
7 ND FORTRAN ’
V Reference Manual

.ND—60.145.7A EN

ND mam"
Reference Mama!
N[)-60.145.7A EN

NOTllCE
The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS.

The information described in this document is protected by copyright. it may not
be photocopied, reproduced or translated without the prior consent of Norsk Data A.S.

Copyright © 1986 by Norsk Data A‘s.

PRINTING RECORD
Printing Notes

05/81 Version 1 EN
11/81 Version 2 EN
03/82 Version 3 EN
07/82 Version 4 EN
06/83 Version 5 EN
03/84 Version 6 EN
06/86 Version 7 EN
09/86 Version 7A EN

Page: 8, 27, 28, 32, 44, 68, 152, 166, 186, 197, 198, 199, 200, 201, 202, 207, 208
223, 225, 226, 227, 228, 234, 240, 243, 246, 248, 289, 290, 292, 296, 297,
Appendix A, B, C, D.

ND FORTRAN Reference Manual
Pub|.No.: ND-60.145.7A EN
September 1986

-,=v
v
'

Norsk Data A.S
Graphic CenterMN N
P.O.Box 25, Bogerud

Norsk Data 0621 0510 6, Norway

b D
)xx

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSI) and can be ordered as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data AS
PO. Box 25, Bogerud
0621 Oslo 6, Norway

PREFACE

THE PRODUCT

FORTRAN is a high~level programming language used mainly
for solving scientific problems on digital computers.
Norsk Data provides compilers for FORTRAN on their
machines. This manual describes the language and
facilities of the following compilers:

NORD-lO/ND—lOO ANSI 77 FORTRAN ~ ND-10191
Release F

ND—SOO ANSI 77 FORTRAN — ND—lOlgO
Release J

The language supported is that of ANSI X3.9 — 1978
FORTRAN 77 with a very few restrictions, as noted on
page viii, and a certain number of extensions which are
described in the main part of the manual.

THE READER

This manual is intended for programmers who are writing
FORTRAN programs for ND—lOO or ND—SOO computers. It
includes complete and formal descriptions of the
language, and the facilities it offers.

PREREQUISITE KNOWLEDGE

The reader must have a basic knowledge of data
processing techniques and have some experience with
FORTRAN.

Norsk Data ND—60.145.7 EN

vi
ND FORTRAN Reference Manuai

RELATED MANUALS

The reiated manuaTs are:

ND Reiocating Loader ND—6D.O66

BRF—LINKER User ManuaT ND—60.196

Symboiic Debugger User's Guide ND—60.158

SINTRAN III Reference Manuai ND—60.128

ND—SOO Loader/Monitor ND—60.136

For writing reaT—time programs in FORTRAN, the foITowing
manuais are recommended:

SINTRAN III ReaT Time Guide ND—60.133

SINTRAN III ReaI Time Loader ND—60.051

NDIX FORTRAN is printed as a separate appendix to this
manuaT.

HOW TO USE THE MANUAL

RESTRICTIONS.

The description is given in the order in which the
statement types appear in the written programs.

The manuai is intended for reference purposes and is
organized as a progressive description of the features
of ND FORTRAN. Chapter 13 Tists the avaiiabie compiTer
commands. Exampies are inciuded in the text and a sampTe
program is provided with extensive notes for the
programmer wanting an overview of the FORTRAN Tanguagec
(see Section 1.4.). SuppTementary information is given
in the Appendices at the end.

DEVIATIONS, AND INCOMPATIBILITIES

The foTTowing items differ sTightTy from ANSI X3.9 ~
1978 FORTRAN 77:

1. BTank COMMON cannot be expanded during the Toading
process.

2. The RECL option of the OPEN statement gives the
Tength in bytes, as required by the ANSI standard
for both formatted and unformatted fiies. However,
on the NO~1OO this Tength must be an even number.

Norsk Data ND—60.145.7 EN

vfi

ND FORTRAN Reference ManuaT

The foTTowing are the Timits on certain features:

1. The Tengths of character strings must be Tess than
32767 on the NDeSOO and 2047 on the ND—lOO. This
appTies to the Tengths of aTT variabTes,
constants, expressions and intermediate resuTts.

2. The number of dimensions of an array during
debugging must be Tess than 8.

3. The maximum depth of INCLUDE‘d text fiTes is 5.

The maximum size of a program unit, or Tength of
statements, or compTexity of expression are too
heaviTy dependent on content for any ruTes to be
given.

The foTTowing are known incompatibiTities with the
NORlO/ND-lOO (P D. number FTN—ZOQO) and NORD—SO
compiTers (P.D. number FTN—2159) and associated
Tibraries.

l. RECL option is in bytes.

2. VariabTes used in the specification of adjustabTe
bounds may be changed within the function or
subroutine without modifying the vaTues used for
bounds.

3. VariabTes used in the specification of the finaT
vaTue and increment of DO»Toops may be changed
without affecting the number of times a DO—Toop
is executed.

4. Records in a fiTe are counted from 1 instead of 0.
However. the FIRSTREC option in the OPEN statement
may be used to override this.

5. Some compiTer commands have been changed.

6. Some new options have been added to OPEN
statements, IOSTAT, FORM, BLANC, FACTOR,
IOCONVERT, TYPE, MODE. PARITY. FIRSTREC and
BUFFER—SIZE

7. If the first character of a record of a non—print
fiTe is a $, then the ETN—ZOQO and FTN~2159
compiTers are used to supress the LE and CR
characters. This compiTer wiTT onTy do so if the
fiTe is a PRINT fiTe.

Norsk Data ND—60.145.7 EN

vm
ND FORTRAN Reference Manual

8. The parameters to the monitor calls must now be

10.

exactly as given in Section 13.1.

Character dummy arguments in subroutines are now
taken to be exactly as long as declared in the
subroutine. To pick up the length of the actual
argument, a length of (*l must be specified for
the dummy argument.

If a variable in a DATA—statement is an array and
the corresponding constant is a Hollerith
constant, the Hollerith constant is filled in the
first array element even if it is longer than the
length of the array element.

Norsk Data ND—60.145.7 EN

T A B L E 0 F C 0 N T E N T S

Sect1on Page

1 INTRODUCTION 1

1.1 THE NOTATION 3
1.2 FORTRAN CHARACTER SET . . . 4
1.3 FORTRAN TERMS AND CONCEPTS 6
1.3.1 L1nes . 7
1.3.2 Statements 9
1.3.3 Program Un1ts and Procedures 10
1.3.4 Requ1red Order of Statements and L1nes 11
1.4 NOTES ON A SAMPLE PROGRAM . 13

2 DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS . 23

2.1 DATA TYPES . 25
2.1.1 Type ruIes for 1dent1f1ers 25
2.2 CONSTANTS . . 27
2.2.1 Integer constants . 27
2.2.2 ReaT constants . 28
2.2.3 DoubTe— prec1s1on constants 29
2.2.4 CompIex constants . 30
2.2.5 Log1ca1 constants . 31
2.2.6 Character constants . 31
2.3 VARIABLES . 33
2.4 ARRAYS 34
2.4.1 Array eTements 35
2.4.2 Order of stored array eIements 35
2.4.3 AdjustabIe arrays . 35
2.4.4 Assumed s1ze arrays . 36
2.4.5 ActuaT and dummy array decIarators 37
2.5 CHARACTER SUBSTRINGS 38

3 SPECIFICATION STATEMENTS 41

3.1 THE DIMENSICN STATEMENT . 43
3.2 THE EOUIVALENCE STATEMENT . . 46
3.2.1 Array Names and Array ETement Names 47
3.2.2 Character Var1ab1es 1n EOUIVALENCE Statements . 47
3.2.3 Restr1ct1ons on EOUIVALENCE Statements 48
3.3 THE COMMON STATEMENT . . _ 49
3.3.1 COMMON BTock Storage Sequences . . . 50
3.3.2 D1fferences between Named COMMON and BIank COMMON . 50
3.3.3 Restr1ct1ons on COMMON and EQUIVALENCE 51
3.3.4 COMMON Blocks 1n APT 51
3.4 TYPE STATEMENTS 54
3.4.1 INTEGER, REAL, DOUBLE PRECISION, NUMERIC, COMPLEX

and LOGICAL Type Statements 54

Norsk Data ND—60.145.7 EN

Sect1on Page

3.4.2 CHARACTER Type Statement 56
3.5 THE IMPLICIT STATEMENT 61
3.6 THE PARAMETER STATEMENT . 63
3.7 THE EXTERNAL STATEMENT . 65
3.8 THE INTRINSIC STATEMENT . 66
3.9 THE SAVE STATEMENT 67
3.10 THE ASSEMBLY STATEMENT 69

4 THE DATA STATEMENT 71

4.1 DATA STATEMENT RESTRICTIONS . . 73
4.2 IMPLIED DO IN A DATA STATEMENT 75

5 EXPRESSIONS . 77

5.1 ARITHMETIC EXPRESSIONS 79
5.1.1 Interpretation of ResuTts for Ar1thmet1c Expressions 82
5.1.2 Ar1thmet1c Constant Express1ons . 85
5.2 CHARACTER EXPRESSIONS . . 86
5.2.1 CHARACTER Constant Express1ons 88
5.3 RELATIONAL EXPRESSIONS . 89
5.3.1 Ar1thmet1c ReIat1onaI Express1ons . 89
5.3.2 CHARACTER ReTat1onaI Express1ons 90
5.3.3 LOGICAL ReIat1onaI Express1ons 91
5.4 LOGICAL EXPRESSIONS . _ . 92
5.4.1 LOGICAL Constant Express1ons 95
5.5 EVALUATION OF EXPRESSIONS . 95
5.5.1 The Use of Parentheses 96
5.5.2 Precedence of Operators . 96
5.5.3 Locat1on of Operators w1th1n an Express1on 97
5.6 CONSTANT EXPRESSIONS 99

6 ARRAY EXPRESSIONS . 101

6.1 ARITHMETIC ARRAY EXPRESSIONS . 103
6.1.1 Interpretat1on of ResuIts for Ar1thmet1c Array Express1~

ons 105
6.2 RELATIONAL ARRAY EXPRESSIONS . 106
6.2.1 Ar1thmet1c ReTat1onaI Array Express1ons . 106
6.2.2 CHARACTER ReIat1onaI Array Express1ons 107
6.2.3 LOGICAL ReIat1onaI Array Express1ons . 107
6.3 LOGICAL ARRAY EXPRESSIONS . . 108
6.4 EVALUATION OF EXPRESSIONS . . 110
6.4.1 The Use of Parentheses . 110
6.4.2 Precedence of Operators . 110

7 ASSIGNMENT STATEMENTS . . 113

Norsk Data ND~60.145.7 EN

xi

Sect1on Page

7.1 ARITHMETIC ASSIGNMENT STATEMENT . . 115
7.2 LOGICAL ASSIGNMENT STATEMENT 117
7.3 STATEMENT LABEL ASSIGNMENT (ASSIGN) STATEMENT . . 118
7.4 CHARACTER ASSIGNMENT STATEMENT . 119

8 CONTROL STATEMENTS . 121

8.1 UNCONDITIONAL GO TO STATEMENT . . 124
8.2 COMPUTED GO TO STATEMENT . 125
8.3 ASSIGNED GO TO STATEMENT . 127
8.4 ARITHMETIC IF STATEMENT . . 129
8.5 LOGICAL IF STATEMENT 130
8.6 THE BLOCK IF, ELSEIF ELSE, AND ENDIF STATEMENTS . 131
8.6.1 The ELSEIF Statement . 131
8.6.2 The ELSE Statement . . 132
8.6.3 The ENDIF Statement 132
8.6.4 ExampTes of BTock IF, ELSEIF, ELSE and ENDIF Statements . 133
8.7 THE DO STATEMENT 135
8.7.1 Execut1on of a DO Statement . . . , 137
8.7.2 The DO FOR ... ENDDO Statements . . . 139
8.7.3 The DO WHILE ... ENDDO Statements . . 139
8.8 THE CONTINUE STATEMENT . 141
8.9 THE STOP STATEMENT . . 142
8.10 THE PAUSE STATEMENT . . 143
8.11 THE END STATEMENT . . 144

9 INPUT/OUTPUT STATEMENTS . . 145

9.1 I/O TERMS AND CONCEPTS . 147
9.1.1 Records . . 147
9 1.2 F1Ies . . . 148
9.1.2.1 F1Ie Format . . 149
9.1.2.2 F1Te Access . . 150
9.1.3 'Un1ts . . . 151
9.1.4 Format Spec1f1er and Ident1f1er . . 152
9.1.5 End— of— F1Ie Spec1f1er . . 153
9.1.6 Error Spec1f1er 154
9.1.7 Input/Output Status Spec1f1er . . 154
9.1.8 Record Spec1f1er 155
9.2 DATA TRANSFER OPERATIONS . 156
9.2.1 Input/Output L1sts . 156
9.2.1.1 Imp11ed DO L1sts . . . 157
9.2.2 Formatted and Unformatted Data Transfer . . 158
9.2.3 L1st— D1rected Input/Output , 158
9.2.3.1 L1st—D1rected Input . . 159
9.2.3.2 L1st D1rected Output . 160
9.2.4 The READ Statement . 161

Norsk Data ND 60 145 7 EN '

xh

Sect1on Page

9.2.5 The WRITE Statement . . . 163

9.2.5.1 Pr1nt1ng of Formatted Records . . 165
9.2.6 The PRINT Statement . . 167
9.2.7 The INPUT Statement . . 167
9.2.8 The OUTPUT Statement . 168
9.3 FILE OPEN AND CLOSE . . 169
9.3.1 The OPEN Statement . 169
9.3.2 The CLOSE Statement . . 178
9.4 FILE POSITIONING 179
9.4.1 The BACKSPACE Statement . . 179
9.4.2 The ENDFILE Statement . . 180
9.4.3 The REWIND Statement . 180
9.5 THE INOUIRE STATEMENT . . 182

10 FORMAT SPECIFICATIONS . . 189

10.1 FORMAT SPECIFICATION METHODS . 191
10.2 FORMAT DESCRIPTORS . . 192
10.2.1 Interaction between the Format Descr1ptors and the I/O

L1st 194
10.2.2 Ed1t1ng Prov1ded by the Format Descr1ptors . 196
10.2.2.1 Numer1c Ed1t1ng . . 196
10.2.2.2 The I and J Format Descr1ptors . 197
10.2.2.3 REAL and DOUBLE PRECISION . . 198
10.2.2.4 The F Format Descr1ptor 198
10.2.2.5 ScaTe Factor: The P Format Descr1ptor . . 199
10.2.2.6 The E and 0 Format Descr1ptors . 201
10.2.2.7 The 0 Format Descr1ptor . . 202
10.2.2.8 COMPLEX Data . . 203
10.2.2.9 S, SP and SS Format Descr1ptors . . 203
10.2 2.10 The 8N and 82 Format Descr1ptors . 204
10.2 2.11 The Text Format Descr1ptor . 204
10 2.2.12 The H Format Descr1ptor . . 205
10.2.2 13 The T, TL TR and rX Format Descr1ptors . 205
10 2.2.14 The SIash, /, Format Descr1ptor . . 206
10.2.2 15 The L Format Descr1ptor . . 206
10.2.2 16 The A Format Descr1ptor . . 207
10 2.2.17 The 0 Format Descr1ptor . . 208
10.2.2.18 The 2 Format Descr1ptor . . 209

11 FUNCTIONS AND SUBROUTINES . . 211

11.1 DUMMY AND ACTUAL ARGUMENTS . 214

Norsk Data ND—60.145.7 EN

xHi

Sect1on Page

11.1.1 Var1abTes as Dummy Arguments 217
11.1.2 Arrays as Dummy Arguments 218
11.1.3 Procedures as Dummy Arguments 219
11.1.4 Aster1sks as Dummy Arguments/AIternat1ve Return Arguments 221
11.2 INTRINSIC FUNCTIONS 222
11.2.1 Spec1f1c Names and Gener1c Names 222
11.2.2 Referenc1ng an INTRINSIC Funct1on 224
11.3 STATEMENT FUNCTIONS 236
11.3.1 Statement Funct1on Restr1ct1ons 237
11.3.2 Referenc1ng a Statement Funct1on _ 238
11.4 EXTERNAL FUNCTIONS 239
11.4.1 ActuaI Arguments for an ExternaT Funct1on 239
11.4.2 Funct1on Subprogram Restr1ct1ons 240
11.5 SUBROUTINES . 242
11.5.1 Subrout1ne Reference 242
11.5.2 Subrout1ne Subprogram Restr1ct1ons 243
11.6 THE ENTRY STATEMENT 244
11.6.1 ENTRY Statement Restr1ct1ons 246
11.7 THE RETURN STATEMENT 248
11.7.1 Execut1on of a RETURN Statement 248

12 MAIN PROGRAM . 251

12.1 THE PROGRAM STATEMENT 253

13 BLOCK DATA SUBPROGRAM . 255

13.1 BLOCK DATA SUBPROGRAM RESTRICTIONS 257

14 COMPILER COMMANDS . 259

14.1 COMPILER INVOCATION AND TERMINATION 261
14.2 COMPILER COMMAND SYNTAX 262
14.3 THE HELP COMMAND . 263
14.4 COMMENTS 263
14.5 COMPILATION OF SOURCE PROGRAMS 264
14.5.1 The COMPILE Command, Preparat1on of ReIocatabIe

Code 264
14.5.2 IncTud1ng Text From Other Source F1Tes 266
1 .5.3 End of F1Te 267
14.5.4 Preparat1on of ExecutabIe Programs and Load1ng 267
14.5 5 Comb1ned Comp1Te and Execut1on . . _ 270
14.6 LISTING INFORMATION . 272
14.6.1 Cross Reference L1st1ng 272
14 6.2 Program Addresses . 274
14.6.3 L1st1ng ControI 274
14.7 ANSI FORTRAN 77 STANDARD CHECKING 277

Norsk Data ND—60.145.7 EN

xw

Section Page

14.8 SYMBDLIC NAME LENGTH . 278
14.9 ARRAY— INDEX— CHECK 278
14.10 CHECK— NUMBER— OF— PARAMETERS <0N/OFF> . 279

14.11 UNASSIGNED— VARIABLE CHECK <ON/OFF> . 279
14.12 SUBSTRING EXPRESSION CHECKING . . 280
14.13 TEST MODE . . . 280
14.14 RUN TIME MODES . 281
14.15 REAL— TIME— MODE 283
14.16 MIXING FORTRAN AND COBOL ROUTINES (ND—500 ONLY) . 283
14.17 PACKED DECIMAL ARITHMETIC (ND— 500 ONLY) . 284
14.18 CREATING OF FORTRAN LIBRARIES . . 284
14.19 DEBUGGING 285
14 20 CONDITIONAL COMPILATION . . 285
14.20.1 Opt1onaT Comment L1nes w1th1n Source 286
14.20 2 Comp1Ie T1me IF— THEN— ELSE Comp11er Commands . . 287
14.20 3 Comp1Te T1me Constants 288
14 21 OPTIMIZATION OF PROGRAM EXECUTION— TIME . 288
14.22 IN— LINE SUBROUTINES 289
14.23 USE OF SPECIAL MACHINE— CODE INSTRUCTIONS . 290
14.24 COMPILER DEFAULTS . . . 293
14 24.1 Data Type Defau1t1ng . 293
14 24.2 IMPLICIT Data Types . . 295
14.24.3 DefauIt Un1t Def1n1t1on . . 295
14.25 TARGET MACHINE OPTIONS 296
14.26 REMOVING INTRINSIC FUNCTIONS . 298
14.27 RESERVING WORK SPACE 298
14.28 USE OF THE ARRAY PROCESSING FUNCTION LIBRARY (ND—500 ONLY) 299
14.29 PROGRAM STACK 300
14.29.1 FIXED~DATA—AREA . . 300
14.29 2 MAIN— STACK SIZE . . 301
14.29. 3 LOCAL STACK— SIZE 302
14.30 SYSTEM DOCUMENTATION AND INTERPROCEDURAL ERROR

DIAGNOSTIC (ND— 500 ONLY) . 304
14 30.1 HELP command . 305
14.30 2 EXIT command 305
14 30.3 OUTPUT— FILE command . . 306
14.30.4 PAGE SIZE command . . 306
14 30.5 SYSTEM— NAME command . . 307
14.30.6 Documentat1on Commands . . _ 307
14 30.6 1 PRINT— CALL HIERARCHY command . . . 308
14.30.6.2 PRINT INVERSE— HIERARCHY command 308
14.30.6. 3 PRINT~ COMMON— BLOCK INFORMATION command . 308
14.30.7 Commands to Perform InterproceduraI Error

D1agnost1c 309
14.30 7 1 GLOBAL— CHECK ALL command . 309
14.30 7.2 PARAMETER CHECK command . . 309
14 30.7.3 COMMON—BLOCK—CHECK command . 309

15 ADVANCED FORTRAN PROGRAMMING . 311

Norsk Data ND—60.145.7 EN

XV

Sect1on Page

15.1 EFFICIENT PROGRAMMING TECHNIQUES 313
15.1.1 Loops 313
15.1.2 Loop ControT var1abIe 314
15.1.3 Array Operat1ons 314
15.1.4 ActuaT Argument Data Types 315
15.1.5 CHARACTER and HoTler1th 316
15.1.6 CHARACTER AT1gnment — ND—lOO 316
15.1.7 F1Te Accessing . 318
15.1.8 I/O Buffer ATIocat1on 318

Append1ces

Index

Norsk Data ND—60 145.7 EN

Nor‘sk Data ND-60.145.7 EN

ND FORTRAN Reference ManuaT

CHAPTER 1

INTRODUCTION

Norsk Data ND—60.145 7 EN

ND FORTRAN Reference Manua1

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai 3
INTRODUCTION

The FORTRAN Tanguage described in this manuaT is in
accordance with the American Nationai Standard
Institute‘s FORTRAN 77. The fuTT Tanguage has been
impiemented, except for items listed on page 7; a
certain number of ND FORTRAN extensions are noted in the
text.

1. 1 THE NOTATION

The notation used throughout the manuaT to describe the
FORTRAN statements and constructs is Tisted beiow:

1.

2.

Square brackets, [1, indicate optionaT items.

An eTTipsis, ..., foTTowing square brackets specifies
that the preceding optionaT items may appear one or
more times in succession.

. Round brackets, (), are part of FORTRAN and must be
coded where shown.

. BTanks are used to improve readabiTity, but unTess
otherwise noted have no significance.

. Grey shading, over text, has been used to highTight
any divergence from the ANSI FORTRAN 77 standard,
including variations and ND extensions.

Note that the grey shading has been used in Chapters
1 through 11 onTy.

. Windows are used to caTT attention to the importance
of commands.

Norsk Data NDs60.145.7 EN

ND FORTRAN Reference ManuaT
INTRODUCTION

1.2 FORTRAN CHARACTER SET

The FORTRAN character set consists of twenty~six
Tetters, ten digits, and thirteen speciai characters.

A Tetter is one of the twenty—six characters:

ABCDEFGHIJKLMNOPORSTUVWXYZ

A digit is one of the ten characters:

0123456789

An ahanumeric character is a Tetter or a digit.

A Speciai Character is one of the foTTowing characters:

CHARACTER MEANING

BTank

EquaTs

Pius

Minus

Asterisk

Siash

Left Parenthesis

Right Parenthesis

Comma

DecimaT Point

Currency SymboT

Apostrophe

Coion

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua1
INTRODUCTION

_In ND FORTRAN the fo11ow1ng spec1a1 characters may be
used:

_
- _ sem1c01on*='-

%,*e ~_"percent_r
A , '_ 1 _. _underscore
I. *~ ,- -1 v exc1amat10n po1nt

, ‘ ‘ - ‘ : ampersand ~ _ ,
".' ~ ‘ '1': - ;doub1e quotat1on

1 marks

The c011at1ng sequence 15 the ASCII sequence descr1bed
1n Append1x A.

,'In ND FORTRAN 1owér¢asé 1etters are a110wed 1n
,add1t1on to uppercase 1etters as Spec1f1ed 1n ANSI »
FOR1RAN 77 If they occur 1n a Character str1ng or
Ho11er1tfi constant they reta1n the1r 10wercase
va1ues Ot herw1se they are canverted to uppercase

Norsk Data ND—60.145.7 EN

6 ND FORTRAN Reference Manual
INTRODUCTION

1.3 FORTRAN TERMS AND CONCEPTS

The basic language elements of FORTRAN, i.e , syntactic
items, are constants, symbolic names, statement labels,
keywords, operators, and special characters. These are
all formed from the letters, digits, and special
characters of the FORTRAN character set previously
described in this chapter.
The form of a constant is described in Section 2.2. on
page 27.

A symbolic name is a sequence of one to six letters or
digits, the first of which must be a letter. It can be
used to identify a global item, i.e., an item known to
the whole executable program. The following are global
items:

a common block

0 an external function

a subroutine

O a main program

a a block data subprogram

A symbolic name can also be used to identify a local
item ~ one whose scope is only that of the program unit
in which it appears, as listed below:

a an array

0 a variable

0 a constant

0 a statement function

0 an intrinsic function

0 a dummy procedure

'En N9 FURTRAN, symbolic names may be lOnger than six
characters, and the ‘first 31 are used as the unique
identification, Any character except the first may

,beanwmmwuwa' , - - , *

A keyword is a word that is recognized by the compiler.
Keywords appear in capital letters throughout this
manual.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 7
INTRODUCTION

Operators are described in Chapter 5, which begins on
page 79.

1.3.1 Lines

A line in a program unit is a sequence of 72 characters.
The character positions in a line are called columns and
are numbered consecutively 1, 2, through 72, the
sequential order being from left to right. Lines are
ordered in the same sequence as they are presented to
the compiler.

An initial line is any line that is not a comment line
and contains the character, blank, or the digit, zero,
in column 6. Columns 1 to 5 may contain a statement
label or they may all be blank.

A continuation line is any line containing any character
of the FORTRAN character set other than a blank or a
zero in column 6, and containing only blanks in columns
1 through 5. A statement must not have more than
nineteen continuation lines.

A comment line is any line containing a C or an asterisk
in column 1, or containing only blank characters in
columns 1 through 72. The remaining columns may contain
any character which the compiler can accept. Comment
lines may appear anywhere within the program unit.

Norsk Data ND~60.145.7 EN Rev.A

8 ND FORTRAN Reference Manua]
INTRODUCTION

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manual 9
INTRODUCTION

1 . 3 . 2 Statements

An ANSI FORTRAN 77 source program consists of a set of
statements composed of keywords and other syntactic
items as described above. Most statements begin with a
keyword which is then used as the statement identifier.
The exceptions are assignment and statement function
statements.

There are two basic types of statements, executable and
nonexecutable.

Executable statements specify the actions to be taken
during execution of a program, i.e., the computation of
values, input and output operations, transfer of control
within one program unit or between program units etc.
Executable statements are normally executed in the
sequence they appear in the program unit. They may be
labeled, and references to labels may be used to alter
the sequence of execution.

Nonexecutable statements specify characteristics,
arrangement, and initial values of data, they can also
contain editing information, specify statement
functions, classify program units, and specify entry
points within subprograms. Nonexecutable statements are
not part of the execution sequence; they may be labeled
but such labels cannot be used to control the execution
sequence.

A statement is written on one or more lines, the first
of which is called an initial line. Succeeding lines, if
any, are called continuation lines, Section 1.3.1. on
page 7.

A statement label is a sequence of one to five digits,
one of which must be nonzero, and is used to identify a
statement. The statement label may be placed anywhere in
columns 1 through 5 of the initial line of the
statement, Section 1.3.1. on page 7.

Statement labelsfprovide a means of referring to
individual statements. Any statement can be labeled but
the only ones which can be referred to are labeled
executable statements and FORMAT statements.

The same statement label must not be given to more than
one statement in a program unit. Blanks and leading
zeros are not significant in distinguishing between
statement labels.

Norsk Data ND—60.l45.7 EN

10 ND FORTRAN Reference ManuaT
INTRODUCTION

,fIh ND FORTRAN more than one statement may appear “on_
9~a Tine prov1ded they are separa_tedi by a semicoTon
'*(; L These extra statements on a Tine can aTso have
:iTabeTs prefixed to them. “ ‘ __ _

1.3.3 Program Units and Procedures

A program unit consists of a sequence of statements and
optionai comment Tines. It is either a main program or a
subprogram,

A main program contains the first executable statement
of the executabie program. Its first statement can be a
PROGRAM statement but not a FUNCTION, SUBROUTINE, or
BLOCK DATA statement.

A subprogram is a program unit having a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first
statement.

A procedure is an intrinsic function, statement
function, subroutine, or an externai function.
Subroutines and externai functions are caiied externai
procedures.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manuai 11
INTRODUCTION

1.3.4 Required Order of Statements and Lines

Within a program unit, the required order of statements
and comment iines, as described in ANSI FORTRAN 77, is
summarized in the diagram beiow:

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement

IMPLICIT
Statements

PARAMETER
Statements Other

FORMAT Specification
Comment and Statements
Lines ENTRY

Statements Statement-
Function

DATA Statements
Statements

Executabie
Statements

END Statement

In the diagram, verticaT Tines deiineate varieties of
statements that may be interspersed. For example, FORMAT
statements can be interspersed with statement function—
statements and executabie statements.

Horizontai Tines deiineate the kinds of statements that
must not be interspersed. For exampTe,
statement-function statements cannot be interspersed
with executabie statements.

Note that the END statement is aTso an executabie
statement and must oniy appear as the Tast statement of
a program unit.

Norsk Data ND—6O 145.7 EN

12 ND FORTRAN Reference Manua3
INTRODUCTION

‘In ND FORTRAN;'the ru3es for the required‘order of‘
' statements have been re3axked_ somewhat as i33ustrated

be3ow - . , -

3- NRC-GRAN mm, ~ SUBROUTINE, 301°
' BLOCK DAEA'Statement * ,

;_ Cement?- _ _ ‘ Statements ‘ 1 PARAMETER
v L3Nes‘:-** ‘_ : ,, y ' 'Statements

‘ .TaNd ' .and-- *‘ ' ‘- Specificaton u
_ *"'§‘I*r ,H_ENTRY ' T ‘ ' ‘f Statements

:Compi3er Statements ‘: 'j ~ - _ v _
' ComNGNdSW‘_j,V 7,;_' ' DATA. : ,StatemEnt~

¥*“‘“ : 1-,»- - 3‘ Statements _ , 'FunCtion , ,
' :- ' ,' , Statements-

_Executab3e,7 I
' Statements ,

' SEND Statement “

*5 In ND FDRERAN DATA statements are 3356 a33owed
_,_among the specwfwcatzon atatements t must fo 33ow
_;ja33 IMPLICIT statements , ,

5;?CommenkkkN_es may fo33ow theEND statement

L"~:.-7C°mp3?9¥’ Commands maS! apnear anywhere in the saur‘ce
E_ program . ,_ , __ __ . , _

Norsk Data ND—6O 145.7 EN

ND FORTRAN Reference ManuaT 13
INTRODUCTION

1.4 NOTES ON A SAMPLE PROGRAM

This section contains an exambTe of a compTete FORTRAN
program. The exampTe 111ustrates a number of different
features of the Tanguage.

The numbers to the Teft of the FORTRAN statements are
Tine numbers, that are added by the compiTer, to the
Tfsting of the source program.

The exampTe is followed by detaiTed comments expTaining
each Tine of the program.

Norsk Data ND-60.145.7 EN

l4

1*

2*

3*

4*

5*

5*

7*

8*
9*

10*
11*

12*
13*

14*

15*

16*

17*

18*
19*

20*

21*

22*

23*

24*

25*

26*

27*

28*

29*

30*

31*

32*

33*

34*

35*

36*

37*

38*

39*
40*

41*
42*

43*
44*

45*

46*

47*
48*

49*

50*

51*

52*
53*

54*

55*

10

40

50

500

510

900

999

10

ND FORTRAN Reference ManuaT
INTRODUCTION

PROGRAM SAMPLE

IMPLICIT INTEGER(R,0,Y,G‘B)

PARAMETER (RED=1,0RANGE=2,YELLOW=3.GREEN=4.BLUE=5)

INTEGER N(5),M

CHARACTER GROUP*1.COLOUR*5

COMMON/SHAREIAV

REAL X(5,20).R,Y,AV

DATA COLOUR/‘ROYGB‘/.X,N/100*0.0,5*0I

IUNIT=60

OPEN (UNIT=IUNIT,FILE=’READINGS:DATA‘.STATUS=‘OLD’,

FORM=‘FORMATTED’.ACCESS=’SEQUENTIAL‘,

ISOTAT=IERNAM.ERR=900)

M=O

READ (IUNIT.500.END=40) GROUP,R

K=INDEX(COLOUR,GROUP)

M=M+1

IF(K.EQ.O) THEN

WRITE(1,*) ‘INVALID GROUP IDENTIFIER‘

ELSE

N(K)=N(K)+1

X(K,N(K))=R

IF (K.EQ.ORANGE.OH.K.EQ.GREEN) THEN

N(K—1)=N(K—1)+1

X(K-1,N(K—1))=R

N(K+1)=N(K+1)+1

X(K+1,N(K+1)>=R

ENDIF

ENDIF

GOTO 10

CONTINUE

WRITE(1,‘(I6,"READINGS“)’) M

DO 50 K=RED,BLUE

CALL AVRAGE(X.N,K)

SDEV=VAR(X.N.K)

WRITE(1,510) COLOUR(K:K).N(K),AV,SDEV

CONTINUE

GOTO 999

FORMAT(A1,F5.2)

FORMAT(1H,A4.15,F9.2,‘ST DEV:‘,E10.3)

CONTINUE

WRITE(1,*)’OPEN ERROR - CODE IS:‘,IERNAM

CONTINUE

END

SUBROUTINE AVRAGE(X.N.K)

COMMON/SHARE/AV

DIMENSION X(5,*),N(*)

R=0.0

DO 10 I=1.N(K)

R=R+X(K,I)

CONTINUE

AV=RIN(K)
END

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manual
INTRODUCTION

56*

57*

58*

59*

60*

61*

62*

63*
64*

65*

10

REAL FUNCTION VAR(V,M,J)

DIMENSION V(5,*),M(*)

COMMON/SHAREIAV

VAR=0.0

DO 10 I:1.M(J)

VAR=VAR+(V(J.I)~AV)**2

CONTINUE

VAR=SQRT(VARI(M(J)-1))

END

Norsk Data ND—60.l45.7 EN

15

16

Line 1:

Lines 2—7:

Line 2:

Line 3:

Line 4:

Line 5:

Line 6:

Line 7:

Line 8:

Line 9:

ND FORTRAN Reference Manual
INTRODUCTION

This line identifiesthe main entry point of the

program.

This part defines the variables used in the

program. This section must precede the description

of what the program does (the ‘algorithm’).

If variables have not been given a type

explicitly. then they receive their types according

to the first letter of their name. Here, initial

letters R, O, Y‘ G. B will imply that the

variables are of type INTEGER.

This statement assigns values to certain names.

These names are not normal variables, but are used

to give consistent names to constants. For

example. here the name GREEN will mean the constant

4. The constants are of type INTEGER because their

first letters appear in an implicit statement (see

line 2).

Here an array is definedas having 5 elements and

name N: also a simple variable is defined called M.

Both these items are declared to be of type

INTEGER.

Two items of type CHARACTER are declared in this

line: one of length 1 and one of length 5. Since

this statement explicitly gives GROUP a type, the

IMPLICIT statement (line 2) does not apply.

Here we have a COMMON block called SHARE. It is

known outside this program unit, and enables

variables to be shared between program units (see

lines 48, 59). The block contains only one variable

called AV in this program unit.

This defines 4 items to be of type REAL. One of

these (X) is a two-dimensional array. The first

subscript varies from 1 to 5 and the second from 1

to 20. The name AV is the same as the one in the

COMMON block (line 6)‘and this statement declares

this COMMON variable to be of type REAL.

This statement gives values to 3 variables

initially. Before the program starts to execute,

the variable COLOUR will have the value ‘ROYGB';

all the 100 elements of X and the 5 of N are given

the initial value zero.

This is the first executable statement and gives

the value 60 to the variable IUNIT. Since this

variable has not been declared. and the IMPLICIT

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 17
INTRODUCTION

Line 10.11.12:

Line 13:

Line 14:

Line 15:

Line 16:

Lines 17-28:

statement (line 2) does not contain the letter I,

the default type is derived from the l—N rule. This

rule states that all undeclared variables beginning

with the letters I, J. K. L, M, N are INTEGER and

the rest are REAL.

These 3 lines form one statement. The continuation
lines ii and 12 have a character in column 6 which
is neither zero nor blank (in this case i and 2)
which defines them as continuation lines. This OPEN
statement prepares a file called READINGS:DATA for

sequential access, and it is shown containing
formatted data. If an error should occur (e.g. the
file does not exist) then the program will continue

at the statement labeled 900 (see line 42).
Subsequent I/O statements on this file will use the
same unit number (see line 14).

A simple assignment of zero to M.

This statement reads a single record from the file
identified by the unit number IUNIT. In this case.

this is associated with the file READINGS:DATA by
means of the OPEN statement (see line 10). The
record is interpreted according to the FORMAT
statement at label 500 (see line 40). If there are
no more records left. then the program continues at

statement label 40 (see line 31). Two variables are
read in. GROUP and R. This statement has a label

(10) which other statements can reference (see line
29).

The INDEX intrinsic function is invoked with actual
parameters COLOUR and GROUP. This searches for the
string contained in GROUP (let us say this is ‘R‘)
in the string contained in colour (this is
'ROYGB'). In our example. the result would he i

(the first occurrence of ‘R‘ in ‘ROYGB‘ is the
first character). and this would then be placed in

K. K‘is not declared. and receives the default type
INTEGER (see also line 9). INDEX is not declared
since it is an intrin— sic function.

Adds one to M. (In this program M is used to count

the number of records read).

Here we have a block IF construct. Line 17 (the IF)
shows the test to be made. If X has the value 0.
then the THEN part is executed (line 18). Otherwise
control goes to the ELSE clause (line 19) and

proceeds normally to the ENDIF (line 28). The

indentations in the listing are purely to help the

reader so that the THEN and ELSE clauses are easily

seen.

Norsk Data ND~60.145.7 EN

18

Line 18:

Line 19:

Line 20:

Line 21:

Lines 22—27:

Line 27:

Line 28:

Line 29:

Line 30:

Line 31:

Line 32:

Lines 33-37:

ND FORTRAN Reference Manual
INTRODUCTION

This merely writes the character constant to the

user‘s terminal (unit 1). The * indicates that free

format (also known as list—directed 1/0) is to be

used.

See note on lines 17—28.

The first statement of the ELSE clause. It adds 1

to the K’th element of array N. N keeps a count of

how many of each type of reading is recorded, the

type being identified by K.

Puts the reading R into the appropriate position in

the table X. X has 2 dimensions. The first

subscript K identifies the group, and the second N

(K) identifies which position within the group.

Another block IF; this time without an ELSE clause.

If K has the value ORANGE or GREEN then the reading

is also placed in the previous and succeeding

groups. Otherwise nothing is done here.

Terminates the block IF in line 22.

Terminates the block IF in line 17. Note how one

block IE is completely nested within one clause of

another block IF.

Directs the execution of the program to label 10

(line 14) where the next record is to be read. The

repeated execution of lines 14 through 29 is only

halted by the END clause in line 14. which will

cause execution to jump to label 40 (line 31).

Blank lines are treated as comments. They can be

placed anywhere to make the listing easier to read.

The CONTINUE statement does nothing itself. Here it

is simply used so that the label 40 can be

positioned. Note that the label 40 could have been

placed on the WRITE statement in line 32 instead.

Writes to the user‘s terminal (unit 1). The format

used is written here as a character constant, the

value of which is (16. ‘READINGS‘). There is only

one value. M, to be written. Thus M is written

according to the format item 16. It is then

followed by the characters READINGS.

This is a DO—loop. It begins with the DO statement

(line 33) which identifies the end as a statement

label 50 (line 37). K is the control variable of

the loop. It starts with the value RED, and

increases each time the loop is repeated until it

is greater than BLUE. Since no increment is

Norsk Data ND-60.l45.7 EN

ND FORTRAN Reference Manual 19
INTRODUCTION

Line 34:

Line 35:

Line 36:

Line 37:

Line'38:

Line 39:

Line 40:

Line 41:

specified. it is taken to be 1. Thus after control

has passed through the lines 34 to 37. K is
increased by i and control resumes at line 34. When

K exceeds BLUE, program execution leaves the loop,

and continues after statement label 50 (i.e

line 38).

., at

This is how subroutines are called. The name AVRAGE
has no declaration, and because it occurs in a CALL
statement, it is by default the name of an EXTERNAL

program unit. known as a SUBROUTINE. it has 3

actual parameters (see also line 47).

The variable SDEV receives the value returned by

the function VAR. VAR is not declared as an array

but appears followed by a parameter list. It is

therefore by default EXTERNAL. and a FUNCTION. It

returns a single value. and the type of this value

is implied in the normal way as for variables; in

this case it is REAL because the letter V is not in
the range I—N, nor does it appear in an IMPLICIT

statement. There are three actual parameters X, N
and K. The name SDEV is not declared, but is
implicitly a variable of type REAL.

This line writes the results of the computations to

unit 1 (the user‘s terminal) according to the

format at label 510. The first value written is the
group letter. which is the substring taken from
COLOUR starting and ending with the K'th (i.e.,

just one) character. The next value is the count of

readings in each group taken from the array N. Then

the average which was computed by the subroutine

AVRAGE and left in the COMMON block. And finally

the standard deviation as calculated by VAR and
returned to SDEV in line 35.

The end of the DO—loop which starts at line 33.

Once again. the CONTINUE statement is simply in

order to place the statement label here.

A simple Jump to avoid the error—handling routine

to label 999 (line 44). t

Another blank line of no significance.

Defines the format of the input records (used in

line 14). There is a field of length i used as a

literal character (A1); and a field of width 5
treated as a fixed—point number, with an implied

position of the decimal point 2 digits from the
right-hand end if no point is present explicitly.

Defines the output format. consisting of 6 separate

fields. "1H“ puts a blank in the first position.

Norsk Data ND—60.145.7 EN

20

Line 42:

Line 43:

Line 44:

Line 45:

Line 46:

Line 47:

Line 48:

Line 49:

Lines 48-49:

Line

Lines 51—53:

50:

ND FORTRAN Reference Manual
INTRODUCTION

Since the user‘s terminal is being written to (see

line 36). this first character is used as a ”forms

control character": a blank means start on the next

line. Then follow data formats of type character

(A4). integer (15), and fixed—point (F9.2>. Next is

a literal string and finally a field with an

exponent (E10.3).

The start of the error handling. The statement

label 900 is referred to by line 12.

An error message is written in free format to the

user’s terminal (unit 1). If an error in the OPEN

statement is found, the IOSTAT status specifier

indicates that an error code should be stored in

the variable IERNAM. This is then written out by

means of this WRITE statement.

A CONTINUE statement to hold the position of label

999.

An END statement marks the end of this program

unit. The lines 1 to 45 could be compiled as a

separate job,

Insignificant blank line.

A new program unit is started. It is a SUBROUTINE

with the name AVRAGE and uses 3 dummy arguments

called X, N, and K.

A COMMON block is defined called SHARE. containing

one variable called AV. (The name SHARE is what

connects this COMMON block with the one in the

other program units 3 (lines 6 and 59).)

Declare X and N to be arrays. Since they are dummy

arguments. the last upper bounds can be left free;

this is what the * means.

There are no type statements here, so all variables

will take the implicit types defined by their

initial letters. In this program unit there are no

IMPLICIT statements. therefore only the I—N rule is

used. (Compare with line 9. Note that line 2 is no

longer valid. Its range stopped with the END at

line 45.)

Initialize the REAL variable R to zero.

A DO—loop to add up the N(K) values in X from X

(K,1) to X (K. N (K)). The sum is accumulated in

the variable R.

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manual 21
INTRODUCTION

Line 54: Compute the average and place it in the variable

AV‘ in the COMMON block where it is available to

the other program units.

Line 55: Terminate this program unit. When program execution

reaches this point‘ it returns to where the program

unit was called from and continues from there. (In
this example there is only one point where a CALL
statement is used. line 34.)

Line 56: Another blank line.

Line 57: VAR is declared to be the symbolic name of a

FUNCTION which returns a REAL value and uses 3
dummy arguments called V, M, and J. By comparing
the call in line 35 with this definition, it can be
seen that the dummy argument V is a reference to
the actual argument X. similarly that M refers to
N, and J to K.

Lines 58—59: The same comments apply as for lines 48—49.

Line 60: Initializes the return value to zero, VAR being the
name of this FUNCTION.

Lines 61—63: A DO-loop to sum the squares of deviations for the

J‘th group. Note that it is assumed that AV has
been set before the function is invoked.

Line 64: An extraction of the square root completes the

evaluation of the standard deviation. SQRT is an
intrinsic function and here the actual argument is
an expression. In this expression. the numerator is
HEAL, but the denominator is of type INTEGER, so it
is converted to REAL before the division is done.

Line 65: The END of this program unit. When the execution
comes here. the value in VAR is taken as the value
of the function and is sent back to the program
unit that called the function.

Norsk Data ND—60.l45.7 EN

22 ND FORTRAN Reference Manua]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual

CHAPTER 2

DATA TYPES. CONSTANTS. VARIABLES, ARRAYS AND SUBSTRINGS

Norsk Data ND—60.145.7 EN

23

24 ND FORTRAN Reference Manua]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 25
DATA TYPES, CDNSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.1 DATA TYPES

There are six data types defined in ANSI FORTRAN 77:

o INTEGER

0 REAL

0 DOUBLE PRECISION
c COMPLEX

o LOGICAL

o CHARACTER

In ND EORTRAN there are furtNér EyNeE:

INTEGER*1 (NE 500 on3y3 :N?EEER*2 INTEGER*4
LDNUBLE INTEGER ""-
REAL*4 REAE*§

'NEAL38
:CDMPLEX*8 COMPLEX*12

L _CNNPLEX*_36- DDUBLE COMELEX . . _ _ . -
_ENNICN3*3 {Nogsoo Nn3y3 LOGICAL*2 LGEICAL*4 ‘E': H
vNNN3333 (Naescc‘gniy3i~5 ‘

'These are fuiiy NBSCFADENNTN7SQCNNON 3,43_NN Nage SA,

Each type has 1 t8 awn internal representat3on ENE ,
' storage mapp1n9 see AppeNdix E AppenN3x E aiso }

descrzbes the defNuyTiE NaEa tyNes for ENE ND 100 8nd
the ND— 500 _ , _H

2.1.1 Type rules for identifiers

A symboTic name identifying a constant, variabTe, array,
externaT function, or statement function can have its
type decTared in a Type statement, see Section 3.4. on
page 54.
In the absence of an expTicit decTaration in a Type
statement, the type is impTied by the first Tetter of

Norsk Data ND-6D.145.7 EN

26 ND FORTRAN Reference Manual
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

the name. A first letter of I, J, K, L, M, or N implies
type integer and any other letter implies type real,
unless an IMPLICIT statement is used to change the
default implied type, see Section 3.5. on page 61.

The data type of an array element name is the same as
the type of its array name. The data type of a function
name is the type of the data item supplied by the
function reference in an expression.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI 27
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.2 CONSTANTS

A constant is an arithmetic constant, IogicaT constant,
or character constant. Constants do not change their
vaTue during execution of the object program. A
PARAMETER statement enabIes a constant to be given a
symboIic name, see Section 3.6. on page 63.

2.2.1 Integer constants

The form of an integer constant is an optionaT sign
foTTowed by a string of digits.

The vaTues must Tie between ~2147483648 and +2147483647
incTusive. If the number Ties within the incTusive
range: —32768 to +32767 and the number of digits used is
5 or Tess, then the data type is the defauIt INTEGER
type. Otherwise it is INTEGER*4.

For exampTe:
0 is INTEGER

32000 is INTEGER
—127 is INTEGER

1234567 is INTEGER*4
~98765 is INTEGER*4 (< —32768)
000002 is INTEGER*4 (> 5 digits used)

An integer data item is aTways an exact representation
of an integer vaTue.

Norsk Data ND-60.145.7 EN ReV.A

28 ND FORTRAN Reference Manual
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.2.2 Real constants

The form of a basic real constant is an optional sign,
an integer part, a decimal point, and a fractional part,
in that order. Both the integer part and the fractional
part are strings of digits; either of these parts may be
omitted but not both.

A real exponent consists of the letter E followed by an
optionally signed integer constant. A real exponent
denotes a power of ten.

A real constant takes any of the forms:

a Basic real constant.

0 Basic real constant followed by a real exponent.

o Integer constant followed by a real exponent.

The value of a real constant containing a real exponent
is the product of the constant preceding the E and the
power of ten indicated by the integer following it.

Norsk Data ND—60.145 7 EN Rev.A

ND FORTRAN Reference ManuaT 29
DATA TYPES, CDNSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

* treatconstant?":

Lyaccuracy bemg 6 7 deem
_-fToating point=hardware _y

‘an accuracy of_9 digits aithough: or conszstency
' and compatibiiity the range of real constants is , _
3_restr1cted -as_ before to 10 ** +7 This 11mit 1s~_‘f,]
,gjxaiso imposed on output vaiues ' -- ' ‘ '

ExampTes of reaT constants are:

3.1415927
—728.998

—.1
10E43

0.2718283E+1
1557.4077E—3

+l.E—10

A reaT vaTue is an approximation to the actuaT vaTue of
a mathematicaT expression.

2.2.3 Double—precision constants

The form of a doubTe—precision exponent is the Tetter D
foTTowed by an optionaTTy signed integer constant, The
exponent denotes a power of ten. A doubTe—precision
exponent is identicai to a reaT exponent apart from the
use of a D instead of an E.

A doubTe—precision constant can take one of the forms:

0 ReaT constant without an exponent part foTTowed
by a doubTe—precision exponent.

o Integer constant foTTowed by a doubTe—precision
exponent.

The vaTue of a doubTe—precision constant is the product
of the constant preceding the D and the power of ten
indicated by the integer which foTTows it.

Norsk Data ND—60.145.7 EN

3O

Exampies:

ND FORTRAN Reference Manuai
DATA TYPES, CDNSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

In ND FORTRAN the range of vaiues of , ,
'“idoubiewpreCiSion data items is the same as for reaI
e-data items but the atcuracy of the apprOXimation is
"“greater being 16 decimai digits _ :___ _ _ ‘

2.302585092994046D0
—.lDZO

+123.4D~O4
O.12345678901234567890123456789D+2l

Note that more digits than those of the accuracy Iimit
may be written, the vaiue of the constant being suitabiy
approximated.

The range of doubie—precision exponents is —76 to +76.

2 . 2 . 4 Complex constants

For example:

For exampIe:

The form of a compiex constant is a Ieft parenthesis
foiiowed by an ordered pair of reai or integer constants
separated by a comma, and foiiowed by a right
parenthesis. The first constant of the pair is the reai
part of the compiex constant and the second is the
imaginary part.

(0, 1)
(0.0, 1.0)
(3.1415927, 0)
(2.71828, 1.0E10)
(—1, +2.3E—1)

In N0 FORTRAN a COMPLEX*16 constant is written a51a
parenthesised pair of integer reai, or doubIe ,'_
precision constants at Ieast one of which is doubi a
precision ,~

(0, 1.00)
(3.141590—1, 1.41420+1)

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai 31
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.2.5 Logical constants

The forms and vaiues of a iogicai constant are:

FORM VALUE

.TRUE. true

.FALSE. faise

sN ND FORTRAN the defauit data type D? a Iagxcak
guconstant depends on DhD camput'” ,

IN) 500 uses LNNms - _
ETNQND its and ND 1-00 usfe- LOGICALNZ ”

5fNONever the defauit may be changed by the DNFNGDT _
{jtommand see section 1N 24 1 88 page 293 ix:-

2.2.6 Character constants

The form of a character constant is an apostrophe
foiiowed by a string of characters foiiowed by an
apostrophe. The string may contain any ASCII characters
except CR (octai 15), LF (octai 12) or HT (octai 11).

The deiimiting apostrophes are not part of the data
item. Embedded apostrophes are represented by two
consecutive apostrophes without intervening bianks. In a
character constant, embedded bianks between the
deiimiting apostrophes are significant.

The Tength of a character constant is the number of
characters between the deiimiting apostrophes, except
that each pair of consecutive apostrophes counts as a
singie charactert The deiimiting apostrophes are not
counted.The Tength of a character constant must be
greater than zero.

Norsk Data ND—60.145.7 EN Rev A

32

ExampTes:

ND FORTRAN Reference ManuaT
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

String as Written VaTue

‘ABC‘ ABC
'1 AM GREAT' I AM GREAT
'I"M THE GREATEST: UEMQ

See Appendix E for the internaT representation of
character strings.

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference Manuai 33
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2 . 3 VARIABLES

A variabie is a data item having both a name and a type.
Its vaiue can be changed during the execution of a
program.

Its name is a symboiic name and its type can be
optionaiiy specified by the appearance of the symbolic
name in a Type statement. Otherwise its type is impiied
as being INTEGER or REAL by the first ietter of its
name, (see Section 2.1.1 on page 25), uniess this is
overidden by use of the IMPLICIT statement.

During the execution of a program, a variabie may
contain a defined or an undefined vaiue. Before a vaiue
has been assigned to it, a variabie wiii contain an
undefined vaiue, and any reference to it wiii produce an
unpredictabie resuit.

Norsk Data ND—60.145 7 EN

34 ND FORTRAN Reference Manual

DATA TYPES, CDNSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2 . 4 ARRAYS

An array is an ordered set of data identified by an
array name. Array names are symbolic names which must
conform to the rules given in Section 1.3. on page 6.

The number of data items (or elements — see Section
2.4.1 on the next page) in an array is given by an array
declarator having the form:

a is the symbolic name of the array, and
d is a dimension declarator, the number
of these specified being equal to the number of
dimensions of the array.

The form of the dimension declarator is:

[d1 :] d2

where
(11 is the lower dimension bound
(12 is the upper dimension bound.

The lower and upper dimension bounds are arithmetic
expressions and are described in Section 3.1 on page 43.

Examples of array declarators are:

TABLE (2, 3, 4)

ARRAY (M1 : M2, M3 : M4)

The size of an array is equal to the product of the
sizes of the dimensions specified for that array by its
array declarator. Thus, in the first of the above
examples the array size would be 2x3x4 : 24. The size
of an array is equal to the number of elements it
contains.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI 35
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.4-1 Array elements

Each item of data in the array is known as an array
eIement. An array eIement name, by which an array
eiement is referenced, is the array name quaIified by a
subscript. The form of an array eIement name is:

a (s [, s] ...)

where
a is the array name, and
(s [, s] ...) is a subscript where each
s is an integer expression, referred to as a
subscript expression.

A subscript expression can contain array eIement
references and function references. The number of
subscript expressions in the subscript must equaI the
number of dimensions deciared for the array (see above).

ExampIes of array eIement names are:

TABLE (I/K ** 2, L)

ARRAYl (I + ARRAYZ (J*K, L) , M)

In ND-FORTRAN, referencto a muiti+dimensioned _
' array may aiso be made as though it were an array of'

oniy one dimension. In this case the array eiemeat
-referenced is given by the order in wniCh the array
eiements are stored see SectiOn 2 4 2 on page the
next page The subscript of the first eiement being
_the Tower bOUnd of the firSt dimenSion ,,

2.4.2 Order of stored array elements

The eIements of an array are arranged in storage in
ascending order with the vaIue of the first subscript
varying most rapidIy. For exampIe, eIements of the
array:

I (2, 3)

are stored in the order:

I (1,1), I (2,1), I (1,2), I (2,2), I (1,3), I (2,3)

Norsk Data ND—60.145 7 EN

36 ND FORTRAN Reference ManuaT
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.4.3 Adjustable arrays

An adjustabie array has an adjustabie array deciarator,
i.e. one having dimension deciarators containing
variabTe names.

Note that adjustabTe arrays may oniy be used for dummy
argument deciarations within subprograms, see Section
11.1 on page 214.

2.4.4 Assn-ed-size arrays

An assumed—size array is a constant array deciarator or
an adjustabTe array decTarator, except that the upper
dimension bound of the Tast dimension is an asterisk.
The asterisk means that there is no deciared upper Timit
of the array index. This does not change the requirement
that the dummy argument must be whoTTy contained within
the actuaT argument.

Note that assumed~size arrays may onTy be used for dummy
argument deciarations within subprograms, see Section
11.1 on page 214.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua] 37
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.4.5 Actual and dummy array declarators

Each array declarator is either an actual array
deciarator or a dummy array deciarator.

An actua] array dec1arator is one in which each of the
dimension bound expressions (see Section 3.1 on
page 43). is an integer constant expression.
A dummy array declarator on the other hand, may be a
constant array deciarator, an adjustable array
deciarator or an assumed—size array dec1arator.

For more detailed descriptions, see Section 10.1. on
page 214.

Norsk Data ND—60.145.7 EN

38 ND FORTRAN Reference ManuaT
DATA TYPES, CDNSTANTS: VARIABLES, ARRAYS AND SUBSTRINGS

2.5 CHARACTER SUBSTRINGS

A character substring is a contiguous portion of a
character variabTe or character array eiement. The name
of the substring may be referenced and have vaiues
assigned to it.

The substring name can take the forms:

v ([e1] : [e2])

or a (s [, s] ...)((e] : [92])

where
v is a character variabTe name.
a (s [, 5]...) is a character array
eiement name.
e and e are each integer expressions
caTTed sfibstring expressions.

e indicates the Teftmost character position of the
substring and e the rightmost. For exampie, A (2:4)
specifies the characters in positions 2 through 4 of the
character variabie A, whiTe B (4,3) (1:6) specifies
characters in positions 1 through 6 of the character
array eTement 8 (4,3).

e1 and 92 must be within the Timits:

1 S e1 5 e2 5 maximum string strength

If e exceeds the maximum string Tength, resuTts are
unprédictabie.

If e1 is omitted, a value of 1 (one) is assumed for it.

If e is omitted, then its assumed value is that of the
Tength of the character variabie or array eiement.
Both e1 and e2 may be omitted.

A substring expression may be any integer expression. It
can contain array eiement references and function
references.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua] 39
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

,.In ND FORTRAN there are two spec1a1 va1ues to mete: _

d If e1 15 a conStant expression whose va1u811s ~1,
then 1t is 1nternreted as the posit1on of the first
non b1ahk character 1n the str1 ng:

t 111,92 is a constant express1on whose va1ue 1s 1
‘ then21t 1s interpreted as the pos1t10n of the 1ast

non b1ank character 1n the String ‘

Thus A (1:+1} str1ps 011:1ead1hg and tra111ngm,
b1anks ' *' ' .-' _ ‘ ‘ ‘

Norsk Data ND-60.l45.7 EN

40 ND FORTRAN Reference Manua]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua]

CHAPTER 3

SPECIFICATION STATEMENTS

NOY‘Sk Data ND—60.145.7 EN

41

42 ND FORTRAN Reference Manua1

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference ManuaT 43
SPECIFICATION STATEMENTS

FORTRAN specification statements specify storage
aiiocation, type characteristics,and data arrangement.
The different specification statements are:

c DIMENSION

o EOUIVALENCE

0 COMMON

a Type statements

a IMPLICIT

o PARAMETER

o EXTERNAL

o INTRINSIC

p SAVE

ATT specification statements are non—executabie.

3.] THE DIMENSION STATEMENT

The DIMENSION statement provides the symboiic names and
dimension specifications of arrays. Its form is:

DIMENSION ad [, ad]...

where
each ad is an array deciarator of the form
a(d,[, d]...), see Section 2.4, on page 34.
Note that array deciarators may aiso appear in
COMMON statements and Type statements.

Each a appearing in a DIMENSION statement is
the symboTic name of an array in the same program unit.
Each d is a dimension deciarator, and the
number of dimensions of the array is the number of
dimension deciarators in the array deciarator. The
minimum number of dimensions is one and the maximum is
seven.

Norsk Data ND-60.145.7 EN Rev A

44

For example, i

The statement:

The following

ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

The form of a dimension declarator is also given in
Section 2.4, on page 34. Each dimension may be
expressed as having two bounds, a lower and an upper,
separated by a colon. The value of either bound may be
positive, negative, or zero. If only the upper bound is
given, then the value of the lower bound is one.

Dimension bounds are arithmetic expressions in which all
constants (or their symbolic names) and variables are of
type integer. The upper dimension bound of the last
dimension may be an asterisk. The array declarator
containing an asterisk in its last dimension bound may
or may not be adjustable, see Section 2.4.3, on
page 36. In an adjustable array, those
dimension declarators that contain a variable name are
called adjustable dimensions.

n the statement:

DIMENSION PAGE (60), PROF (10, 12)

the array PAGE has 60 elements and 1 dimension. PROF is
a two—dimensional array whose total size is:

10 x 12 = 120 elements

DIMENSION TABLE (—1 : 10, O : 9)

defines a two—dimensional array called TABLE. The first
subscript may vary from —1 to 10 (i.e.. 12 values) and
the second subscript varies from O to 9 (i 9. IO
values) giving a total size of 120 elements.

code:

SUBROUTINE SUB (A. RONS. CDLS)
INTEGER ROWS, COLS
DIMENSION A IRONS, COLS)

defines a dummy argument as an adjustable array whose
size is given by further dummy arguments.

For example, if ROWS = 4 and COLS = 5 on one entry to
SUB, then the size of A is 4 x S = 20 elements with the

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference ManuaT 45
SPECIFICATION STATEMENTS

bounds of 4 and 5 remaining constant for this
invocation, even though RUNS or COLS may receive new
vaiues during it. If, when it is caTTed next time,
RONS = 3 and COLS : 2, then these bounds wiTT hoid for
this new invocation.

In the next exampie:

SUBROUTINE CALC (TAB)
COMMON/CM/LEN
DIMENSION TAB (O : LEN*(LEN + 1)/2,*)

TAB is an assumed—size array. The first upper bound is
an integer expression, and the second upper bound is
Teft free. Note that in these two Test cases the bounds
of the arrays are redetermined each time the subroutine
is invoked, but that they remain fixed throughout each
invocation.

Norsk Data ND—60.l45.7 EN Rev.A

46 ND FORTRAN Reference ManuaT
SPECIFICATION STATEMENTS

3.2 THE EQUIVALENCE STATEMENT

ExampTe:

The EOUIVALENCE statement is used to specify that
storage is shared by two or more variabTes, arrays, or
character substrings.

An EOUIVALENCE statement has the form:

EOUIVALENCE (Tist) T, (Tist)]

Each Tist must contain at Teast two names. Names of
dummy arguments are not aTTowed. Any subscript or
substring expression in the Tist must be an integer
constant expression.

If equivaTenced items are of different data types, no
type conversion is performed.

INTEGER*4 INT4
LDGICAL*4 L064
LOGICAL*2 LOGZ
DOUBLE PRECISION RL8
EQUIVALENCE (INT4,LOG4),(LOGZ,RL8)

The first pair of variabTes in the EOUIVALENCE
statement, INT4 and LOGA, require exactTy the same
storage, they wiTT overTap exactTy. The second pair,
require different amounts of storage, LOGZ requires 16
bits and RL8 requires 64 bits, but LOGZ and RL8 wiTT
begin at exactTy the same pTace in memory,

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference ManuaT 47
SPECIFICATION STATEMENTS

3.2.1 Array Names and Array Element Names

If an array eTement name occurs in an EQUIVALENCE
statement, the number of subscript expressions must be
the same as the number of dimensions specified in the
array declarator for that array name. The use of an
array name unquaTified by a subscript in an EOUIVALENCE
statement has the same effect as specifying the first
element of the array.

3.2.2 Character Variables in EQUIVALENCE Statements

ExampTe:

Items of type CHARACTER may be equivaIenced onTy with
other items of type CHARACTER.

CHARACTER A*4, 8*4, C(2)*3
EQUIVALENCE (A, C (1)), (B, C (2))

The sharing of storage can be iTTustrated as foIIows:

[01|02|03[o4105|06Io7[

I————A——-I
I———8—————I

}——C(l)—+——C(2)—-I

In ND FORIRAN the réstriction 0h equivaTeACIng
.CHARACTER cnIy with CHARACTER is Iifted. Hawever
”arIthmetic or IogiCa} item AAy net begin on an oddan
[byte Aoundary AA the N8 100 but the foIIowiAg IA
acceptabIe ._ _ . . ___

INT£GER-K~{
CHARACTER*10 c , , ,, -
EQUIVALENCE IA 0 I2 g3 })_

';sIAce C can start at AA odd Ayte 50 that K wIII
start At an even byte

Norsk Data ND—60.145.7 EN

48

_.IKTEGER’K°TNLW’A

ND FORTRAN Reference ManuaI
SPECIFICATION STATEMENTS

;'CHARACTER*10 c =53a-‘I?‘”A*‘V"i "‘ 'i_? ‘ §:'
.TEQUIVALENCE {K c (1 ; 2IL IK c {2 II I :2; -
ts not aIIowed SInce there is no way of avoidIng
r*one of eIther K or N startIng at an odd byte

,T_oK the Nfl~§00 thIs SItuatIon produces an extenswon
> message, not an error * . _ _,

2.3 Restrictions on EQUIVALENCE Statements

For exampTe:

An EQUIVALENCE statement must not specify that
consecutive storage units are to be nonconsecutive as
in:

REAL A (2)
DOUBLE PRECISION 0(2)
EOUIVALENCE (A (1), D (1)), (A (2), D (2))

Nor may the same storage unit be specified more than
once In a storage sequence, as in:

DIMENSION A (2)
EQUIVALENCE (A (1), B), (A (2), B)

However, there are severaT ways of specifying
essentiaTIy the same equivaTence information.

REAL A (20), B (10)
EOUIVALENCE (A (1), B (1)), (A (2), B (2))

AIso, more than one Iist can refer to the same storage
unit as in:

EOUIVALENCE (A,B,C), (A,D), (B,E,F), (C,G), (E,H)

which is the same as:

EQUIVALENCE (A,B,C,D,E,F,G,H)

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference ManuaT 49
SPECIFICATION STATEMENTS

3.3 THE COMMON STATEMENT

The COMMON statement enabIes storage to be shared by
different program units. This aiiows the program units
to define and reference data without using arguments.

The form of the statement is:

COMMON [/[cb]/] Tist[[,]/[cb]/Tist]

where
cb is a COMMON biock name
list is a iist of variabie names, array
names, and array deciarators.

If the COMMON biock name is omitted, the biank COMMON
biock wiIT be used. If the first COMMON bTock name is
omitted, the first two siashes are optionaT.

In each COMMON statement, items whose names appear in a
Tist are deciared to be in the immediateiy preceding
COMMON bTock. If the first COMMON biock name is omitted,
then the items in the first Tist appear in biank COMMON.

Any COMMON biock (incTuding biank COMMON) may occur more
than once in one or more COMMON statements within a
program unit. The Tist foTTowing each successive
appearance of the same COMMON block name is treated as a
continuation of the Tist for that COMMON bTock.

OnTy one appearance of a symboTic name as a variabTe
name, array name, or array deciarator is permitted in
aTT such Tists within a program unit.

Dummy arguments must not appear in the Tist.

If a character variabie or a character array is in a
COMMON bTock then aTT items in the bTock must be of type
character.

In ND CONTRAN, the mixing of entities of character
and n0n~character data types in one CONMON biock is
aiiowed.

Norsk Data ND—60.145.7 EN

50 ND FORTRAN Reference ManuaT
SPECIFICATION STATEMENTS

3.3.1 COMMON Block Storage Sequences

During compiTation of a source program, a storage
sequence is formed for aTT items in the Tists for a
particuiar COMMON biock. The order of the sequence is
the same as the order of appearance of the Tists. The
sequence is further extended to incTude the storage for
any storage sequence associated with it by equivaience
association.

Storage sequences of a1] COMMON bTocks with the same
sequences have the same first storage unit. The storage
sequences of aii biank COMMON biocks aTso have the same
first storage unit as each other. This resuTts in the
association of data in different program units.

For exampTe, with the foTTowing code:

PROGRAM MAIN
COMMON / CM / MA, MB, MC
END

SUBROUTINE SUB
COMMON / CM / NA, NB, NC

MA and NA wiTT share the same storage, as wiTT the pairs
MB, N8 and MC, NC.

For detaiis on the ambunt of storage Loricupied by
each variable and the way in which COMMON biocks are
mapped, see Appendix E. _

3.3.2 Differences between Named COMMON and Blank COMMON

0 COMMON biocks of the same name must have the same size
wherever they appear. Blank COMMON blocks may be of
different sizes.

0 Items in named COMMON bTocks may be initiaTTy defined by
a DATA statement in a BLOCK DATA subprogram.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference ManuaI 51
SPECIFICATION STATEMENTS

Note that in the ANSI FORTRAN 77 standard,
initiaIization of named COMMON bIocks is restricted to
BLOCK DATA subprograms and bIank COMMON bIocks cannot be
initiaIized by DATA statements.

In ND IFVORIRAN both named and bIank COMMON bIocks may
be initiaIized in any program unit

0 Execution of RETURN and END statements can cause items
in named COMMON bIocks to become undefined but not items
in bIank COMMON.

In ND FORTRAN, items in COMMON bIOCks retain their
vaIues between caIIs irrespecti Ve_0f;whether they,
are namEd Or not, ' - ‘ - ' ' -'

3.3.3 Restrictions on COMMON and EOUIVALENCE

An EOUIVALENCE statement must not cause the association
of the storage of two different COMMON bIocks in the
same program unit. Furthermore, EOUIVALENCE association
must not cause storage extension to precede that of the
storage of the first item in a COMMON statement.

For exampIe:
COMMON / X / A
REAL B (2)
EOUIVALENCE (A, B (2))

is not permitted.

3.3.4 COHHON Blocks in APT

, In ND FORTRAN f or the NORD~10 and ND 1DO, a COMMON
bIOCk Can be pIaced at a user defined Iocation in ‘
‘the APT IAIternative Page TabIeI when deing this ,

"aII other data areas wiII resi de on the NPI INormaI
,,?age IabIé} ang wIth the pregram kcode The user

,has most of the responszbiIity for setting access 'tQ_ f
,the AFI correctIy '

Norsk Data ND—60.145.7 EN

52

For éxampIeir'k

L, *n. *

' I 1.1::ALVLEALTGA (r1) 1 '

_Qwheren

ND FORTRAN Reference ManuaI
SPECIFICATION STATEMENTS

15Such a COMMON b.IIock 1s def1ned by nam1ng t he qck
1n the foTIow1ng Way:

: where VI, __ ,, _, __

n1$ thé address 1h 1hé A1T where the bTock
shouId start n must be a dec1ma1 01‘:0ctaI

_ 1 address1ng them They are restr1cted to t hé 1‘
,foI1ow1ng ages; ._,_ , ,

 In axpress1ons

1. On the Ieft of ass1gnment statements , ,
“Co As actQa1 arguments to subrou11nes and funct1ons,

if they are s1mpIe variabIes or array elements

,,1 To In WRITE and READ statements '{Abut n01 arrays)

1'17; Any data cyae but n01 character ” '

a ae user muSt Set the aIterna11ve pag_iektabIe before
“_ an APT COMMGN 1s accessed by -

15 the page tabIe to use {See aiso the ,VHC
SINTRAN Reference_ManUaI, ‘NB,601128,4,}

Norsk Data ND—60 145.7 EN

ND FORTRAN Reference ManuaI 53
SPECIFICATION STATEMENTS

Before u sing any 0f the fiI e gubsystem MODICO? caTss'
Ie g RFIEE} the APT mUSt be dwsabIed by: ‘<

‘ ’ CALL ALTDF ‘V H

:énd‘then_reinstatedAbygJ

1] CAELTALmN Tw-f ‘

'aS”befnrefil

’_Use of 2/0 thfbugh the nofimaT FORTRAN statements
READ WRITE PRINT OPEN CIOSE, BACKSPACE, ENDFILE

'_and REWIND 1s automat1caIIy protected

Norsk Data ND—60.145.7 EN

54 ND FORTRAN Reference ManuaT
SPECIFICATION STATEMENTS

3.4 TYPE STATEMENTS

A Type statement is used to override or confirm an
impTicit type. It may aIso provide dimension
information.

The appearance of the name of a variabIe, array,
statement function, externaT function, or a constant in
a Type statement, specifies the data type for that name
for aTT occurrences of it in a program unit.

The name of a main program, subroutine, or biock data
subprogram must not be used in a Type statement.

3.4.1 INTEGER, REAL, DOUBLE PRECISION, NUMERIC, COMPLEX
and LOGICAL Type Statements

These statements have the form:

type var [/vaTue/] [,var[/vaIue/]]..,

where
type is one of INTEGER, REAL, DOUBLE
PRECISION, NUMERIC (fw,sc), COMPLEX and LOGICAL.

NUMERIC (fw,sc) is aIso used to specify entities of
packed decimaI format aiso known as BCD (Binary Coded
Decimai). This is a fixed format, where fw (fieId
width) specifies the number of digits in the entity,
and sc (scaTing factor) specifies the number of digits
to the right of the decimai point. This type shoq be
used mainIy when mixing routines within COBOL and
FORTRAN.

var is a variabTe name, array name,
array deciarator, function name, dummy-procedure
name, or the symboIic name of a constant.

LvaTue is a constant, a symboIic name of a constant_-
or INTRINSIC functions (See_Secti0n 5,: 280m page 85,“'
and-Section 5.4,1-Qn page 95) with constant , - _,

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference ManuaT
SPECIFICATION STATEMENTS

55

expressions as parameters. If var is an,array,
thenfvalue'meahs a Tist of vaTues; one for each
eIement 0f the array; if the Iist centafihs Tess vaIues
than required for the entire arrayt'the rest of the
array wt}? be initieiized to zero;-the Iist may contain
a_constaht or symboIic name of a conStaht prefixed by a
repetition factor (foTTowed by an aeterisk, as in the
DATA statement). This is an ND {ORTRAN extension.

In ND FORTRAN, additiona? types are aITowed. The
impIicat§ohs for the use of storage are fuTTy
eXeTaihed in Appendix E. '

The new types are:

'INTEGER*2

INTEGER*2
'2NTEG£R*4 _
DOUBLEVINTSGER

occupies 1 byte of storage

(NDeSOG onIy) '
occupies'z bytes of storage
octupies 4_bytes of storage
Occupies 4 bytes of storage

The above types behave in the same way as type
INTEGER. In particuiar, they can be used in
expressions for subscripts etc. DOUBLE INTEGER and
INTEGER*4 are identica? in a1} respects.

REAL*4
REAL*6
REAL*8
NUMERIC (fw,sc)
COMPLEX*8
COMPLEX*12
COMPL£X*16

DOUBLE COMPLEX
LUGICAL*1V

LOGICAL*2
LOGICAL*4

the same as REAL

the same as REAL
the same as DOUBLE PRECISION

{ND~500 ot)
the same as COMPLEX

the same as COMPLEX
COMPLEX vaTues with DOUBLE
PRECISION accuracy

the same as COMPLEX*16

Occupies 1 byte of storage
(ND~500 on3y)
occupies 2 bytes of storage

occupies 4 bytes of storage

Norsk Data ND~60.145.7 EN

56 ND FORTRAN Reference ManuaT
SPECIFICATION STATEMENTS

Dur1ng the evaI uat1on of an ar1thmet1c express1on the
order of 1m911 ed conve131on 1s:

‘INTEGEREIE
- j111EGER12 _-:‘

INTEG£R1417~
REAL ,:, _ ”
DOUBLE‘PRECISIONL
NUMERIC (fw SC}
{IOMPLEX '

:DOUBLE COMPLEX

- 1he'CMELX~1ntrinséc'funct1on appT1ed to a DOUBLE
_PRECISIDN argument 91 yes 6 DOUBLE COMPLEX resuTt It
shoq be used to reta1n accuracy when m1x1ng DOUBLE

' PRECI SIGN and coMPLEx operands

_There 15 an equ1valent hierarchy for 10g1ca1
express1ons; The order of 1mp11ed convers1on is:

LOGICA111'7‘:
LOGICAL12_

LLLOGICAL*4‘

3.4.2 CHARACTER Type Statement

The form of th1s statement 15:

CHARACTER [*Tength [,]] name [/vaTue/][,name[/va1ue/]]...

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai 57
SPECIFICATION STATEMENTS

where
name can take the form of:

v [*Tength]

OY‘

a [(d)][*iength]

v is a variabie name, function name, dummy
procedure name, or the symboiic name of a
constant.
a is an array name.
a (d) is an array decTarator.
Tength is the Tength (number of characters) of
the associated name. It is one of the foiiowing:

a An unsigned, non—zero, decimai integer
constant.

0 An integer constant expression within
parentheses and having a positive vaiue.

in ND FORTRAN, if the expression is onTy the name of
a symboiic constant, the surrounding parentheses can
be omitted. _

, For exainpie, in ANSI "comm ,77 5 '
PARAMETER (LEN = 10)
CNARACTER C*(LEN)

couid be written in ND FORTRAN as:

PARAMETER (LEN =VlO}
, CHARACTER C*LEN

In ND FORTRAN a330, if the expression is not of type
INTEGER, it wii? be converted to type INTEGER.

9 An asterisk in parentheses, (*).

value is a constant, a symboiic name of a
censtant or the INTRINSIC function CHAR with a
~constant expression as parameter. If name is an

, array, then vaTue means a Tist of vaiues, one '
for each eiement of the array; if the iist
contains fewer-vaiues than required for the
entire array, the rest of the array wiii be

Norsk Data ND—60.145 7 EN

58

For exampTe:

For exampie:

ND FORTRAN Reference Manuai
SPECIFICATION STATEMENTS

;_ initiaiized to zero; the_iist may contain a
: censtantjor“symboiic name prefixed by a='_

' ~repetition factor (foTTowed-by_an asterisk, as
‘; in the DATA‘statement); This is an_ND FORTRAN

.eXtEnsion,V ‘ '_ i~~ ‘ y”- I

A Tength specification immediateiy foTTowing the word
CHARACTER appTies to each item in the statement without
a Tength specification of its own. If this initiaT
Tength specification does not appear, then the defauit
Tength in the exampie on page (PREVIOUS) is one,

CHARACTER*3 A, 8*4, C

defines A, B and C as character strings of Tengths 3, 4
and 3 respectiveiy. ATso:

CHARACTER A, 8*4, C

gives A, B and C Tengths of 1, 4 and 1 respectiveiy.

A Tength specification must be an integer constant
expression except for externai functions, dummy
arguments of externai procedures, or character constants
having a symboTic name.

If the Tength of a dummy argument is deciared as (*)
then it assumes the Tength of the associated actua)
argument for each reference of the subroutine or
function. (When the associated actuai argument is an
array name then the Tength of an eiement of the array is
assumed.)

SUBROUTINE S (C)
CHARACTER C*(*)

PROGRAM MAIN
CHARACTER A*4, 8*9
CALL S(A)
CALL 3(8)

In the above code, the first time S is caTTed, the dummy
argument C identifies with A, and so has a length of 4;
the second time, it takes the)ength of B, i.e., 9.

If the Tength of an externai function is deciared in a

Norsk Data ND—6C 145.7 EN

ND FORTRAN Reference ManuaT 59
SPECIFICATION STATEMENTS

For exampie:

function subprogram as (*) then the function name must
appear in a FUNCTION or ENTRY statement in the same
subprogram. On execution of such a function reference,
the assumed Tength is that specified in the referencing
program.

The Tength given for a character function in a
referencing program must be an integer constant
expression that agrees with the Tength given in the
specifying subprogram.

FUNCTION NAME
CHARACTER *(*) NAME

NAME = TAB (I)
RETURN
END
SUBROUTINE PERSON
EXTERNAL NAME
CHARACTER NAME*25, PN*25

END
SUBROUTINE FIRM
EXTERNAL NAME
CHARACTER*35 NAME, FN

In the above, when NAME is caTTed from PERSON, its
Tength is 25. When it is caTTed from FIRM, its Tength is
35. Within both PERSON and FIRM, NAME must be deciared
with a constant Tength and not with an asterisk (*).

If a character constant with a symboiic name has its
Tength deciared as (*), then the constant assumes the
Tength of its corresponding constant expression in a
PARAMETER statement.

For exampTe, in the code:

CHARACTER HEAD *(*)
PARAMETER (HEAD = 'TOTALS~BY—MONTH')

the Tengtn of HEAD becomes 15.

A character statement function or the character dummy
argument of a statement function must have a Tength

Norsk Data ND—60.145.7 EN

50 ND FORTRAN Reference ManuaI
SPECIFICATION STATEMENTS

which is an integer constant expression.

For exampIe, if we have:

CHARACTER DIGITS*10, MNAMS*50
CHARACTER*3 MONTH, DAY*2, DATE*6, DD*2, DM*3
DATA DIGITS/‘OlZ3456789'/, MNAMS/‘JAN FEB MAR...DEC'/
DAY (I) = DIGITS (I/lO+1:I/lO+1)//DIGITS (MOD(1,10)+1:MOD(I,IO)+1)
MONTH (I) = MNAMS (3*1—2 : 3*1)
DATE (DD, DM) = DD // ‘—' // OM

then the statement functions DAY, MONTH and DATE must be
of known fixed Iength, as must the dummy arguments of
DATE, i e., DD and DM.

In ND FORTRAN there are reStrictions on the maximUm
Iength of items of type CHARACTERF On the ND—SOO,
the maximum is 32767, and on NORlD/ND~100 it is
20¢7. The upper Iimits appIy'to aII CHARACTER items,
‘inciuding the maximum Iengths of.aIIZCHARACTER
expressions that are not assigned (‘9 used as
actuaI parameters or as operands to reIationaI ,
operators) , , ,

See Appendix E for the internaI representation of
CHARACTER data - _

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 51
SPECIFICATION STATEMENTS

3.5 THE IMPLICIT STATEMENT

For example:

An IMPLICIT statement is used to change or confirm
default implied data types, based on the initial letter
of the symbolic name of a constant, variable, array,
external function, or statement function‘

The statement has the form:

IMPLICIT type (a[,a]. .)[,type(a[,a]....) J

where
type is one of INTEGER, REAL, DOUBLE PRECISION,
NUMERIC (fw,sc), COMPLEX, LOGICAL or
CHARACTER [* length].

In ND FORTRAN, type may also be one of the ND
extensions, see Section‘3.4y on page 54.,

a is a single letter or range of single letters
in alphabetical order. A range is denoted by the
first and last letter of the range separated by
a minus.

length is the length of a character item and
must be either an unsigned, non—zero, integer
constant, or a positive integer constant
expression in parentheses. Its default value is
one.

IMPLICIT COMPLEX (C)

ensures that all untyped names beginning with a C will
be of type COMPLEX,

An IMPLICIT statement specifies a type for all:

0 variables

a arrays

o symbolic names of constants

0 external functions

a statement functions

Norsk Data ND—60.145.7 EN

62

For exampie:

ND FORTRAN Reference Manuai
SPECIFICATION STATEMENTS

based on the first Tetter of the name. The normai
defauTts for types can be expressed as:

IMPLICIT REAL (A—H, O-Z), INTEGER (I—N)

VARIABLE NAME IMPLICIT VARIABLE TYPE

x123 REAL
horse REAL
insect INTEGER
c REAL
J INTEGER

An IMPLICIT statement does not change the type of any
intrinsic function, and its scope is that of the program
unit containing it.

Type specification by an IMPLICIT statement may be
overridden in aii cases by a type statement. An expiicit
type specification in a FUNCTION statement overrides an
IMPLICIT statement for the name of that function
subprogram. Note that the Tength is aiso overridden when
a particuiar name appears in a CHARACTER or CHARACTER
FUNCTION statement.

IMPLICIT statements must precede aTT other specification
statements in a program unit except a PARAMETER
statement. More than one IMPLICIT statement may be used
in a program unit.

Norsk Data ND—60 145.7 EN

ND FORTRAN Reference Manuai 53
SPECIFICATION STATEMENTS

3.6 THE PARAMETER STATEMENT

A PARAMETER statement is used to give a constant a
symboIic name.

The form of a PARAMETER statement is:

PARAMETER (p = e [, p = e}....)

where
p is a symboiic name of a constant
e is a constant expression

The assignment to p is made according to the ruTes for
the assignment statements, see Chapter 6.

When p is of type integer, reaT, doubTe precision, or
compiex, then the corresponding expression must be an
arithmetic constant expression. If p is of type
character or TogicaT, the corresponding expression must
be a constant expression of type character or Togicai
respectiveiy.

p must not be defined more than once in a program unit.
Furthermore, if it is not of defauit impTied type, then
its type must be specified by a Type statement or
IMPLICIT statement prior to its first appearance in a
PARAMETER statement.

If p is of type character and of Tength other than the
defauTt Tength of one, its Tength must be aiso defined
prior to its first appearance in a PARAMETER statement.

For exampie, the foiiowing code:

PARAMETER (P1 = 3.141593)
COMPLEX J
PARAMETER (J = (O.,1.), ROOT2 = 1.4142)
PARAMETER (RADIAN = 180/PI)

defines three REAL symboiic constants and one COMPLEX
one.

Norsk Data ND—6O 145.7 EN

64 ND FORTRAN Reference ManuaT
SPECIFICATION STATEMENTS

In the sequence:

PARAMETER (MAX = 100)
IMPLICIT REAL (M)
DIMENSION MATRIX (MAX, MAX)
PARAMETER (MAGFLD = 0.82)

the IMPLICIT statement does not appIy to the PARAMETER
statement that precedes It. Thus MATRIX and MAGFLD are
both of type REAL but MAX is of defauIt type (i.e.,
INTEGER).

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 65
SPECIFICATION STATEMENTS

3.7 THE EXTERNAL STATEMENT

An EXTERNAL statement is used to identify an externai or
dummy procedure and to permit its symboTic name to be
used as an actuai argument.

The form of an EXTERNAL statement is:

EXTERNAL proc [,proc]...

where
each proc is the name of an externaT procedure,
dummy procedure, or bTock data subprogram.

When a name appears in an EXTERNAL statement it is
decTared to be an externaT procedure, dummy procedure,
or block data subprogram name. If an externai procedure
name or dummy procedure name is used as an actuai
argument, it must appear in an EXTERNAL statement in the
same program unit. A statement function name cannot
appear in an EXTERNAL statement.

The name of an intrinsic function appearing in an
EXTERNAL statement becomes the name of some externai
procedure, whereupon an intrinsic function of the same
name cannot be referenced in the program unit.

OnTy one occurrence of a symboiic name is aTTowed in aTT
of the EXTERNAL statements of a program unit.

Norsk Data ND—60.l45.7 EN

66 ND FORTRAN Reference ManuaT
SPECIFICATION STATEMENTS

3.8 THE INTRINSIC STATEMENT

An INTRINSIC statement is used to identify the name of
an INTRINSIC function and to permit the use of this name
as an actuaT argument.

The form of this statement is:

INTRINSIC fname [,fname]..I

where
each fname is an INTRINSIC function name.

If a specific name of an INTRINSIC function is used as
an actuaT argument, it must appear in an INTRINSIC
statement in the same program unit. For the INTRINSIC
function names which must not be used as actuaT
arguments, see Section 11.2 on page 222.

If a generic function name appears in an INTRINSIC
statement, it does not Toose its generic property.

A symboIic name may onIy appear once in aIT of the
INTRINSIC statements of a program unit and it must not
occur in this unit in both an EXTERNAL and an INTRINSIC
statement.

Norsk Data ND—6O 145.7 EN

ND FORTRAN Reference Manual 67
SPECIFICATION STATEMENTS

3.9 THE SAVE STATEMENT

A SAVE statement retains the defined values of items
after execution of a RETURN or END statement in a
subprogram.

It has the form:

SAVE [a [,a 1...]

where
each a is a named common block name preceded and
followed by a slash, or a variable name, or an
array name. (Dummy argument names, procedure
names, and names of items in a common block must
not appear.)

A SAVE statement without a list is treated as though it
contained the names of all allowable items within the
program unit. The appearance of a common block name
preceded and followed by a slash has the effect of
specifying all of the items in that block.

When a common block name occurs in a SAVE statement in a
subprogram then it must occur in a SAVE statement in
every subprogram in which the common block appears.

If a named common block appears in a SAVE statement of a
subprogram, then the current value of items in the
common block storage sequence when a RETURN or END
statement is executed, are made available to the next
program unit specifying that common block.

If a named common block is specified in the main program
unit, then the current values of the common block
storage sequence become available to each subprogram
specifying that common block; a SAVE statement in this
program has no effect.

If a local item appearing in a SAVE statement but not in
a common block is in a defined state when a RETURN or
END statement is executed, then this item is defined
with the same value at the next reference to the same
subprogram.

Norsk Data ND—60.l45.7 EN ReV.A

68 ND FORTRAN Reference ManuaI
SPECIFICATION STATEMENTS

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference ManuaT 69
SPECIFICATION STATEMENTS

3.10 THEE ASSEMBLY STATEMENT

_ Th1s statement is an ND FORTRAN extens1cn and 1s
'uSed to m0d1fy the caTT1ng sequenCe for EXTERNAL
subroutines and funct1ons ,

"*Tne form of tne Statement 15:

TAs-ssnau’ , namé 1: marge} , .

Each name 15 the name 61 an externaTTy~comp1Ted
r_-rout1ne or funtti on or the name of a dummy
i‘argument The names cannot 3150 appear 1n an

:EXTERNAL statement They may be used e1ther as
::fisubr0ut1nes or as functio'ns, w1th the except1on of
y'~character funct1ons - _

'[Whén these funct1ons 3P9 caTTed tne1n actuaT
:garguments must obey certa1n restr1ct1ons

’_,» There can ba no more tnan 4 of them

Cfrc They must be INTEGER*2 or non character A”,
-' array names ‘ . _ _,, ~

1* The statement is checked for syntax on the ND 500
a,,but the names are :tnen assumed tQ be EXTERNAL names f
“;Qr arguments - .. _ , , _ ,

,fiae ASSEMBLY statement mod111es the caTT1ng sequence
fiftQ EXTERNAL program an1ts On ND 100 programs It can
“,7be used where the exaerna? routine 1s wr1tten 1n
‘iAC. NFL or PLANC w1th the SPECIAL opt1on see ‘
"‘Append1x P e deta115 of t ca131ng sequences

IyTGn tfié ND 500 tné atatement 1s exactTy equ1valent
,;;tQ an EXTERNAL statement , -, ,

Norsk Data ND—60.l45.7 EN

70 ND FORTRAN Reference Manual

Norsk Data ND—60.145 7 EN

ND FORTRAN Reference Manua]

CHAPTER 4

THE DATA STATEMENT

Norsk Data ND—6O 145 7 EN

71

72 ND FORTRAN Reference Manua]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai 73
THE DATA STATEMENT

A DATA statement is used to provide initiaT vaTues for
variabies, arrays, array eTements and substrings.

The form of a DATA statement is:

DATA nameTist/vaTueTist/ [[,] nameTist/vaiueTist /]..

where
nameTist is a iist of names of variabies,
arrays, array eTements, and substrings, together
with impTied DD Tists.

vaTueTist consists of a Tist of constants and/or
symboTic names of constants, each of which may
be prefixed by a repetition factor.

:115 ND FDRTRAN vaTueTist may consiSt at some ' ,
pNTRIRfiIC functions with constant expressions as
'flaarameters (see Sections 5 L 2 on page 85 5 2 1
;.on page 88 and 5 4 1 on page 5551;,

4.1 DATA STATEMENT RESTRICTIONS

Each nameTist and vaiueiist must contain the same number
of items. There is a one—to—one correspondence between
the items in the two Tists.

If an array name without a subscript appears in the
Tist, then there must be one constant for each eTement
of that array.

InitiaTization must not occur more than once for
variabies, array eTements, or substrings.

Each constant vaTue from the vaTueTist is used to
initiaTize the corresponding eTement from the nameTist
according to the ruies of a normaT FORTRAN assignment
statement, see Chapter 7 which starts on page 115.

 In ND FORTRAN DATA statements may precede other
specification statements Hewever, in this case the
variaDTes in the DATA Statements must have their

Norsk Data ND~60.145.7 EN

74 ND FORTRAN Reference ManuaT
THE DATA STATEMENT

data types defined in preceding detiaration,
_statements or they Will receive impTicit,data,typesa ,

ExampTes of simpTe DATA statements:

9 DATA 1/10/

This assigns a vaTue of 10 to the integer variabTe
1 before execution of the program.

9 DATA PI/3 1415927/E/2.7182818/

is the same as

DATA PI,E/3.l415927, 2 7182818/

0 To initiaTize a 6—eTement array to the vaTues 1, 2,
3, 4, 5, and 6, we may write:

REAL X(6)
DATA X/l, 2, 3, 4, 5, 6 /

c To zero an array, the foTTowing coq be used:

REAL STATS (10, 10)
DATA STATS /100*D./

o For muTtidimensionaT array names, the impTied order
of eTements is with the first subscript varying
most rapidTy. Thus:

DIMENSION A (3, 3)
DATA A/ll, 21, 31, 12, 22, 32, 13, 23, 33/

wiTT produce an array with the vaTues:

A(l,1)=11, A(2,1)=21, A(3,1)=31, A(l,2)=12,...
and so on.

Note that repTication factors can cut across name—
Tist items. Thus:

DIMENSION A(8), 8(8)
DATA A, 8/1, 14*0, —1/

wiTT set A(1) to 1, 8(8) to —1, and aTT other
eTements of A and B to D.

Norsk Data ND-6DA145.7 EN

ND FORTRAN Reference ManuaT 75
THE DATA STATEMENT

4.2 IMPLIED DO IN A DATA STATEMENT

For exampTe:

An 1mpT1ed DO T1st may appear 1n a DATA statement
nameT1st, see Sect1on 8.7 on page 135. It 15
wr1tten as:

(dT1st, I : m1, m [, m])

where
dTist 1s a T1st of array eTement names.
d11st may conta1n other 1mpT1ed DO T1sts
I 13 the name of an 1nteger var1abTe, here
caTTed the 1mpT1ed DO—var1abTe.

m m and the subscr1pts 1n the dTist are each
ah 1n%ege3 constant express1on or an 1nteger express1on
conta1n1ng onTy constants and the 1mpT1ed DO— var1abTe.

An 1terat1on count and the vaTues of the 1mpT1ed
DO—var1abTe are estab11shed from m , m , and 1113 exactTy
as for a DO—Toop, see Sect1on 8. 7 on pgge 135 3except
that the 1terat1on count must be pos1t1ve‘

to 1n1t1a11ze the even eTements of a one—d1mens1ona1
array to +1, and the odd eTements to —1, you may wr1te:

DIMENSION SGN (20)
DATA (SGN (I),I:2,20,2)/10*+1/(SGN (I),I=l,20,2)/lO*—l/

or to create a character str1ng of aTternat1ng A's and
8's:

CHARACTER C*4O
DATA (C(2*K—l:2*K),K=l,20)/20*'AB'/

To 1n1t1a11ze onTy the d1agonaT eTements of a square
array:

DIMENSION O (10, 10)
DATA (0 (N, N), N = 1, 10)/10*1.l/

Norsk Data ND—60.145.7 EN

76 ND FORTRAN Reference ManuaT
THE DATA STATEMENT

The defauTt ordering of a two—dimensionaT array is by
coTumns. To set data in by rows, you can write:

DIMENSION A(3,3)
DATA ((A (I,J),d=1,3)1:1,3)/11,12,13,21,22,23,31,32,33/

which wiTT set up A as in the Tast exampTe in the
previous section. Note the ordering of the Toops. The
innermost one varies most often.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manua1

CHAPTER 5

EXPRESSIONS

Norsk Data ND—60.145.7 EN

77

78 ND FORTRAN Reference Manua]

Norsk Data ND-60 145.7 EN

ND FORTRAN Reference Manuai 79
EXPRESSIONS

An expression is formed from operands, operators and
parentheses. This chapter describes the formation,
interpretation, and evaiuation ruies for the various
types of expressions. These may be:

a Arithmetic

a Character

9 Reiationai

9 Logical

5.1 ARITHHETIC EXPRESSIONS

Exampies:

The simpiest form of arithmetic expression is an
unsigned arithmetic constant, symboiic name of an
arithmetic constant, or an arithmetic type of variabie,
array eiement, or function reference.

99 (arithmetic constant)
IV (integer variabie)

TABLE (2,3,4) (array eiement)
LOG (X+Y) (function reference)

More compiicated arithmetic expressions can be formed by
using one or more arithmetic operands together with
arithmetic operators and parentheses.

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference ManuaT
EXPRESSIONS

The arithmetic operators are:

OPERATOR MEANING

** Exponentiation

Division

Muitipiication

~ Subtraction (or negation)

+ Addition

ATT the above operators are binary, i.e. used with two
operands. The — and the + are aTso avaiiabie as unary,
i.e. used with onTy one operand.

There is a precedence among the arithmetic operators
which determines the order in which the operands are to
be combined (unTess the order is changed by the use of
parentheses) as foTiows:

OPERATOR PRECEDENCE

** highest

* and / intermediate

+ and — Towest (unary and binary)

Within each precedence TeveT, the order is assumed to be
from Teft to right, except with exponentiation which is
evaTuated from right to Teft.

The arithmetic operands are:

a unsigned arithmetic constants

c symboTic names of arithmetic constants

o arithmetic variabTes

o arithmetic array eiements

a function references

a arithmetic expressions encTosed in parentheses

or any of the above operands combined by arithmetic
operators to form arithmetic expressions.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 81
EXPRESSIONS

Examples:
If X, Y, Z, A, and B are variables:

X+Y will form the sum of X and Y

X-Y will subtract Y from X

X+Y+Z will sum together X, Y, and Z

X+Y will add X and Y and then subtract Z from
the result (see general notes below)

X*Y/Z will multiply X and Y before dividing the
result by Z (see general notes below)

X/Z*Y will divide Z into X first, and then
multiply the result by Y

X*Y+Z will multiply X and Y and add Z to the
result

Z+X*Y will multiply X and Y and then add the
result to Z; the order here is determined
by operator precedences. * is performed
first, followed by the +, as in example 7

X**Y**Z will raise Y to the power of Z first, then
X is raised to the power of this result

—A**2 Since the operator ** has precedence in
this example, its operands will be combined
first. Thus, the expression will be
interpreted as:

_ (A *‘k 2)

In this example, it can be seen that
expressions containing two consecutive
arithmetic operators, such as A**-B or
A+—B, are not allowed . However,
expressions such as A**(-B) are permitted.

gin ND FGRYRAN, Such JuxtaQOSitioning :of signs is
_allowed when the Setond of them is a unary + or ~.‘
gfhus, A+~8 is evaluated as A+(B) and Xe—vY as
X~(r(Y)§ etc

If the order dictated by the precedence rules is not the
order required, then parts of an expression may be
written within parentheses. Parts thus enclosed are then
evaluated as a whole expression before being used as an
operand.

Norsk Data ND—60.l45 7 EN

82 ND FORTRAN Reference Manual
EXPRESSIONS

For example:

X+Y/Z will cause Y to be divided by Z before
adding X to the result (precedence rules).

(X+Yl/Z will ensure that X is added to Y before the
result is divided by Z.

(X+Y)/(X+Z) here X+Y and X+Z will be computed
separately and then the result of X+Y will
be divided by the result of X+Z. Note that
in this case there is no stipulation as to
whether X+Y or X+Z is evaluated first.

While the symbols +, ~, *. /, and ** represent the usual
mathematical operations, the reader should be aware that
the underlying computing hardware has fixed limits as to
the precision and accuracy of the respresentation of
values and the results of operations. These are
described for each machine in Appendix E.

Note that the order of operations on the computing
hardware is such that the result would be mathematically
exact if the hardware were mathematically precise. If a
particular order of operations is vital for numerical
accuracy, it is best to use parentheses to force the
order.

For example:
X+Y+Z represents the sum of X, Y, and Z; the

computation may add X to Y and then add Z,
or it may add Y to Z and then add X, etc.

(X+Y)+Z however, will ensure that X and Y are added
together first, before adding Z to this
result.

5.1.1 Interpretation of Results for Arithmetic Expressions

When the operator + or — operates on a single operand,
the data type of the result is the same as that of the
operand.

When an arithmetic operator operates on a pair of
operands, then, except for exponentiation, the data type
of the result is as follows:

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual 83
EXPRESSIONS

For example:

0 If the types of the two operands are the same,
then the data type of the result will be the data
type of these operands.

o If the types of the two operands are different,
the operand of lower data type (see below) is
converted to the data type of the other operand.
Thus, the higher order data type will be that of
the result.

The hierarchical order of the data types is:

DATA_IYPE ORDER

integer lowest

real

double precision

numeric

complex highest

Note that the conversion takes place before the
operation is performed, and that the operators are
defined only for operands of equivalent type, The
conversions are defined by the INTRINSIC functions
REAL, DBLE, and CMPLX, see Section 11.2 on page 222.

If I, R, D, and C are variables of type INTEGER, REAL,
DOUBLE PRECISION, and COMPLEX respectively, then:

the result of the expression I+I is of type INTEGER

I*R will cause I to be converted to type REAL before
the multiplication, and the result is of type REAL

(D/Il+R will first cause conversion of I to DOUBLE
PRECISION; then the division will occur, then R will
be converted to DOUBLE PRECISION, and finally, the
addition will take place giving a result of type
DOUBLE PRECISION

D/I+R will have exactly the same effect as the
previous example, since the precedence rule for
operators implies that division occurs before
addition

Norsk Data ND—60.145.7 EN

84

For example:

Note:

ND FORTRAN Reference Manual
EXPRESSIONS

o R*C will produce a result of type COMPLEX
For the exponentiation operator, if the exponent (i e.
the right—hand operand) is of type integer, then the
data type of the result is the same as that of the
left~hand operand. Otherwise conversion takes place as
given above for the case of two arithmetic operands.

If I and R are variables of data types
INTEGER and REAL respectively, then:

0 I**I has a result of type INTEGER

o R**I is an expression of type REAL, (but
note that I is not converted here)

a I**R is of type REAL, and I is converted to
REAL

o R**R is of type REAL

If the exponent is of type INTEGER, then exponentiation
can be defined as repeated multiplications, so that
every value of the base (i.e. left~hand operand) is
admissible. (except zero if the exponent is negative.)
But if the exponent is not of type INTEGER, A**B is
defined as EXP(B*LOG(A)), where EXP and LOG are the
INTRINSIC functions described in Section 11.2 on
page 222. In particular, note that LOG is not
defined for negative values of its argument. It
is important to realize that the difference in
definition is dependent on the type of the exponent and
not on its value.

Thus, (—3.0)**(2.0) is an error, whereas (*3.0)**2 is
not.

In ND FORTRAN, there is.one‘exceptiongtevthefrule_ fe,
that if the rightehand operand with a§**feperator'is3

, of type INTEGER than the result type is the-same“asl‘
,the type of the left~hand'operand.glf the right—hand'
operand ieNTEGER*4 and the left operand is" ' ":
INTEGER*2, then the result is INTEGER*4.: __~‘ ‘“

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manuai 85
EXPRESSIONS

5.1.2 Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic
expression in which each operand is an arithmetic
constant, a symboiic name of an arithmetic constant,or
an arithmetic constant expression enciosed in
parentheses. Any arithmetic operator is aiiowed; the **
operator is vaiid oniy if the exponent is of type
INTEGER.

7;:a Mo “ORTRAME_any of the foiioWing INTRINSIC :

ajMIM MAX MOD ‘ABS ICHAR NINT ANZNT 21M apnea
Ks, _ _, IMAG or LEN v : _

TVprovwded that a11 parameters are constant
,_exprts ions __ g-_ _

Norsk Data ND—60 145.7 EN

86 ND FORTRAN Reference Manual
EXPRESSIONS

5.2 CHARACTER EXPRESSIONS

For example:

The simplest form of a character expression is a
character constant or the symbolic name of one, or a
character—type variable, array element, substring, or
function reference. More complicated character
expressions are formed by using one or more character
operands together with the character operator and
parentheses.

Evaluation of a character expression produces a
character—type result.

The character operator is:

//

which represents concatenation. The result of 'AB' //
‘CD‘ is 'ABCD‘.

If a character variable is of unknown length, then there
are certain restrictions on its use in character
expressions, in that it can be used only in character
assignment statements, and even then, only when it
directly forms part of the final result.

If we have the following declarations:

SUBROUTINE SRiCl
CHARACTER C*(*), A*100, 8*10

then C is of unknown length, i.e. its length is taken
from the actual parameter.

You are allowed to write:

A = C//B

because the final result length is constrained by the
length of A.

But you cannot write:

CALL X(C//B)

because the actual argument is an expression whose
length is not constrained.

Similarly, the following expressions are allowed:

A = C (Izdl // C (1:N)
B = A (1:3) // C (4 7)
A = (C (1:N) // B) // (B (2:N) // C)

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manual 87
EXPRESSIONS

For example:

but none of these expressions can be used as actual
arguments, or as part of a relational expression (even
though they may then form part of an assignment
statement).

Note that a symbolic constant always has a known length
since a declaration with length (*) means: use the
length of the constant expression assigned to it by a
PARAMETER statement.

CHARACTER ALPHA* (*l
PARAMETER (ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')

implies no restrictions on the use of ALPHA due to its
length (*l.

Character operands are:

0 character constants

a symbolic names of character constants

0 character variables

a character array elements

a character substrings

a character function references

0 character expressions enclosed in parentheses

or any combination of the above operands using the
character operatorv

A character expression is a sequence of one or more
operands separated by the character operator,
(concatenation operator, //)4 The evaluation is from
left to right. Thus, the expression:

'AB' // 'CD' // 'EF‘

is the same as:

(‘A8' // 'CD‘) // ,‘EF‘

Norsk Data ND—60.145.7 EN

88 ND FORTRAN Reference Manual
EXPRESSIONS

5.2.1 CHARACTER Constant Expressions

A character constant expression is a character expres—
sion in which each operand is a character constant, the
symboTic name of a character constant or a character
constant expression encTosed in parentheses. The onTy
operand aTTowed is the concatenation operator, //.

In NN FORTRAN tNe INTRINSIC function CHAR may be
, used provided that the parameter is a constant ’

expreSSion ’ ‘

Norsk Data ND—60.145 7 EN

NO FORTRAN Reference Manual 89
EXPRESSIONS

5.3 RELATIONAL EXPRESSIONS

A relational expression is used to compare the values of
two arithmetic expressions or two character expressions.

In NO FORTRAN; it is also possible to compare
logical expressions for-enuality or non—equality.y

Relational expressions may form part of logical
expressions and, on evaluation, they produce a result of
type logical, i.e. a value .TRUE. or .FALSE .

The relational operators are:

OPERATOR MEANING

.LT. Less than

.LE. Less than or equal to

.E0. Equal to

.NE. Not equal to

.GT. Greater than

.GET Greater than or equal to

5.3.1 Arith-etic Relational Expressions

The form of an arithmetic relational expression is:

e rel e
1 2

where
rel is a relational operator
9 and e are each an integer, real, double
precision, numeric or complex expression.

A complex operand is permitted only when the relational
operator is .E0. or .NE.

Norsk Data ND—60 145.7 EN

90

For example:

ND FORTRAN Reference Manual
EXPRESSIONS

Before the comparison is carried out, the operands are
converted, if necessary, to make them of the same type.
The rules are the same as those for the common
arithmetic operators, see Section 5.1 on page 80.

If I, R, D, and C are variables of type
INTEGER, REAL, DOUBLE PRECISION, and COMPLEX
respectively, then:

0 I.LE.O will give a value .TRUE. if I has the value
zero.

0 R.GT. O — 10 will yield .TRUE. if the value of R is
greater than ~10.

o D.LT.R will convert R to DOUBLE PRECISION and the
comparison will yield .TRUE. if the value of D is
less than R.

o 1..LE.I will convert I to REAL since the constant 1.
is REAL (note the extra dot).

For the relationship between arithmetic and relational
operators, see Section 5.5 on page 96.

5.3.2 CHARACTER Relational Expressions

Character relational expressions have the form:

e rel e
1 2

where
rel is a relational operator
e1 and e2 are character expressions.

Note: 9 is considered to be less than 9 if its value
precedes that of e2 in the collating seqfience, (see
Appendix A).

If the lengths e and e are unequal, then for
comparison purposes thezshorter string is extended to
the right and filled with blanks.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua] 91
EXPRESSIONS

5.3.3 LOGICAL Relational Expressions

In ND FORTRAN, 1ogicalyquantities_can be compared by
.EQ. and .NE.. These-operators have the usua1
precedence of re7ationa1 operators and perform the
usua? function. If two Iogica3 expressions are both
.TRUE. or both .FALSE., then_comparing them with
.50. wi)? give .TRU£., etc. -

Norsk Data ND—60 145.7 EN

92 ND FORTRAN Reference Manual
EXPRESSIONS

5 . 4 LOGICAL EXPRESSIONS

Evaluation of a logical expression produces a logical
result, i.e. with a value of .TRUE. or .FALSE.

In its simplest form, a logical expression is a logical
constant (or the symbolic name of one), or a logical
variable, array element, function reference, or it can
also be a relational expression.

More complicated expressions can be formed using one or
more logical operands combined with logical operators
and parentheses.

The logical operators are:

OPERATOR MEANING

.NOT. logical negation

.AND. logical conjunction

.OR. inclusive or

.EOV. logical equivalence

.NEOV. logical non~equivalence (exclusive or)

The operator .NOT. is unary, i.e. used with one
operand. The other operators are binary, i.e. used with
two operands.

The logical operators have a precedence order, i.e.
the order in which operands are to be evaluated, unless
this is changed by the use of parentheses.

OPERATOR PRECEDENCE

.NOT. highest

.AND.

.OR.

.EOV. or .NEOV. lowest

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai g3
EXPRESSIONS

For exampie, in:

A .OR. B .AND. C

the .AND. operator has higher precedence than the .OR.;
therefore the interpretation of the above expression is
the same as the foiiowing:

A .OR. (B .AND. C)

The vaiues of expressions involving the above operators
is shown beiow, where X1 and X2 are iogicai operands:

X .NOT. X1 1

.TRUE. .FALSE.

.FALSE. .TRUE.

X X X .AND. X X .OR. X1 2 1 2 1 2

.TRUE. .TRUE. JTRUE. .TRUE.

.TRUE. .FALSE. .FALSE. .TRUE.

.FALSE. .TRUE. .FALSE. .TRUE.

.FALSE. .FALSE. .FALSE. .FALSE.

X1 X2 X1 .EOV. X2 X1 .NEQV. X2

.TRUE. .TRUE. .TRUE. .FALSE.

.TRUE. .FALSE. .FALSE. .TRUE.

.FALSE. .TRUE. .FALSE. .TRUE.

.FALSE. .FALSE. .TRUE. .FALSE.

Norsk Data ND—60.l45.7 EN

94 ND FORTRAN Reference Manual
EXPRESSIONS

The logical operands are:

0 logical constants

c symbolic names of logical constants

o logical variables

0 logical array elements

0 logical function references

a relational expressions

0 logical expressions enclosed in parentheses
or any of the above operands combined by logical
operators to form logical expressions.

For examples of how these combine with relational and
arithmetic operators, see Section 5.5 on page 96‘

The data type of the result of an operator which returns
a logical result is LOGICAL.

In ND FORTRAN, the result is the default LOGICAL
data type, i.e. LOGICAL*Z for the NO—lOD and
LOGICAL*4 for the ND—SOO; The default can be changed
by the DEFAULT command; see Section 14.24.1, on
page 293. Automatic conversion between the
LOGICAL types occors on assignment, If an operator
has operands of different tyDes, Conversion
according to Section 3.4.1, on page 54,
will be done before the operation takes place.

If the operands are arithmetic, the normal conversions
and precedence rules apply, see Section 5.1, on page 80.

In ND FORTRAN, the logical operators can also be
,used on entities of type INTEGER, i.e. they treat
the integer value as a string of bits, operating on
corresponding bits. A bit whose Value is 1 is
interpreted as .TRUE. and a bit whose value is O as
.FALSE.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 95
EXPRESSIONS

Thus, if A and B are integer variables with values:

A H 1010 B

1100 Bll

then:

A .AND. B is 1000 B

A .0R. B is 1110 B

A .NEQV. B is 0110 B

If A and B are in fact INTEGER*2, then:

.NOT. A is 176767 B

and

A .EOV. B is 177667 B

It is important to note that although these operators
produce integer results when operating on integers, they
still have the same precedence as the logical operators.

5.4.1 LOGICAL Constant Expressions

A logical constant expression is a logical expression in
which each operand is a logical constant, the symbolic
name of a logical constant, a relational expression in
which each operand is a constant expression, or a
logical constant expression enclosed in parenthesesc Any
logical operator or relational operator is allowed.

In ND FORTRAN, you can to use any of the INTRINSIC
functions:

LGE, LGT, LLE or LLT,
provided that all parameters are constant
expressions. , " *

Norsk Data ND—60.145.7 EN

95 ND FORTRAN Reference ManuaT
EXPRESSIONS

5.5 EVALUATION OF EXPRESSIONS

This section appiies to arithmetic, character,
reTationaT, and TogicaT expressions. The order of
evaTuation of expressions is determined by:

0 The use of parentheses

o The estabTished precedence among the various operators

0 The Tocation of operators within an expression

5.5.1 The Use of Parentheses

Expressions within parentheses are evaTuated first.
Where parentheticai expressions are nested (one
contained within another), the innermost expression is
evaiuated first, foTTowed by the next innermost, and
so on, untii the outermost parentheticai expression has
aTso been evaTuated. If more than one operator is
contained in an expression within parentheses, the
computation proceeds according to the precedence ruies
for the operators.

5.5.2 Precedence of Operators

The hierarchy of precedence among the arithmetic
operators (see Section 5.1 on page 80), and TogicaT
operators (see Section 5.4 on page 92), has aTready
been discussed. There is onTy one character operator and
no precedence has been estabiished among the reTationaT
operators.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 97
EXPRESSIONS

Precedence among the various types is as follows:

OPERATOR PRECEDENCE

Arithmetic Highest

Character

Relational

Logical Lowest

An expression may contain more than one kind of
operator, for example, the logical expression:

L .OR. A+B .GE. C

where A, B, and C are of type real and L is of type
logical, contains an arithmetic operator, a relational
operator, and a logical operator. This expression would
be interpreted in the same way as:

L .OR. ((A+B) .GE. C)

5.5.3 Location of Operators within an Expression

Example:

When a series of exponentiation operators occurs within
an expression, the order of evaluation is from right to
left.

All other operations are computed from left to right
when there is more than one occurrence within an
expression of operators at the same hierarchical level.

Using the variable names and types below:

I, K integer

R, S real

L, M logical

G H character:

Norsk Data ND—60.145.7 EN

98 ND FORTRAN Reference ManuaT
EXPRESSIONS

these more compTex expressions wiTT be interpreted as
foTTows:

I + K simpTe arithmetic of type INTEGER

L .OR.M simpTe LOGICAL

R .LT.S reIationaT giving resuTt of type
LOGICAL

G//H simpTe character expression of
type CHARACTER

(I + 1) .EO.K compares K with (1+1) giving
resuTt of type LOGICAL

I + 1.EO K here again K is compared with
(1+1) since arithmetic operators
are evaTuated before reTationaT
operators

R*2.GT.S+10. compares (R*2) with (S+lO.)
yieing a resuTt of type LOGICAL

I.EO.3.0R.R.LT.S this performs a comparison,
between I and 3, and a
comparison between R and S. These
two Togicai resuTts are then
combined with the .OR. operator
to give a TogicaT resuTt.

Note that the order in each exampTe above is described
for expTanatory purposes onTy so that an expression can
be correctTy interpreted. However, the actuaT order of
interpretation is not fixed, so Tong as the resuTt is
mathematicaTIy and TogicaTTy equivaTent. In reaTity, it
coq be the case that part of an expression is not
evaTuated at aTT.

Consider the foTTowing:

IF (I .E0. 1 .OR. K .E0. 4) GO TO 10

If I has the vaTue 1, then the expression in brackets is
known to be true after testing I for 1. The testing of K
for 4 can be skipped in this case and controT can pass
to 10 immediateTy.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual 99
EXPRESSIONS

Note further, that any function called during the
evaluation of an expression should not modify any values
used elsewhere in the expression since the order of
evaluation of the operands of an expression is not
defined. The results of such misuse may differ from
machine to machine, or even depend on the optimization
level employed. The only exception is that a function
will not be called until its actual arguments have been
evaluated. This can be relied upon.

5.6 CONSTANT EXPRESSIONS

A constant expression is an arithmetic constant
expression (see Section 5.1.2, on page 85), a character
constant expression (see Section 5.2.1, on page 88), or
a logical constant expression (see Section 5.4.1, on
page 95).

Norsk Data ND—60.145.7 EN

100 ND FORTRAN Reference Manua]

Norsk Data ND—60.145 7 EN

ND FORTRAN Reference Manual 101

CHAPTER 6

ARRAY EXPRESSIONS

Nor‘Sk Data ND-60.l45.7 EN

102 ND FORTRAN Reference Manua]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 103
ARRAY EXPRESSIONS

_‘An‘array'express1on 15 formed of operands oaerators and
‘Qparentheses This chapter describes the format1on,

,1 1nterpretat1on and evaTuat1on ruWes fer the various
i3: typss of array express1ons These may be

__?:o Ar1thmet1»‘"'
"*v3fi Re1at10na1

Logicai

H’71_A11 arrays that fbrm?én*ar1ay expréss10n must have on1y
,__ ane d1mens1cn and be 01 the same Iength An array
”“Texp19531on resuits 1n an array -

;;v_[grgaaixc7xganifExpfigssxams'RE"

‘rffAn'ar1thmet1r array expresS10n is any set of arithmetic
" array cperands comb1ned w1th ar1thmet1c array operatOrs

and parentheges An ar1thmet1c array Operand may be
y:,e1ther An ar1thmet1c array 91 another ar1thmet1c array ,
_p_express on -

“afiefig 5113*33d C are_§r1thmet1c arrays.

The 3111111119111: 1W Operators are:

r”_;OAERATQE,* A» ‘MEANING

__ __, Divis10n ,
'*rs117_, ' V , ‘Mu1t1911Cat1on

:1 }E_Efifj11 _’1 Subtraction (or negat1on}

'11:? :1‘- 1 ,5 LAddftion

Norsk Data ND—60.145.7 EN

104

Examples:

, OPERATOR} ,: -] SPRECED’ENC’EZTQA- ‘

[feanégl5T;';TNfi , h1ghest _ i _

A 1 and ~7Ri}27'{:1 Towest (unary and b1na1y}

ND FORTRAN Reference Manua]
ARRAY EXPRESSIONS

' :‘3ATTthe abOve operators are b1nary, 1 a used W1th 1311/0E
operands The — and the + are aTso ava11ab1e as unary, ,
1 e ,'u39d w1th onTy one operand ‘ ._1 , ::_ _ ~~~~~;_

S’jThere 1s a precedence among the ar1thmet1c array 7”
V Operators wh1ch determ1aes the order 1n wh1ch the

operands are to be comb1ned (unTess the_order 1s chahgedf
{by the use of parentheses) as foliows

N1th1n each precedence TeveT fine order_1s éééémed to be 7
.: from Taft to right

L_The ar1tbmet1c array aperands are: H

17¢ ar1thmet1c arrays , , _ _____ __
o ar1thmet1c express1ons encTosed in parentheses

: Or any of the above operands comb1ned by ar1thmet1c
array Operators tp form ar1tnmet1c array expre$s1ons

If A and B are arrays of the same Tength and x 1S a ”
variabTe:

A +~x w1TT add-x to each eTemeht of A'

A + x*2 W111 add x*2 to each element of A

A + 1.17 11111 add A to a one e1emen1: from each at a _ ‘
L ' tune

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI 105
ARRAY EXPRESSIONS

_6 1.1 Interpretatinn 6f Results-forifirithmeticjfirraygExej-
Pressions,‘ - ‘ 1 , '=-” ‘ “I ‘ , ~ffl‘

» When the operator + or ~ eperates on a s1ngIe operand
- 'the data type of the reSUIt 1s the same as that of the
-: operand -

*,‘S4When-an'arithwet1c*arrayfOperator-beerates on'a peir_ef'
-r_operands- then the type 61 the resuIt is as foIIOws: '

If t he types of the two operands are the same then the ,
deta type of the reSuIt W133 be the data type Of these
operands ‘ _ _ _

If the types Of the two operands are d1ffereht the _
operand of IQWer data type {see héIow) 1s cenVerted to
1the data type of the other operand Thee the h1gher

~-erder data type W133 be that of the resu3t

L'yTheghiererchicaiyorder’of[the-date}typesf15:,e

~_o11m11;§§; . MURDER“,-

1ntegerk,,’, ' __ 3pwest,‘
‘ rrea3' '_ '

doubIe_prec1sion , ,

roomDIexr , ' , 'highest

Note that the conversion takes piece before the
operation is performed, and that the operators are

' defined onIy for operands 0f equivaIent type. The
conversipns are defined by the INTRINSIC functions REAL,
DBLE, and CMPLX, see Section 11.2 on page 222.1

Norsk Data ND~60.145.7 EN

106 ND FORTRAN Reference Manua]
ARRAY EXPRESSIONS

6.2 RELATIONAL ARRAY EXPRESSIONS

A relationa? array expressidn is an express1on where at
,_}east one of the operands 15_an array expression, The

v31ues are compared-on'an'e1ement by eTement basis,

It is a1so poss1b1e to compare:10gica1 array express1ons
for equal1ty or non equai1ty

-The,re}at10na1 array-opefatoks are; i.'

OPERATOR , MEANING;-

120.4 y' - 5111111t
.NE. ' _ ‘ , ‘Not eQUa1 to

6.2.1 Arithnetic ,Relatidizal Array: Expiesaionfi

The form of an ar1thmet1c raIat1ona1 array Lex_pre$s1on
1s: - . _ , _, _

e rei‘e‘r,_,«;_ 2

, *_: re} 15 a re1at1ona1 operator
' “e and e aré eaCh an 1ntager real doubie

p§ec1s1ofi, numer1c campiex array eXpress10n or '
_ other axpress1on of same type bat at Teast 039 ‘

~must be an array express1on .

Before the compar1$on 15 carried out the operands are
cenverteé 1f necessary, :0 make them hava the same '
type The ruIQs are the same as tfose far t he common
ar1thmet1c operators See Sect1on $11_“on page 80

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua3 107
ARRAY EXPRESSIONS

6.2.2 CIXARAIITEB Relatidnal Array Expressions '

‘ _Character re3ationa3 array expreSSiOns have the form:

e r 3 e1 ’3 2

where , * _ . i
* “r93 is‘a re3at30na3 operator

we and e are character eXpresswons or character
-a$rays Eat at 3east one must be a character

“array ,

If the e3ement 3engths e and e are unequa3, then for
Lemmpar1$0n purposes the ghorterzstring is extended to
the right and 3333ed With b3anks ,

L's;2;3}LoGICAL_Relational Array Expressionaee

L Lc§3Ca3HQUaht3fies Cah Se Compared by SEQ and, NE

operators and perform the usua3 funct1un

Norsk Data ND—60.145.7 EN

108 ND FORTRAN Reference Manua1
ARRAY EXPRESSIONS

6.3 LOGICAL ARRAY EXFRESSIONS

" 109511101 1 _‘ , RRECEflfiNCER“

;NaT;_ . :_‘ 11A,:h1gheei':

70R: 1, ~ _
V*A;EQV- O” gNEQY~:V 1:10Wé$£ Tf j

A 1og1ca1 array express1an,1s'an express1on Where'ats
1east one of the operands 15 an array express1on The ,
1og1ca1 array express1on 1s ava1uated on an e1ement by
e1ement basis ,

A 1og1ca1 array expression 13 any set of 1091ca1 array 1
operands comb1ned wéth 10g1c a1 array Operators and
parentheses A 1og1ca1 array operand may be a 1ogica1

, array, a re1at1ona1 array express1on Or a 1ag1ca1 array ,
expresSion.

The 1991ca1 array Qpepators:afez

OPERATQR 5 MEANINGN‘S‘N

.No11 , 1agica1'negationfe- , _,
.ANQ;5 1091ca1'caA3uhét1oaj_-
_-QR. 11- 1nc1u$1ve or _'

I,;EQVL "‘1 1091ca1 equzva1ence __ _ , _
"QNEQV. “ 1og1ca1 non equ1va1ehce {exc1us1ve or 111111

_1he operator N01 15 unary, Used w1th:one
,operand The Other operators are binary, 1 e , used w1thfl
two operands

The 1ogica1 array operatOrs have a precedence order
1 e the arder 1n which operands are to be eva1uated

' un1ess th1s 15 changed by the use of parentheses

Norsk Data ND—60 145.7 EN

ND FORTRAN Reference Manua1 109
ARRAY EXPRESSIONS

The 1091031 array operands are: .y‘

o 1og1ca1 arrays ,

jo reTat1ona1 array express1ons , ,
,o 1og1ca1 express1ons enc1osed 1n parentheses

Lor any 01 the above opérands comb1ned by 1091ca1 _L
Loperators to fArm 1og1ca1 array express1ons ” L

L'-The data type cf Ahe reSu1t of an operator wh1ch reAurns-
a 1og1c31 resu1A 1s LQGICAL , __ ,

VThe résu1t 1s Ahé defau1t LOGICAL daAa type _
LOGICAL*2 for the ND 100 and LOGICAL*A for the ND~ SOQ

_ The defauTt caLn be changed by the DEFAULT command See
‘* Sect1on 1A 24 1 On page 293 Automat1c conVQArs1On ;;

'between the LOGICAL types accurs on assignment If an
operator has operands of d1fferent types convers1on

r,acc0rd1ng to Section 3 A on page 54 w111 be acne
v L'before the operat1on takes p1ace

#,, H/L51f thé operands are ar1thmet1c thé norma1 convérSions
1'1-5 and precedence ruTes app1y, see Sect1on_5}l On page 89

L _ on Aypé INTEGER
a tr1ng of b1As,
t_wh03e va1ue 1s 13,

e va1ue 1s 0 85 *-“

LLThe 10g1ua1 operators can a1so be

L sALsE

Norsk Data ND—60.145.7 EN

110 ND FORTRAN Reference Manual
ARRAY EXPRESSIONS

6.4 EVALUATION OF EXPRESSIONS

Th1s section app11es to ar1thmet1c r91at10na1 and
_ 1091031 array expressions The order of evaluat1on of

,express1ons 1s determ1ned by: ,

o The use of parentheses

‘o The estab11shed precedence aag they,var1q
operators - ,

o The 1 oCat1on of operatorks' w1th1n an array express1on

5.4;1_whe_u3e_pf Parantheses

Array express1ons within paréntheges are' eva}uated”"f
f1 rst Where Caren thet1ca1 array express1ons are nested
(one conta1ned w1th1n another}, tag 1nnermost array
express1on 15 eva 1uated.f1rst 10110wed by the next
innermost and So on unt13 the outermost parenthet1ca1
a rray exCr85$1Cn has aTSC been CVCEugted If more than {i
one operator 15 Conta1ned 1n an array expression w1th1n

'parentheses the computat1on proceeds aCCCrd1ng CC the
precedence ru1es fCr the operators _

6.4}2 Precedence of Operators

,1he h1erarChy of precedence among the ar1thmet1C array
operators 598 Section 5.1 On page 80 an: 1091Ca1
array operators seé Sect1on 5 4 0n page 92 has
,a3ready been discussed No precedenCe has been
'established among the re1at1ona1 array Cperators
Precedence among the var1ous types 15 as 1o110ws:

“1,0pERA10R_» : :PRECECENCE

: Arithmet1c:{1'1 CHigheSt1r-:IReiatioCaT ’1 111,1, 1 _, J

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua] 111
ARRAY EXPRESSIONS

An array expression may contain more than one kind of
array operator, for exampie; the 1ogica1 array

"expression;:r , . ,, ' , '

L .OR. A+8,.N£._c,

A where?A, B, and C are arrays of type reai ahd L is an_
‘ array of type logicaE, contains an arithmetic array

operator, a re1at10na1 array operator and a Togica1
,array operator This array expressiOn would be

~1nterpreted 1n the same way as:

L ;0R. ((A+3) .NE, C)‘

Norsk Data ND-60.145.7 EN

112 ND FORTRAN Reference Manual

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 113

CHAPTER 7

ASSIGNMENT STATEMENTS

Norsk Data ND~60.145.7 EN

114 ND FORTRAN Reference Manual

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 115
ASSIGNMENT STATEMENTS

Execution of an assignment statement causes a specific
vaTue to be given to one or more variabTes and/or array
eTements.

y to an array, These
7 , .and the same [I

There are four kinds of assignment statements:

0 Arithmetic

o LogicaT

0 Statement LabeT (ASSIGN)
o Character

7.1 ARITHHETIC ASSIGNMENT STATEMENT

ExampTes:

The form of an arithmetic assignment statement is:

v is the name of a variabTe array or array
eiement of type INTEGER, REAL, DOUBLE PRECISION,
COMPLEX or NUMERIC.
e is an arithmetic expression.

If v is an array, then e may aTso be an arithmetic array
expression.

If A,B and C are arrays of the same size:

0
B + CII

M

Norsk Data ND—60.145 7 EN

116

Upon execution of an arithmetic assignment statement,
the expression e is evaTuated according to the ruIes in
Section 5.5 on page 96, it is then converted to the
type of v, with the resuitant vaTue being assigned
to v according to the ruTes given in the tabTe beTow:

ND FORTRAN Reference Manuai
ASSIGNMENT STATEMENTS

TYPE OF V

Integer

Rea]

DoubTe Precision

CompIex

VALU§.ASSIGNED

INT (e)
REAL (e) T

DBLE (e)

CMPLX (e)

where the functions in the ”vaTue assigned“ coTumn are
INTRINSIC functions described in the tabTe in Section
11.2 on page 222.

Norsk Data ND—60.145 7 EN

ND FORTRAN Reference Manuai 117
ASSIGNMENT STATEMENTS

7.2 LOGICAL ASSIGNMENT STATEMENT

The form of a TogicaT assignment statement is:

where
v is the name of a Togica] variabie, Togicai
array or Togicai array eTement
e is a Togicai expression

If v is an array then 9 may aTso be a Togicai array
expression.

Upon execution of a Togicai assignment statement, the
expression e is evaTuated and its resuTtant vaTue
is assigned to v. e must have a vaiue of either true or
faise.

Norsk Data ND—60.145.7 EN

118 ND FORTRAN Reference ManuaT
ASSIGNMENT STATEMENTS

7.3 STATEMENT LABEL ASSIGNMENT [ASSIGN] STATEMENT

The form of a statement TabeT assignment statement is:

ASSIGN 5 TO i

where
s is a statement TabeT
i is an integer variabTe name.

Execution of an ASSIGN statement causes 5 to be assigned
to i. 5 must be the TabeT of a statement appearing
in the same program unit as the ASSIGN statement, and it
must aTso be the TabeT of an executabie statement or a
FORMAT statement.

Execution of a statement TabeT assignment statement is
the onTy way that a variabTe may be given a statement
TabeT vaTue.

A variabTe must be defined with a statement TabeT vaTue
when referenced in an assigned GO TO statement or as a
format identifier in an I/O statement. WhiTe possessing
a statement TabeT vaTue, the variabTe must not be
referenced in any other way. An integer variabTe may be
subsequentTy redefined with the same or a different
statement TabeT vaTue or with an integer vaTue.

In ND FORTRAN, i must be INTEGER*4 on NW SOD and
INTE8€R*2 on ND 100 '

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference ManuaT 119
ASSIGNMENT STATEMENTS

7.4 CHARACTER ASSIGNMENT STATEMENT

The form of a character assignment statement is:

v is the name of a CHARACTER variabTe, CHARACTER
array, CHARACTER array eTement, or a CHARACTER
substring,
e is a CHARACTER expression.

If v is an array, then e may aTso be a CHARACTER array.

Execution of a character assignment statement causes the
expression e to be evaTuated, and the resuTt assigned to
v. If any of the character positions defined by v are
referenced in e, the resuTts are undefined. v and e may
have different Tengths. If the Tength of v is greater
than the Tength of e, then the effect is to extend to
the right with the biank characters untiT it has the
same Tength as v. If v is shorter than e then e is
truncated from the right untiT its Tength equais that
of v. v

In the exampie:

CHARACTER A*2, 8*4
A = B

onTy the substring B(1 2) must be defined.

Norsk Data ND-60.145.7 EN

120 ND FORTRAN Reference Manua]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua] 121

CHAPTER 8

CONTROL STATEMENTS

Norsk Data ND—60.145.7 EN

122 ND FORTRAN Reference Manua1

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference ManuaI
CONTROL STATEMENTS

123

ControI Statements enabIe the normaI sequence of
statement execution to be aItered. There are sixteen
controI statements.

9 UnconditionaI GO TO

Computed GO TO

Assigned GO TO

Arithmetic IF

Logicai IF

BIock IF

ELSEIF
ELSE
ENDIF
DO
CONTINUE
STOP
PAUSE
END
CALL
RETURN

The CALL and RETURN statements are described in Sections
11.5.1 on page 242 and 11.7 on page 248 respective.

Norsk Data ND-60.145.7 EN

124 ND FORTRAN Reference ManuaT
CONTROL STATEMENTS

8.1 UNCONDITIONAL GO TO STATEMENT

The unconditionai GO TO statement transfers controT of
the program to the statement specified. It has the form:

GO T0 5

where
s is the statement TabeT of an
executabTe statement appearing in the same
program unit as the unconditionai GO TO
statement.

On execution, controT is transferred so that the state—
ment identified by the statement TabeT is executed next.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 125
CONTROL STATEMENTS

8-2 COMPUTED GO TO STATEMENT

A computed GO TO statement has the form:

GO T0 is [,s] ...) [,]i

where
s is the statement TabeT of an executabie
statement appearing in the same program unit as
the computed GO TO statement. The same statement
TabeT may appear more than once in the same
computed GO TO statement.
5 is an integer expression.

Note: Aithough the ANSI FORTRAN 77 standard states
that i shoq be of the ab0ve type in ND FORTRAN
can be any arithmetic expreSSion that t an he ‘
converted to type integer

Execution of a computed GO TO statement causes a
transfer of controT to the statement having the ith
statement TabeT in the iist of statement TabeTs. This
wiTT onTy occur if 1<i<n where n is the number of
TabeTs in the Tist. If i is outside this range, the
execution sequence is as if a CONTINUE statement were
executed, i.e. controT passes to the statement
immediateiy foTTowing the computed GO TO.

Norsk Data ND—60.l45.7 EN

126

ExampTe:

n
o

ND FORTRAN Reference ManuaT
CONTROL STATEMENTS

INTEGER RECTYP
READ NEXT RECORD ON FILE. SETS RECTYP TO INTEGER CODE
5 CALL INPUT
DECIDE WHAT TO DO BY LOOKING AT TYPE OF RECORD IN
RECTYP

GO TO (10, 20, 30, 30, SO), RECTYP
ERROR AS RECORD TYPE HAS INVALID VALUE

CALL INVALR
GO TO 5

RECTYP IS 1 — GOOD EMPLOYEES ARE PAID
10 CALL PAY

GO TO 5
RECTYP IS 2 — HE GETS A RISE
20 CALL UPPAY

GO TO 5
RECTYP IS 3 OR 4 — CHANGE NAME OR ADDRESS ETC.
30 CALL UPDAT

GO TO 5
RECTYP IS 5 — HE IS FIRED
50 CALL DELETE

GO TO 5

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 127
CONTROL STATEMENTS

8.3 ASSIGNED GO TO’ STATEMENT

The form of this statement is:

GO TO i [[,I (s[,s]...)]

where
s is the statement TabeT of an executabie
statement appearing in the same program unit as
the assigned GO TO statement. The same statement
iabeT may occur more than once in the same
assigned GO TO statement.
i is an integer variabie name.

At the time of execution of this statement, i must have
the vaTue of a statement Tabei appearing in the same
program unit. Assigned GO TO statements must be
TogicaTTy preceded by an ASSIGN statement, within the
same program unit, which wiTT set the vaTue of i.
Execution of the assigned GO TO statement then transfers
controi so that the statement identified by i is
executed next.

If the parenthesized Tist is present then the statement
TabeT assigned to i must be one of those in the Tist‘

Exampie:

C

C

5 CALL INPUT
NORMAL CASE

ASSIGN 10 TO KLAB
SEE IF IT COULD BE A SMALL ONE

IF (AREA.LT.100..AND.WIDTH.LT.10) ASSIGN 20 TO KLAB
PERHAPS IT IS LARGE

IF (AREA.GT.10E4.0R.WIDTH.GT.100.) ASSIGN 30 TO KLAB
DECIDE HOW TO PROCESS

5000 GO TO KLAB, (10, 20, 30)
NORMAL
10 CALL NORM

GO TO 5
SMALL CASE
20 CALL SMALL

GO TO 5
LARGE CASE
30 CALL LARGE

GO TO 5

Norsk Data ND—60.145.7 EN

128 ND FORTRAN Reference ManuaT
CONTROL STATEMENTS

The statement TabeTed 5000 coq aTso have been written
as:

GO TO KLAB (10, 20, 30)

or,

GO TO KLAB

or,

GO TO KLAB (10, 20, 30, 5000, 5)

If the Tist is given, then aTT of 10, 20, and 30 must be
incTuded since otherwise the compiTer may generate
incorrect code. It reTies on the Tist to determine the
possibTe fTow of controT from this point in the program.
The best code wiTT resuTt when the Tist is exactTy
correct, so that it does not incTude any TabeTs that
cannot be reached.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 129
CONTROL STATEMENTS

8.4 ARITHHETIC IF STATEMENT

ExampTe:

This statement has the form:

e is an integer, reaT, numeric or doubTe
precision expression.
5 , s , and s, are each the statement TabeT of
an exécutabTetatement in the same program unit
as the arithmetic IF statementi The same
statement TabeT may appear more than once in the
group of statement TabeTs.

Execution of the arithmetic IF statement causes
evaIuation of the expression e, foITowed by a transfer
of centre]. One of the statements identified by s ,
s or s is executed next; which one depends on
wfietherathe vaTue of e is Tess than zero, equaT to
zero, or greater than zero respectiveTy.

C CHECK TO SEE IF IT WILL FIT
IF (SIZE — LIMIT) 30, 20, 10

C SIZE > LIMIT, SO IT WILL NOT FIT
10 CALL ERROR

C EXACTLY AT LIMIT — ISSUE WARNING
20 CALL WARN

C FITS EASILY — PROCESS IT
30 CALL PROCESS

Norsk Data ND—60.145.7 EN

130 ND FORTRAN Reference ManuaT
CONTROL STATEMENTS

8.5 LOGICAL IF STATEMENT

ExampTe:

The form of this statement is:

IF (e) sta

where
e is a TogicaI expression
sta is any executabIe statement except a DO,
biock IF, ELSEIF, ELSE, ENDIF, END, or another
Togicai IF statement.

Execution of this statement causes evaiuation of the
expression 9. If the vaIue of e is true then statement
sta is executed.

If the vaIue of e is faTse, the statement sta is not
executed. Program execution then proceeds as if a
CONTINUE statement were executed, i.e. controT passes
to the statement immediate foIIowing the TogicaT IF.

C IF DEBUGGING, WRITE INTERMEDIATE VALUES
IF (DBUG) WRITE (1,*) ALPHA, VAL, I

C IF IT IS NEGATIVE, CANNOT CONTINUE
IF (RESULT .LT 0) STOP 16

C FIND FIRST ELEMENT IN THE RANGE ~1 TO +1
00 10 I = l, N
IF (A(I).GE. «1 .AND.A(I).LE+1) GO TO 20

10 CONTINUE
20 CALL PROC (A(I))

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference ManuaT 131
CONTROL STATEMENTS

8.6 THE BLOCK IF, ELSEIF, ELSE, AND ENDIF STATEMENTS

These statements are used to controT the execution
sequence. The bTock IF statement and its corresponding
ENDIF statement forms a singTe unit. The ELSEIF and ELSE
statements may be optionaTTy combined with the bTock IF
and ENDIF statements to provide aTternative paths for
the sequence of execution.

The form of a bTock IF is:

IF (e) THEN

ENDIF

where
e is a TogicaT expression.

Upon execution of a biock IF statement, the expression e
is evaTuated. If the vaIue of e is true, the execution
sequence continues with the next executabie statement
foTTowing the bIock IF statement. Statements between the
next (if any) ELSEIF or ELSE statement and the
corresponding ENDIF wiIT not then be executed. If faTse,
centre] is transferred to the next ELSEIF or ELSE
statements, if any, or to the ENDIF statement
corresponding to the bTock IF statement.

8.6.1 The ELSEIF Statement

The form of an ELSEIF statement is:

ELSEIF (e) THEN

where
e is a TogicaT expression.

Execution of this statement causes e to be evaTuated.
If the vaTue of e is true, then the execution sequence
continues with the next executabIe statement foTIowing
the ELSEIF statement. Again, statements between the next
ELSEIF or ELSE statements, if any, and the ENDIF

Norsk Data ND-60.145.7 EN

132 ND FORTRAN Reference Manual
CONTROL STATEMENTS

statement of this unit, will not then be executed. If
there are no executable statements between this
statement and the next ELSE IF, ELSE, or ENDIF
statements, then control will be transferred to the
ENDIF statement. If the value of e is false, control is
transferred to the next ELSEIE, ELSE, or ENDIF statement
of this unit.

8.6.2 The ELSE Statement

The form of an ELSE statement is:

ELSE

The execution of an ELSE statement has no effect. The
ELSE statement shows where control passes to if all
expressions in the IF and ELSEIF statements in this unit
are false, see note on statement labels at the end of
the next section,

8.6»3 The ENDIF Statement

This statement has the form:

END IF

Execution of an ENDIF statement has no effect. For each
block IF statement there must be a corresponding ENDIF
statement in the same program unit.

Note: In ND FORTRAN, statement labels on ELSEIF and
ELSE statements can be referenced. A GO TO statement
will transfer control to a point immediately prior
to the evaluation of e in ELSEIF statements.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 133
CONTROL STATEMENTS

8.6.4 Examples of Block IF, ELSEIF, ELSE and ENDIF
Statements

0 C TEST FOR FIT ON A PAGE
IF (CURLIN + rN.GT.LINPAG) THEN

CALL NEWPAG
CURLIN : O

ENDIF

a C ADJUST PAYMENT
IF (TAXED) THEN

NET = GROSS~TAX (GROSS)
ELSE

NET = GROSS
ENDIF

o C COMPUTE AREA OF FIGURE
IF (N .E0. 3) THEN

S = (A + B + C) /2.0
AREA = SORT ((S—A)*(S—B)*(S-C)*S)

ELSEIF (N .E0. 4) THEN
AREA : A*B

ELSE
AREA 2 PI*A**2

ENDIF

o C CHECK SIGNATURES
IF (AMOUNT .GE. lOOOO) THEN

IF (NSIG .NE. 2) THEN
CALL NOGOOD

ELSE
CALL BIGCHK

ENDIF
'ELSEIF (AMOUNT .GE. lOO) THEN

CALL MIDCHK
ENDIF

C IF PASSED, PAY IT
IF (OK) THEN

CALL PAYIT
ELSE

CALL ABORT
WRITE(1,*)'ERROR IN CHEOUE',AMOUNT,INVOIC,NSIG,CNUM

ENDIF

Norsk Data ND—60.l45.7 EN

134 ND FORTRAN Reference ManuaT
CONTROL STATEMENTS

As can be seen from the Tast exampTe, bTock IF
constructs can be nested. They may be nested to any
depth, but each nested bTock IF must be whoTTy contained
between:

0 The IF ... THEN statement and the next occuring
ELSEIF ... THEN, ELSE, or ENDIF statements of the next
outermost bTock IF construct.

or,

o The ELSEIF ... THEN statement and the next occurring
ELSEIF .. THEN, ELSE, or ENDIF statements of the next
outermost bTock IF construct.

01",

o The ELSE statement and the next occurring ENDIF
statement of the next outermost bTock IF construct.

Norsk Data ND—60.l45 7 EN

ND FORTRAN Reference Manuai 135
CONTROL STATEMENTS

8.7 THE D0 STATEMENT

A DO statement specifies a Toop, caTTed the DO—Toop,
which can be used for coding iterative procedures.

This statement has the form:

DO 5 [,] i = e , e [’93]
1 2

where
s is the statement Tabei of an executabie
statement. This statement is caTTed the terminal
statement of the DO~Toop and it must appear in
the same program unit as the DO statement

1 is the name of an integer, reaT, or doubTe—
precision variabTe caTTed the DO—variabTe

e , and e are each an integer reaT, or
deubié- precision expressions

Note: The terminai statement of a DO—Toop must not be a
controi statement with the exception of Togicai IF,
CONTINUE, PAUSE, or the CALL statement. If it is a
TogicaT IF statement, then this may contain any
executabTe statement except DO, biock IF, ELSEIF, ELSE,
ENDIF, END, or another Togicai IF statement.

The TabeT on the terminaT statement is inside the Toop.
If severa] Toops have the same terminai statement, then
the Tape] is in the innermost of the Toops. Thus,
program controT can onTy jump to this Tape] from within
the innermost 100p.

The range of a DO—Toop is that of a1] executabTe
statements foTTowing the relevant DO statement, up to
and incTuding the associated terminaT statement.

A 'nested‘ DO statement, i.e. one whose range is
contained entireTy within the range of another DO
statement, may have the same terminai statement as the
outer DO—Toop.

If a bTock IF statement appears within the range of a
DO—Toop, its corresponding ENDIF statement must aTso do
so.

Norsk Data ND~60.145.7 EN

136 ND FORTRAN Reference ManuaT
CONTROL STATEMENTS

This can be iTTustrated as foTTows:

C FIND MAXIMUM AND MINIMUM VALUES
MX = 0
MN = 0
DO 10 I = 1, N

IF(A(I) .GT. MX) THEN
MX = A (I)

ELSEIF(A(I) .LT. MN) THEN
MN = A (I)

ENDIF
10 CONTINUE

If a DO—Toop appears within a bTock IF ... ENDIF unit,
then the range of the DO—Toop must be contained within
the unit. Furthermore, it must be contained entireTy
between ELSEIF or ELSE statements, if any, and the next
ELSEIF, ELSE or ENDIF statement in this bTock
IF ... ENDIF unit.

For exampTe:

C GET THE SUM OF THE ELEMENTS OF ONE OF THREE DIFFERENT ARRAYS
X=0.0
IEIM .LE. 0) THEN C SUM ELEMENTS OF ARRAY "A"

DO 10 I = l,NELS
X=X+A(NELS)

10 CONTINUE
ELSEIFIM .GE. 5) THEN C SUM ELEMENTS OF ARRAY "B"

DO 20 I = l,NELS
X=X+B(NELS)

20 CONTINUE
ELSE C SUM ELEMENTS 0F ARRAY "C"

DO 30 I = 1,NELS
X=X+C(NELS)

3O CONTINUE
ENDIF

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 137
CONTROL STATEMENTS

8.7.1 Execution of a DO Statement

A DO statement is executed in the following stages:

1. e , e , and e are evaluated (including, if
necessary, conversion to the type of the
DO-variable). These values will be known from now on
as the initial parameter, terminal parameter, and
incremental parameter respectively. If e does not
appear, then the incremental parameter 1% given the
value of one. (It must not be zero.)

. The DO—variable, i, takes the value of the initial
parameter.

. The following test is performed to determine whether
the loop should be terminated:

If the incremental parameter >O, then the loop is
terminated, if i> terminal parameter.

If the incremental parameter <0, then the loop is
terminated if i< terminal parameter.

If the DO—loop is to be terminated, control passes to
the next executable statement following the terminal
statement or, if there is another DO—loop sharing its
terminal statement with this one, then control passes
to the incrementing stage for the next outer DO.

If the loop has not been terminated, the statements
within the loop are executed.

. At the end of the loop, the DO—variable is
incremented by the value of the incremental
parameter. (Note that if the incremental parameter
<0, the DO—variable will, in fact, decrease.)

. The loop control processing begins again at stage 3.

Note: It is perfectly possible for the body of the
loop not to be executed at all. This happens if the
terminating conditions are satisfied on the first
entry to loop control processing at stage 3.

Norsk Data ND-60.145.7 EN

138 ND FORTRAN Reference ManuaI
CONTROL STATEMENTS

ExampTes:

c C INITIALIZE ARRAY TO ZERO
DO 10 I 1, N

10 A(1) 0II
II

o C COPY UPPER DIAGONAL T0 LOWER
DO 20 1:2, N

DO 10 J
A (J, I)

10 CONTINUE
20 CONTINUE

I+1, N
A (I, J)l!

H

o C FIND MAXIMUM VALUES BY ROWS
DO 20 I = 1, N

XMX (I) = A (I, 1)
DO 20 J: 2, N

IF (AII, J) .GT. XMX (I)) XMX (I) = A(I, J)
20 CONTINUE

o C THE SIEVE OF ERATOSTHENES
LOGICAL P(2 : 1000)

C INITIALIZE PRIME ARRAY
DO 10 I = 2,1000

10 P(I) = .TRUE.
C RUN THROUGH ALL CANDIDATES

DO 30 I=2, SORT (1000+1)
C IF IT IS A PRIME, THEN MARK OFF ALL MULTIPLES

IF (PII)) THEN
DO 20 K = 2*1, 1000, I

20 P(K) = .FALSE.
END IF

3O CONTINUE

o C SET DIAGONAL TO SUM OF ROW TO THE LEFT
DO 20 I = I, N

S = 0
DO 10 K = l, I

S = S + A (I, K)
10 CONTINUE

C K NOW CONTAINS THE FINAL VALUE,I—1,PLUS ONE INCREMENT, IE THE
C VALUE OF I

A (K, K) : S
20 CONTINUE

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference ManuaT 139
CONTROL STATEMENTS

8.7.2 The DC FOB ... ENDDO Statements

In NN FORTRAN the DO Statement can have the fokm:.

, DO {FOR} 1;:feg, e2[,e311

where _ ; ' *
‘ ‘ i- " e and NB gaAre eaCN an in‘teger_ reaT Or

doubTe pgec151on express1on

LThe eNN 0f the DO Toop is represented by the
statemeht: “7 _

ENNDN 1

_ USTNN “he ND FORTRAN exteNS1on form of the DO State~.
11ment the TaSt examNTe of the prev1ous sect1on cQuTN

‘i‘_“be wr1tten as: ‘

DO FOR I_n”i; NT,

- DWOM :- 11,1;:1 S :35 1 A:11, K1-ENNNO*j" '
TA‘TQ K): 3

END No _' .

300,I:= 115NI"

" T-A§>= «S;+ A T ,KTfTT” _
-ENNNO: _ é; “ * -9. .5“: .irif":_““ A (K «1 s __,;:-; g¢§:_mENDED u _ _—_._, .. , _

8.7.3 The DO WHILE ... ENDDO Statements

_ 1N NO {ENTRAN tNera 1s a further 1terat1ve , V
‘ programm1ng construct deT1m1ted by the DO NHILE NNN ’

{NDBO tatements TN1s takes the form: - '

Norsk Data ND—60.145.7 EN

140

For exampTe:

ND FORTRAN Reference ManuaT
CONTROL STATEMENTS

DO WHILE (e)

ENNeo

where
e 15 a Tog1c31 express1oh

Upon execut1oh of the DO WHILE statement 9 is
evaTuated If e 15 true controT paSses to the next
executahTe statement. If e 1SFa1se centFoT passes
to the next executabTe Statement foT1ow1ng the
deT1m1t1ng ENODO statement

When the ENDDO statement 15 executed contra} 15
returned to 1ts correspohd1ng DO WHIEE statement for
remevaTuat1on of e . -

Th1s construcfi a110ws the natuFaT programm1NQ ofeT
Toops wh1ch term1nate ohTy When cehta1n cond 1t1ons
are met, rather than a spec1f11: number of * '
repet1t1ons

The DU WHILE .. 'ENDOO canStFuat may he used to read”
a sequent1a1 f11e and process each and every record
1n wh1ch case, the foTTow1ng Toop coU1d he 34'_'
constructed: , - ,

c READ F1R$1 RECORD
CALL INPUT ‘

c 1551 FOR END OF FILE ;
90 WHILE 1 NOT EELAG}

cpeocgss RECORD
CALL FROCS_

c READ NEX1 RECORD ' ‘
CALL INPUT _ f“‘

c LOOP AND RE 1551 FOR END 0F F11:
ENDDO

Note that the test 15 executed at the stert Of the
100p In th1s exampTe,1f there are no records 1n
the f1Te the Tech w1T1 not be executed

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 141
CONTROL STATEMENTS

8.8 THE CONTINUE STATEMENT

The form of a CONTINUE statement is:

CONTINUE

This statement may appear anywhere within the program.
Its execution has no effect and the statement is
commoniy used to provide a Toop termination to avoid
ending with a GO TO, STOP, PAUSE, RETURN, Arithmetic IF,
another DO statement, or a Logicai IF statement
containing any of the these.

Norsk Data ND—60.l45.7 EN

142 ND FORTRAN Reference ManuaT
CONTROL STATEMENTS

8.9 THE STOP STATEMENT

ExampTe:

This statement has the form:

STOP [n]

where
n is an integer constant of up to five digits
(decimaT) or a character constant.

In ND FORTRAN, n may be any integer expression.

Execution of a STOP statement causes termination of the
executabTe program. At the time of termination the text,
STOP n, is printed out on the message output fiTe, i.e.
the user‘s terminaT for background programs, and the
system consoTe for RT—programs.

When execution terminates, aTT fiTes which have not been
permanentTy opened are ciosed.

STOP 16
STOP 'CANNOT OPEN FILE’ // FILENM

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua] 143
CONTROL STATEMENTS

8.10 THE PAUSE STATEMENT

The form of the PAUSE statement is:

PAUSE [n]

where
n is an integer constant of up to five digits
(decimai) or a character constant.

In ND FORTRAN, n may be any integer expression.

Execution of a PAUSE statement suspends execution of the
program and the text PAUSE n is printed on the message
output fiTe.

In ND FORTRAN, execution resumes when the program
receives a carriage return from the SINTRAN Togicai
deviCe number 1, the user‘s terminal for background
programs, and the system consoie for RT~programs. If
execution is resumed, it is as if a CONTINUE
statement had been executed, i.e. controi passes to
the statement immediateiy foiiowing the PAUSE.

Exampie:
PAUSE 224
PAUSE 'PLEASE MOUNT TAPE'

Norsk Data ND—60.145 7 EN

144 ND FORTRAN Reference ManuaT
CONTROL STATEMENTS

8.11 THE END STATEMENT

The form of this statement is:

END

It is used to indicate that the end of the sequence of
statements and comment Tines of a program unit has been
reached. If executed in a function or subroutine
program, it has the effect of a RETURN statement; in a
main program, it terminates execution of the executabTe
program and hence causes aTT fiTes to be cTosed.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 145

CHAPTER 9

INPUT/OUTPUT STATEMENTS

Nor‘Sk Data ND—60.l45.7 EN

146 ND FORTRAN Reference Manual

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference ManuaT 147
INPUT/OUTPUT STATEMENTS

9.1 1/0 TERMS AND CONCEPTS

Input statements controT the transfer of data from
externaT media or from an internaT fiTe into internaT
storage. This process is caTTed reading. Output
statements controi the transfer of data from internaT
storage to externai media or to an internaT fiTe. This
process is caTTed writing.

In addition to data transfer statements, other
statements perform fiTe controT, device controT, or
inquiry.

These are the input/output statements:

a READ

o WRITE

o PRINT

0 OPEN

0 CLOSE

e BACKSPACE

o ENDFILE

o REWIND

o INOUIRE

The READ, WRITE and PRINT statements are data transfer
statements. The OPEN and CLOSE statements are fiTe
controT statements. The BACKSPACE, ENDFILE and REWINO
statements are device controT statements. The INOUIRE
statement performs fiTe inquiry.

9.1.1 Records

A record is a sequence of vaTues or characters which is
considered as a singTe unit by the device it is being
read from or written to. It may correspond to a physicaT
entity, such as a punched card, but not necessariiy. For
instance, input from a terminaT is separated into
records by the return key.

Norsk Data NO—60.145.7 EN

148 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

There are three types of records:

c Formatted

o Unformatted

o EndfiTe

A FORMAT statement contains a set of format
specifications defining the Tayout of a record and the
form of the data fies within the record (see Chapter
10.1 on page 191, for a compTete description of the
FORMAT statement). Format specifications may aTso be
stored in an array or variabTe of type CHARACTER rather
than in a FORMAT statement.

A formatted record is one which is transferred under the
controT of a format specification as outiined above.
Other records are unformatted records. During
unformatted transfers, data is transferred on a
one—to~one basis between externaT media (or internaT
fiTes) and internaT storage with no conversion or
formatting operations invoTved.

An endfiTe record is written by using the ENDFILE
statement. An endfiTe record may onTy occur as the Tast
record of a fiTe.

9.1.2 Files

A fiTe is a sequence of records; it may be internaT or
externaT.

InternaT fiTes provide a means of transferring and
converting data within internaT storage. An internaT
fiTe has the foTTowing properties:

a The fiTe is a character variabTe, character array,
character array eTement, or a character substring.

o A record of an internaT fiTe is a character variabTe,
array eTement, or a substring.

o If the fiTe is a character variabTe, character array
eTement, or character substring, it consists of a
singTe record whose Tength is the same as the Tength
of the variabTe, array eTement, or substring
respectiveTy.

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference ManuaT 149
INPUT/OUTPUT STATEMENTS

If the fiTe is a character array, it is treated as a
sequence of character array eiements. Each array
eTement is a record of the fiTe. The ordering of the
records of the fiTe is the same as the ordering of
the array eTements in the array, see Section 2.4.2.
on page 35. Every record of the fiie has the same
Tength, which is the Tength of an array eTement in
the array.

If the number of characters written in a record is
Tess than the Tength of the record, the remaining
portion is fiTTed with bianks.

An internaT fiTe is aTways positioned at the
beginning of the first record prior to data transfer.

An externaT fiTe is a coiTection of records stored on
an externaT storage medium, e.g., a disk.

9.1.2.1 File Format

An unformatted fiie consists of unformatted records,
while a formatted fiie has formattci records as its
components Both types can have an end fiie retord,
as the Test record in the fiie

In ND FORTRAN unformatted fiies have records of a
singie Tength if the RECL= specifier is present in
the 0P€N statement If the RECL: specifier is not
used in the OPEN st:tement .then_records may be of
varying Tengths, i' a program wOq see a ,
continu0us stream of characters with no expii cit or
:impiicit record separators

rznTmazroaiRAN. formatted-fiies have_recoroswof_a
singie Tength if the RECL: specifier is present in
the OPEN statement.1f the RECL‘: specifier is not

:used in the OPEN statement, than records may be of
-varying Tengths _ ,_ , H

:iIf a formatted fiie is aTso a PRINT fiie then the _
racerd iayout is as described 2n Section 9 2 5 1 on

Aspage'n165

If a formatted file is not a print fiTe, then each
record is foTTowed by the pair of characters (CR,LF).
ATT these controT characters must be incTuded in the
RECL count if it is specified.

Norsk Data ND—60.145.7 EN

150 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

9.1 .2.2 File Access

For an externaT file there are two access methods,
sequentiaT and direct.

The method of accessing the fiie is determined when the
fiTe is connected to a unit. An internaT fiTe must be
accessed sequentiaTTy. as must aTso magnetic tapes and
character devices, i.e. terminaTs and internaT devices.

SEQUENTIAL ACCESS

The order of the records on the fiTe is the order in
which they were written. Each 1/0 statement executed in
sequentiai mode transfers the record immediateTy
foTTowing the previous record transferred from the
accessed source fiTe.

The records of the fiTe are either aTT formatted or aTT
unformatted (except that the Tast record of the fiTe may
be an endfiTe record). A record that has not been
written since the fiTe was created must not be read.

DIRECT ACCESS

ATT records of the fiTe have the same Tength. They must
be either aTT formatted or aTT unformatted.

Each record of the fiTe is uniqueiy identified by a
positive integer caTTed the record number which is
specified when the record is written. Once estabTished,
this number cannot be changed. ATthough a record may not
be deTeted it can, however, be rewritten.

The order of the records on the fiTe is the order of
their record number.

Records need not be read or written in the order of
their record number. Any record may be written into the
fiTe whiTe it is connected to a unit. For exampTe, you
may write record 3 even though records 1 and 2 have not
been written. Any record may be read from the fiTe
provided that the record has been written.

See the 995m St'atementaysetti '
for'further'infcrmatign4Qn3
impiementation; ahdéiexténsrg _

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 151
INPUT/OUTPUT STATEMENTS

9.1.3 Units

A UNIT is a means of referring to a fiie. A unit
specifier has the form:

[UNIT=] u

where
u is an externai unit identifier (to refer to
externai fiTes) or an internai fiTe identifier.

If the optionai characters UNIT: are omitted from the
unit specifier then this specifier must be the first
item in a Tist of specifiers.

An externaT unit identifier can be:

c A positive or zero integer expression

0 An asterisk, identifying a particuiar unit that is
preconnected for formatted sequentiaT access, see
Section 14.24.3 on page 295.

In the exampTe:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N = 6
REWIND N
the vaiue 6 used in both program units identifies the
same externai unit.

Norsk Data ND—60.l45.7 EN Rev A

152 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

An internai fiTe identifier is the name of a character
variable, character array, character array eiement, or
character substring.

Internai fiies provide a means of transferring and
converting data within internaT storage.

9.1.4 Format Specifier and Identifier

A format specifier has the form:

[FMT :)f

where
f is a format identifier.

If the optionai characters FMT= are omitted then the
format specifier must be the second item in a Tist of
specifiers. In this case the first item must be a unit
specifier without the optionaT characters UNIT:.

A format identifier identifies the format type, see
Chapter 10 on page 191 , and it must be one of the
foTTowing:

o FORMAT statement Tabei in the current program unit

a The name of an array containing the format
specifications

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manual 153
INPUT/OUTPUT STATEMENTS

a Any CHARACTER expression, except a CHARACTER
expression involving concatenation of an operand
whose length specification is an asterisk in
parentheses, unless the operand is a symbolic name of
a constant

a An asterisk, implying list—directed formatting

a An integer variable name that has been assigned the
statement label of a FORMAT statement that appears
in the same program unit as the format identifier

9 . 1 . 5 End—of—File Specifier

Example:

An end—of-file specifier has the following form:

END 2 label

where
label is a statement label appearing in the
current program unit.

If a READ statement (see Section 8.2.4 on page 161)
contains an endof—file specifier and an end~of~file
condition but no error condition is encountered during
its execution, then the following will result:

a Execution of the READ statement terminates.

o If the READ statement contains an I/O status
specifier, this will be set as specified in Section
9.1.7. on page 154.

a Execution continues with the statement having the
designated label.

READ (10, 5, END = 70) TABLE I, J, K

Detection of an end—of—file condition during execution
of this statement causes transfer of control to
statement 70. All items in the input list, following the
detection, of an endeof—file condition, and all implied
DO indices on input lists will have unpredictable
values.

An end—of—file condition will occur if an endfile record
is encountered during the reading of a file connected
for sequential access.

Norsk Data ND~60.145.7 EN

154 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

9.1.6 Error Specifier

The form of an error specifier is:

ERR : TabeT

where
TabeT is a statement TabeT appearing in the
current program unit.

If an error condition occurs during execution of an I/O
statement containing an error specifier the foTTowing
wiTT resuTt:

o Execution of the I/O statement terminates.

o The position of the fiie pointer specified in the
statement becomes undefined.

o If the statement contains an 1/0 status specifier,
this wiTT be set as specified beiow.

o Execution continues with the statement having the

designated TabeT.

9.1.7 Input/Output Status Specifier

The form of an input/output status specifier is:

IOSTAT = s

where
s is a variabTe or array eiement of integer
type.

Execution of an T/O statement containing this specifier
causes it to be set as foTTows:

zero — if neither an error nor an end—
of—fiTe condition is encountered.

positive number — when an error condition occurs.

negative number — when an end—of—fiie but no error
condition occurs.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 155
INPUT/OUTPUT STATEMENTS

Note:

yin ND FORTRAN on the ND 100 3 must be 01 type
',TNTEGER*2 0n the ND 500 3 must be 01 type ‘

TNTEGER*4 The error codes 8 tOred in s are the , _ -
standard FDRTRAN/STNTRAN/SOD Loader/M0n1ter errOr ”L”

acodes They are T1sted 1n Appendix D -_ ',i L
[of 1115 manuaT, ' L ‘L

L.jAp pend1x C e? thenSTNTRAN TTI Reference ManuaT
_T1N2 so 1181 and 500 Loader/Mon1tor ManuaT 1ND 60113 6)

If an error contTon occurs, and there is no ERR:
specTed, (or an endeof—T1Te conditTon and no ENDz) and
n IOSTAT= spec111ed, then the program is aborted1

* In rout1nes comp1Ted w1th STANDARD CHECK sat OFF
(see Sect10n 14 7 on page 277), there Ts a reServed
var1abTe caTTed ERRCODE wh1ch takes the ab50Tute
vaTNe 0f TOSTAT after the eXecut1on of an 1/0 ,,
istatement Th1s ensures compat1b1T1ty with the

LpreV1eDs FORTRAN comp1Ter . ,

In routTnes Comp1Ted with STANDARD CHECK ON the
, name ERRCDDE Ts not reserved and 1s treated T1ke any

other var1abTe L -

'In ND FORTRAN when the end of fTTe cond1t1on 1s
iencaNNtered IOSTAT NTTT take the vaTue 3 w1th the

s1gn b1t set (1 8 1000038 on the ND 10D and - ,
- 200000000038 on the ND 500} but ERRCODE W111 be set

to +3 -

9. 1 .8 Record Specifier

A record specifier has the foTToag form:

REC = rn

where
rn is an 1nteger expression whose vaTue Ts
positTve. It specifTes the number of the record
to be read or etten in a fiTe connected for
d1rect access.

Norsk Data ND~60.145.7 EN

156 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

9.2 DATA TRANSFER OPERATIONS

Data transfer is the function of the 1/0 statements
READ, WRITE and PRINT, The transfer of data occurs
between storage and peripheraT devices and/or between
storage Tocations.

The storage Tocations are identified by an input/output
Tist.

The type and format of externaT data (on input or
output) may be controTTed by using format
specifications.

9. 2. 1 Input/Output Lists

ExampTe:

An I/O Tist specifies the names of the variabTes,
arrays, array eTements, or character substrings to which
input data is to be assigned or from which output data
is to be obtained.

The Tist is processed one item at a time, the transfer
of each item is compTeted before it is started for the
next.

Suppose N is an integer and A is a one-dimensionaT array
of type REAL, then the code:

N = 3
READ (5) N, A (N)

means that the vaTue in the input stream on unit 5 is
assigned to N. Suppose this vaTue is 10. The next vaTue
on the input stream is assigned to the eTement A(10).
Note that the most recentTy read vaTue of N is used.

ImpTied DO Tists (described beTow) which specify sets of
array eTements, may aTso be incTuded in 1/0 Tists.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 157
INPUT/OUTPUT STATEMENTS

9.2.1.1 Implied DO Lists

ExampIe:

When an array name appears in an I/O Tist, aIT eIements
of the array are transferred in the order in which they
are stored: see Section 2‘412. on page 35. Specific
sets of array eIements may be specified in the I/O Tist
either individuaTTy or in the form of an impTied DO
Iist.

The impTied DO takes the same generaT form as that of a
DO statement:

ioTist , I : e1, e2 [,e3])

where
ioTist is an I/O Iist which may contain further
impiied DO Tists to an arbitrary depth of
nestingt
I the index controI variabie representing a
subscript appearing in the subscript Tistt
el, e2, e3 are the indexing parameters
specifying the initiait terminaI and incrementai
vaIues controITing the range of I. (e1, 92, e3
are each an INTEGER, REAL or DOUBLE PRECISION
expression).
If e does not appear, its vaIue defauTts
to 1 (one).

REAL A (2,3)
10 FORMAT (6F10.3)

READ (1, 10) A

The READ statement wiII read A in the foTIowing order:

A (1,1), A (2‘1), A (1,2), A (2,2), A (1,3), A (2,3)

i.e. first subscript varies most rapidTy.

The same effect is achieved by the foTTowing statement:

READ (1,10) ((A (1,3), I : 1,2), J : 1,3)

i.e. the innermost Toop varies most rapidIy.

If you need to vary the other subscript most often, use
the foTIowing form:

READ (1,10) ((A (I,J), J = 1,3), I : 1,2)

Norsk Data ND—60.145.7 EN

158 ND FORTRAN Reference Manuai
INPUT/OUTPUT STATEMENTS

9.2.2 Formatted and Unformatted Data Transfer

I/O statements which incTude format specifications
enabTe the user to convert the data being transferred
into a different form. This may be required on output,
for exampTe, to make the data easier to read.

During formatted data transfer, data is transferred with
editing between the items specified by the I/O Tist and
the fiTe. The record at the current position and
possibiy additionai records are read or written. The
editing between the internaT representation and the
character strings of a record, or sequence of records,
is directed by a format specification. This
specification may be contained in a FORMAT statement or
in an array. If the format identifier is an *
(asterisk), this indicates Tist—directed input/output,
see the next section.

Unformatted data transfer is used for intermediate fiTes
for internai use on disk and tape units. During
unformatted data transfer, data is transferred without
editing between the current record and the items
specified by the I/O Tist. ExactTy one record is read or
written.

9.2.3 List—Directed Input/Output

If the format identifier contained in an I/O statement
is an asterisk, this causes the transfer operation to be
Tist-directed. List—directed input/output may aTso be
caTTed free—format.

Note: In this case, a record specifier must not be
present.

Data for Tist-directed transfers shoq consist of
aiternate constants and deTimiters. DeTimiters may be
one of the foiiowing:

o A comma optionaiiy preceded or foTTowed by one or
more bTanks.

o A sTash, optionaTTy preceded or foTTowed by one
or more bTanks.

0 One or more bTanks between two constants (or
foTTowing the Tast constant).

Norsk Data ND—60.145 7 EN

ND FORTRAN Reference ManuaT 159
INPUT/OUTPUT STATEMENTS

9.2.3.1 List-Directed Input

The form of the input vaTue must be acceptabie for the
type of the input Tist item. VaTues which are consistent
with format specifications (see Chapter 10, on
page 191), are aTso acceptabie in Tist—directed
input except in the foiiowing cases:

When the Tist item is of type REAL or DOUBLE
PRECISION, the corresponding input form shoq be
numeric and suitabie for F editing, see Section
10.2.2.4. on page 198.

For Tist items of type CHARACTER, the corresponding
input constants shoq be encTosed in singTe quotes,
i.e. ‘ABC'. Each quote within a CHARACTER constant
must be represented by two consecutive quotes. The
constant may be continued over as many records as
needed. The characters bTank, comma, and sTash, which
are otherwise deiimiters, may appear in CHARACTER
constants. If the Tengths of the Tist item and
CHARACTER constant differ, the resuTt is as for the
CHARACTER assignment statement, Section 7.4. on
page 119.

When the corresponding Tist item is of type COMPLEX,
the pair of constants being input must be enciosed in
parentheses and separated from each other by a comma.
Each constant shouid be numeric as in the first ruTe
above.

fiIn’Nfl O RAN parentheses are not required A pair
*can'ee separated by spaces instead 0f

NuTT vaTues on input are represented by two
consecutive commas with no intervening constant(s).
If a nuTT vaTue appears in the data, its
corresponding Tist eTement wiTT retain its 01d vaTue
and definition status.

When aTT the items in the I/O Tist have been
assigned, any remaining input data is ignored.

A sTash encountered in the input stream causes the
current input statement to terminate. Any remaining
items in the I/O Tist wiTT retain their bid vaTues
and definition status.

Norsk Data ND—60.145.7 EN

160

For exampTe:

Note:

ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

o The input vaTues for List Directed Input can contain
repetition groups of the form :

v*c or v*

where
v is the repetition factor
c is a constant

3*2.7, 2* , 2*‘ABC'

which is the same as:

2.7, 2.7, 2.7, , , 'ABC', 'ABC'

BTanks are never used as zeros, and embedded bianks are
not permitted in constants except within CHARACTER
constants as described in the second point in the Tist
above.

9 . 2 .3 . 2 List—Directed Output

The form of the vaiues produced is the same as that for
input except in the cases of CHARACTER constants given
here. The vaTues are separated by one or more bTanks.

CHARACTER constants are not deiimited by apostrophes on
output.

Each output record begins with a biank character to
provide carriage controi when the record is printed.

If successive vaTues are identical, no repTication
factors are empioyed.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference ManuaT 161
INPUT/OUTPUT STATEMENTS

The internaT vaTues are converted on output according to
the formats:

116 INTEGER

E16.7 REAL

016.9 DOUBLE PRECISION
2El6.7 COMPLEX
A CHARACTER

L16 ' 'LOGICAL {ND FORTRAN extension)
016.9 NUMERIC

9.2.4 The READ Statement

The READ statement causes data to be transferred from
externaI media to internal storage, or from an internal
fiTe to internal storage. The forms of read transfer
are as foTTows:

UNFORMATTED READ TRANSFER

0 Form 1:

READ (u[,argTist])[ioIist]

Note:
The form READ (u) will cause one unformatted input
record to be skipped.

FORMATTED READ TRANSFER

0 Form 1:

READ f [,ioIist]

Note:
This statement reads from the standard input device
which can be set in the UNIT command, see Section
14.24.3 on page 295.

Norsk Data ND—60 145.7 EN

162 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

0 Form 2:

READ (u,f[,argTist])[ioTist]

0 Form 3 (List-directed)

READ (u,*[,argTist])[ioTist]

where
u is a unit specifier see Section 9.1.3 on
page 151.
f is the format specifier see Section 9.1.4 on
page 152.
ioTist, when present, is an input Tist
specifying the data items whose vaTues are to be
transferred. A data item in an input Tist must
be one of the foTTowihg:

o a variabTe

0 an array

9 an array eTement

a a character substring

argTist is a Tist of optionaT items, separated
by commas, in which each of the foTTowing items
may appear no more than once:

REC=rn (see Section 9.1.8, on page 155)

IOSTAT=s (see Section 9.1.7, on page 154)

ERR=TabeT (see Section 9.1.6, on page 154)

END=TabeT (see Section 9.1.5, on page 153)

If argTist contains a record specifier, the fiTe shoq
be opened for direct access. The specifier is ignored
for sequentiaT access. ArgTist cannot contain both a
record specifier and an end—of—fiTe specifier.

If the format identifier is an asterisk, the statement
is a Tist—directed input statement and a record
specifier must not be present.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 163
INPUT/OUTPUT STATEMENTS

pn ND FORTRAN the record SpeCTTTer cah be u5ed With
:ssequentTaT aCCess te reedsition the fTTe for READ or
*jWRITE statements Thu5 the s ame part QT the f3T5r

can be read severaT tzmes and part of 5 fTTe can be
ieupdated For such an operatTon to be QQSSTETe Ene “*
[,TTTe muSt re5Tde Qn a dTrect access dev3ce ‘

ATso, Tn such a case it Ts permitted to specy both
END: and REC: Tn the same argTTstT

9.2.5 The WRITE Statement;

The WRITE statement transfers data from TnternaT
storage to externaT media or from TnternaT storage to
TnternaT fTTes. The forms of ete transfer are as
foTTows:

UNFORMATTED WRITE TRANSFER

0 Form:

WRITE (u[,argTTst])[T0TTst]

FORMATTED WRITE TRANSFER

a Form 1:

WRITE f[,ToTist]

a Form 2:

WRITE (u,f[,argTTst])[ToTTst]

Norsk Data ND—60.145 7 EN

164 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

0 Form 3 (List—Directed):

WRITE (u,*[,argTist])[ioTist]

where
u is a unit specifier (see Section 9.1.3 on
page 151)
f is the format specifier (see Section 9.1.4 on
page 152)
ioTist, when present, is an output Tist
identifying the data items whose vaTues are to
be transferred, A data item in an output Tist
must be one of those:

a variabieO

0 an array

c an array eTement

o a character substring

c any other expressions except a character
expression invoiving concatenation of an
operand whose iength specification is an
asterisk in parentheses, unTess the operand is
the symboTic name of a constant.

argTist is a Tist of optionaT items, separated
by commas, in which each of the foTTowing items
may appear no more than once:

REC=rn (See Section 9.1.8, on page 155)

IOSTAT=S (See Section 9 1.7, on page 154)

ERR=TabeT (See Section 9.1 6, on page 154)

If argiist contains a record specifier, the
statement is a direct access output statement (See the
READ statement earTier)‘ If not, it is a sequentiai
access output statement.

If the format identifier is an asterisk, the statement
is a Tist—directed output statement and a record
specifier is not aTTowed.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

9.2.5.1 Printing of Formatted Records

The transfer of information in a formatted record to
certain devices determined by the processor is caTTed
printing. If a formatted record is printed, the first
character of the record is not printed. The remaining
characters of the record, if any, are printed on one
Tine beginning at the Teft margin.

The first character of such a record determines verticaT
spacing as foTTows:

CHARACTER VERTICAL SPACING EXTERNAL OUTPUT
BEFORE PRINTING

BTank One Tine LE record CR

0 Two Tines LF CR LE record CR

1 To first Tine of new page FF LF record CR

+ No advance record CR

$ No advance, CR suppressed record

Any other character occurring in the first position is
treated as a biank.

If there are no characters in the record, the verticaT
spacing is one Tine and no characters other than bTank
are printed on that Tine.

A PRINT statement does not impTy that printing wiTT
occur, and a WRITE statement does not impiy that
printing wiTT not occur.

Norsk Data NO—60.145.7 EN Rev A

166 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

The foTTowing TogicaT SINTRAN device numbers are
PRINT fiTes. ATT numbers are octaT:

0 Less than 100 except:

3 fast punch
20 and 21 cassette
25,33,40,41 magnetic tape controTTer 1
32,34 magnetic tape controTTer 2

o 200 to 277 see SINTRAN manuaT ND 60.128
700 to 777 for descriptions
1040 to 1077
2000 to 2077

o 100 to 127 if they are spooTing fiTes

9.2.6 The PRINT Statement

The PRINT statement causes data to be transferred from
internaT storage to the standard output device. This can
be defined by the UNIT command, see Section 14.24.3 on
page 295. It is used onTy for sequentiai formatted data
transfer. The PRINT statement takes the foTTowing forms:

0 Form 1:

PRINT f[,ioTist]

o Form 2:

PRINT*[,ioTist]

where
f is the format specifier (see Section 9.1.4
on page 152)
ioTist, if present, is the output Tist
identifying the data items whose vaTues are to
be transferred.

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference ManuaT 157
INPUT/OUTPUT STATEMENTS

9.2.7 The INPUT Statement

In ND FORTRAN= Tist—directed input can be specified
by the statement:

INPUT (u[,argTistT)[ioTist]

This is exactTy equivaTent to the List—directed form
(Form 3) of the READ statement, see Section 9.2.4.
on page 161.

9.2.8 The OUTPUT Statement

In ND FORTRAN, Tist—directed output can be specified
by the statement:

OUTPUT (u[,argTist])[ioTist]

This is exactTy eouivaTent to the List—directed form
(Form 3) of the WRITE statement, see Section 9.2.5.
on page 163.

Norsk Data ND~60.145.7 EN

168 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

9.3 FILE OPEN AND CLOSE

This section covers connecting and disconnecting iiTes,
creating them, and estabTishing of parameters for 1/0
operations. The statements used for this are OPEN and
CLOSE.

9.3.1 The OPEN Statement

The OPEN statement can connect an existing fiTe to a
unit, create a fiTe that is preconnected, create a fiTe
and connect it to a unit, or change the specifiers of a
connection between a fiTe and a unit. It has the form:

OPEN (u[,argTist])

where
u is a unit specifier (see Section 9.1.3
on page 151
argTist is a Tist of optional items, separated
by commas, in which each of the foTTowing items
appear no more than once:

IOSTAT = 3 (Section 9.1.7, page 154)

ERR : iabeT (Section 9.1.6, page 154)

FILE : fiie

STATUS = sta

ACCESS = acc

FORM : fm

RECL = r1

BLANK = bi

_ RARITY-i, _;3§afi5§f{§Ra'aoaiRAN ExtenSion}
. _ .1 mm 7x? vi '
, ‘ MOW we; ' i . ‘ '

VFTYPE W 79£Fy;;.fgfffiv7‘5
- MUSE ,_ :7[:$e§§?*f§figi “' _

BUFFER SIZE é‘553i . (N9 FOR RAN ,xten810n}_,*;f

Norsk Data ND—60‘145.7 EN

ND FORTRAN Reference ManuaT 159
INPUT/OUTPUT STATEMENTS

If the form UNIT: is used for the unit specifier, it may
appear anywhere in arist. If UNIT: is omitted, u must
be the first specifier in the Tist.

__WhenfexecutinQVasT-program$*iND~IOO*onIyi. aTIT
gprograms On a particuIar segment must use different

0 unit numbers‘ Care shouid be'taken when opening and
:_using Togicai deVices shared among programs on the
Lisame Segment OtherWise there are no restrictions
hon the IZQ faciiities avaiiabie to RT programs.

I_To make th “most effiCient uSe eif: the various 1/0
Tjoptio,'. refer to Chapter 1Q Advanced FORTRAN
_wPregramming which begins an page 313

The specifiers not previousTy described in argTist are
described in the remainder of this section:

FILE : fiie

where
fiTe is a character expression whose vaTue is
the name of the fiTe acceptabTe to SINTRAN and
is to be connected to the specified unit. The
defauTt fiTe type is SYMB.

If no fiTe is specified, the actuaT open monitor caTT is
not executed, but the number must be within the range of
TegaT unit numbers to OPEN (1—127), otherwise an error
condition wiTT occur.

If a fiTe is specified, the unit number is used in
subsequent I/O statements to refer to this fiTe. If this
is the case, the unit number must be positive and Tess
than 128.

STATUS : sta

where
sta is a character expression whose vaTue is
o, NEW, SCRATCH or UNKNOWN. If OLD is
specified, the fiTe must exist; correspondingiy,
the fiIe must not exist if NEW is specified.
If the specifier is omitted, a vaTue of UNKNOWN
is assumed. If UNKNOWN is specified, the fiTe
is created if it does not exist.

Norsk Data ND—60.145.7 EN

170

Note:

ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

SuccessfuT execution of an OPEN statement with NEW
specified creates the fiTe and changes the status to
OLD.

If SCRATCH is specified with an unnamed fiTe, the fiTe
is connected to the specified unit for use by the
executabTe program. The fiTe is deTeted at the execution
of a CLOSE statement referring to the same unit or at
the termination of the executabTe program.

i;TE E0~FORTRAN named fiTes are aTTOWed'to be used.
,~aTso“if SCRATCH is Specified The fiTe with

: specified name wiTT be used (if it does not'
gEXist it wiTT be CreatedT ThTs fiTe wi TT be

_ deTeted by CLOSE statement 0r: termination of the ,
iprggr‘am _ _ _ , _ _ ,

ACCESS = acc

where
acc is a character expression whose vaTue is
one of the foTTowing:

o SEQUENTIAL

o DIRECT

and this determines the access method for the connection
of the fiTe. The defauTt is SEQUENTIAL. SEQUENTIAL or
DIRECT access shoq be used if the fiTe is to be
accessed through FORTRAN READ/WRITE statements.

If DIRECT or SEQU ENTIAL access is usad the moni tor ‘
caTT (76) SETBS mast not he used for this fiTe

In ND FORTRAN the foTTowing vaTues are aTsQ :1, T
acceptabTe: ‘

_ SPECIAL for use of moni tor c3235 (TgéT‘SETBSQS‘
RFILE wFILE or MAGTP T - .s ;,q»._

E L - SequentiaT output (WRITEStateméfitsi‘}r

R L :_:SequentiaT input {REAG statements} ”

L‘EX T “H'TT 7"REEEEE input EE output (far REILE/EFILE
' _usaT

*_RX L T‘.:_yfi Random input {for RETEE USETLJ

RN ‘ , ','_-r‘SaquentTA**1nput er output {READ/WRITE
tstatgmants}

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

WAT

, we '

171

SequentiaT output appending to an
existing fiTe (WRITE statements),

Random input or output to contiguous
‘ fiTes (for RFILE/NFTLE use)

, Dt'

Random inputtfrom COHtTQOOOS'fTTeS,
T‘V_Tfor'RFILE use)

: -Random input or Output direct Tfor a
V-RFILE/WFILE Use}

.i: Random input or Outpdt direct cToSed
“;Tfor RFILE/NFTLE use ,ND 500_Oniy)

'Note:;Directaclosed means that such-a[Tr'“fiiegremaans'ciosea‘during_aii fiTe
‘-' transfers; FORTRAN does not set the

,'REA9;JT '
.gwRiTECTg‘TT

HERRTNTTNTN

T‘_:‘maximumfbyteypointer for DC fiTes.

TTTRanddm:inputiTREAD7statements)I

inandcm input 0r entput [READ/WRITE
gistatements) 5' . __ ,

~’-:Seduentia3 output first Character
interpreted as ‘_a forms: ContrQT CharaCter

T “:‘TWRITE statement)

*.PRINY:APP£NQ
1 -,. ‘ ‘- ;existing fiie First Character ‘

, interpreted as a term controT character

SequentiaT output appending to an

"i“TNRITE statement}

FORM =

where
fm is a character expression with the vaTue
FORMATTED or UNFORMATTED. The vaTue determines
whether the fiTe is being connected for
formatted or unformatted 1/0. The defauTt with
direct access is UNFORMATTED, with sequentiaT
access it is FORMATTED.

Norsk Data ND—60.145.7 EN

172 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

RECL =

where
r1 is an integer vaTue which must be positive.
It gives the Tength in characters (bytes) of
each record, in the fiTe to be connected for.

' 13 ND FORTRAN L33 RECLL‘SLLCiFier m3 *aTw3ys Le
,Tuséd whatever the VaTu‘e_ of Lh3 ACCE$S~ speCTfieL

1 In ND FORTRAN SEQUENTIAL access used.ih conjuncLion
“with the RECL4 speCTFieL may be used with either

" FORMATTED or UNFDRMATTED TKO Thus aTT records in a
‘*SEDUENTIAL fiTe c3n be made the same 3T23 This, Th H
ifturn 3T10Ws L33 BACKSPACE statement to 33 333d on an
,[UNFDRNATTED SEQUENTIAL FiTe The inLention is that
-uSEQUENTIAL fiTes behave T3 Lhe same way as DIRECT

{fiTes as far as the record $123 and structure are °73
{”concerned for bdth FORMATTED and UNFQRMATTED TTTes

,_Ih FDRMATTED TTTes, d3L3 i3 3 record is generaTTy
_Lermtnated by 3 CR LF {carrwage return Tine feed}

- pair of character; in Some :33333 Lh3 physicaT
retord wTTT L3 Tonger than L33 d3L3 pTUs the CR LF

:‘characters 333 the LesL of the phySTcaT record wiTT
<33 padded ' -y;, ,_ , _ , _

ggI 3 ND FDRTRAN Lhe Lécord deTmter CRLFTs incTuded
*‘Tn L33 record Thi5 means Lhat Lhe record must be
}_specified as being Lwo characters TOngeL than Lhe

'numbar 0f characters t3 be transferred. By uSing Lhe
compiTeL command: RUNTIME STANDARD MODE ydu can , _
'avoid incTuding the deTimiters T3: the record 13"
eTLher case L33 infarmation in L33 fiIe and the

, number of byLes in the TTTe 3r3 exacLIy the same,

If a FORMATTED fiTe has a RECL: specifier in the OPEN
statement, and data to be output is shorter than the
specified record Tength, the record is padded with
bTanks.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 173
INPUT/OUTPUT STATEMENTS

In ND FORTRAN, a reCOrd whichris output and is
shorter than the spec1f1ed—RECLVVa1uegiW111 have
undeaed-charactere at the end of the record, as 1t
1sistored ohya 111e1 Th1s app11es to both FORMATTED '

' and_UNFORMATTED 11195 However if a record is read
_ from a FORMATTED f11e 1t N111 be padded w1th C1ahks

18119? the re ad operat1en

If a FORMATTED f11e has a RECL: spec1f1er 1n the OPEN
statement, and data to be output 15 Tonger than the
specified record Tength, the record 15 truncated.

In ND FORTRAN, 1n-both-FORMATTED'and UNFORMATTED‘I/O
w1th a RECL: spec111er‘1n the OPCN Statement 'a‘ _
request to output more data thah the REEL: spec1f1er
vaTue, W111 resuTt in a phySiCaT reCOCd be1ng
output which 15 a mg1t1 p1e of the RECL: spec1111er
va1ue , , ,

The 101 1ow1ng tabTe summar1Zes the poss1b1€ outcomes
of 1/0,' in ND FORTRAN: ' ~ , ,

‘ 7Rectg1spec111ed_ ’no RECL: *
FORMATTED ‘. _ data,CR'LF ”up; ifgata CR LF_"
UNFGRMATTED data uuu; [i';:- Qdata _5I

for ACCESS: DIRECT SEQUENTIAL Cr SPECIAL

where * ‘ ' 1
data is the reCCrd to be read dr Wr1 tten by
the program.
uuu 13 an Undef1ned Cart Of the recerd

BUFFER—SIZE : s

where
s 15 an 1nteger vaTue, wh1ch gives the number

of bytes 1n the buffer. The sma11est vaTue is
2048 bytes (1 page); the vaTue must have a
potence of 2. The BUFFER—SIZE used by FORTRAN
can be smaTTer 11 there 15 not enough cont1guous
space 1n buffer poo]. Use of b1gger buffer 1s
most effect1ve for big cont1guous f11es. In
FORTRAN—100 th1s 1s a dummy parameter.

Norsk Data ND—60.145.7 EN

174 ND FORTRAN Reference Manual
INPUT/OUTPUT STATEMENTS

BLANK = bl

where
bl is a character expression whose value is NULL
or ZERO. It is valid only for files being
connected for formatted I/O and it determines
the treatment of blanks. If NULL is specif1ed,
then all blank characters in numer1c input
fields are ignored (except that a field of all
blanks has a value of zero). If ZERO is
specified: then all blanks are treated as zeros.
The default value is NULL.

‘The TQTTQQTQQ specTTTe a e NQ-EORTRAN Extens1ons:

PARITY par; : ‘

' where
‘par TS a character expreSSTQQ which 1nd1cates

i:"gfb0W fihe parity bit TS to be handled The
V;Ul"par1ty“ bit is the Teft mast bit Of the

:character read or etten It appTTes onTy to
”1*f0hmatted TincTQdTQg”T1$t~d1rectedl transfers

:0? data *TQQ QassTbTQ‘VQTQes and meanings are:

:IGNGRE no aCtTOfl 1s ‘Ta-kgn Qn 91tr input or
‘ it output , ,

_51§€T' ithe‘ paty bit 19 set to zere Qn input
' _and7 tQ even par1ty on oQtt (Th13 15

campatibTe With t previous FORTRAN
TmpTementaQTQn T ‘

LREMQVE t parity bit is set tQ zero on input
t is Teft tQted an output

,TTthTs parameter is QQt specTTTed the vaTue is

g1n wQTCQ 1t is taken to be SET

VTREMGVE is spTTQd as an easy way of convert1ng
_f1Tes from the o tQ the new form.

mama: ;
“fi;[tQTL.QQtioQ can be Qsed to mazntQTn {A

_ b2 Tty w1tQ prevzous ND FORTRAQ comQTTers “
. th re ‘r ~t0 the number1ng 9f records fer a d1rect

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manua3 175
INPUT/OUTPUT STATEMEN

where

TS

va3ue is an expression offlty5e_integer. Va3ue _
, determines the number assigned-55 the first

record-on'a 5335; The defau3t Va3ue 1f the
option'is.om1tted, is 1 P5 ev10us compi3 e5S
used 0 to-15dicate the first reccrd 053y 0
and l are a33owed as va31d va35es; any ot5er

' va3ue 5333 g1Me unpredictab3e 5555355

'FACYOR = faC_

where _ _ , , .
fee is an integer expréssiQn 3w155 3ega3 533:5 es
of 1, 2, or 4), 3513 parameter -_spec1fies the

.mod1f1cat1on to the' amount“ factor 15 the
mon1505 5533s SETBS RFILE NFILE‘ and MAG3P
T55 monitor c5335 have as argument3s 3 the 355955?
0f the a 555 read or 5515555 except for MAGTP '_
funct105 codes 268 and 278 55555 the amount 35--
the exact number of bytes The g1ven ameunt :‘
parameters {or return parameters} 15 t5ese

'm051tor 5533s are adjusted by the 55355 of
fee before the m051tor 55335 355 exeCuted
A va3ue of fac : 1 1551cates 5555 555 555555:
parameter 15 to be interpreted as 5 number Of
'bytes fac : 2 means the 555555 of 16 515
words,_5513e fac: 4 mea5s the number 5? »
32~515uwords' The defau35 15 fat: 2 fer:- the _.H :
ND 100 and f ac: 4 for the ND 560, 1 e the ~7'

_IOC555551 e~15c036~3-

where
ioco 1s a character express1on whose "L“

'CONVERT or FORCE The 1050 gab! '
1nd1cates the 55553155 of 3555 ,
615595: ' , i"‘

’ COMPLEX; a5d t55 fo5mat spec1f155 i_5
Or,__ ._

a the 1/0 3155 5355555 is 5? type INTEGER 555 _~37
the format spec1f1cation as E E or G v-

A V3355 of CONVERT 1551ca5es that a convers105 LL
REAL!
spec:

5515555 or 151555515555 is to take 53ace if 555 ‘
5 3035105 50536 555 otherw1se a553y ' - _ _

Norsk Data ND—60.145.7 EN

176

‘ where

L where

~READ WRITE ENDFILE
wCLDSE. 1;: _ -

ND FORTRAN Reference ManuaT
TNPUT/OUTPUT STATEMENTS

Far the ND 500; and the ND Tog with the 329t '7
, p-T?oat$ng~ point optTon, a vaTue 0T FORCE means that;

V‘:TormattTng Ts to be parTOrmed aCcordTng to the Tormat_
’SpeCTT10atTOfi regardTess QT the type 0T the T/O TTst

: eTement- {INTEGERT4/REALTTT The GQTauTt Ts FORCE

, It TS an error to specTTy FORCE on an ND 100 t h tha ,
48 t TToatTng poTnt processor; the default here Ts

V_CDNVERT

: ~ty Ts a CHARACTER strTng The TTrSt TouW
,_characters {0? the whoTe StrTng if its Téngth Ts

,“J ,1955 than Tour) are _used? To Change the deTaUTt
'V,SINTRAN TTTe type from SYMB t0 some other vaTUe

MCDE sag (ND€SUO:OfiiyiTEéT’aTsTiE ‘_ ¢_.:

599 T3 a CHARACTER strxngkth the vaTué SEGMENT7

Restrictiun;r~r,;s“" ‘

~ »fqifor max 4168 Twsa_f"}g‘* ~“

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual 177
INPUT/OUTPUT STATEMENTS

9.3.2 The CLOSE Statement

A CLOSE statement is used to terminate the connection of
a fiie to a unit.

It has the form:

CLOSE (u[,arg)ist])

where
u is a unit specifier (see Section 9.1.3,
on page 151)
argTist is a Tist of optionai items, separated
by commas, in which each of the foiiowing items
may appear no more than once:
IOSTAT = 5 (see Section 9 1.7, on page 154)
ERR = Tabe) (see Section 9.1.6, on page 154)
STATUS : sta

where sta is a character expression
whose vaTue is KEEP or DELETE.

The unit to be deieted must be expTicitTy
specified. If unit in the foTTowing: CLOSE
(unit, status 2 ‘DELETE‘) has a negative vaTue,
no fiTes are deieted.

:Wamm aes- roiiomgiszamesiism Octave 4
, as opened for this terminai
‘anentiy opened "

'33 $3039.93m6nentiy, .

:ii*b9iCTosedg;'

Norsk Data ND—60.l45.7 EN

178 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

9.4 FILE POSITIONING

The statements used for positioning are BACKSPACE,
ENDFILE and REWIND. The operations performed by these
statements are normaTTy used for sequentiaT fiTes on
disk or magnetic tape devices.

9.4.1 The BACKSPACE Statement

The BACKSPACE statement wiTT cause a fiTe, connected to
a specified unit, to be positioned at the start of the
preceding record. If there is no preceding record, the
fiTe position remains unchanged.

If the specified unit is a fiTe on disk, binary records
can be backspaced onTy if the fiTe is opened with fixed
record Tength (RECL).

Format:

BACKSPACE u

OT"

BACKSPACE (u[,argTist])

where
u is a unit specifier

In ND FORTRAN a SINTRAN TogicaT device number may
be used instead of a unit speCifier

argTist is a Tist of the foTTowing optionaT
items, separated by commas, as given beTow:

IOSTAT

ERR

H s (see Section 9.1.7 on page 154)

H TabeT (see Section 9.1.6 on page 154)

If the fiTe was opened with a RECL parameter, then this
parameter is used to identify the position of the
previous record. If the fiTe is a formatted fiTe, the
statement wiTT execute sTowTy unTess RECL is specified.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai 179
INPUT/OUTPUT STATEMENTS

9.4.2 The ENDFILE Statement

Note:

The ENDFILE statement is used to write an endfiie record
as the next record of the fiTe. This record wiTT define
the end of the fiTe that contains it.

Format:

ENDFILE u

or
ENDFILE (u[,argiist])

where
u is a unit specifier

{In NB FORTRAN a SINTRAN Togicai device number may
be used instead of a unit speCifier ‘

argTist is a Tist of the foiiowing optionai
items separated by commas as given beiow:

IOSTAT

ERR

5 (see Section 9.1.7 on page 154)
Tabe) (see Section 9.1.6 on page 154)

After execution of an ENDFILE statement, a BACKSPACE or
REWIND statement must be used to reposition the fiTe
prior to execution of any data transfer I/O statement.

An ENDFILE statement wiii not automaticaTTy be performed
before rewinding.

9.4.3 The REWIND Statement

Execution of a REWIND statement causes the specified
fiTe to be positioned at its initia) point (the Toad“
point mark on a magnetic tape). If the fiTe is already
positioned at its initiaT point, execution of this
statement has no effect on the position of the fiTe.

Norsk Data ND—60.145.7 EN

180 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

Format:

REWIND u

O!"

REWIND (u[,argTist])

where
u is a unit specifier

In ND FORTRAN, a SINTRAN Togicai device number may
be used instead of a uNit spec1fier '

argTist is a Tist of the foTTowing optionaT
items, separated by commas, as given beTow:

IOSTAT
ERR

H 8 (see Section 9.1.7 on page 154)

H TabeT (see Section 9.1.6 on page 154)

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manuai 181
INPUT/OUTPUT STATEMENTS

9.5 THE INQUIRE STATEMENT

The INOUIRE statement may be used to inquire about
properties of a particular named fiTe or of the
connection to a particuiar unit.

The INQUIRE statement may be executed before, during, or
after a fiTe is connected to a unit. ATT vaiues assigned
by the INQUIRE statement are those that are current at
the time the INOUIRE statement is executed.

The two forms of the TNQUIRE statement are:

e INOUIRE by fiie:

INQUIRE(FILE=fiTename[,argiist])

where
fiiename is a character expression whose vaTue,
when any traiTing bianks are removed, specifies
the name of the fiie being inquired about.
argTist is a Tist of optionaT specifiers, taken
from the tabTe given on the next page. The
specifiers must be separated by commas, and each
may occur no more than once.

The specifier FILE: may appear anywhere in argTist‘

s INQUIRE by unit:

INQUIRE(u[,argTist])

where
u is a unit specifier (see Section 9.1 3
on page 151)
argTist is a Tist of optionai specifiers
taken from the tabie given on the next page. The
specifiers must be separated by commas, and each
may occur no more than once.

If the form UNIT: is used for the unit specifier, it may
appear anywhere in argiist. If UNIT: is omitted, u must
be the first specifier in the Tist.

Norsk Data ND~60.145.7 EN

182 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

The foTTowing inquiry specifiers may be used in either
form of the INOUIRE statement, i.e, for argTist above:

IOSTAT = 5 (see Section 9.1 7, page 154)

ERR = Tabei (see Section 9.1.8, page 154)

ACCESS = acc

BLANK = ak

DIRECT : dir

EXIST = ex

FORM = fm

FORMATTED = fmt

NAME = in

NAMED = nmd

NEXTREC = nr

NUMBER = hum

OPENED = 0d

RECL = rCT

SEQUENTIAL = seq

UNFORMATTED = unf

The specifiers are described in the rest of this
chapter:

ACCESS=acc

where
acc is a character variabie or a character array
eTement.

acc wiTT be assigned the vaTue SEQUENTIAL if the fiie is
connected for sequentiai access, or the vaTue DIRECT if
the fiTe is connected for direct access.

If there is no connection, acc becomes undefined.

Norsk Data ND—60.l45 7 EN

ND FORTRAN Reference Manua] 183
INPUT/OUTPUT STATEMENTS

BLANK=ak

where
ak is a character variabTe or a character
array eTement.

ak wiTT be assigned the vaTue NULL if nuTT bTank
controT is in effect for a file connected for formatted
1/0, or the vaTue ZERO if zero blank controT is in
effect for a fiTe connected for formatted I/O.

If there is no connection, or if the connection is not
for formatted I/O, ak becomes undefined.

DIRECT=dir

where
dir is a character variabTe or a character array
eTement.

Dir wiTT be assigned the vaTue YES if DIRECT is one of
the aTTowed access methods for the fiTe, or the vaTue NO
if DIRECT is not one of the aTTowed access methods for
the fiTe.

If it is not possibTe to determine whether DIRECT is
aTTowed as an access method for the fiTe, dir wiTT be
assigned the vaTue UNKNOWN.

EXIST=ex

where
ex is a TogicaT variabTe or a TogicaT array
element.

For INOUIRE by fiTe, ex wiTT be assigned the vaTue
.TRUE. if the file with the specified fiTe name exists,
or the vaTue .FALSE. otherwise.

For INOUIRE by unit, ex wiTT be assigned the vaiue
.TRUE. if the specified unit exists, or the vaTue
.FALSE. otherwise.

Norsk Data ND—60.l45 7 EN

184 ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

FORM=fm

where
fm is a character variabTe or a character array
eTement.

fm wiTT be assigned the vaTue FORMATTED if the fiTe is
connected as formatted 1/0, or UNFORMATTED if the fiTe
is connected for unformatted I/O.

If there is no connection, fm becomes undefined.

FORMATTED=fmt

where
' fmt is a character variabTe or a character array

eTement.

fmt wiTT be assigned the vaTue yes if formatted is an
aTTowed form for the fiTe, or the vaTue NO if FORMATTED
is not an aTTowed form for the fiTe.

If it is not possibTe to determine whether FORMATTED is
an aTTowed form for the fiTe, fmt wiTT be assigned the
vaTue UNKNOWN.

NAME=nme

where
nme is a character variabTe or a character array
eTement.

nme wiTT be assigned the name of the fiTe being inquired
about, i.e. the fiTe named in the FILE: specifier, or
connected by a UNIT: specifier.

The vaTue assigned to nme wiTT not necessariTy be
identicaT to the name in the FILE: specifier. The vaTue
assigned to nme is a fuTTy quaTified fiTe name, which is
suitabTe for use in the FILE: specifier of the OPEN
statement.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai 185
INPUT/OUTPUT STATEMENTS

NAMED=nmd

where
nmd is a iogicai variable or a iogicai array
element.

nmd wiii be assigned a vaiue .TRUE. if the specified
fiie has a name, or the vaiue .FALSE. otherwise.

NEXTREC=nr

where
nr is an integer variabie or an integer array
element.

nr wiii be assigned an integer vaiue, pius one, of the
record number of the iast record read, or written, to a
fiie connected for direct access. If the fiie is
connected, but no records have been read or written, nr
wiii be assigned to 1.

If the fiie is not connected for direct access, or the
position of the file is indeterminate because of a
previous error condition, nr becomes undefined.

NUMBER=num

where
num is an integer variabie or an integer array
eiement.

num will be assigned the vaiue of the unit currentiy
connected to the specified fiie.

If there is no unit connected to the specified fiie, num
becomes undefined.

Norsk Data ND—60.145 7 EN Rev.A

186

Note:

ND FORTRAN Reference ManuaT
INPUT/OUTPUT STATEMENTS

If the form of the INOUIRE statement is inquired by
fiTe, and the UNIT: specifier is set to —1, then the
NUMBER: specifier wiTT be assigned the SINTRAN
TogicaT device number.

OPENED=Od

where
0d is a TogicaT variabTe or a TogicaT array
eTement.

0d wiTT be assigned the vaTue .TRUE. if either the
specified fiTe (specified by the FILE: specifier) or the
unit specified unit, is currentTy open, or the vaTue
.FALSE. if the fiTe or unit is not open.

RECL=rcT

where
rcT is an integer variabTe or an integer array
eTement.

rc] wiTT be assigned the vaTue of the record Tength of a
fiTe connected for direct access. The vaTue is in bytes,
whether the fiTe has been connected for formatted or
unformatted I/O.

If the fiTe is not connected, or if the fiTe is
connected for other than direct access, rcT becomes
undefined.

Norsk Data ND-60.l45.7 EN Rev.A

ND FORTRAN Reference Manuai 187
INPUT/OUTPUT STATEMENTS

SEQUENTIAL=seq

where
seq is a character variabTe or a character
array eiement.

seq wiTT be assigned the vaTue YES if sequentiai is one
of the aTTowed access methods for the fiTe, or the vaTue
NO if SEQUENTIAL is not one of the aTTowed access
methods for the fiie. If it is not possibie to determine
whether SEQUENTIAL is aTTowed as an access method for
the fiie, seq wiTT be assigned the value UNKNOWN.

UNFORMATTED=unf

where
unf is a character variabTe or a character
array eiement.

unf wiTT be assigned the vaTue YES if UNFORMATTED is an
aTTowed form for the fiie, or the vaTue NO if
UNFORMATTED is not an aTTowed form for the fiTe.

If it is not possibie to determine whether UNFORMATTED
is an aTTowed form for the fiie, unf wiTT be assigned
the vaTue UNKNOWN.

Norsk Data ND—60.145.7 EN

188 ND FORTRAN Reference Manual

Norsk Data ND—60.145 7 EN

ND FORTRAN Reference ManuaI 189

CHAPTER 10

FORMAT SPECIFICATIONS

Norsk Data ND—60.145.7 EN

190 ND FORTRAN Reference Manua]

Norsk Data ND—6O 145.7 EN

ND FORTRAN Reference ManuaT 191
FORMAT SPECIFICATIONS

A format used in conjunction with formatted T/O
statements provides information that directs the editing
between the internaT representation and the character
strings of one or a sequence of records in the fiTe.

A format specification provides expTicit editing
information. An asterisk (*) as a format identifier in
an I/O statement indicates Tist—directed input/output,
see Section 9.2.3 on page 158.

10 . 1 FORMAT SPECIFICATION METHODS

Format specifications may be given either:

a in FORMAT statements, or

o as arrays of CHARACTER strings, CHARACTER variabTes,
or other CHARACTER expressions.

The FORMAT statement has the form:

FORMAT (F1, F2, F3, , Fn)

where
F1, F2,... etc, are format descriptors, described
in the next section.

The comma used to separate the descriptors may be
omitted in the foiTowing circumstances:

a before or after a siash or coTon format descriptor

0 between a P format descriptor and an F, E, D, or G
descriptor which foTTows immediateiy after it

The FORMAT statement must be TabeTed.

With character format specifications, as in the second
instance above, the expression must contain format
descriptor(s) encTosed in parentheses.

Norsk Data ND—60.145.7 EN

192 ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

10 . 2 FORMAT DESCRI PTORS

These descriptors describe the record structure of the
data, the format of the fields within the record, and
the conversion, scaling and editing of data within
specific fields. A list is given on the following page.

Norsk Data ND—60.14S.7 EN

ND FORTRAN Reference ManuaI 193
FORMAT SPECIFICATIONS

DESCRIPTORS COMMENTS

e.d

rEw.d

rEw.dEe FToating—point numeric fieid descriptors
e.d

rGw.d

rGw.d.Ee

rIw

rIw.m INTEGER fieid descriptors

NW ' ' _ i , . (NDFEURTRAR’Extenéionif
e LOGICAL fieid descriptor

rA

rAw ATphanumeric data fieid descriptor

Trom'7 iE7IREEOctéT¥form§t1descriptorir~ciTiEINOjEORTRANEERtenSionIQ

Lézwy'; ET'EE Hekédecimai format descriptor SIN? EORTRANVEXtensiQnISHHS , , _ , _ _

‘text' Text descriptors

text (NDFORTRANExtensmn)
rX Fie formatting descriptor L A

kP NumericaT scaie factor descriptor

Format controT terminating descriptor

/ Record deiimiting descriptor

Tc

TLc PositionaT editing descriptors

TRc

SP OptionaTIy positive sign editing descriptors

SS

BN

BZ BTank interpretation descriptors

Norsk Data ND—60.145 7 EN

194

ExpTanation:

ND FORTRAN Reference ManuaT
FORMAT SPECIFICATIONS

r is a repetition factor and is a nonzero unsigned
integer constant.

d and m are unsigned integer constants.

w, e, n and c are nonzero unsigned integer
constants.

k is an optionaTTy signed integer constant.

5 is a string of characters.

Note: w is known as the fie width and is the size in
characters of the fie, the part of a record read on
input or written on output under the controT of a format
specification.

In addition, repetition of groups of format descriptors
can be achieved by parentheses, e.g. r(F1, F2, ... ,Fn)
where Fi are format descriptors.

In ND FGRTRAN the maximum depth 0 ‘L
parentheses is S.

The foTTowing sections provide detaiTed descriptions of
the varioUs types of format descriptors and the manner
in which they are written and empToyed.

10.2.1 Interaction between the Format Descriptors and the
I/O List

The execution of an I/O statement specifying a formatted
data transfer operation wiTT initiate format controT.
The contents of the I/O Tist and the format
specifications are scanned in step, Whenever format
controT encounters a repetition factor in a format
descriptor, it determines whether there is a
corresponding item in the I/O Tist. If there is, it
transmits appropriateTy edited information between the
item and the record. If not, format controT terminates.

A Tist item of type compTex wiTT require two
corresponding format descriptors of type F, E, D, or G.

For P, X, T, TL, TR, S, SP, 88, H, BN, BZ, sTash, coTon,
or text format descriptors there are no corresponding
items in the I/O Iist, and format controT communicates

Norsk Data ND—6O 145 7 EN

ND FORTRAN Reference ManuaI 195
FORMAT SPECIFICATIONS

information directTy to or from the record.

If format controI encounters the rightmost parenthesis
of a compIete format specification and another Tist item
is not found, format controT terminates, It aTso
terminates if a coion descriptor is encountered in the
format specification and another Tist item is not found.

If the end of the format specification is reached and
more items remain in the Iist, a new record is
estabiished and the scan process is restarted. It
restarts either at the first item in the format
specification or, if parenthesised, with the Tast set of
descriptors within the format specification, (That is,
restarting at the first Teft parenthesis to the Teft in
the format specification just acted upon.)

A record is terminated by one of the foiiowing:

o A siash format descriptor.

o The rightmost parenthesis of the FORMAT.

o The end of the I/O Iist is encountered, and the
rest of the format descriptors require I/O Tist
items.

0 A coIon descriptor is encountered, and there are
no more items in the I/O.

On input, onIy a singie siash, /, wiTI cause an
additionai record to be read. A record is skipped when
two siashes, //, are encountered or a sTash is foTTowed
by the end of the format specifications.

If the record ends, due to the end of the format
specifications or a sTash within them, then any data
Teft in the input record is ignored. If the input record
is exhausted before the data transfers are compieted,
then the transfer proceeds as if the record were
extended with bIanks.

On output, an additionai record is written onTy when a
siash, /, is encountered in the format specifications.
Two consecutive siashes or one sTash foITowed by the end
of the specifications wiTI cause an empty record to be
written.

If the fiIe is an internai fiTe, then a record is
determined by the Iength of the internaT data item. For
non—CHARACTER arrays, and for CHARACTER variabies, the
fiTe contains just one record. For CHARACTER arrays,
each eiement is a record, the order of access being the
same as the order of impiied subscripting, with the
first subscript varying most rapidIy.

Norsk Data ND—60.145.7 EN

196 ND FORTRAN Reference ManuaI
FORMAT SPECIFICATIONS

,In ND ¥0RTRAN records QQ a formatted externai ii ie _
I_are deiimited by the ASCII carriage return character
‘I(octa1 15} 11ne feeds {actai 12:)w :1mmediateiy
.ffoilow a carr1age return a re ignored _Q input

if11ND FORTRAN the max1mum‘1ength of a formatted
:>record is 256 exciud1ng t deiimiters

10.2.2 Editing Provided by the Format Descriptors

10.2.2.1 Numeric Editing

The I, F, E, D and G descriptors are used for the 1/0 of
INTEGER, REAL, DOUBLE PRECISION and COMPLEX data. The
foTIowing ruIes appIy:

On input, Ieading bianks are not significant. The
interpretation of other bIanks depends on whether any
BLANK : (see the OPEN statement) specifier and
whether any BN or BZ controi is currentTy in effect.
Pius signs may be omitted. A fieId of a1] bianks is
considered to be zero.

On input, with F, E, D and G editing, a decimai point
appearing in the input field overrides its specifica-
tion in a format descriptor.

On output, the representation of a zero or positive
vaiue in the fieid may be prefixed with a pius, as
controiied by the 8, SP and SS descriptors. A
negative internaI value wiTT be prefixed by a
minus in the fieid.

On output, the representation in the fieid is right
justified. After editing, it the number of characters
is Iess than the tieid width, Ieading bianks wiIT be
inserted. If the number of characters exceeds the
fieid width then the entire fieId of width w
is fiIIed with asterisks.

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manuai 197
FORMAT SPECIFICATIONS

10.2.2.2 The I and J Format Descriptors

The Iw, Iw.m, and Jw descriptors are for INTEGER
editing, where the fie for editing occupies w
positions. The specified I/O Tist item must be of type
INTEGER.

In the input fieid, the character string must be in the
form of an optionaTTy signed integer constant. On input
an Iw.m descriptor is treated identicaiiy to an Iw
descriptor.

The output fie for the Iw descriptor wiTT consist of
Teading bTanks, if any, a minus sign it the internai
vaiue is negative, or an optionaT pTus if the internai
vaiue is positive. This is foiiowed by the magnitude of
the internai vaiue expressed as an unsigned integer
constant and must consist of at Teast one digit.

The output field for the Iw.m descriptor is the
same as for the 1w descriptor except that the
unsigned integer constant consists of at Teast m digits
and, if necessary, Teading zeros. The vaTue of m must
not be greater than Wk If it is zero and the internaT
vaTue is aiso zero, the output fie wiTT consist onTy
of bTanks, regardiess of sign controT.

Norsk Data ND—60.l45.7 EN ReV.A

198 ND FORTRAN Reference Manuai
FORMAT SPECIFICATIONS

Exampies:

VALUE FORMAT OUTPUT

1 11 1
1234 15 1234

—1234 15 —1234
0 15 0

1234 15.0 1234
0 15.0

12 15.4 0012
~12 15.4 —0012

0 15.4 0000

10.2.2.3 REAL and DOUBLE PRECISION

The F, E, D and G format descriptors specify the editing
of REAL, DOUBLE PRECISION, and COMPLEX data. An 1/0 Tist
item corresponding to one of these descriptors must aTso
be REAL, DOUBLE PRECISION or COMPLEX.

10.2.2.4 The F Format Descriptor

The Fw.d descriptor impTies that the fieId contains w
»positions, the fractionai part of which consists of d
digits.

The input fieId consists of an optionai sign, foIIowed
by a string of digits optionaTiy containing a decima]
point. If there is no decimai point, the rightmost
digits are interpreted as the fractionai part of the
vaTue. The basic form may be foTTowed by an exponent of
the form:

a Signed integer constant, or

o E foiiowed by zero or more bianks, foiiowed by
an optionaIIy signed integer constant, or

o D foiiowed by zero or more bianks, foTIowed by
an optionaiiy signed integer constant.

An exponent containing an E is processed identicaIIy to
an exponent containing a D.

Norsk Data ND—6O 145.7 EN Rev.A

ND FORTRAN Reference Manuai
FORMAT SPECIFICATIONS

The output fie consists of bianks, if necessary,
foiTowed by a minus if the internaT vaiue is negative,
or an optionai pius otherwise. This is foTTowed by a
string of digits containing a decimai point and
representing the magnitude of the internai value,
modified by any estabTished scaie factor, and rounded to
d digits. Leading zeros are suppressed up to the decimai
point, i.e. if the vaiue Ties between zero and one, the
first non-bTank character represents the position of the
decimai point.

Exampies:

VALUE FORMAT OUTPUT

1.2 F5.0 1.

—l.2 F5.0 —1.

1.2 F5.l 1.2

0.4 F5.2 .40

—D.4 F5.2 —.40

O. F5.2 .00

1. F5.2 1.00

—l. F5.2 —1.00

10.2.2.5 Scale Factor: The P Format Descriptor

The P format descriptor specifies the scaie factor in
the form:

kP

where
k is caTTed the scaie factor and is an optionaiiy
signed constant.

Norsk Data ND—60.145 7 EN Rev A

200

ExampTe:

100
200
300
400
500
600

ND FORTRAN Reference ManuaT
FORMAT SPECIFICATIONS

The vaTue of the scaie factor is zero at the beginning
of execution of each I/O statement. It appiies to aIT
subsequentiy interpreted F, E, D and G descriptors untii
another scaTe factor is encountered. It has the
foTTowing effect upon the editing:

3 With E, E, and D format descriptors on input
(provided that no exponent exists in the fieid) and
the F format descriptor on output, the externaiiy
represented number equais the internaITy represented
number muTtipIied by 10 * * k.

0n input, with F, E, D and G format descriptors, the
scaTe factor has no effect if there is an exponent in
the fie.

0n output, with E and D format descriptors, the basic
reaT constant part of the quantity (optionai sign,
integer part, decimaI point and fractionai part) is
muTtipTied by 10 * * k. The exponent is reduced by k.

0n output, with G editing, the scaie factor has no
effect unTess the magnitude of the vaiue is outside
the range for F editing. If the use of E editing is
required, the scaTe factor has the same effect as
using the E format descriptor on output.

REAL REALARR (4)
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(1X, F12.4, 2PF12.4, F12.4, —2PF12.4)
(1X, E12.4, 1X, 2PE12 4, 1X, —1PE12.4, 1X, OPE 12.4)
(1X, 4F12.4, ///)
(1X, 4 (E12.4, 1X))
(F12.4, 2PF12.4, —1PF12.4, —2PF12.4)
(E12.4, 2PE13.4, —1PE13.4, 0PE13.4)

READ (1,500) REALARR
WRITE (1,100) REALARR
WRITE (1,300) REALARR
READ (1,600) REALARR
WRITE (1,200) REALARR
WRITE (1,400) REALARR

Input and Output With F Editing:

1.6 .16E+1 160 E—Z 1.6

1.6000 160.0000 160.0000 1.6000

1 6000 1.6000 1.6000 160.0000

Norsk Data ND—60.145 7 EN Rev A

ND FORTRAN Reference ManuaT ZOl
FORMAT SPECIFICATIONS

Input and Output With E Editing:

2.5 .25E+l 2.5 250.E—2

.2500E+01 25.000E—01 .0250E+O3 .2500E+Ol

.2500E+Ol .2500E+01 .2500E+02 .ZSOOE+01

10.2.2.6 The E and D Format Descriptors

The Ew.d, Dw.d and Ew dEe descriptors indicate that the
externai fie occupies w positions, the fractionai part
of which consists of d digits (unTess a scaTe factor of
greater than one is in effect) and the exponent part
consists of e digits. The e has no effect on input.

The form of the input fie is the same as that for the
F format descriptor described above.

With a zero scaie factor the form of the output would
be:

[i] . X1 X2 ————— Xd exp

X X ————— Xd being the d; most significant digits
afterzrounding.

exp is a decimaT exponent, which for the vaTue 76 or
Tess wiTT be of the form:

where
n is a decimai digit.

Norsk Data ND~60.145.7 EN Rev.A

202

Examples:

ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

For the Ew.dEe descriptor, the form of the exponent is:

where the absolute value of the exponent must be:

S (10 * * e) — 1

The scale factor k, described above, controls the
decimal normalisation.

There are two cases to consider:

0 — d < k S O. The output field will contain (taking
the absolute value of k) k leading zeros and d—k
significant digits after the decimal point.

0 0 < k < d + 2. The output field will contain k
significant digits to the left of the decimal point
and d—k+1 significant digits to the right of the
decimal point.

Other values of k are not accepted.

VALUE FORMAT OUTPUT

O. E12.4 .OOOOE+OO

123. E12.4 .123OE+03

~123. E12.4 — 123OE+03

123. E12.4E1 .123OE+3

~123. E12.4E1 ‘.123OE+3

10.2.2.7 The G Format Descriptor

The Gw.d and Gw.dEe descriptors indicate that w is the
width of the external field, the fractional part of
which contains d digits unless a scale factor of greater
than one is in effect. The exponent part consists of e
digits.

0n input, the editing performed by the G format

Norsk Data ND-60.145.7 EN ReV.A

ND FORTRAN Reference ManuaT 203
FORMAT SPECIFICATIONS

descriptor is the same as that for F described earIier.

On output, the editing depends on the magnitude of the
internaT vaTue, N, in the foTTowing way:

If N <O.1 or N) IOAKd, then editing performed by Gw.d on
output is the same as that by kPEw d, and for Gw.dEe the
resuIt is the same as that when using kPEw.dEe.

If 0.1 < N < 10**d, k (the scaTe factor) has no effect
and the resuTts depend upon N as given beTow where F is
the format descriptor, and n takes the vaTue 4 with the
Gw.d descriptor or e+2 for the Gw.dEe descriptor:

N Conversion Type

0.1 S N < l F(w—n).d

1 S N < 10 F(w—n).d—l

10**ia~2) < N < 10*‘(d—1) r(w—h).1
10**<d—1) < N < lOt’d F(w—n).O

The output fieId wiIT be foTIowed by n bIanks.

Note that the scaIe factor has no effect unIess N is
outside the range of vaTues for effective F editing.

10.2.2.8 COHPLEX Data

Since this consists of separate pairs of reaT vaIues the
editing is specified by two successive F, E, D, or G
format descriptors.

The first descriptor wiIT specify the reaT part, the
second the imaginary part. The two descriptors may be
different and other non~repeatabTe descriptors may
appear between them.

10.2.2.9 S, SP and 35 Format Descriptors

These edit descriptors are used to controT the optionaI
pIus signs in the output fies.

Norsk Data ND—60.145.7 EN

204 ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

If none of the edit descriptors are used, then optional
plus signs will not be printed.

If an SP descriptor is encountered in a format
specification, then subsequent optional plus signs will
be printed.

If an SS or S descriptor is encountered, then further
optional plus signs will not be printed.

10.2.2.10 The BR and B2 Format Descriptors

These descriptors specify the interpretation of non—
leading blanks in numeric input fields. Such blank
characters, at the beginning of the input statement
execution, are interpreted as zeros or are ignored,
depending upon the BLANK=specifier in the OPEN statement
in effect.

Upon encountering a BN descriptor in the format
specification, the non—leading blanks referred to above
will be ignored.

The effect of a BZ descriptor is to treat all such
blanks as zeros.

BN and 82 affect the I, F, E, D, G, D and Z editing
during input.

10.2.2.11 The Text Format Descriptor

This descriptor has the form ‘text' which is equivalent
to a character constant. It causes a character string
(which may include blanks) to be written from the
enclosed characters of the format descriptor itself.
An apostrophe edit descriptor is not valid on input. The
width of the field is the number of characters between
the delimiting apostrophes, but not including the
apostrophes themselves.

ND FORTRAN has an aiternativegfgrm:~ftextfr S_UDL

If the asterisk is used as the text delimiter, then a
quote is treated as just another character.
Correspondingly, if the delimiter is a quote, then the
asterisk is treated as an ordinary character.

Norsk Data ND~60 145.7 EN

ND FORTRAN Reference Manuai 205
FORMAT SPECIFICATIONS

10.2.2.12 The H Format Descriptor

The descriptor has the form:

a

It causes the n characters forming the string 3 to
be written on the output stream.

In ND FORTRAN the form Hs may be used for a
Singie character

An H descriptor must not be used on input.

10.2.2.13 The T, TL, TH, and rX Format Descriptors

These descriptors controi positionai editing and specify
at which position the next character wiTT be transmitted
to or from the record.

The position indicated by a T descriptor may be in
either direction from the current position. On input,
this aTTows parts of a record to be processed more than
once, possibiy with different editing.

On output, since this group of descriptors do not
themseives cause characters to be transmitted, they do
not affect the Tength of the record. If characters are
transmitted to or beyond the position specified
positions skipped are fiiied with bTanks. The resuTt is
as if the whoie record were initiaiized with bianks.

In the Tc format descriptor, c is the character position
to which, or from which the record transmission of the
next character is to occur.

With the TLc descriptor, the transmission is to occur at
a position c characters backward from the current one.
(If the current position shouid be c, the transmission
to or from wiTT start from position 1 (one) of the
record.)

With the TRc descriptor, the transmission wiTT occur at
a position c characters forward from the present one.

Norsk Data ND—60.145.7 EN

206 ND FORTRAN Reference ManuaT
FORMAT SPECIFICATIONS

The rX format descriptor causes the transmission of the
next character to or from a record to occur at a
position r characters forward from the current position.
On input this position may be beyond the Tast character
of the record so Tong as no characters are transmitted
from such positions.

’"“**Nb FORTRAN :r can be omitted and 1 wiTT be
’ssumed as its vaiue

10.2.2.14 The Slash, /, Format Descriptor

This descriptor denotes the end of data transfer on the
current record. The foTTowing wiTT occur:

a On input from a sequentiai fiTe, the remaining
portion of the record is skipped and the next record
becomes the current record.

0 On output to a sequentiai fiTe, a new record is
created and becomes the Tast and current record of
the fiTe.

o For a direct access TiTe, the record number i is
increased by one and the fiTe is positioned at the
beginning of the record having that number. This
record becomes the current record.

the siash format descriptor Can he
a repiication factor » ' ,>_Zpreceded

10.2.2.15 The L Format Descriptor

This descriptor has the form:

Lw

where
w indicates that the fie occupies w
positions. The corresponding I/O Tist item
must be of type LOGICAL.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI 207
FORMAT SPECIFICATIONS

The input fieId consists of optionai bTanks, optionaTTy
foTTowed by a decimaI point, foTTowed by T for true or F
for faIse. T or F may have additionai characters
foTTowing them in the fieid.

The output fieid consists of w—l bTanks foTTowed by T or
F according to whether the vaTue of the internaT LOGICAL
variabTe has the vaTue ITRUE. or .FALSE.

10.2.2.16 The A Format Descriptor

The A [w] format descriptor is used with CHARACTER I/O
Tist items.

If the optionaT fieid width w is used then the fie
consists of w characters. If w is not specified, then
the number of characters in the fie is the same as the
Tength of the I/O Iist item.

Let I be the Tength of the I/O Tist item. On input, if

then the rightmost I characters wiTT be taken from the
input fie. If however:

w characters wiTT appear Teft justified with
1~w traiTing bTanks‘

On output, if:

the output fie wiIT consist of w—T bTanks foITowed by
I characters from the internai representation.
If, however:

the output fieId wiTI consist of the Ieftmost w
characters of the internaI representation.

Norsk Data ND—60.145.7 EN

208

ExampIe:

ND FORTRAN Reference ManuaI
FORMAT SPECIFICATIONS

VALUE FORMAT OUTPUT

‘ABCDE‘ A ABCDE

'PORST' A3 POR

‘PQRST A8 bbbPQRST

where
b represents a space character (bIank).

10.2-2.17 The 0 Format Descriptor

In ND FORTRAN this descriptor Is USSG for octaI I/Q"
for any 0f the data types ~ INTEGER REAL or DOUBLE

, PRECISION

0n Input w characters ffoW the InpuE retard are
treated as an octaI number The bIE representation
of the binary vaIue Ts then pIACed unCaerted in ~
the Iist iEem right~3u3tT ed and truncated or ‘
padded with zercs on the IefE

ExampIe: _ ' " ‘
The foIIcng exampIe Is on an ND 100 With 48 ESE
ratTng point hardware: __ . __ J

INPUT FORMAT INTERNAL VALUE IIATIGEATZIf,
I0ctaI) , _ LaT(OCTET}I—
137325 , 06 I _' ;TV‘*CII_IITLT13f325IV

2671 3,06' ‘ [I _ -I;‘-f818f03éé7:_y'
' 37533235 : '_ 08‘ ' ,_f “"f'__ - 13333sgci °

_ , " gREAAAAI

2000160000000002 ,016 ,,I,,_‘ 549093 139500 000002

‘fi-rTghE»3usETfTed WTEA "":

On output.ftAe.AAteAAATI t regresentatTen T5 3 I“,
,ary Intege‘ and 15 outputEEAAEed as an Unsigned:

3' AIAAAA oA tAA Ieft IA A TTeId AI_ATAtA‘A'A;;_;,gv..~

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI 209
FORMAT SPECIFICATIONS

10.2.2.18 The Z Format Descriptor

'IlpIn NDFDRTRAN th1s descr1ptor 15 used For
.hexadec1maI I/O For any of the data types INTEGER,

V°REAL Or DUUBLE PRECISION

VizKDn 1nput w Characters Fe the 1np ut record are _‘
' treated as a hexadec1maI number The b1t

L firepresentat1on Qf ithe b1nary vaIue 15 then pIaced
Lunconverted 1n the I15t 1tem r1t just1f1ed and
:truncated 0r padded w1th: Zeros on the Ieft

:Fof_exampIeII*I

INPUT ‘L ""5,’,FDRMATEjiINTERNALIVALUE‘(INTEGERI4)I(Hexadec1ma1) ;lg-;f¢'1_1,f_ _:_“Q -f_,j‘rfl_(deCImaII

21865

i, ‘ 33“A672‘_5‘9,* ~ = 1011111101
E:FFZSCDq_ EVIFF_LF::EIFF-F LR;L‘26?1LLV

If11fv§1gé IREAL181 ;

I‘Dn output the 1nternaI b1: representat1on 1s
E{treated as an uns1gned b1nary Integer and IS OUIDUI I;7_Qr1ght just1f1ed w1th truncat1on or padding w1th

‘~IT9bIanks on the Ieft 1n a f1eId 0§ w1dth w

Norsk Data ND—60‘145.7 EN

210 ND FORTRAN Reference Manua]

Norsk Data ND~60.145.7 EN

‘ND FORTRAN Reference Manua1 211

CHAPTER 11

FUNCTIONS AND SUBROUTINES

Norsk Data ND~60.145.7 EN

212 ND FORTRAN Reference Manual

Nor‘sk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 213
FUNCTIONS AND SUBROUTINES

Functions and subroutines (also known as subprograms)
are procedures which can be tailed from within a program
as many times as required. These procedures may be
either internal (contained within the program in which
they are referenced) or external (self—contained
executable procedures that may be compiled separately).

These are the categories of procedures:

a Intrinsic functions
0 Statement functions
0 External functions
0 Subroutines

The first three categories are referred to collectively
as functions. The last two subroutines and external
functions, are both referred to as external procedures

rySection 1L 2 2 contains a tabie bf ail the _
,INTRINSIC functions inciuding those defined in ANSI

J~FORTRAN 77 and a number of extra functions " ,_
a implemented in NB FORTRAN Appendix contains i7-
, descriptions and a tabTe 0f functiOn or subroutines
Liof a more genera} nature prQVided in the FORTRAN“>

 Tibrary Appendix C contains camplet .descriptions
g§of ail the availabie Monitor Calls ‘ e_ serVices I :
:-DrOVided by the operating system ‘ _‘ u"f~“~” ~

Norsk Data ND~60.145.7 EN

214 ND FORTRAN Reference ManuaT
FUNCTIONS AND SUBROUTINES

11.1 DUMMY AND ACTUAL ARGUMENTS

ExampTe:

Some of the entities used by functions and subroutines
may vary from one caTT to another. Such entities are
represented by dummy arguments of the same type and are
given in the form of a Tist associated with the sub~
program identifier. The actuaT arguments, i.e., the
vaTues the entities are to take for a particuTar
reference to the subprogram, are given in a
corresponding Tist associated with this reference.

A function to evaTuate the arithmetic mean (average) of
two reaT numbers coq be defined as:

FUNCTION AVER (A, B)
AVER = (A+B) / 2.0
RETURN
END

The first statement defines AVER as a function and
indicates that it has two dummy arguments, A and B. The
second statement demonstrates how to evaTuate the
function. The third statement shows that controT is
compiete and is to return to the routine or program
which invoked this function. The END statement indicates
that the definition of this function is compTete. These
statements are discussed in more detaiT Tater in the
chapter.

To use the function to caTcuTate an average, the
foTTowing coq be written:

P=AVER(X, Y)

where
X and Y are the actuai arguments in this
invocation. The statement demonstrates the
invocation of AVER and the assignment of the
resuTting function vaTue to P. The actuaT
argument X is associated with the dummy argument
A, and the actuaT argument Y with the dummy
argument 8.

The result, as defined above, is (A+B)/2.0 which, in
this case, is (X+Y)/2.

The resuit can be used as part of an expression in the
same manner as any other operand.

Norsk Data ND—6O 145.7 EN

ND FORTRAN Reference Manuai 215
FUNCTIONS AND SUBROUTINES

For exampie:

Exampie:

P=O+AVER(1 O, T+V) * S

which evaiuates the average of the constant 1.0 and T+V.
It then muitipiies the resuit by S, adds 0, and puts the
resuiting sum in P.

Actuai arguments may be constants (or their symboiic
names), function references, expressions invoiving
operators, and expressions enciosed in parentheses, if
and oniy if the associated dummy argument is ‘read—
oniy', i.e. its vaiue is not changed by the subprogram.

The type of each actuai argument must agree with the
type of its associated dummy argument except when the
actuai argument is a subroutine name, see Section 11.5,
on page 242 or an aiternate return argument on
Section 11.7 on page 248.

In the previous exampie demonstrating the AVER function,
neither A nor 8 are in any way changed by the execution
of AVER, consequentiy the use of constants and
expressions is in order.

However, suppose a function caiied NEXTIN is defined to
read the next number from a fiie, and returns this
number in the dummy argument. Furthermore, it is a
LOGICAL function and indicates whether the next vaiue
was read, by returning .TRUE. if that was the case, or
.FALSE. if not. Aii the numbers on the fiie can be
summed as foiiows:

5:0
10 IF (NEXTIN(X)) THEN

S=S+X
GO TO 10

ENDIF

Note: yin No,'roaTRAN this sCOuid ~be written more'
neatiy as: ‘ ' _ _ '

5:0, - '
no WHILE (NEXTINiXI)
. s+x ,

guano

Since NEXTIN returns a vaiue in its dummy argument, it
is iiiegai to write NEXTIN (A + l) or NEXTIN (35*2) as
there wouid be nowhere to set the vaiue that NEXTIN
reads.

Norsk Data ND—60.145.7 EN

216 ND FORTRAN Reference Manual
FUNCTIONS AND SUBRDUTINES

However, an array can be used for reading into, as
follows:

DIMENSION A (1000)
DO 10 Izl, 1000

IF (.NOT.NEXTIN(A(I))) GO TO 20
10 CONTINUE
20 CONTINUE
C HERE I CONTAINS THE INDEX BEYOND THE LAST ONE READ.

Upon execution of a function or subroutine reference, an
association is established between the corresponding
actual and dummy arguments. The first dummy argument
becomes associated with the first actual argument, the
second with the second and so on.

Argument association may be carried through more than
one level of procedure reference.

Argument association within a program unit terminates
when a RETURN or END statement in the program unit has
been executed.

Length of Character Dummy and Actual Arguments

Example:

For a character~type dummy argument, the associated
actual argument (also of type character) must have a
length equal to or greater than that of the dummy
argument. When the lengths differ, if e is the length in
characters of the dummy argument, then the e leftmost
characters of the actual argument become associated with
the dummy argument.

For an array name, the restriction on length is for the
entire array and not for each array element.

In the subroutine:

SUBROUTINE PRNAME (NAME)
CHARACTER NAME*20
WRITE (OUT, '(SX, A)') NAME
END

there is a character dummy argument that is assumed to
be of an exact length of 20, and it will write 20
characters on the file whatever the actual argument.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 217
FUNCTIONS AND SUBROUTINES

Thus if we have:

then:

CHARACTER ALPHA*26
DATA ALPHA:'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

CALL PRNAME (ALPHA (7:))

will cause the characters '6' to ‘Z' to be written.

If the intention is to write out exactly the actual
argument, then the appropriate declaration of the dummy
argument is:

CHARACTER NAME*(*)

Dummy and Actual Argument of Type NUMERIC

Example:

Normally, dummy and actual arguments have to be declared
with the same field width and scaling factor. In this
case there is no restriction in mixed arithmetic.

It is possible to declare a dummy argument of type
NUMERIC without specifying field width and scaling
factor.

SUBROUTINE S(N)
NUMERIC (*) N

In this case, the dummy argument may not be used in
mixed arithmetic.

11.1.1 Variables as Dummy Arguments

A dummy argument that is a variable may be associated
with an actual argument that is a variable, array
element, substring, or expression.

The dummy argument may be defined or redefined with the
subprogram if the actual argument is:

o a variable name
0 an array element name
a a substring name

If, however, the actual argument is:

o a constant (or the symbolic name of a constant)
c a function reference

Norsk Data ND-60.145.7 EN

218 ND FORTRAN Reference Manuai
FUNCTIONS AND SUBROUTINES

c an expression involving operators
0 an expression enciosed in parentheses

then the dummy argument must not be redefined within the
program.

11.1.2 Arrays as Dummy Arguments

Exampie:

The number and size of dimensions of an array in an
actuai argument may differ from those of an array in an
associated dummy argument.

If the actuai argument is an array name, then the
association between actual and dummy arguments occurs as
if the first element of the actuai argument were the
actuai argument.

If the actuai argument is an array element name then the
dummy argument is associated with an array whose first
element is the actuai argument.

The dummy argument must be whoiiy contained within the
actual argument.

Suppose there is a function defined to compute the
arithmetic mean (average) of an array. It contains two
dummy arguments, the array and the number of eiements in
the array.

Thus:

FUNCTION ARMEAN (A, N)
DIMENSION A (I N)

C ADD UP THE ARRAY FIRST, THEN DIVIDE BY THE NUMBER OF
C ELEMENTS

R=O
DO 10 I: 1, N

R=R+A(I)
10 CONTINUE

ARMEAN = R/N
RETURN
END

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 219
FUNCTIONS AND SUBROUTINES

This function can be used to find the arithmetic mean of
whoie arrays or parts of them, provided the parts are
contiguous. If we have, for exampie:

DIMENSION AGES (1:100), SIZES (1:50, 1:50)

then the average of a1] ages is:

ALLAGE=ARMEAN (AGES, 100)

or, the first 10 ages wouId be given by:

FIRST=ARMEAN (AGES (1), 10)

or, the Iast 10 ages (91 to 100 inciusive):

FINAL = ARMEAN (AGES (91), 10)

But the mean of the second, fourth, sixth ... etc.
eIements cannot be computed since they are not
contiguous.

)

When using a two—dimensionai (or higher) array, the
dummy argument is associated with contiguous Iocations
in the actuaI argument, i.e. the first subscript varies
most rapidiy. Thus, cieariy:

ALLSIZE=ARMEAN (SIZES, 50*50)

wiII compute the mean of a1? sizes, but:

SINGLE=ARMEAN (SIZES (1, 1), 50)

wii) examine SIZES (1, 1), SIZES (2, 1), SIZES (3, 1)..‘
SIZES (50, 1).

11.1.3 Procedures as Dummy Arguments

Exampie:

A dummy procedure is a dummy argument identified as a
procedure. An example of its use is given beIow.

If a routine is required for approximate evaIuation of
an integraI using Simpson‘s ruie on ten intervais, then,
for it aIso to appiy to any function suppIied by the
caIIer, the definition might be as foiiows:

Norsk Data ND—60.145.7 EN

220 ND FORTRAN Reference ManuaI
FUNCTIONS AND SUBROUTINES

FUNCTION SIMPSN (LO, HI, F)
REAL LO, HI, F

THIS MAKES IT CLEAR THAT F IS AN ENTRY POINT THAT CAN
BE INVOKED

C
O

C
O

EXTERNAL F
C INTERVAL SIZE

H = (HI — LO) / 10.0
C ADD UP VALUES OF FUNCTIONS

R = F (LO) + F (HI)
DO 10 I = 1, 9, 2

R = R + R * F (LO + I * H)
10 CONTINUE

DO 20 I = 2, 9, 2
R = R + 2 * F (LO + I * H)

20 CONTINUE
C FINAL CALCULATION

SIMPSN = R * H/3 O
RETURN
END

Note that it is not mandatory to have an EXTERNAL
statement, in the function SIMPSN, but it is strongTy
recommended, so as to make the intention cTear.

To evaTuate the integraT of one of your own functions
(i e. one that you have defined yourseTf), write:

FUNCTION OWN (X)
OWN=(1+X*X) ** {—1)
RETURN
END

and caTI the Simpson routine with:

VAL = SIMPSN (0.5, 1.0, OWN)

Note that in this case, i.e. defining the function OWN,
the program unit containing the caTT to the function,
SIMPSN,in the statement "VAL=...", requires a
statement:

EXTERNAL OWN

If the invocation of SIMPSN is the only pTace OWN
appears in this program unit, the EXTERNAL statement is
required to inform the compiTer that OWN is the name of
an externaT procedure.

To evaTuate the integraT using an INTRINSIC function,
for exampTe, the trigonometric function SIN from O to 1
radians, the foTTowing invokes the function SIMPSN:

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI 221
FUNCTIONS AND SUBROUTINES

INTRINSIC SIN
QUAD=SIMPSN(0.0,1.D,SIN)

This program unit must contain the INTRINSIC statement
to use the INTRINSIC SIN function.

The argument passed to the function SIMPSN, is the
specific name of the reIevant INTRINSIC function, i.e.
SIN for a REAL argument giving a REAL resuit. It is not
the generic name SIN which gives access to the variants
of SIN for REAL, DOUBLE or COMPLEX type arguments.

Beware that a symboIic name passed as a dummy argument
must not occur in both an INTRINSIC and an EXTERNAL
statement, within the same program unit. An INTRINSIC
statement wiII cause the suppIied functions to be used.
An EXTERNAL statement wiII cause a user written function
to be used. This could be a user defined version of a
SIN function to be used instead of the suppIied
function; note that if this is done, the generic name
SIN is no Tonger avaiIabIe in this program unit.

11.1.4 Asterisks as Dummy Arguments/Alternative Return
Arguments

A dummy argument that is an asterisk may appear onIy in
a dummy argument Iist of a SUBROUTINE statement or ENTRY
statement in a subroutine subprogram.

An asterisk dummy argument can onIy be associated with
an actuaI argument that is an aIternate return argument
in the reIevant CALL statement, see Section 11.7 on
page 248.

An aIternative return actuai argument must be a
statement IabeI preceded by an asterisk, as it appears
within the argument Iist of a CALL statement, see
Section 11.7.1 on page 248.

Norsk Data ND—60.145.7 EN

222 ND FORTRAN Reference ManuaI
FUNCTIONS AND SUBROUTINES

11.2 INTRINSIC FUNCTIONS

INTRINSIC functions are suppIied by FORTRAN and have
speciaI meanings. The specific names that identify the
INTRINSIC functions, their generic names, function
definitions, argument type, and resuIt type
appear in the tabIe on page 225.

Note: An IMPLICIT statement does not change the type of
an INTRINSIC function.

11.2.1 Specific Names and Generic Names

ExampIe:

Generic names simpiify the referencing of INTRINSIC
functions since the same function may be used with more
than one argument type.

If a generic name is used to reference an INTRINSIC
function, the resuIt type (except for those functions
performing type conversion, nearest integer, and
absIute vaIue with a compIex argument) is the same as
the argument type.

For the cosine routine, whose generic name is COS, the
specific names are COS, DCOS, and CCOS. If I, R, D, and
C are variabTes of type INTEGER, REAL, DOUBLE PRECISION,
and COMPLEX respective, then:

a COS (R) wiII invoke the routine caIIed COS

o COS (D) wiTI invoke DCOS since it requests the
doubIe precision version

o COS (C) wiII invoke the compIex oversion CCOS

(NONE: InEND FORTRAN CGSII) can be used to7CfiI
to REAL, since COS is a speCific name for ,

“function of REAL arguments

OnIy a specific name may be used as an actuaI argument
when the argument is an INTRINSIC function. (However,
the names INT, IFIX, IDINT, FLOAT, SNGL, REAL, DBLE,
CMPLX, ICHAR, CHAR, LGE, LGT, LLE, LLT, MAX, MAXO,
AMAXl, DMAXI, AMAXO, MAXI, MIN, MING, AMINl, DMINl,

Norsk Data ND—6D.145.7 EN

ND FORTRAN Reference Manuai 223
FUNCTIONS AND SUBROUTINES

AMINO, MINI, IINT, IZINT, DFLOAT, DCMPLX, ININT, IZNINT,
IZDNINT, IZABS, IMOD, IZMOD, IZSIGN, IZDIM, IMAXO,
IMINO, IAND, IZAND, IOR, 120R, IEOR, IZEOR, NOT, IZNOT,
ISHFT, IZSHFT, IBIT, IZBIT, CLBIT, IZCLBIT, STBIT,
IZSTBIT, GETBF, IZGETBF, PUTBF, IZPUTBF must not be used
as actuai arguments.)

Otherwise, the actuaI arguments must agree in order,
number, and type with the specifications of the tabie
and may be any expression of the specified type. An
actuai argument in an INTRINSIC function reference may
be any expression except a character expression of
unknown Tength (one invoiving concatenation of an
operand having its Tength given by an asterisk in
parentheses, uniess the operand is the symboiic name of
a constant).

Norsk Data ND-60.145.7 EN Rev.A

224 ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

11.2.2 Referencing an INTRINSIC Function

The reference to an INTRINSIC function uses its assigned
name as an operand in an arithmetic or logical
expression.

Norsk Data ND—60.l45.7 EN Rev.A

ND FORTRAN Reference Manua1 225
FUNCTIONS AND SUBROUTINES

TIRE (F INIRINSIC HNIHGB

INTRINSIC Number

of Generic Specific Type of
Function Definition Arguments Name Name Argument Function

Type Conversion Conversion 1 INT — Any arith Default 1nt,
to Integer IFIX RealA4 InLegerAé
INT(a) IDINT RealAS Inteqer*4
See Note 1 IINT Any arith InLeger*4

I2INT Any arxth Integer*2

Conversion 1 REAL REAL Any arxth Rea]*4
to Real FLOAT IntegerA4 Real*4
See Note 2 SNGL Real*8 RealW4

Conversion 1 DBLE DBLE Any arith RealWB
to Double DFLOAT Integer*4 Rea1*8
See Note 3

Conversion 1 or 2 CMPLX CMPLX Any arith Complex*8
to Complex DCMPLX Any arith Complex*16
See Note 4

Conversion 1 - ICHAR Character*1 Default int.
to Integer

See Note 5

Conversion 1 - CHAR Integerk2 CharacterWI
to Character

See Note 5

Truncation INT(a) 1 AINT AINT Real*4 Realn4
See Note 1 DINT RealWR Rea1*8

Nearest Whole INT<a+.5) if a>0 l ANINT ANINT Rea1~4 Hou}‘4
Number INT(a—.5) if a<0 DNINT Reai‘fi Houlks

Nearest Integer INT(a+.5) if a)0 1 NINT - Reaj‘fl DefaulL a.
INT(a-.5) if a<0 ININT Reulfi4 Integorfid

IZNINT Realkq Integer*2
IDNINT Real*8 Integer*4

IZDNINT ReaJA8 Integer*2

Absolute Value I a l 1 ABS IABS Integcr*4 IntegerW4

IZABS Integer*2 Integer*2
SeeZNote ? ABS Real*4 Real*4
(ar +ai) /2 DABS HealW8 Rea1*8

CABS Complexfi8 Rea1*4

CDAES Complex*16 Real*8

Norsk Data ND—60.145.7 EN Rev A

226 ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

INTRINSIC Number

of Generic Specific Type of

Function Definition Arguments Name Name Argument Function

Remainder al—INT(a la)*a2 2 MOD - Default int Default int

See Note 1 IMOD Integer*4 lnteger*4

I2MOD Integer*2 Integer*2

AMOD Real*4 Real*4

DMOD Real*8 Real*8

Transfer of Sign ' a1 if a Z O 2 SIGN ISIGN Integer*4 IntegerK4

—l a if a (0 IZSIGN Integer*2 Integer*2

SIGN Real*4 Real*4

DSIGN Real*8 Real‘S

Positive a —a if a)3 2 DIM IDIM lnteger*4 Integer*4

Difference O ifza S a1 2 I2DIM Integer*2 Integerfi2

1 DIM Real*4 Real*4

DDIM Real*8 Real*8

Double Precision DBLE(a1)*DBLE(a2) 2 DPROD DPROD Real*4 Realfi8

Multiply

Choosing Maximum max(a .a) 2 2 MAX MAXO Default int Default int

Value See Note 9 IMAXO Integer*4 Integer*4

IZMAXO Integer*2 Integer*2

AMAX1 Real*4 Real*4

DMAXI Real*8 Real*8

— AMAXO Default int Realfi4

- MAXl Real*4 Default int

Choosing Minimum min(a ,a ,...) Z 2 MIN MIND Default int Default int

Value See Note 9 IMINO Integer*4 Integer*4

IZMINO Integer*2 Integer*2

AMIN1 Real*4 Real*4

DMIN1 Real*8 Real*8

— AMINO Default int Real*4

— MIN1 Real*4 Default int

Length Length of 1 LEN LEN Character Default int

Character Entity

See Note 11

Index of Location of 2 INDEX INDEX Character Default int

a Substring Substring a

in String a

See Note 10

Imaginary Part ai 1 IMAG AIMAG Complex*8 Real*4

of Complex See Note 6 DIMAG Complex*16 Real*8

Arguments

Norsk Data ND-60.145.7 EN Rev A

ND FORTRAN Reference Manua1 227
FUNCTIONS AND SUBROUTINES

INTRINSIC Number

of Generic Specific Type of
Function Definition Arguments Name Name Argument Function

Conjugate of a (ar,‘ai) 1 CONJG CONJG Complex*8 Complex*8
Complex Argument CDCONJG Complex*16 Complex*16

Square Root J} 1 SQRT SQRT Real*4 Real*4

See Note 8 DSQRT Real*8 Real*8

CSQRT Complex*8 Complex*8
CDSQRT Complex*16 Complex*16

Exponential e**a 1 EXP EXP Real*4 Real*4

DEXP Real*8 Real*8
CEXP ComplexW8 ComplexWS
CDEXP Complex*16 Complex*16

Natural log (a) 1 LOG ALOG Real*4 Rea1*4
Logarithm

See Note 8 DLOG Real*8 Real*8
CLOG Complex*8 Complex*8

CDLOG Complex*16 Complex*16

Common log 10(a) 1 LOGiO ALOGiO Real*4 Rea1*4
Logarithm

DLOG10 Real*8 Real*8

Logarithm log 2(a) 1 L002 ALOG2 Rea1*4 Real*4
(base 2)

DLOGZ Real*8 Real*8

Sine sin(a) 1 SIN SIN Real*4 Real*4
See Notes 7.8 DSIN Real*8 Real*8

CSIN Complex*8 Complex*8

CDSIN Complex*16 Complex*16

Cosine cos(a> 1 COS COS Rea1*4 Real*4
See Notes 7,8 DCOS Real*8 Real*8

CCOS Complex*8 Complex*8

CDCOS Complex*16 Complex*16

Tangent tan<a) 1 TAN TAN Rea1*4 Real*4
See Note 7 DTAN Rea1*8 Real*8

Arcsine arcsine(a) 1 ASIN ASIN Real*4 Real*4
See Note 7 BASIN Real*8 Real*8

Arccosine arccosin(a) 1 ACOS ACOS Real*4 Real*4
See Note 7 DACOS Rea1*8 Real*8

Norsk Data ND—6O 145.7 EN Rev A

228 ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

INTRINSIC Number

of Generic Specific Type of

Function Definition Arguments Name Name Argument Function

Arctangent arctan(a) 1 ATAN ATAN Real*4 Real*4

DATAN Rea1*8 Real*8

arctan<a1.a2) 2 ATANZ ATANZ Real*4 Real*4

DATANZ Real*8 Real*8

See Note 7

Hyperbolic sinh(a) 1 SINH SINH Real*4 Real*4

Sine DSINH Real*8 Real*8

Hyperbolic cosh(a) 1 COSH COSH Real*4 Real*4

Cosine DCOSH Real*8 Real*8

Hyperbolic tanh(a) 1 TANH TANH Real*4 Real*4

Tangent DTANH Real*8 Real*8

Lexically aiz a2 2 — LGE Character Default log

Greater

Than or Equal See Note 12

Lexically a >a2 2 — LGT Character Default log

Greater than
See Note 12

Lexically a1: a2 2 — LLE Character Default 109

Less

Than or Equal See Note 12

Lexically a1<a2 2 — LLT Character Default log

Less than
See Note 12

AND arg 1.AND.arg 2 2 IAND IAND Integer*4 Integer*4

See Note 13 IZAND Integer*2 Integer*2

OR arg 1.0R.arg 2 2 108 IOR Integer*4 Integer*4

See Note 13 120R Integer*2 Integer*2

Exclusive OR arg 1.NEQV.arg 2 2 IEOR IEOR Integer*4 Integer*4

See Note 13 IZEOR Integer*2 Integer*2

NOT logical 1 NOT NOT Integer*4 Integer*4

complement IZNOT Integer*2 Integer*2

Bit Shifting shifts value 2 ISHFT ISHFT Integer*4 Integer*4

left or right IZSHFT Integer*2 Integer*2

See Note 14

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manua1
FUNCTIONS AND SUBROUTINES

229

INTRINSIC Number

of Genetic Specific Type of

Function Definition Arguments Name Name Argument Function

Bit Extract 0 if bit arg 2 of 2 IBIT IBIT Integer*4 Integer*4
arg 1 is 0,9159 *1 IZBIT Integer*2 Integer*2

See Note 15

Clear bit sets bit arg 2 2 CLBIT CLBIT Integer*4 —

of arg 1 to 0 IZCIBIT Integer*2 -

See Note 15

Set bit sets bit arg 2 2 STBIT STBIT Integer’W} —

of arg 1 to 1 IZSTBIT IntegerkZ -

See Note 15

Get bit See Notes 15,16 3 GETBF GETBF Integer*4 Integer*4

field IZCETBF Integer*2 Integer*2

Set bit See Notes 15,16 4 PU'I‘BF PUTBF Integer‘l‘l Integer*4

field IZPUTBF IntegerWZ Integer*2

Norsk Data ND—60.145.7 EN

230 ND FORTRAN Reference ManuaT
FUNCTIONS AND SUBROUTINES

NOTES ON TABLE OF INTRINSIC FUNCTIONS

(l)

(4)

For a of type integer, INT (a) = a. For a of type
reaT or doubTe precision, there are two cases:

0 if la| <1, INT(a)=O:

o if iai >1, INT(a)

is the integer whose magnitude is the Targest
integer that does not exceed the magnitude of a and
whose sign is the same as the sign of a. For
exampie:

INT (—3.7) : -3

For a of type compTex, INT (a) is the vaTue obtained
by appIying the above ruTe to the reaT part of a.

For a of type reaT, IFIX (a) is the same as INT (a).

The resuTt of INT is the defauit integer type for
this compiTation. (See “DEFAULT command”, Section
14.24.1 on page 293).

To convert to INTEGER*2, use IZINT, and to
INTEGER*4, use IINT.

For a of type reaI, REAL (a) is a. For a of type
integer or doubie precision, a is converted to type
REAL. If significant bits are Tost, the resuTt is
truncated. If a has type compIex, REAL (a) is the
reaI part of a.

If a is of type integer, FLOAT (a) is the same
as REAL (a).

For a of type doubIe precision, DBLE (a) = a .
For a type of integer or reaT, the
resuit is converted to doubTe precision so that no
significant bits can be Iost in conversion.

CMPLX may have one or two arguments. If there is one
argument, it may be of type integer, reaT, doubie
precision, or compTex. If there are two arguments,
they may be of type integer, reaT, or doubIe
precision, but must both be of the same type.

If a has type compiex, CMPLX (a) = a. For a of type
integer, reaI, or double precision, CMPLX (a) is the
compTex vaTue whose reaT part is REAL (a) and whose

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 231
FUNCTIONS AND SUBROUTINES

imaginary part is zero.

is the complex value whose real part)
2and whose imaginary part is REAL (a2).

CMPLX (a , a
is REAL iai)

DCMPLX acts analogously with a result of DOUBLE
COMPLEX.

ICHAR provides a means of determining the position
of a character in the collating sequence, which for
ND machines is the ASCII sequence. There are 128
values in this sequence. For example, the letter A
is number 65, and the first (NUL) is 0 (zero).

The argument a is a character of length 1‘

VIN €ND FORTRAN, if the iength is greater than 1 :Né‘
SflfiNst character is used No check is made to see if_
]‘tNe vaiue is more than 127; NeNce care Shpuld be‘.
StakeN if this is u seN 0N values Where tNe parity bitv

: Nas Not been cleared - ,_ , , _ -

(7)

(8)

For any characters c1 and c , (c .LE c) is true if
and only if (ICHAR (c .LE ICHAR(ci) is true,
and (c .EQ.c) is true) if and only if2 (ICHAR
(c1).Eb.ICHAR (czll is true.

The result is of default integer type (see Section
14 24.1, on page 293).

CHAR (i) returns the character in the ith position
of the collating sequence. The value is of type
character of length one. i must be an integer
expression whose value must be in the range O<i<128.
In ND FORTRAN, no check is made that the integer is
in the restricted range; hence care must be taken if
parity bits are being manipulated.

ICHAR (CHAR (i)) i for 0<i<128

CHAR (ICHAR (c)) c for any character c.H

A complex value is expressed as an ordered pair of
reals, (ar, ai), where ar is the real part and ai is
the imaginary part.

All angles are expressed in radians.

The result of a function of type complex is the

Norsk Data ND—60.145.7 EN

232

(9)

ND FORTRAN Reference ManuaT
FUNCTIONS AND SUBROUTINES

principai vaIue.

(See the restrictions which foTTow these notes, on
page 234.)

A11 arguments in an INTRINSIC function reference
must be of the same type.

IIIn ND FDRTRAN arguments are automaticaIIy converted
_;1a the highest order data type See Section 5.1 11
3fon page 82 according to the normai ruies of operand ;

(10) INDEX (a , a) returns an integer vaTue indicating
the startingzposition within the character string a
of a substring identicai to string a . If a occurs1
more than once in a , the starting position2 of the
first occurrence is returned.

If a does not occur in a , the vaIue zero is
retugned. Note that zero is returned if
LEN (a)<LEN (a). Zero is aTso returned if the
secondlargumentzis a nuTT string.

The vaTue of the argument of the LEN function need
not be defined at the time the function reference is
executed.

LGE (a , a) returns the vaTue TRUE if a =a
or if a faITows a in the coTIating sequence
described in Ameritan Nationai Standard Code for
Information Interchange, ANSI X3.4— 1977 (ASCII).
Otherwise, it returns the vaiue .FALSE..

LGT. (a , a) returns the vaTue .TRUE if a foTTows
he toiiating sequence described in 1

ANSInX3. 4~ 1977 (ASCII), and otherwise returns the
vaTue .FALSE..

LLE (a , a) returns the vaTue TRUE if a =a or
if a precedes a in the coTTating sequence
in ANSI x3 4- 197M(ASCII), and otherwise returns the
vaTue .FALSE..

LLT (a , a) returns the vaTue .TRUE. if a precedes
a in he oTIating sequence described in ANSI
X§.4—1977 (ASCII), and otherwise returns the vaiue
.FALSE..

Norsk Data ND~6D.145.7 EN

ND FORTRAN Reference Manual 233
FUNCTIONS AND SUBROUTINES

If the operands for LGE, LGT, LLE, and LLT are of
unequal length, the shorter operand is considered as
if it were extended on the right with blanks to
match the length of the longer operand.

(13) The logical operators are defined for integers in ND
FORTRAN by applying the operator to each bit
position of the arguments independently. These
functions have identical results to the logical
operators, see Section 5.4 on page 92.

(14) ISHFT (arg 1, arg 2) shifts the bits in arg 1 by
arg 2 positions. If arg Z is positive, the shift is
to the left (i.e. towards the highest order bit). If
arg 1 is negative, the shift is to the right.
In both cases, zeros are moved into the vacated bit
positions.

For arg 1 of type INTEGER*2, ~163arg 2:16
and for arg 1 of type INTEGER*4, —32 Sarg 2532.

(15) Bits are counted from the rightmost (least
significant) bit, which is labeled 0. The leftmost
bit is number 15 for INTEGER*2, and 31 for
INTEGER*4.

The entry points CLBIT, IZCLBIT, STBIT, IZSTBIT are
subroutine entries. They may only be invoked by a
CALL statement, and they return no value.

(16) GETBF and PUTBF may only be used in
ND—SOO.

GETBF: The first argument specifies the operand
where the bit field is taken from. The second
argument defines the bit number where the bit field
starts. The third argument specifies the number of
bits in the bit field.

DEST = GETBF (SOURCEl, STARTB, BTWIDTH)

PUTBF: The second and third arguments specify the
bit field as in GETBF. The fourth argument holds the
bits that that are going to be stored in the first

Norsk Data ND—60.145.7 EN Rev.A

234 ND FORTRAN Reference ManuaI
FUNCTIONS AND SUBROUTINES

argument‘s bit map.

DEST = PUTBF (SOURCEI, STARTB, BTWIDTH, SOURCEZ)

RESTRICTIONS ON RANGE OF ARGUMENTS AND RESULTS

Restrictions on the range of arguments and resuTts for
INTRINSIC functions when referenced by their specific
names are as foITows:

(1)

(2)

Remainder: The resuTt for MOD, AMOD, and DMOD is un—
defined when the vaIue of the second argument is
zero.

Transfer of Sign: If the vaIue of the first argument
of ISIGN, SIGN, or DSIGN is zero, the resuIt is
zero, which is neither positive nor negative.

Square Root: The vaIue of the argument of SORT and
DSQRT must be greater than or equai to zero. The
resuTt of CSORT is the principaT vaiue with the reaT
part greater than or equal to zero. When the reaT
part of the resuIt is zero, the imaginary part is
greater than or equai to zero.

Logarithms: The vaiue of the argument of ALOG, DLOG,
ALOGIO, DLOGlO, ALOGZ and DLOGZ must be greater than
zero. The vaTue of the argument of CLOG must not be
(0., 0.). The range of the imaginary part of the
resuTt of CLOG is:

pi < imaginary part S pi.

The imaginary part of the resuIt is pi only when the
reaI part of the argument is Tess than zero and the
imaginary part of the argument is zero.

Trigonometric functions: The values of the compTex
circuiar functions are defined as foTIows:

If Z is compiex and z = x+iy, where x,'y are reaI,
then:

sin (2)
cos (2)

sin (x) cosh (y) + i cos (x) sinh (y)
cos (x) cosh (y) — i sin (x) sinh (y)I!

H

Norsk Data ND~60.145.7 EN Rev.A

ND FORTRAN Reference ManuaT 235
FUNCTIONS AND SUBROUTINES

The foITOW1 n9 INTRINSIC functions are ND FORTRAN
extensions

’doubTe compTex functions
CDSIN c0005 CDEXR CULDG CDSQRT CDABS _-
DCMPLX DIMAG ,' g , ___ D,:; __
309 to base K

_ L982 ALOGK BLOGZ

1ntege r*2 functxons : -;*J'KLTL“"7f :fjp_ I,_3x 5”
IZMINO IZMAXO, IZMOD IZABK IZSIGNQ;IQDIM If:*

integerN4 TUHCtIOfiSf:‘: L
IMINO, IMAXQ; IMOD
convehsions:_k*.--- I ”XI'V,‘_, ”**:-}7‘ .:7' _
IZNINT, IINT;_12NINT; ININT;;IZ§NINT,10?LOATT_ ,-

generic names L I L
IMAG '

bit Operations;kk ., -L;_j L fif‘I.k, 'V _
IAND, IZAND, IOR,,I20R,'IEOK IZEOR ISHFT, VIZSHFT, :
NOT, IZNDT, VISIT, IZBIT CLBIT I20LBI?3“XST8IT;
IZSTBIT_V' , _, - , : -,;r ,1 t *

Norsk Data ND—6OL145.7 EN

236 ND FORTRAN Reference Manuai
FUNCTIONS AND SUBROUTINES

11.3 STATEMENT FUNCTIONS

Exampie:

A statement function is a procedure specified by a
singie statement that is simiiar in form to an
arithmetic, TogicaT, or character assignment statement.
This statement is nonexecutabie and not part of the
norma) execution sequence. However, these definitions
must foTTow aTT decTaratives and precede executabie
statements.

The generaT form of a statement function is:

symb ([arg1, arg2, ...])=e

where
symb is the symboiic name of the statement
function
arg is a dummy argument, and
e is an expression.

The reiationship between symb and e must conform to the
standard assignment ruies, see Chapter 7 on page 115.

The Euciidean distance between points (X1, Y1) and (X2,
Y2) coq be represented by:

DIST (X1, Y1, X2, Y2) = SORT ((Xl—X2)**2+(Y1—Y2)**2)

To use this function to evaTuate the distance between
the i~th and j—th points represented by arrays A (for
the X‘s) and B (for the Y's), the foTTowing coq be
written:

DIST (A (I), B (I), A (J), B (J))

It is not necessary to restrict the operands in the
expression to the statement function’s dummy arguments.
As an exampTe, suppose the vaTues A, B and C are defined
in a COMMON bTock, then the evaiuation of a quadratic
expression with these coefficients coq be defined as:

OUADR (X) = (A*X+B) * X+C

The dummy argument names have the scope of the statement
function onTy.

A statement function produces onTy one vaiue, that is,
the resuTt of the expression it contains.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 237
FUNCTIONS AND SUBROUTINES

The actual arguments must agree in order, number, and
type with the corresponding dummy arguments. An actual
argument may be any expression except a character
expression involving concatenation of an operand whose
length specification is an asterisk in parentheses,
unless the operand is the symbolic name of a constant.

In ND FORTRAN however converSion WiTl be carried
out, where possible if the actual and dummy
arguments are not of the same type

11.3.1 Statement Function Restrictions

A statement function may be referenced only in the
program unit that contains the statement function
statement.

A statement function statement must not reference
another statement function which appears in subsequent
lines of the program unit.

The symbolic name identifying the statement function
must not be used as a symbolic name in any specification
statement (except in a Type statement for specifying the
type of function) or as the name of a common block in
the same program unit.

An external function reference in the expression e must
not cause a dummy argument of the associated statement
function to become undefined or redefined.

The symbolic name of a statement function is a local
name, see Section 1.3 on page 6, and must not be the
same as the name of any other entity in the program unit
except the name of a common block.

The symbolic name of a statement function may not be an
actual argument. It must not appear in an EXTERNAL
statement.

in ND FORTRAM if an actua:} argument differs in type
, frdm the corresponding dummy argument then the

dummy argument

Norsk Data ND—60.145 7 EN

238 ND FORTRAN Reference Manual
FUNCTIONS AND SUBRDUTINES

A statement function statement in a function subprogram
must not contain a reference to the name of the function
subprogram or an entry name in the function subprogram.

11.3.2 Referencing a Statement Function

For example:

A statement function is referenced by using its function
reference in an expression.

Note that if a statement function has no dummy
arguments, its definition and reference must still
include empty argument lists.

LOGICAL CONSEC
CONSEC () = ABS (X—Y) .E0. 1
IF (CONSEC ()) THEN
ENDIF

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 239
FUNCTIONS AND SUBROUTINES

11.4 EXTERNAL FUNCTIONS

ExternaI functions are both externai procedures and
function subprograms. They consist of a FUNCTION
statement foIIowed by a sequence of FORTRAN statements
which define desired operations. They may aIso contain
one or more RETURN statements and must be terminated by
an END statement.

The form of a FUNCTION statement is:

[type] FUNCTION name [([argl [,argZ] ...])]

where
type is either INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, NUMERIC (fw,sc) or CHARACTER
[*I] where I is the Iength of the
resuTt. I may have any of the forms of
those aIIowed in the CHARACTER statement,
except that an integer constant expression must
not incTude the symboIic name of a constant.
The defauit for I is one.
(Note: type may be specified in a Type
statement instead. The normaI impIicit ruIes
appTy if neither form is used.)

Name is the symboIic name of the function sub—
program in which the FUNCTION statement
appears; it is an externaI function name.

arg is a dummy argument.

The symboIic name of the function subprogram must appear
as a variable name in this subprogram. Its vaIue on
execution of a RETURN or END statement in the
subprogram is the value of the function.

An externaI function may aTso modify one or more of its
dummy arguments.

11.4.1 Actual Arguments for an External Function

ActuaT arguments in the function reference must agree in
order, number and type with the corresponding dummy
arguments in the referenced function. An exception to

Norsk Data ND—60.145.7 EN Rev.A

240 ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

this rule is when a subroutine name appears as an actual
argument, because subroutine names do not have a type.

Actual arguments may be:

0 An expression. (Except a character expression of
unknown length, e.g. one involving concatenation of
an operand whose length is given by an asterisk in
parentheses, unless the operand is the symbolic name
of a constant.)

0 An array name

0 An intrinsic function name

0 An external procedure name

a A dummy procedure name (see Section 11.1.3, on
page 219).

Note that an actual argument in a function reference may
be a dummy argument in a dummy argument list within the
same subprogram.

11.4.2 Function Subprogram Restrictions

A FUNCTION statement should only appear as the first
statement of a function subprogram. A function
subprogram may contain any other statement except a
BLOCK DATA, SUBROUTINE, or PROGRAM statement.

The symbolic name of an external function is a global
name and cannot, therefore, be the same as any other
global name.

A function specified in a subprogram may be referenced
in any other procedure subprogram or in the main pro—
gram. A function subprogram must not reference itself,
either directly or indirectly.

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference Manuai 241
FUNCTIONS AND SUBROUTINES

For exampie:

,isfiatéfiéhtifnnétidf‘NFFF‘"5DFI":‘°f

If a function has no dummy arguments, its FUNCTION
statement may omit the argument 1ist. But its reference
may not omit the iist.

CHARACTER*1 FUNCTION NEXTCH
READ (IN, '(Al)') NEXTCH
RETURN
END

then the form of the invocation must be, as in this
exampie:

IF (NEXTCH().EQ.'+‘) GO TO 10

Norsk Data ND—60.l45.7 EN

242 ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

11.5 SUBROUTINES

A subroutine is an external procedure which is
identified by a SUBROUTINE statement.

The SUBROUTINE statement must be the first statement of

the subroutine subprogram and it has the form:

SUBROUTINE name [([argl [,argZ] ...])]

where
name is the symbolic name of the subroutine sub—
program in which the SUBROUTINE statement
appears

argl... is a dummy argument list consisting of
variable names, array names, or procedure names.

A dummy argument can also be an asterisk, see
page 221.

Note: If there are no dummy arguments, either of the

forms, name or namel), can be used in the SUBROUTINE
statement. Likewise a subroutine can be referenced,

according to the form in which it was specified, by CALL

name or CALL name().

11.5.1 Subroutine Reference

A subroutine is referenced by the CALL statement which

has the form:

CALL name [([argl [,argZ] .LL])]

where
name is the symbolic name of the subroutine sub—
program
argl... is an optional list of actual
arguments.

A subroutine specified in a subprogram may be referenced
within any other procedure subprogram or within the main
program. A subroutine subprogram must not reference
itself, either directly or indirectly.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manuai 243
FUNCTIONS AND SUBROUTINES

The use of a subroutine name or an aiternate return
specifier (see the RETURN statement on page 248, in this
chapter) as an actuaT argument is an exception to the
ruie requiring agreement of type between dummy and
actuai arguments.

Note that an actuai argument may be a dummy argument
name that appears in a dummy argument iist within the
subprogram containing the reference. An asterisk dummy
argument must not be used as an actuai argument in a
subprogram reference.

11.5.2 Subroutine Subprogram Restrictions

A subroutine subprogram may contain any other statement
except a BLOCK DATA, FUNCTION, or PROGRAM statement.

The symboiic name is a giobai name, and cannot,
therefore, be the same as any other giobai name. See
the exampies eariier in this chapter.

Norsk Data ND—60.145.7 EN Rev.A

244 ND FORTRAN Reference ManuaT
FUNCTIONS AND SUBROUTINES

11-6 THE ENTRY STATEMENT

The ENTRY statement enabTes additionaT entry points into
an externaT subprogram to be specified. It may appear
anywhere within a function or subroutine subprogram.
However, it may not appear between a bTock IF and its
corresponding ENDIF statement, or between a DO
statement and the terminaT statement of its DO—Toop.

An ENTRY statement is nonexecutabTe. It has the form:

ENTRY name [([argl [,argZ]...])]

where
name is the symboTic name of an entry in a
function or subroutine program and is known as
an entry name.

argl... is an optionaT Tist of dummy arguments
which may be variabTe names, array names, dummy
procedure names. or an asterisk. This Tast
argument type is permitted onTy in a
subroutine subprogram. A dummy procedure is
defined in Section 11.1.3, on page 219,

Note that if there are no dummy arguments, either name
or name() can be used in the ENTRY statement, A function
specified by either form must be referenced by name(). A
subroutine specified by either form can be referenced by
a CALL statement, using either CALL name or CALL name().

The symboTic entry name may appear in a Type statement.

Execution of the externaT procedure begins with the
first executabTe statement foTTowing the reTevant ENTRY
statement.

An entry name can be referenced in any program unit
except the one containing the entry name in an ENTRY
statement.

The order, number, type, and names of the dummy
arguments of the ENTRY statement may be different from
the order, number, type, and names of the dummy
arguments in the FUNCTION or SUBROUTINE statements and
other ENTRY statements in the same subprogram. However,
each reference to a function or subroutine must use an
actuaT argument Tist that agrees in order, number, and
type with the corresponding dummy argument Tist of the
FUNCTION, SUBROUTINE, or ENTRY statement. The use of a

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference Manual 245
FUNCTIONS AND SUBROUTINES

For example:

subroutine name or alternate return specifier (see
Section 11.7, on page 248) as an actual argument is an
exception to the rule requiring agreement of type.

For any particular subroutine call or function
invocation at one of its entry points, only those dummy
arguments specified at the point of entry can be assumed
to have a value during this call/invocation.

SUBROUTINE SUB

ENTRY INIT (A,B,C)

ENTRY LOOKUP (A,X)

ENTRY STORE (Y,A)

END.
If the routine was entered at entry INIT, the dummy
arguments A, B and C have values. But if the entry is
via LOOKUP, then only A and X, but not 8 nor C, will
have values. Any access to B and C will give
unpredictable results.

Note that in entry STORE, the dummy argument A is
defined at a different position in the list.

Within a function subprogram, all variables whose names
are also the names of entries are associated with each
other and with the variable whose name is also the name
of the function subprogram. Therefore, any such
variable that becomes defined, causes all associated
variables of the same type to become defined and all
associated variables of different types to become
undefined.

Norsk Data ND—6O 145 7 EN Rev A

246 ND FORTRAN Reference ManuaT
FUNCTIONS AND SUBROUTINES

11.6.1 ENTRY Statement Restrictions

An entry name cannot be used as a dummy argument in a
FUNCTION, SUBROUTINE or ENTRY statement within the same
subprogram in which it appears as an entry name. It must
not appear in an EXTERNAL statement.

In a function subprogram, a variabie having the same
name as the entry name, must not appear in any statement
preceding the ENTRY statement associated with the entry
name (except in a Type statement).

In a subprogram, a name used as a dummy argument in an
ENTRY statement, must not appear in an executabie
statement preceding that ENTRY statement except in a
FUNCTION, SUBROUTINE or ENTRY statement. Likewise, it
must not appear in the expression of a statement
function statement, unTess the name is aTso a dummy
argument of the statement function, or appears in a
FUNCTION or SUBROUTINE statement, or appears in an ENTRY
statement preceding the statement function statement.

If a dummy argument does appear in an executabie state~
ment, such execution is onTy permitted if, during the
execution of a reference to the function or subroutine,
the dummy argument is in the Tist of dummy arguments of
the procedure name referenced.

For exampTe, if two functions have very simiiar
aTgorithms barring some initiaiization code, then they
can be written in one externaT function with a second
entry point. The foTTowing function with two entry
points searches an array of integers, IA, for either an
odd or even vaTue, depending on the entry point.

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manna] 247
FUNCTIONS AND SUBROUTINES

FUNCTION 1000 (IA, N)
IODD = O
M = 1
GO TO 10

ENTRY IEVEN (IA, N)
IEVEN = O
M = O

C COMMON CODE STARTS HERE
10 CONTINUE

DO 20 K=l, N
IF (MOD (IA (K), 2).EO.M) THEN

IF (M.EO 1) IODD=K
IF (M E0.0) IEVEN = K
RETURN

ENDIF
20 CONTINUE

END

Norsk Data ND—60.145.7 EN Rev.A

248 ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

11.7 THE RETURN STATEMENT

The RETURN statement causes control to be returned from
a subprogram to the calling program unit. The form of a
RETURN statement in a function subprogram is:

RETURN

The form of a RETURN statement in a subroutine sub—
program is:

RETURN [e]

where
e is an integer expression.

During execution, the value of the expression e will
select one of the alternative RETURN actual arguments
specified in the relevant CALL statement, see the
next section.

11.7.1 Execution of a RETURN Statement

Execution of a RETURN statement in the first of the
above forms causes control to be returned to the
statement of the calling program following the statement
that calls the subprogram.

Execution of a RETURN statement in the second form given
above also returns control to the referencing program
unit and it completes the execution of the CALL
statement whether e is specified or not.

However, if:

n is the number of asterisks in the SUBROUTINE
or subroutine ENTRY statement, then e
identifies the e-th asterisk in the dummy
argument list. Control will now be returned
to the e—th statement label in the argument

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manual 249
FUNCTIONS AND SUBROUTINES

Example:

list of the calling statement. This is known
as the alternate return specifier.

The following subprogram checks a number for validity
(in this case it tests for integers from 1 to 10) and
takes an alternate return if it fails.

SUBROUTINE VALCHK (X,*,*)
IF (X.LT.1.0R X GT.10) RETURN 1
IF (INT (X).NE.X) RETURN 2
END

and it can be used as follows:

CALL VALCHK (TYPE, * 90, * 91)
c OKAY IN NORMAL CONTINUATION
.OO"' STOP 'OUT OF BOUNDS‘
91 STOP 'NOT AN INTEGER'

Execution of a RETURN (or END) statement causes all
entities within the subprogram in which it occurs to
become undefined except for the following:

o Entities specified by SAVE statements.
0 Entities in blank common.

Norsk Data ND-60.14S.7 EN

250 ND FORTRAN Reference Manual

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua1 251

CHAPTER 12

MAIN PROGRAM

Norsk Data ND—60.145.7 EN

252 ND FORTRAN Reference Manua]

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manual 253
MAIN PROGRAM

A main program is a program unit which does not have a
FUNCTION, SUBROUTINE, or BLOCK DATA statement as its
first statement.

An executable program must have exactly one main program
in it and the first executable statement of the main
program is also the first executable statement of the
executable program which contains it.

12.1 THE PROGRAM STATEMENT

The form of a PROGRAM statement is:

PROGRAM pgm

where
pgm is the symbolic name of the main program in
which the PROGRAM statement appears.

A PROGRAM statement is not mandatory, but if it appears,
it must be the first statement of the main program.

* . fm ' as. warm; ”if z, the PROGAM f
:?the name £MAIN is genetat -§’*J

Since the symbolic name, pgm, is global, it must not be
used as any local name within the main program, neither
may it be the name of an external procedure, BLOCK DATA
subprogram, or COMMON block of the executable program in
which it appears.

A main program may not be referenced from a subprogram
or from itself.

Norsk Data ND~60.145.7 EN

254

1' 6121103111111» p911, 1311111111 " ,‘11 A

ND FORTRAN Reference Manua]
MAIN PROGRAM

1;IS ND FORTRAN a program wh1¢h 1S to bé executed SS HS
an RT~program Can be g1ven a pr1orzty at comp11e~ _~1;
11mg by the fo11ow1ng form Sf the statement

priority 1S an uns1gned 1nteger constant wh1ch
~ must be 1955 than 256 This 1S the defau11_pr1or1ty
rass1gned by thS R1 1oader to th1s pn m ~1he
_prior1ty 1s 1gnored 1n backgrounds operat10n‘

Norsk Data ND—6O 145.7 EN

ND FORTRAN Reference Manua] 255

CHAPTER 13

BLOCK DATA SUBPROGRAM

Norsk Data ND—60.145.7 EN

256 ND FORTRAN Reference Manual

NOY‘Sk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai 257
BLOCK DATA SUBPROGRAM

BLOCK DATA subprograms are used to provide initiaT
vaTues for variabies and arrays in named common biocks.
They are nonexecutabie and more than one may appear in
an executabTe program. The first statement of a BLOCK
DATA subprogram is a BLOCK DATA statement which has the
form:

BLOCK DATA [sub]

where
sub is the symboTic name of the BLOCK DATA
subprogram in which the statement appears.

The optionai name sub is giobaT and cannot therefore
be the same name as that of an externaT procedure, main
program, COMMON biock, or other BLOCK DATA subprogram in
the same executabie procedure. Neither can it be the
same as any TocaT name in the subprogram.

InitiaT vaTues may be entered into more than one
TabeTTed COMMON bTock in a singTe subprogram of this
type. .

13.1 BLOCK DATA SUBPROGRAH RESTRICTIONS

The onTy other statements that can appear in a BLOCK
DATA subprogram are IMPLICIT, PARAMETER, DIMENSION,
COMMON, SAVE, EOUIVALENCE, DATA, END and Type
statements. Comment Tines are permitted.

Norsk Data ND—60.145.7 EN

258 ND FORTRAN Reference Manua]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua? 259

CHAPTER 14

COMPILER COMMANDS

Norsk Data ND—60.l45.7 EN

260 ND FORTRAN Reference Manual

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 261
COMPILER COMMANDS

14.1 COHPILER INVOCATION AND TERMINATION

The compiler is invoked from SINTRAN by the command:

@ND FORTRAN—500

OT‘

@FORTRAN~1OO

The compiler responds with a notification of the version
in use. It then prompts by writing on the terminal:

FTN:

When these characters appear with the cursor at the next
position, the compiler is in ‘command mode', i.e.,
awaiting commands.

The command:

EXIT

will return control to SINTRAN after all source, list,
and object files have been closed.

It is ignored if found in the source text.

Norsk Data ND—60 145 7 EN

262 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.2 COMPILER COMMAND SYNTAX

The command names can be abbreviated. Only the number of
letters needed to make the command name unique need be
typed, but more may be given if required (e.g., for
readability or documentation). The parameters for a
command can be written on the same line as the command
name but separated from it by one or more blanks. The
parameters are separated from each other by one or more
blanks and at most one comma. Alternatively, if
parameters are expected but not given, the compiler will
prompt for them in turn.

Most commands may also be written as part of the source
program, but in this case all parameters must be on the
same line as the command name, and the command name must
be preceded by a $ symbol. Blanks may appear before the
$ and between the $ and the command name. Such commands
can only be written between statements. They cannot
occur in the middle of a statement, or between
successive continuation lines of a statement.

In the description of the commands in this manual, those
commands which can only be placed in the source program
are written with the preceding $.

A number of commands have just one parameter, which is
either ON or OFF. Fer all such parameters, if the
parameter is omitted, UN is assumed; and if it is not
recognized (for example, due to mistyping) then OFF is
assumed.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual 253
COMPILER COMMANDS

14.3 THE HELP COMMAND

The HELP command will list the available compiler
commands and information about the possible values of
their parameters.

The command is written:

HELP [name]

where
name may be the name of any command, or an
abbreviation.

If an abbreviation is used, all commands beginning with
that abbreviation will be listed.

If no name value is entered, all commands will be
listed.

Each command will be listed with its required
parameters, and an indication of the possible parameter
values. The current values of parameters will also be
shown, where relevant.

14 . 4 COMMENTS

Comments may be included with the commands, and has the
following form:

CC comment

Whatever follows the command name CC on the same line,
is treated as a comment and ignored by the compiler.
This is primarily useful for inserting comments in a
batch or mode job.

Norsk Data ND—60.l45.7 EN

264 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.5 COMPILATION OF SOURCE PROGRAMS

14.5.1 The COMPILE Command, Preparation of Relocatable
Code

The most important command is the COMPILE command which
determines the program to be compiled and where the
output is to be placed. This is written as:

COMPILE source [list][object]

where
source is the name of the file, or unit number,
containing the FORTRAN program to be compiled.
This parameter cannot be omitted. If TERMINAL or
unit 1 is specified, input is accepted from the
terminal, line by line, until $EOF command is
encountered in the input stream. In this case,
the compiler returns to command mode. If a name
is specified, it must obey the usual SINTRAN
syntactic form and conventions. The first
default type is SYMB and the second default type
is FORT.

list is the name of the file or unit number to
which the source listing will be printed by the
compiler. The format of the output will be
suitable for printing and will contain the
ASCII LF, CR, and FF characters for carriage
control. Parity will be set on this file.

If 0 is specified, the listing is suppressed.

If TERMINAL or 1 is specified, the output will
appear on the terminal. If this parameter is
omitted, the output will be written as a
continuation of the list file of the immediately
previous COMPILE command, or, if none, the
listing will be suppressed.

The first default type is SYMB and the second
default type is LIST.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 265
COMPILER COMMANDS

object is the name of the file, or unit number
which will contain the compiled relocatable
version of the program. This is the input to the
loader when creating a program. See the ND
Relocating Loader manual ND—6D.066 for details.

If D is specified, no relocatable code is
generated, but a complete compilation takes
place, thus giving any diagnostic messages that
may occur.

If the object file is omitted, the output is a
continuation of the last object file, if any, or
O is assumed and the output is suppressed.

If a unit number is given, it must be octal
without any trailing B.

The default type of the object file is BRF on
the ND-lDD, NRF on the ND—SDO.

After the COMPILE command is completed, the prompt FTN:
reappears on the terminal.

Any diagnostic messages generated by the compiler are
listed at the terminal, and also on the list file, if
different. The messages may be warnings or errors. If
any errors are found before the END statement is
encountered, the code generation will not proceed, and
the relocatable output will be suppressed.

The end of the source text is either the end—of—file or
a $EOF encountered in the source file.

On the source listing, the numbers printed on the far
left are line numbers, which number sequentially all the
lines in the program units within a single listing. Each
listing starts with line 1.

Error messages, the symbolic debugger and the cross~
reference listing refer to statement numbers. Each
statement is given a number equal to the line number on
which the first character of the statement is found.
Thus, if several statements are written on one line,
they all have the same statement number. If a statement
consists of more than one line, the statement numbers
will not be consecutive. It is hoped that this mechanism
will help during editing because the error reports refer
to a line number close to the error. See also the next
section.

The compile command is ignored if found in the source
file.

Norsk Data ND-6D.145.7 EN

266 ND FORTRAN Reference ManuaT
COMPILER COMMANDS

14.5.2 Including Text From Other Source—Files

Other fiTes can be incorporated in the source program at
the points indicated by the command:

$INCLUDE fiTename

where
fiTename is the name of the fiTe or unit number
to be read. The parameter cannot be omitted; the
defauTt fiTe type is SYMB.

This command cannot be used in command mode.

The reading of the source program by the compiTer is
switched to the named fiTe and continues untiT either
the end-of-fiTe is found, or a $EOF command is
encountered. The fiTe is then cTosed and the text
foTTowing the $INCLUDE command is read. The named fiTe
may itseTf contain further $INCLUDE commands, but no
more then five incompTete $INCLUDE 5 may be in existence
at any one time.

For exampTe, in a suite of subroutines which aTT share a
COMMON bTock, the definition of that bTock coq be he
on a fiTe caTTed COMDEF SYMB. Then by writing:

$INCLUDE COMDEF

at the appropriate point in each subroutine, the
definition is brought into the source fiTe. Thus onTy
one copy of the COMMON bTock definition is kept, and aTT
subroutines have identicaT decTarations of it.

When a fiTe is incTuded, two numbers are printed on the
source Tisting. The first is the statement number, which
is the one which the symboTic debugger uses. The second
number is the Tine number in the iiTe which contains the
Tine. Error messages refer to both numbers. If the
second number is surrounded by sTashes, then the Tine is
part of an incTuded fiTe. If it is in parentheses, then
it is in the originaT source fiTe.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual 267
CDMPILER COMMANDS

14.5.3 End of File

The command:

$EOF

signifies that the reading of the current file is
complete. Reading continues at the next outer INCLUDE
level.

It is ignored in command mode.

14.5.4 Preparation of Executable Programs and Loading

In FORTRAN—100, an executable program may be prepared
and output to a file, by using the command:

FROG—FILE filename

where
filename is the name of a file to receive the
executable program.

The default file type is PRDG.

If the CDMPILE command is used subsequent to the PROG—
FILE command, then the compiler will generate the
executable program directly on to this file. The CDMPILE
command will still generate an object file if it is
specified, in addition to the PROG file.

PROS—FILE commands will be ignored if they are placed in
the source file.

The executable program is completed automatically, by
loading the FORTRAN library (1 or 2 bank, depending on
the setting of the SEPARATE—DATA option), when the EXIT
command is given.

Norsk Data ND—60.145.7 EN

268 ND FORTRAN Reference Manual
COMPILER COMMANDS

The PROG—FILE command can be issued at most once during
any invocation of the compiler.

In FORTRAN~SOO an executable program may be prepared and
output to a file by the command:

SEGMENT—FILE [filename]

if no filename is specified, two temporary files are
used and deleted when exiting from the compiler. If
filename (with no type) is specified, two files
are used:

filename SWPO and filename:Sw01

If the COMPILER command is used subsequent to the
SEGMENT—FILE command, the compiler will generate an
executable program directly on to the file specified in
the SEGMENT—FILE command. The compiler will still
generate an object—file if it is specified. The SEGMENT—
FILE command will be ignored if it is placed in the
source-file. The executable program is completed
automatically when the RUN command is given.

To complete the executable program, libraries or other
object files may be added by using the command:

LOAD filename [,filename]

where
filename is the name of an object file or
library.

The default type of the file loaded will be BRF on the
ND—lOO and NRL on the ND—SOO.

LOAD commands will be ignored if they are placed in the
source file.

Any error messages which appear while the LOAD command
is being executed can be found in the ND Relocating
Loader Manual (ND-6O 066) and in the ND—SOO
LOADER/MONITOR Manual (ND~60.136).

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 269
COMPILER COMMANDS

To define entry points in the "built~in” loader table we
can use:

DEFINE <entry—name>, <value>, <mode>

If a ? appears instead of entry—name, then a map of
undefined entries will be displayed on the terminal. If
the entry—name is omitted, then a map of defined entries
will be displayed.

value gives the load address in octal.
mode indicates either a program area (P) or data
area (D).

In FORTRAN—100 it is possible to set the current load
address by using * instead of entry~name. Then the
value—parameter will give the current load—address.

The command:

LINK—SEGMENT <segmentname>

is available in FORTRAN—SOD. The specified segment will
be linked to the program in the files specified in the
SEGMENT—FILE command.

The command:

RUN

will load the FORTRAN library and start execution of the
program.

Norsk Data ND—60 145 7 EN

270 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.5.5 Combined Compile and Execution

A simple to use Compile and Execute facility is
available if the compiler is invoked on ND—lOO by the
command:

@FORTRAN—lOO source—file

and on ND—SOO by the command:

@FORTRAN-SOO source—file

The compiler will generate an executable program, and
begin execution, provided that the program has compiled
successfully.

When using FORTRAN—100, the executable program will be
stored in a file with the same name as the source—file,
but with type PROG. If the PROG file does not exist, it
will be created.

When using FORTRAN—500, the executable program will be
stored in a temporary file which will be deleted after
execution.

It is possible to give commands to the compiler when
invoked in this way. Each command must start with $ and
end with /.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 271
COMPILER COMMANDS

The general form of the compiler invocation for compile
and execution for FORTRAN—100 is:

@FORTRAN—lOO $command/[$command/lsource[list][object]

and for FORTRAN—500:

@FORTRAN—SOO $command/[$command/]source[list][object]

where
source is the name of the file, containing the
FORTRAN program to be compiled, then executed.
list is the name of the file to which the source
listing will be printed by the compiler.
object is the name of a file which will contain
the compiled relocatable version of the program.

An executable program will be generated only if no
object file has been specified, and no compilation
errors have been detected.

Norsk Data ND—60.145.7 EN

272 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.6 LISTING INFORMATION

14.6.1 Cross Reference Listing

The CROSS—REFERENCE command will list all the symbolic
names and labels, their attributes, and a list of the
line numbers where they are used. The output is on the
listing file and it follows the source listing. It is
written:

CROSS—REFERENCE [filename][referencesl[call~hierarchyl

where
filename is the name of a file to be used as a
temporary work area. The default file~type is
XREF. The file must be on a mass—storage device,
If filename is omitted, the scratch—file is
used.
references may take the value ON or OFF.

If ON is set, all the variables and labels,
their attributes, and a list of the line numbers
where they are used will be output to the list—
file, following the source program.
The default setting is ON.
call~hierarchy may take the value ON or OFF.

If UN is set, a global cross—reference of all
the preceding program units indicating which
routines call other routines‘ Other routines
will be output to the last specified list—file.

The default setting is ON.

The line numbers may be followed by one character:

0 The character D next to a line number indicates that
the symbolic name is declared in this line.

0 The character M next to a line number indicates that
the symbolic name is modified by an assignment
statement in this line.

a The character A next to a line number indicates that
the symbolic name is used as an argument, and that
this argument may be modified.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual 273
COMPILER COMMANDS

For example:

0 The character I next to a line number indicates that
the symbolic name is initiated in a DATA statement in
this line.

0 A space next to a line number indicates that the
symbolic name is referred to in this line.

CR—REF XREF

will produce a cross—reference plus the call—hierarchy.

CROS—REFER,OFF,ON

will produce the call—hierarchy only, in the listing
file. '

For each name which represents a program variable
occupying storage, the position of the variable in
storage is also indicated in the cross—reference
listing.

For COMMON variables, the offset from the beginning of
the COMMON block is listed. This offset is printed in
octal. On the ND—SOO it is in bytes and on the ND—lOO it
is in words. On the ND~100, if the offset is followed by
a plus character ”+”, the variable begins in the right—
hand byte of the word. The offset refers to the first
byte of storage occupied by the variable; thus for
arrays, it is the first byte of the first element.

Any other offset is relative to the B—register and is
printed in octal. On the ND—SOO it is in bytes and on
the ND—lOO it is in words. For simple local non—
character variables, this is a simple offset. For
parameters, the offset refers to an address word, and
this is indicated by the characters “IND”. For non~
character arrays and EOUIVALENCEd variables‘ the offset
also refers to an indirect address word. For character
variables, the offset refers to a descriptor, see
Appendix E.

For non—COMMON arrays, the indirect address points to
the position of an element in the array which has only
zero subscripts. Note that this array element may be
an imaginary point with all subscript values set to
zero. This is used to calculate the runtime memory
addresses of the other elements in the array.
elements are calculated.

Norsk Data ND—60.145.7 EN

274 ND FORTRAN Reference ManuaT
COMPILER COMMANDS

14.6.2 Program Addresses

The command:

PROGRAM—MAP start address

wiTT generate a tabTe on the Tisting fiTe. For each
statement number in a program unit, the tabTe gives the
address of the first machine code instruction
corresponding to it. The start address specified in the
command is taken to be the address of the first
statement in the unit. Each subsequent unit compiTed is
given an offset which assumes that it wiTT immediateTy
foTTow the preceding unit in the address space.

The start address is any vaiid octaT address. If the
address is omitted, zero is assumed. There is no way of
suppressing the Tisting after this command has been
given.

14.6.3 Listing Control

The number of Tines on each page of the Tisting can be
changed by the command:

PAGE—SIZE n

where
n is a decimaT integer.

After n Tines have been output to the Tisting fiTe a
form—feed character is output to start a new page.

If n is omitted, no change is made to the current vaTue.
The vaTue remains in effect untiT another PAGE—SIZE
command is issued. The defauTt vaTue is 56.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference ManuaT 275
COMPILER COMMANDS

The Tisting of the source can be controTTed by the
command:

LIST ON

Oi"

LIST OFF

If ON is specified, the source program wiTT be Tisted on
the Tisting fiTe. If OFF is specified, the Tisting
ceases, untiT the next LIST ON is encountered. The
Tisting fiie is not cTosed.

This command can be used to shorten Tistings by
suppressing the printing of the inciuded fiTes; for
exampTe:

$LIST OFF
$INCLUDE fiTename
$LIST ON

wiTT not Tist the incTuded fiTe (unTess, of course, the
fiTe contains a $LIST ON within itseif).

This command does not affect the cross—reference
Tisting. The defauTt is ON, but it is not automaticaTTy
reset between compiTations.

Each program unit begins at the top of a new page in the
source Tisting. If it is necessary to force a new page
to make the Tisting more readable, the foTTowing command
is avaiiabie:

$EJECT

The new page starts immediateTy after the EJECT command
unTess it is aiready the first Tine on a page when no
further page feed wiTT occur.

Norsk Data ND—60.145.7 EN

276

For example:

ND FORTRAN Reference Manual
COMPILER COMMANDS

At the top of every page of source listing, the compiler
identification is printed together with the date and
time when the COMPILE command was issued, and the
primary input file. On the third line, there is space
for text which the user gives with the command:

HEADING—TEXT text

where
text is any string of characters beginning
immediately after the separator which follows
the command name. The maximum length is SO, and
it is terminated by the end of the line.

$HEADING MINIMIZATION PACKAGE

will print the text "MTNIMIZATION PACKAGE” on the top of
every page until another HEADING command is encountered.

By writing:

$HEAD—TEXT , TAX CALCULATIONS

the blanks following the comma become significant, and
are included in the text.

The heading starts in position 21 of line 3 on every
page of listing, be it source or cross—reference.

The default heading is blank and can be reset by:

$HEADING

If the first line of a new program unit is a HEADING—
TEXT command, then it will replace any previous such
commands before printing the first line. Otherwise, the
last command will still be in effect. Since each program
unit starts on a new page, each can have its own
heading.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai 277
COMPILER COMMANDS

14.7 ANSI FORTRAN 77 STANDARD CHECKING

For exampTe:

The command:

STANDARD—CHECK ON

Ol"

STANDARD~CHECK OFF

controis the compiier's issuing of messages for each
vioTation of the standard which is detected. Compiiation
wiTT continue normaTTy if these messages are concerned
mereTy with Tanguage features which form a part of the
ND FORTRAN extensions described in this manuai.

If the parameter is ON, messages are produced,

If the parameter is OFF, messages are suppressed.

The initiaT vaTue is OFF.

S—C ON

wiTT cause messages about vioiations to be issued.

There is no difference in the interpretation of a
program except for the foiiowing:

ERRCODE is a reserved name if STANDARD—CHECK is OFF. It
is treated like any other name if the parameter is ON.

If STANDARD—CHECK is ON, error indications from SINTRAN
Monitor Caiis wiii not be accessibie from ERRCODE, and
are thus not availabie to the caTTing program.

Norsk Data ND’60.145.7 EN

278 ND FORTRAN Reference Manuai
CDMPILER COMMANDS

14 . 8 SYHBOLIC—NAHE~LENGTH

The command:

SYMBOLIC—NAME~LENGTH n

where
n is a decimaT integer in the rang from
7 to 31. It specifies the number of significant
characters in symboTic-names. DefauTt : 31

14 . 9 ARRAY— INDEX-CHECK

The command:

ARRAY—INDEX—CHECK ON

checks each time an array eiement is accessed, that the
vaTue of the index expression is within the range
specified in the decTaration.

The initiaT vaTue is OFF.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai 279
COMPILER COMMANDS

14.10 CHECK~NUHBER~OF~PARAMETERS (ON/OFF)

The commands:

CHECK—NUMBER-OF—PARAMETERS ON

and

CHECK—NUMBER-OF—PARAMETERS OFF

If this function is set to ON, then with each caii to an
externa] procedure, the number of parameters in the caii
is checked to be equai to the number of parameters in
the externai procedure deciaration.

14.11 UNASSIGNED-VARIABLE~CHECK (ON/OFF)

The commands:

UNASSIGNED—VARIABLE-CHECK 0N

and

UNASSIGNED—VARIABLE—CHECK OFF

If this function is ON,it sends a warning message for
each iocai variable array that is referred to but not
assigned. It wii] aiso give a message for each ioca]
variabie and array that is declared but not used.

Norsk Data ND—60.145.7 EN

280 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.12 SUBSTRING EXPRESSION CHECKING

In a character substring expression such as the
following:

where v is a character variable and eI and e2
are integer expressions, the command:

SUBSTRING—EXPRESSION—CHECK DN

will check that e1 and e2 are between the limits:

1 S e1 S e2 S maximum string length.

SUBSTRING—EXPRESSION~CHECK OFF

is default.

14 . 13 TEST HODE

The command:

TEST—MODE <compile—time—test>,<run—time-test>

enables all test options available in the FORTRAN
system,at compile time and/or runtime.

where:
compile—time—test may take the value ON or OFF.
All the test options are enabled at compile
time. The default setting is OFF.
run-time—test may take the value ON or OFF.
All the test options possible at runtime are
enabled. The default setting is OFF.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 281
COMPILER COMMANDS

The test options are:

0 checking array indexes

o checking correct number of parameters in routine caTis

o checking that substring expressons are within the
decTared range

0 checking that no variabies are referred to before they

are assigned

14.14 BUN TIHE HODES

There are some options controTTing the run time
environment. The first is the command:

SEPARATE—DATA 0N

OY‘

SEPARATE—DATA OFF

This command avaiTabTe onTy on ND-lOO,specifies whether
the data portion of the program is to be accessed via
the aTternate page tabie or not. If the parameter has
the vaiue 0N, then access is to be via the aiternate
page tabTe; if the parameter has the vaTue OFF, then it
is not. If the parameter is omitted, no change occurs.
The initia] setting of this command is ON.

Note that program units compiTed with different vaiues
of this option cannot be mixed within a singTe program.

Norsk Data ND-60.145.7 EN

282 ND FORTRAN Reference Manual
CDMPILER COMMANDS

The second command is:

REENTRANT—MODE ON

OY‘

REENTRANT—MODE OFF

Which specifies whether the local data areas are fixed,
or on a stack. If OFF, then they are fixed and the
program may conform to the ANSI FORTRAN 77 standard. If
the option is ON, then the following restriction applies
that:

Data statements cannot initialize local data items.

However,

0 Recursive calls are now allowed.
a The initial setting of this command is OFF.

When a program is compiled with the command REENTRANT—
MODE ON, the stack-size must be specified at load— time.
This is done by giving the entry SSTLEN a value equal to
stack-size. To give SSTLEN its value, you must give the
following command in the loader (see the manual: BRF—
LINKER ND—60.196):

DEFINE SSTLEN,length,D

With a couple of exceptions, the FORTRAN routine system
is strictly according to the ANSI 77 standard. The
exceptions may be avoided by giving the command:

RUNTIME—STANDARD—MODE ON

The default value is OFF.

This command should be used with great care. If the
parameter is ON, then every program in the system should
be compiled with the parameter 0N; if the parameter is
OFF, then every program should be compiled with the
parameter OFF.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 283
COMPILER COMMANDS

14.15 REAL~TIHE~HODE

'The command:

REAL—TIME—MODE ON

should be given when compiling real—time programs. This
will prevent COMMON variables from being optimized. the
compiler assumes that COMMON variables may be altered at
any time, and it does not attempt to move or common any
expressions containing them. The parameter should be OFF
when compiling background programs. The default value is
OFF.

14.16 HIKING FORTRAN AND COBOL ROUTINES (ND-500 ONLY)

The command:

COBOL-INTERFACE <routine—name>[<routine—name> ..]

should be used when mixing routines written in COBOL
with routines written in FORTRAN. The routine—name list
should include all the COBOL routines that are called
from FORTRAN routines, and all the FORTRAN routines that
are called from COBOL routines. Parameters of type
CHARACTER and NUMERIC will be transferred between
FORTRAN and COBOL routines in the same manner as between
COBOL routines. When this command is given, there is no
longer use to equivalence CHARACTER and NUMERIC
parameters with an INTEGER before the calls. This
command is effective from the moment it is given to the
compiler.

Norsk Data ND-60.145 7 EN

284 ND FORTRAN Reference ManuaT
COMPILER COMMANDS

14.17 PACKED DECIHAL ARITHHETIC [ND~500 ONLY]

The command:

BCD—ROUNDING 0N

0P

BCD-ROUNDING OFF

determinates whether the operations on packed decimaT

operands shoq be performed with rounding or not. If

the parameter is ON, aTT the operations on operands of
type NUMERIC are performed with rounding. The defauit
vaTue is ON.

14.18 CREATING 0F FORTRAN LIBRARIES

To create a Tibrary from the program units in a file,

the command:

LIBRARY-MODE 0N

or

LIBRARY~MODE OFF

can be used.

If UN is specified, every subsequent program unit is
preceded by a BRF or NRF Tibrary mark. The Toader wiTT
then Toad the unit onTy if there is a reference to the
name of the unit.

If OFF, these marks are suppressed. and the Toader wiTT
use the unit anyway. '

The defauit is OFF.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai 285
COMPILER COMMANDS

14.19 DEBUGGING

The output from the compiier can be made to inciude
information for use by the debugging subsystem. This
command is:

DEBUG—MODE 0N

OP

DEBUG-MODE OFF

If the parameter is ON, the debug information is
produced. If the parameter is OFF, the information is
not produced. If the parameter is omitted, UN is
assumed.

The defauit vaiue is OFF.

For detaiied descriptions of the commands availabie in
this subsystem, refer to the Symboiic Debugger User‘s
Guide, ND—60 158. ,

14.20 CONDITIONAL COHPILATION

There are two ways of seiecting parts of a fiie to be
compiied, depending on some of the parameters used: by
using optionai comment iines within source code, or with
the IF—THEN—ELSE compiier commands.

Norsk Data ND—60.145 7 EN

286 ND FORTRAN Reference Manuai
COMPILER COMMANDS

14.20.}. Optional Comment Lines within Source

For exampie:

The command:

CONDITIONAL—COMPILING [Chars]

where
chars is a 1ist of characters. In the foiiowing
source 1ines, any comment line containing any of
the characters specified as the second character
in the iine, wii] instead be treated as though
the first two characters were blank, thus
effectiveiy changing the comment to a normal
1ine of source code.

Each issue of this command redefines the iist of
characters and overrides any existing 1ist.

If no characters are specified, there are no speciai
comments.

COND

wiii include a1] iines such as

CD WRITE (1,*) ”debug run'

Other commands cannot be inciuded or excluded in this
way.

Norsk Data lib-60.14517 EN

ND FORTRAN Reference Manuai 287
COMPILER COMMANDS

14.20.2 Compile Tile IF—THEN—ELSE Compiler Commands

For exampie:

There is a set of commands that can be used oniy from
within a source program. These are:

$IF (expr) $THEN

$ELSEIF (expr) $THEN

$ELSE

$ENDIF

where
(expr) is a parenthesised FORTRAN Togicai
constant expression.

There may be zero or more than one instances of $ELSEIF
in the construct; the $ELSE may be omitted.

Within a group of commands, oniy those Tines which Tie
between the first occurrence of expr which has the vaiue
.TRUE. (or the $ELSE_command if aIT exprs are faise)
and the next command of the group, are incTuded as vaIid
source Tines; the rest are Tisted (without Tine numbers)
but are otherwise ignored.

The groups may be nested to any depth.

AT] groups within INCLUDEd text must be compTete before
the INCLUDE is terminated.

PARAMETER (SIZE = 10000)
$IF (SIZE .GT. 32767) $THEN

INTEGER*4 INDEX
$ELSE

INTEGER*2 INDEX
$ENDIF

Norsk Data ND—éo.145.7 EN

288 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.20.3 Conpile Tine Constants

In certain cases it may be desirable to set a parameter
value to be tested by the $IF group of commands external
to the source text being compiled. This can be done with
the command:

CONSTANT name = cons [, name = cons]

where
name is a FORTRAN identifier,
cons is a constant of type integer or
logical.

These values, once set, are retained until the compiler
is terminated. They cannot be redefined or deleted. The
data type of the name is the data type of the constant.

14.21 OPTIHIZATION OF PROGRAM EXECUTION—TIME

The command:

OPTIMIZE ON

OY‘

OPTIMIZE OFF

affects the efforts made by the compiler to improve the
execution speed of a program at the price of some time
during compilation.

If the parameter is ON, then optimization is performed.
If the parameter is OFF, optimization is not performed.

If the parameter is omitted, ON is assumed.

Norsk Data NDv60.145.7 EN

ND FORTRAN Reference Manual 289
COMPILER COMMANDS

For example:

OPT ON

will cause optimization to occur.

The methods applied include:

0 Strength reduction

0 Expression commoning

a Moving constant expressions out of loops

0 Constant propagation

0 Special casing

These do not affect the computational results, only the
speed at which they are produced, provided that the
program has been written according to the specifications
in this manual, especially Chapter 5.

There are, however, special applications where
expressions may only be evaluated at the point indicated
by the program and not before. It is for these instances
that the OFF setting is provided.

The default value is ON.

14. 22 INLINE SUBROUTINES

ND FORTRAN has been enhanced to include in—line
expansion of subprograms so that the overhead is reduced
to zero for critical ones, i.e., those which are called
frequently. In addition, the body of such subprograms
will now be submitted to general optimization, thus
resulting in a further increase in speed.

Due to the increase in program size, it is not
recommended that you declare subprograms as in—line if
their size exceeds IO~ZO lines or thereabouts or if they
are called rather infrequently.

The option is available with the command:

INLINE-EXPANSION (identifier—l), (identifier—2),

Norsk Data ND—60.145.7 EN Rev A

290 ND FORTRAN Reference Manual
COMPILER COMMANDS

where the identifiers are the names of functions or
subroutines, all of which are located on the file(s)
ahead of their first reference. (This means that the
command must appear before the definition of the
function or subroutine and that the definition must
precede the function call or CALL statement.) Note that
this may imply some rearrangement of the file(s) or some
sort of conditional compilation.

The restrictions on in—line subprograms are:

a No alternate return specifiers.

o No multiple ENTRY statements.

0 In—line subprogram names cannot be used as arguments.

Cannot be operated on by the Symbolic Debugger.

14.23 USE OF SPECIAL MACHINE-CODE INSTRUCTIONS

In certain cases, execution time is of prime importance
for some well—defined routines. So much so, that an
installation may provide extra micro—instructions on the
ND—SOO. In order to obtain the maximum advantage from
these facilities, there is a command which causes the
compiler to interpret a CALL statement or a function
reference as a sequence of instructions to be placed
in—line at the point of call and not generate a call of
an external program unit. The reader is referred to the
ND~500 Reference manual (ND—05.009) and the ND'lOO
Reference manual (ND~O6.014) for details of the
instruction set and the operation of the CPU.

The form of the command is:

INSTRUCTION name = definition [,name=definitionl...

where
name is the name of an external program unit
which is being defined as an in—line routine.
Every subsequent occurrence of this name as an
external reference will be treated as in—line.
The definition will hold until the compiler is
terminated. Re~definition of a name is not
allowed within a single invocation of the
compiler.

Norsk Data ND-60.l45.7 EN ReV.A

ND FORTRAN Reference ManuaT 291
COMPILER COMMANDS

The definition has the form:

opcode (argTist) [opcode (argTist)]....

Note: The opcodes are separated by argTists,
not by commas. If an opcode has no arguments, an
empty pair of parentheses must appear. The Tast
parenthesised argTist can be omitted.

opcode is the operation to be used. For the
ND—lOO, this is a 16~bit integer, and the
argument, if any, is added to this vaTue to
create the whoTe instruction. For the ND—SDD,
this is 1 or 2—byte opcode, which is then
foTTowed by the operands. The opcode can be
written as a decimaT or binary constant, or as
a symboT that has been previousTy defined by a
CONSTANT command, see Section 14 20.3 on
page 288.

argTist determines what the operands are for
each opcode. ND—lOO instructions can have at
most one argument; ND—SOO instructions can have
any number, but the number specified must
correspond to the number expected. An argument
has the form:

#n

where t is the hash or number symboT (43 octaT
in ASCII) and n is a decimaT integer
corresponding to the position of the argument in
the FORTRAN CALL statement or function
reference. The first argument is referred to
as #1.

For exampie: Suppose we have a subroutine which is
caTTed very frequentiy, but which mereTy piaces the sum
of its Tast two arguments into the first, as in:

SUBROUTINE SETPOS (ICURPOS,IBASE,IOFFSET)
ICURPOS = IBASE + IOFFSET
END

This routine coq be repiaced by in—Tine code on the
ND—lOO with the foTTowing defining commands:

$CONSTANT LDA = 0440008,ADD = 0600008,STA = 0040008
$INSTRUCTION SETPOS = LDA (£2)ADD(£3)STA(£1)

Norsk Data ND—60.145.7 EN Rev A

292

For exampTe:

ND FORTRAN Reference ManuaT
COMPILER COMMANDS

Then, whenever caTTs to the SETPOS are found, the above
3 instructions wiTT be executed. On the ND—SOO, it coq
appear as:

$CONSTANT ADDB = 1761518
$INSTRUCTION SETPOS = ADD3(£2,£3,£1)

This can be caTTed by, for exampTe:

CALL SETPOS(ICUR,IB,IX)

or

CALL SETPOS<ICUR,NBASE(J + K (M,N)),FUNC(CURIX))

etc .

If constants are to be used as fixed operands in ND—SOO
instructions, they can be specified as a sequence of
zero—argument opcodes.

$CONSTANT WILDR = 148
C DEFINE A SHORT CONSTANT
$INSTRUCTION W12=W1LDR()Z
C HALF-WORD CONSTANT
$INSTRUCTION WIX = W1LDR()3168()177777B

If none of the instructions modify the contents of
registers, the compiier-wiTT create temporaries and Took
after the addressing modes of the operands
automaticaTTy. If a register‘s contents are modified,
then the compiier’s use of registers must be taken into
account; in particuiar, registers used to address
operands must not be used.

On the ND—lOO, the B and P registers must not be
changed, and the X—register may be used by the compiier
to create the right addresses.

On the ND—SOO, the B—register must be Teft unchanged,
and the R~register may be used for addressing. If any
argument in the caTT, is an array eTement, one or more
of the registers 11, 12, 13 or 14 may be used.

Appendix F describes the use of registers for returning
vaTues from functions.

There is a speciaT case of the INSTRUCTION command. If
the definition consists of exactTy one constant, with no
argument Tists, then it is treated as though aTT the
specified arguments in the caTT are to be added to the
opcode to form the singTe in—Tine instruction. In this
case too, the name may be used Tater as an opcode in the
definition of another instruction.

Norsk Data ND—60 145.7 EN Rev.A

ND FORTRAN Reference Manual 293
COMPILER COMMANDS

14.24 COHPILER DEFAULTS

14.24.1 Data Type Defaulting

For example:

This command provides a way of overriding the default
implied data type. Its form is:

DEFAULT attr [,attr]

where
attr is an attribute having the meaning of an
exact ND FORTRAN data type for the base data
type.

Base data types and corresponding possible defaults are:

BASE POSSIBLE DEFAULTS

LOGICAL LOGICAL*1, LOGICAL*2, LOGICAL*4
INTEGER INTEGER*2, INTEGER*4
REAL REAL*4, REAL*6, REAL*8
COMPLEX COMPLEX*8, COMPLEX*16

DEFAULT REAL*8

will cause all real constants and all variables, arrays,
external function statements and named constants with
type declared or defaulted to REAL to acquire the type
REAL*8 instead of REAL*4I But variables explicitly
declared to be of type REAL*4 will remain type REAL*4.

The attribute must be the complete FORTRAN data—type
name. Abbreviations are not allowed.

These options ease the problems of converting programs
between the ND—lOO and the ND—SOO, see also ALIGNMENT—
NDSOO in Section 14.25 on page 297.

Norsk Data ND—60.145.7 EN

294 ND FORTRAN Reference Manual
CDMPILER COMMANDS

In addition, this command provides the only possibility
of forcing compilation of unnamed integer constants on
the ND—SOO to INTEGER*2, see Section 2.2.1. on
page 27.

Note that the change of default attributes also applies
to all constants of the default type. This is
particularly important when using constants as actual
arguments. For example, on the ND—IOO, consider the
monitor call routine for DUTCH. This takes two
arguments, both of which must be INTEGER*2. If the
default has been changed by:

DEFAULT INTEGER*4

then, simply writing

CALL DUTCH (5, 158)

will not work, because the constants now default to
INTEGER*4. The recommended way of avoiding this problem
is to define:

INTEGER*20UTDV, CR
PARAMETER(OUTDV=5, CR=158)

which can then be incorporated by $INCLUDE commands in
all appropriate routines. (If INTEGER*2 is defaulted on
the ND—SDD, then similar statements are required to
force the arguments to INTEGER*4.)

Note that the monitor call functions must be declared
explicitly as INTEGER*2 if DEFAULT INTEGER*4 is in
effect on the ND-lDO.

Furthermore, some of the INTRINSIC functions change with
the DEFAULT and others do not. See notes for Table of
INTRINSICS, Section 11.2.2 on page 230.

The conversion routines IINT and IZINT are available to
force the correct data type.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 295
COMPILER COMMANDS

14-24.2 IMPLICIT Data Types

The command:

IMPLICIT OFF

wiIT prevent the association of a defauTt type with the
first Tetter of a name. The symboTic name identifying a
constant, variabTe array or externaT function, must be
epicitTy decTared by a Type statement. It is not
necessary to decTare INTRINSIC functions. The defauTt is
ON.

14.24.3 Default Unit Definition

For exampIe:

The READ and PRINT statements operate on unit number 1
by defauTt. But they can be changed by the command:

UNIT [input—unit][output-unit]

where
input~unit and outputeunit are octaT unit
numbers.
If they are omitted, no change is made to the
existing settings.

UNIT 5 6

wiTI direct aIT the defauTt input and output to the
IogicaT units 5 and 6 respectiveTy.

Norsk Data ND—6O 145.7 EN Rev A

296 ND FORTRAN Reference Manuai
COMPILER COMMANDS

14.25 TARGET MACHINE OPTIONS

The foiiowing commands describe the attributes of the
machine on which the program is to be run; these may be
different from the machine which compiies the program.
They appiy onTy to the NORD—lO or NO—lOO, they are
ignored by the NDvSOO.

The command:

FLOATING n

specifies the size of the singTe precision
fToating-point format in words, i.e ,

n 2 indicates 32—bit fToating—point format

n H 3 indicates 48—bit fioating—point format

If this parameter is omitted, no change is made to the
setting. The initiai vaTue is that of the compiTing
machine. A program compiied using this command, must be
executed on the computer with the correct fioating—point
hardware.

The command:

MOVE—INSTRUCTIONS ON

Oi"

MOVE—INSTRUCTIONS OFF

specifies whether the code is to contain the character
manipuiation instructions of the CE instruction set. If
the parameter is OFF, then aTT character manipuiation is
performed by subroutines. If the parameter is ON, then
this is performed by character move instructions. The
initiai vaTue is OFF.

Norsk Data NO—60.145.7 EN Rev.A

ND FORTRAN Reference ManuaT 297
COMPILER COMMANDS

The command:

NDlOO—EXTENDED ON

OY‘

NDlOO—EXTENDED OFF

specifies whether the E instruction set is avaiTabTe on
the target machine. If it is, then character
manipuTation and subroutine entry and exit are performed
by hardware instructions, otherwise they are simuTated
in software.

If the option is OFF, then the subroutine entry is
performed by software, but the character manipuTation is
controTTed by the MOVE—INSTRUCTIONS command (see above).

The initiai setting is OFF.

The command:

ALIGNMENT—NDSOO ON

OY‘

ALIGNMENT—NDSOO OFF

controTs the storage Tayout of variabies see Appendix E.
If the option is ON, then storage wiTT be Taid out in
the same way as it woq be if the program were compiied
for the NDeSOO. This enabies COMMON biocks to be shared
between programs executing on both the ND—lOO and
ND—SOO; see aTso the DEFAULT command, Section 14.24.l
on page 293.

The initiaT setting is OFF.

Norsk Data ND-60.145.7 EN Rev A

298 ND FORTRAN Reference ManuaT
COMPILER COMMANDS

14.26 REMOVING INTRINSIC FUNCTIONS

For exampTe:

It may be that an ND FORTRAN extension INTRINSIC
function name cTashes with a name of a routine which
aTready exists in a user Tibrary. These names can be
made externaT by the command:

DELETE—INTRINSIC name [,name]...

The names in the Tist wiTT no Tonger be acceptabie as
INTRINSIC names. The change is permanent. The names can
onTy be recovered again by re—Toading the compiTer.

If the name is a specific entry point, then access to
the function is stiTT permitted through the generic
entry points.

DEL—INT IZBIT, DIMAG

wiTT render the names IZBIT and DIMAG unusabTe as
INTRINSIC functions.

14.27 RESERVING WORK SPACE

To retain a degree of compatabiiity with the 2090
FORTRAN compiTers on the ND—lOO, an option is provided
to reserve space for use by NPL and MAC routines. The
command is:

RESERVE—WORK—SPACE ON

OY‘

RESERVE—WORK—SPACE OFF

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference ManuaT 299
COMPILER COMMANDS

For exampTe:

RES—WORK ON

pTaces 20 (octaT) free words from ,B—220 to ,B—201 in
aTT program units untiT the option is turned off. The
initiaT vaTue is OFF.

For reentrant program units, the stack space wiTT begin
at SSTBGA, which wiTT be defined by the Tibrary 20
(octai) words after the name SSTBEG, thus ensuring that
the space is present.

In reentrant programs, there is a significant overhead
on every invocation of a program unit, and on return
from it. RESERVE—WORK—SPACE ON shoq be used onTy
during transition to the standard caTTing sequence. This
definition wiTT appTy untiT expTicitTy changed.

14.28 USE OF THE ARRAY PROCESSING FUNCTION LIBRARY [ND—500
ONLY]

The command:

USE—APF—LIBRARY ON

OP

USE—APF—LIBRARY ON

specifies whether array operations shoq be transiated
to internaT Toops or caTT to array processing functions.
If the command USE—APF—LIBRARY ON is given, array
operations are transiated to caTT to array processing
functions. These array processing functions are defined
in NO—SOO—APF—LIB and ND—SOO APD~LIB. These Tibraries
have to be Toaded together with the FORTRAN Tibrary when
this command is used.

The defauit vaTue is OFF.

Norsk Data ND—60.145.7 EN

300 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.29 PROGRAM STACK

Each default FORTRAN routine has its own fixed data
area. Each time a routine is called, it uses exactly the
same data area. This makes it impossible to call FORTRAN
routines recursively, and it limitats the possibility of
calling routines written in for example, PASCAL or
PLANC. These limitations are removed by the following
three commands:

FIXED—DATA-AREA

MAIN—STACK—SIZE

LOCAL—STACK—SIZE

These commands are only available on ND—SOO.

14-29.1 FIXED—DATA—AREA

The command:

FIXED—DATA—AREA ON

OY‘

FIXED—DATA—AREA OFF

may be used to determine whether each FORTRAN routine
should have its own data area or dynamically take space
from a stack. If the parameter is ON, each routine has
its own data area. If the parameter is OFF, each routine
will take space from a current stack. The current stack
is either a stack defined in the main program or a local
stack defined in a subprogram.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 301
COMPILER COMMANDS

The defauTt vaTue is ON. The routines which are compiTed
with FIXED~DATA~AREA OFF have more restrictions on the
use of the SAVE statement and the DATA statement. OnTy
the routines which have TocaT—stack, may contain SAVE
and DATA statements.

14. 29 . 2 MAIN-STACK-SIZE

The command:

MAIN—STACK—SIZE <stack—size>

is used to determine the size of the data—area to be
used as a stack for the main program and a1] the
routines caTTed directTy or indirectiy from the main
program. ATT the routines that shoq use this stack,
must be compiTed with the command:

FIXED—DATA—AREA OFF

The parameter has a defauit vaTue of 50000 bytes.

Norsk Data ND-60.145.7 EN

302 ND FORTRAN Reference Manual
COMPILER COMMANDS

14. 29 .3 LOCAL~STACK-SIZE

Examples:

The command:

LOCAL—STACK—SIZE <stack Size>

is similar to the command MAIN—STACK—SIZE, but it gives
a data—area to a subprogram instead of a main program‘
All the routines called directly or indirectly from this
routine will take their required stack size from this
stack. A routine with a local stack should not be called
recursively. All the subprograms that take their stack
size from a current stack, should be compiled with the
command:

LOCAL—STACK~SIZE 0

The default value of the parameter is 0.

$ FIXED—DATA—AREA OFF
$ MAIN-STACK—SIZE 100000

PROGRAM MAIN

cALL SUB

END
SUBROUTINE SUB

cALL SUB

END

In this program, the subroutine SUB will dynamically
take one stack—frame from the main stack each time SUB
is called, and release the stack—frame for each return
from SUB.

Norsk Data ND-60 145.7 EN

ND FORTRAN Reference Manual 303
COMPILER COMMANDS

$ FIXED—DATA—AREA OFF
$ MAIN-STACK—SIZE 20000

PROGRAM MAIN

CALL SUB

cALL 3

END
$ LOCAL—STACK—SIZE 10000

SUBROUTINE SUB

CALL 3

END
$LOCAL—STACK—SIZE 0

SUBROUTINE 5

END

In this example, SUB has its own stack and does not use
the main stack. S does not have its own stack, and it
takes its own stack—frame from the current stack‘ When 5
is called from the MAIN the current stack is the main
stack, and when S is called from SUB the current stack
is the local stack defined for SUB.

Norsk Data ND—60.145.7 EN

304 ND FORTRAN Reference Manuai
COMPILER COMMANDS

14.30 SYSTEM DOCUMENTATION AND INTERPROCEDURAL ERROR

DIAGNOSTIC (ND-500 ONLY]

To perform system documentation and interprocedurai
error diagnostic, you must create a database of
interprocedurai information for the whole program
system. This is done by entering a subsystem in the
compiier with the command:

GLOBAL—MODE

The compiier wiii then prompt with the text:

FTN/GLOBAL/z

In this subsystem, there is a command:

LOG—GLOBAL—INFORMATION ON

OY‘

LOG—GLOBAL—INFORMATION OFF

The default vaiue is OFF. If the parameter is ON,
interprocedurai information about the routines that are
compiied wiii be saved.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 305
COMPILER COMMANDS

The command sequence which creates this information is:

@ND FORTRAN SOO

FTN:GLOBAL—MODE

FTN/GLOBAL/:LOG—GLOBAL—INFORMATION ON
FTN/GLOBAL/zEXIT

FTN COMPILE sourcefiTel,0,0
FTN:COMPILE sourcefi1e2,0,0

FTN:COMPILE sourcefiTe ,0,0

FTN:GLOBAL—MODE

FTN/GLOBAL/z

When aTT the source fiTes are compiled, the system
documentation and interproceduraT error diagnostic may
be performed.

14.30.1 HELP command

The command:

HELP <command>

Tists aTT the commands avaiTabTe with their parameters.

14.30.2 EXIT command

The command:

EXIT

wiTT return controT to the compiTer's command processor.

Norsk Data ND—60.145.7 EN

306 ND FORTRAN Reference ManuaT
COMPILER COMMANDS

14.30.3 OUTPUT-FILE command

The command:

OUTPUT—FILE <fiTe—name>

is used to specify that output shoq be directed to the
specified fiTe instead of to the terminaT. If more than
one output fiTe is specified, then the bid one is cTosed
before the new one is opened. It may be usefuT to have
more than one output fiTe, for exampie, one for
documentation and one for error diagnostics. To reset
output to the terminai, give the command:

OUTPUTeFILE TERMINAL

or

OUTPUT—FILE 1

14.30.4 PAGE—SIZE command

The command:

PAGE—SIZE n

is used to change the number of Tines on each page of
the output fiTe. After n Tines have been output to the
output fiTe, a form—feed character is output to start a
new page. The defauTt vaTue for n is 56.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT 307
COMPILER COMMANDS

14.30-5 SYSTEM-NAME command

The command:

SYSTEM—NAME <name>

is used to print a system identification name on the
first Tine on each page of the output fiie.

14.30.6 Documentation Commands

The command:

DOCUMENT—SYSTEM

wiTT produce information about:

0 FILE HIERARCHY: hierarchicai information about
inciude—fiies and fuTI name of each fiTe in the
system.

0 FILE CONTENT: a Tist of a1] the routines in each fiTe
and the source Tine number where each routine starts.

a ROUTINE INFORMATION: this information incTudes the
type and the name of the program unit. It aIso
incTudes the number, type, use and the Tength of each
parameter. Information about common biocks decIared in
each routine inciudes Iength, use and type.

0 COMMON BLOCK INFORMATION: this incTudes type and
Iength of the items in the common bTocks. It aIso
incIudes Tists of routines where the different common
biocks are deciared but not used, where they are
referenced onTy, and in which routines they are
updated.

- CALL HIERARCHY: information about which routines caTT
other routines. This aiso inciudes information about
routines that are caITed recursive whether directTy
or indirectiy.

Norsk Data ND—60.145.7 EN

308 ND FORTRAN Reference Manual
COMPILER COMMANDS

o INVERSE HIERARCHY: information about which routines a
routine is called from.

14.30.6.1 PRINT~CALL~HIERARCHY command

The command:

PRINT—CALL—HIERARCHY <r0utine>

will produce a list of all routines that are called
directly or indirectly from the routine specified as
parameter. If the parameter is omitted, a call hierarchy
for the whole program system is produced.

14.30.6.2 PRINT—INVERSE-HIERARCHY command

The command:

PRINT—INVERSE—HIERARCHY <routine>

will produce a list of all routines that directly or
indirectly call the routine specified on the parameter.
If the parameter is omitted, an inverse call hierarchy
for the whole program system is produced.

14.30.6.3 PRINT-COHEON—BLOCK—INFORMATION command

The command:

PRINT~COMMON~BLOCK~INFORMATION <common—block—name>

will print information about the common block specified
as parameter. The information is total length of the
common block, and the type and length of the entities.
IT also lists the routines that update, refere to and
declare the common block, but which do not use it.

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manual 309
COMPILER COMMANDS

14.30.7 Commands to Perform Interprocedural Error
Diagnostic

14.30.7.1 GLOBAL-CHECK—ALL command

The command:

GLOBAL-CHECK-ALL

will check that the actual and formal parameters
correspond in number and type. It will also check that
named common blocks are consistent in all routines where
they are declared. A list of routines that are referred
to but not compiled, is also produced.

14.30.7.2 PARAMETER~CHECK command

The command:

PARAMETER—CHECK

will, for each compiled routine, check that formal and
actual parameters correspond in number and type.

14.30.7.3 COMMON—BLOCK-CHECK command

The command:

COMMON—BLOCK—CHECK

will check that the named common blocks are consistent
in all routines where they are declared. Unnamed common
blocks are tested for consistency against the
declaration in the routine with the longest unnamed
common block.

Norsk Data ND—60.145.7 EN

310 ND FORTRAN Reference Manua]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual 311

CHAPTER 15

ADVANCED FORTRAN PROGRAMMING

Norsk Data ND—60.145.7 EN

312 ND FORTRAN Reference Manual

Norsk Data ND—6U.145.7 EN

ND FORTRAN Reference Manual 313
ADVANCED FORTRAN PROGRAMMING

15.1 EFFICIENT PROGRAMMING TECHNIQUES

15.1.1 Loops

In most cases a DO loop will execute faster than a loop
coded with IF statements and labels. The optimising
techniques used by the compiler are applied fully to DO
loops, but not constructed loops.

Thus:

DO 10 I = 1,100
10 SUM=SUM+A(I) O*B(I)

is better than:

+1

1:1
10 SUM=SUM+A(I) *B(I)

I=I .
IF (I .LE. 100) GO TO 10

If the looping has no natural counter for use as a
control variable, then the DO WHILE should be used.

Thus:

1:1
00 WHILE (A (I) .GT.

SUM=SUM+A (I) *B
I=I+1

ENDDO

O)
)

is better than:

1:1
10 IF (A (I) .GT. 0.0) GO TO 20

SUM=SUM+A (I) *B (I)
I=I+1
GO TO 10

20 CONTINUE

Norsk Data ND—60.145.7 EN

314 ND FORTRAN Reference ManuaT
ADVANCED FORTRAN PROGRAMMING

15.1.2 Loop Control Variable

A Toop controT variabTe of type INTEGER*2 wiTT execute
fastest on the ND—100, and a Toop controT variabTe of
type INTEGER*4 wiTT execute fastest on the ND—SOO. This
is foTTowed by INTEGER*4, REAL*4 and REAL*8 and
INTEGER*2, REAL*4 and REAL*8 on the ND—SOO‘ Note
however, that if the naturaT controT variabTe is, say,
REAL, it shouid be used since what is gained in speed of
controT of the Toop may be Test in doing more
conversions, e.g. from an INTEGER type to the working
vaTue that is required.

On the ND-SOD, the differences are much Tess marked than
on the ND—lOO.

15.1.3 Array Operations

0 ExampTe 1 : FiTTing an array

REAL A(100)
DO I = 1,100

A(I) = 0.0
ENDDO

The DO—Toop may be substituted by the array operation:

A = 0.0

o Exampie 2 : Moving an array

REAL A(100), 8(100)
DO I = 1,100

A(I) = 8(1)
ENDDO

The DO—Toop may be substituted by:

A = B

which wiTT execute faster

Norsk Data ND—60.145.7 EN

NO FORTRAN Reference ManuaT 315
ADVANCED FORTRAN PROGRAMMING

o ExampTe 3 : Subtraction of arrays

REAL A(100), 8(100), C(lOO)
DO I = 1,100

Ail) = 8(1) ~ C(I)
ENDDO

This may be substituted by:

A = B - C

which wiii be executed faster if the command
USE-APF—LIBRARY ON is given.

15.1.4 Actual Argument Data Types

If there is any doubt about the data type of an
expression in a subroutine caTT, it shoq be expTicitTy
converted to the desired type by using the INTRINSIC
functions, see Section 11.2. on page 222. If the
expression is of the correct type, there is no overhead
invoTved, but the program is more expTicit and more
easiiy understood, which is important for Tater
maintenance. ,

Thus, if a REAL argument is needed, then:

INTEGER*2 I
REAL R
CALL SUBR (REAL (I+R))

makes it clear that a REAL argument is actuaTTy being
used.

If the argument is a constant, then it can be forced to
the appropriate type by using the PARAMETER statement,
This defines the constant and gives an associated name.
If the vaTue is to be modified Tater, then onTy the
PARAMETER statement needs to be aTtered.

Norsk Data ND—60.145.7 EN

316

For exampTe:

ND FORTRAN Reference ManuaT
ADVANCED FORTRAN PROGRAMMING

INTEGER*2 LOWEST
PARAMETER (LOWEST=—32768)
CALL TEST (LOWEST)

15.1.5 CHARACTER and Hollerith

Since HoTTerith values in FORTRAN vary greatTy from one
manufacturer to another, their use shoq be avoided if
the program is to be portabTe without potentiaT
difficuTties. The CHARACTER data type shoq be used
instead.

Thus, the definition:

INTEGER*4 TITLE (5)
DATA TITLE/4HALPH,4HABET,4HICAL,4H ORD,4HER /

shoq be repTaced by:

CHARACTER*20 TITLE
DATA TITLE/'ALPHABETICAL ORDER‘/

This is strongTy recommended, even for transferring
between the ND—lOO and the ND—SOO because of different
word Tengths and defauTts.

15.1.6 CHARACTER Alignment — ND~100

For exampTe:

Some Monitor CaTTs in SINTRAN require that data areas
begin on a word boundary. A CHARACTER variabTe can be
forced on to a word boundary by using an equivaTence to
an INTEGER variabTe.

CHARACTER*400 C
INTEGER*2 IC
EDUIVALENCE (C,IC)

ND FORTRAN Reference ManuaT 317
ADVANCED FORTRAN PROGRAMMING

15.1.7 File Accessing

Wherever possibTe the FORTRAN runtime system aTTocates
buffers of defauTt 2K bytes, and uses these for
operations on aTT fiTes accessed by FORTRAN programs.
If a buffer is avaiTabTe, then access to a fiTe wiTT be
optimaT, otherwise access is one byte at a time, with
consequent reduction in performance. It is strongTy
recommended that for normaT FORTRAN fiTes, the access
types SEQUENTIAL and DIRECT are used. The runtime system
wiTT then use the most efficient method avaiTabTe for
the particuTar device.

If the RFILE/WFILE/MAGTP Monitor CaTTs are to be used,
then the access type in the OPEN statement shoq be
SPECIAL. In this case, if RECL is specified, then the
bTock size for the fiTe wiTT be set according to the
vaTue of this parameter.

15.1.8 I/O Buffer Allocation

Whenever possibie, the FORTRAN run—time system uses
buffers for the I/O statements instead of a byte—by—byte
transfer of data.

a The foTTowing appiies to FORTRAN-100:

If no buffer is avaiTabTe at the time of opening the
fiTe, then the access wiTT revert to byte—by—byte
operation. If the program is executed in non—reentrant
mode, the buffers are aTTocated automaticaTTy in the
space foTTowing the program (or data area if running
with SEPARATE—DATA ON) and before the COMMON biocks. The
maximum number of buffers is 20 and aTT are 2048 bytes
Tong. They are aTTocated when the fiTe is OPENed. Each
fiTe which uses a buffer wiTT reserve one from this pooT
when it first requires it. The buffer wiTT be released
onTy when the fiTe is cTosed.

318 ND FORTRAN Reference ManuaT
ADVANCED FORTRAN PROGRAMMING

If the program is reentrant (ND—100 onTy), then the
buffers are aTTocated in the stack area, and each
program has its own buffer pooT. The aTTocation is done
by an expTicit caTT to a routine provided for the
purpose:

CALL CREBUF (n)

where
the parameter n is INTEGER*2. If n is positive,
then n buffers are created in the stack area.
If n is Tess than or eouaT to zero, no action
is taken. If the buffers have aTready been
aTTocated, no action is taken (i e., onTy the
first caTT to CREBUF has any effect).

Note that the FORTRAN—100 Tibrary must be Toaded Test of
aTT, if buffered 1/0 is used.

The FORTRAN—100 Tibrary has as its Tast entry point, a
pointer, caTTed FREE P, describing the area of
unaTTocated address space, which is assumed to begin
immediateTy foTTowing FREE P. 1/0 buffers for non—
reentrant programs wiTT use this unaTTocated address
space. Fo non—reentrant RT-programs: the RT—Loader
command, SET~IO— BUFFERS must be used to aTTocate buffer
space.

9 The foTTowing appTies to FORTRAN—SOD:

The defauTt buffer size is 2048 bytes. By using the
BUFFER-SIZE parameter in the OPEN statement, bigger
buffers can be used. The Linkage—Loader command, SET~IO~
BUFFERS, must be used to aTTocate the space needed for
the I/O buffers. The argument (octaT) specifies how many
buffers are to be aTTocated.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

APPENDICES

Nbrsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix A

ASCII CHARACTER SET

Octal Value Decimal ASC
Graphic Left Byte Right Byte Value Abbreviation Comments

000000 0 0 NUL Null

000400 1 1 SOH Start of heading
001000 2 2 STX Start of text

001400 3 3 ETX End of text
002000 4 4 E01‘ End of transmission
002400 5 5 EN0 Enquiry
003000 6 6 ACK Acknowledge

003400 7 7 BEL Bell
004000 10 8 BS Backspace

004400 11 9 HT Horizontal tabulation
005000 12 10 LF Line feed

005400 13 11 VT Vertical tabulation
006000 14 12 FF Form feed

006400 15 13 CR Carriage return
007000 16 14 SO Shift out
007400 17 15 SI Shift in
010000 20 16 DLE Data link escape
010400 21 17 DC1 Device control 1
011000 22 18 DC2 Device control 2
011400 23 19 DC3 Device COLtrol 3
012000 24 20 DC4 Device control 4
012400 25 21 NAK Negative aknowledge
013000 26 22 SYN Synchronous idle
013400 27 23 ETB End of transmission block
014000 30 24 CAN Cancel

014400 31 25 EM End of medium
015000 32 26 SUB Substitute
015400 33 27 ESC Escape
016000 34 28 F5 File separator
016400 35 29 GS Group separator
017000 36 30 RS Record separator
017400 37 31 05 Unit separator
020000 40 32 SP Space

! 020400 41 33 ! Exclamation marks
" 021000 42 34 “ Quotation marks
13 021400 43 35 13 Number Sign
$ 022000 44 36 :5 Dollar Sign
54 022400 45 37 ‘7. Percent sign
& 023000 46 38 8. Ampersand
‘ 023400 47 39 ‘ Apostrophe

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manual
Appendix A

Octal Value Decimal ASC

Graphic Left Byte Right Byte Value Abbreviation Comments

(024000 50 40 (Opening parenthesis

) 024400 51 41) Closing parenthesis

* 025000 52 42 * Asterisk

025400 53 43 + Plus

, 026000 54 44 , Comma

-

026400 55 45 ~ Hyphen (Minus)

027000 56 46 Period (Decimal)

/ 027400 57 47 / Slant

0 030000 60 48 0 Zero

1 030400 61 49 1 One

2 031000 62 50 2 Two

3 031400 63 51 3 Three

4 032000 64 52 4 Four

5 032400 65 53 5 Five

6 033000 66 54 6 Six

7 033400 67 55 7 Seven

8 034000 70 56 8 Eight

9 034400 71 57 9 Nine

035000 72 58 Colon

; 035400 73 59 '. Semi-colon

< 036000 74 60 < Less than

= 036400 75 61 = Equals

037000 76 62 > Greater than

7 037400 77 63 7 Question mark

(13 040000 100 64 («3 Commercial at

A 040400 101 65 A Uppercase A

B 041000 102 66 B Uppercase B

C 041400 103 67 C Uppercase C

D 042000 104 68 D Uppercase D

E 042400 105 69 E Uppercase E

F 043000 106 70 F Uppercase F

G 043400 107 71 G Uppercase G

H 044000 110 72 H Uppercase H

I 044400 111 73 I Uppercase I

J 045000 112 74 J Uppercase J

K 045400 113 75 K Uppercase K

L 046000 114 76 L Uppercase I.

M 046400 115 77 M Uppercase M

N 047000 116 78 N Uppercase N

0 047400 117 779 O Uppercase O

P 050000 120 80 P Uppercase P

Q 050400 121 81 Q Uppercase Q

R 051000 122 82 R Uppercase R

5 051400 123 83 S Uppercase S

'1‘ 052000 124 84 T Uppercase T

U 052400 125 85 U Uppercase U

V 053000 126 86 V Uppercase V

W 053400 127 87 w Uppercase w

X 054000 130 88 X Uppercase X

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua]
Appendix A

Octal Value Decimal ASC

Graphic Left Byte Right Byte Value Abbreviation Comments

Y 054400 131 89 Y Uppercase Y

2 055000 132 90 Z Uppercase z
[055400 133 91 [Opening bracket
\ 056000 134 92 \ Reversing slant
] 056400 135 93] Closing bracket
A or T 057000 136 94 A or T Circumflex. up-arrow

or ¢- 057400 137 95 . UND, BKR underscore, back—arrow

7 060000 140 96 . GRA Grave accent
a 060400 141 97 a. LCA Lowercase a
b 061000 142 98 b, LCB Lowercase b
c 061400 143 99 c, LCC Lowercase c
d 062000 144 100 d, LCD Lowercase d
9 062400 145 101 e. LCE Lowercase e
I 063000 146 102 f, LCF Lowercase f
9 063400 147 103 g, LCG Lowercase g

h 064000 150 104 h. LCH Lowercase h
1 064400 151 105 i. LCI Lowercase i
3 065000 152 106 3‘ LCJ Lowercase j
k 065400 153 107 k, LCK Lowercase k
1 066000 154 108 l. LCL Lowercase 1
m 066400 155 109 m, LCM Lowercase m
n 067000 156 110 n. LCN, Lowercase n
0 067400 157 111 0. LCD Lowercase o
p 070000 160 112 p, LCP Lowercase p
q 070400 161 113 q, LCQ Lowercase q
I 071000 162 114 r, LCR Lowercase r
s 071400 163 115 s. LCS Lowercase s
c 072000 164 116 t. LCT Lowercase t
u 072400 165 117 u. LCU Lowercase u
v 073000 166 118 v. LCV Lowercase v
w 073400 167 119 w, LCW Lowercase w
x 074000 170 120 x, LCX Lowercase x
y 074400 171 121 y, LCY Lowercase y
2 075000 172 122 z‘ LCZ Lowercase z
{ 075400 173 123 {, LBR Opening (left) brace

1 076000 174 124 1 VLN Vertical line
076400 175 125 . RBR Closing (right) brace

N 077000 176 126 N, TIL Tilde

077400 177 127 DEL Delete» rubout

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manua1
Appendix A

Norsk Data ND-60.145.7 EN Rev A

ND FORTRAN Reference Manuai
Appendix B

ERROR MESSAGES

B. 1 COMPILER MESSAGES

During compiiation, diagnostic messages wiTT be issued
for any source text which either is, or may be,
erroneous‘ These messages appear in the program Tisting
after the statement to which they refer, and also on the
background terminai.

They faTT into three categories:

0 errors
a warnings
o extensions

Error messages are produced when the compiier cannot
make a sensibie interpretation of the program.
Execution of these programs becomes impossibie.

Warnings are given when there is a potentiai fauit, but
an object fiie is produced and execution may be
possibie.

Extension messages indicate where the program is using
Tanguage features which are not part of the ANSI FORTRAN
77 standard. These messages are suppressed uniess the
STANDARD—CHECK compiier command is on.

Some messages may be preceded by some text in quotes.
This may be either the name of some variabTes, or a part
of the source program with a ‘?' inserted. This ‘?' wiTT
show where the error was detected and wiii usuaTTy be at
or shortiy after the item at fauit.

The foTTowing Tist of the text of the error message
texts is in aiphabeticai order:

—1 IN SUBSTRING
ANSI FORTRAN 77 must have positive vaiues as
indexes in substring vaTues.
ND FORTRAN uses -1 to mean stripping bianks
from the string.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference ManuaI
Appendix 8

1H ASSUMED
ANSI FORTRAN 77 requires the Tength of an
H—format item to be expTicitTy stated.
ND FORTRAN aIIows 'HX' to mean 'IHX‘

1X ASSUMED
ANSI FORTRAN 77 requires the Iength of the X
format item to be epicitIy stated.
ND FORTRAN aIIows 'X' to mean ‘lX‘.

ALIGNMENT
A variabTe has been aIIocated to an address which
cannot be supported, a eg., an INTEGER beginning
at an odd—byte boundary on ND—IOO.

ALTERNATE RETURNS IN INTRINSIC FUNCTION
INTRINSIC functions cannot accept * return
specifiers in their argument Iists.

ALTERNATE RETURNS INVALID IN THIS PROGRAM UNIT
A RETURN statement was found that specified an
aIternate return expression when none of the entry
points had * specifiers in their argument Iist.

ALTERNATE RETURNS ONLY ALLOWED IN SUBROUTINES
AIternate return specifiers are onIy vaIid in
subroutines, not in functions.

APF~LIB WILL NOT BE USED BECAUSE OF THE ARRAY—INDEX—
CHECK OPTION

Cannot have both the apf—Iib option and the
array—index—check option at the same time.

APT COMMON
The form of COMMON which is pIaced in the
aiternate page tabIe on NORD—lO/ND-IOO is
non-standard, and not avaiIabIe on ND—SOO.

ARGUMENT(S) CONVERTED
ANSI FORTRAN 77 aITows onTy those actuaI arguments
which match the corresponding dummy arguments
without conversion. ND FORTRAN converts, where
possibie, the arguments to INTRINSIC and statement
functions.

ARRAYS MUST HAVE THE SAME SHAPE
AII arrays in an array—operation must have the
same number of dimensions. AIT dimensions must be
of equaI size.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai
Appendix B

'x' ASSUMED
x is a character which the compiier has assumed
was omitted in the indicated position.

ASSUMED BECAUSE HAS 2 ARGUMENTS
The wrong generic or specific name was given for
the number of arguments (i.e , ATAN instead of
ATANZ).

ASSUMED—SIZE ARRAY USED AS LIST ITEM
Assumed—size array must not be used as a Tist
item on input/output statements.

BRANCH INTO DO/IF NEST
The compiier has found an attempt to transfer
controT from outside to the inside of a DO Toop
or structured IF construct.

CANNOT BE CALLED
The indicated item cannot be invoked. It is
neither externaT, INTRINSIC nor a statement
function.

CANNOT BE DIMENSIONED
The named item cannot nave dimensions (e.g., it
may have been previousiy deciared as externai).

CANNOT BE PASSED AS AN ARGUMENT
The item cannot be used as an actua) argument
(e.g., MAX function).

CANNOT BE SAVED
The indicated item must not occur in a SAVE
statement.

CANNOT BE USED IN A TYPE STATEMENT
A name has been expiicitiy given a type when this
is not aiiowed (e g., SUBROUTINE name).

CANNOT CONTAIN A LABEL
The indicated item is expected to have the vaTue
of a Iabei in it (i.e., set by ASSIGN statement).
The item must be an unsubscripted variabTe name
of type INTEGER*2 on NORD~lO/ND—IOO and INTEGER*4
on ND—SOO.

CANNOT CONVERT
The requested conversion cannot be carried out
(e.g., arithmetic to character).

CANNOT SELECT GENERIC ENTRY
There is no specific name for this generic entry
which aiiows arguments of the required type.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI
Appendix B

CHARACTER AND NON~CHARACTER EQUIVALENCED
ANSI FORTRAN 77 does not aIIow the mixing of
character items with non—character items in an
equivaIence Iist,

CHARACTER IN APT COMMON
Character variabIes cannot be referenced via the
APT on NORD—lO/ND—IOO.

CHARACTER VARIABLE REFERENCED IN BOTH SIDES OF “=”
It is iIIegaI to refer to the same character
variabIe in both source and destination part of an
assignment statement.

COMMON BLOCKS EXCEED MEMORY
The totaI memory requirements of COMMON biocks
exceeds 64K words (ND—100 onIy).

CONFLICTING POSITIONS
A variabIe has been aTIocated to two separate
pIaces by a combination of COMMON and EOUIVALENCE
Iistsi

CONTROL VARIABLE NOT INTEGER
In an impIied DO in a DATA statement, the Ioop
controI variabIe must be of type integer.

CONVERTED TO INTEGER
A non~integer arithmetic expression or constant
was found where ANSI FORTRAN 77 requires an
integer. ND FORTRAN aTIows the conversion.

DATA IN BLANK COMMON
InitiaTizing variabies in bIank common by a DATA
statement is an ND FORTRAN extension.

DATA IN COMMON
InitiaIizing variabIes in COMMON with a DATA
statement in a program unit, other than a BLOCK
DATA subprogram, is an ND FORTRAN extension.

DATATYPE
The indicated data type is not in ANSI FORTRAN 77,
but is a ND FORTRAN extension.

DATA STATEMENT IS ILLEGAL
Data statement must not occur in a recursive
subprogram.

DECLARATION MISSING
If IMPLICIT OFF is used, every symboIic name
requiring a data type must be decIared in a Type
statement.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

DIVIDE BY ZERO
In a constant expression, an attempt was made to
divide by zero.

DO HAS ZERO STEP
In a DO loop, or an implied DO loop, the step
value is zero.

DO/IF NESTING ERROR
DO loops or structured IFs are not properly
nested.

DOUBLY DEFINED
An attempt was made to use a name for two
conflicting purposes.

DOUBLY SAVED
A variable appears in more than one SAVE
statements

DUMMY NAME INSERTED
A name was expected. The compiler has created an
internal name in order to continue processing_

EMBEDDED UNARY SIGN
ANSI FORTRAN 77 prohibits adjacent arithmetic
operators, but ND FORTRAN allows it, eg., A+—B.

ENTRY NOT ALLOWED IN DO/IF NEST
Entry statements cannot appear within DO loops or
structured IF constructs.

ENTRY NOT SET BEFORE RETURN
In a function subprogram, an entry point has not
been assigned. Invocation of this entry point
might lead to an undefined value being returned.

ERRCODE NORMAL VARIABLE IN STANDARD PROGRAMS
If STANDARD CHECK is ON, ERRCODE is treated like a
normal variable. Otherwise it has a special
meaning, see Section 9.1.7I

EXPRESSION MISSING
An expression was expected but not found.

EXTENDS COMMON NEGATIVELY
An EQUIVALENCE list required a variable or array
to occupy storage preceding a COMMON blocki

FORMAT
The indicated item is an ND FORTRAN extension.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai
Appendix B

FORMAT ERROR
A FORMAT Tist is incorrectiy specified, e.g.,
missing comma,

FORMAT LABEL TARGET OF BRANCH
Controi cannot be transferred to TabeTs on FORMAT
statements.

HAS INVALID BOUNDS
The named variabie cannot have the deciared
bounds. E.g., a TocaT variabTe was given
non—constant bounds, or the upper bound was Tess
than the Tower.

HAS INVALID LENGTH
The named variabie cannot have the deciared
Tength. 1.9., a Tocai character string was
deciared with a non—constant Tength.

HOLLERITH CONSTANT
Hoiierith constants are not part of the ANSI
FORTRAN 77 standard. Appendix G describes how
ND FORTRAN impiements them. Character strings
shouid be used instead of Hoiierith constants
wherever possibTe.

IGNORED IN BLOCK DATA
The indicated item is not vaiid in a BLOCK DATA
subprogram, and has been ignored in order to
continue processing.

ILLEGAL INDEX IN IMPLIED DO
Array—index error in impiied DO.

IN A DIFFERENT COMMON BLOCK
In an EOUIVALENCE statement, two items in a singie
Iist are in different COMMON bTocks.

INCLUDES NESTED TOO DEEPLY
The maximum depth of nesting for $INCLUDE commands
is 5.

INCOMPLETE CHARACTER/HOLLERITH STRING
The end of a statement occurred before the end of
a string. Possibie causes are: missing quote, or
wrong count before HoTTerith H, or statement
extends beyond coTumn 72.

INEFFICIENT ACCESS MODE IN OPEN
This appiies to the ND-SOO oniy. The R, w, and RN
access modes are very inefficient. If possibie,
DIRECT or SEQUENTIAL shouid be used.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI
Appendix B

INTEGER INVALID DR OUT OF RANGE
An unacceptabIe integer constant has been found,
The vaIid vaIues depend on the context.

INTEGER MISSING, 1 ASSUMED
An integer was expected. The compiIer assumes a
vaIue of 1 in order to continue processing.

INTERNAL FILES NEED A FORMAT
Using unformatted 1/0 on internaI fiIes is not
aIIowed.

INTRINSIC FUNCTION
The named function is an ND FORTRAN extension.

INVALID AS A DUMMY ARGUMENT
The specified item cannot be a dummy argument.

INVALID AS FUNCTION/SUBROUTINE NAME
Cannot refer to a subprogram as both function and
subroutine.

INVALID CHARACTER, STATEMENT IGNORED
A character is found which is not in the FORTRAN
character set. CompiIation continues with the next
statement,

INVALID CHARACTER, SUBSTRING EXPRESSION
The character substring expression exceeds the
maximum string Iength.

INVALID CONSTANT EXPRESSION
The expression cannot be computed at compiIe—time.

INVALID DIMENSION EXPRESSION
Dimension bounds must be integer expressions.

INVALID DO TERMINATION
The IabeI specified in a DD statement was found
with a statement that cannot terminate a DO Toop.

INVALID IF EXPRESSION
The expression cannot be used in a LogicaI or
Arithmetic IF. e.g., it may be of type CHARACTER.

INVALID IMPLICIT RANGE
The range in an impIicit range is invaIid (e.g.,
the second Ietter precedes the first),

INVALID IN CONSTANT LIST
The indicated item cannot be used as a constant in
a DATA statement constant Iist.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai
Appendix B

INVALID IN DATA LIST
The indicated item cannot be initiaTized in a DATA
statement.

INVALID IN EOUIVALENCE LIST
The indicated item cannot share storage with any
other item.

INVALID I/O LIST ITEM
SeTf—expTanatory.

INVALID I/D OPTION
SeTf—expTanatory.

INVALID ITERATION
In an impTied DO Toop in a DATA statement, the
iteration count is negative or zero.

INVALID LABEL
A TabeT was expected but not found.

INVALID LEFT SIDE OF ASSIGNMENT
SeTf-expTanatory.

INVALID LOOP CONTROL
The controT variabTe of a DO Toop must be an
integer, reaT, or doubTe—precision variabie.

INVALID OPERAND
The operand cannot be used with its operator.

INVALID SUBSCRIPT EXPRESSION
A subscript must be of type INTEGER.

LABEL DEFINED, BUT NOT REFERRED TO
The Tabei is not referred to in other statements.

LABEL MISSING
A TabeT was expected but not found.

LABEL NOT ALLOWED WITH THIS STATEMENT
SeIf-expTanatory.

LABEL NOT ASSIGNED
The TabeT must be assigned to an integer variabTe
in a statement IabeI assignment statement.

LABEL REFERS TO ITSELF
A potentiaT endiess Toop was detected.

LABEL UNDEFINED
A TabeT was used which did not appear in the TabeT
fie of any statement.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

LABEL USED AS FORMAT
The label on an executable statement was found
where a format label was expected.

LINE(S) ARE NON—BLANK BEYOND COL. 72
The indicated number of lines were found which had
non—blank characters in columns beyond the 72nd,
and these lines formed part of a statement or
command. Comment lines which extend beyond column
72 are not included in this number.

LOCAL ARRAYS EXCEED MEMORY
The total memory requirements of local arrays
exceeds 64K words (ND—lOO only).

LOCAL DATA IGNORED IN RE—ENTRANT MODE
Local variables cannot be initialized by DATA
statements in reentrant mode.

LOGICAL OPERATION ON INTEGERS
Self—explanatory.

MISPLACED '='
In an assigment statement, the left—hand side was
not followed by an equals sign.

MISSING DIMENSION LIST
No dimensions were given in an array declarator.

MISSING ‘END'
The end of file was found on the program test file
when a program unit was still incomplete.

MISSING NAME, '#MAIN' ASSUMED
In order that the compiler may continue its
processing, it has inserted the name #MAIN.

MISSING SPECIFICATION
An empty position was found in a list, e.g., 2
adjacent commas.

MISSING SUBSCRIPTS
An array name was used where it must be followed
by a subscript list.

MISSING ‘THEN'
The compiler assumes the keyword 'THEN‘ to be
present, in order to continue processing the IF
statement.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference ManuaI
Appendix B

MIXED LENGTH CHARACTER ENTRIES
ANSI FORTRAN 77 requires that aTI entry names in a
function subprogram must be either of type
non—character, or CHARACTER with the same Tength
(or an *). ND FORTRAN removes this restriction
compIeteTy.

MIXING CHARACTER AND NON—CHARACTER IN COMMON
ANSI FORTRAN 77 requires that aII variabies in a
COMMON bIock be character, or that aIT are
non—character.

MIXING DOUBLE PRECISION AND COMPLEX
ANSI FORTRAN 77 does not aIIow arithmetic
operations to have one doubIe precision and one
compIex operand. For the method of treatment by
ND FORTRAN, see Section 4.4.

MORE THAN 6 CHARACTERS, 31 SIGNIFICANT
ANSI FORTRAN 77 restricts names to 6 characters.
ND FORTRAN uses the first 31.

MORE THAN 7 DIMENSIONS
ANSI FORTRAN 77 aIIows no more than 7 dimensions
for its arrays. ND FORTRAN can support more except
within the SymboIic Debugger.

MULTIPLE ASSIGNMENT ILLEGAL FOR ARRAYS
Assignment to an array must not occur in a
muItipTe assignment statement.

MULTI-DIMENSIONED ARRAYS NOT ALLOWED IN ARRAY—OPERATION
OnIy one—dimensionaI arrays are aITowed in an
array—operation.

NEITHER UNIT NOR FILE SPECIFIED
An INOUIRE statement must indicate the unit or
fiIe to be examined.

NO DO SPECIFICATION IN LIST
A parenthesised data Iist has no DO specification
present.

NO MORE SPACE
The compiIer has exhausted its work area. The
program unit is too big to be compiIed. Try
subdividing it into subroutines, or moving DATA
statements to a BLOCK DATA subprogram.

NON-STANDARD CHARACTER
ND FORTRAN aITows an underscore character (_) in
symboIic names.

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference ManuaT
Appendix B

NON—

NON-

NON—

NON—

NON—

NON—

NOT

NOT

NOT

NOT

NOT

NOT

NOT

NOT

STANDARD CONTINUATION
”&" has been used as a continuation mark.

STANDARD EQUIVALENCING
Two data items share storage in a way which may
make the execution of the program diverge from the
ANSI FORTRAN 77 definition. E.g , REAL and INTEGER
arrays overTapping on a ND—IOO.

STANDARD EXPRESSION
SeTf~epanatory.

STANDARD INTERNAL FILE OR FORMAT
SeTf—expTanatory.

STANDARD LABEL FIELD
ANSI FORTRAN 77 aTIows TabeTs onTy in cqmns 1 to
5 incTusive.

STANDARD REDEFINITION
A name is used, both as an externaI name or entry,
and as a dummy argument in a statement function.

A FUNCTION
SeTf—epanatory.

A LOGICAL EXPRESSION
In a structured IF, the expressions controIIing
each of the ELSE IF'S must be IogicaI expressions.

ALLOWED IN DIMENSION EXPRESSION
SeTf—expTanatoryI

ALLOWED IN LOGICAL IF
The indicated statement cannot be part of a LogicaI
IF statement.

ENOUGH CONSTANTS
There were more items to be initiaIized in a DATA
statement data Tist, than constants in the
corresponding constant Iist.

INTEGER CONSTANT EXPRESSION
SeIf—epanatory.

INTRINSIC, EXTERNAL ASSUMED
The name is not one of the known INTRINSIC
functions. It is assumed to be an externaT function
in order to continue processing.

SYMBOLIC CONSTANT
A name found where a constant expression shoq
appear, was not a constant.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT
Appendix 8

NO UNIT SPECIFIER
ATT I/O statements must specify the unit on which
they operate.

NULL STATEMENT .
ANSI FORTRAN 77 does not aTTow compTeteTy empty
statements‘ E.g., after a LogicaT IF.

OCTAL CONSTANT
OctaT constants are an ND FORTRAN extension.

OPTION
The indicated option is an ND FORTRAN extension.

OUT OF DATA BEFORE CONSTANTS
In a DATA statement, the Tist of initiaTized items
was shorter than the Tist of constants‘

OUT OF RANGE
The vaTue on the right side of the assignment
operator is too Targe/smaTT for the variabie on the
Teft side.

OVERLAPPING IMPLICIT RANGES
The same Tetteris) occur in more than one range
in impIicit specifications.

PARENTHESES ASSUMED AROUND PARAMETERS
The PARAMETER statement shoq have its Tist of
symboTic constant assignments encTosed in
parentheses.

PRIORITY
Priority is vaTid onTy for ND FORTRAN programs.

REC AND END CONFLICT
The end—of—fiTe indication can onTy occur in a
direct access READ as an ND FORTRAN extension.

REC AND FMT = * CONFLICT
Free format 1/0 is onTy vaTid in SEQUENTIAL access
READ and WRITE statements.

RECURSION
Recursion is vaTid onTy as an ND FORTRAN extension,
and in reentrant mode.

RETURN IN PROGRAM
In ANSI FORTRAN 77, a program must terminate with a
STOP statement or by reaching the END statement of
the program subunit.

SAVE OF LOCALS NOT IMPLEMENTED IN REENTRANT MODE
SeTf—epanatory.

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manual
Appendix B

SEMICOLON SEPARATOR
In ANSI FORTRAN 77, only one statement can be
placed on a line. ND FORTRAN allows a semicolon
character (;) to separate statements on a line.

SINGLE DIMENSIONING
The ability tc refer to a multidimensional array by
use of a single subscript is an ND FORTRAN
extension.

SPECIFICATION AFTER DATA
NO FORTRAN allows DATA statements to appear before
specification statements.

STATEMENT
The indicated statement is an ND FORTRAN extension.

STATEMENT HAS TOO MANY CONTINUATION LINES
ANSI FORTRAN 77 allows 19 continuation lines in one
statement. The statement must be split.

SUBSTRING OF CONSTANT
Taking the substring of a symbolic constant is a NO
FORTRAN extension. '

SYMBOL NOT IN PARENTHESES
A symbolic constant being used to define a length
of character items must be in parentheses in ANSI
FORTRAN 77.

SYNTAX ERROR IN ARITHMETIC CONSTANT
Self—explanatory.

SYNTAX ERROR, REST OF STATEMENT IGNORED
A previous syntax error has been found. Processing
is continued at the next statement.

TOO FEW ITEMS
In an EOUIVALENCE statement, each list must contain
at least two items.

TOO LARGE LENGTH SPECIFIER
A character variable may have a length up to
2047 on ND—IOO and 32767 on ND—SOO.

UNRECOGNISED OR MISPLACED STATEMENT
The statement is either badly formed (e.g., a
misspelled keyword) or is out of sequence (e.g., a
specification follows an executable statement).

VARIABLE NOT ASSIGNED
The variable is referred to before it is assigned.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT
Appendix B

WRONG NUMBER OF ARGUMENTS
SeTf—expTanatory.

WRONG USE OF ASSEMBLY NAME
The restrictions on use of symboTic names decTared
in an ASSEMBLY statement have not been observed.

ZERO LENGTH STRING
SeTf—expTanatory.

%COMMENT
ND FORTRAN aTTows comments to begin with a percent
(%) character.

Norsk Data ND—60.145 7 EN

ND FORTRAN Reference ManuaT
Appendix B

8.2 THE LOADER ERROR MESSAGES

These are described in the SINTRAN III ReaT Time Loader
ND—60.051.

B.3 RUNTIHE ERROR DIAGNOSTICS

The runtime error diagnostics are printed on the message
output fiie, which is the user terminai (the SINTRAN
error device for RT) in the format:

*** date time FORTRAN EXCEPTION : (nnn)
Tine error message
IN LINE 11 RETURN ADDRESS aaaaaa UNIT uu DEVICE ddB

where:

nnn is the octaT error number

aaaaaa is the address in octaT of the executing
program of the compiTed statement in which
the error has occurred.

TI is the Tine number in decimai within the
source program, of the compiied statement in
which the error has occurred.

uu is the FORTRAN unit number, decimai, on
which the error has occurred.

dd is the SINTRAN IogicaT device number, octaT,
on which the error has occurred.

Note that on the ND—SOO, more information about traps
and exceptions may be printed, see Appendix 0.3.

If the error is serious the message ***JOB ABORTED*** is
given and the controi returns to the operating system.

If the error is not serious, ERRCODE is set to the vaTue
of the error code (and IOSTAT if appTicabIe), and
controi returns to the FORTRAN program.

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference Manuai
Appendix B

Error Code Nbaning (error text)

Decimal Octai

D 0 Not used
1 1 Not used
2 2 Bad file nunber
3 3 End of fiie
4 4 Card reader error (card read)
5 5 Device not reserved
6 6 Not used
7 7 Card reader error (card not read)
8 10 Not used
9 11 Not used

10 12 End of device (time—out)
11~16 13~20 Not used

17 21 Iiiegai character in paraneter
18 22 No such page
19 23 Not decinei nunber
20 24 Not octai number
21 25 You are not authorized to do this
22 26 Directory not entered
23 27 Anbiguous directory name
24 30 No such device name
25 31 Anbiguous device name
26 32 Directory entered
27 33 No such iogicai unit
28 34 Unit occupied
29 35 waster biock transfer error
30 36 Bit fiie transfer error
31 37 No more tracks avaiiabie
32 40 Directory not on specified unit
33 41 Files opened on this directory
34 42 Nbin directory not iast one reieased
35 43 No main directory
36 44 Too iong parameter
37 45 Anbiguous user nane
38 46 No such user pane
39 47 No such user name in main directory
4D 50 fldfienpt to create too many users
41 51 User aiready exists
42 52 User has fiies
43 53 User is entered
44 54 Not so nuch space unreserved in directory
45 55 Reserved space aiready used
46 56 No such fiie nape
47 57 Anbiguous fiie nane
48 60 Wrong password

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix 8

Error Code Meaning (error text)

Decimal Octal

49 61 User already entered
50 62 No user entered
51 63 Friend already exists
52 64 No such friend
53 65 Attenpt to create too many friends
54 66 Attenpt to create yourself as friend
55 67 Continuous space not available
56 70 Not directory access
57 71 Space not available to expand file
58 72 Space already allocated
59 73 No space in default directories
6O 74 No such file version
61 75 No more pages available for this user
62 76 File already exists
63 77 Attenpt to create too many files
64 100 Outside device limits
65 101 No previous version
66 102 File not continuous
67 103 File type already defined
68 104 No such access code
69 105 File already opened
70 106 Not write access
71 107 Atterrpt to open too many files
72 110 Not write and append access
73 111 Not read access
74 112 Not read, write and comnon access
75 113 Not read and write access
76 114 Not read and corrmon access
77 115 File reserved by another user
78 116 File already opened for write
79‘ 117 No such user index
80 120 Not append access
81 121 Attempt to open too many mass storage files
82 122 Attenpt to open too many files
83 123 Not opened for sequential write
84 124 Not opened for sequential read
85 125 Not opened for random write
86 126 Not opened for random read
87 127 File number out of range
88 130 File nurrber already used
89 131 No more buffer space
90 132 No file opened with this hunter
91 133 Not mass storage file
92 134 File used for write

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

Error Code Nbaning (error text)

Decimal Octal

93 135 File used for read
94 136 File only opened for sequential read or write
95 137 No scratch file opened
96 140 File not reserved by you
97 141 Transfer error
98 142 Reserved by RT program
99 143 No such block

100 144 Source and destination equal
101 145 Illegal on tape device
102 146 End of tape
103 147 Tape already in use
104 150 Not randon access on tape files
105 151 Not last file on tape
106 152 Not tape device
107 153 Illegal address reference in monitor call
108 154 Not last record on tape
109 155 File already opened by another user
110 156 File already opened for write by another user
111 157 Missing paraneter
112 160 limipages nust be left unreserved
113 161 No answer from renote ccntuter
114 162 Device cannot be reserved
115 163 Overflow in read
116 164 DNA error
117 165 Bad datablock
118 166 Control/modus word error
119 167 Parity error
120 170 LCR error
121 171 Device error (read—last~status to get status)
122 172 No device buffer available
123 173 Illegal HESS storage unit nunber
124 174 Illegal paraneter
125 175 Write—protect violation
126 176 Error detected by read after write
127 177 No EOF mark found
128 200 Cassette not in position
129 201 Illegal function code
130 202 Tine—out (no datablock found)
131 203 Paper fault
132 204 Device not ready
133 205 Device already reserved
134 206 Not peripheral file
135 207 No such queue entry
136 210 No so nuch space left

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

Error Code Nbaning (error text)

Decimal Octal

137 211 No spooling for this device
138 212 No such queue
139 213 Queue errpty
140 214 Queue full
141 215 Not last used by you
142 216 No such channel name
143 217 No remote connection
144 220 Illegal channel
145 221 Channel already reserved on remote corrputer
146 222 No remote file processor
147 223 Formatting error
148 224 Incompatible device sizes
149 225 Remote Processor not available
150 226 Tape format error
151 227 Block count error
152 230 Volume not on specified unit
153 231 Not deleted record
154 232 Device error
155 233 Error in object entry
156 234 Odd number of bytes (right byte in last word

insignificant) 157—256 234—400 Not used
257 401 Fatal formatting system error.

This is a system error due to software or
hardware errors.

258 402 Too low parentheses level in format.
A maximm of 5 levels is permitted.

259 403 Illegal character in format
260 404 Illegal termination of format
261 405 Output record size exceeded.

A maxinum of 136 characters is permitted.
262 406 Format requires greater input record
263 407 Integer overflow on input.

The result will be 21474836847 or —21474836848
for INTEGER*4, and 32767 or —32768 for
INTEGER*2.

264 410 Input record size exceeded.
A maxinum of 136 characters is permitted.

265 411 Backspace illegal
266 412 Bad charecoer on input.

The input field is ignored and the result
will be zero.

267 413 Real overflow on input.
The result will be 1.0E76.

Norsk Data AID—60.1457 EN

ND FORTRAN Reference Manual
Appendix B

Error Code Nbaning (error text)

Decimal Octal

268 414 Real underflow on input.
The result will be 0.0.

269 415 String does not start on a word boundary
270 416 Real overflow on output
271 417 Fonnar specification does not apply
272 420 Overflow in exponent on input
273 421 wrong nunber of paraneter in call
274 422 Too many files opened (ND—100 only)
275 424 Mixing of FORWATTED/LNFOFWATTED illegal
277 425 No more buffers available
278 426 Non—fatal error.

Result of FORTRAN system or hardware error.
ND—500 only.

279 427 Fatal error (1/0).
Result of FORTRAN system or hardware error.
ND—SOO only.

280 430 1/0 error without special handling
281 431 Zero base and negative exponent.

The result will be 21474836847 for integers
and 1.0E76 for reals.

282 432 Base elss than zero in exponentiation.
The result will be 0.0.

283 433 Overflow in exponentiation.
The result will be 1.0E76.

284 434 Neg. arg. in square—root.
The result will be 0.0.

286 435 Too large arg. in sine.
The result will be 0.0.

286 436 Tho large arg. in cosine.
The result Mnll be 0.0.

287 437 Too large arg. in exp-function.
The result will be 1 0E76.

288 440 Zero or neg. arg. in logarithm.
The result wdll be —1.0E76.

289 441 Both args. zero in arc—tan.
The result will be 0.0. 290—293 442—445 Not used

294 446 Too large arg. in hyperb. sine.
The result will be 1.0E76.

295 447 Tbo large arg. in hyperb. cosine.
The result wall be 1.0E76.

296 450 Too large arg. in square—root or ccnplex
abs or square—root. 297—301 451-455 Not used

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua]

Nbaning (error text)

Appendix 8

Error Code

DecimaT OctaT

297—301 451—455
302 456

303 457

Not used
ITTegaT arg. in arc~sine/cosine.
The result vdTT be 0.0.
ITTegaT arg. in tan.
The resuTt wfiTT be 0.0.

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manua1
Appendix B

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix C

MONITOR CALLS

C.1 INTRODUCTION TO USING MONITOR CALLS

If a Fortran program wishes to communicate directly with
the SINTRAN operating system, Monitor Calls are provided
for this purpose. The FORTRAN language and runtime
system has a variety of facilities, such as 1/0
statements for accessing files or handling peripheral
devices. However, some situations require direct
communication between a program and the STNTRAN
operating system. In general, this means that the
program is requesting a particular service be carried
out, or that some specific item of information is
required.

The Monitor Calls may be called by using the statements:

MONITOR CALL(number, par—1, ..., par—n)

or

MONITOR CALL('name', par-l, ..., par-n)

where

number is the Monitor Call number
'name' is the name of the Monitor Call.

Further explanation of each Monitor Call is given in the
manual SINTRAN III Monitor Calls ND—60.228.1.

Some Monitor Call routines are provided in the FORTRAN
library. These may be called from a FORTRAN program as
either a subroutine or a function subprogram. The main
difference is that in using a monitor call as a
function, a value is returned indicating the result of
carrying out the request.

Most monitor calls may be used as a function or a
subroutine. However, some may only be used as a function
since the function value is the information which was
requested, e.g., the monitor call TUSED returns the CPU
time used by a terminal since a logon.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manua]
Appendix C

If a function returns a status code, it is strongly
recommended that this status is tested. If a monitor
caiI is caiied as a subroutine, then status, e.g., error
conditions, must be detected in a different way to
functions. The system variabie ERRCODE, which is an ND
FORTRAN extension, may be used with many of the monitor
caiis (both functions and subroutines) to detect errors.
If ERRCODE is used to detect errors from monitor caiis,
the program must not be compiled in STANDARD—CHECK ON
modus.

Exampie — a monitor caii used as a subroutine

For exampie, to set the system time and date, use the
monitor caii CLOCK (MON 113) as a subroutine:

C DECLARATIONS
C

INTEGER PARAMS[7]
INTEGER BUNITS,SECONDS,MINUTES,HOURS,DAYOFMTH,MONTH,YEAR

C
C SET UP SOME CONVENIENT VARIABLE NAMES FOR THE TIME AND DATE
C

EQUIVALENCE [PARAMSil],BUNITS],{PARAMS[2),SECONDSJ
EQUIVALENCE [PARAMS[3],MINUTES},[PARAMSI4],HOUHS]
EQUIVALENCE [PARAMS[5],DAYOFMTH],[PAHAMS[6),MONTH]
EQUIVALENCE [PAHAMS[7),YEAR)

C
C USE MONITOR CALL TO GET SYSTEM TIME AND DATE
C

CALL CLOCK[PARAMS]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT
Appendix C

Exampie — a monitor caTT used as a function

To read information directTy from a device, use the
monitor caTT INCH as a function:

0 DECLARATIONS [INCLUDING THE MONITOR CALL TO BE USED
AS FUNCTION]

C
D

C
)

INTEGER INUNIT,ONECHAR
INTEGER INCH

READ ONE CHARACTER FROM THE DEVICE WHICH IS CONNECTED
TO THE FORTRAN UNIT NUMBER IN INUNIT

0
0
0
0

ONECHAR=INCHIINUNIT]

('
3
0

CHECK THE SYSTEM VARIABLE, ERRCODE, TO SEE IF ALL WENT WELL

IF[ERRCODE .NE. 0] GO TO 10

('3 CONTINUE PROCESSING

O

ERROR OCCURED, TERMINATE

H
U

G
O

O CONTINUE
STOP

Note: 1. The system variabTe, ERRCODE, contains a
’ vaTue upon return from many monitor caTTs.

The vaTue returned indicates that the
service requested has been successfuTTy
carried out, or whether an error or some
unusuaT condition has arisen.

2. If a monitor caTT is used as a function, the
function name must be deciared as a specific
data type, to define for the compiTer the
precise way that this variabTe name wiTT be
used.

ATT monitor caTTs, which may be used in FORTRAN, are
Tisted in the TabTe of Monitor CaTTs, in section C.3..
For each monitor caTT, the tabTe describes the name
which must be used, if the monitor caTI shoq be used
as a function onTy, the number of parameters and their
corresponding data types, and whether ERRCODE contains a
vaTue upon return.

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference ManuaT
Appendix C

The compiete definition of aiT avaiiabie monitor caTTs
is in the SINTRAN Reference Manuai, NDn60.128. This
incTudes an expianation of the meaning of each parameter
and ruTes about the use of each monitor caTT.

The monitor caTTs avaiiabie to FORTRAN programs, i.e.,
suppiied in the FORTRAN Tibrary, are Timited to those
described in section C.3, which does not incTude aTT
those avaiTabTe from the SINTRAN operating system. Note
that the name to be used for a specific monitor caTT in
FORTRAN coq be different from the name used in the
SINTRAN Reference Manuai. The exampie above shows how
the monitor caTT INCH is used; in the SINTRAN Reference
Manuai this monitor caTT is named INBT. The tabie in
section C.3 has the names to be used in FORTRAN.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

C.2 COMMONLY USED MONITOR CALLS

This section illustrates some of the more commonly used
monitor calls. Each monitor call which has been
selected, has a brief explanation of its function and an
example of the way it can be called from a FORTRAN
program.

The monitor calls are categorized into the same groups
as in the SINTRAN Reference Manual, ND-60.128, Chapter
4.

Summary of the Monitor Calls in this Section

Alphabetical order: Numerical order:

ABORT 105 (C.2.1) 1 INCH (0.2 2)
BRKM 4 (C 2.3) 2 OUTCH (C.2 2)
CLOCK 113 (C.2.1) 3 ECHOM (0.2.3)
ECHOM 3 (0.2 3) 4 BRKM (0.2.3)
COMND 70 (0.2 1) 11 TIME (0.2 1)
ERMSG 64 (C 2.6) 32 MSGE (C.2.3)
HOLD 104 (0.2.1) 64 ERMSG (C.2.6)
INCH 1 (0.2.2) 66 ISIZE (0.2.3)
ISIZE 66 (C.2.3) 7O COMND (0.2 1)
MAGTP 144 (C 2.3) 73 SMAXD (C.2 4)
MSG 32 (C.2.3) 75 REABT (C.2 4)
DUTCH 2 (C.2 2) 76 SETBS (C.2.4)
OUTST 162 (C.2.2) 100 RT (C.2.1)
REABT 75 (0.2.4) 104 HOLD (C.2 1)
RFILE 117 (C.2.5) 105 ABORT (C.2 1)
R310 143 (C.2.5) 113 CLOCK (C.2.1)
RT 100 (C.2.1) 114 TUSED (C.2 1)
RTWT 135 (C.2 1) 117 RFILE (C.2 5)
SETBS 76 (C.2 4) 120 WFILE (C.2 5)
SMAX 73 (C.2 4) 121 WAITF (C.2.5)
TIME 11 (0.2.1) 135 RTWTF (C.2.1)
TUSED 114 (C 2.1) 140 WHDEV (C.2.2)
WAITF 121 (C.2 5) 143 RSIOV (C.2.5)
WFILE 120 (C.2.5) 144 MAGTP (0.2.3)
WHDEV 140 (0.2.2) 162 OUTST (C 2.2)

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI
Appendix C

C.2.1 PROGRAM ADMINISTRATOR
0
0

0
0
0
0
0

0
0
0
0
0

0
0

0
0

0
0

TIME ~ MON 11

Read the current time, in basic time units, i.e., 20
miIIiseconds per unit or some preset vaIue, as heId by
the operating system.

GET THE CURRENT TIME IN INTERNAL UNITS

INTEGER*4 TIME,CURRENTTIME,DUMMY

CURRENTTIME=TIME[DUMMY)

COMND — MON 70

Transfer the contents of a string to the SINTRAN command
processor's buffer, and the string wiII be executed by
SINTRAN.

REQUEST SINTRAN TO EXECUTE A COMMAND TO CREATE A FILE
DURING EXECUTION OF THIS PROGRAM

CHARACTER*20 COMMAND

ON THE ND—lOO, THE CHARACTER STRING MUST START ON A WORD
BOUNDARY. EQUIVALENCE WITH AN INTEGER VARIABLE WILL
ACCOMPLISH THIS.

INTEGER I
EQUIVALENCEICOMMAND,I]

SET THE CONTENTS OF THE STRING VARIABLE TO A SINTRAN COMMAND.
NOTE THE CHARACTER STRING DOES NOT BEGIN WITH AN @ CHARACTER.
FURTHERMORE, THE STRING MUST BE TERMINATED BY AN APOSTROPHE.

COMMAND='CREATE-FILE A-NEW-FILE SYMB 100"'

REQUEST SINTRAN TO EXECUTE THE CONTENTS OF ”COMMAND”

CALL COMND[COMMAND]

Norsk Data ND—60.145.7 EN

N
A

G
O

O
D

C
O

C
O

O
0
0

('1

C
C
C

D FORTRAN Reference ManuaT
ppendix C

RT — MON 100

Put an entry In execution queue, to request execution of
an RT program.

PUT REQUEST FOR EXECUTION OF THE HT PROGRAM IN THE EXECUTION
QUEUE

EXTERNAL RTJOB

CALL RT[RTJOB]

HOLD — MON 104

Set the caTTing program in a waiting state for a
specified period. The program wiTT continue execution
after return from the caTT to HOLD.

WAIT FOR 30 SECONDS, THEN OUTPUT A MESSAGE, INCLUDING A COUNT,
ONCE EVERY TEN TIME UNITS

INTEGER TERMINAL,COUNT,TUNITS,SECONDS
INTEGER LONGWAIT,MSGWAIT,MSGLIMIT

INITIALIZE TERMINAL LOGICAL UNIT

DATA TERMINAL/l/

INITIALIZE TIME UNIT INDICATORS

DATA TUNITS/l/,SECONDS/2/

INITIALIZE WAIT TIMES
DATA LONGWAIT/30/,MSGWAIT/IO/

PUT PROGRAM IN A WAIT STATE FOR 30 SECONDS

CALL HOLD[LONGWAIT,SECONDS]

OUTPUT SOME MESSAGES WITH A COUNT EVERY TENTH BASIC TIME UNIT
DO 10 COUNT = 1,MSGLIMIT
WRITE(TERMINAL,IOO] COUNT

100 FORMAT[X,'StiIl alive in here! Message number: ',15)
CALL HOLD[MSGWAIT,TUNITS]

DO SOME OTHER PROCESSING

10 CONTINUE

Norsk Data NO~60.145.7 EN

0
O

O
0

ND FORTRAN Reference ManuaT
Appendix C

ABORT — MON 105

Stop an RT program by setting it in a passive state. The
program wiiT be removed from the time or execution
queue, aTT resources wiTT be reTeased and further
periodic execution will be prevented.

mDPANRTPmmmm

EXTERNAL COLLECT

CALL ABORT[COLLECT]

CLOCK - MON 113

Get the current time and date from the operating system.

GET THE SYSTEM TIME DATE AND PRINT IN A PLEASANT FORMAT

INTEGER PARAMS(7]

GET TIME AND DATE

CALL CLOCK(PARAMS]

PRINT THE TIME AND DATE IN A USEFUL FORMAT

WRITE[PRINTFILE,100] [PARAMS(I], 1:2,7]
100 FORMAT(X,'The time is I ',12,'.',12,'.',12,/,

1 X,'The date is : ',12,'/',12,'/',I4]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

TUSED ~ MON 114

Get the CPU time used by a terminal since the last
logon, or since the last batch job was started.

O
F

)

COMPUTE THE TIME REQUIRED TO COMPLETE EXECUTION OF A LOOP

INTEGEH*4 CPUSTART, CPUFINISH, LOOPTIME, TUSED

C GET CPU TIME PRIOR TO THE LOOP
CPUSTART=TUSED(DUMMY]

C
C THE LOOP WE WANT TO TIME
C

DO
C
C THE LOOP DOING SOMETHING

ENDDO
C
C THE LOOP HAS FINISHED, COMPUTE How LONG IT TOOK.
C

CPUFINISH=TUSED(DUMMY]
LOOPTIME=CPUFINISH—CPUSTART

RTWT _ MON 135

Set the RT program issuing the call in a wait state
until is restarted, e.g., by another program calling RT
(MON 100). The program which issued the RTWT call will
restart at the statement immediately following the RTWT
call.

PROGRAM HOPE
C
C SET THIS PROGRAM IN A WAIT STATE, HOPING THAT IT GETS
C RESTARTED SOONER OR LATER
C

INTEGER TERMINAL
C
C INITIALIZE THE TERMINAL LOGICAL UNIT NUMBER

DATA TERMINAL/l/
C
C TAKE A REST FOR A WHILE
C

CALL RTWT
C
C AFTER BEING RESTARTED, CARRY ON FROM HERE. TELL THE USER.

WRITE[TEHMINAL,*)'Hurray, we are off again!’

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai
Appendix C

C.2.2 RETRIEVING/CHANGING DEVICE INFORMATION

INCH — MON 1

Read one byte from a device. If the device is a data
Iink or word—oriented internal device, read one word.

READ ONE BYTE INTO THE VARIABLE ICHAR FROM A DEVICE. THE
DEVICE MUST HAVE BEEN OPENED AND ITS FORTRAN UNIT NUMBER
STORED IN THE VARIABLE IFNUM, OR A SINTRAN LDN MAY BE USED.

0
0

0
0

0

ICHAR=INCH[IFNUM]
IF NOT SUCCESSFUL, PRINT A FILE SYSTEM ERROR MESSAGE0

IF (ERRCODE .NE. O] CALL ERMSG[ERRCODE]

DUTCH — MON 2

Write one byte to a device or to a file. If the device
is a data Iink or word oriented internai device, write
one word.

WRITE ONE BYTE FROM ICHAR TO A FILE. THE FILE MUST HAVE
BEEN OPENED AND ITS FORTRAN UNIT NUMBER STORED IN THE
VARIABLE IFNUM, OR A SINTRAN LDN MAY BE USED.

0
0

0
0

0

CALL OUTCH[IFNUM,ICHAR)

0
0

IF NOT SUCCESSFUL, PRINT A FILE SYSTEM ERROR MESSAGE

IF [ERRCODE .NE. 0] CALL ERMSG[ERRCODE]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI
Appendix C

(
3
a

G
O

WHDEV — MON 140

Check whether a 10gica1 device is reserved.

CHECK WHETHER A LOGICAL DEVICE IS FREE FOR OUTPUT,
SO THAT THIS PROGRAM CAN CONTINUE PROCESSING.

INTEGER TERMINAL,LOGDEVICE,OUTPUT,FREE
INTEGER RTDESC, NHDEV

INITIALIZE TERMINAL LOGICAL UNIT AND LOGICAL DEVICE NUMBER

DATA TERMINAL/l/,LOGDEVICE/IO/

INITIALIZE PARAMETER VALUES

DATA OUTPUT/1/,FREE/O/

GET THE DEVICE INFORMATION

RTDESC=WHDEV[LOGDEVICE,OUTPUT]

CARRY ON IF THE DEVICE IF FREE FOR OUTPUT

IFIRTDESC .NE. FREE] THEN
WRITE[TERMINAL,*] 'Sorry, device already reserved'
STOP

ENDIF

Norsk Data ND—60.145.7 EN

0

ND FORTRAN Reference Manua]
Appendix C

OUTST ~ MON 162

Write a string of characters to a periphera] device;

WRITE A MESSAGE TO THE USER'S TERMINAL

INTEGER IMSG,LENGTH,LOGUNIT
CHARACTER*50 MESSAGE

EQUIVALENCE TO AN INTEGER SO IT STARTS ON A WORD BOUNDARY

EQUIVALENCE [IMSG,MESSAGE]

INITIALIZE THE MESSAGE AND ITS LENGTH IN BYTES

DATA MESSAGE/'Hello from your friendly program'/
DATA LENGTH/50/

INITIALIZE THE LOGICAL UNIT NUMBER FOR THE TERMINAL

DATA LOGUNIT/l/

WRITE THE MESSAGE

MONSTATUS=OUTST(LOGUNIT,MESSAGE,LENGTH]
CHECK THAT ALL IS WELL

IF[MONSTATUS .NE. 0] CALL ERMSG[MONSTATUS]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

C.2.3 DEVICE HANDLING

O
(‘
3
0

Q

ECHOM ~ MON 3

Set echo strategy for a terminal.

SET THE ECHO STRATEGY TO NOT ECHO ANY CHARACTERS, I.E.
USEFUL

FOR ENTERING A PASSWORD, THEN RESET THE ECHO STRATEGY.

INTEGER TERMINAL,SUPPRESS,NORMAL

INITIALIZE TERMINAL LOGICAL UNIT, AND ECHO STRATEGIES

DATA TERMINAL/1/,SUPPRESS/—1/,NORMAL/1/

SET NO ECHO FOR PASSWORD PROCESSING

CALL ECHOM[TERMINAL,SUPPRESS]

GET USER PASSWORD, WITH APPROPRIATE CHECKS

RESET TO ECHO ALL CHARACTERS ON THE TERMINAL

CALL ECHOM(TERMINAL,NORMAL]

Norsk Data ND~60.145.7 EN

0
0
0
0

o
n

ND FORTRAN Reference Manua?
Appendix C

BRKM — MON 4

Set a specific break strategy for a terminal.

SET THE BREAK STRATEGY SO THAT THE USER PROGRAM MAY EXAMINE
EVERY CHARACTER, As IT IS TYPED ON THE USER'S TERMINAL.

INTEGER TERMINAL,ALLCHARS

INITIALIZE TERMINAL LOGICAL UNIT NUMBER

DATA TERMINAL/l/

SET ARGUMENT VALUE FOR BREAK ON ALL CHARACTERS

DATA ALLCHARS /0/

SET BREAK ON ALL CHARACTERS, FOR THE USER’S TERMINAL

CALL BRKM [TERMINAL , ALLCHARS]

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference ManuaI
Appendix C

MSG — MON 32

Write a character string to the user's terminaI.
("

D
O

SEND A MESSAGE TO THE TERMINAL

(7

CHARACTER*8O MESSAGE

ON THE ND-lOO, THE CHARACTER STRING MUST START ON A WORD
BOUNDARY. EQUIVALENCE WITH AN INTEGER VARIABLE WILL
ACCOMPLISH THIS.

(
”
1

0
0

0
0

INTEGER I
EQUIVALENCE[MESSAGE,I]

n
o

INITIALIZE THE MESSAGE TEXT

DATA MESSAGE/'Dear user, have a nice day"'/

(7
0

SEND THE MESSAGE

CALL MSG(MESSAGE]

Norsk Data ND-60.145.7 EN

0
0
0
0
0

0
0

0
0

0
0

0
0

0
0

0

ND FORTRAN Reference Manua]
Appendix C

ISIZE — MON 66

Get the number Of bytes, currentIy in the termina] input
buffer, i.e., those characters which have not yet been
read by the user program.

A TERMINAL IS BEING USED FOR OPERATOR INPUT AND OUTPUT OF

MESSAGES. CHECK WHETHER THE OPERATOR HAS BEGUN TYPING
SOMETHING, PRIOR TO OUTPUT OF A MESSAGE TO THE TERMINAL.

INTEGER TERMINAL
INTEGER INCHARS

INITIALIZE THE TERMINAL LOGICAL UNIT NUMBER

DATA TERMINAL/l/

CHECK IF OPERATOR HAS BEGUN TYPING ON THE TERMINAL

INCHARS=ISIZE[TERMINAL]
IF[INCHARS .GT. 0] GO TO 10

NO, OUTPUT A MESSAGE TO THE TERMINAL

WRITEITERMINAL,*] 'Dear user, are you still there?’

OPERATOR HAS BEGUN TYPING, PROCESS HIS INPUT BEFORE
PRINTING THE MESSAGE ON THE TERMINAL

10 CONTINUE

MAGTP — MON 144

This monitor caiI reads from, writes to, or performs a
variety of controi functions for magnetic tape devices.
It may aISO be used with other devices with similar
characteristics to magnetic tape devices, e.g., Versatec
printer/pIotter or TIOppy disk.

EXAMPLES OF A MAGNETIC TAPE DEVICE, READ AND REWIND OPERATION

INTEGER MAGTP, DATA[lOO], LOGUNIT
INTEGER READREC, REWIND
INTEGER STATUS, LENGTH, WORDSREAD, DUMMY

INITIALIZE THE LOGICAL UNIT NUMBER AND REQUIRED FUNCTIONS

DATA LOGUNIT/32/
DATA READREC/O/, REWIND/13B/

READ A RECORD, 50 WORDS SAY

Norsk Data ND—60.145 7 EN

ND FORTRAN Reference Manual
Appendix C

LENGTH=50
STATUS=MAGTP [READREC , DATA , LOGUNIT , LENGTH , WORDSREAD]

C
C IF ALL IS NOT WELL, EXIT TO ERROR PROCESSING
C

IF[STATUS .NE. 0] GO TO

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual

C.2.4 RETRIEVING/CHANGING FILE SYSTEM INFORMATION
(
"
3

0
0

0
0
C

)
('3

0
0
0

O

SMAX ~ MON 73 and REABT — MON — 7S

Appendix C

SMAX sets the vaIue of the maximum byte pointer of a
fiIe.

REABT reads the byte pointer as it wouId be used for
the next sequential access of a mass storage file.

AFTER WRITING SOME RECORDS TO A FILE, UPDATE THE MAXIMUM BYTE
POINTER.

INTEGER SMAX,REABT
INTEGER*4 BYTEPOINTER,MAXBYTEPOINTER
INTEGER LOGUNIT

INITIALIZE THE LOGICAL UNIT NUMBER

DATA LOGUNIT/lO/

OPEN THE FILE

OPEN[LOGUNIT,FILE='MY—DATA—FILE',ACCESS='SPEC[AL',...]

WRITE SOME RECORDS CONTAINING DATA TO THE FILE

GET THE VALLUE OF THE BYTE POINTER FOR THE FILE

CALL REABT[LOGUNIT,BYTEPOINTER]

CHECK THAT ALL IS WELL

IF[ERRCODE .NE. 0) CALL ERMSG(ERRCODE]

UPDATE THE VALUE OF THE MAXIMUM BYTE POINTER FOR THE FILE

MAXBYTEPOINTER=BYTEPOINTER-1
CALL SMAX[LOGUNIT,MAXBYTEPOINTER)

CHECK THAT ALL IS WELL

IF[ERRCODE .NE. 0] CALL ERMSG[ERRCODE]

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

SETBS — MON 76

Set the block size of a file to a specific value
temporarily (until the file is closed), which will then
be used for random read and write operations.

In the example below, the FACTOR: specifier of the OPEN
statement is set to 4 which is the default value for
operation on the ND—SOOI This program can be used on the
ND~lOO without any changes; but note that the default
value is 2 for the ND—lOO.

The FACTOR: specifier, in the OPEN statement, might be
set to l which means that the monitor calls, RFILE,
WFILE, SETBS and MAGTP will use block size in bytes,
rather than using the default word sizes relevant to
either machine. Note that an even number of bytes should
be used.

C
C SET THE BLOCK SIZE TO 4096 BYTES. THE DEFAULT BLOCK SIZE WHEN
C THE FILE Is OPENED IS 512 BYTES [256 WORDS ON THE ND—IOO].
C

INTEGER LOGUNIT, FACSOO, TBSBYTES, TBSUNITS
C
C INITIALIZE THE LOGICAL UNIT NUMBER
C

DATA LOGUNIT/IO/
C I,
C INITIALIZE TEMPORARY BLOCK SIZE, IN BYTES
C

DATA TBSBYTES/4096/
C
c INITIALIZE VALUE TO DEFAULT FOR THE ND—soo
C

DATA FACSOO/4/
C
C OPEN THE FILE, USE FACTOR: TO SET DEFAULT VALUE FOR ND—SOO
C

OPEN[LOGUNIT,FACTOH=FACSOO,ACCESSz'SFECIAL‘,...]C .

C CHANGE FROM THE DEFAULT BLOCK SIZE TO 4096 BYTES.
C THIS BLOCK SIZE WILL BE USED UNTIL THE FILE IS CLOSED,
C OR ANOTHER SETBS CALL IS MADE.
C

TBSUNITS=TBSBYTES/FAC500
CALL SETBS[LOGUNIT,TBSUNITS]

C
C CHECK THAT ALL IS WELL
C

IF(ERHCODE .NE. 0] CALL ERMSG(ERRCODE]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI
Appendix C

C-2.5 FILE OPERATIONS
0
0
0
0
0
0
0

0
0

0
0

RFILE — MON 117 and WFILE ~ MON 120

Access a file random and read or write a specified
number of words to or from a fTIe block.

READ A BLOCK OF DATA, 2048 BYTES, RANDOMLY FROM ONE FILE AND
wRITE IT RANDOMLY TO ANOTHER FILE. THEN READ THE NEXT RECORD
FROM THE INPUT FILE.
THE FACTOR: PARAMETER IN THE OPEN STATEMENT IS SET TO THE
DEFAULT VALUE FOR THE ND—lOO, I.E. 2 BYTES.

INTEGER INUNIT, OUTUNIT, FACIOO, READNEXT
INTEGER DATA[1024], LENGTH, BLOCKNUM
INTEGER IOCOMFLETE

INITIALIZE THE LOGICAL UNIT NUMBERS

DATA INUNIT/lU/, OUTUNIT/12/

INITIALIZE DEFAULT VALUE FOR THE ND—lOO IN OFEN STATEMENT

DATA FAC100/2/

SET BLOCK NUMBER TO "READ NEXT BLOCK“

DATA READNBXT/—1/

SET ARGUMENT TO WAIT UNTIL I/O OPERATION COMPLETE

DATA IOCOMPLETE/O/

INITIALIZE LENGTH OF THE DATA AREA FOR RECORDS, IN WORDS

DATA LENGTH/1024/

OPEN THE FILES, USE FACTOR: SETTING FOR WORD SIZE ON ND-lOO

OPEN(INUNIT,...,FACTOR=FAC100,ACCESS='SPECIAL'...]
OPEN[OUTUNIT,...,FACTOR=FAC100,ACCESS='SPECIAL'...]

READ BLOCK RANDOMLY [FIFTH BLOCK] FROM THE INPUT FILE

BLOCKNUM=4
CALL RFILE[INUNIT,IOCOMPLETE,DATA,BLOCKNUM,LENGTHI

CHECK THAT ALL IS WELL

IF[EBRCODE .NE. 0] CALL ERMSGIERRCODE}

WRITE THE BLOCK RANDOMLY [SECOND BLOCK] TO THE OUTPUT FILE

BLOCKNUM=1
CALL WFILE[OUTUNIT,IOCOMPLETE,DATA,BLOCKNUM,LENGTH)

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

G
O

0
0

0
0

("
)0

0
O

F
)

(
1
0
0
0

0
0

0

CHECK THAT ALL IS WELL

IF[ERRCODE .NE. 0] CALL ERMSGIERRCODE]

NOW DO A "READ NEXT BLOCK" OPERATION FROM THE INPUT FILE
I.E., THE SIXTH BLOCK

CALL RFILEIINUNIT,IOCOMPLETE,DATA,READNEXT,LENGTH}

CHECK THAT ALL IS WELL

IF[ERRCODE .NE. 0] CALL ERMSG[ERRCODE]

RSIO — MON 143

Find out the execution mode of the caIIing program, user
number, and input and output fiIe numbers.

OUTPUT A MESSAGE ONLY IF THE PROGRAM IS IN INTERACTIVE MODE,
AND THE OUTPUT FILE IS A CHARACTER DEVICE.

INTEGER TERMINAL,INTERACTIVE,OCUPPER
INTEGER EXMODE,INDEVICE,OUTDEVICE,INXUSER

INITIALIZE THE LOGICAL UNIT NUMBER

DATA TERMINAL/l/

INITIALIZE VALUE FOR INTERACTIVE MODE AND LOWER LIMIT DEVICE
NUMBER FOR CHARACTER DEVICES

DATA INTERACTIVE/O/,OCUPPER/63/

REQUEST EXECUTION MODE ETC.

CALL RSIO[EXMODE,INDEVICE,OUTDEVICE,INXUSER]

OUTPUT MESSAGE IF THINGS ARE AS WE WISH

IF[EXMODE .EQ. INTERACTIVE .AND.
1 OUTDEVICE .LE. OCUPPER) THEN

WRITE[TERMINAL,*] 'Hello there user'
ENDIF

Norsk Data ND~60.145.7 EN

0
0

0
0

('
3

0

ND FORTRAN Reference Manual
Appendix C

WAITF — MON 121

Check the state Of a mass storage transfer, or whether a
transfer Initiated by RFILE or WFILE Is compIete.

WAIT UNTIL AN I/O TRANSFER IS COMPLETE, BEFORE CONTINUING
PROCESSING

INTEGER LOGUNIT,IONOWAIT,IOCOMPLETE
INTEGER IOSTATUS

INITIALIZE THE LOGICAL UNIT NUMBER

DATA LOGUNIT/lO/

SET ARGUMENT VALUES FOR DESIRED ACTIONS

DATAIONOWAIT/1/,IOCOMPLETE/O/

OPEN MASS STORAGE FILE

OPEN[LOGUNIT,ACCESS=‘SPECIAL',FILE=...]

READ A RECORD FROM THE FILE

CALL RFILEILOOUNIT,IONOWAIT,...)

pROGRAM CAN CONTINUE pROCESSINO HERE; SOME CALCULATIONS

SET RROORAM IN A WAIT STATE UNTIL I/O HAS FINISHED

IOSTATUS=WAITF(LOGUNIT,IOCOMPLETE]

CHECK THAT ALL Is WELL

IF[IOSTATUS .GT. 0) CALL EHMSG[ERRCODE}

ALL IS WELL, I/O TRANSFER IS FINISHED

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

C.2.6 ERROR HANDLING

ERMSG — MON 64

Print the File System error message corresponding to the
value in the argument. This is often used to print an
error message to explain the value of ERRCODE which has
been set by an earlier monitor call.

C
C PRINT AN APPROPRIATE FILE SYSTEM ERROR MESSAGE
C NOTE THAT ERRCODE VALUE OF ZERO USUALLY MEANS ALL IS WELL
C

IF[ERRCODE .NE. 0] CALL ERMSG[ERRCODE]

Norsk Data ND—60.l45.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix C

C-3 ND-lOO AND ND-SOO MONITOR CALLS

Note: in the following table, ”integer” in the column
”data type” means default integer type: integer*2 on the
ND—lOO, and 1nteger*4 on the ND—SOO.

Name MON Fun arguments/return ERRCODE

or set

oct Sub number. purpose data type comments

LEAVE 0 F15 none — no return no

INCH 1 F 1. input unit integer FORTRAN unit number yes

see return value integer see note 1

note 2

OUTCH 2 F 1. output unit integer FORTRAN unit number yes
see 2. output character integer right~adjusted

note 2 return value integer see note 1

ECHOM 3 S 1. device integer SINTRAN LDN no

2‘ strategy integer

3. table integer*2 array 8 elements. optional

BRKM 4 S 1. device integer SINTRAN LDN no

2. strategy integer

3. table integer*2 array 8 elements. optional

4. number of integer optional

Characters

TIME 11 F return value integer*4 no

SETCM 12 S 1. command string character see note 4 no

CIBUF 13 F 1. unit integer FORTRAN unit number yes

return value integer ERRCODE

COBUF 14 F 1. unit integer FORTRAN unit number yes

return value integer ERRCODE

MGTTY 16 F 1. unit integer FORTRAN unit number yes

2. terminal type integer

return value integer ERRCODE

MSTTY 17 F 1. unit integer FORTRAN unit number yes

2. terminal type integer
return value integer ERRCODE

LASTC 26 F 1. device integer SINTRAN LDN no

return value integer right-adjusted

RTDSC 27 F 1. RT desc. address integer no

1. RT desc. copy integer array 26 elements

return value integer

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix C

Name MON Fun arguments/return ERRCODE

or set

oct Sub number, purpose data type comments

GETRT 30 F return value integer no

EXIOX 31 F 1. register content integer A—register (ND—100) no

Ii—register (ND—500)

2. dev.register integer
address

return value integer

MSG 32 S 1. message character see note 4 yes
ALTON 33 S 1. page table number integer must be used with APT COMMON yes

ALTOF 34 5 none must be used with APT COMMON no

IOUT 35 S radix integer 2. 8, 10 or 16 no
2. value integer see note 6

NOWT 36 S 1. device integer SINTRAN LDN rm

I/O flag integer
wait flag integer

AIRDW 37 S 1. number of integer :N no

channels
channel numbers integer*2 array N 16-bit elements

read values integer*2 array N 16—bit elements

4. error flag integer

SPCLO 40 F 1. unit integer FORTRAN unit number yes
2. text string character see note 4

3. number of copies integer

4. print flag integer

return value integer ERRCODE

ROBJE 41 F 1. unit integer FORTRAN unit number yes
2. buffer integer*2 array 32 elements

return value integer ERRCODE

RUSER 44 F 1. user name character see note 4 yes

2. buffer integer*2 array 32 elements

return value integer ERRCODE

TERMO 52 S 1. device integer SINTRAN LDN no

2. mode integer

MDLFI 54 F 1. file name character see note 4 yes
return value integer ERHCODE

PASET 56 S 1-5 parameters integer no

Norsk Data ND—60 .145.7 EN

ND FORTRAN Reference Manual
Appendix C

Name MON Fun arguments/return ERRCUDE

01‘ amt,

oct Sub number, purpose data type comments

PAGET 57 S 1—5 parameters integer no

RMAX 62 F 1. unit integer FORTRAN unit number yes

2. number of bytes integer*4

return value integer ERRCODE

ERMSG 64 F 1. error number integer see note 7 no

QERMS 65 S 1. error number integer see note 7 n3

ISIZE 66 F 1. unit integer FORTRAN unit number yes

return value integer see note 1

OSIZE 67 F 1. unit integer FORTRAN unit number yes

return value integer see note 1

COMND 70 F 1. command string character see note 4 yes

DESCF 71 S 1. device integer SINTRAN LDN no

EESCF 72 S 1. device integer SINTRAN LDN no

SMAX 73 F 1. unit integer FORTRAN unit number ~

2. byte count integer*4

return value integer ERRCODE yes

SETBT 74 F 1. unit integer FORTRAN unit number yes

2. byte pointer integer*4 first byte has number 0

return value integer ERRCODE

REABT 75 F 1. unit integer FORTRAN unit number yes

2. byte pointer integer*4 first byte has number 0

return value integer ERRCODE

SETBS 76 F 1. unit integer FORTRAN unit number yes
2. block size integer see units (see note 5)

return value integer ERRCODE

SETBL 77 F 1. unit integer FORTRAN unit number yes

2. block number integer first block has number 0

return value integer ERRCODE

RT 100 S 1. RT program external or integer no

SET 101 S RT program external or integer no

2. number of time integer

units

3. basic unit integer

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

Name MON Fun arguments/return HRHCOUE

or set

Oct Sub number. purpose data type comments

ABSET 102 S 1. RT program external or integer no

2. seconds integer

3. minutes integer

4. hours integer

INTV 103 S 1. RT program external or integer no
2. number of time integer

units

3. basic unit integer

HOLD 104 S 1 number of time integer no
units

2. basic units integer

ABORT 105 S 1 RT program external or integer no

CONCT 106 S . RT program external or integer nu
2. device integer SINTRAN LDN

DSCNT 107 S 1 RT program external or integer no

PRIOR 110 F 1. RT program externallor integer no
2. priority integer

return value integer

UPDAT 111 S 1-5 time integer no

CLADJ 112 S 1 number of time integer no
units

2. basic units integer

CLOCK 113 S 1. time integer array 7 elements no

TUSED 114 F return value integer*4 no

FIX 115 S 1. segment number integer no

UNFIX 116 S 1. segment number integer no

RFILE 117 F 1. unit integer FORTRAN unit number yes
2. return flag integer
3. memory address array any type except character
4 block number integer

5. length to be read integer count in units (see note 5)
return value integer ERRCODE

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

Name MON Fun arguments/return ERRCODE

or set

oct Sub number. purpose data type Comments

WFILE 120 F 1. unit integer FORTRAN unit number yes

2. return flag integer

3. memory address array any type except character

4. block number integer

5. length to be integer count in units (see note 5)

written

return value integer ERRCODE

WAITF 121 F 1. unit integer FORTRAN unit number yes

2. return flag integer

return value integer

RESRV 122 F 1. device integer SINTRAN LDN no

2. I/O flag integer

3. return flag integer

return value integer

RELES 123 S 1. device integer SINTRAN LDN no

2. I/O flag integer

PRSRV 124 F 1. device integer SINTRAN LDN no

2. 1/0 flag integer

3. RT program external or integer

return value integer

PRLS 125 S 1. device integer SINTRAN LDN no

2. {/0 flag integer

DSET 126 S 1. RT program external or integer no

2. delay integer*4

DABST 127 S 1. RT program external or integer no

2. time integer*4

DINTV 130 5 RT program external or integer no

2. time interval integer*4

ABSTR 131 S 1. device integer SINTRAN LDN no

2. function integer

3. memory address integer*4 double integer

4. block address integer

5. number of blocks integer

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

Name MON Fun arguments/return ERRCODE

or net
oct Sub number, purpose data type comments

MEXIT 133 S 1. segment number integer right byte only no

see note 3

RTEXT 134 5 none - no return

RTWT 135 S none ~ no

RTON 136 S 1. RT program external or integer no

RTOFF 137 S 1. RT program external or integer no

WHDEV 140 F 1. device integer SINTRAN LDN no
2. 1/0 flag integer

return value integer

IOSET 141 F 1. device integer SINTRAN LDN no
2. I/O flag integer

3. RT desc. address integer

4. control flag integer

return value integer

ERMON 142 S 1 error number integer Hollerith string of 2 bytes no
2. suberror number integer

R510 143 S . execution mode integer no
2. input device integer SINTRAN LDN

output device integer SINTRAN LDN

4. user number integer

MAGTP 144 F 1. function integer yes

2. memory address array any type except character
3. unit integer FORTRAN unit number

4. parameter 1 integer device dependent. optional
5. parameter 2 integer device dependent, optional
return value integer ERRCODE

ACM 145 F 1. device integer SINTRAN LDN yes
2. function integer

3. memory address array any type except character
4. destination array any type except character
5. word count integer number of words

return value integer ERRCODE

CAMAC 147 S 1. data integer no
2. status integer

3. crate integer

4. station integer

5. subaddress integer

6. function integer

Norsk Data ND—BO 145.7 EN

ND FORTRAN Reference Manual
Appendix C

Name MON Fun arguments/return EHRCODK

or . 50'.

oct Sub number. purpose data type comments

CL 150 S 1. value integer n0

2. crate integer

GRTDA 151 F 1. name hollerith ends with apostrophe no

return value integer

IOXN 153 S 1. data integer no

2. IOX code integer

ASSIG 154 S 1. device integer SINTRAN LDN no

graded LAM integer

crate integer

PLOTT 155 F 1.2 X,Y co—ordinates integer no

GRAPHIC 3. code integer

4. device integer SINTRAN LDN

5. function integer

return value integer

ENTSG 157 S 1. segment integer no

2. page table integer

3. interrupt level integer

4. entry point integer

FIXC 160 F 1. segment number integer no

2. page number integer

return value integer

INSTR 161 F 1. unit integer FORTRAN unit number yes

2. text character starts on a word boundary

3. length integer length in bytes

4. end character integer right hand byte used

return value integer

OUTST 162 F 1. unit integer FORTRAN unit number yes

2. text character starts on a word boundary

3. length integer length in bytes

return value integer

WSEG 164 S 1. segment number integer no

DIW 165 S 1. number of integer :N no

registers

2. input registers integerk2 array N elements

3. input values integer*2 array N elements

4. error value integer

Norsk Data ND—60.14S.7 EN

ND FORTRAN Reference Manual
Appendix C

Name MON Fun arguments/return ERRCODE

or set

oct Sub number. purpose data type comments

DOLW 166 S 1. number of integer =N no

registers

2. registers integer*2 array N elements

3. output values integer*2 array N elements

4. masks integer*2 array N elements

5. error value integer

REENT 167 S 1. segment number integer see note 3 no

HOLC 201 F 1 SDCB/RDCB integer yes
2 LDN integer SINTRAN LDN

3. DCB address integer

4 DCB usize integer

5 DCB msize integer
return value integer ERRCODE

EDTRM 206 S 1. EDFLA integer flag no

2. RTUSF integer

CPUST 262 F 1. ND number integer always zero yes
2. buffer integer*2 array system information

return value integer ERRCODE

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference ManuaT
Appendix C

Notes:

1) If there was an error, the function returns the
error code with the sign bit set.

2) The names of the Monitor CaTTs corresponding to
these routines are:

INCH — INBT
DUTCH ~ OUTBT

3) AvaiTabTe on the NlOO onTy.

4) Must start on a word boundary (ND—100 onTy) and end
with an apostrophe.

5) The unit is defined by the FACTOR=fac specifier of
the OPEN statement. The defauit is a 2—byte word on
the ND—lOO, and a 4—byte word on the ND—SOO.

6) The radixes 2 and 16 are avaiiabie on the NDeSOO
onTy.

7) The error number can be picked up from ERRCODE
without change.

Norsk Data ND—60.145 7 EN Rev A

ND FORTRAN Reference Manual
Appendix D

LIBRARY UTILITY FUNCTIONS

D.1 TABLE OF LIBRARY UTILITY FUNCTIONS

Note: in the following table, ”integer' in the column
“data type" means default integer type; integer*2 on the
ND—lOO and integer*4 on the ND—SOO.

Name Fun arguments/return

or

Sub number, purpose data type comments

EXCEPT S 1. exception number integer

2. function integer

3. user routine integer

4. number of messages integer

5. number of traps integer
6. exception flags logical array

7. lower bound of 6. integer

8. upper bound of 6. integer

EXCDEF S 1. exception number integer

2. exception flags logical array

3. lower bound of 2. integer

4. upper bound of 2. integer

EXCTERM S 1‘ traceback print integer

2. statistics print . integer

3. number of levels integer

4. file number integer

GETMESS F 1. exception number integer

return value character*50

PRITRAC S- 1. trap logical

PRIMESS S 1. exception number integer

RAN F 1. seed value integer*4

return value real*4 real*6. 48-bit f.p.H/W

Norsk Data ND~60.145.7 EN Rev A

ND FORTRAN Reference Manual
Appendix D

Name Fun arguments/return

or

Sub number, purpose data type comments

RDEFVAL S i. exception number integer

2. number of messages integer

3. number of exceptions integer

4. enable flag integer

RCURVAL S 1. exception number integer

2. user routine integer

3. number of messages integer

4. number of exceptions integer

5. exception count integer

6. enable flag logical

REXTERM S 1. traceback print integer current values

2. statistics print integer

3. number of levels integer

4. file number integer

5. traceback print integer default values

6. statistics print integer

7. number of levels integer

8. file number integer

NorSK Data ND~60.145.7 EN Rev A

ND FORTRAN Reference ManuaT
Appendix D

D. 2

.2.

LIBRARY SUBIE’ROGRAH DESCRIPTIONS

This section contains a fuTT description of each
subprogram provided in the FORTRAN iibrary, for generai
utiiity purposes. Since the topic of handiing errors and
exceptions is of a rather speciaT nature, it is
described separateiy, see Section D.3. ATT services
provided by the SINTRAN operating system are described
in Appendix C.

THE RAN FUNCTION

The RAN function is for generating random numbers, which
are uniformiy distributed in the range between 0.0
inciusive and 1.0 ecusive.

The technique used for generating the random numbers is
of the muitipiicative congruentiai type.

The function returns a REAL*4 vaiue, REAL*6 on a ND—lDO
with 48~bit fioating point hardware.

The function may be invoked repeatediy, as foTTows:

RLVAR=RAN(INTVAR)

where
RLVAR is assigned the next random number
generated
INTVAR is an INTEGER*4 variabTe

To get a series of random numbers, the first invocation
of RAN must be made with the argument, here INTVAR, set
to a Targe odd integer vaTue prior to this invocation.

The RAN function stores a vaiue in the argument on each
invocation. This value wiTT be used in the next
invocation, to compute the next random number. This
vaTue is referred to as the seed.

There are no restrictions on the vaTue which may be used
for the seed. It shouid be initialized to a different
vaiue for successive runs if different series of random
numbers are required.

Norsk Data ND—60.145.7 EN Rev.A

D.3 ND—SOO
ND-IOO

ND FORTRAN Reference ManuaT
Appendix D

The RAN function uses the foTTowing aTgorithm to compute
the vaTue of the seed to be used for the next
invocation:

SEED=69069*SEED+1(MOD 2**32)

SEED is a 32—bit number whose high order 24 bits are
converted to a fioating~point vaTue to be returned as
the function vaTue.

TRAPS AND EXCEPTION HANDLING
EXCEPTION HANDLING

The term ”exception” covers, in addition to aTT defined
hardware traps, speciaT situations and errors detected
by software. An exception handTer is a routine to be
activated when an exception occurs, and which takes take
appropriate recovery actions.

The exception number (16 bits) may be represented as
shown beTow:

15 6 5 0

where
bits 15—6
bits 5—0

System software identification (531)
Specific status code (SC)

and any number fed into the exception handTing system
wiTT be in this form.

For FORTRAN, the 881 may contain three different ranges
of numbers. For ND—SOO hardware traps the range wiTT be
of the form 76xxB, where xx specifies the trap, see the
tabTe in Section 0.3.1. The range 04xx8 is reserved for
FORTRAN runtime errors, and the range SlxxB is used by
the exception handTing system itseif. Status codes are
numbers aTTocated to a particuTar system. For example,
the Tist of FORTRAN Exceptions given in Section 0.3.11,
gives an expianation of numbers in the range 4018: 4578,
where 4 is the FORTRAN $51. The range prefixed by 7778
is not used by ND system software, and any be freeTy
utiTized in user systems.

A set of standard routines for exception handTing for
use with FORTRAN or PLANC has been deveToped. These are
avaiTabTe in a standard Tibrary, and wiii be Tinked
automaticaTTy if the user so wishes!!!

Norsk Data ND—6O 145.7 EN Rev A

ND FORTRAN Reference Manuai
Appendix D

For each error condition, the user may determine:

The number of times each error message is to be
printed.

The number of times an error may occur before the
program is abnormaiiy terminated.

Whether a user—suppiied exception handier is to be
activated upon detection of an error.

Whether traceback of routine stack frames is to be
printed when the error occurs or when the program
terminates. (In case of traps, this inciudes a
register dump.)

Printout of error statistics when the program
terminates.

The iibrary consists of the foiiowing routines:

EXCEPT ~ disabTe/enabie handiing of specified
exception

EXCDEF ~ reset handiing of exception to defauit

EXCTERM ~ define action to be taken upon program
termination

PRITRAC ~ print traceback of routine instances
(subroutines)

PRIMESS - print error message

GETMESS - return error text (FORTRAN)

PGETMESS — return error text (PLANC)

RDEFVAL — read default exception handiing parameters
vaiues

RCURVAL ~ read current exception handiing parameters
vaiues

REXTERM ~ reat exception terminating condition

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

In the following descriptions, the header of these
routines is described, giving the number and types of
the arguments. These routines are supplied with the
standard ND FORTRAN library.

9 For the ND—SOO:

Traps and exceptions will be handled in the ND—SOO,
providing they are locally enabled. There are default
settings for all traps. If no local handling has been
specified, or the trap has been disabled, then some
traps may be handled as a system trap in the NlOO. The
Monitor will then handle the trap in a standard manner,
depending on the type of trap. System traps may also be
disabled, but the user's right to modify trap handling
may be restricted.

Handling of traps may be determined at load time or
before execution through the commands LOCAL—TRAP—ENABLE,
LDCAL—TRAP—DISABLE, SYSTEM— TRAP—ENABLE and
SYSTEM—TRAP-DISABLE. These commands are available both
in NLL and the Monitor, and set the default values to be
used if no action is taken by the program. These
commands are described in the ND~500 Loader/Monitor
Manual, ND~60.136.

o For the ND—lOO:

Exceptions will be handled provided they are locally
enabled. There are default settings for all exceptions.

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference ManuaT
Appendix D

p.311 ND—SOO TBAPS TABLE

The foTIowing is a Tist of defined hardware traps, their
corresponding bit number in the status, OTE, MTE and
TEMM registers, and the name of the trap. For a more
detaiTed expianation, see the ND~500 CPU Reference
ManuaT (ND~05.009),

Bit Exc.
no. no. Name Mnemonic D msg err

9 76118 OVERFLOW O 10 unT
11 76138 INVALID OPERATION IVO * 10 unI
12 76148 DIVISION BY ZERO DZ * 10 unI
13 76158 FLOATING UNDERFLOW FU 10 unI
14 76168 FLOATING OVERFLOW F0 * 10 unT
15 76178 BCD OVERFLOW BO 10 unT

16 76208 ILLEGAL OPERAND VALUE IVO * 10 uni
17 76218 SINGLE INSTRUCTION TRAP SIT 0 unT
18 76228 BRANCH TRAP 8T 0 uni
19 76238 CALL TRAP CT 0 unT
20 76248 BREAKPOINT INSTRUCTION TRAP BPT O uni
21 76258 ADDRESS TRAP FETCH ATF 0 unT
22 76268 ADDRESS TRAP READ ATR 0 uni
23 76278 ADDRESS TRAP WRITE ATW 0 uni

24 76308 ADDRESS ZERO ACCESS AZ 10 unT
25 76318 DESCRIPTION RANGE 08 10 unT
26 76328 ILLEGAL INDEX 1 IX * 1 O
27 76338 STACK OVERFLOW STO * 1 O
28 76348 STACK UNDERFLOW STU * 0 0
29 76358 PROGRAMMED TRAP PRT * 10 unI
30 76368 DISABLE PROCESS SWITCH TIMEOUT DT * 1 0
31 76378 DISABLE PROCESS SWITCH ERROR DE * 1 0

32 76408 INDEX SCALING ERROR XSE * 1 0
33 76418 ILLEGAL INSTRUCTION CODE IIC * 1 O
34 76428 ILLEGAL OPERAND SPECIFIER IOS * 1 0
35 76438 INSTRUCTION SEQUENCE ERROR ISE * 1 0
36 76448 PROTECT VIOLATION PV * 1 0

The D coTumn refers to the defauIt enabiing
of traps used by the standard exception handTer Iibrary
discussed in the next sections.
The * indicates that the trap is enabTed
if the defauTt trap Iibrary settings are used.
msg = defauit maximum number of error messages.
err : defauTt number of exceptions prior to abnormaI
termination.
uni : unTimited number

Norsk Data N0-60.145.7 EN Rev A

ND FORTRAN Reference ManuaT
Appendix D

D.3.1.1 ND—IOO SIMULATED TBAPS

In the Tist of the simuTated traps Tisted beTow, the 0
refers to the defauTt enabTing used by the standard
exception handTer Tibrary distussed in the next
sections. * indicates that the exception is
enabTed if the defauit settings are used. For an
expTanation of msg and err see
Section D.3.1.

Exc.
no. Name D msg err

7614B DIVISION BY ZERO * 10 unT
7633B STACK OVERFLOW * 1 O

D.3.2 THE EXCEPT ROUTINE

The EXCEPT routine is used to modify the current
exception handTing conditions.

FORTRAN Specification:

SUBROUTINE EXCEPT [EXCINO, EXCFUN, EXCROUT, NOMSG, NOEXC,
+ EXCARR, EXCNOL, EXCNOH]

INTEGER EXCNO, EXCFUN, EXCROUT, NOMSG, NOEXC, EXCNOH, EXCNOL
LOGICAL EXCARR [EXCNOLzEXCNOH]

<standard library routine)

END

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference ManuaT
Appendix D

Parameter vaTues:

EXCNO Exception number or exception number group for
the ND—SOO:

76008 defauTt group of traps to be set
(see Section 0.3.1)

51018 LOGICAL array (EXCARR, EXCNOL and
EXCNOH must be present, FORTRAN)

51028 BITS (EXCARR must be present, PLANC)
76118 76448 specific trap number
4008 aTT FORTRAN errors (see Section

0.3.11)
4018:4578 specific FORTRAN error

other iTTegaT

For the ND—100:

76008

51018

51028
7614Bz7633B
4008

4018:4578
other

default group of simuTated traps to
be set (see Section 0.3.1.1)
LOGICAL array (EXCARR, EXCNOL and
EXCNOH must be present, FORTRAN)
BITS (EXCARR must be present, PLANC)
specific simuTated traps
a1] FORTRAN errors (see Section
0.3.11)
specific FORTRAN error
iTTegaT

Norsk Data NO—SO 145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

EXFUN Function:

—1 disable exception(s) indicated by EXCNO and
ignore all other exceptions. In Addition, the
parameters EXROUT, NOMSG and NOEXC will be
ignored.

0 enable exception(s) indicated by EXCNO as
TRUE, set new handler/values, and disable all
other exceptions which are indicated as
FALSE. For EXCNO values 76118276448 on the
ND—SOO (or 7614B:7633B on the ND—IOO) or
4018:4578, only the single exception thus
specified, is enabled.

1 enable exception(s), indicated by EXCNO, do
not modify handler/values, and ignore all
other exceptions.

other illegal

EXCROUT User defined exception handler routine:

#0 routine address
0 no routine supplied

NOMSG Number of messages allowed before program is
aborted:

-1 any number 3f messages allowed
20 number of messages allowed (<2**31—1)
other illegal

NOEXC Number of traps before program is aborted:

—1 any number of exceptions allowed
20 number of exceptions allowed (<2**31—1)
other illegal

Norsk Data ND—60.l45.7 EN Rev.A

ND FORTRAN Reference ManuaT
Appendix D

EXCARR LOGICAL array (FORTRAN) or BITS<PLANC)
containing .TRUE. and OFALSE. for exceptions to be
handTed

EXCNOL (FORTRAN) Low Timit of EXCARR

EXCNOH (FORTRAN) High Timit of EXCARR

The handiing of one or severaT exception conditions may
be modified, seTected through the EXCNO parameter. If
this parameter is 51018 (FORTRAN) or 51028 (PLANC), the
EXCARR parameter seTects a set of exceptions to be
handTed. If the EXCFUN parameter is zero and EXCARR is
present, the eTements set to .TRUE. in this array wiTT
cause the corresponding exception to be enabled, whiTe
.FALSE. wiTT cause it to be disabTed. The array EXCARR
must be deCTared as EXCARR (EXCARREXCNOH). For exampTe,
EXCARR(76118:7644B) on the ND—SOO or EXCARR
(76148:7633B) on the ND—lOO.

The EXCROUT parameter specifies the name of a user
suppiied routine to be executed when the exception
occurs. The routine shoq conform to the foTTowing
formaT specification:

0 In FORTRAN:

SUBROUTINE name (ierno)
INTEGER ierno

<user written exception handTer>

END

The parameter ierno wiTT transfer the error
number to the exception handTer. If the EXCROUT
parameter is zero, the standard exception handier
routine from the Tibrary is usedi

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix D

EXAMPLES — FORTRAN

0 Enable DIVISION BY ZERO detection using current
exception values:

C DIVISION BY ZERO is trap number 12 on the ND—SDO
CALL EXCEPT (76418,1,0,D,O)

o For the ND—SOO only:
Enable OVERFLON and allow a maximum of 2 error
messages and 10 overflow errors before abnormal
termination. Activate the user defined routine MYROUT
each time the overflow trap occurs.

CALL EXCEPT (76118,0,MYROUT,2,10)

0 Disable error handling for exponential functions,
FORTRAN error numbers 4318, 4328, 4338, 4378.

LOGICAL ERRARRAY (4318:4378)
DATA ERRARRAY/.FALSE.,.FALSE.,.FALSE., TRUE ,

+ .TRUE.,.TRUE.,.FALSE./
CALL EXCEPT (SlOlB,-1,0,0,0,ERRARRAY,431B,437B)

o Manipulation of some exception settings.
Assume the following are the current table settings
for exceptions:

exc no. EXCROUT ‘ msg err setting
(octal) setting

431 A 10 unl enabled
432 A 10 unl enabled
433 A 10 unl enabled
434 O 10 20 disabled
435 O 10 unl enabled
436 O 10 unl disabled
437 O 10 50 enabled

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT
Appendix D

EXCARR LOGICAL array (FORTRAN) or BITS(PLANC)
containing .TRUE. and .FALSE. for exceptions to be
handied

EXCNOL (FORTRAN) Low Timit of EXCARR

EXCNOH (FORTRAN) High iimit of EXCARR

The handiing of one or severaT exception conditions may
be modified, seiected through the EXCNO parameter. If
this parameter is 51018 (FORTRAN) or 51028 (PLANC), the
EXCARR parameter seiects a set of exceptions to be
handied. If the EXCFUN parameter is zero and EXCARR is
present, the eTements set to .TRUE. in this array wil)
cause the corresponding exception to be enabied, whiTe
.FALSE. wiTT cause it to be disabTed. The array EXCARR
must be decTared as EXCARR (EXCARREXCNOH). For example,
EXCARR(76llB:7644B) on the ND—SOO or EXCARR
(7614Bz76338) on the ND-lOO.

The EXCROUT parameter specifies the name of a user
supplied routine to be executed when the exception
occurs. The routine shoq conform to the foTTowing
formaT specification:

0 In FORTRAN:

SUBROUTINE name (ierno)
INTEGER ierno

<user written exception handTer>

END

The parameter ierno wiTT transfer the error
number to the exception handTer. If the EXCROUT
parameter is zero, the standard exception handTer
routine from the Tibrary is used.

Norsk Data ND—6O 145.7 EN Rev A

ND FORTRAN Reference Manuai
Appendix D

After an error has occured, the sequence of operations
is as foTTows; the steps marked with an asterisk appTy
to traps on the ND~SOO onTy:

Note: the detaiTs are sTightTy different in PLANC.

1) *If the exception is a trap, the trap routine is
activated.

2) A system provided exception handTer is caTTed.

3) This handTer updates the occurrence counter for this
type of exception and activates the user exception
handTer if one has been specified.

4) If the traceback condition (see note 1) is true, the
system outputs:

* — register dump
- traceback printout

5) If the message occurrence Timit (NOMSG) has not been
exceeded, or if the traceback condition (see note 1)
is true, an error message is printed.

6) If the error count is Tess than or equai to the
aTTowed number of occurrences for this exception
type, controi is returned to normai FORTRAN error
handiing.

otherwise, the program is abnormaiiy terminated with
error statistics, if specified.

If the exception occurs during the execution of FORTRAN
I/O statements (regardiess of the type exception,
SINTRAN, FORTRAN I/O, trigonometric error (4308:4578),
or trap on the ND—SOO), the exception handTer must not
perform FORTRAN I/O. That is READ, WRITE, PRINT, OPEN,
CLOSE, BACKSPACE, ENDFILE, or REWIND. Monitor CaTTs,
however, may be caTTed directTy. Otherwise, FORTRAN I/O
may be used, provided no new error situations are
generated.

Note that, on the ND—SOO onTy, in FORTRAN the STACK
UNDERFLOW trap condition is bandied by speciaT software
mechanisms and must, in order to ensure correct
termination of the I/O activities, aiways be defauit
enabTed.

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manuai
Appendix D

Note 1: the traceback condition is evaTuated by the
foIIowing expression:

thiserror><'STACK UNDERFLOW' and

L (TRACEBACK=2 and
(thiserror.NOMSG=unI or

thiserror numerrors in O : thiserror.NOMSG))
or
(TRACEBACKZ 1 and
(thiserror NOEXC><UNL and
NOT thiserror.numerrors in O : thiserror.NOEXC)))

where
thiserror.numerrors is the current vaTue of the
number of exceptions of this type which have
occurred.

EXAMPLES — FORTRAN

o Enabie DIVISION BY ZERO detection using current
exception vaIues:

C DIVISION BY ZERO is trap number 12 on the ND—SOO
CALL EXCEPT (7614B,1,0,0,0)

o For the ND—SOO onIy:
EnabIe OVERFLOW and aIIow a maximum of 2 error
messages and 10 overfiow errors before abnormaI
termination. Activate the user defined routine MYROUT
each time the overfiow trap occurs.

CALL EXCEPT (76118,0,MYROUT,2,10)

e Disabie error handTing for exponentiaT functions,
FORTRAN error numbers 4318, 4328, 4338, 4378.

LOGICAL ERRARRAY (4318:4378)
DATA ERRARRAY/.EALSE.,.FALSE.,.FALSE.,.TRUE.,

+ .TRUE.,.TRUE.,.FALSE./
CALL EXCEPT (SlOlB,—l,0,0,0,ERRARRAY,43lB,437B)

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

- Manipulation of some exception settings.
Assume the following are the current table settings
for exceptions:

exc no. EXCROUT msg err setting
(octal) setting

431 A 10 unl enabled
432 A 10 unl enabled
433 A 10 unl enabled
434 O 10 20 disabled
435 O 10 unl enabled
436 0 10 unl disabled
437 O 10 50 enabled

If the following call were executed,

CALL EXCEPT (SlOlB,O,MYROUT,5,—1,ERRARRAY 4318,4378)
C ERRARRAY as declared in the previous example

then the table settings would be changed as follows:

exc no. EXCROUT msg err setting
(octal) setting

431 A 10 unl disabled
432 A 10 unl disabled
433 A 10 unl disabled
434 MYROUT 5 unl enabled
435 MYROUT 5 unl enabled
436 MYROUT 5 unl enabled
437 O 10 50 disabled

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manua)
Appendix D

D.3.3 THE EXCDEF ROUTINE

EXCDEF is used to set the defauit exception handTing
vaTues for a given set of exceptions. This is
functionaTTy equivaTent to caTTing EXCEPT with the
defauTt parameter vaTues for each of the exceptions
specified, but is more convenient and reiieves the
programmer from knowing the defauTts.

FORTRAN Specification:

SUBROUTINE EXCDEF [EXCNO, EXCARR, EXCNOL, EXCNOH]
INTEGER EXCNO, EXCNOL, EXCNOH
LOGICAL EXCAHR [EXCNOLzEXCNOH]
<standard library routine>

END

Parameter vaTues;

EXCNO Exception number or exception number group for
the ND—SOO:

76008
51018

51028
76118276448

4008
4018:4578
other

defauit setting (see Section D.3 1)
LOGICAL array (EXCARR, EXCNOL and
EXCNOH present, FORTRAN)
BITS (EXCARR present PLANC)
defauit setting for specific trap
number (see Section D.3.l)
a1] FORTRAN errors
specific FORTRAN error
iTTegaT

For the ND—lOO:

76008
51018

51028
76148:76338

4008
4018:4578
other

defauit setting (see Section D 3.1)
LOGICAL array (EXCARR, EXCNOL and
EXCNOH present, FORTRAN)
BITS (EXCARR present, PLANC)
defauit setting for specific
simuTated traps (see Section D.3 1)
aTT FORTRAN errors
specific FORTRAN error
iTTegaT

Norsk Data ND-60.145.7 EN Rev A

ND FORTRAN Reference Manua)
Appendix D

EXCARR LOGICAL array (FORTRAN) or BITS (PLANC)
containing .TRUE. for exceptions to be handTed,
.FALSE. for those that shoq remain as they are

EXCNOL (FORTRAN) Low Timit of EXCARR

EXCNOH (FORTRAN) High Timit of EXCARR

The EXCARR parameter seTects a set of exception
conditions, Tike in the EXCEPT routine. ATternativeTy,
one specific exception may be seTected through the EXCNO
parameter.

EXAMPLES - FORTRAN

0 Reset handTing of a1) traps and FORTRAN errors to
defauTt:

ALL TRAPS (ON ND—SOO), ALL SIMULATED TRAPS (NDlO)

(3
0

CALL EXCDEF (76008)
C
C ALL FORTRAN ERRORS
C

CALL EXCDEF (4008)
C

0 SET DEFAULT PROGRAM TERMINATION CONDITIONS
CALL EXCTERM (O, 1, 20, O); % on the ND—SOO
CALL EXCTERM (O, O, 20, O); % on the ND—lOO

This setting is identicaT to the setting at the
beginning of execution of a FORTRAN program.

0 Reset speciaT error handTing for exponentia)
functions, error numbers 4318, 4328, 4338 and 4378,
but keep possibie handTing of other exceptions:

LOGICAL ERRARRAY (4318:4378)
DATA ERRARRAY/.TRUE.,.TRUE.,.TRUE.,FALSE.,

+ .FALSE.,.FALSE.,.TRUE./
CALL EXCDEF (SlOlB,ERRARRAY,43lB,4378)

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference Manual
Appendix D

D.3 -4 THE EXCTERH ROUTINE

EXCTERM may be called to determine how the printing of
traceback and error statistics information is done. If
it has been called more than once, the last call applies
at program termination.

FORTRAN Specification:

SUBROUTINE EXCTERM [TRACEBACK , PRSTAT , NOLEV , FNUMB)
INTEGER THACEBACK,PRSTAT,NOLEV,FNUMB
(standard library routine)
END

Parameter value:

TRACEBACK traceback print, for all errors:

0 :no traceback (default)
1 :traceback upon abnormal termination
2 :traceback upon error
other :illegal

PRSTAT error statistics print upon end of program, for
all errors:

0 :no statistics output (default, ND—lOO)
1 :print statistics (default, ND—SOO)
other :illegal

NOLEV maximum number of levels to process when a
traceback is provided:

>U :maximum number of stack levels to print,
default 20

other :illegal

Norsk Data ND—60.145.7 EN Rev A

ND FORTRAN Reference Manua)
Appendix D

FNUMB

1—127 :fiTe number of an open fiTe where a1) error
in information printout is to be directed
(except MON64 type output). The fiTe must be
open with access type w.

0 :reset to terminaT (1) output (defauTt)
other :iTTegaT

Note the difference between a fiTe with number 1 and
terminai l.

D.3.5 THE PRITRAC ROUTINE

PRITRAC is a utiTity routine to print a traceback of
routine instances (stack frames) after an exception. The
routine is caTTed from a user handTer, or automaticaTTy
upon abnormaT termination of the job if traceback has
been seTected (in the EXCEPT caTT referring to the
exception condition raised).

FORTRAN Specification:

SUBROUTINE PRITRAC (TRAP)
LOGICAL TRAP
(standard library routine)
END

Parameter vaTue (which is ignored in the ND—lOO
version):

TRAP .TRUE. if caTTed whiTe a trap is being handTed.
.FALSE. shoq be set for any other condition.

Note that the defauTt maximum number of stack TeveTs to
be printed is 20.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manua)
Appendix D

D.3.6 THE PRIHESS ROUTINE

The PRIMESS routine wiii print the error message,
corresponding to the parameter vaiue, on the standard
output device (unit 1).

FORTRAN Specification:

SUBROUTINE PRIMESS [EXCNO]
INTEGER EXCNO
(standard library routine>
END

Earameter vaiues:

EXCNO Exception number (for the ND—SOO)

The parameter (EXCNO) must be in the range 76118 76448
(traps) or 4018 4578 (FORTRAN errors).

Exception number (for the ND-lOO)

The parameter (EXCNO) must be in the range 76148 76338
(simuiated traps) or 4018:4578 (FORTRAN errors).

D.3.7 THE GETHESS/PGETHESS ROUTINE

GETMESS/PGETMESS wiTT return the error text
corresponding to the specified exception number.

FORTRAN Specification:

FUNCTION GETMESS (EXCNO)
C this function must be declared to be of type character in the
C calling program

INTEGER EXCNO
CHARACTER*50 GETMESS
(standard library routine)
END

Norsk Data ND~60.145.7 EN Rev A

ND FORTRAN Reference Manua)
Appendix D

Parameter vaTues:

EXCNO The number of an exception condition (for the
ND—SOO)

EXCNO must (for the ND«SOO) be the number of a
defined exception condition, in the range
76118 76448 (traps) or 4018:4578 (FORTRAN
error).

EXCNO must (for the ND—lOO) be the number of a
defined exception condition, in the range
76148 76338 (simuTated trap) or 4018:4578
(FORTRAN error).

D.3-8 THE RDEFVAL ROUTINE

RDEFVAL may be caTTed 0 read the defauTt vaTues of the
exception parameters corresponding to a given exception
number (EXCNO).

FORTRAN Specification:

SUBROUTINE RDEFVAL (EXCNO, NOMSG, NOEXC, ENABL)
INTEGER EXCNO, NOMSG, NOEXC,
LOGICAL ENABL
<standard library routine)

END
Parameter vaTues:

EXCNO

NOMSG

NOEXC

ENABL

Exception number

DefauTt number of messages aiiowed

DefauTt number of exceptions aTTowed

Logica) parameter .TRUE. if exception is enabTed
as defaUTt.

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manuai
Appendix D

D . 3 . 9 THE RCURVAL ROUTINE

RCURVAL may be caiied to read the current vaiues of the
exception parameters corresponding to a given exception
number (EXCNO).

FORTRAN Specification:

SUBROUTINE RCUHVAL [EXCNO, EXCROUT, NOMSG, NOEXC, EXCCOUNT, ENABL]
INTEGER EXCNO, EXCROUT, NOMSG, NOEXC, EXCCOUT
LOGICAL ENABL
(standard library routine)
END

Earameter vaiuesi

EXCNO Exception number

EXCROUT Address of current user exception handier or
zero

NOMSG Current number of messages aiiowed before
termination

NOEXC Current number of exceptions aiiowed before
termination

EXCCOUNT Current exception count

ENABL Logicai parameter .TRUE. if exception is
enabied at the moment

Norsk Data ND—6O 145.7 EN Rev.A

ND FORTRAN Reference Manuai
Appendix D

D.3.10 THE REXTERH ROUTINE

REXTERM is used to read the exception terminating
condition.

FORTRAN Specification:

SUBROUTINE EXCTERM (TRACEBACK, PRSTAT, NOLEV, FNUMB,
+ DTRACEBACK, OPRSTAT, DNOLEV, DFNUMB]

INTEGER TRACEBACK, TRSTAT, NOLEV, FNUMB, DTRACEBACK, DPRSTAT,
+ DNOLEV, DFNUMB
(standard library routine>

END
The first parameters wiTT read the current vaiue of the
variabTes represented by the parameters in the EXCTERM
routine. The Tast four read the defauit vaiues of the
corresponding variabies.

See the EXCTERM routine for the parameter descriptions.

Norsk Data ND~60.145.7 EN Rev.A

ND FORTRAN Reference ManuaI
Appendix D

D.3.11 FORTRAN EXCEPTIONS

dec oct name msg err

257 401 FATAL FORMATTING SYSTEM ERROR 1 0
258 402 TOO LOW PARENTHESES LEVEL IN FORMAT 1 0
259 403 ILLEGAL CHARACTER IN FORMAT 1 O
260 404 ILLEGAL TERMINATION OF FORMAT 1 O
261 405 OUTPUT RECORD SIZE EXCEEDED 10 unT
262 406 FORMAT REQUIRES GREATER INPUT RECORD 10 unI

263 407 INTEGER OVERFLOW ON INPUT 10 unT
264 410 INPUT RECORD SIZE EXCEEDED 10 unT
265 411 BACKSPACE ILLEGAL 10 unI
266 412 BAD CHARACTER 0N INPUT 10 unI
267 413 REAL OVERFLOW ON INPUT 10 unT
268 414 REAL UNDERFLOW 0N INPUT 10 unI
269 415 STRING DOES NOT START ON A WORD

BOUNDARY 10 unI
270 416 REAL OVERFLOW 0N OUTPUT 10 unT
271 417 FORMAT SPECIFICATION DOES NOT APPLY 1 O
272 420 OVERFLOW IN EXPONENT 0N INPUT 10 unT
273 421 WRONG NUMBER OF PARAMETERS IN CALL 1 O
274 422 TOO MANY FILES OPENED 1 0 ND—lOO

onIy
276 424 MIXING OF BINARY/ASCII ILLEGAL 1 O
277 425 NO MORE BUFFERS AVAILABLE 1 O
278 426 NON—FATAL ERROR (CHARACTER) 10 unI ND—SOO

onIy
279* 427 FATAL ERROR (1/0) 1 0
280 430 1/0 ERROR WITHOUT SPECIAL HANDLING 0 O
281 431 ZERO BASE AND NEGATIVE EXPONENT 10 unI
282 432 BASE LESS THAN ZERO IN EXPONENTIATION 10 unT
283 433 OVERFLOW IN EXPONENTIATION 10 unT
284 434 NEG. ARG. IN SOUARE ROOT 10 unT
285 435 T00 LARGE ARG. IN SINE 10 unT
286 436 TOO LARGE ARG. IN COSINE 10 unI
287 437 TOO LARGE ARG. IN EXP-FUNCTION 10 unI
288 440 ZERO OR NEG. ARG. IN LOGARITHM 10 um]
289 441 . BOTH ARGS. ZERO IN ARC—TAN 10 unI
294 446 TOO LARGE ARG. IN HYPERB. SINE 10 unI
295 447 TOO LARGE ARG. IN HYPERB COSINE 10 unI
296 450 T00 LARGE ARG. COMPLEX ABS OR

SQUARE ROOT 10 unI
302 456 ILLEGAL ARG. IN ARC—SINE/COSINE lO unT
303 457 ILLEGAL ARG. IN TAN 10 unI

Norsk Data ND—60.145 7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

* = must be enabled
msg = default maximum number of error messages
err = default number of exceptions prior to
abnormal termination
unl = unlimited number

Numbers not listed are currently not used. All FORTRAN
errors except 4308 are default enabled.

All languages:

The hardware traps are listed in Section D 3.1.

Norsk Data ND—60.145.7 EN Rev.A

ND FORTRAN Reference Manuai
Appendix E

STORAGE HAPP ING

ND FORTRAN data types are stored in the foiiowing way:

LOGICAL*1

Bits 7—1 : set to O

ALSE.Bit 0(V) : O .F
1 .TRUE.H

H

LOGICAL*2

15 l O

Bits 15—1 : set to O

.FALSE.

.TRUE.H
HBit 0(V) : 0

l

LOGICAL*4

31 1 O

Bits 31_1 : set to 0
Bit 0(v) : O : .FALSE.

1 = .TRUE.

Norsk Data ND—60.145 7 EN

ND FORTRAN Reference Manual
Appendix E

INTEGER*1

S value

7 6 0

Bit 7 : O = greater than or equal to zero
1 = negative

Bits 6—0 : value held in twosvcomplement form.

INTEGER*2

5 value

15 14 0

Bit 15 : O = greater than or equal to zero
1 = negative

Bits 14~O : value held in twos~complement form.

INTEGER*4

5 value

31 30 0

Bit 31 : O = greater than or equal to zero
1 = negative

Bits 30—0 : value held in twos—complement form.

Norsk Data ND-60.l45.7 EN

ND FORTRAN Reference Manual
Appendix E

REAL*4 (N0~500 or NORD—lO/ND—lOO with 32—bit floating—point hardware
option.)

S Exponent mantissa

31 30 22 21 0

Bit 31 : 0 : greater than or equal to zero
1 2 negative

Bits 30—22 : Binary exponent
Stored witi a bias of 256 (400 octal). This is
the power of 2 that the mantissa must be
multiplied by. A value of 256 means that the
mantissa is the value.
If the exponent is 0, the whole value is zero.

Bits 21-0 : Mantissa
Stored witnout the 0.5 (0.1 binary) excess,
unless the value is zero. The binary point is one
place to the left of the mantissa. The mantissa
is normalised so that 0.5 S mantissa < 1.0

REAL*6 (NOR0—10/N0—100 with 48‘bit floating—point hardware option)

S Exponent mantissa

47 46 32 31 0

Bit 47 : 0 = greater than or equal to zero
1 = negative

Bits 46—32 : Binary exponent. Stored with a bias of 40000
octal. Zero exponent means that the whole value
is zero.

Bits 31—0 : Mantissa.
Stored with all bits included. Binary point is
immediately to the left of Bit 31.

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual
Appendix E

REAL*8 (all machines)

S Exponent mantissa

63 62 54 53 ' 0

Bit 63 : 0
1

H greater than or equal to zero
negativeI!

Bits 62—54 : Binary exponent
Stored with a bias of 256 (z 400 octal). A zero
exponent means tne whole value is zero.

Bits 53—0 : Mantissa.
Stored without the 0.5 (= 0.1 binary) excess
unless the value is zero. The mantissa is
normalised so the 0.5 S mantissa 4 1.0. The
binary point is one place to the €eft of Bit 53.

COMPLEX*8

2 consecutive REAL*4 values.

COMPLEX*12

2 consecutive REAL*6 values.

COMPLEX*16

2 consecutive REAL*8 values.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai
Appendix E

CHARACTER*N

N consecutive bytes.
A character is addressed via a descriptor.

On the ND—SOO, the descriptor is 2 words:

1ength

address of the first character in string

31 0

ON NORD—lO/ND—lOO, the descriptor is 2 words:

address of the first word

C unused 1ength

15 14 ll 10 0

If C (bit 15 of 2nd. word) = O, the string starts in the
high-order byte of the first word; if 1, then it is in
the Wow—order byte.

The foiiowing tables give the size in BYTES of each data
type for the various machines.

NUMERIC (fw,sc)

gniy ND—SOO:

(fw / 2) +1 consecutive bytes

A packed decimai operand is addressed via a descriptor.
The descriptor takes two words:

31 16 15 O

sc fw

address of first byte

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaI

TABLE 1

Appendix E

NORD-IO 0R ND—100 WITH 48—BIT FLOATING—POINT HARDWARE

Data Type Length in Bytes A)ignment (Note 1)

CHARACTER*1 (Note 2) 1 Byte

LOGICAL (Note 3) 2 Word
LOGICAL*2 2 Word
LOGICAL*4 4 Word

INTEGER (Note 3) 2 Word
INTEGER*2 2 Word
INTEGER*4 4 Word
DOUBLE INTEGER 4 Word

REAL (Note 3) 6 Word
REAL*4 (Note 4) 6 Word
REAL*6 (Note 4) 6 Word
REAL*8 8 Word
DOUBLE PRECISION (Note 5) 8 Word

COMPLEX 12 Word
COMPLEX*8 (Note 4) 12 Word
COMPLEX*12 (Note 4) 12 Word
COMPLEX*16 (Note 5) 16 Word
DOUBLE COMPLEX (Note 5) 16 Word

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manua]
Appendix E

TABLE 2

NORD—IO OR ND~100 WITH 32—BIT FLOATING—POINT HARDWARE

The CHARACTER, LOGICAL, and INTEGER types are as for the 48-bit tabTe
above. The other data types are Tisted be10w.

Data Type Length in Bytes ATignment (Note 1)

REAL (Note 3) 4 Word
REAL*4 (Note 4) 4 Word
REAL*6 (Note 4) 4 Word
REAL*8 (Note 5) 8 Word
DOUBLE PRECISION (Note 5) 8 Word

TABLE 3

ND—SOO

Data Type Length in Bytes ATignment (Note 1)

CHARACTER*1 (Note 2) 1 Byte

LOGICAL (Note 3) 4 Word
LOGICAL*1 1 Byte
LOGICAL*2 2 HaIf—Word
LOGICAL*4 4 Word

INTEGER (Note 3) 4 Word
INTEGER*1 1 Byte
INTEGER*2 2 HaIf—Word
INTEGER*4 4 Word
DOUBLE INTEGER 4 Word

REAL (Note 3) 4 Word
REAL*4 (Note 4) 4 Word
REAL*6 (Note 4) 4 Word
REAL*8 (Note 5) 8 Word
DOUBLE PRECISION (Note 5) 8 Word

COMPLEX 8 Word
COMPLEX*8 (Note 4) 8 Word
COMPLEX*12 (Note 4) 8 Word
COMPLEX*16 (Note 5) 16 Word
DOUBLE COMPLEX (Note 5) 16 Word

NUMERIC (fw, SC) (fw / 2) +1 Byte

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix E

NOTES

For the NORD—lD and ND—lOO, a word is 16 bits 2 2
bytes. For the ND—SOO, a word is 32 bits : 4 bytes.

For CHARACTER strings of length N, the length is N
bytes.

These are default values. The meaning of these
attributes can be modified by the DEFAtLT command,

REAL*6 and REAL*4 both mean single precision
irrespective of the machine the program is executed
on. The alternatives are provided for completeness
and comments since the 48—bit format uses 6 bytes
for a REAL value. Similar remarks apply to
COMPLEX*8 and COMPLEX*12.

The DOUBLE PRECISION forms are identical on all
machines. For the NORD—lO and ND—lOD, the
implementation uses softwareroutines and is
relatively slow.

COMMON MAPPING

To allocate addresses within a common block, the
following algorithm is used:

1.

2.

Place the first variable on a word boundary.

Place each subsequent variable on the first
available alignment boundary at, or following the
end of the previous variable.

It is the user‘s responsibility to ensure that the
COMMON blocks are correctly defined. Particular care
should be taken over the COMMON blocks shared between
unlike processors (i.e., ND—lOO and ND—SOO).

Norsk Data ND—6O 145.7 EN

ND FORTRAN Reference ManuaI
Appendix E

RESTRICTION

ANSI FORTRAN 77_impTies that an INTEGER and a REAL data
item occupy the same amount of storage. For the NO SOD
and the ND—lOO with 32—bit fioating—point hardware with
DEFAULT INTEGER*4 specified, this condition is met.

However, for the ND—IOO with 48—bit fioatingupoint,
hardware programs cannot be accepted as ANSI FORTRAN 77
standard, if equivaient storage occupation for INTEGER
and REAL is required by either different COMMON
definitions or by EOUIVALENCE statements.

CODE AND DATA SIZES

At the end of a compiiation, the compiier indicates the
totaT storage requirements of a1] the program units
compiied by the Tast COMPILE command.

AIT the numbers given are in decimai, representing for
the ND—IOO the number of words, and for the ND—SOO, the
number of bytes.

The vaTues given are:

l) PROG SIZE is the size of the program code. On the
NO—lOO in singie—bank operation (i.e.,
SEPARATE—DATA OFF), this figure aiso inciudes the
data areas of the program, since they are not
separated.

2) DATA SIZE is the size of the data areas used by the
program, but exciuding any COMMON bTocks. This size
is piaced in the data bank in ND—SOO programs and
if SEPARATEROATA ON is used in ND—lOO programs.
(The figure is omitted when using SEPARATE-DATA OFF
in ND—lOO programs.)

3) COMMON SIZE is the tota) of aii the maximum sizes
of the COMMON bIocks found ie the Tast compiiation.
It is pTaced in the data bank where appTicabTe, or
at the high address if SEPARATE—DATA OFF is used.
(See the NRL and RT—Loader manuais for aiternative
methods of piacing COMMON.)

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual
Appendix E

STACK SIZE is the sum of all the local storage
requirements of all the units compiled in the last
COMPILE command. These areas are obtained
dynamically on entry to each program unit, and
released on exit. If only one unit was compiled,
it accurately reflects that unit‘s stack
requirement (but not the routines it calls). The
actual stack size should include enough for the
longest nest of CALL’s or function references,
including library calls. The figure is omitted on
the ND—lOO with REENTRANT OFF, since there is no
stack in this case.

Note that if LIBRARY—MODE is ON, these figures represent
the total if all units are incorporated in a program. If
only a selection is used, the figures are accordingly
reduced.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT
Appendix F

INTERFACES TO OTHER LANGUAGE PROGRAMS

ND FORTRAN has a standard caiiing sequence for its
subroutine and function invocations. This wiTT make it
easier to interface programs and subprograms written in
other Tanguages with those written in FORTRAN. This
interface is described in detaiT first, foiiowed by
exampTes showing how to use it to interface to other
Tanguages on both the ND~lOO and ND—SOO.

F.1 FORTRAN INTERFACES ON THE ND-IOO

Each FORTRAN subprogram hos its Tocai variabies in a
Tocai data area. If a program, comprising a number of
subprograms, is compiied as non~reentrant, then each
Toca] data area wiTT be in a separate stack for each
subprogram. If such a program is compiTed as reentrant,
then the TocaT data area for each subprogram wiTT be
dynamicaTTy aTTocated from a singTe stack. The
B—register must aTways address the appropriate stack
eiement during execution of a FORTRAN subprogram.

OFFSET FROH THE CONTENT
B—BEG [OCTAL] IN
BYTES

—ZOO LINK — Tink register, address for normaT return

—177 PREVB
- previous B—register, reToaded on exit

—- ~176 FREES — points to the free area of stack which
immediateiy foTTows this stack eTement

—l75 EOS — points to the word immediateiy foTTowing
the whoie stack

—174 SYS — run time system use

~173 ERRCODE — ERRCODE (vaTue)

—172 stack — first parameter address if any
eTement

—. free ~ free area of the stack
area

—_—» FIO use — one word, FORTRAN I/O use

buffers — one word, number of buffers

exc ptr — one word, exception handier pointer

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT
Appendix F

In FORTRAN, there are aTways three words foTTowing the
stack. If the FORTRAN I/O system is to be used, and the
program is non—reentrant, these shoq be initiaTized.
The first word points to a speciaT FORTRAN I/O area
whose name is SFIO—BL, and the second word shoq be
zero. The third word, which is used by the EXCEPTION
HANDLER, is caTTed SEXCINF. If the program is reentrant,
these 3 words are initiaTized at run time, to zero, on
entry to the FORTRAN main program.

The free area foTTowing the current stack eTement shoq
aTways be Targe enough to contain the work areas for the
FORTRAN run time routines (except the I/O routines in
non—reentrant execution).

When FORTRAN caTTs an EXTERNAL entry point, the
registers are used as foTTows:

return address
current stack eTement; must be restored on return
number of parameters
parameter Tist address
address of descriptor for the return vaTue if the
caTT is to a function which returns a character
string

X = unused
P = entry point of caTTed routine

I!
H

H

C
3

3
>

-K
U

J
F

"

On return from a function, the vaTue of the function is
returned as foTTows:

LOGICAL*2, INTEGER*2 A-register
LOGICAL*4, INTEGER*4 AD—register
REAL*4 AD~register
(32—bit fioating—point hardware)

REAL*6 TAD—register
(48—bit fToating—point hardware)

REAL*8, COMPLEX, COMPLEX*16 A—register points to
the resuTt

CHARACTER resuit resides in
storage described by
descriptor which
D—reg pointed at on
entry

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

For character functions, a memory area of the required
size has been allocated by the calling routine before
invoking of the function, and the D—register points to a
descriptor upon entry to the function.

Reentrant FORTRAN routines assume that the parameter
addresses are already in position (—1728 from the
B—register and onwards) at entry to the routine. It is
the responsibility of the calling routine to place them
there. From the calling viewpoint, they lie at +6 from
the free area and onwards. Thus the addresses are not
copied.

If a subroutine has alternate returns specified in its
dummy argument list, these are not included in the
parameter list. Instead, the alternate return value (0
for normal return) is set in the ERRCODE position in the
caller‘s stack element. This value may then be used in a
COMPUTED GO TO after return has been made to the
caller.

The parameter list consists of a sequence of words, one
for each dummy argument. For arithmetic variables or
expressions and logical variables or expressions, the
corresponding word contains the address of the variable.
For arrays of arithmetic or logical types, the word
contains the address of the first element of the array.

For character variables or expressions, the word
contains the address of a descriptor consisting of two
words.

word 1 address of word containing first character

word 2 15 10 length in bytes 0

Bit 15 of word two is 0 if the string starts in the
left—hand (high-order) byte of the word, and is 1 if it
starts in the right—hand byte.

Bits 14 - 11 are used by the commercial instruction set
and should normally be zero.

For character arrays, the parameter word contains the
address of a descriptor for the first element of the
array (i e., one whose address part is for the start of
the array, and whose length is that of a single element
of the array).

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manuai
Appendix F

For two—bank programs, aTT parameter vaiues and their
descriptors, if character, must be in the data bank.

The ASSEMBLY statement modifies the caTTing sequence to
EXTERNAL program units. It_can be used where the
externai routine is written in MAC, NPL; or PLANC with
the SPECIAL option.

The caTTing sequence is modified as foTTows:

o OnTy integer parameters or array names may occur in
direct caTTs.

o The arguments are passed in registers. Integers vaTues
are contained in the register; array names are passed
as the address of their first word. The arguments 1 to
4 are in T, A, D, and X—registers respectiveTy. It is
not possibie to modify the FORTRAN arguments in the
caTTed routine, unTess they are arrays.

c The return address is one word beyond the
contents of the L—register at entry to the
routine.

Note that functions returning DOUBLE PRECISION and
COMPLEX vaTues do so in a manner incompatibie with the
2090 series of FORTRAN compiTers.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference ManuaT
Appendix F

F. 2 FORTRAN INTEFACES ON THE ND—SOO

OFFSET FROM THE
B-REG [OCTAL] IN

Each FORTRAN subprogram hos its TocaT variabTes in a
TocaT data area. A program, comprising a number of
subprograms, wiTT resuTt in each TocaT data area being
in a separate stack for each subprogram. The B~register
must aTways address the appropriate stack eTement during
execution of a FORTRAN subprogram.

BYTES

O PREVB

4 RETA

10 FREES

14 ERRCODE

20 stack
eTement

free
area

CONTENT

previous B«register, reioaded on exit

Tink register,address for normaT return

points to the free area of stack which
immediateTy foTTows this stack eTement
ERRCODE vaiue

first parameter address if any

free area of the stack

On return from a function, the vaTue of the function is
as foTTows:

LOGICAL*1, LOGICAL*2, INTEGER*1, Il—register
INTEGER*2,LOGICAL*4, INTEGER*4 ’

REAL*4, (32—bit fToating—point) Al—register

REAL*8, (48-bit fToating—point) Dl—register

COMPLEX*8 Al—register,

COMPLEX*16

CHARACTER, NUMERIC (fw,sc)

AZ—register

Dl—register,
DZ—register

resuTt resides in
storage described by
descriptor which
R—reg pointed at on
entry.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

For character functions, a memory area of the required
size has been allocated by the calling routine before
invocation of the function, and the R—register points to
a descriptor upon entry to the function.

If a subroutine has alternate returns specified in its
dummy argument list, these are not included in the
parameter list. Instead, the alternate return value (0
for normal return) is set in the ERRCODE position in the
caller's stack element. This value may then be used in a
COMPUTED GO TO after return has been made to the
caller.

The parameter list consists of a sequence of words, one
for each dummy argument. For arithmetic variables or
expressions and logical variables or expressions, the
corresponding word contains the address of the variable.
For arrays of arithmetic or logical types, the word
contains the address of the first element of the array.

For character variables or expressions, the word
contains the address of a descriptor consisting of two
words:

word 1 15 length in bytes 0

word 2 address of word containing first character

For character arrays, the parameter word contains the
address of a descriptor for the first element of the
array (i.e., one whose address part is for the start of
the array, and whose length is that of a single element
of the array).

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

F.3 INVOKING PLANC FROM FORTRAN

All PLANC routines called from FORTRAN should be
‘STANDARD‘. Any PLANC routine called from FORTRAN must
contain an INISTACK invocation unless the FORTRAN
program is compiled using the REENTRANT—MODE command on
ND—lOO or FIXED—MODE OFF on ND—SOO.

Example 1 — simple subroutine call

To call a subroutine with no complex arithmetic actual
arguments, the following can be written in FORTRAN:

EXTERNAL PLSUBR
INTEGER I
REAL R

C CALL A SUBROUTINE WRITTEN IN PLANC
CALL PLSUBR [1,R)

and the corresponding PLANC code is:

MODULE msubr
EXPORT plsubr

INTEGER ARRAY : stack [1 1000]
ROUTINE STANDARD VOID,VOID [INTEGER,REAL]
INISTACK stack

Z body of routine

ENDROUTINE
ENDMODULE

Example 2 — simple function call

: plsubr [int,rl)

To invoke a function which returns a non—complex
arithmetic result.

0 In FORTRAN:

EXTERNAL PLFUNC
REAL X,Y,PLFUNC
DOUBLE PRECISION D

C INVOKE A FUNCTION WRITTEN IN PLANC
Y=PLFUNC [X,D]

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual

0 In PLANC:

Appendix F

ROUTINE STANDARD VOID,REAL [REAL,REAL8] : plfunc [rl,db]
INISTACK stack

2 PLANC REALB is the same as FORTRAN DOUBLE PRECISION
. RETURN

ENDROUTINE

Example 3 ~ use of logical arguments

0n the ND-lOO:

FORTRAN LOGICAL*2 corresponds to PLANC BOOLEAN. FORTRAN
LOGICAL*4 is the following PLANC data type:

TYPE boolean4 = RECORD
BOOLEAN : unused % first word always zero
BOOLEAN : value % contains actual value

ENDRECORD

LOGICAL*4 cannot be returned from a PLANC STANDARD
function.

0 In FORTRAN:

EXTERNAL PLBOOL
LOGICAL PLBOOL,V
LOGICAL*4 M4
V=PLBOOL [V,M4]

o In PLANC:

ROUTINE STANDARD VOID,BOOLEAN [BOOLEAN,boolean4]
INISTACK stack
IF m4.value THEN

m RETURN
ENDIF
NOT m RETURN
ENDROUTINE

Norsk Data ND—60.145.7 EN

: plbool(m,m4]

ND FORTRAN Reference Manua]
Appendix F

0n the ND—SOO:

FORTRAN LOGICAL*4 corresponds to PLANC BOOLEAN. The
FORTRAN LOGICAL*2 data type has no direct equivaTent in
PLANC. FORTRAN LOGICAL*2 can be handled in PLANC in the
foTTowing way:

a In FORTRAN:

EXTERNAL PLBOOL
LOGICAL PLBOOL,V
LOGICAL*2 M2
V=PLBOOL [V,M2]

o In PLANC:

ROUTINE STANDARD VOID,BOOLEAN [BOOLEAN,INTEGER2] :plbool[m,m2)
INISTACK stack

Z the 2 integers must be contiguous in memory
INTEGERZ : int1,int2
BOOLEAN : booll=int1
m2=:int2
0=:int1
IF booll THEN

m RETURN
ENDIF
NOT m RETURN
ENDROUTINE

ExampTe 4 ~ compTex arguments and functions

FORTRAN COMPLEX has no direct corresponding data type in
PLANC. It may be defined as foTTows:

TYPE compTex = RECORD
REAL : re % reai part
REAL : im % imaginary part

ENDRECORD

SimiTarTy the equivaTent of FORTRAN DOUBLE COMPLEX is:

TYPE compTex = RECORD
REAL8 : dre
REAL8 : dim

ENDRECORD

Norsk Data ND—6O 145.7 EN

ND FORTRAN Reference Manda]
Appendix F

These types, once defined, may be used just Tike other
record data types.

0n the ND-lOO:

o In FORTRAN:

COMPLEX C,CFUNC
EXTERNAL CFUNC
REAL R

C INVOKE A PLANC FUNCTION WHICH RETURNS A COMPLEX RESULT
C=CFUNC (R)

o In PLANC:

ROUTINE STANDARD VOID,complex [REAL] : Cfunc (r)
INISTACK stack
complex : c

r: C.im=zc.re 2 store value in two identifiers

C RETURN
ENDROUTINE

On the ND—SOO:

c In FORTRAN:

COMPLEX C,CFUNC
EXTERNAL CFUNC
REAL R

C INVOKE A PLANC FUNCTION WHICH RETURNS A COMPLEX RESULT
C=CFUNC (R)

o In PLANC:

ROUTINE STANDARD VOID,VOID [REAL] : cfunc [r]
INISTACK stack
complex : c

r=:c.im=:c.re 2 store value in two identifiers
2 set up values to be returned

$* A1:=c.re; A2:=C.im
RETURN
ENDROUTINE

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT
Appendix F

ExampTe 5 — character string arguments

Since FORTRAN passes character strings through a
descriptor, PLANC routines must accept these as records.
It is often most convenient to recast the FORTRAN string
descriptor as a PLANC bytes pointer. Thus:

On the ND—lOO:

TYPE ftnstring = RECORD 2 a blank must precede the -1
BYTES I ftnchars [0: —l] 2 character data

ENDRECORD

TYPE ftndesc = RECORD PACKED
ftnstring POINTER :cstring 2 address of string
INTEGER RANGE [011B] :COddbyte Z left/right byte start
INTEGER RANGE [0:17B] :cunused Z unused
INTEGER RANGE [0137778) :clength X length of string

ENDRECORD

Then in FORTRAN:

CHARACTER H*20
INTEGER I,J
EXTERNAL HSUB
CALL HSUB [H[I:J]]

c which can be picked up in PLANC by:

ROUTINE STANDARD VOID,VOID [ftndesc] : hsub [hij]
INISTACK stack
BYTES POINTER : bp

ADDR [hij.cstring.ftnchars &
[hij.coddbyte: hij.clength—1+hij.coddbyte]]=:bp

2 bp now contains the address of the FORTRAN character string
ENDROUTINE

On the ND—SOO:

TYPE ftnstring = RECORD
BYTES : ftnchars (O: —1) % character data
ENDRECORD % a bTank must precede the —1

TYPE ftndesc = RECORD
INTEGER RANGE (0 7777777778) : cTength
ftnstring POINTER : cstring

ENDRECORD

Norsk Data ND—60.l45 7 EN

ND FORTRAN Reference Manual

0 Then in FORTRAN:

CHARACTER H*20
INTEGER I,J
EXTERNAL HSUB
CALL HSUB (H[I:J]]

a which can be picked up in PLANC by:

ROUTINE STANDARD VOID,VOID [ftndesc] : hsub [hij]

INISTACK stack
BYTES POINTER : bp

ADDR [hij.cstring.ftnchars {O : hij.clength—1)]=:

Appendix F

bp
2 bp now contains the address of the FORTRAN Character string

ENDROUTINE

Exampie 6 — functions returning a character vaiue

The definition of character data types must be made as
in exampie 5. But in this case there can be no true
return vaiue for the function, so the PLANC code must
simulate the return.

On the ND—lOO:

a In FORTRAN:

CHARACTER H*20,HFUNC*10
EXTERNAL HFUNC
H[1:10] = HFUNC [...]

o In PLANC:

ROUTINE STANDARD VOID,VOID : hfunc
INISTACK stack
BYTES POINTER : bp
ftndesc POINTER : dreg

$* COPY SD DA; STA dreg 2 return value descriptor
ADDR [dreg.cstring.ftnohars &

[dreg.coddbyte : dreg.clength-1+dreg.Coddbyte]]=:bp
'0123456789'=:IND (bp) 2 set 'return value'

ENDROUTINE

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manuai
Appendix F

0n the ND—SDO:

e In FORTRAN:

CHARACTER H*20,HFUNC*1O
EXTERNAL HFUNC
H[1:10] = HFUNC [...]

o In PLANC:

ROUTINE STANDARD VOID,VOID : hfunc

INISTACK stack
BYTES POINTER : bp
ftndesc POINTER : rreg

$* R=:B.rreg 2 return value descriptor
ADDR (rreg.cstring.ftnchars [O : rreg.clength~1])=:bp
'0123456789'=:IND [bp] 2 set 'return value'

ENDROUTINE

F.4 INVOKING FORTRAN FROM PLANC

ATT FORTRAN subprograms invoked from PLANC must be
IMPORT'ed as STANDARD routines. FORTRAN functions have
out—vaTues, but no FORTRAN routines have in—vaiues.

Exampie 1 - a simpie subroutine caTT

CaTT a FORTRAN subroutine with non—compiex arithmetic
dummy arguments.

o In PLANC:

IMPORT [ROUTINE STANDARD VOID,VOID [REAL,REAL8) : fsubr]

N

REAL : r
REAL8 2 d

fsubr [r,d) 2 call the FORTRAN subroutine

e In FORTRAN:

SUBROUTINE FSUBR [R,D]
REAL R
DOUBLE PRECISION D C
END

Norsk Data NDe60.145.7 EN

ND FORTRAN Reference ManuaT
Appendix F

ExampTe 2 - a simpTe function

To invoke a function, returning a non—compTex arithmetic
resuit.

o In PLANC:

IMPORT [ROUTINE STANDARD VOID,VOID,INTEGER [INTEGER4] :ifunc]

INTEGER : k
INTEGEH4 I kd
ifunc [kd]=:k Z invoke the FORTRAN function

0 In FORTRAN:

INTEGER FUNCTION IFUNC {KD}
INTEGER*4 KD
IFUNC=...
RETURN
END

ExampTe 3 — use of Togica] arguments

PLANC BOOLEAN is the same as LOGICAL in FORTRAN,
LOGICAL*2 on the ND—lOO and LOGICAL*4 on the ND—SOO.
LOGICAL*4 on the ND—lOO or LOGICAL*2 on the ND—SOO may
be simuTated as in exampTe 3 in the previous section.

On the ND—lOO:

o In PLANC:

IMPORT [ROUTINE STANDARD VOID,BOOLEAN [boolean4] : lfunc]

boolean4 : m4
IF lfunc (m4] THEN...

o In FORTRAN:

LOGICAL FUNCTION LFUNC [M4]
LOGICAL*4 M4
LFUNC=...
RETURN
END

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

On the ND~SOO:

o In PLANC:

IMPORT [ROUTINE STANDARD VOID,BOOLEAN [INTEGEB2l : lfunc]
Z the 2 integers must be contiguous in memory

INTEGERZ : intl,int2
BOOLEAN : booll=int1

X put a value in the boolean data—element
...=:booll
IF lfunc (int2) THEN

o In FORTRAN:

LOGICAL FUNCTION LFUNC [M2]
LOGICAL*2 M2
LFUNC=...
RETURN
END

Example 4 — complex arguments and out—values

FORTRAN COMPLEX can be simulated in PLANC by the type
declarations of example 4 in the previous sectiont

o In PLANC:

IMPORT I ROUTINE VOID,Complex [REAL] :Cfunc]

°\°

complex : c
REAL : r

on the ND-lOO invoke the FORTRAN function normally
'cfunc(r]=:c

on the ND—SOO invoke the FORTRAN function normally, but assembler

is required to get the returned function value
cfunc [r]

$* A1=:c.re; A2=:c.im

.\°
A;

e\“

o In FORTRAN:

COMPLEX FUNCTION CFUNC [B]
REAL R
CFUNC=CMPLX [R,R]
RETURN

END

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

Example 5 — character string arguments

FORTRAN handles character strings by means of
descriptors, which can be declared in PLANC as in
example 5 in the previous section. These descriptors
must be created in PLANC before invocation of the
FORTRAN subprogram takes place.

0 In PLANC:

IMPORT [ROUTINE STANDARD VOID,VOID [ftndesc] : hsub]
ftndesc : ed
BYTES : arg [1:100] 2 begins in left byte of word
INTEGER 2 i,j

Z now transfer arg [i j] to FORTRAN
ADDR[arg [i]) FORCE ftnstring POINTER=zfd.cstring

2 first byte ~ the following 2 lines are for the ND-lOO only
1-[iMOD 2] =:fd.coddbyte Zleft/right byte
O=:fd.cunused

.\°

j-i+1=:fd.clength 2 length of string
hsub (fd] 2 invoke FORTRAN subprogram

o In FORTRAN:

SUBBOUTINE HSUB [FD]
CHARACTER FD* [*]

END

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

.\'
.\'

Example 6 — character functions

Characters cannot be returned by FORTRAN to PLANC as
out—values. The memory area for the returned string must
be allocated before invoking the function and a special
calling sequence is required.

0 In PLANC:

IMPORT [ROUTINE STANDARD VOID,VOID : hfunc]
ftndesc : fd
BYTES : val [0:19] Z value returned here
ftndesc POINTER : fdp

ADDR[val [0)] FORCE ftnstring POINTER=2fd.cstring
first byte — the following 2 lines are required for the ND-lOO only

0 =:fd.coddbyte
O =:fd.cunused

MAXINDEX [val,1)~MININDEX [val,1]+1=:td.clength
ADDR [fd] =:fdp

on the ND—lOO use:
$* LDA fdp; COPY SA DD 2 return descriptor address

on the ND—SOO use:
$* Rz=fdp 2 return descriptor address

hfunc 2 put result in 'val

o In FORTRAN:

CHARACTER * [*) FUNCTION HFUNC
HFUNC
RETURN
END

Norsk Data ND—60.145.7 EN

F.5 CALLING COBOL FROM FORTRAN

ND FORTRAN Reference ManuaT
Appendix F

On both the ND—IOO and the NDeSOO, a FORTRAN program may
caTT a subprogram written in COBOL. Parameters are
transferred by reference between FORTRAN and COBOL. The
data types which correspond in FORTRAN and COBOL are as
foTTows:

FORTRAN

INTEGER*2, 16—b1ts

INTEGER*4, 32—b1ts

REAL

HOLLERITH strings

COBOL

PIC 39(n) COMPUTATIONAL
where 1$nS4

PIC 89(n) COMPUTATIONAL
where 53n$10

COMPUTATIONAL—2

PIC X(n)
where n is the number of bytes

COMPUTATIONAL—2 variabTes may onTy be used as a
parameter in a subroutine caTT to or from COBOL, or to
convert to/from COMPUTATIONAL-3 variabTes.

For exampTe:

a In FORTRAN:

INTEGER*2 INT2
REAL RL
INTEGER*4 INT4
INT2=56
RL=54.12345
INT4=123456

C CALL A COBOL SUBROUTINE
CALL CBSUB [INT2,RL,INT4,'HOLL']

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

o In COBOL:

PROGRAM—ID. CBSUB.
DATA DIVISION
WORKING—STORAGE SECTION.
01 CB-REAL PIC 89(3]V9(6] COMP-3‘
LINKAGE SECTION.
01 FTN—INTZ PIC S9[4) COMP.
01 FTN—INT4 PIC 89(6) COMP.
01 FTN*REAL COMP—2.
01 FTN~HOLLERITH PIC X{4).
PROCEDURE DIVISION USING FTN~INT2

FTN—REAL
FTN-INT4

PARA-1.
FTN—HOLLERITH.

* CONVERT THE FORTRAN REAL VALUE TO THE INTERNAL COBOL FORM
MOVE FTN~REAL TO CB-REAL.

On ND—SOO it is possibIe to transfere parameters of type
CHARACTER and NUMERIC between FORTRAN and COBOL
routines. The routine that caIIs the COBOL routine must
be compiIed with the command:

COBOL—INTERFACE < routine~name>

o In FORTRAN:

NUMERIC [5,3] N
CHARACTER*4 CH
CALL COBROU (CH,N]

o In COBOL:

PROGRAM-ID. COBROU.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FTN~STRING PIC X(4).
01 FTN-NUMERIC PIC 59(3)V9[2) PACKED DECIMAL.
PROCEDURE DIVISION USING FTN-STRING, FTN—NUMERIC.

Norsk Data ND—6O 145 7 EN

ND FORTRAN Reference ManuaT
Appendix F

F.6 CALLING FORTRAN FROM COBOL

On both the ND—lOO and the ND—SOO, a COBOL program may
caTT a subprogram written in FORTRAN. Parameters are
transferred by reference between FORTRAN and COBOL. The
data types which correspond in FORTRAN and COBOL are as
foTTows:

FORTRAN COBOL

INTEGER*2, lfi—bits PIC 59(n) COMPUTATIONAL
where lSnSA

INTEGER*4, 32—bits PIC 89(n) COMPUTATIONAL
where SSnSIO

REAL COMPUTATIONAL—2

HOLLERITH strings PIC X(n)
where n is the number of bytes

COMPUTATIONAL—2 variabies may onTy be used as a
parameter in a subroutine caTT to or from COBOL, or to
convert to/from COMPUTATIONAL-3 variabTes.

Parameters from COBOL must start on a word boundary,
ND—lOO onTy.

For exampTe:

o In COBOL:

DATA DIVISION

WORKING-STORAGE SECTION.

01 FTN-INTZ PIC 39(4) COMP VALUE 123.

01 FTN-INT4 PIC 59(6) COMP VALUE 123456.

01 CB—REAL PIC 39(3]V9[6] CP-3 VALUE -2. 71.

01 FTN-REAL COMP—2.

01 FTN~HOLLERITH PIC XIIO] VALUE 'A123456789'.

01 FTN-HLENGTH

* NUMBER OF CH

PROCEDURE DIVI
PARA-1.

* CONVERT THE
MOVE CB—REAL

-WDS PIC 89(4) COMP VALUE 5.

ARACTERS PER WORD IS DIFFERENT ON THE ND—SOO

SION.

INTERNAL COBOL FROM THE FORTRAN REAL FORM
TO FTN-REAL.

* CALL A FORTRAN SUBROUTINE
CALL "FTNSUB" USING FTN-INTZ

FIN-REAL
FTN-INT4
FTN—HOLLERITH
FTN-HLENGTH-WDS.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference ManuaT
Appendix F

o In FORTRAN:

SUBROUTINE FTNSUB (INT2,RL,INT4,HSTRING,HLENGTH]
INTEGER*2 INT2,HLENGTH,HSTRING {HLENGTH}
INTEGER*4 INT4

C MAY NOW ACCESS VALUES PASSED FROM COBOL AND RETURN VALUES
C TO COBOL IN THE NORMAL MANNER

RETURN
END

On ND—SOO it is aTso possibTe to transfer parameters of
type CHARACTER and NUMERIC between FORTRAN and COBOL
routines. The FORTRAN routine that is caTTed from COBOL
must be compiTed with the command:

COBOL—INTERFACE <routine—name>

o In COBOL:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 FTN-STRING PIC X[4] VALUE 'TEST'.
01 FTN-NUMERIC PIC S9(3]V9[2] PACKED-DECIMAL VALUE 345.67‘
PROCEDURE DIVISION. ,.
P.I.
CALL "FTNSUB" USING FTN—STRING, FTN-NUMERIC.

o In FORTRAN:

SUBROUTINE FTNSUB [CH,N]
CHARACTER*4 CH
NUMERIC [5,2] N
END

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manual
Appendix F

F.7 MAC SUBROUTINES [ND~100 ONLY)

When writing subroutines or functions to be called from
FORTRAN, the user should clearly understand the format
of the run—time stack, and the use of registers in the
calling sequence, see Section F.l.

There is a marked difference between reentrant and
non—reentrant routines with regard to the available
methods for acquiring local workspace.

F.7.1 NON-REENTRANT ROUTINES

)QBEG
)QENT SUBB
SUBR,

SAVB,O
)QEND

In this case, there is no space available in the FORTRAN
routine's local area (addressed by the B—register) which
can be used by a called subroutine. It is the called
subroutine‘s responsibility to acquire the local areas
it needs on its own behalf.

An example of how to address parameters from a MAC
routine is as follows:

o\‘ if called as CALL SUBR [1,R]
SWAP SA DB
STA SAVB 2 save FORTRAN'S B-reg.
LDA I O,B 2 first parameter [I]

LDF 1 1,8 2 second parameter [R] 1

LDA SAVB

COPY SA DB 2 restore FORTRAN'S B-reg.
EXIT

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

In order to mix MAC routines with FORTRAN, it is
recommended that the following calling sequence be used
(see Sections F.7.4 and F 7 5.):

)9BEG
l 913m SUBH
SUBR, COPY SL DX 2 return address

JPL I [SINIT 2 create a stack unit
FRAME 2 size [in words) of the local frame
STACK 2 address of stack space
STSZ 2 total size of stack
0 Z or 1 if two-bank operation
0 Z for debug use

2 routine starts here

]9END JPL I [SLEAV A“ return to caller

This will also aid the Symbolic Debugger to identify the
FORTRAN routines and trace the stack frames correctly.

F.7.2 REENTRANT ROUTINES

Routines which can be shared among several programs can
be called only from reentrant FORTRAN routines (see
REENTRANT command, Section 12.8). They can use the
standard FORTRAN stack, which has been initialised by a
FORTRAN program. The MAC subroutines must not alter the
length of the stack, nor interfere with the two words
which follow it. The acquisition of the local stack area
and return, can be done as follows:

JQBEG
)9ENT SUBR
SUBR, COPY SL DX Z save routine return

' JPL I (SENTR Z acquire next frame
SIZE 2 Size of frame [in words)
COPY SA DX Z B—reg addresses stack

2 frame
JPL I [SLEAV 2 return up stack

)FILL
)QEND

Norsk Data ND—60.145.7 EN

F.7.3

F.7.4

PADR.

1,54
R, ‘3.141593

ND FORTRAN Reference Manual
Appendix F

ALTERNATE RETURNS

An aTternate return is bandied by setting the
appropriate vaTue (from 1 upwards) corresponding to the
number of the asterisks in the parameter Tist of the
CALL statement, into the return code sTot of the caTTing
routine. Zero must be set if there is no aiternate
return taken, but one was expected by the CALL.

The address of the caTTer‘s stack frame can be obtained
by:

LDX SAVB Z non—reentrant case
or
LDX —l77,B Z reentrant case

and then the return vaTue is set by:

LDA RETNV Z vaTue for return
STA —173,X Z store in caTTer's error code

CALLING FORTRAN SUBROUTINES

For non—reentrant FORTRAN routines, the parameter Tist
must be buiTt at its correct pTace in the caTTed
routine’s stack frame. For exampTe:

LDA (PADR Z parameter Tist address
JPL I (FSUB Z caTT FORTRAN subroutine

1.. Z first parameter address
R Z second parameter address

Z first parameter vaTue
Z second parameter vaTue

LDX — 176,8 Z free stack space
LDA (I Z first parameter address
STA 6,X Z first parameter position
LDA (R
STA 7,X Z second parameter position

JPL I(FSUB

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

F . 7 . 5 INVOKING FORTRAN INTRINSIC FUNCTIONS

All FORTRAN library routines must be treated like
reentrant FORTRAN subroutines, and space provided on the
local stack for the library workspace. To set up a local
stack (and/or stack frame) see Sections F.7.1 and F.7.2.
The amount of space required by the library for its
stack frame can generally be determined by the data type
of the returned value. These values are subject to small
changes without notice, therefore a certain margin
should be allowed.

DATA TYPE STACK SIZE

INTEGER*2 lO
INTEGER*4 40
REAL 65
DOUBLE PRECISION 160

Norsk Data ND—6O 145.7 EN

ND FORTRAN Reference Manuai
Appendix G

HOLLERITH

G. 1 HOLLERITH CONSTANTS

The ANSI FORTRAN 77 Standard does not accept HoiTerith
constants. It mereiy gives recommendations as to their
use in an appendix to retain some compatibiiity with
previousTy existing programs.

ND FORTRAN impiements these recommendations, with a few
minor additions and changes, to retain compatibiiity
with programs which run on the NORD—lO FORTRAN compiler.
DetaiTs are as foTTows:

o CONSTANTS

HoTTerith constants may have one of two forms. The first
is:

n is a non—negative number.
h ... hn are the n characters in the source
program which immediateiy ioTTow the H.

Bianks are significant among the h , but the h
cannot contain a carriage return, iine feed, or tab
characters. The internai representation of a HoTTerith
constant is the sequence of h , as ASCII characters
with the parity bit set to zero.

The second form is:

”h h"

The doubTe—quote characters “, octaT 42, is the
deTimiter for the HoTTerith string. The h characters
inside the doubTe—quotes may be repiaced by any
character except carriage return, Tine feed or tab
characters. If the string is to contain a doubTe—quote
character, two of these shouid be written.

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manual
Appendix 6

They can be used as constants only in DATA statements,
as actual arguments in subroutine or function
invocations, as the right—hand side of an arithmetic
assignment statement, or as the value given to a
symbolic constant.

They may not appear in any other context; in particular
as values for output, or in expressions,

v

0 IN ASSIGNMENT STATEMENTS

A Hollerith constant as the rightahand side of an
assignment statement may be moved to an arithmetic or
logical variable or array element name without any form
of conversion. The ASCII characters are assigned
byte—by~byte to the storage of the leitahand side,
starting at the leftmost byte. Padding with blanks or
truncation occurs on the right to the length of the
storage for the target. See Appendix E for the sizes of
the variables. Character variables cannot receive
Hollerith constants.

0 IN DATA STATEMENTS

An arithmetic or logical variable may take a Hollerith
constant from the constant list as its initial value in
a DATA statement. The assignment is as for the
assignment statement. The correspondence of data list
and constant list is preserved. Character variables
cannot receive Hollerith values.

0 AS ACTUAL ARGUMENTS

Hollerith constants used as actual arguments must match
their corresponding dummy arguments for storage length.
No padding will occur; but if the actual argument is
longer, only the first characters are used in the dummy
argument. The dummy argument cannot be of type
CHARACTER.

0 AS A SYMBOLIC CONSTANT VALUE

The Hollerith constant is assigned to the symbolic
constant as if it were being assigned to a variable of
the type of the symbolic constant on the target machine
of the compilation. The resulting arithmetic value is
then the value of the symbolic constant. The allowable
data types are only INTEGER*2 and INTEGER*4.

Norsk Data ND—60.145.7 EN

ND FORTRAN Reference Manual
Appendix G

0 IN A RELATIONAL COMPARISON

Variables can be compared with Hollerith data in an IF
statement, or general logical expression. The Hollerith
data is treated as though it were assigned to a variable
of the same data type as the other operand of the
comparison, and the comparison is performed as for that
other data type. Character strings cannot be compared
with Hollerith data.

0 A—FORMAT FOR HOLLERITH DATA

If the format Aw is used when the corresponding I/O list
item is arithmetic or logical, then the data transfer is
done without conversion, except for parity bits being
cleared on input (unless the parity option has been
coded on the OPEN statement for the file, see Section
8.3.1).

On input, the w input characters are treated like a
Hollerith constant and assigned as in the assignment
statement. On output, w output characters are written
from the storage of the arithmetic or logical item.

0 RESTRICTIONS

If a logical variable has been assigned a Hollerith
value, then its use as a logical value will be
unpredictable.

Real, double precision and complex variables containing
Hollerith values may be moved, but any form of
arithmetic operation may give unpredictable results due
to hidden optimisations or conversions.

It is recommended that Hollerith constants be avoided
wherever possible. Character variables may be
equivalenced as an alternative. If Holleriths constants
must be used, it is recommended that the exact length be
specified to prevent the implied padding and truncation.
This should ease the transport and maintenance of these
non—standard features.

Norsk Data ND—60.l45.7 EN

ND FORTRAN Reference Manual

INEX

Norsk Data ND~60.145.7 EN

ND FORTRAN Reference Manua]

Norsk Data ND~60.14S.7 EN

<I>

I N D E X L I S T

Index term Reference

A format descriptor . . 207
actuai

arguments . 239
deciarator 37

adjustabie
arrays 36
dimensions 44

ALIGNMENT—NDSOO command . 297
arithmetic

array expression 103
constant 27
expression 79
operand . . 79
operator 79

Arithmetic IF statement a 129
array

adjustabie . 36
assumed—size . 36
deciarator . 37
definition . 34
eiement name . 35
expressions . . 103
size of 34
storage, order of eiements in . . 35
subscript 35

Array Processing Function Library . . 299
ARRAY~INDEX~CHECK command . . 278
ASSEMBLY statement 4 . 69
Assigned GO TO statement 127
assignment statements

arithmetic 115
character . 119
conversion in . 116
iogicai . 117
statement label 118

asterisk
as a dummy argument . 221

BACKSPACE statement . . 178
BCDeROUNDING command . 284
Biank COMMON

difference between named COMMON and . . 50
storage sequence of . 50

Norsk Data ND—60.145 7 EN

< II >

Index term Reference

BTock COMMON
def1n1t1on . . 49
storage sequence of . . 50

BLOCK DATA statement . . 257
BLOCK DATA subprogram restr1ct1ons . 257
BTock IF statement . . . 131
BN and 82 format descr1ptors . 204

character
a1phanumer1c . 4
constant . 31
data type . . 25
express1on . 86
operands . 86
operator . 86
spec1a1 . 4
substr1ngs . 38
Type statement . . 56

CHARACTER A11gnment 316
CHARACTER and HoTTer1th . . 316
character set, FORTRAN . . V . . 4
CHECK— NUMBER OF— PARAMETERS command . 279
CLOSE statement 177
COBOL- INTERFACE command . . 283
coTTat1ng sequence . 5
coTumns . . 7
comb1ned comp1Te and execut1on . 270
comment T1ne 7
COMMMON— BLOCK— CHECK command . . 309
COMMON bTock storage sequence . . 50
COMMON statement . . 49
comp11at1on of source programs . 264
COMPILE command . . 264
comp1Ter

command syntax . 262
defauTts . . 293
1nvocat1on command . 261
sampTe program 13

COMPLEX
constant . 30
data type . . 25
express1on . 79
Type statement 54

Computed GO TO statement . 125
cond1t1ona1 comp1Tat1on 285
CONDITIONAL—COMPILING command . . 286
CONSTANT command . 288

Norsk Data ND—60.l45.7 EN

< 111 >

Index term Reference

constant expression
arithmetic
character .
IogicaI

constants
arithmetic
character .
compTex .
doubTe precision
integer .
IogicaT
reaI . .

CONTINUE statement
controI statements
creating FORTRAN Tibraries
CROSS— REFERENCE command .

DATA statement
data types
debugging . .
DEBUG MODE command
DEFAULT command .
DEFINE command . .
DELETE— INTRINSIC command
digit,definition
dimension

bounds
deciarator . .

DIMENSION statement .
DO

FOR— ENDDO statements
Ioop .
Toop, range of
statement . .
statement, execution
WHILE~ ENDDO statements

documentation commands
DOCUMENT~SYSTEM command .
DOUBLE PRECISION

constant
data type .
expression
Type statement

dummy
argument .
array decTarator
procedure .

Norsk Data ND—60.145.7 EN

. 82

. 88

. 95

. 27

. 31
, 3O
. 29
. 27
. 31
. 28
. 141

123
. 284
. 272

. 73

. 25

. 285

. 285

. 293

. 269

. 298

. 43

. 34

. 43

139
135
135
I35

' 137
139

i 307
. 307
I 29
. 25
. 79
. 54

. 214

. 37

. 219

< IV >

Index term Reference

E and D format descriptors 201
editing use of format descriptors for 196
EJECT command . 275
ELSE statement 132
ELSEIF statement 131
END statement . . 144
ENDFILE statement . 179
ENDIF statement 132
END—0F~FILE command . . 267
End«of-File Specifier . . 153
ENTRY statement 244
EQUIVALENCE statement . . 46
Error specifier . . 154
executable statement . 9
EXIT command 305
exponent

double precision . 29
real . 29

expression
arithmetic . 79
arithmetic array 103
array . . 103
character A . 86
constant . . 95
definition of . . 79
evaluation . 96
logical . 92
relational . 89
subscript . . 35
substring . 38

external
functions . . 239
procedure . . 10
statement . . 65

F format descriptor . 198
file

definition . 148
File Accessing . , 317
FIXED DATA AREA command . . 300
FLOATING command . 296
Format

descriptors . 192
specifications 191
specifier and identifier 152

Norsk Data ND—60 145.7 EN

< V >

Index term Reference

formatted
data transfer . 1 1 1 1 . 1 1 . . 1 1 . 1 . 1 . . 158
records, printing of 1 . 1 1 1 . . . 1 1 . . . 1 165

FORTRAN
character set 1 1 . 1 1 1 1 . . 1 1 1 1 . 1 1 1 1 4
statement 1 . . 1 1 1 . 1 1 1 . 1 . 1 . 1 1 . . 1 9

FORTRAN and COBOL routines 1 1 1 . 1 1 1 1 1 1 . 1 1 283
FORTRAN-100 command 1 1 . 1 . 1 . 11 1 . 1 . 1 . 1 1 271
FORTRAN—500 command 1 . 1 . 1 1 1 1 1 . 1 . 1 1 1 1 . 271
functions

definition . 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 . 213

G format descriptor . 1 1 1 1 1 . 1 . 1 . 1 1 . . . 1 232
gIobaI item 1 1 1 1 1 1 . 1 1 1 1 . 1 1 1 1 1 1 1 . 1 6
GLOBAL—CHECK—ALL command 1 . 1 . 1 . . 309
GLOBAL—MODE command 1 1 . 1 1 1 1 1 1 . . 1 . 304
GO TO statement

Assigned 1 . 1 1 1 1 1 1 . 1 . 1 1 . 1 1 1 1 1 . 127
Computed 1 1 1 1 1 . 1 1 1 . . 1 1 . 1 1 1 1 1 . 125
UnconditionaI . 1 1 . 1 1 . 1 . . 1 1 1 1 . . 1 . 124

H format descriptor . 1 . 1 1 1 1 1 . 1 . 1 . . . 1 1 205
HEADING~TEXT command 1 1 . . 1 . . . 1. 1 1 1 1 . . 276
HELP command 1 1 1 1 . 1 . 1 . 1 1 1 . 1 1 1 1 . . 1 263, 305

I and J format descriptors . 1 1 1 .1 . . 1 . 1 1 1 197
IF statement

Arithmetic . 1 . . 1 1 1 1 . . 1 1 1 . . 1 1 . 1 129
LogicaI . 1 . . 1 . 1 . 1 . 1 1 1 1 . . 130

IMPLICIT
statement . . 1 1 1 . 1 1 1 1 1 . 1 1 . . 1 1 1 . 61

IMPLICIT command 1 . . 1 1 . 1 . 1 1 1 1 1 1 1 1 . 1 295
impIied

00 Iists 1 1 . 1 1 . . 1 . 1 1 1 11 1 . 1 . 1 . 157
type ruIes for identifiers . 1 . 1 1 . 1 1 . . . 25

INCLUDE command 1 . 1 1 1 1 . 1 1 . .1 . 1 1 . 1 . 266
INPUT statement 1 1 . 1 1 1 1 1 1 . 1 1 1 1 . . 1 . 1 167
input, Iist—directed 1 . . . 1 1 1 1 1 1 1 1 159
Input—Output

Buffer AIIocation 1 1 1 1 . 1 1 1 . . 1 1 1 . . 1 317
fiIe access . 1 1 1 1 . 1 1 1 1 . . . 1 1 1 . . 1 150
fiIe format 1 1 . . 1 1 1 . . 1 . 1 1 1 . 1 1 1 1 149
list—directed 1 1 1 1 1 1 1 . 1 1 . 1 1 . 1 1 1 . 158
Iists 1 1 1 1 . 1 1 . 1 1 . . 1 . 1 . 1 156
statements 1 1 1 . 1 1 1 1 1 . 1 1 . 1 . 1 1 . 1 147

Norsk Data ND—60 145.7 EN

< VI >

Index term Reference

Input—Output
status specifier . 154
terms and concepts 147

INDUIRE statement . . 181
INSTRUCTION command . . 290
INTEGER

constant . 27
data type . . 25
expression 79
Type statement 54

Interprocedurai Error Diagnostic . 309
INTRINSIC

statement 66
INTRINSIC functions 222
INTRINSIC functions, removing of . 298

keyword . . 6

L format descriptor . . 206
Ietter,definition . . 4
LIBRARY—MODE command . 284
Tine

comment . . 7
continuation . 7
initiaT 7

LINK—SEGMENT command . 269
LIST command . . 275
Iisting information . . 272
LOAD command . 268
IocaT item 6
LOCAL—STACK—SIZE command . 302
LOGICAL

array expressions . . 108
constant . 31
data type . . 25
expression . 92
operand . . 92
operator . . 92
Type statement . 54

LogicaI IF statement . 130
Toop

controT variabTe . 314
definition . 313

main program . 253

Norsk Data ND—60.145.7 EN

< VII >

Index term Reference

MAIN—STACK-SIZE command I . . . 301
MOVE—INSTRUCTIONS command I . . 296

NDlOO—EXTENDED command I 297
nonexecutabie statement It . t I 9
numeric editing6 196

O format descriptor t. 208
octaT vaIues I , 27
OPEN statement I . I68
operands

arithmetic 80
character I 86
Iogicai I , . , . . I 92

operators
arithmetic I . . 80
character I. , i . I 86
TogicaI 92
precedence order of 92
reTationaT 89

optimization of program execution time 288
OPTIMIZE command 288
OUTPUT statement9 . . . I . . a . 167
output, Tist—directed A 160
OUTPUT-FILE command 306

P format descriptor V . . 199
packed decimaT 284
PAGE—SIZE command I 274, 306
PARAMETER

statement 63
PARAMETER— CHECK command , . 309
parentheses I . . . I . 96
PAUSE statement I A . . . 143
precedence of arithmetic operators I . . V , 80
PRINT statement I 166
PRINT CALL— HIERARCHY command I 308
PRINT COMMON- BLOCK— INFORMATION command 308
PRINT— INVERSE HIERARCHY command 308
procedure

definition 10
externaT . 10
main 10

PROG FILE command A 267

Norsk Data ND—60.l45.7 EN

< VIII \

Index term Reference

program
addresses . . 274
stack . . BOO
unit . . . 10

PROGRAM statement . . 1 253
PROGRAM— MAP command . , 274
Programming Techniques . 313

READ statement 161
REAL

constant . 28
data type . . 25
expression . 79
Type statement . . 54

REAL—TIME—MODE command . 283
record

definition 147
record specifier . . . 155
REENTRANT MODE command I 282
reTationaT

array expressions . . 106
expression . 89
operand . . 89
operator 89

RESERVE— WORK— SPACE command . , 298
resuits for arithmetic array expressions . lOS
RETURN statement . 248
REWIND statement . 179
RUN command . . 269
RUN TIME MODES . 281

S, SP and SS format descriptors . . 203
SAVE statement 67
SEGMENT- FILE command . . 268
SEPARATE— DATA command . . 281
sTash format descriptor . . 206
speciaT characters . 4
speciaT names in INTRINSIC functions . 222
STANDARD— CHECK command . 277
statement

executabTe . 9
FORTRAN . . 9
functions . . 236
Tape] . . . 9
nonexecutabTe . . 9

STOP statement 142

Norsk Data ND—60.145.7 EN

<IX>

Index term Reference

subrout1ne
def1n1t1on 242
1n T1ne . 289
referenc1ng to a 1 242
subprogram restr1ct1ons . 243

subscr1pt
array . 5
express1on “5

substr1ng
character . . 38
express1on 38

:SUBSTRING— EXPRESSION— CHECK command . 280
symboT1c name . . . 1 5
SYMBULIC— NAME— LENGTH command . 278
syntact1c 1tem 6
SYSTEM—NAME command . . 307

T, TL, TR and rX format descr1ptors . . 205
tab pos1t1ons 8
TESTwMODE command . 280
text format descr1ptor . 204
Type statements 54

UNASSIGNED—VARIABLE—CHECK command . 279
Uncond1t1onaT 00 T0 statement . 124
unformatted

data transfer . . 158
UNIT command 295
Un1tss . . 1 . 151
USE APF— LIBRARY command . 299

var1abTe
as dummy argument . c 217

var1ab1es
def1n1t1on 33

WRITE statement . 163

Z format descr1ptor . 209

Norsk Data ND—60.l45.7 EN

************** SEhID us YOUR COMMENTS!!! **************

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader's Club and send us a
note? You will receive a membership card — and

\ H[h an answer to Your comments.®

Please let us know if you
" find errors
" cannot understand information
' cannot find information
' find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

“flflflflu HELP YOURSELF BY HELPING US!! HHHHHH

Manual name: ND FORTRAN Reference Manual Manual number: ND-60.145.7 A EiN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual 7

Your name: Date'

Company: F’osition'

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for Norsk Data A.S ______>documentation errors. Software and Documentation Department
system errors should be reported on PO. Box 25, Bogerud Norsk Data's answer will be found
Customer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.$
Documentation Department
PO. Box 25, Bogerud
0621 Os|06, Norway

