inadvisable to have common data longer than 2
n PIOC memory which is gritten to and read by both processors
0 and NDw100) simultaneously. The PIOC's memory is not
ed during accesses, thus one processor may read data while the
s modifying it.

to Synchronize ND—1OO and PIOC Processes

es in PIOC and ND-1OO may communicate through kicks, which are
t of a call to the operating system (either SINTRAN III or

A kick from a PIOC process to a ND-1OO process makes the ND-
cess active (brings it out of ‘RT-WAIT‘). A kick from a ND-1OO
to a PIOC process results in an EVENT being created for the
in PIOC. (See page 20.)

-- Norsk Data ND~60.161.3 EN --

63

64 PIOC Softwa

5.12 Whereas

The processes needing to communicate may make use of a kick cha
This is a mail system which allows up to eight pairs of process
establish a temporarily fixed communication link with each othe
kick channel has eight slots, one for each pair of processes. E
slot may be reserved by two communicating processes (one in ND-
one in PIOC). The processes send messages to each other via the
common slot in the kick channel. When a message is sent to the
channel by one process, a kick is generated for the other proce
kick is a signal to the other process meaning that information
waiting for it. The information itself is a 2 byte data word wh
stored in a mailbox. Each slot has two mailboxes, one for infor
sent from the ND-1OO process, and one for information sent from
PIOC process. When a process has been 'kicked‘, the information
fetched from the appropriate mailbox in the slot.

«———~ 2 bytes ——~—+~———— 2 bytes ————4

me Guide

1.
to
The

nne
s

r.
ach
100 and
ir
rick
as.
is
ich is
nation
the
may be

(D

The

l I

Owning
process
in ND~1OO

Owning
process
in PIOC

ND~1OO to PIOC
mailbox

PIOC to ND-lOO
mailbox

Slot 1 "A" "X”igififil3§03£fiizh
2 ISBN HY.

l I

Figure 21. Kick channel in PIOC memory.

Data in the form of 2 bytes, 16 bit, may be passed between the l
communicating processes (one PIOC process and one ND-lOO proces.
previously they must have reserved the same slot (figures (1)&(.
below). The KICK function places the information in the mailbox
belonging to the slot in the kick channel. It is then retrieved
FETCH function. '

:wo
”-
J

But

by the

As an ND-1OO process sends these 2 bytes of information to the ailbox
of its reserved slot (figure 3 below), a kick is passed to the IOC
process which has reserved the other side of the slot (figure ()
below). It may then fetch the information (figure (5) below). T e
illustrations below shows the logical sequence of commands/functions
that two processes have to perform to allow one process to send
information to the other. The numbers to the left of each figure
to the corresponding numbers in this paragraph. The functions
specified in parentheses are discussed later in this chapter.

refer

-~ Norsk Data ND~60.161.3 EN ——

PIOC SO ftware Guide 55

(1) I l
Owning Owning
process ND—1OO to PIOC PIOC to ND~1OO process
in ND-1OO mailbox mailbox in PIOC

"A"

The ND~
(functi

(2)

m]
100 process “A" reserves the ND~1OO side of slot number 1
on: RES‘SLOT).

I I

Owning Owning
process ND~1OO to PIOC PIOC to ND—1OO process
in ND—1OO mailbox mailbox in PIOC

MAW

The PIO
(call:

LT...
C process "X" reserves the PIOC side of slot number 1
FRES“SLOT).

(3) I I

Owning Owning
process ND—1OO to PIOC PIOC to ND—1OO process
in ND-1OO mailbox mailbox in PIOC

"A" "XII

The ND~ 100 process sends INFO to its reserved slot (function: KICK),

0— Norsk Data ND-60.161.3 EN ~~

66 PIOC Softwa re Guide

(4) I I
Owning Owning
process ND—IOO to PIOC PIOC to ND-1OO process
in ND-IOO mailbox mailbox in PIOC

1 "All "XII

; kick to PIOC

and a kick is sent to the PIOC process (which has reserved the
side of the same slot). (Implicit when the KICK function is use

process

PIOC
d.)

(5) I I
Owning Owning
process ND~1OO to PIOC PIOC to ND—1OO . process
in NlOO mailbox mailbox in PIOC

1 "A" “X"

The PIOC process “X" may then fetch the INFO (call: FFETCH).

The same thing happens when a PIOC process sends information to
mailbox of its reserved slot: The corresponding ND—IOO process
‘kicked' and it may fetch the information at once or later.

5.3 What Type of Information is Transferred in the Kick Channel

The kick channel mailboxes are 2 bytes (16 bit word) registers.

the
gets

The
amount of information a process can send in 2 bytes is of course very
limited. Often a process may need to send more data. The kick channel
may then be used to send the address to a larger data area where the
actual data is found. In this way the mailbox does not contain any
valid data, but a pointer only. The data itself may also be sent as
single words to the mailbox, one at a time, but this is not advisable
since the receiving process must be 'kicked‘ for each word.

-~ Norsk Data ND~60.161.3 EN -~

PIOC S ftware Guide

5.4 MO PIOC (MON 255) - The PIOC Monitor Call in SINTRAN III

N 255 is a general monitor call used in ND-lOO programs to
ICC functions and processes. The monitor call performs the
given by the ND—1OO T~register.

access
functi

Common or all functions is that the ND—lOO X~register must contain
the PIO logical device number (LDN), and the T-register contains an
error c de, if any, on return.

The libLary PIOC—NlOOLIB-C:BRF supplied with PIOC Basic Software
contains library routines for the monitor call PIOC. These routines,
partly dritten in assembler, may be called from PLANC programs, or any
other high—level programming language. The PLANC Reference Manual (ND~
60.117) contains information on how to call PLANC routines from other
programming languages.

Note that the monitor call MON PIOC can only be called by user SYSTEM,
from an RT~program or from ring 2. Otherwise the error code ~1OB is
returnei.

Explanation of parameter values for the PIOC (MON 255) call
Here yoi find an explanation of parameter values, used by one or
several of the monitor call functions.

-- Norsk Data ND—60.161 3 EN —~

68 PIOC Softwa

A) Parameters supplied by the user:

LDN

SLOT

FUNCTION

the logical device number specifies which PIOC module
access. This number is defined within the SINTRAN III
operating system according to the following table:

Table 4. Logical Device Number (LDN).

PIOC module LDN
number: log.dev.no:

0 1700
1 1701
2 1702
3 1703
4 1704
5 1705
6 1706
7 1707
8 1710
9 1711

10 1712
11 1713

The PIOC module number is selected with a thumbwheel
(12J) on the PIOC module itself. For details, please
PIOC Reference Manual, ND~02.003, chapter 2.

The PIOC kick channel contains eight slots. The SLOT
parameter must be a number from 1 to 8, depending on which
slot you want to access.

This parameter contains the number of the desired fun«
It is stored as an integer in the range 0 through 7 in the

re Guide

to

switch
see the

:tion.

T~register. The available functions and their corresponding
T—register values are listed below.

Table 5. MON PIOC functions

Function T—reqister Short explanation
RES~SLOT 0 Reserves the ND—100 side of a slot.
REL_SLOT 1 Releases the ND—100 side of a slot.
KICK 2 Sends a kick to a PIOC-process.
FETCH 3 Reads a message from a PIOC process.
SEGLOAD 4 Loads segment into PIOC memory.
UNLOAD_PIOC 5 Unloads all segments from PIOC mem.
START_PIOC 6 Starts the PIOC.
STOP_PIOC 7 Stops the PIOC.

—* Norsk Data NU~60.161.3 EN -‘

PIOC So fitware Guide 69

al.2arameter_sunnlisd_luLjuluE§uLJ:LL;

RETVAL

Cl_ce

INFO

Other

In the
greater

receives an error code, if any, from SINTRAN III. If the
function performes a successful execution, RETVAL is 1.
Possible RETVAL values are:

Table 6. MON PIOC return values (octal).

1: Successful execution.
2: No answer from PIQC ND—1OO driver.

~10: No privilege.
“11: Function not allowed before the PIOC is started.
~24: Illegal function code (outside range 0 to 7).
‘25: The slot is occupied by another process.
-26: Illegal slot number (outside range 1 to 8).
~27: The slot is not reserved by you.

You must reserve first it.
”30: The mailbox is not empty, and can not receive info.
-31: The mailbox is empty. No message to fetch.
«32: Illegal LDN.
v33: The PIOC is not initiated.
~34: The PIOC memory is not all fixed.

41; Space not available.
42: Illegal segment.
43: Segment not loaded.
44: Attempt to fix demand segment.
45: Attempt to fix too many pages.
46: Segment already fixed at different address.

L_2§£§m§§§154

This is the 2 bytes of information, the message itself.

There are a few other parameters used for some functions.
They are explained in the appropriate function description.

following pages, each monitor call function is discussed in
detail.

«m Norsk Data ND—60.161 3 EN ~—

7O PIOC Softwa

RES_SLOT - reserve the ND~1OO side of a slot

NPL: X:=LDN; A:=SLOT; T:=O; *MON PIOC
T=:RETVAL

PLANC: You may use the following PIOC-N1OOLIB routine:
ROUTINE VOID,INTEGER (INTEGER,INTEGER): RES~SLOT &

(LDN, SLOT)

Example 3. Reserve the ND—1OO side of a slot.

1e Guide

The ND-1OO side of the SLOT will be reserved by the calling process in
ND-lOO.

REL_SLOT ~ release the ND—lOO side of a slot

EEL; X:=LDN; A:=SLOT; Tzzl; *MON PIOC
T=:RETVAL

PLANC: You may use the following PIOC—N1OOLIB routine:
ROUTINE VOID,INTEGER (INTEGER,INTEGER): RELfiSLOT &

(LDN, SLOT)

Example 4. Release the ND-lOO side of a slot.

The ND-1OO side of the SLOT will be released if it is reserved
calling ND»100 process. All kicks sent for this slot (when rel
will be neglected.

KTCK - send information to a PIOC process

NPL: X:=LDN; A:=INFO=:D; A=:SLOT; T:=2; *MON PIOC
T=:RETVAL

PLANC: You may use the following PIOC—N100LIB routine:
ROUTINE VOID,INTEGER (INTEGER,INTEGER,INTEGER):KICK &

(LDN, SLOT, INFO)

Example 5. Send information to a PIOC process.

The effect of this function depends on the contents of the INF

by the
eased)

D
parameter. If the INFO parameter is 0 (zero), a kick (resulting in an
event for the PIOC process) is generated. If the INFO parameter is
other than 0, the effect of the function depends on the conteni
the ND—1OO to PIOC mailbox. If the mailbox is empty, the INFO
parameter will be put in the mailbox and a kick will be genera1
the PIOC process. If, however, the mailbox is full, the call w.
no effect.

—* Norsk Data ND~60.161.3 EN --

:s of

:ed for
.11 have

PIOC Software Guide

FETCH - get information from a PIOC process

HELL X:=LDN; A:=SLOT; T:=3; *MON PIOC
T=:RETVAL; D=:A=:INFO

PLANC: You may use the following PIOC-N1OOLIB routine
ROUTINE VOID,INTEGER (INTEGER,INTEGER,INTEGER WRITE):I

(LDN, SLOT, INFO)

Example 6. Get information from a PIOC process.

The ND—100 process uses this function to read the contents
to the ND—1OO mailbox in the specified slot, whether the me
any contents or not.

SEGLOAD — load a segment into PIOC memory and fix it

NPL: X:=LDN; A:=PAGE=:D; A:=SEGNO; T:=4; *MON PIOC
T=:RETVAL

PLANC: You may use the following PIOC—N100LIB routine
ROUTINE VOID,INTEGER (INTEGER,INTEGER,INTEGER):SEGLOAE

(LDN, SEGNO, PAGE)

Example 7. Load and fix a segment into PIOC memor).

This function may be used to load a ND-1OO segment generate
RT—LOADER into the PIOC memory.

LDN ' is the PIOC number to which the loading relates to

SEGNO is the actual segment number to be loaded.
(Corresponds to the SINTRAN III segment number def]
by the RT—LOADER, as explained in chapter 7.)

PAGE is the actual page number the loading is to begin 2
within the appropriate PIOC.

For PIOC/128Kb this number must be within the range
0 — 77 (octal) inclusive.

For PIOC/512Kb this number must be within the range
0 - 377 (octal) inclusive.

—’ Norsk Data ND—60.161.3 EN «-

ETCH &

of the PIOC
LilbOX has

d by the

ned

71

72 PIOC Software Guide

The illustration shows the situation if the PIOC memory is located at
ND~1OO physical memory from page 200, and you have loaded segment no
121 into memory from PIOC page no 26:

PIOC memory
Page NDviOO memory Page

0 .~ ~ * —-— —-~ ~ ~ - 00
. -~»~ previous ~ — 01

100 . -~:— loaded ~ - 02
. - ~ ~ segment — - O3

200 ,., . _

300 .
segment 26 SEGLOAD
no 121 . (LDN: 17008)

(PAGE:26)
77 (SEGNO:121)

Figure 22. Relationship between ND~100 and PIOC memory.

controlle by thumbwheel switches 7J and 9J on the PIOC module. The
switches ay be set to define which memory pages both the PIOC and the
ND-100 shculd address. Beware that when the PIOC is not active this
memory is used by the SINTRAN III operating system as swapping area.
SEGLOAD will, when called, reserve the memory area by issuing a FIXC
(fix contiguous) monitor call. Further details on configuring the
PIOC/ND‘1(O memory can be found in the PIQC Reference Manual, ND—
02 003, chapter 2.

Configuri§g the PIOC memory as a part of the ND~1OO memory is

UNLOAD_PIOC ~ remove all fixed segments from PIOC memory

BPL; X:=LDN; T;=5; *MON PIOC
T=:RETVAL

PLANQ; You may use the following PIOC*N1OOLIB routine:
ROUTlNE VOID,INTEGER (INTEGER): UNLOAD_PIOC &

(LDN)

Example 8. Remove all fixed segments from PIOC memory.

This function unloads all fixed segments from the PIOC memory. It
performs the opposite function of the previously executed SEGLOAD’s.

—- Norsk Data ND-60.161.3 EN ~~

PIOC Software Guide

START_PIOC - start the PIOC

NPL- X:=LDN; A:=ST_ADDR; T:=6;
A=zFAULT_PAGE; T=:RETVAL

*MON PIOC

PLANC: You may use the following PIOC—N1OOLIB routine:
ROUTINE VOID,INTEGER(INTEGER,INTEGER4,INTEGER WRITE):E

(LDN, ST_ADDR, FAULT_PAGE)

Example 9, Start PIOC.

Before PIOC can be started, the whole PIOC memory of 128/51
must be fixed, either as one segment, or as many smaller se
contiguous area. The function SEGLOAD loads a segment gene:
RT-LOADER into the PIOC memory and fixes it. In addition, t
the PIOC memory must be fixed. The START_PIOC function star
with the given LDN.

When the ST_ADDR is 0 (zero), PIOCOS is initiated and start

TART_PIOC &

2 Kbytes
gments in a
ated by the
he rest of
ts the PIOC

ed, then a
jump to the start address defined as 'AUTO_START' is perfonmed. The
process will run at priority level 1. The 'AUTO_START' symt
defined as a global entry when you link the :NRF~files usin
Linkage Loader.

If the ST_ADDR is not zero, the processor starts execution
specified address but no initialization or jump to ’AUTO_ST
performed. It is not recommended to start PIOCOS this way.

If the PIOC memory is not completely fixed, FAULT_PAGE rece
number of the first page that is not fixed.

01 must be
g the

at the
ART“ is

ives the

Please note that PIOC process(es) may NOT do any input from or output
to your terminal if PIOC is started with this monitor call
This is only achieved if you start it from the PIOC monitor
as long as the PlOC-MONITOR is running on the PIOC.

STOP_PIOC - Stop the PIOC

NPL: X:=LDN; T:=7; *MON PIOC
T=zRETVAL

PLANC: You may use the following PIOC-N1OOLIB routine:
ROUTINE VOID,INTEGER (INTEGER): STOP_PIOC &

(LDN)

Example 10. Stop PIOC.

The PIOC with the logical device number LDN will stop runni

-~ Norsk Data ND—60.161.3 EN ‘«

function.
, and only

73

74 PIOC Software Guide

5.5 Theda-499 Calls in 219;

The ND~1OO calls are used by PIOC processes to communicate with RT—
programs in SINTRAN III. The following calls are available:

FRES_SLOT — reserve the PIOC side of a slot

D0 : FRESwSLOT

A0 ~~~-> SLOT % 2 bytes
EVENT BITS % 4 bytes

The PJOC side of the given SLOT will be reserved by the calling
process. The specified EVENT BITS are sent to the PIOC process if
a kicl is sent to it from an ND-1OO process.

On return, DO contains the status of the operation.

FRELGSLOT ~ release the PIOC side of a SLOT

DO : FREL_SLOT v

A0 ~~~~> SLOT % 2 bytes

The PlOC side of the given SLOT will be released from the calling
PIOC process. Kicks sent for this slot will have no effect on any
PIOC process.

On return, D0 contains the status of the operation.

PKICK - send a kick to a ND—lOO process

DO 2 FKICK

A0 ~-"~) SLOT % 2 bytes
INFO % 2 bytes

The effect of this function depends on the contents of the INFO
parameter. If the INFO parameter is O, a KICK (resulting in a
'RT' for the ND—1OO process which may be in the 'RT—WAIT‘ state)
is generated.

If the INFO parameter is other than 0, the effect of the function
depends on the status of the PIOC to ND-lOO mailbox. If the
mailbox is empty, the INFO parameter is put in the mailbox, and a
kick is generated for the ND~1OO process. If however, the mailbox
is full, an error indication is set in the DO register on return
from PIOCOS, but the call will have no effect: NO kick is sent to
the corresponding process in the ND—100.

-~ Norsk Data ND—60.161.3 EN ~—

PIOC Software Guide

FFETCH - get info from a ND-1OO process

DO : FFETCH

A0 ~~~s> SLOT % 2 bytes
=INFO % 2 bytes

The PIOC process uses this function to read the conte
ND-1OO to PIOC mailbox in the specified slot, whether
has contents or not. After the reading, the contents
mailbox are set to zero.

On return, DO contains the status of the operation.

-- Norsk Data ND—60.161.3 EN ~u

2Es-of the
he mailbox

the

75

5-5 Ih§_EQ

The
proce
way p
drive

Proce
XMSG
faste

FNXMSG

T A D
the s
the S

PIOC Software Guide

remote" XMSG system running in the NDw1OO may be used by
sses in PIOCOS through the following system call. In this
recesses in PIOC may communicate with tasks (processes and
rs) in the ND~1OO or other PIOC's.

sses running within the same PIOC, should use the "local"
calls as described on page 32, as this is considerably
r5

, PIOC communication with the ND—1OO XMSG SYSTEM.

DO : FNXMSG

A0 ~~~~> T-reg a 2 bytes
A‘reg % 2 bytes
D~reg % 2 bytes
peg % 2 bytes
PADDR % 4 bytes

X «registers: These parameters should be set according to
pecification for the corresponding registers as described in
INTRAN III Communication Guide (ND-60.134) and the COSMOS

PROGRAMMING GUIDE (ND‘60.164).

PADDR:
READ
this

If the XFW
Guide ND—6
to be comp
whether th
(BIT 31) w

When the P
PIOC~MONIT
XMSG.

A set of s
in the ND—
the XMSG l
(NDs60.164

This parameter is only used in the functions
and WRITE, and gives the buffer address in the PIOC. In
case the A-reg parameter is not applicable.

IF flag is set the function parameter (see the Communication
3.134). The process will be suspended waiting for the call
leted. If the XFWAK flag is set, the process will continue
a function is completed or not“ Upon completion an event
ill be generated for the appropriate process.

IOC is unloaded (either by the PIOC monitor call or by the
3R), all processes in the PIOC will be disconnected from

ibroutines to carry out the communication with tasks running
100 are available in PIOCOS object code and can be found in
ibrary further described in the COSMOS PROGRAMMING GUIDE

-— Norsk Data ND-60.161.3 EN ~—

PIOC Software Guide

5;? Global Variables in PIOCOS

There are some variables in PIOCOS which can be imported to
application processes“

REALTIME

N100__CPU

PIOC_NUMBER

an INTEGER4 variable containing the time
in 5msec—units since the PIOCOS is s tarted
an INTEGER constant containing the ND100-CPU
number in which the PIOC reside
an INTEGER constant containing the PIOC number
in this NDlOO-system (O..11D)

Note that these variables reside in the PIOC'S write-protected data
area.

-— Norsk Data ND—60.161.3 EN «~

77

78

~— Norsk Data ND—60.161.3 EN --

PIOC Software Guide

PIOC Software Guide

6 THE PIOC-MONITOR

The PIOC-MONITOR is a program that runs on the ND—lOO, for
supervising; and controlling the PIOC. The PIOC—MONITOR can
control one PIOC at a time.

You must be logged in as user SYSTEM in order to run the PI
since it is protected from unauthorized use.

When starting the PIOC-MONITOR, it asks the user to specify
to supervise. The PIOC numbers not reserved by other users
in parentheses. You may, for example, answer number 0 (zero

loading;
only

3C~MONITOR,

which PIOC
are shown
):

@PIOC‘MONITOR~C

PIOC-Monitor - Release : Cxx ~ (month) (day), (year)

Give PIOC—number; O 1 or EXIT : Q
PIOC started
PIOCOS m Release MARCH 22, 1985
The selected PIOCs address~range is OB to 3777778

P-M;

Figure 23. Starting the PIOC-MONITOR~C.

Having come so far, the monitor prompts with P~M: . You are now free
to use any of the PIOC-MONITOR commands. A full list of commands can
be obtained by the HELP command, see page 81.

In the following sections, the commands are described in th
order. Some aspects are common to all commands except the "
command and the subcommands in the LOOKeAT commands:,

— All commands have a special environment: Some can a1
executed, for some the selected PIOC must be loaded,
the PIOC must be started.

The HELP command shows the environment for the variou

Some commands have an unlimited number of parameters.
enclosed within parentheses in the HELP~list shown on

Such parameters are not prompted and can only he give
command—line or in connection with a previous paramet
prompting.

All numerical parameters are range-checked and have a
radix (octal or decimal) which is standard in other N

~~ Norsk Data ND—60.161.3 EN so

air logical
@"~SINTRAN

ways be
for some

s commands.

These are
page 81.

i on the
r

default
m products.

79

8O

Howex
the number, e.g.

And,
is de

PIOC Software Guide

rer, you may change the radix by appending a “D" or "B“ to
10D or 128.

if you type a number with the digits "8“ or "9" where octal
:fault, the commanduprocessor will change to decimal and

write “Using DECIMAL.'.

All a
symbc

But note: 5
LOADER you
with the G-

If PIOCOS 5
except the
address“

If a symbol
used.

dress parameters (except in the LOAD command) can be
)lic if you first execute the LOAD~ENTRYvLIST command.

uccessful execution depends on the release of the LINKAGE~
used to load your PIOCOSC This PIOC basic sofitware works
release.

lready is started, a register name can also be given,
SR-register. The contents of the register is used as the

is given the same name as a register, the register name is

-' Norsk Data ND-60.161.3 EN ~~

PIOC Software Guide

6.1 The EXIT and HELP Commands

EXIT - to leave the PIOC-MONITOR

P-M: EXIT - (no parameters)

The EXIT command removes all breakpoints from the PIOC, rel
terminal—IO-slot and the PIOC as a device, writes an exit message to
the terminal and returns to SINTRAN.

HELP - lists all the available commands with parameters

P—M: HELP (no parameters)

The HELP command writes out all available commands with the
ponding environment.

eases the

COI‘IES"

P-M: HELP
Always
Always
If loaded
Always
If loaded
If loaded
If loaded
If loaded
If loaded
If started ;
If loaded
If loaded
If loaded
If started :
Always
If started :
Always
Always
Always
If loaded
Always
Always
If loaded
If started :

: HELP
: EXIT
: CLEAR-ALL~BREAKPOINTS
: LIST-BREAKPOINTS
2 SETuaREAKPOINT (address) ((address) ...)
: RESET—BREAKPOINT (address) (<address) ...
: LOOKmAT~DATA (address)
: LOOKwAT—PROGRAM (address)
: LOOK—SYMBOLIC (entry—symbol)

: LOOK—AT-RELATIVE (relative to)
: START-910C
: CONTINUE~PIOC

: PANIC-STOP~PIOC

LOOK—AT—REGISTER (register name)

STOP-PIOC

PROCESS-STATUS (process-number)

STEP (stepcount) (stop-address)

: LOAD (domain) (segment) (low addr) (high addr)
: SEGMENT-LOAD (segment) (page) (<segment) .
: FIX«SEGMENT (segment) (page) ((segment) .
: WRITE-TO-SEGMENTS
: UNLOAD-PIOC
2 LOAD—ENTRY—LIST (:LINK-file)
: LIST—MODULE—STATE

..)

.)

Figure 24. List of commands in PIOC-MONITOR-C.

~~ Norsk Data ND~60.161.3 EN --

81

6.2 The LI

LIST~MODUL

P—M: LIST-

This comma
PIOC‘TRAPV
different

LOAD~ENTRY

P-M: LOAD“

This comma
the curren

After this
The names
PLANC modu

For specia

PIOC Software Guide

ST-MODULE-STATE and LOAD-ENTRY-LIST Commands

S—STATE list status information for modules

MODULE—STATE (no parameters)

1d lists the compilation date of all PIOCOS~modules except
—C:NRF. This is only another tool for keeping track of
revisions of the PIOC Basic Software.

“LIST load symbolic names

ENTRYwLIST <file~name>

nd loads the :LINK file, which must belong to the system in
t PIOC.

P-M: LOAD‘ENTR (PIOC-TEST)PIOC~O

Unsatisfied reference :
Unsatisfied reference :
220 symbols

NONEuB
NONE_2

Figure 25. Loading symbolic entry names.

command you may use symbolic names in most of the commands.
which are allowed, are those you have exported from your
les.

1 debugging it is also possible to keep the PIOCOS entries
available. Note that there is no command for listing the entries. You
must make a printout from the LINKAGE—LOADER when building your
system.

Note that the internal table for all the entries has a limited size.
Therefore, an overflow may occur, and a message will be written to the
terminal. However, all symbols which were read into the table before
the overflow, will remain available.

If you use
the table.

The same i
LOAD comma
LOAD comma

this command several times, you can append new entries to
Names already in the table will be ignored.

nternal table is used for both the LOAD—ENTRY—LIST and the
nds. All entries are therefore cleared after executing the
nd. (See section 6.3.)

—- Norsk Data ND-60.161.3 EN ——

PIOC Software Guide

6.3 Panel Commands

These commands are used for operational control of the PIO(. processor.
Panel commands are commands covering functions normally found on the
operator panel of many computers.

LOAD - loads a 1inkage~loaded segment into PIOC memory

P-M: LOAD <domain—name),(segment—name),(low—addr),<high-adc

This command may be used to load a :PSEG segment generated
Linkage Loader into the PIOC memory. This can be a single I
process or several processes occupying the total PIOC memo]

1r)

by the
*IOC user
y.

The (domain—name) and the <segment~name> are the name of the domain
file and the name of the segment as defined for the proce:
commands COPY-DOMAIN and APPEND—SEGMENT in the Linkage Loe
page 103.)

s by the
Lder. (See

The <low-addr) is the memory start address in PIOC where the segment
shall be stored, while the <high~addr> is the maximum addre
the segment may occupy in the Plot memory. Symbolic address
allowed here. Usually you have to use the default values fc
address parameters.

When LOAD is used, it is assumed that a segment of sufficie

:ss location
es are not

»r the

.nt size is
defined by the RT-LOADER, and fixed in memory before issuing the
command. The LOAD command simply copies the content of the
segment onto the physical memory of the PIOC.

To speed up the LOAD function, this command needs a buffer

:PSEG

which has
to be as large as possible. It therefore uses a buffer common with the
LOAD-ENTRY~LIST command (see section 6.2). This means: All
entries are cleared when executing this LOAD command.

This command is also described on page 111.

The FIX-SEGMENT command (described below) also loads and f1

symbolic

xes RT—
LOADER segments, but you can also use the @FIXC SINTRAN command before
starting the PIOC‘MONITOR and the LOAD command. @FIXC requi
segment number and a physical page number for the memory a]

res a
ea shared

between the PIOC and ND-100. The physical page number can be derived
from the tables on page 141.

w» Norsk Data ND-60.161.3 EN ~~

83

84 PIOC Software Guide

SEGMENT-LOAD - load segments made by the RT-LOADER

P-M: SEGMEN

This comman
generated h
command bri

T—LOAD (segment) (page) ((segment) ...)

d is very similar to LOAD, but it is used for segments
y the BI:LOADER, not the LinkagewLoader. The SEGMENT—LOAD
ngs the specified (segment) into the PIOC memory, starting

at (page) which must be an octal number in the range 0 — 77/377. 3;
also fixes

After the p
loaded foll

The command
PIOC (MON 2

the segment.

age number, you may specify more segments. They will be
owing the previous segment.

performs the same function as the SINTRAN III monitor call
55) function SEGLOAD. The command accepts also a segment

name instead of a segment number.

This comman d is also described on page 113.

FIX~SEGMENT ~ load and fix segments

P‘M: FIX—SE

Similar to
LOADER is l
specified,
can only be

WRITE-TO-SE

P-M: WRITE-

Writes back
segment fil
command, it
This commar
fixing of t
LOADER'S NE
(WP/NP) mus

GMENT (segment) (page) ((segment) ,..)

the SEGMENTwLOAD command, a segment generated by the RT~
oaded and fixed in the memory. Several segments can be
and they will be loaded following the first. Page numbers
given for the first segment.

GMENT — write segments to the segment file

TO—SEGMENT (no parameters)

all fixed segment(s) in the PIOC to the SINTRAN III's
e(s). If the segment were originally loaded by the LOAD

may from now on be loaded with the SEGMENT-LOAD command.
d loads a segment faster, and does not require previous
he segment(s). When defining the segment(s) by the RT-
W-SEGMENT or NEW—BACKGROUND—SEGMENT command, the parameter
t be set to WP.

-- Norsk Data ND‘60.161.3 EN m~

PIOC Software Guide

START-PIOC - starting the PIOC

P—M: START—PIOC (no parameters)

The PIOC processor will start execution at the entry 'AUTO_

The symbol 'AUTO~START' must be defined as a global label v
the :NRailes with the Linkage Loader.

The STARTuPIOC command brings the PIOC MONITOR into a trans
mode, and before other monitor commands can be used (e.g. E
it must be reset from this state with:;

CTRL + L

Note that typing CTRL+L does not execute a STOP-PIOC commar
gives the PIOC‘MONITOR control over the terminal input. To
the process running in the PIOC, the STOP-PIOC command must
explicitly.

STOP—PIOC - stopping the PIOC

Pom: STOP~PIOC (no parameters)

The PIOC processor is stopped. Registers and memory may be
and altered with the LOOKnAT commands. The CONTINUE—PIOC cc
starts the processor again.

PANIC—STOP-PIOC - panic stop of the PIOC

P~Mz PANIC-STOP—PIOC (no parameters)

If the PIOC processor for any reason is looping on hardware
level, i.e. 6 or 7, the normal STOP command has no effect.
the PANIC command always stops the processor with a RESET 1
a PANIC—STOP—PIOC command, memory and registers except for
counter and system stack pointer may be examined.

Since the program counter and the system stack pointer are
when PANIC-STOP-PIOC is performed, it is NOT possible to re
execution with the CONTINUE—910C command.

—~ Norsk Data ND~60.161.3 EN «~

START'.

hen linking

parent-
TOP-PIOC)

d, but
really stop

be given

inspected
mmand

priority
However,
rap. After
the program

NOT saved
sume

85

86 PIOC Software Guide

CONTINUE-PIOC - continue after STOP~PIOC or a breakpoint

P—M: CONTIBUE—PIOC (no parameters)

The PIOC processor will resume execution at the current program
counter if
STOP‘PIOC.

it has been stopped with STOPwPIOC, but not with PANIC-

The CONTINlPIOC command also brings the PIOC~MONITOR into
transparent;mode, and before other monitor commands can be used (e g.
STOPtPIOC) it must be reset from this state with:;

CTRL + L

Note that typing CTRL+L does not execute a STOP-910C command, but
gives the PIOC~MONITOR control over the terminal input. To really stop
the process running in the PIOC, the STOP-PIOC command must be given
explicitly

UNLOAD~PIO< - unload the PIOC segments

P~M: UNLOAI-PIOC (no parameters)

This commard unloads all PIOC segments previously loaded with the
SEGMENTwLOZ to or the FIX~SEGMENT commands.

m- Norsk Data ND~60.161.3 EN ——

PIOC Software Guide

6.4 Debugging Commands

SET-BREAKPOINT - setting a breakpoint

P-M: SET-BREAKPOINT <address> (<address) ...)

This command sets breakpoints at the specified addresses. When a
breakpoint is reached, execution terminates and control is
the PIOC-MONITOR. A breakpoint will be reset (removed) when
reached.

Execution may he resumed by using the STEP or CONTINUE~PIOC

P-M: SET-BREAKPOINT PIOCTRAP,BOOOO

Breakpoint 1 installed at 43012
Breakpoint 2 installed at 30000

Figure 26. Setting breakpoints.

RESET-BREAKPOINT - resetting a breakpoint

P-M: RESET-BREAKPOINT (address) (<address) ...)

The breakpoints in the specified addresses are removed.

CLEAR-ALL-BREAKPOINTS ~ resetting all breakpoints

P-M: CLEAR—ALL-BREAKPOINTS (no parameters)

All breakpoints set with the SET-BREAKPOINT command will be

LIST-BREAKPOINTS — list all breakpoints

P-M: LIST—BREAKPOINTS (no parameters)

All breakpoints set in the PIOC will be listed.

—~ NOrsk Data ND‘60.161.3 EN «~

passed to
it is

commands.

removed.

87

88

STEP — exe

PrM: STEP‘

The instru

PIOC Software Guide

:ute some instructions

number of steps>,<stop~address>

:tion pointed to by the program counter is disassembled and
shown on the terminal. Then the instruction is executed and this is
also writt
branch is
procedure\
occurs:

~ the n
(defa

w the a
addre

~ an ad
highe
never

I a STO

After a ST
executed.
it can be

an to the terminal. If it was a branch instruction, and the
executed, an extra line is written to the terminal. This
will be repeated until one of the following alternatives

imber of steps given as the first parameter is executed
llt is 1 step)

idress given as the second parameter is reached (default: no
as stop)

iress in the range 0 to 17778 or an address higher than the
at possible memory address is reached (this memory area will
contain code)

3 instruction is reached

3P command a simple (CR) will cause a "STEP,,," to be
That means that after you have issued the STEP command once,
:epeated by typing (CR) only.

—~ Norsk Data ND~60.161.3 EN ~—

PIOC Software Guide

6.5 LOOK-AT Commands

These commands make it possible to display and modify regis
locations in the PIOC memory. The PIOC must be loaded, and
LOOK-ATwREGISTER command, the PIOC must be started also.

The LOOK~AT commands have a set of subcommands as follows:

CR

CODE
EXIT
PERMIT~DEPOSIT Must
EXTRA~FORMAT

Special notations used with slash (/, indirect) subcommands:

address (octal)
number of bytes.
Carriage Return.

m
n
CR 1!

H
II

m/CR

/CR

m,n/CR

xxx CR

CODE CR

EXIT

—~ Norsk Data

Carriage Return causes the next item, regis
instruction, or location to be displayed.
Inserts MCGBOOO instructions.
Terminates the LOOK-AT command.

Defines format of the displayed data.
be used before changes are allowed.

or register name.

Take the value of m as the address and
this location. m may also be a registe

Take the contents of the current locat
next address and display this location.
current location is a register, the mo
start displaying the memory at the add
is contained in the register.

Take the value of m as the next addres
display n bytes. Also m may be a regi

Memory or registers are modified by ty
new value in the current default forma
by a CR. You may use the desired forma
B (oct.), H (hex.) or D (dec.) after t
prior to CR. For example: 37777B CR.

Write a single MCGBOOO instruction to
memory locations, and — depending on t
the instruction - the following locati

You are not allowed to use any symboli
addresses/offsets in the instructions,
are responsible for any overwritten in

To leave one of the LOOK-AT commands a
to the monitor, you type EXIT.

ND”60.161.3 EN *-

ters and
for the

ter,

display
r name.

ion as the
If the

nitor will
ress which

5 and
ster name.

ping the
t followed
t by typing
he value

the current
he size of
ons.

c
and you

struction.

nd go back

89

90

PERMIT—DEF

EXTRA-FORP

You may chc

LOOK-AT-DAT

P-M: LOOK-A

The command
memory.

LOOK-ATsPRC

OSIT

AT

PIOC Software Guide

In order to avoid unintended modification to the
content of a memory location or a register, this
command must be typed before you can do any
changes.

Within the LOOK~AT commands you may extend the
formats used to display the contents of memory
locations or the registers. These formats are in
addition to the main display formats, and is
valid only for the current LOOK-AT command.

The format can be any combination of the
following:

BYTE, HALFWORD, WORD, ASCII, SYMBOL,

the options may be typed in fully or abbreviated,
given on separate lines, or on the same line
separated by commas or blanks.

The BYTE, HALFWORD, and WORD displays the
contents as an 8, 16 or 32 bit binary value.
ASCII displays the contents as an 8 bit
character.

The SYMBOL option displays the symbolic name of
the contents of the location, provided an
exported symbol exist for this address, and this
symbol is found in file read by a the LOAD~ENTRY-
LIST command.

An HELP subcommand shows all available format
options.

ose among five LOOK—AT commands:

A ~ to examine the data part of the memory

T‘DATA <address}

may be used to look at, and to modify the data in the

GRAM ~ to examine the program

P-M: LOOK-NT~PROGRAM (address)

~~ Norsk Data ND-60.161.3 EN ~—

PIOC Software Guide

The command may be used to look at, and to modify the progr
the memory.

LOOK-AT-REGISTER - to examine registers

P-M: LOOK—AT—REGISTER (register name)

The command may be used to look at, and to modify the conte
registers. The default register name is PC (program counter

Starting at register DO, the following registers are displa
sequentially, for example by typing CR between each display:

DO ... D7, A0 ... A6, USP, 55?, PC, SR.

LOOK—AT—RELATIVE - display the memory relative to an addre

P~M: LOOK~AT—RELATIVE (relative to: >

The command has a similar function such as LOOK—AT—DATA, an
addition to the memory address there is also the offset to

am code in

1tS of the
).

yed

i in
the

originally specified address written out in front of the memory
contents. This command is useful when looking at data recor
arrays, of which the start address is known.

LOOK—SYMBOLIC

PmM: LOOK-SYMBOLIC (symbolic address)

This command only accepts a symbolic address. It then call
PROGRAM if the entry represents a program entry; otherwise
LOOK—AT~DATA.

To look at a different type while you are in one of the LOO
commands, you only need to enter the type desired:

DATA, PROGRAM, REGISTER or RELATIVE.

Thus you do not need to type EXIT followed by LOOK—AT-REGIS
can just type the word REGISTER at once.

m~ Norsk Data ND—60.161.3 EN -—

is or

5 LOOK—AT-
Lt calls

{~AT

YER, you

91

92

6.6 mm

PROCESS-STHTUS

P-M: PROCEE

The command
below.

If you ente
process.

If no proce

PIOC Software Guide

Q£§§;§IAifl§_§ommand

- list status information for processes

S—STATUS (process—number)

lists the status of one or all processes. See examples

I a process number, a full status report is given for this

55 number is given, a short status line is reported for all
processes.

Note that if the PIOC is still running, you will usually not get a
reliable snapshot of the process(es); you have to stop PIOCOS first.
Note also that most values are undefined for all processes that are
dormant”

PwM: PROCESS-STATUS.,

Process Status Prio. Curr.Ev. Wait.Ev. Program-Cut SR Time used
1 "FREE“ dormant 5 ————————————————— not defined ~~~~~~~~~~~~~~~~~~~~~~~~
2 "RTC ' suspended 14 O 20 47526 404 1
3 "PRO1" active 1 0 0 77454 400 6953

PwM: PROCESS-STATUSL;

Process 3 ”PRO1" is active
Priority : 1
Events waiting for : OB
Current events 0B
Time used 7011

PC: 77454 SR: 400
D0: 1 A0: 200324
D1 : 0 A1: 200204
D2: 0 A2: 200250
D3: 101 A3: ‘200326
D4: 1 .A4: 77442
05: 377501 AS: 53702
D6: 0 A6: 200302
D7: 0 A7: 203702

Figure 27. Process status display”

“—‘Norsk Data ND~60.161.3 EN ~—

PIOC Software Guide

7 COMPILING, LOADING AND EXECUTING PIOC PROCESSES

Compiling, loading, and execution of user applications for
consist of several steps:

PIOC,

Compilation you have to write and compile your own application
programs for the PIOC.

Systemvload with the PIOCOS Basic Software you got the object
modules to load a basic operating system for your
configuration. You can use one basic sys
several of your applications.

Application-load the basic system and your application mo
loaded together to form the complete use
application system.

Executing to load the whole PIOC softWare into the
memory, and start the execution, you can
the PIOC monitor call in SINTRAN III or
the PIOC-MONITOR.

7.1Wm

User programs for the PIOC are written in PLANC. To compile
code (:SYMB—files) you use the PLANC~MC68000 compiler. Thi
generates object code for programs to run in PIOC.

tem for

dules are
r

PIOC
use either

commands in

the source
s compiler

source @PLANC—MC object
—input» compiler —output+

:SYMB :NRF

listing»

f
Figure 28. Compiling a program with the PLANC-MCGBOOO compiler.

The PLANC-MCGSOOO compiler is used just like any other language
compiler on the ND—100/SOO computers. You type

@PLANC-MC68000

or your installation's selected name, as a command to the 0
system.

-~ Norsk Data ND—60.161.3 EN —~

perating

93‘

94

The compil
available
control tc
source fil

and severe
should use

to ensure
give you k
command mt

Furthermo:
statement

PIOC Software Guide

er prompts with an asterisk (*), a HELP command lists the
commands and their parameters, the EXIT command returns
the SINTRAN III operating system. You start compiling your

es with the command:

*COMPILE (sourceafile> <1ist~file> (object—file)

1 source files can be compiled by repeating the command. You
the compiler command

$SEPARATE~DATA ON

that program code and data areas are separated. This will
etter protection and performance of your application. The
st be given before you start any compilation.

e, in your source file you should always use the SINCLUDE
to incorporate the symbol definition files (DEFS files)

supplied with the PIOC Basic Software. Then you are able to make
symbolic 6
even if St

The compil
relocatabl
made up 01
be built
the PIOCOS
libraries
103.

rror checks, and your source file will remain up to date
me values in PIOCOS may change.

er produces an object file with the program in MC~68000
e form (NRF: Nord Relocatable Format). The object file is
machine instructions, but without fixed addresses. It must

:nto an executable program, a PIOC “domain”, together with
operating system and additional user and system runtime
This process, called linkage-loading is described on page

If you write your own library with routines for the calls to PIOCOS,
you should compile in library mode to get the most compact :NRF code.
The LIBRARY—MODE command must be given before any COMPILE command. An
example of
the user L

such a library is shown on page 117.
ibrary here is called PIOCOS-LIB.

In the examples here,

In the figure below all necessary commands are shown:

*EE
*CO
*CO

*gz;

@PLéNC-MC
*L;_RARY~MODE ON

)

*§Q_PILE PIOCOS-LIB TERMINAL

ARATE-DATA ON
PILE USER—PROG,TERMINAL,"USER-PROG"
PILE BUFFER~POOL,TERMINAL,"BUFFER—POOL"

"PIOCOS-LIB"
T

Example 11. Compiling a program with the PLANC-MC68000 compiler.

w- Norsk Data ND~60.161.3 EN —~

PIOC Software Guide

7.2 Global Labels AUTO START, BUFFER START and BUFFER END

When loading user application programs to PIOCOS, some glob il labels
will be defined: AUTOMSTART, BUFFER_START, and BUFFER_END. When
starting the PIOC, PIOCOS will automatically begin executio
address AUTO_START, a default in the START command. The pro
run at priority level 1.

PIOCOS needs space in the PlOC memory for system tables and
space. This area is called the BUFFER_POOL and is limited b
global labels BUFFER~START and BUFFER_END.

The size of this area depends very much on your programs. Y
define this area in a separate program module as shown belo
it together with your~program(s). In this way, it is easy t
the size of this area independent of the main program:

1 at the
:ess will

message
1 the

on may
fl, and load
3 change

% This module reserves 2000 words (16 bit) buffer p
% used by PIOCOS for system tables and messages.

MODULE BUFFER_POOL
EXPORT BUFFER_START,BUFFER%END

INTEGER ARRAY: BUFFERWSTART (0:1999)
INTEGER: BUFFERnEND

ENDMODULE
$EOF

301 area

Example 12» Reserving a buffer pool for PIOCOS.

When loading PIOCOS modules there is an alternative way of defining
the size of the buffer pool. See question 8 on page 99, and question
9 on page 105.

«- Norsk Data ND—60.161.3 EN --

95

96

7.3 twins

Loading the

PIOC Software Guide

a BlgCOfi Basic system

PIOCOS Basic System is done by running the program

@PIOC‘GENERATuc

The program asks for special options and types of communication lines
for the has
is started
file will 1

For special
starting it.
command lir

The name of
the file ca
remember tc
next run of
modificatic

On the nexi
PIOCOS 883]
answers on

is system you will generate, and produces a mode file which
after the final question. When the mode job terminates, the
e deletedu

purposes it is possible to produce the mode file without
This can be done by giving the no~execution option on the

e:

@PIOC—GENERAT~C INOEX

the mode file will be written on the terminal. If required
n be changed with an editor to fit special needs. But
write the changed file back to a new file. Otherwise, the
PIOC«GENERATmC from the same terminal will overwrite your

ns.

page, you find an example of a full dialog of such a
c System Loading. The numbers refers to the questions and
the following pages" All user input is underlined.

-— Norsk Data ND-60.161.3 EN “7

"v

1.

S

G

The type of questions asked, and the type of answers you must
shown on the next pages, followed by a listing from the execut
the mode file.

PIOC Software Guide

r

BPIOC—GENEHAT—C

XCOH—program to generate PIOCOS and a PIOC—application

(corresponding to P100 Basic Software N0~10433Cl

Do you want to build a basic syn. (YES/N0,default: N0=appl.-sysl ? YES
Which file shall be used for the mode-output (default: terminal) ?

*** Generate a specific PIOCOS ***

Give a domain- and segmentvname (default: PIDCOS) : PIOCOS

Select a PHysical Level Server for each of the four lines:
(NONE means that no PHLS will be generated for this line.)

Communication—line
Communication-line
Communication-line
Communication-line

: HDLC. ASYN or NONE (default: HDLC) : HOLC
: HDLC. ASYN or NONE (default: HOLE) : HBLC
: HULC. ASYN or NONE (default: HULC) : HDLC
: HOLC. ASYN or NONE (default: HOLC) : HDLCU

N
-b

D

Name of user where PIOC:NRF~modu1es are kept (default: PlOCOS—CXX) : PIC

00 you want local XMSG (YES/N0. default N0) ?_

If you will load a BUFFER-POOL later when linking your application to tf
system. you should answer the following question with (CH). But in this
release you need not do so: You can define your BUFFER~POOL residing in
memory-gap in PIOCDS. This gap is defined with the global labels

START_FREE and ENO_FHEE
and you can change €N0_FHEE here to increase the size of your buffer-pa:
(The same rules as for the BUFFER-POOL as a file apply to the buffer-pot
defined by these labels!) If you use LOCAL XMSG without BUFFEH~PO0L as a
file you have always to increase the value (f.ex. to 20000} 9!!!

Specify the address for ENO_FREE (default: 15000) :_

Do you want to keep system~symbols for debugging (YES/N0. default: N0) ’

Example 13. Generating a PIOCOS Basic System using PIOC—GENI

k.

Which loader to be used (default: (SYSTEM)LlNKAGE-LOADER—G:PROGl ? PlOC—LUAUER

we Norsk Data ND-60.161.3 EN -m

~cxx

I.
a

L
1

lfié
A4

RATE-C

give is
ion of

97

98

Question 1:

What to do:

Question 2:

What to do:

Question 3:

What to do:

Question 4:

What to do:

Question 5:

What to do:

Question 6:

What to do:

PIOC Software Guide

Which loader to be used?

Give the name of the ND Linkage~Loader which should he
used. Default is the G~version running on the ND~100.

Do you want to build a basic system (YES, otherwise
application—sys)?

Type Y and (CR)

Which file shall be used for the output from the mode~
job (Default: terminal) ?

When the question is asked, PIOC—GENERAT—C PROG will
start execution of the produced mode file. As in the
@MODE command the output from the job can be written to
a file instead of the terminal.

Type the name of the file (enclosed in “.." if it is a
new file) where you want to save the listing of all
symbolic entries, otherwise (CR).

Give a domain and segment name (default: PIOCOS):

Specify a suitable name for your basic system, for
example HDLC~PIOCOS. The name you give will be used for
both the domain and the segment file.

Communication—line O: HDLC, ASYN or NONE (default:
HDLC):

This question will be repeated for each of the four
communication lines, 0 to 3. You should select a type
of driver for each line: HDLC (synchronous), ASYN
(asynchronous), or NONE.

If you answer NONE, no driver will be included for this
line, and a reference NONE_<x> (where <x> is the line
number) will remain undefined in your system. This will
not affect the operation of your PIOCOS basic system.

Note that the default type will be HDLC for line 0, but
beginning with line 1 the default will be the type that
you specified on the previous line.

Abbreviation of the type names are not allowed.

Name of user where PIOC:NRF modules are kept (default:
UTILITY):

You have to answer with the user name, where all the
PIOC :NRF files are stored.

~~ Norsk Data ND—60.161.3 EN —~

PIOC Software Guide

Question 7:

What to do:

Question 8:

What to do:

Question 9:

What to do:

Do you want local XMSG (YES, otherwise no lc

If you want to use local XMSG for communicat
the PIOC processes, type YES. If NO, or <CR‘
no local XMSG system will be included.

Note that the XMSG system for communicating

cal XMSG)?

ion between
is typed,

with RT—
programs on different computers can always be reached
from PIOCOS, if it is available on the ND—1C

Specify the address for END_FREE (Default: ‘

Since code and data are separated in release
a memory gap between the end of PIOCOS data
the start of the PIOCOS code.

The size of this gap can be increased by the
the value of END_FREE. (START_PREE and END_I

0.

50008)

C there is
area and

user with
REE are

global labels, which means that they are exported from
the PIOCOS Basic System to the application 1

When loading a user application (as shown or

oading.)

page 105),
you will be asked for the name of a buffer pool. If you
there answer with only (CR), the labels BUFI
and BUFFER_END will be defined with the valL
STARTmFREE and END_FREE, respectively.

In this way, the memory gap will be used ins
user defined buffer pool.

The value 150008 is chosen to make sure that
circumstances the data will overlap the code.

But if you are going to generate a big PIOC

ER~START
es of

tead of a

under no

(ASYN an
HDLC, all communication lines used, local XMSG
included, many processes) then this value wi
small for the gap/buffer pool and the PIOCOS
work. Try a large value, for example ZOOOOB.

Do you want to keep system—symbols for debug
(Default: NO) ?

If you need all the PIOCOS system labels, yc
answer with Y(es). Otherwise, (CR) will exc
labels from the listing.

If you answer Y you can set symbolic breakpc

ll be too
will not

sing

u should
lude such

ints inside
PIOCOS. Of course, this requires very good knowledge of
the internal structure of PIOCOS or special
from ND.

With the answer NO or (CR) only a very few F
labels are available after the application 1

-» Norsk Data ND-60.161.3 EN —~

support

IOCOS-
oading.

99

100

The mode f:

labels.

collisions may occur.

PIOC Software Guide

Also because of the limited size of the internal symbol
table, you are recommended not to include the PIOCOS

Beware also that if these symbols are kept, name

1e generated and started by the PIOC—GENERATwC program will
produce similar listing as on the following pages:

DENTER.,.20

3P10C~LDADER

NDmtinkage-Lo
N11 entered:

ader w G 1. May
23. April

N11: cc *** Generate a specific PIDCDS as PIDCDS
N11: abort-batch-on—error off
N11: computer-mode PIDC
N11: release—domain PIDCDS
N11: delete—dbmain PIDCDS

Nll: set-dam ‘PIDCDS"..
N11: define—entry NIL.D,D
N11: openvsegment "PIDCDS"...
N11: localetrap~enab1e XX AD—Z
N11: define-ewtry XX.D.P
N11: low-add 20009.0
N11: low—add 1SDDDB.P
N11: define—ewtr END_FREE.3PCLC.0
N11: load (PI3—CXX1PIDC-NCDHM-C:NRF
Program:173k4 P01 Data: 2834
N11: prog~ref HDLCu0.0.p
N11: prog«ref NDLC~1.0.p
N11: progwref HDLCfi2.0.p
N11: prog—ref HDLC«3.0.p
N11: progmref ND_LDCAL.X.D.p
N11: prog—ref N0_ETHERNE,0.p
N11: load (PIJ-CXX1PIDC-HDLC-C:NRF
Program:24?12 P01 Data: 4240
N11: cc
N11: load (PlJ-CXXlPlDC-ASYNC-C:NRF
Program:24712 P01 Data: 4300
N11: cc
N11: load (PIJ—CXX1PIDC—XMSG—CzNRF
Program:24712 P01 Data: 4340
N11: load (PI3-CXX1PIDC-XRDUT‘C:NRF
Program:24712 P01 Data: 4400
N11: define-ewtry CUR_D.RDCLC.0
N11: low-add J 0
N11: load (PI3-CXX1PIDC—TRAPV-CzNRF
Program:2S308 P01 Data: 2000
N11: low—add ZUR_D.0
N11: load (PIJ-CXX1PIDC—MAlN—C:NRF
Program:37342 P01 Data: 7870
N11: load (Pll-CXX1PIDC—MEMA-CzNRF
Program:#11SD P01 Data: 7744
N11: load (PI)~CXX3PIDC-PHLS-C:NRF
Program:42202 P01 Data: 10104
N11: load (PIl—CXX)PIDC~CLDCK«C:NRF
Program:45500 P01 Data: 12734
N11: load (PIJ-CXX1PIDC-SHDRT—CzNRF
Program:45542 P01 Data: 13004
N11: load (PI)-CXX)PLANC—MC—1B:NRF
M01000LA—RUN—331027
Program:50404 P01 Data: 13004
N11: define—e1tr START_FREE,#0CLC.D
N11: define-eitr END_SYSTEM.RPCLC.P

Norsk Data

1984 Time:
1385 Time:

N
N

N
N

N
N

N
N

N
N

N

001

N
N

N
N

N
N

N
N

001

001

001

N

001

N
N

N

0

R
N

001

001

001

001

001

001

ND~60.161.3 EN

0:00
15:32

terminate job if error
set PIDC link—load mode
close domain if open
remove previous version

create new domain

create new segment
local trap enable
deffhe trap symbol
set load-address
set load-address

load first part of PIDEDS

comm line
comm line

define type
define type
define type comm line
define type comm line
include local xmag if wanted
define ethernet if wanted
load PHYSICAL LEVEL SERVER HDLC

(A
N

-5
C

)

depending on type selected
load PHYSICAL LEVEL SERVER ASYNC

depending on type selected
load XMSG part

load XRDUT part

define current load-address
set load—address 0 (zero)
load trap handler vector

reset current load-address
load serv.ca11 manager

load memory-management

load remaining part of PHLS

load clock handler

load short~circuit modules

load PLANC runtime library

define current load-address

PIOC Software Guide

N11: close-segment Y Z stop loading PIOCDSisegment
ENO_PIOCOS 30272 P01 AUTO__STAHT 30814 P01
BUFFEFLEND 30342 P01 BUFFEFLSTA 30384 P01
BUFFER_STA 37358 P01 BUFFERmEND 37440 P01

Undefined entries on the last used segment

23. April 1985 Time: 15:33
Unsatisfied references :

ENO_PIDCOS 30272 P01 AOT0-STAPT 30814 P01
BUFFER_ENO.....30342 P01 BUFFER_STA 30384 P01
BUFFER_STA 37358 P01 BUFFER_ENO 37440 P01

Defined symbols :

XX 0 P UEPRFATAL 15228 P
TESTFATAL 15312 P TLEVEL_8 15400 P START 18402 P
TLEVEL_7 18734 P TRAP_10 17004 P TTRACE17074 P
SYN_CUMMON 17238 P N0_ETHERNE 17344 P
$1001A_INT 17384 P HOLC_0 17384 P
S1002A‘INT 17400 P $1003A_INT 17414 P
SIO10A_INT 17430 P $1011A_INT 17444 P
$1001B_INT 17480 P HOLC_1 17460 P
$10028_INT 17474 P $1003B_INT 17510 P
SIO1OB‘INT 17524 P $10118mINT 17540 P
$1021A_INT 17554 P HOLE_2 17554 P
$1022A_INT 17570 P SIO23A¢INT 17804 P
$1031A-INT 17820 P $1030A_INT 17834 P
$1021B~INT 17850 P HOLC_3 17850 P
$10228_INT 17884 P SL023BQINT 17700 P
SI0318_INT 17714 P SIOBDBWINT 17730 P
START_TRAN 17744 P HULC”0QV0 20204 P
POSSIBLE_S 20310 P SERIN 20352 P CONNECT 2052. P
REC_DISCUN 20578 P TRANSM_DIS 20722 P ’
HOLC_00TRA 21010 P HOLC_0_V1 21188 P
RESTART_RE 21520 P START‘RECE 21584 P
HOLC_COMMO 21720 P HOLC_I_V1 22138 P
HOLC_I_V2 22300 P HOLC_I_V3 22370 P INCT_37 2281! P
HOLC_DOPEC 23130 P HOLC_00£0N 23370 P TBUS 2471? P
TADOR 24730 P TTLIN 24748 P T2880 24782 P
TCHECK 24778 P TTRAPV 25012 P TPRIV 25023 P
T1010 25042 P T1111 25058 P T24 2507! P
725 25108 P T28 25122 P 727 2513; P
728 25152 P 729 25188 P T30 2520! P
T31 25218 P TNDTUSED 25232 P INCT_30 25245 P
ASYNC_SCHE 25308 P N100XM$8 25412 P NXMSG 2582 P
CHECK~SLOT 28052 P YKICK 28530 P INCT_34 2710 P
YSETEV 27234 P SYN_RETURN 27374 P BREAK 2750 P
UINIT 27852 P UFINO_PNAM 31034 P UFINO_P0 3134 P
UENO 31474 P UEVOK 32254 P UHAITEV 3241 P
SCHEDULER 32738 P ST_USER 33102 P YHON2 3334 P
YCREATE 33752 P YBPGIN 34808 P YKILL 3504 P
YEND 35178 P YABURT 35244 P YNAME 3550 P
YWAITEV 35884 P YSELWAITEV 35770 P YREADEV 3807 P
PIOCTRAP 38708 P ZINIM 37342 P ZGETM 3771 P
ZPELM 40478 P YPHLS 41754 P
FIX_TIME_C 42202 P TIM_M00 42280 P ACCOUNT 4244‘ P
RTCURIV".42484 P RTCINI 42850 P HT_CLOCK 43252 P
UCONNECT 43458 P UDISCONNEC 44152 P UKICK 44311 P
UREM_EVO 44458 P YINTEREV 44582 P
YINTEHDEL 45212 P YRTKICK 45408 P INCT_38 45500 P
LOCAL_XMSG 45502 P XRSTART 45502 P XMINI 45502 P
MFXMSG 45508 P NOWLOCAL_X 45542 P MON84 50341 P
MON85 50374 P MONO 50400 P
ENDnSYSTEM 50404 P .
NIL 0 0 TRAP_LOCS 4 0 MBUX 217E 0
HAKEBDX 2202 0 PIDC_MAP 2208 0 8008 230C 0

_ Norsk Data ND-60.161 3 EN --

101

102

TRAP_HANOL.....
O‘DCHANNEL.....
C_S_0CHANN.....
I_1CHANNEL...
0_2€HANNEL.
C_S_2CHANN.
I _3CHANNEL.
HOLC_UINIT:
HOLC_STATE.:...
XMSG_STATE°r
PIOC_NUMBE..
ND100_CPU..‘
Pnoc_rAeLE..
MAIN_STATE..
PHLS_TABLE..
CLOCKflSTAT..
WATCH-UOG...
Program:....

"BPUN"-code
Lower bound:
Number of we
N11: exit

ace PIUCUS i

.2302

.2634

.3014
...3134
...3254

.....3434
...3554
...3874

.4200
...4300
..4400
..4402

...6508
..7830

7744
. .12874

.13000 D
D

D
D

D
D

D
D

D
D

D
D

O
D

D
D

D

..50404 P01

Ls generated
0

”d3: 24203

3 now ready.

MAIL80X«ST 2574
I_OCHANNEL 2724
0_1CHANNEL 3044
C_S_1CHANN 3224
I_2CHANNEL 3344
0_3CHANNEL 3464
C_S_3CHANN 3844
HOLC_IINIT 3716
ASYNCOSTAT 4240
XROUT_STAT 43$0
CUR_0 4L00
C_XCTPT 440$
MKIEK_TAB 7156

~ HEHA_STATE 770$
PHLSflSTATE 10044
SHORT_STAT 12734
START_FREE 13004

Data: 13004

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D

001

PIOC Software Guide

CwMOTOR 4424 D

REALTIME 11304 0
RTC_DIV 12774 0
ENU‘FHEE 15000 0

Example 14, Output from loading a PIOCOS Basic System

Note that
They will

If you do
NONEw<x> u
loaded for
3.)

Such refer
applicatic

that line.

there may remain some undefined references after the link.
be resolved when loading the user application later.

not generate driver for a communication line, the symbol
ill remain undefined, to remind you that there is no driver

(The (x) refers to the line numbers 0,1, 2, or

ences will remain undefined throughout all future
n loadings, and will even be written out by the LOAD- ENTRY—

LIST command. These particular symbols being undefined, will not
affiect the operation of PIOCOS.

Norsk Data ND*60.161.3 EN “-

PIOC Software Guide

7.4 Loading an Application System

After you have compiled your application programs and produced a
suitable basic system, you have to combine both parts. Thi
the same program PIOC—GENERAT-C just like generating the b.
as explained in the previous section.

@PIOC-GENERAT-C

s is done by
lsic system

The program asks for the name of the basic system generated earlier,
the name of your object files, and generates a mode file w. .th all
necessary commands. When the final question is answered, the program
starts the execution of this mode file. Successful termina‘
mode-job deletes the file.

You may inhibit the execution of the mode job by giving th
execution option to the PIOC—GENERAT~C program:

@PIOC*GENERAT-C /NOEX

On the next page you will find a full dialog of such a PI
application loading. The numbers refers to the questions/a
the following pages. All user input is underlined.

~~ Norsk Data ND~60.161.3 EN "—

:ion of the

2 non”

COS
swers on

103

104 PIOC Software Guide

f’ N
QPIUC-GENERAT—C

XCUM-program to generate PIDCDS and a PIDC-application

(corresponding to PIDC Basic Software ND~10493Cl

1 Which loader to be used (default: (SYSTEfllLlNKAGEuLOADER-G:PRDG) 7 PlDC-LUADER

2 00 you want to build a basic sys. (YES/N0.default: N0=appl.«sya) ? fig
3 Which file shall be used for the mode‘output (default: terminal} ? _

*** Ap nd an application-program to PIOCDS ***

4 Applxc ion domain-name (default: USER-FROG) : USER—FROG

S User—n o where the basic system is kept (default: UTILITY) : PIG-£51
G Domain~ segmentvname of the basic system (default: PIOCOS) : EAQCDS

7 Specify segment-name : PIDC—fl

8 Load-address for FROG (default: ENO_SYSTEM) : ¢
9 Loadwaddress for DATA (default: 2000008) : _

10 Which filename has your BUFFERwPOOL (default: internal buffer-pool) ? w

11 Your applicationusNRFefilo (default: no more files) : (PIUC-TESTlXXX
Your applicationozNRF-file (default: no more files) : (PIU-CXX)PLANC-MC¢1B
Your applicationm:NRF-file (default: no more files)

12 Do you want write-protection on the code (YES/N0. default: N0) 7 YES

k - J

Example 5” Loading a user application to the PIOCOS Basic System

-- Norsk Data ND-60.161.3 EN m"

PIOC Software Guide

The questions are explained on the following pages:

Question 1:

What to do:

Question 2:

What to do:

Question 3:

What to do:

Question 4:

What to do:

Question 5:

What to do:

Question 6:

What to do:

Question 7:

What to do:

Question 8:

What to do:

Question 9:

What to do:

Which loader to be used?

Give the name of the Linkage-Loader which should be
used during the loading. Default is the G-vzrsion
running on the ND~100.

Do you want to build a basic system (YES, o:herwise
application sys)?

Answer N0 and (CR)

Which file shall be used for the mode output
terminal):

Give the name of a file to receive the resu"
mode job.

Application domain—name (default: USER—FROG :

Give a suitable name for the domain of your
application, for example SNA-HASP—WS.
give will be used for both the domain and t

(default:

t of the

The Eame you
e segment.

User name where the basic system is kept (default:
UTILITY):

You have to answer with the name of the user
stores all the PIOC :NRF-files.

Domain/segment name of the basic system (dei
PIOCOS)

Give the name of the basic system.

Specify a segment name.

Specify a name of your choice for the linkag
segment.

Load address for PROG (default: END_SYSTEM)

You have to specify the octal address, where
the code of your application modules. Becaus
symbol END_SYSTEM is known from the basic 5)
PIOC-GENERAT-C offers it as a default value.
this value will give you the best memory uti

Load address for DATA (default: 2000008):

Choose an address for your data area, not ov
with the code. (You probably have to do a te
the loading first, to find out a value that
default value points to the start of the sec
internal PIOC DMA—bank.

-0 Norsk Data NDw60.161.3 EN ——

which

ault:

e—loader

to load
e the
stem load,
Choosing

lization.

erlapping
st run of
fits) The
ond

105

106

Question 1

What to do:

Question 1

What to do

Question 1

What to do

U
\J an

PIOC Software Guide

In the first version of the PIOC hardware there was no
DNA possible from the first memory bank.

Which file name has your BUFFER-POOL (Default: internal
buffer pool) ?

If you want a special file for your buffer pool, you
have to answer with the name of this :NRF file. Note
that the entries BUFFER“STA and BUFFERQEND must be
exported from this file.

If you answer with (CR) only, the gap in PIOCOS is used
instead (see question 7 in the section Loading a PIOCOS
Basic System on page 99).

Your application :NRF file (default: no more files)

Give names, one by one, of the object file you want to
load, The question is repeated until a single carriage
return is typed.

Do you want write—protection on the code (YES/NO,
default: NO)?

If your application program is compiled with the
$SEPARATE—MODE ON, the code part is loaded just behind
the PIOCOS code part. You can specify that this part is
included in the write«protection area of PIOCOS.

If your program tries to modify its own code, an error
message will be generated from the PIOCwMONITOR.

~- Norsk Data ND~60.161.3 EN «a

PIOC Software Guide

The following listing shows the result from the execution of the mode
file:

JENTER..,20

QPIDC—LOADER

N0—Linkage-Loader - G 1. May 1984 Time: 0:00
N11 entered: 23. April 1905 Time: 15:42
N11: cc *** Append an application—program to PIOCDS *** Z
N11: abort-batch—on-error off
N11: computer—mode PIOC
N11: release-domain USER—P800
N11: delete—domain USER-P800 N

N
N

R

N11: copy-domain (PlD—CXX)PIUCOS."USER~PRDG"
N11: define—entry NIL.0.0
N11: set—domain USER—P006
N11: rename—segment PIDCOS PIOC—0
N11: N11: append—segment PIOE-0.. N

N
N

N

WARNING: redefinition of NIL = 0 is ignored
Program: 50404 P Data: 13004 0
N11: low—address ENO_SYSTEM.P Z
N11: low—address 2000008. 0 Z
N11: define-entry BUFFER_STA,STAHT;FHEE.0
N11: define-entry BUFFER‘ENO.ENO_FHEE.0
N11: load (PIOC—TESTlxxx I
Program: 85420 P Data: 211185 001
N11: load (PIG-CXX)PL——1 Z
MOT000LA—RUN-B31027
Program: 73404 P01 Data: 211170 001
N11: define-entry ENO_P10005.#PCLC.P
N11: system-entries 0N
N11: close-segment Y

Z

/ load specified user

terminate job if err
set P100 link-mode
close domain if oper
delete domain

get standard PKOCDS

set domain active
rename old segnname
prepare for further

set P000 address
set DATA address

load specified user

skip system.def.labs

domain

to new
loading

file

file

23. April 1585 Time; 15:43

Unsatisfied references :

None!

Defined symbols :

XX 0 P UERHFATAL/plc 15226 P
TESTFATAL/plc 15312 P TLEVEL_6/p1c....15400 P
START.../p1c....16402 P TLEVEL_7/plc....18734 P TRAP_10./plc....17[04 P
TTRACE../plc....17074 P SYN_COMMON/plc 17236 P
N0_ETHEPNE/plc 17344 P
$1001AulNT/plc 17384 P HOLC_0../plc....17264 P
SIOOZAWINT/plc 17400 P
$1003A_INT/p1c 17414 P
SID10A_INT/p1c 17430 P
SlO11A_1NT/p1c 17444 P
SIOO1B_INT/p1c 17450 P HOLC_1../p1c....17460 P
SIUOZBfilNT/plc 17474 P
SIOO3B_INT/plc 17510 P
$10108‘INT/plc 17524 P
SIO11B_INT/plc 17540 P
$1021A_1NT/p1c 17554 P HOLC_2../p1c....17554 P
$1022A_1NT/p1c 17570 P '
$1023A_INT/plc 17804 P
SIO31A_INT/p1c 17820 P
$1030A_INT/plc 17634 P
SIDZ1B_INT/plc ‘ 17550 P HDLC_3../p1c....17ESU P
$10228_INT/plc 17884 P
51023B_INT/plc 17700 P
$1031B_INT/plc 17714 P
SI03UB~INTlp1c 17730 P

m Norsk Data ND‘60.161.3 EN --

107

108

ST-HT_TRAN/plc
H0 C_0_V0/plc
P0‘SIBLE_S/plc
CU NECT./p1c....20524 P
TR~NSM_0IS/plc
H0 CwDOTRA/plc
H0 C_0~V1/plc
RE‘TAHT_BE/plc
STIRTQRECE/plc
H0 CmCUMMO/plcH0 c‘V1/p1c
H0 C"I_V2/plc
H0 C“I“V3/p1c
H0 C‘DDREC/plc
H0 C_00CON/plc
TAIDR.../plc.un.24730
TC ECK../plc2..02&778
T1I10.../p1c..n.25042
T2‘ /plc...025105
T2: /plc,...25152
T31 /p1c..n.25215
AS éC‘SCHE/plc
NX'LG.../plc....25620
YK ‘K.../plc..°.26530
SY‘ HETURN/plc
UI IT.../plc..2.27652
UFI?0_P0/p1c..,.31345
UNPITEV./plc..,.32418
ST iSEfin/plc..o.33102
YB=:IN../plc..c.34808
YA=IRT../p1c....35244
YS=aWAITEV/p1c
PIlVTRAP/plc..an38708
ZRHEM.../p1c...240476
FI' TIME_C/plc

'O
'U

'O
‘U

'O
‘O

’O
‘D

'U
'U

’U
'D

'D
'U

‘U
‘O

ACUIUNT./p1c.u°.42444 P
RT ‘LUCK/plc..n.43252 P
UDIPCONNEC/plc
UH: dEVQ/plc.n2.44458 P
YI YERDEL/plc
IN! _3s./p1c....45500

"U
'U

................ 17744 P

................ 20204 P

................ 20310 P
REC_0ISCDN/plc
................ 20722 P
................ 21010 P
................ 21188 P
................ 21520 P
................ 21584 P
................ 21720 P
................ 22138 P
................ 22300 P
................ 22370 P
................ 23130 P
............... 23370 P
TILIN.../plc..o.24748 P
TTRAPV../plc.2..25012 P
T1111.../pIC....25058 P
TZE...../plc....25122 P
123 /p1c....25185 P
TN0TUSE0/p10.,..25232 P
................ 25308 P
CHECK_SLOT/plc
INCTW34./p1c....27102 P
................ 2737$ P
UFINO~PNAHIp1c
UEND..../plc....31k74 P
SCHEDULER/plc
YMON2..a/plc..¢.33348 P
YKILL.../p1c....35040 P
YNAME.../p1c..g.35506 P
................ 35770 P
ZINIMu../p1ce...37342 P
YPHLS.../plce.a.41754 P
................ 42202 P
RTCDRIV./p1cu...42484 P
UCUNNECT/pIC..2.43ASE P
................ 44152 P
YINTEHEV/plc.¢..44582 P
................ 45212 P
LOCAL_XMSG/p1c

x0: APT./p1c....45502 XMINI.../p1c....45502 P
N0 0CAL_X/plc 45542 P
“MMVE.../plc.o..45202 P #IMU..../plc....46682 P
#1 $E.../p1c....47258 P fiAPPD.../plco...47274 P
41:17.../p1c....47372 P #ENTR.../plc,...47488 P
uEn T.../p1c....47550 P PPPERP../p1c....47730 P
MU 45.../p1c....50374 P #001T.../p1c....50400 P
INR A0../p1c....50404 P ENO_SY5TEM 50404 P
CAL _MANAB/plc 52434 P
CHE K.../p1c....s3722 P SKRIVT../plc....54080 P
AUTI_START/plc 55030 P
#UT:Y.../plc....88220 P PUTI4.../plc....s7400 P
#ER'DR../p1c....72428 P #5ETNO../plc....72824 P
#IN:YT../p1c....73104 P PIMOD.../p1c....7317s P
MON'..../p1c....73342 P END_PIOEDS 73404 P
NIL.................. 0 0 TRAP_LOCS/plc
M00»..../p1c 2178 0 wAKEBUX./p1c 2202 0
000/plc 2300 0 TRAP_HANOL/plc
MAI BUX~ST/p1c 2574 D
0_0 HANNEL/plc 2834 0
I¢0 HANNEL/plc 2724 0
Gus OCHANN/plc 3014 0
0‘1 HANNEL/plc 3044 0
I_1 HANNEL/plc 3134 0
0-3.1CHANN/p1c 3224 0
0_2 HANNEL/plc ‘........... 3254 0
1‘2 HANNEL/plc 3344 0
Gus ZCHANN/pl: 3434 0
0‘3 HANNEL/plc 3464 0
1‘3 HANNEL/plc 3554 0
cms 3CHANN/p1c 3644 0

~— Norsk Data N0560.161.3 EN

PIOC Software Guide

SERIN.../plc....20352 P
................ 20576 P

INCT_37./plc....22812
TBUS..../plc....24712
TZERO.../plc....24782
TPRIV.../p1c....25028
T24 /p1c....25072
T27 /p1:....25138
T30 /plc ...25202
INCT_30./plc2...25245
N100xnse/p1c....25412
................ 20052
YSETEV../p1c....27234
BREAK.../plc....27500
..... ;..........31034
UEVOK.../plco...32254
................ 3273s
YCPEATE./plc....337sz
YEND..2./p1c....35178
YNAITEV./p1c....3SEB4
YPEAoEv./p1c....30074
ZGETM.../plc...o37710
TIH_M00./p1c2...42200
PTCINI../p1c....42350 'D

'U
"
O

'U
'U

'U
'U

'D
'U

'D
’D

'U
'D

‘D
'U

‘U
'U

'U
'O

'O
'U

'0

UKICK.../p1c....44314 P
YPTKICK./p1c....45406 P
................ 45502 P
MFXHSB../plc2...45508 P
PBCPC.../p1c....45542 P
#IDV..../p1c....47020 P
PPEMV.../p1c....47320 P
#LEAV.../plc....47530 P
HONEA.../plc....50344 P
MONO .../plc... 50400 P
PINISHED/plc....5274s P
sxnxv.../plc....54350 P
#INBY.../plc....85420 P
#SPASI../plc....?2118 P
#OUTBYT./p1c....73032 P
MON1..../p1c....73278 P
.................... 4 0
P10C_MAP/plc 2200 0
................. 2302 0

PIOC Software Guide

HOLC~DINITlp1c
HOLC_IINIT/p1c
HDLC_STATE/p1c
ASYNC_STAT/p1c
XMSG_STATE/p1c
XRUUT_STAT/plc
P10C_NUMBE/plc
N0100_CPU/plc
CvMOTOR./p1c 4424 U
MKICK_TAE/p1c
MAIN_STATE/plc
MEMA_STATE/p1c
PHLS_TABLE/p1c
PHLS_STATE/plc
CLOCK~STATlplc
SHORT_STAT/plc
WATCH‘DUG/plc
STAHT_FHEE 13004 0
BUFFEH_ENO 15000 0
R_FRAME_LE/plc
TnDCB.../p1c...204070 0
R_0ATA../p1c...204772 0

Program: 73404 P01

"BPUN"-code is generated
Lower bound: 0
Number of words: 104475
N11: exit

ac: *** The application-system is néu ready on USER-FROG domain ***

Example 16. Output from loading a user application to

..........3874

................. 3718

................. 4200

................. 4240

................. 4300

.............. ...4340

D
D

D
O

D
D

D
U

................. 4402
PHUC_TA8LE/p1c
................. 7158
................. 7530
................. 770$
................. 7744
................ 10044
................ 12874
................ 12734
................ 13000
BUFFER_STA 13004
TmFHAME_LE/plc
............... 203750
T_0ATA../plco..204120
T1_0ATA./plc...2056£k

D
D

D
D

O
D

D
O

D
D

O
D

Data: 211170 001

Norsk Data ND-60.1

CUH_0 4430 0
C_XCTPT./p1c 4434 0
....... 8538 0

REALTIME/plc....11336 0

RTC_DIV./plc...,12774 0

ENO_FREE 15000 0
............... 203718 0
C_0CB. ./p1c ..20&020 D
H_0CB.../p1c ..2047$2 0
R1_0ATA./p1c ..2085 E 0

Z finish thw load

61.3 EN '*

PIOCOS

109

110 PIOC Software Guide

7.5 The Procedures of Fixing and Loading The PIOC Memory

There are three ways to load the PIOC memory with its final contents,
shown as the paths A, B and C in the illustration below. The next
three sections explain how to carry them out.

Linkagemloader
= @PIOC-LOADER % appends the user's

:NRF version G % object modules and
% libraries, expanding
% the USERwPROG domain
% copied from the
% PIOCOS domain

USER- - -_ —
PROG r. _1 % link-file not used
domain— :PSEG :DSEG i. LINK_J % to load PIOC memory
file « -

Path A v Path B Path C

@PIOC~MONITOR @RT—LOADER @RT-LOADER
P—MzLOAD domain *READ~BIN seg.no *READ—BIN seg.no

l l
@PIOC~MON User progam
P-M:SEG“LOAD no MON PIOC

J

ND-100/PIOC memory

Figure 29. Several ways to load programs into PIOC memory.

If the PIOC has more physical memory than 128 Kbytes, the segments
must cover the full memory area. A segment may be up to 64 pages (128
Kbytes). This is the maximum size that can be handled by SINTRAN III
RT—LOADER.

Using the PIOC-MONITOR‘S SEGMENT~LOAD command, the additional segments
will be requested until the PIOC memory is completely loaded.

The reason for this procedure is to prevent the SINTRAN III operating
system from using unfixed memory pages for other NDe1OO programs, as
this may have undesired effects on the PIOC program.

-— Norsk Data ND~60.161.3 EN —-

PIOC Software Guide

7.5.1 Path A) Using the LOAD Command

This method assumes that you have created an empty segment
Kbytes and that you fix it with the FIXC (fix contiguous)
command. <1)

Remember to fix the segment beginning with the first physi
page number (see the table on page 141). The reason for th
prevent SINTRAN from using this area for swapping purposes

You may then enter the PIOC—MONITOR and use the LOAD comma
the :PSEG file produced by the Linkage—Loader:

of 128
SINTRAN

:al PIOC
L5 is to

1d reading

@PIOC—MONLTOc

PIOC~Monitor ~ Release : Cxx (month) (day) <year>

Give PIOC—number: O 1 Cr EXIT : O
PIOC started
PIOCOS - Release MARCH 22, 1985
The selected PIOCs address~range is OB to 377777B

P—M:LOAD
Domain: USER—FROG
Segment: USER~PROG
LOW“addI:
High-addr:

Example 17. Loading an application using the PIOC-MONITOR' LOAD
command.

An empty segment can be defined in the RT—LOADER and fixed in memory,
by using the following commands:

@RT-LOADER
REAL~TIME LOADER, SINTRAN III

- H

*NEW—SEGMENT,,IIL I (use default values)
NEW SEGMENT IS: 121 (segment number assigned)
*ALLOCATE~AREA.,177777,0 (defines area 12EKbytes)
*EXIT

@FIXC
SEGMENT 1‘1
PAGE: 299 (see below)

Example 18. Defining an empty segment, and fixing it in memory

(1) Alternatively, use the FIX-SEGMENT command of the PIOC~
MONITOR—C, in which case you do not need to know t
page numbers.

—~ Norsk Data ND-60.161.3 EN —-

he physical

111

112

The phv
switche

Details

PIOC Software Guide

sical paqe number depends on the settings of the thumbwheel
5 (7J and 9J) on the PIOC module.

on how to define the page numbers can be found in the PIOC
Referemce Manual, (ND-02.003), Chapter 2, and in the tables on page
141 of this manual.

«— Norsk Data ND~60.161.3 EN —~

PIOC Software Guide

7.5.2 Path B} Using the SEGMENT-LOAD Command

This method requires that you use
file into a free segment and force the segment to contain f
The loading session may look like

the RT~LOADER for reading the :DSEG
4 pages.

this:

@RT-LOADER
REAL~TIME LOADER, SINTRAN

*NEW-SEGMENT‘,,,LL
NEW SEGMENT NO: 121
*READ-BINARY
INPUT-FILE: USER~PROG:DSE§
SEGMENT NO: 1;;
*SET—LOAD-ADDRESE
SEGMENT NO: 121
LOAD ADDRESS: 111111

*END-LOAD
*EXIT

III a H

(use default values)

(force the segment to be 64 pages
(You may also use several smaller)
(segments, e.g., 32+16+16 pages.)

Example 19. Using the RT-LOADER to create a PIOC memory segment.

If your system includes an RT—COMMON, you have to use the FT-LOADER's
NEW—BACKGROUND~SEGMENT instead of

You may then enter the PIOC—MONITOR and use the SEGMENT-LOP
to bring this segment into the PIOC memory:

the NEW-SEGMENT command.

D command

@PIOC-MONITOR-C

PIOC-Monitor — Release

Give PIOC—number: O
PIOC started
PIOCOS - Release MARCH 22,

1 or

P-M:SEGMENT—LOAD
Segment (octal): 1g;
Page (octal): Q

: Cxx - (month) (day) (year)

The selected PIOCs address—range is OB to

EXIT : O

1985
377777B

Example 20. Loading an application from a ND-1OO segment.

'w Norsk Data ND~60.161.3 EN —‘

113

114

7.5.3 Path

This metho
as explain
for loadin
SEGLOAD fu

C) Using the MON PIOC Monitor Call in a ND-1OO Program

1 also expects that you use the RT-LOADER, in the same way

action of the PIOC monitor calls (see page 71).

The program may look like this:

PIOC Software Guide

ed in the previous section. But instead of using the monitor
3, you must write an ND—1OO real time program, calling the

o\°
n\°

o\°
o\°

MODU

111

°\°
°\°

:6
H

(D

IMPO

INTE
INTE
INTE
INTE
INTE
INTE
$INC

PROG

h
im

E

ENDR

$EOF

tt‘ktit*‘ki******‘k*‘X*‘kt'fit*‘k**‘k’k‘kfit***t*i**t****tt*t*‘k*

* RT-program to run in ND-100, loading the *
* PIOC-memory, using MON PIOC (255). *
‘k**X******‘k*‘k’k*‘kt****’k**‘k‘kt****************t*******

LE LOADPIOC

ort routine from the MON—PIOC~LIB library
ember to include the library when compiling this program

RT (ROUTINE VOID,INTEGER&
(INTEGER, INTEGER, INTEGER) : SEGFIX)

GER ARRAY : STACK (0:100)
GER . LDN :=17OOB % 1700 is LDN for PIOC no. 0
GER : SEGNO :=121B
GER : PAGE :=O
GER : STATUS
GER DEVNO :=53D .Messages to terminal no. 53
LUDE PIOCOS-HFUNCVAL‘C: DEFS

RAM : LOADPIOC

NISTACK STACK

EGLOAD (LDN,SEGNO,PAGE) =: STATUS % LOAD
F STATUS)< U1OK THEN

OUTPUT (DEVNO,'A',‘$*** AN ERROR HAS OCCURRED. ***')
OUTPUT (DEVNO,'A','ERROR NUMBER: ')
OUTPUT (DEVNO,'IG',STATUS)

ELSE OUTPUT (DEVNO,'A',‘$--- LOADING DONE -~-‘)
NDIF ‘

OUTINE
ENDMODULE

Exampl e 21. Loading an application using MON PIOC from a PLANO
program.

-- Norsk Data ND~60.161.3 EN —~

PIOC Software Guide

7.6 Object Modules Compiled with $SEPARATE-DATA OFF

If compiling with $SEPARATE-DATA OFF and importing PIOCOS objects
(e.g., REALTIME), it may be necessary to define some symbol
addresses during lOading of the object modules.

When the Linkage—Loader is in the computer mode PIOC, there

.5 and

a is only
one logical address area comprising both code and data. Tc "simulate"
separation, the user must set load addresses explicitly belore the
loading-begins:

LOW-ADDRESS END_SYSTEM,P % code area just behind PIOCOS
LOW~ADDRESS ZOOOOOB, D a data area on second bank

The addresses must be selected to match the real requirements, that is
the code area chosen must be large enough to accomodate all of the
user's object module(s) and run time libraries, without overlapping
the data area.

So if compiling with $SEPARATE~DATA OFF, you have to define
symbols found on the “data" area of PIOCOS making them ave
"program" references and vice versa:

these
ilable as

DEFINE~ENTRY REALTIME, REALTIME, P
DEFINE-ENTRY N100_CPU, N100_CPU, P
DEFINE-ENTRY PIOC_NUMBER, PIOC_NUMBER, P

Figure 30. Defining global variables if using $SEPARATE-E

~~ Norsk Data ND-60.161.3 EN ~-

ATA OFF.

115

116

-~ Norsk Data ND-60.161.3 EN --

PIOC Software Guide

PIOC Software Guide

8 USING LIBRARIES - EXAMPLES

The ND-1OO processes may communicate with PIOC processes through the
monitor call PIOC (MON 255). This call offers several functions, By
using the PIOC—N1OOLIB~C:BRF library supplied for MON PiOC it is
fairly easy to add such calls to your program.

When writing PIOC programs you may also use library functions. Such a
library is not delivered with the basic PIOC, but below you find a
suggestion on how to write it.

MODULE PIOCOSuLIB

************$*k*******i****t********************1**

* THIS LIBRARY IS USED FOR EXECUTING
* CALLS FROM PIOC~PROGRAMS TO PIOCOS
*t***t****ti****itittittrift!ti!****t*****tt**i*i*tW

’w
’fi

’w

EXPORT PLRES_SLOT
EXPORT PLREL_SLOT
EXPORT PLKICK
EXPORT PLFETCH
EXPORT PLWAITEV

N
N

H
N

N

$INCLUDE PIOCOS‘FUNCVAL-C:DEES

********fitt******i*************t**t*********k***i**

* ROUTINE CALL_PIOCOS EXECUTE THE CALLS *
t***********t****************t**t***********k***i**w

’¢
9
¢
@

ROUTINE VOID,VOID (FCODE,INTEGER POINTER,INTEGER WRITE):&
CALL_PIOCOS (CALLNO,PARADDR,CSTATUS)

$* MOVE.W V CALLNO,DO % DO:=CALLNO
$* MOVEA.L PARADDR,AO % AO:=EARADDR
$* TRAP #2 % exeCLte call
$* MOVE.W DO,CSTATUS % DO=:CSTATUS

IF CSTATUS >< U10K THEN
OUTPUT (1,'A’,'$ERROR : ‘)
OUTPUT (1,'I3',CSTATUS)

ENDIP

ENDROUTINE

~~ Norsk Data ND'60.161.3 EN «m

118

N
N

,”

PIOC Software Guide

*********t******t**t********t‘k*****‘k‘k***‘k****i’it'ki’i'k

* THE STANDARD ROUTINES *
*ftt'kttttt'tt‘kX*****t******tkt*t**fi****‘k***t*********

% *x* PLRES_SLOT t******************tt**********

ROUTINE VOID,VOID (INTEGER, INTEGER4, INTEGER WRITE):&
PLRES_SLOT (SLOT, EVENT, ISTAT)

CALL_PIOCOS (FRES_SLOT,ADDR SLOT,ISTAT)
ENDROUTINE

% *** PLREL SLOT *ifi*t***k******t**t*t*****t**t*

ROUTINE VOID,VOID (INTEGER, INTEGER WRITE):&
PLRELMSLOT (SLOT, ISTAT)

CALLmPIOCOS (FREL_SLOT,ADDR_SLOT,ISTAT)
ENDRCUTINE

% *** PLKICK *xt**xx*x*tt**txtt****x****x*****

ROUTPNE VOID,VOID (INTEGER, INTEGER,INTEGER WRITE):&

ENDRC

o
’a

ROUTI

ENDRC

o
6

ROUTI

ENDRC

,,\
°

9W
0W

°\°

ENDMC
$20?

PLKICK (SLOT, INFO, ISTAT)

CALLmPIOCOS (FKICK,ADDR_SLOT,ISTAT)
UTINE

*** PLFETCH tr*‘k'k'k‘k*R‘t**t*‘k*‘k***************‘k

NE VOID,VOID (INTEGER, INTEGER WRITE, INTEGER WRITE):&
PLFETCH (SLOT, INFO, ISTAT)

CALL“PIOCOS (EFETCH,ADDR_SLOT,ISTAT)
UTINE

‘k** PLWAITEV ti'kti:*‘k*‘k‘k‘k*i‘kt'k‘k‘k‘k'k‘kti’i’k'kt‘ki‘k‘k’k‘k

NE VOID,VOID (INTEGER4 WRITE, INTEGER4, INTEGER WRITE):&
PLWAITEV (CURREV, EVENT, ISTAT)

CALL~PIOCOS & '
(FWAITEV,(ADDR CURREV) CONVERT INTEGER POINTER,ISTAT)

UTINE

DULE

Example 22. User library in PLANC.

-- Norsk Data ND~60.161.3 EN —~

PIOC Software Guide

On the next pages you find listings of two PLANC programs:

SPIOC: PIOC program which makes use of the library
earlier in this chapter (PIOCOS_LIB).

RPIOC: ND-1OO real time program using the supplied
PIOC‘NlOOLIB-CzBRF.

First prepare RPIOC as a usual ND—1OO RT-program and SPIOC
application. Remember to load the necessary libraries also

described

library

as a PIOC

Then enter the PIOC—MONITOR-C and load the process SPIOC by LOAD—
DOMAIN or SEGMENT~LOAD. Start the program on PIOC and it wzll come to
an INPUT—statement.

PrM=LQAfl_§ElQQi§BlQQiiii CR

Go to another terminal, log in as SYSTEM or RT and start the real time
program RPIOC.

@RI 32199 CR -
@LQQ CR (You must log out, since the program

reserves the terminal you started it from.)

The program will write out something on this terminal‘if you have
modified the initialization of the DEVNO variable in RPIOC
to your terminal number.

according

Go back to the PIOC—MONITOR—C, type any number and (CR). SPIOC will
now kick RPIOC and both will write out a protocol of this action on
their terminals.

P-M:START-PIOCH CR

If SPIOC had been loaded and started from RPIOC (with the monitor call
PIOC), SPIOC could not have done simple output to terminal This is
the reason why this example shows loading and starting of SPIOC from
the PIOC’MONITOR.

~w Norsk Data ND~60.161.3 EN ~~

119

120 PIOC Software Guide

The two nxograms then start to synchronize each others activities, and
this is wrat happens:

Program running in the PIOC Program running in the ND-1OO

SPIOC vaits for input from
the user ,

RPIOC reserves a terminal.

t RPIOC reserves a slot.

1 RPIOC enters 3RT—WAIT'.
SPIOC reserves a slot. m

SPIOC 'kicks' RPIOC. e

SPIOC enters SUSPENDED state. RPIOC leaves 'RT~WAIT'.

vaiting for ’kick‘. RPIOC fetches info from SPIOCQ

RPIOC ‘kicks’ SPIOC.

SPIOC enters ACTIVE state. RPIOC releases its slot.

SPIOC releases its slot. RPIOC releases the terminal.

SPIOC stops. RPIOC stops.

Figure 31. Programs synchronizing their activity using kicks.

-‘ Norsk Data ND~60,161.3 EN —~

PIOC Software Guide

9° *‘k‘k'ktti'ti'ki?‘k‘k‘k‘k‘t'x*******‘k**tk**‘k'tti’t'kt‘kt‘k'kt‘kt'k’k‘k k'k

% * SPIOC *
% * Program to run in PIOC. It sends a kick to *
% * ND-100, transferring a number (7) via the *
a * mailbox to ND—1OO (RPIOC). *
% * *.
6%: *tt'k‘k‘k‘k‘ki’titt*****t‘k*t*‘k*‘kit'k'tt**‘k****‘k*******t*** If

MODULE SPIOC % global declarations
EXPORT AUTO_START
IMPORT (ROUTINE VOID,VOID &

(INTEGER,INTEGER4,INTEGER WRITE) : PLRES‘SLOT)
IMPORT (ROUTINE VOID,VOID &

(INTEGER,INTEGER WRITE) : PLREL_SLOT)
IMPORT (ROUTINE VOID,VOID &

(INTEGER,INTEGER,INTEGER WRITE) : PLKICK)
IMPORT (ROUTINE VOID,VOID &

(INTEGER4 WRITE,INTEGER4,INTEGER WRITE) : PLWAITEV)
INTEGER ARRAY : STACK(O:SOO)
INTEGER : STATUS

% Main program : AUTO_START

PROGRAM : AUTO~START
INTEGER4 : EVENT,CURREV
INTEGER : SLOT,INFO, HELP

INISTACK STACK
OUTPUT (1,'A','$ > THIS IS SPIOC RUNNING KICK-TEST "O RPIOC <')
3 =1 SLOT
2 =2 EVENT
INPUT(1,'I’,HELP) % Wait for input
PLRES_SLOT (SLOT,EVENT,STATUS) % Reserve slot 3
OUTPUT (1,'A','$ SLOT 3 IS RESERVED ’)
OUTPUT (1,‘A',‘$ I KICK RPIOC ')

7:: INFO
PLKICK (SLOT,INFO,STATUS) % Kick RPZOC, send 7

OUTPUT (1,'A','$ I AM WAITING FOR EVENT‘)
PLWAITEV (CURREV,EVENT,STATUS) % Wait for event, go

% suspended
% Started up on kick from ND-1OO

OUTPUT (1,'A','$ I AM BACK TO LIFE')
PLREL_SLOT (SLOT,STATUS)
OUTPUT (1,‘A','$ > SPIOC PROGRAM STOPS NOW < $')

ENDROUTINE
ENDMODULE
$EOF

Example 23. Program SPIOC running in PIOC (PLANC .

~m Norsk Data ND—60.i61.3 EN -_

121

122

fi
’fl

’fl
’fl

’fi
’N

PIOC Software Guide

ttttt!**flt******t*ttt***********1**2*******X******

RPIOC *
RT-program to run on ND—100, receiving info *
from PIOC by using ‘kicks‘. *

*

*t***********t****t**********ktttfifi****t*t*tt**t**

MODULE RP C
IMPORT (R UTINE VOID,INTEGER (INTEGER, INTEGER, INTEGER) : MN122)
IMPORT (R UTINE VOID,VOID (INTEGER,INTEGER) : MN123)

IMPORT (R UTINE VOID,INTEGER (INTEGER, INTEGER) : RES_SLOT)
IMPORT (R UTINE VOID,INTEGER (INTEGER, INTEGER) : REL_SLOT)
IMPORT (R UTINE VOID,INTEGER (INTEGER, INTEGER ,INTEGER) : KICK)
IMPORT (R TINE VOID,INTEGER (INTEGER, INTEGER ,INTEGER WRITE):FETCH)

INTEGER A Y : STACK (0:100)
INTEGER : LDN :=T7OOB % LDN to PIOC no 0
INTEGER : SLOT :=3 % Slot no 3
INTEGER : DEVNO :=37D % Output to term no 37
INTEGER : IOFLAG:=1 % Reserve the term outp.
INTEGER : IRET :=O %
INTEGER : U1OK :=1 % Return status 1 if OK
INTEGER : STATUS, INFO

m
N

¢
N

(N

$t

Main program : RPIOC

ROGRAM : RPIOC
INISTACK STACK

MN122 (DEVNO,IOFLAG,IRET) % RESERVE TERMINAL
OUTPUT (DEVNO,‘A‘,'$ > RPIOC RUNNING < ')

\REL_SLOT (LDN,SLOT) =: STATUS % RELEASE SLOT
IE STATUS)< U1OK THEN

OUTPUT (DEVNO,‘A','$ **** ERROR IN ROUTINE: REL_SLOT')
OUTPUT (DEVNO,'I6',STATUS)

ENDIF

RES_SLOT (LDN,SLOT) =: STATUS % RESERVE SLOT
IF STATUS >< U1OK THEN

OUTPUT (DEVNO,'A',‘$ **** ERROR IN ROUTINE: RES_SLOT')
OUTPUT (DEVNO,'I6',STATUS)

ELSE OUTPUT (DEVNO,'A','$ SLOT RESERVED')
OUTPUT (DEVNO,'A','$ RPIOC WAITING FOR KICK')

ENDIF

MON 135 % CALL RT-WAIT

"- Norsk Data ND—60.161.3 EN ~—

PIOC Software Guide

ENDROUTINE
ENDMQDULE
$EOF

OUTPUT (DEVNO,'A','$ RPIOC RECEIVED KICK')
FETCH (LDN,SLOT,INFO) =: STATUS % GET INFO I
IF STATUS >< U1OK THEN

OUTPUT (DEVNO,'A','$ **** ERROR IN ROUTINE: PI
OUTPUT (DEVNO,'16',STATUS)

ELSE OUTPUT (DEVNO,'A','$ RECEIVED INFO = ')
OUTPUT (DEVNO,‘IG',INFO)

ENDIF

O=:INFO
KICK (LDN,SLOT,INEO) =: STATUS
IE STATUS)< U1OK THEN

OUTPUT (DEVNO,'A’,‘$ **** ERROR IN ROUTINE: KI
OUTPUT (DEVNO,'I6',STATUS)

ELSE OUTPUT (DEVNO,'A','$ I HAVE SENT A KICK')
ENDIF

o\° KICK TO SI

REL_SLOT (LDN,SLOT) =2 STATUS
IF STATUS)< UTOK THEN

OUTPUT (DEVNO,'A',‘$ **** ERROR IN ROUTINE: RE
OUTPUT (DEVNO,'IG‘,STATUS)

ELSE OUTPUT (DEVNO,'A','$ SLOT IS RELEASED')
ENDIF

o\' RELEASE SI

OUTPUT (DEVNO,'A','$ RPIOC PROGRAM STOPS NOW')

ROM SLOT

TCH')

OT

CK')

0T

L_SLOT')

MN123 (DEVNO,IOFLAG) % RELEASE TERMINAL

Example 24. Program RPIOC running in ND-1OO (PLANC

~* Norsk Data ND~60.161.3 EN -»

v

123

124 PIOC Software Guide

«- Norsk Data NDw60.161.3 EN ‘-

PIOC Software Guide 125

A P P E N D I X A

Symbolic Names for PIOCOS System Calls and Status Codes

~‘ Norsk Data ND-60.161.3 EN —-

125 PlOC Software Guide

-~ Norsk Data ND—60.161 3 EN ~—

PIOC Software Guide

This appendix lists the PIOC-FUNCVAL-COO:DEFS file supplied
PIOC Basic Software. If you are using a newer version, the
have been expanded or changed.

ititt**********i****t*t***t*33*flti*****t*****t******ttt***

PIOC-FUNCVAL-COO:DEFS

definitions of the symbolic names for calls to PIOCOS
and return codes from PIOCOS.

t*********************t*****#**k**************t**ikt******

PIOCOS system calls

TYPE FCODE = ENUMERATION<FMONO,FMON1,FMON2,FCREATE,FBEGIN,F
FABORT,FPROSNO,FPRNAME,FSETEV,FWAITEV,FSELWAITEV,FRE
FINTEREV,FINTERDEL,FCRDRV,FTRAPH,FWHOAMI, FRES_SLOT,
FREL_SLOT,FKICK,FPETCH, FXMSG,FPHLS,FRTKICK,FNXMSG,F
FSYN_RET,FXDRV)

N
cfl

tN
N

'W
’W

’¢
9

¢
P

¢
°d

9
o\°

% system call return values (set in D0 by PIOCOS)

CONSTANT U1OK = 1 % operation successfully
CONSTANT UNOTCOMPL = O % operation not complete
CONSTANT UNOEXIST = ~1 % process does not exist
CONSTANT U1NOSP = ~2 % no space in buffer poo
CONSTANT U1EXIST = ~3 % process already exists
CONSTANT U1ILPRI = ~4 % illegal priority
CONSTANT UQFULL = ~5 % timer queue full
CONSTANT UEVNOEX = ~6 % event not found
CONSTANT UILVEC = ~10 % illegal vector address
CONSTANT UILCAL = ~11 % call not implemented

% error codes used in KICK monitor call
CONSTANT UPILF = ~20 % illegal function
CONSTANT UPSLBS = ~21 % slot occupied
CONSTANT UPILSL 2 ~22 % illegal slot (not exis
CONSTANT UPNOTY = ~23 % slot not reserved by y
CONSTANT UPFULL = ~24 % box not empty
CONSTANT UPNOME = ~25 % box empty

% error codes used in PHLS
CONSTANT UILL_SERVICE = ~31 % illegal service reques
CONSTANT UIL_PHLS = ~32 % illegal PHLS number
CONSTANT UIL_SERVICE_POINT = ~33 % no such service point
CONSTANT UIL_PHLS_TYPE = ~34 2 illegal PHLS type (HDL

% utilities
CONSTANT YYNOPROS = «50 % no process with this n
CONSTANT YYNOFREE = ~51 a no free entry for new

Table 7. PIOCOS FUNCTION VALUES, Part 1.

~- Norsk Data ND~60.161.3 EN ~-

'with the
file may

****tt*

*i*****

KILL, &
ns, &

&
END, &

completed
1

l

ting)
au

ted

Z,ASYNC)

ame
process

127

128

% memor

CONSTANT
CONSTANT
CONSTANT
CONSTANT

descr

°\o
“\o

“\o

TYPE SERP
TYPE PHLS

DCB-N

9W
o\°

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

HDLC

°\o
“\o

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

ASYNC

o\°
a\°

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
$EOF

PIOC Software Guide

1 manager

flM_OK = O % successful completion
%M_NOBUF = «100 % no vacant buffer
HMglNCONSISTENT = ~101 % inconsistency
4M_ILADDR = ~102 % illegal buffer address

iption of the system call parameters for PHLS

= ENUMERATION (FCONTROL,FRECEIVER,FTRANSMITTER)
_TYPE = ENUMERATION (HDLC,ASYNCHRONOUS)

AME values

TRANMREQUEST = 1 % transmit DCB request
TRAN_RESPONSE = ~1 % transmit DCB response
RECV_REQUEST = 2 % receive DCB request
RECV_RESPONSE = ~2 % receive DCB response
:ONNwREQUEST = 3 % connect request
:0NN_RESPONSE = ~3 % connect response
DISWREQUEST = g % disconnect request
DISWRESPONSE = *4 a disconnect response
INITMREQUEST = 5 % init request
INITWRESPONSE = ~5 % init response

status values

E_OK = O % okay
E_UNDERRUN = 1 % underrun
E_ILL«NAME = 2 % illegal message name
E_ABORT = 3 % frame aborted
EwOVERRUN_CRC = 4 % overrun or crc error
E“WPmVIOLATION = 5 % write protect violation
E_SMAL‘BUFF = 6 % overflow in receive message
E_ILL_ADDR = 7 % illegal address for data message
E_NOT“CONNECTED = 8 % not connected

HRONOUS Status values

A_OK = O % okay
A_EFRAM_ERROR = 1 A framing error
A_EILL_NAME = 2 % illegal message name
A_EPARITY = 3 % parity error
A_EOVERRUN = 4 % overrunn
A‘ENOT_CONNECTED = 8 a not connected

Table 8. PIOCOS FUNCTION VALUES, Part 2.

-« Norsk Data ND‘60.161.3 EN ——

PIOC Software Guide 129

A P P E N D I X B

gxgbolic Names for Functions and Error Codes in XMSG

~— Norsk Data ND~60.161.3 EN v»

130 PIOC Software Guide

-« Norsk Data ND—60.161.3 EN —~

PIOC Software Guide

This appendix contains the PIOC—XFUNCVAL~COO:DEFS file supp
the PIOC BASIC Software. If you are using a newer version,
may have been expanded or changed.

%**t*****‘k**************fikttttfik‘k‘k‘kt‘ktt‘ktt*****‘k***t****‘ktt

PIOC‘XFUNVAL-C002DEFS

o\°
“\a

°\o
°\o

o\°
o\°

CONSTANT XFDUM = OB % dummy function
CONSTANT XFDCT = 18 % disconnect from message system
CONSTANT XFGET = 28 2 get message space
CONSTANT XFREL = 3B % release message space
CONSTANT XFRHD = 48 2 release message space (6 bytes)
CONSTANT XFWHD = 5B 2 write header to a message (6 byte
CONSTANT XFREA = 68 t read from message to user buffer
CONSTANT XFWRI = 7B % write from user to message
CONSTANT XESCM = 108 a set current message
CONSTANT XFMST = 118 % get message status
CONSTANT XFOPN = 128 % open port
CONSTANT XFCLS = 13B % close port
CONSTANT XFSND = 148 % send message to a remote port
CONSTANT XFRCV = 158 % receive a message on a given port
CONSTANT XFPST = 168 % get local port status
CONSTANT XFGST = 17B % general status or wait

0a service functions

CONSTANT XFSIN = 208 % service initialization function
CONSTANT XFSRL = 218 % service release function
CONSTANT XFABR = 22B % absolute read block from POP area
CONSTANT XFABW = 238 2 absolute write block to POF area
CONSTANT XFMLK = 24B % lock message system
CONSTANT XFMUL = 258 % unlock message system
CONSTANT XFMZP = 268 % magic number to port id.
CONSTANT XFPZM = 273 % port to magic number
CONSTANT XFRIN = 303 % routing initialize (called by XRO
CONSTANT XFCRD = 318 % create driver with context
CONSTANT XFSTD = 32B % start driver

Table 9" XMSGMFUNCTION-VALUES, Part 1.

“w Norsk Data ND-60.161.3 EN *-

lied with
the file

*‘kt‘k

s)

UT)

131

132

O

CONSTANT EFDIB
CONSTANT)FRIB
CONSTANT EFWIB
CONSTANT)FDUB
CONSTANT)FMX1
% bit values

o\°

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT D

C
D

C
M

M
M

’X
‘M

M
’X

‘
uj :12 H '0

338
34B
358
368
378II

I!
I!

II
II

o\‘
o\°

a\°
0‘“

o\°

PIOC Software Guide

a indirect buffer handling functions

define indirect buffer
read from indirect buffer
write to indirect buffer
define user buffer for current message
end marker ** leave me here please

in function codes

173
168
158
158
15B
14B
13B
12B
118

II
H

N
H

H
[I set then wait if operation not terminated

RCV/PST/GST: do RTENTRY on status change
XFOPN: permanent open required ,
XFDIB: allow write access to indirect buffer
XFSND: high-priority message
XFSND: bounce message
XFSND: forward message
XFSND: message to be sent to routing proceSs
XFSND: secure msg (return if not delivered)

returned as successful status from XFRCV
w..-p_._-u..-..—..._,_._._._.__._—..m-_.u-—_....-m....“-.o__._.m-»..._,_-u_».._uwu_.¢

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT XMTPS

TB
28
3B
48
SB|!

N
H

II
II

o\°
ow

a\°
o\°

a“0 normal message J
routed message (via XROUT)
high priority message
return message (abnormal condition)
pseudo message

Table 10. XMSGwFUNCTION-VALUES, Part 2.

~- Norsk Data ND-60.161.3 EN -«

PIOC Software Gu

and so leads
to the user.o\°

o\°
o\°

0‘“
o\°

XEOKCONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT.
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

XENOT
XEIRM
XETMM
XENIM
XEIBP
XEBNY
XEISP
XENOP
XEIDR
XENDM
XEMCH
XEBFC
XERAL
XECRA
XEWNA
XENVI
XEILF
XEIMA
XEMFL
XEILM
XEIPN
XEXBF

[I
H

I!
II

II
ll

II
H

H
H

H
H

II
M

I!
II

II
II

H
H

II
N

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

XXEIE
XXIOW
XXBIN
XXMCE
XXIEN
XXIFL
XXIRT
XXNBF
XXRIN
XXNMM
XXNIM
XXCLS
XXCHE
XXNOR
XXICM

M
H

I!
H

II
H

II
I!

N
H

II
II

N
H

H

ide

error symbols used by XMSG

implies that the error is probably internal to the XMS
to a call to ZCRAS, and the error is not

1 .\°

‘18
~28
-4B
~58
~68
~7E

-1OB
-11B
-128
-13B
-14B
*15B
~1EB
-17B
-ZOB
‘21B
~228
-23B
~24B
~25B
-268
-33B

o\°
°\9

96
1

9\°
o\°

o\°
o\°

a\°
o\°

o\°
e\°

o\“
o\°

0‘“
9"

0°
0“

o\°
0“

0V0
9‘9

1B
'2B
3B
4B
5B
6B
7B

1GB
11B
12B
138
14B
15B
16B
17B n\°

o\°
9‘“

o\°
o\°

9‘“
o\°

o\°
o\°

o\°
o\°

o\°
o\°

o\°
o\°

Table 11.

~— Norsk Data

operation successfully completed

No more XT~blocks free
Non-local remote port illegal her

133

§ system
:eturned

e
Task is not allowed any more memmry
Facility not yet implemented

Message buffer not yours
Illegal service program calling
No more ports available
Function not available to driver
No default message
Message is already chained
Message is in a queue
Routing port already defined
XMSG crash (Info in Basefield)
Write Not Allowed (Indirect buff
No Valid Indirect buffer defined
Illegal function code in monitor
Invalid magic number
Message space full
Illegal message size
Illegal port number
Message already has a buffer

illegal (COMTAB) entry ptr to
illegal owner of buffer
memory allocn. inconsistency
message queue length inconsist
ZRALL gave port not in XQTAB
INIT: ZFUNC function >XFMX1

INIT: no buffer space availabl

more memory released than owne
not implemented (cannot recove
inconsistency in port chain in
double chaining attempted
no XMSG~resident found by MFIN
inconsistency in XMPRT/XPCMS p>

6
»
)
§
>

6
>

6
H

>
+

)
6
)
6
>

6
>

6
>

6
I
6
»
¥

XMSG ERROR SYMBOLS, Part 1.

ND~60.161.3 EN

TCRMG

ancy

illegal rt-description add use .

inconsistency in resource allo ation

3
close

I (POP)
iir

134

°\°
°\°

CONSTPNT
CONSTPNT
CONSTZNT
CONSTANT
CONSTPNT
CONSTPNT
CONSTANT

o\°
o\°

°\°
°\°

CONST NT
CONST NT
CONST NT
CONST NT
CONST NT
CONST NT
CONST NT
CONSTANT
$EOF

XSNUL
XSLET
XSNAM
XSCNM
XSGNM
XSGNI
XSMAX

XRISN
XRUNN
XRDDF
XRNSP
XRIPT
XRMMP
XRUNM
XRMTL

II
II

I!
H

H
II

II

XFOUT errors

the following are error values returned as results from a
service request in byte 0 of the message. ‘

H
I!

I!
II

II

XFOUT service values

°\o
ow

°\o
9““

“\o
°\o

o\°

SGNI

O
\J

m
U1

.1>
u

N
,3

.\°
9\0

°\°
9\°

°\°
°\°

°\°
9\°

.4

Table 12b

PIOC Software Guide

null command returns 0 status to sender
send a letter
give name to this port
clear name of this port
get name of port (param: magno)
get name (param: mc/portno)
maximum legal service value

illegal service number
no open port has this name
another port already has this name
no space left for names
illegal parameter type
missing mandatory parameter
unknown magic number
resulting message too long

XMSG ERROR SYMBOLS, Part 2.

, ‘« Norsk Data ND¢60.161.3 EN ~«

PIOC Software Guide 135

A_? P E N D I X C

PIOC EXCEPTION VECTOR ASSIGNMENTS

-~ Norsk Data NDfl60.161.3 EN “-

136 PIOC Software Guide

-— Norsk Data ND-60.161 3 EN ~~

PIOC Software Guide

Vectors not listed are not used — they use a dummy excepticn
handler - or their use will be changed in the future.

No. Used for Handler

0 Reset (Initial supervisor stack-pointer)
1 Reset (Initial program~counter)
2 Bus-error TBUS
3 Address-error (word—access to odd address) TADDR
4 Illegal instruction TILIN
5 Divide by zero TZERO
6 Trap according to CHECK—instruction TCHECK
7 Trap according to TRAPV~instruction TTRAPV
8 Privilege violation TPRIV
9 Tracing-mode TTRACE

1O 1010-Emulator T1010
11 1111~Emulator T1111
24 Spurious interrupt T24
26 Serial output T26
28 Serial input T28
29 Memory error T29
30 OPCOM interrupt from ND~1OO TLEVELQG
31 Power-fail TLEVEL_7
34 TRAP #2, MONITOR-call to PIOCOS PIOCTRAP
35 Special breakpoint~handling rEAK
42 TRAP #10, reserved for breakpoints IPAP_10
64 write-protect~violation |ICT_3O
68 ND-1OO calling l1CT_34
69 RT—clock (dynamically assigned during startup) 'TCDRIV
70 0ntput~DMA~error IiCT_36
71 Input-DMA—error I}CT_37
81 Line 1 HDLC ‘IO1OB_INT
82 Line 1 HDLC,Async ~1001B_INT
83 Line 1 HDLC *IO11B_INT
84 Line 1 HDLC,Async IOOZB__INT
86 Line 1 HDLC,Async fiIOO3B_INT
89 Line 0 HDLC 5IO1OA_INT
90 Line 0 HDLC,Async SIOO1A_INT
91 Line 0 HDLC ‘IO11A_INT
92 Line 0 HDLC,Async IOOZAJNT
94 Line 0 HDLC,Async ~IOO3A‘INT
97 Line 3 HDLC *IO3OB_INT
98 Line 3 HDLC,Async ‘IO21B_INT
99 Line 3 HDLC ilO31BflINT

100 Line 3 HDLC,Async €IOZZB_INT
102 Line 3 HDLC,Async a 0238_INT
105 Line 2 HDLC 2.030A_INT
106 Line 2 HDLC,Async { 021A_INT
107 Line 2 HDLC 3 031A_INT
108 Line 2 HDLC,Async F 022A‘INT
110 Line 2 HDLC,Async 11023A_INT

Table 13. PIOC EXCEPTION VECTOR ASSIGNMENTS

~— Norsk Data ND—60.161.3 EN -¢

137

138 ‘ PIOC Software Guide

-- Norsk Data ND-BO 161.3 EN ~—

PIOC Software Guide 139

WW

PIOC Physical Memory Paqe Numbers

~~ Morsk Data ND-60.161 3 EN ~-

140 PIOC Software Guide

~« Norsk Data ND“60.161.3 EN ——

PIOC Software Guide

The thumbwheel switches 7J and SJ on the PIOC-module are us
select the memory area shared between the P100 and the ND-1

0n the PIOC/128Kb:

7J 9J ND~1OO pages:

0 0 0 v 77 * * The first
1 100 ~ 177 pages are r
2 200 — 277 SINTRAN III
3 300 — 377

0 is 1700 m 1777
1 O 2000 ~ 2077

1 2100 ~ 2177
2 2200 ~ 2277

Table 14. EEOC/128KB Physical Page Numbers.

On the PIOC/512Kb:
9J 000 number = small window, 128Kbytes:

73 SJ ND~1OO pages:

0 1 O * 177 * * The first
3 200 ~ 377 pages are r
5 -400 ~ 577 SINTRAN III

0 15 1600 ~ 1777
1 1 2000 ~ 2177

3 2200 ~ 2377

Table 15. PIOC/512KB Physical Page Numbers, Small Win

On the PIOC/512Kb:
9J EVEN number = large window, 256Kbytes:

7J 9J ND-1OO pages:

0 0 O — 377 * * The first
(O 2 0 — 377) pages are r

O 4 400 ~ 777 SINTRAN III
(0 6 400 — 777)

o 14 3000 ~ 3377
O 3400 - 3777
2 4000 ~ 4377

Table 16. PIOC/S12KB Physical Page Numbers, Large Wir

The lower two bits of the thumbwheel 9J are ignored wi
the standard use of PIOC.

-— Norsk Data ND-60.161.3 EN «—

ed to
00.

77 octal
eserved by
opr.sys.

77 octal
eserved by
opr.sysh

dows.

77 octal
eserved by
opr.sys.

dows.

th

141

142 PIOC Software Guide

«« Norsk Data ND—60.161.3 EN —-

PIOC Software Guide

Index

@FIXC SINTRAN command 111.
AO—register ... 13.
abnormal conditions 30.
activate service point 46.
ACTIVE ... 12.
alternative page table 63.
ALTON/ALTOFF 63.
ASCII strings .. 42.
ASR ... 29.
asynchronous exceptions 29.
asynchronous service routine 29.
AUTO_START ... 121.

start address 73, 8
basic software 3.
baud rate ... 3.

ASYNC transmissions 59.
HDLC transmissions 55.

bounce message 38.
breakpoint ... 87.
BUFFER_END global label 95.
BUFFER_START global label 95.
call

name .. 15.
number .. 15.

CHK instruction (check register) 30.
CLEARmALL—BREAKPOINTS debugging command 87.
clear the name of a port 42.
close port(s) 34.
CODE LOOK-AT subcommand 89.
common memory 63.
compiling a PIOC program 94.
CONN_REQUEST

ASYNC ... 59.
HDLC .. 56.

CONN_RESPONSE
ASYNC ... 59.
HDLC .. 56.

CONTINUE-PIOC panel command 86.
control and supervise service point 52, 5
create driver (ASR) 29.
create process description 16.
current message 36.
DO—register ... 13.
DEAD ... 12.
debugging commands 87.
declaring an ASR 29.
delete process 17.
displacement (DISP) 37.
DIS.REQUEST

ASYNC g 60.
HDLC .. 56.

DIS.RESPONSE
ASYNC ... 60.

—- Norsk Data ND~60.161.3 EN -~

143

144 PIOC Software Guide

HDLC .. 56.
DIV instruction (divide) 30.
DCRMANT 12.
events ... 20.
EVENTS reserved by XMSG 20.
exceptions

asynchronous 29.
synchronous 30.

e ception processing 29.
EvIT command 81
E IT LOOK-AT subcommand 89
E TRA-FORMAT LOOK‘AT subcommand 9O
FVBORT call ... 17
f tal errors .. 31
F EGIN call ... 17
FIRDRV call ... 29
FIREATE call 16
F3ND call ... 17
f tch information from a PIOC process 71
F TCH MON PIOC function 71
FgETCH call 75
FéNTERDEL call 25
F NTEREV call 24
F XoSEGMENT panel command 84
f xed memory 73
f xed segments 63
F lCK call .. 74
F ILL call ... 17
F XMSG call ... 76
fcrced termination 17
F:HLS call ... 46
F1RNAME ... 19
F.ROSNO call 19.
F EADEV call '....... 23.
F.EL‘SLOT call 74.
F ES‘SLOT call 74.
F ECM function 36.
FfiELWAIT call 22.
FfiETEV call ... 22.
F RAPH declaration of traphandler routine 30.
FJAITEV call 22.
FfHOAMI call 19
FAMSG call ... 33.
grtting info from a ND-1OO process 75.
grt message buffer space 35.
gvt port name 43.
g obal~1abe1 95.
g obal variables 77
hgrdware architecture 1.
HHLC Highlevel Data Link Control 45.
HELP command 81.
hierarchy ... 13.

—- Norsk Data ND~60.161.3 EN «w

PIOC Software Guide

high priority message 38.
I/O message description;.... 49.
illegal instructions 30.
INFO parameter 69.
INISTACK statement 11.
INIT_REQUEST

' ASYNC ... 58 .
HDLC .. 54.

INITMRESPONSE
ASYNC ... 58.
HDLC .. 54.

integer ... 42.
interrupts ... 29.
ISO ISB309.2 45.
kick channel 64.
KICK MON PIOC function 70.
LDN (Logical Device Number) 68.
library ... 117.
LIST-BREAKPOINTS debugging command 87.
LIST-MODULE'STATE command 82.
LOADmENTRY-LIST command 82.
loading

:PSEG segments 83.
@RT-segments 84.

load and fix @RT segments -.................... 84.
l.oad a segment into PIOC memory and fix it 71.
LOAD panel command 83,
local XMSG ... 32.
LOOKsAT~DATA command 90.
LOOK-AT~PROGRAM command 90.
LOOK~AT~REGISTER command 91.
LOOK—ATsRELATIVE command 91.
LOOK~AT commands 89.
LOOKwSYMBOLIC command 91.
magic number 32, A
mailbox ... 64.
maintenance modus 59.
maximum number of process descriptions 11.
MCEBOOO registers 13.
message head .. 49.
messages ... 32.
message length 35.
monitor call 67.
MON 255 ... 67.
MON PIOC ... 67,
MON PIOC functions 68.
N100_CPU ... 77, ‘
name a port ... 42.
ND—1OO to PIOC communication .; 63.
normal termination 17.
null status message 42.
object modules compiled with $SEPARATE—DATA OFF 115.

~- Norsk Data NDw60.161.3 EN -»

11.

145

146

115.

19.
19.

115.

PIOC Software Guide

open a port ... 34.
open a port permanently 34.
panel commands 83.
PANIC~STOP~PIOC panel command 85.
periodical events 24.
PERMIT—DEPOSIT LOOK-AT subcommand 89.
PHLS .

call .. 51.
number .. 47.

PHLS physical level server 45.
FIG:

logical device number 68.
physical page number 72.
to ND—1OO communication 63.

PIOZ~MONITOR '........................... 79.
PIOZOS real time operating system 11.
PIOZaNUMBER ... 77,
P102 physical page numbers 112.
PIC: supervising 79.
PLAQCwMCGSOOO compiling PIOC 93.
PLAQC library 67.
port

name .. 32.
number .. 32

ports ... 32.
PRIDRITY ... 16,
privileged instructions 29.
privileged violations 30.
prozess

creation .. 16.
description 11.
hierarchy 13.
identification 19.
modification 16
name .. 11,
number .. 11,
priority .. 11.
states .. 11,
synchronization 20.
type .. 16.

PROZESS~STATUS command 92.
puraose of PIOC 1.
reai current event bits 23.
reai a message 37.
REALTIME ... 77,
receive

data service point;.... 53,
next message 39.

RECJ_REQUEST 53.
ASYNC ... 61.
HDLC '.......................... 57.

RECJ_RESPONSE S3.

—— Norsk Data ND«60.161.3 EN --

PIOC Software Guide

ASYNC ... 61
HDLC .. 57

release
message buffer~space 35.
the ND-100 side of a slot 70.
the PIOC side of a slot 74.

relocatable object format 93L
REL_SLOT MON PIOC function 70.
remote connection 52,
remove all fixed segments 72.
REQUEST messages '................................... 51.
reserve

the ND—1OO side of a slot 70.
the PIOC side of a slot 74.

reserved events for XMSG f 20.
RESET-BREAKPOINT debugging command 87.
RESPONSE messages 51.
RESUSLOT MON PIOC function '70.
return code .. 13.
RETVAL parameter 69.
routing and service task (XROUT) 41.
RT~LOADER ... 113.
RT-wait ... 63.
RTE instruction 29.
SDLC Synchronous Data Link Control 45.
secure message 38.
SEGLOAD MON PIOC function 71.
SEGMENT‘LOAD panel command 84,
senders magic number 40.
sending a kick to a NDn1OO process 74.
send current message 38.
send information to a PIOC process 70.
send letter ... 42.
service points 46.
SET-BREAKPOINT debugging command 87.
set current message 36.
set up an event 22.
set up expected events 22.
slots ... 64.
stack area .. 11.
START-PIOC panel command 85.
START_PIOC MON PIOC function 73.
start the PIOC 73.
status ... 13.
STEP debugging command 88.
STOP~PIOC panel command 85.
STOP_PIOC MON PIOC function 73.
stop the PIOC 73.
strings ASCII 42.
supervising the PIOC ~ 79.
supervisor state 29.
SUSPENDED ... 12.

~~ Norsk Data ND—GO 161.3 EN «m

113.

147

148 PIOC Software Guide

synchronous exceptions 30.
system

calls ... 13.
process ... 13.

system process 16, 29.
T-register ... 67.

gmbwheel switches 7J and 9J 72, 112.
th mbwheel switch 12J 68
ti e controlled monitoring 24
tiring scheduler 20
tr. smit data servce point 60.
tr nsmit data service point 52, 56.
tr; sparent mode 85.

¥‘_REQUEST 52.
gASYNC ... 60.
:HDLC .. 56.

tr phandler routine FTRAPH 30.
tripping ... 30.
TRuPV overflow 30
TR»? instruction 30.
UNLOAD~PIOC MON PIOC function 72.
UNIOAD-PIOC panel command 86.
user process .. 13.
wait for events 22.
wait for message 39.
wake ... 39.
whole—messageuread flag 35, 37.
word of information through the kick channel 64.
WRITE—TO-SEGMENT panel command 84.
write back segments 84.
writing a message 37.
X—message ... 32.
X~register ... 67.
XF C XFSND option 38.
XF LS function 34.
XF D XFSND option 38.
XF ET function 35.
XF IP XFSND option 38.
XF ST function 40.
XF PN function 34.
XF RM XFOPN option 34.
XF CV function 39.
XFREA function 37.
XFREL function 35.
XF 0U XFSND option 38, 41.
XF EC XFSND Option 38.
XF ND function 38.
XF AK XFRCV option; 39.
XF RI function -....... 37.

-- Norsk Data ND-60.161.3 EN «~

PIOC Software Guide

XFWTF XFRCV option 39.
XMSG functions 33.
XMSG system in ND—1OO used from PIOC 76.
XON/XOFF characters S9.
XROUT ... 32,
XSCNM XROUT service 42.
XSGNM XROUT service 43.
XSLET XROUT service 42.
XSNAM XROUT service 42.
XSNUL XROUT service 42.

w" Norsk Data ND—60.161.3 EN ~»

41.

149

HHHHHHH SEND US YOUR COMMENTS!!!

ll\lllll

Please let us know if you
" find errors
° cannot understand information
’ cannot find information
‘ find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

this manual? Do you have tro

K-*************

ble finding things?
Are you frustrated because of ujclear information in

Why don’t you join the Reader’
note? You will receive a rnemb
an answer to your comments.

HHHHHH HELP YOURSELF BY HELPING US!!

Manual name: PIOC Software Guide

What problems do you have? (use extra pages if needed)

Club and send us a
arship card: -—- and

Manual number ND..6O . 161. 3 EN

Do you have suggestions for improving this manual .7

Your name: Date'

Company: Position'

Address:

What are you using this manual for ?

NOTE! Send to»:
This form is primarily for Norsk Data A.S ______’documentation errors. Software and Documentation Department
system errors should be reported on PO. Box 25, Bogerud Norsk Data's answer will be foundCustomer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data:

Answered by: Date: .

Norsk Data A.$
Documentation Department
PO. Box 25 BOGERUD
N - 0621 OSLO 6 ~ Norway

0000000000000
0000000000000
000000000000
000000000000!
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
00000

0020000
0000

_,»
000

000
,_

00
000

00.
A00

000
00_,

00
000

00,0300
000

_
., \0

0
000

00
000

00
0000000000000
000

00
000

,00
000

_;00
000000

<000
00000

0000
0000

00000
000

:w00
000

x}:g
00

000
00

0000000000000
0000000000000

0000
rQOOOOOOOOOOQDOOGOQOOQO???gDOOQOOQOQO

