
300
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
%

0
Q

$
Q

Q
Q

®
®

0
®

0
0

0
0

0
0

0
0

0
0

0
3

0
0

0
0

9
G

0
0

0
0

ACCESS
User Guide

ND—60.153.03

ACCESfi
USer Guide

RAD-60.15333

NOHCE

The information in this document is subject to change without notice Norsk Data
AS assumes no responsibility for any errors that may appear in this document
Norsk Data AS assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS.

The information described in this document is protected by copyright It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright © 1984 by Norsk Data AS

This manual is in loose leaf form for ease of updating Old pages may be
removed and new pages easily inserted if the manual is reVised,

The loose leaf form also allows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders With 4 rings corre
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm. Use the order form below.

The manual may also be placed in a plastic cover (8). This cover is more suitable
for manuals of less than 100 pages than for large manuals, Plastic covers may
also be ordered belowr

3%
”E _, _ A ‘1 9 w— _. 'l

“X NCRSK DATA As Ncasx DATA A5

m := :3“a rm. M “1391“
fig m5; :: ‘3:

new 9

A Ring Binder 8 Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Norsk Data A.S

Documentation Department
PO, Box 25, Bogerud
Oslo 6, Norway

ORDER FDR

l would like to order

....... Ring Binders, 30 mm, at nkr 20,- per binder

....... Ring Binders, 40 mm, at nkr 25,— per binder

....... Plastic Covers at nkr 10,~ per cover

Name ..
Company ..
Address

PRINTING RECORD

Printing Notes

11/82 ersion 01

01/83 ersion 02
09 ersion 03

ACCESS User Guide
Publ.No. ND-60.153.03
September 1984

0:3. 000 0000.00

3.... 3:: 33:33:33: NORSK DATA A.S
:::’::::: :::...:33 PO. Box 25, Bogerud
:3: ’33: 33:33:? 0621 Oslo 6, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
More single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

ND-60.153.03

W

DIALOGUE DIALOGUE is Norsk Data's total concept
in data base management. It has the
complete set of tools and utilities for:
a high performance, easy expansion, and

redefinition of a data base;
9 creating a tailored user interface;
0 creating and maintaining applications

easily and efficiently;
a generating advanced reports;
0 common data dictionary information

for easy coordination and maintenance
of the data base and applications.

The modules of DIALOGUE are described below:

USER ENVIRONMENT

4TH GENERATION
LANGUAGE

REPORT GENERATOR

QUERY LANGUAGE

APPLICATION
BUILDING AND
MAINTENANCE

DAIABASE
MANAGEMENT

UK is an integrated part of the SINTRAN
operating system. It can be used
together with DIALOGUE to create a
tailormade, individual interface for the
ND system.

UNIQUE is a tool for application
development. It can be used to develop
screen pictures and specify transactions
directly on the screen. It saves about
90% of development time and maintenance
resources.

RG allows the definition of advanced
reports in an easy manner by drawing the
desired layout on the screen.

ACCESS is a tool which can be used to
look at data base information in terms
of tables. It is suitable for online
use.

ABM can be used to make demanding
transaction systems. It is used inter—
actively with simple directives. It
saves about 50% of development time and
90% of maintenance resources.

SIBAS is a full CODASYL data base
management system. Its features include
high performance, as well as easy
expansion and redefinition of database.
It is a flexible and a highly secure
system, well suited for distributed
processing environments.

ND.6015303

vfi

Ereface:

THE PRODUCT

This user guide describes ACCESS, version D. The product is registered
with ND—number ND 101850.

ACCESS can be used by anyone who is interested in using a computer
based "filing system" which can contain large amounts of data.

The system requires a person called the ACCESS supervisor who will
have the main responsibility for the system.

THE READER

It is not necessary for the user to have any background in data
processing. This manual gives sufficient information for using the
system.

THE USER GUIDE

ACCESS consists of three parts:

e The ACCESS query and transaction system

0 The DDI process which gives information on data to the query and
transaction system

a The DBA program which administrates the whole system

This manual describes those parts of ACCESS which the ordinary user
comes into contact with. It explains how to use data bases and files.

Chapter 1 is a general introduction to data bases and the use of
ACCESS.

Chapter 2 explains some elementary things such as logging in.

Chapters 3 to 8 give a detailed description of the different functions
in ACCESS, illustrated by examples.

The examples in this manual use an example data base delivered with
the system. If your installation has not had earlier versions of
ACCESS, and no one has changed the data base, the examples should work
as shown. Otherwise the results may be different.

ND~60.153.03

WH

The DEA program is described in the ACCESS DBA Manual, ND—30.022.03.
It describes how data bases, users, presentation and storage formats
are defined. The manual is intended for the ACCESS supervisor, and
need not be read by ordinary users.

NEW FEATURES ANB CHANGES IN ACCESS

The D version of ACCESS has the following new features:

0 More than one table may be used in one query (see section 3.7.10).

0 Queries are stored on a single query library, instead of several
:TRAN files (see section 8.3). Old queries must be converted to
the new format (see section 8.6).

0 Tables, data bases and users may be created from ACCESS; and
table, user and access descriptions modified (see the DBA manual).

0 Menu selection of tables and data bases (see section 3.3).

a User defined menus (see chapters 2 and 7).

o BETWEEN has been replaced by the more general function IN (see
page 47).

e The condition box (see section 3.7.12).

0 The command **CLEAR—QUERY (see section 8.12).

In addition, the following changes have been made:

a Text used in a query must now always be enclosed in single quotes,
even if it contains no blanks.

0 When the update operator is used to replace a value with a new
one, an equals sign must be used. If the equals sign is omitted,
the given value will be added to the old one, instead of replacing
it.

The following command names have been simplified:

01d command name New command name

*RUN~STORED—QUERY *RUN—QUERY
**NEW*TABLE-SKELETON **NEW*TABLE
**DISPLAY*DATABASE—NAME **DATABASE—NAME
***WRITE—WITHOUT—SKELETON ***WRITE~WITHOUT-FRAME
***WRITE-NOTIS~MACRO*CALL ***WRITE-MACRO~CALL
***RUN-AGAINST-RESULT M*REFINE-RESULT

All major changes have been marked with a vertical line in the margin.

ND~60.153.03

T A B L E O F C 0 N T E N T S

Section Page

1 INTRODUCTION TO ACCESS . 1

1.1 What can ACCESS be used for? 3
1.2 Data bases and storage structure . . 3
1.3 An example from the travel agency Sunseeker Ltd. 6
1.4 How is ACCESS used? 8
1.4.1 How to use the terminal 8
1.4.2 Command types and parameters . 11
1.4.3 Abbreviations 12
1.4.4 Data types . . 13
1.4.5 How to enter ACCESS 14

2 HOW TO USE A MENU SYSTEM . 15

2.1 Using a menu . 17
2.2 Using an input form 18

3 DEFINING AND RUNNING QUERIES . 21

3.1 What next? 23
3.2 How to execute a predefined query 23
3.3 How to start defining your own queries . 24
3.4 How to leave ACCESS 25
3.5 Calling a table frame 26
3.6 How to edit a table frame . 27
3.6.1 Widening, compressing and editing the columns 27
3.6.2 Page scrolling . . 29
3.7 Filling in the table frame . . 30
3.7.1 An example. Looking at data in the data base . 30
3.7.2 How to use operators in the table frame 31
3.7.3 Table operators 32
3.7.4 Column operators . 34
3.7.5 How to use selection criteria 43
3.7.6 Subqueries . . . 49
3.7.7 Possible sequences of column operators . 50
3.7.8 Example elements . . 51
3.7.9 Commands in the command box 54
3.7.9.1 EXECUTE and NO- SCREEN 56
3.7.9.2 RESTRICT SEARCH and SKIP FOUND RECORDS 56
3.7.10 Queries with multiple tables . 57
3.7.11 More about using example elements 60
3.7.12 The condition box 60
3.7.13 Relationships between columns 62
3.8 Handling a stored query 63
3.9 Functions in editing position 65

ND—60.153.03

Section Page

3.10 Commands in table position . 67

4 ALTERNATIVE DISPLAY OF RESULTS . 69

4.1 The output form . 71
4.2 Filling in the table frame . 71
4.3 Calling the OUTPUT— FORM 72
4.4 Defining an OUTPUT FORM . 72
4.5 Defining, moving, copying and deleting fields 73
4.6 NO FORMFEED . . 76

4.7 Termination . 76
4.8 Deleting the output form . 77

5 INPUT OF NEW DATA USING EXAMPLE ELEMENTS . 79

5.1 Input of data using input form . 81
5.2 Input of data without input form . 83
5.3 Facilitating data entry 85
5.4 Deleting the input form 86

6 PROCESSING AND PRINTING RESULTS 87

6.1 The printing of result level . 89
6.2 Navigating commands . 89
6.3 Further processing of the result . 90
6.4 Printing the result 94
6.4.1 PRINT . . 94
6.4.2 WRITE WITHOUT FRAME 96
6.4.3 STORE~ DATA 96
6.4.4 DESCRIBE MACRO CALL and WRITE MACRO CALL . 96
6.4.5 BAR~ CHART . 99
6.5 Editing the result . 101
6.5.1 REORDER“COLUMNS 101

6.5.2 RENAME—COLUMNS . 101
6.5.3 HEADING . . 102
6.5 4 CLEAR— READING 102
6.6 A report example using NOTIS WP 102
6.7 Moving up to query definition level 105
6.8 Error messages and corrections . 105

7 DEFINING MENUS . 107

7.1 The MENU command . 109
7.2 The menu tree 111

8 MISCELLANEOUS COMMANDS . 113

8.1 SINTRAN commands 115

ND-60.153.03

x

Section Paqe

8.2 HELP . 115
8.3 OPEN*LIBRARY . 115
8.4 LIBRARY . 116
8.5 LIST—QUERIES . 116
8.6 CONVERT-QUERIES . 117
8.7 COHPILE—QUERIES . 1
8.8 DELETE—QUERY . 118
8.9 RESERVE-DATABASE . 118
8.10 SET—PASSWORD and CLEAR—PASSWORD 118
8.11 PRINT—QUERY . 119
8.12 CLEAR-QUERY . 119

APPENDIXES

A THE KEYBOARD ON THE NOTIS TERMINAL (TANDBERG 2200/9) . 121

B ERROR MESSAGES IN ACCESS 125

C TABLES USED IN THE EXAMPLES 133

Index 136

ND—60.153.03

xii

»
v

V

.3
iv»?

a
n

,
12.1,...

.
.

ACCESS USER GUIDE 3
INTRODUCTION TO ACCESS

1 INTRODUCTION TO ACCESS

1.1 ”HAT CAN ACCESS BE USED FOR?

The following list gives some possible uses for ACCESS:

a Customer registers

a Subscription lists

0 Inventories

9 Staff registers

0 Purchasing lists

0 Order lists

ACCESS is used directly at a terminal. As a user, you tell ACCESS what
you want to do, but leave it to ACCESS to find out how. With a few
commands you can create, delete and update data contained in data
bases without needing to know anything about data processing or
programming.

You use so—called operators to tell ACCESS what you want to do, and
selection criteria to tell the system which data from the data base
you are interested in.

But what is a data base?

1.2 DATA BASES AND STORAGE STRUCTURE

A data base is something which contains information. It can be
compared with a filing cabinet, a drawer or an archive.

ND-60.153.03

4 ACCESS USER GUIDE
INTRODUCTION TO ACCESS

“a

¢~_/

L J
r fl

C___/

L
[v‘

¢_./

h; . JL////////

Fig. 1. A filinq cabinet is a data base

The filing cabinet in fig.1 has three drawers. In other words, it is a
data base divided into three parts, where each part is a drawer. In
the same way the permanent storage of the computer (on magnetic disks)
is divided into physical areas called tiles. Just as a drawer has a
label on the outside showing the contents, a file has a name for
identification. The file name should be descriptive, for example
EMPLOYEES.

EMPLOYEES

Fiq. 2. Each drawer is a file and has a file name

ND—60.153.03

ACCESS USER GUIDE 5
INTRODUCTION TO ACCESS

NAME: Jim Mills
MANAGER: Roger Keigh
SALARY: 10000
DEPARTMENT: Sales

NAME MANAGER SALARY DEPARTMENT

Jim Mills Roger Keigh 10000 Sales

Fig. 3. A card in the file corresponds to a row in a table

The drawers in a filing cabinet may contain several cards. One card
gives all the information about a particular object, for example an
employee. In ACCESS, each card corresponds to one row in a table,
where the table is the whole file. One table row is identical to one
record. Each table is divided into one or more columns.

The record for one employee, Jim Mills in fig. 3 is:

Jim Mills (name), Roger Keigh (manager)
10000 (salary), Sales (department)

Each record is subdivided into fields which can be empty or contain
data. For instance, if the field for boss is empty in the record for
Carol Trew, this means that she has no boss or her boss' name is not
known.

In ACCESS, the user works with a definite number of tables, where each
table is a file <1), and each table can contain different kinds of
information. This information is represented by a set of field_nam§s,
which is part of the table when it is displayed on the screen. For
example, the table EMPLOYEES may contain information about an
employee's NAME, MANAGER, SALARY and DEPARTMENT. This is represented
on the screen as shown in fig. 3.

It is possible to have several data bases. It can be advantageous to
divide information into groups of tables which contain related data.
You may, for example, have the two data bases: PERSON—DATABASE and
ORDER—DATABASE, each consisting of one or more tables.

(1) If you use ACCESS with a SIBAS data base, each table is a
SIBAS realm.

ND-60.153.03

6 ACCESS USER GUIDE
INTRODUCTION TO ACCESS

ACCESS makes it possible for a user to handle data that is stored in a
data base. The structure of the data base has been defined by the
ACCESS supervisor, and you can display data on the screen; put in,
delete or change data.

1.3 AN EXAMPLE FROM THE TRAVEL AGENCY SUNSEEKER LTD.

Take an everyday situation in the travel agency Sunseeker Ltd. Your
job is to answer customers' inquiries and make bookings.

A customer wants to know which hotels in Paris have facilities for
playing squash, and the price for a double room at these hotels.

Assume Sunseeker uses ACCESS to keep information about hotels around
the world, how much it costs to stay there and what facilities each
hotel has for sport. You will then quickly and easily be able to
answer your customer's question.

with ACCESS you can search through all known hotels and pick out those
which would satisfy the customer. So in a few moments you could answer
that there is only one hotel in Paris with its own squash hall and
that the price for a double room is 210 Fr. per night.

How did you do that?

First you call to the terminal a table_j1ame for the table HOTELS by
giving the command NEW—TABLE followed by the table name HOTELS.

The table frame consists of a table name and a set of field names (see
fig. 3). This is a picture of the file HOTELS. That the frame is empty
does not mean that the file is empty! The frame is only a tool for
operating on the data base.

HOTELS NAME TOWN SPORT PRICE

Fig. 4. The table frame

By filling in the frame with operators and selection criteria, you
specify what you want to search for.

In this query you want to display information on the screen, so you
use the operator PRINT. But you do not want to display the whole file
HOTELS, only a small part. You do that by specifying the selection
criteria, in this case ‘Paris‘ in the field TOWN and 'Squash' in the
field SPORT.

ND—60.153.03

ACCESS USER GUIDE 7
INTRODUCTION TO ACCESS

HOTELS NAME TOWN SPORT PRICE

* PRINT. 'PARIS' 'SQUASH' PRINT.

Fig. 5. The query description

The completed table frame is called a query description. It describes
the information you require from the data base (see fig. 5). The query
description tells you what type of query you want to execute (whether
you want to add records, delete records, update fields, or just look
at the information) and which data will be affected by the query.

DATABASE

QUERY DESCRIPTION

COMPUTER

Fig. 6. The query description is interpreted and the query then
executed by ACCESS

You then start the query. ACCESS interprets the query description and
then executes it. If the system has found some information for you,
the result of the query is displayed on the screen as a result table
showing the records which correspond to the selection criteria (see
fig. 7). This whole process is called a query (exchange of data
between the terminal and the data base).

ND-60.153.03

ACCESS USER GUIDE
INTRODUCTION TO ACCESS

DATABASE

RESU T

COMPUTER

Fla. 7. The result of the query is displayed on the screen

NAME PRICE

Hotel de France 210 Fr

Fig. 8. The result table

1.4 HOW IS ACCESS USED?

1.4.1 HON TD USE THE TERMINAL

You communicate with ACCESS from a screen terminal.

An empty screen picture in ACCESS looks like fig. 9. In the lower part
of the picture there is a horizontal line.

ND-60.153.03

ACCESS USER GUIDE 9
INTRODUCTION TO ACCESS

/ \

\. . Page 1 of 1 ,/

user and one line for commands from the user to ACCESS. To the far
left on the command line there are one, two or three asterisks (*),
depending on which command level you are on. The asterisk(s) mean that
ACCESS is ready to receive commands from the user.

The area above the line is called the window. Since the screen is of
limited size, sometimes only part of a background picture is
displayed. By using the arrow keys on the terminal you can move the
window to see other parts of the background picture. The background
picture is divided into horizontal pages, and the message

Page X of Y

appears at the right of the command line (see fig. 9).

ND—60.153.03

10 ACCESS USER GUIDE
INTRODUCTION TO ACCESS

/ x
Page l of 3

\

PageZof 3f
w

—
fi

Page 3 of 3 j

Fiq. 10. The bacqound picture is divided into horizontal pages

On the screen there is a blinking line or block called the cursor.
This tells you where you are positioned to write on the screen.
Whether you type in text or give commands, the cursor follows.

The arrow keys on your keyboard move the cursor around the screen.

Fiq. 11. The arrow keys

ND~60.153.03

ACCESS USER GUIDE 11
INTRODUCTION TO ACCESS

Down arrow l moves the cursor to the same position
on the line below.

Up arrow 3.7 moves the cursor to the same position
.--,' on the line above.

Right arrow 1.; moves the cursor one position to the right.

Left arrow is“ moves the cursor one position to the left.

Home key moves the cursor to the command position (the
='"‘“ position after the asterisk).

Forward 2---,
tabulator moves the cursor to the next column

Backward it- moves the cursor to the previous column
tabulator

If you press the home key (slanted arrow) in the command position, the
cursor jumps back to the position it had before it came to the command
position.

1.4.2 COMMAND TYPES AND PARAMETERS

Instructions from the user to the system are called commands. There
are three types of commands in ACCESS:

1)

2)

The NOTIS keys and control key commands.

These are used for editing and navigating in the screen
picture and can be used anywhere in the window. Control key
commands are written thus: CTRL+D. This means you first press
the control key marked CTRL and hold it down while you press
D.

Direct commands.

These are used to carry out some types of operations, move
from one level of ACCESS to another or call something onto
the screen. They must always be given in the command
position.

A few direct commands require additional information,
parameters, given together with the command. A command with
one or more parameters is written in the form:

COMMAND (parameter 1) (parameter 2) etc.

Example: DELETE—QUERY (query name).

ND-60.1S3.03

12 ACCESS USER GUIDE
INTRODUCTION TO ACCESS

This means you must give a query name in addition to the
command, for example DELETE—QUERY QUERY—A. ACCESS will ask
for parameters which are not given.

A command must always be terminated by pressing the ”carriage
return“ key:

3) Operators.

These are commands written in the table frame to describe a
query. They are used to specify what you want the query to do
and are interpreted and carried out by ACCESS. They are
always terminated by a period.

For example: print.
insert.
etc.

1.4.3 ABBREVIATIONS

Commands and parameters can be abbreviated as long as this does not
make them ambiguous. For example, you can type H instead of HELP or
NEW instead of NEW~TABLE. If the abbreviation is ambiguous or unknown
you get an error message and must try again.

Many of the commands are split into several hyphenated words, and this
makes it easy to make efficient abbreviations. This ‘same system can
also be used when you name queries. The hyphens between the words are
used to indicate the separation of words. The hyphens indicate the end
of the previous word and the beginning of the next word. For example,
if you have the queries "ADJUST-SALARY“, "ADJUST-TRAVELING-BUDGET",
and “ADJUST—TRAVELING—SCHEDULE“, these can be abbreviated "A~L", “A*~
B", and ”A——S". Note the use of double hyphens. You can skip identical
words.

NB!! ACCESS makes no distinction between uppercase and lowercase
letters in commands and parameters, but this is not the case for
data. See the next section on data types and how to enter data at
the terminal.

ND-60.153.03

ACCESS USER GUIDE 13
INTRODUCTION TO ACCESS

1.4.4 DATA TYPES

Data is separated into data~types, which are understood and handled in
different ways by the computer.

The ACCESS supervisor defines the rules for handling records, who can
work with them, if they can be updated, etc. S/he also decides legal
data types for each field in the record.

Since the ACCESS supervisor takes care of the formalities, it is
sufficient for you to know which data types are used in the different
fields.

You only need to remember two types of data. A field can be defined
as:

1) Text (or alphanumeric): a collection of characters which may
be letters or digits or other symbols.

2) Numeric or numbers: written with digits. Two hundred and
seven is written: 207

Text

Data of text type must always be enclosed in single quotes (').
Everything between the quotes is understood by ACCESS as symbols in
the text.

Each symbol has a certain value for the computer. Upper case A is
different from lower case a. In the same way 'ROLLING STONES‘ is
different from 'Rolling Stones‘. It is important to remember this when
you put information in the data base and later when you are searching
for it by defining the data in the table frame.

Numeric

For numeric type the rules are slightly different. A number, for
instance twenty three, is written: 23

Two and a half is written: 2.5

ACCESS does not accept a comma as a decimal point.

In a record, some fields may contain text data, like the field NAME,
and other fields may contain numeric data, like the field SALARY.

The ACCESS supervisor decides in advance which types are legal for
each field, and if you try to put in illegal data you get an error
message. For example, it is not possible to put the data value 'Jim'
into the field SALARY.

ND-60.153.03

14 ACCESS USER GUIDE
INTRODUCTION TO ACCESS

1.4.5 HOW TO ENTER ACCESS

If your installation has USER ENVIRONMENT, you enter ACCESS in the
same way as with other systems, through one of the menus. If you do
not have USER ENVIRONMENT, however, you start by typing ACCESS after
the @:

eaccgssvj

ACCESS in large letters appears on the screen:

*** kit it! *kt**** **** titt

*§***§* *§* §* *i* it *** kg &* X; it

** ** ***k *t** ** ttfi ***

kit i** *tii *tfit *** ***** *****

*fi******* fifitt **** ******* *Xit ****

*** *** **** **** *** **** ****

** ** *** *t* ** **** *k**

** kt ** ** it ** *** ** it ti *t

** ti **** **** ******** ****** ****k*

ND-10185D

After a short waiting period, the following words appear:

Enter user identification:

Here you must give your ACCESS user name, which may or may not be the
same as the name you used when you logged in.

If you are a beginner, you probably don't have a password, but if you
do, ACCESS will ask for it.

You then get the message:

Wait, Data base information is being read in

When this message disappears, one of two things may happen. The first
possibility is that "ACCESS" remains on the screen while an asterisk
appears in the lower left corner of the screen. You are now at the
start level in ACCESS. Here you can choose whether to run a predefined
query or to define your own. This is explained in chapter 3 and
onwards.

The other possibility is that you get a menu. This is explained in the
following chapter.

ND-60.153.03

ACCESS USER GUIDE 17
HOW TO USE A MENU SYSTEM

2 HOW TO USE A MENU SYSTEM

2.1 USING A MENU

When you have entered ACCESS you may find a menu on your screen. A
menu is a screen picture where you can select courses of action from
alternatives displayed. If you get a menu right after entering ACCESS,
this will be a menu put in locally by someone at your computer
installation. The text on these menus will differ. However, the way
they work is the same.

M A I N M E N U

.1. .

2 Orders
3 Employee register

When the menu is dispayed, the uppermost item will be shown in inverse
video (dark letters on a light background). There are two ways of
selecting the item you want:

1) By using the up and down arrows

you can move the inverse video bar to the item you want, and then
select the item by pressing the carriage return key:

2) You can also select by typing the number in front of the item. For
example, to select "Employee register" you can type “3” instead of
moving two lines down and then pressing the «J key. This can save
time if the menu is long.

ND-60.153.03

18 ACCESS USER GUIDE
HOW TO USE A MENU SYSTEM

What happens now may depend on what you have selected. Let us assume
that you have selected “Employee register". The next screen picture
might be another menu, for choosing what to do with your employee
register:

E M P L O Y E E R E G I S T E R

I . 1 1.5

2 Update salary
3 Delete employee
4 Add a new employee
5 Change of address

Let us say you select “Add a new employee“. Now something new happens:

2.2 USING AN INPUT FORM

Name :

Address :

Manager :

Salary :

Department:

This type of screen picture is called an input form. Here you simply
type on the dotted lines the information on the person you want to add
to the list. The +1 key will automatically take you to the next item.

Note: Like the menus shown earlier, the above input form is only an
example. The layout of input forms may differ widely; this example
only illustrates the basic procedure for entering data into a form.

ND—60.153.03

ACCESS USER GUIDE 19
HOW TO USE A MENU SYSTEM

When you have finished the last item, press the

key.

ACCESS will start storing the material you have typed. The message:

WAIT, the query is being executed

appears on the screen. And then:

The query caused 1 record(s) to be accessed. Time used is 0

This means that ACCESS has finished adding the new name to the 1 ist.
After this the input form will appear again, and then you can add
another person to the list, or go back again to the "employee
register“ menu. To go back, you simply press the EXIT key. Now you can
select a different item on the menu, or go back to the main menu by
pressing the exit key once more. To leave ACCESS, press the EXIT key
tuige when you are in the main menu.

ND—60.1S3.03

20

ND-60.153.03

ACCESS USER GUIDE

fin
Eu,

ACCESS USER GUIDE 23
DEFINING AND RUNNING QUERIES

3 DEFINING AND RUNNING QUERIES

3.1 WHAT NEXT?

When you have entered ACCESS as explained in section 1.4.5, you are at
the start level (there will be one asterisk in the lower left corner
of the screen.)

Now you have the following main alternatives:

Action Command §§§%?:§§Q_Lfl

Execute a predefined query *RUN—QUERY 3.2

Define your own query *DEFINE—QUERY 3.3 and onwards

Modify a predefined query *FETCH~QUERY 3.8

3.2 HOW TO EXECUTE A PREUEFINED QUERY

First you may want to see what queries are available for execution.
You can do this by giving the command:

*Lm-gggggggJ
ACCESS displays a list of stored queries. An example might look like
this:

L I S T O F S T O R E D Q U E R I E S

Query name Query size in bytes

INSERT—EMPLOYEES 12345
INSERT—DEPARTMENTS 9807
INSERT-CUSTOMERS 1032

ND~60.153.03

24 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

To execute the query ”insert~employees”, give the command:

For an example of what might happen after this, see the previous

chapter, section 2.2.

Query execution can be aborted while in progress, by using the EXIT

key.

3.3 HOW TO START DEFINING YOUR OWN QUERIES

You want to work with the data base ENGLISH-BASE and get a table frame

showing the structure of the file EMPLOYEES on the screen.

— Log in.

1 Enter ACCESS.

Give ACCESS your user name.

1 Give ACCESS your password, if you have one.

a) You are now in command position on the start level. On the start
level there is always one asterisk in the lower left corner of the
screen.

Give the command:

If you have access to only one data base, ACCESS chooses it for
you. If you have access to more than one data base, these data
bases are shown on the screen.

The screen picture may at this point look like this:

A V A I L A B L E D A T A B A S E S

Data base name Supervisor

EXAMPLE~DATABASE CUSTOMER-1
SIBAS~DATABASE SIBAS—USER

TEST-BASE SlBAS-USER

NORWEGIAN-BASE ACCESS
ENGLISH-BASE ACCESS

ND~60.153.03

ACCESS USER GUIDE 25
DEFINING AND RUNNING QUERIES

It is possible to move between the data bases with the cursor keys
1 and T. To select ENGLISH~BASE, go down to the appropriate line,
and enter +1.

Alternatively, you can specify the data base when you give the
command:

*DEFINE—QUERY ENGLISH-BASEtJ
Ask the ACCESS supervisor to give you access to the ENGLISH~BASE
if you don't already have it.

b) You come directly to the query definition level (there will be two
asterisks in the lower left corner of the screen).
Now give the command:

**NEw— +J
ACCESS will display the available tables on the screen. Select the
table EMPLOYEES in exactly the same way that you selected ENGLISH—
BASE.

c) Now the left part of the frame appears and you have come into
editing position, with the following picture:

EMPLOYEES NAME MANAGER SALARY

You are now ready to complete the table frame with operators and
selection criteria.

It is also possible to specify both the data base name and the table
name in the command *DEFINE—QUERY. This way you skip the command
**NEW~TABLE, and the whole process described above is replaced by one
command with two parameters:

*DEFINE-QUERY ENGLISH-BASE EMPLOYEEStJ

3.4 HUN T0 LEflVE ACCESS

A) On the NOTIS terminal:

Press the EXIT key twice. You then get to the start
level. Press the EXIT key once more, and you leave
ACCESS.

ND—60.153.03

26 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

B) On other terminals:

Press the HOME key

You enter the table position on the query definition
level. When you type in commands here, you
automatically go to command position. Give the
command:

**EXII*J

You enter the command position on the start level,
and give the EXIT command once more:

*EX +1

3.5 CALLING A TABLE FRAME

Call a new table frame from the query definition level with the
command:

**NEW*TABLE (table name>+J
The frame corresponding to the given table name appears on the screen,
ready for input.

You go from editing position in the table frame to table position by
typing HOME or pressing the EXIT key.

You go back to editing position by pressing the +1 key.

You go back and forth between table position and command position with
the HOME key.

In this example we use the table with the name EMPLOYEES. The table
frame looks like this:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

ND—60.153.03

ACCESS USER GUIDE 27
DEFINING AND RUNNING QUERIES

3.6 HOW TO EDIT A TABLE FRAME

When the table frame is displayed on the screen, the next task is to
make it ready for a particular query. The columns in the table frame
may be widened or compressed both before and while you fill in the
frame.

3.6.1 NIQENING. COMPRESSING AND EDITING THE COLUMNS

A column is the whole area under one field name in a table frame. A
iieldwdesgription consists of all the operators, selection criteria
and example elements positioned in the column, within one subquery. We
may have several queries in one table frame. These are called
supgueries, and are executed in an order determined by ACCESS. You get
a new subquery by typing down arrow (1).

See section 3.7.6 for more information on subqueries.

You may write a long field description over more than one line, by
giving 9} at the end of each line, or all on one long line by
increasing the column width.

To move the cursor rapidly from one column to another, use the left‘
and right tabulator arrows (alternatively CTRL+T and CTRL+U).

When you have moved to the desired column, you may use the following
keys or screen commands:

or CTRL+W increases the column width (widen).

or CTRL+P reduces the column width (compress).

mmm marks an item that is to be copied (the marking
is not visible on the screen).

cmv copies a marked item.

deletes an item that is not to be used in
a query.

SHIFT+Emmm deletes a line that is not to be used in a
query.

CTRL+D CTRL+C deletes a column that is not to be used in
a query.

ND-60.153.03

28 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

gives you a menu where you can select operators

HEW or CTRL+G from the ones you are allowed to use in your

current position. For example, when you are
inside the table frame:

EMPLOYEES NAME MANAGER SALARY PRINT
UPDATE
GROUP
ASCENDING
DESCENDING
UNIQUE
IN
COUNT
SUM
MINIMUM
MAXIMUM
AVERAGE
STDEV

Page 1 of 1

Here you can select operators using the same system as before, that is

with the up and down arrows and the 1 key. They will then appear in

the table frame just as if you had typed them in manually.

Extension or reductions of column width is carried out in steps of 6

positions at a time.

A column can never be wider than the width of the screen minus the

width of the margin and the table name.

><
<>

is only used in the query definition to make more room for the field

description. This will not change the column width of the result which

is displayed on the printing of result level.

Note that the key (or the commands CTRL+P and CTRL+W)

CHANGING THE TABLE FRAME DOES NOT CHANGE THE INFORMATION IN THE DATA

BASE.

ND'60.153.03

ACCESS USER GUIDE 29
DEFINING AND RUNNING QUERIES

EXAMELE

In the table EMPLOYEES, give the commands CTRL+D plus CTRL+C in the
column MANAGER and then

eight times in the column NAME. The table then looks like this:

EMPLOYEES NAME SALARY

3.6.2 PAGE SCROLLING

When a column is extended, other columns may fall outside the window,
as in the previous example. There the column SALARY and DEPARTMENT are
out to the right of the window. You can see this because the last
complete column is followed by a new but unfinished column.

If there are more columns to the left of the window, the vertical
separation line in the table name column is not drawn. The table name
is always shown to the left in the window.

Use the g

in the lefthand column to move the window to the left,

key or CTRL+T
in the right—hand column to move the window to the right. You may also
use the arrow keys in table position.

and the

ND—60.153.03

30 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

EXAMPLE

To look at the right part of the table in the previous example,

press 5 or CTRL+T in the NAME column. This part looks like this:

EMPLOYEES SALARY DEPARTMENT

” or CTRL+U in the SALARYTo go back to the left part, press :
column. in

3.7 FILLING IN THE TABLE FRAME

To get an overview of commands available for editing text in the table
frame, see section 3.9.

3.7.1 AN EXAMPLE: LOOKING AT DATA IN THE DATA BASE

To find out if employee Mike Platt is in the data base, you must fill
in the table frame and execute the query and you will get the result
on the screen.

Fill in the table frame as follows (use «J to get a new line):

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ print. 'Mike Plat
tl

Here print." is an operator which tells ACCESS what you want to do
(in this case print a result on the screen), and 'Mike Platt' is a
selectign__grit§rign which tells the system flhich records you are

looking for (ie., those which have 'Mike Platt' as name). Use the HELP
key or CTRL+G to see the operators that are available in the field the
cursor is positioned in. Note the period after the operator!

ND—60.153.03

ACCESS USER GUIDE 31
DEFINING AND RUNNING QUERIES

To execute the query:

on the NOTIS terminalType

; on other terminals (including the NOTIS terminal)

(or press HOME and give the command **RUN—QUERY).

ACCESS interprets what you have written and executes the query. The
result appears on the screen with the message:

"The query caused 1 record(s) to be accessed. Time used: 0/1"

You are now at the printing of result level. When you have looked at
the result and want to do something else, use the EXIT key or type:

an: ITtJ

You enter the query definition level in table position. If you want to
terminate, press HOME and follow the procedure in the previous
example.

The EXIT key can also be used to abort query execution.

3.7.2 HOW TO USE OPERATORS IN THE IABLE FRAME

As previously mentioned, you define a query by filling in the table
frame with operators and/or selection criteria. The HELP key or
CTRL+G will give you a menu of the available operators in the column
in which the cursor is positioned (select with the up and down arrows
and j).+

An operator is a command which is typed either in the first column,
the table column, or in any of the other columns. When you use a table
operator the whole table is affected; when you use a column operator
only the column in which the operator is written is affected. There
are also other types of operators:

~ Arithmetic operators, used together with the “update."
operator.

— Logical operators and relational operators. These are used in
connection with selection criteria, which will be explained
later.

Some operators have special names. The column operators "ASCENDING."
and “DESCENDING.” are called sorting operators.

You are now ready to fill in the frame with operators and selection
criteria.

ND—60.153.03

32 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

There are two main kinds of operators in the table: table operators

and column operators. They must be terminated by a period to

distinguish them from selection criteria.

There are four main groups of operators:

1) PRINT., sorting operators, UNIQUE , function operators (see

p. 40), and GROUP.

2) INSERT.

3) DELETE.

4) UPDATE.

Note that only PRINT. and the function operators give a display on the
screen.

Rules:

— You must never mix operators from different groups in the
same subquery.

~ When subqueries give a printout on the screen, the printouts
must fit into the same result table. This means that
operators from group one can only be used in one subquery.

3.7.3 TABLE OPERATORS

Table operators are placed in the column under the table name, and
they define one operation on the whole table. There are three table
operators:

PRINT.
INSERT.
DELETE.

Note the period!

PRINT.

— gives a printout on the screen of data from all columns
(those which have not been deleted with CTRL+D and CTRL+C).

EXAMBLE

Task: You want all the information about all the employees.

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

* print.

ND—60.153.03

ACCESS USER GUIDE 33
DEFINING AND RUNNING QUERIES

Result:

NAME MANAGER SALARY DEPARTMENT

John Mills Sid Stone 24700 Building
Ian Rain Sid Stone 24000 Building
Christopher Howard Sid Stone 18200 Building
Harold Ritchie Sid Stone 12400 Building

etc.

lflfiEEIi

— inserts a new record in the table.

— values must be put into the columns. Remember to enclose data
of text type in single quotes (‘).

If no value is written into a column, or if the column has been
deleted by CTRL+D followed by CTRL+C, default values are are put into
the data base: a string consisting of blanks in text fields, the value
0 in numeric fields.

Instead of putting values directly into the table frame, (some of) the
columns may have input example elements. These values will be read
into the column when the query is executed. See chapter 5 and section
3.7.8.

Not everybody is necessarily permitted to put new data into the data
base. This is decided in advance by the ACCESS supervisor.

EXAMELE

Task: Add a new employee named Sid Stone whose boss is James Brick.
His salary is 10000 and his department Building.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ insert. ‘Sid Stone' 'James Brick“ 10000 ‘Building‘

DELETE.

— deletes one or more records from the file.

This is a dangerous operator to use incorrectly. Sometimes a user is
not permitted to delete records. If you are not authorized to use this
command, the query is interrupted, and an error message is displayed
on the screen.

ND-60.153.03

34 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

EXAMPLE

Task: Jim Butcher has left the firm. Delete his record.

Solution:

You must use a selection criterion to tell the system that you want to
delete the record “Jim Butcher", and only that record. If there are
more records with the same identification, fill in more columns so you
can be sure the criterion selects the right person. For example, here
you could give department and salary, just to be on the safe side!

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

4 Delete. 'Jim Butcher’

NB:
If you write "Delete." without aivinq anv selection criteria, all the
records in the table will he deleted. However, you get the warning “Do
you really want to delete all records?“, and the chance to change your
mind before this happens.

When the table operator DELETE. is used, only selection criteria are
allowed in the columns. The only exception to this is that you can use
an input example element instead of a value, so that the value is read
in when the query is executed instead of when it is defined. See
chapter 5 and section 3.7.8.

3.7.4 COLUMN OPERATORS

Column operators are placed in one of the columns to the right of the
table name, depending on which of the fields in the record you want to
affect.

If an operator and a selection criterion are placed together in the
same field, the operator must come before the criterion.

ND-60.153.03

ACCESS USER GUIDE 35
DEFINING AND RUNNING QUERIES

These are the available column operators:

PRINT.
UPDATE.
ASCENDING.
DESCENDING.
UNIQUE.
GROUP.

SUM.
AVERAGE.
STDEV.
MAXIMUM.
MINIMUM.
COUNT.

The last six operators are called £ungtign_op§ratgr§.

Note: If you use the sorting operators, ASCENDING. and DESCENDING.,
they must be written in the same subquery as PRINT., or together with
GROUP

PRINT.

_ is the only column operator in addition to the function
operators that may give a display of results.

- displays on the screen information from the field (column)
where the operator is positioned.

EXAMPLE

Task: Display the names of all the employees.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ print.

Result:

NAME

John Mills
Ian Rain
Christopher Howard
Harold Ritchie

etc.

ND-60.153.03

36 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

UPDATE. (new data value)

updates/changes the value of data in the column where the
operator is positioned.

Only users authorized by the ACCESS supervisor may update the
contents of the data base.

In a subquery where one or more columns have UPDATE., the
other columns must be blank or only contain selection
criteria.

It is possible to update the fields in more than one record
at a time. All fields that satisfy the selection criteria
will be updated in the fields where UPDATE. is used.

The operator UPDATE. must be followed by an argument. The
values for this argument and/or the selection criteria may be
replaced by input example elements. You will then be asked
for the values when the query is executed. Note that “t"
cannot be used when the value is read in via an input example
element.

W

If the field is a text field, you can give it a new value (for example
replace the old value ‘Pat Peters' with a new value 'Pat K. Peters“).

EXAMBLE

Task: The Sales department has got a new boss called Roger Keigh.
This must be updated.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ update. 'Sales'
=‘Roger Keigh'

Solution with an input example element:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ update. 'Sales'
=$manager

ND‘60.153.03

ACCESS USER GUIDE 37
DEFINING AND RUNNING QUERIES

When the query is executed, the word "manager“ will appear at the
bottom of the screen. You type Roger Keigh, give *J, and everybody in
the Sales department will get Roger Keigh as their manager. If you
store this query, it can be used every time the Sales department gets
a new manager. By using an input example element also in the
DEPARTMENT column, the query can be used for all departments.

Numeric updating

You can update numeric fields absolutely or relatively: absolutely by
giving the new value preceded by an equals sign (=), or relatively by
using one or more of the following arithmetic operators:

plus
minus
multiplied by
divided by~e

»
x

+

For example, for the field SALARY you have the following
possibilities:

Upd.=11000 New value is 11000.
Upd.+1000 New value is old value plus 1000.
Upd.—100 New value is old value minus 100.
Upd.*1.1 New value is old value multiplied by 1.1.
Upd.+20% New value is old value plus 20%.
Upd.~5.2% New value is old value minus 5.2%.
Upd./2 New value is half of old value.
Upd.=~100 New value is — 100.

EXAMPLE

Task: All employees are getting a 5% increase in salary.
This must be updated in the data base.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

4 update.+5%

ND-60.153.03

38 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

EXAMPLE

Task: Jim Lee has been promoted and has therefore received an
increase in salary. His new salary is 9500.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ 'Jim Lee‘ update.=9500

In this example the operator PRINT. is not used, so the result of the
updating is not displayed.

Remember that PRINT. cannot be used in the same subquery as UPDATE.

ASCENDING.

~ sorts data from the column in which the operator is placed
into ascending order. ASCENDING. must be in the same subquery
as PRINT or be used together with GROUP.

DESCENDING.

— sorts data from the column in which the operator is placed in
descending order. DESCENDING. must be in the same subquery as
PRINT or be used together with GROUP.

The operators ASCENDING. and DESCENDING. are called sorting operators.
If there are several of them in the same query, separate them by
giving priority in parentheses after the operator and before the
period.

Example:
Ascending(1).

You may have up to S sorting operators in each query.

ND—60.153.03

ACCESS USER GUIDE 39
DEFINING AND RUNNING QUERIES

EXAMBLE

Task: Display the names of all the employees sorted according to
department and salary.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

4 print. pr.asc(2). pr.asc(1).

Result:

NAME SALARY DEPARTMENT

Gary Yarwood 5200 Building
Sam Boyle 5300 Building
Patricia Mac Andrews 9000 Building
Ron Briggs 10600 Building

Margaret Biggs 24200 Building
John Mills 24700 Building
Ian Austin 5000 Cleaning
Julie Mason 6400 Cleaning

Steve Bell 23600 Cleaning
John Mason 24000 Cleaning

UNIQUE.

— Use this operator to avoid duplicates (identical data) in the
result.

— All the records found will have different data values in the
column where UNIQUE. is positioned. The first record that
ACCESS finds with one particular data value is written out.
Other records with the same value will be skipped.

— UNIQUE. must be in the same subquery as PRINT.

ND-60.153.03

40 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

EXAMPLE

Task: Who is manager in which department, if you assume that each
department has only one manager?

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ print. print.uniq.

Result:

MANAGER DEPARTMENT

Sid Stone Building
Reg Howard Cleaning
James Watt Development

etc.

If you do not use UNIQUE. here, you will get as many result records as
there are employees.

W

Selection criteria are used to select the records the function
operators are to affect. If GROUP. is not used, the function is
calculated for all the records that satisfy the selection criteria. If
GROUP. is used, the result is calculated for each group.

The result is always written out in a column with a heading (”SALARY
maximum“ if you have used the operator MAXIMUM in the SALARY column).
The values in the column where GROUP is placed are printed out.
(PRINT. may be used in the other columns to show examples of values
found there.)

ND—60.153.03

ACCESS USER GUIDE 41
DEFINING AND RUNNING QUERIES

SUM;

— displays the sum of all values in a numeric column.

AVERAGE.;

— displays the average of the values in a numeric column.

STDEV

— displays the standard deviation of the values in a numeric
column.

MAXlMflMi

_ displays the highest value in a numeric column.

MINIMUM,

- displays the lowest value in a numeric column.

COUNT.

- displays the number of records in a column.

QBQQB;

is used to group identical values in a numeric or text
column.

This command is to be used together with one of the function
operators - SUM., STDEV., AVERAGE., MAXIMUM., MINIMUM., or
COUNT. — and selection criteria.

GROUP. alone will arrange data in ascending order. You can
also write GROUP. ASCENDING. or GROUP. DESCENDING. Sorting
operators in other columns cannot be used in the same
subquery. UNIQUE. is not permitted together with GROUP.

ND~60.153.03

42 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

EXAMPLE

Task: Display the maximum salary for each department.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

4 MAX. PR.GROUP.

Result:

SALARY Maximum DEPARTMENT

24700 Building
24000 Cleaning
24300 Development
24500 Finance
24200 Maintenance
23000 Marketing
23600 Personnel
24200 Sales
24200 Support

ND~60.153.03

ACCESS USER GUIDE 43
DEFINING AND RUNNING QUERIES

EXAMELE

Task: Display the minimum salary, the maximum salary and the sum of
the salaries for each department.

Solution:

EMPLOYEES SALARY DEPARTMENT

+ MIN.MAX.SUM. PR.GROUP.

Result:

SALARY sum SALARY minimum SALARY maximum DEPARTMENT

227100 5200 24700 Building
338800 5000 24000 Cleaning
308200 5300 24300 Development
398300 5800 24500 Finance
301900 5300 24200 Maintenance
356700 5300 23000 Marketing
268200 7300 23600 Personnel
329400 5600 24200 Sales
263900 5900 24200 Support

3.7.5 HOW TO USE SELECTION CRITERIA

To describe the records you want to work with in the different
queries, you must specify selection criteria. These are placed in the
relevant columns. A selection criterion consists of a data value, or
data values combined with one of the relational or logical operators
listed below. These operators must always be placed flitfil column
operators.

There are three kinds of selection criteria:

1) A data value alone;

2) Part of a data value together with a question mark and/or
asterisk;

3) Data values combined with relational operators and/or logical
operators.

ND~60.153.03

44 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

We have the following relational operators and logical operators:

equal to, is assumed if an operator is not given.
< less than
<= less than or equal to
>= greater than or equal to

>< not equal to
> greater than
IN between two values, or belonging to

a list

AND and
OR and/or or both
NOT not

Note that example elements in the table column may work similarly to

the operator OR. See section 3.7.8.

yaluealone

FOR NUMBERS

In a numeric field, write the number you want to search for, either
alone or with logical operators. If you get the error message “Illegal
type of constant in this column", it may be that the column is
actually defined as a text column, even though the "text“ it contains
consists only of digits. If this is the case, you will have to use
single quotes around the numbers (see below).

FOR TEXT

You can also search in text fields. You may use logical operators, but
the search criteria will be more complicated.

ACCESS always assumes the text field to be the search area, and if the

text field is longer, ACCESS assumes that the rest of the field is
blank. See section on “Searching in text“ below.

All text strings must be enclosed in single quotes.

ACCESS distinguishes between upper and lower case letters in selection
criteria, so it is relevant whether you specify the search in
uppercase or lowercase letters; the text must be typed in exactly as

it was written into the data base, or the record will not be found.

ND—60.153.03

ACCESS USER GUIDE 45
DEFINING AND RUNNING QUERIES

EXAMRLE

Task: Which persons in Marketing earn 17800?

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

* print. 17800 ‘Marketing'

Result:

NAME

Alex Sykes
Ann Mills

Searching in text using * and ?

ONLY FOR SEARCHING IN TEXT.

If you want to pick a special text from fields containing long texts,
you can do this by using the characters asterisk (*) or question mark
(?).

The asterisk replaces an arbitrary character in the text. A question
mark replaces several characters; there may be any number of
characters behind the question mark. The question mark can only be
behind, or in front of and behind the text you are searching for.

Examples:

You want to find everybody with the first name Peter.
Write: 'Peter'?

You want to find everybody with Peter as part of their name, for
example James Peter Ball, Tim Peters.
Write: ?'Peter'?

You want to find everybody with 'at' as part of their name, for
example Patricia, Platt.
Write: ?'at'?

You can combine ? and * with logical operators to express complicated
search criteria. But remember that the operators must be put outside
the quotes; if they are placed inside the quotes, they are interpreted
as part of the text.

ND-60.153.03

46 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

You want to find everybody with a surname of six

letters, ending in "son“,
for example Hanson, Benson, Larson.
Write: ?' '***‘son'?

The first question mark shows that an unknown number of characters

should be skipped, then there should be a blank, then any three

characters before the three letters "son". If the first question mark

is omitted, the first name will not be skipped. If you only had
surnames in the field, it would be sufficient to write ***'son'

Remember that blanks are characters like any other symbol! If * or ?

are enclosed in single quotes, they will be interpreted as ordinary

characters.

Data value with relational Operators and losical Operators

Values can be combined with a relational operator. This applies both

to numeric and text string fields. Use relational operators if you

want to search for values:

greater than (>)
less than (<)
greater than or equal to (>2)
less than or equal to (<=)
not equal to (><)

If you want to search for a combination of these, you must also use

logical operators, or IN (see p. 47).

ND—60.153.03

ACCESS USER GUIDE 47
DEFINING AND RUNNING QUERIES

EXAMELE

Task: Who works in Finance and who works in Sales? (In other words,
write out the names of those who work in Finance or Sales)

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ print. print.
'Finance‘
OR 'Sales'

Result:

NAME DEPARTMENT

Anne Lee Finance
Sid Grant Finance

Tony Ritchie Sales
Ruth Mason Sales

etc.

lN

This operator can be used to find:

All values between two limits: IN(10:60)
All values belonging to a list: IN(1,5,6,18)
A combination of these two functions: IN(1,2,5:9,18)

The first of these formats can be used to search for data values which
lie between certain limits. The search is carried out in a special
way.

The search looks for values between and including the limits. For
numeric data values, all numbers in the range are picked out. For text
strings, the values are picked according to alphabetical order.
However, the “alphabet" is slightly extended, to include special signs
such as numbers and blanks.

The value of each symbol is calculated according to the ASCII code.
The order of the symbols is given in the SINTRAN III Reference Manual,
ND—60.128.02, Appendix G. In outline it is as follows (from lowest to
highest values):

blank, special characters,(O—9),(A-Z),special characters,(a—z)

NDe60.1S3.03

48 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

The letters are in alphabetical order, with all uppercase before all
lowercase.

EXAMPLE

IN(‘Jim Johns“ “Olive Osmond“)

— Here names between "Jim Johns" and "Olive Osmond“ are found in

alphabetical order.

— These names are found
Jim Johnson (0 has a greater value than blank)
Jim Wright (W has a greater value than J)
Jimmy Johns (m has a greater value than blank)
Mike Brook (M comes between J and O)

— These names are not found
Jim Johns (The extra blank makes the value lower)

Eric Abbs (E has a lower value than J in Jim)
Jim Biddulph (B has a lower value than J in Johns)
Pat Oliver (P has a greater value than 0 in Olive)

EXAMPLE

IN('J‘:'O')

- Here names beginning with the letters from J to O are found.

— These names are found
Jan Adamson (a is greater than blank)
John Addy (o is greater than blank)

— These names are not found
Otto Askey (t is greater than blank)
0 A Ask (A is greater than blank)
Pat Oliver (P is greater than 0)

If you want to search for all names that begin with J, K, L, M, N, 0,
you must write J:Ozzz or J:P.

EXAMPLE

IN(10000212000)

— Here you are looking for numbers between 10000 and 12000

inclusive.

ND-60.153.03

ACCESS USER GUIDE 49
DEFINING AND RUNNING QUERIES

IN can also be used to find all values in a list. For example, the
following query will display all employees who earn exactly 13000,
18000, or 22000:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

4 print. in(13000,18000,
22000)

The two ways of using IN (with a colon and with commas) can be
combined. If in the above query you had used
IN(13000,14000:15000,18000.22000), you would also get all employees
earning between 14000 and 15000.

3.7.6 SUBOUERIES

Sometimes it is necessary or desirable to build up a query using
several subgueries.

To start a new subquery, give down arrow in the last subquery, or
alternatively right tabulator arrow or CTRL+T in the last column in
the table frame.

ACCESS responds with an arrow (4) on the first line in each subquery
as shown in the next example.

ND—60.153.03

50 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

EXAMPLE

Task: Who in Cleaning earns between 5000 and 10000?
Also update the salary of those with Jane Wright as their
boss by 4%.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ print. in(5000: 'Cleaning'
10000)

+ 'Jane Wright' update.+4%

Result:

NAME

Ian Austin
Harold Moss
Gary Howard
Julie Mason
Peter Beever

etc.

The records which are updated are not displayed. The “greater than” or
arrow symbols to the left in the table frame each start a new
subquery.

3.7.7 POSSIBLE SEQUENCES OF COLUMN OPERATORS

Not all sequences of column operators are allowed. The two diagrams on

the next page illustrate the legal sequences. The first one simply

illustrates the rule that the function operators must precede the

selection criteria.

The second illustrates the more complex relations between PRINT.,
GROUP , UNIQUE., ASCENDING. and DESCENDING. Any sequence of operators

you get by following the arrows is legal. It is not necessary to start
at the top, or end up at the bottom. For example, GROUP.COUNT. is

allowed. ">18000" is only an example of a selection criterion, and may
be replaced by any expression that uses the operators explained in the
previous section: asterisk, question mark, logical operators and
relational operators (including IN).

ND-60.153.03

ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

sum. These may be mixed
freely, in any order.average.

nwnmwn

minimum.

stdev.

count

$
)18000

ascending.
descamflng.

>18UDU

UPDATE. can only be used alone.

ND-60.153.03

51

52 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

3.7.8 EXAMPLE ELEMENTS

There are four types of example elements. All are written as "(name>,
except no. 3 below:

1) Example elements used in the table column, to connect several
subqueries.

2) Output example elements in one or more of the field columns.
These are used to identify the data fields which are to be
written out when an output form is used. See chapter 4

3) Input example elements in field columns, written as $<name).
These are used instead of a data value. When the query is
executed, ACCESS will ask for a data value which then will
replace the input example element. Chapter 5 contains
examples of the use of input example elements.

4) Example elements used in the field columns to create logical
links (or connections) between different table frames on the
screen, or between subqueries. See sections 3.7.10 and
3.7.11.

This section will deal with example elements of the first type.

When two selection criteria in different data fields are used in the
same subquery, those records which satisfy hgth criteria are picked
out.

If you want to pick out records which satisfy either one or the other,
you have to write the selection criteria in two different subqueries,
and connect them with an example element. All records which satisfy at
least one of the criteria will then be picked out.

If two subqueries are connected with an example element, and they both
have selection criteria in the same column, the effect will be the
same as if the selection criteria were written in one suhquery with
the logical operator OR between them.

Subqueries that are connected with example elements must follow this
rule:

Qne of the subqueries must have all the operators, and the
output example elements if they are used. The other
subqueries can only have selection criteria where data
values may be replaced by input example elements.

EXAMPLE

“Mark“ everyone with Vera Kendal as their boss. ”Mark" everyone
earning more than 10000 per annum. Display the names in the "marked"
records.

ND~60.153.03

ACCESS USER GUIDE 53
DEFINING AND RUNNING QUERIES

What happens here is that the names of all employees who either have
Vera Kendal as their boss andlor earn over 10000 are displayed.
Observe that only the names are displayed. If you want the salaries
displayed as well, you have to put "print.” in the salary column.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ _x ‘Vera Kend
al‘

+ “x >10000
+ *x print.unique.

If you put all the operators on one line, as shown below, do you get
the same result?

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ pri. 'Vera Kendal‘ >10000

No, in that case you get the names of all the employees who have both
Vera Kendal as their boss and earn more than 10000.

In the first table above we have written “unique." in the name column,
because we only want to have each name displayed once. If we had not
done that, all those who satisfied both search criteria (those that
the last example query will find) would have been displayed twice.

EXAMPLE

Task: Display the names of those who work in Sales or Finance and
earn over 11000, and the names of those who work in other
departments and earn between 10000 and 12000.

Solution:

EMPLOYEES NAME SALARY DEPARTMENT

» _x >11000 'Sales' 0R
'Finance'

+ _x in(10000:12000) ><‘Sales' AND
><'Finance'

* _x print.

Note: The sorting operators ASCENDING and DESCENDING, must, if they
are used, appear in the same subquery as PRINT. Other subqueries must
include at least one selection criterion.

ND—60.153.03

54 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

3.7.9 COMMANDS IN THE COMMAND BOX

A command box is used to specify commands to be executed with the
query. Several categories of commands are available.

~ Commands for the further processing of results. The same commands
can also be executed manually after query execution is finished
(on the printing of result level, see chapter 6). with a command
box, these commands can be stored as part of the query and

executed automatically when the query is run.

- Commands controlling input and output. These are used with

advanced input and output functions.

— Commands controlling query execution. These are used to define

menus, to restrict the number of records searched, and to execute

several queries in succession automatically.

The command box and its operators are stored in the query description

and can be used repeatedly. Operators must be written in a special
frame or box which you get on the screen by typing the command:

** O ND~BO *J

A command box then appears on the screen:

‘COMMAND-BOX
a,

As in a table frame, you can select commands by pressing the HELP key,
selecting the desired command with the up and down arrows, and finally
pressing +j.

_—
—

,.

The command box can be edited in the same way as a table frame; you
can use:

CTRL+W to increase the width of the box, and

SHIFT+- or CTRL+P to reduce the width.

A command with its parameters can extend over several lines in the
command box. You get a new line for the same command by pressing «1'

while the down arrow gives you a new line for a new command.

ND"60.153.03

ACCESS USER GUIDE 55
DEFINING AND RUNNING QUERIES

A new command line is indicated by ">“ or “+".

Press HOME or the EXIT key when you want to finish filling in the
command box. Then press the up or down arrow to jump between the
command box and the table frame(s).

Here are the command box commands:

Result processing commands

REORDER—COLUMNS (Column—1) (Column—2) (Column-n)
HEADING (Heading string in quotes)
RENAME—COLUMN (Old column name) (New column text)
PRINT (File name with default file type :SYMB)
STORE—DATA (File name with default file type :DATA)
WRITE~WITHOUT~FRAME (File name with default file type :SYMB)
DESCRIBEHMACRO—CALL (NOTIS macro description)
WRITE—MACRO~CALL (File name with default file type :TEXT)

(Macro name)

Commands controlling input and output

INPUT (Input element) (Prompt text)
REPEAT
KEEP—VALUES (Input element-1) (Input element—2) .

(Input element—n)
DEFAULT (Input element) (Default value)
NO—FORMFEED

figmmands controlling QUQIX_§K§QEELQB

MENU (Command to execute) (Query name) (Menu item
text)

MENU~HEADING (Heading text)
MENU—FOOTING (Line no) (Footing text)
EXECUTE (Query name)
NO—SCREEN
RESTRICT—SEARCH (Number of records)
SKIP—FOUND-RECORDS (Number of records)

The result processing commands are explained in chapter 6. The
commands controlling input and output are described in chapters 5 and
4. The MENU commands are explained in Chapter 7. The remaining
commands are described in the following sections.

ND—60.153.03

56 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

3.7.9.1 EXECUTE AND NO—SCREEN

The EXECUTE command allows you to define a query that causes the

execution of several other queries in succession. Such a query must

consist only of a command box, as in the following example:

a EXECUTE query—3
+ EXECUTE query—2
+ EXECUTE query—1

This query must be stored, and then run from the start level. The

reason the query names have been entered in this order is that the

EXECUTE commands are executed from the bottom up: query—1 will be

executed first, then query—2, and finally query—3.

In the above example the EXIT key must be pressed between each query

execution, unless query~1 and query-2 each contains a command box with

the command N0"SCREEN. In the latter case, all three queries will be

executed automatically in succession, with no chance to inspect the

results of query—1 and query-2 on the screen.

3.7.9.2 RESTRICT-SEARCH AND SKIP—FUUND~RECORDS

The command RESTRICT—SEARCH can be used in the command box to restrict

the number of records found in a search. For example, the following

query will display only the first 10 employees that earn more than

15000:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

* PRI. >15000

'COMMAND—BOX r
a RESTRICTsSEARCH 10 I

SKIP—FOUND—RECORDS causes ACCESS to skip the first records satisfying

your selection criteria. In the above query, if you replace RESTRICT—

SEARCH 10 with

SKlptFOUND-RECORDS 10

the 11th to last employees earning more than 15000 will be displayed.

ND-60.153.03

ACCESS USER GUIDE 57
DEFINING AND RUNNING QUERIES

These commands may be used together. To display "the second 10“ (no.
11 through no. 20) employees earning more than 15000, use the
following query:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ PRI.)15000

QQMMAND-BOX
+ RESTRICT~SEARCH 1O
4 SKIP-FOUND~RECORDS 10

3.7.10 QUERIES HITH MULTIPLE TABLES

You now want to find all employees who work in a department located on
the second floor.

This query uses two tables rather than one. You are already familiar
with the EMPLOYEES table which we have used in the queries so far. The
second table, DEPARTMENTS, contains information about the location of
each department.

DEPARTMENTS NAME FLOOR

You can get table frames for both tables on the screen by using the
command NEW—TABLE twice. What information is common to the two tables?
The department information appears in both and is the common
information or link between the two tables. You can think of the link
as a logical connection. Now we will phrase the query to make use of
the link information between the two tables:

Print all employees who work in a department, for example DEPT, such
that DEPT is located on the second floor.

We do not know what the actual department name (or names) is. What we
do know is that the name must be the same in both tables. Therefore we
use an example element instead of the name.

The example element says that we do not care what the department name
is, but we do want the relationship, the link, to exist. Instead of
the example element name _DEPT used in this example, you could use any
name (for example _X1, __23) as long as you remember to start it with
an underline character.

ND—60.153.03

58 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

Now let us use ACCESS to get the result. The following procedure is

used:

1) Get the EMPLOYEES table frame onto the screen by using the NEW—

TABLE command.

2) Write print. in the table column.

3) Write _DEPT in the DEPARTMENT column.

4) Press the home key (\) twice.

5) Get the DEPARTMENTS table frame onto the screen by using the NEW—

TABLE command.

6) Write _DEPT in the NAME column.

7) Write 2 in the LOCATION column.

8) Run the query.

The screen picture will look like this:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+print. _DEPT

DEPARTMENTS NAME FLOOR

4 _DEPT 2

This query illustrates the use of example elements as a link between

tables. The same example element must be used in both tables.

The sequence of the table frames on the screen is not important. If

the DEPARTMENTS table had been displayed before the EMPLOYEES table,

it would have no effect on the result of the query.

ND‘60.153.03

ACCESS USER GUIDE 59
DEFINING AND RUNNING QUERIES

Perhaps you are still confused about when to use an example element.
Remember that an example element is only required when you want to
link two or more items (columns). With this in mind, if you enter the
query in the following sequence, you can see where links (example
elements) are required.

1) Get all the table frames you need onto the screen.

2) Enter "print.” in all columns from which you want output (or use
"print.“ in the leftmost column).

3) Enter constants in all columns whose output must meet certain
specifications.

4) The "Employees located in Oslo“ query will now look like this:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+print.

DEPARTMENTS NAME ADDRESS LOCATION

+ ‘Oslo'

As you can see, there is nothing to link or associate the
EMPLOYEES table print request with the DEPARTMENTS table constant
“0510'. Therefore, the last step in the process is:

5) Enter example elements where necessary to link the parts of the
query.

It is also easy to see the link or common information between the two
tables: departments. By entering the same example element in the
DEPARTMENT column of the EMPLOYEES table and the NAME column of the
DEPARTMENTS table, the link is established between the two tables.

However, remember also that this is merely a suggested sequence of
defining queries with links.

You may have your own way of thinking about links and your own
sequence of building a query. Since ACCESS allows you to follow your
own thought processes, you can formulate your queries in any sequence
you want.

ND-60.153.03

6O ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

3.7.11 MORE ABOUT USING EXAMPLE ELEMENTS

Once you understand the concept of linking example elements, you can
link any number of tables and any number of rows with single or
multiple tables, as in the following example.

EXAMPLE

Task: Display the names and salaries of all employees who earn more
than their manager.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ print. ~BOSSNAME print.>_SAL
* “BOSSNAME _SAL

This query is easier to understand if we state it in the following
way: Print the name and salary of the employees whose manager may be
BOSSNAME (as an example), and who earn more than SAL when BOSSNAME
earns SAL. Here the example element is used to link the manager in the
first row with the name in the second row. In addition, another
example element is used to link and compare the two salaries.

3.7.12 THE CONDITION BOX

Selection criteria that are ordinarily written in the table columns
may also be put in a condition box. This makes it possible to use some
selection functions in addition to those allowed in the table frame.
The condition box can also be used to define relationships between
different columns.

To get a condition box on the screen, use the command:

* *CONDITION-BO§+J

ND~60.153.03

ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

61

The following operators are allowed in the condition box. Note in
particular that two relational operators may be used in one
expression.

OPERATOR TYPE EXAMPLES

Example elements _a _salary

Relational operators: _a > 2 0 < a <= 10
= < > (=)=)<

IN

Logical operators:
AND, OR, NOT

Arithmetic operators:
+~*/

_a in(1:5,7,14)

_a > 10 or _a < 2

_a/7+3 = 13*_b

As mentioned, selection criteria may be written in the condition box
instead of in the table frame. This is done with example elements:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

a p_

ICONDITIONtBOX
+ _sa1 in(10000:15000) l

_sal

The above query will give the same result as the following:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ p. in(10000:
15000)

ND-60.153.03

62 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

3.7.13 RELATIONSHIPS BETHEEN COLUMNS

You can compare the values in two different columns, as in the
following example, which will display all the records where the result
is greater than the budgeted amount:

DEPT_174 BUDGET RESULT

4 _budget _result

lCONDITION-BOX
4 ”result > _budget I

This query can also be written without the condition box:

DEPT_174 BUDGET RESULT

+ ~budget >wbudget

You can update a column to contain the result of arithmetic operations
on other columns, as in the following example, where the sum paid is
updated to be equal to price multiplied by quantity:

ORDER CUST_N0 ORDER‘NO ARTICLE QUANTITY SUM

4 p. _art _q upd._sum

ARTICLE ARTICLE PRICE_PER*ARTICLE

* P- _art _price

ICONDITION~BOX '
+ _sum = _q*_price

ND—60.153.03

ACCESS USER GUIDE 63
DEFINING AND RUNNING QUERIES

3.8 HANDLING A STORED QUERY

You want to make a simple system which your company can use to adjust
salaries. You want to adjust all salaries between 0 and 20000 by 5 %,
and write the following query:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ _X IN(0 20000)

+ wX updat.+5%

Here we have used the down arrow after 20000), in order to get a new
subquery (with + to the far left). The two parts of the query are
connected with the example element _X in the first column (table
column).

Press HOME twice, and you enter command position. Give the command:

*STOBE~QUEBY “fiALABX-ADJUSIMENT"+J

Use the EXIT key (or give the command EXIT) twice to leave ACCESS. The
query has now been stored in the query library file for later use.

In the next example, you want to edit this query so that the salary of
all those who earn between 95230 and 111190 is adjusted by 7%.

DATABASE

COMPUTER

Fiq. 13. Chanqe and execute an old query

ND~60.153.03

64 ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

The query description on file is not to be changed. The query SALARY-
ADJUSTMENT may be used later for other adjustments.

Fetch the query description SALARY-ADJUSTMENT. Enter ACCESS, and give
the command:

*FETCH-OUERY SALARY-ADJUSTMENTv-J

The table frame appears immediately, and you can edit it to suit your
task.

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

4 ~X in(95230
:111190)

4 X update.+7%

The query description remains unchanged, so you
other purposes.

ND-60.153.03

can use it later for

ACCESS USER GUIDE 65
DEFINING AND RUNNING QUERIES

3.9 FUNCTIONS IN EDITING POSITION

Using the functions available in editing position you can move inside
and between suhgueries in the table frame.

To get a new line in the same subquery, press «1' To move to another
column, use the tabulator arrows.

To show where a subquery starts and ends (vertically), each new
subquery is marked with + in the left margin of the table frame.

1) The following screen commands are available for editing text in a
table frame. For the most part, these are the same commands as
those used in NOTIS—WP.

deletes one character.

CTRL+C copies a character from the previous line.

CTRL+D CTRL+C deletes the current column.

CTRL+D +1 deletes the rest of the line in the column
from the current cursor position.

CTRL+D "X" deletes the rest of the line in the column
up to the character "X".

CTRL+D CTRL+D deletes the entire current line in the
column.

or CTRL+D CTRL+F deletes part of the current subquery in
this column.

SHIFT + EEwW or CTRL+D CTRL+L

deletes the entire current subquery

Si or CTRL+E turns expand mode on/off (allows extra
characters to be written in the text).

SHIFT+ 3;: or CTRL+B turns insert mode on/off (allows you to
insert lines between existing lines in a
subquery).

ND~60.153.03

66

or CTRL+G

PRINT or CTRL+O

2) The following screen commands are available for navigating within a
table frame:

CTRL+F

CTRL+R

: or CTRL+T

Mafia (column)

ACCESS USER GUIDE
DEFINING AND RUNNING QUERIES

gives a menu of available operators
in the current column (see section
3.6.1). If you press SHIFT+HELP
you will get information on how the
column has been defined.

prints the screen picture (table
frame or result table), on a local
printer connected to your terminal.

moves the cursor to the first
position after the last input
character in the column.

moves the cursor to the first
character in the column.

moves the cursor to the start of the
next column.

If the cursor is in the last position
of the column, the right arrow has
the same effect

moves the cursor to the start of the
previous column.

If the cursor is in the first
position of the column, the left
arrow has the same effect

moves the cursor to the given column.

ND~60.153.03

ACCESS USER GUIDE 67
DEFINING AND RUNNING QUERIES

Inside a column, the arrow keys have the following effects:

- Left arrow
moves the cursor to the previous character position.

— Right arrow
moves the cursor to the next character position.

— Up arrow
moves the cursor to the same position on the line above, or to the
subquery above.

~ Down arrow
moves the cursor to the same position on the line below, or to the
subquery below.

Special functions:

brings you to table position.

gives a new line in the field you are
positioned in the current subquery.

starts the execution of the query
description.

3.10 CUMMANDQ IN TABLE POSITION

If you want to change a query description after having been in command
position, you can:

1) press HOME to change to table position in order to move to
the right table frame/command box/condition box.

2) use left or right arrow for page scrolling.

3) find the right page and frame/box by means of the arrow keys.
Use the up and down arrows to jump between table frame(s) and
box(es).

4) go into editing position to edit the frame/box. Press «J to
go from table position to editing position. Make desired
alterations.

5) if you want to make corrections in another frame or box,
press HOME to go back to table position and continue from
point 2.

ND—60.153.03

68 ACCESS USER GUIDE
DEFINING AND RUNNENG QUERIES

6) if you have completed the editing, press HOME to go into

table position.

If you want to expand or change the command box, you may type COMMAND—

BOX again, and the cursor will jump to the box which has already been

defined.

The following commands are available in table position:

HELP or CTRL+G Display HELP information
1 Move to the first page
$ Move to the last page
~ Move to the previous page
+ Move to next page
left arrow Scroll to the left
right arrow Scroll to the right
up arrow Move to the previous table/box

down arrow Move to the next table/box

H?ME or any character. .Brings you into command position
+ Brings you into editing position
DELETE or CTRL+D Deletes the whole current table frame/box

NDfl60.153.03

«.83
.w

(22*
1...»;

,La
man,»

u
film-vim

«492g

ACCESS USER GUIDE 71
ALTERNATIVE DISPLAY OF RESULTS

4 ALTERNATIME DISPLAY OF RESULTS

4.1 THE OUTPUT FURM

If you do not want to present data in the standard table format, you
can design another format for your particular need.

This part of ACCESS may, to a limited extent, be compared with a
report generator. It can be used to create general reports consisting
of data from the data base and additional text.

One page of a report generated with the help of ACCESS and written out
on a line printer may, for example, look like this:

EMPLOYEES

NAME:

DEPARTMENT:

MANAGER:

SALARY:

Eig. jg, Example of an output form

4.2 FILLING IN THE TABLE FRAME

When you want to present data in a format other than the standard
table format, the first thing you have to do is fill in a table frame
in the usual way. Output example elements must be used in the fields
that are to be displayed in the output form. to connect them to the
fields in the output form. This can be illustrated by the following
example:

Task: You want to write out on a screen form all information about
those working in the Sales department. The table frame is filled
in as follows:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ “X ‘Sales‘
+ print._X _IDENT _BOSS _SALARY _GROUP

ND-60.153.03

72 ACCESS USER GUIDE
ALTERNATIVE DISPLAY OF RESULTS

_IDENT, _BOSS, etc., are output example elements. Note that the output
example element starts with the underline sign.
The example element _X used in the table column is a special example
element and is only used for linking the tw0 subqueries together.

The example elements connect the information known in the table frame
with that necessary for ACCESS to use the OUTPUT—FORM definition (for
example, where the relevant data can be found and how much space you
need for displaying the data in your output form).

4.3 CALLING THE OUTPUT-FORM

When the fields to be used have been defined by entering example
elements in the necessary columns, give the command:

**0UTPUT-FORM <number of lines in torm>+1

Give the number of lines only when you want an output form larger than
the screen window. The maximum number of lines is 72.

The screen is cleared except for the two bottom lines, where “***"
tells you that you can start defining a form. If the form is bigger
than the screen window, the first and last line numbers displayed are
also given.

The cursor is positioned in the upper left corner of the screen. You
are in editing position.

Press HOME to go to command position. The HELP function now gives you
a list of available commands. When you press HELP or CTRL+G in editing
position, a list of the fields you have available and information on
how much space they occupy on the screen is displayed. Pressing HOME
once more returns you to editing position.

4.4 DEFININE AN OUTPUT-FORM

An output form consists of two parts:

1) Prompt text;

2) information from the data base.

Text can be written anywhere on the screen and edited in the usual
way. CTRL+L inserts a new line where the cursor is positioned. Those
lines below are moved down on the screen. CTRL+D CTRL+D deletes a
line.

ND—60.153.03

ACCESS USER GUIDE 73
ALTERNATIVE DISPLAY OF RESULTS

4.5 DEFINING. MOVING. COPYING AND DELETING FIELDS

Let us have a look at how you insert a field from the table frame in
the output form.

DEFINE-FIELD

A field may be placed in the form in the following way:

1)

2)

3)

Move the cursor to the position in the form where you want to
place the field.

0n the NOTIS terminal, press the FIELD key (or press HOME and give
the command ***DEFINE~FIELD). ACCESS asks for the field name. Here
you type in the name of one of the example elements in the table
frame, in this case "IDENT". ACCESS places the field on the screen
where the cursor was positioned before you pressed FIELD or HOME.

The field on the screen will look like this:

IDENT

If you want the field to extend over several lines, the FIELD key
cannot be used, and you have to give the number of lines after the
field name:

***DEFINE-FIELD IDENT 2

The field on the screen will then look like this:

Note that the total length of the field must be divided equally
over the number of lines. Use the HELP key or CTRL+G to see the
length of the field.

Move the cursor to the place where you want the next field to
start. Continue as above until all the fields are placed.

ND~60.153.03

74 ACCESS USER GUIDE
ALTERNATIVE DISPLAY OF RESULTS

An alternative way of defining a field is as follows:

1) Position the cursor where you want the field to begin.

2) Press the HELP key. ACCESS will displays a menu showing the names
and lengths of all fields that may be defined (in other words, the
names of the input example elements in the query and the width of
the columns they have been placed in).

3) Select the desired field with the up and down arrows and +1.

MOVEtFIELD

A field is moved from one place to another in the form in the
following way:

1) Place the cursor in any position within the field you want to move
and "mark" it with the MARK key (or CTRL+V) Note: The marking is
invisible. This does not mean that the field is not marked.

2) Move the cursor to where you want the field to begin.

3) Press the MOVE key (or press HOME and give the command ***MOVE«
FIELD).

QQEX:ELELD

A field is copied from one place to another in the form in the
following way:

1) Place the cursor in the field to be copied and use the MARK key
(or CTRL+V).

2) Move the cursor to where you want the copied field to begin.

3) Press the COPY key (or press HOME and give the command ***COPY—
FIELD).

ND~60.153.03

ACCESS USER GUIDE 75
ALTERNATIVE DISPLAY OF RESULTS

QELEIE:£IELD

A field is deleted from the form in the one of the following two ways:

a) Place the cursor at any point in the field to be deleted and press
the DELETE key (or press HOME and give the command ***DELETE~
FIELD).

or

b) Place the cursor in the field and press CTRL+D and CTRL+F. With
CTRL+D and CTRL+L a whole line is deleted: both the prompt text
and the field.

For example, in front of the name field above it would be natural to
use the prompt text "NAME“. The field on the screen would then look
like this:

NAME: IDENT

REPEAT~LINES

One or more lines can be copied several times by using the command
***REPEAT-LINES in the following way:

1) Mark the 1ine(s) to be repeated by using the MARK key (or CTRL+V)
on the first and last line, or twice on one line if there is only
one. Place the cursor where you want the copied lines to begin.

2) Press HOME and give ***REPEAT—LINES and the number of repetitions,
for example, ***REPEAT—LINES 12. The default number of repetitions
is 1.

When you have several fields with the same example element in the
output form, they will be filled with values from several records when
the query is executed. Note that the output form must contain the same
number of fields for each example element. Some of the example
elements may not, however, have any fields in the output form. This
means that you do not want to display these fields.

EXAMBLE

Suppose you want to have a printout of all the names in the data base
with 5 names per page.

You can fill in the table frame like this:

EMPLOYEES NAME

+ PRINT. N

ND-60.153.03

76 ACCESS USER GUIDE
ALTERNATIVE DISPLAY OF RESULTS

You define the output form like this:

1) Give the command **0UTPUT—FORM

2) Place the cursor on the screen where you want to have the
first name. Use the FIELD key and then type ”N" (or use
CTRL+V, HOME and DEF N).

3) Place the cursor on the dotted line which is now displayed on
the screen. Press the MARK key (or CTRL+V) twice. Place the
cursor on the line where you want the next name. Note: not on
the same line! Give HOME, and ***REP 4.

4) Type “NAME" to the left of the first dotted line.

The output form will then look like this:

5) Use the EXIT key (or give HOME and the command EXIT). The
query can now be executed or stored for later use. When it is
executed, the first five names will be written out. Press the
down arrow to get the next five names.

Note: Remember to position the cursor where the lines are to appear,
before you give the REPEAT—LINES command. Otherwise the first of the
repeated lines will coincide with the last line to be repeated, and
this is not allowed.

4.6 NU—FORHFEED

In the above example, if you print the result on a printer, you get
five names on each paper page. If, however, you use the command box
command NO—FORMFEED, ACCESS prints the result without page breaks. In
this case, you get five names, and then only as many blank lines as
the output form contained, and then the next five names. If you want a
continuous list of names, with no blank lines, you can REPEAT the name
field through all 23 lines of the output form.

4.7 TERMINATION

When you have finished editing a form, leave the form definition level
by pressing the EXIT key or giving the command ***EXIT. You are then
back on the query definition level with a description of the table
frame (and command box) on the screen. You can now proceed from where
you left off when you gave the command OUTPUT—FORM.

ND—60.153.03

ACCESS USER GUIDE 77
ALTERNATIVE DISPLAY OF RESULTS

When the query is executed, the result is presented on the defined
format. The form definition is then part of the query description and
can be stored on a file with the table frame and command box for later
use (**STORE~QUERY), or can be written out on an output device
(***PRINT—QUERY).

4.8 DELETING THE OUTPUT FURM

When you are back on the query definition level, you can delete the
output form by giving the command:

* *DgLEIE~OUTPUT—FQRE+J

NDA6O.153.03

78

ND~60.153.03

ACCESS USER GUIDE

.11.}
1

gm
“

9.fl

ACCESS USER GUIDE 81
INPUT OF NEW DATA USING EXAMPLE ELEMENTS

5 INPUT 0F NEH DATA USING EXAMPLE ELEMENTS

5.1 INPUT OF DATA USING INPUT FORM

An input form may be used to input data which is used by the query
when it is executed. The same commands as for output form are
available here, except REPEAT—LINES, COPY-FIELD and the COPY key. See
section 4.5.

Before you start making the input form itself you must get the table
frame onto the screen and give the various data values names. You do
this by defining input example elements in the necessary columns, and
use them in the input form. The procedure is similar to the one used
for the output form. An example is shown below.

Start by calling the table frame, and use the table operator INSERT.
The symbolic names A,B,C have the prefix $ to indicate the use of the
names. Remember that “_" is used for output example elements and “$“
for input example elements. The following example shows a query
definition with input form.

The table frame:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

e insert. $A $8 $C

The input form:

Registration of new employees

Name : A

Boss : B

Department: C

ND~60.153.03

82 ACCESS USER GUIDE
INPUT OF NEW DATA USING EXAMPLE ELEMENTS

The command to start defining the input form is analogous to that used
for the output form:

**INPUT—FORM (number of lines in form»J

Here, too, you can omit the number of lines, unless you want a form
larger than the screen. The maximum number of lines is 72.

All input example elements in the table frame must be included in the
input form, or you will get an error message. But all the columns in
the table do not have to have an input example element. In the
example, SALARY will be set to 0. It can be updated with another query
later. Each example element can only be used once in the input form.

If you want to input a lot of data with the same input form, you do
not have to go back to the table frame and give the RUN~QUERY command
between each input form you fill in. You may create a command box with
the command REPEAT as part of the query. ACCESS will then present a
new empty input form after each execution. To end a series of
registrations, press the EXIT key (or HOME). Note that when you
interrupt the procedure, the data currently on the screen will not be
put into the data base.

You may jump between the fields in the input picture with the arrow
keys. If you make a typing mistake in one of the fields, this can be
corrected if you do it before the query is executed.

To start query execution, use the

All types of data values can be given as input data via input example
elements, instead of being entered directly in the query. As an
example, let us see how you can define a query which gives a salary
increase for one person:

EMPLOYEES NAME SALARY

4 $N upd.+$L

You can then define an input form which asks for name and increase in
salary. The query will then be executed as if the data were put
directly into the table frame.

Note that “t" cannot be used here. You can increase the salary by
1000, but not by 10%.

ND-60.153.03

ACCESS USER GUIDE 83
INPUT OF NEW DATA USING EXAMPLE ELEMENTS

5.2 INPUT OF DATA HITHDUT INPUT FURM

If you have a query description with input example elements, but have
not defined an input form together with the query, you are allowed to
input data at the bottom of the screen when the query is executed.

Note that only one line is available for the data value. For data
values meant to occupy more than one line, an input form must be used.

EXAMELE

You define the query:

EMPLOYEES NAME SALARY

4 PRINT. in($A:$B)

When the query is executed, first

A: and then B:

are displayed at the bottom of the screen, and you can enter the data
after “2".

If you want to repeat the query several times, you can also write
REPEAT in a command box. When the query is executed, you will get the
following question (answer Yes or No):

"Do you want to run the query once more?"

EBQMBI:IEXI

The name of the input example element will be the prompt text for the
input of data. If you want to have a prompt text with more than one
word, you can use the command

PROMPT~TEXT (input example element) (prompt text)

in the command box. The prompt text will then be displayed when the
query is executed.

ND—60.153.03

84 ACCESS USER GUIDE
INPUT OF NEW DATA USING EXAMPLE ELEMENTS

Suppose you have defined the table frame as shown in the previous
example, where the names and salaries of all those between a minimum
and a maximum salary are displayed. If you do not want the prompt
texts A: and B:, you can define the following command box:

COMMAND-BOX

4 PROMPT—TEXT $A “Salary from: '
+ PROMPT—TEXT $B ‘Salary to: ‘

"Salary from " and "Salary to:” will then replace "A2” and "Bz".

ACCESS asks for the value of the input example elements in the
following order.

— First all input example elements that appear together with a
PROMPT-TEXT command, and in the order they are written in the
command box.

— Then the rest of the input example elements (not necessarily
in the order they are written in the table frame).

If you use the command HEADING (see section 6.5.3) in a query with
input example elements, you can use the input value in the heading by
including the input example element in the heading text, in the
following way: “$a;

W

Task: Produce a list of all employees earning more than the value
input and print it on a philips printer, with an appropriate
heading.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ p. p.>$sal

COMMANDtBOX

e prompt-text $sal “Salary from: '
+ heading ‘Employees earning more than ‘$sal;‘
+ print philips

ND—60.153.03

ACCESS USER GUIDE 85
INPUT OF NEW DATA USING EXAMPLE ELEMENTS

5.3 FACILIEATING DATA ENTRY

When you want to enter large amounts of data into a register, you need
some data entry functions. ACCESS has two command box commands that
enable you to enter records faster in an input form.

The commands are:

KEEP—VALUES — The command requires a list of input example
elements, for example KEEP $A $B $C. The values of
the fields that use these example elements will stay
in place in the input form until you change them.
This means that if you use the KEEP command for the
manager column, and you want to enter a number of
employees having the same manager, the manager name
need not be entered more than once. If the next
employee has a different manager, the manager name
must be changed on the screen.

DEFAULT — The command requires the name of an input example

We

element and the desired default value. If you do not
enter a value in this field, the default value is
automatically inserted.

now want to define a query for entering data in the employee
register. To make this process more efficient, we do the following:

1)

2)

3)

4)

Use repeat, because we want to input many records.

Use keep~$bgssfifidept, because we want the old values to remain on
the screen.

Use default__§§alary_1figgg, because we want the value 15000 to be
inserted if no salary is entered.

Use default $dept 'Sales department‘, because we want the new
employees to belong to the Sales department if no department name
is entered.

ACCESS will not allow you to use these commands in the command box
before you have defined the fields in the input form. You must
therefore define the table frame first, then the input form, and
finally the command box.

The table frame:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

einsert. $name $boss $salary $dept

ND-60.153.03

86 ACCESS USER GUIDE
INPUT OF NEW DATA USING EXAMPLE ELEMENTS

The input form:

Registration of new employees

Name : name Salary per year: salary...

Boss : boss

Department: dept

The command box:

COMMAND~BOX

repeat
keep $boss $dept
default $salary 15000
default $dept ‘Sales department'$

é
$

$

After entering some records, the screen may look like this:

Registration of new employees

Name : y Salary per year:

Boss : Audrey Sands

Department: Marketing

5.4 MLETING THE INPUT FORM

The input form can be cleared from the query with the command

on the query definition level.

ND—60.153.03

, .. +71
.3

,1,“ ‘9

ACCESS USER GUIDE 89
PROCESSING AND PRINTING RESULTS

6 PROCESSING AND PRINTING RESULTS

6.1 THE PRINTING 0F RESULT LEVEL

When you execute a query which PRINT. or a function operator, the
result is displayed on the screen and you automatically go down to the
printing of result level, which has its own set of commands.

You can interrupt a query by pressing the EXIT key or the CANCEL key
(or pressing ESC twice). However, queries which include DELETE.,
INSERT., or UPDATE. will not be interrupted.

8.2 NAVIGATING COMMANDS

Navigate in the screen display by using the navigate commands and the
arrow keys:

or PREVIOUS-PAGE

or NEXT~PAGE

gives the previous page

gives the next page

1 or ***FIRST~PAGE gives the first page

$ or ***LAST—PAGE gives the last page

moves you to the left in the result table

moves you to the right in the result table

***MOVE—TO~PAGE moves you to the given page. If the number
<pageno.) or 1—9 is less than 10, the number alone can be

used.

ND—60.153.03

90 ACCESS USER GUIDE
PROCESSING AND PRINTING RESULTS

6.3 FURTHER PROCESSING OF THE RESULT

After you obtain a result from a data base with the operator PRINT or
a function operator, you can carry on working with it without having

to go back to the data base. This saves time and increases the
efficiency of the system. It is also possible to put in new data or

update records in the result file before you print it.

Use the command ***REFINE~RESULT, or the

Ei: key.

See figure 15.

The table below is the first result you get from ACCESS.

NAME MANAGER SALARY DEPARTMENT

After the REFINE—RESULT command, a new table is displayed which has
the same columns as the result, and the table name is “LAST RESULT",

as shown below:

LAST RESULT NAME MANAGER SALARY DEPARTMENT

This can now be completed as an ordinary table frame. All the usual

operators and selection criteria are allowed. The query is executed as
before with

s
or 'HOME' and REFINE~RESULT. Note that you can also 'update‘ the
result, but the contents of the data base are not affected.

The operators INSERT., DELETE. and UPDATE. do not give a display of
the result. After having used one of these, you therefore get back to

the ‘Printing of result level', where you can define more queries
against the result.

ND~60.153.03

ACCESS USER GUIDE 91
PROCESSING AND PRINTING RESULTS

When you use PRINT. or a function operator, a new result is diplayed.
You can define further queries against this result with ***REFINE*
RESULT.

You cannot use the commands OUTPUT~FORM, INPUT—FORM or COMMAND—BOX in
connection with REFINE~RESULT. Note that the original result is
forgotten when you use REFINE~RESULT again. Only the last result is
remembered.

ND~60.153.03

ACCESS USER GUIDE
PROCESSING AND PRINTING RESULTS

92

o.

wm
m>fim

so»
cm

cx
m

m
aam

m
w

u
mgmm

kgsm
m

:
“m

koz

kmxm

w
cm

um
fiw

v
mg

mflwu
uflzmmp

EHO
.cm

o
m

mg”
:0

vwxm
flam

fiw
wcm

UmummLo
mm

mqwm
wqam

m
z

3m
:

cm
w

cm
zo

mw
nm

943m
m

m

A.wwm
3

wLm
m

L
O

u
m

a
o

:ow
uocsu

Lo
.F

s
u

cm
nx

hufinm
m

g
no

L
x
q

m
w

v
cu

“;
xgw

aw
v

AU

A
m

zw
nm

ua:
:3

:
k

xnw
nvv

M

«r

um
cflm

M
m

unw
zc

m
w

uw
o

mJHm
Hgsmwm

0;»

4»

r<

P4

wmmo
m

cw
um

na:
wfinam

m
O

m
m

3”
:0

cwm
m
fia

om
um

o
mg

qm

Mums
go

.cm
o

m
adv

vcm
kgzmmm

“om
m

:
mgm

m
Lom

m
ao

:ofiuocag
Lo

.c
m

m
cm

zx
.u
flsm

go
xm

fiam
w

v
fig

“:
>Lm

zcv

AM

ow
m

cm
zo

wm
<m

cb<m

:
cm

m
caa

C
ufix

xgw
scv

U
v

r

m
m

<m
<h<o

mnu
um

cfim
wm

m
zc

m
m

adam
e

Am
>m

fl
C

O
quficfiuoo
m

sw
mzu

0m
om

um
L“m

4

Queries aqainst DATA BASE and RESULT FILE15.Fiq.

ND~60.153.03

ACCESS USER GUIDE 93
PROCESSING AND PRINTING RESULTS

The legal commands are:

HELP Display help information.
REFINE—RESULT Run query.
EXIT Leave this level.

Example

You find all employees in the example data base by filling in the
table frame in the usual way:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ print.

with this result as a basis, you want to find everyone who earns more
than 20000, and you are only interested in the columns NAME, SALARY
and DEPARTMENT. MANAGER has been deleted with CTRL+D and CTRL+C.

You give the command ***REFINE~RESULT, and the new table is displayed
on the screen.

Last result NAME SALARY DEPARTMENT

4 print. >20000

You have now got a result, but you want to exclude all those who work
in Sales from the list. You repeat the command ***REFINE—RESULT and
fill in the frame thus:

Last result NAME SALARY DEPARTMENT

+ print. NOT 'Sales'

The records you have now found are to be printed. See the next
section. Press the EXIT key (or give the command "***EXIT“) to get
back to the query definition level.

ND~60.153.03

94 ACCESS USER GUIDE
PROCESSING AND PRINTING RESULTS

6.4 PRINTING THE RESULT

6.4.1 PRINT

***PRINT (file name>.<number of lines per paqe>+J

— The command is used to print the result of a query somewhere

else than the screen, usually a printer or a text file.

— You can have from 1 to 70 lines per page. On an A—4 sheet, it

is advisable not to have more than 64 lines. The default
value is the number of lines on the screen (21 on NOTIS

terminals).

~ If you want to write the result of the query to a file,

consider the following points:

— The file does not have to already exist. You create

a new file by enclosing the file name in double
quotes:

***PRINT “OSCAR“+J

— The file type will be :SYMB, which is the default
for printout in ACCESS. The complete name of the
file will then be OSCAR:SYMB.

— If you want to have another file type, this must be

specified:

***PRINT ”RESULT:TEXT”+J

ND~60.153.03

ACCESS USER GUIDE
PROCESSING AND PRINTING RESULTS

EKAMBLE

Task: You want to print on the line printer a list of those working in
the Development department, in order of decreasing
also want the column SALARY to be named ANNUAL SALARY and to be
positioned before the column NAME. The heading should be ‘Annual
Salary in Development‘. The result will be printed using the
command box.

Solution:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ print. print.desc. 'Development'

COMMAND~BOX

a print line~printer
» heading 'Annual Salary in Deve

lopment‘
+ rename SALARY,'ANNUAL SALARY'
» reorder 'ANNUAL'

Result:

Annual Salary in Development

ANNUAL SALARY NAME

9200 Sam Boyle
9000 Paul Rosier
8500 John Bell
8000 Diane Hyde
6400 John Mills
6000 Ann Platt
5000 Ann Bow
5000 Richard Hill
3300 Geoff Carver

etc.

The commands RENAME-COLUMNS, REORDER—COLUMNS and HEADING are explained
in sections 6.5.1 to 6.5.3.

Note: the width of the
command box can be increased
with the

ND~60.153.03

salary.

96 ACCESS USER GUIDE
PROCESSING AND PRINTING RESULTS

6.4.2 HRITE—HITHOUTmFRAME

***WRITE—WITHOUT~FRAME <fi1e name) (number of lines per paqe>+J

~ Like ***PRINT, this command prints the result of a query on a
printer or a file, but without the column names and frame.
This may be useful for instance when the result is to be
included in a report written in NOTIS~WP.

— if the number of lines is omitted, no page shifts will be
generated, and the file may for example be used as input for
the command HLOAD—TEXT—FILE.

6.4.3 STORE-DATA

***STORE—DATA (file name>+J

— This command writes the result on a file as you get it from
the data base. It is used when you need a special data file
(SINTRAN file) outside the data base, for further processing
in another system or for the command **LOAD—DATA—FILE.

6.4.4 DESCRIBE—MACRO—CALL AND WRIFE~MACRO-CALL

It is here assumed that the reader is familiar with the word
processing system NOTIS—WP and the text formatter NOTlseTF.

These two commands are particularly useful for standard letters. The
command ***WRITE—MACRO~CALL (file name) <macro> (separator) takes data
from a result table and writes it as macro calls on the specified
file. Let us say you have the following result table on the screen:

NAME DEPARTMENT

John Mills Building
Ian Rain Building
Christopher Howard Building
Harold Ritchie Building

ND—60.153.03

ACCESS USER GUIDE 97
PROCESSING AND PRINTING RESULTS

If you now give the command

***WRITE-HACRO—CALL address—list adr =+J
ACCESS will write the macro calls on the file “address—listztext", as
follows.

‘adr=Ian Rain =Building ;
“adr=Christopher Howard=Building ;
‘adr=Harold Ritchie =Building ;

Here ACCESS has filled in the first two macro parameters. If the
result table had contained a different number of columns, say four,
then the first four parameters would be filled in.

It may be that you need to leave one or more macro parameters blank.
This can be achieved by using the command DESCRIBE—MACRO—CALL before
WRITE—MACRO~CALL. DESCRIBE—MACRO-CALL is used to tell ACCESS where in
the macro call you want ACCESS to put the data from the result table.
For example, if you want only parameters 1 and 3 filled in, give the
command in this way:

***DESCRIBE-MACRO-CALL ‘adr/“l/“:*J

Let us look at a more complete example.

You have updated the salaries of a group of employees, and you want to
send them a standard letter informing them of their new salary. The
procedure is as follows.

1) Use NOTIS~WP to write the letter text, as in the following
example.

This is to inform you that your 1984 yearly salary has been
increased to $"item—1;. The total raise is 10%, which
includes a 6% cost of living raise and a 4% merit raise.

Roger Lawrence
Manager

2) Store this text on a file called "letter-textztext“. In the final
letter texts, “item—1; will be replaced by each employee's new
salary.

ND—60.153.03

98

3)

4)

6)

ACCESS USER GUIDE
PROCESSING AND PRINTING RESULTS

Use ACCESS to get a result table, like the following, on the
screen:

NAME DEPARTMENT SALARY

John Mills Building 24700
Ian Rain Building 24000
Christopher Howard Building 18200
Harold Ritchie Building 12400

The columns DEPARTMENT and SALARY have been interchanged by using
the command REORDER—COLUMNS (see section 6.5.1).

Give the command:

***DESCRIBE~MACRO—CALL “adr/"/‘/////”;+J
Now you have told ACCESS that you want the data from the result
table put into parameters 1, 2 and 7 in the “‘adr" macro. These
parameters are “name“, "address“ and "item~1".

Give the command:

”*WRITE—HACRO-CALL address—listJ

The macro name need not be specified here, since it was given in
the previous command.

ACCESS will generate the macro calls on the file ADDRESS“LIST:TEXT

“adr/John Mills /Building ///// 24700;
“adr/Ian Rain /Building ///// 24000;
“adr/Christopher Howard/Building ///// 18200;
“adr/Harold Ritchie /Building ///// 12400;

Note: As in this example, there may be blanks between a separator
and a number. These blanks will appear in the finished letter. If
you want to avoid them, remove them with SHIFT + JUST in NOTIS—WP.

Use NOTIS—WP to create a file containing the following single line
and format it with NOTIS—TF.

‘stdletter/address»list/letter~text;

This one line can be thought of as the recipe you hand over to
NOTIS~TF to enable it to find the ingredients for the letters. The
text formatter takes the letter text (the vegetables) from the
file LETTERwTEXT:TEXT, spices it with the addresses from ADDRESSv
LISTzTEXT, and cooks the finished letters.

ND-60.153.03

ACCESS USER GUIDE 99
PROCESSING AND PRINTING RESULTS

6.4.5 BAR-CHART

This command is used for the graphic representation (a bar chart) of
the result of a query. ACCESS will ask for the name of the output
file. This can be a disk file, a printer or a terminal. After having
given the command, you will be asked for parameters: variables along
the x—axis and y—axis, maximum and minimum values, etc.

The dialog on the screen:

Column along
the horizontal axis: Here you answer with the field name of

the parameter along the x~axis.

Column along
the vertical axis: The name of a numeric field.

The parameters along the axes must be given, but ACCESS uses default
values for the rest of the parameters unless you specify them:

Enter heading: Give a text string as the heading.

Distance between bars: This is the number of character
positions from the left edge of one
bar to the left edge of an adjacent
one. The minimum value is 8. The bar
itself always occupies 3 positions
horizontally.

Lower value on the
vertical axis
(Default=Minvalue): Default is the minimum encountered

value

Upper value on the
vertical axis
(Defaultaxvalue): Default is the maximum encountered value.

If the upper value is set at less than
the maximum encountered value, ACCESS
will change this to the maximum value.
The same is the case for the minimum
value.

ND—60.153.03

100

Number of lines
per page:

Number of values to be
displayed on the vertical
axis:

ACCESS USER GUIDE
PROCESSING AND PRINTING RESULTS

This is the total height of the bar
Chart, including the heading and the
bottom text line.

The number of values displayed along
the vertical axis. Default is 3:
minimum, medium and maximum value.

An example of the use of this command is shown in fig. 16.

Employeeg

Employees

Der Departmemt-

3%'

k
E r’

n54 é
i a. rI zi E, c,
l :

504 E
i E’

1 E m
l 5 .’

1:4 a~ ?
1 Fl"; ‘:
i E" E, , LT", a z- a: ~
i {Q in ?

{we} fl- 61 3
1 k' ' 3”: t ‘‘ ,_ , n
‘ C C ’ I-_'
§ t) {p fl
‘ V ‘: : ti, > r
' a ; 2

5+ i z: z
E h? 5. fl
; t LU g
I ;, z .
~ ‘ b , if] {d

so; E" 79 i 5;;
‘ ;_ g g: pE l
1, v__ :‘ ; } :.,

a f_ 3' 2% ed as "a
g a L {i u‘ w W
5 ; n 3‘ L} H i

2% a v w} 5! w 3
i, L‘ l l 3 3 t.t w. -, *3 z
z :. fl 2% p z

E V; :1 31 f?

f; ; M i :i W H
M E! E M ”I ‘3 H L ,

Prcductzon ‘ Harketznq inventcrvA , Serv .; Dre—saie Sunpgr: Data 9rccassa
bales Develcsnent AECSUntlnq ~daznzstrazzsn zagineera

Department

Fig. 16. Example of the use of BAR—CHART

ND-60.153.03

ACCESS USER GUIDE 101
PROCESSING AND PRINTING RESULTS

6.5 EDITING THE RESULT

3.5.1 REURUER—CULUNNS

Format:

***g§ggDER—c0LunN5 (item—1) <item—2> (item—6>+J
~ If you want the columns in the printout arranged in a

different order, you can use this command.

— If you only write some of the field names in the list, those
columns which have not been mentioned will come in the
original order, but after the columns given in the command.

6.5.2 RENANE~COLUWWS

Format:

' ;Ifl¥$ (old name) (new name>+J

— This command is used to change the name of a column in the
table.

e If you want to change more than one name, you must use the
command several times.

~ If the new name consists of several words, it must be
enclosed in single quotes.

— Old and new names are separated by a comma or a blank:

***§:.afiE i COL ShtYp'Sglt paid in 1983'+J

ND-60.153.03

102

5.5.3 HEADING

Format:

***EEEQIEG .Stggtz..1
— This

ACCESS USER GUIDE
PROCESSING AND PRINTING RESULTS

written out with the command ***PRINT.
command provides a heading to a table when the table is

— The text is left justified. The text, as it appears in single
quotes,
place the heading. You can move the text to the right on the
screen by placing blanks at the start of the text field.

***HEADING '

6.5.4 CLEAR-HEADING

placed to

This is a heading‘

the far left in the column where you

If you want to delete a previously defined heading, give the command:

wtkm;52a gig'.=_,

6.6 A REPORT EXAMPLE USING NOTIS-HP

Define a query as follows:

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

+ _L1)10000 Marketing
» ~L1 print. pri.asc.

COMMAND—BOX

+ print 'marksalary:text',60

We assume that the file MARKSALARY exists.

Press the + key to execute the query,

or enter

ND~60.153.03

command po ition (HOME twice from the command box) give the
command: **RUN—QUERY

ACCESS USER GUIDE 103
PROCESSING AND PRINTING RESULTS

When the query has been executed, ACCESS reports this, writes the
result to the file MARKSALARY and displays it on the screen. To leave
ACCESS, press the EXIT key three times (or type EXIT three times).

You are now out of ACCESS and can call NOTIS—WP. In NOTIS—WP you can
write the report text and make use of the macro 'report'(see below).
The table of salaries which you made in ACCESS is called to the final
report by writing:

"in,MARKSALARY;

and the file which ACCESS created will be put in where you have
specified.

The whole file written in NOTIS—WP may look as follows:

“report/Salaries in Marketing/NRA
/Salary/20 May 1984
/The matter was discussed on May 19.
In reply to the question put forward, the following summary covers
all employees in Marketing earning over 10000 per annum.
Comments from those concerned are requested by the undersigned.
/0P,KJ,DK,TS;
‘in,MARKSALARY;

Then give the command:

wpzw “salagyreport”+J

The file is stored and the formatter NOTIS—TF is activated by typing
‘J'.

The file is automatically formatted and displayed on the screen when
ready. The whole file SALARYREPORT is displayed, including MARKSALARY.

To print the result on a printer, type:

WPI:C (printer name)

and the complete report is printed on the specified printer. Give the
command:

WP:E (EXIT)

to leave NOTIS—WP.

The search and the name list were the work of ACCESS, and the report
was produced by means of NOTIS—WP.

ND—60.153.03

104 ACCESS USER GUIDE
PROCESSING AND PRINTING RESULTS

The procedure was carried out on the basis of the example data base.
You may, perhaps, find that 85 people earn more than 10000 in
Marketing and the report may look like the following. (Note that with
very small changes you can make similar reports for other departments
and for other purposes.)

REPORT

WW

Author: MHA
To: 0P,KJ,DK,TS
Reference: Salary
Written: 20 May 1984
Last updated: 30 May 1984

Abstract:

The matter was discussed on May 19. In reply to the question put
forward, the following summary covers all employees in Marketing
earning over 10000 per annum. Comments from those concerned are
requested by the undersigned.

Name Salary

Fred Atkins 11100
Margaret Benson 11200
Sid Stevens 11900
Christopher Eilifsen 12900
Jim Dale 13800
Mike Small 14100
Roger Mills 15100
Alex Sykes 17800
Ann Mills 17800
Christine Hall 18100
Dave Eilifsen 18300
Larry Offman 18700
Pam Offman 19400
Thad Ritchie 19800
John Rosier 20200
Richard Platt 22200
Joan Briggs 22300
Fred Mills 22400
Jodie Ritchie 23000

etc.

Fig. 17L Salary report

ND~60.153.03

ACCESS USER GUIDE 105
PROCESSING AND PRINTING RESULTS

6.7 MOVING UP TO QUERY OEFINITION LEVEL

To get out of the printing of result level, press the EXIT key (or
type EXIT in the command position). You then come back to the level
where the execution of the query started. If this was the query
definition level, you may edit the last query description. The
background picture with the table frame and command box appears on the
screen, and you automatically enter table position.

If you want to execute several queries in succession, you can use the
same table frame for all of them by editing it between each query.

6.8 ERROR MESSAGES AND CORRECTIONS

If you try to execute a special query which is not permitted, or if
you make some other mistake, an error message is given and the query
will be interrupted.

The error message describes what is wrong and ACCESS goes into table
position.

You must then correct the error before you proceed with the RUN—QUERY
command.

ND—60.153.03

106 . ACCESS USER GUIDE _

ND-60.153.03

r
m.

.
kn?»

711.335};
:2

ACCESS USER GUIDE 109
DEFINING MENUS

7 UEFINING MENUS

7.1 IHE MENU COMMAND

In this version of ACCESS, experienced users can define menu_pigtures,
which can be used by inexperienced users and novices.

This is done with the MENU command in the COMMAND-BOX. Each menu
command sets up one item in a menu picture. Up to 9 menu entries can
be defined per picture. Each item has information about which command
to run, the query name and the text to be displayed in the menu
picture.

We have the following two ways of using the menu:

1) Use only a COMMAND~BOX with menu commands. The menu picture will
be displayed on the screen when the query is started.

2) Use the command box with menu commands in an ordinary query. The
menu picture will not be displayed until the query is finished.
This feature is useful for making a “what do you want to do with
the result" type of decision.

The menu command has the following description:

MENU (command) (query name or SINTRAN command) (leading text)

command — RUN — Run a prestored query.
FETCH — Fetch a query description.
@ — Exit ACCESS and execute a SINTRAN

command (1).

query name ~ The query to be executed or fetched or the
SINTRAN command to be executed.

leading text ~ The text to be displayed in the menu picture.

Two more commands can be used with the MENU command:

MENU~HEADING (Heading text)

MENU~FOOTING (Line no)(Footing text)

(Line no) is a number from 1 to 3. These denote the last three lines
in the menu picture. The very last line is no. 3.

(1) This function can be used to start another subsystem directly
from ACCESS. This, however, will not work on the ND—SOO.

ND-60.153.03

110 ACCESS USER GUIDE
DEFINING MENUS

EXAMPLE

We have the following query to define a menu picture:

COMMANDtBOX

menu run empl—menu 'Display employee menu'
menu run query~1 ”Execute query no. 1'
menu run list—empl 'List all employees'
menu fetch query~1 'Modify query no. 1'
menu @notis-wp 'NOTIS—WP‘
menu—heading “M A I N M E N U‘
menu—footing 3 “Use the up and down arrows to move bet
ween menu items.‘
menu~footing 2 'Use the "carriage return" key to selec
t.6

$
$

$
$

$
+

¢
&

When this query is run, the following picture is displayed on the
screen:

M A I N M E N U

1 Display employee menu
2 Execute query no. 1
3 List all employees
4 Modify query no. 1
5 NOTIS~WP

Use the up and down arrows to move between menu items.
Use the ”carriage return" key to select.

The current menu item is displayed in inverse video on the screen. The
user can move between the menu entries with the up and down arrows.

ND-60.153.03

ACCESS USER GUIDE 111
DEFINING MENUS

7.2 THE MENU TREE

The query "empl—menu" also consists of a command box with menu
commands. Therefore, when "Display employee menu“ is selected, the
employee menu is displayed. This feature makes it possible to create a
“tree" of menus:

main—menu

< #

print—records insert—records delete—records

1

pr~empl pr—dept in—empl in—cust del—order del—cust

When the user leaves a menu picture, control is given to the previous
menu picture. When the first menu picture is terminated, the control
is given to the first level of ACCESS.

In addition, the ACCESS supervisor can define a default query name in
the ACCESS command file. How this is done is described in the DBA
manua 1 .

When this has been done, ACCESS automatically starts executing the
default query when a user enters ACCESS. If the query consists of a
menu picture, it is possible to run ACCESS entirely from a menu
system, particularly if the user only needs to run predefined queries.
It is also possible to give different users different command files,
so that some users may have such a system, while others do not (see
the DEA manual).

ND~60.153.03

112 ACCESS USER GUIDE

ND-60.153.03

ACCESS USER GUIDE 115
MISCELLANEOUS COMMANDS

3 MISCELLANEOUS COMMANDS

8.1 SINTRAN COMMANDS

SINTRAN commands may be given on all command levels in ACCESS. You
type @ followed by the SINTRAN command, and the command will be
executed in SINTRAN. An example:

”99mmJ
As a rule, you will come back to the position in ACCESS where you gave
the command. If you call another program, for example NOTIS—WP, or
give the wrong SINTRAN command, you will not get back to ACCESS, but
will have to call ACCESS again. SINTRAN commands should therefore be
used with care.

Not all SINTRAN commands can be executed from ACCESS on the ND—SOO.

8.2 HELP

The HELP command or the HELP key can be used at all levels in ACCESS.
It gives a picture on the screen showing available commands. Each
level in the system has its own set of available commands and they are
displayed together with a brief description of how they are used.

The HELP key can also be used in the table frame (see section 3.6.1),
in the command/condition box, and in the input/output form (see
section 4 S). SHIFT+HELP can be used in the table frame to find out on
what file the data is stored (use SHIFT+HELP in the table column), and
to get information on data types and key types (use SHIFT+HELP in the
field columns).

8.3 0PEN~LIBRARY

Whereas earlier versions of ACCESS stored each query on a separate
file, the present version stores many queries on one file. Such a file
is called a query library. Normally all queries will be stored in a
default query library. However, you may want to keep queries stored in
more than one library. In this case, you can use the following start
level command to switch between different library files:

*OPEN~LIBRARY (library name)

ACCESS then uses this library when STORE~QUERY or FETCH—QUERY is
executed.

ND~60.153.03

116 ACCESS USER GUIDE
MISCELLANEOUS COMMANDS

The default type of the query library is :TRAN.

8.4 LIBRARY

The command displays the name of the current query library.

The call sequence is:

“LLBBEBX*J

The output looks like this:

The query library name is: LIBRARYzTRAN

8.5 LIST~QUERIES

The command will list the names of all queries on the currently opened
query library.

The command is given in this form:

*LIST~QUERIES (query name>+J

If the query name is not given, all queries on the query library are
displayed.

If the query name is given, ACCESS displays all queries of which the
given name is an abbreviation.

If the command is given as *Llfil;9fl§filfi§_lfl§, the result could look
like this:

L I S T O F S T 0 R E D Q U E R I E 3

Query name Query size in bytes

INSERT—EMPLOYEES 12345
INSERT—DEPARTMENTS 9807
INSERT~CUSTOMERS 1032

ND-60.153.03

ACCESS USER GUIDE 117
MISCELLANEOUS COMMANDS

It is possible to move from page to page with the arrow keys.

gives the next page

gives the previous page

gmr terminates the command

8.6 CONVERT—QUERIES

The command enables the user to convert queries defined in the B and C
releases of ACCESS into the new format (several queries on one file).

The command is given as:

*CONVERTtQUERIES (library name>+J
The old queries are copied from their old files to the given library
or, if no library name is given, to the current query library.

The following picture will be displayed on the screen:

CONVERSION OF ACCESS—B AND ~C QUERIES

In this version of ACCESS (D version and later), many queries are
stored on a single library file.

This command converts queries from ACCESS B and C, where each
query was placed on its own file, to the new format.

Enter a new name for the query and the name of the old :TRAN
file.

Use HOME or EXIT when you have finished converting queries.

New query name :
Old query file :

Afterwards you should FETCH all the converted queries, check their
syntax (all text in single quotes; UPDATE. used alone should be
changed to UPDATE.=), and STORE them.

NDt60.153.03

118 ACCESS USER GUIDE
MISCELLANEOUS COMMANDS

WARNING:

If you forget to change QBDATE; used alone (for example, UPDATE.15) to
UEQAT§,=, you do not get an error message, but ACCESS interprets the
query differently. In the B and C versions of ACCESS, QPDATE.]5 had
the same meaning as UPDATE.=15; in the D version, it is equivalent to
UPDATE.+15.

8.8 DELETE—QUERY

This command deletes a stored query.

The command is given as:

*DELETE—OUERY (query name>+J

8.9 RESERVE-DATABASE

This command makes ACCESS work faster.

Since the data base files can only be used by one user at a time,
ACCESS must reserve a file when it is needed. Usually, it is released
immediately afterwards. This process of reserving and releasing files
is time consuming. The command *RESERVE—DATABASE makes ACCESS try to
minimize this time.

Give the command a second time to disable it!

After you have given the *RESERVE~DATABASE command the first time, a
reserved file is not released immediately after the work on it is
finished. ACCESS keeps the file reserved until you get back to the
start level or give a SINTRAN command. In this way the command reduces
the number of 'reserve' and 'release' operations.

However, the files are unavailable for other users for quite a long
time. The command should therefore not be used when other users work
on the data base at the same time.

8.10 SET—PASSWORD AND CLEAR-PASSWORD

These commands make it possible for the user to have full control of
his/her own password to ACCESS. Use them to set your password, clear
your old password or replace it by a new one. Passwords are used to
protect the data base from unauthorized use.

ND~60.153.03

ACCESS USER GUIDE 119
MISCELLANEOUS COMMANDS

8.11 PRINT—QUERY

with this command, you can write a query description to a file or
print it on a printer. This is useful if you want to have a record of
stored query descriptions or just be able to remember a procedure for
a later occasion.

It can also be useful to have a printout of the query description
together with a printout of the result.

You do this by giving the command:

**PRINT~OUERY (file name>+J
The parameter (file name) may be the name of a file or a printer.

If you write it to a file, note that this is 39; the same as storing
the query description. ACCESS cannot use a printed query description
as input. For this purpose you must use the STORE—QUERY command.

By using the **PRINT—QUERY command, only the pictures that describe
the query are stored, the way they look on the screen.

If you use the command **STORE—QUERY, ACQEfifi's interpretation of the
query is stored. You cannot get this out in a readable form on a
printer, or read it into NOTIS~WP or PED.

8.12 CLEAR-QUERY

**CLEAR—QUERY+J

This command can be used when you have defined a query and want to
start on a new one. It clears the query description you have on the
screen, including all table frames, boxes and forms. It does not
delete a query stored in the query library.

ND-60.153.03

120 ACCESS USER GUIDE

ND~60.153.03

ACCESS USER GUIDE 123
THE KEYBOARD ON THE NOTIS TERMINAL (TANDBERG 2200/9)

ND-60.153.03

124 ACCESS USER GUIDE

ND-60. 153.03

ACCESS USER GUIDE
ERROR MESSAGES IN ACCESS

SINTRAN ERROR MESSAGES
O

...
_\

O

O
K

Q
C

O
m

U
w

N
—

‘O
%

_
.i
..

..
\

N
..

.»

13
14
15
16

*17
*18

19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36

*37
38
39
40
41
42
43
44
45

Messages marked with an
Explanation asterisk (*) will be

used by ACCESS/DEA.
Not used
Not used
Bad file number
End of file
Card Reader Error (Card Read)
Device not reserved
Not used
Card Reader Error (Card not read)
Not used
Not used
End of device
Not used
Not used
Not used
Not used
Not used
Not used
Illegal character in parameter
No such page
Not decimal number
Not octal number
You are not authorized to do this
Directory not entered
Ambiguous directory name
No such device name
Ambiguous device name
Directory entered
No such logical unit
Unit occupied
Master block transfer error
Bit file transfer error
No more tracks available
Directory not on specified unit
Files opened on this directory
Main directory not last one released
No main directory
Too long parameter
Ambiguous user name
No such user name
No such user name in main directory
Attempt to create too many users
User already exists
User has files
User is entered
Not so much space unreserved in directory
Reserved space already used

ND-60.1S3.03

127

128

S I

gode

*46
*47

48
49
50
51
52
53
54
55
56
57
58
59
60

*61
*62
*63

64
65

*66
67
68

*69
*70
*71
*72
*73
*74
*75
*76
*77

78
79

*80
*81
*82

83
84
84
86

*87
88
89
90
91

*92
93

N T R A N — III Error codes returned by A C C E S S

Explanation

No such file name
Ambiguous file name
Wrong password
User already entered
No user entered
Friend already exists
No such friend
Attempt to create too many friends
Attempt to create yourself as friend
Continuous space not available
Not directory access
Space not available to expand file
Space already allocated
No space in default directory
No such file version
No more pages available for this user
File already exists
Attempt to create too many files
Outside device limits
No previous version
File not continuous
File type already defined
No such access code
File already opened
Not write access
Attempt to open too many files
Not write and append access
Not read access
Not read, write and common access
Not read and write access
Not read and common access
File reserved by another user
File already opened for write by you
No such user index
Not append access
Attempt to create too many mass storage files
Attempt to open too many files
Not opened for sequential write
Not opened for sequential read
Not opened for random write
Not opened for random read
File number out of range
File number already used
No more buffer space
No file opened with this number
Not mass storage file
File used for write
File used for read

ND~60.153.03

ACCESS USER GUIDE
ERROR MESSAGES IN ACCESS

ACCESS USER GUIDE
ERROR MESSAGES IN ACCESS

Explanation

File only opened for sequential read or write
No scratch file opened
File not reserved by you
Transfer error
File already reserved
No such block
Source and destination equal
Illegal on Tape device
End of tape
Device unit reserved for special use
Not random access on tape files
Not last file on tape
Not tape device
Illegal address reference in monitor call
Source empty
File already opened by another user
File already opened for write by another user
Missing parameter
Two pages must be left unreserved
No answer from remote computer
Device cannot be reserved
Overflow in read
DMA error
Bad datablock
CONTROL/MODUS word error
Parity error
LRC error
Device error (read—last»status to get status)
No device buffer available
Illegal mass storage unit number
Illegal parameter
Write-protect violation
Error detected by read after write
No EOF mark found
Cassette not in position
Illegal function code
Time-out (no datablock found)
Paper fault
Device not ready
Device already reserved
Not peripheral file
No such queue entry
Not so much space left
No spooling for this device
No such queue
Queue empty
Queue full
Not last used by you

ND-60.153.03

129

130 ACCESS USER GUIDE
ERROR MESSAGES IN ACCESS

S I N T R A N - III Error codes returned by A C C E S S

Code

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

Explanation

No such channel name
No remote connection
Illegal channel
Channel already reserved on remote computer
No remote file
Formatting error
Incompatible device sizes
Remote processor not available
Tape format error
Block count error
Volume not on specified unit
Not deleted record
Device error
Error in object entry
Odd number of bytes (right byte in last word insignificant)
Error in backspace/forward space print
Block format error
Overflow in write
Illegal device type
Segment not contiguously fixed
Segment not fixed
Approaching end of accounting file
End of accounting file encountered
No more unused spooling files available
Inconsistent directory
Reserved for special use

ND-60.153.03

ACCESS USER GUIDE 131
ERROR MESSAGES IN ACCESS

ND—60.153.03

132 ACCESS USER GUIDE

ND~60.153.03

ACCESS USER GUIDE
TABLES USED IN THE EXAMPLES

The tables used in the examples are:

135

EMPLOYEES NAME MANAGER SALARY DEPARTMENT

v Data type: Character—32 Character—32 Integer—4
4 Key: Primary Secondary

DEPARTMENTS NAME FLOOR

4 Data type: Character-2O Numeric—3
4 Key: Primary

Character—20
Secondary

The table descriptions and some sample data will be delivered together
with ACCESS.

ND—60.153.03

136 ACCESS USER GUIDE

index

Abbreviations 12.
Alphanumeric data 13.

Arithmetic operators 31.

Arrow keys .. 10.

ASCENDING. ... 38.

Asterisk ... 9.

AVERAGE. ... 41.

BAR CHART ... 99.

Box, condition 60.

CLEAR READING 102.

CLEAR~PASSWORD 118.

Column ... 5.

operators 31.
width ... 27.

Command
position .. 9.
types ... 11.

Commands ... 9.

Commands, direct 11.

COMPILE-QUERIES 1.

Compress column 27.

Condition box 60.

Control keys .. 11.

CONVERT-QUERIES 117

COPY-FIELD ... 74.

Corrections ... 105.
COUNT. ... 41.

Cursor ... 10.

Data
base .. 3
types ... 13

Data,
alphanumeric 13.
numeric ... 13.
text .. 13.

DEFINE~FIELD 73.

Defining queries 23.
DELETE—FIELD 75.

DELETE—QUERY 118.

DELETE. ... 33.

DESCENDING ... 38.

DESCRIBE—MACRO-CALL 96.

Description, query 7.
Direct commands 11.
Editing

a table frame 27.
functions 65.
results ... 101

Example elements 51.

Execution ... 7.

Field ... 5.
definition 73.

ND—60.153.03

Index

ACCESS USER GUIDE 137
Index

File ... 4.
Form definition level 72
Form, input ... 81
Frame ... 6
Frame, editing 27.
Function operators 35, 40.
Functions, editing 65.
GROUP. ... 41.
HEADING ... 102.
HELP,

command ... 54.
command position 115.
input/output form 72, 74.
SHIFTtHELP 65, 115.

IN ... 47.
Input form .. 81.
INSERT. ... 33.
Introduction 3.
Keyboard, NOTIS 123.
Level, form definition 72.
LISTtQUERIES 116.
Logical operators 31, 43.
MAXIMUM. ... 41.
Menus, user defined 109.
Message position 9.
MINIMUM. ... 41.
MOVE—FIELD ... 74.
Navigation ... 67, 89.
NEWtTABLE ... 26.
NOTIS keyboard 123.
Numeric

data .. 13.
updating .. 37.

OPEN~LIBRARY 115.
Operators ... 3, 31.
Operators,

arithmetic 31.
column .. 31.
function .. 40.
logical ... 31, 43.
relational 43.
sorting ... 31.
table ... 31

Page scrolling 29.
Parameters ... 11.
PRINT ... 94.
PRINT-QUERY ... 119.
PRINT. ... 32, 35.
Printing results 94.
Prompt text ... 72.
PROMPT~TEXT ... 83.
Query ... 7.

ND-60.153.03

138 ACCESS USER GUIDE

definition 23.
description 7.
execution 7.

Query, stored 63.
Record ... 5.
Relational operators 43.
RENAME-COLUMNS 101.

REORDER—COLUMNS 101.
REPEAT-LINES 75.

Reports ... 102.
RESERVEtDATABASE 118.

Result editing 101.
Screen picture 8.
Scrolling, page 29.
Searching ... 44,
Selection criteria 6.
SET-PASSWORD 118.

SHIFT+HELP ... 65,
SINTRAN commands 115.
Sorting operators 31.
Standard deviation 41.
STDEV. ... 41.

STORE—DATA ... 96.

Stored query .. 63.
Subqueries ... 27.
Subquery ... 49,
SUM. ... 41.
Table ... 5

frame ... 6.
operators 31.

Table frame, editing 27.
Termination ... 76.
Text

data .. 13.
updating .. 36.

UNIQUE. ... 39.

Updating text 36.
Updating, numeric 37.
Widen column .. 27.
Width, column 27.
Window ... 9.
WRITE~MACRO~CALL 96.
WRITE—WITHOUT—FRAME 96.

ND~60.153.03

45.

115.

Index

************** SEND US YOUR COMMENTS!!! **************

an answer to your comments.

Please let us know if you
" find errors
" cannot understand information
" cannot find information
" find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don't you join the Reader's Club and send us a
note? You will receive a membership card and

HHHHHH HELP YOURSELF BY HELPING US!! HHHHHH

Manual name: ACCESS User Guide Manual number: ND_60_153_03

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual .7

Your name: ,v,,,,_,v.__el___. _ ___W_%_ A" V___m W__ Date:_,___.____e,, ,, i,__._, "wee-

Company: a“..__. ,_ Position:____eA_e-,,_,e__. .A,~.~_H

Address: N we

What are you using this manual for?

NOTE! Send to:
This form is primarily for Norsk Data As _.____>
documentation errors. Software and Documentation Department _
system errors should be reported on PO. Box 25, Bogerud Norsk Data’s answer Will be found
Customer System Reports. Oslo 6, Norway on reverse side

Answer from Norsk Data __ ,__ ,. ”nm‘flmw , ,, ,,,

Answered by ,Date emfl

Norsk Data A.S

Documentation Department
PO. Box 25, Bogerud
Oslo 6, Norway

Systems that put people first

NORSK DATA A.S OLAF HELSETS VEI 5 PO. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 - 29 54 00 - TELEX: 18284 NDN

