
Norsk Data

SYMBOLIC DEBUGGER
User Guide

ND-60.158.3 EN

7
7

7
7

7
7

7

7
7

7
.

.
.

.
7

7,
x.V

,
r,

,r
.

7,
/

.

7
.C

C
,

7,
.C

C
V

7
C

C
.»

_
.C

C
,

7,
.C

C
V

SYMBOLIC DEBUGGER
User Guide

ND-60.158.3 EN

Preface:

THE PRODUCT

This manual describes the SYMBOLIC DEBUGGER product:

SYMBOLIC DEBUGGER ND~10335D (ND~SOO)
ND~10336D (ND-100)

THE READER

This manual will be of interest to programmers who are testing
programs written in any language whose compiler is able to communicate
with the Symbolic Debugger.

PREREDUISITE KNOWLEDGE

The reader should be able to successfully compile and load a program
in one of the following languages: ADA, BASIC, COBOL, FORTRAN, PLANC
or SIMULA. Some of the commands require more advanced programming
experience.

THE MANUAL

This manual describes how to use the Symbolic Debugger. The commands
are described in detail. Examples are from both the ND-lOO and the
ND 500 Debugger.

RELATED MANUALS

Related manuals for the languages with which the Symbolic Debugger can
be used are:

ADA—500 User Manual ND—60.198 (available 1985)
BASIC-500 User Manual ND-60.197 (available 1985)
COBOL Reference Manual ND—GO 144
FORTRAN Ref. Manual ND—60.145
PLANC Reference Manual ND—60.117

The following manuals are also relevant:

ND Relocating Loader ND—60.066
ND—SOO Loader/Monitor ND~60.136
BRF Linker User Manual ND—60.196

ND—60.158.3 EN

T A B L E O F C O N T E N T S

Section Paqe

1 INTRODUCTION . 1

1.1 Symbolic Debugger Command Summary (HELP OUTPUT) 4

2 USING THE SYMBOLIC DEBUGGER 7

2.1 How to Compile your Programs 9
2.2 How to Load ND~1OO Programs 10
2.3 How to Load ND—SOO Programs 10
2.4 How to Use the Debugger 11
2.5 An Example using FORTRAN 12

3 COMMANDS - DETAILED DESCRIPTION 17

3.1 ACTIVEvROUTINES ((maximum number of levels)) 19
3.2 ALIGN~LISTING (program area) (line) 20
3.3 ATTACH SEGMENT (segment number) 20
3.4 BREAK (routine, label or line) ((count)) ((condition)) 21
3.5 BREAK-ADDRESS (program address) ((count>) . . . 22
3.6 BREAK~RETURN . . 22
3.7 CHECK OUT—MODE ((program area)) . 24
3.8 COMPARE-DATA (low) (high) (<Output file>) 25
3.9 COMPARE PROGRAM (low) (high) ((output file)) 26
3.10 CONTINUE 26
3.11 DISPLAY ((item or value)) 27
3.12 DUMP—LOG (<output file>) 28
3.13 ENABLED-TRAPS 29
3.14 EXIT . 29
3.15 FIND— SCOPE (program address> . 29
3.16 FORMATS— DISPLAY (formats (A, D, F, H, O or combinations)) 30
3.17 FORMATS- LOOK— AT (formats (A, D, F, H, I, O or combinations)) 30
3.18 GUARD (item or address) (<(*not*) low (: high))) 31
3.19 HELP (command name) . . 32
3.20 INCLUDE COMMANDS (file name) 33
3.21 INVOKE (routine) (((parameter,...,parameter))) 34
3.22 LOCAL-TRAP—DISABLE ((trap conditions)) 35
3.23 LOCAL- TRAP— ENABLE ((trap conditions)) 36
3.24 LOG— CALLS (program area) . 37
3.24.1 LOG— CALLS and CHECK OUT— MODE 37
3.24.2 LOG- CALLS and GUARD 38
3.24.3 LOG- CALLS and STEP 38
3.25 LOG— LINES (program area) . 38
3.25.1 LOG LINES and CHECK OUT- MODE 39
3.25.2 LOG—LINES and GUARD 39
3.25.3 LOGuLINES and STEP 39

ND—60.158.3 EN

(ii)

Section Page

3.26 LOOK- AT— DATA (data address) (<count)) ((output file)) 40
3.27 LOOK- AT Subcommands 43
3.28 LOOK-AT- PROGRAM (program address) (<count)) ((output file)) 46
3.29 LOOK— AT REGISTER (register name) (<count)) ((output file)) 47
3.30 LOOK—AT-STACK (B register) (<count)) (<output file)) 48
3.31 MACRO (name) (body) 49
3.32 PLACE (file name) ((W)) 51
3.33 PROGRAM INFORMATION 51

3.34 RESERVE— TERMINAL (logical device number) 52
3.35 RESET— BREAKS (<program area)) 53
3.36 RUN ((program address)) . 54
3.37 SCOPE (<modu1e, routine or other item>) 54
3.38 SEGMENT-INFORMATION . . 55
3.39 SET (variable) (=) (value) 55
3.40 STACK-INSTRUCTIONS ((low)) ((high)) 56
3.41 STEP (<count)) . 57

4 SYMBOLIC DEBUGGER PARAMETERS . 59

4.1 Numeric Constants 61
4.2 Single Character Constants 64
4.3 String Constants 64
4.4 Expressions 65
4.5 Named Items 67
4.6 Program Area . 69
4.7 Program Address 69
4.8 Data Address 70
4.9 Format Specifier 71
4.10 File Name 71

5 EXAMPLES 73

5.1 An Example Using FORTRAN-100 . 75
5.2 A PLANC Example 77
5.3 Another Example in PLANC . 79
5.4 Using a File as a Segment 84
5.5 Using a File as a Segment for a COMMON Area 85

6 ERROR MESSAGES 87

6.1 Error Messages Common to the ND-1OO and the ND-SOO Versions 89
6.2 Error Messages Which Apply to the ND-100 Version . . 92
6.3 Error Messages Which Apply to the ND-SOO Version . 92
6.4 Note on Error Returns on the ND—1OO . . 94

Index 95

ND-6O 158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

CHAPTER 1

INTROMTIW

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 3
INTRODUCTION

1 INIRDWEIIDN

The Symbolic Debugger is an interactive tool for testing programs
written in higher—level languages such as FORTRAN, COBOL, and PLANC.
The Symbolic Debugger is available on the ND—1OO if SINTRAN was
generated with at least one Debugger segment. If three segments were
generated, that means that three people or less can use the Debugger
simultaneously. There are no such limitations on the ND—SOO.

The Symbolic Debugger contains a powerful set of commands which enable
you to control the execution of your program. For example, break or
step points can be set to stop the program under certain conditions.
You can then inspect or modify program variables, and continue
execution until the next break or step point. In this way it is
possible to find many program bugs in one run. It is also possible,
for instance, to detect which areas of a program have not been
executed, and to change the path and frequency of subroutine calls‘

The commands available are listed on the following page.

ND-60.158.3 EN

1.1 S mbolic Debu er Command Summar

SYMBOLIC DEBUGGER USER GUIDE
INTRODUCTION

HELP OUTPUT

Here is a list of all the commands available in the Symbolic Debugger.
The unambiguous abbreviation to the left of each command may be used.

C
D

IP
'IP

‘
L'“

I
DU

11>
IE

:
"U

U
H

t“

F
H

H
C

E
O
fi
W

’T
‘n

U
O

O
O

O
U

J
m

I
.

O
I (3

F
it“
!
!

:L
"

U

r'
ri

I
t

:
I

m
m

3
0

5
6

7
3

1
3

I
t

UJ
F—

Z

L0
L")

m
m

01

All of these commands are on both the ND~1OO and the ND—SOO.

ACTIVE—ROUTINES
ALIGN-LISTING
BREAK

BREAK-ADDRESS
BREAK-RETURN
CHECK-OUT-MODE
COMPARE-DATA
COMPARE—PROGRAM
CONTINUE
DISPLAY
DUMP—LOG
EXIT
FIND-SCOPE
FORMATS-DISPLAY
FORMATS-LOOK—AT
GUARD
HELP
INCLUDE-COMMANDS
INVOKE
LOG—CALLS
LOGtLINES
LOOK-AT-DATA
LOOK-AT—PROGRAM
LOOK~AT—REGISTER
LOOK~AT~STACK
MACRO
RESERVE'TERMINAL
RESET-BREAKS
RUN
SCOPE
SET
STEP

((MAXIMUM NUMBER OF LEVELS))
(PROGRAM AREA) (LINE)
(ROUTINE, LABEL OR LINE)
((COUNT)) ((CONDITION))
(PROGRAM ADDRESS ((COUNT))

((PROGRAM AREA))
(LOW) (HIGH) ((OUTPUT FILE))
(LOW) (HIGH) ((OUTPUT FILE))

((ITEM OR VALUE))
((OUTPUT FILE))

(PROGRAM ADDRESS)
(FORMATS (A,D,F,H,O OR COMBINATIONS)>
(FORMATS (A,D,F,H,I,O OR COMBINATIONS))
(ITEM OR ADDRESS) (((*NOT*) LOW (: HIGH)))
(COMMAND NAME)
(FILE NAME)
(ROUTINE) (((PARAMETER,. .,PARAMETER)))
(PROGRAM AREA)
(PROGRAM AREA)
(DATA ADDRESS) (COUNT) (OUTPUT FILE)
(PROGRAM ADDRESS) (COUNT)

() ()
() ((OUTPUT EILE))

(REGISTER NAME) ((COUNT)) ((OUTPUT FILE))
(B REGISTER) ((COUNT)) ((OUTPUT FILE))
(NAME) (BODY)
(LOGICAL DEVICE NUMBER)
((PROGRAM AREA))
((PROGRAM ADDRESS))
((MODULE, ROUTINE, OR OTHER ITEM))
(VARIABLE) (=) (VALUE)
((COUNT))

Commands
that are not available on both systems are listed on the next page.

ND—60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
INTRODUCTION

The following three commands are only available on the ND—100:

PL PLACE (FILE NAME) (<W>)
PR PROGRAM INFORMATION
S~I STACK-INSTRUCTIONS (<LOW>) (<HIGH))

The following five commands are only available on the ND—SOO:

-S ATTACH-SEGMENT (SEGMENT NUMBER)
ENABLED~TRAPS

"D LOCAL-TRAP-ENABLE (<TRAP CONDITIONS>J
—E LOCAL TRAP-DISABLE (<TRAP CONDITIONS>)

"I SEGMENT"INFORMATION

ND-60.158 3 EN

SYMBOLIC DEBUGGER USER GUIDE

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

CHAPTER 2

USIMB TI-E SYMOLIC mar

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 9
USING THE SYMBOLIC DEBUGGER

2 USINRIHEJIHBDLICJEBUGGER

2.1 How to Compile your Programs

In general, if you are working on a program that you will be compiling
and debugging many times, the easiest way is to create a mode file
that you can run each time you want to compile your program.

Here is the general form of that mode file:

@DELETE—FILE (object file) (file type)
@(compiler name)
DEBUG-MODE
COMPILE (source file) (list file) "<object file)"
EXIT

The default <fi1e type) for the source file and the list file is
:SYMB. If you are compiling an ND-1OO program, the object file type is
:BRF. For ND-SOO programs, the object file type is :NRF.

You might want to always use the same name for the program you are
currently working on. You could call your current program TEST SYMB
and create a mode file like this if it is a FORTRAN—100 program:

@DELETE-FILE TEST2BRF
@FORTRANm1OO
DEBUG-MODE
COMPILE TEST TERMINAL "TEST"
EXIT

The mode file will work whether the file TEST:BRF exists already or
not. If you call the above mode file COMPILE—TEST:SYMB, you could give
the following input to SINTRAN:

@MODE COMPILE—TEST “TEST:LIST"

The file TEST LIST will contain your program listing, with line
numbers that will be useful when you debug your program. Another way
to get your listing is to compile like this:

@(name of compiler)
DEBUG—MODE
COMPILE TEST "LISTING" “TEST“
EXIT

Then the file LISTING SYMB will contain your program listing.

ND‘60.158.3 EN

10 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

2.2 How to Load ND—1OO Programs

The mode file to load a :BRF file, for instance, TEST BRF, should look
like this:

@DELETE-FILE TEST PROG
@BRF-LINKER
FROG—FILE "TEST"
LOAD TEST
LOAD (any additional modules or libraries you have)
LOAD (library)
ENTRIES-UNDEFINED
EXIT

This mode file will work whether the file TEST PROG already exists or
not. The library you load depends on which compiler you used:

Compiler 1- or 2-Bank Load this :BRF file:
COBOL 1 COBOL—1BANK
COBOL 2 COBOL~ZBANK
FORTRAN 1 FORT—1BANK
FORTRAN 2 FORT—ZBANK
FTN 1 FTNLIBR
FTN FTNRTLIBR (RT programs)
PASCAL 1 PASCAL-LIB
PASCAL 2 PASCAL—ZLIB
PLANC 1 PLANC—1BANK
PLANC 2 PLANC-ZBANK

This information is explained in greater detail in the manual for the
language you want to load programs in.

2.3 How to Load ND-SOO Programs

The mode file to load an :NRF file, for instance, TEST NRF, should
look like this:

@ND LINKAGE—LOADER
ABORT-BATCH-ON-ERROR OFF
RELEASE-DOMAIN TEST
DELETE-DOMAIN TEST
SET-DOMAIN "TEST"
LOAD-SEGMENT TEST
LOAD-SEGMENT (library)
EXIT
@CC WRITE @ND-SOO TEST to execute TEST or
@CC WRITE @ND-SOO
@CC DEBUGGER TEST to debug TEST

This mode file will work whether the domain TEST exists already or
not. It will work for any language if you load the correct library.
You will need additional LOAD—SEGMENT statements for any additional
modules or libraries you use. The library names are usually the name
of the language followed by "—LIB NRF“, for example, COBOL—LIB NRF is

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 11
USING THE SYMBOLIC DEBUGGER

the library for COBOL.

2.4 ow th eb er

If you have compiled and loaded your file as an ND—1OO program, you
start the debugger for the program TEST as follows:

mam +3un~1oo SYMBOL c nraueczar VERSION 9.
*mmsr +
2

If the program is an ND-SOO program, do the following:

@W 4
“0-500 MONITOR VERSI N C 82.11.22 / 82.12.16
N5001W
ND—SOO SYMBOLIC DEBUGGER. VERSION D.
t

Now you can set a breakpoint at the point in the program where you
want to break. You may also set multiple ”step points“. When program
execution reaches those points, you may inspect or modify program
information. Then you can continue to execute your program in one of
two ways:

1) RUN takes you to the next breakpoint

2) STEP takes you to the next step point.

ND-60.158.3 EN

12 SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

2.5 An Example using FORTBAN

Here is a fairly comprehensive example. We shall start by compiling
the file FORT-1:8YMB. The program below prints the bit pattern for the
integer DEC.

@Eog'rggn- mg «J
ND-100/NORD- 0 ANSI 77 FORTRAN COHPILER * 2030530
FTN: w
FTN: QBQSS—REFERENCE g30§§~3£¥:§3£ *1 Gives useful information
FTN: QQMPILE FQBZ~3,IE3§INAL,EQEI— +J for debugging.

Normally, you will send your
listing to a file or printer.

ND—100/NORD-10 ANSI 77 FORTRAN COMPILER - 2030530 12:38 25 OCT 1984
SOURCE FILE: FORT-1:5YMB

1* program convert
2* integer dec, counter, i, value, bits
3* dimension bits(16)
4* dec = 35864
5* counter = 1
6* do 100 I = 15,0,—1
7* value = 2 ** I
8* if (dec .ge. value) then
9* bits(counter) = 1

10* dec = dec - value
11* else
12* bits(counter) = O
13* endif
14* 100 continue
15* write (1, 1000) (bits(i), i = 1,16)
16* 1000 format (1H , 16(14))
17* end

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

13

————————————————————————— CROSS REFERENCE ~~~-~————~—~————————————u

The displacement of the data
relative to the B register.

l
BITS INTEGER* 2 1~ARRAY IND(—172) 2 3 9 12 15
CONVERT PROGRAM 1
COUNTER INTEGER* 2 VARIABLE -170 2 S 9 12
DEC INTEGER* 2 VARIABLE ~171 2 4 8 1O 10
I INTEGER’ 2 VARIABLE —167 2 6 7 15 15
VALUE INTEGER* 2 VARIABLE ~166 2 7 8 10
$100 STATEMENT LABEL AT 14 6
$1000 FORMAT LABEL 15 16
- CPU TIME USED: 2.2 SECONDS. 17 LINES COMPILED.
~ NO MESSAGES
- PROGRAM SIZE=14O COMMON SIZE=O
FTN: EXIT

@BR§*LINKE3 +
— BRF Linker

J
— JULY 3 I

Brl: EROG~FILE EORI-I +
Brl: LOAD FORT~1,§—1EA§E
FREE: p 00021
FREE: P 035 5
Brl: m1 *-
@DEBUQQE «1

4—177777
3-177777

1984

IJ
DEBUG 000145
DEBUG 000146

ND~60.158.3 EN

14

ND-100 SYMBOLIC DEBUGGER. VERSION D
*EIECE EQBT‘l «i

SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

FORTRAN PROGRAM CONVERT.1
*Loo—Lrggs a «J*IOQ-Llflgs 13 *J

*STEP «J

This is how you can obtain
multiple step points. The
program will stop at lines
8 and 13 if you use STEP.

Always use STEP to stop at
LOG~LINES step points.

CONVERT.8 *nBLA_ «J
DISPLAY without parameters
lists all local variables.

ERRCODE=0 DEC=—29672 COUNTER: 1 I= 15
VALUE=—32768 BITS(1:16)

Notice
have incorrect values. The reason
will be explained shortly.

that DEC and VALUE

*nPLAX AQDR DE «J We can inspect the data addresses
ADDR DEC=0001SOB where the values of DEC and VALUE
*QlfiELAX_ADQB_EALfl§ «J are stored.
ADDR VALUE=000153B

*LQOK-AI—QATA iopggugcz «1 We coul
*L--Q 105, but not * --

d also write: *L—vQ 150a,

D 0001508: 1060308 ~29672 Note that DEC and VALUE are
D 0001518: 0000018 1 each stored in one word (16
D 0001523: 0000178 15 bits). Integers greater than
D 000153B: 1000008 ~32768 32768 need to be stored in a
D 0001548: OOOOOOB 0 larger area.
D 0001558: OOOOOOB 0 L
*EOEMATS—DISPLAZ fl 0 Q +

H means hexadecimal, 0 means
octal and D means decimal‘
Numb
thre

ers will now appear in all
e formats.

DIEPIEX 2:15 «J
2**15=32768 BOOOH 1000008

*Dlsgpax —327§§ +1
-32768=-32768 FFFFBOOOH 377777000003,STEE .1

ND 60.158

DISPLAY accepts expres—
sions. Note that the 8
least significant bits
are the same for 32768
and ~32768.

.3 EN

SYMBOLIC DEBUGGER USER GUIDE 15
USING THE SYMBOLIC DEBUGGER

CONVERT.14 *EQBEAI§;DL§£LAX_Q «J Sets format display back
to only decimal numbers.

*215ELAX.BLI§ «J
BITS=1 O O O O 0 0 0 O O O 0 O O O
* T P +

CONVERT.8 *DISPLAY +3
ERRCODE=O DEC=3096 COUNTER: 1 I: 14
VALUE=16384 BITS(1:16)

Note that the value of VALUE is
correct now that I = 14.

CONVERT.14 *DlfiELAX_BlI§ +3
BITS=1 0 0 O O O 0 0 0 0 0 O O 0 O

*fiIEB +
CONVERT.14 *DISPLAY +1
ERRCODE=0 DEC=3096 COUNTER: 1 I: 14
VALUE=8192 BITS(1:16)
*QLEELAX_ELI§ +
BITS=O 0 O O O O O O 0 0 O O O O O O

BITS(1) is zero again, since
the variable COUNTER has not
been incremented.

*ggggg;agggg_ «J This resets break and step
points. The program will
execute now without breaks.

15 14 13 12 11 10 9 8 7
1 O 0 0 O O O O O

T.

6 5 4 3 2 1 0
O O O O O O 0

PROGRAM TERMINATED AT CONVER B1

ND-60.158.3 EN

16

Here

SYMBOLIC DEBUGGER USER GUIDE
USING THE SYMBOLIC DEBUGGER

are the changes that need to be made, and the resulting program.
The old line numbers are given in parentheses:

DEC must be declared as INTEGER*4 because of its size.

VALUE and I need to be declared as INTEGER*4
instead of INTEGER.

(2)

3)
4)
5)
6)
7)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

100

1000

This needs to be added after line 7:
counter = counter + 1

program convert
integer counter, i, bits
integer*4 dec, i, value
dimension bits(16)
dec = 35864
counter = 1
do 100 I = 15,0,—1

value = 2 ** I
counter = counter + 1 +
if (dec .gt. value} then

bits(counter) = 1
dec = dec - value

else
bits(counter) = 0

endif
continue
write (1, 1000) (i, i 1S,O,~1)
write (1, 1000) (bitsii), 1 1,16)
format (13 ,4
end

ND-GO 158.3 EN

(4(13).1H) V
II

N

SYMBOLIC DEBUGGER USER GUIDE

CHAPTER 3

cam - ITAILED "IPTIM

ND-60.158.3 EN

17

18

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

SYMBOLIC DEBUGGER USER GUIDE 19
COMMANDS - DETAILED DESCRIPTION

3 EMANDS_:_EIAILED_MSCRIEIIM

Following is a list of all available commands with their parameters.

Parameters are enclosed in less than (<) and greater than characters
(>). If a parameter is also enclosed in parentheses, it is optional.

<low> (high) required parameters
(<maximum number of levels)) optional parameter

If you give commands without parameters, you will only be prompted for
the required parameters.

3.1 ACTIVE—ROUTINES (<maximum number of 1evels>)

This command writes the current routine call hierarchy, starting with
the current routine and ending with the main program. The maximum
number of levels to be printed may be specified.

*W «3
QUIKSORT.3 CALLED FROM QUIKSORT.44
QUIKSORT.3 CALLED FROM MAIN.23
MAIN.9
*

ND-60.158.3 EN

20 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

3.2 ALIGN-LISTING (program area) <1ine>

This command is used to adjust the line numbers in the Debugger to
correspond with those on a listing which is not up-to—date. Several
ALIGN—LISTING commands may be given in order to adjust different parts
of the listing. If areas overlap, the command most recently given
takes priority over previous ones.

If no program area is specified, the innermost routine in the current
scope is assumed.

Let us say that you have added 5 lines of code to the subroutine EVAL
and things look like this:

On your listing: 5 6 7 8 9 10, ... 120
After a new
compilation: 5 6 7 8 9 1O 11 12 13 14, ... 124

In other words, what appears as line 6 on your listing is now line 10.
Here is what you can do:

*EBEEK Eve, ,9 :1
*ALIgfl-LISTING EYAL § +J

What was line 10 in EVAL will now be 6, 11 will become 7, and so on
throughout the rest of EVAL. Lines 1 to 5 will remain unchanged, while
the newly compiled lines 6 to 10 will become unnumbered.

You can do this many places. It is best to do it on the first
unchanged line following every area where code has been altered. All
the unaltered areas will then have the same line numbers as in your
listing.

You may align an entire routine:

* « G N J

1W*
BREAK AT PRINT.804
*

The first line in the routine PRINT will be numbered 800.

3.3 AIIACfl-SEQEENI <§egmgn§ nugpgg)

This command is relevant to the ND-SOO only. The current segment is
moved to <segment number). The command SEGMENT-INFORMATION provides a
list of all active segments.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 21
COMMANDS - DETAILED DESCRIPTION

3.4 BREAK (routine. label or line) (<count)) (<condition>)

Sets a breakpoint at the specified item, and removes the previous
breakpoint set by BREAK. If a routine name is specified, the
breakpoint is set at the first line in the routine.

If a positive number K is specified for the count parameter, the
program will break every K times the breakpoint is reached.

* *3

*mm +3
BREAK AT SUBCALC.52
*

The program will execute until line 52 is encountered for the 10th
time. When the breakpoint is reached, execution terminates and control
passes to the Debugger. To continue to the breakpoint again, use RUN.
To continue to the nearest step point, use STEP.

If a condition is specified, control passes to the Debugger at the
breakpoint only if the condition is true and the variable is local:

*Bnggxls1o 1 z Q «J
*Bflfl *

4 16.00
5 25.00
6 36.00

CONDITIONAL BREAK AT SQRS.7
*uisELALi +
1:6
x

If I is not local, prefix it with the routine name, for example,
CALC I. Only one breakpoint is allowed, but you may have multiple
"step points" by using LOG-LINES. See the examples on pages 14 and 69.

You can also create breakpoints by using GUARD, see page 31.

If you do not know where you can set breakpoints, do the following:

*mggang .J
*CHEQK~Q§T~¥Q§§ v}

The line numbers where all the routines start will be listed.

ND-60.158.3 EN

22 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.5 BREAK-ADDRESS (program address) (<count>)

This command is similar to the BREAK command, except that the
breakpoint is specified directly as a program address.

Examples:

*EBEAK-ADDRESS 501 r]
*m “

Stops at program address 501, not at line 501.

* ~ 50: 1 +3
*m «3

Stops the 10th time that program address 501 is to be executed.

3.6 BREAK-RETURN

Sets a breakpoint at the return address of the current routine, and
resumes execution from the current line. If a PLANC routine returns
with an error return, the error code is displayed when the breakpoint
is reached.

Here is an example with a small PLANC program:

1 MODULE EXAMPLE
2 INTEGER ARRAY : stack (0:100)
3 ROUTINE VOID,VOID: PARALLEL
4 INTEGER: x,y
5 3 =: X
6 x == Y
7 6 ERRETURN
8 ENDROUTINE
9 PROGRAM: OUTER

10 INISTACK stack
11 INTEGER : k,m
12 10 =: m
13 PARALLEL
14 ENDROUTINE
15 ENDMODULE

ND—60.158 3 EN

SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

We can debug it on the ND—SOO as follows:

@ug Qghggggx gags—2399 +3
*W +3
*R ..

PLANC PROGRAM. AMPLE.OUTER.9

1" TEP + Each STEP or Carriage Return
OUTER.32 * +J advances us one line at a time.
OUTER.13 *
BREAK AT PARALL L.S
* R - U N +
BREAK AT OUTER.13; ERROR RETURN WITH ERRCODE = 6
*

WRITE parameters in PLANC are not updated at BREAK~RETURN.

ND-60.158.3 EN

23

24 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.7 CHECK—OUT—MODE < r0 ram are >

This command removes the step point on each line in the specified area
that is executed. You can thus obtain a list of all lines which have
never been executed, by using the DUMP—LOG command.

If the command LOG—CALLS is given before the CHECK-OUT-MODE command,
DUMP-LOG will list the first line in every routine that was not
executed.

If no area is specified, all lines are checked.

See the examples on page 39 and on page 78.

Note:

Since CHECK—OUT—MODE removes step points,
you cannot do the following:

*LOG-LINES (program area>
*CHECK—OUT-MODE (program area)
*STEP

You need to do this instead:

*LOG-LINES (program area>
*CHECK-OUT-MODE (program area>
*BREAK (routine, label or line)
*RUN

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 25
COMMANDS - DETAILED DESCRIPTION

3.8 COMPARE-DATA (low) (high) (<0utput file))

The data area specified is compared to the program file contents
(:PSEG and :DSEG files on the ND—SOO). The address of each modified
location is displayed, along with the old and new contents.

The default output file is the terminal; the default file type is
:LIST.

In the following program, a loop is executed K times. We find the
address where K is stored and change K to 20.

1rLOG-LENES”, +3 By using LOG-LINES, GUARD,
and RUN, we break just after

*QQABD_E «J K is assigned a value.
*DISELAY K +1 LOG-LINES is not necessary
K=O before GUARD on the ND—SOO.

*mitiJ
GUARD v10 TION AT 5035.5
*DLEELAX +
3330003=0 1:0 K: s R= 0.0
*LQQK—AI—QATA 5033(3)... .J
D 0001223: 0000053 5 20 l]
0 0002233; 0000003 0 L «
mam J
3330033=0 1:0 3: 20 3: 0.0

0 0001223: 0000 03 0333030 To 0000243
*W'"

RESET—BREAKS is necessary, otherwise the
program will break in every line where
K is not equal to O;

* UN «J
The default output file is the terminal; the default file type is
:LIST.

ND-60.158.3 EN

26 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.9 COMPARE-PROGRAM (low) (high) ((output file>)

The program area specified by the lower and upper bounds is compared
to the program file contents (PSEG and :DSEG files on the ND-SOO).
Modified locations are displayed with address, old contents and new
contents.

The default output file is the terminal; the default file type is
:LIST. See also COMPARE—DATA.

Here is an example of changing a MAC instruction:

* oox~31—paocggm 303 «J
3 0000303: O30607B 12679 1 STE ,3 — 171 153000 «1
3 0000313; 0440213 1344? 3 LDA * 21 i «J
*LOOK~AI-ERO§RAM 273 3 e
3 0000273: 1106123 —28278 PMU ,3 — 166
P 0000303: 1530003 —10752 v MON
3 0000313; 0440213 18449 H LDA *0}? L «1
*CQMPARE~PROGRAM ZOE 40B IEBMINAL
P 0000308: O30607B CHANGED TO 153000B
‘k

3.10 CONTINUE

Execution is resumed from the current line. If you want to specify
where you want to resume execution from, use RUN. See page 54. Since
CONTINUE is a superfluous command, all examples in this manual use
RUN.

Execution will continue until the breakpoint is reached or a GUARD
violation occurs. Step points will be skipped.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 27
COMMANDS - DETAILED DESCRIPTION

3.11 DISPLAY (<item or value):

If you only write DISPLAY, all variables in the innermost routine or
module in the current scope are displayed.

*QISELA *3
(all variables are listed.)

The item(s) and value(s) you specify will be displayed:

*DISELAY 1 «5
1:15
*DISELAY I,J. «1
1:15
3:225
K25
*DISPLAY STRINQSJI «1
STRING(1)=reduced
‘3

Note that only the name and the bounds of arrays are output unless you
specify their names. The same applies to strings.

*DISPLAY IND!CURRENT.RIGHT! *J
INDCCURRENT.RIGHT)= NAME(1:20)
RESULT: 4.40000000
LEFT=NIL RIGHT=O 1054B
*QlfiPL Y CURRENT.N ME +
CURRENT.NAME=DEBUGGER
*DISELAY QURRENT.RIGHT.NAME(I;$) t}
CURRENT.RIGHT.NAME(1:4)=else
i

DISPLAY will display according to the formats you specify.

* A - rsp AY D +3
*prsera: 8fi1Q12 +
88101fi=65 41H 1018
k

You can include several expressions on the same line if you separate
them by commas.

You can specify a module or routine name, and all variables in the
routine or module are displayed.

ND-60.158.3 EN

28 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

Note that DISPLAY can be used for radix conversion when used in
conjunction with the FORMATS—DISPLAY command.

*EQBMATS~DISPLAX g D «1
*nisggiy 23100 010 110 0013 +i
2#1oo_ozofl120_oo1#=2225 881H 42613
i

3.12 DUMP—LOG L<output file))

The output of this command depends on the type of log specified.

If LOG-CALLS was specified last, a list of the last 200 routine calls
is displayed. See example on page 37.

If LOG—LINES was specified last, a list of the last 200 lines executed
is displayed. If a line is the first line in a routine, the routine
name is also displayed. See example on page 38.

If CHECK~OUT~MODE was specified last, a list of all the lines or
routines (in the area specified in the CHECK-MODE command) that have
39; been executed is displayed on the terminal. If a line is the first
line in a routine, the routine name is also displayed. See the example
on page 39.

If you do the following when you start the Debugger, you will list
every line in your program that can be logged, even if there are more
than 200 lines:

*LOG-LIN§§,,, «J
*WJ
*QUflB-LOG e

The default output file is the terminal; the default file type is
:LIST.

ND-60.158 3 EN

SYMBOLIC DEBUGGER USER GUIDE 29
COMMANDS - DETAILED DESCRIPTION

3.13 ENABLED-TRAPS

This command is only on the ND—SOO Debugger.

All enabled traps are listed on the terminal.

*WJ
11 INVALID OPERATION
12 DIVISION BY ZERO
14 FLOATING OVERFLOW
16 ILLEGAL OPERAND VALUE
26 ILLEGAL INDEX
27 STACK OVERFLOW
28 STACK UNDERFLOW
29 PROGRAMMED TRAP
30 DISABLE PROCESS SWITCH TIMEOUT
31 DISABLE PROCESS SWITCH ERROR
32 INDEX SCALING ERROR
33 ILLEGAL INSTRUCTION CODE
34 ILLEGAL OPERAND SPECIFIER
35 INSTRUCTION SEQUENCE ERROR
36 PROTECT VIOLATION
*

See also the commands LOCAL-TRAP—DISABLE and LOCAL~TRAP-ENABLE.

3.14 EXIT

Returns control to SINTRAN on the ND—100, and to the ND~SOO MONITOR on
the ND-SOO.

3.15 FIND—SCOPE (program address)

This command finds the module or routine, and the line number, that
correspond to the specified program address. It updates the scope
accordingly. The current scope status is displayed.

The difference between FIND—SCOPE and SCOPE (see page 54) is that
FIND~SCOPE needs a program address, while SCOPE has a module, routine
or line number for its parameter.

ND-60.158.3 EN

3O SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

3.16 FORMATS-DISPLAY (formats (A,D.F.H.0 or combinations)>

Set format(s) for the DISPLAY command. This will not affect the format
for the LOOK—AT commands. The default (initial) format setting is D‘
You obtain it by giving an empty format specification.

Here is what the codes mean:

A = Alphanumeric H = Hexadecimal
D = Decimal O = Octal
F = Floating point

An example is given on page 27.

3.17 FORMATS-LOOK-AT <formats lA.D,F.H,I,O or combinations)>

Set format(s) for the LOOK-AT commands. The default (initial) format
setting is obtained by giving an empty format specification.

Here is what the codes mean:

A = Alphanumeric I = Instruction
D = Decimal H = Hexadecimal
F = Floating point 0 = Octal

An example is given on page 40.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 31
COMMANDS m DETAILED DESCRIPTION

3.18 GUARD (item or address) (<(*not*) low (: high)>)

This command specifies a data item or location to be checked for
modifications. If the contents of the item or location are outside the
permitted range, a guard violation occurs and control is passed to the
Debugger.

USE LOG~LINES or LOG~CALLS before GUARD
on the ND-100.

*QQARD x O ; 19 +1 O to 10 is the permitted range.
*RQE
GUARD VIOLAT ON AT MAIN.55
* Y X e
xzii

*eua «1
This will break every time X has a value outside the range 0 to 10.

Any data item which has a single value (PLANC types POINTER, INTEGER,
REAL, ENUMERATION, BOOLEAN, and SET) is legal. Array elements (packed
and unpacked) and record components (packed and unpacked) may also be
specified. Composite items (arrays and records) are illegal.

If an address is given, the location at that address, taken as a
single signed integer (NDn100, 16 bits; ND-SOO, 32 bits), is checked
for modifications.

The permitted range is specified by n, where low <= n <= high. If the
operator NOT appears, however, the permitted range is n < low or n >
high.

*GUARD K NOT so 70 «1
*RUN *1

GUARD VIOLATEON AT LOOPS.9
*QlfiflLAY *
K=60
*GUARD «j This removes GUARD.
*Bfifl *

If only low is specified, then high is set equal to low. If no range
is specified, the permitted range becomes the single value of the
current contents of the specified address. Permitted range, low:high,
cannot be specified for PLANC SETS.

To continue, use RUN or STEP. If you want to remove GUARD, use it
without parameters.

ND-60.158.3 EN

32 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

On the ND—100, the amount of checking is determined by using the LOG—
CALLS or the LOG—LINES command. LOG~CALLS specifies that checking is
to be performed at the entry to the routines. LOG—LINES means that
checking is to be performed on every logged line. If a program area is
specified, checking is performed only in the specified program area.

On the ND-SOO, checking is done by the hardware throughout the entire
program.

3.19 HELP (command name)

The HELP command lists available commands on the terminal. Only those
commands that have (command name) as a subset are listed. If (command
name) is null, then all available commands are listed. Each command is
followed by a parameter list, if it has any. Required parameters are
enclosed in angular brackets: <). Optional parameters are enclosed in
parentheses and angular brackets: (< >).

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 33

COMMANDS - DETAILED DESCRIPTION

3.20 INCLUDE-COMMANDS (file name)

This will include the commands from the file. For example, you might

want to create a file called MACROS:SYMB with the following contents:

macro std
formats—display
macro dho
formats—display d h C
macro x
display;run
macro y
X;X;X;
display

Then you can do the following to include your macros and ensure that

they have been defined properly:

*W«1
*MACRO STD
BODY: *MACRO DHO
BODY: *MACRO X
BODY: *MACRO Y
BODY: *DISPLAY
ERRCODE=O STRING I= O
K=O X: 0.0 IMAX= 0
* 0 «J
NAME:
Y X;X;X;
X DISPLAY;RUN
DHO FORMATS-DISPLAY D H O
STD FORMATS*DISPLAY
*

All the macros you have defined on the file MACROS:SYMB are now

available to you.

ND—60.158.3 EN

34 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.21 INVOKE (routine) (< (parameter.....parameter) >)

This command is used to call routines. Parameters will not be checked.
You must ensure that you call the routine with the correct number of
parameters, and that the actual and formal parameters are compatible.

If the routine is a FORTRAN subroutine or a PLANC standard routine,
all items that have a defined address (when the INVOKE command is
executed) are legal. Constants are allowed. If the routine is a normal
PLANC routine, simple variables (ENUMERATION, BOOLEAN, POINTER and
INTEGER) and records are legal.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 35

COMMANDS - DETAILED DESCRIPTION

3.22 LOCAL-TRAP—DISABLE (<trap conditionl

This command is only on the ND—SOO Debugger. Several traps can be

specified on the same line, separated by spaces or commas. Always use

hyphens between words in trap names! Abbreviations are accepted.

Example:

*LOCAL-IfibP-DISABLE A—T-F A-T-R PL-UND *1

ADDRESS-TRAP-FETCH, ADDRESS-TRAP-READ, and FLOATING-UNDERFLOW are

disabled.

If (<trap conditions>) is empty, all traps are disabled. If (<trap

conditions>) is HELP, all available trap conditions are listed on the

terminal.

In the following example, the program LOOPS divides by zero. By

disabling trap 12, "Division by zero", control will not go to the

Debugger when a number is divided by zero in the program.

*mm +3
DIVISION BY ZERO AT LOOPS.f

§.9:

9 OVERFLOW
11 * INVALID OPERATION The trap conditions
12 * DIVISION BY ZERO with an asterisk (*)

13 FLOATING UNDERFLOW are disabled. The others
14 * FLOATING OVERFLOW are enabled.
15 BCD OVERFLOW
16 * ILLEGAL OPERAND VALUE
1? SINGLE INSTRUCTION TRAP
18 BRANCH TRAP
19 CALL TRAP
20 BREAKPOINT INSTRUCTION TRAP
21 ADDRESS TRAF FETCH
22 ADDRESS TRAP READ
23 ADDRESS TRAP WRITE
24 ADDRESS ZERO ACCESS
25 DESCRIPTOR RANGE
26 * ILLEGAL INDEX
27 * STACK OVERFLOW
28 * STACK UNDERFLOW
29 ‘ PROGRAMMED TRAP

ND-60.158.3 EN

36 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

30 ’ DISABLE PROCESS SWITCH TIMEOUT
31 * DISABLE PROCESS SWITCH ERROR
32 * INDEX SCALING ERROR
33 * ILLEGAL INSTRUCTION CODE
34 * ILLEGAL OPERAND SPECIFIER
3S * INSTRUCTION SEQUENCE ERROR
36 * PROTECT VIOLATION
*LOQAE-IBAE-QISABLE DIVISION-EZ—ZERO
:

We could have written *L—T-D DIV since DIV is an unambiguous
abbreviation of DIVISIONeBY—ZERO.

3.23 LOCAL-TRAP-ENABLE (<trap conditions>)

This command is for the ND-SOO only. Several traps can be specified on
the same line separated by spaces or commas. Always use hyphens
between words in trap names!

If (<trap conditions>) is empty, all default traps are enabled. If
(<trap conditions>) is HELP, all available trap conditions are listed
on the terminal.

Example:

*IQQM-IEAE~EHBBIE EBQI-IZIQI 1-1-2 .1
The PROTECT-VIOLATION and ILLEGAL-INSTRUCTION-CODE traps are enabled.

ND-60 158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 37
COMMANDS — DETAILED DESCRIPTION

3.24 LOG-CALLS (program area)

This command logs all routine calls in a cyclic buffer. This buffer
can be inspected by means of the DUMP—LOG command (see page 28). The
buffer can hold a maximum of 200 entries.

*LOQ—QALL§.,,, «5
* RI «J
*m +3
BREAK AT PR}NT.21
* — o-

LOOPS PRINT PRINT REDUCE REDUCE PRINT
REDUCE EDUCE PRINT REDUCE REDUCE ERINT
* x T +

If a module or routine is specified, all routines that are called in
the specified module or routine are logged.

This command is normally used in conjunction with other commands. The
next sections show some examples:

3.24.1 LOG-CALLS and CHECK-OUT-MODE

This is how you can log all the routines in your program that are not
called:

*Log—CALLs,.. «J
*caEcx-Quz—gggg «}

(BREAK nd RUN)

You can also specify an area:

*LOQ—QALL§,;, «J
*gflEgK—OUT—MODE MAIN.ZO:MAIN.4O «J

{BREAK nd RUN)
*QUMP-LQQ e

Any routine not called in the area MAIN.20 to MAIN.4O will be logged.

You can list all routines by using DUMP-LOG immediately after LOG-
CALLS and CHECK-OUT-MODE:

*LQG—CALLS.,, +1
*CHECK-OU - on «1
*Dump—LOG +5
LOOPS.6 PRINT.21 REDUCE.34
‘k

ND-60.158 3 EN

38 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

That may be useful when you start debugging your program.

3.24.2 LOG-CALLS and GUARD

You only need to use LOG-CALLS or LOG-LINES before GUARD on the
ND—100.

* 06— +5* rJARD
*mm3

Every time a routine is called, the Debugger will check to see if the
value of CEVAL has changed.

3.24.3 LOG-CALLS and STEP

*199-23513 MATE 59 . next 20 ‘.l
* p 9

Each CR (Carriage Return) will bring you to the next routine call in
the area MAIN.SO to MAIN.70, and each routine call will be logged.

3.25 LOG—LINES (program area)

This commands logs all executed line numbers in a cyclic buffer. This
buffer can be inspected by means of the DUMP—LOG command (see page
28). The buffer can hold a maximum of 200 entries.

*rgG-Lrugs.,.. «J
* RINT 5 «J
*RU +3
BREAK AT PR NT.21
* UMP— 0 +
LOOPS.6 7 8 9 10 11 ?4 12 13
PRINT 21 22 23 26 23 26 23 26 23
26 27 28 29 LOOPS.14 12 13
PRINT.21 22 23 24 REDUCE.34 35 36 37
(etc.)
i'

If a module or routine is specified, only the lines executed in the
specified module or routine are logged.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 39
COMMANDS - DETAILED DESCRIPTION

LOG—LINES is normally used in conjunction with other commands. Here
are some examples:

3.25.1 LOG-LINES and CHECK-OUT-MODE

ugflmg 2m +3
*W«J
* 4-

*m +3
BREAK AT L0 PS.14
*W +
PRINT.24
‘3

The only line in PRINT that was not executed was line 24.

3.25.2 LOG-LINES and GUARD

You only need to use LOG-CALLS or LOG-LINES before GUARD on the ND-
100.

The Debugger will tell you if the value of CEVAL changes anywhere in
the routine CALC.

3.25.3 LOG-LINES and STEP

* ~ 5 0: IN. «J
*s+

Each CR (Carriage Return) will bring you to the next line in the area
MAIN.50 to MAIN.7O and each line number will be logged.

Note:

We advise you NOT to use LOG—LINES on your entire program
if you have a large program. Specify part of your program
instead. Otherwise you will slow down program execution
considerably.

ND-6O 158.3 EN

4O SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.26 LOOK-AT-DATA (data address) (<count>) (<output file))

This command and the related commands LOOK-AT-PROGRAM, LOOK-AT—
REGISTER and LOOK-AT—STACK enable data locations, program locations

and registers to be inspected and modified.

The data in the addresses 320 to 332 (octal!) will be printed. If you
do not specify count, one location will be output.

If you are employing an alternative page table from a 1- bank program,
addresses within the alternative page table can be accessed by

specifying addresses in the range 200,000B to 377,777B. (ND- 100 only.)

*LQQK-AT-DATA 320 1QQQ "QAIA;LI§2“ *3

In the above example, control returns to the Debugger when the 1000
locations have been output. If you send the output to your terminal,
control remains within the LOOK—AT command, and you may use the
subcommands described below.

CR (Carriage Return) causes an advance to the next item without
changing the contents of the current item. All subcommands are
terminated by CR. Printing a dot (.), a semicolon (;), or EXIT returns
you to the Debugger:

90010103 0501423 0062}! " H
D 00101113: 0675428 SFSZB 32111 «J

Note that the contents of each location is printed in the format(s)
specified by the FORMATS-LOOK—AT command.

ND~60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 41
COMMANDS ~ DETAILED DESCRIPTION

Below you will find the special notation that is available when you
have given a LOOK-AT command. Subcommands are listed in the next
section.

HELP (command name> Lists available LOOK~AT subcommands on
the terminal.

EXIT or ;
or . Returns control to the Debugger's

command processor.

m Deposits the value of the expression m
(which can also be a string constant) in
the current location and advances to the
next location.

m,n/ This prints n locations, starting with
the contents of location m. See the
example on page 46.

Here are some examples that illustrate the notation:

s AY +3
0330033=o 1:0 = 5
KTAL= 0

3003;01:0313_0003111ili «J
3 0000573. 0000003 0 3x11 «i
*LQOK—A1~DATA 12;3.,, «1
0 0001253: 0000113 9 I «J
*LOOK-AT-QATA ADDR;K),.. +J
3 0000608: 0000053 5 +J
3 0000613: 0000003 L «J
Logg-31 3300330 30 «10

3 0000303- 1206063 ~24186 ! MPY ,3 — 172 0 «J
3 0000313- 0046103 3040 STA ,3 - 170 r «5
3 0000303; 1530003 —10752 i 300 i «J
1: ..LQQK.AI:DAIA_ADRBLKLIII
0 OOOOGOB: 0000243 20 i .J

In the above example, three ways of exiting were shown (i, L, and
EXIT), and the value 20 was stored in data address 608. The value
1530008 replaced 120606B in program address 308.

ND-60.158.3 EN

42 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

Here is the special notation to be used with the slash (/) command:

m/

//

m,/

.n/

./

Here are

Take the value of m as the next address and
display this location.

Take the contents of the current location as the
next address and display this location
(indirection).

(Restricted for the moment to the ND~100.) When in
program mode only, the second slash will cause the
current word to be interpreted as an instruction.
The operand of the instruction is taken as the
next location.

Take the value of m as the next address and
display n locations, where n is the last count
entered.

Take the contents of the current location as the
next address and display n locations.

Take the contents of the current location as the
next address and display n locations, where n is
the last count entered.

some examples:

rag: K = “B ._.l

* OOK- - OGRAM K *j J
P 0000118: 1714OOB -3328 s SAX O 118+!QQ?£ e
P 0001118: 000102B 66 B STZ * 102 L I
9 0001023: 000064B 52 4 STZ * 64 1 e
9 0000648: 0241308 10328 (x LDD * 13o glfifir +}
p 0002343: 1343453 -18203 8e JPL * — 33 Ll +3
p 0002013; 1461478 ~13209 Lg COPY SL DX L e

ND-6O 158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 43
COMMANDS - DETAILED DESCRIPTION

3.27 LOOK—AT Subcommands

The following subcommands apply to LOOK—AT-DATA, LOOK-AT-PROGRAM,
LOOK—AT-REGISTER, and LOOK—AT-STACK.

Here is how you list the subcommands:

‘k _ .. .9]

*LOOK—AI—QAI *3
DATA ADDRESS: gagggll «3
0 010000000300: 12016007106B aggg «3
COMMAND NAME: «1

BYTE (ND—500 only)
0002 (INSTRUCTION)

+DATA
DOUBLE—FLOATING
DOUBLE~WORD (ND~100 only)

+EXIT
EXTRA—FORMATS (FORMATS A, 0, y, H, I OR o>
FLOATING
FORMATS (FORMATS A, 0, F, H, 1 on 0)
HALF—WORD (ND-500 only)

+HELP (COMMAND NAME)
NEXT
PREVIOUS

+PROGRAM
REGISTER
WORD

DATAl BROGRAMI REGISTER. and STACK

Within a LOOK—AT command one can go directly to one of the other LOOK—
AT commands by using one of these subcommands.

Example:

*EQBMAIE;LQQK;AI_Q J*W +1
0 010000000413; 0000003 2300333 +1
9 010000000410: 0000 «J
p; 010000000040 szggg +§
PREVIOUS B: OOOOOOOOOOOB
RETURN ADDRESS: 334020000003
NEXT B: 004636000003
AUX: 00035347001B
NO. OF PARAMETERS: 22406407130B
D 000000000248 24B: 032002537758 BAIA +J
*

ND—60.158‘3 EN

44 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

NEXT and PREVIOUS

Within the LOOK—AT~STACK command these subcommands can be used to move
between the stack frames.

See the example on page 48.

WORD, FLOATING, and DOUBLE-FLOATING (ND-100 and ND—SOO)

DOUBLE—WORD (NDe1OO only)

BYTE and HALF-WORD (ND~500 only)

with the LOOK—AT commands one can display values in units of several
different sizes. These subcommands specify the desired size.

Here are some examples from an ND-SOO program:

)6 goaggis—Logg—AT +1
— T—DATA D «JXv

x
-
O

D
U

O
U

U
U

D
U

U
D

010000000303:
01000000030B:
O1000000033B:
010000000320:
010000000338:
01000000030B:
010000000308:
010000000348:
010000000303:
O1000000030B:
010000000328:

50300 46H 0110 +3
500 e
38H +3
OEH «3
46H 3001 +3
50H 3030 +3
50380E46H «J
000000003 3001 «J
5038024 H BALE~EQB «j
50303 «
OE46H ; **

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 45
COMMANDS - DETAILED DESCRIPTION

In the following example, X is declared as real in a PLANC-SOO
program; Y8 is declared as REAL8:

’DIfiBLAX «3x= 4.25500 ye: 1.255000000000000 EXP: 3.14000
NAME(1:60)
4 _ _ .J
*DIEEIBX EQQBIXSI *5

ADDR£Y8)=O1000OOOO34B j
‘k ._ .. R +.

010000000300: 405052400 1079009859 «J
010000000340: 405052400 1079009559 9002 +3
010000000300: 405052400 1079009559 55031130 5}
010000000300: 405052400 1079009359 1.25500
010000000340: 405052400 1079009359 1 25500 3401 «3
010000000340: 405052400 1079009059 1.25 00 Eggnaz§_0 «J
010000000343: 4050624DH 0 - N +
010000000343: 4050624DH,DZF1A9FCH 1.256000000000000 ; +j

*
U

U
U

U
O

U
U

U

FLOATING is useful for inspecting the values of real numbers. DOUBLE~
FLOATING is only helpful for real numbers stored in 2 words (32 bits).

FORMATS (formats A. Di F. H. I or O)

EXTRA—FORMATS (formats A. D; F; H, I or O)

In FORMATS and EXTRA-FORMATS, the abbreviations have the following
meaning:

A = Alphanumeric I = Instruction
D = Decimal H = Hexadecimal
F : Floating point 0 = Octal

The formats set by means of the FORMATS-LOOKsAT command may be
temporarily changed with these subcommands. The FORMATS subcommand is
similar to the FORMATS—LOOK—AT, except that the formats are valid only
until exit from LOOK—AT. The EXTRA-FORMATS command is similar to the
FORMATS command, except that the specified formats are added to those
already set.

ND-60.158.3 EN

46 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.28 LOOK—AT—PROGRAM (program address> (<count>) (<output file>)

Inspect and modify program locations. This command is similar to the
LOOK—AT-DATA command, except that I format (symbolic instructions) is
enabled as default. Decimal addresses are default, so remember to
write B after octal addresses!

In the following example, the program is changed so that the number 0
will be printed on your terminal:

*ng—gz—gggisTER p,,, +1
P: 0000110 9 i «1
*LOQK-AI—nggim 110 +1
0 0000110; 1714000 —3328 s SAX o 0000 SAT «J
0 0000120; 1350320 —17094 : JPL 1 * 32 900£_§AA_§_ *J
P 0000130; 0000040 4 STZ * 4 0000 MON e
P 0000140: 0000510 41) STZ 1 51 grmmiignLgs l
0 0000150: 0000120 10 512 1 12 «
0 0000168: 0000040 4 STZ 1 4 110.57 +5
P 0000110; 1710010 —3503 r SAT 1
0 0000120: 1704600 —3792 go 5AA 60
0 0000130: 1530020 ~10750 v MON OUTBT
0 0000140; 1530650 —10699 v5 MON 00005
p OOOOJSB‘ 1530000 ~10752 v MON ; «
*Bflfl ,
0
@

Here is a very short example from a ND—SOO program:

*LOOK-AI—EROQBAM «1
PROGRAM ADDRESS: 1200 «J
P 01'1200: w LOOPI 8.024B:S,B.030B:S,—OGOB~—j01’4OB 000 «J
INSTRUCTION: W LQOEI BFQQOB:S.§.024B;S,4OB *
P 01'1248: RET 1ZQBZ +
P O1’120B: W LOOPI B.O3OB:S,B.024B:S,wO6OB~~>O1’4OB ; *J
*

Note that we abbreviated a few addresses with an apostrophe to save
space. 010000001208 and 01'1208 both mean segment number 1, address
120B.

Some examples of LOOK—AT—PROGRAM are also given in the previous
section on page 41 and 42.

ND~60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 47
COMMANDS - DETAILED DESCRIPTION

3.29 LOOK—AT-REGISTER (register name) (<count>) “output file))

Inspect and modify CPU registers. This command is similar to the LOOK-
AT—DATA command.

SEEK 9115915233 E .J
P; 0032163 1678
x: 0000300 24
T: 0027345 1500 \
A: 0000013 1
n; 0000240 20
L: 0007643 500 t
5: 0001400 96 ‘
2; 0002160 142
w; 0000020 2 gxgg «1
X

On the ND~100, W is the current alternative page table. Note that its
value is 2 above. Its value must be 2 or 3.

ND—60.158.3 EN

48 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS ~ DETAILED DESCRIPTION

3.30 LOOK-AT-STACK (B register) (<count>) (<output file>2

Inspect and modify locations in the stack. This command is similar to
the LOOK—AT—DATA command, except that both absolute and relative
addresses are displayed. Locations in the stack header are given by
name rather than by address.

Addresses entered with the slash (/) command are taken as relative to
the B register of the current stack frame that is being examined.

In the following example, a FORTRAN program calls the subroutine print
which in turn calls the subroutine reduce. Print has 3 parameters,
reduce has 2.

* 0 0 UC «J
*000 +3
subroutine print

5 reduced 4 times
.5500000E+03 5

subroutine print
BREAK AT REDUCE.34

*gggggzs—LOOK—AT 0 «1
*0000—02-00000., +
000v1005 0: 010000003140
000000 0000053; 010000002220
NEXT 0; 010000002240
AUX: 000000000000
NO. OF PARAMETERS: 000000000028

0 010000006040 240: 010000000740 000v «J
000vrous 0: 010000000240
RETURN ADDRESS: 010000001143
NEXT 0; 010000002240
AUX: 000000000000
00. 00 0000002000: 000000000030
0 010000003400 240: 010000000600 0003 «J
PREVIOUS B: 000000000003

000000 0000050: 000000000000
NEXT 0: 010000002240
AUX: 000000000000
00. 00 0000000000; 000000000000
0 010000000500 240; 000000000100 0011 +J
2k

ND-60.158 3 EN

SYMBOLIC DEBUGGER USER GUIDE 49
COMMANDS - DETAILED DESCRIPTION

3.31 MACRO <name> (body)

This builds macro commands composed of one or more basic commands and
other macro commands. The macro name can be any character string and
is terminated by a space or a comma. Only the first eight characters
are significant. The rest of the line following the macro name is

taken as the macro body. The macro body is not terminated by
semicolon, thus several commands can be included in the same macro

body.

If the macro body is empty, the corresponding macro is erased.

If the macro name is empty, all the currently defined macros are

displayed on the terminal:

*mg +1
NAME: x «J
BODY: QL§ELAY; RUE +J
* CR +
NAME:)1 «3
BODY: x;x;xix «J No name and no body will
*fiAQgO,,, +—-——Jlist the macros you have
Y X;X;X;X defined.
X DISPLAY; RUN
t

A macro parameter is referenced in the macro body as "n", where n is a
one-digit number (1 - 9). See the example below.

A macro name is used in the same way as a command name. It can be
abbreviated in the same way, too. However, macro parameters are not

asked for if omitted, but taken to be empty strings when the macro is
expanded. A macro name can also be used as a LOOK—AT subcommand.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
COMMANDS ~ DETAILED DESCRIPTION

Examples of MACRO:

NAME 1 - +1T P K*MA IS NAME
*SET §IELE§ *
*gx...

P.NAME(O)= 101B 65
P.NAME(1)= 1028 66
i

I." The first parameter
you give will be
inserted here.

*MACRO DY.DISPLAY P.NAME(”1”) *J
*DY 5 +J
P.NAME{5)= 106B 70
1

Here is a useful macro to define:

magma «1
NAME: YIEW *1
BODY: 0G—

Try it when
your program.

Macros are useful in programs with records

were *3NAME: :39!
BODY:
’k

CURRENT.NAHE=bOb
CURRENT.LEFT=NIL
CURRENT.RIGHT=OOIO3ZB
* GHT +1
CURRENT.RIGHT.NAME=EISB
CURRENT.RIGHT.LEFT=NIL
CURRENT.RIGHT.RIGHT=001054B
*

.J

ND-60.158.3 EN

~0UT~MOD - .3-L0

you start the Debugger‘ You will get a good overview of

and pointers:

Y M I 9 111”. Q01" ‘4;

5302 ggaggxr «I

SYMBOLIC DEBUGGER USER GUIDE 51
COMMANDS - DETAILED DESCRIPTION

3.32 PLACE (file name) (<W>)

This command exists in the ND-1OO Debugger only. It reads a program
from a program file (:PROG) into the user's memory (background
segment). The program counter is set to the start address, the status
register to zero, and the alternative page table to 2. The current
alternative page table may be examined by LOOK-AT-REGISTER w. The
scope is set according to the start address.

If you use the optional parameter W, you get write access to your
:PROG file. Each update you do with LOOK—AT—DATA or LOOK-AT—PROGRAM
will be performed on your :PROG file at the same time. Use W with
care!

FORTRAN PROGRAM- SQRS.1
‘1’

See an example of this on page 56.

3.33 PROGRAM-INFORMATION

The command is relevant to the ND—1OO only. It lists the following
information from the program file:

start address
restart address
lower and upper bounds for the program and data
lower and upper bounds for debug information

Example:

*EnE 2251 +1FORTRAN PROGRAM. SQRsJ1
*W~START, RESTART: 0000113, 0000113
PROGRAM, DATA: 0000003 - 035065B
DEBUG—INFORMATION: 0000003 ~ 0000633
t

ND-60.158.3 EN

52 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS — DETAILED DESCRIPTION

3.34 RESERVE—TERMINAL <logica1 device number)

People who debug screen-handling programs may prefer to use two
terminals while they debug. By giving the RESERVE-TERMINAL command,
your program output will go to your tertinal. At the same time, you
can give and get input and output from the Debugger from the terminal
you reserve. To free the reserved terminal, you must log out from the
other terminal. Here is a picture to illustrate the situation:

Your terminal Nearby terminal
(number 30) (number 40)

1/0 from
*RESERV 40 «J Debugger.

Reserved
Output from until term.
your program. 30 logs out.

l__J L____]
You start the Debugger from terminal 30, reserve 40 and move there.
All input and output to/from the Debugger will be on terminal 40.

When you are finished, you return to terminal 30 and log out to free
terminal 40.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 53
COMMANDS — DETAILED DESCRIPTION

3.35 RESET-BREAKS (<program area>l

If no program area is specified, all breakpoints and step points set

with BREAK, CHECK-OUT-MODE, LOG-CALLS or LOG-LINES are re56t. A

breakpoint set by means of the BREAK-ADDRESS command is reset only if

it is the first instruction in a line.

If a program area is specified, the breakpoint at that address is
removed.

Here is how you remove all breakpoints and execute your program:

x _ ii
x N +1

Here is how you normally remove a breakpoint:

*v _ J
x e 0 *,Sfi‘ihlj
GUARD VIOLfTION AT LOOPS.12

«*DlfiBLAX
ERRCODE=O STRING I: 5
K=60 x: 1.10000000 IMAX= 10
*W+
*BREAK ERINT +3
my

You may remove specific step points by specifying a program area:

*LOQ-LLNES g «3
xIQ§_LIflg§ 22 e}
*.G_ C «.1

* T P +5
*m «1BREAK AT CALC.8
*EEgfil-BgEAKS a «J
* ET— gags CAL§,];§ALQ.]OQ «1
*éIEE

ND-60.158.3 EN

54 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.36 RUN (<program address))

If no program address is specified, execution is resumed from the
current line. RUN works exactly as CONTINUE. If you specify a program
address, control is transferred directly to that address.

If you want to start execution from line 15 in XYZ, do this:

*3:a ADQMXXZ 35) .1

Execution will continue until the breakpoint is reached or a GUARD
violation occurs. Step points will be skipped.

3.37 SCOPE (<module, routine or other itemzl

This command finds the specified module or routine and updates the
scope accordingly. The current scope status is displayed. If no module
or routine is specified, the current scope is not affected, but it is
displayed.

*W «J
PRINT.17 CALLED FROM LOOPS.14
LOOPS.1
maxim «1
ERRCODE=0 I=5 x:
STRING
K=0 INTX=O$9,223 19,225 ll
LO0PS.1
*aisem «1
ERRCODE=0 STRING I: 5
J= 20
K=60 X= 5.50000000 IHAX= 10
X

U3 .50000000

The difference between FIND—SCOPE and SCOPE is that FIND-SCOPE needs a
program address, while SCOPE has a module, routine or line number for
its parameter.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 55
COMMANDS - DETAILED DESCRIPTION

3.33 SEGMENT-INFORMATION

This command is relevant to the ND-SOO only. Information about the

currently active segments is displayed on the terminal in the form of

a table as in the example below:

*WJ
SEGMENT FILE C1 C2 NAME
PSEG 1 17773 2 O (PACK-TWO:DEBQG)SEGKENT-0001‘301

DSEG 1 177GB
LINK l 1775B 3
PSEG 26 OB (SYM-DEB)DEBUGGER

DSEG 26 OB
LINK 26 CE '
PSEG 3O OB (9ACK—REM:DOHAIN$)FORTRAN‘LIB‘HOO

DSEG 30 OB
LINK 30 GB

When the Debugger starts, a monitor call to the 500 Monitor produces a
list of all active segments. The list may contain a FORTRAN library
segment. SEGMENT-INFORMATION can be used to obtain segment numbers for

use in the ATTACH-SEGMENT command.

3.39 SET (variable) (=) (value)

This command is used to set program variables. Any variable reference
which has a defined address can be set.

For example:

*fiET XX 3 +1
*n KK.LL(37)=KK.LL(37] + 2 +}

It is possible to set an array equal to an array, for instance, a
PLANC array equal to a FORTRAN array. The truncation is as for PLANC
if the dimensions differ. A real array can be set equal to an integer
array, a packed array can be set equal to an unpacked array, and vice

versa. An array may also be set to a constant; if the array is real or

integer, then the constant will take the form of the array, as in:

*551 INIEQEE 58381 a 3 1g; +J

Here the constant is truncated to 3 before assignment. The rules for
arrays also apply to subarrays.

In addition to constants, values may be strings, bytes, or FORTRAN
characters. For example, an element of a bytes array can be set equal

to a string.

ND-60.158.3 EN

56 SYMBOLIC DEBUGGER USER GUIDE
COMMANDS - DETAILED DESCRIPTION

3.40 STACK-INSTRUCTIONS £<low>l i<high>l

This command will increase the speed at which a :PROG file executes by
up to 20%. In order to make those changes permanent, write W after you
write PLACE and your file name. You must have an ND—1OO CX computer.

Here is an example of how a chess program was made faster:

@WJ
FILE 5 : (PACK—TWO:DEBUG}CHESS:PROG;1

OPENED 33 TIMES
CREATED 09.19.24 AUGUST 23, 1984
OPENED FOR READ 10.34.07 NOVEMBER 22, 1984
OPENED FOR WRITE 10.34.07 NOVEMBER 22, 1984
66 P GES , 280576 BYTES IN FILE

@We
ND-1OO SYMBOLIC EBUGGER. VERSION D.
*W+
* AC-

1202 MI ROINSTRUCTIONS SUBSTITUTED
$311+
@EILE-SIAI §H£§§:PRQ§... t]
FILE 5 : (PACK~TWO:DEBUG)CHESS:PROG;1

OPENED 34 TIMES
CREATED 09.19.24 AUGUST 23, 1984
OPENED FOR READ 10.38.23 NOVEMBER 22, 1984
OPENED FOR WRITE 10.38.23 NOVEMBER 22, 1984
66 PAGES , 280576 BYTES IN FILE

The instructions will be adapted to the ND-1OO microinstruction set.
This program was found to execute 8% faster after the above operation
was performed.

ND—60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 57
COMMANDS - DETAILED DESCRIPTION

3.41 STEP (<count>)

You will continue to the next step point. Step points can be defined
by LOG—LINES or LOG—CALLS. The count parameter specifies the number of
steps to take.

When you reach a step point, the Debugger stops and outputs the
current routine and line. If you then type Carriage Return, you will
continue the number of steps specified in the count parameter.
Otherwise, you may give some commands and then use STEP to go to the
next step point.

Example:

*LOQ-LINEgiMAIN.119 +3
*§IE£_1Q *
MAIN.110
*

You may trace by writing:

*IQQ-IIKE; rJ
*§I£2_Q *

Your program will execute until it is finished, and every line
executed will be listed.

If you want to step instruction by instruction, use STEP —1:

*0- ll*L_§_LI§E§T‘;

5005.0000123 JPL I * 36 * «J
0345023 s * 4 * «J
0345050 LDA I * — 24 * +1
O34506B SAT 3 * +1 «
0345073 SKP DA UEQ ST * +1
0345102 JMP * 6 * +1
0345368 BSET zao SSPT *_

Each Carriage Return will advance you to the next instruction.

ND-60.158.3 EN

58 SYMBOLIC DEBUGGER USER GUIDE

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

CHAPTER 4

5mm mm PMEQS

ND-60.158.3 EN

59

60

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

SYMBOLIC DEBUGGER USER GUIDE 61
SYMBOLIC DEBUGGER PARAMETERS

4 SIHBOLILDEUGGERJABAHEIEBS

This chapter explains the arguments that can be used in command
parameters. Here is a list that contains most of the possibilities:

- Numeric constants can be expressed as decimal, octal, hexadecimal,
binary and real numbers.

— Single-character constants.

- String constants.

— Expressions involving the above types and the operators +, ~,
SHIFT, *, /, **, .(dot), IND and ADDR. In conditional expressions,
>, >=, <, (=, =, and <> are also available.

Note: Array indexing and subarray specification are also available.

— Named items, such as modules, routines, labels, lines, etc.

— Program area.

- Program address.

— Data address.

— Format specifier.

File name.

Each of the above categories will be explained on the following pages.

4.1 Numeric Constants

Constants are used in the DISPLAY and SET command, the LOOK—AT
commands, as well as in other commands. There are many ways of
expressing numeric constants. Here are 12 ways to write the number
195:

Binary notation:

Octal notation:
Decimal notation:
Floating point:
Hex notation:

11000011X

303B
195 195D

1.95E2
OC3H

ND-60.158.3 EN

2#11000011#
2#1100_0011#
8#303#

10#195#
10#1.95#E2
16#C3#

62 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

The numbers followed by X, B, D, E, or H illustrate the method of
writing a number followed by a radix specifier. The specifiers allowed
and their meanings are:

suffix number system radix
X binary numbers base 2
B octal numbers base 8
D decimal numbers base 10
E floating point base 10
H hexadecimal numbers base 16

In order to avoid conflicts with identifiers, a hexadecimal constant
must always start with a decimal digit (e g., the constant C3 must be
written as OC3H).

A real constant must contain a decimal point or the letter E. An
exponent may be specified, preceded by the letter e. A constant may be
preceded by a sign. You should not use the suffixes for real
constants.

Here are some examples:

.3 -3. 3.3 3E 335 3.E-5

The numbers 10#195#, 8#303#, etc., on page 61 were written by using
the form:

base#number#exponent

This is a feature borrowed from the programming language ADA. The #
appears as the number sign on some terminals, and as the English pound
sign (E) on others. Here is an example:

*QIEPLAY ggjggggg «J
8#100#E4= 2.62144000OOOOOOOE+OS
*DISPLAY 1008 * 8 * 8 * 8 * 8 *J
1008 * 8 X 8 * 8 * 8=262144
*

The 8 is the base, 100 is the number, and E4 is the exponent. So
8#100#E4 is equal to 100 * (108) , that is, 262144 or 10000008. Note
that the exponent is always a base 10 number.

10#123#
10#1.23#E2

These are all ways 8#173#
of expressing —+ 16#7B#
the number 123. 2#1111011#

2#111_1011#

ND~60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 63
SYMBOLIC DEBUGGER PARAMETERS

The ADA system lets you express numbers in the bases 2 to 16. Any
underline characters (_) in the number between the number signs (# #)
will be ignored. You may write 5000 million as

10#5_OOO_OOO_OOO#

This will reduce your chances of having too few or too many zeros in
your number!

ND-60.158.3 EN

64 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

4.2 Single-Character Constants

A single—character constant is denoted by a number sign (#) followed
by an ASCII character.

Here is an example from a PLANC program. I is an integer, and CODEX is
a string whose length is 40.

*W4
I=0 PTRINT=NIL PTRBYT= (NIL;O:O)
CODEX(1:40) EXP= 0.0
It E = - T = «J

*W *5
CODEX=AA
I=9O

Note that the string gets filled with A's, while the integer is
assigned the ASCII value of ”Z", which is 90.

NOTE:

The Debugger will convert all
lowercase strings to uppercase strings.

4.3 String Constants

A string constant is preceded by and terminated with an apostrophe
(‘). Embedded apostrophes must be represented by a double apostrophe
(II) .

Here is an example with embedded apostrophes:

*DlgPLAX COQEX «J
CODEX=ThiS is a testAAAAAAAAAAAAAAAAAAAAA AAA
*SET Q?DE§=‘EEb§§§§d “gug§§§“ examplg’ +
“3111*

Embedded ’quotes‘ exampleAAAAAAAAAAAAAAA
I

ND—GO 158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 65

SYMBOLIC DEBUGGER PARAMETERS

4.4 Expressions

You will mainly use expressions for the DISPLAY and BREAK command, and
the LOOK—AT commands. Expressions are formed from operators and

operands. In conditional expressions, >, <, =, and <> are also
available.

Operands may include constants (integer and real), variable names or
identifiers, array indexing, subarray specification, record component
selection and the dot notation described on page 67. Variable names

may be any name from the compiled language, i.e., FORTRAN variables,
PLANC identifiers, or COBOL identifiers with hyphens.

The available operators include +, ~, SHIFT, *, /, **, IND and ADDR.

The operator ** requires an integer exponent.

A hierarchical order of precedence exists for operators when they are
evaluated in expressions.

it

* /
SHIFT + -
ADDR IND

Note that ADDR and IND are higher than “." (dot) when referring to
records, but are lower when the dot appears after a routine name. With

operators at the same level, evaluation proceeds from left to right.

Examples:

*DIEEIEZ a * 2 + g “j

4 * 2 + 4:12
*DISPLAY 4 x 2 + 4 ** 2 «J
4 * 2 + 4 ** 2:24
*

In division, if both operands are integers, integer division is
performed:

*DIsQLAx 113 +1
1/3=0
*DISELAX 113.0 «J
113.0: 3.333333333333333E—01

IND can be used on any item that is a pointer.

ND-60.158.3 EN

66 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

Here is an example of IND and ADDR. In the following example, CURRENT
is a PLANC pointer to a record. IND lists all the elements of the
record pointed to by CURRENT. By inspecting the data address pointed
to by CURRENT, we can also see the area where the record itself is
stored.

*DrggLAY rNDgCURRsng) «3
IND(CURRENT)= NAME(1:20) RESULT: 2.80000000
LEFT=NIL RI HT=00103ZB
*D P UR +
CURRENT=OOlOlOB
*LOOK—AT~DAIA AQDRfQQBRgNT) «J
0 0000243; 0010103 520 1 +
0 0010103; 0001420 98 b
0 0010113: 0675428 28514 oh ; *1
‘1’

ADDR can be used on any item that has an address.

*DISPLAY ADDR(1) *1
ADDR(I)=010000001008
* P Y ADDR PTRBYT +
ADDR(PTRBYT)=010000001108

*LOOK-AT~DATA ADDRQQODEX) *J
D 010000000278: 000000000008 0
D 010000000333: 000000000003 0 L +1

Here is an example of how you use SHIFT:

*SET DEC = 2 «J
* s sgzsr - «3
DEC SHIFT -1=10*Dlgglai Egg sfllgl -2 rs
DEC SHIFT ~2=5
‘k

Here are examples of conditional expressions:

*BREAK QALC CURRENT <> NIL *J
*BREAK MAIE,Z§ K < Q +

ND—60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

4.5 Named Items

By named items we mean:

Modules
Routines
Labels
Lines
Variables
Identifiers
Names
Statements

In PLANC and SIMULA, a named item is specified by a sequence of

67

names

separated by dots (.), corresponding to the static Module/Routine
nesting in a program.

Here is an example from PLANC:

MODULE MOD1
INTEGER: J

INTEGER: I
LABEL: RETRY

ENDROUTINE

ROUTINE VOID,VOID: ROUT1

RETRY: I =2 ATTEMPTS

INTEGER: I
ROUTINE VOID,VOID: ROUT2

ENDROUTINE

ROUTINE VOID,VOID: ROUTS

ENDROUTINE

PROGRAM main

ENDROUTINE
ENDMODULE

ND-60.158.3 EN

68 SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

In the PLANC example, the various routines can be specified as:

MOD1.ROUT1
MOD1.ROUT2
MOD1.ROUT2.ROUT5

The two I‘s can be specified by:

MOD1.ROUT1.I and MOD1.ROUT2.I

The label RETRY can be specified by:

ROUT1.RETRY

Line 50 in the main program can be specified by:

MAIN.50

However, in order to simplify the specifications, the name search is
always done according to the "current scope". This means that if you
are in MOD1.ROUT2, you can write I, instead of MOD1.ROUT2 I.

The current scope always refers to the point where the last breakpoint
occurred (unless the scope is explicitly changed by the FIND—SCOPE or
the SCOPE command).

Consider once more the above example and assume the current scope to
be: MOD1.ROUT2, that is, inside the body of ROUT2. The name I causes
the debugger to find the I declared in ROUTZ, while ROUT1.I (or
MOD1.ROUT1.I) must be used in order to find the I declared in ROUT1.
The name J causes the debugger to search ROUTZ (with no success) and
then the entire module where the global J is found.

In FORTRAN, a $ (dollar) sign is appended by the compiler in front of
labels. For example, in:

10 GO TO 20

the label "10" is known to the debugger as "$10".

Note therefore that:

BREAK $10 breaks at label 10
while BREAK 1O breaks at line 10

FORTRAN statement functions cannot be referred to in the debugger
(since they are expanded in—line by the compiler at the point of
invocation).

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 69

SYMBOLIC DEBUGGER PARAMETERS

4.6 Program Area

We have an argument of the form:

name (< name>)

where name is a routine, module, label, or line number.

Here is an example:

PROGRAM AREA: HAIN,12 ; $00 +5
i

This specifies a program area starting at line 12 and ending at the
FORTRAN label 800. Note that the second parameter is optional. If no

last item is given, it is considered to be equal to the first.

Here is another example:

Imam mm 13g 0*

*LQ§~LI¥ES ENTER *
*m "

The program will execute until it encounters line 110 of MAIN, lines 2
to 10 of PROCINP or the label/routine called ENTER.

4.7 Program Address

A program address can be given as an octal number or in the form:

ADDR(routine-name.line-number)

Example:

*sggzs «1
M1.MPROG.1O
*nx—AI—ggogggm 1903 *1
p 010000001003: W3 =: 8.0448 s
P 010000001023; w frz R.OSOB:S i «J
*IQQK‘BE’BSQQREE a
PROGRAM ADDRESS: AQDBLLL§1_EER§QH1 «3
p 003160B: 1465478 ~12953 MG copy AD1 8L 0x ; «J
t

When We wrote ADDR(LIST_PERSON), we get the start address of the
routine LIST_PERSON.

ND-60.158.3 EN

70

4.8 Data

SYMBOLIC DEBUGGER USER GUIDE
SYMBOLIC DEBUGGER PARAMETERS

Address

Data addresses can also be given as octal numbers or in the form:

Example:

Here is
variable:

ADDR(variable)

*LQQE“BI~DEIE «J
DATA ADDRESS: AQDR§COQEX! +1
D 010000000278: 000000000003 0 +J
D 010000000338: 000000000003 0 L “i
*

an example of using a data address to guard part of a string

*IQQ'IIEES +1
*QISELAY ADDRiNAMN) «J
ADDR(NA)=(000266B;0:7)
*QHARQ"
ITEM on ADDRESS: 250g «J
*M"GUARD VIOLATION AT MAIN.62
3!

Here is another example;

*LOOK-AI- DATA ganggcuggguz,uagg) J
D 0010103: 0001428 98 b J
WJ

*LOOK"AI DAIA ADQBICURRENT. NAMEi 5 *J
D 0010108: 000104B 68 D
0 0010118: O42502B 17?30 BB
0 0010128: 052507B 21831 00
D 0010138: 043505B 18245 GE
0 0010143: 0510403 21024 R L 0
X

ND-6O 158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 71
SYMBOLIC DEBUGGER PARAMETERS

4.9 Format Specifier

A format specifier (also called a radix specifier) is one or more of
the following letters:

0 — Octal A — ASCII
D - Decimal F — Floating point
H — Hexadecimal I — Instruction (disassembly)

Here is an example:

* T - s L Y «3
* ISP AY 8 1 1 «
8#101#=65 41H 1018
’X

4.10 File Name

The file name will not be checked to see if the syntax is correct. A
file name is terminated by Carriage Return, space, comma, or
semicolon, If the file is already open, the octal file number can be
used in place of the file name (octal number without B).

@ogzu-Errr Igu2;nAzA E «J
FILE NUMBER IS 000 03
@Wt

FILE NUMBER 000100 : (PACK-ONE:SCRATCH)SCRATCH05:DATA;1
FILE NUKBER 000101 : (PACK-TWO:DEBUG)EX:SYMB;1
FILE NUMBER 000102 : (PACK—TWO:DEBUG)FORMATzTEXT;1
FILE NUMBER 000103 : (PACK-TWO:DEBUG)TEMP:DATA;1

@nrgugcgg-igg 1351 «1
FORTRAN PR GRAN. CONVERT.1 «1
*DIgELAZ
ERRCODE=0 NAMN DEC: 0 VALUE: 0COUNTER=O 1:0 BITS(1:16)
*LOQK"~DATA angggunuul 29 193 «J
*LOQK—«DATA ADDB(§II§) 15 TESI;QAIA «J
t

In the above example, output is sent to file number 103 (TEMP DATA)
and to TEST:DATA. The numbers 20 and 16 indicate the number of
addresses that are written.

ND-60.158.3 EN

72 SYMBOLIC DEBUGGER USER GUIDE

ND—60 158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

CHAPTER 5

EXMES

ND-60.158.3 EN

73

74 SYMBOLIC DEBUGGER USER GUIDE

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

5 HAHBLES

5.1 An Example Usinq FORTRAN-100

Below is a small FORTRAN program which will be used as an example. All
the program does is to write the numbers one to six and their squares.

ND—100/NORD-1O ANSI 77 FORTRAN COMPILER - 2030538
9:23 3 DEC 1984
SOURCE FILE: TEST:SYMB

1* PROGRAM SQRS
2* INTEGER I
3* REAL R
4* no 10 I = 1,6
5* R = REAL(I)*I
6* WRITE (1.'(X,Is,4X,E12.2)')I,R
7* 10 CONTINUE
8* END

——————————————————————————————— CROSS REFERENCE —————-—~~—--——

The displacement of the data
relative to the B register.

l
I INTEGER* 2 VARIABLE ~172 2 4
REAL REAL * 6 INTRINSIC 5
R REAL * 6 VARIABLE —171 3 5
SQRS PROGRAM 1
$10 STATEMENT LABEL AT 7 4

I
The lines in your
program where the
variables or
references appear.

1 SQRS
2 1 REAL

ND-60.158.3 EN

76

@QEBUQQE «3
NDm100 SYMBOL C DEBUGGER.

*ELA§£_IE§I “
FORTRAN PROGRAT. SQRS.1

* UN «j
1 1.00
2 4.00
3 9.00

BREAK AT 5 RS.7
*DISBLA *
ERRCODE=O I=i
*BREAK $10 I 2 5 +

xBflE «j
4 16.00
5 25.00
6 36.00

CONDITIONAL BREAK AT SQRS.7
* I A «1
ERRCOD =0 I=6
* N +

SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

VERSION D.

This will break the third
time label 10 is found.

R= 9.00000000

This will break at label 10
when I is greater than 5.

R: 3.60000000E+01

PROGRAM TERMINATED AT SQRS.8
*EXJJ.’ «J

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 77
EXAMPLES

5.2 A PLANC Example

Here is the program listing for PLANC-MYPROG SYMB:

3 MODULE M1
2 INTEGER ARRAY : stack (0:100)
3 PROGRAM : myprog
4 INTEGER 1 i, k, m, sum
5 INISTACK stack
6 1 =: i
7 2 = k
8 i + k = k =: m
9 k + m = sum

10 IF sum > (m + k) THEN
11 output(1,“,'ERROR')
12 ELSE
13 output(1,“,sum)
14 ENDIF
1S OUTPUT(1,",'End of myprog’)
16 ENDROUTINE
17 ENDMODULE
18 $EOF

ND-60.158.3 EN

78 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

Here is an example of how you could debug it on the NDHSOO:

@NB—gQQ +3
ND~SOO MONITOR VERSI N C 82.11.22 / 82.12.16
MOWW *
PLANC PROGRAM. M2.MYPR00.3
«n~L;gss.t, «J
* - _ .J*QEECK CUE non;
MARIE

*300 +
BREAK AT M 9000.9
*fllfiBLAl +1:1 J sum=o
* R ._

*300 +36
BREAK AT M PROG.15
*W1:1 SUM=6
04203—319523 500121503) «1
n 010000000443: 000000000068
0 010000000300: 010000000043
* ..

MYPROG.11 12 16

*gxzx +1

x: 3 M: 3

= 3 M= 3
6

134217732 L «J

Since CHECK-OUT”MODE was
used, only the lines not
executed are listed.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 79
EXAMPLES

5.3 Another Example in PLANC

Here is a more substantial program; it sorts an array quickly.

The program that follows consists of two separate modules in two
files. It was compiled and loaded as follows:

@Emg—mo +1
* G- o E +1
*QOMEILE §OR$EB 593:33;Llsz SQREER +J
@ELbflfllQ t* - J
*QQMPILE IESISQRI IEfiIgggI;L1§I $E§ISQ§I «J
@DELEI22ELL§:§QBI:EXAMRLE;ERQ§ *
@BRE-LINKER
Brl: EBQfi-EILE ”SO¥T—EXA§£L§“ «J
Brl: LQAD figRTEfi +
FREE: P 000156-1777? DEBUG 000300

Brl: W +
FREE: P 002404~177777 DEBUG 000515

Brl: WJ
FREE: P 005 60-177777 DEBUG 000515

Brl: Em *

Note that if you had both modules on one file and compiled them, you
would get different line numbers than in this example.

ND-60.158.3 EN

80

Here is
A

m
q

m
w

a
w

M
—

n
m

h
h

h
b

b
v
h

b
b

b
v
h

w
m

w
w

w
w

w
w

w
w

k
)
N

N
N

N
N

N
N

N
N

w
—

t-
A

—
t—

tm
h

—
A

—
A

O
m

m
u

m
m

u
w

N
—

a
O

m
m

q
m

m
b

w
w

-
J
s
o

w
m

q
m

a
w

w
d

o
m

m
u

m
m

k
w

M
a

SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

SORTERtLIST.

MODULE sorter
EXPORT quiksort
ROUTINE VOID,VOID (INTEGER2 ARRAY) : quiksort(arr)
INTEGER: low, high, marker, top, temp
% set up the boundaries of the ope'ation
MAXINDEX(arr,1) =2 top
MININDEX1arr,1) =z marker
% marker is the one to place in position

continue with the laxgest part in this stack element
DO WHILE top-marker > O 2 until no more to do
search for position into which to put the marker

marker + 1 =2 low; top =: high
set search limits

DO
find the first in the upper part
which belongs in the lower part

D0 WHILE arr(marker) < arr(high)
high - 1 =; high

ENDDO
find the first in the lower part
which should be in the upper part

DO WHILE arr(marker) > arr(low)
low + 1 =: low

ENDDO
might have found right position now

VHILE low < high
reverse the elements found in upper and lower parts

arr(high)=:temp; arr(low)=:arr(high); temp =:arr(low)
and continue the search on reduced parts

low + 1 low
high - 1 high

ENDDO
now put the marker in the middle position
isolated by low and high

arr(marker) =: temp; arrihigh) =2 arr<marker);
temp =: arr(hiqh)

stack space is saved by recureing
for the larger of the parts only

IF highwmarker < top~high THEN
quiksort(arr(marker : high - 1))
high + 1 =: marker

ELSE
high — 1 =: top
quiksort(arr(high + 1 : top))

ENDIF
% repeat the sorting on the reduced array

ENDDO
ENDROUTINE
ENBMODULE
$EOF

a\°
o\°

o\°
c"

o‘°
0‘9

o\°
uh“

“\a
0‘9

M
II

o"
o\°

n\°
69

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 81
EXAMPLES

Here is the other module from the file TESTSORT LIST.

w
m

u
m

m
p

w
m
fl

17
18
19
20
21
22
23
24
25
26
27
28
29

MODULE testsort
IMPORT (ROUTINE VOID,VOID(INTEGER2 ARRAY) : quiksort)
INTEGER ARRAY: stack(0:1000)
INTEGER: max := 10

% length of array to sort
INTEGER: seed := 579, mult := 5181

% random number generator

PROGRAM: main
INTEGERZ ARRAY POINTER: iap
INTEGER: i

INISTACK stack
OUTPUT(1,'A‘,’$START VALUES$‘)
NEW INTEGERZ ARRAY(O:max) =: iap
FOR 1 IN IND€iap) DO

% set random values in array
seed * mult 2: seed =: IND(iap)(i)
ENDFOR
FOR i IN IND(iap) DO
OUTPUT(1,'IE‘,IND(iap)(i))
ENDFOR
OUTPUT(1,‘A’,'$SORTED VALUES$')
quiksort(IND(iap))
FOR 1 IN IND(iap) DO
OUTPGT(1,’16',IND(iap)(I))
ENDFOR

ENDROUTINE
ENDMODULE
$EOF

By writing $EOF, you do not need to give the EXIT command to the PLANC
compiler.

ND—60.158.3 EN

82

@nm' «3
1t _
ND-100 SYMBOLIC DEBUGEER.

4.

SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

VERSION D.

PLANE PROGRAM. TESTSORT.MAIN.9
*SEI SEED = 1 *1]

t «J*§§§A§TQQLK§QEE

START VALUES
10 100 1000 10000-31072 16960—27008 "7936-13824 -7168 ’6144

SORTED VALUES

BREAK AT QUIKS?RT.6
*DISPLAY AER *
ARR=1O 100 1000 10000 ~31072 16960 —27008 ~7936 ~13824 -7168 -6144

*MJ
BREAK AT QUIKSORT.Y

.'k _

We see that the correct
array is being used.

QUIKSORT.3 CALLED FROM QUIKSORT.44
QUIKSORT.3 CALLED FROM MAIN.23
MAIN.9

*QISELAX 533 +1
ARR:
*DISPLAY AQQB(Agg) +1
ADDR<ARR>=<0002763;7:5)

*BREAK-RETURE +J

BREAK AT QUIKSORT.46

mm ,1
HIGH=6 ARR(O:10)
LOW=7 MARKER=0

We see that QUIKSORT is a
recursive routine.

There are no elements in
the array because the
lower bound of 7 is greater
than the upper bound of 5.

We break when we leave the
routine QUIKSORT.

TEMP: 10 TOP: 5

ND—60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 83
EXAMPLES

*m J
Since the bounds of the array were wrong in the beginning of the
routine QUIKSORT, we investigate the code immediately before QUIKSORT
is called and find that lines 40 and 41 were transposed. They should
have appeared in the order:

quiksort(arr(high + 1 top))
high — 1 =: top

ND-6O 158.3 EN

84 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

5.4 Using a File as a Segment

On the ND—SOO, you can achieve faster 1/0 by opening a file as a

segment.

In the following example a file is opened as a segment, and the

numbers 1 to 2560 are written to it:

PROGRAM FILESEG
C OPEN FILE AS SEGfiENT

INTEGER HEM (2560)
WRITE(1,*) ’WILL ATTEMPT TO OPEN FISH:DATA FOR UK ACCESS‘
OPEN (13, FILE='FISH:DATA’, ACCESS='WX',MOD£=‘SEGMENT‘)

DO 2 K = 1; 2560
MEM{K) = K
WRITE(13,*) MEM(K)

2 CONTINUE
DO 3 K = 1, 10

WHITE (1,*) K, MEM(K)
3 CONTINUE

CLOSE(13)
WRITE (1,*) ‘END OF PROGRAM‘
END

No special procedures were needed to load the above program:

W 1@ND *J_ +1

fiELEASE-DOMAIN TEST I
DELEIE~QOflAIN TEST
fiET—DOMAIN ”T§?I" +
LQAQ_IE§Illl *

END e

ND~60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 85
EXAMPLES

5.5 Using a File as a Segment for a COMMON Area

The following program uses the monitor call FSCNT to connect a file as
a segment. It uses a common area that is placed on the file connected
as a segment. Thus every time the common area is accessed, that

segment will be accessed.

If you debug the program below and give the command:

*LOOK—AT-DATA gogggl) «J

You will see that the address starts with 07 because the file uses
segment 7.

PROGRAM TESTSEG
INTEGER ACC, SEGNO, IOPENF
COMMON TEKST
CHARACTER‘1O TEKST(20,100)
IOPENF = 10
SEGNO = 7
WRITE(1,*) 'WILL ATTEMPT TO OPEN FISHzDATA FOR WX ACCESS'

C The file FISH:DATA must already exist, be large enough
C to hold the array TEKST, and contain some text.

OPEN(IOPENF,FILE=’FISH:DATA', ACCESS='WX‘)
C Get SINTRAN file number related to IOPENF.

I = LDN(IOPENF)
C You must be able to read from and write to the segment.

ACC = 2
C Don't use 0, 1, 2, 3, 26D, or 30D as SEGNO if you will debug,

CALL FSCNT(I,SEGNO,ACC,IACTNO)
C Remember to use N11: COMMON—SEGMENT~NUMBER 7,, in loading.

WRITE(3,*) 'The following segment has been connected '
WRITE(1,*) IACTNO
WRITE(1,*)
DO 10 J = 1, 30

DO 20 K = I, 100, 10
TEKST(J,K) = ’AAAAAAAAA '

20 CONTINUE
1O CONTINUE

CALL FSDCNT(I,SEGNO)
CLOSE(IOPENF)
WRITE (1,*) 'END OF PROGRAM'
END

ND-60.158 3 EN

86 SYMBOLIC DEBUGGER USER GUIDE
EXAMPLES

The above program can be loaded as follows:

@CREATE-FILE ¥EST:NRF Q +1
@N ORT A +

W+J
COMPIL? TEST,TERMINAL.I§§ *J
Elm
@ND LLQKA§E~LOAD§ «3

- — — FF +1W3W1
n—pguiiu "TEST” «I
QQMMQE~SEGMENT~NUMB§B 7 +1

N- G N — EN " EST~SE " «J
LQAD_IE§I¢++
LIST—$EQ IEST.... «3
fl."Emu}@

Since segment 7 was specified in the monitor call FSCNT, segment 7
must also be specified in the COMMON—SEGMENT-NUMBER example.

If you are going to debug a program that uses a COMMON segment, we
suggest that you do not use the following common segment numbers:

0, 1, 2, 3, 26D, and 30D

That is because they are being used by the Debugger or the FORTRAN
library.

ND~60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

CHAPTER 6

MESSAGES

ND-60.158.3 EN

87

88

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE

SYMBOLIC DEBUGGER USER GUIDE 89
ERROR MESSAGES

6 ERRDR_HESSAEES

6.1 Error Messages Common to the ND-100 and the ND-SOO Versions

Here are the error messages and what they mean:

AMBIGUOUS COMMAND

Self—explanatory.

ASSEMBLER ERROR

Followed by an assembler error message. This can occur
when using the CODE subcommand of LOOK-AT.

ATTEMPT TO DIVIDE BY ZERO

Self—explanatory.

B REGISTER NOT INITIALISED

Unable to LOOK—AT~STACK because the B—register is not
well—defined.

BAD EXPRESSION

Syntax error in expression.

BAD LINE NUMBER

Syntax error in specified line number.

BAD MODULE/ENDMODULE NESTING

Error in the debug information generated by the compiler.

BAD RECORD/ENDRECORD NESTING

Error in the debug information generated by the compiler.

BAD ROUTINE/ENDROUTINE NESTING

Error in the debug information generated by the compiler.

ND-60.158.3 EN

9O SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

BAD STRING CONSTANT

Self~explanatory.

COMMAND LINE/MACRO BUFFER FULL

The command line is too long, or too many macros are
defined. This message may also occur during macro expansion.

COMPONENT NOT IN SPECIFIED RECORD

Self-explanatory.

ERROR; n

Error number n from SINTRAN III or ND-SOO Monitor. There
is no error text for this error number.

ILLEGAL DEBUG ELEMENT TYPE; DEBUG TABLE ADDRESS: xxxxxxB

Error in the debug information generated by the compiler.

ILLEGAL DEBUG TABLE ADDRESS (xxxxxx) IN "FIND"

Internal consistency error in the Debugger.

ILLEGAL TERMINATION

Illegal termination of the command line.
You have probably used the wrong type or number of
parameters.

ILLEGAL TERMINATION OF ARGUMENT

Illegal termination of a command parameter.

INDEX "n“ IS OUTSIDE ARRAY

Index outside range in array access.

INDIRECTION NOT LEGAL

Indirection in LOOK—AT not legal for this step size.

LIMITS NOT LEGAL FOR THIS TYPE

Can occur in the GUARD command; low:high is not legal for
this item type.

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 91
ERROR MESSAGES

LINE TRANSLATION TABLE FULL

Too many areas specified in ALIGN-LISTING.

LINK INFORMATION INACCESSIBLE

Can occur with the BREAK-RETURN command when no
well-defined return address can be found.

MODULES/ROUTINES TOO DEEPLY NESTED

Too deep nesting of modules and/or routines in the
debug information.

NO DEBUG INFORMATION AVAILABLE

You probably did not compile your program, or a part of it,
in debug mode. Otherwise, you may have forgotten to PLACE a
:PROG.

NO SUCH COMMAND

NO SUCH REGISTER NAME

NOT A VARIANT OF THE SPECIFIED RECORD

The three above error messages are selfwexplanatory.

NOT FOUND

Usually preceded by a name, e.g., “SUBR” NOT FOUND.
You may be in a different module or routine than you
think you are.

ROUTINE INACTIVE

Routine inactive (no current stack frame allocated).

STRING CONSTANT TOO LONG

Self~explanatory.

TOO MANY INDICES

Too many indexes in the array reference.

USE LOG-CALLS OR LOG-LINES

This command requires the use of LOG-CALLS or LOG—LINES.
Remember CHECK—OUT-MODE can only be used after you have
specified LOG~CALLS or LOG-LINES. On the ND-100, GUARD can
only be used after LOG—CALLS or LOG—LINES.

ND-60.158.3 EN

92 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

WRONG ENUMERATION TYPE NESTING

Error in the debug information generated by the compiler.

WRONG TYPE

Attempt to convert between incompatible types.

WRONG TYPE OR INACCESSIBLE

Item is of wrong type (e.g., REAL used as an array index)

or inaccessible at this point in the program (e g., local
variable in inactive routine).

6.2 Error Messages Which Apply to the ND-100 Version

DATA AT DATA ADDRESS XXXXXXB IS NOT STORED ON THE FROG-FILE

Attempt to modify a part of the data area that is not

stored on the :PROG file. This can only happen when PLACE

<file>,W has been used.

DATA AT PROGRAM ADDRESS XXXXXXB IS NOT STORED ON THE PROG~FILE

Attempt to modify a part of the program that is not
stored on the :PROG file. Can only be happen when PLACE

<fi1e),W has been used,

NO MORE DATA SEGMENTS AVAILABLE

Too many Debuggers are active at the same time. Each

active Debugger uses one data segment. The maximum number

of active Debuggers is specified when your SINTRAN III is
generated. You should use the EXIT command to leave the

Debugger. If you use the ESCAPE key, the data segment may

not be released for use by others.

NO PROGRAM FILE SPECIFIED

You need to use the PLACE command to read in a program file.

6.3 Error Messages Which Apply to the ND-SOO Version

AMBIGUOUS TRAP CONDITION

ATTEMPT TO ACCESS NONEXISTENT DATA SEGMENT

ATTEMPT TO ACCESS NONEXISTENT DEBUG INFORMATION

ATTEMPT TO ACCESS NONEXISTENT PROGRAM SEGMENT

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE 93
ERROR MESSAGES

ATTEMPT TO MODIFY READ-ONLY SEGMENT

ATTEMPT TO SET BREAKPOINT ON READ-ONLY SEGMENT

The above 6 messages are self—explanatory.

BAD LINE DEBUG ELEMENT; DEBUG TABLE ADDRESS: XXXXXXXXXXXB

Error in the debug information generated by the compiler.

BAD OPERAND CODE; DEBUG TABLE ADDRESS: XXXXXXXXXXXB

Error in the debug information generated by the compiler.

ERROR IN MONITOR CALL

Error message from the ND-BOO Monitor. Use the
AUTOMATIC-ERROR-MESSAGE command in the ND—SOO Monitor
if further information is required.

ILLEGAL PROGRAM ADDRESS

Access attempted beyond the available address space.

IMPOSSIBLE TO INVOKE ROUTINE; STACK OVERFLOW

INVOKE command not executed; not enough room left in the
stack.

NO DSEG-FILE OPENED 0R CONNECTED FOR SEGMENT nn

Self-explanatory.

NO LINK FILE OPENED OR CONNECTED FOR SEGMENT nn

Self—explanatory.

NO PSEG-FILE OPEN OR CONNECTED FOR SEGMENT nn

Self-explanatory.

NO SUCH TRAP CONDITION

Self-explanatory.

OUTSIDE DATA SEGMENT

Attempt to access beyond the available address space (on
an existing data segment).

ND—60.158.3 EN

94 SYMBOLIC DEBUGGER USER GUIDE
ERROR MESSAGES

OUTSIDE PROGRAM SEGMENT

Attempt to access beyond the available address space (on

an existing program segment).

PROGRAMMED-TRAP FAILED (NOT ENABLED?)

The Debugger is unable to start your program because

a programmed trap has been disabled or is not working.

SEGMENT NUMBER MUST BE IN THE RANGE 0:31

Self—explanatory.

THIS SINTRAN III COMMAND IS NOT ALLOWED FROM THE ND-SOO

Self-explanatory.

TOO MANY FILES OPENED

The Debugger is unable to open all the files needed.

6.4 Note on Error Returns on the ND-1OO

The ND-100 (if started by the Symbolic Debugger) will enter the

Debugger when it stops, for instance if the stack overflows. The

following messages may occur;

PROGRAM TERMINATED AT current scope

ASSERT VIOLATION AT current scope

STACK OVERFLOW AT current scope

INDEX RANGE ERROR AT current scope

WRONG NO. OF PARAMETERS AT current scope

ND-60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
Index

Index

A format (ASCII)
abbreviation address
ACTIVE—ROUTINES
ADDR

example

address
abbreviation
data
program .

align routine
ALIGN-LISTING . .
alternative page table
apostrophe in addresses
ASCII format
ATTACH-SEGMENT
break

(see step point)
condition
conditional (example)
count
label
line number
multiple (see step point)
see also GUARD

BREAK—ADDRESS
BREAK-RETURN
breakpoint

multiple (see step point)
BRP file
B register
change

data address
program address

CHECK-OUT-MODE . .
after LOG-CALLS
after LOG~LINES .
before BREAK
before STEP .
example

common area .
COMPARE—DATA
COMPARE-PROGRAM .
compile

example
constant

ADA form
numeric
real
single-character
string . . .
with exponent

ND-60.158.3 EN

71.
46.
19.
61,
14,
82.

46.
70.
69.
20.
20.
40,
46.
71.
20.
21.
14.
21.
76.
21.
68.
68.
14,
25.
22.
22.
11.
14,
10.
13,

41.
26,
24.
21,
28,
24.
24.
21,
85.
25.
26.

12.
61.
62.
61.
62.
64.
64.
62.

66.
66,

47,

69.

69.

75.

41,

37.
39.

39,

69,

51.

46,

78.

95

78,

51.

96

CONTINUE (see also RUN)
count using 1 or —1
CROSS-REFERENCE .

D format (decimal)
data address
decimal format
decimal format
default file type .
disassembly .
displacement
DISPLAY

arrays
expressions
IND .
pointer
record
values . . .
without parameters

DOUBLE-FLOATING example .

DUMP-LOG
example .

ENABLED-TRAPS .
example

compile and load
program in FORTRAN
program in PLANC

EXIT . .
expressions
F format (floating
file

:BRF
:NRF

FIND-SCOPE
FLOATING

example .
point format

format . . .
(ASCII)
(decimal)
(floating point
(hexadecimal)
(instruction (disassembly))
(octal)

FORMATS-DISPLAY .
FORMATS—LOOK-AT .

example
FORTRAN example .
FSCNT example .
GUARD

example
range permitted .

H format (hexadecimal)

O
H

IE
'T

J
U

IV

ND—60.158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
Index

26.
57.
12.
71.
14, 70.
71.
14.

71.
13, 75.
27.
15.
14.
27.
27.
50.
14.
14.
44.
28.
21, 37-39.
29.

12.
12, 75.
23, 67, 77, 79.
29.

. 65.
71.

10.
. 10.

29.

44.
71.
71.
71.
71.
71.
71.
71.
71.
14, 30.
30.
40, 43-45, 48.
12, 75.
85.
31.
25, 31, 53, 70.
31.
71.

SYMBOLIC DEBUGGER USER GUIDE
Index

HELP
hexadecimal format
H format (hexadecimal)
I format (instruction (disassembly))
INCLUDE-COMMANDS
IND

example
inspect

data address
program address

instruction format (disassembly))
INTEGER* 2
lNVOKE
label .
library
LINKAGE-LOADE
load

example (ND-100)
example (ND—500)

LOCAL-TRAP-DISABLE
LOCAL-TRAP—ENABLE .
LOG~CALLS
LOG-LINES

advice
example with CHECK-OUT—MODE .
example with DUMP-LOG .
example with GUARD
example with STEP
reset
with CHECK—OUT-MODE .
with CUARD
with STEP

LOOK-AT~DATA .
LOOK-AT-PROGRAM .

example .
LOOK-AT-REGISTER
LOOK-AT-STACK
MACRO

parameter
memory area . .
multiple step points
NRF file . . .
numbers

binary
decimal
hexadecimal
octal .

O format (octal)
octal format
0 format (octal)
patch

data

ND-60.158.3 EN

32.
14,
14.
71.
33.
61,
66.

14.
26,
71.
13.
34.
13,
10,
10.
10.
10,
10.
35.
36.
37.
38.
39.
28,
38.
25,

53.
24.
39.
39.
14,

26,
47.
48.
49.
50.
69.
14,
10.

62.
62.
62.
62.
71.
14,
14.

41.

71.

66.

69.

68.
11.

39, 53.
57.

40, 43.

97

98

program .
permitted range
PLACE .

to patch :PROG file
PLANC example

pointer
display .
example

precedence
program

address
area
execution improvement (ND-100)
memory . .

PROGRAM- INFORMATION .
radix specifier
range in GUARD
Register B
RESERVE- TERMINAL
RESET BREAKS
RUN

example
SCOPE .
segment number .
SEGMENT— INFORMATION .
SET
SHIFT .

example
specifier

format
radix .

STACK INSTRUCTIONS
STEP

point .
step point multiple
string

constant
GUARD .

trace
undo

GUARD .
LOG—LINES

ND-60 158.3 EN

SYMBOLIC DEBUGGER USER GUIDE
Index

41, 46, 51, 56.
31.
51.
51, 56.
22, 23, 67, 77,

27.
66.
65.

69.
69.
56.
69.
51.
62, 71.
31.
1 , 75.
52.
15, 53.
11, 54.
54.
54.
46.
55.

61.
66.

71.
62.
56.
11, 14, 57.
11.
14, 69.

64.
70.
57.

31.
53.

m

NOTICE The information in this manual is subject to
change without notice. Norsk Data A.S assumes
no responsibility for any errors that may
appear in this manual. Norsk Data A.S assumes
no responsibility for the use or reliability
of its software on equipment that is not
furnished or supported by Norsk Data A.S.

This manual is protected by copyright. It may
not be photocopied, reproduced or translated
without the prior consent of Norsk Data A.S.

Copyright ©1985 by Norsk Data A.S

UPDA TING

PRINTING RECORD

PRINTING NOTES

02.82 Version 01

02.83 Version 02

03.85 Version 3

Manual nam
Manual num
Date:

e: Symbolic Debugger User Guide
ber: ND—BO.158.3 EN

03.85

Manuals can be updated in two ways, new
versions and revisions. New versions consist
of a completely new manual which replaces the
old one. New versions incorporate all
revisions since the previous version.
Revisions consist of one or more single pages
to be merged into the manual by the user,
each revised page being listed on the new
printing record sent out with the revision.
The old printing record should be replaced by
the new one.

New versions and revisions are announced in
the ND Customer Support Information and can
be ordered from the address below.

The reader's comments form at the back of
this manual can be used both to report
errors in the manual and to give an
evaluation of the manual. Both detailed and
general comments are welcome.

All types of inquiry and requests for
documentation should be sent to the local ND
office, or (in Norway) to:

Norsk Data A.S
Graphic Center
P.0. Box 25, Bogerud
N—0621 Oslo 6, Norway

SEND US YOUR COMMENTS!

Manual name: Syubolic Debugger User Guido

What problems do you have? (use extra pages if needed)

Are you frustrated because of unclear
information in our manuals? Do you have
trouble finding things? Why don't you join
the Reader's Club and send us a note? You
will receive a membership card — and an
answer to your comments.

Please let us know if you:
- find errors
- cannot understand information
- cannot find information
- find needless information.

Do you think we could improve our manuals by
rearranging the contents? You could also tell
us if you like the manual.

Send to: Norsk Data A.S
Documentation Department
P.0. Box 25, Bogerud
N-0621 Oslo 6
Norway

NOTE!

This form is primarily for documentation
errors. Software and system errors should
be reported on Customer System Reports.

Manual number: _—_———ND'50'158'3 EN

Do you have suggestions for improving this manual?

Your name: Date:

Company: Position:

Address:

What are you using this manual for?

Norsk Data's answer will be found on the —>
reverse side.

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
PO. Box 25, Bogerud
0621 Os|06, Norway

Systems that put people first

NORSK DATA A.S OLAF HELSETS VEI 5 PO. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 - 29 54 00 - TELEX: 18284 NDN

