PR Kepegren, T
3 R POR N
D 4
P 4
A

e

u
LAN..bM..m.«w. . v
B o S
» 2y
. umuﬂm.m.;. :
m.m..m..,.m,.i
Yo7 Ln S T

RATRIRSO I

by
o u-
S
PRl
..!~—\ 3

B

e

(RE
3

SINTRAN [l
Utilities Manual

ND-60.151.3 EN

The information in this manual is subject to change without notice.
Norsk Data A.S assumes no responsibility for any errors that may appear in this manual, or

Jor the use or reliability of its software on equipment that is not furmished or supported by
Norsk Data A.S.

Copyright(C)1988 by Norsk Data A.S Version 2 June 1984
Version 24 February 1985
Version 3 June 1988

Send all documentation requests to:

Norsk Data A.S
Graphic Centre

P.O. Box 25 — Bogerud
N-0621 Oslo 6
NORWAY

(i1)

Preface

THE PRODUCTS

THE READER

RELATED MANUALS

This manual describes three subsystems which run
under the SINTRAN III operating system. These
subsystems and their product numbers are:

PERFORM

}-part of Subsystem Package
LOOK~FILE number ND 210005U
JEC ND 210534B

PERFORM is a simple macro processing system to
create mode and batch files; LOOK-FILE is used
to inspect and modify files; JEC stands for Job
Execution Control, and is used to control the
execution of mode and batch jobs.

This manual is intended for users of

SINTRAN III. The subsystems documented here are
not necessary for simple use of the operating
system, but may be of considerable use for
particular tasks. Familiarity with SINTRAN I1I
on a public user Tevel is the only previous
knowledge assumed.

The SINTRAN III User Guide, ND-60.264, contains
basic information about the SINTRAN operating
system.

NOTATION USED IN
THIS MANUAL

CHANGES FROM THE
PREVIOUS VERSION
OF THIS MANUAL

{ v)

In the examples, user input is underlined. Most
examples are written in uppercase, but lowercase
is also accepted. When used as parameters, octal
numbers are given in the form 377B, where B
denotes octal.

In command parameter descriptions, parameters
are enclosed in angular brackets, e.g.
<parameter>. Parameters which have default
values are enclosed in parentheses, e.g.
(<parameter>). The default value is used if a
parameter is omitted. Selections in parameter
descriptions are separated by slashes, e.g.
YES/NO.

This version of the SINTRAN III Utilities manual
is considerably shorter than previous versions.

The following products are no longer documented

in this manual:

MAIL (see SINTRAN III COMMANDS Reference Manual,
ND-60.128, and SINTRAN III System Supervisor,
ND-30.003).

BACKUP-SYSTEM (see BACKUP User Guide,
ND-60.250) .

FILE-EXTRACT (see File Handler User's Manual,
ND-60.175).

VTM-COMPOUND (see the Product Description sheets
for VTM Terminal Tables (standard), product
number ND 210455).

The remaining chapters contain only minor
alterations from the previous version of the
manual.

CHAPTER 1 PERFORM

Mode or batch files are used to execute sequences of commands that
are used repeatedly. PERFORM gives you greater flexibility when
using mode and batch files by allowing parameter substitution.

For example, mode files can be used to compile, load, and execute
programs during development. However, each program needs a
separate mode file. PERFORM will instead allow you to enter the
program name as a parameter and generate the required mode file
with this program name in the appropriate places.

To use PERFORM, you have to create a macro instead of a mode file.
The macro allows you to specify which parameters are to be entered
from the terminal at each execution. PERFORM will merge the macro
with the terminal input, and create a mode file.

Macros are created using an ordinary editor, and many macros can
be stored in a file. A predefined library of macros is stored in
the file PERFORM-LIB:MCRO.

2 Chapter 1 PERFORM

1.1 CrReaTING MAcros

A few simple directives, starting with a circumflex ("), are used
to define a macro. A1l directives must end with a semicolon (;)}. A
macro will have a macro head and a macro body in the following
manner:

B, <macro name);

{Macro head defining parameters to be entered from the terminal,
their prompts, and their default values.]

PN

3

(SINTRAN I1I commands, input to programs, and dummy parameters in
the required positions. The dummy parameters will be replaced with
actual parameters entered from the terminal.)

~

E;

The directive "B,<macro name>; starts a new macro. The <macro
name> may consist of up to 16 uppercase letters, digits, or hyphen
(-). The directive "E; ends the macro. All user-defined macros are
normally stored consecutively in one file.

The directive "; separates the macro head from the macro body.

Chapter 1 PERFORM

The other directives that may be used in the macro head, are shown

below:

DIRECTIVE

“P,n,<prompt string>;

“F.n,<prompt string>;

"D,n,<default string>;

"L, <information>;

"C,<comment string>;

MEANING

Defines a parameter to be entered from
the terminal. The parameter will be
assigned the number n. The parameter
will be prompted for by the specified
<prompt string>.

Same as above, except that terminal
input is assumed to be a SINTRAN III
mass-storage file. PERFORM will expand
abbreviated file names. Default file
type is :SYMB.

Default value to be used for parameter
n if no terminal input is given.

The information will be displayed on
the terminal when processed by PERFORM.

Comment. This will be ignored by
PERFORM.

The numbers n must be consecutive and in the range 1 - 20. These
numbers must be preceded by a reverse slash {\} in the macro body
wherever a parameter from the terminal is to be inserted.

Here is a simple example:

“B,FTN;

"F,1,PROGRAM TO BE COMPILED: ;

@FORTRAN-100
COMPILE \1,,TEMP:BRF
EXIT

~

E;

4 Chapter 1 PERFORM

When PERFORM processes the macro in this example, it will ask for
the name of the program specified by \1. The answer given at the
terminal will be inserted in the command COMPILE \1,,TEMP:BRF in
the mode file produced by PERFORM.

If you want to use the \ character to mean something other than a
PERFORM parameter, you must indicate this by writing two
consecutive reverse slashes. PERFORM will replace these with a
single reverse slash and not make a parameter replacement.

In general, PERFORM can be used to insert any text strings. For
example, a text string could be a part of a parameter, or it could
be a complete SINTRAN III command.

The character used to indicate the beginning of a directive can be
any character other than A - Z, 0 - 9, or a space. PERFORM uses
the first character it finds in the macro file as the directive
character. It must be the same character throughout the file. In
this manual the circumflex {") is used.

1.2 StarTING PERFORM

PERFORM will create a mode file by merging a macro with terminal
input. The mode job will normally be started immediately with the
terminal as the mode output file. You start PERFORM by writing:

@PERFORM (<macro file>),{<macro name>]),
(<macro parameter 1>),
{<macro parameter 2>),...

Omitted parameters will be prompted for. The <macro file> is the
file containing the macro with the specified <macro name>. The
default <macro file> is PERFORM-LIB:MCRO and default file type is
MCRO. The first macro in the specified file is the default <macro
name> .

Chapter 1 PERFORM 5

The parameters <macro parameter 1>, and <macro parameter 2>,...
are input parameters to the given macro. If omitted, these will be
prompted for as specified in the macro.

PERFORM will create a mode file called MACRONn:MODE and execute it.
The “n" in the file name is a number from 1 - 9. When the mode job
has been executed, you will return to SINTRAN III.

Assume the FTN macro in the previous section is stored in a file
PMLIB:MCRC. A FORTRAN program QUICKSORT can then be compiled by
entering:

@PERFORM PMLIB:MCRO, FTN, QUICKSORT

A1l parameters can be prompted for.

1.5 ExamPLE oF UsING PERFORM

The following example shows how PERFORM can be used to compile,
load, execute, and print FORTRAN programs. The macro is first
written to a macro file using an ordinary editor:

6 Chapter 1 PERFORM

{0ther macros in the same file)

"B, FTHMRUN;

“1.,MACRO TO COMPILE, LOAD, AND EXECUTE A FORTRAN PROGRAM;
“P,1,PROGRAM TO BE COMPILED: ;

“F,2,RUNTIME LIBRARY: ;

"D, 2,FORTRAN-1BANK;

"C,FORTRAN-1BANK USED AS DEFAULT RUNTIME LIBRARY;
"p,3,NUMBER OF PRINT COPIES: ;

@DELETE-FILE \1:BRF

@FORTRAN-100

COMPILE \1:SYMB,, "\1:BRF"

EXIT

@DELETE-FILE \1:PROG

@NRL

PROG~FILE "\1:PROG"

LOAD \1:BRF, \2

EXIT

@\1:PROG

@APPEND-SPOOLING-FILE LINE-PRINTER, \1:SYMB, \3,',,
@Ccc NUMBER OF PRINT COPIES GIVEN AT THE TERMINAL
E;

Three macro parameters are defined: the program to be compiled
{\1), the runtime library to be loaded (\2)}, and the number of
copies to be printed (\3). The default runtime library is
FORTRAN-1BANK.

Assume that the macro is stored in the file PERFORM-LIB:MCRO. A
program QUICKSORT is compiled, loaded, executed, and printed as
shown below:

@PERFORM PERFORM-LIB, FTNRUN

MACRO TO COMPILE, LOAD, AND EXECUTE A FORTRAN PROGRAM
PROGRAM TO BE COMPILED: QUICKSORT

RUNTIME LIBRARY:

NUMBER OF PRINT COPIES: 1

@MODE MACRO1:MODE, TERMINAL

(Output from the execution of the created mode file])

Chapter 1 PERFORM 7

The mode file MACRO1:MODE, is created and executed immediately. It
is shown below. The terminal is selected as the mode output file.

@DELETE-FILE QUICKSORT:BRF

@FORTRAN-100

COMPILE QUICKSORT:SYMB, , "QUICKSORT:BRF"

EXIT

@DELETE-FILE QUICKSORT:PROG

@NRL

PROG-FILE "QUICKSORT:PROG" LOAD QUICKSORT:BRF, FORTRAN-1BANK
EXIT

@QUICKSORT: PROG

@APPEND-SPOOLING-FILE LINE-PRINTER, QUICKSORT:SYMB, 1,',,
@CC NUMBER OF PRINT COPIES GIVEN AT THE TERMINAL

The mode file MACRO1:MODE will be stored in your user area until
it is overwritten by another execution of PERFORM.

1.4 Listine DEFINED MACROS

The macros defined on a particular macro file can easily be
Tisted. Start PERFORM and Jet the <macro name> parameter be
prompted for. Then type a "?", and all macros in the given <macro
file> will be Tisted as shown below:

@PERFORM

:MCRO file name: PMLIB:MCRO

MACRO NAME: ?

Macros available in file PMLIB:MCRO
(List of macros on PMLIB:MCRO)
MACRO NAME:

After this, PERFORM will once more prompt for the <macro name> to
be used.

8 Chapter 1 PERFORM

1.5 OptioNAL CONTROL PARAMETERS

PERFORM accepts some optional parameters. These can be used to
specify special mode or batch output files, to control execution,
or to select alternative names of the mode file produced. The
compiete PERFORM call is:

@PERFORM {<macro file>)},{<macro name>]),
(<optional parameters>),
(<macro parameter 1>},
{<macro parameter 2>},.....

The <optional parameters> may be used to specify a mode output
file other than the terminal. The file name must be preceded by a
"<". A new file may be created by enclosing the file name in
quotes. Default file type is :SYMB. The <optional parameters> may

also include:

>RUN Create a mode file and execute it {default)
>CREATE Create a mode file, but do not execute it
>BATCHn Create a mode file and append to batch number n

The parameters >RUN, >CREATE, and >BATCHn may be abbreviated to
>R, »C, and >Bn. PERFORM will, by default, use the mode file
MACRON:MODE. The <optional parameters> may specify another mode
file by:

*MODE <file name>,

Default file type is :MODE. This is necessary if the mode job is
waiting in a batch queue the next time PERFORM is called.
Otherwise MACRONn:MODE will be overwritten.

The following are some examples of PERFORM calls:

CGPERFORM PMLIB, FTN, <LISTFILE:SYMB

@PERFORM PMLIB, FTN, >CREATE

@PERFORM PMLIB, FTN, <OUTBATCH>BATCHZ

@PERFORM PMLIB, FTN, *MODE TESTMACRO:MCRO

@PERFORM PMLIB, FTN, <LISTFILE>CREATE, *MODE TESTMACRO

Chapter 1 PERFORM 9

The macro named FTN in the macro file PMLIB:MCRO is used. The
examples show how the <optional parameters> can be used. The macro
parameters may follow the <optional parameters>.

1.6 EXTENDED PARAMETER SUBMISSION

Any <macro parameter> in the PERFORM call can be replaced by a
file name, preceded by an opening bracket ([). The file should
contain a list of values for the parameter, one per line.

Mode files will be created and executed repeatedly, taking
successive values for the parameter from the file. For example,
assume the file PARAMLIST contains:

SORT:SYMB TEST:SYMB QUICKSORT:SYMB

The PERFORM call:

@PERFORM PMLIB, FTNCOMPILE, [PARAMLIST

will compile SORT:SYMB, then TEST:SYMB, and then QUICKSORT:SYMB.

1.7 LiMiTAaTIONS RESTRICTIONS AND DEFAULTS

The macro name must be unique. If it is defined more than once,
the first occurrence is taken. The macro name should not be
abbreviated. If it is abbreviated, the first matching occurrence
will be taken. The macro cannot be nested, nor invoke other
macros.

The optional parameters (indicated by <, >, and *MODE) may also
be entered if the <macro name> is being prompted for by PERFORM.

Use the "F directive rather than the "P directive in the macro if
SINTRAN III file names are to be inserted. The "F directive will
attempt to find the full SINTRAN III file name. If successful,
that name will be inserted in the mode file. The default file type
is :SYMB.

10 Chapter 1 PERFORM

The reverse slash {\) does not exist on some terminals. The
character to use is ASCII 134B. The circumflex is the ASCII
character 136B.

PERFORM can be used together with JEC (JOB EXECUTION CONTROL) for
further flexibility. JEC is described in chapter 3 of this manual.

1.8 PREDEFINED MACROS

PERFORM has the following standard macros stored in the file
PERFORM-LIBRARY:MCRO. The first macro in the file, FTN, is the
default <macro name>.

FTN Compile a FORTRAN’program

FTNRUN Compile, load and execute a FORTRAN program
COBOL Compiie a COBOL program

COBRUN Compile, load, and execute a COBOL program
COBDEBUG Compile, load and debug a COBOL program
PLANC Compile a PLANC program

PLRUN Compile, load, and execute a PLANC program
PASCAL Compile a Pascal program

PASRUN Compile, load, and execute a Pascal program
BASIC Compile a BASIC program

BASRUN Compile, load, and execute a BASIC program
CREDIR Create and enter a directory with a user area

You can find more detailed information about each macro by
inspecting the file, PERFORM-LIBRARY:MCRO, using an editor.

11

CHAaPTER 2 LOOK-FILE

LOOK-FILE is a subsystem which enables a user to print data,

modify data, and browse through the data contained in a file. The

contents of different files may also be compared. The data
contained in a file may be output as bytes, words, or ASCII
characters. Bytes and words may be output as octal, decimal, or
hexadecimal values.

2.1 CoMMAND SUMMARY

The available commands with their parameters are:

EXPLAIN-COMMAND <command>

HELP (<command>)

OPEN <file name>,{<block size>),(<access>)

CLOSE

DUMP (<block number>),(<from word numbers),(<number of words>)

BYTE-DUMP (<block number>), (<from word number>),
{<number of words>)

NEXT

PREVIOUS

SET-BLOCK-CONTENT (<block number>),<value>

ZERO (<block number>)

COMPARE <file name>, (<first block number>),{<number of blocks>)

DEFINE-PRINT-FILE <file name>

12 Chapter 2 LOOK-FILE

ON-OFF-PRINTER (<l=on/0=0ff>)

MOVE <from file name>,<number of blocks to move>,
<first block in source file>,<first block in dest. file»

SET-PRINT-FORMAT (<B=octal/H=hexadecimal/D=decimal>)
PATCH {(<block number>), (<word number>)

SEARCH (<first block number>),(<number of blocks>)
CALCULATE <operand>,<operator>,<operand>
PROGRAM-INFORMATION

PROGRAM-STATUS

EXIT

The OPEN command must be used to open a file before it is referred
to by the other commands.

2.2 GENERAL RuULES

The subsystem may be entered by:
BLOOK-FILE

The available commands can be entered in the same way as

SINTRAN III commands. Parameters which reguire a numeric value may
be entered as decimal numbers {(e.g. 129D), or octal numbers (e.g.
156B) .

The subcommands will output the contents of a file. Each output
Tine will include the following:

e The word number in decimal

The word number in octal

A single character indicating the mode being used for the
current 1ine, i.e. B for byte and W for word

5 words output in the mode being used

The 5 words as 10 ASCII characters

Chapter 2 LOOK-FILE 13

A word is 16 bits. Any character whose ASCII value is less than
40B will be output as an ampersand (&).

2.5 DETAILED DEscripTiON oF COMMANDS

This section describes the LOOK-FILE commands in detail.
SINTRAN III commands can be executed by typing @ and the
SINTRAN III command with parameters on one line.

EXPLAIN-COMMAND <command>

This command displays information about a command and its
parameters. The <command> cannot be ambiguous.

HELP (<command>)

This lists all commands matching <command>. If no parameter is
given, all commands will be Tlisted.

PROGRAM-INFORMATION

This command displays general information about LOOK-FILE on the
terminal, e.g., its purpose, its command editing facilities, and
its abbreviation rules.

OPEN <file name>,{<block size>),{<access>)

The command opens a file which will be used for further operations
by other LOOK-FILE commands. If another file has already been
opened by this command, this file will be closed. The default

block size is 512 words. The maximum allowed block size is 4096
words. Access can be R for read or W for write. Default is W.

14 Chapter 2 LOOK-FILE

CLOSE

The file specified in the OPEN command will be closed. An open
print file will not be closed.

DUMP (<block number>),{<from word number>}, (<number of words>)

The command displays the specified words from the open file, on
the terminal. Use DEFINE-PRINT-FILE to send the display to a file
or to a printer. The optional output file is called a print file.
The words will normally be displayed as octal numbers. This can be
changed by the command SET-PRINT-FORMAT. Default <block number> is
0, default value for <from word number> is 1, and default value
for <number of words> is 140. That amount of data fits most
terminal screens.

BYTE-DUMP (<block number>),{<from word numbers),{<number of
words>)

This displays the specified words from the open file on the
terminal. The command DEFINE-PRINT-FILE can be used to save a copy
of the output on a file or write it to a printer. Each 16-bit word
will be displayed as two octal bytes. This can be changed by the
command SET-PRINT-FORMAT. Default <block size> is 0, default value
for <from word number> is 1, and default value for <number of
words> is 120. That amount of data fits most terminal screens.

NEXT

The command displays information from the next block of the open
file, on the terminal. The information may also be output to a
print file using DEFINE-PRINT-FILE. The amount of information
output is determined by the <number of words> parameter in the
DUMP or BYTE-DUMP command.

PREVIOUS
The command displays the previous block of the open file on the

terminal. The information may also be output to a print file using
DEFINE~-PRINT-FILE.

Chapter 2 LOOK-FILE 15

DEFINE-PRINT-FILE <print file>

The specified <print file> will receive copies of the information
output to the terminal by the commands DUMP, BYTE-DUMP, NEXT,
PREVIOUS, SEARCH, and COMPARE. New files can be created by
enclosing the file name in quotes {("..."). The output to the print
file is switched on and off by the command ON-OFF-PRINTER.

ON-OFF-PRINTER (<1=on/0=0ff>)

This command switches output to the print file on and off. Default
is off.

ZERO {<block number>)

A1l words in the specified block of the open file will be filled
with binary zeros. Default block number is 0.

COMPARE <«file name>,{<first block number>)}, (<number of blocks>)

This command compares the specified part of the <file name> with
the open file. The block size given in the OPEN-FILE command is
used. A1l differences will be output on the terminal, and
optionally on a print file using the DEFINE-PRINT-FILE command.
Default <first block number> is 0; default number of blocks is 1.

MOVE <from file name>,<number of blocks to move>,
<first block number in source file>,
<first block number in destination file>

This command moves the given number of blocks from the <from file
name> to the open file.

16 Chapter 2 LOOK-FILE

SET-PRINT-FORMAT (<B=octal/H=hexadecimal/D=decimal>)

This command selects the print format for the output from the
commands DUMP, BYTE-DUMP, NEXT and PREVIOUS to be octal, decimal,
or hexadecimal. Default and initial printing format is octal.

PATCH (<block number>), (<word number>)

This command examines or modifies the open file. The address and
the old value of the specified word are displayed. The value can
be modified by entering a new value followed by <RETURN>. Jdust
<RETURN> causes no change. The input value may be given as octal
(B), decimal (D), or two characters ('AB'). Default is octal. The
next words will be displayed until a period (.) is given. Default
<block number> is 0 and default <word number> is 1.

Some examples of how to give input when patching:

000001 1)/000000 : « Return causes no change

0ooooz 2)/000000 : "AA'« Change to AA (0405501B)

000003 ¢ 3)/000000 : 123« Change to 000123B

000004 | 4}/000000 : 123D« Change to 000173B

000005 5)/000000 : .« Stop patching and write the
block back.

SEARCH (<first block number>),{<number of blocks>)

The command searches for specified information in the open file.
The information to be found may consist of up to 50 words. Each
word may be given as octal (B), decimal (D}, or as two characters
("AB'). Default is octal. Enter the information you want to search
for as in the PATCH command. If the information is found in the
open file, it will be output to the terminal, or to a print file
if you use the DEFINE-PRINT-FILE command. You will then be asked
if you want to continue searching. Answer by YES or NO. Default
<first block number> is 0, and default <number of blocks> is 1.

Chapter 2 LOOK-FILE 17

SET-BLOCK-CONTENT (<block number>),<value>

ATl words in the specified block of the open file will be filled
with the given value. The value must be prompted for, i.e., it
cannot be given on the same line as the rest of the command. The
value is given as octal (B), decimal (D), or two characters{'AB').
Default 1is octal.

CALCULATE <operand>, <operator>, <operand>

The command is used to perform simple calculations on octal or
decimal operands. Default is decimal values. Legal <operators> are
+, -, *, and /. The result is displayed in decimal and octal
format.

PROGRAM-STATUS

The command displays information about the open file, the current
block size, file access, and printing format.

EXIT

The command returns you to SINTRAN III. The open file will be
closed.

18

CHapTER 3 JEC - JOB EXECUTION CONTROL

JEC (JOB EXECUTION CONTROL) is a program which lets you control
the execution of a batch or mode file by including a few control
commands. Intelligent actions can be taken when special situations
occur in commands, subsystems, and your programs.

Here are some of the things you can do:

e Terminate execution at any point, for example, where errors
are detected. (See page 26.)

e You may execute nested mode files that have a return status
showing whether they executed successfully or not.
(See page 27.)

e You may use arithmetic. (See page 29.)

e You can create your own numeric and string variables. For
instance, you can prompt for the name of the program and the
language it is to be compiled in. Thus you can make a single
mode file that can compile and load any program. See the example
on page 43. You may use your own variables in
SINTRAN commands, as parameters to your own programs, as 1oop
counters, or in arithmetic expressions. (See page 28.)

e Answer "questions" asked by the mode file.
(See page 30.)

e You may make conditional tests, based on the values of the
completion code, the SSI code, or the status code.
(See page 33.)

e You may make conditional tests, based on the day, date, or
month you execute your mode file.
(See page 33.)

e Jump backwards and forwards to numeric labels defined in your

Chapter 3 JEC - JOB EXECUTION CONTROL 19

batch or mode file. (See page 32.)

Create Toops so that things can be repeated a certain number
of times. (See page 36.)

Give input from your terminal to programs you execute in mode
Jjobs. {See page 37, Section 3.3.)

You may turn communication with your terminal on and off in a
mode job. (See page 37.)

You may send output to your terminal, an output file, or both.
(See page 37.)

You may execute mode files on remote systems. The JEC
completion code shows whether they executed successfully or not.

You have the possibility of executing only certain parts of
your input file. See the example on page 41.

If you type your mode files in NOTIS-WP, make sure they are in
7-bit or 8-bit format, not in 16-bit format.

20 Chapter 3 JEC - JOB EXECUTION CONTROL

3.1 InTERACTIVE JEC AND ERROR CODES

Type GJEC in SINTRAN and you should see something like this:

@JEC

== Je¢ Sosmo=coossroSSSSSCCRSSSIERC SIS ESSSECEESESSSNISSSEsT
== Jec == Value of completion code is: 0 OB

== Jec == Value of SSI code is : 72 110B

== Jec == Last runninglsubsystem was : Notis WP / PED

== JeC mz=csoosmoSmsSSs |SSSSSSSSSSSSSSSISSSSISSSS pESSSsompEsss

L4 The last subsystem
you used.

1

The error
code .

(The numbers you get will most likely not be the same.)

The completion code is stored in a 16-bit word:

Bit [15|14{13{12|11|10| 9| 8| 7| 6|| 5| 4] 3| 2| 1| O
no.

L 11]
This part contains the This part is the

SSI code if the status status code.
code is not zero.

Since each digit in an octal number represents three bits, the
status code is always the two rightmost digits of the completion
code.

The Standard Subsystem Identification code (SSI code) indicates
the last subsystem that was running, and the status code indicates
which error occurred.

For example, an SSI code of 1 means that the error occurred in the
SINTRAN file system (see the following table). If the completion
code is 137, you can look in the SINTRAN III Commands Reference
Manual, ND-60.128, and find that the file system error code 137
means “No spooling for this device.”

Chapter 3 JEC - JOB EXECUTION CONTROL

Here are some SSI codes and the software product(s) they
represent. If you are using an older version of one of the
products below, it will not produce SSI codes.

SSI code Product
Decimal Octal
0-3 0-3B SINTRAN-III File system {version I)
4-5 4-5B FORTRAN (version B, library)
6-7 6-7B COBOL (version F, compiler and library)
20~21 24-25B PLANC {compiler)
40 50B SORT-MERGE {version D)

42-43 52-53B Linkage-Loader {version F)
47 578 NRL {version J)

72-73 110-111B NOTIS-WP and PED

96-97 140-141B NOTIS-TF 500 {version K)
96-97 140-141B NOTIS-TF 100 {version L)

112 160B User Environment

117 1658 JEC {version B)

148-159 224-237B SIB-DML {version E)

216 330B FILE~HANDLER (version A)
224-225 340-341B BACKUP-SYSTEM (version F)
260-262 404-406B COSMOS {version B)
263 407B TRANSFER-FILE (version B)
265 411B XMLib

Here are two examples of errors and the codes they produce for
JEC. Type the following at your terminal:

@DELETE-FILE ASDFG:HJKL <«
@JEC <

When you try to delete the nonexistent file ASDFG:HJIKL, you will
get the message "No such file name". If you now type JEC, the
following will appear:

== JeCc ====zzs-c--osssssss-SsoooSSSssssSSsrmsSSSSSSSSESSSSSsSSSssos
== Jec == Value of completion code is: 46 56B

== Jec == Value of SSI code is : 0 0B

== Jec == Last running subsystem was : SINTRAN

== Jec == Error message: No such file name

22 Chapter 3 JEC - JOB EXECUTION CONTROL

The SSI code, 0, means that this is a SINTRAN File-System error.
If you Took in the SINTRAN III Commands Reference Manual,
ND-60.128, you will see that error 46 is "No such file name".

If you have COSMOS and JEC on your system, and a file called
MY-FILE:SYMB, type the following:

@TRANSFER-FILE NOSUCH.XYZ MY-FILE <
@JEC «J

You should get this message:

== Jeg ======cososcossssssSoSssSosssSsss=sosssssooo=s=sossoos=ssmss
== Jec == Value of completion code is: 16993 41141B

== Jec == Value of SSI code is : 263 4078

== Jec == Last running subsystem was : COSMOS File Transfer
== Jec == Error message: Unknown remote system name

== Jec == Error in : XMSG

== Jeg =-=sssssscssoroorERSSCSSSSSSCCSCSSESSSSESSSSSSosozszzooso

If you are wondering why the completion code does not start with
407 as the first three octal digits, here is the answer: the last
subsystem that was running (407B, which is Transfer File) called
subsystem 411, which is XMLib, and error 41 of XMLib occurred.

WHy Use THE ERROR CoDES?

When you type G@JEC BEGIN in a JEC mode file, the completion code
will be zero. It will remain unchanged until an error occurs. You
can thus specify what should happen when a specific error occurs,
by using its error code in a GJEC IF statement. For instance, you
can type a statement like this in a JEC mode file:

@JEC IF completion-code > O TERMINATE

This will stop the mode file execution if any errors occur.

Chapter 3 JEC - JOB EXECUTION CONTROL 23

Note that for some systems it may be better to type:
@JEC IF status-code > 27B TERMINATE

This is because some ND subsystems use the following system of
status codes:

0 = 0K
1-17B = Informative messages
20-27B = Probably informative messages
30-478 = Probably error conditions
50-76B = Error conditions
77B = Fatal error

Look in the manual for the subsystem you are interested in to see
which codes are error messages.
The following problems may typically arise during a mode job:

e You cannot access a file because it is already open or does not
exist.

e The first of many compilations does not succeed so there is no
reason to continue.

e A remote system in your COSMOS system may not be available at
the moment you run your mode job.

e A program you try to start may not be available.
The JEC mode file will not abort when these things happen, so you

could start an alternative program, create the file you need, or
skip other commands that are no longer needed.

24

Chapter 3 JEC - JOB EXECUTION CONTROL

3.2 An InTrRODUCTORY ExampLe oF A JEC Mobe FiLe

Here

is a small example of a JEC mode file that lets you compile

as many or as few COBOL programs as you want to:

@JEC
@JEC

BEGIN
MESSAGE 'Mode file to compile COBOL-500 program modules'’

@JEC DEFINE <number>,<name>

@JEC DEFINE <counter>=1

@JEC INQUIRE <(number> 'How many files do you want to compile?’
@CC mmmmm e e %

@JEC FOR <counter> IN <counter>:<number> DO % THE MODE
@JEC INQUIRE <name> 'What is the program name?' % FILE LOOPS
@JEC ND COBOL-500 % HERE, BUT
COMPILE <name>,0,<name> % HAS A
EXIT % CONTROLLED
@JEC WHILE COMPLETION-CODE = 0 % EXIT IF C-C
@JEC END-FOR % IS NOT O.
@CC mmmmm e %

@JEC I1F COMPLETION-CODE » 0O GO TO 1000

@JEC MESSAGE 'Compiling went fine'

@JEC END

@JEC 1000

@JEC MESSAGE 'Compiling failed, error in <name>’

@JEC
@JEC

When

PRINT-COMPLETION-CODE
END

you run the above mode file, you will be asked how many files

you want to compile, and then you will be asked for each file

name.

The mode job ends early if any compilation fails due to the

WHILE COMPLETION-CODE = 0 statement.

0f course, the mode file needs a few more tests, for instance, to
see if the object file already exists. It could also be expanded
to let you choose between COBOL-100 and COBOL-500, or even other
languages.

Chapter 3 JEC - JOB EXECUTION CONTROL 25
3.3 Tue JEC CommANDS
Here are the JEC mode and batch file commands, with short
explanations:
@JEC BEGIN #Starts a mode job
BJEC END %Ends a mode job execution
@JEC TERMINATE %“Ends a mode file execution
@JEC CLEAR-COMPLETION-CODE %“Resets completion code
% and SSI code
@JEC DEFINE <variable-name» %#Declares variable(s)
@JEC DEFINE <variable-name> = <value> %#Declares & initializes
@JEC INQUIRE «<variable-name> <'message’> %Lets user input value
@JEC <command-or-program> %#Use this when parameters
%are variables
@JEC RECOVER <program> %Use this when parameters are variables
@JEC GO TO <numeric-label> %“Unconditional jump
@JEC IF <JEC-test> GO TO <numeric-labels %#Conditional jump
@JEC IF <JEC-test> <command-or-program> %Conditional command
@JEC IF <JEC-test> TERMINATE %#Conditional termination
@JEC IF <«JEC-test> PERFORM <num.-label> :
@JEC IF <JEC-test> PERFORM <num.-label> THROUGH <num.-Tlabel>
@JEC <numeric-label> %Label definition
BJEC ON-ERROR TERMINATE %#Conditional termination
@JEC ON-ERROR GO TO «<numeric-label» %Conditional jump
@JEC FOR <variable-name> IN <range> DO %Begins a loop
@JEC WHILE <condition> %Use to exit early from loops
BJEC END-FOR %Ends a loop
@JEC PERFORM <numeric-label>
@JEC PERFORM <numeric-label> THROUGH <numeric-labels
@JEC PRINT-DATE %#0utputs the current date
@JEC PRINT-COMPLETION-CODE %0utputs the completion code
@JEC MESSAGE %#Sends messages to terminal even if
%“not chosen as output destination
GJEC MODE-INPUT %Gets input from mode file
GJEC MODE-OQUTPUT %#Sends output to mode file
BJEC TERMINAL-INPUT »Gets input from terminal
@JEC TERMINAL-OUTPUT %Sends output to terminal
@JEC WAIT-FOR-CR “Wait for user to press the « key

26 Chapter 3 JEC - JOB EXECUTION CONTROL

Let us take a closer look at these commands:

BEGIN, END, anp TERMINATE

@JEC BEGIN and @JEC END both initialize the completion code to
sero. GJEC BEGIN should always start a mode or batch job and GBJEC
END should end it:

@JEC BEGIN
@JEC % JEC and SINTRAN commands
@JEC END

Once @JEC END is encountered, the execution of your mode or batch
job ends. If you do not end a mode job with BJEC END, you may have
problems with the next mode file you run if it does not use @JEC.

A mode file to be run as a batch job should look like this:

@ENTER user-name,password,project-password,max-time
@JEC BEGIN

@JEC % JEC and SINTRAN commands

@JEC % Do not use TERMINAL-INPUT or TERMINAL-OUTPUT,
@JEC % INQUIRE, WAIT-FOR-CR or MESSAGE.

@JEC END

@JEC TERMINATE ends the execution of the batch or mode file it is
in. 1t will not reset the completion code to zero. You use @JEC
TERMINATE in mode files called from other mode files.

Chapter 3 JEC - JOB EXECUTION CONTROL 27

If you use nested mode files, @JEC BEGIN and @JEC END should only
appear once in the entire mode job. @JEC TERMINATE can be used in
the nested files. Here is an example:

File: LOAD-MODE :MODE

BENTER SYSTEM XXXXX,,10,,

@JEC BEGIN

@CC various other commands File: XMSG-START:MODE
@JEC MODE (UTIL)XMSG-START:MODE,,

@CC The XMSG file should NOT contain @JEC ON-ERROR TERMINATE
@CC JEC BEGIN and JEC END. @JEC SINTRAN-SERVICE
@JEC MODE (UTIL)SET-TERM-TYPE :MODE,, @STOP-XMSG

@CC The SET-TERM file should NOT BEXIT

@®CC contain JEC BEGIN and JEC END. @CC other commands
GBCC various other commands @CC other commands
@JEC END @CC end of file

If an error occurs in the file XMSG-START:MODE, the rest of the
file will not be executed, but none of the variables JEC uses in
the LOAD-MODE:MODE file will be affected. It would be a big
mistake to start the XMSG file with @JEC BEGIN. It would also be
wrong to end it with BJEC END.

Here is one way to alter the LOAD-MODE file above to see whether
the nested mode file XMSG-START executed properly:

@JEC CLEAR-COMPLETION-CODE

@JEC MODE (UTIL)XMSG-START:MODE,,

@JEC IF COMPLETION-CODE = 0 GO TO 500

@JEC MESSAGE 'An error occurred in XMSG-START :MODE fite'
@JEC PRINT-COMPLETION-CODE

BJEC 500

In the nested files, you may use TERMINATE in an IF statement, for
example:

@JEC IF COMPLETION-CODE > 27B TERMINATE

See also page 33.

28 Chapter 3 JEC - JOB EXECUTION CONTROL

CLEAR-COMPLETION-CODE

CLEAR-COMPLETION-CODE will set the completion code and the SSI
code to zero. Here is an example:

@JEC DELETE-FILE <VAR1>:NRF
- @JEC IF COMPLETION-CODE = 46 GO TO 200 % No such file name.

@JEC IF COMPLETION-CODE > O GO TO 1000 % Exit if error.
@JEC 200

@JEC CLEAR-COMPLETION-CODE
@JEC ND COBOL-500

DEBUG-MODE

COMPILE <VAR1>:SYMB,O, "<VAR1>"

EXIT

@JEC IF COMPLETION-CODE > O GO TO 1000

@cc %“Here you could load the :BRF file, for example.

@JEC 1000 %Here you could type @JEC END, for example.

DEFINE anp INQUIRE

By using DEFINE, you can create your own variables that you use in
IF and FOR statements, in arithmetic expressions, or as macros

in command parameters. You may give them values when you define
them, or you may input values from the terminal by using

INQUIRE, when you run your mode file.

Here are a number of different examples:

Define and Initialize Strings

@JEC DEFINE <file-1>='old-prog’
@JEC DEFINE <file-2>=delete-me
@JEC DEFINE <suffix>='data'

@JEC DELETE-FILE <file-1>:<suffix>
@JEC DELETE-FILE <file-2>:<suffix>

Strings need only be enclosed in single quotes ('name' not "name”,
for example) when they start with a digit. A1l variable names must
start with a less-than sign (<) and end with a greater-than sign
{»). Variable names may not contain spaces.

Chapter 3 JEC - JOB EXECUTION CONTROL

Define and Initialize Numeric Variables

@JEC DEFINE <varil> = 10
@JEC <var2> = <(varl>

If a variable is already defined, you can omit DEFINE when you
assign it a value:

@JEC <payday> = 21

@JEC <var2> = <(var2> * <var2>

@JEC <var3> = [<varl> * 10) + 2 + <var3>

As you can see, arithmetic expressions are allowed. Use +, -, *,

and / to add, subtract, multiply, and divide. NOTE - Always
precede and follow the signs +, -, * or / with a blank. It
not only looks nicer, it is the only thing allowed! Extra
blanks are allowed.

Do not multiply or divide by JEC variables such as DAY. DAY is
explained on page 33. If you need to multiply DAY by a
variable, do it Tike this:

@JEC <varl>
@JEC <var2>

DAY
<varl> * <x>

30 Chapter 3 JEC - JOB EXECUTION CONTROL

Define and Ask User to Give the Value

Here 1is an example of INQUIRE. Note the use of @JEC PASCAL when
the compiler is called:

@JEC BEGIN

@JEC DEFINE <file-to-compile>

@JEC DEFINE <list>

@JEC INQUIRE <file-to-compile>

@JEC INQUIRE <list> 'Give list file name and type:'

@JEC PASCAL % You must type @JEC here so that PASCAL ;
% gets the values stored in the variables

COMPILE <file-to-compile>,<list>,<file-to-compile>

EXIT

@JEC END

As you can see, INQUIRE can be followed by a message if you so
choose. In the above example, this will appear on the screen when
you execute your JEC mode file:

Give list file name and type:

If there is no text after @JEC INQUIRE, you get this when you
execute:

VALUE FOR (file-to-compile>?_
If you want to compiie COB-DB:SYMB, you simply answer COB-DB or

'COB-DB'. But if the file name begins with a number, you must
enciose it in single quotes.

Chapter 3 JEC - JOB EXECUTION CONTROL 31

Getting Values from a File

At times, you may want to give so many values that you do not want
to do it interactively or in your mode file. You may, for example,
want to change the file access to all the 50 files you have. You
do this as follows:

@LIST-FILES, ,FILE-LIST:DATA
The file FILE-LIST will look Tike this:

FILE 1 : (PACK-ONE:UTILITY)EX:SYMB;1
... files 2 to 49 ...
FILE 50 : {PACK-ONE:UTILITY)FORMAT:TEXT;1

Edit it so that everything to the left of the first parenthesis is
deleted:

(PACK-ONE:UTILITY)EX:SYMB;1
... files 2 to 49 ...
(PACK-ONE:UTILITY)FORMAT:TEXT;1

Then create a mode file 1ike this:

@JEC BEGIN

@JEC DEFINE <public>,<friend>,<own>,<file>,<i>,<number>
@JEC MESSAGE 'Specify the three access types you want'
@JEC INQUIRE <public>

@JEC INQUIRE <friend>

@JEC INQUIRE <own>

@JEC INQUIRE <number> 'How many files do you have?'
@JEC FOR <i> IN 1 : <number> DO

@JEC <file>=FILE-LIST:DATA(<i>)

@cc <FILE> will be equal to record <i> in FILE-LIST:DATA
@JEC SET-FILE-ACCESS <file> <public> <friend> <own>
@JEC END-FOR

@JEC END

32 Chapter 3 JEC - JOB EXECUTION CONTROL

If you do not know how many files you have, the loop could Took
like this:

@JEC FOR <I> IN 1 : 1000 DO
@JEC <file>=FILE-LIST:DATA{<i>)

@cc <FILE> will be equal to record <i> in FILE-LIST:DATA
@JEC WHILE COMPLETION-CODE = O

@cc You will safely exit the loop when you reach

@cc the end of the file FILE-LIST:DATA

@JEC SET-FILE~ACCESS <file> <public> <(friend> <own>
@JEC END-FOR

Editing Text in INQUIRE

When you are inputting values to an INQUIRE command, you may use
the 4 key to erase any typing errors. JEC accepts the same
control characters for editing as SINTRAN.

GO TO, IF. FOR, END-FOR. Anp PERFORM

Unconditional Jumps (GO TO)

You can jump unconditionally to another part of the mode file:

@JEC GO TO 100
N % Other JEC statements
@JEC 100 % This is a numeric label

If you want to use labels which are easier to understand, do it
Tike this:

@JEC DEFINE <compile> = 500

@JEC GO TO <compile>

N % Other JEC statements

@JEC <compile>: % This is also a numeric label

The colon {:) tells JEC that <compile> is a label and not the name
of a program to be executed. See the example on page 43.
You only need to use a colon when you use a variable as a label.

Chapter 3 JEC - JOB EXECUTION CONTROL

Conditional Jumps (IF)

There are four types of conditional jumps using IFf:

@JEC IF <JEC-test> GO TO <numeric-label> The semicolon
@JEC IF <JEC-test> <command-or-program> continues the
@JEC IF <JEC-test> TERMINATE line.

@JEC IF <JEC-test> ;
PERFORM <numeric-label> THROUGH <numeric-label>

Conditional tests (IF <JEC-test>)

The <JEC-test> may use the following operators in JEC tests:
= < > OR AND NOT () »<

The f011pwing JEC variables may be used in JEC tests:

NAME EXPLANATION

COMPLETION-CODE Error code.

STATUS-CODE The last two octal digits in the
completion code.

SSI-CODE Subsystem code.

DATE A string with 8 characters, for
example, 84.09.18 means September
18th, 1984.

DAY An integer from 1 to 31 or
a string from "MONDAY" to "SUNDAY".

MONTH An integer from 1 to 12.

RUN-MODE Either 'B' or 'M', depending on

whether it is a Batch or Mode job.

You may also test any variables you define. Remember not to mix
data types. Do not type @JEC IF DATE = DAY GO T0O 1000, for
example!

34 Chapter 3 JEC - JOB EXECUTION CONTROL

Examples of IF <JEC-test> Statements

Complex expressions must be enclosed in parentheses. The following
examples show legal JEC tests:

@JEC IF COMPLETION-CODE > OB TERMINATE

@JEC IF (SSI-CODE = 6B AND STATUS-CODE < 20B} GO TO 100
@JEC IF (DAY < 8 AND DAY = 'MONDAY') GO TO 100

@JEC IF (DAY = 20 AND (NOT DATE = 84.01.20)) GO TO 100
@JEC IF <answer> = 2 GO TO 2000

@JEC IF <answer> NOT > 0 GO TO 3000

@JEC IF COMPLETION-CODE = O BRF-LINKER

@JEC DEFINE <payday> 21 % Omit DEFINE if <payday>
@cc % is already defined.
@JEC IF <payday> NOT DAY THEN TERMINATE

@JEC IF RUN-MODE = 'B' GO TO <batch>
@JEC GO TO <mode>

JEC uses decimal numbers by default. Octal numbers must be
followed by a B. A numeric Tabel such as 100 in GO TO 100 must be
defined somewhere in the mode or batch file by the command

@JEC 100. Both forward and backward jumps are legal. Only
incurable hackers should use octal numbers in labels.

You may use SINTRAN III commands, subsystems, or your own programs
as <command or program>.

Note that a semicolon
SINTRAN must be used at the end Subsystem
command of an incomplete 11ne.¢;}

@JEC IF MONTH NOT = <prevm>;
COPY LINE-PRINTER MONTH-STAT:DATA

@JEC IF COMPLETION-CODE = O ND LINKAGE-LOADER

@JEC IF <answer> = 1 MY-PROG IN:DATA OUT:DATA

I-—-—————-——-——-—-Youxf‘ own program

Chapter 3 JEC - JOB EXECUTION CONTROL 35

Conditional Jump (ON-ERROR)

There are two types of conditional jumps using ON-ERROR:

1} BJEC ON-ERROR TERMINATE

2) @JEC ON-ERROR GO TO <numeric-label>

The statement after ON-ERROR 1is performed if the completion code
is not equal to zero. Note that you cannot use <command or
program> or PERFORM <label> THROUGH <label> after ON-ERROR. Use
instead:

@JEC IF COMPLETION-CODE > 0 <program or SINTRAN command>

@JEC IF COMPLETION-CODE > O;

PERFORM <numeric-label> THROUGH <numeric-label>

If you use BJEC ON-ERROR, and an error occurs, the following rules
apply:

1) The error can occur anywhere 1in the file.

2) The action TERMINATE or GO TO will be performed
when the next @JEC statement is encountered.

NOTE: You should only use @JEC ON-ERROR once in a file!
Here are two examples:

1) @JEC ON-ERROR GO TO 5000

2) ®JEC ON-ERROR GO TO <«finish»

édéc <finish»>:

36

Chapter 3 JEC - JOB EXECUTION CONTROL

FOR Loops

You can create loops as follows:

@JEC
@JEC

This

@JEC
@JEC
@JEC
@JEC
@JEC

Here

FOR <variable-name> IN <(range> DO %Begins a loop
END-FOR %Ends a loop
will execute the same program ten times:

DEFINE <i>, <program-name>

INQUIRE <program-name> 'Which program do you want to run?’
FOR <i> IN 1:10 DO

RECOVER <program-name>

END-FOR

is a complete mode file that a system supervisor might use

to log out all the users on Terminal Access Devices {TADs) :

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC

BEGIN

DEFINE <i>, <x>

1000

INQUIRE <x> 'How many TADs does your system have?’

DEFINE <(lasttad>= 767 + <x>

IF <lasttad> < 767 GO TO 1000 % No TADs have LDN < 767
FOR <i> IN 767:<lasttad> DO

STOP~-TERMINAL <i>

END~FOR

END

Another example of a FOR loop is given on page 24.
Nested Toops are also allowed.

Chapter 3 JEC - JOB EXECUTION CONTROL 37

PRINT ComMmAaNDS

The command BJEC PRINT-DATE writes the current date to the batch
or mode output file.

@JEC PRINT-DATE

== JeC ====c-s=sESSSSS@@ISCoSCSESEESSSSSSSSSSSSSSsSSSISSssssssass
Year Month Day Time
1987 12 24 11.32.19
December Thursday
== Jec =====cS=msSSSSS@E@CCSCCOEEESSSISSSSSSSSSESSSSSSSSSSSSEESSS

@JEC PRINT-COMPLETION-CODE outputs the completion code.

You can print the value of any variable you define. If your
variable is called <name>, type:

@JEC MESSAGE '<name>’
or:

@JEC MESSAGE 'Name is <name>'

TerMINAL AND Mope Input/QuTtPuT

You can enter parameters to programs within a mode job from your
terminal. Input cannot be entered to batch jobs or SINTRAN III
commands. The commands to switch terminal input and output on and
off are:

@JEC TERMINAL-INPUT %Input to programs from terminal
@JEC TERMINAL-OUTPUT %0Output from programs to terminal
@JEC MODE-INPUT %Turn terminal input off

@JEC MODE-OQUTPUT %Turn terminal output off

Note that @JEC END turns terminal input and output off.

38 Chapter 3 JEC - JOB EXECUTION CONTROL

The command GJEC TERMINAL-INPUT will let you input parameters from
your terminal. Make sure you remove input parameters from your
mode file. Let us say you have a program called AVERAGE:PROG that
expects three numbers to be input. You could execute it five times
Tike this:

@JEC BEGIN

@JEC DEFINE <i>

@JEC TERMINAL-INPUT
@JEC FOR <i> IN 1:5 DO
@RECOVER AVERAGE

@JEC END-FOR

@JEC END

If you can write a short program that expects input, try running
the above mode file using your terminal as the output file. Then
try it again using another file as the output file. You can still
give input from your terminal, but your program prompts will not
appear; they are sent to the output file!

Add a line with "@JEC TERMINAL-OUTPUT" to the mode file above and
then all prompts from your program AVERAGE will appear on your
terminal.

BJEC TERMINAL-OUTPUT will output prompts to your terminal when
your terminal is not the output file. Anything written to a file
will not be sent to your terminal.

@JEC MODE-INPUT turns TERMINAL-INPUT off again, and ©@JEC MODE-
OUTPUT turns TERMINAL-QUTPUT off. Note that terminal 1/0 is off
when you type @JEC BEGIN. Note that if you do not terminate your
mode job with @JEC END, and terminal input was on, it will still
be on when you run the next mode file from your terminal. Remember
BJEC BEGIN and END!

It can often be useful to pause while executing a mode file. By
writing:

@JEC WAIT-FOR-CR 'Insert floppy no. <i>'

you let the mode file "pause" until the user pushes the <« key.
The «! key is also called the CR (Carriage Return) key. You may
have any message, or none at all, after WAIT-FOR-CR.

Chapter 3 JEC - JOB EXECUTION CONTROL 38

Here is an example from a mode file used to copy many files to or
from floppy diskettes:

@JEC RELEASE-DIR <dir>

@JEC MESSAGE ‘Remove diskette <number>'’

@JEC DEFINE <number> = <(number> + 1

@JEC MESSAGE 'Insert diskette <number>’

@JEC WAIT-FOR-CR

@JEC ENTER-DIR <dir> <dev> <unit>,,,

@cc Copy files to or from the diskette.

COMMENTS START WITH 7

The percentage sign (%) indicates that the rest of the line only
contains comments. If a JEC command consists of more than one
line, any incomplete lines must end with a semicolon (;), for
example:

@JEC IF {COMPLETION-CODE < 400B AND COMPLETION-CODE > 500B) ;
GO TO 100 %“Example of split line

40 Chapter 3 JEC - JOB EXECUTION CONTROL

3.4 ExamprLes oF JEC Mope AnND BATcH FiLEs

This section shows examples of JEC commands used within batch and
mode files.

An ExampLE Usine SORT-MERGE

The following mode file will only print the output file from the
ND SORT-MERGE program if no errors occur.

@JEC BEGIN

@JEC DEFINE <INPUT>,<QUTPUT>

@JEC INQUIRE <INPUT>:

‘Give the file name and type of the file you want to sort:'
@JEC INQUIRE <QUTPUT>;

‘'Which output file? Enclose name in
@JEC SORT-MERGE

RECORD~DESCRIPTION 80, 1, TEXT
KEY-DESCRIPTION 1, 10, ASCENDING, ASCII
SORT <INPUT>, <OUTPUT>

EXIT

@JEC PRINT-COMPLETION-CODE

@JEC IF COMPLETION-CODE > O TERMINATE
@COPY-FILE PHILIPS, <OUTPUT>
@DELETE-FILE <OUTPUT>

@JEC END

o

if file is new;'

Chapter 3 JEC - JOB EXECUTION CONTROL 41

CompiLING, LoADING, AND Executine A COBOL PRrROGRAM

The next example shows how a COBOL program is compiled, Tloaded,
and executed. Special actions are taken if compilation errors
occur. TEST:PROG will communicate directly with the terminal
during execution.

@JEC BEGIN

@JEC PRINT-DATE %Outputs today's date.
@COPY-FILE TEST:SYMB, (PACK-TWO:P-HANSEN)TEST:SYMB
@COBOL-100

COMPILE TEST:SYMB, TEST:ERR, TEST:BRF

EXIT

@JEC IF {COMPLETION-CODE > OB AND SSI-CODE = 6B) GO TO 111
@CC Go to compiler error part. COBOL-100 has SSI code 6B.
@BRF-LINKER

PROG~FILE TEST:PROG

LOAD TEST:BRF, COBOL-1BANK:BRF

EXIT

@JEC IF STATUS-CODE > 27B TERMINATE

@cc %

@ce % Codes from O to 26 are most likely to be

Gce % only informational messages in many products.
@cc %

@JEC TERMINAL-INPUT %Input to TEST:PROG from terminal.
@TEST : PROG

@JEC MODE-INPUT

@JEC TERMINATE

@JEC 111 %Compilation error handling part.
@COPY-FILE LINE-PRINTER, TEST:ERR

@DELETE-FILE TEST:ERR

@JEC END

42 Chapter 3 JEC - JOB EXECUTION CONTROL

A BAtcH FiLe ExampLE

This 1is a batch file which is to be executed the 20th of every
month. Note that GENTER and double escape are placed outside the
BJEC BEGIN and BJEC END commands.

@ENTER P-HANSEN,HANS,,,

@JEC BEGIN

@JEC IF DAY = 20 SALARY:PROG

@JEC IF DATE = 83.12.20 ADDSALARY:PROG
@COPY-FILE ND-SAT-II.LINE-PRINTER, OUTSALARY:DATA
@cC PRINTING ON THE REMOTE COMPUTER ND-SAT-II
@JEC IF (STATUS-CODE > OB AND SSI-CODE < 4B};
DELETE-FILE OUTSALARY:DATA %Split JEC command
@CC SST code < 4B INDICATES FILE SYSTEM ERROR
@JEC END

<CTRL 0> <ESCAPE> <CTRL O> <ESCAPE>

Chapter 3 JEC ~ JOB EXECUTION CONTROL 43

A FrLexiBLE CompiLe AND LoAD Mope FILE

Here is quite a lengthy example. This mode file will compile and
Toad any COBOL, FORTRAN-100, or FORTRAN-500 program. Note how
labels are used.

@JEC BEGIN

@JEC DEFINE <Fort-500>=500, <(Fort-100>=100

@JEC DEFINE <Cobol>=200, <compile>=900

@JEC DEFINE <load-100>=1000, <failure>=8000, <success>=300
@JEC MESSAGE 'Mode file to compile and load a program’
@JEC DEFINE <lang>,<name>,<compiler>,<library>

@JEC MESSAGE 'Which compiler do you want to use?’

@JEC MESSAGE 'FORTRAN-100 = 1 FORTRAN-500 = 5'
@JEC MESSAGE 'COBOL = 2'

@JEC INQUIRE <lang> 'Answer with 1, 2 or 5:°'

@JEC INQUIRE <name> 'What is the name of your program ?'
@CC mmmmm e m e e %
@JEC IF <lang> = 5 GO TO <Fort-500>

@JEC IF <lang> = 1 GO TO <Fort-100>

@JEC IF <lang> = 2 GO TO <Cobol>

@JEC END

BCC mmmm e e e

@JEC <Fort-100> % --- FORTRAN-100 -----
@JEC <compiler> = FORTRAN-100

@JEC <library> = FORTRAN-1BANK

@JEC GO TO <compile>

@BCC mmmmmmm e -

@JEC <Cobol> % === COBOL =-=-====-

@JEC <compiler> = COBOL

@JEC <library> = COBOL-1BANK

@JEC GO TO <(compile>

@BCC mmmmmmmm o e

@JEC <compile>: % Compile and load an ND-100 program.
@JEC DELETE-FILE <name>:BRF

@JEC CLEAR-COMPLETION-CODE % In case file did not exist.
@JEC <compiler>

COMPILE <name>,0,"<name>"

EXIT

@JEC IF (COMPLETION-CODE > 0} GO TO <failure>

BCC —mmmmm e e

{continued on next page)

44

@JEC

Chapter 3 JEC - JOB EXECUTION CONTROL

(continued from previous page)

<load~-100>: % This label is only for information.

@JEC DELETE-FILE <name>:PROG

@JEC

CLEAR-COMPLETION-CODE

@JEC BRF-LINKER

PROG-

LOAD
EXIT
@JEC

FILE "<name>"
<name>,<library>

IF COMPLETION-CODE > 0 GO TO <failure>

@JEC GO TO <(success>

@cc

@JEC
@JEC
@JEC
@JEC

(Fort-500>:

CREATE-FILE <name>:NRF O

CLEAR-COMPLETION~-CODE % In case the file already existed.
FORTRAN-500

COMPILE <name>,0,<name>

EXIT
@JEC

IF COMPLETION-CODE > O GO TO <failure>

@JEC ND LINKAGE-LOADER
ABORT~-BATCH OFF
DELETE-DOMAIN <name>
SET-DOMAIN "<name>"

OPEN
LOAD
LOAD
EXIT
@JEC
@JEC
@cc

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC

“<name>",,,,,,,
{(name>
(SYSTEM)FORTRAN-LIB

IF COMPLETION-CODE > O GO TO <failure>
GO TO <success>

{success>:

MESSAGE 'Compiling and loading went fine'’
END

<failure>:

MESSAGE 'Compiling or loading failed'
PRINT-COMPLETION~-CODE

END

Chapter 3 JEC - JOB EXECUTION CONTROL 45

Use

oF ARITHMETIC TO CREATE A ConTiNuous FILE

This
rema

@JEC
@JEC

continuous file.

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@cc

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@cc

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@cc

@JEC
@JEC
@JEC
@JEC
@JEC
@cc

mode file creates a continuous file that uses all of your
ining free pages if possible.

BEGIN
MESSAGE 'Mode file to create the largest possible;

DEFINE <file-name>,<max>=0,<{size>=0, (change>=1000

INQUIRE <file-name>

100 % The program returns here every time
{(max> = <{(size> % we successfully create the file.
DELETE-FILE <file-name>

DELETE-FILE <file-name>:DATA

CLEAR-COMPLETION-CODE

IF <change> < 2 GO TO 5000 % Create a file of size <max>.
{size> = <size> + <change>

<change> = <change> / 2

2000

CREATE-FILE <file-name> <{size>

IF COMPLETION-CODE=0 GO TO 100 % Success!

IF COMPLETION-CODE=67B OR COMPLETION-CODE=75B GO TO 3000
PRINT-COMPLETION-CODE

MESSAGE '<file-name> has not been created

END

3000 % (size> was too big
CLEAR-COMPLETION-CODE

IF <change> < 2 GO TO 5000 % Create a file of size <max>
(size> = <size> - <change>

{change> = <change> / 2

GO TO 2000

5000 % The maximum size has been found
CREATE-FILE <file-name> <max>

MESSAGE '<(file-name> is <(max> pages big
FILE-STATISTICS <file-name>,,,,,
END

46 Chapter 3 JEC - J0B EXECUTION CONTROL

5.5 Tue JEC LiBRARY

Programs you write may also read or update the completion code.
The JEC 1ibrary contains two subroutines for this purpose:

UEISECCODE(SSI-CODE,COMPL-CODE,STAT) (write operations)
UEIFECCODE(SSI-CODE,COMPL-CODE,STAT) (read operations)

Fach parameter is an integer stored in 2 bytes. The parameter STAT
is the status from the monitor call performing the read and write
operations. For example, your program EXAMPLE-PROG may contain the
subroutine call to update the status code and the SSI code:

IF NUMBER = O THEN UEISECCODE({710B,71050B,STAT)

A JEC command in the mode file can then test the status code and
the SSI code after executing your program. The following commands
in the mode file can be used:

@EXAMPLE-PROG
@JEC {IF SSI-CODE = 710B) OR (COMPL-CODE = 50B)
TERMINATE

The JEC 1ibrary for one-bank programs is called JEC-LIB-1B:BRF,
and for two-bank programs JEC-LIB-2B:BRF.

We suggest you use SSI-CODEs from 700B to 777B, since they will
not be used by any Norsk Data products.

Chapter 3 JEC - JOB EXECUTION CONTROL 47

5.6 SoMe TecHNnicaL DertaiLs

When you type CGJEC BEGIN, JEC creates two scratch files:

1.

JEC-xxxxx:DATA contains all the defined variables and their
values, as well as various global information if FOR loops or
PERFORM are used.

. JEC-xxxxx:MODE is constructed when you use your own variables

in SINTRAN commands, as program parameters, or as program
names. The variables you define are replaced with their values
on this file, and the file is started by JEC.

The 5 x's (xxxxx) stand for the address of the RT description of
your background program, batch processor, or TAD (Terminal Access
Device). This means that the file name will always be unique, even
if you run several mode or batch jobs simultaneously.

Both files are deleted by the statement @JEC END.

3.7 JEC Syntax

Here is a complete syntax of JEC.

You only need to use the underlined syntax. Note that THROUGH or
THRU can be used. Likewise, both GO TO and GOTO are allowed.

BEGIN

CLEAR-COMPLETION-CODE

DEFINE <identifier> % up to 40 ASCI! characters long

DEFINE <identifier>=numeric literal

¢identifier>=c¢identifier>

48 Chapter 3 JEC - JOB EXECUTION CONTRCL

END

<identifier> <identifier>
FOR <identifier> IN : DO
integer integer

[WHILE <condition>]

END-FOR

GO TO [numeric label]

GO TO [numeric 1abel}

TERMINATE
IF <condition> THEN THRU
PERFORM numeric label {THROUGH| num. label

program name / SINTRAN III command

INQUIRE <identifier>» ['string of ASCII characters

and/or <1dentif1er>‘]

MESSAGE 'ASCII string and/or <identifier>'

MODE-INPUT

MODE-QUTPUT

Chapter 3 JEC - JOB EXECUTION CONTROL

TERMINATE
ON-ERROR
GO TO numeric label

THRU
PERFORM numeric label THROUGH| numeric label

PRINT-COMPLETION-CODE

PRINT-DATE

TERMINAL-INPUT

TERMINAL-0OUTPUT

TERMINATE

WAIT-FOR-CR 'ASCII string’

% Comments in the mode/batch file

50

arithmetic

batch job
appearance .
how it differs from mode JOb
starting/ending .

BEGIN .

CLEAR-COMPLETION-CODE .
command . .
comment lines . . .
COMPL-CODE in programs ca]]wng JEC
completion code
COMPLETION-CODE JEC var1ab1e
conditional jump

IF ..

ON- ERROR
conditional test
CR (Carriage Return)

data types . . .
DATE JEC var1ab1e .
DAY

JEC numeric variable

JEC string variable .
DEFINE . .
difference between mode and batch .
DO

editing text in INQUIRE .
END
END-FOR .

equations .

file

difference between mode and batch .

JEC-xxxxx :DATA
JEC-xxxxx :MODE
nested mode .

Index

. 29, 45

. 26
. 26
. 26
. 26

. 28

. 33, 34

. 39

. 46

. 20, 26, 46
. 33, 39

. 33
. 35
. 33
. 39

. 33
. 33, 42

. 33, 42

. 33

. 28-30, 36, 47
. 26

. 36, 48

. 32
. 26
. 36, 48
. 36

. 26
. 47
. 47
.27

Index

file
reading data from .
values stored in
FOR
FOR loops . C e
forbidden commands in batch jobs

GO 1O
GOTO (See GO TO)

IF
IN . ..
INQUIRE .

JEC

100 (See also label)

library .

test

variable
JEC-LIB-1B:BRF (JEC library file)
JEC-LIB-2B:BRF (JEC library file)
Jump

conditional (IF) . . .

conditional (ON-ERROR)

unconditional (GO T0)

label e e e
followed by a colon .
line that is too long .

message . .
MODE-INPUT .
MODE-OUTPUT
MONTH JEC variable

nested mode file
numeric tabel

.31
.31
. 36,

. 26

.32,

. 34,
. 48
. 28,

. 32
. 46
.33
. 33
. 46
. 46

. 33
. 35
. 32

.32,
. 32
. 33,

. 30
. 37,
. 37,

.27
. 32,

33, 36, 48

36, 48

30, 36, 48

34, 39

38
38

52 Index

ON-ERROR735

GO TO <numeric- 1abe1> G o

TERMINATE P
operators ({(in JEC tests) I X
percentage sign {for comments}) 39
PERFORM .33, 35, 48
print . . N Y
PRINT- COMPLETION CODE A ¥ |
PRINT-DATE
program+33, 3
records in files . . . N
RECOVER (SINTRAN command)36, 38
RUN-MODE JEC variable 33, 34
semicolon .33-35, 39
SSI-CODE

in programs calling JEC 46

JEC variable20, 33, 34, 42
start mode or batch job26
STAT in programs calling JEC 46
STATUS-CODE JEC variable 33, 34, 41, 42
subroutine call to JEC 46
syntax 4T
TERMINAL-INPUT37, 38
TERMINAL-QUTPUT37, 38
TERMINATEZ26,27, 34, 48
test conditional33
THEN48
THROUGH33, 3
THRU (See THROUGH) P X
UEIFECCODE*46
UEISECCODE S ¢ 1

unconditional jump GO TO R V4

Index

VALUE in JEC prompt .
values stored in files
variable

numeric

string

WAIT-FOR-CR .
WHILE

. 30
.31
.33
.29
. 28

. 38
. 48

53

Table of contents

N e e el ja—

WN

(9%

RO~ WN -

NN
W N

W W
[FS38 S]

W W w
~N OOl

PERFORM 1
Creating Macros 2
Starting PERFORM 4
Example of Using Perform 5
Listing Defined Macros 7
Optional Control Parameters 8
Extended Parameter Submission . g
Limitations Restrictions and Defaults 9
Predefined Macros 10
LOK-FILE 1
Command Summary 11
General Rules . 12
Detailed Description of Commands 13
JEC - JOB EXECUTION CONTROL 18
Interactive JEC and Error Codes 20
Why Use the Error Codes? 22
An Introductory Example of a JEC Mode F11e 24
The JEC Commands . e 25
BEGIN, END, and TERMINATE 26
CLEAR-COMPLETICON-CODE 28
DEFINE and INQUIRE e 28
GO TO, IF, FOR, END-FOR, and PERFORM 32
PRINT Commands . . 37
Terminal and Mode Input/Output 37
Comments Start with %) 39
Examples of JEC Mode and Batch F11es 40
An Example Using SORT-MERGE 40
Compiling, Loading, and Executing a COBOL
Program e e o 41
A Batch File Examp1e R 42
A Flexible Compile and Load Mode F11e .. . 43
Use of Arithmetic to Create a Continuous File .45
The JEC Library . 46
Some Technical Details 47
JEC Syntax 47
INDEX 50

{ vi

)

