ND COBOL
Reference Manual

ND-60.144.02
Revision B

ND COBOL
Reference Manual

ND-60.144.02
Revision B

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A'S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk

Data A.S.

Copyright @ 1984 by Norsk Data A.S

This manual is in loose leaf form for ease of updating. Old pages may be
removed and rew pages easily inserted if the manual is revised.

The loose leaf form also allows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre-
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more suitable
for manuals of less than 100 pages than for large manuals. Plastic covers may
also be ordered below.

4%1»
B
|
11
[

\
|
0

NCRSK JATA AS 1 NOQRSK CATA AS

__ﬁs\\g__
v 4

l Ll 3. 3 amm. 53 e,
i R 353284333 S32°0sS o on2
((f‘ IR L 5 HRaperis
3 :z “z _"“‘"" roul S0e0AD.
l -x /\ L
L’
A Ring Binder B Plastic Cover

Please send your order to the local ND office or {in Norway) to:

Documertation Department
Norsk Data A.S

P.0. Box 4, Lindeberg gard
QOslo 10

ORDER FORM

I would like to order

....... Ring Binders, 30 mm, at nkr 20,- per binder
....... Ring Binders, 40 mm, at nkr 25,- per binder
....... Plastic Covers at nkr 10,- per cover

Name

Company
Address

ii

PRINTING RECORD

Printing

Notes

01/81

Version 01

03/82

Revision A

T he following pages have been revised:

X, Xi, xiii,

1-1,2.-10,4 1,4-2,4-11,6-30,6-10, 612, 6--22, 6-25, 6-25a, 627, 680,

6 90, A-11,A--12

Index pages 1 through 12.

The following pages have been added:

H-1, H--2.

08/82

Version 02

07/83

Revision A:

The following pages have been revised:

v, Vi, Xv,

1-4,2-8,5--5,56 9,5-22,5--27,5-31, 5;32, 5-34, 6-23, 6-24, 6-25, 6286,

6-27,6--28, 5-29, 6--30, 631, 6--32, 633,634, 635, 636, 644, 6~44a,

6-44b, 6-44c, 6-44d, 6-44e, 653, 6 b5, 6 -56, 670, 6101, 6102, 6-103,

2]

104, 6-105, 6107, 6-110,9-4,9-5,

1, A -2, A-3,A-4,A--5, A—6, A—T, A-8, A=9,A-10, A~11, A—12, A—13, A-14,

15, A 16, A~17, A~18, A-19, A—20, A-21, A—22, A—23 A—24, A—25 A-26,

A
A
A 27, A-28,A~29, A~30, A~31,D~1,D-2, E-1,F~1,F-2, F-3, H-2,

e, 20,3 —4—, <5, B, —7—, ~8—, ~9—, ~10—, —11—, =12~

06/84

Revision B:

The following pages have been revised:

iv, v, vil, xv

12,1-3,15,528, 633, 6-34, 635, 636, 6-37 to 6-44g, 654

A1, A-la. Alb, A-Q,A-12, A-15, A6, D-1,

The following pages have been added:

J-1,42,J-3,J-4,J5, J-6

ND COBOL Reference Manual
Publ.No ND-60.144.02 Rev.B

June 1984

®8e ©86
0600 o0e
00009 ©60
000000 GC
00000060 0Ce
2¢O 00000
oee [221
oee eee

P000000

ssosssese NORSK DATA A.S
200 o6e

coocesnss P.0.Box 25, Bogerud

c0000es® 0621 Oslo 6, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below,

The reader’'s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S

P.O. Box 25, Bogerud
0621 Oslo 6, Norway

PREFACE

THE PRODUCT

COBOL {COmmon Business Oriented Language) is a programming language,
based on English, which was developed for use in commercial data processing.
The original COBOL specification resulted from the work of the CODASYL
(Conference on Data Systems Languages) committee in the U. S. A in 1953,
ND COBOL is based on American National Standard X3.23 — 1974. ND COBOL is
COBOL for both ND-100 and the ND-500. Differences, where they occur, are
described in the text.

This manual describes ND COBOL, ND-10176, version F (ND-100) and
ND COBOL, ND-10177, version F {(ND-500).

THE READER

The manual is intended for the programmer using ND COBOL who requires a
detailed and formal explanation of the product as well as an account of the
features and facilities available to the user.

PREREQUISITE KNOWLEDGE

A basic knowledge of data processing techniques is necessary for the reader and
some familiarity with COBOL would be helpful. The reader should also have
some knowledge of the SINTRAN HI/VS operating system.

HOW TO USE THE MANUAL

The description is given in the order in which the Divisions and Sections appear
in the written programs.

The manual is intended for reference purposes and is organized as follows:

Part | of the manual describes ND COBOL in general terms and gives specific
rules for the writing of COBOL source programs. There is a chapter for each
COBOL division. Part Il contains an account of each ‘other feature’ or special
topic requiring a section of its own. Supplemental information is given in
Appendixes at the end.

ND-60.144.02
Rev. B

vi

CHANGES FROM PREVIOUS VERSION

Version F features Screen Handling, Multi-user relative and indexed 1-O, the DO
statement, extensions to the IF statement, IMPORT and EXPORT clauses. Section
1.2.1 lists the extensions to the standard in more detail.

ACKNOWLEDGEMENT

Any organization interested in reproducing the COBOL standard and
specifications in whole or in part, using ideas from this document as the basis
for an instruction manual or for any other purpose, is free to do so. However, all
such organizations are requested to reproduce the following acknowledgement
paragraphs in their entirety as part of the preface to any such publication. (Any
organization using a short passage from this document, such as in a bookreview,
is requested to mention "COBOL" in acknowledgemen: of the source, but need
not quote the acknowledgement):

COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributer or by the
CODASYL Programming Language Committee as to the accuracy and functioning
of the programming system and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for
the UNIVACR | and Il, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Transiator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and use of
COBOL specifications in programming manuals or similer publications.

ND-60.144.02
Rev. A

vii

FORMAT NOTATION

Basic formats are prescribed in the manual for the elements of the COBOL
language. The notation described here is used to define unambiguously for the
programmer how the clauses and statements of COBOL should be written.

RESERVED WORDS

COBOL has a specified list of words for use in source programs which have
preassigned meanings and cannot appear in programs as user-defined words or
system names. A complete list of the reserved words can be found in
Appendix D.

Reserved words may be divided into two categories:

Key Words

These are required by the syntax of the format. They are always in upper case
and underlined.

ND-60.144.02
Rev. B

viii

Optional Words

As their name implies, they may be included or omitted without changing the
syntax of the program. They appear in upper case but are not underlined.

Words printed in lower case letters represent information to be supplied by the
programmer. All such words are defined within this manual.

The general format is also defined by the use of the following symbols:

Braces (' °) These enclose vertically stacked items and indicate that one of the
enclosed items must appear

Brackets (|]) Square brackets are used to show that the enclosed item is
optional. depending on the requirements of the program.

The Ellipsis () These dots specify that the immediately preceding unit may
occur any number of times in succession at the user's opzion.

The anthmetic and logical operators (+. - = < =) When they appear in
formats they are required items even though they are not underlined.

Any other punctuation or special characters which appear in general formats
indicate the actual occurrence of these characters and are required by the
syntax.

ND-60.144.02

PART |

Section:

11
1.2

1.2.1
1.2.2

1.3

1.3.1
1.3.2
1.3.3

2.1

211

2111
2112
2113
21.1.4

2.2

221
222
2.2.3

22341
22372
2233
2234

224

TABLE OF CONTENTS
+ o+ o+

STANDARD COBOL

Page:
INTRODUCTION 1—1
ND COBOL 1—1
Operational Requirements ... 13
EXtenNsSION 1—4
Known Restrictions ... 1—4
How To Use The System ... 1—5
How To Compile a COBOL Program 15
How To Load and Execute a COBOL Program 1—8

Compiling, Loading and Execution ... 1—10
LANGUAGE CONCEPTS 21
Structure of COBOL ... 21
The COBOL DiviSions ..o 2—1
fdentification Division ... 2—1
Environment Division ... 2—1
Data Division ... 2—1
Procedure Division ... 2—2

Structure within the Divisions — Clauses

and Statements ... 22
Structure of the Language ... 2--3
COBOL Character Set ... 23
Character-Strings ... 2—-3
COBOL Words ..o 2—4
User Defined Words ... 2—4
Reserved Words ... 25
Literals ... 2—8
Separators ... 29

COBOL Format ... 2—10

ND-60.144.02

Section:

4.1

411
412
41.3

4.1.31
4132

4.2

421

4211
4212

422

4221
4222
42723
4224

423

51
52

5.3

5311
53.1.2
53.1.3
53.1.4
53156
53.1.6

Page:
THE IDENTIFICATION DIVISION ... 31
THE ENVIRONMENT DIVISION ... 41
Configuration Section ... 41
Source Computer Paragraph ... 41

Object Computer Paragraph ... 4--2
Special-Names Paragraph ... 4-—-2
Currency Is Clause ... 4--2
Decimal-Point Is Comma Clause 4-2
Input-Output Section ... 4—3

File Processing — Language Concepts 4--3

Data Organization ... 4-3

Access Modes ... 4--8

The File-Control Paragraph ... 4-—-9

For Sequential Organization ... 4-—-1

For Indexed Organization ... 4-—11

For Relative Organization ... 4-—11

General Rules ... 4-—-12

The 1-O Control Paragraph 4-13
THE DATA DIVISION o 5--1
Data Concepts ... 51
Structure of the Data Division 5-2
File Section ... 5-3

The Block Contains Clause ... 5-5
The Data Records Clause ... 5—6
The Label Records Clause ... 5—6
The Record Contains Clause ... 57
The Recording Mode Clause 5--9
The VALUE OF FILE-ID IS Clausecccccocoii... 5—9

ND-60.144.02

Section:

5.4

541

5411
541.2

6.1

6.1.1
6.1.2

6.2

6.2.1

6.2.1.1
6.2.1.2

6.3

Xi

Working-Storage Section

Data Description ...
The Concept of Level ...
Classes and Categories of Data

Page:

510

5-10

5—-10
5—-12

The Data Description — Complete Entry Skeleton ..5—

Data Description Entry ...
The Blank When Zero Clause
The Data Name/Filler Clause
The Justified Clause
The Picture Clause ...
Editing Rules for the PICTURE Clause
The Redefines Clause
The Sign Clause ...
The Synchronized Clause
The Usage Clause ...
Computational Options
The VALUE Clause

The EXPORT Clause

Declaratives
Procedures

Definition of an Arithmetic Expression

Arithmetic Operators
Evaluation Rules

Arithmetic Statements

ND-60.144.02

Section:

6.3.1

6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.1.5
6.3.1.6
6.3.1.7
6.3.1.8

6.4

i
o

6.5.1.1

6.6

6.6.1

6.6.1.1
6.6.1.2
6.6.1.3

6.6.2
6.6.3
6.6.4
6.6.5
6.6.6

Xii

Page.

Common OptioONS ... 67
The ROUNDED Option ... 67

The SIZE ERROR Option ..., 67

The CORRESPONDING Option ..o, 6—8

The ADD Statement ... 6—9
The COMPUTE Statementcoee. 610

The DIVIDE Statement ... 611
The MULTIPLY Statement ... 612
The SUBTRACT Statement ..o 6—13
Conditional EXpressions ... i 614
Conditional Statements ... 6—23
The IF Statement . 623
Nested IF Statements ...t 6—25
The DO Statement (An ND-Extension) ... 626
Data Manipulation Statements ... 628
Screen Handling Facilities ... 6--28
The ACCEPT Statement ..., 6—28

The BLANK Statement ... 634
The DISPLAY Statement

Screen Handling Examples
The INSPECT Statement
The MOVE Statement ...
The STRING Statement ...,

The UNSTRING Statement

ND-60.144.02

Xiii

Section: Page:
6.7 Input-Output Statements ... 6--62
6.7.1 -0 Status ..o 6—62
6.7.1.1 Status Key 1 ... 663
6.7.1.2 Status Key 2 ... 664
6.7.1.3 The INVALID KEY Condition. (Indexed

and Relative |-O Only) 6-—66
6.7.1.4 The AT END Condition ... 6-—66
6.7.15 Current Record Pointer ... 667
6716 The CLOSE Statement ... 667
6.7.1.7 The DELETE Statement ... 6—69
6.7.1.8 The OPEN Statement
6.7.1.9 The READ Statement
6.7.1.10 The REWRITE Statement
6.7.1.11 The START Statement
6.7.1.12 The UNLOCK Statement
6.7.1.13 The USE Statement
6.7.1.14 The WRITE Statement
6.8 Procedure Branching Statement 6101
6.8.1 The ALTER Statement
6.8.2 The EXIT Statement ...
6.8.3 The GO TO Statement
6.8.4 The PERFORM Statement
6.8.5 Using the PERFORM Statement
6.8.6 The STOP Statement
6.9 Compiler Directing Statements ... 6—111
6.9.1 The COPY Statement 6—111

ND-60.144.02

PART Il

Section:

7.1
7.2
7.3
7.4
7.5
7.5

7.5.2
753

8.1

8.1.1

8.1.1.1
8.1.1.2

8.2

8.2
8.2.2
8.2.3
8.2.4
8.3

8.3.1

8.3.11

8.3.2

Xiv

OTHER FEATURES

Page:
SORT/MERGE 71
SORT ConCepts oo 71
MERGE ConcCepts ... 7—2
SORT/MERGE~Environment Division 72
SORT/MERGE-—Data Division ... 73
SORT/MERGE --Procedure Division 74
The SORT Statement ... 7—5
Options Common to SORT and MERGE 7—6
The MERGE Statement ... 77
TABLE HANDLING . 81
Table Definition ... 8—1
Table References 8—3
SubSCripting .. 8—4
INAEXING oo 8-—5
Table Handling - Data Division 8—6
The OCCURS Clause ... 8—6
Fixed Length Tables - Format 1 86

Variable Length Tables - Format2 ... 8—7

The USAGE Clause ..o, 8—7
Table Handling — Procedure Division 88
The SEARCH Statement ... 8—9
Notes on Multi-Dimensional Tables 812
The SET Statement ... 815

ND-60.144.02

XV

Section: Page:
9 INTER-PROGRAM COMMUNICATION ... 9—1
9.1 Basic CONCeptsccooiiiiiiiiiiiiii e 9—1
9.11 Transfer of Control ... 9--2
9.1.2 Common Data ... 9-—-2
9.1.3 Inter-Program Communication — Data Division 9—4
9.1.31 Data Item Description Entriesc........oon 9--5
9.1.3.2 Record Description Entries ... 9—5b
9.1.4 Inter-Program Communication — Procedure

DIVISION i 9-—6
9.1.4.1 The CALL Statementcocoiiiiiiiiii 97
9.1.42 The USING Optionoccoooiiiiviiiiii 9—7
9.1.4.3 The EXIT PROGRAM Statement 9--8
Appendix Page
A COMPOSITE LANGUAGE SKELETON ... A—1
B ASCII CHARACTER SET oot B-—1
C RUN TIME AND COMPILER ERROR MESSAGES C—1
D RESERVED WORD LIST .. D—1
E CROSS REFERENCE EXAMPLE ... E—1
F COMPILER COMMANDS ND-100 AND ND-500c.ocoevn.. F—1
G GLOSSARY e G—1
H SIZE OF TEMPORARY FIELDS ... H—1
I INDEXED/RELATIVE I-O STATUS SUMMARY ... I—1
J RUNNING A SIMPLE PROGRAM ... J—1
JA Running the Example on an ND-100 Computer J—2
J.2 Running the Example on an ND-500 Computer J—4

INDEX
ND-60.144.02

Rev. B

XVi

1.1

INTRODUCTION

ND COBOI.

ND COBOL is a standard high level language implemented as a conventional

compiler and run-time library system operating under SINTRAN 111/VS operating
system.

ND COBOL is based upon American National Standard X3-23-1974. Elements of

the COBOL language are allocated to 12 different functional processing
“"modules”’.

Each module of the COBOL Standard has two "levels” — level 1 represents a
subset of the full set of capabilities and features contained in level 2.

In order for a given system to be called COBOL, it must provide at least level 1
of the Nucleus, Table Handling and Sequential 1-O modules.

The following summary specifies the contents of ND COBOL with respect to the
Standard:

Module Features Available in ND COBOL
Nucleus All of level 1 and level 2 except:
level 66

the RENAMES clause
the switch-status condition
the ENTER statement.

Additional features are:
USAGE is COMPUTATIONAL 1
COMPUTATIONAL 2

COMPUTATIONAL -3
ACCEPT FROM CPU-TIME.

Sequential 1.0 All of fevel 1 and level 2 except
the RERUN
the LINAGE
and CODE SET clauses

with the addition of

the RECORDING MODE clause.

ND-60.144.02

Indexed -0 and
Relative 1-0

Table Handling

Sort/Merge

Inter-Program
Communication

m Debugging

All of level 1 and level 2 except

the RERUN and
the SAME RECORD AREA clauses

with the addition of:

the RECORDING MODE clause.
All of level 1 and level 2.

All of level 1 and level 2 except:

the SAME AREA clause.

All of level 1 and level 2 except:
the CANCEL statement.

Conditional compilation: lines with ‘D in column 7' are
bypassed unless WITH DEBUGGING MODE.

ND-60.144.02
Rev. B

1.2

OPERATIONAL REQUIREMENTS

The ND COBOL compiler occupies 128 K words of the program area.

The compiler may execute as a reentrant subsystem under the SINTRAN 1I/VS
operating system, when only the necessary 1 K pages are brought into the
memory as needed. In this way, several active users may share a common code.

A system scratch file for the active terminal will be used to store compiler
information.

The source program is accepted in any media supported by the ND File System,
and may be entered and modified using an interactive editor. Once entered,
source files are stored on disk, floppy diskette or magnetic tape and can be
compiled by using simple compiler commands.

On the ND-10 a special microprogram is required.

The result of a compilation is:

A) A source listing including compiler assigned line numbers, source file
name, object file name, date and time.

B) In the event of any source program errors {or warnings) diagnostic
messages will appear following the source listing. These messages have
the format:

— Line number (5 digits)
— English message text
— {Optional) Further relevant data

C} An object program in library relocatable form (BRF on the ND-100 or NRF
on the ND-500) can be used by the ND Relocating Loader for the ND-100
or the ND-b00 Linkage Loader for the ND-500, to prepare the object
program in a form which is ready for execution.

ND-60.144.02
Rev. B

1.2.1 Extensions

For version E, new functions have been introduced as follows:

The BLANK statement.

The ACCEPT-ERROR statement.

The ACCEPT and DISPLAY statements with Screen-Handling options.

The OPEN statement with the MULTI-USER MODE, IMMEDIATE-WRITE
and MANUAL UNLOCK options.

The READ statement with LOCK.

The UNLOCK statement.

The DO statement.

The IF statement with the THEN, ELSE-IF and END-IF clauses.

The IMPORT and EXPORT clauses for inter-program communication.

1.2.2 Known Restrictions

For the time being the following restrictions are applicable:

A) A 77/01 item must not be greater than 32767 bytes.

ND-60.144.02
Rev. A

1.3

1.3.1

1-5

HOW TO USE THE SYSTEM

A complete example of the compilation, loading and execution of a simple
program with some of the features of ND COBOL is shown in Appendix J.

How to Compile a COBOL Program

The COBOL compiler may be recovered from the operating system by entering:

@COBOL (ND-100)
or
@ND COBOL-500 (ND-500)

When the compiler has printed * (asterisk) on the terminal, it is ready to accept
commands from the user.

All commands may be abbreviated as in SINTRAN 111/VS. A® and QF (control A,
control Q) may be applied to command input.

The command to compile is:
COMPILE source file list file object file

The source file is your symbolic program containing COBOL statements. A listing
of the program: is written on the list file while the object program in binary
relocatable format is written onto the object file.

The files must be specified by their names and these names must be delimited
by at least one space or comma. The default source file type is :SYMB. The list
file type is :SYMB and the object file type is :BRF on the ND-100 or :NRF on the
ND-500. (Scratch file 100 cannot be used as the object file.)

If the source input file is not a disk file, a line containing "END (from column 1)
must close the source file.

Example:

@COBOL
*COMP SCURCE LINE-PRIN ""OBJ”

Note that in this example the object file (OBJ) is specified inside quotes since it
is to be a new file.

If no diagnostics appear, the compiler has accepted all the statements as
syntactially and semantically correct. The object version may now be loaded by
the ND Reloceting Loader. (ND-100) or the ND-500 Linkage-Loader for the
ND-500.

ND-60.144.02
Rev. B

Sample Compilation

Let us assume that you have produced a program using an editor and it is stored

under the name EX-001 with type SYMB (suitable as input to ND COBOL) as
follows:

NORII-10/100 COROL COMFILER - VER 01.10.80 TIME: 09.45,16 DATED 30.09.80
SOURCE FILE: X-001
ORJECT FILE: *X-001*

1 ACRNCR KCHOKHOKHOKR KK KK KO K KKK SKOKSKOK K HOKR SORSOK HOR KKK KK SKOK 3OK 35OK JOK KK KK SO SOK K KKK K 0K
2 X THIS IS A SAMPLE EXAMFLE THAT CAN SERVE TO FAMILIARIZE *
3 X US WITH THE RESULT OF A COROL COMPILATION. *
4 X *
5 X THE FROGRAM COUNTS THE NUMBER OF RECORDS ON THE FILE X
é X "ARCIDATA®. X
7 HCHOK HOKHOR KK SOKKHOKKOK K 3KOK 0K KK KKK 3 K OK HOK KKK 0K K KK SKOK KOK KK 30K 3K 3K HOK KK 0K 0K 3K 0K
a8 IDENTIFICATION DIVISION,
9 FROGRAM-ID, X-001.
10 AUTHOR, NORSK DATA A/S
11 NORWAY .
12 UDATE-WRITTEN. BCTORER 1980,
13
14 ENVIRONMENT DIVISION.
158 CONFIGURATION SECTION,
16 SOURCE-COMFUTER, NORD-100.
17 OBJECT-COMFUTER. NORII-100.
18 SFECTAL~-NAMES, DECIMAL-FOINT IS5 COMMA.
19 INFUT-0UTFUT SECTION.
20 FILE-CONTROL .
21 SELECT L~FILE ASSIGN TO *ARCIDATA".
a0
23 0aTA DIVISION,
24 FILE SECTION,
25 Foro L-FILE
26 RLOCK CONTAINS 1 RECORDS
27 RECORLD CONTAINS 10000 CHARACTERS,
28 01 L-RECORD FIC X(10000),
29 WORKING~-STORAGE SECTION.
30 01 NUMBER-OF-RECORDS FIC 9¢10) VALUE 0.
31
32 FROCEDURE DIVISION,
33 1000,
34 OFEN INFUT L-FILE.
35 2000,
36 READ L~FILE AT ENIN GO TO 2000,
37 AL 1 TO NUMBER-OF-REZORDS,
38 GO TO 20006.
3% ?000.
40 DISPLAY “NUMBER OF RECORDS IN THE FILE IS *
41 NUMEER-~0OF -RECORDS .,
42 ClLOSE L-FILE.
43 STOF--RUN,

43 I - SYNTAX ERROR (RESUMFTION AT NEXT PARAGRA™H/VERE) ! STOF-RUN

KKK 1 ERROR MESSAGE ¥okk
XEXIT
@

Figure 1.1.

ND-60.144.02

Note the following in the compilation listing:

1. The page heading contains date, time, source file name (EX-001) and
object file name.

2. The source line (first 80 positions only) is listed along with compiler
assigned line numbers.

3. Diagnostic or warning messages, if any, appear after the source program
listing.
The error in the example:

43 E — SYNTAX ERROR (RESUMPTION AT NEXT PARAGRAPH/VERB):
STOP-RUN

produces the relevant line number (43) together with explanatory text and the
element itself which caused the error.

After successful compilation, the next step will be to link-edit using the

Relocating Loader. Finally, the resultant program module will be executed. These
operations are now discussed.

ND-60.144.02

1.3.2

How to Load and Execute a COBOL Program
On the ND-100, the ND Relocating Loader may be recovered from the operating
system by entering:

@NRL

When the loader has displayed an asterisk (") on the terminal, it is ready to
accept commands from the user.

Your program{s) may be loaded into a program-file instead of into main memory
if you use the command:

"PROG-FILE ifile name!
The PROG-FILE must be the first command given after the loader recovery.

Loader input is obtained from one or more files/library files. The loader is
initiated by the command:

'LOAD file name [file name] ...
Each of the files specified will be loaded until end-of-file is detected, then
control is returned to the user at the terminal by the prompt * (asterisk) and the
loader is then ready to accept another command.
To obtain the entry point addresses of the loaded program, use the command:
"ENTRIES-DEFINED ¢ file name !

The octal addresses which appear on this map denote the last reference address.

There should be no undefined entry points remaining. If your program is loaded
into main memory it may be started by the command:

"RUN

When the program has been executed, control is transferred to the operating
system and @ (at) is displayed.

Note that the RUN command can only be used in one-bank mode and if no
PROG-FILE or IMAGE-FILE is specified.

If you wish to leave the loader and enter the operating system you may simply
enter:

EXIT
You may restart the loader by using the system command:

@CONTINUE.

ND-60.144.02

1.-9

Message:
If the message:

LOADER TABLE OVERFLOW

is given it means that there is no more room for entries, The table length may be
expanded through the command:

"SIZE number of entries (octal)

For additional documentation relating to use of NRL, refer to its complete
documentation ND-60.066.

On the ND-5010, the ND LINKAGE LOADER {known as the NLL) may be called by
the command:

@ND-50C LINKAGE-LOADER
when the NLL types NLL:, it is ready to accept commands from the user.

The NLL will create a program ready for the execution. On the ND-500 a program
is termed a domain. A domain is named before anything is loaded to it by the
command:

NLL:SET-DOMAIN < domain-name >
Then a segment is opened by the command:
NLL:OPEN-SEGMENT <segment-name >/, < attributes > 3

And now programs and library files can be loaded into the segment by the
command:

NLL-LOAD-SEGMENT <file> ¢ < file >
To obtain the entry point addresses of the loaded program, use the command:
NLL:LIST-ENTRIES-DEFINED
and undefined entries by:
NLL:LIST-ENTRIES-UNDEFINED
If the user wishes to leave the NLL he can type the command:
NLL:EXIT
and he will return to SINTRAN.

For additional documentation relating to the use of the NLL, the user should refer

to its complete documentation in the manual: ND-500 LOADER/MONITOR,
ND-60.136.03.

ND-60.144.02

1.3.3 Compiling, Loading and Execution

Using the same source program and commands as in the previous example, the
following commands can be used:

{all lines start in column 1)
ON THE ND-100

@COBOL

COMP PROGRAM, TERM, PROGRAM
EXIT

@NRL

PROG-FILE PROGRAM

LOAD PROGRAM, COBOL-1 BANK
EXIT

@PROGRAM

ON THE ND-500

@ND COBOL

COMPILE PROGRAM, TERM, PROGRAM
EXIT

@ND LINKAGE LOADER

SET-DOMAIN PROGRAM
OPEN-SEGMENT PROGRAM
LOAD-SEGMENT PROGRAM, COBOL-LIB
EXIT

@ND PROGRAM

ND-60.144.02

2.1

2.1.1

2111

2.1.1.2

2.1.1.3

LANGUAGE CONCEPTS

STRUCTURE OF COBOL

Every COBOL program is divided into four divisions. Each must be placed in its
proper sequence and begin with a division header.

The COBOL Divisions

The four divisions of a COBOL source program and their functions are:

ldentification Division

This names the program and, optionally, documents the compilation date, etc.

Environment Division

This describes the computer(s) and equipment to be used by the program. It also
includes a description of the relationship between the files containing data and
the input-output devices.

Data Division

This defines the names and characteristics of all the data to be processed by the
program.

ND-60.144.02

2114

2.1.2

Procedure Division

This consists of executable statements that direct the processing of data at
execution time.

Structure within the Divisions — Clauses and Statements

A clause specifies the attributes of an entry which, containing a series of clauses
ending with a period, can appear in each division except the procedure division.

A statement, written in the procedure division, specifies an action to be taken by

the object program. A series of statements, ending with a period, is defined as a
sentence.

Every clause or statement in the program may be further subdivided into units
called phrases or options. A phrase is an ordered set of one or more COBOL
character strings forming a part of a clause or statement. An option is a phrase
in which the programmer can choose between alternative wordings, according to
the meanings he wishes the phrase to possess.

Clauses, entries, statements and sentences may be combined into paragraphs
and sections which each define a larger part of the problem program. A section
may itself contain paragraphs.

ND-60.144.02

2.2 STRUCTURE OF THE LANGUAGE

2.2.1 COBOL Character Set

The most basic and indivisible unit of the language is the character. The set of
characters used to form COBOL character strings and separators is given below.

The complete COBOL character set consists of the 52 following characters:

Character: Meaning:

0,1, ...9 digit

A B .. Z letter
space (blank)

+ plus sign

— minus sign (hyphen)
asterisk

/ stroke (virgule, slash)

o= equal sign

$ dollar sign
comma (decimal point)
semicolon

period (decimal point)
quotation mark (double)

{ left parenthesis
) right parenthesis
> greater than symbol

< less than symbol
apostrophe (single quotation mark)

Note that a reference to ‘characters’ throughout this manual wil be to a subset of

the above list, i.e., the list not including "separators” (defined in Section 2.2.3.4).

2.2.2 Character-Strings

A character-string is a character or sequence of contiguous characters which
form a COBOL word, a literal, a PICTURE character-string or a comment entry. A
character-string is delimited by separators.

ND-60.144.02

2.2.3

2.2.3.1

COBOL Words

A COBOL word can be a user defined word, a system word or a reserved word.
Its maximum length is 30 characters. System words and reserved words are
defined as follows.

User Defined Words

These are COBOL words supplied by the programmer. Characters valid in a user
defined word are:

A through Z
0 through 9
fffffff {hyphen)

The hyphen may not be the first or last character. A list of the sets of user
defined words together with their formation rules is given below.

User Defined Word Set: Characteristics:

condition name Must contain at least one alphabetic character.
data name Within each set the name must be unique. (It can
record name be made unique by qualification if the format rules
file name for the set permit.}

index name
mnemonic name

library name The above rules apply.
program name
routine name

paragraph name May be all numeric, otherwise rules in paragraph 1
section name apply.

The function of each user defined word in any clause or s-atement will be found
under the description for that clause or statement.

The function of each system name (Norsk Data defined names for
communication with the operating system) will be found in the Glossary.

ND-60.144.02

2.2.3.2

Reserved Words

Reserved words may be divided into the following categories:

Key words

Optional words
Connectives

Special registers
Figurative constants
Special character words

SR T e

A reserved word is a COBOL word having a fixed meaning and it must not be
used as a user defined word or system name. A list is given in Appendix D.

KEY WORDS

A key word is required when the format in which it appears is used in a source
program. Within each format, such words are upper case and underlined.

Key words are of three types:

1. Verbs such as ADD, READ and MOVE.

2, Required words, which appear in statement and entry formats.

3. Words which have a specific functional meaning such as NEGATIVE,
SECTION, etc.

OPTIONAL WORDS

Within each format, uppercase words that are not underlined are called optional

words and mey appear at the user's option. The presence or absence of an

optional word does not alter the semantics of the COBOL program in which it

appears.

CONNECTIVES

These are:

1. Qualifier connectives that are used to associate a data name, a condition
name, a text name or a paragraph name with its qualifier: OF, IN.

2. Series connectives that link two or more consecutive operations
(separatar comma) or ; (separator semicolon).

3. Logical connectives that are used in the formation of conditions: AND, OR.

ND-60.144.02

SPECIAL REGISTERS

Each compiler generated storage area whose prima-y function is to store
information produced by one of the specific COBOL features, is a special

register.

Examples.

DATE, DAY, TIME (see ACCEPT statement in the Procedure Division).

FIGURATIVE CONSTANTS

Certain reserved words are used to name and reference certain constant values
which will be generated by the compiler when these waords are used. Known as
figurative constants they must not be bounded by quotation marks. Singular and
plural forms may be used interchangeably.

The reserved words and the figurative constant values they generate are listed

below.

ZERO, ZEROS
ZEROES

SPACE, SPACES

HIGH VALUE,
HIGH - VALUES

LOW VALUE,

LOW - VALUES

QUOTE, QUOTES

ALL literal

Represents the value "0’ or one or more of the characters
‘0", depending on context.

Represents one or more of the character space from the
computer’s character set.

Represents one or more of the characters that has the
highest ordinal position in the program collating
sequence.

Represents one or more of the characters that has the
lowest ordinal position in the program collating sequence.

Represents one or more of the characters . The word
QUOTE or QUOTES cannot bz used in place of a
quotation mark in a source program to bound a
nonnumeric literal. Thus, QUOTE ABD QUOTE is incorrect
as a way of stating the nonnumeric literal "ABD"".

Represents one or more of the string of characters
comprising the literal. The literal must be either a
nonnumeric literal of one character length or a figurative
constant other than ALL literal. When a figurative
constant is used, the word ALL is redundant and is used
for readability only.

ND-60.144.02

When a figurative constant represents a string of one or more characters, the
length of the string is determined by the compiler from context according to the
following rules:

1. When a figurative constant is associated with another data item (e.g., is
moved to or compared with another item) the string of characters
composing the figurative constant is repeated character by character on
the right until the size of the resultant string in characters is equal to that
of the associated data item. This is done prior to and independent of any
application of a JUSTIFIED clause associated with the data item.

2. When a figurative constant is not associated with another data item, as
when the figurative constant appears in a DISPLAY, STRING, STOP or
UNSTRING statement, the length of the string is one character.

A figurative constant may be used wherever a literal appears in the format,
except that whenever the literal is restricted to having only numeric characters in
it, the only figurative constant permitted is ZERO (ZEROS, ZEROES).

Each reserved word which is used to reference a figurative constant value is a
distinct character string with the exception of the construction ‘ALL literal’ which

is composed of two distinct character strings.

SPECIAL CHARACTER WORDS

These are the arithmetic operators (+ — / * or **) or the relational characters

{< > =} They are described under arithmetic expressions and conditional
expressions in the Procedure Division.

ND-60.144.02

2.2.3.3 Literals

A literal is a character string with a value specified either by the ordered set of
characters by which it is composed or by a figurative constant. There are two
types of literals: nonnumeric and numeric.

A nonnumeric literal is a character string bounded by quotation marks containing
any allowable character from the ASCII character set. Its maximum length is 150.

Any punctuation characters included within a character string are part of its
value.

A matching pair of either single or double quotes is allowed to bound the
character string forming a nonnumeric literal. If the character string is bounded
by single quotes then each embedded quotation mark must be represented by a
pair of single quotes. If, however, the bounds are double guotes then each
embedded quotation mark must be represented by a pair of double quotes.

Nonnumeric literals — a coding example:

Comment A area|B area Comment
1 61718 12 16 20 N /A 72173 80
01 HEADING—1 PIC {120) VALUE "TEXTTEXTTE —

— ATEXTTEXTTEXTTEX".

literal begins here

literal is incomplete due to col 72 limit~

delimiter required here, not counted in picture
length.

hyphen {—) indicates line continues.

A numeric literal is a character string whose characters are selected from the
digits 0" through '9’, the plus sign, the minus sign and/or the decimal point. The
rules for formation of numeric literals are as follows:

1. A literal must contain at least one digit.

2. One through 18 digits are allowed.

3. A literal must not contain more than one sign. The sign must always be in
the leftmost position.

4. It must not contain more than one decimal point. This must not be in the
rightmost position.

ND-60.144.02
Rev. A

2234

29

Separators

A separatoris a character or two contiguous characters formed according to the
following rules:

[ox)

The punctuation character space is a separator. Anywhere a space is used
as a separator or as part of a separator, more than one space may be used.
All spaces immediately following the separators comma, semicolon or
period are considered part of that separator and are not considered to be
the separator space.

Except when the comma is used in a PICTURE character-string, the
punctuatior characters comma and semicolon, immediately followed by a
space, are separators that may be used anywhere the separator space is
used. They may be used to improve program readability.

The punctuation character period, when followed by a space is a separator.
It must be used only to indicate the end of a sentence, or as shown in
formats.

The punctuation characters right and left parenthesis are separators.
Parentheses may appear only in balanced pairs of left and right
parentheses delimiting subscripts, reference modifiers, arithmetic
expressions, boolean expressions, or conditions.

The punctuation character quotation mark is a separator. An opening
quotation mark must be immediately preceded by a space or left
parenthesis; a closing quotation mark, both when paired with an opening
quotation rnark, must be immediately followed by one of the separators
space, comma, semicolon, period, or right parenthesis.

The spearator space may optionally immediately precede all separators
except:

a. The separator closing quotation mark. In this case, a preceding space
is considered as part of the nonnumeric literal and not as a separator.

The separator space may optionally immediately follow any separator
except the opening quotation mark. In this case, a following space is
considered as part of the nonnumeric literal and not as a separator.

Any punctuation character which appears as part of the specification of a
PICTURE character-string or numeric literal is not considered as a punctuation
character, but rather as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE character-strings are delimited only
by the separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the

characters which comprise the contents of nonnumeric literals or comment lines.

ND-60.144.02

2.2.4

2-10

COBOL Format

COBOL programs must be written in a standard format based on an 80 character
line. The output listing of the source program is printed in the same format.

The illustration in this section shows the layout of a coding sheet. The following
code rules include a description of th fields within it.

Continuation area (column 7)

Here one indicates the continuation of words and numeric literals from the
previous to the current line. The symbol used is a hyphen.

If there is no hyphen the preceding line is assumed to be followed by a space.

If there is a hyphen in the continuation area, then the first nonblank character of
this line immediately follows the last nonblank character of the preceding line
without an intervening space.

If there is a nonnumeric literal in the line to be continued which does not have a
closing quotation mark, then all spaces up to and including column 72 are
considered to be part of this literal. The continuation line must contain a hyphen
in its continuation area and the first nonblank character must now be a quotation
mark. {See the coding example of a nonnumeric literal in the previous section on
“literals’.)

Area A and area B
These occupy columns 8 through 11 and 12 through 72 respectively. The

elements that may begin in area A and the placement of elements that can
follow them are given in the following chart.

ND-60.144.02

Sequence Rules for Elements in Areas A and B

Elements in Area A

Followed by:

Elements placed in:

Division header

{Procedure Division only)
USING

Area B
(same or next line)

section header

paragraph header
DECLARATIVES

Area A
{next line)

Section header USE statement Area B
paragraph header
paragraph name Area A
(either to follow USE, if {next line)
specified)

paragraph header or Environment division entry | Area B

paragraph name

Procedure division sentence|{same or next line)

level indicator data name Area B
level number {same line)
DECLARATIVES Declaratives section name | Area A
(next line)
END DECLARATIVES section header Area A

(next line)

Comment Lines

A comment line is any line with an * (asterisk) or / (slash) in column 7. It may
appear on any iine following the one containing the identification division header.
A comment may be written in areas A or B and contain any characters from the
ANSCII character set.

The * denotes that the comment is to be printed in the output listing immediately
following the last preceding line. The / denotes that the current page of the

output listing is to be ejected and that the comment will appear on the first line
of the next page.

Coding Sheet Layout

Standard COBOL coding sheets are rarely used when programming on the ND
system, as most programmers will “"code” via the ND EDITORS. However, the
following layout should be useful as the coding sheet fields are referred to in the
text.

Comment A area | B area Comment

1 61718 12 16 20 VA 7273 80

ND-60.144.02

THE IDENTIFICATION DIVISION

The identification division must be included in every source program. This
division names the source programs and the object program.

A source program is the initial COBOL program. An object program is the output
from the compilation,

In addition, the user may include in this division information such as the date the
program wes written, etc.

Format:

IDENTIFICATION DIVISION.
PROGRAM:-ID. program name.
AUTHOR. [comment entry] ...]
INSTALLATICN. [comment entry] ...]
DATE-WRITTEN. [comment entry] ...]
DATE-COMPILED. [comment entry] ...]
SECURITY. [comment entry] ... |
REMARKS [comment entry] ...]

[AUTHOR
{
[DATE-WRI
[
[SECURITY
[REMARKS

The ldentification Division must begin with the reserved words IDENTIFICATION
DIVISION followed by a period,

The PROGRAIM-ID paragraph gives the name by which a program is identified
and it must be the first paragraph in the ldentification Division. The other
paragraphs are optional.

Use of the Date-Compiled paragraph does not produce the compilation date on
that line. The date of compilation always appears on the first page of the listing,
whether or not this paragraph is present.

All comment-entries serve only as documentation, the syntax of the program is
unaffected by them.

ND-60.144.02

4.1.1

4-1

THE ENVIRONMENT DIVISION

The Environment Division contains a description of the computer on which the
source prograr is compiled together with the functions that are dependent on
its physical cheracteristics. The presence of the Environment Division is optional.

General Forman:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION
[SQURCE - COMPUTER. computer name [WITH DEBUGGING MODE] . |
[QBJECT COMPUTER. computer name)|
[L.SEGMENT-LIMIT IS segment number]

[SPECIAL-NAMES. [.CURRENCY SIGN IS literal]
[DECIMAL-POINT 1S COMMA] . |
[INPUT QUTPLT SECTION.
EILE.CONTROL. file control entry [file control entry| ...
[LLO.CONTROL. input-output control entry]]

CONFIGURATION SECTION

Source Computer Paragraph

Format

SOURCE-COMPUTER.

ND 100
ND 100CE
ND-500

[WITH DEBUGGING MODE]|.

The WITH DEBUGGING MODE clause indicates that all debugging lines are to be

compiled. If it is not specified. debugging lines will be compiled as if they were
comment lires,

A debugging line is any line in a source program with a "D’ coded in column 7
{the continuation area).

Each line must be written so that a syntactically correct program results when
the debugging lines are compiled into the program. Debugging lines may be
continued but sach continuation line must contain a "D’ in column 7.

Debugging lines may be specified only after the SOURCE-COMPUTER paragraph.

ND-60.144.02

4.1.2

4.1.3.1

4132

Object Computer Paragraph

Format:

QBJECT-COMPUTER.

ND-10
ND-100
ND-100CE
ND-500

[L.SEGMENT-LIMIT IS segment number].

The SEGMENT-LIMIT clause is treated by the compiler as comments only.

Special-Names Paragraph

The SPECIAL NAMES paragraph provides a substitute character for the currency
symbol and specifies whether the functions of the decimal point and comma are
to be exchanged in PICTURE clauses and numeric literals. For the format see the
beginning of this chapter.

Currency Is Clause

The literal which appears in the CURRENCY SIGN IS literal clause is used in the
PICTURE clause to represent the currency symbol. The literal is limited to a
single character and must not be one of the following characters:

1. digits 0 through §
2. alphabetical characters A, B, C, D, L, P, R, S, V, X. Z or the space
3. special characters **', "', =", O, U gy, L), =

If this clause is not present, only the currency sign is used in the PICTURE
clause.

Decimal-Point Is Comma Clause

When specified means that the function of the cornma and period are exchanged
in the character string of the PICTURE clause and in nurneric literals.

ND-60.144.02

4.2

4.2.1

4.2.11

INPUT-OUTPUT SECTION

The input-output section names files and provides specifications for other file
related information. lts general format is shown at the beginning of this chapter.

File Processing — Language Concepts

The way in which COBOL files in a program are processed depends on how the
data is organized on a file and how this data is to be accessed.

Data Organization

This refers to the permanent logical structure of the file and is defined as one of
three types.

1. Sequential Organization

With this organization, each record in the file except the first has a unique
predecessor record, and each record except the last has a unique
successor record. These predecessor/successor relationships are
establishad by the order of the WRITE statements when the file is created.
Once established, these relationships do not change, however it is possible
to add records to the end of the file. The records may be fixed or variable
length.

ND-60.144.02

NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 09.11.35 DATE: 22.10.80
SOURCE FILE: (TD)GENSEQ

W OO OU LN

IDENTIFICATION DIVISION.
PROGRAM-ID.
GENSEQ.
LEa e s i izt

CREATES SQ-FILE AND LISTS.

FHHR BRI 06035690390 398 90 300 T30 1 90 300000 0 33030 00 IR
ENVIRONMENT DIVISION.

INPUT-QUTPUT SECTION.

FILE-CONTROL.

SELECT SQ-FILE ASSIGN "COB1:DATA" ,
ORGANIZATION IS SEQUENTIAL,
ACCESS IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.

FD SQ-FILE
LABEL RECORDS STANDARD
DATA RECORDS M-REC.
01 M-REC.
02 FILLER PIC X(10).
02 SEQNUM PIC 9(5).
02 FILLER PIC X(5).
02 FILLER PIC X(40).

WORKING-STORAGE SECTION.

03 RANDNO COMP, VALUE ZERO.
01 MAXRAND CcoMP, VALUE 1030.
01 NORECS PIC 9(H4).

01 RECCNT CoMpP, VALUE O.

PROCEDURE DIVISION.

INIT-01.
OPEN OUTPUT SQ-FILE.
DISPLAY "CREATE RECORDS ?°
PERFORM GET-NORECS.

PERFORM CRE-SQ-FILE NORECS TIMES.
* BUILD THE INPUT FILE
CLOSE SQ-FILE.
DISPLAY 'FILE SQ-FILE CREATED. , RECCNT, "RECORDS.’.
OPEN INPUT SQ-FILE.
LIST-FILE-O.
MOVE O TO RECCNT.
LIST-FILE-1.
READ SQ-FILE AT END GO TO LIST-END.
ADD 1 TO RECCNT.
DISPLAY ‘REC ", RECCNT, ~ SEQNUM = ~, SECNUM.
GO TO LIST-FILE-1.
LIST-END.
CLOSE SQ-FILE.
DISPLAY "JOB FINISH".
STOP RUN.

CRE~-SQ-FILE.
CALL “RND” USING RANDNO, MAXRAND.
MOVE ALL “*° TO M-REC.
MOVE RANDNO TO SEQNUM.
ADD 1 TO RECCNT.
DISPLAY "UT REC =", RECCNT, " KEY =", SEQNUM.
WRITE M-REC.

GET-NORECS.
ACCEPT NORECS.
IF NORECS NOT NUMERIC,
DISPLAY "#¥® NOT NUMERIC DATA ",
GO TO GET-NORECS.

*%#% NO ERROR MESSAGES #d##

ND-60.144.02

Indexed Organrization

A file with this organization is a mass storage file whose records, which
may be fixed or variable, are accessed by means of a key. Each record can
have one or more keys and each key is associated with a particular index
held on that file. Each index provides a logical path to the data records
according to the contents of a data item within each record as the record
key for that index.

The RECORD KEY clause in the file control entry for each file names the
prime record key for that file. When inserting, updating or deleting records
in a file, each record must be identified solely by its prime record key. This
value must, therefore, be unique and it must not be changed when
updating the record.

The ALTERNATE RECORD KEY clause names an alternate record key for a
file. (This value may be nonunique if the DUPLICATES phrase is specified
for it.) These keys provide alternate access paths for record retrieval from
the file.

Relative Organization

Relative file organization is permitted only on mass storage devices. The
file may be thought of as a string of areas, each capable of holding a
logical record. Each of these is identified by a relative record number which
is used for storage and retrieval.

For example, the tenth record is the one addressed by relative record
number 10 and is in the tenth record area, whether or not records have

been written in the first through ninth record areas.

Records mey be of fixed or variable length.

ND-60.144.02

NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 15.57.20 DATE: 21.10.80
SOURCE FILE: ISAM-EX1

W O_OUT EWN —

39
4o
41
42
43
Ly
45
46
u7
ug
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64

IDENTIFICATION DIVISION.
PROGRAM~ID.
GEN--ISAM-1.
FHAARRERRF RN RA RN AL RSB UN SRR LR ARV AN R RN BN R AA AR FR B LR R R LRBRAAS
* ISAM (INDEX SEQUENTIAL ACCESS METHOD).
*THE RECORD IS THE OUTPUT TO AN ISAM FILE USING THE *UNIQUEX
%(IE: NO DUPLICATES) DATA FOUND IN FIELD ISAM-KEY AS *KEY* VALUE.
¥
* BEFORE THIS JOB CAN BE RUN THE FOLLOWING *MUST* BE SO :
* A) FILE "ISAM-EX:DATA" MUST EXIST.
* B) FILE "ISAM-EX:ISAM" MUST NOT EXIST OR IF EXISTING
*

CONTAIN ¥*NO DATA !'i¥
FRH AR IR RIS RIS NI IR MR R IR AR R R R R RN AR RNRS

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT ISAM-FILE ASSIGN TO "ISAM-EX:DATA™,
ORGANIZATION IS INDEXED,
ACCESS MODE IS LYNAMIC,
RECORD KEY IS ISAM-KEY,
FILE STATUS IS ISAMSTATUS.

DATA DIVISION.
FILE SECTION.

FD ISAM-FILE
RECORD CONTAINS 46 CHARACTERS,
DATA RECORD IS ISAM-REC.

01 TSAM-REC.
02 ISAM-KEY PIC X(6).

* feteessicssesessoacanns MUST BE IN RECORD AREA !
02 ISAM-TEX PIC X(40).

WORKING~STORAGE SECTION.

01 ISAMSTATUS PIC XX.
* RETURN STATUS FROM ISAM.
RN R RN RN R R IR R R IR L R RRRRE R AR R AR RRARXRR

PROCEDURE DIVISION.

AQQ1.

OPEN I-O ISAM-FILE.
A0Q2.
DISPLAY "ENTER KEY (MAX 6 CHAR) :",
ACCEPT ISAM-KEY.
IF ISAM-KEY = SPACES GO TO LIST.
* SPACES INPUT , END DIALOG
DISPLAY "ENTER TEXT (MAX 4O CHAR) :v.
ACCEPT ISAM-TEXT.
READ RECORDS FROM TERMINAL
WRITE ISAM-REC , INVALID KEY,
DISPLAY "ISAM FILE ERRCR :", ISAMSTATUS, ":".
GO TO A0O2.
* QUTPUT RECORD AND ASK AGAIN
LIST.

DISPLAY "ENTER ACCESS KEY :'.

ACCEPT ISAM-KEY.

IF ISAM-KEY = SPACES GO 70 FINI.

READ ISAM-FILE RECORD KEY IS ISAM-KEY INVALID KEY,
DISPLAY "*¥ RECORD NOT FOUND !',
GO TO LIST.

DISPLAY "REC: ", ISAM-KEY, ": ", ISAM~REC.

GO TO LIST.

FINI.

CLOSE ISAM-FILE.

DISPLAY "JOB END".

STOP RUN.

¥¥% NO ERROR MESSAGES ###

ND-60.144.02

47

NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 09.06.39 DATE: 22.10.80
SOURCE FILE: REL-EX

30
31
32
33
34
35
36
37
38
39
Lo
41
42
u3
Ly
s
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

IDENTIFICATION DIVISION.
PROGRAM~ID.

GENRELATIVE.
%*************%****************{'****************************
* SHOWS THE USAGE OF A RELATIVE FILE :

* THE FILE *MUST* EXIST BEFORE THE RUN BUT MAY BE EMPTY, EACH
* RECORD IS LOCATED DIRECTLY BY ITS RELATIVE (TO 1) POSITION IN
* THE FILE BY ITS *NUMERIC¥* KEY VALUE.
***{'**
ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT RELFILE ASSIGN "RELATIVE-EX:DATA" ,
ORGANIZATION IS RELATIVE,
ACCESS IS DYNAMIC,
RELATIVE KEY IS REL-KEY,
FILE STATUS IS REL~STATUS.

DATA DIVISION.
FILE SECTION.

FD RELFILE
LABEL RECORD IS OMITTED
DATA RECORD IS REL-RECORD
BLOCK CONTAINS 10 RECORDS
RECORD CONTAINS 60 CHARACTERS.
01 REL-RECORD PIC X(60).
* RECORD CANNOT BE "QED" TYPE RECORD

WORKING-STORAGE SECTION.

01 _REL-STATUS PIC XX.

01 REL-KEY PIC 999.

Tereeneinnn CANNOT APPEAR IN RELFILE RECORD AREA,

* MAX POSSIBLE SIZE IS 999999, RESTRICTED
* TO 999 IN THIS PROGRAM.

PROCEDURE DIVISION.

A0QO.
OPEN I-O RELFILE.
A0O2.
DISPLAY "ENTER KEY (MAX 999) .
PERFORM GET-KEY.
IF REL-KEY = ZEROES GO TO A003.
DISPLAY "ENTER TEXT (MAX 60 CHAR) :",
ACCEPT REL-RECORD.
WRITE REL-RECORD INVALID KEY,
DISPLAY ' *¥ RELFILE ERROR :", REL-STATUS.
GO TO AOO2.
AQQ3.
DISPLAY "ENTER ACCESS KEY :".
PERFORM GET-KEY.
IF REL-KEY = ZEROS GO TO A999.

READ RELFILE RECORD INVALID KEY,
DISPLAY " #%* RECORD NOT FOUND !", REL~STATUS,
GO TO A0O03.
DISPLAY "REC :", REL-KEY, ":", REL~RECORD.
GO TO A003.
A399.
CLOSE RELFILE.
DISPLAY "JOB END'".
STOP RUN.
GET-KEY.
ACCEPT REL-KEY.
IF REL-KEY NOT NUMERIC ,
DISPLAY " *%* KEY MUST BE NUMERIC ",
GO TO GET-KEY.
GET-KEY-EXIT.
EXIT.

#%% NO ERRCR MESSAGES *## ND-60.144.02

4.2.1.2

Access Modes

Three access modes are available in COBOL: sequential, random, and dynamic.

For sequential organization records can only be accessed in sequential access
mode, e, in the order in which they were originally written on the file. A
sequential mass storage file may be used for input and output at the same time.
One file maintenance method made possible by this facility is to read a record,
process it and. if it is updated, write it, modified, to its prev.ous position.

For indexed organization, using the sequential access mode means that records
are accessed in the ascending order of the record key values. (The order of
retrieval of records within a set of records having duplicate key record values is
the order in which the records were written into the set.)

Using the random access mode, records are accessed i a sequence determined
by the programmer. A desired record is accessed by having its record key
detined as a record key data item.

Using the dynamic access mode, the programmer may chenge at will, by means
of appropriate coding, from sequential access to random access.

For relative organization. the file can be accessed either sequentially, dynamically
or randomly. Sequential access provides the same results as if the file were
organized sequentially. Records are accessed in ascending order of relative
record number of records currently existing on the file.

Using random mode, the access sequence is controlled by the programmer. The
desired record must have its relative record number placed in a relative key data
item

Such a file may be thought of as a serial string of areas, esch capable of holding
atogical record. Each of these areas is denominated by a relative record number.
Records are stored and retrieved based on this number. For example, the tenth
record 1s the one addressed by relative record number 10 and is the tenth record
area, whether or not records have been written in the first through the ninth
record areas.

In the dynamic access mode, the programmer may change at will from
sequential access to random access using appropriate forms of input-output
statements.

ND-60.144.02

4-9
422 The File-Control Paragraph

The FILE-CONTROL paragraph associates each file with an external medium and
allows specification of file organization, access mode, etc.

FILE-CONTROL.

[select-entry] . ..
Format 1: Sequential files

SELECT [OPTIONAL]J file name

ASSIGN TO assignment-name-1

RESERVE int AREA
. . nig "
SRR HEORT) AREAS

[[ORGANIZATION IS SEQUENTIAL]

[{/ACCESS MODE IS SEQUENTIAL]

[:FILE STATUS IS data-name-1].

Format 2: Indexed Files
SELECT file-name

ASSIGN TO assignment-name- 1

AREA
'RESERVE inte
—=" ger[AREAs:l

OCRGANIZATION IS INDEXED

SEQUENTIAL
ACCESS MODE IS RANDOM
RDYNAMIC

BECORD KEY IS data-name-2

[:ALTERNATE RECORD KEY IS data-name-3 [WITH DUPLICATES] |

[:FILE STATUS IS data-name-4].

ND-60.144.02

Format 3: Relative Files
SELECT file-name

ASSIGN TO assignment-name-1

REA

;RESERVE integer AREAS

(ORGANIZATION IS RELATIVE

SEQUENTIAL

[RELATIVE KEY IS data-name-5

JACCESS MODE IS ANDOM

YNAMIC

[.FILE STATUS IS data-name-6].

Format 4. Sort/Merge

JBRELATIVE KEY IS data-name-5

SELECT file-name ASSIGN TO assignment-name-1.

The SELECT clause must appear first in the file control entries but subsequent

clauses may appear in any order.

Each file described in the Data Division must appear in one and only one entry in

the file control paragraph.

The default access mode is sequential.

The file status data-name, (data-names-1, 4
the file section.

All data-names may be qualified.

ND-60.144.02

and 6) must be defined in the Data
Division as a two character, alphanumeric item which is not, however, defined in

4.2.2.1

4222

4.2.2.3

4-11

For Sequential Qrganization

When the ORGANIZATION IS SEQUENTIAL clause does not appear the existence
of this clause is implied.

The OPTIONAL phrase may be specified for input or output files. Its specification

is required for nput or output files that are not necessarily present each time the
object program is executed.

For Indexed Organization

Data-names 2 and 3 must be defined as alphanumeric in a record description
entry for that fle name. Neither can describe an item whose size is variable.
Data-name-3 cannot reference an item whose leftmost character position

corresponds to the leftmost character position of an item referenced by
data-name-2 o- by any other data-name-3 associated with this file.

For Relative Organization

Data-name-b, which must be an unsigned integer, must not be described in a
record description entry associated with that file.

If a relative file is referenced by a START statement then the RELATIVE KEY
phrase must appear for that file.

ND-60.144.02

4224

4-12

General Rules:

The ASSIGN clause specifies the association of a file name with a storage
medium

The ORGANIZATION clause defines the logical structure of a file. This is
established when the file is created and cannot be subsequently changed.

The RESERVE clause is treated as comments and appears for syntax
reasons only.

When the FILE STATUS clause appears, the COBOL hbrary system, after
execution of every statement referencing the file, moves a value indicating
the status of the execution into the data item referenced by this clause
(see 1-O Status under INPUT-OUTPUT statements in the Procedure Division
description).

Records in the file are accessed in the sequence determined by the predecessor
successor relationships established by the execution of WRITE statements in the
file formation.

General Rules for Indexed Organization:

When the access mode is sequential, records in the file are accessed in the
order of ascending record key values within a given key of reference. If the
access mode is random then the value of the record key indicates the
record to be accessed. When the access mode is dynamic the file may be
accessed sequentially and/or randomly.

The RECORD KEY clause denotes the prime record key for the file and its
values must be unique. The ALTERNATE RECORD KEY specifies an
alternate record key for the file. Both record keys provide access paths to
the records in the file.

For Relative Organization

When the access mode is sequential, records are accessed in the order of
ascending relative record numbers of records exisiing on the file. If the
access mode is random then the value of the RELATIVE KEY data item is
used to locate a record. When the access mode is cynamic, records in the
file can be accessed sequentially and/or randomly.

All records stored in a file are uniquely identified by relative record
numbers. These specify the record’s logical ord nary position as follows:
the first logical record has a relative record number of one (1} and
subsequent records have relative record numbers of 2, 3, 4, ...

ND-60.144.02

423

The I-O Control Paragraph

(Sequential Files Only)

The 1-O-CONTROL paragraph specifies the memory area to be shared by
different files.

Format:
[-0-CONTROL.
[SAME AREA for file-name-1 tfile-name-2 ¢ .. | ...

The [-O CONTROL paragraph is optional. More than one SAME clause may be
included in a program however:

1. A file name must not appear in more than one SAME AREA clause.
2. The files referenced in the SAME AREA clause need not all have the same
access.

The SAME AREA clause specifies that two or more files not representing sort
files are to use the same memory area during processing. The area being shared
includes all starage areas assigned to the specified files so that it is not valid to
have more than one of the files open at the same time.

ND-60.144.02

5.1

THE DATA DIVISION

DATA CONCEPTS

The Data Division describes the data that the object program is to accept as

input, to manipulate, to create or to produce as output. Data to be processed
falls into three categories:

1. That which is contained in files and enters or leaves the computer memory
from specified areas. This data is external data.

2. That which is developed internally and placed into intermediate storage.
This is known as internal data.

3. Constans defined by the user.

External data s contained in files. A file is a collection of records existing on an
input or output device. When discussing records it is important to distinguish
between the terms physical record and logical record. A physical record is a
collection of data which is treated as an entity by the particular input or output
device on which it is stored. A logical record is a coliection of data having a
logical relationship between its subdivisions. One logical relationship may extend
accross physical records. Several may be contained within one physical record or
it may be identical in size, i.e., contained completely on one physical unit of data.

Unless otherwise described, the term record refers to a logical record when used
in this manual.

The term block is associated with the use of records, usually to describe a unit of

data consisting of one or more logical records. The term is synonomous with
physical record.

ND-80.144.02

5.2

STRUCTURE OF THE DATA DIVISION

The Data Division is divided into sections, each one having a specific logical
function. The occurrence of indicidual sections is optional but they must appear

in the order shown when written in the source program. It has the following
format:

DATA DIVISION.

[E1LE SECTION.

file-description-entry [record-description-entry] ...
sort-file description-entry [record-description-entry] ...

[WORKING-STORAGE SECTION.
77-level description entry...
record-description-entry ...
[LINKAGE SECTION.
77-level-description-entry...
record-description-entry ...
The file section contains a description of all externally stcred data (FD) but not

that which the program may develop internally. It also contains a description of
each sort/merge file (SD} in the program.

(SR

The Working Storage section describes records which are developed and
processed internally.

The Linkage Section describes data made available from another program (see

the section on Interprogram Communication in the "Other Features’ part of this
manual).

ND-60.144 02

5.3

5.3.1

5-3

FILE SECTION

This section must begin with the header FILE SECTION

foltowed by a period. It

contains file description entries and sort file descrigtion entries, each one

followed by its associated record description. All clau

ses used in the record

description eniry of the File Section can be used in the Working-Storage section.
The elements allowed in a record description are described later under “Data

Description Entry’” in the Working Storage section

of the Data Division

description (see also "The Concept of Levels” in that sanhe section).

The File Description — Complete Entry Skeleton

The file descriotion entry represents the highest level of organization in the File

Section. It follows the File Section header and consists

of a level indicator (FD),

a file name and a series of independent clauses spdcifying the size of the

physical and logical records, their structure and their re
The formats are:

Format 1: Indexed and Relative |-0.

FD file name

CH

[RECCRD CONTAINS [integer-3 TQ] integer-4 CHA

.

LABEL RECORD IS STANDARD
R RECORDS ARE OMITTED

S—

JRECORDING MODE IS {‘5}

RECORD IS
IZQA A {RECORDS ARE} data-name-3 |, data-na

E/ALUE QF FILE-ID IS integer-{]

ND-60.144.02

£
:BLOCK CONTAINS [integer-1 TQ] integer-2 {B"

[DEPENDING ON data-nan

cord names on that file.

LORDS
“RACTERS

RACTERS
e-1 |

ne-41] ..

54

Format 2: Sequential 1-O

FD file-name

;BLOCK

il

DATA

The level ind
precede the f
they may app

One or more

. , RECORDS
A . -
CONTAINS [integer-1 TQ] integer-2 CHARACTERS

[RECORD CONTAINS [integer-3 TQ| integer-4 CHARACTER

S
[DEPENDING ON data-name-1] :I

RD IS STANDARDI| |
RECORDS ARE OMITTED

E
DING MODE 15 { EXTHILE
v
RECORD IS |
ta- -3 [data-name-4 ...]...
RECORDS AREj ~ Cote-names3 [data-neme-4 ...

icator FD identifies the beginning of a file description and must
ile name. The clauses which follow are opticnal in many cases and

ear in any order.

record description entries must follow the file description entry.

ND-60.144.02

53.1.1

The Block Contains Clause

The block contains clause specifies the size of a physical record.

Format:

RECORDS
BLOCK CONTA i - [- ——
QCK CO INS [integer-1 TO] integer-2 {CHARACTERS}

General Rules:
1. If this clause is omitted, block size is set to 2048 characters.

2. The size of the physical record may be stated in terms of RECORDS, unless

one of the following situations exists, in which case the RECORDS phrase
must not be used:

a) Where logical records may extend across physical records.

b} The pnysical record contains padding (area not contained in a logical
record).

c) Logical records are grouped in such a manner that an inaccurate
physical record size would be implied.

3. When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store

the physical record, regardless of the types of characters used to represent
the items within the physical record.

If only integer-2 is shown, it represents the exact size of the physical
record. If integer-1 and integer-2 are both shown, they refer to the
minimun: and maximum size of the physical record, respectively.

ND-60.144.02
Rev. A

5.3.1.2

53.1.3

The Data Records Clause

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

Format:

RECORD IS
— d ~1a ’1 & ~Ne -
DATA RECORDS ARE data-name-1{,data-name-2 ...

Data-name-1 and data-name-2 are the names of data records and must have 01
level number record descriptions, with the same names, associated with them,

General Rules:

1. The presence of more than one data name indicates that the file contains
more than one type of data record. These records may be of differing
sizes, different formats, etc. The order in which they are listed is not
significant.

2. Conceptually, all data records within a file share the same area. This is in
no way altered by the presence of more than one type of data record
within the file.

The Label Records Clause

The LABEL RECORDS clause is treated as comments.

Format:

LABEL RECORD IS STANDARD
RECORDS ARE OMITTED

ND-60.144.02

53.1.4

The Record Contains Clause

The RECORD CONTAINS clause specifies the size of data records.

Format

RECORD CONTAINS linteger 1 TO] mteger 2 CHARACTERS
[DEPENDING ON data name 1]

General Rules:

The size of each data record may be completely defined within the record

descrintion entry, however. if not, thetollowing notes apply:

a) Integer 2 may not be used by itself unless all the data records in the
file have the same size. In this case integer 2 represents the exact
numbe: of characters in the data record. If integer 1 and integer 2
are both shown they refer to the minimum number of characters in
she smallest size data record and the maximum number of characters
m the largest size data record, respectively

b) The size 1s specified in terms of the number of characters positions
recuired to store the logical record, regardless of the types of
characters used to represent the items within the logical record.

Data -name-1 must describe an elementary integer in the Working-Storage
section. ‘Defined as COMPUTATIONAL. with no PICTURE clause specified)

If data name- 1 is specified, the number of character positions in the record
must be placed into the data item referenced by data name-1 before any
RELEASE, or WRITE statement is executed for the file and it must not be
modif ed before any REWRITE statement.

If daxa name-1 is specified, the execution of a DELETE, RELEASE,
REWRITZ, START or WRITE statement or the unsuccessful execution of a
READ or RETURN statement does not alter the contents of the data item
referenced by data-name 1.

During the execution of a RELEASE, REWRITE or WRITE statement, the
numbear of character positions in the record is determined by the following

conditions:

aj If data name- 1 is specified. by the contents of the data item
referenced by data name-1.

b) If data-name-1 is not specified, by the number of character positions
in the record.

ND-60.144.02

5-8

If data-name-1 is specified, after the successful exscution of a READ or
RETURN statement for the file, the contents of the data item referenced by
data-name-1 will indicate the number of character positions in the record
just read.

If the INTO phrase is specified in the READ or RETURN statement, the
number of character positions in the current reco-d that participate as the
sending data item in the implicit MOVE statement is determined by the
maximum size of the sendign field.

ND-60.144.02

53.1.5

53.1.6

The Recording Mode Clause

The RECORDING mode clause specifies the record format used in the file.

Format 1: Indexed and Relative |-0.

BECORDING MODE IS (‘5"}

Format 2: Sequential |-0.

L
RECORDING MODE 15{ TEXLFILE

L
A

F indicates that all records have exactly the same numbers of characters, that is,
the number which is the length of the file's record area.

V- means that the records in the file may have a varying number of characters,
never less than 1 {one) and never more than the maximum size of the file's
record area. With V format, two extra bytes of information are stored at the
beginning of each record in the file. These bytes contain the length of the data
portion of the record; they are never available to the COBOL program.

T (TEXT-FILE) means that the records of the file are in printable format and

contain only ASCII characters. The records are separated by the characters line

feed (12 octal) and carriage return (15 octal). This format is only valid for
sequential files. T and TEXT-FILE are synonomous.

The VALUE OF FILE-ID IS Clause

The VALUE OF FILE-ID IS clause assigns an identifying value to the file.

Format:

VALUE OF FILE-ID IS integer-3

If an indexed or relative file is to be used in a subroutine, then it must be defined
in both the main program and the subroutine with the same value of integer-3 in

a VALUE OF FILE-ID IS clause. Integer-3 can take a value between 1 and 99
inclusively.

ND-60.144.02
Rev. A

54

541

5411

WORKING-STORAGE SECTION

The Working-Storage Section may describe data records which are not part of
external files but are developed and processed internally. It must begin with the
section WORKING-STORAGE SECTION followed by a period. It contains record
description entries and data description entries for noncontiguous data items.

Data Description Entries

Noncontiguous items in Working-Storage that bear no hierarchical relationship to
one another need not be grouped into records, provided they do not need to be
further subdivided. Instead, they are classified and defined as noncontiguous
elementary items. Each is defined in a separate data desctiption entry with the
special level number 77. :

Record Description Entry

Data elements that bear a definite hierarchical relationship to one another must
be grouped into records structured by level number.

Data Description

The Concept of Level

Because records must often be divided into logical subdivisions, the concept of
level is inherent in the structure of a record. Fields which cannot be further
subdivided are called elementary items. A record can be made up of elementary
items or it can itself be an elementary item. If it is necessary to refer to a set of
elementary items they can be combined as a group item. Note that an
elementary item can belong to more than one group.

For example, an employers payroll file might contain a record for all employees
at one location. Each employee name on the record could be represented as a
group item while the subdivisions, or elementary items, might be age, salary,
grade, tax code, etc.

ND-60.144.02

Level Numbers

A system of tevel numbers form 1 to 49 is used to organize elementary and group
items into records. Special level numbers 77 and 88 identify items used for
special purposes, they do not structure a record and are:

77 For independent working storage or linkage section items which are not
subdivisicns of items or themselves subdivided.

88 For identification of a condition name associated with a particular value of

a conditional variable (see the VALUE clause later in the Data Division
section).

(Level 77 and 01 entries must have unique data names as they cannot be
qualified. Subo-dinate data names, if qualifiable, need not be unique.)

Record Descrigtion Level Numbers

A level number must be assigned to each group or elementary item in a record.
The level numbers used to structure records are;

01 This specifies the record itself and is the most inclusive of the numbers. A
level 01 entry may be either a group or elementary item.

02-49 These are given to group and elementary items within a record.

Subordinate items are given higher (not necessarily consecutive) level
numbers.

A group item includes all group and elementary items following it until a level
number less than or equal to its own is encountered.

All elementary or group items immediately subordinate to one group item must
be assigned level numbers higher than the level number of this group item.

For example, data may need to be structured as follows:

TAST-NAME
(NAME FIRST-INIT
lM!DDLEJNIT
EMPLOYEE-NUM
TIME-CARD —f
MONTH
WEEKS-END-DATE DAY-NUMBER
YEAR
HOURS-WORKED

ND-60.144.02

54.1.2

A corresponding record might appear in the form:

01 TIME-CARD.
02 NAME.
03 LAST-NAME PICTURE X(18).
03 FIRST-INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.
02 EMPLOYEE-NUM PICTURE 99999.
02 WEEKS END DATE.
05 MONTH PIC 99.
05 DAY-NUMBER PC 99.
05 YEAR PC 99.
02 HOURS-WORKED P CTURE 99V9.

Classes and Categories of Data

There are five categories of data items which are grouped into three classes. The
relationship between them is depicted below.

Level of ltem: Class: Category:

Elementary Alphabetic Alphabetic
Numeric Numeric
Alphanumeric Alphabetic

Numeric Edited
Alphanumeric Edited
Alphanumeric

Group Alphanumeric Alphabetic

Numeric

Numeric Edited
Alphanumeric Edited
Alphanumeric

Classes and Categories of Data

Note that for alphabetic and numeric the classes and categories are
synonomous. The alphanumeric class includes the categories of alphanumeric
edited, numeric edited and alphanumeric (without editing). Every elementary
item, except for an index data item, belongs to one of the classes and to one of
the categories.

Every group item belongs to the alphanumeric class (even if its subordinate items
belong to other classes or categories).

ND-60.144.02

5-13

Standard alignment rules for positioning data in an elementary item depend on
the data category of the receiving item (i.e., the item into which the data is
placed).

If the receiving tem is:
1. Numeric

The data is aligned by decimal point and moved to the receiving character
positions with zero fill or truncation on either end as required.

If there is no assumed decimal point (an assumed decimal point is one that
has logical meaning but does not exist as a character in the data) then the
item is treated as if an assumed decimal point existed immediately after its
rightmost character and is aligned as in the preceding rule.

2. Numeric £dited
The data is aligned on the decimal point and (if necessary) truncated or
padded with zeros at either end, except when editing causes replacement
of leading zeros.

3. Alphanumeric, Alphanumeric Edited, Alphabetic
The data is aligned at the leftmost character position and (if necessary)

truncated or padded with spaces. If the JUSTIFIED clause is specified then
this rule is modified as described in the description of this clause.

Signed Data. There are two classes of algebraic signs used in COBOL:
operational signs and editing signs.

Operational signs are associated with signed numeric items to indicate their
algebraic properties.

Editing signs, which are PICTURE symbols, are used with numeric edited items to
indicate the sign of the item in edited output.

Data Reference
Every user specified name of an element in a COBOL program must be unique —

either because no other name has a character string of the same value or
because it can be made unique through qualification, indexing or subscripting.

ND-60.144.02

5-14

Qualification

A name can be made umque if it exists within a hierachy of names such that it
can be identified by specifying one or more higher leve names in this hierachy.
This process is called qualification and the higher level names are called
qualitiers

Qualification is performed by following a user specified name by one or more
phrases composed of a qualifier preceded by IN or OF (IN and OF are logically
equivalent.)

The Formats are:

Format 1:

data-name-1 F

. OF data-name-2
condition-name IN

Format 2:

. QF o
paragraph-name IN section name

Format 3:

file-name

Each qualifier must be of a successively higher level and be within the same
hierachy as the name it qualifies.

The same name must not appear at 2 levels in a hierachy.

If a data name or condition name is assigned to more than one data item, it must
be qualified each time it is referred to.

A paragraph name must not be duplicated within a section. When a paragraph
name is qualified by a section name the word SECTION must not appear. A file
name {used in the COPY statement) must name a SINTRAN file. Paragraph name
need not be qualified when referred to within the section in which it appears.
When it is being used as a qualifier, a data name cannot be subscripted.

If there is more than one combination of qualifiers that ensures uniqueness then
any of these combinations can be used. Notealthough enough qualification must
be given to make the name unique, it may not be necessary to specify all the
levels of the hierarchy.

No duplicate section names are allowed.
No data name can be the same as a section name or peragraph name.
Duplication of data names must not occur in those places where the data names

cannot be made unique by qualifications.
ND-60.144.02

54.2

5.4.21

5-15

Subscripting and Indexing
Subscripts and indexes are used for referencing an individual element within a

table of elements that do not have individual data names. Subscripting and
Indexing are explained in the section on Table Handling under ""Other Features’’.

The Data Description — Complete Entry Skeleton

The format of the complete entry skeleton has been simplified for easier reading.
The format of each clause is given with the individual descriptions.

Data Description Entry

A data description entry specifies the characteristics of a particular item of data.
Format 1:

data name

\ |
level number FILLER clause

[.BLANK WHEN ZERO clause]
[[JUSTIFIED clause]
[;PICTURE clause]

[, REDEFINES clause]

[;SIGN clause)]
[;SYNCHRONIZED clause]
[[USAGE clause]

[[VALUE clause]

[,EXPORT clause]

ND-60.144.02

Format 2:

88 condition name VALUE clause

Format 1 is used for record description entries and for level 77 entries.
General Rules:

1. The /evel number can be any number from 01 to 49 or 77. 01 to 09 can be
written as 1 1o 9.

2 The data name/FILLER (optional) entry must immediately follow the level
number. Otherwise, the clauses may be written in any order.

3 The PICTURE clause must be specified for all elementary items except
index data items and for computational, computational-1 and
computational-2 items.

4. The BLANK WHEN ZERO, JUSTIFIED, PICTURE and SYNCHRONIZED
clauses are valid only for elementary items.

(633

Each entry must end with a period followed by a space and all clauses
must be separated by a space or a comma or semicolon followed by a
space.

Format 2 describes condition names which are user specified names that
associate value(s) and/or range of values with a conditional variable. A
conditional variable is a data item which can take one or more values is
associated with a condition name.

General Rules:

1. Each condition name requires a separate entry with level number 88. Any
entry beginning with this level number js a condition name.

2. A condition name can be associated with ary data description entry
containing a level number except:

a) another condition name
b} an index data item.

3. Each entry must end with a period followed by a space. Successive
operands must be separated by a space or a semicolon or comma followed
by a space.

ND-60.144.02

5422

54.23

The Blank When Zero Clause

The BLANK WHEN ZERO clause permits the blanking of an item when its value is
zero.

Format:

BLANK WHEN ZERQ

——

The BLANK WHEN ZERO clause can only be used for an elementary item whose
PICTURE is numeric or numeric edited (see the PICTURE clause in this section).
When it is used for an item whose PICTURE is numeric then the category of the
item is considered to be numeric edited.

When the BLANK WHEN ZERO clause is used, the item will contain nothing but
spaces if the value of the item is zero.

The Data Name/Filler Clause

A data name explicitly identifies the data being described. The key word FILLER,
which may be omitted, specifies an item not explicitly referred to in a program.

Format:

data name
FILLER
«
In the File, Working-Storage and Linkage Sections, date name or FILLER must

appear as the first word following the level number in each data description
entry.

General Rules:

1. A data name identifies a data item used in the program, it may assume a
number cf different values during program execution.

2. The key word FILLER can name an elementary or group item in a record,
under no circumstances can a FILLER item be referred to explicitly.
However, it may be used as a conditional variable since such use does not
require explicit reference to the item itself but only to its value.

ND-60.144.02

5424 The Justified Clause

The JUSTIFIED clause overrides standard positioning rules for a receiving item of
the alphabetic or alphanumeric categories.

Format:

IFIED
LUSTIFIED RIGHT
JUST
The JUSTIFIED clause can be specified only at the elementary item level. JUST
is an abbreviation for JUSTIFIED and has the same meaning. It cannot be used
with any data item which is numeric or for which editing is specified.

General Rules:

1. When a receiving data item is described with the JUSTIFIED clause and it
is smaller than the sending item, the leftmost characters are truncated. If
larger, the unused character positions at the left are filled with spaces.

2. When the JUSTIFIED clause is omitted then the standard rules for aligning

data within an elementary item apply. {See Standard Alignment Rules
under Classes of Data in this section.)

ND-60.144.02

5425

The Picture Clause

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

Format:

PICTURE
EIC

IS character-string
The PICTURE clause must be specified for every elementary item except an index
data item, or computational, computational-T and computational-2 items. It may

be specified only at the elementary level. PIC is an abbreviated form of PICTURE
and has the same meaning. ‘

The character-string is made up of certain COBOL characters used as symbols
The allowable combinations determine the category of the elementary item. The
maximum number of characters, i.e., symbols, allowed in the string is 30.

List of Symbols

The following list of symbols is used to represent the five categories of data that
can be described in a PICTURE clause. {These are: alphabetic, number,
alphanumeric, alphanumeric edited and numeric edited.) A brief description is
given with each symbol. More detailed descriptions appear later.

A Each A in the character-string represents a character position
that can contain only a letter of the alphabet or a space.

B Each B in the character-string represents a character position
into which the space will be inserted.

w

The letter S is used in a character-string to indicate the
presence (but not the representation or, necessarily, the
position} of an operational sign; it must be the leftmost
character in the PICTURE. It is not counted in determining the
size of the elementary item unless an associated SIGN clause
specifies the SEPARATE CHARACTER phrase. (An operational
sign indicates whether the value of the item is positive or
negative.)

V The V is used in a character position to indicate the location of
an assumed decimal point and may appear only once in a
character-string. It does not represent a character position and
is therefore not counted in the size of the elementary item.
When the assumed decimal point is to the right of the
rightmost symbol in the string the V is redundant.

X Each X in the character string represents a character position

which contains any allowable character from the computer’s
character set.

ND-60.144.02

+, —, CR, DB

Each Z in a character-string may only be used to represent the
leftmost leading numeric character positions which will be
replaced by a space character when the contents of that
character when the contents of that character position is zero.
Each Z is counted in the size of the item.

Each 9 in the character-string represents a character position
which contains a numeral and is counted in the size of the
item.

Each 0 (zero) in the character-string represents a character
position into which the numeral zero will be inserted. It is
counted in the size of the item.

Each / (slash) in the character-string represents a character
position in to which the strobe character will be inserted. It is
counted in the size of the item.

Each , (comma) in the character-string represents a character
position into which the character , (comma) will be inserted.
This character position is counted in the size of the item and
the character must not be the last character in the PICTURE
character-string.

When the character . (period) appears in the character-string it
is an editing symbol which represents the decimal point for
alignment purposes. In addition, it represents a character
position into which the . (period) will be inserted. The character
is counted in the size of the item. In a program the functions of
the period and comma are exchanged if the clause
DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES
paragraph. (In the exchange the rules for the period apply to
the comma and vice versa when the appear in a PICTURE
clause.) The insertion character . (period) must not be the last
character in the PICTURE character-string.

These symbols are used as editing sign control symbols and
represent the character position into which the editing sign
control symbo!l will be placed. These symbols are mutually
exclusive in any one character string and each character used
in the symbol is counted in determining the size of the data
item.

Each * (asterisk) in the character-string represents a leading
numeric character position into which an asterisk will be placed
when the contents of that position is zero. Each * is counted in
the size of the item.

ND-60.144.02

Ccs

The currency symbol in the character-string represents a
character position into which a currency symbol is to be placed.
This currency symbol is represented either by the currency sign
or by the single character specified in the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph. The currency symbol
is counted in the size of the item. (The default symbol is $
(dollar}).

Allowable symbols for each data category.

The following rules apply:

Alphabetic Items

a)

b)

The PICTURE character-string can contain only the symbols A and B.

Its contents when represented in standard data format should be any
combination of the 26 (twenty-six) letters of the roman alphabet and the
space from the COBOL character set.

Numeric Items

a)

The PICTURE character-string may only contain the symbols 9, S and V.
The number of digit positions must range through 1 to 18 inclusive.

The contents of the item in standard format must be combination of the 10
arabic numerals and, if signed, a representation of the operational sign.

Alphanumeric ltems

a)

The PICTURE character-string is restricted to certain combinations of the
symbols A, X and 9. The item is treated as if the character-string contained
all X’s. A character-string containing all A's or all 9's does not define an
alphanuemeric item.

The contents of the character-string when represented in standard data
format are allowable characters in the computer's character set.

ND-60.144.02

5-22

Alphanumeric Edited Items

a) The PICTURE character-string can contain® A, X, 9, B, 0 (zero) and /. it
must contain at least one of these combinations:

— at least one B and at least one X
— at least one 0 and at least one X
— at least one X and at least one /
-— at least one A and at least one 0
— at least one A and at least one /

b) The contents of the items in standard data format may be any allowable
character from the computer’s character set

Numeric Edited Items

a) The PICTURE character-string can contain the symbols: B, V, Z. 9. 0 (zero),
. /., (comma), . (period). +, —, CR, DB or the currency symbol The
allowable combinations are determined from the order of precedence of
symbols (see chart) and the editing rules (see later in this section).

b) The character-string must contain at least one 0 (zero}, B, /., Z, *, +, —, |
{comma), . (period), CR, DB or currency symbol and the number of digit
positions that can be represented must range from 1 to 18 inclusive.

c) The contents of the character positions that are allowed to represent a
digit in standard format, must be one of the numerals.

The Size of an Elementary ltem

The size of an elementary item (i.e., the number of character positions it
occupies in standard data format) is determined by the number of allowable
symbols that represent character positions. An integer enclosed in parentheses
following the symbols A, , (comma), X, 8, Z, *. B, /, 0 (zero), +., — or the
currency symbol indicates the number of consecutive occurrences of the symbol.

ND-60.144.02
Rev. A

5426 Editing Rules for the PICTURE Clause

Editing is performed in two ways, either by insertion, or suppression and
replacement. Insertion editing breaks down into four types. These are listed
below together with the characters and categories each is valid for.

Simple Insertion:

Category: Insertion Symbols:
Alphabetic B

Alphanumeric edited BO/

Numeric Edited BO/,

Examples:

Picture: Data: Edited Result:
99,999,000 12345 12,345,000
999,999 12345 012,345
A(B)BA(4) NORSKDATA NORSK DATA
X(4)B/BX(2) TYPE25 TYPE / 25

Each insertion symbol is counted in the size of the item and represents the
position where the equivalent character will be inserted.

Special Insertion:

Category: Insertion Symbol:
Numeric Edited - (period)

Examples:

Picture: Data: Edited Result:
99.99 1234 23.40

99.99 12.34 12.34

99.99 1.234 01.23

The insertion symbol . {period) will be counted in the size of the item, it shows
the position where the actual decimal point will be inserted. It is not allowed to
appear in the same PICTURE character-string as the symbol V (denoting an
assumed decimal point). These two symbols are mutually exclusive.

Fixed Insertion:

5

Category: Insertion Symbols:
Numeric edited + — CR DB (editing sign control
symbols})

$ (currency symbol)

Only one currency symbol and only one of the editing sign control symbols can
be used in a given PICTURE character-string. When the symbols "CR’ or ‘DB’ are
used they represent two characters positions in determining the size of the item
and they must represent the rightmost character positions that are counted in
the size of the item. The symbol '+’ or "—', when used, must be either the
leftmost or rightmost character position to be counted in the size of the item.
The currency symbol must be the leftmost character position to be counted in
the size of the item except that it can be preceded by either a "+ or a '—’
symbol. Fixed insertion editing results in the insertion character occupying the
same character position in the edited item as it occupied in the PICTURE
character string. Editing sign control symbols produce the following results
depending upon the value of the data item.

Editing Symbol in Picture Result:

Character-String: Data item Data ltem
Positive or Zero Negative

.*_ + J—

— space —

CR 2 spaces CR

DB 2 spaces DB

Examples:

Picture: Data: Ed:ted Result:

+99.99 --12.345 —12.34

—89.99 +12.345 12.34

99.99 + +12.345 12.34 +

$99.99 —12.34 $12.34

—$99.99 —~12.34 —$12.34

$999.99 CR +12.34 $012.34

$999.99 DB -12.34 $012.34 DB

ND-60.144.02

5-25

Floating Insertion:

Category: Insertion Symbcls:

Numeric edited $ + —

Floating insertion editing occurs when two or more of the above insertion
symbols appear as a string within the given PICTURE character-string.

Examples:

Picture: Data: Edited Result:
$$99 12 $12
$5$5$%99 1234 $123
$$$$%$9.99 12 $0.12

44/ + 4+, +99 12 +12
~~~~~~ 9,939 123456 — 123,456
$5$$$99.99CR —123 $123.00CR

Within one PICTURE character-string the floating insertion symbols are mutually
exclusive. Simple insertion symbols or the period may appear within a string of
floating insertion symbols without causing discontinuity (except in the special
case where there is only one floating insertion symbol in the string to the left of
a simple one or period).

The leftmost character of the floating insertion string represents the leftmost
limit of the floating symbol in the data item. The rightmost character of the
floating string represents the rightmost limit of the floating symbols in the data
item.

The second floating character from the left represents the leftmost limit of the
numeric data that can be stored in the data item. Nonzero numeric data may
replace all the characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways of representing floating
insertion editing. One way is to represent any or all of the leading numeric
character positions on the left of the decimal point by the insertion character.
The other wey is to represent all of the numeric character positions in the
PICTURE character-string by the insertion character.

If the insertion characters are only to the left of the decimal point in the
PICTURE character-string, the result is that a single floating insertion character
will be placed into the character position immediately preceding either the
decimal point or the first nonzero digit in the data represented by the insertion
symbol string, whichever is farther to the left in the PICTURE character-string.
The character positions preceding the insertion character are replaced with
spaces.

ND-60.144.02



If all numeric character positions in the PICTURE character-string are
represented by the insertion character, the result deperds upon the value of the
data. If the value is zero the entire data item will contain spaces. If the value is
not zero, the result is the same as when the insertion character is only to the left
of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the
receiving data item must be the number of characters in the sending data item,
plus the number of nonfloating insertion characters being edited into the
receiving data item, plus one for the floating insertion character.

Zero Suppression and Replacement Editing

.

The symbols Z and * are used to replace leading zercs in the edited result by
blanks or asterisks respectively. They can form floating strings in the same way
as the floating insertion symbols $, + and — describec earlier. (A floating string
of zero suppression or replacement symbols cannot appear in the same PICTURE

character-string as a floating string of insertion symbols however )

Examples:

Picture: Data: Result:
2277 00.09 09

22727 00.00

60 00
279999 0000.00 00.00
"ttt 99CR 123 **123.00
~123.00 **123.00—
22277 + 0

Any simple insertion symbols or the period may appear within a floating string of

zero suppression or replacement characters and are regarded as part of this
string.

When editing is performed, any leading zero in the data that appears in the same
character position as a suppression symbol is replaced by the replacement
character. Suppression stops at the leftmost character that:

1. Does not correspond to a suppression symbol.
2. Is the decimal point.
3. Contains nonzero data.

If, however, the value of the data is zero and all the numeric character positions
in the PICTURE character string are represented by a Z, the resulting item will
contain all spaces. If these positions are represented oy asterisks, the resulting
item, except for the decimal point, will contain asterisks.

ND-60.144.02



Precedence Rules

The following chart shows the order of precedence when using characters as
symbols in a character string. An ‘X' at an intersection indicates that the
symbol(s) at the top of the column may precede the symbol(s) at the left of the
row. Arguments appearing in braces indicate that the symbols are mutually
exclusive. The currency symbol is shown as CS.

At least one of the symbols A, X, Z, 9 or *, or at least two of the symbols +, —
or CS must appear in a PICTURE string.

First Non-Floating Floating Insertion & Suppressing/ | Other Symbols
Symbol Insertior Symbols Replacement Symbols

Second O/,.++CRCS{Z}{Z}++CSC89AS

Symbol — - DB * * . - X
B X | X | X | x| «x X X I X [ X IX | X |Ix |Ix |x
0 X X | X | X | x X | X | X | X x| X |x |x |x
/ X 1 X X | X | x X I X | X IX I X {Xx|Ix Ix |x

g, X | X | X | X |X XX [ X I XX | X |x |x
£

@ X X | X X X | X X X X

o

5ol

£ =

£ {+

5 X X | X | x X | X | X X | X [X

T |[cR

£ log] X | X I'x |x X | X | x X | X |x

z
Cs X

Z?fz;

51, X | X | x X X 1 X

nilz

g{} X IX x| x|x X | x | x

T E

c +

S Ak

o o+

ggu X X | x | X X X X

£ c

o

£ g|Cs X | X | X X X

° S

P es X | X |x | x|x X | X
] X | X | x |> X X | x X X X | x | x
A

3 |x X | x X | X
£

>

I A

5

£

o |v X X {x X X | X X X X X

Figure 5, 1.

PICTURE Character Precedence Chart

ND-60.144.02
Rev. A




5.4.2.7

The Redefines Clause

The REDEFINES clause allows the same computer storage area to be described
by different data description entries.

Format:

level number data-name-1; REDEFINES data-name-2

(Note: The level number, semicolon and data-name-1 are shown in the above
format for reasons of clarity. Level number and data-name-1 are not part of the
REDEFINES clause.)

Data-name-2 is the redefined item while data-name-1 supplies an alternative
description for the same area, i.e., is the redefining item.

The level numbers of data-name-1 and data-name-2 rnust be identical but not
level 88.

General Rules:

1.

Redefinition begins at data-name-1 and ends when a level number less
than or equal to that of data-name-2 is encountered. No entry having a
level number lower than those of data-names 1 and 2 may occur between
these entries.

When the level number of data-name-1 is other than 01, it must specify the
same number of character positions that the data item referenced by
data-name-2 contains. It is important to observe that the REDEFINES
clause specifies the redefinition of a storage area, not of the data items
occupying the area.

Multiple redefinitions of the same character positions are permitted. The
entries giving the new descriptions of the character positions must follow
the entries defining the area being redefined, without intervening entries
that define new character positions.

Multiple level 01 entries subordinate to any given level indicator represent
redefinitions of the same area.

The entries giving the new description of the character positions must not
contain any VALUE clauses, except in condition name entries.

ND-60.144.02



54.28

Example:

02 A PICTURE A(8).
02 B REDEFINES A.
05 B-1 PICTURE X(2).
05 B-2 PICTURE 9(4).
02 C FICTURE 9(6).
02 D REDEFINES C.
05 D-1 PICTURE 99.
05 D-2 PICTURE 9999.
05 D-3 REDEFINES D-2 PICTURE 99V99.

in this example A, C and D-2 are redefined items while B, D and D-3 are

redefining iters. Note that the REDEFINES clause has been specified for the
item D-3 which is subordinate to a redefining item, D.

The Sign Clause

The SIGN clause specifies the position and mode of representation of the
operational sign when it is necessary to describe these explicitly.

Format:

LEADING

E—— A C CTER
[SIGN IS] TRAILING [SEPARATE CHARA ]

The SIGN clause may be specified only for a numeric data description entry
whose PICTURE contains the character 'S’, or a group item containing at least
one such numeric data description entry.

The numeric data description entries to which the SIGN clause applies must be
described as usage is DISPLAY.

At most one SIGN clause may apply to any given numeric data description entry.

If the SEPARATE CHARACTER option is not present, then the operational sign is
assumed to be associated with the LEADING OR TRAILING digit position
(whichever is specified). The PICTURE character S is not counted in the size of
the item.

If the SEPARATE CHARACTER option is present, then the operational sign is
assumed to cccupy the LEADING or TRAILING character position. In this case
the PICTURE character S is included in the size of the item. The operational
signs for positive and negative are the characters + and — (minus) one of which
must be present in the data at object time.

ND-60.144.02



5429

-30

ol

The Synchronized Clause

The SYNCHRONIZED clause specifies the alignment ¢f an elementary item on

the natural boundaries of the computer memory.

Format:
SYNCHRONIZED LEFT
SYNC RIGHT

This clause may only appear with an elementary item.

SYNC is an abbreviation of SYNCHRONIZED.

General Rules:

(o)

This clause specifies that the subject data item is to be aligned in the
computer such that no other data item occupies any of the character
positions between the leftmost (SYNC LEFT) or rightmost (SYNC RIGHT)
natural boundaries delimiting this data item. If the number of character
positions required to store this data item is less than the number of
character positions between those word boundaries, the unused character
positions {or portions thereof] must not be used for any other data item.
Such unused character positions, however, are included in:

a) the size of any group item(s) to which the elementary item belongs and
b) the character positions redefined when this data item is the object of a
REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item is to be
positioned such that it will begin at the left character position of the word
boundary in which the elementary itme is placed.

SYNCHRONIZED RIGHT specifies that the elementary item is to be
positioned such that it will terminate on the right character position of the
word boundary in which the elementary item is placed

Whenever a SYNCHRONIZED item is referenced in the source program, the
original size of the item, as shown in the PICTURE clause, is used in
determining any action that depends on size, such as justification,
truncation or overflow.

If the data description of an item contains the SYNCHRONIZED clause and
an operational sign, the sign of the item appears in the normal operational
sign position, regardless of whether the item is SYNCHRONIZED LEFT or
SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data description entry

of a data item that also contains an OCCURS clause, or in a data

description entry of a data item subordinate to a data description entry that

contains an OCCURS clause. each occurrence of the item is synchronized.
ND-60.144.02



5-31

54210 The Usage Clause

The USAGE clause specifies the format of a data item in the computer storage.
Format:

T COMPUTATIONAL )
comp
COMPUTATIONAL-1
comP-1

USAGE IS | COMPUTATIONAL-2

( compy
COMPUTATIONAL-3
ComP-3
PACKED-DECIMAL
DISPLAY

- INDEX J

If a COMPUTATIONAL item has a PICTURE character string then it can contain
only '9's, the operational sign character 'S, or the implied decimal point
character 'V'. {See the PICTURE clause earlier in this section).

COMP is a abbreviation for COMPUTATIONAL.

ND-60.144 02
Rev. A



General Rules:

1. The USAGE clause can be written at any level. If the USAGE clause is
written at a group level, it applies to each elementary item in the group.
The USAGE clause of an elementary item cannot contradict the USAGE
clause of a group to which the item belongs.

2. This clause specifies the manner in which a data item is represented in the
storage of a computer. It does not affect the use of the data item, although
the specifications for some statements in the procedure division may
restrict the USAGE clause of the operands referred to. The USAGE clause
may affect the radix or type of character represeniation of the item.

3. The USAGE IS DISPLAY clause indicates that the format of the data is a
standard data format.

4. If the USAGE clause is not specified for an elementary item, or for any
group to which the item belongs, the usage is implicitly DISPLAY.

5. All COMPUTATIONAL items are capable of representing a value to be used
in computations and must be numeric. If a grcup item is described as
COMPUTATIONAL, the elementary items in the group are
COMPUTATIONAL. The group item itself is not COMPUTATIONAL (cannot
be used in computations).

6. On the ND-100 computational, computational-1 and computational-2 items
are aligned on a word boundary even if the SYNCHRONIZED clause has not
been specified.

7. Computational-3 and PACKED-DECIMAL items are stored in packed
decimal format.

The terms Computational, Computational-1, Computational-2, Computational-3 and
PACKED-DECIMAL are explained under "Computational Options’’ which follows.

ND-60.144.02
Rev. A



5421

Computational Options

5-33

The terms COMPUTATIONAL and COMPUTATIONAL-1 define integer variables.
They can be specified as 16 bit (2 byte) words or 32 bit (4 byte) words. The size

depends on the maximum number of digits in the item.

The sizes of COMPUTATIONAL (COMPUTATIONAL-1) items are shown below:

ND-100 ND-500
PICTURE definition 16 Bits 32 Bits
is omitted (2 Bytes) (4 Bytes)
{default integer)
PICTURE S9 (n) 16 Bits 16 Bits
where n < =4 {2 Bytes) (2 Bytes)
PICTURE S9 (n) 32 Bits 32 Bits
where n > =5 (4 Bytes) (4 Bytes)

Integer variables are always treated as if signed, even when there is no sign
character(s) in the PICTURE definition.

The range of permissible values is shown below:

Length: Range:

16 bits (2 bytes)
32 bits {4 bytes)

—32768 to 32767
—2147483648 to 2147483647

COMPUTATIONAL AND COMPUTATIONAL-1 VALUES

Note: For fast performance, integer fields should be used as indexes, as
operands in MOVE operations and for the arithmetic statements of COBOL.

The term COMPUTATIONAL-2 is used for the description of real numbers.The
internal representation will be in floating point format.

On the ND-100 the COBOL system is self-adjusting for 48 and 32 bits REAL.

On the ND-500 the size of the real item depends on the numeric length of the
PICTURE definition as shown below:

PICTURE definition 32 Bits
is omitted

PICTURE S9 (n} V9 (m)} | 32 Bits
where n+m < = 6

PICTURE S9 (n) V3 (m) | 64 Bits
where n+m > = 7

ND-60.144.02



COMPUTATIONAL-2 variables may only be used as parareters in a subroutine
call, or for converting (MOVE) to or from COMPUTATIONAL-3 variables.

No VALUE clause can be specified for COMPUTATIONAL-Z items.

COMPUTATIONAL-3 items are identical to PACKED-DECIMAL items. They appear
in storage in packed decimal format. This is sometimes known as BCD (binary
coded decimal). The digits are each represented by 4 bits so that there are two

adjacent digits
rightmost byte.

justified. If nece

each decimal d

igit is encoded as follows:

per byte. The sign is contained in the rightmost 4 bits of the
'he numbers always fill an integral number of bytes and are right
ssary the leftmost half byte is filled with zero.

Digit/Sign: Binary Representation: Hexadecimal Representation:
0 + 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
+ 1010 A
- 1011 B
+ 1100 C
— 1101 D
+ 1110 E
- 1111 F (ND-10 only)
unsigned 1111 F {ND-100/ND-500 only)

ND-60.144.02
Rev. A



54.2.12

5-35

The Value Clause

The VALUE ciause specifies the initial contents of a
associated with a condition name.

Format 1:

VALUE IS literal

Format 2:
VALUE IS . THROUGH .
literal-1 T liter
VALUES ARE T4BU
literal-3 i LA O"U_G"E" liter
, literal- THRU i
L

The words THRU and THROUGH are equivalent.

The VALUE clause is used in condition name entries

data item or the value

3]-2

j i

al-4

n the File, Linkage and

Working-Storage sections. However, in the Working-Storage section only, it also

serves to specify the initial value of any data item. The

the beginning of the program; without the spe
unpredictable.
General Rules:
1. All numeric literals in the VALUE clause of an

within the range of values indicated by the PICTU

have a value which would require truncation of no
literals must not exceed the size indicated by

signed literal must have assigned with it a si

character-string.)

ND-60.144.02

item takes this value at

cification  the value s

tem must have a value
RE clause, and must not
nzero digits. Nonnumeric
the PICTURE clause. (A
gned numeric PICTURE




5 -36

2. The VALUE clause must not conflict with other clauses in the data

description of the item or in the data description within the hierachy of the
item. The following rules apply:

a) If the category of the item is numeric, all literals in the VALUE clause
must be numeric. If the literal defines the value of a Working-Storage
item, the literal is aligned in the data item according to the standard
alignment rules. (See Standard Alignment Rules under “Classes and
Categories of Data".)

b) If the category of the item is alphabetic, alphanumeric, alphanumeric
edited or numeric edited, all literals in the VALUE clause must be
nonnumeric literals. The literal is aligned in the data item as if the
data item had been described as alphanumeric. (See Standard
Alignment Rules.) Editing characters in the PICTURE clause are
included in determining the size of the data item (see the PICTURE
clause), but have no effect on its size. Therefore, the VALUE for an
edited item is presented in an edited form.

c) Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

3. A figurative constant may be substituted in both Format 1 and Format 2
whenever a literal is specified.

4. The VALUE clause must not be written for a group containing items with
descriptions including JUSTIFIED, SYNCHRONIZED or USAGE (other than
USAGE IS DISPLAY).

5. In a condition name entry, the VALUE clause is required. The VALUE clause
and the condition name itself are the only two clauses permitted in the
entry. The characteristics of a condition name are implicitly those of its
conditional variable.

6. Format 2 can be used only in connection with condition names and each
condition name must have a separate level-88 entry. The special
considerations for the use of format 1 are:

a) The VALUE clause must not be specified for an entry that contains or

is subordinate to an entry that contains a REDEFINES or OCCURS
clause.

b) If the VALUE clause is used in an entry at the group level, the literal
must be a figurative constant or a nonnumeric literal, and the group
area is initialized without consideration for the individual elementary
or group items contained with this group. The VALUE clause cannot
be stated at the subordinate levels within this group.

See under the "Condition-Name Condition” for an example of the use of the
VALUE clause.

ND-60.144.02




54213

The EXPORT Clause

The EXPORT clause enables separately-compiled programs to access data items.

Format:

EXPORT identilier

A communication can be established between COBOL and data areas in PLANC
or common arzas in FORTRAN without having to use parameters to effect the

transfer.

Exported data must be defined in the Working-Storage Section.

For the corresponding IMPORT clause in the Linkage Section see Section 9.1.3.

Note:

EXPORT/IMPORT are only allowed on 01/77 levels.

No redefines are allowed on an identifier containing
EXPORT/IMPORT, but EXPORT/IMPORT identifiers can be redefined
in the usual way.

The EXPORT and IMPORT clauses are an ND extension.

ND-60.144.02



6.1

THE PROCEDURE DIVISION

A Procedure Division is needed in every COBOL program. It is composed of
optional Declaratives and the procedures which contain the sections, paragraphs,

sentences and statements used to solve a data processing

problem.

Execution begins with the first statement in the Procedure Division after the
Declaratives. Siatements are executed in the order in which they are presented

for execution (unless the rules imply a different order).

STRUCTURE OF THE PROCEDURE DIVISION

Format 1:

PROCEDURE DIVISION [USING data-name-1 |, data-name-

[DECLARATIVES.

isection-name SECTION {segment—vnumber]EJSE sentenca:l

[paragraph-name.[sentence] ... | ... ! ...

END DECLARATIVES. |
isection-name SECTION [segment-number].
[paragraph-name [sentence| ... | ... 1 ..

Format 2:

PROCEDURE DIVISION [USING data-name-1 [, data-name-

iparagraph name. [sentence] ... ! ...

Note: Segment-number will be treated by this compiler as

ND-60.144.02

2],

comments only.



6.1.1

Declaratives

Declarative se

ctions are preceded by the key word DECLLARATIVES and followed

by the key words END DECLARATIVES. They are provided for the processing of
exceptional input-output conditions which cannot normally be tested by the

programmer.
error  occurs

These additional procedures are executed only at the time an |-O
and cannot appear in the regular sequence of procedural

statements. Therefore, they are written at the beginning of the Procedure

Division in a s
a USE senten
condition occ
Procedure Div

eries of Declarative sections. Each of these sections is preceded by
ce which specifies the actions to be taken when the exceptional
irs. {See the USE statement in the -0 Statement section of the
sion description.)

The key word DECLARATIVES is written on the line following the Procedure
Division header.

DECLARATIVES and END DECLARATIVES, when they appear, must be followed

by a period b
area A.

If declarative
sections.

it without any text on the same lines. Thevy must both be written in

sections are specified the Procedure Division must be divided into

ND-60.144.02




6.1.2

6 -3

Procedures

Procedures, whose names are user-defined, occur in thé Procedure Division and
may consist of one or more paragraphs and/or one or mpre sections.

A sections consists of a section header followed by any
of paragraphs

A section header is a section name followed by the kg
period and a space. A section name, which is used to i
defined and must be unique.

A paragraph consists of a paragraph name, followed b
space and then any number {or none) of sentences. A
identifies a paragraph, is user defined. It need not be
qualified. If one paragraph in the program is contained
paragraphs must be contained in sections.

A sentence is made up of one or more statements folloy
by a space. There are three catagories of sentence:

1. A conditional sentence is a conditional statement],

an imperative statement, followed by a period and

2. An imperative sentence is an imperative statemer|

statements finally followed by a period and a space.

3. A compiler directing sentence is a single comy
followed by a period and a space.

A statement is a syntactically valid combiantion of word
with a COBOL verb. Statements, like sentences, are divid

1. A conditional statement specifies the action to
program depending on the truth value of a conditid

2. An imperative statement directs that an uncondit
the object program. It may consist of a series of im

number (including none)

vy word SECTION then a
dentify a section, is user

y a period followed by a
paragraph name, which
unique since it can be
within a section then all

ved by a period followed

optionally preceded by

a space.

t or series of imperative

iler directing statement

s and symbols beginning
ed into three types:

be taken by the object
n.

onal action be taken by
perative statements.

3. A compiler directing statement causes a specific dction to be taken by the

compiler during compilation.

An identifier makes unique references to a data itefn.

indexed or subscripted.

ND-60.144.02

It may be qualified,




6.2.1

6.2.1.1

ARITHMETIC EXPRESSIONS

Definition of an Arithmetic Expression

An arithmetic |expression can be an identifier of a numeric elementary item, a
numeric literal, such identifiers and literals separated by arithmetic operators,
two arithmetic| expressions separated by an arithmetic operator, or an arithmetic
expression enclosed in parentheses. Any arithmetic expression may be preceded
by a unuary operator. The permissible combinations of variables, numeric literals,
arithmetic operator and parentheses are given in the table below.

Those identifiers and literals appearing in an arithmetic expression must

represent eithgr numeric elementary items or numeric literals on which arithmetic
may be performed.

Arithmetic [Operators

There are fivg binary arithmetic operators and two unuary arithmetic operators
that may be Used in arithmetic expressions. They are represented by specific
characters that must be preceded by a space and followad by a space.

Binary Arithmetic Operators: Meaning:

+ Addition

— Subtraction
Multiplication
/ Division

Exponentiation

Unary Arithmetic Operators: Meaning:

+ The effect of multiplicat:on by numeric literal +1
— The effect of multiplication by numeric literal
- 1.

ND-60.144.02




6.2.1.2

Evaluation Rules

Parentheses may be used in arithmetic expression
which elements are to be evaluated. Expressions
evaluated first, and within nested parentheses, e
the least inclusive set to the most inclusive set. W

5 to specify the order in
within parentheses are
aluation proceeds from
hen parentheses are not

used, or parenthesized expressions are at the same level of inclusiveness,
the following hierarchical order of execution is implied:

tst — unuary plus and minus
2nd — exponentiation

3rd — multiplication and division
4th — addition and subtraction

Parentheses are used either to eliminate amb

guities in logic where

consecutive operations of the same hierarchical ldvel appear or to modify

the normal hierarchical sequence of execution in
necessary to have some deviation from the norma
sequence: of execution is not specified by par

expressions where it is
precedence. When the
entheses, the order of

execution of consecutive operations of the same hierarchical level is from

left to right.

The ways in which operators, variables and parent
in an arithmetic expression are summarized in the t

heses may be combined
able where:

a) The letter 'P" indicates a permissible pair of symbols

b) The character - indicates an invalid pair
¢} 'Variable' indicates an identifier or literal.

First Symbol Second \Symbol

Variable Y/~ o+ " | Unary + or — | )
Variable — P - — P
LA e P - P P —
Unary + or — p — — P —
( P — P P |l -~
) — P — | P
Table of Combinations of Symbols in Arithmetic Expressions
An arithmetic expression may only begin with the gymbol (", "+, '—', or a

variable and may only end with a Y or a vari
one-to-one correspondence between left and ri
arithmetic expression such that each left parenth
corresponding right parenthesis.

Arithmetic expressions allow the user to combin

with the restrictions on composite of operands and
See, for example, syntax rules given for the ADD st

ND-60.144.02

able. There must be a
ght parentheses of an

psis is to the left of its

e arithmetic operations
or receiving data items.
atement.




6.3

ARITHMETIC STATEMENTS

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY and
SUBTRACT statements. They have several common features.

1. The da

ta descriptions of the operands need not be the same; any

necessary conversion and decimal point alignment is supplied throughout

the calc

2. The ma

CoOmpos

the sup
decimal

ulation.

ximum size of each operand is eighteen (18) decimal digits. The
ite of operands, which is a hypothetical data item resulting from
erimposition of specified operands in a statement aligned on their
points must not contain more than eightean decimal digits.

Overlapping Operands

When a sending and receiving item in an arithmetic statement or an INSPECT,

MOVE, SET,
areas, the res

Multiple Rest

The ADD, CO
multiple resul

following way:

1. A state
to be s
storage

2. A sequ
tempor
be writ
listed.

Incompatible

Except for th
the contents
contents of t
data item b
undefined.

STRING or UNSTRING statement share a part of their storage
ult of the execution of such a statement is undefined.

Its in Arithmetic Statements

MPUTER, DIVIDE, MULTIPLY, and SUBTRACT statements may have
ts. Such statements behave as though they had been written in the

ment which performs all arithmetic necessary to arrive at the result
tored in the receiving items, and stores that result in a temporary
location.

ence of statements transferring or combining the value of this
ry location with a single result. These statements are considered to
en in the same left-to-right sequence that the multiple results are

Data

e class condition (see the next section on Conditional Expressions)
of a data item are referenced in the Procedure Division and the
hat data item are not compatible with the class specified for that
y its PICTURE clause, then the result of such a reference is

ND-60.144.02




6.3.1

6.3.1.1

6.3.1.2

Common Options

There are three options common to the arithmetic statements whose description
follows.

The ROUNDED Option

If, after decimal point alignment, the number of places in the fraction of the
result of an arithmetic operation is greater than the number of places provided
for the fraction of the resultant-identifier, truncation is relative to the size
provided for the resultant-identifier. When rounding is requested, the absolute
value of the resultant-identifier is increased by one (1) whenever the most
significant digit of the excess is greater than or equal to five.

The SIZE ERROR Option

If, after decimal point alignment, the absolute value of a result exceeds the
largest value that can be contained in the associated resultant-identifier, a size
error condition exists. Division by zero always causes a size error condition. The
size error condition applies only to the final results of an arithmetic operation
and does not apply to intermediate results, except in the MULTIPLY and DIVIDE
statements, in which case the size error condition applies to the intermediate
results as well.

If the ROUNDED phrase is specified, rounding takes place before checking for
size error. When such a size error condition occurs, the subsequent action
depends on whether or not the SIZE ERROR phrase is specified.

1. If the SIZE ERROR phrase is not specified and a size error condition
occurs, the value of those resultant-identifier(s) affected is underlined.
Values of resultant-identifier(s) for which no size error condition occurs are
unaffected by size errors that occur for other resultant-identifier(s) during
execution of this operation.

2. If the SIZE ERROR phrase is specfied and a size error condition occurs,
then the values of resultant-identifier(s) affected by the size errors are not
altered. Values of resultant-identifier(s) for which no size error condition
occurs are unaffected by size errors ~occurring  for  other
resultant-identifier(s). After execution is complete the imperative-statement
in the SIZE ERROR phrase is performed.

ND-60.144.02



6.3.1.3

The CORRESPONDING Option

This option allows operations to be performed on elementary items of the same
name by specifying the group items to which they belong. The following rules
apply:

1. Both identifiers used must be group items.

2. CORRESPONDING is equivalent to the abbreviation CORR and is valid for
the MOVE statement.

3. A pair df data items, one from one group item and one from another,
correspond if the following conditions are true:

a) The two data items have the same name and the same qualifiers up to
but not including the group level.

b) At least one of the data items is an elementary item in the case of a
MOVE statement with the CORRESPONDING option.

c) The two data items do not include a REDEFINES, OCCURS, or
USAGE IS INDEX clause. Such items will be ignored together with any
subordinate items containing REDEFINES, CCCURS or USAGE IS
INDEX clauses.

d) The group items themselves, however, may contain or be subordinate
to data items containing REDEFINES or OCCUFRS clauses.

ND-60.144.02



6.3.1.4

The ADD Statement

The ADD statement adds together two or more numeric
resulting sum.

operands and stores the

Format 1:
identifier-1 , identifier-2 R
ADD literal.1 literal.2 .10 |de;1t|f|er~111 [ROUNDED]

[identifier-n [RQUNDED] ] ... [, ON GIZE ERRQR imperative-statement]

Format 2:

o
o
w}

literal-1 literal-2

identifie; —1 identifier- 2 , identifier
. literal-3

EX] R

GQIVING identifier-m [RQUNDED] [, identifier-n [ROUNDED} ] . . .

[. ON SIZE ERROR imperative-statement]

In format 1, eazh identifier must name an elementary numeric item.

In format 2, each identifier except those following the

‘word GIVING must be

elementary numeric items. Each identifier following the word GIVING must be

either elementary numeric or numeric edited items.
Each literal must be a numeric literal

When the TO option is used (format 1) all identifiers
together and then added to and stored immediately

specified, they are added to and stored in identifier-n, etc.

When the GIVING option is used (format 2), the v

preceding it are added
n identifier-m. Then, if

alues of the preceding

operands are added together and the sum is stored as the new value of

identifier-m and (if specified) identifier-n, etc.

For the ROUNDED and SIZE ERROR options, see th
Common Options.

ND-60.144.02

e preceding section on



6.3.1.5

The COMPUTE Statement

The COMPUTE statement assigns to one or more data items the value of an
arithmetic expression.

Format:

COMPUTE idehtiﬁer~1 [ROUNDED] [. identifier-2 [RQUNDED] ] ...
= arithmetic expression [; ON SIZE ERROR imperative-statement]

Identifiers that appear only to the left of = must refer to either elementary
numeric or elementary numeric edited items.

The COMPUTE statement allows the user to combire arithmetic operations
without the restrictions on receiving items in the ADD, SUBTRACT, MULTIPLY
and DIVIDE statements. (When arithmetic operations must be combined use of
the COMPUTE statement is more efficient than writing the separate arithmetic
statements in ;series.)

When the COMPUTE statement is executed, the value of the arithmetic
statement is calculated and then this value is stored as the new value of
identifier-1, identifier-2, etc. (The arithmetic expression can be any arithmetic
exprassion as defined earlier in this section.)

For the ROUNDED and SIZE ERROR phrases see 'Cormnmon Options’ earlier in
this section.

An arithmetic expression consisting of a single identifier or literal provides a
method of setting the values of identifier-1, identifier-2, etc. equal to the values
of that single identifier or literal.

The number of integer and decimal places provided by the compiler for
intermediate results is shown in Appendix H. It is the user’'s responsibility to
define the operands of any arithmetic statement so that they have large enough
fields to provide the required accuracy of results.

ND-60.144.02



6.3.1.6

The DIVIDE Statement

The DIVIDE statement divides one numeric data item int
resultant values equal to quotient and remainder.

Format 1:

identifier-1

DIVIDE .
literal-1

INTQ identifier-2 [ROUNDED]

[. identifier-3 [EOUNDED] ] ... [;ON SIZE ERRQR imperati

Format 2:

identifier-1
literal-1 BY

identifier-2
literal-2

DIVIDE

identifier-3 [RQUNDED] [, identifier-4 [ROUNDED] ]...

[;ON SiZE ERROR imperative-statement]

Format 3:

identifier-1
literal-1 BY

identifier-2
literal-2

DIVIDE

identifier-3 [RCUNDED] [REMAINDER identifier-4]
[;ON SIZE ERROR imperative-statement]

Each identifier, except those following the words GIVING
be elementary numeric items. Those identifiers f
REMAINDER may also be numeric edited items.

Each literal must be a numeric literal.

In format 1 the value of identifier-1 or literal-1 is di
identifier-2 anc the quotient obtained replaces this value
3, ... n, if specified.

In format 2, only one division takes place, the value of
divided into/by the value of identifier-2 or literal-2. The ¢

identifier-3 and (if specified) identifier-4, etc.

In format 3, the division process is as for format 2 exc

o others and stores the

ve-statement]

and REMAINDER, must
ollowing GIVING and

ided into the value of

. Similarly for identifiers

demtifier-1 or literal-1 is
uotient is then stored in

ept that the quotient is

stored in identifier-3 and the value of the remainder in identifier-4.

For the ROUNDED and SiZE ERROR options, see the preceding section on

Common Options.

ND-60.144.02




6.3.1.7

The MULTIPLY Statement

The MULTIPLY statement computes the product of two numeric data items and
stores it.

Format 1:
identifier-1 .
MULTIPLY { literal 1 - BY identifier-2 [ROUNDED]

[ identifier-3 [ROUNDED] | ... [;ON

w

IZE ERROR imperative-statement]

——

Format 2:
MULTIPLY i_dentifier-ﬂ BY igef1tif;er..2
R — literal-1 literal-2

-

GIVING identifier-3 [ROUNDED] [, identifier-4 [ROUNDED] | ..

[;ON SIZE ERROR imperative-statement]

=

Each literal must be a numeric literal.

Each identifier must be numeric elementary item, excep: that identifiers following
the word GIVING in format 2 may also be elementary numeric items.

In format 1, identifier-2 is replaced by the product of it and the first operand.
This process is continued for all subsequent identifiers.

When format 2 is used the value of identifier-1 or numeric-literal-1 is multiplied
by the value of the second operand. The result is stored in identifier-3,
identifier-4, etc.

ND-60.144.02




6.3.1.8

6-13

The SUBTRACT Statement

The SUBTRACT statements subtracts one, or the sum of two or more, or more
numeric data items from one or more items and stores the results.

Format 1:
identifier-1 identifier-2
ACT '
SUEBT literal-1 , literal-2

EROM identifier-m [ROQUNDED] |, identifier-n [ROUNDED

[;ON SIZE ERRQR imperative-statement]

Format 2:

identifier-1 , identifier-2
SUBTRACT literal-1 literal-2
FROM identifier-m

literal-m
GIVING identifier-n [ROUNDED] [, identifier-o [ROUNDED] | ...

[;ON SIZE ERROR imperative-statement]

Each identifier must represent a numeric elementary item except when following
the word GIVING when it may also be an elementary numeric edited item.

In format 1 the identifiers or literals preceding FROM are added together and
subtracted from identifiers m, n, ... in turn. After each subtraction the results are

stored in these identifiers m, n, ... .

In format 2, the identifier or literals preceding FROM are added together and
subtracted frorn identifier-m or literal-m. The result of the subtraction is stored
as the new value of identifier-n and any other specified identifiers.

ND-60.144.02




6.4

CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable the object
program to select between alternate paths of control depending upon the truth
value of the condition. Conditional expressions are specified in the IF, PERFORM
and SEARCH statements. There are two categories of conditions associated with
conditional expressions: simple conditions and complex sonditions.

SIMPLE CONDITIONS

The simple conditions are the relation, class, condition-name and sign conditions.
A simple condition has a truth value of ‘true’ or 'false’.

RELATION CONDITION

A relation condition causes a comparison of two operands, each of which may
be the data item referenced by an identifier, a literal, or the value resulting from
an arithmetic) expression. A relation condition has a truth value of 'true’ if the
relation exists between the operands. Comparison of “wo numeric operands is
permitted regardless of the formats specified in their respective USAGE clauses.
However, for all other comparisons the operands must have the same usage. If
either of the operands is a group item, the nonnumeric comparison rules apply.

The format of a relation condition is as follows:

IS [NOT] GREATER THAN
o IS [NOT] LESS THAN o
@entn‘;erﬁ IS [NOT] EQUAL TO |Fient|f|er~2
ht?ralﬂ . . IS [NOQT] > Iit§ral—2 ‘ '
arithmetic-expression- IS [NOT] < arithmetic-expression-2
IS [NOT] =
NOTE: The required relational characters '>', '<’, and "=’ are not underlined
to avoid confusion with other symbols such as ‘=’ (greater than or

equal to).

ND-60.144.02




COMPARISION OF NUMERIC OPERANDS

For operands whose class is numeric (refer to the Dat
Categories of Data) a comparison is made with respect t

the operands. The length of the literal or arithmetic expes

of number of digits represented, is not significant. Zero
value regardless of the sign.

Comparison of these operands is permitted regardless

their usage is described. Unsigned numeric operands arg

purposes of comparison.

COMPARISON OF NONNUMERIC OPERANDS

For nonnumeric operands, or one numeric and one

comparison is made with ND’s standard character set. If

numeric it must be an integer data item or integer literal
apply:

a. If the nonnumeric operand is an elementary dat

numeric operand is treated though it were mc
and
alphanumeric item were then compared to the nonn

alphanumeric data item of the same size,

though it were moved to a group item of the sam
of this group were compared to the nonnumeric op

operand.

The ALPHABETIC test cannot be used with an item

describes the item as numeric. The item being teste
alphabetic only if the contents consist of any combin
characters "A’ through ‘2’ and the space.

The size of an operand is the total number of characters
If the operands are equal in size:
Characters in corresponding positions are compar
leftmost character. If a pair of unequal characters i
tested to ascertain their relative positions in the
operand having the character higher in the sequence
greater operand.

If the operands are unequal in size:

The comparison is made as if the shorter operand we
with enough spaces to make the operands of equal s

ND-60.144.02

If the ncnnumeric item is a group item, the num

A non-integer numeric operand cannot be comp

a Division, Classes and
o the algebraic value of
sion operands, in terms
s considered an unique

bf the manner in which
considered positive for

nonnumeric operand, a
one of the operands is
and the following rules

a item or a literal, the
ved to an elementary
the contents of this
umeric operand.

eric item is treated as
size, and the contents
erand.

<3
ol

bared to a nonnumeric

whose data description
d is determined to be
ation of the alphabetic

contained in it.

ed, beginning with the
s encountered, they are
collating sequence. The
is considered to be the

re extended to the right
ze.




6--16

CLASS CONDITION

The class con
format is:

id

[¢]

The identifier
combination

If its PICTUR
considered as
present. Othe
considered t
together with

Valid operatio

dition determines whether the operand is alphabetic or numeric. Its

NUMERIC
ALPHABETIC

tifier 1S [NOT]

is determined to be numeric if its contents consist only of a
f the digits 0 through 9.

E does not contain an operational sign, then the identifier is
numeric if the contents are numeric and an operational sign is not
rwise, if its PICTURE contains an operational sign, the identifier is
be numeric if it is an elementary item having numeric contents
the presence of an operational sign.

ns signs are:

For items destribed with the SIGN clause -

+ {53 octal) and — (55 octal)

The embedded operation signs -

+0to +9
—0 to —9

173, 101 to 111 (octal)
175, 112 to 122 (octal)

For COMPUTATIONAL-3 items, see under Computational Options.

The NUMERIC test is not valid for alphabetic items or for group items which

have operatio

nai signs present in items subordinate to them.

ND-60.144.02




CONDITION-NAME CONDITION (CONDITIONAL VARIABLE)

This condition cetermines whether a conditional variable 1
of the values(s) associated with the condition-name. Its fo

as a value equal to any
rmat is:

condition-name

The use of this condition is as an abbreviation for the re
rules for comparing a conditional variable with a conditio
specified for the relation condition.

If the condition-name is associated with a range or ran
conditional variable is tested to determine whether or n
range, including the end values.

The result of the test is true if one of the values

condition-name equals the value of its associated conditio

As an example of its use, if the following is specified:

05 TYPE-REC PIC X.

88 TYPE-1 VALUE A THRU F.
88 TYPE-2 VALUE H.
88 TYPE-3 VALUE J THRU Z.

(Where TYPE-REC is a conditional
classification of a record, the code:

variable} then,

IF TYPE-1

Can cause a branch for values of A, B, C, D, E or F. (Re
the Data Division and to "Comparison of Nonnumeric G
section.)

SIGN CONDITION

The sign condition determines whether or not the
arithmetic expression is less than, greater than, or equ
format for a sign condition is as follows:

PQSITIVE
NEGATIVE
ZERO

arithmetic-expression

1S [NOT]

When used, 'NOT" and the next key word specify one sig
the algebraic test to be executed for truth value; e.g., ‘N
for a nonzero {positive or negative) value. An operand i
greater than zero, and zero if its value is equal to zero. T
must contain at least one reference to a variable.

ND-60.144.02

ation condition and the
-name are the same as

ges of values, then the
ot its value falls in this

corresponding to the
nal variable.

to determine a type

fer to VALUE clause in
perands’ earlier in this

algebraic value of an
al to zero. The general

n condition that defines

OT ZERO' is a truth test

s positive if its value is

he arithmetic expression




COMPLEX CQ

A complex ¢
conditions an
"AND" and 'O
operator 'NOT
or not, is tha
the individua
conditions log

The logical op

NDITIONS

ondition is formed by combining simple conditions, combined

d/or complex conditions with logical connectors {logical operators

R') or negating these conditions with logical negation (the logica!

['). The truth value of a complex condition, whether parenthesized

which results from the interaction of all the logical operators on
values of simple conditions, or
ically connected or logically negated.

the intermediate values of

erators and their meanings are:

Logical Operator. Meaning:

AND Logical conjunction; the truth value is ‘true’ if both
conditions are true; ‘false’ if one or both conditions is
false.

OR Logical inclusive OR; the truth value is 'true’ if one or
both of the conditions is true; 'false’ if both conditions
are false.

NQT Logical negation or reversal of truth value; the truth

The logical op

value is ‘true’ if the condition if false: 'false’ if the
condition is true.

erators must be preceded by a space and followed by a space.

ND-60.144.02




NEGATED SIMPLE CONDITIONS
A simple condition {see earlier in this section) is negated
value for a simple condition. Its format is:

NOT simple condition

COMBINED CONDITIONS

A combine condition results from connecting conditions
operators 'AND’ or "OR’. The format is:

condition AND condition
OR
Where 'condition’ may be:
1. A simple condition, or
2. A negated simple condition, or
3. A combined condition, or
4. A negated combined condition; i.e., the

through the use of the
logical operator ‘NOT". The negated simple condition effects the opposite truth

with one of the logical

‘NOT'

logical operator

followed by a combined condition enclosed within parentheses, or

5. Combinations of the above, specified according to the rules
summarized in the following table, Combinations of Conditions,

Logical Operators, and Parentheses.

Although parentheses need never be used when either 'AND’, 'OR’ and 'NOT’ is
used. The table indicates the ways in which conditions and logical operators may
be combined and parenthesized. There must be a one-to-one correspondence
between left and right parentheses such that each left parentheses is to the left

of its corresponding right parentheses.

ND-60.144.02




Location in

In a left-to-right sequence of elements:

conditional
expression Elernent, when not Element, when not
Given the follow- first, may be last, may be
ing element First Last immediately pre- immediately follow-
ceded by only: ed by only:
simple-condition Yes Yes OR, NOT, AND, { OR, AND, )
OR or AND No No simple-conditior, ) simple-condition,
NOT, (
NOT Yes No OR., AND, ( simple-condition, {
( Yes No OR, NO, AND, { simple-condition,
NOT, {
) No Yes simple-conditior, ) OR, AND, )

TABLE OF COMBINATIONS OF CONDITIONS, LOGICAL OPERATORS, AND PARENTHESES

Thus, the element pair 'OR NOT' is permissible while the pair 'NOT OR’ is not
permissible; ‘NQOT (' is permissible while 'NOT NOT' is not permissible.

ND-60.144.02




621

ABBREVIATED COMBINED RELATION CONDITIONS

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condition
contains a subject or subject and relational operator that is common with the
preceding relation condition {(and no parentheses are used within such a

consecutive sequence), any relation condition except the first may be
abbreviated by:

(1) The omission of the subject, or

{2)  The omission of the subject and relational operator.

The format for an abbreviated combined relation condition is:
relation-condition {%E‘Q [NQT] [relational-operator] object

Within a sequence of relation conditons both of the above forms of abbreviation
may be used. The effect of using such abbreviations is as if the last preceding
stated subject were inserted in place of the omitted subject, and the last stated
relational operator were inserted in place of the omitted relational operator. The
result of such implied insertion must comply with the rules given in the table,
Combinations of Conditions, Logical Operators and Parentheses, shown above.
This insertion of an omitted subject and/or relational operator terminates once a
complete simple condition is encountered within a complex condition.

The interpretation of the word 'NOT' in an abbreviated combined relation
condition is as follows:

(1) If the word immediately following 'NOT' is 'GREATER’, '>', 'LESS’, "<’
EQUAL, "=, then the 'NOT' participates as a part of the relational
operator; otherwise

(2)  The 'NOT' is interpreted as a logical operator and, therefore, the implied

insertion of subject or relational operator results in a negated relation
condition.

ND-60.144.02



Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

Abbreviated Combined

Relation Condition Expanded Equivalent

a > b AND NOT < ¢ OR d ((a »» b) AND (a NOT < ¢))OR (a NOT < d)
a NOT EQUAL b OR ¢ (a NOT EQUAL b) OR (a NOT EQUAL ¢)
NOTa = b ORc (NOT (a = b))OR (a = c)

NOT (a GREATER b OR < c¢) NOT ((a GREATER b) OR (a < c¢))

NOT (a NOT > b AND ¢ AND NOT d} NOT ((({a NOT > b) AND (a NOT > c}) AND
(NOT (a NOT > d))))

CONDITION EVALUATION RULES

Parentheses may be used to specify the order in which conditions are evaluated
when it is required to depart from the implied evaluation sequence. In this case,
logical evaluation proceeds in the following order:

1. Conditions within parentheses are evaluated first.

2. Within nested parentheses, evaluation proceeds from the least inclusive
condition to the most inclusive condition.

If parentheses are not used then the evaluation order is:

1. Arithmetic expressions

2. Simple conditions in the order -
relation
class

condition-name
sign

3. Negated simple-conditions in the order as in 2.

4. Combined conditions in the order -

OR
AND
NOT

5. Negated combined conditions in the order as in 4.

Consecutive operands at the same hierarchical level are evaluated from left to

right.
ND-60.144.02



6.5 CONDITIONAL STATEMENTS

6.5.1 The IF Statement

The IF statement causes a condition to be evaluated. The subsequent execution
sequence depends upon whether the condition is true or false. The general

format is:
Format 1:
IF condition statement-1 ELSE statement-2

SOF i
- NEXT SENTENCE ELSE NEXT SENTENCE
Format 2 (An ND Extension):

statement-3 LSE statement-4

IF ition THEN END-IF
AE condition NEXT sewnzwc% [:LSE NEXT SENTENC:I [END-IF]

Format 3 {(An ND Extension):

statement-5
NEXT SENTENCE

statement-6
SE-IF ¢ ition-2 THEN
L F condition E C\JEXT SENTENCE}

IE condition-1 THEN

m

statement.-7

ELSE NEXT SENTENCE

Fevp.i]

General Rules for Format 1:

1. If the condition tested is true, one of the following actions takes place:

a. Statement-1, if specified, is executed. I this contains a
procedure-branching statement, control is transferred according to
the rules of that statement. If it does not, the ELSE phrase, if

specified, is ignored and control passes to the next executable
sentence.

b. If the NEXT SENTENCE phrase is specified instead of statement-1,
the ELSE phrase, if present, is ignored and control passes to the next
executable sentence.

ND-60.144.02
Rev. A



2. If the condition tested is false, one of the following occurs:

a. ELSE statement-2, if specified, is executed. If this statement contains
a procedure-branching statement, control is transferred according to
the rules for that statement. Otherwise control is passed to the next
executable sentence.

b. ELSE NEXT SENTENCE, if specified, is executed, i.e. statement -1, if
present, is ignored and control passes to the next executable
sentence.

C. If ELSE NEXT SENTENCE is omitted, control passes to the next
executable sentence.

3. Statement-1 and/or statement-2 may contain an IF statement. In this case
the statement is said to be nested. Statements 1 and 2 represent either an
imperative statement or a conditional statement. Either of these may be
followed by a conditional statement

4. The ELSE NEXT SENTENCE option may be omitted if it immediately
precedes the terminal period of the sentence.

General Rules for Format 2:
1. Statements 3 and 4 represent imperative statements.

2. If the condition is true and the ELSE clause is omitted, then if statement-3
has been coded, this statement together with any further imperative
statements preceding the sentence terminator, will be executed. Control is
then passed: implicitly to the next sentence unless a GO-TO
procedure-name appears in statement-3. If the condition is true and NEXT
SENTENCE is coded, control passes explicitly to the next sentence.

3. If the condition is true and the ELSE clause is present then statement-4
(together with any further imperative statements preceding the sentence
terminator) or the NEXT SENTENCE of this clause is executed. If the ELSE
clause is absent, control passes to the next sentence following the END-IF.

4. No period character (.) should occur between the IF and END-IF verbs
inclusively.

ND-60.144.02
Rev. A



625

General Rules for Format 3:
1. Statements 5, 6 and 7 are imperative statements.
2. If the ELEE-IF clause is omitted then the rules are as for format 2. (Except

that statement-5 should be substituted for statement-3 and statement-7 for
statement-4.)

3. It condition-1 is false, then if condition-2 is true, then the rules are as for
format-2 if statement-6 is substituted for statement-3 and statement-7 for
statement-4.

6.5.1.1 Nested IF Statements

The presence of one or more |F statements within an initial IF statement
constitutes a "‘nested” IF statement. Statements 1 and 2 may consist of one or
more imperative statements and/or a conditional statement. If an IF statement
appears as the whole or part of statements 1 or 2 it is said to be nested.

[F statements within IF statements may be considered as paired IF and ELSE
combinations, oroceeding from left ot right. Thus, any ELSE encountered is
considered to apply to the immediately preceding IF that has not been already
paired with an ELSE.

The structure of a possible nested IF statement may be exemplified as follows:

IF condition-1 statement-A
IF conditon-2
IF condition-3 statement-B
ELSE statement-C
ELSE statement-D

IF condition-4

IF condition-5 statement-E

ELSE statement-F.

ND-60.144.02
Rev. A



6.5.2

6--26

The Flowchart for this example would appear as:

FALSE

A

satementC statemerit-8
statement-D :%:
FALSE TRUE
FALSE @
% TRUE
statement-F . statament-E

o NS

NEXT
SENTENCE

The DO Statement (An ND-Extension)

A DO statement specifies a loop which can be used for coding iterative
procedures. There are two basic formats:

Format 1:

DO [sentence] [{WHILE condition} sentence] ...END-DO

Format 2:

identif
DO FOR identifier FROM 4 \Cc" ’er} [:BY integer- 2
integer-1
identifier

} [sentence] [{WHILE condition} statement] ... END-DO
—— | integer-3

In format 2, the identifier must be a numeric item whose PICTURE specification
does not contain a decimal point. i, j, and k are the initial, incremental, and
terminal parameters respectively and they must be integer. The incremental

parameter should be greater than or equal to 1, if it is not present it is assumed

to be 1 (one). ND-60.144.02

Rev. A



6-27

At execution time the identifier takes the value of the initial parameter, and the
loop is performed until either the initial parameter is greater than the terminal
parameter, or until either the condition in the WHILE phrase (if present) is no

longer true. Control then passes to the next executable statement following the
corresponding END-DQO statement.

In format 1, the identifier must be specified as in format 2. If the WHILE
condition phrase does not appear the DO-loop may be regarded as an infinite
loop (see Example 3 for an example of its use).

The WHILE condition phrase which appears in both formats, may also appear
any number o times within the DO-loop. DO-loops may be nested up to 50
levels. Any DO-loop may be left via the EXIT verb. {See also EXIT-DO and
EXIT-ALL-DO in section 6.8.3.)

EXAMPLE 1.

DO FOR N FROM 1 BY 1 TO 50

MOVE CORRESPONDING MASTER-REC(N) TO OUT-REC(N).
WRITE OUTRECT(N).

END-DO.

EXAMPLE 2.

DO WHILE | <100.

WHILE M = N.

WHILE P NOT EQUAL R OR S.
WRITE OUT-FILE.
END-DO.

EXAMPLE 3.

DO.

# read fil2 with unknown number of records
READ FH.E IN-FILE AT END GO TO 1000.
END-DO

ND-60.144.02
Rev. A



6.6

6.6.1

6.6.1.1

DATA MANIPULATION STATEMENTS

Screen Handling Facilities

Screen Handling for COBOL is an ND Extension for which four of the Data
Manipulation Statements can be used. These are ACCEPT (format 3},
ACCEPT-ERROR, BLANK, and DISPLAY (format 2), and they are described
individually below. Section 6.6.2 provides a few examples of screen-handling in
which their function and interaction is demonstrated.

These features can be used with all terminals which are suitable for the ND
editors (Notis-WP, PED, ....).

The ACCEPT Statement

The ACCEPT statement causes low volume data to be made available to the
specified identifier.

Format 1 - Data Transfer:

ACCEPT identifier [FROM mnemonic-name]

Format 2 - System Information Transfer:

DATE
DAY
TIME
CPU-TIME

ACCEPT identifier FROM

ND-60.144.02
Rev. B



6--29

Format 3 — Screen Handling:

ACCEPT position spec. identifier [WITH [BEEP]
[SPACE-FILL]
[LENGTH-CHECK]
[AUTO-SKIP]
[PROMPT]
[BLANK-WHEN-ZERO]
[MUST]

[UPDATE]
[INVISIBLE]
[INVERSE-VIDEO]
[BLINK]
[UNDERLINE]
[LOW-INTENSITY]
[UPPER-CASE]

DOWN Label]

where Label is a paragraph or a section name, and
identifier is the name of the receiving field.
Position specifier is the screen position defined as:
{Line, column)
both lines and column being defined by:

identifier [{*} integer]
integer

Format 1 is used to transfer data from an input-output device into identifier. If
the FROM option is omitted then the input device is assumed to be the system
console in the case of RT-users, and the CR terminal in the case of Time-sharing
and Batch users. When running batch or mode files in background mode, data is
accepted from the next line on the respective file. (IF the FROM option is present
then the mnermonic-name is treated as comments only.)

ND-60.144.02
Rev. A



Format 2 is used to transfer system information (DAY, DATE, TIME, CPU-TIME)
into identifier according to the rules of the MOVE statemrent.

DATE is composed of a sequence of data elements as follows:

2 digits for year of century, 2 digits for month of year, 2 digits for day of
month. Therefore, September 1, 1980 would be expressed as 800901.

DAY has the sequence of data elements:

2 digits for year of century, 3 digits for day of year. Thus, September 1,
1980 is expressed as 80245.

TIME is composed of the data elements hours, minutes, seconds and hundreths
of a second. For example, 2:41 p.m. would be expressed as 14410000.

CPU-TIME consists of the data element CPU-time expressed in milliseconds.

In format 3, the receiving field (identifier) is described Dy a PICTURE or USAGE
specification. The data input field is a string of characte- positions starting at the
location indicated by the position specifier. Valid data which may be entered is
governed by the rules for the associated PICTURE specification (see the Picture
Clause in Section 5.4.2.5).

The identifier may have its USAGE described as COMPJTATIONAL (see Section
5.4.211). In this case the size of the field for single-word items is 5 + a sign
position, and for double-word items the size is 10 + the sign position.

The identifier may also have its USAGE described as COMPUTATIONAL-3.

Format 3 is used to accept data into a field from a CR-terminal. The options in
the WITH phrase which describe the appearance of the field on the screen, can
appear in any order or combination. However in some cases the type of options
which are operative simultaneously will be terminal-dependent.

ND-60.144.02
Rev. A



The effects of each are as follows:

BEEP will sound the terminal’s audio alarm when the system is ready to ACCEPT
the field.

SPACE-FILL is for use with numeric fields. Where the identifier has a PICTURE
specification of 9's only, leading zeros are set to blanks. (On the screen
only.)

LENGTH-CHECK causes the entry of a field terminator to be ignored until each
input position has been operated upon.

AUTO-SKIP specifies that when an input field has filled by the operator, the field
will be terminated automatically.

PROMPT results in the data input field on the screen being set so that all
positicns contain the period character (".”") before input is accepted.

UPDATE will initialize the data input field with the initial contents of the receiving
field. This data is then treated identically to that keyed-in by the
operator, and editing can be performed. UPDATE and PROMPT can be
used together on the same ACCEPT statement.

INVISIBLE will prevent the data entered into the input field from being displayed

on the screen. This may be required for security reasons, such as when
keying-in passwords etc.

INVERSE-VIDEO produces a bright background in the area allotted for the
display of identifier.

BLINK causes the display of identifier to flash on and off.
UNDERLINE produces underlining of identifier.
LOW-INTENSITY results in a display of reduced intensity.

NORMAL resets the effect of a previous INVERSE-VIDEQ, LOW-INTENSITY,
BLINK or UNDERLINE.

MUST means that some data must be entered into the field of the ACCEPT
statement before it can be left.

BLANK-WHEN-ZERO causes the item to be displayed as all blanks if its value is
zero.

UP, DOWN, HOME, EXIT, LEFT, and RIGHT represent control keys which are
terminal-dependent and which are used for moving the cursor between
specif ¢ data input fields. These data input fields are identified by the

name of the paragraph or section in which they occur in the Procedure
Divisian.

CONTROL Label, which must be the last option coded on an ACCEPT statement,
provides the user with an opportunity to test for errors of his own
definition. On entering carriage return, the section or paragraph with the
label "Label” receives control. If the user-defined error is found then an
ACCEPT-ERROR statement following the test will return control to the
ACCEPT statement, at the end of the section or paragraph, which will
not have been "accepted”. The field must now be re-entered. If the
error has not been detected then return is to the next statement
following the ACCEPT

ND-60.144 .02
Rev. A



Carriage return (CR) acts as a terminator character. If LENGTH-CHECK has not
been coded it terminates the ACCEPT and the cursor automatically moves to the
beginning of the next data input field.

The carriage return may be used at any position in the data input field unless
LENGTH-CHECK has been coded with the associated ACCEPT statement.

Editing within data input fields of alphanumeric types before termination of the
ACCEPT statement may be performed using CRTL A to delete a single character
at a time, CRTL E to insert characters, CTRL Q to delete all characters and left
and right arrows to move the cursor inside the field.

CTRL A and CRTL Q may be used also in numeric fields.

Upon termination of the ACCEPT statement, data is transferred to the receiving
field and edited according to the rules of the wcorresponding PICTURE
specifications. With numeric fields there is an automatic display after
"acceptance’ of data input.

ND-60.144.02
Rev. A



6.6.1.2

6.6.1.3

6—-33

The ACCEPT-ERROR Statement

Format:

ACCEPT-ERROR

This statement is used in conjunction with an ACCEPT statement having the
option CONTROL label. ACCEPT-ERROR is coded within the section or paragraph
designated by ‘label’. If a user-defined error has been detected, then
ACCEPT-ERROR causes a return to the ACCEPT statement, at the end of the
statement or paragraph, which will not have been 'accepted’. The field must now
be re-entered. If the user-defined error is not detected, control passes to the
next statement following the ACCEPT statement.

The BLANK Statement

The BLANK statement causes the whole or part of the screen to be erased.

Format 1:

BLANK SCREEN

Format 2:

LINE
BLANK [ ] n, [IQ n,] [COLUMN n, TO n,]
S —— )

LINES

where i, j, k, n,, n,, n,, and n, must be integers or identifiers defined with no
decimal point.

With format 1, the entire screen is erased and the cursor is placed in the home
position (line 1, column 1). Format 2 will blank out the line n, to n, inclusively,
between columns n, and n, inclusively.

ND-60.144.02
Rev. B



6.6.1.4

The DISPLAY Statement

The DISPLAY statement causes low volume data tc be transferred to the
appropriate hardware device. It also has some screen handling facilities for

convenient data presentation (viz., the FRAME and the FULL-BAR/SPARSE-BAR
options).

Format 1:

ifier-1 identifier-
DispLAy ({‘dentifier - identifier-2 ... [WITH NO ADVANCING]
hteral 1 , literal-2 -

[UPON mnemonic-name]
Literal-1 and literal-2 may be any figurative constant, except ALL.

The operand(s} are transferred to the system output device with conversion, if
necessary.

The UPON option has no effect and exists for syntax reasons only.
If the WITH NO ADVANCING phrase is specified, the system output device will

not advance one line on the page before displaying the output. Otherwise,
automatic advancement of one line will occur.

Format 2:
if ifier-4
DISPLAY position spec. Ilt:?at: ';r? EZ:‘;: 'fr [\WITH [BEEP)
[SPACE-FILL]
[INVERSE-VIDEO]
[BLINK]

[UNDERLINE]
[LOW-INTENSITY]
[NORMAL]|
[AUTO-ERASE]
[PROMPT]
[BLANK-WHEN-ZERO] |

Position spec., the screen position, is defined as:
{line, column)

both line and column being defined by:

identifier [{+} integer]
mteger

ND-60.144.02
Rev. B



6-3b

Format 2, which forms part of Screen Handling, displays data on a video
terminal. Messages or the contents of a data item can appear on the screen with
various forms of visual emphasis. The data consists of either literal-3 or
identifier-3 and the display is described by the options listed in the WITH phrase.
These options may appear in any order. However, in some cases the number of
options which may appear simultaneously will be terminal-dependent.

They have the following meanings:
BEEP causes an audible alarm to sound when the DISPLAY statement is
initiclized.

SPACE-FILL is for use where identifier-4 describes a numeric field. If the
PICTURE specification contains only 9's, leading zeros are set to blanks
(on the screen only).

INVERSE-VICEQ produces a bright background in the area allotted for the
display of identifier-4 or literal-4. The characters themselves appear at
the normal background intensity.

BLINK causes the display of identifier-4 or literal-4 to flash on and off.

UNDERLINE produces underlining of literal-4 or the contents of identifier-4 when
they are displayed on the screen.

LOW-INTENEITY causes a display of reduced intensity.

NORMAL resets the effect of a previous INVERSE-VIDEO, LOW-INTENSITY,
BLINK, or UNDERLINE.

AUTO-ERASE. When the first character of a following ACCEPT statement is
entered, all fields coded with AUTO-ERASE, of which there may be up
to 1€, will disappear automatically.

PROMPT. If the field is all zeros or all spaces, the prompt character period (".')
will appear in each position instead.

BLANK-WHEN-ZERO. Leading zeros in a field will be replaced by blanks
(spaces). If the value of the field is zero, the field will contain all spaces.

DISPLAY

Format 3:
identifier-1 [{+} integer-1] identifier-2 [{+} integer-3]
integer-2 integer-4
identifier-3 identifier-4
FRAME %
literal-1t literal-2

WITH [SPACE-FILL] [HEADING] ]
. J

ND-60.144.02
Rev. B

I

I



Format 3 is used to draw frames around selected areas of the screen. The part
within the first parenthesis is a position specification, as in the previous format.
The specified position is taken to be the upper left corner of a frame of the size
given after the FRAME phrase. The first number after FRAME gives the number
of lines down from the specified point that the frame will reach. The second
number gives the number of columns that the frame will reach to the right of the
specified point.

The format has two additional options:

SPACE-FILL, erases the interior of the frame, i.e., it writes spaces into each
character position inside it.

HEADING makes COBOL draw a line segment across the third line inside the
frame, thus making room for a heading to be written into the second line
inside the frame.

Format 4:
identifier-1 [{+} integer-1] identifier-2 [{+} integer-3]
DISPLAY
integer-2 integer-4
F ~-BA identifier-3 identifier-+4
x
SPARSE-BAR literal-1 literal-2

Format 4 allows COBOL to draw vertical histogram bars from available data. It
has a position specification part, like the previous formats. In format 4, however,
the position specified inside the parenthesis is the lower left corner of the bar.
There are two optional shadings, of which one must be selected:

FULL-BAR, giving the densest shading.
SPARSE-BAR, giving a half-tone shading.

The size of the bar must be specified after the shading option. The first of the
two numbers defines the height of the bar, the second defines its width. The
height of the bar may be up to four times the number of lines available for it.
That means that a bar of height 4 is one line high, while a bar of height 88 may
reach from the bottom to the top of a 22-line screen.

ND-60.144.02
Rev. B



6.6.2 Screen Handling Examples
This section shows five simple programs to illustrate some of the features of ND m
COBOL screen handling. A description of the statements used will be found in
section 6.6.1
EXAMPLE 1.
ND-100 COBOL COMPILER ~ 9 JUN 1982 TIME: 16.55.41 DATE: 82.07.13

SOURCE FILE: COBF:TEXT
OBJECT FILE: COBF

OWwWEe~NO0OWU ZWh) —

YAV LD W LD LD LU LY D PO P RS R N PP MDD s e o s e
3&(/;&:10\\)72’0\)!\)—4O\OC&)'\]O"W&U)T\)——:O\OO’.‘\!OWKU)N—'

IDENTIFICATION DIVISION.
PROGRAM-ID. DIAGONALS.

This program produces a pattern of two crossing diagonals

which appear as blanked areas on a filled-in background.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. NORD-100.
OBJECT-~COMPUTER. NORD-100.

DATA DIVISION.

WORKING-~STORAGE SECTION.

01 M PIC 99 VALUE ZERO.
01 J PIC 99 VALUE 78.
01 1 PIC 999 VALUE ZERO. '
01 N PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
100.
BLANK SCREEN.
1200.

DO FOR N FROM 1 BY 1 TO 80.
DO FOR I FROM 1 BY 1 TO 25,
DISPLAY (I, N) “#n».
END-DO.
END-DO.
1300.

DO FOR N FROM 2 BY 2 TO 25.
MOVE N TO I.
ADD N TO I.

. ADD N TO I.
MOVE I TO M.
ADD 3 TO M.
BLANK LINE N COLUMN I TO M.
END-DO.

ND-60.144.02
Rev. B



6--38

Ko 1400.

4 DO FOR N FROM 2 BY 2 TO 25.
42 SUBTRACT 6 FROM J.

43 MOVE J TO M.

Ly : ADD 3 TO M.

45 , BLANK LINE N COLUMN J TO M.
46 END-DO.

L7 1700.

48 STOP RUN.

Ly

##% NO ERROR MESSAGES ###

ND-60.144.02
Rev. B



EXAMPLE 2.

ND-100 COBOL COMPILER - 9 JUN 1982 1IME: 14.34.03 DATE: 82.07.15
SOURCE FILE: FORMS:TEXT
OBJECT FILE: FORMS

1
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID. FORMS.
i
5 #Tnis program shows how a form might be created containing
6 #information - in this case names, addresses, and codes.
7 #The contents are displayed and the opportunity is provided
8 #to "mccept" an update for each entry. It is possible to move
9 *petween the fields using control keys as individually coded
10 ®8in the program with each ACCEPT statement.
1
12
13 ENVIRONMENT DIVISION.
14 CONFIGURATION SECTION.
15 SOURCE-COMPUTER. NORD-100.
16 OBJECT-COMPUTER. NORD-100.
17
18 DATA DIVISION.
19
20 WORKING-STORAGE SECTION.
21 01 FRAME.
22 02 HORIZ-LINE PIC X{B0) VALUE "o e e -
23 - Bl e e e o o o e i e e e om0 o o e 1 e i S S e e e o 0 S e 2 o 2 e e e e "
24 02 NAM PIC X(15) OCCURS 10 TIMES.
25
26 02 ADDR PIC X(30) OCCURS 10 TIMES.
27
28 02 CODE PIC 999 OCCURS 10 TIMES.
29
30 01 N PIC 99 VALUE ZERC.
31 01 M PIC 99 VALUE ZERO.
32
33 PROCEDURE DIVISION.
34
35 5. MOVE "ROSE COTTAGE"™ TO ADDR(1).
36 MOVE "10 STRAWBERRY HILL"™ TO ADDR(2).
37 MOVE "THE OLD MILL"™ TC ADDR(3).
38 MOVE "132 OXFORD ROAD"™ TO ADDR{4).
39 MOVE "1 DONNINGTON SQUARE®™ TO ADDR(5).
40 MOVE "5 WHITE HORSE LANE" TO ADDR(6).
L1 MOVE ®TUDOR LODGE"™ TO ADDR(T).
42 MOVE "3 DEER LEAP WOOD" TO ADDR(S8).
43 MOVE "RIVERSIDE HOUSE, HENLEY"™ TO ADDR(9).
Ly MOVE "THE BARN, ABBOTS ANN" TO ADDR(10).

ND-60.144.02
Rev. B



45
46
L7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
6l
65
6¢
67
68
69
70
71
72
73
T4
75
76
7
78
79
80
81
82

3
84
85
86
87
88
89
90
91
g2
93
94
95

15.
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

20.
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

30.

®ANDERSON"™ TO NAM(1).
"ARCHER" TO NAM(2).
"BROWN" TO NAM(3).
"CARTER" TO NAM(L).
"EVANS™ TO NAM(5).
"HYDE" TO NAM(6).
FLEWIS"™ TO NAM(T).
"NORTON" TO NAM(8).
"RUSSELL"™ TO NAM(9).
TWOOD" TO NAM(10).

n5o5n
"399"
"002"
ngoon
nu17n
nOo15"
n666n
"g1g"
"7
nopon

TO
TO
TO
TO
TO
TO
TC
TO
TO
TO

BLANK SCREEN.

CODE( 1).
CODE(2).
CODE(3).
CODE(4),
CODE(5).
CODE(G).
CODE(7).
CODE(8).
CODE(9).
CODE(10).

# INSERT FORM HEADERS

35.

DISPLAY (1,
DISPLAY (2,
DISPLAY (2,
DISPLAY (2,
DISPLAY (2,
DISPLAY (2,
DISPLAY (2,
DISPLAY (2,
DISPLAY (3,

1) HORIZ-LINE.
1) n’n'

10) "NAME".
31) ",

40) "ADDRESS".
72) "iv

74) "CODE".
80) n’n.

1) HORIZ-LINE.

# REMAINDER OF FORM

DO FOR N FROM 4 BY 1 TO 24.

DISPLAY (N,

END-DO.

1) mw,
DISPLAY (N, 31) =*|»,
DISPLAY (N, 72) *n|w,
DISPLAY (N, 80) ®|n,

ND-60.144.02
Rev. B



46

97

98

99
100
101
102
103
104
105
100
107
108
109
110
111
112
113
114
115
116
M7
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
13t
137
136
139
140
141
142
143
14y
145
146
147
148
149
150

® LOOP TO DISPLAY CONTENTS
DO FOR N FROM 4 BY 1 TO 13,
SUBTRACT 3 FROM N.
MOVE N TO M.
ADD 3 TO N.

DISPLAY (N, 10) NAM(M).
DISPLAY (N, kO0) ADDR(M).
DISPLAY (N, T74) CODE(M).

END“DOQ
% USE OF ACCEPT STMNT TO UPDATE FORM.

100.
MOVE 4 TO N.
MOVE 1 TO M.

101.
ACCEPT (N, 10) NAM(M)
WITH UPDATE PROMPT
DOWN 201
RIGHT 102
LEFT 103
HOME 100
UP 301
EXIT 900.
102.
ACCEPT (N, 40) ADDR(M)
WITH UPDATE PROMPT
DOWN 202
RIGHT 103
LEFT 101
HOME 100
UP 302
EXIT 90C.

103.
ACCEPT (N, 74) CODE(M)

WITH UPDATE PROMPT

DOWN 203

LEFT 102

RIGHT 101

HOME 100

UP 303

EXIT 900.

201.
PERFORM 500.
GO TO 1071.

ND-60.144.02
Rev. B



151
1852
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
176
180
181
162
183
164
185
186
187
188
189

6--42

202.
PERFORM 500.
GO TO 102.

203.
PERFORM 500.
GO TO 103.

301.
PERFORM 600.
GO TO 101.

302.
PERFORM 600.
GO TO 102.

303. ’
PERFORM 600.
GO TO 103.

500.
ADD 1 TO N.
IF N IS GREATER THAN 13 THEN
SUBTRACT 1 FROM N
ELSE ADD 1 TO M
END-IF.

600.
SUBTRACT 1 FROi4 N,
IF N IS LESS THAN 4 THEN
ADD 1 TO N
ELSE SUBTRACT 1 FROM M
END-IF.

900.
STOP RUN.

#¥%%¥ NO ERROR MESSAGES ###

ND-60.144.02
Rev. B



EXAMPLE 3.

ND-100 COBOL COMPILER -~ § JUN 1982 TIME: 15.36.33 DATE: 82.07

SOURCE FILE:
OBJECT FILE:

W e~ oUW h =

w B R B W W

COBE:COB
COBE

IDENTIFICATION DIVISION.
PROGRAM-ID. SCREEN-PLAY.

This program illustrates a few of the various ways of
visually displaying fields which the user may want to
update. Specific fields are accessed by use of control
keys. CR moves the cursor from field to field in the
order in which they are displayed. The screen is first
filled with background characters.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. NORD-100.
OBJECT-COMPUTER. NORD-100.
DATA DIVISION.

WORKING-STORAGE SECTION.,

77 LIN PIC 99.

77 POS PIC 99.

01 N PIC XX VALUE "ND".

01 N1 PIC X(9) VALUE "NORWAY *.
01 N2 PIC X(9) VALUE ".cveeeeeam,
01 N3 PIC 9(9) VALUE ZERO.

01 N4 PIC S9(3) COMP VALUE 0.

PRCCEDURE DIVISION.
10C.
BLANK SCREEN.
500.
PERFORM DISP
VARYING LIN FROM 24 BY -1 UNTIL LIN < 1
AFTER POS FROM 1 BY 2 UNTIL POS > 80.
DISP.
DISPLAY (LIN, POS) "ND".
1500. .
ACCEPT (1, 1) N WITH UPDATE BEEP.
1700.
BLANK LINE 3 TO 9.
1800. ‘
DISPLAY (5, 20) "COUNTRY :" WITH UNDERLINE.
ACCEPT (5, 30) N1 WITH UPDATE
UP 1500
EXIT 6000
HOME 5000
DOWN 3000.

ND-60.144.02
Rev. B

.13



6-43a

48 2000,

49 BLANK LINE 12 COLUMN 8 TO 45,

50 3000.

51 DISPLAY (12, 10) "MONTH s" WITH INVERSE-YIDEO.
52 ACCEPT (12, 20) N2 WITH UPDATE

53 DOWN 3050

54 EXIT 1500

55 HOME 1800

56 UP 3000.

57 3050.

58 BLANK LINE 16 COLUMN 35 TO 5%,

59

60 4000.

61 DISPLAY (16, 30) "SALES 3" WITH BLINK.
62 ACCEPT (16, 40) N3 WITH UPDATE

63 "UP 2000

64 HOME 3000

65 DOWN 4050

66 EXIT 6000.

67 4050.

68 BLANK LINE 21 COLUMN 20 TO &0.

69 BLANK LINE 22 COLUMN 20 TO 50.

70 BLANK LINE 23 COLUMN 20 TO &0.

71

72 5000.

73 DISPLAY (22, 24) "% CHANGE (+/-) :" WITH LOW-INTENSITY
T4 UNDERLINE.
75 ACCEPT (22, 42) N4 WITH UPDATE

76 UP 4000

77 DOWN 600C

78 HOME 3000

79 EXIT 200C.

B0 6000.

81 STOP RUN.

82

¥¥%¥ NO ERROR MESSAGES ###

ND-60.144.02
Rev. B



L I A

644

EXAMPLE 4.

IDENTIFICATION DIVISION.
PROGRAM-ID. VIDEO.

This program is used to interrogate an existing file which

contains information on a video-film library. The choice is
of viewing either: a list of all films in the same category,
details regarding a film in any category, or the whole file
in alphabetic sequence. (The whole file can also be printed
out.) Only the more relevant parts of the program are shown.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE~COMPUTER. NORD-100.
OBJECT-COMPUTER. NORD-100.
INPUT~-OUTPUT SECTION.
FILE-CONTROL.
SELECT VIDEO-FILE
ASSIGN "VIDEO:DATA"
ORGANIZATION INDEXED
ACCESS DYNAMIC
RECORD KEY CODE-NO
ALTERNATE RECORD KEY CATEG WITH DUPLICATES
ALTERNATE RECORD KEY TITLE WITH DUPLICATES
STATUS V-STATUS.

SELECT PRINT-FILE
ASSIGN "L-p"
STATUS V-STATUS.

DATA DIVISION.
FILE SECTION.
FD VIDEO-FILE
LABEL RECORDS STANDARD.
01 VIDEO-REC.

03 CODE-NO PIC X(5).
03 CATE3 PIC X(T7).
03 TITLE PIC X(35).
03 STARS PIC X(20).
03 RENT PIC 9V99.
03 IN-STOCK PIC X.

03 DATE-OUT PIC X(6).
03 DATE-BACK PIC X(6).
03 INCOME PIC 999V99.
03 FILLER PIC X(30).

WORKING-STORAGE SECTION.

77 V-STATUS PIC XX.
77 REC-COUNT PIC 9(4) VALUE ZERO.
77 LINE-COUNT PIC 99.
77 OPTION PIC X.
77 REPLY PIC X.
ND-60.144.02
ND-60.144.02

Rev. B



7
7

6—44a

CATEGORY PIC X(T7).
NAME PIC X(35).

PROCEDURE DIVISION.

BEGIN.

OPEN I-O VIDEO-FILE WITH MULTI-USER MODE.
OPEN OUTPUT PRINT-FILE.

m % Select an option

CHOOSE.

BLANK SCREEN.
DISPLAY (5, 20)"VIDEO LIBRARY INFORMATION PROGRAM"
WITH UNDERLINE.

DISPLAY (8, 2U4)"OPTIONS ARE :-"

WITH AUTO-ERASE.
DISPLAY (10, 22)"DISPLAY FILE BY CATEGORY -1

WITH AUTO-ERASE.
DISPLAY (12, 22)"DISPLAY RECORD BY TITLE -2"

WITH AUTO-ERASE.
DISPLAY (14, 22)"DISPLAY FILE ALPHABETICALLY -3"

WITH AUTO-ERASE.
DISPLAY (16, 22)"PRINT FILE ALPHABETICALLY -4n

WITH AUTO-ERASE.
DISPLAY (18, 22)"EXIT FROM THE PROGEAM -5"

WITH AUTO-ERASE.
DISPLAY (20, 22) PLEASE ENTER YOUR OPTION"

WITH AUTO-ERASE.
ACCEPT (20, 49) OPTION WITH MUST.

IF OPTION IS LESS THAN 1 OR GREATER THAN 5
GO TO OFTION-ERROR.
GO TO ONE, TWO, THREE, FOUR, FIVE, DEPENDING ON OPTION.

OPTION-ERROR.

DISPLAY (20, 22)"INVALID OPTION, PRESS CR TO CONTINUE"
WITH BEEP.

ACCEPT (20, 61) REPLY.

GO TO CHOOSE.

m ¥ List all the films in a category

ONE.

BLANK SCREEN.
DISPLAY (4, 13)"DISPLAY THE CONTENTS OF ONE CATEGORY"
WITH UNDERLINE.
DISPLAY (6, 13)"ENTER REQUIRED CATEGORY :-".
ACCEPT (6, 43) CATEGORY WITH PROMPT
BLINK
CONTROL VALID.

%# If an invalid category has been entered the above ACCEPT
# wWill not have been "acceptedm", A known category must be
% re-submitted.

ND-60.144.02
Rev. B



*

*

CR

VALI

6—44b

MOVE CATEGORY TO CATEG.

START VIDEO-FILE KEY IS EQUAL TO CATEG
INVALID KEY DISPLAY (10, 20)"ISAM FILE ERROR"
WITH BEEP
DISPLAY (10, 36) V-STATUS

to try again m

ACCEPT (10, 41) REPLY
GO TO CHOOSE.

PERFORM HEADER.

GO TO ONE-NEXT.

D.

IF CATEGORY IS NOT EQUAL TO "HORROR" OR "WESTERN" OR
"DRAMA"™ OR "ROMANCE™ OR "SCI-FI" OR "CRIME"
ACCEPT-ERROR.

ONE-NEXT.

READ VIDEO-FILE NEXT RECORD

AT END ACCEPT (LINE-COUNT, 80) REPLY
GO TO CHOOSE.

IF CATEG IS NOT EQUAL TO CATEGORY
ACCEPT (LINE-COUNT, 80) REPLY
GO TO CHOOSE.

DISPLAY (LINE-COUNT, 2) CODE-NO.
DISPLAY (LINE-COUNT, 9) TITLE.
DISPLAY (LINE-COUNT, 47) CATEG.
DISPLAY (LINE-COUNT, 53) STARS.
DISPLAY (LINE-COUNT, 76) RENT.
ADD 1 TO LINE-COUNT.

IF LINE-COUNT IS GREATER THAN 2l
ACCEPT (24, 80) REPLY

PERFORM HEADER.

GO TO ONE-NEXT.

HEADER.

TWO.

BLANK SCREEN.

DISPLAY (1, 28) "VIDEO LIBRARY CATALOGUE".
MOVE 4 TO LINE-COUNT.

DISPLAY (LINE-COUNT, 2) CODE-NO.

DISPLAY (LINE-COUNT, 9) TITLE.

DISPLAY (LINE-COUNT, 47) CATEG.

DISPLAY (LINE-COUNT, 53) STARS.

DISPLAY (LINE~-COUNT, 76) RENT.

Display the details for one title m

BLANK SCREEN.

ND-60.144.02
Rev. B



6—44c

DISPLAY (5, 20) "SEARCH FOR RECORD BY TITLE"
WITH UNDERLINE.
DISPLAY (8, 10) "ENTER REQUIRED TITLE :-"
WITH INVERSE-VIDEO.
ACCEPT (8, 34) NAME WITH PROMPT
CONTROL ALPHA.

¥ The name of the video-film is checked for non-alphabetic
m % characters. If any are found the above ACCEPT will not be
* taken and must be re-entered.

MOVE NAME TO TITLE.
START VIDEO-FILE KEY IS NOT LESS THAN TITLE
INVALID KEY
DISPLAY (10, 10) "TITLE NOT IN LIBRARY"™
WITH BEEP.
DISPLAY (11, 10) "PRESS CR"
ACCEPT (11, 19) REPLY
GO TO TWO.
PERFORM HEADER.

TWO-NEXT.
READ VIDEO-FILE NEXT RECORD
AT END DISPLAY (LINE-COUNT 35) "END OF FILE"
WITH BEEP
ACCEPT (LINE-COUNT, 47) REPLY
GO TO CHOOSE.

DISPLAY (LINE-COUNT, 2) CODE-NO.
DISPLAY (LINE-COUNT, 9) TITLE.
DISPLAY (LINE-COUNT, 47) CATEG.
DISPLAY (LINE-COUNT, 53) STARS.
DISPLAY (LINE-COUNT, 76) RENT.
ADD 1 TO LINE-COUNT.

DISPLAY (LINE-COUNT, 35) "CORRECT RECORD Y/N?".
ACCEPT (LINE-COUNT, 55) REPLY.

IF REPLY IS EQUAL TO "Y" GO TO CHOOSE.

BLANK LINE LINE-COUNT

IF LINE-COUNT IS GREATER THAN 23

PERFORM HEADER.

GO TO TWO-NEXT.

ALPHA.

IF NAME IS NOT ALPHABETIC
ACCEPT-ERROR.

THREE.
m # Display the file in alphabetic order of title.

BLANK SCREEN.

MOVE LOW-VALUES TO TITLE.

START VIDEO-FILE KEY IS GREATER THAN TITLE
INVALID KEY
DISPLAY (2, 13) "ISAM FILE FRROR"

ND-60.144.02
Rev. B



6—44d

WITH BEEP
DISPLAY (2, 38) V-STATUS
ACCEPT (2, 35) REPLY
GO TO CHOOSE.
PERFORM HEADER.

THREE-NEXT.
READ VIDEO-FILE NEXT RECORD
AT END ACCEPT (LINE-COUNT, 80) REPLY
GO TO CHOOSE.
DISPLAY (LINE-COUNT, 2) CODE-NO.
DISPLAY (LINE-COUNT, 9) TITLE.
DISPLAY (LINE-COUNT, 47) CATEG.
DISPLAY (LINE-COUNT, 53) STARS.
DISPLAY (LINE-COUNT, 76) RENT.
ADD 1 TO LINE-COUNT.
IF LINE-COUNT IS GREATER THAN 24
ACCEPT (24, 80) REPLY
PERFORM HEADER.
GO TO THREE-NEXT.

FOUR.
¥ Print the full catalogue alphabetically m

BLANK SCREEN.
DISPLAY (5, 25) "PRINTING FULL ALPHABETIC CATALOGUE"
WITH UNDERLINE.
MOVE LOW-VALUES TO TITLE.
MOVE ZERO TO REC~-COUNT.
START VIDEO-FILE KEY IS GREATER THAN TITLE
INVALID KEY
DISPLAY (7, 25) "ISAM FILE ERROR"
WITH BEEP
DISPLAY (7, 42) V-STATUS
ACCEPT (7, 50) REPLY
GO TO CHOOSE.

% Create the Print-Header m

FOUR-NEXT.
READ VIDEO-FILE NEXT RECORD
AT END
DISPLAY (12, 22) " PROCESSING IS NOW COMPLETE"
WITH BEEP
ACCEPT ( 12, 49) REPLY
GO TO CHOOSE.

% Create éhe print record m

°

IF LINE~COUNT IS GREATER THAN 60
PERFORM PRINT-HEADER.
GO TO FOUR-NEXT.

ND-60.144.02
Rev. B



I

FIVE.
¥ Exit from the program

BLANK SCREEN.
CLOSE VIDEO-FILE.

CLOSE PRINT-FILE.
DISPLAY (12, 20) "}}} Returning to Main Menu }}}"

WITH UNDERLINE.
STOP RUN.

ND-60.144.02
Rev. B



6—44f

EXAMPLE 5.

IDENTIFICATION DIVISION.
PROGRAM-ID. X-001.

¥ This program demonstrates the facilities for framing selected portions of the
* screen and for writing histogram bars onto it.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 NAME PIC X(30).
01 ANSWER PIC X.
01 I Comp.
01 J COoMP.
01 K COMP.
01 X CompP.
01 Y COMP.

PROCEDURE DIVISION.

500. COMPUTE X = 19.
COMPUTE Y = 9.

1000. BLANK SCREEN.
DISPLAY (10, 1) “Your name:".
ACCEPT (10, 12) NAME WITH PROMPT.
BLANK LINE 10.
DISPLAY ( 1, 1) FRAME 18 * 75 WITH HEADING.
DISPLAY ( 2, 28) "My name 1is".
DO FOR I FROM 4 TO 17
DISPLAY (I, 3) NAME WITH BLINK
DISPLAY (I, 42) NAME WITH UNDERLINE
END-DO.

1500. BLANK LINE 22.
DISPLAY (22, 1) “Continue execution?”” WITH UNDERLINE.
ACCEPT (22, 20) ANSWER WITH PROMPT.
IF ANSWER EQUAL "N THEN PERFORM 3000.
DISPLAY (Y, X) FRAME 12 * 34 WITH SPACE-FILL.
DOFORIFROMY +1TOY + 10
DISPLAY (I, X + 2) NAME WITH INVERSE-VIDEQ
END-DO.

ND-60.144.02
Rev. B



2000. BLANK LINE 22.
DISPLAY (22, 1) "Continue execution?’”’ WITH UNDERLINE.
ACCEPT (22, 20) ANSWER WITH PROMPT.
IF ANSWER EQUAL "N THEN PERFORM 3000.
BLANK SCREEN.
DISPLAY ( 1, 1) FRAME 20 * 73.
DO FOR I FROM 2BY 370 71
COMPUTE J = I
DISPLAY (19, I) FULL-BAR J * 1
COMPUTE J =72 - 1
COMPUTE K =1 + 1
DISPLAY (19, K) SPARSE-BAR J * 1
END-DO.

2500. COMPUTE X = 5.
COMPUTE Y = 3.
PERFORM 1500.

3000. BLANK LINE 22.
DISPLAY (22, 11)
“You have now used the ND COBOL Screen Handling”
WITH UNDERLINE.
STOP RUN.

ND-60.144.02
Rev. B



6—-45

6.6.3 The INSPECT Statement

The INSPECT statement specifies that characters in a data item are to be
counted or replaced or counted and replaced.

Format:

INSPECT identifier-1

EALLY!NG @entifier-Z

-r'
pyj

identifier-3
literal-1 .

CHARACTERS

BEFORE identifier-
AFTER INITIAL literal-2
R |
[ EPLACING ~
identifier-6
("CHARACTERS BY literal-4
BEFQRE identifier-7
INITIAL
( AFTER } literal-5
é—-—- tifier-5 tifier-6
AD denti ler- BY id entuner-
literal-3 - literal-4
",

BEFORE dentifier-7
INIT
[{AFTE } IAL hteral 5 :l

ND-60.144.02



6—46

Identifier-1, the inspected item must be either a group item or any category of
elementary item with USAGE DISPLAY.

ldentifier-2, the count field, must be an elementary integer data item.
Al literals must be nonnumeric and any figurative constant except ALL. (If a
figurative constant is used as literal-3 then the size of identifiers 6 and 7 must be

one character in length.)

When the CHARACTERS phrase is used, literals 4 and 5 or identifiers 6 and 7
must be one character in length.

ND-60.144.02



647

General Rules:

1.

5.

Either the TALLYING or REPLACING option must be given. Both may
appear, but in this case all tallying occurs before any replacement is made.

All identifiers (except identifier-2) are treated by the INSPECT statement
according to its category as:

If alphabetic or alphanumeric - as a character-string.

If alphanumeric edited, numeric edited or unsigned numeric - as
though redefined as alphanumeric and the INSPECT statement refers
to the alphanumeric item.

If signed numeric - as though moved to an unsigned numeric data
item of the same length and then treated as in rule b above.

Inspection (which includes the comparison cycle, the establishment of
boundaries for the BEFORE and AFTER phrase, and the mechanisms for
tallying and/or replacing) begins at the leftmost character position of the
data item identifier-1 and proceeds to the rightmost character position as
described in the remaining general rules.

The rules for comparison are:

The first TALLYING/REPLACING operand is compared with an equal
number of the leftmost contiguous characters in the inspected item.
A match occurs only if both are equal character-for-character.

If no match occurs then the comparison is repeated for each
successive TALLYING/REPLACING operand until either a match is
found or all the operands have been acted upon.

If a match is found then tallying/replacing takes place according to
the following TALLYING/REPLACING option descriptions. The first
character of the inspected item following the rightmost matching

character is now the subject of the operations described in rules a
and b above.

If no match is found in this case then in the inspected item the first
character following the leftmost inspected character now becomes
the leftmost character position and processes of a and b above are
repeated.

The steps a and d, the comparison cycle, are repeated until the
rightmost character has participated in a match or has been
considered as the leftmost character position.

It the BEFORE/AFTER option is used then the previous rules are modified
as described in the following TALLYING/REPLACING option descriptions.

ND-60.144.02



6-48

TALLYING OPTION

Identifier-2 (an elementary integer item) is the count field. Identifier-3 or literal-1
is the tallying field.

If the BEFORE/AFTER option is not specified then the following actions occur on
execution of INSPECT with TALLYING:

a. If ALL is used, the count field is increased by 1 for each non-overlapping
occurrence of the tallying field.

b. If LEADING is specified, the count field is increased by 1 for each
contiguous non-overlapping occurrence of this tallying field in the
inspected item, provided that the leftmost such occurrence is at the point
where comparison began in the first comparison cycle for which this
tallying field can take part in.

c. If CHARACTERS is specified, the count field is increased by 1 for each
character position in the inspected item.

ND-60.144.02



REPLACING OFPTION

Identifier-b or literal-3 is the subject field, identifier-6 or literal-4 is the
substitution field. These two fields must be the same length and the following
rules apply:

1. When the subject and substitution fields are character strings, each
non-overlapping occurrence of the subject field in the inspected item is
replaced by the character-string specified in the substitution field.

2. After replacement has occurred in any character position of the inspected

item, no further replacement for that position is made during this INSPECT
statement execution.

When the BEFORE/AFTER option is not given then the following actions
take place on execution of INSPECT with REPLACING:

a. If CHARACTERS is specified, the substitution field must be one
character in length. Each character in the inspected is replaced by
the substitution field, beginning at the leftmost character and
continuing to the rightmost.

b. If ALL is specified, each non-overlapping occurrence of the subject
field in the inspected item is replaced by the substitution field,
beginning at the leftmost character and continuing to the rightmost.

C. If LEADING is specified, each contiguous non-overlapping occurrence
of the subject field of the inspected item is replaced by the
substitution field provided that the leftmost occurrence is at the point
where comparison began in the first comparison cycle in which this
substitution field can participate.

d. If FIRST is specified then the leftmost occurrence of the subject field
in the inspected item is replaced by the substitution field.

ND-60.144.02



650

BEFORE/AFTER OPTIONS

When these are specified the above rules for couriting and replacing are
modified thus:

Identifiers 4 and 7 and literals 2 and 5 are delimiters and are themselves not
counted or replaced.

In the REPLACING option, if CHARACTERS is specified then the delimiter must
be one character in length.

When BEFORE is used, counting and/or replacement of the inspected it begins
at the leftmost character and continues until the first occurrences of the
delimiter are encountered. If no delimiter occurs in the inspected item, counting
and/or replacement continues to the rightmost character.

When AFTER is present, counting and/or replacement of the inspected item
begins with the first character to the right of the delimiter and continues to the
rightmost character in the inspected item. If no delimiter exists in the inspected
item no counting/replacement takes place.

Following are six examples of the INSPECT statement:

(Note: identifier-2, the count field must be initialized before execution of the
INSPECT statement.)

EXAMPLE 1.

INSPECT word TALLYING count FOR LEADING “L” BEFORE INITIAL A",
count-1 FOR LEADING "A” BEFORE INITIAL "L".

Where word = LARGE, count == 1, count-1 = 0.
Where word = ANALYST, count = 0, count-1 = 1.
EXAMPLE 2.

INSPECT word TALLYING count FOR ALL "L”, REPLACING LEADING A" BY
"E" AFTER INITIAL L.

it
i

Where word CALLAR, count
Where word = SALAMI, count
Where word

2, word = CALLAR.
1, word = SALEMI.
LATTER, count = 1, word = LETTER

i

il

EXAMPLE 3.
INSPECT word REPLACING ALL “A” BY "G’ BEFORE INITIAL X"

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

ND-60.144.02



6-51

EXAMPLE 4.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL “J”
REPLACING ALL "A” BY "B".

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.

Where word = JACK, count = 3, word = JBCK.

Where word = JUJMAB, count = 5, word = JUJMBB.
EXAMPLE 5.

INSPECT word REPLACING ALL "X BY "Y"”, “B” BY "Z"”, "W BY “Q" AFTER
INITIAL “"R".

j

Where word = RXXBQWY, word = RYYZQQY.
Where word YZACDWBR, word = YZACDWZR.
Where word = RAWRXEB, word = RAQRYEZ.

i
H

EXAMPLE 6.

INSPECT word REPLACING CHARACTERS BY "B’ BEFORE INITIAL "A".

word before: 12 XZABCD
word after: BBBBBABCD

ND-60.144.02



6.6.4

The MOVE Statement

The MOVE statement transfers data to one or more data areas in accordance
with the editing rules.

Format 1:
identifier-1 . .
MOVE raentinier TO identifier2 [identifier-3] ..
—— literal -
Format 2:

MOVE CORRESPONDING

i CORR identifier-1 TQO_ identifier-2

Identifier-1 and literal represent the sending area; identifier-2, identifier-3,
represent the receiving area.

When format 2 is specified both identifiers must be group items. When
CORRESPONDING is used, selected items in identifier-1 are moved to identifier-2
according to the rules given for the CORRESPONDING option in the earlier
section on Arithmetic Statements. The resuits are the same as if each pair of
corresponding identifiers had been referred to in a separate MOVE statement.

CORR is an abbreviation for CORRESPONDING.

ND-60.144.02



General Rules:

1. The data in the sending area is moved into the first receiving area
(identifier-2}, then into the second receiving area (identifier-3) etc. Any
subscripting or indexing associated with the sending item is evaluated
immediately before the data is moved to the first receiving field. Similarly,
any subscripting or indexing associated with receiving items is evaluated
immediately before the data is moved in.

2. The result of the statement
MOVE a (b) TO b, ¢ (b)
is equivalent to:
MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO ¢ (b)

Where temp has been defined as an intermediate result.

3. Any MOVE in which the sending and receiving items are both elementary
items is an elementary move. Every elementary item belongs to one of the
following categories: numeric, alphabetic, alphanumeric, numeric edited,
alphanurneric edited. These categories are described in the PICTURE
Clause. Numeric literals belong to the category numeric, and nonnumeric
literals belong to the category alphanumeric. The figurative constant ZERO
belongs to the category numeric. The figurative constant SPACE belongs to

the category alphabetic. All other figurative constants belong to the
category alphanumeric.

The following rules apply to an elementary move between these categories:

a. The figurative constant SPACE, an aiphanumeric edited, or alphabetic
daza item must not be moved to a numeric or numeric edited data
item.

b. A numeric literal, the figurative constant ZERO, a numeric data item
or a numeric edited data item must not be moved to an alphabetic
daza item.

c. A non-integer numeric literal or a non-integer numeric data item must

not be moved to an alphanumeric or alphanumeric edited data item.

d. All other elementary moves are legal and are performed according to
the rules given in general rule 4.

e. A numeric edited item must not be moved to another numeric edited
item.
f. (An ND-Extension). A numeric edited item may be moved to a

numeric item which is either integer or non-integer. This is equivalent
to “de-editing”".

ND-60.144.02
Rev. A



Any necessary conversion of data from one form of internal representation
to another takes place during legal elementary moves, along with any
editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and any necessary space filling takes place as
defined under Standard Alignment Rules in the "Working-Storage’
Section of the Data Division. If the size of the sending item is greater
than the size of the receiving item, the excess characters are
truncated on the right after the receiving itemn is filled. If the sending
item is described as being signed numeric, the operational sign will
not be moved; if the operational sign occupied a separate character
position (see the SIGN Clause), that character will not be moved and
the size of the sending item will be considered to be one less than its
actual size.

b. When a numeric or numeric edited item is the receiving item,
alignment by decimal point and any necessary zero-filling takes place
as defined under the Standard Alignment Rules (except where zeroes
are replaced because of editing requirements).

1. When a signed numeric item is the receiving item, the sign of
the sending item is placed in the receiving item. (See the SIGN
Clause). Conversion of the respresentation of the sign takes
place as necessary. If the sending item is unsigned, a positive
sign is generated for the receiving item.

2. When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and no operational
sign is generated for the receiving item.

3. When a data item described as alphanumeric is the sending
item, data is moved as if the sending item were described as
an unsigned numeric integer.

C. When a receiving field is described as alphabetic, justification and
any necessary space-filling takes place as defined under the Standard
Alignment Rules. If the size of the sending item is greater than the
size of the receiving item, the excess characters are truncated on the
right after the receiving item is filled.

Data in the following chart summarizes the legality of the various types of

MOVE statements. The references are to the rule that prohibits the move
or the behaviour of a legal move.

ND-60.144.02
Rev. B



CATEGORY OF

CATEGORY OF RECEIVING DATA ITEM

NUMERIC
SENDING ALPHABETIC QSIID:E?)NUMER’C NUMERIC INTEGER EDITED
NUMERIC NON-INTEGER
DATA ITEM ALPHANUMERIC
ALPHABETIC Yes/4c Yes 4/a No/3a No/3a
ALPHANUMERIC Yes/dc Yes/4a Yes/4b Yes/4b
ALPHANUMERIC EDITED Yes/4c Yes/4a No/3a No/3a
4 Yes/db

NUMERIC INTEGER No/3b Yes/4a Yes/4b es/

NON-INTEGER || No/3b No/3c Yes/4b Yes/4b
NUMERIC EDITED No/3b Yes/4a Yes/3f No/3e

<1

Any move that is not an elementary move is treated exactly as if it were an

alphanumeric to alphanumeric elementary move, except that there is no
conversion of data from one form of internal respresentation to another. In
such a move, the receiving area will be filled without consideration for the
individual elementary or group items contained within either the sending or
receiving area, except as noted in the general rules of the OCCURS Clause
(See 'Table Handling’ under Other Features).

ND-60.144.02
Rev. A




6.6.5

The STRING Statement

The STRING statement enables the programmer to concatenate the complete or
partial contents of two or more data items into a single data item.

Format:

r " dentifier.? identifier-
stRING Joemfer ﬁ.‘t‘;m: fr} . DELIMITED BY  {literal-3
——— literal-1 iteral- SIZE
S - identifier-6Y
identifier-4 identifier-b . DELIMITED BY literal-6
literal-4 literal-b SIZE

INTO identifier 7 [WITH POINTER identifier-g]
[[ ON QVERFLOW imperative-statement]

Each literal must be nonnumeric or any figurative constant except ALL.

The sending fields are given by identifier-7 which must represent an elementary
alphanumeric data item.

The pointer field is identifier-8 which must represent an elementary numeric
integer data item large enough to contain a value equai to the size plus one of
the fields referenced by identifier-7. If no POINTER phrase exists, the default
value of the logical pointer is one.

The delimiters are identifiers 3 and 6 or their corresponding literals.

When DELIMITED BY is specified, the contents of each sending field is
transferred character-by-character until the rightmost character has been sent, or
a delimiter for the sending field is reached.

All identifiers {except identifier-8) must have USAGE DISPLAY.

When the STRING statement is executed, the transfer of data is governed by the
following rules:

Characters from the sending field are transferred to the sending field
according to the rules for an alphanumeric to alphanumeric move, except
that no space filling is provided.

If DELIMITED BY SIZE is specified each sending field is moved in its entirety
to the receiving field.

ND-60.144.02
Rev. A



EXAMPLE.

If th

and

ID-1

ID-7

1D-4
|[e] ] -] -[e]o]o [

if DELIMITED is specified without SIZE then the contents of each sending
item is transferred character-by-character, starting with the leftmost and
continuing until the end of the data or its delimiter is reached. (The delimiter
itself is not transferred.}

If the POINTER option appears, the pointer field is explicitly available to the
programmer. If this option does not appear it is as if the user had specified
identifier-8 with an initial value of one.

When characters are transferred to the receiving field, the moves behave as
though these characters were moved one at a time with the pointer field
being incremented by one after each character is positioned. The value in the
pointer cannot be changed in any other way. When processing is complete
this value will be one character position greater than that of the last
character transferred.

If this pointer value, at or after initiation of the STRING statement execution,
becomes less than one or greater than the length of the receiving field, data
transfer ceases. ON OVERFLOW, if specified, is now raised.

If ON OVERFLOW has not been specified, then, when the above conditions
are encountered, control passes to the next executable statement.

e following STRING statement is coded:

STRING 1D-1 LIT-2 DELIMITED BY ID-3
iD-4 iD-5 DELIMITED BY SIZE INTO
ID-7 WITH POINTER ID-8.

at execution time the fields contain:

LIT-2 ID-5 D-3

ID-8

| slsls|s|s|s|s]s]s]s]s]s][s]s]s]s]s]s]s] 01

Then after execution the receiving field and the pointer field will appear as:

iD-7

iD-8

213]141AIB]5i617]+) | 819]0]S|S|S| S 116

ND-60.144.02



6.6.6

The UNSTRING Statement

The UNSTRING statement causes contiguous data in a single sending field to be
separated and placed into multiple receiving fields.

Format:

UNSTRING identifier-1

identifier-2 Jidentifier-3

E)ELIM!TED BY [ALL] Ftoral1 . QB [ALL]

literal-2

INTO identifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-6]
{:identiﬁerJ [, DELIMITER IN identifier-8] [, COUNT IN identifier-9] | ...
[WITH PQINTER identifier-10] [TALLYING IN identitier-11]

[ ; ON QOVERFLOW imperative-statement]

The DELIMITER IN option and the COUNT IN option may only appear if the
DELIMITED BY option is also present.

Each literal must be a nonnumeric literal. Each may be any figurative constant
without the word ALL.

Identifier-1 (the sending field) must be an alphanumeric data item.
identifier-6 and identifier-8 must be type computational.

The DELIMITED BY option specifies the delimiters which control the amount of
data (transferred from the sending field).

The delimiters are identifiers 2 and 3, or their corresponding literals, and each

{which represents one delimiter) must be an alphanumeric data item. The
maximum number of delimiters is 15.

If a delimiter contains two or more characters it will act as a delimiter only if the

delimiter characters appear contiguously and in the sequence specified, in the
sending field.

When two or more delimiters are specified in the DELIMITED BY option, an "OR’
condition exists between them. Each non-overlapping occurrence of any of the

delimiters in the sending field in its specified sequence, is considered to be a
match.

ND-60.144.02



6-59

DELIMITED BY ALL results in one or more contiguous occurrences of any
delimiter being treated as if they were only one occurrence; this occurrence is
moved to the delimiter receiving field (if any), (identifiers 5, 8, . .. ).

It DELIMITED BY ALL is not specified and two or more occurrences of any
delimiter are found, then the current receiving field is either space or zero filled
according to this field description.

When the UNSTRING statement is initiated, identifier-4 is the current receiving
field. Receiving fields must have USAGE DISPLAY and must be one of the types:

alphabetic,
alphanumeric {not edited),
or numeric (not edited).

Data is transferred from the sending field according to the following rules:

It the POINTER option appears, it contains a value indicating a relative position in
the sending field (it must be initialized prior to statement execution).

DELIMITED BY causes the examination to proceed from left to right,
character-by-character until a delimiter is encountered. If no delimiter is found,
the examination ends with the last character in the sending field.

lf the DELIMITED BY option does not appear, the number of characters
examined will be equal to the size of the current receiving field. (If the sign of
the receiving field has been defined as occupying a separate character position,
then the number of characters examined is one less than the size of this field.)

The characters thus examined {excluding delimiter(s) if any) are treated as an
elementary alphanumeric data item and are transferred to the receiving field
according to the rules of the MOVE statement.

The DELIMITED IN option causes the delimiting characters in the sending field to
be treated as an elementary alphanumeric item and to be moved to the current
delimiter receiving field (identifier-5) according to the rules of the MOVE
statement. If, however, the delimiting condition is the end of the sending field,
identifier-5 is filled with spaces.

If the COUNT IN option is specified, a value equal to the number of examined
characters (excluding delimiter(s)) is moved to the data count field (identifier-6)
according to rules for an elementary move (identifier-6 must be of type
computational).

If the DELIMITED BY option appears then the sending field is further examined,
beginning with the first character to the right of the delimiter. Otherwise,

examination of the sending field begins with the first character to the right of the
last character examined.

After data is transferred to the first receiving field (identifier-4), identifier-7
becomes the next receiving field. The preceding procedure is now repeated for
this (and subsequently, for any succeeding receiving fields), until all characters in
the sending field have been transferred or there are no more unfilled receiving
fields.

ND-60.144.02



EXAMPLE:
The following UNSTRING staternent:

UNSTRING SEND-IDL DELIMITED BY ALL DEL-ID2 OR DEL-ID3

INTO REC-ID4 DELIMITER IN DREC-ID5 COUNT IN CT-1D6
REC-ID7 DELIMITER IN DREC-ID8 COUNT IN CT-1D9
REC-ID12 DELIMITER IN DREC-ID13 COUNT IN CT-1D14

WITH POINTER P-1D10
TALLYING IN  T-1D11

ON OVERFLOW GO TO UNSTRING-OFL.
might have the following field contents at execution time

SEND-IDL DEL-ID2  DEL-ID3

(R TEEEERERR s [

and the remaining fields, after execution, with contents:

REC-1D4 DREC-ID5 CT-1D6
i [2]3]b]o] [] 2]

REC-1D7 DREC-ID8 CT-1D8
p[o]o]o) | [ °]

REC-1D12 DREC-ID13  CT-1D14
uaa ]

P-1D10

T-1D11

=
=

Where b represents a space (blank character}). Since SEND-ID1 still contains
untransferred characters, the ON OVERFLOW condition will be raised.

if a further receiving field had been specified for this UNSTRING statement then
the first character moved to it from the sending field would have been the
leftmost character following the second §, i.e., the number 7. (Note the
difference in effect of coding DELIMITED BY with or without ALL.)

ND-60.144.02



6—61

When the execution of the UNSTRING statement has been completed, if a
TALLYING IN option is present, then the field-count field (identifier-11) will have
had its initial value incremented by the number of data receiving areas acted
upon {including any null fields).

At this point, if a POINTER option has been specified, the pointer field
{identifier-10) will contain a value equal to its initial value plus the number of
characters examined in the sending field.

Execution of the UNSTRING statement will cease if an overflow condition exists.
If ON OVERFLOW is specified the imperative-statement is executed. If ON

OVERFLOW is not specified control passes to the next executable statement. An
overflow condition occurs if:

a. The value in the pointer field is less than one or greater than the length of
the sending field when UNSTRING is initiated.

b. During execution of the UNSTRING statement, after all receiving fields

have been acted upon, the sending field still contains unexamined
characters.

Any subscripting or indexing associated with the identifiers is evaluated
immediately before data transfer.

ND-60.144.02



6.7

6.7.1

662

INPUT-OUTPUT STATEMENTS

COBOL input-output statements transfer data to and from files stored on
external devices and they control low-volume data going to or coming from
media such as console typewriters and terminals.

The unit of data used by the COBOL program is termed a record.

The input-output statements which may be used in the Procedure Division are
determined by the file descriptions in the Environment and Data Divisions.

i-O Status

If the FILE STATUS clause is specified in a file-control entry, a value is placed
into the specified 2-character data item during the execution of an QOPEN,
CLOSE, READ, WRITE, REWRITE or DELETE statement and before any applicable
USE procedure is executed, to indicate the status of the 1-O operation.

See Appendix |, Indexed/Relative 1-O Status Summary.

ND-60.144.02



6.7.1.1

Status Key 1

The leftmost character position of the FILE STATUS data item is set upon
completion of an 1-O operation to the following conditions.

indicates Successful Completion

indicates At End

indicates Invalid Key

indicates Permanent Error

indicates Qther Error

The meanings of the indications are:

Successful Completion. The I-O statement was successfully executed.

At End. [Indexed and Relative I-O.

The Format 1 READ statement was unsuccessfully executed as the
result of an attempt to read a record when no next logical record exists
in the file.

At End. Sequential I-O.

The sequential READ statement was unsuccessfully executed either as a
result of an attempt to read a record when no next logical record exists
in the file or as a result of the first READ statement being executed for
a file described with the OPTIONAL clause, and that file was not
available to the program at the time its associated OPEN statement was
executed.

Invalid Key. The 1-O statement was unsuccessfully executed as one of
the following.

Sequence Error (Indexed 1-0 only)

Duplicate Key

No Record Found

Boundary Violation

Two programs attempting to access the same record (only with
Indexed or Relative |-0, with MULTI-USER Access)

Invalid Key does not apply to Sequential |-0.

Permanent Error. The input-output statement was unsuccessfully
executed as the result of a boundary violation for a sequential file or as
the result of an input-output error, such as data check parity error, or
transmission error.

Some other error.
ND-60.144.02



6.7.1.2

Status Key 2

The rightmost character position of the FILE STATUS data item is known as

status key 2 and is used to further describe the results of the input-output
operation.

The value this character contains will have the meanings given in the table
below, according to the appropriate file organization.

Status Key 2: Meaning:
0 No further information
1 If Status Key 1is '2° - Sequence error
Otherwise — Password failure
2 It Status Key 1 is ‘0’ —  Duplicate key
(Indexed files)
If Status Key 1is "2 —  Duplicate key
{(Relative and Indexed files)
Otherwise — Logic error
3 If Status Key 1is '2" - No record found
(Relative and Indexed files)
Otherwise — Resource not available
4 If Status Key 1is "2’ — Boundary violation
(Relative and Indexed files)
If Status Key 1 is '3’ —--  Boundary violation
(Sequential files)
Otherwise — No current record pointer
5 Invahd or incomplete file information
6 No file information given
7 Open successful

ND-60.144.02




VALID COMBINATIONS OF STATUS KEYS 1 AND 2

The valid permissible combinations of the values of status key 1 and status key 2
are shown in the following figures. An ‘X’ at an intersection indicates valid
permissible combination.

Status Key 2

Status No Further Sequence Duplicate No Record Boundary
Key 1 Information Error Key Violation
(0) (1) (2) (4)

S

uccessful % X
Completion (0)
At End (1) X
Invalid Key (2) X X X
Permanent X
Error (3)
Other
Error {9)

INDEXED 1-O
Status Key 2

Status No Further Duplicate No Record Boundary

Key 1 Information Key Found Violation

. (0) (2) (3) (4)
Successful X
Completion (0)
At End (1) X
Invalid Key (2) X X X
P

ermanent X
Error (3)
Other
Error (9)

RELATIVE I-O

ND-60.144.02




6.7.1.3

6.7.1.4

6—-66

u Status Key 2

Status Key 1 No Further Boundary
Information Violation
(0) (4)
Successful Completion (0) X
At End (1) X
Permanent Error (3) X X
Other Error (9)

SEQUENTIAL I-O

The INVALID KEY Condition (Indexed and Relative I-O Only)

The INVALID KEY condition can occur as a result of the execution of a START,
READ, WRITE, REWRITE or DELETE statement. For details of the causes of the

condition see under the relevant statement headings.

When the INVALID KEY condition is recognized, the runtime-system takes these

actions in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this file,
to indicate an INVALID KEY condition. (See under |-O status earlier in this

section.)

2. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative-statement.
Any USE procedure specified for this file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is
specified, either explicitly or implicitly, for this file, that procedure is

executed.

The AT END Condition

The AT END condition can occur as the result of a READ statement. For details

see under the statement heading.

ND-60.144.02




6--67

6.7.1.5b Current Record Pointer

The current record pointer is a conceptual entity for identifying the next record to
be accessed within a given file. (It has no meaning for a file opened in output
mode.)

The OPEN statement positions it at the first record in the file.

For a READ statement note the following:

1. tf the OPEN statement positioned the current record pointer, the record
identified by it is made available.

2. It a previous READ statement positioned the current record pointer then

this is updated to point to the next existing record which is then made
available.

3. {(Indexed and Relative 1-O only.) The START statement positions the current
record pointer at the first record in the file that satisfies the comparision
specified.

6.7.1.6 The CLOSE Statement
The CLOSE statement terminates the processing of files (with optional rewind for
Sequential 1-0).
Format 1 - Indexed and Relative 1-0.
CLOSE file-name-1 [WITH LOCK] [, file-name-2 [WITH LOCK] | . ..

Format 2 - Sequential 1-0.

REEL
— WITH N
l:, !N!I] [WITH NQ REWIND]
CLOSE file-name-3
NO REWIND
H N REVVIND
WITH LOCK
[ [REE N
REEL [WITH NO REWIND]
. NIT _—
, file-name-4 - -
NO REWIND
Wi T —
™ LOCK
N - .

The files referenced in the CLOSE statement need not all have the same
organization or access.
ND-60.144.02



668

General Rules:

A CLOSE statement may only be executed for a file in an open mode.

The action taken if a file is in the open mode when a STOP RUN statement
is executed is that the file will be closed. Note, however, that the last block

in memory will not be written out so that the last record on the file may be
fost.

General Rules For Indexed And Relative |-O:

If a CLOSE statement has been executed for a file, no other statement can
be executed that references that file, either explicitly or implicitly, unless
an intervening OPEN statement for that file is executed.

Following the successful execution of a CLOSE statement, the record area
associated with file-name is no longer available. The unsuccessful
execution of such a CLOSE statement leaves the availability of the record
area undefined.

General Rule For Sequential 1-0:

Treatment of mass storage files is logically equivalent to the treatment of a
file on a tape.

ND-60.144.02



6.7.1.7

669

The DELETE Statement
The DELETE statement logically removes a record from a mass storage file. It is
not used with Sequential I-O.

Format:

DELETE file-name RECORD [; INVALID KEY imperative-statement]

The INVALID KEY phrase must not be specified for a DELETE statement which
references a file which is in sequential access mode.

The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which an
applicable USE procedure is not specified.

General Rules:

1. The associated file must be open in the 1-O mode at the time of the
execution of this statement.

2. For files in the sequential access mode, the last input-output statement
executed for file-name prior to the execution of the DELETE statement
must have been a successfully executed READ statement. The run-time
system logically removes from the file the record that was accessed by
that READ statement.

3. For a file in random or dynamic access mode, the run-time system logically
removes from the file that record identified by the contents of the
RELATIVE KEY data item associated with file-name. If the file does not
contain the record specified by the key, an INVALID KEY condition exists.

4. After the successful execution of a DELETE statement, the identified record
has been logically removed from the file and can no longer be accessed.

5. The execution of a DELETE statement does not affect the contents of the
record area associated with file-name.

6. The current record pointer is not affected by the execution of a DELETE
statement.
7. The execution of the DELETE statement causes the value of the specified

FILE STATUS data item, if any, associated with file-name to be updated.

ND-60.144.02



6.7.1.8 The OPEN Statement

The OPEN statement initiates the processing of files. For Indexed and Relative
I-O it also performs checking and/or writing of labels and other input-output
operations.

Format 1. Sequential Files.

INPUT file-name-1 [WITH NO REWIND][ file-name-2 [WITH NO REWIND]] ..

QUTPUT file-name-3 [WITH NO REWIND] [ file-name-4 [WITH NO REWIND]]. ..
QFEN jRel file-name-5 [ file-name-6 ] . ..

EXTEND file-name-7 [ file-name-8]

Format 2. Indexed and Relative Files.

N
INPUT -
OPEN< QUTPUT »file-name [WITH MULTI-USER-MODE
-Q IMMEDIATE-WRITE

-— MANUAL-UNLOCK

OUTPUT | file-name [WITH MULTI-USER-MODE
‘ IMMEDIATE-WRITE
MANUAL-UNLOCK

The files referenced in the OPEN statement need not all have the same
organization or access. The I-O option can only be used for mass storage files.
The EXTEND option is only valid for Sequential files.

The successful execution of an OPEN statement determines the availability of the
file and results in that file being in an open mode. It also makes the associated
record area available to the programs.

Prior to the successful execution of an OPEN statement for a file, no statement
(except in Sequential I-O, for a SORT or MERGE statement with either GIVING or
USING phrases) can be executed that references that file.

An OPEN statement must be successfully executed prior to the execution of any
of the permissible input-output statements. The following Tables show
permissible statements for each 1-O classification.

ND-60.144.02
Rev. A



671

Open Mode
File Access
Mode Statement Input Output Input-Qutput
Sequential READ X X
WRITE X
REWRITE X
START X X
DELETE X
Random READ X X
WRITE X X
REWRITE X
START
DELETE X
Dynamic READ X X
WRITE X X
REWRITE X
START X X
DELETE X

PERMISSIBLE STATEMENTS FOR INDEXED AND RELATIVE 1-O—QOPEN

ND-60.144.02




For indexed 1-O, an 'X" at an intersection indicates that the specified statement,
used in the access method given for that row, may be used with the indexed file
organization and the open mode given at the top of the column.

For Relative 1-O, an "X’ at an intersection indicates that the specified statement,
used in the access method given for that row, may be used with the relative file
organization and the open mode given at the top of the column.

Open Mode
Statement Input Output Input-Output Extend
READ X X
WRITE X X
REWRITE X

PERMISSIBLE STATEMENTS FOR SEQUENTIAL I-O — OPEN

An ‘X’ at an intersection indicates that the specified statement, used in
sequential access mode, may be used with the sequential file organization and
open mode given at the top of the column.

ND-60.144.02



General Rules For Indexed And Relative 1-0:

<

A file may be opened with the INPUT, QOUTPUT and I-Q options in the
same program. After the initial execution of an OPEN statement for a file,
each subsequent OPEN statement execution for this file must be preceded
by the execution of a CLOSE statement (without the LOCK phrase for
Indexed [-0) for the same file.

Execution of the OPEN statement does not obtain or release the first data
record.

The file description entry for files open for INPUT or I-O must be equivalent
to that used when this file was created.

For files being opened with the INPUT or I-O option, the OPEN statement
sets the current record pointer to the first record currently existing within
the file. For indexed files, the prime record key is established as the key of
reference and is used to determine the first record to be accessed. If no
records exist in the file, the current record pointer is set such that the next
executed format 1 READ statement for the file will result in an AT END
condition.

The 1-O option permits the opening of a file for both input and output
operations. Since this option implies the existence of the file, it cannot be
used if the file is being initially created.

Upon successful execution of an OPEN statement with the QUTPUT option

specified, a file is created. At that time the associated file contains no data
records.

The options MULTI-USER-MODE, IMMEDIATE WRITE, and
MANUAL-UNLOCK are ND Extensions. They are used with relative or
indexed organized files and they have the following meanings:

MULTI-USER MODE allows one program to be running concurrently on
several terminals, each accessing the same relative or indexed
organized file, and it also allows different programs running
concurrently on several terminals to access the same relative or
indexed organized file. In both of these cases, if the programs access
the same record in the ISAM file, conflicts are prevented.

IMMEDIATE-WRITE (single user only} causes records to be written
back immediately to the file, a process which happens automatically in
MULTI-USER-MODE; otherwise output is buffered. This option would
be useful, for instance, where high security is required.

MANUAL-UNLOCK will prevent the automatic unlock of records until
an UNLOCK statement is encountered. However, the user is strongly
advised to allow automatic unlock of records since the use of
MANUAL-UNLOCK can lead to deadlocks.

Note that the multi-user supervisor must be active before running
programs in multi-user mode. The system supervisor for the users
installation should do this.

ND-60.144.02



General Rules For Sequential 1-0:

(o]

A file may be opened with the INPUT, OUTPUT, EXTEND and 1-O options in
the same program. Following the initial execution of an OPEN statement,
each subsequent OPEN statement for the same file must be preceded by
the execution of a CLOSE statement for it.

Execution of the OPEN statement does not obtain or release the first data
record.

The file description entry for file-names 1, 2, 5, 6, 7, or 8 must be the
equivalent to that used when the file was created.

If an input file is designated with the OPTIONAL phrase in its SELECT
clause, the object program causes an interrogation for the presence or
absence of this file. If the file is not present, the first READ statement for
this file causes the AT END condition to occur. {See the READ statement
later in this section.)

For files being opened with the INPUT or [-O option, the OPEN statement
sets the current record pointer to the first record currently existing within
the file. If no records exist in the file, the current record pointer is set such
that the next executed READ statement for the file will result in an AT END
condition.

The EXTEND option permits opening of the file for output operations. (The
OPEN statement positions the file immediately following the last logical
record of that file. Subsequent WRITE statements referencing the file will

add records to the file as though the file had been opened with the
OUTPUT option.)

The I-O option allows the opening of a mass storage file for both input and
output operations. Since this option implies the existence of the file, it
cannot be used if the mass storage file is being initially created.

Upon successful execution of an OPEN statement with the OUTPUT option
specified, a file is created. At that time the associated file contains no data
records.

If the OPTIONAL phrase has been given for the file in the FILE-CONTROL
paragraph of the Environment Division and the file is not present, then the
standard end-of-file processing is performed for that file if it is an input
file. If it is an output file it is created.

ND-60.144.02



6.7.1.9

675

The READ Statement

The READ statement makes available the next logical record from a file. The
formats are:

Format 1:

READ file-name [NEXT] RECORD[INTQ identifier] [WITH LOCK]
; AT END imperative-statement]

—

Format 2. Indexed [-O Only:

READ file-name RECORD [INTO identifier] [WITH LOCK] [; KEY IS data-name]
[; INVALID KEY imperative-statement]

Format 3. Relative {-O Only:

READ file-name RECORD [INTO identifier] [WITH LOCK]
[;INVALID KEY imperative-statement]

The storage areas associated with file-name and with identifier must not be the
same.

Format 1.

The NEXT phrase and the WITH LOCK phrase are not valid for sequential files.
This format is used for sequential retrieval of records when files of other
organizations are in dynamic access mode. The WITH LOCK phrase applies only

to files opened in MULTI-USER-MODE, and is an ND Extension (see the OPEN
statement).

Format 1 must be used for all files in sequential access mode.

If the AT END phrase appears and if no applicable USE procedure is given for
file-name, a run-time error will resuit.

Format 2. Indexed I-O Only:

Data-name, which may be qualified, must identify a record key associated with
file-name.

ND-60.144.02



Formats 2 and 3:

These formats are used for files in dynamic or random access modes when
records are to be retrieved randomly.

It the INVALID KEY phrase appears and if no applicable USE procedure is given
for file-name, a run-time error will result.

The WITH LOCK phrase is an ND Extension and applies only to files opened in

MULTI-USER-MODE (see the OPEN statement and General Rule 3 for Indexed
and Relative |-O later in this section).

ND-60.144.02



677

General Rules:

The associated file must be open in the INPUT or I-O mode when this
statement is executed. (See the OPEN statement earlier.)

The execution of the READ statement causes the value of the FILE STATUS

data item, if any, to be updated. {See I-O Status at the beginning of the
I-O section.)

if the INTO phrase is specified, the record being read is moved from the
record area to the area specified by identifier according to the rules
specified for the MOVE statement. The implied MOVE does not occur if the
execution of the READ statement was unsuccessful. Any indexing
associated with identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available in both
the input record area and the data area associated with identifier.

If, at the time of execution of a format 1 READ statement, the position of

current record pointer for that file is undefined, the execution of that READ
statement is unsuccessful.

When the AT END condition is recognized, the following actions are taken
in the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an AT END condition.

b. It the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END imperative-statement.
Any USE procedure specified for this file is not executed.

(o If the AT END phrase is not specified, then a USE procedure must be
specified, either explicitly or implicitly, for this file, and that
procedure is executed.

When the AT END condition occurs, execution of the input-output
statement which caused the condition is unsuccessful.

Following the unsuccessful execution of any READ statement, the contents
of the associated record area and the position of the current record pointer
are undefined. For indexed files the key of reference is also undefined.

For a file for which dynamic access mode is specified, a format 1 READ

statement with the NEXT phrase specified causes the next logical record to
be retrieved from that file as described in rule 1.

ND-60.144.02



General Rules For Indexed |-0-

1. The record to be made available by a format 1 READ statement is
determined as follows:

a. The record, pointed to by the current record pointer, is made
available provided that the current record pointer was positioned by
the START or OPEN statement and the record is still accessible
through the path indicated by the current record pointer: if the
record is no longer accessible (which may have been caused by
deletion of the record or by a change in an alternate record key) the
current record pointer is updated to point to the next existing record
within the established key of reference and that record is then made
available.

b. If the current record pointer was positioned by the execution of a
previous READ statement, the current record pointer is updated to
point to the next existing record in the file with the established key of
reference. That record is then made available.

2. For an indexed file being sequentially accessed, records having the same
duplicate value in an alternate record key which is the key of reference are
made available in the same order in which they are released by execution

of WRITE statements, or by execution of REWRITE statements which
create such duplicate values.

3. For an indexed file if the KEY phrase is specified in a format 2 READ
statement, data-name is established as the key of reference for this
retrieval. If the dynamic access mode is specified, this key of reference is
also used for retrievals by any subsequent executions of format 1 READ

statements for the file until a different key of reference is established for
the file.

4. If the KEY phrase is not specified in a format 2 READ statement, the prime
record key is established as the key of reference for this retrieval. If the
dynamic access mode is specified, this key of reference is also used for
retrievals by any subsequent executions of format 1 READ statements for
the file until a different key of reference is established for the file.

5. If execution of a format 2 READ statement causes the value of the key of
reference to be compared with the value contained in the corresponding
data item of the stored records in the file, until the first record having an
equal value is found. The current record pointer is positioned to this record
which is then made available. If no record can be so identified, the

INVALID KEY condition exists and execution of the READ statement is
unsuccessful.

ND-60.144.02



6-79

General Rules For Indexed And Relative |-0:

1. If, at the time of the execution of a format 1 READ statement, no next
logical record exists in the file, the AT END condition occurs, and the
execution of the READ statement is considered unsuccessful.

2. When the AT END condition has been recognized, a format 1 READ
statement for that file must not be executed without first executing one of
the following:

a. A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful format 2 (for Indexed I-O) READ statement for that file
(or format 3 for Relative |-0).

3. The WITH LOCK phrase exists for the access of ISAM files which have
been cpened in MULTI-USER-MODE (see the OPEN statement). If the file

has been opened in single-user mode, the phrase is treated as comments
only.

If coded, READ WITH LOCK ensures that two programs cannot modify the
same record at the same time. A locked record can only be read. It will
become unlocked automatically when it has been rewritten by the program
which locked it, or when another record has been read, or when the file is
closed. The record can also be unlocked upon execution of the UNLOCK
statement (see Section 6.7.1.12).

An attempt by two programs to modify the same record will raise the
INVALID KEY condition with a file status code of 68 or 78 depending on
whether the records are “locked’ or not.

It is the responsibility of the user program to provide the code which
enables it to wait for a record to become accessible; a read loop might
otherwise occur.

Note also the requirements for relative or indexed organized files accessed
in multi-user mode. All relative or indexed organized files, both the index
and data part, must be contiguous SINTRAN files. The size of the index
part (in SINTRAN pages) is found by using the ESTIMATE-INDEX-FILE-SIZE
function in the INDEXED SEQUENTIAL ACCESS METHOD SERVICE
program. The size {in SINTRAN pages) of the data part is:

(maximum number of records * record length/2048) + 1

ND-60.144.02



General Rules For Relative 1-O Only:

1.

2.

The record to be made available by a format 1 READ statement is
determined as follows:

a. The record, pointed to by the current record pointer, is made
available provided that the current record pointer was positioned by
the START or OPEN statement and the record is still accessible
through the path indicated by the current record pointer; if the
record is no longer accessible, which may have been caused by the
deletion of the records, the current record pointer is updated to point
to the next existing record in the file and then that record is made
available. ‘

b. If the current record pointer was positioned by the execution of a
previous READ statement, the current record pointer is updated to
point to the next existing record in the file with the established key of
reference and then that record is made available.

If the RELATIVE KEY phrase is specified, the execution of a format 1 READ
statement updates the contents of the RELATIVE KEY data item such that
it contains the relative record number of the record made available.

The execution of a format 2 READ statement sets the current record
pointer to, and makes available, the record whose relative record number is
contained in the data item named in the RELATIVE KEY phrase for the file.
If the file does not contain such a record, the INVALID KEY condition exists
and execution of the READ statement is unsuccessful.

ND-60.144.02



.

General Rules For Sequential |-O:

1. The record to be made available by a format 1 READ statement is
determined as follows:

a. If the current record pointer was positioned by the execution of the
QOPEN statement, the record pointed to by the current record pointer
is made available.

b. If the current record pointer was positioned by the execution of a
previous READ statement, the current record pointer is updated to
point to the next existing record in the file and then that record is
made available.

2. When the AT END condition has been recognized, a READ statement for
that file must not be executed without first executing a successful CLOSE

statement followed by the execution of a successful OPEN statement for
that file.

3. If at the time of the execution of a READ statement, no next logical record
exists in the file, the AT END condition occurs, and the execution of the
READ statement is considered unsuccessful.

4. If a file described with the OPTIONAL phrase is not present at the time the
file is opened, then at the time of execution of the first READ statement for
the file, the AT END condition occurs and the execution of the READ
statement is unsuccessful. The standard end-of-file procedures are not
performed. Execution then proceeds as specified in general rule 6.

ND-60.144 .02



NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 15.57.20 DATE: 21.10.80
SOURCE FILE: ISAM-EX1

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID.
3 GEN-ISAM-1.
i3 *****&&*§§§*ii*******lv***liiﬂ-%***!}******i--)Hl'%i***ii*****&*****&****
5 # ISAM (INDEX SEQUENTIAL ACCESS METHOD ).
6 *THE RECORD IS THE OUTPUT T0O AN ISAM FILE USING THE *UNIQUE#
g #(IE: NO DUPLICATES ) DATA FOUND IN FIELD ISAM-KEY AS *KEY®* VALUE.
3
9 % BEFORE THIS JOB CAN BE RUN THE FOLLOWING *MUST* BE SO :
10 * A) FILE "ISAM-EX:DATA" MUST EXIST.
11 * B) FILE "ISAM-EX:ISAM"™ MUST NOT EXIST OR IF EXISTING
12 # CONTAIN *NO DATA !1#
1 3 ******t*!*!l—&i**&ﬁ**i&i*i**it*****ﬁ*-N(-**!i**&*&********}!**i*i***&*
1 ENVIRONMENT DIVISION.
15 INPUT-OUTPUT SECTION.
16 FILE-CONTROL.
17 SELECT ISAM-FILE ASSIGN T0 "ISAM-EX:DATA",
18 ORGANIZATION IS INDEXED,
19 ACCESS MODE IS DYNAMIC,
20 RECORD KEY IS ISAM-KEY,
21 FILE STATUS IS ISAMSTATUS.
22 DATA DIVISION.
23 FILE SECTION.
2u
25 FD ISAM-FILE
26 RECORD CONTAINS 46 CHARACTERS,
27 DATA RECORD IS ISAM-REC.
28 01 ISAM-REC.
29 02 ISAM-KEY PIC X(6).
30 # e eseseseniess tesaeses MUST BE IN RECORD AREA !
31 02 ISAM-TEXT PIC X(40).
32
33 WORKING-STORAGE SECTION.
34 01 ISAMSTATUS PIC XX.
35 * RETURN STATUS FROM ISAM.
36 *!»****ﬂ*****‘}*i*****!n}**Q**1!-*i&***i!»!*i-*-l»i***&****l****&**i*i*****
37 PROCEDURE DIVISION.
38 A001.
39 | OPEN I-O ISAM-FILE. ]
40 A002.
g DISPLAY "ENTER KEY (MAX 6 CHAR ) :",
42 ACCEPT ISAM-KEY.
u3 IF ISAM-KEY = SPACES GO TO LIST.
ul * SPACES INPUT , END DIALOG
45 DISPLAY "ENTER TEXT (MAX 40 CHAR) :".
46 ACCEPT ISAM-TEXT.
u7 * READ RECORDS FROM TERMINAL
48 WRITE ISAM~REC , INVALID KEY,
g DISPLAY "ISAM FILE ERROR :", ISAMSTATUS, ":n.
50 GO TO A0O2.
| # OUTPUT RECORD AND ASK AGAIN
52 LIST.
53 DISPLAY MENTER ACCESS KEY :".
54 ACCEPT ISAM-KEY.
55 IF ISAM-KEY = SPACES GO 7O FINI.
56 READ ISAM-FILE RECORD KEY IS ISAM-KEY INVALID KEY,
57 DISPLAY “#% RECORD MOT FCUND !",
58 S GO TO LIST.
59 DISPLAY "REC: ", ISAM-KEY, ": ", ISAM-REC.
60 GO TO LIST.
61 FINI.
62 CLOSE ISAM-FILE.
63 DISPLAY “JOB END".
64 STOP RUN.

##% NO ERROR MESSAGES ¥##

ND-60.144.02




NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 09.06.39 DATE: 22.10.80
SOURCE FILE: REL-EX
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID.
3 GENRELATIVE.
)4 b2t P2 B P RIS TSI EEE I R R e Y Y Y il L]
5 # SHOWS THE USAGE OF: A RELATIVE FILE :
6 * THE FILE *MUST#* EXIST BEFORE THE RUN BUT MAY BE EMPTY, EACH
7 ® RECORD IS LOCATED DIRECTLY BY ITS RELATIVE (TO 1) POSITION IN
8 % THE FILE BY ITS *NUMERIC* KEY VALUE.
g L2222 22222222 PRI LILIL LS ETLILLILEZET IS YEETEITRTIETTE
10 ENVIRONMENT DIVISION.
11 INPUT-QUTPUT SECTION.
12 FILE-CONTROL.
13 SELECT RELFILE ASSIGN "RELATIVE-EX:DATA" ,
14 ORGANIZATION IS RELATIVE,
15 ACCESS IS DYNAMIC,
16 RELATIVE KEY IS REL-KEY,
17 FILE STATUS IS REL-STATUS.
18 DATA DIVISION.
19 FILE SECTION.
20
21 FD RELFILE
22 LABEL RECORD IS OMITTED
23 DATA RECORD IS REL-RECORD
24 BLOCK CONTAINS 10 RECORDS
25 RECORD CONTAINS 60 CHARACTERS.
26 01 REL-RECORD PIC X(60).
27 * RECORD CANNOT BE "QED" TYPE RECORD
28
29 WORKING-3STORAGE SECTION.
30 01 REL-STATUS PIC XX.
31 01 REL-XEY PIC 999.
32 # e CANNOT APPEAR IN RELFILE RECORD AREA,
33 LI MAX POSSIBLE SIZE IS 999999, RESTRICTED
34 # TO 999 IN THIS PROGRAM.
35
36 PROCEDURE DIVISION.
37
38 A000.
39 | OPEN I-0 RELFILE.
40 A002.
41 DISPLAY "ENTER KEY (MAX 999 ) :".
42 PERFORM GET-KEY.
43 IF REL-KEY = ZEROES GO TO A0O3.
ul DISPLAY "ENTER TEXT ( MAX 60 CHAR ) :".
us ACCEPT REL-~RECORD.
46 WRITE REL-RECORD INVALID KEY,
47 DISPLAY " *¥* RELFILE ERROR :", REL-STATUS.
48 GO TO A002.
g A003.
50 DISPLAY "ENTER ACCESS KEY :".
51 PERFORM GET-KEY.
gg IF REL-KEY = ZEROS GO TO A999.
sl READ RELFILE RECORD INVALID KEY,
55 DISPLAY " ¥% RECORD NOT FOUND !", REL-STATUS,
56 GO TO AQ03.
57 DISPLAY "REC :", REL-KEY, ":", REL-RECORD.
58 GO TO A003.
59 A399.
60 CLOSE RELFILE.
61 DISPLAY "JOB END",
62 STOP RUN.
63 GET-KEY.
64 ACCEPT REL-KEY.
65 IF REL-KEY NOT NUMERIC ,
66 DISPLAY " #% KEY MUST BE NUMERIC ",
67 GO TO GET-KEY.
68 GET~-KEY-EXIT.
69 EXIT.

*##% NO ERROR MESSAGES *¥#
ND-60.144.02



NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 09.11.35 DATE: 22.10.80
SOURCE FILE: (TD)GENSEQ

—~ UV T W0 N e

JO SN
3 PO e 0 D OO

14

[ASZASIEACIE AU JE AN SR e g e
RN = O S o

IDENTIFICATION DIVISION.
PROGRAM-ID.

GENSEQ.
i**i**********ﬂ*****ﬁ**i*’i****i************i*i***ii!**ﬁ!**i**i!**
* CREATES SQ-FILE AND LISTS.
&*************&*i************ﬂ************!************%i*!***i***

ENVIRONMENT DIVISION.

INPUT-QUTPUT SECTION.

FILE-CONTROL.

SELECT SQ-FILE ASSIGN "COB1:DATA" ,

ORGANIZATION IS SEQUENTIAL,
ACCESS IS SEQUENTIAL.

DATA DIVISION.

FILE SECTION.

FD SQ-FILE
LABEL RECORDS STANDAED
DATA RECORDS M-REC.
01 M-REC.
02 FILLER PIC X(10).
02 SEQNUM PIC 9(5).
02 FILLER PIC X(5).
02 FILLER PIC X(u0).

WORKING-STORAGE SECTION.

01 RANDNO COMP, VALUE ZERO.
01 MAXRAND COMP, VALUE 1000.
01 NORECS PIC 9(4).

01 RECCNT COMP, VALUE 0.

PROCEDURE DIVISION.

INIT-01.
OPEN QUTPUT SQ-FILE.
DISPLAY ‘CREATE RECORDS ?
PERFORM GET-NORECS.

PERFORM CRE-SQ-FILE NORECS TIMES.

* BUILD THE INPUT FILE

CLOSE SQ-FILE.
DISPLAY ‘FILE SQ-FILE CREATED. , RECCNT, ‘RECORDS.°.

L

OPEN INPUT SQ-FILE.

LIST-FILE-O.
MOVE O TO RECCNT.
LIST-FILE-1.

READ SQ-FILE AT END GO TO LIST-END.

ADD 1 TO RECCNT.
DISPLAY "REC “, RECCNT, * SEQNUM = °, SEQNUM.
GO TO LIST-FILE-1.
LIST-END.
CLOSE SQ-FILE.
DISPLAY "JOB FINISH".
STOP RUN.

CRE~-SQ-FILE.

CALL “RND” USING RANDNO, MAXRAND.

MOVE ALL “#° TO M-REC.

MOVE RANDNO TO SEQNUM.

ADD 1 TO RECCNT.

DISPLAY "UT REC =", RECCNT, " KEY =", SEQNUM.
WRITE M-REC.

GET-NORECS.
ACCEPT NORECS.
IF NORECS NOT NUMERIC,
DISPLAY "#¥ NOT NUMERIC DATA ",
GO TO GET-NORECS.

#%% NO ERROR MESSAGES ¥##

ND-60.144.02




6.7.1.10

6—-85

The REWRITE Statement

The REWRITE statement logically replaces a record existing in a mass storage

file.

Format 1.

REWRITE record-name [EFROM identifier|

Format 2. Indexed and Relative 1-O Only.

REWRITE record-name [EROM identifier]

[ INVALID KEY imperative-statement]

Record-name and identifier must not refer to the same storage area.

Record-name is the name of a logical record in the File Section of Data Division.

For Relative [-O, the INVALID KEY phrase must be specified in the REWRITE
statement for files in the random or dynamic access mode for which an
appropriate USE procedure is not specified. It must not be specified for a
REWRITE statement for a file in sequential access mode.

For Indexed |-O, the INVALID KEY phrase must be specified in the REWRITE
statement for files which do not have an appropriate USE procedure for them.

General Rules:

The file associated with record-name (which must be a mass-storage file

for Sequential I-O) must be open in the 1-O mode at the time of execution
of the statement.

The last input-output statement executed for the associated file prior to the
execution of the REWRITE statement must have been a successfully
executed READ statement.

The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced.

The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area.

ND-60.144.02



10.

6-86

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the
FROM phrase. The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of the REWRITE
statement.

The current record pointer is not affected by the execution of a REWRITE
statement. '

The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated.

For Relative 1-0, a file accessed in either random or dynamic access mode,
the runtime-system logically replaces the record referenced by the
RELATIVE KEY data item for the file. If this file does not contain this
record, the INVALID KEY condition exists. The updating operation will not
take place.

The following rules are for Indexed:1-O only:

For a file in the sequential access mode, the record to be replaced is
indicated by the prime record key. When the REWRITE statement is
executed the value in the prime record key data item of the record to be
replaced must be the same as that of the last record read from this file.
For a file in random or dynamic access mode, the record to be replaced is
specified by the prime record key data item.

The contents of alternate record key data items of the record being
rewritten may differ from those in the record being replaced. The
runtime-system utilizes the content of the record key data items during the
execution of the REWRITE statement in such a way that subsequent access
of the record may be based upon any of those specified record keys.

The INVALID KEY condition exists when:

a. The access mode is sequential and the value contained in the prime
record key data item of the record to be replaced is not equal to the
value of the prime record key of the last record read from this file, or

b. The value contained in the prime record key data item does not equal
that of any record stored in the file, or

c. The value contained in an alternate record key data item for which a
DUPLICATES clause has not been specified is equal to that of a
record already stored in the file.

The updating operation does not take place and the data in the record area
is unaffected.

ND-60.144.02



6.7.1.11

The START Statement

The START statement provides a basis for logical positioning within an indexed

or relative file, for subsequent retrieval of records.

Format:

START file-name [ KEY

IS EQUAL TO ]
IS =

IS GREATER THAN
$is >

IS NOT LESS THAN
L|s NOT <

data-name ]

[INVALID KEY imperative-statement]

Note. The required relational characters '>", "<', and '="
are not underlined to avoid confusion with other symbols
such as "= (greater than or equal to).

File-name must be the name of a file with sequential or dynamic access.

The INVALID KEY phrase must be specified if no applicable USE procedure is
specified for file-name.

Data-name may be qualified, and for Relative |-O, it must be the data item
specified in the RELATIVE KEY phrase of the associated file-control entry.

General Rules:

File-name must be open in the INPUT or |-O mode at the time that the
START statement is executed. (See the OPEN statement.)

If the KEY option is not specified, the relational operator 1S EQUAL TO' is
implied.

If the KEY option is present, the comparison specified in the KEY relational
operator is made between data-name and the corresponding key field
associated with the records of the file.

The execution of the START statement causes the current value in the key
data-name and the corresponding key field of the file's records to be
compared. The current record pointer is positioned to the logical record in
the file whose key field satisfies the comparison. (If the comparison is not
satisfied by any record in the file, an INVALID KEY condition exists, the
execution of the START statement is unsuccessful, and the position of the
current record pointer is undefined.)

The execution of the START statement also causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated. (See
I-O Status at the beginning of this section.)

ND-60.144.02



6 88

General Rules For indexed Files:

If the KEY option is not specified, then the IS EQUAL TO comparison is
made with the prime RECORD KEY data item. After successful execution of
the START statement RECORD KEY or ALTERNATE RECORD KEY becomes
the key of reference for subsequent READ statement.

If a KEY option is present, then the comparison is made with the data item
which may be the prime RECORD KEY, and ALTERNATE RECORD KEY, or
an alphanumeric data item subordinate to a record key having its leftmost
character position corresponding to the leftmost character position of that
record key.

The current record pointer is positioned as in general rule 4. If the
operands in the comparison are of unequal length, the comparison takes
place as if the longer field were truncated on the right of the length of the
shorter field. ‘

If the execution of the START statement is not successful the key of
reference is undefined.

General Rule For Relative Files:

1.

The KEY data item used in the comparison is that associated with
RELATIVE KEY, whether or not the KEY option appears. Thus, when the
KEY option does not appear, the data-name must specify RELATIVE KEY.

ND-60.144.02



NORD~-10/100 COBOL COMPILER - VER 01.10.80 TIME: 09.17.45 DATE: 22.10.80

SOURCE FILE: ISAM-EX2

WO~ D W

IDENTIFICATION DIVISICH.
PROGRAM-ID.

GEN-ISAM-2.

******************************************************************

*

ISAM (INDEX SEQUENTTAL ACCESS METHOD ).

*TEIEREKI)RDISIHE(IJTPUT'IOANISAMFILEUSII\ETHE*UNIQJE*
*(IE: DDHIPLICATFS)DATAEUINDINFIE[DISAM—KEYAS*KEY*VA]IIE.
*

¥ % ¥

BEFORE THIS JOB CAN BE RUN THE FOLLOWING *MUST* BE SO -

A) FILE "ISAM-EX:DATA" MUST EXIST.
B) FILE "ISAM-EX:ISAM" MUST NOT EXIST OR IF EXISTING
CONTAIN *NO DATA !!1*

******************************************************************

ENVIROMMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-OCONTROL.

DATA

SELECT ISAM-FILE ASSIGN TO "ISAM-EX:DATA",
ORGANTZATION IS INDEXED,
20CESS MODE IS DYNAMIC,
RECORD KEY IS ISAM-KEY,
FILE STATUS IS ISAMSTATUS.

DIVISION.

FILE SECTION.

FD ISAM-FILE

RECORD CONTAINS 46 CHARACTERS,
DATA RECORD IS ISAM-REC.

01 TISAM-REC.

*

02 ISAM-KEY PIC X(6).
lsevroesrevsecsensse.. . MUST BE IN RECORD AREA !

02 ISAM-TEXT PIC X(40).

WORKING-STORAGE SECTION.

01 ISaMSTATUS PIC XX.
*

****************************************************************

RETURN STATUS FROM ISAM.

PROCEDURE DIVISION.

A001.

OPEN I-0 ISAM-FILE.

-

AQ002.

DISPLAY "ENTER KEY (MAX 6 CHAR ) :",
ACCEPT ISAM-KEY.
IF ISAM-KEY = SPACES GO TO LIST.
SPACES INPUT , END DIALOG
DISPLAY "ENTER TEXT (MAX 40 CHAR) :".
AQCEPT ISAM-TEXT.
READ RBCORDS FROM TERMINAL
WRITE ISAM-REC , INVALID KEY,
DISPLAY "ISAM FILE ERROR :", ISAMSTATUS, ":".
GO TO AQ02.
OUTPUT RECORD AND ASK AGAIN

DISPLAY "ENTER ACCESS KEY :".
ACCEPT ISAM-KEY.
IF ISAM-REY = SPACES GO TO FINI.

START ISAM-FILE KEY IS BQUAL TO ISAM-KEY, INVALID KEY
DISPLAY "** KEY NOT FOUND !V,
GO _TO LIST.

READ ISAM-FILE RECORD, INVALID KEY
DISPLAY "** RECORD NOT FOUND !",
GO TO LIST.

DISPLAY "REC: ", ISAM-KEY, ": ", ISAM-REC.

GO TO LIST.

CLOSE ISAM-FILE.
DISPLAY "JOB END".
STOP RUN.

*** NO ERROR MESSAGES *#** ND-60.144.02



NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 15.56.05 DATE: 21.10.80

SOURCE FILE:

WO~ Wi —

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
b2
43
Ly
45
46
u7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

*

REL--EX2

IDENTIFICATION DIVISION.
PROGRAM-ID.

GEN-EX2.

ENVIRONMENT DIVISION.
INPUT--QUTPUT SECTION.
FILE-CONTROL.

SELECT RELFILE ASSIGN "RELATIVE-EX:DATA" ,
ORGANIZATION IS RELATIVE,
ACCESS IS DYNAMIC,
RELATIVE KEY IS REL-KEY,
FILE STATUS IS REL-STATUS.

DATA DIVISION.
FILE SECTION.

FD RELFILE

LABEL RECORD IS OMITTED

DATA RECORD IS REL-~RECORD
BLOCK CONTAINS 10 RECORDS
RECORD CONTAINS 60 CHARACTERS.

01 REL-RECORD PIC X(60Q).

RECORD CANNOT BE "QED" TYPE RECORD

WORKING-STORAGE SECTION.
01 REL-STATUS PIC XX.

01 REL-KEY PIC 999.

*
*
*

I CANNOT APPEAR IN RELFILE RECORD AREA,
MAX POSSIBLE SIZE IS 999999, RESTRICTED
TO 999 IN THIS PROGRAM.

PROCEDURE DIVISION.

A0QQ.

OPEN I-O RELFILE.

AoOz2.

AQQ3.

DISPLAY "ENTER KEY (MAX 999 ) :",
PERFORM GET-KEY.
IF REL-KEY = ZEROES GO TO A003.
DISPLAY "ENTER TEXT ( MAX 60 CHAR ) :",
ACCEPT REL~RECORD.
WRITE REL-RECORD INVALID KEY,

DISPLAY " ¥* RELFILE ERROR :", REL-STATUS.
GO TO ADO2. ,

DISPLAY "ENTER ACCESS KEY :",
PERFORM GET-KEY.
IF REL-KEY = ZEROS GO TO A999.

START RELFILE KEY IS EQUAL REL-KEY, INVALID KEY,
DISPLAY " #%* RECORD NCT FOUND !", REL-STATUS,
GO TO AO0O3.

A999.

READ RELFILE.

DISPLAY "REC :", REL~KEY, ":", REL-RECORD.
GO TO A003.

CLOSE RELFILE.
DISPLAY "JOB END".
STOP RUN.

GET-KEY.

ACCEPT REL~KEY.

IF REL-KEY NOT NUMERIC ,
DISPLAY " ** KEY MUST BE NUMERIC ",
GO TO GET-KEY.

GET-KEY-EXIT.

EXIT.

¥## NO ERROR MESSAGES %## ND-60.144.02




6.7.1.12

6.7.1.13

6-91

The UNLOCK Statement
The UNLOCK statement unlocks records which have been locked in
MANUAL-UNLOCK-MODE. Its format is:

Format: UNLOCK file name

The UNLOCK statement is an ND Extension and it is used for programs

accessing relative or indexed organized files in MULTI-USER- MODF (see the
Open statement).

Records are normally unlocked automatically after a REWRITE or another READ
on the same file, or when the file is closed. However the MANUAL-UNLOCK

option on the OPEN statement, if present, will prevent this until an UNLOCK
statement is encountered for the file.

The USE Statement

The USE statement specifies procedures for I-O error handling in addition to the
standard procedures provided by the i-O control system.

Format:

EXCEPTION :
USE AFTER STANDARD PROCEDURE ON
S AR ERROR OCEDURE O

file-name-1 [, file name-2] ...
INPUT

QUTPUT

[R]

EXTEND

The EXTEND option is valid for Sequential I-O only.
A USE statement, when present, must immediately follow a section header in the
Declaratives Section of the Procedure Division. (See under Declaratives at the

beginning of the Procedure Division description.)

The USE statement itself is never executed, it merely defines the conditions
requiring execution of the USE procedure.

The files referenced need not all have the same organization or access.

ND-60.144.02



6-92

THE EXCEPTION/ERROR PROCEDURE

This procedure is executed after completion of the standard system 1-O routine
or when an AT END or INVALID KEY. option has not been specified in the
input/output statement.

EXCEPTION/ERROR procedures are activated when:

a. An OPEN statement is issued for a file already in the open status, or for a
nonexistent file.

b. A file is in the OPEN status and the execution of a CLOSE statement is
unsuccessful.

C. If an 1-O error occurs during ekecution of a READ, WRITE, REWRITE,
START or DELETE statement.

After execution of the EXCEPTION/ERROR procedure, control is returned to the
statement in the invoking routine following the statement which activated this
procedure.

Within a USE procedure there must not be any reference to any non-declarative
procedures. There is no interface hetween the two types. (However, a PERFORM
statement may refer to a USE procedure.)

Within an EXCEPTION/ERROR procedure, no statement may be executed that
would cause execution of a USE procedure that had been previously invoked and

had not yet returned control to the invoking routine.

Note: EXCEPTION/ERROR procedures can be used to check the status key values
whenever an input-output error occurs.

ND-60.144.02



6.7.1.14

6-93

The WRITE Statement

The WRITE statement releases a logical record for an output or an input-output
file. For Sequential 1-O it can be used for vertical positioning of lines within a
logical line.

Format 1. Indexed and Relative 1-0.

WRITE record-name [EROM identifier-1] [; INVALID KEY imperative-statement]

Format 2. Sequential |1-0.
WRITE record-name [EROM identifier-2]
identifier-3 LINE
integer LINES
BEFORE
AFTER

ADVANCING

Record-name and identifiers 1 or 2 must not reference the same storage area.

For format 1, record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

With format 1, the INVALID KEY phrase must appear if no USE procedure is
specified for the associated file.

For format 2, when identifier-3 is used in the ADVANCING phrase, it must be the

name of an elementary data item (whose value may be zero). Integer may also
be zero.

ND-60.144.02



General Rules:

1. For Indexed and Relative |-O, the associated file must be open in the
OUTPUT or I-O mode at the time of execution of this statement. For
Sequential 1-O the file must be open in either OUTPUT or EXTEND modes.

2. The results of the execution of the WRITE statement with the FROM

phrase are equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit MOVE
statement have no effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information in the
area referenced by identifier is available, even though the information in
the area referenced by record-name may not be.

3. The current record pointer is unaffected by the execution of a WRITE
statement.
4. The execution of the WRITE statement causes the value of the FILE

STATUS data item, if any, associated with the file to be updated.

5. The maximum record size for a file is established at the time the file is
created and must not subsequently be changed.

6. The number of character positions on a mass storage device required to
store a logical record in a file may or may not be equal to the number of
character positions defined by the logical description of that record in the
program.

7. The execution of the WRITE statement releases a logical record to the
operating system.

ND-60.144.02



General Rules For indexed |-0O:

1. Execution of the WRITE statement causes the contents of the record area
to be released. The runtime-system utilizes the content of the record keys
in such a way that subsequent access of the record key may be made
based upon any of those specified record keys.

2. The value of the prime record key must be unique within the records in the
file.
3. The data item specified as the prime record key must be set by the

program to the desired value prior to the execution of the WRITE
statement. (See general rule 2.)

4. If sequential access mode is specified for the file, records must be
released to the runtime-system in ascending order of prime record key
values.

5. if random or dynamic access mode is specified, records may be released

to the runtime-system in any program-specified order.

6. When the ALTERNATE RECORD KEY clause is specified in the file control
entry for an indexed file, the value of the alternate record key may be
non-unique only if the DUPLICATES phrase is specified for that data item.
In this case the runtime-system provides storage of records such that when
records are accessed sequentially, the order of retrieval of those records is
the order in which they are released to the runtime-system.

7. The INVALID KEY condition exists under the following circumstances:

a. When sequential access mode is specified for a file opened in the
output mode, and the value of the prime record key is not greater
than the value of the prime record key of the previous record, or

b. When the file is opened in the output or 1-O mode, and the value of
the prime record key is equal to the value of a prime record key of a
record already existing in the file, or

o When the file is opened in the output or I-O mode, and the value of
an alternate record key for which duplicates are not allowed equals
the corresponding data item of a record already existing in the file, or

d. When an attempt is made to write beyond the externally defined
boundaries of the file.

8. When the INVALID KEY condition is recognized, the execution of the
WRITE statement is unsuccessful, the contents of the record area are
unaffected and the FILE STATUS data item, if any, associated with
file-name of the associated file is set to a value indicating the cause of the
condition. Execution of the program proceeds according to the rules given
for the INVALID KEY condition.

ND-60.144.02



6 96

General Rules For Relative 1-O:

1. When a file is opened in the output mode, records may be placed into the
file by one of the following:

a. If the access mode is sequential, the WRITE statement will cause a
record to be released to the runtime-system. The first record will
have a relative record number of one (1} and subsequent records
released will have relative record numbers of 2, 3, 4 ... . If the
RELATIVE KEY data item has been specified in the file control entry
for the associated file, the relative record number of the record just
released will be placed into the RELATIVE KEY data item by the
runtime-system during execution of the WRITE statement.

b. If the access mode is random or dynamic, prior to the execution of
the WRITE statement the value of the RELATIVE KEY data item must
be initialized in the program with the relative record number to be
associated with the record in the record area. That record is then
released to the runtime-system by execution of the WRITE statement.

2. When a file is opened in the |-O mode and the access mode is random or
dynamic, records are to be inserted in the associated file. The value of the
RELATIVE KEY data item must be initialized by the program with the
relative record number to be associated with the record in the record area.
Execution of a WRITE statement then causes the contents of the record
area to be released to the runtime-system.

3. The INVALID KEY condition exists under the following circumstances:

a. When the access mode is random or dynamic, and the RELATIVE
KEY data item specifies a record which already exists in the file, or

b. When an attempt is made to write beyond the externally defined
boundaries of the file.

4. When the INVALID KEY condition is recognized, the execution of the
WRITE statement is unsuccessful, the contents of the record area are
unaffected, and the FILE STATUS data item, if any, of the associated file is
set to a value indicating the cause of the condition. Execution of the
program proceeds according to the rules given for the INVALID KEY
condition.

ND-60.144.02



697

General Rules For Sequential 1-O:

1. The ADVANCING phrase allows control of the vertical positioning of each
line on a printed page. If the ADVANCING phrase is not used, automatic
advancing will act as if the user had specified AFTER ADVANCING 1 LINE.
If the ADVANCING phrase is used, advancing is provided as follows:

a. it identifier-3 is specified, the page is advanced the number of lines
equal to the current value associated with identifier-3

b. If interger is specified, the page is advanced the number of lines
equal to the value of integer.

c. If the BEFORE phrase is used, the line is presented before the page
is advanced according to rules a and b above.

d. If the AFTER phrase is used, the line is presented after the page is
advanced according to rules a and b above.

e. if PAGE is specified, the record is presented on the logical page
before or after (depending on the phrase used} the device is
repositioned to the next logical page.

2. When an attempt is made to write beyond the externally defined
boundaries of a sequential file, an exception condition exists and the
contents of the record area are unaffected. The following action takes
place:

a. The value of the FILE STATUS data item, if any, of the associated file
is set to a value indicating a boundary violation.

b. If an USE AFTER STANDARD EXCEPTION declarative is explicitly or

implicitly specified for the file, that declarative procedure will then be
executed.

C. If an USE AFTER STANDARD EXCEPTION declarative is not explicitly
or implicitly specified for the file, the result is undefined.

ND-60.144.02



6 -98

NORD-10/100 COBOL COMPILER -~ VER 01.10.80 TIME: 09.11.35 DATE: 22.10.80
SOURCE FILE: (TD)GENSEQ

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID.
3 GENSEQ.
L; *****!*******%****&***********************-X—***********************
5 * CREATES SQ-FILE AND LISTS.
6 *************%**************************&***********-}*************
7 ENVIRONMENT DIVISION.
8 INPUT-OUTPUT SECTION.
9 FILE-CONTROL.
10 SELECT SQ-FILE ASSIGN "COB1:DATA™ ,
1 ORGANIZATION IS SEQUENTIAL,
12 ACCESS IS SEQUENTIAL.
13 DATA DIVISION.
14 FILE SECTION.
15 FD SQ-FILE
16 LABEL RECORDS STANDARD
17 DATA RECORDS M-REC.
18 01 M-REC.
19 02 FILLER PIC X(10).
20 02 SEQNUM PIC 9(5).
21 02 FILLER PIC X(5).
22 02 FILLER PIC X(40).
23 WORKING-STORAGE SECTION.
oy 01 RANDNO COMP, VALUE ZERO.
25 01 MAXRAND COMP, VALUE 1000.
26 01 NORECS PIC 9(4).
27 01 RECCNT COMP, VALUE 0.
28
29 PROCEDURE DIVISION.
30 INIT-01.
31 [ OPEN QUTPUT SQ-FILE.
32 DISPLAY "CREATE RECORDS ?
33 PERFORM GET-NORECS.
34
35 PERFORM CRE-SQ-FILE NORECS TIMES.
26 * BUILD THE INPUT FILE
37 CLOSE SQ-FILE.
38 DISPLAY ‘FILE SQ-FILE CREATED. , RECCNT, ‘RECORDS. .
39 OPEN INPUT SQ-FILE.
o) LIST-FILE-O.
U1 MOVE O TO RECCNT.
up LIST-FILE-1.
43 READ SQ-FILE AT END GO TO LIST-END.
4y ADD 1 TO RECCNT.
LS DISPLAY “REC “, RECCNT, ~ SEQNUM = “, SEQNUM.
up GO TO LIST-FILE-1.
u7 LIST-END.
48 CLOSE SQ-FILE.
49 DISPLAY "JOB FINISH",
50 STOP RUN.
51
52 CRE-SQ-FILE.
53 CALL "RND” USING RANDNO, MAXRAND.
54 MOVE ALL “#° TO M-REC.
55 MOVE RANDNO TO SEQNUM.
56 ADD 1 TO RECCNT.
57 DISPLAY "UT REC =", RECCNT, " KEY =", SEQNUM.
58 | WRITE M-REC. B
59
60 GET-NORECS.
61 ACCEPT NORECS.
62 IF NORECS NOT NUMERIC,
63 DISPLAY "## NOT NUMERIC DATA ",
6l GO TO GET-NORECS.

#%% NO ERROR MESSAGES ###

ND-60.144.02



NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 15.57.20 DATE: 21.10.80
SOURCE FILE: ISAM-EX1

1
2
3
4
5
6
7
8

(Yol

10
1"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
27
28
29
30
31
32
33
34
35
36
37
38
39
40

52
53
54
55
56
57
58
59
60
61
62
63
64

IDENTIFICATION DIVISION.
PROGRAM-ID.
GEN-ISAM-1.
BUR R BN E RN NN AR R R RN BRI R R RN RN R RS A AR AR R LR ELLRRER RN BRERS
* ISAM (INDEX SEQUENTIAL ACCESS METHOD ).
*THE RECORD IS THE OUTPUT TO AN ISAM FILE USING THE *UNIQUE®
*#(IE: NO DUPLICATES ) DATA FOUND IN FIELD ISAM-KEY AS ¥KEY* VALUE.
L3

* BEFORE THIS JOB CAN BE RUN THE FOLLOWING *MUST# BE 30 :

* A) FILE "ISAM~EX:DATA"™ MUST EXIST.
* B) FILE "ISAM-EX:ISAM" MUST NOT EXIST OR IF EXISTING
* CONTAIN *NO DATA !!#*

FERNRLRRRERRRBERRRRRHRARERNR RN R A AR R RERRRRRAAERERRARHEARRAERERR

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL .

SELECT ISAM-FILE ASSIGN TO "ISAM-EX:DATA",

ORGANIZATION IS INDEXED,
ACCESS MODE IS DYNAMIC,
RECORD KEY IS ISAM-KEY,
FILE STATUS IS ISAMSTATUS.

DATA DIVISION.

FILE SECTION.

FD ISAM-FILE
RECORD CONTAINS 46 CHARACTERS,
DATA RECORD IS ISAM-REC.

01 ISAM-REC.

02 ISAM-KEY PIC X(6).
* foeaesnnercenan eevee...MUST BE IN RECORD AREA !
02 ISAM-TEXT PIC X(40).

WORKING~-STORAGE SECTION.

01 ISAMSTATUS PIC XX.
* RETURN STATUS FROM ISAM.
RERHERE AR R R RERERRRERRRR R RARRRRRARRERRRRRRRRRRRRRRRRNRE

PROCEDURE DIVISION.

AQO1,

OPEN I-O ISAM-FILE.

AOO2.
DISPLAY "ENTER KEY (MAX 6 CHAR ) :",
ACCEPT ISAM-KEY.
IF ISAM-KEY = SPACES GO TO LIST.
* SPACES INPUT , END DIALOG
DISPLAY "ENTER TEXT (MAX 40 CHAR) :".
ACCEPT ISAM-TEXT.
* READ RECORDS FROM TERMINAL

WRITE ISAM-~REC , INVALID KEY,
DISPLAY "ISAM FILE ERROR :", ISAMSTATUS, ':",

GO TO A0OQ2.
# OUTPUT RECORD AND ASK AGAIN
LIST.
DISPLAY "ENTER ACCESS KEY :".
ACCEPT ISAM-KEY.
IF ISAM-KEY = SPACES GO TO FINI.
READ ISAM-FILE RECORD KEY IS ISAM-KEY INVALID KEY,
DISPLAY "##% RECORD NOT FOUND !,
GO T0 LIST.
DISPLAY “REC: ", ISAM-KEY, ": ", ISAM-REC.
GO TO LIST.
FINI.
CLOSE ISAM-FILE.
DISPLAY "JOB END",
STOP RUN.

*%% NO ERROR MESSAGES ##*#*

ND-60.144.02



6—100

NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 09.06.39 DATE: 22.10.80
SOURCE FILE: REL-EX

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID.

3 GENRELATIVE.

LL L2 22 222 EI ISR EIEEE ALY S Y I IR PR I )
5 # SHOWS THE USAGE OF A RELATIVE FILE :

6 * THE FILE *MUST* EXIST BEFORE THE RUN BUT MAY BE EMPTY, EACH
7 * RECORD IS LOCATED DIRECTLY BY ITS RELATIVE (TO 1) POSITION IN
8 * THE FILE BY ITS *NUMERIC* KEY VALUE.

9 L2 e 2 E 222 LTSRS ETIELIE RS FEIE ST T ET Y SIS ST E L
10 ENVIRONMENT DIVISION.

1 INPUT-OUTPUT SECTION.

12 FILE-CONTROL.

13 SELECT RELFILE ASSIGN "RELATIVE-EX:DATA" ,

14 ORGANIZATION IS RELATIVE,

15 ACCESS IS DYNAMIC,

16 RELATIVE KEY IS REL-KEY,

17 FILE STATUS IS REL-STATUS.

18 DATA DIVISION. ‘

19 FILE SECTION.
20
21 FD RELFILE
22 LABEL RECORD IS OMITTED
23 DATA RECORD IS REL-RECORD
24 BLOCK CONTAINS 10 RECORDS
25 RECORD CONTAINS 60 CHARACTERS.
26 01 REL-RECORD PIC X(60).
27 * RECORD CANNOT BE "QED" TYPE RECORD
28
29 WORKING-STORAGE SECTION.

30 01 REL-STATUS PIC XX.

31 | 01 REL-KEY PIC 999.

32 * i, CANNOT APPEAR IN RELFILE RECORD AREA,
33 * MAX POSSIBLE SIZE IS 999999, RESTRICTED
34 * TO 999 IN THIS PROGRAM.
35

36 PROCEDURE DIVISION.

37

38 A000.

39 OPEN I-O RELFILE.
ug AQQ2.

41 DISPLAY "ENTER XKEY (MAX 999 ) :'.

42 PERFORM GET-KEY.

43 IF REL-KEY = ZEROES GO TO A0Q3.

i DISPLAY "ENTER TEXT ( MAX 60 CHAR ) :".

45 ACCEPT REL-RECORD.

46 WRITE REL-RECORD INVALID KEY,

47 DISPLAY " #* RELFILE ERROR :", REL-STATUS.
48 GO TO A0O2.

ug AQO3.

50 DISPLAY "ENTER ACCESS KEY :',

51 PERFORM GET-KEY.

52 IF REL-KEY = ZEROS GO TO 4999,
53
54 READ RELFILE RECORD INVALID KEY,
55 DISPLAY " #* RECORD NOT FOUND !", REL-STATUS,
56 GO TO A0O3.
57 DISPLAY "REC :", REL-KEY, ":", REL-RECORD.
58 GO TO AOO3.
59 A999.
60 CLOSE RELFILE.

61 DISPLAY "JOB END",

62 STOP RUN.

63 GET-KEY.

64 ACCEPT REL-KEY.

65 IF REL-KEY NOT NUMERIC ,

66 DISPLAY " ¥* KEY MUST BE NUMERIC ",

67 GO TO GET-KEY.

68 GET-KEY-EXIT.

69 EXIT.

##% NO ERROR MESSAGES #%#

ND-60.144.02




6.8

6.8.1

6—101

PROCEDURE BRANCHING STATEMENTS

The ALTER Statement

Format
ALTER procedure-name-1 TO [PROCEED TO]procedure-name-2
[, procedure-name-3 TQ |[PROCEED TQO]|procedure-name-4} ...

and it is used to modify a simple GO TO statement elsewhere in the Procedure
Division, thus changing the sequence of execution of program statements.

Each procedure-name-1, procedure-name-3,.., is the name of a COBOL
paragraph that consists of only a simple GO TO statement.

Each procedure-name-2, procedure-name-4,.. is the name of a paragraph in the
Procedure Divison.

The ALTER statement in effect replaces the former operand of that GO TO by
procedure-name. Consider the ALTER statement in the context of the following
program segment.

GATE. GO TO MF--OPEN
MF-—OPEN. OPEN INPUT MASTER—FILE
ALTER GATE TO PROCEED TO NORMAL
NORMAL. READ MASTER—FILE, AT END GO TO EOF-—~MASTER

Examination of the above code reveals the technique of “shutting a gate”,
providing for a one-time, initializing-program step.

AVOID THE ALTER STATEMENT

The ALTER statement should not be used as it has a number of undesirable
effects.

a) the object code produced will not be
completely reentrant.
depending on program structure this could
increase dramatically the memory
reguirements during execution.

b) the source listing will not show any obvious
changes and thus be more difficult to debug.

ND-60.144.02
Rev. A



6102

6.8.2 The CONTINUE Statement

Format
pONT!NUE

This statement has no effect and is treated as comments.

6.8.3 The EXIT Statement

The EXIT statement provides a common end point for a series of procedures.
Format 1.

EXIT

Format 2.

EXIT-DO

Format 3.

EXIT-ALL-DO

General Rules for Format 1:

1. An EXIT statement is used only when assigning a procedure-name to a
given point in a program. Such an EXIT statement has no other effect on
the compilation of the program.

2. An EXIT statement can be used to leave a DO --- END-DO loop.

General Rule for Formats 2 and 3:

1. The EXIT-DO statement in format 2 is used to leave the single DO-loop
within which it appears. The EXIT-ALL-DO statement however, is used to
leave all nested DO-loops within which it occurs. {See the DO-statement
description, section 6.5.2.)

ND-60.144.02
Rev. A



6.8.4

6—103

The GO TO Statement

The GO TO statement causes control to be transferred from one part of the
Procedure Division to another.

Format 1.
GO TO [procedure-name-1]
Format 2.

GO TO procedure-name-1 [ procedure-name-2] ...,
procedure-name-n DEPENDING ON identifier.

Identifier is the name of a numeric elementary item described without any
positions to the right of the assumed decimal point.

When a paragraph is referenced by an ALTER statement, that paragraph can
consist only of a paragraph header followed by a Format 1 GO TO statement.

A Format 1 GO TO statement, without procedure-name-1, can only appear in a
single statement paragraph.

It a GO TO statement represented by Format 1 appears in a consecutive
sequence of imperative statements within a sentence, it must appear as the last
statement in that sequence.

General Rules:

1. When a GO TO statement, represented by Format 1 is executed, control is
transferred to procedure-name-1 or to another procedure-name if the GO
TO statement has been modified by an ALTER statement.

2. H procedure-name-1 is not specified in Format 1, an ALTER statement,
referring to this GO TO statement, must be executed prior to the execution
of this GO TO statement.

3. When a GO TO statement represented by Format 2 is executed, control is
transferred to procedure-name-1 procedure-name-2, etc., depending on the
value of the identifier being 1, 2, ..., n. If the value of the identifier is
anything other than the positive or unsigned integers 1,2 ..., n. then no
transfer occurs and control passes to the next statement in the normal
sequence for execution

4. Integer n must be in the range 1 to 100.

5 The maximum number of procedure-names that can be specified with a GO
TO statement is 100.

ND-60.144.02
Rev. A



6.8.5

6—-104

The PERFORM Statement

The PERFORM statement permits the execution of a separate body of program
steps. Three formats of the PERFORM statement are available:

Format 1

identifier-1

PERFORM range | integer

TIMES]

Format 2

PERFORM range UNTIL condition-1

Format 3
. e identifier-6
identifier-5 .
PERFORM range VARYING . FROM = index-name-4
s —— index-name-3 | ——|
literat-3
identifier-7 identifier-8

BY UNTIL condition-1 [AFTE

literal-4 index-name-b

dentifier-S identifier-10
FROM <index-name-6» BY ° UNTIL condition-2

literal-5 literal-6
identifier-12
identifier-11
[ AFTER :n:g): :wearme 7} FROM index-name-8
literal-6

identifier-1
l,den fier-13 UNTIL condition-3 ] ]
literal-7

In the above syntax, range is the construct

rocedure-name-1 [ ¢ w) rocedure-name-2 |
P THRU pro '

where THROUGH is synonomous with THRU.

Procedure-names 1 and 2 must have a section or paragraph in the Procedure
Division,

Where both are specified, if either is a procedure-name inside Declaratives,then
both must be procedure-names in Declaratives.

Each index-name identifies an index to be used in table references.

Each literal represents a numeric literal (in the BY phrase this must not be zero).
Condition-names 1,2 and 3 may be any conditional expressions (see under
Conditional Expressions’).

Each identifier must name an elementary numeric item.

ND-60.144 02
Rev A



6---105

Each index-name identifies an index to be used in table references.

Each literal represents a numeric literal (in the BY phrase this must not be zero).
Condition-names 1,2 and 3 may be any conditional expressions (see under
Conditional Expressions’).

Each identifier must name an elementary numeric item.

ND-60.144.02
Rev. A



6—-106

General Rules:

1. Whenever a PERFORM statement is executed, control is transferred to the
first statement of the procedure named as procedure-1. Control is always
returned to the statement following the PERFORM statement and the point
from which it is returned is determined as follows:

a. If procedure-name-1 is a pragraph name and a procedure-name-2 is
not present, the return is made after the execution of the last
statement of procedure-name-1.

b. If procedure-name-1 is a section name and a procedure-name-2 is
not present, the return is made after the execution of the last
sentence of the last paragraph of procedure-name-1.

o If procedure-name-2 is present and it is a paragraph name, the return
is made after the execution of the last statement of that paragraph.

d. if procedure-name-2 is present and it is a section name, the return is
made after the execution of the last sentence of the last paragraph in
the section.

2. GO TO and PERFORM statements may be specified within the performed
procedure. When the performed procedures include another PERFORM
statement, the sequence of procedures associated with the embedded
PERFORM statement must be included in or excluded from the performed
procedures of the first PERFORM statement.

3. The TIMES option. Identifier-1, if used, must name an integer item. {If the
integer is zero or negative when the PERFORM statement is initiated,
control passes to the statement following the PERFORM statement). The
procedure(s) referred to are executed the number of times specified by the
integer or the value in identifier-1. Once the PERFORM statement has been
initiated, any reference to identifier-1 cannot vary the number of times the
procedures are executed.

4. The UNTIL option. The procedures referred to are performed until the
condition is satisfied. Control is then passed to the next executable
statement following the PERFORM statement. If the condition is already
true when the PERFORM statement initiated then the specified
procedure(s) are not executed.

5. The VARYING option. This increments or decrements idientifers or
index-names until the condition(s) in the UNTIL option are satisfied when
control is passed to the next executable statement following the PERFORM
statement.

6. With format 3, when varying two identifiers, the AFTER variable
(identifier-8) is set to the value of identifier-9. When condition-1 is
evaluated, if it is true, control is transferred to the next executable
statement. If false, range is executed once before identifier-8 is augmented
by identifier-10 or literal-6. And so on.

ND-60.144.02



6.8.6

6—107

Using the PERFORM Statement

With format 1, the designated range is performed (i.e., executed remotely) a
fixed number of times, as determined by an integer or by the value of an integral
data-item.

In format 2, identifier-2 is set to the value of literal-1 or the current value of
identifier-3 at the beginning of the execution. If condition-1 is false the
designated range is performed and then condition-1 is evaluated again. The cycle
is repeated (augmenting data-name-2 with the current BY value} until condition-1
is true.

In format 3 we may now vary not only the object of the VARYING phrase but
objects of the AFTER phrases as well.

Varying two identifiers we have:

{

Set identifier-5 (or index-name-3) and
identifier-8 (or index-name-5)
to current FROM values

.,<condition-1

Exit

False

p<condition-2

False

Set identifier-8 {or
Execute Range index-name-5) to its current
FROM value

Augment dentifier8 (or Augment ldent|f|‘er-5 {or
. . index-name-3) with current
index-name-5} with current

BY value BY value

Figure 6.8:

ND-60.144.02
Rev. A



6--108

Varying three identifiers gives us:

i

Set identifier - 5 {or index-name-3),
identifier-8 (or index-name-5)

and identifier-11 {or index-name-7)
to current FROM values

4

Augment identifier -11
{or index-name-7)

with current BY

value

¥

i True
condition-1 > EXIT
condition-2 True
True
condition-3
False
v £
Execute Set identifier-1 {or Set identitier-8
range index-name-7)} to {or index-name-5)
its current FROM to its current FROM
value value

v

Augment identifier-8
{or index-name-5)
with current BY value

Augment identifier-5
{or index-name-3) with
current BY value

Figure 6.9:

The format-3 PERFORM statement is particularly useful in table handling when

one statement can search a whole three dimensional table.

A run-time, it is illegal to have concurrently active perform ranges whose

terminus points are the same.

ND-60.144.02




b-109

NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 09.11.35 DATE: 22.10.80
SOURCE FILE: (TD)GENSEQ
1 IDENTIFIZATION DIVISION.
2 PROGRAM~ID.
3 IENSEQ.
)4 L2222 IR ISILTISILLILILISSTIEIETILTEIZ LTRSS ESES TS 2]
5 * CRZATES SQ-FILE AND LISTS.
6 REA RN R LA R AR AR AL R LR E RSB AR AR R AL R AENN RS ERNEERRRSERRERFREXARERREL
7 ENVIRONMINT DIVISION.
38 INPUT-QUTPUT SECTION.
9 FILE-CONTROL.
10 SELECT SQ-FILE ASSIGN "COB1:DATA" ,
11 ORGANIZATION IS SEQUENTIAL,
12 ACCESS IS SEQUENTIAL.
13 DATA DIVISION.
14 FILE SECTION.
15 FD  SQ-FILE
16 LABEL RECORDS STANDARD
17 DATA RECORDS M-REC.
18 01 M-REZ.
19 02 FILLER PIC X(10).
20 02 SEQNUM PIC 9(5).
21 02 FILLER PIC X(5).
22 02 FILLER PIC X(40).
23 WORKING-STORAGE SECTION.
24 01 RANDNO COMP, VALUE ZERO.
25 01 MAXRAND COMP, VALUE 1000.
26 01 NORECS PIC 9(4).
27 01 RECCNT COMP, VALUE 0.
28
29 PROCEDURZ DIVISION.
30 INIT-01.
31 OPEN QUTPUT SQ-FILE.
32 DISPLAY ‘CREATE RECORDS 2.’
33 [ PERFORM GET-NORECS.
34
33| PERFORM CRE-SQ-FILE NORECS TIMES.
36 ¥ BUILD THE INPUT FILE
37 CLOSE SQ-FILE.
38 DISPLAY ‘FILE SQ-FILE CREATED. , RECCNT, ‘RECORDS.’.
39 OPEN INPUT SQ-FILE.
40 LIST-FILE-O.
11 MOVE O TO RECCNT.
4o LIST-FILE~1.
43 READ SQ-FILE AT END GO TO LIST-END.
uy ADD 1 TO RECCNT.
HES DISPLAY "REC “, RECCNT, * SEQNUM = °, SEQNUM.
46 GO TO LIST-FILE~1.
L7 LIST-END,
48 CLOSE SQ-FILE.
Lg DISPLAY "JOB FINISH".
50 STOP RUN.
51
52 CRE-SQ-FILE.
53 CALL “RND” USING RANDNO, MAXRAND.
54 MOVE ALL “#° TO M-REC.
55 MOVE RANDNO TO SEQNUM.
56 ADD 1 TO RECCNT.
57 DISPLAY "UT REC =", RECCNT, " KEY =", SEQNUM.
58 WRITE M-REC.
59
60 GET-NORECS.
61 ACCEPT NORECS.
62 IF NORECS NOT NUMERIC,
63 DISPLAY "## NOT NUMERIC DATA ",
bl GO TO GET-NORECS.

#%% NO ERROR MESSAGES #**#

ND-60.144.02



6.8.7

6-110

The STOP Statement

The STOP statement is used to terminate or delay execution of the object
program.

Format

STOP { BU }
— literal

pd

STOP RUN terminates execution of a program, returning control to the cperating
system.

The form STOP literal causes the specified to be displayed on the console, and
execution to be suspended. Execution of the program is resumed only after
operator intervention. Presumably, the operator performs a function suggested
by the content of the literal, prior to resuming program execution.

ND-60.144.02
Rev. A



6.9

6.9.1

6 111

COMPILER DIRECTING STATEMENTS

The COPY Statement

Prewritten source programs can be included in a source program at compile
time. These prewritten programs can be saved in user-created libraries without
recoding and incorporated later in the COBOL program by means of the COPY
statement.

Format

COPY file-name.

Where file-name is the name of a Sintran file. (Default file type SYMB).

The COPY statement must be preceded by a space and terminated by a period. It
may occur any where in the source program where a character string or

separator may occur. However, a COPY statement must not occur within a COPY
statement.

The effect of processing a COPY statement is that the library text associated
with file-name is copied into the source program, logically replacing the entire
COPY statement beginning with the word COPY and ending with the period,
inclusive.

ND-60.144.02



PART I OTHER FEATURES

SORT/MERGE
TABLE HANDLING
INTER—-PROGRAM COMMUNICATION

DEBUGGING WITH THE SYMBOLIC DEBUGGER

ND-60.144.02



7.1

SORT/MERGE

Sort and Merge enable the programmer to order one or more files of records, or
to combine two or more identically ordered files of records, according to a set of
user-specified keys contained within each of these records.

COBOL has special language features for sorting and merging so that the
programmer does not need to program these operations in detail.

SORT CONCEPTS

Sort produces an ordered file from one or more files that may be completely
unordered with regard to the sort sequence.

A COBOL program containing a sort may have one or more input files handled by
an input procedure. Within this procedure a RELEASE statement (analogous to a
WRITE statement) places records one at a time onto the sort file. When all the
records have been placed on this file the sorting operation is executed. All the
sort file records are now arranged in the sequence specified by the keys.

Upon completion of the sorting operation, individual records can be accessed,
one at a time, through a RETURN statement, should they need to be modified. If
the user does not want to modify the sorted records, the SORT statement’s
GIVING option names the sorted output file.

ND-60.144.02



7.2

1.3

MERGE CONCEPTS

Merge produces an ordered file from two or more input files, each of which is
already ordered in the merge sequence.

The COBOL program can contain any number of merge operations each of which
can have independent output procedures. After merging, individual records can
be accessed by use of the RETURN statement, for modification if required.
Otherwise, the GIVING option is used to name the merged output file.
Sort/Merge handles fixed or variable length records.

The files specified in the USING and GIVING phrases of the SORT/MERGE
statement must be described in the FILE-CONTROL paragraph as having
sequential organization. No 1-O statement may be executed for the file named in
the sort/merge file description.

SORT/MERGE—ENVIRONMENT DIVISION

File-control entries are required for each file to be used as input or output. A
file-control entry is also required for the sort/merge file itself. For the |-O files
the format is:

FILE—-CONTROL. file-control entry [file-control entry | ...

For the sort file, the format of the allowable clauses in the file-control entry is:
SELECT file-name ASSIGN TO assignment-name-1.

Each sort/merge file described in the Data Division must be named once and
once only in a file-control entry.

The ASSIGN clause associates a sort/merge file with a storage medium.

ND-60.144.02



7.4

SORT/MERGE—DATA DIVISION

In the File Section there must be FD entries for each I-O file together with a
record description entry. For each sort/merge file there must be an SD entry as
well as a record description. The SD entry has the following format:

Format

SD file-name [; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

[DEPENDING ON identifier] |

F
[; RECORDING MODE IS TEXT—FILE ]

< 1+

RECORD IS

; { i
[ DAIA RECORDS ARE

data-name-1 [data-name-2] ...].

Where the file-name must specify a sort/merge file.

The RECORDS CONTAINS clause defines the size of the data records. As the
size of each record is completely defined within the record description entry, this
clause is never required. However, the number of characters in all fixed-length
elementary items, plus the sum of the maximum number of those in any
variable-length item subordinate to the record, determines its size.

The DATA RECORDS clause serves only as documentation for the names of the
data records with their associated file.

Data-name-1 and data-name-2 are the names of data records which must have
01 level-number record descriptions, with the same names, associated with
them. The presence of more than one data-name indicates that the file contains
more than one type of data record which may be of differing sizes, formats etc.

ND-60.144.02



7.5

SORT/MERGE — PROCEDURE DIVISION

A sort input procedure must contain a RELEASE statement to make each record
available to the sorting operation. A sort/merge output operation must have a
RETURN statement which makes a sorted/merged record available to the output
procedure. The RELEASE statement has the format:

RELEASE record-name [ FROM identifier |

Record-name must be the name of a logical record in the associated SD entry
and may be qualified.

Record-name and identifier must not refer to the same storage area.

When the FROM option is used, the RELEASE statement is the equivalent of a
MOVE statement operation of identifier to record-name, followed by a RELEASE
statement operation for the record-name. Moving takes place according to the
rules for the MOVE statement without the CORRESPONDING option. After the
move, information in the record area is no longer available but that in the data
area associated with the identifier may still be accessed.

When control passes from the Input Procedure the sort file consists of all those
records placed in it by execution of RELEASE statements.

The RETURN statement obtains records from the final phase of a sort or merge
operation. Its format is:

RETURN file-name RECORD [ INTQ identifier |

; AT END imperative-statement.
Within an Output Procedure at least one RETURN statement must be specified.
The file-name must be described by a Data Division SD entry.

The storage areas associated with the identifier and the record area of the
file-name must not be the same.

The execution of a RETURN statement causes the next record, in the order
specified by the keys listed in the SORT or MERGE statement, to become
available by the Output Procedure. If more that one record description is
associated with more than one file-name, these records share the same storage.

After the execution of a RETURN statement, only the contents of the current

record are available; if any data items lie beyond the length of the current record
their contents are undefined.

After all the records have been returned from file-name, the AT END imperative
statement is executed and no further RETURN statements map be executed as
part of the current output procedure.

ND-60.144.02



7.5.1

The SORT Statement

The SORT statement creates a sort file by executing input procedures, or by
transferring records from another file. It then sorts records in the sort file on a
set of specified keys. In its final phase it makes each record from this file
available, in sorted order, to some output procedure or to an output file. lis
format is given below:

) ASCENDING
SORT file-name-1 ON ¢ } KEY data-name-1{ data-name-2] ...
DESCE
ASCENDING
ON ¢ t KEY data-name-3 [ data-name-4]...]...
DESCENDING
. THROUGH .
INPUT PROCEDURE IS section-name-1 i } section-name-2 |
THRU
USING file-name-2
. THROQUGH )
QUTPUT PROCEDURE IS section-name-3 [} THRU ! section-name-4 |

GIVING file-name-3

File-name-1 is the name given in the SD entry describing the records being
sorted.

When the SORT statement is executed, all records contained on file-name 2 are
sorted according to the specified keys. This input file must not be open at the
time the SORT statement is executed; it is automatically opened and closed by
the SORT operation (with any implicit functions also performed).

The INPUT PROCEDURE option specifies or more section-names of a procedure
that is to modify input records before the sorting operation begins. Control is
therefore passed to this procedure before file-name-1 is sequenced by the SORT
statement. The compiler inserts a return mechanism at the end of the last
section in the input procedure and when control passes the last statement of this
procedure, the records that have been released to file-name-1 are sorted.

The input procedure must not contain any SORT statements or any transfer of

control to points outside it. The execution of a CALL statement however follows
standard linkage conventions.

ND-60.144.02



71.5.2

Options Common to Sort and Merge

The ASCENDING/DESCENDING phrases specify that the records are to be
processed in an ascending or descending sequence (whichever option is used)
based on the specified sort keys.

The data items identified by KEY data-names must not contain an OCCURS
clause or be subordinate to an entry containing as OCCURS clause.

Key data items must be of fixed length, they may be qualified but not
subscripted or indexed.

If the USING phrase is specified, all records in file-name-2 for SORT (in
file-names 2 and 3 for MERGE) are transferred automatically to file-name-1. At
the time the SORT/MERGE statements .are executed these files must not be
open. The compiler opens, reads and makes records available and closes files
automatically.

The OUTPUT PROCEDURE option specifies one or more section-names of a
procedure that is to modify records from the sort or merge operation.

The procedure takes control when all records have been sorted/merged.

The compiler inserts a return mechanism at the end of the last section in the
output procedure so that, when control passes the last statement of this
procedure, the return mechanism causes control to pass to the next executable
statement following the SORT or MERGE statement.

The output procedure must not itself contain any SORT/MERGE statements but it
must include at least one RETURN statement to make the sorted/merged records
available for processing.

The GIVING phrase causes all the sorted/merged records to be transferred to the
output file. (File-name-3 for SORT operations, file-name-4 for MERGE
operations).

When the SORT/MERGE statements are executed the output file must not be

open. The compiler opens, reads and makes records available. The terminating
function is performed as for a CLOSE statement.

ND-60.144.02



7.5.3

The Merge Statement

The MERGE statement combines two identically sequenced files on a set of
specified keys, and during the process makes records available in merge order,
to an output file or procedure. It has the format:

~ ASCENDING

MERGE file-name-1 ON ¢ '
I DESCENDING

KEY data-name-1 [ data-name-2] ...

ASCENDING
[ON - t KEY data-name-3 [ data-name-4]...]...
DESCENDING

USING file-name-2, file-name-3

, THROUGH ,
OUTPUT PROCEDURE IS section-name-3 [ ¢ m_ I section-name-4 ]

GIVING file-name-4

File-name-1 is the name given in the SD entry which describes the records being
merged.

When the MERGE statement is executed, all records on file-names-2 and 3 are
merged according to the key(s) specified. These files must not be open when

this statement is executed; they are automatically opened and closed by the
MERGE operation.

For the statement options see under the SORT statement.

ND-60.144.02



78

NORD-10,/100 COBOL CCMPILER ~ VER 01.10.80 TIME: 09.18.10 DATE: 22.10.80
SOURCE. FILE: SORT-EX1

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID.

3 SORT-EXL.

4 edARRhhhhhkhhkhkhhhdhirhkhrkfehihkihihhkhihhhdhkihhiikiiokkikkithkik
5 * CREATES IN-FILE,LISTS, SORTS,CREATING UT-FIL,LISTS.

6 FHAATXAALEARE XA A kAR AhhkhihhkhhkihhhhkhhhikhkrkRikhihkiokkhxkhikik
7 ENVIRONMENT DIVISION.

8 INPUT-CUTPUT SECTION.

9 FILE-CONTROL.

10 SELECT IN-FILE ASSIGN "COBLl:DATA",

11 ORGANIZATION IS SEQUENTIAL,

12 NOCESS IS SEQUENTIAL.

13 SELECT UT-FILE ASSIGN "COB2:DATA".
14 SELECT S-FILE ASSIGN "SORT:DATA".

15 DATA DIVISION.

16 FILE SECTION.

17 khkkhkhkiRhkiokhkhkRhkhkhhRikhirhkihhihkhhhhhhdhkhhrhdrhkhrdiehdihkikikihkkix
18 * NOTE: ALL FILES,INPUT/OUTPUT AND SORT CAN BE FIXED (F),

19 * VARTABLE (V) OR TEXT (T), EXCEPT RELATIVE AND INDEXED

20 * THAT CBN'T BE TEXT.

21 TRE AT EARERAIRARERRA IR AR hhkhhhhhhhdkhhkhhihhhhtkhkivkkkhkhhhkkhhi
22 FD IN-FILE

23 LABEL, RECORDS STANDARD,

24 DATA RECORDS M~REC MOD-REC.

25 0L M~REC PIC X(60).

26 01 MOD-REC.

27 02 FILLER PIC X(10).

28 02 SECNUM PIC 9(5).

29 02 FILLER PIC X(5).

30 02 FILLER PIC X(40).

31 FD UT-FILE

32 LABEIL, RECORDS STANDARD

33 DATA RECORD IS N-REC.

34 0L N~REC.

35 02 FILLER PIC X(10).

36 02 SEQNUM2 PIC 9(5).

37 02 FILLER PIC X(5).

38 02 FILLER PIC X{40).

39

40 P2 s IR LT R LL LS TE LTSS L LLELLSLTELSELSL LA LILLTESLLTIITLSLEL L &S T
41 * NOTE THAT THE SORT DESCRIPTOR (SD) DOES NOT NEED ANY

42 * FILE-DESCRIPTON-ENTRY, IF NOT RECORDING MODE T OR V

43 * IS USED.

44 P 2 R a2k P 2L LSS LR LERLTSTITEL LS LELLLLLILL LIS ELLLEEELLETLELLET
45 SD S-FILE.

46 0l S-REC.

47 02 FILLER PIC X{10).

48 | 02 S-KEY PIC 9(5).

49 02 FILLER PIC X(5).

50 02 FILLER PIC X(40).

51

52 WORKING-STORAGE SECTICN.

53 01 RANDNO OMP, VALUE ZERO.

54 01  MAXRAND CMP, VALUE 1000.

55 01 NORECS PIC 9(4).

gf}i 0l RECCNT CcoMP, VALUE 0.

58

ND-60.144.02



PROCEDURE DIVISION.

MATN SECTION.
INIT-01.
OPEN OUTPUT IN-FILE.
DISPLAY ‘CREATE NO RECORDS ? (<9999 LEAD 0, S )'.
PERFORM GET-NORECS.
MOVE 0 TO RECCNT.

PERFORM CRE-IN-FILE NORECS TIMES.
* BUILD THE INPUT FILE FOR SORT
CIOSE IN-FILE.

DISPLAY 'FILE IN-FILE CREATED.', RECCNT, 'RECORDS.'.
MOVE O TO RBECCNT.

khkkfehhhkhkdhkkhhhhkhhkhhkRirhhihkkhhkhkhhhhhhkhkhkkkkkhrhkkkkkkikhkihk

* ALL FILES REFERED TO BY THE SORT VERB MUST BE CLOSED
* BEFORE THE SORT IS STARTED, OTHERWISE RUNTIME ERROR OCCURS
RARRRRARAAARKIRAIRATARRRR AR RRAR KA AR RAThAAhkhkhkhkkhkhhkhkhkhhkhbhhkkrkkik
SORT S-FILE ON ASCENDING KEY S-KEY,
USING IN-FILE
GIVING UT-FILE.

OPEN INPUT UT-FILE
PERFORM LIST-UT-FILE.
CIOSE UT-FILE.
DISPLAY "JOB FINISH".
STOP RON.
CRE-IN-FILE SECTION.
CRE~FILE~1.
CALL 'RND' USING RANDNO, MAXRAND.
MOVE ALL '*' TO M-REC.

READ UT-FILE AT END GO TO LIST-END.
ADD 1 TO RECCNT.
DISPLAY 'REC', RECCNT, 'SEQNUM = ',SEQNUMZ.
@0 TO LIST-FILE-1l.
LIST-END.
EXIT.
GET-NORECS SECTICN.
GET-NO. :
BOCEPT NORECS.
IF NORECS NOT NIMERIC,
DISPLAY '** NOT NUMERIC DATA '.,
GO TO GET-NO.
GET-EXIT.

ND-60.144.02




NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 09.08.09 DATE: 22.10.80
SOURCE FILE: SORT-EX2

WOV ZW N -

IDENTIFICATION DIVISION.
PROGRAM-ID.
SORT-EX2.
P2 E2 ISR ISR ST SIS LI LSS TSI EL ST S S S L L0 5
# CREATES IN-FILE,LISTS, SORTS USING PROCEDURES,CREATING UT-FILE.
P22 22T TSI LSRRI IS TR R RS SRS ISR TSI AL ES TSRS ST L4
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT IN-FILE ASSIGN "COB1:DATA",
FILE STATUS IS IN-FILE-STATUS.
SELECT UT-FILE ASSIGN "COB2:DATA",
FILE STATUS IS UT-FILE-STATUS.
SELECT S-FILE ASSIGN "SORT:DATA",
FILE STATUS IS SFILE-STATUS.
DATA DIVISION. .
FILE SECTION.
FD  IN-FILE
BLOCK CONTAINS 10 RECORDS,
DATA RECORDS IN-REC.

01 IN-REC.
02 FILLER PIC X(10).
02 SEQNUM PIC 9(5).
02 FILLER PIC X(5).
02 FILLER PIC X(80).
FD UT-FILE
BLOCK CONTAINS 10 RECORDS.
01 UT-REC.
02 FILLER PIC X(10).
02 SEQNUM2 PIC 9(5).
02 FILLER PIC X(5).
02 FILLER PIC X(80).
SD S-FILE
01 S-REC.
02 FILLER PIC X(10).
02 S-KEY PIC 9(5).
02 FILLER PIC X(5).
02 FILLER PIC X(80).
WORKING-STORAGE SECTION.
01 NORECS PIC 9(4).
01 RECCNT CoMP , VALUE O.

’
RN AFR AR SRR RSN RN AR AR RRA RN RN E R ER AR R RN RRR BB RERRA XA ERNNREERERS

* PARAMETERS FOR CALL TO RND (RANDOM NUMBER GENERATOR)
BERRHRARARENRERHRRRR RN R RER RSB R IR RR R AR RN AR AR RRARRRRH B RN AR
01 RANDNO CoMP, VALUE ZERO.

01 MAXRAND coMp, VALUE 1000.
I M N I RN SRR N RSN RN R R R A RA R NS N

* STATUS DATA-NAME(S) MUST BE DEFINED AND MUST BE 2 BYTES LONG
e T s s T e T Ty T I

01 IN-FILE-STATUS PIC XX.
01 UT-FILE-STATUS PIC XX.
01 SFILE-STATUS PIC XX.

bR gs s et s i i a2 EEEL IR ETEFTET TS TR TR TS

* START/END-TIME USED FOR ACCEPTING TIME FROM SYSTEM
FHEHABRERRIOR RN R BRI RN R RN R IR H SRR R RN L RN A

01 START-TIME PIC 9(8).

01 END-TIME PIC 9(8).

R R T T P PR PP E T PO PP PP e oo
* SORT-START/END ARE THE RECIEVING EDIT FIELDS FOR START/END-TIME
e I P T PR P T T r O T T TR
01 SORT-START PIC 99,99,99,99.

01 SORT-END PIC 99,99,99,99.

PROCEDURE DIVISION.

ND-60.144.02



67
68
69
70
71
72
73
T4
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
13
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

7-11

MAIN SECTION.
INIT-01.
OPEN OUTPUT IN-FILE.
DISPLAY ‘CREATE NO RECORDS 2/
PERFORM GET-NORECS.
MOVE O TO RECCNT.

PERFORM CRE-IN-FILE NORECS TIMES.
CLOSE IN-FILE.

DISPLAY “IN-FILE CREATED.”, RECCNT, "RECORDS.’.
MOVE O TO RECCNT.
ACCEPT START-TIME FROM TIME.

SORT S~FILE ON ASCENDING KEY S-KEY,
INPUT PROCEDURE IS SORT-PROC-IN
QUTPUT PROCEDURE IS SORT-PROC-UT.

ACCEPT END-TIME FROM TIME.
PERFORM SORT-TIMES.
DISPLAY "JOB FINISH".
STOP RUN.
MAIN-END.
EXIT.
AERNRERRRRHERRRI NIRRT HRRHRHRR ORI IR R R BRI R RR AR KR RRKL AR

* CALLING ‘RND” TO GENERATE RANDOM DATA FOR THE RECORD, WRITES
FRREHEHIE IR RN R RN AR AR R RERE RN R HRRERRRE R RRIR IR AR RERR
CRE-IN-FILE SECTION.
CRE-FILE-1.

CALL 'RND’ USING RANDNO, MAXRAND.

MOVE RANDNO TO SEQNUM.

ADD 1 TO RECCNT.

DISPLAY "UT REC =", RECCNT, "KEY =", SEQNUM.

WRITE IN-REC.
CRE-FILE-END.

EXIT.
ARERRRERARRRRR AR R RRARRERRRRRR BRI R R R AR ERRRR R RERBRRIR R RARRH

* MOVE SORT TIMES INTO EDIT FIELDS FOR DISPLAYING
FRERRERERARRERRASBRARARAE AR R ARIRAR AR ERAR LR BERRAA R AR R R KRR ER AR KRS
SORT-TIMES SECTION.
SORTT.

MOVE START-TIME TO SORT-START.

MOVE END-TIME  TO SORT-END.

DISPLAY "START SORT AT :", SORT-START.

DISPLAY "END  SORT AT :", SORT-END.
SORT-TIMES-END.

EXIT.
I T L e am
# CALLED ONLY FROM THE SORT VERB TO READ AND PASS RECORDS
* FROM THE IN-FILE INTO THE SORT.
# IN-FILE IS OPENED/READ/CLOSED WITHIN THE ROUTINE

RN RN R R AR R AR R R RN RN RN RN AR R AR ERR AR RN RN RS
SORT-PROC-IN SECTION.

SORTIN.
DISPLAY "::::::3:5: SORT-PROC-IN START :::zsczzzs',
OPEN INPUT IN-FILE.

SORTIN-1.

READ IN-FILE AT END GO TO SORT-IN-END.

RELEASE S-REC FROM IN-REC.

GO TO SORTIN-1.
SORT-IN-END.

CLOSE IN-FILE.

SORT-IN-FINI.
EXIT.

ND-60.144.02




135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

HN RN R E NN NN NN RN RN RN RR NN R NN RN RN RN R A RN AR R R RRARRS

* CALL ONLY FROM THE SORT VERB TO ACCEPT RECORDS AND WRITE
* THEM ONTO UT-FILE.
* UT-FILE IS OPENED/WRITTEN/CLOSED WITHIN THE ROUTINE.

36063656 26T 00 3061336 00 336 006 30 K0S 303090 3T 30000 O RN R
SORT--PROC-UT SECTION.
SORTUT.
DISPLAY ‘#¥#x#i#n#t SORT-PROC-UT START ###st#assstsen,
MOVE 1 TO RECCNT.
OPEN OUTPUT UT-FILE.
SORTUT1.

RETURN S-FILE INTO UT-REC, AT END ,
DISPLAY "SFILE-ERR, STATUS :=:", SFILE-STATUS,
GO TO SORTUT-END.
DISPLAY ‘REC °, RECCNT, ° SEQNUM = ~, SEQNUM2 ,
" STATUS =", UT-FILE-STATUS.

WRITE UT-REC.

ADD 1 TO RECCNT.

GO TO SORTUT1.
SORTUT-END.

CLOSE UT-FILE.

DISPLAY UR T LT L L 5] SORT_PROC__UT E:NDED *****’?****".
SORT-FINI.

EXIT.
(2232223323222 2 22232242228 2223 EL LTSRS 228 )

GET-NORECS SECTION.
GET-NO.
ACCEPT NORECS.
IF NORECS NOT NUMERIC ,
DISPLAY "#¥% NOT NUMERIC DATA",
GO TO GET-NO.
GET-EXIT.
EXIT.

ND-60.144.02




@NRL

RELOCATING LOADER IDR-1935F
*LOAD SORT-EX2 RND COBLIB
FREE: 077447-177777

*RUN

CREATE NO RBECORDS ? OOLA
** NOT NUMERIC DATA 10

UT REC =00001 KEY = 00258
UT REC =00002 KEY = 00615
UT REC =00003 KEY = 00158
UT REC =00004 KEY = 00320
UT REC =00005 KEY = 00501
UT REC =00006 KEY = 00746
UT REC =00007 KEY = 00564
UT REC =00008 KEY = 00195
UT REC =00009 KEY = 00894
UT REC =00010 KEY = 00047
IN-FILE CREATED.G0010 RBPCORDS.

sz SORT-PROC-IN START sessssrnes
iy SORT-PROC-IN ENDED s:ssszsses
khkkkrdhkkk SORT..PKX:_UT STARI‘ kkkkkhkhrkk

REC 00001 SEQNUM = 00047 STATUS =00
REC 00002 SENUM = 00158 STATUS =00
REC 00003 SpEQNUM = 00195 STATUS =00
REC 00004 SENUM = 00258 STATUS =00
REC 00005 SEQNUM = 00320 STATUS =00
REC 00006 SEQNUM = 00501 STATUS =00
REC 00007 SEQNUM = 00564 STATUS =00
REC 00008 SEQNUM = 00615 STATUS =00
REC 00009 SEQNUM = 00746 STATUS =00
REC 00010 SENUM = 00894 STATUS =00

SFILE-ERR, STATUS :=:10

kkkkEkAk*,k  GORT-PROC-UT ENDED ****kk#ikk
START SORT AT :14,35,30,72

END  SORT AT :14,35,52,42

JOB FINISH

ND-60.144.02



8.1

TABLE HANDLING

A table is a set of contiguous data items having the same data description.

Tables of data are common components of business data processing problems.
Although items of data that make up a table could be described as contiguous
data items, there are two reasons why this approach is not satisfactory. First,
from a documentation standpoint, the underlying homogeneity of the items
would not be readily apparent; and second, the problem of making available an
individual element of such a table would be severe when there is a decision as to
which element is to be made available at object time.

in COBOL a table is defined with an OCCURS clause in its data description entry.
This clause specifies that the named item is to be repeated as many times as
stated. The item so named is considered to be a table element and its name and
description apply to each repetition (or occurrence) of the item. Since the
occurences do not have unique data-names, reference to a particular occurrence
can only be made by giving the data-names of the table element, together with
the occurrence number of the required item within the element.

The occurrence number is known as a subscript and the method of supplying this
number for individual table elements is called subscripting. A related technique
for table referencing is called indexing and both of these methods of specifying
occurrence numbers are described in this section.

TABLE DEFINITION

COBOL allows tables in one, two, or three dimensions.

To define a one-dimensional table, the programmer uses an OCCURS clause as
part of the data description of the table element, but the OCCURS clause must
not appear in the description of group items which contain the table element.

Example:

01 TABLE-1.
02 ELEMENT-1 OCCURS 20 TIMES.
03 ELEMENT-A PIC X {2).
03 ELEMENT-B PIC 9 (5).

TABLE-1 is the group element containing the table. ELEMENT-1 names a table
element of a one-dimensional table which occurs 20 times. ELEMENT-A and
ELEMENT-B are elementary items.

ND-60.144.02



Defining a one-dimensional table within each occurrence of an element of
another one-dimensional table gives rise to a two-dimensional table. To define a
two-dimensional table, then, an OCCURS clause must appear in the data
description of the element of the table, and in the description of only one group
item which contains that table element.

Example:

01 TABLE-2.
02 ELEMENT-1 OCCURS 5 TIMES.
03 ELEMENT-2 OCCURS 4 TIMES.
04 ELEMENT-A PIC 9(10}.
04 ELEMENT-B PIC X(5).

ELEMENT-1 is an element of a one-dimensional table occurring five times.
ELEMENT-2 is an element of a two-dimensional table occurring four times within
each occurrence of ELEMENT-1.

To define a three-dimensional table, the OCCURS clause should appear in the
data description of the element of the table and in the description of 2 group
items which contain the element.

Example:

01 CENSUS TABLE.
05 CONTINENT-—TABLE OCCURS 6 TIMES.

10 CONTINENT—NAME PIC X( 9).
10 COUNTRY—TABLE OCCURS 5 TIMES.
15 COUNTRY—NAME PIC X(12).
15 CITY—TABLE OCCURS 100 TIMES.
20 CITY—NAME PIC X( 4).
20 CITY—POPULATION PIC X( 5).

In the above example we have a table of one dimension for CONTINENT-—NAME,
two dimensions for COUNTRY-—~NAME and three dimensions for CITY—NAME
and CITY—POPULATION.

ND-60.144.02



8.1.1

Table References

Whenever the user refers to a table element, the reference must indicate which
occurrence of the element is intended. For access to a one-dimensional table,
the occurrence number of the desired element provides complete information.
For access to tables of more than one dimension, an occurrence number must be
supplied for each dimension of the table accessed. In the last example then, a
reference to the 4th CONTINENT—NAME would be complete, where as a
reference to the 4th COUNTRY—NAME would not. To refer to
COUNTRY—NAME, which is an element of a two-dimensional table, the user

must refer to, for example, the 4th COUNTRY—~NAME within the 6th
CONTINENT—TABLE.

One method by which occurrence numbers may be specified is to append one or
more subscripts to the data-name. A subscript is an integer whose value
specifies the occurrence number of an element. The subscript can be
represented either by a literal which is an integer or by a data-name which is
defined elsewhere as a numeric elementary item with no character positions to
the right of the assumed decimal point. In either case, the subscript, enclosed in
parentheses, is written immediately following the name of the table element. A
table reference must include as many subscripts as there are dimensions in the
table whose element is being referenced. That is, there must be a subscript for
each OCCURS clause in the hierarchy containing the data-name, including the
data-name itself. In the example, references to CONTINENT—NAME require only
one subscript, reference to COUNTRY —NAME requires two, and references to
CITY—NAME  requires two, and references to CITY—NAME and
CITY—POPULATION require three.

When more than one subscript is required, they are written in order of
successively less inclusive dimensions of the data organization. When a
data-name is used as a subscript, it may be used to refer to items in many
different tables. These tables need not have elements of the same size. The
data-name may also appear as the only subscript with one item and as one of
two or three subscripts with another item. Also, it is permissible to mix literal
and data-name subscripts, for example: CITY —POPULATION(4, NEWKEY, 42).

ND-60.144.02



8.1.1.1

8.1.1.2

Subscripting

Subscripting is the method of providing table references using subscripts. A
subscript is an integer value specifying the occurrence number of a table
element.

The format is:

{ data-name

n b {subscript-1 [, subscript-2 [, subscript-3] ] )
condition-name

Subscripts can only be used when referring to an individual item within a table
element.

Data-name must be the name of a table element and may be qualified.
The subscript can be represented by a literal or a data-name.

If a literal, a subscript must be an integer having a value 1. [t must not be
negative.

If a data-name, a subscript must be described as elementary numeric integer.

Where more that one subscript is required, the subscripts are written in the
order of successively less-inclusive data dimensions. Each subscript must be
separated from the next by either a space, or a comma followed by a space. (The
comma is not required).

Indexing

Another method of referring to items in a table is indexing. An jndex is a
compiler-generated storage area used to store table element occurrence
numbers; the index contains a displacement value from the beginning of the
table element that is equivalent to an occurrence number.

Its format is:

data-name index-name-1 [ { = 1 literal-2 |
condition-name literal-1
index-name-2 [ ¢ £ 1 literal-4 ]
literal-3
index-name-3 [ { £} literal-6 ]
literal-5

The index-name is specified through the OCCURS clause. It must be initialized
by the SET statement before use.

ND-60.144.02



In direct indexing, the index-name is in the form of a subscript. The value
contained in the index is calculated as the occurrence number minus one,
multiplied by the length of the individual table entry. For Example:

03 ELEMENT OCCURS 20 INDEXED BY INDX-1 PIC X(2).

The tenth occurrence of ELEMENT generates a value in INDX-1 of (10-1) * 2 =
18.

With relative indexing, the index-name is followed by a space, followed by a +
or —, followed by another space, followed by an unsigned literal. The literal (i.e.,
occurrence number) is converted to an index value before being added to or
subtracted from the index-name index.

For example, if we have:

01 TABLE-3.
02 ELEMENT-1 OCCURS 2 TIMES INDEXED BY INDX-1,
03 ELEMENT-2 OCCURS 3 TIMES INDEXED BY INDX-2.
04 ELEMENT-3 OCCURS 2 TIMES INDEXED BY INDX-3 PIC X(5).

Then, each occurrence of ELEMENT-1 is 30 characters in length (32" %), Each

occurrence of ELEMENT-2 is 10 characters in length (2 * 5 ) and each occurrence
of ELEMENT-3 is 5 characters in length.

A reference using relative indexing such as
ELEMENT-3 (INDX-1 + 1, INDX-2 — 1, INDX-3 + 2)
would produce the computation for the displacement of:
address of ELEMENT-3)
contents of INDX-1) +1—1} *30

(
+
+ ({contents of INDX-2} —1-—1) *10
+ ({contents of INDX-3} +2—1)"5

ND-60.144.02



8.2

8.2.1

8.2.2

TABLE HANDLING — DATA DIVISION

The clauses used for Table Handling are OCCURS and USAGE IS INDEX.

The OCCURS Clause

This clause eliminates the need for separate entries for repeated data items and
supplies information required for the application of subscripts and indexes.

Format 1 (Fixed length Tables)

OCCURS integer-2 TIMES

[{DESCENDING} KEY IS data-name-2 [, data-name-3] .. ‘J

[INDEXED BY index-name-1 [, index-name-2 ] ... ]

Format 2 (Variable length Tables)

QCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

ASCENDING |
[{W} KEY IS data-name-2 [, data-name-3] ... ... ]

[INDEXED BY index-name-1 [, index-name-2] ... ]

Integer-1, when used, must be less than integer-2. All integers must be positive.

If the data-name, which is the subject of this entry, or an entry subordinate to it
is to be referred to by indexing, then the INDEXED BY clause is required.

The OCCURS clause cannot be specified in a data description entry that:

a. has a level-number of 01, 77, or 88

b. described an item of variable size, i.e., if any subordinate item contains an
OCCURS DEPENDING ON clause.

Fixed Length Tables - Format 1

In format 1, the value of integer-2 specifies the exact number of occurrences.

ND-60.144.02



8.2.3

8.2.4

8-7

Variable Length Tables - Format 2.

This format specifies that the subject of this entry has a variable number of
occurrences. The current value of the data item referenced by data-name-1

represents the maximum number of occurrences and the value of integer-1 the
minimum.

The value of the data item referenced by data-name-1 must fall within the range
integer-1 through integer-2.

The ASCENDING/DESCENDING KEY option (both formats) specifies that the
repeated data is arranged in ascending or descending order according to the
values contained in data-name-2, data-name-3 etc. (The order is determined
according to the rules for comparison of operands - see Comparison of Numeric

and Nonnumeric operands under Conditional Statements in the Procedure
Division description.)

The data-names are listed in their descending order of significance.

The USAGE Clause

The USAGE IS INDEX clause specifies that the data item has an index format.

Format

[USAGE I1S] INDEX

The data item is an index data item and is treated as computational it will
occupy 2 bytes in storage.

An index data item can be referenced explicity only in a SEARCH or SET
statement, a relation condition, the USING phrase of a Procedure Division
header, or the USING phrase of a CALL statement.

The USAGE clause can be written at any level, if written at group level it applies
to every elementary item in the group. (The USAGE clause of a elementary item

cannot contradict the USAGE clause of a group to which the item belongs).

An index data item can be part of a group referred to in a MOVE or input -
output statement, in which case no conversion will take place.

ND-60.144.02



8.3

TABLE HANDLING — PROCEDURE DIVISION

In the Procedure Division, Table Handing makes use of the SEARCH and SET
staternents. Also, comparisons may be made between index-names and/or index
data items as described under ‘Relation Conditions’ below.

RELATION CONDITIONS.

Comparison tests may be made between:

1. Two index-names. This is equivalent to comparing their occurrence
numbers.
2. An index-name and a data item. The occurrence number correspoinding to

the value of the index-name is compared to the data item or literal.

3. An index data item and an index name or another index data item. The
actual values are compared without conversion.

4. The results of any other comparison involving an index data item are

undefined.

ND-60.144.02



8.3.1 The SEARCH Statement

Data that has been arranged in the form of a table is very often searched. In
COBOL the SEARCH statement provides facilities, through its two options, for
producing serial and non-serial searches. In using the SEARCH statement, the
programmer may vary an associated index-name or data-name. This statement
also provides facilities for execution of imperative statements when certain
conditions are true.

Format 1

SEARCH identifier-1 | VARYING {fdem'f'er”z }
TE—— s lindex-name-1

[; AT END imperative-statement-1]

WHEN condition-1 {

L WHE

Format 2

NEXT SENTENCE

condition.? imperative-statement-3
MO 2 Y NEXT SENTENCE

imperative~statement—2}

zZ

SEARCH ALL identifier-1  [; AT END imperative-statement-1]

identifier-:
IS EQUAL TO identifier-3
data-name-1 s —_ literal-1
;. WHEN N arithmetic-expression-1
condition-name-1
identifier-4
IS EQUAL TO identimer
data-name-2 — literal-2
AND IS = ) . .
arithmetic-expression-2
condition-name-2
imperative-statement-2
NEXT SENTENCE
NOTE: The required relational character '=' is not underlined to avoid

confusion with other symbols.

The SEARCH statement searches a table for an element that satifies the
specified condition, and adjusts the associated index to indicate that element.

In both formats, identifier-1 must not be subscripted or indexed, but its
description in the Data Division must contain an OCCURS clause and an
INDEXED BY clause.

Identifier-2, if present, must be described as USAGE IS INDEX or as a numeric
elementary item without any positions to the right of the assumed decimal point.

ND-60.144.02



Format 1

(21

The search operation begins at the current index setting. If, at this point,
the value of the index-name associated with identifier-1 is not greater than
the highest possible occurrence number, the following takes, place:

a. The conditions in the WHEN option are evaluated in the order in
which they are written, making use of the index settings wherever
specified.

b. If none of the conditions are satisfied, the index-name for identifier-1

is incremented to correspond to the next table element. Then process
a. is repeated.

C. If one of the conditions is satisfied upon evalutation, the search
terminates immediately and the imperative statement associated with
that condition is executed. The index-name remains pointing to the
table element that caused the condition.

d. If, however, the incremented index-name value is greater than the
highest possible occurrence number (i.e., the end of the table has
been reached) the search terminates. If the AT END phrase is
specified, imperative-statement-1 is now executed. Otherwise, control
passes to the next executable sentence.

At the beginning of the search operation, if the value of the index-name
associated with identifier-1 is greater than the highest possible occurrence
number, then the search terminates as in step d above.

When the VARYING phrase is not used, the index that is used for the

search operation is the first (or only) index-name given in the INDEXED BY
phrase of identifier-1.

If the VARYING index-name-1 option appears then one of the following
applies: -

a. When index-name-1 is the index for identifier-1, then this index is
used for the search. If this is not the case (or the VARYING
identifier-2 is present) the first, or only index-name is used.

b. If index-name-1 is an index for another table element, then the first
{(or only) index-name for identifier-1 will be used for the search. The
occurrence number represented by index-name is incremented by the
same amount as, and at the same time as, the search index-name.

If the VARYING identifier-2 option appears and identifier-2 is an index data
item, then this item is incremented by the same amount as, and at the
same time as, the search index. If identifier-2 is not an index data item,
then it is incremented by the value one (1) at the same time as the search
index is in- cremented.

A flowchart of a Format 1 type SEARCH operation containing two WHEN
phrases follows:

ND-60.144.02



8-11

START

|

Index setting : > ATEND *
—egnf{  Dighest permissible

imperative-

>

B

different tabie)
or identifier-2

Figure 8.1:

statement.

%

occurrence number / statement-1
True : nrow
condition-1 mperative
statement-2
False
True I -
» -
condition-2 mperative
Etatement -3
False
\
Increment
index-name for
identifier-1
{index-name-1
if applicable)
)
*
Increment
index-name-1 (for a

the imperative-statement ends with a GO TO statement

ND-60.144.02

These operations are options included only when specified in the SEARCH

Each of these control transfers is to the next executable sentence unless

LY




8.3.1.1

Format 2

If the format 2 SEARCH ALL is used, a non-serial search operation may take
place. It is a more simple type of search than for format 1, commencing at the
beginning of the table.

The initial setting of the index-name for identifier-1 is ignored (i.e., need not be
initialized with the SET statement).

The index is the same as that associated with the first index-name spzcified in
the OCCURS clause.

The following rules apply:

1. If the WHEN option cannot be satisfied by any setting of the index within
the permitted range then control is passed to imperative-statement-1 of the
AT END phrase if present, or to the next executable sentence if this phrase
is not present. In either case, the final setting of the index is not
predictable.

2. If the WHEN option can be satisfied, control passes to
imperative-statement-2 and the index will indicate an occurrence that
allows the conditions to be satisfied.

Notes on Multi-Dimensional Tables

ldentifier-1 can be a data item subordinate to a data item containing an OCCURS
clause. That is, it can be part of a two or three-dimensional table. In this case
the data description entry must specify an INDEXED BY option for each
dimension.

To search an entire two or three-dimensional table it is necessary to execute a
SEARCH statement several times, since this statement execution only modifies
the setting of the index-name associated with identifier-1 (and, if present,
index-name-1 or identifier-2). Prior to each execution, SET statements must be
executed to reinitialize the associated index-names.

One format 3 PERFORM statement can search a whole multi-dimensional table.

ND-60.144.02



NORD-10/100 COBOL COMPILER ~ VER 01.10.80

TIME: 09.08.46 DATE: 22.10.80

SOURCE FILE: SEARCH-EX

WO HWN —

PR i T sl il A AV U SV VS RVS RUT S UV R US N UL R US JAC IO I AC IS T O TARTE A T A T A T 1 S S S G A S
Egggglg}g;g}K}Ezg;é§CD~JO\UILWN N2 OO0V EZWNN 200V EWN = OO0V FWN - O

59
60
61
62

64

IDENTIFICATION DIVISION,
PROGRAM-ID.
SEARCH-EX.
FRERE IR RRARRR BN RRRR R AR ER BB ER R R R RRR R AR RERER R

* SHOWS USAGE OF A SIMPLE TABLE "LOOK-UP" VIA SEARCH VERB
**ﬁ**************************ﬁ*****************&************%*****

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 TABLE-LENGTH COMP VALUE 16.

77 FIND-NAME PIC X(20).
*ﬁ**********************%*****************************************
* SET UP THE TABLE ELEMENTS , NORMALLY ONE WOULD READ DATA FROM
* A "REFERENCE" FILE AND PLACE INTO TABLE FOR PROCESSING
**********************************%*******************************

01 NAMES-TABLE.

02

FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER

PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC X(20)
PIC 9(5)
PIC %(20)
PIC 9(5)

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

"BRABANT
310.
"CISALPIN
822.
"ERASMUS
481.

"ETOILE DU NORD
554,
"GOTTARDO
381.

"ILE DE FRANCE
544,

"IRIS

666.

"LE CATALAN TALGO
870.

"LE CAPITOLE
373.

"LE MISTRAL
683.

"LEMANO

595.

"LIGURE

322.
"MEDIOLANUM
889.
"OISEAU-BLEU
1039,
""REMBRANT
713.
"RHEINGOLD
1088.

********************************************************%*********

¥ REDEFINE THE ELEMENTS FOR ACCESS WITH THE SEARCH VERB,
* NOTE THAT THE DATA-NAME WITH THE *OCCURS* CLAUSE IS USED IN

* SEARCH AND NOT THE REDEFINES DATA-NAME (WHICH MAY BE FILLER)
RARRDRR IR R R IR R RN RN E RO RS R AR R AR R SRR FRRERRRELRERR LS

01  FILLER

02 TRAIN-TABLE OCCURS

03

03 DISTANCE

NAME

REDEFINES NAMES-TABLE.
16 TIMES INDEXED BY TABINDEX.

PIC X(20).
PIC 9(5).

/

PROCEDURE DIVISION.

AQ0O.
#

LIST OUT ALL THE TABLE ENTIES
PERFORM LIST-TABLE-ENTRY
VARYING TABINDEX FROM 1 BY 1 UNTIL
TABINDEX = TABLE-LENGTH.

ND-60.144.02




65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

A0O2.
%

REQUEST A NAME TO FIND

DISPLAY "ENTER NAME TO FIND :".
ACCEPT FIND-NAME.

START AT TOP OF TABLE (1)
SET TABINDEX TO 1. .
LOOK FOR REQUESTED NAME
SEARCH TRAIN-TABLE AT END DISPLAY “NAME NOT FOUNDY,
WHEN FIND-NAME = NAME (TABINDEX),

PERFORM LIST-TABLE~ENTRY.

GO 10 A0Q2.

FRRERERBRARRRHER AR RRE R RNN R R BN R AR RN BRI NN N H R R AR
* NOTE THE WAY THAT THE LIST ROUTINE IS USED BY EITHER THE

* PERFORM OR THE SEARCH VERB.

HE R RN NN NNR AN NN NN RN RN B RNNRN R AN R RN R R RN RRERRANNRER NN RN AR RRARNRR

LIST-TABLE-ENTRY.

DISPLAY

##% NO ERROR MESSAGES *##

ANRL

"TRAIN : ", NAME (TABINDEX), ™ TRAVELS : ",
DISTANCE (TABINDEX), "KM.".

RELOCATING LOADER LDR-1935F

*10AD
FREE:
*RUN

TRAIN
TRAIN
TRAIN
TRAIN
TRAIN
TRAIN
TRAIN

TRAIN :
TRAIN :
TRAIN :

TRAIN
TRAIN

TRAIN :

TRATN
TRAIN

SEARCH-EX COBLIB
037300-177777

BRABANT
CISALPIN
ERASMUS
ETOILE DU NORD
GOTTARDO

ILE DE FRANCE
IRIS

LE CATALAN TALGO
LE CAPITOLE

LE MISTRAL

: LEMANO

: LIGURE
MEDIOLANUM

: OISEAU-BLEU

: REMORANT

e 4% se ee ae s

.

ENTER NAME TO FIND :IRIS

TRAIN

: IRIS

ENTER NAME TO FIND :
NAME NOT FOUND
ENTER NAME TO FIND :LEMANO

TRAIN :

LEMANO

ENTER NAME TO FIND :

TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS
TRAVELS

TRAVELS

TRAVELS

e

00313rM.
00322KM.
00481KM.
00554KM.,
00381KM.
00544KM.
00666KM.
00870KM.
00373KrM.
00683KM.
00595KM.
00322KM.
00889KM.
01039KM.
00713KrM.

00666KM.

00595KM.

ND-60.144.02



8.3.2 The Set Statement

The SET statement establishes reference points for table handling operations by
setting index-names associated with table elements.

Format 1
SET identifier-1 [. identifier-2 ] ... T0 identifier—f&
— — index-name-3
index-name-1 [ index-name-2 | .. integer-1
Format 2
UP BY identifier-4
SET index-name-4 [ . index-name-5 | —D—O—T\l BY :nte;g:alri

ldentifier-1 and identifier-3 must name either index data items, or elementary
items described as an integer.

Identifier-4 must be described as an elementary numeric integer.
Integer-1 and integer-2 may be signed. Integer-1 must be positive.

Index-names are releated to a given table through the INDEXED BY option of the
OCCURS clause which consitutes their definition.

Format 1 - To Option.
When this form of the SET statement is executed, the value of the sending field
replaces the current value of the receiving field. If the receiving field specifies

index-name-1, then, either:

a. If the sending field is an index data item then the value of this item is
placed in the index name without change.

b. Otherwise, the receiving field is converted to a displacement value
corresponding to the occurrence number indicated by the sending
field.

ND-60.144.02



If the receiving field specifies an index data item then this is set equal to the
contents of the sending field {which must be an index-name or an index data
item) no conversion takes place.

If the receiving field specifies an integer data item, then it is set to an
occurrence number that corresponds to the occurrence number associated with
the sending field {which must be an index name).

The above processes are repeated for indentifier-2, index-name-2, etc.

If index-name-3 is specified the value of the index before execution of the SET
statement must correspond to an occurrence number of an element in the
associated table.

Any subscripting or indexing associated with identifier-1, etc., is evaluated
immediately before the value of the respective data item is changed.

Format 2- UP/DOWN BY Option

When this form of the SET option is executed, the value of the receiving field,
index-name-4, is incremented (UP BY) or decremented (DOWN BY) a value
corresponding to the value in the sending field. The process is repeated for
index-name B, etc.

Data is the following chart show the validity of the various operand combinations
in the SET statement.

Receiving ltem
Sending ltem
Integer Data Item Index-name Index Data ltem
Integer Literal No Valid No
Integer Data item No Valid No
Index-name Valid Valid Valid *
Index Data Item No Valid * Valid *

* No conversion takes place.

ND-60.144.02



9.1

INTER—-PROGRAN CONVMIMUNICATION

Complex data processing problems are frequently solved by the use of separately
compiled but logically coordinated programs, which, at execution time, form
logical and physical subdivisions of a single run unit. This approach lends itself to
dividing a large problem into smaller, more manageable segments which can be
programmed and debugged independently. At execute time, control is
transferred from program to program by the used of CALL and EXIT PROGRAM
statements.

BASIC CONCEPTS

In COBOL terminology, a program is either a source program or an object
program depending on context; a source program is a syntactically correct set
of COBOL statements; an object program is the set of instructions, constants,
and other machine-oriented data resulting from the operation of a compiler on a
source program; and a run unit is the total machine language necessary to solve
a data processing problem. It includes one or more object programs as defined
above, and it may include machine language from sources other than a COBOL
compiler.

When the statement of a problem is subdivided into more than one program, the
constituent programs must be able to communicate with each other. This
communication may take two forms: transfer of control and reference to
common data.

ND-60.144.02



9.1.1

9.1.2

Transfer of Control

The CALL statement provides the means whereby control can be passed form
one program to another within a run unit. A program that is activated by a CALL
statement may itself contain CALL statements. However, results are
unpredictable where circulaity of control is initiated; i.e., where program A calls

program B, then program B calls program A or another program that calls
program A.

When control is passed to a called program, execution proceeds in the normal
way from procedure statement to procedure statement beginning with the first
nondeclarative statement. If control reaches a STOP RUN statement, this signals
the logical end of the run unit. If control reaches an EXIT PROGRAM statement,
this signals the logical end of the called program only, and control then reverts
to the point immediately following the CALL statement in the calling program.
Stated briefly, the EXIT PROGRAM statement terminates only the program in
which it occurs, and the STOP RUN statement terminates the entire run unit.

If the called program is not COBOL then the termination of the run unit or the
return to the calling program must be programmed in accordance with the
language of the called program.

Common Data

Because of program interaction, it may be necessary for one or more programs
to have acess to the same data.

In a calling program, the common data items are described together with all
other data items in the File, Working-storage, or Linkage Sections. In the called
program, common data items are described in the Linkage Section.

At object time, memory is allocated for the whole Data Division in the calling
program but not for the Linkage Section of the called program. Communication
between the called program and the common data items stored in the calling
program is through USING clauses contained in both programs. The USING
clause in the calling program is contained in the CALL statement and the
operands are common data items described in its Data Division. The USING

clause in the called program has operands which are data items appearing in its
Linkage Section.

ND-60.144.02



The sequence of appearance of the identifiers in both lists of operands is
significant. They must match in both programs. While the called program is
being executed, every reference to an operand whose identifier appears in the
called program's USING clause is treated as if it were a reference to the
corresponding operand in the USING clause of the active CALL statement.

{A calling program may itself be a called program, in this case, common data
items can be described in the calling program’s Linkage Section. Storage will not
be allocated for these items in the calling program itself but in the program
which calls the calling program instead).

An example of a called and a calling program is outlined below:

CALLING PROGRAM (PROG-A) CALLED PROGRAM (PROG-B)

WORKING-STORAGE SECTION. LINKAGE-SECTION.

01 A-LIST. 01  B-LIST.
02 HEADING PIC X(10). 05 HEADING PIC X(10).
02 YEAR PIC 9( 2). 05 DATE PIC 9( 4).
02 MONTH PIC 9( 2). 05 CODE—ID PIC X( 4).
02 CODE-NO PIC X( 4).

PROCEDURE DIVISION. PROCEDURE DIVISION USING B-LIST.

CALL PROG-B USING A-LIST.

Note that the names of the data items need not correspond and that parts of
data items can be referred to separately (DATE in the called program is
subdivided into YEAR and MONTH in the calling program).

ND-60.144.02



Inter-program Communication - Data Division

In the Data Division of a called program, all file description entries must have
assigned to them a value of an integral literal (using a VALUE OF FILE-ID IS

clause) which is the same as that defined in the main program (see Section
5.3.1).

The programmer specifies in the Linkage Section those data items that are
common with the calling program.
The format of the Linkage Section is :

LINKAGE SECTION.

level-number data-name-1

FILLER

[ REDEFINES Clause ]

[ BLANK WHEN ZERQ Clause |

[ JUSTIFIED Clause ]

[ OCCURS Clause ]

[ PICTURE Clause |

[ SIGN Clause ]

[ SYNCHRONIZED Clause ]

[ USAGE Clause |

[ IMPORT [ COMMON | Clause]

[ 88 condition-name VALUE Clause |

The Linkage Section in a program is meaningful if and only if the object program
is to function under the control of a CALL statement, and the CALL statement in
the calling program contains a USING phrase.

The IMPORT clause must specify the same data item as in the corresponding
EXPORT clause (see Section 5.4.2.13 for a description of the rules which apply to
both clauses).

The IMPORT COMMON clause is used to specify a FORTRAN common block
IMPORT.

The VALUE clause must not be specified in the Linkage Section except in
condition-name entries {level 88).

The Linkage Section is used for describing data that is available through the
calling program but is to be referred to in both the calling and the called
program. No space is allocated in the program for data items referenced by
data-names in the Linkage Section of that program. Procedure Division
references to these data items are resolved at object time by equating the
reference in the called program to the location used in the calling program.

ND-60.144.02
Rev. A



9.1.31

9.1.3.2

Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the calied program only if they are
specified as operands of the USING phrase of the Procedure Division header or
are subordinate to such operands, and the object program is under the control of
a CALL statement that specifies a USING phrase.

The structure of the Linkage Section is the same as that previously described for
the Working-Storage Section, beginning with a section header, followed by data
description entries for noncontiguous data items and/or record description
entries.

Each Linkage Section record name and noncontiguous item name must be
unique within the called program since it cannot be qualified.

Of those items defined in the Linkage Section only data-name-1, data-name-2, ...
in the USING phrase of the Procedure Division header, data items subordinate to
these data-names, and condition-names and/or index-names associated with
such data-names and/or subordinate data items, may be referenced in the
Procedure Division.

Data Item Description Entries

Items in the Linkage Section that bear no hierarchic relationship to one another
need not be grouped into records and are classified and defined as
noncontiguous elementray items. Each of these data items is defined in a
separate data description entry which begins with the special level-number 77.

The Following data clauses are required in each data description entry:

a. level-number 77
b. data-name
C. the PICTURE clause or the USAGE IS INDEX clause.

Other data description clauses are optional and can be used to complete the
description of the item if necessary.

Record Description Entries

Data elements in the Linkage Section which bear a definite hierarchic
relationship to one another must be grouped into 01-level records according to
the rules for formation of record descriptions. Any clause which is used in an
input or output record description can be used in a Linkage Section.

. ND-60.144.02
Rev. A



9.14

Inter - Program Communication — Procedure Division
In the Procedure Division, control is transferred between programs by means of
the CALL statement.

Reference to common data is provided by the USING option which can appear in
the CALL statement and in the called program’s Procedure Division header.

The Procedure Division must begin with the following header:

PROCEDURE DIVISION [ USING data-name-1 [, data-name-2] ..] .

The USING phrase is present if and only if the object program is to function
under the control of a CALL statement, and the CALL statement in the calling
program contains a USING phrase.

For a description of the data-names see the details of the USING option in the
CALL statement. The USING option is common to several Inter-Program
Communication elements.

Each of the operands in the USING phrase of the Procedure Divison header must
be defined as a data item in the Linkage Section of the program in which this

header occurs, and it must have 01 or 77 level-number.

Within a called program, Linkage Section data items are processed according to
their data descriptions given in the called program.

ND-60.144.02



9.1.41

9.1.4.2

The Call Statement

The CALL statement causes control to be transferred from one object program to
another within the run unit.

Format

data-name-1

CALL literal-1 USING integer-1 j
-1

, data-name-2
integer-2

quoted-literal .quoted-literal-2

Literal-1 must be a non-numeric literal and conform to the rules for formation of
a program name (see PROGRAM-ID paragraph in the ldentification Division
chapter).

Called programs may contain CALL statements.

CALL statement execution causes control to pass to the called subprogram. The
first time a called program is entered its state is that of an original copy of the
program. kach subsequent time a called program is entered, the state is as it
was upon the last exit from that program.

Reinitialization of GO TO statements that have been altered etc., are the
responsibility of the programmer.

The USING Option

This option makes data items in a calling program available to the called
program.

The USING option is specified if, and only if, the called subprogram is to operate
under control of a CALL statement and that CALL statement itself contains a
USING option. That is, for each CALL USING statement in a calling program
there must be a corresponding USING option specified in a called subprogram.

The data-name, or integers, specified by the USING option indicate the data
items available to a calling program that may also be referred to in the called
program. The order of appearance of these data-names is critical. Corresponding
data-names refer to a single set of data equally available to both programs. Their
description must define an equal number of character positions but their
correspondence is positional and not by name. (In the case of index names no
such correspondence is established, separate indices are referred to in the called
and calling programs).

ND-60.144.02



9.1.4.3 The EXIT PROGRAM Statement

The EXIT PROGRAM statement marks the logical end of a called program.
Format

EXIT PROGRAM.

The EXIT PROGRAM statement must appear in a sentence by itself.

The EXIT PROGRAM sentence must be the only sentence in the paragraph.

General Rule:

1. An execution of an EXIT PROGRAM statement in a called program causes
control to be passed to the calling program. Execution of an EXIT
PROGRAM statement in a program which is not called behaves as if the
statement were an EXIT statement (see under Procedure Branching
Statements in the Procedure Division description).

ND-60.144.02



NORD-10/100 COBOL COMPILER - VER 01.10.80 TIME: 09.11.35 DATE: 22.10.80
SOURCE FILE: (TD)GENSEQ

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID,

3 GENSEQ.

L; ***i(********************i*****************************************
5 * CREATES SQ-FILE AND LISTS.

6 ***%&*9!*************************%**********************************
7 ENVIRONMENT DIVISION.

8 INPUT-OUTPUT SECTION.

9 FILE--CONTROL.

10 SELECT SQ-FILE ASSIGN "COB1:DATA" ,

11 ORGANTZATION IS SEQUENTIAL,
12 ACCESS IS SEQUENTIAL.

13 DATA DIVISION.

14 FILE SECTION.

15 FD  SQ-FILE

16 LABEL RECORDS STANDARD

17 DATA RECORDS M-REC.

18 01 M-REC.

19 02 FILLER PIC X(10).
20 02 SEQNUM PIC 9(5).
21 02 FILLER PIC X(5).

22 02 FILLER PIC X(40).

23 WORKING-STORAGE SECTION.

24 01 RANDNO COMP, VALUE ZERO.

25 01 MAYRAND COMP, VALUE 1000.

26 01 NORECS PIC 9(4).

27 01 RECCNT COMP, VALUE 0.

28

29 PROCEDURE DIVISION.

30 INTIT-01.

31 OPEN OUTPUT SQ-FILE.

32 DISPLAY "CREATE RECORDS ?

33 PERFORM GET-NORECS.

34

35 PERFORM CRE-SQ-FILE NORECS TIMES.

36 # BUILD THE INPUT FILE
37 CLOSE SQ-FILE.

38 DISPLAY 'FILE SQ-FILE CREATED. , RECCNT, ‘RECORDS.°.
39 OPEN INPUT SQ-FILE.

u0 LIST~-FILE-O.

41 MOVE O TO RECCNT.

42 LIST-FILE-1.

43 READ SQ-FILE AT END GO TO LIST-END.

uy ADD 1 TO RECCNT.

45 DISPLAY 'REC “, RECCNT, °~ SEQNUM = , SEQNUM.
u6 GO TO LIST-FILE-1.

7 LIST-END.

48 CLOSE SQ-FILE.

ug DISPLAY "JOB FINISH".

50 STOP RUN.

51

52 CRE-SQ-FILE.

53 | CALL "RND” USING RANDNO, MAXRAND.

54 MOVE ALL “#° TO M-REC.

55 MOVE RANDNO TO SEQNUM.

56 ADD 1 TO RECCNT.

57 DISPLAY "UT REC =", RECCNT, " KEY =", SEQNUM.
58 WRITE M-REC.

59

60 GET-NORECS.

61 ACCEPT NORECS.

62 IF NORECS NOT NUMERIC,

63 DISPLAY "#* NOT NUMERIC DATA ",
64 GO TO GET-NORECS.

### NO ERROR MESSAGES ###%

ND-60.144.02



00001
00002
00003
00004
00005
00006
00007
00010
00011
00012
00013
00014
00015
00016
00017
00020
00021
60022
00023
00024
00025
00026
30027
00030
00031
00032
00033
00034
00035
00036
00037
00040
00041
00042

004
044
130
130
124
044
004
124
044
004
124

150
030
044
120
060
004

150
110
150
004
044

IB

IB

IB

IB

00350

001
00007
00012
00015
00034

000
00031

000
00034
00031

00040
00034
C0036
00037
00034

00040

000
00035

)
%
%
%
3
%
%
%
%
%
%
%

144053
004033
045401
131003
130405
124007
044025
005400
124020
045400
004021
124015
000000
151420
030021
044014
120015
060015
004011
156577
151401
110012
152360
005400
044004
146153
146142
003614
000000
012465
033031
000000
000000
000000

9-10

9ASSM XRND,DIABIO,0
RND := A FORTRAN/COBOL CALLABLE RANDOM NUMBER GENERATOR
CALL RND(IX,IMAX)
WHERE IX = RECEIVING INTEGER VARIABLE
IMAX = MAX RANGE INTHEGER
NOTE IF IMAX > 0 THEN RETURN A RANDOM VALUE IN IX
IF IMAX = 0 THEN RETURN THE SEED VAIUE IN IX
IF IMAX < 0 THEN SET THE SEED VALUE FROM IX
) 9BEG
) 9ENT RND
}OLIB RND
RND, SWAP SA DB $SAVE B REG
STA SAVB
DA I 1,B $GET IMAX
JAZ RNDZ $XMAX = O RETURN SEED VALUE
JAN RNDN $XMAX < 0 SET NEW SEED VALUE
JMP RNDP $XMAX > O RETURN NEXT RND NR
RNDZ, IDA SEED $LOAD SEED VALUE AND RETURN
STA I 0,B
JMP RNDX
RNDN, IDA I O,B $LOAD NEW SEED VALUE, SAVE
STA SEED
JMP RNDX FRETURN
RNDP, -
NLZ 20 $CONVERT TO FLOATING
STE XMAX
LDA SEED $INITIAL VALUE
MPY CONS
ADD CONS+1
STA SEED
SHA ZIN SHR 1
NLZ 1
MU KMAX
DNZ -20 SCONVERT BACK TO INTEGER
STA 1 0,B $STORE IN IX
RNDX, 1DA SAVB $RECOVER B REG
COPY SA DB
EXIT
SEED, 3614
SAVB, O
CONS, 12465;
33031
MAX, O;
0;
0
YFILL
} SEND
} 9FOF

ND-60.144.02



10

10.1

10 -1

DEH

UGGING

THE SYMBOLIC DEBUGGER

With this facility the user is provided with a powerful set of commands to
monitor the executing of his COBOL program. He may inspect and change the
state of the computation.

Compilation:

To invoke the Symbolic Debugger the compile-mode command DEBUG must be
given.

The Syrnbolic Debugger is a separate system and after recover the Symbolic
Debugger (DEBUG) the command PLACE <program> must be given.

On the ND-100, if the DEBUG command has been issued when compiling a
program, the program and COBOL library must be loaded on an image file and
dumped on a :PROG file by means of the DUMP command, or loaded into a
:PROG file by means of the PROG—FILE command.

ND-60.144.02



10.1.1

10--2

€ CO0BOL
NORD-10/100 COBOL COMPILER - VER 81.01.09

*DEBUG
*QOMPILE XXX,0,XXX

#%% NO ERROR MESSAGES *%*

*EXIT

€NRL

RELOCATING LOADER LDR-1935G
*PROG-FILE XXX

*L XXX

FREE: 000474-177777

*I, COBOL—1BANK

FREE: 045161-177777

*EX

@DEBUG

NORD-100 SYMBOLIC DEBUGGER, 24 NOVEMBER 1980.
*PLAC XXX

COBOL: PROGRAM. XXX

*RUN

Figure 10.1:Example of Compilation and Debugging on the ND-100

Commands and Command Arguments

Whenever the symbolic debugger expects the operator to enter a command it
outputs an asterisk (*). A command (along with possible arguments) must be
typed on the same line as the asterisk. Omitted arguments are asked for by the
debugger. Several commands, separated by semicolons (;), can be written on the
same line. Command names may be abbreviated and the standard editing
characters are available when typing command input.

ND-60.144.02



10.1.11

10.1.1.2

10.1.1.3

10.1.1.4

10 3

Command Arguments

Several types of command arguments are used in the debugger:
— Decimal and octal numbers.

— Character constants.

e Program, line, routine, paragraph, or variable item specifier.

o Expressions involving the above types and the operators +, —, *, /, and
ADDR. Array indexing is also available.

— Format specifier.

- File name.

Decimal and Octal Numbers

A decimal constant is denoted by a sequence of digits optionally followed by the
letter D. An octal constant is denoted by a sequence of octal digits (0-7) followed
by the letter B. Numeric constants can be signed.

Character Constants

A character constant is denoted by a number sign (#) followed by a ASCII
character. For example:

# A has the value 65(101B).

Program, Line, Routine, Paragraph and Variable Specifier

A named item is specified by a sequence of names separated by dots ().
corresponding to the static program nesting in a COBOL program.

ND-60.144.02



10.1.1.5

10.1.1.6

10.1.1.7

10.1.2

10--4

Expressions

Arithmetic expressions can be formed using array indexing, dot notation, and the
operators +, —, ¥, and / on numeric items. The operator ADDR can be used on

any item that has an address. The operators must be separated from the variable
by a space.

Format Specifier

A format specifier is one or more of the letters: O= Octal, D= Decimal, H=
Hexadecimal, A=ASCll, S= Floating point (single), F= Floating point (double),
and 1= Instruction {disassembly).

File Name

No syntax checking of file names is performed. A file name is terminated by a
carriage return, space, comma or semicolon. If the file is already open, the octal
file number can be used in place of the file name (octal number without B).

The Available Commands

ACTIVE—ROUTINES

This command writes the current routine call hierarchy on the terminal,
starting with the current routine and ending with the main program.

program

ALIGN—LISTING [ ¢ _
routine

b] line

This command is used to adjust the line numbers in the debugger to
correspond with those on a listing that is not up-to-date. Several
ALIGN—LISTING commands may be given in order to adjust different parts

of the listing. If areas overlap the command given last has priority over
previous commands.

ND-60.144.02



10-5

If no program/routine is specified the innermost routine in the current
scape is assumed.

routine

BREAK paragraph [count]
section
line

Sets a breakpoint at the specified item. If a routine-name is specified the
breakpoint is set at the first line in the routine. If a positive number is
specified for the count argument the breakpoint is set at the first line in the
routine. If a positive number is specified for the count argument the
breakpoint will be passed count-1 times before it is performed.

When the breakpoint is reached, execution terminates and control passes
to the debugger. The current scope is updated and a message indicating
the current routine and line is output.

BREAK—ADDRESS  program address |[count]

This command is similar to the BREAK command except that the
breakpoint is specified directly as a program address.

BREAK—RETURN

Sets a breakpoint at the return address of the current routine and resumes
execution from the current line.

program

CHECK—QUT—MODE [ { .
routine

bl

This command sets breakpoints cn all lines in the specified interval.
Whenever control returns to the debugger a list of all the lines that have
never been executed can be obtained by using the DUMP—LOG command.
If the command LOG—CALLS is given before the CHECK-—QOUT—MODE
command only the first line in every routine is checked.
If no program/routine is specified, all lines are checked.

COMPARE—DATA fow high loutput file |

The data area specified by the lower and upper bounds is compared to the
image-file contents. Modified locations are displayed with address, old
contents, and new contents.
Default output file is the terminal, default file type is : LIST.

item

DISPLAY [ ¢
value

The expression is evaluated and displayed in the formats specified by the
FORMAT—DISPLAY command. Several expressions, separated by commas,
can be specified on the same line.

ND-60.144.02



10 6

DUMP—LOG [output file ]
The format of this command depends upoin the type of log specified.

If LOG—CALLS was specified last, a list of the last 200 routine calls is
displayed on the terminal.

If LOG—LINES was specified last, a list of the last 200 lines that have been
executed is displayed on the terminal. If a line is the first line in a routine,
the routine name is also displayed.
Default output file is the terminal, default file type is : LIST.

EXIT
Close files and transfer control to monitor.

FIND—-SCOPE program address
This command finds the program/routine and line number that corresponds

to the specified program-address and updates the scope accordingly. The
current scope status is displayed.

FORMAT-—DISPLAY

“OoIT™Mo>

Set format(s) for the DISPLAY command.

FORMAT—LOOK—AT

WO TITTMO>

Set format({s) for the LOOK-—AT commands.

ND-60.144.02



10-7

GUARD address [low] :[high |

This comnmand specifies a location which is to be checked every time a
breakpoint is reached. If the contents of the location are outside the
permitted range, a guard violation occurs and control is passed to the
debugger. The permitted range is specified by low : high. If low < = high
then the permitted range is low <=n <= high. If low> high then the
permitted range is the complement of the above.

If only low is specified the high is set equal to low. If no range is specified
the permitted range becomes the signal value of the current contents of
the specified address.

The frequency with which the location is checked is determinded by using
the LOG—CALLS or LOG—LINES command.

If no arguments are given (address is null), the guard violation check is
disabled (guard reset).

HELP command name

The HELP command lists available commands on the terminal. Only those
commands that have <command name> as a subset are listed. If
<command name> is null then all available commands are listed. Each
command is followed by an argument list (if any). Required and optional
arguments are enclosed in angle and square brackets, respectively.

INVOKE routine | parameter |, parameter] ... |

This command can be used to call routines in the user program (the
program being debugged). Only variable items that have an address can be
used as parameters, i.e., constants are not allowed.

, program

LOG—CALLS (4 otine

bl

This command specifies that all routine calls are to be logged in a cyclic
buffer. This buffer can be inspected by means of the DUMP-LOG command
(see above). The buffer can hold a maximum of ten (10) entries.

If a program/routine is specified only routines in the specified unit are
logged.

This command also affects the CHECK—OUT—MODE, GUARD, and STEP
commands (break on every routine as opposed to every line).

ND-60.144.02



1086

LOG—LINES [ Program
routine
This command specifies that all lines that are executed are to be logged in a
cyclic buffer. This buffer can be inspected by means of the DUMP—LOG
command (see above). The buffer can hold a maximum of ten {10) entries.

If a program/routine is specified only lines in the specified unit are logged.

This command also affects the CHECK-—OUT-MODE, GUARD, and STEP
commands (break on every line as opposed to every routine).

LOOK—AT—DATA data address | count] [output-file ]

This command and the related commands LOOK—AT PROGRAM,
LOOK—AT-—REGISTER, and LOOK—AT-—STACK enables the user to
inspect and modify data locations, program locations and registers. When
first entered, a number of locations starting from the specified address is
printed on the terminal. The optional parameter, count, specifies the
number of locations to be output. The default value of count is one.

If an output file other than the terminal is specified, control returns to the
debugger when the specified number of locations have been output. If no
output file, or the terminal is specified control remains within the
LOOK—~AT command and the sub-commands described below are
available.

The contents of each of the locations is printed in the format(s) specified
by the FORMAT—LOOK-—AT command.

Several sub-commands are available inside the LOOK—AT commands (cr means
carriage return):

m,n/ cr This is the same as LOOK—AT m, n but without having to
return to the debugger's command processor in between.

m cr Deposits the value of the expression m in the current
location and advances to the next location.

cr Advances to the next location without changing the
contents of the current location.

;cr or.cr or @ cr Return to the debugger’s processor.

ND-60.144.02



10 9

Special notation used with the slash (/) command:
m/ cr Take value of m as next address and display this location.

/ cr Take contents of current location as next address and
display this location (direction).

m,/ cr Take value of m as next address and display n locations,
where n is the last count entered.

n/ cr Take the contents of the current location as the next
address and display n locations.

Jocr Take the contents of the current location as the next
address and display n locations, where n is the last count
entered.

LOOK—AT—PROGRAM  program address {count] [output file |

Inspect and modify program locations. This command is similar to the
LOOK—AT—DATA command except that | format (symbolic instructions) is
enabled as default.

LOOK—AT—REGISTER register [count] [output file ]

Inspect and modify CPU-—registers. This command is similar to the
LOOK—AT-—-DATA command. To dump all registers type:
LOOK—AT—REGISTER P 9.

LOOK—AT—STACK  B-register [count] [output file]

Inspect and modify locations in the stack. This command is similar to the
LOOK—AT—DATA command except that both absolute and relative
addresses are displayed. Locations in the stack header are given by name
rather than by address. The sub-commands NEXT and PREVIOUS can be
used to move up and down the stack according to the current stack links.
These subcommands may be abbreviated just as normal commands.

ND-60.144.02



10 10

MACRO name body

This command can be used to build macro commands composed of one or
more of the basic commands and other macro commands. The macro
name can be any character-string and is terminated by space or comma.
Only the first eight characters are significant. The rest of the line following
the macro name is taken as the macro body. The macro body is not
terminated by semicolon thus several commands can be included in the
same macro body.

If the body is empty, the corresponding macro is erased. If the macro
name is empty, all the currently defined macros are displayed on the
terrminal.

A macro parameter is referenced in the macro body as ''n’’, where n is a
one-digit number {1-9).
A macro name is used in the same way as a command name and is taken
into account in the abbreviation lookup. However, macro parameters are
not asked for if missing but are simply taken to be empty strings when the
macro is expanded.

RESET—BREAKS [program address |

RUN

SCOPE [

If no program address is specified, all breakpoints set with BREAK,
LOG—CALLS, or LOG--LINES are reset. A breakpoint set by means of the
BREAK—ADDRESS command is reset only if it is the first instruction of a
line.

If a program address is specified the breakpoint in the addressed location
is reset.

[program-address |

If no program-address is specified execution is resumed from the current
line. Otherwise control is transferred directly to the specified program
address.

program

routine

This command finds the specified program routine and updates the scope
accordingly. The current scope status is displayed. If no program/routine is
specified the current scope is not affected.

ND-60.144.02



SET

STEP

10--11

variable [=] value

This command is used to set program variables. Any variable reference
which has a defined address can be set.

Example:

*SET XX 10

[count]

Sets the debugger in single step mode. One line or one routine call is
executed at each step depending upon the log mode (LOG--CALLS,
LOG—LINES}. The count argument specifies the number of units (lines or
routine calls) to be executed at each step. When the debugger stops and
outputs the current routine and line, the user can type carriage return
{(execute n units), or something else (command). The current scope is
positioned correctly at each step.

If the count is specified to 0 (zero), then each line/routine is printed out as
the program execution is continued (execution trace).

If the debugger is unable to position the scope (P-register is outside the

area described by the available debug information}, the step unit will be
one instruction.

ND-60.144.02



10.1.3

ACTIVE—ROUTINES
ALIGN—LISTING
BREAK

BREAK—ADDRESS
BREAK—RETURN
CHECK—OQUT-—MODE
COMPARE—DATA
COMPARE—PROGRAM
DISPLAY

DUMP—LOG

EXIT

FIND —SCOPE
FORMAT—DISPLAY
FORMAT—LOOK—AT
GUARD

HELP

INVOKE

LOG—CALLS
LOG-—LINES
LOOK—AT—DATA
LOOK-—~AT-—PROGRAM

LOOK—AT-—REGISTER
LOOK—AT—STACK
MACRO
RESET—BREAKS

RUN

SCOPE

SET

STEP

10-12

Symbolic Debugger Command Summary (Help Output)

[PROGRAM OR ROUTINE] LINE

ROUTINE, PARAGRAPH, SECTION OR LINE
[COUNT]

PROGRAM ADDRESS [COUNT]

[PROGRAM OR ROUTINE]
LOW HIGH [OUTPUT FILE]
LOW HIGH [OUTPUT FILE]

[ITEM OR VALUE]

[OUTPUT FILE]

PROGRAM ADDRESS

FORMATS A, D, F, H, O, OR S
FORMATS A, D, F, H, 1,0, OR S
ADDRESS [LOW] : [HIGH]
COMMAND NAME

ROUTINE [PARAMETER (S)]
[PROGRAM OR ROUTINE]

[PROGRAM OR ROUTINE]

DATA ADDRESS [COUNT] [OUTPUT FILE]
PROGRAM ADDRESS [COUNT]
[OUTPUT FILE]

REGISTER [COUNT] [OUTPUT FILE]

B REGISTER [COUNT J[OUTPUT FILE |
NAME BODY

[PROGRAM ADDRESS]

[PROGRAM ADDRESS]

[PROGRAM OR ROUTINE]

VARIABLE [= ] VALUE

[COUNT]

For further information on the use of the Symbolic Debugger, refer to the
Symbolic Debugger Users Guide, ND-60.158.

ND-60.144.02



Al

A1

A1

APPENDIX A
CONMPOSITE LANGUAGE SKELETON

This appendix contains the complete syntax of the ND COBOL. It is intended to
display complete and syntactically correct formats used throughout this manual.

Notation Used in Formats

Definition of a General Format

A general format is the specific arrangement of the elements of a clause or a
statement. (1) A clause or a statement consists of elements as defined below.
Throughout this manual, a format is shown adjacent to information defining the
clause or statement. When more than one specific arrangement is permitted, the
General Format is separated into numbered formats. Clauses must be written in
the sequence given in the General Format. (Clauses that are optional must, if
they are used, appear in the sequence shown.) In certain cases, stated explicitly
in the rules associated with a given format, clauses may appear in sequences
other than shown. Applications, requirements or restrictions are shown as rules.

Elements

Elements which make up a clause or a statement consist of upper-case words,
lower-case words, level-numbers, brackets, braces, connectives, and special
characters.

(1) These definitions are identical to those of the CODASYL COBOL committee.

ND-60.144.02
Rev. B



A1.1.2

A1.1.3

Al1.1.4

Words

All underlined upper-case words are called key words and are required when the
functions of which they are a part are used. Upper-case words which are not
underlined are optional to the user and need not be written in the source
program. Upper-case words, whether underlined or not, must be spelled
correctly.

Lower-case words, in a General Format, are generic terms used to represent
COBOL words, literals, PICTURE character-strings, or a complete syntactical
entry that must be supplied by the user. Where generic terms are repeated in a
General Format, a number or letter appendage to the term serves to identify that
term for explanation or discussion.

Level-Numbers

When specific level-numbers appear in Data Description entry formats, those
specific level-numbers are required when such entries are used in a COBOL
program. In this document, the form 01, 02...09 is used to indicate level-numbers
1 through 9.

Brackets, Braces and Choice Indicators

When brackets, [ ], enclose a portion of a General Format, one of the options
contained within the brackets may be explicitly specified or that portion of the
General Format may be omitted.

When braces, { !}, enclose a portion of a General Format, one of the options
contained within the braces must either be explicitly specified or implicitly
selected. {f one and only one of the options contains only reserved words which
are not key words, that option is the default option and is implicitly selected
unless one of the options is explicitly specified.

When choice indicators, {[ ]!, enclose a portion of the General Format, one or
more of the unique options contained within the choice indicators must be
specified, but a single option may be specified only once.

Options are indicated in a General Format or a portion of a General Format by
vertically stacking alternative possibilities, by a series of brackets, braces or
choice indicators or by a combination of both. An option is selected by
specifying one of the possibilities, from a stack of alternative possibilities, or by
specifying a unique combination of possibilities from a series of brackets, braces
or choice indicators.

ND-60.144.02
Rev. B



A115b

A1.1.6

A7

The Ellipsis

In text, other than the General Formats, the ellipsis shows omission of a word or
words when such omission does not impair comprehension. This is the
conventional meaning of the ellipsis, and this use becomes apparent in context.

In a General Format, the ellipsis represents the position at which the user elects
repetition of a portion of a format. The portion of the format that may be
repeated is determined as follows:

Given "..." (the ellipsis) in a format, scanning right to left, determine the ']’ {rigth
bracket) or ‘' {right brace) delimiter immediately to the left ot the '...'; continue
scanning right to left and determine the logically matching ‘[’ (left bracket) or ('

(left brace) delimiter; the "..." applies to the portion of the format between the
determined pair of delimiters.

Format Punctuation

The separator period, when used in formats, has the status of a required word.

Use of Special Characters in Formats

Special characters, when appearing in formats, although not underlined, are
required when such portions of the formats are used.

ND-60.144.02
Rev. B



GENERAL FQORMAT FOR

[dentification Division

IDENTIFICATION DIVISION

IDENTIFICATION DIVISION

PROGRAM-1D.

program-name.

AUTHOR.

[comment-entryl .J
INSTALLATION. [comment-entry)

DATE-WRITTEN,

[comment-entry]

DATE- COMPILED. [comment-entryl

]
J

SECURITY. [comment-entryl

-

REMARKS .

[comment-entry]

ND-60.144.02

REV. A



Environment Division

GENERAL FORMAT FOR ENVIRONMENT OIVISION

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOQURCE - COMPUTER., computer-name [NITH DEBUGGING mggg}

OBJECT-COMPUTER. computer-name

[, SEGMENT-LIMIT IS segment-number}
SEEg!Ai,Bemgg

[, CURRENCY SIGN ]S literal]

[. DECIMAL-POINT I35 QQMMA]

INPUT-QUTPUT SECTION,

IILE"QQN!BQL.

{file-control-entry}

[-0-CONTROL .

{QAME AREA FOR file-name-1 {, file-name-2} ...]

ND-60.144.02
REV. A



Environment Division

GENERAL FORMAT FOR FILE CONTROL ENTRY

FORMAT 1:
SELECT OPTIONAL file-name
L
ASSIGN TO assignment-name-1
AREA
; RESERVE 1integer-i
AREAS
; ORGANIZATION IS SEQUENTIAL]
[; ACCESS MODE IS §£QQLNT1AL]
[; FILE STATUS IS data-name~1}
FORMATY 2:

SELECT file-name
ASSIGN 7O assignment-name-1
AREA

RESERVE integer-1
AREAS

; ORGANIZATION IS INDEXED

SEQUENTIAL
i ACCESS MODE IS RANDOM

DYNAMIC
L

: RECORD KEY IS data-name-1

; ALTERNATE RECORD KEY IS data-name-2

L.

[WITH DUPLICATES] ]

{; FILE STATUS IS data~name~3}

ND-60.144.02
REV. A



Environment Division

GENERAL FORMAT FOR FILE CONTROL ENTRY

FORMAT 3:

SELECT file-name

ASSIGN TO assignment-name-1

AREA
i RESERVE integer-1
AREAS

L

; DRGANIZATION IS RELATIVE

; ACCESS MODE IS

~ T
SEQUENTIAL [, RELATIVE KEY IS data-name-11
>
RANDOM
., RELATIVE KEY IS data-name-1
RYNAMIC
-

{; FILE STATUS IS data-name-2

EORMAT 4;

SELECT file-name ASSIGN TO assignment-name-1

ND-60.144.02
REV. A



A6

Data Division

GENERAL FORMAT FOR DATA DOIVISION

DATA DIVISION.

lFILF SECTION.

[ﬁn file-name

[DEPENDING ON identifier] }

RECORD IS STANDARD
i LABEL
L RECORDS ARE

x_,ug OF EILE-1D IS 1nteger

E
JEXT-FILE
; RECORDING MODE IS 1
Y
RECQRD IS
i DATA data-name-3 [,
L RECORDS ARE
[record-description-entryl ...}

{SD file- name

RECORDS 1

; BLOCK CONTAINS [integer-1 JIQ] integer-2
CHARACTERE{

; RECORD CONTAINS [integer-3 JI0] integer-4 CHARACTERS

data-name-4]

[: RECORD CONTAINS [integer-1 JQJ integer-2 CHARACTERS

[DEPENDING ON identifier] }

ND-60.144.02
REV. A



Data Division

GENERAL FORMAT FOR DATA DIVISION

E

IEXT-FILE
; RECORDING MODE 1S [T

Y

RECORD IS

data-name-1 [, data-name-2]

’

RATA
RECORDS ARE

{record-description-entryl ...] ...]

ND-60.144.02
REV. A



Data Division

GENERAL FORMAT FOR DATA DIVISION

WORKING-STORAGE SECTION.

T7-level-description-entry ]

record-description-entry

LINKAGE SECTION,

77-level-description-entry }

record-description-entry

ND-60.144.02
REV A



Data Division

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

FORMAT 1

data-name-1
level-number
FILLER

; REDEFINES data-name-2

PICTURE
; 1S character-string
BIC

- 3
COMPUTATIONAL
COMP
COMPUTATIONAL - 1
COMP-1
COMPUTATIONAL -2 m

H [!!§A§E I_g] <5 COMP-2 >
COMPUTATIONAL -3
COMP-3

DISPLAY

INDEX

A - A
L ~ -

LEADING
; [SIGN IS]

{SEPARATE CHARACTER]
TRAILING

L

integer-1 J0 integer-2 TIMES DEPENDING ON
data-name-3
; OCCUR

integer-2 TIMES

ASCENDING
{j KEY 1S data-name-4 [, data-name-51...
DESCENDING

L

-
INDEXED BY index-name-1 [, index-name-2]

ND-60.144.02
Rev. B



Data Division

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

ﬁm&a&w% LEFT

JUSTIFIED
H RIGHT

JUST
i BLANK WHEN ZﬁRQ}

i VALUE IS literal]

; IMPORT [COMMON] ]

; EXPORTJ

FORMAT 2.

VALUE IS THROUGH
§8 condition-name; literal-1 literal-?2
VALUES ARE THRU

THROUGH
, literal-3 literal-4
THRU

L.

ND-60.144.02
REV. A



A 11

Procedure Division

GENERAL FORMAT FOR PROCEDURE DIVISION

FORMAT 1:

PROCEDURE DIVISION [ USING data-name-1 [, data-name-2] ...]

DECLARATIVES,

section-name SECTION [segment-number]

[USE sentence}

[paragraph~name. [sentence] ...] e e
. ,/

END DECLARATIVES.

section-name SECTION [segment-number]

[paragraph»name. [sentence] ...}

FORMAT 2:

PROCEDURE DIVISION [ﬂilﬂﬁ data-name-1 [, data-name-2] ...]

{paragraph-name. [sentencel] ...}

ND-60.144.02
REV. A



COBOL Verb format

GENERAL FORMAT FOR VERBS

ACCEPT identaifier [FRQM mnemonlc-name

DATE
DAY
ACCEPT 1dentifier FROM TIME
LQE!:M__E
identifier {{+} integer] identifier [{+} integer]
ACCEPT
integer integer

identifier [WITH [BEEP]
[SPACE-FILL]
[LENGTH-CHECK]
[AUTO-SK1P]
[PROMPT]
[UPDATE]
[INVISIBLE]
[BLANK-WHEN-ZERO]
[MUST]
[INVERSE-VIDEQ]
[BLINK]I
[UNDERLINE]
[LOW-INTENSITY]
[NORMAL]
[UPPER-CASE]
[UP procedure-namel
[DOWN procedure-name]
[HOME procedure-name]
[EXIT procedure-name)
[LEFT procedure-name]
[RIGHT procedure-name] ]

[CONTROL procedure-namel]

ACCEPT-ERROR

ND-60.144.02
Rev. B



CO080L Verb Format

GENERAL FORMAT FOR VERSBS

identifier-1 , ldentifier-2
ADD ... 10 identifier-m [RQUNDED]
literal-t , literal-?

[, identifier-n [ROUNDED]

[; ON SIZE ERROR imperative—statement]

identifier- identifier-2 , identifier-3
ADD
literal-1 lJiteral-2 , literal-3
GIVING identifier-m [RQUNDED] [, identifier-n [ROUNDED]

[; ON SIZE ERROR imperative»statement}

ALTER procedure-name-1 IQ [PROCEED J0] procedure-name-2

[, procedure-name-3 J0 [PROCEED J0] procedure-name-4
BLANK SCREEN
LINE
BLANK ni [IQ nz} [QQLMHH n3 10 nk]
LINES .
data-name-1 , data-name-2
CALL literal-1t USING < quoted-literal , Quoted-literal
integer , integer
ND-60.144 .02

REV. A



GENERAL FORMAT FOR VERSBS

COBOL Verb Format

CLOSE file-name-1 [WITH LOCK] {, file-name-2 [WITH LOCK]

CLOSE file-name-3

, file-name-4

WITH

REEL .
[wITH NO REWINQ]
UNIT
NO REWIND
WITH
LOCK

COMPUTE identifier-1 [ROUNDEDI {. identifier-2 [ROUNDED] }

arithmetic-expression

{; ON SIZE ERROR imperative—statement}

CONTINUE

COPY file-name

DELETE file-name RECORD [; INVALID KEY imperative—statement}

ND-60.144.02
REV. A



A-15

COBOL Verb fFormat

GENERAL FORMAT FOR VERBS

identifier-1 , identifier-2

DISPLAY C [uﬁgu mnemonic~name}
literal-t , literal-2

[NITH NO ADVANCING}

identifier-1 [{+} integer~1{L identifier-2 [{+} integer-3]

DISPLAY
integer-2 ) integer-4
ldentifier-3 , ldentifier-4
[WITH [BEEP]
literal-1 , literal-2 [SPACE-FILL]
- [INVERSE-VIDEQ]
[BLINK]
[UNDERLINE]
[LOW-INTENSITY]
[NORMAL]
[AUTO-ERASE]
[PROMPT]
[{BLANK-WHEN-ZERQ]
identifier-1 [{+)} integer-1] identifier-2 [{+} integer-3]
DISPLAY
integer-2 integer-4 _
identifier-3 identifier-+4
ERAME X
literal-1 literal-?2
[WITH [SPACE-FILL] [HEADING] }
identifier-1 [{+} integer-1] identifier-2 [{+} integer~3]}
DISPLAY
integer-2 integer-4
FULL-BAR identifier-3 identifier-4
*
SPARSE-BAR literal-1 literal-2

ND-60.144.02
Rev. B



COBOL Verb Format

GENERAL FORMAT FOR VERBS

identifier-1
DIVIDE INTQ identifier-2 [ROUNDED]
literal-1

[, identifier-3 [ROUNDED] }

[; ON SJZE ERROR imperative~statement]

identifier-1 INTO identifier-2

L]
—
<
r—t
<
m

i

literal-1 BY literal-2

GIVING identifier-3 [ROUNDED] [, identifier-4 [ROUNDED] }

[; ON SIZE ERROR imperative-statement}

identifier-1 INTO identifier-2

Ll
—
<
ot
o
m

i

literal-1 BY literal-2
GIVING identifier-3 [ROUNDED]
REMAINDER identifier-4

{; ON SIZE ERROR imperative-statement}

DO sentence [ WHILE condition sentence} ... END-DO

identifier-2 [{+} integer-2]
DO FOR identifier-1 FROM

integer-3

identifier-5 [{+} integer-5]
{(BY integer-¢] T

integer-6
sentence
[WHILE condition sentence} ... END-DO
ND-60.144.02

Rev. B



COB0L Verb Format

GENERAL FORMAT FOR _VERBS

identifier
EXHIBIT NAMED ..

literal

EXIT [(PROGRAM]

EXIT-00
EXIT-ALL-DO
GO TO (procedure-name-1]

60 T0 procedure-name-1 [, procedure~name~2] SN [, procedure~nameun]

DEPENDING ON identifier

statement-1 statement-2
1F condition
statement-3 statement--2
1F condition THEN ELSE {_.N__- I_E]
NEXT SEMNTENCE NEXT SENTENCE

statement-5
IF condition THEN
NEXT SENTENCE

statement-6
ELSE-IF condition-2 THEN
NEXT SENTENCE
statement-7 -
ELSE [END—IF}
NEXT SENTENCE
ND-60.144.02

REV. A



COBOL Verb Format

GENERAL FORMAT FOR VERBS

INSPECT identifier-1

_ identifier-3
Ignxmg identifier-2 FQRY | me_m_gj literal-1
CHARACTERS
{..__I.E,

- > A
identifier-6

identifier-4
INITIAL g }

literal-2

CHARACTERS B8Y

literal-4

1dentifier~;1
INITIAL ”
literal-5 /f

ALL identifier-5 identifier-6
LEADING
FIRST literal-3 literal-4

identifier-7
INITIAL
literal-5

ND-60.144.02
REV A



A 19

C0BOL Verb Format

GENERAL FORMAT FOR VERBS

ASCENDING

MERGE file-name-1 ON KEY data-name-1

, data-name- 2

{j KEY data-name-3 [, data-name-+4]}
DESCENDING

USING file-name-2, file-name-3

JHROUGH
<(§UTLQ1 PROCEDURE IS section-name-3 section-name-4

z
L (NG file-name-4 J

1dentifier-1
MOVE I0 identifier-2 [, identifier-3]

literal

CORRESPONDING
MOVE identifier-1 10 identifier-2

LORR

ND-60.144.02
REV. A



COBOL Verb Format

GENERAL FORMAT FOR VERBS

identifier-1
MULTIPLY BY identifier-2 [ROUNDED]
literal-1

[, identifier-3 {ROQUNDED] }

[; ON SIZE ERROR imperative~statement}

identifier-1 identifier-2
HULTIPLY BY
literal-1 literal-2

GIVING identifier-3 [ROUNDED]

{, identifier-4 [ROUNDED] }...

[; ON S1ZE ERROR 1mperativewstatement]

ND-60.144.02
REV. A



EXTEND
N

Ut
QPEN < QUTPUT
0

'

COBOL Verb Format

FOR _VERBS

GENERAL FORMAT

file-name-1 [WITH NO REWIND]

[, file-name-2 [WITH NO REWIND]I }

QUTPUY file-name-3 [WITH NQO REWIND]

{, file-name-4 [WITH NO REWIND] ]

1-0 file-name-5 [, file-name-6]

file-name-7 [, file-name-6]

file

ANPUT
ouTPUT

1-0

MULTI-

USER-MODE

-name |[WITH <IMMEDIATL - WRITE

MANUAL - UNLOCK

file-name [WITH

ND-60.144.02
REV. A

MULTI-USER-MODE

IMMEDIATE-WRITE

MANUAL -UNLOCK

-




22

COBOL Verb Format

GENERAL_FORMAT FOR _VERBS

PERFORM range
identifier-1
PERFORM range TIMES
integer
PERFORM range UNTIL condition-1
identifier-5 identifier-6
PERFORM range VARYING FROM < index-name-4
index-name-3 literal-3
identifier-7
8Y UNTIL condition-1
literal-4
identifier-8 identifier-9
AFTER FROM <index-name-6
index-name-5 literal-5
1dentifier-10
8Y UNTIL <condition-2
literal-6
identifier-11 identifier-12
AFTER FROM Sindex-name-8
index-name-8 literal-6

i1dentifier-1
BY
literal-7

where range 1s the construct:

procedure-name- 1

THROUGH
RU

—

H

ND-60.144.02
REV. A

}

NTIL condition-3

procedure-name-2



A-23
COBOL Verb Format

GENERAL FORMAYT FOR _VERBS

READ file-name {NEXT RECORD} [LNIQ identifier] [NITH ngﬁ}

[; AT END imperative statement]

READ file-name RECORD {IMTQ identifier] [wITH LOQK]

[; KEY IS data-name] {; INVALID KEY imperative-statement

READ file-name RECORD [IN!Q identifier] [NITH Lg&jq
[; INVALID KEY imperative—statement]
RELEASE record-name LFBQM identifier}

RETURN file-name RECORD [INTQ identifier}

{; AT END imperative statement}
REWRITE record-name {ERQM identifier}

REWRITE record-name [LEQM identifier}

{; INVALID KEY imperative»statement]

ND-60.144 02
REV. A



A- 24
C080L. Verb Format

GENERAL FORMAT FOR VERBS

identifier-2
SEARCH identifier-1 |YARYING -

index-name-1

{; AT END imperative statement-1

imperative-statement-2
; WHEN condition-1

NEXT SENTENCE

—

imperative-statement-3
; WHEN condition-2

NEXT SENTENCE

SEARCH ALL identifier-1 {; AT END imperative statement—1]

1S EQUAL TO identifier-3
literal-t
IS = arithmetic-expression
i WHEN -

data-name-1

condition-name-1

1S EQUAL TO identifier-4
literal-2
arithmetic-expression

data-name-2
AND IS

1"

condition-name- 2

imperative-statement-2

NEXT SENTENCE

identifier-1 [, identifier-21 identifier-3

7y
—

£T 10 < index-name-3
integer-
index-name-1 [, index-name-2]
identifier- 4
SET index-name-4 [, index-name-5]1 ...
DOWN BY ||integer-

ND-60.144.02
REV. A



SORY file-name-1

—~

«

COBOL Verb Format

GENERAL FORMAT FOR VERBS

A
ON

SCENDING

KEY data-name-1 [, data-name-7])

lySING file-name-2

DESCENDING
ASCENDRING
ON KEY data-name-3 [, data-name-4]
DESCENDING
L

IHROUGH
INPUT PROCEDURE IS section-name-1 ~section-name-2
IHRU

IHROUGH
QUTPUT PROCEDURE IS section-name-3 section-name-4
THRU

GIVING file-name-2

START file-name

KEY <

—
IS EQUAL TO

IS =

IS GREATER THAN

IS >

IS NOT LESS THAN

T

»>data-name

I K}S NOT < P
[; INVALID KEY imperative-statement]
EUN
ST10F
literal
ND 60 14402

REV A

/s

|



COBOL Verb Format

GENERAL FORMAT FOR VERBS

identifier-1 , ldentifier-2 identifier-3
STRING ... DELIMITED BY <literal-3
literal-1 , literal-2 SIZE
identifier-4| |, identifier-5

literal-+4 , literal-5

identifier-6
DELIMITED BY=<1literal-6
SIZE

INTQ identifier-7 {NITH POINTER identifier—a}

[; ON QVERFLOW imperative‘statement}

identifier-1 , identifier-2
SUBTRACT
literal-1 , literal-2

FROM identifier-m [ROUNDED] [, identifier-n [ROUNDED] }
[; ON SIZE ERROR imperative~statement]

identifier-1 , identifier-2 identifier-m

SUBTRACT ... EROM
literal-1 , literal-2 literal-m

GIVING identifier-n [ROUNDED] K identifier-o [ROUNDED] ]

[; ON SIZE ERROR imperative- statement

ND-60.144.02
REV A



COB0L Verb Format

GENERAL FORMAT FOR_VERBS

UNLOCK file-name

identifier-2
UNSTRING identifier-i DELIMITED BY [ALL]
literal-1

identifier-3

. OR [ALLI
literal-2

INTQ identifier-4 [, DELIMITER IN identifier—ﬁ}
[. COUNT IN identifier—s]
[, identifier-17 [, DELIMITER 1IN identifier-e]

[. COUNT 1IN identifier~9] ]

WITH POINTER identi$ier~10]
L

JALLYING IN identifier—11]

i ON QVERFLOW imperative~statement]
L

K .
file-name-1
[, filename-2]

EXCEPTION INPUT
USE AFTER STANDARD PROCEDURE ON< QUTFUT -
ERROR

1-0
EXTEND
N /

ND-60.144.02
REV. A



COBOL Verb Format

GENERAL FORMAT FOR_VERBS

record-name FROM identifier-1
identifier-3 LLINE
ADVANCING integer LINES
PAGE

WRITE record-name [FRQm identifier~1} {WITH Jggg}

[; INVALID KEY imperative—statement]

ND-60.144.02
REV. A



Condition Formats

GENERAL FORMAT_ FOR CONDITIONS

RELATION CONDITION:

1S [NOT] GREATER THAN
identifier-1 IS [NOT] LESS THAN
literal-1 IS [NOT] EQUAL TO
arithmetic-expression-1}{IS [NOI] >
index-name- 1 1S INOTT <

IS [NOT] =

CLASS CONDITION:

NUMERIC
identifier [S [NOQT]
ALPHABETIC

SIGN CONDITION:

arithmetic-expression IS (NOT} EGATIVE
Z2ERQ

CONDITION-NAME CONODITION:

condition-name

NEGATED SIMPLE CONDITION:

NOT simple condition

COMBINED CONDITION:

AND
condition condition

ABBREVIATED COMBINED RELATION CONDITION:

identifier-2

literal-2
arithmetic-expression-?2
index-name- 2

relation-condition %: }>[Nﬂl] [relational-operator] object

ND-60.144.02
REV. A



Miscellaneous Formats

MISCELLANEOQOUS FORMATS

QUALIFICATION:

data-name-1 OF
data-name-2
condition-name IN
QF
paragraph-name section-name
iN

file-name

SUBSCRIPTING:

data-name

{ subscript-1 [, subscript-2 [, subscript-3]] }
condition-name :

INDEXING:

(;ata—name index-name-1 [{1} literal-z]lx
{
<)Lcondition—name literal-t /I

index-name-2 [{1} literal—k]

literal-3

index-name-3 [{1} literal—B]

literal-5

ND-60.144.02
REV. A



Miscellaneous Formats

MISCELLANEQUS FORMATS

IDENTIFIER: FORMAT 1

OF
data-name-1 data-name-2

IN

( subscript-1t [. subscript-2 [, subscript-31} ] )

[DENTIFIER: FORMAT 2

OF

data-name-1 data-name-2

IN

index-name-1 [{1} literal~2}
(
literal-1t

index-name-2 [{1} literal—k]

literal-3

—

index-name-3 [{1} literal~8]

) )
literal-5 /J

ND-60.144.02
REV. A °



ND-60.144 02
REV A



APPENDIX B

ASCIlI CHARACTER SET

Byte Position Byte Position

CHAR Left Right Dec. CHAR  Left Right Dec.
NUL 000000 000000 0 0 030000 000060 48
SOH 000400 000001 1 1 030400 000061 49
STX 001000 000002 2 2 031000 000062 50
ETX 001400 000003 3 3 031400 000063 51
EOT 002000 000004 4 4 032000 000064 52
ENQ 002400 000005 5 5 032400 000065 53
ACK 003000 000006 6 6 033000 000066 54
BEL 003400 000007 7 7 033400 000067 55
BS 004000 000010 8 8 034000 000070 56
HT 004400 000011 9 9 034400 000071 57
ILF 005000 000012 10 : 035000 000072 58
vT 005400 000013 1 ; 035400 000073 59
FF 006000 000014 12 < 036000 000074 60
CR 006400 000015 13 = 036400 000075 61
SO 007000 000016 14 > 037000 000076 62
Sl 007400 000017 15 ? 037400 000077 63
DLE 010000 000020 16 @ 040000 000100 64
DC1 010400 000021 17 A 040400 000101 65
DC2 011000 000022 18 B 041000 000102 66
DC3 011400 000023 19 C 041400 000103 67
DC4 012000 000024 20 D 042000 000104 68
NAK 012400 000025 21 E 042400 000105 69
SYN 013000 000026 22 F 043000 000106 70
ETB 013400 000027 23 G 043400 000107 71
CAN 014000 000030 24 H 044000 000110 72
EM 014400 000031 25 | 044400 000111 73
SuB 015000 000032 26 J 045000 000112 74
ESC 015400 000033 27 K 045400 000113 75
FS 016000 000034 28 L 046000 000114 76
GS 016400 000035 29 M 046400 000115 77
RS 017000 000036 30 N 047000 000116 78
us 017400 000037 31 o 047400 000117 79
SPACE 020000 000040 32 P 050000 000120 80
! 020400 000041 33 Q 050400 000121 81
" 021000 000042 34 R 051000 000122 82
021400 000043 35 S 051400 000123 83
S 022000 000044 36 T 052000 000124 84
% 022400 000045 37 U 052400 000125 85
& 023000 000046 38 \ 053000 000126 86
’ 023400 000047 39 W 053400 000127 87
( 024000 000050 40 X 054000 000130 88
) 024400 000051 41 Y 054400 000131 89
* 025000 000052 42 z 055000 000132 90
+ 025400 000053 43 [ 055400 000133 91
, 026000 000054 44 \ 056000 000134 92
- 026400 000055 45 ] 056400 000135 93
. 027000 000056 46 A 057000 000136 94
/ 027400 000057 47

ND-60.144.02




Byte Fosition Byte Position

CHAR Left Right Dec. CHAR Left Right Dec.
vvvvvvvv 057400 000137 95 o 067400 000157 111
060000 000140 96 p 070000 000160 112
a 060400 000141 g7 q 070400 000161 113
b 061000 000142 98 r 071000 000162 114
c 061400 000143 99 s 071400 000163 115
d 062000 000144 100 t 072000 000164 116
e 062400 000145 101 u 072400 000165 117
f 063000 000146 102 % 073000 000166 118
g 063400 000147 103 w 073400 000167 119
h 064000 000150 104 X 074000 000170 120
i 064400 000151 105 y 074400 0001 121
i 065000 000152 106 z 075000 000172 122
k 065400 000153 107 075400 000173 123
I 066000 000154 108 076000 000174 124
m 066400 000155 109 076400 000175 125
n 067000 000156 110 077000 000176 126
DEL 077400 000177 127

ND-60.144.02




APPENDIX C

RUN-TIME MESSAGES

6008

601B

6028

603B

6048

“Reason’”’

I-O0 — ERR nnn

where

nnn

is a
standard
SINTRAN 1li
File System
Error Code

INDEX FILE ERROR nn

where nn
is a

status returned
from ISAM

FILE NOT OPEN

FILE NOT OPEN
IN CORRECT MODE

IMPROPER RECORD LENGTH

“Reason’”’

Explanation

An error in an |-O operation has arisen
without the possibility of user reaction due to
omission of any of

the following applicable to the file in question:

AT END clause

INVALID KEY clause

USE AFTER STANDARD ERROR (Declarative)
FILE STATUS

If any relevant element above is available, the
run-time liabrary routines allow that element
to process the data, and THIS ERROR DOES
NOT ARISE.

An error has arisen in using the Indexed file
system, without the possibility of user
reaction due to
omission of any of the following clause or to
other
index file errors:

AT END clause

INVALID KEY clause

Non-addressable data due to an attempt to
use data in a file that is not open.

Attempt to use data in a file that is not open
in correct mode.

Incoming record size incorrect when using
REWRITE statement.

Explanation

ND-60.144.02



6058

6068

6078

610B

611B

6128

6138

" 6148

ILLEGAL USE OF REWRITE

OPEN MODE |-O NOT BE

USED FOR MAGNETIC TAPE

SORT ERROR

SORT ERROR — FILE TOO BIG

SORT ERROR — TOTAL KEY
TOO LONG

SORT ERROR IN RECORD SIZE
COMPILER/LIBRARY

INCOMPATIBILITY

64/128kw version of COBLIB/
SEPARATE—COBLIB not
applicable

* This message is only for the ND-100.

Sequence error when using REWRITE.

Previous |-O statement not a READ.

Magnetic tape files cannot be opened for |-0.

Issued by the SORT system.
Issued by the SORT system.

Issued by the SORT system.

Issued by the SORT system.

Different
run-time

versions of the
library
simultaneously.

compiler and
cannot be used

If the SEPARATE—CODE—DATA command
has been issued, SEPARATE—COBLIB must
be loaded, else COBLIB.

ND-60.144.02



COMPILER ERROR MESSAGES

(ALTERNATE) RECORD KEY MAY ONLY APPLY TO INDEXED FILE

A PARAGRAPHY DECLARATION IS REQUIRED HERF

AREA=A VIOLATED; RESTART AT HEXT PARAGRAPH/SICTION/DIVISION/VERS
ASSIGMED WORD MISSING

AT EHND OMNLY LEGAL ON SEQUENTIAL READING.

3AD HESTING OF DO END-DO.

RADLY MESTING OF PARENTHESIS

BLAMK WHEN ZERO IS DISALLOWED.

BLUCK SIZE SET TO

BLOCK/RECORD SIZE ILLEGAL.

CLAUSES OTHER THAN VALUE DELETED.

COMP IGMORED FOR DECIMAL ITEM,

CONDITIONAL EXPRESSION IS TOO 8IG.

CONFIGURATION SECTION ASSUMED HERE.

CONTINUATION LIME, THEREFORE COL 8=17 MUST B8€ SPACES.

COrPY FILE CANNOT BE FOUND

DATA DIVISION ASSUMED HERE.

DATA RECORDS CLAUSE WAS IMNACCURATE.

DATA-NAME IN ASSIGN CLAUSE IS UNDEFINED/WRONG TYPE/NOT uUNIAQUC
DELETE NOT VALID FOR NON-QORGANIZED FILE.

DEPENDING ON DATA-MAME IS UNDEFINED/WROMG TYPE/HNOT UNISUE
ELEMENT IS MALFORMED

ELEMENT NOT DEFINED

ERRONEOUS FILE-NAME IS IGNORED

ERRONEQOUS QUALIFICATION; LAST DECLARATION USED.

ERRONEOQUS SELECT-SENTENCE; RESUMPTION AT NEXT SELECT OR AREA-A.
ERROMEOUS SUBSCRIPTING; STATZMEMNT DELETED
EXCESSIVE GROUP SIZE =~ MAX 32767.

EXCESSIVE OCCURS CLAUSE MNESTING IS IGNORFED.
EXIT SHOULD BE IN ITS OWN PARAGRAPH,
EXPONENTIATION (x%) NOT IMPLEMENTED YET.
EXTERMAL DECIMAL ITEM IS UNSIGNED.

FAULTY QUOTED LITERAL.

FILE NOT SELECTED, ENTRY BYPASSED.

FILE OPENED BUT NEVER CLOSED

FILE SECTION ASSUMED HERE,

GO WITH NO PARAGRAPH=NAME MUST BF IN ITS OWN P
GROUP ITEM, THEREFORE PIC/JUST/BLANK/SYNC IS I
IDENTIFICATION DIVISION ASSUMED HERE.

TLLEGAL ARITHMETICAL EXPRESSION. STATEMENT DELETED
ILLEGAL BEFORE/AFTER=-ADVANCING CLAUSF

ILLEGAL CHARACTER IN COLUMN 7.

ILLEGAL CHARACTER; IGNORED.

ILLEGAL FIGURATIVE CONSTANT

ILLEGAL KEY RELATION

ILLEGAL MOVE OR COMPARISON IS DELETED.

ILLEGAL PERFORM-RAMGE.

ILLEGAL USE 0OF SAME AREA.

IMPERATIVE VERB REQUIRED HERE (NOT ELSE/USE/WHEN/)
IMPROPER REDEFINITION IGNORED.

IMPROPER USE OF 88-LEVEL.

INCOMPLETE (OR TOO LONG) STATEMENT DELETED.
INTEGER LITERAL MUST BE GREATER THAN O

INVALID BLOCKING IS IGNORED.

INVALID KEY ILLEGAL ON SEQUENTIAL ORGANIZED FILES.
INVALID RECORD SIZECS) IGNORED.

INVALID VALUE IGNORED.

ITEM ASSUMED TO BE BINARY.

ARAGRAPH.
GMORFED.,

ND-60.144.02



KEY DECLARATION OF THIS FILE IS NOT CORRECT.

KEY MUST APPLY ON INDEXED/RELATIVE FILES.

KEY MUST BE DECIMAL OR CHARACTER ITEM.

KEY ONLY LEGAL WITH RANDOM/DYMAMIC ACCESS ON RELATIVE/INDEX FILE.
KEYS MAY ONLY APPLY TO AN INDEXED/RELATIVE FILE '
LEVEL 007 ASSUMED.

LEVEL 66 NOT SUPORTED.

LITERAL TRUNCATED TO SIZE OF ITEM,

MAX 10 SORT KEYS ALLOWED

MISORDERED/REDUNDANT SECTION PROCESSED AS IS.

MISSING OPERAND

MISSING PROGRAM-ID/PROGRAM~NAME; DEFAULT PROGRAM NAME = MAINCB.
MNEMONI C-NAME MISSING ’

NAME OMITTED/DOUBLY DEFINED; ENTRY BYPASSED.

NOT IMPLEMENTED IN THIS COMPILER

NUMBER OF PARAGRAPH~NAMES IN GO-DEPENDING MUST BE 1 TO 100.
OCCURS DISALLOWED AT LEVEL 01/77, OR COUNT TOO HIGH.

OMITTED WORD SECTION IS ASSUMED HERE.

ONLY ACCESS MODE SEQUENTIAL LEGAL ON SEQUENTIAL ORGANIZED FILFS.
OMLY GROUP LEVELS ACCEPTED IN MOVE CORRESPONDING

ONLY LEGAL FOR RECORDING MODE V

ONLY RECORDING MODE IS F/TEXT~FILE ALLOWED,

ONLY SEQUENTIAL FILES CAN BE OPENED AS EXTEND.

ONLY SEGUENTIAL FILES CAN BE QPENED/CLOSED WITH NO REWIND.
OPEN MODE (INPUT/OUTPUT/I-0/EXTEND) MISSING

PARAGRAPH REFEFRENCED RBY ALTER MUST CONTAIN SINGLE/SIMPLE GO TO.
PREAGRAPH-NAME REFERENCE MISSING

PERIOD ASSUMED AFTER PROCEDURE-NAME DEFINITION

PICTURE CLAUSE IS BADLY FORMED; PIC X ASSUMED.

PICTURE IGNORED FOR INDEX ITEM,

PROCEDURE DIVISION ASSUMED HERE

PROCEDURE-MAME IS UMRESOLVARLE

GUOTED LITERAL/NUMERIC ELEMENT/NAME IS T0OO LONG,

RECORD MIN/MAX DISAGREES WITH RECORD CONTAINS, LATTER SIZE USED.
RECORD SIZE DIFFERENT FROM SD-FILE RECORD SIZE

RECORD SIZE ON INDEXED FILES - MIN 4,

SEDUNDANT CLAUSE IGNORED

KEDUNDANT FD PROCESSED AS IS.

RELATIVE KEY fHAY ONLY APPLY TO RELATIVE FILE

KEQUIRED DATA SPACE EXCEEDS MAX AVAILABLE.

RESUMPTION AT NEXT PARAGRAPH/VERR,

KIGHT PARENTHESIS REQUIRED AFTER SUBSCRIPTS

SEQUEMTIAL READING IMPOSSIBLE WITH RANDOM ACCESS.

SanRrY, HNT ALLOWED INSIDE SEARCH-STATEMENT

SUURCE BYPASSED UNHTIL NEXT FD/SECTION

START OMLY ALLOWED ON RELATIVE/INDEX FILES.

STATEMENT DELETED RECAUSE INTEGRAL ITEM IS REQUIRED
STATEMENT DELETED RECAUSE OPERAND IS NOT A FILE-NAME
STRATENMENT DELETED DUE TO FRROMNEOUS SYNTAX,

STATEMENT DELETED DUE TO MISSING SORT FILE-MNAME

STATEMENT DELETED DUE TO NON-NUMERIC OR ILLEGAL TYPE OPERAND
STATUS MAME IS UNDEFINED/WRONG TYPE/NOT UNIQUE

SUBSCRIPT OR INDEX-NAME IS NOT UNIQUE

SYNTAX ERROR (RESUMPTION AT NEXT PARAGRAPH/VERB)

TERMIMNAL PERIOUD ASSUMED ABOVE

TERMIHNAL PERIOD MISSING

THERE IS NO IF~STATEMENT TO MATCH THIS ELSE/END=-IF

IHERE IS NO SEARCH TO MATCH THIS WHEN.

USAGE OTHER THAN DISPLAY IGNORED

JSING-LIST ITEM LEVEL MUST BE ASSIGNED WOKRD 01/77/WORD-ALIGNED
VALUE DISALLOWED DUE TO OCCURS/REDEFINES/TYPE CONFLICT,

ND-60.144.02



AT T0 MATCH SEARCH IS MISSING.

WHILE NOT INSIDE A DO-LNOP.

AITH KO REWIND ONLY ON FILES OPENED AS INPUT OR ouUTPUT.,
WIRD DECLARATIVES MISSING

WOED KLST NOT START BEFOKE COLUMN 12

AR ING=STORAGE ASSUMED HERE,

WRITE BEFORE/AFTER OMLY LEGAL ON SEQUENTIAL FILES.

ND-60.144.02






APPENDIX D

RESERVED WORD LIST

ACCEPT
ACCEPT-ERROR
ACCESS

ADD
ADVANCING
AFTER

ALL

ALPHABETIC
ALTER
ALTERNATE

AND

ARE

AREA

AREAS
ASCENDING
ASSIGN

AT

AUTHOR
AUTO-ERASE
AUTO-SKIP

BEEP

BEFORE

BLANK
BLANK-WHEN-ZERO
BLINK

BLOCK

BOX

BY

CALL
CHARACTER
CHARACTERS
CLOSE

COLUMN
comMmAa
COMMON

COomMPpP

COMP-1

COMP-2

COMP-3
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPUTE
CONFIGURATION
CONTAINS
CONTINUE
CONTROL

COPY

CORR
CORRESPONDING
COUNT
CPU-TIME
CURRENCY
DATA

DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCEDING

DISPLAY
DIVIDE
DIVISION

DO

DOWN
DUPLICATES
DYNAMIC
ELSE

ELSE-IF

END

END-DO
END-IF
ENVIRONMENT
EQUAL

ERASE

ERROR
EXCEPTION
EXHIBIT

EXIT
EXIT-ALL-DO
EXIT-DO
EXPORT
EXTEND

FD

FILE
FILE-CONTROL
FILE-ID

FILLER

FIRST

FOR

FRAME

FROM
FULL-BAR
GIVING

GO

GREATER
HEADING
HELP
HIGH-VALUE
HIGH-VALUES
HOME

1-0
I-O-CONTROL
IDENTIFICATION
IF
IMMEDIATE-WRITE
IMPORT

IN

INDEX
INDEXED
INITIAL

INPUT
INPUT-OQUTPUT
INSPECT
INSTALLATION
INTO

INVALID
INVERSE-VIDEO
INVISIBLE

1S

JUST
JUSTIFIED
KEY

LABEL
LEADING

LEFT
LENGTH-CHECK

ND-60.144.02

Rev. B

LESS

LINE

LINES
LINKAGE
LOCK
LOW-INTENSITY
LOW-VALUE
LOW-VALUES
MANUAL-UNLOCK
MERGE
MODE

MOVE
MULTI-USER-MODE
MULTIPLY
MUST
NAMED
NEGATIVE
NEXT

NO

NORMAL
NOT
NUMERIC
OBJECT-COMPUTER
OCCURS

OF

OFF
OMITTED

ON

OPEN
OPTIONAL
OR
ORGANIZATION
OUTPUT
OVERFLOW
PACKED-DECIMAL
PAGE
PERFORM
PIC

PICTURE
POINTER
POSITIVE
PREVIOUS
PROCEDURE
PROCEED
PROGRAM
PROGRAM-ID
PROMPT
QUOTE
QUOTES
RANDOM
RE-DISPLAY
READ
RECORD
RECORDING
RECORDS
REDEFINES
REEL
RELATIVE
RELEASE
REMAINDER
REMARKS
REMOVAL
RENAMES
REPLACING
REPORT
RESERVE
RETURN

REWIND
REWRITE
RIGHT
ROUNDED
RUN

SAME
SCREEN

SD

SEARCH
SECTION
SECURITY
SELECT
SENTENCE
SEPARATE
SEQUENTIAL
SET

SIGN

SIZE

SORT
SQURCE-COMPUTER
SPACE
SPACE-FILL
SPACES
SPARSE-BAR
SPECIAL-NAMES
STANDARD
START
STATUS
STOP
STRING
SUBTRACT
SYNC
SYNCHRONIZED
TALLYING
TEXT-FILE
THAN

THEN
THROUGH
THRU

TIME

TIMES

TO

TRAILING
UNDERLINE
UNIT
UNLOCK
UNSTRING
UNTIL

up

UPDATE
UPON
UPPER-CASE
USAGE

USE

USING
VALUE
VALUES
VARYING
WHEN
WHILE

WITH
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS






APPENDIX E
CROSS REFERENCE EXAMPLE

To obtain a cross reference listing with a compilation the command
XREF file-name

must be issued at compile-time where ‘file-name’ is the name of a work file.

MORD-10/100 COBOL COMPILER - 11.07.80 TIME: .. DATE: .

1 IDENTIFICATION DIVISION.

2 PROGRAM-1D.

3 CROSS~REFERENCE-EXAMPLE.

i DATA DIVISION.

5 WORKING~-STORAGE SECTION,

6 01 PERSON.

7 03 NAME PIC X(30) VALUE “NORSK DATA A/S".
8 03 ADDRESS PIC X(30) VALUE "OSLO, NORWAY".
9 03 TELEPHONE PIC 9(11) VALUE 02309030.
10 03 INCOME PIC S9(9)V99 COMP-3.
11 03 COUNTRY PIC $S9(2) COMP VALUE 1.
12 88 NORWAY VALUE 1.
13 88 SWEDEN  VALUE 2.

14 88 DENMARK VALUE 3.

15 88 ENGLAND VALUE 4,
16 PROCEDURE DIVISION,

17 TEST SECTION,

18 0000.

19 IF NORWAY PERFORM 1000.
20 IF SWEDEN PERFORM 2000.
21 IF DENMARK PERFORM 3000.
22 IF ENGLAND PERFORM 4000,
23 STOP RUN.

24 1000.

25 DISPLAY NAME "IS NORWEGIAN".

26 2000.

27 DISPLAY NAME "IS SWEDISH".

28 3000.

29 DISPLAY NAME "IS DANISH".

30 4000.

31 DISPLAY NAME "IS ENGLISH".

*¥%% NO ERROR MESSAGES ##i#

ND-60.144.02
Rev. A



NORD COBOL CROSS REFERENCE LIST
PROGRAM-ID: CROSS-REFERENCE-EXAMPLE

0000 . . . (PARAGRAPH) 18

1000 . . . (PARAGRAPH) 19 24
2000 . . . (PARAGRAPH) 20 26
3000 . . . (PARAGRAPH) 21 28
4000 . . . (PARAGRAPH) 22 30
ADDRESS. . (X 30) 8
COUNTRYY . (COMP 2) 11
DENMARK. . (88 2) 14 21
ENGLAND. . (88 2) 15 22
INCOME . . (COMP-3 6) 10

NAME . . . (X 20) 7 25 27 29 31
NORWAY . . (88 2) 12 19
PERSON . . (X 80) 6

SWEDEN . . (88 2) 13 20
TELEPHONE. (NUM 1) g )
TEST . . . (SECTION ) 17

ND-60.144.02



APPENDIX F

COMPILER COMMANDS: ND-100

HELP
Lists available commands.

EXIT
Exit to SINTRAN HI.

COMPILE < source-file> <list-file> < object-file >
Defines 1/0 files for the COBOL compiler.

XREF-LIST < work-file >
A cross reference list will be output to the list file, not on the work-file. The

parameter <work-file> provides a working file for XREF. Default file type
is :XREF.

Example: See Appendix E.

DEBUG-MODE

Debug information will be generated and the Symbolic Debugger can be
used. See Symbolic Debugger Users Guide, ND-60.158.

LIBRARY-MODE
The object file will be a Library file.

ND100-EXTENDED-MODE
Turns ON the use of the commercial instruction set (COM) in the compiler.

It the computer has a commercial instruction set, the speed of execution
can be increased by using this command.

Note: on ND-10 the commercial instruction set must be installed in order
to run COBOL programs.

1-BANK-MODE

If this command is not present the default is 2-bank mode. Normally the
code and data are separated, but the use of this command ensures that
they are together. The run-time library COBOL-1BANK must be loaded.

TPS-MODE

The compilation will take place under the TPS system.

ND-60.144.02
Rev. A



LOAD file-name [ file-name] ...
To complete the executable program, libraries or other object files may be
added by using the above command, where file name is the name of an
object file or library.

The default type of the file loaded will be BRF on the ND-100.

LOAD commands will be ignored if they are placed in the source file, or if
no PROG-FILE command has been given.

Any error messages which appear while the LOAD command is being
executed can be found in the ND Relocating Loader manual (ND-60.066).

ND-60.144.02
Rev. A



COMPILER COMNMANDS: ND-500

HELP
Lists available commands.

EXIT
Exit to SINTRAN 1.

COMPILE <source-file> <list-file> < object-file >
Defines 1/0 files for the COBOL compiler.
The default type for the source-file is :SYMB or :COB. For list-file it is
‘SYMB, and for the object-file it is :NRF.

XREF-LIST < work-file >
A cross reference list will be output to the list file, not on the work-file. The

parameter <work-file> provides a working file for XREF. Default file type
is :XREF.

DEBUG-MODE
Debug information will be generated and the Symbolic Debugger can be
used. See Symbolic Debugger Users Guide, ND-60.158.

LIBRARY-MODE
The object file will be a library file.

ND-60.144.02
Rev. A



F—4



APPENDIX G
GLOSSARY

Abbreviated Combined Relation Condition
The combined condition that results from the explicit omission of a
common subject or a common subject and common relational operator in a
consecutive sequence of relation conditions.

Access Mode
The manner in which records are to be operated upon within a file.

Actual Decimal Point
The physical representation, using either of the decimal point characters
period (.) or comma {,), of the decimal point position in a data item.

Alphabetic Character
A character that belongs to the following set of letters: A, B, C, D, E, F, G,
H ILJ, KL M N O P QR,S T U,V W, X,Y,Zand the space.

Alphanumeric Character
Anv character in the computer's character set.

Alternate Record Key

A key, other than the prime record key, whose contents identify a record
within an indexed file.

Arithmetic Expression
An arithmetic expression can be an identifier or a numeric elementary item,
a numeric literal, such identifiers and literals separated by arithmetic
operators, two arithmetic expressions separated by an arithmetic operator,
or an arithmetic expression enclosed in parentheses.

Arithmetic Operator
A single character, or a fixed two character combination, that belongs to
the following set:

Character Meaning

+ addition

— subtraction
multiplication
/ division
exponentiation

Ascending Key
A key upon the values of which data is ordered starting with the lowest

value of key up to the highest value of key in accordance with the rules for
comparing data items.

ND-60.144.02



Assumed Decimal Point

A decimal point position which does not involve the existence of an actual
character in a data item. The assumed decimal point has logical meaning
but no physical representation.

At End Condition
A condition caused:

1. During the execution of a READ statement for a sequentially
accessed file.

2. During the execution of a RETURN statement, when no next logical
record exists for the associated sort or merge file.

3. During the execution of a SEARCH statement, when the search
operation terminates without satisfying the condition specified in any
of the associated WHEN phrases.

Block

A physical unit of data that is normally composed of one or more logical
records. For mass storage files, a block may contain a portion of a logical
record. The size of a block has no direct relationship to the size of the file
within which the block has not direct relationship to the size of the file with
which the block is contained or to the size of the logical record(s) that are
either continued within the block or that overlap the block. The term is
synonymous with physical record.

Called Program

A program which is the object of a CALL statement combined at object
time with the calling program to produce a run unit.

Calling Program
A program which executes a CALL to another program.

Character
The basic indivisible unit of the fanguage.

Character Position

A character position is the amount of physical storage required to store a
single standard data format character described as usage is DISPLAY.

Character-String

A sequence of contiguous characters which form a COBOL word, a literal,
a PICTURE character-string, or a comment entry.

Class Condition

The proposition, for which a truth value can be determined, that the
content of an item is wholly alphabetic or is wholly numeric.

Clause

A clause is an ordered set of consecutive COBOL character-strings whose
purpose is to specify an attribute of an entry.

ND-60.144.02



COBOL Word
See word.

Collating Sequence
The sequence in which the characters that are acceptable in a computer
are ordered for purposes of sorting, merging and comparing.

Column
A character position within a print line. The columns are numbered from 1,
by 1, starting at the leftmost character position of the print line and
extending to the rightmost position of the print line.

Combined Condition

A condition that is the result of connecting two or more conditions with the
'AND’ or the 'OR’ logical operator.

Comment Line

A source program line represented by an asterisk in the indicator area of
the line and any characters from the computer’s character set in area A
and area B of that line. The comment line serves only for documentation in
a program. A special form of comment line represented by a stroke (/) in
the indicator area of the line and any characters from the computer’s
character set in area A and area B of that line causes page ejection prior to
printing the comment.

Compile Time
The time at which a COBOL source program is translated, by a COBOL
cormnpiler, to a COBOL object program.

Compiler Directing Statement
A statement, beginning with a compiler directing verb, that causes the
compiler to take a specific action during compilation.

Complex Condition
A condition in which one or more logical operators act upon one or more

conditions. {See Negated Simple Condition, Combined Condition and
Negated Combined Condition.)

Computer-Name

A system-name that identifies the computer upon which the program is to
be compiled or run.

Condition
A status of a program at execution time for which a truth value can be
determined. Where the term ’condition’ (condition-1, condition-2, ..}
appears in these language specifications in or in reference to ‘condition’
(condition-1, condition-2, ...) of a general format, it is a conditional
expression consisting of either a simple condition optionally parenthesized,
or a combined condition consisting of the syntactically correct combination

of simple conditions, logical operators, and parentheses, for which a truth
value can be determined.

ND-60.144.02



G4

Condition-Name
A user defined word assigned to a specific value, set of values, or range of

values, within the complete set of values that a conditional variable may
proccess.

Condition-Name Condition
The proposition, for which a truth value can be determined, that the value
of a conditional variable is a member of the set of values attributed to a
condition-name associated with the conditional variable.

Conditional Expression

A simple condition or a complex condition specified in an {F, PERFORM or
SEARCH statement. (See Simple Condition and Complex Condition.)

Conditional Statement
A conditional statement specifies that the truth value of a condition is to

be determined and that the subsequent action of the object program is
dependent on this truth value.

Conditional Variable

A data item one or more values of which has a condition name assigned to
it.

Configuration Section

A section of the Environment Division that describes overall specifications
of source ‘and object computers.

Connective
A reserved word that is used to:

1. Associate a data-name, paragraph-name, condition-name or text-name
with its qualifier.

2. Link two or more operands written in a series.

3. Form conditions {logical connectives) (see Logical Operator).

Contiguous Items

ltems that are described by consecutive entries in the Data Division and
that bear a definite hierarchic relationship to each other.

Currency Sign
The character '$’ of the COBOL character set.

Currency Symbol
The character defined by the CURRENCY SIGN clause in the SPECIAL
NAMES paragraph. If no CURRENCY SIGN clause is present in a COBOL
source program, the currency symbol is identical to the currency sign.

Current Record
The record which is available in the record area associated with the file.

ND-60.144.02



Current Record Pointer
A conceptual entity that is used in the selection of the next record.

Data Clause

A clause that appears in a data description entry in the Data Division and
provides information describing a particular attribute of a data item.

Data Description Entry
An entry in the Data Division that is composed of a level number followed

by a data name, if required, and then followed by a set of data clauses, as
required.

Data ltem

A character or a set of contiguous characters (excluding in either case
literals) defined as a unit of data by the COBOL program.

Data-Name
A user defined word that names a data item described in a data description
entry in the data division. When used in the general formats, 'data-name’
represents a word which can neither be subscripted, indexed, nor qualified
unless specifically permitted by the rules for that format.

Debugging Line
A debugging line is any line with ‘D" in column 7.

Declaratives
A set of one or more special purpose sections, written at the beginning of
the Procedure Division, the first of which is preceded by the key word
DECLARATIVES and the last of which is followed by the key words END
DECLARATIVES. A declarative is composed of a section header, followed
by a USE compiler directing sentence, followed by a set of zero, one or
more associated paragraphs.

Declarative Sentence

A compiler directing sentence consisting of a single USE statement
terminated by the separator period.

Delimiter
A character or a sequence of contiguous characters that identify the end of
a string of characters and separates that string of characters from the

following string of characters. A delimiter is not part of the string of
characters that it delimits.

Descending Key

A key upon the values of which data is ordered starting with the highest
value of key down to the lowest value of key, in accordance with the rules
for comparing data items.

Digit Position
A digit position is the amount of physical storage required to store a single

digit. This amount may vary depending on the usage of the physical
storage are defined by the implementor.

ND-60.144.02



Division
A set of zero, one or more sections of paragraphs, called the division body,
that are formed and combined in accordance with a specific set of rules.
There are four (4} divisions in a COBOL program: Identification,
Environment, Data and Procedure.

Division Header
A combination of words followed by a period and a space that indicates
that beginning of a division. The division headers are:

IDENTIFICATION DIVISION
ENVIRONMENT DIVISION

DATA DIVISION

PROCEDURE DIVISION [USE sentence]

Dynamic Access
An access mode in which specific logic records can be obtained from or
placed into a mass storage file in a nonsequential manner (see Random
Access) and obtained from a file in a sequential manner (see Sequential
Access), during the scope of the same OPEN statement.

Editing Character

A single character or a fixed two character combinaticn belonging to the
following set:

Character: Meaning:

B space

0 zero

+ plus

— minus

CR credit

DB debit

Z Zero suppress
* check protect
$ currency sign

comma (decimal point)
period (decimal point)
/ stroke (virgule, slash)

Elementary Item
A data item that is described as not being further logically subdivided.

End of Procedure Division

The physical position in a COBOL source program after which no further
procedures appear.

Entry

Any descriptive set of consecutive clauses terminated by a period and
written in the Identification Division, Environment Division or Data Division
of a COBOL source program.

ND-60.144.02



Environment Clause
A clause that appears as part of an Environment Division entry.

Execution Time
See Object Time.

Extend Mode
The state of a sequential file after execution of an OPEN statement, with

the EXTEND phrase specified, for that file and before the execution of a
CLOSE statement for that file.

Figurative Constant

A compiler generated value referenced through the use of certain reserved
words.

File
A collection of records.

FILE-CONTROL

The name of an environment division paragraph in which the data files for
a given source program are declared.

File Description Entry

An entry in the file sectio of the data division that is composed of the level
indicator FD, followed by a file name, and then followed by a set of file
clauses as required.

File Name
A user defined word that names a file described in a file description entry

or a sort/merge file description entry within the File Section of the Data
Division.

File Organization

The permanent logical file structure established at the time that a file is
created.

File Section
The section of the Data Division that contains file description entries and

sort merge file description entries together with their associated record
descriptions.

Format
A specific arrangement of a set o data.

Group ltem
A named contiguous set of elementary or group items.

High Order End
The leftmost character of a string of characters.

ND-60.144.02



1-O-Control
The name of an Environment Division paragraph in which object program
requirements for specific input-output techniques, rerun points, sharing of
same areas of several data files and multiple file storage on a single
input-output device are specified.

{-O Mode
The state of a file after execution of an OPEN staternent, with the 1-O

phrase specified, for that file and before the execution of a CLOSE
statement for that file.

Identifier
A data name, followed as required, by the syntactically correct combination

of qualifiers, subscripts and indices necessary to make unique reference to
a data item.

Imperative Statement
A statement that begins with an imperative verb and specifies an
unconditional action to be taken. An imperative statement may consist of a
sequence of imperative statements.

Index

A computer storage position or register, the contents of which represent
the identification of a particular element in a table.

Index Data Item
A data item in which the value associated with an index name can be
stored in a form specified by the implementor.

Index Name
A user defined word that names an index associated with a specific table.

Indexed Data Name
An identifier that is composed of a data name, followed by one or more
index names enclosed in parentheses.

Indexed File
A file with indexed organization.

Indexed Organization
The permanent logical file structure in which each record is identified by a
value of one or more keys within that record.

Input File
A file that is opened in the input mode.

Input Mode
The state of a file after execution of an OPEN statement, with the INPUT
phrase specified, for that file and before the execution of a CLOSE
statement for that file.

ND-60.144.02



Input-Output File
A file that is opened in the I-O mode.

Input-Output Section
The section of the Environment Division that names the files and the
external media required by an object program and which provides
information required for transmission and handling of data during
execution of the object program.

Input Procedure

A set of statements that is executed each time a record is released to the
sort file.

Integer
A numeric literal or a numeric data item that does not include any
character positions to the right of the assumed decimal point. Where the
term ‘integer’ appears in general formats, integer must not be a numeric

data item, and must not be signed, nor zero unless explicitly allowed by the
rules of that format.

Invalid Key Condition

A condition, at object time, caused when a specific value of the key
associated with an indexed or relative file is determined to be invalid.

Key
A data item which identifies the location of a record, or a set of data items
which serve to identify the ordering of data.

Key Word

A reserved word whose presence is required when the format in which the
word appears is used in a source program.

Level Indicator

Two alphabetic characters that identify a specific type of file or a position
in hierarchy.

Level Number

A user defined word which indicates the position of a data item in the
hierarchical structure of a logical record or which indicates special
properties of a data description entry. A level number is expressed as a
one or two digit number. Level numbers in the range 1 through 49 indicate
the position of a data item in the hierarchical structure of a logical record.
Levels numbers in the range 1 through 9 may be written either as a single
digit or as a zero followed by a significant digit. Level numbers 77 and 88
identify special properties of a data description entry.

Library Name

A user defined word that names a COBOL library that is to be used by the
compiler for a given source program compilation.

ND-60.144.02



Library Text
A sequence of character strings and/or separators in a COBOL library.

Linkage Section

The section in the Data Division of the called program that describes data
items available from the calling program. These data items may be referred
to by both the calling and called program.

Literal
A character-string whose value is implied by the ordered set of characters
comprising the string.

Logical Operator
One of the reserved words AND, OR or NOT. In the formation of a
condition, both or either of AND and OR can be used as logical
connectives. NOT can be used for logical negation.

Logical Record
The most inclusive data item. The level number for a record is 01.

Low Order End
The rightmost character of a string of characters.

Mass Storage
A storage medium on which data may be organized and maintained in both
a sequential and nonsequential manner.

Mass Storage Control System (MSCS)

An input-output control system that directs, or controls, the processing of
mass storage files.

Mass Storage File
A collection of records that is assigned to a mass storage medium.

Merge File

A collection of records to be merged by a MERGE statement. The merge
file is created and can be used only by the merge function.

Mnemonic Name

A user defined word that is associated in the environment division with a
specified implementor name.

MSCS
See Mass Storage Control System.

Negated Combined Condition
The 'NOT' logical operator immediately followed by a parenthesized

combined condition.

Negated Simple Condition
The 'NOT' logical operator immediately followed by a simple condition.

ND-60.144.02



Next Executable Statement
The next statement to which control will be transferred after execution of
the current statement is complete.

Next Record
The record which logically follows the current record of a file.

Noncontiguous Items
Elementary data items, in the Working-Storage and Linkage Sections,
which bear no hierarchic relationship to other data items.

Nonnumeric Item
A data item whose description permits its contents to be composed of any
combination of characters taken from the computer’s character set. Certain
categories of nonnumeric items may be formed from more restricted
character sets.

Nonnumeric Literal
A character-string bounded by quotation marks. The string of characters
may include any character in the computer's character set. To represent a
single quotation mark character within a nonnumeric literal, two contiguous
quotation marks must be used.

Numeric Character
A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7,
8, 9.

Numeric ltem
A data item whose description restricts its contents to a value represented
by characters chosen from the digits ‘0’ through '9’; if signed, the item may
also contain a '+', "—’, or other representation of an operational sign.

Numeric Literal
A literal composed of one or more numeric characters that also may
contain either a decimal point, or an algebraic sign, or both. The decimal
point must not be the rightmost character. The algebraic sign, if present,
must be the leftmost character.

Object Computer
The name of an Environment Division paragraph in which the computer
environment, within which the object program is executed, is described.

Object Program
A set or group of executable machine language instructions and other
material designed to interact with data to provide problem solutions. In this
context, an object program is generally the machine language result of the
operation of a COBOL compiler on a source program. Where there is no
danger of ambiguity, the word ‘program’ alone may be used in place of the
phrase ‘object program’.

ND-60.144.02



Object Time
The time at which an object program is executed.

Open Mode

The state of a file after execution of an OPEN statement for that file and
before the execution of a CLOSE statement for that file. The particular

open mode is specified in the OPEN statement as either INPUT, OUTPUT,
I-O or EXTEND.

Operand
Whereas the general definition of operand is 'that component which is
operated upon’, for the purposes of this publication, any lower case word
(or words) that appears in a statement or entry format may be considered

to be an operand and, as such, is an implied reference to the data
indicated by the operand. ’

Operational Sign

An algebraic sign, associated with a numeric data item or a numeric literal,
to indicate whether its value is positive or negative.

Operational Sign
An algebraic sign, associated with a numeric data item or a numeric literal,
to indicate whether its value is positive or negative.

Option

A phrase in which a choice can be made between alternate wordings.

Optional Word
A reserved word that is included in a specific format only to improve the
readability of the language and whose presence is optional to the user
when the format in which the word appears is used in a source program.

Output File
A file that is opened in either the output mode or extended mode.

ND-60.144.02



Paragraph Header
A reserved word, followed by a period and a space that indicates the
beginning of a paragraph in the identification and environment divisions.

Paragraph Name

A user defined word that identifies and begins a paragraph in the
procedure division.

Phrase

A phrase is an ordered set of one or more consecutive COBOL character

strings that form a portion of a COBOL procedural statement or of a
COBOL clause.

Physical Record
See Block.

Prime Record Key
A key whose contents uniguely identify a record within an indexed file.

Procedure

A paragraph or group of logically successive paragraphs or a section or
group of logically successive sections, within the Procedure Division.

Procedure Name
A user defined word which is used to name a paragraph or section in the

Procedure: Division. [t consists of a paragraph name (which may be
qualified), or a section name.

Program Name
A user defined word that identifies a COBOL source program.

Punctuation Character
A character that belongs to the following set:

Character: Meaning:

. comma
; semicolon
period
quotation mark (double)
( left parenthesis
) right parenthesis
space
= equal sign

Qualified Data-Name

An identifier that is composed of a data-name followed by one or more

sets of either of the connectives OF and IN followed by a data-name
qualifier.

ND-60.144.02



G-14

Qualifier
1. A data-name which is used in a reference together with another data
name at a lower level in the same hierarchy.
2. A section name which is used in a reference together with a
paragraph name specified in that section.
3. A library name which is used in a reference together with a text

name associated with that library.

Random Access

An access mode in which the program specified value of a key data item
identifies the logical record that is obtained from, deleted from or placed
into a relative or indexed file.

Record
See Logical Record.

Record Area

A storage area allocated for the purpose of processing the record
described in a record description entry in the file section.

Record Description
See Record Description Entry.

Record Description Entry
The total set of data description entries associated with a particular record.

Record Key

A key, either the prime record key or an alternate record key, whose
contents identify a record within an indexed file.

Record Name

A user defined word that names a record described in a record description
entry in the data division.

Reference Format

A format that provides a standard method for describing COBOL source
programs.

Relation
See Relational Operator.

Relation Character
A character that belongs to the following set.

Character: Meaning:

> greater than
< less than

= equal to

ND-60.144.02



Relation Condition
The proposition, for which a truth value can be determined, that the value
of an arithmetic expression or data item has a specific relationship to the

value of another arithmetic expression or data item (see Relational
Operator).

Relational Operator
A reserved word, a relation character, a group of consecutive reserved
words, or a group of consecutive reserved words and relation characters

used in the construction of a relation condition. The permissible operators
and their meanings are:

Relational Operator: Meaning:

IS [NOT} GREATER THAN Greater than or not greater than
IS [NOT] >

IS [NOT] LESS THAN Less than or not less than

IS [NOT] <

IS [NOT] EQUAL TO Equal to or not equal to

IS [NOT]

Relative File
A key whose contents identify a logical record in a relative file.

Relative Organization
The permanent logical file structure in which each record is uniquely

identified by an integer value greater than zero, which specifies the
record’s logical ordinal position in the file.

Reserved Word
A COBOL word specified in the list of words which may be used in COBOL

source programs, but which must not appear in the programs as user
defined words or system names.

Routine Name

A user defined word that identifies a procedure written in a language other
than COBOL.

Run Unit

A set of one or more object programs which function, at object time, as a
unit to provide problem solutions.

Section

A set of zero, one, or more paragraphs or entries, calied a section body,
the first of which is preceded by a section header. Each section consists of
the section header and the related section body.

Section Header

A combination of words followed by a period and a space that indicates

the beginning of a section in the Environment, Data and Procedure
Division.

ND-60.144.02



In the Environment and Data Divisions, a section header is composed of
reserved words followed by a period and a space. The permissibie section
headers are:

In the Environment Division:

CONFIGURATION SECTION
INPUT-OUTPUT SECTION

in the Data Division:

FILE SECTION
WORKING-STORAGE SECTION
LINKAGE SECTION

In the Procedure Division, a section header is composed of a section name,
followed by the reserved word SECTION, followed by a period and a space.

Section Name
A user defined word which names a section in the Procedure Division.

Sentence
A sequence of one or more statements, the last of which is terminated by
a period followed by a space.

Separator
A punctuation character used to delimit character strings

Sequential Access
An access mode in which logical records are obtained from or placed into
a file in a consecutive predecessor to successor logical record sequence
determined by the order of records in the file.

Sequential File
A file with sequential organization.

Sequential Organization
The permanent logical file structure in which a record is identified by a
predecessor successor relationship established when the record is placed
into the file.

Sign Condition
The proposition, for which a truth value can be determined, that the
algebraic value of a data item or an arithmetic expression is either less
than, greater than, or equal to zero.

ND-60.144.02



Simple Condition
Any single condition chosen from the set:

relation condition

class condition
condition-name condition
switch status condition
sign condition

{simple condition)

Sort File

A collection of records to be sorted by a SORT statement. The sort file is
created and can be used by the sort function only.

Sort/Merge File Description Entry
An entry in the file section of the Data Division that is composed of the
level indicator SD, followed by a file name, and then followed by a set of
file clauses as required.

SOURCE COMPUTER
The name of an Environment Division paragraph in which the computer
environment, within which the source program is compiled, is described.

Source Program
Although it is recognized that a source program may be represented by
other forms and symbols, in this document it always refers to a
syntactically correct set of COBOL statements beginning with an
Identification Division and ending with the end of a Procedure Division. In
contexts where there is no danger of ambiguity the word “program’ alone
may be used in place of the phrase “"source program'’.

Special Character
A character that belongs to the following set:

Character: Meaning:

+ plus sign

— minus sign

* asterisk

/ stroke (virgule, slash)
= equal sign

$ currency sign

comma (decimal point)
semicolon

period (decimal point)
quotation mark (double)

{ left parenthesis

) right parenthesis

> greater than symbol
< less than symbol

quotation mark (single)

ND-60.144.02



Special Character Word
A reserved word which is an arithmetic operator or a relation character.

SPECIAL NAMES
The name of an Environment Division paragraph in which implementor
names are related to user specified mnemonic names.

Special Registers
Compiler generated storage areas whose primary use is to store
information produced in conjunction with the use of specific COBOL
features.

Statement

A syntactically valid combination of words and symbols written in the
Procedure Division beginning with a verb.

Subprogram
See Called Program.

Subscript
An integer whose value identifies a particular element in a table.

Subscripted Data Name

An identifier that is composed of a data name followed by one or more
subscripts enclosed in parentheses.

System Name

A COBOL word which is used to communiate with the operating
environment.

Table

A set of logically consecutive items of data that are defined in the Data
Division by means of the OCCURS clause.

Table Element
A data item that belongs to the set of repeated items comprising a table.

Truth Value

The representation of the result of the evaluation of a condition in terms of
one or two values

true
false

Unary operator

A plus (4+) or a minus (—) sign, which precedes a variable or a left
parenthesis in an arithmetic expression and which has the effect of
multiplying the expression of +1 or —1 respectively.

Unit

A module of mass storage the dimensions of which are determined by
each implementor.

ND-60.144.02



User Defined Word

A COBOL word that must be supplied by the user to satisfy the format of a
clause or statement.

Variable

A data item whose value may be changed by execution of the object
program. A variable used in an arithmetic expression must be a numeric
elementary item.

Verb

A word that expresses an action to be taken by a COBOL compiler or
object program.

Word

A character-string of not more than 30 characters which forms a user
defined word, a system name or a reserved word.

Working-Storage Section
The section of the Data Division that describes Working-Storage data

items, composed either of noncontiguous items or of Working-Storage
records or of both.

77 Level Description Entry

A data description entry that describes a noncontiguous data item with the
level number 77.

ND-60.144.02






APPENDIX H
SiIZE OF TEMPORARY FIELDS

Execution by the compiler of certain arithmetic statements or operations can
generate intermediate results which will be held in temporary fields.

Intermediate results can be obtained when:

1. A COMPUTE statement assigns the value of an arithmetic expression to
more than one data item.

2. ADD or SUBTRACT statements are encountered which have multiple
operands immediately following the verb.

3. IF or PERFORM statements containing arithmetic expressions are executed.
Using the COMPUTE statement as an example, the size of temporary fields can
be ascertained as follows.

Each numeric item within the arithmetic expression is examined and a temporary
field formed which can contain the maximum number of digit positions found in

any examined item before the decimal point, concatenated with the maximum
number of digit positions of any examined item following a decimal point.

EXAMPLE:
If we have:
COMPUTE X = A" B

where A is declared as PIC S9(5)Vv99999
and B is declared as PIC S9(7)Vv9999

Then the temporary field will have a size of:
$9(7)V99999

If the total number of positions when the concatenation is carried out is greater
than 18, then the number of digit positions will be truncated from the right.

ND-60.144.02



COMPUTATIONAL DATA ITEMS

The size of a field for a COMPUTATIONAL item is a single word where there are
four or less integer positions before the decimal point, and a double word where
there are five or more such positions.

However, for the purposes of calculating the sizes of temporary fields, a
COMPUTATIONAL item occupying a single word and not having a picture
definition, is treated as though it has five places before the decimal point, and a
double word item as though it has ten. COMPUTATIONAL items are integers and
have no places after the decimal point.

A COMPUTATIONAL item with a picture definition will have a temporary field
formed containing the maximum number of digit positions, concatenated with a
sign position.

For example, An item declared as:

PIC S9(2) COMPUTATIONAL

with a value of 11, will have a temporary field of 3 positions.

ND-60.144.02
Rev. A



APPENDIX |
INDEXED/RELATIVE I-O STATUS SUMMARY

The following table summarizes possible statuses from the Indexed/Relative [-O verbs:

STATUS VERB
I3
x
: ;
= . L L
5 c 2 o
Q = w Wilg |~ |-
o c Z o lool S0 lx
= @ wilolagla |z |23 |«
3 o. D | oW | =
3 S ©C lolziz |2 || |»
00’ oK X | X X X X [x |X
10 End of file
‘217 Wrong sequence of words X X X
'22' Duplicates not allowed X X
23 Record not found X X X
24 No more space on file X
‘68" Record locked by another program XX X I X
78’ Record modified by another program X X
‘94 Error flag set X
‘95’ File not initialized X
97 File access violation X X X |IX [X |[X [|X
‘98’ (See note)* X2 X3
‘99’ SINTRAN file system error X I X
"Note: 1 : Read with lock

Z . File does not correspond to given description
3 . File already closed

ND-60.144.02






APPENDIX J
EXECUTING A SIMPLE PROGRAM

In this appendix, exampies are given of how to compile, load and run a simple
program on the ND-100 and ND-500 computers. The program also demonstrates
some of the features of the ND COBOL.

To try out the example, you must first write this program onto the file
"X-001:symb™, using one of the ND editors:

IDENTIFICATION DIVISION.
PROGRAM-ID. X-001.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 NAME PIC X{30).
01 I comP.

PROCEDURE DIVISION.
1000. BLANK SCREEN.
DISPLAY (10, 1) "Your name: "
ACCEPT (10, 12) NAME WITH PROMPT.
BLANK LINE 10.
DISPLAY ( 1, 1) FRAME 18 * 75 WITH HEADING.
DIAPLAY ( 2, 28) "My name 1is”.
00 FOR I FROM 4 to 17
DISPLAY (I, 3) NAME WITH BLINK
DISPLAY (I, 42) NAME WITH INVERSE-VIDEQ
END-DO.
DISPLAY (22, 10} "You have now used the ND COBOL System'’
WITH UNDERLINE.
STOP RUN.

ND-60.144.02
Rev. B



J- 2

Running the Example on an ND-100
Computer

The following listing of a terminal session shows how to compile, load and
execute the program on an ND-100:

In this example, the user’s inputs are shown underlined, with a "'+"' indicating a
carriage return from the user.

@COBOL~
ND-100 COBOL Compiler ... 203075-F

“COMPILE X-001, 1, "X-001"«

ND-100 COBOL Compiler ... 203075-F TIME: 14.498.18 DATE:
84.01. 11

SOURCE FILE: X-001
OBJECT FILE: "X-001"

MODES: 2-BANK
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. X-001.
3
4 DATA DIVISION.
5 WORKING- STORAGE SECTION.
6 01 NAME PIC X{30).
7 01 I Comp.
8
9 PROCEDURE DIVISION.
10 1000. BLANK SCREEN.
11 DISPLAY {10, 1) "Your name:’’.
12 ACCEPT (10, 12) NAME WITH PROMPT.
13 BLANK LINE 10.
14 DISPLAY ( 1, 1) FRAME 18 * 75 WITH HEADING.
15 DISPLAY ( 2, 28) "My name is".
16 DO FOR I FROM 4 TO 17
17 DISPLAY (I, 3) NAME WITH BLINK
18 DISPLAY (I, 42) NAME WITH INVERSE-VIDEO
19 END-DO.
20 DISPLAY (22, 10)
"You have now used the ND COBOL System”
21 WITH UNDERLINE.
22 STOP RUN.

*** NO ERRORS FOUND ***

ND-60.144.02
Rev. B



J -3

“EXIT«

SNRL

RELOCATING LOADER LDR-19351
"PROG-FILE “X-001"«

*LOAD X-001+

FREE: 000211-177777 .... FREE DATA AREA: 000464-177777
"LOAD COBOL - 2BANK -

FREE: 031635-177777 .... FREE DATA AREA: 006717-177777
EXIT~

®X-001-

Your name:<YOUR NAME>« . .. ... ... .. ... .. ...
.. and watch the screen.

If you know how to use MODE-files, then try executing a :MODE-file with the
following contents:

@CcoBOL
COMPILE X-001, 1, "X-001"
EXIT

ONRL

PROG-FILE ""X-001"
LOAD X-001

LGAD COBOL-2BANK
EXIT

Then, try executing X-001.

ND-60.144.02
Rev. B



J.2

Running the Example on an ND-500
Computer

The following listing of a terminal session shows how to compile, load and
execute the program on an ND-500:

In this example, the user’s inputs are shown underlined, with a " * indicating
a carriage return from the user.

ND-500 MONITOR VERSION E 83.12. 9/83.12.13
N500: COBOL-

ND-500 COBOL Compiler ~ 11. Jan 1984

"COMPILE X-001,1,""X-001"«

NO-500 COBOL Compiler - 11. Jan 1984 TIME 10.15.44 DATE:
84.01.18

SOURCE FILE: X-001
OBJECT FILE: "X-001"

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. X-001.

3

4 DATA DIVISION.

5 WORKING-STORAGE SECTION.

6 01 NAME PIC X{30).

7 01 1 COMP.

8

9 PROCEDURE DIVISION.

10 1000. BLANK SCREEN.

11 DISPLAY (10, 1) "Your name:".

12 ACCEPT (10, 12) NAME WITH PROMPT.

13 BLANK LINE 10.

14 DISPLAY ( 1, 1) FRAME 18 * 75 WITH
HEADING.

15 DISPLAY ( 2, 28) "My name 1is'".

16 DO FOR I FROM 4 T0 17

17 DISPLAY (I, 3) NAME WITH BLINK

18 DISPLAY (1, 42) NAME  WITH
INVERSE-VIDEC

19 END-DO.

20 DISPLAY (22, 10) "You have now used the

ND COBOL System”
21 WITH UNDERLINE.
22 STOP RUN.

*** NO ERRORS FOUND ***

ND-60.144.02
Rev. B



Then,

"EXIT«
NG00: LINK-LOAD«

ND-lLinkage-Loader - F

N1l entered:

N1l: SET-DOMAIN "X-001"

10. September 1983 Time: 00.07

18. January 1984 Time: 10:15

The "DESCRIPTION-FILE" will now be initialized

N11: LOAD X-001«

N11l: LOAD COBOL-LIB«
COBOL-LIB-F-840109

Program:.... .. 33170 PO1

N11: LOAD EXCEPTION-LIB«

EXCEPTION-LIB-204157A

Porgram:.. .. .. 33170 PO1

N11l: EXIT~

N500: X-001«

see what happens.

Data: ............... 1124 DO1
Data: .............. 21034 001
Data: .............. 21034 D01

if you know how to use MODE-files, then try executing a :MODE-file with the
following contents:

Then,

etc.

@ND
COBOL

COMPILE X-001, 1, "X-001"

EXIT

LINK-LOAD
SET-DOMAIN ""X-001"
LOAD X-001

LOAD COBOL-LIB
LOAD EXCEPTION-LIB
EXIT

try executing X-001:

OND.-
ND-500: X-001«

ND-60.144.02
Rev. B



J-6



1

INDEX

abbreviated combined relation conditions
ACCEPT statement
ACCEPT-ERROR statement
access modes
ADD statement
AFTER ADVANCING option, with the WRITE statement
AFTER option of the INSPECT statement
alignment rules
ALL, literal figurative constant
ALL option of INSPECT statement
alphabetic class of data
alphabetic items in PICTURE clause
alphanumeric class of data
alphanumeric items,
in PICTURE clause
edited, in PICTURE clause
ALTER statement
alternate record key
ALTERNATE RECORD KEY clause
AND logical operator
areas, continuation
arithmetic expression
arithmetic operators,
definition
in format notation
arithmetic statements
common options for
definition
incompatible data in
multiple results in
overlapping operands in
ASCENDING/DESCENDING option with SORT/MERGE
statements

ASCENDING/DESCENDING KEY option with the OCCURS

clause
ASCIHI character set
ASSIGN clause
with SORT/MERGE statements
assumed decimal point, in PICTURE character string
AT END condition

ND-60.144.02
Rev. A

6.4
6.6.1.1
6.6.1.2
4212
6.3.1.4
6.7.1.13
6.6.3
54.1.2
2232
6.6.4
541.2
5425
541.2

5425
5425
6.8.1
4211
4.2.11
6.4
224
6.2.1

6.2.1.1
preliminary

6.3
6.3
6.3
6.3
6.3

8.2.1
Appendix B
4224

7.3

5426
6.7.1.4



batch job, compiling, loading and executing

BCD (binary coded decimal)

BEFORE ADVANCING option with the WRITE statement
BEFORE/AFTER option of the INSPECT statement
binary arithmetic operators

binary representation of decimal digits

BLANK statement

BLANK WHEN ZERO clause

BLOCK CONTAINS clause

block, definition of

braces, in format definition

brackets, in format definition

CALL statement
called program
calling program
categories of data
character set, COBOL
character-string, maxinmum length in PICTURE clause
character-strings, definition of
characters,

editing (symbols)

in PICTURE clause

punctuation

special
CHARACTERS option in BLOCK CONTAINS clause
class condition
classes of data
clause, definition of
CLOSE statement
COBOL,

character set

divisions

format

language description

syntax

words, definition of
combined conditions
comment lines
common data in interprogram communication
common options in arithmetic statements
comparison of nonnumeric operands
comparison of numeric operands
compilation,

of a COBOL program

sample of a
compile command
compiler directing,

sentence

statement

statements

ND-60.144.02
Rev. A

1.3.3
5421
6.7.1.13
6.6.4

6.2.1.1
54211
6.6.1.3
54.2.2
53.1.1

5
preliminary
preliminary

9.1.4.1
9.1.2
9.1.2
54.1.2
221
5425
222

5426
5425
Appendix G
Appendix G
5311

6.4

5412

2.1.2

6.7.16

221

2.1
preliminary
2

Appendix A
223

6.4

224

9.1.2

6.3.1

6.4

6.4

1.3.1
1.3.1
1.3.1

6.1.2
6.1.2
6.9



compiler error messages
complex conditions
computational options (COMPUTATIONAL,
COMPUTATIONAL-1, COMPUTATIONAL-2 and
COMPUTATIONAL-3)
COMPUTE statement
condition,
AT END
class
condition-name
evaluation rules
INVALID KEY
relation
sign
conditional expressions,
comparison of operands in,
nonnumeric
numeric
definition of
simple
conditional
sentence
statement
statements
conditional variable
conditions,
combined
complex
negated simple
relation, abbreviated combined
CONFIGURATION SECTION of Environment Division
connectives
continuation areas
CONTINUE statement
controt, transfer of
COPY statement
CORRESPONDING option,
with the MOVE statement
COUNT IN option of the UNSTRING statement
CPU TIME system information and the ACCEPT statement
cross reference example
CURRENCY IS clause
currency symbol,
default
in PICTURE clause
current record pointer

Data Division,
definition of
description
entries

ND-60.144.02
Rev. A

Appendix C
6.4

54.2.11
6.3.1.5

6.7.1.4
6.4
6.4
6.4
6.7.1.3
6.4
6.4

6.4
6.4
6.4
6.4
6.4

6.1.2
6.1.2
6.5
6.4

6.4

6.4

6.4

6.4

4.1
2.2.32
224
6.8.2
911
6.9.1
6.3.1.3
6.6.3
6.6.7
6.6.1
Appendix E
4.1.3.1

5425
5425
6.7.1.5

2113

53



data,
categories of
classes of
description
external
interndl
manipulation statements
record, size of in RECORD CONTAINS clause
reference
DATA NAME FILLER clause
data-names, duplication of
DATA RECORDS clause
DATE, system information and ACCEPT statement
DATE-COMPILED paragraph
DAY, system information and ACCEPT statement
debugging,
lines
decimal point,
actual in PICTURE character-string
assumed in PICTURE character-string
DECIMAL POINT IS COMMA clause
decimal values of ASCIl characters
declarative procedures
DECLARATIVES
DELETE statement
DELIMITED BY ALL option of the UNSTRING statement
DELIMITED BY option,
with the INSPECT statement
with the STRING statement
with the UNSTRING statement
DEPENDING ON option,
with the GO TO statement
with the OCCURS statement
diagnostic messages,
format of
DISPLAY option of the USAGE clause
DISPLAY statement
DIVIDE statement
Divisions,
coBOL
Data, definition of
Data, description
Environment, definition of
Environment, description
Identification, definition of
Identification, description
Procedure, definition of
Procedure, description
DO statement
DUPLICATES phrase,
of ALTERNATE RECORD KEY clause
dynamic access mode

ND-60.144.02
Rev. A

54.1.2
541.2
54.1,54.2
51

5.1

6.6
53.14
5412
5423
5412
531.2
6.6.1

3

6.6.1

411

5.4.2.6
5426
4132
Appendix B
6.1.1

6.1.1

6.7.1.7

6.6.7

6.6.4
6.6.6
6.6.7

6.8.3

8.2.1.1
Appendix C
1.2

54210
6.6.1.4
6.3.1.6

2141
2.1.1.3
5
21.1.2
4
21141
3
2114
6

6.5.2

4211
421.2



editing,
characters
insertion
replacement
rules for the PICTURE clause
signs
elementary item,
size of
elementary move, in MOVE statement
ELSE-IF statement
END DECLARATIVES
END-IF statement
entry, definition of
Environment Division,
definition of
description
EQUAL TO relational operator
evaluation rules,
in arithmetic expressions
for conditions,
nested parentheses in,

EXCEPTION/ERROR PROCEDURE with the USE statement

EXIT statement
EXIT PROGRAM statement
EXPORT clause
expression,
arithmetic
conditional
EXTEND option of the OPEN statement
external data

FD, FILE SECTION level indicator

figurative constants

file, definition of

File description

FILE-CONTROL paragraph

FILE SECTION

FILE STATUS clause,
I-O status

FILLER key word

fixed insertion

floating insertion

format notation, used in this manual

FROM identifier option,
with the ACCEPT statement
with the REWRITE statement
with the WRITE statement

GIVING option with SORT/MERGE statements
GO TO statement
group item

hexadecimal representation of decimal digits
HIGH VALUE, HIGH VALUES, figurative constants
ND-60.144.02
Rev. A

5426
5426
54.2.6
5426
5412
5411
54.25
6.6.4
6.5.1
6.1.1
6.5.1
2.1.2

2.1.1.2
4
6.4

6.2.1.1

6.4

6.4

6.7.1.12
6.8.3
9.1.1,9.1.43
54.2.13

6.2.1
6.4
6.7.1.8
5.1

5.3.1
2232
5.1
5.3.1
422
53
4224
6.7.1.1
54.23
5426
5.4.2.6
preliminary

6.6.1
6.7.1.10
6.7.1.13

751,752
6.8.4
54.1.2

5.4.2.11
2232



Identification Division,
definition of
description

identifier

IF statement

IMMEDIATE-WRITE option

imperative
sentence
statement

IMPORT clause

index,
data item
names

indexed organization
indexing,
direct
relative
input-output,
statements
status

INPUT PROCEDURE option with the SORT statement

ISAM file requirements
insertion,
editing
fixed
floating
simple
special
symbols
INSPECT statement
integer variables
interprogram communication
internal data
INVALID KEY condition
INVALID KEY option
with the DELETE statement
with the REWRITE statement
with the START statement
with the WRITE statement
I-O CONTROL paragraph
-0 status

JUSTIFIED clause

key,

alternate record

prime record

record, in indexed organization
key words,

definition of

description

ND-60.144.02
Rev. A

2111

6.1.2
6.5.1
6.7.1.8

6.1.2
6.1.2
9.1.3

8.3
8.3

4211
8.1.1.2
8.1.1.2
8.1.1.2

6.7
6.7.1
7.51
6.7.1.8

542586
5426
54256
5426
5426
5426
6.6.3
5421

51
6.7.1.3

6.7.1.7
6.7.1.10
6.7.1.11
6.7.1.13
423
6.7

5424
4211
4211

4211

2232
preliminary



LABEL RECORDS clause
language description
LEADING option of the SIGN clause
level,
concept of
numbers
numbers in data description entry
LINKAGE SECTION
literal,
definition of
nonnumeric
numeric
load and execute a program

tocking of records in Multi-user ISAM

logical operator in complex conditions

logical operators in format notation

togical record

LOW VALUE, LOW VALUES, figurative constants

MANUAL-UNLOCK option
MERGE

statement
messages,

compiler

diagnostic

run-time
mnemonic name as ACCEPT statement operand
MOVE statement
multidimensional tables
MULTIPLY statement
Multi-user ISAM
MULTI-USER-MODE option

negated simple conditions
nested IF statements
nested parentheses in condition evaluation rules
NEXT option of the READ statement
nonnumeric literal
NOT, logical operator
numeric,
class of data
edited items in the PICTURE clause
items in the PICTURE clause
literal

ND-60.144.02
Rev. A

53.1.3
2
5428

5411
5411
542
9.13

2233
2233
2233
1.3.2

6.7.18,6.7.19
6.7.1.12

6.4
preliminary
5.1

2232

6.7.1.8
7
753

Appendix C
Appendix C
Appendix C
6.6.1

6.6.4

8.3.1.1
6.3.1.7
6.7.1.9
6.7.1.8

6.4
6.5.1.1
6.4
6.7.1.9
2233
6.4

5412
5425
5425
2233



OBJECT COMPUTER paragraph
object program, definition of
OCCURS clause
octal values of ASCIl characters
ON OVERFLOW option,
with CALL statement
with STRING statement
with UNSTRING statement
OPEN statement
operands, comparison of,
nonumeric
numeric
operational signs
operators,
arithmetic
binary
unary
option, definition of
optional words, definition of

OR, logical operator
ORGANIZATION clause

organization,
of data
indexed
relative
sequential
OUTPUT PROCEDURE option with SORT/MERGE statements

packed decimal format
paragraph,
definition of
description
paragraph name
parentheses in evaluation rules
PERFORM statement,
example of use
phrase, definition of
physical record,
definition of
size of in BLOCK CONTAINS clause
PICTURE clause,
editing rules for
list of symbols for
POINTER option,
with the STRING statement
with the UNSTRING statement
precedence rules for PICTURE characters
prime record key
procedure, definition of

ND-60.144.02
.Rev. A

412

3

8, 8.2.1
Appendix B

9.1.4.1
6.6.6
6.6.7
6.7.1.8

6.4
6.4
54.1.2

6.2.1.1
6.2.1.1
6.2.1.1
21.2

2232

6.4
4224

4211
4.2.1.1
4211
4211
7.5.1

54211

2.1.2
6.1.2
6.1.2
6.2.1.2
6.8.5
6.8.6
2.1.2

5.1

5311
5425
5426
5425

6.6.6
6.6.7
54.2.6
4211
6.1.2



Procedure Division,

definition of

description
procedure branching statements
PROGRAM ID paragraph
punctuation characters

qualification, definition of
qualifiers, definition of
QUOTE, QUOTES, figurative constnsts
quotes,
embedded
single and double in nonnumeric literals

random access mode
READ statement
READ WITH LOCK (Multi-user ISAM)
RECORD CONTAINS clause,
with SORT/MERGE
record,
definition of
fixed length with RECORD CONTAINS clause
logical, definition of
physical, definition of
size of in RECORD CONTAINS clause
variable length with OCCURS DEPENDING ON clause
record description,
entries
level numbers
record key with indexed files
RECORD KEY clause
RECORDING MODE clause
REDEFINES clause
relation condition
relative key data item
relative organization
relative record number
RELEASE statement
replacement editing
required words as key words
RESERVE clause
reserved words,
definition of
description
list of
restrictions, compiler
RETURN statement
REWRITE statement
ROUNDED option

ND-60.144.02
Rev. A

2114

6.8

2234

5.4.1.2
54.1.2
2232

2233
2233

4212
6.7.1.9
6.7.1.9
53.1.4
7.4

6.7
5214
5.1

5.1
52.1.4
8.2.1

5.3
5411
4211
4211
5315
5427
6.4
4211
42141
4211
71,75
54.2.6
2.23.2
4224

2232
preliminary
Appendix D
1.2.2
72,75
6.7.1.10
6.3.11



—10—

with the ADD statement

with the COMPUTE statement

with the DIVIDE statement

with the MULTIPLY statement

with the SUBTRACT statement
run-time messages

SAME AREA clause
sample of a compilation
Screen Handling
Screen handling examples
SD, FILE SECTION fevel indicator
SEARCH statement
section,
defintion of
description
section header
section name
SELECT clause
sentence,
compiler directing
conditional
definition of
description
imperative
SEPARATE CHARACTER option with the SIGN clause
separators, definition of
sequential,
access mode
organization
SET statement
SIGN clause
sign condition
signed data
signs,
editing
operational
simple,
conditions
insertion
SIZE ERROR option
size of temporary fields
slack bytes
SORT,
statement
SOURCE COMPUTER paragraph
source program
SPACE, SPACES, figurative constants
special,
character words
insertion
registers

ND-60.144.02
Rev. A

6.3.1.4
6.3.1.5
6.3.16
6.3.1.7
6.3.1.8
Appendix C

423
1.3
6.6.1
6.6.2
7.4
8.3.1

2.1.2
6.1.2
6.1.2
6.1.2
422

6.1.2
6.1.2
21.2
6.1.2
6.1.2
5428
2234

4212
4211
8.3.2
5428
6.4
5412

53.1.2
53.1.2

6.4

5426
6.3.1.2
Appendix H
5429

7

751

411

3

2232

2232
5426
2232



—11—

SPECIAL NAMES paragraph
standard alignment rules
START statement
statement,
compiler directing
conditional
definition of
description
imperative
status keys
STOP statement
STOP RUN statement,
in interprogram communication
with the CLOSE statement
STRING statement
strings, character, definition of
subscript,
definition of
description
SUBTRACT statement
suppression, zero
symbols,
insertion
used in PICTURE clause
SYNCHRONIZED clause
syntax, COBOL, complete language skeleton
system DAY/DATE/TIME/CPU TIME
system name

table,
element
handling
temporary fields
TEXT-FILE(T)
TPS-MODE, compile-time command

TIME, system information and ACCEPT statement

TRAILING option in the SIGN clause
transfer of control

unary arithmtic operators
UNLOCK statement
UNSTRING statement
USAGE clause
USAGE IS INDEX clause
USE sentence, see declarative procedures
USE statement
user defined words
USING option,
with the CALL statement
with SORT/MERGE statements

ND-60.144.02
Rev. A

413
54.1.2
6.7.1.11

6.1.2
6.1.2
212
6.1.2
6.1.2
6.7.1.1
6.8.7

9.1.1
6.7.1.6
6.6.5
222

8

8.1.1.1
6.3.1.8
54256

5.4.2.6
54.25
5.4.2.9
Appendix A
6.6.1

2.2.31

8

8

Appendix H
5.3.1
Appendix F
6.6.1

5428

9.1.1

6.2.1.1
6.7.1.12
6.6.6
54.2.10
8.2.4

6.7.1.13
2.2.3.1

9.1.4.2
7.5.1



12—

VALUE clause
VALUE OF FILE-ID IS clause
variable, integer, range of permissible values
variable length,
elementary items in RECORD CONTAINS clause
tables in OCCURS DEPENDING ON clause
VARYING option,
with PERFORM statement
with SEARCH statement
verbs, as key words

WITH DEBUGGING MODE clause
WITH NO ADVANCING option, with DISPLAY statement
words,

COBOL

key

optional

reserved

special character

user defined
WORKING-STORAGE SECTION
WRITE statement

XREF, compile time command

ZERO, ZEROS, ZEROES, figurative constants
zero suppression

01 tevel
77 level
88 level

ND-60.144.02
Rev. A

54212
53.1.86
5.4.2.11

5314
821,823

6.8.4
8.3.1
2232

411
6.6.2

223

2232
2232
2232,
Appendix D
2232
2231

54

6.7.1.14

Appendix E

2232
54286

5411
5411
5411



LR R R T SEND Us YOUR COMMENTS!!! W W W W e W AW WK N W

Please let us know if you
* find errors
* cannot understand information
* cannot find information
* find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell

us if you like the manual!

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader’'s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

sxxaunsusnsxs  HELP YOURSELF BY HELPING US!! . ovvunnsnnes

Manual name: ND COBOL. Reference Manual Manual number: ND-60.144.02 Rev. B

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date:

Company: Position:

Address:

What are you using this manual for ?

NOTE! Send to:

This form is primarily for Norsk Data A.S e ||
documentation errors. Software and Documentation Department

system errors should be reported on P.O. Box 25, Bogerud Norsk Data’s answer will be found

Customer System Reports.

Oslo 6, Norway on reverse side



Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
Oslo 6, Norway






