Ref/erence Manual

ND-60.144.3 EN

ND-COBOL
Reference Manual

ND-60.144.3 EN

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated- without the prior consent of Norsk Data
A.S.

Copyright ©)1985 by Norsk Data A.S.

PRINTING RECORD

Printing

Notes
01/81 Version 01
03/82 Revision A:
The following pages have been revised:
X, Xi, xiii, ’
1-1,2-10, 4-1,4-2, 4-11,5-30, 610, 6—12, 622, 625, 6—25a, 6—27, 6—80,
6—90, A-11, A—-12
Index pages 1 through 12.
The following pages have been added:
H—1, H-2.
08/82 Version 02
07/83 Revision A:
The following pages have been revised:
v, Vi, Xv,
1--4,2-8,5-5,5-9,5-22,5-27, 5—31, 532, 5—-34, 623, 6—24, 6—25, 626,
6--27, 628, 6—28, 6—30, 631, 6-32, 6~33, 634, 635, 6—36, 6—44, 6—44a,
6—44b, 6—-44c, 6—-44d, 6—44e, 6-53, 6-55, /56, 6-70, 6—101, 6—102, 6—103,
6—-104, 6-105, 6107, 6—~110, 94, 9-5,
A—1,A-2, A-3, A—4, A—5, A—6, A—~7, A-8, A-9, A-10, A—11, A-12, A—13, A—14
A~15, A-16, A—17, A-18, A—19, A-20, A-21, A-22, A-23, A—24, A—25, A—26,
A-27,A-28, A~-29, A-30, A-31, D—1, D=2, E-1, F—1, F=2, F—3, H~2,
11—, -2—, -3—, -4—, ~5—, ~6~, -7 —, =8—, ~9—, —=10—, —11—, —12—
06/84 Revision B:
The following pages have been revised:
___N iv, v, vii, xv
1-2, 1-3,1-5, 6-28, 633, 6—34, 635, 636, 637, to 6—44g, 654,
A-1, A—1a, A—1b, A-9, A—~12, A—15, A—-16, D—1,
The following pages have been. added:
J-1,4-2,J-3, J—-4, J-5, J-6.
06/85 Version 03

ND COBOL Reference Manual
Publ.No. ND-60.144.3 EN

04 &4

4
>
4

b€

DO
©6¢

44

Norsk Data A.S

b4

4
4
D&

Né)rs'l;

>

Datg

Graphic Center
P.0.Box 25, Bogerud
0621 Oslo 6, Norway

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSl) and can be ordered as described below.

The reader’'s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S

P.O. Box 25, Bogerud

0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

THE PRODUCT

COBOL (COmmon Business Oriented Language) is a programming language,
based on English, which was developed for use in commercial data
processing. The original COBOL specification resulted from the work of
the CODASYL (Conference on Data Systems Languages) committee in the
U. S. A. in 1959. ND COBOL is based on American National Standard
X3.23 -~ 1874. ND COBOL 1is COBOL for both the ND-100 and the ND-500.
Differences, where they occur, are described in the text.

This manual describes ND COBOL, ND-10176, version H for the ND-100

computer series and ND COBOL, ND-10177, version H for the ND-500
series.

THE READER

The manual is written for the programmer using ND COBOL who requires a
detalled and formal explanation of the product as well as an account
of the features and facilities available to the user.

PREREQUISITE KNOWLEDGE

A basic knowledge of data processing techniques is necessary for the
reader and some familiarity with COBOL would be helpful. The reader
should also have some knowledge of the SINTRAN III operating system.

HOW TO USE THE MANUAL

The description is given in the order in which the Divisions and
Sections appear in the written programs.

The manual 1s 1intended for reference purposes and is organized as
follows:

Part I of the manual describes ND COBOL in general terms and gives
specific rules for writing COBOL source programs. There is a chapter
for each COBOL division. Part II contains an account of each ‘“other
feature” or special topic requiring a section of its own. Supplemental
information is given in appendixes at the end.

ND-60.144.3 EN

vi
ACKNOWLEDGEMENT

Any organization interested in reproducing the COBOL standard and
specifications in whole or in part, using ideas from this document as
the basis for an instruction manual or for any other purpose, is free
to do so. However, all such organizations are requested to reproduce
the following acknowledgement paragraphs in their entirety as part of
the preface to any such publication. {Any organization using a short
passage from this document, such as in a book review, is requested to
mention "COBOL" in acknowledgement of the source, but need not quote
the acknowledgement.)

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organlizations.

No warranty, expressed or implied, is made by any contributer or by
the CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in
connection therewith. :

The authors and copyright holders of the copyrighted material used
herein:

FLOW-MATIC (tradsmark of Sperry Rand Corporation), Programming
for the UNIVAC 1 and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator
Form No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27 A5260-
2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications.

FORMAT NOTATION

Basic formats are prescribed in the manual for the elements of the
COBOL language. The notation described here is used to define
unambiguously for the programmer how the clauses and statements of
COBOL should be written.

RESERVED WORDS

COBOL has a specified list of words for use in source programs which
have preassigned meanings and cannot appear in programs as user-
defined words or system names. A complete list of the reserved words
can be found in appendix 4.

ND-60.144.3 EN

vii
Reserved words may be divided into two categories:

Key Words

These are required by the syntax of the format. They are always in
upper case and underlined.

Optional Words

As their name implies, they may be included or omitted without
changing the syntax of the program. They appear in upper case but are
not underlined.

Words printed in lowercase letters represent information to be
supplied by the programmer. All such words are defined within this
manual.

The general format 1is also defined by the wuse of the following
symbols:

- Braces ({ }). These enclose vertically stacked items and
indicate that one of the enclosed items must appear.

- Brackets ([]). Square brackets are used to show that the
enclosed item 1is optional, depending on the requirements of
the program.

- Ellipsis { ... }J. These dots specify that the immediately
preceding unit may occur any number of times in succession at
the user s option.

The arithmetic and logical operators {+, -, >, <, =}. When they appear
in formats they are required 1items even though they are not
underlined.

Any other punctuation or special characters which appear in general

formats = indicate the actual occurrence of these characters and are
required by the syntax.

NEW FEATURES IN THIS MANUAL

In this release of the manual, the following features have been
changed or included:

ND-60.144.3 EN

1)

2)

3)

k)

5)

vili ;
The scope of descriptions of how to compile and load has been
broadened. The treatment of the ND-500 compiler is more
extensive, and introductory overviews of the linker-loaders ({(NRL
and BRF-Linker for the ND-100, and the Linkage-Loader for the NOD-
500) are included :

New screen handling facilities associated with the DISPLAY and
ACCEPT verbs have been described

A new chapter containing examples of how how to build overlay
program systems on the ND-100 computers, how to use files and how
to call subprograms has been included

An appendix giving details about the new COBOL System variables
has been included

The index has been entirely reworked, and much extended. The
intention is to ease access to related information. For example,
the relative file related information is described in chapters of
the manual which are dedicated to different COBOL divisions. In
the index, “"pointers"” to places where relative file usage is
described can be found grouped together. Another example is using
the index to find extentions in ND-COBOL as compared to ANSI
cosoL.

The index now refers to page numbers instead of section numbers.

ND-60.144.3 EN

T ABLE Q F CONTENTS

Section Page
1 INTRODUCTION 3
1.1 ND COBOL 3
1.2 OPERATIONAL REQUIREMENTS 5
1.2.1 Known Restrictions 6
1.3 HOW TO USE THE SYSTEM 6
1.3.1 How to Compile a COBOL Program 6
1.3.2 Sample Compilation . . 8
1.3.3 How to Load and Execute a COBOL Plcgram 10
1.3.3.1 Loading on the ND-100 Computers with the NRL 10
1.3.3.2 Loading on the ND-100 Computers with the BRF-Linker 11
1.3.3.3 Loading on the ND-500 Computers with the LINKAGE-LOADER 13
1.3.4 Compilation 15
2 LANGUAGE CONCEPTS 17
2.1 THE STRUCTURE OF COBOL 17
2.1.1 The COBOL Divisions e e e e e e 17
2.1.2 Structure within the 01v1310ns - Clauses and Statements 18
2.2 STRUCTURE OF THE LANGUAGE 18
2.2.1 COBOL Character Set 18
2.2.2 Character-Strings 19
2.2.3 COB0OL Words . 20
2.2.3.1 Userdefined Words 20
2.2.3.2 Reserved Words 21
2.2.3.3 Literals 24
2.2.3.4 Separators 26
2.2.4 COBOL Format 21
3 THE IDENTIFICATION DIVISION 31
A THE ENVIRONMENT DIVISION 33
6.1 CONFIGURATION SECTION . 33
b.1.1 SOURCE COMPUTER Paragraph 33
4.1.2 OBJECT COMPUTER Paragraph 34
£.1.3 SPECIAL-NAMES Paragraph 35
6.1.3.1 CURRENCY IS Clause . 35
4.1.3.2 DECIMAL-POINT IS COMMA Clause 35
4.2 INPUT-QUTPUT SECTION . 36
4.2.1 File Processing - Language Concepts 36
65.2.1.1 Data Organization 36
4.2.1.2 Access Modes b2

ND-60.164.3 EN

Section Page
£.2.2 The File-Control Paragraph 43
6.2.2.1 For Sequential Organization 46
4.2.2.2 For Indexed Organization L6
£.2.2.3 For Relative Organization L6
£.2.2.4 General Rules 47
£.2.3 The [-0 CONTROL Paragraph 48
5 THE DATA DIVISION 49
5.1 DATA CONCEPTS . 49
5.2 STRUCTURE OF THE DATA DIVISION 50
5.3 FILE SECTION . 51
5.3.1 The File Descrlptlon - Complete Entry Skeleton 51
5.3.1.1 The BLOCK CONTAINS Clause 54
5.3.1.2 The DATA RECORDS Clause 55
5.3.1.3 The LABEL RECORDS Clause 56
5.3.1.4 The RECORD CONTAINS Clause 56
5.3.1.5 The RECORDING MODE Clause 58
5.3.1.6 The VALUE OF FILE-ID IS Clause 59
5.4 WORKING-STORAGE SECTION 59
5.4.1 Data Description 60
5.6.1.1 The Concept of Level . 60
5.4.1.2 Classes and Categories of Data 62
5.4.2 The Data Description - Complete Entry Skeleton 65
5.4.2.1 Data Description Entry 65
5.4.2.2 The BLANK WHEN ZERO Clause 67
5.4.2.3 The Data Name/FILLER Clause 68
5.4.2.4 The JUSTIFIED Clause 69
5.4.2.5 The PICTURE Clause . 69
5.4.2.86 Editing Rules for the PICTURE Clause 73
5.4.2.7 The REDEFINES Clause in DATA DIVISION 80
5.4.2.8 The SIGN Clause 81
5.4.2.9 The SYNCHRONIZED Clause 82
5.4.2.10 The USAGE Clause 83
5.4.2.11 Computational Options 85
5.4.2.12 The VALUE Clause 88
5.4.2.13 The EXPORT Clause 90
6 THE PROCEDURE DIVISION 91
6.1 STRUCTURE OF THE PROCEDURE DIVISION 91
6.1.1 Declaratives 32
6.1.2 Procedures . 92
6.2 ARITHMETIC EXPRESSIONS . 93
6.2.1 Definition of an Arithmetic Expr9531on 93
6.2.1.1 Arithmetic Operators 94
6.2.1.2 Evaluation Rules 94
6.3 ARITHMETIC STATEMENTS 96
6.3.1 Common Options . 97
6.3.1.1 The ROUNDED Option 97
6.3.1.2 The SIZE ERROR Option 97

ND-60.144.3 EN

Xi

Section Page
65.3.1.3 The CORRESPONDING Option 98
6.3.1.4 The ADD Statement 39
6.3.1.5 The COMPUTE Statement 100
6.3.1.6 The ODIVIDE Statement 101
6.3.1.7 The MULTIPLY Statement 102 .
6.3.1.8 The SUBTRACT Statement 104
6.4 CONDITIONAL EXPRESSIONS 108
6.5 CONDITIONAL STATEMENTS 114
6.5.1 The IF Statement 114
6.5.1.1 Nested IF Statements 117
6.5. The DO Statement (An ND- Exten31on) 118
6.6 DATA MANIPULATION STATEMENTS 120
6.6.1 Screen Handling Facilities 120
6.6.1.1 The ACCEPT Statement 121
6.6.1.2 The ACCEPT-ERROR Statement 1217
6.6.1.3 The ACCEPT-RETURN Statement 127
6.6.1.4 The BLANK Statement 128
6.6.1.5 The DISPLAY Statement . 128
6.6.1.6 The RESET SCREEN Statement 132
6.6.2 Screen Handling Examples 133
6.6.3 The INSPECT Statement 144
6.6.4 The MOVE Statement 150
6.6.5 The STRING Statement 154
6.6.6 The UNSTRING Statement 156
6.7 INPUT-OUTPUT STATEMENTS 161
6.7.1 I-0 Status 161
6.7.1.1 Status Key 1 162
6.7.1.2 Status Key 2 T, 163
6.7.1.3 The INVALID KEY Condltlon {Indexed and Relative I1I-0

Only) 166
6.7.1.4 The AT END Condltlon 167
6.7.1.5 Current Record Pointer 167
6.7.1.6 The CLOSE Statement 168
6.7.1.17 The DELETE Statement 169
6.7.1.8 The OPEN Statement 170
6.7.1.9 The READ Statement 175
6.7.1.10 The REWRITE Statement 184
6.7.1.11 The START Statement 186
6.7.1.12 The UNLOCK Statement 191
6.7.1.13 The USE Statement 191
6.7.1.14 The WRITE Statement . 193
6.8 PROCEDURE BRANCHING STATEMENTS 201
6.8.1 The ALTER Statement 201
6.8.2 The CONTINUE Statement 202
6.8.3 The EXIT Statement 202
6.8.4 The GO TO Statement 203
6.8.5 The PERFORM Statement . 204
6.8.6 Using the PERFORM Statement 2087
6.8.7 The STOP Statement . 211
6.9 COMPILER DIRECTING STATEMENTS 211
6.9.1 The COPY Statement 211
1 SORT/MERGE~ 213

ND-60.144.3 EN

xii

Section Page
7.1 SORT CONCEPTS 213
7.2 MERGE CONCEPTS . 214
7.3 SORT/MERGE - ENVIRONMENT DIVISION 214
7.4 SORT/MERGE - DATA DIVISION 215
7.5 SORT/MERGE - PROCEDURE DIVISION 216
7.5.1 The SORT Statement 217
71.5.2 Options Common to Sort and Merge 219
7.5.3 The MERGE Statement 220
8 TABLE HANDLING 229
8.1 TABLE DEFINITION 229
8.1.1 Table References 231
8.1.1.1 Subscripting 232
8.1.1.2 Indexing e e e e e 233
8.2 TABLE HANDLING - DATA DIVISION 234
8.2.1 The OCCURS Clause 235
8.2.2 The USAGE Clause 236
8.3 TABLE HANDLING - PROCEDURE DIVISION 237
8.3.1 The SEARCH Statement 231
8.3.1.1 Notes on Multidimensional Tables 242
8.3.2 The SET Statement 245
9 INTER-PROGRAM COMMUNICATION 249
9.1 BASIC CONCEPTS 249
9.1.1 Transfer of Control 248
9.1.2 Reference to Common Data e e e e 250
3.1.3 Interprogram Communication - Data Division 251
3.1.3.1 Data Item Description Entries 253
9.1.3.2 Record Description Entries . 254
9.1.4% Inter-Program Communication - Procedure DlVlSlon 254
9.1.4.1 The CALL Statement 255
9.1.4.2 The EXIT PROGRAM Statement 256
10 DEBUGGING 259
10.1 USING THE ND-100 260
10.2 USING THE ND-500 261
10.3 DEBUGGING EXAMPLES 262
L PROGRAMMING EXAMPLES 267
1.1 EXECUTING A SIMPLE PROGRAM . . 287
11.1.1 Running the Example on an ND-100 Computer 268
11.1.2 Running the Example on an ND-500 Computer 269
11.2 OVERLAY SYSTEMS 271
11.2.1 The Multilevel Overlay System 271

ND-60.144.3 EN

xiii

Section Page
11.2.2 Designing an Overlay Structure 274
11.2.3 Commands for Overlay Loading with BRF Llnker . 215
11.2.4 Example: Creating an Overlay System with the BRF- Llnker 276
11.2.5 subprograms and Commands for Building an Overlay System

with the NRL . 281
11.2.6 Example: Creating an Overlay System w1th the NRL 282
11.3 BUILDING A NON-OVERLAY FILE-HANDLING PROGRAM SYSTEM 287
11.3.1 Sample Programs - Source Listings 289
11.3.2 Compiling and Loading the Program System on an ND 100 297
11.3.3 Compiling and Loading the Program System on an ND-500 299
11.3.4 Calling COBOL Subprograms from FORTRAN on the ND-100 300
11.3.5 Calling COBOL Subprograms from FORTRAN on the ND-500 302
APPENDIX
1 COMPOSITE LANGUAGE SKELETON 305
2 ASCII CHARACTER SET 343
3 RUNTIME MESSAGES 347
4 RESERVED WORD LIST 351
5 ‘CROSS REFERENCE EXAMPLE 357
6 COMPILER COMMANDS 361
7 INDEXED/RELATIVE I-0 STATUS SUMMARY 367
8 COBOL SYSTEM VARIABLES 371
9 HANDLING SINTRAN ERRORS 375
10 EXECUTING SINTRAN COMMANDS 3719
11 SIZE OF TEMPORARY FIELDS 383
12 GLOSSARY 387
Index 412

ND-60.144.3 EN

ND COBOL Reference Manual

ND-80.144.3 EN

ND COBOL Reference Manual

ND-60.144.3 EN

ND COBOL Reference Manual 3

1 INTRODUCTION

The purpose of this chapter is to give an overview of the ND COBOL
compiler - how it conforms to the ANSI standard, what is needed to
create and run COBOL programs, and how the compiler is used together
with the ND linkage-loaders to form executable programs.

1.1 ND COBOL

ND COBOL is a standard high-level 1language implemented as a
conventional compiler and runtime 1library system operating under
SINTRAN III/VS operating system.

ND COBOL is based upon American National Standard X3-23-1974. Elements
of the COBOL 1language are allocated to 12 different functional
processing “"modules"”.

Each module of the COBOL Standard has two “levels"” - level 1
represents a subset of the full set of capabilities and features
contained in level 2.

In order for a given system to be called COBOL, it must provide at
least level 1 of the Nucleus, Table Handling and Sequential I-0

modules.

The following summary specifies the contents of ND COBOL with respect
to the ANSI Standard:

ND-60.144.3 EN

Module

ND COBOL Reference Manual
INTRODUCTION

Features Avallable in ND COBOL

Nucleus ..

Sequential

I-0

Indexed I-0Q andc.....

Rel e

-0

Table Handling

Sort/Merge

Inter-Programuuuiiineeen.

Communication

All of level 1 and level 2 except:

level 66

the RENAMES clause

the switch-status condition
the ENTER statement.

Additional features are:

USAGE Ls COMPUTATIONAL-1

USAGE 1s COMPUTATIONAL-2

USAGE is COMPUTATIONAL-3

ACCEPT FROM CPU-TIME.

The DO statement.

The IF statement with the THEN,
ELSE-IF and END-IF clauses.

The IMPORT and EXPORT clauses
for Inter-program communication.

Additional features are:

The BLANK statement.

The ACCEPT-ERROR statement.

The ACCEPT and DISPLAY statements
with Screenhandling options.

All of level 1 and level 2 except:

the RERUN
the LINAGE
and CODE SET clauses

with the addition of:

the RECORDING MODE clause.

All of level 1 and level 2 except:

the RERUN and
the SAME RECORD AREA clauses

with the addition of:

The RECORDING MODE clause.

The OPEN statement with the
MULTI-USER MODE, IMMEDIATE-WRITE
and MANUAL UNLOCK options.

The READ statement with LOCK.
The UNLOCK statement.

All of level 1 and level 2.

All of level 1 and level 2 except:

the SAME AREA clause.

All of level 1 and level 2 except:

the CANCEL statement.

Conditional compilation:
Lines with 'D in column 7' are

bypassed unless WITH DEBUGGING MODE.

ND-60.144.3 EN

ND COBOL Reference Manual 5
INTRODUCTION

1.2 OPERATIONAL REQUIREMENTS

The compiler may execute as a reentrant subsystem under the
SINTRAN III/VS operating system, when only the necessary 1 kiloword
pages are brought into the memory as needed. In this way, several
active users may share a common code.

A system scratch file for the active terminal will be used to store
compiler information.

The source program is accepted in any media supported by the ND File
System, and may be entered and modified using an interactive editor.
Once entered, source files are stored on disk, floppy diskette or
magnetic tape and can be compiled by using simple compiler commands.
On the ND-10 a special microprogram is required.

The result of a compilation is:

A) A source 1listing including compiler assigned line numbers,
source file name, object file name, date and time.

B) In the event of any source program errors f(or warnings),
diagnostic messages will appear following the source listing.
These messages have the format:

- Line number (5 digits)
~ £English message text
- {Optional) Further relevant data

C} An object program in library relocatable form (BRF on the ND-
100 or NRF on the ND-500} can be used by the ND Relocating
Loader for the ND-100 or the ND-500 Linkage Loader for the

ND-500, to prepare the object program in a form which 1is
ready for execution.

ND-60.144.3 EN

6 ND COBOL Reference Manual
INTRODUCTION

1.2.1 Known Restrictions

For the time being the following restrictions are applicable on the
ND-100 CPUs:

- A 77/01 item must not be greater than 32767 bytes.

1.3 HOW TO USE THE SYSTEM

In addition to the information given 1in this chapter, a complete
example of the compilation, loading and execution of a simple program
with some of the features of ND COBOL is shown in chapter 11.

1.3.1 How to Compile a COBOL Program

The COBOL compilers are started by typing:

2C080L for the ND-100 series

or

AND C0BOL-500 for the ND-500 series

When the compiler has printed * {asterisk) on the terminal, it is
ready to accept commands from the user.

All commands may be abbreviated as in SINTRAN III/VS. You can also use
the SINTRAN-III command editing characters when in the compilers.

The command to compile is:

ND-60.144.3 EN

ND COBOL Reference Manual 7
INTRODUCTION

COMPILE <source file)>, <list file>,<object file>

The source file 1is your symbolic program containing COBOL statements.
A listing of the program is written on the 1list file while the object
program in binary relocatable format is written on the object file.

The files must be specified by their names and these names must be
delimited by at least one space or comma. The default source file type
is :SYMB. The list file type is :SYMB and the object file type is :BRF
on the ND-100 or :NRF on the ND-500. {Scratch file 100 cannot be wused
as the object file.)

If the source input file is not a disk file, a line containing *END
{(from column 1) must close the source file.

Example:
acosoL

*COMPILE SOURCE, LINE-PRIN, "0BJ"

Note that in this example the object file (08J) is a new file and
therefore is specified within quotes.

On the ND-100, the compiler produces code in the two-bank mode unless
the compiler command

*1-BANK-MOD
is given before the COMPILE command.

If no diagnostics appear, the compiler has accepted all the statements
as syntactically and semantically correct.

When compilation has been done, the compiler is left with the command
*EXIT

The object (or executable) version of the program is then formed from
the relocatable output from the compilers and the system's library
files by the:

a) ND Relocating Loader (NRL) for the ND-100;

b} BRF-Linker for the ND-100 series;

c) ND-500 Linkage-lLoader for the ND-500 series.

ND-60.144.3 EN

8 ND COBOL Reference Manual
INTRODUCTION

1.3.2 Sample Compilation

The listing below results from compiling a source program which has
been prepared using a suitable editor. It is stored under the name EX-
001 with type :SYMB.

Note: To show what an error message looks 1like, an error has been
introduced 1in the last statement in this example. The error is an
unnecessary hyphen between the words STOP and RUN.

ND-500 COBOL COMPILER - ND-10177H TIME: 17.57.54 DATE: 85.01.14

SOURCE FILE: EX-001
OBJECT FILE: EX-001

1 EETHHRAIERERAIE KA AR IR RA AR IARLARRETELEARKE IR K AR LRI XK KKK,
2 * THIS EXAMPLE CAN SEAVE TO FAMILIARIZE US WITH THE *
3 * AESULT OF A COBOL COMPILATION. *
4 * %
5 * THE PROGRAM COUNTS THE NUMBER OF RECORDS ON THE FILE *
8 * "ABC:DATA". *
7 KRKICHKKKKKKEKIKTERKIAKRIEKIERKIIERRKAARKIRAK LRI KRR L AA R AKX
8 IDENTIFICATION DIVISION.

9 PROGRAM-1D. X-001.

10 AUTHOR. NORSK DATA A/S

11 NORWAY .

12 DATE-WRITTEN. NOVEMBER 1984 .

13

14 ENVIRONMENT DIVISION.

15 CONFIGURATION SECTION.

16 SOURCE-COMPUTER. NORD-100.

17 OBJECT-COMPUTER. NORD-100.

18 SPECIAL-NAMES. DECIMAL-POINT IS COMMA.

19 INPUT-OUTPUT SECTION.
20 FILE-CONTROL.
21 SELECT L-FILE ASSIGN TO “ABC:DATA".
22
23 DATA DIVISION.
24 FILE SECTION.
25 FO L-FILE
26 BLOCK CONTAINS 1 RECORDS
27 RECORD CONTAINS 10000 CHARACTERS.
28 01 L-RECORD PIC X(10000) .
29 WORKING-STORAGE SECTION.
30 01 NUMBER-OF-RECORDS PIC 9(10) VALUE 0.

ND-60.144.3 EN

ND COBOL Reference Manual 9
INTRODUCTION .
31
32 PROCEDURE DIVISION.
33 1000.
34 OPEN INPUT L-FILE.
35 2000.
36 READ L-FILE AT END GO T0 8000.
37 ADD 1 TO NUMBER-OF-RECOROS.
38 GO TO 2000.
39 3000.
40 DISPLAY "NUMBER OF RECORDS IN THE FILE IS "
41 NUMBER-OF -RECOROS.
42 CLOSE L-FILE.
43 STOP-RUN.
43 E - SYNTAX ERROR (RESUMPTION AT NEXT PARAGRAPH/VERB): STOP-BUN
~-- ENO OF COMPILATION -vememcmen
NUMBER OF ERRBRORS FOUND: 1
NUMBER OF WARNINGS GIVEN: 1]
NUMBER OF SOURCE LINES: 43
LINES/MINUTE (CPU TIME): 6789

Note the following iIn the compilation listing:

- The page heading contains date, time, source file name (EX-
601) and object file name.

- The source line (first 80 positions only) is listed along
with compiler assigned line numbers.

- Diagnostic or warning messages, 1f any, appear after the
source program listing.

The error in the example:
43 E - SYNTAX ERROR (RESUMPTION AT NEXT PARAGRAPH/VERB}: STOP-RUN

produces the relevant line number (43) together with explanatory text
and the element itself which caused the error.

After successful compilation, the next step will be to 1link-edit by

means of one of the linkage-loaders. Finally, the resultant program
module will bhe executed.

ND-60.144.3 EN

10 ND COBOL Reference Manual
INTRODUCTION

1.3.3 How to Load and Execute a COBOL Program

1.3.3.1 Loading on the ND-100 Computers with the NRL

On the ND-100, the ND Relocating Loader may be recovered from the
operating system by entering:
ANRL

When the loader has displayed an asterisk {(*} on the terminal, it is
ready to accept commands from the user.

Your program(s) may be loaded into a programfile or into main memory.
If you use the command:

*PROG-FILE <file name)

then the executable program 1is loaded to the file named with the
default extension :PROG. The PROG-FILE must be the first command given
after the loader has been started.

Otherwise, the program is loaded into memory, and can be started with
the command

*RUN
after the loading is completed.

The loader gets its input from one or more files/library files. The
loading is initiated by the command:

*LOAD <file name>, <file name> ..

Each of the files specified will be loaded until end-of-file 1is
detected. The prompt * (asterisk)} indicates that the loader is ready
to accept another command.

ND-60.144.3 EN

ND COBOL Reference Manual 11
INTRODUCTION

To obtain the entry point addressesof the loaded program, use the
command:

*ENTRIES-DEFINED <file name>

The octal addresses which appear on this map denote the last reference
address.

There should be no remaining undefined entry points. If your program
1s loaded into main memory, it may be started by the command:

*RU

When the program has been executed, control 1is transferred to the
operating system and & (commercial at sign) 1is displavyed.

If you wish to leave the loader and enter the operating system, you
may simply enter:

XEXIT

You may restart the loader by using the system command:
ACONTINUE

If the message:

LOADER TABLE OVERFLOW

is given, there is no more room for entries. The table length may be
expanded through the command:

*SIZE <number of entries {octal)>

The NRL is fully documented in the manual ND Relocating Loader, ND-
60.066.

1.3.3.2 Loading on the ND-100 Computers with the BRF-Linker

The BRF-Linker 1is a new linker which is taking over from the NRL on
ND-100 computers. It performs the same tasks as the NRL, but it 1is
designed to facilitate use of future features of the ND-100 SINTRAN
operating system,

ND-60.144.3 EN

12 ND COBOL Reference Manual
[NTRODUCTION

The BRF-linker does not have a RUN command for immediate execution of
programs loaded i1nto memory. Thus, the PROGRAM-FILE command must
always be vyour fivst command when you build executable code. On the
other hand, the BRF-Linker makes "multi-segment linking” of programs
bigger than the ordinary 256 kilobyte addressing space limit possible,
and overlay linking is possible in a more flexible way than with the
NRL .

For details on these and other aspects of the BRF-Linker, see the
manual BRF-Linker User Manual, ND-60.136.

The BRF-Linker is started by typing:
SBRF-L INKER

when you are 1n the SINTRAN command mode. When the linker 1s ready to
accept your commands, it types the prompt:

Brl:
on your terminal.
For linking smaller programs, the BRF-Linker uses the same or similar
commands as the NRL. For instance, every loading of a program must

start with the command:

Brl: PROGRAM-FILE <file name>

as in the NRL.Relocatable code files are loaded to the program file by
the command:

Brl: LOAD <file name> [, <file name>]

until the program is complete. In COBOL on the ND-100, the COBOL-2BANK
or COBOL-1BANK files containing COBOL library routines must be loaded
after your own programs in order to form a complete program.

The completeness of the program is checked by the command:

Brl: LIST-ENTRIES-UNDEFINED.

If this command gives names of entities (routines, variables etc.)
that are needed. to form a correct program, the loading is still
incomplete; otherwise, an executable program has been built.

This command has a complementing command:

Brl: LIST-ENTRIES-DEFINED

which gives an overview of the procedures, data etc. that vyou have
defined so far in the loading process, together with the addresses of
these entities in octal.

ND-60.144.3 EN

ND COBOL Reference Manual 13
INTRODUCTION

To end the loading session, give the command:

To start your new program, type the name of its program file after you
have returned to SINTRAN.

1.3.3.3 Loading on the ND-500 Computers with the LINKAGE-{ CADER

The ND-500 computers use an ND-100 for I-0 processing etc.The SINTRAN
III operating system 1is much used by these computers. For instance,
executable ND-500 programs are stored in files which have extensions
:PSEG, :DSEG and :LINK as seen from the ND-100 part of the system. A
file named DESCRIPTION-FILE:DESC contains descriptions of all ND-500
programs a user has on his area.

You should not delete or otherwise change any of these files while
under the SINTRAN III monitor. I[f you do, you will get error messages
from the ND-500 if vyou try to wuse any of your ND-500 programs
afterwards. Instead, all handling of these files should be done while
in the ND-500 Linkage-Loader (NLL) or in the ND-500 monitor.

Further differences from the ND-100 COBOL include the possibllity to
load programs with up to 2 Gigabytes of program and 2 Gigabytes of
data; thus, no overlay linking facilities should be necessary at
present.

The user will fing complete documentation on the NLL in the manual:
ND-500 Loader/Monitor, ND-60.136.

On the ND-500, executable programs are built on segments belongling to
domalns by the ND Linkage-Loader {(known as the NLL)}. The NLL 1is
activated by the command:

AIND-500 LINKAGE-LOADER
When the NLL types NLL:, 1t is ready to accept commands from the user.
The NLL will create a program ready for execution. On the ND-500 a
program is termed a domain. Before the domain is loaded, it is named

by the command:

NLL:SET-DOMAIN <domain-name>

ND-60.144.3 EN

14 ND COBOL Reference Manual
INTRODUCTION

The domain-name 1is the name you type in when you want to execute your
program. The domain name will not be visible when you do a QLIST-FILES
in ND-100, for instance - all information pertaining to it is kept on
the DESCRIPTION FILE. What will turn up when you do QLIST-FILES 1is the
segments you create during loading in a domain, with the :PSEG, :DSEG
and (LINK file types, as mentioned above. To create or open a segment
for your executable code, use the command:

NLL:OPEN-SEGMENT <segment-name>,<attributes>

I the segment is new to your user area, you will have to enclose it
in guotation marks according to the ordinary SINTRAN conventions. The
attributes part of this command format can be omitted when loading
simple programs.

Now programs and library files can be loaded into the segment by the
command:

NLL:LOAD-SEGMENT <file> [,<file>]

To build a functioning ND-500 <COBOL program, you must finish the
loading by loading the file COBOL-LIB:NRF, which 1is usually found
under user SYSTEM.

To obtain the entry point addresses of the loaded program and thus
check whether you have an executable program, use the command:

NLL:LIST-ENTRIES-DEFINED

and undefined entries by:

NLL:LIST~-ENTRIES-UNDEFINED

[the user wishes to leave the NLL and return to SINTRAN, she can
type the command:

NLL:EXIT

ND-60.144.3 EN

ND COBOL Reference Manual 15
INTRODUCTION

1.3.4 Compilation

Using the same source program and commands as in the previous example,
the following commands can be used: (all lines start in column 1)

ON THE ND-100

JCoBoL

COMPILE PROGRAM, TERM, PROGRAM
EXIT

aNRL (or @IBRF-LINKER)
PROG-FILE PROGRAM

LOAD PROGRAM, COBOL-1BANK

EXIT

JPROGRAM

ON THE ND-500

AND coBOL

COMPILE PROGRAM, TERM, PROGRAM
EXIT

AND LINKAGE LOADER

SET~-DOMAIN PROGRAM

OPEN-SEGMENT PROGRAM
LOAD-SEGMENT PROGRAM,, COBOL-LIB
EXIT

AND PROGRAM

ND-B60.144.3 EN

16

ND-B60.164.3

EN

ND C0BOL Reference Manual

ND COBOL Reference Manhual 17

06060006000000000000006

2 LANGUAGE CONCEPTS

2.1 THE STRUCTURE OF COBOL

Every COBOL program 1is divided into four divisions. Each must be
placed in its proper sequence and begin with a division header.

2.1.1 The COBQL Divisions

The four divisions of a COBOL source program and their functions are:
- Identification Division

This names the program and, optionally, documents the compilation
date, etc.

- Environment Division
This describes the computer{s) and equipment to be used by the
program. It also includes a description of the relationship
between the files containing data and the input-output devices.

Data Division

This defines the names and characteristics of all the data to be
processed by the program.

- Procedure Division

This consists of executable statements that direct the
processing of data at execution time.

ND-60.144.3 EN

18 ND COBOL Reference Manual
LANGUAGE CONCEPTS

2.1.2 Structure within the Divisions - Clauses and Statements

A clause specifies the attributes of an entry which, containing a
series of «clauses ending with a period, can appear in each division
except the procedure division.

A statement, written in the procedure division, specifies an action to
be taken by the object program. A series of statements, ending with a
period, 1s defined as a sentence.

Every clause or statement in the program may be further subdivided
into wunits «called phrases or options. A phrase 1s an ordered set of
one or more COBOL character strings forming a part of a clause or
statement. An optlon 1s a phrase in which the programmer can choose
between alternative wordings, according to the meanings he wishes the
phrase to possess.

Clauses, entries, statements and sentences may be combined into
paragraphs and sections which each define a larger part of the
program. A section may itself contain paragraphs.

2.2 STRUCTURE OF THE LANGUAGE

2.2.1 COBOL Character Set

The most basic and indivisible unit of the language is the character.
The set of characters wused to form C080L character strings and
separators 1s given below.

ND-60.144.3 EN

ND COBOL Reference Manual 18
LANGUAGE CONCEPTS

The <complete COBOL character set consists of the 52 following
characters;:

Character: Meaning:
o, 1, ..., 9 digit
A, 8, ..., 2 letter

space (blank)

plus sign

minus sign (hyphen)
asterisk

stroke (virgule, slash]
equal sign

currency sign

comma {decimal point)
period {decimal point)
; semicolon

quotation mark {(double)
left parenthesis

right parenthesis
greater than

less than

apostrophe (single quotation mark)

+

A N % |

CA NV e

Note that a reference to 'characters’ throughout this manual will be
to a subset of the above 1list, 1.e., the 1list not 1including
"separators’ {defined in section 2.2.3.4).

2.2.2 Character-Strings

A character-string is a character or sequence of contiguous characters
which form a COBOL word, a literal, a PICTURE character-string or a
comment entry. A character-string is delimited by separators.

ND-60.144.3 EN

20 ND COBOL Reference Manual
LANGUAGE CONCEPTS

2.2.3 COBOL Words

A COBOL word can be a userdefined word, a system word or a reserved
word. Its maximum length is 30 characters. System words and reserved
words are defined as follows.

2.2.3.1 Userdefined Words

These are COBOL words supplied by the programmer. Characters valid in
a userdefined word are:

A through 2
0 through 3

- {hyphen])

The hyphen may not be the first or last charécter. A list of the sets
of wuserdefined words together with their formation rules is given
below.

Userdefined Word Set: Characteristics:

condition name Must contain at least one alphabetic

data name character. Within each set the name must be
record name unique. (It can be made unique by quali-
file name fication If the format rules for the set
index name permit.)

mnemonic name

library name The above rules apply.
program name
routine name

paragraph name May be all numeric, otherwise rules in
section name paragraph 1 apply.

ND-60.144.3 EN

ND COBOL Reference Manual 21
LANGUAGE CONCEPTS

The function of each userdefined word in any clause or statement will
be found under the description for that clause or statement.

The function of each system name {Norsk Data defined names for
communication with the operating system) will be found in the
Glossary.

2.2.3.2 Reserved Words

Reserved words may be divided into the following categories:

KEY WORDS

OPTIONAL WORDS
CONNECTIVES

SPECIAL REGISTERS
FIGURATIVE CONSTANTS
SPECIAL CHARACTER WORDS

D> W N -

A reserved word is a COBOL word having a fixed meaning and it must not
be used as a userdefined word or system name. A 1list is given 1in
Appendix &.

KEY WORDS

A key word is required when the format in which it appears is used in
a source program. Within each format, such words are uppercase and
underlined.

Key words are of three types:
1) Verbs such as ADD, READ and MOVE.
2} Required words,. which appear in statement and entry formats.

3) Words which have a specific functional meaning such as
NEGATIVE, SECTION, etc.

!

ND-60.144.3 EN

22 ND COBOL Reference Manual
LANGUAGE CONCEPTS

OPTIONAL WORDS

Within each format, uppercase words that are not underlined are called
optional words and may appear at the user’'s option. The presence or
absence of an optional word does not alter the semantics of the COBOL
program in which it appears.

CONNECTIVES
These are:
1) Qualifier connectives that are used to associate a data name,
a condition name, a text name or a paragraph name with 1ts

gqualifier: OF, IN.

2) Series connectives that 1link two or more consecutive
operations: (separator comma) or ; (separator semicolon).

3) Logical connectives that are used in the formation of
conditions: AND, OR.

SPECIAL REGISTERS

Each compiler generated storage area whose primary function is to
store information produced by one of the specific COBOL features, 1s a
special register.
Examples:

DATE, DAY, TIME

(see ACCEPT statement in the Procedure Division).

FIGURATIVE CONSTANTS

Certain reserved words are used to name and reference certain constant
values which will be generated by the compiler when these words are
used. Knownh as figurative constants they must not be bounded by
quotation marks. Singular and plural forms may be used
interchangeably.

The reserved words and the figurative constant values they generate
are listed on the following page.

ND-60.144.3 EN

ND COBOL Reference Manual
LANGUAGE CONCEPTS

‘23

ZERO, ZEROS,

ZERQES

SPACE, SPACES

HIGH-VALUE,
HIGH-VALUES

LOW-VALUE,
LOW-VALUES

QUOTE, QUOTES

ALL literal

Represents the value '0' or
one or more of the characters
"0°', depending on context.

Represents one or more of the
character {space) from the
computer's character set.

Represents one or more of the
characters that has the
highest ordinal position in
the program collating
sequence.

Represents one or more of the
characters that has the
lowest ordinal position in
the program collating
sequence.

Represents one or more of the
characters The word
QUOTE or QUOTES cannot be
used in place of a quotation
mark in a source program to
bound a nonnumeric literal.
Thus, QUOTE ABD QUOTE 1is
incorrect as a way of stating
the nonnumeric literal "ABD".

Represents one or more of the
string of characters
comprising the literal. The
literal must be either a
nonnumeric literal of one
character length or a
figurative constant other
than ALL literal. When a
figurative constant 1is used,
the word ALL iIs redundant and
1s used for readability only.

When a figurative constant represents a string of one
characters, the length of the string is determined by the
from the context, according to the following rules:

or more
compiler

ND-60.144.3 EN

24 ND COBOL Reference Manual
LANGUAGE CONCEPTS

1) When a figurative constant is associated with another data
item (e.g., 1s moved to or compared with another item) the
string of characters composing the figurative constant is
repeated character by character on the right until the size
of the resultant string in characters is equal to that of the
associated data item. This is done prior to and independent
of any application of a JUSTIFIED clause associated with the
data item.

2) When a figurative constant is not associated with another
data item, as when the figurative constant appears in a
DISPLAY, STRING, STOP or UNSTRING statement, the 1length of
the string is one character.

A figurative constant may be used wherever a literal appears in the
format, except that whenever the literal is restricted to having only
numeric characters in it, the only figurative constant permitted is
ZERO (ZEROS, ZEROES).

Each reserved word which is used to reference a figurative constant
value 1is a distinct character string with the exception of the
construction 'ALL literal’ which is composed of two distinct character
strings.

SPECIAL CHARACTER WORDS

These are the arithmetic operators {+ - / * or **) or the relational
characters (< > =). They are described under arithmetic expressions
and conditional expressions in the Procedure Division.

2.2.3.3 Literals

A literal 1is a character string with a value specified either by the
ordered set of characters by which it is composed, or by a figurative
constant. There are two types of literals: nonnumeric and numeric.

A nonnumeric literal is a character string bounded by quotation marks
containing any allowable character from the ASCII character set. Its
maximum length is 150.

Any punctuation characters included within a character string are part
of its value.

ND-B60.144.3 EN

ND COBOL Reference Manual 25
LANGUAGE CONCEPTS

A matching pair of either single or double quotes is allowed to bound
the character string forming a nonnumeric literal. If the character
string 1s bounded by single quotes, then each embedded quotation mark
must be represented by a pair of single quotes. If, however, the
bounds are double quotes then each embedded quotation mark must be
represented by a pair of double quotes.

Single quotes are not standard COBOL. They are allowed in ND COBOL to
increase compatibility with other COBOL systems.

Nonnumeric literals - a coding example:

Com- A B Com-
ment area area ment
1 61718 11412 16 20 Y ¥ 72373 80

a1 HEADING-1 PIC (120) VALUE "JEXTEXTEXTEXTEXTEXTEXTEXTEX
ATEXTEXTEXTEXTEXTEX" .
Literal begins here

Literal is incomplete due to col. 72 limit

Delimiter required here, is not counted in
picture length.

Hyphen (~) indicates that line continues.

A numeric literal is a character string whose characters are selected
from the digits '0° through '9', the plus sign, the minus sign and/or
the decimal point. The rules for formation of numeric literals are as
follows:

1} A literal must contain at least one digit.

2) 1 through 18 digits are allowed.

3) A literal must not contain more than one sign. The sign must
always be in the leftmost position.

4) It must not contain more than one decimal point. This must
not be in the rightmost position.

ND-60.144.3 EN

26

ND C0BOL Reference Manual
LANGUAGE CONCEPTS

2.2.3.4 Separators

A separator 1s a character or two contiguous characters formed
according to the following rules:

1)

7)

The punctuation character space is a separator. Anywhere a
space 1is used as a separator or as part of a separator, more
than one space may be used. All spaces immediately following
the separators comma, semicolon or period are considered part
of that separator and are not considered to be the separator
space.

Except when the comma is used in a PICTURE character-string,
the punctuation characters comma and semicolon, immediately
followed by a space, are separators that may be used anywhere
the separator space 1is used. They may be wused to improve
program readability.

The punctuation character period, when followed by a space 1is
a separator. It may only be used to indicate the end of a
sentence, or as shown in formats.

The punctuation characters right and left parenthesis are
separators. Parentheses may appear only in balanced pairs of
left and right parentheses delimiting subscripts, reference
modifiers, arithmetic expressions, Boolean expressions, OT
conditions.

The punctuation character quotation mark is a separator. An
opening quotatlion mark must be immediately preceded by a
space or left parenthesis; a closing quotation mark, when
paired with an opening quotation mark, must be immediately
followed by one of the separators space, comma, semicolon,
period, or right parenthesis.

The separator space may optilonally immediately precede all
separators except:

The separator «closing quotation mark. In this case, a
preceding space is considered as part of the nonnumeric
literal and not as a separator.

The separator space may optionally immediately follow any
separator except the opening quotation mark. In this case, a
following space is considered as part of the nonnumeric
literal and not as a separator.

ND-60.144.3 EN

ND COBOL Reference Manual ’ 27
LANGUAGE CONCEPTS

Any punctuation character which appears as part of the specification
of a PICTURE character-string or numeric literal is not considered as
a punctuation character, but rather as a symbol wused in the
specification of that PICTURE character-string or numeric literal.
PICTURE <character-strings are delimited only by the separators space,
comma, semicolon, or period.

The rules established for the formation of separators do not apply to
the characters which comprise the contents of the nonnumeric literals
or comment lines.

2.2.4 COBOL Format

COBOL programs must be written in a standard format based on an 80
character line. The output listing of the source program is printed in
the same format.

The illustration in this section shows the layout of a coding sheet.
The following code rules include a description of the fields within
it.

Continuation area {(column 7)

This column is used to indicate continuation of words and numeric
literals from the previous line to the current one. The symbol used is
a hyphen.

If there is no hyphen the preceding line is assumed to be followed by
a space.

If there is a hyphen in the continuation area, then the first nonblank
character of this line immediately follows the last nonblank character
of the preceding line without an intervening space.

If there 1s a nonnumeric literal in the line to be continued which
does not have a closing quotation mark, then all spaces up to and
including column 172 are considered to be part of this literal. The
continuation line must contain a hyphen in its continuation area and
the first nonblank character must now be a quotation mark. (See the
coding example of a nonnumeric literal in section 2.2.3.3.)

Area A and area B

These occupy columns 8 through 11 and 12 through 72 respectively. The
elements that may begin in area A and the placement of elements that
can follow them are given in the following chart.

ND-60.144.3 EN

28

Sequence Rules for Elements In Areas A and B

ND COBOL Reference Manual

LANGUAGE CONCEPTS

Elements in Area A

Followed by:

Elements placed in:

Division header

{Procedure Division
only)
USING

Area B
{same or next line)

section header
paragraph header

Area A
{next line)

Section header

DECLARATIVES

SE statement Area B
paragraph header
paragraph name Area A

{either to follow USE,
i1f specified)

(next line)

paragraph header
or paragraph name

Environment division
entry

Procedure division
sentence

Area B
{same or next line)

level indicator
level number

data name

Area B
(same or next line)

DECLARATIVES

Declaratives section
name

Area A
(next line)

END DECLARATIVES

section header

Area A
{next line)

Comment Lines

A comment line 1s any line with an * (asterisk) or / (stroke) in

column 7. It may appear on ahy line following the one containing the
identification division header. A comment may be written in areas A or
B and contain any -characters from the ASCII character set.

The * denotes that the comment is to be printed in the output listing
immediately following the last preceding line. The / denotes that the

current page of the output 1listing 1is to be ejected and that the
comment will appear. on the first line of the next page.

ND-60.144.3 EN

ND COBOL Reference Manual 29
LANGUAGE CONCEPTS

Coding Sheet Layout

Standard COBOL <coding sheets are rarely used when programming on the
ND system, as most programmers will “code” via the ND Editors.
However, the following layout should be useful as the coding sheet
fields are referred to in the text.

Com- A B Com-
ment area area ment
1 61718 11§12 16 20 /! 72§73 80

ND-60.144.3 EN

30

ND-60.144.3 EN

ND COBOL Reference Manual

ND COBOL Reference Manual 31

3 THE IDENTIFICATION DIVISION

The Identification Division must be included in every source program.
This division names the source program and the object program.

A source program 1is the initial COBOL program. An object program is
the output from the compilation.

In addition, the user may include in this division information such as
the date the program was written, etc.

Format:
IDENTIFICATION DIVISION.
PROGRAM~-ID. program name.
[AUTHOR. [comment entry] ...]
[INSTALLATION. [comment entry] ...]
[DATE-WRITTEN. [comment entry] ...]
[DATE-COMPILED. [comment entry] ...]
[SECURITY. [comment entry] ...]
[REMARKS. [comment entryl ...]

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period.

The PROGRAM-ID paragraph gives the name a program is identified by,
and it must be the first paragraph in the Identification Division. The
other paragraphs are optional.

Use of the DATE-COMPILED paragraph does not produce the compilation
date on that line. The date of compilation always appears on the first

page of the listing, whether or not this paragraph is present.

All commententries serve only as documentation, the syntax of the
program is unaffected by them.

ND-60.144.3 EN

32

ND-60.144.3 EN

ND CO0BOL Reference Manual

ND COBOL Reference Manual 33

000000000000000600000000000000000000060000000000000000000000000000000

4 THE ENVIRONMENT DIVISION

The Environment Division contains a description of the computer on
which the source program is compiled together with the functions that
are dependent on its physical characteristics. The presence of the
Environment Division is optional.

General Format:

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.
[SOURCE~-COMPUTER. computer name [WITH DEBUGGING MODE].]
[O0BJECT~COMPUTER. computer name]
[,SEGMENT-LIMIT IS segment number]]
[SPECIAL-NAMES. [,CURRENCY SIGN IS literall
[,DECIMAL-POINT IS COMMA].]
[INPUT-QUTPUT SECTION.
FILE-CONTROL. file control entry [file control entry]
[I-0-CONTROL. input-output control entryl]

6.1 CONFIGURATION SECTION

The Configuration Section is optional in ND cobol.

4.1.1 SOURCE COMPUTER Paragraph

Format:

SOURCE-COMPUTER.

ND-10
ND-100 [WITH DEBUGGING MQDE].
ND-500

ND-80.144.3 EN

34 ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

The WITH DEBUGGING MODE clause indicates that all debugging lines are
to be compiled. If it 1is not specified, debugging lines will be
compiled as 1f they were comment lines. Use of this clause does not
imply any automatic activation of ND's Symbolic Debugger.

A debugging line is any line in a source program with a "D" coded 1in
column 7 {the continuation area).

Each line must be written so that a syntactically correct program
results when the debugging lines are compiled 1into the program.
Debugging lines may be continued but each continuation line must
contain a "D" 1in column 7.

Debugging lines may be specified only after the SOURCE-COMPUTER
paragraph.

£.1.2 QBJECT COMPUTER Paragraph

Format:

ND-10
OBJECT-COMPUTER. ND-100
ND-500

[,SEGMENT-LIMIT IS segment number].

The SEGMENT-LIMIT clause 1s treated by the compiler as comments only.

ND-60.144.3 EN

ND COBOL Reference Manual 35
THE ENVIRONMENT OIVISION

4.1.3 SPECIAL-NAMES Paragraph

The SPECIAL NAMES paragraph provides a substitute character for the
currency symbol and specifies whether the functions of the decimal
point and comma are to be exchanged in PICTURE clauses and numeric
literals. For the format see the beginning of this chapter.

4.1.3.1 CURRENCY IS Clause

The 1literal which appears in the CURRENCY SIGN IS literal clause is
used in the PICTURE clause to vrepresent the currency symbol. The
literal is 1limited to a single character and must not be one of the
following characters:

1) digits 0 through 9

2) alphabetical characters A, B, ¢, D, L, P, R, S, V, X, Z or
the space

3) special characters “x', &'ttt oottty
A
If this clause is not present, only the currency sign is used in the
PICTURE clause.

4.1.3.2 DECIMAL-POINT IS COMMA Clause

When specified, this means that the function of the comma and period
are exchanged 1in the character string of the PICTURE clause and in
numeric literals.

P ND-60.144.3 EN

36 ND COBOL Reference Manual
THE ENVIRONMENTY DIVISION

4.2 INPUT-QUTPUT SECTION

The input-output section names files and provides specifications for
other file related information. Its general format is shown at the
beginning of this chapter.

4.2.1 File Processing - lLanguage Concepts

The way in which COBOL files in a‘program are processed depends on how
the data 1s organized on a file and how this data is to be accessed.

4.2.1.1 Data Organization

This refers to the permanent logical structure of the file and is
defined as one of three types:

1} Sequential organization;
2) Indexed organization;

3) Relative organization.

Sequential Organization

With this organization, each record in the file except the first has a
unique predecessor record, and each record except the last has a
unique successor record. These predecessor/successor relationships are
established by the order of the WRITE statements when the file 1is
created. Once established, these relationships do not change, however
it is possible to add records to the end of the file. The records may
be fixed or variable length.

ND~60.144.? EN

ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

Example:
1 IDENTIFICATION DIVISION.
2 PROGRAM-1D0.
3 GENSEQ.
& KEKEKKKKKKKIRKKRKARKA KKK RKERRK IR RIRKKRK KKK KR K Rk Rk ke k &k ok kdohokkkkkk
5 * CREATES SQ-FILES AND LISTS.
6 KHAKKRKKKKARKERRKEKRAKKKAAAIKKKRKAFRARRRKRRARRKARRAR KKK KRR KKK Kk kdok
7 ENVIRONMENT DIVISION.
8 INPUT-QUTPUT SECTION.
9 FILE-CONTROL.
10 o0 2 SELECT SOQ-FILE ASSIGN "COB1:DATAY,
11 Bl ORGANIZATION IS SEQUENTIAL,
12 : ACCESS 1S SEQUENTTAL. '
13 OATA DIVISION.
14 FILE SECTION.
15 D SB-FILE,
16 01 M-REC. s Lo S
17 : g CRICXGIOY D : i
8 S B2 SEONUM. PIC 951, BLANK WHEN ZEHO =
19 : B2 . PIL X531
20 L 0z CUUPTE XEA0Y
21 WORKING-STORAGE SECTION.
22 01 RANDNO PIC 9(4) PACKED-DECIMAL, VALUE ZERQO.
23 01 MAXRAND PIC S8(4) PACKED-DECIMAL, VALUE 1000.
24 0t NORECS PIC 9(4) PACKED-DECIMAL.
25 01 RECCNT PIC 939, COMP, VALUE 0.
26
27 PROCEDURE DIVISION.
28 INIT-01.
29 OPEN OUTPUT SO-FILE.
30 DISPLAY "CREATE RECORDS?™.
31 PERFORM GET-NORECS.
32 PERFORM CRE-SQ-FILE NORECS TIMES.
33 * BUILDS THE INPUT FILE.
34 CLOSE SQ-FILE.
35 DISPLAY “FILE SQ-FILE CREATED.", RECCNT, ™ RECORDS.".
36 OPEN INPUT SQ-FILE.
37 LIST-FILE-O.
38 MOVE 0O TO RECCNT.
39 LIST-FILE-1.
40 READ SO-FILE AT END GO TO LIST-END.
41 ABD 1 TO RECCNT.
42 DISPLAY "REC ", RECCNT, ", SEQNUM = ", SEQNUM.
43 GO 7O LIST-FILE-1.
44 LIST-END.
45 CLOSE SQ-FILE.
46 OISPLAY "JOB FINISH".
47 STOP RUN.
48 CRE-SQ-FILE.
49 CALL "RND" USING RANDNO, MAXRAND.
50 MOVE ALL "*" TO M-REC.
51 MOVE RANDNO TO SEQNUM.
52 ADD 1 TO RECCNT.
53 DISPLAY "UT REC = ", RECCNT, " KEY = ", SEQNUM.
54 WRITE M-REC.
55 GET-NORECS.
56 ACCEPT NORECS.
57 IF NORECS NOT NUMERIC,
58 DISPLAY "X** NOT NUMERIC DATA *%x",
59 GO TO GET-NORECS
60 END-IF.

ND-60.144.3 EN

38 ND C0BOL Reference Manual
THE ENVIRONMENT DIVISION

Indexed Organization

A file with this organization 1is a mass storage file whose records,
which may be of fixed or variable length, are accessed by means of a
key. ©Each record can have one or more keys and each key is associated
with a particular index held on that file. Each index provides a
logical path to the data records, according to the contents of a data
item within each record which acts as the record key for that index.

The RECORD KEY clause in the file control entry for each file names
the prime record key for that file. When inserting, updating or
deleting records in a file, each record must be identifiable solely by
its prime record key. This value must, therefore, be unique and it
must not be changed when updating the record.

The ALTERNATE RECORD KEY clause names an alternate record key for a
file. (This wvalue may be nonunique 1if the DUPLICATES phrase is
specified for it.) These keys provide alternate access paths for
record retrieval from the file.

ND-60.144.3 EN

ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

Example:

WO~NDU WM

[V G G Gy
U WN->DO

17
18
19
20
21
22
23
24
25

27
28
29
30
31
32
13
34
35
36
37
38
39
40
41
42
43
bh
45
46
47
48
43
50
51
52
53
S4
55
56
57
58
59
60
61
62
63
64
65

IDENTIFICATION DIVISION.
PROGRAM-1D.
GEN-ISAM-1.
R s g s L ey T T S s T e T ey

ISAM MEANS INDEX-SEQUENTIAL ACCESS METHOD.

THE RECORDS ARE OUTPUT TO AN ISAM-FILE USING THE *UNIQUE*
(I. E., NOT DUPLICATED) DATA FOUND IN FIELD ISAM-KEY AS
KEY VALUE.

BEFORE THIS JOB CAN BE RUN, THE FOLLOWING *MUST* BE SO:
A) FILE "ISAM-EX:DATA" AND FILE "ISAM-EX:ISAM" MUST
EXIST AND BE ERROR-FREE : OR
B) FILE "ISAM-EX:DATA" MUST NOT EXIST OR IF EXISTING
CONTAIN *NO DATA !1%
KEEKKKKKI KK KKK AKKEEKRIKAKRAKK KKK AERKEK KRR KRR K AR KAk IRk Ak kK kx
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT ISAM-FILE ASSION 10 ISAM-EX:DATA",
ORGANIZATION IS INDEXED,
ACCESS MODE IS DYNAMIC,
- BECORD KEY 15 ISAM-KEY,
 FILE STATUS IS ISAMSTATUS.

b i . e S I

'DATA DIVISION.

FILE SECTION.
FD ISAM-FILE
RECORD CONTAINS 46 CHARACTERS.
01 ISAM-REC.
02 IS&M«KEY RIC X(ﬁ}. S
* SRHUST BE IN RECDHH Aﬁﬁh‘
a2 ISAM TEXT PIC X(#U)

WORKING~STORAGE SECTION.
01 ISAMSTATUS PIC XX.

* e RETURN STATUS FROM ISAM.
PROCEDURE DIVISION.
A0Q1.
OPEN I-0 ISAM-FILE.
AQ02.

DISPLAY "ENTER KEY (MAX. 6 CHAR) : ",
ACCEPT ISAM-KEY.
IF ISAM-KEY = SPACES GO TO LIST.
Lo SPACES INPUT, END OIALOG.
DISPLAY "ENTEH TEXT (MAX 40 CHAR)Y : ",
ACCEPT ISAM-TEXT.

* 2, READ RECORDS FROM TERMINAL.
WRITE ISAM-REC, INVALID KEY,
DISPLAY "ISAM FILE ERROR :', ISAMSTATUS, ":".
GO TO A002.
* . OQUTPUT RECORD AND ASK AGAIN.
LIST.

DISPLAY "ENTER ACCESS KEY: ",
ACCEPT ISAM-KEY.
IF ISAM-KEY = SPACES THEN 60 7O FINI.
READ ISAM-FILE RECORD KEY IS ISAM-KEY INVALID KEY,
DISPLAY "BECORD NOT FOUND!",
60 TO LIST.
DISPLAY "REC: ", ISAM-KEY, ": ",ISAM-REC.
GO0 TO LIST.
FINI.
CLOSE ISAM-FILE.
DISPLAY "J0B END.".
STGP RUN.

ND-60.144.3 EN

39

40 ND C0BOL Reference Manual
THE ENVIRONMENT DIVISION

Relative Organization

Relative file organization 1s permitted only on mass storage devices.
The file may be thought of as a string of areas, each capable of
holding a logical record. Each of these is identified by a relative
record number which is used for storage and retrieval.

For example, the tenth record 1s the one addressed by relative record
number 10 and 1s in the tenth record area, whether or not records have
been written in the first through ninth record areas.

Records may be of fixed or variable length.

ND-60.144.3 EN

ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

Example:

WLOMNDDUNTHFW N

DATA DIVISION.

IDENTIFICATION DIVISION.
PROGRAM-10. GENRELATIVE.
Bl S e S s e S L S T e T Tt S ey

X THIS PROGRAM SHOWS THE USAGE OF A RELATIVE FILE.

THE FILE *MUST* EXIST BEFORE THE RUN, BUT MAY BE EMPTY, EACH
RECORD IS LOCATED DIRECTLY BY ITS RELATIVE (70 1) POSITION IN
THE FILE BY ITS *INTEGER* KEY VALUE.

IN THE RELATIVE FILE, *NO* STORAGE SPACE IS USED FOR THE
"EMPTY" RECORDS BETWEEN RECORD 0 AND 299, OR BETWEEN 301 AND
699. THUS IT MAKES PERFECT SENSE TO USE, SAY, BIATH DATES
AS KEYS IN RELATIVE FILES.
BT e e e PR e et st Pt R T R e e S e S S I T TR P T
ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
| SELECT RELFILE ASSIGN "RELATIVE-EX:0ATA",
_ ORGANIZATION IS RELATIVE,
ACCESS IS5 DYNAMIC,
RELATIVE KEY IS REL-KEY,
FILE STATUS IS REL-STATUS.:

*
*
*
*
*
* NOTE: EVEN IF SOMETHING IS WRITTEN ON RECORDS 300 AND 700
*
*
*
*
*

FILE SECTION.

FO RELFILE
BLOCK CONTAINS 10 RECORDS
RECORD CONTAINS 60 CHARACTERS.
01 REL-RECORD PIC X{(80).

WORKING-STORAGE SECTION.
01 REL-STATUS PIC XX.
01 BEL-KEY 0 pIC 984,

f{*k****** *******k%**********kk*****kt**kk*****kk************ﬁ%**

. e e THE RELATIVE KEY CAN NOT DCCUR IN THE RECORD
* ~ AREA. ITS POSSIBLE SIZES ARE 1-99999999333,
* ~ BUT IT 15 RESTRICTED TO 999 IN THIS PROGRAM,

*********************k*k*#%*kkk*k#%*k***********************&***
PROCEDURE DIVISION.
AQGC.
OPEN I-0 RELFILE.
A0O2.
DISPLAY "ENTER KEY (MAX 899) : “.
PERFORM GET-KEY.
IF REL-KEY = ZEROES GO TO A003.
DISPLAY "ENTER TEXT (MAX 60 CHARACTERS) : ".
ACCEPT REL-RECORD.
WRITE REL-RECORD INVALID KEY,
DISPLAY "*%* RELFILE ERROR **% :", REL-STATUS.
GO TO A002.
A0O03.
OISPLAY "ENTER ACCESS KEY: ".
PERFORM GET-KEY.
IF REL-KEY = ZEROS GO TO A393.
READ RELFILE RECORD INVALID KEY,
DISPLAY "**X* QECORD NOT FOUND **%x",
REL-STATUS, GO TO ADO3.
DISPLAY "REC :", REL-KEY, ": ", REL-RECORD.
GO TO A003.
A939.
CLOSE RELFILE.
DISPLAY "30B END".
STOP RUN.
GET-KEY.
ACCEPT BREL-KEY.
IF REL~-KEY NOT NUMERIC,
DISPLAY "*%*x KEY MUST BE NUMERIC **x,
GO TO GET-KEY.
GET-KEY-EXIT.
EXIT.

ND-60.144.3 EN

41

£2 ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

b.2.1.2 Access Modes

Three access modes are available in COBOL: sequential, random, and
dynamic.

For sequential organization, records can only be accessed in
sequential access mode, i.e., 1in the order in which they were
originally written on the file. A sequential mass storage file may be
used for input and output at the same time. One file maintenance
method made possible by this facility is to read a record, process it
and - if 1t 1is wupdated - write the modified record back into the
previous position.

For indexed organization, using the sequential access mode means that
records are accessed in the ascending order of the record key values.
(The order of retrieval of records within a set of records having
duplicate key vrecord values, 1s the order in which the records were
written into the set.)

Using the random access mode, records are accessed 1in a sequence
determined by the programmer. A desired record is accessed by having
its record key defined as a record key data item.

Using the dynamic access mode, the programmer may change from
sequential access to random access at will by means of appropriate
coding.

For relative organization, +the file access mode can be either
sequential, dynamical or random. Sequential access provides the same
results as if the file were organized sequentially. Records are
accessed 1n ascending order of vrelative vrecord number of records
currently existing on the file.

Using random mode, the access sequence 1s controlled by the
programmer. The desired record must have its relative record number
placed in a relative key data item.

Such a file may be thought of as a serial string of areas, each
capable of holding a logical record. Each of these areas is specified
by a relative record number. Records are stored and retrieved based on
this number. Ffor example, the tenth record is the one addressed by

relative record number 10 and 1s the tenth record area, whether or not

records have been written in the first through the ninth record areas.

ND-60.144.3 EN

ND COBOL Reference Manual 43
THE ENVIRONMENT DIVISION

In the dynamic access mode, the programmer may change at will from
sequential access to random access using appropriate forms of input-
output statements.

4.2.2 The File-Control Paragraph

The FILE-CONTROL paragraph associates each file with an external,
medium and allows specification of file organization, access mode,
etc.

General Format of the FILE-CONTROL paragraph:

FILE-CONTROL.

[select-entry]

The formats of the various selectentries are giver below.

Format 1: Select entry for sequential files

SELECT [QPTIONAL] file-name

ASSIGN 70 assignment-name-1

;RESERVE integer |AREA
AREAS

[;ORGANIZATION IS SEQUENTIAL]

[;ACCESS MODE IS SEQUENTIAL]

[;FILE STATUS IS data-name~1].

ND-60.144.3 EN

bg ND COBOL Reference Manual
THE ENVIRONMENT OIVISION

Format 2: Select entry for indexed files

SELECT [QPTIONAL] file-name

ASSIGN TO assignment-name-1

;RESERVE integer

ORGANIZATION IS INDEXED

SEQUENTIAL
;ACCESS MODE IS RANDOM
DYNAMIC

yRECOGRD KEY IS data-name-2

[;ALTERNATE RECORD KEY IS data-name-3 [WITH DUPLICATES] 1...

[;FILE STATUS IS data-name-4].

ND-60.144.3 EN

ND COBOL Reference Manual 45
THE ENVIRONMENT DIVISION

Format 3: SELECT entry for relative files

SELECT [QPTIONAL] file-name

ASSIGN TO assignment-name-1
r 1

AREA
;RESERVE integer
AREAS

ORGANIZATION IS RELATIVE

SEQUENTIAL [,RELATIVE KEY IS data-name-5]

;ACCESS MODE IS RANDGM
JRELATIVE KEY IS data-name-5
DYNAMIC

[;FILE STATUS IS data-name-61].

Format 4: SELECT entry for SORT/MERGE

SELECT file-name ASSIGN TO assignment-name-1.

The SELECT <clause must appear first in the file control entries but
subsequent clauses may appear in any order.

Each file described in the Data Division must appear in one and only
one entry in the file control paragraph.

The default access mode is sequential.
The file status data-name, (data-names-1, & and 6) must be defined in
the Data Division as a two character, alphanumeric item which is not,

however, defined 1in the file section.

All data-names may be qualified.

ND-60.144.3 EN

) ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

4.2.2.1 For Sequential Organization

The absence of the ORGANIZATION IS SEQUENTIAL clause implies the
existence of this clause.

The OPTIONAL phrase may be specified for input or output files. Its
specification 1s required for input or output files that are not
necessarily present each time the object program is executed.

£.2.2.2 For Indexed Organization

Data-names 2 and 3 must be defined as alphanumeric in a record
description entry for that file name; neither can describe an item
whose size 1s variable.

Data-name-3 cannot reference an item whose leftmost character position
corresponds to the leftmost character position of an item referenced
by data-name-2 or by any other data-name-3 associated with this file.

The OPTIONAL phrase may be specified for input or output files. Its
specification 1is required for input or output files that are not
necessarily present each time the object program is executed.

4.2.2.3 For Relative Organization

Data-name-5, which must be an unsigned integer, must not be described
in a record description entry associated with that file.

If a relative file 1is vreferenced by a START statement, then the
RELATIVE KEY phrase must appear for that file.

ND-60.144.3 EN

ND COBOL Reference Manual 47
THE ENVIRONMENT DIVISION

The OPTIONAL phrase may be specified for input or output files. Its
specification 1s required for input or output files that are not
necessarily present each time the object program is executed.

L,2.2.4 General Rules

1) The ASSIGN clause specifies the association of a file name
with a storage medium.

2) The ORGANIZATION <clause defines the logical structure of a
file. This 1is established when the file is created and cannot
be subsequently changed.

3} The RESERVE clause 1s treated as comments and appears for
syntax reasons only.

4) When the FILE STATUS clause appears, the COBOL library
system, after execution of every statement referencing the
file, moves a value indicating the status of the execution
into the data item referenced by this clause {see I-0 Status
under INPUT-QUTPUT statements in the Procedure Division
description).

Records in the file are accessed in the sequence determined by the

predecessor successor relationships established by the execution of
WRITE statements in the file formation.

General Rules for Indexed Organization:

1) When the access mode is sequential, records in the file are
accessed in the order of ascending record key values within a
given key of reference. If the access mode is random then the
value of the record key indicates which record is accessed by
it. When the access mode is dynamic, the file may be accessed
sequentially and/or randomly.

2) The RECORD KEY <clause denotes the prime record key for the
file, and its values must be unique. The ALTERNATE RECORD KEY
clause specifies an alternate record key for the file. Both
record keys provide access paths to the records in the file.

ND-60.144.3 EN

48 ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

General Rules For Relative QOrganization

1) When the access mode is sequential, records are accessed in
the order of ascending relative record numbers of the records
existing on the file. If the access mode is random then the
value of the RELATIVE KEY data item 1is wused to locate a
record. When the access mode 1is dynamic, records in the file
can be accessed sequentially and/or randomly.

2) All records stored in a file are uniquely identified by
relative record numbers. These specify the record’'s logical
ordinary position as follows: the first logical record has a
relative record number of one (1) and subsequent records have
relative record numbers of 2, 3, 4,

4.2.3 The 1-0 CONTROL Paragraph

{Sequential Files Only)

The 1I-0-CONTROL ©paragraph specifies the memory area to be shared by
different files.

Format:

I-0-CONTROL .

[SAME AREA for file-name-1{file-name-2} ...]

The I-0 CONTROL paragraph 1s optional. More than one SAME <clause may
be included in a program, however:

1) A file name must not appear in more than one SAME AREA
clause.

2) The files referenced in the SAME AREA <clause need not all
have the same access.

The SAME AREA clause specifies that two or more files not representing
SORT files are to use the same memory area during processing. The area
being shared includes all storage areas assigned to the specified
files so that Lt 1s not valid to have more than one of the files open
at the same time.

ND-60.144.3 EN

ND COBOL Reference Manual 49

©0060

5 THE DATA DIVISION

5.1 DATA CONCEPTS

The Data Division describes the data that the object program is to
accept as input, to manlipulate, to create or to produce as output.
Data to be processed falls into three categories:

1) That which is «contained in files and enters or leaves the
computer memory from specified areas. This data 1s external data.

2) That which 1s developed internally and placed into intermediate
storage. This 1s known as internal data.

3) Constants defined by the user.

External data 1s contained in files. A file is a collection of records
existing on an input or output device. When discussing records, it is
important to distinguish between the terms physical record and logical
record. A physical record is a collection of data which is treated as
an entity by the particular input or output device on which it 1is
stored. A logical record 1is a collection of data having a logical
relationship between its subdivisions. One logical relationship may
extend across physical vrecords, several may be contained within one
physical record or the two may be identical in size {i.e., one logical
relationship 1s «contained completely in one physical unit of data).
Unless otherwise described, the term record refers to a logical
record, when used in this manual.

The term block 1is associated with the use of records, usually to

describe a unit of data consisting of one or more logical records. The
term is synonomous with physical record.

ND-60.144.3 EN

50 ND COBOL Reference Manual
THE DATA DIVISION

5.2 STRUCTURE OF THE DATA DIVISION

The Data Division is divided into sections, each one having a specific
logical function. The occurrence of indicidual sections is optional
but they must appear in the order shown when written 1in the source
program.

format:

DATA DIVISION.

FILE SECTION.

file-description-entry
{record-description-entry}

sort-file description-entry

{record-description-entry} ...
L |

WORKING-STORAGE SECTION.

77-level description entry...
record-description-entry

LINKAGE SECTION.

77-level-description-entry. ..
Lrecord—description—entry

The File Section contains a description of all externally stored data
(FD} but not that which the program may develop internally. It also
contains a description of each SORT/MERGE file (SD) in the program.

ND-60.144.3 EN

ND COBOL Reference Manual 51
THE DATA DIVISION

The Working Storage Section describes records which are developed and
processed internally.

The Linkage Section describes data made available from another program
{see the section on Interprogram Communication in the "Other Features”
part of this manual).

5.3 EILE SECTION

This section must begin with the header FILE SECTION followed by a
period. It contains file description entries and sort file description
entries, each one followed by its associated record description. All
clauses used 1n the record description entry of the File Section <can
be wused 1in the Working-Storage Section. The elements allowed in a
record description are described later under "Data Description Entry”
in the Working Storage Section of the Data Division description (see
also "The Concept of Levels” in the same chapter).

5.3.1 Ihe File Description - Complete Entry Skeleton

The file description entry represents the highest level of
organization in the File Section. It follows the File Section header
and consists of a level indicator (FD), a file name, and a series of
independent «clauses specifying the size of the physical and logical
records, thelr structure and their record names on that file. The
formats are:

ND-60.144.3 EN

52 ND COBOL Reference Manual
THE DATA DIVISION

Format 1: Indexed and Relative I-0.

ED file name

RECORDS
;BLOCK CONTAINS [integer-1 TI0] integer-2
CHARACTERS

L

;RECORD CONTAINS [integer-3 10] integer-4 CHARACTERS

[DEPENDING ON data-name-1]

3 RECORD IS % g STANDARD %

RECORDS ARE OMITTED

;RECORDING MODE IS 3

< ™
N

RECORD IS
data-name-3 [,data-name-4]
RECORDS ARE

;YALUE OF FILE-ID IS integer-3 }

-

ND-60.144.3 EN

ND CO0BOL Reference Manual 53
THE DATA DIVISION

Format 2: Sequential I-0

FD file-name

RECQORDS
;BLOCK CONTAINS [integer-1 TQ] integer-2
CHARACTERS

;RECORD CONTAINS [integer-3 T70] integer-4 CHARACTERS
[DEPENDING ON data-name-1]

g RECORD IS % g STANDARD ;

RECORDS ARE OMITTED

F
:RECORDING MODE IS TEXT-FILE
I
v
- |
RECORD IS
iDATA 3 data-name-3 [,data-name-4 ...]
RECORDS ARE

The level indicator FD identifies the beginning of a file description
and must precede the file name. The clauses which follow are optional
in many cases and they may appear in any order.

One or more record description entries must follow the file
description entry.

ND-60.144.3 EN

54

ND COBOL Reference Manual
THE DATA DIVISION

5.3.1.1 The BLOCK CONTAINS Clause
The Block Contains clause specifies the size of a physical record.
Format:

RECORDS
BLOCK CONTAINS {integer-1 IQ] integer-?
CHARACTERS

General Rules:

1)

2)

3)

4)

If this clause is omitted, block size is set to 2048 characters.

The size of the physical record may be stated in terms of
RECORDS, unless one of the following situations exists, in which
case the RECORDS phrase must not be used:

a) Where logical records may extend across physical records.

b) The physical record contains padding (area not contained in
a logical record).

c) Logical records are grouped in such a manner that an
inaccurate physical record size would be implied.

When the word CHARACTERS is specified, the physical record size
is specified in terms of the number of character positions
required to store the physical record, regardless of the types of
characters used to represent the 1items within the physical
record.

If only 1integer-2 1is shown, it represents the exact size of the
physical record. If integer-1 and integer-2 are both shown, they
refer to the minimum and maximum size of the physical record,
respectively.

ND-60.144.3 EN

ND COBOL Reference Manual 55
THE DATA DIVISION

5.3.1.2 The DATA RECOQRDS Clause

The DATA RECORDS clause serves only as documentation for the names of
data records and their associated file.

Format:

RECORD IS
data-name-1 [,data-name-21]
RECORDS ARE

Data-name-1 and data-name-2 are the names of data records and must
have 01 1level number record descriptions, with the same names,
associated with them.

General Rules:

1} The presence of more than one data name indicates that the file
contains more than one type of data record. These records may
vary in size, format, etc. The order in which they are listed 1is
not significant.

2} Conceptually, all data records within a file share the same area.

This 1is in no way altered by the presence of more than one type
of data record within the file.

ND-60.144.3 EN

56

ND COBOL Reference Manual
THE DATA DIVISION

5.3.1.3 The LABEL RECORDS Clause

The LABEL

Format:

RECORDS clause is treated as comments.

RECORD IS STANDARD
;LABEL

RECORDS ARE OMITTED

5.3.1.4 The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of data records.

Format:

;RECORD CONTAINS [integer-3 T0J] integer-4 CHARACTERS

[DEPENDING ON data-name-1]

General Rules:

1) The following notes apply:

a)

Integer-4 may not be used by itself unless all of the data
records in the file have the same size. In this «case,
integer-4 represents the exact number of characters in the
data record. If integer-3 and integer-4 are both shownh, they
refer to the minimum number of characters in the smallest
size data record and the maximum number of characters in the
largest size data record, respectively.

ND-60.144.3 EN

ND COBOL Reference Manual 57
THE DATA DIVISION

2)

3)

4)

6}

7)

b) The size 1is specified in terms of the number of character

positions required to store the logical record, regardless
of the types of characters used to represent the items
within the logical record. The size of a vrecord is

determined by the sum of the number of characters in all
fixed length elementary items plus the sum of the maximum
number of characters in any variable length item subordinate
to the record. This sum may be different from the actual
size of the record.

Data-name-1 must describe an elementary integer in the Working-
Storage Section. (Defined as COMPUTATIONAL, with no PICTURE
clause specified.)

If data-name-1 is specified, the number of character positions in
the record must be placed in the data item referenced by data-
name-1 before any RELEASE, REWRITE or WRITE staement is executed
for the file.

I+ data-name-1 1is specified, the execution of a DELETE, RELEASE,
REWRITE, START or WRITE statement or the wunsuccessful execution
of a READ or RETURN statement does not alter the contents of the
data item referenced by data-name-1.

During the execution of a RELEASE, REWRITE or WRITE statement,
the number of character positions in the record is determined as
follows:

a) By the contents of the data item referenced by data-name-1
if data-name-1 is specified.

b) By the number of character positions in the record if data-
name-1 1is not specified.

If data-name-1 is specified, after the successful execution of a
READ or RETURN statement for the file, the contents of the data
item referenced by data-name-1 will indicate the number of
character positions in the record just read.

If the INTO phrase is specified in the READ or RETURN statement,
the number of character positions in the current record that
participate as the sending data item in the implicit MOVE
statement 1is determined by the maximum size of the sending field.

ND-60.144.3 EN

58 ND COBOL Reference Manual
THE DATA DIVISION

5.3.1.5 The RECORDING MODE Clauge

The RECORDING mode clause specifies the record format wused in the
file.

Format 1: Indexed and Relative I-0.

iRECORDING MODE IS g

=< ™
NI

Format 2: Sequential I-0.

;RECORDING MODE IS EXT-FILE

< i~ [~ M

F indicates that all records have exactly the same number of
characters, that is, the number which is the length of the file's
record area.

V. means that the records 1n the file may have a varying number of
characters, never less than 1 (one) and never more than the maximum
size of the file's record area. With V format, two extra bytes of
information are stored at the beginning of each record in the file.
These bytes contain the length of the data portion of the record; they
are never available to the COBOL program, except if the DEPENDING ON
phrase of the RECORD CONTAINS clause 1s included.

T (TEXT-FILE) means that the records of the file are in printable
format and contain only ASCII characters. The records are separated by
the characters carriage return (15 octal) and line feed (12 octal).

This format is only valid for sequential files. T and TEXT-FILE are
sSynonymous .

ND-60.144.3 EN

ND COBOL Reference Manual 59
THE DATA DIVISION

5.3.1.6 The VALUE OF FILE-ID IS Clause

The VALUE OF FILE-ID IS clause is now treated as a comment.

Format:

VALUE OF FILE-ID IS integer-3

5.4 WORKING-STORAGE SECTION

The Working-Storage Section may describe data records which are not
part of external files but are developed and processed internally. It
must begin with the words WORKING-STORAGE SECTION followed by a
period. It contains record description entries and data description
entries for noncontiguous data items.

Pata Description Entries

Noncontiguous items in Working-Storage that bear no hierarchical
relationship to one another, need not be grouped into records,
provided they do not need to be further subdivided. Instead, they are
classified and defined as noncontiguous elementary items. Each 1is
defined in a separate data description entry with the special level
number 77.

Record Description Entries

Data elements that bear a definite hierarchical relationship to one
another must be grouped into records structured by level number.

ND-60.144.3 EN

60 ND COBOL Reference Manual
THE DATA DIVISION

5.4.1 Data Description

5.4.1.1 The _Concept of Level

Because records must often be divided into logical subdivisions, the
concept of level is inherent in the structure of a record. Ffields
which cannot be further subdivided are called elementary items. A
record can be made up of elementary items or 1t can 1tself be an
elementary item. If 1t is necessary to refer to a set of elementary
items, they can be combined as a group item. Note that an elementary
item can belong to more than one group.

For example, an employer’'s payroll file might contain a record for all
employees at one location. Each employee’'s record could be represented
as a group ltem while the subdivisions, or elementary items, might be
age, salary, grade, tax code, etc.

Level Numbers

A system of level numbers from 1 to 49 is used to organize elementary
and group items into records. Special level numbers 77 and 88 identify

items wused for special purposes. They do not structure a record, and
are used as follows:

17 For independent working storage or linkage section items which
are not subdivisions of items or themselves subdivided.

88 For identification of a condition name associated with a
particular value of a conditional variable {see the VALUE <clause
later in the Data Division section).

{Level 77 and 0t entries must have unique data names as they cannot be

qualified. Subordinate data names, 1f qualifiable, need not be
unique.)

Record Description Level Numbers

A level number must be assigned to each group or elementary item in a
record. The level numbers used to structure records are:

01 This specifies the record itself and is the most inclusive of the
numbers. A level 01 entry may be either a group or an elementary
Ltem.

rs

ND-60.144.3 EN

ND COBOL Reference Manual 61
THE DATA DIVISION

02-49
These are given to group and elementary items within a record.
Subordinate items are given higher {not necessarily consecutive)
level numbers.

A group item includes all group and elementary items following it
until a level number less than or equal to its own 1is encountered.

All elementary or group items immediately subordinate to one group
item must be assigned level numbers higher than the level number of
this group item.

For example, data may need to be structured as follows:

‘ LAST-NAME
NAME FIRST-INIT
MIDDLE-INIT

EMPLOYEE-NUM o
TIME-CARD — 3
MONTH
WEEKS-END-DATE ———————— DAY-NUMBER
YEAR

HOURS-WORKED -

A corresponding record might appear in the form:

g1 TIME-CARD.
g2 NAME .
g3 LAST-NAME PICTURE X{(18).
03 FIRST-INIT PICTURE X.
03 MIDOLE-INIT PICTURE X.
02 EMPLOYEE-NUM PICTURE 99949.
02 WEEKS-END-DATE.
05 MONTH PIC 99.
05 DAY-NUMBER PIC 99.
05 YEAR PIC 99.
02 HOURS-WORKED PICTURE 39V3.

ND-60.144.3 EN

62 ND COBOUL Reference Manual
THE DATA DIVISION

5.4.1.2 Classes and Categories of Data

There are five categories of data items which are grouped into three
classes. The relationship between them is shown in the following.

Level of Item: Class: Category:

Elementary Alphabetic Alphabetic
Numeric Numeric
Alphanumeric Alphabetic

Numeric Fdited
Alphanumeric Edited
Alphanumeric

Group Alphanumeric Alphabetic

Numeric

Numeric Edited
Alphanumeric Edited
Alphanumeric

Classes and Categories of Data

Note that for alphabetic and numeric the classes and categories are

synonomous. The alphanumeric class 1includes the categories of
alphanumeric edited, numeric edited and alphanumeric {without
editing). Every elementary item, except for an index data item,

belongs to one of the classes and to one of the categories.

Every group item belongs to the alphanumeric class f{even 1if its
subordinate items belong to other classes or categories).

Standard alignment rules for positioning data in an elementary item
depend on the data category of the receiving item {i.e., the item into
which the data is placed).

The following rules apply, according to the category of the receiving
item:

ND-60.144.3 EN

ND COBOL Reference Manual 63
THE DATA DIVISION

1) Numeric

The data is aligned by decimal point and moved to the receiving
character positions with zero fill or truncation on either end as
required.

If there 1s no assumed decimal point (an assumed decimal point 1is
one that has logical meaning but does not exist as a character in
the data), then the item is treated as 1if an assumed decimal
point existed immediately after its rightmost character and 1is
aligned as in the preceding rule.

2) Numeric Edited
The data is aligned on the decimal point and (if necessary)
truncated or padded with zeros at either end, except when editing
causes replacement of leading zeros.

3) Alphanumeric, Alphanumeric Edited, Alphabetic
The data 1is aligned at the leftmost character position and {if
necessary) truncated or padded with spaces. If the JUSTIFIED

clause 1s specified then this rule is modified as described in
the description of this clause.

Signed Data.

There are two classes of algebraic signs used in COBOL: operational
signs and editing signs.

Operational signs are associated with signed numeric items to indicate
their algebraic properties.

Editing signs, which are PICTURE symbols, are used with numeric edited
items to indicate the sign of the item in edited output.

Data Reference

Every user specified name of an element in a COBOL program must be
unique -~ elither because no other name has a character-string of the
same value or because it can be made unique through qualification,
indexing or subscripting.

Qualification

A name can be made unique if it exists within a hierarchy of names
such that it can be identified by specifying one or more higher level
names in this hierarchy. This process is called qualification, and the
higher level names are called qualifiers.

ND-60.144.3 EN

64 ND COBOL Reference Manual
THE DATA DIVISION

Qualification 1is performed by following a user specified name by one

or more phrases composed of a qualifier preceded by IN or OF. (IN and
OF are logically equivalent.)

The Formats are:

Format 1:
data-name-1 OF
data-name-2
condition-name IN
Format 2:
0F
paragraph-name section name
IN
Format 3:
file-name

Each qualifier must be of a successively higher level and be within
the same hierarchy as the name it qualifies.

The same name must not appear at 2 levels in a hierarchy.

If a data name or condition name 1s assigned to more than one data
item, it must be qualified each time it is referred to.

A paragraph name must not be duplicated within a section. When a
paragraph name is qualified by a section name, the word SECTION must
not appear. A file name {used in the COPY statement) must name a
SINTRAN file. A paragraph name need not be qualified when referred to
within the section in which it appears. When it is being used as a
qualifier, a data name cannot be subscripted.

If there is more than one combination of gqualifiers that ensures
unigueness then any of these combinations can he used.

Note: Although enough qualification must be given to make the name
unique, it may not be necessary to specify all the levels of the
hierarchy.

ND-60.144.3 EN

ND COBOL Reference Manual 65
THE DATA DIVISION

No duplicate section names are allowed.
No data name can be the same as a section name or paragraph name.

Duplication of data names must not occur in those places where the
data names cannot be made unique by qualifications.

Subscripting and Indexing

Subscripts and indexes are used for referencing an individual element
within a table of elements that do not have 1individual data names.
Subscripting and Indexing are explained in the chapter on Table
Handling.

5.4.2 The Data Description - Complete Entry Skeleton

The format of the complete entry skeleton has been simplified for
easier reading. The format of each clause is given with the individual
descriptions. .

5.4.2.1 Data Description Entry

A data description entry specifies the characteristics of a particular
item of data.

ND-60.144.3 EN

66 ND COBOL Reference Manual
THE DATA DIVISION

Format 1:

data name

level number g ; clause

FILLER

[;BLANK WHEN ZERQ clausel]
[;JUSTIFIED clausel]
[;PICTURE clausel

[;REDEFINES clause]

[;SIGN clause]

SYNCHRONIZED clause

SYNCHRONIZED-2 clause

[;USAGE clausel]

[;VALUE clausel]

[;EXPORT clause]

Format 2:

88 condition name VALUE clause

Format 1 is used for record description entries and for level 177
entries.

General Rules:

1) The level number can be any number from 01 to 49 or 77. 01 to 09
can be written as 1 to 9.

2) The data name/FILLER (opticnal) entry must immediately follow the
level number. Otherwise, the clauses may be written in any order.

3) The PICTURE clause must be specified for all elementary items
except index data items and for computational, computational-t
and computational-2 items.

ND-60.144.3 EN

ND COBOL Reference Manual 67
THE DATA DIVISION

4) The BLANK WHEN ZERO, JUSTIFIED, PICTURE and SYNCHRONIZED clauses
are valid only for elementary items.

5) Each entry must end with a period followed by a space and all
clauses must be separated by a space, comma, or a semicolon
followed by a space.

Format 2 describes condition names which are user specified names that
associate value(s) and/or range of values with a conditional variable.
A conditional variable is a data item which can take one or more
values and 1s associated with a condition name.

General Rules:

1) Each condition name requires a separate entry with level number
88. Any entry beginning with this level number is a condition
name.

2) A condition name can be associated with any data description
entry containing a level number except:

1) another condition name

2) an index data item.

3) Each entry must end with a period followed by a ‘pace. Successive
operands must be separated by either a space ¢ - a semicolon or
comma followed by a space.

5.4.2.2 The BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking of an item when its
value 1is zero.

Format:

The BLANK WHEN ZERO clause can only be used for an elementary item
whose PICTURE is numeric or numeric edited (see the PICTURE clause in
this chapter). When it is used for an item whose PICTURE 1is numeric
then the category of the item is considered to be numeric edited.

ND-60.144.3 EN

68 ND COBOL Reference Manual
THE DATA DIVISION

When the BLANK WHEN ZERO clause is used, the item will contain nothing
but spaces 1f the value of the item 1is zero.

5.4.2.3 The Data Name/FILLER Clause

A data name explicitly identifies the data being described. The key
word FILLER, which may be omitted, specifies an item not explicitly
referred to in a program,

Format:

data name

FILLER

In the File, Working-Storage and Linkage Sections, data name or FILLER

must appear as the first word following the level number in each data
description entry.

General Rules:

1) A data name identifies a data item used in the program, it may
assume a number of different values during program execution.

2) The key word FILLER «can name an elementary or group item in a
record. Under no circumstances can a FILLER item be referred to
explicitly; however, 1t may be used as a conditional variable
since such use does not require explicit reference to the item
itself but only to its value.

ND-60.144.3 EN

ND COBOL Reference Manual 69
THE DATA ODIVISION

5.4.2.4 The JUSTIFIED Clause

The JUSTIFIED clause overrides standard positioning rules for a
receiving item of the alphabetic or alphanumeric categories.

Format:

; JUSTIFIED

RIGHT
JUST

The JUSTIFIED clause can be specified only at the elementary item
level. JUST is an abbreviation for JUSTIFIED and has the same meaning.

It cannot be wused with any data item which is numeric or for which
editing is specified.

General Rules:

1) When a receiving data item is described with the JUSTIFIED clause
and it 1s smaller than the sending item, the leftmost characters
are truncated; if larger, the unused character positions at the
left are filled with spaces.

2) When the JUSTIFIED «clause is omitted, the standard rules for
aligning data within an elementary item apply. (See Standard
Alignment Rules in this chapter.)

5.4.2.5 The PICTURE Clause

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

ND-69.144.3 EN

70 ND COBOL Reference Manual
THE DATA DIVISION

Format:

PICTURE
IS character-string

o
oy
Y

|

The PICTURE clause must be specified for every elementary item except
an index data item, or computational, computational-1 and
computational-2 items. It may be specified only at the elementary
level. PIC is an abbreviated form of PICTURE and has the same meaning.

The character-string is made up of certain COBOL characters used as
symbols. The allowable combinations determine the category of the

elementary item. The maximum number of characters, 1i.e., symbols,
allowed in the string is 30.

List of Syvmbols

The following list of symbols is used to represent the five categories
of data that can be described in a PICTURE clause. (These are:
alphabetic, number, alphanumeric, alphanumeric edited and numeric
edited.) A brief description is given with each symbol. More detailed
descriptions appear later.

A
Each A in the character-string represents a character position
that can only contain a letter of the alphabet or a space.

Each B in the character-string represents a character position
into which the space will be inserted.

The letter S is wused 1in a character-string to indicate the
presence {but not the representation or, necessarily, the
position} of an operational sign; it must be the leftmost
character in the PICTURE. It is not counted in determining the
size of the elementary 1item wunless an associated SIGN clause
specifies the SEPARATE CHARACTER phrase. {An operational sign
indicates whether the value of the item 1s positive or negative.)

The V 1is used in a character position to indicate the location of
an assumed decimal point and may appear only once in a character-
string. It does not represent a character position and is
therefore not counted in the size of the elementary 1item. When
the assumed decimal point 1s to the right of the rightmost symbol
in the string, the V is redundant.

Each X in the character-string represents a character position

which contains any allowable character from the computer’s
character set.

ND-60.144.3 EN

ND COBOL Reference Manual 71
THE DATA DIVISION

cs

Each Z in a character-string may only be used to represent the
leftmost 1leading numeric character positions which will be
replaced by a space character when the contents of that character
position is zero. Each Z is counted in the size of the item.

Each 9 1in the character-string represents a character position
which contains a numeral and is counted in the size of the item.

Each 0 {(zero) in the character-string represents a character
position. into which the numeral zero will be inserted. It is
counted in the size of the item.

Each / {(stroke) in the character-string represents a character
position into which the stroke character will be inserted. It is
counted in the size of the item.

Each , {(comma} in the character-string represents a character
position into which the character , (comma) will be inserted.
This character position is counted in the size of the item and
the «character must not be the 1last character in the PICTURE
character-string.

When the character . (period) appears in the character-string it
is an editing symbol which represents the decimal point for
alignment purposes. In addition, it represents a character
position into which the . (period) will be inserted. The
character is counted in the size of the item. In a program the
functions of the period and comma are exchanged if the clause
DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph.
{In the exchange, the rules for the period apply to the comma and
vice versa when they appear in a PICTURE clause.) The insertion

character . (period) must not be the 1last character in the
PICTURE character-string.
CR, DB

These symbols are wused as editing sign control symbols and
represent the <character position into which the editing sign
control symbol will be placed. These symbols are mutually
exclusive in any one character-string, and each character used in
the symbol is counted in determining the size of the data item.

Each * (asterisk) in the character-string represents a leading
numeric character position into which an asterisk will be placed
when the contents of that position is zero. Each * is counted in
the size of the item.

The currency symbol in the character-string represents a
character position into which a currency symbol is to be placed.
This currency symbol is represented either by the currency sign
or by the single character specified in the CURRENCY SIGN clause
in the SPECIAL-NAMES paragraph. The currency symbol is counted in
the size of the item. (The default symbol is § (dollar).)

ND-60.144.3 EN

12

ND C0OBOL Reference Manual
THE DATA DIVISION

Allowable symbols for each data category

The following rules apply:

Alphabetic Items

a)

b)

The PICTURE character-string can only contain the symbols A and
B.

Its contents when represented in standard data format should be
any combination of the 26 (twenty-six) letters of the Roman
alphabet and the space from the COBOL character set.

Numeric Items

a)

b)

The PICTURE character-string may only contain the symbols 9, S
and V. The number of digit positions must range from 1 to 18
inclusive.

The contents of the item in standard format must be a combination
of the 10 Arabic numerals and, 1f signed, a representation of th
operational sign.

Alphanumeric Items

al

The PICTURE character-string 1s restricted to certain
combinations of the symbols A, X and 9. The item is treated as if
the character-string contained all X's. A character-string
containing all A's or all 9's does not define an alphanumeric
item.

The contents of the character-string when represented in standard
data format are allowable characters in the computer’'s character
set.

Alphanumeric Edited Items

a)l

The PICTURE character-string can contain: A, X, 9, B, 0 {zero)
and /. It must contain at least one of these combinations:

- at least one B and at least one X
- at least one 0 and at least one X
- at least one X and at least one /

- at least one A and at least one 0

ND-60.144 .3 EN

ND COBOL Reference Manual 73
THE DATA DIVISION

- at least one A and at least one /

b) The contents of the items in standard data format may be any
allowable character from the computer’'s character set.

Numeric Edited Items

a) The PICTURE character-string can contain the symbols: B, VvV, 2, 9,
0 {(zero), x, /, , (comma), . (period), +, -, CR (credit), DB
(debit) or the §$ {currency) symbol. The allowable combinations
are determined from the order of precedence of symbols (see
chart) and the editing rules {see later in this section).

b} The character-string must contain at least one 0 (zera), 8, /, Z,
*, +, -, , {comma), . (period), CR (credit), DB (debit) or
currency symbol and the number of digit positions that can bhe
represented must range from 1 to 18 inclusive.

c) The contents of the character positions that are allowed to
represent a digit in standard format, must be one of the
numerals.

The Size of an Elementary Item

The size of an elementary data item (i.e., the number of character
positions it occupies in standard data format) is determined by the
number of allowable symbols that represent character positions. An
integer enclosed in parentheses following the symbols A, {comma), X,
). Z, x, B, /, 0 (zero), +, - or the currency symbol indicates the
number of consecutive occurrences of the symbol.

5.4.2.6 Editing Rules for the PICTURE Clause

Editing 1s performed in two ways, either by insertion or suppression
and replacement. Insertion editing breaks down into four types. These
are listed below together with the characters and categories each is
valid for.

ND-60.144.3 EN

T4 ND C0OBOL Reference Manual
THE DATA DIVISION

Simple Insertion:

Category: Insertion Symbols:
Alphabetic B
Alphanumeric edited B 0o/
Numeric Edited B o/,

Examples:
Picture: Data: Edited Result:
99,999,000 12345 12,345,000
999,999 12345 012,345
A{5)BA(4) NORSKDATA NORSK DATA
X{4)B/BX(2) TYPEZ25 TYPE / 25

Each insertion symbol is included in the size of the item and

represents the position where the equivalent character will be
inserted.

Special Insertion:

Category: Insertion Symbol:
Numeric Edited . {period)
Examples:
Picture: Data: Edited Result:
99.39 123.4 23.40
99.99 12.34 12.34
99.99 1.234 01.23
The insertion symbol . {period) will be counted in the size of the

item, and shows the position where the actual decimal point will be
inserted. It is not allowed to appear in the same PICTURE character-
string as the symbol V (denoting an assumed decimal point): these two
symbols are mutually exclusive.

ND-60.144.3 EN

ND COBOL Reference Manual 75
THE DATA DIVISION

Fixed Insertion:

Category: Insertion Symbols:

Numeric edited + - CR DB {editing sign
control symbols)

$ (currency symbol)

Only one currency symbol and only one of the editing sign control
symbols can be wused, 1in a given PICTURE character-string. When the
symbols 'CR' or 'DB’ are used they represent two characters positions
in determining the size of the item and they must represent the
rightmost character positions that are counted in the size of the
item. The symbol "+' or '-', when used, must be either the leftmost or
the rightmost character position to be counted in the size of the
item. The currency symbol must be the leftmost character position to
be counted in the size of the item, except that it can be preceded by
either a '+ or a '-' symbol. fixed insertion editing results in the
insertion character occupying the same character position in the
edited item as it occupied in the PICTURE character-string. Editing
sign control symbols produces the following results depending upon the
value of the data item.

Editing Symbol in PICTURE Result:
character-string
Data Item Data Item
Positive or Zero Negative
+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB
Examples:
Picture: Data: Edited Result:
+99.939 ~-12.345 -12.34
-99.99 +12.345 12.34
99.99+ +12.345 12.34+
$99.39 ~-12.34 $12.34
~-$99.39 -12.34 -$12.34
$999.99 CR +12.34 $012.34
$999.99 08 -12.34 $012.34 DB

ND-60.144.3 EN

16 ND COBOL Reference Manual
THE DATA DIVISION

Floating Insertion:

Category: Insertion Symbols:

Numeric edited S+ -

Floating insertion editing occurs when two or more of the above

insertion symbols appear as a string within the given PICTURE
character-string.

Examples:
Picture: Data: Edited Result:
$599 12 $12
$55858599 1234 $1234
$$$5889.99 .12 $0.12
+++/+++,+99 12 +12
————— 9,999 123456 -123,456
$385899.99CR -123 $123.00CR

Within one PICTURE character-string the floating insertion symbols are
mutually exclusive. Simple insertion symbols or the period may appear
within a string of floating insertion symbols without «causing
discontinuity (except in the special case where there is only one
floating insertion symbol in the string to the left of a simple one or
a period).

The leftmost character of the floating insertion string represents the
leftmost 1limit of the floating symbol in the data item. The rightmost
character of the floating string represents the rightmost 1imit of the
floating symbols in the data item.

The second floating character from the left represents the leftmost
limit of the numeric data that can be stored in the data item. Nonzero

numeric data may replace all the characters at this limit or to the
right of it.

In a PICTURE character-string, there are only two ways of representing
floating insertion editing. One way is to represent any or all of the
leading numeric character positions on the left of the decimal point
by the insertion character. The other way is to represent all of the
numeric character positions in the PICTURE character-string by the
insertion character.

If the insertion characters are only to the left of the decimal point
in the PICTURE character-string, the result is that a single floating
insertion character will be placed into the character position
immediately preceding either the decimal point or the first nonzero
digit in the data represented by the insertion symbol string,
whichever is further to the left in thg PICTURE character-string. The
character positions preceding the insertion character are replaced

ND-60.144.3 EN

ND COBOL Reference Manual 17
THE DATA DIVISION

with spaces.

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, the result depends upon the
value of the data. If the value 1s zero the entire data item will
contaln spaces. If the value is not zero, the result is the same as
when the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string
for the receiving data item must be the number of characters in the
sending data item, plus the number of nonfloating insertion characters
being edited into the receiving data item, plus one for the floating
insertion character.

Zero Suppression and Replacement Editing

The symbols Z and * are used to replace leading zeros in the edited
result by blanks or asterisks respectively. They can form floating
strings in the same way as the floating insertion symbols $, + and -
described earlier. (However, a floating string of zero suppression or
replacement symbols cannot appear in the same PICTURE character-string
as a floating string of insertion symbols.)

Examples:
Picture: Data: Result:
22.22 00.09 .09
22.22 06.00
X% kk go.00 Xk ik
2299.93 go000.00 00.00
Xxxxx 99gCR 123 **123.00
X kkok kg -123.00 x*123.00~-
222.22+ 1]

Any simple 1nsertion symbols or the period may appear within a
floating string of zero suppression or replacement characters and are
regarded as part of this string.

When editing 1is performed, any leading zero in the data that appears
in the same character position as a suppression symbol, is replaced by

the replacement character. Suppression stops at the leftmost character
that:

1) Does not correspond to a suppression symbol.

2) Is the decimal point.

3) Contains nonzero data.
If, however, the value of the data 1is =zero and all the numeric
character positions in the PICTURE character-string are represented hy
a Z, the resulting item will con}ain spaces only. If these positions

are represented by asterisks, the resulting item, except for the

ND-60.144.3 EN

78 ND COBOL Reference Manual
THE DATA DIVISION

decimal point, will contain asterisks.

Precedence Rules

Figure 5.1 shows the order of precedence when wusing characters as
symbols 1n a character-string. An "X’ at an intersection indicates
that the symbol(s) at the top of the column may precede the symbol{s)
at the left of the row. Arguments appearing in {} (braces) indicate
that the symbols are mutually exclusive. The currency symbol is shown
as CS.

At least one of the symbols A, X, Z, 9 or *, or at least two of the
symbols +, - or CS must appear in a PICTURE string.

ND-60.144.3 EN

ND COBOL Reference Manual
THE DATA DIVISION

First Non-Floating Floating Insertion & Suppressing/ | Other Symbols
Symbol Insertion Symbols Replacement Symbols
Second™NJB | 0 |/ |, |. ||+ CRCS{Z}{Z}+ 1 |cs|lcsie | A s
Symbol - - DB * * - — X
B X X X X X X X X X X X X X X X
0 X X X X X X X X X X X X X X X
/ X X X X X X X X X X X X X X X
S, Ix | X | X |x|x|x X I X [X | X | X XX |X
£
o>
? X X X X X X X X X X
©
5ol
£ -
2 i+
= N X X X X X X X X X X X
[»]
i {[CR
I D8 X X X X X X X X X X X
O
4
Cs X
£
E * X X X X X X X
wifZ
g{a} X X X X X X X X X
B EIF
“’g{ X | X | X |x X X
c 8-
o Q
o Wi+
§EU X X X X |x X X | X
£
o'%
£ E|CS X | X | X | X X X
P —
“dles Ix | x | x X | X | X X | X
9 X X X X X X X X X X X X X
A
Blx X | X |X X | X
E
@ |s
Iy
£
o |V X X X X X X X X X X X
Figure 5.1.

ND-80.144.3 EN

80 ND COBOL Reference Manual
THE OATA DIVISION

5.4.2.7 The REDEFINES Clause in DATA DIVISION

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

Format:

level number data-name-1; REDEFINES data-name-2

(Note: The level number, semicolon and data-name-1 are shown in the
above format for reasons of clarity. Level number and data-name-1 are
not part of the REDEFINES clause.)

Data-name-2 1is the redefined 1item while data-name-1 supplies an
alternative description for the same area, i.e., 1is the redefining

iLtem.

The level numbers of data-name-1 and data-name-2 must be identical but
not level 88.

General Rules:

1) Redefinition begins at data-name-1 and ends when a level number
less than or equal to that of data-name-2 1is encountered. No
entry having a level number lower than those of data-names 1 and
2 may occur between these entries.

2} When the level number of data-name-1 is other than 01, it must
specify the same number of character positions that the data item
referenced by data-name-2 contains. It is important to observe
that the REDEFINES clause specifies the redefinition of a storage
area, not of the data items occupying the area.

3) Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the area
being redefined; no entries that define new character positions
may intervene.

4) Multiple level 01 entries subordinate to any given level
indicator represent redefinitions of the same area.

ND-60.144.3 EN

ND COBOL Reference Manual 81
THE DATA DIVISION

5) The entries giving the new description of the character positions
must not contain any VALUE <clauses, except in condition name
entries.

Example:

02 A PICTURE A(6].
02 B REDEFINES A.
05 B-1 PICTURE X(2).
05 B8-2 PICTURE 9(4].
02 C PICTURE 9(6).
02 D REDEFINES C.
05 D-1 PICTURE 99.
05 D-2 PICTURE 99939.
05 D-3 REDEFINES D-2 PICTURE 99V99.

In this example A, C and D-2 are redefined items while B, D and D-3
are redefining items. Note that the REDEFINES «clause has been
specified for the item ©D-3 which is subordinate to the redefining
item, D.

5.4.2.8 The SIGN Clause

The SIGN clause specifies the position and mode of representation of
the operational sign when it 1is necessary to describe these
explicitly.

Format:

LEADING
[SEPARATE CHARACTER]

TRAILING

The SIGN clause may be specified only for a numeric data description
entry whose PICTURE contains the «character 'S’', or a group item
containing at least one such numeric data description entry.

ND-60.144.3 EN

82 ND COBOL Reference Manual
THE DATA DIVISION

The numeric data description entries to which the SIGN IS clause
applies must be described as USAGE IS DISPLAY.

At most one SIGN IS clause may apply to any given numeric data
description entry.

If the SEPARATE CHARACTER option is not present, then the operational
sign 1s assumed to be associated with the LEADING OR TRAILING digit
position (whichever 1is specified). The PICTURE character S is not
counted in the size of the item.

If the SEPARATE CHARACTER option 1is present, then the operational sign
1s assumed to occupy the LEADING or TRAILING character position. In
this case the PICTURE character S is included in the size of the item.
The operational signs for positive and negative are the characters +
and - {minus) one of which must be present in the data at object time.

5.4.2.9 The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary item
on the natural boundaries of the computer memory.

Format:

SYNCHRONIZED

SYNC LEFT
SYNCHRONIZED-2 3 %
SYNC-2 RIGHT

This clause may only appear with an elementary item.

SYNC 1s an abbreviation of SYNCHRONIZED.

General Rules:

1} This clause specifies that the subject data item is to be aligned
in the computer such that no other data item occupies any of the
character positions between the leftmost (SYNC LEFT) or rightmost
{(SYNC RIGHT) 16-bits word boundaries delimiting this data item.
This applies on both the ND-100 and ND-500 computers. If the
number of character positions required to store this data item 1is
less than the number of character positions bhetween the word
boundaries, the unused character positions (or some of them) must
not be wused for any other data item. Such unused character

ND-60.144.3 EN

ND COBOL Reference Manual 83
THE DATA DIVISION

2)

4)

5)

positions, however, are included in:

a) the size of any group item({s) to which the elementary item
belongs and

b} the character positions redefined when this data item is the
object of a REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item 1is to be
positioned such that it will begin at the left character position
of the word boundary in which the elementary item is placed.

SYNCHRONIZED RIGHT specifies that the elementary item is to be
positioned such that it will terminate at the right character
position of the word boundary in which the elementary item 1is
placed

Whenever a SYNCHRONIZED item is referenced in the source program,
the original size of the item, as shown in the PICTURE clause, is
used in determining any action that depends on size, such as
justification, truncation or overflow.

If the data description of an item contains the SYNCHRONIZED
clause and an operational sign, the sign of the item appears in
the normal operational sign position, regardless of whether the
ltem is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data description
entry of a data item that also contains an OCCURS clause, or 1in
one which is subordinate to a data description entry that
contains an OCCURS <clause, each occurrence of the item 1is
synchronized.

5.4.2.10 The USAGE Clause

The USAGE clause specifies the format of a data item in the computer
storage.

ND-60.144.3 EN

84

ND COBOL Reference Manual
THE DATA DIVISION

Format:

COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1

[USAGE IS] COMPUTATIONAL-2
CoMP-2
COMPUTATIONAL-3
COMP-3
PACKED-DECIMAL
DISPLAY
INDEX

If

COMPUTATIONAL item has a PICTURE character-string, then it can

contain only '9's, the operational sign character 'S’, or the implied
decimal point character 'V'. (Refer to the PICTURE clause section
earlier in this chapter.)

COMP is an abbreviation for COMPUTATIONAL.

General Rules:

1)

2)

3)

4)

5)

The USAGE clause can be written at any level. If the USAGE clause
is written at a group level, it applies to each elementary item
in the group. The USAGE «clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

This clause specifies the manner 1in which a data item 1is
represented 1n the storage of a computer. It does not affect the
use of the data item, although the specifications for some
statements in the procedure division may restrict the USAGE
clause of the operands referred to. The USAGE clause may affect
the radix or type of character representation of the item.

The USAGE IS DISPLAY clause indicates that the format of the data
is a standard data format.

1f the USAGE clause is not specified for an elementary item, or
for any group to which the item belongs, the usage is implicitly
DISPLAY.

All COMPUTATIONAL items are capable of representing a value to be
used in computations and must be numeric. If a group item is
described as COMPUTATIONAL, the elementary items in the group are
COMPUTATIONAL. The group item itself is not COMPUTATIONAL {cannot
be used in computations).

ND-60.144.3 EN

ND COBOL Reference Manual 85
THE DATA DIVISION

6) On the ND-100, COMPUTATIONAL, COMPUTATIONAL-1 and COMPUTATIONAL-2
items are aligned on a word boundary even 1if the SYNCHRONIZED
clause has not been specified.

7) COMPUTATIONAL-3 and PACKED-DECIMAL items are stored in packed
decimal format.

The terms COMPUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-2,
COMPUTATIONAL-3 and PACKED-DECIMAL are explained under "Computational
Options™, which follows.

5.4.2.11 Computational Options

The terms COMPUTATIONAL and COMPUTATIONAL-1 define integer variables.
They can be specified as 16 bit (2 byte) words or 32 bit (4 byte)
words. The size depends on the maximum number of digits in the item.

The sizes of COMPUTATIONAL (COMPUTATIONAL-1) items are shown below:

ND-100 ND-500
PICTURE definition 16 Bits 32 Bits
1s omitted (2 Bytes) (4 Bytes)
{default integer)
PICTURE S9 (n) 16 Bits 16 Bits
where n<=4 {2 Bytes) {2 Bytes)
PICTURE S9 (n) 32 Bits 32 Bits
where n>=5 {4 Bytes) {4 Bytes}

Integer variables are always treated as if signed, even when there is
no sign character(s) in the PICTURE definition.

ND-60.144.3 EN

86 ND COBOL Reference Manual
THE DATA DIVISION

The range of permissible values is shown below:

Length: Range:
16 bits (2 bytes) -32768 through 32767
32 bits (4 bytes) ~2147483648 through 2147483647

COMPUTATIONAL AND COMPUTATIONAL-1 VALUES

Note: For fast performance, integer fields should be used as 1indexes,
as operands in MOVE operations, and for the arithmetic statements of
cosoL.

The term COMPUTATIONAL-2 is used for the description of real numbers.
The internal representation will be in floating point format.

On the ND-100, the COBOL system is self-adjusting for 48 and 32 bits
REAL.

On the ND-500, the size of the real item depends on the numeric length
of the PICTURE definition as shown below:

PICTURE definition 32 Bits

PICTURE S9(n)}Vv9(m) 32 Bits
where n+m <= 6

PICTURE S3(n}V89(m) 64 Bits
where n+m >= 7

COMPUTATIONAL-2 wvariables may only be wused as parameters 1in a
subroutine call, or for converting (MOVE)} to or from COMPUTATIONAL-3
variables.

No VALUE clause can be specified for COMPUTATIONAL-2 items.

COMPUTATIONAL-3 items are identical to PACKED-DECIMAL items. They
appear in storage in packed decimal format. This is sometimes known as
BCD (Binary Coded Decimal). The digits are each represented by & bits
so that there are two adjacent digits per byte. The sign is contained
in the rightmost 4 bits of the rightmost byte. The numbers always fill
an integral number of bytes and are right justified. If necessary, the
leftmost half byte is filled with zero.

ND-60.144.3 EN

ND COBOL Reference Manual 87
THE DATA DIVISION

Each decimal digit is encoded as follows:

Digit/Sign: Binary Representation: Hexadecimal Representation:

W oo N N WA -

F (ND-10 only)
F (ND-100/ND-500 only)

— e md e e e e i o= DO OO OO OO
e e e e DO OO e e DD OO
e DO e e OO e DO e e OO
e D e D e D e D e D e O e Do O

M OO > W~ U W O

unsigned

ND~60.144.3 EN

88 ND COBOL Reference Manual
THE DATA DIVISION

5.4.2.12 The VALUE Clause

The VALUE clause specifies the initial contents of a data item or the
value associated with a condition name.

Format 1:
VALUE IS literal
Format 2:
VALUE IS THROQUGH
literal-1 literal-2
VALUES ARE THRU
THRQUGH
, literal-3 literal-4
THRU

The words THRU and THROUGH are egquivalent.

The VALUE clause is used in condition name entries in the File,
Linkage and Working-Storage Sections. However, in the Working-Storage
Section only, 1t also serves to specify the initial value of any data
item. The 1tem takes +this value at the beginning of the program;
without the specification, the value is unpredictable.

General Rules:

1) All numeric literals in the VALUE clause of an item must have a
value within the range of values indicated by the PICTURE clause,
and must not have a value which would require truncation of
nonzero digits. Nonnumeric literals must not exceed the size
indicated by the PICTURE clause. (<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>