
SYMBOLIC DEBUGGER
User Guide
ND—60.158.4 EN

30.......0.00.0.00...OOOOOOOOOOOOOOOOOOOOOOOOOOOOO0.0.0.0000000001
IO..0.0.C0.0.0.0.0...OOOOOOOOOOOO0.0.0.0.0...OOOOOOOOOOOOOOOOOOOOG
I0.0..O.CO..0...O..0.0.0.0.000...OOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOOG
0......0.0...0.0.0.0...OOOOOOOOOOOOOOOOOOOO - .0. O .0...‘
I0.0.0.000...0.00.00.00.00...OOOOOOOOOOOOOC I. 0- 0...!

0.0.00000COOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOO O - Or 7, 77-00.!
D0.0.0.0...00.0.0000...OOOOOOOOOOOOCOOOOOOO , ~77. ' .0.‘»7...l
O....0.00.0.00...0.000000000000000000000000' '0» O..>"...I
DOOOOOOOOOOOO.0.00.0.0000...OOOOOOOOCOOOOOO'~'07 7 .\' 7;:7 7...!
I.0.0.0.000...O..0.OOOOOOOOOOOOOOOOOOOOOOOO7 ..u f. 7 0...!
I00.0.0000...0.00.00...OIOOOOOOOOOOOCOOOOOO 0.. O 0....
.0000...00.00.0000...O0.00000000000000000000000000.00.00.000000001
IQ?‘9.0000000000000000.0.0.000...OOOOOOOOOOOOOOOOOOOOOOOOCOOOCOOOG

I.bibCOOOOOOOOOOOOOOOOOOOOOOOOOOO00.0.0000...OOOOOOOOOOOOOOOOOCOOG
300QODGQOOCOQQQQOQQOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOQOOCOCC
E®O®0......@.0.000....99QQQOQO0.0000000000..QOOQQQQQQQQOOOOOOQOQQ(
H... ”O ”O.HOOOCOOOOOOOOOOOCOCCOOOOO 0..O... H... O...



” svmouc DEBUGGER
User Guide
ND-BO.158.4 EN



The information in this manual is subject to change without notice. Norsk Data A.S assumes no responsibility forany errors that may appear in this manual. Norsk Data A.S assumes no responsibility for the use or reliability of itssoftware on equipment that is not furnished or supported by Norsk Data A.S. Copyright ©1986 by Norsk Data A.S.

PRINTING RECORD UPDAT'NG
PRINTING NOTES Manuals can be updated in two ways, new versions and

revisions. New versions consist of a completely new02/82 Version 1 E N manual which replaces the old one, and incorporate all
revisions since the previous version. Revisions consist of
one or more single pages to be merged into the manual02/83 Version 2 EN by the user, each revised page being listed on the new

. printing record sent out with the revision. The old printing03/85 Versron 3 EN record should be replaced by the new one,
12/86 Version 4 EN

New versions and revisions are announced in the ND
Customer Support Information and can be ordered from
the address below.

The reader's comments form at the back of this manual
can be used both to report errors in the manual and give
an evaluation of the manual. Both detailed and general
comments are welcome.

Symbolic Debugger User Guide
PubI.No. ND——60.l58.4 EN

RING BINDER 0R PLASTIC COVER

The manual can be placed in a ring binder for greater
WW protection and convenience of use. Ring binders may be

ordered at a price of NKr. 45.- per binder.

The manual may also be placed in a plastic cover. This
cover is more suitable for manuals of less than 100 pages
than for larger manuals.

Please send your order, as well as all types of inquiries and
requests for documentation to the local ND office, or (in
Norway) to:

Norsk Data AS
Graphic Center
P.O.Box 25 BOGERUD
N—0621 OSLO 6 - Norway

r‘ ~~~~~~~~~~~~~~~)3;
I I would like to order

I ........ Ring Binders, 40 mm, at NOK 45.» per binder

I ........ Plastic Covers, at NOK 10: per cover



Preface:

THE PRODUCT

This manual describes the following products:

SYMBOLIC DEBUGGER ND-10335D (ND‘BOO)
ND-10336D (ND-100)

THE READER ,
This manual will be of interest to programmers who are testing
programs written in any language whose compiler is able to make
information for the Symbolic Debugger.

PREREQUISITE KNOWLEDGE

The reader should be able to successfully compile and load a program
in one of the following languages: Ada, BASIC, COBOL, FORTRAN, Pascal
or PLANC. If it is necessary to debug RT—programs, ability to use the
RT-Loader is required. Advanced programming experience is is a
precondition for use of some of the Symbolic Debugger commands.

THE MANUAL

This manual describes how to use the Symbolic Debugger. The commands
are described in detail. Examples are from both the ND—lOO background
and RT Debugger, and the ND-SOO Debugger.

NEW IN THIS MANUAL

The ND—lOO Debugger now can be used on multi—segment reentrant
programs and on RT—Programs. The related commands are described in
this manual.

Chapters 1 and 2 have been completely rewritten. Chapter 1 now
contains a table over all the various Symbolic Debugger commands with
parameters. Chapter 2 now shows simple use of the Debugger for ND—lOO
and ND—BOO programs, as well as introductions to RT and ND—lOO multi-
segment debugging.

Chapters 3 and 4 have been updated with information related to the new
features mentioned above. In addition, a number of minor corrections,
changes and new examples have been included.

The examples in chapter 5 are unchanged, except that it now includes
one example which was previously in chapter 2.

Chapter 6, containing the error messages, now has more extensive
explanations, and it includes ND—lOO RT—Debugger and multi-segment
errors.

Norsk Data ND—6o.158.4 EN



iv _
Finally, the index is enlarged, and many new cross—references are
added. Changes and deletions are marked with change bars in the
margins, as on this page. _____

RELATED MANUALS

Related manuals for the languages with which the Symbolic Debugger can
be used are:

Ada User Guide ND—60.198
COBOL Reference Manual ND~60.144
FORTRAN Reference Manual ND~60.145
ND-SOO BASIC User Manual ND—60.207
PASCAL Reference Manual NDe60.222
PLANC Reference Manual ND-60.ll7

The following manuals are also relevant:

BRF Linker User Manual ND—60.196
ND-BOO Loader/Monitor ND~60.136
ND Relocating Loader ND-60.066
SINTRAN III Real Time Guide ND“60.133
SINTRAN III Real Time Loader ND—60.051
SINTRAN III Monitor Calls ND~60.228

Norsk Data ND~60.158.4 EN



V

T A B L E O F C O N T E N T S

Section Page

1 INTRODUCTION 1

1.1 Symbolic Debugger Command Summary . 3

2 USING THE SYMBOLIC DEBUGGER . 7

2.1 A Debugging Session . . 102.2 Debugging an ND— 100 Background Program 12
2.2. Debugging Multi~~Segment Programs 142.3 Debugging an ND— 500 Program . 172.4 Debugging an RT— Program . . 182.5 The Capabilities of the Symbolic Debuggers 22
2.6 Advanced Features in the Debuggers . 242.7 Additional Features in the ND- 500 Debugger 25

3 COMMANDS - DETAILED DESCRIPTION . 27

3.1 ACTIVE——ROUTINES ((maximum number of levels>) 29
3.2 ALIGN— LISTING (program area) (line) . 303.3 ATTACH—~REENTRANT— SEGMENT (file name) (segment name) 30
3.4 ATTACH——SEGMENT (segment number) (<W)) . . . . . 31
3.5 ATTACH——SEGMENT (segment number) (prog— file name) ((W)) 313.6 BREAK (routine, label or line) ((count)) ((condition)) 313.7 BREAK-ADDRESS (program address) ((count)) 333.8 BREAK-RETURN . . . 333.9 CHECK—OUT-MODE ((program area)) 35
3.10 COMPARE—DATA (low) <high) (<output file)) 36
3.11 COMPARE—PROGRAM (low) (high) (<output file)) 373.12 CONTINUE . . . . . . . . . . . . . 373.13 DISPLAY ((item or value)) 38
3.13.1 Pascal and PLANC Records . 393.13.2 Displaying PLANC Variant Records on the ND— 5OO 413.14 DUMP LOG (<output file)) . . 42
3.15 ENABLED--TRAPS . 43
3.16 EXIT . . . . . . . . . 433.17 FIND-SCOPE (program address) . . . . . . . 433.18 FORMATS-DISPLAY (formats (A,D,F , H,O or combinations)) 44
3.19 FORMATS-LOOK—AT (formats (A,D,F , H,I,O or combinations)) 443.20 GET—BREAK—STATUS . . . . . . . . . . . . . 1+53.21 GUARD (item or address) (((*not*) low (: high)>) 453.22 HELP (command name> . . . . . . . 46
3.23 INCLUDE—COMMANDS (file name) . . . . . . . . 473.24 INVOKE (routine) (( (parameter,...,parameter) >) 483.25 LOCAL—TRAP—DISABLE ((trap conditions)) 50
3.26 LOCAL-TRAP—ENABLE ((trap conditions)) 51
3.27 LOG—CALLS (program area) 52

Norsk Data ND—60.158.4 EN



W

Section
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
fi
-fi

‘fi
‘fi
fi
-fi

’fi
-fi

—
D

D
42

‘
H

K
O

C
D

N
C

h
m

-D
U

O
N

H
m

m
m

m
m

UT

U
l—

C
’U

O
N

H

.27.l LOG—CALLS and CHECK—OUT—MODE

.27.2 LOG~CALLS and GUARD .

.27.3 LOG-CALLS and STEP

.28 LOG—LINES (program area)

.28.l LOG~LINES and GUARD .

.28.2 LOG-LINES and STEP

.29 LOOK— AT— DATA (data address) ((count>) ((output file))

.30 LOOK— AT Subcommands . . . . . . . . . .

.31 LOOK— AT——PROGRAM (program address) ((count)) ((output file))

.32 LOOK AT——REGISTER (register name) ((count)) ((output file))

.33 LOOK AT- STACK (B register) ((count>) ((output file))

.34 MACRO (name> (body) . . . . . . . . . . .

.35 MULTIPLE——BREAK- MODE (ON/OFF)

.36 PLACE (file name) (<w>)

.37 PROGRAM— INFORMATION . .

.38 REENTRANT—PLACE (Reentrant——name>

.39 RESERVE—TERMINAL (logical device number)

.40 RESET—~BREAKS ((program area))

.41 RT~PLACE (program name) ((W))

.42 RUN ((program address)) . . . .

.43 SCOPE ((module routine or other item>)

.44 SEGMENT INFORMATION . . . .

.45 SEGMENT~~WRITE--PERMIT (segment number)

.46 SEGMENT WRITE PROTECT (segment number>

.47 SET (variable) (=) (value) . . .

.48 STACK-INSTRUCTIONS ((low>) ((high>)

.49 STEP ((count>) ((low)) ((high))

.50 USER-ESCAPE (on/Off) .

SYMBOLIC DEBUGGER PARAMETERS

Numeric Constants . .
Single-Character Constants
String Constants
Expressions .
Named Items .
Program Area
Program Address .
Data Address
Format Specifier

. 0 File Name .

EXAMPLES

An Example Using FORTRAN—100
A PLANC Example .
Another Example in PLANC
Using a File as a Segment . .
Using a File as a Segment for a COMMON Area .

Norsk Data ND—60.158.4 EN

. lOO

. 105

. 106

95

97



vH

Section Page

6 ERROR MESSAGES . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Error Messages Common to the ND-lOO and the ND-BOO Versions 1156.2 Error Messages Which Apply to the ND—1OO Version . . . . . 1196.3 Error Messages Which Apply to RT Debugging . . . . . . . . 1206.4 Error Messages Which Apply to ND—1OO Multi—Segment Programs 1206.5 Error Messages Which Apply to the ND—BOO Version . . . . . 1216.6 Note on Error Returns on the ND—lOO . . . . . . . . . . . . 125

Norsk Data ND—60.158.4 EN



viii







SYMBOLIC DEBUGGER USER GUIDE 3
INTRODUCTION

1. INTRODUCTION

The Symbolic Debugger is an interactive tool for testing programs-
written in higher—level languages such as FORTRAN, COBOL, PASCAL and
PLANO.

If there is one or more Debugger segments on the segment file in your
version of SINTRAN III, the Symbolic Debugger is available on your ND—
100. One program can be debugged per Debugger segment, so that if
SINTRAN has three such segments, three programs or less can be
debugged simultaneously.

You can debug ND—lOO multi—segment programs, but you have to be logged
in as user SYSTEM to be able to do this.

The Debugger can also debug RT—programs on the ND—lOO. In this case,
only one person (who must be logged in as user SYSTEM or RT) can use
it at a time.

There are no such limitations on the ND—SOO.

The Symbolic Debugger contains a set of powerful commands which enable
you to control the execution of your program. For example, break or
step—points can be set to stop the program under certain conditions.
You can then inspect or modify program variables, and continue
execution until the next break or step—point. In this way it is
possible to find many program bugs in one run. It is also possible,
for instance, to detect which areas of a program have not been
executed, and to change the path and frequency of subroutine calls.

The commands available are listed on the following pages.

1.1. Symbolic Debugger Command Summary

The Symbolic Debugger commands may be abbreviated, even more than
SINTRAN commands. The reason is that some of them have priority in
addition to their names. (Commands with priority are marked with + in
the table below.)

Norsk Data ND-60.158.4 EN



4 SYMBOLIC DEBUGGER USER GUIDE
INTRODUCTION

The priority works as follows: If you type a D as your command, that
could be an abbreviation for both the DISPLAY and the DUMP commands.
But instead of telling you that the command D is ambiguous, the
Symbolic Debugger will execute the DISPLAY command, which has
priority. (As you see, it is marked with a + below.) To do a DUMP, you
must type a DU, which makes it clear that this cannot be a DISPLAY
command.

Here is a table of all the commands available in the various Symbolic
Debuggers. Error messges are found in chapter 6, page 111.

N R N Commands, with parameters. Parameters within ( ... )
D T D will be prompted for, while parameters within (< ... >)
— — — will not be prompted for. Commands marked with a + have
1 D 5 higher priority (see above) than the others.
0 e O
O b O Commands Parameters

o o o @ (SINTRAN III command)
9 o C +ACTIVE—ROUTINES ((Maximum number of levels))
a o c ALIGN—LISTING (Program area) (Line)
a ATTACH—REENTRANT—SEGMENT (File name) (Segment name)

0 c ATTACH—SEGMENT (Segment number)
((File name)) ((W))

o o u +BREAK (Routine, label or line)
(<Count)) ((Condition))

9 o o BREAK—ADDRESS (Program address) ((Count))
0 o o BREAK-RETURN
e 0 CHECK-OUT—MODE ((Program area))
0 o o COMPARE-DATA (Low) (High) ((Output file))
0 a o COMPARE-PROGRAM (Low) (High) ((Output file))
a o o +CONTINUE
e o o +DISPLAY ((Item or value))
a m DUMP—LOG ((Output file))

m ENABLED—TRAPS
e o o +EXIT
e o o FIND—SCOPE (Program address)
a c m +FORMATS—DISPLAY (Formats (A,D,F,H,O

or combinations))
0 o m FORMATS—LOOK—AT (Formats (A,D,F,H,I,O

or combinations)>
o GET—BREAK—STATUS

o o GUARD (Item or address)
((("Not") Low (: High)))

(Cont.)

Norsk Data ND-60.158.4 EN

AK



SYMBOLIC DEBUGGER USER GUIDE
INTRODUCTION

O 0 INVOKE

o LOCAL—TRAP—DISABLE
a LOCAL—TRAP-ENABLE

O o LOG-CALLS
I 0 LOG-LINES
O O a LOOK—AT—DATA

o o a +LOOK—AT—PROGRAM

o o o LOOK—AT—REGISTER

o o a LOOK—AT—STACK

o o o +MACRO
e MULTIPLE—BREAK—MODE

0 PLACE
o +PROGRAM—INFORMATION
o REENTRANT—PLACE
o e RESERVE~TERMINAL
o o a RESET-BREAKS

o RT—PLACE
o o a +RUN
o o a SCOPE

0 o SEGMENT—INFORMATION
o o SEGMENT—WRITE-PERMIT
o o SEGMENT~WRITE—PROTECT
o o 0 SET
0 STACK—INSTRUCTIONS
o a +STEP

0 USER‘ESCAPE

N R N Commands, with parameters. Parameters within ( ... >
D T D will be prompted for, while parameters within (( ... ))
— - — will not be prompted for. Commands marked with a + have
1 D 5 higher priority (see above) then the others.
0 e O
O b O Commands Parameters

o o 0 HELP (Command name)
a a INCLUDE—COMMANDS (File name)

(Routine)
(((parameter,..,parameter)>)

((Trap conditions))
((Trap conditions))
(Program area)
(Program area)
(Data address)

((Count>) ((Output file>)
(Program address)

((Count)) (<Output file))
(Register name)

((Count>) ((Output file))
(B register)

((Count)) ((Output file>)
(Name) (Body)
((On/Off))
(File name) ((W>)

(Reentrant-name)
(Logical device number)
((Program area))
(Program name) ((W>)
((Program address))
((Module, routine or other item))

(Segment number)
(Segment number)
(Variable) (Value)
((Low)) (<High>)
((Count)) ((Low)) ((High))
((On/Off))

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE

Norsk Data ND—60.158.4 EN





39.2,.
3.1...

a



SYMBOLIC DEBUGGER USER GUIDE 9
USING THE SYMBOLIC DEBUGGER

2. Mlflfli§XMB9L1£DEEE§§EB
This chapter will show basic use of the three different debuggers,
including brief presentations of compilation and loading. For detailed
descriptions of the various compilers and loaders, please consult the
manuals that deal with each individual product.

The ND debuggers contain many useful commands, as you saw in the table
in the preceding chapter. An overview of advanced features is given on
page 24.

You need, however, only to understand four commands to use the
debuggers:

l) BREAK <routine, label or line)

instructs the debugger to stop execution of your program before
code belonging to a subroutine, following a label or a line
number is executed

2) RUN

starts execution of your program. You will not come back to the
debugger before a breakpoint is reached

3) DISPLAY <item>

tells the debugger to show you what values the variables in your
program have at the current breakpoint (i.e., before the
execution of the instruction immediately after the breakpoint)

a) EXIT

terminates the debugging session

In addition, you need a listing of the source code of the program, for
instance the listing generated by the compiler.

We will assume that all files used in the following examples exist
before the examples are run. If you do not know how to create files
with the "(file name>" notation, talk to somebody who knows, or read
about it in the SINTRAN Ill documentation.

Norsk Data ND—60.158.u EN



10 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

The examples use the following FORTRAN program:

Here, the numbers to the left are not part of the program. They are
line numbers, as generated by compilers, pretty—printers etc. These
line numbers are used extensively as location references when you
debug programs, together with subroutine or module names etc.

The program sorts the integer array named ToSort, which has ten
elements containing integer numbers. The numbers are in reverse order
from the outset, but the program will put them in the right order. We
use the debuggers to see how the numbers wander through the array as
the sorting proceeds. The program does not contain any errors. You
will learn to use the debuggers to observe the execution of a program,
and need no errors to do that.

In the examples that follow, your input to the computer is underlined,
and a J denotes the final carriage return for each of your commands.

As the example is finished, a _ (underscore) shows where the cursor is
placed.

2.1. A Debugging Session

Here you see how you use a debugger to observe the BUBBLE program.
This is exactly how the debugging session will appear when you use the
ND—lOO and the ND-BOO debuggers. The next three subsections will show
you how you prepare a program for debugging with the three different
debuggers.

When using the RT—Debugger, the procedure for restarting after a
breakpoint has been reached is more complicated than is shown here,
for natural reasons. We will deal with that in the section about the
RT-Debugger on page 18.

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 11
USING THE SYMBOLIC DEBUGGER

In what follows, we presume that the program has been compiled with
the Debug option on and loaded as an ordinary program, and that you
have started the appropriate Debugger to look at the program. You will
see how this is done on page 12 for the ND—lOO and on page 17 for the
ND-SOO.

This is what you do after you have started either the ND-lOO or the
ND—SOO Debugger for your program.

Norsk Data ND—60.158.4 EN



12 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

2.2. Debugging an ND—lOO Background Program

The following :MODE-file will compile the BUBBLE program and generate
debug information for the ND—lOO Debugger. (If you don’t know what a
:MODE-file is, talk to somebody who does, or read the SINTRAN
documentation.)

After this :MODE—file has been run, just type

on your terminal, and you are ready to debug, as shown on page 11.

This is how you prepare the BUBBLE program for use with the ND—lOO
Debugger, shown in detail.

Norsk Data ND-60.l58.4 EN



SYMBOLIC DEBUGGER USER GUIDE 13
USING THE SYMBOLIC DEBUGGER

tells iftfiéifiompilé‘rr:, . .Vo‘:§,_;y,vc‘>:ur?‘ program .‘y

You are ready to observe the program execution with the ND—lOO
Debugger.

Norsk Data ND—60.158.4 EN



14 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

2.2.1. Debugging Multi—Segment Programs

The NDalOO Symbolic Debugger can now be used with programs that have
been loaded onto SINTRAN Ill's segment file as multiusegment programs,
in addition to ordinary programs residing on :PRocufiles. (Make sure
you do not confuse ND—lOO’s segments with ND-SOO's segments! They are
yery different things.)

Using multiple segments enables you to load bigger programs than was
previously possible (that is unless you previously used the somewhat
limited overlay technique). However, there is a limitation on the
multi—segment technique: You cannot have more than 64 K global data,
no matter how many segments you use.

In order to use the Debugger with multi—segment programs, you must be
able to log in as either user SYSTEM or user RT on your computer.
Otherwise, you cannot dump the program onto the segment file, and you
cannot use the commands in the Debugger that are used with segments.

In this section, we will look at how a simple COBOL program called
A—COBOL that uses a subprogram B-COBOL is loaded onto two different
segments and debugged. A-COBOL and B—COBOL must be on separate files.
However, before the debugging can start, the programs must be
compiled, loaded and linked to the other segment, and dumped on the
segment file.

The program which is built will be known to the computer as person,
and the segments used will be called acobol and bcobol. The *PROG-
files reside on the fictitious user area OWN—USER, where user SYSTEM
must have the appropriate read- and write-privileges. The segments are
cleared before they can be used.

The preparation for debugging is done by the following :MODE-file:

@delete~reentrant person '--~ -1 - C',," _.'jyflif'
‘_,@c1ear*reentrant segment bcobol ' ‘“ “ -*

Tg'Qcobol 100
. debug ‘ ’ I ‘ 1‘ -. 3 _, ,- , _,_
:‘Icompile (own—user)a~cobol 1, (dauSer)a~col-i_

hexit ‘ ,_ _ ,_ , _,; u}i ‘f
"@cobol 100
“debug : " “~

,_ COmpile (own*user)b~cobol L town~user)b~cobol
_, exit - _ _ ;,_ _
i'@brf~linker

_ ~rprogram-file (own~user)a~cobni/acobol
‘ 5load {own—user)a~cobol gang: -bank

*Qbrf linker _ _~ " ‘ ' “
' Lprogram~£ile (own-user)b~cobnl/bc0bol
"gdefine #dClC 4000b d _ _,

. “link~to (own~user)a~cobol
,”'load (own~user)b~cobol cobol 2bank

~ieXit “ "
@dumpmprogram*reentrant persozn (own user)a~cobol acobol
Qioad~reentrant~segment (oun- user)b~cobnl bcobol

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 15
USING THE SYMBOLIC DEBUGGER

For details concerning loading and execution of multi—segment
programs, see the REF—Linker User Manual, ND-60.l96.

The program we now have on the segment-file can be started by typing
person as your response to the SINTRAN prompt. It consists of a main
program, which does nothing more than to initialize the data for a
record called PERSON with such things as first name, middle initials,
christian name, sex and age. The subprogram is then called with these
data as parameters, processes them and then returns to the main
program, which exits.

There are two new commands which become mandatory when you debug
multi-segment programs:

1) ATTACH—REENTRANT—SEGMENT <file-name>,<segment>

which links a :PROG—file with the segment it has been dumped to.
The (segment) can be either a name or a number

2) REENTRANT—PLACE <reentrant-name)

which prepares the Debugger for work on the main program segment

Norsk Data ND—60.158.4 EN



16

Let
segments,

:-2@debug J _5'The'Debugger is ehtered‘Without*any::PROGwflile_{U : H
”-1~ f, " ' : specification ReMember to be on either user Area! 'f

SYSTEM or RT! ” "‘ ‘-- ' ' i- T ::*W'”

~TND  100 SYMBOLTC DEBUGGER ,
‘ attach~reentrent—segment (own-user)a cobol acobol J

"COBOL:PROGRAM. (Segment 1568) A CQBQL.1

SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

us look at how the Debugger is connected to the program on the
and how we can use the BREAK, RUN and DISPLAY afterwards.

*reentrant-piace person J- Then the  reentraDt'program system

VERSEON F

The :PROG~file built by the BRF~ H
_Linker and the Mame of the segment 9'7
where the Main program resides is
attached ’

is :i:nitiated fer the Debugger. _ “

is;
The Debugge:r teLls what kind of progreM it

that we are Curren tly the firet line oT the *‘
prograM wit:a the internal name AWCOBOL _‘»>

the unmber of the segment it is on, and‘:

‘*attach~reentrant~segmentL(oWn~user)b—80bol'beobol'J

We also attaCh the segMeMt where the subroutlne is.

L‘_l:break b~oobol 18 J
”run J

: Break_at (SegMent 157B)

, Break at (Segment 156B) A—COBQL;18,
*disglay age J , _ ' ' . ,1 , .
AGE5#5 The Debugger breaks in the segment of the

3Gdisglax age J
AGE328 -'
*set age:#5 J
:break a~cobol 18 J
*run J

Now, we_can‘BREAK§‘RUNI
_ _ ' {‘and DISPLAYt-We_Set'a"‘

B~COBOL.18 "break at_the 18the_ L _
8 line of the_subreutine‘~'

, becobol; which is on f L,
the bcobol Segment, and
run._TheyDebugger‘bre“,
aks in,segment‘157B, ,

~1ine of the main program, and run

The person has the age Of 28 we use'-7“
Debugger command set to change the age
to 45 Then we set a.break in  the l8

fit
main program. We see that the age of our _
hapless person has now been changed to 45
years '

Norsk Data ND—60.158.4 EN

V



SYMBOLIC DEBUGGER USER GUIDE 17
USING THE SYMBOLIC DEBUGGER

2.3. Debugging an ND-SOO Program

The following :MODE—file will compile the BUBBLE program and generate
debug information for the ND—SOO Debugger. (If you don't know what a
:MODE—file is, talk to somebody who does, or read the SINTRAN
documentation.)

Tij@fortran*500
,.kdebug mode-*Txg~' =5:; ‘ “ '~ ' ~ a_ 13,,

_ :;-com _Hfortran bubble termf,al fortran bubble _
,Ziiexit _ 3 . w ' __ _ _ "

"‘@linkage~loader ‘ :~
:fset-domain fortran«bubble

. ‘ropen—segment fortran—bubble,,,
"'Nload~segment fortran-bubble '

gend __ - H _
*exit _

After you have run this file, you must do the following to start
debugging.

@nd»§m0 J
N500 debugger fortran~bubble J

Now you can proceed with the debugging, as shown on page ll.

This is how you prepare the BUBBLE program for use with the ND-BOO
Debugger, shown in detail.

@fortranwfioeOJ
ND~mSOO ANSI 77 FORTRAN COMPILER * 203054l

:debug~mode J
This makes the_compiler generate debug infor~
mation.

FTN: campile'fortran—bubble terminal fortren-bubble-J

The source code is taken from the file
FORTRANwBUBBLE:SYMB, output from the
compilation is directed to the terminal,

_and the object code is put on the_file
FORTRAN~BUBBLEzNRF.

ND~500 ANSI 77 FORTRAN COMPILBB m 20305u1
~SOURCE FILE: FORTRANeBUBBLE:SYMB

[1* ' program bubble
2* * ‘ integer ToSort(O:9)

4*“f” . ‘ ' This is the output from the Com“
piler, telling you how the com—
pilation proceeds. The line numbers
can be used when debugging.

Norsk Data ND~60.158.4 EN



l8 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

4 CPU TIME USED: 0 2 SECONDS iu'LINES COMPILED.
e NO MESSAGES
~ PROGRAM SIZE=71 DATA SIZE=152 COMMON sIZE 0

',FTN: exit J
Leave the compiler, and enter the Linkagev,
Loader to build an executable program.

@linkage loader J _ , __ _ H .:V_ _
"ND——Linkage Loader — H.00 ‘ ' ,3. April 1986 Time: _O;OO
Nil entered: - i - 4 July , , 1986 Timei”12; 6,

, Nil: set domain fortran bubble J "
, The program is loaded on ,

Nll: open-segment fortran~buhblen,,_d the domain FORTRANvBUBBLE,
' , , , - segment FORTRAN BUBBLE

N11: load~3egment fortran-hubble J E Since the FORTRAN LIBRARY
~ ' -,', L _ is on an auto—~1ink seg—

ment, it does not need to
be included explicitly in
the loading sequence.

Program:...113 P01 Data:......23fi D01 Debug inf:..327 Bytes
Nil: exit J ‘ '
Segment no......30k is linked Leave the compiler. and _

_ ' " enter the ND—SOO Monitor*
@ndwfiOO J , , , , , to start the debugger.

ND~500 MONITOR Version E00 86. 5. 6 / 86. 5.14

N500: debugger fortranwbubhle J The debugger is implemented as
_ a part of the ND~500 Monitor,

and is started by this command.

ND—BOOjSYMBOLIC DEBEGGER; VERSION F. IMAY 12, 1986.
FORTRAN PROGRAM._ BUBBLE.1 ' ‘
* ,

Now you may proceed with the debugging, as shown earlier in this
chapter.

2.4. Debugging an RT~Program

In this section, you will learn to use the RT—Debugger. It is assumed
that you know how to use the RT—Loader to make RT—programs (also known
as foreground programs), so only a few relevant points concerning the
preparation of an RT-program for debugging will be presented here.

(If you have an ordinary ND—lOO Debugger version F or later, then you
make an RT—Debugger by dumping the :BPUN—file that the Debugger comes
on with start address 2, restart address 3 on the segment file,
instead of dumping it with addresses 0 and 1 as you would with the
background Debugger. These operations can only be carried out if you
have SYSTEM privileges.)

Norsk Data ND~60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 19
USING THE SYMBOLIC DEBUGGER

The same :MODE-file that compiles and loads the BUBBLE program for the
ND—lOO and generates debug information is used when you prepare an
RT—program for debugging. The RT~Debugger will use the loaded :PROG—
file as well as the code on the RTwprogram segment when it is used.

You must be logged in on SINTRAN III User Areas RT or SYSTEM to use
the RT—Debugger. Only one terminal at a time can use it. The following
:MODE—file loads the BUBBLE program as an RT—program:

--@rt~loader

-H’snew~segment 200;;3,’, . p,, L L L ELI:lgIreadwprogfile (debuggei)f ”tran~bubble 200,94
‘_,declare~program bubble, , :p;

~rj ichange«rt*description bubble 3O 200,.11..,.,,1
‘1 exit : 17 -

The :PROG- file is read into segment 200 and an RT program name BUBBLE
is declared. Then BUBBLE' 8 RT— Description is changed: it is given
priority 30, it is on segment 200, then there is an empty parameter
before you specify 11 as the address where execution will start. This
address can be taken from the loading session with the BRF-Linker:
After you have loaded the file where the main program begins, you give
the BBB—Linker command LIST—ENTRIES—DEFINED. In this case, you will
find that BUBBLE has the address 11.

(An alternative way to make the same RT—program would be to load the
file (DEBUGGEE)FORTRAN—BUBBLE:BRF with the RT-Loader command LOAD,
followed by another load of the FORTRAN-lBANKzBRF file. This will
generate code precisely similar to that on the FORTRAN-BUBBLE:PROG
file. Then, you would have to set the priority for BUBBLE with the
SlNTRAN command @PRIOR after you have left the RT-Loader.)

When using the RT-Debugger, you need a few more commands than when
debugging a background program. These commands are:

1) ATTACH—SEGMENT <segment number> (program file)

which tells the RT—Debugger which segment and :PROG—file it will
be dealing with

2) RT—PLACE (RT-program name)

to get the appropriate RT—description placed in your register
block.

3) GET—BREAK-STATUS

which retrieves the information about the last RT-break that has
occurred in your computer, provided that you have set the break
for the current debug session to the same place in the program as
what SINTRAN has stored.

Norsk Data ND—60.158.4 EN



20 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

This is what a debugging session may look like from terminal 39 on
your computer, and if you can use the terminal as your computer's
error—device.

'I@Set~err0r-device 33 J-' Make‘yoUr own-terminal act as _
, ' ,' ' error~device, if you are allowed tO‘:
_, ,' ', log in as user SYSTEM Then SINTRAN-L_

I,@rt+loader J. ‘ : 1‘ will send the messages that RT~ --' “
,__ I‘ , ‘ , program breaks have been reached

to your terminal. Enter the ET~
LoadeT-' - -

" REAL TIME LOADEB, : SINTRAN III VSX — K _‘ I
lear—seggent 200 J

‘RTLRQGRAMS-QNSEGMLNT: ‘ ' , , Clear'thévségfiéfit _
‘ '- _ J ‘ 1' , " , - ,’you want,t9 use; i;

* _' BUBBLE

L‘VDELETING THIS RT paoaaamsn £333 .1
;lfl*new*segment 200,,,,,~J , ‘ ' ‘” ,

_ *read~progflle {debugger)fortran—bubble 200,,,'_7

LuiEeading the code into your segmenL diTectly frcmi “‘7
‘_the PROG*flle Declare BUBBLE as an RT—program.:,‘»'

i_j *declare~program bubble,,,‘JT--ii“‘- ' ~; , ape
*change—rt deSCrlpt10n bubble 3O 200,,11,,,,,_J

“I,”Maké the TighL RT-Tescrlption TOT yOur pregram
_._Set priority, segment~number and start~address , ;,
'* Now, you can leave the RT Loader and start LLe '“f §a

{ _RT Debugger (You get the start—address from Lhefif
,BRF—~Linker duTing koaéing  to the FROG f; e. ) ””

I *eXit J
_.‘ @rt~debugger J ' ‘
“LsND~lUQ SYMBCLIC DEBUGGER RT VERSION F.

attach*segment  200b (debugger)fortran—bubble J

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

*rt~ lace_bubble Q

“““ __J-find the code for the RT~program on. and
_Q-¥g_assoc1ate_the RT—pragram name BUBBLE with

_ *break 12 Q :"ff Then set a breakpolnt at line 12 and
*rUn  3 ’3, 3JQ_‘Aigstart the program.-Ly_x_ __

, that SINTFAN gives to nQTify That an E
*7, RT~breakJnt has been reached

iTell thé R.T~Debugger tCh segment it will 2”

“_Since the termlnal we uge 13 3130 the 5‘LD'2

‘1 VBREAKPOINTjiN*BUBBL3 AT ADDRESS,I7 ‘- 5AB"
*g3tebreak4statu Q __,; -.-f‘_ ‘This command muST be giVen To

, ‘i1,9 _ ~retrieve_informat10n about the
_,Bréak at BUBBLE 12 "‘ “Q-33_RT%breakpoint from‘STNTRAN.“'

-; _*dis tosdrt J ' ‘ -7 ,__';" ~ -. ‘_ g ‘1' _
,'TOSORT~9 87 6 5 h 3 2 O 1 «Hw, variables can be inspec—

', ted etc We see that the sort ‘
has started!

'T,the RT~Debugger To check the
Giving a SINTRAN cbmmandrom"'

‘*@1is£4rt~aesc*bubb1e'41 3 3,,t _status of the BU3BLE program
,rboy [yrs‘ot/ , .ro33, ($33".

21

33333333 E1 AND 2 -'_333337‘3312 APZT 3:33‘3RTURITY~TT 7=
y“INITIAL [:- 2003 ; __:OBi 'ii_; _ 13 " 13 ‘o" -.-303:
20 ACTUAL :i2003';;; _039s_5»_1_~ :13 13 :o-‘ :7303 ;,-‘
i‘sSTART ADDRESS: _ 113 ‘TLAST_3TABTEDf1r 10 SECS -2,*233'332'33—100 CPU 3133 USED: ‘ 33,3ASIU;TLMEEUN:23_

‘

~ 3—“1 ~73 i- l' .;'A_;;fQiD,H_] L4~ _S __ ,B_, _ _

‘ 00005“ 000011 000001 003001 930017 001237 000150 DOO3OQ :4 __

[I *break 13 Q * *_ LNow} note how you can leave the RT--Débugger,
*ggQ J}- ' ' ;"wait :fQ‘r an RTubreak to 0Ccur, go back into

;_*eXit # '7 , ,_ th3RT Debugger and look at the status of the ,-
‘ program.

BREAKPOINT IN SUBBLE AT ADDRESS -‘~‘; 623“3f '

:“@rt*debuggg é
~TND~100 SYMBULIC DEBUGGER RT VERSION F FEBRUARY 19, 1986

12*attach*segment 200D (debugger)for*bubble A ‘

Norsk Data ND-60.158.4 EN



22 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

*break 13 Jj, _, V ' Picking up the segment and the
_‘ __ , , :PROG~file again. Retrieve the

*get-break~status J _ ' : break--status from SINTRAN,
' after having set the breaks

Break at BUBBLE 13 ' , , _ point to where it was before”
_, you gave the last_run5commandy

*dis tosort J ' ' ‘ ' "‘
TOSORT=0 9 8 z 6 5,4,3 2 1V " Look at the status of the pro"
*@li$t~rt~desc bubble J :y, gram. as before,

ACTIVE , I/O~WAIT ;....; ,,... .;,.‘ ..... .. . .....
 SEGMENTS 1 AND 2 RBENT‘ NPIT,A911=31NG‘P310311Y'

INITIAL : 2000 OB_ 1B 1B *'0", 100B -
ACTUAL : 1-2008 - 00 ,_ ' 18- 1B- ,0 » _1003,
START ADDRESS: -_ ,11B‘ LAST STARTED: ,22 sacs
ND-lOO CPU TIME USED:, .0 BASIC TIME UNITS

P ‘ Ix VT ' A A 0 L L Sr *_B _
000062 000001,000001 000000 000017 001237 000100_000300:.

“break 13 J
*run é

BREAKPOINT 1N BUBBLE  AT ADDRESS [ "620 g,
*get~break—status J '1’ _ ,You Can continue to enter and _

7- , ,leave the debugger like this ,
Break:at BUBBLE,13~ ‘ -:-,. unt11 you are sure year pro~‘
”dis tosort J‘ - _gram is all r1ght._-»
TOSORT=O 9 8 7 6 5 4 3 2 1 ,, -
*exit J ' , ,

@set~error—device Z=J_:Remembe1 to give back the ERROR—DEVICE
* ,- .’ ' if you have used it1 1‘ ‘ ,

2.5. The Capabilities of the Symbolic Debuggers

Now that you have a basic idea about how the various Symbolic
Debuggers can be used, we will introduce some definitions of terms
used in this manual, give some hints concerning debugging, and then an
overview of the commands in the Debuggers and how they can be used. It
is not very comprehensive. You must consult the following chapters for
more advanced details. An overview of advanced features is given on
page 24.

In the first part of this chapter, you learnt about debugging by
breakpoints. The commands you need to debug by breakpoints are:

Norsk Data ND«60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 23
USING THE SYMBOLIC DEBUGGER

1) BREAK <routine, label or line) (<count>) (<condition>)

telling the Debugger to stop at a certain location, called a
breakpoint, in your program, optionally after having passed it
the number of times specified in <count> or if the <condition> on
the variables in the program is met

2) DISPLAY (<item or value>)

to inspect the contents of variables etc.

3) RUN (<program address>)

to execute the program until the next breakpoint is reached or
the program exits by itself. The optional parameter is included
so that you can resume execution from another location than where
you are at present

4) EXIT

to stop the debugging session. (It is recommended that you don't
use the ESC key.)

There is an alternative to setting BREAKS at the places where you want
execution to stop, if you are not debugging RT—programs. That is to
step through the program one line at a time or one subroutine call at
a time, and watch the state of the program as execution proceeds.

If you choose to use this strategy, the commands that you will need
are

1) A LOG command, such as

a) LOG-LINES (program area>

to make step-points on every line in the (program area> that
you specify in your source code

b) LOG—CALLS

to make step—point on every subroutine call in the
<program area> that you specify in your source code

2) STEP (<count>)

where count is the number of step—points you want to pass before
the program is stopped. (The Debuggers can also step through code
one machine instruction at a time. In that case the <count> is
set to —l, and no LOG-command is needed.)

3) DISPLAY (<item or value))

to inspect the contents of variables etc.

Norsk Data ND~60.158.M EN



24 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

4) EXIT to leave the Debugger

At this stage, you need to know precisely what a "breakpoint" and a
"step—point" are.

A breakpoint is an address in your program where you want execution to
stop. You may define an address indirectly as the place where code
from one specific line or subroutine in your source code begins, or it
may be an absolute program address. A RUN command executes your
program up to and including the last instruction before the address of
the breakpoint. (If you want to stop at an absolute address, use
BREAK-ADDRESS.)

A step-point is a place where code generated from one specific line or
subroutine in your source code begins. You must give either a LOG—
LINES or a LOG—CALLS command to make your step—points, and then you
move from one step—point to the next using the STEP command. (The
CONTINUE and RUN commands ignore step—points.)

If you do a lot of debugging, you may want to be aware that stopping
at step—points is much more time—consuming than using breakpoints,
especially in the ND—lOO. Executing code with many step-points may
hamper the execution of the programs of other users significantly.

Debugging by step—points is a looser way of debugging than debugging
by breakpoints. Many programmers will use it when they work on a
program that they do not know very well, to get an idea of how it
works, or when they miss clues to what the problem in their program
is. On the other hand, better knowledge of the code is a premise when
debugging by use of one single breakpoint, so it is recommendable to
use step-points as little as possible, and always to know your code
well enough to be able to debug by breakpoints. However, you can use
multiple breakpoints on the ND—SOO, as a substitute for debugging by
step-points.

2.6. Advanced Features in the Debuggers

The debuggers have many features in addition to the basic ones
described above. Some of them rely on step~points being available.

You can:

a control the number of times a breakpoint is executed. See the
BREAK command description on page 31 for details.

0 control the number of step—points to be executed. See the STEP
command description on page 79 for details.

0 control the values or value ranges that variables can have. You
can do this with the BREAK command (see page 31) if debugging by
breakpoint, or by the GUARD command if debugging by step—points
(see page 45).

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 25
USING THE SYMBOLIC DEBUGGER

0 change the contents of variables with the SET command, see page
77.

0 display record components in addition to simple variables. See
the DISPLAY command on page 38.

0 display data, register~ and stack contents, and disassembled code
with the various LOOK—AT commands. See page 56 to 70.

0 find the scope of addresses in the code that resulted in errors
with the FIND—SCOPE command, which is described on page 43.

0 shift your point of view (scope) to different places (lines,
subroutines etc.) in your program. This is done by the SCOPE
command, see page 75.

o invoke subroutines, either to try them under different conditions
or to use them as diagnostic tools. See the INVOKE command on
page 48.

0 look for parts of the code which have not been executed. This is
done while debugging by step~points by the CHECK—OUTnMODE
command, see page 35.

a make macros (which may take parameters) consisting of several
Debugger commands with the MACRO command on page 69.

0 read macros from files instead of from the keyboard. This
operation is done by the INCLUDE command, see page 47.

o reserve another terminal from which the debugging can be done, so
that you avoid having the debugger mess up your screen pictures.
The RESERVE—TERMINAL command does this for you, see page 72.

o optimize the code on some ND~1OO CPUs with the STACK—INSTRUCTIONS
command, which is described on page 78.

2.7. Additional Features in the NDNSOO Debugger

The ND-SOO Symbolic Debugger has some features in addition to those
found in the other Debuggers. These are:

1) it is possible to debug reloaded programs. The debugger checks if
you have several modules with the same name in the debug
information for a domain, and if so, it assumes that a reload of
a multimodule system has occurred. The information for the module
with the same name that was loaded last is used by the debugger.
For details about reloading, see the Linkage—Loader User Guide,
ND—60.182 EN.

Norsk Data ND~60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

2) three new functions:

a) MOD, which returns the remainder from integer divisions.

b) TYPEOF, which returns the type of the variable you are
inspecting (as represented in the debug information). If the
variable is a boolean, TYPEOF returns BOOLEAN, if it is a
record, it returns RECORD.

c) SPECIAL, which makes it possible to display parameter names
that otherwise have special meanings to the debugger, such
as "+", "IND" etc. Example:

*DISPLAY SPECIAL 'ind' J

will display the variable ind.

3) it can display PLANC variant records. See page 41.

4) the ERRCODE location on the stack can be displayed as a variable.
The meaning of the various ERRCODES can be found in appendix A of
the manual SINTRAN III Monitor Calls, ND-60.228 EN.

5) you can log returns from subroutines. See the command LOG—CALLS
on page 52.

6) up to 20 simultaneous breakpoints can be set. See the command
MULTIPLE—BREAK—MODE on page 71.

Norsk Data ND-60.158.4 EN



.555;
i .

x1.
(21.

A
s.

i
..6

5.1.6.163.

RIP?SCDEHEB.“in





SYMBOLIC DEBUGGER USER GUIDE 29
COMMANDS - DETAILED DESCRIPTION

3. COMMANDS ~ DETAILED DESCRIPTION

Following is a list of all available commands with their parameters.

Parameters are enclosed in left and right angle brackets, < and >. If
a parameter is also enclosed in parentheses, it is optional.

<low> <high> required parameters
(<maximum number of levels>) optional parameter

If you give commands without parameters, you will only be prompted for
therawmwdpmammmfi.

The parameters that you can give to the commands described in this
chapter are explained in the chapter about SYMBOLIC DEBUGGER
PARAMETERS on page 83. Please refer to that chapter if you do not know
what the parameter notation means.

3.1. ACTIVE—ROUTINES (<maximum number of levels>)

This command writes the current routine call hierarchy, starting with
the current routine and ending with the main program, if you have not
specified a maximum number of levels. In the latter case, only as many
routines as you have asked for will be printed. If you are debugging a
multi-segment program, the segment number of the routines are printed
together with the routine names.

If your program has not been started, you have no call hierarchy. The
B—register that points to your stack—frame has not been initialized,
and you will get an error message if you attempt to list the
hierarchy.

You use the parameter if you want to set the number of levels to
display to a different number than the default number.

,*ACTIVE—ROUTINES J -
;,“QMIMSORT 3 CALLED FROM QLTMSORT an
I»JQUIKSQRT. 3 CALLED FROM MAIN23
i:aMATM 9 ,

Norsk Data ND—60.158.4 EN



3O SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

3.2. ALIGN—LISTING (program area) (line)

This command is used to adjust the line numbers in the Debugger to
correspond with those on a listing which is not up—to—date. Several
ALIGN—LISTING commands may be given in order to adjust different parts
of the listing. If areas overlap, the command most recently given
takes priority over previous ones.

If no program area is specified, the innermost routine in the current
scope is assumed.

Here is how you align the listing with the routine PRINT:

*ALIGN~LISTING PRINT 800 J
*BREAK PRINT 4
,*§g§~d_ ‘

BREAK AT PRINT.8OM'
*

The declaration line in the routine PRINT will be numbered 800. The
rest of the lines inside the routine PRINT will be adjusted relative
to the declaration line.

The declaration line is the line where the routine or main program is
declared. If the declaration is split over several lines, the last of
these lines is used as declaration line when you align the listing
with a routine name, except in FORTRAN, where the first line is the
declaration.

3.3. ATTACH—REENTRANT~SEGMENT (file name) (segment name)

This command is intended for debugging of programs that have been
loaded as multi—segment programs on the ND—lOO. (You should not
confuse SINTRAN III‘s segments on the ND-lOO with the segments on the
ND—BOO - they are quite different concepts.)

The <file name) is the name of a file whose contents have been dumped
on SINTRAN III's segment file as a part of a multi-segment program. If
you do not specify an extension to the <file name), the default
extension is :PROG.

The (segment name) is the same as the one used while linking the
multi-segment program with the BRF-Linker and then used when dumping
the program to the segment file.

You can decide to change the contents of the segments or to protect
them from such changes with the commands SEGMENT—WRITE-PERMIT and
SEGMENT—WRITE—PROTECT, see page 76.

After you have given this command, the Debugger will display the
segment number in addition to other information about the location of
breakpoints, program addresses etc.

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 31
COMMANDS - DETAILED DESCRIPTION

3.4. ATTACH—SEGMENT (segment number) (<W>)

This section describes the command on the ND—BOO.

ND-500 programs may use several segments. The debug-information for a
segment other than that for your main program is not available until
you have attached it with this command. After it is attached, you can
set breaks on the attached <segment number>.

The command SEGMENT—INFORMATION provides a list of all active
segments.

3.5. ATTACH—SEGMENT (segment number) <prog~file name) (<W>)

This section describes the command in the RT—Debugger.

When you give this command, the segment of the RT—program that you
want to debug is made known to the debugger, together with the name of
a program file that contains that same code as the RT-program. (Make
sure that this really is so, or you are in trouble!) If you do not
specify an extension to the file name, the default extension is :PROG.

You have to give the command RT—PLACE after you have given this
command, to get the appropriate RT~description of the program.

3.6. BREAK (routine, label or line) (<count>) (<condition>)

Sets a breakpoint at the specified item, and removes the previous
breakpoint set by BREAK. The position will be set according to the
first parameter. See on page 88 how you specify routines and labels,
and on page 91 how you specify line numbers.

When you give a RUN or CONTINUE command with an active breakpoint, the
program will execute until it reaches the breakpoint or the program
exits. If execution reaches a breakpoint, the location of the
breakpoint is displayed, together with the segment number if you are
debugging an ND-lOO multi-segment program.

When source code macros or INLINE routines in PLANO or FORTRAN are
expanded during compilation, they are not given line numbers. The
alternative is to set breaks at program addresses with the BREAK-
ADDRESS command.

If a routine name is specified, the breakpoint is set at the first
executable line in the routine.

If you use an NDvSOO and version F or later of the Symbolic Debugger,
you can give the command MULTIPLE—BREAK—MODE ON, which will allow you
to set up to 20 simultaneous breakpoints with the BREAK command. See
page 71 for details.

If a positive number K is specified for the count parameter, the
program will break when the breakpoint has been reached K times. Then,

Norsk Data ND~60.158.4 EN

n r
>—

-—
-—

<_
>—

4



32 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

the (<count>) is cleared, and you will get a break every time the
breakpoint is reached afterwards. (Note that you cannot specify the
(<count>) and (<condition>) parameters when multiple breaks are used.)

56*BREAK SUBCALC.52,1O J
V*BUN J _

'BREAK AT SURCALC. 52

The program will execute until line 52 is encountered for the 10th
time. When the breakpoint is reached, execution terminates and control
passes to the Debugger. To continue to the breakpoint again, use RUN.
To continue to the nearest step-point, use STEP.

If a conditional expression (described on page 86) is given in the
last parameter, control passes to the Debugger at the breakpoint only
if the condition is true and the variable is local:

*BREAK  $10 I > 5 J +-~+-~—-e~«-~$10 specifies label 10
,*RUN J '6 , L _'_ ,; in the FORTRAN subrou~
mu _-~‘ _r16.003 - _ tine SQRS. Since the

5, 7:;1 . 1 25 00 _ _ ',_ (<count>) parameter must
6 1 _ 36 OO " be a number,,the Debug~

CONDITIONAL BREAK AT SQRS. 7 _ gar khoWs that the I 13"
“DISPLAY I J g, y_,_ ~ __ the start of a condi~
I:6 J ' ,6 tionaI expression.
w

If I is not local, prefix it with the routine name, for example,
CALC.I. Only one breakpoint is allowed, but you may have multiple
"step—points" by using LOG—LINES. See the example on page 91.

You can also create breakpoints by using GUARD, see page 45.

Here is an example with multiple breakpoints on the ND-BOO. It uses
the bubble-sorting program which was used in chapter 2.

'~;ND“500 MONITOR Version R00 8R 5 6 / _86f 5 1R
N500: debugger fortaRbubble J _ '_ . ,
ND~SOO SYMBOLIC DEBUGGEB VERSION_F. MAY 12, 1986.

L FORTRAN PEGGRAM. BUBBLE. I ' ‘
jf'*multlgle~braak 0n J -

' *break 12 J ‘ 2 :
*Wbreak 13 J

_ 7*break 14 J
‘T*dis aztosort, run J
_J=0 ‘

‘, TOSORT29  8 7 6 5 4 3 2 1 0'1

2L,Break 6R BUBBLE. 12 =,g ,“‘T ..i"
‘r*dis ',_tosort_ run J_ '

Norsk Data ND-60.158.4 EN

‘V



SYMBOL c DEBUGGER USER GUIDE 33
COMMANDS - DETAILED DESCRIPTION

,_ 3:10 , , *' ‘ E‘U;_K{jk‘

-; {TOSORT&9_8 7 6 5 5 3 2 I Q : _ , . ,_ , _
‘ -‘ “ i Note how you an remove breaks

ES“'.1706:.on'r9L18‘7 6 5 5 3 2 0 I‘fi«4z;-

*;§Break a6 BHBBLE 13

3.7. BREAK—ADDRESS (program address) (<count>)

This command is similar to the BREAK command, except that the
breakpoint is specified directly as a program address. Addresses are
assumed to be in decimal unless you specify octal, hexadecimal etc.
You can use the segment notation, such as B'SHB, meaning segment 5,
location 55 octal. If you are debugging a multi-segment program on the V
ND-lOO, you are only allowed to use addresses on the currently active
segment. Examples:

_ *BREAKwADDRESS 591
r:*RUN A '

Stops at program address 501, not at line 501.

,?*BREAK~ADDRESS 501 lO A
- *RUN J

Stops the 10th time that program address 501 is to be executed.

3.8. BREAK—RETURN

Sets a breakpoint at the return address of the current routine, and
resumes execution from the current line. If a PLANC routine returns
with an error return, the error code is displayed when the breakpoint
is reached.

Norsk Data ND-60.158.4 EN



34 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

Here is an example with a small PLANC program:

;-£1’:2 'i'tvfiiMODuLE EXAMPLE 1_ ‘ ‘ '
3323 w INTEGER ARRAY ~Ntack (0‘1100)‘3‘37‘ ROUTINE VDID vozn'r 'v-
-i:A}J INTEGER x, y
*,g§1*‘ =t*:; xg; _ _
'i~6fli‘ H__x =:‘y .*""' 9 :7 _’: 6 ERRETURN

:_198} __ . _,~ ENDROUTINE ~_,;;x
:y,: 9, 3- _ :r , DRDGRAN10UTDR -;'== 7
'-“:10,3i r‘,';:1 INTSTACK StacN

111:‘j§, ;* _<_ INTEGER : k m
,12;, gr,‘,-*. 1wo '“-=

,,13‘ ,,,_ ": PARALLEL
- 1A ;4' “ *' ENDROUTINE

-, 15 _* , I ENDMODULD

We can debug it on the ND 500 as follows:

VIAND Debugger PLANCAPROG J
--PLANC PROGRAM EXAMPLE OUTER 9

;V*BREAK PARALLEL J
23*RUN J “' _ _
',*LOG LIN33111 J’ , i" ' I " “" ";
,*STEP J _ - ‘ ‘ : _ EDch STRP or carnage Return '

' OUTEB12 * J - advances us one lme at. a‘fl’tii(3113133 13 ' , _ . , __
, BREAK AT DARALLDL 5 _

*BBEAK RETURN J ' "‘ "' I ’“ i "f~sffl=i
BREAK AT 0UTER.13; ERROR RETURN WITH ERRCODE 6 ’ @

WRITE parameters in PLANO are not updated at BREAK—RETURN.

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 35
COMMANDS — DETAILED DESCRIPTION

3.9. CHECK—OUT—MODE (<program area>)

This command is not available in the RT-Debugger.

The CHECK~OUT—MODE command removes the step-point on each line in the
specified routine/module after it has been reached. You can thus
obtain a list of all lines which have never been executed, by using
the DUMP-LOG command. If you are debugging an ND~IOO multi—segment
program, and give no parameter, only the current segment will be
checked.

If no area is specified, all lines are checked.

See the examples on page 99. Noteg

Since CHECK—OUT—MODE removes step-points,
you cannot do the following:

*LOG—LINES (program area)
*CHECK—OUT—MODE (subroutine/module name>
*STEP

You need to do this instead:

*CHECK—OUT—MODE (subroutine/module name)
*BREAK (routine, label or line)
*RUN

If you give the commands LOG—LINES or LOG-CALLS on an area before you
give the CHECK-OUT—MODE command, then only that area is checked.
Default is LOG—LINES on the entire program.

If you specify LOG—CALLS, only the subroutine calls will be checked.
(On the ND-SOO, you will also log the corresponding returns.)

This example shows how a program consisting of several subroutines was
checked out:

*lo «lines rentines. insert node 13: routines main 83 J
check-out-mode J ‘

*Lun J , We log the lines inside the program called*
'. , E - “ routines from line insert node l3 to -H
. . _.:, , * , main 83 specify cheCk—out—m0de and start
.' “ :_ '_H ' the prOgram. After it  has terminated we

dump the log, and find that lines 53 to 66
in the subroutine  find key have not been
executed ' ,

Magma terminated at MAifN 83
*dump~log A
FIND KEY. 53 54 55 56 57 58 59 60 61 62 63 64 65 66

Norsk Data ND~60.158.4 EN



36 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.10. COMPARE—DATA (low) (high) (<output file>)

The data area specified by the two addresses, which are given as
numbers or via ADDR, is compared to the file contents (:DSEG file on
the ND—SOO, :PROG-files for one— and two-bank programs on the ND—lOO).
In one~bank ND—lOO programs, both program and data are compared. In
multi—segment ND—lOO programs, the current segments are compared. The
address of each modified location is displayed, along with the old and
new contents.

The default output file is the terminal; the default file type is
:LIST.

In the following program, a loop is executed K times. We find the
address where K is stored and change K to 20.

' *LOG+LINES,,, J j?_;_,rw ftj By using LOG-LINES, GUARD
_, “ 3' "_: y-ff f: V-‘f_’*'and RUN, we break juSt after
‘ASUARD7K_J 3,) _ 7*, S‘_-'{“K is ageigned a value j ‘
”DISPLAY K #w" -*i,‘ _3: :, LOA~LINES 1s ndt necessary ,1

'K= O , ' __L Q y_,,.§: _bei:Ore GUARD on the ND 500__ ,

GUARD VIOLATIDN AT SQRS 5*DISPLAY A * f , , ~,::r~. , -, '.- .';,;
ERRCODEjO ‘~ , IA0_ .,_ :,,y K: 5. ' ::'gt RA .OYQ'
*LOOK~AT~DATA,ADDR(K),,, A , .- _ _ , ,
D 0001228: “OOOOO5B ~ '5_~ _gg A

,D 0001238: 00000 08 ‘ _ O i i J
*DISPLAY A , . ,,_r. . . _:,-1 _ r-*.Q]~;__:'
ERRCODE:o '-.r 1A0 ‘ : ' - _KA 20 : : ~2,; RA wo;o
*COMPAREIDATA ADDR(K ) 2008 TERMIINAL Al
D 000122A 0000003 CHANGED TO QDOOZAB'

r*mm4

The default output file is the terminal; the default file type is
:LIST.

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 37
COMMANDS - DETAILED DESCRIPTION

3.11. COMPARE—PROGRAM (low) (high) (<output file>)

The program area specified by the lower and upper bounds is compared
to the program file contents (:PSEG files on the ND—SOO). Modified
locations are displayed with address, old contents and new contents.
In multi—segment ND—lOO programs, the current segments are compared.

The default output file is the terminal; the default file type is
:LIST. See also COMPARE—DATA on page 36.

Here is an example of changing a MAC instruction:

*LOOK AT~PROGRAM 300BA , , ‘
1 0000302: 0306073 12679 1 s11~131~ 171 3300001
P 0000310 0400210 18409 H LOA: * 21 J

, “L001 AT——PROGRAM 27B 3 J _ ‘ ";,
,'2 0000270 1106120 128278 : EMU3 1 166 ,_~*
‘_2 0000300:1530000 ~10752 V MON _ g .

P 0000310: 0400210 18109 H LDA * 21 1 J
*COMPARE~PROGRAM 200 #013 TERMINAL J _‘_1

‘ _P_OOOOBOB: .0306070 CHANGED TO 1530000_ "_*, , __ _ _ _ _ __ .

3.12. CONTINUE

Execution is resumed from the current location. If you want to specify
where you want to resume execution from, use RUN. See page 74. All
examples in this manual use RUN.

Execution will continue until the breakpoint is reached or a GUARD
violation occurs. Step~points will be skipped.

Norsk Data ND~60.158.4 EN



38 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

3.13. DISPLAY (<item or value))

Any named element in the information generated by the compilers when
the DEBUG—option is on is an item. Examples of valid items are routine
names, labels, and variables. Values are constants or expressions.

You may qualify items with a dot notation to get at items not
currently in scope. The items may for instance be on code that has
been compiled separately. For more information about how you use the
dot notation to specify places in source programs, see page 88. The
dot notation can also be used to specify record components in some
languages, see subsection below.

If you only write DISPLAY, all variables in the innermost routine or
module in the current scope are displayed.

 *DISPLAY J , “ "
(all variables are listed )

The item(s) and value(s) you specify will be displayed:

1,*DISPLAY I Jpf:§;-~e~
_*DISPLAY I J K J
_I“ 15 I

_-,3;225 ,_ Kefi _ ,  __
*DISPLAY STRING 15 J
'STRING(1)= reduced_
* , ,

Note that only the name and the bounds of arrays are output unless you
specify their names. The same applies to strings. You will find more
examples of simple use of the DISPLAY command on page 11

DISPLAY has a related command, FORMATS—DISPLAY, with which you can
choose how numeric values are displayed. It can be combined with the
"Ada notation” for values, so that you have a quite flexible tool for
inspecting the state of the variables etc. The FORMATS-DISPLAY command
is described on page 44, the Ada notation on page 83.

, _*FORMATS~DISPLAY 0 D a J
“DISPLAY 8#101# J
8#101#:65'&1H 101s_

You can include several expressions on the same line if you separate
them by commas. You cannot use blanks as separators between
expressions.

You can specify a module or routine name, and all variables in the
routine or module are displayed.

Norsk Data ND~60.158.4 EN



SYMBOLIO DEBUGGER USER GUIDE 39
COMMANDS — DETAILED DESCRIPTION

3.13.1. Pascal and PLANO Records

Many programs in these languages use dynamic allocation of storage,
with records containing pointers to other records which are not
accessible through any variable names. This is the case in the
following PLANO program, where the record current of type element have
two pointers lefit and right to other elements. After execution of
lines 12 and 20 in the program, these to pointers contain the
addresses of two new records of type element.

(PLANO and Pascal are quite similar languages. For instance, PLANO
uses the same dot notation for accessing record components as Pascal,
and the USING .. ENDUSING sequence is similar to Pascal's WITH ... DO
BEGIN ... END. And in PLANO, A+B =: C is the same as C := A+B; in
Pascal. Two visible differences are the use of modules and explicitly
named stacks in PLANO, but that does not have any practical
consequences here.)

1 rpODULE records ~‘ '> H
2 - INTEGER ARRAY stack(0 500) _ _ _ I
3 , _.TYPE€1ement RECORD :g_ a _- ~ *

_, l} -, “BYTES: name (0: 6) 7 ' ' ‘G
‘gi5,j_ l : '5 element POINTER left right

6 - ENERECORD i‘ ,, , ,
7 _“elem9nt; current __
8 . PROGRAM ':_ upeelements

_ir9,= * _ Inistack Stack
”10 l I -" _ ‘ USING Currant _ :2

_ 11"] Via: ",r, ’CurrEnt' E: name I;
g 12 * , ' , , New element Eta-left --

_ 13‘, __:' ff 'VUSING’Ieft'i , ‘_
11;, i ,_ _, I'Left ...: name

: 15- ,_ ,wk'iif-‘G - NIL E: left =: right
“16 'V I}_ f' i - ,ENDUSING _ L‘
'17,yt_ , ‘ __,--New element Ei right

18 __‘, ‘ USING right _'
“19‘ ,,,- G ,' ’Right "_=m name
f 20. _’_ - 2-,: ‘ , NILE IeiE E: right
;_ :21] , “ W ENDUSING r a ‘- . _: “

‘_23_,5, 1,1 ENBROUTINE_-' . , },_,_ __, _,3 _ ,HH_
-_ ‘21; . QENDMODULE‘

The Symbolic Debugger uses the same dot notation to access record
components. In addition, the operators IND and ADDR may be used to
find the contents of an item pointed to by a pointer, and the address
of an item. Consider this Debugger session on the program above:

Norsk Data ND~60.158.4 EN



‘-VCURRENT. LEFT NAME:Left

SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

@debug record~Elanc J
PLANO PROGRAM. ,RECQRDs.USEELENENT,8_'

r**break'20;d_ ‘ *_ ' . _: V_, , _ , I , -1_
'*EED J ‘,_,,y *_ y _ ,: WE'want to break the program after ,

‘7 ‘ ' '_, I ' - ‘ the record camponentsfhave‘hadiz
“ j' :3 a _ . ; -5. - values asSigned tc them Then, we -_
Break’at~USEELEMENT.ZO,'5 DISPLAY their values to see the rem'

‘ - ' - ‘1, ’ ‘, , ;JsuTts of the aSsignments.s :

*display current, current .name, current. left: J
CURRENT: -‘ NAME(O 6) ‘T LEFT: OOQOTTB RIGHT” OQOOT7B'

g Thé Debugger informs Us that emprent
contain.6 an array name with indexes in

-, the range 0:6 Furthermore, left and
--:,r1gm contain the values 11 and 17 .

- octal, which are the memory addreSses '
_ of the i:irst location belong1ng to the J

,__J,:g "T ' _*l_ f’_‘ records these po1nters po1nt to.
H CURRENTTNAMExCurrentJ ' " r

CURRENT.LEFT=OOOOITB _- Then, we seé that current name cantains,5i
,*. H_‘”T C_r " '3‘ the texbi "Current”. wh1le left pgints ‘

‘- to address Tl octal , ‘

.*display Current Left name Current Teft rig6t J

- CURRENT_LEFT. RIGHT=NIL Some mQre intricate accéSSes of record1_ _ _ _ ,: _’g _comp9n&nts ' . , .

:I*d1splay ind(current 16ft) J --: “ *"' ‘ ”
IND(CUBRENTVLEFT)"-V [*j ,‘ NAME(0 6 ) _ LEFT~ N1L

_;:BIGHT=  NIL _g, - - * ~ "
_ W6 diSpLay t6e record at 666 location

‘* _ pointed to by current’s left pointer

J*d1splay addr(current) 1nd(addr(current)) _ , ,
~‘ADDR(CURRENT) 0007653 ‘6} . :.:= ~ '
“IND(ADDR(CURRENT))*"‘ '_, NAME(0 6) LEFT~ 0000118
,RIGRT«OOOOT7B ;5-_:;;* i , _ _, ;6; """" '

krgihas the same contents 6_ rrent was
0_ found to havg 360,6‘ ~ ~--

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE Al
COMMANDS - DETAILED DESCRIPTION

3.13.2. Displaying PLANC Variant Records on the NDnSOO

PLANO allows you to create record types which are variants of a basic
type. The variants will contain all the components of the basic type,
plus components which are particular to the variants of the basic type
that you want to use.

As an illustration, consider the following program, where the type
Vehicle form the basis for the variant types Bus and Truck:

'ATUUUULU Th11;fi_f75‘
'112‘3- ISINTEGER ARRAY ::Stack (0:200):1_ ~'
3,351: i, J ‘:--_ 12_

,,_4_ i,TTPE Vehicle RECORD ;-1 "‘ 1
I 75 _, _,“' REAL : Weight Length Width Height_‘
__,6g,i IVpENnUUUURU _ _ '-;C7; _ ,3 __ , _1 _

8 _ I _TYPE Bus? Vehxcle RECORD 1,1fAjw
_9- 1, , ' INTEGER ; Seats, NumberOfCrew g_

7:10,f ;,,g‘ ENDRECORD
. :11, __ g _ '
*_1Z-; _ - : TYPE Truaké Vehicle RECORD

‘13_,r._1r5-3 RRAL *‘LoadCapUCTty _-
,'1A gfl , ‘ BOOLEAN : Autdmatic

‘;115' ‘1: ~rqNDRECORD I ' -
16‘ . ” ,_. , ,3'_,__
17”_r _:_, Bus :‘Lo¢a1BUAE:A (100.010.1, 3. A , 2. 1; AA, 1)

‘¢18u ' . _ ; Bus 2-TouUsBus :#q(150;0_11.3, 3 A,_2.1 33, 3) ,_
_19- : __,_: Truck :‘Tipuck :3—150-5’ 86. 3 2, 1 9, A5 UTBUU)

20 _ _' , - - ‘
, 2:1 ; PROGRAM: Variant

;*22 -_' _ ~ TUTUTAcK Stack
, 23 j, :ENDROUTINE  7‘
L'2A' I A VENDMODULE L

_25 _ ‘, ‘

The ND-SOO debugger makes the following DISPLAY commands possible:

Adisplax this J “‘ 3- _
LCCALBUS ‘ STACK(O: 200) TIPTRUCK :,A TOURSBUS
*display 10calbus vehicle J 3 ,

' LOCALBUS_VEHICLE= . ‘ ' , ' WEIGHT: 1. 000003+02
LENGTH=1;010008+01 - ,.. * UTUTU: 3  40§00

: HEIGHT" 2 10000 5 ' V: ‘ , ' ,
A“display localbus bus J ‘ _
,LUCALBUS BUS: : " , WEIGHT: 1 OODGCE+02
LENGTH: 1.01UQOE+01 , UTDTH: 3 40000
HEIGHT: 2.10000 _ - gr SEATS: AA

, NUMBEROFCRm 1 , " _
*diSplay tiptruck.automatic;J
TIPTRUCK.AUTOMATIC1TRUEY‘

Norsk Data ND-60.158.A EN



42 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

3.14. DUMP—LOG (<output file>)

Sometimes, it is desirable to keep trace of the progress of a program,
to see which source code lines and procedure calls are executed. When
you use the Symbolic Debugger on the ND—lOO and ND-SOO, the DUMP-LOG
command helps you do this. The RT‘Debugger has no LOG—LINES or
LOG~CALLS commands, so you cannot log the progress of an RT program in
the same way. For details about LOG—LINES see page 54, and see page 52
about the LOG—CALLS.

The output of the DUMP—LOG command depends on the type of log
specified.

If LOG—CALLS was specified last, a list of the last 200 routine calls
is displayed. See example on page 52.

If LOG-LINES was specified last, a list of the last 200 lines executed
is displayed. If a line is the first line in a routine, the routine
name is also displayed. See example on page 54.

If CHECK—OUT—MODE was specified last, a list of all the lines or
routines (in the area specified in the CHECK—OUT-MODE command) that
have not been executed is displayed on the terminal. If a line is the
first line in a routine, the routine name is also displayed.

If you are debugging a multi—segment ND—lOO program, the segment
number will be printed each time it changes.

If you do the following when you start the Debugger, you will list
every line in your program that can be logged, even if there are more
than 200 lines:

, *CHEcxéouimonE .1 *
mum-LOG J__ '

The default output file is the terminal; the default file type is
:LIST. For details about the CHECK-OUT—MODE command, see page 35.

Norsk Data ND—60.158.4 EN

X



SYMBOLIC DEBUGGER USER GUIDE 43
COMMANDS - DETAILED DESCRIPTION

3.15. ENABLED—TRAPS

This command is only on the ND-SOO Debugger.

All enabled traps are listed on the terminal.

- 5*ENANLED~TRAPS J
-;,11 lNVALlD OPERATTDN
, :12 DIVISION BY ZERO
‘*1N‘FL0ATTNG DvNRFLDN , _1;fi

_,_ 16 ILLEGAL OPERAND VALUE rg:"
V 26 ILLEGAL INDEX - ,,

.;_'27 STACK OVERFLOWH___
“928;STACK UNDERFLOW
-’29‘NN0GRANNDD TRAP

.3 ,3o-DTSABLE PROCESS SWITCH TlMEOUT
~g31_DTSADLN 9NDCESS SWTTDN ERROR

- 32 INDEX SCALING ERROR
33~TLLNGAL INSTRUCTION CODE
'34 ILLEGAL OPERAND SPEDTNTER _, 1-.

_ 35“INSTNDCTIDN SEQUENCE ERRDN
[36 PROTECT VIOLATlON " =

See also the commands LOCAL-TRAP—DISABLE and LOCAL—TRAP—ENABLE, pages
50 and 51.

3.16. EXIT

Returns control to SlNTRAN on the ND-lOO, and to the ND—SOO MONITOR on
the ND-SOO.

3.17. FIND—SCOPE <program address)

This command finds the module or routine, and the line number, that
correspond to the specified program address. The current scope status
is displayed. If you are debugging an ND—lOO multi—segment program,
this command can only be used on the currently active segment.

Addresses are specified with either ND-SOO syntax, octal or
hexadecimal values. For example:

*findéscope 1'fl508 J l
ROUTINES.WRITE*TREE.49 _

The address originates from line 49, belonging to the routine
WRITEWTREE, which is located inside a main program (or PLANC module)
named ROUTINES.

The difference between FIND—SCOPE and SCOPE (see page 75) is that
FIND—SCOPE needs a program address, while SCOPE has a module, routine
or line number for its parameter. Furthermore, FIND-SCOPE returns the
scope of an address in the executable code, while SCOPE moves you to

Norsk Data ND—60.158.4 EN



44 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

ROUTINES.WRITEfiTREE.49 for instance, so that you can DISPLAY local
variables in the routine WRITE_TREE. etc.

3.18. FORMATS—DISPLAY (formats (A,D,F,H,0 or combinations)>

Set format(s) for the DISPLAY command. This will not affect the format
for the LOOK—AT commands. @del; You obtain the default setting by
giving an empty format specification.

Here is what the codes mean:

A = Alphanumeric H = Hexadecimal
D = Decimal O = Octal
F = Floating point

Default values are A for DISPLAYing character strings, O for pointers,
D for integers and F for reals.

An example is given on page 38.

3.19. FORMATS-LOOK—AT (formats (A,D,F,H,I,O or combinations)>

Set format(s) for the LOOK-AT commands. The default (initial) format
setting is obtained by giving an empty format specification when the
Debugger prompts for parameters to this command.

Here is what the codes mean:

A = Alphanumeric I = Instruction
D = Decimal H = Hexadecimal
F = Floating point 0 = Octal

An example is given on page 56.

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 45
COMMANDS ~ DETAILED DESCRIPTION

3.20. GET—BREAK—STATUS "

This command can only be used with the RT—Debugger.

When debugging an RT—program, you may leave the RT—Debugger after you
have started the program with the RUN—command. The RT-program may then
run for any period of time until the code where the break was set is
reached. When this happens, a message is printed on the error—device,
such as:

_ BREAKPOINT IN (program name) AT (address (oCta1)> I

and you can enter the RT—Debugger. It will not ”remember" where the
breakpoint washen you left it, so you must set a breakpoint at exactly
the same location as you had before you exited the RT—Debugger. This
is necessary if any debugging is to take place — now, the debugger can
verify that SINTRAN III has detected the correct breakpoint. (To set
the breakpoint, use the BREAK (routine, label or line) command.)

Then, give the command GET-BREAK-STATUS . The RT~debugger then
responds with

BREAK AT~<Routinexname>;<sourCe line nog>_
and you can LOOK—AT registers, DISPLAY variables and so on, as you
would in the other debuggers.

If the locations do not match, you get the error message "No active
breakpoint". A

3.21. GUARD (item or address) (<(*not*) 10w (: high)>)

Guard cannot be used in the RT—Debugger. X

This command specifies a data item or location to be checked for
modifications. If the contents of the item or location are outside the
permitted range, a guard violation occurs and control is passed to the
Debugger. You can use expressions for low and high. X

¢JUSE LOGJLINES or LGG~CALLS before GUARD“
;-,on the ND~1QO -

'1~*GUABD x 0 : IO J [5_ ,0 to 10 is the permitted range.
1 _*RUN J A ' A __ ,-i u _, _, H_., _,

TGUARD VIOLATION AT MAIN 53
L*DISPLAY X J "
*xsll ‘

WM. 4
This will break every time x has a value outside the range 0 to 10.

Any data item which has a single value (PLANO types POINTER, INTEGER,
REAL, ENUMERATION, BOOLEAN, and SET) is allowed. Array elements
(packed and unpacked) and record components (packed and unpacked) may

Norsk Data ND—60.158.M EN



46 . SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

also be specified. Composite items (arrays and records) are not
allowed.

If an address is given, the location at that address, taken as a
single signed integer (ND—100, 16 bits; ND—SOO, 32 bits), is checked
for modifications.

The permitted range is specified by n, where low (2 n <= high. If the
operator NOT appears, however, the permitted range is n < low or n >
high.

*GUAND K NOT fiO: ZU .3 '
*RUN .1 ~

’GUARD VIOLATION AT LOOPS. 9
17*DISPLAY K J

K60 - _ * m
*GUARD J ' i _1:' This removes GUARD.
*mma “

If only low is specified, then high is set equal to low. If no range
is specified, the permitted range becomes the single value of the
current contents of the specified address. Permitted range, lowzhigh,
cannot be specified for PLANO SETs.

To continue, use RUN or STEP. If you want to remove GUARD, use it
without parameters.

On the ND—lOO, the amount of checking is determined by using the LOG-
CALLS or the LOG—LINES command. LOG-CALLS specifies that checking is
to be performed at the entry to the routines. LOG—LINES means that
checking is to be performed on every logged line. If a program area is
specified, checking is performed only in the specified program area.

On the ND-SOO, checking is done by the hardware throughout the entire
program.

3.22. HELP (command name>

The HELP command lists available commands on the terminal. Only those
commands that have (command name> as a subset are listed. If <command
name> is null, then all available commands are listed. Each command is
followed by a parameter list, if it has any. Required parameters are
enclosed in angle brackets: < >. Optional parameters are enclosed in
parentheses and angle brackets: (< >).

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE . 47
COMMANDS - DETAILED DESCRIPTION

3.23. INCLUDE-COMMANDS (file name)

If you are debugging an ND—SOO program or a background program on the
ND'lOO, this command will include the commands from the file (which
has default file type :SYMB).

For example, you might want to create a file called MACROS:SYMB with
the following contents:

macro std
formats—display
macro dho
formats—display d h C
macro x
display;run
macro y
x;x;x;
display

Then you can do the following to include your macros and ensure that
they have been defined properly:

:V*INGLUDE~COMMANDS MACROS J
“MACRO STD "

__ ,BODY:_¥MACRO DHO
= BODYé-*MACRG-X‘

-- LBODY: *MACRO Y
' BODY: *DISPLAY _ ~ , :-, ._ H
"ERRCODE=0_ . STRING ,,,-_ Id 0~1,K=05*fl* , “3_,, X- 0’0 __, l_ ,IMflxp

*MACRO é “ ~a,. ‘ , -~fi -
seNAMT J
=Yg . _ «X; X;X; I,

.'X, ~ DISPLATRUN I, '*
_ l’DHo,_' FORMATTDISPLAY D H O

= if STD; , *FORMATS~DISPLAY ‘
:..* 1

All the macros you have defined on the file MACROS:SYMB are now
available to you.

Norsk Data ND-6o.158.4 EN



48 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

3.24. INVOKE (routine) (< (parameter,...,parameter) >)

You cannot use this command from the RT—Debugger.

This command is used to call routines. Parameters will not be checked.
You must ensure that you call the routine with the correct number of
parameters, and that the actual and formal parameters are compatible.
If you are debugging a multi-segment program on the ND—lOO, you can
only invoke routines on the current segment, and these routines cannot
change segments.

If the routine is a FORTRAN subroutine or a PLANO standard routine,
all items that have a defined address (when the INVOKE command is
executed) and constants are allowed. If the routine is a normal PLANC
routine, simple variables (ENUMERATION, BOOLEAN, POINTER and INTEGER)
and records are allowed.

Furthermore, all parameters that you use when you INVOKE a subroutine
are given a size of one word, so simple data types of other sizes,
such as REAL8 on the ND-SOO or REAL4/REAL6 on the ND—lOO cannot be
passed as a parameters to a routine in this manner. Use the SET—
command after you have INVOKEd instead. Records, strings and arrays
are passed as pointers, therefore they occupy one word on the stack.

COBOL has separately compiled subprograms instead of subroutines, and
these subprograms may not be INVOKEd in the manner described here.

Here is an example of how the INVOKE command can be used. The program
is supposed to read a sequence of keys, which are single bytes for the
sake of simplicity, and sort them into alphabetical order as they are
read by the program. The contents of the resulting data structure
(which is a "binary tree" in the program used as example here) is
listed by the subroutine write tree called from the program at the end
of execution. However, write tree can be INVOKEd at any stage during
execution to see how the sorting proceeds (provided the the data
structure is consistent at the time of invocation).

‘ ”break 64 J We set a break at line 64.T This is the 116e ,J
‘*run J ,, where Insertion of a new key is initiated

- '*' {_Then the program is allowed to run.y

Keys: SDFGLKHBUUREJDFNGWERTOIUYNXCVB .2
BREAK at MAIN. 61;. '
:break 64 10 J “ ‘iAfter the program has read its unsorted
“run J y.'¥   ’) sequence of keys,-we inSert 10 keys before_

the next break
BREAK at MAIN. 6Q

-_ *invoke write tree J

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 49
COMMANDS — DETAILED DESCRIPTION

fSorted RBYS'W I'6 If We execute the yEiEEWEEEQ subroutine t6 I: H
A 31b276,'fySQQ Whfih the data structure contains. A5

W7§jBDFGHKLSU _ keys are in alphabetical

ems __ __ _ .,,

‘W,Sorted keys‘lg ff7"

g BCDEFGHIJKLNORSTUWXY _;_;, {f of executions

* Program terminated at MAIW. 67

You cannot transmit PLANC invalues to the routines that you start with
the INVOKE command. Instead, move your scope inside the routine you
want to start with a BREAK before the first line in the subroutine,
and then use SET to give the variable @ the right value.

Norsk Data ND-60.158.4 EN



50 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

3.25. LOCAL—TRAP—DISABLE (<trap conditions>)

This command is only on the ND-BOO Debugger. Several traps can be
specified on the same line, separated by spaces or commas. Always use
hyphens between words in trap names! Abbreviations are accepted.

Example:

*LOCAL—TRAP—DISABLE A—T—F A-T—R FL—UND J

ADDRESS-TRAP-FETCH, ADDRESS—TRAP—READ, and FLOATING-UNDERFLOW are
disabled.

The Debugger shares the trap-handler with the user program. Before the
Debugger starts the user program, it takes the traps PRT, BPT, ATW and
SIT (29, 20, 23 and 17). It must have these traps to detect break— and
step—points etc.

If (<trap conditions>) is empty, all traps are disabled. If (<trap
conditions>) is HELP, all available trap conditions are listed on the
terminal.

In the following example, the program LOOPS divides by zero. By
disabling trap 12, "Division by zero", control will not go to the
Debugger when a number is divided by zero in the program.

*BIINJ
DIVISION BY ZERO AT LOOPS A

, *LOOAL——TRAP DISABLE HELP A
9 OVERFLOW

’11:* INVALID OPERATION
12 * DIVISION BY ZERO,,
13 FLOATING UNDERFLOW
IA‘*LRLOATINO OVERFLOW

'15! BCD OVERFLOW ,
I6 * ILLEGAL OPERAND VALUE
I7 SINGLE INSTRUCTION TRAP
18 BRANCH TRAP

'_19 CALL TRAP
20 ‘RRRANROINT INSTRUCTION TRAP
21' ‘ADDRESS TRAP FETCH
22 ADDRESS TRAP READ
23 ADDRESS TRAP’WRITE-

‘- ,24 _ADDRESS ZERO ACCESS
“ 25 ORSCRIRTOR RANGE ‘
,'26, * ILLEGAL INDEX

27 * STACK OVRRRLON
E.28 * STACK ONORRRLON
_29 *VPROGRAMMED TRAP _ ' ‘
30_* DISABLE PROCESS SWITCH TIMEOUT

-p 31 * DISABLE PROCESS SWITCH ERROR ‘
,32-fi INDEX SCALING ERROR _

if ~332* ILLEGAL INSTRUCTION CODE ‘
' '3A * ILLEGAL OPERAND SPECIFIER
~,35 * INSTRUCTION SEQUENCE ERROR

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 51
COMMANDS - DETAILED DESCRIPTION

36 * PROTECT VIOLATmN _ -_ *LOCAL~TRAP~DISABLE DIVISION—BY~ZERO
‘*Qf*RAN J _

We could have written *L—T—D DIV since DIV is an unambiguous
abbreviation of DIVISION~BY~ZERO.

The trap conditions marked with an asterisk (*) are disabled if you
give the LOCAL—TRAP~DISABLE command without any parameters.

When a trap is disabled, nothing happens if the condition occurs,
unless the condition is fatal. In the latter case (for instance, if a
protect~violation occurs), the monitor takes over and reports the
error.

3.26. LOCAL-TRAP—ENABLE (<trap conditions>)

This command is for the ND—SOO only. Several traps can be specified on
the same line separated by spaces or commas. Always use hyphens
between words in trap names!

If (<trap conditions>) is HELP, all available trap conditions are
listed on the terminal. The trap conditions marked with an asterisk
(*) are enabled if you give the command LOCAL—TRAP—ENABLE without any
parameters.

Example:

I *LOCAL~TRAP~ENABLE PROT VIOL I I C J

The PROTECT—~VIOLATION and ILLEGAL— INSTRUCTION— CODE traps are enabled.

If the enabled trap condition occurs, the Debugger will take over and
break.

Norsk Data ND—60.158.4 EN



52 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.27. LOG—CALLS (program area>

This command cannot be used from the RT—Debugger.

The LOG—CALLS command logs all routine calls in a cyclic buffer. This
buffer can be inspected by means of the DUMP—LOG command (see page
42). The buffer can hold a maximum of 200 entries.

If you do not specify any area, the whole program is checked, except
when debugging multi—segment ND—lOO programs, where only the current
segment is checked. To log on other segments, you must first enter a
break on that segment.

On the ND—SOO, return from subroutines is also logged.

; *LOG CALLS,gz,é
1*PPPAK  PPINT 5 1J-
2*RUN J , ,,

:- PPPWK AT PRINT 21
' _*DUMP~LOG a , * _» ‘ ‘ "

LOOPS PRINT PRINT REDUCE PEDUCE PRINT ,__,- :*
REDUCE REDUCE PPIPT PPDUCP REDUCE PPINT

: *PXIT A
If a module or routine is specified, all routines that are called in
the specified module or routine are logged.

This command is normally used in conjunction with other commands. The
next sections give some examples.

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 53
COMMANDS ~ DETAILED DESCRIPTION

3.27.1. LOG-CALLS and CHECKnOUT-MODE

This is how you can log all the routines in your program that are not
called:

*LOGvCALLSz., J
*CHECK—OUTsMDDE,JQ
... (BREAK and RUN)

_*DUMP—LOG J

You can also specify an area:

*LDD CALLS ,, J _
*CHECK OUT~MODE MAIN 20 MAIN No a ~

(BREAK and RUN) ' ‘ * "
*DUNP LOG J

Any routine not called in the area MAIN.20 to MAIN.AO will be logged.

You can list all routines by using DUMP—LOG immediately after LOG-
CALLS and CHECK—OUT—MODE:

*LOG~CALLS,Z, d, _
-_ *CHECK~OUT-~MQDE a~~

~,*DUMP LDG J :- .'
LOOPS 6 PRINT 21 N::DUCE.34 '

That may be useful when you start debugging your program.

3.27.2. LOG-CALLS and GUARD

You need to use LOG—CALLS or LOG—LINES before GUARD only on the
ND-lOO.

*LOGwCALLS}§,,J
~*GUAND CEVAL J

Every time a routine is called, the Debugger will check to see if the
value of CEVAL has changed.

3.27.3. LOG—CALLS and STEP

“LOG CALLS MAIN 5o : MAIN.7O 4:.
*STEP A ' * “ _

Each J (Carriage Return) will bring you to the next routine call in
the area MAIN.50 to MAIN.70, and each routine call will be logged. On
the ND-BOO, returns from subroutines are logged, too.

Norsk Data ND—60.158.4 EN



54 ' SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

3.28. LOG-LINES (program area)

This command cannot be used from the RT—Debugger.

The LOG—LINES command logs all executed line numbers in a cyclic
buffer. This buffer can be inspected by means of the DUMP—LOG command
(see page 42). The buffer can hold a maximum of 200 entries.

,‘*LOG LINES,,,, J'
*BREAK PRINT 5 J

"*RUN J
BREAK AT PRINT. 21
*DUMP LOG J '

_LOOPS 6 7 8 9 10 11 14 12 13 _
PRINT 21 22 23 26 23 26 23 26 23
26 27 28 29 LOOPS 14 12 13 _
PRINT 21 22 23 2h REDUCE. 34 35 36 37

- (etc. ),_*

If a module or routine is specified, only the lines executed in the
specified module or routine are logged.

If you are debugging an ND—lOO multi-segment program, only the current
segment is logged. You can set breaks on any segment by first entering
a break on that segment.

LOG—LINES is normally used in conjunction with other commands. Here
are some examples:

3n28.l. LOG—LINES and GUARD

You only need to use LOG—CALLS or LOG—LINES before GUARD on the
ND—lOO.

'i*LOG¥LINES CALC J
*GUARD CEVAL J

3,*RUR J '

The Debugger will tell you if the value of CEVAL changes anywhere in
the routine CALC.

Norsk Data ND~60.158.H EN



SYMBOLIC DEBUGGER USER GUIDE 55
COMMANDS — DETAILED DESCRIPTION

3.28.2. LOG-LINES and STEP

*LOG~LINES MAIN 50 MAIN 7o .1}
*SLEP .1 **

Each J (Carriage Return) will bring you to the next line in the area.
MAIN.50 to MAIN.7O and each line number will be logged.

Note:

We advise you NOT to use LOG—LINES on your entire program
if you have a large program. Specify part of your program
instead. Otherwise you will slow down program execution
considerably.

Norsk Data ND—60.158.4 EN



56 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.29. LOOK—AT—DATA (data address) (<count>) (<output file>)

This command and the related commands LOOK-AT—PROGRAM, LOOK—AT—
REGISTER and LOOK—AT—STACK enable data locations, program locations
and registers to be inspected and modified. The data address and the
count can be specified with constants, as described on page 83. The
count can also be given as an expression, see page 86. Output from
these commands can be sent to the file named in the optional (<output
file>) parameter. The file has default type :SYMB.

*LOOKsAT—DATA 32o io-J

The data in the addresses 320 to 332 (octal!) will be printed. If you
do not specify count, one location will be output.

If you are employing an alternative page table from a 1—bank program,
addresses within the alternative page table can be accessed by
specifying addresses in the range 200,000B to 377,7778. (ND—100 only.)

*LOOK—AT—DATA 320 1000 "DATA:LISTé J-

In the above example, control returns to the Debugger when the 1000
locations have been output. If you send the output to your terminal,
control remains within the LOOK—AT command, and you may use the
subcommands described below.

J (Carriage Return) causes an advance to the next address item without
changing the contents of the current address. (An address is a 16 bit
word on the ND—lOO and a 32 bit word on the ND-EOO.) All subcommands
are terminated by CR. Printing a dot (.), a semicolon (;), or EXIT
returns you to the Debugger:

*FORMATS—LDDK~AT D H J
*LOOK~AT—DATA ADDR(CURRENT NAmny-yJ
D 0010108; 0001423 00623 _ ;,~

_ D 0010113: 0675428_6F62H Exxs~ ,'
_* , ,,

Note that the contents of each location is printed in the format(s)
specified by the FORMATS—LOOK—AT command.

Norsk Data ND-6o.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 57
COMMANDS — DETAILED DESCRIPTION

Below you will find the special notation that is available when you
have given a LOOK-AT command” Subcommands are listed in the next
section.

HELP (command name) Lists available LOOK-AT subcommands on
the terminal.

EXIT or ;
or . Returns control to the Debugger’s

command processor.

m Deposits the value of the expression m
(which can also be a string constant) in
the current location and advances to the
next location.

m,n/ This prints n locations, starting with
the contents of location m. See the
example on page 65.

Here are some examples that illustrate the notation.

First, we modify the data used in the BUBBLE program used in the "
introductory example on page 11. This example is run on the ND-SOO. ‘

*_ display tosort J
TOSORn 8 7 6 5 A 3 2 1 O _ , _
*look~at~data  addr(tosort(5)) J -, ,H_ _ i 2', a
D 1'; 109B: 000000000098 ‘ ' a9 ' gg'u,
Drl' :, , 1108: 000000000038 - ' , ' ’
*display toSort J i _
TOSORT 9 8 7 6 5 99 32

, *run J

‘
w L.

Program terminated at BUBBLE 14
*disglay toSort J -fi-

,, TOSORT~O I 2 3 5 6 7 8 9 99

Then, we show some more possibilities, this time using another program
on the ND—lOO:

-*§;§EQAX'J g_ ,,, ,: ;_r_,fi ‘_
.IERRCODE 0 ,_ ' I=Q ,rf‘ ",'__ =-5_,. ,

:KTAL= D ' i ~ 7* 5"
*L00K~AT~DATA ADDR(I),,,J
D 0000578: 0000008 ' 0 _ EXIT a
:*LOOK*AT~DATA,1ZSB,,, J ,:, ._
-0 0001258: 0000110 _ . 9 a, ,

,*LO0K+AT—DATA ADDR(K),,, J ,,,
D 0000600: OOOOOSB-r 5 ggré
D 0000618: 0000008 ,_ O i-J _
*LQOK~AT»DROGRAM_3OB a ' _ , ',

- P 0000300: 1206060 529186 2 MPY ,B — 172 1530003 J
p 0000318: 0096108 g 2990 STA ,B — 170 i J
*LOOK~AT*PROGRAM 300 J ,
P 0000308: 1530000 ~10752 V MON 3 J

Norsk Data ND-60.158.4 EN



58 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

43300433444121 4mm...»
- D 00006083 0000248‘ 720 ‘ Z'J '

In the above example, three ways of exiting were shown (., ;, and
EXIT), and the value 20 was stored in data address 60B. The value
1530008 replaced 120606B in program address 30B.

Here is the special notation to be used with the slash (/) command:

m/ Take the value of m as the next address and
display this location.

/ Take the contents of the current location as the
next address and display this location
(indirection).

// (Restricted for the moment to the ND-lOO.) When in
program mode only, the second slash will cause the
current word to be interpreted as an instruction.
The operand of the instruction is taken as the
next location.

m,/ Take the value of m as the next address and
display n locations, where n is the last count
entered.

,n/ Take the contents of the current location as the
next address and display n locations.

,/ Take the contents of the current location as the
next address and display n locations, where n is
the last count entered.

Here are some examples:

' ;*SET,K_=*113 4-; i-
l.*LO0K~AT~PROGaAM K J-_ - , .,-
j"P‘OOOOllB:,171400B 1—3328 s SAX 0 13+1008Z J

,,?f000111B:*00010281* 66 B STZ * 102 A;
, P 0001023: 0000643 52 4 STZ * 64 Z ‘v _ 'f;r

-*_- P‘OOOO6QBc‘02413OB_ 10328.(x LDD * 130 234BZ 1,: -:éz:-
{23P*000234B:f1343458‘~182O3 8e JPL * ~ 33 ZZu I_I=~
‘;P10002018: 1461473 ~13209 Lg COPY 3L DX:¢ 1

Now consider a more complex example. On page 48, we presented a
program using a simple data structure, which we can use to maintain
lists of keys sorted in alphabetical order. This is achieved by
associating each key with pointers to other keys, which likewise have
pointers associated with them. These pointers contain the addresses of
other keys, or zero if they do not point to any further keys. In
Pascal and PLANO, this corresponds to a RECORD with the following
structure:

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 59
COMMANDS - DETAILED DESCRIPTION

We make the sorted structure by making the left pointer point to keys
smaller than the key of the current record, and the right pointer
point to bigger keys. Now, if we follow the left pointer from node to
node, the consequence of this is that we get successively smaller
keys.

On page 48, we investigated this data structure with subroutines that
were part of the program we were debugging. But from the above
description of the slash command, it is evident that we can use it as
an alternative to the DISPLAY command or invocation of such routines
to inspect the data structure" This is an example of how you do this
on the ND 500:

:break 80 J
*run J

Keys OGHFJSDDKUIOWERTMNX<VBSDFLGKJ‘NBQWERTUOIUHJBXCVBMN .233 ‘ :BREAK at MAIN 80 ‘ =
L'*break 8O 3OJ ' {‘4' Now We have run the program so

‘ *run 3 2 _' A that it has a randOm string of
, _ ' -‘ ' A, bytes to use as keys. We repeat a

- BREAK at MAIN.80 ' :jfif_‘ loop 30 times to read and insert
*inVske write tree J_, " , ‘30 keys into the Structure. Then_
_" 1 ’:'-. '“ ' 11 use the INVQKE command to see what

,we have got in the structure thus
rfar.v ' -

g isorkted‘ keys:
: BCDEFGHIJKLMNCRSTUVWX

i:_Next,D the Debugger is told to output the,
rpcontents 01 the addresses in alphabetiCal and

, hexadeCima3 form. ' ,

Norsk Data ND—60.158.4 EN



6O

f"u
u,

c:
c:

cz
c:

cs
u

v:
jk

ui
af

:”

1*
_1}

,1{p%.;»
.1?
.1J.'
f1"
11 -1
1!

112,~_¢

1*‘17
1f ‘-5,

15708
r_;j157&B;;
;;4r16148:
:,:16208:

711664B:
i'167OB:
_.1760B:

:.:;17543;
_jne‘231hB:
:‘T‘23ZOB:

_j2364B:
=237OBi

1*11ookJatéaagajrdgtiJ;_;j

WFOOOOOOHI‘11 -
_080003SCH ~ -
#7000000fi;- '
VOSOOOSBQH'
Q6000OOOH

:080003F0H‘_
sukoooeoaflj ;:
VO8OOOQCCHI',
g4300000081‘-‘
OSOQOAFhflzt

5&20000003‘ __
:OOOOOOOOH:, ,'

114 A 41‘

1p A J
L A JIf

SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

__ 'rOOtJis __
,;'1h cont ins an address , :,
;fof a locatlon.1n physi~
] Cal membry We LOOK AT ,
', it  and See that that "1

* _addres$ contalns an O.__,u
' The neXt address is a -'

pointér;fthusir“

painter to the next _. ,;
smailer key. A / br1ngS"

‘- us there. The key is G,
which;1sasma11er_than,of‘**

‘ Proceeding like this,r
, we uncover an F, D, C

~,K-and a B before We f1nd
:t Z 421. no mere meaningful painwé-

ters Which iS_the same '
_ ,as what we learned from

,-_fINVQKEing the:Wr1te tree' '
" routine: The Smal1e$t

kIQ}{ailnemye‘nt 1n the Structure_f
' g,is a B.

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 61
COMMANDS * DETAILED DESCRIPTION

3.30. LOOK—AT Subcommands

The following subcommands apply to LOOK-AT‘DATA, LOOK—AT—PROGRAM,
LOOK—AT—REGISTER, and LOOK—AT—STACK.
The LOOK—AT commands may be abbreviated in the same way as the
commands to the Symbolic Debugger itself, see page 3.

N R N The LOOK—AT commands that are available in the different
D T D Debuggers. Parameters are indicated within < ... >.
- - - The + signs indicate commands which have higher priority
1 D 5 than the others, to resolve ambiguities.
0 e O
O b O Commands Parameters

o o BREAK
o BYTE

o o 0 CODE <INSTRUCTION>
o o o +DATA
o o o DOUBLE-FLOATING
o o DOUBLE—WORD
o o o +EXIT
o o o EXTRA—FORMATS (FORMATS A, D, F, H, I OR 0)
o o o FLOATING
o o o FORMATS (FORMATS A, D, F, H, I OR 0)

o HALF-WORD
o o o +HELP (COMMAND NAME)
0 o 0 NEXT
0 a o PREVIOUS
0 o o +PROGRAM
o o o REGISTER

0 SEARCH <BYTE LIST>
o o o STACK
o o o WORD

Norsk Data ND~60.158.4 EN



62 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

Here is how you list the subcommands:

, “look~at data 20 d , - -- w, = ,; ',’_,‘ -V“*
LD 1’ , 248: OOOOOOQQOOOB i>7- * '0 -: ‘ HELPififli'

_ COMMAND NAME: é ‘ - : -' i. W -' :-,y
, BYTE :,__ “i " ° '4
"CODE <TNSTRUCTION>_

.

_ '*exit #

BREAK (NlOO and RT)

This command is a supplement to the BREAK—ADDRESS command on the
ND—lOO Debugger and the RT-Debugger. It sets a breakpoint at the
program address you are LOOKing at, so that your program will go into
the break mode the next time it executes the instruction at that
address.

DATA, PROGRAM, REGISTER, and STACK

Within a LOOK-AT command one can go directly to one of the other LOOK—
AT commands by using one of these subcommands.

Example:

[*BQRBATS~L00K AT 0 J
*LO0K~AT~BATA 410 J -
D 010000000410: 000000B PROGRAM  4
B 010000000410: 0000 REGTBTBB ‘fJ
VP:-'~  0100000000AB STACK J _ _ _1‘1

, PREVIOUS 8: ‘~ _ _ , {000000000000 , *5; «:f,
IfRETUBN ADDRESS: - 1 ~ -g * , 3340200000087“~:z~~**

NEXT B’ . , ' ’_, _004636000008_ ~~
_ AUX: - “, , ~000351470018':

. NO OF PARAMETERS; ,:,y ;' ' 22A0640713OB.
“'0 000000000240 ,_ - BBB: 032002537750 BATA J

NEXT and PREVIOUS

Within the LOOK—AT—STACK command these subcommands can be used to move
between the stack frames.

See the example on page 68.

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 63
COMMANDS - DETAILED DESCRIPTION

WORD, FLOATING, and DOUBLE—FLOATING

QQEBLE—WORD (ND-100 and RT)

3330 and HALF—W000 (ND-500 only)

With the LOOK—AT commands one can display values in units of several
different sizes. These subcommands specify the desired size.

Here are some examples from an ND—BOO program:

*FORMATSwLOOK—AT H A _
'_ *L00K~AT DATA ADDR(I} A ‘ _

'010000000300: 5038034 6H BYTE  A
010 000000300: 50H A
010000000310: 38H A
01000000032B:,00H A -
010000000330: 460 3003 A
010000000300: 500 WORD A
010000000300: 503800460 A
,010000000340: 00000000H 3005 A
010000000300: 50380046H HALF oD A
‘010000000300: 5038H A -'
010000000320: 0046H 3Atu

c
d
m

w
b
u
v
u
tn

c

In the following example, X is declared as real in a PLANO-500
program; Y8 is declared as REAL8:

*DISPLAY A ' ' , , , _ , :.
X: A 25600 Y8=,I.2560000000000002_, _3 pz"3.14000

~NAME(1: 60) ' '1,-, " i=4 _ , ' -
*FORMATS LOOK—AT H 0 A _
*DISPLAY A000§Y81 A :-rv
A000(T8) 010000000340 ,
*LOOK~AT~DATA ADDR(X) A , { L; f

2010000000300: 405062400 1079009869 A 31_;_ “
010000000340 4050624003 1079009869 3001 A ,
010000000300:,4050624DH; 1079009869 FLOATING A
010000000300: 405062400 '1079009869 1 25600
010000000340: 40506240H: 1079009869 1 25600 34'Hgi A ,

_01000000034H: 40506240H  1079009869 I 25600 FORMATS H A
010000000340: 40506240H DOUBLE~FLOATING A
010000000340: 40506240H DZFlAQFCH 1 2560000000000003*U

U
U

C
D

’U
U

U
U

I t

FLOATING is useful for inspecting the values of real numbers.
DOUBLE-FLOATING is only helpful for real numbers stored in 2 words. It
also displays 48 bit floating numbers on the ND—lOO.

FORMATS <formats A, D, F, H, I or O)

EXTRA-FORMATS (formats A, D, F, H, I or O)

Norsk Data ND-60.158.U EN



64 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

In FORMATS and EXTRA—FORMATS, the abbreviations have the following
meaning:

A = Alphanumeric I = Instruction
D = Decimal H = Hexadecimal
F = Floating point 0 = Octal

The formats set by means of the FORMATS—LOOK—AT command may be
temporarily changed with these subcommands. The FORMATS subcommand is
similar to the FORMATS—LOOK—AT, except that the formats are valid only
until exit from LOOK—AT. The EXTRA—FORMATS command is similar to the
FORMATS command, except that the specified formats are added to those
already set.

SEARCH (byte string> (ND—500 only)

This command searches for a sequence of bytes or an instruction in
memory. The byte string can be input as

a) a series of numbers: SEARCH lOZB,127B,177B J

b) an assembly instruction: SEARCH W1 2: 38 J

c) a string of bytes inside a pair of apostrophes: SEARCH ’PETERL J

Note that all letters are converted to capitals before the
search, so that you cannot specify SEARCH ‘Peteri J if you have a
the string 'Peter' somewhere in memory. Use SEARCH
80,101,116,10l,114 J instead.

Examples:

‘*100k atmdata O J ' , " , '
_l‘ , OB: 000000000008 ‘0 ‘ Wxte‘kJD ,

Dfl” jn _- OB: 000B,_  0 "Search 80 101 116,1Q1 114 J
, D :11 ‘ . mg: 1209 80 P .1
2111* :58 1145131016.:

SD 1'; j , 63: 3.61413 116:1: J
, 111' , 78 111513 1016 .! =
, D 1' * * 108:1623 :114 r 1 J
~*look~at~program O J
P 15 ' OB: OB search wl := 3bJ
‘P 1'- 568:121 := 313 .1 ,
P 1“ ‘1 , 608: CALL 1 26343B, QB ._J,i
* - .1r __,

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 65
COMMANDS — DETAILED DESCRIPTION

3.31. LOOK—AT~PROGRAM (program address> (<count>) (<output file>)

Inspect and modify program locations. This command is similar to the
LOOK—AT—DATA command, except that I format (symbolic instructions) is
enabled as default. Decimal addresses are default, so remember to
write B after octal addresses! Output from this command can be sent to
the file named in the optional (<output file>) parameter. The file has
default type :SYMB.

In the following example, the program is changed so that the number 0
will be printed on your terminal:

_',*LQOK AT REGISTER P,.,'1 _ ,:;: ,_,. _-,&r
~_-,»P: _> 0000113 , 9 :I:3.1_&ZL.‘~_‘

'- *LOOK AT PROGRAM 112 1 ‘ 23_
: 0000118-1711003 «3328 S SAX 0 CODE SAT 1 1

.0000123:_1330323r~17891_ , JPL I * 32 CODE SAA 6Q 1
3060013B:_OOOOG§B.',:;14_j*_STs 1 CODE MON1 1 ~--*
-oooo143;j0000513 r11”:)'STz_* 31 CODE MON 63 1
‘0000193: 00001221'_ ~10 ;js,* 12 0011 MON 0 1 ~*--
=0000168;.00000122j*j;_12i1_STz-# 111B 31 1 ‘
100001182_1710018 i33583~rg SAT 1]
'00091aaz-1701603 “~3792 10 SAAuso_,xiJ_
0000138:,1530022 w10750 v MQNoTBT .

_0000112: 1330632 ~10699 v5 101 QEBMSV..=
0000153:_133OQOB e10752_Vg MON 3 1'_:j‘

RUN 1 ~ “r<»:~y~- : ,, '_: ._' -;:._

1
b

1
1
1

1
1
1

1
1

1
1
1

1

Here is a very short example from an ND—SOO program:

*LOOK—AT—PROGgAM 1
PROGRAM ADDRESS: 1208 1
P 01'1203: w LOOPI B.0218:S,B.03OB:S,—06OB-~>01'nos CODE 1
INSTRUCTION: w LOOPI B.O3OB:S,B.0248:S,MOB 1
P 01'1248: BET 1208{ 1
P 01'1208: w LOOPI 3.03OB:S,B.02MB:S,~06OB-—>01'408 1 1
*

Note that we abbreviated a few addresses with an apostrophe to save
space. 010000001208 and 01‘120B both mean segment number 1, address
120B.

Some examples of LOOK—AT—PROGRAM are also given in the previous
section on page 57 and 58.

Norsk Data ND-60.158.4 EN



66 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.32. LOOK—AT—REGISTER <register name) (<count>) (<output file>)

Inspect and modify CPU registers. This command is similar to the LOOK—
AT-DATA command. Output from this command can be sent to the file
named in the optional (<output file>) parameter. The file has default
type :SYMB.

'f *L00K~AT~BEGISTER P 9~J
. p. 0032160. 1678

- Ix: 7 ~0000300,w , 24?
T: 4‘ , 0027340~r 1500 ,\
,A; , 0000010 1-

9:0: *rr~0000243'_ 20_
HL:,’ , “0007640 - ‘500: t
*s; * -.000:400 96_ ‘
__B: e;*r0002168- , 1&2:

rr‘wgr, :_.0000020'r"'i2r,: ,, g - .
PSEG:H_j000:57B‘S , 0~ “EXIT 4,9i'T, '7
* ,,H* _ ‘ ‘ , 7 ' .lff

On the ND—lOO, W is the current alternative page table. Note that its
value is 2 above. Its value must be 2 or 3. The PSEG shows which
register you are on if debugging a multi—segment program.

Here is an example on the ND—BOO:

*iB;--3 ~010000002100 '134217864 OIL 3".;021‘ ; ,_" 2108:‘OOOOOOOOOOOB"~- - _'- O~dr_ , _ ;:,:-;_1i
, 0 if} '2lkaz‘000000000000 , ' 0 'regiSter J j

P:- ', 010000006140- 134218120- - ,:,, , :- .‘a, a”,
L: 010000006140 ' 130218124 ,0
B: 010000002100 130217864 '0
R4 010000004700! 134218000 ' 8-;g4
* “ ,: _ , ' ' , *-

3.33. LOOK—AT—STACK <B register) (<count>) (<output file>)

Inspect and modify locations in the stack. This command is similar to
the LOOK—AT—DATA command, except that both absolute and relative
addresses are displayed. Locations in the stack header are given by
name rather than by address. Output from this command can be sent to
the file named in the optional (<output file>) parameter. The file has
default type :SYMB.

The stack handling related to subroutine calls is usually done by
special machine instructions. (An exception is some ND—lOO CPUS.)
Therefore, the display of the stack looks the same on the same CPU, no
matter what programming language you use.

Addresses entered with the slash (/) command are taken as relative to
the B register of the current stack frame that is being examined.

Norsk Data ND-60.158.4 EN

V



SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

In the following example, a FORTRAN program calls the subroutine print
which in turn calls the subroutine reduce. Print has 3 parameters,
reduce has 2.

_'*BREAK REDUCE J
,, *RUN J ' ‘
~yrsubrout1ne print ,, __, --_- _,y , a

, '_r 5 réduced
- "',g , 4 times t

, 55000008v01 i‘-‘_*“ 7 * *25 ‘  _, :: "*‘i
,: subroutine p:rint I ' ,‘_:
1' BREAK AT REDUCE;3§ ,

*FORMATS‘LOOKeAT O J '
This is what you see when you LOOK-AT the stack on an ND-lOO:

*look-at-stack,, J ,
RETURN ADDRESS: I ~0051018 2625 A

The address to which you Will return when 1
exiting this routine

, PREVIOUS 8;: _ _ ODOZOOB g128

:7 This is the B register of the previous stack
_ frame . .. , ,

STACK'POINTEfizek : 0000213 A 17 l
I I, ‘5: Points to the beginning of the next stack

_ _ 'frame :_

‘-T_Max; srAcx:-lj" ‘ QQ03113=-' 201~ I
“I Points to firSt word after the last element in ,

‘the Stack ‘ - ,

LEXIT:IJ ,,>.:'- L 00436§B 2292 ‘t5
"- For spec1al use by run~time system

_ERRC¢DE;a* ,f; ‘2; ~0000002  °7-_or“

‘ returned here
The error code from the current routine is-r

Norsk Data ND—60.158.4 EN



68 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

9 0000158 v ~1723 0003353 2221-,3;113}"
;;To the iéft yea SSS the addresq of thS flrst

._* laCaL varlable in the routlne7 Then comes
'*y—17ZB the Sdéress of that 16c .
__ relat1ve to thé B reg1Ster T012 wed

. contents of the locat1on.y

, _,,Now. S11 th6 var1oUS LOOKwAT Sub“ ,mah S can"
‘“fqg-be uSed By default you  wil1.‘ luspectlng E

,‘-  thS addreSSSS of the parameters _ EthS current #3
f _subr0ut1ne Next Will giVS you thS S ac_g': ‘

_-framS cf the nSxt subroutine 0S thS StaCk,
: PREVIOUS that of the preViouS sabroutlne

n 0003353 0001103 72 H J _
i n 0003368: 10000008 0 1 .:4

~**ia -+ 'vf‘:“:1;I97.., x,: ,_ _

This is what you see when you LOOK—AT the stack on an ND~500z

w_ +¥LQOK~1éés1ACK;, J ,__- , g»'__ : ;; gg;»3v-__'PREVICUSVB? ‘ , s ” 0100000031413

{'This Sis: thS B reg1ster of thS prev1ous StaCk
: frame._ , 1 . -

”IL RETURN ADDRESS; .i'qg[f§S101000000222BS1'S‘S:“S
: SvThe addrSSS  to which you W111 return when
‘_,Sxiting thiS routine. -

C=.iNSXS; ,0100000022431e"
JTSJ This is the B reglster of the next Stack

‘;_fmmS ‘W . ,

--};.5AUX;:*,STBQ f=S‘-_°S1 g“r':s:L§00000006000S_7'""1
ii ThiS Will contain the Srrér Cade fOr the

‘ 9 Subrputine that you are in '

~ fNo 0F FARAMETSRs§‘_S :;~ -’2'000000000928_~'-
This is théinumber of paramétéré that Wereyif

* transferred to the subroutine whose Stack
'frame you are examining.

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

69

D 0100000060QB ZQB: OlOOOOOOO7QB PREV J

,2, To the left you see the addresys’ of thé firs t
1 J local variable in the r0utine Then cemes
_,[ 2QB the address of that locat10n -
_,t-relative to the B register, fellowed by 1he
»'_00ntents of the location

"-*Finally, a LOOK~AT subcommand tn 1nspect the ;*,5
Istack frame of the subroutine from which the

7 current Subroutine was Called 1s given (USe
the subCommand NEXT t0 LOOK«AT the next stack
frame )

“PREVIOUS B: ' 01000000024E5
"EETUEN ADDEEss: OiOOOOOOllQB _
UNEXT E 1010000002218 '_

7:1AUX:-i, ' 'x'r-~' 1_000000000008_.";
* N0. 0E EAEAMETEEE.V: , _; ~000000000033. __ _-

,__D 010000003AQE ,1 _:243: 01000000060E:EEEV~J:
_ PREVIOUS Bz- } 3000000000003

RETURN ADDEEss: J'OOOOOOOOOOOB
,NEXT  3"‘ ~ - _ 0100000022AE1 I

._ ‘Aux: “ l 000000000008
' N0 0E PARAMETERS, -_ ‘_ 000000000008~, ~ ,,,.;
‘qD 010000000508 248: 000000000103 EXIT 4‘,*f;=

The NEXT command is the opposite of the PREVIOUS command: It moves to
the next stack frame on the stack.

These command are useful if your program uses many routines that call
each other, such as recursive routines, since you can observe the
previous routine calls and their parameters.

3.34. MACRO (name) <body>

This builds macro commands composed of one or more basic commands and
other macro commands. The macro name can be any character string and
is terminated by a space or a comma. Only the first eight characters
are significant. The rest of the line following the macro name is
taken as the macro body. The macro body is not terminated by a
semicolon, thus several commands can be included in the same macro
body.

If the macro body is empty, the corresponding macro is erased.

If the macro name is empty, all the currently defined macros are
displayed on the terminal:

;*MACBO J ,
_NAME: X J
,BODY: DZSPLAY; BUN J ,

Norsk Data ND—60.158.Q EN



7O SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

, *MADYO J'
'NAME: Y J , ~ ., ‘ DJ _,; I _

~5BODY: XgX;n  J , -“ No name and no body _will‘
*MACBO,,. J - ‘ - «w-é—list the macros you  have
Y ' __ X; X; X_;X a defined _

f'X j I DISPLAY; BUN

A macro parameter is referenced in the macro body as "n", where n is a
one-digit number (1 — 9). See the example below.

A macro name is used in the same way as a command name. It can be
abbreviated in the same way, too However, macro parameters are not
asked for if omitted, but taken to be empty strings when the macro is
expanded. A macro name can also be used as a LOOK- AT subcommand.

Examples of MACRO:

7‘ *YACRU DX DTSYLAY Y. NAME(Q) Y. YAMY(1) SET p p LINK J >J‘~
51*WJ ; __ _ ,, _ , ,,,,, . _

“*DX J - - , ,_ ,1, ~ ._ ,_, ,._,
-_T,,Y NAME(O )J- 1013  6§ 7,: 7ff? [The YTYYYCYYYYYAYe§iZ,
_::=,Y NAME<1>= _ 102Y 66 ; ;f? {you give wi113b3»29+- “-“f
*:7J_fi“ ,1 ,_ _ _- _: _§J_;! , j :inserted here. 6TC4;J YVY;

"YT*MACR0 DY DTSPLAY Y NAME("1")7* 1 III I
'*UY 5 J * , _

">:,Y NAME(S}*L 1063 70

Here is a useful macro to define:

*MACRU J"
NAME: VIEW J * '
BODY LUY~CALLS,..,CYUCK-0UT~MUDE YUMY»LUG J

Try it when you start the Debugger. You will get a good overview of
your program.

Macros are useful in programs with records and pointers:

‘H;*MACR0 J _
{NAME snow J _ * '

~ .‘fBOYT: DISPLAY "1" NAME "1" LEFT "1" RTUYT J
‘;C*SHOW CURRENT J
r'flCURRENT NAMEzbob

'& _ {CURRENT LETTwNIL _
'"»;CURRENT. RIGHT 0010328
~«i-*Sfi0W CURRENT RIGHT J
VT;_CURRENT RIGHT NAME~else ,,j',,;3

«:j ”CURRENT RIGHT LEYT~NIL Li*-;g‘w;ux
~;CURRENT RIGHT RIGHT:CUTOSJBV">

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 71
COMMANDS - DETAILED DESCRIPTION

3.35. MULTIPLE—BREAK—MODE (ON/OFF)

This command is only available from version F of the SYMBOLIC DEBUGGER
on the ND—SOO.

When using this command, you switch between the "ordinary" debugger
mode with one breakpoint and a mode where you can handle up to 20
breakpoints simultaneously. If you use MULTIPLE—BREAK—MODE OFF, the
last breakpoint that you used is removed when you set a new one. If
you use MULTIPLE—BREAK—MODE ON, then the breakpoints are not removed
as you set new ones, until you reach the limit of 20 breakpoints.

When MULTIPLE~BREAK—MODE is ON, you cannot use conditions in your
BREAK commands.

If you enter this command without an option, you get a list of
currently active breakpoints.

3.36. PLACE (file name) (<W>)

This command exists in the ND-lOO Debugger only. It reads a program
from a program file (:PROG) into the user‘s memory (background
segment). If you do not specify an extension to the file name, the
default extension is :PROG. The PLACE command cannot be used while
debugging reentrant multi-segment programs.

When you do a PLACE, the program counter is set to the start address,
the status register to zero, and the alternative page table to 2. The
current alternative page table may be examined by LOOK—AT—REGISTER W.
The scope is set according to the start address.

If you use the optional parameter W, you get write access to your
:PROG file. Each update you do with LOOK—AT-DATA or LOOK—AT—PROGRAM
will be performed on your :PROG file at the same time. Use W with
care!

FORTRANPROGRAM- sonar

See an example of this on page 78.

Norsk Data ND—60.158.4 EN



72 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

3.37. PROGRAM—INFORMATION

The command is relevant to the ND—lOO only. It lists the following
information from the program file:

start address
restart address
lower and upper bounds for the program and data
lower and upper bounds for debug information

Example:

_ *PLACECTES’Swé _
' FORTRANSPROGRAM SQRS'; 1

, *PROGR‘AM—INFOBMATION} _ - _ __
j- START,,;RE_START:;1:_ ' 000023.33, , 0000134315,,j ,.. ‘

PROGRAM, DATA: ' , 70000008 —0350653
rd; DEBUG*INFQRMATION;W QOOOOQB n. 0000638: . :L g

*- :,, - ,1 __ , - , , ___

If you are debugging a multi—segment program, information will be "
given for all segments that are currently attached.

3.38. REENTRANT—PLACE <Reentrant—name)

This command is available on the ND—lOO Debugger only.

This command is used to initiate a reentrant program for the Symbolic
Debugger. The reentrant program must be loaded as a multi—segment
system by the BRF—Linker. Before this command can be given, the main
segment of your program must be attached with the ATTACH-REENTRANT—
SEGMENT command, see p. 30. u

3.39. RESERVE-TERMINAL (logical device number)

This command can be used both on the ND—lOO and the ND—SOO, but not
for RT—programs.

People who debug screen—handling programs may prefer to use two
terminals while they debug. By giving the RESERVE—TERMINAL command,
your program output will go to your terminal. At the same time, you
can give and get input and output from the Debugger from the terminal
you reserve. To free the reserved terminal, you must log out from the
other terminal.

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 73
COMMANDS — DETAILED DESCRIPTION

Here is a picture to illustrate the situation:

Your terminal Nearby terminal
(number 30) (number 40)

1/0 from
*RESERV 40 J Debugger.

Reserved
Output from until term.
your program. 30 logs out.

L_______l L____.__J

You start the Debugger from terminal 30, reserve 40 and move there.
All input and output to/from the Debugger will be on terminal 40.

When you are finished, you return to terminal 30 and log out to free
terminal 40.

3.40. RESET-BREAKS (<program area>)

If no program area is specified, all breakpoints and step-points set
with BREAK, CHECK-OUT—MODE, LOG—CALLS or LOG-LINES are reset. A
breakpoint set by means of the BREAK—ADDRESS command is reset only if
it is the first instruction in a line. If you are debugging multi-
segment ND—lOO programs, you can only reset on one segment at a time.
No parameter means current segment in this case.

If a program area is specified, the breakpoints at addresses in that
area are removed.

Here is how you remove all breakpoints and execute your program:

*RESET~BREAKS #

Here is how you normally remove all breakpoints and step—points:

*LOG~LINES LOOPS J
*GUARD l J

,*§g§ J

GUARD VIOLATION AT LOOPs;12
“DISPLAY,A ' , , H - .
ERRCODE=O ,, STRING ‘1: 5
~K:6o ' '_._, x: 1.10000000, 'IMAXs 10

- *RESET-BREAKS J ' ‘.
, *BREAK PRINT A
*mma

Norsk Data ND—60.158.4 EN



74 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

You may remove specific step~points by specifying a program area:

, ~*LOG~LINES‘83J
‘3'_*LQGéLINES 22 J

qf*LOG-LINES CALC J
-- *STEP J ,

, ‘*STEP J ‘
~ jBRaAK AT CALC 8

7*RESET~BREAKS 8 J
a _ *RESETwBREAKS CALC 1: CALC 100 J

‘I*STEP J

3.41. RT-PLACE (program name) (<w>)

This command only exists in the RT—Debugger. It puts the RT-
description of the program you want to debug into the register block.

3.42. RUN (<program address>)

If no program address is specified, execution is resumed from the
current line. RUN works exactly as CONTINUE. If you specify a program
address, control is transferred directly to that address.

If you want to start execution from line 15 in XYZ, do this:

V*RUN ADDRfXnlfig J

Execution will continue until the breakpoint is reached or a GUARD
violation occurs. Step-points will be skipped.

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 75
COMMANDS - DETAILED DESCRIPTION

3.43. SCOPE (<module, routine or other item>)

This command finds the specified module or routine and updates the
scope accordingly. The current scope status is displayed. If no module
or routine is specified, the current scope is not affected, but it is
displayed. Note that the routine that you specify must be active,
which means that at least one stack frame describing an invocation of
the routine must be on the stack. If you are debugging multi~segment
ND—lOO programs, and set the scope to another segment than the
current, the new scope will be printed, but then reset to the current
scope.

_, *ACTIVEEOUIINES I -,
-5_PE:NT 17 CALLED EEOM LOOPS ins-
_LmE31 ,* *
_g*EISELAY_J: , .,_ p_ri~“

;ERRCODE#O¥f":iZ‘IEE?V”
ETEIEE

*SCOEE Leaps I ; * 6‘
>LOOEE. 1 __ ‘ :

EV*DISELAY:J' . 7" "132, _ _:
“ERRCODEEO _- ; STRING g-_-_Isr5“»

- z * 3Ew20‘_';7s_- " _',”}il ," _: zg
”a I-KxéOgfit _-:__,--X 50000000 .fiIMAxavio ,¢,-;;

e* 2 I'._~ ' ‘ f {=_ “-

l>
<

"
.,

'P
'y

“
I

I
‘.

‘75;SOooOooo-_ “3

Norsk Data ND—60.158.4 EN



76 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.44. SEGMENT-INFORMATION

This command is relevant to the ND-500 and to the RT-Debugger.

On the ND—SOO, information about the currently active segments is”
displayed on the terminal in the form of a table as in the example
below:

_wfi%'*SEGMEMT«INFO J My .---:
V'EQSEGMENT FILE 01 c2 EAME ,21 5_,

i 1 1777B E 0 (PACK—TWO DEBUG)SEGM'
1 1776B;__1

When the Debugger starts, a monitor call to the ND-BOO Monitor
produces a list of all active segments. The list may contain a FORTRAN
library segment. SEGMENT—INFORMATION can be used to obtain segment _
numbers for use in the ATTACH—SEGMENT command. Cl and C2 are segments‘
used by the Debugger when connecting the file as a segment. Since the
Debugger uses segments 0 and 2, if you use the ND—BOO Monitor call
FSCNT, you must user other segments. See page 105.

On the RT Debugger, the information that you get looks like this:

segment~information J "
2008 (OWN-USER)BUBBLE SORT

fit

The number of the segment of the RT-program you are currently
debugging is 200 octal, while the :PROG—file that you have attached is
(OWN—USER)BUBBLE—SORTzPROG.

3.45. SEGMENT~WRITE~PERMIT (segment number)

This command is used in the ND—lOO Debugger and the RT—Debugger. It
allows you to write data on the segment that you specify.

3.46. SEGMENT—WRITE—PROTECT (segment number)

This command is used in the ND—lOO Debugger and the RT—Debugger. After
you have given it, the segment is read-only ~ it cannot be written to.

Norsk Data ND—6o.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 77
COMMANDS — DETAILED DESCRIPTION

3.47. SET (variable) (=) (value)

This command is used to set program variables. Any variable reference
which has a defined address can be set. The values are formed
according to the rules for expressions on page 86.

For example:

_*SETxx1o.: _ """"
_*SET KK LL(37) KK. LL(37} + 2 J

*SET STRENG{3)*’TEXT‘-d " 2:W-

It is possible to set an array equal to an array, for instance, a
PLANC array equal to a FORTRAN array or an array equal to a sequence
of bytes. (Note, however, that all characters are converted to
capitals by the Symbolic Debuggers.) The truncation is as for PLANO if
the dimensions differ. A real array can be set equal to an integer
array, a packed array can be set equal to an unpacked array, and vice
versa. An array may also be set to a constant; if the array is real or
integer, then the constant will take the form of the array, as in:

“SET INTEGER ARRAY = 3 1A2 J

Here the constant is truncated to 3 before assignment The rules for
arrays also apply to subarrays.

Norsk Data ND—60.158.A EN



78 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.48. STACK—INSTRUCTIONS (<low>) (<high>)

This command, which is available on the ND—lOO Debugger only, will
increase the speed at which a :PROG file executes by up to 20%. In
order to make those changes permanent, write W after you write PLACE
and your file name. You must have an ND—lOO CX computer, which has
special instructions that can be used instead of the ENTER and LEAVE
subroutines that are loaded from your language's library. You may want
to change you run—time system as well.

Here is an example of how a chess program was made faster:

@ETLE STAT CHESS: PROG,,, 4 “
' -15 ,STLE 5w; (EASE Two: DEBUG)CHESS PEGS; 1

OPENED 33 T1NES A 1 ~ - ” ~
--~ CREATED 09 19 2E AUGUST 23, 1989 ,
,‘pvfGEENED FOR READ 10 3E 07 NSVEMSEE 22 198E

‘~ OPENED ESE NETTE 10 3E 07 NOVEMBER 22 198E
, ' ‘ 766 PAGES 280576 BYTES IN FILE _ .

_i@DEBUGSEE J ‘ , - -H-W

~_TNE+106 SYNSSLTC DEEUGGEE. VEESISN'D.‘
“">*PLACE CHESS w A .,s ‘ ' , -rw
, __*STACE INSTEUCTIONS a 3- _

=:,i 1202 MICROINSTEUCTTONS SUBSTITUTED
‘ j“ *EXIT J

, SISQFILE——STAT CHESS: 220@,,, J-7I
“5.21LE 5_: (PACK Two: DEEUS)CEESS 2209; 1

_ OPENED 3E TTNES
TCREATED 09.19.2E ANGSST 23.198E -

OPENED FOR EEAD 10. 38 23 NOVEMBER 22 198E
,, OPENED FOR WHITE 10 38 23 NEVENEEE 22 198E

, 66 PAGES , 280576 BYTES 1N FILE __

The instructions will be adapted to the ND—lOO microinstruction set.
This program was found to execute 8% faster after the above operation
was performed.

Norsk Data ND~60.158.E EN



SYMBOLIC DEBUGGER USER GUIDE 79
COMMANDS — DETAILED DESCRIPTION

3.49. STEP (<count>) (<low>) (<high>)

This command is not available in the RT—Debugger. ‘y

Program execution will continue to the next step—point. Step—points
can be defined by LOG—LINES or LOG—CALLS, but note that step-points
are not needed if you want instruction-by—instruction stepping (see
below). The count parameter specifies the number of steps to take. If
you use ~l as count parameter, you step through the program
instruction by instruction. In this case, you can give a pair of
absolute program addresses inside which you want to step as optional
parameters. If you do not use this option, you will also make single—
instruction steps inside subroutines belonging to, say, the run—time
system called from the area you are debugging.

When you reach a step—point, the Debugger stops and outputs the
current routine and line, and the segment number if you are debugging "
an ND—lOO multi~segment program. If you then press J (Carriage
Return), you will continue one step at a time, as the count is cleared
each time you enter a step-point. Otherwise, you may give some
commands and then use STEP to go to the next step—point.

Example:

*m4
*STEP 10 J
MAIN.110
* , ,

You may trace by writing:

*LOG—LINES,, a
*§T89_0 a '

Your program will execute until it is finished, and every line
executed will be listed.

If you want to step instruction by instruction, use STEP -l:

-*LOG LINES.,,_J
~*BTEP ~1 J ‘ .
,SQRS 0000128 JPL I *  36 ' * J
,03B501Biz * B_,: * J,
03a5058 LDA I *r~ 2h ‘* J -_
034506B SAT 3 ,_B J , ‘1“.
03§507B SKP: A UEQ ST , * J
'BASLQB‘JMPU* 6 * J , ‘ ,

0345168 BSET ZRO_SSPT' ',*w;"'

Each Carriage Return will advance you to the next instruction.

Norsk Data ND—60.158.4 EN



80 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.50. USER‘ESCAPE (on/off)

This command is available on the ND—BOO only.

This command enables the user to gain control when the user program is
executing. With USER—ESCAPE active, control is transferred to the
debugger after pressing the <ESC> key.

Norsk Data ND—60.158.4 EN







SYMBOLIC DEBUGGER USER GUIDE 83
SYMBOLIC DEBUGGER PARAMETERS

A. SYMBOLIC DEBUGGER PARAMETERS
This chapter explains the arguments that can be used in command
parameters. Here is a list that contains most of the possibilities:

— Numeric constants can be expressed as decimal, octal, hexadecimal,
binary and floating point numbers.

— Single—character constants.

- String constants.

- Expressions involving the above types and the operators + —9 7

SHIFT, *, /, **, .(dot), IND and ADDR. In conditional expressions,
>, >=, <, <=, 2, and <> are also available. On the ND—BOO, MOD
gives the remainder in integer divisions, TYPEOF returns the basic
type of its parameter, and you can use reserved Debugger symbols
after the SPECIAL qualifier.

Note: Array indexing and subarray specification are also available.

— Named items, such as modules, routines, labels, lines, etc.

— Program area

— Program address

— Data address

— Format specifier

— File name

Each of the above categories will be explained on the following pages.

4.1. Numeric Constants

Constants are used in the DISPLAY and SET command, the LOOK-AT
commands, as well as in other commands. There are many ways of
expressing numeric constants. Here are 12 ways to write the number
195:

Binary notation: llOOOOllX 2#llOOOOll#
2#1100__0011#

Octal notation: 303B 8#303#
Decimal notation: 195 195D lO#l95#
Floating point: 1.95E2 lO#l.95#E2
Hexadecimal notation: OCBH l6#03#

Norsk Data ND—60.158.4 EN



84 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

The numbers followed by X, B, D, E, or H illustrate the method of
writing a number followed by a radix specifier. The specifiers allowed
and their meanings are:

suffix number system radix
X binary numbers base 2
B octal numbers base 8
D decimal numbers base 10
E floating point base 10
H hexadecimal numbers base 16

In order to avoid conflicts with identifiers, a hexadecimal constant
must always start with a decimal digit (e.g., the constant C3 must be
written as OC3H).

A real constant must contain a decimal point or the letter E. An
exponent may be specified, preceded by the letter E. A constant may be
preceded by a sign. You should not use the suffixes for real
constants.

Here are some examples:

_.3 3 s3. , 3 3 1.38 335,, 3.3—5
The numbers 10#195#, 8#303#, etc., on page 83 were written by using
the form:

base#number#exponent

The # appears as the number sign on some terminals, and as the English
pound sign (fi) on others. The base is always given in decimal form.
Here is an example:

-:~*DISPLAY 8#100#Eh J __ - 1
‘ 8#100#84= 2 6214300000000002+05

*DISPLAY 1008 * 8 * 8 * 8 * 8 J
,_lOOB * 8 8 8 * 8 * 8,262144

it ‘ . , .

The 8 is the base, 100 is the number, and E4 is the exponent. So
8#100#E4 is equal to 1008 * (108) , that is, 262144 or lOOOOOOB. Note
that the exponent is always a base 10 number.

lO#123#
lO#l.23#E2

These are all ways 8#173#
of expressing —~ 16#7B#
the number 123. 2#llllOll#

2#111_1011#

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 85
SYMBOLIC DEBUGGER PARAMETERS

The Ada system lets you express numbers in the bases 2 to 16. Any
underline characters (__) in the number between the number signs (# #)
will be ignored. You may write SQOO million as

lQ#5m000WOO OMOOO#

This will reduce your chances of having too few or too many zeros in
your number!

(This is a feature borrowed from the programming language Ada. Ada is
a trademark of the U.S. Department of Defense.)

4.2. Single-Character Constants

A single—character constant is denoted by a number sign (#) followed
by an ASCII character.

Here is an example from a PLANC program. I is an integer, and CODEX is
a string whose length is HO.

*DISPLAY J ,‘ - ., ‘ " r3 -
:I=O _ , PTRINTmNIL PTRBYT: (NIL;O:O)
CODEX(1:40) EXP: 0.0 '

'.*SET CODEX=#A; SET I #Z'J
*DISPLAY CODEX I J

' CODEX:AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAA,1:90 ' _

Note that the string gets filled with A's, while the integer is
assigned the ASCII value of "Z", which is 90.

NOTE:

The Debugger will convert all
lowercase strings to uppercase strings.

4.3. String Constants

A string constant is preceded by and terminated with an apostrophe
(' ). Embedded apostrophes must be represented by a double apostrophe
(1! )

Here is an example with embedded apostrophes:

”DISPLAY CODEX J
CODEX:This is a testAAAAAAAAAAAAAAAAAAAAAAAAAA
*SET CODEX: Embedded "quotes” example‘ J
“RUN J

“)6
a...“

Embedded guO‘tesi exampleAAAAAAAAAAAAAAA

Norsk Data ND—60.158.4 EN



86 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

4.4. Expressions

You will mainly use expressions for the DISPLAY and BREAK command, and
the LOOK—AT commands. Expressions are formed from operators and
operands. In conditional expressions, >, <, =, and <> are also
available.

Operands may include constants (integer and real), variable names or
identifiers, array indexing, subarray specification, record component
selection and the dot notation described on page 88. Variable names
may be any name from the compiled language, i.e., FORTRAN variables,
PLANC identifiers, or COBOL identifiers with hyphens.

The available operators include +, —, SHIFT, *, /, **, IND and ADDR.
The operator ** requires an integer exponent. On the ND—BOO, you can
also use the operators MOD (which returns the remainder from integer
divisions), TYPEOF (which returns the type of its argument) and
SPECIAL (which makes it possible to use special Debugger words inside
quotes, such as DISPLAY SPECIAL 'ind').

Blanks can be used anywhere in expressions to separate operators and
identifiers. Expressions are separated by commas. Commands are
separated by semicolons.

A hierarchical order of precedence exists for operators when they are
evaluated in expressions.

**-

* /
SHIFT + -
ADDR IND

Note that ADDR and IND are higher than "." (dot) when referring to
records, but are lower when the dot appears after a routine name. With
operators at the same level, evaluation proceeds from left to right.

Examples:

*DISPLAY 4 4 2 + 4 J'
4 * 2 + 4:32

_/*DISPLAY 4 4 2 4 4 *4 2 J
~4 * 2 4 4 44 2:24 -
*DISPLAY 2 4* . 44 2 J
2 44-3 44_2=64 ~ 9
i6 ‘ ,

You may use the IND and ADDR operators with or without parameters
around the operand, but ensure that the value of the operand can be
directly evaluated. For example:

_ Wrong: ”display ind ind: current left 4
I Right,_fdisplay ind(ind_current leftIZJ

Evaluation takes place from left to right, but the contents of
parentheses are evaluated before the rest of the expression, so we use

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 87
SYMBOLIC DEBUGGER PARAMETERS

parentheses to force the last part of the latter expression to be
evaluated before the first indirection.

In division, if both operands are integers, integer division is
performed:

_*DISPLAY11{" J‘H
1/3:0 _ '

,* ISPLAY igaQ
,1/3 C 3 3333333333333333 Ql

IND can be used on any item that is a pointer.

Here is an example of IND and ADDR. In the following example, CURRENT
is a PLANC pointer to a record. IND lists all the elements of the
record pointed to by CURRENT. By inspecting the data address pointed
to by CURRENT, we can also see the area where the record itself is
stored.

~*DISPLAY IND(CURRENT) J _ _ ,‘-, , - ,‘g f,,:
IND(CURRENT)= ,‘NAME(1'20) , “assutrz‘:2.80000000;y'
‘LEFTaNIL - -, RIGHT=00103ZB ' ' , -‘ ;

'-*DISPLAY CURRENT J '
, CURRENT:00101OB ,
:*LOOK~AT*DATA ADDRfCURRENT) a ,,
D 0000248;_00101OB , «520 Z-J‘

'_D 0010108170001428 : 98 Vb 'j
‘9'0010113: 0675u28 .2851a oh i J
_* , u

ADDR can be used on any item that has an address.

V*DISPLAYVADDR(I) J
ADDR(I)=OIOOOOOOIOOB

” *DISPLAY ADDR(PTRBYT) a
‘ pADDR(PTRBYT)=01000000110B

Here is an example of how you use SHIFT: I

*SET DEC a 20 a
*DISPLAY DEC SHIFT ~1 J
DEC SHIFT —1=10 '
*DISPLAY DEC SHIFT «2 J

'DEC SHIFT «2:5
_ *

Here are examples of conditional expressions:

*BREAK CALC CURRENT <> NTL‘J'
, *BREAK MAIN.Z§ x“< o a

Norsk Data ND—60.158.4 EN



88 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

4.5. Named Items

By named items we mean:

Modules
Routines
Labels
Lines
Identifiers

In PLANO, a named item is specified by a sequence of names separated
by dots (.), corresponding to the static Module/Routine nesting in a
program.

In COBOL, you may qualify with (program name>.<identifier>. In
FORTRAN, you can use <routine name>.<identifier>.

By using the dot notation, you can separate variables which have the
same name but are declared in different subroutines/subprograms from
each other.

The dot notation is also used to retrieve record components in Pascal
and PLANO. Expressions with two or more dots are evaluated from left
to right.

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 89
SYMBOLIC DEBUGGER PARAMETERS

Here is an example from PLANC. If you are not familiar with PLANC, you
may want to know that a basic program unit in PLANC is a module, which
consists of at least one routine (a program is a special type of
routine), and that the modules may have both global and local
variables with respect to the routines. The routine declarations may
be nested to any level.

MODULE MODl
INTEGER: J

ROUTINE VOID,VOID: ROUTI
INTEGER: I
LABEL: RETRY

RETRY: I =: ATTEMPTS

ENDROUTINE

ROUTINE VOID,VOID: ROUT2
INTEGER: I

ROUTINE VOID,VOID: ROUTE

ENDROUTINE

ENDROUTINE

PROGRAM main

ENDROUTINE
ENDMODULE

Norsk Data ND-60.158.4 EN



9O SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

In the PLANO example, the various routines can be specified as:

I;M0D1.ROUT1
MODLAROUTZ ~y _ _

'MODI;ROUT2.ROUT5:

The two l‘s can be specified by:

Movi.RoUT1.ilanaTMobiinnumzsil7"
The label RETRY can be specified by:

_R¢UTIRRETRY;:.V _ .,,,,

Line 50 in the main program can be specified by:

VTMAIN.50:VT__V I
However,’ in order to simplify the specifications, the name search is
always done according to the "current scope”. This means that, if you
are in MOD1.ROUT2, you can write 1, instead of MOD1.ROUT2.I.

The current scope always refers to the point where the last breakpoint
occurred, unless the scope is explicitly changed by the SCOPE command.

Consider once more the above example and assume the current scope to
be: MOD1.ROUT2, that is, inside the body of ROUTZ. The name I causes
the debugger to find the I declared in ROUTZ, while ROUT1.I (or
MODl.ROUTl.I) must be used in order to find the I declared in ROUTl.
The name J causes the debugger to search ROUTZ (with no success) and
then the entire module where the global J is found.

In FORTRAN, a $ (dollar) sign is appended by the compiler in front of
labels. For example, in:

’10 “_3 so T0:207"
the label "10" is known to the debugger as "$10”.

Note therefore that:

_. ViBREAK7$i ; - 7‘f‘f. breaks at label 10 ”
while “TEREAKi 10;' ,_-'J)_ breaks at line 10; ”

FORTRAN statement functions cannot be referred to in the debugger
(since they are expanded in—line by the compiler at the point of
invocation).

Norsk Data ND~60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 91
SYMBOLIC DEBUGGER PARAMETERS

Q.6. Program Area

We have an argument of the form:

name (<:name>)

with which we can specify ranges within routines/modules.

where name is a routine, module, label, or line number. If the name is
a routine or module name, the range includes the lines in that
routine/module. A simple example of a program area is:

Lil';~»10=20
meaning lines 10 to 20 in the source code.

Here is another example, showing how an area specification is used
with the LOG—lines command:

*ggGéLINES,MAIN J“

which tells the debugger to log all lines inside the program/routine .
MAIN.

If an area is mandatory (as is the case with the LOG—LINES command),
you will be prompted for it:

'_*LOGaLiNEs é - - }'~ "¢_J:PROGRAM AREA: MAIN.12 ;_$800 Jpfl~
*1]. ‘y , _' _: , ,_ : , _‘

This specifies a program area starting at line 12 and ending at the
FORTRAN label 800. Note that the second parameter is optional, and the
way FORTRAN labels are specified using a dollar sign ($). If no last
item is given, it is considered to be equal to the first.

Here is another example:

*LOG-LINES MAIN.l§Q J,‘_ :3, ‘ _ ' '1,y _
‘*LOG-LINES MAIN;PROCINP.2 : MAIN.PROCINP,10 J_
i*LOG~LlNES ENTER 4 ‘ ' - - r, TL-r

:*STEP J,

The program will execute until it encounters line 110 of MAIN, lines 2
to 10 of PROCINP or the label/routine called ENTER.

4.7. Program Address

A program address can be given as an octal number or in the form:

iADDR(rOutine~name;linaénumber)I*

Norsk Data ND-60.158.4 EN



92

Example:

ND45OOT

AID—2490‘:

When we

SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

-*SCOPE J
,M1 MPROG 10 ,
*LOOK~AT PROGRAM 1003 J -
P 010000001003:  W3 3: R. 0“48: S
P O1000000102B: W  STZ R 0508: S
*LOQK~AT~PROGRAM J *

{PROGRAM ADDRESS ADDR§LIST pEDSDD) A
'P 0031608: AA65A7D A2953 MG DDPT AD: SL DA

wrote ADDR(LIST__PERSON), we get the start address of the
routine LIST__PERSON.

The Debugger cannot give you addresses to labels.

4.8. Data Address

Data addresses can also be given as octal numbers or in the form:

EXample:

Here is
variable:

ADDR<VDriable) ‘

*LO0K~ATwDATA J
,DATA ADDRESS ADDR§CDDDX2 A _ _y_ , ':,J I}4D 010000000278 _OOOOOOOOOOOB _' “'0 ,‘*ié "‘
D 010000000338: 00000000000D_'-,_i;g“-rDr{ g‘e;/A*f ," ‘:“'

an example of using a data address to guard part of a string

A*LDG~LINES,,, A
*DISPLAY ADDRfNAMNQ J
ADDR(MNAMN)_(OOOZDDB O: 7)
*GUARD J
_ITEM OR ADDRESS:A ZDDB J

;A' “RUN J , ‘
-:j GDAWD VIOLATION AT MAIN 62

Here is another example:

22,*LDOK;AT»DATA ADDR<CDRRENT,NAME) J2,“
"19 00101QBtj0001428: 98 ‘b'A J

'*SET.CURRENT,NAME=’DEBUGGER’ J
1 *LOOKéATéDATA ADDR§CUDDDDTANAME)25_A *
~D;0010108:‘00010AD* _’68~ D 3*

7 D 9010118:_0425028 17730 EB
'D 0010128: 052507Bf.21831“UG :

:' D 0010133:'0A3505D‘ 182A5*DE*_*”r j
"D:0010148: 0510408, 2102A R iQA,* _ , , _ 1

Norsk Data ND—DO.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 93
SYMBOLIC DEBUGGER PARAMETERS

v
An even more intricate example, on the ND~SOO this time, and with the
NAME equal to 'Current’:

:‘*1ook~at data addr(current. name) J ' :
3D 1’: 37308;10335271 1628 1131770482 Curr J]
';D~l’.}W 3734B:1453347ZODOB 1701737472 ant J frf“

,'D 1' ‘ 374GB: OIOOOOOUOS4B 134217772 ,‘K, 4 J‘ ;“l
_I*look~at~data addr€current name( l+3)) d _ L ‘37i_ _“

'i D 1' : 3734B:1453347ZOGOB_.170173747279nt '1 J., y

4.9. Format Specifier

A format specifier (also called a radix specifier) is one or more of
the following letters:

0 - Octal A - alphanumerics (ASCII) I
D - Decimal F — Floating point
H - Hexadecimal I — Instruction (disassembly)

Here is an example:

*FORMATS-~DISPLAY 0 D H 1
*DISPLAY 8#101# J _,
8#101#=65 41H 1018',
* , , D

4.10. File Name

The file name will not be checked to see if the syntax is correct. A
file name is terminated by J (Carriage Return), space, comma, or
semicolon. If the file is already open, the octal file number can be
used in place of the file name (octal number without B).

@OPEN~FILE TEMPzDATA w J
FILE NUMBER IS 000103_
@LiST—OPEN~FILES A

~FILE NUMBER 000100 5 {PACK-0ND:SCRATCH)SCRATCH05;DATA;1
FILE NUMBER 000101 : (PAcxeTWO:DEBUG)EX:SYMB;1
FILE NUMBER 000102_: (PACKeTWO:DEBUG)FORMA?:TEX$;l'
FILE NUMBER 000103 : (PACK—Two:DEBUG)TEMP;DATA;1‘
@DEBUGGER4100 TEST 1

FORTRAN PROGRAM. CONVERT.1_J
*DISPLAY J , ,
ERRCODE=O NAMN ', DEC: 0_ VALUE: 0
COUNTER=O 1:0 v BITS(1:16)
,*LOOK+~DATA ADDR(NAMN) 20 103:1 _
*100K~~DATA ADDR(BITS) 16 TEST:DATA a
$6

In the above example, output is sent to file number 103 (TEMpzDATA)

Norsk Data ND-60.158.4 EN



94 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

and to TESTzDATA. The numbers 20 and 16 indicate the number of
addresses that are written.

Norsk Data ND—60.158.4 EN



fiwwfiwi
x}.

h;

R
EE;

an
Wen.

;
.

.
H”.

ntrmfiun





SYMBOLIC DEBUGGER USER GUIDE 97
EXAMPLES

5. EXAMPLES

5.1. An Example Using FORTRAN—100

Below is a small FORTRAN program which will be used as an example. All
the program does is to write the numbers one to six and their squares.

ND 1OQ/NORD 1o ANSI 77 FORTRAN COMPILER ~ 203053D 1
9: 23 3 DEC 1984 ,
SOURCE 2112: TEST SYMB

1* ' - ‘pHOGRAM SQHS
= 2* ' : _,,r_ INTEGER 1]

~ #*qi_ ,r‘, ‘1 DO 10 1: 1 6'
_-5H: > _ ‘ : 3H =HEAL(1)*I
9 *1-1 “*, '- -_- WRITE (1 '(x 15 Ax 112 2) )1 H

, 7* , 10‘ : ;,1CONTINUE '
, 8* , ‘ _ VEND "

e4—-44e~ee+e~~+e»~e~«»~« ~~~~~~ CROSS REFERENCE ~~e~++~~~«94~~‘

The displacement of the data-
re1ative to the B register71

‘1~, f" INTEGER* 2 ‘vAHIABLE f ,1172 41 _51 *5 y 632
REAL _t-RHAL ‘*‘6 1N1R1N51C , 5
R 2 REAL * 6 _VARIABLE ~l71 3 5 6

,SQRS , - ' ~PROGEAM ' 1
$10 , : STATEMENT _LABEL AT 7 4

The lihes in your1
r”program where the ;=

variable5*or;
references_eppearg

,Ae~~~9+fae~e+~-—4——~+~»e~:~u44ee CALL H1ERAHCHY ~Ae+4254~5~~é L
1 SQRS

g21_ I 1 REAL

Norsk Data ND—60.158.4 EN



98

@DEBUGGER A
ND~100’SYMBOLIC DEBUGGER.
,*PLACE TEST J ' ,
FORTRAN”PROGRAM.
,*BREAK;$IO 3 J

SQRS.1

,*B§E=J-r ' ,
‘ : 1 _y, ‘:_ 1.00;

' 2 - - q_, , 4.00,
: ‘1r3."_ J , 9;OO
:BREAK7AT SQRS.7
-*DISPLAY,J_ _ _ _
ZERRCQDE:0- ,_>'I:3 '
:*BREAKj$10 I > 5 J ,

.*§§§_J9 - -, " _'
~xfl 4'~-5‘_r2 [16.00

pf'fg f _ry _, 25 00 _
'2'6" :P * 36 00 _ _

‘CONDITIONAL BREAK AT SQES 7
”DISPLAY J_
,ERECQDE=0 ~32-‘ I:6

; *RUN «I ' - 3

‘PROGRAM TERMINATED AT SQES 8
G*EXIT J *

5.2. A PLANC Examgle

SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

VERSION 2.

This will bfeak the third
time label 10 is found}?

Ax'r9,00000d00=_

* This will lbée‘aklat' b m §

3:3,3;600000002101:

Here is the program listing for PLANC—MYPROG:SYMB:

-1
, a 2
,i +jk“

- ‘ _‘ _f_ _ ' k" mf
QIO'; :;5 _ ",I;;7 -'IF sum

ba
dm

m
sm

m
w

n
n

n'
u

>

, MODULE Ml; , “ "
INTEGER ARRAY : stack (G:1GG)

:PROGRAM :
- _INTEGER:

~ >INISIACK

myprog
i, k m, Sum

sIack
: ,1
:--k2,

kr=sVV
sum _' - ‘ ,H. J

(m + k) THEN -
1.II'_E‘ I"' * I, , ‘5 Qutput(l ";‘ERROWI
'_121 -1~: , p"_ ‘ ELSE

_I3t . _ _, -“ .‘ output(1 ”}Sum>
141:,-,_fi_i',_ _' ENDIF ~

I_15'IX___ 5,8‘,“12 OUTPUT(1 " 'End of myprogI):
316ruT"I I’,'” _‘ , ENDROUTINE ' ‘ ‘
'1?‘_ _ V;:,?“ _ ENDMODULEs _181_,_.1 _,, _*j V$EOF

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

99

Here is an example of how you could debug it on the ND-500:

@ND~§OOOJ
_ND 500 MONITOR VERSIGN C 82 11 22 / 82 12.16
‘N5001DEBUGGER TEST J
'PLANC PROGRAM M1 MYPROG,3 ~
;*LOG~LINES;,, J ,
*CMECK OUT MQDE J
*BREAK 9 J
*RUN J  1.

BREAK AT MYPRGG. 9
-*DISPLAY J _ _;_f '
1: 1 .a - r ,_ SUM=Or
*BREAK 15fJ-5_f.-

_6M2 ' '
EBREAK AT MYPROG 15
*DTSPLAY J _
341': ~SUM=6
(”LOOK AT~DATA 'ADDR(SUM)LJ'
fiD OlOOOOOOGAAB: 0000000000632 ,u
‘D 01OOGOOOGSQB: O1QOOOOOOQAB_
*DUM? LOG J

'MYPRGG 11 12 16 ‘ .

*EXIT J”

K” 3 9:197 (M513

5134217732 : I,'1gdf1f”

_ {Sinée CHECKMOUTwMODE,was
used, Only the lines not:

:executed are listed.

Norsk Data ND~60.158.A EN



lOO SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

5.3. Another Example in PLANC

Here is a more substantial program; it sorts an array quickly.

The program that follows consists of two separate modules in two
files. It was compiled and loaded as follows:

11 @PLANC 100 J
,*;*RRRUG—MORE J _ '“ I;

_**COMR1LR SORTRR SORTER: LISI SORTRR J E‘”
- ,RPLANC 100 J _J; ,; ,

:I*CQMPILE TRSTSQRI TESTSORT LIST TESTSORT J
;'r@DRLRTR‘R1LR SORTmRXAMRLR RROG J * _-,_:
”"@RRR LINKBR J ;_1-
_,-BRB RROIRILR “SORT EXAMPLE"

- RrL LOAD SORTER J  ;, ‘
-_ PEER R 000156 177777 DEBUG 000300

: ,BrL LOAD TESTSQRT J __Li_ifiy_*‘
‘, RRRR: R 002h04 177777 DEBUG 0005159
_=_RrL LOAD PLANC IIANR J

-r,* FREE: R OQRRRQ 177777 RRRUG 000515_
'rlBrl: EXIT  4 »: _ , , "

Note that if you had both modules on one file and compiled them, you
would get different line numbers than in this example.

Norsk Data ND~60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 101
EXAMPLES

Here is SORTER:LIST.

%

11 find the first in the upper part“
1

“
“
1
1
,

' HUBBLE sorter I ,,_: ‘1
, EXPORT finiksortl; 3i;:_»ii '-x ‘_ ‘r *W‘ “' <1”

_ RGUTINE VOID,VOID (INTEGERZ ARRAY) qu1kgort(arr)
1MINTEGER: low: high, marker, tap, tamp - ._ H

' 1 99% up the baundaries 0f the operatlon
,MAXINDEX(arr 1) 7: top , ‘**
:MININDEX{arr 1) a: marker , _ ‘

,9% marker is the one to place in p051t10n ' * _ _
"1 Continue with the largsst part  in this stack element :1 ,1

DO WHILE top—~marker > 9 1 unt1i no more to do,:
f1_search for pas1t1on into wh1ch to put the marker

marker + 1 low; top: h1gh
'set search lim1ts-
“ DO

.rwhich  belongs in the lower part ,-
DO WHILE arr(marker) K arr(h1gh)

_,‘ high ~ 1:: high
ENDDO ‘

:find the first 1n the  1ower part
,which should be in the upper part ,

D0 WHILE arr{marker) > arr{10w)
, _ l-ow‘ + 1 :: 10w '
ENDDO ‘

' 1 might have founé right position nOw
WHILE 10w < high

‘ 1 reverse the elements found in upper and lowér parts
arr(high)=z temp; arr(low)=: arr(high); temp : .arr(low)

+_1-and Continue the search on reduced parts
10w + 1 =: 10w

a high— 1 :: high
ENDED '

1 now put the marker in thé middle position
,1 isolated by low and high

arr<marker> a: temp; arr(high) =z arr(marker);
temp =: arr(h1gh)

1:3tack space is saved by recursing -
'1 for the larger'of the parts only

IF high‘marker < top~high THEN
quiksart(arr(marker : high e 1))
high + 1 =2 marker ‘ '

ELSE
high w 1 a: top' _
quiksort(arr{h1gh + 1 : top))

ENDIF
1 repeat the sorting on the reduced array

ENDDO ,
ENDROUTINE

' ENDMODULE
$EOF

Norsk Data ND-60.158.4 EN



102 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

Here is the other module from the file TESTSORTzLIST.

mc
m

cm
'm

A:1‘
»:

,% length 0f&array to Sort z- %:2;7‘ g
i INTEGER: seed':: 579, mult w;5181¥ '5‘

J:M09ULE testsort _ " ‘ =<913133;1T‘ i-..1’IMPORT (ROUTINE VOID VOID(INTEGEEZ AERAY2 :vquTASApt2=;y_ ;~
_INTEGER ARRAY: stack{0:1OQO)
:INTEGER:m 1:10

X random number generator ‘”‘

,PRQGRAM main _ “
TNTEGERZ ARRAY POINTER

:7:TNTEGER: i _fl
”1_ INISTACK stack -:4 " ‘

OUTPUT{1, 'A*, *TSTAaT VALUAST  2 _ __,
NEW INTEGERZ ARRAY(O: max2a: iap_ “
FOR 1 IN IND(iap2 DO :9:- V :_,

X set random values in array > _;
_- ,Seed * mult: Seed “"IND(Lap){1)r'

‘~,-ENDFOR : ;
FOR A IN IND(iap2 DO -- vs '

“rOUTPUT(1 ’16' IND(1ap)(12)
ENDFOR _ ;;,.

-_OUTPUT(1 A’, '$SORTED TALUEST T; ,1
j quiksort(IND(iap)) ' *- ‘ ‘

f FOR 1 IN IND(iap) DO __ :X'
‘: 0UTPUT(1, '16‘ ,lND(iap)(I22k

ENDFOR A i,
,_ ,272; ENDRQUTTNE

,228;29 ENDMODULE
$EOF

By writing $EOF, you do not need to give the EXIT command to the PLANO
compiler.

Norsk Data ND-60.158.A EN



SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

@DRRUGGRR J

fND~1OO SYMBOLIC DEBUGGER
*PLACE SORT-~EXAMPLE J

*SET SEED: 1 J
'PLANC PRQGRAM TESTSOET MAIN 9

TSET MULT= 10 J 51“_*,;@ ,_r“
*BEEAK QUIKSQET J
”BUN J *

START VALUES

wVRRSiONfDLJ

103

10 100  1OOU 10000 31072 16960~27008 ~7936 1382A T7168 ~61AASORTED VALUES _
BREAK AT QUIKSOET 6
*DISPLAY ARR J ‘
ARR:10 Too 1000 10000'~31072 16960

TREAT. A
BREAK AT QUIKSORT 6
*ACTIVE ROUTINES J
QUTKSORT 3 CALLED FROM QUIKSORT A4

'QUTKSORT 3 CALLED FROM MAIN 23 '
MAIN 9

TDISPLAY ARR J
ARR: ' ‘
TWT .1'ADDR{ABR)= (0001768; 7: 5)

*BREAKéRETURNrJ'

BREAK-AT QUTKSORT.A6

*DTSPLAT'J
H:GH:6 ARR(0:10>

'LOWR7' 2' ' MARKER=0
TEXTT J _ -

«27908 7936 «1382A —7168 61AA

' We see that the correct
array.is being used

, We see that QUIKSORT_is a ,
,9 recursive routine.' '

‘r, There are no elements in
Ithe_array_because the'

7_ 10wer_bound Of 7'is greater
than the upper bound of 5}

~ Wé break when we leave the
routine QUIKSORT.

TRmRz'TQ _ TOP= 5,

Norsk Data ND—60.158.A EN



104 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

Since the bounds of the array were wrong in the beginning of the
routine QUIKSORT, we investigate the code immediately before QUIKSORT
is called and find that lines 40 and 41 were transposed. They should
have appeared in the order:

'_quigs¢rg{ar£* igh _ , _. _ .
high-law?

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

5.4. Using a File as a Segment

On the ND—SOO, you can achieve
segment.

In the following example, a file is
numbers 1 to 2560 are written to it:

ya_gig1PROGRAM FTLFSFG A
c,; M'OPEN FILM As SEGMENT

: 'INTEGER MEM (2560)

105

faster 1/0 by opening a file as a

opened as a segment, and the

T.MF1TF(L M) 1MTLL ATTFMFT To OPEN FTSM DATA FOR Mx ACCESS’
_"GRFM (13, FILE—1F18H: FATA1'

,'DO 2 K21K2§6O
MFM(K)= . I~_

, _L MFITF<13 I1E) MFM(K)
,2 ‘Lj-CONTINUE ‘ ‘1
" - L_Do 3 K A L 10

MATTE (1 M1  K1MFM(M177'*'
3 ,:__CoMT1MUF

~ 2.0LosF(13)
END

ACCESSM’WX‘ ODE“'SEGMENT’) "  _i

7‘WRITE (1 *> 'END OF FRFFFAM1 jngfi _.sf

No special procedures were needed to load the above program:

L:;.,@MD LINKAGE~LOADER A
13;AFOFT—BATCH*0N—FFF0F OFF A

_3RMLFASE DOMATM TFSTiAv" -
:1 gDELFTE~DFMATMzTFST
”“JfSET~nOMAIN "TEST1'

“LOAF TEST,,,A'I;LTST~SFG TFST,,,; A.Q{M_EA,,_1
] ifFEND J , A_1U _L

- § MAE: 4_;f” ‘“

Norsk Data ND-60.158.4 EN



106 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

5.5. Using a File as a Segment for a COMMON Area

The following program uses the monitor call FSCNT to connect a file as
a segment. It uses a common area that is placed on the file connected
as a segment. Thus every time the common area is accessed, that
segment will be accessed.

If you debug the program below and give the command:

*LOOK AT DATA ADDR(I) J

You will see that the address starts with 07 because the file uses
segment 7.

, ,PROGRAM TESTSEC - 1"
, 'fINTECER ACC SEGNC IOPENF
5*pmmmmET w jx-Iri
~?*VCHARACTER*10 TEKST(2O 100) j
-- ,IOPENF * IO ,yVSEWO :"73W _. T _ ,, _ :_,G5

- f‘IWBITE(1,*)-'WILL ATTEMPT TO OPEN FISH DATA FOE WX ACCESS‘}
[C"i g The file FISH: DATA mGSL already ex13t be large enuugh
C _ -f to hold thé array TEKST, and Gantain Some text.y,:>‘ ew
‘ ~¢ OPEN£IOPENF FILE: FISH: DATA’ ACCESS-’WX‘)"
C, : Cat SINTRAN fiIe number related LG ICPENF
_f_:«-jI= LDN{IOPENF) --- u - -;_G-G
C'f :1 YGG mGGG be abIG tG read from and write to the segment. ;V:f

'ACC 2 -,,g

_ I. CALL FSCNT(I SECNO ACC, IACTNO) ,
Cflf3,z Remember to use NII: CCNMDN—SEGMENTMNUMBER - _ ,__ , _u
" 4- WRITE(1 *) 'The foIIowIng segment has been connected‘ 7=:' ‘”

,1 WRITE(1 *} IACTNO "’ , , __ _ _
' WEITE(1 *) _ ___
',_DC 10 J: I ID" ” A _ ‘**"V'

DC 20 K G*I, I00, IO 2‘ - j
- - , _ , TEKST(3 K} m 'AAAAAAAAA ‘
20A , CONTINCE ' “
10,” *CONTINUE

" ~~CALL FSDCNT{I SEGNO)
, ,CLGSE(IQPENE) “

‘ WRITE (I *) ’END OF PECCRAN'
END _

Norsk Data ND~60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 107
EXAMPLES

The above program can be loaded as follows:

@CREATE FILE TEST: NRF O J
'3 @ND FORTRAN .1
,DEBUG MODE ON J _
,COMPILE TEST TERMINAL, TEST J

- EXIT J , '
,LQ@ND LINKAGE~LOADER J
"_ABORT BATCH~ON~ERROR OFF J

RELEASE~DOMAIN TEST Ji,
‘_DELETE~DOMAIN TEST J
, SET—DOMAIN "TEST" J _

, COMMON ~SEGMENT~NUMBER 7 .1 _ ,-
‘ COMMON SEGMENT~OPEN "TEST~SEG" F,,,,J- *

LOAD TEST.,, J , f -_ ”
LIST SEG TESTE, ,, J'-‘

yEND J
V'EXIT Jfi~r

- @1”
Since segment 7 was specified in the monitor call FSCNT, segment 7
must also be specified in the COMMON—SEGMENT—NUMBER example.

If you are going to debug a program that uses a COMMON segment, we
suggest that you do not use the following common segment numbers:

0, 1, 2, 3, 26D, and 30D

That is because they are being used by the Debugger or the FORTRAN
library.

Norsk Data ND—60.158.4 EN



108 SYMBOLIC DEBUGGER USER GUIDE

Norsk Data ND—60.158.4 EN







SYMBOLIC DEBUGGER USER GUIDE lll
ERROR MESSAGES

6. ERROR MESSAGES
The first part of this chapter contains a table of all error messages
from all Debuggers. Then follows subsections giving a more thorough
explanation of the error messages common to all Debuggers, followed by
sections on the individual Debuggers and their error messages. The
table below contains references to pages where the explanations for
the error message can be found.

This is a list of all Debugger error messages, sorted in
alphabetical order. To the left of each message, you see
which Debugger the message is used in. There is a reference
to the pages where you can find a more thorough explanation
of the error messages underneath each message.F

ifi
r‘
d

2

O
O

H
l

U
2

D
U

D
‘J

U
IH

D
J

O
O

U
W

IU
Z

** WARNING ** Multiple occurrences of module "N"
page 115

o o o o Ambiguous command
page 115

a Ambiguous trap condition
page 121

o o o o Assembler error: ""
page 115

o Attempt to access nonexistent data segment
page 121

o Attempt to access nonexistent debug information
page 121

o Attempt to access nonexistent program segment
page 122

o a a o Attempt to divide by zero
page 115

o Attempt to modify read—only segment
page 122

o Attempt to set breakpoint on read-only segment
page 122

o o o o B register not initialized
page 115

o o o a Bad expression
page 115

o o e 0 Bad line debug element; debug table address: xxxxxB
page 115

c o o a Bad line number
page 115

o o o a Bad module/endmodule nesting
page 116

a Bad operand code; debug table address: xxxxxB
page 122

o o a 0 Bad record/endrecord nesting
page 116

o o o 0 Bad routine/endroutine nesting
page 116

o o o 0 Bad string constant
page 116

Norsk Data ND-60.158.4 EN



112 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

This is a list of all Debugger error messages, sorted in
alphabetical order. To the left of each message, you see
which Debugger the message is used in. There is a reference
to the pages where you can find a more thorough explanation
of the error messages underneath each message.H

I—
E

F
‘C

IZ

O
O

c
z

C
D

E
IJ

U
IH

D
U

O
O

U
T

IU
Z

Command line/macro buffer full
page 116

o o o 0 Component not in specified record
page 116

0 Connect called with bad access code "n"
page 122

0 Data at data address xxxxxB is not stored on the
prog~file

page 119
0 Data at program address xxxxxB is not stored on the

prog-file
page 119

0 Error in monitor call
page 122

o o o 0 Error: "n"
page 116

0 Illegal base in numeric literal
page 122

o o o 0 Illegal debug element type; debug table address: xxxxxB
page 116

o o o 0 Illegal debug table address (xxxxxB in "find"
page 116

e 0 Illegal segment number..."n”
page 120

o o o 0 Illegal termination
page 117

o o o a Illegal termination of argument
page 117

O Impossible to invoke routine; stack overflow
page 122

o o o 0 Index ”n" is outside array
page 117

a o o o Indirection not legal
page 117

o Invalid operator "<>"
page 122

o o o 0 Limits not legal for this type
page 117

o o 0 9 Line translation table full
page 117

C a u o Link—information inaccessible
page 117

o o o o Modules/routines too deeply nested
page 117

o No active breakpoint
page 120

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

O
O

o
z

w
m

U
I

H
w

H
H

F
‘C

Z

0
0
m

1
U

2 This is a list of all Debugger error messages, sorted in
alphabetical order. To the left of each message, you see
which Debugger the message is used in. There is a reference
to the pages where you can find a more thorough explanation
of the error messages underneath each message.

9 O No active routines
page 117

No debug-information available
page 118

No dseg—file opened or connected for segment "n"
page 123

No link—file opened or connected for segment "n"
page 123

No main segment attached
page 120

No more data segments available
page 119

No program file specified
page 119

No pseg—file opened or connected for segment "n"
page 123

No rt-program with this name
page 120

No segment attached
page 120

No such command
page 118

No such reentrant system name ""
page 121

No such register name
page 118

No such segment name ""
page 121

No such trap condition
page 123

Not a variant of the specified record
page 118

Not found
page 118

Not write access to program file
page 119

Outside program
page 118

Outside data segment
page 123

Outside program segment
page 123

Programmed~trap failed (not enabled?)
page 123

Protected command, cannot be used from user "" only
from user SYSTEM or RT

page 121

Norsk Data ND—60.158.4 EN

113



114 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

N R M N This is a list of all Debugger error messages, sorted in
D T U D alphabetical order. To the left of each message, you see
- - L — which Debugger the message is used in. There is a reference
1 D T 5 to the pages where you can find a more thorough explanation
O E I O of the error messages underneath each message.
0 B O

3 Restart impossible
page 119

a o o o Routine inactive
page 118

0 Segment number must be in the range 0:31
page 123

0 Single instruction step not allowed
page 121

o o o 0 String constant too long
page 118

o o o 0 Terminal occupied
page 118

o This SINTRAN III command is not allowed from ND—BOO
page 123

0 Too many files opened
page 124

a o o I Too many indices
page 118

0 Too many nested include—commands
page 124

0 Too many nested macro expansions
page 124

0 Unable to switch device
page 124

0 Unknown break segment
page 121

0 Unknown break—return segment
page 121

o o 0 Use log—calls or log—lines
page 120, page 121, page 124

o o o 0 Wrong enumeration—type nesting
page 119

o o o 0 Wrong type or inaccessible
page 119

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 115
ERROR MESSAGES

6.1. Error Messages Common to the ND—lOO and the ND—SOO Versions

Here are the error messages common to all Debuggers and what they
mean:

** WARNING ** MULTIPLE OCCURRENCE OF MODULE "N"

You have several modules with the same name. The debugger
will assume that you have reloaded. Only the last occurrence
of "N" will be recognized as valid.

AMBIGUOUS COMMAND

Self~explanatory.

ASSEMBLER ERROR

Followed by an assembler error message. This can occur
when using the CODE subcommand of LOOK—AT.

ATTEMPT TO DIVIDE BY ZERO

You are trying to divide by zero in the expression that you
want to evaluate.

B REGISTER NOT INITIALIZED

Unable to LOOK—AT—STACK because the B—register is not
initialized. You must have started the program before you
can use the LOOK—AT—STACK command.

BAD EXPRESSION

Syntax error in expression. You may have a type
conflict, for instance if you try to add an integer to a
pointer. Another possibility is an uneven number of
parentheses. See page 86 to find the rules
for expression formation.

BAD LINE DEBUG ELEMENT; DEBUG TABLE ADDRESS: xxxxxB

Error in the debug—information generated by the compiler.
It is possible that the debug information has been destroyed.
Try recompilation and loading.

BAD LINE NUMBER

Syntax error in specified line number. A line number
can be any valid decimal number.

Norsk Data ND—60.158.u EN



116 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

BAD MODULE/ENDMODULE NESTING

Error in the debug information generated by the compiler.

BAD RECORD/ENDRECORD NESTING

Error in the debug information generated by the compiler.
Ensure that you do not have a new version of the compiler and
an old version of the debugger. If nothing helps, report the
error.

BAD ROUTINE/ENDROUTINE NESTING

Error in the debug information generated by the compiler.
Ensure that you do not have a new version of the
compiler and an old version of the debugger. If nothing
helps, report the error.

BAD STRING CONSTANT

You may have forgotten the final apostrophe in
the string.

COMMAND LINE/MACRO BUFFER FULL

The command line is too long, or too many macros are
defined. This message may also occur during macro expansion.

COMPONENT NOT IN SPECIFIED RECORD

Self-explanatory. You may have misspelled the record
component name.

ERROR: n

Error number n from SINTRAN III or ND~SOO Monitor. There
is no error text for this error number. The right place
to look to find out what this error means is the manual
SINTRAN III Monitor Calls, ND—60.228.

ILLEGAL DEBUG ELEMENT TYPE; DEBUG TABLE ADDRESS: xxxxxB 3n

Error in the debug information generated by the compiler.
Ensure that you do not have a new version of the
compiler and an old version of the debugger. If nothing
helps, report the error.

ILLEGAL DEBUG TABLE ADDRESS (XXXXXB) IN "FIND"

Internal consistency error in the Debugger.
The error should be reported.

Norsk Data ND—60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 117
ERROR MESSAGES

ILLEGAL TERMINATION

Illegal termination of the command line. You have probably
used the wrong type or number of parameters.

ILLEGAL TERMINATION OE ARGUMENT

Illegal termination of a command parameter. The
command parameter must be terminated by a "J" (carriage
return), " " (space), "," (comma) or ";" (semicolon).

INDEX "n" IS OUTSIDE ARRAY

Index outside range in array access.

INDIRECTION NOT LEGAL

Indirection in LOOK—AT not legal for this step size.
In the ND-lOO, you may step through the code two words
at a time, if you have given the LOOK—AT subcommand DOUBLE-
WORD, and in the ND-BOO, you may step through the code/data
one byte or half—word at a time, if you have given the
LOOK-AT subcommands BYTE or HALF-WORD. But if you want to
use the ”/" (slash) command to move to a new location, you
must have a word-size argument.

LIMITS NOT LEGAL FOR THIS TYPE

Can occur in the GUARD command; lowzhigh is not legal for
this item type. Limits are only legal for pointers,
integers, enumerations and boolean types.

LINE TRANSLATION TABLE FULL

Too many areas specified in ALIGN—LISTING.

LINK-INFORMATION INACCESSIBLE

Can occur with the BREAK-RETURN command when no
return address can be found.

MODULES/ROUTINES TOO DEEPLY NESTED

Too deep nesting of modules and/or routines in the
debug information.

NO ACTIVE ROUTINES

You do not have a subroutine in scope at present. To get
an active breakpoint, you must set a breakpoint in a
subroutine and RUN the program until execution stops at
that breakpoint.

Norsk Data ND-60.158.4 EN



118 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

NO DEBUG INFORMATION AVAILABLE

You probably did not compile your program, or a part of it,
in debug mode. Otherwise, you may have forgotten to PLACE a
:PROG—file or to give an ATTACH-SEGMENT command.

NO SUCH COMMAND

NO SUCH REGISTER NAME

NOT A VARIANT OF THE SPECIFIED RECORD

The three above error messages are self—explanatory.
They are most likely to result from
misspellings.

NOT FOUND

Usually preceded by a name, e.g., "SUBR" NOT FOUND.
You may be in a different module or routine than you
think you are, or your code has been compiled without

the DEBUG mode on.

OUTSIDE PROGRAM

You are trying to access a program address which is outside
the range of addresses that the Debugger will allow.

ROUTINE INACTIVE

Routine inactive (no current stack frame allocated).

STRING CONSTANT TOO LONG

The maximum length of a string constant is 80
characters.

TERMINAL OCCUPIED

An RT-program or another user is using the terminal that you
want to reserve for debugging your program. Make the user or
RT-program release the terminal, or reserve another.

TOO MANY INDICES

Too many indices in the array reference as compared to
the array declaration.

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 119
ERROR MESSAGES

WRONG ENUMERATION-TYPE NESTING

Error in the debug information generated by the compiler.
Ensure that you do not have a new version of the
compiler and an old version of the debugger. If nothing
helps, report the error.

WRONG TYPE OR INACCESSIBLE

Item is of wrong type (e.g., REAL used as an array index)
or inaccessible at this point in the program (e.g., local
variable in inactive routine).

6.2. Error Messages Which Apply to the ND—lOO Version

DATA AT DATA ADDRESS "" IS NOT STORED ON THE FROG—FILE

Attempt to modify a part of the data area that is not
stored on the :PROG file. This can only happen when PLACE
<file>,w has been used.

DATA AT PROGRAM ADDRESS "" IS NOT STORED ON THE PROG-FILE

Attempt to modify a part of the program that is not
stored on the :PROG file. Can only happen when PLACE
<file>,w has been used.

NO MORE DATA SEGMENTS AVAILABLE

Too many Debuggers are active at the same time. Each
active Debugger uses one data segment. The maximum number
of active Debuggers is specified when your SINTRAN III is
generated. You should use the EXIT command to leave the
Debugger. If you use the ESCAPE key, the data segment may
not be released for use by others.

NO PROGRAM FILE SPECIFIED

You need to use the PLACE command to read in a program file.

NOT WRITE ACCESS TO PROGRAM FILE

Self—explanatory.

RESTART IMPOSSIBLE

Execution of the program has terminated, and it cannot be
restarted. Exit the debugger and start over again.

Norsk Data ND—60.158.4 EN



120 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

USE LOG-CALLS OR LOG-LINES

This command requires the use of LOG-CALLS or LOG-LINES.
Remember CHECK«OUT—MODE can only be used after you have
specified LOG-CALLS or LOG-LINES. On the ND—lOO, GUARD can
only be used after LOG-CALLS or LOGvLINES.

6.3. Error Messages Which Apply to RT Debugging

ILLEGAL SEGMENT NUMBER..."n”

SINTRAN III does not recognize this as a valid segment
number.

NO ACTIVE BREAKPOINT

No ND—lOO RT program has reached a breakpoint yet.

NO RT-PROGRAM WITH THIS NAME

Self-explanatory.

NO SEGMENT ATTACHED

Self-explanatory.

6.4. Error Messages Which Apply to ND—lOO Multi-Segment Programs

ILLEGAL SEGMENT NUMBER..."n"

SINTRAN III does not recognize this as a valid segment
number.

NO MAIN SEGMENT ATTACHED (ATTACH—REENTRANT—SEGMENT)

You are trying to start your multi—segment system without
having specified your main program segment. You must
give an ATTACH—REENTRANT—SEGMENT command.

NO SEGMENT ATTACHED

You must attach your reentrant segments with the
ATTACH-REENTRANT—SEGMENT command before trying to do a
REENTRANT-PLACE.

Norsk Data ND—60.158.u EN



SYMBOLIC DEBUGGER USER GUIDE 121
ERROR MESSAGES

NO SUCH REENTRANT SYSTEM NAME

NO SUCH SEGMENT NAME ""

These messages are likely to be caused by misspellings or
erroneous deletions of segments etc..

PROTECTED COMMAND, CANNOT BE USED FROM USER "" ONLY FROM USER SYSTEM
OR RT

You must be logged in on SINTRAN user SYSTEM or RT to be able
to debug multi—segment systems.

SINGLE INSTRUCTION STEP NOT ALLOWED

You cannot single-step across a segment boundary.

UNKNOWN BREAK SEGMENT

You are trying to break on a segment which is not attached.

UNKNOWN BREAK-RETURN SEGMENT

You are trying to return to a segment which is not attached.

USE LOG-CALLS OR LOG-LINES

This command requires the use of LOG—CALLS or LOG—LINES.
On the ND—lOO, GUARD can only be used after LOG—CALLS
or LOG—LINES.

6.5. Error Messages Which Apply to the ND—SOO Version

AMBIGUOUS TRAP CONDITION

You must type enough characters to make the name of the trap
unambiguous.

ATTEMPT TO ACCESS NONEXISTENT DATA SEGMENT

You can find the data address ranges from the load map that
the Linkage—Loader prints.

ATTEMPT TO ACCESS NONEXISTENT DEBUG INFORMATION

You can find the debug information address ranges from
the load map that the Linkage—Loader prints.

Norsk Data ND-60.158.4 EN



122 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

ATTEMPT TO ACCESS NONEXISTENT PROGRAM SEGMENT

You can find the program address ranges from the
load map that the Linkage—Loader prints.

ATTEMPT TO MODIFY READ—ONLY SEGMENT

ATTEMPT TO SET BREAKPOINT ON READ-ONLY SEGMENT

The two errors above should be reported.

BAD OPERAND CODE; DEBUG TABLE ADDRESS: xxxxxB

Error in the debug information generated by the compiler.
Ensure that you do not have a new version of the compiler
and an old version of the debugger. If nothing helps,
report the error.

CONNECT CALLED WITH BAD ACCESS CODE " "

Internal consistency error in the debugger. Ensure that
you do not have a new version of the compiler and an old
version of the debugger. If nothing helps, report the
error.

ERROR IN MONITOR CALL

Error message from the ND—SOO Monitor. Use the
AUTOMATIC-ERROR—MESSAGE command in the ND—SOO Monitor
if further information is required. The right place
to look to find out what this error means is the
manual SINTRAN III Monitor Calls, ND-60.228.

ILLEGAL BASE IN NUMERIC LITERAL

When using Ada—syntax in constants, the base must be in the
range 2:16.

IMPOSSIBLE TO INVOKE ROUTINE; STACK OVERFLOW

INVOKE command not executed; not enough room left in the
stack. Expand the stack and recompile.

INVALID OPERATOR "(>"

Try "><" instead.

Norsk Data ND-60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 123ERROR MESSAGES

NO DSEG-FILE OPENED OR CONNECTED FOR SEGMENT ""

NO LINK FILE OPENED OR CONNECTED FOR SEGMENT ""

NO PSEG—FILE OPEN OR CONNECTED FOR SEGMENT ""

The three error messages above are internal
consistency errors that should be reported.

NO SUCH TRAP CONDITION

Check the manual for trap conditions. You will
also find an in-depth explanation of the trap system in ND~
SOO Reference Manual, ND—05.009.

OUTSIDE DATA SEGMENT

Attempt to access beyond the available address space (on
an existing data segment). A very likely source
of trouble here is an uninitialized pointer address.

OUTSIDE PROGRAM SEGMENT

Attempt to access beyond the available address space (on
an existing program segment).

PROGRAMMED-TRAP FAILED (NOT ENABLED?)

The Debugger is unable to start your program because
the "programmed—trap" (no. 29) has been disabled
or is not working. This error should be
reported.

SEGMENT NUMBER MUST BE IN THE RANGE 0:31

An ND-SOO program consists of one domain with up
to 32 different segments, numbered 0:31 (decimal). The first
five bits in an address gives the segment number. You have
tried to give a segment number outside this five—bit
range.

THIS SINTRAN III COMMAND IS NOT ALLOWED FROM THE ND-SOO

Some SINTRAN III commands cannot be given
via the command processor of the Symbolic Debugger, so the
Debugger gives this error message instead.

Norsk Data ND-60.158.4 EN



124

TOO MANY

TOO MANY

TOO MANY

SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

FILES OPENED

The Debugger is unable to open all the files needed.
You cannot open more than 957 files when running under
the Debugger.

NESTED INCLUDE-COMMANDS

When reading macros from files and executing them, nested
execution of INCLUDE-commands is possible, but only 6 times.

NESTED MACRO—EXPANSION

Macros may contain other macros, but such nesting can only
occur 5 times.

UNABLE TO SWITCH DEVICE

You are trying to reserve another terminal, but your version
of SINTRAN does not support this Debugger feature. It is only
possible to give the RESERVE-TERMINAL command if you have
SINTRAN III version K or later versions.

USE LOG-CALLS OR LOG-LINES

This command requires the use of LOG—CALLS or LOG—LINES.
Remember CHECK—OUT—MODE can only be used after you have
specified LOG-CALLS or LOG—LINES.

Norsk Data ND~60.158.4 EN



SYMBOLIC DEBUGGER USER GUIDE 125
ERROR MESSAGES

6.6. Note on Error Returns on the ND—lOO

The ND-lOO (if started by the Symbolic Debugger) will enter the
Debugger when it stops, for instance if the stack overflows. The
following messages may occur:

PROGRAM TERMINATED AT current scope

ASSERT VIOLATION AT current scope

STACK OVERFLOW AT current scope

INDEX RANGE ERROR AT current scope

WRONG NO. OF PARAMETERS AT current scope

After these messages have occurred, the Debugger can still be used,
but you cannot run the program. I



< I >

I N D E X L I S T

Index term Reference

A format (ASCII) . . . . . . . . . 93
abbreviation of address, notation for . . 65
abbreviation of commands . . 3
abbreviation of commands, example . . 11
ACTIVE——ROUTINES command . . 29
ADA notation . . . 83
Ada notation for a constant . . 84
ADDR . . 83
ADDR example 39, 87, 92, 99,

103
address and GUARDing for modifications . 45
address data: how to give . . . . 92
address, abbreviation for on ND 500 . . 65
address, program: how to give . . 91
address, scope of . . 43
advanced features overview . 24
ALIGN—LISTING command . . . . . 3O
alphabetical DISPLAY format . . 44
alphabetical FORMATS-LOOKeAT . . . 4H
alphanumeric LOOK—AT display format . 63
alternative page table 56, 66, 71
apostrophe in addresses . 65
arrays, DISPLAYing . 38
ASCII format . . . . . . . . . . . . . . 93
ATTACH——REENTRANT SEGMENT and multi—segment programs . 3O
ATTACH--REENTRANT- SEGMENT and REENTRANT-PLACE 72
ATTACH REENTRANT SEGMENT command 15, 3O
ATTACH-~REENTRANT’SEGMENT example . . 16
ATTACH--SEGMENT command in the RT Debugger . . 31

Norsk Data ND—60.158.4 EN



< II >

Index term Reference

ATTACH— SEGMENT command on ND 500 . 31
ATTACH~SEGMENT RT——Debugger command . 19
B register . . . . . . . . 97
binary numbers . . 84
blanks in expressions . . . 86
bounds for the program and data for ND~1OO . 72
BREAK and breakpoints . . 22
BREAK command . . . 9, 22, 31
BREAK condition . . . . 32
BREAK condition (example) . 98
BREAK count . . 31
BREAK example . . ll
BREAK label . . . 9O
BREAK line number . . 9O
BREAK LOOK— AT subcommand . . . . . . 62
break on trap conditions and debugger response . 51
BREAK— ADDRESS command . . . . 33
BREAK— ADDRESS command, alternative to BREAK . . 31
breakpoint count . . 31
breakpoint definition . . 24
breakpoint in RT~programs . 45
breakpoint usage . . 24
breakpoint, how to set . . . 31
breakpoint, position of in subroutine . . 31
breakpoints and BREAK . . 22
breakpoints, multiple and conditions . 32
breakpoints, multiple and counts . 32
BREAK— RETURN command . 33
BUBBLE program . . . 10
BYTE LOOK-AT subcommand . . 63
change data address . . 57
change program address . 37, 57, 65, 71
CHECK-OUT—MODE after LOG— CALLS . 53
CHECK—OUT—MODE after LOG— LINES . 42
CHECK—OUT—MODE and DUMP—LOG . . 42
CHECK~OUT—MODE and LOG—CALLS . 53
CHECK-OUT—MODE command . 35
CHECK-OUT-MODE example . 99
COBOL item qualification . 88
COBOL multi——segment example . . . . l6
COBOL subprograms and INVOKE command . 48
code, finding unexecuted . 42
command abbreviation example 11
command abbreviation rules . 3
command ACTIVE—ROUTINES . . 29
command ALIGN LISTING . . 3O
command ATTACH--REENTRANT— SEGMENT . . 15, 3O
command ATTACH- SEGMENT in the RT——Debugger . . 19, 31
command ATTACH—SEGMENT on ND—500 . 31
command BREAK . . . . . . . 9, 22, 31
command BREAK— ADDRESS . . . . 33
command BREAK— ADDRESS, alternative to BREAK . 31

Norsk Data ND—60.158.4 EN



< III >

Index term Reference

command BREAK~RETURN . . . . . . . . . . . . . . . . 33
command CHECK-OUT-MODE . . . . . . . . . . . . . . . 35
command COMPARE—DATA . . . . . . . . . . . . . . . . 36
command COMPARE—PROGRAM . . . . . . . . . . . . . . . 37
command CONTINUE . . . . . . . . . . . . . . . . . . 37
command DISPLAY . . . . . . . . . . . . . . . . . . . 9, 23, 38
command DUMP~LOG . . . . . . . . . . . . . . . . . . 42
command ENABLED—TRAPS (ND—500 only) . . . . . . . . . 43
command EXIT . . . . . . . . . . . . . . . . . . . . 9, 23, 43command files . . . . . . . . . . . . . . . . . . . . 47
command FIND~SCOPE . . . . . . . . . . . . . . . . . 43
command FORMATS-DISPLAY . . . . . . . . . . . . . . . 44
command FORMATS——LOOK AT . . . . . . . . . . . . . . . 44
command GET-~BREAK—-STATUS . . . . . . . . . . . 45
command GET——BREAK——STATUS in RT— Debugger . . . . . . . l9
command GUARD . . . . . . . . . . . . . . . . . . . . 45
command HELP . . . . . . . . . . . . . . . . . 46
command INCLUDE—~COMMANDS . . . . . . . . . . . . . . 47
command INVOKE . . . . . . . . . . . . . . . . 48
command LOCAL TRAP--DISABLE . . . . . . . . . . . . . 5O
command LOCAL TRAP ENABLE . . . . . . . . . . . . . . 51
command LOG—~CALLS . . . . . . . . . . . . . . . . . . 23, 52
command LOG~~LINES . . . . . . . . . . . . 23, 54
command LOOK AT, formats for display . . . . . . . . 44
commanc LOOK AT, special notation . . . . . . . . . . 57
command LOOKnAT—DATA . . . . . . . . . . . . . . . . 56, 61
command LOOKnAT—PROGRAM . . . . . . . . . . . . . . . 56, 65
command LOOKuAT-REGISTER . . . . . . . . . . . . . . 56, 66
command LOOK AT-STACK . . . . . . . . . . . . . . . . 56, 66
command MACRO . . . . . . . . . . . . . . . . 69
command MULTIPLE--BREAK MODE . . . . . . . . . . . . . 71
command parameters . . . . . . . . . . . . . . . . . 83
command PLACE . . . . . . . . . . . . . . . . . . . . 71
command priority . . . . . . . . . . . . . . 3
command PROGRAM INFORMATION . . . . . . . . . . . . . 72
command REENTRANT——PLACE . . . . . . . . . . . . . . . 15, 72
command RESERVE—TERMINAL . . . . . . . . . . . . . . 72
command RESET—BREAKS . . . . . . . . . . . . . . . . 73
command RT—PLACE . . . . . . . . . . . . . . . . . . 19, 74
command RUN . . . . . . . . . . . . . . . . . . . . . 9, 23, 74
command SCOPE . . . . . . . . . . . . . . . . . 75
command SEGMENT- INFORMATION . . . . . . . . . . . 76
command SEGMENT— INFORMATION on ND- 5OO . . . . . . . . 31
command SEGMENT—~WRITE——PERMIT . . . . . . . . . . . . 76
command SEGMENT—WRITE—PROTECT . . . . . . . . . . . . 76
command SET . . . . . . . . . . . . . . . . . 77
command STACK— INSTRUCTIONS . . . . . . . . . . . . . 78
command STEP . . . . . . . . . . . . . . . . . . . . 23, 79
command summary . . . . . . . . . . . . . . . . . . . 3
commandUUSER ESCAPE . . . . . . . . . . . . . . . . . 8O
commands, basic . . . . . . . . . . . 9
commands, many separated by semicolons . . . . . . . 86

Norsk Data ND—60.158.4 EN



< IV >

Index term

common area . .
COMPARE— DATA command .
COMPARE——PROGRAM command . .
compiling an ND— 100 background program
compiling an ND——500 program . .
conditions and multiple breakpoints .
constant in Ada notation
constant numeric
cmmmmtrafl. . .
constant single-character .
constant string . .
constant with exponent
CONTINUE (see also RUN)
CONTINUE and step-points
CONTINUE command
CONTINUE command and breakpoints
count and multiple breakpoints
count using 1 or —1 . . . .
CPU registers, changing contents of .
D format
data address:

(decimal)
how to give .

data bounds for ND- 100 . .
data inspection with LOOK—AT— DATA .
DATA LOOK-AT subcommand . .
data modification and GUARD .

. 84

. 83

. 84

. 85

. 85

. 84

:24
. 31
. 32
. 79
. 66
- 93
. 92
. 72
. 56
. 62
. 45

data patching .
data, changing .
debug information bounds for ND lOO . .
debug information, availability on ND—5OO .
debugger
debugger
debugger
debugger
debugger

error messages, common to all versions .
features . .
handling of traps
keywords, avoiding .
overview .

decimal DISPLAY format
decimal format .
decimal FORMATS- LOOK— AT .
decimal LOOK~AT display format
decimal numbers .
declaration lines in programs .
definition breakpoint .
definition of item
definition of named items .
definition step—point .
disassembly .
displacement .
DISPLAY and arrays .
DISPLAY and dynamically allocated records
DISPLAY and records .
DISPLAY and scope .
DISPLAY command .
DISPLAY example .

Norsk Data ND-60.l58.4 EN

. 24

. 26

. 22

. 44

. 93

. 44

:84
:24
. 88
. 24
- 93
. 97

:39
.39

Reference

106
:36
.37

l2
17
32

37

37

- 57
. 77
. 72
. 31

115

51

63
30

38

38

38
I 9. 23, 38
ll



< V >

Index term Reference

DISPLAY format alphabetical . . 44
DISPLAY format decimal . . . 44
DISPLAY format floating—point . . . 44
display format for LOOK— AT subcommands . 63
DISPLAY format hexadecimal . 44
DISPLAY format octal . 44
DISPLAY IND . . . 39
DISPLAY of constants . 83
DISPLAY pointer . . 39
DISPLAY record . . 7O
DISPLAYing separately compiled code . . 38
DISPLAYing variables . . 23
DISPLAYing variant records in ND— 5OO PLANO . 41
dot notation and DISPLAY 38
dot notation in COBOL . 88
dot notation in named items . . 88
DOUBLE—~FLOATING example . . . 63
DOUBLE—~FLOATING LOOK AT subcommand . 63
DOUBLE— WORD LOOK- AT subcommand . 63
dumping an RT-Debugger . . 18
DUMP—LOG and CHECK—OUT-MODE . . 42
DUMP~LOG and LOGnCALLS commands . 52
DUMP—LOG and LOGmLINES commands . . 54
DUMP--LOG command . 42
DUMP--LOG example . 52—54
dynamically allocated records and DISPLAY . 39
enabled trap conditions and debugger response . . 51
ENABLED-TRAPS command (ND—500 only) . A3
ERRCODE variable on the ND—5OO . 26
error device and RT-~breakpoint . 45
error device and RT——Debugger . . 20, 45
error messages from the ND— 100 debugger . 119
error messages from the ND- 500 debugger . 121
error messages from the RT Debugger . . 120
error messages in ND 100 multi— segment debugging 120
error messages, common to all debuggers . 115
error messages, summary . . . 111
error returns and the BREAK-~RETURN command . 33
E80 key . . . 23
escape handling and USER--ESCAPE on ND— 5OO . . 8O
ESCaping the Debugger . . . . . 23
example ATTACH— REENTRANT— SEGMENT 16
example BREAK . . . 11
example COBOL and multi——segment . 16
example command abbreviation 11
example debugging session . 10
example DISPLAY . 11
example in FORTRAN 10
example loading on ND—lOO . 12
example loading on ND— 500 . 17
example multi segment debugging . . 16
example multi——segment loading on ND- 10D . 14

Norsk Data ND—60.158.4 EN



< VI >

Index term

example ND~1OO compilation
example ND—BOO compilation
example of loading an RT-Program
example program in FORTRAN
example program in PLANC
example REENTRANTePLACE .
example RT—breakpoint .
example RT— loading session
example RUN . .
executing a program from the Debugger .
executing Debugger commands from file .
execution of single lines and logging .
execution speed with step-points
EXIT command . .
EXITing the Debugger
exponents in parameters
expressions . . . . .
expressions, blanks in
expressions, operators in . .
EXTRA FORMATS LOOK— AT subcommand
F format (floating point)
file as segment on ND-SOO .
file names
file output from LOOK~AT
FIND--SCOPE and SCOPE
FIND-SCOPE command
FLOATING example . . .
FLOATING LOOK AT subcommand .
floating point DISPLAY format .
floating point format .
floating point FORMATS——LOOK— AT . .
floating point LOOK— AT display format .
foreground programs . . . . . .
format A (ASCII)
format D (decimal) .
format F (floating point)
format H (hexadecimal) . . . .
format I (instruction (disassembly))
format 0 (octal)
format specifier . . .
FORMATS LOOK-AT subcommand
FORMATS-DISPLAY command . . .
FORMATS-LOOK-AT alphabetical
FORMATS—LOOK—AT command .
FORMATS—LOOK-AT decimal .
FORMATS~LOOK—AT example . .
FORMATS—LOOK—AT floating-point
FORMATS~LOOK—AT hexadecimal .
FORMATS—LOOK-AT octal .
FORTRAN example .
FSCNT example . .
GET— BREAK--STATUS RT--Debugger command

Norsk Data ND-60.158.4 EN

:18
.97

Reference

12
17

34, 89, 98, 100
16

. 21

. 20
ll

. 38, 44

. 44

. 44

. 44

. 56, 62, 63, 68

. 44

. 44

. 44
10, 97
106

' 19. 45



< VII >

Index term Reference

GUARD and data modification . . . . . . . . . . . . . 45
GUARD and LOG—CALLS . . . . . . . . . . . . . . . . . 53
GUARD and LOG—LINES . . . . . . . . . . . . . . . . . 53, 54GUARD and ND—lOO . . . . . . . . . . . . . . . . . . 46GUARD and ND-~500 . . . . . . . . . . . . . . . . . . 46
GUARD command . . . . . . . . . . . . . . . 45GUARD command and program address . . . . . . . . . . 45GUARD command, data types for . . . . . . . . . . . . 45GUARD example . . . . . . . . . . . . . . . 36, 45, 73, 92GUARD example with LOG— LINES . . . . . . . . . . . . 73
GUARD range permitted . . . . . . . . . . . . . . . . 45
GUARD ranges . . . . . . . . . . . . . . . . . . . . 45GUARD undoing . . . . . . . . . . . . . . . . . . . . 46GUARD violation . . . . . . . . . . . . . . . . . . 45H format (hexadecimal) . . . . . . . . . . . . . . 93HALF- WORD LOOK-—AT subcommand . . . . . . . . . . . . 63HELP command . . . . . . . . . . . . . . . 46hexadecimal DISPLAY format . . . . . . . . . . . . . 44
hexadecimal format specifier . . . . . . . . . . . . 93hexadecimal FORMATS—LOOK—AT . . . . . . . . . . . . . 44hexadecimal LOOK AT display format . . . . . . . . . 63hexadecimal numbers . . . . . . . . . . . . 84
I format (instruction disassembly) . . . . . . . . . 93INCLUDE--COMMANDS command . . . . . . . . . . . . . . 47IND example . . . . . . . . . . . . . . . . . . . . . 39, 87IND operator . . . . . . . . . . . . . . . . 83
INLINE routines and BREAKS . . . . . . . . . . . . . 31
inspect program address . . . . . . . . . . . . 37, 92
instruction by instruction execution . . . . . . . . 79instruction format (disassembly) . . . . . . . . . . 93instruction LOOK—AT display format . . . . . . . . . 63
instructionwise program execution . . . . . . . . . . 79invalues in PLANC and INVOKE command . . . . . . . . 49INVOKE command . . . . . . . . . . . 48
INVOKE command and subroUtine parameters . . . . . . 48item, definition of . . . . . . . . . . . . . . . . . 38item, definition of named . . . . . . . . . . . . . . 88items, DISPLAYing . . . . . . . . . . . . . . . . . . 38
label . . . . . . . . . . . . . . . . . . . . 90
leaving the Debugger . . . . . . . . . . . . . . . 23
line by line execution logging . . . . . . . . . . . 54
line number adjustment . . . . . . . . . . . . . . . 30
line numbers . . . . . . . . . . . 10
listing not up to date'. How to align . . . . . . . . 3O
loading an ND 100 background program . . . . . . . . 12
loading an ND—lOO multi-segment program . . . . . . . 14
loading an ND- 500 program . . . . . . . . . . . . . . 17loading an RT--Program . . . . . . . . . . . . . . . l8
LOCAL-TRAP--DISABLE command . . . . . . . . . . . . . 50
LOCAL-TRAP ENABLE command . . . . . . . . . . 51
LOG commands (for step—point debugging) . . . . . . . 23
LOG—-CALLS and CHECK- OUT— MODE . . . . . . . . . . . . 53

Norsk Data ND—60.158.4 EN



< VIII >

Index term Reference

LOG-CALLS and GUARD . . 53
LOG-CALLS and STEP . 53, 79
LOG—CALLS command . . 23, 52
LOG—LINES advice . . 55LOG—LINES and GUARD . . 53, 54
LOG—LINES and STEP . 55, 79
LOG—LINES command . . . . . . . . . . . 23, 54
LOG-LINES example with CHECK—OUT-MODE . . 42
LOG—LINES example with DUMP-LOG . . 54
LOG-LINES example with GUARD . 36, 73
LOG-LINES example with STEP . . 34, 79
LOG—LINES reset . . 73
LOOK—AT and pointers . 58
LOOK—AT BYTE subcommand . . . . . 63
LOOK—AT command, formats for display . 44
LOOK—AT DATA subcommand . . . . . . 62
LOOK-AT display format alphanumeric . . 63
LOOK~AT display format decimal . . 63
LOOK-AT display format floating point . . 63
LOOK-AT display format hexadecimal . 63
LOOK—AT display format instruction . 63
LOOK—AT display format octal . . 63
LOOK~AT DOUBLE~FLOATING subcommand . 63
LOOK-AT DOUBLE-WORD subcommand . 63
LOOK—AT EXTRA-FORMATS subcommand . 63
LOOK-AT FLOATING subcommand . . 63
LOOK-AT FORMATS subcommand . 63
LOOK-AT HALF-WORD subcommand . 63
LOOK-AT output to file 1 56
LOOK—AT PROGRAM subcommand , 62
LOOK—AT REGISTER subcommand . . 62
LOOK—AT slash commands 58
LOOK~AT special notation a 57
LOOK—AT STACK subcommand . 62
LOOK—AT subcommand SEARCH . . 614
LOOK~AT subcommands . . . . 61
LOOK-AT with constant parameters . 83
LOOK—AT WORD subcommand . . 63
LOOK-AT~DATA command . . 56, 61
LOOK—AT—DATA subcommands . 61
LOOK-AT-PROGRAM command . . 56, 65
LOOK~AT*PROGRAM example . . 37, 92
LOOK-AT—PROGRAM subcommands . . 61
LOOK-AT~REGISTER command . 56, 66
LOOK- AT——REGISTER subcommands . 61
LOOK AT-STACK command . . . . 56, 66
LOOK AT-STACK NEXT subcommand . . . 62
LOOK AT STACK PREVIOUS subcommand . . 62
LOOK—AT-STACK subcommands . . 61
MACRO body . . 69
macro for debuggers, storage on file of . . 47
MACRO name . 69

Norsk Data ND—60.158.4 EN



< IX >

Index term Reference

macro parameter in debugger macros . 7O
macros in source code and BREAKS . 31
memory area . . . 91
MOD function on ND——5OO 26
MOD on ND-~5OO . . 83
modification of CPU contents 66
modification of the stack . 66
modulo operator . . 26
monitor call error, stack location for 26
multiple breakpoints and conditions 32
multiple breakpoints and counts 32
multiple breakpoints example 32
multiple breakpoints on ND—5OO . 26
multiple breakpoints, removing . 73
multiple step—points . . . . 24, 91
MULTIPLE— BREAK— MODE command . . . 31, 71
multi——segment command ATTACH—~REENTRANT—~SEGMENT 15
multi—segment command REENTRANT——PLACE . 15
multi-segment debugging example . 16
multi—segment ND- 100 program, loading of . 14
multi-segment programs and ATTACH——REENTRANT— SEGMENT . 3O
multi-~segment programs on the ND— 100 and PLACE . 71
name of a file . 93
named items and dot notation . 88
named items, definition . . 88
named items, DISPLAYing . . 38
ND—lOO and GUARD . . . . 46, 53, 54
ND—lOO debugger error messages 119
ND-lOO multi—segment error messages 120
ND-lOO multi—~segment program, loading of . 14
ND~1OO program optimization . . 78
ND—1OO program, compilation example . 12
ND-lOO program, loading of . 12
ND—lOO restart address information . 72
ND*1OO segment names . . 3O
ND-1OO start address information . 72
ND—lOO, bounds for debug information . 72
ND~100, bounds for the program and data . . 72
ND-5OO additional Debugger Features . 25
ND—5OO and GUARD . . 46
ND-500 ATTACH— SEGMENT command . . . . . 31
ND—5OO debug information, availability of . 31
ND~5OO debugger error messages . 121
ND—5OO escape handling . 8O
ND-5OO monitor call error . . 26
ND~500 multiple breakpoints . . 26
ND—5OO program, compilation example . 17
ND~5OO program, loading of . 17
ND-5OO reloaded programs . 25
ND—SOO SEGMENT— INFORMATION command . 31
ND-SOO subroutine returns 26
ND—SOO trap names 50

Norsk Data ND-60.158.4 EN



< X >

Index term Reference

ND—500, file as segment . . . 105
NEXT LOOK-AT-STACK subcommand . . 62
no active breakpoint message . 45
notation for parameters 29
notation for segment numbers . 65
numbers binary . 84
numbers decimal . 84
numbers hexadecimal . 84
numbers octal . 84
numeric constant . 83
O format (octal) . 93
octal DISPLAY format . 44
octal format . - 93
octal FORMATS LOOK-AT . . 44
octal LOOK-AT display format . 63
octal numbers . . . 84
operator MOD 26
operator TYPEOF . . . 26
operators in expressions . . 86
optimization of ND—lOO programs 78
optional parameters, notation for . 29
output to file from LOOK-AT . 56
parameter notation 29
parameter prompts . 29
parameters to commands . 83
Pascal records . 39
patch data 57
patch program . . . 57, 65, 78
patch program with PLACE . 71
patching with LOOK—AT-PROGRAM . . 65
permitted range . . . 45
PLACE and multi——segment programs on the ND— lOO . 71
PLACE command . . . . . . . . . 71
PLACE to patch :PROG file . . 71, 78
PLANC example . . . . 34, 89, 98, 100
PLANO invalues and INVOKE command . . 49
PLANC records . . 39
PLANO variant records . . . 26
PLANO variant records on the ND——5OO . . 41
PLANC WRITE parameters, updating of . 34
pointer display . . . 39
pointer example . . . 87
pointers and LOOK AT . 58
precedence of operators . . . . 86
PREVIOUS LOOK-AT STACK subcommand . . . . 62
program address and GUARDing for modifications 45
program address, BREAKing on . . 33
program address, scope of absolute . 43
program address: how to give . 91
program area . . 91
program bounds for ND— 10O . . . 72
program compilation on ND- 100 example 12

Norsk Data ND-60.158.4 EN



< XI >

Index term Reference

program compilation on ND-500, example . . . . . . . 17
program executed instruction by instruction . . . . . 79
program execution improvement (ND~100) . . . . . . . 78
program loading on ND—lOO, example . . . . . . . . . 12
program loading on ND—500, example . . . . . . . . . 17
PROGRAM LOOK-AT subcommand . . . . . . . . . . . . . 62
program memory area . . . . . . . . . 91
program modification with LOOK—AT PROGRAM . . . . . . 65
program optimization on ND 100 . . . . . . . . . . . 78
PROGRAM—-INFORMATION command . . . . . . . . . . . . . 72
radix specifier . . . . . . . . . . . . . . . 93
radix specifier in ada notation . . . . . . . . . . . 84
range in GUARD . . . . . . . . . . . . . . . . . . . 45
real constants . . . . . . . . . . . . . . . . . . . 84
records and DISPLAY . . . . . . . . . . . . . . . . . 39
records, variant in PLANC . . . . . . . . 26
REENTRANT——PLACE and ATTACH-~REENTRANT SEGMENT . . . . 72
REENTRANT——PLACE command . . . . . . . . . . . . . . . 15
REENTRANT——PLACE example . . . . . . . . . . . . . . . 16
Register B . . . . . . . . . . . . . . . 97
REGISTER LOOK— AT subcommand . . . . . . . . . . . . . 62
reloaded programs, debugging of . . . . . . . . . . . 25
removing multiple breakpoints . . . . . . . . . . . . 73
reserved Debugger words, avoiding . . . . . . . . . . 26
RESERVE-TERMINAL command . . . . . . . . . . . . . . 72
RESET——BREAKS command . . . . . . . . . . . . . . . . 73
resetting LOG- LINES . . . . . . . . . . . . . . . . 73
resetting multiple breakpoints . . . . . . . . . . 73
restart address information for ND— 100 . . . . . . . 72
routine breakpoint, position of . . . . . . . . . . . 31
routine call hierarchy, listing . . . . . . . . . . . 29
routine call logging . . . . . . . . . . . . . . . 52
routine invocation from Debugger . . . . . . . . . . 48
routines INLINE and BREAKS . . . . . . . . . . . . . 31
RT-breakpoint example . . . u . . . . . . . . . . . . 21
RT—Debugger . . . . . . . . . . . . . . . . . . . . . 10
RTeDebugger and the error device . . . . . . . . . . 45
RT-Debugger command ATTACH—SEGMENT . . . . . . . . . 19, 31
RT-Debugger command GETaBREAK-STATUS . . . . . . . . 19, 45
RT-Debugger command RT—PLACE . . . . . . . . . . . . 19
RT—Debugger error messages . . . . . . . . 120
RT-Debugger message on SINTRAN error—device . . . . . 20
RT—Debugger how to make . . . . . . . . . . . . . . 18
RT—~Loader, example of how to use . . . . . . . . . . 20
RT-~PLACE command . . . . . . . . . . . . . . 74
RT— PLACE RT Debugger command . . . . . . . . . . . . 19
RT——program breakpoint retrieval . . . . . . . . . . . 45
RT-Program, how to load . . . . . . . . . . . . . . . 18
RUN and step-points . . . . . . . . . . . . . . . . . 24
RUN command . . . . . . . . . . . . . . . . 9, 23, 74
RUN command and breakpoints . . . . . . . . . . . . . 31
RUN example . . . . . . . . , . . . . . . . . . . . . 11

Norsk Data ND-60.158.4 EN



< XII >

Index term Reference

RUNning a program from the Debugger . . . . . . . . . 23
scope and DISPLAY . . . . . . . . . . . . . . . . . . 38
SCOPE and FIND- SCOPE . . . . . . . . . . . . . . . . 44
SCOPE command . . . . . . . . . . . . . . . . . . . 75
scope of program address . . . . . . . . . . . . . . 43
SEARCH LOOK— AT subcommand . . . . . . . . . . . . . . 64
segment names on the ND— 100 . . . . . . . . . . . . . 3O
segment number notation . . . . . . . . . . . . 65
segment, file— as— segment on ND—~5OO . . . . 105
SEGMENT--INFORMATION command in RT- and ND——500 programs76
SEGMENT— INFORMATION command on ND 500 . . . . . . . . 31
segments checked by CHECK—OUT—MODE . . . . . . . . . 35
SEGMENT~WRITE~PERMIT command . , . . . . . . . . . . 76
SEGMENT—WRITE~PROTECT command . . . . . . . . . . . . 76
separate compilation and DISPLAY . . . . . . . . . . 38
SET and constants . . . . . . . , . . . . . . . . . . 83
SET command . . . . . . . . . . . . . . . . . . . . . 77
SHIFT . . . . . . . . . . . . . a . . . . . . . . . . 83
SHIFT example . . . . . . . . . . . . . . . . . 87
single instruction execution . . . . . . . . . . . . 79
single instruction STEPping . . . . . . . . . . . . . 79
single—character constant . . . . . . . . . 85
SINTRAN III error-device and RT——Debugger . . . . . . 20
slash commands in LOOK— AT . . . . . . . . . . . . . 58
source code line execution logging . . . . . . . . . 54
source code macros and BREAKS . . . . . . . . . . . . 31
source code, finding unexecuted . . . . . . . . . . . 42
source code, non—executed lines in . . . . . . . . . 35
SPECIAL keyword . . . . . . . . . . . . . . . . . . . 26
SPECIAL on ND—SOO . . . . . . . . . . . . . . . . . . 83
specifier format . . . . . . . . . . . . . . . . . . 93
specifier radix . . . . . . . . 84
stack location for ND-~5OO monitor call errors . . . . 26
STACK LOOK AT subcommand . . . . . . . . . . . . . . 62
STACK— INSTRUCTIONS command . . . . . . . . . . . . 78
start address information for ND— 100 . . . . . . . . 72
STEP and LOG——CALLS . . . . . . . . . . . . . . . . . 53, 79
STEP and LOG— LINES . . . . . . . . . . . . 55, 79
STEP and single instruction execution . . . . . . . . 79
STEP command . . . . . . . . . . . . . . . . . 23, 79
step-point and CONTINUE . . . . . . . . . . . . . . . 24
step~point and RUN . . . . . . . . . . . . . . . . . 24
step—point debugging . . . . . . . . . . . . . . . . 79
step—point definition . . . . . . . . . . . 24
step-point removal and CHECK— OUT MODE . . . . . . . . 35
step—point usage . . . . . . . . . . . . . . 24
step-points and execution speed . . . . . . . . . . . 24
step-points and RUN . . . . . . o . . . . . . . . . . 74
step—points on lines . . . . . . . . . . . . . . . . 54
step—points on subroutines . . . . . . . . . . . . . 52
step-points, creating . . . . . . . . . . . . . . . . 23
step—points, multiple . . . . . . . . . . . . . . . . 24, 91

Norsk Data ND—60.158.4 EN



< XIII >

Index term Reference

string constant . . 85
string GUARD . . 92
subprograms 1n COBOL and INVOKE command . . 48
subroutine breakpoint, position of . 31
subroutine call hierarchy, listing . 29
subroutine call logging . . . . . 52
subroutine invocation from Debugger . . . 48
subroutine returns, logging on the ND—SOO . . 26
subroutines INLINE and BREAKS . . 31
summary of commands . 3
summary of error messages . . 111
tracing which lines have been executed . 79
trap conditions and debugger response . . 51
trap names on the ND-SOO . 50
TYPEOF function . . 26
TYPEOF on ND-BOO . 83
undo GUARD . . . . . . . . 46
undo LOG—LINES . 73
USER—ESCAPE command . . . . . 80
values of variables, changing . 77
variable ERRCODE on the ND-SOO 26
variable types, retrieving . 26
variables, changing values of . . 77
variant records in ND 500 PLANC . . 26, 41
WORD LOOK— AT subcommand . . 63
WRITE parameters, updating of in PLANO . 34

Norsk Data ND—60.158.4 EN



************** SEND US YOUR COMMENTS!!! **************

Please let us know if you
' find errors
" cannot understand information
" cannot find information
' find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don't you join the Reader's Club and send us a
note? You will receive a membership card ~ and
an answer to your comments.

-************ HELP YOURSELF BY HELPING US!! HHHHHH

Manual name: Symbolic Debugger User Guide Manual number: ND-60.158.4 EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual .7

Your name: Date'

Company: Position'

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for Norsk Data A.S ________'documentation errors. Software and Documentation Department
system errors should be reported on PD. Box 25, Bogerud Norsk Data's answer will be foundCustomer System Reports. 0621 Oslo 6, Norway on reverse side



Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
PO. Box 25, Bogerud
0621 OsloB, Norway



co -
a ‘ .g. < '
:oooooéc

OOOOOO0
COO0
COOOOOQOOOOO


