
orsk Data.

00.0.0000
00,000.00

.

SINWNU]
Utilities Manual

ND-60.15].3 EN

77%) information in this manual is subject to change wit/Jon! notice.
Nors/e Data AS assumes no responsibilityfor any errors t/Jat may appear in this manual, or
fort/1e use or reliability ofits software on equipment that is notfinnisbed or supported by
Nors/e Data AS.

Copyrig/Jt©1988 by Nors/c Data AS Version 2 ftme 1984
Version 2/1 February 1 985
Version 3 lune 1988

Send all docmnentation requests to :
Nors/c Data AS
Graphic Centre
P. O. Box 25 — Bogema'
N-O62] Oslo 6
NOR WA Y

(iii)

Preface

THE PRODUCTS

THE READER

RELATED MANUALS

This manuaT describes three subsystems which run
under the SINTRAN III operating system. These
subsystems and their product numbers are:

PERFORM
} part of Subsystem Package

LOOK—FILE number ND 210005U

JEC ND 2105348

PERFORM is a simpTe macro processing system to
create mode and batch fiTes; LOOK—FILE is used
to inspect and modify fiIes; JEC stands for Job
Execution Centre], and is used to controI the
execution of mode and batch jobs.

This manuaI is intended for users of
SINTRAN III. The subsystems documented here are
not necessary for simpTe use of the operating
system, but may be of considerabTe use for
particuiar tasks. FamiTiarity with SINTRAN III
on a pubTic user Tevei is the onTy previous
knowiedge assumed.

The SINTRAN III User Guide, ND—60.264, contains
basic information about the SINTRAN operating
system.

NOTATION USED IN
THIS MANUAL

CHANGES FROM THE
PREVIOUS VERSION
OF THIS MANUAL

In the examples, user input is underlined. Most
examples are written in uppercase, but lowercase
is also accepted. When used as parameters, octal
numbers are given in the form 3778, where B
denotes octal.

In command parameter descriptions, parameters
are enclosed in angular brackets, e.g.
<parameter>. Parameters which have default
values are enclosed in parentheses, e.g.
(<parameter>). The default value is used if a
parameter is omitted. Selections in parameter
descriptions are separated by slashes, e.g.
YES/NO.

This version of the SINTRAN III Utilities manual
is considerably shorter than previous versions.
The following products are no longer documented
in this manual:

MAIL (see SINTRAN III COMMANDS Reference Manual,

ND—6O 128, and SINTRAN 111 System Supervisor,
ND—30.003),

BACKUP—SYSTEM (see BACKUP User Guide,
ND—60.250).

FILE—EXTRACT (see File Handler User‘s Manual,
ND—60.175).

VTM—COMPOUND (see the Product Description sheets

for VTM Terminal Tables (standard), product
number ND 210455).

The remaining chapters contain only minor
alterations from the previous version of the
manual.

CHAPTER 1 PERFORM

Mode or batch fiies are used to execute sequences of commands that
are used repeatediy‘ PERFORM gives you greater fiexibiiity when
using mode and batch fiies by aiiowing parameter substitution.

For exampie, mode files can be used to compiie, ioad, and execute
programs during development. However, each program needs a
separate mode fiie. PERFORM wi11 instead aiiow you to enter the
program name as a parameter and generate the required mode fiie
with this program name in the appropriate piaces.

To use PERFORM, you have to create a macro instead of a mode file.
The macro aiiows you to specify which parameters are to be entered
from the terminai at each execution. PERFORM wiii merge the macro
with the terminai input, and create a mode fiie.

Macros are created using an ordinary editor, and many macros can
be stored in a file. A predefined iibrary of macros is stored in
the file PERFORM—LIBzMCRO.

2 Chapter 1 PERFORM

1.1 CREATING MACRos

A few simple directives, starting with a circumflex (A), are used
to define a macro. All directives must end with a semicolon (;). A
macro will have a macro head and a macro body in the following
manner:

B,<macro name>;

[Macro head defining parameters to be entered from the terminal,

their prompts, and their default values.]

A
’

[SINTRAN III commands, input to programs, and dummy parameters in

the required positions. The dummy parameters will be replaced with

actual parameters entered from the terminal.)

A
E;

The directive ‘B,<macro name>; starts a new macro. The <macro
name> may consist of up to 16 uppercase letters, digits, or hyphen
(—l. The directive ”E; ends the macro. All user—defined macros are
normally stored consecutively in one file.

The directive ”; separates the macro head from the macro body.

Chapter 1 PERFORM

The other directives that may be used in the macro head, are shown
be10w:

DIRECTIVE

“P,n,<prompt string);

“F.n,<prompt string>;

‘O,n,<defau1t string>;

”L,<information>;

"C,<comment string>;

MEANING

Defines a parameter to be entered from
the terminai. The parameter wiTT be
assigned the number n. The parameter
wiTT be prompted for by the specified
<prompt string>.

Same as above, except that terminaT
input is assumed to be a SINTRAN III
mass—storage file. PERFORM wiTT expand
abbreviated fiie names. Default fiie
type is :SYMB.

DefauTt vaiue to be used for parameter
n if no terminai input is given.

The information wiTT be dispTayed on
the terminaT when processed by PERFORM.

Comment. This wiTT be ignored by
PERFORM.

The numbers n must be consecutive and in the range 1 — 20. These
numbers must be preceded by a reverse sTash (\) in the macro body
wherever a parameter from the terminaT is to be inserted.

Here is a simpTe exampie:

‘B,FTN;
AF,1,PROGRAM TO BE COMPILED: ;

@FORTRAN—lOO
COMPILE \1,,TEMP:BRF
EXITAE;

4 Chapter 1 PERFORM

When PERFORM processes the macro in this examp1e, it wi11 ask for
the name of the program specified by \l. The answer given at the
termina1 wi11 be inserted in the command COMPILE \l,,TEMP:BRF in
the mode fi1e produced by PERFORM.

If you want to use the \ character to mean something other than a
PERFORM parameter, you must indicate this by writing two
consecutive reverse s1ashes. PERFORM wi11 rep1ace these with a
sing1e reverse s1ash and not make a parameter rep1acement.

In generaT, PERFORM can be used to insert any text strings. For
examp1e, a text string c0u1d be a part of a parameter, or it c0u1d
be a comp1ete SINTRAN III command.

The character used to indicate the beginning of a directive can be
any character other than A ~ 2, O — 9, or a space. PERFORM uses
the first character it finds in the macro fi1e as the directive
character. It must be the same character throughout the fi1e. In
this manua1 the circumf1ex (A) is used.

1.2 STARTING PERFORM

PERFORM wi11 create a mode fi1e by merging a macro with termina1
input. The mode job wi11 norma11y be started immediate1y with the
termina1 as the mode output fi1e. You start PERFORM by writing:

@PEHFORM [<macro file)] , [<macro name>) ,
[<macro parameter 1)],
[<macro parameter 2)] , . ..

Omitted parameters wi11 be prompted for. The <macro fi1e> is the
fiTe containing the macro with the specified <macro name>. The
defau1t <macro fi1e> is PERFORM—LIBzMCRO and defau1t fi1e type is
MCRO. The first macro in the specified fi1e is the defau1t <macro
name>.

Chapter 1 PERFORM 5

The parameters <macro parameter 1>, and <macro parameter 2>,...
are input parameters to the given macro. If omitted, these will be
prompted for as specified in the macro.

PERFORM will create a mode file called MACROn:MODE and execute it.
The "n" in the file name is a number from 1 - 9. When the mode job
has been executed, you will return to SINTRAN III.

Assume the FTN macro in the previous section is stored in a file
PMLIB MCRO. A FORTRAN program QUICKSORT can then be compiled by
entering:

@PERFORM PMLIBzMCRO, FTN, QUICKSORT

All parameters can be prompted for.

1.3 EXAMPLE OF USING PERFORM

The following example shows how PERFORM can be used to compile,
load, execute, and print FORTRAN programs. The macro is first
written to a macro file using an ordinary editor:

6 Chapter 1 PERFORM

ifitaer macros in the same file]

“ataayRUN;
“E,RACR0 TO COMPILE, LOAD, AND EXECUTE A FORTRAN PROGRAM;
*R,1,RROGRAM TO BE COMPILED: ;
“F,2,RUNTIME LIBRARY: ;
‘D,2,E0RTRAN—IRANK;
”c,E0RTRAN—IBANK USED AS DEFAULT RUNTIME LIBRARY;
“p,3,NUMBER OF PRINT COPIES: ;

@DELETE—FILE \1:BRF
@FORTRAN—100
COMPILE \1:SYMB,,”\1 BRF”
EXIT
@DELETE—FILE \1 PROG
@NRL
FROG—FILE “\1 PROG"
LOAD \1 BRF, \2
EXIT
@\1:PROG
@APPEND-SPOOLING—FILE LINE-PRINTER, \1:SYMB, \3,',,
@CC NUMBER OF PRINT COPIES GIVEN AT THE TERMINAL

E;

Three macro parameters are defined: the program to be compi1ed
(\1), the runtime Tibrary to be loaded (\2), and the number of
copies to be printed (\3). The default runtime 1Ibrary Is
FORTRAN—lBANK.

Assume that the macro Is stored In the f11e PERFORM—LIB:MCRO. A
program QUICKSORT 1s comp11ed, 1oaded, executed, and printed as
shown beiow:

@PERFORM PERFORM—LIB, FTNRUN
MACRO TO COMPILE, LOAD, AND EXECUTE A FORTRAN PROGRAM
PROGRAM TO BE COMPILED: QUICKSORT
RUNTIME LIBRARY:
NUMBER OF PRINT COPIES: 1
@MODE MACROl:MODE,TERMINAL

[Output from the execution of the created mode file]

Chapter 1 PERFORM 7

The mode fiTe MACROl MODE, is created and executed immediateTy. It
is shown beTow. The terminaT is seTected as the mode output fiTe.

@DELETE-FILE QUICKSORTtBRF
@FORTRAN-lOO
COMPILE QUICKSORT28YMB,,"QUICKSORT:BRF"
EXIT
@DELETE-FILE QUICKSORTzPROG
@NRL
FROG-FILE "QUICKSORTIPROG" LOAD QUICKSORT:BRF, FORTRAN—IBANK
EXIT
@QUICKSOHT:PROG
@APPEND-SPOOLING—FILE LINE-PRINTER, QUICKSORTISYMB, 1,',,
@CC NUMBER OF PRINT COPIES GIVEN AT THE TERMINAL

The mode fiTe MACROl MODE wiTT be stored in your user area untiT
it is overwritten by another execution of PERFORM.

1.4 LISTING DEFINED MACRos

The macros defined on a particuTar macro fiTe can easiTy be
Tisted. Start PERFORM and Tet the (macro name> parameter be
prompted for. Then type a "?", and aTT macros in the given <macro
fiTe> wiTT be Tisted as shown beiow:

@PERFORM
:MCRO file name: PMLIBIMCRO
MACRO NAME: 3
Macros available in file PMLIBIMCRO

(List of macros on PMLIBIMCRO]

MACRO NAME:

After this, PERFORM wiTT once more prompt for the <macro name> to
be used.

8 Chapter 1 PERFORM

1.5 OPTIONAL CONTROL PARAMETERS

PERFORM accepts some optionaT parameters. These can be used to
specify speciaT mode or batch output fiTes, to contrOT execution,
or to seTect aTternative names of the mode fiTe produced. The
compTete PERFORM caTT is:

@PERFORM [<macro file>],[<macro name>],
[<optional parameters>),
[<macro parameter 1)],
[<macro parameter 2)],

The <optiona1 parameters> may be used to specify a mode output
fiTe other than the terminaT. The fiTe name must be preceded by a
”<". A new fiTe may be created by encTosing the fiTe name in
quotes. DefauTt fiTe type is :SYMB. The (optionaT parameters> may
aTso incTude:

>RUN Create a mode fiTe and execute it (default)

>CREATE Create a mode fiTe, but do not execute it

>BATCHn Create a mode fiTe and append to batch number n

The parameters >RUN, >CREATE, and >BATCHn may be abbreviated to
>R, >C, and >Bn. PERFORM wiTT, by defauTt, use the mode fiTe
MACROn MODE. The <OptionaT parameters> may specify another mode
fiTe by:

*MODE <fi1e name),

DefauTt fiTe type is :MODE. This is necessary if the mode job is
waiting in a batch queue the next time PERFORM is caTTed.
Otherwise MACROn MODE wiTT be overwritten.

The foTTowing are some exampTes of PERFORM caTTs:

@PERFORM PMLIB, FTN, <LISTFILE:SYMB
@PERFORM PML I B , FTN , > CREATE
@PERFORM PMLIB , FTN, <0UTBATCH>BATCH2
@PERFORM PML I B , FTN , *MODE TESTMACRO : MCRO
@PERFORM PMLIB , FTN, <LISTFILE>CREATE , *MODE TESTMACRO

Chapter 1 PERFORM 9

The macro named FTN in the macro fiIe PMLIB MCRO is used. The
exampIes show how the <optionai parameters> can be used. The macro
parameters may foIIow the <optionaT parameters>.

1.6 EXTENDED PARAMETER SUBMISSION

Any <macro parameter) in the PERFORM caTT can be repIaced by a
fiTe name, preceded by an opening bracket ([). The fiTe shouid
contain a Tist of vaIues for the parameter, one per Tine.

Mode fiIes wiII be created and executed repeatedIy, taking
successive vaIues for the parameter from the fiIe. For exampIe,
assume the fiTe PARAMLIST contains:

SORT SYMB TEST:SYMB OUICKSORT SYMB

The PERFORM caTI:

@PERFORM PMLIB, FTNCOMPILE, [PARAMLIST

W111 compiie SORT SYMB, then TEST:SYMB, and then OUICKSORT SYMB.

1.7 LIMITATIONS RESTRICTIONS AND DEFAULTS

The macro name must be unique. If it is defined more than once,
the first occurrence is taken. The macro name shouid not be
abbreviated. If it is abbreviated, the first matching occurrence
wiTT be taken. The macro cannot be nested, nor invoke other
macros.

The optionai parameters (indicated by <, >, and *MODE) may aIso
be entered if the <macro name> is being prompted for by PERFORM.

Use the ”F directive rather than the “P directive in the macro if
SINTRAN III fiie names are to be inserted. The ”F directive wiII
attempt to find the fuII SINTRAN III fiie name. If successfuI,
that name wiII be inserted in the mode fiie. The defauit fiie type
is :SYMB.

10 Chapter 1 PERFORM

The reverse sTash (\) does not exist on some terminaTs. The
character to use is ASCII 1348. The circumex is the ASCII
character 136B.

PERFORM can be used together with JEC (JOB EXECUTION CONTROL) for
further fTexibiTity. JEC is described in chapter 3 of this manuaT.

1.8 PREDEFINED MACRos

PERFORM has the foTTowing standard macros stored in the fiTe
PERFORM—LIBRARYzMCRO. The first macro in the fiTe, FTN, is the
defauTt <macro name>.

FTN CompiTe a FORTRAN program

FTNRUN CompiTe, Toad and execute a FORTRAN program

COBOL CompiTe a COBOL program

COBRUN CompiTe, Toad, and execute a COBOL program

COBDEBUG CompiTe, Toad and debug a COBOL program

PLANC CompiTe a PLANC program

PLRUN CompiTe, Toad, and execute a PLANC program

PASCAL CompiTe a PascaT program

PASRUN CompiTe, Toad, and execute a PascaT program

BASIC CompiTe a BASIC program

BASRUN CompiTe, Toad, and execute a BASIC program

CREDIR Create and enter a directory with a user area

You can find more detaiTed information about each macro by
inspecting the fiTe, PERFORM—LIBRARYzMCRO, using an editor.

11

CHAPTER 2 LOOK-FILE

LOOK—FILE is a subsystem which enabies a user to print data,
modify data, and browse through the data contained in a fiie. The
contents of different fiies may aiso be compared. The data
contained in a file may be output as bytes, words, or ASCII
characters. Bytes and words may be output as octai, decimal, or
hexadecimai values.

2.1 COMMAND SUMMARY

The avaiiabie commands with their parameters are:

EXPLAIN—COMMAND (command)

HELP (<command>)

OPEN <fi1e name>,(<b10ck size>),(<access>)

CLOSE

DUMP (<biock number>),(<from word number>),(<number of words>)

BYTE—DUMP (<b10ck number>),(<from word number>),
(<number of words>)

NEXT

PREVIOUS

SET-BLOCK—CONTENT (<b10ck number>),<va1ue>

ZERO (<b10ck number>)

COMPARE <fiie name>,(<first biock number>),(<number of biocks>)

DEFINE-PRINT—FILE <fiie name)

12 Chapter 2 LOOK—FILE

ON~OFF—PRINTER (<1=on/O=0ff>)

MOVE (from fiIe name>,<number of bIocks to move>,
<first bTock in source fiIe>,<first bIock in dest‘ fiTe>

SET—PRINT—FORMAT (<B=octaI/H=hexadecimaI/D=decimaI>)

PATCH (<bIock number>),(<word number>)

SEARCH (<first bIock number>),(<number of bIocks>)

CALCULATE <operand>,<operator>,<operand>

PROGRAM~INFORMATION

PROGRAM—STATUS

EXIT

The OPEN command must be used to open a fiIe before it is referred
to by the other commands.

2.2 GENERAL RULES

The subsystem may be entered by:

@LOOK—FILE

The avaiTabTe commands can be entered in the same way as
SINTRAN III commands. Parameters which require a numeric vaTue may
be entered as decimaT numbers (e g. 1290), or octaT numbers (e g.
1568).

The subcommands wiII output the contents of a fiTe. Each output
Tine wiTI incIude the foIIowing:

o The word number in decimaT
o The word number in octaI

A singTe character indicating the mode being used for the
current Tine, i.e. B for byte and w for word
5 words output in the mode being used
The 5 words as 10 ASCII characters

Chapter 2 LOOK—FILE 13

A word is 16 bits. Any character whose ASCII vaTue is Tess than
4GB wiTT be output as an ampersand (&).

2.3 DETAILED DESCRIPTION OF COMMANDS

This section describes the LOOK—FILE commands in detaiI.
SINTRAN III commands can be executed by typing @ and the
SINTRAN III command with parameters on one Tine.

EXPLAIN—COMMAND <command>

This command dispiays information about a command and its
parameters. The <command> cannot be ambiguous.

HELP (<command>)

This Tists aTT commands matching <command>. If no parameter is
given, aTT commands wiIT be Iisted.

PROGRAM-INFORMATION

This command dispIays generaI information about LOOK—FILE on the
terminaI, e 9., its purpose, its command editing faciTities, and
its abbreviation ruIes.

OPEN <fi1e name>,(<b10ck size>),(<access>)

The command opens a fiTe which wiIT be used for further operations
by other LOOK—FILE commands. If another fiTe has aTready been
opened by this command, this fiTe wiTT be cTosed. The defauTt
bIock size is 512 words. The maximum aTTowed biock size is 4096
words“ Access can be R for read or w for write. DefauIt is w.

14 Chapter 2 LOOK—FILE

CLOSE

The file specified in the OPEN command will be closed. An open
print file will not be closed.

DUMP (<bTock number>),(<from word number>),(<number of words>)

The command displays the specified words from the open file, on
the terminal. Use DEFINE—PRINT—FILE to send the display to a file
or to a printer. The optional output file is called a print file.
The words will normally be displayed as octal numbers. This can be
changed by the command SET—PRINT—FORMAT. Default <block number> is
0, default value for <from word number> is 1, and default value
for <number of words> is 140. That amount of data fits most
terminal screens.

BYTE—DUMP (<block number>),(<from word number>),(<number of
words>)

This displays the specified words from the open file on the
terminal. The command DEFINE—PRINT-FILE can be used to save a copy
of the output on a file or write it to a printer. Each 16-bit word
will be displayed as two octal bytes. This can be changed by the
command SET—PRINT—FORMAT. Default (block size> is O, default value
for <fr0m word number> is 1, and default value for <number of
words> is 120. That amount of data fits most terminal screens.

NEXT

The command displays information from the next block of the open
file, on the terminal. The information may also be output to a
print file using DEFINE—PRINT~FILE. The amount of information
output is determined by the <number of words> parameter in the
DUMP or BYTE—DUMP command.

PREVIOUS

The command displays the previous block of the open file on the
terminal. The information may also be output to a print file using
DEFINE—PRINT—FILE.

Chapter 2 LOOK—FILE 15

DEFINE—PRINT~FILE (print fi1e>

The specified <print fiie> wiTT receive copies of the information
output to the terminaT by the commands DUMP, BYTE—DUMP, NEXT,
PREVIOUS, SEARCH, and COMPARE. New fiTes can be created by
encTosing the fiTe name in quotes (”..."). The output to the print
file is switched on and off by the command ON~OFF—PRINTER.

ON—OFF—PRINTER (<1=on/O=off>)

This command switches output to the print fiTe on and off. Defauit
is off.

ZERO (<b10ck number>)

ATT words in the specified biock of the open fiTe will be fiTTed
with binary zeros. DefauTt bTock number is O.

COMPARE <fi1e name>,(<first block number>),(<number of b10cks>)

This command compares the specified part of the <fiTe name> with
the open fiTe. The block size given in the OPEN—FILE command is
used. A11 differences wiTT be output on the terminaT, and
optionaTTy on a print file using the DEFINE—PRINT—FILE command.
DefauTt <first biock number> is O; defauTt number of biocks is 1.

MOVE (from fiTe name>,<number of blocks to move),
<first b10ck number in source fi1e>,
<first biock number in destination fi1e>

This command moves the given number of biocks from the <from fiie
name> to the open fiie.

16 Chapter 2 LOOK—FILE

SET—PRINT—FORMAT (<8=octaT/H=hexadecima1/D=decima1>)

This command seTects the print format for the output from the
commands DUMP, BYTE—DUMP, NEXT and PREVIOUS to be octaT, decimaT,
or hexadecimaT. DefauTt and initiaT printing format is octaT.

PATCH (<b10ck number>),(<word number>)

This command examines or modifies the open fiTe. The address and
the 01d vaTue of the specified word are dispTayed. The vaTue can
be modified by entering a new vaTue foTTowed by <RETURN>. Just
<RETURN> causes no change. The input vaTue may be given as octaT
(8), decimaT (D), or two characters ('AB'). DefauTt is octai. The
next words wiTT be dispTayed untiT a period (.) is given. DefauTt
<bTock number> is 0 and defauTt <word number> is 1.

Some exampTes of how to give input when patching:

000001 (1)/000000 : 1 Return causes no change
000002 (2)/000000 : 'AA'd Change to AA (04055018)
000003 (3)/000000 : 123¢ Change to 0001238
000004 (4)/000000 : 123Dd Change to 0001738
000005 (5)/000000 : ;: Stop patching and write the

bTock back.

SEARCH (<first bTock number>),(<number of b10cks>)

The command searches for specified information in the open fiTe.
The information to be found may consist of up to 50 words. Each
word may be given as octaT (8), decimaT (D), or as two characters
('AB‘). DefauTt is octaT. Enter the information you want to search
for as in the PATCH command. If the information is found in the
open fiTe, it wiTT be output to the terminai, or to a print fiTe
if you use the DEFINE-PRINT—FILE command. You wiTT then be asked
if you want to continue searching. Answer by YES or NO. DefauTt
<first bTock number) is O, and defauTt <number of bTocks> is 1.

Chapter 2 LOOK—FILE 17

SET—BLOCK—CONTENT (<b10ck number>),<vaTue>

ATT words in the specified bTock of the open fiTe wiTT be fiTTed
with the given vaTue. The vaTue must be prompted for, i.e., it
cannot be given on the same Tine as the rest of the command. The
vaTue is given as octaT (B), decimaT (D), or two characters('AB').
DefauTt is octaT.

CALCULATE <operand>,<operator>,<operand>

The command is used to perform simpie caicuTations on octaT or
decimaT operands. DefauTt is decimaT vaTues. LegaT <operators> are
+, —, *, and /. The resuTt is dispTayed in decimai and octaT
format.

PROGRAM-STATUS

The command dispTays information about the open fiTe, the current
bTock size, fiTe access, and printing format.

EXIT

The command returns you to SINTRAN III. The open fiTe wiTT be
cTosed.

18

CHAPTER 3 JEC ‘ JOB EXECUTION CONTROL

JEC (JOB EXECUTION CONTROL) is a program which 1ets you controi
the execution of a batch or mode fiie by inciuding a few contro)
commands. Inteiiigent actions can be taken when speciai situations
occur in commands, subsystems, and your programs.

Here are some of the things you can do:

0 Terminate execution at any point, for exampie, where errors
are detected. (See page 26.)

0 You may execute nested mode files that have a return status
showing whether they executed successfuiiy or not.
(See page 27.)

a You may use arithmetic. (See page 29.)

0 You can create your own numeric and string variabies. For
instance, you can prompt for the name of the program and the
)anguage it is to be compiied in. Thus you can make a singie
mode fiie that can compiie and)oad any program. See the exampie
on page 43. You may use your own variabies in
SINTRAN commands, as parameters to your own programs, as)oop
counters, or in arithmetic expressions. (See page 28,)

0 Answer "questions" asked by the mode fiie.
(See page 30.)

0 You may make conditionai tests, based on the vaiues of the
completion code, the SSI code, or the status code.
(See page 33.)

0 You may make conditiona) tests, based on the day, date, or
month you execute your mode fiie.
(See page 33.)

c Jump backwards and forwards to numeric iabeis defined in your

Chapter 3 JEC — JOB EXECUTION CONTROL 19

batch or mode fiie. (See page 32.)

o Create ioops so that things can be repeated a certain number
of times. (See page 36.)

0 Give input from your terminai to programs you execute in mode
jobs. (See page 37, Section 3.3.)

a You may turn communication with your termina) on and off in a
mode job. (See page 37.)

0 You may send output to your termina), an output fiie, or both.
(See page 37.)

a You may execute mode fiies on remote systems. The JEC
compietion code shows whether they executed successfuiiy or not.

0 You have the possibiiity of executing oniy certain parts of
your input file. See the exampie on page 41.

If you type your mode files in NOTIS—WP, make sure they are in
7—bit or 8—bit format, not in 16—bit format.

20 Chapter 3 JEC — JOB EXECUTION CONTROL

3.1 INTERACTIVE JEC AND ERROR CODES

Type @JEC in SINTRAN and you shoq see something Iike this:

@JEC
== Jec ==

== Jec == Value of completion code is: 0 QB

== Jec == Value of $81 code is : 72 110B

== Jec == Last running subsystem was : Notis WP / PED

== Jec ================ ========================= ======= ====

-The last subsystem
you used.

The error
code.

(The numbers you get wiTI most TikeTy not be the same.)

The compIetion code is stored in a 16—bit word:

Bit 15 14 13 12 11 IO 9 8 7 6 5 4 3 2 1 0
no.

I' it 1

This part contains the This part is the
SSI code if the status status code.
code is not zero.

Since each digit in an octai number represents three bits, the

status code is aTways the two rightmost digits of the compietion

code.

The Standard Subsystem Identification code (831 code) indicates

the Iast subsystem that was running, and the status code indicates

which error occurred.

For exampTe, an $81 code of 1 means that the error occurred in the

SINTRAN fiIe system (see the foiiowing tabTe). If the compietiee

code is 137, you can Took in the SINTRAN III Commands Reference

Manuai, ND—60.128, and find that the fiIe system error code 33?

means "No spooiing for this device.”

Chapter 3 JEC ~ JOB EXECUTION CONTROL

Here are some 551 codes and the software product(s) they
represent. If you are using an older version of one of the
products below, it will not produce 551 codes.

SSI code Product
Decimal Octal

0-3 0—38 SINTRAN-III File system (version 1)
4—5 4*58 FORTRAN (version B, library)
6—7 6~7B COBOL (version F, compiler and library)

20—21 24~258 PLANC (compiler)
4O SOB SORT—MERGE (version D)
42-43 52—538 Linkage—Loader (version F)
47 57B NRL (version J)
72-73 110~111B NOTIS—WP and PED
96—97 140—1418 NOTIS—TF 500 (version K)
96—97 140—1418 NOTIS—TF 100 (version L)

112 1608 User Environment
117 1658 JEC (version B)
148-159 224—2378 SIB—DML (version E)
216 33GB FILE—HANDLER (version A)
224—225 340—3418 BACKUP—SYSTEM (version F)
260—262 404—4068 COSMOS (version B)
263 4078 TRANSFER—FILE (version B)
265 4118 XMLib

Here are two examples of errors and the codes they produce for
JEC. Type the following at your terminal:

@DELETE—FILE ASDFGzflJKL «I
@JEC «1

When you try to delete the nonexistent file ASDFGzHJKL, you will
get the message "No such file name". If you now type JEC, the
following will appear:

== Jec =============:===================:=======:===============
== Jec == Value of completion code is: 46 56B
== Jec == Value of 881 code is : 0 GB
== Jec == Last running subsystem was : SINTRAN
== Jec == Error message: No such file name

22 Chapter 3 JEC — JOB EXECUTION CONTROL

The SSI code, 0, means that this is a SINTRAN File—System error.
If you 100k in the SINTRAN III Commands Reference Manuai,
ND—60.128, you wiii see that error 46 is "No such fiie name".

If you have COSMOS and JEC on your system, and a file caiied
MY—FILE SYMB, type the foiiowing:

@TRANSFER—FILE NOSUCH.XYZ MY-FILE +J
@JEC ¢J

You shouid get this message:

== Jec ==
== Jec == Value of completion code is: 16993 411418
== Jec == Value of 551 code is : 263 407B
== Jec == Last running subsystem was : COSMOS File Transfer

== Jec == Error message: Unknown remote system name
== Jec == Error in : XMSG
== Jec ==

If you are wondering why the compietion code does not start with
407 as the first three octai digits, here is the answer: the last
subsystem that was running (4078, which is Transfer Fiie) caiied
subsystem 411, which is XMLib, and error 41 of XMLib occurred.

WHY USE THE ERROR CODES?

When you type @JEC BEGIN in a JEC mode fiie, the compietion code
wiii be zero. It wiii remain unchanged until an error occurs. You
can thus specify what shouid happen when a specific error occurs,
by using its error code in a @JEC IF statement. For instance, you
can type a statement 1ike this in a JEC mode file:

@JEC IF compietion—code > O TERMINATE

This wiii stop the mode fiie execution if any errors occur.

Chapter 3 JEC - JOB EXECUTION CONTROL 23

Note that for some systems it may be better to type:

@JEC IF status-code > 278 TERMINATE

This is because some ND subsystems use the foiiowing system of
status codes:

0 = OK
1—178 = Informative messages

20—278 = Probabiy informative messages
30—478 = Probabiy error conditions
50—768 = Error conditions

778 = Fatai error

Look in the manuai for the subsystem you are interested in to see
which codes are error messages.

The foiiowing probiems may typicaiiy arise during a mode job:

0 You cannot access a fiie because it is already open or does not
exist.

0 The first of many compiiations does not succeed so there is no
reason to continue.

0 A remote system in your COSMOS system may not be avaiiabie at
the moment you run your mode job.

0 A program you try to start may not be availabie.

The JEC mode fiie wiii not abort when these things happen, so you
couid start an aiternative program, create the fiie you need, or
skip other commands that are no longer needed.

24 Chapter 3 JEC — JOB EXECUTION CONTROL

3.2 AN INTRODUCTORY EXAMPLE OF A JEC MODE FILE

Here is a smaII exampIe of a JEC mode fiIe that Iets you compiIe
as many or as few COBOL programs as you want to:

@JEC
@JEC

BEGIN
MESSAGE 'Mode file to compile COBOL-500 program modules'

@JEC DEFINE <number>,<name>
@JEC DEFINE <counter>=1
@JEC INQUIHE (number) 'How many files do you want to compile?'
@CC ——— z
@JEC FOR (counter) IN <counter>z<number> DO 2 THE MODE
@JEC INQUIRE (name) 'What is the program name?’ 2 FILE LOOPS
@JEC ND COBOL—500 Z HERE, BUT
COMPILE <name>,0,<name> Z HAS A
EXIT Z CONTROLLED
@JEC WHILE COMPLETION—CODE = 0 Z EXIT IF C—C
@JEC END—FOR 2 IS NOT 0.
@CC ——— z
@JEC IF COMPLETION-CODE > 0 GO TO 1000
@JEC MESSAGE 'Compiling went fine'
@JEC END
@JEC 1000
@JEC MESSAGE 'Compiling failed, error in <name>'
@JEC
@JEC

When

PRINT-COMPLETION—CODE
END

you run the above mode fiIe, you wiII be asked how many fiIes
you want to compiIe, and then you WIII be asked for each file
name. The mode job ends earIy if any compiIation fails due to the
WHILE COMPLETION—CODE = 0 statement.

Of course, the mode file needs a few more tests, for instance, to
see if the object fiIe aIready exists. It cou1d also be expanded
to Iet you choose between COBOL~1OO and COBOL—500, or even other
Ianguages.

Chapter 3 JEC ~ JOB EXECUTION CONTROL 25

3.3 THE JEC COMMANDS

Here are the JEC mode and batch fiTe commands, with short
expianations:

@JEC BEGIN ZStarts a mode job
@JEC END ZEnds a mode job execution
@JEC TERMINATE ZEnds a mode fiTe execution@JEC CLEAR—COMPLETION-CODE ZResets comETetion code

% and SSI code
@JEC DEFINE <variabIe—name> ZDecIares variabIeis)
@JEC DEFINE <variabTe—name> = <vaTue> ZDecIares & initiaIizes
@JEC INOUIRE <variabTe—name> <'message'> ZLets user input vaIue
@JEC <command—0r—program> ZUse this when parameters

Zare variabTes
@JEC RECOVER <program> ZUse this when parameters are variabies

@JEC GO TO <numeric—IabeI> ZUnconditionaI jump
@JEC IF <JEC—test> GO TO <numeric—TabeI> %ConditionaT jump
@JEC IF <JEC—test> <command—or—program> %ConditionaI command
@JEC IF <JEC-test> TERMINATE ZConditionaI termination
@JEC IF <JEC-test> PERFORM <num.—TabeI> ‘
@JEC IF <JEC—test> PERFORM <num.—TabeT> THROUGH <num.—IabeT>

@JEC <numeric—Tabei> %LabeI definition
@JEC ON-ERROR TERMINATE ZConditionaI termination
@JEC ON—ERROR GO TO <numeric—TabeT> ZConditionaT jump
@JEC FOR <variabTe~name> IN <range> DO %Begins a Ioop
@JEC WHILE <condition> ZUse to exit earIy from Ioops
.GJEC END—FOR ZEnds a Ioop
@JEC PERFORM <numeric~TabeT>
@JEC PERFORM <numeric—Iabe1> THROUGH <numeric—TabeI>

@JEC PRINT~DATE ZOutputs the current date
@JEC PRINTeCOMPLETION-CODE ZOutputs the compIetion code

@JEC MESSAGE ZSends messages to terminaT even if
Znot chosen as output destination

@JEC MODE—INPUT ZGets input from mode fiIe
@JEC MODE-OUTPUT ZSends output to mode fiIe
@JEC TERMINAL-INPUT XGets input from terminaT
@JEC TERMINAL—OUTPUT ZSends output to terminaI
@JEC WAIT—FOR—CR %Wait for user to press the «J key

26 Chapter 3 JEC - JOB EXECUTION CONTROL

Let us take a cIoser Took at these commands:

BEGIN. END. AND TERMINATE

@JEC BEGIN and @JEC END both initiaTize the compIetion code to
zero. @JEC BEGIN shouId aTways start a mode or batch job and @JEC

END shouId end it:

@JEC BEGIN
@JEC Z JEC and SINTRAN commands

@JEC END

Once @JEC END is encountered, the execution of your mode or batch

job ends. If you do not end a mode job with @JEC END, you may have

probIems with the next mode fiTe you run if it does not use @JEC.

A mode fiIe to be run as a batch job shouId Took Iike this:

@ENTER user—name,password,project-password,maX-time

@JEC BEGIN
@JEC Z JEC and SINTRAN commands

@JEC 2 Do not use TERMINAL-INPUT or TERMINAL~OUTPUT,

@JEC Z INQUIRE, WAIT—FOR~CR or MESSAGE.

@JEC END

@JEC TERMINATE ends the execution of the batch or mode fiTe it is
in. It wiTI not reset the compTetion code to zero. You use @JEC
TERMINATE in mode fiTes caTIed from other mode fiTes.

Chapter 3 JEC - JOB EXECUTION CONTROL 27

If you use nested mode fiTes, @JEC BEGIN and @JEC END shoq onTy
appear once in the entire mode job. @JEC TERMINATE can be used in
the nested fiTes. Here is an exampTe:

FiTe: LOAD—MODE MODE

@ENTER SYSTEM XXXXX,,lO,,
@JEC BEGIN
@CC various other commands FiTe: XMSG—START MODE
@JEC MODE (UTIL)XMSG—START:MODE,,
@CC The XMSG fiTe shoq NOT contain @JEC ON—ERROR TERMINATE
@CC JEC BEGIN and JEC END. @JEC SINTRAN—SERVICE
@JEC MODE (UTILISET—TERM—TYPE:MODE,, @STOP‘XMSG
@CC The SET—TERM fiTe shoq NOT @EXIT
@CC contain JEC BEGIN and JEC END. @CC other commands
@CC various other commands @CC other commands
@JEC END @CC end of fiTe

If an error occurs in the fiTe XMSG—START MODE, the rest of the
fiTe wiTT not be executed, but none of the variabTes JEC uses in
the LOAD—MODE MODE fiTe wiTT be affected. It woq be a big
mistake to start the XMSG fiTe with @JEC BEGIN. It woq aTso be
wrong to end it with @JEC END.

Here is one way to aTter the LOAD—MODE fiie above to see whether
the nested mode fiTe XMSGASTART executed properTy:

@JEC CLEAR—COMPLETION~CODE
@JEC MODE (UTIL)XMSG—START MODE,,
@JEC IF COMPLETION-CODE = 0 GO TO 500
@JEC MESSAGE ‘An error occurred in XMSG—START:MODE fiTe'
@JEC PRINT—COMPLETION—CODE
@JEC 500

In the nested fiTes, you may use TERMINATE in an IF statement, for
exampTe:

@JEC IF COMPLETION—CODE > 278 TERMINATE

See aTso page 33.

28 Chapter 3 JEC — JOB EXECUTION CONTROL

CLEAR‘COMPLETION-CODE

CLEAR—COMPLETION—CODE will set the completion code and the SSI
code to zero. Here is an example:

@JEC DELETE-FILE <VAR1>2NRF

‘ @JEC IF COMPLETION-CODE = 46 GO TO 200 Z No such file name.
@JEC IF COMPLETION—CODE) 0 GO TO 1000 2 Exit if error.
@JEC 200

@JEC CLEAR-COMPLETION—CODE
@JEC ND COBOL-500
DEBUG—MODE
COMPILE <VAR1>15YMB,0,”<VAR1>“
EXIT
@JEC IF COMPLETION’CODE > 0 GO TO 1000
@CC ZHere you could load the :BRF file, for example.

@JEC 1000 ZHere you could type @JEC END, for example.

DEFINE AND INQUIRE

By using DEFINE, you can create your own variables that you use in
IF and FOR statements, in arithmetic expressions, or as macros
in command parameters. You may give them values when you define
them, or you may input values from the terminal by using
INQUIRE, when you run your mode file.

Here are a number of different examples:

Define and Initialize Strings

@JEC DEFINE <file—1>='old—prog'
@JEC DEFINE <file—2>=delete-me
@JEC DEFINE <Suffix>=ldata'
@JEC DELETE—FILE <file-1>:<suffix>

@JEC DELETE*FILE <file—2>:<suffix>

Strings need only be enclosed in single quotes ('name' not ”name”,
for example) when they start with a digit. All variable names must
start with a less~than sign (<) and end with a greater—than sign
(>). Variable names may not contain spaces.

Chapter 3 JEC — JOB EXECUTION CONTROL 2Q

Define and Initialize Numeric Variabies

@JEC DEFINE <Var1> = 10

@JEC <var2> = <var1>

If a variabie is aiready defined, you can omit DEFINE when you
assign it a vaiue:

@JEC (payday) = 21
@JEC <var2> = <var2> * <var2>
@JEC <var3> : (<var1) * 10] + 2 + <var3)

As you can see, arithmetic expressions are aiiowed. Use +, —, *,
and / to add, subtract, muitipiy, and divide. NOTE — A1ways
precede and fo1iow the signs +, —, * or / with a biank. It
not oniy iooks nicer, it is the oniy thing aiiowed! Extra
bianks are aiiowed.

Do not muitipiy or divide by JEC variabies such as DAY. DAY is
expiained on page 33. If you need to muitipiy DAY by a
variable, do it 1ike this:

@JEC <var1> DAY
@JEC <var2> = <var1> * <x>

30 Chapter 3 JEC — JOB EXECUTION CONTROL

Define and Ask User to Give the Value

Here is an example of INQUIRE. Note the use of @JEC PASCAL when
the compiler is called:

@JEC BEGIN
@JEC DEFINE <file-to-compile)
@JEC DEFINE <list>
@JEC INQUIRE <file—to-compile)
@JEC INQUIRE (list) 'Give list file name and type:'
@JEC PASCAL Z You must type @JEC here so that PASCAL ;

2 gets the values stored in the variables
COMPILE <file—to-compile),<list>,<file—to—compile>
EXIT
@JEC END

As you can see, INQUIRE can be followed by a message if you so
choose. In the above example, this will appear on the screen when
you execute your JEC mode file:

Give list file name and type:~

If there is no text after @JEC INQUIRE, you get this when you
execute:

VALUE FOR <file—to—compile>?w

If you want to compile COB—DB:SYMB, you simply answer COB—DB or
'COB—DB’. But if the file name begins with a number, you must
enclose it in single quotes.

Chapter 3 JEC — JOB EXECUTION CONTROL 31

Getting Values from a File

At times, you may want to give so many values that you do not want
to do it interactively or in your mode file. You may, for example,
want to change the file access to all the 50 files you have. You
do this as follows:

@LIST—FILES,,FILE-LISTzDATA

The file FILE—LIST will look like this:

FILE 1 : (PACK—ONE:UTILITY)EX:SYMB;1
... files 2 to 49 ...

FILE 50 : (PACK—ONE:UTILITY)FORMAT:TEXT;1

Edit it so that everything to the left of the first parenthesis is
deleted:

(PACK—ONE:UTILITY)EX:SYMB;1
... files 2 to 49 ...

(PACK—ONE:UTILITY)FORMAlzTEXT;1

Then create a mode file like this:

@JEC BEGIN
@JEC DEFINE <public),<friend>,(own>,<file>,<i>,<number>

@JEC MESSAGE 'Specify the three access types you want'

@JEC INQUIRE <public>
@JEC INQUIRE (friend)
@JEC INQUIRE (own)
@JEC INQUIRE (number) 'How many files do you have?’
@JEC FOR <i> IN 1 : (number) DO
@JEC <file>=FILE~LIST2DATA[<i>]
@CC (FILE) will be equal to record (1) in FILE-LISTzDATA

@JEC SET—FILE—ACCESS <file> (public) (friend) <own>
@JEC END-FOR
@JEC END

32 Chapter 3 JEC — JOB EXECUTION CONTROL

If you do not know how many files you have, the loop could look
like this:

@JEC FOR <I> IN 1 : 1000 DO
@JEC <file>=FILE—LIST:DATA((1)]
@CC (FILE) will be equal to record (i) in FILE—LISTzDATA
@JEC WHILE COMPLETION—CODE = 0
@CC You will safely exit the loop when you reach
@CC the end of the file FILE—LIST:DATA
@JEC SET-FILEcACCESS (file) (public) (friend) (own)
@JEC END—FOR

Editing Text in INOUIRE

When you are inputting values to an INOUIRE command, you may use
the a key to erase any typing errors. JEC accepts the same
control characters for editing as SINTRAN.

GO TO. IF. FOR. END-FOR. AND PERFORM

Unconditional Jumps (GO TO)

You can jump unconditionally to another part of the mode file:

@JEC GO TO 100
... Z Other JEC statements
@JEC 100 Z This is a numeric label

If you want to use labels which are easier to understand, do it
like this:

@JEC DEFINE (compile) = 500
@JEC GO TO (compile)
... Z Other JEC statements
@JEC (compile): Z This is also a numeric label

The colon (z) tells JEC that <c0mpile> is a label and not the name
of a program to be executed. See the example on page 43.
You only need to use a colon when you use a variable as a label.

Chapter 3 JEC — JOB EXECUTION CONTROL 33

Conditionai Jumps (IF)

There are four types of conditionaT jumps using IF:

@JEC IF <JEC—test> GO TO <numeric~label> The semicolon
@JEC IF <JEC-test) <command—or-program) continues the
@JEC IF <JEC—test) TERMINATE line.
@JEC IF <JEC-test> ;

PERFORM (numeric-label) THROUGH <numeric—label>

ConditionaT tests (IF <JEC—test>)

The <JEC-test> may use the foTTowing operators in JEC tests:

= < > OR AND NOT () ><

The foTTowing JEC variabIes may be used in JEC tests:

NAME EXPLANATION

COMPLETION—CODE Error code.
STATUS—CODE The Test two octaT digits in the

compietion code.
SSI-CODE Subsystem code.
DATE A string with 8 characters, for

exampie, 84.09.18 means September
18th, 1984.

DAY An integer from 1 to 31 or
a string from ”MONDAY” to ”SUNDAY”.

MONTH An integer from 1 to 12.
RUN—MODE Either 'B' or ’M', depending on

whether it is a Batch or Mode job.

You may aTso test any variabTes you define. Remember not to mix
data types. Do not type @JEC IF DATE = DAY GO TO 1000, for
exampTe!

34 Chapter 3 JEC — JOB EXECUTION CONTROL

ExampIes of IF <JEC—test> Statements

CompIex expressions must be encIosed In parentheses. The foIIowIng
exampIes show IegaI JEC tests:

@JEC IF COMPLETION-CODE > GE TERMINATE
@JEC IF [SSI-CODE = 63 AND STATUS-CODE (20B] GO TO 100
@JEC IF [DAY (8 AND DAY = 'MONDAY') GO TO 100
@JEC IF [DAY = 20 AND [NOT DATE = 84.01.20]] GO TO 100
@JEC IF (answer) = 2 GO TO 2000
@JEC IF <answer> NOT > 0 GO TO 3000
@JEC IF COMPLETION-CODE = O BRF-LINKER

@JEC DEFINE (payday) 21 Z Omit DEFINE if (payday)
@CC 2 is already defined.
@JEC IF (payday) NOT DAY THEN TERMINATE

@JEC IF RUN—MODE = 'B' GO TO <batch>

@JEC GO TO (mode)

JEC uses decimaI numbers by defauIt. OctaI numbers must be
foIIowed by a B. A numeric IabeI such as 100 In GO TO 100 must be
defined somewhere in the mode or batch fIIe by the command
@JEC 100. Both forward and backward jumps are IegaI. OnIy
incurabIe hackers shouId use octaI numbers In IabeIs.

You may use SINTRAN III commands, subsystems, or your own programs
as <command or program).

Note that a semicoIon
SINTRAN must be used at the end Subsystem
command of an IncompIete Iine.‘;]

@JEC IF MONTH NOT = <prevm>;
COPY LINE-PRINTER MONTH—STAT DATA

@JEC IF COMPLETION—CODE = O NO LINKAGE—LOADER

@JEC IF <answer> = 1 MY—PROG IN DATA OUT DATA

L~—————————-Your own program

Chapter 3 JEC — JOB EXECUTION CONTROL 3S

Conditional Jump (ON—ERROR)

There are two types of conditional jumps using ON—ERROR:

1) @JEC 0N—ERROR TERMINATE

2) @JEC ON~ERROR GO TO <numeric—label>

The statement after 0N-ERROR is performed if the completion code
is not equal to zero. Note that you cannot use <command or
program> or PERFORM <label> THROUGH <label> after ON—ERROR. Use
instead:

@JEC IF COMPLETION—CODE > 0 (program or SINTRAN command)
@JEC IF COMPLETION—CODE > 0;
PERFORM <numeric~label> THROUGH <nurnericrlabel>

If you use @JEC 0N—ERROR, and an error occurs, the following rules
apply:

1) The error can occur anywhere in the file.

2) The action TERMINATE or GO TO will be performed
when the next @JEC statement is encountered.

NOTE: You should only use @JEC ON—ERROR once in a file!

Here are two examples:

1) @JEC ON—ERROR GO TO 5000

2) @JEC ON—ERROR GO TO <finish>

GOEC <finish>z

36 Chapter 3 JEC ~ JOB EXECUTION CONTROL

FOR Loops

You can create ioops as foiiows:

@JEC
@JEC

This

@JEC
@JEC
@JEC
@JEC
@JEC

Here

FOR (variable—name) IN (range) D0 ZBegins a loop

END—FOR ZEnds a loop

wii] execute the same program ten times:

DEFINE <1), (program-name)
INQUIRE (program-name) ’Which program do you want to run?’

FOR (1) IN 1:10 D0
RECOVER (program—name)
END-FOR

is a compiete mode fiie that a system supervisor might use
to iog out a1} the users on Terminai Access Devices (TADS):

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC

BEGIN
DEFINE (i), (x)
1000
INQUIRE <x> 'How many TADS does your system have?’

DEFINE <1asttad>= 767 + <x>
IF <lasttad> < 767 GO TO 1000 Z No TADS have LDN < 767

FOR <i> IN 7671<lasttad> D0
STOP—TERMINAL <i>
END—FOR
END

Another exampie of a FOR 100p is given on page 24.
Nested ioops are aiso allowed.

Chapter 3 JEC ~ JOB EXECUTION CONTROL 37

PRINT COMMANDS

The command @JEC PRINT—DATE writes the current date to the batch
or mode output file.

@JEC PRINT~DATE
== Jec ==

Year Month Day Time
1987 12 24 11.32.19

December Thursday
== Jec ==

@JEC PRINT—COMPLETIONeCODE outputs the completion code.

You can print the value of any variabTe you define. If your
variable Is caTIed <name>, type:

@JEC MESSAGE '<name>'

or:

@JEC MESSAGE 'Name is <name>'

TERMINAL AND MODE INPUT/OUTPUT

You can enter parameters to programs within a mode job from your
terminal. Input cannot be entered to batch jobs or SINTRAN III
commands. The commands to switch terminal Input and output on and
off are:

@JEC TERMINAL—INPUT Zlnput to programs from terminal
@JEC TERMINAL~OUTPUT ZOutput from programs to terminal
@JEC MODE—INPUT ZTurn terminal input off
@JEC MODE—OUTPUT ZTurn terminal output off

Note that @JEC END turns terminaT Input and output off.

38 Chapter 3 JEC — JOB EXECUTION CONTROL

The command @JEC TERMINAL—INPUT wiii 1et you input parameters from
your terminai. Make sure you remove input parameters from your
mode fiie. Let us say you have a program caiied AVERAGE PROG that
expects three numbers to be input. You couid execute it five times
1ike this:

@JEC BEGIN
@JEC DEFINE (i)
@JEC TERMINAL—INPUT
@JEC FOR (1) IN 1:5 DO
@RECOVER AVERAGE
@JEC END-FOR
@JEC END

If you can write a short program that expects input, try running
the above mode file using your terminai as the output fiie. Then
try it again using another fiie as the output fiie. You can stiii
give input from your terminal, but your program prompts wiii not
appear; they are sent to the output file!

Add a 1ine with "@JEC TERMINAL—OUTPUT" to the mode fiie above and
then aii prompts from your program AVERAGE wiii appear on your
terminai.

@JEC TERMINAL-OUTPUT wiii output prompts to your terminai when
your terminai is not the output file. Anything written to a fiie
wiii not be sent to your terminai.

@JEC MODE—INPUT turns TERMINAL—INPUT off again, and @JEC MODE—
OUTPUT turns TERMINAL—OUTPUT off. Note that terminai 1/0 is off
when you type @JEC BEGIN. Note that if you do not terminate your
mode job with @JEC END, and terminai input was on, it wiii stiii
be on when you run the next mode fiie from your terminai. Remember
@JEC BEGIN and END!

It can often be usefui to pause whiie executing a mode fiie. By
writing:

@JEC WAIT-FOR-CH 'Insert floppy no. <i>'

you 1et the mode fiie "pause” untii the user pushes the ¢J key.
The ‘J key is aiso caiied the CR (Carriage Return) key. You may
have any message, or none at a1], after WAIT—FOR—CR.

Chapter 3 JEC — JOB EXECUTION CONTROL 39

Here is an exampie from a mode fiie used to copy many fiies to or
from floppy diskettes:

@JEC RELEASE-DIR <dir>
@JEC MESSAGE 'Remove diskette <number)’
@JEC DEFINE (number) = (number) + 1
@JEC MESSAGE 'Insert diskette <number>'
@JEC WAIT-FOR-CR
@JEC ENTER—DIR <dir> <dev> <unit>,,,
@CC Copy files to or from the diskette.

COMMENTS START WITH Z

The percentage sign (%) indicates that the rest of the line oniy
contains comments. If a JEC command consists of more than one
1ine, any incompiete 1ines must end with a semicoion (;), for
exampie:

@JEC IF [COMPLETION—CODE < 4008 AND COMPLETION—CODE) 500B);

GO TO 100 ZExample of split line

40 Chapter 3 JEC - JOB EXECUTION CONTROL

3.4 EXAMPLES OF JEC MODE AND BATCH FILES

This section shows exampIes of JEC commands used within batch and
mode files.

AN EXAMPLE USING SORT—MERGE

The foIIowing mode fiIe wiII onIy print the output fiIe from the
ND SORT~MERGE program if no errors occur.

@JEC BEGIN
@JEC DEFINE (INPUT>,<OUTPUT>
@JEC INQUIRE <INPUT>;
'Give the file name and type of the file you want to sort:'
@JEC INQUIRE (OUTPUT);
'Which output file? Enclose name in "” if file is new;'
@JEC SORT—MERGE
RECORD—DESCRIPTION 80, 1, TEXT
KEY~DESCRIPTION 1, 10, ASCENDING, ASCII
SORT (INPUT), <OUTPUT>
EXIT
@JEC PRINT~COMPLETION~CODE
@JEC IF COMPLETION—CODE > 0 TERMINATE
@COPY—FILE PHILIPS, <OUTPUT>
@DELETE—FILE <OUTPUT>_
@JEC END

Chapter 3 JEC — JOB EXECUTION CONTROL 41

COMPILING. LOADING. AND EXECUTING A COBOL PROGRAM

The next example shows how a COBOL program is compiled, loaded,
and executed. Special actions are taken if compilation errors
occur. TEST PROG will communicate directly with the terminal
during execution.

@JEC BEGIN
@JEC PRINT—DATE ZOutputs today’s date.
@COPY—FILE TEST SYMB, [PACK—TWO:P—HANSEN]TEST:SYMB
@COBOL—lOO
COMPILE TEST:SYMB, TESTzERR, TEST BRF
EXIT
@JEC IF (COMPLETION—CODE > OB AND SSI~CODE = 6B] GO TO 111
@CC Go to compiler error part. COBOL—100 has SSI code 6B.
.@BRF—LINKER
FROG-FILE TEST:PROG
LOAD TESTzBRF, COBOL—lBANKzBRF
EXIT
@JEC IF STATUS—CODE > 27B TERMINATE
@cc 3
@cc 2 Codes from O to 26 are most likely to be
@cc 2 only informational messages in many products.
@cc X
@JEC TERMINAL—INPUT Zlnput to TEST2PROG from terminal.
@TESTzPROG
@JEC MODE-INPUT
@JEC TERMINATE
@JEC 111 ZCompilation error handling part.
@COPY-FILE LINE—PRINTER, TEST:ERR
@DELETE—FILE TEST ERR
@JEC END

42 Chapter 3 JEC — JOB EXECUTION CONTROL

A BATCH FILE EXAMPLE

This is a batch ffle which 1's to be executed the 20th of every
month. Note that @ENTER and doubIe escape are pIaced outside the
@JEC BEGIN and @JEC END commands.

@ENTER P-HANSEN,HANS,,,
@JEC BEGIN
@JEC IF DAY = 20 SALARY2PROG
@JEC IF DATE = 83.12.20 ADDSALARY:PROG
@COPY-FILE ND—SAT—II.LINE—PRINTER, OUTSALARYIDATA
@CC PRINTING ON THE REMOTE COMPUTER ND—SAT-II
@JEC IF [STATUS-CODE > OB AND SSI—CODE < 4B);
DELETE*FILE OUTSALARYIDATA ZSplit JEC command
@CC 581 code < 4B INDICATES FILE SYSTEM ERROR
@JEC END
(CTRL O> <ESCAPE> (CTRL O> <ESCAPE>

Chapter 3 JEC ~ JOB EXECUTION CONTROL £3

A FLEXIBLE COMPILE AND LOAD MODE FILE

Here is quite a lengthy example. This mode file will compile and
load any COBOL, FORTRAN—100, or FORTRAN—500 program. Note how
labels are used.

@JEC BEGIN
@JEC DEFINE <Fort—500>=500, <Fort-100>=100
@JEC DEFINE <Cobol>=200, <compile)=900
@JEC DEFINE <10ad~100>=1000, <failure>=8000, <success>=300

@JEC MESSAGE 'Mode file to compile and load a program'
@JEC DEFINE <1ang>,(name),<compiler>,(library)
@JEC MESSAGE ’Which compiler do you want to use?’
@JEC MESSAGE 'FORTRANelOO = 1 FORTRAN—500 = 5'
@JEC MESSAGE 'COBOL : 2'
@JEC INQUIRE <1ang> 'Answer with 1, 2 or 52'
@JEC INQUIRE (name) 'What is the name of your program ?'
@CC ——— Z
@JEC IF (lang) = 5 GO TO (Fort—500)
@JEC IF <lang> = 1 GO TO (Fort—100)
@JEC IF (lang) = 2 GO TO <Cobol>
@JEC END
@CC --
@JEC (Fort—100) Z ——— FORTRAN—100 —————
@JEC (compiler) = FORTRAN-100
@JEC (library) = FORTRAN~1BANK
@JEC GO TO (compile)
@CC —————————————————————————————————————
@JEC (Cobol) Z ——— COBOL ———————
@JEC (compiler) = COBOL
@JEC (library) = COBOL—lBANK
@JEC GO TO (compile)
@CC ————————————————————————————————————
@JEC (compile): Z Compile and load an ND*100 program.
@JEC DELETE—FILE <name):BRF
@JEC CLEARnCOMPLETION—CODE Z In case file did not exist.
@JEC <compiler>
COMPILE <name),0,"<name>"
EXIT
@JEC IF [COMPLETION—CODE) 0] GO TO (failure)
@CC ------------------------------------

(continued on next page)

44 Chapter 3 JEC — JOB EXECUTION CONTROL

(continued from previous page)

@JEC <load-100): Z This label is only for information.

@JEC DELETE-FILE (name):PROG
@JEC CLEAR—COMPLETIONcCODE
@JEC BRF-LINKER
FROG—FILE ”<name)"
LOAD <name>,<library>
EXIT
@JEC IF COMPLETION-CODE) 0 GO TO (failure)
@JEC GO TO (success)
@CC ------------------------------------

@JEC <Fort—500):
@JEC CREATE-FILE (name):NRF O
@JEC CLEAR-COMPLETION—CODE Z In case the file already existed.

@JEC FORTRAN-500
COMPILE (name>,0,<name>
EXIT
@JEC IF COMPLETION-CODE) 0 GO TO (failure)
@JEC ND LINKAGEnLOADER

ABORT~BATCH OFF
DELETE~DOMAIN (name)
SET~DOMAIN "(name)"
OPEN "(name)",,,,,,,
LOAD (name)
LOAD [SYSTEM]FORTRAN-LIB
EXIT
@JEC IF COMPLETION~CODE) 0 GO TO (failure)

@JEC GO TO (success)
@CC ————————————————————————————————————
@JEC (success):
@JEC MESSAGE ’Compiling and loading went fine'
@JEC END
@JEC <failure):
@JEC MESSAGE 'Compiling or loading failed'
@JEC PRINT-COMPLETION~CODE
@JEC END

Chapter 3 JEC — JOB EXECUTION CONTROL 45

USE OF ARITHMETIC TO CREATE A CONTINUOUS FILE

This mode file creates a continuous file that uses all of your
remaining free pages if possible.

@JEC BEGIN
@JEC MESSAGE 'Mode file to create the largest possible;
continuous file.’

@JEC DEFINE (file-name),(max)=0,(size)=0,<change)=1000

@JEC INQUIRE (file-name)

@JEC 100 Z The program returns here every time
@JEC (max) = (size) 2 we successfully create the file.
@JEC DELETE—FILE (file-name)
@JEC DELETE-FILE (file—name):DATA
@JEC CLEAR—COMPLETION—CODE
@JEC IF (change) (2 GO TO 5000 2 Create a file of size (max).
@JEC (size) = (size) + (change)
@JEC (change) = (change) / 2
@cc ———
@JEC 2000
@JEC CREATE-FILE (file—name) (size)
@JEC IF COMPLETION—CODE=O GO TO 100 2 Success!
@JEC IF COMPLETION—CODE=67B OR COMPLETION-CODE=75B GO TO 3000
@JEC PRINT-COMPLETION—CODE
@JEC MESSAGE '(file—name) has not been created
@JEC END

@CC ——

@JEC 3000 2 (size) was too big
@JEC CLEAR—COMPLETION—CODE
@JEC IF (change) < 2 GO TO 5000 2 Create a file of size (max)
@JEC (size) = (size) — (change)
@JEC (Change) = (change) / 2
@JEC GO TO 2000
@CC ———
@JEC 5000 Z The maximum size has been found
@JEC CREATE—FILE (file~name> (max)
@JEC MESSAGE '(file~name> is (max) pages big
@JEC FILE-STATISTICS <file-name),,,,,

@JEC END
@CC

46 Chapter 3 JEC — JOB EXECUTION CONTROL

3.5 THE JEC LIBRARY

Programs you write may aiso read or update the compietion code.
The JEC Tibrary contains two subroutines for this purpose:

UEISECCODE(SSI—CODE,COMPL—CODE,STAT) (write operations)
UEIFECCODE(SSI—CODE,COMPL—CODE,STAT) (read operations)

Each parameter is an integer stored in 2 bytes. The parameter STAT
is the status from the monitor caTT performing the read and write
operations. For exampie, your program EXAMPLE~PROG may contain the
subroutine caii to update the status code and the SSI code:

IF NUMBER = 0 THEN UEISECCODE(7lOB,7lOSOB,STAT)

A JEC command in the mode fiie can then test the status code and
the SSI code after executing your program. The foiiowing commands
in the mode fiie can be used:

@EXAMPLE-PROG
@JEC [IF SSI-CODE = 710B] OR (COMPL—CODE = 50B)
TERMINATE

The JEC library for one—bank programs is caiied JEC—LIB—lBRF,
and for two—bank programs JEC—LIB—ZB BRF.

We.suggest you use SSI«CODEs from 7008 to 7778, since they wii]
not be used by any Norsk Data products.

Chapter 3 JEC — JOB EXECUTION CONTROL 47

3.6 SOME TECHNICAL DETAILS

When you type @JEC BEGIN, JEC creates two scratch fiies:

1. JEC—xxxxxzDATA contains aTT the defined variabies and their
vaiues, as weiT as various gTobaT information if FOR ioops or
PERFORM are used.

2. JEC—xxxxx:MODE is constructed when you use your own variabies
in SINTRAN commands, as program parameters, or as program
names. The variables you define are repiaced with their vaiues
on this fiie, and the fiie is started by JEC.

The 5 x's (xxxxx) stand for the address of the RT description of
your background program, batch processor, or TAD (Terminai Access
Device). This means that the fiTe name wiTT always be unique, even
if you run severaT mode or batch jobs simuTtaneousTy.

Both fiTes are deieted by the statement @JEC END.

3.7 JEC SYNTAX

Here is a compiete syntax of JEC.

You oniy need to use the underiined syntax. Note that THROUGH or
THRU can be used. Likewise, both GO TO and GOTO are aiiowed.

BEGIN

CLEAR-COMPLETION—CODE

DEFINE <identifier> % up to 40 ASCII characters Tong

DEFINE <identifier>=numeric Titerai

<identifier>=<identifier>

48 Chapter 3 JEC - JOB EXECUTION CONTROL

£52

<identifier> <identifier>
FOR <identifier> IN : 9Q

integer integer

[WHILE <condition>]

END—FOR

GO TO [numeric TabeT]

GO TO [numeric TabeT]

TERMINATE
IF <condition> THEN THRU

PERFORM numeric IabeT THROUGH num. IabeT

program name / SINTRAN III command

INOUIRE <identifier> ['string of ASCII characters

and/or <identifier>']

MESSAGE 'ASCII string and/or <identifier>'

MODE-INPUT

MODE—OUTPUT

Chapter 3 JEC ~ JOB EXECUTION CONTROL

TERMINATE
ON-ERROR

GO TO numeric TabeT

THRU
PERFORM numeric TabeT THROUGH numeric TabeT

PRINT—COMPLETION—CODE

PRINT—DATE

TERMINAL—INPUT

TERMINAL—OUTPUT

TERMINATE

WAIT—FOR-CR 'ASCII String'

Z Comments in the mode/batch fiTe

49

50

arithmetic

batch job
appearance .
how 1t differs from mode job
start1ng/end1ng .

BEGIN .

CLEAR— COMPLETION- CODE .
command . .
comment 11nes . . .
COMPL- CODE 1n programs ca111ng JEC
comp1et1on code,
COMPLETION- CODE JEC variab1e
conditiona1 jump

IF . .
ON— ERROR

conditionaI test
CR (Carriage Return)

data types . . .
DATE JEC variabIe .
DAY

JEC numer1c var1ab1e
JEC string variabIe .

DEFINE . .
d1fference between mode and batch .
DO

ed1t1ng text in INOUIRE .
END
END FOR .
equat1ons .

f11e
difference between mode and batch .
JEC-xxxxx:DATA
JEC—xxxxx:MODE
nested mode .

Index

. 29, 45

. 26

. 26

. 26

. 26

. 28

. 33, 34

. 39

. 46

. 20, 26, 46

. 33, 39

. 33

. 35

. 33

. 39

. 33

. 33, 42

. 33, 42

. 33

. 28~30, 36, 47

. 26

. 36, 48

. 32

. 26

. 36, 48

. 36

. 26

. 47

. 47

. 27

Index

fi1e
reading data from .
va1ues stored in

FOR
FOR Ioops
forbidden commands in batch jobs

GO TO
GOTO (See GO TO)

IF
IN . . .
INOUIRE .

JEC
100 (See a1so 1abe1)
1ibrary .
test
variable

JEC—LIB-lB BRF (JEC 1ibrary fi1e)
JEC-LIB—ZBzBRF (JEC 1ibrary fiWe)
jump

conditiona1 (IF) . ..
conditiona1 (ON-ERROR)
unconditiona] (GO TO)

1abe1
fo11owed by a c010n .

1ine that is too Tong .

message . .
MODE¢INPUT .
MODE—OUTPUT
MONTH JEC variable

nested mode file
numeric 1abe1

. 31

. 31

. 36,

. 36

. 26

. 32,

. 34,

. 48

. 28,

. 32

. 46

. 33

. 33

. 46

. 46

. 33

. 35

. 32

. 32,

. 32

. 33,

. 30

. 37.

. 37,

. 33

. 27

. 32,

33, 36, 48

36, 48

30, 36, 48

34, 39

38
38

52

ON— ERROR
GO TO (numeric— label)
TERMINATE .

operators (in JEC tests)

percentage sign (for comments)
PERFORM .
print
PRINT— CDMPLETION— CODE .
PRINT- DATE
program .

records in files . ..
RECOVER (SINTRAN command)
RUN— MODE JEC variable .

semicolon .
SSI—CODE

in programs caTling JEC .
JEC variable .

start mode or batch job .
STAT in programs calling JEC
STATUS—CODE JEC variable
subroutine call to JEC
syntax

TERMINAL—INPUT .
TERMINAL—OUTPUT .
TERMINATE .
test conditional
THEN . .
THROUGH
THRU (See THROUGH)

UEIFECCODE
UEISECCODE .
unconditional jump GO TO

. 35

. 35

. 35

. 33

. 39

. 33, 35, 48

. 37

. 37

. 37

. 33,

. 31

. 36)

. 33,

. 46

. 20, 33, 34, 42

. Z6

. 46

. 33,

. 46

. 47

. 37,

. 37,

. 26,

. 33

. 48

. 33,

. 33

. 46

. 46

. 32

34

38
34

34,

38
38
27,

35

Index

. 33—35, 39

41, 42

34, 48

Index

VALUE in JEC prompt .
va1ues stored in fi1es
variab1e

numeric
string

WAIT—FOR—CR .
WHILE

. 3O

. 31

. 33

. 29

. 28

. 38

. 48

53

TabTe of contents

N
I—

‘l—
‘l—

‘i—
‘r—

‘l—
dl

-‘I
—

l
1...

...
w

Q.)

(D
N

C
D

U
'I
D

O
J
N

H

N
N

N

(.
Q

N
H

LA
C

»)

(A
N

c
a

c
a

o
)

V
0

3
0

1

PERFUZM
Creating Macros
Starting PERFORM
Exampie of Using Perform
Listing Defined Macros
Optionai ControT Parameters
Extended Parameter Submission
Limitations Restrictions and DefauTts
Predefined Macros

Lax-FILE
Command Summary
GeneraT RuTes .
Detaiied Description of Commands

JEC * JOB EXECUTION CONTROL
Interactive JEC and Error Codes

Why Use the Error Codes? .
An Introductory ExampTe of a JEC Mode FiIe
The JEC Commands

BEGIN, END, and TERMINATE
CLEAR—COMPLETION— CODE
DEFINE and INOUIRE
GO TO, IF, FOR, END—FOR, and PERFORM
PRINT Commands . . .
Terminai and Mode Input/output
Comments Start with % . . .

ExampTes of JEC Mode and Batch FiTes
An ExampIe Using SORT— MERGE
Compiiing, Loading, and Executing a COBOL
Program , .
A Batch FiTe Exampie . . .
A FTexibIe Compiie and Load Mode FiTe
Use of Arithmetic to Create a Continuous FiIe

The JEC Library .
Some TechnicaT DetaiTs
JEC Syntax

INDEX

1...
...

O
L

O
L

O
C

D
V

U
T

A
N

H

11
12
13

18
20
22
24
25
26
28
28
32
37
37
39
40
40

41
42
43
45
46
47
47

‘..
3.3

.
1., .

n1

