Norsk Data

SYMBOLIC DEBUGGER

User Guide

ND-60.158.3 EN

| ‘.‘,

\ \

SYMBOLIC DEBUGGER
User Guide

ND-60.158.3 EN

Preface:

THE PRODUCT
This manual describes the SYMBOLIC DEBUGGER product:

SYMBOLIC DEBUGGER ND-10335D (ND-500)
ND-10336D (ND-100)

THE READER

This manual will be of interest to programmers who are testing
programs written in any language whose compiler is able to communicate
with the Symbolic Debugger.

PREREQUISITE KNOWLEDGE

The reader should be able to successfully compile and load a program
in one of the following languages: ADA, BASIC, COBOL, FORTRAN, PLANC

or SIMULA. Some of the commands require more advanced programming
experience.

THE MANUAL

This manual describes how to use the Symbolic Debugger. The commands
are described in detail. Examples are from both the ND-100 and the
ND-500 Debugger.

RELATED MANUALS

Related manuals for the languages with which the Symbolic Debugger can
be used are:

ADA-500 User Manual ND-60.198 (available 1985)
BASIC-500 User Manual ND-60.197 (available 1985)

COBOL Reference Manual ND-60.144
FORTRAN Ref. Manual ND-60. 145
PLANC Reference Manual ND-60.117

The following manuals are also relevant:
ND Relocating Loader ND-60.066

ND-500 Loader/Monitor ND-60.136
BRF Linker User Manual ND-60.196

ND-60.158.3 EN

TABLE OF CONTENTS

Section Page
1 INTRODUCTION . 1
1.1 Symbolic Debugger Command Summary (HELP OUTPUT) 4
2 USING THE SYMBOLIC DEBUGGER 7
2.1 How to Compile your Programs 9
2.2 How to Load ND-100 Programs 10
2.3 How to Load ND-500 Programs 10
2.4 How to Use the Debugger . 11
2.5 An Example using FORTRAN . 12
3 COMMANDS - DETAILED DESCRIPTION 17
3.1 ACTIVE-ROUTINES (<maximum number of levels)) 19
3.2 ALIGN-LISTING <program area> <line> 20
3.3 ATTACH-SEGMENT <segment number> e 20
3.4 BREAK <routine, label or line> (<count>) (<condition?>) 21
3.5 BREAK-ADDRESS <program address> (<count>) s 22
3.6 BREAK-RETURN . : 22
3ail CHECK-OUT-MODE (<program area)) " , 24
3.8 COMPARE-DATA <low> <high> (<output f11e>) 25
3.9 COMPARE-PROGRAM <low)> <high) (<output file>) 26
3.10 CONTINUE . . 26
3.1 DISPLAY (<item or value)) 27
3.12 DUMP-LOG (<output file>) 28
3.13 ENABLED-TRAPS o 29
3.14 EXIT . . 29
3:15 FIND-SCOPE <program address) 29
3.16 FORMATS-DISPLAY <formats (A,D,F,H, O or comb1nat10ns)> 30
3.17 FORMATS-LOOK-AT <(formats (A,D,F,H,I,0 or combinations)> 30
3.18 GUARD <(item or address) (<(*not*) low (: high)>) 31
3.19 HELP (command name> .o 32
3.20 INCLUDE-COMMANDS (file name> e 33
3.21 INVOKE <routine) (< (parameter,...,parameter) »>) 34
3.22 LOCAL-TRAP-DISABLE (<trap conditions)) 35
3.23 LOCAL-TRAP-ENABLE (<trap conditions)) 36
3.24 LOG-CALLS <{program area> w @ 37
3.24 .1 LOG-CALLS and CHECK-OUT-MODE . 37
3.24.2 LOG-CALLS and GUARD 38
3.24.3 LOG-CALLS and STEP 38
3.25 LOG-LINES <program area> .o 38
3.25.1 LOG-LINES and CHECK-OUT-MODE . 39
3.25.2 LOG-LINES and GUARD 39
3.25.3 LOG-LINES and STEP 39

ND-60.158.3 EN

< ii >

Section Page
3.26 LOOK-AT-DATA <data address> (<count>) (<output file>) 40
3.27 LOOK-AT Subcommands 43
3.28 LOOK-AT-PROGRAM <{program address> (<count>) (<output f11e>) 46
3.29 LOOK-AT-REGISTER <(register name) (<count)) (<output file)) 47
3.30 LOOK-AT-STACK (B register> (<count>) (<output file>) 48
3.31 MACRO <name> <body> . . 49
3.32 PLACE <file name) (<W>) 51
3.33 PROGRAM-INFORMATION . 51
3.34 RESERVE-TERMINAL <logical dev1ce number) . 52
3.35 RESET-BREAKS (<{program area>) 53
3.36 RUN (<program address>) : 54
3.37 SCOPE (<module, routine or other 1tem>) 54
3.38 SEGMENT-INFORMATION . 55
3.39 SET <variable> (=) <value> 55
3.40 STACK-INSTRUCTIONS (<low>) (<hlgh>) 56
3.41 STEP (<count>) Coe . 57
4 SYMBOLIC DEBUGGER PARAMETERS . 59
4.1 Numeric Constants . 61
4.2 Single-Character Constants . 64
4.3 String Constants 64
4.4 Expressions 65
4.5 Named Items 67
4.6 Program Area . 69
4.7 Program Address 69
4.8 Data Address . 70
4.9 Format Specifier . 71
4.10 File Name 71
5 EXAMPLES . 73
5.1 An Example Using FORTRAN-100 . 75
5.2 A PLANC Example 5w s 71
5.3 Another Example in PLANC . 79
5.4 Using a File as a Segment . 84
5.5 Using a File as a Segment for a COMMON Area 85
6 ERROR MESSAGES . 87
6.1 Error Messages Common to the ND-100 and the ND-500 Versions 89
6.2 Error Messages Which Apply to the ND-100 Version . . 92
6.3 Error Messages Which Apply to the ND-500 Version . 92
6.4 Note on Error Returns on the ND-100 ;o 94
Index 95

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 3
INTRODUCTION

1 INTRODUCTION

The Symbolic Debugger 1is an interactive tool for testing programs
written in higher-level languages such as FORTRAN, COBOL, and PLANC.
The Symbolic Debugger is available on the ND-100 if SINTRAN was
generated with at least one Debugger segment. If three segments were
generated, that means that three people or less can use the Debugger
simultaneously. There are no such limitations on the ND-500.

The Symbolic Debugger contains a powerful set of commands which enable
you to control the execution of your program. For example, break or
step points can be set to stop the program under certain conditions.
You can then inspect or modify program variables, and continue
execution until the next break or step point. In this way it 1is
possible to find many program bugs in one run. It is also possible,
for instance, to detect which areas of a program have not been
executed, and to change the path and frequency of subroutine calls.

The commands available are listed on the following page.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
INTRODUCTION

1.1 Symbolic Debugger Command Summary (HELP OUTPUT)

Here is a list of all the commands available in the Symbolic Debugger.
The unambiguous abbreviation to the left of each command may be used.

A
AL
B

] [
o o>

oonnnNnOQoo
|
hellw)

— (e

i
-

1
(@]

[N |
[]

1
|
v o

i

I
w 3

mggwmwzﬁbﬁTbhHHmommmm
4
o

All of these commands are on both the ND-100 and the ND-500.

ACTIVE-ROUTINES
ALIGN-LISTING
BREAK

BREAK-ADDRESS
BREAK-RETURN
CHECK-OUT-MODE
COMPARE-DATA
COMPARE-PROGRAM
CONTINUE

DISPLAY

DUMP-LOG

EXIT

FIND-SCOPE
FORMATS-DISPLAY
FORMATS-LOOK-AT
GUARD

HELP
INCLUDE-COMMANDS
INVOKE

LOG-CALLS
LOG-LINES
LOOK-AT-DATA
LOOK-AT-PROGRAM
LOOK-AT-REGISTER
LOOK-AT-STACK
MACRO
RESERVE-TERMINAL
RESET-BREAKS

RUN

SCOPE

SET

STEP

(<MAXIMUM NUMBER OF LEVELS))
{PROGRAM AREA> <LINE>
(ROUTINE, LABEL OR LINE>
(<COUNT>) (<CONDITION>)
(PROGRAM ADDRESS> (<COUNT?>)

(<PROGRAM AREA))
<LOW> <HIGH> (<OUTPUT FILE))
<LOW> <HIGH> (<OUTPUT FILE))

(<ITEM OR VALUE>)
(<OUTPUT FILE>)

(PROGRAM ADDRESS>

<{FORMATS (A,D,F,H,0 OR COMBINATIONS)>
(FORMATS (A,D,F,H,I,0 OR COMBINATIONS)>
<ITEM OR ADDRESS> (<(*NOT*) LOW (: HIGH))>)
(COMMAND NAME>

(FILE NAME>

(ROUTINE> (< (PARAMETER, ...,PARAMETER) »>)
(PROGRAM AREA>

{PROGRAM AREA>

<{DATA ADDRESS> (<COUNT>) (<OUTPUT FILE))
¢(PROGRAM ADDRESS> (<COUNT>) (<OUTPUT FILE>)
(REGISTER NAME) (<COUNT>) (<OUTPUT FILE>)
(B REGISTER > (<COUNT>) (<OUTPUT FILE>)
(NAME> <BODY>

(LOGICAL DEVICE NUMBER>

(<PROGRAM AREA)>)

(<PROGRAM ADDRESS?>)

(<MODULE, ROUTINE, OR OTHER ITEM>)
(VARIABLE> (=) <VALUE>

(<COUNT?>)

Commands

that are not available on both systems are listed on the next page.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
INTRODUCTION

The following three commands are only available on the ND-100:

PL PLACE (FILE NAME> (<W>)
PR PROGRAM-INFORMATION
5-1 STACK-INSTRUCTIONS (<LOW>) (<HIGH)>)

The following five commands are only available on the ND-500:

-5 ATTACH-SEGMENT {SEGMENT NUMBER>
ENABLED-TRAPS

D LOCAL-TRAP-ENABLE (<TRAP CONDITIONS))
--E LOCAL-TRAP-DISABLE (<TRAP CONDITIONS>)
-I SEGMENT-INFORMATION

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

CHAPTER 2

USING THE SYMBOLIC DEBUGGER

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 9
USING THE SYMBOLIC DEBUGGER

2 USING THE SYMBOLIC DEBUGGER

2.1 How to Compile your Programs

In general, if you are working on a program that you will be compiling
and debugging many times, the easiest way is to create a mode file
that you can run each time you want to compile your program.

Here is the general form of that mode file:

@DELETE-FILE <object file> <(file type>
@<(compiler name>

DEBUG-MODE

COMPILE <(source file) <(list file> "<object file)"
EXIT

The default <file type) for the source file and the 1list file is
:SYMB. If you are compiling an ND-100 program, the object file type is
:BRF. For ND-500 programs, the object file type is :NRF.

You might want to always use the same name for the program you are
currently working on. You could call your current program TEST:SYMB
and create a mode file like this if it is a FORTRAN-100 program:

@DELETE-FILE TEST:BRF
@FORTRAN-100

DEBUG-MODE

COMPILE TEST TERMINAL "TEST"
EXIT

The mode file will work whether the file TEST:BRF exists already or
not. If you call the above mode file COMPILE-TEST:SYMB, you could give
the following input to SINTRAN:

@MODE COMPILE-TEST “"TEST:LIST"
The file TEST:LIST will contain your program listing, with 1line
numbers that will be useful when you debug your program. Another way
to get your listing is to compile like this:

@<name of compiler>

DEBUG-MODE

COMPILE TEST "LISTING" "TEST"

EXIT

Then the file LISTING:SYMB will contain your program listing.

ND-60.158.3 EN

10 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

2.2 How to Load ND-100 Programs

The mode file to load a :BRF file, for instance, TEST:BRF, should look
like this:

@DELETE-FILE TEST:PROG

@BRF-LINKER

PROG-FILE "TEST"

LOAD TEST

LOAD <any additional modules or libraries you have)
LOAD <library>

ENTRIES-UNDEFINED

EXIT

This mode file will work whether the file TEST:PROG already exists or
not. The library you load depends on which compiler you used:

Compiler 1- or 2-Bank Load this :BRF file:

- COBOL 1 COBOL-1BANK
COBOL 2 COBOL-2BANK
FORTRAN 1 FORT- 1BANK
FORTRAN 2 FORT-2BANK
FTN 1 FTNLIBR
FTN FTNRTLIBR (RT programs)
PASCAL 1 PASCAL-LIB
PASCAL 2 PASCAL-2LIB
PLANC 1 PLANC-1BANK
PLANC 2 PLANC-2BANK

This information is explained in greater detail in the manual for the
language you want to load programs in.

2.3 How to Load ND-500 Programs

The mode file to load an :NRF file, for instance, TEST:NRF, should
look like this:

@ND LINKAGE-LOADER
ABORT-BATCH-ON-ERROR OFF
RELEASE-DOMAIN TEST
DELETE-DOMAIN TEST
SET-DOMAIN “TEST"
LOAD-SEGMENT TEST
LOAD-SEGMENT <library>

EXIT

@cc WRITE @ND-500 TEST to execute TEST or
@cc WRITE @ND-500

@cc DEBUGGER TEST to debug TEST

This mode file will work whether the domain TEST exists already or
not. It will work for any language if you load the correct 1library.
You will need additional LOAD-SEGMENT statements for any additional
modules or libraries you use. The library names are usually the name
of the language followed by "-LIB:NRF", for example, COBOL-LIB:NRF is

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

the library for COBOL.

2.4 How to Use the Debugger

1f you have compiled and loaded your file as an ND-100 program,
start the debugger for the program TEST as follows:

1f the program is an ND-500 program, do the following:

11

you

Now you can set a breakpoint at the point in the program where you
want to break. You may also set multiple "step points". When program
execution reaches those points, you may inspect or modify program
information. Then you can continue to execute your program in one of

two ways:
1) RUN takes you to the next breakpoint

2) STEP takes you to the next step point.

ND-60.158.3 EN

12 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

2.5 An Example using FORTRAN

Here 1is a fairly comprehensive example. We shall start by compiling
the file FORT-1:SYMB. The program below prints the bit pattern for the

integer DEC.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

ND-60.158.3 EN

13

14 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

ND- 100 SYHBOLIC ﬁEBUGGER VERSION D

FORTRAN PROGRAMj COKVERT 1
-

“f 001505 1050303 29672.;jij:’ are
_000151B: 000001B Iﬁﬁ;';;ﬁeaCB‘Stared-in one w0r64(16

. 000152B: 000017B 15 |bits). . ¢ than

- 000153B: 1000008 32?68, 132768 need to bef f_ﬁ

000154B: 000000B o :wilarger area :

0001559 oooooos . ?;‘ -
L .

ﬁcummuuy;*ﬁ

means hexadecxmal jQ”means"
ctal and D means dec1ma
~ |Numbers will now appear n
' L_’three formats.

2**15=32768 8000H 100000B "QISELAY.ACCQ§tSVQXQxesf;
- . » sions. Note that the 8
*DISPLAY -32768 o ' least significant bits
-32768~*32768 FFFF&OQOH 377777000003 are the same for 32768?'
SIEB ol - v and -32768.

ND- 60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

CONVERT. 14 *gggggxg;n;sgggz_n +J Subs forwet display back|
: : : to only decmal numbers
sz 1*? 0000000000000 o -

:CONVERT 8
ERRCODE=0.

ND-60.158.3 EN

16 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

Here are the changes that need to be made, and the resulting program.
The old line numbers are given in parentheses:

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

CHAPTER 23

COMMANDS - DETAILED DESCRIPTION

ND-60.158.3 EN

17

SYMBOLIC DEBUGGER USER GUIDE 19
COMMANDS - DETAILED DESCRIPTION

3 COMMANDS - DETAILED DESCRIPTION

Following is a list of all available commands with their parameters.

Parameters are enclosed in less than (<) and greater than characters
(»). If a parameter is also enclosed in parentheses, it is optional.

<{low> <high> required parameters
(<maximum number of levels)) optional parameter

1f you give commands without parameters, you will only be prompted for
the required parameters.

3.1 ACTIVE-ROUTINES (<maximum number of levels))

This command writes the current routine call hierarchy, starting with
the current routine and ending with the main program. The maximum
number of levels to be printed may be specified.

QUIKSORT.3 CALLED FROM QUIKSORT.44
QUIKSORT.3 CALLED FROM MAIN.23

MAIN.9
Al

—

ND-60.158.3 EN

20 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.2 ALIGN-LISTING <{program area) <line)

This command is used to adjust the line numbers in the Debugger to
correspond with those on a listing which is not up-to-date. Several
ALIGN-LISTING commands may be given in order to adjust different parts
of the listing. If areas overlap, the command most recently given
takes priority over previous ones.

If no program area is specified, the innermost routine in the current
scope 1s assumed.

Let us say that you have added 5 lines of code to the subroutine EVAL
and things look like this:

On your listing: 5 6 71 8 910, ... 120
After a new
compilation: 5 6 7 8 9 10 11 12 13 14, ... 124

In other words, what appears as line 6 on your listing is now line 10.
Here is what you can do:

What was 1line 10 in EVAL will now be 6, 11 will become 7, and so on
throughout the rest of EVAL. Lines 1 to 5 will remain unchanged, while
the newly compiled lines 6 to 10 will become unnumbered.

You can do this many places. It 1is best to do it on the first
unchanged line following every area where code has been altered. All
the unaltered areas will then have the same line numbers as in your

listing.

You may align an entire routine:

The first line in the routine PRINT will be numbered 800.

3.3 ATTACH-SEGMENT <segment number>
This command is relevant to the ND-500 only. The current segment is

moved to {(segment number). The command SEGMENT-INFORMATION provides a
list of all active segments.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 21
COMMANDS - DETAILED DESCRIPTION

3.4 BREAK <routine, label or line) (<count)) (<condition))

Sets a breakpoint at the specified item, and removes the previous
breakpoint set by BREAK. If a routine name is specified, the
breakpoint is set at the first line in the routine.

If a positive number K 1is specified for the count parameter, the
program w111 break every K times the breakpolnt is reached.

The program will execute until line 52 is encountered for the 10th
time. When the breakpoint is reached, execution terminates and control

passes to the Debugger. To continue to the breakpoint again, use RUN.
To continue to the nearest step point, use STEP.

If a condition is specified, control passes to the Debugger at the
breakpoint only if the condltlon is true and the variable is local:

‘*BREAK|$IQ 1235 *l

16.00
5 25.00
6 ‘ 36.00
CONDITIONAL BREAK AT SQRS.7
*DISPLAY I
I 6

If I is not 1local, prefix it with the routine name, for example,
CALC.I. Only one breakpoint is allowed, but you may have multiple
"step points" by using LOG-LINES. See the examples on pages 14 and 69.
You can also create breakpoints by using GUARD, see page 31.

If you do not know where you can set breakpoints, do the following:

The line numbers where all the routines start will be listed.

ND-60.158.3 EN

22 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.5 BREAK-ADDRESS <program address> (<count>)

This command 1is similar to the BREAK command, except that the
breakpoint is specified directly as a program address.

Examples

Stops at program address 501, not at line 501.

Stops the 10th time that program address 501 is to be executed.

3.6 BREAK-RETURN

Sets a breakpoint at the return address of the current routine, and
resumes execution from the current line. If a PLANC routine returns
with an error return, the error code is displayed when the breakpoint
is reached.

Here is an example with a small PLANC program

1 MODULE EXAMPLE
2 . : . » :
3 v ROUTINEaVOID VQID PARALL_
4 ' INTEGER,; S
5 3 =: X
b X =y .
1 6 ERRETURN
B ENDRO_”INE .
g PROGRAM OGTER 3 - :
10 . INISTACK stack,, .
11 o f INTEGE' ';k, -
12 . 1w
13 ’ PARALLEL
14 o ENQRQUTINE
15 . ENDMOBULE

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

We can debug it on the ND-500 as follows:

::: ”:H;v;va?ﬁ

AT PARALLEL.5S
“RETURN +4+

BREAK AT OUTER.13; ERROR RETURN §

WRITE parameters in PLANC are not updated at BREAK-RETURN.

ND-60.158.3 EN

23

24 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.7 CHECK-QOUT-MO {program a >

This command removes the step point on each line in the specified area
that is executed. You can thus obtain a list of all lines which have
never been executed, by using the DUMP-LOG command.

If the command LOG-CALLS is given before the CHECK-OUT-MODE command,
DUMP-LOG will list the first 1line in every routine that was not
executed.

If no area is specified, all lines are checked.

See the examples on page 39 and on page 78.

Note:

Since CHECK-OUT-MODE removes step points,
you cannot do the following:

*LOG-LINES <{program area>
*CHECK-OUT-MODE <{program area)
*STEP

You need to do this instead:

*LOG-LINES {(program area>
¥*CHECK-OUT-MODE <{program area>
*BREAK <(routine, label or line>
*RUN

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 25
COMMANDS - DETAILED DESCRIPTION

3.8 COMPARE-DATA <low> <high) (<output file))

The data area specified is compared to the program file contents
(:PSEG and :DSEG files on the ND-500). The address of each modified
location is displayed, along with the old and new contents.

The default output file is the terminal; the default file type is
:LIST.

In the following program, a loop is executed K times. We find the
address where K is stored and change K to 20.

*LoG-LINES,., « |By using LOG-LINES, GUARD,- .
- - ~ land RUN, we break Just after
*GUARD K o . K is ass;gned a value.
*DISPLAY ol ~ |LOG-LINES is not necessary
K=0 ’ . , --befoxe GUARD on the KD~500
GUARD VIOLKTION AT SORS.5
x e : : s :
mcona«o =0 ,J & 5 _R= 0.0
D 000122B: 000005B o JJ |
D 000123B: K 000000B 0 -
*DISPLAY o -- .
R= 0.0
* 3 ‘ c ; ? = ,’
D 0001228 OOOS?OBVCHARGED T0 0000248
*RESET-BREAKS
. ~ |RESET-BREAKS is necessary, atherw;se the|
ptnqram will break in every llne where
|K is not equal to 0.
*guN +!

The default output file is the terminal; the default file type is
:LIST.

ND-60.158.3 EN

26 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.9 COMPARE-PROGRAM <low> <high) (<output file)

The program area specified by the lower and upper bounds is compared
to the program file contents (:PSEG and :DSEG files on the ND-500).
Modified 1locations are displayed with address, old contents and new
contents.

The default output file is the terminal; the default file type is
:LIST. See also COMPARE-DATA.

Here is an example of changing a MAC instruction:

*LOOK-AT-PROGRAM 30B +I

P 000030B: 0306078 12679 1 STF ,B - 171 1539995 j
P 000031B: 044021B 1844 oot ol .
P 0000278: 1106125 -28278 FMU ,B - 166

P 000030B: 1530008 -10752 V MON

P 000031B: 044021B 18449 H LDA * 21 ; *J

X P -PR B

P 000030B: 0306075 CHANGED 70 1530008

3.10 CONTINUE

Execution is resumed from the current line. If you want to specify
where you want to resume execution from, use RUN. See page 54. Since
CONTINUE is a superfluous command, all examples in this manual use
RUN.

Execution will continue until the breakpoint is reached or a GUARD
violation occurs. Step points will be skipped.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 217
COMMANDS - DETAILED DESCRIPTION

3.11 DISPLAY (<item or value))

If you only write DISPLAY, all variables in the innermost routine or
module in the current scope are displayed.

*DISPLAY + |
(all variables are listed.)

The item(s) and value(s) you specify will be displayed:

*DISPLAY I + J
1=15
*DISPLAY L.2.K «
I=15
J=225
K=5
*DISPLAY STRING(1)
STRING(1)=reduced

Note that only the name and the bounds of arrays are output unless you
specify their names. The same applies to strings.

~ v nream
RIGH +
IND(CURRENT R:GHT}—'v- ?”wf‘... NAHE(] 20)
RESULT= 4.40000000 - '
LEFT=NIL RIGHT*O?1054B

*DISPLAY CURRENT NAME «
CURRENT NAME»BEBUGGER
*DISPLAY ; GHT .NAME({ 1 : 4
CURRENT RIGHT. NAME(1 4)-else

-

DISPLAY will display according to the formats you specify.

CADMATC
* n ' &.@,’

8#:01#—65'413 1013

You can include several expressions on the same line if you separate
them by commas.

You can specify a module or routine name, and all variables in the
routine or module are displayed.

ND-60.158.3 EN

28 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

Note +that DISPLAY can be used for radix conversion when used in
conjunction with the FORMATS-DISPLAY command.

3.12 DUMP-LOG (<output file))

The output of this command depends on the type of log specified.

If LOG-CALLS was specified last, a list of the last 200 routine calls
is displayed. See example on page 37.

If LOG-LINES was specified last, a list of the last 200 lines executed
is displayed. If a line is the first line in a routine, the routine
name is also displayed. See example on page 38.

If CHECK-OUT-MODE was specified last, a list of all the lines or
routines (in the area specified in the CHECK-MODE command) that have
not been executed is displayed on the terminal. If a line is the first
line in a routine, the routine name is also displayed. See the example
on page 39.

If you do the following when you start the Debugger, you will list
every line in your program that can be logged, even if there are more
than 200 lines

The default output file is the terminal; the default file type is
:LIST.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 29
COMMANDS - DETAILED DESCRIPTION

3.13 ENABLED-TRAPS
This command is only on the ND-500 Debugger.

All enabled traps are listed on the terminal.

INVALID QP”RATiON

1 ILLEGAL OPERAND SPECIFIER
35 INSTRUCTION SEQUENCE ERROR
36 PROTECT VIGLATION .

See also the commands LOCAL-TRAP-DISABLE and LOCAL-TRAP-ENABLE.

3.14 EXIT

Returns control to SINTRAN on the ND-100, and to the ND-500 MONITOR on
the ND-500.

3.15 FIND-SCOPE <program address>

This command finds the module or routine, and the line number, that
correspond to the specified program address. It updates the scope
accordingly. The current scope status is displayed.

The difference between FIND-SCOPE and SCOPE (see page 54) 1is that

FIND-SCOPE needs a program address, while SCOPE has a module, routine
or line number for its parameter.

ND-60.158.3 EN

30 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.16 FORMATS-DISPLAY ¢formats (A,D,F,H,0 or combinations))>

Set format(s) for the DISPLAY command. This will not affect the format
for the LOOK-AT commands. The default (initial) format setting is D.
You obtain it by giving an empty format specification.

Here is what the codes mean:

A = Alphanumeric H = Hexadecimal
D = Decimal 0 = Octal
F = Floating point

An example is given on page 27.

3.17 FORMATS-LOOK-AT <formats (A,D,F,H,I,0 or combinations))

Set format(s) for the LOOK-AT commands. The default (initial) format
setting is obtained by giving an empty format specification.

Here is what the codes mean:

A = Alphanumeric I = Instruction
D = Decimal H = Hexadecimal
F = Floating point 0 = Octal

An example is given on page 40.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 31
COMMANDS - DETAILED DESCRIPTION

3.18 GUARD <item or address> (<(*not*) low (: high)))

This command specifies a data item or location to be checked for
modifications. If the contents of the item or location are outside the
permitted range, a guard violation occurs and control is passed to the
Debugger.

usE LOG~LINES or LOGHCALLS befare
~ |on the ND-100. »

élvv - 0 to 10 15 the¥perm1tted,ra vif

RUN
GGARB VIOLAT QN AT HAIN 55
*

X“11
*RUN «)

This will break every time x has a value outside the range O to 10.

Any data item which has a single value (PLANC types POINTER, INTEGER,
REAL, ENUMERATION, BOOLEAN, and SET) is legal. Array elements (packed
and unpacked) and record components (packed and unpacked) may also be
specified. Composite items (arrays and records) are illegal.

If an address is given, the location at that address, taken as a
single signed integer (ND-100, 16 bits; ND-500, 32 bits), is checked
for modifications.

The permitted range is specified by n, where low (= n <= high. If the
operator NOT appears, however, the permitted range is n < low or n >
high.

GUARD VIOLATION AT LOOPS.9
*XpIC ~ .
K=60 . _, .
*GUARD *j . o ’Thls removes GSARD
R *J . :i .

If only low is specified, then high is set equal to low. If no range
is specified, the permitted range becomes the single value of the
current contents of the specified address. Permitted range, low:high,
cannot be specified for PLANC SETs.

To continue, use RUN or STEP. If you want to remove GUARD, use it
without parameters.

ND-60.158.3 EN

32 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

On the ND-100, the amount of checking is determined by using the LOG-
CALLS or the LOG-LINES command. LOG-CALLS specifies that checking 1is
to be performed at the entry to the routines. LOG-LINES means that
checking is to be performed on every logged line. If a program area is
specified, checking is performed only in the specified program area.

On the ND-500, checking is done by the hardware throughout the entire
program.

3.19 HELP {command name)

The HELP command lists available commands on the terminal. Only those
commands that have <(command name) as a subset are listed. If <(command
name> is null, then all available commands are listed. Each command is
followed by a parameter list, if it has any. Required parameters are
enclosed in angular brackets: < >. Optional parameters are enclosed in
parentheses and angular brackets: (< »>).

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 33
COMMANDS - DETAILED DESCRIPTION

3.20 INCLUDE-COMMANDS <file name)

This will include the commands from the file. For example, you might
want to create a file called MACROS:SYMB with the following contents:

macro std
formats-display

macro dho
formats-display d h o
macro x

display;run

macro y

X X; X

display

Then you can do the following to include your macros and ensure that
they have been defined properly:

BODY: *MACRO DHO

BODY: *MACRO X

BODY: *MACRO Y

BODY: *DISPLAY -
ERRCODE0 STRING I=0

K=0 =00 IMAX-.0
.ﬁﬁﬂg; :

Y xR

X DISPLAY;RUN '

DHO FORMATS- DISPLAY DHO

STD FORMATS- BISPLAY .

T

All the macros you have defined on the file MACROS:SYMB are now
available to you.

ND-60.158.3 EN

34 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.21 INVORE <routine) (< (parameter,...,parameter) »)

This command is used to call routines. Parameters will not be checked.
You must ensure that you call the routine with the correct number of

parameters, and that the actual and formal parameters are compatible.

If the routine 1is a FORTRAN subroutine or a PLANC standard routine,
all items that have a defined address (when the INVOKE command is
executed) are legal. Constants are allowed. If the routine is a normal
PLANC routine, simple variables (ENUMERATION, BOOLEAN, POINTER and
INTEGER) and records are legal.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 35
COMMANDS - DETAILED DESCRIPTION

3.22 LOCAL-TRAP-DISABLE (<trap conditions)

This command is only on the ND-500 Debugger. Several traps can be
specified on the same 11ne, separated by spaces or commas. s se
hyphens between words in trap names! Abbreviations are accepted.

Example:

ADDRESS-TRAP-FETCH, ADDRESS-TRAP-READ, and FLOATING-UNDERFLOW are
disabled.

I1f (<trap conditions>) is empty, all traps are disabled. If (<trap
conditions)) is HELP, all available trap conditions are listed on the
terminal.

In the following example, the program LOOPS divides by zero. By
disabling trap 12, "Division by zero", control will not go to the
Debugger when a number is d1v1ded by zero in the program

trap conéxtwns
 lwith an asterisk (*)
o are drsahled The others

25 DESCRIPTOR ms‘z
26 * ILLEGAL INDEX
Do . *

ND-60.158.3 EN

36 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

30 * DISABLE PROCESS SWITCH TIMEOUT
31 * DISABLE PROCESS SWITCH ERRQR '
32 * INDEX SCALING ERROR

33 * ILLEGAL INSTRUCTION CODE

34 * ILLEGAL OPERAND SPECIFIER

35 * INSTRUCTION SEQUENCE ERROR »

36 % '

:TPROTECT VIOLATION

We could have written *L-T-D DIV since DIV is an unambiguous
abbreviation of DIVISION-BY-ZERO.

3.23 LOCAL-TRAP-ENABLE (<trap conditions))

This command is for the ND-500 only. Several traps can be specified on

the same line separated by spaces or commas. Always use hyphens

between words in trap names!

If (<trap cond1t10ns>) is empty, all default traps are enabled. If
(<{trap conditions)>) is HELP, all available trap conditions are 1listed

on the terminal.

Example:

The PROTECT-VIOLATION and ILLEGAL-INSTRUCTION-CODE traps are enabled.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 37
COMMANDS - DETAILED DESCRIPTION

3.24 LOG-CALLS <{program area>

This command logs all routine calls in a cyclic buffer. This buffer
can be inspected by means of the DUMP-LOG command (see page 28). The
buffer can hold a maximum of 200 entries.

*B] e
*BBEAETBBIHIwﬁ _

BREAK AT PR NT.21
x

LOOPS PRINT PRINT REDUCE REDUCE PRINT
REDUCE fEDUCE PRINT REDUCE REDUCE ?RINT

*EXIT +

If a module or routine is specified, all routines that are called in
the specified module or routine are logged.

This command is normally used in conjunction with other commands. The
next sections show some examples:
3.24.1 LOG-CALLS and CHECK-OUT-MODE

This is how you can log all the routines in your program that are not
called:

 ;i‘£ffﬁ‘.

(BREAK“Tnd RUN)
*QQHE_LQQ

You can also specify an area:

Any routine not called in the area MAIN.20 to MAIN.40 will be logged.

You can 1list all routines by using DUMP-LOG immediately after LOG-
CALLS and CHECK-OUT-MODE:

e
*CHECK-QUT-HODE +
*DUMP-LOG +

LOOPS.6 PRINT. 23’REDUCE 3
LOOBS .6 FRINE 2! REDUCE. 3 .

ND-60.158.3 EN

38 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

That may be useful when you start debugging your program.

3.24.2 LOG-CALLS and GUARD

You only need to use LOG-CALLS or LOG-LINES before GUARD on the
ND-100.

Every time a routine is called, the Debugger will check to see if the
value of CEVAL has changed.

3.24.3 LOG-CALLS and STEP

Each CR (Carriage Return) will bring you to the next routine call in
the area MAIN.50 to MAIN.70, and each routine call will be logged.

3.25 LOG-LINES <{program area)

This commands logs all executed line numbers in a cyclic buffer. This
buffer can be inspected by means of the DUMP-LOG command (see page
28). The buffer can hold a maximum of 200 entries.

LOOPS.6 7 8 9 1
PRINT.21 22 2
26 27 28 29 L
PRINT 21 22 2

If a module or routine is specified, only the lines executed in the
specified module or routine are logged.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 39
COMMANDS - DETAILED DESCRIPTION

LOG-LINES is normally used in conjunction with other commands. Here
are some examples:

3.25.1 LOG-LINES and CHECK-OUT-MODE

'BREAK AT LQ?PS.Mf
* MD - b
oRINE 2L
x .

The only line in PRINT that was not executed was line 24.

3.25.2 LOG-LINES and GUARD

You only need to use LOG-CALLS or LOG-LINES before GUARD on the ND-
100.

The Debugger will tell you if the value of CEVAL changes anywhere in
the routine CALC.

3.25.3 LOG-LINES and STEP

*LOG-LINES MADN.50 . HAIN.70]
*STEP « ’ .

Each CR (Carriage Return) will bring you to the next line in the area
MAIN.50 to MAIN.70 and each line number will be logged.

Note:

We advise you NOT to use LOG-LINES on your entire program
if you have a large program. Specify part of your program
instead. Otherwise you will slow down program execution
considerably.

ND-60.158.3 EN

40 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.26 LOOK-AT-DATA <data address> (<count>) (<output file))

This command and the related commands LOOK-AT-PROGRAM, LOOK-AT-
REGISTER and LOOK-AT-STACK enable data locations, program locations
and registers to be inspected and modified.

The data in the addresses 320 to 332 (octal!) will be printed. If you
do not specify count, one location will be output.

I1f you are employing an alternative page table from a 1-bank program,
addresses within the alternative page table can be accessed by
specifying addresses in the range 200,000B to 377,777B. (ND-100 only.)

In the above example, control returns to the Debugger when the 1000
locations have been output. If you send the output to your terminal,
control remains within the LOOK-AT command, and you may use the
subcommands described below.

CR (Carriage Return) causes an advance to the next item without
changing the contents of the current item. All subcommands are
terminated by CR. Printing a dot (.), a semicolon (;), or EXIT returns
you to the Debugger:

Note that the contents of each location is printed in the format(s)
specified by the FORMATS-LOOK-AT command.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 41
COMMANDS - DETAILED DESCRIPTION

Below you will find the special notation that is available when you
have given a LOOK-AT command. Subcommands are listed in the next

section.

HELP <command name) Lists available LOOK-AT subcommands on
the terminal.

EXIT or ;
or . Returns control to the Debugger's
command processor.

m Deposits the value of the expression m
(which can also be a string constant) in
the current location and advances to the
next location.

m,n/ This prints n locations, starting with
the contents of location m. See the
example on page 46.

Here are some examples that illustrate the notation:

D 'oooosoa 0900243 | ’f:ffz_o . «f

In the above example, three ways of exiting were shown (., ;, and
EXIT), and the value 20 was stored in data address 60B. The value
153000B replaced 120606B in program address 30B.

ND-60.158.3 EN

42

SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

Here is the special notation to be used with the slash (/) command:

m/

/1

m,/

n/

o/

Take the value of m as the next address and
display this location.

Take the contents of the current location as the
next address and display this location
(indirection).

(Restricted for the moment to the ND-100.) When in
program mode only, the second slash will cause the
current word to be interpreted as an instruction.
The operand of the instruction is taken as the
next location.

Take the value of m as the next address and
display n locations, where n is the last count
entered.

Take the contents of the current location as the
next address and display n locations.

Take the contents of the current location as the
next address and display n locations, where n is
the last count entered.

Here are some examples:

*

x
B . i
P 000111B: 000102B
P 000102B: 000064B
P 000064B: 024130B 10328
;;9,0002343:’1343453 —18203f
P 000201B: 14 09 L

00001185“?734668f;v3328 sAx. 0 11B+10€
E*52_“

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 43
COMMANDS - DETAILED DESCRIPTION

3.27 LOOK-AT Subcommands

The following subcommands apply to LOOK-AT-DATA, LOOK-AT-PROGRAM,
LOOK-AT-REGISTER, and LOOK-AT-STACK.

Here is how you list the subcommands:

STER STACK

Within a LOOK-AT command one can go directly to one of the other LOOK-
AT commands by using one of these subcommands.

Example:

;_;oaeaooooaoon -

~ 33402000000B
004636000008

000351470018

 22406407130B
n,,aoozm . 2434'5032002537753 ma J

ND-60.158.3 EN

44 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

NEXT and PREVIOQUS

Within the LOOK-AT-STACK command these subcommands can be used to move
between the stack frames.

See the example on page 48.

WORD, FLOATING, and DOUBLE-FLOATING (ND-100 and ND-500)

DOUBLE-WORD (ND-100 only)
BYTE and HALF-WORD (ND-500 only)

With the LOOK-AT commands one can display values in units of several
different sizes. These subcommands specify the desired size.

Here are some examples from an ND-500 program:

50H WORD +
50380E46H <)
zvloooooaoaa 308/ J
agH am:.m 1

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 45
COMMANDS - DETAILED DESCRIPTION

In the following example, X is declared as real in a PLANC-500
program; Y8 is declared as REALS:

 ¥8= 1.256000000000000 EXP= 3.14000

;;10?90698f9_=" ~;_ .
1079009869 1.25600

DH 1079009869 1. 25660 3§31 +J
DH 1075009869 1.2 ATS §

TB 01.@@@@.0 4B 4050624DH;BZF1A9FCB 1 25600@@@@@@@@@0 tl

FLOATING is useful for inspecting the values of real numbers. DOUBLE-
FLOATING is only helpful for real numbers stored in 2 words (32 bits).

OR S <forma D, F 0>
EXTRA-FORMATS <formats A, D, F, H, I or 0>

In FORMATS and EXTRA-FORMATS, the abbreviations have the following
meaning:

A = Alphanumeric I = Instruction
D = Decimal H = Hexadecimal
F = Floating point 0 = Octal

The formats set by means of the FORMATS-LOOK-AT command may be
temporarily changed with these subcommands. The FORMATS subcommand 1is
similar to the FORMATS-LOOK-AT, except that the formats are valid only
until exit from LOOK-AT. The EXTRA-FORMATS command is similar to the
FORMATS command, except that the specified formats are added to those
already set.

ND-60.158.3 EN

46 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.28 LOOK-AT-PROGRAM <progra dress) (<count) ¢output file)

Inspect and modify program locations. This command is similar to the
LOOK-AT-DATA command, except that I format (symbolic instructions) is
enabled as default. Decimal addresses are default, so remember to
write B after octal addresses!

In the following example, the program is changed so that the number O
will be printed on your terminal:

b &

P
X7 .

P 0000118:

P 000012B:

P 000013B: Of

P 000014B: 000051B

P 000015B: 0000123_-,;vm

P O00016B: 000004B 4

P 000011B: 171001B -3583 r 1
P 000012B: 170460B -3792 qO SAA';Q, . -
P 000013B: 153002B -10750 V MON O
P 000014B: 153065B -10699 V5 MON

p ocoo 58. 15300031u1o752_v MON ; +)
0
e

Here is a very short example from a ND-500 program:

*LOOK-AT-PROGRAM «}
PROGRAM ADDRESS: 120B o
P 01'1208: W LOOPI B. 024B s B 030B s, *OGOB-~IO1 403 ggng Jo

: oi 1203"w LOQPI s'oaoa 5B 024a,s,~osos-->a1 403 41'

Note that we abbreviated a few addresses with an apostrophe to save
space. 01000000120B and O01'120B both mean segment number 1, address
120B.

Some examples of LOOK-AT-PROGRAM are also given 1in the previous
section on page 41 and 42.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 47
COMMANDS - DETAILED DESCRIPTION

3.29 LOOK-AT-REGISTER <(register name) (<count)) (<output file))

Inspect and modify CPU registers. This command is similar to the LOOK-
AT-DATA command.

000140B 96
ooo2ieR 142
0000028 2 Epe

x-ﬁ wwn e '

1

On the ND-100, W is the current alternative page table. Note that its
value is 2 above. Its value must be 2 or 3.

ND-60.158.3 EN

48 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.30 LOOK-AT-STACK ¢B register) (<count)) (<output file>)

Inspect and modify locations in the stack. This command is similar to
the LOOK-AT-DATA command, except that both absolute and relative
addresses are displayed. Locations in the stack header are given by
name rather than by address.

Addresses entered with the slash (/) command are taken as relative to
the B register of the current stack frame that is being examined.

In the following example, a FORTRAN program calls the subroutine print

which in turn calls the subroutine reduce. Print has 3 parameters,
reduce has 2.

ssooooo£+oz
subxout;ne,g:;nt o
BRE&K AT REDUCE.34
, e amoa
Pazvxous 8 010000003148
 RETURN ABDRESS . 010000002228
NEXT a .. 01000000224B
AUX: . . 0Db000O00000B
NO. or PARAMETERSE‘ ~ 00000000002B
:Bv010000006048,”-: 24B: 010000000748 PREY +!
PREVIOUS B. 2 01000000024 2
RETURN ABDRESS . 01000000114B
NEXT B: . 010000002248
AUX: ~ 00000000000B
NO. OF PARAMETERS:”::j_v 000000000038
D 010000003408 ~ 24B: 010000000608 zggg ol
PREVIOUS B: ~__ 00000000000B
RETURN ADDRESS ~ 00000000000B
NEXTB: . 01000000224B
AUX: ' - 000000000008
NO. OF PARAMETERS:E” ~ 00000CO0000B
D 0100000005B 248: 000000000108 zm: o
= ...

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 49
COMMANDS - DETAILED DESCRIPTION

3.31 MACRO <name) <body>

This builds macro commands composed of one or more basic commands and
other macro commands. The macro name can be any character string and
is terminated by a space or a comma. Only the first eight characters
are significant. The rest of the line following the macro name is
taken as the macro body. The macro body is not terminated by
semicolon, thus several commands can be included in the same macro

body .
If the macro body is empty, the corresponding macro is erased.

If the macro name is empty, all the currently defined macros are
displayed on the terminal:

 NAME: xJ -
 BODY: DISP o
*MACRO +«
NAME: Y «
BODY: o No name and no body will
*MA Tu el «——1ist the macros you have
I L xx |{defined.
X DISPLAY; RUN
X 3%

A macro parameter is referenced in the macro body as "n", where n is a
one-digit number (1 - 9). See the example below.

A macro name is used in the same way as a command name. It can be
abbreviated in the same way, too. However, macro parameters are not
asked for if omitted, but taken to be empty strings when the macro is
expanded. A macro name can also be used as a LOOK-AT subcommand .

ND-60.158.3 EN

50 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

Examples of MACRO:

Try it when you start the Debugger. You will get a good overview of
your program.

Macros are useful in programs with records and pointers:

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 51
COMMANDS - DETAILED DESCRIPTION

3.32 PLACE <file name) (KW>)

This command exists 1in the ND-100 Debugger only. It reads a program
from a program file (:PROG) into the wuser's memory (background
segment). The program counter is set to the start address, the status
register to zero, and the alternative page table to 2. The current
alternative page table may be examined by LOOK-AT-REGISTER W. The
scope is set according to the start address.

If you use the optional parameter W, you get write access to your
:PROG file. Each update you do with LOOK-AT-DATA or LOOK-AT-PROGRAM

will be performed on your :PROG file at the same time. Use W with
care!

;fgiﬁgEhIEﬁi;ﬂ,*l5ﬁj” ;.”' -
_FORTRAN PROGRAM. SQRS.1
e o

See an example of this on page 56.

3.33 PROGRAM-INFORMATION

The command is relevant to the ND-100 only. It lists the following
information from the program file:

start address

restart address

lower and upper bounds for the program and data
lower and upper bounds for debug information

Example:
pacE st
'FORTRAN PROGRAM. $QRSJ1
'START RESTARTJi‘ " 000011B, 000011B
PROGRAM, DATA: 0000008 - 0350658

DEBUG-INFORMATION: 000000B - 000063B
DEBUG: THRORMAT. _)

-

ND-60.158.3 EN

52 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.34 RESERVE-TERMINAL ¢logical device number)

People who debug screen-handling programs may prefer to use two
terminals while they debug. By giving the RESERVE-TERMINAL command,
your program output will go to your terminal. At the same time, you
can give and get input and output from the Debugger from the terminal
you reserve. To free the reserved terminal, you must log out from the
other terminal. Here is a picture to illustrate the situation:

Your terminal Nearby terminal
(number 30) (number 40)
I/0 from
*RESERV 40 o Debugger.
Reserved
Output from until term.
your program. 30 logs out.

L | L |

You start the Debugger from terminal 30, reserve 40 and move there.
All input and output to/from the Debugger will be on terminal 40.

When you are finished, you return to terminal 30 and log out to free
terminal 40.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 53
COMMANDS - DETAILED DESCRIPTION

3.35 RESET-BREAKS (<program area)

If no program area is specified, all breakpoints and step points set
with BREAK, CHECK-OUT-MODE, LOG-CALLS or LOG-LINES are reset. A
breakpoint set by means of the BREAK-ADDRESS command is reset only if
it is the first instruction in a line.

If a program area is specified, the breakpoint at that address is
removed.

Here is how you remove all breakpoints and execute your program:

§%3§§b£ :; -fi

Here is how you normally remove a breakpoint:

ND-60.158.3 EN

54 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.36 RUN (<program address>)

If no program address is specified, execution is resumed from the
current line. RUN works exactly as CONTINUE. If you specify a program

address, control is transferred directly to that address.

If you want to start execution from line 15 in XYZ, do this:

Execution will continue until the breakpoint is reached or a GUARD
violation occurs. Step points will be skipped.

3.37 SCOPE (<module, routine or other item))

This command finds the specified module or routine and updates the
scope accordingly. The current scope status is displayed. If no module
or routine is specified, the current scope is not affected, but it is
displayed.

The difference between FIND-SCOPE and SCOPE is that FIND-SCOPE needs a
program address, while SCOPE has a module, routine or line number for
its parameter.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 55
COMMANDS - DETAILED DESCRIPTION

3.38 SEGMENT-INFORMATION

This command is relevant to the ND-500 only. Information about the
currently active segments is displayed on the terminal in the form of
a table as in the example below:

*SEGMENT- INFO +!
SEGMENT FILE C1 C2 NAME '
PSEG 1 1777B 2 O (PACK—TWQ DEBGG’SEG&E&T-DQQ? 501
DSEG 1 1776B

M 1183
B (sYw-DEB)DEB
0B - aaaa

118K 26 o
PSEG 30 OB (PACK-REM:DOMAINS)FORTRAN-
DSEG 30 0B .
LINK 30 OB

When the Debugger starts, a monitor call to the 500 Monitor produces a
list of all active scgments. The list may contain a FORTRAN library
segment. SEGMENT-INFORMATION can be used to obtain segment numbers for
use in the ATTACH-SEGMENT command.

3.39 SET <(variable) (=) <value>

This command is used to set program variables. Any variable reference
which has a defined address can be set.

For example:

It is possible to set an array equal to an array, for instance, a
PLANC array equal to a FORTRAN array. The truncation is as for PLANC
if the dimensions differ. A real array can be set equal to an 1nteger
array, a packed array can be set equal to an unpacked array, and vice
versa. An array may also be set to a constant; if the array is real or
integer, then the constant will take the form of the array, as in:

Here the constant is truncated to 3 before assignment. The rules for
arrays also apply to subarrays.

In addition to constants, values may be strings, bytes, or FORTRAN

characters. For example, an element of a bytes array can be set equal
to a string.

ND-60.158.3 EN

56 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.40 STACK-INSTRUCTIONS (<low>) (<high))

This command will increase the speed at which a :PROG file executes by
up to 20%. In order to make those changes permanent, write W after you

write PLACE and your file name. You must have an ND-100 CX computer.

Here is an example of how a chess program was made faster:

FILE 5 : (pacx—rwo nzauc)cggss PRGG 1 .

oymszn FOR | WRITE 10.34.07 novzxaza:22 1984
66 PAGES , 280576 BYTES 1IN FILE

EBQGGER VERSIQN D

-*E&Lz -

FILE 5%:'(PAQK%TWQ3DEBHGYCHESS:PROG;1 .

66 ?AQES”__280575 BYTES IK FILE '
The instructions will be adapted to the ND-100 microinstruction set.

This program was found to execute 8% faster after the above operation
was performed.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 57
COMMANDS - DETAILED DESCRIPTION

3.41 STEP (<count))

You will continue to the next step point. Step points can be defined
by LOG-LINES or LOG-CALLS. The count parameter specifies the number of

steps to take.

When you reach a step point, the Debugger stops and outputs the
current routine and line. If you then type Carriage Return, you will
continue the number of steps specified in the count parameter.
Otherwise, you may give some commands and then use STEP to go to the
next step point.

Example:

'*T{i ; ‘14 “
MAIN.110
* :

You may trace by writing:

Your program will execute until it is finished, and every line
executed will be listed.

If you want to step instruction by instruction, use STEP -1:

Each Carriage Return will advance you to the next instruction.

ND-60.158.3 EN

58

SYMBOLIC DEBUGGER USER GUIDE

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

CHAPTER 4

SYMBOLIC DEBUGGER PARAMETERS

ND-60.158.3 EN

59

SYMBOLIC DEBUGGER USER GUIDE 61
SYMBOLIC DEBUGGER PARAMETERS

4 SYMBOLIC DEBUGGER PARAMETERS

This chapter explains the arguments that can be used in command
parameters. Here is a list that contains most of the possibilities:

- Numeric constants can be expressed as decimal, octal, hexadecimal,
binary and real numbers.

- Single-character constants.

- String constants.

- Expressions involving the above types and the operators +, -,
SHIFT, *, /, **, .(dot), IND and ADDR. In conditional expressions,
>, >=, &, <=, =, and <> are also available.

Note: Array indexing and subarray specification are also available.

- Named items, such as modules, routines, labels, lines, etc.

- Program area.

- Program address.

- Data address.

- Format specifier.

- File name.

Each of the above categories will be explained on the following pages.

4.1 Numeric Constants

Constants are used in the DISPLAY and SET command, the LOOK-AT
commands, as well as in other commands. There are many ways of
expressing numeric constants. Here are 12 ways to write the number
195

Binary notation: 11000011X 241100001 1#

2#1100_0011#
Octal notation: 303B 8#303#
Decimal notation: 195 195D 104#195%
Floating point: 1.95E2 10#1.954#E2
Hex notation: OC3H 16#C34#

ND-60.158.3 EN

62 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

The numbers followed by X, B, D, E, or H illustrate the method of
writing a number followed by a radix specifier. The specifiers allowed
and their meanings are:

suffix number system radix
X binary numbers base 2
B octal numbers base 8
D decimal numbers base 10
E floating point base 10
H hexadecimal numbers base 16

In order to avoid conflicts with identifiers, a hexadecimal constant

must always start with a decimal digit (e.g., the constant C3 must be
written as OC3H).

A real constant must contain a decimal point or the letter E. An
exponent may be specified, preceded by the letter e. A constant may be
preceded by a sign. You should not use the suffixes for real
constants.

Here are some examples:
.3 -3, 3.3 3E 3E5 3.E-5

The numbers 10#195#, 8#303#, etc., on page 61 were written by using
the form:

baseftnumber#exponent

This is a feature borrowed from the programming language ADA. The #
appears as the number sign on some terminals, and as the English pound
sign (£) on others. Here is an example:

. - ».*j

.8#100#E4~ Z. 62144000OOOOOOOE+OS
PLAY 100B * 8 x 8 *g*rsg eJ

1003 * 8 xgxgx 8~26214& :

—

The 8 is the base, 100 is the numb?r, and E4 is the exponent. So
8#100#E4 1is equal to 1008 * (10.) that is, 262144 or 1000000B. Note
that the exponent is always a base 10 number.

10#123%
10#1.234#E2

These are all ways 8#173#

of expressing — | 16#7B#

the number 123. 2#1111011¢
2#111_10114

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 63
SYMBOLIC DEBUGGER PARAMETERS

The ADA system lets you express numbers in the bases 2 to 16. Any
underline characters (_) in the number between the number signs (# #)
will be ignored. You may write 5000 million as

10#5_000_000_000#

This will reduce your chances of having too few or too many zeros in
your number!

ND-60.158.3 EN

64 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

4.2 Single-Character Constants

A single-character constant is denoted by a number sign (#) followed
by an ASCII character.

Here is an example from a PLANC program. I is an integer, and CODEX is
a string whose length is 40.

Note that the string gets filled with A's, while the integer is
assigned the ASCII value of "Z", which is 90.

NOTE:

The Debugger will convert all
lowercase strings to uppercase strings.

4.3 String Constants

A string constant is preceded by and terminated with an apostrophe
('). Embedded apostrophes must be represented by a double apostrophe

(II).

Here is an example with embedded apostrophes:

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 65
SYMBOLIC DEBUGGER PARAMETERS

4.4 Expressions

You will mainly use expressions for the DISPLAY and BREAK command, and
the LOOK-AT commands. Expressions are formed from operators and
operands. In conditional expressions, >, <, =, and <> are also
available.

Operands may include constants (integer and real), variable names or
identifiers, array indexing, subarray specification, record component
selection and the dot notation described on page 67. Variable names
may be any name from the compiled language, i.e., FORTRAN variables,
PLANC identifiers, or COBOL identifiers with hyphens.

The available operators include +, -, SHIFT, *, /, **, IND and ADDR.
The operator ** requires an integer exponent.

A hierarchical order of precedence exists for operators when they are
evaluated in expressions.

* %

*

SHIFT + -
ADDR IND

Note that ADDR and IND are higher than "." (dot) when referring to
records, but are lower when the dot appears after a routine name. With

operators at the same level, evaluation proceeds from left to right.

Examples:

4 * 2 + 4=12 =
*DISPIAY 4 * 2 + 4 *x 2 +l
4% 2 3 4% 2204

X ' :

-

In division, if both operands are integers, integer division 1is
performed:

*n:gg;ax]LQ.GJ .
1/3=0 G

=

1/3.0= 3.3333333333333336-01

IND can be used on any item that is a pointer.

ND-60.158.3 EN

66 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

Here 1is an example of IND and ADDR. In the following example, CURRENT
is a PLANC pointer to a record. IND lists all the elements of the
record pointed to by CURRENT. By inspecting the data address pointed
to by CURRENT, we can also see the area where the record itself is
stored.

RESULT“ 2 80000’00

D 9010193 0001423 _ 9e.’b .
D 0010118 06?5423 28514 ob o

ADDR can be used on any item that has an address.

D oioooooooz7s"oocooeooooos .. 5
D 010000000338: 000000000008 0 ; «

Here is an example of how you use SHIFT:

DEC SHIFT -255
* . -

—

Here are examples of condltlonal expressions:

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

4.5 Named Items
By named items we mean:

Modules
Routines
Labels
Lines
Variables
Identifiers
Names
Statements

67

In PLANC and SIMULA, a named item is specified by a sequence of names
separated by dots (.), corresponding to the static Module/Routine

nesting in a program.

Here 1s an example from PLANC:

MODULE MOD1
INTEGER: J

INTEGER: I
LABEL: RETRY

ENDROUTINE

ROUTINE VOID,VOID: ROUT1

RETRY: I =: ATTEMPTS

INTEGER: I

ROUTINE VOID,VOID: ROUT2

ENDROUTINE

ROUTINE VOID,VOID:

ROUT5

ENDROUTINE

PROGRAM main

ENDROUTINE
ENDMODULE

ND-60.158.3 EN

68 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

In the PLANC example, the various routines can be specified as:
MOD1.ROUT1
MOD1.ROUT2
MOD1.ROUT2.ROUTS
The two I's can be specified by:
MOD1.ROUT1.I and MOD1.ROUT2.I
The label RETRY can be specified by:
ROUT1.RETRY
Line 50 in the main program can be specified by:

MAIN.50

However, in order to simplify the specifications, the name search is
always done according to the "current scope". This means that if you
are in MOD1.ROUT2, you can write I, instead of MOD1.ROUT2.I.

The current scope always refers to the point where the last breakpoint
occurred (unless the scope is explicitly changed by the FIND-SCOPE or
the SCOPE command).

Consider once more the above example and assume the current scope to
be: MOD1.ROUT2, that is, inside the body of ROUT2. The name I causes
the debugger to find the I declared in ROUT2, while ROUT1.I (or
MOD1.ROUT1.I) must be used in order to find the I declared in ROUT1.
The name J causes the debugger to search ROUT2 (with no success) and
then the entire module where the global J is found.

In FORTRAN, a $ (dollar) sign is appended by the compiler in front of
labels. For example, in:

10 GO TO 20
the label "10" is known to the debugger as "$10".
Note therefore that:

BREAK $10 breaks at label 10
while BREAK 10 breaks at line 10

FORTRAN statement functions cannot be referred to in the debugger
(since they are expanded in-line by the compiler at the point of
invocation).

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 69
SYMBOLIC DEBUGGER PARAMETERS

4.6 Program Area

We have an argument of the form:
name (<:name))
where name is a routine, module, label, or line number.

Here is an example:
PROGRAM AREA: M
x e

This specifies a program area starting at line 12 and ending at the
FORTRAN label 800. Note that the second parameter is optional. If no

last item is given, it is considered to be equal to the first.

Here is another example:

The program will execute until it encounters line 110 of MAIN, lines 2
to 10 of PROCINP or the label/routine called ENTER.

4.7 Program Address

A program address can be given as an octal number or in the form:

ADDR(routine-name.line-number)

Example:

When we wrote ADDR(LIST PERSON), we get the start address of the
routine LIST_PERSON.

ND-60.158.3 EN

70 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

4.8 Data Address

Data addresses can also be given as octal numbers or in the form:

ADDR(variable)

Example:

Here 1is an example of using a data address to quard part of a string
variable:

001012B: 0525078 21831 UG
| 001013B: 043505B 18245 GE
001014B: 051040B 21024 R ; ¢l

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 71
SYMBOLIC DEBUGGER PARAMETERS

4.9 Format Specifier

A format specifier (also called a radix specifier) is one or more of
the following letters:

0 - Octal A - ASCII
D - Decimal F - Floating point
H - Hexadecimal I - Instruction (disassembly)

Here is an example:

j8#101#~65 4xn 1013 '

4.10 File Name

The file name will not be checked to see if the syntax is correct. A
file name 1is terminated by Carriage Return, space, comma, oOr
semicolon. If the file is already open, the octal file number can be
used in place of the file name (octal number without B).

FILE NUMBER 000100 : (PACK~ONE scnarca;scx TCHOS_DATA 1
FILE NUMBER 000101 : (PACK-TWO:DEBUG)EX:SYMB;1 »
FILE NUMBER 000102 : (P —TWQ;DEBUS)FORHATFTEXT 1

FILE NUMBER 000103 : (PACK.TW"BEBUG)TEMP ATA 1

@: fg;" v . .

FORTRAN PR GRAM CQNVERT 1 el .

*DISPLAY . . '
ERRCODE=0 “NAMN - DEC=0 = VALUE= 0O
couNTER—o . 10 - : o

In the above example, output is sent to file number 103 (TEMP:DATA)
and to TEST:DATA. The numbers 20 and 16 indicate the number of
addresses that are written.

ND-60.158.3 EN

72

SYMBOLIC DEBUGGER USER GUIDE

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 75
EXAMPLES

5 EXAMPLES

5.1 An Example Using FORTRAN-100

Below is a small FORTRAN program which will be used as an example. All
the program does is to write the numbers one to six and their squares.

~ INTEGER® 2 VARIABLE .
_ REAL * 6
REAL * 6

?fmwmmmT;jf:~«~J*”'

{The lines in your
{program where the
Jvariables or .
refe;ences appear.|

SRS
. 2 1 REAL

ND-60.158.3 EN

76

SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

5.2 A PLANC Example
Here is the program listing for PLANC-MYPROG:SYMB:

ND-60.158.3 EN

78 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

Here is an example of how you could debug it on the ND-500:

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 79
EXAMPLES

5.3 Another Example in PLANC

Here is a more substantial program; it sorts an array quickly.

The program that follows consists of two separate modules in two
files. It was compiled and loaded as follows:

Note that if you had both modules on one file and compiled them, you
would get different line numbers than in this example.

ND-60.158.3 EN

80 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

Here is SORTER:LIST.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 81
EXAMPLES

Here is the other module from the file TESTSORT:LIST.

By writing $EOF, you do not need to give the EXIT command to the PLANC
compiler.

ND-60.158.3 EN

82 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 83
EXAMPLES

Since the bounds of the array were wrong in the beginning of the
routine QUIKSORT, we investigate the code immediately before QUIKSORT
is called and find that lines 40 and 41 were transposed. They should
have appeared in the order:

quiksort(arr(high + 1:top))
high - 1 =: top

ND-60.158.3 EN

84 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

5.4 Using a File as a Segment

on the ND-500, you can achieve faster I/0 by opening a file as a
segment.

In the following example a file is opened as a segment, and the
numbers 1 to 2560 are written to it:

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 85
EXAMPLES

5.5 Using a File as a Segment for a COMMON Area

The following program uses the monitor call FSCNT to connect a file as
a segment. It uses a common area that is placed on the file connected
as a segment. Thus every time the common area is accessed, that
segment will be accessed.

If you debug the program below and give the command:

You will see that the address starts with 07 because the file wuses
segment 7.

 WRITE(1,*) 'WILL ATTEMPT TO OPEN FISH:DATA FOR WX ACCESS'

ISH BATA must already ex1st, be 1arge enough
C
b
c v“b”_able to read from and erte to the segment.
. e o g .
c Don’ t,use 0 1, 2, 3, 26D, or 30D as SEGNO if you will debug.
FQCALL FSCNT{I SEGNO,ACC, IACTNO)
c.. Remember to use Hll COMMON~SEGMENT-NUMBER 7,, in loading.
WRITE(1,*) 'The following segment has been connected:'
~ WRITE(1,*) IACTNO
WRITE(1,*)
_BQ 103 =1, 10 _
BO 20K =1, 100, 10
! TEKST(J,K) = 'AMAAAARAA '
20 CONTINUE .

~ CALL FSDCNT(I,SEGNO)
‘ECLOSE(IOPENF)
WRITE (1,*) 'END OF PROGRAH'
END

ND-60.158.3 EN

86 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

The above program can be loaded as follows:

Since segment 7 was specified in the monitor call FSCNT, segment 7
must also be specified in the COMMON-SEGMENT-NUMBER example.

If you are going to debug a program that uses a COMMON segment, we
suggest that you do not use the following common segment numbers:

0, 1, 2, 3, 26D, and 30D

That is because they are being used by the Debugger or the FORTRAN
library.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 89
ERROR MESSAGES

6 ERROR_MESSAGES

6.1 Error Messages Common to the ND-100 and the ND-500 Versions

Here are the error messages and what they mean:
AMBIGUOUS COMMAND

Self-explanatory.
ASSEMBLER ERROR

Followed by an assembler error message. This can occur
when using the CODE subcommand of LOOK-AT.

ATTEMPT TO DIVIDE BY ZERO
Self-explanatory.
B REGISTER NOT INITIALISED

Unable to LOOK-AT-STACK because the B-register is not
well-defined.

BAD EXPRESSION

Syntax error in expression.
BAD LINE NUMBER

Syntax error in specified line number.
BAD MODULE/ENDMODULE NESTING

Error in the debug information generated by the compiler.
BAD RECORD/ENDRECORD NESTING

Error in the debug information generated by the compiler.
BAD ROUTINE/ENDROUTINE NESTING

Error in the debug information generated by the compiler.

ND-60.158.3 EN

90 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES
BAD STRING CONSTANT
Self-explanatory.
COMMAND LINE/MACRO BUFFER FULL

The command line is too long, or too many macros are
defined. This message may also occur during macro expansion.

COMPONENT NOT IN SPECIFIED RECORD
Self-explanatory.
ERROR: n

Error number n from SINTRAN III or ND-500 Monitor. There
is no error text for this error number.

ILLEGAL DEBUG ELEMENT TYPE; DEBUG TABLE ADDRESS: XXXXXXB
Error in the debug information generated by the compiler.
ILLEGAL DEBUG TABLE ADDRESS (xxxxxx) IN "FIND"
Internal consistency error in the Debugger.
ILLEGAL TERMINATION
Illegal termination of the command line.
You have probably used the wrong type or number of
parameters.
ILLEGAL TERMINATION OF ARGUMENT
Illegal termination of a command parameter.
INDEX "n" IS OUTSIDE ARRAY
Index outside range in array access.
INDIRECTION NOT LEGAL
Indirection in LOOK-AT not legal for this step size.

LIMITS NOT LEGAL FOR THIS TYPE

Can occur in the GUARD command; low:high is not legal for
this item type.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES
LINE TRANSLATION TABLE FULL
Too many areas specified in ALIGN-LISTING.

LINK INFORMATION INACCESSIBLE

Can occur with the BREAK-RETURN command when no
well-defined return address can be found.

MODULES/ROUTINES TOO DEEPLY NESTED

Too deep nesting of modules and/or routines in the
debug information.

NO DEBUG INFORMATION AVAILABLE
You probably did not compile your program, or a part of it,
in debug mode. Otherwise, you may have forgotten to PLACE a
:PROG.
NO SUCH COMMAND
NO SUCH REGISTER NAME
NOT A VARIANT OF THE SPECIFIED RECORD
The three above error messages are self-explanatory.
NOT FOUND
Usually preceded by a name, e.g., "SUBR" NOT FOUND.
You may be in a different module or routine than you
think you are.
ROUTINE INACTIVE
Routine inactive (no current stack frame allocated).
STRING CONSTANT TOO LONG
Self-explanatory.
TOO MANY INDICES
Too many indexes in the array reference.
USE LOG-CALLS OR LOG-LINES
This command requires the use of LOG-CALLS or LOG-LINES.
Remember CHECK-OUT-MODE can only be used after you have

specified LOG-CALLS or LOG-LINES. On the ND-100, GUARD can
only be used after LOG-CALLS or LOG-LINES.

ND-60.158.3 EN

92 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

WRONG ENUMERATION TYPE NESTING

Error in the debug information generated by the compiler.
WRONG TYPE

Attempt to convert between incompatible types.
WRONG TYPE OR INACCESSIBLE

Item is of wrong type (e.g., REAL used as an array index)

or inaccessible at this point in the program (e.g., local
variable in inactive routine).

6.2 Error Messages Which Apply to the ND-100 Version

DATA AT DATA ADDRESS xxxxxxB IS NOT STORED ON THE PROG-FILE
Attempt to modify a part of the data area that is not
stored on the :PROG file. This can only happen when PLACE
<file>,W has been used.

DATA AT PROGRAM ADDRESS xxxxxxB IS NOT STORED ON THE PROG-FILE
Attempt to modify a part of the program that is not
stored on the :PROG file. Can only be happen when PLACE
<file>,W has been used.

NO MORE DATA SEGMENTS AVAILABLE
Too many Debuggers are active at the same time. Each
active Debugger uses one data segment. The maximum number
of active Debuggers is specified when your SINTRAN III is
generated. You should use the EXIT command to leave the
Debugger. If you use the ESCAPE key, the data segment may
not be released for use by others.

NO PROGRAM FILE SPECIFIED

You need to use the PLACE command to read in a program file.

6.3 Error Messages Which Apply to the ND-500 Versio
AMBIGUOUS TRAP CONDITION

ATTEMPT TO ACCESS NONEXISTENT DATA SEGMENT

ATTEMPT TO ACCESS NONEXISTENT DEBUG INFORMATION

ATTEMPT TO ACCESS NONEXISTENT PROGRAM SEGMENT

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES
ATTEMPT TO MODIFY READ-ONLY SEGMENT
ATTEMPT TO SET BREAKPOINT ON READ-ONLY SEGMENT
The above 6 messages are self-explanatory.

BAD LINE DEBUG ELEMENT; DEBUG TABLE ADDRESS: XXXXXXXXXXXB

Error in the debug information generated by the compiler.

BAD OPERAND CODE; DEBUG TABLE ADDRESS: XXXXXXXXXXXB

Error in the debug information generated by the compiler.

ERROR IN MONITOR CALL
Error message from the ND-500 Monitor. Use the
AUTOMATIC-ERROR-MESSAGE command in the ND-500 Monitor
if further information is required.

ILLEGAL PROGRAM ADDRESS
Access attempted beyond the available address space.

IMPOSSIBLE TO INVOKE ROUTINE; STACK OVERFLOW

INVOKE command not executed; not enough room left in the
stack.

NO DSEG-FILE OPENED OR CONNECTED FOR SEGMENT nn
Self-explanatory.

NO LINK FILE OPENED OR CONNECTED FOR SEGMENT nn
Self-explanatory.

NO PSEG-FILE OPEN OR CONNECTED FOR SEGMENT nn
Self-explanatory.

NO SUCH TRAP CONDITION
Self-explanatory.

OUTSIDE DATA SEGMENT

Attempt to access beyond the available address space (on
an existing data segment).

ND-60.158.3 EN

93

94 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

OUTSIDE PROGRAM SEGMENT

Attempt to access beyond the available address space (on
an existing program segment).

PROGRAMMED-TRAP FAILED (NOT ENABLED?)

The Debugger is unable to start your program because
a programmed trap has been disabled or is not working.

SEGMENT NUMBER MUST BE IN THE RANGE 0:31
Self-explanatory.

THIS SINTRAN III COMMAND IS NOT ALLOWED FROM THE ND-500
Self-explanatory.

TOO MANY FILES OPENED

The Debugger is unable to open all the files needed.

6.4 Note rror Return -

The ND-100 (if started by the Symbolic Debugger) will enter

Debugger when it stops, for instance if the stack overflows.

following messages may OCCUr:
PROGRAM TERMINATED AT current scope
ASSERT VIOLATION AT current scope
STACK OVERFLOW AT current scope
INDEX RANGE ERROR AT current scope

WRONG NO. OF PARAMETERS AT current scope

ND-60.158.3 EN

the
The

SYMBOLIC DREBUGGER USER GUIDE
Index

A format (ASCII)
abbreviation address
ACTIVE-ROUTINES
ADDR :
example .

address
abbreviation
data
program .
align routine .
ALIGN-LISTING . ..
alternative page table
apostrophe in addresses .
ASCII format
ATTACH-SEGMENT
break . o om o m i
(see step point)
condition . ..
conditional (example)
count .
label
line number . .
multiple (see step point)
see also GUARD
BREAK-ADDRESS .
BREAK-RETURN
breakpoint e
multiple (see step point)
BRF file
B register
change
data address
program address .
CHECK-OUT-MODE . . .
after LOG-CALLS .
after LOG-LINES .
before BREAK
before STEP .
example .
common area .
COMPARE-DATA
COMPARE-PROGRAM .
compile .
example .
constant
ADA form
numeric
real ..
single-character
string
with exponent .

ND-60.158.3 EN

Index

95

.11
. 46.

19.

61, 66.

14, 66, 69, 78,

82.

. 46.

70.
69.
20.
20.
40, 47, 51.

. 46.

71.

. 20.
.21,

14.

21,

76.

21,

68.

. 68.

14, 69.
25.

. 22
. 22

11.
14, 69.
10.
134 75

. 41,
. 26, 41, 46, 51,

24.

21, 37.

28, 39.

24,
24,
.21, 39, 78.

85.

.25,

26.
9.

12.
61.

62.

61.

. 62.

64.
64.

62.

96

CONTINUE (see also RUN)
count using 1 or -1
CROSS-REFERENCE .
D format (decimal)
data address
decimal format
decimal format
default file type .
disassembly .
displacement
DISPLAY .
arrays
expressions .
IND .
pointer .
record
values
without parameters
DOUBLE-FLOATING example .
DUMP-LOG . .
example .
ENABLED-TRAPS .
example
compile and load
program in FORTRAN
program in PLANC
EXIT L.
expressions .
F format (floatlng
file
:BRF
:NRF
FIND-SCOPE
FLOATING
example .
point format
format . . .
(ASCII)
(decimal)
(floating p01nt)
(hexadecimal) .
(instruction (dlsassembly))
(octal) .
FORMATS-DISPLAY .
FORMATS-LOOK-AT .
example .
FORTRAN example .
FSCNT example .
GUARD .
example . .
range permltted .
H format (hexadecimal)

OoOHmImmO >

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
Index

. 26.
s 57.
. 12,
.11,
. 14, 170.
.11
. 14,
. 9.
.11,
. 13, 75.
. 27.

15.
.14,
. 27.
. 27.
. 50,

14.
. 14.
. 44.
. 28.
.21, 37-39.
. 29.

12.
. 12, 75.
. 23, 67, 77, 19.
. 29.
. 65.
. 11

10.
. 10.
. 29.

. 44.

.11,

. M.

s 11,

A

YA

.11,

A

.11,

. 14, 30.

. 30.

. 40, 43-45, 48.
. 12, 15

. 85.

. 31,

. 25, 31, 53, 170.
. 31.

« 11

SYMBOLIC DEBUGGER USER GUIDE
Index

HELP
hexadecimal format
H format (hexadecimal)

I format (instruction (dlsassembly))

INCLUDE-COMMANDS
IND . ;
example .
inspect
data address
program address .
instruction format (dlsassembly))
INTEGER* 2
INVOKE
label .
library . . .
LINKAGE- LOADER
load
example (ND-100)
example (ND-500)
LOCAL-TRAP-DISABLE
LOCAL-TRAP-ENABLE .
LOG-CALLS .
LOG-LINES .
advice .
example w1th CHECK OUT MODE .
example with DUMP-LOG .
example with GUARD
example with STEP .
reset
with CHECK- OUT MODE :
with GUARD
with STEP .
LOOK-AT-DATA . .
LOOK-AT-PROGRAM .
example . . .
LOOK-AT-REGISTER
LOOK-AT-STACK .
MACRO . :
parameter .
memory area . .
multiple step p01nts
NRF file s W
numbers
binary
decimal
hexadecimal .
octal .
0 format (octal)
octal format
0 format (octal)
patch
data

ND-60.158.3 EN

68.
1.

12.

39,

39, 53.

57.

40, 43.

69.

69.

97

98 SYMBOLIC DEBUGGER USER GUIDE
Index

PLOGIAM . . . « & « « « o+ e e e e e e e e e e 41, 46, 51, 56.
permitted range 31.
PLACE - |

to patch PROG flle51 56.
PLANC example « .« .« « .+ o o e e e e 22, 23, 67, 17,

79.
pointer

display . . .+ ¢ 4 4 e e e e e e e e e e e s 27.

example o . .o oo e e e e 66.
precedence o . e e e e e e e e 65.
program

addTeSS e e e e e e e e e e e e . 69

area 1

execution 1mprovement (ND 100) e e 56.

memory . . e
PROGRAM- INFORMATION R L
radix specifier o o oo e e 62, 71.
rangc in GUARD e e e e e e 31.
Register B . . T -

RESERVE- TERMINAL FE . /8
RESET-BREAKS . . . + + « v v v v i e e oo oo 15, 53.
RUN . o o e e e e e e e e e e ey 54.

example oo oo e e e e e e e 54 .
SCOPE . . o o o e e e e e e e e e e e .. B4
segment number o .. e e e e 46.
SEGMENT-INFORMATION « « « « « « « - . . 55.

SET . . . o v e e e e e B5.
SHIFT . . « + s o o« o + s » « 6 « « o 5 6w & o+« « 61,

example Lo oo e e e e e e e 66.
specifier

FOrMAt . . . o e e e e e e e e e e e e T

radix . . . oo e B2,

STACK- INSTRUCTIONS - T
STEP . .« o o e e e e e e e e ey 14, 57.

point . . T e
step point multlple A £ P
string

CONSEANt . . 4 e e e e e e e e e e e e e .. b4

GUARD . o & + o o o « v = = » = ¢« & & s % s+ w a » M
ETECE . o o o e e e e e e e e e e e e e e e e e . B
undo

GUARD . « o 5 s s s s o = =« = o & 5 & % ¢« = s =« + 3.

LOG-LINES . . + « « o« « « o o v « & o o« + o & « - 93,

ND-60.158.3 EN

B T A e P R . U K e e S A A S e e S ST A T 7

NOTICE

The information in this manual is subject to
change without notice. Norsk Data A.S assumes
no responsibility for any errors that may
appear in this manual. Norsk Data A.S assumes
no responsibility for the use or reliability

of its software on equipment that is not
furnished or supported by Norsk Data A.S.

This manual is protected by copyright. It may
not be photocopied, reproduced or translated

without the prior consent of Norsk Data A.S.

Copyright @ 1985 by Norsk Data A.S

UPDATING

PRINTING RECORD

PRINTING |[NOTES

02.82 Version 01

02.83 Version 02

03.85 Version 3

Manual name:
Manual number:
Date:

Symbolic Debugger User Guide
ND-60.158.3 EN
03.85

Manuals can be updated in two ways, new
versions and revisions. New versions consist
of a completely new manual which replaces the
old one. New versions incorporate all

revisions since the previous version.

Revisions consist of one or more single pages
to be merged into the manual by the user,
each revised page being listed on the new
printing record sent out with the revision.
The old printing record should be replaced by
the new one.

New versions and revisions are announced in
the ND Customer Support Information and can
be ordered from the address below.

The reader’'s comments form at the back of
this manual can be used both to report
errors in the manual and to give an
evaluation of the manual. Both detailed and
general comments are welcome.

All types of inquiry and requests for
documentation should be sent to the local ND
office, or (in Norway) to:

Norsk Data A.S
Graphic Center

P.0. Box 25, Bogerud
N-0621 Oslo 6, Norway

v

|

SEND US YOUR COMMENTS! Are you frustrated because of unclear

information in our manuals? Do you have
trouble finding things? Why don’t you join
the Reader's Club and send us a note? You
will receive a membership card - and an
answer to your comments.

Please let us know if you:
- find errors
- cannot understand information
- cannot find information
- find needless information.

Do you think we could improve our manuals by
\ rearranging the contents? You could also tell
\Q —~ : us if you like the manual.
/ Send to: Norsk Data A.S
; Documentation Department
P.0. Box 25, Bogerud

N-06210slo 6
Norway

NOTE!

This form is primarily for documentation
errors. Software and system errors should
be reported on Customer System Reports.

Manual name: Symbolic Debugger User Guide Manual number: ND-60.158.3 EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:
Company: Position:
Address:

What are you using this manual for?

Norsk Data's answer will be found on the =9
reverse side.

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
0621 Oslo6, Norway

Systems that put people first

NORSK DATA A.S OLAF HELSETS VEI 5 P.O. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 - 29 54 00 - TELEX: 18284 NDN

