
ND-500
Loader/Monitor

ND-60.136.04
Rev. A

N 0-500
Loader/Monitor

N D-60.136.04
Rev. A

NOT/CE

The information in this document is subiect to change without notice. Norsk
Data AS assumes no responsibility for any errors that may appear in this docu—
ment. Norsk Data AS assumes no responsibility tor the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. lt may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data AS.

Copyright © 1982 by Norsk Data AS.

Printing Notes

01/81 Version or 7
”07/81 Version 02
01/82 Version 03
09/82 Version 04
05/83 Revision A

The foliowing pages have been revised or added:

V xiii. 68, 69,99,14Z,158,170,172,172a,172b,173,190

MW On page 160 the subcommands PROC-TAB and HW-SEGM-TAB have been removed.

A” @500 Lo’eder/Monitor
Publ. No. ND 60.136.04A
May 1983

Norsk Data A.S
Graphic Center(I N) IN!

’ P.O.Box 25, Bogerud
NOlSk Data 0621 Oslo 6, Norway

2: we

PREFACE

THE PRODUCT

This manual describes

Linkage-Loader ND—10319 version

C)
(3

ND—SOO Monitor ND»10320 version

The ND-SOO Monitor is an extension of the Sintran III operating system
which provides for program execution on the ND-SOO computer. The
Linkage-Loader runs as an ND—SOO program, while the ND-SOO Monitor is
an integral part of the Sintran III VSE/SOO operating system.

The ND—SOO memory management system is described in the ND-SOO CPU
Reference Manual. However, Sintran III does not utilize the hardware
fully, as a process may consist of one domain only.

THE READER

This manual is written for programmers and operators who want to load
and run programs on the ND—SOO. It also describes the Monitor commands
available to the system supervisor for maintaining proper control over
ND-SOO resources.

FREREQUISITE KNOWLEDGE

The reader is assumed to have some previous knowledge of the ND—SOO,
the ND-lOO and the Sintran III operating system. Depending on the
intended use of the NDn500 computer, this may vary from knowing how to
compile a simple program with only a rudimentary knowledge of the
memory management system (for a programmer with timesharing/background
requirements only) to familiarity with the hardware configuration,
ND—lOO segment file and RT loader structure (for the system
supervisor).

Necessary information is found in the following manuals:

ND—SOO CPU Reference Manual (ND-05.009)
SINTRAN III Reference Manual (ND~60.128)
SINTRAN III System Supervisor (ND~60.103)
SINTRAN III RT Loader (ND—60.051)
SINTRAN III Real Time Guide (ND—60.133)

ND-60.136.04

vi

THE MANUAL

This manual will give the reader information about how to link
relocatable modules to make an executable NDvSOO program (domain), and
now to execute programs on the ND—SOO under the Sintran III operating
system.

The manual should be used for reference; it is not intended to be a
textbook in loader and monitor use. Each command description is
independent of others, and can be read without knowing other commands
described. However, the first chapters contains some introductory
information about the ND—SOO system.

A thorough understanding of the ND-SOO memory management system and
trap handling is required to fully utilize the ND-SOO. A detailed
description may be found in the ND—SOO CPU Reference Manual ND-05.009
chapters u and 6.

CHANGES FROM PREVIOUS VERSION

This manual which is a new version (ND-60.136.93) of the previous (ND—
60.136.03 of january 1982) is mainly written to document the changes
made innthe Linkage~Loader and the ND—SOO Monitor in conjunction with
the the H—version of Sintran III. There are changes in some commands,
command parameters and monitor calls, and a few commands, and several
monitor calls are added.

ND—60.136.0u

VU

T A B L E O F C 0 N T E N T S

Section Page

1. INTRODUCTION 3

1.1. Use of the Linkage—Loader and Monitor 3
1.1.1. Compilation 3
1.1.2. Loading 5
1.1.3. Execution 6
1.1.4. Multi-segment domains 7

1.2. Command and parameter format 9

1.3. Command syntax 9

1.U. Naming rules 10

1.5. The description file 11

1.6. The function of the Linkage—Loader 12

1.7. The function of the Monitor 13

2. MEMORY MANAGEMENT SYSTEM 15

2.1. Logical memory structure 15

2.2. Capabilities 17

3. TRAPS 21

3.1. Trap handler calling 21

3.2. Use of trap handlers 22

H. STANDARD EXCEPTION HANDLER LIBRARY 23

4.1. ND-SOO traps table 25

”.2. The EXCEPT routine 26

ND—60.136.04

viii

Section Page

M.3. The EXCDEF routine 32

u.4. The EXCTERM routine 3H

4.5. The PRITRAC routine 35

4.6. The PRIMESS routine 36

“.7. The GETMESS/PGETMESS routine 37

4.8. The RDEFVAL routine 38

M.9. The RCUR VAL routine 39

5. COMMUNICATION BETWEEN ND—SOO AND ND~1OO #1

5.1. Monitor calls 41

5.2. Communicating through the process flags 41

5.3. Communicating through RTCOMMON 32

5.3. Communicating through an RT segment 32

5.5. Communicating through files 43

6. LOADER COMMANDS NM

6.1. Domains nu
6.1.1. SET-DOMAIN UM
6.1.2. END—DOMAIN U5
6. 1. 3- CLEAR-DOMAIN 45
6.1.“. DELETE~DOMAIN ”5
6.1.5 LIST~DOMAIN 46
6.1. 6. WRITE-DOMAIN-STATUS 46
6. 1. 7- RENAME~DOMAIN M6
6.1.8. COPY—DOMAIN U7
6.1.9 RELEASE—DOMAIN M8

6.2. Seegmments ”9
6.2.1. OPEN-SEGMENT U9
6. 2. 2. CLOSE-SEGMENT 531
6. 2. 3. LINK—SEGMENT 52
6.2. U. LIBRARY—SEGMENT—LINK 52
6. 2. 5. FORCE—SEGMENT~LINK 53

6.2.6. APPEND—SEGMENT

ND—60.136.0u

ix

Section Page

6.2.7. SET~SEGMENT-NUMBER 54
6.2.8. CLEAR—SEGMENT 54
6.2.9. DELETE—SEGMENT 54
6.2.10. RENAME-SEGMENT 55
6.2.11. LIST—SEGMENT 55
6.2.12. WRITE~SEGMENT-STATUS 55
6.2.13 DEFINE- SEGMENT—SIZE 56

6.3. Commands to load NRF code 57
6.3.1. LOAD— SEGMENT 57
6.3.2. RELOADwSEGMENT 58
6.3.3. LIBRARY~SEGMENT-LOAD 58
6.3.4. OMITTED—SEGMENT—LOAD 59
6.3.5. SELECTED-SEGMENT—LOAD 59
6.3.6. TOTAL—SEGMENT—LOAD 60

6.4. COMMON segments 61
6.4.1. COMMONmSEGMENT-OPEN 61
6.4.2. COMMONnSEGMENT-CLOSE 62
6.4.3. COMMON~SEGMENT-APPEND 2
6.4.4. COMMON~SEGMENT—NUMBER 2

6.5. Auto link segments 63
6.5.1. SET AUTO-— LINK—SEGMENT 63
6.5.2. DELETEwAUTO~LINK-SEGMENT 64
6.5 3. LIST-AUTOwLINK-SEGMENTS 64

6.6. Auto —load files 65
6.6.1. SET-AUTOmLOAD—FILE 65
6.6.2. DELETE~AUTO~LOAD—FILE 66
6.6.3. LIST—AUTO—LOAD—FILE 66

6.7. Label and reference handling 67
6.7.1. PROGRAMwfiEFERENCE 67
6.7.2. DATA—REFERENCE 68
6.7.3. DEFINEnENTRY 68
6.7.4. DEFINEnCOMMON 69
6.7.5. LISTuENTRIES-DEFINED 69
6.7.6. LIST-ENTRIES—UNDEFINED 70
6.7.7. LIST-MAP 70
6.7.8. SYSTEM—ENTRIES— ON 70
6.7 9. GLOBAL~ENTRIES 71
6.7.10. KILLmENTRIES 71

6.8. Areas shared with ND—lOO processes 72
6.8.1. MATCHuRTCOMMON 72
6.8.2. MATCH-COMMON—RT—SEGMENT 72
6.8.3. LINK«RT~PROGRAM 73

6.9. Miscellaneous commands 74
6.9.1. PAGE-MODE 74
6.9.2. LOW-ADDRESS 74

6.9.3. HIGH—ADDRESS 75

ND~60.136.04

Section Page

6.9.4. ENTRY-ROUTINES 75
6.9.5. SET—IO—BUFFERS 76
6.9.6. LIST—OCTAL 76
6.9.7. LIST—SYMBOLIC 77
6.9.8. LIST-MODE 77
6.9.9. DISASSEMBLE—MODE 77
6.9.10. CHECK-SYNTAX-MODE 78
6.9.11. RESET 78
6.9.12. RENAME—DEFAULTuDIRECTORY—AND—USER 78
6.9.13. SUPPRESS—DEBUG—INFORMATION 79
6.9.1“. COMPUTER—MODE 79

6.10. NRF editor 81
6.10.1. NEW—NRFuMODULES 81
6.10.2. FETCH—NRF—MODULES 81
6.10.3- APPEND—NRF—MODULE 82
6.10.“. DELETEuNRF—MODULES 82
6.10.5. LIST~NRF—ENTRIES 83
6.10.6. LIST—NRF—CODE 83
6.10.7. NRITE—NRF-EOF—AFTER-MODULE 8”
6.10.8. INSERT-NRF-MESSAGE 8“
6.10.9. PREPAREmNRF-LIBRARY-FILE 85

7 COMMANDS AVAILABLE IN THE NLL AND THE MONITOR 86

7.1. Utility commands 86
7.1.1. HELP 86
7.1. 2. LIST-DOMAIN 86
7.1.3. OUTPUT—FILE 87
7.1.u. RUN 7
7 1 5 @ (Sintran—III command) 7
7.1 6. CC 88
7.1.7. ABORT-BATCH—ON-ERROR 88
7.1.8. EXIT 88

7.2. Trap handling 89
7. 2° 1. LOCAL- TRAP— ENABLE 90
7.2. 2. LOCAL— TRAP~ DISABLE 90
7.2.3. SYSTEM— TRAP-ENABLE 91
7.2.8. SYSTEM—TRAP—DISABLE 91

7.3. VALUE—ENTRIES 91

8. MONITOR COMMANDS 93

8.1. Commands for running an ND—SOO program 93

8.1.1. PLACE-DOMAIN 93

ND—60.136.0H

xi

Section Page

8.1.2 RECOVER—DOMAIN 91
8.1.3 GO 95
8.1.“. CONTINUE 95

8.2. Standard domains 96
8.2.1. DEFINE«STANDARD—DOMAIN 96
8. 2. 2. DELETE—STANDARD—DOMAIN 97
8.2. 3- LIST—STANDARD—DOMAINS 97

8.3. Input and output 98
8.3.1. OPEN—FILE 98
8.3.2. CLOSE—FILE 99
8.3.3. LIST—OPEN—FILES 99
8.3.1. SETmBLOCK-SIZE 100
8.3.5. Error returns 102
8.3.6. Direct file transfer with RFILE and WFILE (disk) 10“
8.3.7. Direct file transfer with MAGTP (magnetic tape) 105
8.3.8. Terminal I/O 106

8.u. Macro commands 107
8.1.1. DEFINE—MACRO 107
8.U.2. Macro subcommands 108

2.1. IFoERROR—MACRO—STOP 108
2.2. IF-ERROR—FULL—STOP 108
2.3. NOLIST 108
2.u. LIST 108

8 4.3. EXECUTE-MACRO 109
8 1.1. RESUME—MACRO 110
8.“.5. ERASE—MACRO 110
8 3.6. DUMP—MACRO 110
8 8.7. LIST—MACRO 111

8.5. Debugging commands 112
8.5.1. DEBUGGER 112
8.5.2. SPECIAL—DEBUGGER 113
8. 5 3 DEBUG— PLACE 113
8 5. A. BREAK 113
8.5. 5 TEMPORARY—BREAK 11“
8.5. 6. STEP 11H
8 5 7. LOOK—AT commands 115

7 1. LOOK-AT—PROGRAM 118
7 2. LOOK-AT—DATA 118
7.3 LOOK-AT—STACK 119
7.3.1. Subcommands PREVIOUS and NEXT 119
7. U. LOOK—AT~RELATIVE 119
7.5. LOOK-AT—REGISTER 120

8.5.8. SETnMEMORY—CONTENTS 120
8 5 9 MAIN FORMAT 120
8.5.10. EXTRA- FORMAT 121
8.5.11 . TRACE 122
8.5.12. GUARD 122
8.5.13 BRANCH~TRACE 123

8.5.14. CALL~TRACE 123
ND-60.136.04

Section Page

8.5.15. EXHIBITwADDRESS 12H
8.5.16. DEBUGwSTATUS 129
8.5.17. ENABLED—TRAPS 12”
8.5.18. STATUS 125
8.5.19 RESET commands 125

19.1. RESET—DEBUG 125
19.2. RESET~BREAKS 125
19.3. RESETaLASTuBREAK 126
19.4. RESET—TRACE 126
19.5. RESET~GUARD 126
19.6. RESET—CALLeTRACE 126
19.7. RESET‘BRANCH—TRACE 126

8.6. Commands for performance measurement 127
8.6.1. Histogram commands 127

1.1. SETuHISTOGRAM 127
1.2. STARTmHISTOGRAM 128
1.3. STOP—HISTOGRAM 128
1. U. PRINT~ HISTOGRAM 128
1.5. RELEASE HISTOGRAM 128

8.o .2. Monitor call logging 129
2.1. STARToMONCALL LOG 129
2. 2 PRINTwMONCALL-LOG 129
2. 3. STOP~MONCALL~LOG 130

8. 6. 3. Process logging 130
3.1. START~PROCESS~LOG—ALL 130
3. 2. START~PROCESS~LOG~ONE 130
3. 3. PRINTwPROCEssuLOG 131
3. U. PROCESS—LOGuALL 131
3. 5. PROCESS—LOG~ONE 131
3. 6. RELEASE—LOG—BUFFER 132

8. 6. u. SWAPPINGuLOG 132
8. 6. 5. LIST—EXECUTION—QUEUE 133

8.7. Process communication and synchronization 133
8.7.1. Process names and numbers 133
8.7.2. SEmmPROCESsmNAME 13M
8. 7. 3. Process creation and termination 135
8.7. U. RESTARTaPROCESS 135
8.7. 5. Process communication flags 135
8. 7. 6. GETwFLAG 136
8.7 7. SETaFLAG 136

8.8. Memory allocation 137
8.8.1. Demand paging 137
8.8.2. ”Fixing" in memory 138
8.8.3. Limiting the number of pages in memory 138
8.8.M. "Fixing” programs in memory 139
8.8.5. Fixing segments scattered in memory 139
8.8.6. Fixing segments in contiguous memory 1H0
8.8.7. Fixing segments in an absolute location 141
8.8.8. Fixing segments shared by several processes 1U1

8.8.9. Unfixing a segment 142

ND—60.136.0M

xiii

Section Page

8.8.10. The swapping strategy 1M3
8.8.11. SET-SEGMENT~LIMITS 185
8.8.12. FIX-SEGMENT-SCATTERED 146
8.8.13. FIX-SEGMENT-CONTIGUOUS 146
8.8.1”. FIX—SEGMENT—ABSOLUTE 147
8.8.15. UNFIX—SEGMENT 147
8.8.16. RESIDENT—PLACE 147

8.9. Miscellaneous commands 1U8
8.9.1. AUTOMATIC—ERROR—MESSAGE 148
8.9.2. RESET-AUTOMATIC—ERROR-MESSAGE 1U8
8.9.3. The "Escape" key 148
8.9.4. TIME-USED 188
8.9.5. WHO-IS-ON 149
8.9.6. LIST-ACTIVEmPROCESSES 149
8.9.7. VERSION 189
8.9.8. SET-PRIORITY 1&9

8.10. Commands for the System Supervisor 151
8.10.1. SET-ND—5000UNAVAILABLE 151
8.10.2. SET-ND—500~AVAILABLE 151
8.10.3. STOP-ND—SOO 152
8.10.u. Memory configuration 152

“.1. DEFINE—MEMORY-CONFIGURATION 152
4.2. MEMORY~CONFIGURATION 153

8.10.5. Memory administration 153
5.1. GIVE—ND-500-PAGES 153
5.2. TAKE—ND—500-PAGES 15D

8.10.6. Microprogram maintainance 155
6.1. MICRO-STOP 155
6.2. MICRO—START 155
6.3. LOAD-CONTROL—STORE 155
6.”. COMPARE—CONTROL—STORE 156
6.5. LOOK-AT—CONTROL—STORE 156
6.5.1. Suboommands EDIT and ORIN 157
6.5.2. Subcommands OCTAL and SYMBOLIC 157
6.5.3. Subcommands GROUP and WORD 157

8.10.7. LOOK—AT commands 157
7.1. LOOK-AT—RESIDENT-MEMORY 157
7.2. LOOK—AT-PHYSICAL-SEGMENT 158
7.3. LOOK—AT-HARDWARE 158

8.10.8. Process management 159
8.1. ATTACHoPROCESS 159
8.2. LOGOUTmPROCESS 159
8.3. ABORT-PROCESS 159
8.4. PROCESS~STATUS 160

8.10.9. Inspecting system tables 160
9.1. LIST—TABLE 160
9.2. LIST—ACTIVE—SEGMENTS 161
9.3. LIST—SEGMENT-TABLE-ENTRY 161
9.4. LIST—PROCESS—TABLE-ENTRY 161

8.10.10. Swap files 162
10.1. DEFINE-SWAP—FILE 162

10.2. DELETE—SWAP-FILE 162

ND—N) , 136 . 04A

xiv

Section Page

10.3. LIST—SWAP—FILE-INFO 163
1o.u. LOAD—SWAPPER 163
10.5. START—SWAPPER 163

8.10.11. SET—SYSTEM—PARAMETERS 164
8.10.12. LIST—SYSTEM—PARAMETERS 165
8.10.13. MASTER—CLEAR 165

9. SINTRANwIII MONITOR CALLS 167

10. THE NSOOM MONITOR CALL 177

11. DESCRIPTION FILE LAYOUT 181

12. THE ND RELOCATABLE FORMAT 185

12.1. DESCRIPTION 185

12.2. NRF control numbers 186

12.3. Summary of MR? control numbers 191

13. LINKAGE—LOADER ERROR MESSAGES 193

1a. ND—SOO MONITOR ERROR MESSAGES 202

15. EXAMPLES OF LINKAGE—LOADER AND MONITOR USAGE 218

15.1. Executing an ND—SOO domain 218

15.2. Using libraries 219

15.3. Using files 221

15.4. Macros 222

15.5. Debugging 223

15.6. System Supervisor: Installing NLL 225

15.7. LIST OF MONITOR COMMANDS 227

15.8. LIST OF LINKAGE—LOADER COMMANDS 230

ND-60.136.0U

XV

Section Page

INDEX 233

ND—60. 136.011

1. INTRODUCTION

1.1. Use of the Linkage—Loader and Monitor

An ND~SOO program goes through two main steps before it is ready for
execution:

- compilation, transforming a human readable program into machine
code

~ loading, combining the user program and subroutines with library
routines, and assigning the program a specific position in memory

1.1;1. Compilation

The compilation is performed by a compiler specific to the language of
the source program: a Fortran compiler, a Pascal compiler, a Plane
compiler or a Cobol compiler. The compiler may run in the ND—TOO, even
if the compiled program will be running in the ND—SOO. More commonly,
even the compiler runs in the NDwSOO.

A compiler running in the ND—SOO is operated in exactly the same way
as an ND—lOO compiler. However, in order to start it, the name of the
ND~500 monitor must preceed the compiler name:

Q§p~500 FORTRAN
"ND~SOO" is (an abbreviation of) the name of the monitor. The monitor
is a rather complex system controlling the ND—SOO computer, but for
the beginner, "ND~SOO" may be viewed simply as a message to the
operating system requesting program execution in the ND—SOO rather
than the ND—lOO.

"FORTRAN" is the name of the Fortran compiler. Generally, compilers
have the name of the language they compile, followed by the machine
the code is made for. The full name of the Fortran compiler is
FORTRAN~SOO, but in most installations, an abbreviation is
unambiguous.

A program is compiled with the COMPILE command:

QEPmSOO FORTRAN
NDmSOO ANSI 77 FORTRAN COMPILER — NOVEMBER 24, 1981

FTN: COMPILE TESTPROG,"TESTPROG2LIST", WTESTPROG”

— CPU TIME USED: 3.2 SECONDS. 750 LINES COMPILED.
« NO MESSAGES
« CODE SIZE:36UA DATA SIZEzuOB COMMON $12320 STACK SIZE:65U
FTN: EXIT

ND«60.136.04

t4

INTRODUCTION

The default file type of the code file generated by all NDwSOO
compilers is :NRF, while the default file type of ND~100 compilers is
:BRF. Thus, if the same file is compiled for for both computers, the
code files may be given the same name without causing a name conflict.

1.1.2. Loading

After compilation, there is no principal difference between programs
and subroutines in different languages, and they are all loaded using
the same loader. The loader is called by the command

@NDnSOO LINKflGEmLOADER

The LINKAGE~LOADER is often simply called NLL, after its prompt NLL:.

NLL will create a program ready for execution“ In the ND—SOO, a
program is termed a domain, A domain usually has a name, used when
starting execution, it may also be fiunnamed" w actually, it then has
the standard name SCRATCHmDQMAlfi, Any permanent domain should be given
a name; each time a file is loaded to an unnamed domain, it will
overwrite the previous contents of SCRATCHmDOMAlN, It may, however, be
convenient to omit the naming of the domain during the debug phase of
a program.

A domain is named before anything is loaded to it, by the NLL command

NLL: SETwDOMAIN ”MYWDOMAIN“

The double quotes indicate that this is a new domain, used exactly
like double quotes to create a new file (however, the domain is not a
file}, if no double quotes are used, an existing domain will be
overwritten. (This is strictly true only for simple use of NLL,)

The rode file generated by the compiler is loaded by the command

NLL: LOAD~SEGMENT TESTPROG

Several files may be named in the LOADWSEGMENT command; for example,
the main program and subroutince may be compiled separately, to
different code files, Also, several LOtSEGMENT commands may be used
in succession,

After all files required have been loaded, NLL is left through the
command

NLL: 53:;
A number of operationsware performed in the EXIT command: references
to the required libraries are set up, the default handling of errors
is defined, the appropriate files are updated and the file access on
new files set,

NDm60,736,0M

INTRODUCTION

As mentioned, the domain is not a file, nor is any program file
explicitly specified. This does not imply that there are no files used

- thewfllcadediiccde is stored in files manipulated by NLL. These have
types :PSEG, :DSEG and :LINK, and (by default) names chosen by NLL. In
additiofij‘”th§rewi a file called D§§QBTETIONWFILE :DESC. For all
practical purposes, Sthese files are invisible to the programmer — he
will always identify his program by its domain name.

1.1.3. Execution

A user domain is started by typing the name of the ND-SOO monitor
followed by the domain name:

@NDwSOO DOMAIN«NAME

This is exacly like the way a compiler running in the ND— 500 is
started; "ND 500” is a message informing Sintran that the program “is.i y y.

W

Communication with the user through the terminal is exactly as for an
ND«100 program, as are file access and access to various devices.
Pushing the escape or break key will interrupt the program and return
control to Sintran.

The user may also type "ND-500" without following it by a domain name.
This will start the monitor9 and give control to the command processor
of the monitor:

@NDnBOO
ND~SOO MONITOR 81.11u10/81.11.04
N500:

Execution of a domain may now be started simply by typing its name:

N500: DOMAlNAME

After execution, control returns to the command processor of the
monitor, rather than to Sintran, and another domain may be executed.
As an alternative to first starting the compiler by @ND-SOO FORTRAN,
then NLL by @NDw500 LINKAGEmLOADER and finally the program by @ND—SOO
DOMAINwNAME, they may be run by the command sequence

@ND~ 500
N500: FORTRAN
FTN: <compiler commands)
FTN: EXIT
N500: LINKAGEmLOADEg
NLL: <loader commands>
NLL: EXIT
N500: DOMAINwNAME

(program input/output to terminal)
N500: EXIT
Q

ND~60.l36.0u

INTRODUCTION

Even if execution is interrupted by the escape or break key, return
will be to the monitor. All files are then kept open, and ”execution
may be resumed by the CONTINUE command.

The command processor of the monitor will interpret and execute a
large set of commands, described in chapter 8 of this manual. The
majority of these are highly specialized commands and commands for the
system supervisor.

Regardless of its complexity, a program system is executed simply by
stating its name.

1.1.u. Multiusegment domains

A set of subroutines used in geyeralwggmains Will, if Vlggggd¢_byfl«th§_
£95Q:§EQM§N~ command together with the main program, occupy space in
each and every domain it is used. In order to save g; space (and'le

W ~~~~~also memory space if the two domains are executed concurrentlyj, these
routines may be grouped_together and put on a segment, a "slice" of
the addressing area that may be treated independently of the other
slices (segments).

If gnly_one segment is used, that segment is usually "unnamed" - it is
given a standard nameflmby NLL, which may be ignored by the user. A
segment used by several_domain§%§hould be giyen a more descriptiyg
name. This is done by explicitly opening a segment (after the domain
has been named):

NLL: SET—DOMAIN "TWO~SEG«DOMAIN"
NLL: OPEN—SEGMENT "SUBROUTINES", P

A new segment is created by enclosing the name in double quotes, as
shown above. If the quotes are not included, new information will
overwrite what is already loaded to the segment.

"P" is an attribute code that allows this segment to be used by other
domains as well. Now, the subroutines that are common to several
segments are loaded by a LOAD—SEGMENT command:

NLL: LOAD—SEGMENT SUBR-FILE

When all common subroutines have been loaded (possibly from several
files),_the subroutine segment is closed by the command

NLL: CLOSEmSEGMENT

after which the main program (and possibly non-common subroutines) is
loaded as usual. But before the EXIT command, the user should link thesubroutine—segment to‘the main program by the command

NLL: LINK—SEGMENT SUBROUTINES

There may be WQW, each of them openedwith the OPEN~SEGMENT command and terminated with a CLOSE-SEGMENT, and
they should all be listed as parameters to the LINK—SEGMENT command.

ND-60.136.04

INTRODUCTION

The complete set of commands for loading a two-segment program is
therefore, complete with the response from NLL:

NLL: SET—DOMAIN "TWO—SEGMENTS"
NLL: OPEN—SEGMENT "SUBROUTINES" P
NLL: LOAD-SEGMENT SUBR—FILE
Program:....,...4fl6608 P Data:...........173MHB D
NLL: CLOSE-SEGMENI
Segment no..,......30 is linked
NLL: SET—SEGMENT-NUMBER 2
NLL: LOAD«SEGMENT MAINPROG
NLL: LINK-SEGMENT SUBROUTINES
Segment no.......... 1 is linked
NLL: EXIT
Segment no..........30 is linked

(§9§§323i52aw39_a2233§in3 the Fortran library, and will in most
installations be linked automatically, as the example above).

When loading the second and jollgging domain using the routinesiin the
$QEBQEEEEE§lm§E§E§339 the files are already loaded. The OPEN-SEGMENT,
LOAD—SEGMENT SUBR-FILE and CLOSE—SEGMENT commands are omitted. imgyg
the main program segment is loaded, followed by the LINK—SEGMEN?
command (force segment link).

A slight problem occurs with the §§gm§QLinumbe£§;_each segment has a
fixed number between 0 and 31, which must be unique within the domain.
.By defau +, new segments are given th§«;£i§§t numberwhgifiiigfiie,
iéfiéififiggL‘jggjj thus the SUBROUTINES segment above is number 1. When a
segment is created in a BEHMQEEEEQ that will also be linked to the
SUBROUTINES segment, another segment number should be selected for the
main program and other segments. This is done by the commands

NLL: SET—DOMAIN "SECONDuDOMAIN"
NLL: SET—SEGMENT—NUMBER 2
NLL: LOAD«SEGMENT SECOND—DOMAIN
Program:..u7668 P Data:.............2448 D
NLL: LINK~SEGMENT SUBROUTINES
Segment no.u. l is linked
NLL: EXIT

If the SUBROUTINES segment will be linked to a high number of main
programs, it may be more convenient to set the segment number of the
SUBROUTINES segment, leaving segment number 1 (the default value) for
the various main segments.

If two or more subroutine segments are used by one domain, they must
all have different segment numbers.

ND-60.136.04

INTRODUCTION

1.2. Command and parameter format

Normally, the user communicates with NLL and the Monitor through a
terminal. The terminal is called the communication device. In a batch
or mode job the communication device is the command input file for
input and the output file for output.

lnggrmatipnhreturned from command execution is usually written to the
communication device. Such output may be directed to another file or
device by the OUTPUT-FILE command. The current file used for output iscalled the output device, whether this is the same as thecommunication device or another file.

Commands to NLL and the Monitor may be given in upper or lower case
letters. Commands and parameters are terminated by comma, space orcarriage return. If required parameters are not supplied, they are
prompted for with the names of the parameters. Parameters may be leftout by typing two successive commas in the command line, or pressing
CR (Carriage Return) in response to the prompt. If a parameter is not
supplied, the default value is used if it exists.

flumericiparametegswaremmspegigggnjximamital, unless the number is
followed by a D, indicating decimal format, or H, indicatinghexadecimal format. If a hexadecimal number does not start with adigit, it must be preceeded by a (redundant) leading zero to avoidconfusion with alphanumeric symbols.

1.3. Command syntax__.._..____._~__—_——

When describing the commands available in the Monitor and NLL the
following rules are applied:

~ The command name is used as a section header.

— All parameters are enclosed in < > brackets.

- If a parameter that is asked for has a default value, its name is
also enclosed in () brackets.

- The names of optional parameters that are not asked for areenclosed in [] brackets.

— If more than one value may be specified the right enclosing
bracket is followed by an ellipsis, as in <>... .

All command, domain and segment names may be abbreviated as long asthey are unambiguous. Most of the command names follow two rules:

- The first word in the command describes the action.

— The second word in the command describes the subject the action
is going to be taken upon.

ND-60.136.0U

10
INTRODUCTION

If, for instance, the command HELP is used in the following way:

HELP -SEGMENT

all commands concerning segment manipulation are printed on the output
device.

New domains and segments are created by surrounding the name with
double quotes (" "). Double quotes are only valid in commands with a
name as a parameter. These commands are: SET—DOMAIN, OPEN—SEGMENT and
COMMON—SEGMENToopEN. If the double quotes are not used, the named
object (domain or segment) is assumed to exist.

NLL will prompt for required but missing parameters. Multiple
parameters will be asked for the first time, and the full range of
Sintran III editing characters is available. If the first character of
a command line is ‘@', the command is taken to be a Sintran Ill
command. The character '&' means that the input line continues on the
next line.

In interactive mode, all list output can be temporarily stopped by
typing any character on the input device. The output is resumed when
another character is typed. In order to terminate the listing, an 'é'
may be typed.

The ND-SOO Monitor is started by typing ND-SOO~MONITOR in response to
the Sintran III prompt. A domain name may follow on the same line,
implying a RECOVERoDOMAlN command with this name as parameter. If no
domain name was specified on the call line, the ND—SOO Monitor will
prompt for commands with “N500: ". The rules for parameter
specification are the same as in NLL. Wherever a parameter from a list
of valid values is expected, "HELP" may be written. This will cause
the possible choices for the parameter values to be printed on the
communications device. (Obviously, this does not apply where an
arbitrary string, such as a domain name, may be specified.)

1.4. Naming rules

Segments and domains are referred to by name in NLL and the Monitor.
The name of a segment is equal to the name of the segment files. The
program, data and [symbol files of a segment have the same name, but
arewdistinguished by théir types: :PSEG, :DSEG and :Ll§§ respectively.
As segment names coincide with file names, the Eggment name syntax
follows the Sintran III file name syntax, and the segment name must be
unique in the current user‘s file catalog. The file type may not be
modified.

Domain names may ~ like segment names — contain alphanumerics and
hyphens, and may coincide with segment names. Maximum length is 16
characters, and lower case characters are converted to upper case.

m60.136.ou

11
INTRODUCTION

1.5. The description file

The names of segments and domains are found in a file called
QE§QB§£I§Q§;§ILE:DESC. Each named object (segment or domain) has an
entry in this file, containing all information needEEwbymfitffland"the
Monitor. For example, the domain entry - one for each domain —
contains the name of the domain, a table of the segment files of which
the domain consists, information about the relationships to other
domains, the size and the start address of the domain, and information
relevant to the internal operation of the Monitor.

Every user of NLL has his own description file, which is created and_
_initialized the first time the user starts NLL.

Although all domains of a user are described in one file, the same
user can access NLL from several terminals simultaneously; NLL will
see to it that access conflicts are resolved. If attempts are made to
modify the same domain from two terminals simultaneously, one of the
users will get an error message.

A word of warning:

The contents of the description file at any time reflects the state of
the segment and domain definitions of the current user. The user
should take great care to never make any modifications to the segment
files or thev~de§griptignwwfile, except through Egg: Otherwise
inconsistencies maymmarise, and it may be necessary to rebuild the
description file, thereby losing all information about previously
loaded segments.

ND—60.l36.04

INTRODUCTION

1.6. The fUnction of the LinkageuLoader

The output from language processors (compilers, assemblers) is in the
form of relocatable modules. The term 'relocatable' means that the
modules are not assigned a fixed position, but may be placed anywhere
in memory. Modules are not dependent on being placed in any specific
sequence.

NLL is a subsystem able to convert relocatable object files in ND
Relocatable Format (NRF) created by language subsystems, to
independent executable programs, or processes.

A process is a set of instructions to be executed in a sequential
manner, and its associated data. The simplest process possible
consists of one segment in one domain; a more complex process may
consist of up to 32 segments. A segment is built by NLL, on three
separate files: one file contains the instructions: the program
segment; another contains the data: the data segment; the third
contains the names and values of all labels and optional debugging
information, and is called the :LINK file.

A domain is an addressing space, divided into segments. Domains and
segments are described in detail in the ND—SOO CPU Reference manual
ND—OS.OO9.

Information about intermodule references, symbols and labels is coded
in the file that is output from compilers. The format of this code is
such that procedure calls or references to global data are made
through symbols, that is, alphanumeric (symbolic) names assigned to an
instruction or data item. These symbols are made by the language
processor (often based on user assigned names in the source program),
and are referred to as vlabels'.

At execution time, references are made to addresses rather than to
labels. The conversion from relocatable symbols to machine addresses
is done by NLL. VLL will maintain a table, called the loader table,
where symbols are entered as they are encountered.

A symbol may refer to a machine address or it may be a data value. If
the first occurence of a symbol is its definition, then the loader
will enter the symbol name into the loader table together with the
address where it is defined or together with its data value. In either
case, the value associated with the symbol is simply called the
symbol‘s value. Whenever a reference to the label is later
encountered, the symbolic reference is replaced with the value found
in the loader table.

If a reference is made to a label before it has been defined, space is
left open in the loaded code for later insertion of its value. The
symbol is entered in the loader table, but rather than containing a
value of the label, the table contains a reference to where the symbol
is used. As soon as a definition of the label is read, the loader will
fill in the now defined value wherever a reference has been made.

ND—60.136.0H

13
INTRODUCTION

If two definitions of one label are encountered, the loader cannot
distinguish between them, and an error message is issued. In such
cases, the first definition of the label always applies.

Before the program is ready for execution, the loader must ensure that
all symbolic references are replaced with numeric values/addresses. To
achieve thisy it may be necessary to load libraries, either by the
user or automatically. The loader is able to distinguish between a
required and a not required module in a library.

A note on the terminology:

In this manual, the term 'reference' is used to describe a symbol that
has been entered into the loader table, but has not yet been defined.
An 'undefined entry' is equivalent to a reference. The term 'label' is
used for a symbol which has been assigned a value in the loader table;
it may have been referenced or not. A ‘defined entry‘ is equivalent to
a label. 'Symbol' is the general term for all symbolic (alphanumeric)
names, but is mostly used for names not yet in the loader table.

The term 'loading' is sometimes used in the sense 'bring into memory
for execution'. Another interpretation is ’to fetch relocatable
program units and link together to an executable program'.

In this manual, as in all ND software, the latter usage is adopted.
The bringing of a program into memory for execution will in most cases
be completely invisible to the user of the program; he may consider
the program file to be directly executable.

In the cases where the program is read into physical memory, different
terms are employed to describe this depending on the specific
situation, such as 'starting execution' or '"fixing" a segment'.

1.7. The function of the Monitor

The ND—SOO computer has no capabilities to communicate directly with
the "outer world". Nor does it have an elaborate operating system
administering users“ processes and system resources.

Such tasks are executed by the ND—lOO CPU. The functions performed are
manifold; some of the more important ones are:

The user will always communicate with the ND—100 machine. When he
enters the Monitor, he enters a program that has the capability of
transforming the user requests into orders to the ND-SOO. For example,
when execution of a program is started through the RECOVER-DOMAIN
command, the Monitor will open the files required, reserve a scratch
area for data that is modified during execution, create a table entry
in a system table identifying the user of the system resources and so
on. When all administrative work is complete, a message is sent to the
ND-SOO requesting execution of the program.

ND—60.136.0H

1U
INTRODUCTION

During execution, the program may request input or output of data, may
‘request system information (such as the time of day etc.) or other
services that the operating system provides. Such requests are not
handled in the ND-SOO, but are transferred to the Monitor. The Monitor
will initiate an I/O operation, obtain the requested information or
perform the operation required, before the result of the request is
returned to the program in NDmSOO,

If an error occurs in the ND~500 and is not taken care of by the user
program, the error is reported to the Monitor, and it may take
recovery actions, or possibly abort the job with an error message sent
to the user. If one program monopolizes the CPU for a certain period
of time, the Monitor will intervene, and temporarily suspend the
program, letting other programs execute in the meantime.

In the debugging phase of a program, the Monitor may act as a
supervisor of the user program, providing the user with commands to
inspect and modify the program during execution. As the code required
to fetch information about the user program is a part of the Monitor,
the program being debugged may be compiled and loaded exactly like a
production program. This guarantees that the results produced are
unaffected by debugging instructions.

The Monitor also performs a number of system oriented tasks, such as
book«keeping of resource usage, preventing unauthorized users from
executing privileged functions etc. Because all communication with the
ND—BOO is channeled through the Monitor, the interface between the
user and his program may look exactly as if there were only one CPU
(except for the starting of the Monitor). Letting the ND—lOO perform
all administrative tasks also frees the ND~500 for user programs, The
two processors may work in parallell, with the ND~SOO executing a user
program while the ND»100 prepares the next job,

ND«60,136.0Q

15
MEMORY MANAGEMENT SYSTEM

2. MEMORY MANAGEMENT SYSTEM

The maximum program size that ND—SOO is able to handle is too large to
handle as one unit, both for man and machine. A logical subdivision is
done by splitting a domain into segments, where each segment is of a
more managable size, and the interface between the segments is clearly
defined. This subdivision is handled by the machine by its memory
management system. The architecture of this system will to some degree
affect large programs and programs with special communication
requirements.

Understanding the information in this chapter is not required for
running most ordinary programs. Nevertheless, it provides the
background information necessary in order to understand the use of all
commands described in the manual.

2.1. Logical memory structure

An ND—SOO addressing space is called a DOMAIN. A domain contains an
executable program that can be started through the ND—SOO Monitor. For
practical purposes a domain may be considered equivalent to a program.

The address range of a domain may vary from 2k bytes up to M
gigabytes, equivalent to a 32 bit address space. Instructions and data
are, however, kept fully separated, and, in fact, a domain contains
one area for instructions and another for data. These cover the same
address range, but as instructions may never be read as data, or data
executed as instructions, no conflicts arise.

A domain is divided into SEGMENTS. A domain comprises from one to 32
segments: the uppermost five addressing bits select the segment. The
instruction and the data part of the segment (in the program and data
areas of the domain) are termed the instruction and the data segment,
respectively.

A segment is a set of files, cataloged under the Sintran III file
system. The instruction segment and the data segment have the same
name, but types :PSEG and :DSEG, respectively. In addition, there is a
:LINK file. The 2LINK file is not opened when the program is executed
but is used during the loading process and by the symbolic debugger.
These three files together are called the segment, unless a
qualification of program, data or :LINK file is made.

The files may be indexed or contiguous, but will by default be
indexed.

A domain consists of a table of segments, and is not a separate entity
in the file system. The segment tables for all domains belonging to
one user are kept in a file called DESCRIPTION—FILE:DESC.

Domains and segments are referred to by symbolic names. Internally, a
numerical index is employed, but the user will not have to be
concerned about this index; NLL will obtain the domain or segment
number from the description file. The domain name follows the syntax
of and may coincide with file names. Domain names are stored solely in

ND~60.136.04

16
MEMORY MANAGEMENT SYSTEM

the description file. Segment names are the names of the :PSEG, :DSEG
and :LINK files making up the segment. These names are also stored in
the description file, where the position in the segment table for the
domain determines the segment number.

When required, the domain and segment numbers can be obtained by
executing the NLL commands LISTmDOMAIN or LIST~SEGMENT.

The reasons for splitting a domain in several segments are many:

m The more time critical parts of a program may be kept permanently
in memory (fixed segments), while other parts may be regular demand
segments

u A segment may be part of several domains. Thus, file space is
required for one copy only, rather than including the data or
routines (for example the Fortran library) in every domain.

- At run time. the Monitor will recognize a program segment used by
several users concurrently, and keep only one copy in memory,
thereby reducing swapping.

« Different segments may be given different protection against other
users.

~ Two programs running concurrently may communicate through a shared
data segment (Normally. however, each program would have its own
copy of the data segment).

~ Program modularization is simplified.

~ Modifications of routines or data in one segment will not require a
reloading of the whole domain (unless it has been marked as
sensitive to modifications).

- No swap file space is required for the program segment; it is read
directly from the :PSEG file and never written back. Thus, swap
file space is saved and no unnecessary rewrites are performed.

A segment will always be declared in one domain. If other domains need
routines or data in this segment, references are defined by linking
this segment to the other domain through the NLL command LINK~SEGMENT.
The linked segment may also belong to another user, for example user
SYSTEM may have a segment with library subroutines that other users
may link to.

Linking is possible only if the segment has no external references to
other segments in the domain where it was created, unless all these
segments are also linked.

ND—SOO hardware allows a segment to be used as an "indirect" segment.
Call to an indirect segment implies a change of control to another
domain. and is used for building a program system consisting of
several domains. This mechanism is not used under the Sintran III
operating system.

NDw60.136.04

l7
MEMORY MANAGEMENT SYSTEM

The indirect segment concept is, however, used for operating system
requests: "monitor calls" are calls to routines on a system segment
used as an indirect segment. Thus, monitor calls look exactly like
regular routine calls, and parameters are transferred through the same
mechanisms. By convention (although not by necessity), segment number
31 (octal 37) is used for interfacing to the operating system.

2.2. Capabilities

During execution, NDWSOO will keep a 16 bit descriptor, called a
capability, for each logical segment in use, This capability contains
information about access rights, location in physical segments and
sharing with other processes.

Each data segment may be individually protected against write access
and access to subroutine parameters, If the segment is used
concurrently by several processes, the capability will inform the CPU
that data accesses should go directly to memory rather than through
the cache. This is done to prevent that one processv updating of a
variable is immediately observed by the other processes; the cache is
not neccessarily cleared when another process gains access to the CPU°
Also, accesses to segments shared with processes (RT programs) in the
ND-lOO bypass the cache,

A program segment is identified as a direct or indirect segment. A
direct segment is part of the current domain, while an indirect
segment is part of another domain (in Sintran III: in the NDnlOO).
This mechanism is used by the operating system to implement a set of
monitor calls: Logically, the routines are addressed within the
address space of the current domain, but when such a routine is
called, the microprogram will recognize the segment as indirect, and
transfer control to the appropriate domain, alOO is in this respect
considered another domain, The capability contains an explicit
indication that the other domain is in another machine,

NDM60,136,O&

18
MEMORY MANAGEMENT SYSTEM

Program segment capability:

a) Direct segment

I 1 bit I I 3 bits I I 12 bits I
direct unused physical segment number
(:0)

b) Indirect segment

I 1 bit I I 1 bit I I 1 bit I I 8 bits I I 5 bits I
indirect other unused domain segment
(:1) machine

Data segment capability:

I 1 bit I i 1 bit I I 1 bit I I 1 bit I I 12 bits I
write parameter shared unused physical segment
permitted access segment number

Both data and program segment capabilities also indicate which
physical segment that is addressed. A physical segment is a part of
(physical and virtual) memory; a logical address is translated to a
physical address in the physical segment.

Two logically separate segments may map onto the same physical
segmentc This will appear as the capabilities of the two segments
pointing to the same physical segment“ The physical segment number is
determined when the segment is brought into memory for execution.
Sharing a segment in this manner may reduce swapping, and it may be
used for communicating data between processes.

When a routine on a program segment is started, the Monitor will
normally check whether the physical segment has already been fetched
by some other process" If it has7 no new copy is required, and the
second segment maps onto the physical segment already in memory. (This
relies upon program segments being readmonly « if any modification
(patching) is done to the program segment, the user will receive his
own private copy.)

Data segments will not unless explicitly specified be mapped onto the
same physical segments9 as one process“ modification of a location
will have an immediate effect for other processes’ use of the value.
Sharing a physical segment is, however, the most direct way of
transferring data between processes. When accessing data in a shared
segment, the cache is bypassed in order to ensure data consistency. If
multiple CPUs have access to the memory, the multiport will ensure
that a write or read operation of one location will not be interrupted
by another process» (Higher level protection and synchronizing
mechanisms may be implemented in software based on this hardware
mechanism.)

ND~60.136»OU

19
MEMORY MANAGEMENT SYSTEM

If a logical data segment is mapped directly onto the file where it is
stored (rather than to a copy on a swap file)7 modifications to the
data will be permanent. By using a file as a segment any file may be
manipulated; the cataloged file will be directly addressed as a part
of the logical address space. Compared to ordinary file access, the
overhead is reduced drastically, and addressing can be done easily and
directly within the logical address space. Obviously, only one process
at a time may modify a permanent file, or the two processes must have
agreed upon a synchronization protocol.

ND~60.136.0U

20

ND—60.136.0M

2i
TRAPS

3. TRAP§

Trap conditions are special situations detected by hardware, possibly
requiring special handling. Examples of such situations are division
by zero, protect violation or illegal index.

Some trap conditions may be completely ignored. Others require some
form of handling, while still others are so serious that they are
reported directly to the operating system. These three groups are
labeled ignorable, non—ignorable and fatal, respectively.

Trap conditions may be handled by a routine in the current domain, or
propagated to the NDnlOO. The presence of a local trap handler routine
is signalled by setting the bit in the OTE register (Own Trap Enable)
corresponding to the trap condition. This register has one bit for
each possible trap condition.

If the OTE bit is cleared, the trap is propagated to the ND-lOO if the
MTE bit (Mother Trap Enable) is set, signifying that the ND-lOO has a
trap handler. Otherwise the trap is ignored.

The NDalOO may limit the ND—SOO domains' freedom to modify bits in the
OTE register (and thereby the handling of the trap condition), by
clearing the corresponding bit in the TEMM register (Trap Enable
Modification Mask). Fatal traps may never be locally enabled in
ND—SOO.

3.1. Trap handler calling

When a trap condition occurs, the calling of a handler is determined
by the setting of the MTE and OTE registers. If the affected bit is
reset in both registers, no trap handler is called and the trap
condition ignored.

If the OTE bit is set, a routine in ND—SOO is called. This routine may
be written by the user, or may be loaded or linked from a library of
standard trap handlers.

If the MTE bit is set and not the OTE bit, ND—lOO will take care of
the trap condition.

When a trap condition is taken care of in ND—SOO, the address of the
trap handler is found in a table pointed to by the THA (Trap Handler
Address) register. The n'th entry in this table contains the address
of the handler for the n'th trap condition. One handler may take care
of several traps, or each trap condition may be handled by a separate
routine.

The routine may perform any operation, including calling subroutines,
but if a trap condition occurs during the execution of this routine,
the trap is unconditionally reported to ND—lOO. The reason for this is
that the local data area for a trap handler is fixed in the space
above the table containing the trap handler start addresses; trap
handlers are thus not reentrant.

ND—60.136.0H

22
TRAPS

At the call of the trap handler the local data area will be
initialized with information about the trap and the state of the
process when the trap occurred. The layout of this information is
described in the ND—SOO CPU Reference Manual NDm05.009.

3.2. Use of trap handlers

Writing a handler for a trap condition will require a familiarity with
the instruction set and call mechanisms of the ND—SOO. Reading the
values in the local data area of the trap handler (containing the

register block and data about the trap) is most easily done in
assembler, but may in principle be done in any language.

Most often the user will want to handle the error on a more abstract
level. A standard trap handler library will take care of the low level
trap handling, and call an exception handler routine. These will
present hardware and software detected errors to the user in a uniform
way. The standard routines may perform all the error handling or take
care of a subset of errors, they provide mechanisms for entering the
address of user written routines into the table of handlers and for
setting and resetting bits in the GTE register.

Trap handler routines and enabling/disabling of traps may be defined
at load time or before execution is started. These settings act as
default values that may be modified by the program at execution time.

The standard library will also provide routines for errors detected by
software. Such errors are usually very dependent on the application
(for example errors in the correspondence between the IO—list and the
FORMAT statement in Fortran), and rely upon instructions generated by
the compiler. The standard way of reporting errors that occured in a
routine is to set the K bit in the status register and leave an error
code in the ll register.

The combination of hardware trap handling and handling of software
detected errors allows a uniform interface to the environment,
regardless of the mechanism used for detecting the error.

The term used to cover both hardware and software detected errors is
exception, consequently the standard library is termed a standard
exception handler library.

ND-60.136.0M

23
STANDARD EXCEPTION HANDLER LIBRARY

fl. STANDARD EXCEPTION HANDLER LIBRARY

The term exception covers in addition to all defined hardware traps,
special situations and errors detected by software. An exception
handler is a routine to be activated when an exception occurs, and to
take appropriate recovery actions.

A set of standard routines for use with Fortran or Plane has been
developed. These are available in a standard library, and will be
linked automatically if the user so desires.

For each error condition, the user may determine:

1) The number of times each error message is to be printed.
2) The number of times an error may occur before

the program is abnormally terminated.
3) Whether a user—supplied exception handler is to be

activated upon detection of an error.
A) Whether traceback of routine stack frames is to be printed

when the error occurs or when the program terminates,
(In case of traps, this includes a register dump).

5) Printout of error statistics when the program terminates.

The library consists of the following routines:

EXCEPT » disable/enable handling of specified exception,
EXCDEF — reset handling of exception to default,
EXCTERM » define action to be taken upon program termination,
PRITRAC « print traceback of routine instances (subroutines),
PRIMESS — print error message,
GETMESS n return error text (Fortran),
PGETMESS return error text (Plano),
RDEFVAL — read default exception handling parameters values,
RCURVAL read current exception handling parameters values.

In the following descriptions, the header of these routines is
described, giving the number and types of the arguments. These
routines are supplied with the standard ND Fortran library. Except
where designated as returned values, all parameters are read—only
input values.

Where routines are used as parameters, the name of the routine is
supplied in the actual parameter list. The compiler will generate the
appropriate reference to the entry point of the routine.

Traps and exceptions will be handled in the ND—SOO, providing they are
locally enabled. There are default settings for all traps. If no local
handling has been specified, or the trap has been disabled, then some
traps may be handled as a system trap in the ND~lOO. The Monitor will
then handle the trap in a standard manner, depending on the type of
trap. System traps may also be disabled, but the user's right to
modify trap handling may be restricted.

ND—60.136.0A

2U
STANDARD EXCEPTION HANDLER LIBRARY

Handling of traps may be determined at load time or before execution
through the commands LOCAL—TRAP—ENABLE, LOCAL—TRAP-DISABLE, SYSTEM-
TRAP-ENABLE and SYSTEM—TRAP—DISABLE. These commands are available both
in NLL and the Monitor, and to set default values to be used if no
action is taken by the program.

ND—60.136.0M

STANDARD EXCEPTION HANDLER LIBRARY

u.1. ND-SOO traps table

The following is a list of defined hardware traps, their corresponding
hit number in the status, OTE, MTE and TEMM registers, exception
number, and the name of the trap. For a more detailed explanation, see
the ND—SOO CPU Reference Manual ND-05.009.

Trap name
—-......_..__—__-—_.._.._——_--..-_n----___..--__—..——_—_———._....—.._.._

OVERFLOW
INVALID OPERATION
DIVISION BY ZERO
FLOATING UNDERFLOW
FLOATING OVERFLOW
BCD OVERFLOW

ILLEGAL OPERAND VALUE
SINGLE INSTRUCTION TRAP
BRANCH TRAP
CALL TRAP
BREAKPOINT INSTRUCTION TRAP
ADDRESS TRAP FETCH
ADDRESS TRAP READ
ADDRESS TRAP WRITE

ADDRESS ZERO ACCESS
DESCRIPTOR RANGE
ILLEGAL INDEX
STACK OVERFLOW
STACK UNDERFLOW
PROGRAMMED TRAP
DISABLE PROCESS SWITCH TIMEOUT
DISABLE PROCESS SWITCH ERROR

INDEX SCALING ERROR
ILLEGAL INSTRUCTION CODE
ILLEGAL OPERAND SPECIFIER
INSTRUCTION SEQUENCE ERROR
PROTECT VIOLATION

.J
—

l

O
—

A
-A

O
O

O
O

O
O

O
O

O
O

.._
\

*
*
*
#

*
8

.
4

4
0

*
*
#

*
*

“W
A

—
a

4
;

The "D" column refers to the default enabling of traps
standard
indicates that the

unl

unl

O
O

O
O

O

used by the
exception handler library discussed in the next chapter‘ "*"

settings are used.

msg
err
unl H

ll
H default maximum number of error messages

default number of exceptions prior to abnormal termination
unlimited number

ND-60.136.0H

trap is enabled if the default trap library

26
STANDARD EXCEPTION HANDLER LIBRARY

4&26 The EXCEFT houtiee

The EXCEPT routine is used to modify the current exception handling
conditions»

gtC specification:

TYPE RTYP : ROUTINE REFERENCE VOID,VOID (INTEGER)
ROUTINE REVERENCE VOID9 VOID (INTEGER? INTEGER, RTYP POINTER, &

INTEGER9 INTEGER9 BITS POINTER): &
EXCEPT (EXCNoyEXCFUNgEXCROUT9NOMSGVNOEXC9EXCARR)

<3tandard library routine>

EVDROUTINE

FORTRAN specification:

SUBROUTINE EXCEPTCEXCNOgEKCFUN7EXCROUTyNOMSGgNOEXC,EXCARR,
+ EXCNOLVEXCNOH)

INTEGER EXCNoyEKCFUNgEXCROUT9NOMSGSNOEXC9EXCNOH,EXCNOL
LOGICAL EXCARR(EXCNQL:3KCNOH)

(standard library routine)

m1:, {‘3 D

Parameter values:

EXCNO Exception number or exception number group:
76008 default group of tmaos to be set

on 407)
/! m m ’14wee QEL

§IJTB LOGICAL array (EXCARfiy EXCNOL and EXCNOH
must be present? Fortran)

51028 BITS ?DINTER (EXCARR must be present,
Plano)

761182764$B c trap number
dOOB ' ertors
M0183M57B FIN error
other

EXCFUN Function:
ml disable exceptiomCS) indicated by EXCNO and

ignore .Il otheh exceptions“ Further, the
paramfi' he EXROUT? NOMSG and NOEXC will be
ignored”

0 enable exoeptionCS) indicated by EXCNO as TRUE,
set new handler/values9 and disable all other
eyceptiohe whioh are indicated as FALSE. For
EXCNO values 75118:?6Q48 or M01B2457, only
the single exception thus specified? is
ehabledi

I enable exoeptionCs) indicated by EXCNO, do not
modify haodleh/value39 and ignore all other
exoeptioosg

othev illegal

NDw50v136304

27
STANDARD EXCEPTION HANDLER LIBRARY

EXCROUT User defined exception handler routine
><O routine address (supplied by routine name

in the source program).
0 no routine supplied

NOMSG Number of messages allowed before program is aborted
—1 any number of messages allowed
)2 0 number of messages allowed (<2**31—1)
other illegal

NOEXC Number of traps before program is aborted:
-1 any number of traps allowed
>: 0 number of traps allowed (<2**31—1)
other illegal

EXCARR LOGICAL array (Fortran) or BITS POINTER (Plano)
containing TRUE or FALSE for exceptions to be handled

EXCNOL (Fortran) Low limit of EXCARR

EXCNOH (Fortran) High limit of EXCARR

The handling of one or several exception conditions may be modified,
selected through the EXCNO parameter. If this parameter is 5101B
(Fortran) or 51028 (Plano), the EXCARR parameter selects a set of
exceptions to be handled. If the EXCFUN parameter is zero and EXCARR
is present, the elements set to TRUE in this array will cause the
corresponding exception to be enabled, while FALSE will cause it to be
disabled. The array EXCARR must be declared as:

EXCARR (EXCNOL:EXCNOH) (e.g. EXCTRA (7611B:76443))

The EXCROUT parameter specifies the name of a user supplied routine to
be executed when the exception occurs. The routine should conform to
the following formal specification:

In Fortran:

SUBROUTINE name(ierno)
INTEGER ierno

<user written exception handler)

END

In Plano:

ROUTINE REFERENCE VOID, VOID (INTEGER): name (ierno)

<user written exception handler)

ENDROUTINE

ND-60.136.04

28
STANDARD EXCEPTION HANDLER LIBRARY

The parameter <ierno> will transfer the error number to the exception
handler. If the EXCROUT parameter is zero, the standard exception
handler routine from the library is used.

ND—60.136.0U

29
STANDARD EXCEPTION HANDLER LIBRARY

After an error has occurred, the sequence of operations is as follows;
the steps marked with an asterisk apply to traps only:

Note: the details are slightly different in Plane

1) * If the exception is a trap, the trap routine is activated.

2) A system provided exception handler is called.

3) This handler updates the occurence counter for this type of
exception and activates the user exception handler if one has been
specified.

A) If the traceback condition (see note 1) is true, the system
outputs:
* - register dump

» traceback printout

5) If the message occurrence limit (NOMSG) has not been exceeded, or
if the traceback condition (see note 1) is true, an error message
is printed.

6) If the error count is less than or equal to the allowed number of
occurences for this exception type, control is returned to normal
FORTRAN error handling, otherwise, the program is abnormally
terminated with error statistics, if specified.

Note that in Fortran the STACK UNDERFLOW trap condition is handled by
special software mechanisms and must, in order to ensure correct
termination of the I/O activities, always be enabled.

Note 1: the traceback condition is evaluated by the following
expression:

thiserror >< 'STACK UNDERFLOW' and
((TRACEBACK22 and

(thiserror.NOMSG : unl or
thiserror.numerrors in O:thiserror.NOMSG))

or
(TRACEBACK >= 1 and

(thiserror.NOEXC >< unl and
NOT thiserror.numerrors in O:thiserror.NOEXC)))

where

thiserror.numerrors is the current value of the number of
exceptions of this type which have occurred.

ND—60.136.0H

30
STANDARD EXCEPTION HANDLER LIBRARY

EXAMPLES, Fortran

1. Enable DIVISION BY ZERO trap using default exception values:

0 DIVISION BY ZERO is trap number 76143
CALL EXCEPT(761HE,T,0,0,0)

2. Enable OVERFLOW and allow maximum 2 error messages and 10 overflow
errors before abnormal termination. Activate the user defined routine
MYROUT each time the overflow trap occurs.

CALL EXCEPT(761lB,O,MYROUT,2910)

3. Disable error handling for exponential functions, Fortran error
numbers M31B, 4328, 433B, 437B:

LOGICAL ERRARRAY(431B:U37B)
DATA ERRARRAY/.FA SE. , "FALSE. 9 .FALSE. , .TRUE. ,

+ .TRUE. , .TRUE. , ”FALSE./

CALL EXCEPT<51013,m1,o,o90,ERRARRAY,M31B,M37B)

ND—60.136.0u

31
STANDARD EXCEPTION HANDLER LIBRARY

H. Manipulation of some exception settings.

Assume the following is the current table setting for exceptions:

exo. no. EXCROUT msg err setting
(octal) setting

#31 A 10 unl enabled
432 A 10 unl enabled
”33 A 20 unl enabled
M34 0 10 20 disabled
H35 0 10 unl enabled
H36 0 10 unl disabled
“37 O 10 50 enabled

If the following call were executed,

CALL EXCEPT(5101B,O,MYROUT,5,-1,ERRARRAY,M31B,H37B)
C ERRARRAY as declared in previous example

then the table settings would be changed as follows,

exo. no. EXCROUT msg err setting
(octal) setting

#31 A 10 unl disabled
432 A 10 unl disabled
433 A 10 unl disabled
u3u MYROUT 5 unl enabled
”35 MYROUT 5 unl enabled
M36 MYROUT 5 unl enabled
437 O 10 50 disabled
at.

ND-60.136.0u

32
STANDARD EXCEPTION HANDLER LIBRARY

@536 Ens fiXfiBEF remtine

EXCDEF is used to set the default exception handling values for a
given set of exceptions. This is functionally equivalent to calling
EXCEPT with the default parameter values for each of the traps
specified, but is more convenient and relieves the programmer from
knowing the defaults“

PLANO specification:

ROUTINE REFERENCE VOIDy VOID(INTEGER, BITS POINTER): &
EXCDE‘F(EXCNO9 EXCARR)

<standard library routine)

ENDROUTINE

FORTRAN specification:

SUBROUTINE EXCDEF<EXCNO, EXCARR, EXCNOL, EXCNOH)
INTEGER EXCNO, EXCNOL, EKCNOH
LOGICAL EXCARR(EXCNOL:EXCNOH)

<standard library routine>

END

Parameter values:

EXCNO Exception number or exception number group:
76008 default setting (see section Mal)
51038 LOGICAL array (EXCARR and EXCNOH present, Fortran)
51028 BITS POINTER (EXCARR present, Plane)
76118276448 specific trap number
MOOB all FTN errors
£01B3557B specific FTN error
other illegal

EXCARR LOGICAL array (Fortran) or BITS POINTER (Plane)
containing TRUE for exceptions to be handled,
FALSE for those that should remain as they are

EXCNOL (Fortran) Low limit of EXCARR

EXCNOH {Fortran) High limit of EXCARR

ND—60.136.0u

33
STANDARD EXCEPTION HANDLER LIBRARY

The EXCARR parameter selects a set of exception conditions, like in
the EXCEPT routine. Alternatively, one specific exception may be
selected through the EXCNO parameter.

EXAMPLES, Fortran:

1. Reset handling of all traps and Fortran errors to default:

C All traps
CALL EXCDEF(76OOB)

C All Fortran errors
CALL EXCDEF<4008>

C set default program termination conditions
CALL EXCTERM(O,1,20)

This setting is identical to the setting at the beginning of execution
of a Fortran program. '

2. Reset special error handling for exponentiental functions, error
numbers 4318, 4328, A33B and A37B, but keep possible special handling
of other exceptions:

LOGICAL ERRARRAY(4318:437B)
DATA ERRARRAY/.TRUE.,.TRUE.,.TRUE.,.FALSE.,

+ .FALSE.,.FALSE.,.TRUE./

CALL EXCDEF(SlOlB,ERRARRAY,A3lB,A378)

ND—60.136.0u

3M
STANDARD EXCEPTION HANDLER LIBRARY

Mafia The EXCTER% routine

EXCTERM may be called to determine the printing of traceback and error
statistics information. If it has been called more than once, the last
call applies at program termination.

PLANC specification:

ROUTINE REFERENCE VOID§VOID(INTEGER,INTEGER,INTEGER): &
EXCTERM<TRACEBACK,PRSTAT,NOLEV)

(standar library routine>

ENDROUTINE

FORTRAN specification:

SUBROUTINE EXCTERM<TRACEBACK,PRSTAT,NOLEV)
INTEGER TRACEBACK9PRSTAT,NOLEV

(standard library routine)

END

Parameter value:

TRACEBACK traceback print, for all errors:
0 2 no traceback (default)
1 2 traceback upon abnormal termination
2 : traceback upon error
other 2 illegal

PRSTAT error statistics print at program termination, for
all errors:
0 2 no statistics output
1 : print statistics (default)
other : illegal

NOLEV maximum number of levels to process when a traceback

is providedl
> O : maximum number of stack levels to print,

default 20
other 2 not valid

NDu60.136.04

35
STANDARD EXCEPTION HANDLER LIBRARY

u.5. The PRITRAC routine

PRITRAC is a utility routine to print a traceback of routine instances
(stack frames). The routine is called from a user handler, or
automatically upon abnormal termination of the job if traceback has
been selected (in the EXCEPT call referring to the exception condition
raised).

ELANC specification:

ROUTINE REFERENCE VOID, VOID (BOOLEAN READ): PRITRAC (TRAP)

(standard library routine>

ENDROUTINE

FORTRAN specification:

SUBROUTINE PRITRAC (TRAP)
LOGICAL TRAP

<standard library routine)

END

Parameter value:

TRAP TRUE if called while a trap is being handled.
FALSE should be set for any other condition.

Note that the default maximum number of stack levels to be printed is
20.

ND—60.136.0u

36
STANDARD EXCEPTION HANDLER LIBRARY

“.6. The PRIMESS routine

The PRIMESS routine will print the error message, corresponding to the
parameter value, on the standard output device (unit 1).

PLANC specificatiqg:

ROUTINE REFERENCE VOID, VOID (INTEGER): PRIMESS(EXCNO)

<standard library routine>

ENDROUTINE

FORTRAN specification:

SUBROUTINE PRIMESS (EXCNO)
INTEGER EXCNO

<standard library routine)

END

Parameter values:

EXCNO exception number

The parameter (EXCNO) must be in the range 7611Bz76M4B (traps) or
MO1B:MSYB (FORTRAN errors)§

ND-60.136.0u

37
STANDARD EXCEPTION HANDLER LIBRARY

u.7. The GETMESS/PGETMESS routine

PGETMESS/GETMESS will return the error text corresponding to the
specified exception number.

ELANC specification:

ROUTINE VOID,BYTES POINTER(INTEGER): PGETMESS(EXCNO)

(standard library routine)

ENDROUTINE

FORTRAN specification:

FUNCTION GETMESS(EXCNO)
C this function must be declared to be of type character in the
C calling program

INTEGER EXCNO
CHARACTER * SO GETMESS

<standard library routine>

END

Parameter values:

EXCNO the number of an exception condition

EXCTEXT (Fortran; out—value in Plano:)
Return parameter containing the error text

EXCNO must be the number of a defined exception condition, in the
range 7611B:76MQB (traps) or HOTB:R57B (Fortran error).

ND—60.136.04

38
STANDARD EXCEPTION HANDLER LIBRARY

M.8. The RDEFVAL routine

PLANC specification:

ROUTINE REFERENCE VOID,VOID (INTEGER, INTEGER WRITE, &
INTEGER WRITE? INTEGER WRITE, INTEGER WRITE, &
INTEGER WRITE, BOOLEAN WRITE): &

RDEFVAL (EXCNO, NOMSG, NOEXC, TRACEB, PRSTAT, NOLEV, ENABL)

<standard library routine)

ENDROUTINE

FORTRAN specification:

SUBROUTINE RDEFVAL (EXCNoy NOMSG, NOEXC, TRACEB, PRSTAT, NOLEV, ENABL)
LOGICAL ENABL
INTEGER EXCNO, NOMSG, NOEXC, TRACEB, PRSTAT, NOLEV

<standard library routine>

END

Parameter values:

EXCNO exception number

NOMSG default number of messages allowed
(returned value)

NOEXC default number of exceptions allowed
(returned value)

TRACER default (:0) traceback setting (all EXCNOS)
(returned value)

PRSTAT default (:1) error statistics setting (all EXCNOS)
(returned value)

NOLEV default (:20) maximum number of levels to be printed
during a traceback
(returned value)

ENABL Boolean parameter9 TRUE if exception currently is enabled

RDEFVAL may be called to read the default values of the exception
parameters corresponding to a given exception number (EXCNO).

ND~60.136.0&

39
STANDARD EXCEPTION HANDLER LIBRARY

u.9. The RCURVAL routine

RCURVAL may be called to read the current values of the exception
parameters corresponding to a given exception number (EXCNO).
ELANC specification:

TYPE RTYP = ROUTINE REFERENCE VOID,VOID (INTEGER)
ROUTINE REFERENCE VOID,VOID (INTEGER, RTYP POINTER,

INTEGER WRITE, INTEGER WRITE, INTEGER WRITE,
INTEGER WRITE, INTEGER WRITE, INTEGER WRITE,
BOOLEAN WRITE):

RCURVAL (EXCNO,EXCROUT,NOMSG,NOEXC,TRACEB,PRSTAT,NOLEV,EXCCOUNT,
ENABL)

R
°R

°R
°R

°R
°

<standard library routine)

INDROUTINE

FORTRAN specification:

SUBROUTINE RCURVAL(EXCNO,EXCROUT,NOMSG,NOEXC,TRACEB,PRSTAT,NOLEV,
+ EXCCOUNT,ENABL)

LOGICAL ENABL
INTEGER EXCNO,EXCROUT,NOMSG,NOEXC,TRACEB,PRSTAT,NOLEV,EXCCOUNT

(standard library routine>

END

Parameter values:

EXCNO exception number

EXCROUT address of current user exception handler or zero
(supplied as a routine name in the source program)

NOMSG current number of messages allowed before abnormal
termination (returned value)

NOEXC current number of exceptions allowed before abnormal
termination (returned value)

TRACEB traceback setting (for all EXCNOs), see section 4.4
(returned value)

PRSTAT status report print upon end of program (for all EXCNOS)
(returned value)

NOLEV current setting of maximum number of levels to be printed
during traceback (returned value)

EXCCOUNT current exception count (returned value)

ND_60.136.0M

MO
STANDARD EXCEPTION HANDLER LIBRARY

ENABL Boolean value9 TRUE if exception currently is enabled

Numbers not listed are currently not useda All Fortran errors are
default enabled»

All languages:

The hardware traps are listed in section Q.lo

ND—60.136.0u

41
COMMUNICATION BETWEEN NDmBOO AND ND~100

5. COMMUNICATION BETWEEN ND-SOO AND ND~100

There are several ways of transmitting information between the ND—SOO
and the ND—lOO; the selection of a method depends on the transmission
speed required, the requirements and privileges of the sending and the
receiving process, and above all, the amount of data to be
transmitted. '

5.1. Monitor calls

This is the simplest and, for the programmer, most direct way of
communicating through the operating system mechanisms, or with the
operating system itself. A monitor call will look exactly like a
regular subroutine call to a routine in an indirect segment. The
services provided are the same as in a ND~1OO system. Monitor calls
are used in connection with semaphores, internal devices, reserving
and using external devices, file I/O and for starting and stopping RT
programs in the ND~100.

When a monitor call is executed, the ND~SOO process is suspended and a
twin process in the ND—lOO is started to execute the call on behalf of
the ND~500 process. Some monitor calls may allow the ND-SOO process to
continue while the call is executed if the function code is selected
accordingly.

The starting and stopping of a ND~1OO process is rather time
consuming, and monitor calls should be used for small amounts of data
only, or for setting up other communication channels. The overhead is
essentially constant regardless of the number of bytes transferred, as
long as this number is moderate.

All Sintran III VSE/SOO systems are delivered with the OUTST monitor
call (MON 162). This is used by the standard libaries, rather than
OUTBT. The programmer using monitor calls explicitly is advised to
utilize OUTST if possible. OUTST will cause activation of the twin
process for each string to be transferred, while OUTBT will activate
it for each byte transferred.

5.2. Communicating through the process flags

Each process running in ND-SOO has two 32 bit words assigned for
communication purposes. These are termed the input flag and the output
flag. Monitor calls and commands are available to read and write these
flags. The flags are not used by the monitor, and may contain any bit
pattern the user desires.

The input flag of a process is used for signalling to a running ND—SOO
process. This flag may be written by an ND—1OO process or through
commands, and read by the process itself. The output flag is used for
returning data or status, and is written by the process. This flag may
be read by ND—TOO or through commands, but may not be written.

ND—60.136.0U

U2
COMMUNICATION BETWEEN ND~500 AND ND—lOO

There is no queueing m if another value is written in the flag word
before it is read, the first value is overwrittenn

5.3a Communicating through hTCGfiMON

This is the fastest method of communication, as reading and writing is
directly to the location accessed by the ND—lOO, and this part of
memory is always resident. The only limiting factor is the size of the
RTCOMMON area.

The RTCOMMON area is accessed from the NDu500 as a part of the regular
memory spaced The mapping onto the RTCOMMON is done at load time
through the MATCHWRTCOMMON commandy used before any loading to the
segment is doneo

No modification of the size of RTCOMMON should be done after the
segments referring to it have been loaded. If such modifications are
done? the segments must be reloaded, Segments using RTCOMMON can not,
in general, be moved to another machine after loading.

If the RTCOMMON area is used from NDMSOO9 it must be contiguous. In
other words:) if the system supervisor through the SINTRAN—SERVICE-
PROGRAM command DEFINEmRTCOMMONmSZZE expands RTCOMMON beyond what was
specified at system generation, this area must be adjacent to the
initially allocated areao

504° Communicating through an RT segment

An NDmlOO lprogram may share data with an NDuSOO process through a
segment in one of the NlOO SEGFlLsA The segment must be fixed in a
Continous area in memory before the NDW5OO process referring to it is
started”

This is the most efficient way of transferring larger amounts of data
between the two processors» Access to the area should be protected by
semaphores; this is done through monitor calls.

The symbols defined by the NDmlOO RTmLOADER are available to the
NDwSOO process after the MATCHMCOMMON~RTWSEGMENT command has been
givenu This command should be given after these symbols have been
defined in the NDM‘IOO9 but before any loading to the ND-SOO segment is
donea

If two (or more) NDmlOO segments are matched with one ND~500 segment,
they must be fixed in memory at physical addresses with a fixed
distance equal to the distance between them in ND~500 address space.

NDm600136aOM

43
COMMUNICATION BETWEEN ND—SOO AND ND-TOO

5.5. Communicating through files

All files are common to the two processors, and the same regulations
apply to processes running in the two CPUs as to processes running in
the same CPU. Files provide for transfer of arbitrarily large amounts
of data, but are significantly slower than the other methods.

In order to speed the file access, the file may be opened with direct
transfer (open modus 8 or 9). This puts some restrictions on the
application program, but allows the transfer to go directly to memory,
circumventing a major part of the file system. However, the user must
do most of the bookkeeping himself, and the file system provides no
structuring of the disk pages. The transfer speed will, however, when
the block size is large, approach the hardware speed of the disk.

Programs using direct transfer may also allow a higher number of
simultaneously opened files. Direct transfer is also available for
magnetic tape.

When direct transfer is used, the Monitor will automatically fix the
memory buffer in a contiguous part of memory before the first
transfer, and it will remain fixed until the program terminates.

ND~60.136.04

In:
LOADER COMMANDS

6. LOADER COMMANDS

Although the set of commands available in NLL is large, most users
need only a couple of them“ The most important are

SET»DOMAIN name an executable domain
LOAD~SEGMENT load a file containing relocatable code
EXIT m return to Sintran III

i

The EXIT command is described in the next chapter.

Various error messages may be returned from NLL during or after
command interpretation and execution. These error messages are listed
in chapter 13, with short explanations and references to where they
may occur»

oil. Domains

6.1.1a SETmDOMfiIN

SEToDOMAIN (<domain name>)

<domain name) « the name of the domain to be set as the current
domainy l to lb alphanumeric characters or hyphen.
Default name is SCRATCH—DOMAIN.

The domain with name <domain name> is set to be the current domain.
The subsequent segment handling9 loading and linking will be done in
the current domain° <domain name> cannot include the directory and
user name; loading may be done only in the domains of the current
user“

If a domain is already set when the SEToDOMAIN command is executed, it
is closed by an implicit ENDWDOMAINS

The default domain name is SCRATCBuDOMAINa If a LOAD~SEGMENT command
is given when there is no current domain, the code will be loaded
directly to the swap file? ready for execution. This will delete all
information previously loaded9 using default names. Thus, a domain to
be permanently retained will usually be given another name, to prevent
it from being destroyed when default domain name is used.

A user may have a maximum of 256 domains» New domains are specified by
enclosing the domain name in double quotes.

ND«60.136.0U

45
Domains

_6. 1.2. Emu-DOMAIN

END-DOMAIN

Finishes operation upon the current domain. END—DOMAIN automatically
executes the command CLOSE—SEGMENT. END—DOMAIN will automatically be
executed by the commands SET—DOMAIN, and EXIT.

§.1.3. CLEAR—DOMAIN

CLEAR-DOMAIN (domain name)

(domain name) — the name of the domain to be cleared, 1 to 16
alphanumeric characters or hyphen.

All segments which the domain (domain name> consist of are deleted
from the domain. The segment (:PSEG, :DSEG, :LINK) files are retained.

This command may not be executed when a domain is set. The domain is
assumed to exist in the description file of the current user. It
continues to exist, but no longer comprises any segments.

6.LH.Dm£fimmm

DELETE-DOMAIN (domain name)

<domain name) - the name of the domain to be deleted, 1 to 16
alphanumeric characters or hyphen.

All segments in the domain are deleted, the domain itself is then also
deleted. The segment (:PSEG, :DSEG, :LINK) files are retained. This
command may not be executed when a domain is set. (domain name) cannot
be SCRATCH—DOMAIN, and it must belong to the current user.

ND~60.136.0M

Q6

6.1.5. LIST—DOMAIN

LIST~DOMAIN (<domain name))

<domain name) w the name or abbreviatio 1 of names

Domains

of domains to be
listed" Default is all domains created by the
current user°

Writes all domains with names matching <domain name) and their start
addresses (if any) on the output devize. This command is also
available in the Monitor.

This command can only be used to list domains belonging to the current
user 0

SEGMENT, prefixing the <segment name) param
parentheseso

6.1.6. WRITE~DOMA1N~STATUS

WRITEmDOMAIN~STATUS [(<domain name>)]...

<domain name) m the name of the domain
requested. Default is t}

Prints all the available information at
specified. These are assumed to exist in th
current user“ If no parameters are given, t1
printed. Note that during linking/loading
or the segmentmentry is not fully updat
DOMAIN and CLOSEMSEGMENT, respectively, are

a

6.1.7. RENAME—DOMAIN

RENAME~DOMAIN

<old domain name) a the name of an existing

<new domain name) w the new name of the dome
characters or hyphen.

(old domain name), <new dome

To list domains belonging to other users, use the command LIST—
eter with the user name in

about which information is
me current domain.

Dout the domain or domains
description file of the

1e current domain-status is
session the domain~entry

'ed until the commands END-
executed.

3,

Lin name)

domain

Lin, 1 to 16 alphanumeric

Renames the domain (domain name); The domair
the description file of the current user.

ND~603136.04

is assumed to exist in

1:7
Domains

fi.1.8. COPY—DOMAIN

COPY-DOMAIN (source domain), (destination domain)

(source domain) — the name of the domain to be copied. May be
prefixed by directory and/or user name.

<destination domain) — the name of a domain to receive a copy of the
<source domain). May not be prefixed with
directory or user name.

Copies the entire <source domain) to <destination domain>. <source
domain) may be prefixed with a user name or directoryzuser name in
parentheses. If the destination domain already exists, the segments on
this domain must have the same names as the segments On the source
domain or default names, and they will be overwritten with the
segments from <source domain).

If the segments do not exist, they will be created. They will be given
the names they have in <source domain), unless these names were
default names; the segments then will be given new default names
according to the (destination domain) number. If the destination
domain does not exist, (destination domain) must be enclosed in double
quotes.

To move a domain from one installation to another, the domain to be
moved must be described in a description file being moved with it.
The user to which the copying is done must enter NLL to create a
description file (if it is not already created) and then copy the
domain(s) by prefixing the source domain with the relevant directory
and/or user name.

As the description file contains the name of the user, if the
Sintran III commands @RENAME—DIRECTORY and @RENAME-USER is used, the
NLL—command RENAME-DEFAULT-DIRECTORY-AND—USER must be used to update
the description file.

Domains making references to RTCOMMON or Sintran III/ND—1OO segments
should not be copied to other machines.

ND—60.136.0H

A8
Domains

6.1.9. RELEASE—DOMAIN

RELEASE—DOMAIN (domain name)

<domain name> - the name of the domain to be released

This command is used if an error in the system has occurred (e.g. a
system crash) leaving a domain in an open state with no user attached
to it. The domain will therefore be unavailable for further use. This
may also occur if a loading process was not terminated before a
Sintran III command was executed that did not return control to NLL.

RELEASE—DOMAIN will force the domain to be closed even if the user
issuing the command is not the one who is using it or has been using
it.

RELEASE~DOMAIN should be used with great care, and if used
inappropriately it may cause inconsistencies in the description file.
In any case, the contents of the released domain must be considered
unpredictable, and it should be reloaded before being used again.

ND-60.136.04

Segments

§.2. Segments

This section describes commands that manipulate segments as a whole,
either before or after the actual load operation. The commands that
cause code to be loaded are described in the next section (Commands to
load NRF code).

Commands in this section are mainly used in connection with multi-
segment domains. The OPEN-SEGMENT command may be used to select a non—
default name of the segment, but the rules for default names ensure
that segment names never collide. If there is only one segment per
domain, the user need not be concerned about segment names at all, and
thus, need not use any of the commands in this section. The opening
and closing of segments is done automatically.

6.2.1. OPEN—SEGMENT
OPEN~SEGMENT (<segment name>), (<segment attributes>)

<segment name> - the name of the segment to which subsequent
loading should be done, 1 to 16 alphanumeric
characters or hyphen. Default is SCRATCH—SEG—Ol
if current domain is SCRATCH—DOMAIN.

<segment attributes) ~ a string of the characters CDEMOPRWFN. See
below. Default is CW.

Prepares the segment (segment name> for loading, i.e. set (segment
name) as the current segment. If the segment does not exist when this
command is executed, the segment name must be enclosed in double
quotes. If the segment was already contained in the current domain,
all old information about the segment is erased. (To add more code to
an already loaded segment, use the command’EEfEND-SEGMENT.)

The scratch domain is used if there is no current domain.

The <attributes> specifies the use of the segment, and consists of a
string of option letters. The options are:

R Read Only data segment. May not be combined with W.

w Write allowed data segment. Default value. May not be combined
with R.

0 Use original data segment file for swapping. Modifications to
data will be permanent. May not be combined with C.

C Copy data segment to swap file. Default value. May not be
combined with O.

ND—60.136.0U

SO
Segments

E Empty data segment. The data segment will be dynamically assigned
at execution time,

F File as segmentv The data segment will at execution time be
assigned to a file through the FSCNT call (MON 4128).

P Shared program segment, May be included in another domain by the
command LINK—SEGMENT, Only the program segment will be shared.

This command is only necessary if the segment will be linked to
another domain than the current one“

M Other Machine. The program segment capability will at execution
time indicate that the segment is located in another CPU. Monitor
calls which are executed in ND~1OO can be defined as an indirect
segment in another machinea

D Shared Data, A linked segment will by default have only the
program segment shared. This attribute declares the data segment
as shared. If both program and data segments should be shared, PD
must be specified,

N No cache» All accesses to locations in this segment should go to
main memory, bypassing the cache mechanism. This is particularily
useful if the program controls its own DMA transfers from disks
or communication channels,

If an NRF file is loaded when there is a current domain (set by SET—
DOMAIN) but no current segment (set by OPENwSEGMENT), an implied
command:

OPENMSEGMENT SEGMENTMDXXX«Syy R

is executed, where xxx is the number of the current domain and yy the
logical segment number used. If the segment does not exist, it is
created.

All information on the segment is deleted\‘ The segment number may be
forced by the command SETmSEGMENTmNUMBER; otherwise the first free
segment number, starting at l, is used. If the segment exists, the
segment number will be retained,

If an NRF file is loaded when there is neither a current segment nor
domain, two implied commands are executed:

SETwDOMAIN SCRATCHMDOMAIN,,
OPENuSEGMENT SCRATCHWSEGMENTWOT, CW

Code previously loaded to SCRATCHMSEGMENT—Ol will be deleted. Thus, to
prevent the contents of a segment from being destroyed next time
anything is loaded to the segment using the default name, the segment
should be explicitly named.

NDm60.136.0U

51
Segments

Note that the default name depends on the domain and segment numbers.
Therefore, as long as each program is loaded to a different domain,
default segment name may be used in each of the domains without
interfering with segments in other domains.

OPEN~SEGMENT automatically executes CLOSE-SEGMENT if a current segment
is open and COMMONuSEGMENT»CLOSE if one or more COMMON segments are
open.

6.2.2. CLOSE-SEGMENT

CLOSE—SEGMENT [<Y>]

<Y> — Y will cause a load map to be written to the
output file after all linking and loading is
complete. No parameter will suppress generation of
a load map. Default is no load map.

Terminates loading to the current segment. After this command has been
xecuted, there is no current segment.

If the segment was not opened by APPEND~SEGMENT, a trap handler vector
is allocated. If there are undefined references, the autonlink
segments will automatically be linked. If there are still undefined
references, the defined auto—load files (see SET—AUTO-LOAD—FILE) will
automatically be loaded. Auto-link segments and auto—load files
defined by the current user are first linked/loaded, and then those
defined by user SYSTEM.

If there still are undefined references, an error message will be
given. In a batch or a mode job all undefined references will be
written to the output device and the command will be executed. In
interactive mode a warning will be given and the command not
executed. The second time the command is given it will always be
executed.

The segments will be closed, all labels will be saved on the :LINK
file in numerically sorted order, all other necessary information will
be saved on the description file, and the correct file access will be
set on the files involved. The KILL-ENTRIES and GLOBAL-ENTRIES
commands may be used before the segment is closed to restrict the
selection of labels saved on the :LINK file.

CLOSE—SEGMENT is automatically executed by END—DOMAIN, SET-DOMAIN,
EXIT or OPEN-SEGMENT.

ND-60.136.0H

52
Segments

6.2.3. LINK—SEGMENT

LINK—SEGMENT (segment name> ...

(segment name> - the name of the segment to be linked to the
current segment. If the segment does not belong to
the current user, a user name must be included
(even if user SYSTEM).

Links all modules on the segment <segment name> to the current
segment. Routines and data areas defined on the segments listed will
satisfy references on the current segment.

The linking can be done before or after loading the current segment;
all symbols defined on the specified segments will be available until
loading to the current segment is terminated (by CLOSE—SEGMENT). The
<segment name>s specified must be already loaded segments.

The segments which are linked will be a part of the current domain and
must have no external references to other segments if they are also
parts of other domains. This means that if the linked segment
originally is a part of another domain it cannot, itself, have linked
and common segments. It can, however, have indirect segments.
Linked segments may have linked segments in the current domain.
Logically, a segment linked to more than one domain may be treated as
if there were several identical copies of the segment, one in each
domain.

There are no restrictions on external references if the linked
segments are parts of the current domain. It is also possible to make
two—way references between segments within one domain.

If a segment in another domain is linked, the segment number will be
the same in the two domains. The segment number must therefore be
available when the linking is done, except if the segment has been
previously linked « a second LINK—SEGMENT command may be used to
define new references since the first linking was done.

6.2.4. LIBRARY~SEGMENT—LIHK

LIBRARY-SEGMENT—LINK <segment name> ...

<segment name> — the name of the segment to be linked to the
current segment.

A LINK—SEGMENT command will make all labels in the specified <segment
name> available in the current domain. This may cause name conflicts,
and can make the space requirements for the name table grow very
large.

ND—60.136.0H

53
Segments

LIBRARY-SEGMENT-LINK will define only those symbols actually
referenced. Otherwise it works exacly as LINK~SEGMENT.

6.2.5. FORCE-SEGMENT—LINK

FORCE—SEGMENT—LINK <segment name) ...

<segment name) ~ the name of the segment to be linked to the
current segment.

If a segment, which already has other linked segments, belongs to a
domain other than the one which is the subject of the current load
operation, then it is illegal to link that segment. it is however,
possible to link the segment by using the command FORCE—SEGMENT—LINK.
It is the user's responsibility to link all of the segments involved
by explicit use of the command LINK—SEGMENT (FORCE—SEGMENT—LINK or
LlBRARY—SEGMENT—LINK).

6.2.6. APPEND—SEGMENT

APPEND-SEGMENT (<segment name>) (<segment attributes))

(segment name) — the name of an existing segment, to which more
code will be added. Default is SCRATCH—SEG-Ol.

(segment attributes>— a string of the characters CDEMOPRWNF. Default
is the current attributes of the segment.

This command prepares <segment name) for further loading. All
previously defined and referenced symbols are available, and the new
code can be appended to the old code. <segment name) must exist when
this command is executed.

<segment attributes) have the same meaning as for OPEN-SEGMENT. If a
nonmdefault value is specified, the attributes are changed, otherwise
the existing attributes will not be modified.

Be aware that only the first 20 characters of a symbol will be saved
on the :LINK file, thus, if the symbol name is longer than 20
characters it will not match with the full, unmtruncated symbol when
loading to the segment is resumed at a later time with this command.

The common and link segments defined when the segment was previously
closed are not automatically restored, and must be explicitly defined
by the user. In order to avoid clearing the common segment, COMMON-
SEGMENT-APPEND should be used.

ND-60.136.0H

5M
Segments

6.2.7. SET—SEGMENT—NUMBER

SET~SEGMENT~NUMBER (<segment number>)

<segment number> — a number in the range 0:37B to be the logical
segment number of the next current segment.
Default is 1.

Specifies explicitly the logical segment number for the program
segment within a domain. This command can be used in connection with
the command OPEN—SEGMENT. If the command SET—SEGMENT—NUMBER is not
issued, the first free segment number is used.

In most cases, the user need not be concerned about the segment number
used. However, if the next free segment number (i.e. the default
segment number) is already used by a segment that will later be linked
to the domain, the segment number must be set to another value.

6.2.8. CLEAR-SEGMENT

CLEAR~SEGMENT <segment name>

<segment name> — the name of an existing segment that is to be
cleared.

The segment <segment name> will be cleared and readied for loading new
code, i.e. all information about labels, start address, low address,
and size is deleted. Pages allocated to the segment files will also be
released, but the file will be retained.

6.2.9. DELETE«SEGMENT

DELETE—SEGMENT <segment name>

<segment name> — the name of an existing segment that is to be
removed.

All information and the files making up the segment <segment name> are
deleted. The space on the domain which the segment was a part of is
released.

This command is not legal if a domain is set, in which case an END-
DOMAIN command must be executed before the segment is deleted.

ND—60.136.0u

55
Segments

6.2.10. RENAME-SEGMENT

RENAME-SEGMENT <old segment name), <new segment name)

(old segment name) — the name of an existing segment in the
description file of the current user.

(new segment name) - the new name to be given to the segment, 1 to 16
alphanumeric characters or hyphen.

Renames the segment <segment name). If the segment to be renamed is
not in the default directory and/or belongs to another user than the
current user, the entire directory and user name must be specified
unabbreviated and in parentheses as a prefix to (new segment name).

6.2.11. LIST—SEGMENT

LIST—SEGMENT (<domain name))y (<segment name))

<domain name) — the name or abbreviation of names of the domain to
be searched. Default is all domains of the current
user.

(segment name) — the name or abbreviation of names of segments to
be listed. Default is all segments in the selected
domains.

All segment names matching <segment name) in the domains with name
matching <domain name) are written on the output device, together with
some segment information. If a list of another user's segments is
wanted the segment name must be prefixed by the user name in
parentheses. The domain name may not be prefixed by a user name!

This command will list the domain names as well as the segment names.

6.2.12. WRITE—SEGHENT—STATUS

WRITE—SEGMENT~STATUS [(<segment name))]...

<segment name) - the name or abbreviation of names about which
information is requested. Default is current
segment.

Prints all the available information about the segment or segments
specified, belonging to the current user or the user specified in
parentheses as a prefix to <segment name). No parameter means that the
current segment status is printed. Vote that the current segment entry
is not fully updated before the command CLOSE—SEGMENT is executed.

ND~60.136.0H

56
Segments

6.2.13. DEFINEoSEGMENT-SIZE

DEFINE—SEGMENT~SIZE <program size>, <data size>

<program size) n the size of the program segment in bytes.

(data size) — the size of the data segment in bytes.

This command defines the size of the scratch segment on the swap file
used when no domain or segment is specified before the first load
command. Loaded code will be placed directly in (virtual) memory, and
the RUN command may be used to start execution. If the segment size
has not been defined, 6% pages will be allocated to the data segment,
and refereces to addresses above this (byte address MOOOOOB) will
cause a fatal error. If a larger program data area is needed it must
be declared before code is loaded.

If an attempt is made to load code or data to higher addresses than
the specified maximum, an error message is issued.

ND-60.136.0U

57
Commands to load NRF code

6.3. Commands to load NRF code

NRF files contains code in the format described in chapter 12,
produced by language compilers and assemblers.

A file in NRF format may be structured three different ways:

a) Normal, as default output from ASSEMBLER—SOO, PLANC—SOO, FORTRAN—
500, PASCAL-500, COBOL—500 etc. Modules are located in strict
sequential order, and defined labels are indicated by DEF or DDF
control numbers.

b) Slow library files, output from the compilers and assembler
mentioned above, when compiled/assembled in library mode (refer to
the manual for the language in use). Labels defined in the file
will appear with LIB control numbers. The term library file refers
to a file in this format.

0) Fast library files, as (slow) library files but preceeded by an
index table containing the name and byte address within the file of
each label defined in the file. This format is obtained by
transforming a file in format (b) with the PREPARE~NRF—LIBRARY»FILE
command (section 6.10.9.).

The command normally used to load NRF code is LOAD—SEGMENT. The other
commands in this chapter are required only if it is neccessary to
force the loading of a library module that would normally not be
loaded, or to prevent a module from being loaded.

6.3.1. LOAD—SEGMENT

LOAD-SEGMENT (file name>...

(file name> - the name of a file in NRF format. Default file
type is :NRF.

This command loads the NRF code into the current program segment, data
segment, and optional common segments. The current segment is the last
one specified in an OPEN—SEGMENT or APPEND~SEGMENT command.

If no current segment or current domain exists, code is loaded
directly to memory, and may be executed by the RUN command. If no RUN
command is given, the EXIT command will cause the code to be written~
to a scratch segment in a scratch domain. Default attributes will be
used.

If a current domain exists and no segment has been opened with OPEN-
SEGMENT, a default segment will be used. See OPEN—SEGMENT.

If the current segment was opened with the command APPEND—SEGMENT
rather than LOAD—SEGMENT, and in addition a routine vector was
allocated on this segment by the ENTRY~ROUTINES command, the LOAD—
SEGMENT command will work like RELOAD—SEGMENT: the new code will be

ND-60.136.0u

58
Commands to load NRF code

appended to the existing code; previously defined entry points will
not cause a "double definition" error, but the routine vector will be
updated to point to the new version. Any new entry points will be
entered into the routine vector after the already defined ones.

6.&2.Rmbmmsmmmm

RELOAD-SEGMENT (file name> ...

(file name) — the name of a file in NRF format. Default file
type is :NRF.

This command will load NRF code to a segment like LOAD—SEGMENT, but
modules already loaded to the segment will be replaced with the
modules with the same identification in (file name>. The code loaded
to the data segment is not replaced, but a warning message is given.
This command should be used after an APPEND-SEGMENT command in order
to avoid clearing the segment before loading.

This command is useful while debugging large segments and changes are
made in a single or a small number of modules. Loading the entire
segment is avoided; only the modules that have actually been modified
are reloaded. The new versions of the modules are loaded at the
current load address of the segment.

The space occupied by the old version of the module is not released,
and it is the responsibility of the user to load the entire segment to
clean this up after the debugging phase is complete.

6.3.3. LIBRARY~SEGMENT~LOAD

LIBRARY—SEGMENT—LOAD (file name)...

<file name> - the name of a file in NRF format. Default file
type is :NRF.

This command will load only modules containing referenced symols from
a file of structure (a)9 (b) or (c), as described above. For type (b)
and (c) the effect will be exactly as with the LOAD~SEGMENT command.

All symbols defined in <file name> will be considered library symbols,
regardless of whether they are actually defined as such in the :NRF
file or not. Thus, NRF modules in the file will be loaded only if
there are references that can be defined by loading the module.
Modules containing no symbol definitions, definitions of already
defined symbols or definitions only of symbols not referenced, will
not be loaded. This command allows a file to be used as a library even
if it has not been compiled/assembled in library mode.

ND-60.136.04

59
Commands to load NRF code

If an NRF module in <file name) contains several symbol definitions,
of which one or more are referenced, and others which are already
defined, the module is loaded. The first definition of the already
defined symbols will then apply, but a warning message will inform
that a redefinition was attempted.

6 . 3 . 14 . OMITI‘ED—SEGMENT—LOAD

OMITTED—SEGMENTaLOAD (file name), <entry>...

<file name) — the name of a file in NRF format. Default file
type is :NRF.

<entry> - the name of a symbol defined in (file name).

This command will load all modules of an NRF file of structure (b) and
(0) containing any referenced symbol(s), except for those modules
containing definitions of the specified ones. These modules will not
be loaded during this load operation. (Subsequent load commands may
cause these modules to be loaded.)

The <entry> does not have to be a library symbol (LIB contol number);
it will be omitted from loading regardless of symbol definition type.

This command is commonly used to prevent a standard version of a
routine from being loaded, in order to load a different non—standard
version from another file. If (entry) is not defined in (file name) or
if no symbols are specified, this command will act as LIBRARY-SEGMENT—
LOAD. .

6 . 3 . 5 . SELECTED—SEGMENT—-LOAD

SELECTED—SEGMENT-LOAD (file name), <entry>...

<file name) — the name of a file in NRF format. Default file
type is :NRF.

<entry> — the name of a symbol defined in <file name).

The complement of OMITTED-SEGMENT~LOAD: this command will load only
those modules containing definitions of the specified <entry>s from
files of structure (b) and (c). Other modules will not be loaded,
except those already referenced and undefined. Symbols do not have to
be library entries; no modules except those referenced in <entry> will
be loaded regardless of symbol definition type.

<entry> does not have to be referenced prior to the use of this
command.

ND-60.136.0M

6O
Commands to load NRF code

This command is used to load a selected routine without necessarily
loading all routines in the same file. even if these routines are
referenced. If the specified symbol is not found in (file name>, no
action is taken.

6.3.6. TOTALuSEGMENT—LOAD

TOTAL-SEGMENT~LOAD (file name)...

<file name) — the name of a file in NRF format. Default file
type is :NRF.

This command will load all modules of an NRF file of structure (a),
(b) or (0) except for those modules already loaded. For structure (a)
it will act as LOAD—SEGMENT except for modules already loaded, which
will be skipped with no warning message given.

ND-60.136.04

61
Commands to load NRF code

6.4. COMMON segments

Fortran COMMON areas may either be placed in the same segment as other
data, or they may be put in their own segment(s). Arguments for using
separate COMMON segments are similar to other segmenting: a different
protection, memory allocation or sharing is desired for the COMMON
segments than for other data areas.

Own data segments for the COMMON areas may be defined by the commands
below. These segments will not have corresponding program segments
(unless the segments have been previously opened with OPEN—SEGMENT, in
which case the existing program segment is ignored). Common segments‘
are special only in the sense that they facilitate selective loading
and linking of common blocks.

These commands apply mainly to Fortran programs. Common blocks defined
by a Fortran program may be referenced by some languages. A label is
defined on a common segment if the NRF language code of the loaded
module is FORTRAN and data mode is set (DMO control number, see
chapter 12), or if the label has been explicitly defined on a common
segment by the DEFINE—ENTRY or the DEFINE~COMMON command.

6.4.1. COMMON-SEGMENT»OPEN

COMMON—SEGMENT—OPEN (<segment name>), (<attributes>)

<segment name> - the name of a segment to be used for common areas
in subsequent loading. Default name is COMMON-
SEGMENT.

<attributes> — a string of the letters ROPDMEWCFN. Default is WC.

Prepare a common—datausegment as an additional current data—segment.

The (attributes) have the same meaning as for OPEN«SEGMENT, section
6.2.1., where the option letters are explained.

The default segment when loading a common block is the last one
specified in a COMMON—SEGMENT—OPEN command. However, common areas can
be placed on any segment by defining the common label on those
segments prior to loading the file containing the common block. See
the DEFINE—COMMON command (section 6.7.M.).

Each program/data segment pair may have up to three common segments.
Any data segment may be opened as common segment to any program
segment. COMMON—SEGMENT~OPEN will clear the segment - if code is to be
added to an already loaded common segment or it will be linked to,
COMMON-SEGMENT-APPEND should be used.

ND—60.136.04

62
Commands to load NRF code

6.u.2. COMMONwSEGMENT—CLOSE

COMMON—SEGMENT—CLOSE

Loading to all currently defined common segments is terminated. After
this command, there is no current common segment. Loading of common
areas may continue, but they will be located in the current data
segment unless they were already defined on one of the common
segments.

This command is not required before opening a new program segment,
common segment or EXIT.

6.4.3. COMMON—SEGMENT—APPEND

COMMON-SEGMENT~APPEND (<segment name>)

(segment name> — name of an existing segment, to which more common
blocks will be added. Default is COMMON-SEGMENT.

Common blocks defined in NRF files to be loaded will be located after
the data already loaded to <segment name>. (segment name> must exist
when the command is executed. The access of the segment is not
changed. Only the data segment is affected.

This command may also be used to link a previously loaded common
segment to another program segment, as an alternative to LINK—SEGMENT.
With respect to the data segment these two commands are identical, but
LINK—SEGMENT will also link to a program segment, if it exists. This
could cause unintened linking of accidentally synonymous entry points.
The COMMON—SEGMENT—APPEND will if used on a normal segment consisting
of both a program and a data segment, link to the data segment only.

6.4.”. COMMONwSEGMENT—NUMBER

COMMON—SEGMENT—NUMBER (segment number)

(segment number> — a number in the range 0:378 to be the logical
segment number of the current common segment.
Default is 33B.

Same as SET—SEGMENT—NUMBER except that COMMON-SEGMENT‘NUMBER applies
to the last common segment specified in a COMMON—SEGMENT—OPEN or
COMMON-SEGMENT—APPEND command. The user will normally not be concerned
with the segment number used.

ND—60.136.0u

63
Auto—link segments

6.5. Auto—link segments

An auto—link segment is linked if there are still undefined references
after the specified files are loaded when the CLOSE-SEGMENT command is
executed. If undefined references still exist after the auto—link
segments defined by the current user have been linked, the auto~link
segments defined by SYSTEM are linked. Autowlink segments are linked
before the auto—load files are loaded.

Auto-link segments are language sensitive, and will be linked only if
one or more module of the language(s) associated with it are already
loaded.

6.5.1. SET-AUTO»LINK~SEGMENT

SET—AUTO—LINK—SEGMENT <segment name>, (language) ...

<segment name> \ - the name of a segment to be automatically linked
at CLOSE-SEGMENT if undefined references remain.

<language> a a combination of FORTRAN, ASSEMBLER, PLANO, COBOL
or PASCAL.

Defines the segment with name (segment name> as an auto—link segment.
The auto—link segment specified will be valid until the command
DELETE—AUTO~LINK—SEGMENT is used. The auto-link segment applies only
to the user who has defined it. Auto—link segments defined by user
SYSTEM apply to all users however, after the autonlink segments of
that user have been linked.

The <language> name may be abbreviated as long as it is unambiguous.

The buffer containing the auto—link segment names can hold a maximum
of six entries. This does not include auto—link segments defined by
user SYSTEM. If the segment name is abbreviated in this command, it is
not expanded before the name is saved. Thus, to avoid ambiguity with
segments defined at a later time, the name should not be abbreviated.

It is not checked whether the segment exists at the time when it is
defined as an auto-link segment by this command. If the segment is not
present when the automatic linking is performed, it is ignored; no
error message is issued.

ND-60.136.0u

6h
Auto-link segments

6.5.2. DELETE—AUTO—LINK-SEGMENT

DELETE—AUTO—LINK~SEGMENT

All the user—defined auto—link segments are deleted permanently. The
auto—link segments defined by user SYSTEM will also be removed, but
only until NLL is reentered.

After a DELETE—AUTO-LINK-SEGMENT new permanent auto—link segments may
be defined with the SET—AUTO—LINK-SEGMENT command.

6.5.3. LIST—AUTO—LIHK—SEGMEHTS

LIST~AUTO~LINK—SEGMENTS

Writes on the output device all the auto-link segments in the sequence
they will be linked. Both the user's own and SYSTEM's auto—link
segments will be listed.

ND~60.136.0U

65
Auto-load files

6.6. Auto—load files

An auto—load file is an NRF file which is automatically loaded when
the command CLOSE—SEGMENT is executed and any undefined references
exist. The auto—load files are loaded after the defined auto-link
segments are linked.

The autonload files will be loaded in the sequence that they are

specified. If after loading all the user-defined auto—load files there
are still undefined references, the auto~load files of user SYSTEM
will be loaded.

The auto—load files are language dependent. Only those files specified
as auto-load files for the language used, will be loaded. If a system
consists of modules of different languages, auto—load files will be
loaded for all languages used, in the order they have been specified
with the SET-AUTO-LOAD-FILE command.

6.6.1. SET—AUTO—LOAD-FILE

SET~AUTO~LOAD—FILE <file name), <language>

<file name> - the name of a file to be automatically loaded if
undefined references remain at CLOSE—SEGMENT.

<language> — combination of FORTRAN, ASSEMBLER, PLANO, COBOL or
PASCAL

An auto—load file may be specified with more than on language
parameter, indicating that the file should be loaded if routines
written in either language have been loaded.

File names defined by the command SETnAUTO—LOAD—FILE, will be stored
permanently for the current user, and will only be removed by use of
the command DELETE—AUTonLOAD—FILE.

The buffer containing the auto—load file names can hold a maximum of
six entries. This does not include auto-load files defined by user
SYSTEM.

ND~60.136.0M

66
Auto-load files

6.6.2. DELETEuAUTO—LOADwFILE

DELETE—AUTO—LOAD—FILE

All the auto-load files defined by the current uSer are deleted
permanently. The auto—load files defined by user SYSTEM will also be
removed, but only until NLL is reentered.

After a DELETE—AUTO-LOAD«FILE new permanent auto—load files may be
defined with the SET-AUTO—LOAD—FILE commando

6.6.3. LIST—AUTO-LOAD—FILE

LIST—AUTO~LOAD—FILE

Lists all the auto—load files in the sequence that they will be
loaded. Both the user’s own and SYSTEM’S auto—load files will be
listed.

ND-60.136.04

67
Label and reference handling

6.7. Label and reference handling

References may be of four kinds:

— a program reference in the program segment. This occurs for
example when a routine is called and the routine address is a part
of the instruction operand.

- a data reference in the program segment. Any instruction operating
on a variable data item will make this kind of reference.

— a program reference in the data segment. If a jump address or
subroutine address is found in the data segment (referenced
through a general operand specifier, in assembler terms), this
occurs.

- a data reference in the data segment. A data value contains the
address of another data value, a displacement etc.

If the references can be defined at compile (or assembly) time, the
user will not be aware of them. However, if the referenced item is not
located within the NRF module of the reference, a symbolic name is
associated with it. A value to be given to the symbol may be defined
either by another NRF module, or by the user from the terminal.

The user may also make references of all the four kinds mentioned
above. This is mainly used for forcing specific library modules to be
loaded.

Wherever a numeric parameter is called for in the commands below, this
parameter may be a decimal or ootal number, or it may be a previously
defined symbol (either defined by a command or by loading an NRF
module). The symbols #PCLC and #DCLC are available to indicate the
current program location counter (load address) and current data
location counter, respectively.

6.7.1. PROGRAM-REFERENCE

PROGRAM—REFERENCE <symbol>, (<address>), (<space>)

<symbol> - the name of a defined or undefined symbol.

(address) - the address where the reference is made in the
program segment. Default is O. Symbolic as well as
numerical addresses are legal.

<space> — P or D, indicating a symbol defined in the program
or the data segment, respectively. Default is P.

If (symbol) is not present in the loader table, it will be entered as
an undefined program label reference at (addre53>. If <symbol> ispresent but as an undefined reference, <symbol> will be referenced
once more in the <address> specified.

ND-60.136.0fl

68
Label and reference handling

If <symbol> is an already defined label, its value will immediately be
put into the <address> specified. Otherwise, as soon as it is defined,
it will be put into all addresses from where it has been referenced.

Default <address> causes no modification of any memory location if the
symbol was undefined when the command was given, and is later defined.

6.7.2 DATA—REFERENCE

DATA—REFERENCE <symbol>, (<address>), (<space>)

<symbol> — the name of a defined or undefined symbol.

<address> - the address where the reference is made in the
data segment. Default is O. Symbolic as well as
numerical addresses are legal.

<space> — P or D, indicating a symbol defined in the program
or the data segment, respectively. Default is D.

If <symbol> is not present in the loader table, it will be entered as
an undefined data label reference at <address>. If <symbol> is present
but as an undefined reference, <symbol> will be referenced once more
in the <address> specified.

If <symbol> is an already defined label, its value will immediately be
put into the <address> specified. Otherwise, as soon as it is defined,
it will be put into all addresses from where it has been referenced.

Default <address> causes no modification of any memory location if the
symbol was undefined when the command was given and is later defined.

6.7.3 DEFIflE—ENTRY

DEFINE—ENTRY <label>, (<value>), (<space>)

<label> — the name of a not yet defined symbol.

<value> — the value assigned to the label. Default is O.

<type> — P or D, representing wheter a defined symbol is a
program or data symbol, respectively. Default is
P.

<label> will be entered into the loader table as a defined symbol. The
value will be equal to <value>° If the default value is used, no
modification of the current load address is done.

If the entry is already defined, an error message is issued.

ND—60.136.CMA

69
Label and reference handling

6.7.4 DEFINE-COMMON

DEFINE—COMMON <symbol name>, (<size>), (<value>)

<symbol name> — the name of a common block.

<size> — the size of the common area to be defined. Default
is undefined size.

<Value> — the value of the common symbol. Default is
undefined value, but on the current data segment
or last common segment specified.

The common label will be entered into the loader table as a symbol to
define the common data block. If <Value> is zero the common label will
be allocated from the current data load address. If <value> plus
<size> is larger than the current data load address on the segment
where symbol is being defined, the current data load address is
adjusted upwards to this value.

The common block is placed on the current data segment, or if common
segments are open, on the last common segment specified in a COMMON—SEGMENT—OPEN or COMMON~SEGMENTmAPPEND command.

Default <size> will cause the size to be determined the first time itis defined during loading of code. If the default <size> is used,<value> may not be specified.

Default <value> will cause the actual allocation of the common blockto be done at the current load address when a definition of the symbolis loaded from an NRF file. If <size> is specified, the common blockwill have this size regardless of the defined size of the firstoccurence of the common block. This can be used to override the
limitation that the first definition of a common block must be thelargest one.

6.7.5 LIST—ENTRIES—DEFINED

LIST-ENTRIES—DEFINED (<sort criterium>)

<sort criterium> — NUMERICAL or ALPHABETICAL. Default is NUMERICAL.

All defined labels together with their values and space (P or D) andthe current load address will be written to the output device. The<sort criterium> determines whether the list is sorted according tosymbol name or to their numerical value.

If the command SYSTEM—ENTRIES—ON is given before the LIST—ENTRIES—DEFINED command, all entries are listed. Otherwise only user definedentries are listed.

ND—60.l36.0uA

70
Label and reference handling

6.7.6. LIST—ENTRIES—UNDEFINED

LIST-ENTRIES—UNDEFINED (<sort criterium>)

<sort oriterium> * NUMERICAL or ALPHABETICAL. Default is NUMERICAL

All undefined entries (references) in the loader table, together with
their referenced address and space (P or D), will be written on the
output device. If a symbol is referenced several places, it is written
once for each reference, each with the address of the reference.

The (sort criterium> determines whether the list is sorted according
to symbol name or to the numerical address of the references.

6.7.7. LIST—MAP

LIST—MAP

Writes the load map on the output device. This includes the addresses
of all undefined references followed by the addresses or values of
defined labels, both sorted in numerical order.

6.7.8. SYSTEM—ENTRIES—ON

SYSTEM—ENTRIES~ON

The command LIST—ENTRIEsEFINED will not print the system defined
labels. System defined labels will have their first character equal to
or E. If a list including system defined entries is desired, the
command SYSTEMuENTRIES—ON must be issued before the command LISTn
ENTRIES~DEFINED. When system entries are printed, the language is
included. Program entries containing an entry point specifying a fixed
data area (INIT, ENTM, ENTF, ENTFN and ENTT instructions) rather than
stack allocation will be followed by a slash and the address of the
local data area.

LIST—ENTRIES—UNDEFINED will print the referenced system entries
without using the command SYSTEM—ENTRIES-ON.

The SYSTEM~ENTRIES—ON command applies to the next LIST—ENTRIES~DEFINED
only, and the command must be given every time a list of system
defined labels is required.

ND~60.136.0U

71
Label and reference handling

6v7c90 GLOBAL-ENTRIES

GLOBAL—ENTRIES <label> ...

<label> - name of symbol to be retained on :LINK file.

The entries in the loader table, except those referred to in this
command, are removed from the loader table before the table is written
on the :LINK file. This is useful if only a subset of the routines on
the segment should be made global. This command must be issued before
the segment is closed.

If the GLOBAL-ENTRIES command has not been executed, all entries in
the loader table will be retained on the :LINK file. In either case,
all symbols will be truncated to 20 characters.

6.7.10. KILL-ENTRIES

KILL-ENTRIES (symbol) 0..

<symbol> — the name of an entry to be removed from the loader
table.

If present, the symbol(s) specified will be removed from the loader
table. The entry may be defined or undefined. This command is used to
resolve name conflicts, avoid loader table overflow and to selectively
prohibit symbols from being saved on the :LINK file.

ND-60.136.0u

72
Areas shared with ND-1OO processes

6.8. Areas shared with ND-100 processes

The following commands are used to define sharing of segments with
ND—1OO processes. The programmer must have experiencece with ND—lOO
real time programming in order to utilize these commands, as he is
responsible for the synchronizing with NDu100 processes and the
protection of common areas.

Readers who do not need to communicate with ND»100 processes may skip
this section.

6.8.1. MATCH—RTCOMMON

MATCHaRTCOMMON

All RT—COMMON labels defined by the RT—LOADER (see the Real Time Guide
ND~60.133) will be defined as common labels in the loader table. The
addresses are transformed to ND—SOO addresses. The RTCOMMON area will
start at the next free page boundary in the current common segment if
any is defined; otherwise it will be located in the data segment.

The MATCH~RTCOMMON command should be used before the program modules
referring to the RT—COMMON area are loaded.

The names of defined labels will be reformatted from the BRF format (6
bits per character) to NRF format (ASCII bytes), addresses will be
converted to byte addresses and an offset representing the relative
NDuBOO address is added.

The MATChuRTCOMMON command applies to NDmloo/ND~SOO communication. A
domain using RTCOMMON should not be copied to other machines with the
COPYuDOMAIN command. The size of RTCOMMON must not be changed after
the domain is loaded; that will require reloading. The RTCOMMON area
must be contiguous.

6.8.2. MATCHwCOMMON-RTuSEGfiENT

MATCHwCOMMON—RT«SEGMENT <segment number)

<segment number> - the number of an ND«TOO segment.

All segment common labels defined by the RT~LOADER on the segment
specified will be defined as common labels in the loader table. The
MATCHwCOMMONmRT~SEGMENT command should be used before the program
modules referring to the segment common are loaded.

The MATCH~COMMON~RT~SEGMENT command applies to ND—lOO/ND—SOO
communication. A domain making references to NDmloo segments should
not be copied to another machine with the COPY—DOMAIN command. A
maximum of five ND-lOO segments, RTCOMMON inclusive, is available.

ND—60.l36.0U

73
Areas shared with ND—1OO processes

6.8.3. LINK-RT—PROGRAM

LINK-RT-PROGRAM

Defines the RT programs defined by the RT-LOADER. The command should
be used after the program modules referring to the RT program names
are loaded. Only RT program names which are referenced in the loader
table are defined by the command.

The LINK—RT-PROGRAM command applies to ND—lOO/ND—SOO communication. A
domain making references to RT programs should not be copied to
another machine with the COPY-DOMAIN command.

ND—60.136.0U

7H
Miscellaneous commands

6.9. Miscellaneous commands

6.9.1. PAGE-MODE

PAGE-MODE [<P/D>l

<P/D> — P indicating the program segment, D indicating the
data segment. Default is both P and D.

The current load address on the segment (program or data as specified)
is rounded up to the next page limit. Thus, the next load command will
start loading from an address that is a multiple of ”0003. This is
primarily useful in order to allocate data areas for 1/0 at page
limits, thereby optimizing use of the file system.

d92.Lmmmm§

LOW~ADDRESS (<address>), (<space>)

(address) ~ address in the range 0:7777777778. Default value
is u.

<space> — P, D or C or combinations of these, indicating
program, data or common address, respectively.
Default is PD.

The lower load address for subsequent loading to the current segment
is set. If C is specified, the load address is set on the last common—
segment specified in a COMMON—SEGMENT—OPEN or COMMON—SEGMENT-APPEND
command.

If the load address is set to a higher value than the current load
address, a hole may remain in the file if the affected pages have
never been assigned to the segment file. If a NO SUCH PAGE condition
occurs at execution time, the Monitor will zero fill the page in

memory. If the page has been used at an earlier time, the old contents
will be used, and may for practical purposes be considered
unpredictable.

ND-60.136.0H

75

Miscellaneous commands

6.9.3. HIGH-ADDRESS

HIGH—ADDRESS (<address>), (<space>)

(address) - address in the range 0:777777777B. Default value
is 777777777B.

(space) - P, D or C or combinations of these, indicating
program, data or common address, respectively.
Default is PD.

This command sets the highest address available on a segment. If any
loading above the specified upper high address is attempted, a warning
message is issued and the loading process interrupted.

6.9.4. ENTRY-ROUTINES

ENTRY—ROUTINES (<number of entries>)

<number of entries> — the maximum number of routines to be loaded on

the current segment. Default is 200B.

A library segment will at the start of the segment have a "routine

vector": when a routine is called from another segment, control goes

via this vector — the first element in the vector represents the first
routine on the segment, the second element the second routine and so
on. If the routines are modified and change their relative position,
no relinking of other segments is necessary as long as the routine

vector is updated and the routine number stays the same.

This command will allocate space for a routine vector of the specified

size, and must be given before any loading to the segment. <number of

entries> should be at least the maximum number of routines that will
be loaded to the segment.

All manipulation of the routine vector is done by NLL, and the user
need not be concerned about how the link from other segments is set
up.

The entries in the routine vector are initialized to zero, but will be
filled in by NLL as code is loaded to the program segment.

ND-60.136.0u

76
Miscellaneous commands

6.9.5. SET~IO~BUFFERS

SET—IoaBUFFERS (<number>)

<number> — the number of 2k byte buffers to be used by the
Fortran library for sequential 1/0 for file
buffering. Default is 16.

This command should be used only when a Fortran library segment is
created, or for any reason the Fortran library is loaded to the main
segment. From ordinary programs, the Fortran library will be linked to
the main segment, and the I/O buffers will already have been allocated
in the data segment of the library.

The command specifies a number of input/output buffers for more
efficient handling of sequential files in Fortran. Two system labels
will be defined, at the lower and upper limits of the buffer area, and
the current load address will be increased by the size of the buffer
area, The total size of all buffers will be <number> * 2048 bytes. The
user should choose an appropriate number of buffers; the normal number
is one for each simultaneously opened sequential file. If a Fortran
library segment is being created, 16 buffers should be specified.

The labels defined by this command will be used by the Fortran I/O
system to determine the location and the size of the buffer. No other
use of the area is made.

6,9,6. LIST—OCTAL

LIST~OCTAL <low address>, <high address>, <space>

<low address> - the address from which listing should start.
Default is O.

<high address> ~ the address up to which listing should continue.
Default is <low address>+ZOOB.

<space> — P or D, indicating program or data memory,
respectively. Default is D.

The contents of the locations between <low address) and (high address)
will be written on the output device in octal format, together with
the byte address.

ND—60.136.0u

77
Miscellaneous commands

6.9.7. LIST—SYMBOLIC

LIST-SYMBOLIC (<low address>), (<high address>), (<space>)

(low address) — the address from which listing should start.
Default is 0.

(high address) — the address up to which listing should continue.
Default is <low address>+ZOOB.

<space> ~ P or D, indicating program or data segment,
respectively. Default is P.

The contents of the locations between <low address> and (high address>
will be written on the output device in a disassembled format,
together with the byte address.

This command is not allowed in ND—lOO or PIOC computer mode.

6.9.8. LIST—MODE

LIST-MODE

Everything that is loaded is written on the output device in octal
format as it is being read from the NRF file. LIST—MODE will be
terminated by DISASSEMBLE—MODE.

6.9.9. DISASSEMBLE—MODE

DISASSEMBLE-WODE

Everything that is loaded is written on the output device in
disassembled format as it is being loaded from the NRF file.
Disassemble—mode will be terminated by LIST-MODE.

This command is not allowed in ND-lOO or PIOC computer mode.

ND—60.136.0M

78
Miscellaneous commands

6.9.10. CHECK—SYNTAX—MODE

CHECK—SYNTAX—MODE

If this command is executed, the following commands up to EXIT are
checked for syntactic correctness in the command processor only. They
will not be executed.

This is helpful for checking a batch or mode job before it is started.

6.9.11. RESET

RESET

Removes all symbols from the loader table and resets load addresses to
the initial low addresses, which is in ND—SOO mode H for both program,
data and common segments, in ND—lOO mode 0 for program and data, in
PIOC mode 0 for program, 1000008 for data.

Observe that NRF code is loaded directly to the segment files. Thus,
RESET cannot be used to discard loaded code and revert the segment
files to the state they were before loading was started.

6.9.12. RENAMEcDEFAULTwDIRECTORY~AND~USER

RENAMEaDEFAULT—DIRECTORY~ANDuUSER <(new directorytnew user)>

<(new directoryznew user)> - the new unabbreviated directory and user
name, including parentheses and colon.

If the default directory and/or the user must be renamed with the
Sintran III commands @RENAMEaDIRECTORY and @RENAME—USER, this command
must be used in order to make the domain and segment descriptions in
the description file consistent with the new Sintran III names. An
exact match with the user and directory name is required, including
the parentheses and the colon.

ND—60.136.0U

79
Miscellaneous commands

6.9.13. SUPPRESS—DEBUG~INFORMATION

SUPPRESS-DEBUG»INFORMATION (<ON/OFF>)

(ON/OFF) _ ON if debug info should be suppressed, OFF if it
should be retained. Default is ON.

If the parameter is specified as ON, all debug information in
subsequently loaded files will be discarded, rather than saved on the
:LINK file. If the command is given with the parameter OFF, copying of
the debug info to the :LINK file will be resumed (the initial state of
NLL).

The primary purpose of this command is to reduce the size of the :LINK
file. It may also be used if the Symbolic Debugger will be used, when
parts of the system are already completely debugged so that no further
debugging of these parts will be done. Suppressing the debug info will
then prevent breakpoints, line or routine tracing in the selected
parts.

6.9.1”. COMPUTER-MODE

COMPUTER—MODE <100/500/PIOC) [<P/D>]

<lOO/500/PIOC> ~ either lOO indicating code for the ND—TOO
computer, 500 indicating code for the ND—5OO
computer or PIOC indicating code for the
Programmable I/O Controller. Initially the NLL is
in 500 mode.

[<P/D>] — sets the NLL to Program or Data mode.

NLL may be set in a mode to load code for the ND—lOO computer by
specifying COMPUTER—MODE 100. This will change default file type to
BRF, and files loaded are assumed to be in BRF format. Program, data
and debug information will all be loaded to the :PSEG file, but in the
same format as an ordinary ND~100 :PROG file, and may be executed with
a @RECOVER command. The :DSEG file is not used.

COMPUTER—MODE PIOC will load code for the MCEBOOO processor in NE?
format. Be aware that although the relocation information is equal to
that of the ND—SOO the processors have very different instruction
sets. The executable code is loaded to the :PSEG file; the :DSEG file
will contain the same information in BPUN format that may be read by
the RT—LOADER command *READ—BINARY into an ND—lOO segment.

COMPUTER—MODE 500 will reset NLL to the initial mode, loading ND—SOO
code in NRF format into :PSEG, :DSEG and :LINK files.

Certain commands are not legal in 100 or PIOC mode.

ND-60.136.0u

80
Miscellaneous commands

The second parameter (optional), specifies whether the current load is
to be of type Program or Data. The default is type Program.

ND~60.136.04

81

NRF editor

6.10. NRF editor

The NRF editor commands manipulate modules of an NRF file, that is,
the information delimited by BEG and END control numbers. Control
numbers and mnemonics are described in chapter 12. A module is
identified by any of the DEF, DDF or LIB symbols defined within it.
Modules are treated as indivisible units; specifying one (of several)
symbols in a module denotes the entire module.

These commands are mainly used by system supervisors and system

programmers who have to maintain libraries of NRF code. A familiarity
with the NRF format is desirable in order to use these commands.

6.10.1. NEW—NRF—HODULES

NEW—NRF-MODULES <new modules file), (NRF file>

<new modules file>— the name of an NRF file containing the new modules
to replace the old ones. Default file type is
:NRF.

<NRF file) — the NRF file to be updated. Default file type is
:NRF.

The NRF modules in (NRF file> with the same identification as the NRF
modules in the <new modules file> will be replaced by the NRF modules
in the <new modules file>. The various NRF modules in <NRF file) will
have their same relative position within the file after the NEW—NRF—
MODULES command as before. NRF modules in the <new modules file> not
found in <NRF file) will be skipped and a warning message given. NRF
modules without symbolic names cannot be replaced.

6.10.2. FETCH—NRF—MODULES

FETCH—NRF-MODULES (source file), (destination file)
(<first module>), (<last module>)

<source file> — the name of an NRF file containing the modules to
be appended.

<destination file>- the name of an NRF file to be appended to.

(first module> — the first module from the source file to be
appended to the destination file. Default is the
first module in the source file.

(last module) - the last module from the source file to be
appended to the destination file. Default is the
last module in the source file.

ND—60.136.0u

82
NRF editor

The NRF modules in the <source file> starting with the <first module),
including every module up to the (last module> will be appended to
<destination file) after the last NRF module in the <destinaticn
file>.

6.10.3. APPEND—NRF—MODULE

APPEND—NRF—MODULE <source file), <destination file)
(<after module>)

(source file> — the name of an NRF file containing the modules to
be appended.

<destination file>— the name of an NRF file to be appended to.

<after module) — the module in the destination file after which the
new modules will be appended. Default is after the
last module.

All NRF modules in the <source file> will be appended to <destination
file> after the specified NRF module in the (destination file).

6.10.4. DELETE-NRF—MODULES

DELETE~NRF~MODULES <file name>, (<first module>), (<last module>)

<file name> — the name of an NRF file. Default file type is
:NRF.

<first module> ~ a symbol defined in the first module to be
deleted. Default is the first module in the files

(last module> — a symbol defined in the last module to be deleted.
Default is the last module in the file.

The specified NRF modules will be deleted from (file name>. <first
module) is the first module which will be deleted, and then all NRF
modules following and including (last module) will be deleted.

NDm60¢136uOM

NRF editor
83

6.10.5. LIST—NRF~ENTRIES

LIST-NRF—ENTRIES <file name)

<file name) - the name of an NRF file. Default file type is
:NRF.

This command will list all DEF, DDF and LIB symbols in <file name) on
the output device, together with their byte address in the file.

6.10.6. LIST-NRF—CODE

LIST—NRF—CODE <file name), (<first module>), (<last module>)

<file name) -

(first module) —

<last module) -

All NRF information
be listed in the
number, name of NRF
written in ASCII
disassembled ND—SOO

the name of an NRF file. Default file type is
:NRF.

the name of a symbol defined in the file,
identifying the first module to be listed. Default
is the first module in the file.

the name of a symbol defined in the file,
identifying the last module to be listed. Default
is the last module in the file.

in the specified modules in the (file name) will
following format: location counter, NRF control

control number. In addition symbolic names will be
format. Binary information will be written in both
format (if program code) and octal format.

ND—60.136.0M

8U
NRF editor

6.10.7. NRlTE~NRF~EOF—AFTER-MODULE

WRITE~NRF~EOF-AFTER—MODULE <file name), (<module>)

<file name) ~ the name of an NRF files Default file type is
:NRF.

<module) — the name of a symbol defined in the NRF file,
identifying the last module still valid. Default
is to insert the EOF control number in front of
the first module in the file¢

Write the NRF control number 260 (EOF) after the specified NRF module
in <file name). If the default value for the parameter (module) is
used, the EOF byte is written as the first byte on the <file name).

6.10.8. INSERT—NRFoMESSAGE

INSERT—NRF~MESSAGE <file name), (<module)), <message>

<file name) — the name of an NRF file. Default file type is
:NRF.

(module) — the name of a symbol defined in the file,
identifying a module in front of which the message
will be located. Default is the first module in
the file.

(message) ~ any character string excluding space up to the
first carriage return.

This command inserts the message in the NRF <file name) before
(module). If the file is prepared with the PREPARE—NRF-LIBRARY—FILE
command, the default <module) is in the front of the address table in
(file name).

The specified message will be written on the output device when the
file is loaded. If the file is a library file headed by an address
table, a message in front of the address table will be written; all
other messages (defined by this command) are located outside NRF
modules, and will not be written.

In the <message), a dollar sign will be converted to Carriage Return
and Line Feed.

ND~60.136.0M

85

NRF editor

6.10.9. PREPARE—NRF—LIBRARY-FILE

PREPARE—NRF—LIBRARY-FILE <file name)

<file name> — the name of an NRF file. Default file type is
:NRF.

This command will set up an address table in front of <file name)
containing all LIB symbols together with their byte addresses in <file
name>. This will convert the file from structure "b", slow library
file, to "c", fast library file, as described in the chapter on
'Commands to load NRF code'. <file name> must be the output of a
compilation with library mode set. If a library is prepared by this
command, conditional loading is done much more efficiently.

The address table is invalidated by all commands modifying the
contents of the NRF file, and the table must be rebuilt if a
sequential search of the file is to be avoided.

ND-60.136.04

86
COMMANDS AVAILABLE IN THE NLL AND THE MONITOR

7. COMMANDS AVAILABLE IN THE NLL AND THE MONITOR

These commands may be issued either during the loading of the program,
or at run time, before the program is executed. Some of the commands.
those defining trap handling, will define defaults if used in NLL.
These defaults may be overridden in the Monitor. If the command is
given in the Monitor, it applies to the current job only, and will not
permanently influence the properties of the segment or domain.

Some commands behave slightly differently in NLL and the Monitor. Such
differences are explained under each command.

7.1. Utility commands

7.1.1. HELP

HELP (<command name>)

<command name) - any command abbreviation, ambiguous or non—
ambiguous. Default is all commands available.

All commands matching <command name) are written with their parameters
on the output device. Parameters enclosed in brackets [] are optional
parameters that will not be prompted for if not supplied.

7.1.2. LIST~DOMAIN

LIST—DOAMIN (<domain name))

<domain name) — the name or abbreviation of names to be listed.
Default is all domains belonging to the current
user.

Writes all domains with names matching <domain name) and their start
addresses (if any) on the output device.

The Monitor allows a user name to be specified in parentheses as a
prefix to <domain name); in NLL the LIST—SEGMENT command must be used
to list domains and segments belonging to other users.

ND-60.136.0H

87
Utility commands

7 o 1 o 3 o OUTPUT—FILE

OUTPUT—FILE (<file name>)

<file name> - the name of the file where output is desired.
Default is the communication device.

This command is used to define an output device different from the
current one (initially the communication device). Most output will go
to (file name), but commandS, parameter prompt and error messages will
continue to appear on the communication device. The <file name) is
used as an output device until EXIT or a new OUTPUT—FILE command is
given.

7.1.3. RUN

RUN

The current domain is started in its start address.

In NLL code may be loaded without specifying a domain and segment, and
the code will be loaded directly to (virtual) memory. The RUN command
may then be used to executed this code. (See section 15.6.)

In the Monitor, the command must have been preceeded with_a PLACE—
DOMAIN or DEBUG—PLACE command in order to bring the domain into
memory. Return will be to the Monitor after execution has completed.

7.1.5. @ (Sintrannlll command)

@command

If a line starts with the @ character, the remainder of the line is
asumed to be a Sintran III command and executed through the COMND
monitor call.

Be aware that control will not return to NLL or the monitor after
execution of the command if another subsystem or user program was
called by the command. Also, if an error occurs during the execution
of the command, control will not return to the calling program.

In NLL, if a loading is in progress when the Sintran III command is
executed and control does not return, the description file may have

been left in an inconsistent state. It may be necessary to use the
RELEASE-DOMAIN command to gain access to the segment that was
current, and the contents will be unpredictable.

The Monitor will check the command issued before it is submitted to
Sintran III, and will allow only a subset of Sintran III commands.

ND-60.136.04

88
Utility commands

7.l.6. CC

CC any text

Comment; whatever follows on the same line as the CC command is
ignored and treated as a comment. This command is primarily useful for
making comments in a batch or mode job.

7.1.7. ABORT—BATCH—ON—ERROR

ABORTuBATCH—ON—ERROR <ON/OFF>

<ON/OFF> u ON if batch jobs should terminate if an error
occurs, OFF if only the current command should be
terminated.

If an error occurs in a batch or mode job and this command has been
executed with the parameter OFF, only the current command is aborted
and the next command in the batch input file is executed. If the
command has not been executed or executed with the parameter ON, the
entire job is terminated. The error message will be written on the
batch output file, and in NLL the commands CLOSE—SEGMENT and END-
DOMAIN will be executed (if required).

This command may be specified several times, switching the batch
termination on and off before and after critical sequences.

7.1.8. EXIT

EXIT

Returns to the Sintran III command processor.

In NLL, if not explicitly done the CLOSE~SEGMENT and END—DOMAIN
commands are executed if a segment is opened or a domain set.

In the Monitor this command releases the allocated ND-500 resources.
If the buffer used by the histogram and logging commands was reserved,
it will be released.

If NLL was started after entering the Monitor, return will be to the
Monitor. Otherwise, return will be to Sintran command mode.

In the Monitor, this command is also used to return from the LOOK-AT
commands.

ND—60.136.04

89

Trap handling

7.2. Trap handling

The ND-SOO trap mechanisms may be used to detect and handle

exceptional conditions occuring at execution time. The user may

optionally specify a routine to take care of the trap, or it may be

handled by a standard library routine.

Some of the traps are by default system enabled, others are locally

enabled and handled by the library routines. The default settings are

discussed in chapter H., Standard Exception Handler Routines.

The names of the trap conditions and the label of the standard

handlers are:

trap name label

OVERFLOW #OVERFLW
INVALID—OPERATION #INVALOP
DIVIDE—BY-ZERO #INVALDI
FLOATING-UNDERFLOW #FLTUFLW
FLOATING—OVERFLOW #FLTOFLW
BCD—OVERFLOW #BCDOFLW
ILLEGAL-OPERAND—VALUE #ILLOPER
SINGLE—INSTRUCTION-TRAP #SINGINS
BRANCH-TRAP #BRANCTR
CALL—TRAP #CALLTRA
BREAK-POINT-INSTRUCTION—TRAP #BRKPNTR
ADDRESS-TRAP—FETCH #ADDRFTC
ADDRESS—TRAP-READ #ADDREAD
ADDRESS—TRAP—WRITE #ADDWRTE
ADDRESS—ZERO‘ACCESS #ADDZERO
DESCRIPTOR—RANGE #DESCRIR
ILLEGAL—INDEX #ILLINDX
STACK-OVERFLOW #STKOFLW
STACK-UNDERFLOW #STKUFLW
PROGRAMMED—TRAP #PROGTRA
DISABLE—PROCESS—SWITCH—TIMEOUT #DISPSWT
DISABLE-PROCESS—SWITCH~ERROR #DISPSWE
INDEX—SCALING—ERROR #INXSCAL
ILLEGAL—INSTRUCTION-CODE #ILlNCOD
ILLEGAL—OPERAND~SPECIFIER #ILOPSPE
INSTRUCTION—SEQUENCE—ERROR #INSEQUE
PROTECT—VIOLATION #PVIOLAT

ND—60.136.04

9O
Trap handling

7.2.1. LOCAL~TRAP—ENABLE

LOCAL~TRAP~ENABLE <label> (trap condition) ...

<label> - the name of a user written or library exception
handler routine. Default is the standard handler
in the library for the specified <trap condition).

,

(trap condition) - one of the trap names above or an unambiguous
abbreviation.

The bit in the OTE register corresponding to the specified (trap
condition) will be set, thereby causing the trap condition to be
reacted upon if it occurs. The <trap condition) parameter must be one
or more of the names in the table above. Abbreviations are legal as
long as they are non—ambiguous.

The <label> is inserted in the table of exception handler routines.
This table may contain different labels for each trap condition, or
one routine may be used by several traps. The default trap handler has
a label as specified in the table above. NLL will cause the standard
handlers used to be loaded from the standard library. The Monitor
allows the <label> to be specified either as an absolute address or as
a defined program label. This label must be present in the :LINK file
of the segment. If the <label> is omitted and an exception handler
routine is defined, it is not modified. If no handler was defined, the
standard library handler is used. This requires that the standard
routine was previously loaded.

The trap handler allocated by NLL is an array located at the most
recently modified segment (OPEN—SEGMENT or APPEND«SEGMENT) in the
domain.

7 . 2 . 2 . LOCAL—TRAP—DISABLE

LOCAL—TRAP-DISABLE <trap condition) ...

<trap condition) ~ one of the trap names above or an unambiguous
abbreviation or ALL.

The bit in the OTE register corresponding to the specified <trap
condition) is cleared, thereby disabling trap handling for that trap
condition. If ALL is specified, all traps will be locally disabled.
This is mainly used in order to override the default setting before a
new selection of traps is enabled.

The routine defined in the exception handler table is not cleared. If
the OTE bit is later set (by program or by using the LOCAL—TRAP—ENABLE
command in the monitor before execution is started), the routine
defined in the LOCAL—TRAP—ENABLE command acts as the default exception
handler.

ND~60.135.04

91
Trap handling

7.2.3. SYSTEM—TRAP—ENABLE

SYSTEM-TRAP-ENABLE <trap condition) ...

(trap condition) ~ one of the trap names above or an unambiguous
abbreviation.

The <trap condition) specified will be handled by the Monitor residing
in the ND—lOO when the conditon occurs. It will be given a standard
reatment, which varies with the kind of trap.

If a local trap handler is defined and the local trap enabled, it will
be used rather than the system trap handler. System trap handling is
used only for those trap conditions that are locally disabled or have
no local trap handling defined.

7.2.4. SYSTEM—TRAP—DISABLE

SYSTEM—TRAP-DISABLE (trap condition) ...

(trap condition) - one of the trap names above or an unambiguous
abbreviation.

The (trap conditions) specified will not be reacted upon by the system
when the conditon occurs.

A number of trap conditions may not be system disabled. If a
modification of these traps are attempted, an error message is issued
and the command ignored.

7.3. VALUE—ENTRIES

VALUE-ENTRIES <label)...

<label) - the name of a defined symbol.

Prints the values of the labels specified on the output device. The
value is printed in octal format. The label will also be identified as
a program or as a data segment label.

ND-60.136.0M

92

ND—60.136.0u

93
MONITOR COMMANDS

8. MONITOR COMMANDS

Most commands in this chapter need not be known to the ordinary ND-SOO
user. The one command used for executing an ND-SOO program, the
RECOVERuDOMAIN command, is implicit if no match with other commands is
found. Thus, in order to start execution of a domain, it is sufficient
to give the domain name as a command.

A domain name may also be specified on the same line as the command to
start the Monitor. If a domain is executed this way, control will
return to Sintran III immediately after execution is complete.
Otherwise, the EXIT command must be used in the Monitor.

Various error messages may be returned from the ND—SOO Monitor during
command and program execution. These error messages are listed in

chapter 1H, with short explanations and references to where they may
occur.

8.1. Commands for running an ND—SOO program

8.1.1. PLACE-DOMAIN

PLACE-DOMAZN <domain name>

<domain name> — the name of a domain in the description file of
the current user or the user specified in
parentheses as a prefix to <domain name>.

An executable ND-SOO domain is made ready for execution. The specified
<domain name> is searched for on the description file of the current

user. If no match is found, the description file of user SYSTEM is
scanned. A user name prefixing <domain name> is valid. The syntax is
equal to the file system syntax.

If the specified domain is found, some initialization is performed.
The start address is moved into the program counter register. The
child trap enable register of ND—lOO, the own trap enable register of
the domain and the trap handler address register are initialized. Each
logical segment is mapped on a physical segment.

The program segment will normally map directly onto the :PSEG file.
Several users may be using the same physical segment, although the
segments may be logically different. It is assumed that the program
segments are read only. This means that breakpoints cannot be used,
and patching is not possible. The DEBUG~PLACE command will permit
modifications.

The data segment is initially mapped on the :DSEG file. Upon page
fault the required page is read from the file. When modifications are
made, the affected pages are not written back to the :DSEG file but to
a scratch area on a swap file. This copy is used for later references.
Each concurrent user of the data segment has his own copy of modified

ND—60.136.0U

9U
Commands for running an ND-SOO program

pages on the swap file, and is thus independent of other users. The
physical segment corresponding to the data segment is therefore a
mixture of unmodified pages in the :DSEG file and modified pages in
the swap file.

8.1.2. RECOVER—DOMAIN

RECOVER~DOMAIN (domain name>

<domain name) — the name of a domain in the description file of
the current user, user SYSTEM or if user name
specified, of that user.

The PLACE—DOMAIN and RUN commands are performed as one by using the
command RECOVER-DOMAIN. The words RECOVER-DOMAIN can be left out. The
domain name itself becomes a pseudo command. The procedure for looking
up the command or domain is then as follows:

1) A search is made in the list of basic commands. If a match is
found, the corresponding command is executed.

2) If no command is found, the list of standard domains are searched
(see section 8.2.). If there is any such standard domain, it is
started.

3) If the search among the standard domains was unsuccessful, a
search is made in the domains of the current user. If a domain
with the specified name is found, it is started as with a
RECOVER-DOMAIN command.

4) If no domain with the specified name is found, the domains of
user SYSTEM are searched. If a domain with a matching name is
found, the domain is started.

5) If no domain is found, the specified string is assumed to be a
macro name, and a temporary macro is searched for. If any
matching macro is found, it is processed. (See section 8.4.
for a discussion of macros.)

6) If no match is found among the temporary macros, the name is
assumed to be the name of a permanent macro. If a file with the
specified string as name and type :MACR exists, it is taken as a
permanent macro and processed. The file system will ensure that
if a file with the specified name is not found under the current
user, the directory of user SYSTEM is searched.

7) If none of the above lead to a successful match, the error
message NO SUCH COMMAND OR DOMAIN is printed on the communication
device, and no further action will result from the entered input.

If a 'domain has been given the name of or a legal abbreviation of a
command or standard domain, the words RECOVER—DOMAIN may not be left
out. '

ND_60.136.0U

95
Commands for running an ND-SOO program

8.1.3. GO

GO <address>

<address> — an address within the domain.

Starts the execution of an ND-SOO program at the specified address.

8.1.”. CONTINUE

CONTINUE

The execution is restarted at the current program counter. There is
one exception: if a program has stopped normally (by MON 0 or a stack
underflow trap) the execution is started at the original start
address.

If the execution has stopped because of a breakpoint, the original
instruction will be restored. If the breakpoint is a permanent
breakpoint, a single instruction is performed, and the original
instruction is replaced by a breakpoint instruction before the
execution is started.

If the execution has stopped because an escape character was typed,
the execution will be restarted where it stopped. Files will remain
opened after an escape, and the program will continue as if nothing
had happened.

ND-60.136.0H

96
Standard domains

802. Standard domains

The search procedure employed when a command is issued will not find
domains belonging to user SYSTEM until the name has been ruled out as
a monitor command or as the name of a domain belonging to the current
user. In particular if the file system is heavily loaded, the opening
and reading of the description file may take some time, and increase
the system load even more.

To speed the search for commonly used systems, like compilers or the
NLL loader, these domains may be defined as standard domains. The
names of standard domains are entered in a table that is searched by
the monitor before the description file of a user is opened. This will
reduce startup time.

Standard domain names are stored in a segment used by the monitor,
therefore the name table will not survive a cold start ()HENT/221).
After a warm start (masterclear/load), the name table is intact.

Standard domains in many respects resemble "reentrant subsystems" in
the ND—TOO, and essentially, the rules are the same. Standard domains
may only be defined and deleted by user SYSTEM, but they may be listed
by any user.

8 . 2 . 1 . DEFINE-STANDARD—DOMAIN

DEFINE—STANDARD~DOMAIN <standard domain name> <domain name)

<standard domain name>— the name to be used when calling the domain.
May be the same as the domain name, but may
not include user name. It should not be a
legal abbreviation of a monitor command.

<domain name> - name of an already loaded domain, belonging to
any user

When any user issues (standard domain name), or an unambiguous
abbreviation of it, as a command, (domain name> will be started. If
the user has a private domain that would otherwise have been started,
the name must include the user name in parentheses.

DEFINE~STANDARD—DOMAIN is permitted for user SYSTEM only.

ND—60.136.0U

97
Standard domains

8.2.2. DELETE—STANDARDmDOMAIN

DELETE—STANDARD-DOMAIN <name>

<name> — name of an existing standard domain

The specified standard domain is deleted from the name table of
standard domains. The domain will not be deleted, but will no longer
be a standard domain.

DELETE—STANDARD-DOMAIN is permitted for user SYSTEM only, and may not
be issued while the standard domain is in use.

8.2.3. LIST-STANDARD—DOMAINS

LIST—STANDARDuDOMAINS

The names of all standard domains and the segments comprising them are
listed out the output device.

This command is permitted for all users.

ND—60.136.0Q

98
Input and output

8.3. Input and output

In most programs, files are dynamically opened and closed during
program execution. In some cases it is desirable to open files

explicitly through commands. This occurs in particular where Fortran
programs are transported from other machines where all files must be
opened through operating system commands prior to program execution,
or where transportation to such machines is probable. These commands
may, however, be used to open files for programs in any language
allowing a file to be identified by its open file number.

The commands below are similar to the Sintran III commands with the
same names, but will affect files opened for use by the ND—SOO.

§;}.1. OPEN—FILQ

OPEN—FILE (file name>, <connect file number>, <access mode)

<file name> — the name of a file to be used by a program.
Default file type is :DATA.

(connect file number> ~ the file number used in the program.

<access mode> ~ see table below.

Opens a file and connects it to a file number used in the program. If
<connect file number> is O a file number is returned that must be used
from the program.

Default number base of <connect file number> is the main format «
initially octal. If a decimal number is specified, it must be followed
by a D. Unit numbers in Fortran programs are decimal.

The opened file will be associated with a Sintran file number, usually
ranging from 100B and upwards, in a manner equivalent to ND—lOO
operation. However, the monitor maintains a connect number table,
allowing programs to access the file either through the Sintran file
number or through the user selected connect number.

Access modes:

w o sequential write (OUTBT,OUTST)
R l sequential read (INBT)
WX 2 random read/write (RFILE/WFILE)
RX 3 random read (RFILE)
Rw U sequential read/write (INBT/OUTBT,OUTST)
WA 5 sequential write append
WC 6 random read/write with read/write access allowed from other

users (contiguous files only).
RC 7 random read with read access allowed from other users

(contiguous files only).

ND-60.135.04

Input and

D 8

DC 9

WRITE 10

READ 11

99
output

direct transfer

direct transfer with the file closed, modus 9.

The system will select the access mode Rw, WX or D. The most
optimal access mode which can be used for the file/device is
selected. The following is a list of file/devices and the
corresponding access mode selected by the system:

terminal: RN
indexed file: WK
contiguous file: D
magnetic tape: D

The system will select the access mode R, RX or D, as for
WRITE access above (For tape reader R access will be
selected by the system).

g1. 2 CLOSE-F113;
CLOSE—FILE <connect number>

<connect number> — the connect number of a file open from a ND-SOO
program or through the OPEN-FILE command.

Closes a file and disconnects the file number.

<file number> V 0 close the file open with the given number
—1 close all files temporarily open
~2 close all open files
~3 close all files open from the

ND—SOO program or by the OPEN—FILE
command in the Monitor.

H
H

II

8.3.3 LIST—OPEN-FILES

LIST~OPEN—FILES

Lists all files opened from a ND-SOO program or by the OPEN—FILE
command in the Monitor. The list will appear on the output device.

Files opened locally in the ND—lOO will not be listed.

ND—60.136.0UA

100
Input and output

8.3.uu SET~BLOCK~SIZE

SET-BLOCK—SIZE <connect number> (block size)

<connect number> « the connect number of a file open from a ND—SOO
program or through the OPENwFILE command.

(block size) _ default block size in bytes when accessing disk or
magnetic tape

Sets the block size used for I/O transfers to or from disk or magnetic
tape. The file may be opened by the OPEN~FILE command or MON OPEN (MON
SOB). The block size may be modified by the program by the SETBS
monitor call (MON 76B).

ND—60.136.0H

101

Input and output

ND—60.136.04

102

8.3.5.

Input and output

Error returns

Monitor calls from the ND-SOO may return error codes outside the range
used by ND~1OO and they can take values of 10008 and upwards as below:

Code
(dec.)

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

542

543

544

545

546

547

548
549
550
551
552

Code Error message
(00%.)

10008 ND—500 OPEN FILE TABLE IS FULL
1001B FILE IS NEITHER CONTIGUOUS NOR MAG. TAPE
10028 ND—500 OPEN FILE TABLE FOR DIRECT TRANSFER IS FULL
10038 ERROR IN MONITOR CALL
10048 ODD BYTE ADDRESS
10058 ODD BYTECOUNT
1006B TOO BIG BYTECOUNT
10078 BYTECOUNT NOT MODULO SECTOR SIZE IN DIRECT TRANSFER
10108 ADDRESS OUTSIDE FILE LIMITS IN DIRECT TRANSFER
10118 BLOCK ADDRESS NOT MODULO SECTOR SIZE IN DIRECT TRANSFER
10128 HARDWARE STATUS ERROR IN DIRECT TANSFER
10138 ILLEGAL MONITOR CALL NUMBER
1014B DC ACCESS NOT LEGAL ON MAG. TAPE
10158 WRONG NUMBER OF PARAMETERS IN MON. CALL
10168 BYTE POINTER NOT MODULO SECTOR SIZE IN DIRECT TRANSFER
1017B DATA AREA CANNOT BE PUT IN A 64K SINTRAN III SEGMENT
10208 SEGMENT NOT MODIFYABLE
1021B BYTECOUNT NOT MODULO BLOCK SIZE IN DIRECT TRANSFER
10228 ILLEGAL OPERATION ON FILE CONNECTED TO A SEGMENT
10238 FILE ALREADY CONNECTED TO A SEGMENT
1024B ALL LOGICAL DATA SEGMENTS USED
10258 LOGICAL DATA SEGMENT ALREADY USED
1026B BLOCK SIZE NOT MODULO SECTOR SIZE
10278 ADDRESS OUTSIDE PROGRAM SEGMENT
10308 ADDRESS OUTSIDE DATA SEGMENT
10318 TRYING TO WRITE SEGMENT BACK ON SYSTEM SWAP FILE
10328 ILLEGAL MEMORY TYPE OF SPECIFIED AREA
1033B MAX GLOBAL FIX
10348 ERROR IN ABSOLUTE FIX
10358 OTHER SEGMENTS HAS USER FIXED PAGES IN THE SPECIFIED

AREA
10368 OTHER SEGMENTS HAS SYSTEM FIXED PAGES IN THE SPECIFIED

AREA
1037B IMPOSSIBLE TO DO FIX CONTIGUOUS BECAUSE OF ALREADY

‘ SYSTEM FIXED PAGES
10408 IMPOSSIBLE TO DO FIX CONTIGUOUS BECAUSE OF ALREADY

USER FIXED PAGES
10418 NO CONTIGUOUS AREA AVAILIBLE BECAUSE OF SYSTEM FIXED

OF OTHER SEGMENTS
10428 NO CONTIGUOUS AREA AVAILIBLE BECAUSE OF USER FIXED

OF OTHER SEGMENTS
1043B IMPOSSIBLE TO DO CONTIGUOUS FIX. AREA GREATER THAN THAN

PHYSICAL MEMORY
1044B NOT ENOUGH MEMORY RESERVED BY THE ND—500
10458 TRYING TO FIX PAGES SHARED WITH A SINTRAN III SEGMENT
1046B SEGMENT NOT IN USE
10478 THE PROCESS HAS NO BEFORE IMAGE LOG SEGMENT
10508 NO SWAPoFILE PART AVAILABLE

ND—60.136.04

103
Input and output

553
554
555
556
557
558
559
,560
561

These

10518
1052B
1053B
105MB
1055B
1056B
1057B
1060B
1061B

error

SWAPPING SPACE NOT AVAILABLE
NO FREE PHYSICAL SEGMENT
SEGMENT NOT MODIFYABLE
ILLEGAL PROCESS NUMBER
SWAP DEVICE ERROR
PRIVILIGED MONITOR CALL
ILLEGAL LOGICAL SEGMENT NUMBER
NO SUCH PROCESS
ILLEGAL ADDRESS

messages may also be written with the ERMSG monitor call
(MON 6MB). Explanations of these error messages are found in chapter
1A, which contains all error messages that may be issued by the ND—SOO
Monitor.

File system error codes known in ND—1OO are explained in Sintran III

Reference Manual, ND—60.128.

ND-60.136.0U

10”
Input and output

8.3.6. Direct file transfer with RFILE and WFILE (disk)

Direct file transfer is a feature for optimized disk transfer to the
ND«500. It allows very high transmission speeds between disk and
memory, moving a maximum of one disk cylinder per request for disk
transfer. (One monitor call may cause several disk transfers if the
amount of data exceeds one cylinder.)

The file is opened by the OPEN—FILE command, modus D or DC or from the
NDWSOO program by the monitor call OPEN, modus 8 or 9. In modus 8, the
file is kept open; in modus 9 the file is closed during the file
transfer.

The modus 9 feature allows the user to work on a larger number of
files than the maximum number of files that can be concurrently open
in the Sintran III file system.

The standard calls RFILE, WFILE and WAITF are used in the ND-SOO
program? but there are some limitations to the parameters. See the
Sintran III Reference Manual ND~60.128 for a description of these
monitor calls.

The actual file transfer is performed by the monitor call ABSTR. The
file system is bypassed and the mass storage device may be used in an
optimal way.

The monitor calls RMAX and SMAX may be used if the file is opened
(modus 8).

The limitations to the use of the standard Sintran III file system
are:

~ The file must be contiguous.

w Only the monitor calls OPEN, CLOSE, RFILE, WFILE, WAITF, RMAX and
SMAX may be used.

— The default logical block size is equal to the hardware sector
size.

~ The word count in RFILE or WFILE must be a multiple of the hardware
sector size of the mass storage device.

- The maximum byte pointer is not updated when DC is used.

« The data area to be transferred to or from must be contiguous in
physical memory. (This is, however, automatically done by the
Monitor at execution time if required.)

ND~60.136.04

105
Input and output

8.3.7. Direct file transfer with MAST? (magnetic tape)

Direct file transfer is a feature for optimized magnetic tape transfer

to the ND-SOO. It allows data records of arbitrary size to be
transferred, bringing the transmission speed close to the maximum
speed of the hardware.

The file is opened by the OPEN~FILE command, modus "D" or from the

ND—SOO program by the monitor call OPEN, modus 8. The modus "DC" (or
9) may not be used for MAGTP.

The monitor call MAGTP may be used in a standard way from the NDu500,
but the actual transfer is performed by the ABSTR monitor call in
ND-lOO and it goes directly from the interface into the NDmSOO memory
via the DMA channel. The only limitation to the block size is the
maximum size of contiguous physical memory that may be allocated.

ND—60.136.0N

106
Input and output

§;3.8. Terminal I/O

When the ordinary monitor calls for terminal I/O, INBT and OUTBT, are
used from ND-SOO the ND~1OO shadow process is activated for each byte
transferred, causing a considerable overhead in the ND—1OO CPU.

Two monitor calls, DVINST and DVOUTS, are available from the NDwSOO
for more efficient communication with the terminal. The NDuSOO CPU
will operate directly on the terminal datafield; the call consumes
minimal ND—1OO CPU time.

DVINST <device no> <max no.0f bytes> <no.of bytes returned>
<buffer> <break strategy> <echo strategy>
<break table 1> <break table 2> <break table 3> <break table M>
<echo table 1> <echo table 2> <echo table 3> <echo table u>

The <device no> parameter must be the Sintran III file number or
device number rather than the connect file number. This is because the
translation from connect number to file number takes place in ND~1OO
routines which are not used by the DVINST call. The Sintran III file
number may be obtained by opening the file specifying connect number
zero, or it may be obtained through the GTYPR monitor call. In
background, the users own terminal may be identified by device number
1 (one).

<break table 1 / 2 / 3 / u> - bit 0—31 / 32n63 / 64—95 / 96-127
of new break table.
bit 0—31 / 32w63 / 6n-95 / 96m127
of new echo table. Break and echo

strategies apply if the device is a terminal. If the strategy : 7 the
specified break or echo tables are copied to the terminal datafield.
IF the strategy : 8 the old user~specified tables are used without
reading new ones from the user data segment.

<echo table 1 / 2 / 3 / H>

The call may be used for file 1/0 as well, in which case only the
first four parameters apply. Input will be terminated when the input
buffer is full, or at end of file.

DVOUTS <device no> <no.of bytes> <buffer>

The specified number of bytes are output. <device no> must be the
Sintran Ill file number or device number, rather than the connect
number.

ND~60.136.0M

107
Macro commands

8.4. Macro commands

Macros provide a convenient mechanism for executing the same set of
commands repeatedly. This is particularly useful for programs
requiring certain initialization commands to be given before execution
starts, for initialization after a system restart, or for executing a
set of debug commands. Each user may in fact build his own set of
commands from the elementary commands available in the Monitor.

It is not possible to supply input to a program in a macro body.

Macros may be saved in files, or they may be temporary, vanishing when
the Monitor is left.

8.“.1. DEFINE-MACRO

DEFINE—MACRO (macro name>
(macro body>

END-MACRO

With this command it is possible to compose new commands from the
original commands or other macros.

Macros defined by this command are temporary. Permanent macros may be
prepared by a text editor on a file. The file must be of type :MACR.

Every line following the DEFINE-MACRO command is taken as the macro
body until the ENDnMACRO is encountered. END-MACRO must be written on
a new line.

It is possible within the macro body to define parameters that are
replaced by the actual parameters when the macro is called. A
parameter is defined by

PARAMETER (parameter name>, (default value>, (prompting text>

If spaces or commas should be part of the (parameter name>, (default
value) or (prompting text), they may be enclosed in apostrophes.
Otherwise, apostrophes are permitted but not required.

The first actual parameter supplied in the macro call line replaces
(parameter name> used in the first PARAMETER definition; the second
actual parameter replaces (parameter name> used in the next PARAMETER
definition and so on. Excessive parameters are ignored.

When the macro is called, the parameters which are not specified are
asked for by typing the prompting text on the communication device. If
the actual parameter is empty the default value is used when expanding
the macro.

ND—60.136.0U

108
Macro commands

8.u.2. Macro subcommahds

A monitor call, MACROE (MON 300B), for signalling error return from a
program to the Monitor is implemented. There is a flag which is raised
when the executing program is terminated by this monitor call or by a
trap. The error flag is set to zero when a program is terminated
normally.

Two commands may be used within a macro to test the error flag:

8.4.2.1. IFuERRORoMACRO—STOP

IFuERROR-MACRO~STOP

Causes the currently executing macro to abort if the error flag is
set. If the error flag is reset, the processing of the macro
continues.

8.4.2.2. IF-ERROR—FULLnSTOP

IFwERROR~FULL~STOP

Equal to IF—ERROR»MACRO~STOP except that all active macros are aborted
if the error flag is set.

By default, the expansion of the macro is printed on the output
device. This printing may be suppressed by

§.u.2.3. NOLIsg
NOLIST

The printing of macro expansions is suppressed.

§.u.2.u. LIST
LIST

The printing of macro expansions to the output file is reinstated.
This is the default mode when a macro expansion is started. Macro
subcommands may not be abbreviated.

ND—60.136.04

109
Macro commands

8.H.3. EXECUTE—MACRO

EXECUTE—MACRO <macro name>, [<parameters>]...

(macro name) — the name of an existing (temporary or permanent)
macro.

<parameter> - actual parameter to replace a formal parameter in
the macro. If several parameters are supplied they
are separated by comma or space. The parameter may
contain any character except space or comma.

The macro with the specified name is processed. Formal parameters are

substituted with actual parameters. If the actual parameters are not
supplied, they are prompted for with <leading text) specified in the

PARAMETER definition (see the DEFINE—MACRO command).

The words EXECUTE—MACRO can be left out. The procedure used for

looking up a command or macro is as follows:

1) A search is made in the list of basic commands. If a match is
found, the corresponding command is executed.

2) If no command is found, the list of standard domains are searched
(see section 8.2.). If there is any such standard domain, it is
started.

3) If the search among the standard domains was unsuccessful, a
search is made in the domains of the current user. If a domain
with the specified name is found, it is started as with a
RECOVER—DOMAIN command.

a) If no domain with the specified name is found, the domains of
user SYSTEM are searched. If a domain with a matching name is
found, the domain is started.

5) If no domain is found, the specified string is assumed to be a
macro name, and a temporary macro is searched for. If any
matching macro is found, it is processed. (See section 8.4. for a
discussion of macros.)

6) If no match is found among the temporary macros, the name is
assumed to be the name of a permanent macro. If a file with the
specified string as name and default type :MACR exists, it is
taken as a permanent macro and processed. The file system will
ensure that if a file with the specified name is not found under
the current user, the directory of user SYSTEM is searched.

7) If none of the above lead to a successful match, the error
message NO SUCH COMMAND OR DOMAIN is printed on the communication
device, and no further action will result from the entered input.

Temporary macros may be defined within permanent macros. Such
temporary macros will be erased when the processing of the permanent
macro is finished.

ND-60.136.0H

110
Macro commands

If a macro is given the name of, or a legal abbreviation of a command,
a standard domain or a domain or a domain belonging to the current
user or SYSTEM, EXECUTE-MACRO may not be left out.

Input to the program may not be supplied in a macro body.

8.”.4. RESUME—MACRO

RESUMEmMACRO

The last aborted macro is resumed at the line following the one where
the macro was interrupted.

8 . l; . 5 . ERASE—MACRO

ERASE—MACRO <macro name)...

(macro name) — the name of an existing temporary macro.

The named temporary macros are erased. Permanent macros are erased
through the Sintran III command @DELETE~FILE <macro name>:MACR.

8.H.6. DUMP—MACRO

DUMP—MACRO (macro name)

(macro name> — the name of an existing temporary macro.

The named temporary macro will be written to a file with the name of
the macro, i.e. the macro is made permanent and can at a later time be
executed by using the macro name as a command. If the file does not
exist, it will be created. The default type of the file is :MACR.

ND—50.136.0H

Macro commands

8.M.7. LIST-MACRO

LIST—MACRO (<macro name>)...

(macro name) w a macro name
macros to be
defined.

or abbreviation of
listed. Default is

names of the
all macros

The names and contents of the macros with names matching the specified
name are listed on the output device.

Only temporary macros
the

are listed. Permanent macros may be listed by
intran III command @LIST—FILES <macro name>zMACR, TERMINAL.

ND—60.136.0u

112
Debugging commands

8.5. Debugging commands

Before any debugging commands are used, a program must be moved into
the user's virtual memory° This is done by the PLACEaDOMAlN or DEBUG-
PLACE command, implicitly by a RECOVERuDOMAIN, or by the DEBUGGER
command with the domain name as a parameter. If patches to the program
segment are to be done, DEBUG-PLACE or the symbolic DEBUGGER must be
used.

After program termination, either normal or error termination, the
program is still in the virtual memory space and may be inspected or
modified before restart. The program may be restarted by either one of
the commands RUN, CONTINUE, GO or STEP, or the symbolic debugger may
be activated by DEBUGGER. After error termination, the P register
contains the address of the instruction following the last instruction
executed. Depending on the kind of error, continuing execution from
this address may be menaingless.

8.5.1.£EBUGGE_§
DEBUGGER [<domain name>]

(domain name> — the name of the domain to be debugged. Default is
the domain currently in memory.

The symbolic debugger is started with the specified or current domain
as the system to be debugged. The commands of the symbolic debugger
are documented fully in the manual Symbolic Debugger User’s Guide,
ND~60.158. Essentially, the available commands are a superset of the
commands described below, allowing locations in both program and data
memory to be specified by symbolic names rather than addresses.

For symbolic names to be available the program must have been compiled
with the DEBUG—MODE option in the compiler turned ON. If the DEBUG~
MODE option was off, the symbolic debugger may be used, but no
symbolic references can be made.

The debugger is located on the files {SYSTEM)DEBUGGER:PSEG and
(SYSTEM)DEBUGGER:DSEG. When started, it will execute as segment number
26D in the user domain; this segment number must not be used by the
domain to be debugged.

The DEBUGGER command may be issued at any time during execution. The
normal execution may be interrupted by pressing the "escape" key,
after which the debugger is started and execution resumed from the
interrupt point, now in debug mode.

ND—60.136.0H

113
Debugging commands

8.5.2. SPECIAL—DEBUGGER

SPECIAL—DEBUGGER (file name), (log. segm. no), [(domain name)]

(file name) - name of :PSEG and :DSEG files with an alternative
version of the symbolic debugger.

(log. segm. no) — the segment number used by the alternative
debugger.

(domain name) — name of the domain to be debugged. Default is the
domain currently in memory.

This command is exactly equal to the DEBUGGER command, but allows the
user to specify an alternative debugger, for example the previous
version or a version running on a different segment number.

8.5.3. DEBUG—PLACE

DEBUG—PLACE (domain name)

(domain name) — the name of an existing domain.

The program segments as well a the data segments will be copied to the
swap file. This allows patches to be done to the program segment.
Patches are not permanent. In order to do permanent patches, LOOK—AT-
PROGRAM must be used.

Otherwise, this command works exactly like PLACE—DOMAIN.

8.5.u. BREAK

BREAK (address), [(count>]

(address) — the program address where a breakpoint is to be
set.

(count) - one plus the number of times the breakpoint should
be ignored before a break is performed. Default
value is 1.

This command sets a breakpoint at the specified address. If a positive
number is specified for the count argument, the breakpoint will be
passed (count>-1 times before reaction.

When the breakpoint is reached, execution terminates and control is
passed to the command processor.

ND~60.136.04

114
Debugging commands

After a breakpoint has been reached, program or data locations or the
registers may be displayed or modified. The display format may be
changed at will. Control flow or data location tracing may be
initiated and terminated. The next instruction to be executed is by
default the instruction pointed to by the P register, but this may be
overridden by the GO command or the optional (execution start>
parameter of the STEP command.

When execution is continued by the STEP or CONTINUE command, the
original instruction is restored and a single step is performed
followed by a reinsertion of the breakpoint. If a non—default
execution start address was selected, the original instruction in the
break address is not executed, and the breakpoint instruction is
retained.

It is possible to set new breakpoints as long as the Monitor has
memory space to store information about them. New breakpoints are
given a number for identification purposes.

8.5.5. TEMPORARY—BREAK

TEMPORARYuBREAK <address>, [<count>]

<address> a the program address where the breakpoint is to be
set.

<count> — one plus the number of times the breakpoint should
be ignored before a break is performed. Default is
1.

Similar to BREAK except that when the breakpoint is reached, the
original instruction is permanently restored, and will not cause a
break next time the instruction is executed.

8.5.6. STEP

STEP [<step start>], [<execution start>], [<count>]

<step start) — the program address where single step execution
should start. Default is the current value of the
program counter.

<execution start> ~ the program address where execution should start.
Default is the current value of the program
counter.

(count) - one plus the number of times the address specified
as <step start) should be passed before single
step execution is started. Default is 1.

ND—60.136.0H

115
Debugging commands

Single step. If no parameter is given, the instruction pointed to by
the program counter is disassembled and shown on the output device. By
typing carriage return, this instruction will be executed. The next
instruction will then be disassembled and shown on the output device
and will be executed when another carriage return is given.

Typing anything else than a single carriage return causes return to
the command processor of the Monitor.

If the <step start> parameter is given, normal execution is started
from the current program counter, and single step is provided when the
<step start> address is reached. If, in addition, the <execution
start> parameter is given, the execution is started at the specified
address rather than from the current program counter. The (step start>
address will be passed <count>~1 times before single step is provided;
the default value will start single step execution as soon as the
indicated (step start> address is reached.

This command may be used immediately after a domain has been placed in
memory by the PLACEeDOMAIN (or DEBUG—PLACE) command. More commonly it
is used when the program is in a temporary halt state after a
breakpoint has been detected. A break is then inserted immediately
before the program address where the tracing should start. From this
point on, single instruction execution is started. If desired the
contents of any register or data location may be inspected after each
instruction executed. Any intermediate command (other than CR) will
require that STEP be respecified in order to continue single step
execution. Default parameters to the STEP command will cause the next
instruction in sequence to be executed.

8.5.7. LOOK—AT commands

By this set of commands it is possible to display and modify register
and locations in program and data memory.

An address in the current segment is specified by its 27 bit segment
relative address. An address in an arbitrary segment may be specified
as

<segment no>’<segment relative address)

Generally, modification of program or data is not permanent. The
modifications are made on a copy of the original :PSEG or :DSEG file.
However, LOOK—AT—PROGRAM will make permanent modifications to the
segment.

The LOOK-AT commands have a set of subcommands as follows:

or carriage return causes display of the next item (register,
instruction, memory cell).

ND—60.136.04

116
Debugging commands

EXIT Return to the Monitor command processor.

Special notation used with the slash (/, indirect) command:

m : address or register name.
n : number of bytes.
cr : carriage return.

m/cr Take the value of m as the address and display this location.
m may also be a register name.

/cr Take the contents of the current location as next address and
display this location. If the current location is a register,
displaying of the memory is started. Specifying the P or the L
register cause the program memory to be displayed, while the
rest of the registers cause the data memory to be displayed.

m,n/cr Take the value of m as next address and display n bytes. m may
also be a register name.

,n/cr Same as /cr except that n bytes are displayed.

Dumping of register, memory or segment to file:

m,n (output file> cr . Same as m,n/cr except that the output is
written to the specified file. The file is closed upon exit
from LOOK—AT.

,n (output file) or . Same as ,n/cr except that the output is written
to the specified file. The file is closed upon exit from LOOK—
AT.

HELP Listing of all LOOK-AT subcommands

n cr Modifications of memory or registers are done by typing the
new value in the current main format (octal, hexadecimal or
decimal as set by the MAIN-FORMAT command) followed by
carriage return. It is possible to use other formats than the
main one by typing B, H or D before the carriage return for
octal, hexadecimal or decimal respectively.

'XXX’cr Modifying the data memory or a data segment by ASCII
characters may be done by enclosing the ASCII string in
quotes.

CODE Modification of program memory is possible by the command CODE
followed by an ND~500 assembler instruction. The instruction
will be assembled and stored starting at the current location.
Program memory may also be modified numerically by first
typing BY, and thereafter modifying bytes in the main format
(See the MAINwFORMAT command).

ND—60.136.0U

117
Debugging commands

BREAK Setting a breakpoint in the current address may be done by the
BREAK subcommand in LOOK-AT—PROGRAM.

BYTE
HALFWORD
WORD
FLOAT
DOUBLEFLOAT

ASCII When displaying data memory it is possible to use byte,
halfword, word single or double precision float or ASCII
characters as a display unit. Changing from one unit to
another is done by simply typing BYTE, HALFWORD, WORD, FLOAT,
DOUBLEFLOAT or ASCII.

PERMIT—DEPOSIT In order to avoid unintended modification of the
memory or a register, the command PERMIT-DEPOSIT must be typed
before the depositing of a new value can take place.

EXTRA—FORMAT <format> ... In a LOOK—AT command it is possible to
temporarily specify that memory locations shall be displayed
in the the indicated formats in addition to the main format by
the EXTRA—FORMAT command. This command is similar to the
global EXTRA-FORMAT command, except that the extra formaiw are
only valid within LOOKmAT.

ABSOLUTE <address> ' When relative addresses are displayed (LOOK~AT~
STACK and LOOKwATuRELATIVE), new addresses (number followed by
a slash) are taken as relative addresses. However, displaVing
from an absolute address can be done by the ABSOLUTE command.

NEW—SEGMENT (segment no> The specified segment number will be set as
current segment. Addresses specified without a segment number
will be in the new current segment. The segment number is
valid only while in LOOK~AT mode, and must be respecified next
time LOOK-AT mode is entered.

In a LOOK—AT command it is possible to change to one of the other
LOOK-AT commands by typing one of the subcommands below. This is
equivalent to EXITing from LOOK—AT and reenter to inspect or modify
another area (program, data or registers), but EXTRA—FORMAT need not
be respecified, and it is faster. These subcommands are:

DATA <address>

PROGRAM (address)
REGISTER (register name)
<register name)
STACK
RELATIVE <relative to>

ND—60.136.0M

118
Debugging commands

8.5.7.1. LOOK-AT—PROGRAM

LOOK-AT-PROGRAM <address>, [<domain>]

<address> ~ the segment address from where inspection should
start.

<domain> — the name of an existing domain. Default is
inspection of the domain currently in memory.

Displays and modifies program memory or program segments. The display
is started at the specified <address>.

If (domain) is specified, the program segment file is displayed and
may be modified. Only one segment may be displayed and modified at a
time.

Within the LOOK-AT—PROGRAM command the suboommand BREAK may be
specified, setting a breakpoint at the current address.

If <domain> is not specified, the default is the domain currently in
memory. The memory image is inspected, rather than the original
segment from which it was loaded. If any modifications are made, the
domain must have been placed in memory by the DEBUG—PLACE command,
otherwise no modification is legal.

8.5.7.2. LOOKuAT—DATA

LOOK—AT—DATA <address>, [<domain>]

<address> — the segment address from where inspection should
start.

<domain> « the name of an existing domain. Default is
inspection of the domain currently in memory.

This command is similar to LOOK-AT—PROGRAM except that the data memory
or data segment is involved. Modification is always permitted.

ND~60.136.0M

119
Debugging commands

8.5.7.3. LOOK—AT—STACK

LOOK—AT—STACK

The current local data field is displayed. This is the memory area
pointed to by the current B register, and contains the subroutine call
information, such as address local data field of calling routine
(PREVB), return address (RETA), number of arguments to the routine
(N), the current top of stack (SP) and an auxillary location for
language processes (AUX) not used by hardware. At the next addresses
are the addresses of the routine arguments, and the local variables of
the routine.

The standard locations are labeled with the symbolic names above. For
the argument addresses and the local variables two addresses are
given, the global address and the address relative to the start of the
local data field.

8.5.7.3.1. Subcommands PREVIOUS and NEXT

PREVIOUS

Display the previous local data field, i.e. the local data field of
the procedure calling the current one. Several PREVIOUS commands may
be given, each descending one more level in the call sequence. It is
not possible to move beyond the data field of the main program (the
lowermost stack frame).

NEXT

Display the next local data field, i.e. the local data field of the
procedure called by the current one. Valid only after PREVIOUS. It is
not possible to move beyond the data field of the routine currently
being executed (the uppermost stack frame).

8.5.7.u. LOOK—AT—RELATIVE

LOOK—AT~RELATIVE (<relative to>)

<relative to) — B, R, I1, 12, I3, I” or a numeric address. Default
is R.

Start listing of data memory relative to either the contents of the R,
B, 11, 12, 13 or IM register or an address. Both global and relative
address are displayed.

ND—60.136.0M

120 ,

Debugging commands

8.5.7.5. LOOK—AT—REGISTER

LOOK-ATuREGISTER [<register name>]

<register name> — the name of one of the registers. Default is P.

The specified register is displayed in current main format. If
carriage return is typed, the next register in the sequence below is
displayed. Registers identified as MIC are used by the microprogram
and are not available to the user. Register sequence:

P, L, B, R, :1, 12, 13, In,
A1, A2, A3, Au, E1, E2, E3, EM,
8T1, 8T2, PS, TOS, LL, HL, THA, CED,
CAD, MIC, MIC, MIC, MIC, OTEl, OTE2, CTEl,
CTE2, MTEl, MTEZ, TEMM1,TEMM2

8.5.8. SET—MEMORY-CONIENTS

SET—MEMORY—CONTENTS <from address>, <up to address),
<value>, (<datatype>)

(from address) the lower limit for modification of memory.

<up to address> the upper limit for modification of memory.

<value> — the value to be written in the specified area.

<datatype> - BYTE, HALFWORD, WORD, FLOAT or DOUBLEFLOAT
indicating the size and type of the specified
<value>. Default is WORD.

The data memory is filled with the specified value from the first
address specified up to the second specified address, inclusively.

805-9. MRINHFORMAT

MAINeFORMAT <format>

<format> - OCTAL, HEXADECIMAL or DECIMAL or abbreviation of
one of these.

When displaying registers, memory contents, or segments with the LOOK~
AT commands, the specified <format> is used° When the Monitor is
started, octal is used as the main format.

The default MAIN—FORMAT may be modified by using the MAIN—FORMAT
command, then leaving the Monitor by the EXIT command. The memory
image can then be copied to a file by using the Sintran III command
@DUMP. The :PROG file created by the @DUMP command will be equivalent
to the existing monitor, but the default MAIN—FORMAT is as specified

ND—60.136.04

121
Debugging commands

before the @DUMP. Refer to the Sintran III Reference Manual ND~60.128
for a description of the @DUMP command.

8.5.10. EXTRA—FORMAT

EXTRA—FORMAT (format) ...

<format> — one of the formats listed below or an unambiguous
abbreviation of one of them.

With all commands displaying memory or segment contents it is
possible to have the locations displayed in various formats in
addition to the format specified in the MAIN-FORMAT command. Data and
instructions are then displayed in both the format(s) specified in
this command as well as the main format. The alternatives are:

BYTE The displayed location is divided into bytes and they are
displayed in the main format.

I

HALFWORD Similar to BYTE, except halfwords are displayed. This is
effective only when displaying words or doublewords as
main format.

WORD Similar to BYTE, except words are displayed. This is
effective only when displaying doublewords as main format.

FLOAT Single precision floating point format.

DOUBLEFLOAT Two consecutive words are displayed in double precision
floating point format.

ASCII ASCII format.

OCTAL Number base for BYTE, HALFWORD and WORD display.

HEXADECIMAL Number base for BYTE, HALFWORD and WORD display.

DECIMAL Number base for BYTE, HALFWORD and WORD display.

ND—60.136.0H

122
Debugging commands

8.5.11o TRACE

TRACE <address>, <datatype>

<address> — the address of the variable to be traced

(lowermost byte).

<datatype> — BYTE, HALFWORD, WORD, FLOAT or DOUBLEFLOAT or
abbreviation of one of these, indicating the size
of the data element to be traced.

Whenever the location starting at the specified address is modified
during program execution, its new value is displayed on the output
device.

This command uses the low and high limit registers, LL and HL of the
ND—SOO exclusively, i.e. the previous command using these registers
(GUARD or TRACE) will be discontinued.

8.5.12. GUARD

GUARD <address>, <datatype>, [<limit1>, [<limit2>]]

<address> — the address of the variable to be guarded
(lowermost byte)

<datatype> - BYTE, HALFWORD, WORD, FLOAT or DOUBLEFLOAT or
abbreviation of one of these, indicating the size
of the data element to be traced.

<limitl> — the lower limit of the legal value range or upper
limit of prohibited range.

<1imit2> — the upper limit of the legal value range or lower
limit of prohibited range.

If no limits are given, any modification of the location specified in
this command causes a guard violation error and gives control back to
the command processor whenever the specified "guard area" is modified.
The "guard area" starts at <address>, and <datatype> determines the
size, from one to eight bytes.

If one or two limits (forming a legal range) are specified, the new
value of the guard area is checked against this range. If the value is
outside the range, it is a conditional guard violation and the control
is transferred to the command processor. 1f <limitl> <: <limit2>, then
the permitted range is <limitl> <: n <: <limit2>. If <limit1> >
<limit2> the new value n is legal if n < <limit2> or n > <limit1>.

If the variable has a value outside the permitted range at the time
the command is given, this is not rapped. The check is made on
assignments (store operations) to the variable only.

ND—60.136.0H

Debugging commands

If only <limit1> is specified, then <limit2> is set equal to <limit1>,
allowing the variable to take the specified value only.

This command will cause a considerable load on the ND—lOO if frequent
modifications of the guarded area are made.

This command uses the LL and EL registers exclusively to delimit the
start address and uppermost address of the guarded variable. The
previous command (GUARD or TRACE) using these registers will be
discontinued.

8.5.13. BRANCH—TRACE

BRANCH—TRACE [<lower address>], [(upper address>]

<lower address) — the lower limit of program area to be traced.

<upper address> - the upper limit of program area to be traced.

This command initiates tracing of the program counter upon branch trap
conditions. The tracing is written to the output device.

If <lower address> and <upper address) are specified, tracing is
p erformed only within the specified area. Branches executed outside
this area are not listed. If the parameters are omitted, all branches
will be listed.

§§.m.CMLJRME

CALL-TRACE [<lower address>], [<upper address>]

(lower address) — the lower limit of program area to be traced.

<upper address> — the upper limit of program area to be traced.

This command initiates tracing of the program counter upon call trap
conditions. The tracing is written to the output device.

If <lower address> and (upper address> are specified, tracing is
performed only within the specified area. Calls executed outside this
area are not listed. If the parameters are omitted, all calls will be
listed.

All routine calls within the specified area, including run time
library routines, are traced.

ND—60.136.04

12M
Debugging commands

8.5.15. EXHIBIT—ADDRESS

EXHIBIT—ADDRESS <program address>, <data address>, (<data type>)

(program address> — the instruction that causes the specified variable
to be displayed when executed.

<data address> - the address of the variable to be displayed.

<data type> — BYTE, HALFWORD, WORD, FLOAT or DOUBLEFLOAT,
indicating the size of the variable to be
displayed. Default is WORD.

With this command a breakpoint is set in the specified <program
address>. When the execution reaches this breakpoint, the <data
address> and its contents are written to the output device. The data
type of the variable may be specified.

Several variabl may be traced simultaneously with this command, as
long as the Monitor has room for information about the breakpoints.

8.5.16. DEBUG-STATUS

DEBUG—STATUS

Lists information about previously used debug commands. Enabled traps,
breakpoints, and the use of the LL and HL registers are listed.

8.5.17. ENABLED—TRAPS

ENABLED—TRAPS

Lists the contents of the own trap enable register (UTE) of the
current domain and the mother trap enable register. Enabled traps,
either in the current domain or in NDnlOO, are listed on the output
device.

ND—60.136.04

125
Debugging commands

§.5.18. STATUS

STATUS

Lists the contents of the status register. Some of the status bits
have no corresponding bit in the trap enable registers. These bits are
always listed with name and value. If other status bits are set, their
names and values are listed.

8.5.19. RESET commands

In order to clear the effect of previously used debugging commands,
the ND—SOO Monitor has several reset commands. These are:

8.5.19.1. RESET—DEBUG

RESET-DEBUG

will clear the effect of all previously used debugging commands.

8.5.19.2. RESET-BREAKS

RESET—BREAKS <break number> ...

The breakpoints with the specified numbers are removed by using this
command. If the last active breakpoint is removed, the breakpoint bit
in the ND-SOO CTE register is reset.

If no <break number) is specified, every active breakpoint is removed
permanently by typing RESET-BREAKS. If one or more <break number>s are
specified, only those breakpoints are removed.

'Breakpoint' includes, in addition to those set by the BREAK command,
breakpoints set by the EXHIBIT—ADDRESS command.

NDa60.136.0H

126
Debugging commands

8.5.19.3. RESET-LAST~BREAK

RESET—LAST—BREAK

When a breakpoint is encountered during execution, this breakpoint may
be removed and the original instruction restored by executing this
instruction.

8.5.19.4. RESET—TRACE

RESET—TRACE

The tracing specified in the TRACE command is discontinued.

8.5.19.5. RESET—GUARD

RESET—GUARD

The guarding of the area specified in the GUARD command is
discontinued.

8.5.19.6. RESET—CALL—TRACE

RESET-CALL—TRACE

Dumping or comparing with previous dump of routine calls is
discontinued.

8.5.19.7. RESET—BRANCHaTRACE

RESET—BRANCH—TRACE

Dumping or comparing with previous dump of branch conditions is
discontinued.

ND-60.136.04

127
Commands for performance measurement

8.6. Commands for performance measurement

Performance measurement commands serve two main purposes: the
HISTOGRAM—commands and MONCALL-LOG commands are used to evaluate one
program in order to detect bottlenecks in time critical sequences,
while the LOG-commands measure the load on the system in order for the
system supervisor to set the system parameters properly.

The histogram and log commands all use the same buffer, and there is
only one buffer in the system. Therefore, only one user may use these
commands at a time, and he must either release the buffer explicitly
or leave the monitor (implicitly releasing the buffer) before any
other user may use it.

If a user attempts to execute any of the log or histogram commands
while the buffer is in use, an error message is issued.

8.6.1. Histogram commands

8.6.1.1. SET~HISTOGRAM

SET-HISTOGRAM (start address>, (max. address>, ((no. of intervals>)

(start address> u the lower address of the area to be measured.

(max. address> — the upper address of the area to be measured.

(no of intervals> — the number of equally sized intervals between
(start address> and (max address) in the range
126M decimal. Default is 64 decimal.

This command will reserve and clear the histogram buffer.

A subsequent START—HISTOGRAM will start sampling the accesses to the
instruction bank between the (start address) and the (max. address>.
This area is divided into (no. of intervals> equally sized intervals.
The maximum size of an interval is 32767 bytes.

ND—60.l36.04

128
Commands for performance measurement

8.6.1.2. START-HISTOGRAM

START—HISTOGRAM

The sampling of the program counter will be started. The sampling may
be started and stopped any number of times before the histogram is
printed. The buffer is not cleared before sampling is started; samples
will be added to what is already in the buffer.

Samples are taken every 20 ms.

8.6.1.3. STOP—HISTOGRAH

STOP—HISTOGRAM

This command stops the histogram sampling.

8.6.1.3. PRINT—HISTOGRAM

PRINT—HISTOGRAM

This command prints the histogram on the output device. If sampling
has been started and stopped several times, the histogram will
represent the sum of all samples since SET~HISTOGRAM. The histogram
buffer is not cleared by PRINT—HISTOGRAM.

8.6.1.5. RELEASE—HISTOGRAM

RELEASE~HISTOGRAM

This command releases the histogram buffer. This means that other
users may use the HISTOGRAM, the PROCESS—LOG, the MONCALL—LOG and the
SWAPPING—LOG commands.

If the buffer is not released through this command, it will
automatically be released when the user leaves the Monitor.

ND—60.136.04

129
Commands for performance measurement

8.6.2. Monitor call logging

8.6.2.1. START-MONCALL-LOG

START-MONCALL-LOG [<0WN/ALL>]

<OWN/ALL) — if ALL is specified, logging of all monitor calls
in the system is started. If OWN is specified,
only monitor calls executed by the current process
are logged. Default is OWN.

This command will clear the log buffer, and reserve it for the user
issuing the command. All monitor calls executed from the ND-SOO will
be logged. A count of the number each monitor call has been executed
can later be printed.

Roughly speaking, the load on the ND—lOO CPU imposed by the ND—SOO is
proportional to the number of monitor calls executed from NDmSOO.
(Obviously, this general rule applies to CPU load only, not to file
system and channel load.) Isolating programs that perform a dispropor—
tionate number of monitor calls may help increasing ND—lOO throughput.

8.6.2.2. PRINT-MONCALL—LOG

PRINT—MONCALL—LOG

A count of monitor calls executed since START—MONCALL—LOG is printed
on the output device. Each monitor call number up to 7778 is listed
with an individual count. Parts of this range is not valid as monitor
call numbers, and will always appear with a count of zero.

This command does not release the buffer, nor does it clear it.
Further monitor calls will add to the count already in the buffer.

ND—60.135.0U

130
Commands for performance measurement

8.6.2.3. STOP—MONCALL—LDG

STOP—MONGALL—LOG

The log buffer is released, and no further logging of monitor calls
will be done.

Other users may use the HISTOGRAM, the PROCESS-LOG9 the MONCALL—LOG
and the SWAPPING—LOG commands. If the buffer is not released through
this command, it will automatically be released when the user leaves
the Monitor.

8.6.3. Process logging

8.6.3.1. START-PROCESS~LOG-ALL

START—PROCESS—LOG—ALL

This command will clear the process—log buffer and reserve it for the
user issuing the command.

Logging the CPU usage of the active processes is started. Samples are

taken every 20 ms, and the measurements are represented as percents of
the total CPU capacity. The result of the logging may be presented by
the PRINT-PROCESS-LOG command.

This command is allowed for user SYSTEM only.

8.6.3.2. START-PROCEssaLOG—ONE

START—PROCESS-LOG—ONE (process number>

<process number) — the process identifier found by the WHO-IS~ON
command.

Logging of one specified process is started. The percentage of the
time spent by the process in the states l) Idle, 2) Waiting for
swapper, 3) Using swapper, H) In monitor call, 5) Active, and 6)
Waiting for CPU, are logged. The 'active' entry (5) is equal to the
entry that would appear in the START—PROCESS~LOG~ALL command for the
specified process.

This command is allowed for user SYSTEM only.

ND-60.136.0M

131
Commands for performance measurement

8.6.3.3. PRINT~PROCESS—LOG

PRINT—PROCESS—LOG (first process)

(first process) — the lowest numbered process to be printed. Default
is O.

The accumulated measurements from the last START-PROCESS—LOG~ALL or
START—PROCESS—LOG—ONE are printed on the output device. The buffer ,is
not cleared, and the logging is continued, adding subsequent
measurements to the printed values. In order to clear the buffer, the
START-PROCESS—LOG—ALL or START—PROCESS-LOG—ONE should be used to start
the next logging period.

This command is allowed for user SYSTEM only.

8.6.3.U. PROCESS—LOG-ELL

PROCESS—LOG—ALL (interval) (first process)

(interval) - the time in seconds between each report.

(first process) — the lowest numbered process to be logged. Default
is O.

The logging of CPU usage in percent of total capacity is started and
written to the output device every (interval) second. The buffer is
cleared between each report; displayed results are not cumulative.

A sample is taken every 20 millisecond, and for the report to have a
reasonable accuracy, the interval should be at least 10 seconds. The
logging is stopped by pressing the escape key.

This command is allowed for user SYSTEM only.

8.6.3-5. PROCESS—LOG—ONE

PROCESS—LOG—ONE (process no) (interval)

(process no) — the identifying number of the process, found by
the WHO—IS—ON or PROCESS~STATUS command.

(interval) — the time in seconds between each report.

The logging of the specified process is started, and the log printed
every (interval) seconds. The buffer is cleared between each report;
displayed results are not cumulative. The report contains the same
measurements as measured by the START—PROCESS—LOG~ONE command.

ND~60.136.04

132
Commands for performance measurement

A sample is taken every 20 milliseconds, and for the result to have a
reasonable accuracy, the interval should be at least 10 seconds.

The logging is stopped by pressing the escape key.

This command is allowed for user SYSTEM only.

8.6.3.6. RELEASE—LOG—BUFFER

RELEASE—LOG—BUFFER

The buffer used for the SWAPPINGwLOG and PROCESS—LOG—commands is
released, allowing other users to use these commands, the HISTOGRAM-
and MONCALL—LOG~commands.

If the buffer is not released through this command, it will be
released when the user leaves the Monitor.

£16 . 1;. SHAPPING—LOG
SWAPPING—LOG (interval)
(interval) - the period in seconds between each report.

This command will clear the log buffer and reserve it for the user
issuing the command. The buffer is the same as the one used in the
PROCESS—LOG, MONCALL—LOG and HISTOGRAM commands, which means that only
one user at a time can use any of these commands.

Logging of swapping is started, and will be written to the output
device every <interval> seconds. The logging is stopped by pressing
the escape key.

Each report will include values for the last interval, the average per
interval since logging was started and the total. For each of these, a
count of page faults, transfers, the total free space etc. will be
listed.

This command is allowed for user SYSTEM only.

ND—60.136.04

133
Commands for performance measurement

8.6.5. LIST—EXECUTION-QUEUE

LIST-EXECUTION—QUEUE <interval>

(interval) - time in seconds between each report

The currently executing program, its priority? the queue of jobs for
the ND—SOO and their priorities are listed on the output device every

<interval> seconds.

ND~60.136.0N

134
Process communication

8.7. Process communication and synchronization

Processes in the ND~500 may temporarily halt and be restarted by
another process through the monitor calls STOPPR, STARTPR and SWITCHP,
or through commands.

8.7.1. Process names and numbers

A process may be identified by a symbolic name or by a numeric process
number. The process number comprises the process index in the range 0
to 31 in the upper half and a 16 bit cycle number in the lower half of
a word. Thus process numbers are recycled with very long intervals.

The monitor calls SPRNAME (MON u25B) and GPRNAME (MON M278) can be
used to set and get the process name, respectively. The monitor call
GPRNUM (MON 426B) will translate a process name into a process number.

The process name syntax resembles the file name syntax: a user name of
up to 16 charactes enclosed in parentheses, followed by a user
selected name of up to 16 alphanumeric characters or hyphens. The user
name is that of the currently logged on user and may not be modified.
The user selected name has a default value determined by the terminal
in use. If this part of the process name is changed, the previous
value is discarded.

8.7.2. SET—PROCESS-NAME

SET-PROCESS-NAME <name>

<name> - up to 16 alphanumeric characters or hyphen,
optionally prefixed by the user name enclosed in
parentheses.

Names the process owned by the terminal from which the command is
executed. The specified name will replace the previous name. The name
is valid until the user leaves the Monitor or replaces the name with
another one.

This command is useful if two or more processes synchronize by
starting and stopping each other.

ND—60.135.0M

135
Process communication

8.7.3. Process creation and termination

A new process is allocated when a user starts the monitor, and
terminates when the user leaves the monitor. If several domains are
executed during one monitor session, they are all run under the same
process.

A process may also be allocated by an ND—100 RT program using the
RESRV function in the N500M monitor call. The process terminates when
the RT program executes the RELIS function in NSOOM. Using the NSOOM
call requires detailled knowledge of how the monitor operates.

8.7.U. RESTART-PROCESS

RESTART—PROCESS (process name)

<process name> - the symbolic name of an existing process.

A process that has halted itself by the STOPPR call (MON 5013) is
restarted, or if it is already active, the repeat bit in the process
description is set, causing the process to be immediately reactivated
if it later executes an STOPPR call.

8.7.5. Process communication flags

A simple mechanism for communication between an ND—100 process and an
ND—SOO process is implemented.

To each process two 32 bit words are assigned, the input and output
flags. The owner process may read its own input flag and write into
its output flag by the monitor calls Read input flag (MON U02B) and
Write output flag (MON MOBB). When the Monitor is entered, both flags
are initially zero. The flag word is not used by the monitor, and may
contain any information as determined by the process(es).

A ND—100 program may use the functions RFLAG (1008) and SFLAG (101B)
in the Sintran III monitor call N500M (MON 608) to communicate with an
ND-SOO process.

From a terminal the same functions are performed by the commands GET—
FLAG and SET-FLAG described below.

Note that there is no queueing of flags; if the input flag of a
process is modified twice before the owner reads the flag, the first
value is lost.

ND—60.136.0u

136
Process communication

&7fi.Gm#HAG

GETvFLAG <process no.)

<process no.)

The output flag (32 bit word) of the specified process is written on
the output device in the current main format. If the specified process
is connected to a terminal, this command must be given from another
terminal.

8.7.7. SET—FLAG

SET—FLAG <process no.> <value>

<value> — an unsigned value in the range 023777777777777B.

The specified <value> (32 bit word) is written into the input flag of
the specified process. If the specified process is connected to a
terminal, this command must be given from another terminal.

ND—60.136.04

137
Memory allocation

8.8. Memory allocation

System performance depends on how the active process uses its memory
and how the entire available memory is administered. When performance

is critical it is possible to allocate memory explicitly to the
process by several commands described below.

The total execution time of a process may vary within wide limits,
depending on the amount of physical memory that the process is
allotted and the allocation strategy employed.

All commands for memory allocation are reserved for user SYSTEM if
executed in the Monitor.

Explicit allocation is very rarely needed. Whenever hardware
considerations require it (direct transfer files, communication with
RTCOMMON or with an ND-lOO segment), this will automatically be taken
care of by the Monitor at execution time.

In general, physical memory is significantly smaller than the sum of
the logical sizes of all processes submitted for execution. Physical
memory may even be smaller than the size of each one of the processes.

To overcome space problems, a memory management system is used,
mapping the logical address spaces onto physical memory through a
translation mechanism. Each logical address space is divided into
pages, or blocks of 2k bytes (20U8 bytes). Page boundaries will always
be at physical addresses which are multiples of 2048 (4000B).

8.8.1. Demand paging

It is not necessary for all the pages of a segment to be in memory
when the process starts executing. If access to a page not in memory
is attempted, this is detected by hardware as a page fault, and the
running process is suspended until the page has been copied from disk.

Due to the translation mechanism, the page brought into memory may be
placed wherever there is room for it. Thus, several users may have
fractions of their programs scattered in memory.

Whenever the memory is full, and there is no room for a page that is
needed, another page must be removed to free the physical page. If the
page to be removed has not been modified (as is normally the case for
program segments) the page does not need to be written back. If it has
been modified, it must be written back to the disk before another one
takes its place in memory. This process is called swapping, and is in
the ND—SOO performed by a system process called the swapper, running
in the ND—SOO which, of course, runs independently of any terminal.

The algorithm used to select a page for removal attempts to find the
page that has the least probability of being used again, and will
roughly speaking pick the page that has remained unused in memory for
the longest time.

ND—60.136.0M

138
Memory allocation

This allocation strategy, called demand paging, is the default
strategy used, to achieve optimal utilization of physical memory.

8.8.2. ”Fixing" in memory

Certain I/O operations require that the data area to be transferred to

or from is located in a contiguous area in memory. The Monitor will
recognize such requirements, and will allocate an area before the
first I/O transfer is started. The memory area will remain reserved
("fixed") until the program completes execution. The user need not be
concerned with this at all, as the operation is completely automatic
and transparent.

If several processes use exceedingly large areas for I/O operations
requiring the data area to be fixed in memory, this will affect system
performance to some degree, as it limits the number of pages available
for swapping.

8.8.3. Limiting the number of pages in memory

In order to ease the load on the swapper, the user may specify the
minimum and maximum number of pages to be kept in memory during
execution of the segment. The segment will still be treated as a
demand segment, but memory requests from other processes will never
cause the number of pages to drop below the specified lower limit.
Thus, the number of page faults during execution is reduced. (But the
total number of page faults on the system may increase however.)

Initially, at the start of program execution, no pages are in memory.
The minimum number of pages does not apply until that number of pages
have been brought into memory as a result of page faults. However,
none of these pages will be swapped out unless the upper limit is
reached.

The maximum number of pages is used to indicate the approximate size
of the working set. As soon as the number of pages in memory exceeds
this limit, the least recently used pages are marked for swapping.

This can be used with advantage for processes passing through a data
set in a sequential manner, or processes having a large amount of
initializing code and a small working set as soon as the
initialization is done. Although the gain in speed is lower than it
would be with fixed allocation, the penalty in reduced performance of
the ND—SOO system as a whole is far less.

The minimum and maximum number of pages in memory are set by the SET—
SEGMENT-LIMITS command.

ND—60.136.0H

139
Memory allocation

8.8.u. "Fixing" programs in memory

The suspension of a process while a page transfer takes place makes
response time of a process more irregular than if the entire process
could be in memory at the same time. Another aspect of swapping is
that the busier the CPU gets, the more crowded memory will get (in
general), and the more time is spent at swapping.

Ordinary interactive processes, or processes operating on permanently

stored data can usually tolerate the delay imposed by demand paging.
However, programs interacting with l/O—devices will often depend on
short and well defined response times or rely upon data areas being in
memory at any time for performing I/O operations.

Processes with such requirements may be exempted from swapping, and be
allowed to keep all or some of their pages in memory continously. If
the segment remains in memory even before and after execution,
controlled by explicit commands, it is said to be fixed in memory.
Several degrees of fixing are possible. ~

Even though part of a segment is declared to be a fixed segment, this
does not have to apply to the entire segment. The commands available
have parameters for specifying the lower and upper bound of the
segment area affected. The remainder of the segment will be treated as
a demand segment.

Under normal circumstances, the Monitor will detect the conditions
requiring special memory allocation, and perform the allocation at
execution time. Thus, the user does not have to be concerned about the
commands to perform explicit allocation. For time critical tasks,
however, they may be required.

8.8.5. Fixing segments scattered in memory

This kind of allocation will scatter pages throughout memory, exactly
like demand paging, but these pages will not be candidates for
swapping, and will not be removed when the program completes its
execution.

Start—up times will be significantly shorter than for demand segments,
as the segment will already be in memory and no disk access is
required. If the process is restarted after completion before the
segment is unfixed, no extra disk accesses are introduced.

The effective memory size available for demand paging processes will
be reduced, causing an increased swapping for these segments, but the
Monitor is free to place the fixed area wherever seems most suitable
at the time the process is submitted for execution.

Fixing a segment scattered in memory is done by the FIX—SEGMENT-
SCATTERED command.

ND—60.136.0U

1H0
Memory allocation

8.8.6. Fixing segments in contiguous memory

Some l/O operations, namely all DMA operations, require that the area
to be transferred to or from is a contiguous memory area, as the DMA
device does not use the translation mechanisms to transform the
logical address to a physical one.

In order to permit DMA transfers crossing page boundaries, the
affected area may be allocated in a contiguous area in physical
memory. Usually this will apply to data areas only, but may be used
for any segment.

Program execution will not be any faster than with a fixed scattered
segment; the translation mechanism to convert from logical addresses
is not bypassed (and consists mostly of tailor made hardware, working
at the speed of the CPU, causing no delay in addressing in most
cases). The main advantage over fixed scattered is the ability to
perform direct transfer file access, see chapter 8.3.6.

Allocating a contiguous area require that the swapper clears a memory
area of the requested size without regard to whether the removed pages
are active or not. Consequently, the allocation of a contiguous
segment is rather costly. Obviously, a contiguous area of the
requested size must also be available. If a high number of users
request (any kind of) fixed allocation, this is not always the case,
and the request is refused.

A system parameter determines the maximum number of pages that may be
fixed for the entire system, including areas fixed implicitly by the
Monitor. If any of these limits are exceeded, an error message will be
returned.

The maximum number of contiguously fixed pages may also be limited by
a system parameter.

Observe that when performing DMA through the file system, e.g. to
direct transfer files, the fixing is performed automatically by the
Monitor, and does not require explicit specification by the user.

Fixing a segment in a contiguous area is done by the FIX—SEGMENT-
CONTIGUOUS command, or a FIX—SEGMENT monitor call.

ND—60.136.0M

1H1

Memory allocation

8.8.7. Fixing segments in an absolute location

This allocation strategy is even more demanding on system resources,
as it includes an explicit specification of the physical memory area
to be used. No further gains in speed can be achieved with absolute
fixing in memory, but such allocation may be required when
communicating with special l/O devices.

Communication with ND-WOO may go through shared memory. In particular,
the RT—COMMON area will always be contiguous in a fixed location, and
ND—SOO processes accessing this area will require that the logical
ND-SOO addresses map onto the RT—COMMON area. All communication with
fixed segments in ND—lOO will, however, be taken care of by the
Monitor, and the user will not have to be concerned about it.

Fixing a segment in an absolute location is done by the FIX~SEGMENT~
ABSOLUTE command.

8.8.8. Fixing segments shared by several processes

Obviously, if two processes want to communicate through a data
segment, they must access the same physical location when they address
the same logical location. If the first process to start execution

requests demand paging scattering pages throughout memory, it is
impossible for the second process to request contiguous allocation and
map to the same addresses. (No kind of fixing is necessary in order to
share a segment; it may be a demand segment if fixing is not required
for other reasons.)

This also applies to fixed contiguous vs. fixed absolute, or any other
combination. The process first bringing the segment into memory must
allocate it with the highest grade allocation required by any of the
processes accessing the segment. The highest grade allocation is fixed
absolute, then follows fixed contiguous, fixed scattered and demand
paging as the lowest grade. '

If only a part of the segment is fixed, the first process to fix the
segment must fix the maximum area requested by any process accessing
the segment.

ND—60.136.0u

142
Memory allocation

8.8.9. Unfixing a segment

After the process using a fixed segment completes execution, the
segment is not automatically released. The reason for this is that
processes using fixed segments are often either periodical or they are
restarted as a result of an external event, and the time spent moving
the segment into memory would often be too long.

Therefore, a segment must be released explicitly through the UNFIX—
SEGMENT command or the UNFIX monitor call. If the segment is not
unfixed, this will be performed by the Monitor when it is left by the
last user to haven fixed the segment.

The command will not necessarily have an immediate effect. If there
are still one or more processes using the segment, it will not be
removed from memory until all of them have completed.

ND~60.136.0H

1113‘
Memory allocation

8.8.10. The swapping strategy

A certain knowledge of the swapping strategy is required by the system
supervisor in order to set the parameters determining the operation of
the swapper. Programmers may also want to know how system software
affects the performance of their programs and utilization of the
available resources.

When the swapper needs a free memory page it uses the following
strategy when selecting the page to take.

1) If there is an absolute free page, it takes it.

2) If no absolute free page exists, the swapper searches the
segments that are in the "swap queue" for a page that has not
been used (the PGU bit is zero) after any such segment has
became a swap candidate (linked into the swap queue). If it
finds an unused page, it takes it. If a segment in the swap
queue has no page that has not been used, then the segment is
removed from the swap queue. A search through the pages of the
swap segment is performed twice before the segment is removed.
In the first search, unused pages are not taken which have
been modified, since this implies an extra disk access. During
the second search the swapper does not not test for modified
(WIP bit), but takes the first page not used. In other words,
the strategy is to postpone the "grabbing" of modified pages
to avoid the overhead of extra disk access.

3) If the swapper's search of the swap queue is unsuccessful, it
then selects one process, and for all segments of this process
it clears the PGU bits before linking the the segments into
the swap queue. The swapper now repeats the process described
in 2) above.

the method by which segments become swap segments is an important
aspect of the swapping strategy. The swapper counts the number of page
faults per segment. When this number becomes equal to a fixed number
(a system parameter called CLEAN—SEGMENT—N—PF (the N—PF being the
number of page faults)) the PGU bits of the pages belonging to the
segment are set to zero. When the number of page faults becomes equal
to another system parameter (SWAPOUT-SEGMENTmN—PF) then the page fault
count is set to zero and the segment is linked into the swap queue.
Good results are obtained if:

SWAPOUT~SEGMENT«N—PF : CLEAN-SEGMENT—N-PF + X

and X is in the range 2:7

The swapper has facilities for controlling the swap rate. For each
process it counts the time between 20 page faults. The inverse of this
is taken as a measure of the swap rate of the process. If the swap
rate is greater than the value of an expression whose parameters
include the global swap rate and a system parameter (the LOW—PRlORITY

ND—60.l36.0U

1AM
Memory allocation

factor), then the priority is set to 16. This applies only to time—
sliced processes. The "swapurate expression" is so constructed that
the higher the LOW«PRIORITY FACTOR is, the higher the probability will
be of a process getting a priority of 16.

The swapper will not touch pages fixed in memory, until the last user
having fixed the segment unfixes it or logs out. At that time the
pages are returned to the freepool.

ND—60.136.04

1M5
Memory allocation

8.8.11. SET-SEGMENT-LIMITS

SET—SEGMENT—LIMITS (segment no.), (type), <min no.of pages>,
<max no.0f pages>, [<process no>]

<segment no.> — the number of an existing segment

<type> ~ P or D, indicating program or data segment,
respectively.

(min nc.of pages> the minimum number of pages of the specified
segment to remain in memory throughout process
execution.

<max no.0f pages) the maximum number of pages of the specified
segment to remain in memory throughout process
execution.

(process nc> — the number of the process to be affected. Default
is own process.

Specifies the minimum number of pages of a segment that must be in
memory before execution of instructions on the segment starts, and the
maximum number of pages allowed in memory at one time.

When execution of the segment is started, no page of the segment will
be a candidate for swapping until the minimum number of pages
specified is brought into memory. At no time during the execution will
the number of pages in memory be less than the specified minimum.

Normally, due to page faults, the number of pages in memory will
increase during the execution of the domain. If this number exceeds
the specified maximum, one or more of the pages not used for some time
will be marked for swapping.

Pages may be swapped even if the maximum limit has not been reached,
but at no time will the number of pages in memory be below the
specified minimum.

ND—60.136.0M

1M6
Memory allocation

8.8.12. FIX-SEGMENT—SCATTERED

FlX~SEGMENT~SCATTERED (<segment name>), (<type>),
(<lower addr>), (<upper addr>)

<segment name> ~ the name of an existing segment.

<type> — P or D, signifying program or data segment.

(lower addr> — the lower boundary of the area to be fixed.
Default is the lowest address on the segment.

<upper addr> 'the upper boundary of the area to be fixed.
Default is the uppermost address of the segment.

In NLL, the default segment is the current segment. Segment may be
specified either by name or by logical segment number.

<lower addr> will be rounded down, (upper addr> will be rounded up to
the nearest page boundary. In NLL both may be defined symbols or
addresses. The Monitor accepts addresses only.

The segment or part of segment specified is declared to be retained in
memory after it has been loaded for execution, until it is explicitly
released through the Monitor command UNFlX-SEGMENT. The pages
belonging to the segment may be scattered throughout physical memory.

8.8.13. FIX—SEGMENT—CONTIGUOUS

FIX-SEGMENT-CONTIGUOUS (<segment no.>), (<type>),(<lower addr>),
<<upper addr>)

<segment no.> the number of an existing segment.

<type> — P or D, signifying program or data segment.

<lower addr> I the lower boundary of the area to be fixed.
Default is the lowest address on the segment.

<upper addr> — the upper boundary of the area to be fixed.
Default is the uppermost address of the segment.

(lower addr> will be rounded down, <upper addr> will be rounded up to
the nearest page boundary.

The segment or part of segment specified is declared to be allocated
in a contiguous area of memory, and to be retained in memory until it
is explicitly released through the Monitor command UNFIX—SEGMENT.

ND-60.136.0M

1H7
Memory allocation

8.8.1H FIX—SEGMENT—ABSOLUTE

FlX~SEGMENT~ABSOLUTE (<segment no.>), (<type>), (<phys. addr>),
(<lower addr>), (<upper addr>)

<segment no.> — the number of an existing segment.

<type> — P or D, signifying program or data segment.

<phys. addr> — the address in physical memory where the segment
should start.

<lower addr> — the lower boundary of the area to be fixed.
Default is the lowest address on the segment.

<upper addr> — the upper boundary of the area to be fixed.
Default is the uppermost address of the segment.

<lower addr> will be rounded down, <upper addr> will be rounded up to
the nearest page boundary.

The specified segment or part of segment is declared to be allocated
in a contiguous area in memory, starting at the physical address
specified. It will remain in memory until explicitly released through
the Monitor command UNFIXuSEGMENT.

Mus WAX-SEGfl'E
UNFIX—SEGMENT <segment>, <type>

<segment> — the name of a segment which has previously
entirely or in part been fixed in memory through
one of the above commands.

<type> ~ P or D, indicating program or data segment,
respectively.

The area occupied by a segment, or part of segment, previously
specified as fixed in memory, is unfixed. The freed space may be used
by other segments. The command has no effect before every process that
has fixed the segment has released or unfixed it.

8.8.16 RESIDENTwPLACE

RESIDENT-PLACE <domain name>

<domain name> — the name of a domain in the description file of
the current user or the user specified in
parentheses as a prefix to <domain name>. The

domain will be placed permanent in memory. The command is used to
avoid swapping for processes that require fast execution. Only allowed
for user SYSTEM. Only one such process can be run at a time.

ND-60.136.0MA

148
Miscellaneous commands

8.9. Miscellaneous commands

8.9.1. AUTOMATIC—ERRORwMESSAGE

AUTOMATIC~ERROR~WESSAGE

Error messages caused by monitor calls will automatically be written
to the communication device. MON 648 (ERMSG) will then be unnecessary
after every monitor call in the ND~SOO.

8.9.2. RESET—AUTOMATICMERROR—MESSAGE

RESET—AUTOMATICuERROR-MESSAGE

Reverses the effect of the AUTOMATIC-ERROR—MESSAGE command.

8.9.3. The ”Escape" key

By pressing the Escape key during the execution of an ND-SOO program
the execution is stopped and the control is given to the ND—SOO
command processor.

No files are closed and no resources released. Execution may be
resumed by the CONTINUE command, possibly after executing other
monitor commands. If execution is not resumed, resources are released
when the user leaves the monitor.

8.9.4. TIME—USED

TIME-USED

This command prints the ND-SOO and NDuloo CPU time and clock time
elapsed from the moment that the ND—SOO Monitor was entered.

ND~60.136.0M

1R9
Miscellaneous commands

8.9.5. WHO~IS—Q§

WHO-IS—ON

A list of users currently logged on the ND-SOO is printed on the
output device.

8.9.6. LIST—ACTIVE—PROCESSES

LIST—ACTIVE-PROCESSES

The active processes and their process names are written to the output
device. This command will also list processes not owned by a terminal
background program.

8.9.7. VERSION

VERSION

The version numbers of the currently active subsystem (background part
of the monitor), system part (Sintran part of the monitor), swapper
and microprogram is written to the output device.

8.9.8. SET—PRIORITY

SET—PRIORITY <ND—TOO mon call priority>, <max % of ND—lOO time),
(ND-500 priority>, {<process no>]

<ND—1OO mon call priority) the priority of the ND—lOO process
executing monitor calls on behalf of the
ND-SOO process, in the range 0:708.
Default is 708.

(max % of ND-lOO time> - the maximum percentage of ND—lOO CPU time
the ND—TOO process may use over a two
second period. Default is 50%.

(ND—500 priority> — the priority of the ND-SOO process, in
the range 0:377B. Default is dynamic
modification by the time slicing
mechanism.

<process no> — the number of the process to be affected.
Default is own process.

ND—60.136.0u

150
Miscellaneous commands

whenever an ND—SOO process executes Sintran Ill monitor calls, a twin
process running in the ND—1OO is started. The required parameters for
the call are transferred to this process, and the call is executed in
the ND-1OO before the results (if any) are returned to the ND-SOO
process.

When a monitor call is executed, the priority of the ND—1OO twin

process is determined by the parameter <ND~1OO mon call priority>.

The <max % of ND—1OO CPU time> parameter specifies the maximum

percentage of ND~1OO CPU time the ND-SOO process may use over a two
second period through its twin process executing monitor calls. If the
percentage is exceeded, the <ND—1OO mon call priority) is reduced to
208.

Be aware that the measured CPU time spent in monitor call handling
includes activty on interrupt level M and 1. Other hardware levels
(for ND—SOO monitor calls: 14, 12, 3 and possibly 11 and 10) are not
measured. The measured CPU load will be a smaller or larger fraction
of the actual CPU load. The NDw1OO may be saturated even though the
sum of all "max percentages" is significantly below 100%.

If <ND—SOO priority> is zero, the process will be time sliced with
other processes with priority varying between 20B and 61B. If (ND—500
priority) is non—zero, the process will run on a fixed priority as
specified. The default handling of the ND—SOO process is timeslicing
with no fixed priority. A priority specified in the source program is
ignored.

This command is allowed for user SYSTEM only.

ND—60.136.0U

151
Commands for the System Supervisor

8.10. Commands for the System Supervisor

These commands are allowed for user SYSTEM only, and most of them
require that no other users are logged in on the ND~500. New users may
be prevented from logging in by the command SET-ND—SOO—UNAVAILABLE.

These commands will interpret and display addresses as octal values
regardless of the format set by the MAIN-FORMAT command. However,
decimal or hexadecimal addresses may still be entered by trailing the
parameter with D or H respectively.

The user RT has no special privileges in the ND—SOO, and is treated as
a regular public user. This applies both to commands and the ND-SOO
instruction set available. However, monitor calls executed in the
ND—lOO are treated in the same manner as for ND—lOO programs, giving
the user RT higher privileges than public users.

8.10.1. SET-ND-SOO—UNAVAILABLE

SET—ND—SOO—UNAVAILABLE

No user may log on to the ND—SOO until the SET—ND-BOO-AVAILABLE
command is given. SET—ND-SOO~UNAVAILABLE must be used before any
modification of system parameters is done, to ensure that no user
interrupts critical operations. If any command that requires exclusive
access to ND—SOO is executed, this command is implicitly attempted,
and an error message issued only if others are using ND—SOO. If ND—SOO
has been implicitly set unavailable, it will be impossible for others
to use it until SET—ND—SOO-AVAILABLE is executed or the user reserving
the ND—SOO leaves the monitor.

This command will not force a log—out of those already logged in, but
will prevent new users from logging on. Logged in users must log out
explicitly.

8.10.2. SET—ND-SOO—AVAILABLE

SET-ND—SOO~AVAILABLE

Other users may now log in. This command has the reverse effect of
SET—ND—SOO—UNAVAILABLE, and should be issued as soon as exclusive use
of the ND—SOO is no longer required. An implicit SET—ND~500~AVAILABLE
is executed when the user setting it unavailable leaves the monitor.

ND—60.136.04

152
Commands for the System Supervisor

8.10.3. STOP—ND—SOO

STOPnND—5OO

The ND—SOO CPU is stopped. When a user attempts to start an ND-EOO
process after this command has been executed, the microcode will
automatically be reloaded, the swapper process placed in memory and
started ("warm start" of ND-BOO).

If the ND~500 should be stopped and then started with no need for
restarting running jobs, the MTCRO«STOP command should be used.

8.10.”. Memory configuration

In an NDmSOO computer system the processors may be connected to either
local memory (memory that can be addressed from only one processor) or
to a multiport memory system (shared memory). By processor, in this
context, is meant the disk, the ND—TOO CPU, the ND+SOO CPU program
channel or the ND—SOO data channel.

There are two restrictions which must be noticed when configuring an
ND—SOO computer system. First, the physical addressing range for
program and data memory may not overlap if the memory addressed is not
the same physical memory.

Secondly, if the disks have access to a memory cell, it is assumed
that the ND~lOO CPU also has access to that memory cell, and vice
versa.

The ND~SOO system has itself limited capability to investigate its own
memory configuration. Therefore the memory configuration must be
defined by the command DEFINEuMEMORY~CONFIGURATION.

Note: Local ND~SOO memory is not legal in the ND~500 multiuser
Monitor.

8.10.4.1. DEFINEuMEMORYwCONFIGURATION

DEFINE~MEMORY—CONFIGURATION (ND—TOO page# for ND—SOO phys.addr O)

The operating system is given information about the physical memory
configuration.

The parameter is ND—WOO page number for which the ND~SOO physical
address is zero, i.e. the difference between the ND~SOO and ND—TOO
physical addresses for the same physical cell in common memory.

The information about the size of the system, and the access to the
different memory parts of the system is given as subcommands to this
command. The information given by this command is saved and will
survive a normal restart ("warm start“) of the system.

ND~60.136.0M

153
Commands for the System Supervisor

The subcommands will request the information

— size in number of pages for the memory part

— Does ND—lOO have access to the part?

— Does ND—SOO have access to the part as program?

— Does ND—SOO have access to the part as data?

- Is this the last memory part?

Default is access for both CPUs, both P and D for ND—SOO.

When Sintran III is restarted by the MACM)HENT / 22! commands ("cold
start"), the memory configuration information is lost. For convenience
a permanent macro with the memory configuration definition should be
made.

8.10.3.2. MEMORYnCONFIGURATIQN

MEMORY—CONFIGURATION

Information about the current memory configuration is printed on the
output device.

8.10.5. Memory administration

When the NDe500 is started the first time, every page of ND—lOO/ND~SOO
shared memory belongs to ND~lOO. Memory is administered through the
commands GIVE~ND~500~PAGES and TAKE-ND—SOO—PAGES.

8.10.5.1. GIVE-ND—SOO-PAGES

GIVE-NDu500—PAGES (no. of pages>

(no. of pages) - the number of pages to be used by ND—BOO.

The specified number of pages are taken from the ND~TOO and released
to the ND—BOO. If ND~SOO already has pages, the specified number of
pages is added to those ND-SOO had previously.

All system tables are located in memory belonging to the ND—lOOa Thus,
the number of pages specified will all be available for user
processes.

ND—60.136.04

15H
Commands for the System Supervisor

8.10.5.2. TAKE—ND—500«PAGES

TAKEaND—SOOmPAGES <no. of pages>

<no. of pages> — the number of pages to be returned to ND«100.

The specified number of pages are taken from the ND~SOO and given to
the ND—lOO. The number specified should be less than or equal to the
number given to ND—SOO previously with the GIVE-ND—SOO~PAGES command,
otherwise the number of pages actually released is returned.

ND—60.l36.0fl

155
Commands for the System Supervisor

8.10.6. Microprogram maintainance

Using these commands require a detailled knowledge of the ND—SOO
microprogram format and hardware. This chapter is not assumed to give
sufficient information; the reader must as a minimum be familiar with
Test Micro Program Descriptions for ND-SOO (ND—30.103).

8.10.6.1. MICRO—STOP

MICRO~STOP

The execution of the ND—BOO microprogram is stopped, and may be
resumed through the command MICRO-START. The ND—SOO will stop
completely, but the contents of all registers are retained. It is not
necessary to restart programs running in the ND—SOO.

8.10.6.2. MICRO—START

MICRO—START (address)

(address) — the octal control store address where execution of
the microprogram should start.

The execution of the NDMSOO microprogram is started at the specified
address.

8.10.6.3. LOAD-CONTROLaSTORE

LOAD-CONTROL—STORE (<file name>), (<start address>), (<no. of words))

<file name) — the name of the file from which the microprogram
is read. Default is CONTROL~STORE=DATA.

(start address) — the octal address where the first microprogram
word should be loaded in control store. Default is
0.

(no. of words) — the number of words to be compared with the file
contents after loading. Default is ZOOOOB (entire
control store).

The ND-SOO microprogram is loaded to the control store from the
specified file. The first microprogram word on the file is loaded into
the control store at the specified start address. Every microprogram
word (1AM bits, 18 bytes) loaded into successive words.

Commands for the System Supervisor

When the loading is finished, the first words of the file are compared
with the corresponding contents of the control store. The number of
words to be compared is specified through the <no. of words>
parameter. If unequality is found, the error message CONTROL STORE
UNSUCCESSFULLY LOADED is written to the output device.

8.10.6.4. COMPARE-CONTROL—STCRE

COMPARE—CONTROL—STORE (<file name>), (<start address>),
(<no. of words>), (<max.no. of faults>)

<file name) — the name where the microprogram is stored. Default
is CONTROL—STOREzDATA.

<start address> the octal address where the comparison should
start. Default is O.

<no. of words) the number of words to be compared. Default is
200008 (entire control store).

<max.no.of faults>— the maximum number of unequalities accepted
between the file contents and the loaded micro-
program before the comparison is aborted. Default
is 7 (the number of messages that will fit on a
VDU screen).

The current ND-500 microprogram is compared to the microprogram
residing on the the specified file, <file name>. The comparison starts
at the specified microprogram address, <start address>. This word is
compared to the first word on the file, etc. Four words will be
modified after the microcode is loaded and will always be different.

Upon unequality the address and the two differing control store words
are written to the output device. The comparison lasts until (no. of
words> are compared or <max. no. of faults> are found.

8.10.6.5. LOOKwfiT—CONTROL—STORE

LOOK—AT-CONTROL~STORE (<address>)

<address> ~ an octal address in control store, range 0:20000.
Default is 0.

Examine and modify the ND—SOO microprogram.

The display is started at the specified <address>. One control store
word and the corresponding address are displayed on one line. On
carriage return, the next control store word is displayed. A control
store word consists of 144 bits which are grouped into nine 16 bit
words.

ND-60.136.0u

157
Commands for the System Supervisor

The next control store word to be displayed may be specified by typing
its address followed by a slash and carriage return.

8.10.6.5.1. Subcommands EDIT and ORIN

By default, the control store is disassembled and displayed
symbolically. Symbolic modifying of the control store is performed by
either the subcommand EDIT or ORIN. By EDIT the current control store
word is cleared and the disassembled string is then put into the
terminal input buffer. It is then possible to modify the disassembled
string by the Sintran III line editing features. At carriage return
the modified string is assembled and written into the control store.
By ORIN the next terminal input is assembled and a logical OR of the
entered instruction and the old contents is stored into the current
control store word.

8.10.6.5.2. Subcommands OCTAL and SYMBOLIC

By the subcommand OCTAL it is possible to have the control store
displayed in octal format. The display is returned to the symbolic
mode by typing the command SYMBOLIC.

8.10.6.5.3. Subcommands GROUP and WORD

By typing GROUP only one 16 bit word is displayed. On carriage return
the next 16 bit word is displayed. Within GROUP modus it is possible
to modify the displayed 16 bit word by typing the new octal value
followed by a carriage return. By typing WORD the display of nine 16
bit words continues.

8.10.7. LOOK-AT commands

8.10.7.1. LOOK-AT-RESIDENT—MEMORY

LOOK-AT—RESIDENT—MEMORY <address>

(address) - the octal physical address to be inspected.

Equal to LOOK-AT—DATA except that physical memory is examined and
modified.

The subcommands are described in chapter 8.5.7.

ND—60.136.0u

158
Commands for the System Supervisor

8.10.7.2 LOOK—AT—PHYSICAL—SEGMENT

LODK~AT—PHYSICAL—SEGMENT <address>, <phys. segm no.>

<address> — the octal segment relative address to be
inspected.

<phys. segm no> — the number of the physical segment to be inspected

Equal to LOOKuAT—PROGRAM or LOOK—AT-DATA, except that a physical
segment is inspected and modified directly.

The subcommands are described in chapter 8.5.7. Some of the
subcommands are not valid in LOOK—AT~PHYSICAL—SEGMENT.

8.10.7.3 LOOK—AT—HARDWARE

LOOK—AT—HARDWARE <hardware register name>

Display the contents of the specified internal ND—SOO CPU register or
NDmlOO/ND-SOO interface register.

The <hardware register name> may be one of

INTERFACE
Display the interface registers

Carriage Return
Display the hardware registers (approx 80 registers)

A,XD
Display the registers starting with name A,XD

Register name
Display the specified register

HMS
Display the MO Memory management registers.

Note that after this command the microprogram needs to be restarted
(MICRO~START <address>).

ND—60.136.0UA

159
Commands for the System Supervisor

8.10.8. Process management

8.10.8.1. ATTACH—PROCESS

ATTACH—PROCESS (process no>

<process no> — the number of the process with which communication
is desired. Default is the current process
connected to the terminal.

Subsequent commands LOOK-AT, RUN etc will be routed to the specified
process. The process should not be connected to any other terminal.

This command is currently used for debugging purposes, attaching to
the swapper process.

8.10.8.2. LOGOUT—PROCESS

LOGOUT—PROCESS <process>

<process> — the number of a currently running process.

The ND-SOO process specified will be aborted and its reserved
resources released. Also, the user will be forced to leave the ND—SOO~
MONITOR.

This is the normal command to remove a user from the ND-SDO system. A
proper cleanup of the area used by the logged out process is done; it
is therefore safer than ABORT—PROCESS. LOGOUT-PROCESS resembles the
Sintran III command @STOP-TERMINAL for ND~100 processes.

8.10.8.3. ABORT-PROCESS

ABORT—PROCESS <process>

<process> — the number of a currently running process.

The process specified will be aborted and its reserved resources
released. The user will be forced to leave the monitor.

This command should be used with care, as no cleanup of the system
tables and queues is performed. It should be employed only in case of
a system hangup, where there is no other way stop a process.

ND~60.136.04

160
Commands for the System Supervisor

8.10.8.u PROCESS—STATUS

PROCESS-STATUS

A summary of the status of all active processes is printed on the
output device. The information includes for each active process the
terminal number of the user having reserved the process, the user
name, the status of the process (idle or active), and the amount of
NDmSOO CPU time used and login time since the Monitor was entered.

8.10.9 Inspecting system tables

§;19°9'1 LIST—TABLE

LIST—TABLE <tab1e name>

<table name> — the name of one of the system tables.

This command has a number of subcommands used for searching through
the system tables. Detailed system knowledge is required in order to
utilize the information obtained through this command. The subcommands
are:

SW~SEGM—TAB _ List the segment table used by software.

MEMORY~MAP m List the memory map.

LAST—NSOO~MSG List the ringbuffer containing the last 6” messages
to ND»500

NSOO-MSG - List the messages to ND-SOO from a specified process.

FOLLOW—LINK Follow the link to the next element in the table.

FOLLOW~TABLE List the next element in the table.

I<octal value>/ List the specified entry in the current table.

or — List the next element in the current table.

EXlT ~ Return to the command processor.

ND—60.136uOHA

161
Commands for the System Supervisor

8.10.9.2. LIST-ACTIVE~SEGMENTS

LIST-ACTIVE—SEGMENTS <process no.)

(process no) — the number of an active process.

This command will list all the segments currently in use by a process,
the correspondence between logical and physical segments and the name
of the process.

The <process no.) parameter may also take the values OWN or «1,
indicating the user's own process, ALL or —2 indicating all active
processes.

8.10.9.3. LIST-SEGMENT—TABLEmENTRY

LIST—SEGMENT—TABLE—ENTRY <segm. no)

(segm. no) - a physical segment number.

The information in the physical segment table will be printed oh the
output device. This information includes the segment name and type,
the owner process, the size of the segment, the segment attributes and
allocation in the swap file, and the current use of the segment by the
active processes.

(segm. no) equal to ALL or ~1 indicates all segments.

8.10.9.4. LIST-PROCESS—TABLEmENTRY

LIST—PROCESS-TABLE-ENTRY <process no.)

(process no) — the number of an active process.

The process description of the specified process is printed on the
specified file. OWN or —1 indicates the user's own process, ALL or —2
indicates all active processes.

The returned information includes the process segment, the program and
data capabilities.

ND—60.l36.04

162
Commands for the System Supervisor

§b10.10. Swap files

A segment may either be swapped out on its original file or a system
selected swap file. This is determined by the attribute specified for
the segment in the OPEN—SEGMENT command.

System selected swap files are contiguous files used as scratch area
for modified pages of a segment. As long as no modifications are done,
pages are read from the original segment file, but if a page is
modified this page is copied to the swap file and used for further
swapping. For each segment that may need a scratch area, a contiguous
area is allocated. The segment may not be expanded during execution.

To define a file as a swap file for the ND-SOO the file must be
created with the Sintran III command @CREATE-FILE. Then the Monitor
command DEFINE—SWAP~FILE must be used to inform the Monitor that this
file should be used for swapping.

8.10.10.l. DEFINE-SWAP—FILE

DEFINE—SWAPwFILE (file name)

<file name) — the name of an existing contiguous file.

The file specified is defined as a swap file for ND~500 segments. The
file must be a contiguous file, and must be created before this
command is used. The file may belong to any user, but user SYSTEM must
have at least read and write access (RN) to it.

There may be several swap files in the system; the Monitor will assign
a swap area to a process on whichever file has sufficient free space
left. Definition of swap files will survive a warm start, but not a
cold start.

8.10.10.2. DELETE~SWA?-FILE

DELETE-SWAP—FILE <file name)

<file name> — the name of a file previously defined as an ND—SOO
swap file.

The specified file is de-allocated as an ND—SOO swap file. The file is
not deleted from the file directory, but will no longer be used by the
Monitor as swap area for ND~500 segments.

ND—60.136.0M

163
Commands for the System Supervisor

8.10.10.3. LIST—SWAP—FILE—INFO

LIST—SWAP-FILE—INFO (swap file no.>

(swap file no> — the number of the swap file, starting at 0, or
ALL.

Information about the swap file is printed on the output device. This
information includes both file system statistics and the current usage
of the file. If the parameter is given as ALL, information about all
swap files defined is printed.

8.10.10.N. LOAD—SHAPPER

LOAD-SWAPPER (file name)

<file name) — name of binary file where the swapper is located.
Default file name is (SYSTEM)SWAPPER.

The swapper process is loaded into ND~SOO memory. Normally, this is
done automatically when the first ND—SOO process is initiated by the
monitor, but this command may be useful to load a new copy if there
are reasons to believe that the existing one is corrupted, or to load
a non—standard version of the swapper process.

The file type may not be specified but will always be :PSEG and :DSEG.
The swapper will always run as process number zero.

8.10.10.S. START—SWAPPER

START-SWAPPER

The swapper process, loaded into memory by the LOAD—SWAPPER command,
is started.

ND-60.136.0u

Commands for the System Supervisor

8.10.11. SET—SYSTEM-PARAMETERS

SET—SYSTEM—PARAMETERS <no of phys. segm>,
<clean segm. t no of page faults>,
<swapout segm. at no of page faults>,
<default ND—1OO priority>,
<default ND—SOO priority>,
<max. ND—1OO CPU pct.>, <disk cache buff. size>,
<no of disk cache buffers>,
<low priority factor>, <max no of pages fixed>

<no of phys. segm> — the maximum number of physical
segments in the ND—SOO. Maximum
is 20008. A modification of the
number of physical segments
will have no effect until the
system is restarted. The number
of segments include all
physical segments including the
process segments used
internally by the monitor.
Reducing the number of physical
segments will reduce the space
needed by system tables and
release memory pages for
swapping.

<clean segm. at no of page faults> — see section 8.8.10. for
explanation.

<swapout segm. at no of page faults> — see section 8.8.10. for
explanation.

<default ND—1OO priority> ~ the priority by which
monitorcalls are executed in
the ND~1OO on behalf of the
ND—500 process.

<default ND—SOO priority> — default startup priority in the
ND-SOO.

<max. ND~1OO CPU pct.> — the maximum percentage of
ND~lOO CPU time the ND—TOO
process may use over a two
seconds period.

<disk cache buff. size> — by setting these parameters > O

<no of disk cache buffers> ' followed by a
GIVE—ND—SOO—PAGES command, a
disk cache buffer is set up.
Disk transport performed by the
swapper goes through theese
buffers. Number of 2K bytes
pages pr. disk transport is

ND—60.136.0U

Commands for the System Supervisor

<low priority factor>

<max pages fixed>

8.10.12. LIST—SYSTEM—PAEAMETERS

LIST-SYSTEM—PARAMETEES

The values of all parameters specified

165

equal to <disk cache buff.
size>. This may improve
performance, especially when
addressing contiguous files
sequentially.

see section 8.8.10. for
explanation.

the maximum number of pages
fixed for the system as a
whole. When using the commands
TAKE—ND~SOO—PAGES or GIVE—ND~
BOO—PAGES the swapper's copy of
the parameters is set to half
the number of physical pages
available for the ND—BOOu This
means that, following either of
these, a SETmSYSTEM-PARAMETERS
command should be issued thus
ensuring a correct value of the
parameter <max pages fixed>.

The maximum number of pages
fixed for the system as a whole
includes pages implicitly fixed
by the Monitor before
performing direct transfer I/O.

by the SET—SYSTEM—PARAMETERS
command are printed on the output device.

ND-60.136.04

Commands for the System Supervisor

8.10.13. MASTER-CLEAR

MASTER—CLEAR

Brings the ND—SOO out of any hang—up state by sending a hardware
master clear signal to the ND-SOO interface. This will cause the
NDuSOO to stop immediately and reset the interface. This is equivalent
to pressing the MCL button on the ND-SOO front panel”

This command is used before a complete restart of the ND—EOO, and the
contents of registers are unpredictable.

ND—60.136.0u

167
SINTRAN-III MONITOR CALLS

9. SINTRAN—III MONITOR CALLS

Monitor calls are requests to the operating system for I/O services,
system information and a number of special functions. Normally, a
compiler will translate certain source statements, like the Fortran
OPEN, into a monitor call, and thus hide the monitor call from the
user. For the assembler programmer, and for the programmer requiring
functions not offered by the compiler, direct access to the monitor
calls may be neccessary.

Most of the monitor calls in Sintran III are available for ND—SOO
programs through the ND~SOO Monitor. The arguments of the monitor
calls are, with a few exceptions, the same as in Sintran III. For
detailed information of the Sintran III monitor calls, see the
Sintran III Reference Manual ND—60.128.

In the ND—SOO a Sintran III monitor call is performed by a CALL or
CALLG instruction. CALL and CALLG are general subroutine call
instructions. A routine call where the five leftmost bits of the
subroutine address are set — the segment number is 37B « is a
Sintran III monitor call. That is, to the user program the Sintran III
monitor call functions appear to be regular routines on a link
segment. The 27 rightmost bits of the subroutine address are the
monitor call number.

Single parameters to a Sintran III monitor call must always be a 32
bit word residing in the data memory. When Sintran III requires byte
or halfword parameters, these are the rightmost byte or halfword of
the 32 bit parameter. Observe that the address of a 32 bit word is
addressed by its leftmost byte, thus, the address a one or two byte
variable (e.g. BYTE, INTEGERl and INTEGERZ in Plano) cannot be used
directly in the‘ argument list, but must be incremented by 3 or 2,
respectively.

Arrays are addressed by the lowermost word in the array, and the array
elements are always of size 32 bits.

String parameters ~ such as filenames etc. — must be a descriptor
parameter (DESC). A descriptor is a two word element, the first
containing the highest array index, starting at zero, the second the
address of the element with index 0.

During the execution of monitor calls, errors may occur. If an error
has occurred, the K flag is set; otherwise it is reset. If an error
code is returned to the program, it may be found in the Il register.
If an error occurs in a monitor call not returning an error code, the
II register will be set to —1. The K flag is also set.

Monitor calls returning a value will leave the value in the I1
register. Monitor cells not returning a value may destroy the 11
register, even if no error occurs or no error is possible. All other
registers will at return contain the values they had before the
monitor call.

ND—60.l36.0u

168
SINTRANmIII MONITOR CALLS

When an error has occurred, an error message may then be written on
the communication device by using the error code as argument in the
monitor calls ERMSG (MON 64) or QERMS (MON 65). Error messages from
monitor calls are always written to the communication device if the
command AUTOMATIC—ERROR—MESSAGE is given.

The following is a list of the available monitor calls with their
arguments. When the function of the monitor call is identical in both
the ND—SOO and the ND-100, the description of the monitor call is
found in the Sintran III Reference Manual ND—60.128. If the function
is not exactly the same, the differene is described here.

ND—60.136.0U

169
SINTRAN-III MONITOR CALLS

Mon.
no.

OB

1B
2B
BB
MB

118
12B
13B
148
16B
17B
218
22B
238
24B
26B

27B

308
31B

32B
35B

36B
37B

MOB

1MB
1:313

MAB
458

SOB

528

call
name

LEAVE

INBT
OUTBT
ECHOM
BRKM
TIME
SETCM
CIBUF
COBUF
MGTTY
MSTTY
M8INB
M8OUT
B8INB
BBOUT
LASTC

RTDSC

GETRT
EXIOX

MSG
IOUT

NOWT
AIRDW

SPCLO

ROBJE
CLOSE

RUSER
GTYPR

OPEN

TERMO

Comments

All files opened by the ND-SOO program or by the
OPEN—FILE command in the Monitor will be closed.
(unit) (byte)
(unit) (byte)
(unit) (echo mode no) (bitmap)
(unit) (break mode no) (bitmap) (max. no. of chars)
The result will be in the 11 register.
(string descriptor)
(unit)
(unit)
(unit) (terminal type)
(unit) (terminal type)
(unit) (no. of bytes read) (buffer descriptor)
(unit) (buffer descriptor)
(unit) (no. of bytes read) (buffer descriptor)
(unit) (buffer descriptor)
(unit)
The result will be in the ll register.
(RT description) (buffer)
Number of connected devices to the RT description
will be returned in the ll register.
The result will be in the 11 register.
<in~value> (device no.)
The result will be in the 11 register.
(descriptor of the string)
(format) (value)
(format): 2: Binary format.
(format): 8: Octal format.
(format): 10: Decimal format.
(format): 16: Hexadecimal format.
(unit) (input/output) (flag)
(no. of channels) (channel buffer)
(data buffer) (error indicator)
(unit) (text string descriptor) (no. of copies) (flag)
If (unit): ~3 then all files opened by the ND—SOO
program will be closed. Other values of
(unit) will give standard action.
(unit) (buffer)
(unit)
If (unit): ~3 then all files opened by the ND-SOO
Monitor and the ND—SOO program will be closed.
Other values of (unit) will give standard action.
(descriptor of user name string) (buffer)
(unit) (typring) (status) (Sintran III open file number)
The TYPRING word in the datafield, a word containing
flag bits and the open file number corresponding to the
specified (unit) is returned
(unit) (access code) (file name string descriptor)
(file type string descriptor)
The parameter (unit) is the open-file number the program
assigns to the specified file. If (unit) : 0 then the
ND—SOO Monitor will return an open-file number in the
parameter (unit).
(unit) (mode)

ND—60.136.04

170

53B
SAB
55B
56B

57B

608

62B
638
6MB
658
66B

67B

708

71B
72B
73B
7MB
758
768
77B

100B

101B

1028

1038

10MB
105B

106B

107B

llOB

111B

112B

113B
114B
113B

1168

RSEGM
MDLFI
RSPQE
PASET

PAGET

RWPM

RMAX
BAINW
ERMSG
QERMS
ISIZE

OSIZE

COMND

DESCF
EESCF
SMAX
SETBT
REABT
SETBS
SETBL
RT

SET

ABSET

INTV

HOLD
ABORT

CONCT

DSCNT

PRIOR

UPDAT

CLADJ

CLOCK
TUSED
FIX

UNFIX

SINTRAN III MONITOR CALLS

<segment no> <buffer>
<file name string descriptor>
<unit> <buffer addr.>
<buffer> .
Five 32 bit words may be set. These are independent
of the status words for the corresponding ND-lOO call
<buffer>
Five 32 bit words set by PASET may be read.
<function> <ND—500 program address> <data>
Read/write program memory. <function>=0 : read,
<function>=l : write. <data> is always A bytes
Observe that MON 60 (NSOOM) executed from ND-TOO
has functions different from the RWPM call
<unit> <no. of bytes in file>
<unit> <buffer>
<error code>
<error code>
<unit>
The result will be in the ll register.
<unit>
The result will be in the 11 register.
<descriptor of command string>
Only a subset of Sintran Ill commands are legal
<unit>
<unit>
<unit> <max. byte pointer>
<unit> <byte pointer>
<unit> <byte pointer>
<unit> <block size in bytes>
<unit> <block number>
<RT description>
Available for users SYSTEM and RT only.
<RT description> <no. of time units> <time unit no.>
Available for users SYSTEM and RT only.
<RT description> <second> <minute> <hour>
Available for users SYSTEM and RT only.
<RT description> <no. of time units> <time unit no.>
Available for users SYSTEM and RT only.
<no. of time units> <time unit no.>
<RT description>
Available for users SYSTEM and RT only.
<RT description> <unit>
Available for users SYSTEM and RT only.
<RT description>
Available for users SYSTEM and RT only.
<RT description> <priority>
The old priority of <RT description> will be in the IT
register. Available for users SYSTEM and RT only.
<min> <hour> <day> <month> <year>
Available for users SYSTEM and RT only.
<no. of time units> <time unit no.>
Available for users SYSTEM and RT only.
<buffer>
The result will be in the 11 register.
<segment no.>
Available for users SYSTEM and RT only.
<segment no.>
Available for users SYSTEM and RT only.

ND-60.136.0MA

171
SINTRAN-III MONITOR CALLS

117B

120B

1213

1228

1233

1248

1258

1268

127B

1308

131B

1348
135B
136B

1378

1MOB

1U1B

1U2B
1HBB
1MHB

RFILE

WFILE

WAITF

RESRV

RELES

RTEXT
RTWT
RTON

RTOFF

WHDEV

IOSET

ERMON
RSIO
MAGTP

(unit) (flag) (buffer) (block no.)
(no. of bytes to read)
If (flag) i 0 then the ND—SOO program will be
restarted immediately after the parameters are
accepted (not waiting for the transfer to be
terminated). The status of the transfer may later
be checked by the monitor call WAITF.
(unit) (flag) (buffer) (block no.)
(no. of bytes to write).
If (flag) i 0 then the ND—SOO program will be
restarted immediately after the parameters are
accepted (not waiting for the transfer to be
terminated). The status of the transfer may be
checked later on by the monitor call WAITF.
(unit) (flag)
If the previous RFILE/WFILE/MAGTP on (unit) was
called with (flag) i 0, then the status of this
transfer will be returned into the I1 register.
<unit> (input/output) (flag)
Available for users SYSTEM and RT only.
<unit> (input/output)
Available for users SYSTEM and RT only.
(unit) (input/output) (RT description)
Available for users SYSTEM and RT only.
(unit) (input/output)
Available for users SYSTEM and RT only.
(RT description) (basic time unit)
Available for users SYSTEM and RT only.
(RT description) (basic time units)
Available for users SYSTEM and RT only.
(RT description) (basic time units)
Available for users SYSTEM and RT only.
(unit) (function) (buffer) (block no.)
(number of blocks)
The (buffer) parameter must be specified as
an ND—1OO physical address. Available for
users SYSTEM and RT only.
Same effect as LEAVE
Available for users SYSTEM and RT only.
(RT description)
Available for users SYSTEM and RT only.
(RT description)
Available for users SYSTEM and RT only.
(unit) (input/output)
The result wil be in the I1 register.
(unit) (input/output) (RT description) (value)
The result will be in the ll register.
(error code) (sub. error number)
(mode) (input unit) (output unit) (user index)
(function) (buffer) (unit)
(max. no. of bytes) (actual no. of bytes read)
If 10008 is added to (function), the
ND—SOO program will be restarted immediately after
the parameters are accepted (no waiting for the
monitor call to be terminated). The status of the
execution may later be checked by the monitor call
WAITF.

ND-60.136.0H

172

1M5B
1H7B

150B

151B

152B

153B

154E

155B
157E

1603

1613

162B

16MB

165B

1663

2138

21MB

215B

216B

217B

2208

2218

ACM
CAMAC

GL

GRTDA

GRTNA

IOXN

ASSIG

SINTRAN III MONITOR CALLS

<unit> <function> <buffer> <dma addr.> <no. of bytes>
<value> <status> <crate number> <station number>
<subaddress> <function>
Available for users SYSTEM and RT only.
<value> <flag>
Available for users SYSTEM and RT only.
<descriptor of RT program name>
Available for users SYSTEM and RT only.
<RT descriptor> <buffer>
Available for users SYSTEM and RT only.
<data> <IOX~code>
Available for users SYSTEM and RT only.
<log. unit number> <graded LAM number> <crate number>
Available for users SYSTEM and RT only.

GRAPHIC<X co—ordinate> <Y co—ordinate> <code> <unit> <function>
ENTSG

FIXC

INSTR

OUTST

WSEG

DIW

DOLW

MUIDI

GUSNA

DROBJ

DWOBJ

GUIOI

DOPEN

CRALF

<segment> <page table> <interrupt level>
<start address>
Available for users SYSTEM and RT only.
<segment> <physical start page>
Available for users SYSTEM and RT only.
<unit> <string descriptor> <max. no. of bytes>
<terminator>
The function value will be in the Il register.
<unit> <string descriptor>
The function value will be in the 11 register.
<segment no>
Available for users SYSTEM and RT only.
<no. of registers> <buffer with logical units>
<data buffer> <error indicatior>
Available for users SYSTEM and RT only.
<no. of registers> <buffer with logical units>
<data buffer> <error indicator>
Available for users SYSTEM and RT only.

<descriptor of user name string> <directory index>
<user index>
<descriptor of user name string> <directory index>
<user index>
<object entry buffer> <directory index>
<user index> <object index>
<object entry buffer> <directory index>
<user index> <object index>
<unit> <directory index>
<user index) <object index>
<unit> <access code> <descriptor of file name string>
<descriptor of file type string>
<descriptor of file name string>
<start address of file> <number of pages in file>

ND—60.136.0AA

172a

SINTRAN III MONITOR CALLS

2278
2308
2318
2328
2338
23MB
2358

2368
2378
2408

ZulB

2U2B

2fl38
ZMMB
2u58
2M6B
2H7B
2508

2518

2528

2538

2548
2568
2578

2628
2638
2678
2708
2718

MSDAE
MGDAE
EXPFI
MRNFI
STEFI
SPEFI
SCROP

SPEED
SFACC
APSPF

SUSCN

RUSCN

FDINA
GDIEN
GNAEN
REDIR
RLDIR
FDFDI

COPAG

BCLOS

CRALN

GERDV
DEABF
FOPEN

CPUST
GDEVT
TMOUT
RDPAG
WDPAG

<unit> <disconnenct char.> <escape chr.>
<unit> <disoonnenct char.) <escape chr.>
<filename> <no. of pages>
<old filename> <new file name>
<file name>
<file name> <device no.>
<unit> <access code> <file name string descriptor>
<file type string descriptor>
The parameter <unit> is the open~file number the program
assigns to the specified scratch file. The size of the
file is reduced to a predefined limit when it is closed.
The limit is set by @SINTRAN~SERVICE—PROGRAM,
*SET—CLOSED—SCRATCH—FlLE—SIZE.
<file no>
<file name> <public access> <friend acoess> <own access>
<file name> <spooling file name> <no. of copies> <user
text>
<user name> <user password> <project name>
Cannot be used twice without using RUSCN (ZMZB) in
between.
<user type>
The call is a dummy if not used after SUSCN (ZHTB).
<directory name> <direotory index> <name index>
<directory index> <buffer> <spare track allocation f1ag>
<name index> <buffer>
<directory index>
<directory index>
<user name> <directory indeX> <user index in default
directory>
<source file> <destination file> <first page> <buffer>
<page> <buffer> (page no. nonexisting page> <last page
contiguous area of nonexisting pages>
<file no.> <flag>
Flag : 0: modified bit in object entry not reset
Flag £ 0: modified bit reset
<file name> <page no. first page> <no. of pages>
If <page no. first page> is O the call will
create—newmversion, otherwise allocat—newwversion.
If <no. of pages> is O the file will be indexed when
written to the first time or contiguous if it is
expanded with @EXPAND—FILE. If the number of pages is
not 0 the file will be contiguous.
<unit> <reserving RT—program>
<abbreviated file name> <full file name>
<file name> <file type> <open file no.>
<perhipera1 dev. no>
<ND~no.> <buffer>
<log. no> <i/o> <dev. type> <dev. attribute>
<time unit> <no. of time units>
<dir. index> <buffer> <disc addr.> <no. of pages>
<dir. index> <buffer> <disc addr.> <no. of pages>

ND—60—136.0MA

172b

272B
273B
27MB

275B
307B
31GB
311B
3128

DELPG
MGFIL
FOBJN

STRFI
TNOWAI
TBINB
WDIEN
MOINF

SINTRAN III MONITOR CALLS

<fi1e no.> <first page> <1ast page> <no. of pages>
<dir. index> <user index> <object index> <file name>
<file name> <file type> <dir. index> <user index>
<object index> <object index next ver.>
<file name>
<unit> <i/o> <no wait flag>
<unit> <no. of bytes read> <buffer>
<dir. index> <buffer>
<mon. call no.> <return value>

ND-60—136.04A

173
SINTRAN III MONITOR CALLS

MOOB

MOlB

402B

303B

HOME

HOSE

M068

MO7B

410B

411B

MACROE Subsystem error return. Will set an error indicator
that may be tested by the IF-ERRORmMACRO—STOP and
IF-ERROR—FULL~STOP commands.

DISASS <program pointer> <descriptor of returned string>
<max no. of characters>
One ND—SOO instruction starting at the specified
<program address> is disassembled. The returned
string will be truncated to <max no. of characters>
if required. The actual number of characters in the
returned string is returned in the length part of
the <descriptor of returned string>.

RFLAG <value>
Reads a 32 bit flag array set by the SET-FLAG Monitor
command or by a monitor call in a Sintran III program.
See section 8.7.6.

WFLAG <value>
Writes a 32 bit flag array that may be read by
a Sintran III program or by the GET-FLAG Monitor
command. See section 8.7.6.

IOFIX <first addr> <size of area in bytes>
Specify to the Monitor the data area the program will
use for file system l/O.

USTBRK <function> <address>
<function>=1 : enable, <function>=0 : disable user
handling of the escape input. If enabled, control will
be transferred to <address> if the user presses the
escape or break key.

RWRTC <function> <RTCOMMON addr> <£ bytes> <buffer>
<function>:0 : read, <function>=l: write RTCOMMON
The specified RTCOMMON address is an ND-lOO virtual
word address.

TPSTRA <p1>..<p7>
Return from NBOOM, function RUNN (12B), to ND—lOO.
Stop reason is given the value 65, and the
seven parameters are transferred to ND-lOO.
Interpretation of the parameters is up to the
ND—lOO program issuing NSOOM.

FIXMEM <type> <first addr> <length> <phys ND—lOO addr>
<type>=0 : fix scattered
<type>=1 : fix contiguously, address returned
<type>=2 : fix contiguously at given address
<first addr> is the logical ND—SOO address,
<length> in bytes, but the physical address is
specified/returned as an ND—TOO word address

UNFIXMEM <address>
Only the segment number of the address is
significant. All fixed areas in the given
segment are unfixed.

ND-60.136.0HA

17E

M128

M138

414B

MlBB

416B

U178

4208

M218

422B

FSCNT

FSDCNT

BCNAF

BCNAFl

WSEGN

MXPISG

GTRLK

GASGM

SINTRANwIII MONITOR CALLS

(file no) (log. segment no) (type) (segment no)
Connect file as a segment. File must be opened
through MON 50 or the O?EN—FILE command.
(log. segment no):O will select the first free
segment and return in (segment no).
<type):O : file contains initial data
<type):l : uninitialized, empty file
<type):2 : primarily sequential access
<type>:3 : combination of 1 and 2
Specifying <type):2 will reduce swapping, as
long as access is sequential
(file no) (segment no)
The file is no longer accessed as a segment,
but is not closed. All pages are, however,
flushed to the file.
CLOSE will imply FSDCNT.
(function) (address) (data) (status)
Special CAMAC monitor call.
(function) (address) (data) (status)
Special CAMAC monitor call.
(log segment no)
Write all modified pages back to segment file
<log segment no) (segm. type) <# pages)
Set max pages in memory for a segment.
(segm. type):U : data segment
(segm. type):1 : program segment
(buffer)
Get user register block. Used together with USTBK.
When user pushes ESC, the register block is saved and
can be read through GRBLK. The register sequence is
the same as when a trap occurS; 39 registers are
saved.
(buffer)
Get active segment names. The buffer is a 1 page (20M8
bytes) buffer, containing 32 BYTES POINTER (3 words
per pointer, Plano type) to the segment names of the
current domain. The addresses are given as address
within buffer. A segment not used is represented by a
NIL pointer.
(size in bytes) (log.seg.no) (returned log.seg.no)
Get scratch segment. Reseve the specified amount of
space on the swap file for an initially empty data
segment. If <log.seg.nc) is O, (returned log.seg.no>
will contain the number of the first free segment
number, and this number will be used.

ND—60.136.0u

175
SINTRAN—III MONITOR CALLS

.H23B CAPCOP (source log.seg.no> (source type) (dest. log.seg.no>

HZHB

H253

U26B

427B

4308

4318

H328

CAPCLE

(dest. type) (access) (returned log.seg.no)
Copy capability. The information in the specified
source capability is copied to the destination
capability. (source type) and (dest. type) are 0 for
data segment, 1 for program segment.
(access) 2 0: do not modify access bits in capability
(access) 1: set read only access
(access) : 2: set write access (write access to
segment file is required.
The dest. segment number must be free; if D is
specified, the actual segment number is returned in
(returned log.seg.no>.
(log.seg.no) (type)
Clear capability. The specified segment number will no
longer be valid, but is available for association with
another physical segment. (type) is O for data, 1 for
program segment.

9!

SPRNAME <:name:)

GPRNUM

Set process name. (:name:) is a string descriptor. If
the user name is specified, it must be equal to the
name of the currently logged on user. The user
specified part of the name may be up to 16
alphanumeric characters or hyphen.
(:name:> <proc.no>
The process number (process index in the upper half,
cycle number in the lower half) corresponding to the
specified (:name:> is returned. (:name:> is a string
descriptor.

GPRNAME (:namez) (proc.no)

ADRlOO

MWAITF

SIBFU

Get process name/number of own process. The (:name:)
string must long enough for the entire name (up to 34
bytes). (:name:> is a string descriptor. (proc.no) is
returned with the process index in the upper half, the
cycle number in the lower half.
(ND~500 array) (ND—100 physical word address)
Translate from logical ND—SOO address to physical
ND—lOO address. This call is used for setting up
communication areas between the two CPUs.
(file no) (return flag) (no. bytes read)
Like WAITF, but returns the number of bytes read.
The (return flag) is ignored, there will never be an
immediate return.
(function) (SIBAS no.)
Used by SIBAS server.
(function) 2 O : reserve communication facility,
(function) >(O : release communication facility.

ND—60.136.0u

176
SINTRAN—IEI MONITOR CALLS

500B STARTPR <proc.no>

5018 STOPPR

Start an ND—SOO process identified by <proc.no>,
containing the process index in the upper half and the
cycle number in the lower half. If the process is
already active, its repeat flag will be set. If the
process number is invalid, the K flag is set on return
from the call
Stop process. The current process is set in a passive
state (similar to RTWAIT), and may be reactivated by
STARTPR. When reactivated, execution continues after
the STOPPR call. The passive state is interrupted if
the user pushes the ESC key. if the repeat flag is set
when STOPPR is executed, the process is immediately
reactivated.

5028 SWITCH? <proc.no>

503B DVINST

50MB DVOUTS

A combination of STARTPR and STOPPR. The current
process is first passivated, and then the specified
process is activated.
<dev.no> <max no.of bytes> <no.of bytes returned>
<buffer> <break strategy> <echo strategy>
<break table 1> <break table 2> <break table 3>
<break table M> <echo table 1> <echo table 2>
<echo table 3> <echo table U>
Device instring. The call is discussed in
the section 'Terminal l/O’.
<dev.no> <no.of bytes> <buffer>
Device outstring. The call is discussed in
the section ’Terminal I/O'.

505B GERRCOD <error ccde>
Get error code from swapper. When the swapper process
detects a fatal error (e.g. outside segment), it will
cause a Programmed Trap (PET) in the user process.
GERRCOD may be used within the trap handler to obtain
the error code from the swapper. The code may be a
file system code or a swapper code.
GERRCOD will clear the error code; it may be read only
once before the next error occurs. The call is
meaningless except in a PRT trap handler.

5068 SIBSURV

507B SPRIO

510B SWAPMC

Used by SEBAS servers.
Answers current message (if any) and waits for a new
message from the ND~1OO application.
<new priority>
May be used by user System, RT or RT—programs to change
priority level.

Monitor call directly to the swapper. Used for handling
before image logg in SIBAS.

ND—60.136.0u

177
THE NSOOM MONITOR CALL

10. THE NSOOM MONITOR CALL

This chapter is intended as background information only, and is
included for readers with a thorough knowledge of Sintran III. The
NSOOM monitor call is primarily used by the Monitor itself, and will
normally not be used by application programs. Programmers who want to
use the functions listed below, are advised to consult Norsk Data for
further details.

The ND-SOO Monitor is divided into three separate parts that run in
the ND—100. The first part runs on page table 2 as the subsystem
called ND-SOO-MONITOR, and the second runs on page table 0. The third
part is the ND~500 driver routine residing in the resident and the
"paging off" area.

The subsystem ND—SOO—MONITOR communicates with the page table 0 part
through a special monitor call, MON 60 (NSOOM). NSOOM has several
functions, and accepts parameters according to the specified function.
Observe that the monitor call number 60 is used from ND—SOO for
functions different from NSOOM executed on the ND—100.

The parameters to NSOOM are specified in same way as a "Fortran
monitor call", (the A-register pointing to a list of parameter
addresses). The first parameter is the function code which must be a
16 bit word. The rest of the parameters are either arrays or 32 bit
words. Skip return indicates successful completion, direct return that
an error occured.

The following is a list of the functions available in NSOOM:

Function
no. name explanation parameters

OB RREG Read register (reg.no> (value)
18 WRWG Write register (reg.no> (value)
28 RPROG Read program memory (no.0f bytes> (ND-500 addr>

(data area) (no.0f bytes returned)
38 RDATA Read data memory (no.0f bytes) <ND~500 addr>

(data area) (no.0f bytes returned)
MB WPROG Write program memory (no.0f bytes) (ND—500 addr>

(data area)
SB WDATA Write data memory (no.0f bytes) (ND-500 addr>

(data area)
68 PLACE Place segment (file name) (segment base)

(size in bytes) (segment type)
YB SWLOD Load swapper (swapper segment name)

105 RREGB Read ND-SOO Registers (register block)
118 WREGB Write ND-SOO Registers (register block)
128 RUNN Start program (stop reason) (returned trap info)

(clear time used)
135 CNCFI Connect file (file name) (access code)

(default type) (connect no.)
(returned connect no.)

1MB CLSFI Close file (file no.)

ND—60.136.0Q

178

15B

16B
17B
208
218
228
238

248

25B
26B
27B
30B
31B
328

33B

3MB
358
378
MOB

4; &

”38
Ava
use
uvs
508
51B
52B
53B
548
55B
56B
573
603

618

628

63B
6MB
65B
668
67B
70B
71B
723

RESRV

RELIS
LISOP
TIMUS
WHO
ERRFL
REACS

WRICS

MICST

ABSMR

ABSMW

MSTOP
MSTCL

DEFM

RSTAT

SPRES
SPREL
DEFSW
DELSW
TESTF
RIFRG
GSOOP
T500?
STSWP
SPLAC
EPLAC
MPVER
LIMEM

RESER

HIDEF

HISTA
HIST?
HISTR
HIREL
SPRTE
GPRTE
SSGTE
GSGTE

Reserve ND-SOO—prooess

Release ND—SOO-process
List open files
Time used
Who is on
Set error flag
Read Control store

Write Control store

Start micro
Data memory examine
Data memory deposit
Prog. memory examine
Prog. memory deposit
Absolute memory read

program

Absolute memory write

Stop micro program
Master clear
Load control store
Define memory config.

Read comm. status

Reserve for spec. use
Release after spec use
Define swap file
Delete swap file
Test function
Read interface reg
Give ND-SOO pages
Take ND-SOO pages
Start swapper
Start place
End place
Microprogram version
List memory config.

Reserve N500 and
N500 memory
Define histogram

Start histogram
Stop histogram
Read histogram
Release histogram
Search for proc.entry
Get process entry
Beach for phys.segm.
Get physical segment

THE NSOOM MONITOR CALL

(start addr. after escape)
(version string of PTO)

(value)
(CS addr.) (no of 16 bit words)
(data-area)
(CS addr.) (no of 16 bit words)
(data—area>
(micro program start address)
(addr.) (value)
(addr.) (value)
<addr.) (value)
<addr.) (value)
(no.of bytes) <ND~SOO addr.)
(data area) (no.0f bytes returned)
(no.0f bytes) (ND~SOO addr.)
(data area)

(CS addr>(no of words)(file name)
(start page) (no.of memory parts)
(part array)
(status (bits 16:31: ND-SOO,
bits 0:15: WD—100)>

(MAR (memory address register))

(file name)
(file name)
(11) (12) (I3) (IE)
(register value/1M)
(number of pages)
(number of pages)

(version number/IA)
(array (regblk start/12,

ND—1OO procadr/Iu, ND—SOO null/12,
memparts/IZ(O:17B),
accesstab/BY(O:17B)>

(no. of pages) (first page no.)
(start address) (interval size)
(no. of intervals)

(array)

(process name) (record)
(process) (record)
(name of phys.segment) (array)
(phys.segment no.) (array)

ND-60.136.0U

THE

738

7H8
758
76B
77B
1008
1018
1028
1038
1OU8
1058

1068
1108

1118
1128
1138
1148
1158

1178
1208
1218

1228
1238

1248
1258
1268
1278
1308
1318
1328
133B
1358
1358
1368
1378
1408
1M18
1U28

179
N5OOM MONITOR CALL

RPHSG

SPRNM

TOSWP
RPROC
RFLAG
SFLAG
GPSGE
RSYSP
WSYSP
SPRIO

Read physical segment (phys.segment no.) (address)
(no. of bytes) (array)

Set process name (process name)
User SYSTEM test (skip if SYSTEM)
Send msg. to swapper (record>
Read last message (process no.) (record)
Read process flag (process no.) (flag)
Set process flag (process no.) (flag)
Release ND—SOO system
Read system param. (parameter array)
Write system param. (parameter array)
Set priority (ND—100 monitor call priority)

(max percent of ND—1OO CPU time)
Link to process (process no.)
Write physical segment (segm no.) (ND—500 address)

(no. of bytes) (data area)
Start process log one (process no.)
Stop logging
Read log info (data area)
Release log facility
Start log all active
processes
Abort process (process no.)
Set output device (unit)
Read from swapper
process' data memory (no. of bytes) (ND—500 address)

(data area) (no. of bytes read)
Logout process (process no)
Release all memory reserved by this process
through function RESER (618).
Start moncall log
Print moncall log (array of 1K 16 bit words)
Stop/release moncall log '
Define standard domain (array)
Place standard domain (name)
Delete standard domain (name)
List standard domain
List execution queue
Place Debugger
Log out, process and abort corresponding RT—programs
Activate a stopped process
Not used
Start residual place
Set block size of a file
Redefine default infant file

ND~60.136.0H

180

ND—60.136.0U

DESCRIPTION FILE LAYOUT

11. DESCRIPTION FILE LAYOUT

181

This chapter will give an overview over the information stored in the
description file.
not pretend to give

It is meant to be a general presentation, and does
complete description. The format of the

information in the description file may be slightly modified in later
versions of NLL and the Monitor, but the main structure is fixed.

PROCESS
ENTRIES

DOMAIN
ENTRIES

SEGMENT
ENTRIES

SYMBOL
ENTRIES

The description file contains all
necessary information about processes,
domains and segments created by the user
owning the description file. Each
process, domain and segment has its own
entry in the file. This means that each
new segment opened, linked or indirectly
linked will be assigned an entry in the
description file. When a segment is
deleted, the corresponding segment entry
is removed, ie. linked out of the
segment link of a domain.

The description file is an indexed file.
It can therefore be expanded dynamically
when new segments are created and
segment entries reserved. The size of
the process and domain entry area in the
file is fixed, in order to speed the
search for a new domain number.

In addition to the three major
information blocks shown in the figure
to the left are miscellaneous
information, such as a list of the users
auto-load files and the name of the
Monitor. This information is stored in
gaps between the major blocks.

ND—60.136.0M

182

Process entry

E

Domain entry

{SEGLINK

[DNAME
[CHILDDOMAINS

[MOTHER
CHILDINDEX

[PROCPRIOR
[FLAG
[STADE
[ENABLEINT
[TBA
[SYSENABL
[PBITMAP
[DBITMAP

]

]
1

J
J

L
J
L

.J
|—

J
£

_
J
L

_
1

1
_

J
£

_
J
L

_
J

DESCRIPTION FILE LAYOUT

— size: 1 byte

Domain number of the first domain
in the process (1 byte)

— size: 56 bytes

Link location for the first segment
in the domain (H bytes)
Domain name (16 bytes)
Numbers of the child domains of which
this domain is the mother (6 bytes)
Domain number of mother domain (1 byte)
First free loacation in the child
domain area (1 byte)
Priority (1 byte)
Flag bits (1 byte)
Start address (M bytes)
Bit mask indicating enabled traps (M bytes)is
Trap handler address (u bytes) Syn i 5

z N 1
"a"., _ ,5

Bit mask indicating system enabled traps (4 bytes)
Bit map of used program segments (u bytes)
Bit map of used data segments (u bytes)

ND-60.1E’6.0H

183
DESCRIPTION FILE LAYOUT

Segment entry

[SEGLINK
[SNAME
[SEGTYPE
[COMSEGNO
[COMSEGADDR

[COMSEGSIZE

[NWOOSEGNO
[PLOG
[DLOG
[HDDINDEX

[PLB
[PSIZE
[DLB
[DSIZE
[DEBUGINFO
[DLINKDATE
[ABSFIXAD

[LOWLOGFIX
[UPPLOGFIX
[MINPAGES
[MAXPAGES
{INDPLOG

[INDDLOG

[ADDSEGLINK

[INDDOMAIN
[ADDTYPE
[ADDPSEGNO
[ADDDSEGNO
[INDPSEGNO

[INDDSEGNO

[LINKDATE

L.
)

I—
J
L

_
J
L

_
.J

(_
.J

L
_

|
L

.I
L

_
J
l—

—
J
L

.J
L

_
_

J
L

._
J
L

.—
J

H
u

u
g

J
L.

..J
r_

1v
_.

JI
—

_J
L.

_.
J

'Maximum number

— size: 192 bytes

Link to next segment in the domain (u bytes)
Segment name (directory:user)filename (54 bytes)
Flags indicating type of segment (M bytes)
Number of shared Sintran III segments (2 bytes)
Array containing logical address of all
shared Sintran III segments within the
data segment (10 bytes)
Array containing the size of all
shared Sintran III segments (5 bytes)
Array of actual Sintran III segments (5 bytes)
Logical number of this program segment (5 bits)
Logical number of this data segment (5 bits)
No of link, indirect and common segments
from other domains to this user (3 bits)
Logical low bound for program segment (U bytes)
Size in bytes of program segment (M bytes)
Logical low bound for data segment (4 bytes)
Size in bytes of data segment (M bytes)
Size of debug info on the :LINK file (H bytes)
Last date written when segment was linked (5 bytes)
Address if the segment should be fixed
in absolute address in memory (2 bytes)
Lower page no. in fixed area (2 bytes)
Upper page no. in fixed area (2 bytes)
Minimum number of pages in memory (2 bytes)

of pages in memory (2 bytes)
Logical program segment number
in indirect domain (5 bits)
Logical data segment number
in indirect domain (5 bits)
Pointer to linked/common/indirect segment
from other domains of the same user (4 bytes)
Domain no of the indirect domain (1 byte)
Type of this segment (2 bits)
Logical program segment no within this domain (5 bits)
Logical data segment no within this domain (5 bits)
Logical program segment no within
indirect domain (5 bits)
Logical data segment no within
indirect domain (5 bits)
Last date written when linking took place (A bytes)

The fields from ADDSEGLINK to LINKDATE occur 5 times.

ND—60.136.0M

Symbol entry

[BLINK 1
[5L 1
[NLE]
[OPER l
[IDENT l
[cw]
[VAL]
[SIZE 1
[SS]

cw bits:

Bit no Name

0 UDEF
1 DREF

2 DSYM

3 CLAB
u DMPF
5 GLOB

6 SELECT
7 OMIT

DESCRZPTION FILE LAYOUT

size: variable

Link to next symbol in link (U bytes)
Length of symbol (1 byte)
Numeric length (3 bits)
Operation type (+, —, *, /) upon this symbol
Language code (1 byte)
Type of symbol (see below) (1 byte)
Value of symbol (M bytes)
Size of common block (M bytes)
Symbol name (max 255 bytes)

Explanation

false : undefined element
false : program memory reference
true : data memory reference
false : program label
true : data label
true : common label
true : symbol is written (used in list handling)
true : the symbol will not be deleted

when the loader table is saved
true = module must be loaded
true : module must not be loaded

ND-60.136.0M

185
THE ND RELOCATABLE FORMAT

12. THE ND RELOCATABLE FORMAT

12.1. DESCRIPTION

The ND Relocatable Format (NR?) is organized as a sequence of so-
called NRF-groups where each group is composed of a control byte (5 +
3 bits) alone or followed by a varying number of trailing information
bytes. The trailing information is either a numeric field, a symbolic
field or both in a sequence;

<NRF~group>:::<control field) <numeric field) (symbolic field)

The control field (5 bits) contains an NRF control number in the range
0—37B. The control numbers denote a set of particular loader actions.

The numeric field (N) consists of a numeric length (NL — 3 bits)
specification followed by zero to seven 8 bit bytes, as indicated by
NL.

<Numeric field>:::<numeric length)<byte>... etc.

Note that the numeric field is always present although the length may
be zero (the control number + numeric length make up an 8 bit byte). A
zero numeric length may in some cases be interpreted as an "all zeros"
case of the numeric field.

The numeric field is signed, with negative values in 2's complement
form.

If a numeric field is present where it has no meaning, the number of
bytes specified in the NL field are read and ignored.

The symbolic field (8) consists of a symbol length (8 bits) followed
by 1~255 characters which constitute the symbol. Each character is
represented in 8 bit ASCII code with the parity bit cleared. All
characters are valid, including non—printing control characters. For
two symbols to be equal, both the length and all characters must be
equal.

(Symbol field>::=<symbol length><chl>... etc.

The symbolic field is valid only in a subset of control codes.

5 bits 3 bits 0:7 bytes 1 byte 0:255 bytes

I control I numeric I I numeric I ... I symbol I I symbol I ...
I field I length I I value I I length I I value I

I — — — numeric field - — ~ I I — ~ symbol field — ~ — I
I — control byte — —I

ND—60.136.0u

186 _
THE ND RELOCATABLE FORMAT

In NLL there are two major byte pointers: the program byte pointer
(PP) and the data byte pointer (DP). These byte pointers will normally
point at the next "free" byte address in the program» and data—areas,
and may be referenced during the loading session as #PCLC and #DCLC.

The size of an address is termed the address length, ADL, and is
determined by the third byte in the information trailing the BEG
control byte.

The byte pointer (B?) may be "coupled" to PP, D? or a "free" pointer
(X?) by the control numbers PMO, DMO, and FMO. The "free" mode is
useful when there is a need for modification of previously loaded
information. For this mode neither PP nor DP are affected or changed.
The "free" mode is reset by either PMO or DMD. Initially — after a BEG
control number a the mode is PMO.

12.2. NRF control numbers

NUL O Ignored by NLL if numeric length is also 0. A non—zero
numeric length is illegal.

BEG 1 A program system is composed of one or more modules. The BEG
control number signifies the start of a module. Examples of
modules are:

a) the outermost MODULE/ENDMODULE of Plano
b) PROGRAM/END, SUBROUTINE/END and FUNCTION/END of Fortran

The first byte of the trailing numeric field contains the
real~time priority, the second contains the language code:
ASSEMBLY:O, FORTRAN:1, PLANC:2, COBOT23, PASCAL:3. The third
byte contains the address length (ADL), default value is 3.
Before an NR? module is loaded, the load address is adjusted
upwards to a multiple of the address length. This applies to
both the program byte pointer and the data byte pointer.

When a BEG control number is loaded, subsequent loading will
be to the program segment until a DMO control number is
loaded.

END 2 End of module. The trailing bytes' information contains the
checksum in 2ls complement form. The checksum is calculated
by adding the binary byte values from BEG to END, trailing
fields included, into a word, ignoring overflow. This sum is
supplied in the END numeric field. The numeric length of the
END control number specifies the size of the checksum in
bytes (default 2 bytes ~ 16 bits). If numeric length is 0, no
checksum test is performed.

MSA 3 Main Start Address. The current byte address is defined to
be the main start address of the loaded module(s). If more
than one MSA is loaded in the domain, a warning message is
issued, and the first defined MSA applies.

ND—60.l36.0M

187THE ND RELOCATABLE FORMAT

LIB

REF

DDF

DRF

RMV

10

ll

12

The symbol in the symbol field is searched for in the loader
table. If the symbol is present and not defined (i.e. only
references exist) the rest of the module will be loaded. If
the symbol is defined or not present the rest of the module
is skipped.

When more than one LIB appears in a sequence, the module will
be loaded when at least one of the symbols is undefined. For
LIB, NL has no meaning.

Program Label Definition. Depending on NL this control number
is interpreted as follows:

a) NL:O. The symbol in the symbol field will be entered into
the loader—table with the current value of the program byte
pointer (PP).

b) NLiO. The symbol in the symbol field will be entered into
the loader table with the value found in the numeric field
with possible sign extensions if NL<ADL.

All previous references to the symbol will be defined.

Program Reference. The symbol in the symbol field will be
referenced in the address which corresponds to the currentbyte pointer in either program or data memory. When NL:O the
symbol value will occupy the next ADL bytes (one word). When
NLiO the symbol value will occupy the NL next bytes.

8? will be incremented by NL (ADL if NLzo), to make room for
later insertion of the symbol value. NLiADL or 0 must be used
with care due to possible overflow bits which are lost (if
the symbol value is greater than can be held in NL bytes).

When the symbol is defined, the sum of the numeric value in
the REF group and the symbol value will be inserted in the NL
bytes where the REF control number occurred.

Similar to REF if the symbol is already defined when the LRF
control number is loaded. The value zero will be stored intothe reference/byte(s) when either a) the symbol is undefined
(references only), or b) the symbol is not present.

Data Label Definition. Similar to DEF but applies to data—
memory and current data byte pointer (DP).

Data Label Reference. Similar to REF, but applies to data-
labels.

Remove Symbol. The symbol in the symbol field is removed from
the loader table. This directive is used to prevent the
loader from overflowing, and by language processors to avoidname conflicts between local labels in different modules,used within the module only.

ND-60.136.0M

188

SLA

AJS

PMO

DMO

FMO

REP

LDI

ADI

APA

ADA

IHB

EOF

13

1M

15

16

17

20

21

22

23

25

26

THE ND RELOCATABLE FORMAT

Set Load Address. The current byte pointer will be set to the

contents of the numeric field. If the symbol length is non—

zero, the symbol value will be added. The load-mode (program
or data—mode) is unaltered

Adjust. The current byte-pointer will be adjusted with the

(signed) number contained in the numeric field. If the symbol
length is non-zero the symbol value will be added. The load
mode (program or data—mode) is unaltered.

Set program mode. The program byte pointer (PP) will be set
to the current value + the (signed) number in the numeric
field.

Set data mode. The data«byte-pointer (DP) will be set to the
current value + the (signed) number in the numeric field.

Set "free" mode. The current byte pointer + the (signed)

number in the numeric field will be moved to the "free" byte

pointer. Loading will be to the data or program segment
determined by the current mode when the FMO control number is
read. If the symbol field is filled (SiO) the symbol value
will be used instead of the current byte pointer. The
program— and data pointers (PP and DP) are left unmodified
and the loading may be resumed from PP or DP by using PMO or
DMO.

Repeat. The subsequent NRF~group will be repeated the number
of times specified in the numeric field. If the next group is
a compound group, the entire compound group will be repeated
the specified number of times.

Load immediately. The NL trailing bytes will be stored into
the NL next bytes according to the current byte pointer. The
current byte pointer will be incremented by NL.

Add immediately. The value of the numeric field is added into

the NL next bytes according to the current byte pointer. The
current byte pointer will be incremented by NL.

Add program address. The program byte pointer (PP) value +
the number in the numeric field is stored into the next word
(ADL bytes). The current byte pointer will be incremented by
ADL.

Add data address. The data byte pointer (DP) value + the
number in the numeric field is stored into the next word (ADL
bytes). The current byte pointer will be incremented by ADL.

Execution inhibit. The NRF is incomplete due to errors during

the compilation phase.

End of file. End of NRF file.

ND-60.136.0U

189
THE ND RELOCATABLE FORMAT

DBG 27

LBB 3O

MSG 31

M18 32

Debug. Start/stop of debug information. NLL will copy the
information between two DBG control numbers to the :LINK file
rather than to the :PSEG and :DSEG files. This information is
used by the Symbolic Debugger.

Library module bytepointer. The library module in the
symbolic field which begins in the byte address in the
numeric field will be loaded if the symbol is present in the
loader table, but undefined. This may increase the speed of
library loading considerably.

Message. The ASCII string in the symbolic field is printed on
the output device. The string is printed only if the MSG
control number is actually loaded. A MSG control number in a
library file not within an NRF module will not be printed
unless it is located ahead of the address table in the file.
If it is located within a module, it will be printed only if
that module is actually loaded. The numeric field is ignored
if present.

Miscellaneous. Sub control number in the numeric field.

CGRO 0 Start of compound group. Compound groups are used
mainly in connection with the RE? control number. Any
sequence of control numbers may follow, up to the next
MIS CGRT control number. Compound groups may be
nested to any level.

CGRT 1 End of compound group. If compound groups are nest
only the innermost nest is terminated; each level
nesting requires a matching CGRT.

ADD 2 The value of the next referenced symbol (REF, LFR or
DRF control byte is added to the location pointed to
by the current byte pointer. The size of the numerical
values to be added is determined by the numerical
length (NL) of the reference.

The current byte pointer should point to an already
loaded value; usually "free mode" (FMO control byte)
will be effective, in order to set the byte pointer
appropriately. The next referenced symbol must be
defined prior to the reference (but need not
immediately follow the ADD control byte), otherwise
the ADD control byte has no effect. There is no
distinction between REF, LRF and DR? references.

SUB 3 The value of the next referenced symbol will be
subtracted from the location at the current load
address. Otherwise, it acts as ADD.

MUL H The value in the current load address will be
multiplied by the next referenced symbol. Otherwise,
it acts as ADD.

ND—60.136.0Q

190
THE ND RELOCATABLE FORMAT

DIV 5 The value in the current load address will be divided
by the next referenced symbol. Otherwise, it acts as
ADD.

LDN 33 Load immediately the number of bytes found in the symbolic
field.

> 33 Illegal control number.

ND—60.136.0u

THE ND

12.3.

191
RELOCATABLE FORMAT

Summary of NRF control numbers

ADL
BP
NL
NV II

II
I!

Contro
no

NUL:O
BEG:1

END:2
MSA:3
LIB:U
DEF:5
DEF:6
LRFz7
DDF:TO
DRll
RMV:12
SLA:13
AJS:14
PMO:15
DMO:16
FMO:T7
REP:20
LDI:21
ADI:22

APA:23
ADA:2M
IHB:25
EOF226
DBG:27
LBB:30

MSG:31
MIS:32

LDN233

address length
current byte pointer
numeric length
numeric value

1 Trailing Comment
info

Ignored by NLL if NLzO, otherwise illegal
N Start of module, priority, language,

address alignmentCADL)
N End of module,checksum
N Main start address is at BP+NV
N,S Conditional load. Load if S undef but referenced
N,S Program label definition (BP::(S) or NV=:(S))
N,S Prog ref. BP+NL::BP, if NL:O then ADLzzNL
N,S Reference if 3 defined, otherwise 0 (BP+ADL::BP)
N,S Data—label definition
N,S Data—label reference
N,S Remove symbol S
N,S Set load address (NV::BP), mode unaltered
N,S Adjust byte—pointer (BP+NV::BP), mode unaltered
N Program mode (PP+NV::BP)
N Data mode (DP+NV::BP)
N,S Free mode ((S)+NV::BP or BP+NV==BP)
N Repeat next group NV times
N Load immediately NV::(BP:BP+NL), BP+NL=zBP
N Add immediately

(BP:BP+NL)+(NV)=:(BP:BP+NL), BP+NL::BP
N Add program address. PP+NV::(BP:BP+NL),BP+ADL::BP)
N Add data address. DP+NV::(BP:BP+NL),BP+ADL::BP)
N Run inhibit (compiler errors)
I End of NRF file
N Start/stop debug information
N,S Library module bytepointer. Module where S is

defined starts at byte NV in NRF file.
N,S S is printed on terminal during loading
N Miscellaneous (sub control no in numeric field):

GCRO:O Start of compound group
GCRlzl End of compound group
ADD :2 Add referenced value
SUB :3 Subtract referenced value
MUL :H Multiply by referenced value
DIV :5 Divide by referenced value

N Load NV bytes immediately following

ND—60.136.0U

192
THE ND RELOCATABLE FORMAT

ND—60.136.0Q

LINKAGE—LOADER ERROR MESSAGES

13. LINKAGE—LOADER ERROR MESSAGES

Where program specific fields appear in the error messages below "s“
is used for a symbolic name, "c" is used for a numerical value. If two
symbols appear, they are identified as "s1" and "32".

AMBIGUOUS COMMAND

An abbreviated command has several possible matches.

AMBIGUOUS TRAP MNEMONIC

An abbreviated trap mnemonic has several possible matches.

ATTEMPT TO CREATE TOO MANY SCRATCH~SEGMENTS IN SCRATCH—DOMAIN

No more than 32 scratch segments are allowed in SCRATCHuDOMAIN.

ATTEMPT TO CREATE TOO MANY SEGMENTS IN THIS DOMAIN

A domain may contain no more than 32 segments.

ATTRIBUTE CODE ”C" IS ILLEGAL

The segment attributes specified in the OPEN~SEGMENT, COMMON~SEGMENT—
OPEN or APPEND—SEGMENT is contradictory or unknown.

CHECKSUM ERROR IN UNIT 5

Due to hardware or software errors the checksum supplied in the
numeric field of the END group does not match the checksum calculated
by NLL.

COMMAND ONLY ALLOWED IN "LOAD—AND—GO" MODE

The RUN command requires that no domain or segment was specified but
the code loaded directly to memory. Code loaded to segment files may
be executed by the RECOVER command in the Monitor.

COMMON BLOCK 81 IN UNIT 32 EXHAUSTS AVAILABLE SPACE WITH c WORDS

The specified common block exceeds the maximum logical address. The
size of the data area must be reduced, or split on several segments.

ND—60.136.0A

19M
LINKAGE—LOADER ERROR MESSAGES

COMMON BLOCK 81 IN UNIT 82 IS UNDEFINED

References to the specified common block has been made, but the common
block has not been defined by any of the loaded modules. This command
is issued when loading is terminated by CLOSE—SEGMENT (as explicit
command or implied by END—DOMAIN, EXIT or opening of a new segment or
domain).

DATA AREA FULL IN s, ADDRESS: 0

The load address specified in the HIGH—ADDRESS command was reached in
the data segment while loading the specified module. The segment must
be reloaded with a higher HIGH~ADDRESS or split on two or more
segments.

The error also occur when loading directly to memory (no domain or
segment specified). The segment must be reloaded defining a larger
segment size (DEFINE—SEGMENT«SIZE command).

DEBUG AREA FULL IN S, ADDRESS: C

The maximum size of the debug area was reached when loading directly
to memory (no domain or segment specified). It is not possible to
specify the size of the debug segment when loading to memory,
therefore the segment must be loaded to a named domain and/or segment.

DOMAIN ALREADY EXISTS

A domain name specified in double quotes in the SET—DOMAIN command
already exists in the description file of the current user. If any
loading to (new or existing) segments in the existing domain should be
done, repeat the command with the domain name unquoted. Otherwise
specify a different name for the domain.

ERROR IN INITIALIZING THE DESCRIPTION FILE

This error may occur the first time NLL is used, and may indicate a
hardware or file system error (e.g. lack of sufficient space). If no
explanation for the error is found, please report to Norsk Data.

ERROR IN OPENING RTFIL

The Sintran III file system error message will indicate the reason why
(SYSTEM)RTFIL:DATA cannot be opened during a LlNK—RT~PROGRAM or MATCH—
COMMON-RT—SEGMENT command. Appropriate action must be taken according
to the file system error message.

ND—60.136.0H

195
LINKAGE-LOADER ERROR MESSAGES

FATAL ERROR

If this error occurs, please report to Norsk Data, preferably with a
copy of the description file at the time of the error and an as
complete as possible list of commands executed prior to the error. The
contents of the description file may be invalid, and no further
loading should be performed without rebuilding the description file.
Be aware that this will destroy all information about previously
loaded segments.

FILE NUMBER 0 CANNOT BE LOADED TO A SEGMENT

The specified file cannot be treated as a segment because some
necessary information is lacking (eg. if the file has not been opened
in the monitor).

ILLEGAL ATTRIBUTE CODE

An attribute code unknown to NLL was encountered in an OPEN—SEGMENT or
COMMON—SEGMENTmOPEN command.

ILLEGAL CHARACTER IN PARAMETER

The rules of the Sintran III file system apply to segment names, i.e.
a name may consist of alphanumerics and hyphens. In general, the same
rules apply to domain. Either a non—alphanumeric/hyphen character was
encountered in a name, or a double quote indicating a new name was not
matched by another. Where user names may be specified, mismatchin
parentheses may also be a source of this error.

ILLEGAL TRAP MNEMONIC

The rap name specified in either SISTEM—TRAP-ENABLE, LOCAL—TRAP—
ENABLE, SYSTEMuTRAP—DISABLE or LOCAL-TRAP-DISABLE was not one of the
names in the table on page 89.

0 IN UNIT s IS ILLEGAL CONTROL BYTE

An NRF control number larger than 338, or zero with a non—zero N
field, was encountered in an NRF file.

INSUFFICIENTLY COMPILED PROGRAM IN UNIT 31

An IHB control number (2508) was encountered in the specified NRF unit
in a file being loaded, indicating that errors occurred during program
compilation.

ND—60.136.0U

LINKAGE—LOADER ERROR MESSAGES

LOADER TABLE OVERFLOW

Too many labels have been defined. The segment must be reloaded, and
before the loader table overflows, the entries that are no longer
needed should be removed with the KILL-ENTRIES command. Alternatively,
the loading may be terminated prematurely with CLOSE—SEGMENT (ignoring
the error message — the command must be specified twice), and
restarted with APPEND—SEGMENT.

MODULE 3 IS UNKNOWN

A module identifier specified was not found in the specified file in
one of the NRF editor commands DELETE-NRF—MODULE, LIST~NRF—CODE,
FETCH~NRF~MODULES, WRITE—NRF—EOF—AFTER—MODULE or lNSERT—NRF—MESSAGE.

MIXED ONE/TWO BANK ROUTINES IN s

Applies to ND—lOO computer mode only; indicates that some of the
routines loaded were compiled for one—bank execution, while others
were compiled for two—bank execution (SEPARATE—CODE~DATA compiler
command).

N9 MAIN ENTRY

An attempt was made to terminate loading in ND-lOO computer mode
before a main program was loaded. Re—executing the command will
terminate the loading.

NO MORE AUTO-LOAD-FILE BUFFER—SPACE AVAILABLE

A maximum of six autouload files may be specified by each user.

NO MORE COMMON SEGMENTS FOR THIS SEGMENT

The maximum number of 3 COMMON segments have already been declared.
The data areas may be loaded to an ordinary data segment, or another
ordinary data segment must be used when declaring new common segments.

NO MORE DOMAINS AVAILABLE FOR THIS USER

The description file can hold a maximum of 256 domains.

NO MORE ND—lOO SEGMENTS

Each segment may have a maximum of five ND—1OO segments declared. If
more segments are needed, they must be placed in different ND-SOO
segments.

ND-60.136.04

197
LINKAGE-LOADER ERROR MESSAGES

NO SEGMENT SPECIFIED

The Linkage—Loader is in ND-lOO modus and no segment has been opened.

NO SUCH (AMBIGUOUS) DOMAIN ON THE SPECIFIED USER

Either the domain name is not registered in the description file, or
more than one domain has a name that matches the specified one.

NO SUCH (AMBIGUOUS) SEGMENT IN THIS DOMAIN

Either the segment is not registered in the current domain, or more
than one segment has a name that matches the specified one.

NO SUCH COMMQND
The command is not known to NLL. Check the list of available commands
with the HELP command.

NOT DELETE ACCESS

It is not legal to delete processes, domains or segments in other than
the current user's description file. No prefixes (directory or user
name) are allowed.

NOT IMPLEMENTED

A command available only in the multisegment version of the Linkage—
Loader was attempted executed in the single segment version.

NOT LEGAL FOR COMMON SEGMENT

It is not legal to open a common segment as a normal data segment (ie.
OPEN—SEGMENT or APPEND~SEGMENT must not be used).

NOT LEGAL FOR PROGRAM SEGMENT

It is not legal to execute the FlX-CONTIGUOUS or FIX—ABSOLUTE commands
for a program segment.

ND-60.136.0M

198
LINKAGE—LOADER ERROR MESSAGES

EQT LINK ACCESS

The list of segments in the LINK-SEGMENT command includes one or more
segments declared without link access. This means that the segment is
either

~ opened without shared program segment (P attribute)
— opened without shared data segment (D attribute)
— part of another domain but have linked segments, or
— not opened with random read access from this user.

EQT OCTAL NUMBER

NLL expected an octal number, and a number containing 8 or 9, or non-
numeric characters, was entered.

PROGRAM AREA FULL IN s, ADDRESS: C

The load address specified in the HIGH—ADDRESS command was reached in
the program segment while the specified module was being loaded. The
current upper limit is reported. The segment must be reloaded with a
higher HIGH—ADDRESS, or the code split on two (or more) segments.

The error also occur when loading directly to memory (no domain or
segment specified). The segment must be reloaded defining a larger
segment size (DEFINE~SEGMENT—SIZE command).

(file name> RESERVED BY ANOTHER USER

One or more of the files involved in a SET-DOMAIN command is currently
being loaded or opened from another terminal or a batch process. To
avoid inconsistencies NLL does not allow loading in a domain while it
is being used by others.

ROUTINE VECTOR TOO SMALL, SIZE: 0

Insufficient space for routine labels was reserved by the ENTRY—
ROUTINES command. The segment must be cleared and reloaded after
executing ENTRY—ROUTINES with a higher (number of entries). The
current size of the routine vector is reported.

SEGMENT ALREADY EXISTS

A segment name specified in double quotes in the OPEN—SEGMENT command
already exists in the description file of the current user (segment
names must be unique in the description file, even if they belong in
different domains). If extensions to the existing domain should be
made, use the APPEND—SEGMENT command. If the old contents should be
replaced with new code, use the OPEN~SEGMENT command with the segment
name unqucted. If the existing information should be kept unmodified,
re—issue the command with a different (quoted) segment name.

ND~60.736.0A

LINKAGE—LOADER ERROR MESSAGES

SEGMENT NOT AVAILABLE OR AMBIGUOUS (OPEN-FILE FAILED)

The segment name specified in the OPEN-SEGMENT, APPEND—SEGMENT, LINK-
SEGMENT, COMMON~SEGMENT~OPEN or CCMMON—SEGMENT-APPEND command either
does not exist or its name was abbreviated too much, or that for some
other reason NLL did not succeed in opening one or more of the files
affected by the last command.

*** SPECIAL USER BREAK ***

The 'escape’ key was depressed on the terminal, interrupting any
ongoing activity in NLL.

SYMBOL 3 IS NOT IN THE SYMBOL TABLE

The label specified in the VALUE-ENTRY command has not been loaded or
defined since NLL was entered, or it has been killed with the KILL—
ENTRIES command, or it has been deleted from the loader table
implicitly at an CLOSE-SEGMENT or END—DOMAIN.

SWAP-FILE SPACE OF 0 BYTES CANNOT BE ALLOCATED

When code is loaded without specifying a domain or segment, an area is
allocated on the swap file for holding the code. The size of this area
can be determined by the command DEFINE—SEGMENT—SIZE. This error
message informs that an area of the requested size was not available.
A smaller size may be specified, or the system may be executed when
the load on the system is lower. The loading may be completed by
loading to a named domain and/or segment, rather than to memory

THE LOGICAL SEGMENT NUMBER 0 IS ALREADY USED IN THIS DOMAIN

Another segment number must be selected in the SET—SEGMENT—NUMBER
command, or the command omitted forcing NLL to select the first free
segment. If the specified segment number must be used, the information
already present on the segment must be loaded to another segment, or
the new code appended to the existing information.

THE ND—lOO SEGMENT NUMBER 0 IS ALREADY DEFINED

An ND—lOO segment may be declared once only in a segment. The
redefinition is ignored, and references to symbols in the segment will
be defined by the location when the segment was first defined.

THE SYMBOL 8 IS ALREADY DEFINED

The specified symbol is already present in the symbol table, and the
command or defining NRF code was ignored. If the symbol should be
redefined to a new value, it must first be deleted by the KILL-SYMBOL
command.

ND-60.l36.0A

ZOO
LINKAGE—LOADER ERROR MESSAGES

THIS COMMAND SHOULD BE DONE BEFORE LINKING

After a segment has been linked to other segments, the APPEND—SEGMENT
may not be executed.

THIS COMMAND SHOULD BE DONE BEFORE LOADING

The ENTRYoROUTINES command may not be performed after code has been

loaded, as this code may be overwritten if a routine vector is built.

THE SYMBOL 81 IS UNDEFINED IN UNIT 82

If termination of loading was attempted (CLOSE—SEGMENT, possibly
implied by END—DOMAIN, EXIT or opening another segment)leaving
undefined references that could not be defined by the auto—load files
and auto—link segments, this error message is returned. If the command
is reissued, it will be executed and information about undefined
symbols stored in the :LINK file.

WARNING: COMMAND NOT ALLOWED IN loo/PIOC MODE

Some commands requiring disassembly of the loaded code are available
only in ND—SOO computer mode.

WARNING: COMMON BLOCK sl IN UNIT s2 IS EXPANDED WITH c BYTES

Normally, the largest definition of a common block must be the first
definition of it. The message indicates that a larger definition of
the common block was loaded after the initial definition of it,
possibly causing it to overflow into another data area.

WARNING: LAST COMMAND WAS NOT EXECUTED

This message occurs after another error message, referring to an
illegal operation.

WARNING: MODULE INDEX-TABLE IS NOT CORRECT

The address table of an NRF library file has been invalidated by an
NRF editor command. The address table can be rebuilt by a PREPAREuNRF—
LIBRARY-FILE command. If the address table is invalidated, the file
will be loaded, but a sequential scan of the entire file is required.

ND—60.136.0H

201
LINKAGE—LOADER ERROR MESSAGES

WARNING: REDEFINITION OF 81:32 IS IGNORED

This message occurs after another error message, referring to an
illegal redefinition of a symbol.

WARNING: TESTING SCRATCH-DOMAIN WAS NOT SUCCESSFUL

There is an inconsistency in the description file regarding the
scratch domain, which could be dangerous. There is a probability that
the entire description file is corrupted. If possible, the description
should be rebuilt or a backup copy fetched.

ND~60.136.0A

202
ND-SOO MONITOR ERROR MESSAGES

14. ND—SOO MONITOR ERROR MESSAGES

ADDRESS OUTSIDE FILE LIMITS IN DIRECT TRANSFER

This error message is returned from file access monitor calls to files
opened in mode 8 or 9 (direct transfer), error code 10108. The entire
area to be transferred must be within the file»

ADDRESS OUTSIDE PROGRAM SEGMENT

ADDRESS OUTSIDE DATA SEGMENT

These errors are usually the result of an error in a user program,
causing an address to exceed the size of the program or data segment.
Usually, the address referenced can be found by using the LOOK—AT
commands after the program has error terminated, inspecting the
program instructions immediately preceeding the location pointed to by
the P register. Common causes of this error are indexing errors or
careless use of equivalenced variables.

ALWAYS SYSTEM ENABLED

An attempt was made to modify a fatal trap condition by the LOCAL—
TRAP—ENABLE command.

ggggpuous COMMAND
An abbreviated command has several possible matches.

AMEIGUOUS PARAMETER

A parameter has several possible matches. Reissue the command with
HELP as "parameter" in order to have the list of legal parameters
printed on the output device.

ETT NOT MODIFIABLE

A trap condition specified in a LOCALaTRAP-ENABLE command may not be
local enabled or disabled. This applies to fatal and non—ignorable
trap conditions.

BLOCK ADDRESS NOT MODULO SECTOR SIZE IN DIRECT TRANSFER

This error message is returned from monitor calls to files opened in
mode 8, 10 or 11 (direct transfer), error code 1011B. The limitations
in accessing files opened in this mode are discussed in chapter 8.3.6.

ND-60.l36.0u

203
ND-SOO MONITOR ERROR MESSAGES

BOTTOM OF STACK

While in the LOOK-AT—STACK command, the stack area displayed was that

of the main program when the PREVIOUS subcommand was executed.

BREAK AT

Debug message, indicating that a user defined breakpoint was
encountered. The Monitor halts and awaits further commands.

BUFFER FULL

One of the internal buffers used in expanding the macro overflowed.
Simplifying the macro or using less extensive parameter substitution
may help avoid the problem.

BYTECOUNT NOT MODULO SECTOR SIZE IN DIRECT TRANSFER

This error is returned from monitor calls to files opened in mode 8 or

9 (direct transfer), error code 1007B. The limitations in file
addressing with direct transfer files are discussed in chapter 8.3.6..

BYTE POINTER NOT MODULO SECTOR SIZE IN DIRECT TRANSFER

This error is returned from monitor calls to files opened in mode 8 or

9 (direct transfer), error code 10168. If the byte pointer is

explicitly modified (through the SETBT monitor call, MON 7%) on files

opened with direct transfer, care should be taken that the

limitiations discussed in chapter 8.3.6. are respected.

CONTROL STORE NOT SUCCESSFULLY LOADED

After a LOAD~CONTROL~STORE command the first 100 words of the micro—

program store were compared to the file from which it was loaded, and
an unequality found.

CURRENT MACRO ABORTED

A program signalled an error exit through monitor call MACROE (MON
MOO), or a trap condition not handled locally occurred. The current
macro is aborted, but the macro calling the current one is continued,

as if the IF—ERROR—MACRO—STOP command has been executed.

DC ACCESS NOT LEGAL ON MAG.TAPE

This error is returned from the OPEN monitor call (MON 50) when

attempting to open a file with open mode 9 (direct transfer, file
closed), error code 101MB. Magnetic tape files may be accessed in open
mode 8 (direct transfer), but the file must be open during the

ND-60.136.0A

204
ND-SOO MONITOR ERROR MESSAGES

transfer.

DEFINE-MEMORY-CONFIG. COMMAND IS REQUIR LT} D

The Monitor needs information about the physical memory before any
operation in the ND-SOO is attempted. his information is lost after a
)HENT system restart.

DEPOSIT NOT PERMITTED

The PERMIT—DEPOSIT command must be executed prior to a modification of
memory or a register.

ERROR IN LINKING TO RTCOMMON

This message is issued after a PLACE—DOMAIN or RECOVERuDOMAIN together
with a second error message specifying what kind of error was
discovered. Usually, the reason for the error is a modification of
RTCOMMCN from the time the domain was loaded to execution time.

ERROR IN MACRO

A syntax error was discovered in a submitted macro.

ERROR IN MEMORY CONFIGURATION

The Monitor has detected discrepancies between the memory
configuration specified and the location of physical memory accessible
to ND—SOO. Reissue the DEFINE—MEMORY-CONFIGUEATION command with the
correct parameter.

ERROR IN MONITOR CALL

This error message is returned after certain monitor calls, error code
10038, and indicates an unclassified error from the Sintran III
operating system. The cause may be either internal errors in the
monitor call routine or errors in the parameters that could not be
classified otherwise.

FATAL ERROR FROM MICROPROGRAM

This indicates an internal error in the ND-SOO microprogram that
should be reported to Norsk Data.

ND—60.136.0M

205
ND-SOO MONITOR ERROR MESSAGES

FATAL PIT—O ERROR. ERROR CODE: nnnn

This indicates an error in the operating system that should be
reported to Norsk Data with as many details as possible about the
system status at the time of the error.

FATAL ERROR FROM SWAPPER

This is an internal error in the swapper process, and the error should
be reported to Norsk Data.

FILE IS NEITHER CONTIGUOUS NOR MAG. TAPE.

If a file is opened with direct transfer, open mode 8 or 9, the file
must be either contiguous or a magnetic tape file. This error is
returned as error code 10018 from the monitor call OPEN (MON 50). The
file can be read if another open mode is selected.

FIXED SEGMENT HAS NO PAGES IN MEMORY

This is an internal error that should be reported to Norsk Data. The
segment number specified in the message refers to a ND~1OO segment
number.

ND—60.136.04

206
NDuSOO MONITOR ERROR MESSAGES

HARDWARE STATUS ERROR IN DIRECT TRANSFER

This error message is returned from monitor calls using direct
transfer, error code 1012B, indicating that the transfer did not
complete successfully.

HISTOGRAM ALREADY IN USE

Only one user at a time may use the histogram facility for performance
measurement. Until the user currently using the histogram buffer
executes a RELEASE—HISTOGRAM, no other user may execute a SET-
HISTOGRAM.

HISTOGRAM NOT USED BY YOU

The PRINT-HISTOGRAM, START—HISTOGRAM and STOP—HISTOGRAM commands may
be used only by the user who has reserved the histogram buffer.

ILLEGAL ADDRESS

The address specified in a LOOK-AT—command was outside the program or
data segment.

The error may also be returned from the NSOOM monitor call (MON 60),
indicating errors in the parameters. If no explanation for the error
is found, please report to Norsk Data.

ILLEGAL CHARACTER

The rules of the Sintran III file system apply to segment names, i.e.
a name may consist of alphanumerics and hyphens. In general, the same
rule applies to domain and process names. Either a non—
alphanumeric/hyphen character was encountered in a name, or a double
quote indicating a new name was not matched by another. Where user
names may be specified, mismatching parentheses may also be a source
of this error.

ILLEGAL FILE NUMBER IN LOAD

Error message after executing the NSOOM monitor call (MON 60). If the
application program uses NSOOM, the parameters should be checked.
Otherwise, this indicates an internal error that should be reported to
Norsk Data.

Emu FORMAT
8 or 9 was encountered in an octal number, or non—numeric characters
in an octal, decimal or hexadecimal number (for hexadecimal, AzF are
legal).

ND—60.l36.0U

207
ND-SOO MONITOR ERROR MESSAGES

ILLEGAL FUNCTION CODE IN MON 60

Check the list of valid function codes in chapter 10 against the
location pointed to by the NDmIOO A register. If this monitor call was
not used by the application program, the error message indicates an
error in the Monitor that should be reported to Norsk Data.

ILLEGAL FUNCTION IN MON 61

The MON 61 call (FIXCS) is not normally used by application programs,
and the error message indicates an error in the Monitor that should be
reported to Norsk Data” The available functions will at a future time
be documented in the Sintran III Reference Manual ND—50.128 for
programmers who want to use this call.

ILLEGAL LOGICAL SEGMENT TYPE

Normally this indicates an internal error that should be reported to
Norsk Data. If the user calls NSOOM (MON 60), the parameters may be
erroneous.

ILLEGAL MICRO FUNCTION

This is an internal error message from the operating system or the
ND—SOO driver, that should be reported to Norsk Data.

ILLEGAL MONTIOR CALL NUMBER

This error message is returned from monitor calls 'from the ND~500,
error code 10138, and compares to the similar error message in ND—lOO.

ILLEGAL REGISTER NUMBER

The number specified in the NSOCM monitor call (MON 60) indicating a
register, was outside the range allowed. This error should normally
not occur if the application program does not use NSOOM, and should be
reported to Norsk Data. If the application program uses NSOOM the
arguments should be checked.

ILLEGAL PARAMETER

Many commands, e.g. MAIN-FORMAT, take only a limited set of different
parameters. This error message indicates that a parameter not in the
valid set was specified. Reissuing the command and giving the
"parameter" HELP will cause the list of valid parameters to be listed
on the output device“

ND~60.136.04

208
ND-SOO MONITOR ERROR MESSAGES

ILLEGAL STATUS IN MESSAGE TO ND~SOO

This is an internal error message from the NDaSOO driver that should
be reported to Norsk Data.

ILLEGAL STOP REASON

This indicates an internal error in the ND—SOO microprogram. lease
report to Norsk Data.

INDIRECT NOT POSSIBLE

The "/" (indirect) subcommand in the LOOK—ATmcommands is valid only
when main format is word, as all addresseses are words and no
reasonable interpretation can be applied to byte or halfword
addresses.

INSUFFICIENTLY LOADED DOMAIN

A RECOVER—DOMAIN or PLACEuDOMAIN command was executed on a domain
which still has undefined references or is not linked to the
appropriate link segments.

LAST BREAK NOT FOUND

The last execution halt was not due to a breakpoint set by the BREAK
command.

LL AND RL CHANGED

This message is a warning only, indicating that previous use of the LL
and HL registers for debugging purposes will no longer have any
effect. It is issued when another command using the LL and RL
registers is given (TRACE and GUARD commands).

LOGGING FACILITY ALREADY RESERVED

Another user has already reserved the logg buffer for either
histogram-commands or log~commands. The user having the buffer
reserved must execute the RELEASE—LOG—BUFFER or RELEASE—HISTOGRAM
command or interrupt the SWAPPINn—LOG by pressing the escape key
before another user can use the log commands.

LOGGING FACILITY NOT RESERVED BY YOU

The PRINT—PROCESS—LOG and RELEASE-LOG—BUFFER commands are valid only
after the log buffer has been reserved for te current user through the
START—PROCESS—LOG~ALL or the START-PROCESS~LOG~ONE command.

ND-60.136.0A

ND—SOO MONITOR ERROR MESSAGES

MACRO STACK ERROR

Macro calls were too deeply nested or recursive. The problem will
usually be avoided by breaking down a complicated call sequence into a
simpler one, with fewer levels. If the error persists, contact Norsk
Data and keep a listing of all macros in use when the error occurred.

MACRO(S) ABORTED

A program signalled an error exit through monitor call MACROE (MON
400), or a trap condition not handled locally occurred. The current
macro including the macro(s) calling the current one, is aborted, as
if the IF—ERROR—FULL-STOP command has been executed.

MEMORY NOT AVAILABLE FOR ND-SOO SEGMENT

If an explicit request for memory allocation was issued, the request
could not be satisfied. This occurs when segments are shared with ND~
100 or RTCOMMON.

ND-SOO DMA ERROR

A hardware error has occured in the DMA transfer to or from the
ND-SOO. Consult the system supervisor; or if the error persists, call
Norsk Data.

ND-SOO INTERFACE ERROR

A hardware error has occured in the ND-lOO/ND-SOO interface. Consult
the system supervisor; or if the error persists, call Norsk Data.

ND-SOO OPEN FILE TABLE FOR DIRECT TRANSFER IS FULL

This error message is returned from the OPEN monitor call (MON 50),
error code 1002B. The message indicates that the number of files
opened with open mode 8 or 9, direct transfer, exceeds the maximum
determined at system generation time. If there is room in the open
file table for files opened with other access modi, one or more of the
direct transfer files may be accessed in other modi, otherwise the
number of concurrently opened files must be reduced.

ND—SOO OPEN FILE TABLE IS FULL

This error message is returned from the OPEN monitor call (MON 50),
error code 1000B. The message indicates that the total number of files
open exceeds the allowed maximum. The limit is a system generation
parameter, and sets a limit on the number of files opened with DC
access (open mode 9). For files opened with other access modes, the
Sintran III limitation of 16 files still applies.

ND~60.136.0U

210
ND—5OO MONITOR ERROR MESSAGES

393500 POWER FAIL
A power failure response was received from the ND-5OO interface,
indicating that power has not been turned on to ND—SOO, or some
serious hardware problem has occurred.

NDwSOO RESERVED FOR SPECIAL USE

The SET—ND-SOO—UNAVAILABLE command has been issued. Other users will
have to wait until the SET—ND—SOO—AVAILABLE command is issued.

_N_D:500 STOPPED
The microprogram in the ND~5OO is not running, and must be restarted
by the system supervisor before any programs can be run.

gig-500 TIMEOUT
The ND-BOO computer does not respond to requests from ND—lOO. Consult
the system supervisor; if the error persists, call Norsk Data.

NO FREE PHYSICAL SEGMENT

The pool of physical segments is empty, and the job has to be run when
the load on the system is lower. The number of physical segments is a
system generation parameter.

NO FREE SWAP FILE ENTRY

The Monitor has run out of table space for the swap file entries, and
the job must be rerun when the load on the system is lower. The table
space available is a system generation parameter.

NO MEMORY AVAILABLE FOR NDnSOO BUFFERS

There is no memory available for ND—SOO buffers in memory bank Ow3
(each process needs 1K 16 bit words). Consult the system supervisor.

no MORE BUFFER AREA
The number of macros, breakpoints and other debug commands requiring
information to be kept in memory is exceedingly large. The most common
cause for this error message is a "wild" recursive macro call
generating temporary macros or breakpoints. If this is not the case,
some macros must be deleted by ERASE~MACRO or breaks reset by RESET—
BREAKS.

ND-60.136.04

211
ND—SOO MONITOR ERROR MESSAGES

NO ND—SOO PROCESS AVAILABLE

When an ND—SOO job is submitted, a free process is allocated from a
pool of available processes. This error message indicates that the
pool is empty, and the job cannot start until a process is freed. The
number of processes is a system generation parameter, and may be less
than the number of terminals in the system, which means that not all
terminals can run ND—SOO jobs at the same time.

NO PAGE AVAILABLE FOR THE CONTEXT BLOCK

It is impossible to allocate memory to the ND—SOO context blocks and
segment table. This is caused either by an error in the memory
configuration or because no free memory for ND»SOO. This error occurs
only when the ND—SOO is initially started or after a reconfiguring of
memory.

NO RTCOMMON DEFINED

References have been made to the RTCOMMON area, which is non—existent
on the machine. NLL will not allow references to RTCCMMON if it not
defined, but a modification of the size or removal of RTCOMMON between
the time of loading and execution time will cause errors to occur.
Domains with references to RTCOMMON should under no circumstances be
moved to another machine.

NO SUCH COMMAND

The command is not known to the ND-SOO Monitor. Check the list of
available commands with the HELP command.

NO SUCH COMMAND OR DOMAIN

The command specified is not known to the ND~500 Monitor, and is not
found as a domain name in the description file of the current user.

NO SUCH DOMAIN

A domain name specified in a RECOVER—DOMAIN command is unknown in the
description file of the current user.

NO SUCH MACRO

The macro name specified in the EXECUTE—MACRO command is not found in
the list of temporary macros or as a permanent :MACR file.

ND—60.136.0A

212
ND~SOO MONITOR ERROR MESSAGES

NO SUCH SEGMENT

An unknown segment name was specified as a parameter. If there is any
doubt with regard to which segments are available, use the NLL command
LIST-SEGMENT , or use the Sintran III command @LIST—FILES. (Be aware,
however, that a file is not necessarily a segment file even though its
type is :PSEG or :DSEG!)

NO SWAP FILE PART AVAILABLE

The Monitor has run out of table space for swap file parts. The job
will have to be rerun after the load on the swap file has decreased.

NO WELL DEFINED PROGRAM IN MEMORY

A FUN, CONTINUE or G0 command was specified before any PLACE, DEBUG-
PLACE or RECOVER—DOMAIN command was executed.

NOT EXISTING BREAKPOINT

The breakpoint number specified in RESET—BREAK is unknown to the
system.

3E2? IMPLEMENTED

An attempt was made to use a feature that is not yet available in the
monitor but will be implemented at a later stage.

NOT IN SEGMENT MODE

It is not possible to switch to another LOOK—AT~command from the LOOK~
ATHFHYSICAL»SEGMENT conmand.

NOT REQUIRED ACCESS TO SEGMENT

One of the segments in the domain that was started or placed in memory
does not have the required file system access rights. The default
access will permit other users to execute the code on a program
segment, but not to modify it. If the data segment is swapped from the
original file, the file access of the data segment must also be set to
EN (read and write) for other users to execute the domain(s)
containing the segment. The access is modified through the Sintran III
@SET~FILE~ACCESS command.

NUMERIC INPUT NOT ALLOWED IN DISASSEMELE MODE

When in a LOOK-AT~command in disassemble mode, numeric deposit cannot
be donea Change to a numeric MAlFORMAT in order to patch
numerically.

ND-60.136.04

213
ND-SOO MONITOR ERROR MESSAGE

ODD BYTE ADDRESS

This error is returned from file access monitor calls, error code
lOOAB.

ODD BYTECOUNT

This error is returned from file access monitor calls, error code
10058.

OTHER USERS ALREADY LOGGED ON N500

Some of the system supervisor commands require exclusive access to
ND—SOO. The SET—ND-SOO~UNAVAILABLE command will not force a logout of
the users already logged on; these must be logged out explicitly
before the system supervisor commands are used.

POWER FAIL DETECTED IN LOADING CS

A power failure occured during the loading of the microprogram to the
control store. The loading of the control store must be restarted from
the beginning.

POWER OFF

No response from ND—SOO. If power to the ND-SOO is turned on, a
hardware error has occured and service should be called for.

POWER UP AFTER POWER FAIL

This is an informative message to explain possible delays while the
control store is being loaded and the Monitor initialized.

RTCOMMON NOT CONTIGUOUS

The RTCOMMON area may not be fractioned when shared with an ND-SOO
segment. This is usually detected at load time, and if the error
occurs at run time it indicates modification of RTCOMMON after the
affected segment has been loaded.

RTCOMMON SIZE DOES NOT MATCH THE ACTUAL RTCOMMON SIZE

This occurs after a PLACE-DOMAIN or RECOVER-DOMAIN (implicit or
explicit), indicating that modification of RTCOMMON has been made
after the linking of the domain took place. The affected segments must
be reloaded and the domain relinked.

ND-60.136.0H

21H
ND—SOO MONITOR ERROR MESSAGES

RTCOMMON SPECIFIED IN DOMAIN

This occurs after a PLACE—DOMAIN or RECOVER—DOMAIN (implicit or
explicit). In general, any modification of the size or redefintion of
RTCOMMON invalidates previously loaded domains using RTCOMMON. If an
attempt is made in NLL to load segments referring to RTCOMMCN is a
system where there is none, an error message is issued at load time.

RTCOMMON'S PHYSICAL ADDRESS DOES NOT MATCH THE PHYSICAL ADDRESS OF THE
DOMAIN

This error message is issued at PLACE-DOMAIN or RECOVER-DOMAIN, and
indicates that RTCOMMON has been modified since the domain using it
was loaded. The segments containing RTCOMMON references must be
reloaded and the domain relinked before the domain can be executed.

SEGMENT FIXED BUT NOT CONTIGUOUSLY

Segments shared between the ND_TOO and the ND—SOO must be fixed
contiguously in memory. The number indicated in the message refers to
the ND—lOO segment number.

SEGMENT FIXED IN WRONG PHYSICAL ADDRESS

If an ND—SOO segment is shared with more than one ND—lOO segment or
RTCOMMON, the physical address of the ND—lOO segments cannot be
modified after loading of the domain.

SHARED SEGMENT OUTSIDE ND—SOO MEMORY

The segment shared between ND~TOO and ND~500 is placed in private
NDnlOO memory located below ND-BOO address zero. The segment must be
released and fixed in an address accessible to ND—BOO.

SHARED SEGMENT DOES NOT OVERLAP ND—SOO SEGMENT

Modification of the ND—lOO segment or explicit setting of load
addresses may cause parts of the ND—lOO segment to be located beyond
the limits of the ND-BOO segment. The ND—SOO segment must be reloaded.

SHARED SEGMENT FIXED, BUT NOT CONTIGUOUSLY

A segment shared between ND—lOO and ND~500 has been fixed scattered in
memory. The segment must be unfixed and fixed in a contiguous area
before the ND—SOO process will run.

ND—60.135.04

215
ND—SOO MONITOR ERROR MESSAGES

SEGMENT NOT MODIFIABLE

An attempt was made to modify a segment declared as a read—only
segment. Default segment attributes will make the program segment
read-only, while pages in the data segment will if they are modified
be copied to a swap file. This may be modified by using non—default
segment attributes.

SWAP FILE ALREADY DEFINED

The <file name) in the DEFINE—SWAP—FILE command is already defined as
an ND~500 swap file.

SWAP FILE IS IN USE

The DELETE—SWAP—FILE command may not be executed while an ND—SOO
process has its swap area allocated in the specified <file name),

SWAP FILE IS NOT CONTIGUOUS MASS STORAGE FILE

The (file name> in the DEFINE~SWAP—FILE command is indexed, or it is
not a mass storage (disk) file.

SWAP FILE NOT FOUND

The <file name> specified in the DELETE—SWAPmFILE command is, not an
ND—SOO swap file, or the file name in the DEFINE—SWAP—FILE is unknown
under.

SWAPPING SPACE NOT AVAILABLE

A large enough continuous are for the segments requiring swap file
space was not available. The job must be rerun after other jobs have
released enough space to fit in the rejected segment(s).

TOO BIG BYTECOUNT

This error message is returned from file access monitor calls, error
code 1006B, indicating that the specified byte count is larger than
can be represented in 16 bits. This is a limitation in the ND—lCO file
access monitor calls, where the byte count is in number of 16 bit
words, represented in a single (16 bit) integer.

TOO BIG DATA SEGMENT

The sum of the start address and the length of the data segment gives
an address above 7777777773 (27 bits address space).

ND~60.136.0H

216
ND-SOO MONITOR ERROR MESSAGES

TOO BIG HISTOGRAM INTERVAL

The highest histogram interval allowed is 32767 bytes. Use a higher
(number of channels) (if less than maximum) or a smaller range from
(start address) to (max address).

TOO BIG PROGRAM SEGMENT

The sum of the start address and the length of the program segment
gives an address above 777777777B (27 bits address space).

TOO BIG VALUE

A numeric constant exceeding the :egal range for the data type in
question (e.g. a byte value >255) was entered. If it is desirable to
enter the larger value, the main format should be changed to halfword
or word as appropriate.

TOO MANY SHARED AREAS

The Monitor has run out of table space to store information about
segments shared between ND—lOO and ND-SOO. The job will have to be
rerun at a time when the load on the system is lower. The size of the
tables is a system generation parameter.

Egg OF STACK

While in the LGOK—AT—STACK command, the stack area was that of the
currently executing procedure when the NEXT subcommand was executed.

TRYING TO LINK TO A DEMAND SEGMENT

This occurs after PLACE-DOMAIN or RECOVER—DOMAIN. A demand segment may
not be shared between ND-lOO and ND—SOO. Normally, this is discovered
at load time by NLL, but if the error occurs at run time it indicates
that modifications have later been done to the ND~100 segment.

TRYING TO LINK TO A NON—EXISTING SINTRAN III SEGMENT

This occurs when ND~SOO shares a segment with ND¢100 and the segment
has been cleared in the ND—lOO SEGFIL after the loading took place.
The segment must be rebuilt and the ND-SOO domain reloaded/relinked.

UNKNOWN BREAK AT nnnnn

A break instruction was encountered in the program segment. Breaks
used for debugging purposes must be under full control by the Monitor;
i.e. they should be inserted by the BREAK or TEMPORARY—BREAK commands.

ND—60.136.0u

217
ND—SOO MONITOR ERROR MESSAGES

UNKNOWN TRAP

This indicates an error in the ND-EOO micro—program. Please report to
Norsk Data.

WRONG NUMBER OF PARAMETERS IN MONITOR CALL

This error is returned from ND—SOO monitor calls, error code 1015, and
indicates that either excessive or insufficient parameters were
transmitted.

ND—60.136.0u

218
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

15. EXAMPLES OF LINKAGEmLOADER AND MONITOR USAGE

The examples shown in this chapter are relatively small and incomplete
as problem solutions. The intention is to give the beginner a certain
familiarity with ND-SOO operation and give a general impression of the
user/Monitor interface.

In the examples, abbreviations of commands are used to some degree, to
show how a more experienced user will write the commands. In some
cases, all parameters are supplied in the command line, in other cases
NLL or the Monitor prompts for them after GR is pressed. Remember that
some parameters will not be prompted for if not supplied, rather, a
default value is used. User input is always underlined.

NLL is available both as an ND~SOO program and as an ND—lOO program.
In most examples, the ND—SOO version is used, but the user interface
is exactly the same for the ND~1OO version.

15.1. Executing an ND—SOO domain

Most compilers and the loader will execute on the ND—SOO and must be
started through the Monitor. This can be done in two ways:

Either, the domain name may be given as a parameter to the Monitor at
the time of the call. To start the compiler FORTRAN, executing in
NDwSOO:

@ND-BOO—MONITOR FORTRAN
$ <Fortran compiler oommands>

a\..

Or the monitor may be started first, after which the domain is started
by typing its name:

@ND-SOO-MONITOR
N500: FORTRAN
$ <Fortran compiler commands)
$222
N500: EX

@

The two methods are essentially equivalent, but if the domain name was
a parameter to the Monitor, control will return to Sintran III rather
than to the Monitor upon program exit. Calling the Monitor first is
used mainly if other monitor commands should be given before or after
the domain is executed.

In most installations, the name of the Monitor may be abbreviated and
still be unambiguous. The following is a complete example of compiling
a Pascal program, loading it and executing it, all programs executing
in the ND—SOO, and the name of the Monitor is abbreviated to ND—SOO:

ND—60.136.04

219
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

@ND—SOO PASCAL
PASCAL/ND—SOO VERSION A 81~05—08
$COM PASPROG,,"PASPROG"

NO ERRORS
1 NON~STANDARD WARNINGS
0.34 SECONDS COMPILATION TIME

$§§
@ND-SOO LINK
ND—Linkage-Lcader 81.07.1A
NLL:SET—DOMAIN "PASCAL—TEST"
NLL:OP-SEGM "SEGMENT—ONE",,
NLL:LOAD PASPROG PASCAL—LIB
Program:.............u50 P Data:............352 D
Program:...........166uu P Data:.........fl02M20 D
NLL2§§
@ND-SOO PASCALwT§§T

I execute, therefore I am.

I have been executed, therefore I am not.

d

15.2. Using libraries

A user may find it tiresome to specify loading of a library every time
he loads a program, if that library is not specified as an auto~load
library by user SYSTEM~ A user may also have his own libraries;
containing for example mathematical or statistical routines.

In the following example, all auto-load files are deleted in order to
make sure no obsolete entries remain in the table of auto—load files.
PLANC—LIB is then defined as an auto—load file for Plano programs.
This would not be neccessary if user SYSTEM had defined it as an auto—
load file, unless the user wants to force loading of the libraries in
another sequence.

For both Planc and Fortran the user's own STAT-LIB is defined as auto—
load file. On this file is built a routine table by the PREPAREnNRF—
LIBRARY~FILE command, in order to increase the speed of loading, and
the identifying text STAT—LIB—TULY-1981 is inserted at the top of the
file.

Finally, the defined auto—load files are listed, in order to confirm
that the file names are correct. The version of the loader executing
in the ND—SOO is used, therefore the Linkage—Loader is called up
through the Monitor:

ND—60.136.0U

220
EXAMPLES OF LINKAGEaLOADER AND MONITOR USAGE

@ND~500 LINKAGE—LOADER
ND—Linkage—Loader 81.0701M
NLL:DELETE—AUTO—LOAD-FILE
NLL:SET—AUTO-LOAD (SYSTEM)PLANC~LIB PLA
NLL:SET—AUTO—LOAD STAT~LIB PLA
NLL:SET—AUTO—LOAD STAT-LIB FOR
NLL:PREP-NRF-LIB STATvLIB
NLL:INSERT—NRF—MESSA STAT—LIB,,STA”«LIB—JULY—1981$
NLL:LIST-AUTO-LOAD
(PACK—ONE—T:SYSTEM)PLANC—LIB - PLANC
(PACK—ONE-1:PROJECT)STAT-LIB — PLANC
(PACK—ONE—l:PROJECT)STAT~LIB — FORTRAN
NLL:§§

@

Now assume that the routines F22 and F23 in STAT—LIB have been
recompiled to the file UPDATES. The new modules should replace the old
ones in the library, and the routines should be reloaded to the domain
DOMANE (without reloading the entire segment). The segment in DOMANE
has the name SEC-X. The new versions of F22 and F23 use another
routine in STATnLIB that was not previously loaded, therefore STAT—LIB
is automatically loaded at EXIT (which implies execution of an CLOSE-
SEGMENT)3 and the identification of the library is printed:

QED—500 LINKER
NDaLinkage—Loader 81.07.1u
NLtEW—NRF—MODULES UPDATES STAT—LIB
NLL:CC REBUILD MODULE INDEX TABLE:
NLLzPREP—NRF—LIB STAT-LIB
NLL:CC THE PREP—OPERATION DESTROYS THE MESSAGE?
NLL:INSERT—NRF~MESSA STAT-LIB,,STAT-LIB—JULY—1981$
NLL:SET—DOMAIN DOMANE
NLL:APP—SEG SEGuX,,
NLLzRELOAD-SEG UPDATES
Program:...........4611u P Data:..........73M66 D
NLL:§§

ND—60.136.0U

EXAMPLES OF LINKAGE—LOADER AND MONITOR USAGE

15.3. Using files

DOMANE accesses two files, one for random input as file number 10,
another for sequential output as file number 12. The input file
REC:DATA is contigous, and the record size is 102% bytes, thus the
file may be accessed in the direct transfer open mode. The output file
REPORT:LIST is an ordinary sequential file and is opened with Write
access:

@ND-SOO
ND—SOO MONITOR 81.05.21/81.0S.15
NSOO:OPEN-FILE REC 10mg
N500:OPEN-FILE REPORTzLIST 12 w
NSOO:DOMANE
N500:E§ET"‘
@

ND-60.136.0H

EXAMPLES OF LINKAGE~LOADER AND MONITOR USAGE

15.fl. Macros

DOMANE is executed often, alWays using the same output file, but with
different input files. in order to reduce the number of commands
required to execute the program, a macro called XQT is defined and
saved as a permanent macro. When executed, it will request the input
file name, but supply all other parameters automatically:

@E21292
ND—SOO MONITOR 81.05.21/81.05.15
N5002DEF~MAC XQT
PARAMETER INFILE,NO*DEFAULT,Input—file:
OPEN—FILE INFILE 10 D
OPEN—FILE REPORTzLIST 12 w
DOMggg

END-MACRO
NSOO:DUMP-MAC XQT
N500;§§ ‘
0

@E2:299NDaSOO MONITOR 81.05.21/81.05.15
NSOO:XQT
Input:?ile;flgfl
N500: OPEN-FILE NEW 10 D
N500: OPEN—FILE REPORTzLIST 12 w
N500: DOMANE
N500: ‘XIT
@

Observe that the user did not enter the commands to open the files and
start the domain, but these commands are always echoed to the output
device.

ND-60.l36.0M

223
EXAMPLES OF LINKAGE—LOADER AND MONITOR USAGE

15.5. Debugging

The following Plano program fragment:

MODULE PLCTEST
REAL PRECISION<15> ARRAY: ARR(1:10)
REAL PRECISION<15>= TOTAL
INTEGER ARRAY: STACK(0:100)
INTEGER: I

PROGRAM: SUM
INISTACK STACK

DO WHILE I<1O
TOTAL+ARR(I)=: TOTAL
I+1=2 I

ENDDO

ENDROUTINE
ENDMODULE

will provoke a PROTECT VIOLATION error message rom the Monitor if
loaded to a segment using default values. After compilation and
loading to domain PLCTEST:

@ND—BOO PLCTEST

PROTECT VIOLATION
AT PROGRAM ADDRESS AOB

@

In order to catch the error, the program is placed in memory, using
the DEBUG~PLACE command in order to permit modifications. Then single
step execution is started, and one instruction at a time is executed
by pressing CR.

@ND—500—MONITOR
NDuSOO MONITOR 81.05.21/81.05.15
NSOOzDEB—PLA
DOMAIN: DOMANE
N500: STEP

1000000000UB: INIT 00000000134B, +0000000002UB, 000624B
10000000021B: W COMP2 00000000760B, 12B
100000000308: IF >= GO 042B-~> 01000000072B
100000000323: D1:: 0000000012HB
100000000UOB: W1:: 00000000760B
100000000468: D1 + 37777777774B(W1)"U

'U
'U

’U
'O

’U

PROTECT VIOLATION
AT PROGRAM ADDRESS MOB

N500:

ND-60.136.04

224
EXAMPLES OF LINKAGE—LOADEE AND MONITOR USAGE

Obviously, something went wrong when access to an array element was
attempted. The index value was loaded from address 760, and this value
is inspected:

N500: LOOK—ATuDATA
Address: 1E9
D 760B: OB EX
N500: ”‘

A base address of 377777777748 and a displacement of 0 will generate
an access to a negative segment address. This is certainly not legal,
as we then "overflow" into another segment (in our case, a non—
existing one). The intention was to let the index variable run from 1
to 10, rather than from O to 9, and we therefore deposit the initial
value 1 (old initial value: 0) in location 760, and we modify the
upper limit of the test from 128 to 138:

N500: LOOK—~DATA 760
0 0000007600 0 PERMIT—DE?
0 0000007600 0 1
0 00000076UB 0 0x,,
0500: 0000-—0000 21
0 100000000210: w 00M02 000000007600, 120 000
0 100000000210: w COMPZ 000000007600, 120 §§EE
P 100000000210: 56B
0 100000000220: 3000
0 100000000230: 00
0 100000000200: 00
0 100000000250: 10
0 100000000260: 3600
0 100000000270: 120 13
0 100000000300: 3100 E?
N500: ””

Now, the modified version of DOMANE in memory may be started by a by a
RUN command.

N500: RUN
N500: EX

@

ND—6O.13600U

225
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

15.6. System Supervisor: Installing NLL

The first time NLL is installed, user SYSTEM should define auto—link
segments to be used if a user attempts to close a segment while
undefined references exist. Usually, the run time libraries for
different languages are loaded to a segment named LIBRARY-DOMAIN, but
if an installation makes heavy use of other special libraries, for
example a collection of mathematical or statistical functions, it may
be convenient to load even this library to the library segment.

Different run time libraries may be loaded to different segments, but
as long as no symbol conflicts occur, they may all be put on the same
segment. This will reduce the probability of segment number conflicts.

When a library segment is created, all traps should be locally
disabled, in order to inhibit the automatic allocation of a trap
handler vector.

Because default segment numbers grow from low to high, autolink
segments should preferably be numbered from above. The system
supervisor may also choose to define the :NRF files as library files.
If, for example, a user defined auto-load file (loaded after the
linking has been performed) makes further references to a standard
library, the reference will be defined by the automatically loaded
files.

If an entered command is not in the command list, is not the name of a
domain belonging to the user issuing the command, and is not the name
of a temporary or permanent macro, the domains of user SYSTEM will be
searched. ND-SOO systems such as compilers running on the ND—SOO and
the ND-SOO version of NLL is usually a domain belonging to SYSTEM.
Such systems are delivered either as a domain that should be copied by
COPYcDOMAIN, or as an NRF file that should be loaded like another
program. The example below shows how PASCAL is loaded.

In order to speed the search for a compiler or other standard system,
all such domains owned by SYSTEM should also be defined as standard—
domains.

QND-SOO LINKAGE—LOADER
ND Linkage—Loader 80.05.18
NLL: SET-AUTOmLOAD (SYSTEM)FORTRAN—LIB FORTRAN

% The ’DESCRIPTIONmFILE' will now be initialized
NLL: SET—DOMAIN ”LIBRARY—DOMAIN"
NLL: SET—SEGMENT-NUMBER 29
NLL: OPEN—SEGMENT "PLANC—LIB", P
NLL: LOCAL—TRAP—DISABLE ALL
NLL: ENTRY~ROUTINES MOO
NLL: TOTAL-SEGMENT—LOAD PLANO—LIB
NLL: SET—SEGMENT—NUMBER 3O
NLL: OPEN-SEGMENT "FORTRAN~LIB", P
NLL: LOCAL-TRAP-DISABLE ALL
NLL: ENTRY-ROUTINES 500
NLL: SETuIO-BUFFERS 16

ND-60.136.0U

226
EXAMPLES OF LINKAGEeLOADER AND MON TOR USAGE

NLL: TOTAL-SEGMENTmLOAD FORTRAN-LIB
NLL: SET-AUTO~LOAD (SYSTEM)PLANC-LIB PLANC
NLL: SET-AUTO—LOAD (SYSTEM)NAG FORTRAN
NLL: END—DOMAIN
NLL: PREPARE~NRFmLIBRARY NAG
NLL: SET—AUTO-LINK FORTRAN—LIB FORTRAN
NLL: SET—AUTO—LINK PLANC—LIB PLANC
NLL: SET—DOMAIN LINKAGE~LOADER
NLL: APPEND—SEGMENT LINKAGE—LOADER,,
NLL: LIBRARY—SEGMENT—LINK (SYS) FORTRAN—LIB,PLANC—LIB

% Additional defined AUTO—LINK segments used by the command RUN.
NLL: END—DOMAIN
NLL: EXIT

@
The System supervisor should also ensure that all terminals that will
be using ND—EOO systems have a 128 Kw background segment. This can be
changed by the Sintran Ill command

@CHANGE—BACKGROUND—SEGMENT—SIZE (term no.) 128

<term no.> can be found by the QWHO command. The segment size
information is lost after a "cold start" ()HENT / 22!), but the
command to change it may be included in the HENT~MCDE file.

If the installation runs the accounting system, the @START—ACCOUNTING
command may be used to log ND—lOO and ND-SOO CPU time, terminal time,
mass storage transfers and number of spooling pages printed. The last
parameter of the command, <ND—SOO> is used in ND—SOO systems only, and
is answered with Y if resources used by ND—EOO should be logged, N
otherwise.

ND~60.136.0H

227
EXAMPLES OF LINKAGE—LOADER AND MONITOR USAGE

15.7. LIST OF MONITOR COMMANDS

This section lists all the monitor commands which appear in the "help-
list".

ABORT—BATCH—ON-ERROR (ON/OFF)
ABORT—PROCESS (NO)
ATTACH-PROCESS (PROCESS NO)
AUTOMATIC-ERROR—MESSAGE
BRANCH—TRACE (START),(MIN TRACE>,(MAX TRACE)
BREAK (ADDRESS),[(COUNT)]
CACHE-MODE (PROGRAM CACHE MODE),<DATA CACHE MODE)
CALL—TRACE (START),(MIN TRACE>,(MAX TRACE)
CC
CLOSE—FILE (CONNECT NUMBER)
COMPARE—CONTROL-STORE (FILE NAME>,(START ADDRESS>,(NO. OE WORDS>,(MAX NO. OF FAULTS)
CONTINUE
DEBUG—PLACE (DOMAIN)
DEBUG—STATUS
DEBUGGER [(DOMAIN)3
DEFINE—MACRO (NAME)
DEFINE—MEMORY-CONFIGURATION (N100 PAGE NO FOR N500 PHYS. ADR. ZERO)
DEFINE—STANDARD~DOMAIN (STANDARD DOMAIN NAME>,(DOMAIN NAME)
DEFINE—SWAP—FILE (NAME)
DELETE—STANDARD—DOMAIN (NAME)
DELETE-SWAPeFILE (NAME)
DUMPuMACRO (NAME)
ENABLED~TRAPS
ERASE—MACRO (NAMES)
EXECUTE—MACRO (NAME>,[(PARAMETRERS>]
EXHIBIT—ADDRESS (ADDRESS IN PROGRAM)Y(ADDRESS OF VARIABLE),(DATATYPE)
EXIT
EXTRA~EORMAT (FORMAT)
FIX—SEGMENT—ABSOLUTE (SEGMENT NUMBER>,(TYPE(P OR D)),(L ADR),(H ADR),(PH SP)
FIX-SEGMENT-CONTIGOUS (SEGMENT NUMBER),(TYPE(P OR D)>,<LOW ADDRESS),(HIGH ADDRESS>
FIX~SEGMENT-SCATTERED (SEGMENT NUMBER),(TYPE(P OR D)),(LON ADDRESS>,(HIGH ADDRESS)
GET-FLAG (PROCESS NUMBER)
GIVE—ND-BOO—PAGES (NOo OF PAGES)
GO (ADDRESS)
GUARD (ADDRESS),<DATATYPE>,[<LIMITS)]
HELP (COMMAND >
LIST-ACTIVE—PROCESSES
LIST-ACTIVE—SEGMENTS (PROCESS NO)
LIST—DOMAIN (DOMAIN NAME)
LIST—EXECUTION—QUEUE (INTERVAL)
LIST—MACRO (NAMES)
LIST—OPEN-FILES
LIST-PROCESS—TABLE-ENTRY (PROCESS NO)
LIST—SEGMENT-TABLE-ENTRY (PHYSICAL SEGMENT NO)
LIST-STANDARD-DOMAINS
LIST—SWAP—FILE—INFO (SWAP FILE NO)
LIST—SYSTEM—PARAMETERS
LIST-TABLE (NAME)
LOAD—CONTROL—STORE (FILE NAME),(START ADDRESS),(NO. OF WORDS)

ND—60.136.04

228
EXAMPLES OF LINKAGE—LOADER AND MONITOR USAGE

LOAD—SWAPPER <FILE NAME>
LOCAL—TRAP—DISABLE <TRAP CONDITION)
LOCAL—TRAP—ENABLE <LABEL>,<TRAP CONDITION)
LOGOUT-PROCESS <NO>
LOOK—AT—CONTROL—STORE <ADDRESS>
LOOK—AT—DATA <ADDRESS>,[<DOMAIN>]
LOOK-AT—FILE <ADDRESS>,<FILE NAME)
LOOK~AT~HARDWARE <REGISTER NAME)
LOGK—AT—PHYSICAL~SEGMENT <ADDRESS>,<SEGMENT NO>
LOOK—AT—PROGRAM <ADDRESS>,[<DOMAIN>]
LOOKuAT—REGISTER [<>]
LOOK—AT—RELATIVE <RELATIVE TO)
LOOK—AT—RESIDENT-MEMORY <ADDRESS>
LOOK—AT—STACK
MAIN—FORMAT <FORMAT>
MASTER—CLEAR
MEMORY—CONFIGURATION
MICRO—START <ADDRESS>
MICRO-STOP
OPEL—FILE <FILE NAME>,<CONNECT FILE NUMBER>,<ACCESS>
OUTPUT—FILE <NAME>
PLACEuDOMAIN <DOMAIN>
PRINT—HISTOGRAM
PRINT—MONCALL-LOG
PRINT—PROCESS—LOG (FIRST PROCESS>
PROCESS—LOGuALL <INTERVAL>,<FIRST PROCESS>
PROCESS—LOG«ONE <PROCESS NO>,<INTERVAL>
PROCESS—STATUS
RECOVER-DOMAIN <DOMAIN>
RELEASE—HISTCGRAM
RELEASE—LOGwBUFFER
RESET-AUTOMATIC-ERROR—MESSAGE
RESET-BFANCH—TRACE
RESET~BREAKS [<BREAK NUMBER>]
RESET—CALL-TRACE
RESET—DEBUG
RESET-GUARD
RESET-LAST—BREAK
RESET-TRACE
RESIDENT-PLACE <DOMAIN>
RESTART—PROCESS <PROCESS NAME)
RESUME—MACRO
RUN
SET-BLOCK—SIZE (FILE NUMBER>,<SIZE(IN BYTES)>
SET—FLAG <PROCESS NUMBER>,<VALUE>
SET—HISTOGRAM <START ADDRESS>,<MAX ADDRESS>,<NO. OF INTERVALS>
SET—MEMORY-CONTENTS <FROM ADDRESS>,<UP TO ADDRESS>,<VALUE>,<DATATYPE>
SET-ND—SOO—AVAILABLE
SET—ND—SOO—UNAVAILABLE
SET—PRIORITY (ND—100 MON. CALL PRTY.>,<MAX.% ND—WOO CPU T1ME>,<ND—500 PRTY.>,[<PROCESS NO.>3
SET—PROCESSmNAME <NAME>
SET-SEGMENTmLIMITS (SEGMENT NUMBER>,<TYPE>,<MIN NO. OF PAGES>,<MAX NO. OF PAGES>,[<PROCESS ac
SET-SYSTEM—PARAMETERS <NO. OF PHYSICAL SEGMENTS> <MAXM. NO" PAGES FIXED)
SPECIAL—DEBUGGER <FILE NAME>,<LOGICAL SEGMENT NUMBER>,[<DOMAIN>]
START-HISTOGRAM
START—MONCALL—LOG (OWN/ALL)
START—PROCESS—LOG—ALL

ND-60.136.0H

EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

START—PROCESS-LOG—ONE <PROCESS NO)
START—SWAPPER
STATUS
STEP [<FROM ADDRESS, [START ADDRESS], [COUNT]>]
STOP-HISTOGRAM
STOP-MONCALL-LOG
STOP—ND-5OO
STOP—ND—SOO
SWAPPING—LOG (INTERVAL)
SYSTEM-TRAP—DISABLE <TRAP CONDITION>
SYSTEM-TRAP—ENABLE (TRAP CONDITION)
TAKE—ND—SOO-PAGES <NC. OF PAGES)
TEMPORARY-BREAK <ADDRESS>,[<COUNT>]
TIME—USED
TRACE <ADDRESS>,[<DATATYPE>]
UNFIX—SEGMENT (SEGMENT NUMBER>,<TYPE (P OR D)>
VALUE—ENTRIES (ENTRIES)
VERSION
WHO—IS—ON

ND—60.136.04

229

230
EXAMPLES OF LINKAGEwLOADER AND MONITOR USAGE

15.8. LIST OF LINKAGEmLOADER COMMANDS

This section lists all the linkage—loader commands which appear in the
"help—list".

ABORT—BATCH—ONwERROR <0N/OFF)
APPEND—NRF~MODULE (SOURCE—FILE),<DESTINATION~FILE>,(AFTER-MODULE)
APPEND-SEGMENT <SEGMENT-NAME),<SEGMENT—ATTRIBUTES>
cc
CHECK—SYNTAX—MODE
CLEAR-DOMAIN <DOMAIN«NAME>
CLEAR-SEGMENT <SEGMENT~NAME>
CLOSE-SEGMENT [<>]
COMMON—SEGMENT-APPEND <SEGMENT-NAME>
COMMON-SEGMENT«CLOSE
COMMON—SEGMENT-NUMBER <SEGMENT-NUMBER>
COMMON—SEGMENT-OPEN <SEGMENT—NAME),<SEGMENT—ATTRIBUTES>
COMPUTER-MODE <COMPUTER-TYPE(100/SOU/PIOC)>,[<>]
COPY—DOMAIN <SOURCE~DOMAIN>,<DESTINATION-DOMAIN>
DATA-REFERENCE <NAME>,<ADDRESS>,<P/D>
DEFINE-COMMON <NAME>,<COMMON—SIZE>,<VALUE>
DEFINE-ENTRY <ENTRY>,<VALUE>,<P/D>
DEFINE—SEGMENT-SIZE <PROGRAM—SEGMEnT(BYTEs)>,<DATA-SEGMENT(BYTES)>
DELETE—AUTO—LINK—SEGMENT
DELETE—AUTO—LOAD—FILE
DELETE-DOMAIN <DOMAIN—NAME>
DELETE-NRF—MODULES <FILE>,<FIRST—MODULE>,<LAST—MODULE>
DELETE—SEGMENT <SEGMENT~NAME>
DELETE—SUBPROCESS <PROCESS—NAME)
DISASSEMBLE-MODE
END-DOMAIN
ENTRYuROUTINES <NUMBER—OF-ROUTINES>
EXIT
FETCHuNRF—MODULES <SOURCE~FILE>,<DESTINATION—FILE>9<FIRST—MODULE),<LAST~MODULE
FIX—SEGMENT—ABSQLUTE (SEGMENT-NAME),<P/D>,<PHYSICAL-ADDRRESS>,<L—A>,<U—A>
FIX—SEGMENT—CONTIGOUS <SEGMENT—NAME>,<P/D>,<LOW-ADDRESS>,<UPPER—ADDRESS>
FIX—SEGMENT-SCATTERED <SEGMENT—NAME>,<P/D>,<LOW-ADDRESS>,<UPPER—ADDRESS>
FORCE—SEGMENT-LINK <SEGMENT~NAME>
GLOBAL-ENTRIES (ENTRIES)
HELP <COMMAND>
HIGH—ADDRESS <ADDRESS>,<P/D/C>
INSERT—NRF—MESSAGE (FILE-NAME),<BEFORE-MODULE>,<MESSAGE>
KILL—ENTRIES <ENTRIES>
LIBRARY—SEGMENT~LINK <SEGMENT—NAME>
LIBRARY—SEGMENTuLOAD (FILE—NAME)
LINK—RT~PROGRAM
LINK—SEGMENT <SEGMENT—NAME)
LIST-AUTO—LINK—SEGMENTS
LIST—AUTO—LOAD-FILE
LIST—DOMAIN (DOMAIN—NAME)
LIST—ENTRIES-DEFINED [<>]
LIST—ENTRIES-UNDEFINED {<>]
LIST—MAP
LIST—MODE
LIST—NRF—CODE <SOURCE—FILE>,(FIRST—MODULE),<LAST-MODULE>

ND—60.136.0M

231
EXAMPLES OF LINKAGE*LOADER AND MONITOR USAGE

LIST—NRF-ENTRIES <FILE-NAME)
LIST-OCTAL (LOWER-ADDRESS),<UPPER—ADDRESS>,<P/D>
LIST—SEGMENT (DOMAIN-NAME),<SEGMENT-NAME>
LIST-SYMBOLIC <LOWER—ADDRESS>,<UPPER~ADDRESS>,<P/D>
LOAD—SEGMENT <FILE—NAME>
LOCAL—TRAP-DISABLE <TRAP—CONDITION>
LOCAL—TRAP—ENABLE <LABEL>,<TRAP—CONDITION>
LOW—ADDRESS <ADDRESS>,<P/D/C>
MATCH—COMMON—RT-SEGMENT <SEGMENT—NUMBER)
MATCH—RTCOMMON
NEW-NRF—MODULES <NEW-MODULE-FILE>,<FILE>
OMITTED—SEGMENT—LOAD <FILE—NAME>,<ENTRIES>
OPEN—SEGMENT <SEGMENT—NAME>,<SEGMENT—ATTRIBUTES>
OUTPUT—FILE (FILE-NAME)
PAGE—MODE [<>]
PREPARE-NRF—LIBRARY-FILE <LIBRARY-FILE-NAME>
PROGRAM-REFERENCE <ENTRY>,<ADDRESS>,<P/D>
RELEASE-DOMAIN <DOMAIN—NAME>
RELOAD—SEGMENT <FILE—NAME>
RENAME—DEFAULT—DIRECTORY-AND—USER <(NEW—DIRECTORY:NEW—USER)>
RENAME-DOMAIN <0LD—DOMAIN—NAME>,<NEW—DOMAIN»NAME>
RENAME—SEGMENT <OLD-SEGMENT-NAME>,<NEW—SEGMENT—NAME>
RESET
RUN [<>]
SELECTED—SEGMENT-LOAD <FILE-NAME>,<ENTR1ES>
SET—AUTO—LINK-SEGMENT <SEGMENT—NAME>,<LANGUAGE>
SET-AUTO—LOAD-FILE <FILE—NAME>,<LANGUAGE>
SET-DOMAIN <DOMAIN—NAME>
SET~IO-BUFFERS <NO. OF BUFFERS)
SET—MONITOR—NAME <MONITOR—NAME)
SET—SEGMENT-LIMITS <SEGMENT-NAME>,<P/D>,<MINIMUM>,<MAXIMUM>
SET—SEGMENT—NUMBER <SEGMENT-NUMBER>
SET—SUBPROCESS (SUBmPROCESS NAME>,<PRIVILEGES>
SUPPRESS—DEBUG—INFORMATION <0N/OFF)
SYSTEM-ENTRIES-ON
SYSTEM—TRAP-DISABLE <TRAP—CONDITION>
SYSTEM—TRAP-ENABLE <TRAP—CONDITION)
TOTAL-SEGMENT-LOAD <FILE~NAME>
VALUE—ENTRIES <ENTRIES>
WRITE—DOMAIN—STATUS [<>]
WRITE—NRF-EOF—AFTER—MODULE <FILE>,<AFTER—MODULE>
WRITE-SEGMENT—STATUS [<>]

ND-60.136.0H

232
Index

Index
233

A A A A A A A A A A

abbreviating
command
segment name

abbreviation
command name
domain name

ABORT—BATCH-ON—EEROR command
description

aborting
batch job
macro

ABORT~PROCESS command
description

absolute
allocation
fixing

ABSTR
monitor
monitor call

access
conflicts
link
mode
right

active
process
users

actual parameter .
ADA, NRF control number .
add

data address
immediately
program address . .

adding code to segment . . .
additional data segment . . .
address

alignment
overlap
range
table

translation
addressing

space
ADDRESS—mRAP—FETCH
ADDRESS-TRAP—READ

A A A A A

202.
199.
9, 108, 110.
193.
9A.

88.

88.
108, 110, 203.

159.

1&7.
A2, 1M1.

10”.
105.
197.
11.
198.
98.
17.

130, 159.
1M9, 151.
107, 109.
188.

188.
188.
188.
53.
61.

186.
152.
15.
an, 85, 189,
200.
72, 137, 1u0.
152.
12.
89.
89.

23M

ADDRESS—TRAP—WRITE
ADDRESS~ZERO-ACCESS
ADI, NRF control number
ad.just
ad.ministrating memory .
AJS, NRF control number
allocation in memory .
alphanumeric label . .
ambiguous

command
domain name . . .
label name . . .
segment name .

APA, NRF control number
appending NRF module .
APPEND—NRFnMODULES Command

description . .
APPEND~SEGMENT command

description . . .
reference

architecture
ASCII

characters
format

assembler
assembling library
Assembly
at, commercial (8)
ATTACH-PROCESS command

description
attribute code
attributes
auto link segment . . .
auto load file
automatic

allocation
fixing

AUTOMATIC—ERROR~MESSAGE
description . .
reference 1

o a n o

command
0

Index

89
89
188.
188.
153.
188.
13
12.

193.
197.
13.
197.
188.
82.

82.

53.
19, 57, 196,
198~2oo.
15.
116.
185.
83, 121.
63, 65.
59, 85.
186.

'7
I o

159.
195, 198.
49. 53, 61.
63—65.
51, 85, 66, 195.

B B B B B B B B

bat c‘n
job
process . . .

BCD—OVERFLOW trap . . .
BEG

control
NRF control number .

block
address
size

B B B B B

9, 51, 78, 88.
198.
89.

186.
81, 186.

1ou, 202.
1ou.

Index

body of macro
BRANCH—TRACE command

description
reference

BRANCH—TRAP
break, escape
BREAK command

description
number
reference

breakpoint

number
BREAK-POINT—INSTRUCTION-TRAP
BRF format
buffer histogram
buffer space autoload file
byte

format
parameter
pointer

107, 110.

123.
126.
89.
199.

113.
125.
1111, 125, 2
93, 95, 113.
1111, 1211, 2
208, 216.
1111, 125, 212.
89.

. 72.
127.
196.

121.
1670

186, 188, 203.

C C C C C C C C C C

cache
call

instruction
mechanism

called routine
CALLG instruction
calling routine
CALLuTRACE command

description
reference

CALL-TRAP
capability

indirect
cataloged file
CC description
CGRO, NRF control number . .
CGR1, NRF control number . .
characters legal in names . .
checksum
CHECK—SYNTAX-MODE command

description
child, trap enable
cleaning

interval
segment

CLEAR—DOMAIN command
description
reference

clearing
histogram buffer . . .
process log buffer . .

. 97.

167.
22.
119.
157.
119.

123.
126.
89.
17, ’49.

19.
88.
189.
189.
195.
186, 193.

78.
. 93, 12a.

165.
165.

. US.
245.

127, 128.
130, 131.

236

CLEAR—SEGMENT command
description

clock time
close segment
CLOSE—FILE command

description
CLOSE-SEGMENT command

description
implicit
reference

closing file a . .
COBOL
command

abbreviation . . .
input file
list
output file
syntax
terminator

comment
commercial at (@) . .
common

block
label
segment

COMMON—SEGMENT-APPEND command
description . . .
reference

COMMON~SEGMENT—CLOSE command
description

COMMON—SEGMENTuNUMBER'command
description

COMMON~SEGMENT-OPEN command
description
reference

communication

device
ND~1OO

process
COMND monitor call
COMPARE—CONTROL STORE command

description
compilation

error
errors

compiling library
compound

group
NRF group

Index

5“.
148.
98.

99.

51.
us, 88.
M6, 55, 63, 65,
198, 199.
95.
63, 65, 188.
9, 109.
193, 202.
9.
88.
9.
78.
9.
88.
87.

. 81, 82, 89, 198.
72.
53’ 543 579 61?

62, 74, 75.

62.
53, 57, 61, 62,
199.

62.

62.

61.
57, 61, 62, 7M,
195, 199-
18, 18, M1, 72,
73, 135, 137,
1111, 216.
9, 87.
135, 19a, 20H,
211, 213, 2111,
216.
159.
870

156.

195.
188.
59, 85;

189.
188.

Index

conditional loading .
configuration, memory
connecting file
contiguous

allocation .
file.. . . .

fixing . . .
CO TINUE command

description
reference .

control
byte
characters .
number . . .
store . . .

control number mnemoni
COPY-DOMAIN command

description
reference .

copying
domain . .
program segment

usage . . .
crash system .
create user .
creating segment
GTE register .
current

byte pointer
data location counter
data segment
domain . . .

load address
program location counter
segment .

user....

o

o

a

o

c

o

o

a

o

0

c

o

nw

.

o

0

213.

57.

237

85, 187, 189.
152.
98.
1H6, 1H7.
15, 108, 162,
205, 215.
1uo.

95.
11M, 212.

185.
185.
185,
155, \J

’l\
O

n.
)

._
.|

Ox
0‘]

83.

MY.
72, 73.

211.
113.

148, 150.
130, 131.
MB.
”7.
NY, 50.
93, 12M.

187, 188.
670

62.
17, uu_ué, 49,

69, 74, 75.
67, 95, 115.
89—51, 55, 57,
1M6, 1M7.
nu-ue, 55, 63,
93, 19A, 198.

D D D D D

data
address .
byte pointer
channel . .
exchange . .
file
memory . .
mode

D D D D D

12A.
186, 188.
152.
81, 141.
10.
118, 120, 167.
61, 187, 188.

segment . .

transfer
transmission

data address, add . . .
data label

definition
reference

DATA—REFERENCE command
description

DBG, NRF control number
0

n

DCLC (Data Current Location
DDF, NRF control number
debug information .
debugger
debugging . . .

DEBUf-PLACE command
description . . .
reference

DEBUG-STATUS command
description

decimal
format
number

DEF, NRF control number
default

attributes
directory
domain name
flag values
macro parameter . .
main format .
memory allocation .
segment name . . .

segment number . .
trap handler
value

define label
DEFINE-COMMON command

description
reference

defined
entry
symbol

DEFINE—ENTRY command
description . . .
reference

DEFINE—MACRO command
description
reference

a o

v

o

0

o

c

o

c

Counter)

0 o

t n c

Index

12, 15, 99, 57,
62, 67—69, 78,
75, 118, 1M6,
162, 19m, 206,
215.
18.
M1.
188.

187.
187.

68.
189.
67, 186.
81, 83, 187.
12, 189.
15.
112, 125, 159,
203, 208.

113.
212.

12H.

120, 121, 151.
67.
81, 83, 187.

57.
M7.
12, an, 26.
135.
107, 109.
120.
86.
12, 57, 62, 1M6,
1M7.
5M.

67, 91, 1M6,
1M7, 187.

107.
109.

Index

DEFINE—MEMORY—CONEIGURATION command
description
reference

DEFINE— SWAP—FILE command
description
reference

defining common block
definition
delete

access
segment

DELETE— AUTO—LINK— SEGMENT command
description
reference

DELETE-AUTO—LOAD—FILE command
description
reference

DELETE—WOMAIN command
description

DELETE—NRF-MODULES command
description

DELETE-SEGMENT command
description

DELETE— SWAP—FILE command
description
reference

deleting macro
demand

paging
segment

description file

NEE
description file, inconsistency . .
DESCRIPTION—FILE. DESC
descriptor
DESCRIPTOR—RANGE trap
destination

domain
file

destroying 11 register content . .
difference, physical address
direct

segment
transfer

directory
default
name

DISABLE— PROCESS— SWITCH— ERROR trap
DISABLE-PROCESS~SWITCH~TIMEOUT trap
disabling trap
disassemble
disassembled listing . . .

239

162.
215.
130.

137.
216.
216 218, 93, 181,
194,196.
185.
87.
11, 15.
1137.
89.

“7.
82.
16”.
152.

16, 17.
A3, 98, 1ou,
105 137, IMO,
165 202, 203,
205 205, 209,
213 n

a
v
e

A7.
nu.
89.
89.
22.
115, 212.
77, 83.

2M0

DISASSEMBLE-MODE command
description . . .

disconnecting file . .
disk

access
file
pack

display
control store . . .
hardware register .
microprogram

DIVIDE—BY—ZERO trap . .
DMA

operation
DMO, NRF control number
domain

current
destination . . .
entry

execution .
information
name

new
number
source
transportation . .

double
definition . . .
quote
quotes

double float format
DEF, NRF control number
:DSEG

file
DUMP-MACRO command

description .

Index

77.
99.
152.
202.
215.
”7.

156.
158.
156.
89.
105.
180, 209.
61, 186, 188.
12, 15, an, 109,
196.
US.
87.
11, M6, 181,
182.

. 93.
96.
1o, 15, 99—88,
98, 55, 93, 113,
118, 197, 206,
211.
19a.
15, 50, 181.
87.
M2.

59.
19M, 195, 206.
1o, 99, 89, 198.
121.
187.
10, 15.
212.

110.

E E E E E E E F?)

EDIT subcommand
description

elapsed
clock time
CPU time

empty parameter .
ENABLED—TRAPS command

description
enabling trap .
END

NRF control number .
of file

[11 M E E E E E

Index

END—DOMAIN command
description
implicit
reference . .

END—MACRO command
description . .

end of NRF file . .
ENTRY—ROUTINES command

description
reference . . .

EOF
control byte .

u

u

-

NRF control number
ERASE‘MACRO command

description . .
reference . . .

ERMSG monitor call
error

code
compilation
condition . . .
DMA
exit
interface . . .
internal .-. .
message
microprogram .
monitor call
return . . .
termination . .

escape
character . . .
key . . .

examining
control store .
microprogram .
physical memory
physical segment
resident memory
stack

EXCDEF routine . .
EXCEPT routine
exception
exception handler library
exchanging data . .
exclusive use
executable program

0

o

o

EXECUTE—MACRO Command
description
implicit . .
reference . . .

executing
domain
microprogram .
program

execution
inhibit 0

2H1

2450

an, 45, 88.
as, 54, 199.

107.
8“.

75.
198, 200.

188.
BA.

110.
210.
103, 1M8, 168.
22, 48, 88.
22, 102, 167.
188, 195.
21.
209.
203.
209.
205—207.
23, 1H8.
217.
167.
102.
108, 209.

95.
132, 1M8, 199.

156.
156.
157.
158.
157.
216.
32.
26.
22.
22, 23.
1A1.
151.
15.

109.
9B.
211.

95.
155.
87.
93-
188.

2U2

interrupt
time

EXHIBIT—ADDRESS command
description
reference

EXIT command
description
reference

expandable data segment
explicit

fixing
logout
memory allocation .

external device
EXTRAaFORMAT command

description
within LOOK—AT . . .

o o

a o

c c

o u

a u

e a

o o

o o~

u o

o «

s .

o D

o v

Index

148.
12, 22, ug, 137,
139, 1&5, 1H6,
204.

12B.
125.

88.
us, 62, 87, 115,
120.
162.

165.
151.
137,
E1.

121.
117.

fatal
error
trap

FETCH—NRF—MODULES command
description

file
catalog
closing
handling
limits
name
number
open
opening

file access monitor call
file system error codes
filling data memory . .
fixed

memory
priority
segment

fixing
automatic
contiguously
expiixitly
implicitly
memory
scattered
segment

FIX-SEGMENT-ABSOLUTE command
description . . .
reference

~

0

o

m ”=3

. .

. s

. .-

o .

. .

o n

O a

., .

o .

. .

n .

o .

a n

u .

. u

. .

. o

o .

a .

. .

v .

. .

' .

. .

. a

a u

a .

a n

a u

a a

o o

n u

o o

c n

o .

o a

a n

o a

u a

a a

1.

a c

o o

a c

a a

o u

c .

o o

o

e n

o o

o o

n o

o u

a a

u e

o o

o o

u o

o u

n

. o

o n

c o

n a

0 a

o o

o a

. .
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

F

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

195.
21, 202.

82.
H3, 65, 7M.
10, 162.
95, 99.
76.
202.
57-59, 98.
98, 99, 206.
209.
98, 99.
102, 215.
103.
120.

uz.
150.
100,
1M7.

139. 106,

AB.
210.
165.
165.
165.
21M.
205.

147.
1&1.

Index

FIV-SEGMENT—CONTIGUOUS command
description 1&6.
reference . 1&0.

FIX—SEGMENT~SCATTERED command
description 1M6.
reference . 139.

flag . 136.
queuing . 135.

flags for communication 135.
float format . 1 1.
FLOATING—OVERFLOW trap 89.
FLOATING—UNDERFLOW trap 89.
floppy disk . U7.
FMO, NR? control number 186, 188.
FORCE-SEGMENT-LINK command

description 53.
forcing logout 151.
formal parameter 109.
format in LOOK—AT commands 120, 121.
Fortran . 23, 63, 65, 186.

COMMON . 61, 62, 69, 196.
file number 98.
monitor call 177.
program . 76.

free
byte pointer 186.
mode . 188.

freeing physical memory 1&7.
free pool . 165.
function code . 207.

G G

GET—FLAG command
description 136.
reference . 135.

GlVE—ND—5009PAGES command
description 153.
reference . 153, 153.

global symbol . 71.
GLOBAL—ENTRIES command

description 71.
GO command

description 95.
reference . 208, 212.

GROUP subcommand
description 157.

GUARD command
description 122.
reference . 122, 126, 208.

guard violation trap 122.

2AM

H H H H H H H H

halfword
format
parameter

handler, trap . . .
hangup state
hardware

error
master clear
registers
sector size

hardware detected error
HELP

description . .
in LOOK—AT
reference

BENT .
MACM command . . .

hexadecimal . .
format

HESS—ADDRESS command
description . .
reference

high limit register . .
histogram

buffer
commands
interval

HISTOGRAM commands
description . .
reference .

HL re ister
hole

I

I registers
l1

register o

register contents destroyed
IF~ERROR~FULL—STOP subcommand

description
reference . . .

IF—ERROR—MACRO—STOP subcommand
description
reference

ignorable trap . . .
ignoring comment . . .
IHB, NRF control number
illegal

address
character

o

c

o

a

c

o

o

0

Index

H H H H H

121.
167.
21.
166.

206.
166.
158.
10M.
22.

86.
116.
10, 197, 202,
207, 211.

153, 2CM.
9.
120, 121, 151.

75.
190, 198.
122—12u, 208.
206.
127, 206.
206.
216.

127, 128.
130, 132.
122, 123, 208.
7“.

I I I I I

119.

22, 167.
167.

108.
209.

108.
203.
21.
88.
188, 1 \O 01

206.
206.

Index

NRF control number
format
parameter

ILLEGAL— INDEX trap . . .
ILLEGAL- INSTRUCTION- CODE trap.
ILLEGAI-OPERAND— SPECIFIER trap
ILLEGAL—OPERAND-VALUE trap. . .
immediate

add
load

implicit
CLOSE—SEGMENT
END—DOMAIN
EXECUTE—MACRO
fixing
OPEN—SEGMENT
RECOVER~DOMAIN
SET—DOMAIN
symbol deletion

inconsistencies, description file
inconsistency
indexed file
INDEX—SCALING— ERROR trap . . .
indirect

capability
segment

INDIRECT— SEGMENT command
reference

information domain
inhibit execution
initialization

of trap handler data

0 o 0

h
r)

.
I" (D

.
F4 D

.»

.

initializing
data memory
error

input
flag
program

INSERT—NRF-MESSAGE command
description

yinspecting data or program
instruction set
INSTRUCTION—SEQUENCE~ERROR trap
interactive
interface

error
register

intermodule reference
internal

device
error
register
system table

interrupt
macro

INVALID—OPERATION trap

o

v

2M5

190, 195.
. 206.

207.
89.
89.
89.
89.

188.
188.

n ”'5, 88-

uu, us, 88.
94.
165
50.
10, 914, 109.

. an, 50.
199.
198, 87.
M8.
15.
89.
208.
37.
16, 17, 111.

5“.
M6.
188.
138.
22.

12G.
19H.

135.
110.

8A.
115.
22.,
89.
1o, 51, 139.
166.
209.
158.
12.

. M1.
205-208.
158.
160.

.95, 1118, 151.
110.

. 89.

2M6

I/O
buffer

Index

139, 1M1, 209.
76.

J J J J J J J J J J

job termination

J J J J J

88.

K K K K K K K K K K

K bit
K flag
KILL-ENTRIES command

description
reference

L L L L L L L L L L

label

definition
language

code
sensitivity

layout of description file .
LBB, NRF control number . .
LDI, NRF control number .
least recently used
legal

character .
range

length of symbol
LIB, NRF control number . . .

library
file
loading
module
routine
symbol
trap

LIERARY—SEGMENT-LINK command
description

LlBRARY—SEGMENT—LOAD command
description
reference

limitations, direct transfer
line editing
LINK

access
file

segment . .

9, 12, 5 , 61,
67—71, 75, 83,
91.
12, 187.
63, 65.
61, 186.
63, 65.
181.
189.
188.
137.

195..
122.
185.
59, 81, 83, 85,
187.
13, 81.
84, 35, 189.
189.
67, 187, 189.
16.
58, 59.
22.

52.

58.
59.
104.
157.

198.
10, 15, 53, 71,
189.
12, Mg, 53, 167,
208.

Index

linked segment
linking

LINK—RT—PROGRAM command
description
reference

LINK-SEGMENT command
description
reference

LIST-ACTIVE— SEGMENTS command
description . . .

LIST— AUTO-LINK— SEGMENTS command
description

LIST—AUTO LOAD—FILE command
description

LIST-DOMAIN command
description
reference

LIST—ENTRIES“DEFINED command
description
reference

LIST-E'NTRIES UNDEFINED command
description

LIST—FILES SINTRAN III command
LIST—MACROS command

description
LIST—MA P command

description
LIST—MODE command

description
LIST-NRF— CODE command

description . .
LIST—NRF ENTRIES command

description
LIST~OCTAL command

description
LIST—OPEN—FILES command

description
LIST—PROCESS TABLE— ENTRY command

description
LIST—SEGMENT command

description
reference

LIST—SYMBOLIC command
description

LIST—SYSTEM-PARAMETERS command
description

LIST—TABLE command
description

LL register
load

address
immediately
map
mode
time

o

70.

514.
16,
61;,

73
19”.

I‘5a.
M9,
T99.

T61.

64.

66.

M6.
16.

69.

70.

70.
212.

111.

70.

5c-
16,

77.

T65.

160.
122—

78,
188.

187.
22.

2M?

23, 61, 63,
200.

53, 54, T98,

M6, 212.

12m, 208.

186, 187.

2&8

LOAD-CONTROL—STORE
description .
reference . .

loader table . .

loader table overf
loading

conditional .

command

o s n n .

low

n n o o -

LOAD—SEGMENT command
description .
reference

local
data field
memory . .
trap handling

LOCAL—TRAP—DISABLE
description
reference

LOCAL-TRAP—ENABLE
description
reference . .

location counter
logging

all processes
in
one process .

logical
address
addressing . .
address space
segment . .
segment number
Size . . .

login
logout
LOGOUT—PROCESS command

description .
LOOK~AT command

description
reference . .

subcommands .

o a . . .

o o o

a o o a o

o c o n o a

command

command
0 n o o o o

n o 0 c o

a

u I a a

0 - o o

LOOK-AT—CONTROL—STORE Command
description. . a 0

LOOK—AT—DATA command
description
reference . .

LOOK-AT~HARDWARE 0
description .

LOOK—AT—PHYSICAL—S
description .
reference .

EGMEN

ommand

o 0 - o a

LOOK-AT-PROGRAM command
description
reference . .

o a 1 a o

a . . a

T command

Index

155.
203.
12, 67~73, 78,
187, 189, 196,
199.
71.
U9, 50, 57, 58,
77, 200.
187.

57.
nu.

119.
152.
21, 90.

93.

195

. 90.
195, 202.
83.
208.
130.
151.
130.

18.
17.
19.
17, 93, 207.
50, 1M6, 107.
137.
151.
152, 151, 21 U) 4

159.

115.
88, 120, 159,
206, 208, 212.
158.

156.

118.
157, 158.

158.

158.
113, 212.

118.
158.

2M9
Index

LOOK—AT—REGISTER command
description 120.

LOOK—AT-RELATIVE command
description 119.

LOOK-AT—RESIDENT—MEMORY command
description

LOOK—AT-STACK command
description 119.
reference . 203, 216.

low address . 54.
LOW-ADDRESS command

description 74.
lower case . 9, 10.
low limit register 122-12U, 208.
LRF, NRF control number 187.

. 157.

M M

MACM, HENT command 153.
MACE . 99.

file . 107, 109, 110,
211.

macro u 203, 204, 211.
abortion . 209.
body . 110, 209.
commands . 107.
delete . 110.
error . 209.
expansion . 203.
listing . 111.
name . 9M.
parameter . 107.
permanent . 109, 110.
saving . 110.
temporary . 9M, 109, 110.

magtape . H3, 105, 203,
205.

MAST? monitor call 105.
main

format . 121, 216.
program . 119, 203.

MAIN-FORMAT command
description 120.
reference . 116, 151, 207,

212.
mapping . 137.
MASTER-CLEAR command

description 166.
MATCH—COMMON~RT—SEGMENT command

description
reference

MATCH—RT—COMMON command
description 72.
reference . U2.

maximum
auto load file 196.

. 72.

. 112, ‘91:.

250

byte pointer
domains
pages in memory . .
segment

memory
administration . . .
allocation

configuration . . .
image
management system .
part n o :3

memory allocation, default . .
memory management register . .
message

during loading . .
NRF

MIC register
micro program

error
maintainance
registers
version

MICRO—START command
description
reference

MICRO-STOP command
description

minimum pages in memory
MIS, NRF control number
miscellaneous
MMS (Memory Management Sy
mnemonic, trap
mode job
modifying

data location . . .
data or program. . .
flag
hardware register .
interface register .
memory
micro program . . .
physical memory . .
physical segment . .
register
resident memory . .
system parameters .

modularization
module

index table
library

modus open
MON 60 NSOOM
MON 61 FIXCS

a

o

‘0

Index

101:.
an, 196.
155.
193.

153.
137, 145, 1u6,
209.
152, 204.
118, 120.
137.
152.
86.
158.

189.
a.

120.
155, 156, 203,
208, 210, 213.
20m, 217.
155.
120.
1M9.

155.
155.

155.
1115.
189.
189.
15, 137.
195.
9. 51, 78, 88.

122.
115.
135.
158.
158.
20a.
157.
157.
158.
205.
157.
151.
16.
3, 13, 58, 59,
61, 63, 65, 81,
811, 186.
200.
187.
209.
177.
207.

Index

MON 6” ERMSG . . .
MON 65 QERMS . . .
monitor call . .

arguments . . .
ERMSG
NSOOM
number
parameter . . .
priority

mother, trap enable
moving domain . . . o 0

MSA, NRF control number .
MSG, NRF control number
MTE register . . . a

multiple definition .
multiport memory .
multisegment loader

o

n c

o o

251

168.
168.
17, M1, M2, 102,
10M, 150, 167,
20M.
167, 168.
1M8.
135, 206.

. 207.
217.
150.
21.

. 47.
186.
189.
21.

. 59.
18, 152
197.

N N N, N N N N

NSOOM monitor call

name
conflicts . . .
domain

process
segment
syntax
trap

naming
NRF module . . .
rule

ND—1OO
communication .

CPU
monitor call . .
monitor calls .
private memory .
segment

segment number
ND—SOO

driver
interface . . .

ND Relocatable Format
negative values . .

o

s

o o

(NRF

nested compound group .
new

domain
NRF modules . .
segment

a

o

0

o o

o

N N N N N N

135, 177, 206,
207.
12.
71.
MM, M5, 195,
206.

. 206.
195, 206.
10.
195.

10.

72, 73, 135,
137, 165, 19M.
20M, 211, 213.
152.
150.
151.
21M.
M2, M7, 137,
21M, 216.
205.

177, 207, 208.
166.
12, 185.
185.
189.

10, MM, 19M.
81.
10, M9.

252

segment name
NEW—NRF-MODUL"S command

description
NEXT command

description
reference . . . p .

non—demand
non~ignorable trap . .
non—printing characters
non—reentrant trap handler
normal termination . .

s

o

u

o

NRF (ND Relocatable Format
code
NR? control number .
control numbers . .
control number table
editor
fa1ah...“ . o a a o v u o

format
group
library
library file
message
module
symbol

NRF file maintainance .
NR? group repetition .
NUL, HRF control number
number of physical segm
numeric

fiel:

object file
octal

description
format

listing
number . .

OMITTED—SEGME
description
reference

omitting
EXECUTV~MACRO . . .
RECOVER—DOMAIN . . .

open
file
file table

o u a o

v
n

a

o

NT—LOAD command

. c n

. o a

. a a

. o .

o . n

. . 1

c . u

. n u

n o o

o a n

. n u

o a n

n . u

o . 0

. o u

. . n

o o ,

a o 1

. ¢ 5

. o 1

. u u

o o .

. . n

u a a

. . .

n a u

. o u

0 ~ .

o . .

. . .

. n .

. - o

n - a

c s t

a o o

o o .

o o 0

o n o

O u a

a a u

o o u

a o n

o o o

u n n

0

Index

55.

81.

119.
216.
139.
21.
185.
21.
108.
12.
61.
59, 81, 83.
186.
191.
200.
50, 57—59, 65,
77, 81, 8M, 85,
195.
72, 185.
185.
13, 81.
200.
BE.
6 , 81, 82, 8'4.

’1
4

.
.
)
(
3

0
0

—
¢

\1
~

\J
O

\®
(D

185, 187.
212.
185.
_, n

215.

O O 0 O O

12.

157.
120, 121, 151.
206.
76, 77, 83.
67, 198.

59.
9.

.10.
,u.

98, 99.
209.

Index

mode
modus
monitor call

segment
OPEN-FILE command

description
reference

OPEN—SEGMENT command
description
implicit
reference

Operating
system
system error . . .

optimizing file access
optional parameter . .
ORIN subcommand

description
OTB register
other

users
other users segment . .
OUTBT monitor call . .
output

device
flag

OUTPUT-FlLE command
description . . .
reference

OUTST monitor call . .
OVERFLOW

loader table . . .
overhead monitor call .
overriding defaults
own trap enable

253

205.
209.
1ou, 203, 205,
209.
48.

98.
1ou, 105.

. U9.
50.
50, 54, 57, 61,
195, 198, 199.

17, 41, 152.
. 205.

104.
9, 86.

157.
21, 22, 90, 12A.

197, 198.
55.

. M1.

9.
135.

87.
9.
u1.
89, 186, 187.
196.
41.
86.

. 21, 93, 12a.

P P P P P P P P

page
boundary
fault
index table
number
table

pages, giving to ND—SOO
paging off area
parameter

access
addresses
command
reference
terminator
abbreviation

parentheses

'fi E) P P P P P

137.
1M6, 1u7.
137, 138, 145.
205.
152.
177.
153.
177.
107.
17.
177.

. 86.
109.
9.

. 202.
195, 206.

25H

parity
Pascal
patching

microprogram
PATCH—MEMORY command

reference
PCLC
percentage CPU time
performance

measurement.
permanent

breakpoint
macro

PERMIT-DEPOSIT subcommand
description
reference

physical
address

addressing range
memory

PLACE reference
PLACE—DOMAIN command

description
reference

Plano
PMO, NRF control number . .
pointer
porting domains
power failure
predefined symbols
DREPARE—imF—LIBRARY- ILE command

description
reference

prereferenced symbols ,
PR EVIOUS subcommand

description
reference

PRIMESS exception library routine
PRINT— HISTOGRAM command

reference
description

PRINT— PROCESS— LOG command
description
reference

priority, monitor call .
PRITRAC exception library routine
private memory
privilege
procedure call

8

Index

185.
53, 65, 186.
93, 113, 118,
212.
157.

88.
67, 186.
150.
1U3.
127.

95. .
107, 109—111,
211.

117.
20“.

18, 1u1, 1M7,
152, 21m.
152.
108, 137, 145,
1H6, 152, 157,
204.
17, 18, 93, 158,
16A, 210.
212.

93.
9M, 113, 2cm,
213, 21M, 216.
23, 63, 65, 186.
186,188.
186.
M2.
210, 213.
53.

85.
57, 8M, 200.
53.

119.
203.
36.

206.
128.

131.
130, 208.
150.
35.
152.
an.
123.

Index

process
abortion
communication . . .
entry
flag
name
number
priority
suspension

PROCESS—LOG-ALL command
description

PROCESS—LOG commands .
reference

PROCESS—LOG-ONE command
description

PROCESS-STATUS command
description
reference

processor
program

abort
address
byte pointer
channel
file
input
label
memory
mode
reference
segment

termination
program address, add .
program counter, sampling
PROGRAMMED—TRAP
PROGRAM~REFERENCE command

description
prompt
PROTECT-VIOLATION . . .
PSEG

file

12.
159.
135, 136, 159.
181, 182.
136.
136, 206.
130, 136, 159.
150.
M1, 137.

131.
130, 131.
132.

131.

160.
131.
152.
186.
23.
113, 129.
186—188.
152.
10.
110.
67.
118.
187, 188.
187.
12, 15, 17, su,
57, 67, 68. 7M,
75, 93, 113,
118, 146, 198,
206, 216.
209.
188.
128.
89.

67.
9.
89.
1o, 15, 162.
212.

Q Q Q Q Q Q Q Q

QERMS monitor call . .
queuing flags
quote

double

Q Q Q Q Q

168.
135.
19A, 198, 206.
195.

256
Index

R R R R R R R R R R R

R register
random access
read

access
input flag
output flag.

read only
data segment
segment

reubuilding description file .
RECOVER—DOMAIN command

description
implicit
reference

redefining trap handling
redefinition
reentrant program segment
REF, NRF control number
reference

undefined
register

LOOK-AT
sequence

relative
addresses
LOOK—AT

RELEASE-DOMAIN comman
description
reference

RELEASE—HISTOGRAM command
description
reference

RELEASE~LOG—BUFFER command
description
reference

releasing
fixed segment
segment

reloading segment
RELOAD-SEGMENT command

description . . . u
relocatable

symbol
removable disk
remove

NRF module
symbol

RENAME-DEFAULT—DIRECTORY—AND—USER
description

RENAME-DOMAIN command
description

a a o 0

command

R R R R R

119.
198.

198.
135.
135.

H9.
93.
11.

9U.
10, 109.
20a, 208,
211—21u, 216.
202.
59.
16.
187.
58, 59, 65, 67,
7o, 73, 187.
51, 63.

120.
120.

119.
119.

M8.
87;

128.
206.

132.
208.

1M2.
1M7.
196, 198.

58.
u.
12.
47.

82.
71, 187.

78.

U6.

257Index

RENAME—FILE command
SINTRAN command

RENAME-SEGMENT command
description 55.REP, NRF control number 188, 189.repeat NRF group 188.replacing NRF modules 81.

required parameter 9.
reserved segment U8.
reserving swapping log buffer 132.
RESET command

description 78.
RESETcAUTOMATIC-EFROB—MESSAGE command

description 1N8.
HESET-BRANCH-TRACE command

description 126.
RESET-BREAKS command

description 125.
reference . 210, 212.

RESET-CALL-TRACE command
description

RESET—DEBUG command
description 125.

RESET—GUARD command
description 126.

RESET—LAST~BEEAK command
description 126.
reference . 208.

RESET—TRACE command
description 126.

resetting interface 166.
resident

area . 177.
memory . M2, 157.

resource utilization 1&3.
restarting

domain . 95.
system . 203.

restoring instruction 95, 11M.
RESUME—MACRO command

description 110.
RFILE monitor call 103.
rights . Mk.
RMAX monitor call 1OU.
RMV, NRF control number 187.
routine

call . 17, M1, 123.
vector . 75, 198, 200.

RT
loader . 72, 73.
program ND«1OO M1, 73.
segment ND-1OO H2, 72.
user . 151.RTCOMMON . H2, M7, 72, 137,

1u1, 165, 204,
211, 213, 21a.

modification 213.

258

size
RT-FIL
RT—LOADER
RUN command

description . .
reference . . .

runtime errors . .

Index

213.
19M.
H2.

87.
94, 159, 208,
212.
1MB.

S S S S S S

S field . . .
sampling

CPU usage . . .
program counter

saving macro . .
scattered

fixing
pages

scratch
domain . . .
segment

SCRATCH—DOMAIN . .
SCRATCH—SEGMENT-01
search procedure .
sector size
SEGFIL
segment

cleaning
delete
entry

file
information .
layout
limit . . .

maximum
name

name syntax . .
number . . L . .

physical
re~loading
shared
size
table
type
unavailable

segmenting
segment number, ND-lOO
segment, maximum .

u

c

o

SELECTED-SEGMENT—LOAD command

3 S S S S

185.

130, 131.
128.
110.

139.
146.

’49.
193.
an, 05, 50, 193.
50.
90, 109.
202, 203.
92, 216.
15, M7, 162.
165.
M5.
11, H6, 55, 181,
183.
10, 12, 15, 5M.
50, 55.
198, 200.
138, 195, 198,
206.
193.
15, M9, 53—55,
61—63, 118, 196,
107, 197, 198,
206, 212.
10.
15, 50, 62, 1M6,
1M7, 167, 214.
93.
198.
07, 190.
5A, 215, 216.
11.
207.
MB.
16.
205.
193.

Index

description
selective loading
semaphore
separation, code data
sequence, registers
set load address
SET— AUTO—LINK—SEGMENT command

description
reference

SET AUTO LOAD—FILE command
description
reference

SETBT monitor call.
SET-DGMAIN command

description
implicit
reference

SET—FLAG command
description
reference

SET—HISTOGRAM command
description
reference

SET~IO~BUFFERS command
description

SET-MEMORY—CONTENTS command
description

SET-ND 500-AVAILABLE command
description
reference

SET-ND—SOO~UNAVAILABLE command
description
reference

SET—PRIORITY command
description

SET-SEGMENT~LIMITS command
description
reference

SET—SEGMENT—NUMBER command
description
reference

SET—SYSTEM—PARAMETERS command
description
reference.

setting K flag . . u
shared

memory
segment

sign extension
simultaneous access .
single

step
stepping

SINGLE—INSTRUCTION—TRAP
single segment loader

59.
59.
41,
15.

259

42.

120.“
187.

63.
64.

65.
51,
203.

AN.
AN.
50,

136.
135.

127.
128,

145.
138.

SM.
50,

16M.
165.
167.

152,

1‘0 O (I
n

62.

153.
16—18, U7, 72,
1N1,
19M,
187.
11.

114.
115.
89.
197.

1117, 165,
2111, 216.

260

SINTRAN
command
file system . . .
line editing . . .
MACM
monitor call . . .

SINTRAN commands
description . . .
DUMP
RENAME~FILE . . .
RENAME-USER . . .

size
common—block . . .
I/O buffer . .

SLA NRF control number
slash (/)

LOOK~AT
SMAX monitor call . .
software detected erro
source

domain
file

space
stack

examining
frame

STACK—OVERFLOW trap .
STACK—UNDERFLOW trap
standard trap handler
start address

START—HISTOGRAH comman
description . . .
reference . . .

starting
execution
micro program . .
monitor

START—PRCCESS—LOG—ALL
description
reference

START—PROCESS—LOG—ONE
description .
reference

startup time
STATUS command

description . . .
register

STEP command
description . . .
reference .

STOP—HISTOGRAM command
description
reference . .

stopping
micro program . .

d

command

command

n o o .

Index

M1, 88.
us.
195.
157.
153.
150, 167.

87.
120.
55.
47.

69.
. 76.

187.
208.
115.
103.
22.

A7.
82.
67—70, 7u-76.
119, 203.
216.
119.
89.
29, 89.
21, 9o.
11, M6, 5a, 87,
93, 95, 186,
215, 216.

128.
127, 206.

87.
155.
10.

130.
130, 131.

Index

ND—SOO
output
process
program execution . . .

string parameter
structure, description file
sub control number NRF .
subroutine

address
call

subsystem version .
supervisor commands
suppress loading . . .
suspending process
swap

file

queue
segment

swapper
process
version

swapping

strategy
SWAPPING—LOG command

description
reference

symbol

defined
definition
entry
global
length
name
remove
truncation
value

symbolic
debugger
field
listing . . u
name

SYMBOLIC subcommand
description

synchronizing mechanism
syntax

commands
name

system
crash
parameters

261

166, 210.
10.
159.
1118.
167.
18?.
189.
186.
167.
123, 167.
1119.
151.
59.
111.

16, 19, Mg, 162,
164, 210, 212,
215.
1&3.
1M3.
1H3, 205.
137.
1H9.
119, 137, 1115,
162, 215.
1M3.

132.
127, 128, 130,
132.
59, 67, 68, 71,
83, 187.
116, 1M7.
83.
18%.
71.
53, 185.
12.
187.
71.
12, 91, 187.

15.
185.

. 77.
15-

157.
18.

78.
10.

U8.
132, 1&0, 1M3,
151, 16M, 165,
210, 211.

262

performance . . . u . .

segment
supervisor
table
user

version
system defined autoload file
SYSTPM—ENTRIES—ON command

description
reference

system selected swapfile .
system supervisor commands
SYSTEM—TRAP—DISABLE command

description
reference

SYSTEM—TRAP—ENABLE command
description
reference

T T T T T T T T T

table overflow.
T KE—ND—BOO—PAGES command

description 0 . u . . .
taking

memory pages
pages from ND—SOO . . .

TEMM register
temporary macro

.P"-BR~AK command
'ltion

renoe

terminating job
terminator
test checksum
THA register
time 311 ing
time critical

operations ,
routine

timeout
TIME—USED command

description
TOTAL—SEGMENT—LOAD command

description
TRACE command

description
reference

traceback

0—3

.ai process communi‘ation

Index

127, 138, 139,
1u3.
152, 2ou.
210—212, 215,
216.
17.
1M3, 210, 213.
153.
130, 131, 150,
151.
1&9.
51.

70.
69.
162.
151.

122.
123, 126, 208.
23.

lndex

tracing
translation mechanism . .
transmission data
transporting domain . . .
trap

bit . . ,,,
condition
Enable Modification Mask
handler
Handler Address . . .
library
mnemonic
name
propagation
table

trap handler address .
trap handling, default
truncating symbol
twin process
two's complement

12a.
137.
M1.
u7.
21-23, 12M.
25.
203, 209.
21.
21, 202, 209.
21.
22.
25, 195.
25, 195.
21.
25.
93-
86.
71.
M1, 150.
185, 186.

U U U U U U U U

unavailable, ND—SOO . . .
unconditional load . . .
undefined

reference
references
symbol

unfixing segment . . .
UNFIX—SEGMENT command

description
reference

unpredictable contents .
updating

domain entry
segment entry

user
break
fixing
interrupt
name

processes
RT
SYSTEM

user defined
auto link segment
auto load file
entries

user written trap handler

U U U U U

151.
59.

51, 63, 208.
65.
187, 189.
192.

1M7.
192, 195, 197.
7H.

M6.
M6.

199.
165.
148.
MM, H7, 55, 93,
195.
153.
151.
63—66, 93, 9M,
109, 130, 131,
150, 151, 162.

6“.
51.

. 69.
21, 23.

263
Index

V V V V V V V V V V V V

VALUE—ENTRY command
description
reference

vector routines
VERSION command

description

v V V V V V

91.
199.
198.

1E9.

H‘ H R H W H W W W W W W‘

WAITF monitor call
warning
WFILE monitor call . ,
WHO—IS—ON command

description
reference

word
count
format

WORD subcommand
description

working set
write

access
input flag
output flag

WRITE—DOMAIN«STATUS command
description

WRITE—NRF—EOFeAFTER«MODULE command
description

WRITE—SEGMENT~STATUS command
description

writing trap handler
written in page

W W W W W W

10H.
11.
104.

1&9.
131.

10a.
121.

157.
138.

.a
..

.\
U

JL
A

J~
J

U
1

0
1

-

Z Z Z Z Z Z Z Z Z Z Z Z

zero
fill
physical address

74, 75.
152.

************** SEND us YOUR COMMENTS!!! ****ii*********

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader's Club and send us a
note? You will receive a membership card — and
an answer to your comments.

Please let us know if you
' find errors
' cannot understand information
‘ cannot find information
' find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

”HHHHH HELP YOURSELF BY HELPING US” HHHHHH

Manual name: ND‘SOO Loader/Monitor Manual number: ND-GU.136.04A

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date

Company: Position:

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for Norsk Data A.S ____>documentation errors. Software and Documentation Department
system errors should be reported on PO. Box 25, Bogerud Norsk Data’s answer will be foundCustomer System Reports. Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
PO. Box 25, Bogerud
Oslo 6, Norway

