5 g : Ly
‘ : L
\
. 2
\
A
‘ <
\
/
000 000 0000000
0000 @ 000 0000
A
! e

SINTRAN [l
Utilities Manual

ND-60.151.02
Rev. A

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk

Data A.S.

Copyright @ 1984 by Norsk Data A.S

PRINTING RECORD

Printing Notes

11/81 Version 01

05/82 Revision A
The following pages are revised or new: vi, vii, viii, 1-1, 3-21.
Sections 6 and 7.

12/82 Revision B
The following pages are revised: vii.
Section 5.

06/84 Version 02

02/85 Revision A

The following sections are new: Sections 3 and 4.

SINTRAN 11l Utilities Manual
Publ.No. ND--60.151.02A

Norsk Data A.S

S04 11 L]
P04 xx;
1 s 1§
D4 0%
) -+
++ +49 b4-44
Norsk Data

Graphic Center
P.0.Box 25, Bogerud
0621 Oslo 6, Norway

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old prirting record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSt) and can be ordered as described below.

The reader’'s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S

P.O. Box 25, Bogerud

0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
P.0. Box 25, Bogerud
0621 Oslo 6, Norway

Introductory

Manuals

Programmers'/ Users'

Manuals

Reference
Manuals

SINTRAN Il
Utilities Manua)

ND-—-60.151

SINTRAN {1l
Referance Manual

ND-60.128

SINTRAN 11

Real Time
Loader

ND--60.051

SINTRAN 111

Related Manuals
ey

SINTRAN 11t
Introduction
ND-860.125

SINTRAN T

Timesharing/
Batch Guide
ND—-60.132

ND--500
Loader/Monitor
ND-60.136

SINTRAN i}
Real Time
Guide
ND-60.133

——————————————— g l" | f
Operators/Supervisors : ;| Cammunication : SINTRAN 111 :
| ! | | Communication :
| I | Guide {
SINTRAN Il " l || ND-60.134 |,
System Su pervisor 1 : i :
i
ND-30.003 I ! ! !
! | ! ‘COSMOS ! COSMDS
| i 'l Programmer's |! User s Guide
! ! l Guide — ND-60.163
i ! | ND—60.164 |
t | i i
i 1 i I
_ SINTRANTIT | Nordmr
System Documentation System ! System
Documentation : Documentation
ND-60.062 i ND-60.081
|
S T T e e e e e e e e e
SINTRAN {11 SINTRAN 111
Data Fields RT Loader
System Doc.
ND-60.112 ND--60.072

vii

PREFACE

THE PRODUCTS

This manual describes subsystems which run under the SINTRAN I operating
system. These subsystems and their product numbers are:

GPM ND—10124
PERFORM ND-—10022
BACKUP--SYSTEM ND—10337
LOOK—FILE ND—10005
FILE EXTRACT UTILITY ND—10044
JEC ND—10005
MAIL (Integrated part of SINTRAN 1)
VTM-COMPOUND ND—10599

MAIL is used to send messages to other users. PERFORM is a simple macro
processing system to create mode and batch files. GPM is a general purpose
macro generator. The BACKUP-SYSTEM is used to copy files efficiently.
LOOK-FILE is used to inspect and modify files. FILE-EXTRACT can be used to
extract records from files. JEC is used to control execution of batch and mode
jobs. VTIM-COMPOUND is used to compound new terminal type descriptions into
one terminal type table used by the VIRTUAL TERMINAL MANAGER (VTM).

THE READER

This manual is written for users of SINTRAN il who want to use any of the
subsystems listed above.

PREREQUISITE KNOWLEDGE

Familiarity with SINTRAN Il at the public user level is necessary.

THE MANUAL

This manual describes some subsystems under SINTRAN lll. The subsystems are
not necessary for simple use of SINTRAN I, but may be of considerable use for
particular tasks. The manual is mainly a reference manual.

ND-60.151.02

viii

RELATED MANUALS

Related manuals giving basic information about SINTRAN Iil are:

SINTRAN I Introduction ND—60.125
SINTRAN Il Timesharing Batch Guide ND—60.132

Other SINTRAN I manuals are shown on the preceding diagram.

The ND GLOSSARY (ND-40.005) will explain common computer terms and what
they mean in ND manuals. ND abbreviations and acronyms are also listed. The
glossary should be of interest to anyone using ND equipment.

NOTATION USED IN THE MIANUAL

In the examples, user input is underlined. Examples are given in UPPERCASE
letters, but lowercase letters are also accepted. When used as parameters, octal
numbers are given in the form 377B, where the B denotes octal. In command
parameter descriptions, the parameters are enclosed in angular brackets, eg.,
< parameter>.

Parameters which have default values are enclosed in parentheses, eg.,

(< parameter>). The default value is used if a null parameter is supplied.
Selections in parameter descriptions are separated by slashes, eg., YES/NO.

CHANGES FROM PREVIOUS VERSION

JEC and VTM-COMPOUND are new products. The structure of the chapters
which describe PERFORM, BACKUP-SYSTEM, LOOK-FILE and MAIL has been
changed. New features in the subsystems are marked with a vertical line.

ND-60.151.02

Section:

1.1
1.2
1.3
1.4

2.1
2.2

24
25
26
2.7
2.8

3.2
3.3

3.3.1
3.3.2
3.33
3.34
3.35
3.36
3.3.7

3.4

3.4.1
342

343
344
345

35

3.6
3.7

TABLE OF CONTENTS

+ 4+ A+

Page:
MAIL L e 1—1
General DesCriptioncc..ocoovvivieiiiicceee e 1—1
Commands Available to All Users.................cc.ooee. 1—2
Commands Available to User System............................. 1-3
Sending Messages from Mode and Batch Jobs............ 1—4
PERFORM L., 21
Creating Macros.......ccccoiiiiiiic e 2—1
Starting Perform ... 2—-3
Example of Using Perform..............ccoooiiiiiin i 24
Listing Defined Macros.........c...coooeoioiiiiii e 2—6
Optional Control Parameterso.cccooeeniieiio, 2—17
Extended Parameter Submission...............ccoeeviviiiinn, 28
Limitations, Restrictions and Defaults 2-8
Predefined Macros..........cooeeeiiiiiiiii e, 2§
JEC - JOB EXECUTION CONTROL c.ooooiiiiiieice 3-—1
Interactive JEC and Error Codescooceiiiiii . 32
Why Use the Error Codes? ..., 3—-4

An Introductory Example of a JEC Mode File................. 3—5b
The JEC Commandsccoooiiiiiiiiii e 3—6
BEGIN, END, and TERMINATEccoooccooooiiiiiini 3-—7
CLEAR-COMPLETION-CODE..........coooiiii 3-8
DEFINE and INQUIREcoooco 3—9

GO TO, IF, FOR and PERFORMcocooooiiiiiiii, 3-n
PRINT Commandsoeoiiiiiiiiiii e 3—15
Terminal and Mode Input/Output 3—15
Comments Start with % ..., 3—17
Exampies of JEC Mode and Batch Files 3—17
An Example Using SORT-MERGE 3—17

Compiling, Loading, and Executing a COBOL

Program ... 3—18

A Batch File EXample ..o, 3—19

A Flexible Compile and Load Mode File................... 3—-20

Use of Arithmetic to Create a Continuous File.......... 3—22

The JEC Library.....ooooooiviiii e, 3-23
Some Technical Detailscccoovieiiieii e, 324
JEC SYNTAX it 3—-24
INDEX e 3-27

ND-60.151.02

Section: Page:
4 BACKUP-SYSTEM ...ttt 41
4.1 INtrodUCioNviiiiii e 4-—1
4.2 Command SUMMArYoooiiiieie e, 4—4
4.3 Simple Use of the BACKUP-SYSTEMcooovvvevi. 4—86
4.4 Detailed Description of Commandsc..cccoovvin. 4-—10
441 Interactive Help Informationcocccoovvvveveeieee, 4—10
442 Handling Volumes on Magnetic Tapes and Floppy

‘ DISKS ..o 4—11
443 Copying a User’s Filles.........c....oooviiveeieeeee e, 412
4.44 Copying Several Users’ FileS............c..cooooivveeveenn, 4—-18
445 Selecting Special Copying Modescc.oco...... 4-18
4456 Recreating Files and Usersccccooevvivvoiiee 4-24
45 Some Important Changes in the BACKUP-SYSTEM 4--25
4.6 Label Formats on Magnetic Tape Volumes..................... 4-25
5 LOOK-FILE o 5—1
51 Command SUMmMary ..., 5—1
5.2 General RUIBS ..o 52
5.3 Detailed Description of Commandscccoccovei. 5-3
6 FILE-EXTRACT .o, 6—1
6.1 PUIPOSE ..o 6—2
6.2 Command StruCtUreooooov oo 6—3
6.2.1 INPUE File ..o 6—3
6.2.1.1 Mode File Save Optionoooeeeeiii) 6—4
6.2.1.2 Limited Automatic Command Input..............c....... 6—4
6.2.1.3 Fixed Record Length Input File Option................ 6—5
6.2.1.4 Indexed Access via KEY File............coccooviiininl. 6—5
6.2.2 OUtpUL File oo e, 6—6
6.2.2.1 Output File Append Option.......cc.coovevceveiiia . 6—6
6.2.22 File Split Optioncoocoovviiiiii e, 6—6
6.2.2.3 Output File Organization Change (X Option) 6—7
6.2.3 Extract Selection Specificationss...........cccoocevvein... 6—8
6.2.3.1 Numeric Field Evaluationccccoovii, 6—9
6.2.3.2 Text Field Evaluationcooovovoi e, 6—10
6.2.3.3 Text String Search ..., 6—11
6.2.3.4 Limited Text String Search...........ccoccvvevivieen. 6—12
6.2.35 Logical Operandscoocooiiiiioe e, 6—13
6.2.3.6 Parentheses Nesting ... 6—14
6.2.3.7 Input File Record Intervals............cc.ccocoveeein, 6—15
6.2.3.8 Show First Input File Record Option.................... 6—16
6.2.3.9 Command Line Continuation Option 6—16

ND-60.151.02

Xi

Section: Page:
6.2.4 Output Specifications. ..o 6—17
6.2.4.% Input Record Subsets Specification.................... 6—18
6.2.4.2 Output Record Constantsccoevooieieiei, 6-—19
6.2.43 Input Record Number Inclusion........................... 6—19
6.2.44 Gutput Record Number Inclusion...........oc........... 6—20
6.2.45 Random Key Inclusion Optionccoooeviii.. 6—20
6.2.4.6 Terminal Qutput Wait Optioncc.ooeerevii 6—22
6.2.4.7 Line Printer/Terminal Output Heading Option..... 6—23
6.2.4.8 Line Printer or Terminal Page Numbering Option 6—24
6.2.4.9 Predefined Heading as Extract Command Line...6—25
6.2.4.10 Predefined Heading as Position Mask.................. 625
6.2.4.11 Split File Copy Option..........ooocooeiiiioeee 6—25
6.2.4.12 Show First Input File Record Option................... 6—26
6.2.4.13 Command Line Continuation Option 6—26
6.2.4.14 Skip Output Record Trailing Spaces 6—26
6.3 Run-Time Status Messages..............c.occoooeeevioo 627
7 GENERAL-PURPOSE MACRO GENERATOR - GPM............ 7—1
7.1 GPM Syntax and Evaluation Rulesc..ocooovvvvevoi 72
7.2 System Macrosoooooiiiiee e 7—4
7.3 Macro Evaluation ... 7—7
7.4 Conditional Macros..............ocoooeooi 79
7.5 Recursive Macros ..ot 7—10
7.6 The GPM Library ... 7—12
7.7 GPM under SINTRAN ..o 7—18
7.8 GPM Applications - Some 1deascooceeeevvevvevo. 7—20
7.8.1 GPM and Semigraphic Displayocoveeeeeoeviee . 7—20
7.8.2 System Generation using GPM ... 721
7.9 Combined Use of Perform and GPM............................... 731
8 VTIM-COMPOUND ..ot 8—1
8.1 Starting VIM-COMPOUND ..o 8—1
8.2 The Operations Available in the Menus 8-2
8.2.1 Generate a New File...............occooooiii o 83
822 Add Terminal TYPES ...t 83
8.2.3 Delete Terminal TYPeS......c.ooovioeiooeioe oo 8-3
8.2.4 Generate a New File with BRF or NRF Format.......... 8—4
8.25 List Terminal TYPes.....c.ooooiiioioe oo 8—5
8.2.6 List CPU Type, CPU Number and File Version

NUMbDET e 8—5
8.2.7 Change CPU Type, CPU Number and File Version

Number ... 8—5
8.2.8 Edit the Contents of the File DDB999:VTM 8—6
8.29 EXIt oo 8—86
8.3 VTM Versions, File Versions and Terminal Types.......... 87
8.4 An Example of Including a New Terminal Type.............. 88
85 Error Messages ..o 8—9

ND-60.151.02

1.1

1-1

MAIL

MAIL is a subsystem for sending messages to other users. Messages can be sent
directly to the terminal of any user who is logged in. The message displayed will
not interfere with the work being done at that terminal.

The subsystem operates like a mailbox for users who are not logged in. They will
be told that they have mail when they log in. They can read the message sent to
them by entering MAIL.

User SYSTEM is allowed to send the same messages to all users or terminals.

This is called broadcasting. Some of the MAIL commands are only available to
user SYSTEM.

GENERAL DESCRIPTION

MAIL must be entered both to send messages and to receive messsages that are
stored in the mailbox. The subsystem is entered by

@MAIL { <output file>)

The parameter <output file> describes where you want the contents of your
mailbox to be written. It will only be requested if you have mail. The default
<output file> is your terminal.

MAIL prints an asterisk (*) when it is waiting for you to give a command. The
HELP command will display the available commands. You return to SINTRAN Il
by the EXIT command. MAIL commands can be entered and abbreviated as
SINTRAN Il commands. If you omit parameters, they will be prompted. Only one
user at a time may use MAIL.

ND-60.1561.02

1.2

1-2

COMMANDS AVAILABLE TO ALL USERS

This section describes the commands available to all users. When sending
messages or broadcasts, the message must be terminated by CTRL L. A dollar
sign {$) in a message will start a new output line. Messages will be output
together with the name of the sender. The maximum message length is 512
characters. All messages will be converted to upper case letters.

EXIT
This command leaves the MAIL subsystem and returns you to SINTRAN Il

HELP

This command lists the available commands.

SEND-BDIRECT-MESSAGE <to terminal number>

This command is used to send a message that will be displayed immediately on
the terminal specified. The SINTRAN Hll command @WHO-IS-ON will list the
terminal numbers of the users who are logged in. You will be asked to type your
message.

SEND-MESSAGE <to user>

This command is used to send a message that will be stored in the mailbox. It
can be sent to any user regardless of whether the user is logged in or not. The
user will be told that she/he has mail the next time she/he logs in or out. The
parameter <to user> is the user name of the receiver. You will be asked to type
your message.

LIST-MESSAGE (<output file>)

This command will list the messages in the mailbox on the specified
<output file>. The default <output file> is your terminal. The mail index
number is used if you want to delete a message.

DELETE-MESSAGE <mail index >

The command will delete a message in the mailbox. The command
LIST-MESSAGE can be used to find the <mail index>. Only user SYSTEM is
allowed to delete messages sent by other users.

FINISH
This command returns you to SINTRAN 1l in the same way as EXIT.

ND-60.151.02

1.3

COMMANDS AVAILABLE TO USER SYSTEM

This section describes the commands only available to user SYSTEM. The

protected commands are used to broadcast messages and to start and stop
MAIL.

DIRECT-BROADCAST

You will be asked to type your message. The message will be displayed
immediately on all terminals.

BROADCAST

You will be asked to type your message. The message will be sent to the mailbox
of all users.

LIST-BROADCASTS (<output file >)

The command will output all broadcasts and their mail index numbers. The
default <output file> is your terminal.

DELETE-BROADCAST <mail index>

The command will delete a broadcast in the mailbox. The <mail index> is
found by the command LIST-BROADCASTS.

INITIALIZE <maximum number of messages >

The command must be given before MAIL can be used. it defines the maximum
number of messages that can be stored in the mailbox. The command can also
be used to delete the contents of the mailbox. The mail is stored on the file
(SYSTEM)MAILBOX:DATA.

RUN-MAIL-SYSTEM

The command starts MAIL after starting SINTRAN Ili or after stopping MAIL by
the command STOP-MAIL-SYSTEM. The contents of the mailbox are retained.

STOP-MAIL-SYSTEM

The command makes MAIL unavailable. The contents of the mailbox will not be
lost. The mail is stored on the file (SYSTEM)MAILBOX:DATA.

ND-60.151.02

1.4

14

SENDING MESSAGES FROM MODE AND BATCH
JOBS

When MAIL is used in mode and batch jobs, the commands should be preceded
by a @ A command and its parameters should be entered on one line.
Messages should be entered on a separate line. They have to be terminated by
CTRL O CTRL L.

The following mode file uses MAIL:
@MAIL
@SEND-MESSAGE P-HANSEN
THIS IS A TEST <CTRL O> <CTRL L>
@EXIT

The CTRL O CTRL L will normally be displayed as an ampersand (&).

ND-60.151.02

2.1

2-1

PERFORM

Meode or batch files are used to execute sequences of commands that are used
repeatedly. The advantage of PERFORM is the flexibility of parameter
substitution in such mode and batch files.

For example, mode files can be used to compile, load, and execute programs
during development. However, each program needs a separate mode file.
PERFORM will instead allow you to enter the program name as a parameter and
generate the required mode file with this program name in the appropriate
places.

To use PERFORM, you have to create a macro instead of a mode file. The macro
allows you to specify which parameters are to be entered from the terminal at

each execution. PERFORM will merge the macro with the terminal input, and
create a mode file.

Macros are created using an ordinary editor, and many macros can be stored on
a file. A predefined library of macros is stored on the file PERFORM-LIB:MCRO.

CREATING MACROS

A few simple directives, starting with a circumflex ("), are used to define a
macro. All directives terminate by a semicolon (;). A macro will have a macro
head and a macro body as shown below:

~B, <macro name> ;

{Macro head defining parameters to be entered from the terminal, their
prompts, and their default values.)

~,
‘

(SINTRAN [l commands, input to programs, and dummy parameters in
the required positions. The dummy parameters will be replaced with
actual parameters entered from the terminal.)

The directive "B, <macro name>; starts a new macro. The <macro name>
may consist of up to 16 upper case letters, digits, or hyphen (-). The directive "E;

ends the macro. All user defined macros are normally stored consecutively on
one file.

ND-60.151.02

2-2

The directive *; separates the the macro head from the macro body. The other
directives to be used in the macro head, are shown below:

DIRECTIVE MEANING

"P.n, < prompt string > ; Defines a parameter to be entered from the
terminal. The parameter will be assigned the
number n. The parameter will be prompted by the
specified <prompt string>.

“F.n, <prompt string>; Same as above, except that terminal input is
assumed to be a SINTRAN I mass storage file.
PERFORM will expand abbreviated file names. The
default file type is :SYMB.

"D.n, <default string > ; Default value to be used for parameter n if no
terminal input is given.

“L, <information > ; The infomation will be displayed on the terminal
when processed by PERFORM.

"C, <comment string> ; Comment. It will be ignored by PERFORM.

The numbers n must be consecutive and in the range 1 - 20. These numbers are
used after a reversing slant (1) in the macro body wherever a parameter from the
terminal should be inserted. Here is a simple example:

"B, FTN:
“F,1,1,PROGRAM TO BE COMPILED: ;

@FORTRAN-100
COMPILE 11, TEMP:BRF
EXIT

~

E;

When PERFORM processes this macro, it will ask for the name of the program
specified by 1. The answer given at the terminal will be inserted in the
command COMPILE 11, TEMP:BRF in the mode file produced by PERFORM.

in general, PERFORM can be used to insert any text strings. For example, a text
string could be a part of a parameter, or it could be a complete SINTRAN il
command. If two consecutive reversing slants are encountered, they are treated
as one reversing slant. No parameter will be substituted.

The character used to indicate the beginning of a directive can be any character
other than A - Z, 0 - 9, or a space. PERFORM uses the first character it finds in
the macro file as the directive character. It must be the same character
throughout the file. In this manual the the circumflex (7} is used.

ND-60.151.02

2.2

2-3

STARTING PERFORM

PERFORM will create a mode file by merging a macro with terminal input. The
mode job will normally be started immediately with the terminal as the mode
output file. You start PERFORM by writing:

@PERFORM {<macro file>),{ <macro name>},
(<macro parameter 1),(<macro parameter 2),...

Omitted parameters will be prompted. The <macro file> is the file containing
the macro with the specified <macro name>. The default <macro file> is
PERFORM-LIB:MCRO and the default file type is :MCRO. The first macro on the
specified file is the default <macro name> .

The parameters <macro parameter 1>, <macro parameter 2> ,... are input
parameters to the given macro. If omitted, these will be prompted as specified in
the macro.

PERFORM will create a mode file called MACRONn:MODE and execute it. The "'n”’
in the file name is a number from 1 - 9. When the mode job has been executed,

you will return to SINTRAN Il

Assume the FTN macro in the previous section is stored on a file PMLIB:MCRO.
A FORTRAN program QUICKSORT can then be compiled by entering:

@PERFORM PMLIB:MCRO, FTN, QUICKSORT

All parameters can be prompted for.

ND-60.151.02

2.3

2-4

EXAMPLE OF USING PERFORM

The following example shows how PERFORM can be used to compile, load,
execute, and print FORTRAN programs. The following macro is first written to a
macro file using an ordinary editor:

(Other macros on the same file)

"B,FTNRUN;

“L,MACRO TO COMPILE, LOAD, AND EXECUTE FORTRAN A PROGRAM;
"P,1,PROGRAM TO BE COMPILED: :

"F,2,RUNTIME LIBRARY: ;

"D,2,FORTRAN- 1BANK;

“C,FORTRAN-1BANK USED AS DEFAULT RUNTIME LIBRARY;
“P,3,NUMBER OF PRINT COPIES: :

@DELETE-FILE I|1:BRF

@FORTRAN-100

COMPILE 11:SYMB,,”" | 1:BRF"

EXIT

@DELETE-FILE 11:PROG

@NRL

PROG-FILE "11:PROG"

LOAD 11:BRF, 12

EXIT

@ 11:PROG

@APPEND-SPOOLING-FILE LINE-PRINTER, 11:SYMB, 13,,,
®CC NUMBER OF PRINT COPIES GIVEN AT THE TERMINAL

~

E;

Three macro parameters are defined: the program to be compiled (1),
the runtime library to be loaded (12), and the number of copies to be printed
(1 3). The default runtime library is FORTRAN- 1BANK.

Assume that the macro is stored on the file PERFORM-LIB:MCRO. A program
QUICKSORT is compiled, loaded, executed, and printed as shown below:

@PERFORM PERFORM-LIB, FTNRUN

MACRO TO COMPILE, LOAD, AND EXECUTE A FORTRAN PROGRAM
PROGRAM TO BE COMPILED: QUICKSORT

RUNTIME LIBRARY:

NUMBER OF PRINT COPIES: 1

@MODE MACRO1:MODE, TERMINAL

(Output from the execution of the created mode file)

ND-60.151.02

25

The mode file MACRO1:MODE, is created and executed immediately. It is shown
below. The terminal is selected as the mode output file.

@DELETE-FILE QUICKSORT:BRF
@FORTRAN-100

COMPILE QUICKSORT:SYMB,, " QUICKSORT:BRF"

EXIT

@DELETE-FILE QUICKSORT:PROG

@NRL

PROG-FILE "QUICKSORT:PROG" LOAD QUICKSORT:BRF, FORTRAN-1BANK
EXIT

@ QUICKSORT:PROG

@APPEND-SPOOLING-FILE LINE-PRINTER, QUICKSORT:SYMB, 1,’,,
@CC NUMBER OF PRINT COPIES GIVEN AT THE TERMINAL

The mode file MACRO1:MODE will be stored on your user area until it is
overwritten by another execution of PERFORM.

ND-60.1561.02

2.4

LISTING DEFINED MACROS

The macros defined on a particutar macro file can easily be listed. Start
PERFORM and let the <macro name > parameter be prompted. Then type a "'?",
and all macros on the given <macro file> will be listed as shown below:

® PERFORM

:MCRO file name: PMLIB:MCRO
MACRO NAME: 2

Macros available in file PMLIB:MCRO
(List of macros on PMLIB:MCRO)
MACRO NAME:

Afterwards PERFORM will once more prompt the <macro name> to be used.

ND-60.151.02

2.5

27

OPTIONAL CONTROL PARAMETERS

PERFORM accepts some optional parameters. These can be used to specify
special mode or batch output files, to control execution, or to select alternative
names of the mode file produced. The complete PERFORM call is:

@PERFORM (<macro file>),(< macro name >),(<optional parameters >),
{<macro parameter 1> },{ <macro parameter 2>),.....

The <optional parameters> may be used to specify a mode output file other
than the terminal. The file name must be preceded by a " <"'. A new file may be
created by enclosing the file name in quotes. The default file type is :SYMB. The
< optional parameters > may also include:

>RUN, Create a mode file and execute it (default)
> CREATE, Create a mode file, but do not execute it
>BATCHn, Create a mode file and append to batch number n

The parameters >RUN, > CREATE, and > BATCHn may be abbreviated to >R, > C,
and >Bn. PERFORM will by default use the mode file MACROn:MODE. The
<optional parameters > may specify another mode file by:

*MODE <file name>,

The default file type is :MODE. This is necessary if the mode job will be waiting in
a batch queue the next time PERFORM is called. Otherwise MACROn:MODE will
be overwritten. The following are some examples of PERFORM calis:

@PERFORM PMLIB, FTN, <LISTFILE:SYMB

@PERFORM PMLIB, FTN, > CREATE

@PERFORM PMLIB, FTN, < OUTBATCH > BATCH2

@PERFORM PMLIB, FTN, *MODE TESTMACRO:MCRO

@PERFORM PMLIB, FTN, <LISTFILE> CREATE,*MODE TESTMACRO

The macro named FTN on the macro file PMLIB:MCRO is used. The examples show
how the <optional parameters> can be used. The macro parameters may follow
the <optional parameters> .

ND-60.151.02

2.6

2.7

2-8

EXTENDED PARAMETER SUBMISSION

Any <macro parameter> in the PERFORM call can be replaced by a file name,

preceded by an opening bracket { [). The file should contain a list of values for
the parameter, one per line.

Mode files will be created and executed repeatedly; taking successive values for
the parameter from the file. For example, assume the file PARAMLIST contains:

SORT:SYMB

TEST:SYMB

QUICKSORT:SYMB
The PERFORM call

@PERFORM PMLIB, FTNCOMPILE, [PARAMLIST

will compile SORT:SYMB, then TEST:SYMB, and then QUICKSORT:SYMB.

LIMITATIONS, RESTRICTIONS AND DEFAULTS

The macro name must be unique. If it is defined more than once, the first
occurrence is taken. The macro name should not be abbreviated. If it is
abbreviated, the first matching occurrence will be taken. The macro cannot be
nested, nor invoke other macros.

The optional parameters (indicated by <,>, and *"MODE) may also be entered if
the <macro name> is being prompted by PERFORM.

Use the AF directive rather than the AP directive in the macro if SINTRAN i file
names are to be inserted. The F directive will attempt to find the full SINTRAN Il
file name. If successful, that name will be inserted in the mode file. The default
file type is :SYMB.

The reversing slant (1) does not exist on some terminals. The character to use is
ASCIl 134B. The circumflex (-} is the ASCII character 136B.

PERFORM can be used together with JEC (JOB EXECUTION CONTROL) for
further flexibility. JEC is described in this manual.

ND-60.151.02

29

PREDEFINED MACROS

PERFORM has the following standard macros stored on the file
PERFORMLIB:MCRO. The first macro on the file, FTN, is the default
<macro name> .

MACRO NAME FUNCTION

FTN COMPILE A FORTRAN PROGRAM

FTNRUN COMPILE, LOAD AND EXECUTE A FORTRAN PROGRAM
COBOL COMPILE A COBOL PROGRAM

COBRUN COMPILE, LOAD AND EXECUTE A COBOL PROGRAM
COBDEBUG COMPILE, LOAD AND DEBUG A COBOL PROGRAM
PLANC COMPILE A PLANC PROGRAM

PLRUN COMPILE, LOAD AND EXECUTE A PLANC PROGRAM
PASCAL COMPILE A PASCAL PROGRAM

PASRUN COMPILE, LOAD AND EXECUTE A PASCAL PROGRAM
BASIC COMPILE A BASIC PROGRAM

BASRUN COMPILE, LOAD AND EXECUTE A BASIC PROGRAM
CREDIR CREATE AND ENTER A DIRECTORY WITH A USER AREA

Detailed information about each macro is found by inspecting the file by using an editor.

ND-60.151.02

2-10

3-1

3 JEC - JOB EXECUTION CONTROL

JEC (JOB EXECUTION CONTROL) is a program which lets you control the
execution of a batch or mode file by including a few control commands.
Intelligent actions can be taken when special situations occur in
commands, subsystems, and your programs.

Here are

some of the things you can do:

Terminate execution at any point, for example, where errors
are detected. (See page 7.)

You may execute nested mode files that have a return status
showing whether they executed successfully or not. (See page
7.)

You may use arithmetic. (See page 9.)

You can create your own numeric and string variables. For
instance, you can prompt for the name of the program and the
language it is to be compiled in. Thus you can make a single
mode file that can compile and load any program. See the
example on page 20. You may use your own variables in SINTRAN
commands, as parameters to your own programs, as loop
counters, or in arithmetic expressions. (See page 9.)

Answer "questions® that the mode file poses. (See page 10.)

You may make conditional tests, based on the values of the
completion code, the SS5I code, or the status code. (See page

" 12.)

You may make conditional tests, based on the day, date, or
month you execute your mode file. (See page 12.)

Jump forward and backward to numeric labels defined in your
batch or mode file. (See page 11.)

Create loops so that things can be done a certain number of
times. (See page 14.)

Give input from your terminal to programs you execute in mode
jobs. (See page 15, Section 3.3.6.)

You may turn communication with your terminal on and off in a
mode job. (See page 15.)

You may send output to your terminal, an output file, or
both. (See page 15.)

You may execute mode files on remote systems. The JEC
completion code shows whether they executed successfully or
not.

ND-60.151.02a

3-2

- You have the possibility of executing only certain parts of
your input file. See the example on page 18.

Before we look at JEC mode files, we will look at what happens when
you call JEC interactively from SINTRAN, because that allows us to
explain the error codes that JEC uses.

A TIP:
If you type your mode files
in NOTIS-WP, make sure they
are in 7- or 8-bit format,
not in 16-bit format!

3.1 Interactive JEC and Error Codes

Type @JEC in SINTRAN and you should see something like this:

QJEC

== JeC ===smm=z==

== Jec == Value of completion code is: 0 OB

== Jec == Value of SSI code is : 72 110B

== Jec == Last runningt{subsystem was : Notis WP / PED

== JeC = [oomsosssooommm oo I ————————
The last subsystem| The error
you used. code.

The numbers you get will most likely not be the same.

The completion code is stored in a 16-bit word:

Bit no. 15114113[12(11]110 9] 8] 7| 6| 5| 4| 3| 2| 1] 0

L_) J L |
This part contains the This part is the
SSI code if the status status code.

code is not zero.

Since each digit in an octal number represents three bits, the status
code is always the two rightmost digits of the completion code.

The Standard Subsystem Identification code (SSI code) indicates the
last subsystem that was running, and the status code indicates what
error occurred.

For example, an SSI code of 1 means that the error occurred in the
SINTRAN file system (see the following table). If the completion code
is 137, you can look in the SINTRAN Reference Manual, ND-60.128, and
find that the file system error code 137 means *No spocling for this
device.*

ND-60.151.02A

3-3

Here are some SSI codes and the software product(s) they represent. If
you are using an older version of one of the products below, it will
not produce SSI codes.

SSI code Product
Decimal Octal

0-3 0-3B SINTRAN-III File system (version I)
4-5 4-5B FORTRAN (version B, library)

6-7 6-7B COBOL (version F, compiler and library)
20-21 24-25B PLANC (compiler)
40 50B SORT-MERGE (version D)

42-43 52-53B Linkage-Loader (version F)

47 57B NRL (version J)

72-73 110-111B NOTIS-WP and PED
96-97 140-141B NOTIS-TF 500 (version K)
96-37 140-141B NOTIS-TF 100 (version L)

112 160B User Environment

117 165B JEC (version B)

148-159 224-237B SIB-DML (version E)

216 330B FILE-HANDLER (version A)
224-225 340-341B BACKUP-SYSTEM (version F)
260-262 404-406B COSMOS (version B)
263 407B TRANSFER-FILE (version B)
265 411B XMLib

Here are two examples of errors and the codes they produce for JEC.
Type the following at your terminal:

@DELETE-FILE ASDFG:HIKL +
eJEC !

When you try to delete the nonexistent file ASDFG:HJKL, you will get
the message "No such file name". Writing JEC will print the following:

== Jag ==== R R N NN RN RS ES SR T s
== Jec == Value of completion code is: 46 56B

== Jec == Value of SSI code is : 0 OB

== Jec == Last running subsystem was : SINTRAN

== Jec == Error message: No such file name

== Jac == = = ====

The SSI code of 0 means that this is a SINTRAN File System error. If
you look in the SINTRAN Reference Manual, ND-60.128, you will see that
error 46 is "No such file name".

ND-60.151.02a

3-4

If you have COSMOS and JEC on your 3system, and a file called
MY-FILE:SYMB, type the following:

OIRANSFER-FILE NOSUCH.XIZ MY-FILE
eJEC

You should get this message:

== JecC

== Jec == Value of completion code is: 16993 41141B

== Jec == Value of SSI code is : 263 4078

== Jec == Last running subsystem was : COSMOS File Transfer
== Jec == Error message: Unknown remote system nanme

== Jec == Error in . XMSG

Jec 3 s ESSS

If you are wondering why the completion code does not start with 407
as the first three octal digits, here is the answer. The last
subsystem that was running (407B, which is Transfer File) called
subsystem 411, which is XMLib, and error 41 of XMLib occurred.

3.1.1 Why Use the Error Codes?
When you type @JEC BEGIN in a JEC mode file, the completion code will
be zero. It will remain unchanged until an error occurs. You can thus
specify what should happen when a specific error occurs by using its
error code in a @JEC IF statement. For instance, you could type a
statement like this in a JEC mode file:

@JEC IF completion~code > O TERMINATE
That would stop the mode file execution if an error occurs.
Note that for some systems it may be better to type:

QJEC IF status-code > 27B TERMINATE

This is because some ND subsystems use the following system of status
codes:

0 = 0K
1-178 = Informative messages
20-27B = Most likely to be informative messages
30-47B = Most likely to be error conditions
50-76B = Error conditions
778 = Fatal error

Look in the manual for the subsystem you are interested in to see what
codes are error messages.

ND-60.151.02A

Here are some things that may happen during a mode job that require
special action:

- You cannot access a file because it is already open or does
not exist.

The first of many compilations does not succeed so there is
no reason to continue.

A remote system in your COSMOS system may not be available at
the moment you run your mode job.

- A program you try to start may not be available.

The JEC mode file will not abort when these things happen, so you
could start an alternative program, create the file you need, or jump
over other commands that are no longer needed.

3.2 An_Introductory Example of a JEC Mode File

Here is a small example of a JEC mode file that leats you compile as
many or few COBOL programs as you want:

@JEC BEGIN

QJEC MESSAGE 'Mode file to compile COBOL-500 program modules'
@JEC DEFINE <number), <(name)

@JEC DEFINE <counter =1

@JEC INQUIRE <number> 'How many files do you want to compile?’

BCC e %

@JEC FOR <(counter> IN <counter):<number) DO % THE MODE
@JEC INQUIRE <name> 'What is the program name?' % FILE LOOPS
@JEC ND COBOL-500 % HERE, BUT
COMPILE <name>,0, <name) % HAS A

EXIT % CONTROLLED
@JEC WHILE COMPLETION-CODE = 0 % EXIT IF c-C
@JEC END-FOR % IS NOT O.
BCC e %

@JEC IF COMPLETION-CODE > 0 GO TO 1000

@JEC MESSAGE 'Compiling went fine'

@JEC END

QJEC. 1000

@JEC MESSAGE 'Compiling failed, error in <name)'
@JEC PRINT-COMPLETION-CODE

QJEC END

When you run the above mode file, you will be asked how many files you
want to compile, and then you will be asked for each file name. The

mode job ends early if any compilation fails due to the WHILE
COMPLETION-CODE = 0 statement.

0f course, the mode file needs a few more tests, for instance, to see
if the object file already exists. It could also be expanded to let
you choose between COBOL-100 and COBOL-500, or even other languages.

ND-60.151.024

3.3 The JEC Commands

Here are the JEC mode and batch file commands, with short
explanations:
@JEC BEGIN %Starts a mode job
QJEC END %Ends a mode job execution
@JEC TERMINATE %Ends a mode file execution
@JEC CLEAR~COMPLETION-CODE %Resets completion code
% and SSI code
@QJEC DEFINE <variable-name) %Declares variable(s)
@JEC DEFINE <(variable-name) = <(value) %Declares & initializes

@JEC
@JEC

@JEC

@JEC
@JEC
@JEC
QJEC
QJEC
@JEC

@JEC
@JEC
@JEC
RJEC
@JEC
@QJEC
@QJEC
@JEC

@QJEC
@JEC

@JEC
@JEC
@JEC
@JEC
@QJEC

INQUIRE <(variable-name) {‘'message') %Lets user input value
{command-or-program) %Use this when parameters

%are variables
RECOVER <{program> 3%Use this when parameters are variables

GO TO <numeric-label> %*Unconditional jump
IF <(JEC-test> GO TO <{numeric-label) %Conditional jump
IF <(JEC-test) {(command-or-program) %Conditional command
IF (JEC-test) TERMINATE %Conditional termination
IF (JEC~test> PERFORM <num.-label)

IF (JEC-test> PERFORM <(num.-label> THROUGH <{num.-label)>

<{numeric-label) %Label definition
ON-ERROR TERMINATE %Conditional termination
ON-ERROR GO TO <numeric-label) %Conditional jump
FOR <variable-name> IN <range)> DO %Begins a loop
WHILE <condition> %Use to exit early from loops
END-FOR %Ends a loop
PERFORM <numeric-label)

PERFORM <(numeric-label) THROUGH <numeric-label)

PRINT-DATE %Outputs the current date
PRINT-COMPLETION-CODE 30utputs the completion code
MODE-INPUT %Gets input from mode file
MODE-QUTPUT %Sends output to mode file
TERMINAL-INPUT %Gets input from terminal
TERMINAL-OUTPUT %Sends output to terminal
WAIT-FOR-CR %Wait for user to press the key

Let us take a closer look at these commands.

ND-60.151.02A

3-7

3.3.1 BEGIN, END, and TERMINATE

@JEC BEGIN and @JEC END both initialize the completion code to zero.
@JEC BEGIN should always start a mode or batch job and @JEC END should
end it:

@JEC BEGIN

QJEC % JEC and SINTRAN commands

QJEC END
Once @JEC END is encountered, the execution of your mode or batch ioh
ends. If you do not end a mode job with @QJEC END, you may have
problems with the next mode file you run if it does not use @JEC.
A mode file to be run as a batch job should look like this:

@ENTER user-name,password,project-password,max-time

@JEC BEGIN

QJEC % JEC and SINTRAN commands

QJEC % Do not use TERMINAL-INPUT or TERMINAL-QUTPUT,
@JEC - % INQUIRE, WAIT-FOR-CR or MESSAGE.

QJEC END

@JEC TERMINATE ends the execution of the batch or modé file it is in.
It will not reset the completion code to zero. You use @QJEC TERMINATE
in mode files called from other mode files.

If you use nested mode .files, @QJEC BEGIN and @JEC END should only
appear once in the entire mode job. @JEC TERMINATE can be used in the
nested files. Here is an example:

File: LOAD~MODE:MODE

QENTER SYSTEM oxxx, 10,,

@JEC BEGIN

fece various other commands File: XMSG-~START:MODE
@JEC MODE (UTIL)XMSG-START:MODE, ,

@CC The XMSG file should NOT contain @JEC ON-ERROR TERMINATE
@CC JEC BEGIN and JEC END. @JEC SINTRAN-SERVICE
@QJEC MODE (UTIL)SET-TERM-TYPE:MODE, , @STOP-XMSG

@CC The SET-TERM file should NOT QEXIT

@CC contain JEC BEGIN and JEC END. @CC other commands
ace various other commands @CC other commands
@JEC END @CC end of file

If an error occurs in the file XMSG~START:MODE, the rest of the file
will not be executed, but none of the variables JEC uses in the LOAD-
MODE:MODE file will be affected. It would be a big mistake to start

XMSG file with @JEC BEGIN. It would also be wrong to end it with @QJEC
END.

ND-60.151.02a

Here 1s one way to alter the LOAD-MODE file above to see whether the
nested mode file XMSG-START executed properly:

@JEC CLEAR-COMPLETION-CODE

@JEC MODE (UTIL)XMSG-~START:MODE,,

@JEC IF COMPLETION-CODE = O GO TO 500

@JEC MESSAGE 'An error occurred in XMSG-START:MODE file'
@JEC PRINT-COMPLETION-CODE

@JEC 500

In the nested files, you may use TERMINATE in an IF statement, for
example:

@JEC IF COMPLETION-CODE > 27B TERMINATE

See also page 12.

3.3.2 CLEAR-COMPLETION-CODE

CLEAR-COMPLETION~CODE will set the completion code and the SSI code to
zero. Here is an example:

@JEC DELETE-FILE <VAR1>:NRF

@JEC IF COMPLETION-CODE = 46 GO TO 200 % No such file name.
QJEC' IF COMPLETION~CODE > 0 GO TO 1000 % Exit if error.
QJEC 200

QJEC CLEAR-COMPLETION-CODE

QJEC ND COBOL-500

DEBUG-MODE .

COMPILE <VAR1>:SYMB,0, "<VAR1>"

EXIT

@JEC IF COMPLETION-CODE > O GO TO 1000

@ace %Here you could load the :BRF file, for example.

@JEC 1000 %Here you could type @QJEC END, for example.

ND-60.151.02A

39

3.3.3 DEFINE and INQUIRE

By using DEFINE, you can create your own variables that you use in IF
and FOR statements, or as macros in command parameters. You may give

them values when you define them, or when you execute your mode file
by using INQUIRE.

Here are a number of different examples:

Define and ;h;tigiizg §t;ings;

@JEC DEFINE <file-1»>='old-prog*
@JEC DEFINE <{file-2)>=delete-nme
@JEC DEFINE <{suffix>='data’

@JEC DELETE-FILE <(file-1):<(suffix)
QJEC DELETE-FILE <(file-2>:<suffix)

Note two things. Strings need only be enclosed in single quotes
('name' not “name", for example) when they start with a digit. A&all
variable names must start with a less than sign (<) and end with a
greater than sign (>). Variable names may not contain spaces.

4) Initiali . ables:

@JEC DEFINE <var1> = 10
QJEC <(var2> = {vart»

If a variable is already defined, you can omit DEFINE when you assign
it a value:

QJEC <(payday>
QJEC <var2>
QJEC <(vard>

21
{var2> * (var2»
{<var1> * 10) + 2 + <vard)

W oW on

As you can see, arithmetical expressions are allowed. Use +, -, *, and
/ to add, subtract, multiply, and divide. NOTE - Always precede and
follow the signs +, -, * or / by a blank. It looks nicer and it is the
only thing we allow! Extra blanks are allowed.

Do not multiply or divide by JEC variables such as DAY. DAY is

explained on page 12. If you need to multiply DAY by a variable, do it
like this:

QJEC (var?1>
@QJEC <(var2>

DAY
{vari1> * (x>

0o

ND-60.151,02A

3-10

Define and Ask User to Give the Value:

Here 1s an example of INQUIRE. Note the use of QJEC PASCAL when the
compiler is called:

@JEC BEGIN

@JEC DEFINE <file-to-compile>

@JEC DEFINE <list>

@JEC INQUIRE <file-to~compile>

@JEC INQUIRE <list> 'Give list file name and type:'

@JEC PASCAL % You must type @JEC here so that PASCAL ;
% gets the values stored in the variables

COMPILE <(file-to-compile>,<list)>,<file-to-compile>

EXIT

@JEC END

As you can see, INQUIRE can be followed by a message if you so choose.
In the above example, this will appear on the screen when you execute
your JEC mode file:
Give list file name and type:_
If there is no text after @JEC INQUIRE, you get this when you execute:
VALUE FOR <(file-to-compile)>?_
If you want to compile COB-DB:SYMB, you simply answer COB-DB or 'COB-

DB'. But if the file name begins with a number, you must enclose it in
single quotes.

Getting Values from a File

At times, you may want to give so many values that you do not want to
do it interactively or in your mode file. You may, for example, want

to change the file access to all 50 files you have. You do that as
follows:

QLIST-FILES, ,FILE-LIST:DATA
The file FILE-LIST will look like this.
FILE 1 : (PACK-ONE:UTILITY)EX:SYMB;1
files 2 to 49 ...
FILE 50 : (PACK-ONE:UTILITY)FORMAT:TEXT;1

Edit it so that everything to the left of the first parenthesis is
‘gone:

(PACK-ONE:UTILITY)EX:SYMB; 1

files 2 to 49
(PACK-ONE:UTILITY)FORMAT:TEXT;1

ND-60.151.02a

3-11

Then create a mode file like this:

QJEC BEGIN

@JEC DEFINE <public>,<friend>,<own>,<file),<iy, <number>
@JEC MESSAGE 'Specify the three access types you want'
@JEC INQUIRE <public)

@QJEC INQUIRE <friend)

@JEC INQUIRE <own)

@JEC INQUIRE <number> 'How many files do you have?’
@JEC FOR <i> IN 1 : <number> DO

@QJEC <file)>=FILE-LIST:DATA(<i)>)

ace (FILE> will be equal to record <i)> in FILE-LIST:DATA
@JEC SET-FILE-ACCESS <file)> <(public)> <friend) <own)
@JEC END-FOR

@JEC END

If you do not know how many files you have, the loop can look like
this:

@JEC FOR <I> IN t : 1000 DO
@JEC <file>=FILE-LIST:DATA(<i>)

ace {FILE> will be equal to record <i> in FILE-LIST:DATA
QJEC WHILE COMPLETION-CODE = O
@cc You will safely exit the loop when you reach
@cc the end of the file FILE-LIST:DATA
@JEC SET-FILE-ACCESS (file) <(public) <friend> <own)
QJEC END-FOR
it .

When you are inputting values to an INQUIRE command, you may make
typing mistakes. In that case, use the 4 key to erase the error. JEC
accepts the same control characters for editing as SINTRAN.

3.3.4 GO TO, IF, FOR and PERFORM
L]
You can jump unconditionally to another part of the mode file:
8JEC GO TO 100

.. % Other JEC statements
@JEC 100 % This is a numeric label

ND-60.151.02Aa

3-12

If you want to use easier to understand labels, do it like this:

@JEC DEFINE <compile) = 500

QJEC GO TO <compile)

. % Other JEC statements

@JEC <compile): % This is also a numeric label

The colon (:) tells JEC that <(compile> is a label and not the name of

a program to be executed. See the example on page 20. You only need to
use a colon when you use a variable as a label.

Conditional Jumps (IF)

There are four types of conditional jumps using IF:

Remember that

QJEC IF <JEC-test> GO TO <{numeric-label> the semicolon

@JEC IF (JEC-test)> <(command-or-program) continues the

@QJEC IF <(JEC-test)> TERMINATE line.

@QJEC IF <(JEC-test) ; .
PERFORM <(numeric-label) THROUGH <(numeric-label)

L _

The (JEC-test> may use the following operators in JEC tests:

= < > OR AND NOT () ><

The following JEC variables may be used in JEC tests:

NAME EXPLANATION

COMPLETION-CODE Exror code.

STATUS~CODE The last two octal digits in the
completion code.

SSI-CODE Subsystem code.

DATE A string with 8 letters, for
example, 84.09.18 means September
18th, 1984.

DAY An integer from 1 to 31 or
a string from *MONDAY" to “SUNDAY®".

MONTH An integer from 1 to 12.

RUN-MODE Either 'B' or 'M', depending on
whether it is a Batch or Mode job.

You may also test any variables you define. Remember not to mix data
types. Do not type @JEC IF DATE = DAY GO TO 1000, for example!

ND-60.151.02a

3-13

Examples of IF <JEC-test> Statements

Complex expressions must be enclosed in parentheses. The following
examples show legal JEC tests:

@JEC IF COMPLETION-CODE > OB TERMINATE

@JEC IF (SSI-CODE = 6B AND STATUS-CODE < 20B) GO TO 100
@JEC IF (DAY < 8 AND DAY = 'MONDAY') GO TO 100

@JEC IF (DAY = 20 AND (NOT DATE = 84.01.20)) GO TO 100
@JEC IF <answer> = 2 GO TO 2000

@QJEC IF <answer) NOT > O GO TO 3000

@JEC IF COMPLETION-CODE = 0 BRF-LINKER

it

@JEC DEFINE <payday> 21 % Omit DEFINE if <(payday>
@ce % i3 already defined.
@QJEC IF <(payday> NOT DAY THEN TERMINATE

@JEC IF RUN-MODE = 'B' GO TO <batch>
@JEC GO TO <mode>

JEC uses decimal numbers by default. Octal numbers must be followed by
a B. A numeric label such as 100 in GO TO 100 must be defined
somewhere in the mode or batch file by the command @JEC 100. Both
forward and backward jumps are legal. Only incurable hackers should
use octal numbers in labels.

You may use SINTRAN III commands, subsystems, or your own programs as
{command or program).

Note that a semicolon
SINTRAN must be used at the end Subsystem
command of an incomplete line.*;}

@JEC IF MONTH NOT = <prevm>;
COPY LINE-PRINTER MONTH-STAT:DATA

@JEC IF COMPLETION-CODE = O ND LINKAGE-LOADER

@JEC IF <answer> = 1 MY-PROG IN:DATA OUT:DATA

Your own program

ND-60.151.02A

3-14

Conditional Jump {(ON-ERROR)

There are two types of conditional jumps using ON-ERROR:

1) @JEC ON-ERROR TERMINATE

2) @JEC ON-ERROR GO TO <numeric-label)
The statement after ON-ERROR is performed if the completion code is
not equal to zero. Note that you cannot use (command or program> or
PERFORM <(label> THROUGH <¢label> after ON-ERROR. Use instead:

@JEC IF COMPLETION-CODE > O <program or SINTRAN command)

QJEC IF COMPLETION-CODE > O;
PERFORM <numeric-label> THROUGH <numeric-label)

If you use @JEC ON-ERROR, and an error occurs, the following rules
apply:

1) The error can occur anywhere in the file.

2) The action TERMINATE or GO TO will be performed
when the next @JEC statement is encountered.

You should only use @JEC ON-ERROR once in a file!

Here are two examples:
1) @JEC ON-ERROR GO TO 5000
2) QJEC ON-ERROR GO TOQ <finish>

QJEC <finish):

FOR Loops
You can create loops as follows:

QJEC FOR <variable-name) IN <range) DO " %Begins a loop
@JEC END-FOR %Ends a loop

This will execute the same program ten times:

AJEC DEFINE <i>, <program-name)

@JEC INQUIRE <program-name> 'Which program do you want to run?'
@JEC FOR <i> IN 1:10 DO

@JEC RECOVER <(program-name)

@JEC END-FOR

ND-60.151.02a

3-15

Here is a complete mode file that a system supervisor might use to log
out all the users on Terminal Access Devices (TADs):

@JEC BEGIN

@JEC DEFINE <i>, <x»

@QJEC 1000

@JEC INQUIRE <x> 'How many TADs does your system have?'

@JEC DEFINE <lasttad)>= 767 + (x>

@JEC IF <lasttad> < 767 GO TO 1000 % No TADs have LDN < 767
@JEC FOR <i> IN 767:<(lasttad> DO

QJEC STOP-TERMINAL <i>

@JEC END-FOR

@JEC END

Another example of a FOR loop is given on page 5.

3.3.5 PRINT Commands

The command @JEC PRINT-DATE writes the current date to the batch or
mode output file.

@JEC PRINT-DATE

== JecC
Year Month Day Time
1984 12 13 11.32.19
December Thursday
== JeC szsrmooocmooororooorsSIRESRSIETD

QJEC PRIKT—COMPLETION—CODE outputs the completion code.

You can print the value of any variable you define. If your variable
is called <name), type:

@JEC MESSAGE '<name>' or:
@JEC MESSAGE 'Name is <{name)'

3.3.6 Terminal and Mode Input/Output

You can enter parameters to programs within a mode job from your
terminal. Input cannot be entered to batch Jjobs or SINTRAN TIII

commands. The commands to switch terminal input and output on and off
are:

@JEC TERMINAL-INPUT %Input to programs from terminal
@JEC TERMINAL-QUTPUT %0utput from programs to terminal
@JEC MODE-INPUT %Turn terminal input off

Q@QJEC MODE-OUTPUT %Turn terminal output off

Note that @JEC END turns terminal input and output off.

ND-60.151.02A

3-16

The command @JEC TERMINAL-INPUT will let you input parameters from
your terminal. Make sure you remove input parameters - from your mode
file. Let us say you have a program called AVERAGE:PROG that expects
three numbers to be input. You could execute it five times like this:

@JEC BEGIN

@JEC DEFINE <i>

@JEC TERMINAL-INPUT
@QJEC FOR <i> IN 1:5 DO
@RECOVER AVERAGE

Q@JEC END-FOR

@JEC END

If you can write a short program that expects input, try running the
above mode file using your terminal as the output file. Then try it
again using another file as the output file. You can still give input
from your terminal, but your program prompts will not appear; they are
sent to the output file!

Add a line with *@JEC TERMINAL-OUTPUT® to the mode file above and then
all prompts from your program AVERAGE will appear on your terminal.

@JEC TERMINAL-OUTPUT will output prompts to your terminal when your
terminal is not the output file. Things written to a file will not be
sent to your terminal.

@JEC MODE-INPUT turns TERMINAL-INPUT off again, and @JEC MODE-OUTPUT
turns TERMINAL-OUTPUT off. Note that terminal I/0 is off when you type
@JEC BEGIN. Note that if you do not terminate your mode job with @JEC
END and terminal input was on, 1t will still be on when you run the
next mode file from your terminal. Remember @JEC BEGIN and END!

It can often - be useful to pause while executing a mode file. By
writing:

@JEC WAIT-FOR-CR 'Insert floppy no. (i}’

you let the mode file "pause® until the user pushes the o key. The |
key is also called the CR (Carriage Return) key. You may have any
message, or none at all, after WAIT-FOR-CR.

Here is an example from a mode file used to copy many files to or from
floppy diskettes:

@JEC RELEASE-DIR <dir>

@JEC MESSAGE 'Remove diskette <(number)'

@JEC DEFINE <number> = <(number)> + 1

@JEC MESSAGE '‘Insert diskette {(number)>'

@JEC WAIT-FOR-CR

@JEC ENTER-DIR <dir> <dev> <unit>,,,

@cc Copy files to or from the diskette.

ND-60.151.022

3-17

3.3.7 Comments Start with %

The percentage sign (%) indicates that the rest of the line only
contains comments. If a JEC command consists of more than one line,
any incomplete lines must end with a semicolon (;), for example:

@JEC IF (COMPLETION-CODE < 400B AND COMPLETION-CODE > 500B);
GO TO 100 %Example of split line

3.4 Examples of JEC Mode and Batch Filegs

This section shows examples of JEC commands used within batch and mode
files.

3.4.1 An Example Using SORT-MERGE

The following mode file will only print the output file from the ND.
SORT-MERGE program if no errors occur.

QJEC BEGIN

@JEC DEFINE <INPUT>, <OUTPUT>

@JEC INQUIRE <INPUT>;

‘Give the file name and type of the file you want to sort:
@JEC INQUIRE <OQOUTPUT>;

‘Which output file? Enclose name in "* if file is new;'
QJEC SORT-MERGE '

RECORD-DESCRIPTION 80, 1, TEXT

KEY-DESCRIPTION 1, 10, ASCENDING, ASCII

SORT <INPUT>, <QUTPUT>

EXIT ‘

@JEC PRINT-COMPLETION-CODE

@JEC IF COMPLETION-CODE > O TERMINATE

@COPY-FILE PHILIPS, <OUTPUT>

@DELETE-FILE <QUTPUT>

@JEC END

ND-60.151.02A

3-18

3.4.2 Compiling, Loading, and Executing a COBOL Program

The next example shows how a COBOL program is compiled, loaded, and
executed. Special actions are taken if compilation errors occur.

TEST:PROG will communicate directly with the terminal during
execution.

@JEC BEGIN

Q@JEC PRINT-DATE %Outputs today's date.
@COPY-FILE TEST:SYMB, (PACK-TWO:P-HANSEN)TEST:SYMB
@COBOL-100

COMPILE TEST:SYMB, TEST:ERR, TEST:BRF

EXIT

@JEC IF (COMPLETION-CODE > OB AND SSI-CODE = 6B) GO TO 111
@CC Go to compiler error part. COBOL-100 has SSI code 6B.
@BRF-LINKER

PROG-FILE TEST:PROG

LOAD TEST:BRF, COBOL-1BANK:BRF

EXIT

@JEC IF STATUS-CODE > 27B TERMINATE

@cc %

dcc % Codes from O to 26 are most likely to be

Qcc % only informational messages in many products.
@cc %

@JEC TERMINAL-INPUT %Input to TEST:PROG from terminal.
@TEST: PROG

@JEC MODE-INPUT

@JEC TERMINATE

@JEC 111 %Compilation error handling part.
@COPY-FILE LINE-PRINTER, TEST:ERR

@DELETE-FILE TEST:ERR

@JEC END

ND-60.151.02A

3-19

3.4.3 A Batch File Example

This is a batch file which is to be executed the 20th of every month.
Note that @ENTER and double escape are placed outside the @JEC BEGIN
and @JEC END commands.

@ENTER P-HANSEN, HANS,,,

@JEC BEGIN

@JEC IF DAY = 20 SALARY:PROG

@JEC IF DATE = 83.12.20 ADDSALARY:PROG
@COPY-FILE ND-SAT-II.LINE-PRINTER, OUTSALARY:DATA
@CC PRINTING ON THE REMOTE COMPUTER ND-SAT-II
@JEC IF (STATUS-CODE > OB AND SSI-CODE < 4B);
DELETE-FILE OUTSALARY:DATA %Split JEC command
@CC SSI code < 4B INDICATES FILE SYSTEM ERROR
@JEC END

{CTRL 0> <ESCAPE> <CTRL 0> <(ESCAPE>

ND-60.151.02a

3-20

3.4.4 A Flexible Compile and Load Mode File

Here is quite a lengthy example. This mode file will compile and load
any COBOL, FORTRAN-100, or FORTRAN-500 program. Note how labels are
used.

QJEC BEGIN

@QJEC DEFINE <(Fort-500>=500, <Fort-100>=100

@JEC DEFINE <Cobol)>=200, <(compile>=300

QJEC DEFINE <load-100>=1000, <failure>=8000, <(success>=300
@QJEC MESSAGE 'Mode file to compile and load a program’
@JEC DEFINE <lang>,<nameb,<compiler>,<library>

@JEC MESSAGE 'Which compiler do you want to use?’

@JEC MESSAGE 'FORTRAN-100 = 1 FORTRAN-500 = 5'
@QJEC MESSAGE 'COBOL = 2'

@QJEC INQUIRE <lang> 'Answer with 1, 2 or 5:°'

@JEC INQUIRE <name> 'What is the name of your program ?'
BCC v e %

QJEC IF <(lang> = 5 GO TO (Fort-500>

@JEC IF <lang> = 1 GO TO <(Fort-100>

@JEC IF <(lang> = 2 GO TO <Cobol>

@JEC END

BCC m oo o

@JEC (Fort-100> % --- FORTRAN-100 -----

@QJEC <compiler> = FORTRAN-100

QJEC <library> = FORTRAN-1BANK

@JEC GO TO <compile>

@CC mmmmmm o e

@JEC <(Cobol> % ===~ COBOL ~-===~-—

@JEC (compiler> = COBOL

@JEC <library> = COBOL-1BANK

QJEC GO TO <(compile>

BCL mmmmm e

@JEC <{compile>: % Compile and load an ND-100 program.
@JEC DELETE-FILE <name):BRF

@JEC CLEAR-COMPLETION-CODE % In case file did not exist.
@QJEC <compiler>

COMPILE <name>,0, *<{name>"

EXIT

@JEC IF (COMPLETION-CODE > 0) GO TO <failure>

BCC v e e e e

(continued on next page)

ND-60.151.02A

@JEC

3-21

(continued from previous page)

{load-100>: %

This label is only for information.

@JEC DELETE-FILE <name):PROG

@JEC
@JEC

PROG-

LOAD
EXIT

CLEAR-COMPLETION-CODE
BRF~LINKER

FILE "<name>"
¢(name>,<library>

@JEC IF COMPLETION-CODE > O GO TO <failure>

@JEC
acc
@QJEC

GO TO <(success>

{Fort-500>:

@JEC CREATE-FILE <name):NRF O

QJEC
@JEC

CLEAR-COMPLETION-CODE
FORTRAN-500

COMPILE <name>,0, {name)

EXIT

% In case the file already existed.

@JEC IF COMPLETION-CODE > O GO TO <(failure>

@JEC

ND LINKAGE-LOADER

ABORT-BATCH OFF
DELETE-DOMAIN <name>
SET-DOMAIN "<name)"

OPEN
LOAD
LOAD
EXIT
@QJEC
@JEC
acc

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC

“<{name>",,,,, .,
{name>
(SYSTEM) FORTRAN-LIB

IF COMPLETION-CODE > O GO TO <failure>

GO TO <(success>

{(success>:

MESSAGE 'Compiling and loading went fine'

END

<(failure>:

MESSAGE 'Compiling or
PRINT-COMPLETION-CODE
END

loading failed'

ND-60.151.02A

3-22

3.4.5 Use of Arithmetic to Create a Continuous File

This mode file creates a continuous file that uses all of your
remaining free pages if possible.

QJEC BEGIN

QJEC MESSAGE 'Mode file to create the largest possible;
continuous file.'

@JEC DEFINE <file-name), <{max>=0,<{size>=0, {change>»=1000

QJEC INQUIRE <file-name)

@JEC 100 % The program returns here every time

QJEC <(max> = <(size) % we successfully create the file.
@JEC DELETE-FILE <(file-name>

@JEC DELETE-FILE <file-name):DATA

@JEC CLEAR-COMPLETION-CODE

@JEC IF <change> < 2 GO TO 5000 % Create a file of size <(max).
QJEC <size)> = (size) + <(change>

@JEC <{change)> = <(change) / 2

BCC e e
@JEC 2000

@QJEC CREATE-FILE (file-name) <size)

QJEC IF COMPLETION-CODE=0 GO TO 100 % Success!

@JEC IF COMPLETION-CODE=67B OR COMPLETION-~CODE=75B GO TO 3000

@JEC PRINT-COMPLETION-CODE

@QJEC MESSAGE '<(file-name> has not been created '

QJEC END

BCC mmm e e e e

QJEC 3000 % (size> was too big

QJEC CLEAR-COMPLETION-CODE

@JEC IF <change) < 2 GO TO 5000 % Create a file of size <(max’
QJEC <size> = (size> - {change)

@JEC <(change> = <change) / 2

@JEC GO TO 2000

BCC e e e e e e
@JEC 5000 % The maximum size has been found
@JEC CREATE-FILE <(file-name) <max>

@JEC MESSAGE '<(file-name) is <(max> pages big '

@JEC FILE-STATISTICS <(file-name),,,,,

@JEC END

@cc

ND-60.151.02A

3-23

3.5 The JEC Library

Programs you write may also read or update the completion code. The
JEC library contains two subroutines for this purpose:

UEISECCODE(SSI-CODE,COMPL-CODE, STAT) (write operations)
UEIFECCODE(SSI~-CODE, COMPL-CODE, STAT) (read operations)

Each parameter is an integer stored in 2 bytes. The parameter STAT is
the status from the monitor call performing the read and write
operations. For example, your program EXAMPLE-PROG may contain the
subroutine call to update the status code and the SSI code:

IF NUMBER = O THEN UEISECCODE(710B,71050B, STAT)
A JEC command in the mode file can then test the status code and the
S5I code after executing your program. The following commands in the
mode file can be used:

@EXAMPLE-PROG
@JEC (IF SSI-CODE = 710B) OR (COMPL-CODE = 50B) TERMINATE

The JEC library for one-bank programs is called JEC-LIB-1B:BRF, and
for two-bank programs JEC-LIB-2B:BRF.

We suggest you use SSI-CODEs from 700B to 777B, since they will not be
used by any Norsk Data products.

ND-60.151.02a

3-24

3.6 Some Technical Details

Wwhen you type @JEC BEGIN, JEC creates two scratch files:

1)

2)

JEC-xxxxx:DATA contains all the defined variables and <their
values, as well as various global information if FOR loops or
PERFORM are used.

JEC-xxxxx:MODE is constructed when you use your own variables in
SINTRAN commands, as program parameters, or as program names. The
variables you define are replaced with their values on this file,
and the file is started by JEC.

The 5 x's (xxxxx) stand for the address of the RT description of your
background program, batch processor, or TAD (Terminal Access Device).
This means that the file name will always be unique, even if you run
several mode or batch jobs simultaneously.

Both files are deleted by the statement @JEC END.

3.7 JEC Syntax

Here is a complete syntax of JEC.

You only need to use the underlined syntax. Note that THROUGH or THRU
can be used. Likewise, both GO TO and GOTO are allowed.

BEGIN

CLEAR-COMPLETION-CODE

REFINE <identifier> % up to 40 ASCII characters long

DEFINE <identifier>=numeric literal

<(identifier’>=<(identifier)

EN

ND-60.151.02A

3-25

<(identifier> <identifier)

[dentifi o

integer integer

[WHILE <condition)]

END-FOR

GO TQ [numeric label]

. GO TO [numeric label]

TERMINATE
IF <condition> THEN THRU
PERFORM numeric label |THROUGH!| numeric label

program name / SINTRAN III command |

INQUIRE <identifier> ['string of ASCII characters

and/or <identifier>']
MESSAGE ‘'ASCII string and/or <identifier>'
MODE-INPUT

MODE-QUTPUT

TERMINATE
ON-ERROR
GO TO numeric label

ND-60.151.02a

3-26

THRU
PERFORM [numeric label [[THROUGH} numeric label}]

PRINT-COMPLETION-CODE

% Comments in the mode/batch file

ND-60.151.02A

3-27

Index
arithmetic 9, 22.
batch job
APPALANCEttt ittt et 7.
how it differs from mode job 7.
starting/endingiiin e, 7.
BEGIN e e e 7.
CLEAR-COMPLETION~CODEooiniinrinen e ennnnnnnnnn, 8.
COMMANG ..ottt ittt ittt e e 12, 13.
comment 1ines 17.
COMPL-CODE in programs calling JEC 23.
COMPLETION~CODE JEC variablecouu. .. 12, 17.
completion code 2, 7, 23.
conditional test 12.
conditional jump
1 12.
ON-ERROR ...t i i i e 14.
CR (Carriage RetUIN)coiiiiinnnee i 16.
Qata LYPeS . e 12.
DATE JEC variableoinuinnin i, 12, 19.
DAY ’
JEC numeric variable 12, 19.
JEC string variablecoouvuunnin..n, 12.
DEFINE . e 9, 10, 14, 24.
difference between mode and batch 7.
3 15, 25
editing text in INQUIREl'eunuennnnnin. 11.
BN D L e e e 7.
END=FOR . e e e e 14, 15, 25.
eqUALIONS ... 15.
file
difference between mode and batch 7.
JEC-%XXXX:DATA ... i i 24.
JEC-XXXXX:MODEttt 24.
nested mode 7.
reading data from, 11.
values stored in 10.
FOR L e 14, 15, 25.
forbidden commands in batch jobs 7.
FOR 100DPS ..ottt e e e, 14.
GOTO (See GO TO) e e e 12.
GO O e 12, 15, 25.
R 13, 15, 25.
TN e 25.
INQUIRE .. ittt e e, 9, 10, 14, 25.
JEC ’
LI DaTY 23.
LS L e 12.
variable, 12.
JEC-LIB~1B:BRF (JEC library file) 23.
JEC-LIB-~2B:BRF (JEC library file)o..... 23.
JEC 100 (See also label)cu'uuiii.. 12.
jump
conditional (IF)ii'uieuneaen . 12.

ND-60.151.02A

3-28

conditional (ON-ERROR)iiiiiiinunnnnnnnnn

unconditional (GO TO) ..i vt iiininennnnn
= 2 T

followed by a colon ... i
line that is too longttt
LT - Ue £ Y
MODE-INPUT ... i i i i e e e s e
MODE-~OUT PU T .. i ittt it ettt ciannaerannns
MONTH JEC variable ...ttt iiiinnnneas
nested mode file i,
numeric label e
ON-ERROR .. i i it it i it e e
ON-ERROR GO TO <numeric-label>
ON-ERROR TERMINATE ittt
operators (in JEC tests)iiiiniinia...
percentage sign (for comments)iiiniinnnnnn
PEREORM ... i i e e e e e e
3 s 8 o2
PRINT-COMPLETION-CODE ittt cie i
PRINT-DATE . . i i ittt e tett it
e oY § - |
records in files e e
RECOVER (SINTRAN command) e
RUN-MODE JEC variable
SEMLCOLON .. e e
5S8I~-CODE

in programs calling JECuiitinnnnunnnn.

JEC variable i e
start mode or batch job i,
STAT in programs calling JECc.cvuiunnnn..
STATUS-CODE JEC variableo ...
subroutine call to JEC
74 13 o7 O
TERMINAL-INPUT . i it et e
TERMINAL-OUT PU T ... i ittt et e e
TERMINATE .. e e

THEN e e e e e
THROUGH .. it ittt e e e ettt e e e e e
THRU (See THROUGH)c¢' i,
UEIFECCODE . i ittt e
UEISECCODE e e
unconditional jump GO TO ...t
VALUE in JEC PIOmMPtttt e
values stored in files,
variable ...

NUBEYLC ittt ettt et e e e e

SELING .
WAIT-FOR-CR .. ittt e e e e
WHILE e e

ND-60.151.02A

13

, 17,

16.
16.

14, 25.

4-1

4 BACKUP-SYSTEM

4.1 Intreod<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>