
I' \f'l. 15:5”
;-__._,_}t L.”7‘3, _

4.
11:“ :wm-mawmauu'“um...“:um'm.man:

SINTRAN Ill
Utilities Manual

ND-60.151.02
Rev. A

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright © 1984 by Norsk Data A.S

PRINTl_NG_ RECORD
NotesPrinting

05/82 Revision A
The following

Sections 6 and 7.

Revision B

are revised or new: vi, vii, viii, 1—1, 3—21.

The following pages are revised: vii.
Section 5.

Version 02
Revision A

The followi sections are new: Sections 3 and 4.

SINTRAN ||l Utilities Manual
Publ.No. ND-—60.151.02A

x;
xx

Norsk Data A.S
Graphic CenterNH M

P.0.Box 25, Bogerud
NOfSk Data 0621 Oslo 6, Norway

N
N

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSI) and can be ordered as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, NonNay

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Introductory
Manuals

Program mers'/ Users'
Manuals

Operators/Supervisors__.____

SIReference
Manuals

SINTRAN l||
Utilities Manual

ND—60.151

Referance Manual

ND—60.128

SINTRAN III

SINTRAN ||I

Related Manuals
\

SINTRAN ”I
Introduction
ND—60.125

SINTRAN III
Timesharing/
Batch Guide
ND—60.I32

SINTRAN III
Real Time
Guide

ND-60.133

NTRAN Ill

ND-—500

Loader/Monitor
ND—60.1 36

Real Time
Loader

ND—60.051

CommunicationI I
I II ' . SINTRAN III II I | Communication :

:
' I Guide |SINTRAN ||| . l I ND—60-134 ISystem Supervisor I I I :IND—30.003 I I | II I ' COSMOS ' COSMOS| I I Programmer's I User 5 GuideI I I Guide Jr— ND—60.163I I | ND—60.164 Ia I I I1 I | I

SINTRAN m E NordnetSystem Documentation System I SystemDocumentation
:

Documentation
ND—60.062 l ND—60.081

|
I

L__ _____________________

SINTRAN III SINTRAN III

Data Fields RT Loader
System Doc.”0‘60"” ND—60.072

vii

PREFACE

THE PRODUCTS

This manual describes subsystems which run under the SINTRAN lll operating
system. These subsystems and their product numbers are:

GPM ND—10124
PERFORM ND—10022
BACKUP—SYSTEM ND—10337
LOOK—FILE ND—10005
FILE EXTRACT UTILITY ND—10044
JEC ND—10005
MAIL (Integrated part of SINTRAN lll)
VTM-COMPOUND ND—10599

MAIL is used to send messages to other users. PERFORM is a simple macro
processing system to create mode and batch files. GPM is a general purpose
macro generator. The BACKUP-SYSTEM is used to copy files efficiently.
LOOK-FILE is used to inspect and modify files. FILE-EXTRACT can be used to
extract records from files. JEC is used to control execution of batch and mode
jobs. VTM-COMPOUND is used to compound new terminal type descriptions into
one terminal type table used by the VIRTUAL TERMINAL MANAGER (VTM).

THE READER

This manual is written for users of SINTRAN III who want to use any of the
subsystems listed above.

PREREQUISITE KNOWLEDGE

Familiarity with SINTRAN III at the public user level is necessary.

THE MANUAL

This manual describes some subsystems under SINTRAN Ill. The subsystems are
not necessary for simple use of SINTRAN Ill, but may be of considerable use for
particular tasks. The manual is mainly a reference manual.

ND—60.151.02

viii

RELATED MANUALS

Related manuals giving basic information about SINTRAN III are:

SINTRAN “I Introduction ND—60.125
SINTRAN ||| Timesharing Batch Guide ND—60.132

Other SINTRAN ||| manuals are shown on the preceding diagram.

The ND GLOSSARY (ND-40.005) will explain common computer terms and what
they mean in ND manuals. ND abbreviations and acronyms are also listed. The
glossary should be of interest to anyone using ND equipment.

NOTATION USED IN THE MANUAL

In the examples, user input is underlined. Examples are given in UPPERCASE
letters, but lowercase letters are also accepted. When used as parameters, octal
numbers are given in the form 3773, where the B denotes octal. In command
parameter descriptions, the parameters are enclosed in angular brackets, eg.,
< parameter>.

Parameters which have default values are enclosed in parentheses, eg.,
(<parameter>). The default value is used if a null parameter is supplied.
Selections in parameter descriptions are separated by slashes, eg., YES/NO.

CHANGES FROM PREVIOUS VERSION

JEC and VTM-COMPOUND are new products. The structure of the chapters
which describe PERFORM, BACKUP-SYSTEM, LOOK-FILE and MAIL has been
changed. New features in the subsystems are marked with a vertical line.

ND—60.151.02

Section:

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1

3.1.1

3.2
3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

3.4

3.4.1
3.4.2

3.4.3
3.4.4
3.4.5

3.5
3.6
3.7

TABLE OF CONTENTS
+ + +

MAIL

General Description ...
Commands Available to All Users
Commands Available to User System
Sending Messages from Mode and Batch Jobs.............

Page:

14
1r2
1H3
14

Creating Macros
I
..2 ~—1

Starting Perform ..2—3
Example of Using Perform ...2—4
Listing Defined Macros .. 2-—B
Optional Control Parameters ...2—7
Extended Parameter Submission 2—8
Limitations, Restrictions and Defaults 2—8
Predefined Macros ... 2—9

JEC - JOB EXECUTION CONTROL3—1

Interactive JEC and Error Codes3—2

Why Use the Error Codes? ... 3—4

An Introductory Example of a JEC Mode File3—5
The JEC Commands ..3—6

BEGIN, END, and TERMINATE3—7
CLEAR-COMPLETION-CODE3—8
DEFINE and INQUIRE ...3—9
GO TO, IF, FOR and PERFORM 3—11
PRINT Commands .. 3—15
Terminal and Mode Input/Output 3—15
Comments Start with % ...3—17

Examples of JEC Mode and Batch Files 3—17

An Example Using SORT-MERGE3—17
Compiling, Loading, and Executing a COBOL
Program ..3—18
A Batch File Example ...3—19
A Flexible Compile and Load Mode File 3—20
Use of Arithmetic to Create a Continuous File3—22

The JEC Library ..3—23
Some Technical Details ...3—24
JEC Syntax ...3—24

ND—60.151.02

...3—27

Section: Page:

4 BACKUP-SYSTEM 4—1

4.1 Introduction ..4—1
4.2 Command Summary ..4-—4
4.3 Simple Use of the BACKUP-SYSTEM4—6
4.4 Detailed Description of Commands 4—10

4.4.1 Interactive Help Information4-‘IO
4.4.2 Handling Volumes on Magnetic Tapes and Floppy

_ Disks ...4—11
4.4.3 Copying a User’s Files ..4—12
4.4.4 Copying Several Users’ Files4—18
4.4.5 Selecting Special Copying Modes4—19
4.4.6 Recreating Files and Users ..4—24

4.5 Some Important Changes in the BACKUP-SYSTEM4—25
4.6 Label Formats on Magnetic Tape Volumes4—25

5 LOOK-FILE ...5—1

5.1 Command Summary ..5—1
5.2 General Rules ...5—2
5.3 Detailed Description of Commands 5—3

6 FILE-EXTRACT ...6—1

6.1 Purpose .. 6—2
6.2 Command Structure .. 6—3

6.2.1 Input File ...6—3

6.2.1.1 Mode File Save Option ...6—4
6.2.1.2 Limited Automatic Command Input......................6~4
6.2.1.3 Fixed Record Length Input File Option 6—5
6.2.1.4 Indexed Access via KEY File 6—5

6.2.2 OutputF||e6—6

6.2.2.1 Output File Append Option6—6
6.2.2.2 File Split Option ..6—6
6.2.2.3 Output File Organization Change (X Option)6—7

6.2.3 Extract Selection Specificationss6—8

6.2.3.1 Numeric Field Evaluation6—9
6.2.3.2 Text Field Evaluation ...6—10
6.2.3.3 Text String Search ..6—11
6.2.3.4 Limited Text String Search6—12
6.2.3.5 Logical Operands .. 6—13
6.2.3.6 Parentheses Nesting ...6—14
6.2.3.7 Input File Record Intervals 6—15
6.2.3.8 Show First Input File Record Option6—16
6.2.3.9 Command Line Continuation Option 6—16

ND-60.151.02

xi

Section: Page."

6.2.4 Output Specifications ...6—17

6.2.4.1 Input Record Subsets Specification 6—18
6.2.4.2 Output Record Constants 6—19
6.2.4.3 Input Record Number Inclusion 6—19
6.2.4.4 Output Record Number Inclusion6—20
6.2.4.5 Random Key Inclusion Option 6—20
6.2.4.6 Terminal ’Qutput Wait Option 6—22
6.2.4.7 Line Printer/Terminal Output Heading Option 6—23
6.2.4.8 Line Printer or Terminal Page Numbering Option 6—24
6.2.4.9 Predefined Heading as Extract Command Line....6—25
6.2.4.10 Predefined Heading as Position Mask 6—25
6.2.4.11 Split File Copy Option ... 6—25
6.2.4.12 Show First Input File Record Option6—26
6.2.4.13 Command Line Continuation Option6—26
6.2.4.14 Skip Output Record Trailing Spaces 6—26

6.3 Run—Time Status Messages...6—27

7 GENERAL-PURPOSE MACRO GENERATOR - GPM 7—1

7.1 GPM Syntax and Evaluation Rules 7—2
7.2 System Macros .. 7—4
7.3 Macro Evaluation .. 7—7
7.4 Conditional Macros .. 7—9
7.5 Recursive Macros .. 7—10
7.6 The GPM Library .. 7—12
7.7 GPM under SINTRAN ||| .. 7—19 -
7.8 GPM Applications - Some Ideas 7—20

7.8.1 GPM and Semigraphic Display 7—20
7.8.2 System Generation using GPM 7—21

7.9 Combined Use of Perform and GPM7—31

8 VTM-COMPOUND ... 8—1

8.1 Starting VTM—COMPOUND ...3—1
8.2 The Operations Available in the Menus 8—2

8.2.1 Generate a New File8—3
8.2.2 Add Terminal Types ..8—3
8.2.3 Delete Terminal Types ..8w3
8.2.4 Generate a New File with BRF or NRF Format3—4
8.2.5 List Terminal Types .. 8——5
8.2.6 List CPU Type, CPU Number and File Version

Number ..8—5
8.2.7 Change CPU Type, CPU Number and File Version

Number ...8—5
8.2.8 Edit the Contents of the File DD8999:VTM8—6
8.2.9 Exit .. 8—6

8.3 VTM Versions, File Versions and Terminal Types 8——7
8.4 An Example of Including a New Terminal Type 8w-B
8.5 Error Messages ..8-9

ND-60.151.02

xii

1.1

1-1

MAIL

MAIL is a subsystem for sending messages to other users. Messages can be sent
directly to the terminal of any user who is logged in. The message displayed will
not interfere with the work being done at that terminal.

The subsystem operates like a mailbox for users who are not logged in. They will
be told that they have mail when they log in. They can read the message sent to
them by entering MAIL.

User SYSTEM is allowed to send the same messages to all users or terminals.
This is called broadcasting. Some of the MAIL commands are only available to
user SYSTEM.

GENERAL DESCRIPTION

MAIL must be entered both to send messages and to receive messsages that are
stored in the mailbox. The subsystem is entered by

@ MAIL (< output file >)

The parameter <output fi|e> describes where you want the contents of your
mailbox to be written. It will only be requested if you have mail. The default
<output fi|e> is your terminal.

MAIL prints an asterisk (‘) when it is waiting for you to give a command. The
HELP command will display the available commands. You return to SINTRAN III
by the EXIT command. MAIL commands can be entered and abbreviated as
SINTRAN lll commands. If you omit parameters, they will be prompted. Only one
user at a time may use MAIL.

ND-60.151.02

1.2

1-2

COMMANDS AVAILABLE TO ALL USERS

This section describes the commands available to all users. When sending
messages or broadcasts, the message must be terminated by CTRL L. A dollar
sign ($) in a message will start a new output line. Messages will be output
together with the name of the sender. The maximum message length is 512
characters. All messages will be converted to upper case letters.

EXIT
This command leaves the MAIL subsystem and returns you to SINTRAN Ill.

HELP
This command lists the available commands.

SEND-DIRECT-MESSAGE <to terminal number>
This command is used to send a message that will be displayed immediately on
the terminal specified. The SINTRAN Ill command @WHO-lS-ON will list the
terminal numbers of the users who are logged in. You will be asked to type your
message.

SEND-MESSAGE <to user>
This command is used to send a message that will be stored in the mailbox. It
can be sent to any user regardless of whether the user is logged in or not. The
user will be told that she/he has mail the next time she/he logs in or out. The
parameter <to user> is the user name of the receiver. You will be asked to type
your message.

LIST-MESSAGE (< output file >)
This command will list the messages in the mailbox on the specified
<output file>. The default <output file> is your terminal. The mail index
number is used if you want to delete a message.

DELETE-MESSAGE < mail index>

The command will delete a message in the mailbox. The command
LIST—MESSAGE can be used to find the <mai| index>. Only user SYSTEM is
allowed to delete messages sent by other users.

FINISH
This command returns you to SINTRAN III in the same way as EXIT.

ND—60.151.02

1.3

1-3

COMMANDS AVAILABLE TO USER SYSTEM

This section describes the commands only available to user SYSTEM. The
protected commands are used to broadcast messages and to start and stop
MAIL.

DIRECT-BROADCAST
You will be asked to type your message. The message will be displayed
immediately on all terminals.

BROADCAST
You will be asked to type your message. The message will be sent to the mailbox
of all users.

LlST-BROADCASTS (< output file >)
The command will output all broadcasts and their mail index numbers. The
default <output file> is your terminal.

DELETE-BROADCAST <mail index>
The command will delete a broadcast in the mailbox. The <mai| index> is
found by the command LIST-BROADCASTS.

INITIALIZE < maximum number of messages>
The command must be given before MAIL can be used. It defines the maximum
number of messages that can be stored in the mailbox. The command can also
be used to delete the contents of the mailbox. The mail is stored on the file
(SYSTEM)MAILBOX:DATA.

RUN-MAlL-SYSTEM
The command starts MAIL after starting SINTRAN III or after stopping MAIL by
the command STOP-MAlL-SYSTEM. The contents of the mailbox are retained.

STOP-MAlL-SYSTEM
The command makes MAIL unavailable. The contents of the mailbox will not be
lost. The mail is stored on the file (SYSTEM)MAILBOX:DATA.

ND—60.151.02

1.4

1-4

SENDING MESSAGES FROM MODE AND BATCH
JOBS

When MAIL is used in mode and batch jobs, the commands should be preceded
by a @. A command and its parameters should be entered on one line.
Messages should be entered on a separate line. They have to be terminated by
CTRL O CTRL L.

The following mode file uses MAIL:

@MAIL
@SEND-MESSAGE P-HANSEN
THIS IS A TEST <CTRL O> <CTRL L>
@EXIT

The CTRL O CTRL L will normally be displayed as an ampersand (&).

ND-60.151.02

2.1

2-1

PERFORM

Mode or batch files are used to execute sequences of commands that are used
repeatedly. The advantage of PERFORM is the flexibility of parameter
substitution in such mode and batch files.

For example, mode files can be used to compile, load, and execute programs
during development. However, each program needs a separate mode file.
PERFORM will instead allow you to enter the program name as a parameter and
generate the required mode file with this program name in the appropriate
places.

To use PERFORM, you have to create a macro instead of a mode file. The macro
allows you to specify which parameters are to be entered from the terminal at
each execution. PERFORM will merge the macro with the terminal input, and
create a mode file.

Macros are created using an ordinary editor, and many macros can be stored on
a file. A predefined library of macros is stored on the file PERFORM«LIB:MCRO.

CREATING MACROS

A few simple directives, starting with a circumflex l“), are used to define a
macro. All directives terminate by a semicolon (;). A macro will have a macro
head and a macro body as shown below:

"B, <macro name>;

(Macro head defining parameters to be entered from the terminal, their
prompts, and their default values.)
A.

:

(SINTRAN ||| commands, input to programs, and dummy parameters in
the required positions. The dummy parameters will be replaced with
actual parameters entered from the terminal.)

The directive "B,<macro name>; starts a new macro. The <macro name>
may consist of up to 16 upper case letters, digits, or hyphen H. The directive "E;
ends the macro. All user defined macros are normally stored consecutively on
one file.

ND-60.151.02

The directive A; separates the the macro head from the macro body. The other
directives to be used in the macro head, are shown below:

DIRECTIVE MEANING

AP,n,<prompt string>; Defines a parameter to be entered from the
terminal. The parameter will be assigned the
number n. The parameter will be prompted by the
specified <prompt string>.

"F,n,<prompt string>; Same as above, except that terminal input is
assumed to be a SINTRAN ll| mass storage file.
PERFORM will expand abbreviated file names. The
default file type is :SYMB.

AD,n,<defau|t string>; Default value to be used for parameter n if no
terminal input is given.

“L,<information>; The infomation will be displayed on the terminal
when processed by PERFORM.

AC,<comment string>; Comment. It will be ignored by PERFORM.

The numbers n must be consecutive and in the range 1 - 20. These numbers are
used after a reversing slant (I) in the macro body wherever a parameter from the
terminal should be inserted. Here is a simple example:

“B, FTN;
AF,1,1,PROGRAM TO BE COMPILED: :

@ FORTRAN-100
COMPILE |1,,TEMP:BRF
EXIT
A

E;

When PERFORM processes this macro, it will ask for the name of the program
specified by I1. The answer given at the terminal will be inserted in the
command COMPILE |1,,TEMP:BRF in the mode file produced by PERFORM.

In general, PERFORM can be used to insert any text strings. For example, a text
string could be a part of a parameter, or it could be a complete SINTRAN ”I
command. If two consecutive reversing slants are encountered, they are treated
as one reversing slant. No parameter will be substituted.

The character used to indicate the beginning of a directive can be any character
other than A - Z, O — 9, or a space. PERFORM uses the first character it finds in
the macro file as the directive character. It must be the same character
throughout the file. In this manual the the circumflex (A) is used.

ND—60.151.02

2.2

2-3

STARTING PERFORM

PERFORM will create a mode file by merging a macro with terminal input. The
mode job will normally be started immediately with the terminal as the mode
output file. You start PERFORM by writing:

@PERFORM (<macro file>),(<macro name>),
(<macro parameter 1),(<macro parameter 2),...

Omitted parameters will be prompted. The <macro file> is the file containing
the macro with the specified <macro name>. The default <macro file> is
PERFORM—LlMCRO and the default file type is :MCRO. The first macro on the
specified file is the default <macro name> .

The parameters <macro parameter 1>, <macro parameter 2> are input

parameters to the given macro. If omitted, these will be prompted as specified in
the macro.

PERFORM will create a mode file called MACROnzMODE and execute it. The "n"
in the file name is a number from 1 — 9. When the mode job has been executed,
you will return to SINTRAN Ill.

Assume the FTN macro in the previous section is stored on a file PMLIB:MCRO.
A FORTRAN program QUICKSORT can then be compiled by entering:

@PERFORM PMLIB:MCRO, FTN; QUICKSORT

All parameters can be prompted for.

ND-60.151.02

2.3

2-4

EXAMPLE OF USING PERFORM

The following example shows how PERFORM can be used to compile, load,
execute, and print FORTRAN programs. The following macro is first written to a
macro file using an ordinary editor:

(Other macros on the same file)

"B,Fl'NRUN,'
‘L,MACRO T0 COMPILE, LOAD, AND EXECUTE FORTRAN A PROGRAM;
‘P,1,PROGRAM TO BE COMPILED: ;
“F,2,RUNTIME LIBRARY: ;
‘D,2,FORTRAN- 1BANK;
"c,F0RTRAN—1BANK USED AS DEFAULT RUNTIME LIBRARY;
AP,3,NUMBER OF PRINT COPIES: ;

@DELEI'E—FILE |1:BRF
@FORTRAN-100
COMPILE |1:SYMB,,"I1:BRF"
EXIT
@DELETE-FILE |1:PROG
@NRL
PROG-FILE "|1:PROG"
LOAD |1:BRF, I2
EXIT
@l1:PROG
@APPEND-SPOOLING—FILE LINE-PRINTER, 11:SYMB, l3,’,,
@CC NUMBER OF PRINT COPIES GIVEN AT THE TERMINAL
AE;

Three macro parameters are defined: the program to be compiled (II),
the runtime library to be loaded (l2), and the number of copies to be printed
(I 3). The default runtime library is FORTRAN- IBANK.

Assume that the macro is stored on the file PERFORM—LIB:MCRO. A program
QUICKSORT is compiled, loaded, executed, and printed as shown below:

@PERFORM PERFORM-LIB, FTNRUN
MACRO TO COMPILE, LOAD, AND EXECUTE A FORTRAN PROGRAM
PROGRAM TO BE COMPILED: OUICKSORT
RUNTIME LIBRARY:
NUMBER OF PRINT COPIES:1_
@MODE MACR01:MODE,TERMINAL

(Output from the execution of the created mode file)

ND-60.151.02

2-5

The mode file MACROlODE, is created and executed immediately. It is shown
below. The terminal is selected as the mode output file.

@ DELETE-FILE QUICKSORT:BRF
@FORTRAN-100
COMPILE O.U|CKSORT:SYMB,,"OU|CKSORTzBRF"
EXIT
@ DELETE-FILE QUICKSORTzPROG
@NRL
FROG-FILE ”QUICKSORT:PROG” LOAD QUICKSORT;BRF, FORTRAN-1BANK
EXIT
@QUICKSORT:PROG
@APPEND-SPOOLING-FILE LINE-PRINTER, QUICKSORT:SYMB, 1,',,
@CC NUMBER OF PRINT COPIES GIVEN AT THE TERMINAL

The mode file MACRO1zMODE will be stored on your user area until it is
overwritten by another execution of PERFORM.

ND-60.151.02

'2-6

2.4 LISTING DEFINED MACROS

The macros defined on a particular macro file can easily be listed. Start
PERFORM and let the <macro name> parameter be prompted. Then type a "?”,
and all macros on the given <macro file> will be listed as shown below:

@PERFORM
:MCRO file name: PMLlMCRO
MACRO NAME:_?_
Macros available in file PMLlMCRO

(List of macros on PMLIBzMCRO)

MACRO NAME:

Afterwards PERFORM will once more prompt the <macro name> to be used.

ND—60.151.02

2.5

27

OPTIONAL CONTROL PARAMETERS

PERFORM accepts some optional parameters. These can be used to specify
special mode or batch output files, to control execution, or to select alternative
names of the mode file produced. The complete PERFORM call is:

@PERFORM (<macro file>),(<macro name>),(<optional parameters>),
(<macro parameter 1>),(<macro parameter 2>),

The <optiona| parameters> may be used to specify a mode output file other
than the terminal. The file name must be preceded by a ”<”. A new file may be
created by enclosing the file name in quotes. The default file type is :SYMB. The
<optiona| parameters> may also include:

> RUN, Create a mode file and execute it (default)
>CREATE, Create a mode file, but do not execute it
> BATCHn, Create a mode file and append to batch number n

The parameters > RUN, > CREATE, and > BATCHn may be abbreviated to > R, > C,
and >Bn. PERFORM will by default use the mode file MACROn:MODE. The
<optiona| parameters> may specify another mode file by:

‘MODE <fi|e name>,

The default file type is :MODE. This is necessary if the mode job will be waiting in
a batch queue the next time PERFORM is called. Otherwise MACROn:MODE will
be overwritten. The following are some examples of PERFORM calls:

@PERFORM PMLIB, FTN, <LISTFILE:SYMB
@PERFORM PMLIB. FTN. >CREATE
@PERFORM PMLIB, FTN, <OUTBATCH> BATCH2
@PERFORM PMLIB, FTN. “MODE TESTMACROIMCRO
@PERFORM PMLIB, FTN, <LISTFILE> CREATE,'MODE TESTMACRO

The macro named FTN on the macro file PMLIBzMCRO is used. The examples show
how the <optiona| parameters> can be used. The macro parameters may follow
the <optiona| parameters>.

ND—60.151.02

2.6

2.7

2-8

EXTENDED PARAMETER SUBMISSION

Any <macro parameter> in the PERFORM call can be replaced by a file name,
preceded by an opening bracket ([). The file should contain a list oflvalues for
the parameter, one per line.

Mode files will be created and executed repeatedly, taking successive values for
the parameter from the file. For example, assume the file PARAMLIST contains:

SORT:SYMB
TEST:SYMB
QUICKSORT:SYMB

The PERFORM call

@PERFORM PMLIB, FTNCOMPILE, [PARAMLIST

will compile SORT:SYMB, then TEST:SYMB, and then 0U|CKSORTzSYMB.

LIMITATIONS, RESTRICTIONS AND DEFAULTS

The macro name must be unique. If it is defined more than once, the first
occurrence is taken. The macro name should not be abbreviated. If it is
abbreviated, the first matching occurrence will be taken. The macro cannot be
nested, nor invoke other macros.

The optional parameters (indicated by <,>, and 'MODE) may also be entered if
the <macro name> is being prompted by PERFORM.

Use the AF directive rather than the AP directive in the macro if SINTRAN lll file
names are to be inserted. The AF directive will attempt to find the full SINTRAN ”I
file name. If successful, that name will be inserted in the mode file. The default
file type is :SYMB.

The reversing slant (I) does not exist on some terminals. The character to use is
ASCII 1343. The circumflex (A) is the ASCII character 1363.

PERFORM can be used together with JEC (JOB EXECUTION CONTROL) for
further flexibility. JEC is described in this manual.

ND-60.151.02

2-9

2.8 PREDEFINED MACROS

PERFORM has the following standard macros stored on the file
PERFORMLIB:MCRO. The first macro on the file, FTN, is the default
<macro name>.

IMACRO NAME FUNCTION

FI'N COMPILE A FORTRAN PROGRAM
FI'NRUN COMPILE, LOAD AND EXECUTE A FORTRAN PROGRAM
COBOL COMPILE A COBOL PROGRAM
COBRUN COMPILE, LOAD AND EXECUTE A COBOL PROGRAM
COBDEBUG COMPILE, LOAD AND DEBUG A COBOL PROGRAM
PLANC COMPILE A PLANC PROGRAM
PLRUN COMPILE, LOAD AND EXECUTE A PLANC PROGRAM
PASCAL COMPILE A PASCAL PROGRAM
PASRUN COMPILE, LOAD AND EXECUTE A PASCAL PROGRAM
BASIC COMPILE A BASIC PROGRAM
BASRUN COMPILE, LOAD AND EXECUTE A BASIC PROGRAM
CREDIR CREATE AND ENTER A DIRECTORY WITH A USER AREA

Detailed information about each macro is found by inspecting the file by using an editor.

ND—60.151.02

2-10

3-1

3 lEQ_:_I9§_EXE§!IIQE_§Q!IBQL
JEC (JOB EXECUTION CONTROL) is a program which lets you control the
execution of a batch or mode file by including a few control commands.
Intelligent actions can be taken when special situations occur in
commands, subsystems, and your programs.

Here are some of the things you can do:

Terminate execution at any point, for example, where errors
are detected. (See page 7.)

You may execute nested mode files that have a return status
showing whether they executed successfully or not. (See page
7.)

You may use arithmetic. (See page 9.)

You can create your own numeric and string variables. For
instance, you can prompt for the name of the program and the
language it is to be compiled in. Thus you can make a single
mode file that can compile and load any program. See the
example on page 20. You may use your own variables in SINTRAN
commands, as parameters to your own programs, as loop
counters, or in arithmetic expressions. (See page 9.)

Answer 'questions' that the mode file poses. (See page 10.)

You may make conditional tests, based on the values of the
completion code, the SSI code, or the status code. (See page

'12.)

You may make conditional tests. based on the day, date, or
month you execute your mode file. (See page 12.)

Jump forward and backward to numeric labels defined in your
batch or mode file. (See page 11.)

Create loops so that things can be done a certain number of
times. (See page 14.)

Give input from your terminal to programs you execute in mode
jobs. (See page 15. Section 3.3.6.)

You may turn communication with your terminal on and off in a
mode job. (See page 15.)

You may send output to your terminal, an output file, or
both. (See page 15.)

You may execute mode files on remote systems. The JEC
completion code shows whether they executed successfully or
not.

ND-60.151.02A

3-2

- You have the possibility of executing only certain parts of
your input file. See the example on page 18.

Before we look at JEC mode files, we will look at what happens when
you call JEC interactively from SINTRAN, because that allows us to
explain the error codes that JEC uses.

A TIP:
If you type your mode files
in "OTIS-WP, make sure they
are in 7- or 8-bit format,
not in 16-bit format!

3.1W

Type @JEC in SINTRAN and you should see something like this:

@JEC
== Jec
== Jec == Value of completion code is: 0 OH
== Jec == Value of fifiI_§gdg is : 72 1108
== Jec == Last running subsystem was -NQti§_HR_L_EED
== Jec

The last subsystem—l The error
you used. code.

The numbers you get will most likely not be the same.

The completion code is stored in a 16-bit word:

Bit no. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L [I I

This part contains the This part is the
SSI code if the status status code.
code is not zero.

Since each digit in an octal number represents three hits, the status
code is always the two rightmost digits of the completion code.

The Standard Subsystem Identification code (SSI code) indicates the
last subsystem that was running, and the status code indicates what
error occurred.

For example, an 551 code of 1 means that the error occurred in the
SINTRAN file system (see the following table). If the completion code
is 137, you can look in the SINTRAN Reference Manual, ND-60. 128, and
find that the file system error code 137 means 'No spooling for this
device.

ND-60.151.02A

3-3

Here are some SSI codes and the software product(s) they represent. If
you are using an older version of one of the products below,- it will
not produce SSI codes.

SSI code Product
Decimal Octal

0-3 0-33 SINTRAN-III File system (version 1)
4—5 4-53 FORTRAN (version 8, library)
6-7 6—78 COBOL (version F, compiler and library)

20—21 24-253 PLANC (compiler)
4O SOB SORT-MERGE (version D)
42-43 52-538 Linkage-Loader (version F)
47 57B NRL (version J)
72-73 110-1113 "OTIS-WP and PED
96-97 140—1413 NOTIS-TF 500 (version K)
96-97 140-1413 NOTIS—TF 100 (version L)

112 1603 User Environment
117 1653 JEC (version B)
148—159 224-2373 SIB-DML (version E)
216 3308 FILE—HANDLER (version A)
224-225 340—3413 BACKUP-SYSTEM (version P)
260-262 404-4068 COSMOS '

(version 8)
263 4078 TRANSFER-FILE (version 8)
265 4113 XHLib

Here are two examples of errors and the codes they produce for JEC.
Type the following at your terminal:

enzugzmumum «1em: .
When you try to delete the nonexistent file ASDFG:HJKL, you will get
the message 'No such file name'. Writing JEC will print the following:

== Jec
== Jec == Value of completion code is: 46 563
== Jec == Value of SSI code is : 0 OB== Jec == Last running subsystem was : SINTRAN
== Jec == Error message: No such file name
== Jec

The SSI code of 0 means that this is a SINTRAN File System error. If
you look in the SINTRAN Reference Manual, ND-60.128, you will see that
error 46 is 'No such file name".

ND-60.151.02A

If you have COSMOS and JEC on your system, and a file called
MY-FILE:SYMB. type the following:

9W*1on:
You should get this message:

== Jec
== Jec == Value of completion code is: 16993 411413
== Jec == Value of 531 code is : 263 4073
== Jec == Last running subsystem was : COSMOS File Transfer
== Jec == Error message: Unknown remote system name
== Jec == Error in : XHSG
== Jec

If you are wondering why the completion code does not start with 407
as the first three octal digits, here is the answer. The last
subsystem that was running (4078, which is Transfer File) called
subsystem 411, which is XHLib, and error 41 of XHLib occurred.

3.1-1W

When you type @JEC BEGIN in a JEC mode file, the completion code will
be zero. It will remain unchanged until an error occurs. You can thus
specify what should happen when a specific error occurs by using its
error code in a @JEC IF statement. For instance, you could type a
statement like this in a JEC mode file:

@JEC IF completion-code) O TERMINATE

That would stop the mode file execution if an error occurs.

Note that for some systems it may be better to type:

@JEC IF status—code) 27B TERMINATE

This is because some ND subsystems use the following system of status
codes:

0 = OK
1-17B = Informative messages

20-273 = Most likely to be informative messages
30-478 = Most likely to be error conditions
50-763 = Error conditions

773 = Fatal error

Look in the manual for the subsystem you are interested in to see what
codes are error messages.

ND-60.151.02A

Here are some things that may happen during a mode job that require
special action:

- You cannot access a file because it is already open or does
not exist.

The first of many compilations does not succeed so there is
no reason to continue.

— A remote system in your COSMOS system may not be available at
the moment you run your mode job.

- A program you try to start may not be available.

The JEC mode file, will not abort when these things happen, so you
could start an alternative program, create the file you need, or jump
over other commands that are no longer needed.

3.2MW

Here is a small example of a JEC mode file that lets you compile as
many or few COBOL programs as you want:

@JEC BEGIN
@JEC MESSAGE 'Mode file to compile COBOL-500 program modules‘
@JEC DEFINE (number>,(name)
@JEC DEFINE (counter)=1
@JEC INQUIRE (number) 'How many files do you want to compile?‘
@CC --%
@JEC FOR (counter) IN (counter): (number) DO 1 THE MODE
@JEC INQUIRE (name) 'What is the program name?‘ % FILE LOOPS
@JEC ND COBOL- 500 % HERE. BUT
COMPILE (name), 0, (name) a HAS A
EXIT % CONTROLLED
@JEC WHILE COMPLETION-CODE = 0 % EXIT IF C-C
@JEC END-FOR 1 IS NOT 0.
@CC ---a
@JEC IF COMPLETION--CODE) 0 GO TO 1000
@JEC MESSAGE 'Compiling went fine'
@JEC END
@JEC.1000
@JEC MESSAGE 'Compiling failed, error in (name)'
@JEC PRINT-COMPLETION-CODE
@JEC END

When you run the above mode file, you will be asked how many files you
want to compile, and then you will be asked for each file name The
mode job ends early if any compilation fails due to the WHILE
COMPLETION-CODE = 0 statement.

Of course, the mode file needs a few more tests, for instance, to see
if the object file already exists It could also be expanded to let
you choose between COBOL- 100 and COBOL- 500, or even other languages.

ND-60.151.02A

3.3 W:

Here are the JEC mode and batch file commands, with short
explanations:

@JEC BEGIN astarts a mode job
@JEC END zEnds a mode job execution
@JEC TERMINATE \Ends a mode :11; execution
@JEC CLEAR-COMPLETION-CODE tResets completion code

% and 551 code

@JEC DEFINE (variable-name) $Dec1ares variable(s)
@JEC DEFINE (variable-name) = (value) %Declares & initializes
@JEC
@JEC

@JEC

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC

@JEC
@JEC

@JEC
@JEC
@JEC
@JEC
@JEC

INQUIRE (variable-name) <'message'> tLets user input value
(command-or-program) tUse this when parameters

aare variables
RECOVER (program) $Use this when parameters are variables

00 T0 (numeric-label) tUnconditional jump
IF (JEC-test> Go TO (numeric-label) fiConditional jump
IF <JEC-test) (command-or-program) ‘Conditional command
IF <JEC—test> TERMINATE \Conditional termination
IF (JEC—test) PERFORM <num.-labe1)
IF <JEC—test) PERFORM <num.-label) THROUGH <num.-label>

(numeric-label) fiLabel definition
ON-ERROR TERMINATE ‘ tConditional termination
ON-ERROR GO TO (numeric-label) %Conditional jump
FOR (variable-name) IN <range) D0 %Beqins a loop
WHILE (condition) %Use to exit early from loops
END-FOR %Ends a loop
PERFORM (numeric-label)
PERFORM (numeric-label) THROUGH (numeric-label)

PRINT-DATE %0utputs the current date
PRINT—COMPLETION-CODE t0utputs the completion code

MODE-INPUT zcets input from node file
MODE-OUTPUT %Sends output to mode file
TERMINAL-INPUT tGets input from terminal
TERMINAL-OUTPUT tSends output to te inal
WAIT-FOR-CR %Wait for user to press the key

Let us take a closer look at these commands.

ND-60.151.02A

3-7

3-3-1 flfifilfli_£NDi_§nfl_IEBHI!AIE
@JEC BEGIN and @JEC END both initialize the completion code to zero.
@JEC BEGIN should always start a mode or batch 19b and @JEC END should
end it:

@JEC BEGIN
@JEC % JEC and SINTRAN commands
@JEC END

Once GJEC END is encountered, the execution of your mode or batch 19h
ends. If you do not end a mode job with @JEC END, you may have
problems with the next mode file you run if it does not use @JEC.

A mode file to be run as a batch job should look like this:

@ENTER user—name,password,project—password,max-time
@JEC BEGIN
@JEC % JEC and SINTRAN commands
@JEC % Do not use TERMINAL-INPUT or TERMINAL-OUTPUT,
@JEC ~ 2 INQUIRE,-WAIT—FOR—CR or MESSAGE.
OJEC END

@JEC TERMINATE ends the execution of the batch or mode :11: it is in.
It will not reset the completion code to zero. You use @JEC TERMINATE
in mode files called from other mode files.

If you use nested mode files, @JEC BEGIN and @JEC END should only
appear once in the entire mode job. OJEC TERMINATE can be used in the
nested files. Here is an example:

File: LOAD-MODE:HODE

@ENTER SYSTEM xxxxx,,1o,,
@JEC BEGIN
@CC various other commands File: XMSG-STARTznonE
@JEC MODE (UTIL)XMSG-START:MODE,,
sec The XMSG file should NOT contain @JEC ON-ERROR TERMINATE
@CC JEC BEGIN and JEC END. @JEC SINTRAN-SERVICE
@JEC MODE (UTIL)SET-TERM-TYPE:MODE,, @STOP-XMSG
@CC The SET-TERM file should NOT @EXIT
@CC contain JEC BEGIN and JEC END. @CC other commands
@CC various other commands @CC other commands
@JEC END @cc end of file

If an error occurs in the file XMSG-START:MODE, the rest of the file
will not be executed, but none of the variables JEC uses in the LOAD—
MODE:MODE file will be affected. It would be a big mistake to start
XMSG file with @JEC BEGIN. It would also be wrong to end it with @JEC
END.

ND-60.151.02A

3—8

Here is one way to alter the LOAD-MODE file above to see whether the
nested mode file XHSG-START executed properly:

@JEC CLEAR-COMPLETION-CODE
@JEC MODE (UTIL)XMSG-START:MODE,,
@JEC IF COMPLETION-CODE = 0 GO TO 500
@JEC MESSAGE 'An error occurred in XHSG-START:HODE file'
@JEC PRINT-COMPLETION-CODE
@JEC 500

In the nested files, you may use TERMINATE in an IF statement, for
example:

@JEC IF COMPLETION-CODE > 273 TERMINATE

See also page 12.

3-3-2W
CLEAR-COMPLETION-CODE will set the completion code and the SSI code to
zero. Here is an example:

@JEC DELETE-FILE <VAR1>:NRF
@JEC IF COMPLETION-CODE = 46 so To 200 a No such file name.
@JEC'IF COMPLETION-CODE > 0 so To 1000 % Exit if error.
@JEC 200
@JEC CLEAR-COMPLETION-CODE
@JEC ND COBOL-500
DEBUG-MODE _
COMPILE (VAR1>:SYMB,0,'<VAR1)'
EXIT
@JEC IF COMPLETION-CODE > 0 GO TO 1000
@CC zflere you could load the :BRF file, for example.
@JEC 1000 %Here you could type @JEC END, for example.

ND-60.151.02A

3—9

3.3.3 was
By using DEFINE, you can create your own variables that you use in IF
and FOR statements, or as macros in command parameters. You may give
them values when you define them, or when you execute your mode file
by using INQUIRE.

Here are a number of different examples:

D f' an 't' '
St in -

@JEC DEFINE (file-1>='old—prog'
@JEC DEFINE <fi1e-2>=delete-me
@JEC DEFINE (suffix>='data'
@JEC DELETE—FILE <file-1):<suffix>
@JEC DELETE-FILE <file-2>:(suffix)

Note two things. Strings need only be enclosed in single quotes
('name' not 'name', for example) when they start with a digit. All
variable names must start with a less than sign (<) and end with a
greater than sign (>). Variable names may not contain spaces.

EE' 1”]. .,.H'
@JEC DEFINE (var1> = 10
@JEC <var2> = <var1>

If a variable is already defined, you can omit DEFINE when you assign
it a value:

@JEC <payday>
@JEC <var2>
@JEC <var3)

21
<var2) * <var2)
(<var1) * 10) + 2 + <var3)

As you can see, arithmetical expressions are allowed. Use +, -, 1', and
/ to add, subtract, multiply, and divide. NOTE - Aluays nggdg and
£91191 the signs +, -, * or / by a blank. It looks nicer and it is the
only thing we allow! Extra blanks are allowed.

Do not multiply or divide by JEC variables such as DAY. DAY is
explained on page 12. If you need to multiply DAY by a variable, do it
like this:

@JEC (var1)
eJEC <var2>

DAY
<var1> ‘ (x)

ND-60.151.02A

3-10

Define and As; User to Give the Value:

Here is an example of INQUIRE. Note the use of @JEC PASCAL when the
compiler is called:

@JEC BEGIN
@JEC DEFINE <file-to-compile)
@JEC DEFINE (list)
@JEC INQUIRE <file-to-compile)
@JEC INQUIRE (list> 'Give list file name and type:'
@JEC PASCAL 3 You must type @JEC here so that PASCAL ;

1 gets the values stored in the variables
COHPILE (file-to-compile),(list),<file-to—compile)
EXIT
@JEC END

As you can see, INQUIRE can be followed by a message if you so choose.
In the above example, this will appear on the screen when you execute
your JEC mode file:

Give list file name and type}_

If there is no text after @JEC INQUIRE, you get this when you execute:

VALUE FOR (file-to-compile>?;

If you want to compile COB-DB:SYHB. you simply answer COB-DB or ‘COB-
DB'. But if the file name begins with a number, you must enclose it in
single quotes.

Getting Values frgm a Eile

At times, you may want to give so many values that you do not want to
do it interactively or in your mode file. You may, for example, want
to change the file access to all 50 files you have. You do that as
follows:

@LIST-FILES,,FILE-LISTzDATA

The file FILE-LIST will look like this;

FILE 1 : (PACK-ONE:UTILITY)EX:SYHB;1
.. files 2 to 49 ...

FILE 50 : (PACK-ONE:UTILITY)FORMAT:TEXT;1

Edit it so that everything to the left of the first parenthesis is
gone:

(PACK-ONE:UTILITY)EX:SYMB;1
... files 2 to 49 ...

(PACK-ONE:UTILITY)FORMAT:TEXT;1

ND-60.151.02A

3-11

Then create a mode file like this:

@JEC BEGIN
@JEC DEFINE (public),(friend),(own),<file),<i),(number)
@JEC MESSAGE 'Specify the three access types you want'
@JEC INQUIRE (public)
@JEC INQUIRE (friend)
@JEC INQUIRE (own)
@JEC INQUIRE (number) 'How many files do you have?‘
@JEC FOR (i) IN 1 : (number) D0
@JEC (file)=FILE-LIST:DATA((1))
@CC (FILE) will be equal to record (i) in FILE-LISTzDATA
@JEC SET-FILE-ACCESS (file) (public) (friend) (own)
@JEC END-FOR
@JEC END

If you do not know how many files you have, the loop can look like
this:

@JEC FOR (I) IN 1 : 1000 DO
@JEC (file)=FILE-LIST:DATA((i))
@CC (FILE) will be equal to record (i) in FILE-LIST:DATA
@JEC WHILE COMPLETION-CODE = 0
@CC You will safely exit the loop when you reach
@CC the end of the file FILE-LISTzohTA
@JEC SET-FILE-ACCESS (file) (public) (friend) (own)
@JEC END-FOR

EI" I
.

“H 153

When you are inputting values to an INQUIRE command, you may make
typing mistakes. In that case, use the 1 key to erase the error. JEC
accepts the same control characters for editing as SINTRAN.

3.3.4 GQ_IQi_I£i_£QB_and_BEBEQBH

I'
.

J I

You can jump unconditionally to another part of the mode file:

@JEC GO To 100
... 2 Other JEC statements
@JEC 100 x This is a numeric label

ND-60.151.02A

3—12

If you want to use easier to understand labels, do it like this:

@JEC DEFINE (compile) = 500
@JEC GO TO (compile)
... % other JEC statements
@JEC (compile): a This is also a numeric label

The colon (:) tells JEC that (compile) is a label and not the name of
a program to be executed. See the example on page 20. You only need to
use a colon when you use a variable as a label.

Conditional Jumps (IF)

There are four types of conditional jumps using IF:

Remember that
@JEC IF (JEC-test) GO TO (numeric-label) the semicolon
@JEC IF (JEC-test) (command-or-program) continues the
@JEC IF (JEC-test) TERMINATE line.
@JEC IF (JEC-test) ; .‘

PERFORM (numeric-label) THROUGH (numeric-label)

candl‘tjgna] teat: (IE $1E9-t§§t2)

The (JEC-test) may use the following operators in JEC tests:

= < > OR AND NOT ())<

The following JEC variables may be used in JEC tests:

NAME EXPLANATION

COMPLETION—CODE Error code.
STATUS-CODE The last two octal digits in the

completion code.
SSI-CODE Subsystem code.
DATE A string with 8 letters. for

example, 84.09.18 means September
16th, 1984.

DAY An integer from 1 to 31 or
a string from “MONDAY" to ”SUNDAY".

MONTH An integer from 1 to 12.
RUN-MODE Either 'B‘ or 'M', depending on

whether it is a Batch or Mode job.

You may also test any variables you define. Remember not to mix data
types. Do not type @JEC IF DATE = DAY 60 TO 1000. for example!

ND-60.151.02A

3-13

W

Complex expressions must be enclosed in parentheses. The following
examples show legal JEC tests:

@JEC IF COMPLETION-CODE) OB TERMINATE
@JEC IF (SSI-CODE = GB AND STATUS-CODE (208) GO TO 100
@JEC IF (DAY < B AND DAY = 'HONDAY') GO TO 100
@JEC IF (DAY = 20 AND (NOT DATE = 84.01.20)) GO TO 100
@JEC IF (answer) = 2 GO TO 2000
@JEC IF (answer) NOT)-0 GO TO 3000
@JEC IF COMPLETION-CODE = 0 BRF-LINKER

@JEC DEFINE (payday) 21 % Omit DEFINE if (payday)
@CC % is already defined.
@JEC IF (payday) NOT DAY THEN TERMINATE

@JEC IF RUN-MODE = '3' GO TO (batch)
@JEC GO TO (mode)

JEC uses decimal numbers by default. Octal numbers must be followed by
a B. A numeric label such as 100 in GO TO 100 must be defined
somewhere in the mode or batch file by the command @JEC 100. Both
forward and backward jumps are legal. Only incurable hackers should
use octal numbers in labels.

You may use SINTRAN III commands, subsystems, or your own programs as
(command or program).

Note that a semicolon
SINTRAN must be used at the end Subsystem
command of an incomplete

line.+;]@JEC IF MONTH NOT = (prevm);
COPY LINE-PRINTER MONTH-STATtDATA

@JEC IF COMPLETION-CODE = 0 ND LINKAGE-LOADER

@JEC IF (answer) = 1 HY-PROG IN:DATA OUTzDATA

I—-Your own program

ND-60.151.02A

3-14

Conditional Jump (ON-ERROR!

There are two types of conditional jumps using ON-ERROR:

1) @JEC ON-ERROR TERMINATE

2) @JEC ON-ERROR GO TO (numeric-label)

The statement after ON—ERROR is performed if the completion code is
not equal to zero. Note that you cannot use (command or program) or
PERFORM (label) THROUGH (label) after ON-ERROR. Use instead:

@JEC IF COMPLETION-CODE) 0 (program or SINTRAN command)
@JEC IF COMPLETION-CODE) 0;
PERFORM (numeric-label) THROUGH (numeric-label)

If you use @JEC ON-ERROR, and an error occurs, the following rules
apply:

1) The error can occur anywhere in the file.

2) The action TERMINATE or so T0 will be performed
when the next @JEC statement is encountered.

You should only use GJEC ON-ERROR once in a file!

Here are two examples:

1) @JEC ON-ERROR GO TO 5000

2) @JEC ON-ERROR so To (finish)

édEc (finish):

EQR_L922:

You can create loops as follows:

@JEC FOR (variable—name) IN (range) Do '
tBegins a loop

@JEC END-FOR tEnds a loop

This will execute the same program ten times:

@JEC DEFINE (i), (program-name)
@JEC INQUIRE (program-name) ‘Which program do you want to run?‘
@JEC FOR (1) IN 1:10 D0
@JEC RECOVER (program-name)
@JEC END-FOR

ND-60.151.02A

Here is a

3-15

complete mode file that a system supervisor might use to log
out all the users on Terminal Access Devices (TADs):

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC

BEGIN
DEFINE (i), (x)
1000
INQUIRE (x) 'How many TADS does your system have?‘
DEFINE <1asttad>= 767 + (x)
IF <1asttad> < 767 GO TO 1000 t No TADS have LDN < 767
FOR <i> IN 767z<1asttad> D0
STOP-TERMINAL (i)
END-FOR
END

Another example of a FOR loop is given on page 5.

3-3-5 Wands

The command @JEC PRINT-DATE writes the current date to the batch or
mode output file.

@JEC PRINT-DATE
== Jec

'

Year Month Day Time,
1984 12 13 11.32.19

December Thursday
== Jec

@JEC PRINT-COMPLETION-CODE outputs the completion code.

You can print the value of any variable you define. If your variable
is called

@JEC
@JEC

(name), type:

MESSAGE '(name)‘ or:
MESSAGE 'Name is (name)'

imam

You can
terminal.
commands.
are:

@JEC
@JEC
@JEC
@JEC

Note that

enter parameters to programs within a mode job from your
Input cannot be entered to batch jobs or SINTRAN III
The commands to switch terminal input and output on and off

TERMINAL-INPUT tInput to programs from terminal
TERMINAL-OUTPUT %0utput from programs to terminal
MODE-INPUT %Turn terminal input off
MODE-OUTPUT tTurn terminal output off

@JEC END turns terminal input and output off.

ND-SO.151.02A

3—16

The command @JEC TERMINAL-INPUT will let you input parameters from
your terminal. Make sure you remove input parameters- from your mode

file. Let us say you have a program called AVERAGE:PROG that expects

three numbers to be input. You could execute it five times like this:

@JEC BEGIN
@JEC DEFINE <i>
@JEC TERMINAL-INPUT
@JEC FOR (1) IN 1:5 DO

>9RECOVER AVERAGE
@JEC END-FOR
@JEC END

If you can write a short program that expects input, try running the
above mode file using your terminal as the output file. Then try it
again using another file as the output file. You can still give input
from your terminal, but your program prompts will not appear; they are
sent to the output file!

Add a line with 'GJEC TERMINAL-OUTPUT' to the mode file above and then
all prompts from your program AVERAGE will appear on your terminal.

@JEC TERMINAL-OUTPUT will output prompts to your terminal when your
terminal is not the output file. Things written to a file will not be
sent to your terminal.

@JEC MODE-INPUT turns TERMINAL-INPUT off again. and @JEC MODE-OUTPUT
turns TERMINAL-OUTPUT off. Note that terminal I/O is off when you type
@JEC BEGIN. Note that if you do not terminate your mode job with @JEC
END and terminal input was on, it will still be on when you run the
next mode file from your terminal. Remember @JEC BEGIN and END!

It can oftenr be useful to pause while executing a mode file. By
writing:

@JEC WAIT-FOR-CR 'Insert floppy no. <i>‘

you let the mode file "pause” until the user pushes the «J key. The «J
key is also called the CR (Carriage Return) key. You may have any
message, or none at all, after WAIT-FOR-CR.

Here is an example from a mode file used to copy many files to or from
floppy diskettes:

@JEC RELEASEfDIR (dir)
@JEC MESSAGE 'Remove diskette <number)‘
@JEC DEFINE (number) = (number) + 1
@JEC MESSAGE 'Insert diskette <number)‘
@JEC WAIT-POR-CR
@JEC ENTER-DIR (dir) <dev> (unit),,,
@CC Copy files to or from the diskette.

ND-60.151.02A

3.3.7W

The percentage sign (t) indicates that the rest of the line only
contains comments. If a JEC command consists of more than one line,
any incomplete lines must end with a semicolon (;). for example:

@JEC IF (COMPLETION-CODE (4008 AND COMPLETION-CODE > 5003):
GO TO 100 tExample of split line

3.4 WWI-:1

This section shows examples of JEC commands used within batch and mode
files.

3-4-1W

The following mode file will only print the output file from the ND
SORT-MERGE program if no errors occur.

@JEC BEGIN
CJEC DEFINE (INPUT>,(OUTPUT)
@JEC INQUIRE (INPUT);
'Give the file name and type of the file you want to sort:
@JEC INQUIRE (OUTPUT);
IWhich output file? Enclose name in " if file is new;'
@JEC SORT-MERGE
RECORD-DESCRIPTION 80, 1, TEXT
KEY-DESCRIPTION 1, 10, ASCENDING, ASCII
SORT (INPUT), (OUTPUT)
EXIT
@JEC PRINT-COMPLETION-CODE
@JEC IF COMPLETION-CODE) 0 TERMINATE
@COPY-FILE PHILIPS, (OUTPUT)
@DELETE-PILE (OUTPUT)
@JEC END

N0760.151.02A

3.4.2W

The next example shows how a COBOL program is compiled, loaded, and
executed. Special actions are taken if compilation errors occur.
TEST:PROG will communicate directly with the terminal during
execution.

@JEC BEGIN
@JEC PRINT—DATE fiOutputs today‘s date.
@COPY-FILE TEST:SYMB, (PACK-TWO:P-HANSEN)TEST:SYHB
@COBOL-100
COMPILE TEST:SYMB, TESTzfiRR. TEST:BRF
EXIT

’

@JEC IF (COMPLETION-CODE > OB AND SSI-CODE = GB) GO TO 111
@CC Go to compiler error part. COBOL-100 has SSI code GB.
@BRF-LINKER
FROG-FILE TEST:PROG
LOAD TEST:BRF, COBOL-1BANK:BRF
EXIT
@JEC IF STATUS-CODE) 27B TERMINATE
@cc a
@cc \ Codes from 0 to 26 are most likely to be
@cc % only informational messages in many products.
@cc %
@JEC TERMINAL-INPUT %Input to TEST:PROG from terminal.
@TEST:PROG
@JEC MODE-INPUT
@JEC TERMINATE
@JEC 111 %Compilation error handling part.
@COPY-FILE LINE-PRINTER, TEST:ERR
@DELETE-FILE TEST:ERR
@JEC END

ND-60.151.02A

3-19

3-4-3 W21:
This is a batch file which is to be executed the 20th of every month.
Note that @ENTER and double escape are placed outside the @JEC BEGIN
and @JEC END commands.

@ENTER P-HANSEN,HANS,,,
@JEC BEGIN
@JEC IF DAY = 20 SALARYzPROG
@JEC IF DATE = 83.12.20 ADDSALARY:PROG
@COPY-FILE ND-SAT-II.LINE-PRINTER, OUTSALARYzDATA
@CC PRINTING ON THE REMOTE COMPUTER ND-SAT-II
@JEC IF (STATUS-CODE > OB AND SSI-CODE < 48);
DELETE-FILE OUTSALARYzDATA %Sp1it JEC command
@CC SSI code (4B INDICATES FILE SYSTEM ERROR
@JEC END
{CTRL O> (ESCAPE) (CTRL O) (ESCAPE)

ND-60.151.02A

3-20

3.4-4WW

Here is quite a lengthy example. This mode file will compile and load
any COBOL, FORTRAN-100, or FORTRAN-500 program. Note how labels are
used.

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@CC
@JEC
@JEC
@JEC
@JEC
@CC
@JEC
@JEC
@JEC
@JEC
@CC
@JEC
@JEC
@JEC
@JEC
@CC
@JEC
@JEC
@JEC
@JEC

BEGIN
DEFINE <Fort-500)=500, (Fort-100)=100
DEFINE <Cob01)=200, (compile)=900
DEFINE (load-100)=1000, <failure)=8000, <success)=300
MESSAGE 'Mode file to compile and load a program'
DEFINE (lang),(name),<compiler).(library)
MESSAGE 'Which compiler do you want to use?‘
MESSAGE 'FORTRAN-100 = 1 FORTRAN-500 = 5'
MESSAGE 'COBOL = 2'
INQUIRE (lang) “Answer with 1. 2 or 5:I
INQUIRE (name) 'What is the name of your program ?'

___ %

IF (lang) 5 GO TO (Fort—500)
IF (lang) 1 GO TO (Fort-100)
IF (lang) 2 GO TO (Cobol)
END

(Fort-100) % --- FORTRAN-100 -----

(compiler) = FORTRAN—100
(library) = FORTRAN-1BANK
GO TO (compile)

<Cobol> % --- COBOL -------
(compiler) = COBOL
(library) = COBOL-1BANK
GO To (compile)

(compile>: % Compile and load an ND-100 program.
DELETE-FILE (name):BRF
CLEAR-COMPLETION-CODE a In case file did not exist.
(compiler)

COMPILE <name),0,'<name)'
EXIT
@JEC
@CC

IF (COMPLETION-CODE) 0) GO TO (failure)

(continued on next page)

ND-60.151.02A

3—21

(continued from previous page)

@JEC (load-100): S This label is only for information.
@JEC DELETE-FILE (name>:PROG
@JEC CLEAR-COHPLETION-CODE
@JEC BRF-LINKER
FROG-FILE '(name)'
LOAD <name>,<1ibrary>
EXIT
@JEC IF COMPLETION-CODE) 0 GO TO (failure)
@JEC GO TO (success)
@CC ------------------------------------

@JEC (Fort-500):
@JEC CREATE-FILE (name):NRF O .
@JEC CLEAR-COMPLETION-CODE ‘% In case the file already existed.
@JEC FORTRAN-500
COMPILE <name>,0,<name>
EXIT
@JEC IF COMPLETION-CODE) 0 GO TO (failure)
@JEC ND LINKAGE-LOADER
ABORT-BATCH OFF
DELETE-DOMAIN (name)
SET-DOMAIN I'(name)"
OPEN '(name>',,,,,,,
LOAD (name)
LOAD (SYSTEH)FORTRAN-LIB
EXIT
@JEC IF COMPLETION-CODE) 0 GO TO (failure)
@JEC so To (success)
@CC -----------------------------------
@JEC (success>:
@JEC MESSAGE 'Compiling and loading went fine'
@JEC END
@JEC <failure>z
@JEC MESSAGE 'Conpiling or loading failed'
@JEC PRINT-COMPLETION-CODE
@JEC END

ND-60.151.0ZA

3—22

3.4.5W1:

This mod
remaining

@JEC
@JEC

C011
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@CC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@CC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@CC
@JEC
@JEC
@JEC
@JEC
@JEC
@CC

e file creates a continuous file that uses all of your
free pages if possible.

BEGIN
MESSAGE 'Mode file to create the largest possible;

tinuous file.‘
DEFINE (file-name),(max)=0.(size)=0,(change)=1000
INQUIRE (file-name)
100 % The program returns here every time
(max) = (size) % we successfully create the file.
DELETE-FILE (file-name)
DELETE-FILE (file-name):DATA
CLEAR-COMPLETION-CODE
IF (change) (2 Go To 5000 2 Create a file of size (max).
(size) = (size) + (change)
(change) = (change) / 2

2000
CREATE-FILE (file-name) (size)
IF COMPLETION-CODE=O GO TO 100 % Success!
IF COMPLETION-CODE=67B 0R COMPLETION-CODE=7SB GO TO 3000
PRINT-COMPLETION-CODE
MESSAGE '(file-name) has not been created '
END

3000 % (size) uas too big
CLEAR-COMPLETION-CODE
IF (change) (2 GO TO 5000 a Create a file of size (max)
(size) = (size) - (change)
(change) = (change) / 2
GO TO 2000

5000 a The maximum size has been found
CREATE-FILE (file-name) (max) ,
MESSAGE '(file-name) is (max) pages big '

FILE-STATISTICS (file-name),,,,,
END

ND-60.151.02A

3-23

3-5 Wu

Programs you write may also read or update the completion code. The
JEC library contains two subroutines for this purpose:

UEISECCODE(SSI-CODE,COMPL-CODE,STAT) (write operations)
UEIFECCODE(SSI-CODE,COUPL-CODE,STAT) (read operations)

Each parameter is an integer stored in 2 bytes. The parameter STAT is
the status from the monitor call performing the read and write
operations. For example, your program EXAMPLE-FROG may contain the
subroutine call to update the status code and the SSI code:

IF NUMBER = 0 THEN UEISECCODE(71OB,71OSOB.STAT)

A JEC command in the mode file can then test the status code and the
SSI code after executing your program. The following commands in the
mode file can be used:

@EXAHPLE-PROG
@JEC (IF SSI-CODE = 7103) OR (COMPL-CODE = SOB) TERMINATE

The JEC library for one-bank programs is called JEC-LIB—1B:BRF, and
for two-bank programs JEC-LIB-ZB:BRF.

We suggest you use SSI-CODES from 7008 to 7778, since they will not be
used by any Norsk Data products.

ND-60.151.02A

3-24

3.6 $9ne_Ieshniral_Derails

When you type @JEC BEGIN, JEC creates two scratch files:

1) JEC-xxxxx:DATA contains all the defined variables and their
values, as well as various global information if FOR loops or
PERFORM are used.

2) JEC-xxxxx:HODE is constructed when you use your own variables in
SINTRAN commands, as program parameters, or as program names. The
variables you define are replaced with their values on this file,
and the file is started by JEC.

The 5 x‘s (xxxxx) stand for the address of the RT description of your
backgroundl program, batch processor, or TAD (Terminal Access Device).
This means that the file name will always be unique, even if you run
several mode or batch jobs simultaneously.

Both files are deleted by the statement @JEC END.

3-7 IE§_§xntaa

Here is a complete syntax of JEC.

You only need to use the underlined syntax. Note that THROUGH or THRU
can be used. Likewise, both 60 To and GOTO are allowed.

RESIN

£LEAB:§QH2L£IIQN:SQDE

DEEIN£_$ifl§ntifiierz 2 up to 40 ASCII characters long

mmwumeric literal

(identifier>=<identifier>

E—NQ

ND-60.151.02A

3-25

(identifier) (identifier)
El! .1 'E' | D9

integer integer

[WHILE (condition)]

D-FO

M [numeric label]

GO 1'0 [numeric label]

TERMINATE
W THEN THRU

233W THROUGH numeric label

program name / SINTRAN III command

W ['string of ASCII characters

and/or (identifier)‘]

M§§SAQE ‘Asgn firing audio; (iggntifierr

MODE-INPUT

MODE-QUIPQT

TERMINATE
WE

GO TO numeric label

[ID—60.151021!

3-26

THRU
REBEQBH [numeric label [[THROUGH] numeric label] 1

‘s Cements in the mode/batch file

ND-GO.151.02A

3-27

111s

arithmetic ... 9, 22.
batch job

appearance 7.
how it differs from node job 7.
starting/ending 7.

BEGIN ... 7.
CLEAR-COMPLETION-CODE 8.
command ... 12, 13.
comment lines 17.
COHPL—CODE in programs calling JEC 23.
COMPLETION-CODE JEC variable 12, 17.
completion code 2, 7, 23.
conditional test 12.
conditional jump

IF .. 12.
ON-ERROR .. 14.

CR (Carriage Return) 16.
data types ... 12.
DATE JEC variable 12, 19.
DAY

'

JEC numeric variable 12, 19.
JEC string variable 12.

DEFINE ... 9, 10, 14, 24.
difference between mode and batch 7.
D0 ... 15, 25.
editing text in INQUIRE 11.
END ... 7.
END- FOR ... 14, 15, 25.
equations ... 15.
file

difference between mode and batch 7.
JEC-xxxxx:DATA 24.
JEC-xxxxx: MODE 24.
nested mode 7.
reading data from 11.
values stored in 10.

FOR ... 14, 15, 25.
forbidden commands in batch jobs 7.
FOR loops ... 14.
GOTO (See 60 TO)' 12.
GO TO ... 12, 15, 25.
IF ... 13, 15, 25.
IN ... 25.
INQUIRE ... 9, 10, 14, 25.
JEC

'

library ... 23.
test .. 12.
variable .. 12.

JEC-LIB-1B:BRF (JEC library file) 23.
JEC-LIB-ZB:BRF (JEC library file) 23.
JEC 100 (See also label) 12.
jump

conditional (IF) 12.

ND-GO.151.02A

3-28

conditional (ON-ERROR) 14.
unconditional (GO To) 11.

label ... 12
followed by a colon 12.

line that is too long 12,13, 17.
message ... 10.
MODE-INPUT ... 15, 16.
MODE-OUTPUT ... 15, 16.
MONTH JEC variable 12.
nested mode file 7.
numeric label 12.
ON-ERROR ... 14.
ON-ERROR GO To (numeric-label) 14.
ON-ERROR TERMINATE 14.
operators (in JEC tests) _ 12.
percentage sign (for comments) 17.
PERFORM ... 12, 14, 25.
print ... 15.
PRINT-COMPLETION-CODE 15.
PRINT-DATE ... 15.
program ... 12, 13.
records in files 10.
RECOVER (SINTRAN command) _ 14, 16.
RUN-MODE JEC variable 12, 13.
semicolon ... 12-14, 17.
SSI-CODE

in programs calling JEC 23.
JEC variable 2, 12, 13, 19.

start mode or batch job 7
STAT in programs calling JEC 23.
STATUS-CODE JEC variable 12, 13, 18, 19.
subroutine call to JEC 23
syntax ... 24.
TERMINAL-INPUT 15, 16.
TERMINAL-OUTPUT 15, 16.
TERMINATE ... 7, 8, 13, 25.
test conditional 12.
THEN ... 25.
THROUGH ... 12, 14.
THRU (See THROUGH) 12. .
UEIFECCODE ... 23.
UEISECCODE ... 23.
unconditional jump 60 T0 11.
VALUE in JEC prompt 10.
values stored in files 10.
variable ... 12.

numeric ... 9
string .. 9

WAIT FOR-CR ... 16.
WHILE ... 25.

ND-60.151.02A

4-1

43.539.51.513!

4-1 Introduction

The BACKUP—SYSTEM offers a variety of facilities for copying files to
and from disks, floppy disks. and magnetic tapes. Piles stored on
remote computer systems may also be copied.

The files may be copied to: archiving, backup, or other purposes. To
enable communication with other computer installations, the ANSI
standard label format is available for magnetic tapes.

Entering commands to the BACKUP-SYSTEM is easy. but slightly different
from SINTRAN III. Some commands have subcommands, i.e., the parameter
sequence is not solely determined by the first command entered. Online
help information is available for every prompted command, subcommand
or parameter at all levels of communication.

The old SINTRAN III commands @COPY-USERS-FILES} @CREATE-VOLUHE and
@LIST-VOLUME are now available under the BACKUP-SYSTEM. The commands
have some extended and altered facilities.

The BACKUP-SYSTEM can handle files produced under older versions of
SINTRAN III.

ND-GO.151.02A

Here is a pictorial overview of the BACKUP-SYSTEM:

@BACKUP-SYSTEH '—"—‘- Ba-5y :

EXIT ——-0 SINTRAN
DESCRIBE-ALL-COHHANDS

'-*' RECREATE-FILES-AND-USERS
CREATE-VOLUME
LIST-VOLUME
DELETE-VOLUHE-FILES

SERVICE-COMMAND-CUF

HULTIUSER-COPY COPY- USERS-FILES
I I

Destination type: Destination type:

DIRECTORY VOLUME DIRECTORY VOLUME

dir-nane vol-name dir-nane vol-name
dev-nale user-nan dev-nane
dev-unit dev—unit
file-gen file-gen

Source type: Source type:

DIRECTOR! VOLUME PARAH-PILE DIRECTORY VOLUME PARAl-FILE

air-name vol-name til-name dir-nale vol-name til-name
user-nan dev-nane user—nan dev-nane

dev-unit til-name dev-unit
file-gen tile-gen
til-name til-name

Manual user check:

YES
Manual selection: NO

LIST

SELECT C D

ND-60.151.02A

4-3

Cuf—Serv:

DUMP—BACKUP-SYSTEM (PROG user name)
MASTER—LOG—MODE (Master 109 file) (Append access?)
SET—VOLUME—ACCESS (General public access?)
DESTINATION-EXPANSION—MODE (Automatic expansion?)
COPY—MODE (Special mode)
MODE-STANDARD-VOLUME
MANUAL-STANDARD-VOLUME
MODE-BACKUP-SYSTEM-VOLUME
USER—COPY-LOG-MODE (Log file) (Append access?)
SET-ALLOCATE-CREATE—DEFAULT (Default answer)
SET-SINGLE—SEARCH
RESET-SINGLE-SEARCH
SET—MATCHING-MODE (Exact matching cases)
SHRINKING~MODE (Shrinking?)

EXIT

Selection:

FILE-NAME (File name)
MODIFIED-SINCE-LAST-BACKUP
DESTINATION-FILE-EXISTS
PILE-ATTRIBUTE (Attribute)
WRITTEN-DATE-INTERVAL (First date) (Last date)
READ—DATE-INTERVAL (First date) (Last date)
FILE—INDEx-INTERVAL (Low index) (High index)
GENERATION-INTERVAL (Low gener.) (High gener.)
AND
OR
NOT
)
(
LIST—FILES-SELECTED (Output file)
LIST-SELECTION
DELETE—LAST—KEY

EXECUTE Manual file check YIN

ND-60.151.02A

4-4

4.2 mm

This section gives an overview of the commands available. Three of the
commands, COPY-USERS-FILES, MULTIUSER-COPY and SERVICE-PROGRAH-CUF,
have their own set of subcommands. One of the subcommands available
under COPY-USERS-FILES and HULTIUSER—COPY has one further level of
subcommands.

A detailed description of all commands, subcommands, and parameters is
available interactively by entering the command DESCRIBE-ALL—COMHANDS.
You may also answer prompted commands or subcommands by typing HELP
(<command name>) to have information displayed.

Information about legal parameters is available by answering a prompt
with a question mark (?). Information about a particular command or
subcommand is available by terminating a command name with a question
mark, for example, COPY-USERS-FILES?.

Below is a list of all the commands and their parameters:

HELP ((command name>)
DESCRIBE-ALL-COHMANDS (<output file))
COPY-USERS-FILES (Destination type: Subcommand),

(Source type: Subcommand)
(Manual selection: Subcommand)

MULTIUSER-COPY (Destination type: Subcommand)
(Source type: Subcommand)
(<Hanual user check?))
(Manual selection: Subcommand)

CREATE-VOLUME (volume name>,<device name),(<device unit>L
DELETE-VOLUME-FILES (volume name),<device name),

(<device unit)),
(<generation of first file to delete>),
(<file name))

LIST—VOLUME (device name>,(<device unit)),(<file name)),
(<output file))

SERVICE-PROGRAH-CUF (CUF-SERV: Subcommands)
EXIT

The COPY—USERS—FILES command has subcommands to describe the source
and destination of the files to be copied. In this case, parentheses
do not indicate parameters with default values, but subcommands. The
subcommands will be prompted by Destination type . Source type: and
Manual selection:. A volume is a set of files stored sequentially, for
example, on magnetic tape.

ND-60.151.02A

4-5

Destination type subcommands in the COPY-USERS-FILES command are:

DIRECTORY ((destination directory name)),
(<destination user name))

VOLUME (destination volume name),(destination device name),
((destination device unit)).
((destination file generation>)

Source type subcommands in the COPY—USERS—FILES command are:

DIRECTORY ((source directory name)),(<source user name)),
(<source file name))

VOLUME (source volume name),(source device name),
(<source device unit)),((source file generation)),
(<source file name))

PARAMETER—FILE (parameter file name)

Manual selection subcommands in the COPY-USERS-FILES command are:

YES
NO
LIST
SELECT (Selection: Subcommands),(manual file check?)

Selection subcommands in the SELECT alternative in manual selection
are:

FILE-NAME ((file name))
MODIFIED-SINCE-LAST-BACKUP
DESTINATION-FILES-EXIST
FILE-ATTRIBUTE ((attribute>)
WRITTEN-DATE-INTERVAL (<first date>).(<1ast date))
FILE-INDEx-INTERVAL (<low file index)),(<high file index))
GENERATION-INTERVAL ((low file generation>).

((high file generation))
AND
OR
NOT
(
)
LIST-FILES-SELECTED (<output file>)
LIST-SELECTION
DELETE-CURRENT-SELECTION
DELETE-LAST-KEY
EXECUTE

ND-60.151.02A

4-6

The HULTIUSER-COPY command is suitable for copying more than one
user's files in one operation. All user names matching the entered
source user name will be copied. Below is a list of the subcommands:

Destination type subcommands in the HULTIUSER-COPY command are:

DIRECTORY ((destination directory name>)
VOLUME (destination volume name),<destination device name),

((destination device unit)),
((destination file generation))

Source type subcolmands in the HULTIUSER-COPY command are:

DIRECTORY ((source directory name>),(<source user name>)
VOLUME (source volume name>,(source device name),

((source device unit>),(<source file generation)),
(source file name>)

PARAMETER—FILE (parameter file name)

The MULTIUSER—COPY command then has a parameter (manual user check?)
before the manual selection subcommands. These subcommands are
identical to the manual selection subcommands in the COPY-USERS—FILES
command. The default (manual user check?) is to list all matching user
names.

Special copying modes for the COPY-USERS-FILES and HULTIUSER-COPY
commands are selected by using the SERVICE—PROGRAM-CUF. The SERVICE-
PROGRAM-CUF uses the prompt Cuf-serv:. The following subcommands are
available:

HELP ((command name>)
DUMP-BACKUP-SYSTEM ((bpun user name>)
MASTER-LOG-MODE ((master log file)),((append access?))
SET-VOLUME-ACCESS ((general public access?))
DESTINATION-EXPANSION ((automatic expansion?))
COPY-MODE (special mode)
MODE-STANDARD-VOLUHE
MANUAL-STANDARD-VOLUHE
MODE-BACKUP-SYSTEM-VOLUME
USER—COPY-LOG-HODE ((log file)),(<append access?>)
SET-ALLOCATE-CREATE—DEFAULT (<default answer?>)
SET-SINGLE-SEARCH
RESET-SINGLE-SEARCH
SET-MATCHING-HODE ((exact matching cases?>)
SHRINRING-HODE ((shrinking?))
EXIT

Some of these subcommands are restricted to user SYSTEM.

4.3W

One or more files may be copied between disks. floppy disks, or
magnetic tape by the COPY—USERs-FILES command. On sequential storage
media like magnetic tapes, a volume must be created instead of a
directory. The user giving the CREATE-VOLUME command will be the owner
of the volume.

ND-GO.151.02A

4-7

A floppy disk may also be used as a sequential storage medium. In that
case, a volume must be created on it. The first file of a volume may
extend over several volumes. You will be asked to enter a new volume
when large files make this necessary, or when there are more files to
be copied when using the COPY-USERS-FILES command.

The following is an example of how files can be copied from a disk to
a volume on a floppy disk. The two files CHAPTER-0NE:TEXT and CHAPTER-
TWO:TEXT are copied to the volume EXVOL. User P-HANSEN has default
directory PACK—TWO. The prompts include the default values between
slashes (' ...').

@W J '
Ba—sy: WJ

Volume name: EXEQL
Device name:

EL%¥£I;DI§§;1
+J

Device unit: Q
Ba—sy: W5 «1

Destination type: yQLflME +J
Destination volume name: ExygL +J
Destination device name: - - +J
Destination device unit: Q
Destination file gener tion'1': 1 +J

Source type: 9133:1931
Source directory name 'PACK—TW ': «J
Source user name 'P—HANSEN':
Source file name

'.:,jIEXI
«J

Manual selection: 125

FILE 4: (PACK-TWO:P-HANSEN)CHAPTER—0NE:TEXT;1
INDEXED FILE 3 PAGES MODIFIED 29/08-83 (YES/N0?) 135 *J

FILE 5: (PACK-TWO:P-HANSEN)CHAPTER-TWO:TEXT;1
INDEXED FILE 7 PAGES MODIFIED 14/10-83 (YES/NO?) 235 “J

FILE 9: (PACK-TWO:P-HANSEN)MEMO:TEXT;1
INDEXED FILE 1 PAGE. MODIFIED 17/03-63 (YES/N0?) HQ *J

Ba-sy: EXIT +J

The copied files will have the same names on the volume as on the
source directory. The copied filesvcan be copied back to the disk by
using EXVOL as source and PACK-TWO as destination.

If new backup copies of the same files will be stored on the volume
later, you can use the (destination file generation) parameter. For
example, the file generations can be numbered consecutively. This will
help you distinguish between different generations of the same file
later on. Alternatively, you could use a date identification, for
example, 1125 meaning November 25th.

ND-60.151.02A

4-8

The SINTRAN III standard device names are FLOPPY—DISC-1, FLOPPY-DISC-
2, MAG-TAPE-1, MAG—TAPE-Z, MAG-TAPE-3, and MAG-TAPE-4. The device MAG-
TAPE-1 unit 0 must have the peripheral file name MAG-TAPE-O, unit 1
must have the name MAG—TAPE-1, etc. To use a volume on a floppy disk,
the FLOPPY-DISC-1, unit 0, must have the name FLOPPY-1, unit 1 the
name FLOPPY-Z, etc.

Another example shows how files can be copied from a disk to a floppy
disk. A directory is first created and entered. Then a user with a 616
page user area is created on the directory. Note that some floppy disk
systems only allow 148 pages to be used.

@ - -- _.JM- -- -—.J
@9EEhIE;flEEfliflAQKHE:§&;EZL_E:HAH&Efl@-- .J
@EfiflfiflflzfiifiififlBa—swcgexzusaassume’

Destination type: DIEEQIQBX «J
Destination directory name'PACK-TW ': BA;KH2;§A;§2 *J
Destination user name'P-HANSEN':

Source type: W
Source directory name'PACK-TWO': +J
Source file name":JJ

Manual sele tion: HQ
Ba-sy: EXII@WJ

All files belonging to user P-HANSEN will be copied to the floppy
disk. When the files are to be retrieved from the backup copy later,
only the command @ENTER-DIRECTORY should be given before the BACKUP-
SYSTEM is entered. Note that the source and destination should be
interchanged.

Version E of the BACKUP-SYSTEM lets you make a sophisticated selection
of source files, and it allows you to copy several users in .one
command.

You may, for instance, select those files which have been written to
in the last week. You may also define logical combinations of simple
selections.

ND-60.151.02A

4-9

For instance, the selection

@aacxn2;sxsi£u «J
Ba—sy: £921:fl5£BS:EILES «J

Manual selection: SELESI «J
Se1ection: unizxzuznAIEiiuiznyAL «J

First date:
?§.]2.3Last date:

Selection: AND_NQI_E}LE:HBHE_LHBE ~J
Selection: EXEQHIE

will cause all the files written to since December 3, 1984 to be
copied, excluding all :BRF files. since no last date was specified,
the last date is today (actually, it is to infinity).

This may be a useful selection when one user is taking a backup of
his/her files.

Note that if any files have suffixes starting with :BRF, such as
:BRFA, :BRFB, :BRFZ; :BRF1, etc., they too will not be copied. You can
be sure that only exact matches are copied/not copied as follows:

Ba—sy: EEK!I§£:EBQ§BAH:§H£ «JCut-serv: SEI:HAI§HIH§:HQDE «J
Exact matching cases: ALL «J

Cuf-serv: EXII «J
Ba-sy: CDRX:DE£B£:£ILE§ «1
(continue as above)

This will copy files with the suffix :BRFA, :BRPB, etc., but not :BRF.

The first time a user takes a personal backup of his/her files, s/he
should avoid selecting WRITTEN-DATE-INTERVAL. Instead, s/he should
copy all the files. Subsequent backups need only copy files that have
been written to since the last backup.

ND-60.151.02A

4«1O

4.4W

The BACKUP-SYSTEM can be entered by typing @BACKUP—SYSTEM. You return
to SINTRAN III by giving the EXIT command. The BACKUP-SYSTEM uses the
prompt BA-SYz.

Files may be copied to and from remote computer systems, provided
COSMOS and SINTRAN III version I or later are available. You use
information about the remote system as a prefix to the name of a file,
directory, or mass storage device. Remote system information consists
of the following parts:

<SYSTEH>((DIRECTORY):(USER>(<PASSWORD):<PROJECTPASSWORD))).

Below is an example of complete remote system information:

RONALD(PACX-0NE:MARY(XYZ:ACCOUNTS)).

Host parts of the identification have default values. For example a
floppy disk device on a remote computer system RONALD is identified by
RONALD.FLOPPY-DISC-1. Further information is found in the manual
COSMOS User Guide (ND-60.163).

Several commands may be written on the same line. When these commands
are processed, the BACKUP-SYSTEM will trace them by outputting the
prompts, commands, and parameters.

4-4-1InfsnsiiBJlInmn9n

Detailed information about all commands, subcommands, and parameters
is available interactively by the command:

DESCRIBE-ALL-COMMANDS (<output file>)

The default (output file) is your terminal. The output is quite long,
and you may want to use a mass storage file or a printer as the
(output file).

Entering HELP, a question mark (?), or (ESCAPE) is useful in many
situations. HELP ((command name)) is used to list commands or a subset
of commands. HELP does the same for prompted subcommands also.

A question mark (?) given as the answer to a prompted command,
subcommand, or parameter will display information. A question mark
following an ambiguous command will list the commands matching the
given command abbreviation. Information about a particular command or
subcommand is displayed by entering the command name followed by a
question mark.

When information requested by HELP or ? has been displayed, you will
once more be prompted for the command, subcommand, or parameter.
<ESCAPE> can be used to cancel a command or subcommand. If not given
as an answer to a prompted subcommand or parameter, <ESCAPE) will
return you to SINTRAN III.

ND-60.151.02A

4-4.2W

A volume must be created on a sequential storage medium before files
can be stored on it. Files stored on a volume may also be listed or
deleted. The command to create a new volume is:

CREATE—VOLUME (volume name),(device name),((device unit))

The (volume name) has a maximum of six characters. The (device name)
and (device unit) specify where the floppy disk is inserted, or where
the magnetic tape is mounted. The (device name) may be on a remote
system, for example, RONALD(PLOPPY—USER) FLOPPY-DISC-1. The (device
units) are numbered from 0-3. If only one device unit exists, it is
number 0.

After this command, files already on the floppy disk or magnetic tape
specified will be unavailable. Only one volume may exist on a floppy
disk or magnetic tape. A volume can contain files from many users. The
first file on a volume may extend over several volumes.

Volumes will be written in the BACKUP-SYSTEH'S default format unless
the SERVICE-PROGRAH-CUF is used. All available volume formats produced
by the BACKUP-SYSTEM will automatically be detected and handled
properly when read. This also applies to volumes produced by the
@COPY-USERS—FILES command in SINTRAN III version F and older versions.

The file names on a volume can be output by the command:

LIST-VOLUME (device name),((device unit)).((file name)),
((output file))

All file names matching the (file name) parameter will be output. No
directory name can be used in the file name. The default (output file)
is your terminal. The (device name) and (device unit) must describe
where the volume is.

Files stored on a volume can be deleted. The command below will delete
the specified file and the files following it.

DELETE-VOLUHE-FILES (volume'name),<device name),
((device unit>),
((generation of first file to delete)),
((file name))

Files cannot be deleted randomly, because a volume is a sequential set
of files. The default value of (generation of first file to delete) is
all file generations. Manual check is mandatory, i.e., you have to
confirm that you want to delete the files by entering YES or NO from
your terminal.

ND-60.151.02A

4.4.3 Wigs

One or more files can be copied from one mass storage medium to
another. The command to copy one user‘s files is:

COPY-USERS-FILES (Destination type: Subcommand),
(Source type: Subcommand),
(Manual selection: Subcommand)

The destination type may be specified as DIRECTORY or VOLUME. The
source type may be specified as DIRECTORY, VOLUME, or PARAMETER-FILE.
The manual selection may be specified as YES, NO, LIST or SELECT. To
copy files to a directory on a disk or floppy disk, you should use the
subcommand:

DIRECTORY (<destination directory name)),
(<destination user name))

The (destination directory name) and <destination user name) must
exist on a disk or floppy disk. The default values are your own user
name and your default directory. A remote directory name, for example,
RONALD.PACK—TWO, may be specified. The default user entered on the
remote system is the destination user.

To copy files to a volume on a floppy disk or magnetic tape, you can
use the destination type subcommand:

VOLUME <destination volume name>,<destination device name),
<destination device unit),(<destination file generation))

The (destination device name) and <destination device unit) describe
where the magnetic tape is mounted or where the floppy disk is
inserted. The <destination device name) may be remote. The
(destination file generation) can be used to give the copied files a
generation name of up to four characters. The file generation allows a
set of files to be stored on the same volume more than once.

To copy files from a directory to any of the described destinations,
you can use the source type subcommand:

DIRECTORY (<source directory name)),(<source user name)),
(<source file name))

The (source directory name) may be remote. The default user entered on
the remote system is the source user. The <source user name> cannot be
ambiguous. More than one user's files can be copied in one operation
by another command, called MULTIUSER-COPY.

ND-60.151.02A

4-13

To copy files to a volume, you can use the source type subcommand:

VOLUME (source volume name>,(source device name),
(source device unit>,(<source file generation>),
(<source file name))

The (source device name) may be remote. The default (<source file
generation)) is all generations.

A third sdurce type subcommand can be used if the names of the files
to be copied are stored on a file. This makes it possible to copy
different users' files in one operation. The subcommand to use is:

PARAMETER-FILE (parameter file name)

The (parameter file name> must contain a list of file names or user
names. The default file type is :SYHB. Only words in the parameter
file which contain a left parenthesis, '(', are treated as file names.
The other words are ignored, i.e., the output from the SINTRAN III
command @LIST—FILES will be accepted. The files listed must reside on
directories. The command has the same function as the COPY-USERS-FILES
command with directory as source type.

If the parameter file includes user names, all files belonging to
these users will be copied. The formats of strings accepted as user
names are the ones identical to the output from the SINTRAN III
command @LIST-USERS. That is, the strings starting with space, colon,
space, directory name:user name, for example:

: PACK-TVO:FLOPPY-USER

The COPY-USERS-FILES command accesses files by the normal SINTRAN III
rules. However, user SYSTEM may access any user‘s files with the same
access rights as the file owner, allowing files to be copied on behalf
of the user.

You can select the files to be copied. To make the system list each
file and wait for you to confirm copying, do this:

Ba-syz'W «J
. Destination and

source
type ...

Manual Selection? 125

Then you have to enter YES or NO for each file name listed on your
terminal.

ND-60.151.02A

4-14

To copy all files without listing or manual confirmation, do the
following:

Ba—sy: Wins 4
. Destination and so rce type .

Manual Selection? N9

To copy all files and list their names, but without manual
confirmation, do this:

Manual Selection? L151 *1

You can make advanced selections as follows:

Ba—sy: W+1
. Destination and source type .

Manual Selection? SELECT +J
Selection: (You make your selections) +J

Selection: EXEQHIE «J
Manual file check? _

Various subcommands are available for making advanced selection of
files in addition to the selections specified under source type. For
example, you may copy all not allocated files modified since the last
backup copy was taken.

The selection prompts allow you to specify various selection keys, and
to use the logical operators AND, OR, NOT, and parentheses between the
selection keys. The selection prompts allow you to specify a file name
as a selection key by the command:

FILE-NAME (<file name))

All files matching both the source type specification and the given
(file name) are selected. No directory name is accepted.

To select only the files modified since the last backup was taken,
user SYSTEM can use the command:

MODIFIED-SINCE-LAST-BACKUP

The command should be used with a 109 file to keep track of the backup
copies. Log files are described in the SERVICE-PROGRAM-CUF'S
subcommand MASTER-LOG-MODE. The source type should be directory.

You can select a copying mode that only copies files if the
destination file exists in advance. The destination type should be
directory. The command to use is:

DESTINATION-FILES-EXIST

ND-60.151.02A

File attributes are indexed, continuous, allocated, peripheral,
spooling, terminal, or temporary. You may select files by attributes.
The default attribute is indexed. Use the command:

FILE-ATTRIBUTE (<attribute>)

You may select files modified in a specified time frame. If the source
type is directory, a log file is required. If the source type is
volume, the parameter (last date) is the date the file was copied to
the volume. The command to use is:

WRITTEN—DATE—INTERVAL (<first date>).(<1ast date))

The dates are entered as yy.mm.dd, for example, 84.12.31. The default
is from the beginning of time to the end of time. The interval
includes the specified dates.

You may select files that have been read in a specified time frame:

READ-DATE-INTERVAL ((first date)),(<last date))

See WRITTEN-DATE-INTERVAL above.

Each file belonging to a user on a directory has an index number. The
file index nunber is the number output in front of each file name in
the SINTRAN III command @LIST-FILES. To select files by file index
numbers, you can use the command:

FILE-INDEX-INTERVAL (<lou file index>),(<high file index>)

The default (low file index) is 0, and the default <high file index)
is the maximum index number used.

The interval includes the specified index numbers. On a volume, the
sequence number of the file will be used as the file index.

File generations can be created on volumes. To copy an interval of
source file generations, you can use the command:

GENERATION—INTERVAL (<low file generation)),
(<high file generation))

The parameters have a maximum of four characters. The first parameter
has no limit as its default value. The second parameter has no limit
as its default value if the file generations are numeric. Otherwise,
the low file generation is the default value. The interval includes
the specified file generations.

ND-60.151.02A

4-16

The selections provided by the described commands can be combined by
using the logical operators AND, OR, NOT, and parentheses. A couple of
examples show how to use the logical operators:

Selection:
W._|

Selection: AND
Selection: 1 +JSelection:WJ
Selection: 93
Selection:

EIE§:AIIBIBDIE_£QNIINHQHE
*J

Selection: 1

Each line is terminated by carriage return, and 'Selection:' will
appear again. Selections may also be combined on one line, for
example:

Selection: HQI_i_EILE:NAHE_iIEXI_AND_EILE:INDEX:NHHBEB_Qi19_l *J

If you give two logical operators adjacent to each other in a
meaningless sequence, for example, AND OR, the last will overrule the
first. ANDs will be evaluated before ORs:

Selection: EILE:HAHE_A_9E_EILE:NAHE_B;AND_EILE:HAHE_£ *J

means

Selection: EILE:HAME_A_9B_i_EILE:flAMEJlJflELJILE:NAME.§.i *J

and not

Selection: (EILE:HAHE_A_QR_EILE:HAHE_H_J_JEELIILE:HAME_§ *J

When you have specified selections, you can get a list of all the
files affected. Your terminal is the default <output file). The
command to use is:

LIST-FILES-SELECTED (<output file))

You may also have all current selection keys listed on the terminal.
The command to use is:

LIST-SELECTION

You may delete the complete selection or the last specified selection
only. The commands to use are:

DELETE-CURRENT-SELECTION
DELETE-LAST-KEY

ND-60.151.02A

4-17

When you have completed the selection, you can stop the 'Selection:'
prompts by typing the command:

EXECUTE

You will then be prompted for (manual file check?) before the selected
files are copied.

The parameter (manual file check?) must be answered by YES, NO or
LIST. YES will cause a manual check of all files. N0 and LIST will
copy all files without asking for confirmation. LIST will output the
names of all files copied.

The BACKUP-SYSTEM tries to set maximum access rights to the
destination files before copying if the destination is not remote.
That is, you cannot protect destination files against yourself or user
SYSTEM by setting no write access.

Public users can only access their own volumes, or volumes owned by
FLOPPY-USER. User SYSTEM, however, has both read and write access to
all volumes. The BACKUP-SYSTEM may also be dumped in a copying mode
where all users have access to any other user‘s volumes.

The (destination user name) may differ from the (source user name)
when copying between directories. If the (destination user name)
differs from the original owner of the file on a source volume, you
will be asked which user should receive the copy. A new user name may
also be,spagified. '

When copying between directories, the <destination file name) may
already exist. In that case, the source and destination dates for LAST
OPENED FOR WRITE are checked. If the destination was written to later
than the source, you will be asked whether you are copying in the
right direction.

The user must ensure that enough space is available for all files to
be copied. User SYSTEM may select a copying mode where the destination
user's space will be expanded if necessary. All of the necessary file
names will be created automatically. Only the default directory of a
user will be accessed when no explicit directory name is given. Any
directory may be accessed by stating its name explicitly.

The COPY-USER—FILES command will also copy the contents of the fields
FILE ACCESS, LAST DATE OPENED FOR READ, LAST DATE OPENED FOR WRITE,
CREATION DATE, and MAX BYTE POINTER. For user SYSTEM and for users
with directory access to the source, the LAST DATE OPENED FOR READ and
number of times OPENED will not be updated on the source file.

ND-60.151.02A

4-18

4.4.4W

The command COPY-USERS-PILES copies several users' files in one
operation by'specifying each file name or user name in a parameter
file. More advanced copying facilities are offered by the command:

MDLTIUSER—COPY (Destination type: Subcomlands)
(Source type: Subcommands)
((Manual user check?))
(Manual selection: Subcommands)

The subcommands are quite similar to those of the COPY-USERS—FILES
commands, but lack the parameters related to destination user names.
This section will only explain subcommands and parameters which differ
from those of the COPY-USERS—FILES command.

The destination type subcomlands in the MULTIUSER-COPY command are
DIRECTORY or VOLUME. The subcomland DIRECTORY has only (destination
directory name> as a parameter. The subcommand is restricted to user
SYSTEM.

The users specified as source may not always exist on the destination
directory. If you use the DESTINATION-EXPANSION command in the
SERVICE-PROGRAM—CDF, the users will be created automatically. VOLUME
is identical to that of COPY-USERS-FILES.

The source type subconmands in the MULTIUSER-COPY command are
DIRECTORY, VOLUME or PARAMETER-FILE. The subcommand DIRECTORY has
(source directory name) and (source user name) as its only parameters.
The subcommand PARAMETER-FILE should contain file names or user names
preceded by the string 'z', i.e., space, colon, space, and possibly
directory names. For example, the following will be recognized as a
user name:

XX : PACK-TWO:P-HANSEN

The output from the SINTRAN III command @LIST-USERS will be accepted
as a parameter file. To check which user's files will be copied, you
have the parameter (manual user check?). Possible answers are YES, NO
and LIST. LIST is the default value.

The other subcommands and parameters in MULTIUSER—COPY are identical
to those of COPY-USERS-FILES.

Note:

Only user SYSTEM may restore the source object entries unmodified.
slhe does that by using the selection MODIFIED—SINCE-LAST—BACKUP, that
is taking incremental backup. otherwise, the open count and the date
last read will be updated on the source.

ND-60.151.02A

4—19

4-4-5WW

Various options for the commands COPY-USERS—FILES and MULTIUSER-COPY
can be selected. To do this you must first enter:

SERVICE-PROGRAM-CUF (Cuf-serv: Subcommands)

A set of subcommands is available. The prompt used is CUF—SERV:. You
return to the BACKUP-SYSTEM by the EXIT command. HELP. ?, and (ESCAPE)
are available as before.

You change how the BACKUP-SYSTEM works by using different subcommands
to be described later. User SYSTEM can make permanent modifications in
the BACKUP-SYSTEM. The subcommand to use is:

DUMP—BACKUP-SYSTEH (<prog user name))

The BACKUP-SYSTEM will be dumped on the file BACKUP—X:PROG which must
exist in advance. 'X' stands for the version. The <prog user name)
must specify the user name where system :PROG files are normally
stored. The user may be a remote user. Default is user SYSTEM. The
@DUNP-PROGRAH-REENTRANT command ought to be given afterwards.

The information on a volume may be in different formats. A volume may
also contain files in a mixture of formats. The three following
commands will select copying formats. They will only affect output to
magnetic tape. Some SINTRAN III file system information is copied
together with the files in all formats.

MODE-STANDARD-VOLUME
MANUAL-STANDARD-VOLUHE
MODE-BACKUP-SYSTEM-VOLUHE

The subcommand MODE-STANDARD-VOLUHE selects the ANSI defined format. A
hole in a file is a page not written to and not allocated space. Holes
will be copied as empty pages. If MANUAL-STANDARD-VOLUHE is used,
copying of files with holes must be confirmed from your terminal.

The BACKUP-SYSTEM-VOLUHE format will mark holes by a label instead of
copying empty pages. This format can only be used with files to be
handled by the BACKUP-SYSTEM. The BACKUP-SYSTEM is initially in this
mode.

User SYSTEM may allow public users other than the owner to access a
volume. This is done by the subcommand below, followed by the dumping
of the BACKUP-SYSTEM to make the modification permanent. The parameter
should be YES or NO. The default is NO.

SET-VOLUHE-ACCESS (<genera1 public access?))

ND-GO.151.0ZA

4-20

Continuous and allocated files may cause problems when copied. Such
files cannot always be allocated in the way they are described by the
file system information on the source directory or volume. In that
case, you will be asked if the files should be stored in another way.
If you answer YES, the following rules apply:

1) Allocated source files will be created as continuous files if
possible, or else they will be created as indexed files.

2) continuous files will be created as indexed files.

If you answer No, files will not be copied. To set a default answer to
all such questions, you can use the subcommand:

SET—ALLOCATE-CREATE-DEFAULT ((default answer))

The original terminal answer mode can be reset by using this command
with <RETURN> as (default answer). This facility is useful when
copying many files in mode and batch jobs.

The normal search algorithm on a volume goes from beginning to end.
All files matching the given (source file name) are copied. A special
single search mode for volumes on magnetic tape may be switched on and
off by the commands:

SET-SINGLE-SEARCH
RESET-SINGLE-SEARCH

The single search mode operates in the same way as the normal search,
until one file or a group of consecutive files has been copied.
Copying terminates at the first nonmatching file name. The search
begins from wherever the magnetic tape is positioned. The tape is not
rewound while in single search mode.

The single search mode makes it possible to copy a number of files
with one pass through a tape. In order to achieve this, the files must
be selected in the same order as they appear on the volume. Care must
be taken when copying files to tape, if a single search is to
successfully gather all the files a user wishes to retrieve.

For example, you may use the subsystem FILE-MANAGER. The FILE-MANAGER
can produce a parameter file where the file names are sorted in
different orders, for example, alphabetic. Files will then be stored
on the volume in this order. ,

Information for all files copied by the BACKUP-SYSTEM can be stored on
a log file. The information includes source, destination, date of
copying, and which files are copied. The subcommands to use are:

MASTER-LOG-HODE (master log file),(<append access?>)
USER—COPY-LOG-MODE (log file>,(<append access?))

The master log mode is for user SYSTEM only. The user log mode is for
public users only. Both commands must specify a log file where the
information should be stored. The log modes are reset by giving
<RETURN> as the log file.

ND-60.151.02A

4-21

The (append access?) question is answered by YES or NO. YES will cause
the log information to be appended to the log file, instead of
overwriting the old information on the file. YES is default. If the
BACKUP-SYSTEM is dumped in the master log mode, the (master log file)
must always be present when copying as user SYSTEM.

A (source file name> will normally mean all matching file names. A
subcommand can be used to restrict this to identical file names only.
The subcommand to demand exact matching in different cases is:

SET-HATCHING-HODE ((exact matching cases?>)

The legal values for (exact matching cases) are ALL, PAR, or NO. PAR
will only demand exact matching of file names in parameter files. The
default is ,exact matching in N0 cases. If an empty file name or file
type is searched for, all files will be accepted as in the normal
matching mode.

The destination user area may sometimes be too small to hold the
copied files. User SYSTEM may use a command to expand the user areas
automatically:

DESTINATION-EXPANSION-HODE ((automatic expansion?))

The answers are YES or N0. N0 is default. This command affects output
to directories only. When you use the MULTIUSER-COPY command, the
destination users may not exist in advance. If the automatic expansion
is selected, the user names will be created. The BACKUP-SYSTEM can be
dumped to make this modification permanent.

A file may occupy more pages than needed to contain its data, for
example, after text editing. Indexed files in destination directories
may be shrank so that they do not exceed the MAX BYTE POINTER of the
source file. The subcommand to use is:

SHRINKING-MODE (<shrinking?>)

The answer to the parameter should be YES or NO. The default is NO.
Care should be exercised, since the MAX BYTE POINTER does not always
give the last valuable byte of a source file.

ND-60.151.02A

4-22

There is a new subconmand under the SERVICE-PROGRAH-CUF command:

COPY-MODE (Special mode)

It lets you set one of the following special modes:

COPY:

ARCHIVE:

OVERWRITE-INCREMENTAL:

NO-OVERWRITE:

CONTINUOUS-DESTINATION:

INDEXED-DESTINATION:

The object entries of the files, that
is, opened dates, access rights, etc ,
are not copied.

The source files or their pages are
deleted after copying.

The existing versions of the
destination files should be
overwritten.

Even if versions of the destination
files exist, new file versions will be
created.

The destination files will be
continuous even if the source files
are not.

The destination files will be indexed
even if the source files are not.

A more detailed description is obtained by pressing ? when you receive
the prompt ”Special mode: '.

ND-60.151.02A

4—23

An important development in version F is the possibility of archiving
files that have not been used for a long time. Archiving means copying
the source files to the backup disk, and deleting them or their pages
on the source disk. That will save space on the source disk.

For instance, if you wish to archive files not used since 83.12.31,
you may use the new subcommand COPY-MODE under the SERVICE-PROGRAH-CUF
command to set the BACKUP—SYSTEM in the ARCHIVE mode.

@W J
Ba—sy:W«1

Cut-serv:WJ
Log file " :mmngiuwe
Append access 'YES' :

Cuf—serv: QQEI;MQDE *1
Special mode " : ARCHIEE «J

HAVE YOU
SUFFICEENT

BACKUP OF THE FILES T0 ARCHIVE? Xfifi +J
Cuf-serv: EXII

Ba-sy: WJ
Manual selection: SELEQI «J
Selection: - -

First date " : 15.1.]
Last date " : 53.12.31 +J

Selection:
AHD_BEADE?AIE:INIEB!AL

*J
First date " : *
Last date " :

Selection: EXBQHIE

.J

* Note that the first date limit for read is 0 when not specified.

That will select the proper files to archive. All files last written
to in the years 1975 to 1983 and read before 1984 (or never read) will
be archived.

When you use the COPY-USERS-FILES command, as in this example, the
source files will be deleted.

To have delete access to the files, one should normally be logged in
as the source user. To have write access to the destination files, one
should normally be entered as the destination user. Thus, the source
and destinatibn users should be the same. They should be on different
directories, or the destination type should be VOLUME if the
destination is a floppy disk or tape.

When user SYSTEM uses the HULTIUSER—COPY command to archive, the pages
of the source files will be completely deleted, but the file names
will remain. Thus the owner of the files will be able to see when the
files where archived by using the @FILE-STATISTICS command.

ND-60.151.02A

4-24

4-4.6 WW

There is a new command:

RECREATE—FILES—AND-USERS (destination directory name),
(parameter file name). (manual user check?>,
(manual file check)

You can use it to create files and users listed in a parameter file.

Public users may not create users. A parameter file cannot be used
when copying from a volume. You may instead create all the destination
files on empty users, and copy the volume by selecting DESTINATION-
FILES-EXIST. Only those files for which the destination files already
exist will then be copied.

Suppose you have a list of files to be copied from a volume to an
empty user. This list is placed on a file called RECOVER-FILES:LIST.
Then the BACKUP-SYSTEM is used as follows:

Ba-sy: BESBEAIE:£ILES:AND:HSEBS *J

Parameter file name: BfiflfllfiflzilLEEiLIfiI ‘J

Ba-sv: EQRI;HSEBS:EILES «J
Destination type: DIR «J

Source type: EQLHHE *J

Manual selection: SELEQI *J
Selection: nzsrinarigu;riirs;£x15r «J
Selection: EXEQHIE

ND-60.151.02A

4-25

4.5W

The default destination directory is now the directory of the
destination user given. Likewise, the default source directory is now
the default directory of the source user given.

Check all old mode files so that this new version of the BACKUP-SYSTEM
will not access the wrong directories!

4.6W

Implementation of magnetic tape volumes is based upon the American
National Standard Magnetic Tape Labels for Information Interchange
X3.27-1969.

However, some deviations from the standard have been made. Deviations
are marked by a dollar sign (3) in the explanation.

General rules:

- The general tape layout is as follows:

VOL1 HDR1 HDRZ UHL1'-file1-*EOF1

EOF1
HDR1 HDRZ UHL1-file2- * 0R **

EOV1

where VOL1,HDR1,HDR2,UHL1, EOF1, and EOV1 are tape labels,
and asterisks are tape marks.

- All labels are 0 character blocks.

- All information in the labels is recorded as ASCII characters
with the parity bit cleared. All unused character positions
will contain spaces.
$ The user option field (3) in the label UHL1 contains binary
information.

- File data is recorded as 204 character blocks. These blocks
may contain any character (0-255).

ND-60.151.02A

4-26

$$$$ Deviation From Standard

— Only the first file on a volume may be extended to other
volumes.

- A nonstandard label, HOLE, has been introduced. This label

Example:

can be inserted between the file data blocks. The important
information in this label is a 32-bit binary number contained
in characters 77-80 of the label. The BACKUP-SYSTEM uses this
number in the following way:

Each 2043 character block on the tape corresponds to a 1024
16-bit word block on the disk, referred to as a page. The
pages are numbered 0, 1, 2, 3, etc., to establish a logical
sequence of pages. If the logical sequences are not
continuous, then a HOLE label defines where the next block on
the magnetic tape logically belongs in the disk file. In
order to represent a logical HOLE on the magnetic tape, the
HOLE label will be inserted in front of the next block,
stating this block‘s logical number. Blocks of 2048
characters without a HOLE label are expected to belong to a
continuous logical area, and will cause the logical block
number to be incremented by one.

log. block no: 0 5 6 7 100 101 120
data HOLE data data data HOLE data data HOLE data

(5) (100) (120)

where data represents file data blocks of 204 characters, and HOLES
are labels. The contents of the HOLE labels are Shown in parentheses.

ND-60.151.02A

4-27

VOLUME HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1- 3
4
5-10
11
12-31
32-37
38-51
52-79
80

label identifier
label number
volume serial number
accessibility
(not used)
(not used)
owner identification
(not used)
label standard levelwouc'nmnun)‘

tho—sandy;
14

VOL
1 .

(volume name) 3
(space)
(spaces)
(spaces)
(name of owner) 5
(spaces)
(spaces)

3 field 3 and 7

- These fields may contain any alphanumeric characters. If the
field is not fully filled with characters. the last character
in the string is an apostrophe. This character is used to‘
mark the end of the string and is not part of the name.
unused part of such a field is filled with spaces.

ND-60.151.02A

4-28

FIRST FILE HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1- 3 1 label identifier 3 HDR
4 2 label number 1 1
5—21 3 file identifier 17 (file name) 3

22-27 4 set identification 6 (file type) s
28-31 5 file section number 4 (0001-0002-nnnn)
32-35 6 file sequence number 4 (0001-0002-nnnn)
36-39 7 generation number 4 (file generation) 3
40-41 8 generation version number 2 (version number) 3
42-47 9 creation date 6 (ANSI standard date) 5
48-53 10 expiration date 6 (spaces) $
54 11 accessibility 1 (space)
55—60 12 block count 6 000000
61—73 13 system code 13 (spaces)
74-80 14 (not used) 7 (spaces)

3 field 3:

— An apostrophe is used to mark the end of the string. This
character is not a part of the name. The unused part of a
field is filled with spaces.

3 field 4:

- Only the first four characters are used in this field. If it
is shorter than four characters, an apostrophe is used to
mark the end of the string.

3 field 7:

— Any alphanumeric characters. The field is left justified, and
an apostrophe is used to mark the end of the string. The
character code in this field identifies a backup generation
of files.

5 field 8:

— This field contains numbers from 1 to 99. The characters are
left justified, and one digit numbers will have an apostrophe
in the right character position. This number identifies
different versions of files with identical file names (fields.
3 and 4), and each version must be treated as an individual
file.

S fields 9 and 10:

- Creation and expiration dates are not used, and the fields
will contain spaces.

ND-60.151.02A

4-29

SECOND FILE HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1- 3 1 label identifier 3 EUR
4 2 label number 1 2
5 3 record format 1 U
6-10 4 block length 5 (no. of characters)

11—15 5 record length 5 (spaces)
16—50 6 reserved (name of owner) S

for operating systems 35 & MAX BYTE POINTER)
51-52 7 (not used) 2 (spaces)
53-80 8 (not used) 2 (spaces)

$ field 6:

- Up to 16 alphanumeric characters, starting from position 16,
identifying the owner of this file. If the name
than
name.

is shorter
16 characters, an apostrophe is used to mark the end of

- 32-41 contains the MAX BYTE POINTER of the file.

END OF FILE LABEL

POSITION FIELD NAME LENGTH CONTENTS

1- 3 1
4 2
5-54 3-11

55-60 12
61-80 13-14

label identifier
label number
(same as aDR1)
block count
(not used)

3 20F
1 1

50 (corresponds to HDR1)
6 (number of blocks)

20 (spaces)

END OF VOLUME LABEL

POSITION FIELD NAME LENGTH CONTENTS

1-3 1
4-80 2-14

label identifier
same as EOF1

3 EOV
77 (corresponds to EOF1)

ND-60.151.02A

4-30

USER LABEL

POSITION FIELD ' NAME LENGTH CONTENTS

1—3 1 label identifier 3 UHL
4 2 label number 1 1
5-80 3 user option 76 (file information) 5

Explanation of field 3

- 3 This field differs from the ANSI label standard. The field
contains binary information for the ND BACKUP-SYSTEM and
SINTRAN III file system.

Field 3:

POSITION CONTENTS
WITHIN FIELD WITHIN LABEL

1-2 5-6 version number of this file (1-255)
3-4 7—8 total number of versions (1—255)
5-8 9-12 file system standard creation date
9-12 13-16 not used

13-76 17-80 SINTRAN III file system object entry

NONSTANDARD ‘HOLE‘ LABEL

POSITION FIELD NAME LENGTH CONTENTS

1-3 1 label identifier 3 HOL
4 2 label number 1 E
5-80 3 user option 76 (information) 3

Explanation of field 3:

Field 3:

POSITION CONTENTS
WITHIN FIELD WITHIN LABEL

1-72 5-76 THIS BLOCK IS NOT PART OF THE DATA!
CHARACTERS 77-80 CONTAIN A NUMBER.

73—76 77—80 (32—bit binary number stating the logical
block number of the following data block)

ND-60.151.02A

5.1

5-1

LOOK-FILE

LOOK-FILE is a subsystem which enables a user to print data, modify data, and
browse through the data contained in a file. The contents of different files may
also be compared. The data contained in a file may be output as bytes, words or
ASCII characters. Bytes and word may be output as octal, decimal, or
hexadecimal values.

COMMAND SUMMARY

The available commands with their parameters are:

EXPLAIN-COMMAND <command>
HELP (<command>)
OPEN <fi|e name>,(<block size>),(<access>)
CLOSE
DUMP (<block number>),(<from word number>),(<number of words>)
BYTE-DUMP (<block number>),(<from word number>),

(<number of words>)
NEXT
PREVIOUS
SET—BLOCK—CONTENTS (<block number>),<value>
ZERO (<block number>)
COMPARE <fi|e name>,(<first block number>),(<number of blocks>)
DEFINE-PRINT—FILE <fi|e name>
ON-OFF-PRINTER (<1=on/O=off>)
MOVE <from file name>,<number of blocks to move>,

<first block in source file>,<first block in dest. fi|e>
SET—PRINT-FORMAT (< B = octal/H = hexadecimal/D = decimal >)
PATCH (<block number>),(<word number>)
SEARCH (<first block number>),(<number of blocks>)
CALCULATE <operand>,<operator>,<operand>
PROGRAM-INFORMATION
PROGRAM—STATUS
EXIT

The OPEN command must be used to open a file before it is referred to by most
of the other commands.

ND-60.151.02

5.2

5-2

GENERAL RULES

The subsystem may be entered by:

@LOOK-FILE

The available commands can be entered in the same way as SINTRAN ||l
commands. Parameters which require a numeric value may be entered as
decimal numbers, eg., 1290, or octal numbers, eg., 1568.

The subcommands will output the contents of a file. Each output line will include
the following:

1.
2.
3.

The word number in decimal.
The word number in octal.
A single character indicating the mode being used for the current line, ie.,
B for byte and W for word.
5 words output in the mode being used.
The 5 words as 10 ASCII characters.

A word is 16 bits. Any character whose ASCII value is less than 403 will be
output as an ampersand (&).

ND-60.151.02

5.3 DETAILED DESCRIPTION OF COMMANDS

This section describes the LOOK-FILE commands in detail. SINTRAN |l|
commands can be executed by typing @ and the SINTRAN lll command with
parameters on one line.

EXPLAIN-COMMAND < command >

This command displays information about a command and its parameters. The
<command> cannot be ambiguous.

HELP (< command >)
This lists all commands matching <command>. If no parameter is given, all
commands will be listed.

PROGRAM-INFORMATION
This command displays general information about LOOK-FILE on the terminal,
eg., its purpose, its command editing facilities, and its abbreviation rules.

OPEN <file name>,(<block size>),(<access>)
The command opens a file which will be used for further operations by other
LOOK-FILE commands. The default block size is 512 words. The maximum
allowed block size is 4096 words. Access can be H for read or W for write. The
default is W.

CLOSE
The file specified in the OPEN command will be closed. An open print file will not
be closed.

DUMP (< block number>),(<from word number> M < number of words>)
The command displays the specified words from the open file. Use
SET-PRINT-FILE to send the display to a file or to a printer. The optional output
file is called a print file. The words will normally be displayed as octal numbers.
This can be changed by the command SET-PRINT-FORMAT. The default <block
number> is 0, the default value for <from word number> is 1, and the default
value for <number of words> is 140. That amount of data fits most terminal
screens.

BYTE-DUMP (<block number>),(<from word number>),(<number of words>)
This displays the specified words in the open file. The command SET-PRINT-FILE
can be used to save a copy of the output on a file or write it to a printer. Each
word will be displayed as two octal bytes. This can be changed by the command
SET—PRlNT-FORMAT. The default <block size> is 0, the default value for <from
word number> is 1, and the default value for <number of words> is 120. That
amount of data fits most terminal screens.

ND—60.151.02

5-4

NEXT
The command displays information from the next block of the open file. The
information may also be output to a print file. The amount of information output
is determined by the <number of words> parameter in the DUMP or
BYTE-DUMP command.

PREVIOUS
The command displays the previous block of the open file on the terminal. The
information is optionally also output to a print file.

DELETE-PRINT-FILE < print file>
The specified <print file> will receive copies of the information output to the
terminal by the commands DUMP, BYTE-DUMP, NEXT, SEARCH, etc. New files
can be created by enclosing the file name in quotes ("...”). The output to the
print file is switched on and off by the command ON-OFF-PRINTER.

ON-OFF-PRINTER (<1=on/0=off>)
This command switches output to the print file on and off. The default is off.

ZERO (<block number>) g
All words in the specified block of the open file will be filled with binaryfif’eros.
The default block number is 0.

COMPARE <file name> ,(<first block number>),(<number of blocks>)
This command compares the specified part of the <file name> with the open
file. The block size given in the OPEN-FILE command is used. All differences will
be output on the terminal, and optionally on a print file. The default <first block
number> is 0, and the default number of blocks is 1.

MOVE <from file name> , <number of blocks to move> ,
<first block in source file>,<first block in destination file>

This command moves the given number of blocks from the <from file name> to
the open file.

SET-PRINT—FORMAT (< B = octal/H = hexadecimal/D = decimal >)
This command selects the output from the commands DUMP, BYTE-DUMP,
NEXT and PREVIOUS to be octal, decimal, or hexadecimal. The default and initial
printing format is octal.

ND—60.151.02

5-5

PATCH (<block number>),(<word number>)
This command examines or modifies the open file. The address and the old value
of the specified word are displayed. The value can be modified by entering a new
value followed by <carriage return>. Just <carriage return> causes no
change. The input value may be given as octal (B), decimal (D), or two
characters (’AB’). The default is octal. The next words will be displayed until a
period (.) is given. The default <block number> is 0, and the default
<word number> is 1.

Some examples of how to give input when patching:

000001 (1)/000000 : .1 Return causes no change
000002 (2)/000000 : ’AA’ .1 Change to AA (0405501 B)
000003 (3)/000000 : 123 .3 Change to 0001238
000004 (4)/000000 : 123D .1 Change to 0001733
000005 (5)/000000 : .J Stop patching and write the

block back.

The symbol 3 means carriage return.

SEARCH (<first block number>),(<number of blocks>)
The command searches for specified information in the open file. The
information to be found may consist of up to 50 words. Each word may be given
as octal (B), decimal (D), or as two characters (’AB’). The default is octal. Enter
the information you want to search for as in the PATCH command. If the
information is found in the open file, it will be output. You will then be asked if
you want to continue searching. Answer by YES or NO. The default <first block
number> is 0, and the default <number of blocks> is 1.

SET—BLOCK-CONTENTS (<block number>), <value>
All words in the specified block of the open file will be filled with the given value.
The value must be prompted, ie., it cannot be given on the same line as the rest
of the command. The value is given as octal (B), decimal (D), or two characters
(’AB'). The default is octal.

CALCULATE < operand > , < operator> , < operand >

The command is used to perform simple calculations on octal or decimal
operands. The default is decimal values. Legal <operators> are +, -, *, and /.
The result is displayed in decimal and octal format.

PROGRAM-STATUS
The command displays information about the open file, the current block size,
file access, and printing format.

EXIT
The command returns you to SINTRAN Ill. The open file will be closed.

ND—60.151.02

5-6

6-1

FILE-EXTRACT

FILE-EXTRACT is a general purpose subsystem which can extract records from
one file and write onto another file or output device.

In addition, by using the split option, records not satisfying given extract
selection criteria can be placed in a second output file, thus providing a
complete file split possibility.

The program provides for complex record selections invoked by simple
parameters. You may define your output record layout in several ways. Also, a
wide range of output environment choices are available.

FILE-EXTRACT handles standard SINTRAN lll text files, including variable record
length files. Maximum record size is set to 1024 bytes.

ND-60.151.02

SJ

6-2

PURPOSE

FILE-EXTRACT is a subsystem enabling users to process files without writing
specific programs. This sort of file processing may be relevant during program
development, testing or simply validation and correction of data files.

FILE-EXTRACT contains facilities such as:

— The extraction of subsets from files based on record numbering

— The extraction of subsets from the files based on individual record contents

— The rearranging of files

— The appending of files or subsets of files to other files

— File splitting by one run

— Reformatting of files according to record layout, length and organization

— Providing output records containing input record number

— Providing output records containing the master record’s physical address
(see section 6.2.4.4)

— Conversion of transactions from various systems to a common layout

— Generation of readable reports containing heading and page numbering
routed to a terminal or a line printer

— Saving of parameter input in mode files for later automatic processing (see
section 6.2.1.1)

— Building or procedures to be processed with limited run time parameter
input (see section 6.2.1.2)

These facilities may be combined in various ways thus meeting new demands as
they occur.

ND-60.151.02

6.2

6.2.1

6-3

COMMAND STRUCTURE

FILE-EXTRACT may be called from a terminal by:

@ FILE-EXTRACT

— NORD FILE EXTRACT UTILITY COMMAND, VER. DD MM YY —

INPUT FILE: <$mode> <$AUTO> <$KEY> <,an>
OUTPUT FILE: <,X> <,A> <:>
<SPLIT OPTION OUTPUT FILE 2: <,A> >

EXTRACT SPECIFICATIONS:
< <SHOW> <extract selection criteria> <:> >
< >
OUTPUT RECORD LAYOUT SPECIFICATIONS:
< <SHOW> <Wnn> <L> <L0> <Hnn> <PAGE[=”xxxx"]> <R> <E>
<P> <C> <T> <record |ayout> <:> >
< >

INPUT RECORDS: 99999, OUTPUT RECORDS: 99999 l= = = = > ----*----|

The program will request input from the user as shown above.

All input fields, except for INPUT FILE, accept default values. Thus, a ”default
run" will cause the input file to be listed on the terminal. ‘

The default value is indicated by typing carriage return in the specific input field.

However, the command structure is made in such a way that the required
options may be activated by use of simple parameters. Any other functions are
automatically avoided.

Input File

The input file may be specified as any randomly accessable SINTRAN ||| text file.
The default file type is :SYMB. The file is immediately checked for legal access.
If not obtained, an error message will be written to the terminal before program
termination.

ND-60.151.02

6.2.1.1

6.2.1.2

6-4

Mode File Save Option

The mode file save option may be invoked by typing <$MODE> in response to
the input file question. The following text will be written on the terminal:

MODE SAVE FILE:

In the file specified in answer to this question, all command input will be saved
as a SINTRAN ||| mode file. In this way, specifications given for an extract run
may be saved for later automatic processing, thus enabling the user to generate
procedures under the guidance of the program.

Limited Automatic Command Input

The LIMITED AUTOMATIC COMMAND INPUT option may be invoked by typing
<$AUTO> in response to INPUT FILE. The program will immediately ask for:

AUTO RUN TIME COMMAND FILE:

and then read the command input lines from the file specified here. This facility
is quite similar to the execution of FILE-EXTRACT from a mode file. The
difference is that a command line in the AUTO RUN-TIME COMMAND FILE may
contain the text $TERM, meaning that this line is to be prompted from the
terminal.

This option is very useful for complex predefined procedures, where some
features are to be requested at run time. An example could be a pregenerated
report procedure where the user is to specify, at run time, the output device as
terminal or line printer, or perhaps some additional extract selection criteria to be
read in. All other parameters and the report layout will automatically be read
from the command file.

Such a command file may be generated by the MODE FILE SAVE OPTION (see
section 6.2.1.1) and then edited by QED or PED. Remember to remove tabs when
in OED (command M TO(0)).

ND-60.151.02

6.2.1.3

6.2.1.4

6-5

Fixed Record Length Input File Option

To process a fixed record length input file not containing record delimiting
characters (octal 015, 012, Le, CR, LF), the F option must be used. The
parameter should follow input file name and be specified as follows:

<,ann>

where nnnn specifies input file record length in bytes (maximum 1024 bytes).

Note that the output file, as a rule, will receive/have the same organization as
the input file.

The following conditions will, however, make a sequential output file out of a
"fixed" input file:

— output file organization change option specified (see section 6.2.2.3)

— terminal output wait option specified (see section 6.2.4.6)

— line printer/terminal heading option specified (see sections 6.2.4.7, 6.2.4.8,
6.2.4.9 and 6.2.4.10)

Indexed Access via KEY file

Indexed access via KEY file is initiated by typing <$KEY> in response to the
input file question. The program will then ask for:

KEY FILE NAME:

The KEY file is only supposed to indicate which records of the input file are to be
read and in which order. The KEY file must be a symbolic file, each record
starting with a pointer to a corresponding record within the main input file. Any
trailing contents of a KEY file record will be ignored by FILE—EXTRACT. A KEY file
will normally be output of a FILE-EXTRACT run using the "Random Key Inclusion
Option” and must follow the format used here (see section 6.2.4.5). The file
could then be sorted or processed in any way before being utilized as KEY file.

For situations which could benefit from this option, see examples mentioned in
section 6.2.4.5. ‘

ND—60.151.02

6.2.2

6.2.2.1

6.2.2.2

6-6

Output File

Output file may be any existing/nonexistent SINTRAN III disk file or an output
device such as Iine printer or terminal.

The file name is specified due to the standard SINTRAN syntax. That is,
nonexistent files must be enclosed by double quotes, etc.

Note that random write is always used unless output file TERM (terminal) is
selected or the WAIT option (see section 6.2.4.6) is switched on. So, when
writing to any other sequential only output device, a dummy WAIT option must
be used.

Default output file is the terminal.

Output File Append Option

The parameter <,A> following output file name, invokes the output file append
option. This means that the output will be appended at the end of the given file.

Note that this option requires an existing output file and is not valid for such
output devices as terminal or line printer.

File Split Option

A <:> at the end of the output file input line invokes the file split option. The
following test will be written to the terminal:

SPLIT OPTION OUTPUT FILE:

Records read, but not qualifying to be written to the main output file according
to the extract selection criteria given (see section 6.2.3) will now be written to
the SPLIT OPTION OUTPUT FILE. If this option is not specified, those records will
simply be bypassed by FILE-EXTRACT.

The append option <,A> is also available for the split file (see section 6.2.2.1).

ND-60.151.02

6.2.2.3 Output File Organization Change (X Option)

The X option is used to switch the output file organization, thus making a
sequential file containing end of record characters out of a random, fixed length
record file and vice versa.

Consider a sequential, variable record length input file. By using the X option, a
random, fixed length record output file will be produced. The output record
length will automatically be computed from the output record layout
specifications given (see section 6.2.4). Note that X option switch to random file
organization will be ignored when used together with certain other options (see
section 6.2.1.3).

Sequential records, delimited by End of Record characters will be produced
when the X option is specified in conjunction with the fixed record length input
file option (see section 6.2.1.3).

Output file organization change may be useful in several situations. Consider a
fixed length random data file needing some special editing. The X option can
produce a QED or PED recognizable version Of the file, which could then be
edited and finally reconvened to its orginal organization using the X option once
again.

ND-60.15i.02

6.2.3

6-8

Extract Selection Specifications

One or two input lines are available for extract selection specifications. The
commands given here determine which records are to be written to the output
file.

There are four types of selections available:

— Specification of input file record intervals in question (see section 6.2.3.7)

— Specification of input record field values to be satisfied/not satisfied (see
sections 6.2.3.1 and 6.2.3.2)

Specification at text strings which are to occur/not occur within a record
(see section 6.2.3.3)

— Specification of a text string which is to occur/not occur within a specified
subset of a record (see section 6.2.3.4)

The selection criteria specified may be connected by the logical operands
<.AND.> and <.OR.> (see section 6.2.3.5).

Finally, parentheses nesting on groups of selection criteria are allowed (see
section 6.2.3.6).

Together, these options provide a sophisticated data selection tool that may be
used for the diverse tasks.

Note that extract criteria, logical operands, values and parentheses must not be
separated by spaces. Spaces are treated as command line terminators.

ND-60.151.02

6.2.3.1

6-9

Numeric Field Evaluation

A numeric field evaluation criterion is to be specified in the following manner:

<STARTPOS> [—ENDPOS] <operation code> <M|N VALUE>
[—MAX VALUE]

where

STARTPOS

is the start byte number of numeric field within input record.

ENDPOS

End byte number of numeric field within input record. May be omitted for 1
digit fields.

OPERATION CODE

One of the following operation codes must be specified:

equal to
not equal to4:

> greater than
< less than

MIN VALUE

is the numeric value for operation codes =, =l= or the value to compare
with the codes < and >.

MAX VALUE

is the maximum value that may be specified for operation codes = or =l=. It
then specifies the upper numeric limit for a range specification, thus
providing the additional operation codes "in between" and "not in
between”.

Example:

15 — 18 = 1590 — 1862

This means that if this particular extract selection criterion is to be satisfied, byte
15 through 18, within an input record, must contain a numeric value within the
range 1590 to 8262.

ND-60.151.02

6.2.3.2

6-10

Text Field Evaluation

A text field evaluation criterion is specified as follows:

<STARTPOS> [—ENDPOS] <operation code> <"text string">

where:

STARTPOS

is the start byte number within input record to be evaluated.

ENDPOS

is the end byte number within input record to be evaluated. May be
omitted for one byte field.

OPERATION CODE

The two following operation codes are allowed:

= equal to
=l= unequal to

TEXT STRING

The text string may contain any character and must be surrounded by
double quotes.

Note that the length of the text string must be the same as the field length
specified by the STARTPOS/ENDPOS elements.

If shorter, a limited text string search will be assumed (refer to section
6.2.3.4). ~

If longer, the specification will not be accepted and the program
terminated with an error message.

Example:

45 — 50 = "OSLO 5"

ND-60.151.02

6.2.3.3

6-11

Text String Search

A text string search specification will cause the entire input record to be scanned
for the existence of the given text string.

A text string search is specified as follows:

TEXT <operation code> <”text string”>

where:

TEXT

specifies search within the entire record.

OPERATION CODE

The two following operation codes are allowed:

= equal to
#= unequal to

TEXT STRING

Any text enclosed by double quotes may be specified.

Example:

TEXT = "COMMUNICATION”

ND-60.151.02

6.2.3.4

6-12

Limited Text String Search

A limited text string search will cause the specified subset of the input record to
be scanned for the existance of the given text string.

Syntax:

<STARTPOS > < —ENDPOS> <operation code> < ”text string")

where:

STARTPOS

is the start byte number within input record where the text search is to be
done.

ENDPOS

is the end byte number limiting search area within input record.

operation code

The two following operation codes are allowed:

= equal to
+ unequal to

text string

The search text string may contain any characters (except double quote)
and must be enclosed by double quotes.

Note: the length of the text string must be less than the record subset
specified by startpos/endpos.

Example:

45 — 90 = ”BOX”

This may extract those customer records having a PO. Box address within the
address fields subset of the record.

ND—60.151.02

6.2.3.5

6-13

Logical Operands

A logical operand is used to connect two extract selection criteria of any kind.

Together with the parentheses nesting (see section 6.2.3.6) this facility enables
complex extract selections to be made.

Syntax:

<extract criterion A> <logical operand> <extract criterion B>

where:

extract criterion A and B

is the same as sections 6.2.3.1, 6.2.3.2, 6.2.3.3 or 6.2.3.4 except for the input
file record interval option as in section 6.2.3.7.

logical operand

The two following operands are allowed:

.AND. both criterion A and criterion B must be fulfilled

.OR. either criterion A or B must be fulfilled

Example:

15 — 18 = 1590 — 8260 .OR. 45 — 50 = ”OSLO 5"

ND-60.151.02

6.2.3.6

644

Parentheses Nesting

Parentheses nesting is available for expressing more complex selections.

Extract criteria/groups of extract Criteria connected with logical operands may be
surrounded by parentheses/levels of parentheses.

Example:

((1 — 2 = "T1" .OR. 1 —— 2 = "T2") .AND. 10 = 2) .AND. (15 — 22 > 90000
.OR. 23 = ”'”)

I

This could mean something like "select those records of type T1 or T2 having
status code 2 and either have a balance over 90,000 or are marked with a start in
position 23”.

Rules:

A start parenthesis must be placed before an extract criterion or together with
another start parenthesis.

An end parenthesis must be placed after an extract criterion or together with
another and parenthesis.

ND-60.151.02

6.2.3.7

6-15

Input File Record Intervals

By specifying input file record intervals, one may select subsets of the input file
to be evaluated.

Also, this option provides a file rearranging possibility due to the fact that the
program will process input file records in the same order as indicated in the
command line.

If a record interval is followed by another one specifying records already
bypassed, the input file will be rewound before those records are processed.

Syntax:

<start record no.> — <end record no.>,

where:

record no,

Record no. is specified with 1 to 9 digits

is start/end delimitor

is interval terminator. May be followed by parentheses or any other extract
selection criterion including another input file record interval specification.

Note:

When record intervals are used to rearrange a file and the file split option is
active (see section 6.2.2.2) split file records will be duplicated every time the
input file is rewound.

ND-60.151.02

6.2.3.8

6.2.3.9

6-16

Show First Input File Record Option

Typing "SHOW” and the RETURN button at the beginning of the command line,
the first input file record will be written to the terminal together with a position
mask line such as:

123456789.123456789.123456789.123456789.1234....
7205PETTERSEN,PER OSLO 5 223652 80000

This information is meant to be of assistance to the operator to see the position
number for' the different fields to be made extract selections from and has
nothing to do with the actual output from the run.

The program will immediately accept input of extract selection specifications.

Note:

By typing another SHOW, the next record will be shown, thus providing selection
of a record type layout representative record.

Command Line Continuation Option

Terminating the first command line with a <:> will provide another line for
extract selection input.

Note:

Used together with the limited automatic command input (see section 6.2.1.2)
the first line may be specified beforehand, while the second may be used for
additional operator selections at run time.

ND—60.151.02

6.2.4

6-17

,Output Specifications

One or two input lines are available for various output specifications. A number
of parameters are available to specify how records selected by the extract
specifications are to be written (refer also to section 6.2.3).

There are tv'vo main types of specifications available:

1. Specification of output record layout as one or more of the following
elements:

a copy of input record
subsets of input record
imbedded constants
input record number
output record number
input record random address

Specification of output environment such as:

terminal output wait at full screen option
line printer/terminal heading specification
line printer/terminal predefined headings
page numbering
split file record as a copy of input record in spite of output specifica-
fions

Default makes the output record a copy of input record.

ND-60.151.02

6.2.4.1

6-18

Input Record Subsets Specification

Subsets of input record can be specified to build the output record or to be a
part of it.

Syntax:

<start position> [—end position] L]

where:

start position

starts the position within input record to be copied to the output record.

end position

ends the position within input record to be copied. May be omitted when
only one character is to be copied.

is specification delimiter in case of more specifications.

Example:

50 — 55, 1 — 20

This will produce an output record containing position 50 through 55 and finally
the first 20 characters of the input record.

Note:

When the output record is specified to contain subsets of the input record, input
records shorter than the subsets specified will result in an output record filled
with spaces as a substitution for the missing input characters.

As a result, this facility can provide a file reformatting possibility, eg., produce a
fixed record length file out of a variable length one.

ND-60.151.02

6.2.4.2

6.2.4.3

6-19

Output Record Constants

Constants may be imbedded in any position of output record.

Syntax:

”text" [,]

where:

text

may be any character except for double quotes.

[.1

is used as delimiter in case of more specifications.

Example:

50 — 55, ”ABC", 1 — 26

This will insert the string ”ABC” within the input record subsets specified.

Input Record Number Inclusion

The input record number may be specified to be the first element of the output
record.

Syntax:

< L> [,]

The command will result in a 5 digit line number indicating source record number
of input file.

Note: It cannot be used together with the < LO > or < R> options.

ND-60.151.02

6.2.4.4

6.2.4.5

6-20

Output Record Number Inclusion

The output record number inclusion option will produce an output record
containing a successive 5 digit record numbering as it’s first element.

Syntax:

<LO> [,]

Note: It cannot be used together with the <L> or <R> options.

Random Key Inclusion Option

The random key inclusion option will cause the input record’s random address to
be included as the first element of the output record.

Syntax:

R [,1

The random address consists of the following two elements:

1. Block number, a 5 digit block number at least containing the first character
of the input record. Block size used is 512 words.

2. Byte number, a 4 digit number pointing to the beginning of the actual
record within a given block.

This option may be useful for several purposes. It can be used to show where a
record (group of records) exist within a file. Also, it may be used for more well
defined functions. For example, FILE-EXTRACT may be run to produce an output
file containing this random address together with subsets from input records to
be used as SORT key. Then, this KEY file may be sorted. The resulting file may
then be used as an INDEX file in order to process the input file in quite a
different order, without actually having sorted the input file previously. Such an
index file may be utilized by FILE-EXTRACT itself through the KEY file option
(refer also to section 6.2.1.4).

ND—60.151.02

6-21

,This facility may have several advantages:

1. There may not be enough disk space to sort a bit input file itself.

2. A of a big input file may be very time consuming.

3. When an input file has to be accessed in many ways, this option will avoid
the problems with keeping many copies of the same file.

Also, this option makes a limited input file sort possible by using the extract
selection possiblity to output only those records interesting and then use the
SORT utility to produce a suitable index file.

ND—60.151.02

6-22

6.2.4.6 Terminal Output Wait Option

The WAIT option is intended to be used with the terminal as output file. It simply
makes the program wait for an input character for every given number of lines
written to the terminal, thus enabling the user to study one screen of information
before filling the next one.

The user may, at this point, interrupt the extract run by typing an X (exit). Any
other character, including carriage return, will make the process continue.

Syntax:

W [M] [,l

where:

nn

is a number of lines to be written before waiting for carriage return. The
default value is 24 for standard terminal screens.

is the specification delimiter in case of more parameters.

ND-60.151.02

6.2.4.7

6-23

Line Printer or Terminal Output Heading Option

The heading option enables the output from FILE-EXTRACT to be generated as
simple reports with a one line heading, optionally together with page number
(see also section 6.2.4.8).

Syntax:

H [M] [.1

where:

nn

is the number of lines per page. The default value is 24 which fits most
terminal screens.

is the parameter delimiter.

Note:

A common line counter is used for the heading and wait options. Therefore, if in
doubt, the last line numbering specified in the command line will be used.

When all output specifications are given and the heading option is specified, the
program will write a heading mask to the terminal and wait for user input:

HEADING MASK:
123456 123456 123456789.123456789.
CUSTOMER ACCOUNT N A M E

The first two lines above are produced by the computer. It simply represents a
position mask of the output record, dimensioning the input record subsets
chosen in the output specifications, corrected with constants if any. This mask
indicates where to type the leading text in order to produce a readable report.
Used together with the show option (see section 6.2.4.12), the heading should
have all changes to be correctly specified.

ND-60.151.02

6.2.4.8

6-24

Line Printer or Terminal Page Numbering Option

The page numbering option will provide a page number to be written before each
heading. The parameter will have no effect when the heading option is not
specified.

Syntax:

PAGE [=”page text”] L]

where:

PAGE

This text which will invoke the option.

page text

The user may define his own 6 character long page text in his own
language. The default text is ”PAGE".

Example:

PAGE = "SHEET:"

This will, when used together with the heading option for each page, produce a
heading such as:

SHEET: 9999

HEADING LINE

DETAIL OUTPUT LINE 1
DETAIL OUTPUT LINE 2

ND-60.151.02

6.2.4.9

6.2.4.10

6.2.4.11

6-25

. Predefined Heading as Extract Command Line

In some cases, it may be useful to have the extract selection specifications
written together with the output. This is provided by the E option, which will
automatically produce the extraCt command line as the heading line.

Syntax:

E [nn] H

The option works exactly like the H option (see section 6.2.4.7) except it doesn't
ask for heading input. Besides, the page numbering option (see section 6.2.4.8)
will automatically be invoked.

Predefined Heading as Position Mask

The P option produces a position mask as a predefined heading. This may be
useful when record contents are to be studied in their original compressed
format.

Syntax:

P inn] [.1

This option is similar to the E option (see section 6.2.4.9).

Split File Copy Option

Normally, the split file output (see section 6.2.2.2) will contain record layout
similar to the main output (no page numbering and no headings). In some cases,
it may be useful to provide a split file containing records as a copy of the input
records. Thus, the C option will turn off any other output record layout
specifications on split file writes.

Syntax:

C L]

ND-60.151.02

6.2.4.12

6.2.4.13

6.2.4.14

6-26

Show First Input File Record Option

The "SHOW” option is also provided as a first command to this output
specifications input line. It works exactly in the same way as described above
(see section 6.2.3.8). In this case it is meant as a tool to produce an output
record from the right subsets of the input record and also to help design the
heading line.

Syntax:

SHOW

Command Line Continuation Option

Terminating the first command line with a <:> will provide another line for
output specification input.

Note:

Used together with the limited automatic command input (see section 6.2.1.2),
the first line may be specified previously while the second one may be used for
additional operator’s choice at run time.

Skip Output Record Trailing Spaces

In order to reduce disk space and increase processing speed, skipping trailing
Spaces may be desired. The option is supposed to be used in conjunction with
variable record length output files.

Syntax:

T L]

ND-60.151.02

6.3

6-27

RUN TIME STATUS MESSAGES

In order to enable the user to keep track of the program’s progress, a run time
status message line is implemented:

INPUT RECORDS: 99999, OUTPUT RECORDS: 99999 |= = = >----'----- i

For every 100 input records processed, this line will be written to the terminal.
The right side graph indicates the percentage (in bytes) of the input file being
processed, thus enabling the user to estimate when the process will be finished.

ND-60.151.02

6-28

7-1

GENERAL PURPOSE MACRO
GENERATOR - GPM

In the Computer Journal, October 1965, C. Strachey described a macrogenerator
called GPM (General Purpose Macrogenerator). GPM was originally planned to
help write ,a compiler for the language CPL. The idea was to write the whole
compiler as a set of macro calls.

In this way, one got a machine-independent compiler. By redefining the macros,
a compiler for another machine could be produced, and by rewriting GPM, one
could generate the compiler on another machine other than the target machine.

GPM is referenced in most of the literature dealing with macro
processors,

Input to GPM is a character string, in which macro calls may occur. GPM copies
the input character unmodified to the ouput string, with the exception of the
macro calls which yield their values instead.

GPM pays no attention to what type of symbolic input it receives, as long as no
confusion arises concerning the GPM control characters. The GPM version on the
ND computers expects (and produces) characters with even parity. It may be
called as a SINTRAN ||l subsystem. Program size is 1,5Kwords, while the rest of
the virtual memory is used for a run time stack.

Most persons reading this manual for the first time know macros only from
simple assembler macro options. They should immediately be aware of the fact
that in GPM macro calls may not only occur in the source code string, but also in
a macro call’s name string, parameter strings and in the value-strings found in
the macro definition list. They should also keep in mind that the effect of a
macro call may be of two kinds:

1) Substitution. A character string is substituted for the call.

2) Macro (re)definition. New macros may be defined and old ones redefined.

ND—60.151.02

7-2

GPM SYNTAX AND EVALUATION RULES

A GPM macro call looks like this:

TNAME, PAR1, PARZ, ————— , PARn;

It consists of a macro name and a list of the actual parameters, each separated
by a comma. The macro call starts with T and ends with a semicolon. The name
and parameter strings may themselves contain macro calls.

Six characters which have a special function in GPM:

T Precedes macro calls

; Ends macro calls

. Separates parameters in a macro call

\ Denotes formal parameter, and is followed by the parameter number in the
set 0-9, A-Z. Occurs in macro definitions and the resulting macro bodies

< Start quote. Should always match a >. Evaluation of a character string
enclosed in < > yields the same string without < >. Thus, by quoting,
strings are prevented from being changed by GPM evaluation

> End quote. (An unmatched > outside macro calls terminates GPM)

The input string is scanned from left to right and copied to the output string
until a macro call is encountered. The macro call is evaluated as follows:

a) The macro name and its arguments are evaluated from left to right.
They are all evaluated once. This process may involve evaluation of
other macro calls so that the whole process of evaluating is a
recursive one. Macro definitions made during this process are
so-called temporary definitions.

b) When the argument list is complete (: when the name and
parameter strings have been evaluated) the macro definition list is
searched for a match with the evaluated name string. The scanning
stops with the first entry with the correct name, so that the most
recent definition is used.

c) The string corresponding to the macro name (macro's value, ”body”)
is now scanned in the same way as the original input string, except
that occurrences of \1, \2, --- etc., are replaced by exact copies of
the corresponding actual parameter (the corresponding evaluated
parameter string). \ 0 means the macro name. If an argument asked
for is not supplied, the string NIL is taken as actual parameter.

ND—60.15‘l .02

d) on reaching the end of the defining string, the argument list (macro
name and actual arguments) are lost. Any macro definitions added to
the definition list in course of macro name and parameter evaluation
are lost (temporary definitions).

Scanning of the input string is resumed.

ND-60.151.02

7.2

7-4

SYSTEM MACROS

GPM contains a number of system macros. These are, in reality, calls of system
procedures, but the syntax of these calls is the same as that of the macro calls
and so are the evaluation rules. The system macros are:

DEF Defines user’s macros. It takes tw0 arguments: The name and
the value (”body”) of the new macro. Formal parameters
occurring in the "body” must always be quoted. The latest
definition of a macro is the valid one.
Format: TDEF, macro name, macro body;
Example:
TDEF, A, <B\1>; defines macro A

to have B\1 (B and the first parameter) as its value. For
instance, TA,5; yields the value B5.

Consider the definition of A in the following two examples:

1) TDEF,B,C; TDEF,A, 13,-.- TDEF,B,D:TA.‘
2) TDEF,B,C; TDEF,A,<TB;>; TDEF,B,D; TA;

Each example consists of three definitions and a call of macro
A. What is the result in these two cases? The only difference
between 1) and 2) is the quotes in the definition of A.

1) defines A equal to the value of B, which is C.
Hence: TA; yields C.

2) defines A equal to TB;. TA; is therefore equivalent to TB;
which yields D. (Latest definition of B is valid!)
Hence: TA; yields D.

Definitions made during parameter-evaluation are temporary
definitions. These definitions are lost when the macro
possessing the parameters has been evaluated. Earlier
definitions of the same macros will then be reinstated.
Example:
TDEF, A, B; TA, TDEF,A, C; ; TA;

Temporary definition.

This string yields CB. Explanation:
TDEF,A,B; defines A to have value B.
TA, TDEF, A, 0;; calls macro A,

defining A temporarily to have value C. The call of A, therefore
yields C, and the temporary definition is lost.
TA; therefore yields B since the old definition has been

reinstated.

ND-60.151.02

VAL

UPDATE

BAR

DECBIN

BINDEC

OCTBIN

BINOCT

HD

7-5

Gives the value (”body") of the macro given as parameter. By
means of VAL, macro definitions may be inspected.
Format: TVAL, macro name;
Example:
Suppose macro A has been defined by TDEF,A, <B\1>;
Then TVAL,A; yields B\1.

Updates macro definitions. Works in the same way as DEF. The
new value must not be longer than the old value.
Format: TUPDATE, macro name, macro body;
Example:
Suppose A has been defined equal to B\1.
The call 1UPDATE,A,<C\1>;
defines A equal to C\1.

Performs binary arithmetic. Takes three arguments. The first
must be +,—,*,/ or R, which means add, subtract, multiply,
divide and remainder, respectively. The second and third
arguments are two binary numbers.
Format: IBAR, operator, binary number, binary number;

Performs decimal-to-binary conversion.
Format: TDECBIN, decimal number;

Performs binary-to-decimal conversion.
Format: TBINDEC, binary number;
Example:
TDEF, SUM, <fBINDEC, IBAR, +, TDECBIN, \1;, TDECBIN, \2; ,- ;>;

defines a macro SUM which yields the decimal sum of its two
parameters. For instance, TSUM,5,3; yields 8.

Performs octal-to-binary conversion.
Format: TOCTBIN, octal number;
Example:10EF,CTR,<1BAR,—, \1, TOCTBIN, 100; ;>;
defines a macro that yields control characters.
For instance, ICTR,A; yields A“.

Performs binary-to—octal conversion.
Format: TBINOCT, binary number;

Gives the first character of its argument ("head").
Format: THD, string;
Example: THD,ABC; yields A.

ND-60.151.02

7-6

TL Gives all but the first character of its argument (”tail").
Format: T TL, string;
Example: TTL,ABC; yields BC.

In the present GPM version, two additional system macros have been made:

ICRMOD Makes GPM ignore the characters "carriage return" and ”line
feed” in its input string. They may, however be used internally
and be output.

CRMOD Turns off the mode set by ICRMOD.

ND-60.151.02

7.3 MACRO EVALUATION

According to rules a_—e in Section 7.1, GPM works as follows:

Initially GPM is in copying mode.
When a macro call 1N,P1,Pz,---,PK; is encountered, GPM enters the
parameter evaluation mode.

The string N is evaluated to po.
The string P1 is evaluated to p1.
The string P2 is evaluated to p2.

The string PK is evaluated to pH.

GPM now searches for the latest definition of pa in its macro definition list.
When found, GPM enters the macro expansion mode (or the macro
definition mode, if po is equal to DEF or UPDATE). GPM now reads and
evaluates the macro body of Do. When encountering a formal parameter
marker \m, GPM enters the parameter substitution mode and replaces \m
with pM. The resulting string (the evaluated body with the actual
parameters substituted for the formal ones) replaces the call TN,P1,P2,
PK; in the output string.

The macro evaluation procedure is illustrated by this example:

Suppose the following macros are defined.

TDEF, $, <ENE\1>;
TDEF, ' 'DIRTY._.DICK' ' ,1;
TDEF,#,<\2<LIC._.>1$, \1; ._.\0\3>;

We want to find the value of:

T#, MY, <PUB>, 1' ' DIRTY DICK' ' :;

We start to evaluate the name and parameters.
#evaluates to # which is the macro name.
MY evaluates to MY which is the parameter no. 1
<PUB> evaluates to PUB which is the parameter no. 2
T"D|RTY._.D|CK"; evaluates to 1 which is the parameter no. 3

ND-60.151.02

7-8

The latest definition of # is \2< LICL_. >T$,\1;_.\0\13
\2 evaluates to PUB
< L|C._, > evaluates to LlCl-l
T$,\1; is equivalent to 18$, MY; which evaluates to ENEMY
L_,eva|uates to._.
\0 evaluates to the evaluated macro name #
\3 evaluates to 1
So the value of our macro call is the string

PUBLIC._.ENEMY...#1

A further example:

A well known GPM example is the successor macro. When called with a number
0—9 it gives the next number. For instance, TSUC,3;—> 4 TSUC,4;—>5 etc. Of course
this can be achieved in arithmetical ways, but the SUC macro accomplishes it in
a way that makes it theoretically interesting.

SUC is defined as follows:

TDEF, SUC, <11, 2, 3, 4, 5, 6, 7, 8, 9,10, TDEF, 1,<\>\1;:>.'

We see that a call of SUC is equivalent to a call of a macro whose name is 1.
The macro 1 is called with its first parameter=2, the second parameter=3, the
third parameter=4, etc. A temporary definition of 1 defines it to have a value
equal to one of its actual parameters. The parameter number is equal to the
actual parameter of SUC. Therefore, a call TSUC,3; defines macro 1 to be equal
to its third actual parameter which is 4. Macro 1 is called, and yields 4 which is
also the value of T SUC,3;

ND—60.151.02

7-9

CONDITIONAL MACROS

This chapter and the next one which deals with recursive macros, will describe
the rather complicated methods used for defining such macros. They may be
bypassed by readers who are not especially interested.

The definition of a conditional macro is given below:

TDEF, COND, <i\1, TDEF, \1, C; iDEF,A, B; ,'>;

The macro COND gives B or C, depending on its argument. The only
argument that gives B, is A, ie.,

TCOND, A; yields B
TCOND, anything else; yields C

Explanation:

Suppose COND is called with argument=A. The macro body with
argument=A inserted, will look like TA,TDEF,A,C;TDEF,A,B;;
This is a call of macro A which is defined twice in its own argument.
(These are temporary definitions.) Since these definitions are made before
searching the definition list for the value of macro A, this works perfectly
well. Since the last definition of A defines it equal to B, the call of A yields
B which is also the value of COND. Therefore:

TCDND, A,‘ ->B.

Suppose COND is called with argument=X. The macro body with
argument X inserted, gives:

1x,1nEF,x,c; TDEF,A,B;;

This shows a call of macro X, which is defined once in its own parameter.
The value is C, which is also the value of COND. Therefore:

TCOND,X; -»C.

Note that the temporary definitions cannot be confused with any other
definitions of X or A since the temporary definitions will be lost when
COND has been evaluated.

Proper understanding of this conditional macro is necessary in order to understand
how recursive macros with finite call sequences work.

ND—60.151.02

7.5

7-10

RECURSIVE MACROS

TDEF,A,<BTA;>;

This is the simplest example of a recursive macro. One call of A yields an infinite
stream of B characters. (The evaluation will of course cease when GPM runs
short of stack space.)

More interesting, however, are the recursive macros that allow a finite number of
recursive calls. Before discussing them, we take a short review of the conditional
macro COND, discussed in Chapter 4.

BF . .1.;DE..;;:TE,CDND,<T\1TDEF\ c1 FAB >

Covers the Covers the
”general case" "special case"

Tells whether
”general case” or "special case"

Suppose we want to write a recursive macro with finite call-sequence. There
must obviously be some kind of "condition" involved, in order to stop the
recursive evaluation.

The ”general case" results in an operation between a value and a recursive call,
while the ”special case" involves no recursive call since we now want to stop.
What tells us the current "case"? Usually a counter, since we often want to give
the number of recursive calls.

A recursive macro RECUR may, therefore, have a structure like this:

10EF, RECUR,
|<Tcounter,__IDEF, counter, <value X op TRECUR, counter—1;>;IJDEF, 0, value Y; ;>; I

”Current case” "General case" "Special case”

Where op denotes any operation wanted.

Suppose we want to construct a recursive macro FAC which computes the n'th
factorial.

TFAC, n; -> The value of 1.2.3... n =n!

Suppose that macros computing products and differences have been defined
earlier and that their names are PROD and DlF. (For instance: T PROD,2,3; +6
and TDIF,8,3;—»5.)

ND-60.151.02

7-11

We first concentrate on the "general case".
We observe that n! = n.(n—1)!
or, in macro language, where n is the lst parameter of FAC:

TPROD, \1, TFAC, TDIF, \1,1,','.'

This leads us to the temporary definition that covers the "general case":

TDEF,\1,<TPROD,>\1<,1FAC,1DIF,>\1<,1;;;>-I
Note that the 1st parameter must be "unquoted" since it is a parameter of FAC,
not of the counter.

The ”special case” is very simple.

Since TFAC,0; » 0! = 1 the temporary definition that covers the special case
simply is TDEF,0,1;

Now we may write the complete defintion of FAC:

1DEF,FAC,< \1,jDEF, \1,<1PROD,>\1<, IFAC, TDIF,>\1<, 1; ; ;>;._1DEF,0, 1;.;>;
L

' V

n "General case” "Special case”
expressing that n!=n.(n-1)! expressing that 0l=1

Here is another example which is important, since it allows us to generalize the
"recursive call” property.

We want to make a recursive macro DO so that TDO,A,n; is equivalent to n calls
of the parameterless macro A.

DO may be defined as follows:

TDEF, DO, <T\2, TDEF, \2<T>\ 1<,' TDD, >\1<, TDIF, >\2<, 1; ;>; TDEF, 1, <>; ;>;

TDO,A,5; gives the same value as TA;1A;1A;TA;TA;
That a macro is parameterless does not necessarily mean that its value is
constant, since it may call and redefine other macros.

ND-60.151.02

7.6

7-12

THE GPM LIBRARY

This GPM library consists mainly of definitions of macros performing arithmetical
or logical functions. it also contains generalized, recursive macros and
conditional macros. The arithmetical functions may either be decimal or octal.
When necessary to distinguish between them, the macro name for the octal
operation begins with &.

Example :

The macro SUM yields the decimal sum of its two parameters, while &SUM
yields the octal sum. The arithmetical macros may further be divided into two
classes, the ”verbs" and the "nouns”. A ”verb" has only side effects. That
means it affects the macro definitions, but leaves no value. A ”noun” has no side
effect but yields a value.

Examples:

ADD is a ”verb”, SUM is a "noun".
(ADD,J,3; adds 3 to the value of ”macro J” (which is updated) but the ADD

macro leaves no value. 1 SUM,3,5; yields 8 as its value, but it has no side
effects.

If you are unfamiliar with macro languages, please keep the following in mind:

The effect of a macro call may be of two kinds:

1) Substitution.
A character string (which may be empty) is substituted for the macro call.

2) Definition
Macros may be defined or redefined. Nothing is substituted due to
definition alone.

Both kinds of effects may arise from one macro call.

(VARIABLE, name, initial value (optional);
Six digits are allocated (for the value) and the variable is updated to its
initial value (to 0 if no value specified).
Example:
TVARIABLE,PER; (PER; 6-»0
TVARIABLE,0LA, 14; (OLA; +14

Since six digits are allocated, octal or decimal integer values may be
assigned to a variable by an UPDATE call.

ND-60.151.02

7-13

TINCREMENT, variable;
Increments the specified variable and is equivalent to 1ADD, variable, 1;
Example:
TVARIABLE, PER, 5;
TPER; +5
TINCREMENT, PER; .
TPER,‘ +6

1&INCREMENT, variable;
Octal increment of the specified variable and is equivalent to 1&ADD,
variable, 1;

TDECREMENT, variable;
Decimal decrement of the variable.
Equivalent to TSUB, variable, 1;

T&DECREMENT, variable;
Octal decrement of the variable.
Equivalent to 1&SUB, variable, 1;

TADD, variable, number;
Decimal addition. Adds the number to the variable, but yields no value.

1&ADD, variable, number;
Octal addition.

TSUB, variable, number;
Decimal subtraction.

1&SUB, variable, number;
Octal subtraction.

1MPY, variable, number;
Decimal multiplication.

1&MPY, variable, number;
Octal multiplication.

TDIV, variable, number;
Decimal division.

1&DIV, variable, number;
Octal division.

TSUM, number, number;
Yields the decimal sum of the two numbers.

T&SUM, number, number;
Yields the octal sum of the two numbers.

'

TDIFFERENCE, number, number;
Yields the decimal difference between the two numbers.

ND-60.151.02

7-14

T&D|FFERENCE, number, number;
Yields the octal difference between the two numbers.

TPRODUCT, number, number;
Yields the decimal product of the two numbers.

T&PRODUCT, number, number;
Yields the octal product of the two numbers.

TQUOTIENT, number, number;
Yields the decimal quotient of the two numbers.

1"IENT, number, number;
Yields the octal quotient of the two numbers.

TREMAINDER, number, number;
Yields the decimal remainder of the two numbers (concerning division).

1&REMAINDER, number, number;
Yields the octal remainder.

TPOWER, number, exponent;
Yields an where a is the first parameter and n the second. n20.

TSIGN, number;
Yields the sign (+ or —) of the decimal number.

1&SIGN, number;
Yields the sign (+ or —) of the octal number.

TDEC, number;
Converts from octal to decimal number.

TOCT, number;
Converts from decimal to octal number.

TCTR, letter;
Yields the corresponding control-character.
(TCTR,A; + A“).

TCHARACTER, octal, number;
Yields the corresponding character.
Example:
TCHARACTER, 76; -» >

TESC;
Yields an escape-character (33a).

TCRLF;
Yields "carriage return”/”line—feed".

ND—60.151.02

7-15

TEQUAL, String 1, String 2, String 3, String 4;
If String 1 is equal to String 2, the result is String 3. If unequal, the result is
String 4.

TLESS-THAN, Number 1, Number 2, String 1, String 2;
If Number 1 is less than Number 2, the result is String 1. If not, the result is

String 2.

1&LESS-THAN, Number 1, Number 2, String 1, String 2;
LESS-THAN macro for octal numbers.

TOR, String 1, String 2, String 3, String 4;
If 1st or 2nd parameter or both are non-empty, the value will be the 3rd
parameter. Else the 4th parameter.

TAND, String 1, String 2, String 3, String 4;
If both lst and 2nd parameter are non-empty, the value will be the 3rd
parameter. Else the 4th parameter.

TXOR, String 1, String 2, String 3, String 4;
If lst or 2nd parameter, but not both, is non—empty, the value will be the
3rd parameter. Else the 4th parameter.

TNUMCH, String;
Yields the decimal number of characters in the string. The string should
contain no GPM control characters.

TERRAB, cause;
Yields the following:
(966 ._. " ' ' SYSTEM._.GENEHATIONHABORTEIJ " " "

@CCHCAUSE: ._.Cause
Esc Esc

1%, comment;
Yields nothing. May be used for comments.

TMAKEZ, number;
Yields the number by giving at least two digits.
Example:
TMAKEZ, 5; yields 05

TBITMASK, number;
Yields the bitmask corresponding to the decimal bitnumber [0-15].
(Example: TBITMASK, 8;»400)

TMASK, length, bitnumber;
Yields the bitmask. The length is given by the first decimal parameter, and
the rightmost bit is given by the second, decimal parameter [0-15].
(Example: TMASK, 2,1;->6)

ND-60.151.02

7-16

TLSHIFT, octal number, octal number of shifts;
Yields an octal number which is the first parameter left-shifted the number
of times given by the second parameter. The number of shifts must be in
the interval [0-173].

TRSHIFT, octal number, octal number of shifts;
Yields the octal number right-shifted with sign extension.

TRZSHIFI', octal number, octal number of shifts;
Yields the octal number right-shifted with zero end-input.

TSEQUENCE, pretext, posttext, number of el., block size, start no., delim., line head;
This mac'ro gives a sequence of the following form:

b
4K

/

|_pretext Inl posttaxt IdI pretext I n+1] posnext I d]-....

P
CRLF

line-heed I pretext In+b+1I pmttext I d Ipretext In+b+2 Iposttext

P
CRLF

Lline-head I pretext I n+2iJ+1 I posttext I d IpretextI n+2b+2| posttext I

where n is start no., b is block size and d is delimiter.

Example:

')9EXT._.TSEOUENCE, RT, P, 11,4, 2, ._., *)9EXT._.;
yields

')9EXT t_. RT2P ._. RT3P ._. RT4P._. RT5P
')9EXT._. RTBP ._. RT7P L. RT8P._. HT9P
’)9EXT._.RT10P._.RT1 1P._.RT12P

Another example:

INTEGER ARRAY: =(TSEOUENCE, A, ,7, 3, 0, <<<, >>>, TCTR, I; ;);
yields
INTEGER ARRAY ARR: =(A0,A1, A2,

A3, A4, A5, ‘

A6) ;

Note that the comma must be triple-quoted in the macro call.

ND-60.151A02

7-17

TDO, macro name, number;
This macro results in a number of calls of the parameterless macro given
by the first parameter.
The number of calls is given by the second, decimal parameter which must
be >0.
(Example: TDO,A,3; is equivalent to TA;1A;1A;)

TDO-LOOP; variable, start value, step length, limit, <body>;
This macro temporarily defines a parameterless macro which has body plus
the proper updating of variable as its value. The macro is called the
specified number of times. Default step length is 1. The call of DO-LOOP
leaves the variable incremented beyond the limit. The DO-LOOPs may be
nested. GPM control characters within body should be quoted.

Example:

TVARIABLE, I;
TVARIABLE, RESULT, 0,’
tflO-LOOP, I, 1,, 1o, <1ADD, RESULT, II; ;>,-
Computes the sum of the integers [1, 10].
The call TRESULT; now yields 55.

Example:

TVARIABLE, I;
TVARIABLE, J;
TDD—LOOP, I, 1,,3,<
11,-. ufilo—Loop, J, 2, 3,8, <1J;>,- 1CRLF;
>;

yields the following result:

1. .4258
2. .4258
3. L258

ND-60.151.02

7-18

Example:

TVARIABLE, NUMBER._.0F._. PROGRAMS, 3;
IVARIABLE, SEGNO, 157,-
TVARIABLE, I,-
TDD—LOOP, I, 1,, TNUMBERUOFU PROGRAMS;,<
CL—SEGMUTSEGNO; 1a5-
YTCRLF;
N—SEGM._.TSEGNO;,, ,,,1CRLF;
SET—L—AUTSEGN0;, 10000010RLF;
LOAD._,MAIN 11,- :BRF,,,,1CRLF;
END TCRLF;
TaINaMENT, seem»,-

yields the following result:

CL-SEGM._,157
Y
N—SEGMU157, , , , ,
SET—L-A._,157, 100000
LOADHMAIN1zBRF, . , ,
END
CL-SEGMU160
Y
N-SEGM._.160
SET-L-A._,160, 100000
LOAD._.MAIN2: BRF, , , ,
END
CL—SEGMU161
Y
N—SEGM._.161
SET—L—A._.161, 100000
LOAD._.MAIN3: BRF, , , ,
END

ND-60.151.02

7-19

7.7 GPM UNDER SINTRAN III

The GPM subsystem under SINTRAN III is called by writing:

@GPM
CH/LF TO BE IGNORED 0N INPUT? 1
DUTPUT FILE NAME: OFILE
INPUT FILE NAME: GPM-LIBRARY
INPUT FILE NAME: TERMINAL
>

END OF GPM
@

The mode set by the ”CR/LF TO BE lGNOFlED ON INPUT?" - question may be
changed by the use of the ICRMOD/CRMOD macros.

The GPM library must always be read in "ignore CH/LF” - mode.

The question INPUT FILE NAME: is written whenever the previous input file is
exhausted (or none has been specified) or the EOF—byte (27s =W°) has been
read. An unmatched > outside macro calls terminates GPM.

NOTE: It is strongly recommended that the file "GPM-LIBRARY” should be
limited to ”read access” only, by using the @SET-FlLE-ACCESS
command. This will protect the file from accidently being specified as
"output file" and consequently losing its contents completely.

ND-60:151.02

7.8

7.8.1

7-20

GPM APPLICATIONS - SOME' IDEAS

GPM may of. course be applied in a variety of ways ranging from semigraphic
picture definitions to software system generation. It may also be used as a
preprocessor of symbolic source code, applied prior to compiling/assembling. It
is especially well suited for FORTRAN programs since no confusion arises
concerning the GPM control characters T, < and >. For many programming
languages, however, confusion may arise, and one way to avoid it is this:
Substitute <‘)> for all I that do not denote macro calls. Substitute
(CHARACTER, 74; for <and (CHARACTER, 76; for > if they are not meant as
"quotes". Now GPM may process this source-code stream if the GPM-LIBRARY
has been read (in order to define the CHARACTER macro).

GPM and Semigraphic Display

GPM is an interesting tool for off-line building of static parts of pictures for
semigraphic display (NORDCOM NCT, for instance). Output from GPM may go
directly to the screen or to a file where the picture is saved.

The main advantages of using GPM are:

—— Control information (concerning colour, for instance) is referenced by
name.

— Line segments of variable length may be defined as macros. For instance, a
horizontal line of length 46 starting in position (5,7) may be denoted
THL,5,7,46;

— Special symbols may be called by name. For instance, TTRAFO,12,9; means
a transformator symbol in position (12,9).

— Some standard figures such as squares, triangles, etc. may be defined as
macros. For instance,)SOUARE,10,2,8,16; may yield a square of height 8,
length 16, with topmost, leftmost corner in (10,2).

—- The user may define and name his own picture parts. The screen position
may be parameter in the call.

For further details, see the manual NORD PROCESS l/O, SOFTWARE GUIDE,
(ND-60.093).

ND—60.151.02

7.8.2

7-21

,System Generation Using GPM

GPM is well suited for production of mode or batch jobs for system generation
and installation.

GPM then mainly operates as follows:

First GPM reads the ”system definition” file, which consists mainly of
DEF-macros defining the system parameters. Then GPM reads the ”generalized
batch-job” file which contains a mixture of ordinary batch commands and
macros. From these files, GPM produces that particular batch-job that
generates/installs the system given by the ”system definition" file.

SYSTEM GENERALIZED
DEFINITION BATCH-JOB

FILE

GPM

BATCHJOB
FILE FOR
svs. GEN./

INSTALLATION

The most important properties offered by GPM for system generation are listed
below:

1) Constants may be given symbolic names.
Example: Macro calls for segment-numbers in a mode file calling the RT

LOADER:
CL—SEGMHTSEGNO;
Y
N—SEGML. TSEGNO,‘ , , . .
SET—L—AUSEGNO; , fLOAD—ADDR;
LOADUMAINTPROGNO; :BRF, , ,,
END

ND-60.151.02

3)

4)

5)

7-22

Such constants may be modified during system generation. Suppose, in
the example given above, that SEGNO and PROGNO have been declared
by VARIABLE—macros. The END-command might then be replaced by:

ENDT&INCREMENT, SEGNO,‘ IINCREHENT, PROGNO;-

thus performing octal increment of the segment number and modification
of the input file name.

One macro call may result in a number of calls in different contexts. It is
self—evident that this is possible, since one macro call may cause
(re)definition of a group of other macros. For instance, a call 1
BRF-SYSTEM; may cause assembling in BRF-mode to a BRF-file and a call
of the loader, instead of assembling directly into memory.

The system parameters may be checked before system-generation if some
relations must be fulfilled.

Example:

Suppose that a variable A always has to be greater or equal to variable B if
the system is to be consistent.

This macro will check that condition:

TLESS-THAN, 1A;, 13,-,
@cc A LESS THAN B! TCRLF;
@cc “”SYSTEM GENERATION ABOHTED”* TCRLF;
lesc; TESC;
I l

The error message aborts the mode file only if A<B.

Do—loops. A group of commands or statements may be repeated with
different parameters. Many examples of this have been given previously in
this manual.

As a conclusion of this manual, an example showing generalized source code is
given.

Suppose you have made a reentrant subroutine SROUT which you want to call
from a variable number of RT programs. Each RT program is allotted a data field
of 103 locations for its local variables. In addition subroutine SROUT is called
with the A—register pointing to the data field and with the T-register holding the
RT program number.

ND—60.151.02

7 -23

For two RT programs, the NFL source code for calling SROUT looks like this:

"'BRF
“)QBEG
')9EXT SROUT RT1 RT2

SYMBOL PRI=30
INTEGER ARRAY IA1(10)
INTEGER ARRAY IA2(10)
SUBR RPROG
“)9RT RT1 PRI

"IA1"; T:=1,' CALL SROUT; ’MONO,‘)FILL
')9RT RT2 PRI

"IA2"; T:=2; CALL SROUT; ‘MONO;)FILL
RBUS
"'BRF
')9END
')9EDF

”)LINE
@EDF

However, this source code may be generalized by calling some GPM library
macros.

The generalized source code file looks like this:

TCRMOD; " ’ BRF
')SBEG
')9EXT SROUT TSEDUENCE, RT, ,1NUPROG;, 8, 1, .__., “)SEXT;

SYMBOL PRI=30
TVARIABLE, I; TDD—LOOP, I, 1, , TNUPROG; , <INTEGER ARRAY IATI; (10)
>2 SUBR RPROG
TDD—LOOP, I, 1, , TNUPROG,‘ ,<‘)9RT RT1I,‘ PRI

' ’ IATI; ' ’<,'> T:=TOCT, 11; ;<;> CALL SROUT<,‘> ”MON 0<;>)FILL
>; RBUS
" ' BRF
")9END
')9EOF

') LINE
@EOF
>

ND-60.151.02

7-24

Suppose you call this file GENERAL-SOURCE, and that you let a file called
SYSGEN—PARAM hold the definition of the only system parameter, NUPROG, the
number of RT programs. (The definition of NUPROG may of course instead be
inserted on top of the GENERAL—SOURCE file.) Thus GPM may produce a source
code system according to the definition of NUPROG:

@GPM
CR/LF TO BE IGNORED 0N INPUT? Y
OUTPUT FILE NAME: SOURCE—CODE
INPUT FILE NAME: GPM—LIBRARY
INPUT FILE NAME: SYSGEN—PARAM
INPUT FILE NAME: GENERAL—SOURCE
END OF GPM
@

Suppose SYSGEN-PARAM contains IDEF,NUPROG,5;

The following SOURCE-CODE file will then be produced:

” ’ BRF
“)QBEG
*)9EXT SROUT RT1 RT2 RT3 RT4 RT5

SYMBOL PRI=30
INTEGER ARRAY IA1 (10)
INTEGER ARRAY IA2(10)
INTEGER ARRAY IA3(10)
INTEGER ARRAY IA4(10)
INTEGER ARRAY IA5(10)
SUBR RPRDG
*)9RT RT1 PRI

'IA1' ',' T:=1; CALL SROUT;
*)9RT RT2 PRI

"1A2"; T:
")9RT RT3 PRI

' ' IA3' ’,' T:
“)QRT RT4 PRI

"IA4' ’,' T:
*)9RT RT5 PRI

" IA5' '; T:
RBUS
*' ’BRF
“)9END
”)9EOF

‘)LINE
@EOF

This source file yields a system for five RT programs calling SROUT.

=2; CALL SROUT;

=3; CALL SROUT;

=4; CALL SROUT;

=5; CALL SROUT;

"MON 0;)FILL

”MON 0;)FILL

”MON 0;)FILL

”MON 0;)FILL

”MON 0;)FILL

ND—60.151.02

7-25

Suppose you get raving mad at all this GPM-stuff, and define NUPROG equal to
100 and run the system generation procedure. The inevitable result is:

*"BRF
*)98EG
*JSEXT SROUT RTI RTZ RT3 RT4 RTE RTE RT? RTE
*)9EXT RTE RTIE RTIl RTIZ RT13 RT14 RTIS RTIS
*)9EXT RTI? RTIS RTIS RTZB RTEI RT22 RT23 RT24
*)9EXT RTZS RTEE RTE? RT28 RT29 RTEE RT31 RT32
*)9EXT RT33 RT34 RTES RTEE RTE? RTSS RTES RT4B
*)9EXT RT41 RT42 RT43 RT44 RT4S RTdE RT4? RT4B
*)9EXT RTdS RTSB RTSl RTSZ RT53 RT54 RTSS RTSS
*)9EXT RTS? RTSB RT59 RTEG RTSI RT62 RTEE RT64
*DSEXT RTSS RTES RTE? RTEB RT69 RT?B RT?1 RT?2
*)9EXT RT?3 RT?4 RT?S RT?6 RT?? RT78 RT?9 RTE
*JBEXT RTBI RTE: RT83 RT84 RTSS RTEE RTE? RTEB
*JBEXT RTSS RTBB RTSI RT92 RT33 RTSJ RTES RTES
*JSEXT RT9? RTBB RTSS RTIBB
*Il

SYNBOL PRI=36
INTEGER RRRRY 191(18)
INTEGER HRRRY IRZtlB)
INTEGER RRRRY 193(16)
INTEGER RRRRY 194(18)
INTEGER RRRRY IRStlfl)
INTEGER RRRRY IREIIB)
INTEGER RRRRY 197(18)
INTEGER RRRRY 196(18)
INTEGER RRRRY IRStlB)
INTEGER RRRRY 1918(16)
INTEGER RRRRY IRIIIIB)
INTEGER RRRRY IRI2IIB)
INTEGER RRRRY IRlStlB)
INTEGER RRRRY 1914(16)
INTEGER RRRRY 1915(18)
INTEGER RRRRY IRIEIIB)
INTEGER RRRRY 1917(18)
INTEGER RRRRY IHIBIIB)
INTEGER RRRRY 1919(16)
INTEGER RRRRY IR28IIB)
INTEGER RRRRY IR2IIIB)
INTEGER RRRRY 1922(16)
INTEGER ARRAY 1923(18)
INTEGER RRRRY IR24(IB)
INTEGER RRRRY 1925(16)
INTEGER HRRRY IR2EIIB)
INTEGER RRRRY 1927(18)
INTEGER RRRRY IRZBEIB)
INTEGER RRRRY IH2SIIB)
INTEGER RRRRY IRSECIB)
INTEGER RRRRY 1931(16)
INTEGER RRRRY IR32(IBJ
INTEGER RRRRY IRSZIIB)
INTEGER RRRRY IR34IIB)
INTEGER RRRRT IRSSIIB)
INTEGER RRRHY IRSEEIB)
INTEGER RRRRY IRSFIIEJ

ND—60.151.02

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
QRRRY
RRRRY
RRRRY
RRRRY
ARRAY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRRY
RRRQY
RRRRY
RRRQY
RRRRY
RRRRY
RRRRY
RRRRY
QRRRY
RRRRY
RRRRY
RRRRY
QRRRY

IRSB(IG)
IR39(IBJ
1948(16)
IR41(IBJ
IR42£1B)
1943(13)
I944(18)
1945(16)
1946(16)
1947(16)
1948(18)
1949(16)
IRSB(16)
I951(IB)
1952(18)
1953(18)
1954(16)
[955(16)
1956(18)
1957(103
1958(16)
1959(18)
1958(18)
1961(16)
1962(18)
1963(16)
IRS4(16)
1965(18)
1966(16)
1967(163
1968(16J
1969(16)
1976(16)
IR?1(IG)
IR?2(IB)
1973(16)
1974(18)
1975(15)
IR76(IB)
IR??(IB)
IR?8(IQ)
1979(18)
IRBB(IB)
1981(18)
I982(18)
1983(183
1984(16)
IRBSCIB)
1986(18)
IRS7(IB)
1988(163
1989(18)
IRBB(1@)
IRSI£lBJ

7-26

ND—60.151.02

INTEGER RRRRY
INTEGER RRRRY
INTEGER RRRRY
INTEGER RRRRY
INTEGER RRRRY
INTEGER RRRRY
INTEGER RRRRY
INTEGER RRRQY
INTEGER RRRRY
SUBR RPRUG
*39RT RTI PRI

"I91":
*)9RT RTE PRI

"192“:

*JSRT RT3 PRI
“193":

*JSRT RT4 PRI
"194":

*)9RT RTS PRI
"IRS";

*)9RT RTE PRI
"IRS":

*39RT RT? PRI
'

"197";

*JSRT RTE PRI
"IRE":

*)9RT RT9 PRI
II

1R9";

*JBRT RTIB PRI
"1910":

*JQRT RT11 PRI
"I911“:

*)9RT RT12 PRI
“1912":

*JBRT RT13 PRI
“1913”:

*JSRT RT14 PRI
"1914“:

*JBRT RTIS PRI
“IRIS”:

*)SRT RTIS PRI
“I916“:

*)9RT RTI? PRI
"191?“:

*JGRT RTlB PRI
"IRIS":

*)9RT RTlS PRI
“IRIS”:

*lSRT RTZB PRI
"IRZB":

*JSRT RT21 PRI
"1921”:

*)9RT|RT22 PRI
"1922”:

1992(18)
1993(18)
1994(13)
IRSSilfl)
I996(IB)
1997(16)
I998(16)
IRSBilB)

7-27

IQlBBIlB)

T:=1: CALL SRUUT:

T:=2: CHLL SRUUT;

T:=3: CHLL SRUUT:

Tz-4: CQLL SRUUT:

T:=5: CELL SROUT:

T:=S: CRLL SRUUT:

T:=7: CRLL SROUT:

T:-1B: GRLL SRUUT:

T:=11: CHLL SROUT:

T=-21;

Tn =‘5'3-. LI—I

CQLL
' GQLL

' GHLL

‘ CRLL

' CHLL

' CRLL

CRLL

CELL

GQLL

' CRLL

‘ GHLL

' CQLL

' CRLL

SROUTi

SROUT:

SRUUT:

SROUT:

SRDUT:

SRDUT:

SRDUT:

smut,- ~

SRUUT:

SROUT:

SRDUT:

SROUT:

SRUUT:

ND-60.151.02

*MUN a:

mMUH 6;

*HUN 9:

*MUN a:

*MON 8:

#MUN a:

*HON a:

)FILL

JFILL

)FILL

)FILL

)FILL

JFILL

)FILL

*MON 6:

*MON 3:

*MOH

*MON

*MUN

*MUN

*MUH

*MON

9:

6:

a:

6:

a:

a:

a:

a:

Z:

JFILL
)FILL
)FILL
)FILL
)FILL
)FILL
)FILL
JFILL
)FILL
)FILL

IJFILL
)FILL
)FILL
)FILL
)FILL

*JSRT

*JSRT

*JSRT

MJSRT

*)9RT

*)9RT

*)9RT

*)9RT

*JSRT

*)9RT

*JBRT

*JSRT

*)9RT

*)9RT

*JSRT

*JSRT

*JSRT

*JBRT

*)9RT

*JBRT

*)9RT

*JSRT

*)BRT

*JBRT

*JBRT

*JBRT

*JBRT

R123 PR1
"1R23":

R124 PR1
"1924":

R125 PR1
"1925":

R125 PR1
"1935":

RTE? PR1
"1927":

RTEB PR1
"1923":

R129 PR1
"1929";

RTEB PR1
"1935":

R131 PR1
"1931":

R 34 PR1
"19321:

R133 PR1
"1933":

R134 PR1
"1934":

RT35 PR1
"1935":

RT3S PR1
"1935":

RT3? PR1
"193?":

RT3B PR1
"1938";

RTBS PR1
"IRES":

RT48 PR1
"194a":

R141 PR1
"1941";

R142 PR1
"1R42";

R143 PR1
"1943":

R144 PR1
"1R44";

R145 PR1
"1945":

RMSPm
"1945";

RT4? PR1
"194?";

m4BPm
"1e4a";

R149 PR1
"1R49";

71

:j

—4

-4

-4

.4

_l

7-28

' CRLL

' CRLL

' CRLL

' CQLL

' CRLL

' CRLL

' BRLL

' CRLL

a ' CQLL

' CRLL

; CRLL

' CQLL

' CQLL

CRLL

CQLL

° CRLL

' CRLL

‘ CRLL

' CRLL

' CRLL

' CRLL

' CRLL

CRLL

CRLL

- CQLL

' ' CHLL

' CHLL

ND—60.151.02

SRUUT:

SRDUT:

SRUUT;

SRUUT:

SRUUT:

SRUUT:

SRUUT:

SRUUT:

SRDUT;

SRDUT:

SRUUT;

SRUUT:

SRDUT:

SRUUT:

SRDUT:

SRUUT:

SRDUT:

SRUUT;

SRUUT:

SRDUT;

SRDUT:

SRDUT:

SRDUT:

SRUUT:

SRUUT:

SRDUT;

SRDUT:

mMUN

*MUN

*NUN

*MUN

mMUN

*MUN

*MUN

*MUN

*MUN

*MUN

*MUN

*MUN

*MUN

*MUN

*MON

*MUN

*MON

*MUN

*MON

*MOH

mMUN

mMOH

*MUN "

mMUN

*MDN

*MUH

$NON 1'

)FILL

)FILL

JFILL

)FILL

JFILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

JFILL

)FILL

JFILL

)FILL

)FILL

)FILL

JFILL

JFILL

)FILL

)FILL

)FILL

JFILL

)FILL

*JBRT

*19RT

*)9RT

XJSRT

*)SRT

*JBRT

*JSRT

*JBRT

*)9RT

*JSRT

*JBRT

*)9RT

*JBRT

*JBRT

*)BRT

*>9RT

*)9RT

*)9RT

*JSRT

*)9RT

*DBRT

*néRT
*DSRT

*)9RT

*JSRT

*JQRT

RmaPm
“1958“:

RT51 PR1
"1951":

RT52 PR1
"1952":

RT53 PR1
"1953":

RT54 PR1
"1954":

RTSS PR1
"1955":

RTss PR1
"IRES";

RTS? PR1
"1957";

RTSB PR1
"1958";

RT59 PR1
"1959":

RTEB PR1
"IRSB":

RT61 PR1
“IRSI”;

RTsz PR1
"1952”:

RT63 PR1
"1R63";

RT64 PR1
"1964";

RTss PR1
"Ines":

RTSE PR!
"1965";

RTB? PR1
“196?":

RTEB PR1
"IRSB":

RT59 PR1
"1969":

RT?B PR1
"1978”:

RTP1 PR1
"1971":

RT?2 PR1
”IR72“:

RT?3 PR1
"1973";

RT74 PR1
"1974":

RT75 PR1
"IRPS":

RTPS PR1
"IR?E“:

_|:=64:

_| 11 Ch Ln

—1

—1

—1

—i

-i

—1

-j

II '\| K

T:=1@3;

T:=164:

T:=165:

T:=136:

T:=13?:

T:=110:

T:=Ill:

T:=112:

T:=113:

T:=114:

7-29

CQLL SRUUT:

' CRLL

CRLL

' CRLL

CRLL
' CRLL

' CRLL

CQLL

' CRLL

' CRLL

' DRLL

'CRLL

CRLL

CRLL

CQLL

CRLL

CRLL

CRLL

CRLL

CQLL

CRLL

CRLL

CRLL

CRLL

CRLL

CQLL

CRLL

SRUUT:

SRUUT:

SRDUT:

SRUUT:

SRDUT:

SRUUT:

SRUUT:

SRUUT;

SRUUT:

SRUUT:

SRUUT:

SRUUT:

GROUT:

SROUT;

SRDUT:

SRUUT:

SRDUT:

SROUT;

SRUUT:

SRUUT;

SRUUT:

SRUUT:

SRDUT:

SRDUT:

SRDUT:

SRDUT:

ND—60.151.02

mMUN

*MUM

*MUH

*MDN

*MUN

*MUN

*MUN

*MUN

*MON

*MUN

mMUN

*MON

*MUN

*MUN

*MUN

*MUN

*MON

mMDN

*MON

*MON

*MON

mMON

*MON

*MCIN

*HUN

*MUN

*MDN

')FILL

JFILL

)FILL

JFILL

)FILL

)FILL

JFILL

JFILL

'«)FILL

)FILL

)FILL

JFILL

JFILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

)FILL

7-30

*)9RT RT7? PEI
"197?”: T:=115: CRLL SRDUT: *M0N E:)FILL

*J9RT RTFB PRI
”I978": T==116: CQLL SRUUT: *MDH B:)FILL

*JSRT RTFB PEI
"1979": T:=117: CRLL SRUUT: *MUN B:)FILL

Ht) SRT RTE-3E1 PF; I
”1985": T:=12@: CQLL SRUUT: *MUN B; JFILL

*)9RT RTBI PEI
"1981”: T:=121: CQLL SRUUT: *M0N E: JFILL

*JBRT RTBZ PRI
“IRB2”: T:=122; CRLL SRUUT: *MUH 6:)FILL

*JBRT RTB3 PR1
"I983": :=123I CQLL SRUUT: *M0N E: JFILL

*JBRT RT84 PRI
"1984”: :=124: CRLL SRUUT: *M0N E: JFILL

*)SRT RTBS PR1
”I985”: ==125: CRLL GROUT: *M0N E:)FILL

1
1
1*)9RT R195 PR1

”I986": 1:=125; CRLL SRUUT: *MUN 9:)FILL*JBRT R18? PR1
”198?": 1*)9RT RTBB PR1
"Ines": T*)9RT RTBS PR1
"1999": 1:=131; CRLL SROUT: *MUN a:)FILL*JSRT RTBB PR1
"1999": 1:-132: aL SROUT: *MUN a:)FILL*DSRT R191 PRI
"1991": 1:=133: CRLL SRDUT: *MON 9:)FILL*JBRT R192 PR1
"IR92"; 1:-134: aL SROUT: *MON 9;)FILL*)3RT R193 PR1
"1993": 1:=135: CRLL 5R0u1; *MON 9:)FILL*JBRT RT94 PR1
"1994": 1:=135: aL 3R0u1: mMON a:)FILL*JBRT R195 PR1
"1995"; 1:=137; ERLL SRDUT: *MON 9:)FILL*JBRT RT96 PR1
"199s"; 1:=14a: aL SRUUT: *HUH a:)FILL*JSRT RTS? PR1
"1997"; 1:=141; aL 3R0u1: *MOH a:)FILL*)9RT R193 PR1
“I998”; 1:=142; aL SRUUT: mMDN a;)FILL*JSRT R199 PR1' "1999"; 1:=143; aL SRUUT: *MUN a; JFILL*JBRT RTIBB PR1
"1R1aa": 1:=144: CRLL SRUUT: *MOM a:)FILL

:=127: CRLL SRDUT: *MUN 6:)FILL

:=139: aL SRDUT: mmow a:)FILL

RBUS
"BRF)9EHD
RJ9EOP
*Il

*JLIHE

ND—60.151.02

7.9

7-31

COMBINED USE OF PERFORM AND GPM

While GPM is very flexible, allowing the competent user a great variety of
transformations, it has the following restrictions:

—— It is not possible to enter parameter values interactively into GPM.

—- When editing a GPM macro file, there is some risk of errors such as
misspelling macro names or making macro calls with incorrect syntax.

— Such errors can cause a considerable number of error messages making it
difficult to find the real problem.

The PERFORM subsystem on the other hand is a simple facility for substituting
mode file variables into general purpose mode files, eg. names of files for
compilation or loading. While PERFORM does not have very extensive macro
facilities, it is very convenient to be able to enter parameter values interactively.

The combined use of PERFORM and GPM takes advantage of the strengths of
both systems, namely interactive input of parameters and accurate substitution
into a GPM macro with its powerful transformation facilities. However, the user
should be careful when mixing the macros of the two systems; in particular it is
advised that a character different from the up arrow character () is used for the
PERFORM macros in order not to confuse them with GPM macros.

The following is an example of the combined use of PERFORM and GPM.

The steps of this job are:

1. Get parameter values interactively or substitute default values.

2. Use the editor to write some GPM macros to a file.

3. Call GPM to create several FORTRAN Source files.

4. Call GPM to create mode files to compile, then load the programs ready for
execution.

5. Execute the mode files which have just been created.

ND—60.151.02

7-32

The PERFORM macro to do this job is:

%B,SERV|CE;
%L,Macro to tailor the remote service system, device numbers;
%P,1,Logical device number of the internal device to be used;
%D,1,2008;
%P,2,Logical device number of the async modem;
%D,2,42;
%P,3,RT program pair number;
%D,3,1;
%P,4,Segme’nt number for input/output programs;
°/oD,4,167,' .
0/0;
@QED
I
TDEF,INTDEV1,01,’
TDEF,ASYNC,02,’
TDEF,PROCNR,03;
TDEF,SEGNR,04;

LC

W SLASK
F

@GPM
YSERVICE-REMOTEZSYMB
SLASKZSYMB
SERVICE-REMOTEZGPM
@GPM
YSERVICE-INPUTZSYMB
SLASKISYMB
SERVICE-INPUTIGPM
@GPM
YSERVICE-OUTPUTZSYMB
SLASKISYMB
SERVICE-OUTPUTIGPM
@GPM
YSERVICE-COMPILEIMODE
SLASKZSYMB
SERVICE-COMPILEiGPM
@GPM
YSERVICE-RTLOAD:MODE
SLASKSSYMB
SERVICE—RTLOADiGPM
@MODE SERVICE—COMPILE:MODE,,
@MODE SERVICE-RTLOAD:MODE,,
%E,‘

edit some GPM macros

create first FORTRAN program

create second FORTRAN program

create third FORTRAN program

create a mode file which will
compile all the programs

create a mode file which will
load all the programs ready for
execution

execute the compilations
execute the program loading
end of PERFORM macro !

The percent character (%) has been used to begin macro commands instead of
the usual up arrow character (I), to avoid confusion with the similar function
required in the GPM macros.

ND—60.151.02

7-33

In order to illustrate the use of GPM in this job the input to GPM to produce the
source of the third FORTRAN program is:

A CRMOD;
C
C PROGRAM TO READ FROM ASYNC MODEM AND WRITE TO TERMINAL
C FOR REIVDTE MAINTENANCE
C

PROGRAM OUTPUTAPROCNR; ,31i
INTEGER IST , RESRV , ICH, ERRCODE , ASYNC , 'IERMNO, IERR
EXTERNAL INPUT“PROCNR;

ASYNC = “ASYNC;
ID1 = “INTDEV1;
IST = RESRV (101, o, 0)
IF(IST .NE. 0) GO TO 9000
TERMNO = INCH (101)
IST = RESRV (TEHmo, 1, o)
IF(IST .NE. 0) GO TO 9000
IST = RESRV (ASYNC, o, o)
IF(IST .NE. 0) GO TO 9000
IST = IOSET (ASYNC, o, o, -1)
IF(IST .NE. 0) GO TO 9000
CALL ECHOM (ASYNC, -1, 0)
CALL BRKM (ASYNC, 0, 0)

CALL RT (INPUT“PROCNR;)CALL RELES(_ID1, 0)
DO WHILE (.TRUE.)

ICH = INCH (ASYNC)
IF(ERROODE .NE. 0) GO TO 9000
CALL OUTCH (TERMJO, ICH)
IF(ERRCODE .NE. 0) GO TO 9000

END DO

9000 CONTINUE
IF(ERRCODE .NE. 0) THEN

IERR = ERROODE
WRITE (TERMNO,9‘IOO) IERR

9100 FORMAT(' ERROR IN OUTPUT PROGRAM, ERRCODE: ’,I6)
ELSE IF (IST .NE. 0) THEN

IERR = IST
WRITE (TERMNO,9200) IERR

9200 FORMAT(' ERROR IN OUTPUT PROGRAM, STATUS: ',16)
END IF

C
END

EOF

ND-60.151.02

7-34

If the above macro is used and the following values are input:

INTDEV - 201B
ASYMZ - 42 (default)
PW - 2
5m - 201
then ithe Fortran source output from GPM is :

C
CPKTERAM'IOREADWASYNCWANDWRI‘I’ENT‘ER‘ENAL
C FOR
C

9000

9100

9200

C

ml”

mam mm

mm m2,34
m IST,RESRV,ICH,ERKDDE,ASYNC,TERVNO,IERR
EXI‘EWAL INPUl‘Z

ASYM'I
ml

42
201B

IST=RESRV(ID1, 0,0)
IF(IST .NE. 0) GO '10 9000
m = M (ED

ISP=RESRV (1mm, 1, 0)
IF(IS'I‘ .NE. 0) GO '10 9000
ISP=RESRV (ASYNC, 0, 0)
IF(IST .NE. 0) CD '10 9000

ISP=ICSET (ASYNC, 0' 0,-1)
IF(IST .NE. 0) @ ’10 9000

MW(ASYNC'-LO)
CALLBRKM (ASYNC' 0,0)

CAILM‘(m2)
CAILRELES(ID1,0)

mm (.TRUE.)
ICE 3 INCH (ASYNC)
IF(ERm}3 .NE. 0) GO '10 9000
CALL CUI'CB ('I'ERNO, ICE)
IF(ERRCODE .NE. 0) G) '10 9000

WRITE ('I'EHNO,9100) IEPR
WU ERROR 1N (IJTPUT PRIZERAM, ERRIJDEN ,I6)

ELSE IF (191‘ .NE. 0) THEN
IEPR = ISI‘
WRITE (TWO,9200) IERR
WWW ERROR IN CU'I'PU'I‘ PROGRAM, S'I’AEUSH ,I6)

END IF

1ND

ND-60.151.02

8.1

8-1

VTM-COMPOUND

SINTRAN ”I has to handle different manufacturers’ terminals individually, ie.,
according to the terminal type specified in the command
@SET-TERMINAL-TYPE. Some subsystems, eg., NOTIS WP, use the VIRTUAL
TERMINAL MANAGER, abbreviated VTM, to handle the terminal screen.

VTM needs a table with descriptions of all terminal types used in the computer
system. In VTM version C and later versions, the terminal table is stored on the
file DDBTABLES-nzVTM. The character ”n” denotes the version, eg.,
DDBTABLES-D:VTM.

VTM-COMPOUND is a subsystem to add new terminal types to the terminal table
when new terminals are connected to the computer system. The subsystem may
also modify the terminal table in other ways.

All standard terminal types are initially described in the terminal table. Each
nonstandard terminal type will be described by a separate file called
DDBnnn:VTM where ”nnn” denotes the terminal type. Such files should be
compounded into the terminal table by VTM-COMPOUND.

VTM-COMPOUND may also produce a terminal table on a relocatable format file
to be loaded together with an application program which uses VTM. The terminal
type descriptions will then be fetched from this file.

STARTING VTM-COMPOUND

VTM-COMPOUND uses menus to show the available operations on the terminal
table. You enter the first menu by giving:

@VTM-COMPOUND

You return to SINTRAN III by selecting the EXIT alternative in the menu, ie., by
typing 9 followed by carriage return. Standard line editing characters like the
a-key (or CTRL A), the EXPAND-key (or CTRL E), and the navigation keys to
move the cursor forward and backward are available.

ND—60.151.02

8-2

8.2 THE OPERATIONS AVAILABLE IN THE MENUS

The first menu you enter is the main menu. The available operations on the
terminal table look like this:

DO YOU WANT TO:
: GENERATE A NEW FILE

ADD TERMINAL TYPES
DELETE TERMINAL TYPES
GENERATE A FILE WITH BRF OR NFlF FORMAT
LIST TERMINAL TYPES
LIST CPU—TYPE, CPU—NUMBER AND FILE VERSION NUMBER
CHANGE CPU—TYPE, CPU—NUMBER AND FILE VERSION NUMBER
EDIT THE CONTENTS IN DDBSQS: VTM

: EXIT
ANSWER: I
‘9
F?
79
9’
91:?

5?
P9
"

You select an alternative from this menu by entering one of the numbers
followed by carriage return. In alternatives 1-7 you will be asked which file you
want to use. You may select one of four alternatives as shown from the menu:

WHICH FILE DO YOU WANT TO USE:

1: DDBARRAYS:VTM (VTM-B)
2: DDBTABLES-mVTM (VTM-n)
3: User’schoice /:VTM/
4: RETURN
ANSWER: _

If you select alternative 2, "DDBTABLES-“ will be output, and you have to
fill in the correct version. The file DDBARRAYSNTM contains the terminal
table used by VTM, version B. Alternative 3 allows you to specify any file. A
new file can be created by enclosing the file name in quotes ("..."). The
default file type, :VTM, is shown between slanted lines.

You will then be asked for further information, or information will be ouput
according to the selected alternative in the main menu. This is described in
the next sections. The 4th alternative called RETURN redisplays the main
menu.

ND-60.151.02

8.2.1

8.2.2

8.2.3

8-3

Generate a New File

Alternative 1 in the main menu will create a new file containing a terminal table.
VTM-COMPOUND will ask you to enter the CPU type, CPU number, and the file
version number. Answer these questions with carriage return. These functions
are reserved for future use.

The subsystem will then ask which terminal types the user wants to compound
into the new terminal table. The terminal types can be given either one by one
separated by carriage return, or as a range, eg., 2:5. You finish by typing 777
followed by carriage return. The corresponding DDBnnn2VTM files describing the
terminal types must be available.

Add Terminal Types

Alternative 2 in the main menu will add new terminal types to the terminal table.
Terminal types can be given one by one separated by carriage return, or as a
range, eg., 2:5. You finish by typing 777. The corresponding DDBnnnzVTM files
must be available.

Delete Terminal Types

Alternative 3 in the main menu will delete terminal types from the terminal table.
Terminal types can be given one by one separated by carriage return, or as a
range, eg., 2:5. You finish by typing 777.

ND—60.151.02

8.2.4

8-4

Generate a New File with BRF or NRF Format

Alternative 4 in the main menu will create a file containing the terminal table in
relocatable format, ie., in BRF or NRF. These files can be loaded together with an
application program which uses VTM. VTM will then fetch the terminal type
descriptions from this file. The relocatable format files may be generated for
ND-100 one-bank programs, ND-100 two-bank programs, or ND-500 programs.
The alternatives will be shown as in the menu below:

WHAT TYPE 00 YOU WANT TO GENERATE:
1: ND-100 (1—BANK) /:BRF/
2: ND—100 (2—BANK) /: BHF/
3: ND—500 /: NRF/
4: RETURN
ANSWER: _

When you select an alternative, the default file name will be displayed. You may
edit this name, eg., enclose it in quotes ("...") to create a new file, or overwrite it
with another file name. The default file names are VTM~1B-ARRAY:BRF,
VTM-2B—ARRAYzBRF, and VTM-ARRAYzNRF.

The information in the relocatable format files will be the same as in the ordinary
terminal table. The file containing the ordinary terminal table will be used as
input.

ND~60.151.02

8.2.5

8.2.6

8.2.7

List Terminal Types

Alternative 5 in the main menu will display a list of the terminal types in the
terminal table. The terminal types will be output both by number and the
manufacturer's name, eg.,

TELETYPE—ASR—33
TANDBERG—TDV2115—STANDAREI
INFOTON—ZOO—l
INFOTDN—400

1 DEC-LA36 (DECWRITER—II)
36: TANDBERG-TDV2215— EXTENDED
52: TANDBERG- TDV—2215—SDS—V2
53: TANDBERG-TDV2200/9-ND—NOTIS
57: FACIT— 4420-ND—NOTIS
83: TANDBERG—TDV2200/9-V2—ND—NOTIS

739.145?”

The terminal types listed above are the standard terminal types.

List CPU Type, CPU Number and File Version Number

Alternative 6 in the main menu should display a list of the CPU type, the CPU
number, and the file version number in use. These functions are reserved for
future extensions, and no values will be output.

Change CPU Type, CPU Number and File Version
Number

Alternative 7 in the main menu allows you to change the CPU type, the CPU
number, and the file version number. These functions are reserved for future use.
The default values are no changes.

ND-60.151.02

8.2.8

8.2.9

Edit the Contents of the File DDBQS9:VTM

The DDB999:VTM file is only used with VTM, version A. It contains the terminal
«types and the manufacturers’ terminal names of all terminals in the computer
system. The DDBQQQNTM file is used by some subsystems, eg., NOTlS WP, to
display the available terminal types if no terminal type is set. Section 8.3 explains
how VTM version A functions.

The DDB999:VTM file should be updated when new terminal types are added to
the system. Alternative 8 in the main menu will allow you to modify the contents
of this file. The alternative operations will be shown as in the menu below:

DO YOU WANT TO:
1: MAKE A NEW DDB999 FILE
2: ADD TERMINAL TYPE DESCRIPTIONS
3: DELETE TERMINAL TYPE DESCRIPTIONS
4: LIST THE CONTENTS IN DDBQQQ: VTM
5: EXIT
ANSWER: _

The first alternative will create a new DD8999:VTM file. The second alternative
will add new terminal types to the existing DDBQQQNTM file. The 3rd alternative
will delete terminal types from the file. The terminal types should be entered one
by one separated by carriage return, or as a range, eg., 2:5. You terminate the
input by typing 777.

The 4th alternative will list the terminal types in the file. The terminal type and
the manufacturer's terminal name are output, eg., 53: TANDBERG-
TDV2200/9-ND-NOTIS. The last alternative will display the new contents of the
file DDBQBQNTM and return you to SINTRAN Ill.

Exit

Alternative 9 in the main menu will return you to SINTRAN |||. Information about
the terminal types in the terminal table will be output if the table is modified.

ND—60.151.02

8.3 rVTM VERSIONS, FILE VERSIONS AND TERMINAL
TYPES

To some extent the different versions of VTM should be handled individually.
Version B of VTM uses the terminal table contained in the file called
DDBARRAYS:VTM. Version C and later versions use the file DDBTABLES—n:VTM

n nwhere n denotes the version.

VTM version A, uses one DDBnnn1VTM file for every terminal type. No
compounded DDBTABLES-nzVTM or DDBARRAYS:VTM files exist.
VTM-COMPOUND serves no purpose for VTM version A, except editing the file
DDBQQQNTM. This file contains a list of the terminal types in the computer
system, but no terminal type descriptions are included.

The files DDBnnnzVTM describing each nonstandard terminal type are separate
products. All terminal types are listed in appendix B in the SlNTRAN lll
REFERENCE MANUAL (ND-60.128). VTM- COMPOUND should only be used from
a standard terminal type.

ND<60.151.02

8.4

88

AN EXAMPLE OF INCLUDING A NEW TERMINAL
TYPE

In the following example, the nonstandard terminal type 78 is entered into the
terminal table. The terminal table resides on the file DDBTABLES-D:VTM. User
input is underlined.

@VTM—COMPOUND
(main menu displayed and the choice ADD TERMINAL TYPES is selected)

ANSWER: ;
(a new menu asks which file you want to use)

ANSWER: ;
(the string ”DDBTABLES-" is displayed to the right of alternative 2 in the
menu)

2: DDBTABLES—n:VTM (VTM-n) DDBTABLES—D
(the menu disappears and you are asked which terminal types you want to
add)

-— WRITE TERMINAL TYPES --

CARRIAGE RETURN AFTER EACH TYPE. WHEN FINISHED: WRITE 777.

E
NEXT: m

(you return to the main menu)

ANSWER: _9_

(all terminal types are listed and you return to SINTRAN Ill).

The terminal type 78 can now be set for the new terminal by the SINTRAN Ill
command @SET-TERMINAL—TYPE. The file DDBO782VTM containing the terminal
type description must be available.

ND—60.151.02

8.5

8-9

ERROR MESSAGES

The following error messages can be displayed by VTM—COMPOUND. Other
possible messages are SINTRAN lll error messages like "NO SUCH FILE",
"ambiguous file name", etc.

THE FILE IS EMPTY
You tried to access terminal types in an empty terminal table or an empty
DDBQQQNTM file. VTM-COMPOUND will ask you to specify another file name.

TYPE > 255 IS ILLEGAL
You entered a terminal type greater than 255. VTM-COMPOUND will ask you for
another terminal type.

FILE IS TOO BIG FOR BUFFER
The number of bytes in the DDBSQQIVTM is to great. VTM-COMPOUND will ask
you to specify another terminal type.

ALREADY EXISTS IN THE FILE
You tried to add a terminal type that already exists in the terminal table or the
file DDBQQQNTM. VTM-COMPOUND will ask you to specify another terminal
type.

DOES NOT EXIST IN THE FILE
You tried to delete a terminal type that does not exist in the file specified.
VTM-COMPOUND will ask you to specify another terminal type.

THERE ARE NO MORE TERMINAL TYPES LEFT IN THE FILE
All terminal types have been deleted from the terminal table or the file
DD3999:VTM. VTM-COMPOUND will return you to the main menu.

THE TYPE DOES NO EXIST
There is no DDBnnn:VTM file corresponding to the terminal type you chose.
VTM-COMPOUND will ask you to specify another terminal type.

NOT A RANGE!
An improper range is given, eg., 36:34 instead of 34:36.

THE FILE ”VTM-ALL-TYPES:V'I'M" DOES NOT EXIST ON THIS USER
No file by the name of VTM-ALL-TYPESNTM exists. This file contains the
manufacturers’ names of all the defined terminal types in SINTRAN III. This file
is used when terminal types are added to one of the files DDBQQQNTM,
DDBARRAYSNTM or DDBTABLES-n:VTM. The file VTM-ALL-TYPES:VTM is
supplied as part of the VTM-COMPOUND system. VTM-COMPOUND will
terminate.

ND-60.151.02

8-10

THE FILE "DDBQ99:VTM" DOES NOT EXIST ON THIS USER
No file by the name of DDB9991VTM exists. VTM-COMPOUND will terminate, and
the user have to create this file before continuing.

THE FILE <file name> DOES NOT EXIST ON THIS USER
No file with the entered <file name> exists. VTM-COMPOUND will continue
and ask for another file name.

ND-60.151.02

*fl'fifl-l-‘l'fifl'filI-‘lhl-fl SEND US YOUR COMMENTS!!! **************

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don't you join the Reader’s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

Please let us know if you
' find errors
" cannot understand information
' cannot find information
' find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

”HHHHH HELP YOURSELF BY HELPING US!! HHHHHH

Manual name: SINTRAN III Utilities Manual Manual number:N1j _ 60.151.2
Rev. A

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date'

Company: Position'

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for Norsk Data A.S ___’
documentation errors. Software and Documentation Department
system errors should be reported on PO. Box 25, Bogerud Norsk Data's answer will be found
Customer System Reports. 0621 Oslo 6, NonNay on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S
Documentation Department
P.0. Box 25, Bogerud
0621 0s|06, Norway

.0. O... .0...... '

fill-IllI‘ll"!!!"lullllllfllflfllflllflllm
' fllmflillflII IIIIIIIIIIIIIIIIIIIIIIIIIIIIlllllllllllfllll Illicit-till!!!

