
.wm
I.

a

.C
mum

,D
r

um
R

Data

ND-60.144.3 EN

@00
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

9
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
5

0
0
0
0
0
0
0
0
0
6

ND-COBOL
Reference Manual

ND-60.144.3 EN

NOTICE
The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated-without the prior consent of Norsk Data
A.S.

Copyright©1985 by Norsk Data A.S.

PRINTING RECORD
Printing Notes

01/81 Version 01

03/82 Revision A:

The following pages have been revised:
x, xi, xiii,

1—1, 2—10, 4—1, 4—2, 4—11, 5—30, 6—10, 6—12, 6—22, 6—25, 6—25a, 6—27, 6—80,
6—90, A—1 1, A—12
lndex pages 1 through 12.
The following pages have been added:

H—1, H—2.
08/82 Version 02

07/83 Revision A:

The following pages have been revised:
v, vi, xv,

1—4, 2—8, 5—5, 5—9, 5—22, 5—27, 5—31, 5—32, 5—34, 6—23, 6—24, 6—25, 6—26,
6—27, 6—28, 6—29, 6—30, 6—31 , 6—32, 6—33, 6—34, 6—35, 6—36, 6—44, 6—44a,
6—44b, 6—44c, 6—44d, 6—44e, 6—53, 6—55, /-56, 6—70, 6—101, 6—102, 6—103,
6—104, 6—105, 6—107, 6—110, 9—4, 9—5,
A—1 , A—2, A—3, A—4, A—5, A—6, A—7, A—8, A—9, A-10, A—1 1, A-12, A—13, A—14
A—15, A—16, A—17, A—18, A—19, A—20, A—21, A—22, A—23, A—24, A—25, A—26,
A—27, A—28, A—29, A—30, A—31, D—1, D—2, E—1, F—1, F—2, F—3, H—2,
—1—, —2~, —3—, —4—, —5—, —6—, -7”, —-8—, —9—, 40—, —11—, _12~

06/84 Revision 8:

The following pages have been revised:

iv, v, vii, xv

1—2, 1—3, 1—5, 6—28, 6—33, 6—34, 6—35, 6—36, 6—37, to 6—44g, 6—54,
A—1, A—1a, A—1b, A—Q, A—12, A—15, A—16, D—1,
The following pages have been, added:

J—1 , J—2, J—3, J—4, J—5, J—6.
06/85 Version 03

ND COBOL Reference Manual
Publ.No. ND-60.144.3 EN

MN] 01

M

V
'v N}

NI
M

Nors'l; Data

Norsk Data A.S
Graphic Center
P.O.Box 25, Bogerud
0621 Oslo 6, Norway

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support lnformation
(CSl) and can be ordered as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

THE PRODUCT

COBOL (CDmmon Business Oriented Language) is a programming language,
based on English. which was developed for use in commercial data
processing. The original COBOL specification resulted from the work of
the COOASYL (Conference on Data Systems Languages) committee in the
U. S. A. in 1959. NO COBOL is based on American National Standard
X3.23 - 1974. NO COBOL is COBOL Tor both the ND—1OO and the ND—SDO.
Differences. where they occur. are described in the text.

This manual describes ND COBOL, ND-10178. version H for the ND~1OO
computer series and ND COBOL, ND—1D177, version H for the ND—SOO
series.

THE READER

The manual is written for the programmer using ND COBOL who requires a
detailed and formal explanation of the product as well as an account
of the features and facilities available to the user.

PREREQUISITE KNOWLEDGE

A basic knowledge of data processing techniques is necessary for the
reader and some Familiarity with COBOL would be helpful. The reader
should also have some knowledge of the SINTRAN 111 operating system.

HOW TO USE THE MANUAL

The description is given in the order in which the Divisions and
Sections appear in the written programs.

The manual is intended for reference purposes and is organized as
follows:

Part I of the manual describes ND COBOL in general terms and gives
specific rules for writing COBOL source programs. There is a chapter
for each COBOL division. Part II contains an account of each "other
feature" or special topic requiring a section of its own. Supplemental
information is given in appendixes at the end.

ND-60.144.3 EN

W

ACKNOWLEDGEMENT

Any organization interested in reproducing the COBOL standard and
specifications in whole or in part. using ideas from this document as
the basis for an instruction manual or for any other purpose. is free
to do so. However, all such organizations are requested to reproduce
the following acknowledgement paragraphs in their entirety as part of
the preface to any such publication. (Any organization using a short
passage from this document, such as in a book review, is requested to
mention ”COBOL" in acknowledgement of the source. but need not quote
the acknowledgement.)

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty. expressed or implied. is made by any contributer or by
the COOASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover. no
responsibility is assumed by any contributor, or by the committee. in
connection therewith. '

The authors and copyright holders of the copyrighted material used
herein:

FLOW—MATIC (trademark of Sperry Rand Corporation). Programming
for the UNIVAC I and 11. Data Automation Systems copyrighted
1958, 1959. by Sperry Rand Corporation; IBM Commercial Translator
Form No. F 28—8013, copyrighted 1959 by IBM; FACT. 051 27 A5260-
2760. copyrighted 1950 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications.

FORMAT NOTATION

Basic formats are prescribed in the manual for the elements of the
COBOL language. The notation described here is used to define
unambiguously for the programmer how the clauses and statements of
COBOL should be written.

RESERVED WORDS

COBOL has a specified list of words for use in source programs which
have preassigned meanings and cannot appear in programs as user—
defined words or system names. A complete list of the reserved words
can be found in appendix L.

ND—80.144.3 EN

vh
Reserved words may be divided into two categories:

Key Words

These are required by the syntax of the format. They are always in
upper case and underlined.

t'o or s

As their name implies, they may be included or omitted without
changing the syntax of the program. They appear in upper case but are
not underlined.

Words printed in lowercase letters represent information to be
supplied by the programmer. All such words are defined within this
manual.

The general format is also defined by the use of the following
symbols:

— Braces (f }). These enclose vertically stacked items and
indicate that one of the enclosed items must appear.

— Brackets ([J). Square brackets are used to show that the
enclosed item is optional, depending on the requirements of
the program.

- Ellipsis (...). These dots specify that the immediately
preceding unit may occur any number of times in succession at
the user 3 option.

The arithmetic and logical operators (+, —, >, <. =). When they appear
in formats they are required items even though they are not
underlined.

Any other punctuation or special characters which appear in general
formats. indicate the actual occurrence of these characters and are
required by the syntax.

NEW FEATURES IN THIS MANUAL

In this release of the manual, the following features have been
changed or included:

ND—60.144.3 EN

1)

2)

3)

k)

5)

vul _

The scope of descriptions of how to compile and load has been
broadened. The treatment of the ND—SOO compiler is more
extensive. and introductory overviews of the linker-loaders (NRL
and BRF—Linker for the ND—100, and the Linkage—Loader for the ND-
500) are included -

New screen handling facilities associated with the DISPLAY and
ACCEPT verbs have been described

A new chapter containing examples of how how to build overlay
program systems on the ND—100 computers, how to use files and how
to call subprograms has been included

An appendix giving details about the new COBOL System variables
has been included

The index has been entirely reworked. and much extended. The
intention is to ease access to related information. For example,
the relative file related information is described in chapters of
the manual which are dedicated to different COBOL divisions. In
the index. "pointers“ to places where relative file usage is
described can be found grouped together. Another example is using
the index to find extentions in ND—COBOL as compared to ANSI
COBOL.

The index now refers to page numbers instead of section numbers.

ND-ED.144.3 EN

11A 8 L E 0 F C 0 N T E N T S

Section Page

1 INTRODUCTION 3

1.1 ND COBOL 3
1.2 OPERATIONAL REQUIREMENTS 5
1.2.1 Known Restrictions B
1.3 HOW TO USE THE SYSTEM 6
1.3.1 How to Compile a COBOL Program 6
1.3.2 Sample Compilation . . 8
1.3.3 How to Load and Execute a COBOL Program 10
1.3.3.1 Loading on the ND— 100 Computers with the NRL 10
1.3.3.2 Loading on the ND—1OO Computers with the BRF Linker 11
1.3.3.3 Loading on the NO-SOD Computers with the LINKAGE—LOADER 13
1.3.4 Compilation 15

2 LANGUAGE CONCEPTS 17

2.1 THE STRUCTURE OF COBOL 1?
2.1.1 The COBOL Divisions 17
2.1.2 Structure within the Divisions ~ Clauses and Statements 18
2.2 STRUCTURE OF THE LANGUAGE 18
2.2.1 COBOL Character Set 18
2.2.2 Character—Strings 19
2.2.3 COBOL Words . 20
2.2.3.1 Userdefined Words 20
2.2.3.2 Reserved Words 21
2.2.3.3 Literals 24
2.2.3.4 Separators 25
2.2.4 COBOL Format 27

3 THE IDENTIFICATION DIVISION 31

4 THE ENVIRONMENT DIVISION 33

4.1 CONFIGURATION SECTION . 33
4.1.1 SOURCE COMPUTER Paragraph 33
4.1.2 OBJECT COMPUTER Paragraph 34
4.1.3 SPECIAL NAMES Paragraph 35
4.1.3.1 CURRENCY IS Clause . 35
4.1.3.2 DECIMAL— POINT IS COMMA Clause 35
4.2 INPUT——0UTPUT SECTION . 36
4.2.1 File Processing — Language Concepts 36
4.2.1.1 Data Organization 36
4.2.1.2 Access Modes 42

ND—BO.144.3 EN

Section Paqe

4.2.2 The File—Control Paragraph 43
4.2.2.1 For Sequential Organization 46
4.2.2.2 For Indexed Organization 46
4.2.2.3 For Relative Organization 46
4.2.2.4 General Rules 47
4.2.3 The I— O CONTROL Paragraph 48

5 THE DATA DIVISION 49

5.1 DATA CONCEPTS . 49
5.2 STRUCTURE OF THE DATA DIVISION 50
5.3 FILE SECTION . 51
5.3.1 The File Description — Complete Entry Skeleton 51
5.3.1.1 The BLOCK CONTAINS Clause 54
5.3.1.2 The DATA RECORDS Clause 55
5.3.1.3 The LABEL RECORDS Clause 56
5.3.1.4 The RECORD CONTAINS Clause 56
5.3.1.5 The RECORDING MODE Clause 58
5.3.1.6 The VALUE OF FILE—ID IS Clause 59
5.4 NORKING— STORAGE SECTION 59
5.4.1 Data Description 60
5.4.1.1 The Concept of Level . 60
5.4.1.2 Classes and Categories of Data 62
5.4.2 The Data Description — Complete Entry Skeleton 65
5.4.2.1 Data Description Entry 65
5.4.2.2 The BLANK WHEN ZERO Clause 67
5.4.2.3 The Data Name/FILLER Clause 68
5.4.2 4 The JUSTIFIED Clause 69
5.4.2.5 The PICTURE Clause . 69
5.4.2.8 Editing Rules for the PICTURE Clause 73
5.4.2.7 The REDEFINES Clause in DATA DIVISION 80
5.4.2.8 The SIGN Clause 81
5.4.2.9 The SYNCHRONIZED Clause 82
5.4.2.10 The USAGE Clause 83
5.4.2.11 Computational Options 85
5.4.2.12 The VALUE Clause 88
5.4.2.13 The EXPORT Clause 90

6 THE PROCEDURE DIVISION 91

6.1 STRUCTURE OF THE PROCEDURE DIVISION 91
6.1.1 Declaratives 92
6.1.2 Procedures . 92
6.2 ARITHMETIC EXPRESSIONS . 93
6.2.1 DeTinition of an Arithmetic Expression 93
6.2.1.1 Arithmetic Operators 94
6.2.1.2 Evaluation Rules 94
6.3 ARITHMETIC STATEMENTS 96
6.3.1 Common Options . 97
6.3.1.1 The ROUNDED Option 97
6.3.1.2 The SIZE ERROR Option 97

ND-60.144.3 EN

xi

Section Paqe

6.3.1.3 The CORRESPONDING Option 98
6.3.1.4 The ADD Statement 99
6.3.1.5 The COMPUTE Statement 100
6.3.1.6 The DIVIDE Statement 101
6.3.1.7 The MULTIPLY Statement 102.
6.3.1.8 The SUBTRACT Statement 104
6.4 CONDITIONAL EXPRESSIONS . . a 105
6.5 CONDITIONAL STATEMENTS 114
6.5.1 The IF Statement 114
6.5 1.1 Nested IF Statements 117
6.5 The DO Statement (An ND— Extension) 119
6.6 DATA MANIPULATION STATEMENTS‘. 120
6.6.1 Screen Handling Facilities 128
6.6.1.1 The ACCEPT Statement 121
6.6.1.2 The ACCEPT—ERROR Statement 127
6.6.1.3 The ACCEPT—RETURN Statement 127
6.6.1.4 The BLANK Statement 128
6.6.1.5 The DISPLAY Statement 128
6.6.1.6 The RESET SCREEN Statement 132
6.6.2 Screen Handling Examples 133
6.6.3 The INSPECT Statement 144
6.6.4 The MOVE Statement 150
6.6.5 The STRING Statement 154
6.6.6 The UNSTRING Statement 156
6.7 INPUT—OUTPUT STATEMENTS . . . L 161
6.7.1 I‘D Status . 161
6.7.1.1 Status Key 1 . 162
6.7.1.2 Status Key 2 163
6.7.1.3 The INVALID KEY Condition (Indexed and Relative I-O

Only) . 166
6.7.1.4 The AT END Condition 167
6.7.1.5 Current Record Pointer 167
6.7.1.6 The CLOSE Statement 168
6.7.1.7 The DELETE Statement 169
6.7.1.8 The OPEN Statement 170
6.7.1.9 The READ Statement 175
6.7.1.10 The REWRITE Statement 184
6.7.1.11 The START Statement 186
6.7.1.12 The UNLOCK Statement 191
6.7.1.13 The USE Statement 191
6.7.1.14 The WRITE Statement 193
6.8 PROCEDURE BRANCHING STATEMENTS 201
6.8.1 The ALTER Statement 201
6.8.2 The CONTINUE Statement 202
6.8.3 The EXIT Statement 202
6.8.4 The GO TO Statement 203
6.8.5 The PERFORM Statement 204
6.8.6 Using the PERFORM Statement 207
6.6.7 The STOP Statement 211
6.9 COMPILER DIRECTING STATEMENTS 211
6.9.1 The COPY Statement 211

7 SORT/MERGE i 213

ND-BB.144.3 EN

xfi

Section Paqe

7.1 SORT CONCEPTS 213
7.2 MERGE CONCEPTS . 214
7.3 SORT/MERGE — ENVIRONMENT DIVISION 214
7.4 SORT/MERGE — DATA DIVISION 215
7.5 SORT/MERGE — PROCEDURE DIVISION 216
7.5.1 The SORT Statement 217

7.5.2 Options Common to Sort and Merge 219
7.5.3 The MERGE Statement 220

8 TABLE HANDLING 229

8.1 TABLE DEFINITION 229
8.1.1 Table References 231
8.1.1.1 Subscripting 232
8.1.1.2 Indexing 233
8.2 TABLE HANDLING — DATA DIVISION 234
8.2.1 The OCCURS Clause 235
8.2.2 The USAGE Clause 236
8.3 TABLE HANDLING — PROCEDURE DIVISION 237
8.3.1 The SEARCH Statement 237
8.3.1.1 Notes on Multidimensional Tables 242
8.3.2 The SET Statement 245

9 INTER—PROGRAM COMMUNICATION 249

9.1 BASIC CONCEPTS 249
9.1.1 Transfer of Control 249
9.1.2 Reference to Common Data 250
9.1.3 Interprogram Communication — Data Division 251
9.1.3.1 Data Item Description Entries 253
9.1.3.2 Record Description Entries . 254

9.1.4 Inter— Program Communication — Procedure Division 254
9.1.4.1 The CALL Statement 255
9.1.4.2 The EXIT PROGRAM Statement 256

10 DEBUGGING 259

10.1 USING THE ND~100 260
10.2 USING THE ND—500 261
10.3 DEBUGGING EXAMPLES 262

11 PROGRAMMING_EXAMPLES 267

11.1 EXECUTING A SIMPLE PROGRAM 267
11.1.1 Running the Example on an ND- 100 Computer 268
11.1.2 Running the Example on an ND— 500 Computer 269
11.2 OVERLAY SYSTEMS 271
11.2.1 The Multilevel Overlay System 271

ND-60.144.3 EN

xfii

Section Page

11.2.2 Designing an Overlay Structure 274
11.2.3 Commands for Overlay Loading with BRF— Linker . 275
11.2.4 Example: Creating an Overlay System with the BRF Linker 276
11.2.5 subprograms and Commands for Building an Overlay System

with the NRL . 281
11.2.5 Example: Creating an Overlay System with the NRL 282
11.3 BUILDING A NON— OVERLAY FILE— HANDLING PROGRAM SYSTEM 287
11.3.1 Sample Programs - Source Listings 289
11.3.2 Compiling and Loading the Program System on an ND 1OD 297
11.3.3 Compiling and Loading the Program System on an ND— 500 299
11.3.4 Calling COBOL Subprograms from FORTRAN on the ND-1OD 300
11.3.5 Calling COBOL Subprograms from FORTRAN on the ND—SDO 302

AEEENDLX

1 COMPOSITE LANGUAGE SKELETON 305

2 ASCII CHARACTER SET 343

3 RUNTIME MESSAGES 347

4 RESERVED WORD LIST 351

5 ACROSS REFERENCE EXAMPLE 357

6 COMPILER COMMANDS 361

7 INDEXED/RELATIVE I-O STATUS SUMMARY 387

8 COBOL SYSTEM VARIABLES 371

S HANDLING SINTRAN ERRORS 375

1D EXECUTING SINTRAN COMMANDS 379

11 SIZE OF TEMPORARY FIELDS 3B3

12 GLOSSARY 387

Index 412

ND-60.144.3 EN

ND COBOL Reference Manual

ND-BO.145.3 EN

ND COBOL Reference Manual

ND~60.144.3 EN

ND COBOL Reference Manual 3

1 INTRODUCTION

The purpose of this chapter is to give an overview of the ND COBOL
compiler — how it conforms to the ANSI standard, what is needed to
create and run COBOL programs, and how the compiler is used together
with the ND linkage—loaders to form executable programs.

1-1M2._§_Q.&_QL

ND COBOL is a standard high—level language implemented as a
conventional compiler and runtime library system operating under
SINTRAN III/VS operating system.

ND COBOL is based upon American National Standard X3-23—1974. Elements
of the COBOL language are allocated to 12 different functional
processing "modules".

Each module of the COBOL Standard has two "levels" - level 1
represents a subset of the full set of capabilities and features
contained in level 2.

In order for a given system to be called COBOL, it must provide at
least level 1 of the Nucleus, Table Handling and Sequential I—O
modules.

The following summary specifies the contents of ND COBOL with respect
to the ANSI Standard:

ND—60.144.3 EN

Module

Nucleus

S u ti —

Table Handling

Sort/Merge

inter—nggam
Communication

Debugging

ND COBOL Reference Manual
INTRODUCTION

Features Available in ND COBOL

All of level 1 and level 2 except:
level 66
the RENAMES clause
the switch—status condition
the ENTER statement.

Additional features are:
USAGE is COMPUTATIONAL—1
USAGE is COMPUTATIONAL—2
USAGE is COMPUTATIONAL—3
ACCEPT FROM CPU—TIME.
The 00 statement.
The IF statement with the THEN,
ELSE~IF and END—IF clauses.
The IMPORT and EXPORT clauses
for inter—program communication.

Additional features are:
The BLANK statement.
The ACCEPT~ERROR statement.
The ACCEPT and DISPLAY statements
with Screenhandling options.

All of level 1 and level 2 except:
the RERUN
the LINAGE
and CODE SET Clauses

with the addition of:
the RECORDING MODE clause.

All of level 1 and level 2 except:
the RERUN and
the SAME RECORD AREA clauses

with the addition of:
The RECORDING MODE clause.
The OPEN statement with the
MULTI~USER MODE, IMMEDIATE-WRITE
and MANUAL UNLOCK options.
The READ statement with LOCK.
The UNLOCK statement.

All of level 1 and level 2.

All of level 1 and level 2 except:
the SAME AREA clause.

All of level 1 and level 2 except:
the CANCEL statement.

Conditional compilation:
Lines with 'D in column 7' are
bypassed unless WITH DEBUGGING MODE.

ND—50.144.3 EN

ND COBOL Reference Manual 5
INTRODUCTION

1.2 OPERATIONAL REQUIREMENTS

The compiler may execute as a reentrant subsystem under the
SINTRAN III/VS operating system, when only the necessary 1 kiloword
pages are brought into the memory as needed. In this way, several
active users may share a common code.

A system scratch file for the active terminal will be used to store
compiler information.

The source program is accepted in any media supported by the ND File
System, and may be entered and modified using an interactive editor.
Once entered, source files are stored on disk, floppy diskette or
magnetic tape and can be compiled by using simple compiler commands.

On the NO—1O a special microprogram is required.

The result of a compilation is:

A) A source listing including compiler assigned line numbers,
source file name, object file name, date and time.

B) In the event of any source program errors (or warnings).
diagnostic messages will appear following the source listing.
These messages have the format:

— Line number (5 digits)

» English message text

- (Optional) Further relevant data

C) An object program in library relocatable form (BRF on the ND-
100 or NRF on the NDaSOO) can be used by the ND Relocating
Loader for' the ND—1OO or the ND—SOO Linkage Loader for the
NO—SOO. to prepare the object program in a form which is
ready for execution.

ND-60.14k.3 EN

5 ND COBOL Reference Manual
INTRODUCTION

1.2.1 Known Restrictions

For the time being the following restrictions are applicable on the
NO—100 CPUs:

— A 77/01 item must not be greater than 32767 bytes.

1.3 HOW TO USE THE SYSTEM

In addition to the information given in this chapter. a complete
example of the compilation, loading and execution of a simple program
with some of the features of ND COBOL is shown in chapter 11.

1.3.1 How to Compile a COBOL Program

The COBOL compilers are started by typing:

0C0 0L for the ND—1OO series

or

9ND QQQQL-fiflg for the ND-SOO series

When the compiler has printed * (asterisk) on the terminal, it is
ready to accept commands from the user.

All commands may be abbreviated as in SINTRAN III/VS. You can also use
the SINTRAN-III command editing characters when in the compilers.

The command to compile is:

ND—60.144.3 EN

ND COBOL Reference Manual 7
INTRODUCTION

COMPILE <source file>.<list file>.<object file)

The source file is your symbolic program containing COBOL statements.
A listing of the program is written on the list file while the object
program in binary relocatable format is written on the object file.

The files must be specified by their names and these names must be
delimited by at least one space or comma. The default source file type
is :SYMB. The list file type is :SYMB and the object file type is :BRF
on the ND—1OO or :NRF on the ND-SOO. (Scratch file 100 cannot be used
as the object file.)

If the source input file is not a disk file. a line containing *END
(from column 1) must close the source file.

Example:

99mm;

*COMPILE $0URCE,LINE-PRIN."OBJ"

Note that in this example the object file (OBJ) is a new file and
therefore is specified within quotes.

On the NO—100. the compiler produces code in the two—bank mode unless
the compiler command

* - A K—M D

is given before the COMPILE command.

If no diagnostics appear, the compiler has accepted all the statements
as syntactically and semantically correct.

When compilation has been done, the compiler is left with the command

*EXIT

The object (or executable) version of the program is then formed from
the relocatable output from the compilers and the system‘s library
files by the:

a) ND Relocating Loader (NRL) for the ND—100;

b) BRF-Linker for the NO-lOO series;

c) ND~500 Linkage—Loader for the ND—SOU series.

ND~60.144.3 EN

8 ND COBOL Reference Manual
INTRODUCTION

1.3.2 Sample Compilation

The listing below results From compiling a source program which has
been prepared using a suitable editor. It is stored under the name EX—
001 with type :SYMB.

flute: To show what an error message looks like. an error has been
introduced in the last statement in this example. The error is an
unnecessary hyphen between the words STOP and RUN.

ND~SOO COBOL COMPILEH — NO—10177H TIME: 17.57.54 OATE: 85.01.14

SOURCE FILE: EX~OOT
OBJECT FILE: EX-OO1

1 ‘k7%*3?‘k3h!*‘k**>‘<‘k‘k*)‘(**‘k‘k***‘k**’k*****************‘k**‘k******‘k‘k***

2 * THIS EXAMPLE CAN SERVE TO FAMILIARIZE us NITH THE *
3 * RESULT OF A COBOL COMPILATION. *
4 * x
s * THE PROGRAM COUNTS THE NUMBER OF RECORDS ON THE FILE *
8 * "ABC:OATA”. *
7 *****”kirk***‘k********kk’c‘k‘k‘kk'k’k‘kir‘kk*vk*******~k~k**‘k‘k*~k>‘<~k******

8 IDENTIFICATION DIVISION.
9 PROGRAM—IO. x—DO1.

1O AUTHOR. NORSK DATA A/S
11 NOHwAY.
12 DATE-NRITTEN. NOVEMBER 1984.
13
14 ENVIRONMENT DIVISION.
15 CONFIGURATION SECTION.
16 SOURCE—COMPUTER. NORO‘100.
17 OBJECT-COMPUTER. NORO-100.
18 SPECIAL—NAMES. DECIMAL—POINT IS COMMA.19 INPUTuOUTPUT SECTION.
20 FILE—CONTROL.
21 SELECT L—FILE ASSIGN TO ”ABC:OATA".
22
23 DATA DIVISION.
24 FILE SECTION.
25 FO L—FILE
28 BLOCK CONTAINS 1 RECORDS
27 RECORD CONTAINS 1OOOD CHARACTERS.
28 O1 L—RECDRD PIC X(1000O).
29 NDRKIND~STORAGE SECTION.
30 D1 NUMBER—OF—RECORDS PIC 8(10) VALUE 0.

NDwBO.14A.3 EN

ND COBOL Reference Manual 9
INTRODUCTION _

31
32 PROCEDURE DIVISION.
33 1000.
34 OPEN INPUT L—FILE.
3S 2000.
36 READ L—FILE AT END GO TO 9000.
37 ADD 1 T0 NUMBER—OF-RECOROS.
38 00 TO 2000.
39 8000.
40 DISPLAY "NUMBER OF RECORDS IN THE FILE IS "
41 NUMBER—OF-RECORDS.
42 CLOSE L—FILE.
43 STOP—RUN.

43 E ~ SYNTAX ERROR (RESUMPTIDN AT NEXT PARAGRAPH/VERB): STOP«RUN
——~ END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 1
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 43
LINES/MINUTE (CPU TIME): 8789

Note the following in the compilation listing:

— The page heading contains date. time, source file name (EX—
001) and object file name.

— The source line (first 80 positions only) is listed along
with compiler assigned line numbers.

— Diagnostic or warning messages. if any, appear after the
source program listing.

The error in the example:

43 E — SYNTAX ERROR (RESUMPTION AT NEXT PARAGRAPH/VERB}: STOP—RUN

produces the relevant line number (43) together with explanatory text
and the element itself which caused the error.

After successful compilation, the next step will be to link—edit by
means of one of the linkage—loaders. Finally, the resultant program
module will be executed.

ND—60.144.3 EN

10 ND COBOL Reference Manual
INTRODUCTION

1.3.3 How to Load and Execute a COBOL Program

1.3.3.1 Loading on the ND-1OD Computers with the NRL

On the ND—100, the ND Relocating Loader may be recovered from the
operating system by entering:

QNRL

When the loader has displayed an asterisk 1*) on the terminal. it is
ready to accept commands from the user.

Your program(s) may be loaded into a programfile or into main memory.

If you use the command:

*PROG-FILE (file name)

then the executable program is loaded to the file named with the
default extension :PROG. The PROG—FILE must be the first command given
after the loader has been started.

Otherwise. the program is loaded into memory, and can be started with
the command

*QQN

after the loading is completed.

The loader gets its input from one or more files/library files. The
loading is initiated by the command:

*LOAD <file name>.<file name) ..

Each of the files specified will be loaded until end-of—file is
detected. The prompt * (asterisk) indicates that the loader is ready
to accept another command.

ND-60.144.3 EN

N0 COBOL Reference Manual 11
INTRODUCTION

To obtain the entry point addressesof the loaded program. use the
command:

*ENTRIES~DEFINED (file name)

The octal addresses which appear on this map denote the last reference
address.

There should be no remaining undefined entry points. If your program
is loaded into main memory, it may be started by the command:

*RU

When the program has been executed. control is transferred to the
operating system and a (commercial at sign) is displayed.

If you wish to leave the loader and enter the operating system, you
may simply enter:

*QLLT.

You may restart the loader by using the system command:

QCONTINUE

If the message:

LOADER TABLE OVERFLOW

is given, there is no more room for entries. The table length may be
expanded through the command:

*SIZE (number of entries (octal)>

The NRL is fully documented in the manual ND Relocating Loader, ND—
60.066.

1.3.3.2 Loading on the ND-100 Computers with the BRF—Linker

The BRF—Linker is a new linker which is taking over from the NRL on
ND—100 computers. It performs the same tasks as the NRL. but it is
designed to facilitate use of future features of the ND~100 SINTRAN
operating system.

ND-60.144.3 EN

12 ND COBOL Reference Manual
INTRODUCTION

The BRF linker does not have a RUN command for immediate execution of
programs loaded into memory. Thus, the PROGRAM~FILE command must
always be your first command when you build executable code. On the
other hand, the BRF—Linker makes ”multi~segment linking” of programs
bigger than the ordinary 256 kilobyte addressing space limit possible,
and overlay linking is possible in a more flexible way than with the
NRL.

For details on these and other aspects of the BRF—Linker, see the
manual BRF—Linker User Manual, ND~60.196.

The BRF~Linker is started by typing:

QBRF~LINKER

when you are in the SINTRAN command mode. When the linker is ready to
accept your commands, it types the prompt:

Brl:

on your terminal.

For linking smaller programs, the BRF—Linker uses the same or similar
commands as the NRL. For instance. every loading of a program must
start with the command:

Brl: PROGRAM—FILE <file name)

as in the NRL.Relocatable code files are loaded to the program file by
the command:

Brl: LOAD <file name) [, <file name>J

until the program is complete. In COBOL on the ND—lOO, the COBOL—ZBANK
or COBOL—18ANK files containing COBOL library routines must be loaded
after your own programs in order to form a complete program.

The completeness of the program is checked by the command:

Brl: LIST~ENTRIES-UNDEFINED.

If this command gives names of entities (routines, variables etc.)
that are needed, to form a correct program. the loading is still
incomplete; otherwise, an executable program has been built.

This command has a complementing command:

Brl: LIST~ENTRIES~DEFINED

which gives an overview of the procedures, data etc. that you have
defined so far in the loading process, together with the addresses of
these entities in octal.

ND~60.144.3 EN

ND COBOL Reference Manual 13
INTRODUCTION

To end the loading session, give the command:

To start your new program, type the name of its program file after you
have returned to SINTRAN.

1.3.3.3 Loading on the ND—SOO Computers with the LINKAGE—LOADER

The ND—SOO computers use an ND—1OO for 1—0 processing etc.The SINTRAN
III operating system is much used by these computers. For instance,
executable ND-SOU programs are stored in files which have extensions
:PSEG, :DSEG and :LINK as seen from the ND—1DO part of the system. A
file named DESCRIPTION—FILEzDESC contains descriptions of all ND-SOU
programs a user has on his area.

You should not delete or otherwise change any of these files while
under the SINTRAN [II monitor. If you do. you will get error messages
from the ND~500 if you try to use any of your ND—SOD programs
afterwards. Instead, all handling of these files should be done while
in the ND—SOD Linkage—Loader (NLL) or in the ND—SOD monitor.

Further differences from the NO—100 COBOL include the possibility to
load programs with up to 2 Gigabytes of program and 2 Gigabytes of
data; thus, no overlay linking facilities should be necessary at
present.

The user will fing complete documentation on the NLL in the manual:
ND—500 Loader/Monitor, ND—60.138.

On the NO—SOO. executable programs are built on segments belonging to
domains by the ND Linkage—Loader (known as the NLL). The NLL is
activated by the command:

QND-SOO LINKAGE—LOADER

When the NLL types NLL:. it is ready to accept commands from the user.

The NLL will create a program ready for execution. 0n the ND—SOO a
program is termed a domain. Before the domain is loaded, it is named
by the command:

NLL:SET—DOMAIN <domain~name>

ND—60.14k.3 EN

14 ND COBOL Reference Manual
INTRODUCTION

The domain~name is the name you type in when you want to execute your
program. The domain name will not be visible when you do a BLIST—FILES
in ND~100, for instance ~ all information pertaining to it is kept on
the DESCRIPTION FILE. What will turn up when you do QLIST—FILES is the
segments you create during loading in a domain, with the :PSEG, :DSEG
and :LTNK file types. as mentioned above. To create or open a segment
for your executable code, use the command:

NLL:OPEN~SEGMENT <3eqment—name),<attributes>

If the segment is new to your user area, you will have to enclose it
in quotation marks according to the ordinary SINTRAN conventions. The
attributes part of this command format can be omitted when loading
simple programs.

Now programs and library files can be loaded into the segment by the
command:

MLL:LOAD—SEGMENT (file) [,<file>]

To build a functioning ND—SOO COBOL program, you must finish the
loading by loading the file COBOL—L182NRF, which is usually found
under user SYSTEM.

To obtain the entry point addresses of the loaded program and thus
check whether you have an executable program, use the command:

NLL:LIST—ENTRIES~DEFINED

and undefined entries by:

NLt:LIST~ENTRIES~UNDEFINED

If the user wishes to leave the NLL and return to SINTRAN, she can
type the command:

NLL:EXIT

ND~60.144.3 EN

ND COBOL Reference Manual '15
INTRODUCTION

1.3.4 ggmnilatLQn

Using the same source program and commands as in the previous example,
the Following commands can be used: (all lines start in column 1)

ON THE ND-100

QCOBOL
COMPILE PROGRAM, TERM, PROGRAM
EXIT
QNRL (or QBRF—LINKER}
PROG~FILE PROGRAM
LOAD PROGRAM, COBOL—78ANK
EXIT
QPROGRAM

ON THE ND-SOO

9ND COBOL
COMPILE PROGRAM, TERM, PROGRAM
EXIT
3ND LINKAGE LOADER
SET—DOMAIN PROGRAM
OPEN-SEGMENT PROGRAM
LOAD-SEGMENT PROGRAM” COBOL—LIB
EXIT
8ND PROGRAM

ND—80.144.3 EN

16

ND—BD.144.3 EN

ND COBOL Reference Manual

ND COBOL Reference Manual 17

OO...0.0.0.00000000000000000000CO0.0......0.0..IOOOOOOOOOOOOOOOOOOOCO

2 LANGUAGE CONCEPTS

2.1 THE STRUCTURE OF COBOL

Every COBOL program is divided into four divisions. Each must be
placed in its proper sequence and begin with a division header.

2.1.1 The COBOL Divisions

The four divisions of a COBOL source program and their functions are:

— Identification Division

This names the program and, optionally, documents the compilation
date, etc.

— Environment Division

This describes the computer(s) and equipment to be used by the
program. It also includes a description of the relationship
between the files containing data and the input~output devices.

Data Division

This defines the names and characteristics of all the data to be
processed by the program.

— Procedure Division

This consists of executable statements that direct the
processing of data at execution time.

ND~60.144.3 EN

18 ND COBOL Reference Manual
LANGUAGE CONCEPTS

2.1.2 Structure within the Divisions — Clauses and Statements

A clause specifies the attributes of an entry which, containing a
series of clauses ending with a period, can appear in each division
except the procedure division.

A statement, written in the procedure division, specifies an action to
be taken by the object program. A series of statements, ending with a
period, is defined as a sentence.

Every clause or statement in the program may be further subdivided
into units called phrases or options. A phrase is an ordered set of
one or more COBOL character strings forming a part of a clause or
statement. An option is a phrase in which the programmer can choose
between alternative wordings, according to the meanings he wishes the
phrase to possess.

Clauses, entries, statements and sentences may be combined into
paragraphs and sections which each define a larger part of the
program. A section may itself contain paragraphs.

2.2 STRUCTURE OF THE LANGUAGE

2.2.1 COBOL CharaCter Set

The most basic and indivisible unit of the language is the character.
The set of characters used to form COBOL character strings and
separators is given below.

ND~60.144.3 EN

ND COBOL Reference Manual 19
LANGUAGE CONCEPTS

The complete COBOL character set consists of the 52 following
characters:

Character: Meaninq:

0. 1, ..., 9 digit
A, B, ..., Z letter

space (blank)
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
period (decimal point)

; semicolon
quotation mark (double)
left parenthesis
right parenthesis
greater than
less than
apostrophe (single quotation mark)

1.
m

n
\
»
l

.
A

v
\
.
.
\

Note that a reference to ‘characters‘ throughout this manual will be
to a subset of the above list, 1.9., the list not including
'separators' (defined in section 2.2.3.4).

2.2.2 Character-Strings

A character—string is a character or sequence of contiguous characters
which form a COBOL word, a literal, a PICTURE character—string or a
comment entry. A character—string is delimited by separators.

ND-60.144.3 EN

20 ND COBOL Reference Manual
LANGUAGE CONCEPTS

2.2.3 COBOL Words

A COBOL word can be a userdefihed word, a system word or a reserved
word. Its maximum length is 30 characters. System words and reserved
words are defined as follows.

2.2.3.1 Userdefined Words

These are COBOL words supplied by the programmer. Characters valid in
a userdefined word are:

A through 2
0 through 9
— (hyphen)

The hyphen may not be the first or last character. A list of the sets
of userdefined
below.

Userdefined Word Set:

condition name
data name
record name
file name
index name
mnemonic name

library name
program name
routine name

paragraph name
section name

together with their formation rules is given

Characteristics:

Must contain at least one alphabetic
character. Within each set the name must be
unique. (It can be made unique by quali—
fication if the format rules for the set
permit.)

The above rules apply.

May be all numeric, otherwise rules in
paragraph 1 apply.

ND—60.144.§ EN

ND COBOL Reference Manual 21
LANGUAGE CONCEPTS

The function of each userdefined word in any clause or statement will
be Found under the description for that clause or statement.

The function of each system name (Norsk Data defined names for
communication with the operating system) will be found in the
Glossary.

2.2.3.2 Reserved flgrgs

Reserved words may be divided into the following categories:

KEY WORDS
OPTIONAL WORDS
CONNECTIVES
SPECIAL REGISTERS
FIGURATIVE CONSTANTS
SPECIAL CHARACTER WORDSO

IL
H

¢
~

M
N

~

A reserved word is a COBOL word having a fixed meaning and it must not
be used as a userdefined word or system name. A list is given in
Appendix 4.

KEY WORDS

A key word‘is required when the format in which it appears is used in
a source program. Within each format, such words are uppercase and
underlined.

Key words are of three types:

1) Verbs such as ADD, READ and MOVE.

2) Required words, which appear in statement and entry formats.

3) Words which have a specific functional meaning such as
NEGATIVE. SECTION. etc.

I

ND—60.144.3 EN

22 ND COBOL Reference Manual
LANGUAGE CONCEPTS

OPTIONAL WORDS

Within each format, uppercase words that are not underlined are called
optional words and may appear at the user's option. The presence or
absence of an optional word does not alter the semantics of the COBOL
program in which it appears.

CONNECTIVES

These are:

1) Qualifier connectives that are used to associate a data name.
a condition name, a text name or a paragraph name with its
qualifier: OF, IN.

2) Series connectives that link two or more consecutive
operations: (separator comma) or ; (separator semicolon).

3) Logical connectives that are used in the formation of
conditions: AND, OR.

SPECIAL REGISTERS

Each compiler generated storage area whose primary function is to
store information produced by one of the specific COBOL features. is a
special register.

Examples:

DATE. DAY, TIME

(see ACCEPT statement in the Procedure Division).

FIGURATIVE CONSTANTS

Certain reserved words are used to name and reference certain constant
values which will be generated by the compiler when these words are
used. Known as figurative constants they must not be bounded by
quotation marks. Singular and plural forms may be used
interchangeably.

The reserved words and the figurative constant values they generate
are listed on the following page.

ND—BO.144.3 EN

ND COBOL Reference Manual
LANGUAGE CONCEPTS

‘23

ZERO, ZEROS,
ZEROES

SPACE, SPACES

HIGH—VALUE,
HIGH—VALUES

LOW—VALUE,
LOW-VALUES

QUOTE, QUOTES

ALL literal

Represents the
one or more of
'0', depending

Represents one

value '0' or
the characters
on context.

or more of the
character (space) from the
computer's character set.

Represents one or more of the
characters that has the
highest ordinal position in
the program collating
sequence.

Represents one or more of the
characters that has the
lowest ordinal position in
the program collating
sequence.

Represents one or more of the
characters The word
QUOTE or QUOTES cannot be
used in place of a quotation
mark in a source program to
bound a nonnumeric literal.
Thus, QUOTE ABD QUOTE is
incorrect as a way of stating
the nonnumeric literal "A80".

Represents one or more of the
string of characters
comprising the literal. The
literal must be either a
nonnumeric literal of one
character length or a
figurative constant other
than ALL literal. When a
figurative constant is used,
the word ALL is redundant and
is used for readability only.

When a figurative constant represents a string of one
characters, the length of the string is determined by the
from the context, according to the following rules:

or more
compiler

ND—60.144.3 EN

24 ND COBOL Reference Manual
LANGUAGE CONCEPTS

1) When a figurative constant is associated with another data
item (e.g., is moved to or compared with another item) the
string of characters composing the figurative constant is
repeated character by character on the right until the size
of the resultant string in characters is equal to that of the
associated data item. This is done prior to and independent
of any application of a JUSTIFIED clause associated with the
data item.

2) When a figurative constant is not associated with another
data item, as when the Figurative constant appears in a
DISPLAY, STRING, STOP or UNSTRING statement, the length of
the string is one character.

A figurative constant may be used wherever a literal appears in the
format, except that whenever the literal is restricted to having only
numeric characters in it, the only figurative constant permitted is
ZERO (ZEROS. ZEROES).

Each reserved word which is used to reference a figurative constant
value is a distinct character string with the exception of the
construction 'ALL literal' which is composed of two distinct character
strings.

SPECIAL CHARACTER WORDS

These are the arithmetic operators (+ — / * or **) or the relational
characters (< > =). They are described under arithmetic expressions
and conditional expressions in the Procedure Division.

2.2.3.3 Literals

A literal is a character string with a value specified either by the
ordered set of characters by which it is composed, or by a figurative
constant. There are two types of literals: nonnumeric and numeric.

A nonnumeric literal is a character string bounded by quotation marks
containing any allowable character from the ASCII character set. Its
maximum length is 150.

Any punctuation characters included within a character string are part
of its value.

ND-BO.144.3 EN

ND COBOL Reference Manual 25
LANGUAGE CONCEPTS

A matching pair of either single or double quotes is allowed to bound
the character string forming a nonnumeric literal. If the character
string is bounded by single quotes. then each embedded quotation mark
must be represented by a pair of single quotes. If, however, the
bounds are double quotes then each embedded quotation mark must be
represented by a pair of double quotes.

Single quotes are not standard COBOL. They are allowed in ND COBOL to
increase compatibility with other COBOL systems.

Nonnumeric literals - a coding example:

Com- A B Com-
ment area area ment

1 8781112 18 20 ...//... 72 73 80

01 HEADING~1 PIC (120) VALUE " EXTEXTEXTEXTEXTEXTEXTEXTEX
— “TEXTEXTEXTEXTEXTEX”.

Literal begins here

Literal is incomplete due to col. 72 limit

Uelimiter reguired here. is not counted in
picture length.

Hyphen (—) indicates that line continues.

A numeric literal is a character string whose characters are selected
from the digits '0' through '9', the plus sign, the minus sign and/or
the decimal point. The rules for formation of numeric literals are as
follows:

1) A literal must contain at least one digit.

2) 1 through 18 digits are allowed.

3) A literal must not contain more than one sign. The sign must
always be in the leftmost position.

A) It must not contain more than one decimal point. This must
not be in the rightmost position.

ND»80.144.3 EN

26 ND COBOL Reference Manual
LANGUAGE CONCEPTS

2.2.3.4 Separators

A separator is a character or two contiguous characters formed
according to the following rules:

1)

7)

The punctuation character space is a separator. Anywhere a
space is used as a separator or as part of a separator. more
than one space may be used. All spaces immediately following
the separators comma. semicolon or period are considered part
of that separator and are not considered to be the separator
space.

Except when the comma is used in a PICTURE character~string,
the punctuation characters comma and semicolon. immediately
followed by a space, are separators that may be used anywhere
the separator space is used. They may be used to improve
program readability.

The punctuation character period. when followed by a space is
a separator. It may only be used to indicate the end of a
sentence, or as shown in formats.

The punctuation characters right and left parenthesis are
separators. Parentheses may appear only in balanced pairs of
left and right parentheses delimiting subscripts, reference
modifiers, arithmetic expressions. Boolean expressions, or
conditions.

The punctuation character quotation mark is a separator. An
opening quotation mark must be immediately preceded by a
space or left parenthesis; a closing quotation mark. when
paired with an opening quotation mark, must be immediately
followed by one of the separators space, comma, semicolon,
period, or right parenthesis.

The separator space may optionally immediately precede all
separators except:

The separator closing quotation mark. In this case, a
preceding space is considered as part of the nonnumeric
literal and not as a separator.

The separator space may optionally immediately follow any
separator except the opening quotation mark. In this case. a
following space is considered as part of the nonnumeric
literal and not as a separator.

ND—60.144.3 EN

ND COBOL Reference Manual ’ 27
LANGUAGE CONCEPTS

Any punctuation character which appears as part of the specification
of a PICTURE character—string or numeric literal is not considered as
a punctuation character, but rather as a symbol used in the
specification of that PICTURE character—string or numeric literal.
PICTURE character—strings are delimited only by the separators space,
comma. semicolon, or period.

The rules established for the formation of separators do not apply to
the characters which comprise the contents of the nonnumeric literals
or comment lines.

2.2.4 §Q§Ql_£2rmal

COBOL programs must be written in a standard format based on an 80
character line. The output listing of the source program is printed in
the same format.

The illustration in this section shows the layout of a coding sheet.
The following code rules include a description of the fields within
it.

Continuation area (column 7)

This column is used to indicate continuation of words and numeric
literals from the previous line to the current one. The symbol used is
a hyphen.

If there is no hyphen the preceding line is assumed to be followed by
a space.

If there is a hyphen in the continuation area. then the first nonblank
character of this line immediately follows the last nonblank character
of the preceding line without an intervening space.

If there is a nonnumeric literal in the line to be continued which
does not have a closing quotation mark. then all spaces up to and
including column 72 are considered to be part of this literal. The
continuation line must contain a hyphen in its continuation area and
the first nonblank character must now be a quotation mark. (See the
coding example of a nonnumeric literal in section 2.2.3.3.)

Area A and area Q

These occupy columns 8 through 11 and 12 through 72 respectively. The
elements that may begin in area A and the placement of elements that
can follow them are given in the following chart.

ND—50.144.3 EN

28

Sequence Rules for Elements in Areas A and 8

ND COBOL Reference Manual
LANGUAGE CONCEPTS

Elements in Area A Followed by: Elements placed in:

Division header

(Procedure Division
only)
USING

Area 8
(same or next line)

section header
paragraph header

Area A

(next line)

Section header

DECLARATIVES

SE statement Area B

paragraph header
paragraph name Area A
(either to follow USE,
if specified)

(next line)

paragraph header
or paragraph name

Environment division
entry
Procedure division
sentence

Area 8
(same or next line)

level indicator
level number

data name Area B
(same or next line)

DECLARATIVES Declaratives section
name

Area A
(next line)

E D DECLARATIVES section header Area A
(next line)

gamment Lines

A comment line is any line with an * (asterisk) or / (stroke) in
column 7. It may appear on any line following the one containing the
identification division header. A comment may be written in areas A or
B and contain any characters from the ASCII character set.

The * denotes that the comment is to be
immediately following the last preceding
current page of the
comment will appear on

line.
printed in the output listing

The / denotes that the
output listing is to be ejected and that the

the first line of the next page.

ND—60.144.3 EN

ND COBOL Reference Manual 29
LANGUAGE CONCEPTS

Coding Sheet Layout

Standard COBOL coding sheets are rarely used when programming on the
ND system, as most programmers will "code" via the ND Editors.
However. the following layout should be useful as the coding sheet
fields are referred to in the text.

Com— A B Com~
ment area area ment

1 6 7 811 12 18 20 // 72 73 80

ND—50.1kk.3 EN

30

ND—60.144.3 EN

ND COBOL Reference Manual

ND COBOL Reference Manual 31

3 THE IDENTIFICATION DIVISION

The Identification Division must be included in every source program.
This division names the source program and the object program.

A source program is the initial COBOL program. An object program is
the output from the compilation.

In addition, the user may include in this division information such as
the date the program was written, etc.

Format:

IDENTIFICATION DIVISION.
PROGRAM—ID. program name.
[AUTHOR. [comment entry] ... 1
[INSTALLATION. [comment entry] ...]
[DATE—WRITTEN. [comment entry] ... J
[DATE—COMPILED. [comment entry] ... J
[SECURITY. [comment entry] ...]
[REMARKS. [comment entry] ... J

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period.

The PROGRAM—ID paragraph gives the name a program is identified by,
and it must be the first paragraph in the Identification Division. The
other paragraphs are optional.

Use of the DATE—COMPILED paragraph does not produce the compilation
date on that line. The date of compilation always appears on the first
page of the listing, whether or not this paragraph is present.

All commententries serve only as documentation. the syntax of the
program is unaffected by them.

ND—60.144.3 EN

32

ND~60.144.3 EN

ND COBOL Reference Manual

ND COBOL Reference Manual 33

000......000.00.00.00.0.0..00...COOO...0......OOOOOOOOOOOOOOOOIOOOOI.

4 THE ENVIRONMENT DIVISION

The Environment Division contains a description of the computer on
which the source program is compiled together with the functions that
are dependent on its physical characteristics. The presence of the
Environment Division is optional.

General Format:

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.
[SOURCE—COMPUTER. computer name [WITH Q§§g§§1fi§_flgflfil.1
[OBJECT—COMPUTER. computer name]

[,SEGMENT—LIMIT 1; segment number11
[SPECIAL—NAMES. [,CURRENCY SIGN l§ literal]

[,DECIMAL-POINT IS COMMA].]
[INPUT-OUTPUT SECTION.
FILE—CONTROL. file control entry [file control entry]
[I—0~CONTROL. input—output control entryJ]

4.1 CONFIGURATION SECTION

The Configuration Section is optional in ND cobol.

4.1.1 SOURCE COMPUTER Paragraph

Format:

SOURCE—COMPUTER.

ND—10
ND~100 [WITH DEBUGGING MODE].
ND—SOO

ND~50.144.3 EN

34 ND COBOL Reference Manual
THE ENVIRONMENT DIVISTON

The WITH DEBUGGING MODE clause indicates that all debugging lines are
to be compiled. If it is not specified, debugging lines will be
compiled as if they were comment lines. Use of this clause does not
imply any automatic activation of ND's Symbolic Debugger.

A debugging line is any line in a source program with a "D" coded in
column 7 (the continuation area).

Each line must be written so that a syntactically correct program
results when the debugging lines are compiled into the program.
Debugging lines may be continued but each continuation line must
contain a "D" in column 7.

Debugging lines may be specified only after the SOURCE—COMPUTER
paragraph.

4.1.2 OBJECT COMPUTER Paragraph

Format:

ND-10
OBJECT—COMPUTER. ND—100

ND~500

[,SEGMENT—LIMIT IS segment number].

The SEGMENT—LIMIT clause is treated by the compiler as comments only.

ND—60.lk4.3 EN

ND COBOL Reference Manual 35
THE ENVIRONMENT DIVISION

4.1.3 SPECIAL-NAMES Paragraph

The SPECIAL NAMES paragraph provides a substitute character for the
currency symbol and specifies whether the functions of the decimal
point and comma are to be exchanged in PICTURE clauses and numeric
literals. For the format see the beginning of this chapter.

4.1.3.1 CURRENCX I§ Clause

The literal which appears in the CURRENCY SIGN IS literal clause is
used in the PICTURE clause to represent the currency symbol. The
literal is limited to a single character and must not be one of the
following characters:

1) digits 0 through 9

2) alphabetical characters A, B, C, D, L, P, R, S, V, X, Z or
the space

3) special characters '*', '+', ' ', '.', '.', ';', '('.')'.
'"'. ‘/'. '='.

If this clause is not present, only the currency sign is used in the
PICTURE clause.

4.1.3.2 QEcmaL—EQINI MW

When specified, this means that the function of the comma and period
are exchanged in the character string of the PICTURE clause and in
numeric literals.

, ,,,,, ND—60.144.3 EN

36 ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

4.2 INPUT-OUTPUT SECTION

The input—output section names files and provides specifications for
other file related information. Its general format is shown at the
beginning of this chapter.

4.2.1 File Processinq — Lanquaqe Concepts

The way in which COBOL files in a program are processed depends on how
the data is organized on a file and how this data is to be accessed.

4.2.1.1 Data Organization

This refers to the permanent logical structure of the file and is
defined as one of three types:

1) Sequential organization;

2) Indexed organization;

3) Relative organization.

Sequential Organization

With this organization. each record in the file except the first has a
unique predecessor record, and each record except the last has a
unique successor record. These predecessor/successor relationships are
established by the order of the wRITE statements when the file is
created. Once established, these relationships do not change, however
it is possible to add records to the end of the file. The records may
be fixed or variable length.

ND~60.144.} EN

ND COBOL Reference Manual 3?
THE ENVIRONMENT DIVISION

Example:

1 IDENTIFICATION DIVISION.
2 PROGRAM—ID.
3 GENSEO.
4 *‘k‘k~k*‘k**k‘k%*‘k*~k*9<*~k~k~kkindak*‘kit‘k‘k*‘k‘k‘k‘k‘k>2*~k****9<****‘k********~k**~k‘k~k

S * CREATES SO—FILES AND LISTS.
5 *k‘k'kAbk*‘khk‘kinkrind:*k*‘kir***k**‘k*k***kk******k*kk*******k******k****

7 ENVIRONMENT DIVISION.
8 INPUT—OUTPUT SECTION.
9 FILE—CONTROL.

10 ~'-, , SELECT SQ-FILE ASSIGN "€0812DATA“.
11 , , ORGANIZATION_IS SEQUENTIAL.
12 ' ACCESS IS SEQUENTIAL. '
13 DATA DIVISION.
14 FILE SECTION.
15 ' FD SBEFILE.
16 O1 M~REC. ' , , : _‘ , -_ ,17 - - (32' ‘ :PIC x110) -, , ‘ ‘ :'
18 ; ‘ 02 SEDNUN- PIC 9(5). BLANK NHEN ZERO "'”‘
19 ' _ DZ: _ _PIE XIS?
20 ," DZ ' ' PIC XI4D}.
21 WORKING—STORAGE SECTION.
22 O1 RANDNO PIC 9(4) PACKED—DECIMAL, VALUE ZERO.
23 , O1 MAXRAND PIC 39(4) PACKED—DECIMAL, VALUE 1000.
24 D1 NDRECS PIC 9(4) PACKED—OECIMAL.
25 01 RECCNT PIC 99, COMP, VALUE 0.
26
27 PROCEDURE DIVISION.
28 INIT—OT.
29 OPEN OUTPUT SQ—FILE.
3O DISPLAY "CREATE RECORDS?”.
31 PERFORM GET—NORECS.
32 PERFORM CRE—SQ—FILE NDRECS TIMES.
33 * BUILDS THE INPUT FILE.
34 CLOSE 30-FILE.
35 DISPLAY "FILE SD—FILE CREATED.". RECCNT. “ RECORDS.“.
38 OPEN INPUT SQ—FILE.
37 LIST-FILE—O.
38 MOVE D TO RECCNT.
39 LIST—FILE—T.
40 READ SD—FILE AT END GO TO LIST—END.
41 ADD 1 TD RECCNT.
42 DISPLAY "REC ". RECCNT. ". SEONUM = ". SEONUM.
43 GO TO LIST—FILE—T.
44 LIST—END.
4S CLOSE SD—FILE.
48 DISPLAY ”JOB FINISH".
47 STOP RUN.
48 CRE—SQ—FILE.
49 CALL "RND" USING RANDNO, MAXRAND.
SD MOVE ALL “*" TO M—REC.
S1 MOVE RANDNO TO SEONUM.
52 ADD 1 TO RECCNT.
S3 DISPLAY ”UT REC : ", RECENT. ” KEY : ", SEQNUM.
54 wRITE M—REC.
SS GET—NORECS.
SS ACCEPT NORECS.
57 IF NDRECS NOT NUMERIC.
58 DISPLAY "*** NOT NUMERIC DATA ***".
59 GO TO GET—NORECS
BO END—IF.

ND—60.144.3 EN

38 ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

Indexed Orqanization

A file with this organization is a mass storage file whose records,
which may be of fixed or variable length, are accessed by means of a
key. Each record can have one or more keys and each key is associated
with a particular index held on that File. Each index provides a
logical path to the data records, according to the contents of a data
item within each record which acts as the record key for that index.

The RECORD KEY clause in the file control entry for each file names
the prime record key for that File. When inserting, updating or
deleting records in a file, each record must be identifiable solely by
its prime record key. This value must, therefore, be unique and it
must not be changed when updating the record.

The ALTERNATE RECORD KEY clause names an alternate record key for a
file. (This value may be nonunique if the OUPLICATES phrase is
specified for it.) These keys provide alternate access paths for
record retrieval from the file.

ND—60.144.3 EN

ND COBOL Reference Manual 39
THE ENVIRONMENT DIVISION

Example:

w
C

)~
lU

)U
1

#
‘L

)A
)a

.4
..

.\
_

x
_

a
.a

..
a

_
x

U
7w

#
(J

AJ
A

O

17
18
19
20
21
22
23
24
25

27
2O
29
3O
31
32
33
34
35
36
37
3O
39
4O
41
42
43
44
45
4E
47
4O
49
50
51
52
53
54
55
55
57
58
59
ED
81
82
E3
54
55

IDENTIFICATION DIVISION.
PROGRAM—ID.

GEN—ISAM—I.
k***************************k*************************k********

ISAM MEANS INDEX-SEQUENTIAL ACCESS METHOD.

THE RECORDS ARE OUTPUT TO AN ISAM—FILE USING THE *UNIOUE*
(I. E., NOT DUPLICATED) DATA FOUND IN FIELD ISAM—KEY AS
KEY VALUE.

BEFORE THIS JOB CAN BE RON, THE FOLLOWING *MUST* BE SD:
A) FILE "ISAM~EX DATA" AND FILE "ISAM~EX:ISAM" MUST

EXIST AND BE ERROR—FREE ; OR
8) FILE ”ISAM—EX20ATA" MUST NOT EXIST OR IF EXISTING

CONTAIN *NO DATA !!*
***k**

ENVIRONMENT DIVISION.
INPUT~OUTPUT SECTION.
FILE— CONTROL

SELECT ISARnFILE ASSION TO “ISAN EX. OAIA“
ORGANIZATION Is INOEAEO, “
Access MODE :3 DVNANIE.i
OEOOOO KEY IS TEAM—KEY.:
FILE STAINS Is ISANSTATOS

%
*

*
*

*
i

*
*

%
*

*
*

'DATA DIVISION.
FILE SECTION.
FD ISAM—FILE

RECORD CONTAINS 48 CHARACTERS.
D1 ISAM— REC.

O2 ISAM~KEY PIC XIGI. ,~
*1....;...........fiUST DE IN RECORD AREAI

OZ ISAM— TEXT PIC X(AO)

WORKING STORAGE SECTION.
01 ISAMSTATUS PIC XX.

* RETURN STATUS FROM ISAM.

PROCEDURE DIVISION.
ADO1.

OPEN I—O ISAM~FILE.
AOO2.

DISPLAY "ENTER KEY (MAX. 6 CHAR) : ".
ACCEPT ISAM~KEY.

IF ISAM KEY = SPACES GO TO LIST.
* SPACES INPUT, END DIALOG.

DISPLAY "ENTER TEXT (MAX 40 CHAR) : ".
ACCEPT ISAM— TEXT.

* READ RECORDS FROM TERMINAL.
WRITE ISAM— REC, INVALID KEY.

DISPLAY "ISAM FILE ERROR 2". ISAMSTATUS. "z".
GO TO A002.

* OUTPUT RECORD AND ASK AGAIN.
LIST.

DISPLAY "ENTER ACCESS KEY: ",
ACCEPT ISAM—KEY.

IF ISAM—KEY : SPACES THEN GO TO FINI.
READ ISAM—FILE RECORD KEY IS [SAM-KEY INVALID KEY.

DISPLAY "RECORD NOT FOUNDI".
GO TO LIST.

DISPLAY "REC: ", ISAM—KEY, ”: ".ISAM—REC.
GO TO LIST.

FINI.
CLOSE ISAM—FILE.
DISPLAY "JOB END.".
STOP RUN.

ND—BO.144.3 EN

40 ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

Relative Orqanization

Relative file organization is permitted only on mass storage devices.
The file may be thought of as a string of areas, each capable of
holding a logical record. Each of these is identified by a relative
record number which is used for storage and retrieval.

For example. the tenth record is the one addressed by relative record
number 10 and is in the tenth record area, whether or not records have
been written in the first through ninth record areas.

Records may be of fixed or variable length.

ND-60.144.3 EN

ND COBOL Reference Manual 41
THE ENVIRONMENT DIVISION

Example:

L
o
m

x
tm

m
r
m

m
d

DATA DIVISION.

IDENTIFICATION DIVISION.
PROGRAM—ID. GENRELATIVE.

k***********k**k**k*****************************k*********k*
* THIS PROGRAM SHOWS THE USAGE OF A RELATIVE FILE.

THE FILE *MUST* EXIST BEFORE THE RUN, BUT MAY BE EMPTY. EACH
RECORD IS LOCATED DIRECTLY BY ITS RELATIVE (TO 1) POSITION IN
THE FILE BY ITS *INTEBER* KEY VALUE.

IN THE RELATIVE FILE. *NO* STORAGE SPACE Is USED FOR THE
”EMPTY" RECORDS BETNEEN RECORD O AND 299. OR DETNEEN 301 AND
899. THUS IT MAKES PERFECT SENSE TO USE. SAY. BIRTH DATES
AS KEYS IN RELATIVE FILES.

**********k**********k*******X*****A***********************k***

ENVIRONMENT DIVISION.
INPUT—OUTPUT SECTION.
FILE— CONTROL.

SELECT RELEILE ASSIGN "BELAIIVEwEX DAIA“‘
, ORBARIZATIDN IS RELATIVE.

ACCESS IS DYNANIC:
RELATIVE «EV IS REL KEY._ ,
FILE STATUS IS REL»$TATDS.~

*
*
A
k
*
* NOTE: EVEN IF SOMETHING IS WRITTEN ON RECORDS 300 AND 700
A
*
*
A
*

FILE SECTION.

FD RELFILE
BLOCK CONTAINS TD RECORDS
RECORD CONTAINS BO CHARACTERS.

D1 REL—RECORD PIC XIEO).

WORKING—STORAGE SECTION.
01 REL— STATUS PIC XX.

701 REL KEY *- PIC 989.
VL*X****** *****************k*ktt***Akt*#*****tkkk**********t*fikfi*

" * , z. THE RELATIVE KEY EAR NOT DECOR IN THE RECORD,'*- _ AREA. ITS puss IDLE SIZES ARE I~SSSSSSSQBRQ. -* ‘ , SOT II 15 RESTRICTED TO 388 IN THIS EROSRAR.
****************kt****kk*k*kk*k*k#k*k***#*k*****kk********%*&***

PROCEDURE DIVISION.
AOOO.

OPEN I—O RELFILE.
A002.

DISPLAY "ENTER KEY (MAX 999) : ".
PERFORM GET~KEY.
IF REL-KEY = ZEROES GO TO A003.
DISPLAY "ENTER TEXT (MAX GO CHARACTERS) : ".
ACCEPT REL~RECORD.
WRITE REL—RECORD INVALID KEY.

DISPLAY "*** RELFILE ERROR *** z", REL—STATUS.
GO TO A002.

A003.
DISPLAY "ENTER ACCESS KEY: ".
PERFORM GET—KEY.
IF REL~KEY 2 ZEROS GO TO A999.
READ RELFILE RECORD INVALID KEY.

DISPLAY "*** RECORD NOT FOUND ***".
REL—STATUS. GO TO A003.

DISPLAY "REC z". REL—KEY. ": ". REL-RECORD.
GO TO ADDS.

A993.
CLOSE RELFILE.
DISPLAY "JOB END".
STOP RUN.

GET—KEY.
ACCEPT REL—KEY.
IF REL—KEY NOT NUMERIC.

DISPLAY "*** KEY MUST BE NUMERIC ***",
GO TO GET—KEY.

GET—KEY—EXIT.
EXIT.

ND—60.144.3 EN

42 ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

4.2.1.2 Access Modes

Three access modes are available in COBOL: sequential, random, and
dynamic.

For sequential organization, records can only be accessed in
sequential access mode, i.e., in the order in which they were
originally written on the file. A sequential mass storage file may be
used for input and output at the same time. One file maintenance
method made possible by this facility is to read a record, process it
and — if it is updated - write the modified record back into the
previous position.

For indexed organization, using the sequential access mode means that
records are accessed in the ascending order of the record key values.
(The order of retrieval of records within a set of records having
duplicate key record values, is the order in which the records were
written into the set.)

Using the random access mode, records are accessed in a sequence
determined by the programmer. A desired record is accessed by having
its record key defined as a record key data item.

Using the dynamic access mode, the programmer may change from
sequential access to random access at will by means of appropriate
coding.

For relative organization, the file access mode can be either
sequential. dynamical or random. Sequential access provides the same
results as if the file were organized sequentially. Records are
accessed in ascending order of relative record number of records
currently existing on the file.

Using random mode, the access sequence is controlled by the
programmer. The desired record must have its relative record number
placed in a relative key data item.

Such a file may be thought of as a serial string of areas, each
capable of holding a logical record. Each of these areas is specified
by a relative record number. Records are stored and retrieved based on
this number. For example, the tenth record is the one addressed by
relative record number 10 and is the tenth record area, whether or not'
records have been written in the first through the ninth record areas.

ND—60.144.3 EN

ND COBOL Reference Manual 43
THE ENVIRONMENT DIVISION

In the dynamic access mode, the programmer may change at will from
sequential access to random access using appropriate forms of input—
output statements.

4.2.2 The File-Control Paragraph

The FILE—CONTROL paragraph associates each file with an external,
medium and allows specification of file organization. access mode,
etc.

General Format of the FILE—CONTROL paragraph:

FILE—CONTROL.

[select—entry]

The formats of the various selectentries are given below.

Format 1: Select entry for sequential files

SELECT [OPTIONAL] file—name

ASSIGN IQ assignment—namee1

;RESERVE integer AREA
AREAS

[:ORGANIZATION IS SEQUENTIAL]

[:ACCESS MODE IS SEQUENTIAL]

[:FILE STATUS IS data—name—l].

ND-60.144.3 EN

4A ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

Format 2: Select entry for indexed files

SELECT [OPTIONAL] file~name

ASSIGN T0 assignment—name~1

AELA
:RESERVE integer

AREAS

:ORGANIZATION IS INDEXED

SgOQfiNTIAL
:AQQ§§§ MODE IS RANDOM

DYNAMIC

:RECORD KEY IS data—name~2

[:ALTERNAT§ RECORD KEY IS data—name—3 [WITH DUPLICATES] J...

[:FILE STATUS IS data-name-4J.

ND—BD.144.3 EN

ND COBOL Reference Manual 45
THE ENVIRONMENT DIVISION

Format 3: SELECT entry for relative files

SELECT [QPTIONAL] file-name

ASSIGN TO assignment~nameu1

AREA
:RESERVE integer

AREAS

;ORGANIZATION IS RELATIVE

SEQUENTIAL [,RELATIVE KEY IS data—name-5]

:ACCESS MODE IS RANDOM
,RELATIVE KEY IS data—name-5

DYNAMIC

[;FILE STATUS IS data—name—S].

Format 4: SELECT entry for SORT/MERGE

SELECT file—name ASSIGN TO assignment—name—1.

The SELECT clause must appear first in the file control entries but
subsequent Clauses may appear in any order.

Each file described in the Data Division must appear in one and only
one entry in the file control paragraph.

The default access mode is sequential.

The file status data—name. (data—names—I, 4 and 6) must be defined in
the Data Division as a two character. alphanumeric item which is not.
however, defined in the file section.

All data—names may be qualified.

ND-60.144.3 EN

46 ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

4.2.2.1 For Sequential Organization

The absence of the ORGANIZATION IS SEQUENTIAL clause implies the
existence of this clause.

The OPTIONAL phrase may be specified for input or output files. Its
specification is required for input or output files that are not
necessarily present each time the object program is executed.

4.2.2.2 For Indexed Organization

Data—names 2 and 3 must be defined as alphanumeric in a record
description entry for that file name; neither can describe an item
whose size is variable.

Oata—name~3 cannot reference an item whose leftmost character position
corresponds to the leftmost character position of an item referenced
by data—name—Z or by any other data—name—B associated with this file.

The OPTIONAL phrase may be specified for input or output files. Its
specification is required for input or output files that are not
necessarily present each time the object program is executed.

4.2.2.3 For Relative Orqanization

Data—name-S, which must be an unsigned integer, must not be described
in a record description entry associated with that file.

If a relative file is referenced by a START statement, then the
RELATIVE KEY phrase must appear for that file.

ND—60.144.3 EN

ND COBOL Reference Manual 47
THE ENVIRONMENT DIVISION

The OPTIONAL phrase may be specified for input or output files. Its
specification is required for input or output files that are not
necessarily present each time the object program is executed.

4.2.2.4 General Rules

1) The ASSIGN clause specifies the association of a file name
with a storage medium.

2) The ORGANIZATION clause defines the logical structure of a
file. This is established when the file is created and cannot
be subsequently changed.

3) The RESERVE clause is treated as comments and appears for
syntax reasons only.

A) When the FILE STATUS clause appears. the COBOL library
system, after execution of every statement referencing the
file. moves a value indicating the status of the execution
into the data item referenced by this clause (see [—0 Status
under INPUT—OUTPUT statements in the Procedure Division
description).

Records in the file are accessed in the sequence determined by the
predecessor successor relationships established by the execution of
WRITE statements in the file formation.

General Rules for Indexed Orqanization:

1) When the access mode is sequential, records in the file are
accessed in the order of ascending record key values within a
given key of reference. If the access mode is random then the
value of the record key indicates which record is accessed by
it. When the access mode is dynamic. the file may be accessed
sequentially and/or randomly.

2) The RECORD KEY clause denotes the prime record key for the
file, and its values must be unique. The ALTERNATE RECORD KEY
clause specifies an alternate record key for the file. Both
record keys provide access paths to the records in the file.

ND’60.144.3 EN

43 ND COBOL Reference Manual
THE ENVIRONMENT DIVISION

General Rules For Relative Organization

1) when the access mode is sequential, records are accessed in
the order of ascending relative record numbers of the records
existing on the file. If the access mode is random then the
value of the RELATIVE KEY data item is used to locate a
record. When the access mode is dynamic. records in the file
can be accessed sequentially and/or randomly.

2) All records stored in a file are uniquely identified by
relative record numbers. These specify the record's logical
ordinary position as follows: the first logical record has a
relative record number of one (1) and subsequent records have
relative record numbers of 2, 3. 4.

4.2.3 The 1—0 CONTROL Paragraph

(Sequential Files Only)

The I—O-CONTROL paragraph specifies the memory area to be shared by
different files.

Format:

l~0~CONTROL.

[SAME AREA For file—name—T{file—name~2} ... J

The IwO CONTROL paragraph is optional. More than one SAME clause may
be included in a program, however:

1) A file name must not appear in more than one SAME AREA
clause.

2) The files referenced in the SAME AREA clause need not all
have the same access.

The SAME AREA clause specifies that two or more files not representing
SORT files are to use the same memory area during processing. The area
being shared includes all storage areas assigned to the specified
files so that it is not valid to have more than one of the files open
at the same time.

ND-60.144.3 EN

ND COBOL Reference Manual 49

0.0...00....IO...0....OO...0.00....C...O0.0...OOOOOOOOOOOOOOOCOOOOOOO

5 THE DATA DIVISION

5.1 DATA CONCEPTS

The Data Division describes the data that the object program is to
accept as input, to manipulate, to create or to produce as output.
Data to be processed falls into three categories:

1) That which is contained in ¥iles and enters or leaves the
computer memory from specified areas. This data is external data.

2) That which is developed internally and placed into intermediate
storage. This is known as internal data.

3) Constants defined by the user.

External data is contained in files. A file is a collection of records
existing on an input or output device. When discussing records, it is
important to distinguish between the terms physical record and logical
record. A physical record is a collection of data which is treated as
an entity by the particular input or output device on which it is
stored. A logical record is a collection of data having a logical
relationship between its subdivisions. One logical relationship may
extend across physical records, several may be contained within one
physical record or the two may be identical in size (i.e., one logical
relationship is contained completely in one physical unit of data).
Unless otherwise described, the term record refers to a logical
record, when used in this manual.

The term block is associated with the use of records, usually to
describe a unit of data consisting of one or more logical records. The
term is synonomous with physical record.

ND—60.144.3 EN

50 ND COBOL Reference Manual
THE DATA DIVISION

5.2 STRUCTURE OF THE DATA DIVISION

The Data Division is divided into sections, each one having a specific
logical function. The occurrence of indicidual sections is optional
but they must appear in the order shown when written in the source
program.

format:

QALA Qiliélgfl«

FlLE SECT 0N.

file—description—entry
{record—description~entry}

sort—file description-entry
{record—description—entry}

WORKING~STORAGE SECTION.

77—level description entry...
record—description—entry

LlNKAGE SECTJON.

77—level—description—entry...
[record—description—entry

The File Section contains a description of all externally stored data
(FD) but not that which the program may develop internally. It also
contains a description of each SORT/MERGE file (SD) in the program.

ND—BD.144.3 EN

ND COBOL Reference Manual 51
THE DATA DIVISION

The Working Storage Section describes records which are developed and
processed internally.

The Linkage Section describes data made available from another program
(see the section on Interprogram Communication in the “Other Features"
part of this manual).

5.3 EILE SEQIION

This section must begin with the header FILE SECTION followed by a
period. It contains file description entries and sort file description
entries. each one followed by its associated record description. All
clauses used in the record description entry of the File Section can
be used in the Working»Storage Section. The elements allowed in a
record description are described later under "Data Description Entry"
in the working Storage Section of the Data Division description (see
also "The Concept of Levels" in the same chapter).

5.3.1 The File Description — Complete Entrv Skeleton

The file description entry represents the highest level of
organization in the File Section. It follows the File Section header
and consists of a level indicator (FD), a file name. and a series of
independent clauses specifying the size of the physical and logical
records. their structure and their record names on that file. The
formats are:

ND—60.144.3 EN

52

Format 1

ND COBOL Reference Manual
THE DATA DIVISION

: Indexed and Relative I—O.

L

h

_Q file name

RECQRDS
;QLOCK CONTAINS [integer—1 IQ] integer~2

CHARACTERS

;RECORD CONTAINS [integer—3 IQ] integer—4 CHARACTERS

[QEEENDING ON data—name~1]

3 RECORD 15 g g STANDARD g

RECORDS ARE OMITTED

:RECORDING MODE IS 3

l<
1%

W

8££QEQ IS
,DATA data—name-3 [,data—name—4J

RECORDS ARE

;VALU§ Qfi FILE—1Q IS integer—3]

%

ND-60.144.3 EN

ND COBOL Reference Manual 53
THE DATA DIVISION

Format 2: Sequential I-O

_Q file—name

RECORDS
;BLOCK CONTAINS [integer—1 IQ] integer—2

CHARACTERS

;RECORD CONTAINS [integer—3 1Q] integer—4 CHARACTERS
[DEPENDING ON data—name~1]

g RECORD IS % g STANDARD E

RECORDS ARE OMITTED

F

:RECORDING MODE IS TEXT—FILE
I
M

h J

RECORD IS

iflfllé 3 data—name—3 [,data-name—4 ... J
RECORDS ARE

The level indicator FD identifies the beginning of a file description
and must precede the file name. The clauses which follow are optional
in many cases and they may appear in any order.

One or more record description entries must follow the file
description entry.

ND—BD.144.3 EN

54 ND COBOL Reference Manual
THE DATA DIVISION

5.3.1.1 The BLOCK CONTAINS Clause

The Block Contains clause specifies the size of a physical record.

Format:

RECORDS
BLOCK CONTAINS {integer~1 1Q] integer-2

CHARACTERS

General Rules:

1)

2)

3)

4)

If this clause is omitted, block size is set to 2048 characters.

The size of the physical record may be stated in terms of
RECORDS, unless one of the following situations exists, in which
case the RECORDS phrase must not be used:

a) where logical records may extend across physical records.

b) The physical record contains padding (area not contained in
a logical record).

c) Logical records are grouped in such a manner that an
inaccurate physical record size would be implied.

When the word CHARACTERS is specified. the physical record size
is specified in terms of the number of character positions
required to store the physical record. regardless of the types of
characters used to represent the items within the physical
record.

If only integer—2 is shown, it represents the exact size of the
physical record. If integer—1 and integer—2 are both shown, they
refer to the minimum and maximum size of the physical record.
respectively.

ND—60.144.3 EN

ND COBOL Reference Manual 55
THE DATA DIVISION

5.3.1.2 [he DATA REQQBQ§ giggge

The DATA RECORDS clause serves only as documentation for the names of
data records and their associated file.

Format:

RECORD IS
data—name—1 [,data—name~2]

RECORDS ARE

Data—name—T and data—name—Z are the names of data records and must
have 01 level number record descriptions, with the same names,
associated with them.

eneral ul 3-

1) The presence o¥ more than one data name indicates that the file
contains more than one type of data record. These records may
vary in size, format. etc. The order in which they are listed is
not significant.

2) Conceptually. all data records within a file share the same area.
This is in no way altered by the presence of more than one type
of data record within the file.

ND—60.144.3 EN

56 ND COBOL Reference Manual
THE DATA DIVISION

5.3.1.3 The LABEL RECORDS Clause

The LABEL

Format:

RECORDS clause is treated as comments.

RECORD IS STANDARD
:LABEL

RECORDS ARE OMITTED

5.3.1.4 The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of data records.

Format:

:RfiCORD CONTAINS [integer—3 IQ] integer~4 CHARACTERS

[DEPENDING 0N data—name—1]

General Rules:

1) The following notes apply:

a) Integer—4 may not be used by itself unless all of the data
records in the file have the same size. In this case,
integer—4 represents the exact number of characters in the
data record. If integer-3 and integer~4 are both shown, they
refer to the minimum number of characters in the smallest
size data record and the maximum number of characters in the
largest size data record, respectively.

ND«60.144.3 EN

ND COBOL Reference Manual 57
THE DATA DIVISION

2)

3)

4)

6)

7)

b) The size is specified in terms of the number of character
positions required to store the logical record, regardless
of the types of characters used to represent the items
within the logical record. The size of a record is
determined by the sum of the number of characters in all
fixed length elementary items plus the sum of the maximum
number of characters in any variable length item subordinate
to the record. This sum may be different from the actual
size of the record.

Data—name-1 must describe an elementary integer in the Working—
Storage Section. (Defined as COMPUTATIONAL. with no PICTURE
clause specified.)

If data—name—1 is specified, the number of character positions in
the record must be placed in the data item referenced by data—
name—1 before any RELEASE, REWRITE or wRITE staement is executed
for the file.

If data—name~1 is specified, the execution of a DELETE. RELEASE,
REWRITE. START or WRITE statement or the unsuccessful execution
of a READ or RETURN statement does not alter the contents of the
data item referenced by data—name—1.

During the execution of a RELEASE, REwRITE or WRITE statement,
the number of character positions in the record is determined as
follows:

a) By the contents of the data item referenced by data—name—1
if data—name—T is specified.

b) By the number of character positions in the record if data—
name—1 is not specified.

If data—name—l is specified, after the successful execution of a
READ or RETURN statement for the file, the contents of the data
item referenced by data-name—1 will indicate the number of
character positions in the record just read.

If the INTO phrase is specified in the READ or RETURN statement.
the number of character positions in the current record that
participate as the sending data item in the implicit MOVE
statement is determined by the maximum size of the sending field.

ND~60.144.3 EN

58 ND COBOL Reference Manual
THE DATA DIVISION

5.3.1.5 The RECORDING MODE Clause

The RECORDING mode clause specifies the record format used in the
file.

Format 1: Indexed and Relative I~0.

l<
{m

M:RECORQlNfi MODE IS 3

Format 2: Sequential I—O.

;RECORDING MODE IS EXT-FILE

i<
lfl

H
im

F indicates that all records have exactly the same number of
characters. that is, the number which is the length of the file’s
record area.

V means that the records in the file may have a varying number of
characters. never less than 1 (one) and never more than the maximum
size of the file's record area. With V format, two extra bytes of
information are stored at the beginning of each record in the file.
These bytes contain the length of the data portion of the record: they
are never available to the COBOL program, except if the DEPENDING ON
phrase of the RECORD CONTAINS clause is included.

T (TEXT—FILE) means that the records of the file are in printable
format and contain only ASCII characters. The records are separated by
the characters carriage return (15 octal) and line feed (12 octal).
This format is only valid for sequential files. T and TEXT—FILE are
synonymous.

ND-60.144.3 EN

ND COBOL Reference Manual 59
THE DATA DIVISION

5.3.1.6 The VALUE OF FILE-ID IS Clause

The VALUE OF FILE—ID IS clause is now treated as a comment.

Format:

VALUE OF FILE—ID IS integer—3

5.4 WORKING~STORAGE SECTION

The Working—Storage Section may describe data records which are not
part of external files but are developed and processed internally. It
must begin with the words wORKING—STORAGE SECTION followed by a
period. It contains record description entries and data description
entries for noncontiguous data items.

Data Description Entries

Noncontiguous items in Working—Storage that bear no hierarchical
relationship to one another, need not be grouped into records.
provided they do not need to be further subdivided. Instead, they are
classified and defined as noncontiguous elementary items. Each is
defined in a separate data description entry with the special level
number 77.

Record Description Entries

Data elements that bear a definite hierarchical relationship to one
another must be grouped into records structured by level number.

ND—60.144.3 EN

80 ND COBOL Reference Manual
THE DATA DIVISION

5.4.1 Data Description

5.4.1.1 The Concept of Level

Because records must often be divided into logical subdivisions. the
concept of level is inherent in the structure of a record. Fields
which cannot be further subdivided are called elementary items. A
record can be made up of elementary items or it can itself be an
elementary item. If it is necessary to refer to a set of elementary
items. they can be combined as a group item. Note that an elementary
item can belong to more than one group.

For example, an employer's payroll file might contain a record for all
employees at one location. Each employee's record could be represented
as a group item while the subdivisions. or elementary items. might be
age, salary, grade. tax code. etc.

Level Numbers

A system of level numbers from 1 to 49 is used to organize elementary
and group items into records. Special level numbers 77 and 88 identify
items used for special purposes. They do not structure a record. and
are used as follows:

77 For independent working storage or linkage section items which
are not subdivisions of items or themselves subdivided.

88 For identification of a condition name associated with a
particular value of a conditional variable (see the VALUE clause
later in the Data Division section).

(Level 7? and 01 entries must have unique data names as they cannot be
qualified. Subordinate data names, if qualifiable. need not be
unique.)

Record Description Level Numbers

A level number must be assigned to each group or elementary item in a
record. The level numbers used to structure records are:

01 This specifies the record itself and is the most inclusive of the
numbers. A level 01 entry may be either a group or an elementary
item.

I

ND~60.144.3 EN

ND COBOL Reference Manual 61
THE DATA DIVISION

02*49
These are given to group and elementary items within a record.
Subordinate items are given higher (not necessarily consecutive)
level numbers.

A group item includes all group and elementary items following it
until a level number less than or equal to its own is encountered.

All elementary or group items immediately subordinate to one group
item must be assigned level numbers higher than the level number of
this group item.

For example, data may need to be structured as follows:

‘ LAST~NAME
NAME —~——~***——*——-*—~“~ FIRST—INIT

MIDDLE—INIT
EMPLOYEE—NUM -

TIME—CARD ——“*- —
MONTH

WEEKS—END—DATE ~*—-———-*' DAY~NUMBER
YEAR

HOURS—WORKED -

A corresponding record might appear in the form:

01 TIME-CARD.
02 NAME.

03 'LAST-NAME PICTURE X(18).
03 FIRST-INIT PICTURE X.
03 MIDDLE—INIT PICTURE X.

02 EMPLOYEE-NUM PICTURE 99999.
02 WEEKS-END—DATE.

05 MONTH PIC 99.
05 DAY—NUMBER PIC 99.
05 YEAR PIC 99.

02 HOURS—WORKED PICTURE 99V9.

ND—60.144.3 EN

62 ND COBOL Reference Manual
THE DATA DIVISION

5.4.1.2 Classes and Categories of Data

There are five categories of data items which are grouped into three
classes. The relationship between them is shown in the following.

Level of Item: Class: Category:

Elementary Alphabetic Alphabetic

Numeric Numeric

Alphanumeric Alphabetic
Numeric Edited
Alphanumeric Edited
Alphanumeric

Group Alphanumeric Alphabetic
Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

Classes and Categories of Data

Note that for alphabetic and numeric the classes and categories are
synonomous. The alphanumeric class includes the categories of
alphanumeric edited, numeric edited and alphanumeric (without
editing). Every elementary item, except for an index data item,
belongs to one of the classes and to one of the categories.

Every group item belongs to the alphanumeric class (even if its
subordinate items belong to other classes or categories).

Standard alignment rules for positioning data in an elementary item
depend on the data category of the receiving item (i.e., the item into
which the data is placed).

The following rules apply. according to the category of the receiving
item:

ND~80.144.3 EN

ND COBOL Reference Manual 63
THE DATA DIVISKON

1) Numeric

The data is aligned by decimal point and moved to the receiving
character positions with zero fill or truncation on either end as
required.

If there is no assumed decimal point (an assumed decimal point is
one that has logical meaning but does not exist as a character in
the data). then the item is treated as if an assumed decimal
point existed immediately after its rightmost character and is
aligned as in the preceding rule.

2) Numeric Edited

The data is aligned on the decimal point and (if necessary)
truncated or padded with zeros at either end, except when editing
causes replacement of leading zeros.

3) Alphanumeric. Alphanumeric Edited, Alphabetic

The data is aligned at the leftmost character position and (if
necessary) truncated or padded with spaces. If the JUSTIFIED
clause is specified then this rule is modified as described in
the description of this clause.

Signed Data.

There are two classes of algebraic signs used in COBOL: operational
signs and editing signs.

Operational signs are associated with signed numeric items to indicate
their algebraic properties.

Editing signs, which are PICTURE symbols, are used with numeric edited
items to indicate the sign of the item in edited output.

Data Reference

Every user specified name of an element in a COBOL program must be
unique — either because no other name has a character—string of the
same value or because it can be made unique through qualification,
indexing or subscripting.

Qualification

A name can be made unique if it exists within a hierarchy of names
such that it can be identified by specifying one or more higher level
names in this hierarchy. This process is called qualification, and the
higher level names are called qualifiers.

ND—60.144.3 EN

64 ND COBOL Reference Manual
THE DATA DIVISION

Qualification is performed by following a user specified name by one
or more phrases composed of a qualifier preceded by IN or OF. (IN and
CF are logically equivalent.)

The Formats are:

Format 1:

data—name—1 Q5
data—name-Z

condition—name Lfl

Format 2:

fl
paragraph—name section name

LN

Format 3:

file—name

Each qualifier must be of a successively higher level and be within
the same hierarchy as the name it qualifies.

The same name must not appear at 2 levels in a hierarchy.

If a data name or condition name is assigned to more than one data
item. it must be qualified each time it is referred to.

A paragraph name must not be duplicated within a section. When a
paragraph name is qualified by a section name, the word SECTION must
not appear. A file name (used in the COPY statement) must name a
SINTRAN file. A paragraph name need not be qualified when referred to
within the section in which it appears. When it is being used as a
qualifier, a data name cannot be subscripted.

If there is more than one combination of qualifiers that ensures
uniqueness then any of these combinations can be used.

Note: Although enough qualification must be given to make the name
unique, it may not be necessary to specify all the levels of the
hierarchy.

ND-60.144.3 EN

ND COBOL Reference Manual 65
THE DATA DIVISION

No duplicate section names are allowed.

No data name can be the same as a section name or paragraph name.

Duplication of data names must not occur in those places where the
data names cannot be made unique by qualifications.

Subscripting and Indexing

Subscripts and indexes are used for referencing an individual element
within a table of elements that do not have individual data names.
Subscripting and Indexing are explained in the chapter on Table
Handling.

5.4.2 The Data Description — Complete Entrv Skeleton

The format of the complete entry skeleton has been simplified for
easier reading. The format of each clause is given with the individual
descriptions. ~

5.4.2.1 Data Description Entrv

A data description entry specifies the characteristics of a particular
item of data.

ND—80.144.3 EN

68 ND COBOL Reference Manual
THE DATA DIVISION

Format 1:

data name
level number g E clause

FILLER

[:flLAflfl WHEN ZEEQ clause]

[:JUgTIFIQD clause]

[:PlCTURE clause]

[:REDEFINES clause]

[:SIGN clause]

SYNCHRONIZED clause

SYNCHRONIZED~2 clause

[; SAGE clause]

[:VALUE clause]

I;EKEQRI Clause]

Format 2:

88 condition name VALUE clause

Format 1 is used for record description entries and for level 77
entries.

General Rules:

1) The level number can be any number from 01 to 49 or 77. 01 to 09
can be written as 1 to 9.

2) The data name/FILLER (optional) entry must immediately follow the
level number. Otherwise, the clauses may be written in any order.

3) The PICTURE clause must be specified for all elementary items
except index data items and for computational, computational~1
and computational—2 items.

ND—80.144.3 EN

ND COBOL Re¥erence Manual 67
THE DATA DIVISION

4) The BLANK WHEN ZERO, JUSTIFIED, PICTURE and SYNCHRONIZED clauses
are valid only for elementary items.

5) Each entry must end with a period followed by a space and all
clauses must be separated by a space, comma. or a semicolon
followed by a space.

Format 2 describes condition names which are user specified names that
associate value(s) and/or range of values with a conditional variable.
A conditional variable is a data item which can take one or more
values and is associated with a condition name.

General Rules:

1) Each condition name requires a separate entry with level number
88. Any entry beginning with this level number is a condition
name .

2) A condition name can be associated with any data description
entry containing a level number except:

1) another condition name

2) an index data item.

3) Each entry must end with a period followed by a roace. Successive
operands must be separated by either a space L' a semicolon or
comma followed by a space.

5.4.2.2 The BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking of an item when its
value is zero.

Format:

The BLANK WHEN ZERO clause can only be used for an elementary item
whose PICTURE is numeric or numeric edited (see the PICTURE clause in
this chapter). When it is used for an item whose PICTURE is numeric
then the category of the item is considered to be numeric edited.

ND—60.144.3 EN

68 ND COBOL Reference Manual
THE DATA DIVISION

When the BLANK WHEN ZERO clause is used, the item will contain nothing
but spaces if the value of the item is zero.

5.4.2.3 The Data Name/FILLER Clause

A data name explicitly identifies the data being described. The key
word FILLER, which may be omitted, specifies an item not explicitly
referred to in a program.

Format:

data name

FILLER

In the File. Working—Storage and Linkage Sections, data name or FILLER
must appear as the first word following the level number in each data
description entry.

General Rules:

1) A data name identifies a data item used in the program, it may
assume a number of different values during program execution.

2) The key word FILLER can name an elementary or group item in a
record. Under no circumstances can a FILLER item be referred to
explicitly; however, it may be used as a conditional variable
since such use does not require explicit reference to the item
itself but only to its value.

N0—60.144.é EN

ND COBOL Reference Manual 69
THE DATA DIVISION

5.4.2.4 Ihe QU§T1FIED glagse

The JUSTIFIED clause overrides standard positioning rules for a
receiving item of the alphabetic or alphanumeric categories.

Format:

g JUSTIFIED
RIGHT

JUST

The JUSTIFIED clause can be speciTied only at the elementary item
level. JUST is an abbreviation for JUSTIFIED and has the same meaning.
It cannot be used with any data item which is numeric or for which
editing is specified.

General Rules:

1) When a receiving data item is described with the JUSTIFIED clause
and it is smaller than the sending item, the leftmost characters
are truncated; if larger. the unused character positions at the
left are filled with spaces.

2) When the JUSTIFIED clause is omitted. the standard rules for
aligning data within an elementary item apply. (See Standard
Alignment Rules in this chapter.)

5.4.2.5 The PICTURE Clause

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

ND—69.144.3 EN

70 ND COBOL Reference Manual
THE DATA DIVISION

Format:

PICTURE
IS character—string

T) H (“I I
The PICTURE clause must be specified for every elementary item except
an index data item. or computational. computational—1 and
computational~2 items. It may be specified only at the elementary
level. PIC is an abbreviated form of PICTURE and has the same meaning.

The character~string is made up of certain COBOL characters used as
symbols. The allowable combinations determine the category of the
elementary item. The maximum number of characters, i.e., symbols,
allowed in the string is 30.

List of Symbols

The following list of symbols is used to represent the five categories
of data that can be described in a PICTURE clause. (These are:
alphabetic, number, alphanumeric, alphanumeric edited and numeric
edited.) A brief description is given with each symbol. More detailed
descriptions appear later.

A
Each A in the character—string represents a character position
that can only contain a letter of the alphabet or a space.

Each 8 in the character—string represents a character position
into which the space will be inserted.

The letter S is used in a character~string to indicate the
presence (but not the representation or, necessarily. the
position) of an operational sign; it must be the leftmost
character in the PICTURE. It is not counted in determining the
size of the elementary item unless an associated SIGN clause
specifies the SEPARATE CHARACTER phrase. (An operational sign
indicates whether the value of the item is positive or negative.)

The V is used in a character position to indicate the location of
an assumed decimal point and may appear only once in a character—
string. It does not represent a character position and is
therefore not counted in the size of the elementary item. When
the assumed decimal point is to the right of the rightmost symbol
in the string, the V is redundant.

Each X in the character~string represents a character position
which contains any allowable character from the computer's
character set.

ND—60.144.3 EN

ND COBOL Reference Manual 71
THE DATA DIVISION

CS

Each Z in a character—string may only be used to represent the
leftmost leading numeric character positions which will be
replaced by a space character when the contents of that character
position is zero. Each Z is counted in the size of the item.

Each 9 in the characterastring represents a character position
which contains a numeral and is counted in the size of the item.

Each 0 (zero) in the character—string represents a character
position. into which the numeral zero will be inserted. It is
counted in the size of the item.

Each / (stroke) in the character—string represents a character
position into which the stroke character will be inserted. It is
counted in the size of the item.

Each , (comma) in the character—string represents a character
position into which the character . (comma) will be inserted.
This character position is counted in the size of the item and
the character must not be the last character in the PICTURE
character—string.

When the character . (period) appears in the character—string it
is an editing symbol which represents the decimal point for
alignment purposes. In addition, it represents a character
position into which the . (period) will be inserted. The
character is counted in the size of the item. In a program the
functions of the period and comma are exchanged if the clause
DECIMAL—POINT IS COMMA is stated in the SPECIAL—NAMES paragraph.
(In the exchange, the rules for the period apply to the comma and
vice versa when they appear in a PICTURE clause.) The insertion
character . (period) must not be the last character in the
PICTURE character—string.

CR, DB
These symbols are used as editing sign control symbols and
represent the character position into which the editing sign
control symbol will be placed. These symbols are mutually
exclusive in any one character—string, and each character used in
the symbol is counted in determining the size of the data item.

Each * (asterisk) in the character—string represents a leading
numeric character position into which an asterisk will be placed
when the contents of that position is zero. Each * is counted in
the size of the item.

The currency symbol in the character—string represents a
character position into which a currency symbol is to be placed.
This currency symbol is represented either by the currency sign
or by the single character specified in the CURRENCY SIGN clause
in the SPECIAL—NAMES paragraph. The currency symbol is counted in
the size of the item. (The default symbol is $ (dollar).)

ND-60.144.3 EN

72 ND COBOL Reference Manual
THE DATA DIVISION

Allowable svmbols for each data cateqorv

The following rules apply:

Alphabetic Items

a)

b)

The PICTURE character—string can only contain the symbols A and
8.

Its contents when represented in standard data format should be
any combination of the 26 (twenty—six) letters of the Roman
alphabet and the space from the COBOL character set.

Numeric Items

a)

b)

The PICTURE character—string may only contain the symbols 9, S
and V. The number of digit positions must range from 1 to 18
inclusive.

The contents of the item in standard format must be a combination
of the 10 Arabic numerals and, if signed, a representation of th
operational sign.

Alphanumeric Items

a) The PICTURE character—string is restricted to certain
combinations of the symbols A, X and 9. The item is treated as if
the character—string contained all X's. A character—string
containing all A's or all 9's does not define an alphanumeric
item.

The contents of the character—string when represented in standard
data format are allowable characters in the computer's character
set.

Alphanumeric Edited Items

a) The PICTURE character—string can contain: A, X. 9, B. 0 (zero)
and /. It must contain at least one of these combinations:

— at least one B and at least one X

— at least one 0 and at least one X

e at least one X and at least one /

— at least one A and at least one D

ND—80.144.3 EN

ND COBOL Reference Manual 73
THE DATA DIVISION

— at least one A and at least one /

b) The contents of the items in standard data format may be any
allowable character from the computer's character set.

Numeric Edited Items

a) The PICTURE character—string can contain the symbols: 8. V, Z. 9,
0 (zero). *, /. . (comma). . (period). +, —, CR (credit), 08
(debit) or the $ (currency) symbol. The allowable combinations
are determined from the order of precedence of symbols (see
chart) and the editing rules (see later in this section).

b) The character-string must contain at least one 0 (zero), 8. /, Z.
*, +. ~, , (comma). . (period). CR (credit), DB (debit) or
currency symbol and the number of digit positions that can be
represented must range from 1 to 18 inclusive.

c) The contents of the character positions that are allowed to
represent a digit in standard format, must be one of the
numerals.

The Size of an Elementary Item

The size of an elementary data item (1 e., the number of character
positions it occupies in standard data format) is determined by the
number of allowable symbols that represent character positions. An
integer enclosed in parentheses following the symbols A, , (comma), X.
). Z. *, 8, /, 0 (zero). +. ~ or the currency symbol indicates the
number of consecutive occurrences of the symbol.

5.4.2.6 Editinq Rules for the PICTURE Clause

Editing is performed in two ways, either by insertion or suppression
and replacement. Insertion editing breaks down into four types. These
are listed below together with the characters and categories each is
valid for.

ND—60.144.3 EN

74 ND COBOL Reference Manual
THE DATA DIVISION

Simple Insertion:

Category: Insertion Symbols:

Alphabetic B
Alphanumeric edited 8 0 /
Numeric Edited B 0 / ,

Examples:

Picture: Data: Edited Result:

99,999,000 12345 72,345,000
999,999 12345 012,345
A(5)8A(4) NORSKDATA NORSK DATA
X(4)B/BX(2) TYPEZS TYPE / 25

Each insertion symbol is included in the size of the item and
represents the position where the equivalent character will be
inserted.

Special Insertion:

Category2‘ insertion Symbol:

Numeric Edited . (period)

Examples:

Picture: Data: Edited Result:

99.99 123.4 23.40
99.99 12.34 12.34
99.99 1.234 01.23

The insertion symbol . (period) will be counted in the size of the
item, and shows the position where the actual decimal point will be
inserted. It is not allowed to appear in the same PICTURE character—
string as the symbol V (denoting an assumed decimal point); these two
symbols are mutually exclusive.

ND—80.144.3 EN

ND COBOL Reference Manual 75
THE DATA DIVISION

Fixed Insertion:

Category: Insertion Symbols:

Numeric edited + « CR DB (editing sign
control symbols)

S (currency symbol)

Only one currency symbol and only one of the editing sign control
symbols can be used. in a given PICTURE character»string. when the
symbols 'CR' or ~DB' are used they represent two characters positions
in determining the size of the item and they must represent the
rightmost character positions that are counted in the size of the
item. The symbol '+' or '—', when used. must be either the leftmost or
the rightmost character position to be counted in the size of the
item. The currency symbol must be the leftmost character position to
be counted in the size of the item. except that it can be preceded by
either a '+' or a '—' symbol. Fixed insertion editing results in the
insertion character occupying the same character position in the
edited item as it occupied in the PICTURE character—string. Editing
sign control symbols produces the following results depending upon the
value of the data item.

Editing Symbol in PICTURE Result:
character—string

Data Item Data Item
Positive or Zero Negative

+ + —

— space -
CR 2 spaces CR
DB 2 spaces DB

Examples:

Picture: Data: Edited Result:

+99.99 v12.345 —12.34
—99.99 +12.345 12.34
99.99+ +12.345 12.34+
$99.99 —12.34 $12.34
~$99.99 —12.34 —$12.34
$999.99 CR +12.34 $012.34
$999.99 08 «12.34 $012.34 08

ND—80.144.3 EN

78 ND COBOL Reference Manual
THE DATA DIVISION

Floating Insertion:

Category: Insertion Symbols:

Numeric edited $ + —

Floating insertion editing occurs when two or more of the above
insertion symbols appear as a string within the given PICTURE
character—string.

Examples:

Picture: Data: Edited Result:

$599 12 $12

3533899 1234 $1234
$$$$$9.99 .12 $0.12
+++/+++,+99 72 +12

————— 9,999 123456 —123,456
$333399.99CR “123 $123.00CR

within one PICTURE character—string the floating insertion symbols are
mutually exclusive. Simple insertion symbols or the period may appear
within a string of floating insertion symbols without causing
discontinuity (except in the special case where there is only one
Floating insertion symbol in the string to the left of a simple one or
a period).

The leftmost character of the floating insertion string represents the
leftmost limit of the floating symbol in the data item. The rightmost
character of the floating string represents the rightmost limit of the
floating symbols in the data item.

The second floating character from the left represents the leftmost
limit of the numeric data that can be stored in the data item. Nonzero
numeric data may replace all the characters at this limit or to the
right of it.

In a PICTURE character'string. there are only two ways of representing
floating insertion editing. One way is to represent any or all of the
leading numeric character positions on the left of the decimal point
by the insertion character. The other way is to represent all of the
numeric character positions in the PICTURE character—string by the
insertion character.

If the insertion characters are only to the left of the decimal point
in the PICTURE character—string, the result is that a single floating
insertion character will be placed into the character position
immediately preceding either the decimal point or the first nonzero
digit in the data represented by the insertion symbol string,
whichever is further to the left in the PICTURE character—string. The
character positions preceding the insertion character are replaced

ND—60.144.3 EN

ND COBOL Reference Manual 77
THE DATA DIVISION

with spaces.

If all numeric character positions in the PICTURE character—string are
represented by the insertion character, the result depends upon the
value of the data. If the value is zero the entire data item will
contain spaces. If the value is not zero, the result is the same as
when the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character—string
for the receiving data item must be the number of characters in the
sending data item. plus the number of nonfloating insertion characters
being edited into the receiving data item, plus one for the floating
insertion character.

Zero Suppression and Replacement Editing

The symbols Z and * are used to replace leading zeros in the edited
result by blanks or asterisks respectively. They can form floating
strings in the same way as the floating insertion symbols S, + and —
described earlier. (However, a floating string of zero suppression or
replacement symbols cannot appear in the same PICTURE character~string
as a floating string of insertion symbols.)

Examples:

Picture: Data: Result:

22.22 00.09 .09
22.22 00.00
. 00.00 *x_**
2299.99 0000.00 00.00
*****.99CR 123 **123.00
*,***.**+ -723.00 **123.00—
ZZZ.ZZ+ 0

Any simple insertion symbols or the period may appear within a
floating string of zero suppression or replacement characters and are
regarded as part of this string.

when editing is performed, any leading zero in the data that appears
in the same character position as a suppression symbol, is replaced by
the replacement character. Suppression stops at the leftmost character
that:

1) Does not correspond to a suppression symbol.

2) Is the decimal point.

3) Contains nonzero data.

If, however, the value of the data is zero and all the numeric
character positions in the PICTURE character—string are represented by
a Z, the resulting item will contain spaces only. If these positions
are represented by asterisks, the resulting item, except for the

ND~60.144.3 EN

78 ND COBOL Reference Manual
THE DATA DIVISION

decimal point, will contain asterisks.

Precedence Rules

Figure 5.1 shows the order of precedence when using characters as
symbols in a character~string. An 'X' at an intersection indicates
that the symbol(s) at the top of the column may precede the symbol(s)
at the left of the row. Arguments appearing in {} (braces) indicate
that the symbols are mutually exclusive. The currency symbol is shown
as CS.

At least one of the symbols A, X, Z, 9 or *, or at least two of the
symbols +, — or CS must appear in a PICTURE string.

ND—50.144.3 EN

ND COBOL Reference Manual
THE DATA DIVISION

First Non-Floating Floating Insertion & Suppressing/ Other Symbols
Symbol lnwrfionSymboB RepbcementSymbou

Second 8 0/, . + + CRCS{Z}{Z}+ + cscsg A 5
Symbol — — DB ’ ’ — — X

B X X X X X X X X X X X X X X X

0 X X X X X X X X X X X X X X X

/ X X X X X X X X X X X X X X X

§,xxxxxx xxxxxxxx
E
>
Q X X X X X X X X X X
2
E +
E _
g +
Q ~ X X X X X X X X X X X
0
E CR
é DB X X X X X X X X X X X0
2

CS X

Ell}E . X X X X X X X
w 2
§{a} X X X X X X X X X

E E+~g{ x x x x x xc_ _
OD.
';m+
gEU x x x x x x x x5 E
m5
@3303 x x X x x x
8a....

LL‘Bcs x x x x x x x x

9 X X X X X X X X X X X X X
AE x x x x x x

E
5 s
a
5
O V X X X X X X X X X X X

Figure 5.1.

ND-60.144.3 EN

80 ND COBOL Reference Manual
THE DATA DIVISION

5.4.2.7 The REDEFINES Clause in DATA DIVISION

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

Format:

level number data—name—1; REDEFINES data—name—Z

(Note: The level number, semicolon and data—name‘1 are shown in the
above format for reasons of clarity. Level number and data—name—l are
not part of the REDEFINES clause.)

Data—name—Z is the redefined item while data—name-1 supplies an
alternative description for the same area, i.e., is the redefining
item. '

The level numbers of data—name—l and data~namea2 must be identical but
not level 88.

General Rules:

1) Redefinition begins at data-name~1 and ends when a level number
less than or equal to that of data—name-Z is encountered. No
entry having a level number lower than those of data—names 1 and
2 may occur between these entries.

2) When the level number of data—name—1 is other than 01. it must
specify the same number of character positions that the data item
referenced by data~name~2 contains. It is important to observe
that the REDEFINES clause specifies the redefinition of a storage
area, not of the data items occupying the area.

3) Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the area
being redefined; no entries that define new character positions
may intervene.

4) Multiple level 01 entries subordinate to any given level
indicator represent redefinitions of the same area.

ND~60.144.3 EN

ND COBOL Reference Manual 81
THE DATA DIVISION

5) The entries giving the new description of the character positions
must not contain any VALUE clauses, except in condition name
entries.

Example:

02 A PICTURE A(6).
02 B REDEFINES A.

05 8—1 PICTURE X(2).
05 8~2 PICTURE 9(4).

02 C PICTURE 9(6).
02 D REDEFINES C.

05 0—1 PICTURE 99.
05 0—2 PICTURE 9999.
05 0—3 REDEFINES 0—2 PICTURE 99V99.

In this example A, C and 0-2 are redefined items while B. D and 0—3
are redefining items. Note that the REDEFINES clause has been
specified For the item 0—3 which is subordinate to the redefining
item, D.

5.4.2.8 The SIGN Clause

The SIGN clause specifies the position and mode of representation of
the operational Sign when it is necessary to describe these
explicitly.

Format:

LEADING
[SEPARATE CHARACTER]

TRAILING

The SIGN clause may be specified only for a numeric data description
entry whose PICTURE contains the character '3', or a group item
containing at least one such numeric data description entry.

N0—60.144.3 EN

82 ND COBOL Reference Manual
THE DATA DIVISION

The numeric data description entries to which the SIGN IS clause
applies must be described as USAGE IS DISPLAY.

At most one SIGN IS clause may apply to any given numeric data
description entry.

If the SEPARATE CHARACTER option is not present. then the operational
sign is assumed to be associated with the LEADING OR TRAILING digit
position (whichever is specified). The PICTURE character S is not
counted in the size of the item.

If the SEPARATE CHARACTER option is present, then the operational sign
is assumed to occupy the LEADING or TRAILING character position. In
this case the PICTURE character S is included in the size of the item.
The operational signs for positive and negative are the characters +
and ~ (minus) one of which must be present in the data at object time.

5.4.2.9 The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary item
on the natural boundaries of the computer memory.

Format:

SYNCHRONIZED
SYNC LEFT
SYNCHRONIZED—Z 3 g
SYNC~2 RIGHT

This clause may only appear with an elementary item.

SYNC is an abbreviation of SYNCHRONIZED.

General Rules:

1) This clause specifies that the subject data item is to be aligned
in the computer such that no other data item occupies any of the
character positions between the leftmost (SYNC LEFT) or rightmost
(SYNC RIGHT) 18—bits word boundaries delimiting this data item.
This applies on both the ND—1DD and ND—SDO computers. If the
number of character positions required to store this data item is
less than the number of character positions between the word
boundaries, the unused character positions (or some of them) must
not be used for any other data item. Such unused character

ND—60.144.3 EN

ND COBOL Reference Manual 83
THE DATA DIVISION

2)

4)

5)

positions, however, are included in:

a) the size of any group item(s) to which the elementary item
belongs and

b) the character positions redefined when this data item is the
object of a REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item is to be
positioned such that it will begin at the left character position
of the word boundary in which the elementary item is placed.

SYNCHRONIZED RIGHT specifies that the elementary item is to be
positioned such that it will terminate at the right character
position of the word boundary in which the elementary item is
placed

Whenever a SYNCHRONIZED item is referenced in the source program,
the original size of the item. as shown in the PICTURE clause, is
used in determining any action that depends on size, such as
justification. truncation or overflow.

If the data description of an item contains the SYNCHRONIZED
clause and an operational sign, the sign of the item appears in
the normal operational sign position. regardless of whether the
item is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data description
entry of a data item that also contains an OCCURS clause, or in
one which is subordinate to a data description entry that
contains an OCCURS clause. each occurrence of the item is
synchronized.

5-4-2-10W

The USAGE clause speciTies the format of a data item in the computer
storage.

ND-60.144.3 EN

84 ND COBOL Reference Manual
THE DATA DIVISION

Format:

COMPUTATIONAL
COMP
COMPUTATIONAL—1
COMP—1

[USAGE IS] COMPUTATIONAL—2
COMP-2
COMPUTATIONAL~3
COMP-3
PACKED—DECIMAL
DISPLAY
INDEX

If COMPUTATIONAL item has 3 PICTURE character-string, then it can
contain only '9‘s, the operational sign character '5'. or the implied
decimal point character 'V'. (Refer to the PICTURE clause section
earlier in this chapter.)

COMP is an abbreviation for COMPUTATIONAL.

General Rules:

1)

2)

3)

4)

5)

The USAGE clause can be written at any level. If the USAGE clause
is written at a group level. it applies to each elementary item
in the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

This clause specifies the manner in which a data item is
represented in the storage of a computer. It does not affect the
use of the data item, although the specifications for some
statements in the procedure division may restrict the USAGE
clause of the operands referred to. The USAGE clause may affect
the radix or type of character representation of the item.

The USAGE IS DISPLAY clause indicates that the format of the data
is a standard data format.

If the USAGE clause is not specified for an elementary item, or
for any group to which the item belongs, the usage is implicitly
DISPLAY.

All COMPUTATIONAL items are capable of representing a value to be
used in computations and must be numeric. If a group item is
described as COMPUTATIONAL. the elementary items in the group are
COMPUTATIONAL. The group item itself is not COMPUTATIONAL (cannot
be used in computations).

ND—60.164.3 EN

ND COBOL Reference Manual
THE DATA DIVISION

85

6) On the NO—TOO, COMPUTATIONAL, COMPUTATIONAL—1 and COMPUTATIONAL—2
the SYNCHRONIZEOitems are aligned on a word boundary even if

clause has not been specified.

7) COMPUTATIONAL-3 and PACKED-OECIMAL items are stored in packed
decimal format.

The terms COMPUTATIONAL, COMPUTATIONAL—1, COMPUTATIONAL~2.
COMPUTATIONAL—3 and PACKED—OECIMAL are explained under "Computational
Options". which follows.

5.4.2.11 Computational Options

The terms COMPUTATIONAL and COMPUTATIONAL—1 define integer variables.
They can be specified as 16 bit (2 byte) words or 32 bit (4 byte)
words. The size depends on the maximum number of digits in the item.

The sizes of COMPUTATIONAL (COMPUTATIONAL—1) items are shown below:

ND—100 ND~500

PICTURE definition 16 Bits 32 Bits
is omitted (2 Bytes) (4 Bytes)
(default integer)

PICTURE 59 (n) 16 Bits 16 Bits
where n<=4 (2 Bytes) (2 Bytes)

PICTURE 59 (n) 32 Bits 32 Bits
where n>=5 (4 Bytes) (4 Bytes)

Integer variables are always treated as if signed,
no sign character(s) in the PICTURE definition.

ND‘EO.144.3 EN

even when there is

86 ND COBOL Reference Manual
THE DATA DIVISION

The range of permissible values is shown below:

Length: Range:

16 bits (2 bytes) —32768 through 32767
32 bits (4 bytes) —2147483648 through 2147483647

COMPUTATIONAL AND COMPUTATIONAL~1 VALUES

Note: For fast performance, integer fields should be used as indexes.
as operands in MOVE operations, and for the arithmetic statements of
COBOL.

The term COMPUTATIONAL—2 is used for the description of real numbers.
The internal representation will be in floating point format.

On the ND—lOO, the COBOL system is self—adjusting for 48 and 32 bits
REAL.

On the ND—SOO, the size of the real item depends on the numeric length
of the PICTURE definition as shown below:

PICTURE definition 32 Bits

PICTURE 59(n)v9(m) 32 Bits
where n+m <2 6

PICTURE 39(n)V9(m) 54 Bits
where n+m)2 7

COMPUTATIONAL—2 variables may only be used as parameters in a
subroutine call, or for converting (MOVE) to or from COMPUTATIONAL~3
variables.

No VALUE clause can be specified for COMPUTATIONAL—2 items.

COMPUTATIONAL—3 items are identical to PACKED-DECIMAL items. They
appear in storage in packed decimal format. This is sometimes known as
8CD (Binary Coded Decimal). The digits are each represented by 4 bits
so that there are two adjacent digits per byte. The sign is contained
in the rightmost 4 bits of the rightmost byte. The numbers always fill
an integral number of bytes and are right justified. If necessary, the
leftmost half byte is filled with zero.

ND~60.144.3 EN

ND COBOL Reference Manual 87
THE DATA DIVISION

Each decimal digit is encoded as follows:

Digit/Sign: Binary Representation: Hexadecimal Representation:

L
D

Q
)
V

O
§

L
H

%
\L

J
N

N
Q

F (ND—10 only)
F (ND-100/ND—500 only}‘

N
N

‘
D

‘
N

N
A

‘
L
‘
Q

D
Q

Q
D

Q
Q

Q

fl
u

u
fi
u

g
g

Q
Q

u
~

A
-
~

s
D

Q
Q

D

u
m
fl
D

D
~

n
N

Q
D

-
L
Q

D
N

N
D

Q

fi
-
Q

u
Q

~
a
Q

N
Q

~
¢
D

~
n
Q

-
Q

-
Q

m
u

m
m

>
m

m
w

m
m

h
m

m
~

o
unsigned

NDxBU.144.3 EN

88 ND COBOL Reference Manual
THE DATA DIVISION

5.4.2.12 The VALUE Clause

The VALUE clause specifies the initial contents of a data item or the
value associated with a condition name.

Format 1:

VALUE IS literal

Format 2:

VALUE IS THROUGH
literal—1 literal—2

VALUES ARE THRU

THROUGH
, literal—3 literal—4

THRU

The words THRU and THROUGH are equivalent.

The VALUE clause is used in condition name entries in the File.
Linkage and Working—Storage Sections. However, in the Working—Storage
Section only. it also serves to specify the initial value of any data
item. The item takes this value at the beginning of the program;
without the specification. the value is unpredictable.

general Rules:

1) All numeric literals in the VALUE clause of an item must have a
value within the range of values indicated by the PICTURE clause,
and must not have a value which would require truncation of
nonzero digits. Nonnumeric literals must not exceed the size
indicated by the PICTURE clause. (A signed literal must have a
signed numeric PICTURE character—string assigned with it.)

ND'60.I44.3 EN

ND COBOL Reference Manual 89
THE DATA DIVISION

2) The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the
hierarchy of the item. The following rules apply:

a) If the category of the item is numeric, all literals in the
VALUE clause must be numeric. If the literal defines the
value of a Working—Storage item, the literal is aligned in
the data item according to the standard alignment rules.
(See Standard Alignment Rules.)

b) If the category of the item is alphabetic, alphanumeric,
alphanumeric edited or numeric edited, all literals in the
VALUE clause must be nonnumeric literals. The literal is
aligned in the data item as if the data item had been
described as alphanumeric. (See Standard Alignment Rules.)
Editing characters in the PICTURE clause are included in
determining the size of the data item (see the PICTURE
clause). but have no effect on the initialization of the
data item.Therefore, the VALUE for an edited item is
presented in an edited form.

c) Initialization takes place independent of any BLANK wHEN
ZERO or JUSTIFIED clause that may be specified.

3) A figurative constant may be substituted in both Format 1 and
Format 2 whenever a literal is specified.

4) The VALUE clause must not be written for a group containing items
with descriptions including JUSTIFIED, SYNCHRONIZED or USAGE
(other than USAGE IS DISPLAY).

S) In a condition name entry, the VALUE clause is required. The
VALUE clause and the condition name itself are the only two
clauses permitted in the entry. The characteristics of a
condition name are implicitly those of its conditional variable.

6) Format 2 can be used only in connection with condition names. and
each condition name must have a separate level—88 entry. The
special considerations for the use of Format 1 are:

a) The VALUE clause must not be specified for an entry that
contains, or is subordinate to an entry that contains, a
REDEFTNES or OCCURS clause.

b) If the VALUE clause is used in an entry at the group level,
the literal must be a figurative constant or a nonnumeric
literal, and the group area is initialized without
consideration for the individual elementary or group items
contained within this group. The VALUE clause cannot be
stated at the subordinate levels within this group.

See under the "Condition-Name Condition" for an example of the use of
the VALUE clause.

ND—60.144.3 EN

90 ND COBOL Reference Manual
THE DATA DIVISION

5.4.2.13 The EXPORT Clause

The EXPORT clause enables separately—compiled programs to access data
items.

Format:

EXPORT identifier

A communication can be established between COBOL and data areas in
PLANC or common areas in FORTRAN, without having to use parameters to
effect the transfer.

Exported data must be defined in the Working—Storage Section.

For the corresponding IMPORT clause in the Linkage Section see Section

— EXPORT/IMPORT are only allowed on 01/77 levels.

— No redefines are allowed on an identifier containing
EXPORT/IMPORT, but EXPORT/IMPORT identifiers can be redefined in
the usual way.

— The EXPORT and IMPORT clauses are an ND extension.

ND—EU.144.3 EN

ND COBOL Reference Manual 91

00.00.00.0000.00......OOOOOOOOOOOOOOO0.0.0.0...OOOOOOOOOOOOOOOOOOOOOO

6 THE PROCEDURE DIVISION

A Procedure Division is needed in every COBOL program. It is composed
of two parts:

1) optional Declaratives sections. to handle errors and exceptions
during execution;

2) procedures which contain the sections, paragraphs, sentences and
statements used to solve a data processing problem.

Execution begins with the first statement in the Procedure Division
after the Declaratives. Statements are executed in the order in which
they are presented for execution (unless the rules imply a different
order).

6.1 STRUCTURE OF THE PROCEDURE DIVISION

Format 1:

PROCEDURE DIVISION [USING data~name~1 [, data—name'2] ... J.

[DECLARATIVES.
{section~name SECTION [segment—number]. [gsg sentence.]

[paragraph-name. [sentence] ... J ... }

ND DECLARATIVES. J

{section—name SECTION [segment—number].

[paragraph—name. [sentence] ... J ... }

Format 2:

PROCEDURE DIVISION [USING data—name—1 [, data—name—Z] ...].

{paragraph name. [sentence] ... }

ND—BO.144.3 EN

92 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Note: The segment«number will be treated by this compiler as comments
only.

6.1.1 Qeclaratives

Declarative sections are preceded by the key word DECLARATIVES and
followed by the key words END DECLARATIVES. They are provided for the
processing of exceptional input—output conditions which cannot
normally be tested by the programmer. These additional procedures are
executed only at the time an I—O error occurs and cannot appear in the
regular sequence of procedural statements. Therefore, they are written
at the beginning of the Procedure Division in a series of Declarative
sections. Each of these sections is preceded by a USE sentence which
specifies the actions to be taken when the exceptional condition
occurs, (See the USE statement in the 1-0 Statement section of the
Procedure Division description.)

The key word DECLARATIVES is written on the line following the
Procedure Division header.

DECLARATIVES and END DECLARATIVES, when they appear, must be followed
by a period but without any text on the same lines. They must both be
written in area A.

If declarative sections are specified, the Procedure Division must be
divided into sections.

6.1.2 Procedures

Procedures, whose names are user—defined, occur in the Procedure
Division and may consist of one or more paragraphs and/or one or more
sections.

A section consists of a section header followed by any number of
paragraphs (including none).

A section header is a section name followed by the key word SECTION
then a period and a space. A section name. which is used to identify a
section, is user defined and must be unique.

ND—60.144.§ EN

ND COBOL Reference Manual 93
THE PROCEDURE DIVISION

A paragraph consists of a paragraph name. followed by a period
followed by a space and then any number of sentences (including none).
A paragraph name. which identifies a paragraph. is user defined. It
need not be unique since it can be qualified. If one paragraph in the
program is contained within a section, then all paragraphs must be
contained in sections.

A sentence is made up of one or more statements, followed by a period,
followed by a space. There are three categories of sentence:

1) A conditional sentence is a conditional statement, optionally
preceded by an imperative statement, followed by a period and a
space.

2) An imperative sentence is an imperative statement or series of
imperative statements finally followed by a period and a space.

3) A compiler directing sentence is a single compiler directing
statement followed by a period and a space.

A statement is a syntactically valid combination of words and symbols
beginning with a COBOL verb. Statements, like sentences. are divided
into three types:

1) A conditional statement specifies the action to be taken by the
object program, depending on the truth value of a condition.

2) An imperative statement directs that an unconditional action be
taken by the object program. It may consist of a series of
imperative statements.

3) A compiler directing statement causes a specific action to be
taken by the compiler during compilation.

An identifier makes unique references to a data item. It may be
qualified, indexed or subscripted.

6.2 ARITHMETIC EXPRESSIONS

6.2.1 Definition of an Arithmetic Expression

An arithmetic expression can be an identifier of a numeric elementary
item, a numeric literal, such identifiers and literals separated by
arithmetic operators. two arithmetic expressions separated by an
arithmetic operator, or an arithmetic expression enclosed in
parentheses. Any arithmetic expression may be preceded by a unary
operator. The permissible combinations of variables, numeric literals.
arithmetic operator and parentheses are given in the table below.

N0-5’0.144.3 EN

94 ND COBOL Reference Manual
THE PROCEDURE DIVISION

The identifiers and literals appearing in an arithmetic expression
must represent either numeric elementary items or numeric literals on
which arithmetic may be performed.

6.2.1.1 Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic
operators that may be used in arithmetic expressions. They are
represented by specific characters that must be preceded by a space
and followed by a space.

Binary Arith— Meaning:
metic Operators:

Unary Arith—
metic Operators:

Addition
Subtraction
Multiplication
Division
Exponentiation

Meaning:

The effect of multiplication by numeric literal +1
The effect of multiplication by numeric literal —1.

6.2.1.2 Evaluation Rules

1) Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within
parentheses
evaluation
inclusive

are evaluated first; within nested parentheses.
proceeds from the least inclusive set to the most
set. When parentheses are not used, or parenthesized

expressions are at the same level of inclusiveness, the following
hierarchical order of execution is implied:

ND—60.144.3 EN

ND COBOL Reference Manual
THE PROCEDURE DIVISION

1st — unary plus and minus

2nd — exponentiation

3rd — multiplication and division

4th — addition and subtraction

2) Parentheses are used either to eliminate ambiguities in
where consecutive operations of the same hierarchical
appear, or to modify the normal hierarchical sequence

95

logic
level

of
execution in expressions where it is necessary to have some
deviation from the normal precedence. When the sequence of
execution is not specified by parentheses, the order of execution
of consecutive operations of the same hierarchical level is
left to right.

from

3) The ways in which operators, variables and parentheses may be
combined in an arithmetic expression are summarized in the
where:

a) The letter 'P' indicates a permissible pair of symbols

b) The character '-' indicates an invalid pair

c) 'Variable' indicates an identifier or literal

Table of Combinations of Symbols in Arithmetic Expressions

table

First Symbol Second Symbol

Variable * / — + ** Unary + or — ()

Variable
*/+-**

Unary + or —
(
) — P — —

‘U
‘D

‘D
I

I 1
‘0

‘U
‘U

‘D
I

x

4) An arithmetic expression may only begin with the symbol '('. . .+

'—', or a variable and may only end with a ')' or a variable.
There must be a one—to—one correspondence between left and
parentheses of an arithmetic expression such that each
parenthesis is to the left of its corresponding
parenthesis.

ND-60.144.3 EN

right
left

right

98 ND COBOL Reference Manual
THE PROCEDURE DIVISION

5) Arithmetic expressions allow the user to combine arithmetic
operations without the restrictions on composite of operands
and/or receiving data items. See, for example, syntax rules given
for the ADD statement.

6.3 ARITHMETIC STATEMENTS

The arithmetic statements are the ADD. COMPUTE. DIVIDE, MULTIPLY and
SUBTRACT statements. They have several common features.

1) The data descriptions of the operands need not be the same; any
necessary conversion and decimal point alignment is supplied
throughout the calculation.

2) The maximum size of each operand is eighteen (18) decimal digits.
The composite of operands, which is a hypothetical data item
resulting from the superimposition of specified operands in a
statement aligned on their decimal points, must not contain more
than eighteen decimal digits.

Overlapping Operands

When a sending and receiving item in an arithmetic statement or an
INSPECT, MOVE. SET, STRING or UNSTRING statement share a part of their
storage areas, the result of the execution of such a statement is
undefined.

Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have
multiple results. Such statements behave as though they had been
written in the following way:

1) A statement which performs all arithmetic necessary to arrive at
the result to be stored in the receiving items, and stores that
result in a temporary storage location.

2) A sequence of statements transferring or combining the value of
this temporary location with a single result. These statements
are considered to be written in the same left—to—right sequence
the multiple results are listed in.

ND~60.144.3 EN

ND COBOL Reference Manual 97
THE PROCEDURE DIVISION

Incompatible Data

Except for the class condition (see the next section on Conditional
Expressions), when the contents of a data item are referenced in the
Procedure Division and the contents of that data item are not
compatible with the class specified for that data item by its PICTURE
clause, the result of such a reference is undefined.

6.3.1 Common Options

The three options common to the arithmetic statements are ROUNDED,
SIZE ERROR and CORRESPONDING. They are described in the following
subsections.

6.3.1.1 The ROQNQEQ Qgtion

If. after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than the
number of places provided for the fraction of the resultant—
identifier, truncation is relative to the size provided for the
resultant—identifier. when rounding is requested, the absolute value
of the resultant—identifier is increased by one (1) whenever the most
significant digit of the excess is greater than or equal to five.

5.3.1.2 The SIZE ERROR Option

If. after decimal point alignment, the absolute value of a result
exceeds the largest value that can be contained in the associated
resultantwidentifier, a size error condition exists. Division by zero
always causes a size error condition. The size error condition applies
only to the final results of an arithmetic operation. It does not
apply to intermediate results, except in the MULTIPLY and DIVIDE
statements, in which case the size error condition applies to the
intermediate results as well.

ND—BU.144.3 EN

98 ND COBOL Reference Manual
THE PROCEDURE DIVISION

If the ROUNDED phrase is specified, rounding takes place before
checking for size error. When such a size error condition occurs. the
subsequent action depends on whether or not the SIZE ERROR phrase is
specified.

1) If the SIZE ERROR phrase is not specified and a size error
condition occurs, the value of the resultant—identifier(s)
affected is underlined. Values of resultant—identifier(s) for
which no size error condition occurs. are unaffected by size
errors that occur for other resultant~identifier(s) during this
operation.

2) If the SIZE ERROR phrase is specfied and a size error condition
occurs. then the values of resultant—identifier(s) affected by
the size errors are not altered. Values of resultant—
identifier(s) for which no size error condition occurs are
unaffected by size errors occurring for other resultant—
identifier(s). After execution is complete. the imperative—
statement in the SIZE ERROR phrase is performed.

6.3.1.3 The CORRESPONDING Option

This option allows operations to be performed on elementary items of
the same name by specifying the group items to which they belong. The
following rules apply:

1) Both identifiers used must be group items.

2) CORRESPONDING is equivalent to the abbreviation CORR and is valid
for the MOVE statement.

3) A pair of data items from two different group items correspond if
the following conditions are true:

a) The two data items have the same name and the same
qualifiers up to but not including the group level.

b) In the case of a MOVE statement with the CORRESPONDING
option, at least one of the data items is an elementary
item.

c) The two data items do not include a REDEFINES, OCCURS, or
USAGE IS INDEX clause. Such items will be ignored together
with any subordinate items containing REDEFINES, OCCURS or
USAGE IS INDEX clauses.

ND~60.144.3 EN

ND COBOL Reference Manual 99
THE PROCEDURE DIVISION

d) The group items themselves, however. may contain or be
subordinate to data items containing REDEFINES or OCCURS
clauses.

6.3.1.4 Ine ADD §tatement

The ADD statement adds together two or more numeric operands, and
stores the resulting sum.

Format 1:

A 0 lg identifier~m [ROUNDED]
identifier—1; ,identifier—Z

literal—1 ,literal—Z

[,identifier—n [ROUNDEDJJ
[, 0N SIZE ERROR imperative—statement]

Format 2:

ADD
% identifier-1; identifier—2 ,identifier—B

literal—1 literal—2 ,literal-3

GIVING identifier—m [ROUNDED] [, identifier—n [ROUNDED] J

[; ON SIZE ERROR imperative-statement]

In format 1, each identifier must name an elementary numeric item.

In format 2. each identifier, except those following the word GIVING,
must be elementary numeric items. Each identifier following the word
GIVING must be either elementary numeric or numeric edited items.

ND-GOI144.3 EN

100 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Each literal must be a numeric literal.

when the TO option is used (format 1). all identifiers preceding it
are added together and then added to and stored immediately in
identifier—m. Then, if specified, they are added to identifieran and
stored there.

When the GIVING option is used (format 2). the values of the preceding
operands are added together and the sum is stored as the new value of
identifier—m and (if specified) identifier—n, etc.

For the ROUNDED and SIZE ERROR options, see section 6.3.1 Common
Options.

6.3.1.5 The COMPUTE Statement

The COMPUTE statement assigns the value of an arithmetic expression to
one or more data items.

Format:

QOMPQTE identifier—1 [RQUNDEQ] [, identifier—2 [ROUNDED] J
= arithmetic expression [; ON §1g§ ERROR imperative—statement]

Identifiers that only appear to the left of = must refer to either
elementary numeric or elementary numeric edited items.

The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on receiving items in the ADD, SUBTRACT,
MULTIPLY and DIVIDE statements. (When arithmetic operations must be
combined, using the COMPUTE statement is more efficient than writing
the separate arithmetic statements in series.)

When the COMPUTE statement is executed. the value of the arithmetic
statement is calculated and then this value is stored as the new value
of identifier—1, identifier—2, etc. (The arithmetic expression can be
any arithmetic expression as defined earlier in this chapter.)

For the ROUNDED and SIZE ERROR phrases. see 'Common Options' earlier
in this section.

ND*60.144.3 EN

ND COBOL Reference Manual 101
THE PROCEDURE DIVISION

An arithmetic expression consisting of a single identifier or literal
provides a method of setting the values of identifier—1, identifier—2,
etc. equal to the values of that single identifier or literal.

The number of integer and decimal places provided by the compiler for
intermediate results is shown in appendix 11. It is the user's
responsibility to define the operands of any arithmetic statement so
that they have large enough fields to provide the required accuracy of
results.

6.3.1.6 The DIVIDE Statement

The DIVIDE statement divides one numeric data item into others and
stores the resultant values as quotient and remainder.

Format 1:

identifier—7 '
DIVIDE INTO identifier-2 [ROUNDEDJ

literal-1

[. identifier—3 [gggfiggg] J

[:ON SIZE ERROR imperative—statement]

Format 2:

identifier—1 INTO identifier—2
DIVIDE GIVING

literal—1 g1 literal—2

identifier—3 [ROUNDED] [. identifier—4 [ROUNDED] J...

[:0N SIZE ERROR imperative—statement]

ND~60.144.3 EN

102 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Format 3:

identifier—1 INTO identifier—2
QIVIDE GIVING

literal—1 fix literal—2

identifier—3 [ROUNDED] [REMAINDEE identifier—4]

[:0N SIZE ERROR imperative—statement]

Each identifier. except those following the words GIVING and
REMAINDER, must be elementary numeric items. The identifiers following
GIVING and REMAINDER may also be numeric edited items.

Each literal must be a numeric literal.

In format 1, the value of identifier—1 or literal—1 is divided into
the value of identifier—2, and the quotient obtained replaces this
value. Similarly for identifiers 3. ... n, if specified.

In format 2, only one division takes place; the value of identifier—1
or literal—1 is divided into/by the value of identifier—2 or literal—
2, and the quotient is then stored in identifier—3 and (if specified)
identifier—4. etc.

In format 3, the division process is as for format 2 except that the
quotient is stored in identifiere3 and the value of the remainder in
identifier-4.

For the ROUNDED and SIZE ERROR options. see section 6.3.1 on Common
Options.

6.3.1.7 The U T PLY

The MULTIPLY statement computes the product of two numeric data items
and stores it.

ND—60.1k4.3 EN

ND COBOL Reference Manual 103
THE PROCEDURE DIVISION

Format 1:

identifier—1
_X identifier—2 [ROUNDEDJMULTIPLY g

literal—1

[. identifier—3 [ROUNDED] J

[:0N SIZE ERROR imperative-statement]

Format 2:

BY
identifier—1g g identifier—2 %

MULTIPLY 3

literal—1 literal—2

GIVING identifier—3 [ROUNDEQJ [, identifier—4 [ROUNDED] J

[:0N SIZE ERROR imperative—statement]

Each literal must be a numeric literal.

Each identifier must be a numeric elementary item. except that
identitiers following the word GIVING in format 2 may also be
elementary numeric items.

In format 1, identifier—2 is replaced by the product of it and the
first operand. This process is continued for all subsequent
identifiers.

when format 2 is used, the value of identifier—1 or numeric-literal~1
is multiplied by the value of the second operand. The result is stored
in identifier-3, identifier—k, etc.

NO—60.144.3 EN

104 ND COBOL Reference Manual
THE PROCEDURE DIVXSION

6.3.1.8 The SUBTRACT Statement

The SUBTRACT statement subtracts one or more numeric data items from
one or more items and stores the results.

Format 1:

identifier~1 ,identifier—Z
SUBTRACT

literal—1 ,literal—Z

FROM identifier—m [ROUNDEDJ [, identifier—n [ROUNDEDJ]

[:0N SIZE ERROR imperative—statement]

Format 2:

identifier—1 ,identifier~2
SUBTRACT g

literal—1 ,literal~2

g identifier—m g

literal~m

GIVING identifier-n [ROUNDED] [. identifier-0 [ROUNDED] J

[:0N SIZE ERROR imperative—statement]

Each identifier must represent a numeric elementary item. except when
following the word GIVING when it may also be an elementary numeric
edited item.

ND~60.144.3 EN

ND COBOL Reference Manual 105
THE PROCEDURE DIVISION

In format 1, the identifiers or literals preceding FROM are added
together and subtracted from identifiers m, n, ... in turn. After each
subtraction. the results are stored in these identifiers m. n.

In format 2. the identifier or literals preceding FROM are added
together and subtracted from identifier—m or literal-m. The result of
the subtraction is stored as the new value of identifier—n and any
other specified identifiers.

6.k CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable
the object program to select between alternate paths of control
depending upon the truth value of the condition. Conditional
expressions are specified in the IF, PERFORM and SEARCH statements.
There are two categories of conditions associated with conditional
expressions: simple conditions and complex conditions.

Simple Conditions

The simple conditions are the relation, class, condition—name and sign
conditions. A simple condition has a truth value of 'true' or 'false'.

Relation Condition

A relation condition causes a comparison of two operands, each of
which may be the data item referenced by an identifier, a literal, or
the value resulting from an arithmetic expression. A relation
condition has a truth value of 'true‘ if the relation exists between
the operands. Comparison of two numeric operands is permitted
regardless of the formats specified in their respective USAGE clauses.
However, for all other comparisons the operands must have the same
usage. If either of the operands is a group item, the nonnumeric
comparison rules apply.

ND-60.144.3 EN

106 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Format:

IS [NOTJGREATER THAN
identifier~1 IS [NOTJLESS THAN
literal—1 IS [NOTJEOUAL T'o
arithmetic—expression—1 IS [NOT]>

IS [NOT]<
IS [NOT]:

identifier—2
literal—2
arithmetic—expression~2

NOTE: The required relational characters '>'. '<'. and ‘=' are not
underlined in this format to avoid confusion with other symbols such
as (greater than or equal to).

Comparison of Numeric Operands

For operands whose class is numeric (refer to the Data Division,
Classes and Categories of Data). the algebraic values of the operands
are compared. The length of the literal or arithmetic expession
operands, in terms of number of digits represented, is not
significant. Zero is considered an unique value regardless of the
sign.

Comparison of these operands is permitted regardless of the manner in
which their usage is described. Unsigned numeric operands are
considered positive for purposes of comparison.

Comparison of Nonnumeric Operands

For nonnumeric operands. or one numeric and one nonnumeric operand, a
comparison is made with ND's standard character set. If one of the
operands is numeric it must be an integer data item or integer literal
and the following rules apply:

a) If the nonnumeric operand is an elementary data item or a
literal, the numeric operand is treated as though it were moved
to an elementary alphanumeric data item of the same size, and the
contents of this alphanumeric item were then compared to the
nonnumeric operand.

b) If the nonnumeric item is a group item. the numeric item is
treated as though it were moved to a group item of the same size,
and the contents of this group were compared to the nonnumeric
operand.

ND-60.144.3 EN

ND COBOL Reference Manual 107
THE PROCEDURE DIVISION

c) A non—integer numeric operand cannot be compared to a nonnumeric
operand.

The size of an operand is the total number of characters contained in
it.

If the operands are equal in size:

Characters in corresponding positions are compared, beginning
with the leftmost character. If a pair of unequal characters is
encountered, they are tested to ascertain their relative
positions in the collating sequence. The operand having the
character higher in the sequence is considered to be the greater
operand.

If the operands are unequal in size:

The comparison is made as if the shorter operand were extended to
the right with enough spaces to make the operands of equal size.

Class Condition

The class condition determines whether the operand is alphabetic or
numeric.

Format:

NUMERIC
identifier IS [NOT]

ALPHABETIC

The identifier is determined to be numeric if its contents consist
only of a combination of the digits 0 through 9.

If its PICTURE does not contain an operational sign, then the
identifier is considered as numeric if the contents are numeric and an
operational sign is not present. Otherwise, if its PICTURE contains an
operational sign. the identifier is considered to be numeric if it is
an elementary item with numeric contents and an operational sign.

Valid operational signs are:

For items described with the SIGN clause —

+ (53 octal) and — (55 octal)

ND—60.144.3 EN

108 ND COBOL Reference Manual
THE PROCEDURE DIVISION

The embedded operation signs —

+0 to +9
-0 to ~9

173, 101 to 111 (octal)
175. 112 to 122 (octal)

H
II

For PACKED—DECIMAL items, see under Computational Options.

The NUMERIC test is not valid for alphabetic items or for group items
which have operational signs present in items subordinate to them.

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to
be alphabetic only if the contents consist of any combination of the
alphabetic characters ’A' through '2' and the space.

Condition—Name Condition (Conditional Variable)

This condition determines whether a conditional variable has a value
equal to any of the value1s) associated with the condition—name.

Format:

condition~name;

The use of this condition is as an abbreviation for the relation
condition, and the rules for comparing a conditional variable with a
condition—name are the same as specified for the relation condition.

If the condition—name is associated with a range or ranges of values,
then the conditional variable is tested to determine whether or not
its value falls in this range. including the end values.

The result of the test is true if one of the values corresponding to
the condition—name equals the value of its associated conditional
variable.

As an example of its use, if the following is specified:

05 TYPE—REC PIC X.
88 TYPE—1 VALUE A THRU F.
88 TYPE—2 VALUE H.
88 TYPE—3 VALUE J THRU 2.

(where TYPE—REC is a conditional variable) then. to determine a type
classification of a record. the code:

ND—60.144.3 EN

ND COBOL Reference Manual 109
THE PROCEDURE DIVISION

IF TYPE~1

can cause a branch for values of A, B, C, D, E or F. (Refer to VALUE
clause in the Data Division and to 'Comparison of Nonnumeric Operands'
earlier in this section.)

i n n ‘t on

The sign condition determines whether or not the algebraic value of an
arithmetic expression is less than, greater than, or equal to zero.

General Format for a sign condition:

POSITIVE
arithmetic—expression IS [NOT] NEGATIVE

ZERO

When used, 'NOT' and the next key word specify one sign condition that
defines the algebraic test for truth value; e.g., 'NOT ZERO' is a
truth test €or a nonzero (positive or negative) value. An operand is
positive if its value is greater than zero, and zero if its value is
equal to zero. The arithmetic expression must contain at least one
reference to a variable.

Com x ndi 'ons

A complex condition is formed by combining simple conditions. combined
conditions and/or complex conditions with logical connectors (logical
operatdrs ’AND' and 'OR'), or negating these conditions with logical
negation (the logical operator 'NOT'). The truth value of a complex
condition, whether parenthesized or not, is that which results from
the interaction of all the logical operators on the individual values
of simple conditions, or the intermediate values of conditions
logically connected or logically negated.

ND—BO.144.3 EN

110 ND COBOL Reference Manual
THE PROCEDURE DIVISION

The logical operators and their meanings are:

Logical Operator: Meaning:

AND Logical conjunction; the truth value is 'true' if both
conditions are true; 'false' if one or both conditions is
false.

0R Logical inclusive OR; the truth value is 'true‘ if one or
both of the conditions is true; 'false' if both conditions
are false.

NOT Logical negation or reversal of truth value; the truth value
is 'true' if the condition if false; 'false' if the
condition is true.

The logical operators must be preceded by a space and followed by a
space.

Neoated Simole Conditions

A simple condition (see earlier in this section) is negated through
the use of the logical operator 'NOT'. The negated simple condition
effects the opposite truth value for a simple condition.

Format:

NOT simple condition;

Combined Conditions

A combined condition results from connecting conditions with one of
the logical operators 'AND' or 'OR'.

Format:

condition conditionE
E

ND—80.144 3 EN

ND COBOL Reference Manual 111
THE PROCEDURE DIVISION

where 'condition' may be:

1) A simple condition. or

2) A negated simple condition, or

3) A combined condition. or

4) A negated combined condition (i.e., the 'NOT' logical operator
followed by a combined condition enclosed within parentheses), or

5) Combinations of the above. specified according to the rules
summarized in the following table, Combinations of Conditions,
Logical Operators, and Parentheses.

Parentheses are optional when 'AND', 'OR' or 'NOT' are used. The table
indicates the ways in which conditions and logical operators may be
combined and parenthesized. There must be a one-to—one correspondence
between left and right parenthesis such that each left parentheses is
to the left of its corresponding right parenthesis.

TABLE OF COMBINATIONS OF CONDITIONS. LOGICAL OPERATORS, AND PARENTHESES

Location in In a left-to—right sequence of elements:
conditional

Given the expression Element. when not Element. when not
following first. may be last, may be
element First Last immediately pre— immediately follow~

ceded by only: ed by only:

simple— Yes Yes OR, NOT, AND, (OR, AND,)
condition

OR or AND No No simple— simple—condition,
condition.) NOT, (

NOT Yes No OR. AND. (simple—
condition, (

(Yes No OR, NO, AND, (simple-condition,
NOT. (

) No Yes simple— OR. AND.)
condition,)

Thus, the element pair 'OR NOT' is permissible whereas the pair 'NOT
OR‘ is not permissible; 'NOT (' is permissible whereas 'NOT NOT' is
not permissible.

ND—60.144.3 EN

112 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with
logical connectives in a consecutive sequence. such that a succeeding
relation condition contains a subject or subject and relational
operator that is common with the preceding relation condition (and no
parentheses are used within such a consecutive sequence). any relation
condition except the first may be abbreviated by:

1) The omission of the subject, or

2) The omission of the subject and relational operator.

Format For an abbreviated combined relation condition:

A D
relation—condition [NOT] [relational—operator] object

QR

within a sequence of relation conditons, both of the above forms of
abbreviation may be used. The effect of using such abbreviations is as
if the last preceding stated subject were inserted in place of the
omitted subject, and the last stated relational operator were inserted
in place of the omitted relational operator. The result of such
implied insertion must comply with the rules given in the table,
Combinations of Conditions, Logical Operators and Parentheses, shown
above. This insertion of an omitted subject and/or relational operator
terminates once a complete simple condition is encountered within a
complex condition.

The interpretation of the word 'NOT’ in an abbreviated combined
relation condition is as follows:

1) If the word immediately following 'NOT' is 'GREATER', '>',
'LESS', '(', EQUAL. '2', then the 'NOT’ participates as a part of
the relational operator; otherwise

2) The 'NOT' is interpreted as a logical operator and, therefore.
the implied insertion of subject or relational operator results
in a negated relation condition.

ND—60.144.3 EN

ND COBOL Reference Manual 113
THE PROCEDURE DIVISION

Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

Abbreviated Combined Expanded Equivalent
Relation Condition

a > D AND NOT < C OR d ((a > D) AND (a NOT < C)}0R
(a NOT < d)

3 NOT EQUAL b 0R C (3 NOT EQUAL b) OR (3 NOT EQUAL C)

NOT a : b 0R c (NOT (a = b))OR (a = C}

NOT (a GREATER b 0R < C) NOT ((3 GREATER b) OR (a < C))

NOT (a NOT > D AND C AND NOT d) NOT ((((8 NOT > D) AND (a NOT > C))
AND (NOT (3 NOT) d}}))

Condition Evaluation Rules

Parentheses may be used to specify the order in which conditions are
evaluated when it is necessary to depart from the implied evaluation
sequence. In this case, logical evaluation proceeds in the following
order:

1) Conditions within parentheses are evaluated first.

2) Within nested parentheses. evaluation proceeds from the least
inclusive condition to the most inclusive condition. If
parentheses are not used, then the evaluation order is:

1) Arithmetic expressions

ND-60.144.3 EN

114 ND COBOL Reference Manual
THE PROCEDURE DIVISION

2) Simple conditions in the following
order:

relation

Class

condition—name

sign

3) Negated simple—conditions in the same order as in 2.

4) Combined conditions in the following
order:

OR

AND

NOT

5) Negated combined conditions in the order as in 4.

Consecutive operands at the same hierarchical level are evaluated from
left to right.

8.5 CONDITIONAL STATEMENTS

8.5.1 The IF Statement

The IF statement causes a condition to be evaluated. The subsequent
execution sequence depends upon whether the condition is true or
false.

ND—50.144.3 EN

ND COBOL Reference Manual 115
THE PROCEDURE DIVISION

Format 1:

statement—1 ELSE statement—2
if condition

NEXT SENTENCE ELSE NEXT SENTENCE

Format 2 (An ND Extension):

statement—3 ELSE statement—4
LE condition THEN

NEXT SENTENCE ELSE NEXT SENTENCE

[END~IFJ

Format 3 (An ND Extension):

statementnS
lfi condition~1 THEN

NEXT SENTENCE

statement—6
ELSE—IF condition—2 THEN

NEXT SENTENCE

statement-7
[END—IF J

NEXT SENTENCE

ND-60.144.3 EN

116 ND COBOL Reference Manual
THE PROCEDURE DIVISION

General Rules for Format 1:

1) If the condition tested is true, one of the following actions
takes place:

a) Statement~1, if specified, is executed. If this contains a
procedure-branching statement, control is transferred
according to the rules of that statement. If it does not.
the ELSE phrase. if specified. is ignored and control passes
to the next executable sentence.

b) If the NEXT SENTENCE phrase is specified instead of
statement-1, the ELSE phrase, if present, is ignored and
control passes to the next executable sentence.

2) If the condition tested is false, one of the following actions
occurs:

a) ELSE statement—2. if specified, is executed. If this "“““
statement contains a procedure—branching statement, control
is transferred according to the rules for that statement.
Otherwise control is passed to the next executable sentence.

b) ELSE NEXT SENTENCE, if specified, is executed, i.e.
statement—1, if present, is ignored and control passes to
the next executable sentence.

c) If ELSE NEXT SENTENCE is omitted, control passes to the next
executable sentence.

‘3) Statement—1 and/or statement—2 may contain an IF statement. In
this case, the statement is said to be nested. Statements 1 and 2
represent either an imperative statement or a conditional
statement. Either of these may be followed by a conditional
statement. ,

4) The ELSE NEXT SENTENCE option may be omitted if it immediately
precedes the terminal period of the sentence.

General Rules for Format 2:

1) Statements 3 and 4 represent imperative statements.

2) If the condition is true and the ELSE clause is omitted, then if
statement-3 has been coded. this statement together with any
further imperative statements preceding the sentence terminator,
will be executed. Control is then passed implicitly to the next
sentence unless a GO TO procedure~name appears in statement—3. If
the condition is true and NEXT SENTENCE is coded. control passes
explicitly to the next sentence.

ND-60.144.3 EN

ND COBOL Reference Manual 117
THE PROCEDURE DIVISION

3) If the condition is true and the ELSE clause is present then
statement—I (together with any further imperative statements
preceding the sentence terminator) is executedor the NEXT
SENTENCE of this clause. If the ELSE clause is absent. control
passes to the next sentence Following the END—IF.

L) No period character (.) should occur between the IF and END—IF
verbs inclusively.

General Rules for Format 3:

1) Statements 5. 6 and 7 are imperative statements.

2) If the ELSE—IF clause is omitted then the rules are as for format
2. (Except that statement-5 should be substituted for statement-3
and statement—7 for statement—4.)

3) IF condition—1 is false, then if condition-2 is true. the rules
are as for format—2 if statement—8 is substituted For statement—3
and statement—7 For statement—A.

5.5.1.1 Nggtgd 1E §§§L§m§9§§

The presence of one or more IF statements within an initial IF
statement constitutes a "nested" IF statement. Statements 1 and 2 may
consist of one or more imperative statements and/or a conditional
statement. If an IF statement appears as the whole or part of
statements 1 or 2, it is said to be nested.

IF statements within IF statements may be considered as paired IF and
ELSE combinations. proceeding From left to right. Thus, any ELSE
encountered is considered to apply to the immediately preceding IF
that has not already been paired with an ELSE.

ND—60.144.3 EN

118 ND COBOL Reference Manual
THE PROCEDURE DIVISION

The structure of a possible nested IF statement may be as follows:

IF condition—1 statement—A
IF conditon—Z

IF condition—3 statement-B
ELSE statement—C

ELSE statement-D
IF condition—4
IF condition—Estatement—E

ELSE statement—F.

The Flowchart For this example would appear as:

NEXT
SENTENCE

ND—80.144.3 EN-

ND COBOL Reference Manual 119
THE PROCEDURE DIVISION

6.5.2 The Q0 §tg§§m§gt (Ag NQ-Exggnsiggl

A DO statement specifies a loop which can be used for coding iterative
procedures. There are two basic formats:

Format 1:

QQ [statement] [{ flHlLE condition } sentence] ... £flQ;QQ

Format 2:

identifier—2 [{1} integer—1]
QQ EQR identifier—1 fiflgfi

integer~2

QB identifier—5 [{1} integer—4]
[fix integer—3] IQ

integer—5QQKN

sentence [{flfllLfi condition} sentence] ... END-20

In format 2, the identifiers must be numeric items whose PICTURE
specification does not contain a decimal point. Integers 2, 3, and 5
are initial, incremental, and terminal parameters respectively and
they must be integers. The incremental parameter should be greater
than or equal to 1, if it is not present it is assumed to be 1 (one).
The UP/DONN options, if specified, denote positive or negative
increments, respectively.

At execution time, the identifier takes the value of the initial
parameter. and the loop is performed until either the initial
parameter is greater than the terminal parameter, or until the
condition in the WHILE phrase (if present) is no longer true. Control
then passes to the next executable statement following the
corresponding END—DO statement.

ND—60.144.3 EN

120 ND COBOL Reference Manual
THE PROCEDURE DIVISION

In format 1. the identifier must be specified as in format 2. If the
WHILE condition phrase does not appear. the Do~loop may be regarded as
an infinite loop (see Example 3 for an example of its use).

The WHILE condition phrase which appears in both formats. may also
appear any number of times within the DO—loop. DO—loops may be nested
up to 50 levels. Any DO—loop may be left via the EXIT verb. (See also
EXIT—DO and EXIT—ALL—DO in section 6.8.3.)

EXAMPLE 1:

DO FOR N FROM 1 BY 1 TO 50
MOVE CORRESPONDING MASTER‘REClN) TO 0UT-REC(N).
WRITE 0UTRECT(N).
END-00..

EXAMPLE 2:

DO WHILE I (100.
WHILE M = N.
WHILE P NOT EOUAL R OR 3.
WRITE OUT-FILE.
END—DO.

EXAMPLE 3:

00.
****t*************************************

* read file with unknown number of records
************************************t*t***

READ FILE IN—FILE AT END EXIT—DD.
END—DO.

6.6 DATA MANIPULATION STATEMENTS

6.6.1 Screen Handling Facilities

Screen Handling for COBOL is an ND Extension for which the following
Data Manipulation Statements can be used. These are ACCEPT (format 3),
ACCEPT—ERROR. ACCEPT—RETURN, BLANK, RESET and DISPLAY (format 2). and
they are described individually below. Section 6.6.2 provides a few
examples of screen handling in which the function and interaction of
these statements are demonstrated.

ND—60.144.3 EN

ND COBOL Reference Manual 121
THE PROCEDURE DIVISION

These features can be used on terminals which are suitable for the ND
editors NOTIS—WP. PED. etc.

The ESC key is automatically disabled when one of the following screen
handling statements is used:

1) BLANK

2) ACCEPT {position specifier}

3) DISPLAY {position specifier}

This is done to avoid nonsensical screen pictures and inconsistent
indexed and random access files. The ESC key is automatically enabled
when the program terminates.

8.5.1.1 The ACCEPT Statement

The ACCEPT statement allows the user to enter data into specified
identifiers from her terminal.

Note that when the user has started entering or editing data in the
data field of an ACCEPT—statement, the data field can only be left
through

1) pressing the carriage return key;

2) pressing the CANCEL key if any actions for that key are specified
in the ACCEPT statement. When a data field is left through
CANCEL, the contents of the field will be left as they were when
the key was pressed;

3) reaching the end of the data field if the AUTO—SKIP option has
been specified.

while entering and editing data, the NOTIS conventions for cursor
movements etc. will be followed.

Format 1 ~ Data Transfer:

ACCEPT identifier

ND—60.144.3 EN

122

Format 2 - System Information Transfer:

ND COBOL Reference Manual
THE PROCEDURE DIVISION

ACCEPT identifier FROM

flQA_£
2A_
Ilflfi
£8fl;llfl£

_<

Format 3 ~ Screen Handling:

[BEEP]
[$8ACfi-F1LL]
[LENQTH~§H§§K]
[AUTO-SKIP]
[PROMPT]
[BLANK-WHéN-ZERO]
[MUfiT]
[QPQATEJ
[JQSTIFIED—RIGHT]
[lNVI§IBLE]
[INVERSE-YIDEO]
[flLlflK]
[UNDERLINE]
[UPPER-CASE]
[LOW~INIENSITY]
[NORMAL]
[HELP Label]
[RE*DISPLAY Label]
[CANCEL Label]
[F1’F8 Label]
[QB Label]
[QOWN Label]
[flgflfi Label]
[EXIT Label]
[LEET Label]
[RIGHT Label]
[CONTROL Labell]

AQCEPT position specifier identifier (WITH

where:

Label is a paragraph or a section name, and

identifier is the name of the receiving field.

ND—60.144.3 EN

ND COBOL Reference Manual 123
THE PROCEDURE DIVISION

[F1—F8 LabelJLabel denotes the actions to be taken when one of
the function keys on the user's terminal is pressed. This adds
16 more keys to the ones available with the ACCEPT—statement — 8
shifted and 8 unshifted. Details will be given later in this
section.

Position specifier is the screen position defined as:

(Line, column)

both line and column being defined by:

identifier [{ 1 } integer]]

integer

Format 1 is used to transfer data from an input’output device into the
identifier. The input device is assumed to be the system console in
the case of RT-users, and a screen terminal in the case of Timesharing
and Batch users. When running batch or mode files in background mode,
data is accepted from the next line on the respective file. (IF the
FROM option is present, then the mnemonic—name is treated as a comment
only.)

Format 2 is used to transfer system information (DAY, DATE, TIME, CPU—
TIME) into the identifier according to the rules of the MOVE
statement.

DATE is composed of a sequence of data elements as follows:

2 digits for year of century, 2 digits for month of year, 2
digits for day of month. Therefore, September 1, 1980 would
be expressed as 800901.

DAY has the sequence of data elements as follows:

2 digits for year of century, 3 digits for day of year. Thus,
September 1, 1980 is expressed as 80245.

TIME is composed of the data elements hours, minutes, seconds and
hundreths of a second. For example, 2:41 p.m. would be
expressed as 14410000.

CPU—TIME consists of the data element CPU—time expressed in
milliseconds.

In format 3, the receiving field (identifier) is described by a
PICTURE or USAGE specification. The data input Field is a string of
character positions, starting at the location indicated by the
position specifier. Valid data which may be entered is governed by the
rules for the associated PICTURE specification (see the Picture Clause

ND~50.144.3 EN

124 ND COBOL Reference Manual
THE PROCEDURE DIVISION

The identifier may have its USAGE described as COMPUTATIONAL (see
Section 5.4.2.10). In this case, if the PICURE clause is omitted, then
the size of the field for single~word items is S + a sign position.
and for double~word items the size is 10 + the sign position.

The identifier may also have its USAGE described as PACKEDnDECIMAL.

Format 3 is used to accept data into a field from a screen. The
options in the WITH phrase which describe the appearance of the field
on the screen, can appear in any order or combination. However, in
some cases the type of options which are operative simultaneously will
dependent on the terminal type.

The effects of each option are as follows:

BEEP will sound the terminal's audio alarm when the system
is ready to ACCEPT the field.

SPACE—FILL is for use with numeric fields. Where the identifier
has a PICTURE specification of 9's only, leading zeros
are set to blanks. (0n the screen only.)

LENGTH—CHECK causes the entry of a field terminator to be ignored
until each input position has been operated upon.

AUTO~SKIP specifies that when an input field has been filled by
the operator, the field will be terminated
automatically.

PROMPT sets the data input field on the screen to indicate
that all positions contain the period character (" ”)
before input is accepted.

UPDATE will initialize the data input field with the initial
contents of the receiving field. These data can be
edited as if they were typed by the operator. UPDATE
and PROMPT can be used in the same ACCEPT statement.

INVISIBLE will prevent the data entered into the input field
from being displayed on the screen. This may be
required for security reasons, such as when typing
passwords etc.

INVERSE~VIDEO produces a bright background in the identifier display
area.

ND-60.144.3 EN

ND COBOL Reference Manual 125
THE PROCEDURE DIVISION

BLINK

UNDERLINE

LOW—INTENSITY

NORMAL

8LANK¢WHEN-ZERO

UPPER—CASE

JUSTIFIED—RIGHT

UP, DOWN, HOME,

CONTROL label

causes the display of the identifier to flash on and
off.

underlines the identifier.

reduces the intensity of the display.

resets the effect of a previous INVERSE VIDEO, LOW—
INTENSITY, BLINK or UNDERLINE.

implies that some data must be entered into the field
of the ACCEPT statement before it can be left.

causes the item to be displayed as all blanks if the
item's value is zero.

causes the field to be converted to upper case when it
contains input data.

causes right justification of the field when it has
been entered. The option can be used with alphanumeric
fields only.

EXIT, LEFT, and RIGHT
represent terminal—dependent control keys which are
used for moving the cursor between specific data input
fields. These data input fields are identified by the
name of the paragraph or section in which they occur
in the Procedure Division.

provides the user with an opportunity to test for
errors of her own definition. On entering carriage
return, the section or paragraph with the label
"Label" receives control. If a user—defined error is
found then an ACCEPT—ERROR or ACCEPT—RETURN statement
following the test will return control to the ACCEPT
statement, at the end of the section or paragraph. The
field must now be reentered. If the possible error did
not occur, then the statement following the ACCEPT is
executed.

ND-60.144.3 EN

128 ND COBOL Reference Manual
THE PROCEDURE DIVISION

FI-FB label The label denotes a paragraph or section to be
PERFORMed when one of the function keys is pressed
during data entry. By using the shift key, up to 16
different actions may be defined. On exit from the
section or paragraph. the control will automatically
be given to the current field or the next field
according to the next section.

If one of the 16 possible keys has been hit, the
program must identify which one it was by using the
system variable C850. Details of C850 and other system
variables with a table of the possible values they can
have, are given in appendix 8.

HELP label The label points to a paragraph or section to be used
if the HELP key is pressed. The HELP information is
best displayed inside a FRAME with AUTO~ERASE. (See
further description in the DISPLAY—statement and the
COB—GEN Manual.)

RE—DISPLAY This option is used together with the HELP option
label only, and only when the HELP information overlaps the

original image. (See also the COB-GEN Reference
Manual, ND—60.172.)

CANCEL label Denotes a label that is the name of a
paragraph/section which will be executed like the EXIT
option, except:

— it will work regardless of the other field
attributes.

— it will work inside an ACCEPT field as well as at
the start.

Carriage return (CR) acts as a terminator character. If LENGTH-CHECK
has not been coded. it terminates the ACCEPT. Then the cursor
automatically moves to the beginning of the next data input field.

The carriage return may be used at any position in the data input
field. unless LENGTH~CHECK has been coded with the associated ACCEPT
statement.

Editing within data input fields of alphanumeric types before
termination of the ACCEPT statement may be performed using CTRL+A or
 key to delete a single character at a time, CTRL+E or <EXPAND>
to insert characters, CTRL+w to delete all characters and left and
right arrows to move the cursor inside the field.

ND-60.144.3 EN

ND COBOL Reference Manual 127
THE PROCEDURE DIVISION

CTRL+R twice or CTRL+F twice will position the cursor at the beginning
or end of the ACCEPT field.

CTRL+A and CRTL+w may be used also in numeric fields.

Upon termination of the ACCEPT statement, data is transferred to the
receiving field and edited according to the rules of the corresponding
PICTURE specifications. with numeric fields there is an automatic
display after "acceptance" of data input.

6.6.1.2 The ACCEPT—ERROR Statement

Format:

ACCEPT-ERROR

This statement is used in conjunction with an ACCEPT statement having
the option CONTROL label or F1—F8 label. ACCEPT—ERROR is coded within
the section or paragraph designated by "label“. If a userwdefined
error has been detected, ACCEPT—ERROR causes a return to the ACCEPT
statement. at the end of the section or para raph. The field must now
be reentered. The navigation keys (+, + T. T, \) will be disabled. IfI

the user~defined error is not detected, control passes to the
statement following the ACCEPT statement.

6.6.1.3 The ACCEPT-RETURN Statement

Format:

ACCEPTwRETURN

This statement has the same effect as ACCEPT-ERROR, except that the
navigation keys (+, e, T, l, \) will not be disabled.

ND-60.144.3 EN

128 ND COBOL Reference Manual
THE PROCEDURE DIVISION

8.6.1.4 The BLANK Statement

The BLANK statement erases the whole or a part of the screen.

Format 1:

BLANK SCREEN

Format 2:

LINE
BLANK n1 [IQ n2] [COLUMN n3 19 n4]

LINES

where n1. n2 , n3, and n4 must be integers or identifiers defined with
no decimal point.

With format 1, the entire screen is erased, and the cursor is placed
in the home position (line 1, column 1). Format 2 will blank out the
line n1 to n2 inclusively. between columns n3 and n4 inclusively.

6.8.1.5 The DISPLAY Statement

The DISPLAY statement causes low volume data to be transferred to
printing terminals or screens.

ND-60.144.3 EN

ND COBOL Reference Manual 129
THE PROCEDURE DIVISION

Format 1:

identifier—1 , identifier»2
DISPLAY ... [WITH fig ADVANCING]

literal—1 , literal~2

[UPON mnemonic—name]

Literal—1 and literal-2 may be any figurative constant. except ALL.

The operand(s) are transferred to the system output device, if
necessary with conversion.

The UPON option has no effect and exists for syntax reasons only.

If the WITH NO ADVANCING phrase is specified, the system output device
will not advance one line on the page before displaying the output.
Otherwise. automatic advancement of one line will occur.

Format 2:

identifier—3 , identifier—4
DISPLAY position specifier

literal~3 , literal—4

[WITH [gggfi]
[SPACE~FILLJ
[INVERSE—VIDEO]
[BLINK]
[UNDERLINEJ
[LOW»INTENSITYJ
[NORMAL]
[AUTO~ERASEJ
[PROMPT]
[BLANK—WHEN—ZEROJ]

Position specifier, the screen position. is defined as:

(line, column)

ND—60.144.3 EN

130 ND COBOL Reference Manual
THE PROCEDURE DIVISION

both line and column being defined by:

identifier [{1} integer]

integer

Format 2. which forms part of Screen Handling, displays data on a
video terminal. Messages or the contents of a data item can appear on
the screen with various forms of visual emphasis. The data consists of
either literal-3 or identifier~3 and the display is described by the
options listed in the WITH phrase. These options may appear in any
order. However in some cases the number of options which may appear
simultaneously will be terminal—dependent.

They have the following meanings:

BEEP the terminal beeps when the DISPLAY statement is
initialized.

SPACE—FILL is for use where identifier—4 describes a numeric
Field. If the PICTURE specification contains only 9's,
leading zeros are set to blanks (on the screen only).

INVERSE~VIDEO produces a bright background in the display area of
identifier—4 or literal—4. The characters themselves
appear in the normal background intensity.

BLINK the display of identifier—4 or literal—4 flashes off
and on.

UNDERLINE underlines literal~4 or the contents of identifier—4
when they are displayed on the screen.

LOW~INTENSITY gives reduced display intensity.

NORMAL resets the effect of a previous INVERSE—VIDEO, LON—
INTENSITY, BLINK, or UNDERLINE.

AUTO~ERASE. When the first character of a following ACCEPT
statement is entered, all fields coded with AUTO—ERASE
(up to 16) will disappear automatically.

PROMPT. If the field is all zeros or all spaces, the prompt
character period (".") will appear in each position
instead.

BLANK-WHEN-ZERO.
causes the item to be displayed as all blanks if the
item's value is zero.

ND*60.144.3 EN

ND COBOL Reference Manual 131
THE PROCEDURE DIVISION

Format 3:

DISPLAY

identifier—1 [{1} integer—1]; identifier-2 [{1} integer—3]

integer—2 integer—4

identifier—3 identifier—4

literal—1 literal—2

[WITH [SPACE—FILL]
[HEADING]
[REMARKS]
[AUTO~ERASE]]

Format 3 is used to draw frames around selected areas of the screen.
The part within the first parentheses is a position specification. as
in the previous format. The specified position is taken to be the
upper left corner of a frame of the size given after the FRAME phrase.
The first number after FRAME gives the number of lines down from the
specified point that the frame will reach. The second number gives the
number of columns that the frame will reach to the right of the
specified point.

The format has four additional options:

SPACE—FILL erases the interior of the frame, i.e.. it writes blanks
into each character position inside the frame.

HEADING makes COBOL draw a line segment across the third line
inside the frame, thus making room for a headline at the
second line of the frame.

REMARKS leaves room for a remark at the second line from the
bottom line of the frame. with a line across the frame
abovethe remark.

AUTO—ERASE erases the frame (with contents) automatically upon the
following ACCEPT. A very useful DISPLAY option when using
the HELP option in the ACCEPT statement.

ND-60.144.3 EN

132 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Format 4:

DI PLAY

gidentifier—1 [{:} integer—1]; gidentifier»2 [{1} integer—31%

integer—2 integer‘4

FULL—BAR identifier~3 identifier—4
Jl‘

SPARSE—BAR g literal~1 g g literal—2

Format 4 allows COBOL to draw vertical histogram bars from available
data. It has a position specification part. like the previous formats.
In format 4. however, the position specified inside the parentheses is
the lower left corner of the bar. Select one of two different
shadings:

FULL—BAR dense shading.

SPARSE—BAR half~tone shading.

The size of the bar must be specified after the shading option. The
first of the two numbers defines the height of the bar, the second
defines the width. The height of the bar may be up to four times the
number of lines available for it. That means that a bar of height a is
one line high. while a bar of height 88 may reach from the bottom to
the top of a 22—line screen.

6.6.1.6 [DE RESE! SCREEN §§§L§mgn§

The RESET SCREEN statement resets the terminal to the initial state.

Format:

Rfiéfil £§£§£N

ND~50.144.3 EN

ND COBOL Reference Manual 1
THE PROCEDURE DIVISION

0.! L.)

6.6.2 §creen Handling gxémQLes

This section shows five simple programs to illustrate some of the
features of ND COBOL screen handling. A description of the statements
used will be found in section 6.8.1.

ND—60.144.3 EN

134 E
N

N
N

N
N

N
N

N
N

N
L
D

O
J
N

C
D

L
fl
-F

U
N

-J
O

U
U

U
U

U
J
‘U

N
—

‘O
w

t.
)

cn
m

e
u
u
w

N
a
o
m

m
-
q

A
d

—
A

d
—

J
—

l—
L

—
I—

L
—

l

m
m

u
m

m
r
u

w
a

o
w

m
d

m
m

r
u

m
é

IDENTIFICATION DIVISION.
PROGRAM—ID. DIAGONALS.

ND COBOL Reference Manual
THE PROCEDURE DIVISION

* This program produces a pattern of two crossing diagonals
* which appear as blanked areas on a filled—in background.
********************x**

DATA DIVISION.

WORKING—STORAGE SECTION.
01 M PIC 99 VALUE ZERO.
01 J PIC 99 VALUE 78.
01 I PIC 889 VALUE ZERO.
01 N PIC 99 VALUE ZERO.

PROCEDURE DIVISION.
100.

BLANK SCREEN.
1200.

00 FOR N FROM 1 BY 1 T0 80.
00 FOR I FROM 1 BY 1 TO 25.

DISPLAY (I. N) 'fl'.
END—00.

END-00.
1300.

00 FOR N FROM 2 BY 2 T0 25.
MOVE N TO 1.
ADD N TO I.
AOO N TO I.
MOVE I TO M.
A00 3 TO M.
BLANK LINE N COLUMN I TO M.

END-00.
1400.

00 FOR N FROM 2 BY 2 TO 25.
SUBTRACT 8 FROM 3.
MOVE 3 TO M.
A00 3 TO M.
BLANK LINE N COLUMN 3 TO M.

END-DO.
1700.

STOP RUN.

ND-60.144.3 EN

EXAMPLE 2:

m
m

D
m

m
w

a
fl
u

w
d

w
d

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

r
e

b
h

e
b

h
e

r
e

w
w

w
m

m
m

w
w

u
w

m
m

m
N

N
N

N
m

N
N

&
A

A
a

a
4

a
a

d
a

m
r
w

w
e

o
m

m
w

m
w

e
w

w
e

o
w

m
u

m
m

b
w

w
a

o
m

m
w

m
m

e
u

N
A

o
m

m
N

m
m

r
u

N
A

o
m

m
u

m
m

b
w

m
a

o
m

m
u

m
m

b
w

m
a

o

IDENTIFICATION DIVISION.
PROGRAM—IO. FORMS.

‘k’k‘k‘k‘k'k'k‘k‘k‘k’k'k‘k**‘k‘k‘k‘k****‘k‘k“k‘k‘k‘k‘k‘k‘k‘k‘k‘kit’d:****‘k**‘k****‘k*‘k******‘k***
This program shows how a form might be created containing
information - in this case. names, addresses and codes.
The contents are displayed and the opportunity is given
to "accept" an update for each entry. It is possible to move
between the fields using control keys as individually coded
in the program with each ACCEPT statement.

*******************t*kr****x***********************************

*
X

*
*
*
*

DATA DIVISION.

WORKING—STORAGE SECTION.
O1 SQUARE.

02 NAM PIC X(15) OCCURS 10 TIMES.
02 AODR PIC X(30) DCCURS 10 TIMES.
02 CODE PIC 999 DCCURS 10 TIMES.

01 N PIC 99 VALUE ZERO.
O1 M PIC 99 VALUE ZERO.

PROCEDURE DIVISION.

5. MOVE 'ROSE CDTTAGE' TO
MOVE '10 STRAWBERRY HILL' TO
MOVE 'THE OLD MILL’ TO
MOVE ‘132 OXFORD ROAD' TO
MOVE '1 DONNINGTON SDUARE' TO
MOVE ‘5 WHITE HORSE LANE‘ TO
MOVE 'TUDOR LODGE' TO
MOVE ’3 DEER LEAP WOOD’ TO
MOVE 'RIVERSIDE HOUSE. HENLEY' TO
MOVE ‘THE BARN. ABBDTS ANN' TO

15.
MOVE 'ANDERSON' TO NAM(1).
MOVE ‘ARCHER' TD NAMIZ).
MOVE 'BRDWN' TO NAM(3).
MOVE ‘CARTER' TD NAM(4).
MOVE ‘EVANS' TD NAM(5).
MOVE ’HYOE' TO NAMIB).
MOVE 'LENIS' TD NAM(7).
MOVE 'NORTON' TO NAM(8).
MOVE 'RUSSELL' TO NAM(9).
MDVE 'WDOO' TO NAM(10).

20.
MOVE 'SDS‘ TD CDDE(1).
MOVE '399' TO CDOEIZ).
MOVE '002' TO CODEIB).
MOVE ’800’ TO CODE(4).
MOVE '417' TO CODEIS).
MOVE '015' TO CODE(E).
MOVE '858' TO CODEIT).
MOVE '818' TO CDOE(8).
MOVE ‘077' TO CDDE(9).
MOVE '202‘ TO CODE(IO).

3D.

02 HDRIZ—LINE PIC X(80) VALUE ' ————————————————————————————

BLANK SCREEN.

* Insert form headers.

35.
DISPLAY (1. 1)
DISPLAY (2. 1)
DISPLAY (2. 10)
DISPLAY (2. 31)
DISPLAY (2. 4D)
DISPLAY (2. 72)
DISPLAY (2. 74)
DISPLAY (2. OD)
DISPLAY (3. 1)

RQRIZ—LINE.
:NAME'.
:5969535’.
'EODE‘.
I

HORIZ—LINE.
ND—BO.TA4.3 EN

AODR(1).
AODR(Z).
AODR(B).
ADDRI4).
AODR(S).
AODR(S).
AODR(Y).
AODR(B).
AODR(S).
AODR(10).

o

135

136

128
129
130
131
132
133
134
135
138
137
138
139
140
141
142
143
144
145
148
14?
148
148
150
151
152

* Remainder of form.

00 FOR N FROM 4 BY 1 IO 24.
DISPLAY (N. 1 1 ' '.
DISPLAY (N. 31) 'N‘
DISPLAY (N. 72) ’~'.
DISPLAY (N. 80) ' '

END—00.

* Loop to display contents.

* Use of ACCEPT statement to update form.

100.

101.

102.

103.

201.

202.

203.

301.

302.

00 FOR N FROM 4 BY 1 T0 13.
SUBTRACT 3 FROM N.
MOVE N TO M.
ADD 3 TO N.
DISPLAY (N. 10) NAM(M).
DISPLAY (N. 40) ADDR(M).
DISPLAY (N. 74) CODE(M).

END—DD.

MOVE 4 TO N.
MOVE 1 TO M.

ACCEPT (N. 10) NAM(M)
WITH UPDATE PROMPT

DOWN 201
RIGHT 102
LEFT 103
HOME 100
UP 301
EXIT 900.

ACCEPT (N. 40) ADDR1M)
WITH UPDATE PROMPT

DOWN 202
RIGHT 103
LEFT 101
HOME 100
UP 302
EXIT SOD.

ACCEPT (N. 10) CODE(M1
WITH UPDATE PROMPT

DOWN 203
RIGHT 102
LEFT 101
HOME 100
UP 303
EXIT 900.

PERFORM 500.
00 T0 101.

PERFORM 500.
GO TO 102.

PERFORM 500.
GO TO 103

PERFORM 800.
GO TO 101

PERFORM 800.
GO TO 102.

ND~BD.144.3 EN

ND COBOL Reference Manual
THE PROCEDURE DIVISION

ND COBOL Reference Manual
THE PROCEDURE DIVISION

153
154
155
158
157
158
159
180
181
182
183
184
185
188
187
188
189
170
171
172

303.

500.

800.

900.

PERFORM 800.
GO TO 103.

A00 1 TO N.
IF N 15 GREATER THAN 13 THEN

SUBTRACT 1 FROM N
ELSE ADD 1 TO M

END—IF.

SUBTRACT 1 FROM N.
IF N IS LESS THAN 4 THEN

ADD 1 TO N
ELSE SUBTRACT 1 FROM M

END—IF.

STOP RUN.

NDMBO.144.3 EN

137

136 E
A

d
d
—

A
—

l—
A

—
l—

b
—

t—
t

m
m

&
m

m
é
w

m
g
o
m

m
4
m

m
r
w

w
a

N
N

N
N

N
#

U
N

‘D
N

U
M

M
M

U
N

N
N

N
N

M
%

Q
N

A
m

N
m

m
U m

#
w

o
m

m
u

m
m

m
m

m
»
¢
b
#
#
»
h
#
¢

#
U

N
é

D
m

m
m

t
d

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
u

m
m

E
Q

N
a

o
w

m
u

m
m

Q D
~4

~I
<

U
N

A

IDENTIFICATION DIVISION.
PROGRAM—ID. SCREEN—PLAY.

**
* This program illustrates a few of the various ways(of
* visually displaying fields which the user wants to
* update. Specific fields are accessed by use of control
* keys. CR moves the cursor from field to field in the
* order they are displayed. The screen is first filled
*
*

with background characters.
x**
DATA DIVISION.

WORKING—STORAGE SECTION.
77 LIN PIC 39.
77 P03 PIC 89.
01 N PIC XX VALUE 'ND‘.
01 N1 PIC X(9) VALUE 'NORWAY W
01 N2 PIC X(9) VALUE ‘ '.
01 N3 PIC 3(9) VALUE ZERO.
01 N4 PIC 38(3) COMP VALUE 0.

PROCEDURE DIVISION.
100.

BLANK SCREEN.
500.

PERFORM DISP
VARYING LIN FROM 24 BY —1 UNTIL LIN < 1
AFTER POS FROM 1 BY 2 UNTIL POS > 80.

OISP
DISPLAY (LIN. POS) 'ND'.

00.
ACCEPT (1. 1) N WITH UPDATE BEEP.

700.
BLANK LINE 3 TO B.

1800.
DISPLAY (5. 20) 'COUNTRY: ' WITH UNDERLINE.
ACCEPT (S. 30) N1 WITH UPDATE

UP 1500
EXIT 6000
HOME 5000
DOWN 3000.

2000.
BLANK LINE 12 COLUMN 8 T0 45.

3000.
DISPLAY (12. 10) 'MONTH: ' WITH INVERSE—VIDEO.
ACCEPT (12. 20) N2 WITH UPDATE

DOWN 3050
EXIT 1500
HOME 1800
UP 3000.

3050.
BLANK LINE 1B COLUMN 35 TD 55.

4000.
DISPLAY (18. 30) 'SALES: ‘ WITH BLINK.
ACCEPT (1B. 40) N3 WITH UPDATE

UP 2000
HOME 3000
DOWN 4050
EXIT 8000.

4050.
BLANK LINE 21 COLUMN 20 T0 50.
BLANK LINE 22 COLUMN 20 T0 50.
BLANK LINE 23 COLUMN 20 TO 50.

5000.
DISPLAY (22, 24) 'X CHANGE (+/—): ' WITH LOW—INTENSITY

UNDERLINE.
ACCEPT (22. 42) N4 WITH UPDATE

UP 4000
DOWN 8000
HOME 3000
EXIT 2000.

5000.
STOP RUN.

ND-60.144.3 EN

ND COBOL Reference Manual
THE PROCEDURE DIVISION

Examgle 5:

IDENTIFICATION DIVISION.
PROGRAM~ID . VIDEO .

*x***x***************x******x**********************************
This program interrogates an existing file which
contains information on a video—film library. The choice is
of viewing either: a list of all films in the same category,

alphabetic sequence. (The whole file can also be printed
out.) Only the more relevant parts of the program are shown.

*
*
*
: details of a film in any category. or the whole file in

*

ENVIRONMENT DIVISION.
INPUT—OUTPUT SECTION.
FILE—CONTROL.

SELECT V IDED~FILE
ASSIGN "VIDEOzDATA"
ORGANIZATION INDEXED
ACCESS DYNAMIC
RECORD KEY CODE—NO
ALTERNATE RECORD KEY CATEG WITH DUPLICATES
ALTERNATE RECORD KEY TITLE WITH DUPLICATES
STATUS V—STATUS.

SELECT PRINT—FILE
ASSIGN "LeP"
STATUS V~STATUS.

DATA DIVISION.
FILE SECTION.
FD VIOEO~FILE
O1

77
77
77
77
77
77

X(5).
X(7).
X(35).
XIZD).
SVBQ.
X.
XIS).
X(8).
SBBVSQ.
X(30).

VIDEO—REC.
03 CODE—ND PIC
03 CATEG PIC
03 TITLE PIC
03 STARS PIC
O3 RENT PIC
03 IN—STOCK PIC
03 DATE—OUT PIC
03 DATE—BACK PIC
O3 INCOME PIC
03 PIC

WORKING—STORAGE SECTION.
V—STATUS PIC XX.
REC—COUNT PIC 9(4).
LINE—COUNT PIC 99.
OPTION PIC X.
REPLY PIC X.
CATEGORY PIC X(7).
NAME PIC XT3S).77

PROCEDURE DIVISION.

BEGIN.
OPEN I—O VIDEO—FILE WITH MULTI—USER-MDDE.
OPEN OUTPUT PRINT—FILE.

* Select an option.

CHOOSE.
BLANK SCREEN.

: This statement disables the ESC key.
DISPLAY

DISPLAY

DISPLAY

DISPLAY

DISPLAY

DISPLAY

DISPLAY

(S, 20) 'VIDEO LIBRARY INFORMATION PROGRAM'

(9, 24) 'OPTIDNS ARE:'

(10. 22) 'OISPLAY FILE BY CATEGORY

(12. 22) ’DISPLAY RECORD BY TITLE

(14, 22) 'OISPLAY FILE ALPHABETICALLY

(18, 22) 'PRINT FILE ALPHABETICALLY

(18. 22) 'EXIT FROM THE PROGRAM

ND’60.164.3 EN

WITH

WITH
_ 1-
WITH

- 2'
WITH
_ 3'
WITH

- 4'
' UITH

_ 5'
WITH

UNDERLINE.

AUTO-ERASE

AUTO—ERASE

AUTO—ERASE

AUTO—ERASE

AUTO—ERASE

AUTO—ERASE

140 ND COBOL Referenc
THE PROCEDURE

DISPLAY (20, 22) ‘PLEASE ENTER YOUR OPTION: '
WITH AUTO-ERASE

ACCEPT (20. 49) OPTION WITH MUST.
IF OPTION IS LESS THAN 1 DR GREATER THAN 5 GO TO OPTION-ERROR
GO TO ONE. TWO. THREE. FOUR. FIVE. DEPENDING ON OPTION.

OPTION—ERROR.
DISPLAY (20. 22) ‘INVALID OPTION, PRESS CR TO CONTINUE'

WITH BEEP.
ACCEPT (20. 61) REPLY.
GO TO CHOOSE.

* List all films in a cathegory.

>(
->

('>
(>

ONE.

If

BLANK SCREEN.
DISPLAY (4. 13) 'DISPLAY THE CONTENTS OF ONE CATHEGORY'

WITH UNOERLINE.
DISPLAY (8. 13) 'ENTER REQUIRED CATHEOORY: ’.
ACCEPT (E. 43) CATHEGORY WITH PROMPT

BLINK
CONTROL VALID.

an invalid category has been entered. the above ACCEPT
will not have been "accepted”. A known cathegory must be
T‘E“

CR

submitted.

MOVE CATHEGORY TO CATEG.
START VIEOFILE KEY IS EQUAL TO CATEG

INVALID KEY DISPLAY (10. 20) 'ISAM FILE ERROR'
WITH BEEP
DISPLAY (10.38) V—STATUS

to try again

ACCEPT (10. 41) REPLY
GO TO CHOOSE.

PERFORM HEADER.
GO TO ONE—NEXT.

VALID.

ONE—

IF CATHEGORY IS NOT EQUAL TO
lHORROR' OR
'WESTERN‘ OR
'DRAMA’ OR
'RDMANCE' OR
'SCI-FI' OR
'CRIME' ACCEPT—ERROR.

NEXT.
READ VIDEO—FILE NEXT RECORD

AT END ACCEPT (LIN—COUNT. BO) REPLY
GO TO CHOOSE.

IF CATEG IS NOT EQUAL TD CATHEGORY
ACCEPT (LINE—COUNT. 80) REPLY
GO TO CHOOSE.

DISPLAY (LINE-COUNT. 2) CODE—NO.
DISPLAY (LINE~COUNT) 9) TITLE.
DISPLAY (LINE—COUNT. 47) CATEG.
DISPLAY (LINE—COUNT. 53) STARS.
DISPLAY (LINE~COUNT. 78) RENT.
ADD 1 TO LINE—COUNT.
IF LINE—COUNT IS BRETER THAN 24

ACCEPT (24.80) REPLY
PERFORM HEADER.

GO TO ONE—NEXT.

HEADER.

TWO.

BLANK SCREEN.
DISPLAY (1. 28) 'VIDED LIBRARY CATALOGUE'.
MOVE 4 TO LINE-COUNT.
DISPLAY (LINE—COUNT. 2) CODE-NO.
DISPLAY (LINE-COUNT. 9) TITLE.
DISPLAY (LINE—COUNT. 47) CATEG.
DISPLAY (LINE—COUNT. 53) STARS.
DISPLAY (LINE—COUNT. 75) RENT.

NDPBO.144.3 EN

e
01

M
V

an
[S

ual
ION

ND COBOL Reference Manual
THE PROCEDURE DIVISION

* Display the details for one title.

BLANK SCREEN
DISPLAY (5. 20) 'SEARCH FOR RECORD BY TITLE'

WITH UNDERLINE.
'ENTER REQUIRED TITLE: '

WITH INVERSE—VIDEO.
ACCEPT (8.34) NAME WITH PROMPT CONTROL ALPHA.

DISPLAY (8. 10)

X- The name of the video~fi1m is checked for non-alphabetic
characters. If any are found, the above ACCEPT will not be
taken and must be re—entered.X‘

X-

MOVE NAME TO TITLE.
START VIDEO—FILE KEY IS NOT LESS THAN TITLE

INVALID KEY
DISPLAY (10. 10) 'TITLE NOT IN LIBRARY' WITH BEEP
DISPLAY (11, 10) ‘PRESS CR'
ACCEPT (11. 18) REPLY
GO TO TWO.

PERFORM HEADER.

TWO—NEXT.
READ VIDEO-FILE NEXT RECORD

AT END DISPLAY (LINE~COUNT. 35) ’ENO OF FILE'
WITH BEEP

ACCEPT (LINE—COUNT. 4?) REPLY
GO TO CHOOSE.

DISPLAY (LINE-COUNT. 2) CODEeNO.
DISPLAY
DISPLAY
DISPLAY
DISPLAY

(LINE~COUNT.
(LINE—COUNT.
(LINE~COUNT.
(LINE—COUNT.

9)
47)
53)
78)

TITLE.
CATEG.
STARS.
RENT.

ADD 1 TO LINE—COUNT.

DISPLAY (LINE—COUNT, 35) 'CORRECT RECORD (Y/N)?'.
ACCEPT (LINEwCDUNT. 55) REPLY.
IF REPLY EQUAL TO 'Y' GO TO CHOOSE.
BLANK LINE LINE—COUNT

IF LINE—COUNT IS GREATER THAN 23
PERFORM HEADER.

GO TO TWO—NEXT.

ALPHA.
IS NAME IS NOT ALPHABETIC

ACCEPT—ERROR.

THREE.

* Display the file in alphabetic order of title.

BLANK SCREEN.
MOVE LOW—VALUES TO TITLE.
START VIDEO-FILE KEY IS GREATER THAN TITLE

INVALID‘KEY
DISPLAY (2. 13) 'ISAM FILE ERROR' WITH BEEP
DISPLAY (2. 3B) V—STATUS
ACCEPT (2,35) REPLY
GO TO CHOOSE

PERFORM HEADER.

THREE~NEXT.
READ VIDEO—FILE NEXT RECORD

AT END ACCEPT (LINE—COUNT. BO) REPLY
GO TO CHOOSE.

DISPLAY (LINE-COUNT,
DISPLAY (LINE—COUNT,
DISPLAY (LINE—COUNT.
DISPLAY (LINE—COUNT.
DISPLAY (LINEvCOUNT.
ADD 1 TO LINE—COUNT.
IF LINE-COUNT IS GREATER

ACCEPT (24. BO) REPLY
PERFORM HEADER.

GO TO THREE—NEXT.

2)
9)
A?)
53)
78)

CODE—ND.
TITLE.
CATEG.
STARS.
RENT.

THAN 24

ND—BO.)£€.3 EN

142 ND CT

FOUR.

* Print the full catalogue alphabetically.

BLANK SCREEN.
DISPLAY (5. 25) 'PRINTING FULL ALPHABETIC CATALOGUE.‘

WITH UNOERLINE.
MOVE LON—VALUES TD TITLE.
MOVE ZERO TD REC—COUNT.
START VIDEO—FILE KEY IS GREATER THAN TITLE

INVALID KEY
DISPLAY (7. 25) 'ISAM FILE ERROR' WITH BEEP
DISPLAY (7. 42) V—STATUS
ACCEPT (7. SO) REPLY
DO TO CHOOSE.

* Create the print—header

FDURvNEXT.
READ VIDEO—FILE NEXT RECORD

AT END
DISPLAY (12, 22) PROCESSING IS NOW CDMPLETE'

WITH DEEP IIII
ACCEPT (12.48) REPLY
GO TO CHOOSE.

* Create the print record.

IF LINE~CDUNT IS GREATER THAN 80
PERFORM PRINT—HEADER

GO TO FOUR—NEXT.

FIVE.

* Exit from program

BLANK SCREEN.
CLOSE VIDEO-FILE.
CLOSE PRINT—FILE.
DISPLAY (12, 20) '>>> Returning to main menu >>>'

WITH UNDERLINE.
STOP RUN.

ND—50.14k.3 EN

ND COBOL Reference Manual 143
THE PROCEDURE DIVISION

Examgle 6:

.4
..
.»

J
O

L
D

C
IJ

K
J
a
-P

L
J
N

—
I

N
—

L
—

L
-‘
u
fl
—

a
-A

—
i—

l
o
m

m
d
m

m
r
w

m
N

N
N

L
O

N
-é

N
N

N
N

«
lm

U
’I
-t

‘
(J

U
N

K
)

d
D

L
D

C
D

U
L
JL

.)
b

L
J
N

35

#
0
.)

w
o

m
c
o

x
x
m

.b _:
¢~

¢»
¢

:~
w

1v

45

r.» &
m

L
II
-4

‘“
C

LO
C

D
U

T
U

'IU
’IU

IU
’T

L
IT

-P
L
JN

—
A

U} m
m

m
m

m
m

m
m

m
m

m
m

m
m

u
m

m
e

w
N

—
a

o
m

m
—

q
um D

U
)

IDENTIFICATION DIVISION.
PROGRAM—ID. X—OO1.

*****k**************t*********************t*********************
* This program demonstrates the facilities fPr framing selected
* parts of the screen. and for writing histogram bars.
******‘k******************‘kit****‘k‘k‘k**‘k*******************‘k*******

DATA DIVISION.
WORKING—STORAGE SECTION.
01 NAME PIC X(30).
01 ANSWER PIC X.
01 I COMP.
01 J COMP.
01 K COMP.
01 X COMP.
01 Y COMP.

PROCEDURE DIVISION.

500.
COMPUTE X=13.
COMPUTE Y=S.

1000.
BLANK SCREEN.
DISPLAY (10. 1) 'Your name:'.
ACCEPT (10. 12) NAME WITH PROMPT.
BLANK LINE 10.
DISPLAY (1. 1) FRAME 18 * 75 WITH READING.
DISPLAY (2, 28) 'My name is:'.
00 FOR I FROM 4 TO 17

DISPLAY (I. 3) NAME WITH BLINK
DISPLAY (I. 42) NAME WITH UNDERLINE

END—DO.

1500.
BLANK LINE 22.
DISPLAY (22. 1) 'Continue execution?‘ WITH UNDERLINE.
ACCEPT (22, 20) ANSWER WITH PROMPT.
IF ANSWER EQUAL 'N' OR 'n' THEN PERFORM 3000.
DISPLAY (Y. X) FRAME 12 * 34 WITH SPACE—FILL.
00 FOR I FROM Y + 1 TO Y + 10

DISPLAY (I. X + 2) NAME WITH INVERSE~VIDEO.
END-00.

2000.
BLANK LINE 22.
DISPLAY (22. 1) 'Continue execution?‘ WITH UNDERLINE.
ACCEPT (22. 20) ANSWER WITH PROMPT.
IF ANSWER EQUAL 'N' 0R ‘n' THEN PERFORM 3000.
BLANK SCREEN.
DISPLAY (1. 1) FRAME 20 * 73.
00 FOR I FROM 2 BY 3 TO 71

COMPUTE J = I
DISPLAY (19. I) FULL—BAR J * 1
CDMPUTE J : 72 — I
COMPUTE K = I + 1
DISPLAY (13, K) SPAHSE—DAH 3 * 1

END-DO.

2500.
COMPUTE X = 5.
COMPUTE Y : 3.
PERFORM 1500.

3000.
BLANK LINE 22.
DISPLAY (22. 11)

'You have now used the N0 COBOL Screen Handling'
WITH UNDERLINE.

STOP HUN.

ND~60.144.3 EN

144 NO CD
TH

6.6.3 The INSPECT Statement

The INSPECT statement specifies that characters in a data item are to
be counted. or replaced, or counted and replaced.

ND—EO.1#4.3 EN

ND COBOL Reference Manual 145
THE PROCEDURE DIVISION

Format:

INSPECT identifier—1

.tt g 3identifier~3

TALLYING , identifier-2 FOR , 3 LEADING literal—1

CHARACTERS

BEFORE identifier~4
INITIAL

AFTER literal-2

REPLACING

identifier—6
CHARACTERS Q1

literal—4

BEFORE identifier—7 1
INITIAL

AFTER literal-5

ALL identifier—5 identifier~6
, LEADING S , fix

FIRST literal—3 literal—4

BEFORE identifier—7
INITIAL

literal—5

Identifier—1. the inspected item, must either be a group item or any
category of elementary item with USAGE DISPLAY.

ND-GD.144.3 EN

1L6 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Identifier-2. the count field, must be an elementary integer data
item.

All literals must be nonnumeric and any figurative constant except
ALL. (If a figurative constant is used as literal~3. then the size of
identifier—6 and —7 must be one character in length.Y

When the CHARACTERS phrase is used. literal—L and —5 or identifier—6
and ~7 must be one character in length.

General Rules:

1) Either the TALLYING or REPLACING option must be given. Both may
appear, but in this case all tallying occurs before any
replacement is made.

2) All identifiers (except identifier—2) are treated by the INSPECT
statement according to its category:

a) If alphabetic or alphanumeric ~ as a character—string.

b) If alphanumeric edited, numeric edited or unsigned numeric —
as though redefined as alphanumeric. and the INSPECT
statement refers to the alphanumeric item.

c) If signed numeric — as though moved to an unsigned numeric
data item of the same length and then treated as in rule b
above.

3) Inspection includes the comparison cycle. the establishment of
boundaries for the BEFORE and AFTER phrase, and the mechanisms
for tallying and/or replacing. It begins at the leftmost
character position of the data item identifier-1 and proceeds to
the rightmost character position as described in the remaining
general rules.

4) The rules for comparison are:

a) The first TALLYING/REPLACING operand is compared with an
equal number of the leftmost contiguous characters in the
inspected item. A match occurs only if both are equal
character—for—character.

b) If no match occurs, the comparison is repeated for each
successive TALLYING/REPLACING operand until either a match
is found or all the operands have been compared;

c) If a match is found, then tallying/replacing occurs
according to the following TALLYING/REPLACING option
descriptions. The first character of the inspected item
following the rightmost matching character is now the
subject of the operations described in rules a and b above.

ND-60.144.3 EN

ND COBOL Reference Manual 147
THE PROCEDURE DIVISION

d) If no match is found, then the first character following the
leftmost inspected character in the inspected item becomes
the leftmost character position and processes of a and b
above are repeated. The steps a to d. the comparison cycle,
are repeated until the rightmost character has participated
in a match or has been considered as the leftmost character
position.

5) If the BEFORE/AFTER option is used. then the previous rules are
modified as described in the following TALLYING/REPLACING option
descriptions.

TALLYING OPTIQN

Identifier—2 (an elementary integer item) is the count field.
Identifier—3 or literal~1 is the tallying field.

If the BEFORE/AFTER option is not specified. then the following
actions occur on execution of INSPECT with TALLYING:

a) If ALL is used, the count field is increased by 1 for each non—
overlapping occurrence of the tallying field.

b) If LEADING is specified. the count field is increased by 1 for
each contiguous non-overlapping occurrence of this tallying field
in the inspected item, provided that the leftmost such occurrence
is at the point where comparison began in the first comparison
cycle which this tallying field took part in.

G If CHARACTERS is specified, the count field is increased by 1 for
each character position in the inspected item.

REPLACING QPTIQN

Identifier—5 or literalaB is the subject field, and identifier—6 or
literal—4 is the substitution field. These two fields must be the same
length and the following rules apply:

1) When the subject and substitution fields are character strings,
each non—overlapping occurrence of the subject field in the
inspected item is replaced by the character—string specified in
the substitution field.

2) After replacement has occurred in any character position of the
inspected item, no further replacement for that position is made
during this INSPECT statement execution. when the BEFORE/AFTER
option is not given. the following actions take place on
execution of INSPECT with REPLACING:

ND—SD.14€.3 EN

148 ND COBOL Reference Manual
THE PROCEDURE DIVISION

3) If CHARACTERS is specified, the substitution field must be
one character in length. Each character in the inspected
item is replaced by the substitution field, beginning at the
leftmost character and continuing to the rightmost.

b) If ALL is specified, each non—overlapping occurrence of the
subject field in the inspected item is replaced by the
substitution field, beginning at the leftmost character and
continuing to the rightmost.

c) If LEADING is specified, each contiguous non—overlapping
occurrence of the subject field of the inspected item is
replaced by the substitution field, provided that the
leftmost occurrence is at the point where comparison began
in the first comparison cycle in which this substitution
field can participate.

d) If FIRST is specified. the leftmost occurrence of the
subject field in the inspected item is replaced by the
substitution field.

BEFORE AFTER OPTIONS

When these are specified, the above rules for counting and replacing
are modified thus:

Identifiers 4 and 7 and literals 2 and 5 are delimiters and are
themselves not counted or replaced.

In the REPLACING option, if CHARACTERS is specified then the
delimiter must be one character in length.

When BEFORE is used, counting and/or replacement of the inspected
it begins at the leftmost character and continues until the first
occurrences of the delimiter are encountered‘ If no delimiter
occurs in the inspected item, counting and/or replacement
continues to the rightmost character. ,

When AFTER is present, counting and/or replacement of the
inspected item begins with the first character to the right of
the delimiter and continues to the rightmost character in the
inspected item. If no delimiter exists in the inspected item no
counting/replacement takes place.

ND-60.144.3 EN

ND COBOL Reference Manual 1A9
THE PROCEDURE DIVISION

Six examples of the INSPECT statement follow:

(Note: identifier-2, the count field, must be initialized before
execution of the INSPECT statement.)

EXAMPLE 1.

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A",
count~1 FOR LEADING "A" BEFORE INITIAL "L”

Where word : LARGE, count : 1, count—7 :
Where word = ANALYST, count = 0, count—1 H

Q

u

EXAMPLE 2.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A"
BY "E" AFTER INITIAL "L"

HWhere word
Where word
Where word

CALLAR, count 2, word : CALLAR.
SALAMI, count word : SALEMI.
LATTER, count word : LETTER.

II ‘5H

H ‘4.H

EXAMPLE 3.

INSPECT word REPLACING ALL "A" BY "6" BEFORE INITIAL "X"

Where word
Where word

H ARXAX, word : GRXAX.
HANDAX, word = HGNDGX.II

EXAMPLE 4.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A" BY "8"

Where word : ADJECTIVE, count : 6, word : BDJECTIVE.
Where word : JACK, count : 3, word = JBCK.
Where word = JUJMAB, count = 5, word : JUJMBB.

EXAMPLE 5.

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "2", "W"
BY "0" AFTER INITIAL "R"

Where word : RXXBOWY, word 2 RYYZQOY.
Where word : YZACDWBR, word : YZACDWZR.
Where word : RAWRXEB, word : RAORYEZ.

ND—60.144.3 EN

150 ND COBOL Reference Manual
THE PROCEDURE DIVISION

EXAMPLE 6.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A"

word before: 1
word after: B

2 X Z A B D
B B B A B 0H

i“
.

8

8.5.4 The MOVE Statement

The MOVE statement transfers data to one or more data areas in
accordance with the editing rules.

Format 1:

identifier-1
MOVE IQ identifier—2 [, identifier—3]

literal

Format 2:

CORRESPONDING

MOVE identifier-1 IQ identifier—2
CORR

In this format, identifier—1 and literal represent the sending area;
identifier—2, identifier—3, ..., represent the receiving area.

when format 2 is specified, both identifiers must be group items. when
CORRESPONDING is used, selected items in identifier—1 are moved to
identifier—2 according to the rules given for the CORRESPONDING
option, which are given in the next paragraphs. The results are the
same as if each pair of corresponding identifiers had been referred to
in a separate MOVE statement.

ND—50.144.3 EN

ND COBOL Reference Manual 151
THE PROCEDURE DIVISION

For the purpose of this discussion, identifier—1 and identifier-2 must
each be identifiers that refer to group items. A pair of data items,
one from identifier—1 and one from identifier~2 correspond if the
following conditions exist:

1) A data item in identifier—1 and a data item in identifier—2 are
not designated by the key word FILLER and have the same data—name
and the same qualifiers up to, but not including, identifier—1
and identifiervz.

2) At least one of the data items is an elementary data item in the
case of a MOVE statement with the CORRESPONDING phrase.

3) The description of identifier—1 and identifier—2 must not contain
level—number 77 or 88 or the USAGE IS INDEX clause.

4) A data item that is subordinate to identifier—1 and identifier~2
and contains a REOEFINES, RENAMES, OCCURS or USAGE IS INDEX
clause is ignored, as well as those data items subordinate to the
data item that contains the REDEFINES. OCCURS or USAGE IS INDEX
clause. However, identifier—1 and identifier—2 may have REDEFINES
or OCCURS clauses or be subordinate to data items with REDEFINES
or OCCURS clauses.

CORR is an abbreviation for CORRESPONDING.

General Rules:

1) The data in the sending area is moved into the first receiving
area (identifier—2). then into the second receiving area
(identifier—3) etc. Any subscripting or indexing associated with
the sending item is evaluated immediately before the data is
moved to the first receiving field. Similarly, any subscripting
or indexing associated with receiving items is evaluated
immediately before the data is moved in.

2) The result of the statement:

MOVE a (b) T0 b, c (b)

is equivalent to:

MOVE a (b) T0 temp

MOVE temp TO U

MOVE temp TO c (b)

where temp has been defined as an intermediate result.

3) Any MOVE in which the sending and receiving items are both
elementary items is an elementary move. Every elementary item
belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, alphanumeric edited. These
categories are described in the PICTURE Clause. Numeric literals
belong to the category numeric, and nonnumeric literals belong to

ND—BO.144.3 EN

152

1,)

ND COBOL Reference Manual
THE PROCEDURE DIVISION

the category alphanumeric. The figurative constant ZERO belongs
to the category numeric. The figurative constant SPACE belongs to
the category alphabetic. All other Figurative constants belong to
the category alphanumeric.

The following rules apply to an elementary move between these
categories:

a) The figurative constant SPACE, an alphanumeric edited, or
alphabetic data item must not be moved to a numeric or
numeric edited data item.

b) A numeric literal, the figurative constant ZERO, a numeric
data item or a numeric edited data item must not be moved to
an alphabetic data item.

c) A nonfiinteger numeric literal or a non~integer numeric data
item must not be moved to an alphanumeric or alphanumeric
edited data item.

d) All other elementary moves are legal and are performed
according to the rules given in general rule 4.

e) A numeric edited item must not be moved to another numeric
edited item.

f) (An NDMExtension.) A numeric edited item may be moved to a
numeric item which is either integer or non—integer. This is
equivalent to "dewediting".

Any necessary conversion of data From one form of internal
representation to another takes place during legal elementary
moves, along with any editing specified for the receiving data
item:

a) When an alphanumeric edited or alphanumeric item is a
receiving item, alignment and any necessary space filling
takes place as defined under Standard Alignment Rules in the
'WOrking~Storage' Section of the Data Division. If the size
of the sending item is greater than the size of the
receiving item, the excess characters are truncated on the
right after the receiving item is filled. If the sending
item is described as being signed numeric, the operational
sign will not be moved; if the operational sign occupies a
separate character position (see the SIGN Clause), that
character will not be moved and the size or the sending item
will be considered to be one less than its actual size.

b) When a numeric or numeric edited item is the receiving item,
alignment by decimal point and any necessary zero—filling
takes place as defined under the Standard Alignment Rules
(except where zeros are replaced because of editing
requirements).

ND—60.144.3 EN

ND COBOL Reference Manual 153
THE PROCEDURE DIVISION

1) When a signed numeric item is the receiving item, the
sign of the sending item is placed in the receiving
item. (See the SIGN Clause). Conversion of the
respresentation of the sign takes place as necessary.
If the sending item is unsigned, a positive sign is
generated for the receiving item.

2) When an unsigned numeric item is the receiving item,
the absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

3) When a data item described as alphanumeric is the
sending item. data is moved as if the sending item were
described as an unsigned numeric integer.

4) When a receiving field is described as alphabetic.
justification and any necessary space—filling takes
place as defined under the Standard Alignment Rules. If
the size of the sending item is greater than the size
of the receiving item, the excess characters are
truncated on the right after the receiving item is
filled.

Data in the following chart summarizes the legality of the
various types of MOVE statements. The references are to the
rule that prohibits the move or the behaviour of a legal
move.

CATEGORY DF RECEIVING DATA ITEM

NUMERIC
CATEGORY OF ALPHANUMERIC INTEGER
SENDING ALPHABETIC EDITED NUMERIC NUMERIC
DATA ITEM ALPHANUMERIC NDN-INTEGED EDITED

ALPHABETIC Yes/4c Yes4/a No/3a No/3a

ALPHANUMERIC Yes/4c Yes/4a Yes/4b Yes/4b

ALPHANUMERIC EDITED Yes/4c Yes/4a No/Ba No/3a

INTEGER No/3b Yes/4a Yes/4b Yes/4b
NUMERIC

NON»INTEGER No/3b No/3C Yes/4b Yes/4b

NUMERIC EDITED N0/3b Yes/4a Yes/3f N0/3e

C)

The characters /4c etc. refer to points and subpoints in the text.

Any move that is not an elementary move is treated exactly
as if it were an alphanumeric to alphanumeric elementary
move, except that there is no conversion of data from one
form of internal respresentation to another. In such a move,
the receiving area will be filled without consideration For
the individual elementary or group items.

ND-60.144.3 EN

154 ND COBOL Reference Manual
THE PROCEDURE DIVISION

8.6.5 The STRING Statement

The STRING statement enables the programmer to concatenate the
complete or partial contents of two or more data items into a single
data item.

Format:

STRING
identifier—1 , identifier—2

literal-1 , literal—2

identifier»3 g
DELIMITED BY g literal~3

SIZE

’ identifier—4 g , identifier—5

3 literal—4 , literal~5

DELIMITED BY literal—6
identifier—5

SIZE g

INTO identifier-7 [WITH POINTER identifier~8]

[; ON OVERFLOW imperative—statement]

Each literal must be nonnumeric or any figurative constant except ALL.

ND—BU.144.3 EN

ND COBOL Reference Manual 155
THE PROCEDURE DIVISION

The sending fields are given by identifier—7 which must represent an
elementary alphanumeric data item.

The pointer field is identifier—8 which must represent an elementary
numeric integer data item large enough to contain a value equal to the
size plus one of the fields referenced by identifier—T. If no POINTER
phrase exists, the default value of the logical pointer is 1.

The delimiters are identifiers 3 and 6 or their corresponding
literals.

When DELIMITED BY is specified, the contents of each sending field is
transferred character—by—character until the rightmost character has
been sent, or a delimiter for the sending field is reached.

All identifiers (except identifier—8) must have USAGE DISPLAY.

When the STRING statement is executed, the transfer of data is
governed by the following rules:

1) Characters from the sending field are transferred to the sending
field according to the rules for an alphanumeric to alphanumeric
move, except that no space filling is provided.

2) If OELIMITED BY SIZE is specified, each sending field is moved in
its entirety to the receiving field.

3) If DELIMITED is specified without SIZE then the contents of each
sending item is transferred character—by-character, starting with
the leftmost one and continuing until the end of the data, or its
delimiter is reached. (The delimiter itself is not transferred.)

4) If the POINTER option appears, the pointer field is explicitly
available to the programmer. If this option does not appear, it
is as if the user had specified identifier—8 with an initial
value of 1.

5) When characters are transferred to the receiving field, the moves
behave as though these characters were moved one at a time with
the pointer field being incremented by one after each character
is positioned. The value in the pointer cannot be changed in any
other way. When processing is complete, this value will be one
character position greater than that of the last character
transferred.

6) If this pointer value, at or after initiation of the STRING
statement execution, becomes less than one or greater than the
length of the receiving field, data transfer ceases. ON OVERFLOW,
if specified, is now raised.

7) If ON OVERFLOW has not been specified, then, when the above
conditions are encountered, control passes to the next executable
statement.

ND~60.144.3 EN

156 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Examgle:

If the following STRING statement is coded:

STRING ID—1 LIT~2 DELIMITED BY ID—3
IDn4 ID-5 DELIMITED BY SIZE INTO
[0—7 WITH POINTER ID~8.

and at execution time the fields contain:

[0—1 LIT“? [0—4 [0—5 ID-3

7 2 3 4 * A 8 k C 5 6 7 * * * 8 9 0 II

[0-7 [0-8

5 SL515 S S S S S S S S S SISJS S 5 Si {BI{]

Then after execution the receiving field and the pointer field
will appear as:

10—7 [Dig

1 2 3 4 A B 5 5 7 * * * 8 9 0 5 S S S 1 6

6.6.6 The UNSTRING Statement

The UNSTRING statement causes contiguous data in a single sending
Field to be separated and placed into multiple receiving fields.

ND—60.144.3 EN

ND COBOL Reference Manual 157
THE PROCEDURE DIVISION

Format:

identifier—2
UNSTRING identifier—1 DELIMITED BY [ALL]

literal—1

identifier—3

literal—2

INTO identifier—4 [, DELIMITER IN identifier—5]
[, COUNT IN identifier~61

[, identifier—7 J, DELIMITER IN identifier-8]

[, COUNT IN identifier—9] 1
[WITH POINTER identifier-10]

[TALLYING IN identifier—11]
[: ON OVERFLOW imperative—statement]

The DELIMITER IN option and the COUNT IN option may only appear if the
DELIMITED BY option is also present.

Each literal must be a nonnumeric literal. Each may be any figurative
constant without the word ALL.

Identifier—1 (the sending field) must be an alphanumeric data item.

Identifier—5 and identifier—9 must be type computational.

The DELIMITED BY option specifies the delimiters which control the
amount of data (transferred From the sending field).

The delimiters are identifiers 2 and 3, or their corresponding
literals, and each of them (representing one delimiter) must be an
alphanumeric data item. The maximum number of delimiters is 15.

If a delimiter contains two or more characters it will act as a
delimiter only if the delimiter characters appear contiguously in the
sending field, and in the sequence specified.

When two or more delimiters are specified in the DELIMITED BY option,
an 'OR' condition exists between them. Each non—overlapping occurrence
of any of the delimiters in the sending field in its specified
sequence, is considered to be a match.

ND—80.144.3 EN

158 ND COBOL Reference Manual
THE PROCEDURE DIVISION

DELIMITED BY ALL results in one occurrence. or two or more contiguous
occurrences, of any delimiter being treated as if they were only one
occurrence; this occurrence is moved to the delimiter receiving field
(if any). (identifiers 5, 8, ...).

If DELIMITED BY ALL is not specified. and two or more occurrences of
any delimiter are found, then the current receiving field is filled
with either space or zero according to the description of this field.

When the UNSTRING statement is initiated. identifier-L is the current
receiving field. Receiving fields must have USAGE DISPLAY and must be
one of the types:

alphabetic

— alphanumeric (not edited)

numeric (not edited)

Data is transferred from the sending field according to the following
rules:

If the POINTER option appears, it contains a value indicating a
relative position in the sending field (it must be initialized prior
to statement execution).

DELIMITED BY causes the examination to proceed from left to right,
character—by—character, until a delimiter is encountered. If no
delimiter is found, the examination ends with the last character in
the sending field.

If the DELIMITED BY option does not appear, the number of characters
examined will be equal to the size of the current receiving field. (If
the sign of the receiving field has been defined as occupying a
separate character position, then the number of characters examined is
one less than the size of the field.)

The characters thus examined (excluding delimiters if any) are treated
as an elementary alphanumeric data item and are transferred to the
receiving field according to the rules of the MOVE statement.

The DELIMITED IN option causes the delimiting characters in the
sending field to be treated as an elementary alphanumeric item and to
be moved to the current delimiter receiving field (identifier~5)
according to the rules of the MOVE statement. If, however, the
delimiting condition is the end of the sending field. identifier-5 is
filled with spaces.

If the COUNT IN option is specified, a value equal to the number of
examined characters (excluding delimiter(s)) is moved to the data
count field (identifier—6) according to rules for an elementary move
(identifier—B must be of type computational).

ND—80.144.3 EN

ND COBOL Reference Manual 159
THE PROCEDURE DIVISION

If the DELIMITED BY option appears then the sending field is further
examined, beginning with the first character to the right of the
delimiter. Otherwise. examination of the sending field begins with the
first character to the right of the last character examined.

After data is transferred to the first receiving field (identifier~4).
identifier—7 becomes the next receiving field. The preceding procedure
is now repeated for this (and subsequently, for any succeeding
receiving fields). until all characters in the sending field have been
transferred or there are no more unfilled receiving fields.

Example:

The Following UNSTRING statement:

UNSTRING SEND—IDL DELIMITED BY ALL DEL—I02 OR DEL—I03
INTO REC—104 DELIMITER IN DREC-IDS COUNT IN CT-IDB

REC—ID? DELIMITER IN DREC-IDB COUNT IN CT-IDQ
REC—I012 DELIMITER IN DREC—ID13 COUNT IN CT—ID14

WITH POINTER P—[010
TALLYING INT~ID11
ON OVERFLOW GO TO UNSTRING—OFL.

might have the following field contents at execution time:

SEND~IDL DEL—I02 DEL—I03

123**456$$7890

ND—60.144.3 EN

160 ND COBOL Reference Manual
THE PROCEDURE DIVISION

and the remaining fields might have the following contents after
execution:

REC—I04 DREC~IDS CT-IDS

1 2 3 b D II [J

REC-I07 OREC [08 CT~I09

Will H E
REC<IDIZ OREC~IDI3 CT—1074

P~IDTU

T~IDII

where b represents a space (blank character). Since
SEND~ID1 still contains untransferred characters, the
ON OVERFLON condition will be raised.

If a further receiving field had been specified for this UNSTRING
statement, the first Character moved to it from the sending field
would have been the leftmost character following the second $.i.e..
the number 7. (Note the difference in effect of coding DELIMITED BY
with or without ALL.)

when the execution of the UNSTRlNG statement has been completed, if a
TALLYING IN option is present, then the field-count field (identifier~
11) will have had its initial value incremented by the number of data
receiving areas acted upon (including any null fields).

At this point, if a POINTER option has been specified, the pointer
field (identifier 10) will contain a value equal to its initial value
plus the number of characters examined in the sending field.

ND~60.144.3 EN

ND COBOL Reference Manual 181
THE PROCEDURE DIVISION

Execution of the UNSTRING statement will cease if an overflow
condition exists. If 0N OVERFLOW is specified the imperative—statement
is executed. If 0N OVERFLOW is not specified control passes to the
next executable statement. An overflow condition occurs if:

a) The value in the pointer field is less than one or greater than
the length of the sending field when UNSTRING is initiated.

b) During execution of the UNSTRING statement, after all receiving
fields have been acted upon, the sending field still contains
unexamined characters.

Any subscripting or indexing associated with the identifiers is
evaluated immediately before data transfer.

6.7 INPUT-OUTPUT STATEMENTS

COBOL input—output statements transfer data to and from files stored
on external devices, and they control low—volume data going to or
coming from media such as console typewriters and terminals. In this
manual and it's index. INPUT—OUTPUT is usually abbreviated to 1—0.

The unit of data used by the COBOL program is called a record.

The input—output statements which may be used in the Procedure
Division are determined by the file descriptions in the Environment
and Data Divisions.

6.7.1 1—9 Statgs

If the FILE STATUS clause is specified in a file—control entry, a
value is placed into the specified 2—character data item during the
execution of an OPEN. CLOSE, START, READ, WRITE, REWRITE or DELETE
statement and before any applicable USE procedure is executed, to
indicate the status of the 1—0 operation.

See appendix 7, Indexed/Relative [—0 Status Summary.

ND-BU.144.3 EN

162 ND COBOL Reference Manual
THE PROCEDURE DIVISION

6.7.

The

1 .1 Status Key 1

leftmost character position of the FILE STATUS data item. upon
completion of an 1—0 operation. is set according to the following:

lg.

indicates Successful Completion

indicates At End

indicates Invalid Key

indicates Permanent Error

indicates Other Error

The meanings of the indications are:

Successful Completion. The 1—0 statement was successfully
executed.

At End. Indexed and Relative 1—0.

The Format 1 READ statement was unsuccessfully executed tollowing
an attempt to read a record when no next logical record exists in
the file.

At End. Sequential [—0.

The sequential READ statement was unsuccessfully executed‘ either
as a result of attempting to read a record when no next logical
record existed in the file or because the first READ statement
being executed for a file was described with the OPTIONAL clause.
and that file was not available to the program at the time its
associated OPEN statement was executed.

Invalid Key. The 1—0 statement was unsuccessfully executed as one
of the following:

Sequence Error (Indexed 1—0 only)

Duplicate Key

Record Not Found

Boundary Violation

ND—BU.144.3 EN

ND COBOL Reference Manual 163
THE PROCEDURE DIVISION

Two programs attempting to access the same record (only with
Indexed or Relative [—0, with MULTIeUSER Access)

Invalid Key does not apply to Sequential 1—0.

3 — Permanent Error. The input—output statement was unsuccessfully
executed due to a boundary violation for a sequential file or as
the result of an input-output error, such as data check parity
error, or transmission error.

9 — Some other error.

6.7.1.2 Status Key 2

The rightmost character position of the FILE STATUS data item is known
as status key 2 and is used to further describe the results of the
input—output operation.

The value this character contains will have the meanings given in the
following table. according to the appropriate file organization.

ND-60.144.3 EN

164 ND COBOL Reference Manual
THE PROCED URE DIVISION

Status Key 2: Meaning:

O No further information

1 If Status Key 1 is '2' — Sequence error
Otherwise « Password failure

2 If Status Key 1 IS '0' — Duplicate key
(Indexed files)

If Status Key 1 18 '2' — Duplicate key
(Relative and Indexed files)

Otherwise - Logiu error

3 If Status Key 1 13 ’2' < No record found
(Relative and Indexed files)

Otherwise - Resource not available

4 If Status Key 1 is '2' * Boundary violation
(Relative and Indexed files)

If Status Key 1 is '3' ~ Boundary violation
(Sequential files)

Otherwise ~ No current record pointer

5 Invalid or incomplete file information

8 No file information given

7 Open successful

VALID COMBINATIONS 0F STATUS KEYS 1 AND 2

The valid combinations of the values of status key 1 and status key 2
are shown in the following
indicates valid combination.

figures. An 'X' at an

ND~60.144.3 EN

intersection

ND COBOL Reference
THE PROCEDURE DIVISION

INDEXED I-O

Manual

Status
Key 1

Status Key 2

No Further
Informatio
(0)

Sequence
n Error

(1)

Duplicate
Key
(2)

No Record
Found
(3)

Boundary
Violation
(4)

Successful
Completion
(O)

At End (1)

Invalid Key
(2)

Permanent
Error (3)

Other
Error (9)

RELATIVE I—O

Status
Key 1

Status Key 2

No Further
Information
(0)

Duplicate
Key
(2)

No Record
Found
(3)

Boundary
Violation
(4)

Successful
Completion
(0)

At End (1)

Invalid
Key (2)

Permanent
Error (3)

Other
Error (9)

ND-BO.144.3 EN

(65

166 ND COBOL Reference Manual
THE PROCEDURE DIVISION

SEQUENTIAL I-O

Status Key 2

Status Key 1 No Further Boundary
Information Violation
(0) (4)

Successful
Completion X
(0)

At End (1) X

Permanent
Error (3) X X

Other
Error (9)

6.7.1.3 The INVALID KEY Condition (Indexed and Belgtiyg {—9 Only!

The INVALID KEY condition can occur as a result of the execution of a
START, READ, WRITE. RENRITE or DELETE statement. For details of the
causes of the condition see under the relevant statement headings.

when the INVALID KEY condition is recognized. the runtime system takes
these actions in the following order:

1) A value is placed into the FILE STATUS data item. if specified
for this file, to indicate an INVALID KEY condition. (See under
I—O status earlier in this section.)

2) If the INVALID KEY phrase is specified in the statement causing
the condition. control is transferred to the INVALID KEY
imperative—statement. Any USE procedure specified for this file
is not executed.

3) If the INVALID KEY phrase is not specified, but a USE procedure
is specified. either explicitly or implicitly. for this file.
that procedure is executed.

ND—60.144.3 EN

ND COBOL Reference Manual 167
THE PROCEDURE DIVISION

6.7.1.4 The AT END Condition

The AT END condition can occur as the result of a READ statement. For
details see under the statement heading.

6.7.1.5 Current Record Pointer

The current record pointer is a conceptual entity for identifying the
next record to be accessed within a given file. (It has no meaning for
a file opened in output mode.)

The OPEN statement positions it at the first record in the file.

For a READ statement note the following:

1) If the OPEN statement positioned the current record pointer, the
record identified by it is made available.

2) If a previous READ statement positioned the current record
pointer then this is updated to point to the next existing record
which is then made available.

3) (Indexed and Relative I—O only.) The START statement positions
the current record pointer at the first record in the file that
satisfies the comparison specified.

ND—80.144.3 EN

168 ND COBOL Reference Manual
THE PROCEDURE DIVISION

8.7.1.5 The CLOSE Statement

The CLOSE statement terminates the processing of files (with optional
rewind for Sequential I—O).

Format 1 — Indexed and Relative I-O.

CLOSE File—name-1 [WITH LOCK] [. file—name~2 [WITH LOCK] J

Format 2 — Sequential I—O.

Big
[WITH mg REWIND]

Ml
CLOSE file~nameu3

g fig REWIND
WITH g

LOCK

M
[WITH HQ EEAHLEJ

LL’LLT.
, file~name~4 .

fig REWINfl
WITH § §

AM

The files re¥erenced in the CLOSE statement need not all have the same
organization or access.

General Rules:

1) A CLOSE statement may only be executed for a File in an Open
mode.

NDu60.144.3 EN

ND COBOL Reference Manual 169
THE PROCEDURE DIVISION

2) The action taken if a File is in the open mode when 3 STOP RUN
statement is executed is that the file will be closed. Note,
however, that the last block in memory will not be written out so
that the last record on the file may be lost.

General rules for indexed and relative 1-0:

1) If a CLOSE statement has been executed for a file, no other
statement can be executed that references this file, whether
explicitly or implicitly, unless an intervening OPEN statement
for this file is executed.

2) Following the successful execution of a CLOSE statement, the
record area associated with file—name is no longer available. The
unsuccessful execution of such a CLOSE statement leaves the
availability of the record area undefined.

General Rule For Sequential 1—0:

1) Treatment of mass storage files is logically equivalent to the
treatment of a File on a tape.

6.7.1.7 The DELETE Statement

The DELETE statement logically removes a record from a mass storage
file. It is not used with Sequential 1‘0.

Format:

L DELETE file—name RECORD [; INVALID KEY imperative—statement]

The INVALID KEY phrase must not be specified for a DELETE statement
which references a File which is in sequential access mode.

The INVALID KEY phrase must be specified for a DELETE statement which
references a file not in sequential access mode and for which an
applicable USE procedure is not specified.

General Rules:

ND~60.144.3 EN

170

1)

3)

4)

5)

ND COBOL Reference Manual
THE PROCEDURE DIVISION

The associated file must be open in the I—0 mode at the time of
the execution of this statement.

For files in the sequential access mode. the last input—output
statement executed for file—name prior to the execution of the
DELETE statement must have been a successfully executed READ
statement. The runtime system logically removes from the file the
record that was accessed by that READ statement.

For a file in random or dynamic access mode, the runtime system
logically removes from the file the record identified by the
contents of the RELATIVE KEY data item associated with file—name.
If the file does not contain the record specified by the key. an
INVALID KEY condition exists.

After the successful execution of a DELETE statement. the
identified record has been logically removed from the file and
can no longer be accessed.

The execution of a DELETE statement does not affect the contents
of the record area associated with file—name.

The current record pointer is not affected by the execution of a
DELETE statement.

The execution of the DELETE statement causes the value of the
specified FILE STATUS data item (if any) associated with file—
name, to be updated.

6.7.1.8 The QPEN Statement

The OPEN statement initiates the processing of files. For Indexed and
Relative {—0 it also performs checking and/or writing of labels and
other input~output operations.

ND-60.144.3 EN

ND COBOL Reference Manual 171
THE PROCEDURE DIVISION

Format 1. Sequential Files.

INPUT fileename—1 [WITH fig REWIND]
[, file~name—2 [WITH fig REwgfig] J

OUTPUT file—name-3 [WITH fig REWIND]
[, file~name—4 [WITH fig REWIND] J

I~O file—name—S [, file—name—BJ

EXTEND filefname—T [, file-name—G]

Format 2: Indexed and Relative Files.

MULTI—USER—MODE
PUT file—name WITH IMMEDIATE—WRITE

MANUAL—UNLOCK

INPUT MULTI—USER—NODE
, OUTPUT film name WITH IMMEDIATE—WRITE

I—O MANUAL-UNLOCK

The} files referenced in the OPEN statement need not all have the same
organization or access. The [-0 option can only be used for mass
storage files. The EXTEND option is only valid for Sequential files.

The successful execution of an OPEN statement determines the
availability of the file and results in that file being in an open
mode. It also makes the associated record area available to the
programs.

Prior to the successful execution of an OPEN statement for a file. no
statement can be executed (except in Sequential 1—0, for a SORT or
MERGE statement with either GIVING or USING phrases) that references
that file.

An OPEN statement must be successfully executed prior to the execution
of any of the permissible input—output statements. The following
tables show permissible statements for each I—O classification.

ND-60.144.3 EN

172 ND COBOL Reference Manual
THE PROCEDURE DIVISION

PERMISSIBLE STATEMENTS FOR INDEXED AND RELATIVE I~0-OPEN

Open Mode

File Access
Mode Statement Input Output Input~0utput

Sequential READ X X
WRITE X
REWRITE X
START X X
DELETE X

Random READ X X
WRITE X X
REWRITE X
START
DELETE X

Dynamic READ X X
WRITE X X
REWRITE X
START X X
DELETE X

For Indexed I~O. an 'X' indicates that the specified statement. used
in the access method given for that row, may be used with the indexed
file organization and the open mode given at the top of the column.

For Relative I—O. an ‘X' indicates that the specified statement, used
in the access method given for that row, may be used with the relative
file organization and the open mode given at the top of the column.

Various kinds of errors or system malfunctions may partly or entirely
destroy indexed and relative files. The programs ISAM—SERVICE and
ISAM—INTER (both are selfsdocumenting) may be used to examine such
Tiles and to restore them as far as possible.

PERMISSIBLE STATEMENTS FOR SEQUENTIAL I—O-OPEN

Open Mode

Statement Input Output Input—Output Extend

READ X X
WRITE X X
REWRITE X

ND-60.144.3 EN

ND COBOL Reference Manual 173
THE PROCEDURE DIVISION

An 'X' indicates that the specified statement. used in sequential
access mode, may be used with the sequential file organization and the
open mode given at the top of the column.

General Rules For Indexed And Relative 1—0:

1)

2)

5)

6)

7)

A file may be opened with the INPUT, OUTPUT and I~O options in
the same program. After the initial execution of an OPEN
statement for a file, each subsequent OPEN statement execution
for this file must be preceded by the execution of a CLOSE
statement (without the LOCK phrase for Indexed I~O) for the same
file.

Execution of the OPEN statement does not obtain or release the
first data record.

The file description entry for files open for INPUT or 1—0 must
be equivalent to that used when this file was created.

For files being opened with the INPUT or I~O option, the OPEN
statement sets the current record pointer to the first record
currently existing within the file. For indexed files, the prime
record key is established as the key of reference and is used to
determine the first record to be accessed. If no records exist in
the file, the current record pointer is set such that "the next
executed format 1 READ statement for the file will result in an
AT END condition.

The I~O option permits the opening of a file for both input and
output operations. Since this option implies the existence of the
file, it cannot be used if the file is being initially created.

Upon successful execution of an OPEN statement with the OUTPUT
option specified, a file is created. As yet, the associated file
contains no data records.

The options MULTI~USER—MODE, IMMEDIATE WRITE, and MANUAL—UNLOCK
are NO Extensions. They are used with relative or indexed
organized files and they have the following meanings:

MULTI—USER—MODE allows one program to be running
concurrently on several terminals, each accessing the same
relative or indexed organized file, and it also allows
different programs running concurrently on several terminals
to access the same relative or indexed organized file. In
both of these cases, if the programs access the same record
in the file, conflicts are prevented.

Note that when you use MULTI~USER—MODE, output to the files
is done in a different way from what is usually the case.
When writing files in other modes, data are »buffered, so
that the computer can organize the data transfers etc. in a
convenient way. When MULTI—USER-MODE is chosen, the buffers
are bypassed to achieve immediate updates of the data, The
consequence of this is that MULTI—USER—MODE file output is
somewhat slower than ordinary access.

ND—60.144.3 EN

174 ND COBOL Reference Manual
THE PROCEDURE DIVISION

IMMEDIATE—WRITE (single user only) causes records to be
written immediately back to the file — a process which
happens automatically in MULTI~USER~MODE; otherwise output
is buffered. This option is useful. for instance, where high
security is required.

MANUAL—UNLOCK will prevent the automatic unlock of records
until an UNLOCK statement is encountered. However. the user
is strongly advised to allow automatic unlock of records
since the use of MANUAL—UNLOCK can lead to deadlocks.

Note that the multi—user supervisor must be active before
running programs in multi-user mode. The system supervisor
for the users installation should do this.

General Rules for Sequential 1—0:

1)

2)

3)

A)

S)

6)

A file may be opened with the INPUT, OUTPUT, EXTEND and 1-0
options in the same program. Following the initial execution of
an OPEN statement. each subsequent OPEN statement for the same
file must be preceded by the execution of a CLOSE statement for
it.

Execution of the OPEN statement does not obtain or release the
first data record. The file description entry for file—names 1.
2, 5, 8, 7, or 8 must be the equivalent to that used when the
file was created.

If an input file is designated with the OPTIONAL phrase in its
SELECT clause. the object program causes an interrogation for the
presence or absence of this file. If the file is not present, the
first READ statement for this file causes the AT END condition to
occur. (See the READ statement later in this section.)

For files being opened with the INPUT or 1—0 option, the OPEN
statement sets the current record pointer to the first record
currently existing within the file. If no records exist in the
file. the current record pointer is set such that the next
executed READ statement for the file will result in an AT END
condition.

The EXTEND option allows the file to be opened for output
operations. (The OPEN statement positions the file immediately
following the last logical record of that file. Subsequent WRITE
statements referencing the file will add records to the file as
though the file had been opened with the OUTPUT option.)

The I—O option allows the opening of a mass storage file for both
input and output operations. Since this option implies the
existence of the file. it cannot be used if the mass storage file
is being initially created.

ND—60.14L.3 EN

ND COBOL Reference Manual 175
THE PROCEDURE DIVISION

7) Upon successful execution of an OPEN statement with the OUTPUT
option specified, a file is created. As yet the associated file
contains no data records.

8) If the OPTIONAL phrase has been given for the file in the FILE—
CONTROL paragraph of the Environment Division and the file is not
present. then the standard end—of—file processing is performed
for that file if it is an input file. If it is an output file it
is created.

6.7.1.9 The READ Statement

The READ statement makes the next logical record from a file
available. The formats are:

Format 1:

NEXT
READ file~name RECORD [INTO identifier] [WITH LOCK]

PREVIOUS

[; AT END imperative—statement]

Format 2. Indexed I—O Only:

READ File—name RECORD [INTO identifier] [WITH LOCK]
[; KEY IS data—name] [; INVALID KEY imperative-statement]

Format 3. Relative I—O Only:

READ file—name RECORD [INTO identifier] [WITH LOCK]
[:INVALID KEY imperative—statement]

The storage areas associated with file name and with identifier must
not be the same.

ND—60.144.3 EN

176 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Format 1.

The NEXT/PREVIOUS phrase and the WITH LOCK phrase are not valid for
sequential files. This format is used for sequential retrieval of
records when files organized in another way are used in the dynamic
access mode. The WITH LOCK phrase applies only to files opened in
MULTI—USER—MODE, and is an ND Extension (see the OPEN statement).

Format 1 must be used for all files in sequential access mode.

If the AT END phrase appears and if no applicable USE procedure is
given for file—name. a runtime error will result.

Format 2. Indexed I—O Only:

Data-name. which may be qualified, must identify a record key
associated with file—name.

Formats 2 and 3:

These formats are used for files in dynamic or random access modes
when records are to be retrieved randomly.

If the INVALID KEY phrase appears and if no applicable USE procedure
is given for file—name, a runtime error will result.

The WITH LOCK phrase is an ND Extension and applies only to files
opened in MULTI—USER—MODE (see the OPEN statement and General Rule 3
for Indexed and Relative I—O later in this section).

General Rules:

1) The associated file must be open in the INPUT or 1-0 mode when
this statement is executed. (See the OPEN statement in the
previous section.)

2) The execution of the READ statement causes the value of the FILE
STATUS data item, if any. to be updated. (See I-O Status at the
beginning of the 1—0 section.)

3) If the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier
according to the rules specified for the MOVE statement. The
implied MOVE does not occur if the execution of the READ
statement was unsuccessful. Any indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

4) When the INTO phrase is used. the record being read is available
in both the input record area and the data area associated with
identifier.

ND—BU.)44.3 EN

ND COBOL Reference Manual 177
THE PROCEDURE DIVISION

5) If, at the time of execution of a format 1 READ statement, the
position of the current record pointer for that file is
undefined, the execution of that READ statement is unsuccessful.
(See I—O Status at the beginning of the [—0 section.)

B) When the AT END condition is recognized. the following actions
are taken in the specified order:

a) A value is placed into the FILE STATUS data item (if
specified for this file), to indicate an AT END condition.

b) If the AT END phrase is specified in the statement causing
the condition, control is transferred to the AT END
imperative—statement. Any USE procedure specified for this
file is not executed.

c) If the AT END phrase is not specified, then a USE procedure
must be specified, either explicitly or implicitly, for this
file, and the procedure is executed.

When the AT END condition occurs, execution of the input~
output statement which caused the condition is unsuccessful.

7) Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined. For indexed files the key
of reference is also undefined.

8) For a file for which dynamic access mode is specified, a format 1
READ statement with the NEXT/PREVIOUS phrase specified causes the
next or previous logical record to be retrieved from that file,
as described in rule 1.

General Rules For Indexed 1-0:

1) The record to be made available by a format 1 READ statement is
determined as follows:

a) The record, pointed to by the current record pointer, is
made available provided that the current record pointer was
positioned by the START or OPEN statement and the record is
still accessible through the path indicated by the current
record pointer; if the record is no longer accessible (which
may have been caused by deletion of the record or by a
change in an alternate record key) the current record
pointer is updated to point to the next existing record
within the established key of reference. and that record is
then made available.

b) If the current record pointer was positioned by the
execution of a previous READ statement, it is updated to
point to the next existing record in the file with the
established key of reference. That record is then made
available.

ND~60.144.3 EN

178

2)

3)

4)

5)

ND COBOL Reference Manual
THE PROCEDURE DIVISION

For an indexed file being sequentially accessed. records having
the same duplicate value in an alternate record key which is the
key of reference. are made available in the same order in which
they are released, by execution of wRITE statements, or by
execution of RENRITE statements which create such duplicate
values.

For an indexed file if the KEY phrase is specified in a format 2
READ statement. data—name is established as the key of reference
for this retrieval. If the dynamic access mode is specified. this
key of reference is also used for retrievals by any subsequent
executions of format 1 READ statements for the file until a
different key of reference is established for the file.

If the KEY phrase is not specified in a Format 2 READ statement,
the prime record key is established as the key of reference for
this retrieval. If the dynamic access mode is specified. this key
of reference is also used for retrievals by any subsequent
executions of format 1 READ statements for the file until a
different key of reference is established for it.

If execution of a format 2 READ statement causes the value of the
key of reference to be compared with the value contained in the
corresponding data item of the stored records in the file, until
the first record having an equal value is found. The current
record pointer is positioned to this record which is then made
available. If no record can be so identified, the INVALID KEY
condition exists and execution of the READ statement is
unsuccessful.

General Rules For Indexed And Relative 1—0:

1)

2)

3)

PREVIOUS is defined to be the opposite of NEXT.

If. at the time of the execution of a format 1 READ statement, no
next logical record exists in the file. the AT END condition
occurs, and the execution of the READ statement is considered
unsuccessful.

When the AT END condition has been recognized, a format 1 READ
statement for that file must not be executed without first
executing one of the following:

a) A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

b) A successful START statement for that file.

c) A successful format 2 (for Indexed I-O) READ statement for
that file (or format 3 for Relative 1-0).

ND-60.144.3 EN

ND COBOL Reference Manual 179
THE PROCEDURE DIVISION

4) The NITH LOCK phrase exists for the access of files which have
been opened in MULTI—USER-MODE (see the OPEN statement). If the
file has been opened in single—user mode. the phrase is treated
as comments only.

If coded, READ WITH LOCK ensures that two programs cannot modify
»the same record at the same time. A locked record can only be
read. It will become unlocked automatically when it has been
rewritten by the program which locked it, or when another record
has been read, or when the file is closed. The record can also be
unlocked upon execution of the UNLOCK statement (see Section
6.7.1.12).

An attempt by two programs to modify the same record will raise
the INVALID KEY condition with a file status code of 68 or 78
depending on whether the records are "locked" or not.

It is the responsibility of the user program to provide the code
which enables it to wait for a record to become accessible; 3
read loop might otherwise occur.

Note also the requirements for relative or indexed organized
files accessed in multi—user mode. All relative or indexed
organized files. both the index and data part, must be contiguous
SINTRAN files. The size of the index part (in SINTRAN pages) is
found by using the ESTIMATE—INDEX—FILE—SIZE function in the
INDEXED SEQUENTIAL ACCESS METHOD SERVICE (or ISAM—Service)
program. This self—explaining program is started by typing QISAM—
SERVICE when in SINTRAN. The size (in SINTRAN pages) of the data
part is:

(maximum number of records * record length/2048) + 1

General Rules For Relative I-O Only:

1) The existence of records numbered, say, 2000 and 4000. does not
imply that mass storage file space for records 0 — 1999 and 2001
- 3999 is occupied. A relative file only occupies enough space
for the records it is presently holding. Thus, it makes perfect
sense to access records by, say, social security numbers or
numerical representations of birth dates.

The record to be made available by a format 1 READ statement is
determined as follows:

a) The record. pointed to by the current record pointer. is
made available provided that the current record pointer was
positioned by the START or OPEN statement and the record is
still accessible through the path indicated by the current
record pointer; if the record is no longer accessible. which
may have been caused by the deletion of the records. the
current record pointer is updated to point to the next
existing record in the file and then that record is made
available.

ND—50.144.3 EN

180

3)

A)

ND COBOL Reference Manual
THE PROCEDURE DIVISION

b) If the current record pointer was positioned by the
execution of a previous READ statement, the current record
pointer is updated to point to the next existing record in
the file with the established key of reference and then that
record is made available.

If the RELATIVE KEY phrase is specified, the execution of a
format 1 READ statement updates the contents of the RELATIVE KEY
data item such that it contains the relative record number of the
record made available.

The execution of a format 2 READ statement sets the current
record pointer to, the record whose relative record number is
contained in the data item named in the RELATIVE KEY phrase for
the file and makes this record available. If the file does not
contain such a record, the INVALID KEY condition exists and
execution of the READ statement is unsuccessful.

General Rules For Sequential 1—0:

1)

2)

3)

4)

The record to be made available by a format 1 READ statement is
determined as follows:

a) If the current record pointer was positioned by the
execution of the OPEN statement, the record pointed to by
the current record pointer is made available.

b) If the current record pointer was positioned by the
execution of a previous READ statement. the current record
pointer is updated to point to the next existing record in
the file and then that record is made available.

When the AT END condition has been recognized, a READ statement
for that file must not be executed without first executing a
successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

If at the time of the execution of a READ statement. no next
logical record exists in the file. the AT END condition occurs.
and the execution of the READ statement is considered
unsuccessful.

If a file described with the OPTIONAL phrase is not present at
the time the file is opened, then at the time of execution of the
first READ statement for the file. the AT END condition occurs
and the execution of the READ statement is unsuccessful. The
standard end-of—file procedures are not performed. Execution then
proceeds as specified in general rule 6.

ND-60.144.3 EN

ND COBOL Reference Manual 181
THE PROCEDURE DIVISION

EXAMPLE:

1 IDENTIFICATIDN DIVISIDN.2 PROGRAM ID.
3 GEN ISAM 1
4 **'k‘k*‘k‘k*‘k‘ki‘k‘k‘k‘kvk‘k’t‘k‘kfk*****‘k*k**‘k‘k******’kk***‘k‘k‘kk********k‘k****

S * ISAM MEANS INDEX SEDUENTIAL ACCESS METHDD.
6 ‘k

7 * THE DECDHDS ADE DUTPUT ID AN ISAM-FILE USING THE *UNIQUF*8 S (I. E.. NDT DUPLICATEDI DATA FDUND IN FIELD ISAM—KEY AS9 S *KEY* VALUE.
ID A
11 * BEFORE THIS JOB CAN BE RUN. IHE FDLIDHING *MUST* BE MET:12 A AI FILE ”ISAMEEX20ATA" AND ”ISAM—EX ISAM" MUST EXISTI3 * AND BE CONSISTENT; DR14 k B) FILE ”ISAM»EX:DATA” MUST NDT EXIST OR IF EXISTING15 A CDNTAIN *NU DATA !!*
'6 ‘k‘k‘k'ki'k**‘k‘k’1“k'k‘k'k'k*‘k*1€**1"k‘k'k‘k*X'k*'********‘k**'k‘k‘k‘k'k‘k*'k***‘k***'k'k'k*‘kk

17 ENVIDDNMENT DIVISIDN.
ID INPUT~0UTPUT SECTIDN.
19 FILE- CUNTHUL .
2t] 'EFLHIF [SAM TH i7 ASSIGN TI] " IESAM ~EX10ATA".21 ORGANIZATION IS INDEXED,22 ACCESS MDDE IS DYNAMIC,23 HECDDD KEY IS ISAM—KEY,24 FILE STATUS IS ISAMSTATUS.25 DATA DIVISIDN.2S FILE SECTIDN.
27 FD ISAM—PILE28 DECDDD CDNTAINS AS CHADACTEDS.29 D1 ISAM REC
30 ‘ ' ' 02 ISAM KEY PIC XIEI ,31 ' * ' ,',....MBST BE IN MECDDD AREA.32 02 ISAM TEXT PIC X140)
33
34 WORKING STORAGE SECTIDN.35 DI ISAMSTATUS PIC xx
38 S HETUDN STATUS FDDM ISAM37
38 PHDCEDUDE DIVISIDN.38 A001.
AD _ _ _ .DPEN I»U.ISAM»FILE.41 A002.
42 DISPLAY ”ENTER KEY (MAX. E CHAD) ; ",3 ACCEPT ISAM~KEY.
44 IT ISAM KEY : SPACES DD TD IIST.AS * SPACES INPUT, END DIALDG.46 DISPLAY "ENTER TEXT (MAX 40 CHAR) ;'*47 ACCEPT ISAM TEXT
48 * READ RECORDS FDDM TERMINAL.AS UDITE ISAM DEC. INVALID KEY.
50 DISPLAY "ISAM FILE EDDDD z”, ISAMSTATUS, "z".51 GD TD A002
52 * DUTPUT RECORD AND ASK AGAIN53 LIST.
SA DISPLAY "ENTER ACCESS KEY: ".SS ACCEPT ISAM—KEY.
58 IF ISAM— KEY = SPACES THEN GO ID FINI57 ‘ READ ISAM FILE DECDED KEY IS ISAMKEY INVALID x58 DISPLAY "EECDDD EDI FDDNDI",SS DD ID LISI

-80 DISPLAY "REC: ". ISAM—KEY. ": ISAM- DECEI GD TD LIST.
52 FINI.53 CLDSE ISAM—FILE.
EA DISPLAY "JOB END.".
85 STOP RUN.

ND—60.144.3 EN

182

EXAMPLE:

f‘ix**wkx** ****t**************k**t***

IDENTIFICATION DIVISION.
PROGRAMuIO. GENRELATIVE.

*x****t***x***x*****I****r******kx*********kxxk***w*x*****r*****
THIS PROGRAM SHOWS THE USAGE OF A RELATIVE FILE.

THE FILE *MUST* EXIST BEFORE THE RUN. BUT MAY BE EMPTY. EACH
RECORD IS LOCATED RELATIVE TO RECORD 1 IN THE FILE BY ITS
INTEGER KEY VALUE.

NOTE: EVEN IF SOMETHING IS WRITTEN ON RECORDS 300 AND TOO
IN THE RELATIVE FILE, *ND* STORAGE SPACE IS USED FOR THE
”EMPTY" RECORDS BETWEEN RECORD 1 AND 299. OR BETWEEN 301 AND
899. THUS IT MAKES PERFECT SENSE TO USE. SAY. BIRTH DATES
AS KEYS IN RELATIVE FILES.

*k***************************************k**********x****kkkr**
ENVIRONMENT DIVISION.
INPUTHOUTPUT SECTION.
FILE— CONTROL.

SELECT REl.FIlE ASSIGN "RELATIVE EX: DATA"
ORGANIZATION IS RELATIVE,
ACCESS IS DYNAMIC.
RELATIVE KEY IS REL—KEY.
FILE STATUS IS REL~STATUS.

k
‘k
“k
*
*
‘k
‘k
*
*
‘k
‘k
1'

DATA DIVISION.
FILE SECTION.

FO RELFILE
BLOCK CONTAINS 1O RECORDS
RECORD CONTAINS SD CHARACTERS.

O1 REL-RECORD PIC XIBO).

WORKING STORAGE SECTION
01 REL STATUS PIC xx _ _, __ - __ y

‘ REL“KEY PI: :333. ‘q-« ‘ “ f 'j‘; ‘ ’ ‘ ¢.:
' RRPMA" ‘ *k‘k1<**t‘k‘k7<****‘k

PROCEDURE DIVISION
AOOO.

_ OPEN I D RELEILE.
ADO2

DISPLAY ”ENTER KEY (MAX 999) : ".
PERFORM GET—KEY.
IF REL<KEY = ZEROES GO TO A003.
DISPLAY "ENTER TEXT (MAX SO CHARACTERS) : ".
ACCEPT REL~RECDRD.
WRITE REL—RECORD INVALID KEY.

DISPLAY "*** RELFILE ERROR *** z". REL-STATUS.
GO TO A002,

A003.
DISPLAY "ENTER ACCESS KEY: ”.
PERFORM GET— KEY.

,IE REL—KEY = ZEROS GO TO A983

DISPLAY "REC :". REL KEY. ”: ". REL—RECORD.
GO TO A003.

A898.
CLOSE RELFILE.
DISPLAY "JOB END".
STOP RUN.

GET-KEY.
ACCEPT REL—KEY.
IF RELvKEY NOT NUMERIC.

DISPLAY "*** KEY MUST BE NUMERIC ***",
GO TO GET—KEY.

GET~KEY~EXIT.
EXIT.

ND—SO.144.3 EN

ND COBOL Reference Manual 183
THE PROCEDURE DIVISION

EXAMPLE:

1 IDENTIFICATION DIVISION.
2 PROGRAM—ID.
3 OENSED.
4 ***‘k'kk‘k*'k‘k**'k*‘k‘k*‘k‘k'k’k’k*‘k‘k***‘k********’k*********‘k*‘k**‘k******‘k‘k***‘k

S * CREATES SD—FILES AND LISTS.
8 9C'k‘k‘k**‘k‘k‘k‘k**3?*‘k‘k*‘k‘k‘k‘k***‘k**‘k*‘k**‘k*‘k‘ki"k‘k*’k*’k‘k**‘k‘k‘k*‘k‘k***‘k‘k**‘k‘k*‘k‘k*

7 ENVIRONMENT DIVISION.
O INPUT~OUTPUT SECTION.
9 FILE—CONTROL.

10 SELECT SO—FILE ASSIGN ”COB1:DATA".
11 ORGANIZATION IS SEQUENTIAL.
12 ACCESS IS SEQUENTIAL.
13 DATA DIVISION.
14 . FILE SECTION.
IS ,¢__~FD ,SD+EILE.:- _
18 ' -‘01‘*N~R£C; ,' ' ‘ ‘
17 ~:'; :_ Dz - ,PIC xI1DL
18 __ J_ ‘ Dz SEQNUN PIC 9£53. BLANK NHEN ZERO
19 :; ;.,‘ 02 ~ ‘i _ PIC XISI
20 - _: -1 O2 “ ‘ ‘PIC XIIOI.
21 wDRKIND SIDRADE SECTION
22 D1 RANDNO PIC OIA) PACKED—DECIMAL. VALUE ZERO.
23 OI MAXRANO PIC SSIII PACKED—OECIMAL, VALUE 1000.
24 O1 NDRECS PIC SIAI PACKED~DECIMAL.
25 01 RECCNT PIC 99. COMP. VALUE 0.
25
27 PROCEDURE DIVISION.
28 INIT—O1.
2S OPEN OUTPUT SO-FILE.
30 DISPLAY "CREATE RECOR057".
31 PERFORM GETwNORECS.
32 PERFORM CHE-SQEFILE NORECS TIMES.
33 * BUILOS THE INPUT FILE.
34 CLOSE SQ FILE.
35 DISPLAY "FILE SD FILE CREATED ". RECENT. " RECORDS ".
35 ‘:' ‘- OPEN INPNI SO FILE. - , * '_ ;_ :
37 LIST FILE 0.
38 MOVE O TD RECCNT.
39 LIST~FILE~1.
IO , , READ SO~PILE AI END GO TO LISTEENO.
I1 ADD 1 TD RECCNT.
42 DISPLAY ”REC ". RECCNT. ". SEQNUM : ", SEDNUM.
43 GO TO LIST~FILE 1.
IA LIST-END.
AS CLOSE SO—FILE.
IE DISPLAY “JOB FINISH".
47 STOP RUN.
48 CRE~SQ—FILE.
49 CALL "RND" USINO RANDNO, MAXRANO.
SO MOVE ALL "*" TO M—REC.
51 MOVE RANDNO TO SEQNUM.
52 ADD 1 TD RECCNT.
53 DISPLAY "UT REC : ". RECCNT. “ KEY : ". SEONUM.
54 wRITE M~REC.
55 GET-NORECS.
SE ACCEPT NORECS.
57 IF NORCCS NOT NUMERIC,
58 DISPLAY "*** NOT NUMERIC DATA ***".
58 DO TO GET~NORECS
ED END—IF.

ND~60.144.3 EN

184 ND COBOL Reference Manual
THE PROCEDURE DIVISION

6.7.1.10 The REWRITE Statement

The REWRITE statement logically replaces a record existing in a mass
storage file.

Format 1:

REWRITE record—name [FROM identifier]

Format 2. Indexed and Relative I—O Only:

REWRITE record—name [FROM identifier]
[; INVALID KEY imperative—statement]

Record—name and identifier must not refer to the same storage area.

Record—name is the name of a logical record in the File Section of
Data Division.

For Relative 1—0. the INVALID KEY phrase must be specified in the
REwRITE statement for files in the random or dynamic access mode for
which an appropriate USE procedure is not specified. It must not be
specified for a REWRITE statement for a file in sequential access
mode.

For Indexed 1—0. the INVALID KEY phrase must be specified in the
RENRITE statement for files which do not have an appropriate USE
procedure for them.

General Rules:

1) The file associated with record-name (which must be a mass—
storage file for Sequential I—O) must be open in the I~O mode at
the time of execution of the statement.

2) The last input—output statement executed for the associated file
prior to the execution of the REWRITE statement must have been a
successfully executed READ statement.

3) The number of character positions in the record referenced by
record—name must be equal to the number of character positions in
the record being replaced.

ND—60.144.3 EN

ND COBOL Reference Manual 185
THE PROCEDURE DIVISION

4)

5)

6)

7)

8)

The logical record released by a successful execution of the
REWRITE statement is no longer available in the record area.

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier T0 record~name

followed by the execution of the same REWRITE statement without
the FROM phrase. The contents of the record area prior to the
execution of the implicit MOVE statement have no effect on the
execution of the REWRITE statement.

The current record pointer is not affected by the execution of a
REWRITE statement.

The execution of the REWRITE statement causes the value of the
FILE STATUS data item (if any) associated with the file, to be
updated.

For Relative 1—0, with a file accessed in either random or
dynamic access mode, the runtime system logically replaces the
record referenced by the RELATIVE KEY data item for the file. If
this file does not contain this record, the INVALID KEY condition
exists. The updating operation will not take place.

General Rules for Indexed I-O only:

1)

2)

3)

For a file in the sequential access mode, the record to be
replaced is indicated by the prime record key. When the REWRITE
statement is executed, the value in the prime record key data
item of the record to be replaced must be the same as that of the
last record read from this file. For a file in random or dynamic
access mode, the record to be replaced is specified by the prime
record key data item.

The contents of alternate record key data items of the record
being rewritten may differ from those in the record being
replaced. The runtime system utilizes the contents of the record
key data items during the execution of the REWRITE statement in
such a way that subsequent access to the record may be based upon
any of those specified record keys.

The INVALID KEY condition exists when:

a) The access mode is sequential and the value contained in the
prime record key data item of the record to be replaced is
not equal to the value of the prime record key of the last
record read from this file, or

b) The value contained in the prime record key data item does
not equal that of any record stored in the file, or

ND-60.164.3 EN

186 ND COBOL Reference Manual
THE PROCEDURE DIVISION

c) The value contained in an alternate record key data item for
which a DUPLICATES clause has not been specified is equal to
that of a record already stored in the file. or

d) The record has been modified by another user. File status is
‘78' (for files opened in multi-user mode only).

The updating operation does not take place and the data in the
record area is unaffected.

6.7.1.11 lhg START Statgmgnt

The START statement provides a basis for logical positioning within an
indexed or relative file, for subsequent retrieval of records.

Format:

IS EQUAL T0
IS =
IS GREATER THAN data—name
13 >
IS NQI ng THAN
IS NQI <
IS LESS THAN
IS <
IS am am THAN
IS [191 >

START file—name E ~<

[; INVALID KEY imperative—statement]

Note: The required relational characters '>'. '<'. and '2'
are not underlined to avoid confusion with other symbols
such as Z (greater than or equal to).

File—name must be the name of a file with sequential or dynamic
access.

The INVALID KEY phrase must be specified if no applicable USE
procedure is specified for file-name.

ND-60.144.3 EN

ND COBOL Reference Manual 187
THE PROCEDURE DIVISION

Data—name may be qualified. and for Relative I—O. it must be the data
item specified in the RELATIVE KEY phrase of the associated file—
control entry.

General Rules:

1)

2)

3)

4)

5)

File-name must be open in the INPUT or I~O mode at the time that
the START statement is executed. (See the OPEN statement.)

If the KEY option is not specified, the relational operator 'IS
EQUAL T0' is implied.

If the KEY option is present, the comparison specified in the KEY
relational operator is made between data—name and the
corresponding key field associated with the records of the file.

The execution of the START statement causes the current value in
the key data~name and the corresponding key field of the file's
records to be compared. The current record pointer is positioned
at the logical record in the file whose key field satisfies the
comparison. (If the comparison is not satisfied by any record in
the file, an INVALID KEY condition exists, the execution of the
START statement is unsuccessful. and the position of the current
record pointer is undefined.)

The execution of the START statement also causes the value of the
FILE STATUS data item (if any) associated with file—name to be
updated. (See I—O Status at the beginning of this section.)

General Rules For Indexed Files:

1)

2)

3)

If the KEY option is not specified. then the IS EQUAL TO
comparison is made with the prime RECORD KEY data item. After
successful execution of the START statement RECORD KEY or
ALTERNATE RECORD KEY becomes the key of reference for subsequent
READ statements.

If a KEY option is present, then the comparison is made with the
data item which may be the prime RECORD KEY. an ALTERNATE RECORD
KEY, or an alphanumeric data item subordinate to a record key
having its leftmost character position corresponding to the
leftmost character position of that record key.

The current record pointer is positioned as in general rule 4. If
the operands in the comparison are of unequal length, the
comparison takes place as if the longer field were truncated on
the right of the length of the shorter field.

If the execution of the START statement is not successful. the
key of reference is undefined.

ND-60.14k.3 EN

188 ND COBOL Reference Manual
THE PROCEDURE DIVISION

General Rule For Relative Files:

1) The KEY data item used in the comparison is that associated with
RELATIVE KEY, whether or not the KEY option appears. Thus. when
the KEY option does not appear‘ the data-name must specify
RELATIVE KEY.

ND-60.1LL.3 EN

ND COBOL Reference Manual 189
THE PROCEDURE DIVISION

EXAMPLE:

IDENTIFICATION DIVISION.
PROGRAM~ID.

GEN~ISAM~2
IIk****IIxx***w*************k***IIXXwxw*****kk**tkfik*x****k****
* ISAM MEANS INDEX~SEQUENTIAL ACCESS METHOD.
*

* THE RECORDS ARE OUTPUT TO AN ISAM—FILE USING THE *UNIOUE*
* (I. E.. NOT OUPLICATED) DATA FOUND IN FIELD ISAM~KEY AS
* *KEY* VALUE.

REFORE THIS JOB CAN BE RUN. THE FOLLOWING *MUST* BE SD:
A) FILE "ISAM—EX:DATA" MUST EXIST; OR
8) FILE "ISAM~EX:DATA" MUST NOT EXIST OR IF EXISTING

CONTAIN *ND DATA !!*
*********k**k**w******************************kA**k************

ENVIRONMENT DIVISION.
INPUT—OUTPUT SECTION.
FILE—CONTROL.

SELECT ISAMmFILF ASSIGN TO "ISAM—EX2DATA",
ORGANIZATION IS INOEXED.
ACCESS MODE IS DYNAMIC.
RECORD KEY IS ISAM~KEY.
FILE STATUS IS ISAMSTATUS.

DATA DIVISION.
FILE SECTION.
FD ISAM~FILE

RECORD CONTAINS 46 CHARACTERS.
OI ISAM REC. _

D2 ISAM KEY PIC XISI. __:,
* .4 'MUST BE INRECORD AREAI

02 ISAM TEXT PIC X(4D).

>
+

>
§>

+
>

€~
>

6

WORKING STORAGE SECTION.
01 ISAMSTATUS PIC XX.

* RETURN STATUS FROM ISAM.

PROCEDURE DIVISION._A001.
"_, OPEN I~U ISAMJFILE.,:§A002.

DISPLAY 'ENTER KEY (MAX. 8 CHARI : ',
ACCEPT ISAM*KEY.

IF ISAM— KEY = SPACES GO TO LIST.
* SPACES INPUT. END DIALOG.

DISPLAY 'ENTER TEXT (MAX 4O CHAR) : '.
ACCEPT ISAM TEXT

* READ RECORDS FROM TERMINAL
WRITE ISAM- REC, INVALID KEY.

DISPLAY ISAM FILE ERROR :', ISAMSTATUS, ':'.
GO ID A002.

* OUTPUT RECORD AND ASK AGAIN.
LIST.

DISPLAY 'ENTER ACCESS KEY: '.
ACCEPT ISAM—KEY.

IF ISAM— KEY — SPACES THEN GO ID FINI.
START ISAM~FILE KEY IS EQUAL TO ISAM—KEY. INVALID KEY.¢J

DISPLAY KEY NOT FDUND!‘ ” 'V
, ; GO TO LIST. ' I '
READ ISAM— FILE RECORD KEY IS ISAM— KEY INVALID KEY

DISPLAY 'RECORO NOT FOUND“
GO TO LIST.

DISPLAY 'REC: '. ISAM—KEY. '2 '.ISAM—REC.
GO TO LIST.

FINI.
CLOSE ISAM~FILE.
DISPLAY 'JOB END.'.
STOP RUN.

ND-60.144.3 EN

T90

h] i

16

20

25
26
27
28
2O
3O
31
32
33
34

36
’1
J

38
39
4O
41
42
43
44
45
4E
47
48
49
SO
51
52
53
s4
55
55
57
58
SS
60
81
62
53
E4
65
56
G7
OR
69
70
71
72
73
74

XAMPLE:

ND COBOL Reference Manual
THE PROCEDURE DIVISION

IOINTITIIATION OIVIS.ION.PROGRAM TO GEN Ex2.
%*******kk**k*k***k***

- THIS PROGRAM SHOOS THE USAGE OE A RELATIVE FILE.
THE FILE *MUST* EXIST REPORT THE RUN. OUT MAY BE EMPTY. EACH

' RECORD IS LOCATED DIRECTLY BY ITS RELATIVE (TO I) POSITION IN
i THE FITF BY ITS *1NTFOER* KEY VAIUE.

IN THE RELATIVE FILE. *NO* STORAGE SPACE IS USER FOR THE
' ”EMPTY” RECOROS RETNEEN RECORD O ANO 299. OR BETwEEN 301 AND699. THUS IT MAKES PERFECT SENSE TO USE, SAY. BIRTH OATES
’ AS KEYS IN RELATIVE FILES.
*k********k*********k**AAAAAA*AA***AAAk**A**k***********k*kkk**

ENVIRONMENT DIVISION.
INPUT~DUTPUT SECTION.
FIL£~CONTRUL.

SELECT RELFILE ASSIGN “RELATIVE~EX:OATA",
ORGANIZATION Is RELATIVE.
ACCESS IS OYNAMIC.
RELATIVE KEY IS REL—KEY.
FILE STATUS IS REL—STATUS

k

X
A
k

A
I

A NOTE: EVEN IF SOMETHING IS wRITTEN ON RECORDS 300 ANO 700
A
A
*

A
*

DATA DIVISION.
FILE SECTION.

FD RELFILE
BLOCK CONTAlNS 10 RECORDS
RECORD CONTAINS 60 CHARACTERS.

OT REL~RECORD PIC XTBO).
AAAAAAAAAAAAAA*AAA
* RECORD CAN NOT BE OF THE "OED" TYPE.AA

WORKING STORAGE SECTION.
01 RII ‘STATUS PIC XX.
01 REL KEY ’ PIC 8% - '

AtkNAX tk*****kkk*xx*kk**fififi*X*kiAkxx**kk*****k*******k***k**x
'4* 4" IIITHE RELATIVE KEY CAN NOT OCCUR IN THE RECORD
I ,1 ,iv , AREA. ITS POSSIBLE SIZES ARE TRSSSOSSSSSSQ.
* BUT IT IS RESTRICTED TO 838 IN THIS PROGRAM.
.AAAXAAA*k****k**k*****************k****&****X*k****k********ik*k

PROCEDURE DIVISION.
A000.

- ,OPEN4I*O RELFILE.T-“
A002.

DISPLAY ”ENTER KEY (MAX 999) 2 ".
PERFORM OET~KEY.
IF RELwKEY : ZEROES GO TO A003.
DISPLAY ”ENTER TEXT (MAX 80 CHARACTERS) : ”.
ACCEPT REL~RECORD.
WRITE REL-RECORD INVALID KEY.

DISPLAY ”*** RELFILE ERROR *** :”, REL—STATUS.
GO TO A002.

A003.
DISPLAY ”ENTER ACCESS KEY: ”.
PERFORM OET- KEY.

u IF REL— KEY = ZEROS 00 T0 A989.
”¢'START RELFIL? KEY IS EQUAL RELWKEY. INVALID: KEY

‘_ OTSRLAY "*** RECORD N FOUND ***”.f' ,~ ‘
REL~STATUS GO TO A003 , , ,_ 4' ‘-‘

READ RELFILE.
DISPLAY "REC :". REL‘KEY, “: ", REL— RECORD.
GO TO A003.

A999.
CLOSE RELFILE.
DISPLAY "JOB END".
STOP RUN.

GET—KEY.
ACCEPT REL~KEY.
IF REL—KEY NOT NUMERIC.

DISPLAY ”*** KEY MUST BE NUMERIC ***",
60 TD GET~KEY.

GET~KEY—EXIT.
EXIT.

ND—60.144.3 EN

ND COBOL Reference Manual 191
THE PROCEDURE DIVISION

57-1-12 Will;

The UNLOCK statement unlocks records which have been locked in MANUAL—
UNLOCK-MODE.

Format:

UNLOCK file—name

The UNLOCK statement is an ND Extension and it is used for programs
accessing relative or indexed organized files in MULTI—USER—MODE (see
the OPEN statement).

Records are normally unlocked automatically after a REwRITE or another
READ on the same file, or when the file is closed. However the MANUAL—
UNLOCK option on the OPEN statement, if present. will prevent this
until an UNLOCK statement is encountered for the file.

6.7.1.13 lhg ”5E Statement

The USE statement specifies procedures for 1—0 error handling in
addition to the standard procedures provided by the 1—0 control
system.

ND-80.144.3 EN

192 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Format:

USE AFTER STANDARD
EXCEPTION

PROCEDURE 0N
ERROR

file-name—1
[, filename—ZJ

The EXTEND option is valid for Sequential I—O only.

A USE statement. when present, must immediately follow a section
header in the Declaratives Section of the Procedure Division. (See
under Oeclaratives at the beginning of the Procedure Division
description.)

The USE statement itself is never executed, it merely defines the
conditions requiring execution of the USE procedure.

The files referenced need not all have the same organization or
access.

THE EXCEPTION/ERROR PROCEDURE

This procedure is executed after completion of the standard system I—O
routine or when an AT END or INVALID KEY option has not been specified
in the INPUT—OUTPUT statement.

EXCEPTION/ERROR procedures are activated when:

a) An OPEN statement is issued for a file already in the open
status, or for a nonexistent file.

b) A file is in the OPEN status and the execution of a CLOSE
statement is unsuccessful.

c) An I—O error occurs during execution of a READ, WRITE. REWRITE,
START or DELETE statement.

After execution of the EXCEPTION/ERROR procedure, control is returned
to the statement in the invoking routine following the statement which
activated this procedure.

ND—60.14L.3 EN

ND COBOL Reference Manual 193
THE PROCEDURE DIVISION

within a USE procedure there must not be any reference to any non"
declarative procedures. There is no interface between the two types.
(However, a PERFORM statement may refer to a USE procedure.)

Within an EXCEPTION/ERROR procedure, no statement may be executed that
would cause execution of a USE procedure that had been previously
invoked and had not yet returned control to the invoking routine.

Note: EXCEPTION/ERROR procedures can be used to check the status key
values whenever an inputvoutput error occurs.

6.7.1.14 The WRITE Statement

The WRITE statement releases a logical record for an output or an
input~output file. For Sequential {—0 it can be used for vertical
positioning of lines Within a logical line.

Format 7. Indexed and Relative I—O:

WRITE record—name [FROM identifier»1][;
INVALID KEY imperative—statement]

Format 2. Sequential I-O:

WRITE record name FROM identifier—1

BEFORE identifier—3 LINE
ADVANCING

AFTER integer LINES

PAGE

Record-name and identifiers 1 or 2 must not reference the same storage
area.

For {ormat 1, record~name is the name of a logical record in the File
Section of the Data Division and may be qualified.

ND~60.144.3 EN

194 ND COBOL Reference Manual
THE PROCEDURE DIVISION

With format 1. the INVALID KEY phrase must appear if no USE procedure
is specified for the associated file.

For format 2. when identifier—3 is used in the AOVANCING phrase, it
must be the name of an elementary data item (whose value may be zero).
Integer may also be zero.

General Rules:

1) For Indexed and Relative 1—0, the associated file must be open in
the OUTPUT or 1—0 mode at the time of execution of this
statement. For Sequential 1—0 the file must be open in either
OUTPUT or EXTEND modes.

2) The results of the execution of the WRITE statement with the FROM
phrase are equivalent to the execution of:

a) The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement. followed
by:

b) The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

After execution of the WRITE statement is complete, the
information in the area referenced by identifier is available.
even though the information in the area referenced by record—name
may not be.

3) The current record pointer is unaffected by the execution of a
WRITE statement.

4) The execution of the WRITE statement causes the value of the FILE
STATUS data item (if any) associated with the file to be updated.

5) The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

6) The number of character positions on a mass storage device
required to store a logical record in a file may or may not be
equal to the number of character positions defined by the logical
description of that record in the program.

7) The execution of the WRITE statement releases a logical record to
the operating system.

ND-60.144.3 EN

ND COBOL Reference Manual 195
THE PROCEDURE DIVISION

General Rules For Indexed I-O:

1)

2)

3)

4)

7)

8)

Execution of the WRITE statement causes the contents of the
record area to be released. The runtime system utilizes the
content of the record keys in such a way that subsequent access
of the record key may be made based upon any of those specified
record keys.

The value of the prime record key must be unique within the
records in the file.

The data item specified as the prime record key must be set by
the program to the desired value prior to the execution of the
WRITE statement. (See general rule 2.)

If sequential access mode is specified for the file. records must
be released to the runtime system in ascending order of prime
record key values.

If random or dynamic access mode is specified, records may be
released to the runtime system in any program—specified order.

When the ALTERNATE RECORD KEY clause is specified in the file
control entry for an indexed file. the value of the alternate
record key may be non—unique only if the DUPLICATES phrase is
specified for that data item. In this case the runtime system
provides storage of records such that when records are accessed
sequentially, the order of retrieval of those records is the
order in which they are released to the runtime system.

The INVALID KEY condition exists under the following
circumstances:

a) When the file is opened in the output or 1—0 mode. and the
value of an alternate record key for which duplicates are
not allowed equals the corresponding data item of a record
already existing in the file, or

b) When an attempt is made to write beyond the externally
defined boundaries of the file.

When the INVALID KEY condition is recognized, the execution of
the WRITE statement is unsuccessful. the contents of the record
area are unaffected and the FILE STATUS data item. if any,
associated with file-name of the associated file is set to a
value indicating the cause of the condition. Execution of the
program proceeds according to the rules given for the INVALID KEY
condition.

ND-60.144.3 EN

196 ND COBOL Reference Manual
THE PROCEDURE DIVISION

General Rules for Relative I~O:

I)

2)

b)

When a file is opened in the output mode, records may be placed
into the file by one of the following:

a) If the access mode is sequential, the WRITE statement will
cause a record to be released to the runtime system. The
first record will have a relative record number of one (1)
and subsequent records released will have relative record
numbers of 2. 3. a If the RELATIVE KEY data item has
been specified in the file control entry for the associated
file. the relative record number of the record just released
will be placed into the RELATIVE KEY data item by the
runtime system during execution of the WRITE statement.

b) If the access mode is random or dynamic, prior to the
execution of the WRITE statement the value of the RELATIVE
KEY data item must be initialized in the program with the
relative record number to be associated with the record in
the record area. That record is then released to the runtime
system by execution of the WRITE statement.

When a file is opened in the 1—0 mode and the access mode is
random or dynamic. records are to be inserted in the associated
file. The value of the RELATIVE KEY data item must be initialized
by the program with the relative record number to be associated
with the record in the record area. Execution of a WRITE
statement then causes the contents of the record area to be
released to the runtime system.

The INVALID KEY condition exists under the following
circumstances:

a) When the access mode is random or dynamic, and the RELATIVE
KEY data item specifies a record which already exists in the
file, or

b) When an attempt is made to write beyond the externally
defined boundaries of the file.

When the INVALID KEY condition is recognized, the execution of
the WRITE statement is unsuccessful, the contents of the record
area are unaffected, and the FILE STATUS data item. if any, of
the associated file is set to a value indicating the cause of the
condition. Execution of the program proceeds according to the
rules given for the INVALID KEY condition.

ND-BU.144.3 EN

ND COBOL Reference Manual 197
THE PROCEDURE DIVISION

General Rules For Sequential 1—0:

1)

2)

The ADVANCING phrase allows control of the vertical positioning
of each line on a printed page. If the ADVANCING phrase is not
used, automatic advancing will act as if the user had specified
AFTER ADVANCING 1 LINE. If the ADVANCING phrase is used,
advancing is provided as follows:

a) If identifier—3 is specified, the page is advanced the
number of lines equal to the current value associated with
identifier—3

b) If integer is specified, the page is advanced the number of
lines equal to the value of integer.

c) If the BEFORE phrase is used, the line is presented before
the page is advanced according to rules a and b above.

d) If the AFTER phrase is used, the line is presented after the
page is advanced according to rules a and b above.

e) If PAGE is specified, the record is presented on the logical
page before or after (depending on the phrase used) the
device is repositioned to the next logical page.

Note: Since the ND screen editors assume that files end with a
carriage return/linefeed. this feature implies that the last line
on a file written from COBOL without the BEFORE ADVANCING phrase
will appear to be lost. while a blank line will appear at the
beginning of the file.

when an attempt is made to write beyond the externally defined
boundaries of a sequential file, an EXCEPTION condition exists
and the contents of the record area are unaffected. The following
action takes place:

a) The value of the FILE STATUS data item, if any. of the
associated file is set to a value indicating a boundary
violation.

b) If a USE AFTER STANDARD EXCEPTION declarative is explicitly
or implicitly specified for the file. that declarative
procedure will then be executed.

c) If a USE AFTER STANDARD EXCEPTION declarative is not
explicitly or implicitly specified for the file. the result
is undefined.

ND—60.144.3 EN

198

EXAMPLE:

ND COBOL Reference Manual
THE PROCEDURE DIVISION

IDENTIFICATION DIVISION.
PROGRAMnIO.

GENSEO.
*********kx*kkkk**X****
* CREATES SO~FILES AND LISTS.
x*x*k*x**w****A***x**AR****Ak*****A******A*AAA**A*Ak*************

ENVIRONMENT DIVISION.
INPUT~OUTPUT SECTION.
FILE—CONTROL.

SELECT SOvFILE ASSIGN ”C081zDATA”.
ORGANIZATION IS SEQUENTIAL.
ACCESS IS SEQUENTIAL.

DATA DIVISION
FILE SECTION.

E

' RIC?XTADJ.V_:~-02 =
WORKING«STDRAGE SECTION.
01 RANDND PIC 9(4) PACKED~DECIMAL. VALUE ZERO.
DI MAXRAND PIC 58(4) PACKEDWDECIMAL. VALUE TODD.
D1 NDRECS PIC 9(4) PACKED»DEC]MAL.
OI RECENT PIC DO, COMP. VALUE 0.

PROCEDURE DIVISION.
H-1NITTUT‘ -‘*+“ OPEN OUTPUT SD»FILE:i:

DISPLAY "CREATE RECORDS?".
PERFORM GET—NDRECS.
PERFORM CRE~SD~FILE NORECS TIMES.

* BUILDS THE INPUT FILE.
CLOSE SQ~FILE.
DISPLAY "FILE SD~FILE CREATED.". RECENT, " RECORDS.".
OPEN INPUT SQ—FILE.

LISTuFIIEwD.
MOVE 0 TD RECCNT.

LISTmFILE-T.
READ SQ—FILE AT END GO TO LIST—END.
ADD 1 TO RECENT.
DISPLAY "REC ”, RECCNT. ". SEDNUM : ". SEONUM.
GO TO LIST—FILE—1.

LIST-END.
CLOSE SO-FILE.
DISPLAY ”JOB FINISH".
STOP RUN.

CRE~SO~FILE.
CALL ”RND" USING RANOND. MAXRAND.
MOVE ALL "*” TO M-REC.‘
MDVL RANDNO TD SEONUM.
ADD 1 TO RECENT.
DISPLAY "UT REC - f, RECENT ”THKEY ; “. SEONUM._____
NRXTR N REL - '

GET NORECS.
ACCEPT NORECS.
IF NORECS NOT NUMERIC.

DISPLAY "*** NOT NUMERIC DATA ***".
GO ID GET‘NDRECS

END—IF.

ND-60.144.3 EN

ND COBOL Refelence Manual 199
THE PROCEDURE DIVISION

EXAMPLE:

10

RS

IDENTIFICATION DIVISION.
PROGRAM~ID.

GEN—ISAM—1.
*******************A*****X**k*****k*******k*****************k**

ISAM MEANS INDEX~SEOUENTIAL ACCESS METHOD.

THE RECORDS ARE OUTPUT TO AN ISAMHFILE USING THE *UNIOUE*
(I. E.. NOT OUPLICATED)DATA FOUND IN FIELD ISAMnKEY AS
KEY VALUE.

BEFORE THIS JOB CAN BE RUN. THE FOLLOWING *MUST* BE MET:
A) FILE "ISAM-EX:DATA" AND I'ISAM—EX:ISAM" MUST EXIST

AND BE CONSISTENT; OR
B) FILE "ISAM—EXIOATA" MUST NOT EXIST OR IF EXISTING

CONTAIN *NO DATA ¥I*
****k****k**********k****k*************k**********kkk****x****
ENVIRONMENT DIVISION.
INPUT~OUTPUT SECTION.
FILE CONTROL.

SELECT ISAM— FIlE ASSION TO ”ISAM—EXIOATA".
ORGANIZATION IS INDEXEO,
ACCESS MODE IS DYNAMIC.
RECORD KEY IS ISAM—KEY.
FILE STATUS IS ISAMSTATUS.

DATA DIVISION.
FILE SECTION.
FD ISAMMFILE

RECORD CONTAINS 46 CHARACTERS.

>
E

>
E

>
E

>
F

>
E

>
é
>

é
>

é
>

E
>

E
>

E
>

E

_ OI ISAMnREC.
' 02 {sag key PIC X(8)

'“*-'_r; :.............. p..fi;fimusr a: In Beccab AREA!
'02‘ ISAM TEXT PIC XI4U).

WORKING— STORAGE SECTION.
01 ISAMSTATUS PIC XX.

* RETURN STATUS FROM ISAM.

PROCEDURE DIVISION.
ADOT.

OPEN‘IEO-ISAM~FILE.
OOZ.

DISPLAY "ENTER KEY (MAX. 6 CHAR) : ".
ACCEPT ISAM—KEY.

IF ISAMEKEY : SPACES GO TO LIST.
: SPACES INPUT. END DIALOO.

DISPLAY ”ENTER TEXT (MAX 4O CHAR) : ".
ACCEPT ISAM— TEXT.

* READ RE(.ORDS FROM TERMINAL.
WRITE ISAM REC. INVALID KEY : ,

DISPLAY "13AM FILE ERROR‘:
DO TO AOOZ.

* OUTPUT RECORD AND ASK AGAIN.
LIST.

DISPLAY "ENTER ACCESS KEY: ".
ACCEPT ISAM—KEY.

IF ISAM~KEY = SPACES THEN GO TO FINI.
READ ISAM~FILE RECORD KEY IS ISAM—KEY INVALID KEY,

DISPLAY "RECORD NOT FOUND!".
GO TO LIST.

DISPLAY "REC: ". ISAM—KEY, ": ".ISAM-REC.
GO TO LIST.

FINI.
CLOSE ISAMmFILE.
DISPLAY "JOB END.".
STOP RUN.

:I'ISAMSTATUS,

NO—SO.144.3 EN

ZOO

EXAMPLE:

&
)m

\I
m

U
IF

-w
RD

d
4

.;
4

.4
4

.4
U

I#
-k

)N
—

‘C

IR

18
IO
20
21
22
23
24
25
28
2?
28
29
30
q.
J

32
33
n
J

35
38
37
30gq

40

42
43
44
45
48
47
48
4O
50
SI
52
S3
54
SS
58
57
SR
53
60
BI
82
83
84
85
88
87
68
BO
70
71

IDENTIFICATION DIVISION.
PROGRAM—IDI OENRELATIVE.

k**k*********x***********k**%*********X*kk***k*wkk*kk****kk*****
THIS PROGRAM SHOWS THE USAGE OF A RELATIVE FILE.

THE FILE *MUST* EXIST BEFORE THE RUN, OUT MAY BE EMPTY, EACH
RECORD IS LOCATED RELATIVELY T0 RECORD I IN THE FILE BY ITS
INTEGER KEY VALUE.

NOTE: EVEN IF SOMETHING IS wRITTEN ON RECORDS 300 AND 700
IN THE RELATIVE FILE. *NO* STORAGE SPACE IS USED FOR THE
”EMPTY" RECORDS DETNEEN RECORD 0 AND 299, DR DETNEEN 301 AND698. THUS IT MAKES PERFECT SENSE TD USE. SAY, BIRTH DATES
As KEYS IN RELATIVE FILES.

'*k****k**k*k***kkk*k*****k********k**AXXAX*********X***X*A*X**X

ENVIRONMENT DIVISION.
INPUT—OUTPUT SECTION.
FILE«CONTROL.

SELECT RELFILE ASSION ”RELATIVE—EX:OATA”.
ORGANIZATION IS RELATIVE,
ACCESS IS DYNAMIC.
RELATIVE KEY IS REL~KEY.
FILE STATUS IS RELRSTATUS.

*
*
k
A
*
*
*
k
*
k
*
k

DATA DIVISION.
FILE SECTION.

FD RELFILE
BLOCK CONTAINS 10 RECORDS
RECORD CONTAINS GD CHARACTERS.

OI REL—RECORD PIC XIUO).

WORKING~STDRAOE SECTION.
OI REL STATUS PIC XX.

’,DI REL KEY PIC 998
t**k**** *xttfi*k*ki***xk*fl*kkflkkkk***k*k*kkkkfi*kkkkkki*kk%*k***h

I 2fl*gi*“ ~EYI.,....TRF RELATIVE KEY CAN NOT OCCUR IN THE RECORO
_ * : " , - AREA ITS POSSIBLE SIZES ARE I 93989999888.
‘ *7 ' I “- BUT IT IS RESTRICTED TO 888 IN THIS PROGRAM.

kifixkX***A**k#*k%*ikk*%t**i********i**x*k****1**i*kk**kkiAk*kk**
PROTzEOURE DIVISION.
AODD. , _,

:OPENJI~0 RELFILE.
A002.

DISPLAY ”ENTER KEY (MAX 999) 2 ".PERFORM GET—KEY.
IT DEL KEY ; ZEROES DO TO A003.
DISPLAY "ENTER TEXT (MAX OD CHARACTERS) : ".
ACIEPT DEL RECORD. _ __wRITE REL RECORD INVALID KeY. :9 ,; - _: , r _

‘ ” DISPLAY “*** RE!{FILE ERROR *** f. REL~SIATUS.
DO TO AOO2.

A003.
DISPLAY ”ENTER ACCESS KEY: ”.
PERFORM GET~KEY.
IF REL KEY : ZEROS GO TO A399.
READ RELFIII RECORD INVALID KEY,

DI SPIAY ”*** REIORO NOT FOUND ***".
RFI STATUS 00 TO A003.

DISPLAY "REC z". RELRKEY, ”: ”. REL~RECDRD.
00 TO A003.

A993.
CLOSE HFLFILE.
DISPLAY "JOB END".
STOP RUN.

DETHKEY.
ACCEPT RFL KEY.
IF DID “KI.Y NOT NUMERIC,

DI? PLAY ”*** KIEY MUfEI OE NUMERIL. ***”
GO TO GIT KEY

OFT~KEY~FXIT.
EXIT.

ND OD.TA4.3 EN

ND COBOL Reference Manual 201
THE PROCEDURE DIVISION

5.8 PROCEDURE BRANCHING STATEMENTS

5.8.1 The ALTER Statement

Format:

[PROCEED IQJprocedure—name—2
[PROCEED IQJprocedure—name~4][. procedure—name—3 T

ALTER procedure—name—1 T0
0

This format is used to modify a simple GO TO statement elsewhere in
the Procedure Division, thus changing the sequence of execution of
program statements.

Each procedure~name-1, procedure—name—3,.... is the name of a COBOL
paragraph that consists of a simple GO TO statement only.

Each procedure—namesz, procedure—name—4,.... is the name of a
paragraph in the Procedure Divison.

The ALTER statement in effect replaces the former operand of that GO
TO by procedure—name. Consider the ALTER statement in the context of
the following program segment.

GATE. GO TO MF—OPEN
MF—OPEN. OPEN INPUT MASTER-FILE

ALTER GATE TO PROCEED TO NORMAL
NORMAL. READ MASTER—FILE, AT END GO TO EOF-MASTER

Examination of the above code reveals the technique of ”shutting a
gate", providing for a one—time, initializing—program step.

ND-SD.144.3 EN

202 ND COBOL Reference Manual
THE PROCEDURE DIVISION

AVOID THE ALTER STATEMENT

The ALTER statement should not be used as it has a number of
undesirable effects.

a) The object code produced will not be completely reentrant.
depending on program structure. This could increase dramatically
the memory reguirements during execution.

b) The source listing will not show any obvious changes and thus be
more difficult to debug.

6.8.2 lne QQNTINUE Statement

Format:

CONTINUE

This statement has no effect and is treated as comments.

6.8.3 The EXIT Statement

The EXIT statement provides a common end point for a series of
procedures.

Format 1:

Format 2:

X T—

ND—60.144.3 EN

ND COBOL Reference Manual 203
THE PROCEDURE DIVISION

Format 3:

EXIT-ALL-DO W

General Rules for Format 1:

1) An EXIT statement is used only when assigning a procedure—name to
a given point in a program. Such an EXIT statement has no other
effect on the compilation of the program.

2) An EXIT statement can be used to leave a DO ——- END~DO loop.

General Rule for Formats 2 and 3:

1) The EXIT—DO statement in format 2 is used to leave the single DO—
loop whithin which it appears. The EXIT—ALL—DO statement however,
is used to leave all nested DO-loops within which it occurs. (See
the DO—statement description, section 6.5.2.)

6.8.4 Ihe 59 TO gtatement

The GO TO statement causes control to be transferred from one part of
the Procedure Division to another.

Format 1:

go T0 [procedure—name—1]

Format 2:

0 T0 procedure—name~1 [,procedure-name—Z]
procedure—name—n DEPENDING 0N identifier.

Identifier is the name of a numeric elementary item described without
any positions to the right of the assumed decimal point.

ND~50.144.3 EN

204 ND COBOL Reference Manual
THE PROCEDURE DIVISION

When a paragraph is referenced by an ALTER statement, that paragraph
can consist only of a paragraph header followed by a Format 1 GO TO
statement.

A Format 1 GO TO statement. without procedure—name—1, can only appear
in a single statement paragraph.

If a 60 TO statement represented by Format 1 appears in a consecutive
sequence of imperative statements within a sentence. it must appear as
the last statement in that sequence.

General Rules:

1) When a 60 TO statement, represented by Format 1 is executed,
control is transferred to procedure—name—1 or to another
procedure—name if the GO TO statement has been modified by an
ALTER statement.

2) If procedure—name—1 is not specified in Format 1, an ALTER
statement, referring to this GO TO statement. must be executed
prior to the execution of this 60 TO statement.

3) When a GO TO statement represented by Format 2 is executed.
control is transferred to procedure—name—1 procedure—name~2,
etc.. depending on the value of the identifier being 1, 2. ..
n. If the value of the identifier is anything other than the
positive or unsigned integers 1,2 .. n, then no transfer occurs
and control passes to the next statement in the normal sequence
for execution.

4) Integer n must be in the range 1 to 100.

5) The maximum number of procedure-names that can be specified with
a GO TO statement is TOO.

6.8.5 The PERFORM Statement

The PERFORM statement permits the execution of a separate body of
program steps. Three formats of the PERFORM statement are available:

ND—60.144.3 EN

ND COBOL Reference Manual
THE PROCEDURE DIVISION

205

Format 1:

identifier—1
PERFORM range TIMES

integer

Format 2:

PERFORM range UNTIL condition—1

Format 3:

PERFORM range VARYING
identifier—5

3 index—name—3 E

identifier—7

literal—4

identifier—B

index—name—S

identifier—10

literal—6

identifier~11

index—name—a

identifier—13

literal-7

FROM index—name—4
; identifier—6

\ literal-3

UNTIL conditionPI

identifier—9
index-name-S
literal—5

UNTIL condition—2

identifier—12
index—name—B
literal—5

UNTIL condition—3

E

where range is the construct:

ND-60.144.3 EN

206 ND COBOL Reference Manual
THE PROCEDURE DIVISION

HR H
procedure—name—1 ” procedure—name—Z

IHRU

and THROUGH is synonymous with THRU.

Procedure—names 1 and 2 must have a section or paragraph in the
Procedure Division. Where both are specified, if either is a
procedure—name inside Declaratives,then both must be procedure—names
in Declaratives.

Each index—name identifies an index to be used in table references.

Each literal represents a numeric literal (in the BY phrase this must
not be zero). Condition-names 1,2 and 3 may be any conditional
expressions (see under Conditional Expressions'). Each identifier must
name an elementary numeric item.

General Rules:

1) Whenever a PERFORM statement is executed. control is transferred
to the first statement of the procedure named as procedure—1.
Control is always returned to the statement following the PERFORM
statement and the point from which it is returned is determined
as follows:

a) If procedure—name»1 is a pragraph name and a procedure—name—
2 is not present, the return is made after the execution of
the last statement of procedure~name~1.

b) If procedure—name—1 is a section name and a procedure—name~2
is not present, the return is made after the execution of
the last sentence of the last paragraph of procedure—name—1.

c) If procedure-name-Z is present and it is a paragraph name,
the return is made after the execution of the last statement
of that paragraph.

d) If procedure~name—2 is present and it is a section name. the
return is made after the execution of the last sentence of
the last paragraph in the section.

2) GO TO and PERFORM statements may be specified within the
performed procedure. when the performed procedures include
another PERFORM statement, the sequence of procedures associated
with the embedded PERFORM statement must be included in or
excluded from the performed procedures of the first PERFORM
statement.

ND-60.144.3 EN

ND COBOL Reference Manual 207
THE PROCEDURE DIVISION

3) The TIMES option. Identifier—1, if used, must name an integer
item. (If the integer is zero or negative when the PERFORM
statement is initiated. control passes to the statement following
the PERFORM statement.) The procedure(s) referred to are executed
the number of times specified by the integer or the value in
identifier—1. Once the PERFORM statement has been initiated. any
reference to identifier—1 cannot vary the number of times the
procedures are executed.

4) The UNTIL option. The procedures referred to are performed until
the condition is satisfied. Control is then passed to the next
executable statement following the PERFORM statement, If the
condition is already true when the PERFORM statement is
initiated. then the specified procedure(s) are not executed.

5) The VARYING option. This increments or decrements identifers or
index-names until the condition(s) in the UNTIL option are
satisfied, when control is passed to the next executable
statement following the PERFORM statement.

6) with format 3. when varying two identifiers, the AFTER variable
(identifier~8) is set to the value of identifier—9. When
condition—1 is evaluated. if it is true, control is transferred
to the next executable statement. If false, range is executed
once before identifier—8 is augmented by identifier—10 or
literal-5. And so on.

6.8.6 Using the EEEFQRM Statement

with format 1, the designated range is performed (i.e., executed
remotely) a fixed number of times, as determined by an integer or by
the value of an integral data—item.

In format 2, identifier—2 is set to the value of literal—1 or the
current value of identifier—3 at the beginning of the execution. If
condition—1 is false the designated range is performed and then
condition‘1 is evaluated again. The cycle is repeated (augmenting
data—name—Z with the current BY value) until condition—1 is true.

In format 3 we may now vary not only the object of the VARYING phrase
but objects of the AFTER phrases as well.

ND—50.144.3 EN

208

Varying two identifxers we have:

4,

ND COBOL Reference Manual
THE PROCEDURE DIVISION

Set identifier-5 (or index-name-3) and
identifier—8 (or index-name'S)
to current FROM values

False

Execute Range

Augme m identifier-8 (or
indexaame-S) with current
BY vatue

Set identifier-8 (or
indoxname-S) to its current
FROM value

Augment identifier-5 (or
indexname-S) with current
BY value

\

Figure 6.8

ND-60.144.3 EN

ND COBOL Reference Manual 209
THE PROCEDURE DIVISION

Varying three identifiers gives us:

1
Set identifier - 5 (or indexname-S),
identifierfi (or index-name-S)
and identifier-11 (or indexname-7)
to current FROM values

Truecondition-1 ’ EXlT

condition-2

V l
Execute Set identifier»? (or Set identifierfi
range indox-mmr?) to (or index-name-S)

its current FROM to its current FROM
value value

v 9 t ,
Augnentbenfifiar 41 AUQWBOtMQHfifa AU9“901Henfifien5
(or index-name-7) (or indexname-S) (or index-namefil with
with current 3y with wrrent BY value current BY value

value

]

Figure 6.9

The format—3 PERFORM statement is particularly useful in table
handling when one statement can search a whole three dimensional
table.

At runtime. it is illegal to have concurrently active perform ranges
whose terminus points are the same.

ND~60.144.3 EN

210

X8

..L
._

s.
..s

_.
z_

'.—
.A

m
r
w

m
a

o
w

Q
—

q
m

m
b

w
m

—
a

16

N
d
—
fi
—

b
:1

m

21
22
23
24
25
26
27
23
29
30
31
32
33
31.
35
38
37
39
39
40
41
42
43
44
45
AG
47
48
49
so
s1
s2
53
54
55
53
57
58
59
50

ND COBOL Reference Manual
THE PROCEDURE DIVISION

IDENTIFICATION DIVISION.
PROGRAM—IO.

GENSEO.
***x**x
* CREATES SQ—FILES AND LISTS.
*******kt*********k********k********k*****************k**********

ENVIRONMENT DIVISION.
INPUTwOUTPUT SECTION.
FILE-CONTROL.

SELECT SO—FILE ASSIGN "COBI:OATA".
ORGANIZATION IS SEQUENTIAL.
ACCESS IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD SO*FILE.
O1 M—REC.

O2 PIC XITO).
02 SEONUM PIC 9(5), BLANK WHEN ZERO.
O2 PIC X(S).
02 PIC X(AO).

WORKING~STDRAGE SECTION.
O1 DANONO PIC 8(4) PACKED—DECIMAL. VALUE ZERO.
OI MAXRAND PIC 59(4) PACKED—DECIMAL. VALUE TODD.
O1 NORECS PIC 9(4) PACKED—DECIMAL.
OI RECENT PIC 99, COMP. VALUE 0.

PROCEDURE DIVISION.
[NIT—01.

OPEN OUTPUT SO—FILE.
DISPLAY “CREATE B,E.CUHDS?‘_'_- ,.a‘amaaaaemnascs.~r . , *~~

‘ 8FGBM‘CfifivS ' "
BI! '.

DISPLAY ”FILE SD—FILE CREATED.", RECCNT. " RECORDS.”.
OPEN INPUT SQ—FILE.

LIST«FILE~O.
MOVE 0 TO RECENT.

LIST—FILE¢1.
READ SO—FILE AT END GO TO LIST—END.
ADD 1 TO RECCNT.
DISPLAY ”REC ”. RECCNT. ". SEONUM ; ”. SEONUM.
GO TO l]ST~FILE-1.

LIST—END.
CLOSE SO~FILE.
DISPLAY "JOB FINISH”.

ND~60.144.3 EN

ND COBOL Reference Manual 211
THE PROCEDURE DIVISION

6.8.7 {he §TQP Stagemgng

The STOP statement is used to terminate or delay execution of the
object program.

Format:

STOP RUN terminates execution of a program, returning control to the
operating system.

The form STOP literal causes the specified text to be displayed on the
terminal, and execution to be suspended. Execution of the program is
resumed only after operator intervention. The operator will probably
perform a function suggested by the content of the literal, prior to
resuming program execution.

The operator restarts the program by hitting the carriage return key.

Due caution must be taken when using this facility in MODE and BATCH
jobs.

8.9 QQMEILEE QIBECTIEE STATEMEHIE

6.9.1 The COPY Statement

Prewritten source programs can be included in a source program at
compile time. These prewritten programs can be saved in user—created
libraries without recoding, and incorporated later in the COBOL
program by means of the COPY statement.

ND-60.144.3 EN

212 ND COBOL Reference Manual
THE PROCEDURE DIVISION

Format:

COPY file—name.

Where file—name is the name of a SINTRAN file. (Default file type is
:SYMB.)

The COPY statement must be preceded by a space and terminated by a
period. It may occur anywhere in the source program where a character
string or separator may occur. However, 3 COPY statement must not
occur within a COPY statement.

The effect of processing a COPY statement is that the library text
associated with file~name is copied into the source program, logically
replacing the entire COPY statement beginning with the word COPY and
ending with the period.

ND~60.14£.3 EN

ND COBOL Reference Manual 213

7 SORTlMERGE

Sort/Merge enables the programmer to order one or more files of
records. or to combine two or more identically ordered files of
records. according to a set of user—specified keys contained within
each of these records.

COBOL has special language features for sorting and merging so that
the programmer does not need to program these operations in detail.

7.1W

Sort produces an ordered file from one or more files that may be
completely unordered with regard to the sort sequence.

A COBOL program containing a sort may have one or more input files
handled by an input procedure. Within this procedure a RELEASE
statement (analogous to a WRITE statement) places records one at a
time onto the sort file. When all the records have been placed on this
file the sorting operation is executed. All the sort file records are
now arranged in the sequence specified by the keys.

Upon completion of the sorting operation, individual records can be
accessed, one at a time, through a RETURN statement, should they need
to be modified. If the user does not want to modify the sorted
records, the SORT statement's GIVING option names the sorted output
file.

ND—BO.144.3 EN

214 ND COBOL Reference Manual
SORT/MERGE

7.2 MERGE CONCEPTS

Merge produces an ordered file from two or more input files, each of
which is already ordered in the merge sequence.

The COBOL program can contain any number of merge operations each of
which can have independent output procedures. After merging.
individual records can be accessed. for modification if required, by
use of the RETURN statement. Otherwise. the GIVING option is used to
name the merged output file. Sort/Merge handles fixed or variable
length records.

The files specified in the USING and GIVING phrases of the Sort/Merge
statement must be described in the FILE—CONTROL paragraph as having
sequential organization. No 1—0 statement may be executed for the file
named in the Sort/Merge file description.

LBW

File—control entries are required for each file to be used as input or
output. A file—control entry is also required for the Sort/Merge file
itself.

Format:

FILE—CONTROL. file-control entry [file-control entry I

For the sort file. the format of the allowable clauses in the file—
control entry is:

SELECT file—name ASSIGN T0 assignment—name—1.

ND—60.144.3 EN

ND COBOL Reference Manual 215
SORT/MERGE

Each Sort/Merge file described in the Data Division must be named once
and once only in a file—control entry.

The ASSIGN clause associates a Sort/Merge file with a storage medium.

7.4 SORT/MERGE - DATA DIVISION

In the File Section there must be FD entries for each I—O file
together with a record description entry. For each Sort/Merge. file
there must be an SD entry as well as a record description. The 30
entry has the following format:

Format:

_Q file—name

[; RECORD CONTAINS [integer—1 IQ] integer—2 CHARACTERS

[DEPENDING ON identifier]]

F

TEXT‘FILE
; RECORDING MODE IS I

1

RECORD IS
; QAIA data-name—1 [, data—name—Z]

RECORDS ARE

Where the file—name must specify a Sort/Merge file.

The RECORD CONTAINS clause defines the size of the data records. As
the size of each record is completely defined within the record
description entry, this clause is never required. However, the number
of characters in all fixed-length elementary items, plus the sum of
the maximum number of those in any variable—length item subordinate to
the record, determines its size.

ND-GO.1£4.3 EN

216 ND COBOL Reference Manual
SORT/MERGE

The DATA RECORDS clause serves only as documentation for the names of
the data records with their associated file.

Data—name—1 and data—name—Z are the names of data records which must
have 01 level—number record descriptions. with the same names.
associated with them. The presence of more than one data—name
indicates that the file contains more than one type of data record
which may be of differing sizes, formats etc.

7.5 SQRTZMEBQE - ERQQEDUEE 9121519”

A sort input procedure must contain a RELEASE statement to make each
record available to the sorting operation. A Sort/Merge output
operation must have a RETURN statement which makes a sorted/merged
record available to the output procedure.

Format:

RELEASE record~name [FROM identifier J

Record—name must be the name of a logical record in the associated SD
entry and may be qualified.

Record—name and identifier must not refer to the same storage area.

When the FROM option is used, the RELEASE statement is the equivalent
of 3 MOVE statement operation of identifier to record-name. followed
by a RELEASE statement operation for the record—name. Moving takes
place according to the rules for the MOVE statement without the
CORRESPONDING option. After the move. information in the record area
is no longer available but that in the data area associated with the
identifier may still be accessed.

When control passes from the Input Procedure, the sort file consists
of all those records placed in it by execution of RELEASE statements.

The RETURN statement obtains records from the final phase of a sort or
merge operation.

Format:

RETURN file-name RECORD [INTO identifier J
; AT END imperative—statement.

ND-60.144.3 EN

ND COBOL Reference Manual 217
SORT/MERGE

Within an Output Procedure at least one RETURN statement must be
specified.

The file—name must be described by a Data Division SD entry.

The storage areas associated with the identifier and the record area
of the file-name must not be the same.

The execution of a RETURN statement causes the next record, in the
order specified by the keys listed in the SORT or MERGE statement. to
become available by the Output Procedure. If more that one record
description is associated with more than one file—name, these records
share the same storage.

After execution of a RETURN statement, only the contents of the
current record are available; if any data items lie beyond the length
of the current record their contents are undefined.

After all the records have been returned from file~name, the AT END
imperative statement is executed and no further RETURN statements may
be executed as part of the current output procedure.

7.5.1 [fig 598] SIEEEEQQI

The SORT statement creates a sort file by executing input procedures.
or by transferring records from another file. It then sorts records in
the sort file on a set of specified keys. In its final phase it makes
each record from this file available. in sorted order, to some output
procedure or to an output file.

ND—60.14k.3 EN

218 ND COBOL Reference Manual
SORT/MERGE

Format:

SORT file—name-1 ON

ASCENDING
KEY data—name-1 [, data—name~2]

DESCENDING

ASCENDING
0N KEY data—name—3 [, data—name-é]

DESCENDING

INPUT PROCEDURE IS section—name—1

THROUGH
' section—name—Z

THRU

USING file—name—Z

OUTPUT PROCEDURE IS section-name—3

THRU

THROUGH
section-name—é

GIVING file—name—3

File—name—1 is the name given in the SD entry describing the records
being sorted.

When the SORT statement is executed. all records contained on file—
name-2 are sorted according to the specified keys. This input file
must not be open at the time the SORT statement is executed; it is
automatically opened and closed by the SORT operation (and implicit
functions are also performed, if any).

The INPUT PROCEDURE option specifies one or more section-names of a
procedure that is to modify input records before the sorting operation
begins. Control is therefore passed to this procedure before file—
name—1 is sequenced by the SORT statement. The compiler inserts a
return mechanism at the end of the last section in the input procedure
and when control passes the last statement of this procedure. the
records that have been released to file—name—1 are sorted.

ND-80.144.3 EN

ND COBOL Reference Manual 219
SORT/MERGE

The input procedure must not contain any SORT statements or any
transfer of control to points outside it. The execution of a CALL
statement however follows standard linkage conventions.

7.5.2 Options Common to Sort and Merge

The ASCENOING/DESCENOING phrases specify that the records are to be
processed in an ascending or descending sequence (whichever option is
used) based on the specified sort keys.

The data items identified by KEY data—names must not contain an OCCURS
clause or be subordinate to an entry containing an OCCURS clause.

Key data items must be of fixed length. they may be qualified but not
subscripted or indexed.

If the USING phrase is specified, all records in file—name—Z for SORT
(in file-names 2 and 3 for MERGE) are transferred automatically to
file—name—1. At the time the Sort/Merge statements are executed, these
files must not be open. The compiler makes code which opens. reads and
makes records available, and closes files automatically.

The OUTPUT PROCEDURE option specifies one or more section-names of a
procedure that will modify records from the sort or merge operation.

The procedure takes control when all records have been sorted/merged.

The compiler inserts a return mechanism at the end of the last section
in the output procedure so that, when the last statement of this
procedure has been passed. the return mechanism causes control to pass
to the next executable statement following the SORT or MERGE
statement.

The output procedure must not itself contain any Sort/Merge statements
but it must include at least one RETURN statement to make the
sorted/merged records available for processing.

The GIVING phrase causes all the sorted/merged records to be
transferred to the output file. (File—name—3 for SORT operations,
file-name—A for MERGE operations).

when the Sort/Merge statements are executed the output file must not
be open. The compiler opens, reads and makes records available. The
terminating function is performed as for a CLOSE statement.

ND-60.144.3 EN

220 N0 COBOL Reference Manual
SORT/MERGE

7.5.3 The MERGE Statement

The MERGE statement combines two identically sequenced files according
to a set of specified keys. and during the process makes records
available in merge order, to an output file or procedure.

Format:

ASCENDING
MERGE file—name—1 0N KEY data—name—1

QEQQEHQLEQ

[, data—name—Z]

Aééfiflfllfifi
0N KEY data—name—3 [, data—name-4]

2§§££fl21fl§

USING file—name~2, file~name—3

OUTPUT PROCEDURE IS THROUGH
section—name—3 g section-name—4

THRU

GIVING file—name—4

File—name—1 is the name given in the SD entry which describes the
records being merged.

when the MERGE statement is executed. all records on file—names—Z and
3 are merged according to the key(s) specified. These files must not
be open when this statement is executed; they are automatically opened
and closed by the MERGE operation.

ND-60.1LL.3 EN

ND COBOL Reference Manual 221
SORT/MERGE

For the statement options, refer to the previous section on the SORT
statement.

ND‘SD.14A.3 EN

222

E
(D

O
D

N
C

D
U

I-
F

L
J
N

-J
b

41
42
43
44
45
45
47
4a
49
so
51
52
53
54
ss
55
57
SO
59
so
51
52
53
54
65
as
87
53
89
70
71
72
73

ND COBOL Reference Manual
SORT/MERGE

IDENTIFICATION DIVISION.
PROGRAM—ID.

SORT~EX1. ,
****‘k*k‘k**‘k**‘k**‘k’k*‘k‘k12*it'k‘k*****‘k‘k*‘k*‘k‘k‘k***‘k*‘k*‘k*******‘k***‘k**‘k****

* CREATES IN—FILE. LISTS. SDRTS. CREATING OUT—FILE. LISTS.
*‘k**‘k”k‘k‘k**‘k**‘k**‘k‘k****‘k‘k*‘k'k*Ik7k**‘k**'k*****‘k******‘k**‘k**************

ENVIRONMENT DIVISION.
INPUT—OUTPUT SECTION.
FILE-CONTROL.

SELECT IN—FILE ASSIGN "COBT:OATA".
ORGANIZATION Is SEQUENTIAL.
ACCESS IS SEQUENTIAL.

SELECT OUT-FILE ASSIGN “CDBZ:DATA".
SELECT S—FILE ASSIGN “SORT:DATA“.

DATA DIVISION.
FILE SECTION.

*****************+**********i*************************************
* NOTE: ALL FILES, INPUT/OUTPUT AND SORT CAN BE FIXED (F).
* VARIABLE (V) OR TEXT (T). EXCEPT RELATIVE AND INDEXED
* THAT CAN'T 8E TEXT.
**********t***t***

FD INFFILE.
O1 H-REC PIC X(SO).
O1 MOO—REC.

OZ PIC X(10).
02 SEQNUM PIC 9(5).
02 PIC X(5).
02 PIC X(40).

FD OUT-FILE.
01 NFREC.

OZ PIC X(1D).
O2 SEQNUMZ PIC 9(5).
02 PIC X(5).
02 PIC X(40).

**************x***
* NOTE THAT THE SORT DESCRIPTOR (SD) DOES NOT NEED ANY
* FILE-DESCRIPTION—ENTRY. IF RECORDING MODE I OH V
* IS NOT USED.
**

SO S—FILE.
01 S—REC.

02 PIC X(10).
02 S—KEY PIC 9(5).
02 PIC X(5).
OZ PIC X(40).

UORKING-STORAGE SECTION.
01 RANONO PIC 9(5). PACKED—OECIMAL. VALUE ZERO.
O1 MAXRANO PIC 59(5). PACKED-DECIMAL. VALUE 1000.
O1 NORECS PIC 9(5).
01 RECCNT PIC 9(5). PACKED—DECIHAL. VALUE 0.

PROCEDURE DIVISION.

MAIN SECTION.
INIT-O1.

DPEN OUTPUT IN—FILE.
DISPLAY "CREATE ND RECORDS? ((9999 LEAD 0. S)".
PERFORM GET~NDRECS.
MOVE 0 TO RECCNT.
PERFORM CRE—IN-FILE NORECS TIMES.

x****x***************k************************************
* BUILDING THE INPUT FILE FOR SORT.
***************t******************t********************ttt******

CLOSE IN-FILE.
DISPLAY "FILE IN-FILE CREATED.". RECCNT, ” RECORDS.”.
MOVE 0 T0 RECENT.

***********iii**
* ALL FILES REFERRED TO BY THE SORT VERB MUST BE CLOSED
* BEFORE THE SORT IS STARTED. OTHERWISE A RUNTIME ERROR OCCURS.
******i*****************k*t******t*t****************************

SORT S—FILE ON ASCENOING KEY S—KEY.

ND-SO.14k.3 EN

ND COBOL Reference Manual 223
SORT/MERGE

74
7s
7s
77
78
79
80
e1
82
83
94
as
86
a7
98
as
so
91
92
93
94
as
95
97
98
99

100
m1
102
103
101.
105
105
m7
103

USING IN—FILE.
GIVING OUT—FILE.

OPEN INPUT DUT~FILE.
PERFORM LIST-OUT—FILE.
CLOSE OUT~FILE.
DISPLAY "JOB FINISH".
STOP RUN.

CRE—IN—FILE SECTION.
CRE—FILE—T.

CALL "RNO" USING RANDNO. MAXRAND.
MOVE ALL "*" TO M~REC.
MOVE RANDNO TD SEONUM.
ADD 1 TO RECCNT.
DISPLAY "UT REC = ". RECCNT. " KEY = ". SEONUM.
WRITE M-REC.

CRE—FILE—ENO.
EXIT.

LIST-OUTfiFILE SECTION.
LISTvFILE—D.

MOVE 0 TO RECCNT.
LIST—FILE—T.

READ OUT—FILE AT END GO TO LIST—END.
ADD 1 TO RECCNT.
DISPLAY "REC NO. ". RECCNT. ". SEQNUM = ". SEQNUMZ.
GO TO LIST—FILE~1.

LIST—END.
EXIT.

GET-NORECS SECTION.
GET-NO.

ACCEPT NDRECS.
IF NORECS NOT NUMERIC.

DISPLAY "** NOT NUMERIC DATA".
GO TO GET—NO.

GET—EXIT.
EXIT.

ND*60.144.3 EN

lv [‘0 48
‘ ND COBOL Reference Manual

SORT/MERGE

Running the program (on an ND—SOD) gives the follow1ng output to
screen:

and (cobol—exam)c—7-8

CREATE N0 RECORDS? ((9999 LEAD 0. STZO
UT REC = 00001 KEY = 00403
UT REC = 00002 KEY = 00978
UT REC = 00003 KEY : 00019
UT REC = 00004 KEY : 00832
UT REC = 00005 KEY : 00715
UT REC = 00008 KEY = 00988
UT REC = 00007 KEY = 00891
UT REC = 00008 KEY : 00784
UT REC = 00009 KEY = 00947
UT REC : 00010 KEY = 00880
UT REC : 00011 KEY = 00283
UT REC : 00012 KEY = 00058
UT REC : 00013 KEY = 00299
UT REC = 00014 KEY = 00312
UT REC : 00015 KEY : 00395
UT REC = 00018 KEY = 00848 _ _____
UT REC = 00017 KEY : 00971
UT REC = 00018 KEY = 00084
UT REC = 00019 KEY = 00427
UT REC = 00020 KEY ' 00380
FILE IN—FILE CREATE0.00020 RECORDS.
REC N0. 00001. SEDNUM : 00019
REC NO. 00002. SEQNUM = 00058
REC N0. 00003. SEONUM = 00084
REC NO. 00004. SEONUM : 00283
REC NO. 00005. SEONUM : 00299
REC NO. 00008. SEQNUM = 00312
REC N0. 00007. SEQNUN = 00380
REC N0. 00008. SEQNUM : 00395
REC NO. 00009. SEQNUM = 00403
REC NO. 00010. SEQNUM = 00427
REC NO. 00011. SEDNUM : 00880
REC NO. 00012. SEQNUM = 00715
REC ND. 00013. SEQNUM : 00784
REC N0. 00014. SEQNUM = 00832
REC NO. 00015. SEQNUH = 00848
REC NO. 00015. SEDNUM = 00891
REC N0. 00017. SEONUH = 00947
REC N0. 00018. SEQNUM = 00988
REC N0. 00019. SEQNUM = 00971
REC NO 00020. SEQNUH = 00978308 iusu ~

ND-60.144.3 EN

ND COBOL Reference Manual
SORT/MERGE

Examgle:

(D
U

D
N

U
IU

I4
‘U

N
—

t IDENTIFICATION DIVISION.
PROGRAM—ID.

SDRT—EXZ.
At
* CREATES IN-FILE. LISTS. SORTS USING PROCEDURES. CREATING OUT—FILE.**************t*******************k*********************************

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE—CONTROL.

SELECT IN—FILE ASSIGN "COBTzDATA",
FILE STATUS IS IN-FILE—STATUS.

SELECT OUT—FILE ASSIDN "COB2:DATA".
FILE STATUS IS OUT-FILE-STATUS.

SELECT S—FILE ASSIGN "SORTzDATA".
FILE STATUS IS S—FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD IN~FILE.
01 IN—REC.

02 PIC X(10).
02 SEDNUM PIC 9(5).
02 PIC X(S).
02 PIC X(BO).

FD OUT—FILE.
01 UT—REC.

O2 PIC XITO).
02 SEQNUMZ PIC 8(5).
02 PIC XIS).
02 PIC X(80).

SD S—FILE.
01 S—REC.

02 PIC X(10).
OZ S~KEY PIC 9(5).
02 PIC X(5).
02 PIC XIBO).

WORKING—STORAGE SECTION.
01 NDRECS PIC 9(4).
01 RECCNT PACKEDvDECIMAL, VALUE O.

**************k**
* PARAMETERS FOR CALL TO RND (A RANDOM NUMBER GENERATOR).********xxxx********r******t*****t***************t********x******

01 RANDNO PIC 9(4). PACKED—DECIMAL. VALUE ZERO.
01 MAXRAND PIC 53(4). PACKED—OECIMAL. VALUE 1000.

*****************t****k**tt***tt*****t***************************
* STATUS 0ATA~NAME(S) MUST BE DEFINED AND MUST BE 2 BYTES LONG.

01 IN-FILE-STATUS PIC xx.
01 OUT—FILE—STATUS PIC xx.01 S—FILE—STATUS PIC xx.

****t**

* START/END—TIME USED FOR ACCEPTING TIME FROM SYSTEM.
t****************

01 START-TIME 91c 9(3).
01 END—TIME 91: 9(9).

**********k**

* SORT—START/END ARE THE RECEIVING EDIT FIELDS FOR START/END—TIME************************t**
01 SORT—START PIC 38.99.99.93.
01 SORT-END PIC 99.98.99.39.

PROCEDURE DIVISION.
MAIN SECTION.
INIT-D1.

OPEN OUTPUT IN—FILE.
DISPLAY "CREATE NO RECORDS?".
PERFORM GET—NORECS.
MOVE 0 T0 RECENT.
PERFORM CRE—IN~FILE NORECS TIMES.
CLOSE IN—FILE.
DISPLAY "IN-FILE CREATED. ". RECCNT, " RECORDS.".
MOVE 0 T0 RECENT.
ACCEPT START—TIME FROM TIME.
SORT S—FILE ON ASCENDING KEY S-KEY.

NO—60.144.3 EN

225

226

74
7s
77
70
79
00
e1
92
83
e4
95
as
97
00
09
9D
91
92
93
94
95
95
97
90
99

100
101
102
103
104
105
105
107
109
109
110
111
112
113
114
115
115
117
110
119
120
121
122
123
124
125
125
127
120
129
130
131
132
133
134
135
130
137
130
139
140
141
142
143
144
145
140
147
149
149
150

ND COBOL Reference Manual
SORT/MERGE

INPUT PROCEDURE IS SORT—PROC—IN
OUTPUT PROCEDURE IS SORT—PROC—UT.

ACCEPT END—TIME FROM TIME.
PERFORM SORT—TIMES.
DISPLAY "JOB FINISH".
STOP RUN.

MAIN—END.
EXIT.

* CALLING "RND" 10 GENERATE RANDOM DATA FOR THE RECORD. URITES.
‘k‘ahk***'k‘k***‘k'k*3?*****‘k***‘k**‘k***‘k‘k***‘k‘k‘k’k**********‘k***‘k‘k*******

CRE~IN~FILE SECTION.
CRE—FILE-1.

CALL ”RND“ USING RANONO. MAXRANO.
MOVE RANDNO TO SEONUM.
ADD 1 10 RECENT.
DISPLAY "UT REC = ", RECENT, ". KEY = ". SEONUM.
WRITE IN-REC.

CRE—FILE~ENO.
EXIT.

‘k‘k‘k******‘k****************‘k**‘k**********************‘k**********

* MOVE SORT TIMES INTO EDIT FIELDS FOR DISPLAYING
‘k‘k‘k‘k'k*‘k**‘k***'k‘k‘k***‘k*‘k‘k*****‘ki’**‘k‘k‘k‘k”k*‘k*****‘k******‘k****‘k******

SORT—TIMES SECTION.
50911.

MOVE START~TIME TD SORT—START.
MOVE END—TIME TO SORT—END.
DISPLAY "START SORT AT : ". SORT-START.
DISPLAY "END SORT AT : ". SORT—END.

SORT~TIMES—END.
EXIT

*********§*t***
* CALLED ONLY FROM THE SORT VERD TO READ AND PASS RECORDS
* FROM THE IN—FILE INTO THE SORT.
* IN-FILE IS OPENED/REAO/CLOSEO WITHIN THE ROUTINE.
x**r*****************xx

SORT—PROC—IN SECTION.
SORTIN.

DISPLAY ":::::::::::::: SORT—PRDC-IN START ::::::::::::::::".
OPEN INPUT IN-FILE.

SORTIN-T.
READ IN-FILE AT END GO TO SORT~IN-END.

*-======::::=:::=::::=:::::=:::=:==::=:::==:=::===:==::=:========

* THE RELEASE PASSES THE RECORD INTO THE SORT.
*3:==:======:=::==::::::=::::============::=:=::::====:========::

RELEASE S—REC FROM IN—HEC.
GO TO SORTIN-I.

SURT—IN—ENO.
CLOSE IN—FILE.
DISPLAY ":::::::::::::: SORT’PROC—IN END ::::::::::::::::".

SDRT—IN-FINI.
EXIT.

**********t****kt********t******t*****ti************************
* CALL ONLY FROM THE SORT VERB TO ACCEPT RECORDS AND WRITE
* THEM ONTO OUT—FILE.
* OUT~FILE IS OPENED/WRITTEN/CLOSEO WITHIN THE ROUTINE.
t***************t***

SORT—PROC—UT SECTION.
SORTUT.

DISPLAY "*k********** SQRT-PROC-UT START *****t***********”‘
MOVE 1 TO RECCNT.
OPEN OUTPUT OUT-FILE.

SORTUT1.
*=:::====:=:::=:::::=:::=======2."=:====:==::::====:==============

* RETURN PASSES A SORTEO RECORD FROM THE SORT INTO THE PROGRAM.

RETURN S—FILE INTO UT—REC. AT END.
DISPLAY "SFILE-ERR. STATUS :=:”. S—FILE—STATUS.

GO TO SORTUT-ENO.
DISPLAY "REC ". RECENT. " SEONUM : “, SEONUMZ.

“STATUS = ". OUT-FILE—STATUS.
WRITE UT-REC.
ADD 1 TO RECCNT.
GO TO SORTUT1.

SORTUT—ENO.
CLOSE OUT—FILE.
DISPLAY "************ sonr_pagc_uy ENDED **x******t*******".

ND—GO.14A.3 EN

ND COBOL Reference Manual 227
SORT/MERGE

151 SURT—FINI.
152 EXIT.
153
154 GET—NDRECS SECTION.
155 GET—N0.
158 ACCEPT NORECS.
157 IF NORECS NOT NUMERIC.
158 DISPLAY "** NOT NUMERIC DATA".
159 GO TO GET»NO.
180 GET—EXIT.
1E1 EXIT.

ND-50.144.3 EN

228 ' ND COBOL Reference Manual
SORT/MERGE

Running this example (on an ND—TOO) gives the following output: -------«

OTQnl—ggamTQ—7—1Q

CREATE N0 RECORDS?20
UT REC = 00001+. KEY = 00‘03
UT REC = 00002+, KEY = 00978
UT REC = 00003+. KEY = 00019
UT REC = 00004+, KEY = 00832
UT REC : 00005+. KEY = 00715
UT REC = 00008+. KEY = 00980
UT REC = 00007+. KEY = 00891
UT REC = 00008+. KEY = 00784
UT REC = 00009+. KEY = 0094?
UT REC = 00010+. KEY = 00880
UT REC = 00011+. KEY = 00283
UT REC = 00012+. KEY = 00058
UT REC : 00013+. KEY = 00299
UT REC : 00014+. KEY = 00312
UT REC = 00015+. KEY : 00395
UT REC : 00016+, KEY : 00848
UT REC = 00017+. KEY = 00971
UT REC = 00018+. KEY = 00064
UT REC : 00019+. KEY = 0042?
UT REC = 00020+. KEY = 00350
IN—FILE CREATED. 00020+ RECORDS.
:::::::::::::: SDRT—PROC—IN START ::::::::::::::::
:::::::::::::: SORT—PROC-TN END ::::::::::::::::
************ SORT—PROC-UT START ***********tt****
REC 00001+ SEQNUM = 000198TATUS : 00
REC 00002+ SEDNUM = ODUSSSTATUS = 00
REC 00003+ SEQNUM = DOOSASTATUS = 00
REC 00004+ SEONUM = 00283STATUS = 00
REC 00005+ SEQNUM : 002995TATUS = 00
REC 00008+ SEQNUM = 0031ZSTATUS = 00
REC 00007+ SEQNUM = 003805TATUS = 00
REC 00008+ SEQNUM : 003955TATUS = 00
REC 00009+ SEQNUH = 00403STATUS = 00
REC 00010+ SEQNUM = OOAZTSTATUS = 00
REC 00011+ SEQNUM = OOSBOSTATUS = 00
REC 00012+ SEQNUH = 007158TATUS = 00
REC 00013+ SEQNUH = 00784STATUS : 00
REC 00014+ SEQNUH = 0083ZSTATUS = 00
REC 0001S+ SEQNUM = 008£83TATUS : 00
REC 00016+ SEQNUH = 00891STATUS : 00
REC 00017+ SEQNUM = 00947STATUS = 00
REC 00018+ SEQNUM = UUBSBSTATUS = 00
REC 00019+ SEQNUM = 00971STATUS = 00
REC 00020+ SEONUH = 009765TATUS = 00
SFILE-ERR. STATUS :=:10
************ 5031_pngc_UT ENDED *****************
START SORT AT : 11.06.00.84
END SORT AT : 11,05,02.12
JOB FINISH

ND—50.1#4.3 EN

ND COBOL Reference Manual 229

0.00.00.00.0000.......00....OOOOOOOOOOO0.0000000000000000000000000...

8 TABLE HANDLING

A table is a set of contiguous data items having the same data
description.

Tables of data are common components of business data processing
tasks. Although items of data that make up a table could be described
as contiguous data items, there are two reasons why this approach is
not satisfactory. First, from a documentation standpoint. the
underlying homogeneity of the items would not be readily apparent; and
second, it would be unnecessarily difficult to retrieve an element
from a table when executing the program.

In COBOL. a table is defined with an OCCURS clause in its data
description entry. This clause specifies that the named item is to be
repeated as many times as stated. The item so named is considered to
be a table element and its name and description apply to each
repetition (or occurrence) of the item. Since the occurrences do not
have unique data—names, reference to a particular occurrence can only
be made by giving the data-names of the table element, together with
the occurrence number of the required item within the element.

The occurrence number is known as a subscript and the method of
supplying this number for individual table elements is called
subscripting. A related technique for table referencing is called
indexing and both of these methods of specifying occurrence numbers
are described in this section.

8.1 lAflLE QEEINIIIQE

COBOL allows tables in one, two. or three dimensions.

To define a one—dimensional table, the programmer uses an OCCURS
clause as part of the data description of the table element, but the
OCCURS clause must not appear in the description of group items which
contain the table element.

ND-60.1k4.3 EN

230 ND COBOL Reference Manual
TABLE HANDLING

Example:

01 TABLE—1.
02 ELEMENT—1 OCCURS 20 TIMES.

03 ELEMENT~A PIC X (2).
03 ELEMENT—B PIC 9 (5).

TABLE—1 is the group element containing the table. ELEMENT—1 names a
table element of a one—dimensional table which occurs 20 times.
ELEMENT~A and ELEMENT—B are elementary items.

Defining a one~dimensional table within each occurrence of an element
of another one—dimensional table gives rise to a twofldimensional
table. To define a two-dimensional table, therefore, an OCCURS clause
must appear in the data description of the element of the table. and
in the description of only one group item which contains that table
element.

Example:

01 TABLE-2.
U2 ELEMENT~1 OCCURS 5 TIMES.

03 ELEMENT~2 OCCURS 4 TIMES.
04 ELEMENT-A PIC 9(10).
U4 ELEMENT-B PIC XT5).

ELEMENT—1 is an element of a onewdimensional table occurring five
times. ELEMENT—2 is an element of a two-dimensional table occurring
four times within each occurrence of ELEMENT—1.

To define a three~dimensional table, the OCCURS clause should appear
in the data description of the element of the table and in the
description of 2 group items which contain the element.

Example:

01 CENSUS TABLE.
05 CONTINENT—TABLE OCCURS 6 TIMES.

10 CONTINENT~NAME PIC X(9).
10 COUNTRY—TABLE OCCURS 5 TIMES.

15 COUNTRY—NAME PIC X(12).
15 CITY—TABLE OCCURS 100 TIMES.

20 CITY—NAME PIC X(4).
20 CITY—POPULATION PIC XT5).

In the above example we have a table of one dimension for CONTINENT—
NAME. two dimensions for COUNTRY—NAME and three dimensions for CITY-
NAME and CITY—POPULATION.

ND—50.144.3 EN

ND COBOL Reference Manual 231
TABLE HANDLING

8.1-1lablLReierems

whenever the user refers to a table element, the reference must
indicate which occurrence of the element is intended. For access to a
one—dimensional table, the occurrence number of the desired element
provides complete information. For access to tables of more than one
dimension, an occurrence number must be supplied for each dimension of
the table accessed. In the last example then, a reference to the 4th
CONTINENT—NAME would be complete, whereas a reference to the 4th
COUNTRY—NAME would not. To refer to COUNTRY—NAME. which is an element
of a two—dimensional table, the user must refer, for example, to the
4th COUNTRY~NAME within the 6th CONTINENT~TABLE.

One method by which occurrence numbers may be specified is to append
one or more subscripts to the data-name. A subscript is an integer
whose value specifies the occurrence number of an element. The
subscript can be represented either by a literal which is an integer,
or by a data—name which is defined elsewhere as a numeric elementary
item with no character positions to the right of the assumed decimal
point. In either case, the subscript, enclosed in parentheses. is
written immediately following the name of the table element. A table
reference must include as many subscripts as there are dimensions in
the table whose element is being referenced. That is, there must be a
subscript for each OCCURS clause in the hierarchy containing the data—
name, including the data-name itself. In the example, references to
CONTINENT—NAME require only one subscript, reference to COUNTRY—NAME
requires two, references to CITY—NAME require two. and references to
CITY—NAME and CITY—POPULATION require three.

When more than one subscript is required, they are written in order of
successively less inclusive dimensions of the data organization. When
a data~name is used as a subscript, it may be used to refer to items
in many different tables. These tables need not have elements of the
same size. The data—name may also appear as the only subscript with
one item and as one of two or three subscripts with another item.
Also, it is permissible to mix literal and data—name subscripts, for
example: CITY—POPULATION(4, NENKEY, 42).

ND—60.144.3 EN

232 ND COBOL Reference Manual
TABLE HANDLING

8.1.1.1 Subscripting

Subscripting is the method of providing table references using
subscripts. A subscript is an integer value specifying the occurrence
number of a table element.

Format:

3 data—name g

condition—name

(subscript—1 [,subscript~2 [, subscript-3 1])

Subscripts can only be used when referring to an individual item
within a table element.

Data-name must be the name of a table element and may be qualified.

The subscript can be represented by a literal or a data—name.

If a literal, a subscript must be an integer having a value 1. It must
not be negative.

If a data—name. a subscript must be defined as elementary numeric
integer.

Where more than one subscript is required. they are written in the
order of successively less—inclusive tables. Each subscript must be
separated from the next by either a space. or a comma followed by a
space. (The comma is not required.)

ND-60.144.3 EN

LI) L.)ND COBOL Reference Manual 2
TABLE HANDLING

8.1.1.2 Indexing

Another method of referring to items in a table is indexing. An index
is used to store table element occurrence numbers; the index contains
a displacement value from the beginning of the table element
(equivalent to an occurrence number).

Format:

data—name index~name—1 [{1} literal—2]

condition—name literal“?

index—name—Z [{1} literal—4]

literalv3

index—name~3 {{1} literal~6]

literal—5

The index~name is specified through the OCCURS clause. It must be
initialized (i. e.. must have a value assigned to it) before use.

In direct indexing, the index—name is in the form of a subscript. The
value contained in the index is calculated as the occurrence number
minus one, multiplied by the length of the individual table entry.

For example:

03 ELEMENT OCCURS 20 INDEXED BY INDX—1 PIC X(2).

The tenth occurrence of ELEMENT generates a value in INDX—1 of (10—1)
* 2 : 18.

ND—60.144.3 EN

234 ND COBOL Reference Manual
TABLE HANDLING

With relative indexing. the index—name is followed by a space,
followed by a + or —. followed by another space, followed by an
unsigned literal. The literal (i.e.. occurrence number) is converted
to an index value before being added to or subtracted from the index—
name index.

For example, if we have:

01 TABLE-3.
02 ELEMENT—1 OCCURS 2 TIMES INDEXED BY INDX-1.

03 ELEMENT—2 OCCURS 3 TIMES INDEXED BY INDX—Z.
U4 ELEMENT—3 OCCURS 2 TIMES INDEXED BY INDX—3 PIC X(5}.

then, each occurrence of ELEMENT—1 is 30 characters in length (3*2*5).
Each occurrence of ELEMENT-2 is 10 characters in length (2*5) and each
occurrence of ELEMENT~3 is 5 characters in length.

A reference using relative indexing such as

ELEMENT~3 (INDX-1 + 1, INDX—2 - 1, INDX-3 + 2)

would produce the computation for the displacement of:

(address of ELEMENT—3)
+ ((contents of INDX—1)+1—1)*30
+ ((contents of INDX—2}-1—1)*10
+ ((contents of INDX—3)+2-1)*5

8.2 TABLE HANDLING - DATA DIVISION

The clauses used for Table Handling are OCCURS and USAGE IS INDEX.

ND—60.144.3 EN

ND COBOL Reference Manual 235
TABLE HANDLING

8.2.1 lug QQQUB§ glaggg

This clause eliminates the need for separate entries for repeated data
items and supplies information required for the applying subscripts
and indexes.

Format 1 (Fixed Length Tables):

OCCURS integer—2 TIMES

ASCENDING
KEY IS data—name—4 [, data—name—S]...

DESCENDING

[INDEXED BY index—name—1 [, index-name—Z] ...]

In format 1, the value of integer—2 specifies the exact number of
occurrences.

Format 2 (Variable Length Tables):

OCCURS integer—1 1Q integer~2 TIMES DEPENDING 0N data-name-3

g ASCENDING
g KEY 13 data—name-4 [, data-name—S]...

DESCENDING

[INDEXED BY index—name-1 [, index—name—Z] ...]

This format specifies that the subject of this entry has a variable
number of occurrences. The current value of the data item referenced
by data—name—1 represents the maximum number of occurrences and the
value of integer-1 the minimum.

ND—60.144.3 EN

236 ‘ ND COBOL Reference Manual
TABLE HANDLING

The value of the data item referenced by data—name—1 must fall within
the range integer—1 through integer~2.

The ASCENDING/DESCENDING KEY option (both formats) specifies that the
repeated data is arranged in ascending or descending order according
to the values contained in data—name—Z. data—name~3 etc. (The order is
determined according to the rules for comparison of operands - see
Comparison of Numeric and Nonnumeric operands under Conditional
Statements in the Procedure Division description.)

The data-names are listed in their descending order of significance.
Integer~1l when used. must be less than integer—2. All integers must
be positive.

If the data—name, which is the subject of this entry, or an entry
subordinate to it is to be referred to by indexing. then the INDEXED
BY clause is required.

The OCCURS clause cannot be specified in a data description entry
that:

a) has a level—number of 01. 77, or 88

b) described an item of variable size, i.e., if any subordinate item
contains an OCCURS DEPENDING 0N clause.

8.2.2 The USAGE Clause

The USAGE IS INDEX clause specifies that the data item has an index
format.

Format

[USAGE IS] INDEX

The data item is an index data item and is treated as computational it
will occupy 2 bytes in storage.

An index data item can be referenced explicity only in 3 SEARCH or SET
statement, a relation condition, the USING phrase of a Procedure
Division header, or the USING phrase of a CALL statement.

ND—60.144.3 EN

ND COBOL Reference Manual 237
TABLE HANDLING

The USAGE clause can be written at any level, if written at group
level it applies to every elementary item in the group. (The USAGE
clause of a elementary item cannot contradict the USAGE clause of a
group to which the item belongs.)

An index data item can be part of a group referred to in a MOVE or
INPUT~OUTPUT statement. in which case no conversion will take place.

8.3 iAELE HAHQLING - EBQQEQUEE QIYISIQN

In the Procedure Division, Table Handing makes use of the SEARCH and
SET statements. Also, comparisons may be made between index—names
and/or index data items as described under 'Relation Conditions'
below.

Relation Conditions:

Comparison tests may be made between:

1) Two index—names. This is equivalent to comparing their occurrence
numbers.

2) An index—name and a data item. The occurrence number
corresponding to the value of the index—name is compared to the
data item or literal.

3) An index data item and an index name or another index data item.
The actual values are compared without conversion.

4) The results of any other comparison involving an index data item
are undefined.

8-3-1 lh§_§EAB£fl_Sliifimflnl

Data that has been arranged in the form of a table is very often
searched. In COBOL. the SEARCH statement provides facilities. through
its two options, for producing serial and non—serial searches. In
using the SEARCH statement. the programmer may vary an associated
index—name or data—name. This statement also provides facilities for
executing imperative statements when certain conditions are true.

ND—60.145.3 EN

238 ND COBOL Reference Manual
TABLE HANDLING

Format 1:

identifier—2
SEARQH identifier—1 MARKING ‘

index—name-1

[; AT END imperative statement—1]

imperative~statement~2
; WHEN condition—1

NEXT SENTENCE

imperative—statement~3
: WHEN condition—2

NEXT SENTENCE

Format 2:

SEARCH ALL identifier-1 [; AT END imperative statement—1]

data-name~1
IS EQUAL T0 identifier—3

, WHEN literal—1 '
IS = arithmetic—expression

condition~name—1

data—name—Z
IS EQUAL T0 identifier—4

literal-2
A D 15 = arithmetic-expression

condition—name-z

imperative~statement~2

NEXT SENTENCE g

ND-60.1LL.3 EN

ND COBOL Reference Manual 239
TABLE HANDLING

Note: The required relational character '=' is not underlined to avoid
confusion with other symbols.

The SEARCH statement searches a table for an element that satisfies
the specified condition. and adjusts the associated index to indicate
that element.

In both formats, identifier—1 must not be subscripted or indexed, but
its description in the Data Division must contain an OCCURS clause and
an INDEXED BY clause.

Identifier~2, if present, must be described as USAGE IS INDEX or as a
numeric elementary item without any positions to the right of the
assumed decimal point.

Format 1:

1) The search operation begins at the current index setting. If, at
this point, the value of the index—name associated with
identifier—1 is not greater than the highest possible occurrence
number, the following takes place:

a) The conditions in the WHEN option are evaluated in the order
in which they are written, making use of the index settings
wherever specified.

b) If none of the conditions are satisfied. the index—name for
identifier~1 is incremented to correspond to the next table
element. Then above process a) is repeated.

c) If one of the conditions is satisfied upon evalutation. the
search terminates immediately and the imperative statement
associated with that condition is executed. The index—name
remains pointing to the table element that caused the
condition.

d) If, however, the incremented index~name value is greater
than the highest possible occurrence number (i.e., the end
of the table has been reached). the search terminates. If
the AT END phrase is specified, imperative—statement—1 is
now executed. Otherwise, control passes to the next
executable sentence.

2) At the beginning of the search operation. if the value of the
index—name associated with identifier-1 is greater than the
highest possible occurrence number. then the search terminates as
explained above in step d).

3) When the VARYING phrase is not used, the index that is used for
the search operation is the first (or only) index-name given in
the INDEXED BY phrase of identifier—1.

ND-60.144.3 EN

240

4)

5)

If

ND COBOL Reference Manual
TABLE HANDLING

the VARYING index—name-1 option appears. then one of the
following applies:

a) when index—name—1 is the index for identifier—1, then this
index is used for the search. If this is not the case (or
the VARYING identifier—2 is present), the first — or only —
index—name is used.

If index—name—1 is an index for another table element, then
the first (or only) index—name for identifier—1 will be used
for the search. The occurrence number represented by index—
name is incremented by the same amount as the search index—
name. and at the same time.

If the VARYING identifier—2 option appears and identifier-2 is an
index data item, then this item is incremented by the same amount
as the search index. and at the same time. If identifier~2 is not
an index data item. then it is incremented by the value one (1)
at the same time as the search index is incremented.

ND-60.144.3 EN

ND COBOL Reference Manual 241
TABLE HANDLING

A flowchart of 3 Format 1 type SEARCH operation containing two WHEN
phrases follows:

START

Index setting : > AT END °
highest permissible Imperative .
occurrence number tatement-1

True . ,
condition-l 'mperat‘ve‘ a.

statement-2 I

False

oonditlon-Z \ " True Imperatlw- “
/ nammem 3 I

False

V
Increment
indexname for
identifier-l
(index-name-l
if applicable)

V
B

Increment
lndexname-l (for a
different table)
or identifier-2

Figure 8.1:

* These operations are options included only when specified in the
SEARCH statement.

** Each of these control transfers is to the next executable
sentence unless the imperative-statement ends with a GO TO
statement.

Format 2:

If the format 2. SEARCH ALL, is used, a non—serial search operation
may take place. It is a more simple type of search than for format 1.
commencing at the beginning of the table.

ND-60.144.3 EN

242 ND COBOL Reference Manual
TABLE HANDLING

The initial setting of the index—name for identifier~1 is ignored
(i.e.. need not be initialized with the SET statement).

The index is the same as that associated with the first index-name
specified in the OCCURS clause.

The following rules apply:

1) If the WHEN option cannot be satisfied by any setting of the
index within the permitted range. then control is passed to
imperative—statement—1 of the AT END phrase if present, or to the
next executable sentence if this phrase is not present. In either
case, the final setting of the index is not predictable.

2) If the WHEN option can be satisfied. control passes to
imperative—statement-Z and the index will indicate an occurrence
that allows the conditions to be satisfied.

8.3.1.1 Notes on fiultigimgnsional lablgs

Identifier—1 can be a data item subordinate to a data item containing
an OCCURS clause. That is. it can be part of a two or three—dimension—
a1 table. In this case, the data description entry must specify an
INDEXED BY option for each dimension.

To search an entire two or three~dimensional table it is necessary to
execute a SEARCH statement several times. since execution of this
statement modifies the setting of the index—name associated with
identifier—1 only (and. if present, index—name—1 or identifier-2).
Prior to each execution, SET statements must be executed to
reinitialize the associated index—names.

ND-60.144.3 EN

ND COBOL Reference Manual
TABLE HANDLING

Examgle:

w
m

-
q
m

m
e
—

a IDENTIFICATION DIVISION.
PROGRAM—IO.

SEARCH~EX.
*******A*AAAA*******k*********************t***********t******tt**
* SHOWS USAGE OF SIMPLE TAOLE "LOOK~UP" VIA SEARCH VERB.
****************t************x**************************x**t*****

DATA DIVISION.
WORKING—STORAGE SECTION.
77 TABLE—LENGTH COMP VALUE 1B.
77 FIND—NAME PIC X(ZO).

********************x*t********x********x*****************A******
* SET UP THE TABLE ELEMENTS. NORMALLY ONE WOULD READ DATA FROM
* A "REFERENCE" FILE AND PLACE INTO TABLE FOR PROCESSING.
k******AA*********kt**********k*A*A***************k********

O1 NAMES—TABLE.
OZ PIC X(ZO) VALUE "BRABANT ".
OZ PIC 9(5) VALUE 310.
02 PIC X(ZO) VALUE "CISALPIN ".
02 PIC 9(5) VALUE 822.
02 PIC X(ZO) VALUE "ERASMUS ".
02 PIC 9(5) VALUE 481.
02 PIC X(20) VALUE "ETOILE DU NORD ".
O2 PIC 9(5) VALUE 554.
02 PIC X(ZO) VALUE "GOTTARDO ".
02 PIC 9(5) VALUE 381.
02 PIC X(20) VALUE "ILE DE FRANCE ".
02 PIC 9(5) VALUE 544.
02 PIC X(ZO) VALUE "IRIS ".
02 PIC 9(5) VALUE 888.
02 PIC X(20) VALUE ”LE CATALAN TALGO ".
02 PIC 9(5) VALUE 870.
02 PIC X(20) VALUE "LE CAPITDLE ".
02 PIC 9(5) VALUE 373.
02 PIC X(20) VALUE "LE MISTRAL ".
02 PIC 9(5) VALUE 883.
02 PIC X(20) VALUE "LEMANO ".
02 PIC 9(5) VALUE 595.
02 PIC X(20) VALUE "LIGURE ".
02 PIC 9(5) VALUE 322.
02 PIC X(ZO) VALUE "MEOIOLANUM ".
02 PIC 9(5) VALUE 889.
02 PIC X(20) VALUE "OISEAU BLEU 'H
02 PIC 9(5) VALUE 1039.
02 PIC X(20) VALUE "REMBRANDT 'K
02 PIC 9(5) VALUE 713.
02 PIC X(20) VALUE "RHEINGOLD 'H
02 PIC 9(5) VALUE 1088.

‘k*‘k***************‘k'k***‘k'k**‘k**'k*********tt**‘k********‘k*****

* REDEFINE THE ELEMENTS FOR ACCESS WITH THE SEARCH VERB.
* NOTE THAT THE DATA—NAME HITH THE *OCCURS* CLAUSE IS USED IN
* SEARCH AND NOT THE REOEFINES DATA—NAME (WHICH MAY BE "FILLER").
****************k********tAA*AtA*ttk***t*t*********t*x*********t*

O1 FILLER REOEFINES NAMES-TABLE.
02 TRAIN—TABLE OCCURS 18 TIMES INDEXEO BY TABINDEX.

03 NAME PIC X(20).
03 DISTANCE PIC 9(5).

PROCEDURE DIVISION.
A000.

*******tA*kt*****t******t*t********ttAAt****A**************t*****
* LIST OUT ALL THE TABLE ENTRIES.
***********ttt*ktt*****************k*tt****tttttttttt*k**********

PERFORM LIST—TABLE—ENTRY
VARYING TABINDEX FROM 1 BY 1 UNTIL
TABINDEX : TABLE—LENGTH.

A002.
******Atkttt*****k*************t****************************k****
* REQUEST A NAME TO FIND.
*t*****t**********x**********x**********t**t***ttt***t***********

DISPLAY "ENTER NAME TO FIND: ".
ACCEPT FIND—NAME.

t*t*********t**********
* START AT TOP OF TABLE(1).

N0-50.144.3 EN

243

244

74
75
7E
77
78
73
80
81
82
83
84
85
88
87
88

ND COBOL Reference Manual
TABLE HANDLING

**********i**
SET TABINOEX TO 1.

*****************************t***r***************x***x***********
* LOOK FOR REQUESTED NAME.
******************************r*********************************t

SEARCH TRAIN—TABLE AT END DISPLAY "NAME NOT FOUND".
WHEN FIND—NAME = NAMEITABINDEX).

PERFORM LIST—TABLE—ENTRY.
GO TO A002.

************x****************************r********************xr*
* NOTE THE WAY THAT THE LIST ROUTINE IS USED BY EITHER THE
* PERFORM OR THE SEARCH VERR.
t*t*tt*********************************k*********************

LIST—TABLE—ENTRY.
DISPLAY "TRAIN: “. NAHE(TABINDEX). " TRAVELS: ".

DISTANCE(TABINDEX). ” KM.".

ND*60.14£.3 EN

ND COBOL Reference Manual
TABLE HANDLING

This program makes the same output whether we execute it on an ND—
or an ND—SOO. The following shows execution on an NO—SOD from SINTRAN
III:

and (cobol—exam1c—8—13

TRAIN: BRABANT TRAVELS:
TRAIN: CISALPIN TRAVELS:
TRAIN: ERASMUS TRAVELS:
TRAIN: ETOILE DU NORD TRAVELS:
TRAIN: GDTTARDD TRAVELS:
TRAIN: ILE DE FRANCE TRAVELS:
TRAIN: IRIS TRAVELS:
TRAIN: LE CATALAN TALGO TRAVELS:
TRAIN: LE CAPITDLE TRAVELS:
TRAIN: LE MISTRAL TRAVELS:
TRAIN: LEMANO TRAVELS:
TRAIN: LIGURE TRAVELS:
TRAIN: MEDIOLANUM TRAVELS:
TRAIN: OISEAU BLEU TRAVELS:
TRAIN: REMBRANDT TRAVELS:
ENTER NAME TO FIND: IRIS
TRAIN: IRIS TRAVELS:
ENTER NAME TO FIND: ETOILE
NAME NOT FOUND
ENTER NAME TO FIND: ETOILE DU NORD
TRAIN: ETOILE DU NORD TRAVELS:
ENTER NAME TO FIND: LEMANO
TRAIN: LEMANO TRAVELS:
ENTER NAME TO FIND:

8.3.2 102 SE! Sgaggmgng

The SET statement establishes reference

Format 1:

00310
00822
00481
00554
00381
00544
00666
00870
00373
00683
00595
00322
00889
01039
00713

00666

00554

00595

poi

KM.
KM.
KM.
KM.
KM.
KM.
KM.
KM.
KM.
KM.
KM.
KM.
KM.
KM.
KM.

KM.

KM.

KM.

nts for

245

100

table handling
operations by setting index—names associated with table elements.

identifier—1 [, identifier—2]

1/) s;

index-name~1 [, index—name~2] 3...; identifier-3
index—name—3
integer—1 T

N0-60.144.3 EN

246 ND COBOL Reference Manual
TABLE HANDLING

Format 2:

S T index—name—4 [, index~name—SJ

§ug 51 g g identifier—4

Y 3
DOWN integer—2

Identifier-1 and identifier—3 must name either index data items. or
elementary items described as an integer.

Identifier—4 must be described as an elementary numeric integer.

Integer—1 and integer—2 may be signed. Integer—1 must be positive.

Index-names are related to a given table through the INDEXED BY option
of the OCCURS clause which constitutes their definition.

Format 1 - TO Option

when this {Orm of the SET statement is executed. the value of the
sending field replaces the current value of the receiving field. If
the receiving field specifies index—name—i. then, either:

a) If the sending field is an index data item, then the value of
this item is placed in the index name without change.

b) Otherwise, the receiving field is converted to a displacement
value corresponding to the occurrence number indicated by the
sending field.

If the receiving field specifies an index data item, then this is set
equal to the contents of the sending field (which must be an index—
name or an index data item). and no conversion takes place.

If the receiving field specifies an integer data item. then it is set
to an occurrence number that corresponds to the occurrence number
associated with the sending field (which must be an index name).

The above processes are repeated for indentifier—Z, index—name—Z, etc.

If index-name~3 is specified. the value of the index before execution
of the SET statement must correspond to an occurrence number of an
element in the associated table.

Any subscripting or indexing associated with identifier—1. etc.. is
evaluated immediately before the value of the respective data item is
changed.

ND-50.144.3 EN

ND COBOL Reference Manual 247
TABLE HANDLING

Format 2 - UP/DOWN BY Option

When this form of the SET option is executed. the value of the
receiving field, index-name—L. is incremented (UP BY) or decremented
(DOWN BY) by a value corresponding to the value in the sending field.
The process is repeated for index-name 5. etc.

Receiving Item

Sending Item Integer Data Item Index—name Index Data Item

Integer Literal No Valid No
Integer Data Item No Valid No
Index-name Valid Valid Valid*
Index Data Item No Valid* Valid*

* No conversion takes place.

ND—60.144.3 EN

248 ND COBOL Reference Manual

ND-60.144.3 EN

ND COBOL Reference Manual 249

9 INTER-PROGRAM COMMUNICATION

Complex data processing problems are frequently solved by the use of
separately compiled but logically coordinated programs, which, at
execution time, form logical and physical subdivisions of a single run
unit. This approach lends itself to dividing a large problem into
smaller. more manageable segments which can be programmed and debugged
independently. During execution, control is transferred from program
to program by the used of CALL and EXIT PROGRAM statements.

9.1 BASIQ QQNQEEIS

In COBOL terminology, a program is either a source program or an
object program depending on context; a source program is a
syntactically correct set of COBOL statements; an object program is
the set of instructions, constants, and other machineeoriented data
resulting from the operation of a compiler on a source program; and a
run unit is the total machine language necessary to solve a data
processing problem. It includes one or more object programs as defined
above, and it may include machine language from sources other than a
COBOL compiler.

When the statement of a problem is subdivided into more than one
program, the constituent programs must be able to communicate with
each other. This communication may take two forms: transfer of control
and reference to common data.

sum

The CALL statement provides the means whereby control can be passed
from one program to another within a run unit. A program that is
activated by a CALL statement may itself contain CALL statements.
However, results are unpredictable where circulaity of control is
initiated; i.e.. where program A calls program B. then program B calls
program A or another program that calls program A.

ND—50.144.3 EN

250 ND COBOL Reference Manual
INTER—PROGRAM COMMUNICATION

When control is passed to a called program, execution proceeds in the
normal way from procedure statement to procedure statement beginning
with the first nondeclarative statement. If control reaches a STOP RUN
statement. this signals the logical end of the run unit. If control
reaches an EXIT PROGRAM statement, this signals the logical end of the
called program only, and control then reverts to the point immediately
following the CALL statement in the calling program. Stated briefly.
the EXIT PROGRAM statement terminates only the program in which it
occurs, and the STOP RUN statement terminates the entire run unit.

If the called program is not COBOL. then the termination of the run
unit or the return to the calling program must be programmed in
accordance with the language of the called program.

9.1.2 Reference to Common Data

Because of program interaction, it may be necessary for one or more
programs to have access to the same data.

In a calling program. the common data items are described together
with all other data items in the File, Working—Storage. or Linkage
Sections. In the called program. common data items are described in
the Linkage Section.

At object time, memory is allocated for the whole Data Division in the
calling program but not for the Linkage Section of the called program.
Communication between the called program and the common data items
stored in the calling program is through USING clauses contained in
both programs. The USING clause in the calling program is contained in
the CALL statement and the operands are common data items described in
its Data Division. The USING clause in the called program has operands
which are data items appearing in its Linkage Section.

The sequence of appearance of the identifiers in both lists of
operands is significant. They must match in both programs. While the
called program is being executed. every reference to an operand whose
identifier appears in the called program's USING clause is treated as
if it were a reference to the corresponding operand in the USING
clause of the active CALL statement.

(A calling program may itself be a called program, in this case.
common data items can be described in the calling program’s Linkage
Section. Storage will not be allocated for these items in the calling
program itself but reather in the program which calls the calling
program.)

ND-60.144.3 EN

ND COBOL Reference Manual 251
INTER—PROGRAM COMMUNICATION

An example of a called and a calling program is outlined below:

CALLING PROGRAM (PROG~A) CALLED PROGRAM (PROG-B)

WORKINGMSTORAGE SECTION. LINKAGE SECTION.

01 A—LIST. 01 B-LIST.
02 HEADING PIC XLIO). D5 HEADING PIC X(70).
02 YEAR PIC 9(2). 05 DATE PIC 9(4).
02 MONTH PIC 9(2). 05 CODE—ID PIC X(4}.
02 CODE~NO PIC X(4).

PROCEDURE DIVISION. PROCEDURE DIVISION USING 8~LIST.

CALL FROG—B USING A~LIST.

Note that the names of the data items need not correspond and that
parts of data items can be referred to separately (DATE in the called
program is subdivided into YEAR and MONTH in the calling program).

9.1.3 Interoroqram Communication — Data Division

In the Data Division of a called program, all file description entries
may be assigned a value of an integral literal (using a VALUE OF FILE—
ID IS clause) which is the same as that defined in the main program,
refer to section 5.3.1.

Note: In the present version of ND COBOL. it is no longer necessary to
include a VALUE OF FILEvID IS clause. If you do include this Clause,
its contents are treated as comments only.

The programmer specifies in the Linkage Section those data items that
the called program has in common with the calling program.

ND-60.144.3 EN

252 ND COBOL Reference Manual
INTER—PROGRAM COMMUNICATION

Format:

LINKAGE SECTION;

data-name-1
level—number

FILLER

[REDEFINE5 Clause J
[BLANK WHEN gggg Clause J
[JUSTIFIED Clause J
[OCCURS Clause J
[PICTURE Clause J
[élgfl Clause J
[SYNCHRONIZED Clause J

[USAGC Clause J
[IMPORT Clause J
[IMPORT [COMMON] Clause]

[88 condition—name VALUE Clause J

The Linkage Section in a program is meaningful if and only if the
object program is to function under the control of a CALL statement,
and the CALL statement in the calling program contains a USING phrase.

The IMPORT clause must specify the same data item as in the
corresponding EXPORT clause (see section 5.4.2.13 for a description of
the rules which apply to both clauses).

The IMPORT COMMON clause is used to specify a FORTRAN common block
IMPORT.

The VALUE clause must not be specified in the Linkage Section except
in condition—name entries (level 88).

The Linkage Section is used for describing data that is available
through the calling program but is to be referred to in both the
calling and the called program. No space is allocated in the program
for data items referenced by data—names in the Linkage Section of that
program. Procedure Division references to these data items are
resolved at object time by equating the reference in the called
program to the location used in the calling program.

Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program only if
they are specified as operands of the USING phrase of the Procedure
Division header or are subordinate to such operands, and the object
program is under the control of 3 CALL statement that specifies a
USING phrase.

ND—60.144.3 EN

ND COBOL Reference Manual 253
INTER-PROGRAM COMMUNICATION

The structure of the Linkage Section is the same as that previously
described for the Working-Storage Section, beginning with a section
header, and followed by data description entries for noncontiguous
data items and/or record description entries.

Each Linkage Section record name and nontontiguous item name must be
unique within the called program since it cannot be qualified.

Of those items defined in the Linkage Section. only data-name—1, data-
name—2, ... in the USING phrase of the Procedure Division header, data
items subordinate to these data—names, and condition names and/or
index—names associated with such data—names and/or subordinate data
items, may be referenced in the Procedure Division.

9.1.3.1 Data Item Description Entries

Items in the Linkage Section that bear no hierarchic relationship to
one another need not be grouped into records and are classified and
defined as noncontiguous elementary items. Each of these data items is
defined in a separate data description entry which begins with the
special level—number 77.

The Following data clauses are required in each data description
entry:

a) level~number 77

b) data—name

c) the PICTURE clause or the USAGE IS INDEX clause

other data description clauses are optional and can be used to
complete the description of the item if necessary.

ND‘60.144.3 EN

254 ND COBOL Reference Manual
INTER—PROGRAM COMMUNICATION

9.1.3.2 Record Description Entries

Data elements in the Linkage Section which bear a definite hierarchic
relationship to one another must be grouped into O1—level records
according to the rules for formation of record descriptions. Any
clause which is used in an input or output record description can be
used in a Linkage Section.

9.1.L Inter—Program Communication - Procedure Division

In the Procedure Division, control is transferred between programs by
means of the CALL statement.

Reference to common data is provided by the USING option which can
appear in the CALL statement and in the called program‘s Procedure
Division header.

Format of Procedure Division Header:

PROCEDURE QJVISION [USING data—name—1 [, data—name—2J ...]

The USING phrase is present if and only if the object program is to
function under the control of a CALL statement, and the CALL statement
in the calling program contains a USING phrase.

For a description of the data—names. see the details of the USING
option in the CALL statement. The USING option is common to several
Inter—Program Communication elements.

Each of the operands in the USING phrase of the Procedure Divison
header must be defined as a data item in the Linkage Section of the
program in which this header occurs, and it must have 01 or 77 level—
number.

Within a called program, Linkage Section data items are processed
according to their data descriptions given in the called program.

ND-60.144.3 EN

ND COBOL Reference Manual 255
INTER—PROGRAM COMMUNICATION

9.1.£.1 Ing CALL Stafigmgnt

The CALL statement causes control to be transferred from one object
program to another within the run unit.

Format:

CALL literal~1

data—name—1 , data—name—2
USING quoted—literal , quoted—literal

integereliteral , integer—literal

Literal—1 must be a non—numeric literal and conform to the rules For
formation of a program name (see PROGRAM—ID paragraph in the
Identification Division chapter).

Called programs may contain CALL statements.

CALL statement execution causes control to pass to the called
subprogram. The first time a called program is entered its state is
that of an original copy of the program. Each subsequent time 3 called
program is entered, the state is as it was upon the last exit from
that program.

Reinitialization of GO TO statements that have been altered etc.. are
the responsibility of the programmer.

This option makes data items in a calling program available to the
called program.

The USING option is specified if, and only if, the called subprogram
is to operate under control of a CALL statement and that CALL
statement itself contains a USING option. That is, for each CALL USING
statement in a calling program there must be a corresponding USING
option specified in a called subprogram.

The data-name, or quoted~literal. or integer~literal. specified by the
USING option indicate the data items available to a calling program
that may also be referred to in the called program. The order of
appearance of these data—names is critical. Corresponding data~names
refer to a single set of data equally available to both programs.
Their description must define an equal number of character positions
but their correspondence is positional and not by name. (In the case

ND—60.144.3 EN

256 ND COBOL Reference Manual
INTER—PROGRAM COMMUNICATION

of index names no such correspondence is established. and separate
indices are referred to in the called and calling programs).

The integer—literal must be in the range —32768 to +3276? on both the
ND~100 and the ND—SOU.

9.1.k.2 Ihe EXIT PROGRAM Statement

The EXIT PROGRAM statement marks the logical end of 3 called program.

Format

EXlT PROGRAM.

The EXIT PROGRAM statement must appear in a sentence by itself.

The EXIT PROGRAM sentence must be the only sentence in the paragraph.

General Rule:

1) An execution of an EXIT PROGRAM statement in a called program
causes control to be passed to the calling program. During
execution. an EXIT PROGRAM statement in a program which is not
called behaves as if it were an EXIT statement (see under
Procedure Branching Statements in the Procedure Division
description).

ND—80.144.3 EN

ND COBOL Reference Manual 257
INTER—PROGRAM COMMUNICATION

Examgle:

L
D

Q
N

O
'J

U
T

-r
L
J
N

-fi IDENTIFICATION DIVISION.
PROGRAM—IO.

GENSED.
x*x****x*****k*******
* CREATES SD—FILES AND LISTS.
****k***t************

ENVIRONMENT DIVISION.
INPUT—OUTPUT SECTION.
FILE—CONTROL.

SELECT SO—FILE ASSIGN “COB1:DATA".
ORGANIZATION IS SEQUENTIAL.
ACCESS IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD SQ—FILE.
O1 M—REC.

OZ PIC X(10).
02 SEQNUM PIC 9(5), BLANK WHEN ZERO.
02 PIC XIS).
OZ PIC XIAD).

WORKING—STORAGE SECTION.
01 RANDNO PIC 9(4) PACKED—OECIMAL. VALUE ZERO.
OI MAXRANO PIC 39(4) PACKED—OECIMAL. VALUE 1000.
01 NORECS PIC 9(4) PACKED-DECIMAL.
01 RECENT PIC 99. COMP. VALUE 0.

PROCEDURE DIVISION.
INIT—OI.

OPEN OUTPUT SO—FILE.
DISPLAY "CREATE RECORDS?".
PERFORM GET—NOREES.
PERFORM ERE—SQ—FILE NORECS TIMES.

* BUILDS THE INPUT FILE.
CLOSE SQ—FILE.
DISPLAY "FILE SQ-FILE CREATED.". RECENT. " RECORDS.".
OPEN INPUT SQ—FILE.

LIST-FILE—O.
MOVE 0 TD RECENT.

LIST—FILE—T.
READ SQ—FILE AT END GO TO LIST—END.
ADD 1 TO RECENT.
DISPLAY "REC ". RECENT. ". SEDNUM : ", SEONUM.
GO TO LIST—FILE—I.

LIST—END.
CLOSE SQ-FILE.
DISPLAY "JOB FINISH".
STOP RUN.

CRE~SQ~FILE.
CALL "RND" USING RANDNO, MAXRAND.
MOVE ALL "*" TO M—REC.
MOVE RANDNO TO SEQNUM.
ADD 1 TO RECENT.
DISPLAY ”UT REC : ", RECENT, " KEY : ". SEQNUM.
WRITE M—REC.

GET—NORECS.
ACCEPT NDRECS.
IF NORECS NDT NUMERIC.

DISPLAY "*** NOT NUMERIC DATA ***".
GO TO GET—NORECS

END—IF.

ND—EO.144.3 EN

258

xa le:

.4» o
m

m
~

m
m

¢
~

w
m

a
#
M

Q
U

M
U

U
D

M
U

U
N

N
N

N
N

N
N

N
N

N
—

‘d
~

J
—

J
-
A

-
A

-
1
—

t—
t

o
m

m
w

m
m

b
u
m

a
o
w

m
w

m
m

r
w

m
a
o
w

m
w

m
m

s
~

w
w

a

NO COBOL Reference Manual
INTER—PROGRAM COMMUNICATION

IDENTIFICATION DIVISION.
PROGRAM—ID.

RND.
******‘k‘k‘k****‘k**‘k‘k'k1k****~k*it3k*******‘k'k‘k*‘k****‘k**‘k*********‘k*****‘k‘k

* GENERATES RANDDM NUMBERS FDR USE IN OTHER EXAMPLES THRDUGHDUT
* THE MANUAL. NDTE THAT THIS RDUTINE Is NOT VERY EFFICIENT GDMPARED* ID A RANDDM NUMBER GENERATORS IN ASSEMBLY LANGUAGE. FDR
* INSTANGE. BUT IT CAN BE COMPILED AND LINKED INTD ANY ND COBOL
* PROGRAM.
******‘k‘k*‘k*********‘k**‘k*‘k**********‘k*‘k‘k*‘k***‘k*‘k‘k*‘k*********‘k***‘k*

DATA DIVISIDN.
NDRKING—STDRAGE SECTION.
01 SEED PIG 9(4) PACKED-DEGIMAL, VALUE 29533.
01 CONST PIC 9(a) PACKED-DECIMAL, VALUE 34754391.
01 VAR PIC 9(8) PACKED—OECIMAL.
01 x PIC 9(4) PACKED—DECIMAL.
01 XMAX PIG 59(4) PACKED-DECIMAL, VALUE TDDG.
LINKAGE SECTIDN.
01 RANDND PIG 3(4) PACKED—OECIMAL.
01 MAXRAND PIC 39(4) PACKED—DECIMAL.
PROCEDURE DIVISION USING RANDNO, MAXRAND.
MAXRANO—SWITCH.

IF MAXRANO > 0 THEN PERFORM GENERATE—NUMBER
ELSE—IF MAXRAND : 0 THEN PERFORM RETURNVSEED
ELSE PERFORM SET~NEw—SEED
END—IF.

GENERATE~NUMBER.
MOVE RANDNO TO VAR.
CDMPUTE VAR : (VAR + SEED) * CONST.
MOVE MAXRAND TO XMAX.
DIVIOE VAR BY XMAX GIVING VAR REMAINDER X.
MOVE X TO RANDNO.
EXIT PROGRAM.

RETURN-SEED.
MOVE SEED TO RANDNO.
EXIT PROGRAM.

SET—NEw—SEED.
MOVE RANOND TO SEED.
EXIT PROGRAM.

ND-GO.144.3 EN

ND COBOL Reference Manual 259

0.0.0.000....00..OOOOOOOOOOOOOOO00.0..0.000..00OOOOOOOOOOOOOOOOOOOOO.

10 DEBUGGING

The Symbolic Debugger is an ND product that lets you test your ND—1DD
and NDsSDO programs. Here are some of the things you can do with it.
After each item, the Debugger command(s) you use are listed.

— Stop execution'of your program at a given line, label,
routine, or program address.

Use BREAK or BREAK—ADDRESS.

~ Define multiple step points where your program will
automatically stop.

Use LOG—LINES one or more times, followed by STEP, STEP,
STEP, etc. Otherwise use LOG—CALLS and STEP. To see what
has been logged, use DUMP—(05

— Stop execution of your program when the value of a variable
changes.

Use LOG—LINES or LOG-CALLS, followed by GUARD.

- Inspect the values of variables during program execution.
Use DISPLAY or LO0K—AT—DATA.

— Find out which lines in your program get executed and which
do not.

Use STEP 0, which will list lines until a BREAK is
reached.

— Debug screen—oriented programs by using two terminals.
Use RESERVE-TERMINAL.

— Change the value of COMPUTATIONAL variables in main programs.
Use SET.

All of these facilities, as well as others, are described in detail in
the Symbolic Debugger User Guide, ND-SD.1AL.

The Debugger has about 3D commands that are identical in the ND—lDD
and ND—SOD versions. In addition. there are 3 commands that are only
on the ND—lOD Debugger, and 5 commands that are only on the ND—SDO
Debugger.

ND—60.1k4.3 EN

260 ND COBOL Reference Manual
DEBUGGING

10.1 USING THE ND—1 0

Here is how you compile two files, MAIN:SYMB and SUB:SYMB. so that
they can be debugged on the ND—100. In this section, and elsewhere in
this chapter. the sign “+ ” is used to indicate where you must press
the Carriage Return key.

QCREATE—FILE MAIN:BRF 0 J
QCREATE—FILE.SUB:BRF 0 «
aggaol—IQQ «1
QfiauG-MQQE «1
COMPILE MAIN,T£RMINAL.MAIN «J
QfifluG-MQQE «J
COMPILE SUB.TERMINAL.SUB «J
5x1 +1

Note: Type DEBUG—MODE before every COMPILE line. because DEBUG is
turned off automatically.

Load your :BRF files in the normal way. You may use NRL or the BRF-
LINKER. If you use overlay, however, you must use the BRF—LINKER.

If your program is called MAIN PROG, start the debugger like this:

QQEEQQQER MAIN *1

or like this:

aagaugggn «J
*p N .J

ND—60.144.3 EN

ND COBOL Reference Manual 261
DEBUGGING

10.2 USIEQ {HE NQ-fiflfl

Here is how you compile two files, MAIN:SYMB and SUB:SYMB, so that
they can be debugged on he ND-SUO. In this section. and elsewhere in
this chapter, the sign "+ “ is used to indicate where you must press
the Carriage Return key‘

QCREATE—FILE MAIN:NRF 0 *1
QCREATE—FILE SUB:NRF 0 *
aNQ ggaog~ggy «1
“EEHQ‘MQQE «

COMPILE MAIN.TERMINAL.MAIN «J
QEBUG—Mogg «J
COMPILE SUB.TERMINAL.SUB «1
EXII «1

Note: Type DEBUG»MODE before every COMPILE line, because DEBUG is
turned off automatically.

Load your :NRF files in the normal way in the LINKAGE—LOADER.

If you call your domain MAIN. start the debugger like this:

QNQ QEQQQQER MAIN «J

ND—60.144.3 EN

262 ND COBOL Reference Manual
DE8UGGING

10.3 DEBUGGING EXAMPLES

In this section, we will show how to get information about the
execution of the following little COBOL program:

IDENTIFICATION DIVISION.
PROGRAM—ID. DEBUG.
AUTHOR. IBO.

DATA DIVISION.
WORKING—STORAGE SECTION.
01 F1 PIC 9(12) USAGE IS COMP VALUE IS ZERO.
01 F2 PIC 9(12) USAGE IS COMP VALUE IS ZERO.
01 S PIC 8(12) USAGE IS COMP VALUE IS ZERO.
01 T PIC X(12) VALUE IS SPACES.
O1 ANSWER PIC X VALUE IS SPACE.

PROCEDURE DIVISION.

READvNUMBER—1.
DISPLAY 'FIRST NUMBER: '

ACCEPT F1.
IF F1 IS EQUAL TO 0 THEN GO TO READ—NUMBER—1.

READ—NUMBER—Z.
DISPLAY 'SECONO NUMBER: ’

ACCEPT P2.
IF F2 IS EQUAL TD 0 THEN GO TO READ—NUMBER—Z.

MULTIPLICATE.
MULTIPLY F1 BY F2 GIVING S.
MOVE 5 ID T.
INSPECT T REPLACING LEADING '0' BY ' '.
DISPLAY 'MULTIPLICATIDN GIVES '. T.
DISPLAY 'CONTINUE? (N TO STOP) '

ACCEPT ANSWER.
IF ANSWER IS NOT EQUAL TO 'N' THEN GO TO READ—NUMBER—1.

FINI.
STOP RUN.

ND-60.14L.3 EN

ND COBOL Reference Manual 263
DEBUGGING

Example 1

Here is an example of the Debugger being used on the little program
above compiled and loaded as an ND—100 program. The letters A, B. C,
etc., to the left refer to comments that appear at the bottom of each
page.

aggaug my J
COBOL PROGRAM. fEBUG.3

A *BREAE 25 El:5 e

B * N +

FIRST NUMBER: i *J
SECOND NUMBER: 1 F

CONDITIONAL B EAK AT DEBUG.25
* P A F +
F1=5

C *Sél F1=11 “J
*QISPISX £2 +
F2=5

FORMATS (A,D,F,H,I
D * - ~PRO RAM *1

PROGRAM ADDRESS: +
P 0000708: L00 I * 135
P 0000718: SKP DA UEO L J

0 OR COMBINATIONS): l *1

E *LOOK—AT—DATA ADDR(F1) +
0 0000028: 0000008 0
0 0000038: 0000138 11
0 0000048: 0000008 0
0 0000058: 0000058J 5 ; +J

F *AnyE—ggulzufis +
05806.3

NOTES:

A) This is a conditional break. You will stop at line 25 if the
value of the variabel F1 equals 5.

B) The program will run until F1 equals 5 in line 25.

C) SET can be used to change the values of both numeric and
string variables.

0) You can inspect the instructions that your program consists
of.

E) This inspects the address at which F1 is stored. Evidently F1
is stored in 2 bytes.

F) This will list the hierarchy of calls. It is useful to know
in program with many subroutines.

ND—60.144.3 EN

28A

A

8

NOTES:

A)

8)

ND COBOL Reference Manual
DEBUGGING

”QM was «J
PROGRAM AREA:
*guARQIF1 *J
*RN»
MULTIPLICATION GIVES 55
CONTINUE? (N TO STOP} I “J
FIRST NUMBER: la 9

GUARD VIOLATI N AT DEBUG.20
* P AY 1 *
F1210
*8ESET~&REAK§ *J
*RUN *
SECOND NUMBER: 3 +J
MULTIPLICATION GIVES 90
CONTINUE? (N TO STOP) N *J
9

This removes all break and step points.

The program will stop when the value of F1 changes anywhere
in the program.

The above program could have been debugged in the same way if it had
been a ND—SOO program. Only the output from the LOOK—AT commands would
have appeared differently.

ND—60.144.3 EN

ND COBOL Reference Manual 265
DEBUGGING

Example 2

Here is another example using the same program. Note the use of
multiple step points:

Qua Qfiauggfig 1551 +1
ND~500 SYMBOLIC DEBUGGER.
COBOL PR GRAN. DEBUG.3
* ACR +

A NAME: K *
BODY: DISPLAY F1:DI$PLAY F2:STEP +J
*LOG-LINES READTNUMBER—1 t]
* - N 5 «J

a *1QQ—11?§§ 2 «3
#5120—

c DEBUG 18 *g «1
F1=0
F2=0

FIRST NUMBER: fl +J
DEBUG.23 *K *
F1=5
F2=0
SECOND NUMBER: 2Q +J
DEBUG.28 *K +1
F125
F2=20
MULTIPLICATION GIVES 100
CONTINUE? (N TO STOP) fl *1

9

NOTES:

A) The command X will perform the 3 commands listed after body.

8) 3 step points are defined. Each STEP command will bring you
to the next step point. Each RUN command will bring you to
the nearest breakpoint.

C) READ—NUMBER—1 starts at line 18.

The above program could have been debugged in the same way if it had
been a ND—1DO program. Only the output from the LOOK—AT commands would
have appeared differently.

To learn more about how to use the Debugger, see the Symbolic Debugger
User Guide, which is manual ND-60.144.

ND—60.144.3 EN

266 ND COBOL Reference Manual

ND‘60.144.3 EN

NO COBOL Reference Manual 267

0.00....OOOOOOOOOOOOOO0.00.00...O...00.00000000000000000.000.000.000.

11 PROGRAMMING EXAMPLES

11.1 gxgguyzug A SIMELE ERQ§RAM

Here are some examples of how to compile. load and run a simple
program on the ND—IOU and ND—SOO computers. The program also
demonstrates some of the features of the ND COBOL.

To try out the example, you must first write the following program
onto the file “X—OO1:symb", using one of the ND editors. And by the
way, note a convenient feature when using PEG and NOTIS: if you write
1 tab c on the first positions in the first line of the file, then the
editor will set tabulator stops suitable for COBOL programs for you
when initializing.

Z tab c
IDENTIFICATION DIVISION.
PROGRAM—ID.X—DD1.

DATA DIVISION.
WORKING—STORAGE SECTION.
01 NAME PIC XIBO).
01 I COMP.

PROCEDURE DIVISION.
1000. BLANK SCREEN.

DISPLAY (10, 1) "Your name:"
ACCEPT (1D, 12) NAME NITH PROMPT.
BLANK LINE 1D.
DISPLAY (1. 1) FRAME 1B * 75 WITH HEADING.
DISPLAY (2. 28) ”My name in".
DD FOR 1 FROM 4 to 17

DISPLAY (I. 3) NAME WITH BLINK
DISPLAY (I. 42) NAME WITH INVERSE~VIDED

END—DD.
DISPLAY (22. 10)

”You have now used the NO COBOL System"
WITH UNDEHLINE.

STOP RUN.

ND—BO.144.3 EN

268 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

11.1.1 Running the Example on an ND-1OO Computer

The following listing of a terminal session shows how to compile, load
and execute the program on an ND—100. The underlined parts of the
listing is what you have to type in when trying the example.

DCOBOL—fl

NO-1OO COBOL COMPILER — N0~10178H

*COMPILE X—001,1.X-001

N0—1OO COBOL COMPILER — ND~10176H TIME: 16.17.21 DATE: 85.02.19

SOURCE FILE: X-001
OBJECT FILE: X—OO1
MODES: Z—BANK

1
2 IDENTIFICATION DIVISION.3 PROGRAM~ID. x—001.
4
5 DATA DIVISION.
8 WORKING—STORAGE SECTION.
7 NAME PIC X(30).
8 I COMP.
9

1O PROCEDURE DIVISION.
11 1000. BLANK SCREEN.
12 DISPLAY (10. 1) "Your name:”.
13 ACCEPT (10. 12) NAME WITH PROMPT.
14 BLANK LINE 10.
15 DISPLAY (1. 1) FRAME 18 * 75 WITH HEADINO.
16 DISPLAY (2. 28) "M y n a m e i s".
17 00 FOR I FROM 4 TO 1?
18 DISPLAY (I, 3) NAME WITH BLINK
19 DISPLAY (I. 42) NAME WITH INVERSE-VIOEO
20 ENO~00.
21 DISPLAY (22. 10)
22 “You have now used the N0 COBOL System"
23 WITH UNDERLINE.
24 STOP RUN.
25

--— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 25
LINES/MINUTE (CPU TIME): 2571

*EXIT
MEL
RELOCATING LOADER LOB—19351
*PROG—FILE X—OO1
*LOAO X—001
FREE: 000223-177??? FREE DATA AREA: 000464-177???
*LOAD COBOL—28
FREE: 020173~17???? FREE DATA AREA: 006320—177???
*EXIT
3X-001

ND—50.144.3 EN

ND COBOL Reference Manual 269
PROGRAMMING EXAMPLES

and watch the screen.

if you know how to use mode—files (and if you don't, you should know
that they are very handy when compiling and loading programs on NO
computers). then try executing a :MODE—file with the following
contents:

OCOBOL~H
COMPILE X~OO1.1."X-OO1“
EXIT

BNRL
PROS—FILE "X—OO1"
LOAD X-OOI
LOAD COBOL—ZBANK
EXIT

Then. try executing X—OD1.

11.1.2 Bugging Eng Example 93 an NQ—fiQQ ggmnugg:

The following listing of a terminal session shows how to compile, load
and execute the program on an ND~SOO. The underlined parts of the
listing is what you have to type in when trying the example.

339
ND—SOO MONITOR Version FOO 84.11.27 / REV.-FO1
NSOO: COBOL—H

NO~500 COBOL COMPILEH — NO—10177H
* MP1 —

-

NO—SOO coant COMPILER — NO—10177H TIME: 16.18.17 DATE: 85.02.18
SOURCE FILE: X~OO1
OBJECT FILE: X—OO1

1 X tab c
2 IDENTIFICATION DIVISION.
3 PROGRAM—ID. X~001.
4
5 DATA DIVISION.
5 WOHKING—STORAGE SECTION.
7 01 NAME PIC X(3D).
8 01 I COMP.
8

1O PROCEDURE DIVISION.
11 1000. BLANK SCREEN.
12 DISPLAY (10, 1) "Your name:".
13 ACCEPT (10. 12) NAME WITH PROMPT.
14 BLANK LINE 10.
1S DISPLAY (1. 1) FRAME 18 * 75 WITH HEAOING.
18 DISPLAY I 2. 28) "M y n a m e i a".
17 00 FOR I FROM 4 T0 17
18 DISPLAY (I, 3) NAME WITH BLINK
13 DISPLAY (I, 42) NAME WITH INVERSE-VIDEO
20 END~DD.
21 DISPLAY (22. 10)

ND~60.144.3 EN

270 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

22 "You have now used the NO COBOL System"
23 WITH UNDERLINE.
24 STOP RUN.
25

—~— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 24
LINES/MINUTE (CPU TIME): 2571

;________________________________

N500: LlfiflzLQAD

NO—Linkage—Loader — F 10. September 1983 Time: 00:07
N11 entered: 19. February 1385 Time: 18:18
N11: §El~DQflAlN 3-99]
N11: LOAD XaQQ1
Program: 634 P Data: 1130 001
N11: LOAO COBOL-LIB
COBOL—LIB—HBSO101
Program: 72805 P01 Data: 23530 001
N11: LOAO EXCEPT—LIE
EXCEPTION—LIB~2041878
Program: 72805 P01 Data: 23530 001
N11: EXIT

N500: X-OO1

Then, see what happens.

If you know how to use HODE~files (and if you don’t, you should know
that they are very handy when compiling and loading programs on NO
computers). then try executing a :MODE—file
contents:

3N0
COBOL
COHPILE X-001.1."X—OO1"
EXIT

LINK~LOA0
SET—DOMAIN "X—001"
LOAD X—001
LOAO COBOL-LIB
LOAD EXCEPTION~LIB
EXIT

Then, try executing X—001:

2N0
NO—SOO: X~OO1

etc.

N0—60.14£.3 EN

with the following

ND COBOL Reference Manual 271
PROGRAMMING EXAMPLES

11-2 QMERLAI_§X§IEMS

Sometimes a program cannot be run in the ND-1OO because it is too
large to fit into the one—bank address space of 6‘ pages, or the 64
pages for the program and 64 pages for data allowed when compiling in
the two-bank mode. (The NO-SOO computers do not have this limitation.
thus the present section on overlays is not relevant to ND—SOO
installations.)

A common solution to this problem is to divide the program into
reasonably small parts which can be run one at a time, and in such a
way that one part (or subprogram) can use the space freed when another
subprogram has finished. Thus. the program will only need space for
those subprograms that have to be in memory at the same time.

The sets of different subprograms to be loaded one at a time are
called overlays or links. and the process of loading an overlay to
replace an existing set of subprograms is called overlaying these
subprograms.

Building overlays with the BRF—Linker or the NRL is a convenient way
of bypassing the problem of large programs not being able to fit into
the address space because:

1) Programs built as overlay systems do not need source code
modification.

2) The Symbolic Debugger is available for overlays.

An overlay structure cannot be made into a reentrant subsystem.

11.2.1 In: uultiW

When using the overlay capability on the ND—100, you must understand
how your program operates, and especially the relationship between the
modules within it.

There are significant differences between the overlay systems built by
the NRL and those of the BRF—Linker. If you build your system with the
BRF—Linker, the :SYMB—files can be compiled, loaded and executed on an
ND—SOO computer without modification. If you build it with the NRL.
you will have to modify the symbolic code before you can make it run
on an NO~500. This is because the NRL makes necessary the inclusion of
special subprogram calls in the code. .

ND-60.164.3 EN

272 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

You are advised to organize your overlay structure (described below)
so as to retain in memory the links containing commonly used
subprograms, and place the infrequently used subprograms in links
which can overlay one another. For example, a special error recovery
subprogram would only need to be brought into memory when the
corresponding error occurred.

when you load an overlay system and want it to be available to other
users. be sure to specify to the linker you are using not only the
name of the program file. but also the name of the user area where it
is to be found. Otherwise, the operating system may not find the
overlay subprograms on the default user areas when the overlay system
calls them, with errors as a result. And remember. the sum of the
length of the user name and the length of the overlay program file
name must not exceed 16 characters.

Each link should be a collection of functionally related modules and
be as self—contained as possible, calling other links as infrequently
as possible. In particular, references to links which would overlay
other links should be kept to a minimum.

A tree structure, called an overlay structure, can be used to
illustrate the internal dependencies of the overlay links. In a tree
structure, each link has only one immediate ancestor, but it may have
more than one immediate descendant. The root link contains the parts
of the program which must always be in memory during execution.
Since the root link receives control when the program starts. it does
not have an ancestor. The remaining links branch away from the root
link and are structured according to their interdependencies.

Links which do not have to be in memory at the same time are termed
independent links, whereas links which must be in memory at the same
time are termed dependent links. For example, two modules which do not
refer to each other or pass data directly to each other, are
independent links. When such links are no longer required in memory,
they can be overlaid by other links that are brought in. On the other
hand, a link must have all the links upon which it depends in memory
at the same time and cannot therefore overlay them. Every link is
dependent on its ancestor and, consequently. on the root link.

As an illustration, assume we have a program consisting of a main
program ROOT and six subprograms SUBPl, SUBPZ, SUBPB, SUBPL, SUBPS and
SUBPS. The subprograms are related as follows:

1) SUBP1 and SUBPB are called directly from ROOT and are independent
of each other.

2) SUBP2 and SUBPS are called directly from SUBPl and are
independent of each other.

3) SUBP3 and SUBPA are called directly from SUBPZ and are also
independent of each other.

ND—60.14k.3 EN

ND COBOL Reference Manual 273
PROGRAMMING EXAMPLES

The following tree structure illustrates the subprogram dependencies:

ROOT is the
ROOT +-——--—-—-—- root link

SUBP1 and SUBPS
are independent
overlays
(first level)

SUBP1 SUBPB *

SUBP2 and SUBPS
are independent

SUBPZ SUBPS *-——————*——-—— overlays
(second level)

SUBP 3 and SUBP4
are independent
overlays
(third level)

SUBP3 SUBP‘ Ab

SUBP4 depends on SUB?! and SUBPZ, consequently, SUBP1 and SUBP2 must
be in memory in order to execute SUBPA. The chain of links which a
link depends on is referred to as the path of the link. The action of
bringing a link into memory is termed path loading. The chain of links
branching away from a link is known as the extended path of that link.
In the previous example, the path of SUBPk is ROOT, SUBP1, and SUBPZ.
There are three extended paths of SUBP1:

1) SUBPZ, SUBP3

2) SUBPZ. SUBPQ

3) SUBPS

A link may communicate with other links that lie in its own path or
one of its extended paths. The communication is through references to
global symbols. A reference from the current link to a global symbol
in another link in the path is called a backward reference. while a
reference from the current link to a global symbol in another link on
one of its extended paths is called a forward reference. Since all
links on the path of the current link must be in memory. a backward
reference does not cause any links to be brought into memory. With a
forward reference, however, the link referred to may not be in memory.
Then it must be fetched, possibly overlaying a link already there.

ND—60.144.3 EN

274 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

11.2.2 Designing an Overlay Structure

The first step to be taken when designing an overlay structure is to
draw a diagram showing the functional relationships between the
modules within the program. The tree begins with the root link which
contains the main program and remains in memory throughout execution.
The remainder of the program is contained in the overlay links.

The user should remember several points when drawing his overlay
structure:

1) References that will overlay existing links should be minimized.

2) Independent links cannot reference each other; communication is
by way of a common link.

3) As a general rule. calls to subprograms on other links should be
forward references. while returns from subprograms should be
backward references.

4) If data is modified during execution, the modification is
destroyed once the link is overlaid. Therefore, if data required
by another link is modified. then the data must be returned to
this other link before the link containing the changed data is
overlaid.

5) When a link is to be overlaid, no addresses or references to it
should remain.

6) Modules, subprograms or data areas used by several links should
be explicitly loaded into a link that is common to all links
using these modules or data areas. For example, a FORTRAN COMMON
data area should be in a link in the path of all links
referencing it. Moreover, COMMON should be positioned in such a
way that it never gets reinitialized after the first call. In
other programming languages using the distinction between local
and global data, similar considerations must be made for the data
which are global to several link paths.

7) The Symbolic Debugger should be used with some care on overlays.
Debugger commands affecting program/data in an overlay should not
be given until a breakpoint is reached on that particular
overlay. Moreover. these commands are effective only while the
overlay resides in memory. In other words. overlays are always
brought fully initialized into memory.

Tree~structured overlay systems can be several levels deep. The amount
of memory required for an overlay system is at least equivalent to the
size of the “longest“ path. This is not the minimum requirement.
however. since special tables are needed when a program is divided
into links.

ND'SD.144.3 EN

ND COBOL Reference Manual 275
PROGRAMMING EXAMPLES

The root link (and the COMMON areas defined within it) reside in
memory throughout the entire execution, while the overlays (and the
COMMON areas defined within them) reside on a random read—only file.
This file is specified with the PROGRAM—FILE command.

11.23a

Here, the overlay linking commands in the BRF—linker are shown. For
further details, see the manuals BRF—Linker User Manual (ND—60.196) or
NO Relocating Loader (ND—60.066).

Overlay structures are loaded using the same 8RF—Linker commands as
for normal loading. However, we also need to specify that we are
loading a new link in the overlay structure. This is done by the
command:

Brl: OVERLAY <1evel>.<entrv name 1>[..... (entry name n>J

This command specifies that a new overlay link is to be generated. The
parameter (level) is the overlay level, and (entry name 1> to
(entry name n) give the names of the subprograms that may be called
from the previous level. After this command has been given, the
specified subprograms can be loaded from one or more BRF files. It is
recommended that the overlay subprograms be kept on a separate BRF
file compiled in library mode. In this way, the specified set of
subprograms may be selected and put into the overlay independently of
the compilation sequence.

The level number in an OVERLAY command must not be more than 1 higher
than the level number in the previous OVERLAY command.

The special form:

Brl: QZEKLAI 0Il

is used to indicate the start of the root link. This should be the
first command following the PROGRAM—FILE command.

In 2—bank programs. the special form:

Brl: WALL...

will append the last overlaid data part to the previously appended
one. This permits all data to be placed consecutively with no data
overlay. Make sure that no previous data overlays share this area with
the current data overlay.

ND-60.14‘.3 EN

276 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

To dump the root link, the COMMON area. and the last overlay link onto
the file specified in the PROGRAM-FILE command. use either the EXIT or
the RUN commands. If you use the RUN command. the execution of the
overlay system will start immediately. Otherwise the execution of the
overlay system must be started by a separate command (RECOVER).

“JAWWW

This simple example of an overlay system is built according to the
overlay tree structure shown in section 11.2.1.

NEED
no-1oo COBOL COMPILER — N0—1D176H
*COMPILE OVERLAY—PROGRAMzs.TERM.OVERLAY—PROGRAH

ND—1OO COBOL COMPILER ~ NO—10178H TIME: 09.03.10 DATE: 8h.11.20

SOURCE FILE: OVERLAY-PROGRAflzs
OBJECT FILE: OVERLAY—PROGRAM
MODES: Z-BANK

1 Z TAB C
2 * Previous line set: PEO/NOTIS tabulators automatically
3 IDENTIFICATION DIVISION.
4 PROGRAM-ID. ROOT.
5 AUTHOR. I80.
8
7 DATA DIVISION.
8 WORKING-STORAGE SECTION.
9 O1 OVERLAY-LEVEL COMP.

1O
11 PROCEDURE DIVISION.
12
13 START-ROOT.
14 MOVE D ID OVERLAY—LEVEL.
15 DISPLAY "MAIN-PROGRAM: OVERLAY LEVEL ". OVERLAY—LEVEL.
16 CALL "SUBP1" USING OVERLAY-LEVEL.
17 DISPLAY "MAIN-PROGRAM: OVERLAY LEVEL ". OVERLAY—LEVEL.
18 CALL "SUBPS" USING OVERLAY—LEVEL.
19 DISPLAY "MAIN-PROGRAM: OVERLAY LEVEL ". OVERLAY-LEVEL.
20
21 END-ROOT.
22 DISPLAY "END OF OVERLAY PROGRAM EXECUTION. HAVE A NICE DAY!".
23 STOP RUN.

--— END OF COMPILATION ----------
NUMBER OF ERRORS FOUND: 0
NUMBER OF UARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 23
LINES/MINUTE (CPU TIME): 3219

N0-100 COBOL COMPILER _ N0-10176H TIME: 09.03.13 DATE: 84.11.20

SOURCE FILE: OVERLAY-SUBP1:S
OBJECT FILE: 0VERLAY-SUBP1
MODES: 2—8ANK

N0-60.144.3 EN

ND COBOL Reference Manual 277
PROGRAMMING EXAMPLES

1 Z TAB C
2
3 IDENTIFICATION DIVISION.
4 PROGRAM~IO. SU8P1.
S AUTHOR. 180.
8
7 DATA DIVISION.
8 LINKAGE SECTION.
3 O1 OVERLAY—LEVEL COMP.

1O
11 PROCEDURE DIVISION USING OVERLAY~LEVEL.
12 START—SUBP.
13 ADD 1 TO OVERLAY-LEVEL.
14 DISPLAY "SU8P1 : OVERLAY LEVEL ". OVERLAY-LEVEL.
15 CALL "SUBPZ" USING OVERLAY—LEVEL.
1S DISPLAY "SUBP1 : OVERLAY LEVEL ". OVERLAY-LEVEL.
17 CALL "SUBPS" USING OVERLAY~LEVEL.
1B DISPLAY "SUBP1 : OVERLAY LEVEL ". OVERLAY~LEVEL.
19 SUBTRACT 1 FROM OVERLAY—LEVEL.
20
21 END—SUBP.
22 DISPLAY "END OF EXECUTION OF SUOP1.".
23 EXIT PROGRAM.

——— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 23
LINES/MINUTE (CPU TIME): 2571

ND-BO.144.3 EN

278 ND

*COMPILE OVERLAY—SUBP2:S.TERM.OVERLAY—SUOPZ

ND—1OO COBOL COMPILER - NO-1D178H TIME: 09.03.17

SOURCE FILE: OVERLAY-SUBP2:S
OBJECT FILE: OVERLAY—SUBPZ
MODES: 2-BANK

Z TAB C

IDENTIFICATION DIVISION.
PROGRAMvIO. SUBPZ.
AUTHOR. IBO.

DATA DIVISION.
LINKAGE SECTION.
O1 OVERLAY—LEVEL COMP.

PROCEDURE DIVISION USING OVERLAY—LEVEL.

ADD 1 TO OVERLAY—LEVEL.

COBOL Reference Manual
PROGRAMMING EXAMPLES

DATE: 84.11.20

DISPLAY "SUBPZ : OVERLAY LEVEL ", OVERLAY—LEVEL.
CALL "SUBPB" USING OVERLAY—LEVEL.
DISPLAY “SUOPZ : OVERLAY LEVEL ". OVERLAY-LEVEL.
CALL "SUBP4" USING OVERLAY-LEVEL.
DISPLAY ”SUBPZ : OVERLAY LEVEL ". OVERLAY-LEVEL.

1
2
3
I,
5
8
7
B
9

1D
11
12 START—SUBP.
13
14
15
1B
17
18
18 SUBTRACT 1 FROM OVERLAY—LEVEL.2O
21 ENO-SUBP.
22 DISPLAY “END OF EXECUTION OF SUBPZ.".
23 EXIT PROGRAM.

~—— ENO 0F COMPILATION ----------
NUMBER OF ERRORS FOUND: 0NUMBER OF UARNINOs GIVEN: 0
NUMBER OF SOURCE LINES: 23
LINES/MINUTE (CPU TIME): 2490

*COMPILE OVERLAY-SUBPG:S.TERM.OVERLAY—SUBPS

ND—1OO COBOL COMPILER - ND-1017GH TIME: 03.03.20

SOURCE FILE: DVERLAY—SUBPG:S
OBJECT FILE: DVERLAY—SUBPO
MODES: 2—BANK

Z TAB C

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPS.
AUTHOR. IOO.

DATA DIVISION.
LINKAGE SECTION.
01 OVERLAY-LEVEL COMP.

PROCEDURE DIVISION USING OVERLAY-LEVEL.

ADD 1 TD OVERLAY-LEVEL.

DATE: 84.11.20

DISPLAY ”SUBPG : OVERLAY LEVEL ". OVERLAY-LEVEL.
SUBTRACT 1 FROM OVERLAY-LEVEL.

1
2
3
I.

5
8
7
8
9

1O
11
12 START—SURF.
13
14
15
16
17 END~SUOP.
1O DISPLAY “END OF EXECUTION OF SUOPG.".
19 EXIT PROGRAM.

--~ END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 19
LINES/MINUTE (CPU TIME): 2714

*COMPILE OVERLAY—SUBP3:S.TERM.OVERLAY~SUDP3

ND‘BO.144.3 EN

ND COBOL Reference Manual 279
PROGRAMMING EXAMPLES

ND-1OD COBOL COMPILER — ND—10176H TIME: 09.03.23 DATE: 84.11.20

SOURCE FILE: OVERLAY—SUBP3:S
OBJECT FILE: OVERLAY-SUBP3
MODES: Z—RANK

Z TAB C

IDENTIFICATION DIVISION.
PROGRAM—IO. SUBP3.
AUTHOR. IBO.

DATA DIVISION.
LINKAGE SECTION.
O1 OVERLAY~LEVEL COMP.

1
2
3
4
5
6
7
8
9

1O
11 PROCEDURE DIVISION USING OVERLAY-LEVEL.
12 START-SURF.
13 ADD 1 TO OVERLAY-LEVEL.
14 DISPLAY "SU8P3 : OVERLAY LEVEL ". OVERLAY~LEVEL.
15 SUBTRACT 1 FROM DVERLAY~LEVEL.
16
17
18
19

END—SUDP.
DISPLAY "END OF EXECUTION OF SUDPB.".
EXIT PROGRAM.

-~— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 19
LINES/MINUTE (CPU TIME): 3005

ND-GO.1£4.3 EN

280 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

*COMPILE 0VERLAY—SUBP‘:S.TERM.DVERLAY—SUBP4

ND—IOO COBOL COMPILER - ND-1D178H TIME: 09.03.25 DATE: 84.11.20

SOURCE FILE: OVERLAY—SUBP4:S
OBJECT FILE: DVERLAY—SUBP4
MODES: 2«BANK

IDENTIFICATION DIVISION.
PROGRAM—ID. SUBPA.
AUTHOR. IBO.

DATA DIVISION.
LINKAGE SECTION.
01 OVERLAY—LEVEL COMP.

1
2
3
4
5
6
7
8
9

1D
11 PROCEDURE DIVISION USING OVERLAY-LEVEL.
12 START—SUDP.
13 ADD 1 TO OVERLAY~LEVEL.
14 DISPLAY “SUBPA : OVERLAY LEVEL ". OVERLAY-LEVEL.
1: SUDTRACT 1 FROM OVERLAY—LEVEL.

17
1O
19

END—SUBP.
DISPLAY "END OF EXECUTION OF SUBPA.".
EXIT PROGRAM.

-—~ END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 19
LINES/MINUTE (CPU TIME): 2877

*COMPILE OVERLAY—SUBPS:S.TERM.OVERLAY—SUBP5

NO-1OO COBOL COMPILER — NO—10176H TIME: 09.03.28 DATE: 84.11.20

SOURCE FILE: OVERLAY-SUBP5:S
OBJECT FILE: OVERLAY-SUDPS
MODES: Z-BANK

IDENTIFICATION DIVISION.
PROGRAM-ID. SUOPS.
AUTHOR. IBO.

DATA DIVISION.
LINKAGE SECTION.
01 OVERLAY—LEVEL COMP.

PROCEDURE DIVISION USING OVERLAY-LEVEL.
START—SUBP.

ADD 1 TO OVERLAY—LEVEL.
DISPLAY "SUBPS : OVERLAY LEVEL ". OVERLAY—LEVEL.
SUBTRACT 1 FROM OVERLAY~LEVEL.

17 END-SUDP.
18 DISPLAY "END OF EXECUTION OF SUBPS.".
13 EXIT PROGRAM.

-—— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: O
NUMBER OF WARNINGS GIVEN: O
NUMBER OF SOURCE LINES: 13
LINES/MINUTE (CPU TIME): 2685

*EXIT

ND-BO.144.3 EN

ND COBOL Reference Manual 281
PROGRAMMING EXAMPLES

a -
— BRF Linker — 1D721A
Brl: PROGRAM-FILE OVERLAY—PROGRAM
Brl: OVERLAY OH
Br]: LOAD OVERLAY-PROGRAM.COBOL—ZB
FREE: P 000180—177??? 0 000455—177???
FREE: P 003355—177777 D 002644-177777
Brl: OVERLAY 1.5UBP1
Brl: LOAD OVERLAY~SUBP1.CDBOL—ZB
FREE: P 003580—177??? D 003300-177777 DEBUG 000004
FREE: P 003560-177777 D 003300—177??? DEBUG 000004
Brl: OVERLAY 2.SUBP2
Brl: LOAD OVERLAY-SUBP2,COBOL—ZB
FREE: P 003762-177??? 0 003734-177??? DEBUG 000010
FREE: P 003762—177??? D 003734—177777 DEBUG 000010
Brl: OVERLAY 3.SUBP3
Brl: LOAD OVERLAY-SUBP3ICOBOL—ZB
FREE: P 004101-177??? 0 004370—177777 DEBUG 000014
FREE: P 004101—177777 0 004370—17777? DEBUG 000014
Brl: OVERLAY 3ISUBP4
OVERLAY COMPLETED. BLOCK NO: 2001 4006—4101/3734—4370
SUBP3 4011 P * 4101 P
......... 4370 O

Brl: AY- P —
FREE: P 004101—177777 D 004370-177777 DEBUG 000024
FREE: P 004101—177777 D 004370~177777 DEBUG 000024
Brl:
OVERLAY CORPLETED. BLOCK N0: 2004 4008-4101/3734—4370
SUBP4 4011 P * 4101 P
......... 4370 D

OVERLAY COMPLETED. BLOCK NO: 2007 3804-4008/3300—3734
SUBP2 3807 P * 4008 P
* 3734 0

Brl: LOAD OVERLAY—SUBPS.COBOL~ZB
FREE: P 003877—177??? D 003734-177777 DEBUG 000040
FREE: P 003877—177777 D 003734—177777 DEBUG 000040
Brl: OVERLAY 1ISUBP6
OVERLAY COMPLETED. BLOCK ND: 2012 3604—3677/3300—3734
SUBPS 3607 P * 3877 P
......... 3734 D

OVERLAY COMPLETED. BLOCK NO: 2015 3402-3604/2644—3300
SUBP1 3405 P * 3804 P
* 3300 0

Brl: LOAD OVERLAY-SUBPSICOBOL—ZB
FREE: P 003475—177777 0 003300-177777 DEBUG 000054
FREE: P 003475—177??? D 003300—177777 DEBUG 000054
Brl: EXIT
OVERLAY COMPLETED. BLOCK N0: 2020 3402-3475/2844—3300
SUBPB 3405 P * 3475 P
* 3300 D

ND—60.144.3 EN

282

ROVERLAY—PROORAM

MAIN—PROGRAM: OVERLAY LEVEL OOOOO+
SUBP1 : OVERLAY LEVEL OOOO1+
SUBPZ : OVERLAY LEVEL OOOOZ+
SUBP3 : OVERLAY LEVEL OOOO3+
END OF EXECUTION OF SUBP3.
SUBPZ : OVERLAY LEVEL OOOOZ+
SUBPA : OVERLAY LEVEL ODOO3+
END OF EXECUTION OF SUBPk.
SUBPZ : OVERLAY LEVEL OOOOZ+
END OF EXECUTION OF SUBPZ.
SUBP1 : OVERLAY LEVEL OOOO1+
SUBPS : OVERLAY LEVEL OOOOZ+
END OF EXECUTION OF SUBPS.
SUBP1 : OVERLAY LEVEL OOOO1+
END OF EXECUTION OF SU8P1.
MAIN-PROGRAM: OVERLAY LEVEL OOOOO+
SUBPB : OVERLAY LEVEL OOOOT+
END OF EXECUTION OF SUBPG.
HAIN~PROORAM= OVERLAY LEVEL OOOOO+
END OF OVERLAY PROGRAM EXECUTION. HAVE A NICE DAY!

ND-60.144.3 EN

ND COBOL Reference Manual
PROGRAMMING EXAMPLES

ND COBOL Reference Manual 283
PROGRAMMING EXAMPLES

11.2.5 subgrograms and Commands for Quilding an Overlay System with
the NRL

When building an overlay system to be loaded with the NRL. the
following system included subprograms must be called:

CALL "OVLINIT".
CALL "OVERLAY" USING “(sub—name)“ [. <parameter>1

where <5ub-name> is the program—id of the subprogram to be overlaid
and [, <parameter>1 ... denotes the possible parameters to be
submitted to that subprogram. Note: The (sub—name) must be precisely
seven characters long. If the program—id of the program to be overlaid
is too short, blanks must be filled in to make it long enough.

CALL ‘OVLINIT' is used in the root node to initiate the node for
linking to the overlays.

Use CALL "OVERLAY" in the source code where you want to read in and
execute an overlaid subprogram. This call is completely analogous to
the subprogram calls used in non-overlaid systems, except that the
overlay has to be read into your logical memory before you can
transfer control to it.

The subprogram “0VRECAL” can be used as an alternative to ”OVERLAY".
OVERLAY forces the overlaid subprogram to be read in. OVRECAL does not
read the overlaid program if it has been read before, but has nato
been overlaid by another program.

The commands given to the NRL during loading are explained in the
following example.

ND-60.14b.3 EN

284 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

11.2.6 Example: Creating an Overlay System with the NRL

This simple example of an overlay system is built according to the
overlay tree structure shown in section 11.2.1.

OCOBOL-H
NO—100 COBOL COMPILEH - NO—10176H
*COMPILE OVER-NRL-PROO:S.TERMIOVER-NRL-PHOGRAM

ND—1OO COBOL CONPILER — NO—10178H TIME: 15.47.03 DATE: 85.02.01
SOURCE FILE: OVER—NRL—Pfiflfizs
OBJECT FILE:—OVEH—NRL~PROGRAM
MODES: 2—BANK

1 Z TAB C
2 * Previous line instructs PED to set COBOL tabulators.
3 IDENTIFICATION DIVISION.
4 PROGRAM—IO. ROOT.
S AUTHOR. I80.
6
7 DATA DIVISION.
8 UORKIND—STORAGE SECTION.

18 O1 OVERLAY—LEVEL COMP.

11 PROCEDURE DIVISION.
12
13 START—ROOT.
14 ************t*kt***********t*t**********************************
1S * Note the following lines. When using NRL to load overlay sys—
16 * tems. special subprograme must be used to handle the overlay
17 * calls. This makes code conversion necessary when the program
18 : system is transferred to an NO-SOO or loaded with the BHF-Lin—
1S ker.
20 ****a*a*******a*st*a*s**tteessaaatstxts******ttattte*iat********
21 CALL "OVLINIT".
22 * : "OVLINIT" initializes the overlay system.
23 MOVE 0 TO OVERLAY—LEVEL.
24 DISPLAY “HAIN—PROGRAM: OVERLAY LEVEL ". OVERLAY—LEVEL.25 a***********tantra*ta**************e*******a**********a******a**
28 * Beware of the following trap: The number of characters inside
27 * the " (quote) eigns in the parameter transmitting the name
28 : of the overlaid subprogram must be exactly 7. like this one:
29 =====:===

3O * “SUBP1 "
31 * —1234587-
32 **k****************t******t**************************t**********
33 CALL "OVERLAY" USING "SU8P1 " OVERLAY—LEVEL.
34 * - This is the proper call to the
3S * : overlaid subprogram when
36 * : loading with the NHL.
37 DISPLAY "MAIN—PROGRAM: OVERLAY LEVEL “. OVERLAY—LEVEL.
38 CALL “OVERLAY" USING ”SUBPS " OVERLAY-LEVEL.
39 * : Another overlay call.
40 DISPLAY "MAIN—PROGRAM: OVERLAY LEVEL ". OVERLAY~LEVEL.41 attttstsatxa*aatttta***s****eta*tatastat*asasataatsa*e**a**a*ate
42 * The call to “OVERLAY" with the subprogran name as a parameter
43 * is also used for further overlay calls in the following
44 * eubprograms.
45 *****t****t*********satetetaststetaatttts**s**k*****************
48
47 END—ROOT.

NO-BO.1£4.3 EN

ND COBOL Reference Manual 285
PROGRAMMING EXAMPLES

48 DISPLAY "END OF OVERLAY PROGRAM EXECUTION. HAVE A NICE DAY!”.
49 STOP RUN.

—~— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF UARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 49
LINES/MINUTE (CPU TIME): 2571

*COMPILE DVER-NRL-SUBP1:S.TERM.OVER—NRL-SUBP1

ND—1OO COBOL COMPILED — ND—1017GH TIME: 15.47.07 DATE: 85.02.01

SOURCE FILE: OVER—NRL—SUBP1:S
OBJECT FILE: OVER—NRL—SUBP1
MODES: 2—BANK

1 Z TAB C
2
3 IDENTIFICATION DIVISION.
4 PROGRAM—ID. SUBP1.
S AUTHOR. 180.
6
7 DATA DIVISION.
8 LINKAGE SECTION.
9 O1 OVERLAY—LEVEL COMP.

1O
11 PROCEDURE DIVISION USING OVERLAY—LEVEL.
12 START—SUBP.
13 ADD 1 TO OVERLAY-LEVEL.
14 DISPLAY ”SUBP1 : OVERLAY LEVEL ". OVERLAY-LEVEL.
15 CALL "OVERLAY” USING "SUBPZ " OVERLAY—LEVEL.
1B DISPLAY "SUBP1 : OVERLAY LEVEL ". OVERLAY-LEVEL.
17 CALL "OVERLAY” USING "SUBPS " OVERLAY-LEVEL.
1B DISPLAY "SUBP1 : OVERLAY LEVEL ". OVERLAY-LEVEL.
18 SUBTRACT 1 FROM OVERLAY-LEVEL.
20
21 END-SUBP.
22 DISPLAY “END OF EXECUTION OF SUBP1.".
23 EXIT PROGRAM.

-—— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 23
LINES/MINUTE (CPU TIME): 2571

*COMPILE OVER—NRL—SUBPZ:S.TERM,OVER—NRL—SUBP2

ND—1OO COBOL COMPILER — NO—10176H TIME: 15.47.10 DATE: 85.02.01

SOURCE FILE: OVER—NRL-SUBP2:S
OBJECT FILE: OVER—NRL-SUBPZ
MODES: Z-BANK

1 X TAB C
2
3 IDENTIFICATION DIVISION.
4 PROGRAM—ID. SUBPZ.
5 AUTHOR. I80.
6
7 DATA DIVISION.
8 LINKAGE SECTION.
9 O1 OVERLAY-LEVEL COMP.

1O
11 PROCEDURE DIVISION USING OVERLAY-LEVEL.
12 START-SURF.
13 ADD 1 TO OVERLAY-LEVEL.
14 DISPLAY "SUBPZ : OVERLAY LEVEL ". OVERLAY—LEVEL.
15 CALL "OVERLAY" USING "SUBP3 " OVERLAY-LEVEL.
18 DISPLAY "SUBPZ : OVERLAY LEVEL ". OVERLAY-LEVEL.
17 CALL "OVERLAY" USING “SUBP4 " OVERLAY-LEVEL.
1B DISPLAY "SUBPZ : OVERLAY LEVEL ". OVERLAY~LEVEL.
18 SUBTRACT 1 FROM OVERLAY-LEVEL.
20

ND—GO.144.3 EN

288 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

21 ENO-SUBP.
22 DISPLAY "END OF EXECUTION 0F SUBP2.“.
23 EXIT PROGRAM.

—-— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: O
NUMBER OF SOURCE LINES: 23
LINES/MINUTE (CPU TIME): 2804

*COMPILE OVERENRL~SUBPE:S.TERM.OVER-NRL-SUBPG

ND—1OO COBOL COMPILER - ND—1D176H TIME: 15.47.13 DATE: 85.02.01

SOURCE FILE: OVER—NRL—SUBPG:S
OBJECT FILE: OVER-NRL—SUBPG
MODES: Z—BANK

1 Z TAB C
2
3 IDENTIFICATION DIVISION.
4 PROGRAM—ID. SUBPE.
5 AUTHOR. I80.
8
7 DATA DIVISION.
6 LINKAGE SECTION.
9 01 DVERLAY~LEVEL COMP.

1O
11 PROCEDURE DIVISION USING OVERLAY-LEVEL.
12 START—SUBP.
13 ADD 1 TD OVERLAY-LEVEL.
14 DISPLAY “SUBPG : OVERLAY LEVEL ". OVERLAY—LEVEL.
15 SUBTRACT 1 FROM 0VERLAY~LEVEL.
18
17 END—SUBP.
18 DISPLAY "END OF EXECUTION OF SUBPS.".
18 EXIT PROGRAM.

——— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF NARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 1S
LINES/MINUTE (CPU TIME): 3183

*COMPILE OVER-NRL—SUBP3:S.TERM,OVER-NRL~SUBP3

ND—1OO COBOL COMPILER — ND~101TGH TIME: 15.47.15 DATE: 85.02.01

SOURCE FILE: DVER—NRL—SUBP3:S
OBJECT FILE: OVER—NRL-SUBPB
MODES: 2—BANK

1 Z TAB C
2
3 IDENTIFICATION DIVISION.
4 PROGRAM-ID. SUBP3.
5 AUTHOR. ISO.
8
7 DATA DIVISION.
8 LINKAGE SECTION.
9 O1 OVERLAY-LEVEL COMP.

1O
11 PROCEDURE DIVISION USING OVERLAY—LEVEL.
12 START—SURF.
13 ADD 1 TO OVERLAY—LEVEL.
1k DISPLAY "SUBP3 : OVERLAY LEVEL ". OVERLAY-LEVEL.
15 SUBTRACT 1 FROM OVERLAY—LEVEL.
18
17 END-SURF.
18 DISPLAY "END OF EXECUTION OF SUBP3.".
1S EXIT PROGRAM.

-—— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: O

ND-60.144.3 EN

ND COBOL Reference Manual
PROGRAMMING EXAMPLES

NUMBER OF SOURCE LINES: 19
LINES/MINUTE (CPU TIME): 2690

*COMPILE OVER-NRL-SUBP4:S.TERM.OVER—NRL—SUBP4

NO—1OO COBOL COMPILER — ND—10175H TIME: 15.47.18 DATE: 85.02.01

SOURCE FILE: DVER~NRL-SUBP4:S
OBJECT FILE: OVER-NRL—SUBP4
MODES: Z-BANK

1 Z TAB C
2
3 IDENTIFICATION DIVISION.
4 PROGRAM—IO. SUBP4.
S AUTHOR. 180.
6
7 DATA DIVISION.
8 LINKAGE SECTION.
9 O1 OVERLAY—LEVEL COMP.

1O
11 PROCEDURE DIVISION USING OVERLAY—LEVEL.
12 START—SUBP.
13 ADD 1 TO OVERLAY—LEVEL.
14 DISPLAY "SUBP4 : OVERLAY LEVEL ". OVERLAY—LEVEL.
15 SUBTRACT 1 FROM OVERLAY—LEVEL.
1G
17 END—SUBP.
1B DISPLAY "END OF EXECUTION OF SUBP4.".
19 EXIT PROGRAM.

-—— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 19
LINES/MINUTE (CPU TIME): 2361

*COMPILE OVER~NRL—SUBPS:S.TERM.OVER—NRL—SUBP5

ND—1OO COBOL COMPILER - ND—10176H TIME: 15.47.20 DATE: 85.02.01

SOURCE FILE: OVER-NRL-SUBPS:S
OBJECT FILE: OVER-NRL—SUBPS
MODES: 2-BANK

IDENTIFICATION DIVISION.
PROGRAM—ID. SUBPS.
AUTHOR. IBO.

DATA DIVISION.
LINKAGE SECTION.
01 OVERLAY—LEVEL COMP.

1
2
3
4
5
B
7
8
9

10
11 PROCEDURE DIVISION USING OVERLAYFLEVEL.
12 START—SURF.
13 ADD 1 TO OVERLAY-LEVEL.
14 DISPLAY "SUBPS : OVERLAY LEVEL ". OVERLAY—LEVEL.
12 SUBTRACT 1 FROM OVERLAY—LEVEL.

17
1O
19

END—SURF.
DISPLAY "END OF EXECUTION OF SUBPS.".
EXIT PROGRAM.

—-- END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 19
LINES/MINUTE (CPU TIME): 3007

*EXIT

BCC The the SET-MODE commands given to the NRL on the foIIowing

ND-60.144.3 EN

287

288 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

OCC command lines are necessary with all COBOL programs which
SEC are not compiled with the *1—BANK—MODE option on.

ML
RELOCATING LOADER LOR—193SI
*PROO—FILE OVER—NRL—PROGRAM
*SET—HOOE DATA
*OVERLAY-GENERATION 7
*SET-MOOE PROG
*LOAO OVER—NRL-PROGRAN COBOL—28
FREE: 00347S~177777 FREE DATA AREA: 0027£2—177777
* A - NT Y P1
*IQBQ QMEB‘Nfll'SHBP1 CQBQI‘ZE
OVERLAY 1 LEVEL 1 COMPLETED. AREA: 003475-003704

SUBP1=P 003500
*QMEBIAI-EDIBX 12) $002;
* .. _ _

OVERLAY 2 LEVEL 2 COMPLETED. AREA: 003705—004114SUBP2=P 003710
* R Y- T
”k ..

-

-

OVERLAY 3 LEVEL 3 COMPLETED. AREA: 004115-004207SU8P3=P 004120
*OVERLAY-ENIEY 13) $0324
*LOAO 0VER-NRL-SUBP4 COBOL—28
OVERLAY 4 LEVEL 3 COMPLETED. AREA: 004115—004207SUBP4=P 004120
*QVEBTAI—ENIBY 522 sugpg
‘k -R- L-

OVERLAY 5 LEVEL 2 COMPLETED. AREA: 003705-003???SUBPS:P 003710
*QyERLAY—ENIRY g1) §D§P§
*LQAQ QVER~NRL—§HEP§ ngL-za
OVERLAY 5 LEVEL 1 COMPLETED. AREA: 003475-003557SUBPE=P 003500
*flfll
MDEBiflkiEMEMM

HAIN~PROGRAHz OVERLAY LEVEL OOOOO+
SUBP1 : OVERLAY LEVEL 00001+
SUBPZ : OVERLAY LEVEL OOOOZ+
SUBP3 : OVERLAY LEVEL 00003+
END OF EXECUTION OF SUBP3.
SUBPZ : OVERLAY LEVEL OOOOZ+
SUBP4 : OVERLAY LEVEL OOOO3+
END OF EXECUTION OF SUBP4.
SUBPZ : OVERLAY LEVEL DOOOZ+
END OF EXECUTION 0F SUBPZ.
SUBP1 : OVERLAY LEVEL OOOO1+
SUBPS : OVERLAY LEVEL ODDOZ+
END OF EXECUTION 0F SUOPS.
SUBP1 : OVERLAY LEVEL OOOO1+
END OF EXECUTION OF SUOP1.
MAIN—PROGRAM: OVERLAY LEVEL DDOOO+
SUBPE : OVERLAY LEVEL 00001+
END OF EXECUTION OF SUBPB.
RAIN—PROGRAM: OVERLAY LEVEL OOOOD+
END OF OVERLAY PROGRAM EXECUTION. HAVE A NICE DAY!

002742—003411

003412—004061

004082—004515

004062—004515

003412-004045

002742-003375

NO-GO.144.3 EN

ND COBOL Reference Manual 289
PROGRAMMING EXAMPLES

11.3 BUILQIHG A flflfliQyEKLAI_ElLE:flAflQLlnfi—EflgfiflAn—§X§lfin

The purpose of this section is to show how program systems other than
overlay systems are built in ND COBOL. Points to remember when
building this and similar program systems are included as comments in
the symbolic source code listings and as annotations to the terminal
sessions which are printed together with the sessions. The program
system has the following call structure:

-—*———“~"~+ ERROR 9

STAMP CHANGE

MAIN

MAIN is the main program. and will eventually be the name of the
loaded program system. It consists of paragraphs for listing errors
(logged by the ERROR subprogram) and for calling the subprogram CHANGE
which edits the indexed file where the time and date of the most
recent activity is kept. in addition to the entry and exit paragraphs.

Each time one of these paragraphs are performed, the STAMP subprogram
is called from the paragraph in question, and writes the time and date
the paragraph was executed on the appropriate record in the indexed
file ISAM-EX. If an error condition or exception occurs during the use
of the indexed file in the STAMP or CHANGE subprograms, the ERROR
subprogram is called from the DECLARATIVES sections of those programs.
ERROR then identifies the error/exception from the variables passed to
it, and writes the error number together with an explanatory text. and
time and date of occurrence, on the sequential file ERROR-LOGzDATA. It
is this error list that can be viewed by users executing the MAIN
program.

ND—60.1$4.3 EN

290 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

In the examples below. the finished program systems are built in the
simplest possible ways. The "system supervision“ programs MAIN and
CHANGE are used to monitor the functioning of the system. while STAMP
and ERROR could be loaded together with other systems to record the
activities in these systems. Then the programmer might choose to open
the ISAM—EX file in the MULTI—USER MODE. and to make the other systems
reentrant or public in other ways. while use of the MAIN program
system would be limited. If that is the case. more advanced loading
procedures would be required. Please consult the relevant loader
manuals for details.

This is what the program looks like when it is executed. See if you
can find out what goes on from the description above!

@flflfl

STAMP called with key = ENTRY

USE CAPITALS AS RESPONSES IN THIS PROGRAM.

L(ist errors). C(hange keys). Elxitl ? L
Calling CHANGE subprogram to see and change ISAM—EX.
C(hange). 0(eletel. N(ew), Llist). else exit: L
Key CHANGE message: CHANGEing the ISAM—EX file DATE: 850228 TIME: 16033324
Key ENTRY message: Entering the program system DATE: 850228 TIME: 16035554
Key EXIT message: EXIT from the program system DATE: 850228 TIME: 16033364
Key FORTRA message: A FORTRAN program called DATE: *NEN* TIME: *NEH*
Key LI—ERR message: Last time errors were listed DATE: 850228 TIME: 1603586‘
C(hange). 0(elete). N(ew). L(ist), else exit: g
Leaving CHANGE aubprogram
STAMP called with key = CHANGE
Ltist errors). C(hange keys). Elxitl ? E
94 Error flag not STAMP day:850228 tine:15532708
87 File access violation STAMP day:850228 tine:15532774
97 File access violation STAMP day:850228 tine:1553279£
94 Error flag set CHANGE day:850228 timezlSS33522
97 File access violation CHANGE day:850228 tine:15533998
97 File access violation CHANGE dayz850228 time:15534382
94 Error flag set STAMP day:850228 time:15535792
97 File access violation STAMP day:850228 time:15535814
97 File access violation STAMP day:850228 time:15535832
94 Error flag set CHANGE day:850228 tinez15541528
99 SINTRAN file error CHANGE dayz850228 time:15542004
97 File access violation CHANGE day:850228 time:15542714
97 File access violation CHANGE day:850228 time:15551130
98 Wrong file description CHANGE day:850228 time:15551490
99 SINTRAN file error STAMP day:850228 time:15551522
37 File access violation STAMP day:850228 time:15551548
97 File access violation STAMP day:850228 tine:15551574
98 Wrong file description STAMP day:850228 tine:15551884
99 SINTRAN file error STAMP day:850228 time:15551954
97 File access violation STAMP dayz850228 time:15551378
97 File access violation STAMP day:850228 time:15551936
98 Wrong file description STAMP day:850228 time:15552018
STAMP called with key = LI-ERR
Lliet errors), C(hange keys). Elxitl ? E
STAMP called with key = EXIT
JOB DONE — EXIT T0 OPERATING SYSTEM.

ND—80.14k.3 EN

ND COB
PROGRA

0L Reference Manual 291
MMING EXAMPLES

11.3.1

Here i

Z TAB C
*
it
*

‘k
‘k
'k
'k
‘k
‘k
‘k
”k
e
‘k
‘k
*
‘k
‘k
‘k
it
it
‘k
*
’k
*
’A’
‘k
*
’k
‘k
‘k
'k
if
’k
‘k
‘k
‘k
'k
*
‘k
‘k
i
*
*
‘k
*
*
*

_ . .

s the source code for the programs in the system.

*xt********xx***********t*************t******************x****
Previous line instructs PED to set COBOL tabulators.

ek*xsxs***k***k*****x**x**t*************txx*x*x****t*x********
IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN—PROGRAM.
AUTHOR. IBO.
*x***********x******x****************************x*****k*****x

This is the main program in a system consisting of this
program and several subprograms which is constructed for
demonstration purposes.

The programs illustrate how to call subprograms from
other COBOL programs. how to handle file errors in the
DECLARATIVES section, and how files should be specified
in relationship to where they are used.

Note that all files to be used in a subprogram must be
closed upon entry of that subprogram. The subprogram must
close all its files before returning control to the calling
program.

An indexed and a sequential file are used. but since the
indexed file is not used in the MAIN program. it is not
defined here. whereas the sequential error—logging file is
defined below, since current errors can be listed by the
MAIN program.

The file "ERROR—LDG:DATA" must also exist before it is used.

For the indexed file, the prime record keys must be unique, and
"ISAM—EXzDATA" must exist and be empty. while "ISAM—EX:ISAM"
must not exist or be empty before the first run. The first
time the program is executed. there are no keys in the indexed
file: they must be entered by the user. During this process,
plenty errors will be logged on the error file to show how the
system works. The keys which MUST be present in the indexed
file if no errors shall occur are:

— ENTRY I program system is started.)
- EXIT (program system is stopped. I
~ CHANGE (the ISAM file is edited.)
— LI—ERR (the current errors are listed.)

These keys can be put on the [SAM—EX file by repeated use
of the "C(hangel" command in this program and the "Nlewl"
command in the CHANGE subprogram.

Other keys may be added cover other uses of the system,
like when the subprograms that stamp the ISAM—EX file are
loaded into other program systems.

*t**********k**x***********r********************xt*********xx

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE—CONTROL.

SELECT ERROR—FILE ASSIGN "ERROR—LOGzDATA"
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL.

DATA DIVISION.

FILE SECTION.
FD ERROR—FILE.
Dl ERROR-REC.

ND-60.144.3 EN

292 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

OZ E—STATUS PIC XX.
02 E—TEXT.

03 E—TYPE PIC XIkO).
03 E—NUMBER PIC XI3).
O3 E—PROGRAM PIC XIB).

02 E~OATE PIC XIG).
OZ E—TIME PIC XIB).

NORKING—STORAGE SECTION.
01 ANSWER PIC X.
OI TRANSMIT—KEY PIC XIS).
O1 ISAM~STATUS PIC XX.
01 TRANSMIT—STATUS PIC XX.

PROCEDURE DIVISION.
*k*************xt***A******k*****xt*******xt***********x*****x
* These procedures monitor the activities of the users
* and makes extensive notes of their activities.
*******t*******x****r***k*t*****t*t********t******************

STAMPeON—ENTRY.
MOVE "ENTRY" TO TRANSMIT—KEY.
CALL “STAMP—15AM” USING ISAM—STATUS. TRANSMIT~KEY.DISPLAY " ——— “.
DISPLAY “USE CAPITALS As RESPONSES IN THIS PROGRAM.".DISPLAY " ——— .".

CHOICE.
DISPLAY

"LIist errors), CIhange keys), EIxiL) ? "
ACCEPT ANSWER.

IF ANSWER = "E" THEN PERFORM FINI
ELSE—IF ANSWER : “L" THEN PERFORM LIST—ERRORS
ELSE—IF ANSWER — "C" THEN PERFORM CHANGE
ELSE GO TO CHOICE
END—IF.

CHANGE.
DISPLAY

”Calling CHANGE Subprogram see and change ISAM-EX.".
CALL "CHANGE-13AM" USING TRANSMIi-KEY.
MOVE "CHANGE" TO TRANSMIT-KEY.
CALL "STAMP-ISAMH USING ISAM—STATUS. TRANSMIT—KEY.
GO TO CHOICE.

LIST»ERRORS.
OPEN INPUT ERROR-FILE.
DO

PERFORM READeERROR—REC
END—DO.

READ-ERRDR—REC.
READ ERROR~FILE AT END PERFORM END-ERRUR~LIST.
DISPLAY E—STATUS.

" ". EeTYPE.
" ". EvNUMBER.
H "I E-PRDGRAM.
" dayz". E~OATE.
" time2“. E-TIME.

ENO—ERROR—LIST.
CLOSE ERROR—FILE.
MOVE ”LI—ERR" TO TRANSMIT—KEY.
CALL ”STAMP—13AM" USING ISAM-STATUS. TRANSMIT—KEY.
PERFORM CHOICE.

FINI.
MOVE "EXIT" TO TRANSMIT—KEY.
CALL "STAMP-ISAM" USING ISAM—STATUS, TRANSMIT—KEY.
DISPLAY “JOE DONE ~ EXIT TO OPERATING SYSTEM.”.
STOP RUN.

ND~60.144.3 EN

ND COBOL Reference Manual 293
PROGRAMMING EXAMPLES

IDENTIFICATION DIVISION.
PROGRAM~ID. STAMP—ISAM.
AUTHOR. IBD.

**************X*X***x**************************k***************
This is a subprogram to be called from the MAIN program.
and from programs in other languages than COBOL.
See comments to the MAIN for an explanation of the
details concerning definitions of common files.

Note that the VALUE OF FILE—ID clause in the FILE SECTION of
the DATA DIVISION is no longer needed. Also note that in this
version of the program, all special ND COBOL screen handling
facilities have been removed. That is. there are no position
clauses to the ACCEPT and DISPLAY sentences in this program.
and the BLANK SCREEN sentence is not used at all. This is done
to get the same kind of screen handling as the calling programs,
and to avoid having the COBOL Subprogram disable the ESCAPE key.
as it does when these special sentences are first used.

See comments to the COBOL main program for an explanation of the
details concerning definitions of common files.

***********tr******************************k**k****************

)t
*>

§
->

(‘
>

F
>

(-
>

6
>

(-
>

t>
6
>

(v
>

b
*>

6
>

b
>

k
*

ENVIRONMENT DIVISION.
INPUT~DUTPUT SECTION.
FILE~CONTROL.

SELECT ISAM-FILE ASSIGN TO "ISAM-EX:DATA".
ORGANIZATION IS INDEXED.
ACCESS MODE IS DYNAMIC.
RECORD KEY IS ISAM—KEY,
FILE STATUS IS ISAM—STATUS.

DATA DIVISION.
FILE SECTION.
FD ISAM—FILE.
Ol ISAM-RECDRD.

DZ ISAM~KEY PIC XIS).
O2 ISAM-TEXI.

03 ISAM—MESSAGE PIC X(30).
03 ISAM—DATE PIC XIB).
O3 ISAM—TIME PIC XIB).

WORKING»STORAGE SECTION.
01 ISAM—STATUS PIC XX.
01 ERROR-NUMBER COMP.

****************k********k**t*******kk************************
* Note that the area ISAM—STATUS is for storing file-status
* after operations on files. It might be tempting to place this
* in the LINKAGE SECTION for easy transmission to the calling
* program; however, this is not allowed.
****************A*****************************t***************

LINKAGE SECTION.
01 TRANSMIT—STATUS PIC XX.
01 TRANSMIT~KEY PIC XIS).

PROCEDURE DIVISION USING TRANSMIT—STATUS. TRANSMIT—KEY.

DECLARATIVES.
51 SECTION.

USE AFTER ERROR PROCEDURE ON ISAM—FILE.
ISAM—ERROR.

IF ISAM—STATUS : "89" THEN
CALL "ISERR" USING ERROR—NUMBER
CALL "CBERMSG" USING ERROR—NUMBER

END—IF.
MOVE l‘STAMP" TO TRANSMIT~KEY.
CALL "ERROR-ISAM" USING {SAM—STATUS, ERROR—NUMBER.

TRANSMIT—KEY.
END OECLARATIVES.

SURF—ACTIONS SECTION.

ND-EO.1A4.3 EN

294 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

OPEN—FILE.
OPEN I—O ISAM—FILE.

******xr********x***********r********t************x************
* Note that files must be opened and closed in each subpro—
* gram where they are used. even if these operations are also
* performed in the calling program.
*******x*******t***x***********x***********************t*******

WRITE—STAMP.
MOVE TRANSMIT-KEY TO ISAM—KEY.
DISPLAY "STAMP called with key = ", ISAM—KEY.
READ ISAM—FILE KEY IS ISAM—KEY

INVALID KEY
PERFORM INVALID-KEY.

ACCEPT ISAM-DATE FROM DATE.
ACCEPT ISAM—TIME FROM TIME.
HEWRITE ISAM—RECORD.
PERFORM EXIT~PARAGRAPH.

INVALID—KEY.
DISPLAY ”<STAMP) TRIED TO STAMP A NONEXISTENT KEY!".

EXIT—PARAGRAPH.
MOVE ISAM~STATUS TO TRANSMIT—STATUS.
CLOSE ISAM—FILE.
EXIT PROGRAM.

*******k**k******
* All shared files must be closed before exit from subprogram.
*********************kk********************kt******************

ND—60.144.3 EN

ND COBOL Reference Manual 295
PROGRAMMING EXAMPLES

IDENTIFICATION DIVISION.
PROGRAM—IO. CHANGE~ISAM.
AUTHOR. lBD.

*****k*x*******k********k*A***************kk*********k*********
* This is a subprogram to be called from the MAIN program.
* See comments to that program for an explanation of the
* details concerning definitions of common files.
t**t**k******k****************************k*******k******

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE—CONTROL.

SELECT ISAM-FILE ASSIGN TO "ISAM-EX20ATA".
ORGANIZATION IS INDEXED.
ACCESS MODE IS DYNAMIC.
RECORD KEY IS ISAM~KEY.
FILE STATUS IS ISAM—STATUS.

DATA DIVISION.
FILE SECTION.
FD ISAM—FILE.
O1 lSAM-RECDRD.

02 ISAM—KEY PIC XIB).
OZ ISAM—TEXT.

D3 ISAM~MESSAGE PIC XI30).
O3 ISAM—DATE PIC XIB).
03 ISAM-TIME PIC XIB).

WORKING-STORAGE SECTION.
01 ANSWER PIC X.
01 ISAM—STATUS PIC XX.
01 CHANGE—KEY PIC XIS).
O1 TRANSMIT~CALLINO PIC XIBI.
01 ERROR-NUMBER COMP.

k**********
* Note that ERROR—NUMBER will be used for transmission of
* SINTRAN error numbers according to the initial DECLARATIVES
* of the PROCEDURE DIVISION and related procedures.************************************k*****************t********

LINKAGE SECTION.
01 TRANSMIT-STATUS PIC XX.

PROCEDURE DIVISION USING TRANSMIT—STATUS.

k***
The following paragraph shows how error—messages pertaining to
the file used throughout this program can be recorded and
displayed. It is entered each time an error in the use of
the file is detected.

If the file status bytes (ISAM—STATUS in this program) are set
to '39’, then the error is a SINTRAN error. Such errors will
cause an exit from the program. with an error message to the
display from SINTRAN if the program does not contain a
DECLARATIVES section.

It may be desirable that the program can handle these and
other errors itself. without any exit to the operating system.
Here, all errors are recorded on a sequential file called
ERROR—LOG. In the case of SINTRAN errors. the SINTRAN error
number is recovered through using the ISERR subprogram.
Subsequently. the system monitor call MON64 is called by the
subprogram CBERMSG to get the error-message displayed.

All monitor calls which can be called as subprograms from
COBOL have names consisting of the names found in the SINTRAN
Reference Manual. prefixed with the letters CB.

Note that the actions taken by these routines (including
CBERMSG) are not ruled by the COBOL screen handling verbs;
therefore they will disturb the screen picture these verbs
generate.

t*************k*****k*************************************

>
+

>
(>

X
>

>
(>

>
(>

>
(*

X
~

X
')
G

>
(>

>
f>

(r
>

t>
t*
fi
fi
X

A
'X

’X
X

rX
‘X

’X
rX

rX
’X

'

ND—BO.144.3 EN

296 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

DECLARATIVES.
S1 SECTION.

USE AFTER ERROR PROCEDURE 0N ISAM—FILE.

ISAM—ERRDR.
IF ISAM—STATUC : "99” THEN

CALL "ISERR" USING ERRDR~NUMBER
CALL “CBERMSG” USING ERROR—NUMBER

ENDvIF.
MOVE "CHANGE" TO TRANSMIT—CALLINO.
CALL "ERROR—13AM” USING ISAM—STATUS. ERROR—NUMBER.

TRANSMITeCALLING.
END DECLARATIVES.

t**kt**********************k********Xit*******x****t******
* Note that if a DECLARATIVES SECTION is used, the program must
* be subdivided into sections.
******tt*kkt*******x********************t************k******t*

MAIN—ACTIONS SECTION.

OPEN—FILE.
OPEN IxO ISAM~FILE.
MOVE SPACES TO ISAM—STATUS.

CHOICE.
DISPLAY "C(hange). DIelete). NIew). LIist). else exit: "

ACCEPT ANSWER.
IF ANSWER : I'C" THEN PERFORM CHANGE'REC
ELSE—IF ANSWER "O" THEN PERFORM DELETE—REC
ELSErIF ANSWER ”N" THEN PERFORM NEW-REC
ELSE—IF ANSWER : "L" THEN PERFORM LIST
ELSE PERFORM EXITEPARAGRAPH.

*9:tit**‘k***************‘k***)hl’A*******‘k***‘k*‘k****k***‘k********‘k*****‘k

The following paragraph lists the contents of the ISAM—EX file.
Note how the primary key. ISAM—KEY. is initialized.

Previous versions of ND~CDBDL permitted statements such as
"START ISAM-FILE."; however. this non—standard format is now
removed.

****ii***k***k**A****
LIST.

MOVE SPACES TO ISAM~KEY.
START ISAM—FILE KEY > ISAM—KEY.

*
‘k
‘k
‘k
at
‘k

DO
REAO ISAM'FILE NEXT AT END GO TO CHOICE.
DISPLAY "Key ", ISAM'KEY.

' message: ". ISAM—MESSAGE.
" DATE: “. ISAM—OATE.
” TIME: ". ISAM—TIME.

END-DO.

CHANGE‘REC.
DISPLAY “KEY? ” ACCEPT ISAM—KEY.
READ ISAM—FILE KEY IS ISAM~KEY

INVALID KEY
PERFORM INVALID—KEY.

DISPLAY "Current key is -> ". ISAM—KEY.
DISPLAY "Current message is —> ". ISAM~MESSAGE.
DISPLAY "Stamped at: ". ISAM—DATE, " : ", ISAM—TIME.
DISPLAY "New message —> " ACCEPT ISAM—MESSAGE.
REURITE ISAM—RECORD.
GO TO CHOICE.

DELETE—REC.
DISPLAY "KEY? " ACCEPT ISAM~KEY.
READ ISAM—FILE KEY IS ISAM—KEY

INVALID KEY
PERFORM INVALID-KEY.

DISPLAY ”Current record is ~> ”. ISAM—KEY. " : “.
ISAM-MESSAGE. " : ". ISAM—DATE, " : ". ISAM«TIME.

DISPLAY "DELETE OK? (Y/N) " ACCEPT ANSWER.
IF ANSWER = "Y" THEN DELETE ISAM~FILE

ELSE DISPLAY "Record not deleted.".

NEW—REC.

ND—EO.144.3 EN

ND COBOL Reference Manual 297
PROGRAMMING EXAMPLES

DISPLAY ”KEY? " ACCEPT ISAM—KEY.
READ ISAM—FILE KEY 13 ISAM—KEY.
IF ISAM—STATUS : ”DO" THEN PERFORM RECORD—EXISTED.
PERFORM ENTER—KEY.
GO TO CHOICE.

RECORD—EXISTED.
DISPLAY “This key exists already!".
00 TO CHOICE.

ENTER—KEY.
DISPLAY "Message? ~> " ACCEPT ISAM-MESSAGE.
MOVE "*NEW* " TO ISAN-OATE, ISAM-TIME.
DISPLAY "New record is ~> ", ISAM—KEY, " : 'H

ISAM-NESSAGE, " : ". [SAM—DATE, " : ". ISAM-TIME.
WRITE ISAM—HECOHO.

INVALID—KEY.
DISPLAY "Did not find the key you asked for.".
GO TO CHOICE.

EXIT-PARAGRAPH.
MOVE ISAM—STATUS TO TRANSMIT—STATUS.
CLOSE ISAM-FILE.
DISPLAY "Leaving CHANGE Subprogram”.
EXIT PROGRAM.

********tk*************kt*****k********************************
* A11 shared files must be closed before exit from subprogram.
****x**xx**x*****************************t****x****************

ND—60,14L.3 EN

298 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

IDENTIFICATION DIVISION.
PROGRAM—ID. ERROR—15AM.
AUTHOR. IBO.

********************************k***********k*****************tk
* Logs ISAM file errors.
********************xtx***t*it***********k**********************

ENVIRONMENT DIVISION.
INPUT—OUTPUT SECTION.
FILE—CONTROL.

SELECT ERROR-FILE ASSIGN "ERROR—LflfizflATA"
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FO ERROR—FILE.
O1 ERROR—REC.

02 E—STATUS PIC XX.
02 E—TEXT.

O3 E—TYPE PIC XI40).
O3 E—NUMBER PIC X(3).
O3 E—PROORAM PIC X(6).

02 E—OATE PIC X(8).
02 E—TIME PIC X(8).

WORKING—STORAGE SECTION.
01 ANSWER PIC X.

LINKAGE SECTION.
01 {SAM—STATUS PIC XX.
O1 ERROR—CODE COMP.
OI ERROR’SOURCE PIC X(6).

PROCEDURE DIVISION USING [SAM—STATUS, ERROR—CODE. ERROR~SOURCE.

k*****‘k‘k’k***‘k**kA*‘k’k1"k‘kk'k‘k***‘ki**kA************k***********
* The ERRDR~FILE is opened in append mode with the EXTEND
* option, so that each new record is written after the end of
* the file.
kk*******A*k************************************k********

INITIATION.
OPEN EXTEND ERROR—FILE.

COMPOSE‘HEC.
MOVE ISAM~STATUS TO E~STATUS.
IF ERROR-CODE NOT EQUAL ZERO THEN

MOVE ERROR~COOE TO E—NUMBER.
MOVE ERROR-SOURCE TO E~PROGRAM.
ACCEPT E—DATE FROM DATE.
ACCEPT E—TIME FROM TIME.
IF ISAM—STATUS = “89' THEN MOVE

'SINTRAN file error’ TO E-TYPE
ELSE-IF ISAM—STATUS = '98' THEN MOVE

‘Nrong file description' TO E—TYPE
ELSE~IF ISAM-STATUS = '97' THEN MOVE

’File access violation' TO E—TYPE
ELSE—IF ISAM‘STATUS = ’95' THEN MOVE

‘File not initialised or opened' TO E-TYPE
ELSE~IF ISAM‘STATUS : '94' THEN MOVE

‘Error flag set' TO E—TYPE
ELSE-IF ISAM—STATUS : '78' THEN MOVE

“Record modified by another program' TO E-TYPE
ELSE—IF ISAM—STATUS : ‘88' THEN MOVE

'Record locked by another program' TO E—TYPE
ELSE—IF ISAM~STATUS = '23' THEN MOVE

'Record not in ISAM—EX‘ TO E—TYPE
ELSE—IF ISAM—STATUS = '22' THEN MOVE

'Ouplicates not allowed' TO E-TYPE
ELSE‘IF ISAM~STATUS : '21' THEN MOVE

‘Wrong sequence of words' TO E—TYPE
ELSE MOVE

'Unknown error type on file ISAM-EX' TO E—TYPE.

ND 60.144.3 EN

ND COBOL Reference Manual 299
PROGRAMMING EXAMPLES

WRITE—REC.
DISPLAY

'ERROR is called by the OECLARATIVES SECTION of '.
E—PROGRAM.

DISPLAY E-STATUS. " ". E—TYPEr "l". E—NUMBER.
”l”, E-PRDGRAM. " DAY ". E~OATE. ” TIME ". E—TIME.

WRITE ERROR—REC.
CLOSE ERROR—FILE.

FINI.
EXIT PROGRAM.

11.3.2 ggmgiling and Loading the Proqram Svstem on an ND—100

The following example shows how the previous programs can be compiled
and loaded on an ND—TOO. Here, the program listings are sent to the
LINE—PRINTER. They could of course go to any other printing device
available, to the terminal (just write TERMINAL instead of LINE—
PRINTER), or to a file. If using a file, type the name of the file you
want to keep the listing on (here, you can use MAINzLIST or anything
else) — within quotes if the file does not exist already (thus:
"MAIN:LIST“).

Also note that here, the files MAIN28RF, SUBPzBRF, CHANGE BRF and
ERROR BRF exist before the compiling session starts. If they did not
exist. you would have to create them by typing their names in quotes
("). When creating relocatable code files like this, the compiler
knows that their extension shall be :BRF, and you can skip typing the
extensions.

OCOBOL

NO—TOO COBOL COMPILER — ND—TOT77H

*CDMPILE MAIN,LINE—PRINTER.MAIN

——— END OF COMPILATION
NUMBER OF ERRORS FOUND: O
NUMBER OF WARNINGS GIVEN: O
NUMBER OF SOURCE LINES: 132

*COMPILE SUBP.LINE—PRINTER.SUBP

-—- END OF COMPILATION __________
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 102

*COMPILE CHANGE.LINE—PRINTER.CHANGE

-—— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 180

NO~EO.144.3 EN

300 ND COBOL Reference Man ual
PROGRAMMING EXAMPLES

*CDMPILE ERROR,LINE—PRINTER.ERROR

—-- END OF COMPILATION ----------
NUMBER OF ERRORS FOUND: 0
NUMBER OF VARNINOS GIVEN: 0
NUMBER OF SOURCE LINES: 88

*EXIT

The folloWing lines show how these programs are linked together to
form an executable program system. The sequence the programs are
loaded in is arbitrary, as long as you remember to load the COBOL
library last.

There are two COBOL libraries. each containing subprograms that your
programs will need to communicate with terminals, files and so on. If
you compile your programs in the 1—BANK mode (see appendix 6) then you
must specify COBOL—1BANK as your library. Otherwise the programs are
compiled in 2-BANK mode, and you must specify COBOL—ZBANK as your
library.

Also note that here, the file MAINzPROG exists before the loading
session starts. If this hadn‘t been the case, you would have to create
it by typing its name within quotes I"). When creating executable code
files with quotes, the BRF—Linker knows that their extension shall be
:PROG, so you can save some finger energy by leaving that out.

To get a precise description of how the BRF—Linker works, see the 8RF—
Linker User Manual, ND—60.196.01.

DORE—LINKER
- in er — 10721A
Br]: EROS-FILE MAIN
BrI: LOAD MAIN
FREE: P 000552—177??? D 002721~177777
8rl: LOAD SUBP-ISAM
FREE: P 001182—177??? D 003511—177???
Brl: LOAD CHANGE—ISAM
FREE: P 002474—177??? D 004517—177???
Brl: LOAD ERROR—15AM
FREE: P 003475‘177777 D 007527—177???
Br}: lflAH COBOL—28
FREE: P 054721—177??? D O431OS~177777
Brlz EXIT

Optionally, COBOL programs can be loaded on the ND—1OO with the NRL
(N0 Relocating Loader). A loading session with the NRL is almost
exactly the same as with the BRF-Linker, as long as you are not
building an overlay system. Therefore, the above remarks concerning
the BRF—iinker also hold for the NRL.

ND-60.144.3 EN

ND COBOL Reterence Manual 301
PROGRAMMING EXAMPLES

The following session builds the same program as the previous one.

am&
RELOCATING LOADER LOB—19351
*PROG—FILE MAIN
*LOAD MAIN
FREE: 000552—177??? FREE DATA AREA: 002721—177???
*LQAD SUBP«ISAM
FREE: 001162—177??? FREE DATA AREA: 003511~177777
*LOAD CHANGE~ISAM
FREE: 002474'177777 FREE DATA AREA: 004517~177777
*LOAD ERROR—ISAM
FREE: 003475—177777 FREE DATA AREA: 007527—177777
*LOAD CDBDL—ze
FREE: 054721—177777 FREE DATA AREA: 043105—177???*EXIT

11.3.3 npiling and Logging the Erggram System on an NQ—SQQ

The following example shows how the previous programs can be compiled
and loaded on an ND—SOD. Here, the program listings are sent to the
LINE—PRINTER. They could of course go to any other printing device
available, to the terminal (just write TERMINAL instead of LINE-
PRINTER) or to a file. If using a file, type the name of the file you
want to keep the listing on (here, you can use MAIN:LIST or anything
else), in quotes if it does not exist already (thus: "MAIN:LIST").

Also note that here, the files MAINzNRF, SUBP NRF, CHANGE NRF and
ERROR NRF exist before the compiling session starts. If this hadn't
been the case. you would have to create them by typing their names in
quotes (thus: "MAIN"). when creating relocatable code files like this,
the compiler knows that their extension shall be :NRF, so you do not
have to type the extensionsi

Note that the name of the compiler is prefixed with 'ND—SOO' in this
example‘ ND-SDO is the name of the program in the ND—(DO which
provides the operating environment for and monitors the activities of
the ND—SOO part of the computer system. It is possible to do most of
the work on the ND-SOO computer in this environment - for details, see
the manual 'ND—SDO Loader/Monitor', ND-60.136.

3NO~SOO_§QBOL

ND—SOO COBOL COMPILER - ND—10177H

*COMPILE MAIN.LINE~PRINTER,MAIN

——~ END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 132
LINES/MINUTE (CPU TIME): 6947

*COMPILE SUBP.LINE-PRINTER.SUBP

~—— END OF COMPILATION ——————————

ND—bU.144.3 EN

302 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 102
LINES/MINUTE (CPU TIME): 8500

*COMPILE CHANGE,LINE—PRINTERICHANGE

-—— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: O
NUMBER OF WARNINGS GIVEN: 0
NUMBER OF SOURCE LINES: 180
LINES/MINUTE (CPU TIME): 5400

*COMPILE ERRDRALINEmPRINTER.ERROR

——— END OF COMPILATION ——————————
NUMBER OF ERRORS FOUND: 0
NUMBER OF WARNINGS GIVEN: 0
NUMBER C5 SOURCE LINES: 88
LINES/MINUTE (CPU TIME): 4400

*Efll

When loading the program system on the ND—SDO, the appropriate loader
is the Linkage—Loader. For some introductory remarks on ND—SOO
programs and points to remember. see p. 13 in this manual. For a full
explanation, see the manual ~ND—SDO Loader/Monitor', No-60.136. The
following loading session shows the simplest possible way of loading
our program system.

Note the inclusion of the EXCEPT—LIB. This library file contains
routines which a COBOL program will require if it uses indexed or
relative files.

ONO—500 LINKAGE—LOADER

ND-Linkage-Loader — F 10. September 1983 Time: 00:07
N11 entered: 28. February 1985 Time: 18: 0
N11: SET—DOMAIN MAIN
N11: OPEN-SEGMENT MAIN .
N11: LOAD MAIN
Program: 1167 P01 Data: 6150 001
N11: LOAD SUBP
Program: 2147 P01 Data: 11264 001
N11: LOAD CHANGE—15AM
Program: 10134 P01 Data: 21810 001
N11: LOAD ERROR-I§AM
Program: 11511 P01 Data: 30174 001
N11: LOAD COBOL—LIB
COBOL—LIB—H850101
COBOL—LIB—H850101
Program: 236048 P01 Data: 145144 001
N11: LOAD EXQEPT—LIB
EXCEPTION—LIB-2041S7B
EXCEPTION—LIB—2041S7B
EXCEPTION~LIB-2041578
Program: 252054 P01 Data: 171555 001
N11: EXIT

ND-80.144.3 EN

ND COBOL Reference Manual 303
PROGRAMMING EXAMPLES

11.3.4 Callinq COBOL Suboroqrams from FORTRAN on the ND—TOO

In the following example. the subprograms STAMP and ERROR (described
in the previous sections of this chapter) are loaded together with a
FORTRAN main program. The main program does nothing more than to call
STAMP to leave a mark on the indexed file saying which program called
and when it called. The STAMP program will log all errors and
exceptional conditions on the ERROR-LOG file by calling the ERROR
subprogram from its DECLARATIVES section.

3FORTRAN—1OO
NU—lUU7NURU—1O ANSI 77 FORTRAN COMPILER — 2030530
FIN: SEPARATE
FTN: COMPILE FORTRAN—PROGRAM.1,FORTRAN—PROGRAM

NO—100/NORO—1O ANSI 77 FORTRAN COMPILER — 2030530 13:59 4 MAR 1985
SOURCE FILE: FORTRAN~PROGRAMzSYMB

1* X TAB F
2* C The line above sets PEO tabulator stops to suit FORTRAN.
3* PROGRAM FOROUT
4* C**t**k******tt*x***********k****t*tt*************************************
5* C *
6* C CALLING COBOL FROM FORTRAN ON AN ND—100 *
7* C :=::::::::::=:=::::::::::::::::=::::::: *

8* C *
9* C This FORTRAN code shows how a COBOL program may be called from a *

10* C FORTRAN program. The COBOL subprogram is part of another program sys~ *
11* C tem used as an example elsewhere in this manual. It stamps a record *
12* C in an ISAM file according to the ISAMKY which is passed to it, and *
13* C writes an error message on an error log if something is wrong with *
14* C the file system or else. The keys must be entered into the ISAM file *
15* C before this program makes use of it, otherwise the ISAM file cannot *
18* C be stamped. *
17* C *
18* C Note the way the characters "FORTRA" are passed to the COBOL program *
19* C — they cannot be passed as a CHARACTER substring. *
20* C *
21* C The next three lines define the variables that will be passed to *
22* C the COBOL Subprogram. *
23* C*************a*******ta***rx*t***********t*******************************
24* INTEGER ISAMST
25* INTEGER ISAMKY
26* DIMENSION ISAMKY(3)
27* WRITE (1,100)
29* C********tk******************k******************i**k*****k************k***
29* C Now. the variables ISAMST and ISAMKY must have values assigned to *
30* C them - note how the ASCII characters are passed to the ISAMKY array. *
31* C Since the NO~TOO has 16 bit word length. each word can hold two bytes, *
32* C and these have to be assigned as follows. *
33* Ct**at*r*xx********x*a************t*x*t*t*********************************
34* ISAMST : "00"
35* ISAMKYI1) 2 "F0"
38* ISAMKY(21 2 "RT"
37* ISAMKYIBI : "RA”
38* Ck***********i******k*****kkk******************t*******k**tk****k*********
39* C The COBOL subprogram is then called. *
40* C*************************k****************************k*t****************

ND~60.144.3 EN

304 ND COBOL Reference Man oal
PROGRAMMING EXAMPLES

41* CALL STAMPIISAMST.ISAMKY)
42* wRITE (1.200) ISAMST ,,,,,,,,,43* 100 FORMAT (///I FORTRAN main program here ... '///l
44* ZOO FORMAT (/l/I Returns from COBOL with ISAM—STATUS |,/1X,A2//l
45* ENO

~ CPU TIME USED: 2.6 SECONDS. 45 LINES COMPILED.
— NO MESSAGES
— PROGRAM SIZE=84 DATA SIZE=106 COMMON SIZE:O
FTN: EXIT

DORE—LINKER
— BRF Linker — 10721A
Brl: PROD—FILE FORTRAN—PROD
Br]: IDAD FORTRAN-PROGRAM
FREE: P 000100—177777 D 000152—177777
Brl: LOAD sggg
FREE: P 000510—177??? O 000742—177???
Brl: LOAD ERROR
FREE: P 001511—177777 D 003752—177777
Brl: LOAD COBOL~ZB
FREE: P 042572~177777 D 037280—177777
Brl: LOAD FORTRAN~28
FREE: P 087704—177777 0 045740—177???
BrI: LIST-ENTRIES-UNOEFINEO
Brl: EXIT

11.3.5 Calling COBOL Suboroqrams from FORTRAN on the ND—SOO

In the following example, the subprograms STAMP and ERROR are loaded
together with a FORTRAN main program. The main program does nothing
more than to call STAMP to leave a mark on the indexed file saying
which program called and when it called. The STAMP program will log
all errors and exceptional conditions on the ERROR—LOG file by calling
the ERROR subprogram from its DECLARATIVES section.

ONO-$00 FORTRAN—SOD ,,,,,

NO-SOO ANSI 77 FORTRAN COMPILER - 203054H
FTN:
FTN: COMPILE FORTRAN-NO-PROG.1.FORTRAN-NU—PROO

ND—SOD ANSI 77 FORTRAN COMPILER - 203054H 14:00 4 MAR 1885
SOURCE FILE: FORTRAN—NO-PROG:SYMB

1* Z TAB F
2* C font=1;
3* PROGRAM FORDUT
4* C****t**************x*****k****k**t******x**********t************t*****i*t
5* C *
8* C CALLING COBOL FROM FORTRAN ON AN ND~SDO *
7* C ::::::::::::::::=::::::::::::=:::=::::= *

8* C *
9* C *

10* C This FORTRAN code shows how a COBOL program may be called from a *
11* C FORTRAN program. The COBOL subprogram is similar to another program *
12* C system used as an example elsewhere in this manual. It stamps 8 rec— *

N0—60.144.3 EN

ND COBOL Reference Manual 305
PROGRAMMING EXAMPLES

13* C 0rd in an ISAM file according to the ISAMKEY which is passed to it, *
14* C and writes an error message on an error log if something is wrong with *
15* C the file system or else. The keys must be entered into the ISAM file *
16* C before this program makes use of it, otherwise the ISAM file cannot *
17* C be stamped. *
18* C *
19* C In the corresponding COBOL subprograms. all special screen handling *
20* C facilities have been removed — i. 9., all position clauses have been *
21* C removed from the DISPLAY and ACCEPT sentences, and all BLANK SCREEN *
22* C sentences have been removed. This has been done for two reasons: *
23* C — to avoid having the ESCAPE key disabled (this is done automa~ *
24* C tically once the special COBOL screen handling facilities are *
25* C used *
28* C — to make the screen handling of the COBOL subprograms consistent *
27* C with that of the FORTRAN program *
28* C *
28* C Note the way the characters "FORTRA" are passed to the COBOL program *
30* C by using an integer array called ISAMKY - they cannot be passed *
31* C as a CHARACTER substring. *
32* C *
33* C The next three lines define the variables that will be passed to *
34* C the COBOL subprogram. *
35* [xxxex**xxxxxxkk********xxxx*xt*xxxxxxxxtxxxx*****k******tx**************x
36* INTEGER ISAMST
37* INTEGER ISAMKY
38* DIMENSION ISAMKY(2)
39x C******x**x****xx*txxxx*******xxtx***x***********xxkxxkkx*xxx*x*********x*
40* C Now. the variables ISAMST and ISAMKY must have values assigned to *
41* C them ~ note how the ASCII characters are passed to the ISAMKY array. *
42* C *
43* C Since the N0-500 can store four bytes in each word. the first four *
44* C bytes must be stored in the first word of the integers which hold the *
45* C text to be passed. and the next two bytes must be held in the next *
48* C word. *
47* Cxxiixixi**x****x*r***xxxxxxxx****xx*xx****kxxxx*xxx***x*****xt**x****x*tx
48* ISAMST 2 ”00”
49* ISAMKY(1) : "FORT"
50* ISAMKY12) : "BA"
51* C*******i****x****x*************x*****************x******xx*xxt****xx*tt*x
52* C The COBOL subprogram is then called, *
53* Ce****xxx*rt*******xx*****x*x**xx***********************k******x*********k
54* WRITE (1,100)
55* CALL STAMP(ISAMST.ISAMKY)
58* WRITE (1,200) ISAMST
57* 100 FORMAT (///' FORTRAN main program here ... '///)
58* 200 FORMAT (///’ Returns from COBOL with [SAM-STATUS './1X,A2//)
59* END

— CPU TIME USED: 0.5 SECONDS. 59 LINES COMPILED.
- N0 MESSAGES
— PROGRAM SIZE:113 DATA SIZE=24B COMMON SIZE:O
FTN: EXIT

ONO—500 LlNKAOE—LOAOER

N0~Linkage-loader — F
Nll entered:

10. September 1983 Time:
1985 Time:4. March

Nll: SET—DOMAIN FORTRAN-N0~PROO
Nll: OPEN—SEGMENT FORTRAN—N0»PROGH
Nll: LOAD-SEGMENT FORTRAN—NO~PRDGll
Program: 185 P
Nll: LOAO SUBP
Program: 1145 P01
Nll: LOAO ERROR
Program: 2805 P01
Nll: LOAD COBOL—LIB
C080L~LlB~H850101
COBOL-LIB~H850101
Program: 118531 P01
N11: IOAO FORTRANeLlB
FORTRAN—LIB—203101H
FORTRAN—LlB—203101H
FORTRAN—LlB-203101H
FORTRAN—LlB—203101H
Program: 162348 P01

Data: 374 001

Data: 3510 001

Data: 12384 001

Data: 106750 001

Data: 135580 001

NO-60.144.3 EN

305 ND COBOL Reference Manual
PROGRAMMING EXAMPLES

N11: LOAD EXCEP—LIB
EXCEPTION—LIB—2041578
EXCEPTION~LIB~204157B
EXCEPTION—LIB-2041578
Program: 200273 P01 Data: 182402 001
N11: CLOSE
N11: EXIT

ND—60.144.3 EN

ND COBOL Reference Manual 307

A P P E N D I X 1

COMPOSITE LANGUAGE SKELETON

ND-60.144.3 EN

308 ND COBOL Reference Manual

ND-60.144.3 EN

ND COBOL Reference Manual 309
COMPOSITE LANGUAGE SKELETON

This appendix contains the complete syntax of ND COBOL. It is intended
to display complete and syntactically correct formats used throughout
this manual.

1.1. NOTATION USED IN FORMATS

1.1.1. Definition of a General Format

A general format is the specific arrangement of the elements of a
clause or a statement. (1) A clause or a statement consists of
elements as defined below. Throughout this manual. a format is shown
adjacent to information defining the clause or statement. When more
than one specific arrangement is permitted, the General Format is
separated into numbered formats. Clauses must be written in the
sequence given in the General Format. (Clauses that are optional must,
if they are used. appear in the sequence shown.) In certain cases,
stated explicitly in the rules assoc1ated with a given format, clauses
may appear in sequences other than shown. Applications, requirements
or restrictions are shown as rules.

1.1.1.1. Elements

Elements which make up a clause or a statement consist of uppercase
words, lowercase words, level-numbers. brackets, braces, connectives,
and special characters.

1.1.1.2. Words

All underlined uppercase words are called key words and are required
when the functions of which they are a part are used. Uppercase words
which are not underlined are optional to the user and need not be
written in the source program. Uppercase words, whether underlined or
not. must be spelled correctly.

Lowercase words, in a General Format, are generic terms used to
represent COBOL words, literals, PICTURE character‘strings, or a
complete syntactical entry that must be supplied by the user. where
generic terms are repeated in a General Format, a number or letter
appendage to the term serves to identify that term for explanation or
discussion.

(1) These definitions are identical to those of the COUASYL COBOL
committee.

ND—60.144.3 EN

310 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

1.1.1.3. Level—Numbers

When specific level—numbers appear in Data Description entry formats,
those specific level-numbers are required when such entries are used
in a COBOL program. In this document, the form 01, 02...09 is used to
indicate level-numbers 1 through 9.

1.1.1.4. Brackets, Braces and Choice Indicators

When brackets, [], enclose a portion of a General Format, one of the
options contained within the brackets may be explicitly specified or
that portion of the General Format may be omitted.

when braces, { }, enclose a portion of v General Format, one of the
options contained within the braces must either be explicitly
specified or implicitly selected. If one and only one of the options
contains only reserved words which are not key words, that option is
the default option and is implicitly selected unless one of the
options is explicitly specified.

when choice indicators, {[1}, enclose a portion of the General
Format, one or more of the unique options contained within the choice
indicators must be specified, but a single option may be specified
only once.

Options are indicated in a General Format or a portion of a General
Format by vertically stacking alternative possibilities, by a series
of brackets, braces or choice indicators or by a combination of both.
An option is selected by specifying one of the possibilities, from a
stack of alternative possibilities, or by specifying a unique
combination of possibilities from a series of brackets, braces or
choice indicators.

1.1.1.5. The Ellipsis

In text, other than the General Formats, the ellipsis indicates that
one or more words have been omitted. This is allowed only if
comprehension is not imaired. This is the conventional meaning of the
ellipsis. and this use becomes apparent in context.

In a General Format, the ellipsis represents optional repetition of a
portion of a format which is determined as follows:

Given '...'(the ellipsis) in a format, scanning right to left,
determine the '3' (right bracket) or } (right brace) delimiter
immediately to the left of the '...'; continue scanning right to left
and determine the logically matching 'I' (left bracket) or ’{' (left
brace) delimiter; the '...' applies to the portion of the format
between the determined pair of delimiters.

ND-60.144.3 EN

ND COBOL Reference Manual 311

COMPOSITE LANGUAGE SKELETON

1.1.1.6. Format Punctuation

The separator '.' (period). when used in formats, has the status of a
required word.

1.1.1.7. Use of Special Characters in Formats

Special characters, when appearing in formats, although not
underlined, are required when such portions of the formats are used.

ND—80.144.3 EN

312 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

Identification Division

GENERAL FORMAT FOR IDENTIFICATION DIVISION

IDENTIFICATION DIVISION

PROGRAM—IO. program—name.

AUTHORV [comment—entry] ...]

NSTA T N [comment—entry] ...]

QATE—lTTgN. [comment-entry] ...]

DATE—QOMPILEO. [comment-entry] ...]

SECURITY, [comment—entry] ...]

,.

REMARKfix [comment—entry] ...]

ND-60.144.3 EN

ND COBOL Reference Manual 313
COMPOSITE LANGUAGE SKELETON

Environment Division

GENERAL FORMAT FOR ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOQRQE—QOMPUTER. computer*name {WITH QEBUGGING MOQE]

OBJECT-COMPUTER4 computer—name

[. $§GMENT~11MIT l; segment—number]

§P§91ALvNAME§‘

[. QURRENCY SIGN 15 literal]

[, DECIMAL‘POINT l§ COMMA]

INPUT-OUTPUT SECTION.

ELIE-CONTROL.

{file~control’entry}

I-O—CONTROL.

[SAME AREA FOR file~name—1 I. file—name—Z}

NO~BO.14§.3 EN

314

FORMAT 1:

SELECT

FORMAT 2;

SELECT

ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

Environment Division

GENERAL FORMAT FOR FILE CONTROL ENTRY

OPTIONAL file-name

ASSIGN TO assignment—name-1

AREA
; RESERyE integer—1

AREAS

: ORGANIZATION IS SEQUENTIAL]

: ACCESS MODE IS SEQUENTIAL]

FILE STATUS IS data—nameVT]

OPTIONAL] file—name

ASSIGN TO assignment—name—T

AREA
; RESERVE integer—1

AREAS

I—

; ORGANIZATION IS INDEXED
,—

OUENT A
: ACCESS MODE IS RANDOM

DYNAMIC

; RECORD KEY IS data—name—1

2 ALTERNATE RECQRD KEY IS
' data—name—Z [WITH QUPLIQATES]]

F

; FILE STATOS IS data—name—3]

ND—BO.144.3 EN

ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

Environment Division

GENERAL FORMAT FOR FILE CONTROL ENTRY

FORMAT'B:

SELECT OPTIONAL file—name
L.

A§§1§N TO assignment—name—1

AREA
; S RV integer—1

AREAS

; ORGANIZATION IS RELATIVE

; ACCE§§ MODE IS

SEQUENTIAL [, RELATIYE KEY IS data—name—T]

RANDOM
, RELATIVE KEY IS data—name—1

QYNAMLC

[; FILE STATES IS data~name—2]

FORMAT 5;

SELECT file—name ASSLEN TO assignment—name—1

ND—BO.144.3 EN

315

316 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

Data Division

GENERAL FORMAT FOR DATA DIVISION

DATA DIVISION.

{ELLE §££llgfl+

[fig file—name

_ EEQQRQ§
E: DLOCK CONTAINS [integer-1 1g] integer—2

CHARACTERS

[; RECORD CONTAINS [integer—3 IQ] integer—k CHARACTERS

IQEPENQING 0N identifier]]

P

3; LAgEL‘
§R§CORD IS E gsTANDARD,

, Rgcoans ARE' ' omITTgo g
, L

'VAn gg FILE-IQ IS integer]

E
TEXT—FIJE

: Egggaglng MODE IS _ 1
2 1 ,

; RECORD IS
i; DATA i _ data—name—3 [, data~name~41
, RECQRDS ARE
L

[record—description—entry3 ...]

[SQ file—name

[; gECORD CONTAINS {integer—1 193 integer—2 CHARACTERS

{DEPgNQINg 0N identifier]]

ND-GD.144.3 EN

ND COBOL Reference lual
COMPOSITE LANGUAGE SKELETON

Data Division

GENERAL FORMAT FOR DATA DIVISION

F

TEXT—F
; R CORDING MODE IS l

1

RECORD IS
, DATA data—name—1 [. data—name—Z]

RECORDS ARE
L.

{record—description—entry} ...] ...]

ND—80.1k4.3 EN

317

8 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

Data Division

GENERAL FORMAT FOR DATA DIVISION

WORKING—STORAGE SECTION.

77—level—description~entry]

record—description—entry

LINKAGE CT N.

77~level—oescription—entry]

record-description—entry

ND~60.144.3 EN

ND COBOL Reference Manual 319
COMPOSITE LANGUAGE SKELETON

Data Division

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

FORMAl_1

data-name—1
level—number

FILLER

; REQEF1N§§ dataename—Z]
L.

PICTQRE
; IS character—string

P C

QQMPQTATIONAL
C MP
COMPUTA 0NAL-1
SOMP—j
QOMPUTATIONA1~2

TD§A§§_1§3 Qflflfl;2
OMPUTAT NA -3

QOMP—3
DI§PLAY
INDEX

K - C MA

LEADING
; [ilfifl IS] [SEEABATE CHARACTER]

TRAILLNG
L.

integer—1 1Q integer—2 TIMES DEEENQINQ 0N
data—name—3

; OCCURS
integer—2 TIMES

ASCENDING

KEY IS data—name—A [, data—name~5]...
Qiégéflfllflfi

[INDEXED BY index—name—1 [, index—name—Z] ...]

ND~60.144.3 EN

320 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

Data Division

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

;§ YNCHRN ED; LEE;
fiiflg 81 fl!6’)

ST F
; g RIGHT

lfl§l

:MWHENLEKQ]

: VALUE IS literal

l'
1

L.
...

...
...

J

: IMPORT [QOMMON]

[
1

L
..
.—

J

; EXPOR!]
u.

R AT

VALUE IS Iflfiflflfifl
88 condition~name; literal’1 literal-2

MALflii ARE Jflfiu

lflflgufifl
, literal~3 literalwk

IfiRU

ND—60.144.3 EN

ND COBOL Reference Manual 321
COMPOSITE LANGUAGE SKELETON

Procedure Division

GENERAL FORMAT FOR PROCEDURE DIVISION

FORMAT 1:

PROCEDURE DIVISION [USING data—name—I [, data—name—Z] ...]

DECLARATIVES.

{section~name SECTION [segment—number]

[USE sentence]

[paragraph~name. [sentence] ...] ...}

ND DECLARATIVES.

{section—name §ECTLQN [segment—number]

[paragraph-name. [sentence] ...] ...}

FORMAT 2:

PROCEDURE DIVISION [USING data—name—1 [, data-name-Z] ...]

{paragraph—name. [sentence] ...}

ND-60.144.3 EN

322 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

ACCEPT identifier [FROM

ACCEPT identifier FROM

identifier {{1}
ACCEPT

integer

identifier [WITH

mnemonic-name

.4 H K m l
CPU-TIME

integer] identifier {{L} integer]

g 3 integer

[BEEP]
[$PACE—F1LL]
[LENGTH-CHEQK]
[AuTD-§KLP]
[PROMPT]
[fiLANK—flHEN-ZERO]
[Mflil]
[QPQATE]
[Afl§li£l£fl;fil§fll]
[lNVlnLE]
[lfllfifiéfi;¥l§fi9]
[BLIEK]
[uNQERLINE]
[UPPER—QASE]
[Lflfl;lfll£fl§lll]
[EQEMAL]
[flfiLfi Label]
[RE—QISPLAX Label]
{CANCEL Label]
[F1-FQ Label]
{QB Label]
ngu Label]
[HOME Label]
[£511 Label]
[Lfifil Label]
[RIQHT Label]
[CONTROL Label]]

ND-60.144.3 EN

ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

GENERAL FORMAT FOR VERBS

ACCEPT—ERROR

ACCEPT-RETURN

ND—60.144.3 EN

COBOL Verb Format

323

324 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAY FOR VERBS

identifier—1 , identifier*2
AQD ... 1g identifier—m [ROUNDED]

literal—1 , literal—2

[, identifier—n [ROUNDED]]

[; 0N SIZE ERROR imperative—statement]

identifier—1 identifier—2 , identifier—3
ADD— »

llteral—1 literal-2 , literal—3

GIVING identifier-m [ROUNDED] [, identifier—n [ROUNDED]]

[; ON SIZE ERROR imperative—statement]

ALTER procedure—name—1 IQ [PROCEED 1Q] procedure—name—Z

[, procedure—name—3 19 [PROQEED 1Q] procedure—name—A]

BLANK SQREEN

LINE
BLANK n1 [1g n2] [QOLUMN n3 m n4]

LINES

data-name—1 , data—name—Z
CAL; literal—1 U§IN§ quoted«literal , quoted—literal

integer , integer

ND—60.144.3 EN

ND COBOL Reference Manual 325
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

QLOSE file~name—1 [WITH LOCK] [. file—name-Z [WITH LOCK]]

REEL
[WITH fig REWIND]

Mil
QLO§§ file—name—3

fig REWINQ
WITH

LQQK

3.5.6;
[WITH fig REWIND]

ELLE
A file~name—4

___Q WND
WITH

LQEK

CQMPUTE identifier-1 [ROQNQED] [, identifier-2 [ROQNQEQ]]

= arithmetic—expression

[; ON 511E ERROR imperative—statement]

CQNTINUE

QOPY file—name

QELEIE file—name RECORD [; IfiVATLQ KEY imperative—statement]

ND~80.144.3 EN

326 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

identifier—1 , identifier~2

QL§ELAI [QPQN mnemonic—name]
literal—1 literal—2

WITH 3g ADVANCING]

QiSPLAY
integer—2 integer~4

WITH [BEEP]
[SPAC§«FILL]
[lNVERSE—VIDEOJ
[BLINK]
[UNDERLINE]
[LON—{NTENSITYJ
{NORMAL}
[AUTQ—ERASE]
[ERQEEIJ]

(é identifier—1 [{1} integer-11E 31dentifier—2 [{1} integer—3] g

identifier—3 ; , identifier—4 [

literal—1 literal-2

[BLANK—WHEN—ZERO]

DISPLAY %
integer—2

identifier—1 [{1} integer—1] identifier—2 [{1} integer—3];

3 integer—4

identifier—32 identifier—k
FRAME *

literal—1 A literal—2

[WITH [SPACE-FILL] [HEADING] [REMARKS] [AUTO-ERASE]]

identifier-1 [{1} integer—1] identifier—2 [{1} integer—3]
DISPLAY 3

integer—2 integer-4

§FULL—BAR g sidentifler—Bg gidentifler-L
*

PAR — AR ? literal-1 literal~2

ND~60.144.3 EN

ND COBOL Reference Manual 327
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format
GENERAL FORMAT FOR VERBS

identifler—1
QIVIDE g : INTO identifier—2 [RQQNQEQ]

literal—1

[, identifier—3 [BQUNDED]]

[; ON §IZE ERROR imperative—statement]

identifier—1 JNTQ identifier~2
DIVIDE

literal—1 fix literal—2

GIVING identifier—3 [ROUNDED] [, identifier~4 [ROUNDED] J

[; 0N gig; ERROR imperative—statement]

identifier-1 INTO identifier—2
DIVIDE g

literal—1 E1 literal-2

QTYING identifier—3 [ROUNDED]

REMAINDER identifier—4

[; ON 511E ERROR imperative—statement]

go sentence [WHILE condition sentence] ... ENQ—QO

identifier—2 [{1} integer-2]
D F R identifier-1 FROM

integer—3

OE identifier—5 [{1} integer-5]
[E1 integer—4] 1g

Eflflfl integer—6

sentence

[WHILE condition sentence] ... Eflfl;flfl

ND—60.144.3 EN

328

ELHIBIT NAMED

ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

«identifler

? literal

EXIT [PROGRAM]

EXIT—DO

EXIT—ALL*DO

__ TO [procedure—name—T]

ii

ii

_~ condition THEN 3

__ TO procedure—name—T [. procedure—name—Z] .., [, procedure—name—n]

QEPENDING ON identifier

statement—1 statement—2
condition g g EL§£ 3

NEXT SENTENCE NEXT §ENTENCE

statement—3 statement~2
condltion THEN EE§E [END—IF]

NEXT SENTENCE NEXT §EN1ENCE

statement—S

NEXT §ENTENCE

statement—6
ELEE—IF condition—2 THEN

NEXT SENTENCE

statement-T
£L§£ [éflfi;l£]

NEXT SENTENCE

ND-60.144.3 EN

ND COBOL Reference Manual 329
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

INSPECT identifler~1

ALL identifier~3
[T LY N , identifier-2 EQR , LEADING literal—1

QHARAQTER§

BEFORE identifier-4
INITIAL]

AFT R literal—2

[P A NG

identifier-6
CHARACTERS a

literal—4

BEFORE identifier—7
INITIAL

AFTER literal—5

A L identifieres identifier—5 A
LEADING Bl
FIRST literal—3 literal~4

BEFORE 'identifier—Y
INITIAL

AFTER literal—5

ND—80.14&.3 EN

330 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

ASCENDING
MERGE f11e~name—1 ON KEY data—name—1

QE§CENDING

[. data—name—Z]

ASCENDING
ON KEY data—name—3 I, data—name—4]

DESCENDING

USING file—name—Z, file—name—B

THROUGH
OUTPUT PROCEDURE IS section—name—B section-name—L

\THRU

QIVING flle-name—A

identifler-1
MOVE 1Q identifier—2 I, identifier—3]

literal

CORRESPONDING

MOVE identifier-1 1Q identifier~2
CORR

ND-BO.14L.3 EN

ND COBOL Reference Manual 331
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

identifler~1
MQLTIPLY 31 identifier—2 [EQUNQED]

literal-1

[, identifier—3 [RQONQEQJ]

[; ON SIZE ERROR imperative—statement]

B
identifier—1

MULTIPLY
gidentifier—Zg

literal—1 literal—2

§1V1NG identifier—3 [ROUNQED]

[, identifier-k [ROUNQED]]...

[; ON 511; ERROR imperative—statement]

ND~60.144.3 EN

332 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

INPUT file—name—1 [WITH 59 REWIND]

[, flle—name—Z [WITH NO REWLND]]

OUTPUT file—name—3 [WITH NO BEHIND]

OPEN [. file-name-A [WITH NO EEWINQ}]

L—Q file—name—S [, file—name-S]

EXTEND file—name~7 [. file—name—S]

INPUT T —U ~MODE
OPEN OUTPUT file~name WITH IMMEDIAIE~WRITE

1-0 MANUAL-UNLQQK

lflfigl MULTl—U§ER—MODE
OUTPUT file—name WITH IMMEDIATE—WRITE
T—Q MANUAL—UNLOCK

ND—60.144.3 EN

ND COBOL Reference Manual 333
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

PERFORM range

PERFORM range
identifier~1g

integer

PERFORM range UNTIL condition—1

identifier—5 identifier—6
PERFORM range VARYING FROM index—name-A

index~name~3 literal—3

identifier—7
fix UNTIL condition—1

literal-4

identifier—8 identifier—9
AFTER FRQM index~name~6

1ndex—name—5 literal—5

identifier—10
fix UNTIL condition‘Z

literal-6

identifier~11 identifier—12)
AEIER EROM index—name—B

index—name-B literal—6 S

identifier—13
fix UNTIL condition—3

literal—7

where range is the construct:

THR U H
procedure-name~1 procedure—name—Z

THRU

ND—60.144.3 EN

334 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

N XT
READ file~name RECORD [INTO identifier] [WITH LOCK]

PREVIOUS

[; AT END imperative statement]

READ file—name RECORD [TNTQ identifier] [WITH LOCK]

[; KEY IS data—name] [; INVALID KEY imperative-statement}

READ file—name RECORD [INTO identifier] [WITH LOCK]

[; INVALID KEY imperative—statement]

RELEA§E record—name [FROM identifier]

ND~60.144.3 EN

ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

GENERAL FORMAT FOR VERBS

RESET SCREEN

RETURN file—name RECORD [lNTO identifier]

[: AT ENE imperative statement}

RENRITE record—name [FROM identifier]

REwRITE record—name [FROM identifier]

[; INVALIQ KEY imperative—statement]

ND*60.144.3 EN

335

COBOL Verb Format

336 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

identifier—2
SEARCH identifier—1 VARYING

index—name—T

[; AT END imperative statement—1]

imperative—statement—Z
; WHEN condition—1

NEXT SENTENCE

imperative~statement—3
; flflifl condition—2

NEXT §ENTENCE I

SEARCH ALL identifier—1 [; AT ENQ imperative statement—1]

data—name—T
IS EQUAL T0 identifier-3

IS =
literal—1 ;
arithmetic-expression

; WHEN
condition—name—T

IS EQUAL TO identifier’k
literal—2
arithmetic—expression

data—name~2
AND IS =

condition-name—Z

imperative—statement—Z

NEXT §ENTENCE

identifier—1 [, identifier~21 identifier—3
_§1 19 index—name—3

integer—1
index—name—T [, index-name-Z]

OE fix identifier-4
ggl index—name-4 [, index—name—S]

DOWN Bl integer~2

ND—60.144.3 EN

ND COBOL Reference Manual 337
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

ASCENOING
SORT flle—name—T ON KEY data—name—1 [. data—name—ZI

E CENDING

ASCENDING
ON KEY data—nameHB I. data~name—4]

O SCENDING

THROUGH
INPUT PROCEDURE IS section—name—T section—namewz

m
USING file—name—Z

lflflflflfifl
OUTPUT PROCEDURE IS section-name—3 section-name-A

THRU

GIVING flle-name—Z

‘ 1
IS EQUAL TO
IS =
IS GREATER THAN data—name
IS >

START flle—name KEY IS NOT LESS THAN
IS Ngl <
IS LESS THAN
IS <
IS NOT GREATER THAN
IS NOT >

[; INVALID KEY imperative—statement]

REE
STOE

literal

ND-60.144.3 EN

338 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

identifier—1 , identifier—2 identifier—3
gTRING QELIMITED BY literal—3

literal—1 , literal~2 SIZE

gidentifier—AE , identifier—5

literal—4 literal—5

'identifier—G
DELIMITED 8Y3 literal—6

ill;

INTO identifier-7 [WITH POINTER identifier-8]

[; 0N OVERFLQw imperative‘statement]

identifier-1 , identifier—2
SUQTRAQT E

literal~1 , literal—2

FROM identifier—m [BQUNQED] [. identifier—n [RQQNQEQ] }

[; 0N SIZE ERROR imperative—statement]

identifier—1 , identifier—2 identifier~m
SUBTRACT g FR M

literal—1 , literal—2 literal—m

§1V1NG identifier~n [ROONDED] [, identifier—o [RQONDEQ]]

[; ON 511E ERROR imperative—statement]

ND—60.14L.3 EN

ND COBOL Reference Manual 339
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

UNLOCK file—name

identifier—2
ONSTRING identifier—1 DELIMITEQ BY [ALL]

literal—1

identifier—3
. 93 [ALL] g g

literal—2

Lfllg identifier—4 [, DELIMJIER IN identTEier—S]

[, QQQNI IN identifier—6]

[, identifier—7 [, DELIMITER IN identifier-8]

[, nfll IN identifier—9]]

[WITH EOINTER identifier—10}

[[ALLYINQ IN identifier—11]

[; 0N QXERELQQ imperative—statement]

file—name—1
C. filename—Z]

EXCEPTION INPUT
_§§ AFTER STANDARD g PROCEDURE 0N OUTPUT

ERROR ;;g
EXTEND

ND~60.144.3 EN

340 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

COBOL Verb Format

GENERAL FORMAT FOR VERBS

wRITE record—name FROM identifxer—1

BEFORE {identifier~3 LINE
ADVANCING 1nteger LINES

AFTER
PAGE

WRITE record—name [FROM identifier—1] [NITH LOQK]

[; INVALLQ KEY imperative—statement]

ND~50.144.3 EN

ND COBOL Reference Manual 341
COMPOSITE LANGUAGE SKELETON

Condition Formats

GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION:

IS [NOT] §£E_AT_E_E THA
identifier—1 IS [N91] L£§§ THAN identifier~2
literal—1 IS [N91] EQUAL TO literal—2
arithmetic—expression—T IS [Ngl] > arithmetic—expression—Z
index—name—T IS [NOT] < index-name—2

IS [N91] =

CLASS CONDITION:
NUMERIC

identifler IS [NOTlg
ALPHABETIC

SIGN CONDITION:

arithmetic—expression IS [NOT] NEGATIVE
ZERO

Efléllllég

CONDITION~NAME CONDITION:

condition-name

NEGATED SIMPLE CONDITION:

OT simple condition

0M N D 0ND TION:

AND
condition condition

IO 70

ABBREVIATED COMBINED RELATION CONDITION:

A D
relation—condition [NOT] [relational—operator] object

QB

ND—60.144.3 EN

342 ND COBOL Reference Manual
COMPOSITE LANGUAGE SKELETON

Miscellaneous Formats

MISCELLANEOUS FORMATS

QUALIFICATION:

data—name—1 Q:
data—name—Z

condition-name 13

OE
paragraph—name section'name

lfl

file~name

SUBSCR PT N6:

data—name
subscript—1 [, subscript~2 {, subscript—3]]

condition~name

INDEXING;

$data—name g index—name—1 [{1} literal—2]

condition—name literal—1

gindex—name’Z [{1} literal—L]

literal—3

index—name—3 [{1} literal—B]

literal"5

ND—80.144.3 EN

ND COBOL Reference Manual 343
COMPOSITE LANGUAGE SKELETON

Miscellaneous Formats

MISCELLANEOUS FORMATS

IDENTIFIER: FORMAT 1

Qi
data—name—1 § gdata—name—Z

lfl

subscript~1 [, subscript-2 [, subscript—3]]

IDENTIFIER: FORMAT 2

OE
data—name-1 g gdata-name~2

lfl

31ndex—name-1 [{1} literal—2] E

literal—1

index»name—2 [{i} literal—4]

literal—3 E

éindex—name—B [{1} literal—6];

literal»5

ND-60.144.3 EN

344

ND-60.144.3 EN

ND COBOL Reference Manual

ND COBOL Reference Manual 345

A P P E N D I X 2

ASCII CHARACTER SET

N0-60.144.3 EN

346 ND COBOL Reference Manual

ND—60.1#4.3 EN

ND COBOL Reference Manual
ASCII CHARACTER SET

Byte PCS/[ION Byte Pas/hon
CHAR Left Right Dec CHAR Lei! HIg/H D121:

NUL 000000 000000 0 0 030000 000060 48
SOH 000400 000001 1 1 030400 000061 49
STX 001000 000002 2 2 031000 000062 50
ETX 001400 000003 3 3 031400 000063 51
EOT 002000 000004 4 4 032000 000064 52
ENG 002400 000005 5 5 032400 000065 53
ACK 003000 000006 6 6 033000 000066 54
BEL 003400 000007 7 7 033400 000067 55
88 004000 000010 8 8 034000 000070 56
HT 004400 00001 1 9 9 034400 000071 57
LF 005000 000012 10 ’ 035000 000072 58
VT 005400 000013 11 035400 000073 59
FF 006000 000014 12 036000 000074 60
CR 006400 000015 13 = 036400 000075 61
80 007000 000016 14 »~ 037000 000076 62
81 007400 000017 15 7 (137400 0011077 63
D LE 010000 000020 16 =7» 040000 000100 64
DC1 010400 000021 17 A 040400 000101 65
DC2 011000 000022 18 B 041000 000102 66
DC3 011400 000023 19 C 041400 000103 67
DC4 012000 000024 20 D 042000 000104 68
NAK 012400 000025 21 E 042400 000105 69
SYN 013000 000026 22 F 043000 000106 70
ETB 013400 000027 23 G 043400 000107 71
CAN 014000 000030 24 H 044000 000110 72
EM 014400 000031 25 1 044400 000111 73
SUB 015000 000032 26 J 045000 000112 74
ESC 015400 000033 27 K 045400 000113 75
F8 016000 000034 28 L 046000 000114 76
GS 016400 000035 29 M 046400 000115 77
RS 017000 000036 30 N 047000 000116 78
US 017400 000037 31 0 047400 000117 79
S PACE 020000 000040 32 P 050000 000120 80
1 020400 000041 33 0 050400 000121 81
" 021000 000042 34 R 051000 000122 82
.7 021400 000043 35 S 051400 000123 83
S 022000 000044 36 T 052000 000124 84
“/2, 022400 000045 37 U 052400 000125 85
& 023000 000046 38 V 053000 000126 86
' 023400 000047 39 W 053400 000127 7
(024000 000050 40 X 054000 000130 88
) 024400 000051 41 Y 054400 000131 89
' 025000 000052 42 Z 055000 000132 90
7+ 025400 000053 43 [055400 000133 91

026000 000054 44 \ 056000 000134 92
------ 026400 000055 45] 056400 000135 93

027000 000056 46 /- 057000 000136 94
/ 027400 000057 47

ND—60.144.3 EN

348 ND COBOL Reference Manual
ASCII CHARACTER SET

Byte Posmon Byte Posmon
CHAR Left Right Dec CHAR Left Right Dec

,,,,, 057400 000137 95 0 067400 000157 111
060000 000140 96 p 070000 000160 112

3 060400 000141 97 q 070400 000161 113
b 061000 000142 98 r 071000 000162 114
c 061400 000143 99 s 071400 000163 115
d 062000 000144 100 I 072000 000164 116
8 062400 000145 101 0 072400 000165 117
1 063000 000146 102 v 073000 000166 118
9 063400 000147 103 vv 073400 000167 119
h 064000 000150 104 x 074000 000170 120
1 064400 000151 105 y 074400 000171 121
1 065000 000152 106 Z 075000 000172 122
k 065400 000153 107 075400 000173 123
1 066000 000154 108 076000 000174 124
n1 066400 000155 109 076400 000175 125
n 067000 000156 110 077000 000176 126

DEL 077400 000177 127

ND-60.144.3 EN

ND COBOL Reference Manual 3kg

A P P E N D I X 3

RUNTIME MESSAGES

ND-60.144.3 EN

350 ND COBOL Reference Manual

ND-60.164.3 EN

ND COBOL Reference Manual
RUNTIME MESSAGES

6008

6018

6028

6038

8048

6058

Reason

I~O ~ ERR nnn where
nnn is a standard
SINTRAN III File
System Error Code

INDEX FILE ERROR nn
where on 13 a

status returned
from ISAM

FILE NOT OPEN

FILE NOT OPEN IN
CORRECT MODE

IMPROPER RECORD
LENGTH

ILLEGAL USE OF
REWRITE

Explanation

An error in an 1—0 operation has arisen
without the possibility of user reaction
due to omission of any of the following
applicable to the file in question:

AT END clause
— INVALID KEY clause
— USE AFTER STANDARD ERROR (Declarative)

If any relevant element above is availa—
ble, the runtime library routines allow
that element to process the data, and
THIS ERROR DOES NOT ARISE.

An error has arisen in using the Indexed
or relative file system, without the
possibility of user reaction due to
omission of any of the following clauses
or to other index file errors:

AT END clause
— INVALID KEY clause

- USE AFTER STANDARD ERROR (Declarative)

If any relevant element above is avail—
able, the runtime library routines allow
that element to process the data, and
THIS ERROR DOES NOT ARISE.

Non~addressable data due to an attempt
to use data in a File that is not open.

Attempt to use data in a File whioch is
not open in the correct mode.

Incoming record size incorrect when
using the REWRITE statement.

Sequence error when using REWRITE.
Previous I~0 statement not a READ.

ND—SO.144.3 EN

352

6058

6078

6108

6118

6128

8138

Reason

OPEN MODE I~O
CANNOT BE USED
FOR MAGNETIC
TAPE

SORT ERROR

SORT ERROR — FILE
TOO BIG

SORT ERROR ~ TOTAL
KEY TOO LONG

SORT ERROR IN RECORD
SIZE

COMPILFR/LIBRARY
INCOMPATIBILITY

ND COBOL Reference Manual
RUNTIME MESSAGES

Explanation

Magnetic tape files cannot be opened For
I—O.

Issued by the SORT system.

Issued by the SORT system.

Issued by the SORT system.

Issued by the SORT system.

Different ver51ons of the compiler and
runtime library cannot be used
simultaneously.

NO-80.144.3 EN

ND COBOL Reference Manual

A P P E N D I X 4

RESERVED WORD LIST

ND—50.144.3 EN

353

354 ND COBOL Reference Manual

ND-60.144.3 EN

ND COBOL Reference Manual
RESERVED WORD LIST

ACCEPT
ACCEPT—ERROR
ACCEPT—RETURN
ACCESS
ADD
AOVANCING
AFTER
ALL
ALPHABETIC
ALTER
ALTERNATE
AND
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR
AUTO—ERASE
AUTO—SKIP
BEEP
BEFORE
BLANK
BLANK—WHEN—ZERO
BLINK
BLOCK
BOX
BY
CALL
CANCEL
CHARACTER
CHARACTERS
CLOSE
COLUMN
COMMA
COMMON
COMP
COMP—1
COMP-2
COMP—3
COMPUTATIONAL
COMPUTATIONAL—1
COMPUTATIONAL—2
COMPUTATIONAL—3
COMPUTE
CONFIGURATION
CONTAINS
CONTINUE
CONTROL
COPY
CORR
CORRESPONDING
COUNT

CPU—TIME
CURRENCY
DATA
DATE
DATE*COMPILED
DATE—WRITTEN
DAY
DEBUGGING
DECIMAL—POINT
DECLARATIVES
DELETE
OELIMITED
DELIMITER
DEPENDING
DESCENDING
DISPLAY
DIVIDE
DIVISION
00
DOWN
DUPLICATES
DYNAMIC
ELSE
ELSE—IF
END
END—DO
END—IF
ENVIRONMENT
EOUAL
ERASE
ERROR
EXCEPTION
EXHIBIT
EXIT
EXIT-ALL-DO
EXIT~DO
EXPORT
EXTEND
F1-F8
FD
FILE
FILE~CONTROL
FILE-ID
FILLER
FIRST
FOR
FRAME
FROM
FULL—BAR
GIVING
GO
GOBACK
GREATER
HEADING

ND-60.144.

355

HELP
HIGH—VALUE
HIGH—VALUES
HOME
I~O
I-O-CONTROL
ID
IDENTIFICATION
IF
IMMEDIATE-WRITE
IMPORT
IN
INDEX
INDEXED
INITIAL
INPUT
INPUT—OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
INVERSE-VIDEO
INVISIBLE
IS
JUST
JUSTIFIED
JUSTIFIED—RIGHT
KEY
LABEL
LEADING
LEFT
LENGTH—CHECK
LESS
LINE
LINES
LINKAGE
LISTEN
LOCK
LOW-INTENSITY
LOW-VALUE
LOW—VALUES
MANUAL-UNLOCK
MERGE
MODE
MONITOR-CALL
MOVE
MULTI-USER-MODE
MULTIPLY
MUST
NAMED
NEGATIVE
NEXT
NO
NORMAL

EN

356

NOT
NUMERIC
OBJECTPCOMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN
OPTIONAL
OR
ORGANIZATION
OUTPUT
OVERFLOW
PACKED—DECIMAL
PAGE
PERFORM
PIC
PICTURE
POINTER
POSITIVE
PREVIOUS
PROCEDURE
PROCEED
PROGRAM
PROGRAM—ID
PROMPT
OUDTE
DUOTES
RANDOM
RE—DISPLAY
READ
RECORD
RECORDING
RECORDS
REDEFINES
REEL
RELATIVE
RELEASE
REMAINDER
REMARKS
REMOVAL
RENAMES
REPLACING
REPORT
RESERVE
RESET
RETURN
REWIND
REWRITE
RIGHT
RDUNDED
RUN
SAME
SCREEN

50
SEARCH
SECTION
SECURITY
SELECT
SENTENCE
SEPARATE
SEQUENTIAL

ND COBOL Reference Manual
RESERVED WORD LIST

WHEN
WHILE
WITH
WORKING—STORAGE
WRITE
ZERO
ZEROES
ZEROS

SET
SIGN
SIZE
SORT
SOURCE—COMPUTER
SPACE
SPACE~FILL
SPACES
SPARSE-BAR
SPECIAL—NAMES
STANDARD
START
STATUS
STOP
STRING
SUBTRACT
SYNC
SYNC-2
SYNCHRONIZED
SYNCHRONIZED-Z
TALLYING
TEXT—FILE
THAN
THEN
THROUGH
THRU
TIME
TIMEOUT
TIMES
TO
TRAILING
UNDERLINE
UNIT
UNLOCK
UNSTRING
UNTIL
UP
UPDATE
UPON
UPPER—CASE
USAGE
USE
USER-DEFINED—SIZE
USING
VALUE
VALUES
VARYING

ND-60.144.3 EN

ND COBOL Reference Manual 357
RESERVED wORD LIST

ND—60.144.3 EN

358

ND-60.1k4.3 EN

ND COBOL Reference Manual

ND COBOL Reference Manual 359

A P P E N 0 I X S

CROSS REFERENCE EXAMPLE

ND‘60.144.3 EN

360 ND COBOL Reference Manual

ND-60.14k.3 EN

ND COBOL Reference Manual 361
CROSS REFERENCE EXAMPLE

To obtain a cross reference listing with a compilation the command

XREF file—name

must be issued at compile-time where ’file-name' is the name of a work
file.

ND—1DO COBOL COMPILER TIME: 13.08.32 DATE: 85.02.19

SOURCE FILE: X
OBJECT FILE: X
MODES: Z—BANK

1 IDENTIFICATION DIVISION.
2 PROGRAM~ID.
3 CR SS~REFERENCE~EXAMPLE.
4 DATA DIVISION.
5 WORKING—STORAGE SECTION.
6 D1 PERSON.
7 03 NAME PIC X(30) VALUE "NOP'K DATA A/S”.
8 D3 ADDRESS PIC X(30) VALUE "OSLO. NORWAY".
9 O3 TELEPHONE PIC 8(11) VALUE 023090330.

10 03 INCOME PIC 59(91V99 COMP-3.
11 D3 COUNTRY PIC 50(2) COMP VALUE 1.
12 88 NORWAY VALUE 1.
13 88 SWEDEN VALUE 2.
14 88 DENMARK VALUE 3.
15 88 ENGLAND VALUE 4.
1B 88 GERMANY VALUE S.
17 88 SWITZERLAND VALUE 8.
18
19 PROCEDURE DIVISION.
20 TEST SECTION.
21 0000.
22 IF NORWAY PERFORM 1000.
23 IF SWEDEN PERFORM 2000.
24 IF DENMARK PERFORM 3000.
25 IF ENGLAND PERFORM 4000.
26 IF GERMANY PERFORM 5000.
27 IF SWITZERLAND PERFORM 8000.
28 STOP RUN.
28 1000.
30 DISPLAY NAME "IS NORWEGIAN".
31 2000.
32 DISPLAY NAME "IS SWEDISH”.
33 3000.
34 DISPLAY NAME "IS DANISH".
35 4000.
38 DISPLAY NAME "IS ENGLISH".
37 5000.
38 DISPLAY NAME "IS GERMAN".
39 8000.
40 DISPLAY NAME "IS SWISS".

ND-BD.14A,3 EN

362

N 0 R D C 0 B 0 L C R 0 S S R E F E R E N C E

PROGRAM—10: CHOSS—HEFERENCE—EXAMPLE

0000 .
1000 .
2000 .
3000 .
4000 .
5000 .
6000 . .
ADDRESS.
COUNTRY.
DENMARK.
ENGLAND.
GERMANY.
INCOME .
NAME . .
NORWAY .
PERSON .
SWEDEN . .
SWITZERLAND.
TELEPHONE.
TEST .

.(PARAGRAPH)

.(PARAGRAPH)

.(PARAGRAPH)

.(PARAGRAPH)

.(PAHAGRAPH)

.(PARAGRAPH)

.(PARAGRAPH)

.(X 30)

.(CDMP 2)

.(88 2)

.(88 2)

.188 2)

.(CDMP—3 8)

.(X 30)

.188 2)

.(X 80)

.(88 2)
(BB 2)

.(NUM 11)

.(SECTIDN)

21
22
23
24
25
26
27

8
11
14
15
16
10

7
12

8
13
17

9
20

29
31
33
35
37
39

24
25
26

30 32 34
22

23
27

ND-60.144.3 EN

ND COBOL Reference Manual
CROSS REFERENCE EXAMPLE

L I S T

38 38 40

NO COBOL Reference Manual 363

A P P E N D I X 6

COMPILER COMMANDS

ND-60.144.3 EN

364 ND COBOL Reference Manual

ND-60.144.3 EN

ND COBOL Reference Manual 365
COMPILER COMMANDS

COMPILER COMMANDS: ND-TUO

HELP
Lists available commands.

EXIT
Exit to SINTRAN III.

COMPILE
(source—file><1ist~file><object-file>

Defines I/O files for the COBOL compiler.

XREF—LIST
(work—file)

A cross reference list will be output onto the list file, not the
work—file. The parameter (work-file) provides a working file for
XREF. Default file type is :XREF. Example: See Appendix 5.

DEBUG—MODE
Debug information will be generated and the Symbolic Debugger can
be used. See Symbolic Debugger User Guide, ND-BD.158.

LIBRARY—MODE
The object file will be a library file.

ND1OU—EXTENDED~MODE
Turns ON the use of the commercial instruction set (COM) in the
compiler.

If the computer has a commercial instruction set, this command
increases the speed of execution.

Note: on ND—TO the commercial instruction set must be installed
in order to run COBOL programs.

1~BANK~MODE
If this command is not present, the default is 2—bank mode.
Normally the code and data are separated, but the use of this
command ensures that they are together. The runtime library
COBOL—TBANK must be loaded.

TPS—HODE
The compilation will take place under the TPS system.

N0—60.14A.3 EN

366

LOAD

ND COBOL Reference Manual
COMPILER COMMANDS

file-name [,file—name]...

To complete the executable program, libraries or other object
files may be added by using the above command. where file name is
the name of an object file or library.

The default type of the file loaded will be :BRF on the ND—tOO.

LOAD commands will be ignored if they are placed in the source
file, or if no PROG~FILE command has been given.

Any error messages which appear while the LOAD command is being
executed can be found in the ND Relocating Loader manual
(ND—60.066).

ND-60.144.3 EN

ND COBOL Reference Manual 367
COMPILER COMMANDS

COMPILER COMMANDS: ND-500

HELP
Lists available commands.

EXIT
Exit to SINTRAN III.

COMPILE
(source—file)<list—file><object—file>

Defines [/0 files for the COBOL compiler. The default type For
the source—file is :SYMB or :COB. For list~file it is :SYMB, and
for the object—file it is :NRF.

XREF—LIST
(work—file)

A cross reference list will be output to the list file. not on
the work-file. The parameter (work—file) provides a working file
for XREF. Default file type is :XREF.

DEBUG-MODE
Debug information will be generated and the Symbolic Debugger can
be used. See Symbolic Debugger User Guide, ND—60.158.

LIBRARY—MODE
The object file will be a library file.

ND~60.144.3 EN

368 ND COBOL Reference Manual

ND—60.14k.3 EN

ND COBOL Reference Manual 369

A P P E N D I X 7

INDEXED/RELATIVE 1-0 STATUS SUMMARY

ND-60.144.3 EN

370 ND COBOL Reference Manual

ND-BD.1k4.3 EN

ND COBOL Reference Manual 371
[NDEXED/RELATIVE I—O STATUS SUMMARY

The following table summarizes what values the 1—0 status may have
after one of the Indexed/Relative I—O verbs has been used:

STATUS VERB

R
E
A R
D E D

Code C w w E S
O L N R R R L T

Pic— P 0 E E I I E A
ture E S X A T T T R
XX Meaning N E T D E E E T

"00" OK x x x x x x x x
"10" End of file x
"21” Wrong sequence of words x x x
"22" Duplicates not allowed x x
”23” Record not found x x x
“24" No more space on file x
”68" Record locked by another program x1 x1 x x
“78" Record modified by another program x x
"90" Multiuser Supervisor not started x
"93" Too many keys x2
"94" Error flag set x
"95" File not initialized or opened x x
"97" File access violation x x X x x x x
"98” Wrong file description x x3
"99" SINTRAN III file system error x x

x1
x2
x3

H
H

Verbs where this [—0 status may occur
May occur only on read with lock
Check the COBOL system variable C870
File already closed

ND—BD.144.3 EN

372 ND COBOL Reference Manual

ND«60.146.3 EN

ND COBOL Reference Manual

A P P E N D I X 8

COBOL SYSTEM VARIABLES

ND—60.144.3 EN

374

ND-60.144.3 EN

ND COBOL Reference Manual

ND COBOL Reference Manual 375
COBOL SYSTEM VARIABLES

ND COBOL will allow application programs to access a set of COBOL
system variables for inspection and/or modification. These variables
must be IMPORTed in the LINKAGE SECTION.

Name Contents Modification allowed

CBSO Field Termination Character
(See ACCEPT statement) No

Number of significant charac—
CBGO ters in an entered or edited No

ACCEPT field.

Maximum number of keys in an
C870 indexed sequential file Yes

(initial value = 6)

The system variable C850 is of special interest when making programs
with screen handling statements, such as 01 PLAY and ACCEPT. It holds
information on which of the keys (CR). i. T. +, +. \, HELP, CANCEL
etc. the user pressed when in a field. C850 must be imported as a
COMP-1 variable in the LINKAGE SECTION of the application program.

The following table shows possible values of C850:

Keys pressed C850 value

F1 F1 shifted 1 9

F8 F8 shifted 8 16

HOME () 41
RIGHT () 42
LEFT () 43
UP () 44
DOWN () 45

CR () 51
AUTO—SKIP 52

EXIT 67
<Control> L 51
CANCEL 62
HELP 63
TIMEOUT 64

N0‘60.14L.3 EN

376 ND COBOL Reference Manual
COBOL SYSTEM VARIABLES

Example:

LINKAGE SECTION.

01 C850 COMP IMPORT.
01 C850 COMP IMPORT.
07 C870 COMP IMPORT.

PROCEDURE DIVISION.

* Allow up to 12 keys in an indexed sequential file
* (this must be done nore the first open of an
* indexed sequential file):

MOVE 12 T0 C870.

ND~60.144.3 EN

ND COBOL Reference Manual

A P P E N D I X 9

HANDLING SINTRAN ERRORS

ND~60.144.3 EN

377

378 ND COBOL Reference Manual

ND-60.144.3 EN

ND COBOL Reference Manual 379
HANDLING SINTRAN ERRORS

The system subroutine "CBERMSG" and "ISERR" make SINTRAN error numbers
and texts available. Thus, SINTRAN error detection facilities can
guide the program flow, without having them cause the program to abort
or disturb the secreen picture.

The DECLARATIVES part of the procedure division is the appropriate
place for use of these subroutines. Consider this example:

IDENTIFICATION DIVISION.

WORKING—STORAGE SECTION.

01”ERROR-NUMBER COMP.

PROCEDURE DIVISION.

DECLARATIVES.

FILE—ERROR SECTION.
USE AFTER ERROR-PROCEDURE ON ISAH—FILE.

[SAM-ERROR.
IF ISAM—STATUS = "99" THEN

CALL "ISERR" USING ERROR-NUMBER
CALL "CBERMSG" USING ERROR-NUMBER

END—IF.
CALL "ERROR—ISAH" USING ERROR—NUMBER.

END DECLARATIVES.

MAIN SECTION.

OPEN [-0 [SAM—FILE.

CLOSE ISAM—FILE.

STOP RUN.

ND~60.14A.3 EN

380 ND COBOL Reference Manual
HANDLING SINTRAN ERRORS

If anything goes wrong during opening and closing of the [SAM-FILE,
the ISAM—ERROR paragraph is performed. If it is a SINTRANverror, the
ISAM—STATUS will become equal to "99”. Then the subroutine ISERR
(which is a standard library routine) with ERROR—NUMBER as a parameter
will return with 'he SINTRAN error number in ERROR-NUMBER. The user
may either leave it at that, or use the subroutine CBERMSG (which is
also a standard library routine) to display the appropriate SINTRAN
error message.

Note: If CBERMSG is used. it will disturb any screen picture developed
before it was called.

Also note that these routines may be changed in future implementations
of ND~COBOL.

ND~60.144.3 EN

ND COBOL Reference Manual 381

A P P E N D I X 10

EXECUTING SINTRAN COMMANDS

ND—60.1A4.3 EN

382 ND COBOL Reference Manual

ND-50.144.3 EN

ND COBOL Reference Manual 383
EXECUTING SINTRAN COMMANDS

The system subroutine "CBCOHND" executes ordinary SINTRAN commands. It
is used as follows:

CALL "CBCONND" USING "(SINTRAN command) ' ".

Here, note how the parameter is passed. Since the SINTRAN commands may
involve the creation of new files, it is mandatory to end the SINTRAN
command string with a single quote . ', before the finishing double-
quote, " For example:

CALL "CBCOMND" USING "LIST—FILES :8RF,"BRF:LIST"".

Also note that this routine may be changed in future implementations
of ND—COBOL.

ND—60.144.3 EN

384 ND COBOL Reference Manual

ND—60.144.3 EN

ND COBOL Reference Manual 385

A P P E N D I X 11

SIZE OF TEMPORARY FIELDS

ND-60.144.3 EN

386 ND COBOL Reference Manual

ND~60.144.3 EN

ND COBOL Reference Manual 387
SIZE OF TEMPORARY FIELDS

Execution by the compiler of certain arithmetic statements or
operations can generate intermediate results which will be stored in
temporary fields.

Intermediate results can be obtained when:

1) A COMPUTE statement assigns the value of an arithmetic expression
to more than one data item.

2) ADD or SUBTRACT statements are encountered which have multiple
operands immediately following the verb.

3) IF or PERFORM statements containing arithmetic expressions are
executed.

Using the COMPUTE statement as an example, the size of temporary
fields can be ascertained as follows.

Each numeric item within the arithmetic expression is examined. A
temporary field is formed which can contain the maximum number of
digit positions before the decimal point in any examined item, linked
together with the maximum number of digit positions of any examined
item following a decimal point.

Example: If we have:

COMPUTE X = A * B

where A is declared as PIC 59(5)V99999
and 8 is declared as PIC 89(7)V9999

Then the temporary field will have a size of

59(7)V99999

If the total number of positions after the figures have been linked
together is greater than 18, the number of digit positions will be
truncated from the right.

COMPUTATIONAL DATA ITEMS

The size of a field for a COMPUTATIONAL item is a single word with
four or less integer positions before the decimal point, and a double
word with five or more such positions.

However, for the purposes of calculating the sizes of temporary
fields, a COMPUTATIONAL item occupying a single word and not having a
picture definition, is treated as if it had five places before the
decimal point, and a double word item as if it hadten. COMPUTATIONAL
items are integers and have no places after the decimal point.

ND-BU.IAA.3 EN

388 ND COBOL Reference Manual
SIZE OF TEMPORARY FIELDS

A COMPUTATIONAL item with a picture definition will have a temporary
field formed. containing the maximum number of digit positions, plus a
sign position.

For example, an item declared as:

PIC 59(2) COMPUTATIONAL

with a value of 11, will have a temporary field of 3 positions.

ND—80.144.3 EN

ND COBOL Reference Manual 388

A P P E N D I X 12

GLOSSARY

ND-60.144.3 EN

390

ND-60.144.3 EN

ND COBOL Reference Manual

ND COBOL Reference Manual 391
GLOSSARY

Abbreviated Combined Relation Condition
The combined condition that results {rom the explicit omission of
a common subject or a common subject and a common relational
operator in a consecutive sequence of relation conditions.

Access Mode
The manner in which records are to be operated upon within a
file.

Actual Decimal point
The physical representation, using either of the decimal point
characters period (.) or comma (,), of the decimal point position
in a data item.

Alphabetic Character
A character that belongs to the following set of characters: A,
8, C. D. E, F. G, H, I. J, K, L, M, N, O, P, Q, R. S, T, U, V, N,
X, Y, Z and the space.

Alphanumeric Character
Any character in the computer's character set.

Alternate Record Key
A key, other than the prime key. whose contents identify a record
within an indexed file.

Arithmetic Expression
An arithmetic expression can be:

1) an identifier or a numeric elementary item

2) a numeric literal

3) such identifiers and literals separated by arithmetic
operators

A) two arithmetic expressions separated by an arithmetic
operator

5) an arithmetic operation enclosed in a parenthesis.;

ND—60.144.3 EN

392 ND COBOL Reference Manual
GLOSSARY

Arithmetic Operator
A single character, or a fixed two character combination, that
belongs to the following set:

Character Meaning

+ addition
- subtraction
* multiplication

division
** exponentiation

Ascending Key
A key upon whose values data is ordered, starting with the lowest
value of key up to the highest value of key in accordance with
the rules for comparing data items.

Assumed Decimal Point
A deCimal point which does not involve the existence of an actual
character in a data item. The assumed decimal point has logical
meaning but no physical representation.

At End Condition
A condition caused:

1) During the execution of a READ statement for a sequentially
accessed file.

2) During the execution of a RETURN statement, when no next
logical record exists for the associated sort file or merge
file.

3) During the execution of a SEARCH statement, when the search
operation terminates without satisfying the condition
specified in any of the associated WHEN phrases.

Block
A physical unit of data that is normally composed of one or more
logical records. For mass storage files, a block may contain a
portion of a logical record. The size of the block has no direct
relationship to the size of the file within which the block has
not direct relationship to the size of the file with which the
block is contained or tp the size of the logical record(s) that
are either continued within the block or that overlap the block.
The term is synonymnous with physical record.

ND-60.144.3 EN

ND COBOL Reference Manual 393
GLOSSARY

Called Program
A program which is the object of a CALL statement combined at
object time with the calling program to produce a run unit.

Calling Program
A program which executes 8 CALL to another program.

Character
The basic, indivisible unit of the language.

Character Position
A character position is the amount of physical storage required
to store a single standard data format described as USAGE IS
DISPLAY.

Characterstring
A sequence of contiguous characters which form a COBOL word, a
literal, 3 PICTURE characterstring. or a comment entry

Class Condition
The proposition, for which a truth value can be determined, that
the content of an item is wholly alphabetic or is wholly numeric.

Clause
A Clause is an ordered set of consecutive COBOL characterstrings
whose purpose is to specify an attribute of an entry.

COBOL Word
See word.

Collating Sequence
The sequence in which the characters that are acceptable to a
computer are ordered for the purpose of sorting. merging or
comparing.

Column
A character position within a print line. The columns are
numbered from 1, by 1, starting at the leftmost character
position of the print line and extending to the rightmost
position of the print line.

Combined Condition
A condition that is the result of connecting two or more
conditions with the 'ANO' or the 'OR' logical operators.

ND—SO.144.3 EN

39k ND COBOL Reference Manual
GLOSSARY

Comment Line
A source program line represented by an asterisk in the indicator
area of the line and any characters from the computer‘s character
set in area A and area B of that line. The comment line serves
only for documentation in a program. A special form of comment
line represented by a stroke (/) in the indicator area of the
line and any characters from the computer's character set in area
A and B of that line causes page ejection prior to printing the
comment.

Compile Time
The time at which a COBOL source program is translated, by a
COBOL compiler, to a COBOL object program.

Compiler Directing Statement
A statement, beginning with a compiler directing verb, that
causes the compiler to take a specific action during compilation.

Complex Condition
A condition in which two or more logical operators act upon one
or more conditions. (See Negated Simple Condition, Combined
Condition and Negated Combined Condition.)

Computername
A systemname that identifies the computer upon which the program
is to be compiled or run.

Condition
A status of a program at execution time for which a truth value
can be determined. Where the term 'condition' (condition-1,
condition—2, ...) appears in these language specifications or in
reference to 'condition' (condition—1, condition—2. ...) of a
general format, we have a conditional expression condition. It
consists of either a simple condition optionally parenthesized,
or a combined condition consisting of the syntactically correct
combination of simple conditions. logical operators, and
parenteses, for which a truth value can be determined.

Condition Name
A user defined word assigned to a specific value, set of values,
or range of values, within the complete set of values that a
conditional variable may posess.

Conditionname Condition
The proposition, for which a truth value can be determined. that
the value of a conditional variable is a member of the set of
values attributed to a conditionname associated with the
conditional variable.

ND-60.144.3 EN

ND COBOL Reference Manual 395
GLOSSARY

Conditional Expression
A simple condition or a complex condition specified in an IF,
PERFORM or SEARCH statement. (See Simple Condition and Complex
Condition.)

Conditional Statement
A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of
the object program is dependent of this truth value.

Conditional Variable
A data item of which one or more values has a condition name
aSSiQned to it.

Configuration Section
A section of the EnVironment Division that describes overall
specifications of source and object computers.

Connective
A reserved word that is used to:

1) Associate a dataname, paragraphname, conditionname or
textname with its qualifier.

2) Link two or more operands within a series.

3) Form conditions (logical connectives)(see Logical Operator).

Contiguous Items
Items that are described by consecutive entries in the Data
Division and bear a definite hierarchic relation to each other.

Currency Sign
The character 'S' of the COBOL character set.

Currency Symbol
The character defined by the CURRENCY SIGN clause in the SPECIAL
NAMES paragraph. If no CURRENCY SIGN clause is present in a COBOL
source program, the currency symbol is identical to the currency
Sign.

Current Record
The record which is available in the record area associated with
the file.

ND—60.144.3 EN

396 ND COBOL Reference Manual
GLOSSARY

Current Record Pointer
A conceptual entity that is used in the selection of the next
record.

Data Clause
A clause that appears in a data description entry in the Data
Division and provides information describing a particular
attribute of a data item.

Data Description Entry
An entry in the Data Division that is composed of a level number
followed by a data name, if required. and then followed by a set
of data clauses, as required.

Data Item
A character or a set of contiguous characters (excluding in
either case literals) defined as a unit of data by the COBOL
program.

Dataname
A user defined word that names a data item described in a data
description entry in the Data Division. When used in general
formats, ~dataname' represents a word which can neither be
subscripted or indexed, nor qualified unless specifically
permitted by the rules of the format.

Debugging Line
A debugging line is any line with 'D' in column 7. It is only
compiled when the compiler has been directed to provide output
for use with the Symbolic Debugger.

Declaratives
A set of one or more special purpose sections, written at the
beginning of the Procedure Division. the first of which is
preceded by the key word DECLARATIVES and the last of which is
followed by the key words END DECLARATIVES. A declarative is
composed of a section header. followed by a USE compiler
directing sentence, followed by a set of zero. one or more
associated paragraphs.

Declarative Sentence
A compiler directing sentence consisting of a single USE
statement terminated by the separator period (.).

ND—60r144.3 EN

ND COBOL Reference Manual 397
GLOSSARY

Delimiter
A character or a sequence of contiguous characters that identify
the end of a string of characters and separates that string of
characters from the following string of characters. A delimiter
is not part of the string of characters that it delimits.

Descending Key
A key, upon whose values data is ordered. starting with the
highest value of key down to the lowest value of key, according
to the rules for comparing data items.

Digit Position
A digit position is the amount of physical storage required to
store a single digit. This amount may vary, depending on the
usage of the physical storage defined by the implementor.

Division
A set of zero, one or more sections of paragraphs. called the
division body. that are formed and combined according to a
specific set of rules. There are four (4) division in a COBOL
program: Identification, Environment, Data and Procedure.

Division Header
A combination of words followed by a period and a space that
indicates the beginning of a division. The division headers are:

IDENTIFICATION DIVISION
ENVIRONMENT DIVISION
DATA DIVISION
PROCEDURE DIVISION [USE sentence]

Dynamic Access
An access mode in which specific logic records can be obtained
from or placed into a mass storage file in a nonsequential manner
(see Random Access) and obtained from a file in a sequential
manner (see Sequential Acces) during the scope of the same OPEN
statement.

ND~80.144.3 EN

398 ND COBOL Reference Manual
GLOSSARY

Editing Character
A single character or a fixed two character combination belonging
to the following set:

Character: Meaning:

8 space
0 zero

plus
- minus
CR credit
DB debit
2 zero suppress
* check protect
S currency sign
. comma (decimal point)

period (dec1mal point)
/ stroke (virgule, slash)

Elementary Item
A data item that is not described as further logically
subdivided.

End of Procedure Division
The physical position in a COBOL source program after which no
further procedures appear.

Entry
Any descriptive set of consecutive clauses terminated by a period
and written in the Identification Division, Environment Division
or Data Division of a COBOL source program.

Environment Clause
A clause that appears as a part of an Environment Division entry,

Execution Time
See Object Time.

Extend Mode
The state of a sequential file after execution of an OPEN
statement, with the EXTEND phrase specified for that file, and
before the execution of a CLOSE statement for that file.

Figurative Constant
A compiler generated value referenced through the use of certain
reserved words.

ND-60.144.3 EN

ND COBOL Reference Manual 399
GLOSSARY

File
A collection of records.

FILE-CONTROL
The name of an Environment Division paragraph in which the data
files for a given source program are declared.

File Description Entry
An entry in the File Section of the Data Division that is
composed of the level indicator FD, followed by a file name, and
then followed by a set of file clauses as required.

File Name
A user defined word that names a file described in a file
description entry or a SORT/MERGE file description entry within
the File Section of the Data Division.

File Organization
The permanent logical file structure established when a file is
created.

File Section
The section of the Data Division that contains file description
entries and SORT/MERGE file description entries together with
their associated record descriptions.

Format
A specific arrangement of a set of data.

Group Item
A named contiguous set of elementary items or group items.

High Order End
The leftmost character of a string of characters.

I—O-Contral
The name of an Environment Division paragraph in which object
program requirements for specific input-output techniques, rerun
points, sharing of the same areas of several data files and
multiple file storage on a single input—output device are
specified.

I-O Mode
The state of a file after execution of an OPEN statement, with
the 1—0 phrase specified for that file, and before the execution
of a CLOSE statement for that file.

N0-60.144.3 EN

LOO ND COBOL Reference Manual
GLOSSARY

Identifier
A data name. followed as required by the syntactically correct
combinations of qualifiers, subscripts and indices necessary to
make unique reference to a data item.

Imperative Statement
A statement that begins with an imperative verb and specifies an
unconditional action to be taken. An imperative statement may
consist of a sequence of imperative verbs.

Index
A computer storage position or register. the content of which
represents the identification of a particular element in the
table.

Index Data Item
A data item in which the value associated with an index name can
be stored in a form specified by the implementor.

Index Name
A user defined word that names an index associated with a
specific table.

Indexed Data Name
An identifier that is composed of a data name. followed by one or
more index names enclosed in parentheses.

Indexed File
A file with indexed organization.

Indexed Organization
The permanent logical file structure in which each record is
identified by a value of one or more keys within that record.

Input File
A file that is opened in the input mode.

Input Mode
The state of a file after execution of an OPEN statement, with
the INPUT phrase specified for that file, and before the
execution of a CLOSE statement for that €ile.

N0—80.144.3 EN

NO COBOL Reference Manual 401
GLOSSARY

Input—Output File
A file that is opened in the 1—0 mode.

Input-Output Section
The section of the Environment Division that names the files and
the external media required by an object program and which
provides information required for transmission and handling of
data during the execution of the object program.

Input Procedure
A set of statements that is executed each time a record is
released to the sort file.

Integer
A numeric literal or a numeric data item that does not include
any character positions to the right of the assumed decimal
point. where the term 'integer' appears in general formats,
integer can not be a numeric data item, neither can it be signed,
nor can it bezero unless this is explicitly allowed by the rules
of that Format.

Invalid Key Condition
A condition, at object time, caused when a specific value of the
key associated with an indexed or relative file is determined to
be invalid.

Key
A data item which identifies the location of a record, or a set
of data items which serve to identify the ordering of data.

Key Word
A Reserved Word whose presence is required when the format in
which the word appears is used in a source program.

Level Indicator
Two alphabetic characters that identify a specific type of file
or a position in the hierarchy.

Level Number
A user defined word which either indicates the position of a data
item in the hierarchical structure of a logical record or the
special properties of a data description entry. A level number is
expressed as a single— or double—digit number. Level numbers in
the range 1 through 49 indicate the position of a data item in
the hierarchical structure of a logical record. Level numbers in
the range 1 to 9 may be written either as a single digit or as a
zero followed by a significant digit. Level numbers 77 and 88
identify special properties of a data description entry.

ND-60.14L.3 EN

402 ND COBOL Reference Manual
GLOSSARY

Library Name
A user defined word that names a COBOL library that is to be used
by the compiler for a given source program compilation.

Library Text
A sequence of character strings and/or separators in a COBOL
library.

Linkage Section
The section in the Data Division of the called program that
describes data items available from the calling program. These
data items may be referred to by both the calling and called
program.

Literal
A characterstring whose value is implied by the ordered set of
characters comprising the string.

Logical Operator
One of the reserved words AND, OR or NOT. In the formation of a
condition, either of one or both AND and OR can be used as
logical connectives. NOT can be used for logical negation.

Logical Record
The most inclusive data item. The level number for a record is
01.

Low Order End
The rightmost character of a string of characters.

Mass Storage
A storage medium on which data may be organized and maintained in
both a sequential and a nonsequential manner.

Mass Storage Control System (MSCS)
An input—output control system that directs. or controls, the
processing of mass storage files.

Mass Storage File
A collection of records that is assigned to a mass storage
medium.

ND—60.144.3 EN

ND COBOL Reference Manual 403
GLOSSARY

Merge File
A collection of records to be merged by a MERGE statement. The
merge file is created and can be used only by the merge function.

Mnemonic Name
A user defined word that is associated in the Environment
Division with a specified implementor name.

MSCS
See Mass Storage Control System.

Negated Combined Condition
The 'NOT‘ logical operator immediately followed by a
parenthesized combined condition.

Negated Simple Condition
The 'NOT' logical operator immediately followed by a simple
condition.

Next Executable Statement
The next statement to which control will be transferred after
execution of the current statement is complete.

Next Record
The record which logically follows the current record of a file.

Noncontiguous Items
Elementary data items, in the Working—Storage and Linkage
sections. which bear no hierarchic relation to other data items.

Nonnumeric Item
A data item whose description permits its contents to be composed
of any combination of characters taken from the computer's
character set. Certain categories of nonnumeric items may be
formed from more restricted character sets.

Nonnumeric Literal
A characterstring within quotation marks. The string of
characters may include any character in the computer‘s character
set. To represent a single quotation mark character within a
nonnumeric literal. two contiguous quotation marks must be used.

Numeric Character
A character that belongs to the following set of digits: 0. 1, 2,
3. 4. 5. 5. 7, 8. 9.

ND—60.144.3 EN

404 ND COBOL Reference Manual
GLOSSARY

Numeric Item
A data item whose description restricts its contents to a value
represented by characters chosen from the digits '0' to '9'. If
signed, the item may also contain a '+', '-' or any other
representation of an operational sign. ‘

Numeric Literal
A literal composed of one or more numeric characters that also
may contain either a decimal , or an algebraic sign, or both. The
decimal point must not be the rightmost character. The algebraic
sign, if present, must be the leftmost character,

Object Computer
The name of an Environment Division paragraph in which the
computer environment, where the object program is executed, is
described.

Object Program
A set or group of executable macine language instructions and
other material designed to interact with data to provide problem
solutions. In this context, an object program is generally the
machine language result of the operation of a COBOL compiler on a
source program. Where there is no danger of ambiguity, the word
'program' alone may be used instead of the phrase 'object
program'.

Object Time
The time at which an object program is executed.

Open Mode
The state of a file after execution of an OPEN statement for that
file, and before the execution of a CLOSE statement for that
file. The particular open mode is specified in the OPEN statement
as either INPUT, OUTPUT, {—0 or EXTEND.

Operand
Whereas the general definition of operand is 'that component
which is operated upon', for the purpose of this publication. any
lower case word (or words) that appears in a statement or entry
format may be considered to be an operand and, as such, an
implied reference to the data indicated by the operand.

Operational Sign
An algebraic sign, associated with a numeric data item or a
numeric literal, to indicate whether its value is positive or
negative.

ND—60.144.3 EN

ND COBOL Reference Manual 405
GLOSSARY

Option
A phrase in which a choice can be made between alternate
wordings.

Optional Word
A reserved word that is included in a specific format only to
improve the readability of the language. and whose presence is
optional to the user when the format in which the word apppears
is used in a source program.

Output File
A file that is opened in either the output mode or extend mode.

Paragraph Header
A reserved word, followed by a period and a space that indicates
the beginning of a paragraph in the Identification and
Environment Divisions.

Paragraph Name
A user defined word that identifies and begins a paragraph in the
procedure division.

Phrase
A phrase is an ordered set of one or more consecutive COBOL
character strings that form a portion of a COBOL procedural
statement or of a COBOL clause.

Physical Record
See Block.

Prime Record Key
A key whose contents uniquely identify a record within an indexed
file.

Procedure
A paragraph or a group of logically successive paragraphs or a
section or a group of logically consecutive sections, within the
Procedure Division.

Procedure Name
A user defined word used to name a paragraph or section in the
Procedure Division. It consists of a paragraph name (which may be
qualified), or a section name.

N0-60.14£.3 EN

406 ND COBOL Reference Manual
GLOSSARY

Program Name
A user defined word that identifies a COBOL source program.

Punctuation Character
A character that belongs to the following set:

Character: Meaning:

. comma
; semicolon

period
quotation mark (double)
quotation mark (single) or apostrophe
left parenthesis

) right parenthesis
space

= equal sign

Qualified Dataname
An identifier composed of a dataname, followed by one or more
sets of either of the connectives CF and IN, followed by a
dataname qualifier.

Qualifier

1) A dataname used in a reference together with another data
name at a lower level in the same hierarchy.

2) A section name used in a reference together with a paragraph
name specified in that section.

3) A library name used in a reference together with a text name
associated with that library.

Random Access
An access mode in which the program specified value of a key data
item identifies the logical record that is obtained from, deleted
from or placed into a relative or indexed file.

Record
See Logical Record.

Record Area
A storage area allocated to the purpose of processing the record
described in a record description entry in the file section.

ND—60.144.3 EN

ND COBOL Reference Manual A07
GLOSSARY

Record Description
See Record Description Entry.

Record Description Entry
The total set of data description entries associated with a
particular record.

Record Key
A key, either the prime record key or an alternate record key,
whose contents identify a record within an indexed file.

Record Name
A user defined word that names a record described in a record
description entry in the Data Division.

Reference Format
A format that provides a standard method for describing COBOL
source programs.

Relation
See Relational Operator.

Relation Character
A character belonging to the following set:

Character: Meaning:

> greater than
< less than

equal to

Relation Condition
The proposition, for which a truth value can be determined, that
the value of an arithmetic expression or data item has a specific
relationship to the value of another arithmetic expression or
data item (see Relational Operator).

Relational Operator
A reserved word, a relation character. a group of consecutive
reserved words or a group of consecutive reserved words and
relation characters used in the construction of a relation
condition. The permissible operators and their meanings are:

ND~60.144.3 EN

405 ND COBOL Reference Manual
GLOSSARY

Relational Operator: Meaning:

IS [NOT] GREATER THAN Greater than or not greater than
IS [NOT] >

IS [NOT] LESS THAN Less than or not less than
IS [NOT] <

IS [NOT] EQUAL TO Equal to or not equal to
IS [NOT] =

Relative File
A key whose contents identify a logical record in a relative
file.

Relative Organization
The permanent logical file structure in which each record is
uniquely identified by an integer value greater than zero, which
specif: s the record‘s logical ordinal position in the file.

Reserved Word
A COBOL word specified in the list of words which may be used in
COBOL source programs. but cannot appear in the programs as user
defined words or system names.

Routine Name
A user defined word that identifies a procedure written in a
language other than COBOL.

Run Unit
A set of one or more object programs which function, at object
time, as a unit to provide problem solutions.

Section
A set of zero, one, or more paragraphs or entries called a
section body, the first of which is preceded by a section header.
Each section consists of the section header and the related
section body.

Section Header
A combination of words followed by a period and a space that
indicates the beginning of a section in the Environment, Data and
Procedure Division.

ND—60.144.3 EN

ND COBOL Reference Manual L09
GLOSSARY

In the Environment and Data Divisions, a section header is
composed of reserved words followed by a period and a space. The
permissible section headers are:

In the Environment Division:
CONFIGURATION SECTION
INPUT—OUTPUT SECTION

In the Data Division:
FILE SECTION
WORKING~STORAGE SECTION
LINKAGE SECTION

In the Procedure Division, a section header is composed of a
section name, followed by the reserved word SECTION, followed by
a period and a space.

Section Name
A user defined word which names a section in the Procedure
DiVision.

Sentence
A sequence of one or more statements, the last of which is
terminated by a period followed by a space.

Separator
A Punctuation Character used to delimit character strings.

Sequential Access
An access mode in which logical records are obtained from or
placed into a file in a consecutive predecessor to successor
logical record sequence determined by the order of records in the
file.

Sequential File
A file with sequential organization.

Sequential Organization
The permanent logical file structure in which a record is
identified by a predecessor successor relationship established
when the record is placed into the file.

Sign Condition
The proposition, for which one of the following truth values can
be determined: that the algebraic value of a data item or an
arithmetic expression is either less than, greater than. or equal
to zero.

ND‘60.144.3 EN

L10 ND COBOL Reference Manual
GLOSSARY

simple condition
any single condition chosen from the set:

relation condition
class condition
conditionname condition
switch status condition
sign condition
(simple condition)

Sort File
A collection of records to be sorted by a SORT statement. The
sort file is created and can be used by the sort function only.

Sort/Merge File Description Entry
An entry in the File Section of the Data Division that is
composed of tha level indicator 50. followed by a file name. and
then followed by a set of file clauses as required.

SOURCE~COMPUTER
The name of an Environment Division paragraph in which the
computer environment where the source program is compiled, is
described.

Source Program
Although it is recognized that a source program may be
represented by other forms and symbols. in this document it
always refers to a syntactically correct set of COBOL statements
beginning with an Identification Division and ending with the end
of a Procedure Division. In contexts where there is no danger of
ambiguity, the word "program“ alone may be used in place of the
phrase "source program".

Special Character
A character that belongs to the following set:

ND—60.144.3 EN

ND COBOL Reference Manual 411
GLOSSARY

Character: Meaning:

+ plus sign
minus sign
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark (double)
quotation mark (single)
left parenthesis
right parenthesis
greater than symbol
less than symbol

l
(
A

H
\
>

(
-

A
v
»
—

\

Special Character Word
A reserved word which is an arithmetic operator or a relation
character

SPECIAL—NAMES
The name of an Environment Division paragraph in which
implementor names are related to user specified mnemonic names.

Special Registers
Compiler generated storage areas whose primary use is to store
information in conjunction with the use of specific COBOL
features.

Statement
A syntactically valid combination of words and symbols, beginning
with a verb. and written in the Procedure Division.

Subprogram
See Called Program.

Subscript
An integer whose value identifies a particular element in a
table.

Subscripted Data Name
An identifier that is composed of a data name followed by one or
more subscripts enclosed in parentheses.

ND-60.144.3 EN

412 ND COBOL Reference Manual
GLOSSARY

System Name
A COBOL word which is used to communicate with the operating
environment.

Table
A set of logically consecutive items of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element
A data item that belongs to the set of repeated items comprising
a table.

Truth Value
The representation of the result of the evaluation of a condition
in terms of one of two values:true or false

Unary Operator
A plus (+) or a minus (-) sign, which precedes a variable or a
left parenthesis in an arithmetic expression and which has the
effect of multiplying the expression by +1 or —1, respectively.

User Defined Word
A COBOL word that must be supplied by the user to satisfy the
format of a clause or statement.

Variable
A data item whose value may be changed by the execution of the
object program. A variable used in an arithmetic expression must
be a numeric elementary item.

Verb
A word that expresses an action to be taken by a COBOL compiler
or object program.

Word
A characterstring of not more than 30 characters which forms a
user defined word, a system name or a reserved word.

Working—Storage Section
The section of the Data Division that describes Working—Storage
data items, composed either of non-contiguous items or of
Working—Storage records or of both.

ND~80.144.3 EN

ND COBOL Reference Manual 413
GLOSSARY

77 Level Description Entry
A data description entry that describes a non—contiguous data
item with the level number 77.

ND—60.144.3 EN

414 ND COBOL Reference Manual

Index

(1 ... 95
*

comment line 28.
compiler prompt 6.
exponentiation 95.
multiplication 95.
NRL prompt 10.

+ addition .. 95.
- subtraction 95.
. and V ... 7A.
/

comment line 28.
division .. 95.

01 level in LINKAGE SECTION 254.
77

data level 59.
description rule for level 77 66.
level in LINKAGE SECTION 253.

77/01 item .. 6.
77 level description entry definition 413.
88

data level 60.
description rule for level 88 67.

:BRF ND~1OO relocatable files 7.
:NRL ND—SUO relocatable files 7.
:SYMB symbolic file type 7.
abbreviated combined relation condition definition .. 391.
abbreviation

NOT interpretation 112.
relation condition 108

ACCEPT
AUTO—SKIP option 124.
BEEP .. 12A.
BLANK~WHEN~ZERO option 125.
BLINK option 125.
CONTROL option 125.
CPU—TIME .. 123.
DATE .. 123.
DAY ... 123.
devices for 123.
DOWN option 125.
EXIT option 125.
field specification 124.
format statement 121.
from screen 122.
from VDU .. 122.
HOME option 125.
INVERSE—VIDEO option 125.
LEFT option 125.
LENGTH—CHECK option 124.
LON—INTENSITY option 125.
MUST option 125.

ND-60.14k.3 EN

112.

ND COBOL Reference Manual
Index

NORMAL option
PROMPT option
RIGHT option
SPACE—FILL option
statement

TIME ..
to COMPUTATIONAL
to get system information
to PACKED—DECIMAL
UNDERLINE option
UPDATE option
UP option

ACCEPT-ERROR statement
ACCEPT—RETURN statement
access

ESTIMATE—INDEX‘FILE~
SIZE function INDEXED SEQUENTIAL METHOD
indexed file organization and sequential
mode, random file
mode, sequential file
modes, dynamic files
mode definition
mode default file
mode implied file
mode relative files and sequential
relative record file
sequence in record
sequential access on indexed file

actual decimal point definition
ADD statement
addition ...

addresses. entry points during loading
ADVANCING phrase
AFTER ...

program structuring with PERFORM and variable
algebraic signs
alignment

on computer word boundaries
rule standard

alphabetic
character definition
data in PICTURE
test ..

alphanumeric
character definition
data in PICTURE

ND—60.144.3 EN

127.
127.

99.

416 ND COBOL Reference Manual

edited data in PICTURE 72.
ALTER statement 201.
ALTERNATE RECORD KEY clause 38,
AND logical operator 109.
ANSI Standard compared with ND COBOL 3.
area

A of program line 27.
B of program line 27.
common memory 46.
common storage 48.
continuation 27.
receiving area in MOVE statement 150.

arithmetic
binary arithmetic operator 94.
data conversion 95.
definition of arithmetic expressions 93.
expressions. legal 95.
expression definition. 391.
expressron evaluation rule 94.
expression with parentheses 95.
legal symbol combinations 95.
maximum operand size 96.
multiple result in statement 96.
operators 93.
operator definition 392.
statements 96.
unary arithmetic operator 94.
undefined results in arithmetic statements 96.

ASCENDING
DESCENDING keys in sorting and merging 219.
key definition 392.

ASSIGN clause 47.
assumed decimal 392
asterisk * compiler prompt 6.
at end condition definition 392.
AT END

condition 167
condition rule 177
phrase .. 176.

AUTO-ERASE
DISPLAY option 130.
in frames, DISPLAY option 131

AUTO—SKIP ACCEPT option 124.
Backward reference in overlay systems 273.
bar graphs on screen for histograms 132.
BEEP

ACCEPT option 12L.
DISPLAY option 13D.

BEFORE ... 148
in INSPECT 146

binary
arithmetic operator 94.

ND-60.144.3 EN

47, 195.

ND COBOL Reference Manual
Index

relocatable format 7.
BLANK

COLUMN on screen 128.
LINE .. 128
statement 120

BLANK—NHEN—ZERO
ACCEPT option 125.
DISPLAY option 130.

BLANK WHEN ZERO clause in DATA DIVISION 67.
BLINK

ACCEPT option 125.
DISPLAY option 130.

block definition and relationship to records 49.
blocks IMPORTing from FORTRAN COMMON 252.
block definition 392.
branching statements in procedures 201.
BRF ... 5.
DRE—Linker ... 11.

command EXIT 13.
command LIST—ENTRIES—DEFINED 12.
command LOAD 12.
command PROGRAM—FILE 12.
loader and overlays 271.
PROGRAM—FILE command 12.
prompt Brl: 12.

Brl: BRF—Linker prompt 12.
BY option in UNSTRING 158.
CALL

PROCEDURE DIVISION subprogram calls 254.
statement 249
USING correspondence 255.

called program definition 393.
called program

LINKAGE SECTION 251.
USING clause 250.

calling program definition 393.
card source file punched 7.
character

COBOL ... 18.
currency .. 35.
definition 393.
positions in record and RELEASE 57.
positions in record and REWRITE 57.
positions in record and WRITE 57.
position definition 393.

character—string 19.
CHARACTERS ... 147,

phrase in INSPECT 146.
characterstring definition 393.
checking I—O error in DECLARATIVES 193.
class

condition definition 393.

ND-60.144.3 EN

418 ND COBOL Reference Manual
Index

NUMERIC or ALPHABETIC condition 107.
test for PICTURE 107.

classes table data 82.
clause

ALTERNATE RECORD KEY 38, A7.
ASSIGN .. L7.
DEBUGGING MODE 33
DECIMAL~POINT IS COMMA 35
definition 18. 393.
FILE STATUS 47
JUSTIFIED 24.
ORDER SELECT 45.
ORGANIZATION 4?.
RECORD KEY 38, 47.
RESERVE ... 47.
SEGMENT—LIMIT 34

CLOSE
statement 168.
statement rule 168. 169

COBOL
ANSI Standard and ND COBOL 3.
character 18.
data unit on files 161.
divisions 17.
file format and ND editors 197
level ... 3.
program ... 17.
program format 27.
RECORD definition 161
SORT/MERGE 213
system variables 375
word .. 20.
word definition 393

coding
layout .. 29.
sheets .. 29.

collating sequence definition 393.
COLUMN

BLANKing of a column 128.
definition 393

combined
condition definition 393.
logical conditions 110.

combining legal arithmetic symbols 95.
comma ... 26.

clause DECIMAL—POINT IS 35
command

COMPILE ... 6.
EXIT compiler 7.
EXIT from NLL 14.
EXIT from NRL 11.
EXIT in BRF—Linker 13.

ND-60.144.3 EN

ND COBOL Reference Manual
Index

LIST-ENTRIES—DEFINED in NRL
LIST-ENTRIES-UNDEFINEO in NLL
LOAD in BRF-Linker
LOAD NRL ..
LOAD SEGMENT in NLL
OVERLAY ...
PROGvFILE NRL
PROGRAM—FILE in BRF—Linker
PROGRAM—FILE in the BRF—Linker
RUN in NRL

SIZE in NRL
Commands for loading overlays
comment

lines ...

common
blocks IMPORTing from FORTRAN
data for several programs
memory area
storage area

comparison
nonnumeric operands
numeric operands
rule in INSPECT

compilation
loading and execution
loading execution

compile time definition
compiler

COMPILE command
directing statements
directing statement definition
EXIT command
programs separately compiled
prompt: *
reentrant

complex
conditional expression
condition definition

COMPUTATIONAL
ACCEPTing to
options ...
sizes, table for ND—TOO and ND—SOO

COMPUTATIONAL—3 equivalence with PACKED~DECIMAL
COMPUTE

statement
statement. decimal places

COMPUTER
paragraph OBJECT

N0~BO.1£6.3 EN

394.

100.

420 ND COBOL Reference Manual
Index

paragraph SOURCE 33.
computername definition 394.
concatenation of two or more STRINGs 154.
condition

abbreviation of relation condition 112.
abbreviation of relation conditions 108.
ALPHABETIC or NUMERIC class 10?.
AT END while READing 167.
combined logical 110.
definition 394.
definition of complex condition 109.
definition of relation condition 105.
definition of simple condition 105.
evaluation rules 113.
format for relation condition 106.
INVALID KEY in index—sequential I—O 166.
INVALID KEY in indexed I—O 196.
INVALID KEY in MULTI—USER—MODE 179. """" L
INVALID KEY in WRITE statement 195.
in the WHILE phrase 119.
name definition 394.
negated simple 110.
OVERFLDW in STRING 155.
rule for AI END while READing 17?.
sign of arithmetic expression 109.
SIZE ERROR in arithmetic statements 97.
via a condition—name 108.

conditionename condition type 108.
conditional

ALPHABETIC or NUMERIC class expression 107
by sign of arithmetic expression 109.
definition of conditional expressions 105.
expressions with parentheses 111.
expression definition 395
expression evaluation rule 113.
statements 11A
statement definition 395
variable .. 108
variable definition 395
variable entry 67

conditionname condition definition 39k.
CONFIGURATION

SECTION ... 33.
section definition 395.

conjunction logical: AND 110
connectives ... 22.
connective definition 395
constants figurative 22.
contiguous items definition 395
continuation area 27
CONTINUE

SINTRAN command 11

NO—60.144.3 EN

ND COBOL Reference Manual 421
Index

statement 202.
CONTROL

keys and ACCEPT statements 126.
option with ACCEPT 125.
paragraph I—O 48.

conversion of data in arithmetic statements 96.
COPY statement 211
CORR in MOVE .. 151.
CORRESPONDING

option in MOVE 150
option rule in arithmetic statements 98.
rule .. 150.

COUNT IN option in UNSTRING 158.
CPU-TIME system information 123.
CR credit ... 73.
credit CR ... 73.
CTRL keys and ACCEPT statements 126.
CURRENCY

character 35.
IS clause 35.
sign deTinition 395
symbol definition 395

current
record .. 396
record definition 395.

current record pointer 167.
after DELETE 170
and WRITE 194.
relative file I—O 179.
sequential I—O 180.

data
clause definition 396.
compatibility between ND—100 ND—SOO 82.
description 396.
description entry 65.
description rules 68.
division .. 17, 49.
item definition 396.
level qualification 63.
PICTURE for alphabetic data 72.
PICTURE for alphanumeric data 72.
PICTURE for alphanumeric edited data 72.
PICTURE for numeric data 72.
PICTURE for numeric edited data 73,
RECORDS clause in DATA DIVISION 55.
reference uniqueness 63.
rules for legal data names 68.
table classes and categories 62.
table definition 229.
unit in COBOL 161.

dataname definition 396
DATA DIVISION

SORT and MERGE files 215.

ND-SD.1£&.3 EN

422 ND COBOL Reference Manual

table definition

data name clause in DATA DIVISION
DATE system information

DATE—COMPILED
DAY system information
DB debit ..
debit DB ..

DEBUG compiler command
Debugger and Overlays

DEEUGGING
line ..
line definition
MODE clause

decimal
places in COMPUTE statement
point ...

DECIMAL—POINT IS COMMA clause
declarative"sentence definition

DECLARATIVES
definition
definition of DECLARATIVES sections
I-O error checking
key word ..
procedure for sequential I~0 WRITE
section, ERROR procedure
section, USE statement
section and EXCEPTION procedure

sequence rule
default

file access mode
source file type

definition
arithmetic expression
block ...
clause ..
COBOL RECORD
conditional expression
data tables
file ..
logical record
object program
of option phrase
of paragraph
of section
paragraph;
phrase ..
physical record
procedure
relation condition
section ...
sentence ..
simple conditions

ND‘50.144.3 EN

Index

ND COBOL Reference Manual
Index

source program 219.
statement 18,
STRING delimiter 155
STRING pointer field 155.
tables in DATA DIVISION 229.

definitions COBOL terms 391.
DELETE

effect on current record pointer 170.
mandatory INVALID KEY phrase 169.
statement 169.

deletion
screen column 128.
screen frame 131.
screen line 128.

DELIMITED
BY option in UNSTRING statement 158.
phrase in STRING statement 155.

delimiter
definition 397.
definition for STRING statements 155
IN option in UNSTRING statement 157.

Dependent links in overlay systems 272.
descending key definition 397.
DESCENDING/ASCENDING keys 219.
description

data entry 85.
rules for data descriptions 66.
rule for level 77 66.
rule for level 88 6?.

Design of an overlay system 274.
device for ACCEPT statements 123.
diagnostic message 5.
digit position definition 39?.
disabled ESCAPE key 121.
DISPLAY

and screen handling 128.
AUTO-ERASE option 130,
BEEP option 13D.
BLANK—NHEN«ZERO option 13D.
BLINK option 130.
for printing terminals 128.
HEADING Option 131.
INVERSE’VIDEO option 13D.
LOW—INTENSITY option 13D.
NORMAL option 130.
parameters for 129.
REMARKS option 131.
SPACE~FILL option 13B,
statement 24,
UNDERLINE option 130.
WITH phrase 13D.

DIVIDE
GIVING .. 102.

ND—60.144.3 EN

93.

131.

131.
120, 128.

423

421 ND COBOL Reference Manual
Index

statement 96, 101.
division ... 95.

/ ... 95
data .. 17
definition 397
environment 17. 33
header definition 397
identification 17, 31.
procedure 17, 91.

divisions COBOL 17.
00 statement .. 119.
domains ... 13.
DOWN ACCEPT option 125.
Dumping Overlay program 276.
OUPLICATES

phrase .. 38.
phrase in indexed WRITE 195.

dynamic ******
access definition 397.
access mode 42.

edited data
PICTURE for alphanumeric 72.
PICTURE numeric 73.

editing
character deTinition 398.
rule for PICTURE 73.
symbols with PICTURE 70.

editors and reading COBOL files 197.
elementary

items LINKAGE SECTION 253.
item definition 398.
item size 73.
move rule 152.
numeric item 93.

ELSE phrase ... 116
ELSE—IF clause 117
END

AT END phrase and USE procedure 176.
condition AT END 167.
condition rule for AT END 177.
of procedure division definition 398.

END—DO statement 119.
END—IF phrase 117
entry

conditional variable 67.
data description 65.
definition 398
level 77 description 66.
level 88 description 67.

entry point addresses 11.
environment

clause definition 398.

N0-60.144.3 EN

ND COBOL Reference Manual
Index

division .. 17, 33
ENVIRONMENT DIVISION SORT/MERGE file entries 214.
equal size operand 107.
equivalence

of COMPUTATIONAL—3 and PACKED’DECIMAL 86.
RELEASE and MOVE 218.

erasing
frame ... 131.
screen column 128
screen line 12B.

ERROR
checking by declaratives for 1—0 193.
file handling 192.
I~0 ... 192.
procedure in DECLARATIVES 192.
SIZE ERROR in arithmetic statements 97.
SIZE ERROR option 97, 100.

errors in source program 5.
ESC key ... 121.
ESCAPE disabled by screen I—O 121.
ESTIMATE—INDEX-FILE-SIZE function on index-

sequential access files 179.
evaluation

rule arithmetic expression 94.
rule conditional expression 113.

examples screen handling 133.
EXCEPTION

DECLARATIVES procedure 192.
I—O statement 192.

Executing overlay programs 276.
execution

after compilation and loading 6. 15.
suspended 211.
time definition 398

EXIT
ACCEPT option 125
DRE-Linker command 13
compiler command 7.
NLL command 1k.
NRL command 11.
statement 202.

EXIT~ALL~DO statement 203.
EXIT—DO statement rule 203.
EXIT PROGRAM

rule .. 256.
statement 249 250,

exponentiation 95.
** .. 95.

EXPORT
clause .. 252
clause in DATA DIVISION 90

expression
evaluation rule conditional 113.

N0-60.144.3 EN

425

426

EXTE

ND COBOL

evaluation rule for arithmetic expressions
legal arithmetic ...
parentheses in arithmetic expressions

expressions parentheses in conditional expressions
ND
mode definition
option

Extended path in overlay systems
exte

fiel

figu

file

nsion
in ND COBOL

ND
d
definition of sending field in STRING
definition of STRING pointer
specification in ACCEPT
rative
constants

100 Scratch
access mode default
access mode implied
access with relative records
COBOL file format and ND editors
compiler scratch ...
definition
description entry definition
errors
file handling errors
I—O rule for sequential files
indexed
library
loading program
magnetic tape source
name definition
non—disk source
object
OPENing indexed files
OPENing relative files
organization: indexed
organization: relative
organization: rules for indexed
organization: sequential
organization definition
processing
punched card source
quotes for making new files
random record access
relative file [—0 and current record pointer
rules for relative organisation
SECTION

ND—60.144.3 EN

Reference Manual
Index

9k.
95.
95.
111.

398.
171, 174.
273.

115, 120, 173.
176, 191.
90.

155.
155.
124.

22.
398.

46.
L6.
42.
197.

49, 399.
399.
172.
192.
180.
47.

10.

399.

177.
179.
38.
40.
47.
38.
399.

ND COBOL Reference Manual
Index

section definition 399.
SELECT entry for sequential 43.
SELECT entry indexed 44.
SELECT entry relative AS.
sequential access mode on relative files 48.
SORT MERGE 50.
source .. 7
START in relative 46
START of indexed file 177
STATUS .. 161
STATUS clause 47
type, default for source 7.

FILEFCONTROL
definition 399.
MERGE paragraph 214.
paragraph 43.
SORT paragraph 214.

files SORT/MERGE 215.
FILLER

clause in DATA DIVISION 68.
rule .. 68.

FIRST ... 148.
fixed length tables 23S.
floating insertion 76.
format

binary relocatable 7.
COBOL program 27.
definition 399.

FORTRAN
calling from on NDF100 303.
calling from on ND—SOO 304.
IMPORTing COMMON blocks 252.

FORTRAN COMMON and Overlays 274.
Forward reference in overlay systems 273.
frame

drawing frames on the screen 131.
erasing interior of frames 131.

FROM
in SUBTRACT statement 105.
phrase with REWRITE 165.

FULL—BAR DISPLAY option 132.
GIVING ... 99,

DIVIDE .. 102
MULTIPLY .. 103
option MERGE 214.
option SORT 213.
phrase .. 219.

glossary ... 391.
GO TO

and IF statement 116.
statement 203.

graphs: bar graphs (histograms) on screen 132.

ND-60.164.3 EN

427

428 ND COBOL Reference Manual
Index

group item definition 399.
HEADING in frames. DISPLAY option 131.
high order end definition 399.
HIGH—VALUE ... 23.
HIGH~VALUES ... 23.

histograms or bar graphs on screens 132.
HOME; ACCEPT option 125.
hyphen in area continuation 27.
I—O

CLOSE statement rule for sequential files 169.
CONTROL paragraph 48.
current record pointer, sequential files 188.
current record pointer in relative files 179.
error checking by declaratives 193.
error statement 192.
exception statement 192.
INVALID KEY condition. indexed files 196.
INVALID KEY condition, relative AND indexed files 186. """"
mode definition 400.
option .. 171.
option. sequential files 174.
rules, indexed and relative files 178.
rules. indexed and relative I—O .[............... 173.
rules, indexed files 177.
rules, relative files 179.
rules, sequential files 174, 188, 197.
rules, WRITE, relative files 196.
START statement rules, indexed files 187.
START statement rules. relative files 188.
statements 161.
status .. 161.
table of status keys for indexed files 165.
table of status keys for relative files 165.
table of status keys for sequential files 166.
WRITE. sequential file and OECLARATIVES procedure 197.
WRITE statement rules, indexed files 195.

I-O—control definition 399.
identification division 17, 31.
identifier ... 93.

definition 400.
IF

nested statements 117
rules ... 116
statement 114
statement and GO TO 116

IMMEDIATE—WRITE in MULTI-USER—MODE 17A,
imperative statement definition LOO.
implied file access mode 46.
IMPORT

clause .. 252
FORTRAN COMMON blocks 252

inclusion of source program 211.

ND—60.14k.3 EN

ND COBOL Reference Manual
Index

inclusive OR ..
Independent links in overlay systems
INDEX

data item definition
definition

indexed
and relative files, I—O rules
data name definition
file, organization rules for
files ...
files, ESTIMATE—lNDEX—FILE~SIZE tunction
files, rules for RENRITE in I—O
files, SELECT entry
file and sequential access
file definition
file errors
file I~O, INVALID KEY condition
file I—O. START statement rule
file 1‘0, WRITE statement rule
file I~O rules
file investigation
file organization
I-O, table of status keys
I—O INVALID KEY condition for relative files
I~O rules. indexed and relative files
OPEN on file
organization and sequential access
organization definition
organization keys
READ ..

indexing ...
INPUT

file definition
mode definition
option ..
procedure definition

INPUT~0UTPUT
file definition
SECTION ...

status ..
INSPECT

AFTER ...
BEFORE ..
BEFORE/AFTER option rule
COMPARISON rule
operand for TALLYING/REPLACING
REPLACING option
statement

ND—80.144.3 EN

144.

429

430 ND COBOL Reference Manual

TALLYING BEFORE/AFTER option rule 147.
TALLYING option 147.

integer definition 401.
inter—program

communication 249.
communication PROCEDURE DIVISION 254.

intervention by operator 211.
INTO

phrase .. 176.
phrase in READ or RETURN 57.

invalid key condition definition 401.
INVALID KEY

and REWRITE 185.
condition. indexed file I-O 196.
condition and WRITE statement 195.
condition for relative and indexed I—O 166.
condition in MULTI-USER—MODE 179.
in DELETE statements 163.
in WRITE statement 195.
phrase and START 186.
phrase for REwRITE on indexed files 184.
phrase without USE 176.

INVERSE»VIDEO
ACCEPT option 125.
DISPLAY option 130.

INVISIBLE ACCEPT option 124.
ISAM-INTER ... 172.
ISAM—SERVICE 172.

program ... 179.
item

77/01 ... 6.
elementary numeric 93.
receiving in MOVE 151.

items
ND—1DO real items 86.
table of ND—SOU real 86.

iterative procedures 119.
justification rules for receiving item 69.
JUSTIFIED

clause .. 2L.
clause in DATA DIVISION 69.

JUSTIFIED-RIGHT ACCEPT option 125.
key

ALTERNATE RECORD KEY clause 195.
ASCENDING or DESCENDING 219.
clause ALTERNATE RECORD 38.
clause RECORD 38,
definition 401.
indexed I—O. status table 185.
invalid for DELETE 169.
INVALID KEY condition 179
INVALID KEY condition, indexed I—O 196

ND-60.144.3 EN

47.
47.

Index

ND COBOL Reference Manual
Index

INVALID KEY condition. relative and indexed I—O . 166.
INVALID KEY condition, REHRITE 185.
INVALID KEY condition in WRITE statement 195.
INVALID KEY phrase 176.
INVALID KEY phrase. START 186.
option for START 187.
organization in indexed file 46.
phrase in REWRITE 184.
relative I-O, status table 165.
RENRITE on RELATIVE files 185.
sequential I—O table status 166.
status checking in DECLARATIVES section 193.
word .. 21.
word definition 401
organization in relative files 46.

key word uniqueness 63.
known restrictions 6.
LABEL RECORDS clause in DATA DIVISION 56
layout coding 29.
LEADING ... 147
LEFT ACCEPT option 125.
LENGTH—CHECK ACCEPT option 124.
level

01 LINKAGE SECTION 254.
77 LINKAGE SECTION 253.
COBOL ... 3.
indicator definition 401
numbers in record description 60.
number definition 402.
qualification of data for uniqueness 63.

level 77 ... 59.
data .. 60.
description rule 66.

level 88
data .. 60.
description rules 67.

library
files ... 7.
name definition 402
relocatable form 5.
text definition 402.

line
BLANK ... 128.
debugging 34.
deletion screen 128.

lines comment 28.
Linkage

Loader for ND—500 computers 5.
Loader ND—500 computers 13.
SECTION ... 250.
section definition 402

LINKAGE SECTION
called program 251.

ND—60.144.3 EN

431

A32 ND COBOL Reference Manual

DATA DIVISION 251.
elementary items 253.
level 01 .. 254
level 77 .. 253.
records ... 254.
structure of 253.
value ... 252.

Links
dependent 272.
independent 272.

Link path in overlay 273.
LIST~ENTRIES—DEFINED

BRF—Linker 12.
NLL command 14.
NRL command 11.

LIST—ENTRIES-UNDEFINED command in NLL 14.
listing

program ... 7.
source .. 5.

literal
ALL ... 23
definition 402

literals ... 93.
LOAD

BRF~Linker command 12.
NRL command 10.

LOAD-SEGMENT command NLL 14.
Loader

BRF—Linker 11.
input ... 10.
ND—SDD computer 13.
ND—500 Linkage 5.
table overflow NRL 11.

Loader/Monitor. ND—60.136.03 for the ND—500 13.
loaders ND .. 7.
loading

compilation, loading and execution 6.
program file 10.
with execution and compilation 15.

LOCK phrase in MULTI—USER~MODE 179.
logical

AND operator 109.
conjunction 110.
inclusive 0R 110
negation .. 110
operator .. 109.
operator definition 402.
OR operator 109.
record definition 49,

loops ... 119.
low order end definition 402.
Low—INTENSITY

ACCEPT option 125.

ND~60.144.3 EN

402.

Index

ND COBOL Reference Manual
Index

DISPLAY option 130.
LOW-VALUE ... 23.
LOW~VALUES ... 23.
magnetic tape source file 7.
MANUAL UNLOCK MODE 191.
MANUAL—UNLOCK 174.
mass

storage control system (MSCS) definition 402.
storage definition 402.
storage file definition 402.

maximum arithmetic operand size 98.
memory

area, common 48.
synchronization between ND—100 and ND-SOO computerBZ.

MERGE
COBOL SORT/MERGE 213.
DATA DIVISION. SORT/MERGE entry 21S.
ENVIRONMENT DIVISION, SORT/MERGE entry 214.
FILE—CONTROL paragraph 214.
file and SORT in DATA DIVISION 50.
file definition 403.
GIVING option 214.
OPEN for SORT/MERGE 171.
PROCEDURE DIVISION, SORT/MERGE statements 216.
RELEASE statement SORT 216.
RETURN statement 214.
SD entry SORT/MERGE, DATA 215.
statement 220.

message diagnostic 5.
messages to the operator 211.
microprogram ND-10 5.
mnemonic name definition 403.
Monitor for the NO—SOO computers 13.
MOVE

data conversion 152
equivalence with RELEASE statement 216
rules ... 151.
statement 96,
table of legal MOVES 153.

MSCS definition L03.
multi—dimensional table 230
MULTIEUSER supervisor 17k.
MULTI—USER—MODE 173.

WITH LOCK on single user opened files 179.
Multilevel overlay system 271.
multiple results from arithmetic statement 98.
multiplication 95.

* ... 95
MULTIPLY

GIVING .. 103
statement 95,

MUST ACCEPT option 125

ND’60.144.3 EN

98.

102.

150.

434 ND COBOL Reference Manual

name rules for data 68.

ND
COBOL and ANSI Standard summary 3.
editors and COBOL file format 197.
extension 90.
extensions 115.

176,
loaders ... 7.
Relocating Loader 5.
Relocating Loader manual N0-60.066 11.

ND—10 microprogram 5.
ND~100

data compatibility with ND—500 82.
real items 88.
table of comparison with ND—500 COMPUTATIONAL sizeBS.

NO—SOO ... 13.
data compatibility with ND—100 82.
LinkagezLoader 13.
Linkage Loader 5.
Linkage Loader NLL: prompt 13.
Loader/Monitor 13.
overlay systems 271.
real items table 86.
table of comparison with N0-100 COMPUTATIONAL size85.

ND~60.066 ND Relocating Loader manual 11.
ND—60.136.03 N0—500 Loader/Monitor manual 13.
negated

combined condition definition 403.
simple condition 110.
simple condition definition 403.

nested IF statements 117.
NEXT

executable statement definition 403.
phrase when reading files 176.
record definition 403.
SENTENCE phrase and IF 116

NLL ... 13.
command LIST—ENTRIES—UNDEFINED 14
EXIT .. 14.
LIST—ENTRIES—DEFINED command 14.
LOAD—SEGMENT command 14.
OPEN SEGMENT command 14.
SET-DOMAIN command 13.

NLL: NO—SOO Linkage—Loader prompt 13.
non—disk source file 7.
noncontiguous items definition 403.
nonnumeric

item definition 403.
literal definition 403.
operand ... 106.

NORMAL
ACCEPT option 125.

ND~60.144.3 EN

Index

173.

ND COBOL Reference Manual
Index

DISPLAY option
NOT interpretation in abbreviations
NRF ...
NRL

command EXIT
command LIST—ENTRIES~DEFINED
command LOAD
command FROG-FILE
command RUN
loader and overlays
loader table overflow
loading ...
manual, ND—B0.066
prompt * ..
RUN command
SIZE command

numeric
character definition
elementary item
item definition

operand comparison
PICTURE for numeric data
PICTURE for numeric edited data

object
computer definition
COMPUTER paragraph
file ..
program ...
program definition
time definition

OCCURS

OPEN

for SORT/MERGE
indexed file

rules for record pointer
sequential file
statement

operand
comparison of equal size operands
comparison of numeric operands
comparison of unequal size operands
definition
in INSPECT TALLYING/REPLACING
maximum size of arithmetic
overlapping operands

ND-60.144.3 EN

5, 7,
249,
404.

31.
404.

435

A36 ND COBOL Reference Manual

operational sign definition
operator ...

AND logical
binary arithmetic V......
NOT logical
OR logical
parentheses and logical operators

option
definition
definition of

optional
phrase ..
words ...
word definition

OR
logical inclusive
logical operator

ORDER clause: SELECT
organization

and sequential access indexed
indexed file
keys in indexed file
key relative files
ORGANIZATION clause
relative file
rules for indexed file
sequential file

other language programs. termination of
OUTPUT

file definition
option

overflow
condition STRING

..............................

overlapping operands
Overlay ...

command ...
debugging
loading
NO¥SOO ..
program execution
structure
system ..

Overlays and
FORTRAN COMMON
Symbolic Debugger

Overlay links with extended paths
Overlay loading commands
Overlay program execution
Overlay system design
Overlay systems and

backward reference

.......................................

ND-60.144.3 EN

k7.

Index

ND COBOL Reference Manual
Index

dependent links
forward reference
independent links

PACKED-DECIMAL
equivalence with COMPUTATIONAL~3
from ACCEPT

paragraph
definition

OBJECT—COMPUTER
PROGRAM-ID

parameters to DISPLAY
parentheses

() ...
in arithmetic expression
in conditional expressions

parenthesis ...
Path loading in overlay systems
PERFORM

AFTER option
statement
TIMES option
VARYING option

period
phrase

definition

DUPLICATES
OPTIONAL ..

physical record definition
physical record

definition
size

PICTURE
alphabetic data
alphanumeric data
alphanumeric edited data
class test
clause in DATA DIVISION
editing rule
editing symbols
numeric data
numeric edited data
symbols precedence table
zero suppression

POINTER
current record

ND-60.1k4.3 EN

4?.

437

438 ND COBOL Reference Manual

option in STRING statements
option in UNSTRING statements

precedence table for PICTURE editing symbols
prime record key definition
printing with DISPLAY on terminals
procedure

branching statements
definition
division ..
in DECLARATIVES on ERROR
iterative
name definition
USE statement and DECLARATIVES

PROCEDURE DIVISION
intereprogram communication
SORT/MERGE files
subprogram call
table handling

processing of files
PROS—FILE NRL command
program

COBOL ...
errors source
file loading
format COBOL
inclusion of source program files
[SAM-Service
listing ...
name definition
object ..
source ..
suspended
symbolic ..

PROGRAM—FILE BRF-Linker command
PROGRAM~ID paragraph
prompt

* from compiler
* NRL ...
ACCEPT option
BRF«Linker Brl:
DISPLAY option
NLL: ND—SOD Linkage Loader

punched card source file
punctuation

character: comma
character: period
character: semicolon
character: space
character definition

qualification of data for uniqueness
qualified dataname definition
qualifier definition

ND—60.144.3 EN

#05.
91.

Index

ND COBOL Reference Manual
Index

quotation mark 26.
QUOTE ... 23.
quotes ... 23.

when creating new files 7.
random

access definition 406.
access mode 42.
record file 42.

READ
current record pointer rule 167.
statement 57,

real
items ND—100 86
items table ND-SOO 86

receiving
area in MOVE statement 150.
item in MOVE statement 151.

RECORD
access sequence in 47.
area definition 406.
CONTAINS clause in DATA DIVISION 56
current record pointer 167.
definition 406.
definition of a COBOL record 161
definition of logical records 49.
definition of physical records 49.
description definition 407.
description entry definition 407.
description level numbers 60.
file access relative 42.
file random 42.
KEY clause 38,
KEY clause ALTERNATE 38,
key definition 407.
LINKAGE SECTION description 254.
name definition 407.
pointer after a DELETE 170.
pointer after WRITE 194.
pointer on OPEN 167.
pointer on READ 167.
pointer on relative files 179.
pointer on sequential files 180.
pointer on START 167.
size of physical records 54.

RECORDING MODE clause in DATA DIVISION 58.
REDEFINES

clause .. 99.
clause in DATA DIVISION 80

reentrant compiler 5.
reference format definition 407.
register, special 22.
relation

character definition 407.

ND-60.144.3 EN

175.

47.
47.

439

440 ND COBOL Reference Manual

condition, definition 105.
conditions in table handling 237.
condition definition 407.
definition 407.

relational operator definition 407.
relative

and indexed files, 1—0 rules 173.
file, SELECT entry 45.
file, START in 46.
files,I—0 rules 179.
files, current record pointer 179.
files and OPEN 179.
files and sequential access mode 48.
files and START 179.
file definition 408.
file errors 172.
file organization 40.
file organization, rules 48.
file organization key 46.
file record access 42.
1—0 START statement rule 188
organization definition 408.

RELEASE
and character positions in record 57.
MOVE equivalence 216.
statement SORT/MERGE 213

relocatable
files NDw100 and NDaSOO 7.
form, library in 5.
format binary 7.

REMAINDER in divisions 102
REMARKS in frames, DISPLAY option 131.
REPLACING option in INSPECT 146.
RESERVE clause 47.
reserved

words ... 21.
word definition L08

RESET statement 120
restrictions known 6.
result

multiple arithmetic statement 96
undefined arithmetic statement 96

RETURN
statement 57,
statement MERGE 214
statement SORT 213

REWRITE
and character positions in record 57.
FROM phrase 185.
INVALID KEY phrase 184.
RELATIVE KEY 185.
statement 184.

NO—60.144.3 EN

Index

ND COBOL Reference Manual
Index

RIGHT ACCEPT option
Root link
ROUNDED

option ..
phrase ..

rounding automatic
routine name definition
rule

data descriptions
data name

for DECLARATIVES sequence
for indexed file organization
for relative file organization
for USE sequence
for USING sequence
justification of receiving items
level 77 description
PICTURE editing
REDEFINES clause in DATA DIVISION
SEARCH statement
standard alignment, data in elementary items
SYNCHRONIZEO (in memory)
USAGE ...

arithmetic expression evaluation
AT END condition
CLOSE statement
conditional expressions with nonnumeric operands
CORRESPONDING

EXIT ..

GO TO ...
IF statement
indexed and relative I—O
indexed I-O
INSPECT BEFORE/AFTER
INSPECT comparison
INSPECT REPLACING
MOVE ..
nonnumeric comparison
PERFORM ...
READ

START

NO—SO.144.3 EN

125.
272.

97,
98.
97.
408.

66.
68.
256.
68.
28,
47.
48.
28.
28.
69.
66.
73.
80.
239.
62.
82.
84.
88.

100.

180. 197.

442 ND COBOL Reference Manual

START relative I-O 188.
STRING .. 155.
WRITE ... 194.
wRITE relative l—O 196.
WRITE statement indexed I—O 195.

RUN
command NRL 11.
NRL command 10.
unit definition 408.

scratch
file 100 .. 7.
file compiler 5.

screen
ACCEPT and screen handling 122.
deletion .. 128.
DISPLAY ... 128.
frame ... 131.
handling statements 120.
histogram bar graphs 132.

SD SORT/MERGE file description 215.
SEARCH

statement 23?.
statement rule 239.
statement three—dimensional table 242.
statement two—dimensional table 242.

section
CONFIGURATION 33.
DECLARATIVE 92.
definition 18,
FILE .. 51.
header .. 92
header definition 409
INPUT-OUTPUT 36
LINKAGE ... 250
name definition 409
USE statement and DECLARATIVES 192
wORKING-STORAGE 59.

section definition 408.
SEGMENT loading in NLL 14.
SEGMENT-LIMIT clause 34.
segments ... 13.
SELECT

entry for indexed files 44.
entry for relative files 45.
entry for sequential files 43.
entry for sort/merge 4S.
ORDER clause 45.

semicolon ... 26.
sending area .. 151.
sentence definition 93,
separately compiled programs 249.
separator ... 28.

ND~50.144.3 EN

92.

ND COBOL Reference Manual
Index

definition
sequence

in record access
rule for DECLARATIVES

sequential
access, indexed file organization and
access, relative files and
access definition
access mode
access on indexed file
file, SELECT entry
file definition
file I—O rule
file organization
I—O. OECLARATIVE procedure on WRITE
I—O CLOSE statement rule
[—0 rule ..
organization definition
table of status keys for 1—0

SET statement

sheets, coding
SIGN

clause in DATA DIVISION
condition
condition definition

signed data ...
simple

conditions. definition
conditions. negated
condition definition

SIZE
command in NRL
ERROR option
physical record
table comparing ND—100 and ND—SOO COMPUTATIONAL

SORT
FILE—CONTROL paragraph
file definition
GIVING option
RELEASE statement
RETURN statement
statement

sort/merge ...
DATA DIVISION entries
ENVIRONMENT DIVISION
file ..
PROCEDURE DIVISION
RELEASE statement
SD entry ..

ND-EU.144.3 EN

85.

245.

100.

444 ND COBOL Reference Manual
Index

SELECT entry £5.
SORT/MERGE, OPEN for 171.
SORT/MERGE file 50.
source

COMPUTER paragraph 33.
File .. 7.
file magnetic tape 7.
file non-disk 7.
file punched card 7.
file type default 7.
listing ... 5.
program ... 31.
program definition 249, 410.
program errors 5.
program inclusion 211.
symbolic code 5.

SOURCE COMPUTER definition 410
SPACE ... 23.

punctuation character 26.
SPACE~FILL

ACCEPT option 12k.
DISPLAY option 130, 131.

SPACES ... 23.
SPARSE—BAR DISPLAY option 132.
special

character definition 410.
character word definition 411.
register .. 22.
registers definition #11.

SPECIAL—NAMES paragraph 35.
SPECIAL NAMES definition 411
standard

alignment rule 62.
module .. 3.
summary ND COBOL vs. ANSI 3.

START
INVALID KEY phrase 186.
in relative files 48.
KEY option 187.
relative files 179.
rule .. 187.
rule record pointer 187.
statement 186.

statement
ACCEPT .. 120, 121.
ACCEPT‘ERROR 120. 127.
ACCEPT—RETURN 120. 127.
ADD ... 96, 99.
ALTER ... 201
arithmetic 98.
BLANK ... 120. 128.
CALL .. 219, 25k, 255.

ND-BO.1LA.3 EN

ND COBOL Reference Manual 445
Index

CLOSE ... 168.
compiler directing 211.
COMPUTE 96, 100.
CONTINUE .. 202.
COPY .. 211.
decimal places in COMPUTE 101.
OECLARATIVES section and USE 192.
definition 18. 93, 411.
DELETE .. 169.
DISPLAY ... 24. 120, 128.
DIVIDE .. 96, 101.
OD .. 119.
END—DO .. 119
EXIT .. 202. 203.
EXIT—DO ... 203
EXIT PROGRAM 249, 250, 256.
GO TO ... 203. 204.
GO T0 in IF 116
IF .. 114.
INSPECT ... 96, 144
MERGE ... 220
MOVE .. 96, 98. 150.
MULTIPLY .. 102
OPEN .. 170.
PERFORM ... 204, 206. 207.
READ .. 57, 175, 176.
RELEASE ... 57.
RELEASE, with SORT 213.
RELEASE, with SORT/MERGE 216.
RESET ... 120.
RETURN .. 57, 216, 219.
RETURN, with MERGE 214.
RETURN, with SORT 213.
RENRITE ... 184.
screen handling 120.
SEARCH .. 237.
SEARCH, rules 239.
SET ... 96. 245.
SORT .. 217
START ... 186, 18?.
STOP .. 24, 211.
STOP RUN .. 250
STRING .. 24. 154.
SUBTRACT .. 96. 104.
three—dimensional table SEARCH 242
two-dimensional table SEARCH 242.
UNLOCK .. 174, 179, 191.
UNSTRING .. 96, 156.
USE ... 191.
WRITE ... 57, 193. 194

statements
conditional 114.

ND—60.144.3 EN

446 ND COBOL Reference Manual

[-0 ... 161.
INPUT—OUTPUT 161.
procedure branching 201.

STATUS
clause for FILE 47.
file .. 161.
1—0 ... 161.
INPUT—OUTPUT 161
keys indexed I—O. table 165.
keys relative [—0, table 165.
keys sequential I—O, table 166.
key 1 ... 162.
key 2 ... 163.
key check in DECLARATIVES 193.

STOP
literal (message to operator) 211.
RUN ... 211.
RUN statement 250
statement 24

storage area common 48.
STRING

concatenation 154.
DELIMITED phrase 155.
delimiter definition 155.
OVERFLOW condition 155.
pointer field definition 155.
POINTER option 155.
rule .. 155.
sending field 155.
statement 24.

stroke comment line 28
subprogram

call PROCEDURE DIVISION 254.
definition 411.

subprograms ... 249.
subroutines ... 249.
subscript ... 232.

definition 411.
table ... 231.
valid in tables 232

subscripted data name definition 411.
SUBTRACT statement 96,
subtraction ... 95.

— ... 95
summary ND COBOL vs. ANSI Standard 3.
supervisor program MULTI—USER MODE 174.
symbol legal arithmetic combinations of 95.
symbolic

code source 5.
Debugger .. 259.
program ... 7.

Symbolic Debugger and Overlays 271.

ND~60.144.3 EN

96,

104.

Index

154.

ND COBOL Reference Manual
Index

synchronization of computer memory
SYNCHRONIZED

clause in DATA DIVISION
rule ..

system
information retrieval with ACCEPT
name definition
variables

table
comparing ND—1OO and ND—SOO COMPUTATIONAL size
data categories
data classes
DATA DIVISION

fixed insertion
fixed length
floating insertion symbols
handling ..
handling PROCEDURE DIVISION
multi—dimensional
ND—SOD real items
OCCURS clause
of editing results
of legal MOVES
of symbols precedence in PICTURE
overflow NRL loader

SEARCH statement two—dimensional
special insertion
status keys
subscripts
three—dimensional
two~dimensional
variable length

TALLYING
IN option UNSTRING
operand INSPECT
option in INSPECT

tape source file on
temporary fields
terminal as ACCEPT device
termination other language programs
test

three-dimensional
table ...
table SEARCH statement

TIME system information
TIMES option in PERFORM

ND—60.TAL.3 EN

447

448 ND COBOL Reference Manual
Index

truth value definition 412.
two—dimensional

table ... 23D.
table SEARCH statement 242

type of deIault source file 7.
unary

arithmetic 94.
minus ... 95.
operator definition 412.
plus .. 95.

undefined results in arithmetic statements 96.
UNDERLINE

ACCEPT option 125,
DISPLAY option 130.

unequal size operand 107.
UNLO

MODE MANUAL 191.
statement 174

UNSTRING
COUNT IN .. 158.
POINTER ... 160.
POINTER option 158.
statement 96,
TALLYING IN option 160.

UP ACCEPT option 125.
UPDATE ACCEPT option 124.
UPON DISPLAY option 129.
UPPER—CASE ACCEPT option 125.
USAGE

clause .. 236
clause in DATA DIVISION 83
rule .. 84.

USAGE IS INDEX MOVE clause 99,
USE

PERFORM statement 207.
procedure 192.
sequence rule 28.
statement in declaratives section 192.

user defined word definition 412.
userdefined

word .. 21
words ... 20

USING
clause called program 250.
correspondence in CALLs 255.
option .. 254
sequence rule 28.

V and 74.
VALUE

clause in DATA DIVISION 88.
LINKAGE SECTION clause 252.
OF FILE~ID IS clause in DATA DIVISION 59

ND-80.144.3 EN

151.

255.

ND COBOL Reference Manual
Index

rule .. 88.
VALUE OF FILE—ID IS clause 251
variable

definition L12.
length tables 235

VARYING option in PERFORM 207
verb definition L12
warning in source program 5.
WHILE condition in DO—loop 119
WITH

LOCK phrase with MULTI—USER—MODE 176, 179.
phrase in DISPLAY 130

word
boundary alignment in memory 82.
COBOL ... 20.
definition 412
key ... 21
userdefined 21

words
optional .. 22
reserved .. 21.
userdefined 20

WORKING—STORAGE
SECTION ... 59.
section definition 412

WRITE
and character positions in record 57.
and current record pointer 194
statement 193.
statement INVALID KEY condition 195

ZERO ... 23.
suppression in PICTURE 77.

ZEROES ... 23.
ZEROS ... 23.

ND—60.144.3 EN

************** SEND US YOUR COMMENTS!!! **************

Please let us know if you
' find errors
" cannot understand information
' cannot find information
' find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader’s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

************ HELP YOURSELF BY HELPING US!! HHHHH“

Manual name: ND COBOL Reference Manual Manual number: 60.1“.3 EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date'

Company: Position-

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for Norsk Data A.S ___->documentation errors. Software and Documentation Department
system errors should be reported on P.0‘ Box 25, Bogerud Norsk Data's answer will be foundCustomer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
PO. Box 25, Bogerud
0621 05506, Norway

Systems that put people first

NORSK DATA A.S OLAF HELSETS VEI 5 PO. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 - 29 54 00 - TELEX: 18284 NDN

