ORTRAN

ND FORTRAN

Reference Manual
ND-60.145.7A EN

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk Data A.S.

Copyright (C) 1986 by Norsk Data A.S.

PRINTING RECORD

Printing Notes
05/81 Version 1 EN
11/81 Version 2 EN
03/82 Version 3 EN
07/82 Version 4 EN
06/83 Version 5 EN
03/84 Version 6 EN
06/86 Version 7 EN
09/86 Version 7A EN

Page: 8, 27, 28, 32, 44, 68, 152, 166, 186, 197, 198, 199, 200, 201, 202, 207, 208

223, 225, 226, 227, 228, 234, 240, 243, 246, 248, 289, 290, 292, 296, 297,

Appendix A, B, C, D.

ND FORTRAN Reference Manual
Publ.No.: ND-60.145.7A EN
September 1986

P-4+
r¥ e

999

200

4

44
44

Norsk Data A.S
Graphic Center

DB D¢ eee
P.0.Box 25, Bogerud
Norsk Data 0621 Oslo 6, Norway

:
200
: b4

D

b4

v

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
{CS1) and can be ordered as described below.

The reader’'s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S

P.O. Box 25, Bogerud

0621 Oslo 8, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

PREFACE

THE PRODUCT
FORTRAN 1is a high-level programming language used mainly
for solving scientific problems on digital computers.
Norsk Data provides compilers for FORTRAN on their
machines. This manual describes the Tlanguage and
facilities of the following compilers:
NORD-10/ND-100 ANSI 77 FORTRAN - ND-10181
Release F
ND-500 ANST 77 FORTRAN - ND-10190
Release J
The language supported is that of ANSI X3.9 - 1978
FORTRAN 77 with a very few restrictions, as noted on
page viii, and a certain number of extensions which are
described in the main part of the manual.

THE READER

This manual is intended for programmers who are writing
FORTRAN programs for ND-100 or ND-500 computers. It
includes complete and formal descriptions of the
Tanguage, and the facilities it offers.

PREREQUISITE KNOWLEDGE

The reader must have a basic knowledge of data
processing technigues and have some experience with
FORTRAN.

Norsk Data ND-60.145.7 EN

vi
ND FORTRAN Reference Manual

RELATED MANUALS

The related manuals are:

ND Relocating Loader ND-60.066
BRF-LINKER User Manual ND-60.196
Symbolic Debugger User's Guide ND-60.158
SINTRAN T1I1 Reference Manual ND-60.128
ND-500 Loader/Monitor ND-60.136

For writing real-time programs in FORTRAN, the following
manuals are recommended:

SINTRAN IIT Real Time Guide ND-60.133
SINTRAN III Real Time Loader ND-60.051

NDIX FORTRAN 1is printed as a separate appendix to this
manual.

HOW TO USE THE MANUAL

RESTRICTIONS.,

The description is given in the order in which the
statement types appear in the written programs.

The manual is intended for reference purposes and 1is
organized as a progressive description of the features
of ND FORTRAN. Chapter 13 lists the available compiler
commands. Examples are included in the text and a sample
program is provided with extensive notes for the
programmer wanting an overview of the FORTRAN Tanguage,
{see Section 1.4.). Supplementary information is given
in the Appendices at the end.

DEVIATIONS., AND INCOMPATIBILITIES

The following items differ slightly from ANSI X3.9 -
1978 FORTRAN 77:

1. Blank COMMON cannot be expanded during the loading
process.

2. The RECL option of the OPEN statement gives the
length in bytes, as required by the ANSI standard
for both formatted and unformatted files. However,
on the ND-100 this length must be an even number.

Morsk Data ND-60.145.7 EN

vii
ND FORTRAN Reference Manual

The following are the limits on certain features:

1. The lengths of character strings must be less than
32767 on the ND-500 and 2047 on the ND-100. This
applies to the lengths of all variables,
constants., expressions and intermediate results.

2. The number of dimensions of an array during
debugging must be less than 8.

3. The maximum depth of INCLUDE'd text files is 5.

The maximum size of a program unit, or length of
statements, or complexity of expression are too
heavily dependent on content for any rules to be
given.

The following are known incompatibilities with the
NORD-10/ND-100 (P.D. number FTN-2090) and NORD-50
compilers {P.D. number FTN-2159) and associated
lTibraries.

1. RECL option is in bytes.

2. Variables used in the specification of adjustable
bounds may be changed within the function or
subroutine without modifying the values used for
bounds.

3. Variables used in the specification of the final
value and increment of DO-loops may be changed
without affecting the number of times a DO-loop
is executed.

4. Records in a file are counted from 1 instead of O.
However . the FIRSTREC option in the OPEN statement
may be used to override this.

5. Some compiler commands have been changed.

6. Some new options have been added to OPEN
statements, IOSTAT, FORM, BLANC, FACTOR,
IOCONVERT, TYPE, MODE, PARITY, FIRSTREC and
BUFFER-SITZE

7. If the first character of a record of a non-print
file is a $, then the FIN-2090 and FTN-2159
compilers are used to supress the LF and CR
characters. This compiler will only do so if the
file is a PRINT file.

Norsk Data ND-60.145.7 EN

vili
ND FORTRAN Reference Manual

8. The parameters to the monitor calls must now be

10.

exactly as given in Section 13.1.

Character dummy arguments in subroutines are now
taken to be exactly as long as declared in the
subroutine. To pick up the length of the actual
argument, a length of (*) must be specified for
the dummy argument.

If a variable in a DATA-statement is an array and
the corresponding constant is a Hollerith
constant, the Hollerith constant is filled in the
first array element even if it is longer than the
Tength of the array element.

Norsk Data ND-60.145.7 EN

TABLE OF CONTENTS

Section Page

1 INTRODUCTION 1
1.1 THE NOTATION 3
1.2 FORTRAN CHARACTER SET Lo 4
1.3 FORTRAN TERMS AND CONCEPTS 6
1.3.1 Lines . s 7
1.3.2 Statements . . . C e e 9
1.3.3 Program Units and Procedures Lo 1 0
1.3.4 Required Order of Statements and L1nes . A
1.4 NOTES ON A SAMPLE PROGRAM 13
2 DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS . . . 23
2.1 DATA TYPES 4
2.1.1 Type rules for 1dent1f1ers e e e e .25
2.2 CONSTANTS O
2.2.1 Integer constants e e
2.2.2 Real constants 4
2.2.3 Double-precision constants e e 28
2.2.4 Complex constants 30
2.2.5 Logical constants 3
2.2.6 Character constants 31
2.3 VARIABLES . 33
2.4 ARRAYS S 1
2.4.1 Array elements .o e .
2.4.2 Order of stored array e1ements 35
2.4.3 Adjustable arrays . 36
2.4.4 Assumed-size arrays . . . R 1o
2.4.5 Actual and dummy array dec1arators O
2.5 CHARACTER SUBSTRINGS 238
3 SPECIFICATION STATEMENTS 4
3.1 THE DIMENSICN STATEMENT 43
3.2 THE EQUIVALENCE STATEMENT 45
3.2.1 Array Names and Array Element Names .o Y
3.2.2 Character Variables in EQUIVALENCE Statements L. 4T
3.2.3 Restrictions on EQUIVALENCE Statements 48
3.3 THE COMMON STATEMENT /XS
3.3.1 COMMON Block Storage Sequences .o 50
3.3.2 Differences between Named COMMON and B1ank COMMON 50
3.3.3 Restrictions on COMMON and EQUIVALENCE 51
3.3.4 COMMON Blocks in APT 51
3.4 TYPE STATEMENTS .. b4
3.4.1 INTEGER, REAL, DOUBLE PRECISICN, NUMERIC, COMPLEX

and LOGICAL Type Statements 54

Norsk Data ND-60.145.7 EN

Section Page
3.4.2 CHARACTER Type Statement 56
3.5 THE IMPLICIT STATEMENT 61
3.6 THE PARAMETER STATEMENT 63
3.7 THE EXTERNAL STATEMENT 65
3.8 THE INTRINSIC STATEMENT 66
3.9 THE SAVE STATEMENT . 67
3.10 THE ASSEMBLY STATEMENT 69
4 THE DATA STATEMENT .. 171
4.1 DATA STATEMENT RESTRICTIONS 73
4.2 IMPLIED DO IN A DATA STATEMENT 175
5 EXPRESSIONS T
5.1 ARITHMETIC EXPRESSIONS 79
5.1.1 Interpretation of Results for Arwthmet1c Express1ons .. 82
5.1.2 Arithmetic Constant Expressions 85
5.2 CHARACTER EXPRESSIONS 86
5.2.1 CHARACTER Constant Express1ons e 88
5.3 RELATIONAL EXPRESSIONS e 3
5.3.1 Arithmetic Relational Expr9551ons . 1
5.3.2 CHARACTER Relational Expressions 90
5.3.3 LOGICAL Relational Expressions O i
5.4 LOGICAL EXPRESSIONS O 4
5.4.1 LOGICAL Constant Express1ons O 1<t
5.5 EVALUATION OF EXPRESSIONS 96
5.5.1 The Use of Parentheses 96
5.5.2 Precedence of Operators 98
5.5.3 Location of Operators within an Express1on o .97
5.6 CONSTANT EXPRESSIONS 99
6 ARRAY EXPRESSIONS .101
6.1 ARITHMETIC ARRAY EXPRESSIONS 103
6.1.1 Interpretation of Results for Ar1thmet1c Array Express1~

ons . . . O 8 015
6.2 RELATIONAL ARRAY EXPRESSIONS o 1086
6.2.1 Arithmetic Relational Array Express1ons106
6.2.2 CHARACTER Relational Array Expressions 107
6.2.3 LOGICAL Relational Array Expressions 107
6.3 LOGICAL ARRAY EXPRESSIONS 108
6.4 EVALUATION OF EXPRESSIONS 110
6.4.1 The Use of Parentheses 110
6.4.2 Precedence of Operators 110
7 ASSIGNMENT STATEMENTS .113

Norsk Data ND-60.145.7 EN

Xi

Section Page
7.1 ARITHMETIC ASSIGNMENT STATEMENT . . 115
7.2 [LOGICAL ASSIGNMENT STATEMENT 117
7.3 STATEMENT LABEL ASSIGNMENT (ASSIGN) STATEMENT . . 118
7.4 CHARACTER ASSIGNMENT STATEMENT . 119
8 CONTROL STATEMENTS . 121
8.1 UNCONDITIONAL GO TO STATEMENT . . 124
8.2 COMPUTED GO TO STATEMENT . 125
8.3 ASSIGNED GO TO STATEMENT .1e7
8.4 ARITHMETIC IF STATEMENT . . 129
8.5 LOGICAL IF STATEMENT 130
8.6 THE BLOCK IF, ELSEIF, ELSE, AND ENDIF STATEMENTS . 131
8.6.1 The ELSEIF Statement . 131
8.6.2 The ELSE Statement . . 132
8.6.3 The ENDIF Statement 132
8.6.4 Examples of Block IF, ELSEIF ELSE and ENDTF Statements . 133
8.7 THE DO STATEMENT . e . 135
8.7.1 Execution of a DO Statement .o . 137
8.7.2 The DO FOR ... ENDDO Statements . . . 139
8.7.3 The DO WHILE ... ENDDO Statements . . 139
8.8 THE CONTINUE STATEMENT . 141
8.9 THE STOP STATEMENT . . 142
8.10 THE PAUSE STATEMENT . . 143
8.11 THE END STATEMENT . . 144
9 INPUT/0QUTPUT STATEMENTS . . 145
9.1 I1/0 TERMS AND CONCEPTS . 147
g.1.1 Records . . 147
9.1.2 Files .) . 148
9.1.2.1 File Format . . 149
9.1.2.2 File Access . . 150
9.1.3 Units . . . 151
9.1.4 Format Specwfwer and Identwfwer . . 152
9.1.5 End-of-File Specifier . . 153
9.1.6 Error Specifier 154
9.1.7 Input/Output Status Spec1f1er . . 154
9.1.8 Record Specifier 155
9.2 DATA TRANSFER OPERATIONS . 156
9.2.1 Input/Output Lists . 156
9.2.1.1 Implied DO Lists .) . 157
9.2.2 Formatted and Unformatted Data Transfer . . 158
9.2.3 List-Directed Input/Output . 158
9.2.3.1 List-Directed Input . . 159
9.2.3.2 List-Directed Output . 160
9.2.4 The READ Statement . 161

Norsk Data ND-60.145.7 EN

xii

Section Page
9.2.5 The WRITE Statement .) . 163
9.2.5.1 Printing of Formatted Records . . 165
9.2.6 The PRINT Statement . . 167
9.2.7 The INPUT Statement . . 167
9.2.8 The OUTPUT Statement . 168
9.3 FILE OPEN AND CLOSE . . 169
9.3.1 The OPEN Statement . 169
9.3.2 The CLOSE Statement . . 178
9.4 FILE POSITIONING 179
9.4.1 The BACKSPACE Statement . . 179
9.4.2 The ENDFILE Statement . . 180
9.4.3 The REWIND Statement . 180
9.5 THE INQUIRE STATEMENT . . 182
10 FORMAT SPECIFICATIONS . . 189
10.1 FORMAT SPECIFICATION METHODS . 191
10.2 FORMAT DESCRIPTORS . 192
10.2.1 Interaction between the Format Descrwptors and the I/O

List 184
10.2.2 Editing Provwded by the Format Descrwptors . 196
10.2.2.1 Numeric Editing . . 196
10.2.2.2 The I and J Format Descr1ptors . 197
10.2.2.3 REAL and DOUBLE PRECISION . . 198
10.2.2.4 The F Format Descriptor . . : . 198
10.2.2.5 Scale Factor: The P Format Descrwptor . . 199
10.2.2.6 The E and D Format Descriptors . 201
10.2.2.7 The G Format Descriptor . . 202
10.2.2.8 COMPLEX Data . . 203
10.2.2.9 S, SP and SS Format Descrwptors . . 203
10.2.2.10 The BN and BZ Format Descriptors . 204
10.2.2.11 The Text Format Descriptor . 204
10.2.2.12 The H Format Descriptor .) . 205
10.2.2.13 The T, TL, TR, and rX Format Descrwptors . 205
10.2.2.14 The Slash, /, Format Descriptor . . 206
10.2.2.15 The L Format Descriptor . . 206
10.2.2.16 The A Format Descriptor . . 207
10.2.2.17 The 0 Format Descriptor . . 208
10.2.2.18 The Z Format Descriptor . . 209
11 FUNCTIONS AND SUBROUTINES . . 211
11.1 DUMMY AND ACTUAL ARGUMENTS . 214

Norsk Data ND-60.145.7 EN

xiii

Section Page
11.1.1 Variables as Dummy Arguments 217
11.1.2 Arrays as Dummy Arguments 218
11.1.3 Procedures as Dummy Arguments 219
11.1.4 Asterisks as Dummy Arguments/A]ternatwve Return Arguments 221
11.2 INTRINSIC FUNCTIONS C e 222
11.2.1 Specific Names and Generic Names Ce e
11.2.2 Referencing an INTRINSIC Function 224
11.3 STATEMENT FUNCTIONS236
11.3.1 Statement Function Restrwctwons S .23
11.3.2 Referencing a Statement Function 238
11.4 EXTERNAL FUNCTIONS 239
11.4.1 Actual Arguments for an Externa] FunctWOn Co.o..239
11.4.2 Function Subprogram Restrictions 240
11.5 SUBROUTINES L 248
11.5.1 Subroutine Reference Co e L 242
11.5.2 Subroutine Subprogram Restrwct1onso.o.243
11.6 THE ENTRY STATEMENT S oL 244
11.6.1 ENTRY Statement Restrwct1ons S .. 248
11.7 THE RETURN STATEMENT 248
11.7.1 Execution of a RETURN Statement e ... 248
12 MAIN PROGRAM2y
12.1 THE PROGRAM STATEMENT 253
13 BLOCK DATA SUBPROGRAM . 255
13.1 BLOCK DATA SUBPROGRAM RESTRICTIONS 257
14 COMPILER COMMANDS . 259
14.1 COMPILER INVOCATION AND TERMINATION 261
14.2 COMPILER COMMAND SYNTAX262
14.3 THE HELP COMMAND . 2863
14.4 COMMENTS . . . 4 XX
14.5 COMPILATION OF SOURCE PROGRAMS S 264
14.5.1 The COMPILE Command, Preparation of Re]ocatab]e

Code . . . e 264
14.5.2 Including Text From Other Source Fw]es S 266
14.5.3 End of File 267
14.5.4 Preparation of Executab]e Programs and Loadwng 267
14.5.5 Combined Compile and Execution 270
14.6 LISTING INFORMATION .27
14.6.1 Cross Reference Listing 272
14.6.2 Program Addresses .274
14.6.3 Listing Control . . . e
14.7 ANSI FORTRAN 77 SFANDARD CHECKING -

Norsk Data ND-60.145.7 EN

Xiv

Section Page
14.8 SYMBOLIC-NAME-LENGTH . 278
14.9 ARRAY-INDEX-CHECK 278
14.10 CHECK-NUMBER-OF- PARAMETERS <ON/OFF> . 279
14.11 UNASSIGNED-VARIABLE-CHECK <ON/OFF> . 279
14.12 SUBSTRING EXPRESSION CHECKING . . 280
14.13 TEST MODE . . . 280
14.14 RUN TIME MODES . 281
14.15 REAL-TIME-MODE . . . o . 283
14.16 MIXING FORTRAN AND COBOL ROUTINES (ND—SOO ONLY) . 283
14.17 PACKED DECIMAL ARITHMETIC (ND-500 ONLY) . 284
14.18 CREATING OF FORTRAN LIBRARIES . . 284
14.19 DEBUGGING . . .) . 285
14.20 CONDITIONAL COMPILATION) . 285
14.20.1 Optional Comment Lines within Source - . . 286
14.20.2 Compile Time IF-THEN-ELSE Compiler Commands . . 287
14.20.3 Compile Time Constants 288
14.21 OPTIMIZATION OF PROGRAM EXECUTION TIME . 288
14.22 IN-LINE SUBROUTINES 289
14.23 USE OF SPECIAL MACHINE- CODE INSTRUCTIONS . 290
14.24 COMPILER DEFAULTS . . . 293
14.24.1 Data Type Defaulting . 293
14.24.2 IMPLICIT Data Types . . 295
14.24.3 Default Unit Definition . . 295
14.25 TARGET MACHINE OPTIONS 296
14.26 REMOVING INTRINSIC FUNCTIONS . 298
14.27 RESERVING WORK SPACE 298
14.28 USE OF THE ARRAY PROCESSING FUNCTION LIBRARY {(ND-500 OMLY) 299
14.29 PROGRAM STACK . . . o . 300
14.29.1 FIXED-DATA-AREA . . 300
14.29.2 MAIN-STACK-SIZE . . 301
14.29.3 LOCAL-STACK-SIZE 302
14.30 SYSTEM DOCUMENTATION AND INTERPROCEOURAL ERROR
DIAGNOSTIC {ND-500 ONLY) . 304
14.30.1 HELP command . 305
14.30.2 EXIT command . .) . 305
14.30.3 OUTPUT-FILE command) . 306
14.30.4 PAGE-SIZE command . . 306
14.30.5 SYSTEM-NAME command . . 307
14.30.6 Documentation Commands . . . 307
14.30.6.1 PRINT-CALL-HIERARCHY command . . 308
14.30.6.2 PRINT-INVERSE-HIERARCHY command 308
14.30.6.3 PRINT-COMMON-BLOCK-INFORMATION command . 308
14.30.7 Commands to Perform Interprocedural Error
Diagnostic 308
14.30.7.1 GLOBAL-CHECK-ALL command . 309
14.30.7.2 PARAMETER-CHECK command . . 309
14.30.7.3 COMMON-BLOCK-CHECK command . 309
15 ADVANCED FORTRAN PROGRAMMING . 311

Norsk Data ND-60.145.7 EN

XV

Section Page
15.1 EFFICIENT PROGRAMMING TECHNIQUES 313
15.1.1 Loops G J e
15.1.2 Loop Control Var1ab1e e 314
15.1.3 Array Operations . . . R B X
15.1.4 Actual Argument Data Types G B Nt
15.1.5 CHARACTER and Hollerith 316
15.1.6 CHARACTER Alignment - ND-100 316
15.1.7 File Accessing . . e 318
15.1.8 1/0 Buffer A]]ocat1on O B X
Appendices

Index

Norsk Data ND-60.145.7 EN

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

CHAPTER 1

INTRODUCTION

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 3

INTRODUCTION

The FORTRAN Tanguage described in this manual is in
accordance with the American National Standard
Institute's FORTRAN 77. The full Tanguage has been
implemented, except for items listed on page 7; a
certain number of ND FORTRAN extensions are noted in the
text.

1.1 THE NOTATION

The notation used throughout the manual to describe the
FORTRAN statements and constructs is listed below:

1.

2.

Square brackets, [], indicate optional items.

An ellipsis, ..., following square brackets specifies
that the preceding optional items may appear one or
more times in succession.

. Round brackets, (), are part of FORTRAN and must be

coded where shown.

. Blanks are used to improve readability, but unless

otherwise noted have no significance.

. Grey shading, over text, has been used to highlight

any divergence from the ANSI FORTRAN 77 standard,
including variations and ND extensions.

Note that the grey shading has been used in Chapters
1 through 11 only.

. Windows are used to call attention to the importance

of commands.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

INTRODUCTION

1.2 FORTRAN

CHARACTER SET

The FORTRAN character set consists of twenty-six
letters, ten digits, and thirteen special characters.

A letter is one of the twenty-six characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A digit is one of the ten characters:

0123456789

An alphanumeric character is a letter or a digit.

A Special Character is one of the following characters:

CHARACTER

MEANING

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point
Currency Symbo]
Apostrophe

Colon

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
INTRODUCTIOCN

In ND FORTRAN the fo??owwng specwa? characters may be
used

T semicolon

%o percent

T underscore ,

b exclamation point

e ~ ampersand

S double quotatwon;; -
‘ marks o

The collating sequence is the ASCII sequence described
in Appendix A.

In ND FORTRAN, WOwercase TQtters are a%?owed in
“addition to uppercase letters. as specified in ANSI
FORTRAN 77. If they occur in a character string or
Hollerith constant, they retaxn their lowercase
values, Otherwzse they are converted to uppercase

Norsk Data ND-60.145.7 EN

6 ND FORTRAN Reference Manual
INTRODUCTION

1.3 FORTRAN TERMS AND CONCEPTS

The basic language elements of FORTRAN, i.e., syntactic
items, are constants, symbolic names, statement labels,
keywords, operators, and special characters. These are
all formed from the letters, digits, and special
characters of the FORTRAN character set previously
described in this chapter.

The form of a constant is described in Section 2.2. on
page 27.

A symbolic name is a sequence of one to six letters or
digits, the first of which must be a letter. It can be
used to identify a global item, i.e., an 1tem known to
the whole executable program. The following are global
items:

a common block

e an external function

a subroutine

@

a main program

e a block data subprogram

A symbolic name can also be used to identify a local
item - one whose scope is only that of the program unit
in which it appears, as listed below:

e an array

e a variable

e a constant

e a statement function
e an intrinsic function

e a dummy procedure

In ND FORTRAN, symbolic names may be longer than six
characters, and the first 31 are used as the uniqgue
jdentification. Any character except the first may

~ be an underscore. fAiE :

A keyword is a word that is recognized by the compiler.
Keywords appear in capital letters throughout this
manual.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 7

INTRODUCTION

Operators are described in Chapter 5, which begins on
page 79.

1.3.1 Lines

A Tine in a program unit is a sequence of 72 characters.
The character positions in a line are called columns and
are numbered consecutively 1, 2, through 72, the
sequential order being from left to right. Lines are
ordered in the same sequence as they are presented to
the compiler.

An initial line is any line that is not a comment line
and contains the character, blank, or the digit, zero,
in column 6. Columns 1 to 5 may contain a statement
label or they may all be blank.

A continuation line is any line containing any character
of the FORTRAN character set other than a blank or a
zero in column &, and containing only blanks in columns
1 through 5. A statement must not have more than
nineteen continuation lines.

A comment line is any line containing a C or an asterisk
in column 1, or containing only blank characters in
columns 1 through 72. The remaining columns may contain
any character which the compiler can accept. Comment
1ines may appear anywhere within the program unit.

Norsk Data ND-60.145.7 EN Rev.A

8 ND FORTRAN Reference Manual
INTRODUCTION

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual o]

INTRODUCTION

1.3.2 Statements

An ANST FORTRAN 77 source program consists of a set of
statements composed of keywords and other syntactic
items as described above. Most statements begin with a
keyword which is then used as the statement identifier.
The exceptions are assignment and statement function
statements.

There are two basic types of statements, executable and
nonexecutable.

Executable statements specify the actions to be taken
during execution of a program, i.e., the computation of
values, input and output operations, transfer of contro)
within one program unit or between program units etc.
Executable statements are normally executed in the
sequence they appear in the program unit. They may be
Tabeled, and references to labels may be used to alter
the sequence of execution.

Nonexecutable statements specify characteristics,
arrangement, and initial values of data, they can also
contain editing information, specify statement
functions, classify program units, and specify entry
points within subprograms. Nonexecutable statements are
not part of the execution sequence; they may be Tabeled
but such labels cannot be used to control the execution
sequence.

A statement is written on one or more lines, the first
of which is called an initial line. Succeeding lines, if
any, are called continuation lines, Section 1.3.1. on
page 7.

A statement label is a sequence of one to five digits,
one of which must be nonzero, and is used to identify a
statement. The statement label may be placed anywhere in
columns 1 through 5 of the initial line of the
statement, Section 1.3.1. on page 7.

Statement labels -provide a means of referring to
individual statements. Any statement can be labeled but
the only ones which can be referred to are labeled
executable statements and FORMAT statements.

The same statement label must not be given to more than
one statement in a program unit. Blanks and leading
zeros are not significant in distinguishing between
statement labels.

Norsk Data ND-60.145.7 EN

10

ND FORTRAN Reference Manual
INTRODUCTION

,fIn ND FORTRAN more than one statement may appear on
~a line provided they are separated by a semicolon
(). These extra statements on a 11ne can aiso have
:f}abe1s prefwxed to them. S . ~

1.3.3 Program Units and Procedures

A program unit consists of a sequence of statements and
optional comment lines. [t is either a main program or a
subprogram.

A main program contains the first executable statement
of the executable program. Its first statement can be a
PROGRAM statement but not a FUNCTION, SUBRCUTINE, or
BLOCK DATA statement.

A subprogram is a program unit having a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first
statement.

A procedure is an intrinsic function, statement
function, subroutine, or an external function.
Subroutines and external functions are called external
procedures.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 11
INTRODUCTION

1.3.4 BRequired Order of Statements and Lines

Within a program unit, the required order of statements
and comment lines, as described in ANSI FORTRAN 77, is
summarized in the diagram below:

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement
IMPLICIT
Statements
PARAMETER
Statements |Other
FORMAT Specification
Comment and Statements
Lines ENTRY
Statements Statement-
Function
DATA Statements
Statements
Executable
Statements

END Statement

In the diagram, vertical Tines delineate varieties of
statements that may be interspersed. For example, FORMAT
statements can be interspersed with statement function-
statements and executable statements.

Horizontal lines delineate the kinds of statements that
must not be interspersed. For example,
statement-function statements cannot be interspersed
with executable statements.

Note that the END statement is alsc an executable

statement and must only appear as the last statement of
a program unit.

Norsk Data ND-60.145.7 EN

12 ND FORTRAN Reference Manual
INTRODUCTION

In ND FORTRAN, the rules for the requiréd‘order of
' statements have been relaxed somewhat as 111ustrated
beWow : . ,

~ PROGRAM, FUNCTION, SUBROUTINE, or
. BLOCK DATA'Statement ‘ :

{Comment | | Statements | PARAMETER
‘fbines b : — e Statements
t and and 1 iSpecificaton|
1 b ENWRY | IStatements

CompileriStatements| = F e :
{Commands{ | DATA Statement-

ot |Statements| Function
: | Statements

~Executabié,7 |
' Statements f

 END Statement

‘3fIn ND FBRYRA& QATA statements are also allowed
i,;among the specwfwcatxon statements, but must fo?]ow
o an IMPLICIT statements , ,

f;fcammen“‘ -es may fo}?ow the £N0 statement

k'i':.f'CG”*Pﬁﬁf’ Commands may ap;}ear anywhere in the source
i‘gprogram e ; ;

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 13
INTRODUCTION

1.4 NOTES ON A SAMPLE PROGRAM

This section contains an example of a complete FORTRAN
program. The example illustrates a number of different
features of the language.

The numbers to the left of the FORTRAN statements are
1ine numbers, that are added by the compiler, to the
listing of the source program.

The example is followed by detailed comments explaining
each 1ine of the program.

Norsk Data ND-60.145.7 EN

14

1%
2%
3%
4%
5%
6 *
7%
8%
9%

10%*

11%

12%

13%

14%

15%

16%

17%

18%

19%*

20%*

21%

22%

23%

24%*

25%

26%

27*

28*

29%

30%

31%

32%

33*

34%

35%

3ex

37x%x

38%

39%

40%

41%

42%

43%

44%

45%

46%

47%

4 8%

49%

50%

S1i%

52%

53%

54 %

55%

10

40

50

500
510
900

999

10

PRO
IMP
PAR
INT
CHA
CcOoM
REA
DAT
IUN
OPE

M=0
REA
K=1
M=M
IF(

ELS

END
GOT

CON
WRI
DO

CON
GOT

FOR
FOR
CON
WRI
CON
END

SUB
COM
DIM
R=0
Do

CON
AV=
END

ND FORTRAN Reference Manual
INTRODUCTION

GRAM SAMPLE

LICIT INTEGER(R,0,Y,G,B)

AMETER (RED=1,0RANGE=2,YELLOW=3,GREEN=4,BLUE=5)

EGER N(5),M

RACTER GROUP*1,COLOURY¥JS

MON/SHARE/AV

L X(5,20),R,Y,AV

A COLOUR/'ROYGB'/ ,X,N/100%0.0,5%0/

IT=60

N (UNIT=IUNIT,FILE="READINGS:DATA',STATUS="0LD",
FORM='FORMATTED' ' ,ACCESS= 'SEQUENTIAL",
ISOTAT=IERNAM,ERR=900)

D (IUNIT,500,END=40) GROUP,R
NDEX(COLOUR,GROUP)
+1
K.EQ.0) THEN
WRITE(1,%) 'INVALID GROUP IDENTIFIER'
E
N{(K)=N(K)+1
X(K,N(K))=R
IF (K.EQ.ORANGE.OR.K.EQ.GREEN) THEN
N(K-1)=N(K-1)+1
X{¥-1,N{(K-1))=R
N(K+1)=N{K+1)+1
X{(K+1,N(K+1))=R
ENDIF
IF
0o 10

TINUE

TE{1,'(I6, "READINGS'')’) M

50 K=RED,BLUE

CALL AVRAGE(X,N,K)

SDEV=VAR(X,N,K)

WRITE(1,510) COLOUR(K:K),N(K),AV,SDEV
TINUE

0 999

MAT(A1,F5.2)

MAT(1H,A4,I5,F9.2,'ST DEV:’' ,E10.3)
TINUE

TE(1,*) OPEN ERROR ~ CODE IS:',IERNAM
TINUE

ROUTINE AVRAGE(X,N,K)
MON/SHARE/AV

ENSION X(5,%),N(*)

.0

10 I=1,N(K)

R=R+X (K, 1)

TINUE

R/N(K)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

INTRODUCTION

56%*

57% REAL FUNCTION VAR(V,M,J)
58% DIMENSION V(5,%) M(*%)
59% COMMON / SHARE / AV

60% VAR=0.0

61 DO 10 I=1,M(J)

62* VAR=VAR+(V{J, I} ~AV)*%2
63% 10 CONTINUE

64% VAR=SQRT (VAR/ (M(J)~-1))
65% END

Norsk Data ND-60.145.7 EN

15

16

Line 1:

Lines 2-7:

Line 2:
Line 3:
Line 4:
Line 5:
Line 6:
Line 7:
Line 8:
Line 9:

ND FORTRAN Reference Manual
INTRODUCTION

This line identifiesthe main entry point of the

program.

This part defines the variables used in the
program. This section must precede the description

of what the program does (the ‘algorithm’).

I1f variables have not been given a type
explicitly, then they receive their types according
to the first letter of their name. Here, initial
letters R, O, Y, G, B will imply that the
variables are of type INTEGER.

This statement assigns values to certain names.
These names are not normal variables, but are used
to give consistent names to constants. For
example, here the name GREEN will mean the constant
4. The constants are of type INTEGER because their
first letters appear in an implicit statement (see
line 2).

Here an array is definedas having 5 elements and
name N; also a simple variable is defined called M.
Both these items are declared to be of type
INTEGER.

Two items of type CHARACTER are declared in this
line: one of length 1 and one of length 5. Since
this statement explicitly gives GROUP a type, the
IMPLICIT statement (line 2) does not apply.

Here we have a COMMON block called SHARE. It is
known outside this program unit, and enables
variables to be shared between program units (see
lines 48, 59%). The block contains only one variable

called AV in this program unit.

This defines 4 items to be of type REAL. One of
these (X) is a two~-dimensional array. The first
subgcript varies from 1 to 5 and the second from 1
to 20. The name AV is the same as the one in the
COMMON block (line 6),and this statement‘declares
this COMMON variable to be of type REAL.

This statement gives values to 3 variables
initially. Before the program starts to execute,
the variable COLOUR will have the value 'ROYGB’;
all the 100 elements of X and the 5 of N are given
the initial value zero.

This is the first executable statement and gives

the value 60 to the variable IUNIT. Since this
variable has not been declared, and the IMPLICIT

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 17

INTRODUCTION

Line 10,11,12:

Line 13:
Line 14:
Line 15:
Line 16:

Lines 17-28:

statement (line 2) does not contain the letter I,
the default type is derived from the I~-N rule. This
rule states that all undeclared variables beginning
with the letters 1, J, K, L, M, N are INTEGER and
the rest are REAL.

These 3 lines form one statement. The continuation
lines 11 and 12 have a character in column 6 which
is neither zero nor blank (in this case 1 and 2)
which defines them as continuation lines. This OPEN
statement prepares a file called READINGS:DATA for
sequential access, and it is shown containing
formatted data. If an error should occur (e.g. the
file does not exist) then the program will continue
at the statement labeled 900 (see line 42).
Subsequent I/0 statements on this file will use the

same unit number (see line 14).
A simple assignment of zero to M.

This statement reads a single record from the file
identified by the unit number IUNIT. In this case,
this is associated with the file READINGS:DATA by
means of the OPEN statement (see line 10). The
record is interpreted according to the FORMAT
statement at label 500 (see line 40). If there are
no more records left, then the program continues at
statement label 40 (see line 31). Two variables are
read in, GROUP and R. This statement has a label
(10) which other statements can reference (see line
29).

The INDEX intrinsic function is invoked with actual
parameters COLOUR and GROUP. This searches for the
string contained in GROUP (let us say this is 'R')
in the string contained in colour (this is
'ROYGB'). In our example, the result would be 1
(the first occurrence of 'R' in 'ROYGB' is the
first character), and this would then be placed in
K. K is not declared, and receives the default type
INTEGER (see also line 9). INDEX is not declared
since it i{s an intrin- sic function.

Adds one to M. (In this program M is used to count

the number of records read).

Here we have a block IF construct. Line 17 (the IF)
shows the test to be made. If K has the value 0,
then the THEN part is executed {(line 18). Otherwise
control goes to the ELSE clause (line 19) and
proceeds normally to the ENDIF (line 28). The
indentations in the listing are purely to help the
reader so that the THEN and ELSE clauses are easily

seen.

Norsk Data ND-60.145.7 EN

18

Line 18:
Line 19:
Line 20:
Line 21:

Lines 22-27:

Line 27:
Line 28:
Line 29:
Line 30:
Line 31:
Line 32:

Lines 33-37:

ND FORTRAN Reference Manual
INTRODUCTION

This merely writes the character constant to the
user's terminal (unit 1). The * indicates that free
format (also known as list-directed 1/0) is to be

used.
See note on lines 17-28.

The first statement of the ELSE clause. It adds 1
to the K'th element of array N. N keeps a count of
how many of each type of reading is recorded, the
type being identified by K.

Puts the reading R into the appropriate position in
the table X. X has 2 dimensions. The first
subscript K identifies the group, and the second N

(K) identifies which position within the group.

Another block IF; this time without an ELSE clause.
If K has the value ORANGE or GREEN then the reading
is also placed in the previous and succeeding

groups. Otherwise nothing is done here.
Terminates the block IF in line 22.

Terminates the block IF in line 17. Note how one
block IF is completely nested within one clause of
another block IF.

Directs the execution of the program to label 10
(line 14) where the next record is to be read. The
repeated execution of lines 14 through 29 is only
halted by the END clause in line 14, which will

cause execution to jump to label 40 (line 31).

Blank lines are treated as comments. They can be

placed anywhere to make the listing easier to read .

The CONTINUE statement does nothing itself. Here 1t
is simply used so that the label 40 can be
positioned. Note that the label 40 could have been
placed on the WRITE statement in line 32 instead.

Writes to the user’'s terminal (unit 1). The format
used 18 written here as a character constant, the
value of which is (I6, 'READINGS'). There is only
one value, M, to be written. Thus M is written
according to the format item 16. It is then
followed by the characters READINGS.

This is a DO-loop. It begins with the DO statement
(line 33) which identifies the end as a statement
label S50 (line 37). K is the control variable of
the loop. It starts with the value RED, and
increases each time the loop is repeated until it

is greater than BLUE. Since no increment is

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 19

INTRODUCTION
Line 34:
Line 35:
Line 36:
Line 37:
Line 38:
Line 39:
Line 40:
Line 41:

specified, it is taken to be 1. Thus after control
has passed through the lines 34 to 37, K is
increased by 1 and control resumes at line 34. When
K exceeds BLUE, program execution leaves the loop,
and continues after statement label 50 (1i.e
line 38).

., at

This is how subroutines are called. The name AVRAGE
has no declaration, and because it occurs in a CALL
statement, it is by default the name of an EXTERNAL
program unit, known as a SUBROQUTINE. It has 3

actual parameters (see also line 47).

The variable SDEV receives the value returned by
the function VAR. VAR is not declared as an array
but appears followed by a parameter list. It is
therefore by default EXTERNAL, and a FUNCTION. It
returns a single value, and the type of this value
is implied in the normal way as for variables: in
this case it is REAL because the letter V is not in
the range I-N, nor does it appear in an IMPLICIT
statement. There are three actual parameters X, N
and K. The name SDEV is not declared, but is
implicitly a variable of type REAL.

This line writes the results of the computations to
unit 1 (the user's terminal) according to the
format at label 510. The first value written is the
group letter, which is the substring taken from
COLOUR starting and ending with the K'th (i.e.,
just one) character. The next value is the count of
readings in each group taken from the array N. Then
the average which was computed by the subroutine
AVRAGE and left in the COMMON block. And finally
the standard deviation as calculated by VAR and
returned to SDEV in line 35.

The end of the DO-loop which starts at line 33.
Once again, the CONTINUE statement is simply in

order to place the statement label here.

A simple jump to avoid the error-handling routine
to label 999 {(line 44).

.

Another blank line of no significance.

Defines the format of the input records (used in
line 14). There is a field of length 1 used as a
literal character (A1}); and a field of width 5
treated as a fixed-point number, with an implied
position of the decimal point 2 digits from the
right-hand end if no point is present explicitly.

Defines the output format, consisting of 6 separate

fields. "4{H” puts a blank in the first position.

Norsk Data ND-60.145.7 EN

20

Line 42:
Line 43:
Line 44:
Line 45:
Line 46:
Line 47:
Line 48:
Line 49:

Lines 48-49:

Line 50:

Lines 51-53:

ND FORTRAN Reference Manual
INTRODUCTION

Since the user's terminal is being written to (see
line 36), this first character is used as a "forms
control character”™; a blank means start on the next
line. Then follow data formats of type character
(A4), integer (15), and fixed-point (F9.2). Next 1is
a literal string and finally a field with an

exponent (E10.3).

The start of the error handling. The statement
label 900 is referred to by line 12.

An error message is written in free format to the
user's terminal (unit 1). If an error in the OPEN
statement is found, the IOSTAT status specifier
indicates that an error code should be stored in
the variable IERNAM. This is then written out by
means of this WRITE statement.

A CONTINUE statement to hold the position of label
999.

An END statement marks the end of this program
unit. The lines 1 to 45 could be compiled as a

separate job.
Insignificant blank line.

A new progran unit is started. It is a SUBROUTINE
with the name AVRAGE and uses 3 dummy arguments
called X, N, and X.

A COMMON block is defined called SHARE, containing
one variable called AV. (The name SHARE is what
connects this COMMON block with the one in the

other program units 3 (lines 6 and 59).)

Declare X and N to be arrays. Since they are dummy
arguments, the last upper bounds can be left free,

this is what the * means.

There are no type statements here, so all variables
will take the implicit types defined by their
initial letters. In this program unit there are no
IMPLICIT statements, therefore only the I-N rule is
used. (Compare with line 9. Note that line 2 is no
longer valid. Its range stopped with the END at
line 45.)

Initialize the REAL variable R to zero.
A DO~loop to add up the N{(K) values in X from X

(K,1) to X (K, N (K)}. The sum is accumulated in
the variable R.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 21
INTRODUCTION

Line 54: Compute the average and place it in the variable
AV, in the COMMON block where it is available to

the other program units.

Line 55: Terminate this program unit. When program execution
reaches this point, it returns to where the program
unit was called from and continues from there. (In
this example there is only one point where a CALL

statement is used, line 34.)
Line 56: Another blank line.

Line 57: VAR is declared to be the symbolic name of a
FUNCTION which returns a REAL value and uses 3
dummy arguments called V, M, and J. By comparing
the call in line 35 with this definition, it can be
seen that the dummy argument V is a reference to
the actual argument X, similarly that M refers to
N, and J to K.

Lines 58-59: The same comments apply as for lines 48-49.

Line 60: Initializes the return value to zero, VAR being the
name of this FUNCTION.

Lines 61-63: A DO-loop to sum the squares of deviations for the
J'th group. Note that it is assumed that AV has

been set before the function is invoked.

Line 64: An extraction of the square root completes the
evaluation of the standard deviation. SQRT is an
intrinsic function and here the actual argument is
an expression. In this expression, the numerator is
REAL, but the denominator is of type INTEGER, so it

1s converted to REAL before the division is done.

Line 65: The END of this program unit. When the execution
comes here, the value in VAR is taken as the value
of the function and is sent back to the program
unit that called the function.

Norsk Data ND-60.145.7 EN

22

ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

CHAPTER 2

DATA TYPES. CONSTANTS. VARIABLES. ARRAYS AND SUBSTRINGS

Norsk Data ND-60.145.7 EN

23

24

ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

25

DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.1 DATA TYPES

There

are six data types defined in ANSI FORTRAN 77:

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

LOGICAL
CHARACTER

In ND FORTRAN, there are further types

INTEGER*1 (ND 500 on]y}
'DOUBLE INTEGER
REAL*4, REALYG
'REAL*&
COMPLEX*8, COMPLEX*lZ

. COMPLEX*16, DDUBLE COMPLEX
_LQGICAL*& {NDkSOO Qn}y}
NUMERIC (ND-500 only)

INTEGER¥2, INTEGER*4

LOGICAL*? LmazCAL*a o

'Thése are'fu11y described i§7Section 3,4;;¢éfﬁagef54,

Each type has its own interna} representatlon far

 storage mapping see Appendxx E. Appendix E also

describes the defauit data tyses for the ND 100 aéd f_

the NQ 500.

2.1.1 Type rules for identifiers

A symbolic name identifying a constant, variable,
external function,
type declared in a Type statement,
page 54.

In the absence of an explicit declaration in a Type

see Section 3.4.

on

statement, the type is implied by the first letter of

Norsk Data ND-60.145.7 EN

array,
or statement function can have its

26

ND FORTRAN Reference Manual
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

the name. A first letter of I, J, K, L, M, or N implies
type integer and any other letter implies type real,
unless an IMPLICIT statement is used to change the
default implied type, see Section 3.5. on page 61.

The data type of an array element name is the same as
the type of its array name. The data type of a function
name is the type of the data item supplied by the
function reference in an expression.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 27
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.2 CONSTANTS

A constant is an arithmetic constant, logical constant,
or character constant. Constants do not change their
value during execution of the object program. A
PARAMETER statement enables a constant to be given a
symbolic name, see Section 3.6. on page 63.

2.2.1 Integer constants

The form of an integer constant is an optional sign
followed by a string of digits.

The values must lie between -2147483648 and +2147483647
inclusive. If the number 1ies within the inclusive
range: -32768 to +32767 and the number of digits used is
5 or less, then the data type is the default INTEGER
type. Otherwise it is INTEGER*4.

For example:
0 is INTEGER
32000 is INTEGER
-127 is INTEGER
1234567 is INTEGER*4
-98765 is INTEGER*4 { < -32768)
000002 is INTEGER*4 (> 5 digits used)

An integer data item is always an exact representation
of an integer value.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.2.2 Real constants

The form of a basic real constant is an optional sign,
an integer part, a decimal point, and a fractional part,
in that order. Both the integer part and the fractional
part are strings of digits; either of these parts may be
omitted but not both.

A real exponent consists of the letter £ followed by an
optionally signed integer constant. A real exponent
denotes a power of ten.

A real constant takes any of the forms:

¢ Basic real constant.
e Basic real constant followed by a real exponent.

e Integer constant followed by a real exponent.

The value of a real constant containing a real exponent
is the product of the constant preceding the E and the
power of ten indicated by the integer following it.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 29
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

a real constant

‘,accuracy bemg 67 de”c'im
‘~f30at1ng poant*hardware or

an accuracy ofk9~d191ts a}though: or consxstehcy
and compatibility the ranga of real constants is
_ restricted as before to 10 ** +7 Thas T?mwt 1s~;‘f,]
;,}also 1mposed on output va?ues o .

Examples of real constants are:

3.1415927
-728.998
-.1
10E43
0.2718283E+1
1557.4077E-3
+1.E-10

A real value is an approximation to the actual value of
a mathematical expression.

2.2.3 Double-precision constants

The form of a double-precision exponent is the Jetter D
followed by an optionally signed integer constant. The
exponent denotes a power of ten. A double-precision
exponent is identical to a real exponent apart from the
use of a D instead of an E.

A double-precision constant can take one of the forms:

e Real constant without an exponent part followed
by a double-precision exponent.

e Integer constant followed by a double-precision
exponent.

The value of a double-precision constant is the product
of the constant preceding the D and the power of ten
indicated bty the integer which follows it.

Norsk Data ND-60.145.7 EN

30

Examples:

ND FORTRAN Reference Manual
DATA TYPES, CONSTANTS, VARITABLES, ARRAYS AND SUBSTRINGS

In ND FGRTRAN the range of va?ues of e
_ double-precision data items is the same as for rea}
 data 1tems but the accuracy of the approxwmatxon 15
"”greater being 16 deczmal d1g1ts - ; ‘

2.302585052994046D0
-.1D20

+123.4D-04
0.12345678901234567890123456789D+21

Note that more digits than those of the accuracy limit
may be written, the value of the constant being suitably
approximated.

The range of double-precision exponents is -76 to +76.

2.2.4 Complex constants

For example:

For example:

The form of a complex constant is a left parenthesis
followed by an ordered pair of real or integer constants
separated by a comma, and followed by a right
parenthesis. The first constant of the pair is the real
part of the complex constant and the second is the
imaginary part.

(0, 1)

(0.0, 1.0)
(3.1415927, 0)
(2.71828, 1.0E10)
(-1, +2.3E-1)

In ND FORTRAN, a COMPLEX*16 constant is written as a
parenthesised pair of integer, real, or double
precision canstants, at]east one of whwch 15 doub?e
precision. e

(0, 1.D0)
(3.14159D-1, 1.4142D+1)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 31
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.2.5 Logical constants

The forms and values of a logical constant are:

FORM VALUE
.TRUE. true
.FALSE. false

In ND FORTRAN the default data typeﬂmf a iag}ca‘
]“constant depends on the cempuﬁ'” ,

 ND-500 uses LOGICAL* .
ﬁﬂamb w and xa 100 use wszmwz ”

ffﬁowever the defau}t may be cnanged by the Qﬁ?AﬁLT ;
{gcommand see Sectxon 1& 24, 1 on page 293 o

2.2.6 Character constants

The form of a character constant is an apostrophe
followed by a string of characters followed by an
apostrophe. The string may contain any ASCII characters
except CR (octal 15), LF (octal 12) or HT (octal 11).

The delimiting apostrophes are not part of the data
item. Embedded apostrophes are represented by two
consecutive apostrophes without intervening blanks. In a
character constant, embedded blanks between the
delimiting apostrophes are significant.

The length of a character constant is the number of
characters between the delimiting apostrophes, except
that each pair of consecutive apostrophes counts as a
single character. The delimiting apostrophes are not
counted.The Tength of a character constant must be
greater than zero.

Norsk Data ND-60.145.7 EN Rev.A

32

Examples:

ND FORTRAN Reference Manual
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

String as Written Value
"ABC* ABC
‘1 AM GREAT' I AM GREAT

"I''M THE GREATEST' it G

See Appendix E for the internal representation of
character strings.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 33
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.3 VARIABLES

A variable is a data item having both a name and a type.
Its value can be changed during the execution of a
program.

Its name is a symbolic name and its type can be
optionally specified by the appearance of the symbolic
name in a Type statement. Otherwise its type is implied
as being INTEGER or REAL by the first letter of its
name, (see Section 2.1.1 on page 25), unless this is
overidden by use of the IMPLICIT statement.

During the execution of a program, a variable may
contain a defined or an undefined value. Before a value
has been assigned to it, a variable will contain an
undefined value, and any reference to it will produce an
unpredictable result.

Norsk Data ND-60.145.7 EN

34 ND FORTRAN Reference Manual
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.4 ABRRAYS

An array is an ordered set of data identified by an
array name. Array names are symbolic names which must
conform to the rules given in Section 1.3. on page 6.

The number of data items {or elements - see Section
2.4.1 on the next page) in an array is given by an array
declarator having the form:

a is the symbolic name of the array, and

d is a dimension declarator, the number

of these specified being equal to the number of
dimensions of the array.

The form of the dimension declarator is:

[d1 :] d2

where
d1 is the lower dimension bound
d2 is the upper dimension bound.

The lower and upper dimension bounds are arithmetic
expressions and are described in Section 3.1 on page 43.

Examples of array declarators are:

TABLE (2, 3, 4)
ARRAY { M1 : M2, M3 : M4)

The size of an array is equal to the product of the
sizes of the dimensions specified for that array by its
array declarator. Thus, in the first of the above
examples the array size would be 2x3x4 = 24. The size
of an array is equal to the number of elements it
contains.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

35

2.4.1 Array elements

Each item of data in the array is known as an array
element. An array element name, by which an array

element is referenced, is the array name qualified by a

subscript. The form of an array element name is:

a (s [, s] ...}

where
a is the array name, and

{ s [, s] ...} is a subscript where each
s is an integer expression, referred to as a

subscript expression.

A subscript expression can contain array element
references and function references. The number of
subscript expressions in the subscript must equal the

number of dimensions declared for the array {see above).

Examples of array element names are:

TABLE (I/K ** 2, L)
ARRAY1 { I + ARRAY2 (J*K, L) , M)

In ND FORTRAN, reference to a multi-dimensioned

“array may also be made as though it were an array of
only one dimension. In this case, the array element

referenced is given by the order in whxch the array
elements are stored, see Section 2.4.2 on page the
next page. The subscript of the first element being

the 10wer bound of the fxrst d1mensxon

2.4.2 Order of stored array elements

The elements of an array are arranged in storage in
ascending order with the value of the first subscript
varying most rapidly. For example, elements of the

array:
I1(2,3)

are stored in the order:

I (1,1), 1(2,1), I (1,2), 1 (2,2), 1 (1,3),

Norsk Data ND-60.145.7 EN

36 ND FORTRAN Reference Manual
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.4.3 Adjustable arrays

An adjustable array has an adjustable array declarator,
i.e. one having dimension declarators containing
variable names.

Note that adjustable arrays may only be used for dummy
argument declarations within subprograms, see Section
11.1 on page 214.

2.4.4 Assumed-size arrays

An assumed-size array is a constant array declarator or
an adjustable array declarator, except that the upper
dimension bound of the last dimension is an asterisk.
The asterisk means that there is no declared upper limit
of the array index. This does not change the requirement
that the dummy argument must be wholly contained within
the actual argument.

Note that assumed-size arrays may only be used for dummy
argument declarations within subprograms, see Section
11.1 on page 214.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 37
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.4.5 Actual and dummy array declarators

Each array declarator is either an actual array
declarator or a dummy array declarator.

An actual array declarator is one in which each of the
dimension bound expressions {(see Section 3.1 on

page 43). is an integer constant expression.

A dummy array declarator on the other hand, may be a
constant array declarator, an adjustable array
declarator or an assumed-size array declarator.

For more detailed descriptions, see Section 10.1. on
page 214.

Norsk Data ND-60.145.7 EN

38 ND FORTRAN Reference Manual
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.5 CHARACTER SUBSTRINGS

A character substring is a contiguous portion of a
character variable or character array element. The name
of the substring may be referenced and have values
assigned to it.

The substring name can take the forms:

v ([e,] -1 e, 1)

or al{s[,s]..)0lel: 1 92])

where
v is a character variable name.
al{s [, s]...} is a character array
element name.
e and e are each integer expressions
cd11ed sfbstring expressions.

e indicates the leftmost character position of the
sdbstring and e the rightmost. For example, A (2:4)
specifies the cRaracters in positions 2 through 4 of the
character variable A, while B (4,3) (1:6) specifies
characters in positions 1 through 6 of the character
array element B (4,3).

e1 and e2 must be within the limits:

1 £ e, < e < maximum string strength

If e exceeds the maximum string length, results are
unprédictab1e.

If e is omitted, a value of 1 {one) is assumed for it.
If e 1is omitted, then its assumed value is that of the
1eng%h of the character variable or array element.

Both e and e2 may be omitted.

A substring expression may be any integer expression. It

can contain array element references and function
references.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 39
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

In ND FORTRAN there are two special values to note:
o If e is a constant expression whose value is -1,
then®it is interpreted as the poswtxon of the farst
non=blank character in the strwng
® If e is a constant eXDFeSSTOﬂ whose value is =1,
 then®it is interpreted as the position of the last
non= blank character ih the strxng ‘

Thus, A (-1:1) strips offi1ead1ng and trailing
b1anks ' o o

Norsk Data ND-60.145.7 EN

40

ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

CHAPTER 3

SPECIFICATION STATEMENTS

Norsk Data ND-60.145.7 EN

41

42

ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 43
SPECIFICATION STATEMENTS

FORTRAN specification statements specify storage
allocation, type characteristics,and data arrangement.
The different specification statements are:

e DIMENSION

e EQUIVALENCE

e COMMON

e Type statements

e IMPLICIT

e PARAMETER

e EXTERNAL

e INTRINSIC

e SAVE

A1l specification statements are non-executable.

3.1 THE DIMENSION STATEMERT

The DIMENSION statement provides the symbolic names and
dimension specifications of arrays. Its form is:

DIMENSION ad [, ad]...

where
each ad is an array declarator of the form
ald,[, d]...), see Section 2.4, on page 34.
Note that array declarators may also appear in
COMMON statements and Type statements.

Each a appearing in a DIMENSION statement is

the symbolic name of an array in the same program unit.
Each d is a dimension declarator, and the

number of dimensions of the array is the number of
dimension declarators in the array declarator. The
minimum number of dimensions is one and the maximum is
seven.

Norsk Data ND-60.145.7 EN Rev.A

44

For example, i

The statement:

The following

ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

The form of a dimension declarator is also given in
Section 2.4, on page 34. Each dimension may be
expressed as having two bounds, a lower and an upper,
separated by a colon. The value of either bound may be
positive, negative, or zero. If only the upper bound is
given, then the value of the lower bound is one.

Dimension bounds are arithmetic expressions in which all
constants (or their symbolic names) and variables are of
type integer. The upper dimension bound of the last
dimension may be an asterisk. The array declarator
containing an asterisk in its last dimension bound may
or may not be adjustable, see Section 2.4.3, on

page 36. In an adjustable array, those

dimension declarators that contain a variable name are
called adjustable dimensions.

n the statement:
DIMENSION PAGE (60), PROF (10, 12)

the array PAGE has 60 elements and 1 dimension. PROF 1is
a two-dimensional array whose total size is:

10 x 12 = 120 elements

DIMENSION TABLE (-1 : 10, 0 : 9)

defines a two-dimensional array called TABLE The first
subscript may vary from -1 to 10 {(i.e.. 12 values) and
the second subscript varies from 0 to 9 {i e. 10
values) giving a tontal size of 120 elements.

code:

SUBROUTINE SUB (A. ROWS. COLS)
INTEGER ROWS, COLS

DIMENSION A {ROWS, COLS)

defines a dummy argument as an adjustable array whose
size is given by further dummy arguments.

For example, if ROWS = 4 and COLS = 5 on one entry to
SUB, then the size of A is 4 x 5 = 20 elements with the

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 45
SPECIFICATION STATEMENTS

bounds of 4 and 5 remaining constant for this
invocation, even though ROWS or COLS may receive new
values during it. If, when it is called next time,
ROWS = 3 and COLS = 2, then these bounds will hold for
this new invocation.

In the next example:

SUBROUTINE CALC (TAB)
COMMON/CM/LEN
DIMENSION TAB (O : LEN*(LEN + 1)/2,%)

TAB is an assumed-size array. The first upper bound is
an integer expression, and the second upper bound is
left free. Note that in these two last cases the bounds
of the arrays are redetermined each time the subroutine
is invoked, but that they remain fixed throughout each
invocation.

Norsk Data ND-60.145.7 EN Rev.A

46

ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

3.2 THE EQUIVALENCE STATEMENT

Example:

The EQUIVALENCE statement is used to specify that
storage is shared by two or more variables, arrays, or
character substrings.

An EQUIVALENCE statement has the form:

EQUIVALENCE (list) [, (1ist)]

Each Tist must contain at least two names. Names of
dummy arguments are not allowed. Any subscript or
substring expression in the list must be an integer
constant expression.

If equivalenced items are of different data types, no
type conversion is performed.

INTEGER*4 INT4

LOGICAL*4 LOG4

LOGICAL*2 LOGZ

DOUBLE PRECISION RLSB

EQUIVALENCE (INT4,L0G4),(L0G2,RL8)

The first pair of variables in the EQUIVALENCE
statement, INT4 and LOG4, reguire exactly the same
storage, they will overlap exactly. The second pair,
require different amounts of storage, L0OGZ requires 16
bits and RL8 requires 64 bits, but L0GZ and RL8 will
begin at exactly the same place in memory.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 47
SPECIFICATION STATEMENTS

3.2.1 Array Names and Array Element Names

If an array element name occurs in an EQUIVALENCE
statement, the number of subscript expressions must be
the same as the number of dimensions specified in the
array declarator for that array name. The use of an
array name unqualified by a subscript in an EQUIVALENCE
statement has the same effect as specifying the first
element of the array.

3.2.2 Character Variables in EQUIVALENCE Statements

Items of type CHARACTER may be equivalenced only with
other items of type CHARACTER.

Example:

CHARACTER A*4, B*4, C{2)*3
EQUIVALENCE (A, C (1)), (B, C (2))

The sharing of storage can be illustrated as follows:
[Ol|02|03104105|06{07[

i

] R J
! L

—C(1)——C(2)—

In ND FO&?RAN the restractxon on equ1va1emc1n§
CHARACTER only with CHARACTER is lifted. However, an
‘arithmetic or logical item may not begin on an odd
_byte houndary on the NQ 100 but the fo11ow1ng 13

acceptab?e i ; L

INTEGER K
CHARACTER*1D C
EQUIVALENCE (K, C (2 : 3

';s%nce c can start at an odd byte S0 that K wiTT
start at an even. byte

Norsk Data ND-60.145.7 EN

48

INTEGER K, N

ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

- GMARACTERMIG C o
EQUIVALENGE (K. € (1 : 2)), (N ¢ (2 .

 ;15 not a??owed s:nce there 15 no way of avaldwng
S one of e1thev K or N startzng at an: odd byte

, _09 the NQ~§00 th?S sztuatzon produces an extenswon
: message, not an. error : e -

2.3 Restrictions on EQUIVALENCE Statements

For example:

An EQUIVALENCE statement must not specify that
consecutive storage units are to be nonconsecutive as
in:

REAL A (2)

DOUBLE PRECISION D(2)

EQUIVALENCE (A (1), D (1)), (A (2), D (2))

Nor may the same storage unit be specified more than
once in a storage seguence, as in:

DIMENSION A (2)
EQUIVALENCE (A (1), B), (A (2), B)

However, there are several ways of specifying
essentially the same equivalence information.

REAL A (20}, B (10)
EQUIVALENCE (A (1), B (1)), (A (2), B (2))

Also, more than one list can refer to the same storage
unit as in:

EQUIVALENCE (A,B,C), (A,D), (B,E,F), (C,G), (E,H)
which is the same as:

EQUIVALENCE (A,B,C,D,E,F,G,H)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 49
SPECIFICATION STATEMENTS

3.3 THE COMMON STATEMENT

The COMMON statement enables storage to be shared by
different program units. This allows the program units
to define and reference data without using arguments.

The form of the statement is:

COMMON [/[cb]/] Vist[[,1/[cbl/1ist]

where
cb is a COMMON block name
list is a 1ist of variable names, array
names, and array declarators.

If the COMMON block name is omitted, the blank COMMON
block will be used. If the first COMMON block name is
omitted, the first two slashes are optional.

In each COMMON statement, items whose names appear in a
list are declared to be in the immediately preceding

COMMON block. If the first COMMON block name is omitted,
then the items in the first 1ist appear in blank COMMON.

Any COMMON block {including blank COMMON) may occur more
than once in one or more COMMON statements within a
program unit. The list following each successive
appearance of the same COMMON block name is treated as a
continuation of the list for that COMMON block.

Only one appearance of a symbolic name as a variable
name, array name, or array declarator is permitted in
all such lists within a program unit.

Dummy arguments must not appear in the list.
If a character variable or a character array is in a

COMMON block then all items in the block must be of type
character.

In ND FORTRAN, the mixing of entities of character
and non-character data types in one COMMON b}ock ig
allowed.

Norsk Data ND-60.145.7 EN

50

ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

3.3.1 COMMON Block Storage Sequences

During compilation of a source program, & storage
sequence is formed for all items in the lists for a
particular COMMON block. The order of the sequence is
the same as the order of appearance of the lists. The
sequence is further extended to include the storage for
any storage sequence associated with 1t by equivalence
association.

Storage sequences of all COMMON blocks with the same
sequences have the same first storage unit. The storage
sequences of all blank COMMON blocks also have the same
first storage unit as each other. This results in the
association of data in different program units.

For example, with the following code:

PROGRAM MAIN

COMMON / CM / MA, MB, MC
END

SUBROUTINE SUB

COMMON / CM / NA, NB, NC

MA and NA will share the same storage, as will the pairs
MB, NB and MC, NC.

For details on the amount of storage occupied by
each variable and the way .in which COMMON blocks are
mapped, see Appendix £. ~

3.3.2 Differences between Named COMMON and Blank COMMON

e COMMON blocks of the same name must have the same size

wherever they appear. Blank COMMON blocks may be of
different sizes.

e Items in named COMMON blocks may be initially defined by

a DATA statement in a BLOCK DATA subprogram.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 51
SPECIFICATION STATEMENTS

Note that in the ANSI FORTRAN 77 standard,
initialization of named COMMON blocks is restricted to
BLOCK DATA subprograms and blank COMMON blocks cannot be
initialized by DATA statements.

In ND FQRTRAN both named and b1ank COMMON blocks may
be 1n3t1a11zed in any program unnt

e Execution of RETURN and END statements can cause items
in named COMMON blocks to become undefined but not items
in blank COMMON.

In ND FORTRAN, 1tems in COMMON b1ocks reta1n thewr
values between ca??s irrespecti ve of whether they
are named or not. : L o -

3.3.3 Restrictions on COMMON and EQUIVALENCE

An EQUIVALENCE statement must not cause the association
of the storage of two different COMMON blocks in the
same program unit. Furthermore, EQUIVALENCE association
must not cause storage extension to precede that of the
storage of the first item in a COMMON statement.

For example:
COMMON /7 X / A
REAL B (2)
EQUIVALENCE (A, B (2))

is not permitted.

3.3.4 COMMON Blocks im APT

in &Q FORTRAN for the NORD«IO and ND- 1OG a COMMG&
block can be placed at a user-defined location in
the APT (Alternative Page Table). When doing this,
~all other data areas will reside on the NPT {Norma?
,,Page Table} along with the program code, The user
has most of the responszbi?1ty fur sett3ng access ta [
,the APT correctly '

Norsk Data ND-60.145.7 EN

52 ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

1fSuch a COMMON b]ock is defuned by naming. the block -
1n the f011owwng way

k, o

n is the addrass zn the A?T where the biock
shouid start n must be a decxmal or octa1

For éxamp}e:f'k

- addressxng them. They are restr1cted to the ;‘
,fo}3owzng uses o ,
e In expresswons
 . on the Teft of asswgnment statements

“ﬂo As. actual arguments to subrouttnes and functions,
if they are. sxmp1e varxab?es or array. elements

”k fo In WRITE and RﬁAD statements (but not arrays)
. Any data tyne but not character e

 The user must set the alternative page table before
“;}an APT COMMG& is accessed by :

| :f;,cALLwALTO&‘(nIC'

 jwhere : ‘ ‘ - e
. ‘ is the page table to use {See also the
SI&?RA& Reference Manual, ND-60.128.4.)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 53
SPECIFICATION STATEMENTS

Before us1ng any of the fz?e &ubsystem mbn~tor calis
(e g, RFILE) the APT must be d1sab¥ed bv o

| caue autor |

‘and then reinstated by:

[eALL ALTON (n)

as before.

’;USékof‘I/O th?bUgh théknoﬁmai FORTRANkstatements
READ, WRITE, PRINT, OPEN, CLOSE, BACKSPACE, ENDFILE
"and REWIND is automatwca]1y protected

Norsk Data ND-60.145.7 EN

54 ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

3.4 TYPE STATEMENTS

A Type statement is used to override or confirm an
implicit type. It may also provide dimension
information.

The appearance of the name of a variable, array,
statement function, external function, or a constant in
a Type statement, specifies the data type for that name
for all occurrences of it in a program unit.

The name of a main program, subroutine, or block data
subprogram must not be used in a Type statement.

3.4.1 INTEGER, REAL, DOUBLE PRECISION, NUMERIC, COMPLEX
and LOGICAL Type Statements

These statements have the form:

type var [/value/] [,var[/value/l}]...

where
type is one of INTEGER, REAL, DOUBLE
PRECISION, NUMERIC {fw,sc), COMPLEX and LOGICAL.

NUMERIC (fw,sc) is also used to specify entities of
packed decimal format also known as BCD (Binary Coded
Decimal). This is a fixed format, where fw {field
width) specifies the number of digits in the entity,
and sc {scaling factor) specifies the number of digits
to the right of the decimal point. This type should be
used mainly when mixing routines within COBOL and
FORTRAN.

var is a variable name, array name,
array declarator, function name, dummy-procedure
name, or the symbolic name of a constant.

fvaiue is a constant, a symbolic namé”0f5a cdnstant;~
or INTRINSIC functions {see Section 5.1.2 on page 85

and Section 5.4.1 on page 95) with constant

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 55
SPECIFICATION STATEMENTS

expressions as parameters. If var is an array,

then value means a 1ist of values, one for each
element of the array; if the list contains less values
than required for the entire array, the rest of the
array will be initialized to zero; the list may contain
g constant or symbolic name of a constant prefixed by a
repetition factor {followed by an asterisk, as in the
DATA statement). This is an ND FORTRAN extension.

In NDgFDRTRAN, additional types are allowed. The
implications for the use of storage are fully
explained in'Appendix E. :

The new types are:

INTEGER*1 occupies 1 byte of storage
: 5 (ND-500 only) |
INTEGER*2 occupies 2 bytes of storage
INTEGER*4 occupies 4 bytes of storage

DOUBLE INTEGER occupies 4 bytes of storage

The above types behave in the same way as type
INTEGER. In particular, they can be used in
expressions for subscripts etc. DOUBLE INTEGER and
INTEGER*4 are identical “in all respects.

REAL*4 the same as REAL

REAL*6 the same as REAL

REAL*8 the same as DOUBLE PRECISION
NUMERIC (fw,sc} (ND-500 only)

COMPLEX*8 the same as COMPLEX
COMPLEX*12 the same as COMPLEX
COMPLEX*16 COMPLEX values with DOUBLE

PRECISION accuracy
DOUBLE COMPLEX the same as {OMPLEX*16

LOGICALXL occupies 1 byte of storage
{ND-500 only}

LOGICAL*2 occupies 2 bytes of storage

LOGICAL*4 occupies 4 bytes of storage

Norsk Data ND-60.145.7 EN

56 ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

Dur:ng the evaluatwon of an. arwthmetwc gxpression. the
order of 7mp?7ed convers1on is:

‘INTEGER*l,
 INTEGER¥2
INTEGER*4
REAL
DOUBLE PRECISION
NUMERIC {fw, sc}
COMPLEX |
DOUBLE COMPLEX

~The CMPLX intrinsic function applied to a DOUBLE
PRECISION argument gives a DOUBLE COMPLEX result. It

~should be used to retain accuracy when mixing DOUBLE
PRECISIDN and COMPLEX operands

kThere is an. equxvalent hxerarchy for Iogwca?
expressions. The order of implied conversion is:

LOGICAL*L
- LOGICAL*2.
LOGICAL*4

3.4.2 CHARACTER Type Statement

The form of this statement is:

CHARACTER [*1ength [,]] name [/value/][,name[/value/]]...

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 57
SPECIFICATION STATEMENTS

where
name can take the form of:

v [*length]

or

a [(d)1[*Tength]

v is a variable name, function name, dummy
procedure name, or the symbolic name of a
constant.

a is an array name.

a (d) is an array declarator.

length is the length (number of characters) of
the associated name. It is one of the following:

e An unsigned, non-zero, decimal integer
constant.

e An integer constant expression within
parentheses and having a positive value.

in ND FORTRAN, if the expression is only the name of
a symbolic constant, the surrounding parentheses can
be omitted. :

For example, in ANSI FORTRAN 77:

PARAMETER {LEN = 10)
CHARACTER C*{LEN)

could be written in ND FORTRAN as:

PARAMETER {LEN = 10}
- CHARACTER C*LEN

In ND FORTRAN also, if the expression is not of type
INTEGER, it will be converted to type INTEGER.

e An asterisk in parentheses, (*).

value 15 a constant, a symbolic name of a
constant or the INTRINSIC function CHAR with a
constant expression as parameter. If name is an
carray, then value means: g 1ist of wvalues, one
for each sliement of the array; if the list
contains fewer values than required for the
entire array, the rest of the array will-be

Norsk Data ND-60.145.7 EN

58

For example:

For example:

ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

 initialized to zero; the 1ist may contain a
- constant or symbolic name prefixed by a
~ repetition factor (followed by an asterisk, as
~ in the DATA statement). This is an ND FORTRAN
_extension. = .

A length specification immediately following the word
CHARACTER applies to each item in the statement without
a length specification of its own. If this initial
lTength specification does not appear, then the default
length in the example on page (PREVICUS) is one.

CHARACTER*3 A, B*4, C

defines A, B and C as character strings of lengths 3, 4
and 3 respectively. Also:

CHARACTER A, B*4, C
gives A, B and C lengths of 1, 4 and 1 respectively.

A length specification must be an integer constant
expression except for external functions, dummy
arguments of external procedures, or character constants
having a symbolic name.

If the length of a dummy argument is declared as (*)
then it assumes the length of the associated actual
argument for each reference of the subroutine or
function. (When the associated actual argument is an
array name then the length of an element of the array is
assumed.)

SUBROUTINE S (C)
CHARACTER C*(*)

PROGRAM MAIN
CHARACTER A*4, B*9
CALL S({A)

CALL S(B)

In the above code, the first time S is called, the dummy
argument C identifies with A, and so has a length of 4;
the second time, it takes the length of B, i.e., 9.

1f the length of an external function is declared in a

Norsk Data ND-6C 145.7 EN

ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

For example:

function subprogram as (*) then the function name must
appear in a FUNCTION or ENTRY statement in the same
subprogram. On execution of such a function reference,
the assumed length is that specified in the referencin
program.

The length given for a character function in a
referencing program must be an integer constant
expression that agrees with the length given in the
specifying subprogram.

FUNCTION NAME

CHARACTER *(*) NAME

NAME = TAB (I)

RETURN

END

SUBROUTINE PERSON
EXTERNAL NAME

CHARACTER NAME*25, PN*25

END

SUBROUTINE FIRM
EXTERNAL NAME
CHARACTER*35 NAME, FN

In the above, when NAME is called from PERSON, its
length is 25. When it is called from FIRM, its length
35. Within both PERSON and FIRM, NAME must be declared
with a constant length and not with an asterisk (*).

If a character constant with a symbolic name has ijts
length declared as (*}, then the constant assumes the
lTength of its corresponding constant expression in a
PARAMETER statement.

For examplie, 1in the code:

CHARACTER HEAD *(*)
PARAMETER (HEAD = 'TOTALS-BY-MONTH"')

the length of HEAD becomes 15.

A character statement function or the character dummy
argument of a statement function must have a length

Norsk Data ND-60.145.7 EN

59

g

is

60 ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

which is an integer constant expression.

For example, if we have:

CHARACTER DIGITS*10, MNAMS*50

CHARACTER*3 MONTH, DAY*2, DATE*6, DD*2, DM*3

DATA DIGITS/'0123456789'/, MNAMS/'JAN FEB MAR...DEC'/

DAY (I) = DIGITS (I/10+1:1/10+1)//0IGITS (MOD(I,10)+1:MOD(I,10)+1)
MONTH (1) = MNAMS (3*I-2 : 3*I)

DATE (DD, DM} = DD // '-" // DM

then the statement functions DAY, MONTH and DATE must be
of known fixed length, as must the dummy arguments of
DATE, i.e., DD and DM.

In ND FORTRAN there are restrictions on the maximum
length of items of type CHARACTER.: On the ND-500,
the maximum-is 32767, and on NORD-10/ND-100 it is
2047. The upper limits apply to all CHARACTER items,
Tncluding the maximum-lengths of,alliCHARACTER

expressions that are not assigned (i.e., used as
actual parameters or as operands to re]atwona] ,
operators}. . ,

See Appendix E for the wnternai representat1on of
CHARACTER data. : ;

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 61
SPECIFICATION STATEMENTS

3.5 THE IMPLICIT STATEMENT

For example:

An IMPLICIT statement is used to change or confirm
default implied data types, based on the initial letter
of the symbolic name of a constant, variable, array,
external function, or statement function.

The statement has the form:

IMPLICIT type (al,al...)[,typelal,al....) J

where
type is one of INTEGER, REAL, DOUBLE PRECISION,
NUMERIC (fw,sc), COMPLEX, LOGICAL or
CHARACTER [* Tengthl].

In ND FORTRAN, type may also be one of the ND
extensions, see Section 3.4. on page 54.

a is a single letter or range of single letters
in alphabetical order. A range is denoted by the
first and last letter of the range separated by
a minus.

length is the length of a character item and
must be either an unsigned, non-zero, integer
constant, or a positive integer constant
expression in parentheses. Its default value is
one.

IMPLICIT COMPLEX (C)

ensures that all untyped names beginning with a € will
be of type COMPLEX.

An IMPLICIT statement specifies a type for all:

e variables

e arrays

e symbolic names of constants
e external functions

e statement functions

Norsk Data ND-60.145.7 EN

62

For example:

ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

based on the first letter of the name. The normal
defaults for types can be expressed as:

IMPLICIT REAL (A-H, 0-Z), INTEGER (I-N)

VARIABLE NAME IMPLICIT VARIABLE TYPE
x123 REAL
horse REAL
insect INTEGER
C REAL
J INTEGER

An IMPLICIT statement does not change the type of any
intrinsic function, and its scope is that of the program
unit containing it.

Type specification by an IMPLICIT statement may be
overridden in all cases by a type statement. An explicit
type specification in a FUNCTION statement overrides an
IMPLICIT statement for the name of that function
subprogram. Note that the length is also overridden when
a particular name appears in a CHARACTER or CHARACTER
FUNCTION statement.

IMPLICIT statements must precede all other specification
statements in a program unit except a PARAMETER
statement. More than one IMPLICIT statement may be used
in a program unit.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 63
SPECIFICATION STATEMENTS

3.6 THE PARAMBMETER STATEMENT

A PARAMETER statement is used to.give a constant a
symbolic name.

The form of a PARAMETER statement is:

PARAMETER (p = e [, p = el....)

where
p is a symbolic name of a constant
e is a constant expression

The assignment to p i1s made according to the rules for
the assignment statements, see Chapter 6.

When p is of type integer, real, double precision, or
complex, then the corresponding expression must be an
arithmetic constant expression. If p is of type
character or logical, the corresponding expression must
be a constant expression of type character or logical
respectively.

p must not be defined more than once in a program unit.
Furthermore, if it is not of default implied type, then
its type must be specified by a Type statement or
IMPLICIT statement prior to its first appearance in a
PARAMETER statement.

If p is of type character and of length other than the
default length of one, its length must be also defined
prior to its first appearance in a PARAMETER statement.

For example, the following code:
PARAMETER (PI = 3.141593)
COMPLEX J
PARAMETER {(J = (0.,1.), ROOT2 = 1.4142)
PARAMETER (RADIAN = 180/PI)

defines three REAL symbolic constants and one COMPLEX
one.

Norsk Data ND-60.145.7 EN

64 ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

In the sequence:

PARAMETER (MAX = 100)
IMPLICIT REAL (M)

DIMENSION MATRIX (MAX, MAX)
PARAMETER (MAGFLD = 0.82)

the IMPLICIT statement does not apply to the PARAMETER
statement that precedes it. Thus MATRIX and MAGFLD are
both of type REAL but MAX is of default type (i.e.,
INTEGER) .

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 65
SPECIFICATION STATEMENTS

3.7 THE EXTERNAL STATEMENT

An EXTERNAL statement is used to identify an external or
dummy procedure and to permit its symbolic name to be
used as an actual argument.

The form of an EXTERNAL statement is:

EXTERNAL proc [,proc]...

where
each proc is the name of an external procedure,
dummy procedure, or block data subprogram.

When a name appears in an EXTERNAL statement it is
declared to be an external procedure, dummy procedure,
or block data subprogram name. If an external procedure
name or dummy procedure name is used as an actual
argument, it must appear in an EXTERNAL statement in the
same program unit. A statement function name cannot
appear in an EXTERNAL statement.

The name of an intrinsic function appearing in an
EXTERNAL statement becomes the name of some external
procedure, whereupon an intrinsic function of the same
name cannot be referenced in the program unit.

Only one occurrence of a symbolic name is allowed in all
of the EXTERNAL statements of a program unit.

Norsk Data ND-60.145.7 EN

66 ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

3.8 THE INTRINSIC STATEMENT

An INTRINSIC statement is used to identify the name of
an INTRINSIC function and to permit the use of this name
as an actual argument.

The form of this statement is:

INTRINSIC fname [,fname]...

where
each fname is an INTRINSIC function name.

If a specific name of an INTRINSIC function is used as
an actual argument, it must appear in an INTRINSIC
statement in the same program unit. For the INTRINSIC
function names which must not be used as actual
arguments, see Section 11.2 on page 222.

If a generic function name appears in an INTRINSIC
statement, it does not loose its generic property.

A symbolic name may only appear once 1in all of the
INTRINSIC statements of a program unit and it must not
occur in this unit in both an EXTERNAL and an INTRINSIC
statement.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 67
SPECIFICATION STATEMENTS

3.9 THE SAVE STATEMENT

A SAVE statement retains the defined values of items
after execution of a RETURN or END statement in a
subprogram.

It has the form:

SAVE [a [,a]...1

where
each a is a named common block name preceded and
followed by a slash, or a variable name, or an

array name. (Dummy argument names. procedure
names, and names of items in a common block must
not appear.)

A SAVE statement without a 1ist is treated as though it
contained the names of all allowable items within the
program unit. The appearance of a common block name
preceded and followed by a slash has the effect of
specifying all of the items in that block.

When a common block name occurs in a SAVE statement in a
subprogram then it must occur in a SAVE statement in
every subprogram in which the common block appears.

If a named common block appears in a SAVE statement of a
subprogram, then the current value of items in the
common block storage sequence when a RETURN or END
statement is executed, are made available to the next
program unit specifying that common block.

[f a named common block is specified in the main program
unit, then the current values of the common block
storage seqguence become available to each subprogram
specifying that common block; a SAVE statement in this
program has no effect.

If a Tocal item appearing in a SAVE statement but not in
a common block is in a defined state when a RETURN or
END statement is executed, then this item is defined
with the same value at the next reference to the same
subprogram.

Norsk Data ND-60.145.7 EN Rev.A

68 ND FORTRAN Reference Manual
SPECIFICATION STATEMENTS

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 69
SPECIFICATION STATEMENTS

3.10 THE ASSEMBLY STATEMERNT

‘ Th1s statement is an ND FORTRAN extension and is
used to modify the ca??1ng sequence for EXTERNAL
subroutwnes and functwons ,

"‘The form of tne statement is:

ASSEMBLY. namé i ,name] -

Each name 15 the name. of an externa??y~compx?ed
~routine or function, or the name of a dummy
argument. The names cannot also appear in an
EXTERNAL statement. They may be used either as
ijﬁsubroutxnes or as functzons w1th the axcept1on of
,'~character functwons . ;

'[When these functzons are cal?ed the:r actua}
;;argumemts must. obey certaxn restrvctwons

'_,’ There can be no. more than 4 of tbem

e They must be INTEGER*E or non character ”'
S array names ‘ ; e .

 ‘:The statement is. checked for syntax on the NQ 500
~ but the names are then assumed ta be £XTERRAL names .
““or arguments ~ . . ; ,

,ﬁ[The ASSEMBLY statement modxfxes tha ca??1ng sequence
~ to EXTERNAL program units on ND-100 programs. It can
 be used where the external routine is written in
 MAC, NPL, or PLANC with the SPECIAL option, see
"‘Appendxx F for detai}s of the ca??zng 59quences

;;*Gn tbe ND- SOO e statement is exact?y equ1va]ent
,;;to an £XTERNAL statement -

Norsk Data ND-60.145.7 EN

70

ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

CHAPTER 4

THE DATA STATEMENT

Norsk Data ND-60.145.7 EN

71

72

ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 73
THE DATA STATEMENT

A DATA statement is used to provide initial values for
variables, arrays, array elements and substrings.

The form of a DATA statement is:

DATA namelist/valuelist/ [[,] namelist/valuelist /]..

where
namelist is a list of names of variables,
arrays, array elements, and substrings, together
with implied DO lists.

valuelist consists of a list of constants and/or
symbolic names of constants, each of which may
be prefixed by a repetition factor.

::In &9 FOR?RAN va!ue?xst may conswst of some ,
~ INTRINSIC functions with constant expressions as
'Qﬁarameters {see Sections 5.1.2 on page 85, 5.2.1
;.an page 88 and 5 4 1 on page 95) ,

4.1 DATA STATEMENT RESTRICTIONS

Each namelist and valuelist must contain the same number
of items. There is a one-to-one correspondence between
the items in the two lists.

If an array name without a subscript appears in the
list, then there must be one constant for each element
of that array.

Initialization must not occur more than once for
variables, array elements, or substrings.

Each constant value from the valuelist is used to
initialize the corresponding element from the namelist
according to the rules of a normal FORTRAN assignment
statement, see Chapter 7 which starts on page 115.

In Nﬁ FORTRA& DATA statements may precede other
specificat1on statements. However, in this case, the
variab?es in tne DATA statements must have their

Norsk Data ND-60.145.7 EN

74 ND FORTRAN Reference Manual
THE DATA STATEMENT

data'typés;defined in preceding'deéTaration,
statements or they will receive implicit data types.

Examples of simple DATA statements:

e DATA 1/10/
This assigns a value of 10 to the integer variable
I before execution of the program.

e DATA P1/3.1415927/E/2.7182818/
is the same as

DATA PI,E/3.1415927, 2.7182818/

e To initialize a 6-element array to the values 1, 2,
3, 4, 5, and 6, we may write:

REAL X(6)
DATA X/1, 2, 3, 4, 5, 6 /

e To zero an array, the following could be used:

REAL STATS (10, 10)
DATA STATS /100*0./

e For multidimensional array names, the implied order
of elements is with the first subscript varying
most rapidly. Thus:

DIMENSION A (3, 3)
DATA A/11, 21, 31, 12, 22, 32, 13, 23, 33/

will produce an array with the values:

Al1,1)=11, Al2,1)=21, A(3,1)=31, A{1,2)=12,...
and so on.

Note that replication factors can cut across name-
1ist items. Thus:

DIMENSION A(8), B(8)
DATA A, B/1, 14*0, -1/

will set A{1l) to 1, B(8) to -1, and all other
elements of A and B to O.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 75
THE DATA STATEMENT

4.2 IMPLIED DO IN A DATA STATEMENT

For example:

An implied DO 1ist may appear in a DATA statement
namelist, see Section 8.7 on page 135. It is
written as:

(dlist, I = m., m [,m 1)

where
dlist is a 1ist of array element names.
dlist may contain other implied DO 1lists
I is the name of an integer variable, here
called the impliea DO-variable.

m m_ and the subscripts in the dlist are each
aﬁ 1n%ege3 constant expression or an integer expression
containing only constants and the implied DO-variable.

An iteration count and the values of the implied
DO-variable are established fromm , m , and m exactly
as for a DO-loop, see Section 8.7 dn pgge 135, except
that the iteration count must be positive.

to initialize the even elements of a one-dimensional
array to +1, and the odd elements to -1, you may write:

CIMENSION SGN (20)
DATA (SGN (I),1=2,20,2)/10%+1/(SGN (I),1=1,20,2)/10%-1/

or to create a character string of alternating A's and
B's:

CHARACTER C*40
DATA (C{2*K-1:2*K),K=1,20)/20*'AB"/

To initialize only the diagonal elements of a square
array:

DIMENSION Q (10, 10)
DATA (Q (N, N}, N = 1, 10)/10*1.1/

Norsk Data ND-60.145.7 EN

76

ND FORTRAN Reference Manual
THE DATA STATEMENT

The default ordering of a two-dimensional array is by
columns. To set data in by rows, you can write:

DIMENSION A(3,3)
DATA ((A (1,d),0=1,3)1=1,3)/11,12,13,21,22,23,31,32,33/

which will set up A as in the last example in the

previous section. Note the ordering of the loops. The
innermost one varies most often.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

CHAPTER 5

EXPRESSIONS

Norsk Data ND-60.145.7 EN

77

78

ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 79
EXPRESSIONS

An expression is formed from operands, operators and
parentheses. This chapter describes the formation,
interpretation, and evaluation rules for the various
types of expressions. These may be:

e Arithmetic

e Character

e Relational

e Logical

5.1 ARITHHETIC EXPRESSIONS

The simplest form of arithmetic expression is an
unsigned arithmetic constant, symbolic name of an
arithmetic constant, or an arithmetic type of variable,
array element, or function reference.

Examples:
g9 (arithmetic constant)
v {integer variable)
TABLE (2,3,4) {array element)
LOG {X+Y) (function reference)

More complicated arithmetic expressions can be formed by
using one or more arithmetic operands together with
arithmetic operators and parentheses.

Norsk Data ND-60.145.7 EN

80

ND FORTRAN Reference Manual
EXPRESSIONS

The arithmetic operators are:

OPERATOR MEANING
*% Exponentiation
Division

Multiplication
- Subtraction {or negation)
+ Addition

A11 the above operators are binary, i.e. used with two
operands. The - and the + are also available as unary,

.i

.e. used with only one operand.

There is a precedence among the arithmetic operators
which determines the order in which the operands are to
be combined {unless the order is changed by the use of
parentheses) as follows:

OPERATOR PRECEDENCE

* % highest

* and / intermediate

+ and - lTowest {unary and binary)

Within each precedence level, the order is assumed to be
from left to right, except with exponentiation which is
evaluated from right to Teft.

The arithmetic operands are:

unsigned arithmetic constants

symbolic names of arithmetic constants
arithmetic variables

arithmetic array elements

function references

arithmetic expressions enclosed in parentheses

or any of the above operands combined by arithmetic
operators to form arithmetic expressions.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 81

EXPRESSIONS

Examples:

If X, Y, Z, A, and B are variables:

X+Y will form the sum of X and Y

X-Y will subtract Y from X

X+Y+Z will sum together X, Y, and Z

X+Y will add X and Y and then subtract Z from
the result (see general notes below)

X*Y/17 will multiply X and Y before dividing the
result by Z (see general notes below)

X/Z*Y will divide Z into X first, and then
multiply the result by Y

X*Y+7 will multiply X and Y and add Z to the
result

Z+X*Y will multiply X and Y and then add the

result to Z; the order here is determined
by operator precedences. * is performed
first, followed by the +, as in example 7

X*kY*kx7 will raise Y to the power of Z first, then
X is raised to the power of this result

~A*x*2 Since the operator ** has precedence in
this example, its operands will be combined
first. Thus, the expression will be
interpreted as:

- (A Kk 2)

In this example, it can be seen that
expressions containing two consecutive
arithmetic operators, such as A**-B or
A+-B, are not allowed . However,
expressions such as A*¥*{-B) are permitted.

In ND FORTRAN, such Juxtaposztxon1ng of swgns is
ka]]owed when the second of them is a unary + or -,
Thus, A+-B is evaluated as A+{-B), and X---Y as
X~(r(¥)) etc.

If the order dictated by the precedence rules is not the
order required, then parts of an expression may be
written within parentheses. Parts thus enclosed are then
evaluated as a whole expression before being used as an
operand.

Norsk Data ND-60.145.7 EN

82 ND FORTRAN Reference Manual
EXPRESSIONS

For example:

X+Y/Z will cause Y to be divided by 7 before
adding X to the result (precedence rules).

{(X+Y}/Z will ensure that X is added to Y before the
result is divided by 7.

(X+Y)/{X+Z) here X+Y and X+Z will be computed
separately and then the result of X+Y will
be divided by the result of X+Z. Note that
in this case there is no stipulation as to
whether X+Y or X+Z is evaluated first.

While the symbols +, -, *, /, and ** represent the usual
mathematical operations, the reader should be aware that
the underlying computing hardware has fixed 1imits as to
the precision and accuracy of the respresentation of
values and the results of operations. These are
described for each machine in Appendix E.

Note that the order of operations on the computing
hardware is such that the result would be mathematically
exact if the hardware were mathematically precise. If a
particular order of operations is vital for numerical
accuracy, it is best to use parentheses to force the

order.
For example:

X+Y+Z represents the sum of X, Y, and Z; the
computation may add X to Y and then add Z,
or it may add Y to Z and then add X, etc.

(X+Y)+Z however, will ensure that X and Y are added
together first, before adding Z to this
result.

5.1.1 Interpretation of Results for Arithmetic Expressions

When the operator + or - operates on a single operand,
the data type of the result is the same as that of the
operand.

When an arithmetic operator operates on a pair of

operands, then, except for exponentiation, the data type
of the result is as follows:

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 83

EXPRESSIONS

For example:

e If the types of the two operands are the same,
then the data type of the result will be the data
type of these operands.

e If the types of the two operands are different,
the operand of lTower data type {see below) is
converted to the data type of the other operand.
Thus, the higher order data type will be that of
the result.

The hierarchical order of the data types is:

DATA_IYPE ORDER
integer Towest
real

double precision
numeric

complex highest

Note that the conversion takes place before the
operation is performed, and that the operators are
defined only for operands of equivalent type. The
conversions are defined by the INTRINSIC functions
REAL, DBLE, and CMPLX, see Section 11.2 on page 222.

If I, R, D, and C are variables of type INTEGER, REAL,
DOUBLE PRECISION, and COMPLEX respectively, then:

the result of the expression I+I is of type INTEGER

[*R will cause | to be converted to type REAL before
the multiplication, and the result is of type REAL

{D/1)1+k will first cause conversion of I to DOUBLE
PRECISION; then the division will occur, then R will
be converted to DOUBLE PRECISION, and finally, the
addition will take place giving a result of type
DOUBLE PRECISION

D/I+R will have exactly the same effect as the
previous example, since the precedence rule for
operaters implies that division occurs before
addition

Norsk Data ND-60.145.7 EN

84

For example:

Note:

ND FORTRAN Reference Manual
EXPRESSIONS

e R*C will produce a result of type COMPLEX

For the exponentiation operator, if the exponent (i.e.
the right-hand operand) is of type integer, then the
data type of the result is the same as that of the
Jeft-hand operand. Otherwise conversion takes place as
given above for the case of two arithmetic operands.

If I and R are variables of data types
INTEGER and REAL respectively, then:

e IXx¥] has a result of type INTEGER

e R**] is an expression of type REAL, (but
note that I is not converted here)

e [**R is of type REAL, and I is converted to
REAL

@ R**R is of type REAL

If the exponent is of type INTEGER, then exponentiation
can be defined as repeated multiplications, so that
every value of the base (i.e. left-hand operand) is
admissible. (except zero if the exponent is negative.)
But if the exponent is not of type INTEGER, A**B is
defined as EXP{B*LOG(A)), where EXP and LOG are the
INTRINSIC functions described in Section 11.2 on

page 222. In particular, note that LOG is not

defined for negative values of its argument. It

is important to realize that the difference in
definition is dependent on the type of the exponent and
not on its value.

Thus, (~3.0)**{2.0) is an error, whereas (-3.0)**2 is
not.

In ND FORTRAN, there is one exception to the rule
that if the right-hand operand with a ** operator is
~of type INTEGER then the result type is the same as
the type of the left-hand operand. If the right-hand
operand is INTEGER*4 and the left operand is
INTEGER*2, then the result is INTEGER*4., ~

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 85
EXPRESSIONS

5.1.2 Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic
expression in which each operand is an arithmetic
constant, a symbolic name of an arithmetic constant,or
an arithmetic constant expression enclosed in
parentheses. Any arithmetic operator is allowed; the **

operator is valid only if the exponent is of type
INTEGER.

 In N “ORTRAN ;any of’the fo110w1ng INTRINSIC :

ajMIN AX, MOD, ABS, ICHAR NlNT ANINT azm OPROD,
£ ONJG, IMAG or LEN,

TVprovwded that a13 parameters are constant
,_exprusuians e

Norsk Data ND-60.145.7 EN

86 ND FORTRAN Reference Manual
EXPRESSIONS

5.2 CHARACTER EXPRESSIONS

The simplest form of a character expression is a
character constant or the symbolic name of one, or a
character-type variable, array element, substring, or
function reference. More complicated character
expressions are formed by using one or more character
operands together with the character operator and
parentheses.

Evaluation of a character expression produces a
character-type result.

The character operator is:

7/

which represents concatenation. The result of 'AB' //
'CD' i1s "ABCD'.

If a character variable is of unknown length, then there
are certain restrictions on its use in character
expressions, in that it can be used only in character
assignment statements, and even then, only when it
directly forms part of the final result.

For example:
If we have the following declarations:

SUBROUTINE SR(C)
CHARACTER C*(*), A*100, B*10

then C is of unknown length, i.e. its length is taken
from the actual parameter.

You are allowed to write:
A =2C//B

because the final result length is constrained by the
length of A.

But you cannot write:
CALL X{(C//B)

because the actual argument is an expression whose
Tength is not constrained.

Similarly, the following expressions are allowed:

A=2C(I:J) 7/ C (1:N)
B=A(1:3) // C (4:7)
A = (C (1:N) // B) 7/ (B (2:N) // C)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 87

EXPRESSIONS

For example:

but none of these expressions can be used as actual
arguments, or as part of a relational expression {even
though they may then form part of an assignment
statement) .

Note that a symbolic constant always has a known length
since a declaration with length (*) means: use the
Tength of the constant expression assigned to it by a
PARAMETER statement.

CHARACTER ALPHA* (*)
PARAMETER (ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')

implies no restrictions on the use of ALPHA due to its
Tength (*).

Character operands are:

e character constants

e symbolic names of character constants

e character variables

e character array elements

@ character substrings

@ character function references

e character expressions enclosed in parentheses

or any combination of the above operands using the
character operator.

A character expression is a sequence of one or more
operands separated by the character operator,
{concatenation operator, //). The evaluation is from
Teft to right. Thus, the expression:

‘AB' /7 'CD* // 'EF

is the same as:
(‘AB' // ‘CD') // ,'EF!

Norsk Data ND-60.145.7 EN

88 ND FORTRAN Reference Manual
EXPRESSIONS

5.2.1 CHARACTER Constant Expressions

A character constant expression is a character expres-
sjon in which each operand is a character constant, the
symbolic name of a character constant or a character
constant expression enclosed in parentheses. The only
operand allowed is the concatenation aoperator, //.

In ND FORTRAN the INTRINSIC functwon CHAR may be
' used prov1dad that the parameter is. a constant ’
express1on S

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 89
EXPRESSIONS

5.3 RELATIONAL EXPRESSIONS

A relational expression is used to compare the values of
two arithmetic expressions or two character expressions.

In ND FORTRAN, it is also possible to compare
logical expressions for equality or non-equality.

Relaticnal expressions may form part of logical
expressions and, on evaluation, they produce a result of
type logical, i.e. a value .TRUE. or .FALSE..

The relational operators are:

OPERATOR MEANING

LT Less than

LE. Less than or equal to
LEQ. Equal to

NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

5.3.1 Arithmetic Relational Expressions

The form of an arithmetic relational expression is:

e rel e
i 2

where
rel is a relational operator
e and e are each an integer, real, double
pﬁecisioﬁ, numeric or complex expression.

A compiex operand is permitted only when the relational
operator is .EQ. or .NE.

Norsk Data ND-60.145.7 EN

90

For example:

ND FORTRAN Reference Manual
EXPRESSIONS

Before the comparison is carried out, the operands are
converted, if necessary, to make them of the same type.
The rules are the same as those for the common
arithmetic operators, see Section 5.1 on page 80.

If I, R, D, and C are variables of type
INTEGER, REAL, DOUBLE PRECISION, and COMPLEX
respectively, then:

e [.LE.O will give a value .TRUE. if I has the value
zZero.

e R.GT. 0 - 10 will yield .TRUE. if the value of R is
greater than -10.

e D.LT.R will convert R to DOUBLE PRECISION and the
comparison will yield .TRUE. if the value of D is
less than R.

e 1..LE.I will convert I to REAL since the constant 1.
is REAL {note the extra dot).

For the relationship between arithmetic and relational
operators, see Section 5.5 on page 96.

5.3.2 CHARACTER Relational Expressions

Character relational expressions have the form:

e rel e
1 2

where
rel is a relational operator
e1 and e2 are character expressions.

Note: e 1is considered to be less than e if its value
precede% that of e2 in the collating seqﬁence, (see
Appendix A).

If the lengths e and e_ are unegqual, then for

comparison purpoées the®shorter string is extended to
the right and filled with blanks.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual a1
EXPRESSIONS

5.3.3 LOGICAL Relational Expressions

In ND FORTRAN, logical quantities can be compared by
.EQ, and NE.. These operators have the usual
precedence of relational operators and perform the
usual function. If two logical expressions are both
.TRUE. or both .FALSE., then comparing them with
JEQ.owillogive LTRUE., etc: ~

Norsk Data ND-60.145.7 EN

92

ND FORTRAN Reference Manual
EXPRESSIONS

5.4 LOGICAL EXPRESSIONS

Evaluation of a logical expression produces a logical
result, i.e. with a value of .TRUE. or .FALSE.

In its simplest form, a logical expression is a logical
constant {or the symbolic name of one), or a logical
variable, array element, function reference, or it can
also be a relational expression.

More complicated expressions can be formed using one or
more logical operands combined with logical operators
and parentheses.

The logical operators are:

QPERATOR MEANING

.NOT. lTogical negation

LAND. Togical conjunction

.OR. inclusive or

.EQV. logical equivalence

.NEQV. logical non-equivalence (exclusive or)

The operator .NOT. is unary, i.e. used with one
operand. The other operators are binary, i.e. used with
two operands.

The logical operators have a precedence order, i.e.
the order 1in which operands are to be evaluated, unless
this is changed by the use of parentheses.

OPERATOR PRECEDENCE
.NOT. highest
.AND.

.OR.

LEQV. or .NEQV. Towest

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 93
EXPRESSIONS

For example, in:

A .OR. B .AND. C

the .AND. operator has higher precedence than the .0OR.;
therefore the interpretation of the above expression is
the same as the following:

A .OR. (B .AND. C)

The values of expressions involving the above operators
is shown below, where X1 and X2 are logical operands:

X NOT. X
1 1
.TRUE. .FALSE.
.FALSE. .TRUE.
X X X AND. X X .OR. X
1 2 1 2 1 2
.TRUE. .TRUE. _TRUE . .TRUE.
.TRUE. .FALSE. JFALSE. .TRUE.
JFALSE. |.TRUE. .FALSE. .TRUE.
JFALSE. |.FALSE. .FALSE. .FALSE.
X1 X2 X1 JEQV. X2 X1 .NEQV. X2
.TRUE. .TRUE. .TRUE. .FALSE.
.TRUE. .FALSE. .FALSE. .TRUE.
.FALSE. |.TRUE. .FALSE. .TRUE.
.FALSE. |.FALSE. .TRUE. .FALSE.

Norsk Data ND-60.145.7 EN

94

ND FORTRAN Reference Manual
EXPRESSIONS

The logical operands are:

e logical constants

e symbolic names of logical constants
e logical variables

e 10gical array elements

e logical function references

e relational expressions

e logical expressions enclosed in parentheses
or any of the above operands combined by logical
operators to form logical expressions.

For examples of how these combine with relational and
arithmetic operators, see Section 5.5 on page 96.

The data type of the result of an operator which returns
a logical result is LOGICAL.

In ND FORTRAN, the result is the default LOGICAL
data type, i.e. LOGICAL*Z for the ND-100 and
LOGICAL*4 for the ND~500. The default can be changed
by the DEFAULT command, see Section 14.24.1, on

page 293. Automatic conversion between the

LOGICAL types occurs on assignment, If -an operator
has operands of different types, conversion
according to Section 3.4.1, on page 54,

will be done before the operation takes pTace.

If the operands are arithmetic, the normal conversions
and precedence rules apply. see Section 5.1, on page 80.

In ND FORTRAN, the Togical operators can-also be
used on entities of type INTEGER, i.e. they treat
the integer value as a string of bits, operating on
corresponding bits. A bit whose value is 1 1is
interpreted as .TRUE. and a bit whose value is 0 as
.FALSE.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual a5
EXPRESSIONS

Thus, if A and B are integer variables with values:

A

i

1010 B
1100 B

il

then:

A .AND. B is 1000 B
A .OR. B is 1110 B
A .NEQV. B is 0110 B

If A and B are in fact INTEGER*Z2, then:

NOT. A is 176767 B

and

A .EQV. B is 177667 B

It is important to note that although these operators

produce integer results when operating on integers, they
still have the same precedence as the logical operators.

5.4.1 LOGICAL Constant Expressions

A Togical constant expression is a logical expression in
which each operand is a logical constant, the symbolic
name of a logical constant, a relational expression in
which each operand is a constant expression, or a
logical constant expression enclosed in parentheses. Any
logical operator or relational operator is allowed.

In ND FORTRAN, you can to use any of the INTRINSIC
functions:

LGE, LGT, LLE or LLT,

provided that all parameters are constant
expressions. : S

Norsk Data ND-60.145.7 EN

96 ND FORTRAN Reference Manual
EXPRESSIONS

5.5 EVALUATION OF EXPRESSIONS

This section applies to arithmetic, character,
relational, and logical expressions. The order of
evaluation of expressions is determined by:

e The use of parentheses

e The established precedence among the various operators

e The location of operators within an expression

5.5.1 The Use of Parentheses

Expressions within parentheses are evaluated first.
Where parenthetical expressions are nested {one
contained within another}, the innermost expression is
evaluated first, followed by the next innermost, and

so on, until the outermost parenthetical expression has
also been evaluated. If more than one operator is
contained in an expression within parentheses, the
computation proceeds according to the precedence rules
for the operators.

5.5.2 Precedence of Operators

The hierarchy of precedence among the arithmetic
operators (see Section 5.1 on page 80), and logical
operators {see Section 5.4 on page 92), has already

been discussed. There is only one character operator and
no precedence has been established among the relational
operators.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 97

EXPRESSIONS

Precedence among the various types is as follows:

OPERATOR PRECEDENCE
Arithmetic Highest
Character

Relational

Logical Lowest

An expression may contain more than one kind of
operator, for example, the logical expression:

L .0OR. A+B .GE. C

where A, B, and C are of type real and L is of type
Togical, contains an arithmetic operator, a relational
operator, and a logical operator. This expression would
be interpreted in the same way as:

L .O0R. ((A+B) .GE. C)

5.5.3 Location of Operators within an Expression

Example:

When a series of exponentiation operators occurs within
an expression, the order of evaluation is from right to
left.

A1l other operations are computed from left to right

when there is more than one occurrence within an
expression of operators at the same hierarchical level.

Using the variable names and types below:

I, K integer
R, S real

L, M lTogical

G, H character

1

Norsk Data ND-60.145.7 EN

98

ND FORTRAN Reference Manual
EXPRESSIONS

these more complex expressions will be interpreted as
follows:

I + K simple arithmetic of type INTEGER

L .OR.M simple LOGICAL

R .LT.S relational giving result of type
LOGICAL

G//H simple character expression of

type CHARACTER

{I + 1) .EQ0.K compares K with {I+1) giving
result of type LOGICAL

I + 1.EQ.K here again K is compared with
{I+1) since arithmetic operators
are evaluated before relational
operators

R*2.GT.S5+10. compares (R*2) with (S+10.)
yielding a result of type LOGICAL

I1.EQ.3.0R.R.LT.S this performs a comparison,
between I and 3, and a
comparison between R and S. These
two logical results are then
combined with the .0OR. operator
to give a logical result.

Note that the order in each example above is described
for explanatory purposes only so that an expression can
be correctly interpreted. However, the actual order of
interpretation is not fixed, so long as the result is
mathematically and logically equivalent. In reality, it
could be the case that part of an expression is not
evaluated at all.

Consider the following:

IF (I .EQ. 1 .OR. K .EQ. 4) GO TO 10

If I has the value 1, then the expression in brackets is
known to be true after testing I for 1. The testing of K
for 4 can be skipped in this case and control can pass
to 10 immediately.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual a9
EXPRESSIONS

Note further, that any function called during the
evaluation of an expression should not modify any values
used elsewhere in the expression since the order of
evaluation of the operands of an expression is not
defined. The results of such misuse may differ from
machine to machine, or even depend on the optimization
tevel employed. The only exception is that a function
will not be called until its actual arguments have been
evaluated. This can be relied upon.

5.6 CONSTART EXPRESSIONS

A constant expression is an arithmetic constant
expression (see Section 5.1.2, on page 85), a character
constant expression (see Section 5.2.1, on page 88), or
a logical constant expression (see Section 5.4.1, on
page 95).

Norsk Data ND-60.145.7 EN

100 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 101

CHAPTER 6

ARRAY EXPRESSIONS

Norsk Data ND-60.145.7 EN

102 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 103
ARRAY EXPRESSIONS

~ An array expression is formed of operands, operators and
 parentheses. This chapter describes the formation,

- wnterpretatwon and eva?uatzon rules for the various

- types of array expressaons These may be

. Arithmetl*‘i'
. Re?atxona?
Logica?
n’fQ‘A3T arrays that fbrm‘én‘array expfésswbn must have only
~ one dimension and be of the same length. An array
”“*expresszon resu?ts wn an. array ~

.1 ARITHMETIC ARRAY EXPRESSIONS

. An arithmetic array expression is any set of arithmetic
. array operands combxned with arzthmetwc array aperators
and parentheses. An arwtbmetwc array operand may be
yi,either an ar&thmetxc array or ancther arithmetic array
;u~express,0n ~

‘where A, B and C are arithmetic arrays.

 The arithmetic array operators are:

| OPERATOR . MEANING

. Division |

,*,; 1 , . Multiplication

- }§k ﬁ ;’k sabtraction {or negation)
' ¢k¥ . ; o Addition

Norsk Data ND-60.145.7 EN

104

Examples:

| OPERATOR :~-pRECEDrENC‘E“‘~_’~ |
Q? anégf5 ;'; J ' hwghest ; o
k f“and —7 {ff7'}i 1owest (unary and blnary}

ND FORTRAN Reference Manual
ARRAY [EXPRESSIONS

: ‘fA11 the above operators are bwnary, i.e. used wwth tw0k ~

operands The - and the + are also avaw?abie as unary, ,
i.e. .'used w&th on1y one operand . . o

 ']There is a precedence among the arxthmetac array ~7”
- operators wh%ch determines the order in which the

operands are to be combxned {unless the‘order 15 chahgéd

{by the use of parentheses) as fol?ows

wwthin each precedence }eve} ﬁhe,crdér_is3éééémeQ to}be~

o from. 1eft to right
‘k?he ar1tbmet1c array aperands are .

e ar1thmet1c arrays ...
f o ar1thmetic expresswons enc]osed in parentheses

| or any of the above operands combwned by ar1thmet1c

array operators ta form arwtnmetzc array eApress1ons,;

If A and B are arrays of the same iength and X 15 a .
varxab1e

A +X% will add x to each e1emeht of A'

A+ x*2 will add x*2 to each element of A

A+B will add A to B, one ezement from each at a |
S tme

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 105
ARRAY EXPRESSIONS

6. 1 1 Interpretatinn of Result5~forhAtithmeticyﬂrrgy;Ex;f~
Presaions,‘ ~ ‘ : : e e

»‘When the operator +00 - eperates on a s1ngle operand
- the data type of the resu?t is the same as that of the
~z‘operand ~

*,‘ JWhen~an'akithmetic*arrayfOperat0r~bbefates on a pair of
~rkoperands~ then“the type?cf the~resu1t‘is as fo%?OWS‘ '

If the types of the two operands are the same then ‘the .
data type of the resu?t will be the data type of these
operands : ‘ i

zf the types of the two operands are dwfferent tbe ‘;
operand of ?ower data type {see be]ow) is converted to
the data type of the other operand. Thus, the h1gher

~ order data type. w1?3 be that of the result

k',Theghiefarchica?’order,ofythe~daté]typesfis:,

DATA TYPE ORDER
kintegér‘,,', S Xowest,‘
| real " '
double precision =
complex ~ highest

Note that the conversion takes place before the
operation is performed, and that the operators are

~defined only for operands of equivalent type. The
conversions are defined by the INTRINSIC functions REAL,
DBLE, and CMPLX, see Section 11.2 on page 222.

Norsk Data ND-60.145.7 EN

106

ND FORTRAN Reference Manual
ARRAY EXPRESSIONS

6.2 RELATIONAL ARRAY EXPRESSIONS

A relational array expression is an expression,where'at

least one of the operands is an array expression. The

values are compared on an element by element basis.

1t is also possible to compare logical array expresswons
for equa]1ty or non= equa?1ty

~The,re}ationa1 érr&y~opeﬁato?s arégffk'

OPERATOR ~ MEANING
0. Equalto
NE. Not equal to

6.2.1 Arithmetic Belational Array. Exyiesaionﬁ

The form of an arwthmetzc raiatxona] array expressxon
15 : . : ; . :

e rel e
S 2

o prel is 3 re1at10na} operator
e and e are each an integer, real doub?e
p?ec%sxoﬁ, numeric, csma?ex array expression or
_pther 8xpress1on of same type but at 1ea5t one
~must be an array exprasswon ;

Before tbe comparason is carr?ed mut the operands are
converted, if necessary, to make them have the same
type. The rules are the same as those for the common
arwthmetxc operators see Section 5 1 on. page 86

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 107
ARRAY EXPRESSIONS

6.2.2 CHARACTER Relational Array Expressions

- Character relational array expressions have the form:

¢ rel e
1 ,e 2

where , : .
‘ rel is a relational operator

~e_and e_ are character expressions or character

abrays, But at least one must be a character

“array ,

If the element 1engths e and e are unequa? then for
comparison purposes the dhorter? string is extended to
the r1ght and f?iied wwth bianks ,

 6.2.3 LOGICAL Relational Array Expressions

‘ LOéiCa?HQQahtifies Cahiﬁe ¢omparéd‘by"‘EQ and' NE

operators and nerform the usua] funct1an

Morsk Data ND-60.145.7 EN

108

ND FORTRAN Reference Manual
ARRAY EXPRESSIONS

6.3 LOGICAL ARRAY EXPRESSIONS

| OPERATOR PRECEDENCE |
NOT. . ;‘ ,;highes£fi
;AND'~ S ~ L
;| .
| .EQV. or NEQV. Towest

A logical array expression,is'an expression where at
least one of the operands is an array expression. The
logical array express1on is eva?uated on an e?ement by
element basis. ,

A logical array expresswon is any set of 109108? array :
operands combined with logical array operaLors and
parentheses. A logical array operand may be a logical

S-array, a re1atwona? array expre351on or a !093ca1 array ,

expression

The 1Qgica1'arrayigpepatorsxafe:

OPERATOR MEANING
MNOT. Jogical negation
LAND. logical conjunction
GORL inclusive or ,'
EOV. ¥ogwca1 equ3va1ence .
NEQV. }ogwcal non- equwvalence {exc!uswve or)ij[fj
;The oaerator NOT is . unary, - Used with one

operand. The other operators are binary, i e., used thhk

two operands

The }ogicai arvay operators have 3 precedence order
i.e., the order in which operands are to be eva?uated

' un}ess this is changed by the use of parentheses

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 109
ARRAY EXPRESSIONS

The ?ogzcaT array operands are S

e 1091ca1 arrays ,
° re1at1ona1 array expresswona ,
1 1og1ca1 expresswons enciosed in parentheses

'or any of the above operands comb1ned by 1og1ca1]” i
‘operators to form ?ogwcaW array express1ons e

“'~The data type of the resu}t of an operaﬁor whzch returns
a 1og}ca1 resu?t 15 LQGICAL e

VThe resu]t is the defau?t LOGICAL data type :
LOGICAL*2 for ‘the ND-100 and LOGICAL*4 for the ND 500
~ The default can be changed by the DEFAULT command, see
~ Section 14.24.1 on page 293. Automatic conversion o
'between the LOGICAL types sccurs on ass1gnment If an
operator has operands of d?fferent types, converswon
according to Section 3.4 on page 54 ww?? be done
P "before the operatzon takés p}ace

. ”Q‘5If the operands are arwthmetwc the norma? conversxons
. and precedence rules app?y, see Sectwonksgl on page 80

ad an type INTEGER
a tring of bats,
t whose value is 1

eﬁva1ue 15 0 as

“The 1og1ua1 operators can a?sa be

' FALSE

Norsk Data ND-60.145.7 EN

110 ND FORTRAN Reference Manual
ARRAY EXPRESSIONS

6.4 EVALUATION OF EXPRESSIONS

This section applies to arithmetic, relational, and
“Togical darray expressions. The order of evaluatwon of

‘expressions is determwned by ,

e The use of parentheses

o The estab?wshed precedence amonq the var:ous
operators o ,

® The }ocation of operators wwthwn an array expresslon

5.4;1‘xhe_u3ekpf Parentheses

Array expressions within parentheses are evaluated
first. Where parenthetical array expressions are nested
{(one contained within another), the innermost array.
expression is evaluated first followed by the next
innermost, and so on, until the outermost parenthet1ca3',
array exprasswan has also been evaluated. If more than
one operator is contawned in an array expressxon within
parentheses, the _computation proceeds accard1ng ta the
precedence rules for the operators ~

6.4.2 Precedence of Operators

The hierarchy of preceéence among the arathmetwc array :
operators, see Section 5.1 on page 80, and Jogical
array operators see Sect%on 5.4 on page 92, has
already been discussed. No precedence has been
‘established among the relational array operators.
Precedence among the various types is as follows:

| OPERATOR PRECEDENCE
| Arithmetfc:{ ' Highest
e L

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 111
ARRAY EXPRESSIONS

An array'expression may contain more than one kind of
array operator, for example, the logical array
 expression: L ' : '

L .OR. A+B .NE. C
‘ Where?A,'B, énd:C are arrays of'type real and L is an
~array of type logical, contains an arithmetic array
operator, 4 re1at10na1 array operator, and a logical

array operatcr This array expression would be
~1nterpreted in the same way as:

L OR. ((A+B) .NE. C)

Norsk Data ND-60.145.7 EN

112 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 113

CHAPTER 7/

ASSIGNMENT STATEMENTS

Norsk Data ND-60.145.7 EN

114 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 115
ASSIGNMENT STATEMENTS

Execution of an assignment statement causes a specific
value to be given to one or more variables and/or array
elements.

5 to an array. These
sion and the same -

There are four kinds of assignment statements:

e Arithmetic
e Logical
e Statement Label (ASSIGN)

e Character

7.1 ARITHHMETIC ASSIGNMENT STATEMENT

Examples:

The form of an arithmetic assignment statement is:

v is the name of a variable array or array
element of type INTEGER, REAL, DOUBLE PRECISION,
COMPLEX or NUMERIC.

e is an arithmetic expression,

If v is an array, then e may also be an arithmetic array
expression.

If A,B and C are arrays of the same size:

0
B+ C

H u

Norsk Data ND-60.145.7 EN

116

Upon execution of an arithmetic assignment statement,
the expression e is evaluated according to the rules in
Section 5.5 on page 96, it is then converted to the
type of v, with the resultant value being assigned

to v according to the rules given in the table below:

ND FORTRAN Reference Manual
ASSIGNMENT STATEMENTS

TYPE OF V

Integer
Real
Double Precision

Complex

VALUE ASSIGNED

INT (e)
REAL (e) T
DBLE (e)
CMPLX (e)

where the functions in the "value assigned” column are
INTRINSIC functions described in the table in Section

11.2 on page 222.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 117
ASSIGNMENT STATEMENTS

7.2 LOGICAL ASSIGNMENT STATEMENT

The form of a logical assignment statement is:

where
v is the name of a Jlogical variable, logical
array or logical array element
@ is a logical expression

If v is an array then e may also be a logical array
expression.

Upon execution of a logical assignment statement, the
expression e is evaluated and its resultant value

is assigned to v. e must have a value of either true or
false.

Norsk Data ND-60.145.7 EN

118 ND FORTRAN Reference Manual
ASSIGNMENT STATEMENTS

7.3 STATEMENT LABEL ASSIGNMENT (ASSIGN) STATEMERT

The form of a statement label assignment statement is:

ASSIGN s TO 1

where
s is a statement label
i is an integer variable name.

Execution of an ASSIGN statement causes s to be assigned
to i. s must be the label of a statement appearing

in the same program unit as the ASSIGN statement, and it
must also be the label of an executable statement or a
FORMAT statement.

Execution of a statement label assignment statement is
the only way that a variable may be given a statement
1abel value.

A variable must be defined with a statement label value
when referenced in an assigned GO TO statement or as a
format identifier in an I/0 statement. While possessing
a statement label value, the variable must not be
referenced in any other way. An integer variable may be
subsequently redefined with the same or a different
statement label value or with an integer value.

In ND FORTRAN, i must be INTEGER*4 on. &D 500 and
INTEGER*2 on ND- 100 :

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 119
ASSIGNMENT STATEMENTS

7.4 CHARACTER ASSIGNMENT STATEMENT

The form of & character assignment statement is-

v is the name of a CHARACTER variable, CHARACTER
array, CHARACTER array element, or a CHARACTER
substring,

e is a CHARACTER expression.

If v is an array, then e may also be a CHARACTER array.

Execution of a character assignment statement causes the
expression e to be evaluated, and the result assigned to
v. If any of the character positions defined by v are
referenced in e, the results are undefined. v and e may
have different lengths. If the length of v is greater
than the length of e, then the effect is to extend to
the right with the blank characters until it has the
same length as v. If v is shorter than e then e is
truncated from the right until its Tength equals that

of v. :

In the example:

CHARACTER A*Z, B*4
A=28B

only the substring B(1:2) must be defined.

Norsk Data ND-60.145.7 EN

120 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 121

CHAPTER 8

CONTROL STATEMENTS

Norsk Data ND-60.145.7 EN

122 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
CONTROL STATEMENTS

123

Control Statements enable the normal sequence of
statement execution to be altered. There are sixteen

control statements.

(]

Unconditional GO TO
Computed GO TO
Assigned GO TO
Arithmetic IF
Logical IF
Block IF
ELSEIF

ELSE

ENDIF

DO

CONTINUE

STOP

PAUSE

END

CALL

RETURN

The CALL and RETURN statements are described in Sections

11.5.1 on page 242 and 11.7 on page 248 respectively.

Norsk Data ND-60.145.7 EN

124 ND FORTRAN Reference Manual
CONTROL STATEMENTS

8.1 UNCONDITIONAL GO TO STATEMENT

The unconditional GO TO statement transfers control of
the program to the statement specified. It has the form:

GO T0 s

where
s is the statement label of an
executable statement appearing in the same
program unit as the unconditional GO TO
statement.

On execution, control is transferred so that the state-
ment identified by the statement label is executed next.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 125
CONTROL STATEMENTS

8.2 COMPUTED GO TO STATEMENT

A computed GO TO statement has the form:

GO TO (s [,s] ...) [,]d

where
5 is the statement label of an executable
statement appearing in the same program unit as
the computed GO TO statement. The same statement
tabel may appear more than once in the same
computed GO TO statement.
i 1s an integer expression.

Note: Although the ANSI FORTRAN 77 standard‘states
that 1 should be of the above type, in ND FORTRAN
cari be any arithmetic expresswon that can he :
converted to type 1nteger

Execution of a computed GO TO statement causes a
transfer of control to the statement having the ith
statement label in the list of statement labels. This
will only occur if 1l<i<n where n is the number of
labels in the list. If i is outside this range, the
execution sequence is as if a CONTINUE statement were
executed, i.e. control passes to the statement
immediately following the computed GO TO.

Norsk Data ND-60.145.7 EN

126

Example:

[R el

ND FORTRAN Reference Manual
CONTROL STATEMENTS

INTEGER RECTYP
READ NEXT RECORD ON FILE. SETS RECTYP TO INTEGER CODE
5 CALL INPUT
DECIDE WHAT TO DO BY LOOKING AT TYPE OF RECORD IN
RECTYP

GO TO (10, 20, 30, 30, 50), RECTYP
ERROR AS RECORD TYPE HAS INVALID VALUE

CALL INVALR

GO 70 5
RECTYP IS 1 - GOOD EMPLOYEES ARE PAID
10 CALL PAY

GO TO 5

RECTYP IS 2 - HE GETS A RISE
20 CALL UPPAY
GO TO 5
RECTYP IS 3 OR 4 - CHANGE NAME OR ADDRESS ETC.
30 CALL UPDAT
GO TO 5
RECTYP IS 5 - HE IS FIRED
50 CALL DELETE
GO TO 5

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 127
CONTROL STATEMENTS

8.3 ASSIGNED GO TO STATEMENT

The form of this statement is:

GO TO i [[,] (s[,s]...)]

where
s is the statement label of an executable
statement appearing in the same program unit as
the assigned GO TO statement. The same statement
label may occur more than once in the same
assigned GO TO statement.
1 is an integer variable name.

At the time of execution of this statement, i must have
the value of a statement label appearing in the same
program unit. Assigned GO TO statements must be
lTogically preceded by an ASSIGN statement, within the
same program unit, which will set the value of 1.
Execution of the assigned GO TO statement then transfers
control so that the statement identified by 1 is
executed next.

If the parenthesized list is present then the statement
label assigned to i must be one of those in the list.

Example:

C

C

5 CALL INPUT
NORMAL CASE

ASSIGN 10 TO KLAB
SEE IF IT COULD BE A SMALL ONE

IF (AREA.LT.100..AND.WIDTH.LT.10.) ASSIGN 20 TO KLAB
PERHAPS IT IS LARGE

IF (AREA.GT.10E4.O0R.WIDTH.GT.100.) ASSIGN 30 TO KLAB
DECIDE HOW TO PROCESS

5000 GO TO KLAB, (10, 20, 30)

NORMAL

10 CALL NORM
GO TO 5

SMALL CASE

20 CALL SMALL
GO TO 5

LARGE CASE

30 CALL LARGE
GO 70 5

Norsk Data ND-60.145.7 EN

128

ND FORTRAN Reference Manual
CONTROL STATEMENTS

The statement labeled 5000 could also have been written
as:

GO TO KLAB (10, 20, 30)

or,

GO TO KLAB

or,

GO TO KLAB (10, 20, 30, 5000, 5)

If the 1ist is given, then all of 10, 20, and 30 must be
included since otherwise the compiler may generate
incorrect code. It relies on the list to determine the
possible flow of control from this point in the program.
The best code will result when the list is exactly
correct, so that it does not inciude any labels that
cannot be reached.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 129
CONTROL STATEMENTS

8.4 ARITHHMETIC IF STATEMENT

Example:

This statement has the form:

e is an integer, real, numeric or double
precision expression.

S ., S, and s are each the statement label of
ah ex8cutable’statement in the same program unit
as the arithmetic IF statement. The same
statement label may appear more than once in the
group of statement labels.

Execution of the arithmetic IF statement causes
evaluation of the expression e, followed by a transfer
of control. One of the statements identified by s |,

s_ or s_ is executed next; which one depends on
whether®the value of e is tess than zero, equal to
zero, or greater than zero respectively.

C CHECK TO SEE IF IT WILL FIT
IF (SIZE - LIMIT) 30, 20, 10
C SIZE » LIMIT, SO IT WILL NOT FIT
10 CALL ERROR
C EXACTLY AT LIMIT - ISSUE WARNING
20 CALL WARN
C FITS EASILY - PROCESS IT
30 CALL PROCESS

Norsk Data ND-60.145.7 EN

130

ND FORTRAN Reference Manual
CONTROL STATEMENTS

8.5 LOGICAL IF STATEMENT

Example:

The form of this statement is:

IF (e) sta

where
e is a logical expression
sta is any executable statement except a DO,
block IF, ELSEIF, ELSE, ENDIF, END, or another
logical IF statement.

Execution of this statement causes evaluation of the
expression e. If the value of e is true then statement
sta is executed.

1f the value of e is false, the statement sta is not
executed. Program execution then proceeds as if a
CONTINUE statement were executed, i.e. control passes
to the statement immediately following the logical IF.

C IF DEBUGGING, WRITE INTERMEDIATE VALUES
IF (DBUG) WRITE (1,*) ALPHA, VAL, I
C IF IT IS NEGATIVE, CANNOT CONTINUE
IF (RESULT .LT.0) STOP 16
C FIND FIRST ELEMENT IN THE RANGE -1 TO +1
po 10 I =1, N
IF (A(I).GE. -1 .AND.A(I).LE+1) GO TO 20
10 CONTINUE
20 CALL PROC (A(I))

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 131
CONTROL STATEMENTS

8.6 THE BLOCK IF, ELSEIF, ELSE, AND ENDIF STATEMENTS

These statements are used to control the execution
sequence. The block IF statement and its corresponding
ENDIF statement forms a single unit. The ELSEIF and ELSE
statements may be optionally combined with the block IF
and ENDIF statements to provide alternative paths for
the sequence of execution.

The form of a block IF is:

IF (e) THEN

ENDIF

where
e is a logical expression.

Upon execution of a block [F statement, the expression e
is evaluated. If the value of e is true, the execution
sequence continues with the next executable statement
following the block IF statement. Statements between the
next (if any) ELSEIF or ELSE statement and the
corresponding ENDIF will not then be executed. If false,
control is transferred to the next ELSFIF or ELSE
statements, if any, or to the ENDIF statement
corresponding to the block IF statement.

8.6.1 The ELSEIF Statement

The form of an ELSEIF statement is:

ELSEIF (e) THEN

where
e is a logical expression.

Execution of this statement causes e to be evaluated.

If the value of e is true, then the execution sequence
continues with the next executable statement following
the ELSEIF statement. Again, statements between the next
ELSEIF or ELSE statements, if any, and the ENDIF

Norsk Data ND-60.145.7 EN

132 ND FCRTRAN Reference Manual
CONTROL STATEMENTS

statement of this unit, will not then be executed. If
there are no executable statements between this
statement and the next ELSE IF, ELSE, or ENDIF
statements, then control will be transferred to the
ENDIF statement. If the value of e is false, control is
transferred to the next ELSEIF, ELSE, or ENDIF statement
of this unit.

8.6.2 The ELSE Statement

The form of an ELSE statement is:

ELSE

The execution of an ELSE statement has no effect. The
FLSE statement shows where control passes to if all
expressions in the IF and ELSEIF statements in this unit
are false, see note on statement labels at the end of
the next section.

§.6.3 The ENDIF¥ Statement

This statement has the form:

END IF

Execution of an ENDIF statement has no effect. For each
block IF statement there must be a corresponding ENDIF
statement in the same program unit.

Note: In ND FORTRAN, statement labels on ELSEIF and
FLSE statements c¢an be referenced. A GO -TO statement
will transfer control to a point immediately prior
to the evaluation of e in ELSEIF statements.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 133
CONTROL STATEMENTS

8.6.4 Examples of Block IF, ELSEIF, ELSE and ENDIF
Statements

e C TEST FOR FIT ON A PAGE
IF (CURLIN + rN.GT.LINPAG) THEN
CALL NEWPAG
CURLIN = 0
ENDIF

e C ADJUST PAYMENT
IF (TAXED) THEN
NET = GROSS-TAX (GROSS)
ELSE
NET = GROSS
ENDIF

e C COMPUTE AREA OF FIGURE
IF (N .EQ. 3) THEN
S=(A+B+C) /2.0
AREA = SQRT ((S-A)*{S-B)*{S-C}*S)
ELSEIF (N .EQ. 4) THEN
AREA = A*B
ELSE
AREA = PI*Ax*2
ENDIF

e C CHECK SIGNATURES
IF (AMOUNT .GE. 10000) THEN
IF (NSIG .NE. 2) THEN
CALL NOGOOD
ELSE
CALL BIGCHK
ENDIF
ELSEIF (AMOUNT .GE. 100) THEN
CALL MIDCHK
ENDIF
C IF PASSED, PAY IT
IF (OK) THEN
CALL PAYIT
ELSE
CALL ABORT

WRITE(1,*)"ERROR IN CHEQUE',AMOUNT,INVOIC,NSIG,CNUM
ENDIF

Norsk Data ND-60.145.7 EN

134

ND FORTRAN Reference Manual
CONTROL STATEMENTS

As can be seen from the last example, block IF
constructs can be nested. They may be nested to any
depth, but each nested block IF must be wholly contained
between:

e The IF ... THEN statement and the next occuring
ELSEIF ... THEN, ELSE, or ENDIF statements of the next
outermost block IF construct.

or,

e The ELSEIF ... THEN statement and the next occurring

ELSEIF .. THEN, ELSE, or ENDIF statements of the next
outermost block IF construct.

or,

e The ELSE statement and the next occurring ENDIF
statement of the next outermost block IF construct.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 135
CONTROL STATEMENTS

8.7 THE DO STATEMENT

A DO statement specifies a loop, called the DO-loop,
which can be used for coding iterative procedures.

This statement has the form:

DOs [,]1=¢e, e [,ea]

1 2

where
s is the statement label of an executable
statement. This statement is called the terminal
statement of the DO-loop and it must appear 1in
the same program unit as the DO statement

i is the name of an integer, real, or double-
precision variable called the DO-variable

e , and e_ are each an integer, real, or
d&ub]% prec1s?on expressions

Note: The terminal statement of a DO-loop must not be a
control statement with the exception of logical IF,
CONTINUE, PAUSE, or the CALL statement. If it is a
logical IF statement, then this may contain any
executable statement except DO, block IF, ELSEIF, ELSE,
ENDIF, END, or another logical IF statement.

The Tabel on the terminal statement is inside the loop.
If several loops have the same terminal statement, then
the Tabel is in the innermost of the loops. Thus,
program control can only jump to this label from within
the innermost loop.

The range of a DO-loop is that of all executable
statements following the relevant DO statement, up to
and including the associated terminal statement.

A 'nested’ DO statement, i.e. one whose range is
contained entirely within the range of another DO
statement, may have the same terminal statement as the
outer DO-Toop.

If a block IF statement appears within the range of a

DO-loop, its corresponding ENDIF statement must also do
SO.

Norsk Data ND-60.145.7 EN

136 ND FORTRAN Reference Manual
CONTROL STATEMENTS

This can be illustrated as follows:

C FIND MAXIMUM AND MINIMUM VALUES

MX =0
MN = 0O
DO 10T =1, N

IF{A(I) .GT. MX) THEN

MX = A (I)
ELSEIF(A(I) .LT. MN) THEN
MN = A (1)
ENDIF
10 CONTINUE
If a DO-loop appears within a block IF ... ENDIF unit,

then the range of the DO-Toop must be contained within
the unit. Furthermore, it must be contained entirely
between ELSEIF or ELSE statements, if any, and the next
ELSEIF, ELSE or ENDIF statement in this block

IF ... ENDIF unit.

For example:

C GET THE SUM OF THE ELEMENTS OF ONE OF THREE DIFFERENT ARRAYS
X=0.0
IF(M .LE. O) THEN C SUM ELEMENTS OF ARRAY '"A""
DO 10 I = 1,NELS
X=X+A(NELS)
10 CONTINUE
ELSEIF(M .GE. 5) THEN C SUM ELEMENTS OF ARRAY ''B"’
DO 20 I = 1,NELS
X=X+B(NELS)
20 CONTINUE
ELSE C SUM ELEMENTS OF ARRAY "'C"’
DO 30 T = 1,NELS
X=X+C{NELS)
30 CONTINUE
ENDIF

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 137
CONTROL STATEMENTS

8.7.1 Execution of a DO Statement

A DO statement is executed in the following stages:

1.

e , e, and e are evaluated (including, if
nécesgary, cofversion to the type of the
DO-variable). These values will be known from now on
as the initial parameter, terminal parameter, and
incremental parameter respectively. If e does not
appear, then the incremental parameter i2 given the
value of one. (It must not be zero.)

. The DO-variable, 1, takes the value of the initial

parameter.

. The following test is performed to determine whether

the loop should be terminated:

If the incremental parameter >0, then the loop is
terminated, if i> terminal parameter.

If the incremental parameter <0, then the loop is
terminated if i< terminal parameter.

If the DO-loop is to be terminated, control passes to
the next executable statement following the terminal
statement or, if there is another DO-locop sharing its
terminal statement with this one, then control passes
to the incrementing stage for the next outer DO.

If the loop has not been terminated, the statements
within the loop are executed.

. At the end of the loop, the DO-variable is

incremented by the value of the incremental
parameter. (Note that if the incremental parameter
<0, the DO-variable will, in fact, decrease.)

. The loop control processing begins again at stage 3.

Note: It is perfectly possible for the body of the
loop not to be executed at all. This happens if the
terminating conditions are satisfied on the first
entry to loop control processing at stage 3.

Norsk Data ND-60.145.7 EN

138 ND FORTRAN Reference Manual
CONTROL STATEMENTS

Examples:

e C INITIALIZE ARRAY TO ZERO
DO 10 I 1, N
10 A(I) =0

W

e C COPY UPPER DIAGONAL TO LOWER
DO 20 I=2, N
po 10 J
A (J, 1)
10 CONTINUE
20 CONTINUE

I+1, N
A (I, J)

Hou

e C FIND MAXIMUM VALUES BY ROWS
DO 20 I =1, N
XMX (1) = A (I, 1)
DO 20 J= 2, N
IF (A(I, J) .GT. XMX (I)) XMX (I} = A(I, J)
20 CONTINUE

e C THE SIEVE OF ERATOSTHENES
LOGICAL P(2 : 1000)
C INITIALIZE PRIME ARRAY
DO 10 I = 2,1000
10 P(I) = .TRUE.
C RUN THROUGH ALL CANDIDATES
DO 30 I=2, SORT (1000+1)
C IF IT IS A PRIME, THEN MARK OFF ALL MULTIPLES
IF (P(I)) THEN

DO 20 K = 2*I, 1000, I
20 P(K) = .FALSE.
END IF

30 CONTINUE

e C SET DIAGONAL TO SUM OF ROW TO THE LEFT
po0 20 I =1, N
S=20
DO 10 K =1, 1
S=S5+ A (I, K)
10 CONTINUE
C K NOW CONTAINS THE FINAL VALUE,I-1,PLUS ONE INCREMENT, IE THE
C VALUE OF I
A (K, K) =5
20 CONTINUE

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 139
CONTROL STATEMENTS

8.7.2 The DO FOR ... ENDDO Statements

In ND FORTRAN the DO statement can have the form:

| DO [FOR] 1 =e . e[,e]

where e ' ‘
i, e e | and e3 are. each an 1nteger real or
doub?e p?ecwswon expr9551on

‘The end of the DO 1oop is represented by the
statempnt e

Ebmfoo |

; USihé ,héLND F0RTRAN‘exteh310n'form“of]the DO state-
- ment, the last examp}e of the prev1ous sect1on cou?d
‘i‘k'be wrwtten as: ‘

DOfFOR'Ikn“l; N
DOFORK =1, 1
s os a0t i
CENDDO
A (K, K} =5
END DO
or,
DOI=1, N
o ~‘>= S . A (K)f J” :
oo,
A s
ENaDo - .

8.7.3 The DO WHILE ... ENDDO Statements

. in ND ?QRTRAN thera is a further 1terat1ve . '
‘ programmxng construct delimited by the DO wazaz and '
€NDDO tatements Thxs takes the form ~

Norsk Data ND-60.145.7 EN

140

For example:

ND FORTRAN Reference Manual
CONTROL STATEMENTS

DO WHILE (e)

ENDDO

where
e is a Ioglcal express1on

Upon execution of the DO WHILE statement e is
evaluated, If e is true, control passes to the next |
executable statement. If e is false, control passes
to the next executable statement fo??owwng the
de11m1t1ng ENDDO statement

When the ENDDO statement 25 expcuted contro} is
returned to its correspondwng ﬂO WHIQE statement for
re»evaluatwon of e, : Lo

This construcﬁ a}}ows'the natural programming of
Joops which terminate only when certain COﬂdlt]OﬂS
are met, rather than:a 59901f1« number of S
repetitions.

The DO WHILE ... ENDDO construct may be used to read
a sequential file and process each and every recard .
in which case, the f011ow1ng 1oop cou%d be l;"'
constructed , ~ ,

C READ FIRST RECORD
CALL INPUT
C TEST FOR END-OF-FILE
DO WHILE {.NOT. EFLAG}
¢ PROCESS RECORD
CALL PROCS
C READ NEXT RECORD
CALL INPUT .
C LOOP AND RE-TEST FOR END- OF FIL£
ENDDO

Note that the test is executed at tha start of the
toop. In this example, if there are no records 1n
the file, the loop will not. be executed

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 141
CONTROL STATEMENTS

8.8 THE CONTINUE STATEMENT

The form of a CONTINUE statement is:

CONTINUE

This statement may appear anywhere within the program.
Its execution has no effect and the statement is
commonly used to provide a Toop termination to avoid
ending with a GO TO, STOP, PAUSE, RETURN, Arithmetic IF,
another DO statement, or a Logical IF statement
containing any of the these.

Norsk Data ND-60.145.7 EN

142

ND FORTRAN Reference Manual
CONTROL STATEMENTS

8.9 THE STOP STATEMENT

Example:

This statement has the form:

STOP [n]

where
n is an integer constant of up to five digits
(decimal) or a character constant.

In ND FORTRAN, n may be any integer expression.

Execution of a STOP statement causes termination of the
executable program. At the time of termination the text,
STOP n, is printed out on the message output file, i.e.
the user's terminal for background programs, and the
system console for RT-programs.

When execution terminates, all files which have not been
permanently opened are closed.

STOP 16
STOP 'CANNOT OPEN FILE' // FILENM

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 143

CONTROL STATEMENTS

8§.10 THE PAUSE STATEMENT

The form of the PAUSE statement is:

PAUSE [n]

where
n is an integer constant of up to five digits

(decimal) or a character constant.
In ND FORTRAN, n may be any integer expression.

Execution of a PAUSE statement suspends execution of the
program and the text PAUSE n is printed on the message

output file.

In ND FORTRAN, execution resumes when the program
receives a carriage return from the SINTRAN Togical
device number 1, the user's terminal for background
programs,. and the system console for RT-programs. If
execution is resumed, it is as if a CONTINUE
statement had been executed, i.e. control passes to
the statement immediately following the PAUSE.

Example:
PAUSE 224
PAUSE 'PLEASE MOUNT TAPE'

Norsk Data ND-60.145.7 EN

144 ND FORTRAN Reference Manual
CONTROL STATEMENTS

8.11 THE END STATEMENT

The form of this statement is:

END

It is used to indicate that the end of the sequence of
statements and comment lines of a program unit has been
reached. If executed in a function or subroutine
program, it has the effect of a RETURN statement; in a
main program, it terminates execution of the executable
program and hence causes all files to be closed.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 145

CHAPTER 9

INPUT/OUTPUT STATEMENTS

Norsk Data ND-60.145.7 EN

146 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 147
INPUT/0UTPUT STATEMENTS

9.1 1I/0 TERHES AND CONCEPTS

Input statements control the transfer of data from
external media or from an internal file into internal
storage. This process is called reading. Output
statements control the transfer of data from internal
storage to external media or to an internal file. This
process is called writing.

In addition to data transfer statements, other
statements perform file control, device control, or
inquiry.

These are the input/output statements:

e READ

e WRITE

e PRINT

e OPEN

e CLOSE

e BACKSPACE
e ENDFILE

e REWIND

e INQUIRE

The READ, WRITE and PRINT statements are data transfer
statements. The OPEN and CLOSE statements are file
control statements. The BACKSPACE, ENDFILE and REWIND
statements are device control statements. The INQUIRE
statement performs file inquiry.

9.1.1 Records

A record is a sequence of values or characters which is
considered as a single unit by the device it is being
read from or written to. It may correspond to a physical
entity, such as a punched card, but not necessarily. For
instance, input from a terminal is separated into
records by the return key.

Norsk Data ND-60.145.7 EN

148

ND FORTRAN Reference Manual
INPUT/OUTPUT STATEMENTS

There are three types of records:

e Formatted
e Unformatted
e Endfile

A FORMAT statement contains a set of format
specifications defining the layout of a record and the
form of the data fields within the record (see Chapter
10.1 on page 191, for a complete description of the
FORMAT statement). Format specifications may also be
stored in an array or variable of type CHARACTER rather
than in a FORMAT statement.

A formatted record is one which is transferred under the
control of a format specification as outlined above.
Other records are unformatted records. During
unformatted transfers, data is transferred on a3
one-to-one basis between external media (or internal
files) and internal storage with no conversion or
formatting operations involved.

An endfile record is written by using the ENDFILE
statement. An endfile record may only occur as the last
record of a file.

9.1.2 Files

A file is a sequence of records; it may be internal or
external.

Internal files provide a means of transferring and
converting data within internal storage. An internal
file has the following properties:

e The file is a character variable, character array,
character array element, or a character substring.

e A record of an internal file is a character variable,
array element, or a substring.

e If the file is a character variable, character array
element, or character substring, it consists of a
single record whose length is the same as the length
of the variable, array element, or substring
respectively.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

148

INPUT/0UTPUT STATEMENTS

If the file is a character array, it is treated as a
sequence of character array elements. Each array
element is a record of the file. The ordering of the
records of the file is the same as the ordering of
the array elements in the array, see Section 2.4.2.
on page 35. Every record of the file has the same
length, which is the length of an array element in
the array.

If the number of characters written in a record is
less than the length of the record, the remaining
portion is filled with blanks.

An internal file is always positioned at the
beginning of the first record prior to data transfer.

An external file 1is a collection of records stored on
an external storage medium, e.g., a disk.

9.1.2.1 File Format

An unformatted file consists of unformatted records,
while a formatted file has formatted records as its
components. Both types can have an end -file record;
as the last record in the fiIe

In:ND FORTRAN unfarmatted fz?es have records of &
single length if the RECL = specifier is present in
the OPEN statement. If the RECL = specifier is not
used in the OPEN statement , then records may be of
varying lengths, 1.e. a_ program'wOuld see a :
continuous stream of characters wwth no exp?xcwt or

dmplicit record separators

In ND FORTRAN, formatted iles have records of a
single length if the RECL = specifier is present in

the OPEN statement. If the RECL = specifier is not

used in the OPEN statement then records may be of
-varywng Tengths S .

:¢If a formatted f??é is a?so a PRINT ft}e then the

record 1ayoutkws as descrwhed in Sectaon 9 2.5.1. on

; page 165,

If a formatted file is not a print file, then each
record is followed by the pair of characters {CR,LF).
A1l these contrcl characters must be included in the
RECL count if it is specified.

Norsk Data ND-60.145.7 EN

150 ND FORTRAN Reference Manual
INPUT/OUTPUT STATEMENTS

g.1.2.2 File Access

For an external file there are two access methods,
sequential and direct.

The method of accessing the file is determined when the
file is connected to a unit. An internal file must be
accessed sequentially, as must also magnetic tapes and
character devices, i.e. terminals and internal devices.

SEQUENTIAL ACCESS

The order of the records on the file is the order in
which they were written. Each 1/0 statement executed in
sequential mode transfers the record immediately
following the previous record transferred from the
accessed source file.

The records of the file are either all formatted or all
unformatted {except that the last record of the file may
be an endfile record). A record that has not been
written since the file was created must not be read.

DIRECT ACCESS

A1l records of the file have the same length. They must
be either all formatted or all unformatted.

Fach record of the file is uniquely identified by a
positive integer called the record number which is
specified when the record is written. Once established,
this number cannot be changed. Although a record may not
be deleted it can, however, be rewritten.

The order of the records on the file is the order of
their record number.

Records need not be read or written in the order of
their record number. Any record may be written into the
file while it is connected to a unit. For example, you
may write record 3 even though records 1 and 2 have not
been written. Any record may be read from the file
provided that the record has been written.

See the OPEN statement, Sectio:
for further information on tt
fimplementation and extensio

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 151
INPUT/0UTPUT STATEMENTS

9.1.3 Units

A UNIT is a means of referring to a file. A unit
specifier has the form:

[UNIT=] u

where
u is an external unit identifier (to refer to
external files) or an internal file identifier.

If the optional characters UNIT= are omitted from the
unit specifier then this specifier must be the first
item in a 1ist of specifiers.

An external unit identifier can be:

e A positive or zero integer expression

e An asterisk, identifying a particular unit that is
preconnected for formatted sequential access, see
Section 14.24.3 on page 295.

In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N = 6
REWIND N

the value 6 used in both program units identifies the
same external unit.

Norsk Data ND-6C.145.7 EN Rev.A

152 ND FORTRAN Reference Manual
INPUT/QUTPUT STATEMENTS

An internal file identifier is the name of a character
variable, character array, character array element, or
character substring.

Internal files provide a means of transferring and
converting data within internal storage.

9.1.4 Format Specifier and Identifier

A format specifier has the form:

[FMT = }f

where
f is a format identifier.

If the optional characters FMT= are omitted then the
format specifier must be the second item in a list of
specifiers. In this case the first item must be a unit
specifier without the optional characters UNIT=.

A format identifier identifies the format type, see
Chapter 10 on page 191 , and it must be one of the
following:

e FORMAT statement label in the current program unit

e The name of an array containing the format
specifications

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Referernce Manual 153
INPUT/QUTPUT STATEMENTS

e Any CHARACTER expression, except a CHARACTER
expression involving concatenation of an operand
whose length specification is an asterisk in
parentheses, unless the operand is a symbolic name of
a constant

e An asterisk, implying list-directed formatting

e An integer variable name that has been assigned the
statement label of a FORMAT statement that appears
in the same program unit as the format identifier

9.1.5 End-of-File Specifier

Example:

An end-of-file specifier has the following form:

END = label

where
Tabel is a statement label appearing in the
current program unit.

If a READ statement (see Section 8.2.4 on page 161)
contains an endof-file specifier and an end-of-file
condition but no error condition is encountered during
its execution, then the following will result:

e Execution of the READ statement terminates.

e If the READ statement contains an 1/0 status
specifier, this will be set as specified in Section
9.1.7. on page 154.

e Execution continues with the statement having the
designated label.

READ (10, 5, END = 70) TABLE I, J, K

Detection of an end-of-file condition during execution
of this statement causes transfer of control to
statement 70. A1l items in the input list, following the
detection, of an end-of-file condition, and all implied
DO indices on input 1ists will have unpredictable
values.

An end-of-file condition will occur if an endfile record

is encountered during the reading of a file connected
for sequential access.

Norsk Data ND-60.145.7 EN

154 ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

§.1.6 Error Specifier

The form of an error specifier is:

ERR = label

where
Tabel is a statement label appearing in the
current program unit.

If an error condition occurs during execution of an 1/0
statement containing an error specifier the following
will result:

e Execution of the [/0 statement terminates.

e The position of the file pointer specified in the
statement becomes undefined.

e If the statement contains an I/0 status specifier,
this will be set as specified below.

e Execution continues with the statement having the

designated label.

9.1.7 Input/Output Status Specifier

The form of an input/output status specifier is:

IOSTAT = s

where
s is a variable or array element of integer

type.

Execution of an 1/0 statement containing this specifier
causes it to be set as follows:

Zero - if neither an error nor an end-
of-file condition is encountered.
positive number - when an error condition occurs.

negative number - when an end-of-file but no error
condition occurs.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 155
INPUT/OUTPUT STATEMENTS

Note:

In ND FORTRAN, on the ND-100. s must be of type

- INTEGER*2. On the ND-500, s must be of type

INTEGER*4. The error codes stored in s are the
standard FORTRAN/SINTRAN/SOO Loader/Monxtcr error P
codes. They are]1sted in Anpendzx D - ',~ ‘

of this manual, e

_ Appendix C of the SINTRAN 10 Reference Manual

(ND-60.128) and 500 Loader/Mcn:tor Manua1 (ND 60‘136)

If an error condition occurs, and there is no ERR=
specified, {(or an end-of-file condition and no END=) and
n I0OSTAT= specified, then the program is aborted.

In routwnes compwled thh STANDARD CHECK set OFF
{see Section 14.7 on page 277), there is a reserved
variable called ERRCODE which takes the absolute
value of IOSTAT after the execution of an 1/0 =
statement. This ensures ccmpatibx}ity w1th the

previous FOQTRAN compiﬁer : :

In routxnes compw1ed wath STANDARD CHECK ON, the
~ name ERRCODE 1is hot reserved and 15 treated 1ike any
other varwab?e ‘ ~

InND FORTRAN when the end of- fx?e candwtwon is.

:encauntered TOSTAT will take the value 3 with the
sign bit set {i.e. 1000038 on the ND-100 and : :

~ 200000000038 on the ND- SOO} but ERRCODE will be set
to +3 ~

2.1.8 Record Specifier

A record specifier has the following form:

REC = rn

where
rn is an integer expression whose value is
positive. [t specifies the number of the record
to be read or written in a file connected for
direct access.

Norsk Data ND-60.145.7 EN

156

ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

9.2 DATA TRANSFER OPERATIONS

Data transfer is the function of the [/0 statements
READ, WRITE and PRINT. The transfer of data occurs
between storage and peripheral devices and/or between
storage locations.

The storage locations are identified by an input/output
list.

The type and format of external data {on input or
output) may be controlled by using format
specifications.

9.2.1 Input/Output Lists

Example:

An 1/0 list specifies the names of the variables,
arrays, array elements, or character substrings to which
input data is to be assigned or from which output data
is to be obtained.

The list is processed one item at a time, the transfer
of each item is completed before it is started for the
next.

Suppose N is an integer and A is a one-dimensional array
of type REAL, then the code:

N =3
READ (5) N, A (N)

means that the value in the input stream on unit % is
assigned to N. Suppose this value is 10. The next value
on the input stream is assigned to the element A{10).
Note that the most recently read value of N is used.

Implied DO lists ({(described below) which specify sets of
array elements, may also be included in I/0 lists.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 157
INPUT/0QUTPUT STATEMENTS

9.2.1.1 Implied DO Lists

Example:

When an array name appears in an I/0 list, all elements
of the array are transferred in the order in which they
are stored. see Section 2.4.2. on page 35. Specific
sets of array elements may be specified in the 1/0 list
ejther individually or in the form of an implied DO
Tist.

The implied DO takes the same general form as that of a
DO statement:

iolist , I = el, e2 [,e3])

where
jolist is an I/0 list which may contain further
implied DO Tlists to an arbitrary depth of
nesting.
I the index control variable representing a
subscript appearing in the subscript list.
el, eZ2, e3 are the indexing parameters
specifying the initial, terminal and incremental
values controlling the range of 1. {(el, e2, e3
are each an INTEGER, REAL or DOUBLE PRECISION
expression).
If e does not appear, its value defaults
to 1 {one).

REAL A (2,3)
10 FORMAT (6F1i0.3)

READ (1, 10) A
The READ statement will read A in the following order:
A(1,1), A(2.1), A(1,2), A(2,2), A (1.3), A (2.,3)

i.e. first subscript varies most rapidly.

The same effect is achieved by the following statement:
READ (1,10) ((A (1,J), I = 1,2}, J = 1.,3)

i.e. the innermost loop varies most rapidly.

If you need to vary the other subscript most often, use
the following form:

READ (1,10) ({A (I,J), J=1,3), I = 1,2)

Norsk Data ND-60.145.7 EN

158 ND FORTRAN Reference Manual
INPUT/QUTPUT STATEMENTS

9.2.2 Formatted and Unformatted Data Tramnsfer

1/0 statements which include format specifications
enable the user to convert the data being transferred
into a different form. This may be required on output,
for example, to make the data easier to read.

During formatted data transfer, data is transferred with
editing between the items specified by the I1/0 1ist and
the file. The record at the current position and
possibly additional records are read or written. The
editing between the internal representation and the
character strings of a record, or seguence of records,
is directed by a format specification. This
specification may be contained in a FORMAT statement or
in an array. If the format identifier is an *
{asterisk), this indicates list-directed input/output,
see the next section.

Unformatted data transfer is used for intermediate files
for internal use on disk and tape units. During
unformatted data transfer, data is transferred without
editing between the current record and the items
specified by the I/0 list. Exactly one record is read or
written.

9.2.3 List-Directed Input/Output

If the format identifier contained in an I/0 statement
is an asterisk, this causes the transfer operation to be
Tist~-directed. List-directed input/output may also be
called free-format.

Note: In this case, a record specifier must not be
present.

Data for list-directed transfers should consist of
alternate constants and delimiters. Delimiters may be
one of the following:

e A comma optionally preceded or followed by one or
more blanks.

o A slash, optionally preceded or followed by one
or more blanks.

e One or more blanks between two constants (or
following the last constant}).

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 159
INPUT/CUTPUT STATEMENTS

9.2.3.1 List~-Directed Input

The form of the input value must be acceptable for the
type of the input list item. Values which are consistent
with format specifications (see Chapter 10, on

page 191), are also acceptabie in Tist-directed

input except in the following cases:

When the 1ist item 1is of type REAL or DOUBLE
PRECISION, the corresponding input form should be
numeric and suitable for F editing, see Section
10.2.2.4. on page 198.

For list items of type CHARACTER, the corresponding
input constants should be enclosed in single quotes,
i.e. 'ABC'. Each quote within a CHARACTER constant
must be represented by two consecutive quotes. The
constant may be continued over as many records as
needed. The characters blank, comma, and slash, which
are otherwise delimiters, may appear in CHARACTER
constants. If the Tengths of the 1ist item and
CHARACTER constant differ, the result is as for the
CHARACTER assignment statement, Section 7.4. on

page 119.

When the corresponding list item is of type COMPLEX,

the pair of constants being input must be enclosed in
parentheses and separated from each other by a comma.
Each constant should be numeric as in the first rule

above.

Q;In’NB 0 RAN parentheses are not requzred A pa1r

‘can'be separated by spaces 1nstead of

Null values on input are represented by two
consecutive commas with no intervening constant(s).
If a null value appears in the data, its
corresponding list element will retain its old value
and definition status.

When all the items in the I/0 1ist have been
assigned, any remaining input data is ignored.

A slash encountered in the input stream causes the
current input statement to terminate. Any remaining
items in the [/0 1ist will retain their old values
and definition status.

Norsk Data ND-60.145.7 EN

160

For example:

Note:

ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

e The input values for List Directed Input can contain
repetition groups of the form :

v*c or v*

where
v is the repetition factor
c i1s a constant

3%2.7, 2* , 2*¥'ABC’
which is the same as:

2.7, 2.7, 2.7, , , "ABC", "ABC'

Blanks are never used as zeros, and embedded blanks are
not permitted in constants except within CHARACTER
constants as described in the second point in the list
above.

9.2.3.2 List-Directed Output

The form of the values produced is the same as that for
input except in the cases of CHARACTER constants given
here. The values are separated by one or more blanks.

CHARACTER constants are not delimited by apostrophes on
output.

Each output record begins with a blank character to
provide carriage control when the record is printed.

If successive values are identical, no replication
factors are employed.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 161
INPUT/0UTPUT STATEMENTS

The internal values are converted on output according to
the formats:

116 INTEGER

£E16.7 REAL

D16.9 DOUBLE PRECISION

2E16.7 COMPLEX

A CHARACTER

Lig LOGICAL [ND FORTRAN extension)
D16.9 NUMERIC

9.2.4 The READ Statement

The READ statement causes data to be transferred from
external media to internal storage, or from an jnternal
file to internal storage. The forms of read transfer
are as follows:

UNFORMATTED READ TRANSFER

e Form 1:

READ (ufl,arglist}){iolist]

Note:
The form READ (u) will cause one unformatted input
record to be skipped.

FORMATTED READ TRANSFER

e Form 1:

READ f [,i0list]

Note:
This statement reads from the standard input device
which can be set in the UNIT command, see Section
14.24.3 on page 295.

Norsk Data ND-60.145.7 EN

162

ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

o Form 2:

READ (u,f[,arglist])[iolist]

e Form 3 (List-directed)

READ (u,*[,arglistli[iolist]

where
U4 is a unit specifier see Section 9.1.3 on
page 151.
f is the format specifier see Section 9.1.4 on
page 152.
jolist, when present, is an input list
specifying the data items whose values are to be
transferred. A data item in an input 1ist must
be one of the following:

¢ a variable

® an array

® an array element

e a character substring

arglist is a list of optional items, separated

by commas, in which each of the following items
may appear no more than once:

REC=vn (see Section 9.1.8, on page 155)
[0STAT=s {see Section 9.1.7, on page 154)
ERR=Tabel (see Section 9.1.6, on page 154)
END=label (see Section 9.1.5, on page 153)
If arglist contains a record specifier, the file should
be opened for direct access. The specifier is ignored

for sequential access. Arglist cannot contain both a
record specifier and an end-of-file specifier.

If the format identifier is an asterisk, the statement
is a list-directed input statement and a record
specifier must not be present.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 163
INPUT/0UTPUT STATEMENTS

prn ND FORTRAN the record spec1f1er can be used wwth
;:sequentza1 access to reposition the file for READ or
 WRITE statements. Thus, the same part. of the file

can be read several times, and part of a file can be
fzupdated for. such an operatron to be pnsswb?e “the
[.fa?e must r951de Dﬂ a direct access dev1ce ‘

Also, in such a case it is permitted to specify both
END= and REC= in the same arglist.

9.2.5 The WRITE Statement

The WRITE statement transfers data from internal
storage to external media or from internal storage to
internal files. The forms of write transfer are as
follows:

UNFORMATTED WRITE TRANSFER

e Form:

WRITE (u[,arglist])[iolist]

FORMATTED WRITE TRANSFER

e Form 1:

WRITE f[,iolist]

e Form 2:

WRITE (u,f[,arglist])[iolist]

Norsk Data ND-60.145.7 EN

164 ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

e Form 3 (List-Directed):

WRITE (u,*[,arglist])[iolist]

where
u is a unit specifier {see Section 9.1.3 on
page 151)
f is the format specifier (see Section 9.1.4 on
page 152)

iolist, when present, is an output list
identifying the data items whose values are to
be transferred. A data item irn an output list
must be one of those:

a variable

®

e an array
e an array element
e a character substring

e any other expressions except a character
expression involving concatenation of an
operand whose length specification is an
asterisk in parentheses, unless the operand is
the symbolic name of a constant.

arglist is a list of optional items, separated
by commas, inh which each of the following items
may appear no more than once:

REC=rn {See Section 9.1.8, on page 155)

I0STAT=s (See Section 9.1.7, on page 154)

ERR=1abel (See Section 9.1.6, on page 154)

If arglist contains a record specifier, the
statement is a direct access output statement (See the

READ statement earlier). If not, it is a sequential
access output statement.

If the format identifier is an asterisk, the statement

is a list-directed output statement and a record
specifier is not allowed.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 165
INPUT/0UTPUT STATEMENTS

9.2.5.1 Printing of Formatted Records

The transfer of information in a formatted record to

certain devices determined by the processor is called
printing. If a formatted record is printed, the first
character of the record is not printed. The remaining
characters of the record, if any, are printed on one

Tine beginning at the left margin.

The first character of such a record determines vertical
spacing as follows:

CHARACTER VERTICAL SPACING EXTERNAL OUTPUT
BEFORE PRINTING
Blank One line LF record CR
0 Two 1ines LF CR LF record CR
1 To first line of new page FF LF record CR
+ No advance record CR
$ No advance, CR suppressed record

Any other character occurring in the first position is
treated as a blank.

If there are no characters in the record, the vertical
spacing is one line and no characters other than blank
are printed on that line.

A PRINT statement does not imply that printing will
occur, and a WRITE statement does not imply that
printing will not occur.

Norsk Data ND-60.145.7 EN Rev.A

166 ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

The following logical SINTRAN device numbers are
PRINT files. A1l numbers are octal:

e Less than 100 except:

3 fast punch
20 and 21 cassette
25,33,40,41 magnetic tape controller 1
32,34 magnetic tape controller 2

® 200 to 277 see SINTRAN manual ND 60.128
700 to 777 for descriptions

1040 to 1077
2000 to 2077

e 100 to 127 if they are spooling files

9.2.6 The PRINT Statement

The PRINT statement causes data to be transferred from
internal storage to the standard output device. This can
be defined by the UNIT command, see Section 14.24.3 on
page 295. It is used only for sequential formatted data
transfer. The PRINT statement takes the following forms:

e Form 1:

PRINT f[,i0list]

e Form 2:

PRINT*[,i011st]

where
f is the format specifier (see Section 9.1.4
on page 152)
iolist, if present, is the output list
identifying the data items whose values are to
be transferred.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 167
INPUT/QUTPUT STATEMENTS

9.2.7 The INPUT Statement

In ND FORTRAN, Tist-directed input can be specified
by the statement:

INPUT (u[,arglist])[iolist]

This is exactly equivalent to the List-directed form
{Form 3) of the READ statement, see Section 9.2.4.

on page 161.

9.2.8 The OUTPUT Statement

In ND FORTRAN, list-directed output can be specified
by the statement:

QUTPUT (u[.,arglist])[iolist]

This is exactly equivalent to the List-directed form
{Form 3) of the WRITE statement, see Section 9.2.5.

on page 163.

Norsk Data ND-60.145.7 EN

168 ND FORTRAN Reference Manual
INPUT/0OUTPUT STATEMENTS

9.3 FILE OPEN AND CLOSE

This section covers connecting and disconnecting files,
creating them, and establishing of parameters for I1/0
operations. The statements used for this are OPEN and
CLOSE.

9.3.1 The OPEN Statement

The OPEN statement can connect an existing file to a
unit, create a file that is preconnected, create a file
and connect it to a unit, or change the specifiers of a
connection between a file and a unit. It has the form:

OPEN (ul,arglistl)

where
u is a unit specifier ({see Section 9.1.3
on page 151
arglist is a list of optional items, separated
by commas, 1n which each of the following items
appear no more than once:

10STAT = s {Section 9.1.7, page 154)
ERR = label (Section 9.1.6, page 154)
FILE = file
STATUS = sta
ACCESS = acc
FORM = fm
RECL = rl
BLANK = bl
 PARITY = par. ;‘i;{{:si:s | :,ORTRAN Extensmn}
 eme - value (ND FOR i
- ;wcmm ﬁ'da:,@ii ~ (ND FORTRAN ¢
CTYPE =ty (ND FORT

- Mobe :ﬁ ;$e§f f? i” : ‘
BUFFER SIZE. %‘bszf 'f(N9:FOR,RAN§.xtensxon}k_f;j

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 169
INPUT/0QUTPUT STATEMENTS

If the form UNIT= is used for the unit specifier, it may
appear anywhere in arglist. If UNIT= is omitted, u must
be the first specifier in the list.

 When executing as RT programs {ND-100 only), all
_programs on a particular segment must use different
~ unit numbers. Care should be taken when opening and
~ using logical devices shared among programs on the
_ same segment. Otherwise, there are no restrictions
ﬁon the I/Q fac111taes avaw?abie to RT programs
f;TO make th'*mast eff1c1ent use af the varxous I/O
~ oplions, refer to. Chapter 15, Advanced FORTRAN
‘rPragramming whxch begwns cn page 313

The specifiers not previously described in arglist are
described in the remainder of this section:

FILE = file

where
file is a character expression whose value is
the name of the file acceptable to SINTRAN and
is to be connected to the specified unit. The
default file type is SYMB.

If no file is specified, the actual open monitor call is
not executed, but the number must be within the range of
tegal unit numbers to OPEN (1-127), otherwise an error
condition will occur.

If a file is specified, the unit number is used in
subsequent 1/0 statements to refer to this file. If this
is the case, the unit number must be positive and less
than 128.

STATUS = sta

where
sta is a character expression whose value is
old, NEW, SCRATCH or UNKNOWN. If OLD s
specified, the file must exist; correspondingly,
the file must not exist 1f NEW is specified.
If the specifier is omitted, a value of UNKNOWN
is assumed. If UNKNOWN is specified, the file
is created if it does not exist.

Norsk Data ND-60.145.7 EN

170

Note:

ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

Successful execution of an OPEN statement with NEW
specified creates the file and changes the status to
OLD.

If SCRATCH is specified with an unnamed file, the file
is connected to the specified unit for use by the
executable program. The file is deleted at the execution
of a CLOSE statement referring to the same unit or at
the termination of the executable program.

~ In ND-FORTRAN named files are allowed to be used
~also if SCRATCH is. spec7fwed ~The file with
 specified name will be used (if it does not
_exist, it will be created). This file will be
deleted by CLOSE statement or. termwnatwon of the
',,grggpam S ; o

ACCESS = acc

where
acc is a character expression whose value is
one of the following:

e SEQUENTIAL
e DIRECT

and this determines the access method for the connection
of the file. The default is SEQUENTIAL. SEQUENTIAL or
DIRECT access should be used if the file is to be
accessed through FORTRAN READ/WRITE statements.

17 DIRECT or SEQUENTIAL access is used the mon1tor ‘
call (76) SETBS must not be used for thws fwie

In NDO FORTRAN the fo?}ow1ng va?ue& are alse f' |
acceptabie ‘

 SPECIAL for use of monitor ca??s €1géQkS£TBS; '
RFILE, WFILE or MAGTP} ~ L

W - Sequeﬂm a1 cut;::ut mm'ss;atemsr;,
R ‘ 1kiSequent1a1 1nput {REAG statements} |
o f"Random 1nput or outnut (far RFILE/%FILE

' ‘use}

RX f‘f:‘,fi Randomiznput {for RFEL& use}kﬁ

RW ',"-f~SaquentTa‘?1nput er outaut {READ/wRITE

statements)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 171
INPUT/0UTPUT STATEMENTS

WA - - Sequential output appending to an
existing file (WRITE statements)

W Random input‘or éutbutwto contiguous
e ' - Files (for RFEILE/WFILE use)

RC Random input from contiguous files
‘ i ‘f;(for'RFILE use)

D L ~ Random 1nput or output dwrect (for .
L ~V~RFILE/wFILE use}

-bc. . Random 1nput or output d)rect closed
. [{for RFILE/WFILE use, ND-500 only)
~ Note: Direct closed means that such a
. file remains closed during all file
~ transfers. FORTRAN does not set the
~ maximum byte pointer for DC files.

READ f‘5'Randcm7ihputzfaéAofstatéments>'

MRITE ly,Random input or Gutput (READ/WRITE
o ;:statementﬁ) o .
“fPRiNTﬂ . ~} Sequent1a3 output fipst character

~ interpreted as a forms. c0ntro1 character
‘i~{WRIT£ statement) E:.~u ;

”‘PRINT4APPEND Sequentwa} output appendwng to an
. oexisting file. First character .
~ interpreted as a form contro? character
"~”€WRITE statement}

FORM =

where
fm is a character expression with the value
FORMATTED or UNFORMATTED. The value determines
whether the file is being connected for
formatted or unformatted 1/0. The default with
direct access i1s UNFORMATTED, with sequential
access it is FORMATTED.

Norsk Data ND-60.145.7 EN

172

ND FORTRAN Reference Manual
INPUT/OUTPUT STATEMENTS

RECL =

where
r1 is an integer value which must be positive.
1t gives the length in characters (bytes) of
each record, in the file to be connected for.

' In MO FORTRAN the RECL*‘specwfwer ma *a?ways be
_ used whatever the value of the ACCESS« specafwer

In NQ FORTRA& SEQUENTIAL access usedkln congunction
“w1th the RECL~ specifier, may be used with either
"iFORMATTED or UN?ORMATTED 170, Thus a?l records ina
‘*SEQUENTIAL file can be made the same size. This, in
turn allows the BACKSPACE statement to be used on an
_jUNFORMATTED SEQUENTIAL f119 The~1nﬁent10n is that
~ SEQUENTIAL files behave in the same way as DIRECT
files, as far as the record size and structure are
{”cencerned for both FDRMAT?ED and UN?QRMATTED fx?es,

,;In FGRMATTED fwles, data in a record 15 genera}}y
‘terminated by a CR LF {carrwage return, line feed}

- pair of characters. In some cases, the physical
record will be Jonger than the data plus the CR LF
;‘characters and the rest of the physxca¥ recovd w171
be padded e , ‘ , ~

gQIn ND FGRTRAN the record de?xmwter CRLF is 1nc?uded

in the record _This means that the record must be

~ specified as being two characters longer than the
number of characters;to bektransferred By using the
compiler command: RUNTIME-STANDARD-MODE, vou can |
‘avoid including the delimiters in the record. In
ejther case, the information in the file and the

, number of bytes in the file are exactly che same,

If a FORMATTED file has a RECL= specifier in the OPEN
statement, and data to be output is shorter than the
specified record length, the record is padded with
blanks.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 173
INPUT/QUTPUT STATEMENTS

In ND FORTRAN, a record which is output and is
shorter than the specified RECL value, will have
undefined characters at the end of the record, as it
is stored on a file. This applies to both FORMATTED
and UNFORMATTED files. However, if a record is read
 from a FORMATTED file, it ww?i be padded with b%anks
fafter the read operaticn

If a FORMATTED file has a RECL= specifier in the OPEN
statement, and data to be output is longer than the
specified record length, the record is truncated.

In ND FORTRAN, in both FORMATTED and UNFORMATTED 1/0
with'a RECL= specifier in the OPEN statement, & :
request to output more data than the RECL= specifier
value, will result in a physical record being
output, which is a multxp?e of the RECL~ spec ifier
value. G

The. foi1ow1ng tab?e summar:zes the posswb?e outcomes
of I/O in ND FORTRAN: ' : , ,

| 7REcL:fspeci%ied_ no RECL=

FOQMATTED L data,ck'gp:uuuf;{jéata,caﬁLF;"

UNFGRMATTED data uuu; [:';j~ 43t3 ;f

for ACCESS= DIRECT SEQUENTIAL or SPECIAL

where i ' :
data is the record to be read Qr wr}tten by
“the program.

uuu 33 an undefined part of the record

BUFFER-SIZE = bs?Z

where
bs? is an integer value, which gives the number

of bytes in the buffer. The smallest value is
2048 bytes (1 pagel}: the value must have a
potence of 2. The BUFFER-SIZE used by FORTRAN
can be smaller if there is not enough contiguous
space in buffer pool. Use of bigger buffer is
most effective for big contiguous files. In
FORTRAN-100 this is a dummy parameter.

Norsk Data ND-60.145.7 EN

174

ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

BLANK

= bl

where

bl is a character expression whose value is NULL
or ZERO. It is valid only for files being
connected for formatted 1/0 and it determines
the treatment of blanks. If NULL is specified,
then all blank characters in numeric input
fields are ignored (except that a field of all
blanks has a value of zero). If ZERO is
specified, then all blanks are treated as zeros.
The default value is NULL.

‘Thekfoiibwingksbetifiehs‘aﬁeﬁND~FOQTRAN Extensions:

PARITY e

' where

~par is a character expre551on wh1ch indicates

’i‘ jhow the ! paraty bit is to be handled. The
 parity’ bit is the left-most bit of the

¢character read or wrwttan It applies only to

 formatted (including list-directed} transfers

;of*data‘*The pass?b?e*vaiues and meanings are:

ilﬁNGRE no act1on is taken on QTﬁhEP input or
L oatput o

k;fggT' the parxty b?t is set to zero on input,

_and to even parity on output. {This is
campat1b1e with the prevxous FORTRAN
1mp¥ementatxon b

kREMOVE the parwty bit is set to zero on 1nput

but is. 1eft untouched on output

,If ﬁbzs parameter 15 nat specxfxed the va?ue 1s

;1n wbwch it 15 taken to be SET.

ffRKMGVE is sapp}1ed as an easy way of convertxng
‘f11es frnm the o1d to the new form

[rrsmecsvene]

“&;[tﬁf‘_eption can | be used to maxntaxn -
ibility with previous ND FORTRAN compx?ers o

vith ?e rd to the numbervng Gf records far a dxrect

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 175

INPUT/0UTPUT STATEMEN

where

TS

value is an expression of type integer. Value ;

~determines the number assigned to the first

record on a file. The default value, if the
option is omitted, is 1. Previous compilers
used 0 to indicate the first record. Only O
and 1 are allowed as valid values: any other

' vaiue waT nge unpredwctab?e resu1ts

~FACTOR = fac

wher

e ; L :
fac is an integer expression (thh 39931 vazues
of 1,2, or 4). This parameter specxfies the
‘modification to the "amount’ factor in the
monitor calls SETBS, RFILE, WFILE, and MAGTP.

The monitor calls have as argument() the length
of the area read or written except for MAGTP
function codes 268 and 27B where the amount is
the exact number of bytes. The given amount
parameters (or return paramatars) in these
‘monitor calls are adjusted by the value of

fac before the monitor calls are executed.

A value of fac = 1 indicates that the amount
parameter is to be interpreted as a number of
bytes, fac = 2 means the number of 16-bit

words, while fac = 4 means the,number of -
32-bit words. The default is fac = 2 for the e
ND-100 and fac 4 for the Na 560, 1 a the o

100

ONVERT = ioco |

where

ioco is a character express1on wnose val
CONVERT or FORCE. The ioco par. '
indicates the handlwng of form ,
either: , o

° the I/O }zst e?ement is of type§~£A‘
~ COMPLEX; and the format specwfwer is

or,

o the 1/0 Tist element is of type INTEGER and ;”~
‘the format spec1f1cation is F, Eor 6. o

A va?ue of CONVERT 1né1catas that a. converswon _

REAL/
~ speci

INTEGER or INTEGER/REAL, is to take place if the ‘
ficat10n wau!d not otherwwse app?y : e ;

Norsk Data ND-60.145.7 EN

176

: where

: where

'READ, wRITE ENDFKLE
wCLOSE - o

ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

For the ND-500, and the ND-100 with the 32-bit

. floating- point option, a value of FORCE means that

- formatting is to be performed accordwng o the format

: 'specwfncataon Pegardless of the type of the 1/0 Tist
“element {INTEGER*afREAL*4) The defauXt is FORCE

, It 15 an: errcr to spec1fy FORCE on an ND 100 wwth the ,

48-hit floating- poant processor the defau?t here is.

kaONVERT

: iy is a CHARACTER sﬁrwng The f1rst four

~ characters lor the whole strwng if its 1ength ig

~ Jess than four) are used to change the default
'f,S§&TRAM lee type frgm SYMB to some other vaiue

MBDE seg ‘NDfSUO:ohiying;, ,3,,f . o

seg 15 a CHARACTER strxng‘with t&e va?ue SEGMENT7

Restrictian;'~f,;p“" ‘

- fer Me&‘azas iwsa_f"};‘* :

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 177
INPUT/OUTPUT STATEMENTS

9.3.2 The CLOSE Statement

A CLOSE statement is used to terminate the connection of
a file to a unit.

It has the form:

CLOSE (ul,arglist])

where
u is a unit specifier (see Section 9.1.3,
on page 151)
arglist is a list of optional items, separated
by commas, in which each of the following items
may appear no more than once:

IOSTAT = s (see Section 9.1.7, on page 154)
ERR = Tabel (see Section 9.1.6, on page 154)
STATUS = sta

where sta is_a character expression

whose value is KEEP or DELETE.

The unit to be deleted must be explicitly
specified. If unit in the following: CLOSE
(unit, status = 'DELETE') has a negative value,
no files are deleted.

 In ND FORTRAN, the fmomgévamesi for u have

files openad for tms termma%
‘anentiy'oﬁened o

sen those permanently

11 be closed.,

Norsk Data ND-60.145.7 EN

178

ND FORTRAN Reference Manual
INPUT/0OUTPUT STATEMENTS

9.4 FILE POSITIONING

The statements used for positioning are BACKSPACE,
ENDFILE and REWIND. The operations performed by these
statements are normally used for seqguential files on
disk or magnetic tape devices.

g.4.1 The BACKSPACE Statement

The BACKSPACE statement will cause a file, connected to
a specified unit, to be positioned at the start of the
preceding record. If there is no preceding record, the
file position remains unchanged.

If the specified unit is a file on disk, binary records
can be backspaced only if the file is opened with fixed
record length (RECL=n}.

Format:

BACKSPACE u

or

BACKSPACE (ufl,arglist])

where
u js a unit specifier

In ND FORTRAN 3 SINTQAN logwcai device number may
be used instead of a unxt speczf1er

arglist is a list of the f0110w1ng optwona]
items, separated by commas, as given below:

IOSTAT
ERR

1

S {(see Section 9.1.7 on page 154)

i

Tabel ({see Section 9.1.6 on page 154)

If the file was opened with a RECL parameter, then this
parameter is used to identify the position of the
previous record. If the file is a formatted file, the
statement will execute slowly unless RECL is specified.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 179
INPUT/OUTPUT STATEMENTS

9.4.2 The ENDFILE Statement

The ENDFILE statement is used to write an endfile record
as the next record of the file. This record will define
the end of the file that contains it.

Format:
ENDFILE u
or
ENDFILE (ufl,arglist])
where

U is a unit specifier
Sln ND. FORTRAN a SINTRAN 1091037 devwce number may:f
be used 1nstead of a unxt specwfwer : ~ '

arg]1st is a list of the foT]owwng opticnal
items, separated by commas, as given below:

I0STAT
ERR

S (see Section 9.1.7 on page 154)

label (see Section 9.1.6 on page 154)

After execution of an ENDFILE statement, a BACKSPACE or
REWIND statement must be used to reposition the file
prior to execution of any data transfer [/0 statement.

Note:
An ENDFILE statement will not automatically be performed
before rewinding.

9.4.3 The REWIND Statement

Execution of a REWIND statement causes the specified
file to be positioned at its initial point {(the load-
point mark on a magnetic tape). If the file is already
positioned at its initial point, execution of this
statement has no effect on the position of the file.

Norsk Data ND-60.145.7 EN

180 ND FORTRAN Reference Manual
INPUT/OUTPUT STATEMENTS

Format:

REWIND u

or

REWIND {ul.,arglist])

where
u is a unit specifier

In ND FORTRAN, a SINTRAN iogwcai device number may
be used 1nstead of a un}t spec1f1er '

arglist is a list of the following opt1ona1
items, separated by commas, as given below:

IOSTAT
ERR

i

S (see Section 9.1.7 on page 154)

i

label (see Section 9.1.6 on page 154)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 181
INPUT/0OUTPUT STATEMENTS

9.5 THE INQUIRE STATEMENT

The INQUIRE statement may be used to inquire about
properties of a particular named file or of the
connection to a particular unit.

The INQUIRE statement may be executed before, during, or
after a file is connected to a unit. A1l values assigned

by the INQUIRE statement are those that are current at
the time the INQUIRE statement is executed.

The two forms of the INQUIRE statement are:

e INQUIRE by file:

INQUIRE(FILE=filenamel,arglist])

where
filename is a character expression whose value,
when any trailing blanks are removed, specifies
the name of the file being inquired about.
arglist is a list of optional specifiers, taken
from the table given on the next page. The
specifiers must be separated by commas, and each
may occur no more than once.

The specifier FILE= may appear anywhere in arglist.

e INQUIRE by unit:

INQUIRE(u[,arglist])

where
u is a unit specifier {see Section 9.1.3
on page 151)
arglist is a 1ist of optional specifiers
taken from the table given on the next page. The
specifiers must be separated by commas, and each
may occur no more than once.

If the form UNIT= is used for the unit specifier, it may

appear anywhere 1in arglist. If UNIT= is omitted, u must
be the first specifier in the list.

Norsk Data ND~-60.145.7 EN

182

ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

The following inquiry specifiers may be used in either
form of the INQUIRE statement, i.e. for arglist above:

I0STAT = s (see Section 9.1.7, page 154)
ERR = label [(see Section 9.1.8, page 154)
ACCESS = acc

BLANK = bink

DIRECT = dir

EXIST = ex

FORM = fm

FORMATTED = fmt

NAME = fn

NAMED = nmd

NEXTREC = nr

NUMBER = num

OPENED = od

RECL = rcl

SEQUENTIAL = seq
UNFORMATTED = unf

The specifiers are described in the rest of this
chapter:

ACCESS=acc

where
acc is a character variable or a character array

element.
acc will be assigned the value SEQUENTIAL if the file is
connected for sequential access, or the value DIRECT if
the file is connected for direct access.

If there is no connection, acc becomes undefined.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 183
INPUT/0UTPUT STATEMENTS

BLANK=bTnk

where
bink is a character variable or a character
array element.

bink will be assigned the value NULL if null blank
control is in effect for a file connected for formatted
1/0, or the value ZERO if zero blank control is in
effect for a file connected for formatted I1/0.

If there is no connection, or if the connection is not
for formatted I1/0, blnk becomes undefined.

DIRECT=dir

where
dir is a character variable or a character array
element.

Dir will be assigned the value YES if DIRECT is one of
the allowed access methods for the file, or the value NO
if DIRECT is not one of the allowed access methods for
the file.

If it is not possible to determine whether DIRECT is
allowed as an access method for the file, dir will be
assigned the value UNKNOWN.

EXIST=ex

where
ex 1s a logical variable or a logical array
element.

For INQUIRE by file, ex will be assigned the value
LTRUE. if the file with the specified file name exists,
or the value .FALSE. otherwise.

For INQUIRE by unit, ex will be assigned the value

.TRUE. if the specified unit exists, or the value
.FALSE. otherwise.

Norsk Data ND-60.145.7 EN

184

ND FORTRAN Reference Manual
INPUT/0OUTPUT STATEMENTS

FORM=fm

where
fm is a character variable or a character array
element.

fm will be assigned the value FORMATTED if the file is
connected as formatted I/0, or UNFORMATTED if the file
is connected for unformatted 1/0.

I1f there is no connection, fm becomes undefined.

FORMATTED=fmt

where
' fmt is a character variable or a character array
element.

fmt will be assigned the value yes if formatted is an
allowed form for the file, or the value NO if FORMATTED
is not an allowed form for the file.

If it is not possible to determine whether FORMATTED 1is
an allowed form for the file, fmt will be assigned the
value UNKNOWN .

NAME =nme

where
nme is a character variable or a character array
element.

nme will be assigned the name of the file being inquired
about, i.e. the file named in the FILE= specifier, or
connected by a UNIT= specifier.

The value assigned to nme will not necessarily be
identical to the name in the FILE= specifier. The value
assigned to nme is a fully qualified file name, which is
suitable for use in the FILE= specifier of the OPEN
statement.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 185
INPUT/OUTPUT STATEMENTS

NAMED =nmd

where
nmd is a logical variable or a logical array
element.

nmd will be assigned a value .TRUE. if the specified
file has a name, or the value .FALSE. otherwise.

NEXTREC=nr

where
nr is an integer variable or an integer array
element.

nr will be assigned an integer value, plus one, of the
record number of the last record read, or written, to a
file connected for direct access. If the file is
connected, but no records have been read or written, nr
will be assigned to 1.

I[f the file is not connected for direct access, or the
position of the file is indeterminate because of a
previous error condition, nr becomes undefined.

NUMBER=num

where
num is an integer variable or an integer array
element.

num will be assigned the value of the unit currently
connected to the specified file.

If there is no unit connected to the specified file, num
becomes undefined.

Norsk Data ND-60.145.7 EN Rev.A

186

Note:

ND FORTRAN Reference Manual
INPUT/0UTPUT STATEMENTS

If the form of the INQUIRE statement is ingquired by
file, and the UNIT= specifier is set to -1, then the
NUMBER= specifier will be assigned the SINTRAN
logical device number.

OPENED=0d

where
od is a logical variable or a logical array
element.

od will be assigned the value .TRUE. if either the
specified file (specified by the FILE= specifier) or the
unit specified unit, is currently open, or the value
FALSE. if the file or unit is not open.

RECL=rc1

where
rcl is an integer variable or an integer array
element.

rcl will be assigned the value of the record length of a
file connected for direct access. The value is in bytes,
whether the file has been connected for formatted or
unformatted 1/0.

If the file is not connected, or if the file is
connected for other than direct access, rcl becomes
undefined.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 187
INPUT/0UTPUT STATEMENTS

SEQUENTIAL=seq

where
seq is a character variable or a character
array element.

seq will be assigned the value YES if sequential is one
of the allowed access methods for the file, or the value
NO if SEQUENTIAL 1is not one of the allowed access
methods for the file. If it is not possible to determine
whether SEQUENTIAL is allowed as an access method for
the file, seq will be assigned the value UNKNOWN.

UNFORMATTED=unf

where

unf is a character variable or a character
array element.

unf will be assigned the value YES if UNFORMATTED is an
allowed form for the file, or the value NO if
UNFORMATTED 1is not an allowed form for the file.

If it is not possible to determine whether UNFORMATTED

is an allowed form for the file, unf will be assigned
the value UNKNOWN.

Norsk Data ND-60.145.7 EN

188 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 189

CHAPTER 10

FORMAT SPECIFICATIONS

Norsk Data ND-60.145.7 EN

190 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 191
FORMAT SPECIFICATIONS

A format used 1in conjunction with formatted 1/0
statements provides information that directs the editing
between the internal representation and the character
strings of one or a sequence of records in the file.

A format specification provides explicit editing
information. An asterisk (*) as a format identifier in
an I[/0 statement indicates list-directed input/output,
see Section 9.2.3 on page 158.

10.1 FORHMAT

SPECIFICATION METHODS
Format specifications may be given either:

e in FORMAT statements, or

e as arrays of CHARACTER strings, CHARACTER variables,
or other CHARACTER expressions.

The FORMAT statement has the form:

FORMAT (F1, F2, F3, , Fn)

where
F1, F2,... etc. are format descriptors, described
in the next section.

The comma used to separate the descriptors may be
omitted in the following circumstances:

e before or after a slash or colon format descriptor

e between a P format descriptor and an F, E, D, or G
descriptor which follows immediately after it

The FORMAT statement must be labeled.
With character format specifications, as in the second

instance above, the expression must contain format
descriptor(s) enclosed in parentheses.

Norsk Data ND-60.145.7 EN

192 ND FORTRAN Reference Manual

FORMAT SPECIFICATIONS

10.2 FORMAT DESCRIPTORS

These descriptors describe the record structure of the
data, the format of the fields within the record, and
the conversion, scaling and editing of data within
specific fields. A list is given on the following page.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 193
FORMAT SPECIFICATIONS

DESCRIPTORS | COMMENTS

rfw.d
rtw.d
retw.dEe Floating-point numeric field descriptors
rbw.d
raw.d
rGw.d.te

riw
riw.m INTEGER field descriptors

e b ND FORTRAN Extension)
riw LOGICAL field descriptor

rA

rAw Alphanumeric data field descriptor

 &0& * i f i1f§§té?¥fomé£tdéstfiﬁtbrif~cf f;éNﬁjﬁﬁﬁféAN £¥te§sioh}§
‘ézw"; ' {ﬁHékédé§ima? fQ?ma£ desérfbicff:(NQ ?0RTRAN?£XtéﬁsiQ6}f
I , , ; , ; ;
"text' Text descriptors

sext* | (N FORTRAN Extension]
rX Field formatting descriptor | |

kP Numerical scale factor descriptor

Format control terminating descriptor

/ Record delimiting descriptor

Tc
TLe Positional editing descriptors
TR¢

SP Optionally positive sign editing descriptors
SS

BN
BZ Blank interpretation descriptors

Norsk Data ND-60.145.7 EN

194

Explanation:

ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

r is a repetition factor and is a nonzero unsigned
integer constant.

d and m are unsigned integer constants.

w, e, n and ¢ are nonzero unsigned integer
constants.

k is an optionally signed integer constant.
s is a string of characters.

Note: w is known as the field width and is the size in
characters of the field, the part of a record read on
input or written on output under the control of a format
specification.

In addition, repetition of groups of format descriptors
can be achieved by parentheses, e.g. r(F1, F2, ... ,Fn)
where Fi are format descriptors.

In ND FDRTRAN the maximum depth o o
parentheses 13 5

The following sections provide detailed descriptions of
the various types of format descriptors and the manner
in which they are written and employed.

10.2.1 Interaction between the Format Descriptors and the

I1/0 List

The execution of an I1/0 statement specifying a formatted
data transfer operation will initiate format control.
The contents of the I/0 list and the format
specifications are scanned in step. Whenever format
control encounters a repetition factor in a format
descriptor, it determines whether there is a
corresponding item in the I/0 list. If there is, it
transmits appropriately edited information between the
item and the record. If not, format control terminates.

A list item of type complex will reguire two
corresponding format descriptors of type F, E, D, or G.

For P, X, T, TL, TR, S, SP, SS, H, BN, BZ, slash, colon,

or text format descriptors there are no corresponding
items in the I/0 1ist, and format control communicates

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 195
FORMAT SPECIFICATIONS

information directly to or from the record.

[f format control encounters the rightmost parenthesis
of a complete format specification and another list item
is not found, format control terminates. It also
terminates if a colon descriptor is encountered in the
format specification and another Tist item is not found.

If the end of the format specification is reached and
more items remain in the 1ist, a new record is
established and the scan process is restarted. It
restarts either at the first item in the format
specification or, if parenthesised, with the last set of
descriptors within the format specification. (That is,
restarting at the first left parenthesis to the left in
the format specification just acted upon.)

A record is terminated by one of the following:

e A slash format descriptor.
e The rightmost parenthesis of the FORMAT.

e The end of the I/0 list is encountered, and the
rest of the format descriptors require 1/0 1list
items.

®

A colon descriptor is encountered, and there are
no more items in the [/0.

On input, only a single slash, /, will cause an
additional record to be read. A record is skipped when
two slashes, //, are encountered or a slash is followed
by the end of the format specifications.

If the record ends, due to the end of the format
specifications or a slash within them, then any data
Teft in the input record is ignored. If the input record
is exhausted before the data transfers are completed,
then the transfer proceeds as if the record were
extended with blanks.

On output, an additional record is written only when a
slash, /, is encountered in the format specifications.
Two consecutive slashes or one slash followed by the end
of the specifications will cause an empty record to be
written.

If the file is an internal file, then a record is
determined by the length of the internal data item. For
non-CHARACTER arrays, and for CHARACTER varijables, the
file contains Jjust cne record. For CHARACTER arrays,
each element is a record, the order of access being the
same as the order of implied subscripting, with the
first subscript varying most rapidly.

Norsk Data ND-60.145.7 EN

196

ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

,In ND ?ORTRAM recerds ona formatted externa} fwie ;
are delimited by the ASCII carrwage*return character

~ loctal 15}. Line- feeds (octal 12) w

jxmmad1ate}y

;ffollow a carrzage return are 3gnored n. 1nput

:fin NQ FORTRAN the maxwmum‘iength of a formatted

ﬁ*record 15 256 exc?udwng the de?3m1ters

10.2.2 Editing Provided by the Format Descriptors

10.2.2.1 HNumeric Editing

The I, F, E, D and G descriptors are used for the [/0 of
INTEGER, REAL, DOUBLE PRECISICN and COMPLEX data. The
following rules apply:

On input, leading blanks are not significant. The
interpretation of other blanks depends on whether any
BLANK = [(see the OPEN statement) specifier and
whether any BN or BZ control is currently in effect.
Plus signs may be omitted. A field of all blanks is
considered to be zero.

On input, with F, £, D and G editing, a decimal point
appearing in the input field overrides its specifica-
tjon in a format descriptor.

On output, the representation of a zero or positive
value in the field may be prefixed with a plus, as
controlled by the S, SP and SS descriptors. A
negative internal value will be prefixed by a
minus in the field.

On output, the representation in the field is right
justified. After editing, if the number of characters
is less than the field width, leading blanks will be
inserted. If the number of characters exceeds the
field width then the entire field of width w

is filled with asterisks.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 197
FORMAT SPECIFICATIONS

10.2.2.2 The 1 and J Format Descriptors

The Iw, Iw.m, and Jw descriptors are for INTEGER
editing, where the field for editing occupies w
positions. The specified I/0 list item must be of type
INTEGER.

In the input field, the character string must be in the
form of an optionally signed integer constant. On input
an Iw.m descriptor is treated identically to an Iw
descriptor.

The output field for the Iw descriptor will consist of
Teading blanks, if any, a minus sign if the internal
value is negative, or an optional plus if the internal
value is positive. This is followed by the magnitude of
the internal value expressed as an unsigned integer
constant and must consist of at least one digit.

The output field for the Iw.m descriptor is the

same as for the Iw descriptor except that the

unsigned integer constant consists of at least m digits
and, if necessary, leading zeros. The value of m must
not be greater than w. If it is zero and the internal
value is also zero, the output field will consist only
of blanks, regardliess of sign control.

Norsk Data ND-60.145.7 EN Rev.A

198 ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

Exampies:

VALUE FORMAT QUTPUT

1 I1 1
1234 15 1234
-1234 I5 -1234
0 I5 0
1234 I5.0 1234

0 15.0

12 15.4 0012
-12 5.4 -0012
0 5.4 0000

10.2.2.3 REAL and DOUBLE PRECISION

The F, E, D and G format descriptors specify the editing
of REAL, DOUBLE PRECISION, and COMPLEX data. An I/0 1ist
item corresponding to one of these descriptors must also
be REAL, DOUBLE PRECISION or COMPLEX.

10.2.2.4 The F Format Descriptor

The Fw.d descriptor implies that the field contains w
- positions, the fractional part of which consists of d
digits.

The input field consists of an optional sign, followed
by a string of digits optionally containing a decimal
point. If there is no decimal point, the rightmost
digits are interpreted as the fractional part of the
value. The basic form may be followed by an exponent of
the form:

e Signed integer constant, or

e E followed by zero or more bianks, followed by
an optionally signed integer constant, or

e D followed by zero or more blanks, followed by
an optionally signed integer constant.

An exponent containing an E is processed identically to
an exponent containing a D.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 199
FORMAT SPECIFICATIONS

The output field consists of blanks, if necessary,
followed by a minus if the internal value is negative,
or an optional plus otherwise. This is followed by a
string of digits containing a decimal point and
representing the magnitude of the internal value,
modified by any established scale factor., and rounded to
d digits. Leading zeros are suppressed up to the decimal
point, i.e. if the value lies between zero and one, the
first non-blank character represents the position of the
decimal point.

Examples:

VALUE FORMAT QUTPUT
1.2 F5.0 1.
-1.2 F5.0 -1.
1.2 F5.1 1.2
0.4 F5.2 .40
-0.4 F5.2 ~.40
0. F5.2 .00
1. F5.2 1.00
-1. F5.2 -1.00

10.2.2.5 Scale Factor: The P Format Descriptor

The P format descriptor specifies the scale factor in
the form:

kP

where
k is called the scale factor and is an optionally
signed constant.

Norsk Data ND-60.145.7 EN Rev.A

200

Example:

100
200
300
400
500
600

ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

The value of the scale factor is zero at the beginning
of execution of each I/0 statement. It applies to all
subsequently interpreted F, £, D and G descriptors until
another scale factor is encountered. It has the
following effect upon the editing:

e With F, E, and D format descriptors on input
(provided that no exponent exists in the field) and
the F format descriptor on output, the externally
represented number equals the internally represented
number multiplied by 10 * * k.

e On input, with F, E, D and G format descriptors, the
scale factor has no effect if there is an exponent in
the field.

e On output, with £ and D format descriptors, the basic
real constant part of the quantity (optional sign,
integer part, decimal point and fractional part) is
multiplied by 10 * * k. The exponent is reduced by k.

o On output, with G editing, the scale factor has no
effect unless the magnitude of the value is outside
the range for F editing. If the use of E editing is
required, the scale factor has the same effect as
using the E format descriptor on output.

REAL REALARR (4)
FORMAT (1X, Fl12.4, 2PFl12.4, F12.4, -2PF12.4)

FORMAT (1X, E12.4, 1X, 2PEl12.4, 1X, -1PE12.4, 1X, OPE 12.4)
FORMAT (1X, 4F12.4, ///)

FORMAT (1X, 4 (E12.4, 1X))

FORMAT (F12.4, 2PF12.4, -1PF12.4, -2PF12.4)

FORMAT (E12.4, 2PE13.4, -1PE13.4, OPE13.4)

READ (1,500) REALARR
WRITE (1,100) REALARR
WRITE (1,300) REALARR
READ (1,600) REALARR
WRITE {1,200) REALARR
WRITE (1,400) REALARR

Input and Output With F Editing:

1.6 .16E+1 160.E-2 1.6
1.6000 165.0000 160.0000 1.6000
1.6000 1.6000 1.6000 160.0000

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 201
FORMAT SPECIFICATIONS

Input and Output With E Editing:

2.5 .25E+1 2.5 250 .E-2
.2500E+01 25.000E-01 .0250E+03 .2500E+01
.2500E+01 .2500E+01 .2500E+02 .2500E+01

10.2.2.6 The E and D Format Descriptors

The Ew.d, Dw.d and Ew.dEe descriptors indicate that the
external field occupies w positions, the fractional part
of which consists of d digits (unless a scale factor of
greater than one is in effect) and the exponent part
consists of e digits. The e has no effect on input.

The form of the input field is the same as that for the
F format descriptor described above.

With a zero scale factor the form of the output would

be:
[+] X X eeee- Xd exp
X) G Xd being the d; most significant digits

a%terzrounding.

exp is a decimal exponent, which for the value 76 or
less will be of the form:

where
n is a decimal digit.

Norsk Data ND-60.145.7 EN Rev.A

202 ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

For the Ew.dEe descriptor, the form of the exponent is:

where the absolute value of the exponent must be:
(10 * *e) -1

The scale factor k, described above, controls the
decimal normalisation.

There are two cases to consider:

e ~-d ¢ k £0. The output field will contain (taking
the absolute value of k} k leading zeros and d-k
significant digits after the decimal point.

e 0 <k <«d+ 2. The output field will contain k
significant digits to the left of the decimal point
and d-k+1 significant digits to the right of the
decimal point.

Other values of k are not accepted.

Examples:
VALUE FORMAT QUTPUT
0. E12.4 .0000E+00
123. £12.4 .1230E+03
~-123. £12.4 -.1230E+03
123. E12.4E1 .1230E+3
-123. £12.4E1 -.1230E+3

10.2.2.7 The G Format Descriptor

The Gw.d and Gw.dEe descriptors indicate that w is the
width of the external field, the fractional part of
which contains d digits unless a scale factor of greater
than one is in effect. The exponent part consists of e
digits.

On input, the editing performed by the G format

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 203
FORMAT SPECIFICATIONS

descriptor is the same as that for F described earlier.

On output, the editing depends on the magnitude of the
internal value, N, in the following way:

If N <0.1 or N> 10""d, then editing performed by Gw.d on
output is the same as that by kPEw.d, and for Gw.dEe the
result is the same as that when using kPEw.dfe.

If 0.1 < N < 10""d, k (the scale factor) has no effect
and the results depend upon N as given below where F is
the format descriptor, and n takes the value 4 with the
Gw.d descriptor or e+2 for the Gw.dEe descriptor:

N Conversion Type
0.1 <N <1 Flw-n).d
1 <N < 10 Flw-n).d-1
10" (d-2) < N < 10" (d-1) Flw-n).1
10" (d-1) < N < 10""d Flw-n).0

The output field will be followed by n blanks.
Note that the scale factor has no effect unless N is
outside the range of values for effective F editing.

10.2.2.8 COMPLEX Data

Since this consists of separate pairs of real values the
editing is specified by two successive F, E, D, or G
format descriptors.

The first descriptor will specify the real part, the
second the imaginary part. The two descriptors may be

different and other non-repeatable descriptors may
appear between them.

10.2.2.9 S, SP and 5SS Format Descriptors

These edit descriptors are used to control the optional
plus signs in the output fields.

Norsk Data ND-60.145.7 EN

204

ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

If none of the edit descriptors are used, then optional
plus signs will not be printed.

If an SP descriptor is encountered in a format
specification, then subsequent optional plus signs will
be printed.

If an SS or S descriptor is encountered, then further
optional plus signs will not be printed.

10.2.2.10 The BN and BZ Format Descriptors

These descriptors specify the interpretation of non-
leading blanks in numeric input fields. Such blank
characters, at the beginning of the input statement
execution, are interpreted as zeros or are ignored,
depending upon the BLANK=specifier in the OPEN statement
in effect.

Upon encountering a BN descriptor in the format
specification, the non-leading blanks referred to above
will be ignored.

The effect of a BZ descriptor is to treat all such
blanks as zeros.

BN and BZ affect the I, F, E, D, G, 0 and Z editing
during input.

10.2.2.11 The Text Format Descriptor

This descriptor has the form 'text' which is equivalent
to a character constant. It causes a character string
{(which may include blanks) to be written from the
enclosed characters of the format descriptor itself.
An apostrophe edit descriptor is not valid on input. The
width of the field is the number of characters between
the delimiting apostrophes, but not including the
apostrophes themselves.

N0 FQRTRANfﬁa$ an a1£éh5at?vegféfm:~*#ext*h ‘3 ‘

If the asterisk is used as the text delimiter, then a
quote is treated as just another character.
Correspondingly, if the delimiter is a quote, then the
asterisk is treated as an ordinary character.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 205
FORMAT SPECIFICATIONS

10.2.2.12 The H Format Descriptor

The descriptor has the form:

nHs

It causes the n characters forming the string s to
be written on the output stream.

in ND FORTRAN the form Hs may be used for a
sxng?e character

An H descriptor must not be used on input.

10.2.2.13 The T, TL, TR, and rX Format Descriptors

These descriptors control positional editing and specify
at which position the next character will be transmitted
to or from the record.

The position indicated by a T descriptor may be in
either direction from the current position. On input,
this allows parts of a record to be processed more than
once, possibly with different editing.

On output, since this group of descriptors do not
themselves cause characters to be transmitted, they do
not affect the length of the record. If characters are
transmitted to or beyond the position specified
positions skipped are filled with blanks. The result is
as if the whole record were initialized with blanks.

In the Tc format descriptor, ¢ is the character position
to which, or from which the record transmission of the
next character is to occur.

With the TLc descriptor, the transmission is to occur at
a position ¢ characters backward from the current one.
{If the current position should be ¢, the transmission
to or from will start from position 1 {(one) of the
record.)

With the TRc descriptor, the transmission will occur at
a position c¢ characters forward from the present one.

Norsk Data ND-60.145.7 EN

206 ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

The rX format descriptor causes the transmission of the
next character to or from a record to occur at a
position r characters forward from the current position.
On input this position may be beyond the last character
of the record so long as no characters are transmitted
from such positions.

’°“**NU FGRTRAN et omwtted and 1 w171 be
’ssumed as zts va!ue

10.2.2.14 The Slash, /, Format Descriptor

This descriptor denotes the end of data transfer on the
current record. The following will occur:

e On input from a sequential file, the remaining
portion of the record is skipped and the next record
becomes the current record.

e On output to a sequential file., a new record is
created and becomes the last and current record of
the file.

e For a direct access file, the record number i is
increased by one and the file 1is positioned at the
beginning of the record having that number. This
record becomes the current record.

 ;tbe s?ash format ﬁescruptor can be
a rep?wcatwan factor G ,

F;}preceded

10.2.2.15 The L Format Descriptor

This descriptor has the form:

Lw

where
w indicates that the field occupies w
positions. The corresponding 1/0 list item
must be of type LOGICAL.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 207
FORMAT SPECIFICATIONS

The input field consists of optional blanks, optionally
followed by a decimal point, followed by T for true or F
for false. T or F may have additional characters
following them in the field.

The output field consists of w-1 blanks followed by T or
F according to whether the value of the internal LOGICAL
variable has the value .TRUE. or .FALSE.

10.2.2.16 The A Format Descriptor
The A [w] format descriptor is used with CHARACTER 1/0
Tist items.
If the optional field width w is used then the field
consists of w characters. If w is not specified, then
the number of characters in the field is the same as the

length of the I1/0 list item.

Let I be the length of the I1/0 Tist item. On input, if

then the rightmost I characters will be taken from the
input field. If however:

w characters will appear left justified with
T-w trailing blanks.

On output, if:

the output field will consist of w-1 blanks followed by
I characters from the internal representation.
I[f, however:

the output field will consist of the leftmost w
characters of the internal representation.

Norsk Data ND-60.145.7 EN

208

Example:

ND FORTRAN Reference Manual
FORMAT SPECIFICATIONS

VALUE FORMAT OUTPUT

“ABCDE' A ABCDE

"PORST' A3 POR

"PORST A8 bbbPORST
where

b represents a space character (blank).

10.2.2.17 The O Format Descriptor

In ND FORTRAN this descriptor is used for octal 1/0
for any of the data types ~ INTEGER REAL or DOUBLE

: PRECISION

On input, w characters from the 7nput record are
treated as an octal number. The bit representation
of the binary value is: then placad unconverted, in
the list item, right- 3U8t1f1§d and truncated or

padded with zeros on the Ieft

Example: ; ' .
The following examp?e is on an NB 1OO w1th 48 bwt
f]oatwng point hardware -
INPUT * FORMAT INTERNAL VALUE (Iﬂfsazﬁ*zif,
{Octal) - loctal)
137326 06 | . ; "~f :‘: i‘r13f325 '
2671 - ~7;‘~f i f00éé7i‘,'
| 37533235 s 133z35;_: °
. , . gREAt*G)
2000160000000002 016 040093 1aeéco 000002

‘f~right»3ustzfxed with trur

On output. the internal

t*reﬁrasentatwen is .
,ary 1ntege‘ and 15 output

treated as an unsigned

~ blanks on the Teft in & fzeid of;wxdth‘w';g; §,g>.»*

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 209
FORMAT SPECIFICATIONS

10.2.2.18 The Z Format Descriptor

';I;In ND FGRTRAN thws descriptcr is used for
o _hexadecwma? 1/0 for any of the data types INTEGER,
f“RﬁAL ar. DOUBLE PRECESIO& . :

. On 1nput w characters from the 3nput record are

_ treated as & hexadecwma? number The bit
grepresentat}on of the binary value is then p?aced

. unconverted, in the list item, right- justified and
ztr&ncated or padded wwth Zeros on the 1eft

:Fofkéxampﬂeiff

CINPUT "57:7f77:',FORMATF;ZINTERNAL QALUE‘(I&TEGER*&)
(Hexadeczma?) ;!_~;f¢'k~ ,f; - ~f;,]‘fﬂk(de€ima?)

.. -

- zs ... s
”~:?F00099392‘:;f ;>“,529._3 - - - . g

... Value [(REAL*8)
'iQQSOQOQDGOQQQOOQ*f ;"~f}f2161”19f; ';ff f5£9§ g
'J,~Bn outwut tbe 1nterna1 bxﬁ representatwon is -
 treated as an unsigned binary integer and is output

;f; r1ght 3ust1f1ed with truncation or padding with
‘~ffebianks on the 1eft 1n a fxe?d of w1dth W

Norsk Data ND-60.145.7 EN

210 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

'ND FORTRAN Reference Manual 211

CHAPTER 11

FUNCTIONS AND SUBROUTINES

Norsk Data ND-60.145.7 EN

212 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 213
FUNCTIONS AND SUBROUTINES

Functions and subroutines {also known as subprograms)
are procedures which can be called from within a program
as many times as required. These procedures may be
either internal (contained within the program in which
they are referenced) or external (self-contained
executable procedures that may be compiled separately).

These are the categories of procedures:

e Intrinsic functions
e Statement functions
e External functions
e Subroutines

The first three categories are referred to collectively
as functions. The last two, subroutines and external
functions are both referred to as externa] procedures

fpSectxon 11. 2 2 COﬂta1ns a tab?e of 311 the ;
INTRINSIC functions,including those defined in ANSI

~ FORTRAN 77 and a number of extra functions o

 implemented in ND FORTRAN Appendax D contains

, descrwptwons and a tab?e of funct10n or subroutwnes
~of a more general nature, provided in the FORTRAN
library. Appendxx L contaxns complet ;descrwptzons

~of all the available Monitor Calls, i.e. services

:~Drovwded by the operatwng system .-

Norsk Data ND-60.145.7 EN

214

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

11.1 DUMMY AND ACTUAL ARGUMENTS

Example:

Some of the entities used by functions and subroutines
may vary from one call to another. Such entities are
represented by dummy arguments of the same type and are
given in the form of a 1ist associated with the sub-
program identifier. The actual arguments, i.e., the
values the entities are to take for a particular
reference to the subprogram, are given in a
corresponding list associated with this reference.

A function to evaluate the arithmetic mean (average) of
two real numbers could be defined as:

FUNCTION AVER (A, B)
AVER = (A+B) / 2.0
RETURN

END

The first statement defines AVER as a function and
indicates that it has two dummy arguments, A and B. The
second statement demonstrates how to evaluate the
function. The third statement shows that control is
complete and is to return to the routine or program
which invoked this function. The END statement indicates
that the definition of this function is complete. These
statements are discussed in more detail later in the
chapter.

To use the function to calculate an average, the
following could be written:

P=AVER(X, Y)

where
X and Y are the actual arguments in this
invocation. The statement demonstrates the
invocation of AVER and the assignment of the
resulting function value to P. The actual
argument X is associated with the dummy argument
A, and the actual argument Y with the dummy
argument B.

The result, as defined above, is {A+B)/2.0 which, in
this case, is (X+Y)/2.

The result can be used as part of an expression in the
same manner as any other operand.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 215
FUNCTIONS AND SUBROUTINES

For example:

Example:

P=Q+AVER(1.0, T+V) * S

which evaluates the average of the constant 1.0 and T+V.
It then multiplies the result by S, adds (Q, and puts the
resulting sum in P.

Actual arguments may be constants {or their symbolic
names), function references, expressions involving
operators, and expressions enclosed in parentheses, if
and only if the associated dummy argument is 'read-
only', i.e. its value is not changed by the subprogram.

The type of each actual argument must agree with the
type of its associated dummy argument except when the
actual argument is a subroutine name, see Section 11.5,
on page 242 or an alternate return argument on

Section 11.7 on page 248.

In the previous example demonstrating the AVER function,
neither A nor B are in any way changed by the execution
of AVER, consequently the use of constants and
expressions is in order.

However, suppose a function called NEXTIN is defined to
read the next number from a fiie, and returns this
number in the dummy argument. Furthermore, it is a
LOGICAL function and indicates whether the next value
was read, by returning .TRUE. if that was the case, or
FALSE. if not. Al1 the numbers on the file can be
summed as follows:

S=0
10 IF (NEXTIN(X)) THEN
5=5+X
GO TO 10
ENDIF

Note: In ND FORTRAN this could be written more
neatly as: S :

§=0 : :

DO WHILE (NEXTIN{X))
: SQS"’X p
ENDDO

Since NEXTIN returns a value in its dummy argument, it
is i1legal to write NEXTIN (A + 1) or NEXTIN (35%2) as
there would be nowhere to set the value that NEXTIN
reads.

Norsk Data ND-60.145.7 EN

216

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

However, an array can be used for reading into, as
follows:

DIMENSION A (1000)
DO 10 I=1, 1000
IF (.NOT.NEXTIN{A({I))) GO TO 20
10 CONTINUE
20 CONTINUE
C HERE I CONTAINS THE INDEX BEYOND THE LAST ONE READ.

Upon execution of a function or subroutine reference, an
association is established between the corresponding
actual and dummy arguments. The first dummy argument
becomes associated with the first actual argument, the
second with the second and so on.

Argument association may be carried through more than
one level of procedure reference.

Argument association within a program unit terminates
when a RETURN or END statement in the program unit has
been executed.

Length of Character Dummy and Actual Arguments

Example:

For a character-type dummy argument, the associated
actual argument {also of type character) must have a
Tength equal to or greater than that of the dummy
argument. When the lengths differ, if e is the length in
characters of the dummy argument, then the e leftmost
characters of the actual argument become associated with
the dummy argument.

For an array name, the restriction on length is for the
entire array and not for each array element.

In the subroutine:

SUBROUTINE PRNAME (NAME)
CHARACTER NAME*20

WRITE (OUT, '(5X, A)") NAME
END

there 1is a character dummy argument that is assumed to

be of an exact length of 20, and it will write 20
characters on the file whatever the actual argument.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 217
FUNCTIONS AND SUBROUTINES

Thus if we have:

then:

CHARACTER ALPHA*26
DATA ALPHA='ABCDEFGHIJKLMNOPQRSTUVWXYZ'

CALL PRNAME (ALPHA (7:))

will cause the characters 'G' to 'Z' to be written.

If the intention is to write out exactly the actual
argument, then the appropriate declaration of the dummy

argument is:

CHARACTER NAME* (*)

Dummy and Actual Argument of Type NUMERIC

Example:

Normally, dummy and actual arguments have to be declared
with the same field width and scaling factor. In this
case there is no restriction in mixed arithmetic.

It is possible to declare a dummy argument of type
NUMERIC without specifying field width and scaling
factor.

SUBROUTINE S(N)
NUMERIC (*) N

In this case, the dummy argument may not be used in
mixed arithmetic.

11.1.1 Variables as Dummy Arguments

A dummy argument that is a variable may be associated
with an actual argument that is a variable, array
element, substring, or expression.

The dummy argument may be defined or redefined with the
subprogram if the actual argument is:

e a variable name

e an array element name

e a substring name

If, however, the actual argument is:

e a constant (or the symbolic name of a constant)

e a function reference

Norsk Data ND-60.145.7 EN

218

ND FORTRAN Reference Manual
FUNCTIONS AND SUBRGUTINES

e an expression involving operators
e an expression enclosed in parentheses

then the dummy argument must not be redefined within the
program.

11.1.2 Arrays as Dummy Arguments

Example:

The number and size of dimensions of an array in an
actual argument may differ from those of an array in an
associated dummy argument.

If the actual argument is an array name, then the
association between actual and dummy arguments occurs as
if the first element of the actual argument were the
actual argument.

If the actual argument is an array element name then the
dummy argument is associated with an array whose first
element is the actual argument.

The dummy argument must be wholly contained within the
actual argument.

Suppose there is a function defined to compute the
arithmetic mean (average) of an array. It contains two
dummy arguments, the array and the number of elements in
the array.

Thus:

FUNCTION ARMEAN (A, N)

DIMENSION A (1:N)
C ADD UP THE ARRAY FIRST, THEN DIVIDE BY THE NUMBER OF
C ELEMENTS

R=0
DO 10 I= 1, N
R=R+A(1)
10 CONTINUE
ARMEAN = R/N
RETURN
END

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 219
FUNCTIONS AND SUBROUTINES

This function can be used to find the arithmetic mean of
whole arrays or parts of them, provided the parts are
contiguous. If we have, for example:

DIMENSION AGES (1:100), SIZES (1:50, 1:50)

then the average of all ages is:

ALLAGE=ARMEAN (AGES, 100)

or, the first 10 ages would be given by:
FIRST=ARMEAN (AGES (1), 10)

or, the last 10 ages (91 to 100 inclusive):

FINAL = ARMEAN (AGES (91), 10)

But the mean of the second, fourth, sixth ... etc.

elements cannot be computed since they are not
contiguous.

s

When using a two-dimensional (or higher) array, the
dummy argument is associated with contiguous locations
in the actual argument, i.e. the first subscript varies
most rapidly. Thus, clearly:

ALLSTZE=ARMEAN (SIZES, 50%50)
will compute the mean of all! sizes, but:
SINGLE=ARMEAN (SIZES (1, 1), 50)

will examine SIZES (1, 1), SIZES (2, 1), SIZES (3, 1)...
SIZES (50, 1).

11.1.3 Procedures as Dummy Arguments

Example:

A dummy procedure is a dummy argument identified as a
procedure. An exampie of its use is given below.

If a routine is required for approximate evaluation of
an integral using Simpson's rule on ten intervals, then
for it also to apply to any function supplied by the
caller, the definition might be as follows:

]

Norsk Data ND-60.145.7 EN

220

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

FUNCTION SIMPSN (LO, HI, F)
REAL LO, HI, F

THIS MAKES IT CLEAR THAT F IS AN ENTRY POINT THAT CAN
BE INVOKED

OO,

EXTERNAL F
C INTERVAL SIZt
H = (HI - LO} / 10.0
C ADD UP VALUES OF FUNCTIONS
R = F (LO) + F (HI)
o010 I =1, 9,2
R=R+R*F (LO+T*H)
10 CONTINUE
DO 201 =2,9, 2
R=R+2*F (LO+ TI*H)
20 CONTINUE
C FINAL CALCULATION
SIMPSN = R * H/3.0
RETURN
END

Note that it is not mandatory to have an EXTERNAL
statement, in the function SIMPSN, but it is strongly
recommended, so as to make the intention clear.

To evaluate the integral of one of your own functions
{(i.e. one that you have defined yourself), write:

FUNCTION OWN (X)
OWN=(1+X*X) ™" (-1)
RETURN

END

and call the Simpson routine with:
VAL = SIMPSN (0.5, 1.0, OWN)

Note that in this case, i.e. defining the function OWN,
the program unit containing the call to the function,
SIMPSN,in the statement ''VAL=...'', requires a
statement:

EXTERNAL OWN

If the invocation of SIMPSN is the only place OWN
appears in this program unit, the EXTERNAL statement is
required to inform the compiler that OWN is the name of
an external procedure.

To evaluate the integral using an INTRINSIC function,
for example, the trigonometric function SIN from 0 to 1
radians, the following invokes the function SIMPSN:

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 221
FUNCTIONS AND SUBROUTINES

INTRINSIC SIN
QUAD=SIMPSN(0.0,1.0,SIN)

This program unit must contain the INTRINSIC statement
to use the INTRINSIC SIN function.

The argument passed to the function SIMPSN, is the
specific name of the relevant INTRINSIC function, i.e.
SIN for a REAL argument giving a REAL result. It is not
the generic name SIN which gives access to the variants
of SIN for REAL, DOUBLE or COMPLEX type arguments.

Beware that a symbolic name passed as a dummy argument
must not occur in both an INTRINSIC and an EXTERNAL
statement, within the same program unit. An INTRINSIC
statement will cause the supplied functions to be used.
An EXTERNAL statement will cause a user written function
to be used. This could be a user defined version of a
SIN function to be used instead of the supplied
function; note that if this is done, the generic name
SIN is no longer available in this program unit.

11.1.4 Asterisks as Dummy Arguments/Alternative Return
Arguments

A dummy argument that is an asterisk may appear only in
a dummy argument list of a SUBROUTINE statement or ENTRY
statement in a subroutine subprogram.

An asterisk dummy argument can only be associated with
an actual argument that is an alternate return argument
in the relevant CALL statement, see Section 11.7 on
page 248.

An alternative return actual argument must be a
statement label preceded by an asterisk, as it appears
within the argument 1ist of a CALL statement, see
Section 11.7.1 on page 248.

Norsk Data ND-60.145.7 EN

222

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

11.2 INTRINSIC FUNCTIONS

INTRINSIC functions are supplied by FORTRAN and have
special meanings. The specific names that identify the
INTRINSIC functions, their generic names, function
definitions, argument type, and result type

appear in the table on page 225.

Note: An IMPLICIT statement does not change the type of
an INTRINSIC function.

11.2.1 Specific Names and Generic Names

Example:

Generic names simplify the referencing of INTRINSIC
functions since the same function may be used with more
than one argument type.

If a generic name is used to reference an INTRINSIC
function, the result type {except for those functions
performing type conversion, nearest integer, and
abslute value with a complex argument) is the same as
the argument type.

For the cosine routine, whose generic name is COS, the
specific names are COS, DCOS, and CCOS. If I, R, D, and
C are variables of type INTEGER, REAL, DOUBLE PRECISION,
and COMPLEX respectively, then:

e COS {(R) will invoke the routine called COS

e COS (D) will invoke DCOS since it requests the
double precision version

e COS (C) will invoke the complex oversion CCOS

‘Note: In ND FORTRAN, £0S{1) can be used to?Cf“
to REAL, since €OS i1s a specxfic name for tt
“functzon of R£A¥, a?guments

Only a specific name may be used as an actual argument
when the argument is an INTRINSIC function. (However,
the names INT, IFIX, IDINT, FLOAT, SNGL, REAL, DBLE,
CMPLX, ICHAR, CHAR, LGE, LGT, LLE, LLT, MAX, MAXO,
AMAX1, DMAX1, AMAXO, MAX1, MIN, MINC, AMIN1, DMINI1,

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 223
FUNCTIONS AND SUBROUTINES

AMINO, MINL1, TINT, I2INT, DFLOAT, DCMPLX, ININT, I2NINT,
I2DNINT, I2ABS, IMOD, I2MOD, I2SIGN, I2DIM, IMAXO,
IMINO, IAND, I2AND, IOR, I20R, IEOR, I2EOR, NOT, I2NOT,
ISHFT, I2SHFT, IBIT, 1I2BIT, CLBIT, 1I2CLBIT, STBIT,
[12STBIT, GETBF, I2GETBF, PUTBF, I2PUTBF must not be used
as actual arguments.)

Otherwise, the actual arguments must agree in order,
number, and type with the specifications of the table
and may be any expression of the specified type. An
actual argument in an INTRINSIC function reference may
be any expression except a character expression of
unknown length {one involving concatenation of an
operand having its length given by an asterisk in
parentheses, unless the operand is the symbolic name of
a constant).

Norsk Data ND-60.145.7 EN Rev.A

224 ND FORTRAN Reference Manual
FUNCTIONS AND SUBRQUTINES

11.2.2 Referencing an INTRINSIC Function

The reference to an INTRINSIC function uses its assigned
name as an operand in an arithmetic or logical
expression.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 225
FUNCTIONS AND SUBROUTINES

TAAE (F INTRINSIC FUNCTICNS

INTRINSIC Number
of Generic [Specific Type of
Function Definition Arguments [Name Name Argument Function
Type Conversion {Conversion 1 INT - Any arith Default int,
to Integer IFIX Real*4 Integertd
INT{a) IDINT Real*§ Integer+*4
See Note 1 TINT Any arith Integer*4
I2INT Any arith Integer+*2
Conversion 1 REAL REAL Any arith Real*4
to Real FLOAT Integer*4 Real *4
See Note 2 SNGL Real*8 Real+*4
Conversion 1 DBLE DBLE Any arith Real*#8
to Double DFLOAT Integer*4 Real*8
See Note 3
Conversion 1 or 2 CMPLX CMPLX Any arith Complex*8
to Complex DCMPLX Any arith Complex*16
See Note 4
Conversion 1 - ICHAR Character*1 |Default int.
to Integer
See Note 5
Conversion 1 - CHAR Integerx2 Character*i
to Character
See Note 3
Truncation INT(a) 1 AINT AINT Real™*4 Real+4
See Note 1 DINT Real =8 Real*§
Nearest Whole INT{a+.5) if a>0 1 ANINT ANINT Real =4 Real g
Number INT(a-.5) if a<0 DNINT Real*s Real #8
Nearest Integer |[INT(a+.5) if a>0 1 NINT - Realsq Default int.
INT(a-.5) if a<0 ININT Real 4 Integer*4
I2NINT Real x4 Integer*x2
IDNINT Real~8 Integer*4
I2DNINT [Real*8 Integer+2
Absolute Value , a [1 ABS IABS Integer+~4 Integer*4
12ABS Integer*2 Integer*2
SeezNote ? ABS Real»*4 Real*4
(ar +ai) /2 DABS Real*8 Real*8
CABS Complex*8 Real*4
CDABS Complex*16 [Real*8

Norsk Data ND-60.145.7 EN Rev.A

226

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

INTRINSIC Number
of Generic |Specific Type of
Function Definition Arguments jName Name Argument Function
Remainder al—INT(a la)*a2 2 MOD - Default int {Default int
See Note 1 IMOD Integer*4 Integer*4
12M0D Integer*2 Integer*2
AMOD Real*4 Real *4
DMOD Real*8 Real#*§
Transfer of Sign ! a1 if a 2 0 2 SIGN ISIGN Integer*4 Integer+*4
—] a if a <0 1251IGN Integer*2 Integer+*2
SIGN Real*4 Real*4
DSIGN Real*8 Real*8§
Positive a -a_if a »a 2 DIM IDIM Integer*4 Integer*4
Difference 0 if2a S 31 2 12DIM Integer*2 Integer*2
! DIM Real*4 Real*4
DDIM Real*8 Real*8
Double Precision DBLE(ai)*DBLE(az) 2 DPROD DPROD Real#4 Real*8
Multiply
Choosing Maximum {max(a ,a_,...) 2 2 MAX MAX0 Default int |[Default int
Value See Note 9 IMAXO Integer*4 Integer 4
12MAXO Integer*2 Integer*2
AMAX1 Real*4 Realw*4q
DMAX 1 Real*8 Real*8
- AMAXO Default int |Real*4
- MAX1 Real*4 Default int
Choosing Minimum minfa ,a_,...) Z 2 MIN MINOC Default int [Default int
Value See Note 9 IMING Integer¥4 Integer*4
I12MINC Integer*2 Integer*2
AMIN{ Real*4 Real*4
DMIN1 Real*8 Real*§
- AMINO Default int [Real*4
- MIN1 Real*4 Default int
Length Length of 1 LEN LEN Character Default int
Character Entity
See Note 11
Index of Location of 2 INDEX INDEX Character Default int
a Substring Substring a
in String a
See Note 10
Imaginary Part ai 1 IMAG AIMAG Complex*8 Real¥*4
of Complex See Note 6 DIMAG Complex*16 |Real*8
Arguments
Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 227
FUNCTIONS AND SUBROUTINES
INTRINSIC Number
of Generic |Specific Type of
Function Definition Arguments [Name Name Argument Function
Conjugate of a (ar,-ai) 1 CONJG CONJG Complex*8 Complex*§
Complex Argument CDCONJG |Complex*16 |Complex*1i6
Square Root J; 1 SQRT SQRT Real*4 Real*4
See Note 8 DSQRT Real*8 Real*8
CSQRT Complex*8 Complex*8
CDSQRT Complex*16 [Complex*1i6
Exponential eXka 1 EXP EXP Real*4 Real*4
DEXP Real*8 Real*8
CEXP Complex*8 Complex*8
CDEXP Complex*16 |[Complex*16
Natural log (a) 1 LOG ALOG Real*4 Real*4
Logarithm
See Note 8 DLOG Real*8 Real*8
CLOG Complex*8 Complex*8
CDLOG Complex*16 |Complex*16
Common log 10(a)} 1 LOG10 ALOG10 Real*4 Real*4
Logarithm
DLOG10 Real*8 Real*8
Logarithm log 2(a) 1 L0G2 ALOG2 Real*4 Real*4
(base 2)
DLOG2 Real*8 Real*8
Sine sin{a) 1 SIN SIN Real*4 Real*4
See Notes 7,8 DSIN Real*8 Real*§
CSIN Complex*8 Complex*8
CDSIN Complex*16 [Complex*16
Cosine cos(a) 1 cos Ccos Real*4 Real*4
See Notes 7,8 DCOS Real*§ Real*8
CCos Complex*8 Complex*8
CDCos Complex*16 |[Complex*16
Tangent tan{a) 1 TAN TAN Real*4 Real*4
See Note 7 DTAN Real*8 Real*8
Arcsine arcsine(a) 1 ASIN ASIN Real*4 Real*4
See Note 7 DASIN Real*8 Real*§
Arccosine arccosin(a) 1 ACOS ACOS Real*4 Real*4
See Note 7 DACOS Real*8 Real*8

Norsk Data ND-60.145.7 EN Rev.A

228

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

INTRINSIC Number
of Generic |Specific Type of
Function Definition Arguments {Name Name Argument Function
Arctangent arctan(a) 1 ATAN ATAN Real*4 Real*4
DATAN Real*8 Real*8
arctan(ai.az) 2 ATANZ2 ATANZ2 Real*4 Real*4
DATANZ Real*8 Real*8
See Note 7
Hyperbolic sinh(a) 1 SINH SINH Real*4 Real*4
Sine DSINH Real*8 Real*8
Hyperbolic cosh(a) 1 COSH COSH Real*4 Real*4
Cosine DCOSH Real*8 Real*8
Hyperbolic tanh(a) 1 TANH TANH Real*4 Real*4
Tangent DTANH Real*8 Real*8
Lexically a12 a2 2 - LGE Character Default log
Greater
Than or Equal See Note 12
Lexically a >a2 2 - LGT Character Default log
Greater than
See Note 12
Lexically aii a2 2 - LLE Character Default log
Less
Than or Equal See Note 12
Lexically a1<a2 2 - LLT Character Default log
Less than
See Note 12
AND arg 1.AND.arg 2 2 IAND IAND Integer¥x4 Integer*4
See Note 13 12AND Integer*2 Integer*x2
OR arg 1.0R.arg 2 2 I0R IOR Integer*4 Integer¥*4
See Note 13 I20R Integer*2 Integer*2
Exclusive OR arg 1.NEQV.arg 2 2 IECR IEOR Integer*4 Integer*4
See Note 13 I2EOR Integer*2 Integer*2
NOT logical 1 NOT NOT Integer*4 Integer*4
complement I2NOT Integer*2 Integer*2
Bit Shifting shifts value 2 ISHFT ISHFT Integer*4 Integer*4
left or right I2SHFT Integer*2 Integer*2

See Note 14

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

229

INTRINSIC Number
of Generic |Specific Type of

Function Definition Arguments {Name Name Argument Function
Bit Extract 0 if bit arg 2 of 2 IBIT IBIT Integer*4 Integer#*4

arg 1 is 0,else -1 12BIT Integer*2 Integer*2

See Note 15
Clear bit sets bit arg 2 2 CLBIT CLBIT Integer*4 -

of arg 1 to O I2CIBIT |Integer+*2 -

See Note 15
Set bit sets bit arg 2 2 STBIT STBIT Integer+*4 -

of arg 1 to 1 I2STBIT |Integer#2 -

See Note 15
Get bit See Notes 15,16 3 GETBYF GETBF Integer+*4 Integer+4
field 12GETBF |Integer+*2 Integer*2
Set bit See Notes 15,16 4 PUTRBT PUTBF Integer*4 Integertd
field 12PUTBF |Integer+*2 Integer*2

Norsk Data ND-60.145.7 EN

230

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

NOTES ON TABLE OF INTRINSIC FUNCTIONS

(1)

(4)

For a of type integer, INT (a) = a. For a of type
real or double precision, there are two cases:

o if |a| <1, INT(a)=0:
e if Ja| >1, INT(a)

is the integer whose magnitude is the largest
integer that does not exceed the magnitude of a and
whose sign is the same as the sign of a. For
example:

INT (-3.7) = -3

For a of type complex, INT (a) is the value obtained
by applying the above rule to the real part of a.

For a of type real, IFIX (a) is the same as INT (a).

The result of INT is the default integer type for
this compilation. (See "DEFAULT command”, Section
14.24.1 on page 293).

To convert to INTEGER*2, use IZINT, and to
INTEGER*4, use IINT.

For a of type real, REAL (a) is a. For a of type
integer or double precision, a 1s converted to type
REAL. If significant bits are lost, the result is
truncated. If a has type complex, REAL (a) is the
real part of a.

If a is of type integer, FLOAT (a) is the same
as REAL (a).

For a of type double precision, DBLE (a) = a .

For a type of integer or real, the

result is converted to double precision so that no
significant bits can be lost in conversion.

CMPLX may have one or two arguments. If there is one
argument, it may be of type integer, real, double
precision, or complex. If there are two arguments,
they may be of type integer, real, or double
precision, but must both be of the same type.

If a has type complex, CMPLX (a) = a. For a of type

integer, real, or douhle precision, CMPLX (a) is the
complex value whose real part is REAL (a) and whose

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 231
FUNCTIONS AND SUBROUTINES

imaginary part is zero.

is the complex value whose real part

)
“and whose imaginary part is REAL (az).

CMPLX (a , a
is REAL ial)

DCMPLX acts analogously with a result of DOUBLE
COMPLEX.

ICHAR provides a means of determining the position
of a character in the collating sequence, which for
ND machines 1is the ASCII sequence. There are 128
values in this sequence. For example, the letter A
is number 65, and the first (NUL) is 0 (zero).

The argument a is a character of length 1.

In ND FORTRAN, if the ?ength'ds greater than 1, the‘
ﬁﬂfirgt character is used No check is made to see. Cif
 the value 1is more than 127; hence care should be
taken if this is used on values where the par1ty bit
; has not been c!eared La ; :

(7)

(8)

For any characters c1 and ¢, lc LE.c) is true if
and only if (ICHAR (& LE.ICHAR { 3) is true,
and {c¢ .EQ.c) 1is trué 1f and only 1f (ICHAR

(ci).Eb.ICHAﬁ (c 1) is true.

The result is of default integer type (see Section
14.24.1, on page 293).

CHAR (1) returns the character in the ith position
of the collating sequence. The value is of type
character of length one. i must be an integer
expression whose value must be in the range 0<i1¢128.
In ND FORTRAN, no check is made that the integer is
in the restricted range; hence care must be taken if
narity bits are being manipulated.

ICHAR (CHAR (1)) i for O«¢icles

CHAR (ICHAR (c)) ¢ for any character c.

i1

A complex value is expressed as an ordered pair of
reals, {ar, ai), where ar is the real part and ai is
the imaginary part.

A1l angles are expressed in radians.

The result of a function of type complex is the

Norsk Data ND-60.145.7 EN

232

(9)

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES
principal value.
{See the restrictions which follow these notes, on

page 234.)

A11 arguments in an INTRINSIC function reference
must be of the same type.

ffln ND FGRTRAN arguments are autom&t‘ca11y convevted
_to the hzghest order data type, see Section 5.1.1,
;fen page 82 accordwng to the norma? rgTes Qf ogerand .

(10)

INDEX (a , a_) returns an integer value indicating
the star%ingzposition within the character string a
of a substring identical to string a . If a occurs’
more than once in a the starting p%swt1on of the
first occurrence is' returned.

If a_ does not occur in a , the value zero is
retufned. Note that zero is returned if

LEN (a)<LEN {a_)}. Zero is also returned if the
secondlargumentzis a null string.

The value of the argument of the LEN function need
not be defined at the time the function reference is
executed.

LGE {a , a_) returns the value .TRUE. if a =a

or if & fbdllows a_ in the collating sequeﬁce
describdd in Ameridan National Standard Code for
Information Interchange, ANSI X3.4-1977 (ASCII).
Otherwise, it returns the value .FALSE..

LGT (a , a_) returns the value .TRUE. if a follows
he %o]]atwng sequence described in !

AﬁSI X3.4-1977 (ASCII}, and otherwise returns the

value .FALSE..

LLE (a , a_) returns the value .TRUE. if a =a_ or

if a brecédes a_ in the collating sequencé

in ANST X3.4-1977 (ASCII), and otherwise returns the
value .FALSE..

LLT (a , a_) returns the value .TRUE. if a precedes
a 1in the Collating sequence described in YANST
x3.4-1977 {ASCII), and otherwise returns the value
JFALSE. .

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 233
FUNCTIONS AND SUBROUTINES

If the operands for LGE, LGT, LLE, and LLT are of
unequal length, the shorter operand is considered as
if it were extended on the right with blanks to
match the Tength of the longer operand.

{13) The logical operators are defined for integers in ND
FORTRAN by applying the operator to each bit
position of the arguments independently. These
functions have identical results to the logical
operators, see Section 5.4 on page 92.

(14) ISHFT f{arg 1, arg 2) shifts the bits in arg 1 by
arg 2 positions. If arg 2 is positive, the shift is
to the left (i.e. towards the highest order bit). If
arg 1 is negative, the shift is to the right.
In both cases, zeros are moved into the vacated bit
positions.

For arg 1 of type INTEGER*2, -16farg 2<16
and for arg 1 of type INTEGER*4, -32 {arg 2<32.

(15) Bits are counted from the rightmost (least
significant) bit, which is labeled 0. The leftmost
bit is number 15 for INTEGER*2, and 31 for
INTEGER*4 .

The entry points CLBIT, I2CLBIT, STBIT, I2STBIT are
subroutine entries. They may only be invoked by a
CALL statement, and they return no value.

{16) GETBF and PUTBF may only be used 1in
ND-500.

GETBF: The first argument specifies the operand
where the bit field is taken from. The second
argument defines the bit number where the bit field
starts. The third argument specifies the number of
bits in the bit field.

DEST = GETBF (SOURCE1l, STARTB, BTWIDTH)

PUTBF: The second and third arguments specify the
bit field as in GETBF. The fourth argument holds the
bits that that are going to be stored in the first

Norsk Data ND-60.145.7 EN Rev.A

234

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

argument's bit map.

DEST = PUTBF (SOURCE1, STARTB, BTWIDTH, SOURCEZ)

RESTRICTIONS ON RANGE OF ARGUMENTS AND RESULTS

Restrictions on the range of arguments and results for
INTRINSIC functions when referenced by their specific
names are as follows:

(1)

(2)

Remainder: The result for MOD, AMOD, and DMOD is un-
defined when the value of the second argument is
Zero.

Transfer of Sign: If the value of the first argument
of ISIGN, SIGN, or DSIGN is zero, the result is
zero, which is neither positive nor negative.

Square Root: The value of the argument of SORT and
DSORT must be greater than or equal to zero. The
result of CSORT is the principal value with the real
part greater than or equal to zero. When the real
part of the result is zero, the imaginary part is
greater than or equal to zero.

Logarithms: The value of the argument of ALOG, DLOG,
ALOG10, DLOG10, ALOG2 and DLOG2 must be greater than
zero. The value of the argument of CLOG must not be
(0., 0.). The range of the imaginary part of the
result of CLOG is:

pi < imaginary part < pi.
The imaginary part of the result is pi only when the

real part of the argument is less than zero and the
imaginary part of the argument is zero.

Trigonometric functions: The values of the complex

circular functions are defined as follows:

If z is complex and z = x+iy, where x,'y are real,
then:

sin (z)
cos (z)

sin (x) cosh (y) + i cos (x} sinh (y)
cos {x) cosh (y) - i sin (x) sinh (y)

[E.)

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 235
FUNCTIONS AND SUBROUTINES

The fo??ow1ng INTRINSIC functzons are ND FORTRAN
extensions:

'doubTe compiex functions
CDSIN, CDCOS, CDEXP CDLOG CDSQRT CDABS,;U
DCMPLX DIMAG ’,,’ -

109 to base 2
il LOG2 ALOGZ QLOGZ

1nteger*2 funct%ons ﬁ ~:v5' k ‘*'~1; o
[ZMING, T2MAXO, 12MOD, 12ABS, 1251GN, 120

integer*4 functiOﬁS::‘¢
TMING, TMAXO, IMOD

conversions:___=___
IZNINT, IIN?;kIZNINT; INLNT;;IZQNINT,7DFLQATT_ o

generic names :
IMAG '

bit operations: .

IAND, I2AND, IOR, I20R, IEOR, IZEOR ISHET, [12SHFT,
NOT, I2NOT, IBIT, I2BIT, CLBIT I2CLBIT, STBIT,
testeIY -

Norsk Data ND-50.145.7 EN

236

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

11.3 STATEMENT FUNCTIONS

Example:

A statement function is a procedure specified by a
single statement that is similar in form to an
arithmetic, logical, or character assignment statement.
This statement is nonexecutable and not part of the
normal execution sequence. However, these definitions
must follow all declaratives and precede executable
statements.

The general form of a statement function is:

symb ([argl, arg2, ...])=e

where
symb is the symbolic name of the statement
function
arg is a dummy argument, and
e is an expression.

The relationship between symb and e must conform to the
standard assignment rules, see Chapter 7 on page 115.

The Euclidean distance between points (X1, Y1) and (X2,
Y2) could be represented by:

DIST (X1, Y1, X2, Y2) = SQRT ((X1-X2)**2+(Y1-Y2)**2)

To use this function to evaluate the distance between
the i~th and j-th points represented by arrays A (for
the X's) and B (for the Y's), the following could be
written:

DIST (A (I}, B (I), A (J), B (J))

It is not necessary to restrict the operands in the
expression to the statement function's dummy arguments.
As an example, suppose the values A, B and C are defined
in a COMMON block, then the evaluation of a quadratic
expression with these coefficients could be defined as:

QUADR (X) = (A*X+B) * X+C

The dummy argument names have the scope of the statement
function only.

A statement function produces only one value, that is,
the result of the expression it contains.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 237
FUNCTIONS AND SUBROUTINES

The actual arguments must agree in order, number, and
type with the corresponding dummy arguments. An actual
argument may be any expression except a character
expression involving concatenation of an operand whose
length specification is an asterisk in parentheses,
unless the operand is the symbolic name of a constant.

In ND FORTRAN however converswon wx?? be carrwed
out, where posswb?e if the actua1 and dummy
arguments are not of the same type

11.3.1 Statement Function Restrictions

A statement function may be referenced only in the
program unit that contains the statement function
statement.

A statement function statement must not reference
another statement function which appears in subsequent
lines of the program unit.

The symbolic name identifying the statement function
must not be used as a symbolic name in any specification
statement (except in a Type statement for specifying the
type of function) or as the.name of a common block in
the same program unit.

An external function reference in the expression e must
not cause a dummy argument of the associated statement
function to become undefined or redefined.

The symbolic name of a statement function is a local
name, see Section 1.3 on page 6, and must not be the
same as the name of any other entity in the program unit
except the name of a common block.

The symbolic name of a statement function may not be an
actual argument. It must not appear in an EXTERNAL
statement.

In ND FORTRAN, if an actua? argument d1ffers 1n type
, from the ccrrespondvng dummy argument then the

dummy argument

Norsk Data ND-60.145.7 EN

238

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

A statement function statement in a function subprogram
must not contain a reference to the name of the function
subprogram or an entry name in the function subprogram.

11.3.2 Referencing a Statement Function

For example:

A statement function is referenced by using its function
reference in an expression.

Note that if a statement function has no dummy

arguments, its definition and reference must still
include empty argument lists.

LOGICAL CONSEC

CONSEC () = ABS (X-Y) .EQ. 1
IF (CONSEC ()) THEN
ENDIF

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 239
FUNCTIONS AND SUBROUTINES

11.4 EXTERNAL FUNCTIONS

External functions are both external procedures and
function subprograms. They consist of a FUNCTION
statement followed by a sequence of FORTRAN statements
which define desired operations. They may also contain
one or more RETURN statements and must be terminated by
an END statement.

The form of a FUNCTION statement is:

[type] FUNCTION name [{[argl [,arg2] ...]1)]

where
type is either INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, NUMERIC {fw,sc) or CHARACTER
[*I] where I is the length of the
result. I may have any of the forms of
those allowed in the CHARACTER statement,
except that an integer constant expression must
not include the symbolic name of a constant.
The default for I is one.
(Note: type may be specified in a Type
statement instead. The normal implicit rules
apply if neither form is used.)

Name is the symbolic name of the function sub-
program in which the FUNCTION statement
appears; it is an external function name.

arg is a dummy argument.

The symbolic name of the function subprogram must appear
as a variable name in this subprogram. Its value on
execution of a RETURN or END statement in the

subprogram is the value of the function.

An external function may also modify one or more of its
dummy arguments.

11.4.1 Actual Arguments for an Extermal Function

Actual arguments in the function reference must agree in
order, number and type with the corresponding dummy
arguments in the referenced function. An exception to

Norsk Data ND-60.145.7 EN Rev.A

240

ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

this rule is when a subroutine name appears as an actual

argument, because subroutine names do not have a type.

Actual argumeﬁts may be:

e An expression. (Except a character expression of
unknown length, e.g. one involving concatenation of
an operand whose length is given by an asterisk in
parentheses, unless the operand is the symbolic name
of a constant.)

e An array name

e An intrinsic function name

e An external procedure name

e A dummy procedure name (see Section 11.1.3, on
page 219).

Note that an actual argument in a function reference may
be a dummy argument in a dummy argument list within the
same subprogram.

11.4.2 Function Subprogram Restrictions

A FUNCTION statement should only appear as the first
statement of a function subprogram. A function
subprogram may contain any other statement except a
BLOCK DATA, SUBROUTINE, or PROGRAM statement.

The symbolic name of an external function is a global
name and cannot, therefore, be the same as any other
global name.

A function specified in a subprogram may be referenced
in any other procedure subprogram or in the main pro-

gram. A function subprogram must not refererice itself,
either directly or indirectly.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 241
FUNCTIONS AND SUBROUTINES

For example:

statenent functions.

If a function has no dummy arguments, its FUNCTION
statement may omit the argument list. But its reference
may not omit the list.

CHARACTER*1 FUNCTION NEXTCH
READ (IN, '(A1)') NEXTCH
RETURN

END

then the form of the invocation must be, as in this
example:

IF (NEXTCH({).EQ.'+") GO TO 10

Norsk Data ND-60.145.7 EN

242 ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

11.5 SUBROUTINES

A subroutine is an external procedure which is
identified by a SUBROUTINE statement.

The SUBROUTINE statement must be the first statement of
the subroutine subprogram and it has the form:

SUBROUTINE name [([argl [,arg2] ...1}]

where
pame is the symbolic name of the subroutine sub-
program in which the SUBROUTINE statement
appears

argl... is a dummy argument list consisting of
variable names, array names, or procedure names.
A dummy argument can also be an asterisk, see
page 221.

Note: If there are no dummy arguments, either of the
forms, name or name(), can be used in the SUBROUTINE
statement. Likewise a subroutine can bz referenced,
according to the form in which it was specified, by CALL
name or CALL name().

11.5.1 Subroutine Reference

A subroutine is referenced by the CALL statement which
has the form:

CALL name [([argl [,arg2] ...1)]

where
name is the symbolic name of the subroutine sub-
program
argl... is an optional 1list of actual
arguments.

A subroutine specified in a subprogram may be referenced
within any other procedure subprogram or within the main
program. A subroutine subprogram must not reference
itself, either directly or indirectly.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 243
FUNCTIONS AND SUBROUTINES

The use of a subroutine name or an alternate return
specifier (see the RETURN statement on page 248, in this
chapter) as an actual argument is an exception to the
rule requiring agreement of type between dummy and
actual arguments.

Note that an actual argument may be a dummy argument
name that appears in a dummy argument list within the
subprogram containing the reference. An asterisk dummy
argument must not be used as an actual argument in a
subprogram reference.

11.5.2 Subroutine Subprogram Restrictions

A subroutine subprogram may contain any other statement
except a BLOCK DATA, FUNCTION, or PROGRAM statement.

The symbolic name is a global name, and cannot,
therefore, be the same as any other global name. See
the examples earlier in this chapter.

Norsk Data ND-60.145.7 EN Rev.A

244 ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

11.6 THE ENTRY STATEMENT

The ENTRY statement enables additional entry points into
an external subprogram to be specified. It may appear
anywhere within a function or subroutine subprogram.
However, it may not appear between a block IF and its
corresponding ENDIF statement, or between a DO

statement and the terminal statement of its DO-loop.

An ENTRY statement is nonexecutable. It has the form:

ENTRY name [([argl [,arg2]...]1)]

where
name is the symbolic name of an entry in a
function or subroutine program and is known as
an entry name.

argl... is an optional list of dummy arguments
which may be variable names, array names, dummy
procedure names. or an asterisk. This last
argument type is permitted only in a

subroutine subprogram. A dummy procedure is
defined in Section 11.1.3, on page 219.

Note that if there are no dummy arguments, either name

or name{) can be used in the ENTRY statement. A function
specified by either form must be referenced by name(). A
subroutine specified by either form can be referenced by
a CALL statement, using either CALL name or CALL name().

The symbolic entry name may appear in a Type statement.

Execution of the external procedure begins with the
first executable statement following the relevant ENTRY
statement.

An entry name can be referenced in any program unit
except the one containing the entry name in an ENTRY
statement.

The order, number, type, and names of the dummy

arguments of the ENTRY statement may be different from
the order, number, type, and names of the dummy

arguments in the FUNCTION or SUBROUTINE statements and
other ENTRY statements in the same subprogram. However,
each reference to a function or subroutine must use an
actual argument Tist that agrees in order, number, and
type with the corresponding dummy argument list of the
FUNCTION, SUBROUTINE, or ENTRY statement. The use of a

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 245
FUNCTIONS AND SUBROUTINES

For example:

subroutine name or alternate return specifier (see
Section 11.7, on page 248) as an actual argument is an
exception to the rule requiring agreement of type.

For any particular subroutine call or function
invocation at one of its entry points, only those dummy
arguments specified at the point of entry can be assumed
to have a value during this call/invocation.

SUBROUTINE SUB

ENTéY INIT (A,B,C)
ENTéY LOOKUP (A, X)
ENT%Y STORE (Y,A)

END

If the routine was entered at entry INIT, the dummy
arguments A, B and C have values. But if the entry is
via LOOKUP, then only A and X, but not B nor C, will
have values. Any access to B and C will give
unpredictable results.

Note that in entry STORE, the dummy argument A is
defined at a different position in the list.

Within a function subprogram, all variables whose names
are also the names of entries are associated with each
other and with the variable whose name is also the name
of the function subprogram. Therefore, any such
variable that becomes defined, causes all associated
variables of the same type to become defined and al)
associated variables of different types to become
undefined.

Norsk Data ND-60.145.7 EN Rev.A

246 ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

11.6.1 ENTRY Statement Restrictions

An entry name cannot be used as a dummy argument in a
FUNCTION, SUBROUTINE or ENTRY statement within the same
subprogram in which it appears as an entry name. It must
not appear in an EXTERNAL statement.

In a function subprogram, a variable having the same
name as the entry name, must not appear in any statement
preceding the ENTRY statement associated with the entry
name (except in a Type statement).

In a subprogram, a name used as a dummy argument in an
ENTRY statement, must not appear in an executable
statement preceding that ENTRY statement except in a
FUNCTION, SUBROUTINE or ENTRY statement. Likewise, it
must not appear in the expression of a statement
function statement, unless the name is also a dummy
argument of the statement function, or appears in a
FUNCTION or SUBROUTINE statement, or appears in an ENTRY
statement preceding the statement function statement.

If a dummy argument does appear in an executable state-
ment, such execution is only permitted if, during the
execution of a reference to the function or subroutine,
the dummy argument is in the list of dummy arguments of
the procedure name referenced.

For example, if two functions have very similar
algorithms barring some initialization code, then they
can be written in one external function with a second
entry point. The following function with two entry
points searches an array of integers, IA, for either an
odd or even value, depending on the entry point.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 247
FUNCTIONS AND SUBROUTINES

FUNCTION 10DD (IA, N)
100D = O

M=1

GO TO 10

ENTRY IEVEN (IA, N)
IEVEN = O
M=0

C COMMON CODE STARTS HERE
10 CONTINUE
DO 20 K=1, N
IF (MOD (IA (K), 2).EQ.M) THEN
IF (M.EQ.1) I0DD=K
IF (M.EQ.0) IEVEN = K
RETURN
ENDIF
20 CONTINUE
END

Norsk Data ND-60.145.7 EN Rev.A

248 ND FORTRAN Reference Manual
FUNCTIONS AND SUBROUTINES

11.7 THE RETURN STATEMENT

The RETURN statement causes control to be returned from
a subprogram to the calling program unit. The form of a
RETURN statement in a function subprogram is:

RETURN

The form of a RETURN statement in a subroutine sub-
program is:

RETURN [e]

where
e is an integer expression.

During execution, the value of the expression e will
select one of the alternative RETURN actual arguments
specified in the relevant CALL statement, see the
next section.

11.7.1 Execution of a RETURN Statement

Execution of a RETURN statement in the first of the
above forms causes control to be returned to the
statement of the calling program following the statement
that calls the subprogram.

Execution of a RETURN statement in the second form given
above also returns control to the referencing program
unit and it completes the execution of the CALL
statement whether e is specified or not.

However, if:

n is the number of asterisks in the SUBROUTINE
or subroutine ENTRY statement, then e
identifies the e-th asterisk in the dummy
argument Tist. Control will now be returned

to the e-th statement label in the argument

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 249
FUNCTIONS AND SUBROUTINES

list of the calling statement. This is known
as the alternate return specifier.

Example:
The following subprogram checks a number for validity
(in this case it tests for integers from 1 to 10) and
takes an alternate return if it fails.

SUBROUTINE VALCHK (X, * x)

IF (X.LT.1.0R.X.GT.10) RETURN 1
IF (INT (X).NE.X) RETURN 2

END

and it can be used as follows:

CALL VALCHK (TYPE. * 90, * 91)
C OKAY IN NORMAL CONTINUATION
90 STOP 'OUT OF BOUNDS'
91 STOP 'NOT AN INTEGER'

Execution of a RETURN (or END) statement causes all
entities within the subprogram in which it occurs to
become undefined except for the following:

e Entities specified by SAVE statements.
e Entities in blank common.

Norsk Data ND-60.145.7 EN

250 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 251

CHAPTER 12

MAIN PROGRAM

Norsk Data ND-60.145.7 EN

252 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 253
MAIN PROGRAM

A main program is a program unit which does not have a
FUNCTION, SUBROUTINE, or BLOCK DATA statement as its
first statement.

An executable program must have exactly one main program
in it and the first executable statement of the main
program is also the first executable statement of the
executable program which contains it.

12.1 THE PROGRAM STATEMENT

The form of a PROGRAM statement is:

PROGRAM pgm

where

pgm is the symbolic name of the main program in
which the PROGRAM statement appears.

A PROGRAM statement is not mandatory, but if it appears,
it must be the first statement of the main program.

~ In ND FORTRAN, if the PROGRAM
~ the name fMAIN is generated.

Since the symbolic name, pgm, is global, it must not be
used as any local name within the main program, neither
may it be the name of an external procedure, BLOCK DATA
subprogram, or COMMON block of the executable program in
which it appears.

A main program may not be referenced from a subprogram
or from itself.

Norsk Data ND-60.145.7 EN

254

| PRDGRAM p‘gm, ‘p‘ri‘bbify .

ND FORTRAN Reference Manual
MAIN PROGRAM

f Ih ND FORTRAN a program whwch 75 to be executed as .
an RT-program can be given a prworxty at compw}e~ _~ ;

t1me by the foW]owxng form of the statemeﬂt

priority is an unswgned 1nteger constant wh1ch

- must be less than 256. This is the defau%t‘pr}or}ty
_assigned by the RT ?oader to this program, ~?he
kpriorwty 15 1gnored 1n backgrounds operat10n‘

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 255

CHAPTER 15

BLOCK DATA SUBPROGRAM

Norsk Data ND-60.145.7 EN

256 ND FORTRAN Reference Manual

Nor<k Data ND-60.145.7 EN

ND FORTRAN Reference Manual 257
BLOCK DATA SUBPROGRAM

BLOCK DATA subprograms are used to provide initial
values for variables and arrays in named common blocks.
They are nonexecutable and more than one may appear in
an executable program. The first statement of a BLOCK
DATA subprogram is a BLOCK DATA statement which has the
form:

BLOCK DATA [subl

where
sub is the symbolic name of the BLOCK DATA
subprogram in which the statement appears.

The optional name sub is global and cannot therefore

be the same name as that of an external procedure, main
program, COMMON block, or other BLOCK DATA subprogram in
the same executable procedure. Neither can it be the
same as any local name 1in the subprogram.

Initial values may be entered into more than one
labelled COMMON block in a single subprogram of this
type. :

13.1 BLOCK DATA SUBPROGRAM RESTRICTIONS

The only other statements that can appear in a BLOCK
DATA subprogram are IMPLICIT, PARAMETER, DIMENSION,
COMMON, SAVE, EQUIVALENCE, DATA, END and Type
statements. Comment lines are permitted.

Norsk Data ND-60.145.7 EN

258 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 259

CHAPTER 14

COMPILER COMMANDS

Norsk Data ND-60.145.7 EN

260 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 261
COMPILER COMMANDS

14.1 COMPILER INVOCATION AND TERMINATION

The compiler is invoked from SINTRAN by the command:

@ND FORTRAN-500

or

@FORTRAN-100

The compiler responds with a notification of the version
in use. It then prompts by writing on the terminal:

FTN:

When these characters appear with the cursor at the next
position, the compiler is in 'command mode', i.e.,
awaiting commands.

The command:

EXIT

will return control to SINTRAN after all source, list,
and object files have been c¢losed.

It is ignored if found in the source text.

Norsk Data ND-60.145.7 EN

262 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.2 COMPILER COMMAND SYNTAX

The command names can be abbreviated. Only the number of
letters needed to make the command name unique need be
typed, but more may be given if reguired (e.g., for
readability or documentation). The parameters for a
command can be written on the same line as the command
name but separated from it by one or more blanks. The
parameters are separated from each other by one or more
blanks and at most one comma. Alternatively, if
parameters are expected but not given, the compiler will
prompt for them in turn.

Most commands may also be written as part of the source
program, but in this case all parameters must be on the
same line as the command name, and the command name must
be preceded by a $ symbol. Blanks may appear before the
$ and between the $ and the command name. Such commands
can only be written between statements. They cannot
occur in the middle of a statement, or between
successive continuation lines of a statement.

In the description of the commands in this manual, those
commands which can only be placed in the source program
are written with the preceding $.

A number of commands have just one parameter, which is
either ON or OFF. For all such parameters, if the
parameter is omitted, ON is assumed; and if it is not
recognized (for example, due to mistyping) then OFF is
assumed.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 263
COMPILER COMMANDS

14.3 THE HELP COHMMAND

The HELP command will 1ist the available compiler
commands and information about the possible values of
their parameters.

The command is written:

HELP [name]

where
name may be the name of any command, or an
abbreviation.

If an abbreviation is used, all commands beginning with
that abbreviation will be listed.

If no name value is entered, all commands will be
listed.

Each command will be listed with its required
parameters, and an indication of the possible parameter
values. The current values of parameters will also be
shown, where relevant.

14.4 COHHMENTS

Comments may be included with the commands, and has the
following form:

CC comment

Whatever follows the command name CC on the same line,
is treated as a comment and ignored by the compiler.
This is primarily useful for inserting comments in a
batch or mode job.

Norsk Data ND-60.145.7 EN

264

ND FORTRAN Reference Manual
COMPILER COMMANDS

14.5 COMPILATION OF SOURCE PROGRAMS

14.5.1 The COMPILE Command, Preparation of Relocatable

Code

The most important command is the COMPILE command which
determines the program to be compiled and where the
output is to be placed. This is written as:

COMPILE source [1ist][object]

where

source is the name of the file, or unit number,
containing the FORTRAN program to be compiled.
This parameter cannot be omitted. If TERMINAL or
unit 1 is specified, input is accepted from the
terminal, line by line, until $EOF command is
encountered in the input stream. In this case,
the compiler returns to command mode. If a name
is specified, it must obey the usual SINTRAN
syntactic form and conventions. The first
default type is SYMB and the second default type
is FORT.

1ist is the name of the file or unit number to
which the source listing will be printed by the
compiler. The format of the output will be
suitable for printing and will contain the
ASCII LF, CR, and FF characters for carriage
control. Parity will be set on this file.

If 0 is specified, the listing is suppressed.

If TERMINAL or 1 is specified, the output will
appear on the terminal. If this parameter is
omitted, the output will be written as a
continuation of the list file of the immediately
previous COMPILE command, or, if none, the
Tisting will be suppressed.

The first default type is SYMB and the second
default type is LIST.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 265
COMPILER COMMANDS

object is the name of the file, or unit number
which will contain the compiled relocatable
version of the program. This is the input to the
loader when creating a program. See the ND
Relocating Loader manual ND-60.066 for details.

If 0 is specified, no relocatable code is
generated, but a complete compilation takes
place, thus giving any diagnostic messages that
may occur.

If the object file is omitted, the output is a
continuation of the last object file, if any, or
0 is assumed and the output is suppressed.

If a unit number is given, it must be octal
without any trailing B.

The default type of the object file is BRF on
the ND-100, NRF on the ND-500.

After the COMPILE command is completed, the prompt FTN:
reappears on the terminal.

Any diagnostic messages generated by the compiler are
lTisted at the terminal, and also on the list file, if
different. The messages may be warnings or errors. If
any errors are found before the END statement s
encountered, the code generation will not proceed, and
the relocatable output will be suppressed.

The end of the source text is either the end-of-file or
a $EOF encountered in the source file.

On the source listing, the numbers printed on the far
left are Tine numbers, which number sequentially all the
lines in the program units within a single listing. Each
listing starts with line 1.

Error messages, the symbolic debugger and the cross-
reference listing refer to statement numbers. Fach
statement is given a number equal to the line number on
which the first character of the statement is found.
Thus, if several statements are written on one line,
they all have the same statement number. If a statement
consists of more than one line, the statement numbers
will not be consecutive. It is hoped that this mechanism
will help during editing because the error reports refer
to a Tine number close to the error. See also the next
section.

The compile command is ignored if found in the source
file.

Norsk Data ND-60.145.7 EN

266 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.5.2 Including Text From Other Source-Files

Other files can be incorporated in the source program at
the points indicated by the command:

$INCLUDE filename

where
filename is the name of the file or unit number
to be read. The parameter cannot be omitted; the
default file type is SYMB.

This command cannot be used in command mode.

The reading of the source program by the compiler is
switched to the named file and continues until either
the end-of-file is found, or a $EOF command is
encountered. The file is then closed and the text
following the $INCLUDE command is read. The named file
may itself contain further $INCLUDE commands, but no
more then five incomplete $INCLUDE s may be in existence
at any one time.

For example, in a suite of subroutines which all share a
COMMON block, the definition of that block could be held
on a file called COMDEF:SYMB. Then by writing:

$INCLUDE COMDEF

at the appropriate point in each subroutine, the
definition is brought into the source file. Thus only
one copy of the COMMON block definition is kept, and all
subroutines have identical declarations of it.

When a file is included, two numbers are printed on the
source listing. The first is the statement number, which
is the one which the symbolic debugger uses. The second
number is the line number in the file which contains the
line. Error messages refer to both numbers. If the
second number is surrounded by slashes, then the line is
part of an included file. If it is in parentheses, then
it is in the original source file.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 267
COMPILER COMMANDS

14.5.3 End of File

The command:

$EOF

signifies that the reading of the current file is
complete. Reading continues at the next outer INCLUDE
Tevel.

It is ignored in command mode.

14.5.4 Preparation of Executable Programs and Loading

In FORTRAN-100, an executable program may be prepared
and output to a file, by using the command:

PROG-FILE filename

where
filename is the name of a file to receive the
executable program.

The default file type is PROG.

If the COMPILE command is used subsequent to the PROG-
FILE command, then the compiler will generate the
executable program directly on to this file. The COMPILE
command will still generate an object file if it is
specified, in addition to the PROG file.

PROG-FILE commands will be ignored if they are placed in
the source file.

The executable program is completed automatically, by
loading the FORTRAN library (1 or 2 bank, depending on
the setting of the SEPARATE-DATA option), when the EXIT
command is given.

Norsk Data ND-60.145.7 EN

268

ND FORTRAN Reference Manual
COMPILER COMMANDS

The PROG-FILE command can be issued at most once during
any invocation of the compiler.

In FORTRAN-500 an executable program may be prepared and
output to a file by the command:

SEGMENT-FILE [filename]

if no filename is specified, two temporary files are
used and deleted when exiting from the compiler. If
filename (with no type) is specified, two files

are used:

filename:SWPO and filename:SWO1

1f the COMPILER command is used subsequent to the
SEGMENT-FILE command, the compiler will generate an
executable program directly on to the file specified in
the SEGMENT-FILE command. The compiler will still
generate an object-file if it is specified. The SEGMENT-
FILE command will be ignored if it is placed in the
source-file. The executable program i1s completed
automatically when the RUN command is given.

To complete the executable program, libraries or other
object files may be added by using the command:

LOAD filename [,filename]

where
filename is the name of an object file or
Tibrary.

The default type of the file loaded will be BRF on the
ND-100 and NRL on the ND-500.

LOAD commands will be ignored if they are placed in the
source file.

Any error messages which appear while the LOAD command
is being executed can be found in the ND Relocating
Loader Manual (ND-60.066) and in the ND-500
LOADER/MONITOR Manual (ND-60.136).

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 269
COMPILER COMMANDS

To define entry points in the "built-in" loader table we
can use:

DEFINE <entry-name>, <value>, <mode>

If a 7 appears instead of entry-name, then a map of
undefined entries will be displayed on the terminal. If
the entry-name is omitted, then a map of defined entries
will be displayed.

value gives the load address in octal.
mode indicates either a program area (P) or data
area (D).

In FORTRAN-100 it is possible to set the current load
address by using * instead of entry-name. Then the
value-parameter will give the current load-address.

The command:

LINK~SEGMENT <segmentname>

is available in FORTRAN-500. The specified segment will
be Tinked to the program in the files specified in the
SEGMENT-FILE command.

The command:

RUN

will Joad the FORTRAN library and start execution of the
program.

Norsk Data ND-60.145.7 EN

270

ND FORTRAN Reference Manual
COMPILER COMMANDS

14.5.5 Combined Compile and Execution

A simple to use Compile and Execute facility is
available if the compiler is invoked on ND-100 by the
command:

BFORTRAN-100 source-file

and on ND-500 by the command:

BFORTRAN-500 source-file

The compiler will generate an executable program, and
begin execution, provided that the program has compiled
successfully.

When using FORTRAN-100, the executable program will be

stored in a file with the same name as the source-file,
but with type PROG. If the PROG file does not exist, it
will be created.

When using FORTRAN-500, the executable program will be
stored in a temporary file which will be deleted after
execution.

It is possible to give commands to the compiler when

invoked in this way. Each command must start with $ and
end with /.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 271
COMPILER COMMANDS

The general form of the compiler invocation for compile
and execution for FORTRAN-100 is:

@FORTRAN-100 $command/[$command/]source{list][object]

and for FORTRAN-500:

®FORTRAN-500 $command/[$command/]source[list]{object]

where
source is the name of the file, containing the
FORTRAN program to be compiled, then executed.
Tist is the name of the file to which the source
listing will be printed by the compiler.
object is the name of a file which will contain
the compiled relocatable version of the program.

An executable program will be generated only if no

object file has been specified, and no compilation
errors have been detected.

Norsk Data ND-60.145.7 EN

272 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.6 LISTING INFORMATION

14.6.1 Cross Reference Listing

The CROSS-REFERENCE command will list all the symbolic
names and labels, their attributes, and a list of the
1ine numbers where they are used. The output is on the
1isting file and it follows the source listing. It is
written:

CROSS-REFERENCE [filename][references][call-hierarchy]

where
filename is the name of a file to be used as a
temporary work area. The default file-type is
XREF. The file must be on a mass-storage device.
If filename is omitted, the scratch-file is
used.
references may take the value ON or OFF.

If ON is set, all the variables and labels,
their attributes, and a 1ist of the Tine numbers
where they are used will be output to the list-
file, following the scurce program.

The default setting is ON.

call-hierarchy may take the value ON or OFF.

1f ON is set, a global cross-reference of all
the preceding program units indicating which
routines call other routines. Other routines
will be output to the last specified list-file.

The default setting is ON.
The 1ine numbers may be followed by one character:

e The character D next to a 1line number indicates that
the symbolic name is declared in this line.

e The character M next to a line number indicates that
the symbolic name is modified by an assignment
statement in this line.

e The character A next to a line number indicates that

the symbolic name is used as an argument, and that
this argument may be modified.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 273
COMPILER COMMANDS

For example:

e The character [next to a line number indicates that
the symbolic name is initiated in a DATA statement in
this line.

e A space next to a line number indicates that the
symbolic name is referred to in this line.

CR-REF XREF

will produce a cross-reference plus the call-hierarchy.

CROS-REFER,OFF ,ON

will produce the call-hierarchy only, in the listing
file. '

For each name which represents a program variable
occupying storage, the position of the variable in
storage is also indicated in the cross-reference
Tisting.

For COMMON variables, the offset from the beginning of
the COMMON block is listed. This offset is printed in
octal. On the ND-500 it is in bytes and on the ND-100 it
is in words. On the ND-100, if the offset is followed by
a plus character "+", the variable begins in the right-
hand byte of the word. The offset refers to the first
byte of storage occupied by the variable:; thus for

arrays, it is the first byte of the first element.

Any other offset is relative to the B-register and is
printed in octal. On the ND-500 it is in bytes and on
the ND-100 it is in words. For simple local non-
character variables, this is a simple offset. For
parameters, the offset refers to an address word, and
this is indicated by the characters "IND". For non-
character arrays and EQUIVALENCEd variables, the offset
also refers to an indirect address word. For character
variables, the offset refers to a descriptor, see
Appendix E.

For non-COMMON arrays, the indirect address points to
the position of an element in the array which has only
zero subscripts. Note that this array element may be
an imaginary point with all subscript values set to
zero. This is used to calculate the runtime memory
addresses of the other elements in the array.

elements are calculated.

Norsk Data ND-60.145.7 EN

274 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.6.2 Program Addresses

The command:

PROGRAM-MAP start address

will generate a table on the listing file. For each
statement number in a program unit, the table gives the
address of the first machine code instruction
corresponding to it. The start address specified in the
command is taken to be the address of the first
statement in the unit. Each subsequent unit compiled is
given an offset which assumes that it will immediately
follow the preceding unit in the address space.

The start address is any valid octal address. If the
address is omitted, zero is assumed. There is no way of
suppressing the listing after this command has been
given.

14.6.3 Listing Control

The number of lines on each page of the 1isting can be
changed by the command:

PAGE-SIZE n

where
n is a decimal integer.

After n lines have been output to the listing file a
form-feed character is output to start a new page.

If n is omitted, no change is made to the current value.

The value remains in effect until another PAGE-SIZE
command is issued. The default value is 56.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 275
COMPILER COMMANDS

The Tisting of the source can be controlled by the
command:

LIST ON

or

LIST OFF

If ON is specified, the source program will be listed on
the listing file. If OFF is specified, the listing
ceases, until the next LIST ON is encountered. The
listing file is not closed.

This command can be used to shorten listings by
suppressing the printing of the included files; for
example:

$LIST OFF
$INCLUDE filename
$LIST ON

will not Tist the included file (unless, of course, the
file contains a $LIST ON within itself).

This command does not affect the cross-reference
Tisting. The default is ON, but it is not automatically
reset between compilations.

Each program unit begins at the top of a new page in the
source listing. If it is necessary to force a new page
to make the listing more readable, the following command
is available:

$EJECT

The new page starts immediately after the EJECT command
unless it is already the first line on a page when no
further page feed will occur.

Norsk Data ND-60.145.7 EN

276

For example:

ND FORTRAN Reference Manual
COMPILER COMMANDS

At the top of every page of source listing, the compiler
identification is printed together with the date and
time when the COMPILE command was issued, and the
primary input file. On the third line, there is space
for text which the user gives with the command:

HEADING-TEXT text

where
text is any string of characters beginning
immediately after the separator which follows
the command name. The maximum length is 50, and
it is terminated by the end of the line.

$HEADING MINIMIZATION PACKAGE

will print the text "MINIMIZATION PACKAGE" on the top of
every page until another HEADING command is encountered.

By writing:
$HEAD-TEXT , TAX CALCULATIONS

the blanks fo11owing the comma become significant, and
are included in the text.

The heading starts in position 21 of T1ine 3 on every
page of listing, be it source or cross-reference.

The default heading is blank and can be reset by:

$HEADING

If the first line of a new program unit is a HEADING-
TEXT command, then it will replace any previous such
commands before printing the first line. Otherwise, the
last command will still be in effect. Since each program
unit starts on a new page, each can have its own
heading.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 277
COMPILER COMMANDS

14.7 ANSI FORTRAN 77 STANDARD CHECKING

For example:

The command:

STANDARD-CHECK ON

or

STANDARD~CHECK OFF

controls the compiler's issuing of messages for each
violation of the standard which is detected. Compilation
will continue normally if these messages are concerned
merely with language features which form a part of the
ND FCORTRAN extensions described in this manual.

If the parameter is ON, messages are produced,

If the parameter is OFF, messages are suppressed.

The initial value is OFF.

S-C ON
will cause messages about violations to be issued.

There is no difference in the interpretation of a
program except for the following:

ERRCODE is a reserved name if STANDARD-CHECK 1is OFF. It
is treated like any other name if the parameter is ON.

If STANDARD-CHECK 1is ON, error indications from SINTRAN

Monitor Calls will not be accessible from ERRCODE, and
are thus not available to the calling program.

Norsk Data ND-60.145.7 EN

278 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.8 SYMBOLIC-NAME-LENGTH

The command:

SYMBOLIC-NAME~LENGTH n

where
n is a decimal integer in the rang from

7 to 31. It specifies the number of significant
characters in symbolic-names. Default : 31

14.9 ARRAY-INDEX-CHECK

The command:

ARRAY-INDEX-CHECK ON

checks each time an array element is accessed, that the
value of the index expression is within the range
specified in the declaration.

The initial value is OFF.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 279
COMPILER COMMANDS

14.10 CHECK-NUMBER-OF-PARAMETERS <ON/OFF>

The commands:

CHECK-NUMBER~OF -PARAMETERS ON

and

CHECK-NUMBER-OF -PARAMETERS OFF

If this function is set to ON, then with each call to an
external procedure, the number of parameters in the call
is checked to be equal to the number of parameters in
the external procedure declaration.

14.11 UNASSIGNED-VARIABLE-CHECK <OR/OFF>

The commands:

UNASSIGNED-VARIABLE-CHECK ON

and

UNASSIGNED-VARIABLE-CHECK OFF

If this function is ON,it sends a warning message for
each local variable array that is referred to but not
assigned. It will also give a message for each local
variable and array that is declared but not used.

Norsk Data ND-60.145.7 EN

280 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.12 SUBSTRING EXPRESSION CHECKING

In a character substring expression such as the
following:

where v is a character variable and e and e,
are integer expressions, the command:

SUBSTRING-EXPRESSION-CHECK ON

will check that e1 and e2 are between the limits:

1 £ e < e, < maximum string length.

SUBSTRING-EXPRESSION-CHECK OFF

is default.

14.13 TEST MODE

The command:

TEST-MODE <compile-time-test>,<run-time-test>

enables all test options available in the FORTRAN
system,at compile time and/or runtime.

where:
compile-time-test may take the value ON or OFF.
A1l the test options are enabled at compile
time. The default setting is OFF.
run-time-test may take the value ON or OFF.
A1l the test options possible at runtime are
enabled. The default setting is OFF.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 281
COMPILER COMMANDS

The test options are:

e checking array indexes
e checking correct number of parameters in routine calls

e checking that substring expressons are within the
declared range

e checking that no variables are referred to before they
are assigned

14.14 BUN TIHE HODES

There are some options controlling the run time
environment. The first is the command:

SEPARATE-DATA ON

or

SEPARATE-DATA OFF

This command available only on ND-100,specifies whether
the data portion of the program is to be accessed via
the alternate page table or not. If the parameter has
the value ON, then access is to be via the alternate
page table; if the parameter has the value OFF, then it
is not. If the parameter is omitted, no change occurs.
The initial setting of this command is ON.

Note that program units compiled with different values
of this option cannot be mixed within a single program.

Norsk Data ND-60.145.7 EN

282

ND FORTRAN Reference Manual
COMPILER COMMANDS

The second command is:

REENTRANT-MODE ON

or

REENTRANT-MODE OFF

Which specifies whether the local data areas are fixed,
or on a stack. If OFF, then they are fixed and the
program may conform to the ANSI FORTRAN 77 standard. If
the option is ON, then the following restriction applies
that:

Data statements cannot initialize local data items.

However,

@ Recursive calls are now allowed.
e The initial setting of this command is OFF.

When a program is compiled with the command REENTRANT-
MODE ON, the stack-size must be specified at load- time.
This is done by giving the entry 5STLEN a value equal to
stack-size. To give S5STLEN its value, you must give the
following command in the loader (see the manual: BRF-
LINKER ND-60.196):

DEFINE 5STLEN,length,D

With a couple of exceptions, the FORTRAN routine system
is strictly according to the ANSI 77 standard. The
exceptions may be avoided by giving the command:

RUNTIME-STANDARD-MODE ON

The default value is OFF.

This command should be used with great care. If the
parameter is ON, then every program in the system should
be compiled with the parameter ON; if the parameter is
OFF, then every program should be compiled with the
parameter OFF.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 283
COMPILER COMMANDS

14.15 REAL-TIHEE-HODE

The command:

REAL-TIME-MODE ON

should be given when compiling real-time programs. This

will prevent COMMON variables from being optimized. the

compiler assumes that COMMON variables may be altered at
any time, and it does not attempt to move or common any

expressions containing them. The parameter should be OFF
when compiling background programs. The default value is
OFF.

14.16 MIXING FORTRAN AND COBOL ROUTINES {(ND-500 ONLY)

The command:

COBOL-INTERFACE <routine-name>[<routine-name>...]

should be used when mixing routines written in COBOL
with routines written in FORTRAN. The routine-name list
should include all the COBOL routines that are called
from FORTRAN routines, and all the FORTRAN routines that
are called from COBOL routines. Parameters of type
CHARACTER and NUMERIC will be transferred between
FORTRAN and COBOL routines in the same manner as between
COBOL routines. When this command is given, there is no
longer use to equivalence CHARACTER and NUMERIC
parameters with an INTEGER before the calils. This
command is effective from the moment it is given to the
compiler.

Norsk Data ND-60.145.7 EN

284 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.17 PACKED DECIMAL ARITHHMETIC (ND-500 ONLY)

The command:

BCD-ROUNDING ON

or

BCD-ROUNDING OFF

determinates whether the operations on packed decimal

operands should be performed with rounding or not. If

the parameter is ON, all the operations on operands of
type NUMERIC are performed with rounding. The default

value is ON.

14.18 CREATING OF FORTRAN LIBRARIES

To create a library from the program units in a file,
the command:

LIBRARY-MODE ON

or

LIBRARY-MODE OFF

can be used.

If ON is specified, every subsequent program unit is
preceded by a BRF or NRF library mark. The loader will
then load the unit only if there is a reference to the
name of the unit.

1f OFF, these marks are suppressed, and the 1oadér will
use the unit anyway. :

The default is OFF.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 285
COMPILER COMMANDS

14.19 DEBUGGING

The output from the compiler can be made to include
information for use by the debugging subsystem. This
command is:

DEBUG-MODE ON

or

DEBUG-MODE OFF

If the parameter is ON, the debug information is
produced. If the parameter is OFF, the information is
not produced. If the parameter is omitted, ON is
assumed.

The default value is OFF.
For detailed descriptions of the commands available in

this subsystem, refer to the Symbolic Debugger User's
Guide, ND-60.158. ‘

14.20 CONDITIONAL COHPILATIORN

There are two ways of selecting parts of a file to be
compiled, depending on some of the parameters used: by
using optional comment lines within source code, or with
the IF-THEN-ELSE compiler commands.

Norsk Data ND-60.145.7 EN

286

ND FORTRAN Reference Manual
COMPILER COMMANDS

14.20.1 Optional Comment Lines within Source

For example:

The command:

CONDITIONAL-COMPILING [chars]

where
chars is a list of characters. In the following
source lines, any comment line containing any of
the characters specified as the second character
in the line, will instead be treated as though
the first two characters were blank, thus
effectively changing the comment to a normal
1ine of source code.

Each issue of this command redefines the 1ist of
characters and overrides any existing list.

If no characters are specified, there are no special
comments.

COND
will include all lines such as
CD WRITE (1,*) 'debug run’

Other commands cannot be included or excluded in this
way.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 287
COMPILER COMMANDS

14.20.2 Compile Time IF-THEN-ELSE Compiler Commands

For example:

There 1is a set of commands that can be used only from
within a source program. These are:

$IF (expr) $THEN

$ELSEIF (expr) $THEN

$ELSE

$ENDIF

where
{expr) is a parenthesised FORTRAN logical
constant expression.

There may be zero or more than one instances of $ELSEIF
in the construct; the $ELSE may be omitted.

Within a group of commands, only those lines which lie
between the first occurrence of expr which has the value
.TRUE. {or the $ELSE commdnd if all exprs are false)

and the next command of the group, are included as valid
source lines; the rest are listed (without line numbers)
but are otherwise ignored.

The groups may be nested to any depth.

A1l groups within INCLUDEd text must be complete before
the INCLUDE 1is terminated.

PARAMETER (SIZE = 10000)
$I1F (SIZE .GT. 32767) $THEN
INTEGER*4 INDEX
$ELSE
INTEGER*2 INDEX
$ENDIF

Norsk Data ND-60.145.7 EN

288 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.20.3 Compile Time Constants

In certain cases it may be desirable to set a parameter
value to be tested by the $IF group of commands external
to the source text being compiled. This can be done with
the command:

CONSTANT name = cons [, name = cons]

where
name is a FORTRAN identifier,
cons is a constant of type integer or
logical.

These values, once set, are retained until the compiler
is terminated. They cannot be redefined or deleted. The
data type of the name is the data type of the constant.

14.21 OPTIHIZATION OF PROGRAM EXECUTION-TIME

The command:

OPTIMIZE ON

or

OPTIMIZE OFF

affects the efforts made by the compiler to improve the
execution speed of a program at the price of some time
during compilation.

If the parameter is ON, then optimization is performed.
If the parameter is OFF, optimization is not performed.

If the parameter is omitted, ON is assumed.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 289
COMPIL.ER COMMANDS

For example:

OPT ON
will cause optimization to occur.
The methods applied include:

e Strength reduction
e Expression commoning

e Moving constant expressions out of loops

L]

Constant propagation

L]

Special casing

These do not affect the computational results, only the
speed at which they are produced, provided that the
program has been written according to the specifications
in this manual, especially Chapter 5.

There are, however, special applications where
expressions may only be evaluated at the point indicated
by the program and not before. It is for these instances
that the OFF setting is provided.

The default value is ON.

14.22 INLINE SUBROUTINES

ND FORTRAN has been enhanced to include in-Tline
expansion of subprograms so that the overhead is reduced
to zero for critical ones, i.e., those which are called
frequently. In addition, the body of such subprograms
will now be submitted to general optimization, thus
resulting in a further increase in speed.

Due to the increase in program size, it is not
recommended that you declare subprograms as in-line if
their size exceeds 10-20 1lines or thereabouts or if they
are called rather infrequently.

The opticon is available with the command:

INLINE-EXPANSION <identifier-1>, <identifier-2>,.. ...

Norsk Data ND-60.145.7 EN Rev.A

290

ND FORTRAN Reference Manual
COMPILER COMMANDS

where the identifiers are the names of functions or
subroutines, all of which are located on the file(s)
ahead of their first reference. {This means that the
command must appear before the definition of the
function or subroutine and that the definition must
precede the function call or CALL statement.) Note that
this may imply some rearrangement of the file(s) or some
sort of conditional compilation.

The restrictions on in-1ine subprograms are:

e No alternate return specifiers.
e No multiple ENTRY statements.

e In-1ine subprogram names cannot be used as arguments.

Cannot be operated on by the Symbolic Debugger.

14.23 USE OF SPECIAL MACHINE-CODE INSTRUCTIONS

In certain cases, execution time is of prime importance
for some well-defined routines. So much so, that an
installation may provide extra micro-instructions on the
ND-500. In order to obtain the maximum advantage from
these facilities, there is a command which causes the
compiler to interpret a CALL statement or a function
reference as a sequence of instructions to be placed
in-line at the point of call and not generate a call of
an external program unit. The reader is referred to the
ND-500 Reference manual (ND-05.009) and the ND-100
Reference manual (ND-06.014) for details of the
instruction set and the operation of the CPU.

The form of the command is:

INSTRUCTION name = definition [,name=definition]...

where
name is the name of an external program unit
which is being defined as an in-line routine.
Every subsequent occurrence of this name as an
external reference will be treated as in-line.
The definition will hold until the compiler is
terminated. Re-definition of a name is not
allowed within a single invocation of the
compiler.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 291
COMPILER COMMANDS

The definition has the form:
opcode (arglist) [opcode {arglist)]....

Note: The opcodes are separated by arglists,

not by commas. If an opcode has no arguments, an
empty pair of parentheses must appear. The last
parenthesised arglist can be omitted.

opcode is the operation to be used. For the
ND-100, this is a 16-bit integer, and the
argument, if any, is added to this value to
create the whole instruction. For the ND-500,
this is 1 or 2-byte opcode, which is then
followed by the operands. The opcode can be
written as a decimal or binary constant, or as
a symbol that has been previously defined by a
CONSTANT command, see Section 14.20.3 on

page 288.

arglist determines what the operands are for
each opcode. ND-100 instructions can have at
most one argument; ND-500 instructions can have
any number, but the number specified must
correspond to the number expected. An argument
has the form:

#n

where & is the hash or number symbol (43 octal
in ASCII) and n is a decimal integer
corresponding to the position of the argument in
the FORTRAN CALL statement or function
reference. The first argument is referred to

as #1.

For example: Suppose we have a subroutine which is
called very frequently, but which merely places the sum
of its last two arguments into the first. as in:

SUBROUTINE SETPOS (ICURPQOS,IBASE,IOFFSET)
ICURPOS = IBASE + IOFFSET
END

This routine could be replaced by in-Tine code on the
ND-100 with the following defining commands:

$CONSTANT LDA = 0440008,ADD = 060000B,STA = 0040008
$INSTRUCTION SETPOS = LDA (£2)ADD(£3)STA(£1)

Norsk Data ND-60.145.7 EN Rev.A

292

For example:

ND FORTRAN Reference Manual
COMPILER COMMANDS

Then, whenever calls to the SETPOS are found, the above
3 instructions will be executed. On the ND-500, it could
appear as:

$CONSTANT ADD3 = 1761518
$INSTRUCTION SETPOS = ADD3(£2,£3,£1)

This can be called by, for example:

CALL SETPOS(ICUR,IB,IX)

or

CALL SETPOS{ICUR,NBASE{J + K (M,N}},FUNC(CURIX))

etc.

If constants are to be used as fixed operands in ND-500
instructions, they can be specified as a sequence of
zero-argument opcodes.

$CONSTANT WILDR = 148

C DEFINE A SHORT CONSTANT

$INSTRUCTION W12=W1LDR()2

C HALF-WORD CONSTANT

$INSTRUCTION W1X = WILDR{)316B()1777778B

If none of the instructions modify the contents of
registers, the compiler will create temporaries and look
after the addressing modes of the operands
automatically. If a register's contents are modified,
then the compiler’s use of registers must be taken into
account; in particular, registers used to address
operands must not be used.

On the ND-100, the B and P registers must not be
changed, and the X-register may be used by the compiler
to create the right addresses.

On the ND-500, the B-register must be left unchanged,

and the R-register may be used for addressing. If any

argument in the call, is an array element, one or more
of the registers I1, 12, I3 or 14 may be used.

Appendix F describes the use of registers for returning
values from functions.

There is a special case of the INSTRUCTION command. If
the definition consists of exactly one constant, with no
argument lists, then it is treated as though all the
specified arguments in the call are to be added to the
opcode to form the single in-line instruction. In this
case too, the name may be used later as an opcode in the
definition of another instruction.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 293
COMPILER COMMANDS

14.24 COHMPILER DEFAULTS

14.24.1 Data Type Defaulting

For example:

This command provides a way of overriding the default
implied data type. Its form is:

DEFAULT attr [,attr]

where
attr is an attribute having the meaning of an
exact ND FORTRAN data type for the base data
type.

Base data types and corresponding possible defaults are:

BASE POSSIBLE DEFAULTS

LOGICAL LOGICAL*1, LOGICAL*2, LOGICAL*4
INTEGER INTEGER*2, INTEGER*4

REAL REAL*4, REAL*6, REAL*8

COMPLEX COMPLEX*8, COMPLEX*16

DEFAULT REAL*8

will cause all real constants and all variables, arrays,
external function statements and named constants with
type declared or defaulted to REAL to acquire the type
REAL*8 instead of REAL*4. But variables explicitly
declared to be of type REAL*4 will remain type REAL*4.

The attribute must be the complete FORTRAN data-type
name. Abbreviations are not allowed.

These options ease the problems of converting programs

between the ND-100 and the ND-500, see also ALIGNMENT-
ND500 in Section 14.25 on page 297.

Norsk Data ND-60.145.7 EN

294

ND FORTRAN Reference Manual
COMPILER COMMANDS

In addition, this command provides the only possibility
of forcing compilation of unnamed integer constants on
the ND-500 to INTEGER*2, see Section 2.2.1. on

page 27.

Note that the change of default attributes also applies
to all constants of the default type. This is
particularly important when using constants as actual
arguments. For example, on the ND-100, consider the
monitor call routine for OQUTCH. This takes two
arguments, both of which must be INTEGER*2. If the
default has been changed by:

DEFAULT INTEGER*4
then, simply writing

CALL OUTCH (5, 15B)

will not work, because the constants now default to
INTEGER*4. The recommended way of avoiding this problem
is to define:

INTEGER*20UTDY, CR
PARAMETER{OUTDV=5, CR=15B)

which can then be incorporated by $INCLUDE commands in
all appropriate routines. (If INTEGER*Z is defaulted on
the ND-500, then similar statements are required to
force the arguments to INTEGER*4.)

Note that the monitor call functions must be declared
explicitly as INTEGER*2 if DEFAULT INTEGER*4 is in
effect on the ND-100.

Furthermore, some of the INTRINSIC functions change with
the DEFAULT and others do not. See notes for Table of
INTRINSICS, Section 11.2.2 on page 230.

The conversion routines IINT and IZ2INT are available to
force the correct data type.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 295
COMPILER COMMANDS

14.24.2 IMPLICIT Data Types

The command:

IMPLICIT OFF

will prevent the association of a default type with the
first letter of a name. The symbolic name identifying a
constant, variable array or external function, must be
explicitly declared by a Type statement. It is not

necessary to declare INTRINSIC functions. The default is
ON.

14.24.3 Default Unit Definition

For example:

The READ and PRINT statements operate on unit number 1
by default. But they can be changed by the command:

UNIT [input-unit}{output-unit]

where
input-unit and output-unit are octal unit
numbers.
If they are omitted, no change is made to the
existing settings.

UNIT 5 6

will direct all the default input and output to the
logical units 5 and 6 respectively.

Norsk Data ND-60.145.7 EN Rev.A

296 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.25 TARGET MACHINE OPTIONS

The following commands describe the attributes of the
machine on which the program is to be run; these may be
different from the machine which compiles the program.
They apply only to the NORD-10 or ND-100, they are
ignored by the ND-500.

The command:

FLOATING n

specifies the size of the single precision
floating-point format in words, i.e.,

n

2 indicates 32-bit floating-point format

n

i

3 indicates 48-bit floating-point format

If this parameter is omitted, no change is made to the
setting. The initial value is that of the compiling
machine. A program compiled using this command, must be
executed on the computer with the correct floating-point
hardware.

The command:

MOVE-INSTRUCTIONS ON

or

MOVE-INSTRUCTIONS OFF

specifies whether the code is to contain the character
manipulation instructions of the CE instruction set. If
the parameter is OFF, then all character manipulation is
performed by subroutines. If the parameter is ON, then
this is performed by character move instructions. The
initial value is OFF.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 297
COMPILER COMMANDS

The command:

ND10O-EXTENDED ON

or

ND10O-EXTENDED OFF

specifies whether tho CE instruction set is available on
the target machine. If it is, then character
manipulation and subroutine entry and exit are performed
by hardware instructions, otherwise they are simulated
in software.

If the option is OFF, then the subroutine entry is
performed by software, but the character manipulation is
controlled by the MOVE-INSTRUCTIONS command {see above) .

The initial setting is OFF.

The command:

ALIGNMENT-ND500 ON

or

ALIGNMENT-ND500 OFF

controls the storage layout of variables see Appendix E.
[f the option is ON, then storage will be laid out in
the same way as it would be if the program were compiled
for the ND-500. This enables COMMON blocks to be shared
between programs executing on both the ND-100 and
ND-500; see also the DEFAULT command, Section 14.24.1

on page 293.

The initial setting is OFF.

Norsk Data ND-60.145.7 EN Rev.A

298

ND FORTRAN Reference Manual
COMPILER COMMANDS

14.26 REMOVING INTRINSIC FUNCTIONS

For example:

1t may be that an ND FORTRAN extension INTRINSIC
function name clashes with a name of a routine which
already exists in a user library. These names can be
made external by the command:

DELETE-INTRINSIC name [,namel...

The names in the 1ist will no longer be acceptable as
INTRINSIC names. The change is permanent. The names can
only be recovered again by re-loading the compiler.

If the name is a specific entry point, then access to

the function is still permitted through the generic
entry points.

DEL-INT I2BIT, DIMAG

will render the names I2BIT and DIMAG unusable as
INTRINSIC functions.

14.27 RESERVING WORK SPACE

To retain a degree of compatability with the 2090
FORTRAN compilers on the ND-100, an option is provided
to reserve space for use by NPL and MAC routines. The
command is:

RESERVE-WORK~SPACE ON

or

RESERVE-WORK~SPACE OFF

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual 299
COMPILER COMMANDS

For example:

RES-WORK ON

places 20 (octal) free words from ,B-220 to ,B-201 in
all program units until the option is turned off. The
initial value is OFF.

For reentrant program units, the stack space will begin
at 5STBGA, which will be defined by the library 20
(octal) words after the name 5STBEG, thus ensuring that
the space is present.

In reentrant programs, there is a significant overhead
on every invocation of a program unit, and on return
from it. RESERVE-WORK-SPACE ON should be used only
during transition to the standard calling sequence. This
definition will apply until explicitly changed.

14.28 USE OF THE ARRAY PROCESSING FUNCTION LIBRARY [(ND-500

ONLY)

The command:

USE-APF-LIBRARY ON

or

USE-APF-LIBRARY ON

specifies whether array operations should be transiated
to internal loops or call to array processing functions.
If the command USE-APF-LIBRARY ON is given, array
operations are translated to call to array processing
functions. These array processing functions are defined
in ND-500-APF-LIB and ND-500 APD-LIB. These libraries
have to be Toaded together with the FORTRAN library when
this command is used.

The default value is OFF.

Norsk Data ND-60.145.7 EN

300 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.29 PROGRAM STACK

Fach default FORTRAN routine has its own fixed data
area. Each time a routine is called, it uses exactly the
same data area. This makes it impossible to call FORTRAN
routines recursively, and it limitats the possibility of
calling routines written in for example, PASCAL or
PLANC. These 1imitations are removed by the following
three commands:

FIXED-DATA-AREA

MAIN-STACK-SIZE

LOCAL-STACK-SIZE

These commands are only available on ND-500.

14.29.1 FIXED-DATA-AREA

The command:

FIXED-DATA-AREA ON

or

FIXED-DATA-AREA OFF

may be used to determine whether each FORTRAN routine
should have its own data area or dynamically take space
from a stack. If the parameter 1is ON, each routine has
its own data area. If the parameter is OFF, each routine
will take space from a current stack. The current stack
is either a stack defined in the main program or a local
stack defined in a subprogram.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 301
COMPILER COMMANDS

The default value is ON. The routines which are compiled
with FIXED-DATA-AREA OFF have more restrictions on the
use of the SAVE statement and the DATA statement. Only
the routines which have local-stack, may contain SAVE
and DATA statements.

14.29.2 MAIN-STACK-SIZE

The command:

MAIN-STACK~SIZE <stack-size»

is used to determine the size of the data-area to be
used as a stack for the main program and all the
routines called directly or indirectly from the main
program. A1l the routines that should use this stack,
must be compiled with the command:

FIXED-DATA-AREA OFF

The parameter has a defauit value of 50000 bytes.

Norsk Data ND-60.145.7 EN

302 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.29.3 LOCAL-STACK-SIZE

The command:

LOCAL-STACK-SIZE <stack size>

is similar to the command MAIN-STACK-SIZE, but it gives
a data-area to a subprogram instead of a main program.
A1l the routines called directly or indirectly from this
routine will take their required stack size from this
stack. A routine with a local stack should not be called
recursively. All the subprograms that take their stack
size from a current stack, should be compiled with the
command:

LOCAL-STACK-SIZE O

The default value of the parameter is O.
Examples:
$ FIXED-DATA-AREA OFF

$ MAIN-STACK-SIZE 100000
PROGRAM MAIN

CALL SUB

END
SUBROUTINE SUB

CALL SUB

END

In this program, the subroutine SUB will dynamically
take one stack-frame from the main stack each time SUB
is called, and release tho stack-frame for each return
from SUB.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 303
COMPILER COMMANDS

$ FIXED-DATA-AREA OFF
$ MAIN-STACK-SIZE 20000
PROGRAM MAIN

CALL SUB

CALL S

END
$ LOCAL-STACK-SIZE 10000
SUBROUTINE SUB

CALL S

END
$LOCAL-STACK-SIZE 0
SUBROUTINE S

END

In this example, SUB has its own stack and does not use
the main stack. S does not have its own stack, and it
takes its own stack-frame from the current stack. When §
is called from the MAIN the current stack is the main
stack, and when S is called from SUB the current stack
is the Jocal stack defined for SUB.

Norsk Data ND-60.145.7 EN

304 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.30 SYSTEM DOCUMENTATION AND INTERPROCEDURAL ERROR
DIAGNOSTIC (ND-500 ONLY)

To perform system documentation and interprocedural
error diagnostic, you must create a database of
interprocedural information for the whole program
system. This is done by entering a subsystem in the
compiler with the command:

GLOBAL-MODE

The compiler will then prompt with the text:

FTN/GLOBAL/:

In this subsystem, there is a command:

LOG-GLOBAL-INFORMATION ON

or

LOG-GLOBAL-INFORMATION OFF

The default value is OFF. If the parameter is ON,
interprocedural information about the routines that are
compiled will be saved.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 305
COMPILER COMMANDS

The command sequence which creates this information is:

@ND FORTRAN 500

FTN:GLOBAL-MODE
FTN/GLOBAL/:LOG-GLOBAL-INFORMATION ON
FTN/GLOBAL/ :EXIT

FTN:COMPILE sourcefilel,0,0
FTIN:COMPILE sourcefilez,0,0

FTN:COMPILE sourcefile ,0.0
FTN:GLOBAL-MODE
FTN/GLOBAL/ :

When all the source files are compiled, the system
documentation and interprocedural error diagnostic may
be performed.

14.30.1 HELP command

The command:

HELP <command>

Tists all the commands available with their parameters.

14.30.2 EXIT command

The command:

EXIT

will return control to the compiler's command processor.

Norsk Data ND-60.145.7 EN

306 ND FORTRAN Reference Manual
COMPILER COMMANDS

14.30.3 OUTPUT-FILE command

The command:

QUTPUT-FILE <file-name>

is used to specify that output should be directed to the
specified file instead of to the terminal. If more than
one output file is specified, then the old one is closed
before the new one is opened. It may be useful to have
more than one output file, for example, one for
documentation and one for error diagnostics. To reset
output to the terminal, give the command:

QUTPUT-FILE TERMINAL

or

QUTPUT-FILE 1

14.30.4 PAGE-SIZE command

The command:

PAGE-SIZE n

is used to change the number of 1ines on each page of
the output file. After n lines have been output to the
output file, a form-feed character is output to start a
new page. The default value for n is 56.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 307
COMPILER COMMANDS

14.30.5 SYSTEM-NAME command

The command:

SYSTEM-NAME <name>

is used to print a system identification name on the
first line on each page of the output file.

14.30.6 Documentation Commands

The command:

DOCUMENT-SYSTEM

will produce information about:

e FILE HIERARCHY: hierérthical information about
include-files and full name of each file in the
system.

e FILE CONTENT: a list of all the routines in each file
and the source line number where each routine starts.

e ROUTINE INFORMATION: this information includes the
type and the name of the program unit. It also
includes the number, type, use and the length of each
parameter. Information about common blocks declared in
each routine includes length, use and type.

e COMMON BLOCK INFORMATION: this includes type and
Tength of the items in the common blocks. It also
includes lists of routines where the different common
blocks are declared but not used, where they are
referenced only, and in which routines they are
updated.

e CALL HIERARCHY: information about which routines call
other routines. This also includes information about
routines that are called recursively whether directly
or indirectly.

Norsk Data ND-60.145.7 EN

308 ND FORTRAN Reference Manual

COMPILER COMMANDS

o INVERSE HIERARCHY: information about which routines a
routine is called from.

14.30.6.1 PRINT-CALL~-HIERARCHY command

The command:

PRINT-CALL-HIERARCHY <routine>

will produce a 1ist of all routines that are called
directly or indirectly from the routine specified as
parameter. If the parameter is omitted, a call hierarchy
for the whole program system is produced.

14.30.6.2 PRINT-INVERSE-HIERARCHY command

The command:

PRINT-INVERSE-HIERARCHY <routine>

will produce a Tist of all routines that directly or
indirectly call the routine specified on the parameter.
If the parameter is omitted, an inverse call hierarchy
for the whole program system is produced.

14.30.6.3 PRINT-COMMON-BLOCK-INFORMATION command

The command:

PRINT~COMMON-BLOCK-INFORMATION <common-block-names

will print information about the common block specified
as parameter. The information is total length of the
common block, and the type and length of the entities.
IT also lists the routines that update, refere to and
declare the common block, but which do not use it.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 309
COMPILER COMMANDS

14.30.7 Commands to Perform Interprocedural Error
Diagnostic

14.30.7.1 GLOBAL-CHECK-ALL command

The command:

GLOBAL-CHECK-ALL

will check that the actual and formal parameters
correspond in number and type. It will also check that
named common blocks are consistent in all routines where
they are declared. A 1ist of routines that are referred
to but not compiled, is also produced.

14.30.7.2 PARAMETER-CHECK command

The command:

PARAMETER-CHECK

will, for each compiled routine, check that formal and
actual parameters correspond in number and type.

14.30.7.3 COMMON-BLOCK-CHECK command

The command:

COMMON-BLOCK-CHECK

will check that the named common blocks are consistent
in all routines where they are declared. Unnamed common
blocks are tested for consistency against the

declaration in the routine with the longest unnamed
common block.

Norsk Data ND-60.145.7 EN

310 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 311

CHAPTER 15

ADVANCED FORTRAN PROGRAMMING

Norsk Data ND-60.145.7 EN

312 ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 313
ADVANCED FORTRAN PROGRAMMING

15.1 EFFICIENT PROGRAMMING TECHRNIQUES

15.1.1 Loops

In most cases a DO loop will execute faster than a Toop
coded with IF statements and labels. The optimising
techniques used by the compiler are applied fully to DO
loops, but not constructed loops.

Thus:

0O 10 T = 1,100
10 SUM=SUM+A(1) O0*B(I)

is better than:

+1

[=1
10 SUM=SUM+A({I) *B(I)
I=] :
IF (I .LE. 100) GO TO 10

If the looping has no natural counter for use as a
control variable, then the DO WHILE should be used.

Thus:

I=1

DO WHILE (A (I) .GT.
SUM=SUM+A {I) *B
I=1+1

ENDDO

0)
)

is better than:

I=1
10 IF (A (I) .GT. 0.0) GO TO 20
SUM=SUM+A (1) *B (1)
I=I+1
GO TO 10
20 CONTINUE

Norsk Data ND-60.145.7 EN

314 ND FORTRAN Reference Manual
ADVANCED FORTRAN PROGRAMMING

15.1.2 Loop Control Variable

A loop control variable of type INTEGER*2 will execute
fastest on the ND-100, and a loop control variable of
type INTEGER*4 will execute fastest on the ND-500. This
is followed by INTEGER*4, REAL*4 and REAL*8 and
INTEGER*2, REAL*4 and REAL*8 on the ND-500. Note
however, that if the natural control variable is, say,
REAL, it should be used since what is gained in speed of
control of the loop may be lost in doing more
conversions, e.g. from an INTEGER type to the working
value that is reguired.

On the ND-500, the differences are much less marked than
on the ND-100.

15.1.3 Array Operations

e Example 1 : Filling an array

REAL A(100)

DO I = 1,100
A(I) = 0.0
ENDDO

The DO-loop may be substituted by the array operation:

A =0.0

e Example 2 : Moving an array

REAL A(100), B(100)

DO I = 1,100
A(I) = B(I)
ENDDO

The DO-Toop may be substituted by:
A =B

which will execute faster

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual 315
ADVANCED FORTRAN PROGRAMMING

e Example 3 : Subtraction of arrays

REAL A(100), B(100), C(100)

DO T = 1,100
A(I) = B(I) - C(I)
ENDDO

This may be substituted by:
A=B-¢C

which will be executed faster if the command
USE-APF-LIBRARY ON is given.

15.1.4 Actual Argument Data Types

If there is any doubt about the data type of an
expression in a subroutine call, it should be explicitly
converted to the desired type by using the INTRINSIC
functions, see Section 11.2. on page 222. If the
expression is of the correct type, there is no overhead
involved, but the program is more explicit and more
easily understood, which is important for later
maintenance. ,

Thus, if a REAL argument is needed, then:

INTEGER*2 I
REAL R
CALL SUBR (REAL (I+R))

makes it clear that a REAL argument is actually being
used.

If the argument is a constant, then it can be forced to
the appropriate type by using the PARAMETER statement.
This defines the constant and gives an associated name.
If the value is to be modified later, then only the
PARAMETER statement needs to be altered.

Norsk Data ND-60.145.7 EN

316

For example:

ND FORTRAN Reference Manual
ADVANCED FORTRAN PROGRAMMING

INTEGER*2 LOWEST
PARAMETER (LOWEST=-32768)
CALL TEST (LOWEST)

15.1.5 CHABRACTER and Hollerith

Since Hollerith values in FORTRAN vary greatly from one
manufacturer to another, their use should be avoided if
the program is to be portable without potential
difficulties. The CHARACTER data type should be used
instead.

Thus, the definition:

INTEGER*4 TITLE (5)
DATA TITLE/4HALPH,4HABET ,4HICAL ,4H ORD,4HER /

should be replaced by:

CHARACTER*20 TITLE
DATA TITLE/'ALPHABETICAL ORDER'/

This is strongly recommended, even for transferring
between the ND-100 and the ND-500 because of different
word lengths and defaults.

15.1.6 CHARACTER Alignment - ND-100

For example:

Some Monitor Calls in SINTRAN require that data areas
begin on a word boundary. A CHARACTER variable can be
forced on to a word boundary by using an equivalence to
an INTEGER variable.

CHARACTER*400 C
INTEGER*2 IC
EQUIVALENCE (C,IC)

ND FORTRAN Reference Manual 317
ADVANCED FORTRAN PROGRAMMING

15.1.7 File Accessing

Wherever possible the FORTRAN runtime system allocates
buffers of default 2K bytes, and uses these for
operations on all files accessed by FORTRAN programs.
If a buffer is available, then access to a file will be
optimal, otherwise access is one byte at a time. with
conseguent reduction in performance. It is strongly
recommended that for normal FORTRAN files, the access
types SEQUENTIAL and DIRECT are used. The runtime system
will then use the most efficient method available for
the particular device.

If the RFILE/WFILE/MAGTP Monitor Calls are to be used,
then the access type in the OPEN statement should be
SPECIAL. In this case, if RECL is specified, then the
block size for the file will be set according to the
value of this parameter.

15.1.8 1/0 Buffer Allocation

Whenever possible, the FORTRAN run-time system uses
buffers for the 1/0 statements instead of a byte-by-byte
transfer of data.

e The following applies to FORTRAN-100:

If no buffer is available at the time of opening the
file, then the access will revert to byte-by-byte
operation. If the program is executed in non-reentrant
mode, the buffers are allocated automatically in the
space following the program (or data area if running
with SEPARATE-DATA ON) and before the COMMON blocks. The
maximum number of buffers is 20 and all are 2048 bytes
long. They are allocated when the file is OPENed. Each
file which uses a buffer will reserve one from this poo]
when it first requires it. The buffer will be released
only when the file is closed.

318

ND FORTRAN Reference Manual
ADVANCED FORTRAN PROGRAMMING

If the program is reentrant (ND-100 only}, then the
buffers are allocated in the stack area, and each
program has its own buffer pool. The allocation is done
by an explicit call to a routine provided for the
purpose:

CALL CREBUF (n)

where
the parameter n is INTEGER*2. If n is positive,
then n buffers are created in the stack area.
If n is less than or egual to zero, no action
is taken. If the buffers have already been
allocated, no action is taken (i.e., only the
first call to CREBUF has any effect).

Note that the FORTRAN-100 library must be loaded last of
all, if buffered 1/0 is used.

The FORTRAN-100 library has as its last entry point, a
pointer, called FREE P, describing the area of
unallocated address space, which is assumed to begin
immediately following FREE P. I1/0 buffers for non-
reentrant programs will use this unallocated address
space. Fo non-reentrant RT-programs, the RT-Loader
command, SET-10- BUFFERS must be used to allocate buffer
space.

e The following applies to FORTRAN-500:

The default buffer size is 2048 bytes. By using the
BUFFER-SIZE parameter in the OPEN statement, bigger
buffers can be used. The Linkage-Loader command, SET-10-
BUFFERS, must be used to allocate the space needed for
the I/0 buffers. The argument (octal) specifies how many
buffers are to be allocated.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

APPENDICES

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix A

ASCII CHARACTER SET

Octal Value Decimal ASC

Graphic Left Byte Right Byte Value Abbreviation Comments
000000 ¢} [¢] NUL Null
000400 1 1 SOH Start of heading
001000 2 2 STX Start of text
001400 3 3 ETX End of text
002000 4 4 EOT End of transmission
002400 5 5 ENQ Enquiry
003000 6 6 ACK Acknowledge
003400 7 7 BEL Bell
004000 10 8 BS Backspace
004400 11 9 HT Horizontal tabulation
005000 12 10 LF Line feed
005400 13 11 vT Vertical tabulation
006000 14 12 FF Form feed
006400 15 13 CR Carriage return
007000 16 14 S0 Shift out
007400 17 15 SI) Shift in
g10000 20 16 DLE Data link escape
010400 21 17 DC1 Device control 1
011000 22 18 DC2 Devicc control 2
011400 23 19 nes3 Device control 3
012000 24 20 DC4 Device control 4
012400 25 21 NAK Negative aknowledge
013000 26 22 SYN Synchronous idle
013400 27 23 ETB End of transmission block
014000 30 24 CAN Cancel
014400 31 25 EM End of medium
015000 32 26 SUB Substitute
015400 33 27 ESC Escape
016000 34 28 FS File separator
016400 35 23 GS Group separator
017000 36 30 RS Record separator
017400 37 . 31 us Unit separator
020000 40 32 SP Space

! 020400 41 33 ! Exclamation marks

v 021000 42 34 " Quotation marks

021400 43 35 # Number sign

$ 022000 44 36 $ Dollar sign

% 022400 45 37 % Percent sign

& 023000 46 38 & Ampersand

' 023400 47 39 ' Apostrophe

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix A

Octal Value Decimal ASC
Graphic Left Byte Right Byte Value Abbreviation Comments
(024000 50 40 (Opening parenthesis
) 024400 51 41) Closing parenthesis
* 025000 52 42 * Asterisk
025400 53 43 + Plus
R 026000 54 44 \ Comma
- 026400 55 43 - Hyphen {(Minus)
027000 56 46 Period (Decimal)
i 027400 57 47 ! Slant
0 030000 60 48 0 Zero
1 030400 61 49 1 One
2 031000 62 50 2 Two
3 031400 63 51 3 Three
4 032000 64 52 4 Four
5 032400 65 53 5 Five
6 033000 66 54 6 Six
7 033400 67 55 7 Seven
8 034000 70 56 8 Eight
9 034400 71 57 9 Nine
035000 72 58 Colon
5 035400 73 59 5 Semi-colon
< 036000 74 60 < Less than
= 036400 75 61 = Equals
037000 76 62 > Greater than
? 037400 77 63 ? Question mark
@ 040000 100 64 @ Commercial at
A 040400 101 65 A Uppercase A
B 041000 162 66 B Uppercase B
C 041400 103 67 C Uppercase C
D 042000 104 68 D Uppercase D
E 042400 105 69 E Uppercase E
F 043000 106 70 F Uppercase F
G 043400 107 71 G Uppercase G
H 044000 110 72 H Uppercase H
I 044400 111 73 I Uppercase I
J 045000 112 74 J Uppercase J
K 045400 113 75 K Uppercase K
L 046000 114 76 L Uppercase L
M 046400 115 77 M Uppercase M
N 047000 116 78 N Uppercase N
0 047400 117 779 0 Unpercase O
P 050000 120 80 P Uppercase P
Q 050400 121 81 Q Uppercase
R 051000 122 82 R Uppercase R
S 051400 123 83 S Uppercase S
T 052000 124 84 T Uppercase T
u 052400 125 85 §] Uppercase U
v 053000 126 86 v Uppercase V
1) 053400 127 87 W Uppercase W
X 054000 130 88 X Uppercase X

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix A

Octal Value Decimal ASC
Graphic Left Byte Right Byte Value Abbreviation Comments

Y 054400 131 89 Y Uppercase Y

Z 055000 132 30 z Uppercase Z

[055400 133 91 [Opening bracket

\ 056000 134 92 \ Reversing slant

] 056400 135 93] Closing bracket

" or T 057000 136 94 " or T Circumflex, up-arrow

or <+ (057400 137 95 R UND, BKR Underscore, back-arrow

- 060000 140 96 ", GRA Grave accent

a 060400 141 97 a, LCA Lowercase a

b 061000 142 98 b, LCB Lowercase b

c 061400 143 99 c, LCC Lowercase c

d 062000 144 100 d, LCD Lowercase d

e 062400 145 101 e, LCE Lowercase e

f 063000 146 102 f, LCF Lowercase f

[+1 063400 147 103 g, LCG Lowercase g

h 064000 150 104 h, LCH Lowercase h

b3 064400 151 105 i, LCI Lowercase i

3 065000 152 106 j, LCJ Lowercase j

k 065400 153 107 k, LCK Lowercase k

1 066000 154 108 1, LCL Lowercase 1

m 066400 155 108 m, LCM Lowercase m

n 067000 156 110 n, LCN. | Lowercase n

] 067400 157 111 o, LCO Lowercase o

P 070000 160 112 p, LCP Lowercase p

q 070400 161 113 q, LCQ Lowercase q

x 071000 162 114 r, LCR Lowercase r

s 071400 163 115 s, LCS Lowercase s

t 072000 164 116 t. LCT Lowercase t

u 072400 165 117 u, LCU Lowercase u

v 073000 166 118 v, LCV Lowercase v

w 073400 167 119 w, LCW Lowercase w

x 074000 170 120 %, LCX Lowercase x

y 074400 171 121 vy, LCY Lowercase y

z 075000 172 122 z, LCZ Lowercase z

{ 075400 173 123 {, LBR Opening (left) brace

1 076000 174 124 1 VLN Vertical line
076400 175 125 , RBR Closing (right) brace

~ 077000 176 126 ~, TIL Tilde
077400 177 127 DEL Delete. rubout

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix A

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual

Appendix B

ERROR MESSAGES

B.

1

COMPILER MESSAGES

During compilation, diagnostic messages will be issued
for any source text which either is, or may be,
erroneous. These messages appear in the program listing
after the statement to which they refer, and also on the
background terminal.

They fall into three categories:

® errors
@ warnings
@ extensions

Error messages are produced when the compiler cannot
make a sensible interpretation of the program.
Execution of these programs becomes impossible.

Warnings are given when there is a potential fault, but
an cbject file is produced and execution may be
possible.

Extension messages indicate where the program is using
Tanguage features which are not part of the ANSI FORTRAN
77 standard. These messages are suppressed unless the
STANDARD-CHECK compiler command is on.

Some messages may be preceded by some text in quotes.
This may be either the name of some variables, or a part
of the source program with a '?' inserted. This '?' will
show where the error was detected and will usually be at
or shortly after the item at fault.

The following list of the text of the error message
texts is in alphabetical order:

-1 IN SUBSTRING
ANST FORTRAN 77 must have positive values as
indexes in substring values.
ND FORTRAN uses -1 to mean stripping blanks
from the string.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

1H ASSUMED
ANSI FORTRAN 77 requires the length of an
H-format item to be explicitly stated.
ND FORTRAN allows 'HX' to mean '1HX'

1X ASSUMED
ANST FORTRAN 77 requires the length of the X
format item to be explicitly stated.
ND FORTRAN allows 'X' to mean '1X'.

ALIGNMENT
A variable has been allocated to an address which
cannot be supported, a eg., an INTEGER beginning
at an odd-byte boundary on ND-100.

ALTERNATE RETURNS IN INTRINSIC FUNCTION
INTRINSIC functions cannot accept * return
specifiers in their argument lists.

ALTERNATE RETURNS INVALID IN THIS PROGRAM UNIT
A RETURN statement was found that specified an
alternate return expression when none of the entry
points had * specifiers in their argument Tist.

ALTERNATE RETURNS ONLY ALLOWED IN SUBROUTINES
Alternate return specifiers are only valid in
subroutines, not in functions.

APF-LIB WILL NOT BE USED BECAUSE OF THE ARRAY-INDEX-
CHECK OPTION
Cannot have both the apf-1ib option and the
array-index-check option at the same time.

APT COMMON
The form of COMMON which is placed in the
alternate page table on NORD-10/ND-100 is
non-standard, and not available on ND-500.

ARGUMENT(S) CONVERTED
ANSI FORTRAN 77 allows only those actual arguments
which match the corresponding dummy arguments
without conversion. ND FORTRAN converts, where
possible, the arguments to INTRINSIC and statement
functions.

ARRAYS MUST HAVE THE SAME SHAPE
A1l arrays in an array-operation must have the
same number of dimensions. All dimensions must be
of equal size.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

"x' ASSUMED
X is a character which the compiler has assumed
was omitted in the indicated position.

ASSUMED BECAUSE HAS 2 ARGUMENTS
The wrong generic or specific name was given for
the number of arguments (i.e., ATAN instead of
ATAN?2) .

ASSUMED-SIZE ARRAY USED AS LIST ITEM
Assumed-size array must not be used as a list
item on input/output statements.

BRANCH INTO DO/IF NEST
The compiler has found an attempt to transfer
control from outside to the inside of a DO loop
or structured IF construct.

CANNOT BE CALLED
The indicated item cannot be invoked. It is
neither external, INTRINSIC nor a statement
function.

CANNOT BE DIMENSIONED
The named item cannot nave dimensions (e.g., it
may have been previously declared as external).

CANNOT BE PASSED AS AN ARGUMENT
The item cannot be used as an actual argument
{e.g., MAX function).

CANNOT BE SAVED
The indicated item must not occur in a SAVE
statement.

CANNOT BE USED IN A TYPE STATEMENT
A name has been explicitly given a type when this
is not allowed {e.g., SUBROUTINE name).

CANNOT CONTAIN A LABEL
The indicated item is expected to have the value
of a label in it (i.e., set by ASSIGN statement).
The item must be an unsubscripted variable name
of type INTEGER*2 on NORD-10/ND-100 and INTEGER*4
on ND-500.

CANNOT CONVERT
The requested conversion cannot be carried out
{e.g., arithmetic to character).

CANNOT SELECT GENERIC ENTRY

There is no specific name for this generic entry
which aliows arguments of the required type.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

CHARACTER AND NON-CHARACTER EQUIVALENCED
ANSI FORTRAN 77 does not allow the mixing of
character items with non-character items in an
equivalence list.

CHARACTER IN APT COMMON
Character variables cannot be referenced via the
APT on NORD-10/ND-100.

CHARACTER VARIABLE REFERENCED IN BOTH SIDES OF "="
It is il1legal to refer to the same character
variable in both source and destination part of an
assignment statement.

COMMON BLOCKS EXCEED MEMORY
The total memory requirements of COMMON blocks
exceeds 64K words (ND-100 only).

CONFLICTING POSITIONS
A variable has been allocated to two separate
places by a combination of COMMON and EQUIVALENCE
lists.

CONTROL VARIABLE NOT INTEGER
In an implied DO in a DATA statement, the loop
control variable must be of type integer.

CONVERTED TO INTEGER
A non-integer arithmetic expression or constant
was found where ANSI FORTRAN 77 requires an
integer. ND FORTRAN allows the conversion.

DATA IN BLANK COMMON
Initializing variables in blank common by a DATA
statement is an ND FORTRAN extension.

DATA IN COMMON
Initializing variables in COMMON with a DATA
statement in a program unit, other than a BLOCK
DATA subprogram, is an ND FORTRAN extension.

DATATYPE
The indicated data type is not in ANSI FORTRAN 77,
but is a ND FORTRAN extension.

DATA STATEMENT IS ILLEGAL
Data statement must not occur in a recursive
subprogram.

DECLARATION MISSING
If IMPLICIT OFF is used, every symbolic name
requiring a data type must be declared in a Type
statement.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

DIVIDE BY ZERO
In a constant expression, an attempt was made to
divide by zero.

DO HAS ZERO STEP
In a DO Toop, or an implied DO loop, the step
value is zero.

DO/IF NESTING ERROR
DO Toops or structured IFs are not properly
nested.

DOUBLY DEFINED
An attempt was made to use a name for two
conflicting purposes.

DOUBLY SAVED
A variable appears in more than one SAVE
statement.

DUMMY NAME INSERTED
A name was expected. The compiler has created an
internal name in order to continue processing.

EMBEDDED UNARY SIGN
ANST FORTRAN 77 prohibits adjacent arithmetic
operators, but ND FORTRAN allows it, eg., A+-B.

ENTRY NOT ALLOWED IN DO/IF NEST
Entry statements cannot appear within DO loops or
structured IF constructs.

ENTRY NOT SET BEFORE RETURN
In a function subprogram, an entry point has not
been assigned. Invocation of this entry point
might Jead to an undefined value being returned.

ERRCODE NORMAL VARIABLE IN STANDARD PROGRAMS
I[f STANDARD CHECK is ON, ERRCODE is treated like a
normal variable. Otherwise it has a special
meaning, see Section 9.1.7.

EXPRESSION MISSING
An expression was expected but not found.

EXTENDS COMMON NEGATIVELY
An EQUIVALENCE 1ist required a variable or array
to occupy storage preceding a COMMON block.

FORMAT
The indicated item is an ND FORTRAN extension.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

FORMAT ERROR
A FORMAT 1ist is incorrectly specified, e.g.,
missing comma.

FORMAT LABEL TARGET OF BRANCH
Control cannot be transferred to labels on FORMAT
statements.

HAS INVALID BOUNDS
The named variable cannot have the declared
bounds. E.g., a local variable was given
non-constant bounds, or the upper bound was less
than the lower.

HAS INVALID LENGTH
The named variable cannot have the declared
length. I.e., a local character string was
declared with a non-constant length.

HOLLERITH CONSTANT
Hollerith constants are not part of the ANSI
FORTRAN 77 standard. Appendix G describes how
ND FORTRAN implements them. Character strings
should be used instead of Hollerith constants
wherever possible.

IGNORED IN BLOCK DATA
The indicated item is not valid in a BLOCK DATA
subprogram, and has been ignored in order to
continue processing.

ILLEGAL INDEX IN IMPLIED DO
Array-index error in implied DO.

IN A DIFFERENT COMMON BLOCK
In an EQUIVALENCE statement, two items in a single
1ist are in different COMMON blocks.

INCLUDES NESTED TOO DEEPLY
The maximum depth of nesting for $INCLUDE commands
is 5.

INCOMPLETE CHARACTER/HOLLERITH STRING
The end of a statement occurred before the end of
a string. Possible causes are: missing quote, or
wrong count before Hollerith H, or statement
extends beyond column 72.

INEFFICIENT ACCESS MODE IN OPEN
This applies to the ND-500 only. The R, W, and RW
access modes are very inefficient. If possible,
DIRECT or SEQUENTIAL should be used.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

INTEGER INVALID OR QUT OF RANGE
An unacceptable integer constant has been found.
The valid values depend on the context.

INTEGER MISSING, 1 ASSUMED
An integer was expected. The compiler assumes a
value of 1 in order to continue processing.

INTERNAL FILES NEED A FORMAT
Using unformatted 1/0 on internal files is not
allowed.

INTRINSIC FUNCTION
The named function is an ND FORTRAN extension.

INVALID AS A DUMMY ARGUMENT
The specified item cannot be a dummy argument.

INVALID AS FUNCTION/SUBROUTINE NAME
Cannot refer to a subprogram as both function and
subroutine.

INVALID CHARACTER, STATEMENT IGNORED
A character is found which is not in the FORTRAN
character set. Compilation continues with the next
statement.

INVALID CHARACTER, SUBSTRING EXPRESSION
The character substring expression exceeds the
maximum string length.

INVALID CONSTANT EXPRESSION
The expression cannot be computed at compile-time.

INVALID DIMENSION EXPRESSICN
Dimension bounds must be integer expressions.

INVALID DO TERMINATION
The label specified in a DO statement was found
with a statement that cannot terminate a DO loop.

INVALID IF EXPRESSION
The expression cannot be used in a Logical or
Arithmetic IF. e.g., it may be of type CHARACTER.

INVALID IMPLICIT RANGE
The range in an implicit range is invalid (e.g.,
the second letter precedes the first).

INVALID IN CONSTANT LIST

The indicated item cannot be used as a constant in
a DATA statement constant list.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

INVALID IN DATA LIST
The indicated item cannot be initialized in a DATA
statement.

INVALID IN EQUIVALENCE LIST
The indicated item cannot share storage with any
other item.

INVALID I/0 LIST ITEM
Self-explanatory.

INVALID 1/0 OPTION
Self-expianatory.

INVALID ITERATION
In an implied DO loop in a DATA statement, the
iteration count is negative or zero.

INVALID LABEL
A Tabel was expected but not found.

INVALID LEFT SIDE OF ASSIGNMENT
Self-explanatory.

INVALID LOCP CONTROL
The control variable of a DO loop must be an
integer, real, or double-precision variable.

INVALID OPERAND
The operand cannot be used with its operator.

INVALID SUBSCRIPT EXPRESSION
A subscript must be of type INTEGER.

LABEL DEFINED, BUT NOT REFERRED TO
The label is not referred to in other statements.

LABEL MISSING
A label was expected but not found.

LLABEL NOT ALLOWED WITH THIS STATEMENT
Self-explanatory.

LABEL NOT ASSIGNED
The label must be assigned to an integer variable
in a statement label assignment statement.

LABEL REFERS TO ITSELF
A potential endless loop was detected.

LABEL UNDEFINED
A label was used which did not appear in the label
field of any statement.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

LABEL USED AS FORMAT
The label on an executable statement was found
where a format label was expected.

LINE{S) ARE NON-BLANK BEYOND COL. 72
The indicated number of lines were found which had
non-blank characters in columns beyond the 72nd,
and these lines formed part of a statement or
command. Comment lines which extend beyond column
72 are not included in this number.

LOCAL ARRAYS EXCEED MEMORY
The total memory requirements of local arrays
exceeds 64K words (ND-100 only).

LOCAL DATA IGNORED IN RE-ENTRANT MODE
Local variables cannct be initialized by DATA
statements in reentrant mode.

LOGICAL OPERATION ON INTEGERS
Self-explanatory.

MISPLACED '='
in an assigment statement, the left-hand side was
not followed by an equals sign.

MISSING DIMENSION LIST
No dimensions were given in an array declarator.

MISSING 'END'
The end of file was found on the program test file
when a program unit was still incomplete.

MISSING NAME, ‘'#MAIN' ASSUMED
In order that tne compiler may continue its
processing, it has inserted the name #MAIN.

MISSING SPECIFICATION
An empty position was found in a list, e.g., 2
adjacent commas.

MISSING SUBSCRIPTS
An array name was used where it must be followed
by a subscript list.

MISSING 'THEN'
The compiier assumes the keyword 'THEN' to be
present, 1in order to continue processing the IF
statement.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

MIXED LENGTH CHARACTER ENTRIES
ANS1 FORTRAN 77 reguires that all entry names in a
function subprogram must be either of type
non-character, or CHARACTER with the same length
{or an *). ND FORTRAN removes this restriction
completely.

MIXING CHARACTER AND NON-CHARACTER IN COMMON
ANSI FORTRAN 77 requires that all variables in a
COMMON block be character, or that all are
non-character.

MIXING DOUBLE PRECISION AND COMPLEX
ANST FORTRAN 77 does not allow arithmetic
operations to have one double precision and one
complex operand. For the method of treatment by
ND FORTRAN, see Section 4.4.

MORE THAN 6 CHARACTERS, 31 SIGNIFICANT
ANSI FORTRAN 77 restricts names to 6 characters.
ND FORTRAN uses the first 31.

MORE THAN 7 DIMENSIONS
ANSI FORTRAN 77 allows no more than 7 dimensions
for its arrays. ND FORTRAN can support more except
within the Symbolic Debugger.

MULTIPLE ASSIGNMENT ILLEGAL FOR ARRAYS
Assignment to an array must not occur in a
multiple assignment statement.

MULTI-DIMENSIONED ARRAYS NOT ALLOWED IN ARRAY-OPERATION
Only one-dimensional arrays are allowed in an
array-operation.

NEITHER UNIT NOR FILE SPECIFIED
An INQUIRE statement must indicate the unit or
file to be examined.

NO DO SPECIFICATION IN LIST
A parenthesised data list has no DO specification
present.

NO MORE SPACE
The compiler has exhausted its work area. The
program unit is too big to be compiled. Try
subdividing it into subroutines, or moving DATA
statements to a BLOCK DATA subprogram.

NON-STANDARD CHARACTER

ND FORTRAN allows an underscore character () in
symbolic names.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix B

NON-

NON-

NON-

NON-~

NON-

NON-

NOT

NOT

NOT

NOT

NOT

NOT

NOT

NOT

STANDARD CONTINUATION
"&" has been used as a continuation mark.

STANDARD EQUIVALENCING

Two data items share storage in a way which may
make the execution of the program diverge from the
ANST FORTRAN 77 definition. E.g., REAL and INTEGER
arrays overlapping on a ND-100.

STANDARD EXPRESSION
Self-explanatory.

STANDARD INTERNAL FILE OR FORMAT
Self-explanatory.

STANDARD LABEL FIELD
ANSI FORTRAN 77 allows labels only in columns 1 to
5 inclusive.

STANDARD REDEFINITION
A name is used, both as an external name or entry,
and as a dummy argument in a statement function.

A FUNCTION
Self-explanatory.

A LOGICAL EXPRESSION
In a structured IF, the expressions controlling
each of the ELSE IF's must be logical expressions.

ALLOWED IN DIMENSION EXPRESSION
Self-explanatory.

ALLOWED IN LOGICAL IF
The indicated statement cannot be part of a Logical
IF statement.

ENOUGH CONSTANTS

There were more items to be initialized in a DATA
statement data 1ist, than constants in the
corresponding constant list.

INTEGER CONSTANT EXPRESSION
Self-explanatory.

INTRINSIC, EXTERNAL ASSUMED

The name is not one of the known INTRINSIC
functions. It is assumed to be an external function
in order to continue processing.

SYMBOLIC CONSTANT

A name found where a constant expression should
appear, was not a constant.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

NO UNIT SPECIFIER
A11 1/0 statements must specify the unit on which
they operate.

NULL STATEMENT ,
ANSI FORTRAN 77 does not allow completely empty
statements. E.g., after a Logical IF.

OCTAL CONSTANT
Octal constants are an ND FORTRAN extension.

OPTION
The indicated option is an ND FORTRAN extension.

OUT OF DATA BEFORE CONSTANTS
In a DATA statement, the list of initialized items
was shorter than the 1ist of constants.

OUT OF RANGE
The value on the right side of the assignment
operator is too large/small for the variable on the
left side.

OVERLAPPING IMPLICIT RANGES
The same letter{s) occur in more than one range
in impiicit specifications.

PARENTHESES ASSUMED AROUND PARAMETERS
The PARAMETER statement should have its 1ist of
symbolic constant assignments enclosed in
parentheses.

PRICRITY
Priority is valid only for ND FORTRAN programs.

REC AND END CONFLICT
The end-of-file indication can only occur in a
direct access READ as an ND FORTRAN extension.

REC AND FMT = * CONFLICT
Free format 1/0 is only valid in SEQUENTIAL access
READ and WRITE statements.

RECURSION
Recursion js valid only as an ND FORTRAN extension,
and in reentrant mode.

RETURN IN PROGRAM
In ANSI FORTRAN 77, a program must terminate with a
STOP statement or by reaching the END statement of
the program subunit.

SAVE OF LOCALS NOT IMPLEMENTED IN REENTRANT MODE
Self-explanatory.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

SEMICOLON SEPARATOR
In ANST FORTRAN 77, only one statement can be
placed on a line. ND FORTRAN allows a semicolon
character (;) to separate statements on a line.

SINGLE DIMENSIONING
The ability tc refer to a multidimensional array by
use of a single subscript is an ND FORTRAN
extension.

SPECIFICATION AFTER DATA
ND FORTRAN allows DATA statements to appear before
specification statements.

STATEMENT
The indicated statement is an ND FORTRAN extension.

STATEMENT HAS TOO MANY CONTINUATION LINES
ANST FORTRAN 77 allows 19 continuation lines in one
statement. The statement must be split.

SUBSTRING OF CONSTANT
Taking the substring of a symbolic constant is a ND
FORTRAN extension. '

SYMBOL NOT IN PARENTHESES
A symbolic constant being used to define a length

of character items must be in parentheses in ANSI
FORTRAN 77.

SYNTAX ERROR IN ARITHMETIC CONSTANT
Self-explanatory.

SYNTAX ERROR, REST OF STATEMENT IGNORED
A previous syntax error has been found. Processing
is continued at the next statement.

TOO FEW ITEMS
In an EQUIVALENCE statement, each list must contain
at lTeast two items.

TOO LARGE LENGTH SPECIFIER
A character variable may have a length up to
2047 on ND-100 and 32767 on ND-500.

UNRECOGNISED OR MISPLACED STATEMENT
The statement is either badly formed {(e.g., a
misspelled keyword) or is out of sequence (e.g., a
specification follows an executable statement).

VARIABLE NOT ASSIGNED
The variable is referred to before it is assigned.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

WRONG NUMBER OF ARGUMENTS
Self-explanatory.

WRONG USE OF ASSEMBLY NAME
The restrictions on use of symbolic names declared
in an ASSEMBLY statemert have not been observed.

ZERO LENGTH STRING
Self-explanatory.

%COMMENT

ND FORTRAN allows comments to begin with a percent
(%) character.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

B.2 THE LOADER ERROR MESSAGES

These are described in the SINTRAN III Real Time Loader
ND-60.051.

B.3 RUNTIME ERROR DIAGNOSTICS

The runtime error diagnostics are printed on the message
output file, which is the user terminal (the SINTRAN
error device for RT) in the format:

%% date time FORTRAN EXCEPTION : (nnn)
1ine error message
IN LINE 11 RETURN ADDRESS aaaaaa UNIT uu DEVICE ddB

where:

nnn is the octal error number

aaaaaa is the address in octal of the executing
program of the compiled statement in which
the error has occurred.

11 is the Tine number in decimal within the
source program, of the compiled statement in
which the error has occurred.

uu is the FORTRAN unit number, decimal, on
which the error has occurred.

dd is the SINTRAN logical device number, octal,

on which the error has occurred.

Note that on the ND-500, more information about traps
and exceptions may be printed, see Appendix D.3.

If the error is serious the message ***JOB ABORTED*** isg
given and the control returns to the operating system.

If the error is not serious, ERRCODE is set to the value

of the error code (and IOSTAT if applicable), and
control returns to the FORTRAN program.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual

Error Code Meaning (error text)
Decimal Octal

0 0 Not used

1 1 Not used

2 2 Bad file number

3 3 End of file

4 4 Card reader error (card read)

5 5 Device not reserved

6 6 Not used

7 7 Card reader error (card not read)
8 10 Not used

9 11 Not used

10 12 End of device (time-out)

11-16 13-20 Not used

17 21 I1legal character in parameter
18 22 No such page

19 23 Not decimal number

20 24 Not octal number

21 25 You are not authorized to do this
22 26 Directory not entered

23 27 Ambiguous directory name

24 0 No such device name

25 31 Ambiguous device name

26 32 Directory entered

27 33 No such logical unit

28 34 Unit occupied

29 35 Master block transfer error

30 36 Bit file transfer error
31 37 No more tracks available
32 a0 Directory not on specified unit
33 41 Files opened on this directory
34 42 Main directory not last one released
35 43 No main directory
36 44 Too Tong parameter
37 45 Ambiguous user name
38 46 No such user name

39 47 No such user name in main directory
40 50 Attempt to create too many users
41 51 User already exists
42 52 User has files
43 53 User is entered
a4 54 Not so much space unreserved in directory
45 55 Reserved space already used
46 56 No such file name
47 57 Ambiguous file name

48 60 Wrong password

Norsk Data ND-60.145.7 EN Rev.A

Appendix B

ND FORTRAN Reference Manual
Appendix B

Error Code Meaning (error text)

Decimal Octal

49 61 User already entered

50 62 No user entered

51 63 Friend already exists

52 64 No such friend

53 65 Attempt to create too many friends
54 66 Attempt to create yourself as friend
55 67 Continuous space not available

56 70 Not directory access

57 71 Space not available to expand file
58 72 Space already allocated

59 73 No space in default directories
60 74 No such file version

61 75 No more pages available for this user
62 76 File already exists

63 77 Attempt to create too many files
64 100 Outside device 1imits

65 101 No previous version

66 102 File not continuous

67 103 File type already defined

68 104 No such access code

69 105 File already opened

70 106 Not write access

71 107 Attempt to open too many files

72 110 Not write and append access

73 111 Not read access

74 112 Not read, write and camon access
75 113 Not read and write access

76 114 Not read and comon access

77 115 File reserved by another user

78 116 File already opened for write

79 117 No such user index

80 120 Not append access

81 121 Attempt to open too many mass storage files
82 122 Attempt to open too many files

83 123 Not opened for sequential write
84 124 Not opened for sequential read

85 125 Not opened for random write

86 126 Not opened for random read

87 127 File number out of range

88 130 File number already used

89 131 No more buffer space

0 132 No file opened with this number
91 133 Not mass storage file

g2 134 File used for write

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix B

Error Code Meaning {error text)
Decimal Octal
93 135 File used for read
84 136 File only opened for sequential read or write
g5 137 No scratch file opened
86 140 File not reserved by you
97 141 Transfer error
a8 142 Reserved by RT program
39 143 No such block
100 144 Source and destination equal
101 145 117egal on tape device
102 146 End of tape
103 147 Tape already in use
104 150 Not random access on tape files
105 151 Not last file on tape
106 152 Not tape device
107 153 117egal address reference in monitor call
108 154 Not last record on tape
109 155 File already opened by another user
110 156 File already opened for write by another user
1i1 157 Missing parameter
112 160 Two pages must be left unreserved
113 161 No answer fram remote computer
114 162 Device cannot be reserved
115 163 Overflow in read
116 164 DMA error
117 165 Bad datablock
118 166 Control/modus word error
119 167 Parity error
120 170 LCR error
121 171 Device error (read-last-status to get status)
122 172 No device buffer available
123 173 I717egal mass storage unit number
124 174 [1legal parameter
125 175 Write-protect violation
126 176 Error detected by read after write
127 177 No EOF mark found
128 200 Cassette not in position
129 201 I1legal function code
130 202 Time-out {no datablock found)
131 203 Paper fault
132 204 Device not ready
133 205 Device already reserved
134 206 Not peripheral file
135 207 No such queue entry
136 210 No so much space left

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix B
Error Code Meaning {error text)
Decimal Octal

137 211 No spooling for this device

138 212 No such queue

139 213 Queue empty

140 214 Queue full

141 215 Not last used by you

142 216 No such channel name

143 217 No ramote connection

144 220 [11egal channel

145 221 Channel already reserved on remote computer

146 222 No remote file processor

147 223 Formetting error

148 224 Incompatible device sizes

149 225 Remote Processor not available

150 226 Tape format error

151 227 Block count error

152 230 Volume not on specified unit

153 231 Not deleted record

154 232 Device error

155 233 Error in object entry

156 234 Odd number of bytes (right byte in last word
insignificant) 157-256 234-400 Not used

257 401 Fatal formatting system error.
This is a system error due to software or
hardware errors.

258 402 Too Tow parentheses level in format.
A maximum of 5 levels is permitted.

259 403 I17egal character in format

260 404 1Tlegal termination of format

261 405 Output record size exceeded.
A maximum of 136 characters is permitted.

262 406 Format requires greater input record

263 407 Integer overflow on input.
The result will be 21474836847 or -21474836848
for INTEGER*4, and 32767 or -32768 for
INTEGER*2.

264 410 Input record size exceeded.
A maximum of 136 characters is permitted.

265 411 Backspace 111egal

266 412 Bad charecter on input.
The input field is ignored and the result
will be zero.

267 413 Real overflow on input.

The result will be 1.0E76.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix B
Error Code Meaning (error text)
Decimal Octal
268 414 Real underflow on input.
The result will be 0.0.
269 415 String does not start on a word boundary
270 416 Real overflow on output
271 417 Formar specification does not apply
272 420 Overflow in exponent on input
273 421 Wrong number of parameter in call
274 422 Too many files opened (ND-100 only)
275 424 Mixing of FORMATTED/UNFORMATTED i1legal
277 425 No more buffers available
278 426 Non-fatal error.
Result of FORTRAN system or hardware error.
ND-500 only.
279 427 Fatal error (1/0}.
Result of FORTRAN system or hardware error.
ND-500 only.
280 430 1/0 error without special handling
281 431 Zero base and negative exponent.
The result will be 21474836847 for integers
and 1.0E76 for reals.
282 432 Base elss than zero in exponentiation.
The result will be 0.0.
283 433 Overflow in exponentiation.
The result will be 1.0E76.
284 434 Neg. arg. in square-root.
The result will be 0.0.
285 435 Too large arg. in sine.
The result will be 0.0.
286 436 Too large arg. in cosine.
The result will be G.0.
287 437 Too large arg. in exp-function.
The result will be 1.0E76.
283 440 Zero or neg. arg. in logarithm.
The result will be -1.0E76.
289 441 Both args. zero in arc-tan.
The result will be 0.0. 290-293 442-445 Not used
294 446 Too large arg. in hyperb. sine.
The result will be 1.0E76.
295 447 Too large arg. in hyperb. cosine.
The result will be 1.0E76.
296 450 Too large arg. in square-root or complex
abs or sguare-root. 297-301 451-455 Not used

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Meaning (error text)

Appendix B
Error Code
Decimal Octal
297-301 451-455
302 456
303 457

Not used

ITlegal arg. in arc-sine/cosine.
The result will be 0.0.

I1legal arg. in tan.

The result will be 0.0.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix B

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix C

MONITOR CALLS

c.1 INTRODUCTION TO USING MONITOR CALLS

If a Fortran program wishes to communicate directly with
the SINTRAN operating system, Monitor Calls are provided
for this purpose. The FORTRAN language and runtime
system has a variety of facilities, such as 1/0
statements for accessing files or handling peripheral
devices. However, some situations require direct
communication between a program and the SINTRAN
operating system. In general, this means that the
program is requesting a particular service be carried
out, or that some specific item of information is
required.

The Monitor Calls may be called by using the statements:

MONITOR CALL(number, par-1, ..., par-n)
or

MONITOR CALL({'name', par-1, ..., par-n)
where

number is the Monitor Call number
‘name’ is the name of the Monitor Call.

Further explanation of each Monitor Call is given in the
manual SINTRAN III Monitor Calls ND-60.228.1.

Some Monitor Call routines are provided in the FORTRAN
library. These may be called from a FORTRAN program as
either a subroutine or a function subprogram. The main
difference is that in using a monitor call as a
function, a value is returned indicating the result of
carrying out the request.

Most monitor calls may be used as a function or a
subroutine. However, some may only be used as a function
since the function value is the information which was
requested, e.g., the monitor call TUSED returns the CPU
time used by a terminal since a logon.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

If a function returns a status code, it is strongly
recommended that this status is tested. If a monitor
call is called as a subroutine, then status, e.g., error
conditions, must be detected in a different way to
functions. The system variable ERRCODE, which is an ND
FORTRAN extension, may be used with many of the monitor
calls (both functions and subroutines) to detect errors.
If ERRCODE is used to detect errors from monitor calls,
the program must not be compiled in STANDARD-CHECK ON
modus .

Example - a monitor call used as a subroutine

For example, to set the system time and date, use the
monitor call CLOCK (MON 113) as a subroutine:

C DECLARATIONS

C
INTEGER PARAMS{7]
INTEGER BUNITS,SECONDS,MINUTES,HOURS ,DAYOFMTH,MONTH, YEAR
C
C SET UP SOME CONVENIENT VARIABLE NAMES FOR THE TIME AND DATE
C
EQUIVALENCE (PARAMS({1),BUNITS]),(PARAMS(2],SECONDS)
EQUIVALENCE (PARAMS(3),MINUTES), (PARAMS{4), HOURS)
EQUIVALENCE (PARAMS(5]),DAYOFMTH), (PARAMS(6) ,MONTH)
EQUIVALENCE {PARAMS(7),YEAR)
C
C USE MONITOR CALL TO GET SYSTEM TIME AND DATEL
c

CALL CLOCK(PARAMS]

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

Example - a monitor call used as a function

To read information directly from a device, use the
monitor call INCH as a function:

M

DECLARATIONS (INCLUDING THE MONITOR CALL TO BE USED
AS FUNCTION])

@]

INTEGER iNUNIT,ONECHAR
INTEGER INCH

READ ONE CHARACTER FROM THE DEVICE WHICH IS CONNECTED
TO THE FORTRAN UNIT NUMBER IN INUNIT

[e ®!

ONECHAR=INCH{ INUNIT)

(@I

CHECK THE SYSTEM VARIABLE, ERRCODE, TO SEE IF ALL WENT WELL

IF(ERRCODE .NE. 0] GO TO 10

@]

CONTINUE PROCESSING

@}

ERROR OCCURED, TERMINATE

=00

0 CONTINUE
STOP

Note: 1. The system variable, ERRCODE, contains a
" value upon return from many monitor calls.
The value returned indicates that the
service requested has been successfully
carried out, or whether an error or some
unusual condition has arisen.

2. If a monitor call is used as a function, the
function name must be declared as a specific
data type, to define for the compiler the
precise way that this variable name will be
used.

A1l monitor calls, which may be used in FORTRAN, are
listed in the Table of Monitor Calls, in section C.3..
For each monitor call, the table describes the name
which must be used, if the monitor call should be used
as a function only, the number of parameters and their
corresponding data types, and whether ERRCODE contains a
value upon return,

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

The complete definition of all available monitor calls
is in the SINTRAN Reference Manual, ND-60.128. This
includes an explanation of the meaning of each parameter
and rules about the use of each monitor call.

The monitor calls available to FORTRAN programs, i.e.,
supplied in the FORTRAN 1ibrary, are limited to those
described in section €.3, which does not include all
those available from the SINTRAN operating system. Note
that the name to be used for a specific monitor call in
FORTRAN could be different from the name used in the
SINTRAN Reference Manual. The example above shows how
the monitor call INCH is used; in the SINTRAN Reference
Manual this monitor call is named INBT. The table in
section C.3 has the names to be used in FORTRAN.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

C.2 COMMONLY USED MONITOR CALLS

This section illustrates some of the more commonly used
monitor calls. Each monitor call which has been
selected, has a brief explanation of its function and an
example of the way it can be called from a FORTRAN
program.

The monitor calls are categorized into the same groups

as in the SINTRAN Reference Manual, ND-60.128, Chapter
4.

Summary of the Monitor Calls in this Section

Alphabetical order: Numerical order:

ABORT 105 (C.2.1) 1 INCH {C.2.2)
BRKM 4 (C.2.3) 2 QUTCH (C.2.2)
CLOCK 113 (C.2.1) 3 ECHOM (C.2.3)
ECHOM 3 (C.2.3) 4 BRKM (C.2.3)
COMND 70 (C.2.1) 11 TIME (C.2.1)
ERMSG 64 (C.2.6) 32 MSGE (C.2.3)
HOLD 104 (C.2.1) 64 ERMSG (C.2.6)
INCH 1 (C.2.2) 66 ISIZE (C.2.3)
ISIZE 66 (C.2.3) 70 COMND (C.2.1)
MAGTP 144 (C.2.3) 73 SMAXD (C.2.4)
MSG 32 (C.2.3) 75 REABT (C.2.4)
QUTCH 2 (C.2.2) 76 SETBS (C.2.4)
QUTST 162 (C.2.2) 100 RT (C.2.1)
REABT 75 (C.2.4) 104 HOLD {C.2.1)
RFILE 117 (C.2.5) 105 ABORT (C.2.1)
RSIO 143 (C.2.5) 113 CLOCK (C.2.1)
RT 100 (C.2.1) 114 TUSED (C.2.1)
RTWT 135 (C.2.1) 117 RFILE (C.2.5)
SETBS 76 (C.2.4) 120 WFILE (C.2.5)
SMAX 73 {C.2.4) 121 WAITF (C.2.5)
TIME 11 (C.2.1) 135 RTWTF (C.2.1)
TUSED 114 (C.2.1) 140 WHDEV (C.2.2)
WAITF 121 (C.2.5) 143 RSIOV (C.2.5)
WFILE 120 (C.2.5) 144 MAGTP (C.2.3)
WHDEV 140 (C.2.2) 162 OUTST (C.2.2)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

c.2.1 PROGRAM ADMINISTRATOR

O]

oNeNoNeNe! sNeNsNeNe! oo NeRe!

O n

TIME - MON 11

Read the current time, in basic time units, i.e., 20
milliseconds per unit or some preset value, as held by
the operating system.

GET THE CURRENT TIME IN INTERNAL UNITS

INTEGER*4 TIME,CURRENTTIME, DUMMY

CURRENTTIME=TIME (DUMMY)

COMND - MON 70

Transfer the contents of a string to the SINTRAN command
processor's buffer, and the string will be executed by
SINTRAN.

REQUEST SINTRAN TO EXECUTE A COMMAND TO CREATE A FILE
DURING EXECUTION OF THIS PROGRAM

CHARACTER*20 COMMAND
ON THE ND-100, THE CHARACTER STRING MUST START ON A WORD
BOUNDARY. EQUIVALENCE WITH AN INTEGER VARIABLE WILL

ACCOMPLISH THIS.

INTEGER I
EQUIVALENCE(CCMMAND, I)

SET THE CONTENTS OF THE STRING VARIABLE TO A SINTRAN COMMAND.

NOTE THE CHARACTER STRING DOES NOT BEGIN WITH AN @ CHARACTER.

FURTHERMORE, THE STRING MUST BE TERMINATED BY AN APOSTROPHE.
COMMAND='CREATE-FILE A-NEW-FILE:SYMB 100'""’

REQUEST SINTRAN TO EXECUTE THE CONTENTS OF "COMMAND"

CALL COMND{COMMAND)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix C
RT - MON 100
Put an entry in execution queue, to request execution of
an RT program.
C
C PUT REQUEST FOR EXECUTION OF THE RT PROGRAM IN THE EXECUTION
C QUEUE
C
EXTERNAL RTJOB
C
CALL RT(RTJOB)
HOLD - MON 104
Set the calling program in a waiting state for a
specified period. The program will continue execution
after return from the call to HOLD.
C
C WAIT FOR 30 SECONDS, THEN OUTPUT A MESSAGE, INCLUDING A COUNT,
C ONCE EVERY TEN TIME UNITS
C
INTEGER TERMINAL,COUNT,TUNITS,SECONDS
INTEGER LONGWAIT,MSGWAIT,MSGLIMIT
C
C INITIALIZE TERMINAL LOGICAL UNIT
C
DATA TERMINAL/1/
C
C INITIALIZE TIME UNIT INDICATORS
c
DATA TUNITS/1/,SECONDS/2/
o

C INITIALIZE WAIT TIMES
DATA LONGWAIT/30/,MSGWAIT/10/

C
C PUT PROGRAM IN A WAIT STATE FOR 30 SECONDS
C
CALL HOLD(LONGWAIT,SECONDS)
C

C OQUTPUT SOME MESSAGES WITH A COUNT EVERY TENTH BASIC TIME UNIT
DO 10 COUNT = 1 ,MSGLIMIT
WRITE(TERMINAL,100) COUNT
100 FORMAT(X, 'Still alive in here! Message number: ',I5)
CALL HOLD(MSGWAIT,TUNITS)
C
C DO SOME OTHER PROCESSING
C
10 CONTINUE

Norsk Data ND-60.145.7 EN

@]

[oN@]

@]

ND FORTRAN Reference Manual
Appendix C

ABORT - MON 105

Stop an RT program by setting it in a passive state. The
program will be removed from the time or execution
queue, all resources will be released and further
periodic execution will be prevented.

STOP AN RT PROGRAM

EXTERNAL COLLECT

CALL ABORT(COLLECT)

CLOCK -~ MON 113

Get the current time and date from the operating system.

GET THE SYSTEM TIME DATE AND PRINT IN A PLEASANT FORMAT
INTEGER PARAMS(7)

GET TIME AND DATE
CALL CLOCK{PARAMS)

PRINT THE TIME AND DATE IN A USEFUL FORMAT
WRITE(PRINTFILE,100) (PARAMS{I]), 1=2,7)

100 FORMAT(X, The time is : ',I2, .',I2,'.',12,/,
1 X, 'The date is : ',I2,'/',12,'/"' 14}

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

TUSED -~ MON 114

Get the CPU time used by a terminal since the last
logon, or since the last batch job was started.

o]

COMPUTE THE TIME REQUIRED TO COMPLETE EXECUTION OF A LOOP
INTEGER*4 CPUSTART, CPUFINISH, LOOPTIME, TUSED

C GET CPU TIME PRIOR TO THE LOOP
CPUSTART=TUSED (DUMMY)

C
C THE LOOP WE WANT TO TIME
C
DO
C
C THE LOOP DOING SOMETHING
ENDDO
C
C THE LOOP HAS FINISHED, COMPUTE HOW LONG IT TOOK.
C
CPUFINISH=TUSED (DUMMY)
LOOPTIME=CPUFINISH-CPUSTART
RTWT - MON 135
Set the RT program issuing the call in a wait state
until is restarted, e.g., by another program calling RT
{MON 100). The program which issued the RTWT call will
restart at the statement immediately following the RTWT
call.
PROGRAM HOPE
C
C SET THIS PROGRAM IN A WAIT STATE, HOPING THAT IT GETS
C RESTARTED SOONER OR LATER
C
INTEGER TERMINAL
C
C INITIALIZE THE TERMINAL LOGICAL UNIT NUMBER
DATA TERMINAL/1/
C
C TAKE A REST FOR A WHILE
C
CALL RTWT
C

C AFTER BEING RESTARTED, CARRY ON FROM HERE. TELL THE USER.

WRITE(TERMINAL,*) 'Hurray, we are off againt!'

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

c.2.2 RETRIEVING/CHANGING DEVICE INFORMATION

OO 0On

(@}

a0

aQ O

INCH - MON 1
Read one byte from a device. If the device is a data

Tink or word-oriented internal device, read one word.

READ ONE BYTE INTO THE VARIABLE ICHAR FROM A DEVICE. THE
DEVICE MUST HAVE BEEN OPENED AND ITS FORTRAN UNIT NUMBER
STORED IN THE VARIABLE IFNUM, OR A SINTRAN LDN MAY BE USED.

ICHAR=INCH(IFNUM)
IF NOT SUCCESSFUL, PRINT A FILE SYSTEM ERROR MESSAGE

IF {(ERRCODE .NE. 0) CALL ERMSG(ERRCODE)

QUTCH - MON 2

Write one byte to a device or to a file. If the device
is a data link or word oriented internal device, write
one word.

WRITE ONE BYTE FROM ICHAR TO A FILE. THE FILE MUST HAVE
BEEN OPENED AND ITS FORTRAN UNIT NUMBER STORED IN THE
VARIABLE IFNUM, OR A SINTRAN LDN MAY BE USED.

CALL OUTCH(IFNUM, ICHAR)
IF NOT SUCCESSFUL, PRINT A FILE SYSTEM ERROR MESSAGE

IF {ERRCODE .NE. 0] CALL ERMSG{ERRCODE)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

WHDEV - MON 140

Check whether a logical device is reserved.

CHECK WHETHER A LOGICAL DEVICE IS FREE FOR OUTPUT,
50 THAT THIS PROGRAM CAN CONTINUE PROCESSING.

Q0o nn

INTEGER TERMINAL,LOGDEVICE,QUTPUT,FREE
INTEGER RTDESC, NHDEV

C
C INITIALIZE TERMINAL LOGICAL UNIT AND LOGICAL DEVICE NUMBER
C
DATA TERMINAL/1/,LOGDEVICE/10/
C
C INITIALIZE PARAMETER VALUES
C
DATA OUTPUT/1/,FREE/0/
C
C GET THE DEVICE INFORMATION
c
RTDESC=WHDEV (LOGDEVICE, QUTPUT)
C
C CARRY ON IF THE DEVICE IF FREE FOR OQUTPUT
C

IF(RTDESC .NE. FREE) THEN
WRITE({TERMINAL,*) 'Sorry, device already reserved'
STOP

ENDIF

Norsk Data ND-60.145.7 EN

@]

ND FORTRAN Reference Manual
Appendix C

OUTST -~ MON 162

Write a string of characters to a peripheral device.

WRITE A MESSAGE TO THE USER'S TERMINAL

INTEGER IMSG,LENGTH,LOGUNIT
CHARACTER*50 MESSAGE

EQUIVALENCE TO AN INTEGER SO IT STARTS ON A WORD BOUNDARY
EQUIVALENCE {IMSG,MESSAGE)
INITIALIZE THE MESSAGE AND ITS LENGTH IN BYTES

DATA MESSAGE/'Hello from your friendly program'/
DATA LENGTH/50/

INITIALIZE THE LOGICAL UNIT NUMBER FOR THE TERMINAL
DATA LOGUNIT/1/

WRITE THE MESSAGE
MONSTATUS=0UTST (LOGUNIT,MESSAGE, LENGTH)

CHECK THAT ALL IS WELL
IF{MONSTATUS .NE. 0] CALL ERMSG{MONSTATUS)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

C.2.3 DEVICE HANDLING

@]

[N @]

@]

ECHOM - MON 3

Set echo strategy for a terminal.

SET THE ECHO STRATEGY TO NOT ECHO ANY CHARACTERS, I.E.
USEFUL

FOR ENTERING A PASSWORD, THEN RESET THE ECHO STRATEGY.
INTEGER TERMINAL, SUPPRESS,NORMAL

INITIALIZE TERMINAL LOGICAL UNIT, AND ECHO STRATEGIES
DATA TERMINAL/1/,SUPPRESS/-1/,NORMAL/1/

SET NO ECHO FOR PASSWORD PROCESSING

CALL ECHOM(TERMINAL, SUPPRESS)

GET USER PASSWORD, WITH APPROPRIATE CHECKS

RESET TO ECHO ALL CHARACTERS ON THE TERMINAL

CALL ECHOM({TERMINAL,NORMAL)

Norsk Data MND-60.145.7 EN

o eNeNe!

[eNe!

ND FORTRAN Reference Manual
Appendix C
BRKM - MON 4
Set a specific break strategy for a terminal.
SET THE BREAK STRATEGY SO THAT THE USER PROGRAM MAY EXAMINE
EVERY CHARACTER, AS IT IS TYPED ON THE USER'S TERMINAL.
INTEGER TERMINAL,ALLCHARS
INITIALIZE TERMINAL LOGICAL UNIT NUMBER
DATA TERMINAL/1/
SET ARGUMENT VALUE FOR BREAK ON ALL CHARACTERS
DATA ALLCHARS /0/
SET BREAK ON ALL CHARACTERS, FOR THE USER'S TERMINAL

CALL BRKM(TERMINAL,ALLCHARS)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

MSG - MON 32

Write a character string to the user's terminal.

[Ee!

SEND A MESSAGE TO THE TERMINAL

@]

CHARACTER*80 MESSAGE

ON THE ND-100, THE CHARACTER STRING MUST START ON A WORD
BOUNDARY. EQUIVALENCE WITH AN INTEGER VARIABLE WILL
ACCOMPLISH THIS.

QOO n0nn

INTEGER I
EQUIVALENCE(MESSAGE, 1)

a0

INITIALIZE THE MESSAGE TEXT

DATA MESSAGE/'Dear user, have a nice day'' '/

a0

SEND THE MESSAGE

CALL MSG(MESSAGE]

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

ISIZE - MON 66

Get the number of bytes, currently in the terminal input
buffer, i.e., those characters which have not yet been
read by the user program.

A TERMINAL IS BEING USED FOR OPERATOR INPUT AND OUTPUT OF
MESSAGES. CHECK WHETHER THE OPERATOR HAS BEGUN TYPING
SOMETHING, PRIOR TO OUTPUT OF A MESSAGE TO THE TERMINAL.

OO0 nn

INTEGER TERMINAL
INTEGER INCHARS

@]

INITIALIZE THE TERMINAL LOGICAL UNIT NUMBER

(@]

DATA TERMINAL/1/

CHECK IF OPERATOR HAS BEGUN TYPING ON THE TERMINAL

@]

INCHARS=ISIZE{TERMINAL)
IF(INCHARS .GT. 0) GO TO 10

C NO, OUTPUT A MESSAGE TO THE TERMINAL

WRITE(TERMINAL,*) 'Dear user, are you still there?’

OPERATOR HAS BEGUN TYPING, PROCESS HIS INPUT BEFORE
PRINTING THE MESSAGE ON THE TERMINAL

oo NeNe!

10 CONTINUE

MAGTP - MON 144

This monitor call reads from, writes to, or performs a
variety of control functions for magnetic tape devices.
It may also be used with other devices with similar
characteristics to magnetic tape devices, e.g., Versatec
printer/plotter or floppy disk.

C
C EXAMPLES OF A MAGNETIC TAPE DEVICE, READ AND REWIND OPERATION
C
INTEGER MAGTP, DATA(100), LOGUNIT
INTEGER READREC, REWIND
INTEGER STATUS, LENGTH, WORDSREAD, DUMMY
c
C INITIALIZE THE LOGICAL UNIT NUMBER AND REQUIRED FUNCTIONS
C
DATA LOGUNIT/32/
DATA READREC/0/, REWIND/13B/
C
C READ A RECORD, 50 WORDS SAY

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manuat
Appendix C

LENGTH=50

STATUS=MAGTP (READREC,DATA,LOGUNIT,LENGTH,WORDSREAD)
C
C IF ALL IS NOT WELL, EXIT TO ERROR PROCESSING
C

IF(STATUS .NE. 0] GO TO

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

C.2.4 RETRIEVING/CHANGING FILE SYSTEM INFORMATION

oeNeNe!

a0

o e®!

a0

@]

SMAX - MON 73 and REABT - MON - 75

Appendix C

SMAX sets the value of the maximum byte pointer of a

file.

REABT reads the byte pointer as it would be used for
the next sequential access of a mass storage file.

AFTER WRITING SOME RECORDS TO A FILE, UPDATE THE MAXIMUM BYTE

POINTER.
INTEGER SMAX,REABT
INTEGER*4 BYTEPOINTER,MAXBYTEPOINTER
INTEGER LOGUNIT

INITIALIZE THE LOGICAL UNIT NUMBER

DATA LOGUNIT/10/

OPEN THE FILE

OPEN{LOGUNIT,FILE='MY~-DATA-FILE' ,ACCESS='SPECIAL",...]

WRITE SOME RECORDS CONTAINING DATA TO THE FILE

GET THE VALLUE OF THE BYTE POINTER FOR THE FILE
CALL REABT({LOGUNIT,BYTEPOINTER)
CHECK THAT ALL IS WELL

IF(ERRCODE .NE. 0} CALL ERMSG{ERRCODE)

UPDATE THE VALUE OF THE MAXIMUM BYTE POINTER FOR THE FILE

MAXBYTEPOINTER=BYTEPOINTER-1
CALL SMAX(LOGUNIT,MAXBYTEPOINTER]

CHECK THAT ALL IS WELL

IF(ERRCODE .NE. 0) CALL ERMSG{ERRCODE)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix C
SETBS - MON 76
Set the block size of a file to a specific value
temporarily (until the file is closed), which will then
be used for random read and write operations.
In the example below, the FACTOR= specifier of the OPEN
statement is set to 4 which is the default value for
operation on the ND-500. This program can be used on the
ND-100 without any changes; but note that the default
value is 2 for the ND-100.
The FACTOR= specifier, in the OPEN statement, might be
set to 1 which means that the monitor calls, RFILE,
WFILE, SETBS and MAGTP will use block size in bytes,
rather than using the default word sizes relevant to
either machine. Note that an even number of bytes should
be used.
C
C SET THE BLOCK SIZE TO 4096 BYTES. THE DEFAULT BLOCK SIZE WHEN
C THE FILE IS OPENED IS 512 BYTES (256 WORDS ON THE ND-100).
C
INTEGER LOGUNIT, FAC500, TBSBYTES, TBSUNITS
C
C INITIALIZE THE LOGICAL UNIT NUMBER
C
DATA LOGUNIT/10/
C -
C INITIALIZE TEMPORARY BLOCK SIZE, IN BYTES
C
DATA TBSBYTES/4096/
C
C INITIALIZE VALUE TO DEFAULT FOR THE ND-500
C
DATA FAC500/4/
C
C OPEN THE FILE, USE FACTOR= TO SET DEFAULT VALUE FOR ND-500
C
OPEN(LOGUNIT,FACTOR=FACSOO,ACCESSz'SPECIAL‘,...]
c .
C CHANGE FROM THE DEFAULT BLOCK SIZE TO 4096 BYTES.
C THIS BLOCK SIZE WILL BE USED UNTIL THE FILE IS CLOSED,
C OR ANOTHER SETBS CALL IS MADE.
C
TBSUNITS=TBSBYTES/FAC500
CALL SETBS(LOGUNIT,TBSUNITS])
C
C CHECK THAT ALL IS WELL
C

IF(ERRCODE .NE. 0) CALL ERMSG{ERRCODE)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

C.2.5 FILE OPERATIONS

N OO0 OnN

aQn

Q

@]

RFILE - MON 117 and WFILE - MON 120

Access a file randomly and read or write a specified
number of words to or from a file block.

READ A BLOCK OF DATA, 2048 BYTES, RANDCOMLY FROM ONE FILE AND
WRITE IT RANDOMLY TO ANOTHER FILE. THEN READ THE NEXT RECORD
FROM THE INPUT FILE.
THE FACTOR= PARAMETER IN THE OPEN STATEMENT IS SET TO THE
DEFAULT VALUE FOR THE ND-100, 1.E. 2 BYTES.
INTEGER INUNIT, OUTUNIT, FAC100, READNEXT
INTEGER DATA(1024), LENGTH, BLOCKNUM
INTEGER IOCOMPLETE
INITIALIZE THE LOGICAL UNIT NUMBERS
DATA INUNIT/10/, OUTUNIT/12/
INITIALIZE DEFAULT VALUE FOR THE ND-100 IN OPEN STATEMENT
DATA FAC100/2/
SET BLOCK NUMBER TO "READ NEXT BLOCK"
DATA READNEXT/-1/
SET ARGUMENT TO WAIT UNTIL I/0 OPERATION COMPLETE
DATA IOCOMPLETE/O/
INITIALIZE LENGTH OF THE DATA AREA FOR RECORDS, IN WORDS
DATA LENGTH/1024/

OPEN THE FILES, USE FACTOR= SETTING FOR WORD SIZE ON ND-100

OPEN(INUNIT, ... ,FACTOR=FAC100,ACCESS="SPECIAL ...)
OPEN (OUTUNIT, .. .,FACTOR=FAC100,ACCESS="SPECIAL"...]

READ BLOCK RANDOMLY (FIFTH BLOCK) FROM THE INPUT FILE

BLOCKNUM=4
CALL RFILE(INUNIT, IOCOMPLETE,DATA,BLOCKNUM, LENGTH)

CHECK THAT ALL IS WELL
IF(ERRCODE .NE. 0) CALL ERMSG({ERRCODE)
WRITE THE BLOCK RANDOMLY (SECOND BLOCK) TC THE QUTPUT FILE

BLOCKNUM=1
CALL WFILE(OUTUNIT, IOCOMPLETE,DATA,BLOCKNUM, LENGTH)

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix C

(@]

CHECK THAT ALL IS WELL

]

IF(ERRCODE .NE. 0] CALL ERMSG{ERRCODE)

NOW DO A "READ NEXT BLOCK" OPERATION FROM THE INPUT FILE
I.E., THE SIXTH BLOCK

QN O0Oan

CALL RFILE(INUNIT,IOCOMPLETE,DATA,READNEXT,LENGTH)

(P!

CHECK THAT ALL IS WELL

IF(ERRCODE .NE. 0} CALL ERMSG(ERRCODE)

RSIO - MON 143

Find out the execution mode of the calling program, user
number, and input and output file numbers.

@]

OUTPUT A MESSAGE ONLY IF THE PROGRAM IS IN INTERACTIVE MODE,
C AND THE OUTPUT FILE IS A CHARACTER DEVICE.

INTEGER TERMINAL, INTERACTIVE,OCUPPER
INTEGER EXMODE, INDEVICE,QUTDEVICE, INXUSER

]

INITIALIZE THE LOGICAL UNIT NUMBER

0

DATA TERMINAL/1/

INITIALIZE VALUE FOR INTERACTIVE MODE AND LOWER LIMIT DEVICE
NUMBER FOR CHARACTER DEVICES

[pHeNeNe!

DATA INTERACTIVE/G/,OCUPPER/63/

o ®]

REQUEST EXECUTION MODE ETC.

CALL RSIO{EXMODE, INDEVICE,OUTDEVICE, INXUSER)

9]

C OUTPUT MESSAGE IF THINGS ARE AS WE WISH

IF(EXMODE .EQ. INTERACTIVE .AND.
1 QUTDEVICE .LE. OCUPPER]) THEN
WRITE(TERMINAL,*) 'Hello there user’
ENDIF

Norsk Data ND-60.145.7 EN

aQOno

Q0

ND FORTRAN Reference Manual
Appendix C

WAITF - MON 121

Check the state of a mass storage transfer, or whether a
transfer initiated by RFILE or WFILE is complete.

WAIT UNTIL AN I/0 TRANSFER IS5 COMPLETE, BEFORE CONTINUING
PROCESSING

INTEGER LOGUNIT, IONOWAIT, IOCOMPLETE
INTEGER IOSTATUS

INITIALIZE THE LOGICAL UNIT NUMBER
DATA LOGUNIT/10/

SET ARGUMENT VALUES FOR DESIRED ACTIONS
DATAIONOWAIT/1/,I0COMPLETE/0/

OPEN MASS STORAGE FILE
OPEN(LOGUNIT,ACCESS='SPECIAL' ,FILE=...)

READ A RECORD FROM THE FILE
CALL RFILE(LOGUNIT,IONOWAIT,...)

PROGRAM CAN CONTINUE PROCESSING HERE; SOME CALCULATIONS

SET éﬁéGRAM IN A WAIT STATE UNTIL I1/0 HAS FINISHED
I0STATUS=WAITF(LOGUNIT, IOCOMPLETE)

CHECK THAT ALL IS WELL
IF(IOSTATUS .GT. 0) CALL ERMSG(ERRCODE)

ALL IS WELL, I/0 TRANSFER IS FINISHED

Norsk Data ND-6C.145.7 EN

ND FORTRAN Reference Manual
Appendix C

C.2.6 ERROR HANDLING

ERMSG - MON 64

Print the File System error message corresponding to the
value in the argument. This is often used to print an
error message to explain the value of ERRCODE which has
been set by an earlier monitor caill.

C
C PRINT AN APPROPRIATE FILE SYSTEM ERROR MESSAGE
C NOTE THAT ERRCODE VALUE OF ZERO USUALLY MEANS ALL 1S WELL
C
IF(ERRCODE .NE. 0) CALL ERMSG(ERRCODE)

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual

Appendix C
c.3 ND-100 AND ND-500 MONITOR CALLS
Note: in the following table, "integer” in the column
“data type" means default integer type: integer*2 on the
ND-100, and integer*4 on the ND-500.
Name MON |Fun arguments/return ERRCODE
or set
oct |{Sub| number, purpose data type comments
LEAVE 0 |F/S Inone - no return no
INCH 1]|F 1. input unit intaeger FORTRAN unit number yes
see return value integer see note 1
note 2
OUTCH 2F 1. output unit integer FORTRAN unit number yes
see 2. output character [integer right-ad justed
note 2 return value integer see note 1
ECHOM 3is 1. device integer SINTRAN LDN no
2. strategy integer
3. table integer*2 array 8 elements, optional
BRKM 4 1S 1. device integer SINTRAN LDN no
2. strategy integer
3. table integer*2 array 8 elements, optional
4. number of integer optional
characters
TIME 11 {F return value integer*4 no
SETCM 1248 1. command string character see note 4 no
CIBUF 13 F 1. unit integer FORTRAN unit number yes
return value integer ERRCODE
COBUF 14 |F 1. unit integer FORTRAN unit number yes
return value integer ERRCODE
MGTTY 16 |F 1. unit integer FORTRAN unit number yes
2. terminal type integer
return value integer ERRCODE
MSTTY 17 IF 1., unit integer FORTRAN unit number yes
2. terminal type integer
return value integer ERRCODE
LASTC 26 IF 1. device integer SINTRAN LDN no
return value integer right-ad justed
RTDSC 27 |F 1. RT desc. address linteger no
1. RT desc. copy integer array 26 elements
return value integer

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual

Appendix C
Name MON {Fun arguments/return ERRCODE
or nel
oct |Sub | number, purpose data type comments
GETRT 30 |F return value integer no
EXIOX 31 |F 1. register content |integer A-register (ND-100) no
Ii-register (ND-500)
2. dev.register integer
address
return value integer
MSG 3218 1. message character see note 4 yves
ALTON 331s 1. page table number |[integer must be used with APT COMMON |yes
ALTOF 3415 none must be used with APT COMMON |no
I10UT 3515 radix integer 2, 8, 10 or 16 no
2. value integer see note 6
NOWT 36 IS 1. device integer SINTRAN LDN no
1/0 flag integer
wait flag integer
AIRDW 371(s 1. number of integer =N no
channels
channel numbers integer*2 array N 16-bit elements
read values integer*2 array N 16-bit elements
4. error flag integer
SPCLO 40 |F 1. unit integer FORTRAN unit number yes
2. text string character see note 4
3. number of copies linteger
4. print flag integer
return value integer ERRCODE
ROBJE 41 |F 1. unit integer FORTRAN unit number yes
2. buffer integer*2 array 32 elements
return value integer ERRCODE
RUSER 44 {F 1. user name character see note 4 yes
2. buffer integer*2 array 32 elements
return value integer ERRCODE
TERMO 52 |8 1. device integer SINTRAN LDN no
2. mode integer
MDLFI 54 |F 1. file name character see note 4 ves
return value integer ERRCODE
PASET 56 |S 1-5 parameters integer no

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix C
Name MON {Fun arguments/return ERRCODE
or EYER 4
oct [Sub | number, purpose data type comments
PAGET 57 |sS 1-5 parameters integer no
RMAX 62 |F 1. unit integer FORTRAN unit number yas
2. number of bytes integer*4
return value integer ERRCODE
ERMSG 64 |F 1. error number integer see note 7 no
QERMS 65 I8 1. error number integer see note 7 no
ISIZE 66 |F 1. unit integer FORTRAN unit number yas
return value integer see note 1
0SI1ZE 67 F 1. unit integer FORTRAN unit number ves
return value integer see note 1
COMND 70 |F 1. command string character see note 4 ves
DESCF 7145 1. device integer SINTRAN LDN no
EESCF 72 iS 1. device integer SINTRAN LDN no
SMAX 73 |F 1. unit integer FORTRAN unit number -
2. byte count integer*4
return value integer ERRCODE ves
SETBT T4 |F 1. unit integer FORTRAN unit number ves
2. byte pointer integer*4 first byte has number 0
return value integer ERRCODE
REABT 75 |F 1. unit integer FORTRAN unit number ves
2. byte pointer integer#4 first byte has number 0
return value integer ERRCODE
SETBS 76 |F 1. unit integer FORTRAN unit number yes
2. block size integer see units (see note 3)
return value integer ERRCODE
SETBL 77 |F 1. unit integer FORTRAN unit number yes
2. block number integer first block has number 0
return value integer ERRCODE
RT 100 S 1. RT program external ox integer no
SET 101 {5 RT program external or integer no
2. number of time integer
units
3. basic unit integer

Norsk

Data ND-60.145.7 EM

ND FORTRAN

Reference Manual

Appendix C
Name MON {Fun arguments/return ERRCODE
or set
oct [Sub | number, purpose data type comments
ABSET 102 |8 1. RT program external or integer no
2. seconds integer
3. minutes integer
4. hours integer
INTV 103 S 1. RT program external or integer no
2. number of time integer
units
3. basic unit integer
HOLD 104 |S 1. number of time initeger no
units
2. basic units integer
ABORT 105 |s 1. RT program external or integer 1o
CONCT 106 S . RT program external or integer ne
2. device integer SINTRAN LDN
DSCNT 107 |S 1. RT program external or integer no
PRIOR 110 |F 1. RT program external- or integer no
2. priority integer
return value integer
UPDAT 111 |5 1-5 time integer no
CLADJ 112 |8 1. number of time integer no
units
2. basic units integer
CLOCK 113 |5 1. time integer array 7 elements no
TUSED 114 |F return value integer*4 no
FIX 115 i5s 1. segment number integer no
UNFIX 116 |S 1. segment number integer no
RFILE 117 {F 1. unit integer FORTRAN unit number yes
2. return flag integer
3. memory address array any type except character
4. block number integer
5. length to be read |integer count in units (see note 5)
return value integer ERRCODE

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix C
Name MON Fun arguments/return ERRCODE
or set
oct |Sub | number, purpose data type comments

WFILE 120 |¥ 1. unit integer FORTRAN unit number yes
2. return flag integer
3. memory address array any type except character
4. block number integer
5. length to be integer count in units {(see note 5}

written

return value integer ERRCODE

WAITF 121 |F 1. unit integer FORTRAN unit number ves
2. return flag integer
return value integer

RESRV 122 {F 1. device integer SINTRAN LDN nc
2. 1/0 flag integer
3. return flag integer
return value integer

RELES 123 s 1. device integer SINTRAN LDN no
2. 1/0 flag integer

PRSRV 124 |F 1. device integer SINTRAN LDN no
2. 1/0 flag integer
3. RT program external or integer
return value integer

PRLS 125 S 1. device integer SINTRAN LDN no
2. 1/0 flag integer

DSET 126 |S 1. RT program external or integer no
2. delay integer*4

DABST 127 1S 1. RT program external or integer no
2. time integer*4

DINTV 130 |S RT program external or integer no
2. time interval integer+*4

ABSTR 131 S 1. device integer SINTRAN LDN no
2. function integer
3. memory address integer*4 double integer
4. block address integer
5. number of blocks Jinteger

Norsk Data ND-60.145.7 EN

ND FORTRAN
Appendix C

Reference Manual

Name MON |Fun arguments/return ERRCODE
or set
oct [Sub | number, purpose data type comments
MEXIT 133 (s 1. segment number integer right byte only no
see note 3
RTEXT 134 S none - ne return
RTWT 135 |s none - no
RTON 136 IS 1. RT program external or integer no
RTOFF 13748 1. RT program external or integer no
WHDEV 140 |F 1. device integer SINTRAN LDN no
2. 1/0 flag integer
return value integer
I0SET 141 |F 1. device integer SINTRAN LDN no
2. I/0 flag integer
3. RT desc. address jinteger
4. control flag integer
return value integer
ERMON 142 15 1. error number integer Hollerith string of 2 bytes |no
2. suberror number integer
RSIO 143 |S . execution mode integer no
2. input device integer SINTRAN LDN
output device integer SINTRAN LDN
4. user number integer
MAGTP 144 |F 1. function integer yes
2. memory address array any type except character
3. unit integer FORTRAN unit number
4. parameter 1 integer device dependent. optional
5. parameter 2 integer device dependent, optional
return value integer ERRCODE
ACM 145 |F 1. device integer SINTRAN LDN yes
2. function integer
3. memory address array any type except character
4. destination array any type except character
5. word count integer number of words
return value integer ERRCODE
CAMAC 147 |S 1. data integer no
2. status integer
3. crate integer
4. station integer
5. subaddress integer
6. function integer

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix C

Name MON |Fun arguments/return FRRCODBE
or X Gl
oct |{Sub | number, purpose data type comments
GL 150 1S 1. value integer no
2. crate integer
GRTDA 151 |F 1. name hollerith ends with apostrophe no
return value integer
I0XN 153415 1. data integer no
2. 10X code integer
AS51G 154 |5 1. device integer SINTRAN LDN no
graded LAM integer
crate integer
PLOTT 1557 1,2 X,Y co-ordinates |integer no
GRAPHIC 3. code integer
4, device integer SINTRAN LDN
5. function integer
return value integer
ENTSG 1575 1. segment integer no
2. page table integer
3. interrupt level integer
4. entry point integer
FIXC 160 |F 1. segment number integer no
2. page number integer
return value integer
INSTR 161 |F 1. unit integer FORTRAN unit numbtery yes
2. text character starts on a word boundary
3. length integer length in bhytes
4. end character integer right hand byte used
return value integer
oUTST 162 |F 1. unit integer FORTRAN unit number ves
2. text character starts on a word boundary
3. length integer lenyth in bytes
return value integer
WSEG 164 (S 1. segment number integer no
DIW 165 |S 1. number of integer =N no
registers
2. input registers integer*2 array N elements
3. input values integer*2 array N elements
4. error value integer

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix C
Name MON [Fun arguments/return ERRCODE
or set
oct {Sub | number, purpose data type comments
DOLW 166 {S 1. number of integer =N no
registers
2. registers integer*2 array N elements
3. output values integer*2 array N elements
4. masks integer*2 array N elements
5. error value integer
REENT 167 |S 1. segment number integer see note 3 no
HOLC 201 JF 1. SDCB/RDCB integer yes
2. LDN 1integer SINTRAN LDN
3. DCB address integer
4. DCB usize integer
5. DCB msize integer
return value integer ERRCODE
EDTRM 206 S 1. EDFLA integer flag no
2. RTUSF integer
CPUST 262 |F 1. ND number integer always zero yes
2. buffer integer*2 array system information
return value integer ERRCODE

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix C

Notes:

1) If there was an error, the function returns the
error code with the sign bit set.

2) The names of the Monitor Calls corresponding to
these routines are:

INCH - INBT
QUTCH - OUTBT

3) Available on the ND-100 only.

4) Must start on a word boundary (ND-100 only) and end
with an apostrophe.

5) The unit is defined by the FACTOR=fac specifier of
the OPEN statement. The default is a 2-byte word on
the ND-100, and a 4-byte word on the ND-500.

6) The radixes 2 and 16 are available on the ND-500
only.

7} The error number can be picked up from ERRCODE
without change.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

LIBRARY UTILITY FUNCTIONS

D.1 TABLE OF LIBRARY UTILITY FUNCTIONS

Note: in the following table, "integer" in the column
"data type" means default integer type; integer*2 on the
ND-100 and integer*4 on the ND-500.

Name Fun arguments/return
or
Sub | number, purpose data type comments

EXCEPT |S 1. exception number integer

2. function integer

3. user routine integer

4. number of messages integer

5. number of traps integer

6. exception flags logical array

7. lower bound of 6. integer

8. upper bound of 6. integer
EXCDEF |S 1. exception number integer

2. exception flags logical array

3. lower bound of 2. integer

4. upper bound of 2. integer
EXCTERM {S 1. traceback print integer

2. statistics print | integer

3. number of levels integer

4. file number integer
GETMESS |F 1. exception number integer

return value character*30
PRITRAC |S 1. trap logical
PRIMESS iS 1. exception number integer
RAN F 1. seed value integer*4

return value real*4 real*6, 48-bit f.p.H/W

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN

Reference Manual
Appendix D

Name Fun arguments/return
or
Sub | number, purpose data type comments
RDEFVAL {S 1. exception number integer
2. number of messages integer
3. number of exceptions |integer
4. enable flag integer
RCURVAL [S 1. exception number integer
2. user routine integer
3. number of messages integer
4. number of exceptions |integer
5. exception count integer
6. enable flag logical
REXTERM {S 1. traceback print integer current values
2. statistics print integer
3. number of levels integer
4. file number integer
5. traceback print integer default values
6. statistics print integer
7. number of levels integer
8. file number integer

Norsk Data ND-£0.145.7 EN Rev.A

ND FORTRAN Reference Manual

Appendix D

D.

2

2.

LIBRARY SUBPROGRAM DESCRIPTIONS

This section contains a full description of each
subprogram provided in the FORTRAN library, for general
utility purposes. Since the topic of handling errors and
exceptions is of a rather special nature, it is
described separately, see Section D.3. A1l services
provided by the SINTRAN operating system are described
in Appendix C.

THE RAN FUNCTION

The RAN function is for generating random numbers, which
are uniformly distributed in the range between 0.0
incTusive and 1.0 exclusive.

The technique used for generating the random numbers is
of the multiplicative congruential type.

The function returns a REAL*4 value, REAL*6 on a ND-100
with 48-bit floating point hardware.

The function may be invoked repeatedly, as follows:
RLVAR=RAN{INTVAR)

where
RLVAR is assigned the next random number
generated
INTVAR is an INTEGER*4 variable

To get a series of random numbers, the first invocation
of RAN must be made with the argument, here INTVAR, set
to a large odd integer value prior to this invocation.

The RAN function stores a value in the argument on each
invocation. This value will be used in the next
invocation, to compute the next random number. This
value is referred to as the seed.

There are no restrictions on the value which may be used
for the seed. It should be initialized to a different
value for successive runs if different series of random
numbers are required.

Norsk Data ND-60.145.7 EN Rev.A

D.3

ND-500
ND-100

ND FORTRAN Reference Manual
Appendix D

The RAN function uses the following algorithm to compute
the value of the seed to be used for the next
invocation:

SEED=69069*SEED+1(MOD 2" "32)

SEED is a 32-bit number whose high order 24 bits are
converted to a floating-point value to be returned as
the function value.

TRAPS AND EXCEPTION HANDLING
EXCEPTION HANDLING

The term "exception” covers, in addition to all defined
hardware traps, special situations and errors detected
by software. An exception handler is a routine to be
activated when an exception occurs, and which takes take
appropriate recovery actions.

The exception number (16 bits) may be represented as
shown below:

15 6 | 5 0

where
bits 15-6
bits 5-0

System software identification (SSI)
Specific status code {SC)

and any number fed into the exception handling system
will be in this form.

For FORTRAN, the SSI may contain three different ranges
of numbers. For ND-500 hardware traps the range will be
of the form 76xxB, where xx specifies the trap, see the
table in Section D.3.1. The range 04xxB is reserved for
FORTRAN runtime errors, and the range 51xxB is used by
the exception handling system itself. Status codes are
numbers allocated to a particular system. For example,
the T1ist of FORTRAN Exceptions given in Section D.3.11,
gives an explanation of numbers in the range 401B: 457B,
where 4 is the FORTRAN SSI. The range prefixed by 777B
is not used by ND system software, and any be freely
utilized in user systems.

A set of standard routines for exception handling for
use with FORTRAN or PLANC has been developed. These are
available in a standard library, and wiil be linked
automatically if the user so wishes!!!

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Refererice Manua?l

Appendix D

For each error condition, the user may determine:

The number of times each error message is to be
printed.

The number of times an error may occur before the
program is abnormally terminated.

Whether a user-supplied exception handler is to be
activated upon detection of an error.

Whether traceback of routine stack frames is to be
printed when the error occurs or when the program
terminates. {In case of traps, this includes a
register dump.)

Printout of error statistics when the program
terminates.

The 1ibrary consists of the following routines:

EXCEPT - disable/enable handling of specified
exception
EXCDEF - reset handling of exception to default

EXCTERM - define action to be taken upon program

termination

PRITRAC -~ print traceback of routine instances

(subroutines)

PRIMESS - print error message

GETMESS - return error text (FORTRAN)

PGETMESS - return error text (PLANC)

RDEFVAL -~ read default exception handling parameters
values

RCURVAL -~ read current exception handling parameters
values

REXTERM - reat exception terminating condition

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

In the following descriptions, the header of these
routines is described, giving the number and types of
the arguments. These routines are supplied with the
standard ND FORTRAN library.

e For the ND-500:

Traps and exceptions will be handled in the ND-500,
providing they are locally enabled. There are default
settings for all traps. If no local handling has been
specified, or the trap has been disabled, then some
traps may be handled as a system trap in the ND-100. The
Monitor will then handle the trap in a standard manner,
depending on the type of trap. System traps may also be
disabled, but the user's right to modify trap handling
may be restricted.

Handling of traps may be determined at load time or
before execution through the commands LOCAL-TRAP-ENABLE,
LOCAL-TRAP-DISABLE, SYSTEM- TRAP-ENABLE and
SYSTEM-TRAP-DISABLE. These commands are available both
in NLL and the Monitor, and set the default values to be
used if no action is taken by the program. These
commands are described in the ND-500 Loader/Monitor
Manual, ND-60.136.

o For the ND-100:

Exceptions will be handled provided they are locally
enabled. There are default settings for all exceptions.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual

Appendix D
D.3.1 ND-500 TRAPS TABLE
The following is a list of defined hardware traps, their
corresponding bit number in the status, OTE, MTE and
TEMM registers, and the name of the trap. For a more
detailed explanation, see the ND-500 CPU Reference
Manual (ND-05.009).
Bit| Exc.
no.| no. Name Mnemonic D msgierr
9 | 7611B | OVERFLOW 0 10 junl
11 7613B INVALID OPERATION Vo * 10 juni
12 | 7614B | DIVISION BY ZERO D7 * 10 juni
13 | 7615B | FLOATING UNDERFLOW FU 10 tunl
14 | 7616B | FLOATING OVERFLOW FO * 10 juni
15 | 76178 | BCD OVERFLOW BO 10 juni
16 | 7620B ILLEGAL OPERAND VALUE Vo * 10 junl
17 | 7621B | SINGLE INSTRUCTION TRAP SIT 0 jun?
18 | 76228 | BRANCH TRAP BT 0 jun?
19 | 76238 | CALL TRAP CT 0 jun?
20 | 7624B | BREAKPOINT INSTRUCTION TRAP BPT 0 jun?
21 7625B | ADDRESS TRAP FETCH ATF 0 juni
22 | 7626B | ADDRESS TRAP READ ATR 0 jun
23 | 7627B | ADDRESS TRAP WRITE ATW 0 juni
24 | 7630B | ADDRESS ZERO ACCESS AZ 10 junml
25 7631B | DESCRIPTION RANGE DR 10 junl
26 | 76328 ILLEGAL INDEX . IX * 1 0
27 | 7633B | STACK OVERFLOW STO * 1 0
28 | 7634B | STACK UNDERFLOW STU * 0 0
29 | 7635B | PROGRAMMED TRAP PRT * 10 junl
30 | 7636B | DISABLE PROCESS SWITCH TIMEOUT| DT * 1 0
31 | 7637B | DISABLE PROCESS SWITCH ERROR DE * 1 0
32 | 76408 INDEX SCALING ERROR XSE * 1 0
33 | 76418 ILLEGAL INSTRUCTION CODE 1IC * 1 0
34 | 76428 ILLEGAL OPERAND SPECIFIER 10S * 1 0
35 | 76438 INSTRUCTION SEQUENCE ERROR ISE * 1 0
36 | 7644B | PROTECT VIOLATION Y * 1 0

The D column refers to the default enabling

of traps used by the standard exception handler library
discussed in the next sections.

The * indicates that the trap is enabled

if the default trap library settings are used.

msg = default maximum number of error messages.

err = default number of exceptions prior to abnormal
termination.

unl = unlimited number

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

D.3.1.1 ND-100 SIMULATED TRAPS

In the 1ist of the simulated traps listed below, the D
refers to the default enabling used by the standard
exception handler library discussed in the next
sections. * indicates that the exception is

enabled if the default settings are used. For an
explanation of msg and err see

Section D.3.1.

Exc.

no. Name D msg err
76148 DIVISION BY ZERO * 10 uni
76338 STACK OVERFLOW * 1 0

D.3.2 THE EXCEPT ROUTINE

The EXCEPT routine is used to modify the current
exception handling conditions.

FORTRAN Specification:

SUBROUTINE EXCEPT (EXCINO, EXCFUN, EXCROUT, NOMSG, NOEXC,
+ EXCARR, EXCNOL, EXCNOH)

INTEGER EXCNO, EXCFUN, EXCROUT, NOMSG, NOEXC, EXCNOH, EXCNOL
LOGICAL EXCARR (EXCNOL:EXCNOH)

<{standard library routine>

END

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

Parameter values:

EXCNO Exception number or exception number group for

the ND-500:

76008 default group of traps to be set
(see Section D.3.1)

51018 LOGICAL array {EXCARR, EXCNOL and
EXCNOH must be present, FORTRAN)

51028 BITS (EXCARR must be present, PLANC)

7611B:7644B specific trap number

4008 all FORTRAN errors (see Section
D.3.11)

401B:4578B specific FORTRAN error

other illegal

For the ND-100:

76008B

5101B

51028
7614B:7633B
4008

401B:4578
other

default group of simulated traps to
be set (see Section D.3.1.1)

LOGICAL array (EXCARR, EXCNOL and
EXCNOH must be present, FORTRAN)
BITS (EXCARR must be present, PLANC)
specific -simulated traps

all FORTRAN errors (see Section
D.3.11)

specific FORTRAN error

i1legal

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

EXFUN Function:

-1 disable exception{s) indicated by EXCNO and
ignore all other exceptions. In Addition, the
parameters EXROUT, NOMSG and NOEXC will be
ignored.

0 enable exception{s} indicated by EXCNO as
TRUE, set new handler/values, and disable all
other exceptions which are indicated as
FALSE. For EXCNO values 7611B:7644B on the
ND-500 (or 7614B:7633B on the ND-100) or
401B:457B, only the single exception thus
specified, is enabled.

1 enable exception{(s), indicated by EXCNO, do
not modify handler/values, and ignore all
other exceptions.

other illegal

EXCROUT User defined exception handler routine:

#0 routine address
0 no routine supplied

NOMSG Number of messages allowed before program is

aborted:
-1 any number >f messages allowed
20 number of messages allowed {<2**31-1)

other illegal

NOEXC Number of traps before program is aborted:

-1 any number of exceptions allowed
20 number of exceptions allowed {<¢2**31-1)
other illegal

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual

Appendix D

EXCARR LOGICAL array (FORTRAN) or BITS{PLANC)
containing .TRUE. and .FALSE. for exceptions to be
handled

EXCNOL (FORTRAN) Low limit of EXCARR
EXCNOH (FORTRAN) High 1imit of EXCARR

The handling of one or several exception conditions may
be modified, selected through the EXCNO parameter. If
this parameter is 5101B (FORTRAN) or 51028 (PLANC), the
EXCARR parameter selects a set of exceptions to be
handled. If the EXCFUN parameter is zero and EXCARR is
present, the elements set to .TRUE. in this array will
cause the corresponding exception to be enabled, while
JFALSE. will cause 1t to be disabled. The array EXCARR
must be declared as EXCARR (EXCARREXCNOH). For example,
EXCARR{7611B:7644B) on the ND-500 or EXCARR
{7614B:7633B) on the ND-100.

The EXCROUT parameter specifies the name of a user
supplied routine to be executed when the exception
occurs. The routine should conform to the following
formal specification:

e In FORTRAN:

SUBRDUTINE name (ierno)
INTEGER ierno

<user written exception handler>

END

The parameter ierno will transfer the error
number to the exception handler. If the EXCROUT

parameter is zero, the standard exception handler
routine from the library is used.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix D

EXAMPLES - FORTRAN

e Enable DIVISION BY ZERO detection using current
exception values:

C DIVISION BY ZERO 1is trap number 12 on the ND-500
CALL EXCEPT (7641B,1,0,0,0)

e For the ND-500 only:
Fnable OVERFLOW and allow a maximum of 2 error
messages and 10 overflow errors before abnormal
termination. Activate the user defined routine MYROUT
each time the overflow trap occurs.

CALL EXCEPT (7611B,0,MYROUT,2,10)

e Disable error handling for exponential functions,
FORTRAN error numbers 431B, 432B, 4338, 437B.

LOGICAL ERRARRAY (431B:4378B)
DATA ERRARRAY/.FALSE., .FALSE., .FALSE., .TRUE.,
+ .TRUE., . TRUE., .FALSE./
CALL EXCEPT (5101B,-1,0,0,0,ERRARRAY,431B,4378B)

e Manipulation of some exception settings.
Assume the following are the current table settings
for exceptions:

exc.no. EXCROUT) msg err setting

(octal) setting
431 A 10 unl enabled
432 A 10 un’ enabled
433 A 10 uni enabled
434 (0] 10 20 disabled
435 C 10 unl enabled
436 0 10 unl disabled
437 0 10 50 enabled

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix D

EXCARR LOGICAL array (FORTRAN) or BITS{PLANC)
containing .TRUE. and .FALSE. for exceptions to be
handled

EXCNOL {FORTRAN) Low 1imit of EXCARR
EXCNOH (FORTRAN) High Timit of EXCARR

The handling of one or several exception conditions may
be modified, selected through the EXCNO parameter. If
this parameter is 5101B (FORTRAN) or 5102B {PLANC), the
EXCARR parameter selects a set of exceptions to be
handled. If the EXCFUN parameter is zero and EXCARR is
present, the elements set to .TRUE. in this array will
cause the corresponding exception to be enabled, while
FALSE. will cause it to be disabled. The array EXCARR
must be declared as EXCARR (EXCARREXCNOH). For example,
EXCARR{7611B:7644B) on the ND-500 or EXCARR
(7614B:7633B) on the ND-100.

The EXCROUT parameter specifies the name of a user
supplied routine to be executed when the exception

occurs. The routine should conform to the following
formal specification:

e In FORTRAN:

SUBROUTINE name ({ierno)
INTEGER ierno

<user written exception handler>

END

The parameter ierno will transfer the error
number to the excepticon handler. If the EXCROUT

parameter is zero, the standard exception handler
routine from the library is used.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

After an error has occured, the sequence of operations
is as follows; the steps marked with an asterisk apply
to traps on the ND-500 only:

Note: the details are slightly different in PLANC.

1) "If the exception is a trap, the trap routine is
activated.

2) A system provided exception handler is called.

3) This handler updates the occurrence counter for this
type of exception and activates the user exception
handler if one has been specified.

4} If the traceback condition {(see note 1) is true, the
system outputs:

" - register dump
- traceback printout

5) If the message occurrence limit (NOMSG) has not been
exceeded, or if the traceback condition (see note 1)
is true, an error message is printed.

6) If the error count is less than or equal to the
allowed number of occurrences for this exception
type, control is returned to normal FORTRAN error
handling.

otherwise, the program is abnormally terminated with
error statistics, if specified.

If the exception occurs during the execution of FORTRAN
1/0 statements (regardless of the type exception,
SINTRAN, FORTRAN I/0, trigonometric error (430B:457B),
or trap on the ND-500), the exception handler must not
perform FORTRAN I/0. That is READ, WRITE, PRINT, OPEN,
CLOSE, BACKSPACE, ENDFILE, or REWIND. Monitor Calls,
however, may be called directly. Otherwise, FORTRAN 1/0
may be used, provided no new error situations are
generated.

Note that, on the ND-500 only, in FORTRAN the STACK
UNDERFLOW trap condition is handled by special software
mechanisms and must, in order to ensure correct
termination of the I/0 activities, always be default
enabled.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

Note 1: the traceback condition is evaluated by the
following expression:

thiserror><'STACK UNDERFLOW' and
{ { TRACEBACK=2 and
{ thiserror NOMSG=unl or

thiserror.numerrors in 0 : thiserror.NOMSG))
or
{TRACEBACK2 1 and
(thiserror.NOEXC><UNL and
NOT thiserror.numerrors in 0 : thiserror.NOEXC)))

where
thiserror.numerrors is the current value of the
number of exceptions of this type which have
occurred.

EXAMPLES - FORTRAN

e Fnable DIVISION BY ZERO detection using current
exception values:

C DIVISION BY ZERO is trap number 12 on the ND-500
CALL EXCEPT (7614B,1,0,0,0)

e For the ND-500 only:
Enable OVERFLOW and allow a maximum of 2 error
messages and 10 overflow errors before abnormal
termination. Activate the user defined routine MYROUT
each time the overflow trap occurs.

CALL EXCEPT (7611B,0,MYROUT,2,10)

e Disable error handiing for exponential functions,
FORTRAN error numbers 431B, 432B, 433B, 437B.

LOGICAL ERRARRAY (431B:437B)
DATA ERRARRAY/ . FALSE., .FALSE., .FALSE.,.TRUE.,
+ .TRUE., .TRUE., .FALSE./
CALL EXCEPT (5101B,-1,0,0,0,ERRARRAY,431B,4378B)

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

e Manipulation of some exception settings.
Assume the following are the current table settings
for exceptions:

exc.no. EXCROUT msg err setting

(octal) setting
431 A 10 unt enabled
432 A 10 unl enabled
433 A 10 unl enabled
434 0 10 20 disabled
435 0 10 unt enabled
436 0 10 unl disabled
437 0 10 50 enabled

If the following call were executed,

CALL EXCEPT (5101B,0,MYROUT,5,-1,ERRARRAY,4318,437B)
C ERRARRAY as declared in the previous example

then the table settings would be changed as follows:

exc.no. EXCROUT msg err setting

{octal) setting
431 A 10 unl disabled
432 A 10 unl disabled
433 A 10 unl disabled
434 MYROUT 5 unl enabled
435 MYROUT 5 unl enabled
436 MYROUT 5 unl enabled
437 0 10 50 disabled

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

b.3.3 THE EXCDEF ROUTINE

EXCDEF 1is used to set the default exception handling
values for a given set of exceptions. This is
functionally equivalent to calling EXCEPT with the
default parameter values for each of the exceptions
specified, but is more convenient and relieves the
programmer from knowing the defaults.

FORTRAN Specification:

SUBROUTINE EXCDEF [EXCNO, EXCARR, EXCNOL, EXCNOH)
INTEGER EXCNO, EXCNOL, EXCNOH

LOGICAL EXCARR (EXCNOL:EXCNOH)

{standard library routine>

END

Parameter values:

EXCNO Exception number or exception number group for

the ND-500:
76008 default setting (see Section D.3.1)
51018 LOGICAL array (EXCARR, EXCNOL and
EXCNOH present, FORTRAN)
51028 BITS (EXCARR present PLANC)
7611B:76448 default setting for specific trap
number (see Section D.3.1)
4008 all FORTRAN errors
401B:4578B specific FORTRAN error
other illegal
For the ND-100:
76008 default setting (see Section D.3.1)
51018 LOGICAL array (EXCARR, EXCNOL and
EXCNOH present, FORTRAN)
51028 BITS {EXCARR present, PLANC)
7614B:7633B default setting for specific
simulated traps {see Section D.3.1)
4008 all FORTRAN errors
401B:457B specific FORTRAN error
other illegal

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

EXCARR LOGICAL array (FORTRAN) or BITS {PLANC)
containing .TRUE. for exceptions to be handled,
.FALSE. for those that should remain as they are

EXCNOL (FORTRAN) Low 1imit of EXCARR

EXCNOH (FORTRAN) High 1imit of EXCARR

The EXCARR parameter selects a set of exception
conditions, 1ike in the EXCEPT routine. Alternatively,
one specific exception may be selected through the EXCNO
parameter.

EXAMPLES - FORTRAN

e Reset handling of all traps and FORTRAN errors to
default:

ALL TRAPS (ON ND-500), ALL SIMULATED TRAPS (ND-100)

[N e

CALL EXCDEF (76008B)
C
C ALL FORTRAN ERRORS
C

CALL EXCDEF (4008B)
C

o

SET DEFAULT PROGRAM TERMINATION CONDITIONS
CALL EXCTERM (0, 1, 20, 0); % on the ND-500
CALL EXCTERM (0, 0, 20, 0); % on the ND-100

This setting is identical to the setting at the
beginning of execution of a FORTRAN program.

e Reset special error handling for exponential
functions, error numbers 431B, 432B, 433B and 437B,
but keep possible handling of other exceptions:

LOGICAL ERRARRAY (431B:437B)

DATA ERRARRAY/.TRUE., .TRUE.,.TRUE.,FALSE.,
+ .FALSE., .FALSE., . TRUE./

CALL EXCDEF (5101B,ERRARRAY,4318B,4378)

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual

Appendix D

D.3

-4

THE EXCTERM ROUTINE

EXCTERM may be called to determine how the printing of
traceback and error statistics information is done. If
it has been called more than once, the last call applies
at program termination.

FORTRAN Specification:

SUBROUTINE EXCTERM (TRACEBACK,PRSTAT,NOLEV,FNUMB)
INTEGER TRACEBACK,PRSTAT,NOLEV, FNUMB
{standard library routine>

END

Parameter value:

TRACEBACK traceback print, for all errors:

0 :no traceback (default)

1 :traceback upon abnormal termination
2 :traceback upon error

other cillegal

PRSTAT error statistics print upon end of program, for

all errors:
0 :no statistics output (default, ND-100)
1 :print statistics (default, ND-500)
other :illegal

NOLEV ~ maximum number of levels to process when a
traceback is provided:

>U :maximum number of stack levels to print,
default 20
other :11legal

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual

Appendix D
FNUMB
1-127 :file number of an open file where all error
in information printout is to be directed
(except MON64 type output). The file must be
open with access type W.
0 :reset to terminal (1) output (default)
other :i17egal
Note the difference between a file with number 1 and

terminal 1.

D.3.5 THE PRITRAC ROUTIKRE

PRITRAC is a utility routine to print a traceback of
routine instances {stack frames) after an exception. The
routine is called from a user handler, or automatically
upon abnormal termination of the job if traceback has
been selected (in the EXCEPT call referring to the
exception condition raised).

FORTRAN Specification:

SUBROUTINE PRITRAC (TRAP)
LOGICAL TRAP
¢(standard library routine>

END
Parameter value (which is ignored in the ND-100

version):

TRAP .TRUE. if called while a trap is being handled.
.FALSE. should be set for any other condition.

Note that the default maximum number of stack levels to
be printed is 20.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

D.3.6 THE PRIMESS ROUTINE

The PRIMESS routine will print the error message,

corresponding to the parameter value, on the standard
output device (unit 1).

FORTRAN Specification:

SUBROUTINE PRIMESS (EXCNO)
INTEGER EXCNO
{standard library routine>
END
Parameter values:

EXCNO Exception number (for the ND-500)

The parameter (EXCNO) must be in the range 7611B:7644B
(traps) or 401B:457B (FORTRAN errors).

Exception number (for the ND-100)
The parameter (EXCNO) must be in the range 7614B:7633B
(simulated traps) or 401B:457B (FORTRAN errors).

D.3.7 THE GETHMESS/PGETMESS ROUTINE

GETMESS/PGETMESS will return the error text
corresponding to the specified exception number.

FORTRAN Specification:

FUNCTION GETMESS (EXCNO)
C this function must be declared to be of type character in the
C calling program

INTEGER EXCNO

CHARACTER*50 GETMESS

{standard library routine>

END

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

Parameter values:

EXCNO The number of an exception condition (for the
ND-500)

EXCNO must {for tha2 ND-500) be the number of a
defined exception condition, in the range
7611B:7644B (traps) or 401B:4578 (FORTRAN
error).

EXCNO must (for the ND-100) be the number of a
defined exception condition, in the range
7614B:7633B {simulated trap) or 401B:457B
(FORTRAN error).

D.3.8 THE RDEFVAL ROUTINE

RDEFVAL may be called o read the default values of the
exception parameters corresponding to a given exception
number (EXCNO).

FORTRAN Specification:

SUBROUTINE RDEFVAL ({EXCNO, NOMSG, NOEXC, ENABL)
INTEGER EXCNO, NOMSG, NOEXC,
LOGICAL ENABL
¢<standard library routine>
END
Parameter values:

EXCNO Exception number
NOMSG Default number of messages allowed
NOEXC Default number of exceptions allowed

ENABL Logical parameter .TRUE. if exception is enabled
as default.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

D.3.9 THE RCURVAIL ROUTINE

RCURVAL may be called to read the current values of the
exception parameters corresponding to a given exception
number (EXCNO).

FORTRAN Specification:

SUBROUTINE RCURVAL (EXCNO, EXCROUT, NOMSG, NOEXC, EXCCOUNT, ENABL)
INTEGER EXCNO, EXCROUT, NOMSG, NCEXC, EXCCOUT

LOGICAL ENABL

¢{standard library routine>

END

Parameter values:

EXCNO Exception number

EXCROUT Address of current user exception handler or

zero

NOMSG Current number of messages allowed before
termination

NOEXC Current number of exceptions allowed before

termination
EXCCOUNT Current exception count

ENABL Logical parameter .TRUE. if exception is
enabled at the moment

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

D.3.10 THE REXTERM ROUTINE

REXTERM is used to read the exception terminating
condition.

FORTRAN Specification:

SUBROUTINE EXCTERM {TRACEBACK, PRSTAT, NOLEV, FNUMB,

+ DTRACEBACK, OPRSTAT, DNOLEV, DFNUMB)
INTEGER TRACEBACK, TRSTAT, NOLEV, FNUMB, DTRACEBACK, DPRSTAT,
+ DNOLEV, DFNUMB

¢(standard library routine>

END

The first parameters will read the current value of the
variables represented by the parameters in the EXCTERM
routine. The last four read the default values of the
corresponding variables.

See the EXCTERM routine for the parameter descriptions.

Nersk Data ND-60.145.7 EN Rev.A

ND FORTRAN FReference Manual
Appendix D

D.3.11

FORTRAN EXCEPTIONS

dec oct name msg err
257 401 FATAL FORMATTING SYSTEM ERROR 1 0
258 402 TOO LOW PARENTHESES LEVEL IN FORMAT 1 0
259 403 ILLEGAL CHARACTER IN FORMAT 1 0
260 404 ILLEGAL TERMINATION OF FORMAT 1 0
261 405 OUTPUT RECORD SIZE EXCEEDED 10 unl
262 406 FORMAT REQUIRES GREATER INPUT RECORD 10 unl
263 407 INTEGER OVERFLOW ON INPUT 10 unt
264 410 INPUT RECORD SIZE EXCEEDED 10 unl
265 411 BACKSPACE TLLEGAL 10 unl
266 412 BAD CHARACTER ON INPUT 10 unl
267 413 REAL OVERFLOW ON INPUT 10 uni
268 414 REAL UNDERFLOW ON INPUT 10 uni
269 415 STRING DOES NOT START ON A WORD

BOUNDARY 10 unt
270 416 REAL OVERFLOW ON QUTPUT 10 unl
271 417 FORMAT SPECIFICATION DOES NOT APPLY 1 0
272 420 OVERFLOW IN EXPONENT ON INPUT 10 unl
273 421 WRONG NUMBER OF PARAMETERS IN CALL 1 0
274 422 TOO MANY FILES OPENED 1 0 ND-100

only
276 424 | MIXING OF BINARY/ASCII ILLEGAL 1 0
277 425 NO MORE BUFFERS AVAILABLE 1 0
278 426 NON-FATAL ERROR {CHARACTER) 10 unl ND-500
only

279* 427 FATAL ERROR (I1/0) 1 0
280 430 1/0 ERROR WITHOUT SPECIAL HANDLING 0 0
281 431 ZERQ BASE AND NEGATIVE EXPONENT 10 uni
282 432 BASE LESS THAN ZERO IN EXPONENTIATION| 10 unl
283 433 OVERFLOW IN EXPONENTIATION 10 uni
284 434 NEG. ARG. IN SQUARE ROOT 10 uni
285 435 TOO LARGE ARG. IN SINE 10 uni
286 436 TOO LARGE ARG. IN COSINE 10 unl
287 437 TOO LARGE ARG. IN EXP-FUNCTION 10 unl
288 440 ZERO OR NEG. ARG. IN LOGARITHM 10 unl
288 441 | BOTH ARGS. ZERO IN ARC-TAN 10 unl
294 446 TOO LARGE ARG. IN HYPERB. SINE 10 uni
295 447 TOO LARGE ARG. IN HYPERB.COSINE 10 un
296 450 TOC LARGE ARG. COMPLEX ABS OR

SQUARE ROOT 10 uni
302 456 ILLEGAL ARG. IN ARC-SINE/COSINE 10 unl
303 457 ILLEGAL ARG. IN TAN 10 uni

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix D

* = must be enabled

msg = default maximum number of error messages
err = default number of exceptions prior to
abnormal termination

unl = unlimited number

Numbers not listed are currently not used. A1l FORTRAN
errors except 430B are defauit enabled.

Al1l languages:

The hardware traps are listad in Section D.3.1.

Norsk Data ND-60.145.7 EN Rev.A

ND FORTRAN Reference Manual
Appendix E

STORAGE MAPPING

ND FORTRAN data types are stored in the following way:

LOGICAL*1

Bits 7-1 : set to O

ALSE.

Bit O(V) : 0 F
1 .TRUE.

noH

LOGICAL*Z

15 1 0

Bits 15-1 : set to O

.FALSE.
.TRUE.

Hon

Bit O{(V) : 0
1

LOGICAL*4

31 1 0

Bits 31-1 : set to O
Bit 0(v) : 0 = .FALSE.
1 = .TRUE.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix E
INTEGER*1
S value
7 6 0
Bit 7 - 0 = greater than or equal to zero
1 = negative
Bits 6-0 : value held in twos-complement form.
INTEGER*2
S value
15 14 0
Bit 15 : 0 = greater than or equal to zero
1 = negative
Bits 14-0 : value held in twos-complement form.
INTEGER*4
S value
31 30 0
Bit 31 : 0 = greater than or equal to zero
1 = negative
Bits 30-0 : value held in twcs-complement form.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix E

REAL*4 (ND-500 or NORD-10/ND-100 with 32-bit floating-point hardware

option.)

S | Exponent mantissa
31 30 22 21 0
Bit 31 : 0 = greater than or equal to zero
1 = negative
Bits 30-22 : Binary exponent
Stored witn a bias of 256 {400 octal). This is
the power of 2 that the mantissa must be
multiplied by. A value of 256 means that the
mantissa is the value.
If the exponent is 0, the whole value is zero.
Bits 21-0 : Mantissa

Stored without the 0.5 (0.1 binary) excess,
unless the value is zero. The binary point is one
place to the left of the mantissa. The mantissa
is normalised so that 0.5 £ mantissa < 1.0

REAL*6 (NORD-10/ND-100 with 48-bit floating-point hardware option)

S Exponent mantissa
47 46 32 31 0
Bit 47 : 0 = greater than or equal to zero
1 = negative
Bits 46-32 : Binary exponent. Stored with a bias of 40000
octal. Zero exponent means that the whole value
is zero.
Bits 31-0 : Mantissa.

Stored with all bits included. Binary point is
immediately to the left of Bit 31.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix E

REAL*8 {all machines)

S Exponent mantissa

63 62 54 53 ' 0

Bit 63 : 0
1

1]

greater than or equal to zero
negative

1

Bits 62-54 : Binary exponent
Stored with a bias of 256 (= 400 octal). A zero
exponent means tne whole value is zero.

Bits 53-0 : Mantissa.
Stored without the 0.5 (= 0.1 binary) excess
unless the value is zero. The mantissa is

normalised so the 0.5 < mantissa <« 1.0. The
binary point is one place to the left of Bit 53.

COMPLEX*8

2 consecutive REAL*4 values.

COMPLEX*12

2 consecutive REAL*6 values.

COMPLEX*16

2 consecutive REAL*8 values.

Norsk Data ND-60.145.7 EN

ND FORTRAN Raference Manual
Appendix E
CHARACTER*N

N consecutive bytes.
A character is addressed via a descriptor.

On the ND-500, the descriptor is 2 words:

length

address of the first character in string

31 0

ON NORD-10/ND-100, the descriptor is 2 words:

address of the first word

C unused Tength

15 14 11 10 0

If C (bit 15 of 2nd. word} = 0, the string starts in the
high-order byte of the first word; if 1, then it is in
the low-order byte.

The following tables give the size in BYTES of each data
type for the various machines.

NUMERIC (fw,sc)
Only ND-500:
{(fw / 2) +1 consecutive bytes
A packed decimal operand is addressed via a descriptor.

The descriptor takes two words:

31 16 15 0

sc fw

address of first byte

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

TABLE 1

Appendix E

NORD-10 OR ND-100 WITH 48-BIT FLOATING-POINT HARDWARE

Data Type Length in Bytes Alignment (Note 1)
CHARACTER*1 {Note 2) 1 Byte
LOGICAL {Note 3) 2 Word
LOGICAL*2 2 Word
LOGICAL*4 4 Word
INTEGER {Note 3) 2 Word
INTEGER*2 2 Word
INTEGER*4 4 Word
DOUBLE INTEGER 4 Word
REAL (Note 3) 6 Word
REAL*4 (Note 4) 6 Word
REAL*6 (Note 4) 6 Word
REAL*8 8 Word
DOUBLE PRECISION {Note 5) 8 Word
COMPLEX 12 Word
COMPLEX*8 {Note 4) 12 Word
COMPLEX*12 {Note 4) 12 Word
COMPLEX*16 {Note 5) 16 Word
DOUBLE COMPLEX {Note 5) 16 Word

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix E
TABLE 2
NORD-10 OR ND-100 WITH 32-BIT FLOATING-POINT HARDWARE

The CHARACTER, LOGICAL, and INTEGER types are as for the 48-bit table
above. The other data types are listed below.

Data Type Length in Bytes Alignment {Note 1)
REAL {Note 3) 4 Word
REAL*4 {Note 4) 4 Word
REAL*6 {Note 4) 4 Word
REAL*8 {Note 5) 8 Word
DOUBLE PRECISION {(Note 5) 8 Word
TABLE 3
ND-500

Data Type Length in Bytes Alignment (Note 1)
CHARACTER*1 (Note 2) 1 Byte
LOGICAL (Note 3) 4 Word
LOGICAL*1 1 Byte
LOGICAL*2 2 Half-Word
LOGICAL*4 4 Word
INTEGER (Note 3) 4 Word
INTEGER*1 1 Byte
INTEGER*2 2 Half-Word
INTEGER*4 4 Word
DOUBLE INTEGER 4 Word

REAL (Note 3) 4 Word
REAL*4 {Note 4) 4 Word
REAL*6 {Note 4) 4 Word
REAL*8 {Note 5) 8 Word
DOUBLE PRECISION {Note 5) 8 Word
COMPLEX 8 Word
COMPLEX*8 (Note 4) 8 Word
COMPLEX*12 (Note 4) 8 Word
COMPLEX*16 {(Note 5) 16 Word
DOUBLE COMPLEX {(Note 5) 16 Word
NUMERIC (fw, sc) (fw /7 2) +1 Byte

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix E

NOTES

For the NORD-10 and ND-100, a word is 16 bits = 2
bytes. For the ND-500, a word is 32 bits = 4 bytes.

For CHARACTER strings of length N, the length is N
bytes.

These are default values. The meaning cf these
attributes can be modified by the DEFAULT command.

REAL*6 and REAL*4 both mean single precision
irrespective of the machine the program is executed
on. The alternatives are provided for completeness
and comments since the 48-bit format uses 6 bytes
for a REAL value. Similar remarks apply to
COMPLEX*8 and COMPLEX*12.

The DOUBLE PRECISION forms are identical on all
machines. For the NORD-10 and ND-100, the
implementation uses softwareroutines and is
relatively slow.

COMMON MAPPING

To allocate addresses within a common block, the
following algorithm is used:

1.

2.

Place the first variable on a word boundary.

Place each subsequent variable on the first
available alignment boundary at, or following the
end of the previous variable.

It is the user's responsibility to ensure that the
COMMON blocks are correctly defined. Particular care
should be taken over the COMMON blocks shared between
unlike processors (i.e., ND-100 and ND-500).

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix E

RESTRICTION

ANST FORTRAN 77 implies that an INTEGER and a REAL data
item occupy the same amount of storage. For the ND-500
and the ND-100 with 32-bit floating-point hardware with
DEFAULT INTEGER*4 specified, this condition is met.

However, for the ND-100 with 48-bit floating-point,
hardware programs cannot be accepted as ANSI FORTRAN 77
standard, if equivalent storage occupation for INTEGER
and REAL 1is required by either different COMMON
definitions or by EQUIVALENCE statements.

CODE AND DATA SIZES

At the end of a compilation, the compiler indicates the
total storage requirements of all the program units
compiled by the last COMPILE command.

A1l the numbers given are in decimal, representing for
the ND-100 the number of words, and for the ND-500, the
number of bytes.

The values given are:

1) PROG SIZE 1is the size of the program code. On the
ND-100 in single-bank operation {(i.e.,
SEPARATE-DATA OFF), this figure also includes the
data areas of the program, since they are not
separated.

2) DATA SIZE is the size of the data areas used by the
program, but excluding any COMMON blocks. This size
is placed in the data bank in ND-500 programs and
if SEPARATE-DATA ON is used in ND-100 programs.
(The figure is omitted when using SEPARATE-DATA OFF
in ND-100 programs.)

3) COMMON SIZE is the total of all the maximum sizes
of the COMMON blocks found im.the last compilation.
It is placed in the data bank where applicable, or
at the high address if SEPARATE-DATA OFF 1is used.
{See the NRL and RT-Loader manuals for alternative
methods of placing COMMON.)

Norsk Data ND-€0.145.7 EN

ND FORTRAN Reference Manual
Appendix E

STACK SIZE is the sum of all the local storage
requirements of all! the units compiled in the last
COMPILE command. These areas are obtained
dynamically on entry to each program unit, and
released on exit. If only one unit was compiled,
it accurately reflects that unit's stack
requirement (but not the routines it calls}. The
actual stack size should include enough for the
Tongest nest of CALL's or function references,
including library calls. The figure is omitted on
the ND-100 with REENTRANT OFF, since there is no
stack in this case.

Note that if LIBRARY-MODE is ON, these figures represent
the total if all units are incorporated in a program. If
only a selection is used, the figures are accordingly
reduced.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix F

IRTERFACES TO OTHER LARGUAGE PROGRAMS

ND FORTRAN has a standard calling sequence for its
subroutine and function invocations. This will make it
easier to interface programs and subprograms written in
other Tlanguages with those written in FORTRAN. This
interface is described in detail first, followed by
examples showing how to use it to interface to other
languages on both the ND-100 and ND-500.

F.1 FORTRAN INTERFACES ON THE ND-100

Each FORTRAN subprogram holds its local variables in a
Tocal data area. If a program, comprising a number of
subprograms, is compiled as non-reentrant, then each
local data area will be in a separate stack for each
subprogram. If such a program is compiled as reentrant,
then the local data area for each subprogram will be
dynamically allocated from a single stack. The
B-register must always address the appropriate stack
element during execution of a FORTRAN subprogram.

OFFSET FROM THE CONTENT
B-REG (OCTAL) IN

BYTES
-200 LINK - Tink register, address for normal return
~-177 PREVB - previous B-register, relcaded on exit
— -176 FREES - points to the free area of stack which
immediately follows this stack element
-175 EOS - points to the word immediately following
the whole stack
-174 SYS - run time system use
-173 ERRCODE| - ERRCODE (value)
-172 stack - first parameter address if any
elemant
L. free - free area of the stack
area
I FIO use| - one word, FORTRAN 1/0 use

buffers| - one word, number of buffers

exc ptri -~ one word, exception handler pointer

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

In FORTRAN, there are always three words following the
stack. If the FORTRAN I1/0 system is to be used, and the
program is non-reentrant, these should be initialized.
The first word points to a special FORTRAN I/0 area
whose name is 5FI0-BL, and the second word should be
zero. The third word, which is used by the EXCEPTION
HANDLER, is called S5EXCINF. If the program is reentrant,
these 3 words are initialized at run time, to zero. on
entry to the FORTRAN main program.

The free area following the current stack element should
always be large enough to contain the work areas for the
FORTRAN run time routines ({(except the I/0 routines in
non-reentrant execution).

When FORTRAN calls an EXTERNAL entry point, the
registers are used as follows:

return address

current stack element; must be restored on return
number of parameters

parameter list address

address of descriptor for the return value if the
call is to a function which returns a character
string

X = unused

P = entry point of called routine

0

T > @

On return from a function, the value of the function is
returned as follows:

LOGICAL*2, INTEGER*2 A-register

LOGICAL*4, INTEGER*4 AD-register

REAL*4 AD-register

{32-bit floating-point hardware)

REAL*G TAD-register

{48-bit floating-point hardware)

REAL*8, COMPLEX, COMPLEX*16 A-register points to
the result

CHARACTER result resides in

storage described by
descriptor which
D-reg pointed at on
entry

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix F

For character functions, a memory area of the required
size has been allocated by the calling routine before
invoking of the function, and the D-register points to a
descriptor upon entry to the function.

Reentrant FORTRAN routines assume that the parameter
addresses are already in position (-172B from the
B-register and onwards) at entry to the routine. It is
the responsibility of the calling routine to place them
there. From the calling viewpoint, they lie at +6 from
the free area and onwards. Thus the addresses are not
copied.

If a subroutine has alternate returns specified in its
dummy argument list, these are not included in the
parameter list. Instead, the alternate return value (0
for normal return) is set in the ERRCODE position in the
caller's stack element. This value may then be used in a
COMPUTED GO TO after return has been made to the
caller.

The parameter 1list consists of a sequence of words, one
for each dummy argument. For arithmetic variables or
expressions and logical variables or expressions, the
corresponding word contains the address of the variable.
For arrays of arithmetic or logical types, the word
contains the address of the first element of the array.

For character variables or expressions, the word
contains the address of a descriptor consisting of two
words.

word 1 address of word containing first character

word 2 15 10 length in bytes 0

Bit 15 of word two is 0 if the string starts in the
left-hand (high-order) byte of the word, and is 1 if it
starts in the right-hand byte.

Bits 14 - 11 are used by the commercial instruction set
and should normally be zero.

For character arrays, the parameter word contains the
address of a descriptor for the first element of the
array (i.e., one whose address part is for the start of
the array, and whose length is that of a single element
of the array).

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

For two-bank programs, all parameter values and their
descriptors, if character, must be in the data bank.

The ASSEMBLY statement modifies the calling sequence to
EXTERNAL program units. It can be used where the
external routine is written in MAC, NPL; or PLANC with
the SPECIAL option.

The calling sequence is modified as follows:

e Only integer parameters or array names may occur in
direct calls.

e The arguments are passed in registers. [ntegers values
are contained in the register; array names are passed
as the address of their first word. The arguments 1 to
4 are in T, A, D, and X-registers respectively. [t is
not possible to modify the FORTRAN arguments in the
called routine, unless they are arrays.

e The return address is one word beyond the
contents of the L-register at entry to the
routine.

Note that functions returning DOUBLE PRECISION and
COMPLEX values do so in a manner incompatible with the
2090 series of FORTRAN compilers.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

F.2 FORTRAN INTEFACES ON THE ND-500

Each FORTRAN subprogram holds its local variables in a
local data area. A program, comprising a number of
subprograms, will result in each local data area being
in a separate stack for each subprogram. The B-register
must always address the appropriate stack element during
execution of a FORTRAN subprogram.

OFFSET FROM THE CGNTENT
B-REG (OCTAL]) IN

BYTES
0 PREVB - previous B-register, reloaded on exit
4 RETA - Tink register,address for normal return
— 10 FREES - points to the free area of stack which

immediately fcllows this stack element
14 ERRCODE| - ERRCODE value

20 stack - first parameter address if any
element
L free - free area of the stack
area

On return from a function, the value of the function is

as follows:

LOGICAL*1, LOGICAL*2, INTEGER*1, Il-register
INTEGER*2 ,LOGICAL*4, INTEGER*4 ’
REAL*4, (32-bit floating-point) Al-register
REAL*8, (48-bit floating-point) Dl-register
COMPLEX*8 Al-register,

A2-register

COMPLEX*16 Dl-register,
D2-register

CHARACTER, NUMERIC (fw,sc) result resides in
storage described by
descriptor which
R-reg pointed at on
entry.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix

For character functions, a memory area of the required
size has been allocated by the calling routine before
invocation of the function, and the R-register points to
a descriptor upon entry to the function.

[f a subroutine has alternate returns specified in its
dummy argument list, these are not included in the
parameter list. Instead, the alternate return value (0
for normal return} is set in the ERRCODE position in the
caller's stack element. This value may then be used in a
COMPUTED GO TO after return has been made to the
caller.

The parameter list consists of a sequence of words, one
for each dummy argument. For arithmetic variables or
expressions and logical variables or expressions, the
corresponding word contains the address of the variable.
For arrays of arithmetic or logical types, the word
contains the address of the first element of the array.

For character variables or expressions, the word
contains the address of a descriptor consisting of two
words:

word 1 15 length in bytes 0

word 2 address of word containing first character

For character arrays, the parameter word contains the
address of a descriptor for the first element of the
array {i.e., one whose address part is for the start of
the array, and whose length is that of a single element
of the array).

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

F.3 INVOKING PLAKRC FROM FORTRAN

A1l PLANC routines called from FORTRAN should be
"STANDARD". Any PLANC routine called from FORTRAN must
contain an INISTACK invocation unless the FORTRAN
program is compiled using the REENTRANT-MODE command on
ND-100C or FIXED-MODE OFF on ND-500.

Example 1 - simple subroutine call

To call a subroutine with no complex arithmetic actual
arguments, the following can be written in FORTRAN:

EXTERNAL PLSUBR
INTEGER I
REAL R
C CALL A SUBROUTINE WRITTEN IN PLANC
CALL PLSUBR (I,R]}

and the corresponding PLANC code is:
MODULE msubr

EXPORT plsubr
INTEGER ARRAY : stack (1:1000)

ROUTINE STANDARD VOID,VOID (INTEGER,REAL)

INISTACK stack
% body of routine

ENDROUTINE

ENDMODULE

Example 2 - simple function call

: plsubr (int,rl)

To invoke a function which returns a non-complex

arithmetic result.

e In FORTRAN:

EXTERNAL PLFUNC
REAL X,Y,PLFUNC
DOUBLE PRECISION D
C INVOKE A FUNCTION WRITTEN IN PLANC
Y=PLFUNC (X,D}

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

e In PLANC:

Appendix F

ROUTINE STANDARD VOID,REAL (REAL,REAL8) : plfunc (rl,db)

INISTACK stack

% PLANC REAL8 is the same as FORTRAN DOUBLE PRECISION

. RETURN
ENDROUTINE

Example 3 - use of logical arguments

On the ND-100:

FORTRAN LOGICAL*2 corresponds to PLANC BOOLEAN. FORTRAN
LOGICAL*4 is the following PLANC data type:

TYPE booleand = RECORD

BOOLEAN : unused % first word always zero
BOOLEAN : value % contains actual value

ENDRECORD

LOGICAL*4 cannot be returned from a PLANC STANDARD

function.

e In FORTRAN:

EXTERNAL PLBOOL
LOGICAL PLBOOL,V
LOGICAL*4 M4
V=PLBOOL (V,M4)

e In PLANC:

ROUTINE STANDARD VOID,BOOLEAN [BOOLEAN,boolean4)
INISTACK stack
IF md4.value THEN
m RETURN
ENDIF
NOT m RETURN
ENDROUTINE

Norsk Data ND-60.145.7 EN

: plbool{m,m4)

ND FORTRAN Reference Manual
Appendix F

On the ND-500:

FORTRAN LOGICAL*4 corresponds to PLANC BOOLEAN. The
FORTRAN LOGICAL*2 data type has no direct equivalent in
PLANC. FORTRAN LOGICAL*2 can be handled in PLANC in the
following way:

e In FORTRAN:

EXTERNAL PLBOOL
LOGICAL PLBOOL,V
LOGICAL*2 M2
V=PLBOOL (V,M2)

e In PLANC:

ROUTINE STANDARD VOID,BOOLEAN [BOOLEAN, INTEGERZ2) :plbool{m,m2}
INISTACK stack
% the 2 integers must be contiguous in memory
INTEGER2 : intl,int2
BOOLEAN : booll=intl
m2=:1int2
O=:int1l
IF booll THEN
m RETURN
ENDIF
NOT m RETURN
ENDROUTINE

Example 4 - complex arguments and functions

FORTRAN COMPLEX has no direct corresponding data type in
PLANC. It may be defined as follows:

TYPE compiex = RECORD
REAL : re % real part
REAL : im % imaginary part
ENDRECORD
Similarly the equivalent of FORTRAN DOUBLE COMPLEX is:

TYPE complex = RECORD

REALB : dre
REAL8 : dim
ENDRECORD

horsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

These types, once defined, may be used just like other
record data types.

On the ND-100:

e In FORTRAN:

COMPLEX C,CFUNC
EXTERNAL CFUNC
REAL R
C INVOKE A PLANC FUNCTION WHICH RETURNS A COMPLEX RESULT
C=CFUNC (R)

e In PLANC:

ROUTINE STANDARD VOID,complex [(REAL) : cfunc (r)
INISTACK stack
complex : c
r=:c.im=:c.re % store value in two identifiers
¢ RETURN
ENDROUTINE

On the ND-500:

e In FORTRAN:

COMPLEX C,CFUNC
EXTERNAL CFUNC

REAL R
C INVOKE A PLANC FUNCTION WHICH RETURNS A COMPLEX RESULT
C=CFUNC (R)

e In PLANC:

ROUTINE STANDARD VOID,VOID (REAL) : cfunc (r)

INISTACK stack

complex : c

r=:c.im=:c.re % store value in two identifiers

% set up values to be returned

$* Al:=c.re; A2:=c.im

RETURN

ENDROUTINE

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

Example 5 - character string arguments

Since FORTRAN passes character strings througn a
descriptor, PLANC routines must accept these as records.
It is often most convenient to recast the FORTRAN string
descriptor as a PLANC bytes pointer. Thus:

On the ND-100:

TYPE ftnstring = RECORD % a blank must precede the -1
BYTES : ftnchars (0: -1) % character data
ENDRECORD

TYPE ftndesc = RECORD PACKED

ftnstring POINTER :cstring % address of string

INTEGER RANGE (0:1B) :coddbyte % left/right byte start

INTEGER RANGE (0:17B) :cunused % unused

INTEGER RANGE (0:3777B) :clength % length of string
ENDRECORD

Then in FORTRAN:

CHARACTER H*Z0
INTEGER I,J
EXTERNAL HSUB

CALL HSUB { H{I:J))

e which can be picked up in PLANC by:

ROUTINE STANDARD VOID,VOID (ftndesc) : hsub (hij)
INISTACK stack
BYTES POINTER : bp
ADDR (hij.cstring.ftnchars &
{hij.coddbyte: hij.clength-1+hij.coddbyte))=:bp
% bp now contains the address of the FORTRAN character string
ENDROUTINE

On the ND-500:

TYPE ftnstring = RECORD
BYTES : ftnchars (0: -1) % character data
ENDRECORD % a blank must precede the -1

TYPE ftndesc = RECORD

INTEGER RANGE (Q:777777777B) : clength
ftnstring POINTER : ¢cstring
ENDRECORD

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

e Then in FORTRAN:

CHARACTER H*20
INTEGER I,J
EXTERNAL HSUB

CALL HSUB { H(I:J))

e which can be picked up in PLANC by:

ROUTINE STANDARD VOID,VOID (ftndesc) : hsub (hij)
INISTACK stack
BYTES POINTER : bp
ADDR (hij.cstring.ftnchars {0 : hij.clength-1])=:bp
% bp now contains the address of the FORTRAN character string
ENDROUTINE

Example 6 - functions returning a character value

The definition of character data types must be made as
in example 5. But in this case there can be no true
return value for the function, so the PLANC code must
simulate the return.

On the ND-100:

e In FORTRAN:

CHARACTER H*20,HFUNC*10
EXTERNAL HFUNC
H{1:10) = HFUNC (...]

e In PLANC:

ROUTINE STANDARD VOID,VOID : hfunc

INISTACK stack
BYTES POINTER : bp

ftndesc POINTER : dreg

$* COPY SD DA; STA dreg % return value descriptor

ADDR {dreg.cstring.ftnchars &

(dreg.coddbyte : dreg.clength-l+dreg.coddbyte))=:bp
‘0123456789 '=:IND {(bp) % set 'return value'

ENDROUTINE

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

On the ND-500:

o In FORTRAN:

CHARACTER H*20,HFUNC*10
EXTERNAL HFUNC
H(1:10) = HFUNC (...]

e In PLANC:

ROUTINE STANDARD VOID,VOID : hfunc
INISTACK stack

BYTES POINTER : bp

ftndesc POINTER : rreg

$* R=:B.rreg % return value descriptor

ADDR (rreg.cstring.ftnchars (0 : rreg.clength-1))=:bp

'0123456789 ' =:IND (bp) % set 'return value’
ENDROUTINE

F.4 INVOKINRG FORTRAN FROM PLANC

A11 FORTRAN subprograms invoked from PLANC must be
IMPORT "ed as STANDARD routines. FORTRAN functions have
out-values, but no FORTRAN routines have in-values.

Example 1 - a simple subroutine call

Call a FORTRAN subroutine with non-complex arithmetic
dummy arguments.

e In PLANC:

IMPORT (ROUTINE STANDARD VOID,VOID (REAL,REAL8) : fsubr)

N

REAL : r
REAL8 : d
fsubr (r,d) % call the FORTRAN subroutine

e In FORTRAN:

SUBROUTINE FSUBR (R,D)
REAL R

DOUBLE PRECISION D C
END

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

Example 2 - a simple function

To invoke a function, returning a non-complex arithmetic
result.

e In PLANC:
IMPORT (ROUTINE STANDARD VOID,VOID, INTEGER (INTEGER4) :ifunc)
INTEGER : k

INTEGER4 : kd
ifunc (kd)}=:k % invoke the FORTRAN function

e In FORTRAN:

INTEGER FUNCTION IFUNC (XD)
INTEGER*4 KD

IFUNC=. ..

RETURN

END

Example 3 - use of logical arguments

PLANC BOOLEAN 1is the same as LOGICAL in FORTRAN,
LOGICAL*2 on the ND-100 and LOGICAL*4 on the ND-500.
LOGICAL*4 on the ND-100 or LOGICAL*2 on the ND-500 may
be simulated as in example 3 in the previous section.

On the ND-100:

e In PLANC:
IMPORT (ROUTINE STANDARD VOID,BOOLEAN (boolean4) : 1lfunc)

booleand : m4
IF 1func {m4) THEN...

e In FORTRAN:

LOGICAL FUNCTION LFUNC (M4)
LOGICAL*4 M4

LFUNC=. ..

RETURN

END

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix F
On the ND-500:
e In PLANC:
IMPORT (ROUTINE STANDARD VOID,BOOLEAN (INTEGER2) : 1func)

% the 2 integers must be contiguous in memory
INTEGER2 : intl,int2
BOOLEAN : booll=intl
% put a value in the boolean data-element
...=:booll
IF 1func {int2) THEN

e In FORTRAN:

LOGICAL FUNCTION LFUNC (M2)
LOGICAL*2 M2

LFUNC=. ..

RETURN

END

Example 4 - complex arguments and out-values

FORTRAN COMPLEX can be simulated in PLANC by the type
declarations of example 4 in the previous section.

e In PLANC:

TMPORT { ROUTINE VOID,complex (REAL) :cfunc)

N

complex : ¢
REAL : r
on the ND-100 invoke the FORTRAN function normally
‘cfunc{rl=:c
on the ND-500 invoke the FORTRAN functiorn normally, but assembler
is required to get the returned function value
cfunc (r)
$* Al=:c.re; A2=:c.im

N

~

AN

e In FORTRAN:

COMPLEX FUNCTION CFUNC (R)
REAL R
CFUNC=CMPLX (R,R]
RETURN
END

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

Example 5 - character string arguments

FORTRAN handles character strings by means of
descriptors, which can be declared in PLANC as in
example 5 in the previous section. These descriptors
must be created in PLANC before invocation of the

FORTRAN subprogram takes place.

e In PLANC:

IMPORT { ROUTINE STANDARD VOID,VOID (ftndesc) : hsub)

ftndesc : ed
BYTES : arg {(1:100) % begins in left byte of word

INTEGER : i,]
% now transfer arg (i:j) to FORTRAN
ADDR(arg (i}) FORCE ftnstring POINTER=:fd.cstring
% first byte - the following 2 lines are for the ND-100 only
1-({iMOD 2) =:fd.coddbyte %left/right byte
O=:fd.cunused

N

j=i+l=:fd.clength % length of string
hsub (fd) % invoke FORTRAN subprogram

@ In FORTRAN:

SUBROUTINE HSUB (FD)
CHARACTER FD* (*)

END

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

N

&N

Example 6 - character functions

Characters cannot be returned by FORTRAN to PLANC as
out-values. The memory area for the returned string must
be allocated before invoking the function and a special
calling sequence is required.

e In PLANC:

IMPORT { ROUTINE STANDARD VOID,VOID : hfunc)
ftndesc : fd

BYTES : val (0:19) % value returned here
ftndesc POINTER : fdp

ADDR{val {0}] FORCE ftnstring POINTER=:fd.cstring

first byte - the following 2 lines are required for the ND-100 only
0 =:fd.coddbyte
0 =:fd.cunused

MAXINDEX (val,1)-MININDEX (val,1)+1=:td.clength
ADDR (fd) =:fdp
on the ND-100 use:

$* LDA fdp; COPY SA DD % return descriptor address

on the ND-500 use:
$* R:=fdp % return descriptor address

hfunc % put result in 'val

e In FORTRAN:

CHARACTER * (*) FUNCTION HFUNC
HFUNC

RETURN

END

Norsk Data ND-60.145.7 EN

F.5 CALLING COBOL FROM FORTRAN

ND FORTRAN Reference Manual
Appendix F

On both the ND-100 and the ND-500, a FORTRAN program may
call a subprogram written in COBOL. Parameters are
transferred by reference between FORTRAN and COBOL. The
data types which correspond in FORTRAN and COBOL are as

follows:

FORTRAN

INTEGER*2, 16-bits

INTEGER*4, 32-bits

REAL

HOLLERITH strings

COBOL

PIC S9{n) COMPUTATIONAL
where 1<n<4

PIC S9{n) COMPUTATIONAL
where 5<nf10

COMPUTATIONAL-2

PIC X{n)
where n is the number of bytes

COMPUTATIONAL-2 variables may only be used as a
parameter in a subroutine call to or from COBOL, or to
convert to/from COMPUTATIONAL-3 variables.

For example:

e In FORTRAN:

INTEGER*2 INT2
REAL RL
INTEGER*4 INT4
INT2=56
RL=54.12345
INT4=123456
C CALL A COBOL SUBROUTINE
CALL CBSUB {INT2,RL,INT4, HOLL')

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

e In COBOL:

PROGRAM-ID. CBSUB.
DATA DIVISION
WORKING-STORAGE SECTION.

01 CB-REAL PIC S9(3}v9e(6) COMP-3.

LINKAGE SECTION.

01 FTN-INTZ2 PIC Sg(4) comMP.

01 FTN-INT4 PIC S9(6} COMP.

01 FTN-REAL COMP-2.

01 FTN-HOLLERITH PIC X(4).

PROCEDURE DIVISION USING FTN-INT2
FTN-REAL
FTN-INT4
FTN-HOLLERITH.

PARA-1.

* CONVERT THE FORTRAN REAL VALUE TO THE INTERNAL COBOL FORM
MOVE FTN-REAL TO CB-REAL.

On ND-500 it is possible to transfere parameters of type
CHARACTER and NUMERIC between FORTRAN and COBOL
routines. The routine that calls the COBOL routine must
be compiled with the command:

COBOL-~INTERFACE < routine-name>

e In FORTRAN:

NUMERIC (5,3) N
CHARACTER*4 CH
CALL COBROU (CH,N)

e In COBOL:

PROGRAM-ID. COBROU.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 FTN-STRING PIC X{4].

01 FTN-NUMERIC PIC S9(3}Vv9(2) PACKED DECIMAL.
PROCEDURE DIVISION USING FTN-STRING, FTN-NUMERIC.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

F.o6 CALLING FORTRAN FROM CORBOL

On both the ND-100 and the ND-500, a COBOL program may
call a subprogram written in FORTRAN. Parameters are
transferred by reference between FORTRAN and COBOL. The
data types which correspond in FORTRAN and COBOL are as
follows:

FORTRAN COBOL

INTEGER*2, 16-bits PIC S9(n} COMPUTATIONAL
where 1<n<4

INTEGER*4, 32-bits PIC S9(n) COMPUTATIONAL
where 5<n{10

REAL COMPUTATIONAL-2

HOLLERITH strings PIC X{n)
where n is the number of bytes

COMPUTATIONAL-2 variables may only be used as a
parameter in a subroutine call to or from COBOL, or to
convert to/from COMPUTATIONAL-3 variables.

Parameters from COBOL must start on a word boundary,
ND-100 only.

For example:

e In COBOL:
DATA DIVISION
WORKING-STORAGE SECTION.
01 FTN-INTZ2 PIC S9{4) COMP VALUE 123.
01 FTN-INT4 PIC S9(6) COMP VALUE 123456.
01 CB~REAL PIC S9{3)Vv9(6] CP-3 VALUE -2. 71.
01 FTN-REAL COMP-2.
01 FTN-HOLLERITH PIC X{10) VALUE 'A123456789'.

01 FTN-HLENGTH

* NUMBER OF CH

PROCEDURE DIVI
PARA-1.

* CONVERT THE
MOVE CB-REAL

-WDS PIC S9(4) COMP VALUE 5.
ARACTERS PER WORD IS DIFFERENT ON THE ND-500
SION.

INTERNAL COBOL FROM THE FORTRAN REAL FORM
TO FTN-REAL.

* CALL A FORTRAN SUBROUTINE

CALL ' 'FTNSU

B'' USING FTN-INT2
FTN-REAL
FTN-INT4
FTN-HOLLERITH
FTN-HLENGTH-WDS .

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

e In FORTRAN:

SUBROUTINE FTNSUB (INT2,RL,INT4,HSTRING,HLENGTH)
INTEGER*2 INT2,HLENGTH,HSTRING (HLENGTH)
INTEGER"4 INT4
C MAY NOW ACCESS VALUES PASSED FROM COBOL AND RETURN VALUES
C TO COBOL IN THE NORMAL MANNER
RETURN
END

On ND-500 it is also possible to transfer parameters of
type CHARACTER and NUMERIC between FORTRAN and COBOL
routines. The FORTRAN routine that is called from COBOL
must be compiled with the command:

COBOL~INTERFACE <routine-name>

e In COBOL:

DATA DIVISION.
WORKING-~STORAGE SECTION.

01 FTN-STRING PIC X(4) VALUE 'TEST'.

01 FTN-NUMERIC PIC s9(3)v9(2) PACKED-DECIMAL VALUE 345.67.
PROCEDURE DIVISION. o

P.I1.

CALL "FTNSUB" USING FTN-STRING, FTN-NUMERIC.

e In FORTRAN:

SUBROUTINE FTNSUB (CH,N)
CHARACTER*4 CH

NUMERIC (5,2] N

END

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

F.7 MAC SUBROUTINES (ND-100 ONLY)

When writing subroutines or functions to be called from
FORTRAN, the user should clearly understand the format
of the run-time stack, and the use of registers in the
calling sequence, see Section F.1.

There is a marked difference between reentrant and
non-reentrant routines with regard to the available
methods for acquiring local workspace.

F.7.1 NON-REENTRANT ROUTINES

J9BEG
J9ENT SUBR
SUBR,

SAVB,0
J9END

In this case, there is no space available in the FORTRAN
routine's local area (addressed by the B-register) which
can be used by a called subroutine. It is the called
subroutine’'s responsibility to acquire the local areas
it needs on its own behalf.

An example of how to address parameters from a YAC
routine is as follows:

BN

if called as CALL SUBR (I,R]
SWAP SA DB

STA SAVEB % save FORTRAN's B-regq.
LDA 10,B % first parameter [1I)
LDF 1 1,B % second parameter [(R] 1
LDA SAVB

COPY SA DB % restore FORTRAN's B-reg.
EXIT

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix F
In order to mix MAC routines with FORTRAN, it is
recommended that the following calling sequence be used
{see Sections F.7.4 and F.7.5.}:
J9BEG
J9ENT SUBR
SUBR, COPY SL DX % return address
JPL I (SINIT % create a stack unic
FRAME % size [(in words) of the local frame
STACK % address of stack space
STSZ % total size of stack
0 % or 1 if two-bank operation
0 % for debug use

% routine starts here

J9END JPL I {5LEAV

AN

return to caller

This will also aid the Symbolic Debugger to identify the
FORTRAN routines and trace the stack frames correctly.

F.7.2 REENTRANT ROUTINES

Routines which can be shared among several programs can
be called only from reentrant FORTRAN routines (see
REENTRANT command, Section 12.8). They can use the
standard FORTRAN stack, which has been initialised by a
FORTRAN program. The MAC subroutines must not alter the
length of the stack, nor interfere with the two words
which follow it. The acquisition of the local stack area
and return, can be done as follows:

J9BEG
)JSENT SUBR
SUBR, corY SL DX % save routine return
i JPL I (5ENTR % acquire next frame
SIZE % size of frame (in words)
COPY SA DX % B-reg addresses stack
% frame
JPL I (5LEAV % return up stack
JFILL
J9END

Norsk Data ND-60.145.7 EN

F.7.3

F.7.4

PADR,

1,54
R, "3.141593

ND FORTRAN Reference Manual
Appendix F

ALTERNATE RETURNS

An alternate return is handled by setting the
appropriate value (from 1 upwards) corresponding to the
number of the asterisks in the parameter 1ist of the
CALL statement, into the return code slot of the calling
routine. Zero must be set if there is no alternate
return taken, but one was expected by the CALL.

The address of the caller's stack frame can be obtained
by:

LDX SAVB % non-reentrant case
or
LDX -177.8B % reentrant case

and then the return value is set by:

LDA
STA

RETNV
-173,X

% value for return
% store in caller's error code

CALLING FORTRAN SUBROUTINES

For non-reentrant FORTRAN routines, the parameter list
must be built at its correct place in the called
routine's stack frame. For example:

LDA (PADR % parameter list address
JPL T (FSUB % call FORTRAN subroutine
I" % first parameter address
R % second parameter address
% first parameter value
% second parameter value
LDX - 176,8B % free stack space
LLDA (1 % first parameter address
STA 6.,X % first parameter position
LDA (R
STA 7.X % second parameter position
JPL I{FSUB

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix F

F.7.5 INVOKING FORTRAN INTRINSIC FUNCTIONS

A1l FORTRAN Tibrary routines must be treated like
reentrant FORTRAN subroutines, and space provided on the
local stack for the tibrary workspace. To set up a local
stack (and/or stack frame) see Sections F.7.1 and F.7.2.
The amount of space required by the library for its
stack frame can generally be determined by the data type
of the returned value. These values are subject to small
changes without notice, therefore a certain margin
should be allowed.

DATA TYPE STACK SIZE
INTEGER*2 10
INTEGER*4 40
REAL 65
DOUBLE PRECISION 160

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix G

HOLLERITH
G.1 HOLLERITH CONSTANTS

The ANSI FORTRAN 77 Standard does not accept Hollerith
constants. It merely gives recommendations as to their
use 1n an appendix to retain some compatibility with
previously existing programs.

ND FORTRAN implements these recommendations, with a few
minor additions and changes, to retain compatibility
with programs which run on the NORD-10 FORTRAN compiler.
Details are as follows:

e (CONSTANTS

Hollerith constants may have one of two forms. The first
is:

n is a non-negative number.
h ... hn are the n characters in the source
p%ogram which immediately fcllow the H.

Blanks are significant among the h , but the h

cannot contain a carriage return, Yine feed, of tab
characters. The internal representation of a Hollerith
constant is the sequence of h , as ASCII characters
with the parity bit set to zeto.

The second form is:

The double-guote characters ", octal 42, is the
delimiter for the Hollerith string. The h characters
inside the double-quotes may be replaced by any
character except carriage return, line feed or tab
characters. If the string is to contain a double-quote
character, two of these should be written.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual
Appendix G

They can be used as constants only in DATA statements,
as actual arguments in subroutine or function
invocations, as the right-hand side of an arithmetic
assignment statement, or as the value given to a
symbolic constant.

They may not appear 1in any other context; in particular,
as values for output, or in expressions.

e [N ASSIGNMENT STATEMENTS

A Hollerith constant as the right-hand side of an
assignment statement may be moved to an arithmetic or
logical variable or array element name without any form
of conversion. The ASCII characters are assigned
byte~-by-byte to the storage of the left-hand side,
starting at the leftmost byte. Padding with blanks or
truncation occurs on the right to the length of the
storage for the target. See Appendix E for the sizes of
the variables. Character variables cannot receive
Hollerith constants.

e IN DATA STATEMENTS

An arithmetic or logical variable may take a Hollerith
constant from the constant list as its initial value in
a DATA statement. The assignment is as for the
assignment statement. The correspondence of data list
and constant list is preserved. Character variables
cannot receive Hollerith values.

e AS ACTUAL ARGUMENTS

Hollerith constants used as actual arguments must match
their corresponding dummy arguments for storage length.
No padding will occur; but if the actual argument is
longer, only the first characters are used in the dummy
argument. The dummy argument cannot be of type
CHARACTER.

e AS A SYMBOLIC CONSTANT VALUE

The Hollerith constant is assigned to the symbolic
constant as if it were being assigned to a variable of
the type of the symbolic constant on the target machine
of the compilation. The resulting arithmetic value is
then the value of the symbolic constent. The allowable
data types are only INTEGER*2 and INTEGER*4.

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Appendix G

e IN A RELATIONAL COMPARISON

Variables can be compared with Hollerith data in an IF
statement, or general logical expression. The Hollerith
data is treated as though it were assigned to a variable
of the same data type as the other operand of the
comparison, and the comparison is performed as for that
other data type. Character strings cannot be compared
with Hollerith data.

e A-FORMAT FOR HOLLERITH DATA

If the format Aw is used when the corresponding 1/0 1ist
item is arithmetic or logical, then the data transfer is
done without conversion, except for parity bits being
cleared on input {unless the parity option has been
coded on the OPEN statement for the file, see Section
8.3.1).

On 1input, the w input characters are treated like a
Hollerith constant and assigned as in the assignment
statement. On output, w output characters are written
from the storage of the arithmetic or logical item.

e RESTRICTIONS

If a lTogical variable has been assigned a Hollerith
value, then its use as a logical value will be
unpredictable.

Real, double precision and complex variables containing
Hollerith values may be moved, but any form of
arithmetic operation may give unpredictable results due
to hidden optimisations or conversions.

It is recommended that Hollerith constants be avoided
wherever possible. Character variables may be
equivalenced as an alternative. If Holleriths constants
must be used, it is recommended that the exact length be
specified to prevent the implied padding and truncation.
This should ease the transport and maintenance of these
non-standard features.

Norsk Data ND-603.145.7 EN

ND FORTRAN Reference Manual

INDEX

Norsk Data ND-60.145.7 EN

ND FORTRAN Reference Manual

Norsk Data ND-60.145.7 EN

<

INDEX

I

>

LIST

Index term Reference
A format descriptor . . 207
actual
arguments . 239
declarator 37
adjustable
arrays 36
dimensions 44
ALIGNMENT-ND500 command . 297
arithmetic
array expression 103
constant 27
expression 79
operand . . 79
operator 79
Arithmetic IF statement . 129
array
adjustable . 36
assumed-size . 36
declarator . 37
definition . 34
element name . 35
expressions . . 103
size of . o 34
storage, order of elements in . .35
subscript L. .35
Array Processing Function Library . . 299
ARRAY-INDEX-CHECK command . . 278
ASSEMBLY statement) . 69
Assigned GO TO statement 127
assignment statements
arithmetic 115
character . 119
conversion in . 116
logical . 117
statement Tabel 118
asterisk
as a dummy argument . 221
BACKSPACE statement . . 178
BCD~-ROUNDING command . 284
Blank COMMON
difference between named COMMON and . . 50
storage sequence of . 50

Norsk Data ND-60.145.7 EN

<« I1 »

Index term Reference
Block COMMON
definition . . 49
storage sequence of . . 50
BLOCK DATA statement . . . 257
BLOCK DATA subprogram restrwct1ons . 257
Block IF statement .o . 131
BN and BZ format descr1ptors . 204
character
alphanumeric .4
constant . 31
data type . . 25
expression . 86
operands . 86
operator . 86
special .4
substrings . 38
Type statement . . 56
CHARACTER Alignment 316
CHARACTER and Hollerith . . 316
character set,FORTRAN4
CHECK-NUMBER-OF -PARAMETERS command . 279
CLOSE statement 177
COBOL-INTERFACE command . . 283
collating sequence .5
columns i
combined compw]e and execut1on . 270
comment line7
COMMMON-BLOCK~CHECK command . . 309
COMMON block storage sequence . . 50
COMMON statement . . 49
compilation of source programs . 264
COMPILE command . . 264
compiler
command syntax . 262
defaults . . 293
invocation command . 261
sample program 13
COMPLEX
constant . 30
data type . . 25
expression .79
Type statement 54
Computed GO TO statement . 125
conditional compilation 285
CONDITIONAL~-COMPILING command . . 286
CONSTANT command . 288

Norsk Data ND-60.145.7 EN

Index term

< IIT >

Reference

constant expression
arithmetic
character .
logical
constants
arithmetic
character .
complex .
double precwswon
integer .
logical
real . .
CONTINUE statement
control statements

creating FORTRAN 11brarwes

CROSS-REFERENCE command .

DATA statement
data types
debugging . .
DEBUG-MODE command
DEFAULT command .
DEFINE command . .
DELETE-INTRINSIC command
digit,definition
dimension
bounds
declarator .
DIMENSION statement .
Do
FOR-ENDDO statements
Toop .
loop, range of
statement . .
statement, execut1on
WHILE~ENDDO statements
documentation commands .
DOCUMENT-SYSTEM command .
DOUBLE PRECISION
constant
data type .
expression
Type statement
dummy
argument .
array dec]arator
procedure .

Norsk Data ND-60.145.7 EN

. 82
. 88
.95

.27
. 31
. 30
. 29
.27
. 31
. 28
. 141

123

. 284
. 272

.73
.25
. 285
. 285
. 293
. 269
. 298

. 43
. 34
. 43

139
135
135
135

137

139

307
307

. 29
. 25
.79
. 54

. 214
.37
. 218

< IV »

Index term Reference
£ and D format descriptors 201
editing, use of format descr1ptors for 196
EJECT command 275
ELSE statement 132
ELSETF statement 131
END statement . . 144
ENDFILE statement . 179
ENDIF statement 132
END-OF-FILE command) . 267
tnd-of-File Specifier . . 153
ENTRY statement 244
EQUIVALENCE statement . . 46
Error specifier . . 154
executable statement .9
EXIT command 305
exponent
double precision .29
real . 29
expression
arithmetic . 79
arithmetic array 103
array . . 103
character . . 86
constant . . 95
definition of . . 719
evaluation . 96
logical . 92
relational . 89
subscript . . 35
substring . 38
external
functions . . 239
procedure . . 10
statement . . 65
F format descriptor . 188
file
definition . 148
File Accessing . . 317
FIXED-DATA-AREA command . . 300
FLOATING command . 296
Format
descriptors . 192
specifications 191
specifier and 1dent1f1er 152

Norsk Data ND-60.145.7 EN

< Voo

Index term Reference
formatted

data transfer 158

records, printing of 165
FORTRAN

character set 4

statement 9
FORTRAN and COBOL routines _ 283
FORTRAN-100 command 271
FORTRAN-500 command 271
functions

definition - e
G format descriptor o)2
global item &
GLOBAL-CHECK-ALL command 309
GLOBAL-MODE command 304
GO TO statement

Assigned 127

Computed 125

Unconditional 124
H format descriptor 205
HEADING-TEXT command 276
HELP command 263, 305
I and J format descriptors 197
IF statement

Arithmetic 129

Logical 130
IMPLICIT

statement 61
IMPLICIT command 295
implied

DO ldists 157

type rules for identifiers 25
INCLUDE command 266
INPUT statement 167
input, list-directed 159
Input-Output

Buffer Allocation 317

file access 150

file format 149

list-directed 158

Tists 156

statements 147

Norsk Data ND-60.145.7 EN

< VI >

Index term Reference

Input-Output

status specifier 154

terms and concepts 147
INQUIRE statement 181
INSTRUCTION command29
INTEGER

constant 27

data type 25

expression79

Type statement54
Interprocedural Error Diagnostic 309
INTRINSIC

statement . 6b
INTRINSIC functions 222
INTRINSIC functions, removing of 298

keyword6

L format descriptor 206
Tetter,definition4
LIBRARY-MODE command 284
Tine
commento
continuation1
initial L . ..o
LINK~SEGMENT command 269
LIST command .25
1isting information 272
LOAD command . 268
local item6
LOCAL-STACK-SIZE command 302
LOGICAL
array expressions08
constant3
data type25
eXPression 92
operand09
operator09
Type statement54
Logical IF statement 130
Toop
control variable 314
definition 313

main program . 253

Norsk Data ND-60.145.7 EN

< VITI >

Index term Reference
MAIN-STACK-SIZE command 301
MOVE-INSTRUCTIONS command 296
ND10O-EXTENDED command 297
nonexecutable statement9
numeric editing19%
0 format descriptor208
octal values27
OPEN statement 168
operands

arithmetic80

character .86

Togical9
operators

arithmetic80

character .86

logical . . . O © 1

precedence order of O« 4

relaticonal88
optimization of program executwon t1me 288

OPTIMIZE command 7288

QUTPUT statement 167
output, list-directed 160
OUTPUT-FILE command 306
P format descriptor199
packed decimal 284
PAGE-SIZE command274, 306
PARAMETER

statement . . . O £ ¢
PARAMETER-CHECK command e 101°
parentheses .79
PAUSE statement . . . T < X6
precedence of ar1thmet1c operators e 10
PRINT statement . . . T 1 1<)
PRINT-CALL-HIERARCHY command .o 308
PRINT~COMMON-BLOCK-INFORMATION command 308
PRINT-INVERSE-HIERARCHY command 308
procedure

definition10

external10

main . . O 0
PROG-FILE command 4 o ¥ 4

Norsk Data ND-60.145.7 EN

< VIIT »

Index term Reference
program
addresses . . 274
stack . . 300
unit . . .10
PROGRAM statement . . 253
PROGRAM-MAP command . . 274
Programming Techniques . 313
READ statement 161
REAL
constant . 28
data type . . 25
expression .79
Type statement . . 54
REAL-TIME-MODE command . 283
record
definition 147
record specifier 155
REENTRANT-MODE command . 282
relational
array expressions . . 106
expression . 89
operand . . 89
cperator 89
RESERVE-WORK-SPACE command)) . 298
results for arithmetic array expresswons . 105
RETURN statement . 248
REWIND statement . 179
RUN command . . 269
RUN TIME MODES . 281
S, SP and SS format descriptors . . 203
SAVE statement . . o . 67
SEGMENT-FILE command) . 268
SEPARATE-DATA command . . 281
slash format descriptor . . 206
special characters .4
special names in INTRINSIC funct1ons . 222
STANDARD-CHECK command . 277
statement
executable .9
FORTRAN . .9
functions . . 236
tabe]l - .9
nonexecutable . .9
STOP statement 142

Norsk Data ND-60.145.7 EN

< Ix

Index term Reference
subroutine

definition 242

in-Tine . 289

referencing to a . 242

subprogram restr1ct1ons . 243
subscript

array . 5

expression 35
substring

character . . 38

expression 38
SUBSTRING-EXPRESSION- CHECK command . 280
symbolic name6
SYMBOLIC-NAME - LENGTH command . 278
syntactic item . . .)
SYSTEM-NAME command . . 307
T, TL, TR and rX format descriptors . . 205
tab positions . . . Co .8
TEST-MODE command . 280
text format descriptor . 204
Type statements 54
UNASSIGNED-VARIABLE-CHECK command . 279
Unconditional GO TO statement . 124
unformatted

data transfer . . 158
UNIT command 295
Units 151
USE-APF- LIB?ARY command) 299
variable

as dummy argument . . 217
variables

definition 33
WRITE statement . 163
Z format descriptor . 209

Norsk Data ND-60.145.7 EN

Wb W W W W W W NN N SEhID Us YOUR COMMENTS!!! W e W W B W W W BN NN

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?

Why don’t you join the Reader’s Club and send us a
(K\ Hl \ note? You will receive a membership card — and

an answer to your comments.
s

Please let us know if you

* find errors

* cannot understand information

* cannot find information

* find needless information
Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

suxxxsrxnxns HELP YOURSELF BY HELPING US!! . uixnennen

Manual name: ND FORTRAN Reference Manual Manual number: ND-60.145.7 A EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date:
Company: Position:
Address:

What are you using this manual for ?

NOTE! Send to:

This form is primarily for Norsk Data A.S —
documentation errors. Software and Documentation Department

system errors should be reported on P.0. Box 25, Bogerud Norsk Data’s answer will be found

Customer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
0621 Oslo6, Norway

